-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathapp.py
242 lines (223 loc) · 9.98 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
""" API with huggingface inference API """
import os
import logging
import random
import traceback
from difflib import SequenceMatcher
from typing import List
from itertools import chain
from transformers import AutoConfig
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from lmqg.inference_api import generate_qa
from lmqg.spacy_module import SpacyPipeline
logging.basicConfig(format='%(asctime)s %(levelname)-8s %(message)s', level=logging.DEBUG, datefmt='%Y-%m-%d %H:%M:%S')
API_TOKEN = os.getenv("API_TOKEN")
##########
# CONFIG #
##########
LANGUAGE_MAP = {
"English": "en",
"Japanese": "ja",
'German': "de",
'Spanish': 'es',
'Italian': 'it',
'Korean': 'ko',
'Russian': "ru",
'French': "fr",
'Chinese': "zh"
}
# Default models for each qag type
DEFAULT_MODELS_E2E = {
"en": ["lmqg/t5-small-squad-qag", None],
"fr": ["lmqg/mt5-small-frquad-qag-trimmed-50000", None],
"es": ["lmqg/mt5-small-esquad-qag-trimmed-50000", None],
"it": ["lmqg/mt5-small-itquad-qag-trimmed-50000", None],
"ja": ["lmqg/mt5-small-jaquad-qag-trimmed-50000", None],
"de": ["lmqg/mt5-small-dequad-qag-trimmed-50000", None],
"ko": ["lmqg/mt5-small-koquad-qag-trimmed-50000", None],
"ru": ["lmqg/mt5-small-ruquad-qag-trimmed-50000", None],
"zh": ["lmqg/mt5-small-zhquad-qag-trimmed-50000", None]
}
DEFAULT_MODELS_MULTITASK = {
"en": ["lmqg/t5-small-squad-qg-ae", "lmqg/t5-small-squad-qg-ae"],
"fr": ["lmqg/mt5-small-frquad-qg-ae-trimmed-50000", "lmqg/mt5-small-frquad-qg-ae-trimmed-50000"],
"es": ["lmqg/mt5-small-esquad-qg-ae-trimmed-50000", "lmqg/mt5-small-esquad-qg-ae-trimmed-50000"],
"it": ["lmqg/mt5-small-itquad-qg-ae-trimmed-50000", "lmqg/mt5-small-itquad-qg-ae-trimmed-50000"],
"ja": ["lmqg/mt5-small-jaquad-qg-ae-trimmed-50000", "lmqg/mt5-small-jaquad-qg-ae-trimmed-50000"],
"de": ["lmqg/mt5-small-dequad-qg-ae-trimmed-50000", "lmqg/mt5-small-dequad-qg-ae-trimmed-50000"],
"ko": ["lmqg/mt5-small-koquad-qg-ae-trimmed-50000", "lmqg/mt5-small-koquad-qg-ae-trimmed-50000"],
"ru": ["lmqg/mt5-small-ruquad-qg-ae-trimmed-50000", "lmqg/mt5-small-ruquad-qg-ae-trimmed-50000"],
"zh": ["lmqg/mt5-small-zhquad-qg-ae-trimmed-50000", "lmqg/mt5-small-zhquad-qg-ae-trimmed-50000"]
}
DEFAULT_MODELS_PIPELINE = {
"en": ["lmqg/t5-small-squad-qg", "lmqg/t5-small-squad-ae"],
"fr": ["lmqg/mt5-small-frquad-qg-trimmed-50000", "lmqg/mt5-small-frquad-ae-trimmed-50000"],
"es": ["lmqg/mt5-small-esquad-qg-trimmed-50000", "lmqg/mt5-small-esquad-ae-trimmed-50000"],
"it": ["lmqg/mt5-small-itquad-qg-trimmed-50000", "lmqg/mt5-small-itquad-ae-trimmed-50000"],
"ja": ["lmqg/mt5-small-jaquad-qg-trimmed-50000", "lmqg/mt5-small-jaquad-ae-trimmed-50000"],
"de": ["lmqg/mt5-small-dequad-qg-trimmed-50000", "lmqg/mt5-small-dequad-ae-trimmed-50000"],
"ko": ["lmqg/mt5-small-koquad-qg-trimmed-50000", "lmqg/mt5-small-koquad-ae-trimmed-50000"],
"ru": ["lmqg/mt5-small-ruquad-qg-trimmed-50000", "lmqg/mt5-small-ruquad-qg-trimmed-50000"],
"zh": ["lmqg/mt5-small-zhquad-qg-trimmed-50000", "lmqg/mt5-small-zhquad-qg-trimmed-50000"]
}
DEFAULT_MODELS = {
"End2End": DEFAULT_MODELS_E2E,
"Multitask": DEFAULT_MODELS_PIPELINE,
"Pipeline": DEFAULT_MODELS_PIPELINE,
}
SPACY_PIPELINE = {i: SpacyPipeline(i) for i in LANGUAGE_MAP.values()} # spacy for sentence splitting
PRETTY_NAME = {
"End2End": {
"T5 SMALL": ["lmqg/t5-small-squad-qag", None],
"T5 BASE": ["lmqg/t5-base-squad-qag", None],
"T5 LARGE": ["lmqg/t5-large-squad-qag", None],
"Flan-T5 SMALL": ["lmqg/flan-t5-small-squad-qag", None],
"Flan-T5 BASE": ["lmqg/flan-t5-base-squad-qag", None],
"Flan-T5 LARGE": ["lmqg/flan-t5-large-squad-qag", None]
},
"Multitask": {
"T5 SMALL": ["lmqg/t5-small-squad-qg-ae", "lmqg/t5-small-squad-qg-ae"],
"T5 BASE": ["lmqg/t5-base-squad-qg-ae", "lmqg/t5-base-squad-qg-ae"],
"T5 LARGE": ["lmqg/t5-large-squad-qg-ae", "lmqg/t5-large-squad-qg-ae"],
"Flan-T5 SMALL": ["lmqg/flan-t5-small-squad-qg-ae", "lmqg/flan-t5-small-squad-qg-ae"],
"Flan-T5 BASE": ["lmqg/flan-t5-base-squad-qg-ae", "lmqg/flan-t5-base-squad-qg-ae"],
"Flan-T5 LARGE": ["lmqg/flan-t5-large-squad-qg-ae", "lmqg/flan-t5-large-squad-qg-ae"],
},
"Pipeline": {
"T5 SMALL": ["lmqg/t5-small-squad-qg", "lmqg/t5-small-squad-ae"],
"T5 BASE": ["lmqg/t5-base-squad-qg", "lmqg/t5-base-squad-ae"],
"T5 LARGE": ["lmqg/t5-large-squad-qg", "lmqg/t5-large-squad-ae"],
"Flan-T5 SMALL": ["lmqg/flan-t5-small-squad-qg", "lmqg/flan-t5-small-squad-ae"],
"Flan-T5 BASE": ["lmqg/flan-t5-base-squad-qg", "lmqg/flan-t5-base-squad-ae"],
"Flan-T5 LARGE": ["lmqg/flan-t5-large-squad-qg", "lmqg/flan-t5-large-squad-ae"],
}
}
PRETTY_NAME["End2End"].update({
f'mT5 SMALL ({i.upper()})': [f'lmqg/mt5-small-{i}quad-qag-trimmed-50000', None]
for i in LANGUAGE_MAP.values() if i != 'en'
})
PRETTY_NAME["End2End"].update({
f'mT5 BASE ({i.upper()})': [f'lmqg/mt5-base-{i}quad-qag-trimmed-50000', None]
for i in LANGUAGE_MAP.values() if i != 'en'
})
PRETTY_NAME["Multitask"].update({
f'mT5 SMALL ({i.upper()})': [
f'lmqg/mt5-small-{i}quad-qg-ae-trimmed-50000',
f'lmqg/mt5-small-{i}quad-qg-ae-trimmed-50000'
] for i in LANGUAGE_MAP.values() if i != 'en'
})
PRETTY_NAME["Multitask"].update({
f'mT5 BASE ({i.upper()})': [
f'lmqg/mt5-base-{i}quad-qg-ae-trimmed-50000',
f'lmqg/mt5-base-{i}quad-qg-ae-trimmed-50000'
] for i in LANGUAGE_MAP.values() if i != 'en'
})
PRETTY_NAME["Pipeline"].update({
f'mT5 SMALL ({i.upper()})': [
f'lmqg/mt5-small-{i}quad-qg-trimmed-50000',
f'lmqg/mt5-small-{i}quad-ae-trimmed-50000'
] for i in LANGUAGE_MAP.values() if i != 'en'
})
PRETTY_NAME["Pipeline"].update({
f'mT5 BASE ({i.upper()})': [
f'lmqg/mt5-base-{i}quad-qg-trimmed-50000',
f'lmqg/mt5-base-{i}quad-ae-trimmed-50000'
] for i in LANGUAGE_MAP.values() if i != 'en'
})
# Prefix information for each model
PREFIX_INFO_QAG = {
v: AutoConfig.from_pretrained(v).add_prefix
for v in chain(*chain(*[v.values() for v in DEFAULT_MODELS.values()])) if v is not None
}
########
# MAIN #
########
# App input
class ModelInput(BaseModel):
input_text: str
language: str = 'en'
qag_type: str = None # End2End/Pipeline
model: str = None
highlight: str or List = None # answer
num_beams: int = 4
use_gpu: bool = False
do_sample: bool = True
top_p: float = 0.9
max_length: int = 64
split: str = 'paragraph'
# Run app
app = FastAPI()
app.add_middleware(CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"])
def validate_default(value, default=None):
if value is not None and type(value) is not str:
return value
if value is None or value.lower() in ['default', '']:
return default
return value
############
# ENDPOINT #
############
# General info
@app.get("/")
def read_root():
return {"About": "Automatic question & answer generation application. Send inquiry to https://asahiushio.com/."}
# Main endpoint
@app.post("/question_generation")
async def process(model_input: ModelInput):
if len(model_input.input_text) == 0:
raise HTTPException(status_code=404, detail='Input text is empty string.')
try:
# language validation
if model_input.language in LANGUAGE_MAP:
model_input.language = LANGUAGE_MAP[model_input.language]
# qag_type validation
elif model_input.qag_type == 'End2End' and model_input.highlight is not None:
raise ValueError("End2End qag_type does not support answer-given question generation")
model_input.highlight = validate_default(model_input.highlight, default=None)
model_input.qag_type = validate_default(
model_input.qag_type,
default='Multitask'
)
model_input.model = validate_default(model_input.model, default=None)
# model validation
if model_input.model is None:
model_qg, model_ae = DEFAULT_MODELS[model_input.qag_type][model_input.language]
else:
model_qg, model_ae = PRETTY_NAME[model_input.qag_type][model_input.model]
qa_list = generate_qa(
api_token=API_TOKEN,
input_text=model_input.input_text,
model_qg=model_qg,
model_ae=model_ae,
spacy=SPACY_PIPELINE[model_input.language],
input_answer=model_input.highlight,
top_p=model_input.top_p,
use_gpu=model_input.use_gpu,
do_sample=model_input.do_sample,
max_length=model_input.max_length,
num_beams=model_input.num_beams,
is_qag=model_input.qag_type == 'End2End',
add_prefix_qg=PREFIX_INFO_QAG[model_qg] if model_qg in PREFIX_INFO_QAG else None,
add_prefix_answer=PREFIX_INFO_QAG[model_ae] if model_ae is not None and model_ae in PREFIX_INFO_QAG else None,
split_level=model_input.split.lower()
)
for qa in qa_list:
q = qa['question']
c = model_input.input_text
match = SequenceMatcher(None, c, q).find_longest_match(0, len(c), 0, len(q))
qa['score'] = 1 - match.size / len(q)
qa_list = sorted(qa_list, key=lambda x: x['score'], reverse=True)
return {'qa': qa_list}
except Exception:
logging.exception('Error')
raise HTTPException(status_code=404, detail=traceback.print_exc())
# Dummy endpoint
@app.post("/question_generation_dummy")
async def process(model_input: ModelInput):
i = random.randint(0, 2)
target = [{'question': "Who founded Nintendo Karuta?", 'answer': "Fusajiro Yamauchi", "score": 0.5},
{'question': "When did Nintendo distribute its first video game console, the Color TV-Game?", 'answer': "1977", "score": 0.3},
{'question': "When did Nintendo release Super Mario Bros?", 'answer': "1985", "score": 0.1}]
return {"qa": target[:i]}