@@ -27,26 +27,42 @@ library(rcausal)
27
27
data(" charity" ) # Load the charity dataset
28
28
29
29
tetradrunner.getAlgorithmDescription(algoId = ' fges' )
30
- tetradrunner.getAlgorithmParameters(algoId = ' fges' ,scoreId = ' fisher-z' )
31
30
# Compute FGES search
32
- tetradrunner <- tetradrunner(algoId = ' fges' ,df = charity ,scoreId = ' fisher-z ' ,
33
- dataType = ' continuous' ,alpha = 0.1 , faithfulnessAssumed = TRUE ,maxDegree = - 1 ,verbose = TRUE )
31
+ tetradrunner <- tetradrunner(algoId = ' fges' ,df = charity ,scoreId = ' sem-bic ' ,
32
+ dataType = ' continuous' ,faithfulnessAssumed = TRUE ,maxDegree = - 1 ,verbose = TRUE )
34
33
35
34
tetradrunner $ nodes # Show the result's nodes
36
35
tetradrunner $ edges # Show the result's edges
36
+
37
+ graph <- tetradrunner $ graph
38
+ graph $ getAttribute(' BIC' )
39
+
40
+ nodes <- graph $ getNodes()
41
+ for (i in 0 : as.integer(nodes $ size()- 1 )){
42
+ node <- nodes $ get(i )
43
+ cat(node $ getName()," : " ,node $ getAttribute(' BIC' )," \n " )
44
+ }
37
45
```
38
46
### Discrete Dataset
39
47
``` R
40
48
library(rcausal )
41
49
data(" audiology" ) # Load the charity dataset
42
50
43
- tetradrunner.getAlgorithmParameters(algoId = ' fges' ,scoreId = ' bdeu' )
44
51
# Compute FGES search
45
- tetradrunner <- tetradrunner(algoId = ' fges' ,df = audiology ,scoreId = ' bdeu ' ,dataType = ' discrete' ,
46
- alpha = 0.1 , faithfulnessAssumed = TRUE ,maxDegree = - 1 ,verbose = TRUE )
52
+ tetradrunner <- tetradrunner(algoId = ' fges' ,df = audiology ,scoreId = ' cg-bic-score ' ,dataType = ' discrete' ,
53
+ faithfulnessAssumed = TRUE ,maxDegree = - 1 ,verbose = TRUE )
47
54
48
55
tetradrunner $ nodes # Show the result's nodes
49
56
tetradrunner $ edges # Show the result's edges
57
+
58
+ graph <- tetradrunner $ graph
59
+ graph $ getAttribute(' BIC' )
60
+
61
+ nodes <- graph $ getNodes()
62
+ for (i in 0 : as.integer(nodes $ size()- 1 )){
63
+ node <- nodes $ get(i )
64
+ cat(node $ getName()," : " ,node $ getAttribute(' BIC' )," \n " )
65
+ }
50
66
```
51
67
52
68
### Prior Knowledge
0 commit comments