-
Notifications
You must be signed in to change notification settings - Fork 0
/
table1.tex
68 lines (66 loc) · 3.4 KB
/
table1.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
\begin{table}[h!]
\caption{Parameters relevant to the configuration of referenced simulations. Asterisks denote variables whose values were varied between simulations.}
%SGS = sub-grid-scale.
%TKE = turbulent kinetic energy.
%$z_m = $distance from the interface for boundary layer conditions,
%$\Delta z_m = $averaging width for boundary layer conditions
\label{table:var}
\begin{center}
\begin{tabular}{lll}
\multicolumn{3}{c}{}\\
\hline
%\topline % ametsoc
%\midline % ametsoc
% XX consider including: % businger coefficients
$c_d$ & drag coefficient & 0.003 \\
$c_{p,i}$ & heat capacity of ice & \\
$c_{p,w}$ & heat capacity of water & \\
$dP/dx,dP/dy$ & horizontal pressure gradients & $0.0,0.03$ Pa m$^{-1}$\\
$dS/dz$ & far-field vertical salinity gradient & 0.5 PSU km$^{-1}$\\
$d\theta/dz$ & far-field vertical temperature gradient & 0.1 $^{\circ}$C km$^{-1}$\\
%$e$ & SGS TKE & \\
%$e*$ & resolved TKE & \\
$\textbf{f}$ & Coriolis parameter & \\
$\textbf{g}$ & standard gravity & 9.81 m s$^{-2}$ \\
$h_x,h_y$ & domain width & 64 m\\
$h_z$ & domain height & 64 m\\
%$L_O$ & Monin-Obukhov length & \\
$L_f$ & latent heat of fusion & \\
$m$ & melt rate &\\
$P_0$ & surface pressure & 800 dbar\\
$Pr$ & Prandtl number & 13.8\\
$rdf$ & rayleigh damping coefficient & 0.001\\
$S$ & salinity, prognostic & \\ % practical
$S_{\infty}$ & far-field salinity & $34 - 35$ PSU \\
$Sc$ & Schmidt number & 2432\\
$\textbf{u}$& velocity, prognostic & \\
%$z_0$ & roughness length & \\
%$z_1$ & evaluation depth for melt parameterization & 0.25 m\\
%Greek letters
$\alpha$ & *ice shelf slope & 0.01 -- 1$^{\circ}$ \\
$\beta$ & angle between vector oriented up-slope and North & 90$^{\circ}$\\% -- 2$\pi$\\
$\beta_m$ & thermal expansion coefficient & \\
$\beta_S$ & haline contraction coefficient & \\
$\beta_T$ & thermal expansion coefficient & \\
$\Delta_x,\Delta_y$& horizontal resolution & 0.5 m\\
$\Delta_z$ & vertical resolution & 0.25 m\\
$\Gamma_{fr}$ & Destabilizing transfer coefficient & $5.7 \times 10^{-3} \pm 10\%$ \\%& \makecell[l]{X\% of the domain is freezing \\ for X temperature case}\\
$\Gamma_{\Theta}$ & Heat transfer coefficient & \\
$\Gamma_{S}$ & Salt transfer coefficient & \\
$\phi$ & latitude & -70 S \\
$\theta$ & potential temperature, prognostic & \\
$\theta_{\infty}$ & *far-field temperature & $-2.4 - -1.9 ^\circ C$ \\
$\pi^*$ & modified perturbation pressure & \\
$\rho$ & in situ density & \\
$\rho_0$ & reference density & \\
$\rho_a$ & ambient density & \\
$\rho_f$ & freshwater density & \\
$\textbf{\tau}$ & surface shear stress & \\
\hline
%\botline % ametsoc
\end{tabular}
\end{center}
\end{table}
%$L_{O,min}$ & $\Delta z/20$ & \makecell[l]{X\% of the domain reaches $L_O$ minimum \\ for X temperature case} \\
%$L_{O,max}$ & $20\Delta z$ & \makecell[l]{X\% of the domain reaches $L_O$ maximum \\ for X temperature case}\\
%$z_m$ & max(z(min $d\theta/dz$),z(min $dS/dz$)) & not tested\\ %up to 2 x boundary layer depth