diff --git a/example.py b/example.py new file mode 100755 index 0000000..2781aad --- /dev/null +++ b/example.py @@ -0,0 +1,39 @@ +#!/usr/bin/env python3 +import wget +import zipfile +import pandas as pd +import os +import shutil +import sys +from pdb import set_trace as bp +# +def dclean(dfiles): + if os.path.exists('asset'): + shutil.rmtree('asset') + for i, ival in enumerate(dfiles): + try: + os.remove(ival) + except OSError: + pass + return +# +zipfilename = 'occupancy_data.zip' +dfiles = ['datatest2.txt', 'datatest.txt', 'datatraining.txt'] +dfiles.append(zipfilename) +dclean(dfiles) +if len(sys.argv) > 1: + if sys.argv[1] == 'clean': + sys.exit() +url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/00357/'+zipfilename +filename = wget.download(url) +zip_ref = zipfile.ZipFile(filename, 'r') +zip_ref.extractall('./') +zip_ref.close() +df = pd.read_csv('datatraining.txt') +directory = 'asset/data' +if not os.path.exists(directory): + os.makedirs(directory) +df['time'] = df.index +df[['time','Temperature','Humidity']].to_csv(directory+'/sample.csv', index=False) +import train +dclean(dfiles)