-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathmain_video_gen.py
313 lines (258 loc) · 15.8 KB
/
main_video_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
# Created By Aaron Brown
# January 20, 2017
# Udacity Self-Driving Car Nanodegree
# Main class to generate video output
# Import everything needed to edit/save/watch video clips
from moviepy.editor import VideoFileClip
from IPython.display import HTML
import numpy as np
import cv2
import pickle
from LineTracker import Tracker
# Read in the saved objpoints and imgpoints
dist_pickle = pickle.load( open( "camera_cal/calibration_pickle.p", "rb" ) )
mtx = dist_pickle["mtx"]
dist = dist_pickle["dist"]
# (Selected_Video) Preset Video parameters (there are 3 videos, project_video: 1, challenge_video:2, and harder_challenge_video:3)
# WHICH VIDEO DO YOU WANT TO WORK ON?
Selected_Video = 3
if Selected_Video == 1:
# set up thresholding for the appropriate video to get best pixels of interest
# For these videos we are focusing on using x/y gradients and hsv and hls color spaces, which seemed most useful for finding important pixels
gradx_thresh = (25,255) # gradient x threshold
grady_thresh = (10,255) # gradient y threshold
schannel_thresh = (100,255) # gradient s channel threshold
vchannel_thresh = (200,255) # gradient v channel threshold
# preset percentages to transform road image, want road lines to be as parallel as possible for LineTracker
bot_width = .76 # percent of bottom trapizoid height #.76
mid_width = .1 # percent of middle trapizoid height .1 # .3
height_pct = .63 # percent for trapizoid height .63
bottom_trim = .935 # percent from top to bottom to avoid car hood
# Set up the overall class to do all the tracking
curve_centers = Tracker(Mycenter_dis = .25*1280, Mywindow_width = 25, Mywindow_height = 40, Mypadding = 25, Myslide_res = 5, Myframe_ps = 25, Mycapture_height = 720, \
My_ym = 30/720, My_xm = 4/384, Myline_dist = 10)
# set output and input video names
Output_video = 'output1_tracked.mp4'
Input_video = 'project_video.mp4'
elif Selected_Video == 2:
# set up thresholding for the appropriate video to get best pixels of interest
# For these videos we are focusing on using x/y gradients and hsv and hls color spaces, which seemed most useful for finding important pixels
gradx_thresh = (20,255) # gradient x threshold
grady_thresh = (20,255) # gradient y threshold
schannel_thresh = (8,255) # gradient s channel threshold
vchannel_thresh = (160,255) # gradient v channel threshold
# preset percentages to transform road image, want road lines to be as parallel as possible for LineTracker
bot_width = .76 # percent of bottom trapizoid height #.76
mid_width = .25 # percent of middle trapizoid height .1 # .3
height_pct = .7 # percent for trapizoid height .63
bottom_trim = .935 # percent from top to bottom to avoid car hood
# Set up the overall class to do all the tracking
curve_centers = Tracker(Mycenter_dis = .25*1280, Mywindow_width = 25, Mywindow_height = 40, Mypadding = 25, Myslide_res = 5, Myframe_ps = 25, Mycapture_height = 720, \
My_ym = 15/720, My_xm = 4/384, Myline_dist = 3)
# set output and input video names
Output_video = 'output2_tracked.mp4'
Input_video = 'challenge_video.mp4'
elif Selected_Video == 3:
# set up thresholding for the appropriate video to get best pixels of interest
# For these videos we are focusing on using x/y gradients and hsv and hls color spaces, which seemed most useful for finding important pixels
gradx_thresh = (20,255) # gradient x threshold
grady_thresh = (20,255) # gradient y threshold
schannel_thresh = (240,255) # gradient s channel threshold
vchannel_thresh = (240,255) # gradient v channel threshold
# preset percentages to transform road image, want road lines to be as parallel as possible for LineTracker
bot_width = .76 # percent of bottom trapizoid height #.76
mid_width = .3 # percent of middle trapizoid height .1 # .3
height_pct = .73 # percent for trapizoid height .63
bottom_trim = .935 # percent from top to bottom to avoid car hood
# Set up the overall class to do all the tracking
curve_centers = Tracker(Mycenter_dis = .25*1280, Mywindow_width = 25, Mywindow_height = 40, Mypadding = 25, Myslide_res = 5, Myframe_ps = 25, Mycapture_height = 720, \
My_ym = 10/720, My_xm = 4/384, Myline_dist = 3)
# set output and input video names
Output_video = 'output3_tracked.mp4'
Input_video = 'harder_challenge_video.mp4'
# Useful functions for producing the binary pixel of interest images to feed into the LaneTracker Algorithm
def abs_sobel_thresh(img, orient='x', sobel_kernel=3, thresh=(0, 255)):
# Calculate directional gradient
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
if orient == 'x':
abs_sobel = np.absolute(cv2.Sobel(gray, cv2.CV_64F, 1, 0))
if orient == 'y':
abs_sobel = np.absolute(cv2.Sobel(gray, cv2.CV_64F, 0, 1))
scaled_sobel = np.uint8(255*abs_sobel/np.max(abs_sobel))
binary_output = np.zeros_like(scaled_sobel)
# Apply threshold
binary_output[(scaled_sobel >= thresh[0]) & (scaled_sobel <= thresh[1])] = 1
return binary_output
def mag_thresh(image, sobel_kernel=3, mag_thresh=(0, 255)):
# Calculate gradient magnitude
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)
gradmag = np.sqrt(sobelx**2 + sobely**2)
scale_factor = np.max(gradmag)/255
gradmag = (gradmag/scale_factor).astype(np.uint8)
binary_output = np.zeros_like(gradmag)
# Apply threshold
binary_output[(gradmag >= mag_thresh[0]) & (gradmag <= mag_thresh[1])] = 1
return binary_output
def dir_threshold(image, sobel_kernel=3, thresh=(0, np.pi/2)):
# Calculate gradient direction
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)
with np.errstate(divide='ignore', invalid='ignore'):
absgraddir = np.absolute(np.arctan(sobely/sobelx))
binary_output = np.zeros_like(absgraddir)
# Apply threshold
binary_output[(absgraddir >= thresh[0]) & (absgraddir <= thresh[1])] = 1
return binary_output
def color_threshold(image, sthresh=(0,255), vthresh=(0,255)):
hls = cv2.cvtColor(image, cv2.COLOR_RGB2HLS)
s_channel = hls[:,:,2]
s_binary = np.zeros_like(s_channel)
s_binary[(s_channel >= sthresh[0]) & (s_channel <= sthresh[1]) ] = 1
hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
v_channel = hsv[:,:,2]
v_binary = np.zeros_like(v_channel)
v_binary[(v_channel >= vthresh[0]) & (v_channel <= vthresh[1]) ] = 1
output = np.zeros_like(s_channel)
output[(s_binary == 1) & (v_binary == 1)] = 1
return output
def window_mask(width, height, img_ref, center,level):
output = np.zeros_like(img_ref)
if(((center-width/2) < img_ref.shape[1]) & ((center+width/2) > 0)):
output[int(img_ref.shape[0]-(level+1)*height):int(img_ref.shape[0]-level*height),max(0,int(center-width)):min(img_ref.shape[1],int(center+width))] = 1
return output
def weighted_img(img, initial_img, α=0.8, β=1., λ=0.):
return cv2.addWeighted(initial_img, α, img, β, λ)
def process_image(image):
# undistort the image
img = cv2.undistort(image,mtx,dist,None,mtx)
# process image and generate binary pixel of interests
preprocessImage = np.zeros_like(img[:,:,0])
gradx = abs_sobel_thresh(img, orient='x', thresh=gradx_thresh)
grady = abs_sobel_thresh(img, orient='y', thresh=grady_thresh)
c_binary = color_threshold(img, sthresh=schannel_thresh, vthresh=vchannel_thresh)
preprocessImage[((gradx == 1) & (grady == 1) | (c_binary == 1) )] = 255
# work on defining perspective transformation area
img_size = (img.shape[1],img.shape[0])
src = np.float32([[img.shape[1]*(.5-mid_width/2),img.shape[0]*height_pct],[img.shape[1]*(.5+mid_width/2),img.shape[0]*height_pct],[img.shape[1]*(.5+bot_width/2),img.shape[0]*bottom_trim],[img.shape[1]*(.5-bot_width/2),img.shape[0]*bottom_trim]])
offset = img_size[0]*.33
dst = np.float32([[offset, 0], [img_size[0]-offset, 0],[img_size[0]-offset, img_size[1]], [offset ,img_size[1]]])
# perform the transform
M = cv2.getPerspectiveTransform(src,dst)
Minv = cv2.getPerspectiveTransform(dst,src)
warped = cv2.warpPerspective(preprocessImage,M,img_size,flags=cv2.INTER_LINEAR)
# for debugging just to get the binary image
#warped = np.array(cv2.merge((warped,warped,warped)),np.uint8)
#return warped
# set up the analysis for speed measurement
spd_offset = img_size[0]*(1.0-bot_width)/2
spd_dst = np.float32([[spd_offset, 0], [img_size[0]-spd_offset, 0],[img_size[0]-spd_offset, img_size[1]], [spd_offset ,img_size[1]]])
spd_M = cv2.getPerspectiveTransform(src,spd_dst)
# generate gray scale image to use for tracking speed in LineTracker, using template matching
warped_mono = cv2.warpPerspective(cv2.cvtColor(image, cv2.COLOR_BGR2GRAY),spd_M,img_size,flags=cv2.INTER_LINEAR)
curve_centers.speed_track(warped_mono)
# find the best line centers based on the binary pixel of interest input
frame_centers = curve_centers.track_line(warped)
# need these parameters to draw the graphic overlay illustraing the window convolution matching
window_width = curve_centers.window_width
window_height = curve_centers.window_height
# points used for graphic overlay
l_points = np.zeros_like(warped)
r_points = np.zeros_like(warped)
# points used to find the left and right lanes
rightx = []
leftx = []
res_yvals = np.arange(warped.shape[0]-(window_height+window_height/2),0,-window_height)
for level in range(1,len(frame_centers)):
l_mask = window_mask(window_width,window_height,warped,frame_centers[level][0],level)
r_mask = window_mask(window_width,window_height,warped,frame_centers[level][1],level)
# add center value found in frame to the list of lane points per left,right
leftx.append(frame_centers[level][0])
rightx.append(frame_centers[level][1])
# fill in graphic points here if pixels fit inside the specificed window from l/r mask
l_points[(l_points == 255) | ((l_mask == 1) ) ] = 255
r_points[(r_points == 255) | ((r_mask == 1) ) ] = 255
# drawing the graphic overlay to represents the results found for tracking window centers
template = np.array(r_points+l_points,np.uint8)
zero_channel = np.zeros_like(template)
template = np.array(cv2.merge((zero_channel,zero_channel,template)),np.uint8)
warpage = np.array(cv2.merge((warped,warped,warped)),np.uint8)
graphic_measure = cv2.addWeighted(warpage, 0.2, template, 0.75, 0.0)
# fit the lane boundaries to the left,right center positions found
yvals = range(0,warped.shape[0])
left_fit = np.polyfit(res_yvals, leftx, 3)
left_fitx = left_fit[0]*yvals*yvals*yvals + left_fit[1]*yvals*yvals + left_fit[2]*yvals+left_fit[3]
left_fitx = np.array(left_fitx,np.int32)
right_fit = np.polyfit(res_yvals, rightx, 3)
right_fitx = right_fit[0]*yvals*yvals*yvals + right_fit[1]*yvals*yvals + right_fit[2]*yvals+right_fit[3]
right_fitx = np.array(right_fitx,np.int32)
# used to find center curve
curve_xpts = [(right_fitx[0]+left_fitx[0])/2,(right_fitx[len(right_fitx)/2]+left_fitx[len(left_fitx)/2])/2,(right_fitx[-1]+left_fitx[-1])/2]
curve_ypts = [yvals[0],yvals[(int)(len(yvals)/2)],yvals[-1]]
curve_fit = np.polyfit(curve_ypts, curve_xpts, 2)
curve_fitx = curve_fit[0]*yvals*yvals + curve_fit[1]*yvals+ curve_fit[2]
# used to format everything so its ready for cv2 draw functions
left_lane = np.array(list(zip(np.concatenate((left_fitx-window_width/2,left_fitx[::-1]+window_width/2), axis=0),np.concatenate((yvals,yvals[::-1]),axis=0))),np.int32)
right_lane = np.array(list(zip(np.concatenate((right_fitx-window_width/2,right_fitx[::-1]+window_width/2), axis=0),np.concatenate((yvals,yvals[::-1]),axis=0))),np.int32)
inner_lane = np.array(list(zip(np.concatenate((left_fitx+window_width/2,right_fitx[::-1]-window_width/2), axis=0),np.concatenate((yvals,yvals[::-1]),axis=0))),np.int32)
curve_pts = np.array([list(zip(curve_fitx,yvals))],np.int32)
# draw lane lines, middle curve, road background on two different blank overlays
road = np.zeros_like(template)
road_bkg = np.zeros_like(template)
cv2.fillPoly(road,[left_lane],color=[9, 67, 109])
cv2.fillPoly(road,[right_lane],color=[9, 67, 109])
cv2.polylines(road,[curve_pts],isClosed=False, color=[5, 176, 249], thickness=3)
for horz_line_y in curve_centers.horz_lines:
cv2.line(road,(left_fitx[(int)(horz_line_y)],(int)(horz_line_y)),(right_fitx[(int)(horz_line_y)],(int)(horz_line_y)),color=[5, 176, 249], thickness=3)
cv2.fillPoly(road_bkg,[inner_lane],color=[38, 133, 197])
# after done drawing all the marking effects, warp back image to its orginal perspective.
# Note for the two different overlays, just seperating road_warped and road_warped_bkg to get two different alpha values, its just for astetics...
road_warped = cv2.warpPerspective(road,Minv,img_size,flags=cv2.INTER_LINEAR)
road_warped_bkg = cv2.warpPerspective(road_bkg,Minv,img_size,flags=cv2.INTER_LINEAR)
# merging all the different overlays, basically make things look pretty!
lane_template = np.array(cv2.merge((road_warped[:,:,2],road_warped[:,:,2],road_warped[:,:,2])),np.uint8)
bkg_template = np.array(cv2.merge((road_warped_bkg[:,:,2],road_warped_bkg[:,:,2],road_warped_bkg[:,:,2])),np.uint8)
base = cv2.addWeighted(img, 1.0, bkg_template, -0.6, 0.0)
base = cv2.addWeighted(base, 1.0, road_warped_bkg, 0.6, 0.0)
base = cv2.addWeighted(base, 1.0, lane_template, -1.8, 0.0)
result = cv2.addWeighted(base, 1.0, road_warped, 0.9, 0.0)
#return result
# calcuate the middle line curvature
ym_per_pix = curve_centers.ym_per_pix # meters per pixel in y dimension
xm_per_pix = curve_centers.xm_per_pix # meteres per pixel in x dimension
curve_fit_cr = np.polyfit(np.array(curve_ypts,np.float32)*ym_per_pix, np.array(curve_xpts,np.float32)*xm_per_pix, 2)
curverad = ((1 + (2*curve_fit_cr[0]*curve_ypts[1]*ym_per_pix + curve_fit_cr[1])**2)**1.5) /np.absolute(2*curve_fit_cr[0])
curve_centers.curvatures.append(curverad)
curverad = curve_centers.SmoothCurve()
# calculate the speed of the car
speed = curve_centers.CalculateSpeed(metric_mode = False)
# calculate the offset of the car on the road
camera_center = (left_fitx[-1] + right_fitx[-1])/2
center_diff = (camera_center-warped.shape[1]/2)*xm_per_pix
side_pos = 'left'
if center_diff <= 0:
side_pos = 'right'
# add text backdrop
txt_bkg = np.zeros_like(result)
txt_bkg_pts = np.array([(0,0),((int)(result.shape[1]*.5),0),((int)(result.shape[1]*.5),(int)(result.shape[0]*.25)),(0,(int)(result.shape[0]*.25))])
cv2.fillPoly(txt_bkg,[txt_bkg_pts],color=[200, 200, 200])
result = cv2.addWeighted(result, 1.0, txt_bkg, -1.0, 0.0)
# draw the text showing curvature, offset, and speed
cv2.putText(result,'Radius of Curvature = '+str(round(curverad,3))+'(m)',(50,50) , cv2.FONT_HERSHEY_SIMPLEX, 1,(5, 176, 249),2)
cv2.putText(result,'Vehicle is '+str(abs(round(center_diff,3)))+'m '+side_pos+' of center',(50,100) , cv2.FONT_HERSHEY_SIMPLEX, 1,(5, 176, 249),2)
cv2.putText(result,'Estimated Speed is '+str(abs(round(speed,3)))+' MPH',(50,150) , cv2.FONT_HERSHEY_SIMPLEX, 1,(5, 176, 249),2)
# insert graphic overlay map
graphic_bkg = np.zeros_like(result)
# scale the graphic measure that we generated near the start for finding window centers, by some constant factor in both axis
g_scale = 0.4
graphic_overlay = cv2.resize(graphic_measure, (0,0), fx=g_scale, fy=g_scale)
g_xoffset = result.shape[1]-graphic_overlay.shape[1]
# overlay the graphic measure in the result image at the top right corner
result[:graphic_overlay.shape[0], g_xoffset:g_xoffset+graphic_overlay.shape[1]] = graphic_overlay
return result
video_output = Output_video
clip1 = VideoFileClip(Input_video)
video_clip = clip1.fl_image(process_image) #NOTE: this function expects color images!!
video_clip.write_videofile(video_output, audio=False)