-
Notifications
You must be signed in to change notification settings - Fork 333
Description
I get the following error:
You're using a T5TokenizerFast tokenizer. Please note that with a fast tokenizer, using the __call__ method is faster than using a method to encode the text followed by a call to the pad method to get a padded encoding.
100% 1061/1061 [2:04:03<00:00, 3.45s/it]Traceback (most recent call last):
File "/content/mm-cot/main.py", line 395, in
T5Trainer(
File "/content/mm-cot/main.py", line 284, in T5Trainer
metrics = trainer.evaluate(eval_dataset = test_set, max_length=args.output_len)
File "/usr/local/lib/python3.10/dist-packages/transformers/trainer_seq2seq.py", line 159, in evaluate
return super().evaluate(eval_dataset, ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix)
File "/usr/local/lib/python3.10/dist-packages/transformers/trainer.py", line 3043, in evaluate
output = eval_loop(
File "/usr/local/lib/python3.10/dist-packages/transformers/trainer.py", line 3343, in evaluation_loop
metrics = self.compute_metrics(EvalPrediction(predictions=all_preds, label_ids=all_labels))
File "/content/mm-cot/main.py", line 215, in compute_metrics_rougel
preds = tokenizer.batch_decode(preds, skip_special_tokens=True, clean_up_tokenization_spaces=True)
File "/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py", line 3469, in batch_decode
return [
File "/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py", line 3470, in
self.decode(
File "/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py", line 3509, in decode
return self._decode(
File "/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_fast.py", line 546, in _decode
text = self._tokenizer.decode(token_ids, skip_special_tokens=skip_special_tokens)
OverflowError: out of range integral type conversion attempted
when I run the inference for rationale generation
CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py \
--data_root data/ScienceQA/data \
--caption_file data/instruct_captions.json \
--model declare-lab/flan-alpaca-large \
--user_msg rationale --img_type vit \
--bs 2 --eval_bs 4 --epoch 50 --lr 5e-5 --output_len 512 \
--use_caption --use_generate --prompt_format QCM-E \
--output_dir experiments \
--evaluate_dir models/mm-cot-large-rationale
This happens after those 1061 iterations are completed. As a consequence it doesn't generate experiments/rationale_declare-lab-flan-alpaca-large_vit_QCM-E_lr5e-05_bs8_op512_ep50/predictions_ans_eval.json which is expected by answer inference phase for inference