-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_json.py
40 lines (35 loc) · 1.35 KB
/
create_json.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import pandas as pd
import json
from glob import glob
def create_df(name, section=True):
"""
Create dataframe. Removes extra values if there are further
"""
if section:
save_eps = 50
name_parts = name.split("_")
start_eps = int(name_parts[-2])
end_eps = int(name_parts[-1])
real_end_eps = (end_eps//save_eps) * save_eps
print(f"Real end episode: {real_end_eps}, Start: {start_eps}, End: {end_eps}")
with open(glob(f"{name}/openaigym.episode_batch*")[0]) as f:
gym_dict = json.load(f)
gym_dict.pop("episode_types")
initial_reset_timestamp = gym_dict.pop("initial_reset_timestamp")
df = pd.DataFrame(gym_dict)
df["timestamps"] = df["timestamps"] - initial_reset_timestamp
if section:
if start_eps == 0:
df = df[:(real_end_eps+1)]
else:
df = df[:real_end_eps]
return df
# Create json from recorded training results
df1 = create_df("training_results_final_0_356")
df2 = create_df("training_results_final_351_406")
df2["timestamps"] += df1["timestamps"].iloc[-1]
df3 = create_df("training_results_final_401_660")
df3["timestamps"] += df2["timestamps"].iloc[-1]
df = pd.concat([df1, df2, df3]).reset_index(drop=True)
df["steps"] = df["episode_lengths"].cumsum()
df.to_json("training_results_final.json")