Skip to content

Latest commit

 

History

History

minimum-operations-to-make-the-array-k-increasing

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 

< Previous                  Next >

You are given a 0-indexed array arr consisting of n positive integers, and a positive integer k.

The array arr is called K-increasing if arr[i-k] <= arr[i] holds for every index i, where k <= i <= n-1.

  • For example, arr = [4, 1, 5, 2, 6, 2] is K-increasing for k = 2 because:
    • arr[0] <= arr[2] (4 <= 5)
    • arr[1] <= arr[3] (1 <= 2)
    • arr[2] <= arr[4] (5 <= 6)
    • arr[3] <= arr[5] (2 <= 2)
  • However, the same arr is not K-increasing for k = 1 (because arr[0] > arr[1]) or k = 3 (because arr[0] > arr[3]).

In one operation, you can choose an index i and change arr[i] into any positive integer.

Return the minimum number of operations required to make the array K-increasing for the given k.

 

Example 1:

Input: arr = [5,4,3,2,1], k = 1
Output: 4
Explanation:
For k = 1, the resultant array has to be non-decreasing.
Some of the K-increasing arrays that can be formed are [5,6,7,8,9], [1,1,1,1,1], [2,2,3,4,4]. All of them require 4 operations.
It is suboptimal to change the array to, for example, [6,7,8,9,10] because it would take 5 operations.
It can be shown that we cannot make the array K-increasing in less than 4 operations.

Example 2:

Input: arr = [4,1,5,2,6,2], k = 2
Output: 0
Explanation:
This is the same example as the one in the problem description.
Here, for every index i where 2 <= i <= 5, arr[i-2] <= arr[i].
Since the given array is already K-increasing, we do not need to perform any operations.

Example 3:

Input: arr = [4,1,5,2,6,2], k = 3
Output: 2
Explanation:
Indices 3 and 5 are the only ones not satisfying arr[i-3] <= arr[i] for 3 <= i <= 5.
One of the ways we can make the array K-increasing is by changing arr[3] to 4 and arr[5] to 5.
The array will now be [4,1,5,4,6,5].
Note that there can be other ways to make the array K-increasing, but none of them require less than 2 operations.

 

Constraints:

  • 1 <= arr.length <= 105
  • 1 <= arr[i], k <= arr.length

Related Topics

[Array] [Binary Search]

Hints

Hint 1 Can we divide the array into non-overlapping subsequences and simplify the problem?
Hint 2 In the final array, arr[i-k] ≤ arr[i] should hold. We can use this to divide the array into at most k non-overlapping sequences, where arr[i] will belong to the (i%k)th sequence.
Hint 3 Now our problem boils down to performing the minimum operations on each sequence such that it becomes non-decreasing. Our answer will be the sum of operations on each sequence.
Hint 4 Which indices of a sequence should we not change in order to count the minimum operations? Can finding the longest non-decreasing subsequence of the sequence help?