@@ -620,16 +620,20 @@ bl1 \%O\% bl2
620620 bspatial(x1 , x2 , knots = 12 , center = TRUE , df = 1 )
621621
622622 mod1 <- gamboost(form1 )
623+ \dontrun {
623624 plot(mod1 )
625+ }
624626
625627 mod2 <- gamboost(form2 )
626628 # # automated plot function:
627629 plot(mod2 )
628630 # # plot sum of linear and smooth effects:
629- library(lattice )
631+ library(" lattice" )
630632 df <- expand.grid(x1 = unique(x1 ), x2 = unique(x2 ))
631633 df $ pred <- predict(mod2 , newdata = df )
634+ \dontrun {
632635 levelplot(pred ~ x1 * x2 , data = df )
636+ }
633637
634638 # # specify radial basis function base-learner for spatial effect
635639 # # and use data-adaptive effective range (theta = NULL, see 'args')
@@ -639,13 +643,17 @@ bl1 \%O\% bl2
639643 form4 <- y ~ brad(x1 , x2 , knots = 50 , args = list (theta = 0.4 ))
640644
641645 mod3 <- gamboost(form3 )
646+ \dontrun {
642647 plot(mod3 )
648+ }
643649 dim(extract(mod3 , what = " design" , which = " brad" )[[1 ]])
644650 knots <- attr(extract(mod3 , what = " design" , which = " brad" )[[1 ]], " knots" )
645651
646652 mod4 <- gamboost(form4 )
647653 dim(extract(mod4 , what = " design" , which = " brad" )[[1 ]])
654+ \dontrun {
648655 plot(mod4 )
656+ }
649657
650658 # ## random intercept
651659 id <- factor (rep(1 : 10 , each = 5 ))
@@ -696,8 +704,10 @@ bl1 \%O\% bl2
696704 for (i in seq(along = levels(z )))
697705 with(nd [nd $ z == i ,], lines(x , pred_gam , col = z , lty = " dashed" ))
698706 # ## convenience function for plotting
707+ \dontrun {
699708 par(mfrow = c(1 ,3 ))
700709 plot(mod_gam )
710+ }
701711
702712
703713 # ## remove intercept from base-learner
0 commit comments