Skip to content

badxinxin/Controlled-projectile-ballistic-model

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 

Repository files navigation

有控弹箭大作业

(说是有控弹箭其实是无控的屑)
Matlab版本:R2022a,安装时要安装simulink

试用铅垂平面方案弹道模型计算对应方案弹道

计算条件如下:

m=225kg,d=0.299m,L=2.14m,V_0=750km/h,

θ_0=0,y_0=4000m,C_x=C_x0+(C_X^α2)(α2),C_y=(C_y^α)(α)+C_y^δz)(δz)

气动力和力矩系数如下:

Ma 0.6 0.8 0.9 1.0 1.1 1.5 2.0 2.5
C_X0 0.14942 0.15754 0.17140 0.28832 0.34312 0.3440 0.343 0.341
C_X^α2 0.00186 0.00190 0.00192 0.00200 0.00209 0.0022 0.0021 0.0020
C_Y^α 0.06977 0.06948 0.06933 0.07114 0.07427 0.07428 0.0743 0.0742
m_z^α -0.0461 -0.0455 -0.0457 -0.0550 -0.0521 -0.0518 -0.0507 -0.0499
m_z^δz 0.0397 0.0389 0.0381 0.0440 0.0445 0.0450 0.0452 0.0454
C_y^δz 0.03311 0.03244 0.03177 0.03669 0.03711 0.0375 0.0377 0.0378

要求

  1. 编写弹道程序,计算制导航弹的方案弹道。
  2. 绘制y-x, V-t, α-t, δz-t, θ-t曲线。

根据对应铅垂平面弹道模型,与各自控制规律,计算实际弹道

要求

  1. 编写弹道程序,计算制导航弹的实际弹道。
  2. 绘制y-x, V-t, α-t, δz-t, θ-t曲线。

附件:


V0 θ_0 y_0 飞行方案 控制规律 K


750 0 4000 $$\mspace{6mu}\alpha^{}(t) = \left{ \begin{aligned} $${\varepsilon_{1} = \Delta\alpha = \alpha(t) - \alpha^{}(t) 1.2 & 0,\mspace{6mu}\mspace{6mu}\mspace{6mu}\mspace{6mu} 0 < t < 3s \ }{\Delta\delta_{z} = K\Delta\alpha
& 5^{o},\mspace{6mu}\mspace{6mu}\mspace{6mu}\mspace{6mu} t > 3s \ }{\delta_{z} = {\delta_{z}}{B} + \Delta\delta{z}}$$
\end{aligned} \right.\ $$

700 2 5000 0.6

650 4 6000 1.0

680 -2 6000 $$\mspace{6mu}\alpha^{*}(t) = \left{ \begin{aligned} 0.8 & 2,\mspace{6mu}\mspace{6mu}\mspace{6mu}\mspace{6mu} 0 < t < 3s \
& 5^{o},\mspace{6mu}\mspace{6mu}\mspace{6mu}\mspace{6mu} t > 3s \
\end{aligned} \right.\ $$

700 -2 5000 1.0

720 2 5500 1.2

600 5 5500 $$\mspace{6mu}\alpha^{*}(t) = \left{ \begin{aligned} 1.5 & 0,\mspace{6mu}\mspace{6mu}\mspace{6mu}\mspace{6mu} 0 < t < 5s \
& 3^{o},\mspace{6mu}\mspace{6mu}\mspace{6mu}\mspace{6mu} t > 5s \
\end{aligned} \right.\ $$

700 2 5000 1.0

650 0 6000 0.7

750 0 4100 $$H^{}(t) = \left{ \begin{aligned} $${\varepsilon_{1} = \Delta H = H(t) - H^{}(t) 1.2 & 4 \times (t - 5)^{2} + 4000,\mspace{6mu}\mspace{6mu}\mspace{6mu}\mspace{6mu} 0 < t < 5s \ }{\Delta\delta_{z} = K\Delta H
& \text{4000},\mspace{6mu}\mspace{6mu}\mspace{6mu}\mspace{6mu} t > 5s \ }{\delta_{z} = {\delta_{z}}{B} + \Delta\delta{z}}$$
\end{aligned} \right.\ $$

700 2 4100 1.0

680 -2 4100 0.8

730 3 4100 0.7

700 0 5000 $$H^{*}(t) = \left{ \begin{aligned} 1.3 & \text{5000},\mspace{6mu}\mspace{6mu}\mspace{6mu}\mspace{6mu} 0 < t < 5s \
& \text{1000}\text{e}^{- (t - 5)} + 4000,\mspace{6mu}\mspace{6mu}\mspace{6mu}\mspace{6mu} 5 < t < \text{10}s \
& \text{4000},\mspace{6mu}\mspace{6mu}\mspace{6mu}\mspace{6mu} t > \text{10}s \
\end{aligned} \right.\ $$

730 -1 5000 1.0

650 2 5000 0.8

600 3 5000 1.1

750 0 6250 $$H^{*}(t) = \left{ \begin{aligned} 1.0 & 10 \times (t - 5)^{2} + 6000,\mspace{6mu}\mspace{6mu}\mspace{6mu}\mspace{6mu} 0 < t < 5s \
& \text{6000},\mspace{6mu}\mspace{6mu}\mspace{6mu}\mspace{6mu} t > 5s \
\end{aligned} \right.\ $$

700 2 6250 1.5

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages