This repository was archived by the owner on May 21, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtester.py
121 lines (96 loc) · 4.72 KB
/
tester.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import logging
import sys
from argparse import Namespace
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torchvision.datasets as dset
import torchvision.transforms as transforms
from tqdm import tqdm
import utils
import genotypes
from model import NetworkCIFAR, NetworkImageNet
from constants import MyDataset
class Tester:
def __init__(self, test_args: Namespace, my_dataset: MyDataset, model: nn.Module = None):
self.__device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
np.random.seed(test_args.seed)
torch.manual_seed(test_args.seed)
cudnn.benchmark = True
cudnn.enabled = True
logging.info(f'gpu device = {test_args.gpu}')
logging.info(f'args = {test_args}')
if model is None:
# equal to: genotype = genotypes.DARTS_v2
if not (test_args.arch or test_args.arch_path):
logging.info('need to designate arch.')
sys.exit(1)
genotype = eval(f'genotypes.{test_args.arch}') if not test_args.arch_path else utils.load_genotype(
test_args.arch_path)
print('Load genotype:', genotype)
if my_dataset is MyDataset.CIFAR10:
model = NetworkCIFAR(test_args.init_ch, 10, test_args.layers, test_args.auxiliary, genotype).to(
self.__device)
elif my_dataset is MyDataset.CIFAR100:
model = NetworkCIFAR(test_args.init_ch, 100, test_args.layers, test_args.auxiliary, genotype).to(
self.__device)
elif my_dataset is MyDataset.ImageNet:
model = NetworkImageNet(test_args.init_ch, 1000, test_args.layers, test_args.auxiliary, genotype).to(
self.__device)
else:
raise Exception('No match MyDataset')
utils.load(model, test_args.model_path, False)
model = model.to(self.__device)
param_size = utils.count_parameters_in_MB(model)
logging.info(f'param size = {param_size}MB')
model.drop_path_prob = test_args.drop_path_prob
self.__model = model
self.__args = test_args
self.__criterion = nn.CrossEntropyLoss().to(self.__device)
if my_dataset is MyDataset.CIFAR10:
_, test_transform = utils._data_transforms_cifar10(test_args)
test_data = dset.CIFAR10(root=test_args.data, train=False, download=True, transform=test_transform)
elif my_dataset is MyDataset.CIFAR100:
_, test_transform = utils._data_transforms_cifar100(test_args)
test_data = dset.CIFAR100(root=test_args.data, train=False, download=True, transform=test_transform)
elif my_dataset is MyDataset.ImageNet:
validdir = test_args.data / 'val'
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
valid_data = dset.ImageFolder(
validdir,
transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]))
test_data = valid_data
else:
raise Exception('No match MyDataset')
self.__test_queue = torch.utils.data.DataLoader(
test_data, batch_size=test_args.batchsz, shuffle=False, pin_memory=True, num_workers=4)
def infer(self):
objs = utils.AverageMeter()
top1 = utils.AverageMeter()
top5 = utils.AverageMeter()
self.__model.eval()
with torch.no_grad():
with tqdm(self.__test_queue) as progress:
for step, (x, target) in enumerate(progress):
progress.set_description_str(f'Test: ')
x, target = x.to(self.__device), target.to(self.__device, non_blocking=True)
logits, _ = self.__model(x)
loss = self.__criterion(logits, target)
prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
batchsz = x.size(0)
objs.update(loss.item(), batchsz)
top1.update(prec1.item(), batchsz)
top5.update(prec5.item(), batchsz)
progress.set_postfix_str(f'loss: {objs.avg}, top1: {top1.avg}')
if step % self.__args.report_freq == 0:
logging.info(f'test {step:03} {objs.avg} {top1.avg} {top5.avg}')
return top1.avg, top5.avg, objs.avg