forked from chroma-core/chroma
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathembedding_functions.py
692 lines (598 loc) · 27 KB
/
embedding_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
import logging
from chromadb.api.types import (
Document,
Documents,
Embedding,
Image,
Images,
EmbeddingFunction,
Embeddings,
is_image,
is_document,
)
from pathlib import Path
import os
import tarfile
import requests
from typing import Any, Dict, List, Union, cast
import numpy as np
import numpy.typing as npt
import importlib
import inspect
import sys
from typing import Optional
try:
from chromadb.is_thin_client import is_thin_client
except ImportError:
is_thin_client = False
logger = logging.getLogger(__name__)
class SentenceTransformerEmbeddingFunction(EmbeddingFunction[Documents]):
# Since we do dynamic imports we have to type this as Any
models: Dict[str, Any] = {}
# If you have a beefier machine, try "gtr-t5-large".
# for a full list of options: https://huggingface.co/sentence-transformers, https://www.sbert.net/docs/pretrained_models.html
def __init__(
self,
model_name: str = "all-MiniLM-L6-v2",
device: str = "cpu",
normalize_embeddings: bool = False,
):
if model_name not in self.models:
try:
from sentence_transformers import SentenceTransformer
except ImportError:
raise ValueError(
"The sentence_transformers python package is not installed. Please install it with `pip install sentence_transformers`"
)
self.models[model_name] = SentenceTransformer(model_name, device=device)
self._model = self.models[model_name]
self._normalize_embeddings = normalize_embeddings
def __call__(self, input: Documents) -> Embeddings:
return self._model.encode( # type: ignore
list(input),
convert_to_numpy=True,
normalize_embeddings=self._normalize_embeddings,
).tolist()
class Text2VecEmbeddingFunction(EmbeddingFunction[Documents]):
def __init__(self, model_name: str = "shibing624/text2vec-base-chinese"):
try:
from text2vec import SentenceModel
except ImportError:
raise ValueError(
"The text2vec python package is not installed. Please install it with `pip install text2vec`"
)
self._model = SentenceModel(model_name_or_path=model_name)
def __call__(self, input: Documents) -> Embeddings:
return self._model.encode(list(input), convert_to_numpy=True).tolist() # type: ignore # noqa E501
class OpenAIEmbeddingFunction(EmbeddingFunction[Documents]):
def __init__(
self,
api_key: Optional[str] = None,
model_name: str = "text-embedding-ada-002",
organization_id: Optional[str] = None,
api_base: Optional[str] = None,
api_type: Optional[str] = None,
api_version: Optional[str] = None,
deployment_id: Optional[str] = None,
):
"""
Initialize the OpenAIEmbeddingFunction.
Args:
api_key (str, optional): Your API key for the OpenAI API. If not
provided, it will raise an error to provide an OpenAI API key.
organization_id(str, optional): The OpenAI organization ID if applicable
model_name (str, optional): The name of the model to use for text
embeddings. Defaults to "text-embedding-ada-002".
api_base (str, optional): The base path for the API. If not provided,
it will use the base path for the OpenAI API. This can be used to
point to a different deployment, such as an Azure deployment.
api_type (str, optional): The type of the API deployment. This can be
used to specify a different deployment, such as 'azure'. If not
provided, it will use the default OpenAI deployment.
api_version (str, optional): The api version for the API. If not provided,
it will use the api version for the OpenAI API. This can be used to
point to a different deployment, such as an Azure deployment.
deployment_id (str, optional): Deployment ID for Azure OpenAI.
"""
try:
import openai
except ImportError:
raise ValueError(
"The openai python package is not installed. Please install it with `pip install openai`"
)
if api_key is not None:
openai.api_key = api_key
# If the api key is still not set, raise an error
elif openai.api_key is None:
raise ValueError(
"Please provide an OpenAI API key. You can get one at https://platform.openai.com/account/api-keys"
)
if api_base is not None:
openai.api_base = api_base
if api_version is not None:
openai.api_version = api_version
self._api_type = api_type
if api_type is not None:
openai.api_type = api_type
if organization_id is not None:
openai.organization = organization_id
self._v1 = openai.__version__.startswith('1.')
if self._v1:
if api_type == "azure":
self._client = openai.AzureOpenAI(
api_key=api_key,
api_version=api_version,
azure_endpoint=api_base
).embeddings
else:
self._client = openai.OpenAI(
api_key=api_key,
base_url=api_base
).embeddings
else:
self._client = openai.Embedding
self._model_name = model_name
self._deployment_id = deployment_id
def __call__(self, input: Documents) -> Embeddings:
# replace newlines, which can negatively affect performance.
input = [t.replace("\n", " ") for t in input]
# Call the OpenAI Embedding API
if self._v1:
embeddings = self._client.create(
input=input,
model=self._deployment_id or self._model_name
).data
# Sort resulting embeddings by index
sorted_embeddings = sorted(embeddings, key=lambda e: e.index) # type: ignore
# Return just the embeddings
return [result.embedding for result in sorted_embeddings]
else:
if self._api_type == "azure":
embeddings = self._client.create(
input=input,
engine=self._deployment_id or self._model_name
)["data"]
else:
embeddings = self._client.create(input=input, model=self._model_name)["data"]
# Sort resulting embeddings by index
sorted_embeddings = sorted(embeddings, key=lambda e: e["index"]) # type: ignore
# Return just the embeddings
return [result["embedding"] for result in sorted_embeddings]
class CohereEmbeddingFunction(EmbeddingFunction[Documents]):
def __init__(self, api_key: str, model_name: str = "large"):
try:
import cohere
except ImportError:
raise ValueError(
"The cohere python package is not installed. Please install it with `pip install cohere`"
)
self._client = cohere.Client(api_key)
self._model_name = model_name
def __call__(self, input: Documents) -> Embeddings:
# Call Cohere Embedding API for each document.
return [
embeddings
for embeddings in self._client.embed(texts=input, model=self._model_name)
]
class HuggingFaceEmbeddingFunction(EmbeddingFunction[Documents]):
"""
This class is used to get embeddings for a list of texts using the HuggingFace API.
It requires an API key and a model name. The default model name is "sentence-transformers/all-MiniLM-L6-v2".
"""
def __init__(
self, api_key: str, model_name: str = "sentence-transformers/all-MiniLM-L6-v2"
):
"""
Initialize the HuggingFaceEmbeddingFunction.
Args:
api_key (str): Your API key for the HuggingFace API.
model_name (str, optional): The name of the model to use for text embeddings. Defaults to "sentence-transformers/all-MiniLM-L6-v2".
"""
try:
import requests
except ImportError:
raise ValueError(
"The requests python package is not installed. Please install it with `pip install requests`"
)
self._api_url = f"https://api-inference.huggingface.co/pipeline/feature-extraction/{model_name}"
self._session = requests.Session()
self._session.headers.update({"Authorization": f"Bearer {api_key}"})
def __call__(self, input: Documents) -> Embeddings:
"""
Get the embeddings for a list of texts.
Args:
texts (Documents): A list of texts to get embeddings for.
Returns:
Embeddings: The embeddings for the texts.
Example:
>>> hugging_face = HuggingFaceEmbeddingFunction(api_key="your_api_key")
>>> texts = ["Hello, world!", "How are you?"]
>>> embeddings = hugging_face(texts)
"""
# Call HuggingFace Embedding API for each document
return self._session.post( # type: ignore
self._api_url, json={"inputs": input, "options": {"wait_for_model": True}}
).json()
class InstructorEmbeddingFunction(EmbeddingFunction[Documents]):
# If you have a GPU with at least 6GB try model_name = "hkunlp/instructor-xl" and device = "cuda"
# for a full list of options: https://github.com/HKUNLP/instructor-embedding#model-list
def __init__(
self,
model_name: str = "hkunlp/instructor-base",
device: str = "cpu",
instruction: Optional[str] = None,
):
try:
from InstructorEmbedding import INSTRUCTOR
except ImportError:
raise ValueError(
"The InstructorEmbedding python package is not installed. Please install it with `pip install InstructorEmbedding`"
)
self._model = INSTRUCTOR(model_name, device=device)
self._instruction = instruction
def __call__(self, input: Documents) -> Embeddings:
if self._instruction is None:
return self._model.encode(input).tolist() # type: ignore
texts_with_instructions = [[self._instruction, text] for text in input]
return self._model.encode(texts_with_instructions).tolist() # type: ignore
# In order to remove dependencies on sentence-transformers, which in turn depends on
# pytorch and sentence-piece we have created a default ONNX embedding function that
# implements the same functionality as "all-MiniLM-L6-v2" from sentence-transformers.
# visit https://github.com/chroma-core/onnx-embedding for the source code to generate
# and verify the ONNX model.
class ONNXMiniLM_L6_V2(EmbeddingFunction[Documents]):
MODEL_NAME = "all-MiniLM-L6-v2"
DOWNLOAD_PATH = Path.home() / ".cache" / "chroma" / "onnx_models" / MODEL_NAME
EXTRACTED_FOLDER_NAME = "onnx"
ARCHIVE_FILENAME = "onnx.tar.gz"
MODEL_DOWNLOAD_URL = (
"https://chroma-onnx-models.s3.amazonaws.com/all-MiniLM-L6-v2/onnx.tar.gz"
)
tokenizer = None
model = None
# https://github.com/python/mypy/issues/7291 mypy makes you type the constructor if
# no args
def __init__(self, preferred_providers: Optional[List[str]] = None) -> None:
# Import dependencies on demand to mirror other embedding functions. This
# breaks typechecking, thus the ignores.
# convert the list to set for unique values
if preferred_providers and not all(
[isinstance(i, str) for i in preferred_providers]
):
raise ValueError("Preferred providers must be a list of strings")
# check for duplicate providers
if preferred_providers and len(preferred_providers) != len(
set(preferred_providers)
):
raise ValueError("Preferred providers must be unique")
self._preferred_providers = preferred_providers
try:
# Equivalent to import onnxruntime
self.ort = importlib.import_module("onnxruntime")
except ImportError:
raise ValueError(
"The onnxruntime python package is not installed. Please install it with `pip install onnxruntime`"
)
try:
# Equivalent to from tokenizers import Tokenizer
self.Tokenizer = importlib.import_module("tokenizers").Tokenizer
except ImportError:
raise ValueError(
"The tokenizers python package is not installed. Please install it with `pip install tokenizers`"
)
try:
# Equivalent to from tqdm import tqdm
self.tqdm = importlib.import_module("tqdm").tqdm
except ImportError:
raise ValueError(
"The tqdm python package is not installed. Please install it with `pip install tqdm`"
)
# Borrowed from https://gist.github.com/yanqd0/c13ed29e29432e3cf3e7c38467f42f51
# Download with tqdm to preserve the sentence-transformers experience
def _download(self, url: str, fname: str, chunk_size: int = 1024) -> None:
resp = requests.get(url, stream=True)
total = int(resp.headers.get("content-length", 0))
with open(fname, "wb") as file, self.tqdm(
desc=str(fname),
total=total,
unit="iB",
unit_scale=True,
unit_divisor=1024,
) as bar:
for data in resp.iter_content(chunk_size=chunk_size):
size = file.write(data)
bar.update(size)
# Use pytorches default epsilon for division by zero
# https://pytorch.org/docs/stable/generated/torch.nn.functional.normalize.html
def _normalize(self, v: npt.NDArray) -> npt.NDArray: # type: ignore
norm = np.linalg.norm(v, axis=1)
norm[norm == 0] = 1e-12
return v / norm[:, np.newaxis] # type: ignore
def _forward(self, documents: List[str], batch_size: int = 32) -> npt.NDArray: # type: ignore
# We need to cast to the correct type because the type checker doesn't know that init_model_and_tokenizer will set the values
self.tokenizer = cast(self.Tokenizer, self.tokenizer) # type: ignore
self.model = cast(self.ort.InferenceSession, self.model) # type: ignore
all_embeddings = []
for i in range(0, len(documents), batch_size):
batch = documents[i : i + batch_size]
encoded = [self.tokenizer.encode(d) for d in batch]
input_ids = np.array([e.ids for e in encoded])
attention_mask = np.array([e.attention_mask for e in encoded])
onnx_input = {
"input_ids": np.array(input_ids, dtype=np.int64),
"attention_mask": np.array(attention_mask, dtype=np.int64),
"token_type_ids": np.array(
[np.zeros(len(e), dtype=np.int64) for e in input_ids],
dtype=np.int64,
),
}
model_output = self.model.run(None, onnx_input)
last_hidden_state = model_output[0]
# Perform mean pooling with attention weighting
input_mask_expanded = np.broadcast_to(
np.expand_dims(attention_mask, -1), last_hidden_state.shape
)
embeddings = np.sum(last_hidden_state * input_mask_expanded, 1) / np.clip(
input_mask_expanded.sum(1), a_min=1e-9, a_max=None
)
embeddings = self._normalize(embeddings).astype(np.float32)
all_embeddings.append(embeddings)
return np.concatenate(all_embeddings)
def _init_model_and_tokenizer(self) -> None:
if self.model is None and self.tokenizer is None:
self.tokenizer = self.Tokenizer.from_file(
os.path.join(
self.DOWNLOAD_PATH, self.EXTRACTED_FOLDER_NAME, "tokenizer.json"
)
)
# max_seq_length = 256, for some reason sentence-transformers uses 256 even though the HF config has a max length of 128
# https://github.com/UKPLab/sentence-transformers/blob/3e1929fddef16df94f8bc6e3b10598a98f46e62d/docs/_static/html/models_en_sentence_embeddings.html#LL480
self.tokenizer.enable_truncation(max_length=256)
self.tokenizer.enable_padding(pad_id=0, pad_token="[PAD]", length=256)
if self._preferred_providers is None or len(self._preferred_providers) == 0:
if len(self.ort.get_available_providers()) > 0:
logger.debug(
f"WARNING: No ONNX providers provided, defaulting to available providers: "
f"{self.ort.get_available_providers()}"
)
self._preferred_providers = self.ort.get_available_providers()
elif not set(self._preferred_providers).issubset(
set(self.ort.get_available_providers())
):
raise ValueError(
f"Preferred providers must be subset of available providers: {self.ort.get_available_providers()}"
)
self.model = self.ort.InferenceSession(
os.path.join(
self.DOWNLOAD_PATH, self.EXTRACTED_FOLDER_NAME, "model.onnx"
),
# Since 1.9 onnyx runtime requires providers to be specified when there are multiple available - https://onnxruntime.ai/docs/api/python/api_summary.html
# This is probably not ideal but will improve DX as no exceptions will be raised in multi-provider envs
providers=self._preferred_providers,
)
def __call__(self, input: Documents) -> Embeddings:
# Only download the model when it is actually used
self._download_model_if_not_exists()
self._init_model_and_tokenizer()
res = cast(Embeddings, self._forward(input).tolist())
return res
def _download_model_if_not_exists(self) -> None:
onnx_files = [
"config.json",
"model.onnx",
"special_tokens_map.json",
"tokenizer_config.json",
"tokenizer.json",
"vocab.txt",
]
extracted_folder = os.path.join(self.DOWNLOAD_PATH, self.EXTRACTED_FOLDER_NAME)
onnx_files_exist = True
for f in onnx_files:
if not os.path.exists(os.path.join(extracted_folder, f)):
onnx_files_exist = False
break
# Model is not downloaded yet
if not onnx_files_exist:
os.makedirs(self.DOWNLOAD_PATH, exist_ok=True)
if not os.path.exists(
os.path.join(self.DOWNLOAD_PATH, self.ARCHIVE_FILENAME)
):
self._download(
url=self.MODEL_DOWNLOAD_URL,
fname=os.path.join(self.DOWNLOAD_PATH, self.ARCHIVE_FILENAME),
)
with tarfile.open(
name=os.path.join(self.DOWNLOAD_PATH, self.ARCHIVE_FILENAME),
mode="r:gz",
) as tar:
tar.extractall(path=self.DOWNLOAD_PATH)
def DefaultEmbeddingFunction() -> Optional[EmbeddingFunction[Documents]]:
if is_thin_client:
return None
else:
return ONNXMiniLM_L6_V2()
class GooglePalmEmbeddingFunction(EmbeddingFunction[Documents]):
"""To use this EmbeddingFunction, you must have the google.generativeai Python package installed and have a PaLM API key."""
def __init__(self, api_key: str, model_name: str = "models/embedding-gecko-001"):
if not api_key:
raise ValueError("Please provide a PaLM API key.")
if not model_name:
raise ValueError("Please provide the model name.")
try:
import google.generativeai as palm
except ImportError:
raise ValueError(
"The Google Generative AI python package is not installed. Please install it with `pip install google-generativeai`"
)
palm.configure(api_key=api_key)
self._palm = palm
self._model_name = model_name
def __call__(self, input: Documents) -> Embeddings:
return [
self._palm.generate_embeddings(model=self._model_name, text=text)[
"embedding"
]
for text in input
]
class GoogleVertexEmbeddingFunction(EmbeddingFunction[Documents]):
# Follow API Quickstart for Google Vertex AI
# https://cloud.google.com/vertex-ai/docs/generative-ai/start/quickstarts/api-quickstart
# Information about the text embedding modules in Google Vertex AI
# https://cloud.google.com/vertex-ai/docs/generative-ai/embeddings/get-text-embeddings
def __init__(
self,
api_key: str,
model_name: str = "textembedding-gecko",
project_id: str = "cloud-large-language-models",
region: str = "us-central1",
):
self._api_url = f"https://{region}-aiplatform.googleapis.com/v1/projects/{project_id}/locations/{region}/publishers/goole/models/{model_name}:predict"
self._session = requests.Session()
self._session.headers.update({"Authorization": f"Bearer {api_key}"})
def __call__(self, input: Documents) -> Embeddings:
embeddings = []
for text in input:
response = self._session.post(
self._api_url, json={"instances": [{"content": text}]}
).json()
if "predictions" in response:
embeddings.append(response["predictions"]["embeddings"]["values"])
return embeddings
class OpenCLIPEmbeddingFunction(EmbeddingFunction[Union[Documents, Images]]):
def __init__(
self, model_name: str = "ViT-B-32", checkpoint: str = "laion2b_s34b_b79k"
) -> None:
try:
import open_clip
except ImportError:
raise ValueError(
"The open_clip python package is not installed. Please install it with `pip install open-clip-torch`. https://github.com/mlfoundations/open_clip"
)
try:
self._torch = importlib.import_module("torch")
except ImportError:
raise ValueError(
"The torch python package is not installed. Please install it with `pip install torch`"
)
try:
self._PILImage = importlib.import_module("PIL.Image")
except ImportError:
raise ValueError(
"The PIL python package is not installed. Please install it with `pip install pillow`"
)
model, _, preprocess = open_clip.create_model_and_transforms(
model_name=model_name, pretrained=checkpoint
)
self._model = model
self._preprocess = preprocess
self._tokenizer = open_clip.get_tokenizer(model_name=model_name)
def _encode_image(self, image: Image) -> Embedding:
pil_image = self._PILImage.fromarray(image)
with self._torch.no_grad():
image_features = self._model.encode_image(
self._preprocess(pil_image).unsqueeze(0)
)
image_features /= image_features.norm(dim=-1, keepdim=True)
return cast(Embedding, image_features.squeeze().tolist())
def _encode_text(self, text: Document) -> Embedding:
with self._torch.no_grad():
text_features = self._model.encode_text(self._tokenizer(text))
text_features /= text_features.norm(dim=-1, keepdim=True)
return cast(Embedding, text_features.squeeze().tolist())
def __call__(self, input: Union[Documents, Images]) -> Embeddings:
embeddings: Embeddings = []
for item in input:
if is_image(item):
embeddings.append(self._encode_image(cast(Image, item)))
elif is_document(item):
embeddings.append(self._encode_text(cast(Document, item)))
return embeddings
class AmazonBedrockEmbeddingFunction(EmbeddingFunction[Documents]):
def __init__(
self,
profile_name: Optional[str] = None,
region: Optional[str] = None,
model_name: str = "amazon.titan-embed-text-v1",
):
"""Initialize AmazonBedrockEmbeddingFucntion.
Args:
profile_name (str, optional): The name of a profile to use. If not given, then the default profile is used, defaults to None
region (str, optional): Default region when creating new connections, defaults to None
model_name (str, optional): Identifier of the model, defaults to "amazon.titan-embed-text-v1"
"""
self._model_name = model_name
try:
import boto3
from botocore.config import Config
except ImportError:
raise ValueError(
"The boto3 python package is not installed. Please install it with `pip install boto3`"
)
if not region:
target_region = os.environ.get(
"AWS_REGION", os.environ.get("AWS_DEFAULT_REGION")
)
else:
target_region = region
session_kwargs = {"region_name": target_region}
client_kwargs = {**session_kwargs}
if profile_name:
target_profile = profile_name
else:
target_profile = os.environ.get("AWS_PROFILE")
if target_profile:
session_kwargs["profile_name"] = target_profile
retry_config = Config(
region_name=target_region,
retries={
"max_attempts": 10,
"mode": "standard",
},
)
session = boto3.Session(**session_kwargs)
self._client = session.client(
service_name="bedrock-runtime", config=retry_config, **client_kwargs
)
def __call__(self, input: Documents) -> Embeddings:
"""Get the embeddings for a list of texts.
Args:
input (Documents): A list of texts to get embeddings for.
Returns:
Embeddings: The embeddings for the texts.
Example:
>>> bedrock = AmazonBedrockEmbeddingFunction(profile_name="profile")
>>> texts = ["Hello, world!", "How are you?"]
>>> embeddings = bedrock(texts)
"""
embeddings = []
for text in input:
embeddings.append(self._invoke(text))
return embeddings
def _invoke(
self,
text: str,
) -> Embedding:
import json
input_body = {"inputText": text}
body = json.dumps(input_body)
accept = "application/json"
content_type = "application/json"
try:
response = self._client.invoke_model(
body=body,
modelId=self._model_name,
accept=accept,
contentType=content_type,
)
embedding = json.load(response.get("body")).get("embedding")
except Exception as e:
raise ValueError(f"Error raised by bedrock service: {e}")
return embedding
# List of all classes in this module
_classes = [
name
for name, obj in inspect.getmembers(sys.modules[__name__], inspect.isclass)
if obj.__module__ == __name__
]
def get_builtins() -> List[str]:
return _classes