|
| 1 | +import unittest |
| 2 | +from unittest.mock import patch |
| 3 | + |
| 4 | +import numpy as np |
| 5 | + |
| 6 | +from Orange.classification import ColumnLearner, ColumnClassifier |
| 7 | +from Orange.data import DiscreteVariable, ContinuousVariable, Domain, Table |
| 8 | + |
| 9 | + |
| 10 | +class ColumnTest(unittest.TestCase): |
| 11 | + @classmethod |
| 12 | + def setUpClass(cls): |
| 13 | + cls.domain = Domain([DiscreteVariable("d1", values=["a", "b"]), |
| 14 | + DiscreteVariable("d2", values=["c", "d"]), |
| 15 | + DiscreteVariable("d3", values=["d", "c"]), |
| 16 | + ContinuousVariable("c1"), |
| 17 | + ContinuousVariable("c2") |
| 18 | + ], |
| 19 | + DiscreteVariable("cls", values=["c", "d"]), |
| 20 | + [DiscreteVariable("m1", values=["a", "b"]), |
| 21 | + DiscreteVariable("m2", values=["d"]), |
| 22 | + ContinuousVariable("c3")] |
| 23 | + ) |
| 24 | + cls.data = Table.from_numpy( |
| 25 | + cls.domain, |
| 26 | + np.array([[0, 0, 0, 1, 0.5], |
| 27 | + [0, 1, 1, 0.25, -3], |
| 28 | + [1, 0, np.nan, np.nan, np.nan]]), |
| 29 | + np.array([0, 1, 1]), |
| 30 | + np.array([[0, 0, 2], |
| 31 | + [1, 0, 8], |
| 32 | + [np.nan, np.nan, 5]]) |
| 33 | + ) |
| 34 | + |
| 35 | + @patch("Orange.classification.column.ColumnModel") |
| 36 | + def test_fit_storage(self, clsfr): |
| 37 | + learner = ColumnLearner(self.domain.class_var, self.domain["d2"]) |
| 38 | + self.assertEqual(learner.name, "column 'd2'") |
| 39 | + learner.fit_storage(self.data) |
| 40 | + clsfr.assert_called_with(self.domain.class_var, self.domain["d2"], None, None) |
| 41 | + |
| 42 | + learner = ColumnLearner(self.domain.class_var, self.domain["c3"]) |
| 43 | + learner.fit_storage(self.data) |
| 44 | + clsfr.assert_called_with(self.domain.class_var, self.domain["c3"], None, None) |
| 45 | + |
| 46 | + learner = ColumnLearner(self.domain.class_var, self.domain["c3"], 42, 3.5) |
| 47 | + self.assertEqual(learner.name, "column 'c3'") |
| 48 | + learner.fit_storage(self.data) |
| 49 | + clsfr.assert_called_with(self.domain.class_var, self.domain["c3"], 42, 3.5) |
| 50 | + |
| 51 | + def test_classifier_init_checks(self): |
| 52 | + cls = ColumnClassifier(self.domain.class_var, self.domain["d2"]) |
| 53 | + cls.name = "column 'd2'" |
| 54 | + |
| 55 | + cls = ColumnClassifier(self.domain.class_var, self.domain["d3"]) |
| 56 | + cls.name = "column 'd3'" |
| 57 | + |
| 58 | + cls = ColumnClassifier(self.domain.class_var, self.domain["c3"]) |
| 59 | + cls.name = "column 'c3'" |
| 60 | + |
| 61 | + self.assertRaises( |
| 62 | + ValueError, |
| 63 | + ColumnClassifier, |
| 64 | + self.domain.class_var, self.domain["d1"]) |
| 65 | + |
| 66 | + self.assertRaises( |
| 67 | + ValueError, |
| 68 | + ColumnClassifier, |
| 69 | + DiscreteVariable("x", values=("a", "b", "c")), self.domain["c3"]) |
| 70 | + |
| 71 | + def test_check_prob_range(self): |
| 72 | + self.assertTrue( |
| 73 | + ColumnClassifier.valid_prob_range(np.array([0, 0.5, 1])) |
| 74 | + ) |
| 75 | + self.assertTrue( |
| 76 | + ColumnClassifier.valid_prob_range(np.array([0, 0.5, np.nan])) |
| 77 | + ) |
| 78 | + self.assertFalse( |
| 79 | + ColumnClassifier.valid_prob_range(np.array([0, 0.5, 1.5])) |
| 80 | + ) |
| 81 | + self.assertFalse( |
| 82 | + ColumnClassifier.valid_prob_range(np.array([0, 0.5, -1])) |
| 83 | + ) |
| 84 | + |
| 85 | + def test_check_value_sets(self): |
| 86 | + d1, d2, d3, *_ = self.domain.attributes |
| 87 | + c = self.domain.class_var |
| 88 | + m2: DiscreteVariable = self.domain["m2"] |
| 89 | + self.assertFalse(ColumnClassifier.valid_value_sets(c, d1)) |
| 90 | + self.assertTrue(ColumnClassifier.valid_value_sets(c, d2)) |
| 91 | + self.assertTrue(ColumnClassifier.valid_value_sets(c, d3)) |
| 92 | + self.assertTrue(ColumnClassifier.valid_value_sets(c, m2)) |
| 93 | + self.assertFalse(ColumnClassifier.valid_value_sets(m2, c)) |
| 94 | + |
| 95 | + def test_predict_discrete(self): |
| 96 | + # Just copy |
| 97 | + model = ColumnClassifier(self.domain.class_var, self.domain["d2"]) |
| 98 | + self.assertEqual(model.name, "column 'd2'") |
| 99 | + classes, probs = model(self.data, model.ValueProbs) |
| 100 | + np.testing.assert_equal(classes, [0, 1, 0]) |
| 101 | + np.testing.assert_equal(probs, [[1, 0], [0, 1], [1, 0]]) |
| 102 | + |
| 103 | + # Values are not in the same order -> map |
| 104 | + model = ColumnClassifier(self.domain.class_var, self.domain["d3"]) |
| 105 | + classes, probs = model(self.data, model.ValueProbs) |
| 106 | + np.testing.assert_equal(classes, [1, 0, np.nan]) |
| 107 | + np.testing.assert_equal(probs, [[0, 1], [1, 0], [0.5, 0.5]]) |
| 108 | + |
| 109 | + # Not in the same order, and one is missing -> map |
| 110 | + model = ColumnClassifier(self.domain.class_var, self.domain["m2"]) |
| 111 | + classes, probs = model(self.data, model.ValueProbs) |
| 112 | + np.testing.assert_equal(classes, [1, 1, np.nan]) |
| 113 | + np.testing.assert_equal(probs, [[0, 1], [0, 1], [0.5, 0.5]]) |
| 114 | + |
| 115 | + # Non-binary class |
| 116 | + domain = Domain( |
| 117 | + self.domain.attributes, |
| 118 | + DiscreteVariable("cls", values=["a", "c", "b", "d", "e"])) |
| 119 | + data = Table.from_numpy(domain, self.data.X, self.data.Y) |
| 120 | + model = ColumnClassifier(domain.class_var, domain["d3"]) |
| 121 | + classes, probs = model(data, model.ValueProbs) |
| 122 | + np.testing.assert_equal(classes, [3, 1, np.nan]) |
| 123 | + np.testing.assert_almost_equal( |
| 124 | + probs, |
| 125 | + np.array([[0, 0, 0, 1, 0], |
| 126 | + [0, 1, 0, 0, 0], |
| 127 | + [0.2, 0.2, 0.2, 0.2, 0.2]])) |
| 128 | + |
| 129 | + def test_predict_as_direct_probs(self): |
| 130 | + model = ColumnClassifier(self.domain.class_var, self.domain["c1"]) |
| 131 | + self.assertEqual(model.name, "column 'c1'") |
| 132 | + classes, probs = model(self.data, model.ValueProbs) |
| 133 | + np.testing.assert_equal(classes, [1, 0, np.nan]) |
| 134 | + np.testing.assert_equal(probs, [[0, 1], [0.75, 0.25], [0.5, 0.5]]) |
| 135 | + |
| 136 | + model = ColumnClassifier(self.domain.class_var, self.domain["c2"]) |
| 137 | + self.assertRaises(ValueError, model, self.data) |
| 138 | + |
| 139 | + model = ColumnClassifier(self.domain.class_var, self.domain["c3"]) |
| 140 | + self.assertRaises(ValueError, model, self.data) |
| 141 | + |
| 142 | + def test_predict_with_logistic(self): |
| 143 | + model = ColumnClassifier( |
| 144 | + self.domain.class_var, self.domain["c1"], 0.5, 3) |
| 145 | + classes, probs = model(self.data, model.ValueProbs) |
| 146 | + np.testing.assert_equal(classes, [1, 0, np.nan]) |
| 147 | + np.testing.assert_almost_equal( |
| 148 | + probs[:, 1], [1 / (1 + np.exp(-3 * (1 - 0.5))), |
| 149 | + 1 / (1 + np.exp(-3 * (0.25 - 0.5))), |
| 150 | + 0.5]) |
| 151 | + np.testing.assert_equal(probs[:, 0], 1 - probs[:, 1]) |
| 152 | + |
| 153 | + model = ColumnClassifier( |
| 154 | + self.domain.class_var, self.domain["c2"], 0.5, 3) |
| 155 | + classes, probs = model(self.data, model.ValueProbs) |
| 156 | + np.testing.assert_equal(classes, [0, 0, np.nan]) |
| 157 | + np.testing.assert_almost_equal( |
| 158 | + probs[:, 1], [1 / (1 + np.exp(-3 * (0.5 - 0.5))), |
| 159 | + 1 / (1 + np.exp(-3 * (-3 - 0.5))), |
| 160 | + 0.5]) |
| 161 | + np.testing.assert_equal(probs[:, 0], 1 - probs[:, 1]) |
| 162 | + |
| 163 | + |
| 164 | +if __name__ == "__main__": |
| 165 | + unittest.main() |
0 commit comments