forked from StaPH-B/docker-builds
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Dockerfile
167 lines (149 loc) · 7.08 KB
/
Dockerfile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
FROM ubuntu:focal as app
# for easy upgrade later. LC_ALL set for singularity compatibility
ENV VADR_VERSION="1.5.1" \
VADR_SARSCOV2_MODELS_VERSION="1.3-2" \
VADR_MPXV_MODELS_VERSION="1.4.2-1" \
VADR_RSV_MODELS_VER="1.5-2"\
LC_ALL=C \
VADRINSTALLDIR=/opt/vadr
ENV VADRSCRIPTSDIR=$VADRINSTALLDIR/vadr \
VADRMINISCRIPTSDIR=$VADRINSTALLDIR/vadr/miniscripts \
VADRMODELDIR=$VADRINSTALLDIR/vadr-models \
VADRINFERNALDIR=$VADRINSTALLDIR/infernal/binaries \
VADREASELDIR=$VADRINSTALLDIR/infernal/binaries \
VADRHMMERDIR=$VADRINSTALLDIR/hmmer/binaries \
VADRBIOEASELDIR=$VADRINSTALLDIR/Bio-Easel \
VADRSEQUIPDIR=$VADRINSTALLDIR/sequip \
VADRBLASTDIR=$VADRINSTALLDIR/ncbi-blast/bin \
VADRFASTADIR=$VADRINSTALLDIR/fasta/bin \
VADRMINIMAP2DIR=$VADRINSTALLDIR/minimap2
ENV PERL5LIB=$VADRSCRIPTSDIR:$VADRSEQUIPDIR:$VADRBIOEASELDIR/blib/lib:$VADRBIOEASELDIR/blib/arch:$PERL5LIB \
PATH=$VADRSCRIPTSDIR:$VADRMINISCRIPTSDIR:$PATH
# metadata - optional, but highly recommended
LABEL base.image="ubuntu:focal"
LABEL dockerfile.version="1"
LABEL software="VADR"
LABEL software.version="${VADR_VERSION}"
LABEL description="Classification and annotation of viral sequences based on RefSeq annotation"
LABEL website="https://github.com/ncbi/vadr"
LABEL license="https://github.com/ncbi/vadr/blob/master/LICENSE"
LABEL maintainer="Anders Goncalves da Silva"
LABEL maintainer.email="[email protected]"
LABEL maintainer2="Curtis Kapsak"
LABEL maintainer2.email="[email protected]"
# install dependencies via apt-get. Clean up apt garbage
RUN apt-get update && apt-get install -y --no-install-recommends \
wget \
ca-certificates \
perl \
curl \
unzip \
build-essential \
autoconf \
libinline-c-perl \
liblwp-protocol-https-perl \
zip \
unzip \
procps \
zlib1g-dev && \
apt-get autoclean && rm -rf /var/lib/apt/lists/*
# install VADR
# download entire VADR source code from GitHub release
# use vadr-install.sh script to install VADR into $VADRINSTALLDIR (set to /opt/vadr)
# this script grabs files from tagged release and sets things up in /opt/vadr/vadr
# last step is to delete the original source code that is a duplicate (/opt/vadr/vadr-$VADR_VERSION)
RUN mkdir -p ${VADRINSTALLDIR} && \
cd ${VADRINSTALLDIR} && \
wget https://github.com/ncbi/vadr/archive/refs/tags/vadr-${VADR_VERSION}.tar.gz && \
mkdir vadr-${VADR_VERSION} && tar -xzf vadr-${VADR_VERSION}.tar.gz -C vadr-${VADR_VERSION} --strip-components 1 && \
rm vadr-${VADR_VERSION}.tar.gz && \
bash vadr-${VADR_VERSION}/vadr-install.sh linux && \
rm -rf vadr-${VADR_VERSION}/ && \
mkdir /data
# install the latest sarscov2 and mpxv models
# copy calici model files into VADRMODELDIR to allow VADR tests to pass completely
# cleanup duplicate copies of model files
RUN wget -O vadr-models-sarscov2.tar.gz https://ftp.ncbi.nlm.nih.gov/pub/nawrocki/vadr-models/sarscov2/${VADR_SARSCOV2_MODELS_VERSION}/vadr-models-sarscov2-${VADR_SARSCOV2_MODELS_VERSION}.tar.gz && \
wget -O vadr-models-mpxv.tar.gz https://ftp.ncbi.nlm.nih.gov/pub/nawrocki/vadr-models/mpxv/${VADR_MPXV_MODELS_VERSION}/vadr-models-mpxv-${VADR_MPXV_MODELS_VERSION}.tar.gz && \
tar -xf vadr-models-sarscov2.tar.gz && \
tar -xf vadr-models-mpxv.tar.gz && \
mkdir -vp ${VADRMODELDIR} && \
cp -nv /vadr-models-sarscov2-${VADR_SARSCOV2_MODELS_VERSION}/* ${VADRMODELDIR} && \
cp -nv /vadr-models-mpxv-${VADR_MPXV_MODELS_VERSION}/* ${VADRMODELDIR} && \
rm -rf /vadr-models-sarscov2* && \
rm -rf /vadr-models-mpxv* && \
cp -nv ${VADRINSTALLDIR}/vadr-models-calici/* ${VADRMODELDIR} && \
rm -rf ${VADRINSTALLDIR}/vadr-models-calici/
# download RSV VADR models; copy model files into VADRMODELDIR
RUN wget https://ftp.ncbi.nlm.nih.gov/pub/nawrocki/vadr-models/rsv/${VADR_RSV_MODELS_VER}/vadr-models-rsv-${VADR_RSV_MODELS_VER}.tar.gz && \
tar -xf /vadr-models-rsv-${VADR_RSV_MODELS_VER}.tar.gz && \
rm -v /vadr-models-rsv-${VADR_RSV_MODELS_VER}.tar.gz && \
cp -nvr /vadr-models-rsv-${VADR_RSV_MODELS_VER}/* ${VADRMODELDIR} && \
rm -rfv /vadr-models-rsv-${VADR_RSV_MODELS_VER}
# Virus model files other than sarscov2 will need to be made available to vadr either in
# the $VADRMODELDIR or another path can be specified using the 'v-annotate.pl -mdir' option.
# These files will need to be mounted into the container at runtime, e.g. 'docker run -v' option.
# set working directory
WORKDIR /data
FROM app as test
# download B.1.1.7 genome from Utah
ADD https://raw.githubusercontent.com/StaPH-B/docker-builds/master/tests/SARS-CoV-2/SRR13957123.consensus.fa /test-data/SRR13957123.consensus.fa
# print help options (which prints version at top)
# run test script included w VADR
# test terminal N trimming script
# run v-annotate.pl on trimmed B.1.1.7 genome
RUN v-annotate.pl -h && \
/opt/vadr/vadr/testfiles/do-install-tests-local.sh && \
/opt/vadr/vadr/miniscripts/fasta-trim-terminal-ambigs.pl \
/test-data/SRR13957123.consensus.fa \
--minlen 50 \
--maxlen 30000 \
> /test-data/SRR13957123.consensus.trimmed.fasta && \
v-annotate.pl --noseqnamemax --glsearch -s -r --nomisc \
--mkey sarscov2 --lowsim5seq 6 --lowsim3seq 6 --alt_fail lowscore,insertnn,deletinn \
"/test-data/SRR13957123.consensus.trimmed.fasta" \
"SRR13957123-vadr-outdir" && \
ls SRR13957123-vadr-outdir
# install ncbi datasets tool (pre-compiled binary); place in $PATH
RUN wget https://ftp.ncbi.nlm.nih.gov/pub/datasets/command-line/LATEST/linux-amd64/datasets && \
chmod +x datasets && \
mv -v datasets /usr/local/bin
# download assembly for a MPXV from the UK
# run VADR trimming script and v-annotate.pl
# link to GenBank accession: https://www.ncbi.nlm.nih.gov/nuccore/OP022171
ARG GENBANK_ACCESSION="OP022171.1"
RUN datasets download virus genome accession ${GENBANK_ACCESSION} --filename ${GENBANK_ACCESSION}.zip && \
unzip ${GENBANK_ACCESSION}.zip && rm ${GENBANK_ACCESSION}.zip && \
mv -v ncbi_dataset/data/genomic.fna ncbi_dataset/data/${GENBANK_ACCESSION}.genomic.fna && \
fasta-trim-terminal-ambigs.pl /data/ncbi_dataset/data/${GENBANK_ACCESSION}.genomic.fna \
--minlen 50 \
--maxlen 210000 \
>/data/${GENBANK_ACCESSION}.trimmed.fasta && \
v-annotate.pl --split --cpu 2 \
--glsearch -s -r \
--nomisc \
--mkey mpxv \
--r_lowsimok \
--r_lowsimxd 100 \
--r_lowsimxl 2000 \
--alt_pass discontn,dupregin \
--minimap2 \
--s_overhang 150 \
/data/${GENBANK_ACCESSION}.trimmed.fasta \
${GENBANK_ACCESSION}-mpxv-vadr-test-output
### COMMENTING OUT RSV TEST BELOW SINCE THIS TEST CAN CONSUME UPWARDS OF 30GB RAM ###
### it runs fine when you have that much RAM available, but not in GHActions runners that are limited to 7GB RAM ###
# download a test RSV genome, run through VADR using RSV models
# example commands taken from VADR RSV guide: https://github.com/ncbi/vadr/wiki/RSV-annotation
# RUN echo "testing RSV functionality..." && \
# wget https://ftp.ncbi.nlm.nih.gov/pub/nawrocki/vadr-models/rsv/rsv.r10.fa && \
# fasta-trim-terminal-ambigs.pl rsv.r10.fa \
# --minlen 50 \
# --maxlen 15500 \
# >/data/rsv.r10.trimmed.fasta && \
# v-annotate.pl --split \
# -r \
# -xnocomp \
# -mkey rsv \
# /data/rsv.r10.trimmed.fasta \
# rsv-vadr-test-output