-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_detection_webcam.py
44 lines (30 loc) · 1.06 KB
/
face_detection_webcam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import cv2
casc_path_frontal_face = "xml/haarcascade_frontalface_default.xml"
frontal_face_casc = cv2.CascadeClassifier(casc_path_frontal_face)
video_capture = cv2.VideoCapture(0)
def face_detection(casc_model, img_gray_scale):
# Detection frontal faces
faces_detected = casc_model.detectMultiScale(
img_gray_scale,
scaleFactor=1.5,
minNeighbors=7,
minSize=(30, 30),
flags = cv2.CASCADE_SCALE_IMAGE
)
qtd_faces = len(faces_detected)
if qtd_faces > 0:
print("Detected {0} faces!".format(qtd_faces))
return faces_detected
def draw_rectangle(faces):
for (x, y, w, h) in faces:
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
while True:
ret, frame = video_capture.read()
img_gray_scale = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
frontal_faces = face_detection(frontal_face_casc, img_gray_scale)
draw_rectangle(frontal_faces)
cv2.imshow('face detection', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
video_capture.release()
cv2.destroyAllWindows()