-
Notifications
You must be signed in to change notification settings - Fork 16
/
finetuning_w2v_esim.py
693 lines (579 loc) · 26.1 KB
/
finetuning_w2v_esim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
from keras.activations import softmax
from sklearn.preprocessing import StandardScaler
import os
import pandas as pd
import numpy as np
import random as rn
from tqdm import tqdm, tqdm_notebook
import tensorflow as tf
from sklearn.metrics import roc_auc_score
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.optimizers import Adam
from keras import backend as K
from keras.optimizers import *
from keras.callbacks import *
from keras.layers import *
from keras.models import *
from keras.engine.topology import Layer
from keras import initializers, regularizers, constraints, optimizers, layers
from keras.initializers import *
import keras
from sklearn.model_selection import StratifiedKFold, GroupKFold
import gc
import time
from gensim.models import Word2Vec
import logging
import Levenshtein
import fasttext
tqdm.pandas()
np.random.seed(1017)
rn.seed(1017)
tf.set_random_seed(1017)
path = "/home/kesci/input/bytedance/"
out = '/home/kesci/work/zhifeng/'
out_chizhu = '/home/kesci/work/chizhu/'
print(os.listdir(path))
f1 = pd.read_csv(out_chizhu + 'f1.csv')
f2 = pd.read_csv(out_chizhu + 'f2.csv')
f3 = pd.read_csv(out_chizhu + 'f3.csv')
feature = pd.concat([f1, f2, f3], sort=False, axis=1)
del f1, f2, f3
gc.collect()
train_w2v = pd.read_pickle("/home/kesci/work/zhifeng/train.cosine.w2v.pkl")
val_w2v = pd.read_pickle("/home/kesci/work/zhifeng/val.cosine.w2v.pkl")
testa_w2v = pd.read_pickle("/home/kesci/work/zhifeng/test.cosine.w2v.pkl")
testb_w2v = pd.read_pickle(
"/home/kesci/work/zhifeng/test_final.cosine.w2v.pkl")
feature['w2v_cos'] = list(train_w2v)+list(testa_w2v)+list(testb_w2v)
train_w2v = pd.read_pickle(
"/home/kesci/work/zhifeng/train.cosine.fasttext.pkl")
val_w2v = pd.read_pickle("/home/kesci/work/zhifeng/val.cosine.fasttext.pkl")
testa_w2v = pd.read_pickle("/home/kesci/work/zhifeng/test.cosine.fasttext.pkl")
testb_w2v = pd.read_pickle(
"/home/kesci/work/zhifeng/test_final.cosine.fasttext.pkl")
feature['fast_cos'] = list(train_w2v)+list(val_w2v) + \
list(testa_w2v)+list(testb_w2v)
del train_w2v, val_w2v, testa_w2v, testb_w2v
gc.collect()
feature.shape
len_train = 99000000
len_val = 1000000
len_testa = 20000000
len_testb = 100000000
sc = StandardScaler()
feature = sc.fit_transform(feature)
train_feature = feature[:len_train]
val_feature = feature[len_train:len_train+len_val]
testa_feature = feature[len_train+len_val:len_train+len_val+len_testa]
testb_feature = feature[-len_testb:]
print(train_feature.shape, val_feature.shape,
testa_feature.shape, testb_feature.shape)
del feature
gc.collect()
w2v = Word2Vec.load('/home/kesci/work/chizhu/new_skip_w2v_all_300.model')
word2index = {word: index+1 for index, word in enumerate(w2v.wv.index2entity)}
index2word = {index+1: word for index, word in enumerate(w2v.wv.index2entity)}
def gen_feature_help(line, label_tag=True, token=word2index, maxlen_answer=20,
maxlen_query=8):
if label_tag:
_, _q, _, _a, _label = line.strip().split(',')
else:
_, _q, _, _a = line.strip().split(',')
q_seq = [token.get(item, 0) for item in _q.strip().split()]
a_seq = [token.get(item, 0) for item in _a.strip().split()]
q_pad = [0]*(maxlen_query - len(q_seq)) + q_seq[-maxlen_query:]
a_pad = [0]*(maxlen_answer - len(a_seq)) + a_seq[-maxlen_answer:]
if label_tag:
return q_pad, a_pad, int(_label)
return q_pad, a_pad
def gen_train(path, feature, batch_size=256, label_tag=True, chunk_size=1000, shuffle=True, maxlen_answer=20, maxlen_query=8):
while True:
fin = open(path, 'r')
batch_q, batch_a, batch_f, batch_label = [], [], [], []
for i, line in enumerate(fin):
if len(batch_q) == chunk_size*batch_size:
batch_q = np.array(batch_q)
batch_a = np.array(batch_a)
batch_f = np.array(batch_f)
if label_tag:
batch_label = np.array(batch_label)
idx = list(range(chunk_size*batch_size))
if shuffle:
np.random.shuffle(idx)
for i in range(chunk_size):
if label_tag:
yield ([np.array(batch_q[idx[i*batch_size:i*batch_size+batch_size]]),
np.array(
batch_a[idx[i*batch_size:i*batch_size+batch_size]]),
np.array(batch_f[idx[i*batch_size:i*batch_size+batch_size]])],
np.array(batch_label[idx[i*batch_size:i*batch_size+batch_size]]))
else:
yield [np.array(batch_q[idx[i*batch_size:i*batch_size+batch_size]]),
np.array(
batch_a[idx[i*batch_size:i*batch_size+batch_size]]),
np.array(batch_f[idx[i*batch_size:i*batch_size+batch_size]])]
batch_q, batch_a, batch_f, batch_label = [], [], [], []
if label_tag:
q, a, l = gen_feature_help(line, label_tag=label_tag)
else:
q, a = gen_feature_help(line, label_tag=label_tag)
l = 0
batch_q.append(q)
batch_a.append(a)
batch_f.append(feature[i])
if label_tag:
batch_label.append(l)
batch_q = np.array(batch_q)
batch_a = np.array(batch_a)
batch_f = np.array(batch_f)
if label_tag:
batch_label = np.array(batch_label)
idx = list(range(len(batch_q)))
if shuffle:
np.random.shuffle(idx)
for i in range(int(np.ceil(len(batch_q)/batch_size))):
if label_tag:
yield ([np.array(batch_q[idx[i*batch_size:i*batch_size+batch_size]]),
np.array(
batch_a[idx[i*batch_size:i*batch_size+batch_size]]),
np.array(batch_f[idx[i*batch_size:i*batch_size+batch_size]])],
np.array(batch_label[idx[i*batch_size:i*batch_size+batch_size]]))
else:
yield [np.array(batch_q[idx[i*batch_size:i*batch_size+batch_size]]),
np.array(
batch_a[idx[i*batch_size:i*batch_size+batch_size]]),
np.array(batch_f[idx[i*batch_size:i*batch_size+batch_size]])]
fin.close()
def get_embedding_matrix():
m = np.zeros(shape=(len(index2word)+1, 300))
for i, w in index2word.items():
m[i, :] = w2v[w]
return m
embed_matrix = get_embedding_matrix()
maxlen_query = 8
maxlen_answer = 20
class AdamW(Optimizer):
def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999, weight_decay=1e-4, # decoupled weight decay (1/4)
epsilon=1e-8, decay=0., **kwargs):
super(AdamW, self).__init__(**kwargs)
with K.name_scope(self.__class__.__name__):
self.iterations = K.variable(0, dtype='int64', name='iterations')
self.lr = K.variable(lr, name='lr')
self.beta_1 = K.variable(beta_1, name='beta_1')
self.beta_2 = K.variable(beta_2, name='beta_2')
self.decay = K.variable(decay, name='decay')
# decoupled weight decay (2/4)
self.wd = K.variable(weight_decay, name='weight_decay')
self.epsilon = epsilon
self.initial_decay = decay
@interfaces.legacy_get_updates_support
def get_updates(self, loss, params):
grads = self.get_gradients(loss, params)
self.updates = [K.update_add(self.iterations, 1)]
wd = self.wd # decoupled weight decay (3/4)
lr = self.lr
if self.initial_decay > 0:
lr *= (1. / (1. + self.decay * K.cast(self.iterations,
K.dtype(self.decay))))
t = K.cast(self.iterations, K.floatx()) + 1
lr_t = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) /
(1. - K.pow(self.beta_1, t)))
ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
self.weights = [self.iterations] + ms + vs
for p, g, m, v in zip(params, grads, ms, vs):
m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g)
# decoupled weight decay (4/4)
p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon) - lr * wd * p
self.updates.append(K.update(m, m_t))
self.updates.append(K.update(v, v_t))
new_p = p_t
# Apply constraints.
if getattr(p, 'constraint', None) is not None:
new_p = p.constraint(new_p)
self.updates.append(K.update(p, new_p))
return self.updates
def get_config(self):
config = {'lr': float(K.get_value(self.lr)),
'beta_1': float(K.get_value(self.beta_1)),
'beta_2': float(K.get_value(self.beta_2)),
'decay': float(K.get_value(self.decay)),
'weight_decay': float(K.get_value(self.wd)),
'epsilon': self.epsilon}
base_config = super(AdamW, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
class Attention(Layer):
def __init__(self, step_dim,
W_regularizer=None, b_regularizer=None,
W_constraint=None, b_constraint=None,
bias=True, **kwargs):
self.supports_masking = True
self.init = initializers.get('glorot_uniform')
self.W_regularizer = regularizers.get(W_regularizer)
self.b_regularizer = regularizers.get(b_regularizer)
self.W_constraint = constraints.get(W_constraint)
self.b_constraint = constraints.get(b_constraint)
self.bias = bias
self.step_dim = step_dim
self.features_dim = 0
super(Attention, self).__init__(**kwargs)
def build(self, input_shape):
assert len(input_shape) == 3
self.W = self.add_weight((input_shape[-1],),
initializer=self.init,
name='{}_W'.format(self.name),
regularizer=self.W_regularizer,
constraint=self.W_constraint)
self.features_dim = input_shape[-1]
if self.bias:
self.b = self.add_weight((input_shape[1],),
initializer='zero',
name='{}_b'.format(self.name),
regularizer=self.b_regularizer,
constraint=self.b_constraint)
else:
self.b = None
self.built = True
def compute_mask(self, input, input_mask=None):
return None
def call(self, x, mask=None):
features_dim = self.features_dim
step_dim = self.step_dim
eij = K.reshape(K.dot(K.reshape(x, (-1, features_dim)),
K.reshape(self.W, (features_dim, 1))), (-1, step_dim))
if self.bias:
eij += self.b
eij = K.tanh(eij)
a = K.exp(eij)
if mask is not None:
a *= K.cast(mask, K.floatx())
a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx())
a = K.expand_dims(a)
weighted_input = x * a
return K.sum(weighted_input, axis=1)
def compute_output_shape(self, input_shape):
return input_shape[0], self.features_dim
# AUC for a binary classifier
def auc(y_true, y_pred):
ptas = tf.stack([binary_PTA(y_true, y_pred, k)
for k in np.linspace(0, 1, 1000)], axis=0)
pfas = tf.stack([binary_PFA(y_true, y_pred, k)
for k in np.linspace(0, 1, 1000)], axis=0)
pfas = tf.concat([tf.ones((1,)), pfas], axis=0)
binSizes = -(pfas[1:]-pfas[:-1])
s = ptas*binSizes
return K.sum(s, axis=0)
#-----------------------------------------------------------------------------------------------------------------------------------------------------
# PFA, prob false alert for binary classifier
def binary_PFA(y_true, y_pred, threshold=K.variable(value=0.5)):
y_pred = K.cast(y_pred >= threshold, 'float32')
# N = total number of negative labels
N = K.sum(1 - y_true)
# FP = total number of false alerts, alerts from the negative class labels
FP = K.sum(y_pred - y_pred * y_true)
return FP/N
#-----------------------------------------------------------------------------------------------------------------------------------------------------
# P_TA prob true alerts for binary classifier
def binary_PTA(y_true, y_pred, threshold=K.variable(value=0.5)):
y_pred = K.cast(y_pred >= threshold, 'float32')
# P = total number of positive labels
P = K.sum(y_true)
# TP = total number of correct alerts, alerts from the positive class labels
TP = K.sum(y_pred * y_true)
return TP/P
class Lookahead(object):
"""Add the [Lookahead Optimizer](https://arxiv.org/abs/1907.08610) functionality for [keras](https://keras.io/).
"""
def __init__(self, k=5, alpha=0.5):
self.k = k
self.alpha = alpha
self.count = 0
def inject(self, model):
"""Inject the Lookahead algorithm for the given model.
The following code is modified from keras's _make_train_function method.
See: https://github.com/keras-team/keras/blob/master/keras/engine/training.py#L497
"""
if not hasattr(model, 'train_function'):
raise RuntimeError('You must compile your model before using it.')
model._check_trainable_weights_consistency()
if model.train_function is None:
inputs = (model._feed_inputs +
model._feed_targets +
model._feed_sample_weights)
if model._uses_dynamic_learning_phase():
inputs += [K.learning_phase()]
fast_params = model._collected_trainable_weights
with K.name_scope('training'):
with K.name_scope(model.optimizer.__class__.__name__):
training_updates = model.optimizer.get_updates(
params=fast_params,
loss=model.total_loss)
slow_params = [K.variable(p) for p in fast_params]
fast_updates = (model.updates +
training_updates +
model.metrics_updates)
slow_updates, copy_updates = [], []
for p, q in zip(fast_params, slow_params):
slow_updates.append(K.update(q, q + self.alpha * (p - q)))
copy_updates.append(K.update(p, q))
# Gets loss and metrics. Updates weights at each call.
fast_train_function = K.function(
inputs,
[model.total_loss] + model.metrics_tensors,
updates=fast_updates,
name='fast_train_function',
**model._function_kwargs)
def F(inputs):
self.count += 1
R = fast_train_function(inputs)
if self.count % self.k == 0:
K.batch_get_value(slow_updates)
K.batch_get_value(copy_updates)
return R
model.train_function = F
def create_pretrained_embedding(pretrained_weights, trainable=False, **kwargs):
"Create embedding layer from a pretrained weights array"
in_dim, out_dim = pretrained_weights.shape
embedding = Embedding(in_dim, out_dim, weights=[
pretrained_weights], trainable=False, **kwargs)
return embedding
def unchanged_shape(input_shape):
"Function for Lambda layer"
return input_shape
def substract(input_1, input_2):
"Substract element-wise"
neg_input_2 = Lambda(lambda x: -x, output_shape=unchanged_shape)(input_2)
out_ = Add()([input_1, neg_input_2])
return out_
def submult(input_1, input_2):
"Get multiplication and subtraction then concatenate results"
mult = Multiply()([input_1, input_2])
sub = substract(input_1, input_2)
out_ = Concatenate()([sub, mult])
return out_
def apply_multiple(input_, layers):
"Apply layers to input then concatenate result"
if not len(layers) > 1:
raise ValueError('Layers list should contain more than 1 layer')
else:
agg_ = []
for layer in layers:
agg_.append(layer(input_))
out_ = Concatenate()(agg_)
return out_
def time_distributed(input_, layers):
"Apply a list of layers in TimeDistributed mode"
out_ = []
node_ = input_
for layer_ in layers:
node_ = TimeDistributed(layer_)(node_)
out_ = node_
return out_
def soft_attention_alignment(input_1, input_2):
"Align text representation with neural soft attention"
attention = Dot(axes=-1)([input_1, input_2])
w_att_1 = Lambda(lambda x: softmax(x, axis=1),
output_shape=unchanged_shape)(attention)
w_att_2 = Permute((2, 1))(Lambda(lambda x: softmax(x, axis=2),
output_shape=unchanged_shape)(attention))
in1_aligned = Dot(axes=1)([w_att_1, input_1])
in2_aligned = Dot(axes=1)([w_att_2, input_2])
return in1_aligned, in2_aligned
def decomposable_attention(pretrained_weights,
num_shape,
projection_dim=300, projection_hidden=0, projection_dropout=0.2,
compare_dim=500, compare_dropout=0.2,
dense_dim=300, dense_dropout=0.2,
lr=1e-3, activation='elu', maxlen=20):
# Based on: https://arxiv.org/abs/1606.01933
q1 = Input(name='q1', shape=(maxlen,))
q2 = Input(name='q2', shape=(maxlen,))
# Embedding
embedding = create_pretrained_embedding(pretrained_weights,
mask_zero=False)
q1_embed = embedding(q1)
q2_embed = embedding(q2)
# Projection
projection_layers = []
if projection_hidden > 0:
projection_layers.extend([
Dense(projection_hidden, activation=activation),
Dropout(rate=projection_dropout),
])
projection_layers.extend([
Dense(projection_dim, activation=None),
Dropout(rate=projection_dropout),
])
q1_encoded = time_distributed(q1_embed, projection_layers)
q2_encoded = time_distributed(q2_embed, projection_layers)
# Attention
q1_aligned, q2_aligned = soft_attention_alignment(q1_encoded, q2_encoded)
# Compare
q1_combined = Concatenate()(
[q1_encoded, q2_aligned, submult(q1_encoded, q2_aligned)])
q2_combined = Concatenate()(
[q2_encoded, q1_aligned, submult(q2_encoded, q1_aligned)])
compare_layers = [
Dense(compare_dim, activation=activation),
Dropout(compare_dropout),
Dense(compare_dim, activation=activation),
Dropout(compare_dropout),
]
q1_compare = time_distributed(q1_combined, compare_layers)
q2_compare = time_distributed(q2_combined, compare_layers)
# Aggregate
q1_rep = apply_multiple(q1_compare, [GlobalAvgPool1D(), GlobalMaxPool1D()])
q2_rep = apply_multiple(q2_compare, [GlobalAvgPool1D(), GlobalMaxPool1D()])
# Classifier
merged = Concatenate()([q1_rep, q2_rep])
dense = BatchNormalization()(merged)
dense = Dense(dense_dim, activation=activation)(dense)
dense = Dropout(dense_dropout)(dense)
dense = BatchNormalization()(dense)
dense = Dense(dense_dim, activation=activation)(dense)
dense = Dropout(dense_dropout)(dense)
out_ = Dense(1, activation='sigmoid')(dense)
model = Model(inputs=[q1, q2], outputs=out_)
model.compile(loss='binary_crossentropy',
optimizer=AdamW(lr=0.001, weight_decay=0.02,),
metrics=["accuracy", auc])
return model
def esim(embedding_matrix,
maxlen=20,
lstm_dim=64,
dense_dim=128,
dense_dropout=0.5):
# Based on arXiv:1609.06038
q1 = Input(name='q1', shape=(8,))
q2 = Input(name='q2', shape=(20,))
# Embedding
embedding = create_pretrained_embedding(
embedding_matrix, mask_zero=False)
bn = BatchNormalization(axis=2)
q1_embed = bn(embedding(q1))
q2_embed = bn(embedding(q2))
# Encode
encode = Bidirectional(CuDNNLSTM(lstm_dim, return_sequences=True))
q1_encoded = encode(q1_embed)
q2_encoded = encode(q2_embed)
# Attention
q1_aligned, q2_aligned = soft_attention_alignment(q1_encoded, q2_encoded)
# Compose
q1_combined = Concatenate()(
[q1_encoded, q2_aligned, submult(q1_encoded, q2_aligned)])
q2_combined = Concatenate()(
[q2_encoded, q1_aligned, submult(q2_encoded, q1_aligned)])
compose = Bidirectional(CuDNNLSTM(lstm_dim, return_sequences=True))
q1_compare = compose(q1_combined)
q2_compare = compose(q2_combined)
# Aggregate
q1_rep = apply_multiple(q1_compare, [GlobalAvgPool1D(), GlobalMaxPool1D()])
q2_rep = apply_multiple(q2_compare, [GlobalAvgPool1D(), GlobalMaxPool1D()])
# leaks_input = Input(shape=(num_shape,))
# leaks_dense = Dense(dense_dim//2, activation='relu')(leaks_input)
# Classifier
merged = Concatenate()([q1_rep, q2_rep])
dense = BatchNormalization()(merged)
dense = Dense(dense_dim, activation='elu')(dense)
dense = BatchNormalization()(dense)
dense = Dropout(dense_dropout)(dense)
dense = Dense(dense_dim, activation='elu')(dense)
dense = BatchNormalization()(dense)
dense = Dropout(dense_dropout)(dense)
out_ = Dense(1, activation='sigmoid')(dense)
model = Model(inputs=[q1, q2], outputs=out_)
model.compile(loss='binary_crossentropy',
optimizer=AdamW(lr=0.0003, weight_decay=0.02,),
metrics=["accuracy", auc])
return model
def aux_esim_model(embed_matrix, model_weight_path):
base_model = esim(embed_matrix)
base_model.load_weights(model_weight_path)
input_q, input_a = base_model.inputs
input_f = Input((19,))
hidden_esim = base_model.get_layer(index=28).output
merged = Concatenate()([hidden_esim, input_f])
#dense = BatchNormalization()(merged)
dense = Dense(512, activation='relu')(merged)
#dense = BatchNormalization()(dense)
dense = Dropout(0.5)(dense)
dense = Dense(256, activation='relu')(dense)
#dense = BatchNormalization()(dense)
dense = Dropout(0.5)(dense)
out_ = Dense(1, activation='sigmoid')(dense)
model = Model(inputs=[input_q, input_a, input_f], outputs=out_)
model.compile(loss='binary_crossentropy',
optimizer=AdamW(lr=0.0003, weight_decay=0.02),
metrics=["accuracy"])
return model
####模型训练
train_gen = gen_train(path='/home/kesci/zhifeng/train.smaller.csv', feature=train_feature, batch_size=2048,
label_tag=True, chunk_size=5000)
val_gen = gen_train(path='/home/kesci/zhifeng/val.csv', feature=val_feature, batch_size=2048,
label_tag=True, chunk_size=5000)
print("train...")
print("###"*30)
gc.collect()
K.clear_session()
weight_path = '/home/kesci/work/chizhu/chizhu_w2v_esim_weight_1_0.44060374074871167.h5'
model = aux_esim_model(embed_matrix, weight_path)
lookahead = Lookahead(k=5, alpha=0.5) # Initialize Lookahead
lookahead.inject(model) # add into model
model.summary()
early_stopping = EarlyStopping(
monitor='val_loss', min_delta=0.0001, patience=2, mode='min', verbose=1)
reduce_lr = ReduceLROnPlateau(
monitor='val_loss', factor=0.5, patience=1, min_lr=0.0001, verbose=2)
bst_model_path = '/home/kesci/work/zhifeng/zhifeng_aux_fasttext_esim_finetune_{epoch}_{val_loss}.h5'
checkpoint = ModelCheckpoint(bst_model_path, monitor='val_loss', mode='min',
save_best_only=False,
verbose=1, save_weights_only=True, period=1)
callbacks = [checkpoint, reduce_lr, early_stopping]
# print("load weight....")
hist = model.fit_generator(train_gen, steps_per_epoch=int(np.ceil(99000000/2048)),
epochs=10, verbose=1, callbacks=callbacks,
validation_data=val_gen, validation_steps=int(
np.ceil(1000000/2048)),
max_queue_size=10, workers=1, use_multiprocessing=False)
val_gen = gen_train(path='/home/kesci/zhifeng/val.csv', feature=val_feature,
batch_size=4096, label_tag=True, chunk_size=1000, shuffle=False)
val_prob = model.predict_generator(
val_gen, steps=int(np.ceil(1000000/4096)), verbose=1)
f = open('/home/kesci/zhifeng/val.csv', 'r')
q, a, l = [], [], []
for line in f:
qid, _, aid, _, label = line.strip().split(',')
q.append(qid)
a.append(aid)
l.append(int(label))
val_df = pd.DataFrame({'qid': q, 'aid': a, 'label': l})
val_df['prob'] = val_prob.flatten()
roc_auc_score(val_df['label'], val_df['prob'])
def perauc(df):
temp = pd.Series()
try:
temp['auc'] = roc_auc_score(df['label'], df['prob'])
except:
temp['auc'] = 0.5
return temp
eval_df = val_df.groupby("qid").apply(perauc)
eval_df.index = range(len(eval_df))
print("qauc:", eval_df['auc'].mean())
test_gen = gen_train(path='/home/kesci/input/bytedance/test_final_part1.csv',
feature=testa_feature, batch_size=4096, label_tag=False, chunk_size=1, shuffle=False)
prob = model.predict_generator(
test_gen, steps=int(np.ceil(20000000/4096)), verbose=1)
sub = pd.read_csv('/home/kesci/work/chizhu/submit_rnn.csv',
names=['qid', 'aid', 'prob'])
sub['prob'] = prob.flatten()
sub.to_csv('/home/kesci/work/chizhu/finetuning_fasttext_esim_testa.csv', index=False, header=False
test_gen=gen_train(path='/home/kesci/input/bytedance/bytedance_contest.final_2.csv',
feature=testb_feature, batch_size=4096, label_tag=False, chunk_size=1, shuffle=False)
prob=model.predict_generator(test_gen, steps=int(
np.ceil(100000000/4096)), verbose=1)
final=pd.read_csv(path+"bytedance_contest.final_2.csv", names=[
'query_id', 'query', 'query_title_id', 'title'])[['query_id', 'query_title_id']]
final['prob']=prob.flatten()
final.to_csv('/home/kesci/work/chizhu/finetuning_fasttext_esim_testb.csv', index=False, header=False)