-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcartpole.py
204 lines (160 loc) · 6.35 KB
/
cartpole.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import numpy as np
import gym
import matplotlib.pyplot
from math import *
import theano
import theano.tensor as T
import lasagne
from PIL import Image
import scipy.misc
import sys
np.random.seed(int(sys.argv[1])+1238)
env = gym.make('CartPole-v1')
# Fixed point network
weights = np.array([1.2, 1.8, 3.0, 0.8])
LATENT = 2
FUTURE = 16
HIDDEN = 256
for trial in range(int(sys.argv[1]),int(sys.argv[1])+10):
context_var = T.matrix()
latent = T.matrix()
d_input = T.matrix()
target = T.vector()
targs = T.vector()
context_input = lasagne.layers.InputLayer((None,4), input_var = context_var)
latent_input = lasagne.layers.InputLayer((None,LATENT), input_var = latent)
state_input = lasagne.layers.InputLayer((None,FUTURE*5), input_var = d_input)
plist = []
dense1 = lasagne.layers.DenseLayer(state_input, num_units = HIDDEN)
plist.append(dense1.W)
plist.append(dense1.b)
dense2 = lasagne.layers.DenseLayer(dense1, num_units = HIDDEN)
plist.append(dense2.W)
plist.append(dense2.b)
dense3 = lasagne.layers.DenseLayer(dense2, num_units = HIDDEN)
plist.append(dense3.W)
plist.append(dense3.b)
enc = lasagne.layers.DenseLayer(dense3, num_units = LATENT, nonlinearity = lasagne.nonlinearities.tanh)
plist.append(enc.W)
plist.append(enc.b)
enc_noise = lasagne.layers.GaussianNoiseLayer(enc, sigma=0.2)
stack2 = lasagne.layers.ConcatLayer([context_input, enc_noise])
ddense1 = lasagne.layers.DenseLayer(stack2, num_units = HIDDEN)
plist.append(ddense1.W)
plist.append(ddense1.b)
ddense2 = lasagne.layers.DenseLayer(ddense1, num_units = HIDDEN)
plist.append(ddense2.W)
plist.append(ddense2.b)
ddense3 = lasagne.layers.DenseLayer(ddense2, num_units = HIDDEN)
plist.append(ddense3.W)
plist.append(ddense3.b)
out = lasagne.layers.DenseLayer(ddense3, num_units = 5*FUTURE, nonlinearity = None)
plist.append(out.W)
plist.append(out.b)
def addBlock(ctx_in, state_in, params):
dense1 = lasagne.layers.DenseLayer(state_in, num_units = HIDDEN, W=params[0], b=params[1])
dense2 = lasagne.layers.DenseLayer(dense1, num_units = HIDDEN, W=params[2], b=params[3])
dense3 = lasagne.layers.DenseLayer(dense2, num_units = HIDDEN, W=params[4], b=params[5])
enc = lasagne.layers.DenseLayer(dense3, num_units = LATENT, nonlinearity = lasagne.nonlinearities.tanh, W=params[6], b=params[7])
enc_noise = lasagne.layers.GaussianNoiseLayer(enc, sigma=0.2)
stack2 = lasagne.layers.ConcatLayer([ctx_in, enc_noise])
ddense1 = lasagne.layers.DenseLayer(stack2, num_units = HIDDEN, W=params[8], b=params[9])
ddense2 = lasagne.layers.DenseLayer(ddense1, num_units = HIDDEN, W=params[10], b=params[11])
ddense3 = lasagne.layers.DenseLayer(ddense2, num_units = HIDDEN, W=params[12], b=params[13])
out = lasagne.layers.DenseLayer(ddense2, num_units = 5*FUTURE, nonlinearity = None, W=params[14], b=params[15])
return enc, out
enc2, out2 = addBlock(context_input, out, plist)
enc3, out3 = addBlock(context_input, out2, plist)
enc4, out4 = addBlock(context_input, out3, plist)
enc5, out5 = addBlock(context_input, out4, plist)
enc6, out6 = addBlock(context_input, out5, plist)
enc7, out7 = addBlock(context_input, out6, plist)
params = lasagne.layers.get_all_params(out7,trainable=True)
outs = lasagne.layers.get_output([out,out2,out3,out4,out5,out6,out7])
encs = lasagne.layers.get_output([enc,enc2,enc3,enc4,enc5,enc6,enc7])
loss = 0
for i in range(len(outs)):
loss = loss + T.mean((outs[i] - d_input)**2)
reg = lasagne.regularization.regularize_network_params(out7, lasagne.regularization.l2)*5e-4
lr = theano.shared(np.array([1e-4],dtype=np.float32))
updates = lasagne.updates.adam(loss+reg, params, learning_rate = lr[0], beta1=0.5)
train = theano.function([context_var, d_input], loss, updates=updates, allow_input_downcast=True)
encode = theano.function([d_input], encs[0], allow_input_downcast=True)
stack2.input_layers[1] = latent_input
gen_out = lasagne.layers.get_output(out)
reward = T.mean(weights[0]*abs(gen_out[:,0+5*(FUTURE-1)]-targs[0]))+T.mean(T.sum(weights[1:]*(gen_out[:,1+5*(FUTURE-1):5*(FUTURE-1)+4]-targs[1:])**2,axis=1),axis=0)
sample = theano.function([context_var, latent], gen_out, allow_input_downcast = True)
latent_grad = theano.function([context_var, latent, targs], [theano.grad(reward, latent), reward], allow_input_downcast = True)
def getPolicy(obs, targ, platent):
latent = platent.copy()
obs2 = obs
for i in range(100):
grad,rw = latent_grad(obs2, latent, targ)
grad = -grad/np.sqrt(np.sum(grad**2,axis=1)+1e-16)
latent += 0.05*grad - 0.001*latent
return sample(obs2, latent)[0], latent
def trainNet():
BS = 1000
contexts = []
policies = []
meanlen = np.mean(np.array([x.shape[0] for x in data]))
for i in range(BS):
j = np.random.randint(len(data))
if data[j].shape[0]>FUTURE+1:
k = np.random.randint(data[j].shape[0]-FUTURE-1)
contexts.append(data[j][k,0:4])
policies.append(data[j][k+1:k+1+FUTURE,:].reshape((FUTURE*5)))
policies = np.array(policies)
contexts = np.array(contexts)
d_err = train(contexts, policies)
return d_err
data = []
preds = []
rewards = []
dlatents = []
discerr = []
for cycle in range(25):
rate = 1e-4
lr.set_value(np.array([rate],dtype=np.float32))
for sub in range(5):
obs = env.reset()
obs[0] *= 10
obs[2] *= 10
latent = np.random.randn(1,LATENT)
targ = np.zeros(4)
policy,latent = getPolicy(np.array(obs).reshape((1,4)),targ,latent)
done = False
run_obs = []
run_act = []
run_preds = []
run_latents = []
step= 0
j = 0
while (not done) and (step<500):
act = (np.random.rand()<(0.5*(policy[4+j*5]+1)))*1
run_preds.append(policy[5*j:5*j+5])
obs, reward, done, info = env.step(act)
obs[0] *= 10
obs[2] *= 10
run_act.append(2*act-1)
run_obs.append(obs)
err = np.mean( (obs-policy[j*5:j*5+4])**2 )
j += 1
if j>1 or err>0.05:
policy,latent = getPolicy(np.array(obs).reshape((1,4)),targ,latent)
j = 0
run_latents.append(latent[0])
#env.render()
step += 1
run_act = np.array(run_act)
run_obs = np.array(run_obs)
dlatents.append(np.array(run_latents))
data.append(np.hstack([run_obs, run_act.reshape((run_act.shape[0],1))]))
preds.append(np.array(run_preds))
rewards.append(run_obs.shape[0])
f = open("runs/%.6d.txt" % trial,"a")
f.write("%d\n" % run_obs.shape[0])
f.close()
de = 0
for epoch in range(400):
de = trainNet()