-
Notifications
You must be signed in to change notification settings - Fork 16
/
bigtrain_w2v_rnn.py
427 lines (352 loc) · 15.8 KB
/
bigtrain_w2v_rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
from keras.activations import softmax
import os
import pandas as pd
import numpy as np
import random as rn
from tqdm import tqdm, tqdm_notebook
import tensorflow as tf
from sklearn.metrics import roc_auc_score
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.optimizers import Adam
from keras import backend as K
from keras.optimizers import *
from keras.callbacks import *
from keras.layers import *
from keras.models import *
from keras.engine.topology import Layer
from keras import initializers, regularizers, constraints, optimizers, layers
from keras.initializers import *
import keras
from sklearn.model_selection import StratifiedKFold, GroupKFold
import gc
import time
from gensim.models import Word2Vec
import logging
import Levenshtein
import fasttext
tqdm.pandas()
np.random.seed(1017)
rn.seed(1017)
tf.set_random_seed(1017)
path = "/home/kesci/input/bytedance/"
out = '/home/kesci/work/zhifeng/'
print(os.listdir(path))
w2v = Word2Vec.load('/home/kesci/work/chizhu/new_skip_w2v_all_300.model')
word2index = {word: index+1 for index, word in enumerate(w2v.wv.index2entity)}
index2word = {index+1: word for index, word in enumerate(w2v.wv.index2entity)}
def gen_feature_help(line, label_tag=True, token=word2index, maxlen_answer=20,
maxlen_query=8):
if label_tag:
_, _q, _, _a, _label = line.strip().split(',')
else:
_, _q, _, _a = line.strip().split(',')
q_seq = [token.get(item, 0) for item in _q.strip().split()]
a_seq = [token.get(item, 0) for item in _a.strip().split()]
q_pad = [0]*(maxlen_query - len(q_seq)) + q_seq[-maxlen_query:]
a_pad = [0]*(maxlen_answer - len(a_seq)) + a_seq[-maxlen_answer:]
if label_tag:
return q_pad, a_pad, int(_label)
return q_pad, a_pad
def gen_train(path, batch_size=256, label_tag=True, chunk_size=1000, shuffle=True, maxlen_answer=20, maxlen_query=8):
while True:
fin = open(path, 'r')
batch_q, batch_a, batch_label = [], [], []
for line in fin:
if len(batch_q) == chunk_size*batch_size:
batch_q = np.array(batch_q)
batch_a = np.array(batch_a)
if label_tag:
batch_label = np.array(batch_label)
idx = list(range(chunk_size*batch_size))
if shuffle:
np.random.shuffle(idx)
for i in range(chunk_size):
if label_tag:
yield [np.array(batch_q[idx[i*batch_size:i*batch_size+batch_size]]), np.array(batch_a[idx[i*batch_size:i*batch_size+batch_size]])], np.array(batch_label[idx[i*batch_size:i*batch_size+batch_size]])
else:
yield [np.array(batch_q[idx[i*batch_size:i*batch_size+batch_size]]), np.array(batch_a[idx[i*batch_size:i*batch_size+batch_size]])]
batch_q, batch_a, batch_label = [], [], []
if label_tag:
q, a, l = gen_feature_help(line, label_tag=label_tag)
else:
q, a = gen_feature_help(line, label_tag=label_tag)
l = 0
batch_q.append(q)
batch_a.append(a)
if label_tag:
batch_label.append(l)
batch_q = np.array(batch_q)
batch_a = np.array(batch_a)
if label_tag:
batch_label = np.array(batch_label)
idx = list(range(len(batch_q)))
if shuffle:
np.random.shuffle(idx)
for i in range(int(np.ceil(len(batch_q)/batch_size))):
if label_tag:
yield [np.array(batch_q[idx[i*batch_size:i*batch_size+batch_size]]), np.array(batch_a[idx[i*batch_size:i*batch_size+batch_size]])], np.array(batch_label[idx[i*batch_size:i*batch_size+batch_size]])
else:
yield [np.array(batch_q[idx[i*batch_size:i*batch_size+batch_size]]), np.array(batch_a[idx[i*batch_size:i*batch_size+batch_size]])]
fin.close()
def get_embedding_matrix():
m = np.zeros(shape=(len(index2word)+1, 300))
for i, w in index2word.items():
m[i, :] = w2v[w]
return m
embed_matrix = get_embedding_matrix()
maxlen_query = 8
maxlen_answer = 20
class AdamW(Optimizer):
def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999, weight_decay=1e-4, # decoupled weight decay (1/4)
epsilon=1e-8, decay=0., **kwargs):
super(AdamW, self).__init__(**kwargs)
with K.name_scope(self.__class__.__name__):
self.iterations = K.variable(0, dtype='int64', name='iterations')
self.lr = K.variable(lr, name='lr')
self.beta_1 = K.variable(beta_1, name='beta_1')
self.beta_2 = K.variable(beta_2, name='beta_2')
self.decay = K.variable(decay, name='decay')
# decoupled weight decay (2/4)
self.wd = K.variable(weight_decay, name='weight_decay')
self.epsilon = epsilon
self.initial_decay = decay
@interfaces.legacy_get_updates_support
def get_updates(self, loss, params):
grads = self.get_gradients(loss, params)
self.updates = [K.update_add(self.iterations, 1)]
wd = self.wd # decoupled weight decay (3/4)
lr = self.lr
if self.initial_decay > 0:
lr *= (1. / (1. + self.decay * K.cast(self.iterations,
K.dtype(self.decay))))
t = K.cast(self.iterations, K.floatx()) + 1
lr_t = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) /
(1. - K.pow(self.beta_1, t)))
ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
self.weights = [self.iterations] + ms + vs
for p, g, m, v in zip(params, grads, ms, vs):
m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g)
# decoupled weight decay (4/4)
p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon) - lr * wd * p
self.updates.append(K.update(m, m_t))
self.updates.append(K.update(v, v_t))
new_p = p_t
# Apply constraints.
if getattr(p, 'constraint', None) is not None:
new_p = p.constraint(new_p)
self.updates.append(K.update(p, new_p))
return self.updates
def get_config(self):
config = {'lr': float(K.get_value(self.lr)),
'beta_1': float(K.get_value(self.beta_1)),
'beta_2': float(K.get_value(self.beta_2)),
'decay': float(K.get_value(self.decay)),
'weight_decay': float(K.get_value(self.wd)),
'epsilon': self.epsilon}
base_config = super(AdamW, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
class Attention(Layer):
def __init__(self, step_dim,
W_regularizer=None, b_regularizer=None,
W_constraint=None, b_constraint=None,
bias=True, **kwargs):
self.supports_masking = True
self.init = initializers.get('glorot_uniform')
self.W_regularizer = regularizers.get(W_regularizer)
self.b_regularizer = regularizers.get(b_regularizer)
self.W_constraint = constraints.get(W_constraint)
self.b_constraint = constraints.get(b_constraint)
self.bias = bias
self.step_dim = step_dim
self.features_dim = 0
super(Attention, self).__init__(**kwargs)
def build(self, input_shape):
assert len(input_shape) == 3
self.W = self.add_weight((input_shape[-1],),
initializer=self.init,
name='{}_W'.format(self.name),
regularizer=self.W_regularizer,
constraint=self.W_constraint)
self.features_dim = input_shape[-1]
if self.bias:
self.b = self.add_weight((input_shape[1],),
initializer='zero',
name='{}_b'.format(self.name),
regularizer=self.b_regularizer,
constraint=self.b_constraint)
else:
self.b = None
self.built = True
def compute_mask(self, input, input_mask=None):
return None
def call(self, x, mask=None):
features_dim = self.features_dim
step_dim = self.step_dim
eij = K.reshape(K.dot(K.reshape(x, (-1, features_dim)),
K.reshape(self.W, (features_dim, 1))), (-1, step_dim))
if self.bias:
eij += self.b
eij = K.tanh(eij)
a = K.exp(eij)
if mask is not None:
a *= K.cast(mask, K.floatx())
a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx())
a = K.expand_dims(a)
weighted_input = x * a
return K.sum(weighted_input, axis=1)
def compute_output_shape(self, input_shape):
return input_shape[0], self.features_dim
# AUC for a binary classifier
def auc(y_true, y_pred):
ptas = tf.stack([binary_PTA(y_true, y_pred, k)
for k in np.linspace(0, 1, 1000)], axis=0)
pfas = tf.stack([binary_PFA(y_true, y_pred, k)
for k in np.linspace(0, 1, 1000)], axis=0)
pfas = tf.concat([tf.ones((1,)), pfas], axis=0)
binSizes = -(pfas[1:]-pfas[:-1])
s = ptas*binSizes
return K.sum(s, axis=0)
#-----------------------------------------------------------------------------------------------------------------------------------------------------
# PFA, prob false alert for binary classifier
def binary_PFA(y_true, y_pred, threshold=K.variable(value=0.5)):
y_pred = K.cast(y_pred >= threshold, 'float32')
# N = total number of negative labels
N = K.sum(1 - y_true)
# FP = total number of false alerts, alerts from the negative class labels
FP = K.sum(y_pred - y_pred * y_true)
return FP/N
#-----------------------------------------------------------------------------------------------------------------------------------------------------
# P_TA prob true alerts for binary classifier
def binary_PTA(y_true, y_pred, threshold=K.variable(value=0.5)):
y_pred = K.cast(y_pred >= threshold, 'float32')
# P = total number of positive labels
P = K.sum(y_true)
# TP = total number of correct alerts, alerts from the positive class labels
TP = K.sum(y_pred * y_true)
return TP/P
def get_model(embedding_matrix):
K.clear_session()
#The embedding layer containing the word vectors
emb_layer = Embedding(
input_dim=embedding_matrix.shape[0],
output_dim=embedding_matrix.shape[1],
weights=[embedding_matrix],
trainable=False
)
sdrop = SpatialDropout1D(rate=0.2)
lstm_layer = Bidirectional(CuDNNLSTM(40, return_sequences=True,
kernel_initializer=glorot_uniform(seed=123)))
gru_layer = Bidirectional(CuDNNGRU(40, return_sequences=True,
kernel_initializer=glorot_uniform(seed=123)))
cnn1d_layer = keras.layers.Conv1D(
40, kernel_size=2, padding="valid", kernel_initializer="he_uniform")
# Define inputs
seq1 = Input(shape=(maxlen_query,))
x1 = emb_layer(seq1)
x1 = sdrop(x1)
lstm1 = lstm_layer(x1)
gru1 = gru_layer(lstm1)
att_1 = Attention(maxlen_query)(lstm1)
att_3 = Attention(maxlen_query)(gru1)
cnn1 = cnn1d_layer(lstm1)
avg_pool = GlobalAveragePooling1D()
max_pool = GlobalMaxPooling1D()
seq2 = Input(shape=(maxlen_answer,))
x2 = emb_layer(seq2)
x2 = sdrop(x2)
lstm2 = lstm_layer(x2)
gru2 = gru_layer(lstm2)
att_2 = Attention(maxlen_answer)(lstm2)
att_4 = Attention(maxlen_answer)(gru2)
cnn2 = cnn1d_layer(lstm2)
x1 = concatenate([att_1, att_3, avg_pool(cnn1), max_pool(
cnn1), avg_pool(gru1), max_pool(gru1)])
x2 = concatenate([att_2, att_4, avg_pool(cnn2), max_pool(
cnn2), avg_pool(gru2), max_pool(gru2)])
merge = Multiply()([x1, x2])
merge = Dropout(0.2)(merge)
# htime = Dense(col_len,activation='relu')(hin)
# The MLP that determines the outcome
x = Dense(40, kernel_initializer=he_uniform(
seed=123), activation='relu',)(merge)
# x = Dropout(0.2)(x)
# x = BatchNormalization()(x)
pred = Dense(1, kernel_initializer=he_uniform(
seed=123), activation='sigmoid')(x)
model = Model(inputs=[seq1, seq2], outputs=pred)
model.compile(loss='binary_crossentropy',
optimizer=AdamW(lr=0.0003, weight_decay=0.02,),
metrics=["accuracy"])
# model.summary()
return model
####模型训练
train_gen = gen_train(path='/home/kesci/zhifeng/train.csv',
batch_size=4096, label_tag=True, chunk_size=1000)
val_gen = gen_train(path='/home/kesci/zhifeng/val.csv',
batch_size=4096, label_tag=True, chunk_size=1000)
print("train...")
print("###"*30)
gc.collect()
K.clear_session()
model = (embed_matrix)
model.summary()
early_stopping = EarlyStopping(
monitor='val_loss', min_delta=0.0001, patience=2, mode='min', verbose=1)
reduce_lr = ReduceLROnPlateau(
monitor='val_loss', factor=0.5, patience=1, min_lr=0.0001, verbose=2)
bst_model_path = '/home/kesci/chizhu/chizhu_w2v_esim_weight_{epoch}_{val_loss}.h5'
checkpoint = ModelCheckpoint(bst_model_path, monitor='val_loss', mode='min',
save_best_only=False,
verbose=1, save_weights_only=True, period=1)
callbacks = [checkpoint, reduce_lr, early_stopping]
# print("load weight....")
hist = model.fit_generator(train_gen, steps_per_epoch=int(np.ceil(999000000/2048)),
epochs=10, verbose=1, callbacks=callbacks,
validation_data=val_gen, validation_steps=int(
np.ceil(1000000/2048)),
max_queue_size=10, workers=1, use_multiprocessing=False)
val_gen = gen_train(path='/home/kesci/zhifeng/val.csv',
batch_size=4096, label_tag=True, chunk_size=1000, shuffle=False)
val_prob = model.predict_generator(
val_gen, steps=int(np.ceil(1000000/4096)), verbose=1)
f = open('/home/kesci/zhifeng/val.csv', 'r')
q, a, l = [], [], []
for line in f:
qid, _, aid, _, label = line.strip().split(',')
q.append(qid)
a.append(aid)
l.append(int(label))
val_df = pd.DataFrame({'qid': q, 'aid': a, 'label': l})
val_df['prob'] = val_prob.flatten()
roc_auc_score(val_df['label'], val_df['prob'])
def perauc(df):
temp = pd.Series()
try:
temp['auc'] = roc_auc_score(df['label'], df['prob'])
except:
temp['auc'] = 0.5
return temp
eval_df = val_df.groupby("qid").apply(perauc)
eval_df.index = range(len(eval_df))
print("qauc:", eval_df['auc'].mean())
test_gen = gen_train(path='/home/kesci/input/bytedance/test_final_part1.csv',
batch_size=4096, label_tag=False, chunk_size=1, shuffle=False)
prob = model.predict_generator(
test_gen, steps=int(np.ceil(20000000/4096)), verbose=1)
sub = pd.read_csv('/home/kesci/work/chizhu/submit_rnn.csv',
names=['qid', 'aid', 'prob'])
sub['prob'] = prob.flatten()
sub.to_csv('/home/kesci/work/chizhu/raw_w2v_esim_testa.csv',
index=False, header=False)
test_gen = gen_train(path='/home/kesci/input/bytedance/bytedance_contest.final_2.csv',
batch_size=4096, label_tag=False, chunk_size=1, shuffle=False)
prob = model.predict_generator(
test_gen, steps=int(np.ceil(100000000/4096)), verbose=1)
final = pd.read_csv(path+"bytedance_contest.final_2.csv", names=[
'query_id', 'query', 'query_title_id', 'title'])[['query_id', 'query_title_id']]
final['prob'] = prob.flatten()
final.to_csv('/home/kesci/work/chizhu/raw_w2v_esim_testb.csv',
index=False, header=False)