We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
提问时请尽可能提供如下信息:
class Multi_decoder(tf.keras.Model): def __init__(self, encoder, decoder): super().__init__() self.encoder = encoder self.decoder = decoder def call(self, inputs): encoder_input, decoder_input = inputs encoder_encodings, encoder_masks = self.encoder(encoder_input) decoder_outputs = self.decoder([decoder_input, encoder_encodings, encoder_masks]) return decoder_outputs
Traceback (most recent call last): File "call.py", line 175, in <module> model.fit(x=[batch_t_token_ids, batch_p_token_ids], y=batch_p_token_ids, batch_size=batch_size, epochs=epochs, callbacks=[evaluator]) File "/Users/zhangkaizhou/opt/anaconda3/envs/tf115/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training.py", line 727, in fit use_multiprocessing=use_multiprocessing) File "/Users/zhangkaizhou/opt/anaconda3/envs/tf115/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training_arrays.py", line 643, in fit shuffle=shuffle) File "/Users/zhangkaizhou/opt/anaconda3/envs/tf115/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training.py", line 2418, in _standardize_user_data all_inputs, y_input, dict_inputs = self._build_model_with_inputs(x, y) File "/Users/zhangkaizhou/opt/anaconda3/envs/tf115/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training.py", line 2621, in _build_model_with_inputs self._set_inputs(cast_inputs) File "/Users/zhangkaizhou/opt/anaconda3/envs/tf115/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training.py", line 2708, in _set_inputs outputs = self(inputs, **kwargs) File "/Users/zhangkaizhou/opt/anaconda3/envs/tf115/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/base_layer.py", line 854, in __call__ outputs = call_fn(cast_inputs, *args, **kwargs) File "/Users/zhangkaizhou/opt/anaconda3/envs/tf115/lib/python3.6/site-packages/tensorflow_core/python/autograph/impl/api.py", line 237, in wrapper raise e.ag_error_metadata.to_exception(e) NameError: in converted code: call.py:23 call * encoder_encodings, encoder_masks = self.encoder(encoder_input) /Users/zhangkaizhou/opt/anaconda3/envs/tf115/lib/python3.6/site-packages/keras/engine/base_layer.py:506 __call__ * output_shape = self.compute_output_shape(input_shape) /Users/zhangkaizhou/opt/anaconda3/envs/tf115/lib/python3.6/site-packages/keras/engine/network.py:656 compute_output_shape * output_shape = layer.compute_output_shape( /Users/zhangkaizhou/opt/anaconda3/envs/tf115/lib/python3.6/site-packages/keras/layers/merge.py:173 compute_output_shape * output_shape = self._compute_elemwise_op_output_shape(output_shape, /Users/zhangkaizhou/opt/anaconda3/envs/tf115/lib/python3.6/site-packages/keras/layers/merge.py:50 _compute_elemwise_op_output_shape * for i, j in zip(shape1[-len(shape2):], shape2): /Users/zhangkaizhou/opt/anaconda3/envs/tf115/lib/python3.6/site-packages/tensorflow_core/python/autograph/operators/control_flow.py:339 for_stmt return _py_for_stmt(iter_, extra_test, body, get_state, set_state, init_vars) /Users/zhangkaizhou/opt/anaconda3/envs/tf115/lib/python3.6/site-packages/tensorflow_core/python/autograph/operators/control_flow.py:348 _py_for_stmt if extra_test is not None and not extra_test(*state): /var/folders/v_/m84qz0751dv95zzxzwll27840000gp/T/tmpnbr9tvxs.py:158 extra_test return ag__.not_(do_return_2) NameError: free variable 'do_return_2' referenced before assignment in enclosing scope
您好,我想尝试基于T5的多个decoder,也就是将T5拆解开,decoder复制多个。思路是通过build_transformer_model加载多个decoder,目前还是单个decoder,这样就已经跑不通了。通过这样的代码实现方式能否实现呢
The text was updated successfully, but these errors were encountered:
看错误信息,似乎跟模型实现没有关系?
Sorry, something went wrong.
No branches or pull requests
提问时请尽可能提供如下信息:
基本信息
核心代码
输出信息
自我尝试
您好,我想尝试基于T5的多个decoder,也就是将T5拆解开,decoder复制多个。思路是通过build_transformer_model加载多个decoder,目前还是单个decoder,这样就已经跑不通了。通过这样的代码实现方式能否实现呢
The text was updated successfully, but these errors were encountered: