-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscale.py
executable file
·69 lines (57 loc) · 2.51 KB
/
scale.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import struct
import sys
from math import sqrt
from PIL import Image
MAX_SAMPLE_DIM = 32 * 1024
OUTPUT_SIZE = 300
CROP_FACTOR = .25 # Limits crop of longer dimension
MAX_ASPECT = 2 # Limits aspect ratio
def load_and_scale(image_path: str) -> Image.Image:
try:
with Image.open(image_path) as img:
if getattr(img, 'is_animated', False):
img.seek(img.n_frames - 1) # Last frame is a safe choice # pytype: disable=attribute-error
if img is not None and (img.width > MAX_SAMPLE_DIM or img.height > MAX_SAMPLE_DIM):
print(
'Image dimensions too large! {}x{} > {msd}x{msd}, file: {}'.format(
img.width, img.height, image_path, msd=MAX_SAMPLE_DIM),
file=sys.stderr,
)
img = None
else:
img = img.convert('RGB')
except (OSError, SyntaxError, Image.DecompressionBombError, struct.error) as e:
print('Caught error loading {}: {}'.format(image_path, e), file=sys.stderr)
img = None
if img is None:
print('Generating blank sample image due to unusable file', file=sys.stderr)
return Image.new('RGB', (OUTPUT_SIZE, OUTPUT_SIZE)) # Black replacement image
# Crop down longer dimension
def lim(l: int, s: int) -> int:
return max(round(l - CROP_FACTOR * sqrt(l * s)), s)
w, h = img.size
w_crop, h_crop = (lim(w, h), h) if w >= h else (w, lim(h, w))
h_inset, v_inset = round((w - w_crop) / 2), round((h - h_crop) / 2)
img = img.crop((h_inset, v_inset, w - h_inset, h - v_inset))
# Nearest-neighbor aspect adjust
def limar(l: int, s: int) -> int:
return round(min(l, MAX_ASPECT * s))
w, h = img.size
w_sc, h_sc = (limar(w, h), h) if w >= h else (w, limar(h, w))
img = img.resize((w_sc, h_sc), Image.NEAREST)
# Bilinear proportional scale
(w, h), l = img.size, max(*img.size)
w_sc, h_sc = round(OUTPUT_SIZE * w / l), round(OUTPUT_SIZE * h / l)
img = img.resize((w_sc, h_sc), Image.BILINEAR)
# Paste onto background
bg = Image.new(img.mode, (OUTPUT_SIZE, OUTPUT_SIZE), 'black') # pytype: disable=wrong-arg-types
(w, h), l = img.size, max(*img.size)
xoff, yoff = round((l - w) / 2), round((l - h) / 2)
bg.paste(img, (xoff, yoff))
return bg
if __name__ == '__main__':
image_path, save_path = sys.argv[1:]
img = load_and_scale(image_path)
img.save(save_path, compress_level=1, exif=None)