-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path19022025_rag_pipeline.py
1592 lines (1305 loc) · 58.5 KB
/
19022025_rag_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import json
def clean_json_from_markdown(raw_json: str) -> str:
"""
Markdown kod bloğu içerisinde gelen JSON verisinden
kod bloğu belirteçlerini (```json ve ```) temizler.
"""
raw_json = raw_json.strip()
# Eğer JSON, ```json ile başlıyorsa, bu kısmı kaldırıyoruz
if raw_json.startswith("```json"):
raw_json = raw_json[len("```json"):].strip()
# Eğer JSON, ``` ile bitiyorsa, bunu kaldırıyoruz
if raw_json.endswith("```"):
raw_json = raw_json[:-3].strip()
return raw_json
def extract_campaign_data(json_output: str) -> dict:
"""
Verilen JSON formatındaki kampanya çıktısını parse edip,
beklenen tüm anahtarların (campaign_code, campaign_responsible_ask, vb.)
mevcut olduğunu kontrol eder ve bir sözlük olarak döndürür.
:param json_output: Kampanya verilerini içeren JSON string.
:return: Çıktıda bulunan tüm kampanya verilerinin yer aldığı dict.
:raises ValueError: JSON formatı hatalıysa veya beklenen anahtar eksikse.
"""
# Önce Markdown kod bloğu belirteçlerini temizle
cleaned_json = clean_json_from_markdown(json_output)
try:
data = json.loads(cleaned_json)
except json.JSONDecodeError as e:
raise ValueError(f"Invalid JSON format: {e}")
required_keys = [
"campaign_code",
"campaign_responsible_ask",
"spesific_campaign_header",
"general_campaign_header",
"follow_up_campaign_code",
"follow_up_campaign_header",
"campaign_related",
"pii_check_control"
]
# Tüm gerekli anahtarların mevcut olduğundan emin olun
for key in required_keys:
if key not in data:
raise ValueError(f"Missing required field in JSON response: '{key}'")
return data
# Örnek kullanım:
json_output = """```json
{
"campaign_code": "12345",
"campaign_responsible_ask": "",
"spesific_campaign_header": "",
"general_campaign_header": "",
"follow_up_campaign_code": "",
"follow_up_campaign_header": "",
"campaign_related": "",
"pii_check_control": ""
}
```"""
campaign_data = extract_campaign_data(json_output)
print(campaign_data)
# MINO
import streamlit as st
import json
import os
from openai import AzureOpenAI
import config_info
from elastic_search_retriever_embedding import ElasticTextSearch
# Initialize session state for chat history
if 'history' not in st.session_state:
st.session_state.history = []
es = ElasticTextSearch()
def initialize_openai_client():
os.environ["HTTP_PROXY"] = config_info.http_proxy
os.environ["HTTPS_PROXY"] = config_info.https_proxy
return AzureOpenAI(
api_key=config_info.azure_api_key,
api_version=config_info.azure_api_version,
azure_endpoint=config_info.azure_endpoint
)
def post_process_campaign_response(json_response: str) -> dict:
required_keys = [
"campaign_code", "campaign_responsible_ask", "spesific_campaign_header",
"general_campaign_header", "follow_up_campaign_code", "follow_up_campaign_header",
"campaign_related", "pii_check_control"
]
try:
data = json.loads(json_response)
except json.JSONDecodeError as e:
raise ValueError(f"Invalid JSON format: {e}")
for key in required_keys:
if key not in data:
raise ValueError(f"Missing required field: '{key}'")
yes_no_fields = ["campaign_responsible_ask", "campaign_related", "pii_check_control"]
for field in yes_no_fields:
value = data[field].strip().upper()
if value not in ["YES", "NO", ""]:
raise ValueError(f"Invalid value for {field}: '{data[field]}'")
data[field] = value
return data
def generate_routing_response(user_prompt):
client = initialize_openai_client()
messages = [
{"role": "system", "content": config_info.ROUTING_PROMPT},
{"role": "user", "content": user_prompt}
]
response = client.chat.completions.create(
model=config_info.deployment_name,
messages=messages,
temperature=0,
max_tokens=config_info.max_tokens
)
return post_process_campaign_response(response.choices[0].message.content)
def generate_campaign_response(user_prompt, campaign_description):
client = initialize_openai_client()
messages = [
{"role": "system", "content": config_info.SYSTEM_PROMPT_MAIN_LAYER},
{"role": "user", "content": f"Soru: {user_prompt}\nKampanya Bilgisi: {campaign_description}"}
]
response = client.chat.completions.create(
model=config_info.deployment_name,
messages=messages,
temperature=0,
max_tokens=config_info.max_tokens
)
return response.choices[0].message.content
# Streamlit UI
st.title("🤖 Kampanya Asistanı")
st.warning("📌 Lütfen kampanya ile ilgili sorularınızı girin")
user_input = st.text_input("Lütfen kampanya ile ilgili sorularınızı girin")
if user_input:
with st.spinner("💭 Düşünüyorum..."):
try:
parsed_data = generate_routing_response(user_input)
response = None
add_to_history = True
# Condition handling
if parsed_data['pii_check_control'] == 'YES':
response = "Sorunuzda kişisel veri tespit ettim. Lütfen sorunuzu kontrol ediniz."
add_to_history = False
elif parsed_data['campaign_responsible_ask'] == 'YES':
if parsed_data['campaign_code']:
resp = es.get_responsible_name_search_code(parsed_data['campaign_code'])
response = f"Kampanya sorumlusu: {resp}"
elif parsed_data['spesific_campaign_header']:
resp = es.get_responsible_name_search_header(parsed_data['spesific_campaign_header'])
response = f"Kampanya sorumlusu: {resp}"
add_to_history = False
elif parsed_data['campaign_code']:
info = es.get_best_related(parsed_data['campaign_code'])
response = generate_campaign_response(user_input, info)
elif parsed_data['spesific_campaign_header']:
info = es.search_campaign_by_header_one_result(parsed_data['spesific_campaign_header'])
response = generate_campaign_response(user_input, info)
elif parsed_data['general_campaign_header']:
info = es.search_campaign_by_header(parsed_data['general_campaign_header'])
response = f"Genel arama sonuçları:\n{info}"
elif parsed_data['follow_up_campaign_code']:
info = es.get_best_related(parsed_data['follow_up_campaign_code'])
response = generate_campaign_response(user_input, info)
elif parsed_data['follow_up_campaign_header']:
info = es.search_campaign_by_header_one_result(parsed_data['follow_up_campaign_header'])
response = generate_campaign_response(user_input, info)
elif parsed_data['campaign_related'] == 'YES':
response = generate_campaign_response(user_input, "İlgili kampanya bilgileri")
else:
response = "Üzgünüm, bu soruya cevap veremiyorum."
st.subheader("🔎 Yanıt")
st.write(response)
if add_to_history and response:
new_entry = {
'user': user_input,
'bot': response
}
st.session_state.history.insert(0, new_entry)
st.session_state.history = st.session_state.history[:3]
except Exception as e:
st.error(f"Hata oluştu: {str(e)}")
if st.session_state.history:
st.subheader("📖 Sohbet Geçmişi")
for idx, entry in enumerate(st.session_state.history):
prefix = "Son" if idx == 0 else f"Sondan {['ikinci', 'üçüncü'][idx-1]}"
st.markdown(f"**{prefix} soru:** {entry['user']}")
st.markdown(f"**{prefix} yanıt:** {entry['bot']}")
st.write("---")
# DDD
import os
import json
import openai
import streamlit as st
from elastic_search_retriever_embedding import ElasticTextSearch
import config_info
# Global ayarlar
max_tokens = 150
ROUTING_PROMPT = """
Lütfen aşağıdaki formatta JSON çıktısı üret:
{
"campaign_code": "",
"campaign_responsible_ask": "",
"spesific_campaign_header": "",
"general_campaign_header": "",
"follow_up_campaign_code": "",
"follow_up_campaign_header": "",
"campaign_related": "",
"pii_check_control": ""
}
Kurallara göre:
- campaign_responsible_ask, campaign_related ve pii_check_control sadece "YES", "NO" veya boş olabilir.
"""
# Streamlit session state üzerinden sohbet geçmişini tutmak için:
if 'history' not in st.session_state:
st.session_state.history = []
def update_history(user_question: str, bot_response: str):
"""
Sohbet geçmişine yeni bir kullanıcı-sistem çiftini ekler.
Eğer güncel mesaj pii_check_control veya campaign_responsible_ask YES ise eklenmez.
Sadece son 3 mesaj saklanır.
"""
st.session_state.history.append({
"user_question": user_question,
"bot_response": bot_response
})
# Sadece son 3 mesajı tut
if len(st.session_state.history) > 3:
st.session_state.history = st.session_state.history[-3:]
def get_formatted_history() -> str:
"""
Sohbet geçmişini istenen formatta (en son mesaj en üstte) formatlar.
"""
history = st.session_state.history
formatted_lines = []
n = len(history)
if n >= 1:
conv = history[-1]
formatted_lines.append("Kullanıcının son sorusu:")
formatted_lines.append(conv["user_question"])
formatted_lines.append("Kullanıcının son sorusunun cevabı:")
formatted_lines.append(conv["bot_response"])
if n >= 2:
conv = history[-2]
formatted_lines.append("Kullanıcının sondan ikinci sorusu:")
formatted_lines.append(conv["user_question"])
formatted_lines.append("Kullanıcının sondan ikinci sorusunun cevabı:")
formatted_lines.append(conv["bot_response"])
if n >= 3:
conv = history[-3]
formatted_lines.append("Kullanıcının sondan üçüncü sorusu:")
formatted_lines.append(conv["user_question"])
formatted_lines.append("Kullanıcının sondan üçüncü sorusunun cevabı:")
formatted_lines.append(conv["bot_response"])
return "\n".join(formatted_lines)
def post_process_campaign_response(json_response: str) -> dict:
"""
OpenAI'dan gelen JSON yanıtını parse edip, gerekli alanları kontrol eder.
"""
required_keys = [
"campaign_code",
"campaign_responsible_ask",
"spesific_campaign_header",
"general_campaign_header",
"follow_up_campaign_code",
"follow_up_campaign_header",
"campaign_related",
"pii_check_control"
]
try:
data = json.loads(json_response)
except json.JSONDecodeError as e:
raise ValueError(f"Invalid JSON format: {e}")
for key in required_keys:
if key not in data:
raise ValueError(f"Missing required field in JSON response: '{key}'")
yes_no_fields = [
"campaign_responsible_ask",
"campaign_related",
"pii_check_control"
]
for field in yes_no_fields:
value = data[field].strip().upper()
if value not in ["YES", "NO", ""]:
raise ValueError(
f"Field '{field}' must be 'YES', 'NO', or an empty string. Got: '{data[field]}'"
)
data[field] = value # Normalize
return data
def initialize_openai_client(api_key, azure_api_key, azure_api_version, azure_endpoint, http_proxy, https_proxy):
"""
OpenAI (Azure OpenAI) istemcisini yapılandırır.
"""
os.environ["HTTP_PROXY"] = http_proxy
os.environ["HTTPS_PROXY"] = https_proxy
openai.api_key = api_key
# AzureOpenAI sınıfının import edildiğini varsayıyoruz.
client = AzureOpenAI(
azure_api_key=azure_api_key,
api_version=azure_api_version,
azure_endpoint=azure_endpoint
)
return client
def generate_routing_response(user_prompt, system_prompt=ROUTING_PROMPT, deployment_name=config_info.deployment_name) -> dict:
"""
Kullanıcının sorusunu routing prompt üzerinden OpenAI API ile yönlendirir ve
JSON yanıtı parse edip döndürür.
"""
client = initialize_openai_client(
config_info.api_key,
config_info.azure_api_key,
config_info.azure_api_version,
config_info.azure_endpoint,
config_info.http_proxy,
config_info.https_proxy
)
routing_response_text = "Verilen talimatalara uygun olarak soruya cevap ver: " + user_prompt
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": routing_response_text}
]
response = client.chat.completions.create(
model=deployment_name,
messages=messages,
temperature=0,
max_tokens=max_tokens
)
# API'den gelen yanıtı JSON string olarak alıp, parse ediyoruz.
response_data = response.to_json()
# post_process_campaign_response fonksiyonu string formatında JSON beklediğinden;
processed_data = post_process_campaign_response(response_data)
return processed_data
def generate_campaign_response(user_prompt, system_prompt=config_info.SYSTEM_PROMPT_MAIN_LAYER, campaign_description=None, deployment_name=config_info.deployment_name) -> str:
client = initialize_openai_client(
config_info.api_key,
config_info.azure_api_key,
config_info.azure_api_version,
config_info.azure_endpoint,
config_info.http_proxy,
config_info.https_proxy
)
rag_prompt = "Soruya cevap ver: " + user_prompt + "\n\nKampanya metin içeriği: " + str(campaign_description)
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": rag_prompt}
]
response = client.chat.completions.create(
model=deployment_name,
messages=messages,
temperature=0,
max_tokens=max_tokens
)
response_data = json.loads(response.to_json())
return response_data["choices"][0]["message"]["content"].strip()
def generate_campaign_response_v2(user_prompt, system_prompt="Kampanya ile ilgili sorulara cevap ver", campaign_description=None, deployment_name=config_info.deployment_name) -> str:
client = initialize_openai_client(
config_info.api_key,
config_info.azure_api_key,
config_info.azure_api_version,
config_info.azure_endpoint,
config_info.http_proxy,
config_info.https_proxy
)
rag_prompt = "Soruya cevap ver: " + user_prompt + "\n\nKampanya metin içeriği: " + str(campaign_description)
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": rag_prompt}
]
response = client.chat.completions.create(
model=deployment_name,
messages=messages,
temperature=0,
max_tokens=max_tokens
)
response_data = json.loads(response.to_json())
return response_data["choices"][0]["message"]["content"].strip()
def generate_campaign_response_v3(user_prompt, system_prompt="Kampanya ile ilgili sorulara cevap ver", campaign_description=None, deployment_name=config_info.deployment_name) -> str:
client = initialize_openai_client(
config_info.api_key,
config_info.azure_api_key,
config_info.azure_api_version,
config_info.azure_endpoint,
config_info.http_proxy,
config_info.https_proxy
)
rag_prompt = "Soruya cevap ver: " + user_prompt + "\n\nKampanya metin içeriği: " + str(campaign_description)
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": rag_prompt}
]
response = client.chat.completions.create(
model=deployment_name,
messages=messages,
temperature=0,
max_tokens=max_tokens
)
response_data = json.loads(response.to_json())
return response_data["choices"][0]["message"]["content"].strip()
def generate_campaign_response_v4(user_prompt, system_prompt="Kampanya ile ilgili sorulara cevap ver", campaign_description=None, deployment_name=config_info.deployment_name) -> str:
client = initialize_openai_client(
config_info.api_key,
config_info.azure_api_key,
config_info.azure_api_version,
config_info.azure_endpoint,
config_info.http_proxy,
config_info.https_proxy
)
rag_prompt = "Soruya cevap ver: " + user_prompt + "\n\nKampanya metin içeriği: " + str(campaign_description)
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": rag_prompt}
]
response = client.chat.completions.create(
model=deployment_name,
messages=messages,
temperature=0,
max_tokens=max_tokens
)
response_data = json.loads(response.to_json())
return response_data["choices"][0]["message"]["content"].strip()
def process_user_input(user_input: str) -> str:
"""
Kullanıcının sorusunu önce routing response üzerinden yönlendirir,
ardından ilgili iş akışına göre doğru fonksiyonu çalıştırır.
"""
routing_data = generate_routing_response(user_input, system_prompt=ROUTING_PROMPT)
campaign_code = routing_data.get("campaign_code", "").strip()
campaign_responsible_ask = routing_data.get("campaign_responsible_ask", "").strip().upper()
spesific_campaign_header = routing_data.get("spesific_campaign_header", "").strip()
general_campaign_header = routing_data.get("general_campaign_header", "").strip()
follow_up_campaign_code = routing_data.get("follow_up_campaign_code", "").strip()
follow_up_campaign_header = routing_data.get("follow_up_campaign_header", "").strip()
campaign_related = routing_data.get("campaign_related", "").strip().upper()
pii_check_control = routing_data.get("pii_check_control", "").strip().upper()
response = ""
add_to_history = True # Varsayılan olarak geçmişe eklensin
if pii_check_control == "YES":
response = "sorunuzda kişisel veri tespit ettim lütfen sorunuzu kontrol ediniz."
add_to_history = False
elif campaign_code and campaign_responsible_ask == "YES":
es = ElasticTextSearch()
campaign_responsible = es.get_responsible_name_search_code(campaign_code)
response = f"kampanyadan sorumlu kişi {campaign_responsible}"
add_to_history = False
elif campaign_code and campaign_responsible_ask == "NO":
es = ElasticTextSearch()
campaign_info = es.get_best_related(campaign_code)
response = generate_campaign_response(user_input, campaign_description=campaign_info)
elif spesific_campaign_header and campaign_responsible_ask == "YES":
es = ElasticTextSearch()
campaign_responsible = es.get_responsible_name_search_header(spesific_campaign_header)
response = f"kampanyadan sorumlu kişi {campaign_responsible}"
add_to_history = False
elif spesific_campaign_header and campaign_responsible_ask == "NO":
es = ElasticTextSearch()
campaign_info = es.search_campaign_by_header_one_result(spesific_campaign_header)
response = generate_campaign_response_v2(user_input, campaign_description=campaign_info)
elif general_campaign_header:
es = ElasticTextSearch()
campaign_info = es.search_campaign_by_header(general_campaign_header)
response = f"Yaptığınız genel aramaya göre aşağıdaki sonuçlar bulunmuştur: {campaign_info}"
elif follow_up_campaign_code:
es = ElasticTextSearch()
campaign_info = es.get_best_related(follow_up_campaign_code)
response = generate_campaign_response_v3(user_input, system_prompt=get_formatted_history(), campaign_description=campaign_info)
elif follow_up_campaign_header:
es = ElasticTextSearch()
campaign_info = es.search_campaign_by_header_one_result(follow_up_campaign_header)
response = generate_campaign_response_v3(user_input, system_prompt=get_formatted_history(), campaign_description=campaign_info)
elif campaign_related == "YES":
response = generate_campaign_response_v4(user_input, system_prompt=get_formatted_history(), campaign_description=None)
else:
response = "Lütfen geçerli kampanya bilgileri giriniz."
if add_to_history:
update_history(user_input, response)
return response
# Streamlit arayüzü
st.title("🤖 Kampanya Asistanı")
st.warning("📌 Lütfen kampanya ile ilgili sorularınızı girin")
user_input = st.text_input("Lütfen kampanya ile ilgili sorularınızı girin")
if user_input:
with st.spinner("💭 Düşünüyorum..."):
answer = process_user_input(user_input)
st.subheader("🔎 Yanıt")
st.write(answer)
st.subheader("📖 Sohbet Geçmişi")
st.write(get_formatted_history())
def post_process_campaign_response(json_response: str) -> dict:
"""
Parses and validates the JSON response from the Campaign Routing Chatbot.
:param json_response: A JSON string matching the chatbot's strict format.
:return: A Python dictionary containing the parsed and validated data.
:raises ValueError: If the JSON is invalid or required fields are missing.
"""
# Required keys per the prompt
required_keys = [
"campaign_code",
"campaign_responsible_ask",
"spesific_campaign_header",
"general_campaign_header",
"follow_up_campaign_code",
"follow_up_campaign_header",
"campaign_related",
"pii_check_control"
]
try:
# Parse the JSON string
data = json.loads(json_response)
except json.JSONDecodeError as e:
raise ValueError(f"Invalid JSON format: {e}")
# Validate that all required fields exist
for key in required_keys:
if key not in data:
raise ValueError(f"Missing required field in JSON response: '{key}'")
# Optional: You can add further validations or transformations here.
# For instance, ensuring "YES" or "NO" are the only allowed values for certain fields:
yes_no_fields = [
"campaign_responsible_ask",
"campaign_related",
"pii_check_control"
]
for field in yes_no_fields:
value = data[field].strip().upper()
if value not in ["YES", "NO", ""]:
raise ValueError(
f"Field '{field}' must be 'YES', 'NO', or an empty string. Got: '{data[field]}'"
)
data[field] = value # Normalize to uppercase if you want consistency
# Return the validated dictionary
return data
import os
import json
import openai
import streamlit as st
from elastic_search_retriever_embedding import ElasticTextSearch
import config_info
# Varsayılan max token sayısı
DEFAULT_MAX_TOKENS = 150
# Routing prompt tanımı
ROUTING_PROMPT = """
Lütfen aşağıdaki formatta JSON çıktısı üret:
{
"campaign_code": "",
"campaign_responsible_ask": "",
"spesific_campaign_header": "",
"general_campaign_header": "",
"follow_up_campaign_code": "",
"follow_up_campaign_header": "",
"campaign_related": "",
"pii_check_control": ""
}
Kurallara göre:
- campaign_responsible_ask, campaign_related ve pii_check_control sadece "YES", "NO" veya boş olabilir.
"""
class CampaignAssistant:
def __init__(self):
"""
Kampanya Asistanı için gerekli konfigürasyon ve başlangıç ayarlarını yapar.
- config_info modülündeki ayarlar kullanılır.
- Sohbet geçmişi (history) Streamlit session state üzerinden tutulur.
"""
self.config = config_info
self.max_tokens = DEFAULT_MAX_TOKENS
self.routing_prompt = ROUTING_PROMPT
# Streamlit session_state üzerinden sohbet geçmişini başlatıyoruz.
if "history" not in st.session_state:
st.session_state.history = []
self.history = st.session_state.history
def update_history(self, user_question: str, bot_response: str, add_to_history: bool = True):
"""
Kullanıcı ve sistem (bot) mesajlarını sohbet geçmişine ekler.
Eğer add_to_history False ise, mesaj geçmişine ekleme yapılmaz.
Sadece son 3 mesajı saklar.
"""
if not add_to_history:
return
self.history.append({
"user_question": user_question,
"bot_response": bot_response
})
# Yalnızca son 3 mesajı saklayacak şekilde güncelle
if len(self.history) > 3:
self.history = self.history[-3:]
st.session_state.history = self.history
def get_formatted_history(self) -> str:
"""
Sohbet geçmişini, istenen formatta (en son mesaj en üstte olacak şekilde) metin olarak döndürür.
"""
formatted_lines = []
n = len(self.history)
if n >= 1:
conv = self.history[-1]
formatted_lines.append("Kullanıcının son sorusu:")
formatted_lines.append(conv["user_question"])
formatted_lines.append("Kullanıcının son sorusunun cevabı:")
formatted_lines.append(conv["bot_response"])
if n >= 2:
conv = self.history[-2]
formatted_lines.append("Kullanıcının sondan ikinci sorusu:")
formatted_lines.append(conv["user_question"])
formatted_lines.append("Kullanıcının sondan ikinci sorusunun cevabı:")
formatted_lines.append(conv["bot_response"])
if n >= 3:
conv = self.history[-3]
formatted_lines.append("Kullanıcının sondan üçüncü sorusu:")
formatted_lines.append(conv["user_question"])
formatted_lines.append("Kullanıcının sondan üçüncü sorusunun cevabı:")
formatted_lines.append(conv["bot_response"])
return "\n".join(formatted_lines)
def post_process_campaign_response(self, json_response: str) -> dict:
"""
OpenAI'dan gelen JSON yanıtını parse eder ve zorunlu alanların varlığını kontrol eder.
Hatalı formatlarda ValueError fırlatır.
"""
required_keys = [
"campaign_code",
"campaign_responsible_ask",
"spesific_campaign_header",
"general_campaign_header",
"follow_up_campaign_code",
"follow_up_campaign_header",
"campaign_related",
"pii_check_control"
]
try:
data = json.loads(json_response)
except json.JSONDecodeError as e:
raise ValueError(f"Invalid JSON format: {e}")
for key in required_keys:
if key not in data:
raise ValueError(f"Missing required field in JSON response: '{key}'")
# Sadece "YES", "NO" veya boş string kontrolü
yes_no_fields = [
"campaign_responsible_ask",
"campaign_related",
"pii_check_control"
]
for field in yes_no_fields:
value = data[field].strip().upper()
if value not in ["YES", "NO", ""]:
raise ValueError(
f"Field '{field}' must be 'YES', 'NO', or an empty string. Got: '{data[field]}'"
)
data[field] = value # Normalizasyon
return data
def initialize_openai_client(self):
"""
OpenAI (Azure OpenAI) istemcisini, config_info'da tanımlı ayarlarla başlatır.
Proxy ve API anahtarları ayarlanır.
"""
try:
os.environ["HTTP_PROXY"] = self.config.http_proxy
os.environ["HTTPS_PROXY"] = self.config.https_proxy
openai.api_key = self.config.api_key
# AzureOpenAI sınıfının doğru şekilde import edildiğini varsayıyoruz.
client = AzureOpenAI(
azure_api_key=self.config.azure_api_key,
api_version=self.config.azure_api_version,
azure_endpoint=self.config.azure_endpoint
)
return client
except Exception as e:
raise RuntimeError(f"OpenAI client initialization failed: {e}")
def generate_routing_response(self, user_prompt: str) -> dict:
"""
Kullanıcının sorusunu, routing prompt üzerinden OpenAI API ile yönlendirir.
Yanıtı post_process_campaign_response ile doğrular ve sözlük olarak döndürür.
"""
client = self.initialize_openai_client()
routing_response_text = "Verilen talimatalara uygun olarak soruya cevap ver: " + user_prompt
messages = [
{"role": "system", "content": self.routing_prompt},
{"role": "user", "content": routing_response_text}
]
try:
response = client.chat.completions.create(
model=self.config.deployment_name,
messages=messages,
temperature=0,
max_tokens=self.max_tokens
)
response_json = response.to_json()
routing_data = self.post_process_campaign_response(response_json)
return routing_data
except Exception as e:
raise RuntimeError(f"Routing response generation failed: {e}")
def generate_campaign_response(self, user_prompt: str, campaign_description=None) -> str:
"""
Kampanya yanıtı üretir (campaign_code için akış).
OpenAI API ile tanımlı sistem prompt ve kampanya metni üzerinden cevap üretir.
"""
client = self.initialize_openai_client()
rag_prompt = "Soruya cevap ver: " + user_prompt + "\n\nKampanya metin içeriği: " + str(campaign_description)
messages = [
{"role": "system", "content": self.config.SYSTEM_PROMPT_MAIN_LAYER},
{"role": "user", "content": rag_prompt}
]
try:
response = client.chat.completions.create(
model=self.config.deployment_name,
messages=messages,
temperature=0,
max_tokens=self.max_tokens
)
response_data = json.loads(response.to_json())
return response_data["choices"][0]["message"]["content"].strip()
except Exception as e:
raise RuntimeError(f"Campaign response generation failed: {e}")
def generate_campaign_response_v2(self, user_prompt: str, campaign_description=None) -> str:
"""
Spesifik kampanya başlığı (spesific_campaign_header) için yanıt üretir.
"""
client = self.initialize_openai_client()
rag_prompt = "Soruya cevap ver: " + user_prompt + "\n\nKampanya metin içeriği: " + str(campaign_description)
messages = [
{"role": "system", "content": "Kampanya ile ilgili sorulara cevap ver"},
{"role": "user", "content": rag_prompt}
]
try:
response = client.chat.completions.create(
model=self.config.deployment_name,
messages=messages,
temperature=0,
max_tokens=self.max_tokens
)
response_data = json.loads(response.to_json())
return response_data["choices"][0]["message"]["content"].strip()
except Exception as e:
raise RuntimeError(f"Campaign response v2 generation failed: {e}")
def generate_campaign_response_v3(self, user_prompt: str, campaign_description=None, history_text="") -> str:
"""
Takip kodu veya takip başlığı (follow_up_campaign_code / follow_up_campaign_header) durumunda,
history bilgisini de kullanarak yanıt üretir.
"""
client = self.initialize_openai_client()
rag_prompt = "Soruya cevap ver: " + user_prompt + "\n\nKampanya metin içeriği: " + str(campaign_description)
messages = [
{"role": "system", "content": history_text if history_text else "Kampanya ile ilgili sorulara cevap ver"},
{"role": "user", "content": rag_prompt}
]
try:
response = client.chat.completions.create(
model=self.config.deployment_name,
messages=messages,
temperature=0,
max_tokens=self.max_tokens
)
response_data = json.loads(response.to_json())
return response_data["choices"][0]["message"]["content"].strip()
except Exception as e:
raise RuntimeError(f"Campaign response v3 generation failed: {e}")
def generate_campaign_response_v4(self, user_prompt: str, campaign_description=None, history_text="") -> str:
"""
campaign_related durumu için, history bilgisini de ekleyerek yanıt üretir.
"""
client = self.initialize_openai_client()
rag_prompt = "Soruya cevap ver: " + user_prompt + "\n\nKampanya metin içeriği: " + str(campaign_description)
messages = [
{"role": "system", "content": history_text if history_text else "Kampanya ile ilgili sorulara cevap ver"},
{"role": "user", "content": rag_prompt}
]
try:
response = client.chat.completions.create(
model=self.config.deployment_name,
messages=messages,
temperature=0,
max_tokens=self.max_tokens
)
response_data = json.loads(response.to_json())
return response_data["choices"][0]["message"]["content"].strip()
except Exception as e:
raise RuntimeError(f"Campaign response v4 generation failed: {e}")
def process_user_input(self, user_input: str) -> str:
"""
Kullanıcının sorusunu alır, öncelikle routing aşaması ile OpenAI API'den yönlendirir,
ardından routing verilerine göre uygun iş akışını çalıştırıp yanıtı oluşturur.
Hata durumlarında uygun mesajlar döner.
"""
try:
routing_data = self.generate_routing_response(user_input)
except Exception as e:
return f"Routing aşamasında hata oluştu: {e}"
# Routing'den gelen verileri ayrıştırıyoruz.
campaign_code = routing_data.get("campaign_code", "").strip()
campaign_responsible_ask = routing_data.get("campaign_responsible_ask", "").strip().upper()
spesific_campaign_header = routing_data.get("spesific_campaign_header", "").strip()
general_campaign_header = routing_data.get("general_campaign_header", "").strip()
follow_up_campaign_code = routing_data.get("follow_up_campaign_code", "").strip()
follow_up_campaign_header = routing_data.get("follow_up_campaign_header", "").strip()
campaign_related = routing_data.get("campaign_related", "").strip().upper()
pii_check_control = routing_data.get("pii_check_control", "").strip().upper()
response = ""
add_to_history = True # Varsayılan: mesaj geçmişine ekle
try:
# 1) pii_check_control YES ise
if pii_check_control == "YES":
response = "sorunuzda kişisel veri tespit ettim lütfen sorunuzu kontrol ediniz."
add_to_history = False
# 2) campaign_code var ve campaign_responsible_ask YES ise
elif campaign_code and campaign_responsible_ask == "YES":
es = ElasticTextSearch()
campaign_responsible = es.get_responsible_name_search_code(campaign_code)
response = f"kampanyadan sorumlu kişi {campaign_responsible}"
add_to_history = False
# 3) campaign_code var ve campaign_responsible_ask NO ise
elif campaign_code and campaign_responsible_ask == "NO":
es = ElasticTextSearch()
campaign_info = es.get_best_related(campaign_code)
response = self.generate_campaign_response(user_input, campaign_description=campaign_info)
# 4) spesific_campaign_header var ve campaign_responsible_ask YES ise
elif spesific_campaign_header and campaign_responsible_ask == "YES":
es = ElasticTextSearch()
campaign_responsible = es.get_responsible_name_search_header(spesific_campaign_header)
response = f"kampanyadan sorumlu kişi {campaign_responsible}"
add_to_history = False
# 5) spesific_campaign_header var ve campaign_responsible_ask NO ise
elif spesific_campaign_header and campaign_responsible_ask == "NO":
es = ElasticTextSearch()
campaign_info = es.search_campaign_by_header_one_result(spesific_campaign_header)
response = self.generate_campaign_response_v2(user_input, campaign_description=campaign_info)
# 6) general_campaign_header var ise
elif general_campaign_header:
es = ElasticTextSearch()
campaign_info = es.search_campaign_by_header(general_campaign_header)
response = f"Yaptığınız genel aramaya göre aşağıdaki sonuçlar bulunmuştur: {campaign_info}"
# 7) follow_up_campaign_code var ise