|
| 1 | +import numpy as np |
| 2 | +import tensorflow as tf |
| 3 | +from tensorflow import layers |
| 4 | + |
| 5 | +def minibatch_discrimination(inputs, num_kernels=5, kernel_dim=3): |
| 6 | + with tf.variable_scope('minibatch_discrimination'): |
| 7 | + T = tf.get_variable('T', shape=[inputs.get_shape()[1], num_kernels*kernel_dim], |
| 8 | + initializer=tf.random_normal_initializer(stddev=0.02)) |
| 9 | + M = tf.reshape(tf.matmul(inputs,T), (-1,num_kernels,kernel_dim)) |
| 10 | + diffs = tf.expand_dims(M, 3) - tf.expand_dims(tf.transpose(M, [1,2,0]), 0) |
| 11 | + abs_diffs = tf.reduce_sum(tf.abs(diffs), 2) |
| 12 | + minibatch_features = tf.reduce_sum(tf.exp(-abs_diffs), 2) |
| 13 | + return tf.concat([inputs, minibatch_features], 1) |
| 14 | + |
| 15 | +def tikhonov_regularizer(D_real_logits, D_real_arg, D_fake_logits, D_fake_arg, batch_size): |
| 16 | + D1 = tf.nn.sigmoid(D_real_logits) |
| 17 | + D2 = tf.nn.sigmoid(D_fake_logits) |
| 18 | + grad_D1_logits = tf.gradients(D_real_logits, D_real_arg)[0] |
| 19 | + grad_D2_logits = tf.gradients(D_fake_logits, D_fake_arg)[0] |
| 20 | + grad_D1_logits_norm = tf.norm(tf.reshape(grad_D1_logits, [batch_size,-1]), axis=1, keepdims=True) |
| 21 | + grad_D2_logits_norm = tf.norm(tf.reshape(grad_D2_logits, [batch_size,-1]), axis=1, keepdims=True) |
| 22 | + |
| 23 | + reg_D1 = tf.multiply(tf.square(1.0-D1), tf.square(grad_D1_logits_norm)) |
| 24 | + reg_D2 = tf.multiply(tf.square(D2), tf.square(grad_D2_logits_norm)) |
| 25 | + disc_regularizer = tf.reduce_mean(reg_D1 + reg_D2) |
| 26 | + return disc_regularizer |
| 27 | + |
| 28 | +#try tf.orthogonal_initializer |
| 29 | +def dcgan_discriminator_spectra(x, prob=0.): |
| 30 | + filters = [128, 256, 512, 1024] |
| 31 | + alpha = 0.2 |
| 32 | + |
| 33 | + net = tf.reshape(x, shape=[-1, x.shape[1], 1, 1]) |
| 34 | + net = tf.layers.conv2d(net, filters=filters[0], kernel_size=[10,1], strides=[5,1], |
| 35 | + activation=None, padding='same', name='layer1') |
| 36 | + net = tf.nn.leaky_relu(net, alpha=alpha) |
| 37 | + net = tf.layers.batch_normalization(net) |
| 38 | + net = tf.layers.dropout(net,rate=prob) |
| 39 | + |
| 40 | + net = tf.layers.conv2d(net, filters=filters[1], kernel_size=[10,1], strides=[5,1], |
| 41 | + activation=None, padding='same', name='layer2') |
| 42 | + net = tf.nn.leaky_relu(net, alpha=alpha) |
| 43 | + net = tf.layers.batch_normalization(net) |
| 44 | + net = tf.layers.dropout(net,rate=prob) |
| 45 | + |
| 46 | + net = tf.layers.conv2d(net, filters=filters[2], kernel_size=[10,1], strides=[5,1], |
| 47 | + activation=None, padding='same', name='layer3') |
| 48 | + net = tf.nn.leaky_relu(net, alpha=alpha) |
| 49 | + net = tf.layers.batch_normalization(net) |
| 50 | + net = tf.layers.dropout(net,rate=prob) |
| 51 | + |
| 52 | + net = tf.layers.conv2d(net, filters=filters[3], kernel_size=[10,1], strides=[4,1], |
| 53 | + activation=None, padding='same', name='layer4') |
| 54 | + net = tf.nn.leaky_relu(net, alpha=alpha) |
| 55 | + net = tf.layers.batch_normalization(net) |
| 56 | + net = tf.layers.dropout(net,rate=prob) |
| 57 | + |
| 58 | + net = tf.reshape(net, shape=[-1, filters[3]*7*1]) |
| 59 | + #net = tf.layers.dense(net, 512, activation=None, name='layer5') |
| 60 | + net = tf.nn.leaky_relu(net, alpha=alpha) |
| 61 | + net = tf.layers.batch_normalization(net) |
| 62 | + net = tf.layers.dropout(net,rate=prob) |
| 63 | + |
| 64 | + net = minibatch_discrimination(net, num_kernels=30, kernel_dim=20) |
| 65 | + |
| 66 | + net = tf.layers.dense(net, 1, activation=None, name='layer6') |
| 67 | + |
| 68 | + return net, tf.nn.sigmoid(net, name='discriminator_logit') |
| 69 | + |
| 70 | +def dcgan_generator_spectra(noise, data_size, prob=0.): |
| 71 | + filters = [1024, 512, 256, 128] |
| 72 | + |
| 73 | + net = tf.reshape(noise, shape=[-1, noise.shape[1]]) |
| 74 | + net = tf.layers.dense(net, filters[0]*7, activation=None) |
| 75 | + #net = tf.layers.dropout(net,rate=0.5) |
| 76 | + net = tf.reshape(net, shape=[-1,7,1,filters[0]]) |
| 77 | + |
| 78 | + net = tf.layers.conv2d_transpose(net, filters=filters[1], kernel_size=[10,1], strides=[4,1], |
| 79 | + activation=None, padding='same', name='layer1') |
| 80 | + net = tf.nn.relu(net) |
| 81 | + net = tf.layers.batch_normalization(net) |
| 82 | + net = tf.layers.dropout(net,rate=prob) |
| 83 | + |
| 84 | + net = tf.layers.conv2d_transpose(net, filters=filters[2], kernel_size=[10,1], strides=[5,1], |
| 85 | + activation=None, padding='same', name='layer2') |
| 86 | + net = tf.nn.relu(net) |
| 87 | + net = tf.layers.batch_normalization(net) |
| 88 | + net = tf.layers.dropout(net,rate=prob) |
| 89 | + |
| 90 | + net = tf.layers.conv2d_transpose(net, filters=filters[3], kernel_size=[10,1], strides=[5,1], |
| 91 | + activation=None, padding='same', name='layer3') |
| 92 | + net = tf.nn.relu(net) |
| 93 | + net = tf.layers.batch_normalization(net) |
| 94 | + net = tf.layers.dropout(net,rate=prob) |
| 95 | + |
| 96 | + net = tf.layers.conv2d_transpose(net, filters=1, kernel_size=[10,1], strides=[5,1], |
| 97 | + activation=None, padding='same', name='layer4') |
| 98 | + net = tf.layers.batch_normalization(net) |
| 99 | + net = tf.nn.tanh(net) |
| 100 | + net = tf.layers.dropout(net,rate=prob) |
| 101 | + net = tf.reshape(net, shape=[-1, data_size], name='generator_output') |
| 102 | + return net |
| 103 | + |
| 104 | +def dcgan_discriminator_mnist(x, y=None, prob=0.): |
| 105 | + filters = [64, 128, 256] |
| 106 | + alpha = 0.2 |
| 107 | + net = tf.reshape(x, shape=[-1, 28, 28, 1]) |
| 108 | + |
| 109 | + #reshape (adding zeros) to the more convenient 32x32 shape |
| 110 | + net = tf.pad(net, paddings=[[0,0],[2,2],[2,2],[0,0]], mode='CONSTANT', constant_values=0.) |
| 111 | + |
| 112 | + #condition concatenation for cGAN |
| 113 | + if y != None: |
| 114 | + y = tf.reshape(y, shape=[-1, 1]) #(batch_size, 1) |
| 115 | + y = tf.tile(y, multiples=[1, 32*32]) |
| 116 | + y = tf.reshape(y, shape=[-1, 32, 32, 1]) |
| 117 | + net = tf.concat([net, y], axis=3) |
| 118 | + |
| 119 | + net = tf.layers.conv2d(net, filters=filters[0], kernel_size=[5,5], strides=[2,2], |
| 120 | + activation=None, padding='same', name='layer1') |
| 121 | + net = tf.layers.batch_normalization(net) |
| 122 | + net = tf.nn.leaky_relu(net, alpha=alpha) |
| 123 | + net = tf.layers.dropout(net,rate=prob) |
| 124 | + |
| 125 | + net = tf.layers.conv2d(net, filters=filters[1], kernel_size=[5,5], strides=[2,2], |
| 126 | + activation=None, padding='same', name='layer2') |
| 127 | + net = tf.layers.batch_normalization(net) |
| 128 | + net = tf.nn.leaky_relu(net, alpha=alpha) |
| 129 | + net = tf.layers.dropout(net,rate=prob) |
| 130 | + |
| 131 | + net = tf.layers.conv2d(net, filters=filters[2], kernel_size=[5,5], strides=[2,2], |
| 132 | + activation=None, padding='same', name='layer3') |
| 133 | + net = tf.layers.batch_normalization(net) |
| 134 | + net = tf.nn.leaky_relu(net, alpha=alpha) |
| 135 | + net = tf.layers.dropout(net,rate=prob) |
| 136 | + |
| 137 | + net = tf.reshape(net, shape=[-1,filters[2]*4*4]) |
| 138 | + net = minibatch_discrimination(net, num_kernels=20, kernel_dim=10) |
| 139 | + |
| 140 | + #return the second to last layer to allow the implementation of feature discrimination |
| 141 | + features = net |
| 142 | + |
| 143 | + net = tf.layers.dense(net, 1, activation=None, name='layer_dense') |
| 144 | + return net, tf.nn.sigmoid(net, name='logit'), features |
| 145 | + |
| 146 | +def dcgan_generator_mnist(noise, y=None, prob=0.): |
| 147 | + filters = [256, 128, 64] |
| 148 | + |
| 149 | + net = tf.reshape(noise, shape=[-1, noise.shape[1]]) |
| 150 | + |
| 151 | + if y != None: |
| 152 | + y = tf.reshape(y, shape=[-1, 1]) |
| 153 | + net = tf.concat([noise, y], axis=1) |
| 154 | + |
| 155 | + net = tf.layers.batch_normalization(net) |
| 156 | + net = tf.nn.relu(net) |
| 157 | + net = tf.layers.dense(net, filters[0]*4*4, activation=None) |
| 158 | + net = tf.layers.dropout(net,rate=prob) |
| 159 | + net = tf.reshape(net, shape=[-1,4,4,filters[0]]) |
| 160 | + |
| 161 | + net = tf.layers.conv2d_transpose(net, filters=filters[1], kernel_size=[5,5], strides=[2,2], |
| 162 | + activation=None, padding='same', name='layer1') |
| 163 | + net = tf.layers.batch_normalization(net) |
| 164 | + net = tf.nn.relu(net) |
| 165 | + net = tf.layers.dropout(net,rate=0.2) |
| 166 | + |
| 167 | + net = tf.layers.conv2d_transpose(net, filters=filters[2], kernel_size=[5,5], strides=[2,2], |
| 168 | + activation=None, padding='same', name='layer2') |
| 169 | + net = tf.layers.batch_normalization(net) |
| 170 | + net = tf.nn.relu(net) |
| 171 | + net = tf.layers.dropout(net,rate=0.2) |
| 172 | + |
| 173 | + net = tf.layers.conv2d_transpose(net, filters=1, kernel_size=[5,5], strides=[2,2], |
| 174 | + activation=None, padding='same', name='layer3') |
| 175 | + |
| 176 | + #crop the outer parts of the images to retrieve the original 28x28 size |
| 177 | + net = tf.slice(net, begin=[0,2,2,0], size=[-1,28,28,-1]) |
| 178 | + net = tf.nn.tanh(net) |
| 179 | + net = tf.layers.dropout(net,rate=0.2) |
| 180 | + |
| 181 | + return tf.reshape(net, shape=[-1, 28, 28], name='output') |
| 182 | + |
| 183 | +def dcgan_discriminator_cifar10(x, prob=0.): |
| 184 | + filters = [64, 128, 256] |
| 185 | + alpha = 0.2 |
| 186 | + assert x.shape[1]==32 |
| 187 | + assert x.shape[2]==32 |
| 188 | + net = tf.reshape(x, shape=[-1, 32, 32, 3]) |
| 189 | + |
| 190 | + net = tf.layers.conv2d(net, filters=filters[0], kernel_size=[5,5], strides=[2,2], |
| 191 | + activation=None, padding='same', name='layer1') |
| 192 | + net = tf.layers.batch_normalization(net) |
| 193 | + net = tf.nn.leaky_relu(net, alpha=alpha) |
| 194 | + net = tf.layers.dropout(net,rate=prob) |
| 195 | + |
| 196 | + net = tf.layers.conv2d(net, filters=filters[1], kernel_size=[5,5], strides=[2,2], |
| 197 | + activation=None, padding='same', name='layer2') |
| 198 | + net = tf.layers.batch_normalization(net) |
| 199 | + net = tf.nn.leaky_relu(net, alpha=alpha) |
| 200 | + net = tf.layers.dropout(net,rate=prob) |
| 201 | + |
| 202 | + net = tf.layers.conv2d(net, filters=filters[2], kernel_size=[5,5], strides=[2,2], |
| 203 | + activation=None, padding='same', name='layer3') |
| 204 | + net = tf.layers.batch_normalization(net) |
| 205 | + net = tf.nn.leaky_relu(net, alpha=alpha) |
| 206 | + net = tf.layers.dropout(net,rate=prob) |
| 207 | + |
| 208 | + net = tf.reshape(net, shape=[-1,filters[2]*4*4]) |
| 209 | + net = minibatch_discrimination(net, num_kernels=20, kernel_dim=10) |
| 210 | + |
| 211 | + net = tf.layers.dense(net, 1, activation=None, name='layer4') |
| 212 | + return net, tf.nn.sigmoid(net, name='discriminator_logit') |
| 213 | + |
| 214 | +def dcgan_generator_cifar10(noise, prob=0.): |
| 215 | + filters = [256, 128, 64] |
| 216 | + |
| 217 | + net = tf.reshape(noise, shape=[-1, noise.shape[1]]) |
| 218 | + net = tf.layers.batch_normalization(net) |
| 219 | + net = tf.nn.relu(net) |
| 220 | + net = tf.layers.dense(net, filters[0]*4*4, activation=None) |
| 221 | + net = tf.layers.dropout(net,rate=prob) |
| 222 | + net = tf.reshape(net, shape=[-1,4,4,filters[0]]) |
| 223 | + |
| 224 | + net = tf.layers.conv2d_transpose(net, filters=filters[1], kernel_size=[5,5], strides=[2,2], |
| 225 | + activation=None, padding='same', name='layer1') |
| 226 | + net = tf.layers.batch_normalization(net) |
| 227 | + net = tf.nn.relu(net) |
| 228 | + net = tf.layers.dropout(net,rate=0.2) |
| 229 | + |
| 230 | + net = tf.layers.conv2d_transpose(net, filters=filters[2], kernel_size=[5,5], strides=[2,2], |
| 231 | + activation=None, padding='same', name='layer2') |
| 232 | + net = tf.layers.batch_normalization(net) |
| 233 | + net = tf.nn.relu(net) |
| 234 | + net = tf.layers.dropout(net,rate=0.2) |
| 235 | + |
| 236 | + net = tf.layers.conv2d_transpose(net, filters=3, kernel_size=[5,5], strides=[2,2], |
| 237 | + activation=None, padding='same', name='layer3') |
| 238 | + |
| 239 | + net = tf.nn.tanh(net) |
| 240 | + net = tf.layers.dropout(net,rate=0.2) |
| 241 | + return tf.reshape(net, shape=[-1, 32, 32, 3], name='generator_output') |
0 commit comments