-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathtest_run.py
224 lines (198 loc) · 7.98 KB
/
test_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
from datetime import datetime, date
import json
from unittest.mock import patch
import tempfile
import os
from delphi_hhs.run import _date_to_int, add_nancodes, int_date_to_previous_day_datetime, generate_date_ranges, \
make_signal, make_geo, run_module, pop_proportion
from delphi_hhs.constants import SMOOTHERS, GEOS, SIGNALS, \
CONFIRMED, SUM_CONF_SUSP, CONFIRMED_FLU, CONFIRMED_PROP, SUM_CONF_SUSP_PROP, CONFIRMED_FLU_PROP
from delphi_utils import GeoMapper, Nans
from freezegun import freeze_time
import numpy as np
import pandas as pd
import pytest
def test__date_to_int():
"""Check that dates are converted to the right int."""
assert _date_to_int(date(2020, 5, 1)) == 20200501
def test_date_conversion():
"""Check that we convert dates properly between Epidata and datetime format."""
data = pd.DataFrame({"date": [20200101, 20201231]})
result = int_date_to_previous_day_datetime(data.date)
expected_result = [
datetime(year=2019, month=12, day=31),
datetime(year=2020, month=12, day=30)
]
for got, expected in zip(result, expected_result):
assert isinstance(got, datetime), f"Bad type: {type(got)}\n{result}"
assert got == expected
def test_generate_date_ranges():
"""Check ranges generated partition the specified inputs."""
assert generate_date_ranges(date(2020, 1, 1), date(2020, 1, 1)) == \
[{'from': 20200101, 'to': 20200101}]
assert generate_date_ranges(date(2020, 1, 1), date(2020, 1, 31)) == \
[{'from': 20200101, 'to': 20200131}]
assert generate_date_ranges(date(2020, 1, 1), date(2020, 2, 1)) == \
[{'from': 20200101, 'to': 20200131},
{'from': 20200201, 'to': 20200201}]
assert generate_date_ranges(date(2020, 1, 1), date(2020, 5, 12)) == \
[{'from': 20200101, 'to': 20200131},
{'from': 20200201, 'to': 20200302},
{'from': 20200303, 'to': 20200402},
{'from': 20200403, 'to': 20200503},
{'from': 20200504, 'to': 20200512}]
def test_make_signal():
"""Check that constructed signals sum the correct columns."""
data = pd.DataFrame({
'state': ['NA'],
'date': [20200102],
'previous_day_admission_adult_covid_confirmed': [1],
'previous_day_admission_adult_covid_suspected': [2],
'previous_day_admission_pediatric_covid_confirmed': [4],
'previous_day_admission_pediatric_covid_suspected': [8],
'previous_day_admission_influenza_confirmed': [16]
})
expected_confirmed = pd.DataFrame({
'state': ['na'],
'timestamp': [datetime(year=2020, month=1, day=1)],
'val': [5.],
})
pd.testing.assert_frame_equal(expected_confirmed, make_signal(data, CONFIRMED))
pd.testing.assert_frame_equal(expected_confirmed, make_signal(data, CONFIRMED_PROP))
expected_sum = pd.DataFrame({
'state': ['na'],
'timestamp': [datetime(year=2020, month=1, day=1)],
'val': [15.],
})
pd.testing.assert_frame_equal(expected_sum, make_signal(data, SUM_CONF_SUSP))
pd.testing.assert_frame_equal(expected_sum, make_signal(data, SUM_CONF_SUSP_PROP))
expected_flu = pd.DataFrame({
'state': ['na'],
'timestamp': [datetime(year=2020, month=1, day=1)],
'val': [16.],
})
pd.testing.assert_frame_equal(expected_flu, make_signal(data, CONFIRMED_FLU))
pd.testing.assert_frame_equal(expected_flu, make_signal(data, CONFIRMED_FLU_PROP))
with pytest.raises(Exception):
make_signal(data, "zig")
def test_pop_proportion():
geo_mapper = GeoMapper()
state_pop = geo_mapper.get_crosswalk("state_code", "pop")
test_df = pd.DataFrame({
'state': ['PA'],
'state_code': [42],
'timestamp': [datetime(year=2020, month=1, day=1)],
'val': [15.],})
pa_pop = int(state_pop.loc[state_pop.state_code == "42", "pop"])
pd.testing.assert_frame_equal(
pop_proportion(test_df, geo_mapper),
pd.DataFrame({
'state': ['PA'],
'state_code': [42],
'timestamp': [datetime(year=2020, month=1, day=1)],
'val': [15/pa_pop*100000],})
)
test_df= pd.DataFrame({
'state': ['WV'],
'state_code': [54],
'timestamp': [datetime(year=2020, month=1, day=1)],
'val': [150.],})
wv_pop = int(state_pop.loc[state_pop.state_code == "54", "pop"])
pd.testing.assert_frame_equal(
pop_proportion(test_df, geo_mapper),
pd.DataFrame({
'state': ['WV'],
'state_code': [54],
'timestamp': [datetime(year=2020, month=1, day=1)],
'val': [150/wv_pop*100000],})
)
def test_make_geo():
"""Check that geographies transform correctly."""
test_timestamp = datetime(year=2020, month=1, day=1)
geo_mapper = GeoMapper()
data = pd.DataFrame({
'state': ['PA', 'WV', 'OH'],
'state_code': [42, 54, 39],
'timestamp': [test_timestamp] * 3,
'val': [1., 2., 4.],
})
expecteds = {
"state": pd.DataFrame(
dict(geo_id=data.state,
timestamp=data.timestamp,
val=data.val)),
"hhs": pd.DataFrame(
dict(geo_id=['3', '5'],
timestamp=[test_timestamp] * 2,
val=[3., 4.])),
"nation": pd.DataFrame(
dict(geo_id=['us'],
timestamp=[test_timestamp],
val=[7.]))
}
for geo, expected in expecteds.items():
result = make_geo(data, geo, geo_mapper)
for series in ["geo_id", "timestamp", "val"]:
pd.testing.assert_series_equal(expected[series], result[series], obj=f"{geo}:{series}")
@freeze_time("2020-01-01")
@patch("delphi_epidata.Epidata.covid_hosp")
def test_output_files(mock_covid_hosp):
with open("test_response.json", "r") as f:
test_response = json.load(f)
mock_covid_hosp.return_value = test_response
with tempfile.TemporaryDirectory() as tmpdir:
params = {
"common": {
"export_dir": tmpdir
}
}
run_module(params)
# 9 days in test data, so should be 9 days of unsmoothed and 3 days for smoothed
expected_num_files = len(GEOS) * len(SIGNALS) * 9 + len(GEOS) * len(SIGNALS) * 3
assert len(os.listdir(tmpdir)) == expected_num_files
@freeze_time("2020-02-03")
@patch("delphi_hhs.run.create_export_csv")
@patch("delphi_epidata.Epidata.covid_hosp")
def test_ignore_last_range_no_results(mock_covid_hosp, mock_export):
mock_covid_hosp.side_effect = [
{"result": 1,
"epidata":
{"state": ["placeholder"],
"date": ["20200101"],
"previous_day_admission_adult_covid_confirmed": [0],
"previous_day_admission_adult_covid_suspected": [0],
"previous_day_admission_pediatric_covid_confirmed": [0],
"previous_day_admission_pediatric_covid_suspected": [0],
"previous_day_admission_influenza_confirmed": [0]
}
},
{"result": -2, "message": "no results"}
]
mock_export.return_value = None
params = {
"common": {
"export_dir": "./receiving"
}
}
assert not run_module(params) # function should not raise value error and has no return value
def test_add_nancode():
data = pd.DataFrame({
'state': ['PA','WV','OH'],
'state_code': [42, 54, 39],
'timestamp': [pd.to_datetime("20200601")]*3,
'val': [1, 2, np.nan],
'se': [np.nan] * 3,
'sample_size': [np.nan] * 3,
})
expected = pd.DataFrame({
'state': ['PA','WV','OH'],
'state_code': [42, 54, 39],
'timestamp': [pd.to_datetime("20200601")]*3,
'val': [1, 2, np.nan],
'se': [np.nan] * 3,
'sample_size': [np.nan] * 3,
'missing_val': [Nans.NOT_MISSING] * 2 + [Nans.OTHER],
'missing_se': [Nans.NOT_APPLICABLE] * 3,
'missing_sample_size': [Nans.NOT_APPLICABLE] * 3,
})
pd.testing.assert_frame_equal(expected, add_nancodes(data))