-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathdatasets.py
107 lines (88 loc) · 3.18 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import io
import lmdb
from PIL import Image
from torchvision import datasets
from torchvision import transforms as T
from torchvision.datasets import VisionDataset
class LMDBDataset(VisionDataset):
def __init__(self, path, transform):
self.env = lmdb.open(path, max_readers=1, readonly=True, lock=False,
readahead=False, meminit=False)
with self.env.begin(write=False) as txn:
self.length = txn.stat()['entries']
self.transform = transform
def __len__(self):
return self.length
def __getitem__(self, index):
env = self.env
with env.begin(write=False) as txn:
imgbytes = txn.get(f'{index}'.encode())
buf = io.BytesIO()
buf.write(imgbytes)
buf.seek(0)
img = Image.open(buf)
if self.transform is not None:
img = self.transform(img)
return img, 0
def get_dataset(name, in_memory=True):
"""Get datasets
Args:
name: the format [name].[resolution],
i.g., cifar10.32, celebahq.256
in_memory: load dataset into memory.
"""
name, img_size = name.split('.')
img_size = int(img_size)
transform = T.Compose([
T.Resize((img_size, img_size)),
T.RandomHorizontalFlip(),
T.ToTensor(),
T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
dataset = None
if name == 'cifar10':
dataset = datasets.CIFAR10(
root='./data', train=True, download=True, transform=transform)
if name == 'stl10':
dataset = datasets.STL10(
'./data', split='unlabeled', download=True, transform=transform)
if name == 'celebahq':
dataset = LMDBDataset(
f'./data/celebahq/{img_size}', transform=transform)
if name == 'lsun_church':
dataset = datasets.LSUNClass(
'./data/lsun/church/', transform, (lambda x: 0))
if name == 'lsun_bedroom':
dataset = datasets.LSUNClass(
'./data/lsun/bedroom', transform, (lambda x: 0))
if name == 'lsun_horse':
dataset = datasets.LSUNClass(
'./data/lsun/horse', transform, (lambda x: 0))
if dataset is None:
raise ValueError(f'Unknown dataset {name}')
return dataset
if __name__ == '__main__':
import argparse
import os
from glob import glob
from tqdm import tqdm
parser = argparse.ArgumentParser()
parser.add_argument('path', type=str)
parser.add_argument('out', type=str)
args = parser.parse_args()
with lmdb.open(args.out, map_size=1024 ** 4, readahead=False) as env:
with env.begin(write=True) as txn:
files = glob(os.path.join(args.path, '*.jpg'))
try:
files = sorted(
files,
key=lambda f: int(os.path.splitext(os.path.basename(f))[0])
)
print("Sort by file number")
except ValueError:
files = sorted(files)
print("Sort by file path")
for i, file in enumerate(tqdm(files, dynamic_ncols=True)):
key = f'{i}'.encode()
img = open(file, 'rb').read()
txn.put(key, img)