-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathgan.py
235 lines (172 loc) · 7.49 KB
/
gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
"""
@auth : Arjun Krishna
@desc : 1D Generative Adverserial Network
"""
import argparse
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from scipy.stats import norm
seed = 7
np.random.seed(seed)
tf.set_random_seed(seed)
class DataDistribution(object):
def __init__(self):
self.mu = 2
self.sigma = 0.2
def sample(self, N):
samples = np.random.normal(self.mu, self.sigma, N)
samples.sort()
return samples
class GeneratorDistribution(object):
def __init__(self, a):
self.a = a
def sample(self, N):
return np.random.uniform(-1,1,N)
def linear(input, output_dim, scope=None, stddev=0.1):
with tf.variable_scope(scope or 'linear'):
w = tf.get_variable(
'W',
[input.get_shape()[1], output_dim],
initializer=tf.random_normal_initializer(stddev=stddev)
)
b = tf.get_variable(
'b',
[output_dim],
initializer=tf.constant_initializer(0.0)
)
return tf.matmul(input, w) + b
def generator(input):
h0 = tf.nn.softplus(linear(input, 5, 'h0'))
h1 = linear(h0, 1, 'h1')
return h1
def discriminator(input, minibatch_layer=True):
h0 = tf.nn.relu(linear(input, 10, 'h0'))
h1 = tf.nn.relu(linear(h0, 10, 'h1'))
if minibatch_layer:
h2 = minibatch(h1)
else:
h2 = tf.nn.relu(linear(h1, 10, scope='h2'))
h3 = tf.sigmoid(linear(h2, 1, scope='h3'))
return h3
def minibatch(input, num_kernels=5, kernel_dim=3):
x = linear(input, num_kernels * kernel_dim, scope='minibatch', stddev=0.02)
activation = tf.reshape(x, (-1, num_kernels, kernel_dim))
delta = tf.expand_dims(activation, 3) - tf.expand_dims(tf.transpose(activation, [1, 2, 0]), 0)
abs_delta = tf.reduce_sum(tf.abs(delta), 2)
features = tf.reduce_sum(tf.exp(-abs_delta), 2)
return tf.concat([input, features], 1)
def log(x):
# Ensures the term doesn't go to large negative numbers
return tf.log(tf.maximum(x, 1e-5))
class GAN(object):
def __init__(self, params):
with tf.variable_scope('G'):
self.z = tf.placeholder(tf.float32, shape=(None, 1))
self.G = generator(self.z)
self.x = tf.placeholder(tf.float32, shape=(None, 1))
with tf.variable_scope('D'):
self.D_real = discriminator(self.x)
with tf.variable_scope('D', reuse=True):
self.D_fake = discriminator(self.G)
self.loss_discriminator = tf.reduce_mean(-log(self.D_real) - log(1 - self.D_fake))
self.loss_generator = tf.reduce_mean(-log(self.D_fake))
self.discriminator_params = [v for v in tf.trainable_variables() if v.name.startswith('D/')]
self.generator_params = [v for v in tf.trainable_variables() if v.name.startswith('G/')]
self.train_op_d = tf.train.AdamOptimizer(1e-2).minimize(self.loss_discriminator, var_list=self.discriminator_params)
self.train_op_g = tf.train.AdamOptimizer(1e-3).minimize(self.loss_generator, var_list=self.generator_params)
def train(model, data, gen, params):
anim_frames = []
with tf.Session() as session:
tf.local_variables_initializer().run()
tf.global_variables_initializer().run()
for step in range(params.num_steps + 1):
x = data.sample(params.batch_size)
z = gen.sample(params.batch_size)
loss_d, _, = session.run([model.loss_discriminator, model.train_op_d], {
model.x: np.reshape(x, (params.batch_size, 1)),
model.z: np.reshape(z, (params.batch_size, 1))
})
z = gen.sample(params.batch_size)
loss_g, _ = session.run([model.loss_generator, model.train_op_g], {
model.z: np.reshape(z, (params.batch_size, 1))
})
if step % params.log_every == 0:
print('{}: {:.4f}\t{:.4f}'.format(step, loss_d, loss_g))
if params.anim_path and (step % params.anim_every == 0):
anim_frames.append(
samples(model, session, data, gen, 3)
)
if params.anim_path:
for i in xrange(len(anim_frames)) :
save_plot(anim_frames[i], 3, i, i*params.anim_every, params.anim_path)
else:
s = samples(model, session, data, gen, 3)
plot_distributions(s, 3)
def samples(model, session, data, gen, sample_range):
xs = np.linspace(-sample_range, sample_range, 100)
bins = np.linspace(-sample_range, sample_range, 20)
# decision boundary
db = session.run(model.D_real, { model.x: np.reshape( xs, (100, 1))})
# data distribution
z = gen.sample(1000)
# generated samples
g = session.run(model.G, { model.z: np.reshape(z, (1000, 1))})
mean_g = np.mean(g)
std_g = np.std(g)
true_dist = norm.pdf(xs, data.mu, data.sigma)
gen_dist = norm.pdf(xs, mean_g, std_g)
return db, z, g, true_dist, gen_dist
def plot_distributions(samps, sample_range):
db, z, g, true_dist, gen_dist = samps
dx = np.linspace(-sample_range, sample_range, len(db))
px = np.linspace(-sample_range, sample_range, len(z))
f, ax = plt.subplots(1)
ax.plot(dx, db, color='orange', label='Discriminator')
ax.set_ylim(0, 3)
# plt.plot(px, pz, color='green', label='Noise')
plt.hist(z, 20, normed=1, color='green', label='Noise')
# plt.plot(px, pg, color='red', label='Gen hist')
plt.hist(g, 20, normed=1, color='red', label='Gen hist')
plt.plot(dx, true_dist, color='blue', label='Data dist')
plt.plot(dx, gen_dist, color='purple', label='Gen dist')
plt.title('Generative Adversarial Network')
plt.legend()
plt.show()
def save_plot(samps, sample_range, file, title, dir_path) :
db, z, g, true_dist, gen_dist = samps
dx = np.linspace(-sample_range, sample_range, len(db))
px = np.linspace(-sample_range, sample_range, len(z))
f, ax = plt.subplots(1)
ax.plot(dx, db, color='orange', label='Discriminator')
ax.set_ylim(0, 3)
# plt.plot(px, pz, color='green', label='Noise')
plt.hist(z, 20, normed=1, color='green', label='Noise')
# plt.plot(px, pg, color='red', label='Gen hist')
plt.hist(g, 20, normed=1, color='red', label='Gen hist')
plt.plot(dx, true_dist, color='blue', label='Data dist')
plt.plot(dx, gen_dist, color='purple', label='Gen dist')
plt.title('Generative Adversarial Network [iteration = '+str(title)+']')
# plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
if (dir_path[-1] == '/') :
plt.savefig(dir_path+str(file)+'.png')
else :
plt.savefig(dir_path+'/'+str(file)+'.png')
def main(args):
model = GAN(args)
train(model, DataDistribution(), GeneratorDistribution(1), args)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--num-steps', type=int, default=5000,
help='the number of training steps to take')
parser.add_argument('--batch-size', type=int, default=10,
help='the batch size')
parser.add_argument('--log-every', type=int, default=10,
help='print loss after this many steps')
parser.add_argument('--anim-path', type=str, default=None,
help='path to the output animation file')
parser.add_argument('--anim-every', type=int, default=1,
help='save every Nth frame for animation')
return parser.parse_args()
if __name__ == '__main__':
main(parse_args())