Skip to content

The OutputTransition of the VNet model exists with one more than Conv3D #30

@XmySz

Description

@XmySz

According to the structure diagram of the paper, the final OutputTransition should look like the following:

class OutputTransition(nn.Module):
    def __init__(self, in_channels, classes, elu):
        super(OutputTransition, self).__init__()
        self.classes = classes
        # self.conv1 = nn.Conv3d(in_channels, classes, kernel_size=5, padding=2)    # 修改
        self.conv1 = nn.Conv3d(in_channels, classes, kernel_size=1)
        self.bn1 = torch.nn.BatchNorm3d(classes)

        self.conv2 = nn.Conv3d(classes, classes, kernel_size=1)
        self.relu1 = ELUCons(elu, classes)

    def forward(self, x):
        out = self.relu1(self.bn1(self.conv1(x)))
        # out = self.conv2(out) # 修改
        return out

We simply use the only 111 convolutional layer to make the number of channels the same as the classes.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions