-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerate_netcdf.py
51 lines (37 loc) · 1.33 KB
/
generate_netcdf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#!/usr/bin/env python
import netcdf
import numpy as np
import sys
missing_value = -0.0001
time_step = 7
n_lat = 10
n_lon = 18
n_time = 12
args = sys.argv[1:]
if len(args) == 0:
args = ['temp']
def var_func(lat, lon, time):
return 15 + 15 * np.sin(6.28 * time * time_step / 365) * np.cos(3.14 * lat / 180) + np.random.randint(20) / 10
def is_missing(lat, lon, time):
return (lat + lon) % 9 == 3;
ds = netcdf.Dataset('sample.nc', 'w', 'NETCDF4')
ds.createDimension('lat', n_lat)
ds.createDimension('lon', n_lon)
ds.createDimension('time', n_time)
varlat = ds.createVariable('lat', float, 'lat')
varlon = ds.createVariable('lon', float, 'lon')
vartime = ds.createVariable('time', float, 'time')
varlat[:] = np.arange(-90, 90 + 1, 180 // (n_lat - 1))
varlon[:] = np.arange(0, 360, 360 // n_lon)
vartime[:] = np.arange(0, n_time * time_step, time_step)
for varname in args:
var = ds.createVariable(varname, float, ('lat', 'lon', 'time'), fill_value=missing_value)
for lat in xrange(n_lat):
for lon in xrange(n_lon):
for time in xrange(n_time):
if is_missing(lat, lon, time):
var[lat, lon, time] = missing_value
else:
var[lat, lon, time] = var_func(varlat[lat], varlon[lon], vartime[time])
#var._FillValue = missing_value
ds.close()