-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtest_datasets.py
142 lines (118 loc) · 4.76 KB
/
test_datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import numpy as np
import matplotlib.pyplot as plt
import glob
import sys
from math import *
import torch
import torch.nn as nn
from torch.nn import Parameter
from torch.nn import functional as F
import torch.optim
from torch.autograd import Variable
import time
import copy
import seaborn
from architecture import ClassifierGenerator, NetworkSKL, tovar, toivar
from testing import evalClassifier, compareMethodsOnSet
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import roc_auc_score
import xgboost as xgb
import warnings
def fxn():
warnings.warn("deprecated", DeprecationWarning)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
fxn()
net128_16 = ClassifierGenerator(128, 16, NETSIZE=384).cuda()
net128_16.load_state_dict(torch.load("models/classifier-generator-128-16.pth"))
net32_16 = ClassifierGenerator(32, 16, NETSIZE=384).cuda()
net32_16.load_state_dict(torch.load("models/classifier-generator-32-16.pth"))
dataset_descriptions = {
"data/immunotherapy.npz": "Immunotherapy\\cite{khozeimeh2017expert, khozeimeh2017intralesional}",
"data/foresttype.npz": "Forest type\\cite{johnson2012using}",
"data/winetype.npz" : "Wine type\\cite{forina1990parvus}",
"data/cryotherapy.npz" : "Cryotherapy\\cite{khozeimeh2017expert, khozeimeh2017intralesional}",
"data/chronic-kidney.npz" : "Chronic kidney\\cite{chronickidney}",
"data/echocardiogram.npz" : "Echocardiogram\\cite{echocardiogram}",
"data/haberman.npz" : "Haberman\\cite{haberman1976generalized}",
"data/iris.npz" : "Iris\\cite{fisher1936use}",
"data/hcc-survival.npz" : "HCC Survival\\cite{santos2015new}",
"data/horse-colic.npz" : "Horse Colic\\cite{horsecolic}",
"data/lung-cancer.npz" : "Lung cancer\\cite{hong1991optimal}",
"data/hepatitis.npz" : "Hepatitis\\cite{hepatitis}",
"data/bloodtransfusion.npz" : "Blood transfusion\\cite{yeh2009knowledge}",
"data/autism.npz" : "Autism\\cite{thabtah2017autism}",
"data/cervical_cancer.npz" : "Cervical cancer\\cite{fernandes2017transfer}",
"data/winequality_red.npz" : "Wine quality (red)",
"data/winequality_white.npz" : "Wine quality (white)",
"data/dermatology.npz" : "Dermatology"
}
f = open("results/auctable.tex","wb")
f.write("Dataset & N & $\sigma$ & LSVC & SVC & RF & XGB & KNN & CG & FTCG \\\\ \n")
f.write("\\midrule\n")
f.close()
methods = [
lambda: SVC(kernel='linear', C=1, probability=True),
lambda: SVC(kernel='rbf', C=1, probability=True),
RandomForestClassifier,
xgb.XGBClassifier,
KNeighborsClassifier,
#lambda: NetworkSKL(net32_16),
lambda: NetworkSKL(net128_16) ]
avg10 = []
avg20 = []
avg50 = []
for file in glob.glob("data/*.npz"):
data = np.load(file)
print(file)
data_x = data['x'].astype(np.float32)
data_y = data['y'].astype(np.int32)
if np.unique(data_y).shape[0]<=16:
f = open("results/auctable.tex","a")
f.write("\\multirow{3}{*}{%s} " % (dataset_descriptions[file]))
fname = file[5:-4]
ftnet = ClassifierGenerator(128, 16, NETSIZE=384).cuda()
ftnet.load_state_dict(torch.load("models/classifier-generator-128-16-%s.pth" % fname))
if data_x.shape[0]>=20:
f.write("& 10 ")
results10 = np.array(compareMethodsOnSet(methods + [ lambda: NetworkSKL(ftnet) ], data_x, data_y, N=10, samples=800))
stdev = np.mean(results10[:,3])
maxval = np.max(results10[:,1])
f.write("& %.3g " % stdev)
for i in range(results10.shape[0]):
if abs(maxval-results10[i,1])<stdev:
f.write("& \\bf{%.3g} " % (results10[i,1]))
else:
f.write("& %.3g " % (results10[i,1]))
f.write("\\\\ \n")
avg10.append(results10)
if data_x.shape[0]>=60:
f.write("& 50 ")
results50 = np.array(compareMethodsOnSet(methods + [ lambda: NetworkSKL(ftnet) ], data_x, data_y, N=50, samples=800))
stdev = np.mean(results50[:,3])
maxval = np.max(results50[:,1])
f.write("& %.3g " % stdev)
for i in range(results50.shape[0]):
if abs(maxval-results50[i,1])<stdev:
f.write("& \\bf{%.3g} " % (results50[i,1]))
else:
f.write("& %.3g " % (results50[i,1]))
f.write("\\\\ \n")
avg50.append(results50)
f.write("\\midrule \n")
f.close()
print(" %d,%d" % (data_x.shape[0], np.unique(data_y).shape[0]))
avg10 = np.array(avg10).mean(axis=0)
avg50 = np.array(avg50).mean(axis=0)
f = open("results/auctable.tex","a")
f.write("\\midrule \n")
f.write("\multirow{3}{*}{Average} & 10 & %.3g " % (avg10[i,3]/sqrt(18)))
for i in range(len(results10)):
f.write("& %.3g " % (avg10[i,1]))
f.write("\\\\ \n & 50 & %.3g " % (avg50[i,3]/sqrt(18)))
for i in range(len(results50)):
f.write("& %.3g " % (avg50[i,1]))
f.write("\\\\ \n")
f.close()