-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_detection_image.py
45 lines (30 loc) · 1.15 KB
/
face_detection_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import cv2
import os
def face_detection(casc_model, image_gray_scale):
# Detection frontal faces
faces_detected = casc_model.detectMultiScale(
image_gray_scale,
scaleFactor=1.5,
minNeighbors=7,
minSize=(30, 30),
flags = cv2.CASCADE_SCALE_IMAGE
)
qtd_faces = len(faces_detected)
if qtd_faces > 0:
print("Detected {0} faces!".format(qtd_faces))
return faces_detected, qtd_faces
def draw_rectangle(faces, image):
for (x, y, w, h) in faces:
cv2.rectangle(image, (x, y), (x+w, y+h), (0, 255, 0), 2)
casc_path_frontal_face = "xml/haarcascade_frontalface_default.xml"
frontal_face_casc = cv2.CascadeClassifier(casc_path_frontal_face)
files_in_path = os.listdir("images/")
images = [image for image in files_in_path
if image.endswith(".jpeg")]
for image in images:
image = cv2.imread(f"images/{ image }")
image_gray_scale = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
frontal_faces, qtd_faces = face_detection(frontal_face_casc, image_gray_scale)
draw_rectangle(frontal_faces, image)
cv2.imshow(f'{ qtd_faces } face(s) detected', image)
cv2.waitKey(0)