Skip to content
This repository has been archived by the owner on Jul 2, 2021. It is now read-only.

Latest commit

 

History

History
36 lines (28 loc) · 1.56 KB

README.md

File metadata and controls

36 lines (28 loc) · 1.56 KB

Examples of YOLO [1, 2]

Performance

PASCAL VOC2007 Test

Model Original Ours (weight conversion)
YOLOv2 75.8 % * 75.8 %
YOLOv2 tiny 54.0 % ** 53.5 %
YOLOv3 80.2 % 80.2 %

Scores are mean Average Precision (mAP) with PASCAL VOC2007 metric.

*: Although the original paper [1] reports 76.8 %, the darknet implementation and the provided weights achieved the lower score. Similar issue is reported here.
**: Although the author's website reports 57.1 %, the darknet implementation and the provided weights achieved the lower score.

Demo

Detect objects in an given image. This demo downloads Pascal VOC pretrained model automatically if a pretrained model path is not given.

$ python demo.py [--model yolo_v2|yolo_v2_tiny|yolo_v3] [--gpu <gpu>] [--pretrained-model <model_path>] <image>.jpg

Convert Darknet model

Convert *.weights to *.npz. YOLOv2, YOLOv2 tiny, and YOLOv3 are supported. Note that the number of classes should be specified if it is not 80 (the number of classes in COCO).

$ python darknet2npz.py [--model yolo_v2|yolo_v2_tiny|yolo_v3] [--n-fg-class <#fg_class>]  <source>.weights <target>.npz

Evaluation

The evaluation can be conducted using chainercv/examples/detection/eval_detection.py.

References

  1. Joseph Redmon et al. "YOLO9000: Better, Faster, Stronger" CVPR 2017.
  2. Joseph Redmon et al. "YOLOv3: An Incremental Improvement" arXiv 2018.