-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathip.c
445 lines (408 loc) · 15.4 KB
/
ip.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
#include <kernel.h>
/* IP protocol implementation
* Reference: https://datatracker.ietf.org/doc/html/rfc791
*/
uint16_t last_id;
uint8_t my_ip[4] = {0, 0, 0, 0};
uint8_t zero_hardware_addr[6] = {0, 0, 0, 0, 0, 0};
packet_queue_item_t* packet_queue = NULL;
packet_queue_item_t* packet_queue_end = NULL;
char ip_addr[4] = { 0, 0, 0, 0 };
int is_ip_allocated = 0;
uint32_t dns_addr = 0, gateway_addr = 0, netmask = 0;
struct hashmap *frag_map = NULL;
void get_ip_str(char* ip_str, const uint8_t* ip)
{
sprintf(ip_str, "%d.%d.%d.%d", ip[0], ip[1], ip[2], ip[3]);
}
uint32_t str_to_ip(const char* ip_str)
{
char ip[15];
char* dot = NULL, *last_dot = ip;
uint32_t shift = 0, out = 0, dot_count = 0;
strlcpy(ip, ip_str, 14);
while ((dot = strchr(last_dot, '.')) != NULL) {
*dot = 0;
out |= (atoi(last_dot) << shift);
shift += 8;
last_dot = dot + 1;
dot_count++;
}
if (dot_count != 3) {
return 0;
}
out |= (atoi(last_dot) << shift);
return out;
}
int gethostaddr(unsigned char *addr) {
memcpy(addr, ip_addr, 4);
return is_ip_allocated;
}
void sethostaddr(const unsigned char* addr) {
memcpy(ip_addr, addr, 4);
is_ip_allocated = 1;
}
void setdnsaddr(uint32_t dns) {
dns_addr = dns;
}
void setgatewayaddr(uint32_t gateway) {
gateway_addr = gateway;
}
uint32_t getdnsaddr() {
return dns_addr;
}
uint32_t getgatewayaddr() {
return gateway_addr;
}
void setnetmask(uint32_t nm) {
netmask = nm;
}
uint32_t getnetmask() {
return netmask;
}
uint16_t ip_calculate_checksum(ip_packet_t * packet) {
// Treat the packet header as a 2-byte-integer array
// Sum all integers switch to network byte order
int array_size = sizeof(ip_packet_t) / 2;
uint16_t * array = (uint16_t*)packet; // XXX: Alignment!
uint32_t sum = 0;
for(int i = 0; i < array_size; i++) {
sum += htons(array[i]);
}
uint32_t carry = sum >> 16;
sum = sum & 0x0000ffff;
sum = sum + carry;
uint16_t ret = ~sum;
return ret;
}
void dequeue_packet(packet_queue_item_t* cur, packet_queue_item_t* last) {
kfree(cur->packet);
/* Remove queue entry */
if (cur == packet_queue) {
packet_queue = cur->next;
if (packet_queue == NULL) {
packet_queue_end = NULL;
}
} else if (cur == packet_queue_end) {
packet_queue_end = last;
last->next = NULL;
if (last == packet_queue) {
packet_queue_end = packet_queue;
}
} else {
last->next = cur->next;
}
kfree(cur);
}
void ip_idle()
{
if (packet_queue) {
time_t current_time = time(NULL);
packet_queue_item_t* cur = packet_queue;
packet_queue_item_t* last = NULL;
for (; cur; cur = cur->next) {
/* Here we determine if the packet is desined for the local net or the
* internet at large. The calculation is actually very easy, we just AND
* the source ip against our network mask, and then do the same to the
* destination ip address and if both values match, then this packet is for
* the local network. If the values are different, we must redirect the
* packet to the gateway router. We don't change the IP in the packet, just
* the mac address that it is sent to via ethernet. We set a local variable
* called arp_dest for this below, which if the packet is for the local net,
* is the IP address of the target machine otherwise is the IP of the
* router. This is then used in arp_lookup() to decide which mac address
* we send the packet to.
*
* Note that if we have no gateway address everything is considered local.
*
* These addresses are all in network byte order - it doesn't matter, so
* long as the netmask is too!
*/
uint32_t dest_ip = *((uint32_t*)&cur->packet->dst_ip);
uint32_t source_ip = *((uint32_t*)&cur->packet->src_ip);
uint32_t gw = getgatewayaddr();
uint8_t arp_dest[4] = { 0 };
uint8_t dst_hardware_addr[6] = { 0 };
bool is_local = (gw == 0 || ((dest_ip & netmask) == (source_ip & netmask)));
*((uint32_t*)&arp_dest) = is_local ? *((uint32_t*)&cur->packet->dst_ip) : gw;
if (arp_lookup(dst_hardware_addr, arp_dest)) {
/* The ARP for this MAC has come back now, we can send the packet! */
ethernet_send_packet(dst_hardware_addr, (uint8_t*)cur->packet, htons(cur->packet->length), ETHERNET_TYPE_IP);
dequeue_packet(cur, last);
} else if (is_local && cur->arp_tries < 2 && current_time - cur->last_arp > 0) {
/* After one second, ARP didn't come back, try it again up to 3 times */
cur->arp_tries++;
cur->last_arp = current_time;
arp_send_packet(zero_hardware_addr, arp_dest);
} else if (cur->arp_tries == 3 && current_time - cur->last_arp >= 10) {
/* 3 ARPs have been tried over 3 seconds, and then we waited another ten.
* Packet still didnt get an ARP reply. Dequeue it as a lost packet.
*/
dprintf("Failed ARP resolution after 3 tries to %08x at %d\n", arp_dest, current_time);
dequeue_packet(cur, last);
}
last = cur;
}
}
}
void queue_packet([[maybe_unused]] uint8_t* dst_ip, void* data, [[maybe_unused]] uint16_t len) {
if (packet_queue == NULL) {
packet_queue = kmalloc(sizeof(packet_queue_item_t));
packet_queue_end = packet_queue;
packet_queue_end->packet = (ip_packet_t*)data;
packet_queue_end->next = NULL;
packet_queue_end->last_arp = time(NULL);
packet_queue_end->arp_tries = 0;
} else {
packet_queue_end->next = kmalloc(sizeof(packet_queue_item_t));
packet_queue_end->next->packet = (ip_packet_t*)data;
packet_queue_end->next->next = NULL;
packet_queue_end->next->arp_tries = 0;
packet_queue_end->next->last_arp = time(NULL);
packet_queue_end = packet_queue_end->next;
}
}
void ip_send_packet(uint8_t* dst_ip, void* data, uint16_t len, uint8_t protocol) {
uint8_t dst_hardware_addr[6] = { 0, 0, 0, 0, 0, 0 };
ip_packet_t* packet = kmalloc(sizeof(ip_packet_t) + len);
memset(packet, 0, sizeof(ip_packet_t));
packet->version = IP_IPV4;
packet->ihl = sizeof(ip_packet_t) / sizeof(uint32_t); // header length is in 32 bit words
packet->tos.bits = 0; // Don't care
packet->length = sizeof(ip_packet_t) + len;
packet->id = last_id++;
// No fragmentation on outbound packets please! We'll implement this later.
packet->frag.dont_fragment = 1;
packet->frag.more_fragments_follow = 0;
packet->frag.fragment_offset_high = 0;
packet->frag.fragment_offset_low = 0;
packet->ttl = 64;
// XXX: This is hard coded until other protocols are supported.
packet->protocol = protocol;
gethostaddr(my_ip);
uint32_t netmask = getnetmask();
uint32_t our_gateway = getgatewayaddr();
uint32_t our_ip = *((uint32_t*)&my_ip);
uint32_t target_ip = *((uint32_t*)dst_ip);
bool redirected = false;
memcpy(packet->src_ip, my_ip, 4);
memcpy(packet->dst_ip, dst_ip, 4);
void* packet_data = (void*)packet + packet->ihl * 4;
memcpy(packet_data, data, len);
*((uint8_t*)(&packet->version_ihl_ptr)) = htonb(*((uint8_t*)(&packet->version_ihl_ptr)), 4);
*((uint8_t*)(packet->flags_fragment_ptr)) = htonb(*((uint8_t*)(packet->flags_fragment_ptr)), 3);
packet->length = htons(sizeof(ip_packet_t) + len);
packet->header_checksum = 0;
packet->header_checksum = htons(ip_calculate_checksum(packet));
// Attempt to resolve ARP or find in arp cache table
if (netmask != 0 && our_ip != 0 && target_ip != 0 && ((our_ip & netmask) != (target_ip & netmask))) {
/* We need to redirect this packet to the router's MAC address */
if (!arp_lookup(dst_hardware_addr, (uint8_t*)&our_gateway)) {
queue_packet(dst_ip, packet, packet->length);
arp_send_packet(zero_hardware_addr, (uint8_t*)&our_gateway);
return;
}
redirected = true;
}
if (!redirected && !arp_lookup(dst_hardware_addr, dst_ip)) {
/* Send ARP packet, and add to queue for this mac address */
queue_packet(dst_ip, packet, packet->length);
arp_send_packet(zero_hardware_addr, dst_ip);
return;
}
ethernet_send_packet(dst_hardware_addr, (uint8_t*)packet, htons(packet->length), ETHERNET_TYPE_IP);
// Remember to free the packet!
kfree(packet);
}
/**
* @brief Insert fragmented packet part into ordered list
*
* @param insert fragment to insert (will be sorted by offset)
* @param list list to insert into
* @return ip_packet_frag_t* pointer to start of list
*/
ip_packet_frag_t* frag_list_insert(ip_packet_frag_t *insert, ip_packet_frag_t *list)
{
ip_packet_frag_t *tmp = list, *tmp2;
if (!tmp) {
insert->prev = NULL;
insert->next = NULL;
return insert;
}
if (tmp->offset >= insert->offset) {
tmp->prev = insert;
insert->next = tmp;
insert->prev = NULL;
return insert;
}
tmp2 = tmp;
tmp = tmp->next;
while (tmp) {
if (tmp->offset >= insert->offset) {
tmp->prev = insert;
insert->next = tmp;
tmp2->next = insert;
insert->prev = tmp2;
return list;
}
tmp2 = tmp;
tmp = tmp->next;
}
insert->next = NULL;
tmp2->next = insert;
insert->prev = tmp2;
return list;
}
/**
* @brief Comparison function for hash table of fragmented packet lists
*
* @param a first object to compare
* @param b second object to compare
* @param udata user data
* @return int 0 for equal, -1 for less than, 1 for greater than; like strcmp()
*/
int ip_frag_compare(const void *a, const void *b, [[maybe_unused]] void *udata) {
const ip_fragmented_packet_parts_t* fa = a;
const ip_fragmented_packet_parts_t* fb = b;
return fa->id == fb->id ? 0 : (fa->id < fb->id ? -1 : 1);
}
/**
* @brief Hash two lists of IP fragments for storage in hashmap, keyed by packet id
*
* @param item item to hash
* @param seed0 first seed from hashmap
* @param seed1 second seed from hashmap
* @return uint64_t hash bucket value
*/
uint64_t ip_frag_hash(const void *item, uint64_t seed0, uint64_t seed1) {
const ip_fragmented_packet_parts_t* frag_parts = item;
return (uint64_t)frag_parts->id * seed0 * seed1;
}
/**
* @brief Handle inbound IP packet
* @note happens in interrupt!
*
* @param packet IP packet to parse
* @param n_len Packet length
*/
void ip_handle_packet(ip_packet_t* packet, [[maybe_unused]] int n_len) {
char src_ip[20];
*((uint8_t*)(&packet->version_ihl_ptr)) = ntohb(*((uint8_t*)(&packet->version_ihl_ptr)), 4);
*((uint8_t*)(packet->flags_fragment_ptr)) = ntohb(*((uint8_t*)(packet->flags_fragment_ptr)), 3);
add_random_entropy(packet->header_checksum ^ (*(uint32_t*)packet->src_ip));
if (packet->version == IP_IPV4) {
get_ip_str(src_ip, packet->src_ip);
void * data_ptr = (void*)packet + packet->ihl * 4;
size_t data_len = ntohs(packet->length) - (packet->ihl * 4);
bool fragment_to_free = false;
/* For fragmented packets, we store up the fragments into an ordered list, sorted by frag offset.
* Once we receive the very last fragment, we can deliver it all as one. We store each list of packet
* waiting to be reassembled into a hashmap keyed by id, so they can be accessed in O(n) time.
*
* Lists of fragments are stored in offset order, so that higher offsets overwrite lower ones, if there
* is some kind of bug in the remote system or an intentional exploit pointed at us.
*
* BUG, FIXME: If we never receive the ending fragment for a fragmented group of packets, the memory
* used stays used! This could be abused, and must be fixed:
* https://en.wikipedia.org/wiki/IP_fragmentation_attack#Exploits
*/
uint16_t frag_offset = ((uint16_t)packet->frag.fragment_offset_low | ((uint16_t)packet->frag.fragment_offset_high << 8));
if (!packet->frag.dont_fragment) {
if (packet->frag.more_fragments_follow) {
dprintf("Fragment is one of set (MF)\n");
/* Packet is part of a fragmented set */
if (frag_offset == 0) {
dprintf("First fragment\n");
/* First fragment */
if (frag_map == NULL) {
/* First time we see a fragmented packet, make the hashmap to hold them */
frag_map = hashmap_new(sizeof(ip_fragmented_packet_parts_t), 0, 564364368549036, 67545346834, ip_frag_hash, ip_frag_compare, NULL, NULL);
}
ip_fragmented_packet_parts_t fragmented = { .id = packet->id, .size = data_len, .ordered_list = NULL };
ip_packet_frag_t* fragment = kmalloc(sizeof(ip_packet_frag_t*));
fragment->offset = frag_offset;
fragment->packet = kmalloc(ntohs(packet->length));
memcpy(fragment->packet, packet, ntohs(packet->length));
frag_list_insert(fragment, fragmented.ordered_list);
hashmap_set(frag_map, &fragmented);
} else {
dprintf("Middle fragment\n");
/* Middle fragment */
ip_packet_t findpacket = { .id = packet->id };
ip_fragmented_packet_parts_t* fragmented = (ip_fragmented_packet_parts_t*)hashmap_get(frag_map, &findpacket);
if (fragmented == NULL) {
dprintf("*** WARN *** Fragmented packet id %d has no entry in hash map", fragmented);
return;
}
ip_packet_frag_t* fragment = kmalloc(sizeof(ip_packet_frag_t*));
fragmented->size += data_len;
fragment->offset = frag_offset;
fragment->packet = kmalloc(ntohs(packet->length));
memcpy(fragment->packet, packet, ntohs(packet->length));
frag_list_insert(fragment, fragmented->ordered_list);
}
dprintf("Returning, fragmented packet incomplete!\n");
return;
} else if (packet->frag.more_fragments_follow == 0 && (frag_offset != 0)) {
/* Final fragment of fragmented set.
* Once we get this fragment, we can deliver the reassembled packet.
*/
dprintf("Final fragment\n");
ip_packet_t findpacket = { .id = packet->id };
ip_fragmented_packet_parts_t* fragmented = (ip_fragmented_packet_parts_t*)hashmap_get(frag_map, &findpacket);
if (fragmented == NULL) {
dprintf("*** WARN *** Fragmented packet id %d has no entry in hash map", fragmented);
return;
}
ip_packet_frag_t* fragment = kmalloc(sizeof(ip_packet_frag_t*));
fragmented->size += data_len;
fragment->offset = frag_offset;
fragment->packet = kmalloc(ntohs(packet->length));
memcpy(fragment->packet, packet, ntohs(packet->length));
frag_list_insert(fragment, fragmented->ordered_list);
/* We have complete packet, all fragments - reassemble the data part and free everything */
ip_packet_frag_t* cur = fragmented->ordered_list;
data_ptr = kmalloc(fragmented->size);
data_len = fragmented->size;
/* Set flag to indicate we need to free the data_ptr later */
fragment_to_free = true;
for (; cur; cur = cur->next) {
size_t this_packet_size = ntohs(cur->packet->length) - (cur->packet->ihl * 4);
if (cur->offset + this_packet_size < data_len) {
void * copy_from = (void*)cur->packet + cur->packet->ihl * 4;
memcpy(data_ptr + cur->offset, copy_from, this_packet_size);
} else {
dprintf("*** WARN *** Fragmented packet id %d has fragment with offset %08x and length %08d >= data length of %08x", fragmented->id, cur->offset, this_packet_size, data_len);
}
kfree(cur->packet);
kfree(cur);
}
dprintf("Removing list from frag_map\n");
hashmap_delete(frag_map, &findpacket);
/* Now we have reassembled the data portion, we can fall through and let the packet be handled... */
}
}
if (packet->protocol == PROTOCOL_ICMP) {
icmp_handle_packet(packet, data_ptr, data_len);
} else if (packet->protocol == PROTOCOL_UDP) {
udp_handle_packet(packet, data_ptr, data_len);
} else if (packet->protocol == PROTOCOL_TCP) {
tcp_handle_packet(packet, data_ptr, data_len);
}
if (fragment_to_free) {
kfree(data_ptr);
}
} else {
dprintf("Unknown IP packet type %04X\n", packet->version);
}
}
void ip6_handle_packet([[maybe_unused]] void* packet, [[maybe_unused]] int n_len)
{
dprintf("IP6 packet - not implemented\n");
}
void ip_init()
{
ethernet_register_iee802_number(ETHERNET_TYPE_IP, (ethernet_protocol_t)ip_handle_packet);
ethernet_register_iee802_number(ETHERNET_TYPE_IP6, (ethernet_protocol_t)ip6_handle_packet);
proc_register_idle(ip_idle, IDLE_BACKGROUND);
}