-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbasic.py
69 lines (54 loc) · 2.57 KB
/
basic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from langchain_groq import ChatGroq
from langchain_openai import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate
from langchain.chains import create_retrieval_chain
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFDirectoryLoader
from langchain_google_genai import GoogleGenerativeAIEmbeddings
import streamlit as st
import os
import time
from dotenv import load_dotenv
load_dotenv()
# os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY')
groq_api_key = os.getenv('GROQ_API_KEY')
os.environ['GOOGLE_API_KEY'] = os.getenv('GOOGLE_API_KEY')
st.title('Talk to your PDF')
llm = ChatGroq(groq_api_key = groq_api_key,
model_name = 'llama3-8b-8192')
prompt = ChatPromptTemplate.from_template(
"""
Answer the questions based on the provided context only.
Please provide the most accurate response based on the question
<context>
{context}
<context>
Questions: {input}
"""
)
def vector_embedding():
if 'vectors' not in st.session_state:
st.session_state.embeddings = GoogleGenerativeAIEmbeddings(model = 'models/embedding-001')
st.session_state.loader = PyPDFDirectoryLoader('./us_census') #data ingestion
st.session_state.docs = st.session_state.loader.load() #document loading
st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1000, chunk_overlap = 200) #chunk creation
st.session_state.final_documents = st.session_state.text_splitter.split_documents(st.session_state.docs[:20]) #splitting
st.session_state.vectors = FAISS.from_documents(st.session_state.final_documents, st.session_state.embeddings) #vector embeddings
prompt1 = st.text_input('Ask a question')
if st.button('Create Vector Store'):
vector_embedding()
st.write('Vector Store DB is ready!') #vector db is available in st.session_state
if prompt1:
document_chain = create_stuff_documents_chain(llm, prompt)
retriever = st.session_state.vectors.as_retriever()
retriever_chain = create_retrieval_chain(retriever, document_chain)
start = time.process_time()
response = retriever_chain.invoke({'input': prompt1})
print('Response time : ', time.process_time()-start)
st.write(response['answer'])
with st.expander('Document Similarity Search'):
for i, doc in enumerate(response['context']):
st.write(doc.page_content)
st.write("-------------------------------")