-
Notifications
You must be signed in to change notification settings - Fork 28
/
bcnn_finetuning_predict.py
422 lines (351 loc) · 19 KB
/
bcnn_finetuning_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
from __future__ import print_function
import tensorflow as tf
import numpy as np
import h5py
import math
import random
import pickle
import os
def random_flip_right_to_left(image_batch):
'''
This function will flip the images randomly.
Input: batch of images [batch, height, width, channels]
Output: batch of images flipped randomly [batch, height, width, channels]
'''
result = []
for n in range(image_batch.shape[0]):
if bool(random.getrandbits(1)): ## With 0.5 probability flip the image
result.append(image_batch[n][:, ::-1, :])
else:
result.append(image_batch[n])
return result
class vgg16:
def __init__(self, imgs, weights=None, sess=None):
self.imgs = imgs
self.last_layer_parameters = [] ## Parameters in this list will be optimized when only last layer is being trained
self.parameters = [] ## Parameters in this list will be optimized when whole BCNN network is finetuned
self.convlayers() ## Create Convolutional layers
self.fc_layers() ## Create Fully connected layer
self.weight_file = weights
def convlayers(self):
# zero-mean input
with tf.name_scope('preprocess') as scope:
mean = tf.constant([110.61220668946963, 127.15494646868024, 135.13440353131017], dtype=tf.float32,
shape=[1, 1, 1, 3], name='img_mean')
images = self.imgs - mean
print('Adding Data Augmentation')
# conv1_1
with tf.variable_scope("conv1_1"):
weights = tf.get_variable("W", [3, 3, 3, 64], initializer=tf.contrib.layers.xavier_initializer(),
trainable=True)
# Create variable named "biases".
biases = tf.get_variable("b", [64], initializer=tf.constant_initializer(0.1), trainable=True)
conv = tf.nn.conv2d(images, weights, strides=[1, 1, 1, 1], padding='SAME')
self.conv1_1 = tf.nn.relu(conv + biases)
self.parameters += [weights, biases]
# conv1_2
with tf.variable_scope("conv1_2"):
weights = tf.get_variable("W", [3, 3, 64, 64], initializer=tf.contrib.layers.xavier_initializer(),
trainable=True)
# Create variable named "biases".
biases = tf.get_variable("b", [64], initializer=tf.constant_initializer(0.1), trainable=True)
conv = tf.nn.conv2d(self.conv1_1, weights, strides=[1, 1, 1, 1], padding='SAME')
self.conv1_2 = tf.nn.relu(conv + biases)
self.parameters += [weights, biases]
# pool1
self.pool1 = tf.nn.max_pool(self.conv1_2,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME',
name='pool1')
# conv2_1
with tf.variable_scope("conv2_1"):
weights = tf.get_variable("W", [3, 3, 64, 128], initializer=tf.contrib.layers.xavier_initializer(),
trainable=True)
# Create variable named "biases".
biases = tf.get_variable("b", [128], initializer=tf.constant_initializer(0.1), trainable=True)
conv = tf.nn.conv2d(self.pool1, weights, strides=[1, 1, 1, 1], padding='SAME')
self.conv2_1 = tf.nn.relu(conv + biases)
self.parameters += [weights, biases]
# conv2_2
with tf.variable_scope("conv2_2"):
weights = tf.get_variable("W", [3, 3, 128, 128], initializer=tf.contrib.layers.xavier_initializer(),
trainable=True)
# Create variable named "biases".
biases = tf.get_variable("b", [128], initializer=tf.constant_initializer(0.1), trainable=True)
conv = tf.nn.conv2d(self.conv2_1, weights, strides=[1, 1, 1, 1], padding='SAME')
self.conv2_2 = tf.nn.relu(conv + biases)
self.parameters += [weights, biases]
# pool2
self.pool2 = tf.nn.max_pool(self.conv2_2,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME',
name='pool2')
# conv3_1
with tf.variable_scope("conv3_1"):
weights = tf.get_variable("W", [3, 3, 128, 256], initializer=tf.contrib.layers.xavier_initializer(),
trainable=True)
# Create variable named "biases".
biases = tf.get_variable("b", [256], initializer=tf.constant_initializer(0.1), trainable=True)
conv = tf.nn.conv2d(self.pool2, weights, strides=[1, 1, 1, 1], padding='SAME')
self.conv3_1 = tf.nn.relu(conv + biases)
self.parameters += [weights, biases]
# conv3_2
with tf.variable_scope("conv3_2"):
weights = tf.get_variable("W", [3, 3, 256, 256], initializer=tf.contrib.layers.xavier_initializer(),
trainable=True)
# Create variable named "biases".
biases = tf.get_variable("b", [256], initializer=tf.constant_initializer(0.1), trainable=True)
conv = tf.nn.conv2d(self.conv3_1, weights, strides=[1, 1, 1, 1], padding='SAME')
self.conv3_2 = tf.nn.relu(conv + biases)
self.parameters += [weights, biases]
# conv3_3
with tf.variable_scope("conv3_3"):
weights = tf.get_variable("W", [3, 3, 256, 256], initializer=tf.contrib.layers.xavier_initializer(),
trainable=True)
# Create variable named "biases".
biases = tf.get_variable("b", [256], initializer=tf.constant_initializer(0.1), trainable=True)
conv = tf.nn.conv2d(self.conv3_2, weights, strides=[1, 1, 1, 1], padding='SAME')
self.conv3_3 = tf.nn.relu(conv + biases)
self.parameters += [weights, biases]
# pool3
self.pool3 = tf.nn.max_pool(self.conv3_3,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME',
name='pool3')
# conv4_1
with tf.variable_scope("conv4_1"):
weights = tf.get_variable("W", [3, 3, 256, 512], initializer=tf.contrib.layers.xavier_initializer(),
trainable=True)
# Create variable named "biases".
biases = tf.get_variable("b", [512], initializer=tf.constant_initializer(0.1), trainable=True)
conv = tf.nn.conv2d(self.pool3, weights, strides=[1, 1, 1, 1], padding='SAME')
self.conv4_1 = tf.nn.relu(conv + biases)
self.parameters += [weights, biases]
# conv4_2
with tf.variable_scope("conv4_2"):
weights = tf.get_variable("W", [3, 3, 512, 512], initializer=tf.contrib.layers.xavier_initializer(),
trainable=True)
# Create variable named "biases".
biases = tf.get_variable("b", [512], initializer=tf.constant_initializer(0.1), trainable=True)
conv = tf.nn.conv2d(self.conv4_1, weights, strides=[1, 1, 1, 1], padding='SAME')
self.conv4_2 = tf.nn.relu(conv + biases)
self.parameters += [weights, biases]
# conv4_3
with tf.variable_scope("conv4_3"):
weights = tf.get_variable("W", [3, 3, 512, 512], initializer=tf.contrib.layers.xavier_initializer(),
trainable=True)
# Create variable named "biases".
biases = tf.get_variable("b", [512], initializer=tf.constant_initializer(0.1), trainable=True)
conv = tf.nn.conv2d(self.conv4_2, weights, strides=[1, 1, 1, 1], padding='SAME')
self.conv4_3 = tf.nn.relu(conv + biases)
self.parameters += [weights, biases]
# pool4
self.pool4 = tf.nn.max_pool(self.conv4_3,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME',
name='pool4')
# conv5_1
with tf.variable_scope("conv5_1"):
weights = tf.get_variable("W", [3, 3, 512, 512], initializer=tf.contrib.layers.xavier_initializer(),
trainable=True)
# Create variable named "biases".
biases = tf.get_variable("b", [512], initializer=tf.constant_initializer(0.1), trainable=True)
conv = tf.nn.conv2d(self.pool4, weights, strides=[1, 1, 1, 1], padding='SAME')
self.conv5_1 = tf.nn.relu(conv + biases)
self.parameters += [weights, biases]
# conv5_2
with tf.variable_scope("conv5_2"):
weights = tf.get_variable("W", [3, 3, 512, 512], initializer=tf.contrib.layers.xavier_initializer(),
trainable=True)
# Create variable named "biases".
biases = tf.get_variable("b", [512], initializer=tf.constant_initializer(0.1), trainable=True)
conv = tf.nn.conv2d(self.conv5_1, weights, strides=[1, 1, 1, 1], padding='SAME')
self.conv5_2 = tf.nn.relu(conv + biases)
self.parameters += [weights, biases]
# conv5_3
with tf.variable_scope("conv5_3"):
weights = tf.get_variable("W", [3, 3, 512, 512], initializer=tf.contrib.layers.xavier_initializer(),
trainable=True)
# Create variable named "biases".
biases = tf.get_variable("b", [512], initializer=tf.constant_initializer(0.1), trainable=True)
conv = tf.nn.conv2d(self.conv5_2, weights, strides=[1, 1, 1, 1], padding='SAME')
self.conv5_3 = tf.nn.relu(conv + biases)
self.parameters += [weights, biases]
self.special_parameters = [weights, biases]
''' Reshape conv5_3 from [batch_size, height, width, number_of_filters]
to [batch_size, number_of_filters, height, width]'''
self.conv5_3 = tf.transpose(self.conv5_3, perm=[0, 3, 1, 2])
''' Reshape conv5_3 from [batch_size, number_of_filters, height*width] '''
self.conv5_3 = tf.reshape(self.conv5_3, [-1, 512, 784])
''' A temporary variable which holds the transpose of conv5_3 '''
conv5_3_T = tf.transpose(self.conv5_3, perm=[0, 2, 1])
'''Matrix multiplication [batch_size,512,784] x [batch_size,784,512] '''
self.phi_I = tf.matmul(self.conv5_3, conv5_3_T)
'''Reshape from [batch_size,512,512] to [batch_size, 512*512] '''
self.phi_I = tf.reshape(self.phi_I, [-1, 512 * 512])
print('Shape of phi_I after reshape', self.phi_I.get_shape())
self.phi_I = tf.divide(self.phi_I, 784.0)
print('Shape of phi_I after division', self.phi_I.get_shape())
'''Take signed square root of phi_I'''
self.y_ssqrt = tf.multiply(tf.sign(self.phi_I), tf.sqrt(tf.abs(self.phi_I) + 1e-12))
print('Shape of y_ssqrt', self.y_ssqrt.get_shape())
'''Apply l2 normalization'''
self.z_l2 = tf.nn.l2_normalize(self.y_ssqrt, dim=1)
print('Shape of z_l2', self.z_l2.get_shape())
def fc_layers(self):
with tf.variable_scope('fc-new') as scope:
fc3w = tf.get_variable('W', [512 * 512, 100], initializer=tf.contrib.layers.xavier_initializer(),
trainable=True)
# fc3b = tf.Variable(tf.constant(1.0, shape=[100], dtype=tf.float32), name='biases', trainable=True)
fc3b = tf.get_variable("b", [100], initializer=tf.constant_initializer(0.1), trainable=True)
self.fc3l = tf.nn.bias_add(tf.matmul(self.z_l2, fc3w), fc3b)
self.last_layer_parameters += [fc3w, fc3b]
def load_initial_weights(self, session):
'''weight_dict contains weigths of VGG16 layers'''
weights_dict = np.load(self.weight_file, encoding='bytes')
'''Loop over all layer names stored in the weights dict
Load only conv-layers. Skip fc-layers in VGG16'''
vgg_layers = ['conv1_1', 'conv1_2', 'conv2_1', 'conv2_2', 'conv3_1', 'conv3_2', 'conv3_3', 'conv4_1', 'conv4_2',
'conv4_3', 'conv5_1', 'conv5_2', 'conv5_3']
for op_name in vgg_layers:
with tf.variable_scope(op_name, reuse=True):
# Loop over list of weights/biases and assign them to their corresponding tf variable
# Biases
var = tf.get_variable('b', trainable=True)
print('Adding weights to', var.name)
session.run(var.assign(weights_dict[op_name + '_b']))
# Weights
var = tf.get_variable('W', trainable=True)
print('Adding weights to', var.name)
session.run(var.assign(weights_dict[op_name + '_W']))
with tf.variable_scope('fc-new', reuse=True):
'''
Load fc-layer weights trained in the first step.
Use file .py to train last layer
'''
last_layer_weights = np.load('last_layers_epoch_15_448.npz')
print('Last layer weights: last_layers_epoch_10_1.npz')
var = tf.get_variable('W', trainable=True)
print('Adding weights to', var.name)
session.run(var.assign(last_layer_weights['arr_0'][0]))
var = tf.get_variable('b', trainable=True)
print('Adding weights to', var.name)
session.run(var.assign(last_layer_weights['arr_0'][1]))
if __name__ == '__main__':
'''
Load Training and Validation Data
'''
# # X_train, Y_train = train_data['X'], train_data['Y']
# X_val, Y_val = val_data['X'], val_data['Y']
# print("Data shapes -- (val)", X_val.shape, Y_val.shape)
# '''Shuffle the data'''
# # X_train, Y_train = shuffle(X_train, Y_train)
# X_val, Y_val = shuffle(X_val, Y_val)
# print("Data shapes -- ( val)", X_val.shape, X_val.shape)
sess = tf.Session() ## Start session to create training graph
imgs = tf.placeholder(tf.float32, [None, 448, 448, 3])
target = tf.placeholder("float", [None, 100])
# print 'Creating graph'
vgg = vgg16(imgs, 'vgg16_weights.npz', sess)
print('VGG network created')
# Defining other ops using Tensorflow
# loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=vgg.fc3l, labels=target))
print([_.name for _ in vgg.parameters])
# optimizer = tf.train.MomentumOptimizer(learning_rate=0.001, momentum=0.9).minimize(loss)
# check_op = tf.add_check_numerics_ops()
correct_prediction = tf.argmax(vgg.fc3l, 1)
# accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# num_correct_preds = tf.reduce_sum(tf.cast(correct_prediction, tf.float32))
# sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
checkpoint_dir = '/home/meteo/zihao.chen/fine-grained-classifi/model8'
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
vgg.load_initial_weights(sess)
print([_.name for _ in vgg.parameters])
batch_size = 32
for v in tf.trainable_variables():
print("Trainable variables", v)
print('Starting training')
# lr = 0.001
# finetune_step = -1
# val_batch_size = 8
# total_val_count = len(X_val)
# correct_val_count = 0
# val_loss = 0.0
# total_val_batch = int(total_val_count / val_batch_size)
f = open('all_keys.pkl','rb')
all_keys = pickle.load(f)
f.close()
Image_Path = '/home/meteo/zihao.chen/filter_ext/img_data/'
dog_key = os.listdir(Image_Path)
key_map = {dog_key[x]: x for x in range(100)}
batch_step = 0
for f_n in range(11):
test_data = h5py.File('./TEST_FIlE/upload_test_448_%d.h5' % f_n, 'r')
X_Test, Y_Test = test_data['X'], test_data['Y']
start_num = f_n * 1024
file_batch_size = int(math.ceil(len(X_Test) / float(batch_size)))
for i in range(file_batch_size):
batch_xs= X_Test[i * batch_size:i * batch_size + batch_size]
pre_Y = sess.run(correct_prediction, feed_dict={imgs: batch_xs})
print (pre_Y)
for j in range(batch_size):
keys = all_keys[batch_size*batch_step:batch_size*batch_step+batch_size]
for key, value in key_map.iteritems():
if value == pre_Y[j]:
with open('predict_dog.txt', 'a') as f:
f.write('%s\t%s\n' % (key, keys[j]))
batch_step += 1
# val_batch_size = 8
# total_val_count = len(X_val)
# correct_val_count = 0
# val_loss = 0.0
# total_val_batch = int(total_val_count / val_batch_size)
# for i in range(total_val_batch):
# batch_val_x, batch_val_y = X_val[i * val_batch_size:i * val_batch_size + val_batch_size], Y_val[
# i * val_batch_size:i * val_batch_size + val_batch_size]
# val_loss += sess.run(loss, feed_dict={imgs: batch_val_x, target: batch_val_y})
#
# pred = sess.run(num_correct_preds, feed_dict={imgs: batch_val_x, target: batch_val_y})
# correct_val_count += pred
#
# print("##############################")
# print("Validation Loss -->", val_loss)
# print("correct_val_count, total_val_count", correct_val_count, total_val_count)
# print("Validation Data Accuracy -->", 100.0 * correct_val_count / (1.0 * total_val_count))
# print("##############################")
#
# if epoch > 40:
#
# validation_accuracy_buffer.append(100.0 * correct_val_count / (1.0 * total_val_count))
# ## Check if the validation accuracy has stopped increasing
# if len(validation_accuracy_buffer) > 10:
# index_of_max_val_acc = np.argmax(validation_accuracy_buffer)
# if index_of_max_val_acc == 0:
# break
# else:
# del validation_accuracy_buffer[0]
#
# test_data = h5py.File('./new_test_448.h5', 'r')
# X_test, Y_test = test_data['X'], test_data['Y']
# total_test_count = len(X_test)
# correct_test_count = 0
# test_batch_size = 10
# total_test_batch = int(total_test_count / test_batch_size)
# for i in range(total_test_batch):
# batch_test_x, batch_test_y = X_test[i * test_batch_size:i * test_batch_size + test_batch_size], Y_test[
# i * test_batch_size:i * test_batch_size + test_batch_size]
#
# pred = sess.run(num_correct_preds, feed_dict={imgs: batch_test_x, target: batch_test_y})
# correct_test_count += pred
#
# print("##############################")
# print("correct_test_count, total_test_count", correct_test_count, total_test_count)
# print("Test Data Accuracy -->", 100.0 * correct_test_count / (1.0 * total_test_count))
# print("##############################")