forked from neuroailab/TDANN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
50 lines (38 loc) · 1.33 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Wrapper to call torch.distributed.launch to run multi-gpu trainings.
Supports two engines: train and extract_features
"""
import argparse
from typing import Any, List
from vissl.utils.distributed_launcher import launch_distributed
from vissl.utils.hydra_config import compose_hydra_configuration, convert_to_attrdict
from spacetorch.utils import use_gpus
# spacetorch x VISSL
import spacetorch.utils.vissl.registration # noqa
from spacetorch.utils.vissl.hooks import spatial_hook_generator
def hydra_main(overrides: List[Any]):
print(f"####### overrides: {overrides}")
cfg = compose_hydra_configuration(overrides)
args, config = convert_to_attrdict(cfg)
launch_distributed(
cfg=config,
node_id=args.node_id,
engine_name=args.engine_name,
hook_generator=spatial_hook_generator,
)
if __name__ == "__main__":
"""
Example usage:
`python train.py config=test/integration_test/quick_simclr`
"""
parser = argparse.ArgumentParser()
parser.add_argument(
"--gpus",
type=str,
help="comma sep list of GPUs to use, to pass to CUDA_VISIBLE_DEVICES",
)
args, overrides = parser.parse_known_args()
# limit GPU visibility
use_gpus(args.gpus)
hydra_main(overrides=overrides)