Skip to content

Latest commit

 

History

History

sum-of-absolute-differences-in-a-sorted-array

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 

< Previous                  Next >

You are given an integer array nums sorted in non-decreasing order.

Build and return an integer array result with the same length as nums such that result[i] is equal to the summation of absolute differences between nums[i] and all the other elements in the array.

In other words, result[i] is equal to sum(|nums[i]-nums[j]|) where 0 <= j < nums.length and j != i (0-indexed).

 

Example 1:

Input: nums = [2,3,5]
Output: [4,3,5]
Explanation: Assuming the arrays are 0-indexed, then
result[0] = |2-2| + |2-3| + |2-5| = 0 + 1 + 3 = 4,
result[1] = |3-2| + |3-3| + |3-5| = 1 + 0 + 2 = 3,
result[2] = |5-2| + |5-3| + |5-5| = 3 + 2 + 0 = 5.

Example 2:

Input: nums = [1,4,6,8,10]
Output: [24,15,13,15,21]

 

Constraints:

  • 2 <= nums.length <= 105
  • 1 <= nums[i] <= nums[i + 1] <= 104

Related Topics

[Array] [Math] [Prefix Sum]

Hints

Hint 1 Absolute difference is the same as max(a, b) - min(a, b). How can you use this fact with the fact that the array is sorted?
Hint 2 For nums[i], the answer is (nums[i] - nums[0]) + (nums[i] - nums[1]) + ... + (nums[i] - nums[i-1]) + (nums[i+1] - nums[i]) + (nums[i+2] - nums[i]) + ... + (nums[n-1] - nums[i]).
Hint 3 It can be simplified to (nums[i] * i - (nums[0] + nums[1] + ... + nums[i-1])) + ((nums[i+1] + nums[i+2] + ... + nums[n-1]) - nums[i] * (n-i-1)). One can build prefix and suffix sums to compute this quickly.