Skip to content

anomalous training results with Keras > 2.2.x #4

@aparrish

Description

@aparrish

Validation accuracy gets stuck around ~0.64 when training with Keras 2.3.x. This is training the phon2orth model with Keras 2.3.1 (128 hidden dims for encoder and decoder):

Train on 108072 samples, validate on 27019 samples
Epoch 1/50
108072/108072 [==============================] - 136s 1ms/step - loss: 0.4864 - accuracy: 0.5375 - val_loss: 0.4675 - val_accuracy: 0.5743
Epoch 2/50
108072/108072 [==============================] - 135s 1ms/step - loss: 0.2915 - accuracy: 0.7124 - val_loss: 0.4381 - val_accuracy: 0.6047
Epoch 3/50
108072/108072 [==============================] - 135s 1ms/step - loss: 0.2485 - accuracy: 0.7530 - val_loss: 0.4347 - val_accuracy: 0.6164
Epoch 4/50
108072/108072 [==============================] - 135s 1ms/step - loss: 0.2258 - accuracy: 0.7744 - val_loss: 0.4297 - val_accuracy: 0.6240
Epoch 5/50
108072/108072 [==============================] - 135s 1ms/step - loss: 0.2114 - accuracy: 0.7876 - val_loss: 0.4288 - val_accuracy: 0.6285
Epoch 6/50
108072/108072 [==============================] - 134s 1ms/step - loss: 0.2004 - accuracy: 0.7975 - val_loss: 0.4276 - val_accuracy: 0.6322

With 2.2.5, validation accuracy follows the expected path (slightly leading training accuracy, I think because validation doesn't use dropout):

108072/108072 [==============================] - 136s 1ms/step - loss: 1.4452 - acc: 0.5640 - val_loss: 0.8284 - val_acc: 0.7504
Epoch 2/50
108072/108072 [==============================] - 133s 1ms/step - loss: 0.7985 - acc: 0.7512 - val_loss: 0.6364 - val_acc: 0.8042
Epoch 3/50
108072/108072 [==============================] - 133s 1ms/step - loss: 0.6632 - acc: 0.7910 - val_loss: 0.5551 - val_acc: 0.8259
Epoch 4/50
108072/108072 [==============================] - 133s 1ms/step - loss: 0.5933 - acc: 0.8114 - val_loss: 0.5042 - val_acc: 0.8402
Epoch 5/50
108072/108072 [==============================] - 134s 1ms/step - loss: 0.5478 - acc: 0.8245 - val_loss: 0.4676 - val_acc: 0.8513

Not sure what's happening here—could have something to do with Keras 2.3's changing the "default recurrent activation to sigmoid (from hard_sigmoid) in all RNN layers."

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions