-
Notifications
You must be signed in to change notification settings - Fork 1
/
mape_r-01.Rmd
457 lines (344 loc) · 10.1 KB
/
mape_r-01.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
---
title: "mape_r-01: bivariate point pattern"
author: "Andree Valle-Campos"
date: "13/2/2020"
output:
html_document:
toc: TRUE
number_sections: true
toc_float: TRUE
code_folding: hide
#df_print: kable
highlight: tango
editor_options:
chunk_output_type: console
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE,
warning=FALSE,
message = FALSE,
fig.align = "center")
options(knitr.kable.NA = '.',digits = 2)
```
# objetivo
```{r,echo=FALSE}
# cargar paquete
library(readr)
library(spatstat)
# importar datos
preston_crime <- read_rds("pcrime-spatstat.rds.gz.rds")
# dividir ppp
crime_splits <- split(preston_crime)
#crime_splits
plot(crime_splits)
# estimar densidad
crime_densities <- density(crime_splits)
#crime_densities
plot(crime_densities)
# generar fracción de densidad ~ riesgo relativo
frac_violent_crime_density <- crime_densities[[2]] /
(crime_densities[[1]] + crime_densities[[2]])
#png("figure/fractional_density.png"),width = 600,height = 600)
plot(frac_violent_crime_density)
#dev.off()
```
```{r,echo=FALSE,fig.cap="", out.width = '450px',echo=FALSE,fig.align='center'}
knitr::include_graphics("figure/dc-05-case-segregation_map-mc_prob_pval.png")
```
```{r,echo=FALSE,fig.cap="", out.width = '450px',echo=FALSE,fig.align='center'}
knitr::include_graphics("figure/dc-06-case_prob_pval_map-signif.png")
```
# load packages
```{r}
# once per session
library(tidyverse)
library(spatstat)
#library(sf)
# additional configuration
theme_set(theme_bw())
set.seed(33)
```
# import data
```{r}
preston_crime <- read_rds("pcrime-spatstat.rds.gz.rds")
```
## explore the object
__En tu computadora local,__ explora cuál es la salida de cada una de estas acciones
```{r,eval=FALSE}
# always!
class(preston_crime)
# ppp is a class from the spatstat package
# explore with spatstat specific print
preston_crime %>% print.ppp()
# Get some summary information on the dataset
summary(preston_crime)
# list of attributes
attributes(preston_crime)
# explore attributes with $
preston_crime$markformat
# window is an exclusive element from ppp objects
preston_crime$window
# class it is?
class(preston_crime$window)
# object structure
str(preston_crime)
```
```{r,eval=FALSE,echo=FALSE}
# library(raster)
# preston_osm <- read_rds("data-dc/osm_preston_gray.rds.gz.rds")
# class(preston_osm) #raster
# preston_osm
# str(preston_osm)
# summary(preston_osm)
```
# transform data
```{r}
# from ppp to tibble -----------------------
gpsrino <- preston_crime %>% as_tibble()
gpsrino %>% class()
gpsrino
# fromm tibble to sf -----------------------
library(sf)
house <- st_as_sf(gpsrino, coords = c("x", "y"), remove = F,
crs = 27561, agr = "constant")
# notes
# this always works for peru!
# peru: crs = 4326
# CRS("+proj=longlat +datum=WGS84")
house %>% class()
house
```
# exploratory plots
## using geom_point
```{r}
house %>%
#dplyr
mutate(marks=fct_relevel(marks,"Violent crime")) %>%
#ggplot2
ggplot(aes(x = x, y = y, color = marks, size = marks)) +
#geometry
geom_point() +
coord_fixed(ratio = 1) +
#aestetics
scale_color_manual(values = c("red","black")) +
scale_size_manual(values = c(1.5,0.5))
```
## using geom_sf
```{r}
house %>%
#dplyr
mutate(marks=fct_relevel(marks,"Violent crime")) %>%
#ggplot2
ggplot(aes(color=marks,size=marks)) +
#geometry
geom_sf() +
coord_sf() +
#aestetics
scale_color_manual(values = c("red","black")) +
scale_size_manual(values = c(1.5,0.5))
```
# kernel smoothing
```{r}
house %>%
#dplyr
mutate(marks=fct_relevel(marks,"Violent crime")) %>%
#ggplot2
ggplot() +
#geometry
geom_sf() +
coord_sf() +
facet_grid(~marks)
```
## binwidth selection
### histogram
__binwidth = __
> The width of the bins. Can be specified as a numeric value or as a function that calculates width from unscaled x. Here, "unscaled x" refers to the original x values in the data, before application of any scale transformation. When specifying a function along with a grouping structure, the function will be called once per group. The default is to use the number of bins in bins, covering the range of the data. You should always override this value, exploring multiple widths to find the best to illustrate the stories in your data.
```{r}
house %>%
ggplot(aes(x = x)) +
geom_histogram()
# default: bins = 30
house %>%
ggplot(aes(x = x)) +
geom_histogram(binwidth = 10)
house %>%
ggplot(aes(x = x)) +
geom_histogram(binwidth = 1000)
```
### density
__stat_density__
> Computes and draws kernel density estimate, which is a smoothed version of the histogram. This is a useful alternative to the histogram for continuous data that comes from an underlying smooth distribution.
__bw = __
> The smoothing bandwidth to be used. If numeric, the standard deviation of the smoothing kernel. If character, a rule to choose the bandwidth, as listed in stats::bw.nrd().
```{r}
house %>%
ggplot(aes(x = x)) +
stat_density()
# default: bw = "nrd0" method
# rule-of-thumb for choosing the bandwidth
# of a Gaussian kernel density estimator
house %>%
ggplot(aes(x = x)) +
stat_density(bw = 1000)
house %>%
ggplot(aes(x = x)) +
stat_density(bw = 100)
```
## density 2d
__stat_density_2d__
> Perform a 2D kernel density estimation using MASS::kde2d() and display the results with contours. This can be useful for dealing with overplotting. This is a 2d version of geom_density().
__h =__
> Bandwidth (vector of length two). If NULL, estimated using MASS::bandwidth.nrd()
```{r}
house %>%
ggplot() +
stat_density_2d(aes(x = x, y = y,fill = ..level..),
alpha=0.3,
geom = "polygon"
) +
coord_fixed(ratio = 1)
house %>%
ggplot() +
stat_density_2d(aes(x = x, y = y,fill = ..level..),
alpha=0.3,
geom = "polygon",
h = c(50,50)
) +
coord_fixed(ratio = 1)
house %>%
ggplot() +
stat_density_2d(aes(x = x, y = y,fill = ..level..),
alpha=0.3,
geom = "polygon",
h = c(5000,5000)
) +
coord_fixed(ratio = 1)
```
### how to choose the better bandwidth?
```{r}
# r function ----------------
ppp2sf <- function (ppp) {
data <- tibble::tibble(x = ppp$x, y = ppp$y)
if (!is.null(ppp$marks)) data$marks = ppp$marks
# data_sf <- st_as_sf(data, coords = c("x", "y"))
data_sf <- data
if (!is.null(ppp$window$bdry)) {
bnd <- as.matrix(as.data.frame(ppp$window$bdry[[1]]))
bnd <- rbind(bnd, bnd[1, ])
bnd <- st_sf(id = 1, geometry = st_sfc(st_polygon(list(bnd))))
} else {
bnd <- cbind(c(ppp$window$xrange, rev(ppp$window$xrange)),
rep(ppp$window$yrange, each = 2))
bnd <- rbind(bnd, bnd[1, ])
bnd <- st_sf(id = 1, geometry = st_sfc(st_polygon(list(bnd))))
}
return(list(data = data_sf, bnd = bnd))
}
```
__bw.scott__
> Use Scott's rule of thumb to determine the smoothing bandwidth for the kernel estimation of point process intensity.
> This function selects a bandwidth sigma for the kernel estimator of point process intensity computed by density.ppp.
```{r}
# extract window to sf -----------
window_boundary <- ppp2sf(preston_crime) %>%
pluck(2) %>%
st_as_sf(remove = F,
crs = 27561, agr = "constant")
# determine the binwidth
library(maptools)
house_g <- house %>% select(geometry)
house_poly <- window_boundary %>% st_buffer(dist = 0) %>% st_union() #needs to be cleaner!
p.sp <- as(house_g, "Spatial") # Create Spatial* object
p.ppp <- as(p.sp, "ppp") # Create ppp object
Window(p.ppp) <- as.owin(as(house_poly, "Spatial"))
h_ppp <- bw.scott(p.ppp) #bw.ppl(p.ppp)
h_ppp
```
```{r}
house %>%
ggplot(aes(x = x, y = y)) +
stat_density_2d(aes(fill = ..level..),
alpha=0.3,
geom = "polygon",
h = h_ppp
) +
coord_fixed(ratio = 1)
```
### use multiple geometries
```{r}
house %>%
ggplot(aes(x = x, y = y)) +
stat_density_2d(aes(fill = ..level..),
alpha=0.3,
geom = "polygon",
h = h_ppp
) +
geom_point() +
coord_fixed(ratio = 1)
house %>%
ggplot() +
stat_density_2d(aes(x = x, y = y,fill = ..level..),
alpha=0.3,
geom = "polygon",
h = h_ppp
) +
geom_sf(alpha=0.05,size=0.5) +
coord_sf()
house %>%
ggplot() +
stat_density_2d(aes(x = x, y = y,fill = ..level..),
alpha=0.3,
geom = "polygon",
h = h_ppp
) +
geom_sf(alpha=0.05,size=0.5) +
coord_sf() +
facet_grid(~marks)
```
### add aestetics
```{r}
house %>%
ggplot() +
stat_density_2d(aes(x = x, y = y,fill = ..level..),
alpha=0.3,
geom = "polygon",
h = h_ppp
) +
coord_fixed(ratio = 1) +
scale_fill_gradient2("Case\ndensity",
low = "yellow",
mid = "gold",
high = "red",
guide = FALSE
) +
facet_grid(~marks)
```
# bivariate point pattern
__sigma__
> Standard deviation of isotropic smoothing kernel. Either a numerical value, or a function that computes an appropriate value of sigma.
```{r,eval=FALSE}
# cargar paquete
library(readr)
library(spatstat)
# importar datos
preston_crime <- read_rds("pcrime-spatstat.rds.gz.rds")
# dividir ppp
crime_splits <- split(preston_crime)
crime_splits
plot(crime_splits)
# estimar densidad
crime_densities <- density(crime_splits,sigma=h_ppp)
crime_densities
plot(crime_densities)
# generar fracción de densidad ~ riesgo relativo
frac_violent_crime_density <- crime_densities[[2]] /
(crime_densities[[1]] + crime_densities[[2]])
#png("figure/fractional_density.png"),width = 600,height = 600)
plot(frac_violent_crime_density)
#dev.off()
```
# ending
```{r,eval=FALSE,echo=TRUE,message=FALSE}
#generar material en R
knitr::purl("mape_r-01.Rmd", output = "mape_r-01.R", documentation = 2)
```