-
Notifications
You must be signed in to change notification settings - Fork 316
/
Copy path1_train_predictor.py
361 lines (316 loc) · 16.9 KB
/
1_train_predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import argparse
import time
import torch
import torch.nn as nn
import preprocess_data
from model import model
from torch import optim
from matplotlib import pyplot as plt
from pathlib import Path
from anomalyDetector import fit_norm_distribution_param
parser = argparse.ArgumentParser(description='PyTorch RNN Prediction Model on Time-series Dataset')
parser.add_argument('--data', type=str, default='ecg',
help='type of the dataset (ecg, gesture, power_demand, space_shuttle, respiration, nyc_taxi')
parser.add_argument('--filename', type=str, default='chfdb_chf13_45590.pkl',
help='filename of the dataset')
parser.add_argument('--model', type=str, default='LSTM',
help='type of recurrent net (RNN_TANH, RNN_RELU, LSTM, GRU, SRU)')
parser.add_argument('--augment', type=bool, default=True,
help='augment')
parser.add_argument('--emsize', type=int, default=32,
help='size of rnn input features')
parser.add_argument('--nhid', type=int, default=32,
help='number of hidden units per layer')
parser.add_argument('--nlayers', type=int, default=2,
help='number of layers')
parser.add_argument('--res_connection', action='store_true',
help='residual connection')
parser.add_argument('--lr', type=float, default=0.0002,
help='initial learning rate')
parser.add_argument('--weight_decay', type=float, default=1e-4,
help='weight decay')
parser.add_argument('--clip', type=float, default=10,
help='gradient clipping')
parser.add_argument('--epochs', type=int, default=400,
help='upper epoch limit')
parser.add_argument('--batch_size', type=int, default=64, metavar='N',
help='batch size')
parser.add_argument('--eval_batch_size', type=int, default=64, metavar='N',
help='eval_batch size')
parser.add_argument('--bptt', type=int, default=50,
help='sequence length')
parser.add_argument('--teacher_forcing_ratio', type=float, default=0.7,
help='teacher forcing ratio (deprecated)')
parser.add_argument('--dropout', type=float, default=0.2,
help='dropout applied to layers (0 = no dropout)')
parser.add_argument('--tied', action='store_true',
help='tie the word embedding and softmax weights (deprecated)')
parser.add_argument('--seed', type=int, default=1111,
help='random seed')
parser.add_argument('--device', type=str, default='cuda',
help='cuda or cpu')
parser.add_argument('--log_interval', type=int, default=10, metavar='N',
help='report interval')
parser.add_argument('--save_interval', type=int, default=10, metavar='N',
help='save interval')
parser.add_argument('--save_fig', action='store_true',
help='save figure')
parser.add_argument('--resume','-r',
help='use checkpoint model parameters as initial parameters (default: False)',
action="store_true")
parser.add_argument('--pretrained','-p',
help='use checkpoint model parameters and do not train anymore (default: False)',
action="store_true")
parser.add_argument('--prediction_window_size', type=int, default=10,
help='prediction_window_size')
args = parser.parse_args()
# Set the random seed manually for reproducibility.
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
###############################################################################
# Load data
###############################################################################
TimeseriesData = preprocess_data.PickleDataLoad(data_type=args.data, filename=args.filename,
augment_test_data=args.augment)
train_dataset = TimeseriesData.batchify(args,TimeseriesData.trainData, args.batch_size)
test_dataset = TimeseriesData.batchify(args,TimeseriesData.testData, args.eval_batch_size)
gen_dataset = TimeseriesData.batchify(args,TimeseriesData.testData, 1)
###############################################################################
# Build the model
###############################################################################
feature_dim = TimeseriesData.trainData.size(1)
model = model.RNNPredictor(rnn_type = args.model,
enc_inp_size=feature_dim,
rnn_inp_size = args.emsize,
rnn_hid_size = args.nhid,
dec_out_size=feature_dim,
nlayers = args.nlayers,
dropout = args.dropout,
tie_weights= args.tied,
res_connection=args.res_connection).to(args.device)
optimizer = optim.Adam(model.parameters(), lr= args.lr,weight_decay=args.weight_decay)
criterion = nn.MSELoss()
###############################################################################
# Training code
###############################################################################
def get_batch(args,source, i):
seq_len = min(args.bptt, len(source) - 1 - i)
data = source[i:i+seq_len] # [ seq_len * batch_size * feature_size ]
target = source[i+1:i+1+seq_len] # [ (seq_len x batch_size x feature_size) ]
return data, target
def generate_output(args,epoch, model, gen_dataset, disp_uncertainty=True,startPoint=500, endPoint=3500):
if args.save_fig:
# Turn on evaluation mode which disables dropout.
model.eval()
hidden = model.init_hidden(1)
outSeq = []
upperlim95 = []
lowerlim95 = []
with torch.no_grad():
for i in range(endPoint):
if i>=startPoint:
# if disp_uncertainty and epoch > 40:
# outs = []
# model.train()
# for i in range(20):
# out_, hidden_ = model.forward(out+0.01*Variable(torch.randn(out.size())).cuda(),hidden,noise=True)
# outs.append(out_)
# model.eval()
# outs = torch.cat(outs,dim=0)
# out_mean = torch.mean(outs,dim=0) # [bsz * feature_dim]
# out_std = torch.std(outs,dim=0) # [bsz * feature_dim]
# upperlim95.append(out_mean + 2.58*out_std/np.sqrt(20))
# lowerlim95.append(out_mean - 2.58*out_std/np.sqrt(20))
out, hidden = model.forward(out, hidden)
#print(out_mean,out)
else:
out, hidden = model.forward(gen_dataset[i].unsqueeze(0), hidden)
outSeq.append(out.data.cpu()[0][0].unsqueeze(0))
outSeq = torch.cat(outSeq,dim=0) # [seqLength * feature_dim]
target= preprocess_data.reconstruct(gen_dataset.cpu(), TimeseriesData.mean, TimeseriesData.std)
outSeq = preprocess_data.reconstruct(outSeq, TimeseriesData.mean, TimeseriesData.std)
# if epoch>40:
# upperlim95 = torch.cat(upperlim95, dim=0)
# lowerlim95 = torch.cat(lowerlim95, dim=0)
# upperlim95 = preprocess_data.reconstruct(upperlim95.data.cpu().numpy(),TimeseriesData.mean,TimeseriesData.std)
# lowerlim95 = preprocess_data.reconstruct(lowerlim95.data.cpu().numpy(),TimeseriesData.mean,TimeseriesData.std)
plt.figure(figsize=(15,5))
for i in range(target.size(-1)):
plt.plot(target[:,:,i].numpy(), label='Target'+str(i),
color='black', marker='.', linestyle='--', markersize=1, linewidth=0.5)
plt.plot(range(startPoint), outSeq[:startPoint,i].numpy(), label='1-step predictions for target'+str(i),
color='green', marker='.', linestyle='--', markersize=1.5, linewidth=1)
# if epoch>40:
# plt.plot(range(startPoint, endPoint), upperlim95[:,i].numpy(), label='upperlim'+str(i),
# color='skyblue', marker='.', linestyle='--', markersize=1.5, linewidth=1)
# plt.plot(range(startPoint, endPoint), lowerlim95[:,i].numpy(), label='lowerlim'+str(i),
# color='skyblue', marker='.', linestyle='--', markersize=1.5, linewidth=1)
plt.plot(range(startPoint, endPoint), outSeq[startPoint:,i].numpy(), label='Recursive predictions for target'+str(i),
color='blue', marker='.', linestyle='--', markersize=1.5, linewidth=1)
plt.xlim([startPoint-500, endPoint])
plt.xlabel('Index',fontsize=15)
plt.ylabel('Value',fontsize=15)
plt.title('Time-series Prediction on ' + args.data + ' Dataset', fontsize=18, fontweight='bold')
plt.legend()
plt.tight_layout()
plt.text(startPoint-500+10, target.min(), 'Epoch: '+str(epoch),fontsize=15)
save_dir = Path('result',args.data,args.filename).with_suffix('').joinpath('fig_prediction')
save_dir.mkdir(parents=True,exist_ok=True)
plt.savefig(save_dir.joinpath('fig_epoch'+str(epoch)).with_suffix('.png'))
#plt.show()
plt.close()
return outSeq
else:
pass
def evaluate_1step_pred(args, model, test_dataset):
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0
with torch.no_grad():
hidden = model.init_hidden(args.eval_batch_size)
for nbatch, i in enumerate(range(0, test_dataset.size(0) - 1, args.bptt)):
inputSeq, targetSeq = get_batch(args,test_dataset, i)
outSeq, hidden = model.forward(inputSeq, hidden)
loss = criterion(outSeq.view(args.batch_size,-1), targetSeq.view(args.batch_size,-1))
hidden = model.repackage_hidden(hidden)
total_loss+= loss.item()
return total_loss / nbatch
def train(args, model, train_dataset,epoch):
with torch.enable_grad():
# Turn on training mode which enables dropout.
model.train()
total_loss = 0
start_time = time.time()
hidden = model.init_hidden(args.batch_size)
for batch, i in enumerate(range(0, train_dataset.size(0) - 1, args.bptt)):
inputSeq, targetSeq = get_batch(args,train_dataset, i)
# inputSeq: [ seq_len * batch_size * feature_size ]
# targetSeq: [ seq_len * batch_size * feature_size ]
# Starting each batch, we detach the hidden state from how it was previously produced.
# If we didn't, the model would try backpropagating all the way to start of the dataset.
hidden = model.repackage_hidden(hidden)
hidden_ = model.repackage_hidden(hidden)
optimizer.zero_grad()
'''Loss1: Free running loss'''
outVal = inputSeq[0].unsqueeze(0)
outVals=[]
hids1 = []
for i in range(inputSeq.size(0)):
outVal, hidden_, hid = model.forward(outVal, hidden_,return_hiddens=True)
outVals.append(outVal)
hids1.append(hid)
outSeq1 = torch.cat(outVals,dim=0)
hids1 = torch.cat(hids1,dim=0)
loss1 = criterion(outSeq1.view(args.batch_size,-1), targetSeq.view(args.batch_size,-1))
'''Loss2: Teacher forcing loss'''
outSeq2, hidden, hids2 = model.forward(inputSeq, hidden, return_hiddens=True)
loss2 = criterion(outSeq2.view(args.batch_size, -1), targetSeq.view(args.batch_size, -1))
'''Loss3: Simplified Professor forcing loss'''
loss3 = criterion(hids1.view(args.batch_size,-1), hids2.view(args.batch_size,-1).detach())
'''Total loss = Loss1+Loss2+Loss3'''
loss = loss1+loss2+loss3
loss.backward()
# `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
optimizer.step()
total_loss += loss.item()
if batch % args.log_interval == 0 and batch > 0:
cur_loss = total_loss / args.log_interval
elapsed = time.time() - start_time
print('| epoch {:3d} | {:5d}/{:5d} batches | ms/batch {:5.4f} | '
'loss {:5.2f} '.format(
epoch, batch, len(train_dataset) // args.bptt,
elapsed * 1000 / args.log_interval, cur_loss))
total_loss = 0
start_time = time.time()
def evaluate(args, model, test_dataset):
# Turn on evaluation mode which disables dropout.
model.eval()
with torch.no_grad():
total_loss = 0
hidden = model.init_hidden(args.eval_batch_size)
nbatch = 1
for nbatch, i in enumerate(range(0, test_dataset.size(0) - 1, args.bptt)):
inputSeq, targetSeq = get_batch(args,test_dataset, i)
# inputSeq: [ seq_len * batch_size * feature_size ]
# targetSeq: [ seq_len * batch_size * feature_size ]
hidden_ = model.repackage_hidden(hidden)
'''Loss1: Free running loss'''
outVal = inputSeq[0].unsqueeze(0)
outVals=[]
hids1 = []
for i in range(inputSeq.size(0)):
outVal, hidden_, hid = model.forward(outVal, hidden_,return_hiddens=True)
outVals.append(outVal)
hids1.append(hid)
outSeq1 = torch.cat(outVals,dim=0)
hids1 = torch.cat(hids1,dim=0)
loss1 = criterion(outSeq1.view(args.batch_size,-1), targetSeq.view(args.batch_size,-1))
'''Loss2: Teacher forcing loss'''
outSeq2, hidden, hids2 = model.forward(inputSeq, hidden, return_hiddens=True)
loss2 = criterion(outSeq2.view(args.batch_size, -1), targetSeq.view(args.batch_size, -1))
'''Loss3: Simplified Professor forcing loss'''
loss3 = criterion(hids1.view(args.batch_size,-1), hids2.view(args.batch_size,-1).detach())
'''Total loss = Loss1+Loss2+Loss3'''
loss = loss1+loss2+loss3
total_loss += loss.item()
return total_loss / (nbatch+1)
# Loop over epochs.
if args.resume or args.pretrained:
print("=> loading checkpoint ")
checkpoint = torch.load(Path('save', args.data, 'checkpoint', args.filename).with_suffix('.pth'))
args, start_epoch, best_val_loss = model.load_checkpoint(args,checkpoint,feature_dim)
optimizer.load_state_dict((checkpoint['optimizer']))
del checkpoint
epoch = start_epoch
print("=> loaded checkpoint")
else:
epoch = 1
start_epoch = 1
best_val_loss = float('inf')
print("=> Start training from scratch")
print('-' * 89)
print(args)
print('-' * 89)
if not args.pretrained:
# At any point you can hit Ctrl + C to break out of training early.
try:
for epoch in range(start_epoch, args.epochs+1):
epoch_start_time = time.time()
train(args,model,train_dataset,epoch)
val_loss = evaluate(args,model,test_dataset)
print('-' * 89)
print('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.4f} | '.format(epoch, (time.time() - epoch_start_time), val_loss))
print('-' * 89)
generate_output(args,epoch,model,gen_dataset,startPoint=1500)
if epoch%args.save_interval==0:
# Save the model if the validation loss is the best we've seen so far.
is_best = val_loss < best_val_loss
best_val_loss = min(val_loss, best_val_loss)
model_dictionary = {'epoch': epoch,
'best_loss': best_val_loss,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'args':args
}
model.save_checkpoint(model_dictionary, is_best)
except KeyboardInterrupt:
print('-' * 89)
print('Exiting from training early')
# Calculate mean and covariance for each channel's prediction errors, and save them with the trained model
print('=> calculating mean and covariance')
means, covs = list(),list()
train_dataset = TimeseriesData.batchify(args, TimeseriesData.trainData, bsz=1)
for channel_idx in range(model.enc_input_size):
mean, cov = fit_norm_distribution_param(args,model,train_dataset[:TimeseriesData.length],channel_idx)
means.append(mean), covs.append(cov)
model_dictionary = {'epoch': max(epoch,start_epoch),
'best_loss': best_val_loss,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'args': args,
'means': means,
'covs': covs
}
model.save_checkpoint(model_dictionary, True)
print('-' * 89)