|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# How to find why your code is slow\n", |
| 8 | + "\n", |
| 9 | + "We're going to look at 4 ways to find why you code is slow.\n", |
| 10 | + "\n", |
| 11 | + "This will use the jupyter notebook (see the [ipython tutorial](http://nbviewer.ipython.org/github/dboyliao/cookbook-code/blob/master/notebooks/chapter01_basic/01_notebook.ipynb) for a basic into to jupyter), but you can do this on the command line or in python scripts. I would recommend using the jupyter interface for profiling though, as it's quite nice.\n", |
| 12 | + "\n", |
| 13 | + "Note that while `%time`, `%timeit` and `%prun` come with jupyter by default (as they only depend on the standard library), `%lprun` is not, so you'll need to install it manually.\n", |
| 14 | + "\n", |
| 15 | + "Some useful links are:\n", |
| 16 | + " * [Python docs on debugging](https://docs.python.org/2/library/debug.html)\n", |
| 17 | + " * [Python Module of the Week examples on the profilers](http://pymotw.com/2/profilers.html)\n", |
| 18 | + " * [Tips on optimsing code by the `scikit-learn` developers](http://scikit-learn.org/dev/developers/performance.html#profiling-python-code)\n", |
| 19 | + "\n", |
| 20 | + "These examples use `numpy`, `scipy`, and `line-profiler`, install these using `pip`." |
| 21 | + ] |
| 22 | + }, |
| 23 | + { |
| 24 | + "cell_type": "code", |
| 25 | + "execution_count": 1, |
| 26 | + "metadata": { |
| 27 | + "collapsed": true |
| 28 | + }, |
| 29 | + "outputs": [], |
| 30 | + "source": [ |
| 31 | + "from __future__ import absolute_import, division, print_function # Py2/3 compat" |
| 32 | + ] |
| 33 | + }, |
| 34 | + { |
| 35 | + "cell_type": "markdown", |
| 36 | + "metadata": {}, |
| 37 | + "source": [ |
| 38 | + "## `%time`\n", |
| 39 | + "\n", |
| 40 | + "`%time` is a ipython magic, used to measure how long a bunch of python code takes to run. It's similar to the unix command/shell builtin `time`." |
| 41 | + ] |
| 42 | + }, |
| 43 | + { |
| 44 | + "cell_type": "code", |
| 45 | + "execution_count": 2, |
| 46 | + "metadata": { |
| 47 | + "collapsed": false |
| 48 | + }, |
| 49 | + "outputs": [ |
| 50 | + { |
| 51 | + "name": "stdout", |
| 52 | + "output_type": "stream", |
| 53 | + "text": [ |
| 54 | + "CPU times: user 772 ms, sys: 12 ms, total: 784 ms\n", |
| 55 | + "Wall time: 120 ms\n" |
| 56 | + ] |
| 57 | + } |
| 58 | + ], |
| 59 | + "source": [ |
| 60 | + "%%time\n", |
| 61 | + "import numpy as np\n", |
| 62 | + "length = 100000\n", |
| 63 | + "np.zeros(length) / np.ones(length)" |
| 64 | + ] |
| 65 | + }, |
| 66 | + { |
| 67 | + "cell_type": "markdown", |
| 68 | + "metadata": {}, |
| 69 | + "source": [ |
| 70 | + "## `%timeit`\n", |
| 71 | + "\n", |
| 72 | + "`timeit` is a python module in the standard library for timing python code. What it does is run the code in a loop multiple time, and pick the time of the best loop (see the [timeit docs](https://docs.python.org/2/library/timeit.html) for why this is done). `timeit` can be run either on the command line using `python -m timeit` or called inside python, but the easiest way is to use the `%timeit` ipython magic. See `%timeit?` for the additional arguments you can give `%timeit` when you run it." |
| 73 | + ] |
| 74 | + }, |
| 75 | + { |
| 76 | + "cell_type": "markdown", |
| 77 | + "metadata": {}, |
| 78 | + "source": [ |
| 79 | + "As you can see from the example below, not everything that performs the same task takes the same amount of time. If you're computing `sin(x)` inside a loop which is running many times, if you aren't calling it on a numpy array, maybe you should use `math.sin`." |
| 80 | + ] |
| 81 | + }, |
| 82 | + { |
| 83 | + "cell_type": "code", |
| 84 | + "execution_count": 3, |
| 85 | + "metadata": { |
| 86 | + "collapsed": false |
| 87 | + }, |
| 88 | + "outputs": [ |
| 89 | + { |
| 90 | + "name": "stdout", |
| 91 | + "output_type": "stream", |
| 92 | + "text": [ |
| 93 | + "math:\n", |
| 94 | + "The slowest run took 60.13 times longer than the fastest. This could mean that an intermediate result is being cached.\n", |
| 95 | + "10000000 loops, best of 3: 128 ns per loop\n", |
| 96 | + "numpy:\n", |
| 97 | + "The slowest run took 21.05 times longer than the fastest. This could mean that an intermediate result is being cached.\n", |
| 98 | + "1000000 loops, best of 3: 888 ns per loop\n", |
| 99 | + "scipy:\n", |
| 100 | + "The slowest run took 25.55 times longer than the fastest. This could mean that an intermediate result is being cached.\n", |
| 101 | + "1000000 loops, best of 3: 887 ns per loop\n" |
| 102 | + ] |
| 103 | + } |
| 104 | + ], |
| 105 | + "source": [ |
| 106 | + "from math import sin as msin\n", |
| 107 | + "from numpy import sin as npsin\n", |
| 108 | + "from scipy import sin as spsin\n", |
| 109 | + "\n", |
| 110 | + "from math import pi\n", |
| 111 | + "\n", |
| 112 | + "angle = pi - 0.1\n", |
| 113 | + "\n", |
| 114 | + "print(\"math:\")\n", |
| 115 | + "%timeit msin(angle)\n", |
| 116 | + "print(\"numpy:\")\n", |
| 117 | + "%timeit npsin(angle)\n", |
| 118 | + "print(\"scipy:\")\n", |
| 119 | + "%timeit spsin(angle)" |
| 120 | + ] |
| 121 | + }, |
| 122 | + { |
| 123 | + "cell_type": "markdown", |
| 124 | + "metadata": {}, |
| 125 | + "source": [ |
| 126 | + "## `%prun` a.k.a. the python profiler\n", |
| 127 | + "\n", |
| 128 | + "Python comes with up to 3 different profilers, however for most purposes using `cProfile` is sufficient. Like `timeit`, this can be called in a script or from the command line, but it's easier to use `ipython`. The `ipython` magic you want to use is `%prun`. Like `%timeit` it's worth looking at its help.\n", |
| 129 | + "\n", |
| 130 | + "`ipython` can also profile scripts via `%run -p script.py`." |
| 131 | + ] |
| 132 | + }, |
| 133 | + { |
| 134 | + "cell_type": "code", |
| 135 | + "execution_count": 4, |
| 136 | + "metadata": { |
| 137 | + "collapsed": false |
| 138 | + }, |
| 139 | + "outputs": [ |
| 140 | + { |
| 141 | + "name": "stdout", |
| 142 | + "output_type": "stream", |
| 143 | + "text": [ |
| 144 | + " " |
| 145 | + ] |
| 146 | + } |
| 147 | + ], |
| 148 | + "source": [ |
| 149 | + "%%prun\n", |
| 150 | + "\n", |
| 151 | + "def fast_func():\n", |
| 152 | + " return 1\n", |
| 153 | + "\n", |
| 154 | + "def slow_func():\n", |
| 155 | + " for i in range(100000):\n", |
| 156 | + " i**2\n", |
| 157 | + "\n", |
| 158 | + "fast_func()\n", |
| 159 | + "slow_func()" |
| 160 | + ] |
| 161 | + }, |
| 162 | + { |
| 163 | + "cell_type": "markdown", |
| 164 | + "metadata": {}, |
| 165 | + "source": [ |
| 166 | + "It's really easy to start profiling your current scripts in ipython (as long as you put all the top level code in a function called something like `main`), all you need to do is create a notebook in the same directory as your scripts, and then run the code:\n", |
| 167 | + "```ipython\n", |
| 168 | + "from your_script import main\n", |
| 169 | + "%prun main()\n", |
| 170 | + "```" |
| 171 | + ] |
| 172 | + }, |
| 173 | + { |
| 174 | + "cell_type": "markdown", |
| 175 | + "metadata": {}, |
| 176 | + "source": [ |
| 177 | + "## `%lprun`: `line_profiler`\n", |
| 178 | + "\n", |
| 179 | + "`line_profiler` is \n", |
| 180 | + "\n", |
| 181 | + "PYPI: https://pypi.python.org/pypi/line_profiler/\n", |
| 182 | + "Github: https://github.com/rkern/line_profiler\n", |
| 183 | + "\n", |
| 184 | + "Install using pip, i.e.:\n", |
| 185 | + "```sh\n", |
| 186 | + "pip install line_profiler\n", |
| 187 | + "```\n", |
| 188 | + "and follow instructions in README.rst to add to ipython" |
| 189 | + ] |
| 190 | + }, |
| 191 | + { |
| 192 | + "cell_type": "code", |
| 193 | + "execution_count": null, |
| 194 | + "metadata": { |
| 195 | + "collapsed": false |
| 196 | + }, |
| 197 | + "outputs": [], |
| 198 | + "source": [] |
| 199 | + } |
| 200 | + ], |
| 201 | + "metadata": { |
| 202 | + "kernelspec": { |
| 203 | + "display_name": "Python 3", |
| 204 | + "language": "python", |
| 205 | + "name": "python3" |
| 206 | + }, |
| 207 | + "language_info": { |
| 208 | + "codemirror_mode": { |
| 209 | + "name": "ipython", |
| 210 | + "version": 3 |
| 211 | + }, |
| 212 | + "file_extension": ".py", |
| 213 | + "mimetype": "text/x-python", |
| 214 | + "name": "python", |
| 215 | + "nbconvert_exporter": "python", |
| 216 | + "pygments_lexer": "ipython3", |
| 217 | + "version": "3.5.2+" |
| 218 | + } |
| 219 | + }, |
| 220 | + "nbformat": 4, |
| 221 | + "nbformat_minor": 0 |
| 222 | +} |
0 commit comments