From 14e30101b9f074951eff5198b6a23b3cfeab35e7 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Wed, 7 Feb 2024 16:26:34 +0000 Subject: [PATCH] Deploy to GitHub pages --- .nojekyll | 0 doc/hydras.pdf | Bin 0 -> 3539945 bytes theories/html/Goedel.PRrepresentable.html | 79 + theories/html/Goedel.codeSysPrf.html | 251 + theories/html/Goedel.fixPoint.html | 101 + theories/html/Goedel.goedel1.html | 139 + theories/html/Goedel.goedel2.html | 159 + theories/html/Goedel.rosser.html | 207 + theories/html/Goedel.rosserPA.html | 222 + theories/html/additions.AM.html | 528 + theories/html/additions.Addition_Chains.html | 1074 + theories/html/additions.BinaryStrat.html | 69 + theories/html/additions.Compatibility.html | 295 + theories/html/additions.Demo.html | 47 + theories/html/additions.Demo_power.html | 47 + theories/html/additions.Dichotomy.html | 154 + theories/html/additions.Euclidean_Chains.html | 1248 + theories/html/additions.Fib2.html | 153 + theories/html/additions.FirstSteps.html | 270 + theories/html/additions.Monoid_def.html | 292 + theories/html/additions.Monoid_instances.html | 372 + theories/html/additions.More_on_positive.html | 287 + theories/html/additions.Naive.html | 249 + theories/html/additions.Pow.html | 469 + theories/html/additions.Pow_variant.html | 477 + theories/html/additions.Strategies.html | 69 + theories/html/additions.Trace_exercise.html | 99 + theories/html/additions.Wf_transparent.html | 69 + theories/html/additions.fib.html | 333 + theories/html/coqdoc.css | 338 + theories/html/gaia_hydras.GCanon.html | 204 + theories/html/gaia_hydras.GF_alpha.html | 169 + theories/html/gaia_hydras.GHessenberg.html | 150 + theories/html/gaia_hydras.GHprime.html | 121 + theories/html/gaia_hydras.GHydra.html | 115 + theories/html/gaia_hydras.GL_alpha.html | 116 + theories/html/gaia_hydras.GLarge_Sets.html | 88 + theories/html/gaia_hydras.GPaths.html | 250 + theories/html/gaia_hydras.GPrelude.html | 44 + theories/html/gaia_hydras.GaiaToHydra.html | 60 + .../html/gaia_hydras.HydraGaia_Examples.html | 99 + theories/html/gaia_hydras.ON_gfinite.html | 86 + theories/html/gaia_hydras.T1Bridge.html | 682 + theories/html/gaia_hydras.T1Choice.html | 216 + theories/html/gaia_hydras.T2Bridge.html | 114 + theories/html/gaia_hydras.nfwfgaia.html | 3901 ++ theories/html/gaia_hydras.onType.html | 289 + theories/html/hydras.Ackermann.Deduction.html | 82 + theories/html/hydras.Ackermann.LNN.html | 395 + theories/html/hydras.Ackermann.LNN2LNT.html | 318 + theories/html/hydras.Ackermann.LNT.html | 450 + theories/html/hydras.Ackermann.Languages.html | 234 + theories/html/hydras.Ackermann.ListExt.html | 76 + theories/html/hydras.Ackermann.NN.html | 153 + theories/html/hydras.Ackermann.NN2PA.html | 83 + theories/html/hydras.Ackermann.NNtheory.html | 72 + .../html/hydras.Ackermann.NewNotations.html | 44 + theories/html/hydras.Ackermann.PA.html | 133 + .../html/hydras.Ackermann.PAconsistent.html | 61 + theories/html/hydras.Ackermann.PAtheory.html | 80 + theories/html/hydras.Ackermann.cPair.html | 396 + theories/html/hydras.Ackermann.checkPrf.html | 472 + theories/html/hydras.Ackermann.code.html | 213 + .../html/hydras.Ackermann.codeFreeVar.html | 150 + theories/html/hydras.Ackermann.codeList.html | 141 + .../html/hydras.Ackermann.codeNatToTerm.html | 66 + theories/html/hydras.Ackermann.codePA.html | 186 + .../html/hydras.Ackermann.codeSubFormula.html | 535 + .../html/hydras.Ackermann.codeSubTerm.html | 100 + .../html/hydras.Ackermann.expressible.html | 181 + .../html/hydras.Ackermann.extEqualNat.html | 99 + theories/html/hydras.Ackermann.fol.html | 457 + theories/html/hydras.Ackermann.folLogic.html | 255 + theories/html/hydras.Ackermann.folLogic2.html | 107 + theories/html/hydras.Ackermann.folLogic3.html | 163 + theories/html/hydras.Ackermann.folProof.html | 155 + theories/html/hydras.Ackermann.folProp.html | 574 + .../html/hydras.Ackermann.folReplace.html | 117 + theories/html/hydras.Ackermann.misc.html | 38 + theories/html/hydras.Ackermann.model.html | 223 + theories/html/hydras.Ackermann.prLogic.html | 60 + theories/html/hydras.Ackermann.primRec.html | 938 + theories/html/hydras.Ackermann.subAll.html | 329 + theories/html/hydras.Ackermann.subProp.html | 218 + .../html/hydras.Ackermann.wConsistent.html | 59 + .../html/hydras.Ackermann.wellFormed.html | 182 + theories/html/hydras.Epsilon0.Canon.html | 430 + theories/html/hydras.Epsilon0.E0.html | 559 + theories/html/hydras.Epsilon0.Epsilon0.html | 33 + .../html/hydras.Epsilon0.Epsilon0rpo.html | 336 + theories/html/hydras.Epsilon0.F_alpha.html | 497 + theories/html/hydras.Epsilon0.F_omega.html | 217 + theories/html/hydras.Epsilon0.Hessenberg.html | 333 + theories/html/hydras.Epsilon0.Hprime.html | 577 + theories/html/hydras.Epsilon0.L_alpha.html | 197 + theories/html/hydras.Epsilon0.Large_Sets.html | 729 + .../hydras.Epsilon0.Large_Sets_Examples.html | 172 + theories/html/hydras.Epsilon0.Paths.html | 1382 + theories/html/hydras.Epsilon0.T1.html | 2392 + theories/html/hydras.Gamma0.Gamma0.html | 1661 + theories/html/hydras.Gamma0.T2.html | 438 + theories/html/hydras.Hydra.Battle_length.html | 119 + theories/html/hydras.Hydra.BigBattle.html | 501 + .../hydras.Hydra.Epsilon0_Needed_Free.html | 133 + .../hydras.Hydra.Epsilon0_Needed_Generic.html | 98 + .../hydras.Hydra.Epsilon0_Needed_Std.html | 157 + .../html/hydras.Hydra.Hydra_Definitions.html | 858 + .../html/hydras.Hydra.Hydra_Examples.html | 168 + .../html/hydras.Hydra.Hydra_Extraction.html | 37 + theories/html/hydras.Hydra.Hydra_Lemmas.html | 331 + .../html/hydras.Hydra.Hydra_Termination.html | 173 + .../html/hydras.Hydra.Hydra_Theorems.html | 240 + theories/html/hydras.Hydra.KP_example.html | 152 + theories/html/hydras.Hydra.O2H.html | 256 + theories/html/hydras.Hydra.Omega2_Small.html | 200 + theories/html/hydras.Hydra.Omega_Small.html | 147 + theories/html/hydras.MoreAck.Ack.html | 420 + theories/html/hydras.MoreAck.AckNotPR.html | 351 + theories/html/hydras.MoreAck.BadSubst.html | 98 + theories/html/hydras.MoreAck.FolExamples.html | 588 + .../html/hydras.MoreAck.Iterate_compat.html | 54 + .../html/hydras.MoreAck.LNN_Examples.html | 170 + .../html/hydras.MoreAck.PrimRecExamples.html | 481 + .../hydras.MoreAck.expressibleExamples.html | 89 + ...s.OrdinalNotations.Example_3PlusOmega.html | 70 + .../hydras.OrdinalNotations.ON_Finite.html | 185 + .../hydras.OrdinalNotations.ON_Generic.html | 360 + .../html/hydras.OrdinalNotations.ON_O.html | 118 + .../hydras.OrdinalNotations.ON_Omega.html | 76 + .../hydras.OrdinalNotations.ON_Omega2.html | 383 + ....OrdinalNotations.ON_Omega_plus_omega.html | 221 + .../html/hydras.OrdinalNotations.ON_mult.html | 151 + .../html/hydras.OrdinalNotations.ON_plus.html | 148 + .../hydras.OrdinalNotations.OmegaOmega.html | 481 + theories/html/hydras.Prelude.Comparable.html | 296 + theories/html/hydras.Prelude.Compat815.html | 109 + theories/html/hydras.Prelude.DecPreOrder.html | 180 + .../hydras.Prelude.DecPreOrder_Instances.html | 191 + theories/html/hydras.Prelude.Exp2.html | 56 + .../html/hydras.Prelude.First_toggle.html | 75 + theories/html/hydras.Prelude.Fuel.html | 117 + theories/html/hydras.Prelude.Iterates.html | 390 + .../hydras.Prelude.LibHyps_Experiments.html | 57 + theories/html/hydras.Prelude.Merge_Sort.html | 292 + .../html/hydras.Prelude.MoreDecidable.html | 51 + theories/html/hydras.Prelude.MoreLibHyps.html | 59 + theories/html/hydras.Prelude.MoreLists.html | 417 + theories/html/hydras.Prelude.MoreOrders.html | 115 + theories/html/hydras.Prelude.MoreVectors.html | 236 + theories/html/hydras.Prelude.More_Arith.html | 177 + .../html/hydras.Prelude.OrdNotations.html | 46 + theories/html/hydras.Prelude.Restriction.html | 130 + .../html/hydras.Prelude.STDPP_compat.html | 75 + .../html/hydras.Prelude.Simple_LexProd.html | 97 + theories/html/hydras.Prelude.Sort_spec.html | 214 + theories/html/hydras.Prelude.WfVariant.html | 79 + .../html/hydras.Prelude.ssrnat_extracts.html | 61 + theories/html/hydras.Schutte.AP.html | 330 + theories/html/hydras.Schutte.Addition.html | 272 + theories/html/hydras.Schutte.CNF.html | 258 + .../html/hydras.Schutte.Correctness_E0.html | 175 + theories/html/hydras.Schutte.Countable.html | 155 + theories/html/hydras.Schutte.Critical.html | 320 + theories/html/hydras.Schutte.GRelations.html | 155 + theories/html/hydras.Schutte.Lub.html | 63 + .../html/hydras.Schutte.MoreEpsilonIota.html | 163 + .../hydras.Schutte.Ordering_Functions.html | 519 + theories/html/hydras.Schutte.PartialFun.html | 266 + theories/html/hydras.Schutte.Schutte.html | 162 + .../html/hydras.Schutte.Schutte_basics.html | 824 + theories/html/hydras.Schutte.Well_Orders.html | 173 + theories/html/hydras.rpo.closure.html | 73 + theories/html/hydras.rpo.decidable_set.html | 48 + theories/html/hydras.rpo.dickson.html | 190 + theories/html/hydras.rpo.list_permut.html | 356 + theories/html/hydras.rpo.list_set.html | 475 + theories/html/hydras.rpo.more_list.html | 442 + theories/html/hydras.rpo.rpo.html | 676 + theories/html/hydras.rpo.term.html | 916 + .../html/hydras.solutions_exercises.F_3.html | 200 + ...ydras.solutions_exercises.FibonacciPR.html | 207 + ...as.solutions_exercises.Limit_Infinity.html | 107 + .../hydras.solutions_exercises.MinPR.html | 65 + .../hydras.solutions_exercises.MinPR2.html | 88 + ...as.solutions_exercises.MorePRExamples.html | 123 + ...hydras.solutions_exercises.MultisetWf.html | 190 + ...hydras.solutions_exercises.OnCodeList.html | 50 + ...hydras.solutions_exercises.T1_ltNotWf.html | 93 + ...dras.solutions_exercises.ge_omega_iff.html | 43 + ...s.solutions_exercises.is_F_monotonous.html | 73 + .../hydras.solutions_exercises.isqrt.html | 109 + ...hydras.solutions_exercises.lt_succ_le.html | 77 + ...s.solutions_exercises.predSuccUnicity.html | 109 + ...exercises.schutte_cnf_counter_example.html | 65 + theories/html/index.html | 58432 ++++++++++++++++ theories/html/toc.html | 2100 + 196 files changed, 114025 insertions(+) create mode 100644 .nojekyll create mode 100644 doc/hydras.pdf create mode 100644 theories/html/Goedel.PRrepresentable.html create mode 100644 theories/html/Goedel.codeSysPrf.html create mode 100644 theories/html/Goedel.fixPoint.html create mode 100644 theories/html/Goedel.goedel1.html create mode 100644 theories/html/Goedel.goedel2.html create mode 100644 theories/html/Goedel.rosser.html create mode 100644 theories/html/Goedel.rosserPA.html create mode 100644 theories/html/additions.AM.html create mode 100644 theories/html/additions.Addition_Chains.html create mode 100644 theories/html/additions.BinaryStrat.html create mode 100644 theories/html/additions.Compatibility.html create mode 100644 theories/html/additions.Demo.html create mode 100644 theories/html/additions.Demo_power.html create mode 100644 theories/html/additions.Dichotomy.html create mode 100644 theories/html/additions.Euclidean_Chains.html create mode 100644 theories/html/additions.Fib2.html create mode 100644 theories/html/additions.FirstSteps.html create mode 100644 theories/html/additions.Monoid_def.html create mode 100644 theories/html/additions.Monoid_instances.html create mode 100644 theories/html/additions.More_on_positive.html create mode 100644 theories/html/additions.Naive.html create mode 100644 theories/html/additions.Pow.html create mode 100644 theories/html/additions.Pow_variant.html create mode 100644 theories/html/additions.Strategies.html create mode 100644 theories/html/additions.Trace_exercise.html create mode 100644 theories/html/additions.Wf_transparent.html create mode 100644 theories/html/additions.fib.html create mode 100644 theories/html/coqdoc.css create mode 100644 theories/html/gaia_hydras.GCanon.html create mode 100644 theories/html/gaia_hydras.GF_alpha.html create mode 100644 theories/html/gaia_hydras.GHessenberg.html create mode 100644 theories/html/gaia_hydras.GHprime.html create mode 100644 theories/html/gaia_hydras.GHydra.html create mode 100644 theories/html/gaia_hydras.GL_alpha.html create mode 100644 theories/html/gaia_hydras.GLarge_Sets.html create mode 100644 theories/html/gaia_hydras.GPaths.html create mode 100644 theories/html/gaia_hydras.GPrelude.html create mode 100644 theories/html/gaia_hydras.GaiaToHydra.html create mode 100644 theories/html/gaia_hydras.HydraGaia_Examples.html create mode 100644 theories/html/gaia_hydras.ON_gfinite.html create mode 100644 theories/html/gaia_hydras.T1Bridge.html create mode 100644 theories/html/gaia_hydras.T1Choice.html create mode 100644 theories/html/gaia_hydras.T2Bridge.html create mode 100644 theories/html/gaia_hydras.nfwfgaia.html create mode 100644 theories/html/gaia_hydras.onType.html create mode 100644 theories/html/hydras.Ackermann.Deduction.html create mode 100644 theories/html/hydras.Ackermann.LNN.html create mode 100644 theories/html/hydras.Ackermann.LNN2LNT.html create mode 100644 theories/html/hydras.Ackermann.LNT.html create mode 100644 theories/html/hydras.Ackermann.Languages.html create mode 100644 theories/html/hydras.Ackermann.ListExt.html create mode 100644 theories/html/hydras.Ackermann.NN.html create mode 100644 theories/html/hydras.Ackermann.NN2PA.html create mode 100644 theories/html/hydras.Ackermann.NNtheory.html create mode 100644 theories/html/hydras.Ackermann.NewNotations.html create mode 100644 theories/html/hydras.Ackermann.PA.html create mode 100644 theories/html/hydras.Ackermann.PAconsistent.html create mode 100644 theories/html/hydras.Ackermann.PAtheory.html create mode 100644 theories/html/hydras.Ackermann.cPair.html create mode 100644 theories/html/hydras.Ackermann.checkPrf.html create mode 100644 theories/html/hydras.Ackermann.code.html create mode 100644 theories/html/hydras.Ackermann.codeFreeVar.html create mode 100644 theories/html/hydras.Ackermann.codeList.html create mode 100644 theories/html/hydras.Ackermann.codeNatToTerm.html create mode 100644 theories/html/hydras.Ackermann.codePA.html create mode 100644 theories/html/hydras.Ackermann.codeSubFormula.html create mode 100644 theories/html/hydras.Ackermann.codeSubTerm.html create mode 100644 theories/html/hydras.Ackermann.expressible.html create mode 100644 theories/html/hydras.Ackermann.extEqualNat.html create mode 100644 theories/html/hydras.Ackermann.fol.html create mode 100644 theories/html/hydras.Ackermann.folLogic.html create mode 100644 theories/html/hydras.Ackermann.folLogic2.html create mode 100644 theories/html/hydras.Ackermann.folLogic3.html create mode 100644 theories/html/hydras.Ackermann.folProof.html create mode 100644 theories/html/hydras.Ackermann.folProp.html create mode 100644 theories/html/hydras.Ackermann.folReplace.html create mode 100644 theories/html/hydras.Ackermann.misc.html create mode 100644 theories/html/hydras.Ackermann.model.html create mode 100644 theories/html/hydras.Ackermann.prLogic.html create mode 100644 theories/html/hydras.Ackermann.primRec.html create mode 100644 theories/html/hydras.Ackermann.subAll.html create mode 100644 theories/html/hydras.Ackermann.subProp.html create mode 100644 theories/html/hydras.Ackermann.wConsistent.html create mode 100644 theories/html/hydras.Ackermann.wellFormed.html create mode 100644 theories/html/hydras.Epsilon0.Canon.html create mode 100644 theories/html/hydras.Epsilon0.E0.html create mode 100644 theories/html/hydras.Epsilon0.Epsilon0.html create mode 100644 theories/html/hydras.Epsilon0.Epsilon0rpo.html create mode 100644 theories/html/hydras.Epsilon0.F_alpha.html create mode 100644 theories/html/hydras.Epsilon0.F_omega.html create mode 100644 theories/html/hydras.Epsilon0.Hessenberg.html create mode 100644 theories/html/hydras.Epsilon0.Hprime.html create mode 100644 theories/html/hydras.Epsilon0.L_alpha.html create mode 100644 theories/html/hydras.Epsilon0.Large_Sets.html create mode 100644 theories/html/hydras.Epsilon0.Large_Sets_Examples.html create mode 100644 theories/html/hydras.Epsilon0.Paths.html create mode 100644 theories/html/hydras.Epsilon0.T1.html create mode 100644 theories/html/hydras.Gamma0.Gamma0.html create mode 100644 theories/html/hydras.Gamma0.T2.html create mode 100644 theories/html/hydras.Hydra.Battle_length.html create mode 100644 theories/html/hydras.Hydra.BigBattle.html create mode 100644 theories/html/hydras.Hydra.Epsilon0_Needed_Free.html create mode 100644 theories/html/hydras.Hydra.Epsilon0_Needed_Generic.html create mode 100644 theories/html/hydras.Hydra.Epsilon0_Needed_Std.html create mode 100644 theories/html/hydras.Hydra.Hydra_Definitions.html create mode 100644 theories/html/hydras.Hydra.Hydra_Examples.html create mode 100644 theories/html/hydras.Hydra.Hydra_Extraction.html create mode 100644 theories/html/hydras.Hydra.Hydra_Lemmas.html create mode 100644 theories/html/hydras.Hydra.Hydra_Termination.html create mode 100644 theories/html/hydras.Hydra.Hydra_Theorems.html create mode 100644 theories/html/hydras.Hydra.KP_example.html create mode 100644 theories/html/hydras.Hydra.O2H.html create mode 100644 theories/html/hydras.Hydra.Omega2_Small.html create mode 100644 theories/html/hydras.Hydra.Omega_Small.html create mode 100644 theories/html/hydras.MoreAck.Ack.html create mode 100644 theories/html/hydras.MoreAck.AckNotPR.html create mode 100644 theories/html/hydras.MoreAck.BadSubst.html create mode 100644 theories/html/hydras.MoreAck.FolExamples.html create mode 100644 theories/html/hydras.MoreAck.Iterate_compat.html create mode 100644 theories/html/hydras.MoreAck.LNN_Examples.html create mode 100644 theories/html/hydras.MoreAck.PrimRecExamples.html create mode 100644 theories/html/hydras.MoreAck.expressibleExamples.html create mode 100644 theories/html/hydras.OrdinalNotations.Example_3PlusOmega.html create mode 100644 theories/html/hydras.OrdinalNotations.ON_Finite.html create mode 100644 theories/html/hydras.OrdinalNotations.ON_Generic.html create mode 100644 theories/html/hydras.OrdinalNotations.ON_O.html create mode 100644 theories/html/hydras.OrdinalNotations.ON_Omega.html create mode 100644 theories/html/hydras.OrdinalNotations.ON_Omega2.html create mode 100644 theories/html/hydras.OrdinalNotations.ON_Omega_plus_omega.html create mode 100644 theories/html/hydras.OrdinalNotations.ON_mult.html create mode 100644 theories/html/hydras.OrdinalNotations.ON_plus.html create mode 100644 theories/html/hydras.OrdinalNotations.OmegaOmega.html create mode 100644 theories/html/hydras.Prelude.Comparable.html create mode 100644 theories/html/hydras.Prelude.Compat815.html create mode 100644 theories/html/hydras.Prelude.DecPreOrder.html create mode 100644 theories/html/hydras.Prelude.DecPreOrder_Instances.html create mode 100644 theories/html/hydras.Prelude.Exp2.html create mode 100644 theories/html/hydras.Prelude.First_toggle.html create mode 100644 theories/html/hydras.Prelude.Fuel.html create mode 100644 theories/html/hydras.Prelude.Iterates.html create mode 100644 theories/html/hydras.Prelude.LibHyps_Experiments.html create mode 100644 theories/html/hydras.Prelude.Merge_Sort.html create mode 100644 theories/html/hydras.Prelude.MoreDecidable.html create mode 100644 theories/html/hydras.Prelude.MoreLibHyps.html create mode 100644 theories/html/hydras.Prelude.MoreLists.html create mode 100644 theories/html/hydras.Prelude.MoreOrders.html create mode 100644 theories/html/hydras.Prelude.MoreVectors.html create mode 100644 theories/html/hydras.Prelude.More_Arith.html create mode 100644 theories/html/hydras.Prelude.OrdNotations.html create mode 100644 theories/html/hydras.Prelude.Restriction.html create mode 100644 theories/html/hydras.Prelude.STDPP_compat.html create mode 100644 theories/html/hydras.Prelude.Simple_LexProd.html create mode 100644 theories/html/hydras.Prelude.Sort_spec.html create mode 100644 theories/html/hydras.Prelude.WfVariant.html create mode 100644 theories/html/hydras.Prelude.ssrnat_extracts.html create mode 100644 theories/html/hydras.Schutte.AP.html create mode 100644 theories/html/hydras.Schutte.Addition.html create mode 100644 theories/html/hydras.Schutte.CNF.html create mode 100644 theories/html/hydras.Schutte.Correctness_E0.html create mode 100644 theories/html/hydras.Schutte.Countable.html create mode 100644 theories/html/hydras.Schutte.Critical.html create mode 100644 theories/html/hydras.Schutte.GRelations.html create mode 100644 theories/html/hydras.Schutte.Lub.html create mode 100644 theories/html/hydras.Schutte.MoreEpsilonIota.html create mode 100644 theories/html/hydras.Schutte.Ordering_Functions.html create mode 100644 theories/html/hydras.Schutte.PartialFun.html create mode 100644 theories/html/hydras.Schutte.Schutte.html create mode 100644 theories/html/hydras.Schutte.Schutte_basics.html create mode 100644 theories/html/hydras.Schutte.Well_Orders.html create mode 100644 theories/html/hydras.rpo.closure.html create mode 100644 theories/html/hydras.rpo.decidable_set.html create mode 100644 theories/html/hydras.rpo.dickson.html create mode 100644 theories/html/hydras.rpo.list_permut.html create mode 100644 theories/html/hydras.rpo.list_set.html create mode 100644 theories/html/hydras.rpo.more_list.html create mode 100644 theories/html/hydras.rpo.rpo.html create mode 100644 theories/html/hydras.rpo.term.html create mode 100644 theories/html/hydras.solutions_exercises.F_3.html create mode 100644 theories/html/hydras.solutions_exercises.FibonacciPR.html create mode 100644 theories/html/hydras.solutions_exercises.Limit_Infinity.html create mode 100644 theories/html/hydras.solutions_exercises.MinPR.html create mode 100644 theories/html/hydras.solutions_exercises.MinPR2.html create mode 100644 theories/html/hydras.solutions_exercises.MorePRExamples.html create mode 100644 theories/html/hydras.solutions_exercises.MultisetWf.html create mode 100644 theories/html/hydras.solutions_exercises.OnCodeList.html create mode 100644 theories/html/hydras.solutions_exercises.T1_ltNotWf.html create mode 100644 theories/html/hydras.solutions_exercises.ge_omega_iff.html create mode 100644 theories/html/hydras.solutions_exercises.is_F_monotonous.html create mode 100644 theories/html/hydras.solutions_exercises.isqrt.html create mode 100644 theories/html/hydras.solutions_exercises.lt_succ_le.html create mode 100644 theories/html/hydras.solutions_exercises.predSuccUnicity.html create mode 100644 theories/html/hydras.solutions_exercises.schutte_cnf_counter_example.html create mode 100644 theories/html/index.html create mode 100644 theories/html/toc.html diff --git a/.nojekyll b/.nojekyll new file mode 100644 index 00000000..e69de29b diff --git a/doc/hydras.pdf b/doc/hydras.pdf new file mode 100644 index 0000000000000000000000000000000000000000..6d5ba293dd26654efe4eb655e53e5470a4489487 GIT binary patch literal 3539945 zcma%h1yEewvhLsnC%6SqaCdhN?hZi*m_Y_7c!EoCf_rcuToN>a;4Xs)mk=xjdqe(n z&b{^O-dAr|P0e0=t?t#k`|GcJ&um6bIR$oZ4t@;A@3UWK1{Nmz2Qm0*xM*D7IAVy2 z(QxYey4uokYP@mO@c_|qs?%_DanW!p0No)TG(x<*Pp8fvw(jt6XDbg|Ia_NN8~F0q zwqSb?2O4exVF4Nm37UTn42XxjtrZBvXKB>P#AR84Fz~u|eR(OOxigtO8d0_b+E?R% zalyzLy~VJ)xd6?veYn2edtIC$_bq9w7=>J~lqvT#`*cMKIQY>%x-s+_$H&i-C1*nn zEw2qwx`FU974ZxDu)@d%;*CQ7jo z8yglerc7O#W$$`hxRlQCM1c=`DAUpmG!B-(dU>lj#Za*|pH*idux()R;{4?L_6tBz zhn$Q`ZWzpGoKR&o^~MdeY0k(FVM2At^s^Jj4k2NB^hV+)YP3-4yYuf52O3Kf1fpz9 zbKa6Ra^Er=B+Bk!6)tt!v!0M=_2#tftaaugmzZTt{GTC)>WFpgn(A4WIB^sf zvB*^=)mRWQaA;|#<&tm)dZq)l&|;=cIQ~KfI)r8h9rygrj8cYfFi{bb|2j(hVIqKc z@D~?aT4M-ioi*j>XFsjQ!ci2|z93N%3$lDTwHym3V=y}T9EyVzGmvv@S4^$}$N3C(xqA_c@)VX76R6yf7u z$_YX-)%A#Tu5N%+E?TN|*6tVk&sphQ#Q;Liu=Eh&S|3;HI0|+J#1&sEN}O%qIDX`X za~wpJy>lGXC^}6HNuoNfFZcwAMemu`1wNZ8k%5s}FRm1}2BRkr=Z|Ke`CkS;0LRR` ztj7lpe!LMk>Lwgt%n~fJ|1@lL*QQhU0BK!$HzH!1w!wp&e(u_ao$mHlBu>L6H-TJR zKl#j0q{o-p-F-D;gaIQ<&dRpcbZ9m?`#44K6XjycIju}5X1Y#|uc=qJC{LWBzMD+1 zJIv>Xae$CB_Din^7^pz9JI4oJ6X zXMW(B!CT=Q`IhkZ@(tXx`<|i+xg}4+dK7oEAUpQN#4e`vLw)<&izUC|mnzB^m)yf* z-R|l+%x#)DhD4E|cz>qs%I5USXX$P>b0eI#V{dUo4KWLWrUjXGvE#%SyDWWvA4imL ze%2^x>jv!WiuH{SMXtB&_$(?>?dryGtKr537&|L+pmGN&;MV}9JRvp4bg4F-?|wDp zt*9sZNtI_P5HxR>qU5X{!)tj>@zUN| zA4zJD8cn>u2uQ$j3Vs{|f;wuwbL!LxuAY@t!Q$rX4L%0V`ZTIh1;)jEchG^ovZ``$ zq?kT{7K(VuLew0BPR5IlUk14^|5m(yR@Nv*FwJqJF-U*rEZ9IJ30 zFunp3U7Yf(E<;GBCC1lZ8XfDd-={UXh|pGYg?US$%^L#^Spx;s);gLJkVw6*Q=grD|fv&#YbfJdQL3NW;l6u1Lz&B?ocL-D8?Ez;F+l9Rh~~ z=1AoUTcp$I(r}3%%s=W-JnIj`1eI0Metb*q-(CqW1EcZ(%?4?3=>os zG){us2icGu(#FN+@1w-T_!ql|dXX^RjA*IwW=q(FT1}S~On-0bXRMaYQlGsr&^(5i zG8j;x9k$#~F$?x>+Fk$1YnFWHKC?LGb@)g;5UHMQr@iCSgq_Lv>l+#9ZL0L{Khr>!p(uAYulRdfR@|;jtm(wOxAW!Opq;QkWS8NzXx(k!bw?CO$>&c~+%#UC!|q{1(@d$jQL{XO z%bD8Y>pG7JN@9Wt7`9-Wf0Ziu*;5_l73TVH74iRB@wm8n|EG%g-e3f5Du@LeH`qg~ zQYy|3<_@kM5_Irp?__Pqn5c;@ym^#Yikh+JQMSZ7nI#$+qV;7GJ+F1!IUl&+^zF2e z$oYVcoTchD+4%@LYubtx>}JTq$T*s8mocH{*jb7S^D*`sRX}#+rtmliKRVNej zdj~<(962p_=cLc~bvgcwT8V6~=w}*Dx=;(oq-8lLaE56EZxlitz zW=3x@YhfzCvQX4_$}K)%hSQCv289x|M+lWzQoZUgxU^OMTF($n*n2pRP&F4HHXxi`y!I^8sUB^kaf?R?-G4RIEy92u&cyqKP&VPP_k_sh0X?&M3o;4*4 zV~WYe<(wYjuMv0`o{LBF$Met^ntx-bO6ys8J%v_mU%7i!{mF_@r+H6NT(E|jmlg9= zs>GKQ^};%l1;aOY!lU>#UwA}0ucg|07S9ho+`-GJH)r`^Ji z-hPkgyQdK!@!fY=$;jQC&I8(4OxlAT*gF`;HFG~{rXNy4zlGtWD@koT%ESx&X*WH^ z7}f-3bG{b+9d0d^rX+HFd$2cm6BQ8M)3r8DXJM*5{Pw2xE~p-_@DOptY57+oPamsx znT6#2)yC*?&j|H}Vjf%6vUB$@kP%5x;0x5e{>|w(4QAz&Su&OkY_|cQ7o$J!F&g4F zvTQ#G@c5lpBI>ZlWa-{dqKSxc%Ho8ltlBTL-v4Q`d3c0*dH88KWnG+I+;v>7tl?_pY`uWi zw%Up^|J9$%$?E>AJC~67cPIY1@VEgWmG=SK0RYO%EC6)Ce;toU0DL)5YbRd-0st9) zSquPp+(6=R@bGXI;p7BEIIQ5*Xv<;k0^;Xa;Nk>`N&3L|ce3@Md1Gr21dG$1 zcJ$EE0BywS4EWW!)Ldn49e_%H?zTF9>bll`PS(OUbdnM@Vm=~1AXkvBhZT(v$QcX~ z@e!x{t6T(r{&bm>j^^(Y4<~Ut>8D+34AnGgWL?~CX#_a9*sZy^cxVKLIk*M*cm=rF zXn44IxH!3ZIJtS*xwu8R1Vwmw{`CYxLkHi@-NsHtTTbC$d%;KIbpN_3Z*Ol7Z(a@; zcY985VPWAX9Xvej@D=P3U$BRj4?7q_|8EU)wh(J~psNSa1x)j#(dvzhr-wKl+|qw; z0p$80wg029{@X$|wg2~05a`JPf7L=fv~B;(-v3cC(mcEZ|CW_=vGxSPq55xG zoBzlvaQ&~cPiO$S!grRlbq9Lc+9Nb!s9aF9RL*>85so` z6$J(L87lmPiH?ejj){eVfr){Eg@^U`z{A49#lywHA|N0nBp{%qprD|n{?CDchK7cX zg-wcwM@mkFPelHoiT~e|$Ik$KbfkAE>qrRr07QHQBz%O&e!vm{fQX2Mfbd@gfPjdE z3_w9cMMro#07(DW6bdRD9smIe5d{GS85!*v1|}*ZCISEv2_Ko3`#B1#w3Zbe0h(I~ z4`E_~40`<+?J0U9;>kDeNe#S3B%~XmVT}y@@_L>MKhFwfbvzhf3fM70_;hWWY+qR? z%f0JO5!{^KD(=UJZ~SBjD*BVt;0D4+_(-(e$kOmFw5;4h=m-)E>c33#$PoVA(58Rm z9-36hD@#Ot)}X^M#n-!O4Pks-0${;yhl}9@Bmvv2$$n}L=i-@H4-Z#6bE+nZNMryj zAkflNz0R#%`dG5jo2XjS#3BIi!Er9ClIj|~Sxvoba#~0|sw1mwf3h`jiSTFXD(5YC zpkvp}Oy9}IfRn~t%bJ{IX3n(M!|0u+eTRik^M?mVZ}l@=*m(2>%q5|ndeopjXM@@s zhXeQsa9p#7;qH8L6CIfg^1@*k;Dnv_DOyIH>(={^&PaMbFwG(SIduK>)ADYB_~pZQ zvDeXo?JMG$@L?+TQD6Ul_+@JlG46Niyv2yWlCdP6E ztR;NWSlLbBx)tcs%l9Rw9XCYYr^WBtkm=@D+p2En4-$)0z1f`CYaNdOa>;$sVXrC9 zQ62qauG?<6qKD+JKXiAqB@>eYt3DSkFEm$90pFA8M)tIFXCv-cd`8T|_x(&J;1YTs z@{ntv%`=D6{kNX_P<)SvOI0;8YS>n6=OZA8Q?dPN30e2ailbPI>hwv>x&97!jLiJW z@!)QhPb(~^xEgpYuKqJZ)+nyqsW3b>HHDa)+8 zUlz)L1gKgB5mS%KYCi((PMFkCj|1)ugZRy`bri21Hsj&bYX-l$9vroGV{aSXo-5tE z1;K?YMauFzsGq~tt~~^+0j1 z#MTP(p%Ykx8Z&6-HZF^A{yWc-YQpwpTt(<@;E}1)BcPP?5fFp6lkWl#%p+i4G-47y zu)AOI`S=KUeL_7Dc8;ecaYU(c@A;pYMg1pcnI$f;h^VQ&nil*cXX=blulog|T*B3V z0!kUM(3(CsOp(FSmhMI}g=V_PNFj6<)ff;x>lm$IYRI&cYw9+p?oM>fLF360}} zI&hy)KKQM$-jPajqc*s7P!l-yjFar%E(Gz54n{r#8YKz-bN>dN4q9+`M36V_z@0fc<+EVIKAyY9h} z1|BnY=7*NQyOftlz!KmNsXm3f5qGDc5)GCdHGg*&^b}75-THuq-&xschdF)Jt6y%) z3o5pQJWpOdw66rgea<#lkN^vcro{Ot9kgU`InP)&y1S zm|D|%3q9jfPgHG9y4f6Xcin{9rA}_JmpE{2wu^ z0vDKfRNlqd){_$Cu#=7f=6@xhtX$P?otviQxJksBf&GQ1YaNWDL>ONfIewQ<}hvh}bw#2}l4o_PLm!s)H2LCs9XF+8cNff9^ zO}{m#_4c}t-!o$CI*+QcJ*BtT3iR0T=x9IuHfkyz`>KQ(v+cvjM zc%D9aA8m)WP~jftGeMWtb^Ui%MFO6-(0?+of|cspXUqPcJwU@oGPBWIGyb;yEHfzQ zv^z40pU+J55n#{32U+FZe?lIgl%zKYkK)bhL)dj)pkqA?nZ)smZ67?WTIu1qa3n4G zNSxdOTLW9+AfV2u6yaz&xg2byfL`KyNM;t! zM|(HG!BD|@+jJH=s(u=z4&w@ZGZu$_+kEDyd2+oAL))o#_?7^xjmd6#0`-$~zFY&h z09zdvw|sp!WfZr9Zcj!JJ(;B^b=na@AxNiiD!86lFglHb?RQ5t!Y(HmpQ4 z{SmjFM7e;&FmwNYUfI-zAN79fH~k$5=5ia17wz9vwO?d>040H0hbwTw1hGWrs51(y zg6wLT1}DJtpRqK;aldO17B&W++?lq0248s8p8cVsQmI*u-aIH`14lkQ#j5hSS60L)iQgIbNa*L_`c+w z5lyf@9B1p!KP>zO8*_dwCoDaxGxYe-bvO?TUJ6(`x)1MEpcJbc>fP|r5Qd%f^>;3H z_^qG|8N4P9`f8v%X?@FaCXqF_b!QUvUGIaW7tYJ^i@A-XX|x?yGByh@9H!kQ@9NK2 z*l=e<8C6c(PvIP5c0w)Rv%}U>jtletTZE|Lwnwu{Har60#BKIB3Go5<^S|L_t@ck! z%JIOnIiGsBdgyoaBOn8cZ+O4ZT9k0J>naIP?uxz4Phlr*{UNo7IlVn!;B>}sZV&U1 zhC<=gnGR3?;0L-GlpfDj<}!kRavWb9xBV3F)6Jo4?Nh1rRB61=Xf1jZjo$@E(g|^$ zMx`NtkQr2alllno;$Tt>G6O%+F`=1e&&iho-hUCYfvh%l2QH!T=|6d_rV@B~2M2TM zKOBs9WeMlU>cJ;_h>&i%&NMFnVFvuC+8gw*(u)9R0+pcLmM0fPmPmTNV1_f)Q|i+_ z$p;-)_x-L5e8WWD4)=}Z{y!rWc%A<@k-?W){AXE_WW)87fB*UnkL$MPY0tm>gYYoY zsRK9rFKVQYZ)?w9_xx)a!L|8jO2Iz>ie?V_tHJby8V<-1s%wi)PdM2A)*>P)YPbU} z&i{$EoYGqRHQ|#3pRzDy2u`Lt*#8WI9|5)xERfX}g8L)*)G}OuaKf$q--VGMdpsXr zLRP)8M1b(}rn1&SLNo%Wz9+!YN zy{S2A$JwDlLcQ<*H&3J4l;FTN4J!Gk4ishtEc<*O@#=;fmKg%?Wnw*Hwd3$EN(~ja z!-aIeV=dv->Tc$_AUtt^4^PV^GvOt8Z7}FB)kU1^NPRk48+3x#pC=8O%+zomL=%Ts zpv6+$Q5|VaIKP_Wo)0`oc7>f2JhgSRa7vuJ-fHYa+j$usx8@bk@ox?#nnVvgrnG?f z5Ekojh&%A!@|^|!i$Mnzg6!hi(+}hRM!394vQd#(`1Bv{C5qicJDDCheDLXcqMJA6 zRwmcZo9joQKgiVwpZ|+rmahwn*Irx3%zsvI;dpUOZ5=;49*mc)uKimY z%Zl!Eh2|u$px2YQJB8G@VrR9N(Cag+yIEP>jvp+3chBN7$dGGQE8OVP}!{k9jvB#L{+rI zKZdDuq|tqF=trld^!q-Y_+qsesn_Hcb2IZ;+y)9D8!)?9@`OLpg#Mb~2q*>^xGScu zM!^tGEK9`St-Ot2U!;X3$gC{X^}fgy0AfNVG^$n@sHMlKs?gNXBhv9+c~w`JcCb1O z8r0WOE2&A~zvTOQ6L0N0{=Bd=tV^#Qyf<31BI`?$wIRp`WpA0W!kMzL5JynF zEqr>l16x@z1-U;z)=&2nn+v~`Fv(q_JeO5W+4di){q)QF5dhnGnX}te)h9toZe@xq zZy2>mkiAZzXhy*bYP&#LCBI}<5siaxv6X^ntiT&Z7tc+hV=;Px3syLv>VY}tvJR^^ zDQ~CLB7%~7^{F~7WDZHUErI8q?LuFb#dVAQSclRj1a4IZ^ox>4hBuavVT0?@{?iZw zJLje;_HPo_o$_6<`xuo~*d|at)r{Nyn|KQQ`*6i`-fIpnm7 zC*Rk#$lW}@Jp!CyU`zX>i3VKIC~Bj3&3kA~g~N&dm|XU9-JRb&R9YMRYS8QFGDm(j}Ib0Mld1=Pa@!aHz3rxiG!H-orxFcxsS$h5-EM+ zD;TvC;1SCH#Zv5KFIh}qFE6v{6pDOC5TPfh=vg1(+qh&4d4GJNqXAyhD@ps~ISa#$ z)pC+E0$ zse6es75Ri1M>9x-q$=gFr^+ltBHSZWM6vM8420!rh5YfD>FGi|1JHvVSY!%2BV;Ql zsufrq?2suPN(}4fXXuKZdQpqanU12<*h(Y}$GP7Vn&E$xcO^u}%?P2~)Ks9@q#CSX z=8P;ml%EscHgOow(g`Q?DtDCsgc2do+8~wxb*E9Ei4t3e73WU% zT(j4%YCEaDPQv_M^nNro{-q!$NOrhJov{b+b7;*jHh~Lt1ykD4`F%8tFbd*~N;z{4 zf+LTOnGwyO2`Q#CfC^$7r82KSfA;B1^gi;Q{p~2KIjNZ{=OMlYU&YW-4 zwRnM??_L)XTjMPiJ{{-zE%j>Bx6;wi_ScU5(f*To1XJaQtxLOCDg`+@G83 z#|)3+Mfhx^4da`n2-5aB5`6@`+{}{hY>%`sRXWUglR6sJd{uo;MPu3beMSm*uhcaC zg^LT+6}x-xgre-)?8iyS#&Nt^ul=A$=H#f5a94iST+tHOR`l08)}_L_H;#UEomHjX zl`>3Xq6D|BaSN&oUD2zbZoHSVI!riDoPW5UoAIZVk^wAVDZ73bEz`-F_`&ZQgZ;@f zd3x~IH*eUNWhk_Di*mpdiQQUDDc&!5QpRP)~$&`|@%?n+9JGH=pJAo&6Tb06nCP z!q}1ps&MVILE?`Cb8A0~TXv0sG+Nh)#f*I9I6jfH)+tI8#$8526G)MR9thQ(y|^Fp zy5ETX_5OlAW5{^l?aOE_Bt(D4*T3)6>^!C9cePrbM?e=j+g!bit&hj#G}NXg)(7n0 zXm%_xwszD~J;oXq0D4e6fAu5G_G1-9&f`myFuQ#HWQ{bksE96JyCPdIrcc+Zup&=h zjG={U^RcKd_h_ftQipthZ3^O7>j0d@*W*y0%;y#EV+dc51nfupyg}o;Q0|7s5s!W3 zDh?uu87(>GbUYfq9-o;R&d#@Mf0OE$nX0}oBNf>PIxbX(h=X?(&Jt^N(`7pC2CM@b z|HONxo!o|RSaVDr7ExX7STc|xq=KYMF>Lv!S5<4etEo`pB$k+j{e|$`FBKv0T$Y=t zubc(d(^!)hgH(B!e>hFwO?%8%?|t+lfS$IlVcn~GvTgaSTqDr)`3hdYcnj*MQbWci zCM&P#6166GD8Xw-YbbdKa4Y0@6dYT~*njD2xNe99ca2?LU~EhwQ&DS+;<)>M=<0q4k_MXwWYT%P(g@)Jwalk==oBW#vftR_QM)NT zWF$!tyeBUH-E{Q2RZZ`xaA!H;(=UjBjj}h+uMs28qhpYV{F_1PvdHbwyy9~tF}d7| zZ`D&J?QZ6~oxdJ1b4BZqTU?I?JELLg2BK9Z?d+CpGv_bb`ML%Rpr-aeW|!5#k(_MK zR`mgcBjcZ9Jgnc2XLPO5wzZ^$q)c@5k_Y*!up-3xw(UrK6buS;ZCm0zwrWj+SkW6( zi8oSWD!Y1GGq%4Mh3LHSW4x$z%jF+#BcWPud7=Ex#qc)9XFGh}*&jqcCmsx)`Z|}c zOiP*@#kAt*3F%08=}_PGx&N}vv3{uP)CSz?CZMpf&)7Hq=xFXr4PVu7`SDIImiUYQZ{vG&8YjJJbu8n{Z0kta@qAoYRwB3~nf%3gN@v=u zUOz|Ldgv@!tj^0f5tX7lhfPOb+J@@Rv>jd1%dW66u|6R9&q2C!**M09(PX)?>MA!x zU|h8IlSo&dM;hIp*zy9HK4++e`H#2}8ZQIzR6t3PwAl&0MGy_FwcI~4-*kX#SBI8k z=IB?B??HmJ5~}}oR&%{+Gt%C21+T37S(3f*8v4)a!dW|rg;SZVJN6w5e+5W=27%_1 z)>d=Od{auFQQpOI^IB*JZKi41#|kHdFCcJ+A{zj(;WBcNK8XB$H81I{OTaz)J>@xx zK_M$YpPd%YydZbvf#z!lqz#n*d??7JO8D1C7`stb!F#!}>Y|B)*>?+4iaRQYs#);EV1oMdc*6?izi@CVCm<9bF@ip~L>F35oVO4B9FO5u{(r30cg0A%4|)8EfG5I$7(X7Sd|U z1Jkv&`ewJmCH-paZ%MK%6sJZNSKLHILSB4YdV-)qvmTeUU!tNh*K!ENX>qt8;ZMEL zfg)T-)~plCasP%Lq@%H{Whx-Y9T_L4w?}^TzW3dEg)&N#- zZS&ut2ufMY07)a9fUC$>OSxk_eQQMRd(8h>wYu#(x1=qnmc08g_%cD&9H=pP?7~W(#Ev$*fC>Nb$ni%7)_nNFgUtwha(uK8v<<|7_ zSG{r?oWfhIqt!+nKQxObBPX{K*B7VV)VD{dxqWjS!)jjM<$+yybqD0dJ5ywNi~fe8 zjjk=XkF74&l3UQP{+Vf_M1n|nE+5lvyyY1iWA)FO08R1`P-O?&{1P7OziKGLmdpN$ z!TK5eHqXsok}~AZ+7}el+>?amS$8hBCi=Y^X}>h*kl!AycA*6goOZUFrF;}~8I)|s zJCdR~O&kg|?Tr$ePuy9FfUJ7C%+9^F@b&oK(US3vu?&l?B}06McI>+#N{PRCOfuEx zfg#R#8>riaKZ^6XpSyz`=oFT-ImB3QSj*XYyu3@gGyN-|X5cn{x~-4Wq^qQL)_rIo z%r+{O{AcNl*{QS5{`G~H8PTk(tU$@3Ys|`X>53}?dk|INOoL?pkwdvr<-oqT+3YQN z@w}#?wI>4=ZE>MxG+C#N(wNdnKeV`ic0GX>79nm=FJ|CR;V&>`*e$S(%k|anTzZO9 zA=A6mEVtT#Z1B&8M^}W~J+P(W=fcYIz!)S@|B9QiPr0;k!YpL3ZZ3hpTjDkz()f+B zzO8Ek{$q%tsj@X$uEWc49eT>&S(|LGp8QxzXA^PVBV*KEU@a5SGV0DUqQ-ZycOs@z z5#Tvrvuuq@HW!B83PUUvctaW`<~xg?~gx`tmc6l%uJQNwtzBM z%Fo`Bb}H(7?m_Lb#epw&6WqN{U%K3~x-GxW5jr7$kP580d-2M#gj)^2VmsUWZQ~EG zm5~Iw<-v_*RvtoDvD%q14;^DjBy?ugc+tkShClq|9tfv>?N z{wZ}g@lj1xn(~;%m3e8O@DN)w#bIMBwcMAaeQqev1J8u^KP~1V;pUZ z7gTh;*J?4-h>zGXut=~_GvV(S8tvYdEW8$FUan3OlY?akIaNorTl~`gg{bTyVoR=HJmCW6NkR@_)s61GZYSXMIxcjA>f5)?H^cqmX;t{R$gKDu; zn8mBql4{&)b&QQs9<%kV?Vfu5M*uJMgm|7pJezC9WW;$#nRPP~?QMs0RUSsh)`EV= zboHjaJ6Pu1mD$v2R@Yevw6zWD;fB79WTH%|5z=2b!EO#*=o#JaTDno_8>RsApDbEY zjplAqRbn+NjO4=z1Ozs(px=wiT7sK@WZv_wCua@29ABh+ z)a5k4HQrxd`R>!w+`L@F4yF($w1Q;LDJ+R(q-)u>?uk)=SF42LXKlNBzOSr@RJFNz zH5w<8o5dH-O*}6!?p7Q21uqXbcU3xXC9E`$z^J)fp<~zyIv3r=h;w@`F$0+`i7)zl z9ShOlT}>j#Sw|MgN;{e06CRgeRr5R_Lzqc=Srxr8#^L(l`T<=Wfn`CZX<}VX-f7mh z_$Sxzx)SxkZMh{1l6}BfaPALJKII)f*w-jyM_y?Ld_-jwB2oIG5?!2i;Cq%}p6BYq z6)~U)1bHGm%(sr(iCo_MW>kUXL=ozJ$@jCRDr&lNM5dB;>-z_ zZ&1`7H!4Eyn~Yh)Ra;%ahhP$dP-agWqKYzFL{&m}3{i>I0)91oxoaL-ioKJNwRR$< zoFkfb0M%DaV+B5G#+1Aw?pCc?zAHvk;E!s33VH3|rdeH*BvOC9DC4QOPL;_n&ro0H zuFQ+F#{?}G%Cu%Of}j4@;4~hZWXVRVOf0UwtcH6 zHa{snUN4|!YUuwb?5^=rYEpOBMEMnYs@5Bd09}9{>dx?D zB2UxViweCM(2P4Ki|c%HQcizd1>y~$Fj6#U<9%Oh!C!%)MmV`-}@^zw|)p_=$c zGWm|0y7}75Csff)&nvjv0JHH-2<`x?SpdfXDv4(WN}2FxFfmR>;RmP`B@wzjA-W2d z9ulKwf~|r_t==2M+}Z7>x}7Cv1Hu8qY6%gRVGEbnA9!7_^1a?{`e8|=vJB;{6raEJ zrE29+pVUS&lBuhPLEl1KcjbRyv)BDt^9gwbxY9lX9N_((He)>RH7Kzt0bHNW>Vy6W zxKJ|!&E=#!?nRnwXvR*FP_}zl#1i^U-AVt}LJ3m<-0Bf;5CWzm&X_o5Lr|mHOrr)1 zYz@c{JdJdq_jpS48#zpIigDZi1)c4`iX^vxCQ-bOI?xw29+@ZrI@l)W|1b@R?zJuo zLaFlFPLd3*GSmKgO_{buv=LNUqwBrc^7ZE3*$IIRd(1#;n?pz~r!`+T*DJB98UHL+ z|48Tc@Pl=j>EP!@u&S)s5JJp_VDHiuN~$4#V+AgMr}$WxzdArW#L9&o-;j?i&Yvip zz2N>MAo4sc$&?jSZ zt#xF6MSJ8bG-Fd@IP-csvUaXvNn9?Pa!{qP-?|s0>_ZN_abjl8u1G6UDRVVuY%*5| zz*y=5Z-9r}FpXWaRcE6p;<~k*RsSWzm?cBDZgGjT`DS4;ww4@sMeGz}@bj{GOJ?(m zLC50Ec$!HtubPW~t0+eHxI52EKlx55F{_)X$?L?T@B@@jjQFHLmk1Hh6JuLmHAGCj zujE_@Az?8Ieue#5;<|L-H8(M$p_Fz#At+&g1fo5Spk*O7I2oOu03v$b0a!(Y$Py8T zjf-{&)^}BI9ImUsxYvx!i4FXXP-72KUFqxZHKm#BaFdD*mW?+3p= znDAoL-_}iqYAMYj9P2Tg&T76x#&6SAkRqdz3Bh!lL@_D)F(?}-Xt{cFnPr?vsnsEs zUm;VNk(pT7J?o*S`Rv6CbA(g{RSN*Wj3%+xsX=0!63MYSTC(%<2ZO^4=P7_RKcrfk zolI*X)myl~54xsIU+P%MGn{)VtMFMVzoKlxsQ2v-fJNjU1G|IvAn<+a>xBVA-B5`# z3MnK)Am*ZJJSH6px8}PyA*QPpg@Szf#)KG(?pRZ}U8tnJDBR>M?|+%9D^X4S_PBS{ zGw?Uvl9oA3+$&5;nwCNL){@tX7!^iFlIxx!+ZJD}hBvh1a^k@DAug} zUY4Iy1BR*XKqqTb9h{hANEwVCg4jK4Ss_iCbm}x4a97)+hR;ja2QkGPa)fi_GOo8QyK7rDxLvQ<0*P(Rv_cO?Dd zN2xG($4>8Z0Z?GeapXJNNV`wpBOuyLj}s*>!(m?Kb{M&Rwb|*}N2-$zkmL0o_c$-T zTdk!ViVA0o$1>>-^!fw;IKrq?N$hi~L_oH*kzSd%T7&ZYPVWyA>+=`vsqukizolz1 zn8$uJ4?%vNc80V7f~`ENaLY$NtGUVRZ~ONP5aZzZ8(t?w_48M|7zm|iu1ciiZ|Y~~ zJd~UW8ju|4+2oB0Of;V*^F?Sj%F+Jl)3Ct7*lQiKt8a3CeNMfRU#%|Xm7=Ql;z!HM zFn#y|S+3&y`maL-M}SlhdtGa|HIMSCZR>`ed%-pK*%iH-8sKj<7CMf`}li zvc_n>LQFJ`u;$9morTq9SemYoG%Ew$#~Hp9y`%$61q@u_w%*q#Zhea@bt{Yw_vcQ1nH^o6ZDNjM+}VvGf``6X@@TFsrE@#s{{{^Wyq8Vsljz;6t*>`tYr?~gr_ z!Vi9{$x7Gg9-AcQ=m6(IW{?E1b%aLP1X>zw(ptFHXLWyW zk^x$*(V=v{YiZ>Q;3y2$|5jZvqzoL+NGQ?DwEAqL0R)s6lnKXLdy0RlK6V2HIB*YC zS^3f{kymP|XqTfVhr9c<2~t2;v+$a4lIdTQ_g!Rcdjt`a?N=n##Pw~JRYIgmku5{| zoF<)geIKlct9&k@b#I@qo`}B7RakCb2H54Q=uWlrSCh8EA8q&T6^bDozRf0C$Ja4+ zAnxBajCCC(f&yndyWjAw-+ulQ)5Mq?D$a4(1LL)f@!e|Ha;f_|F5V7?{{w{@`Uv2z zg_u=xzPEET`LcUe<2&AB);tZV-#C+)`bE4VMb##^NI7J?;qm5O{A}6<==UjiMDnq> zfq>VPiP@qmWA!S`Rn{hYhc;H-wbH>)h+(&c?buhT?Nlt!vwO*M<0#-{fzEUHzJN5= z_jvY2dK$JKpjtzg-y3wvay9PJyew=tBJlZkUo4BFkClU+A>{{k_OJt_-SOEQ#j>>) zb!jK8SGG$=?O(6)MJ?P%K-fr#m`lfcItnE|OyV-T6z?B4?16nD?Mpkv*I#bmsX4va zsBUs|iRp`z8H-a{aSzn!ayFs&_B!ejCgf@l7!z1&;B_fRlw$n!y+1Fa-qfz7ox@cE zWINJq#Ccr3=Hv;!miM+|J{w}>=OT~}TaM&Y9%WT@Il$$~OMVz1?e8aHi%RG1+1-Q~ zIbYud+R8Gyq4i}R7GavMeRNr|V?HfhkO;DGcB1CL9vymCxk6DaXS|zS7P6Yj1N$kV zVfD>R|Kw`29qqNM9W;L2K}6=>DS!9K97vj7*~YqOH&*Rei${Wn{!bG@v_17QxX1uB^W1FcnjI=cD@ zaw@MVXVEuNCAI0qsEjKjw`2OEXR2nTo}c3Qvc!#cs9J;k5l0PMNOA5Q^$RYvRutCClO85LD-a2m{Q0@8-tpyTv`HSxJL}0eEkvK$ z3GY|{<_8;*M=S@CC2xy01(lD5Dx$}nq5a9LWpPWlnuyoP$V!o^HH77R(S2^O5#$v1 zmHT%J!zhlL}TnlOVBIp}4brk_>;yMnna54jtv^G|!OdY?K1a3m%MV z&8PePk}E;C!WzY_L?pYOHMUGbAymKRhQ?f3dfdi7&f~XGmP^ zA=Qg0Li3W2P*)x7Ayq%17<%NV#Z1rGLcX_x!m|gZ7YJ^lMUIQ9qxqmHheHZXdPat{ zpY+TG{80ANwz5ImPSodB4IFoOAfkhdjbfhH>V994essrj}dWl7rx$o)XA2=lcmOaE&YMP%3 zH^4v)xF;meWLjdH(S1T+HGLEq`V7_jCK(q2Y^NMj7A2^+xQ zt^N~$Pkl%cbmm@>+AogO7Y`1){PMuWrhV>(sYqfn*-CDCG_Pz@KX~ud-UHoPG2a~K z{Mhxr{dm1VWc4LVb&-Rcc=YZtcY#8B-Dt1Fcx6KyO9uHy*m3{k;}$B#a%X zT*a=@+G>-SO^SsOA|fzK-jxS9ZQh#Cj|*MXMvaq*cHLs16jDxrVCX>05(To&QiJeP zu?r6li{>xG>@EVg)AS(l-jp?sc(rv{mW(u6{6Iv2C}rOJGgc1q!;(8nX=#$Hz%8YG3ftjMEwZg7k=ybIl{bXiX3TO>F$;O_8z2 zeJoOkQrz<5GK<*Y-DOAGcY?AJiNd}sOi(bb{+m!~-W0y# z#EW^9+}V;I#_7&HAXQEbM`Eo9NH`?AV$v^ZH}I=T-E*flP+zG9&urVbu`w54w%7g^ z6a$7ojdybM*A*vfs@iat_pb@lXK<7)Z^cdYQuH-imNB<)+!)SU+ZA~YBIAS%nyS5S z6LsFZ2E_REtQEj0*za@a12~qOjaO9ZKZ1}PPA8++PpJ_0spsa$%iC5? zDQ`Gze1GTFK?zOJm-HMv7So&_w-YD<+-ND~CH#BLq4t#bNz>k6` zTH&bnz1WqFTG8m6#JJz=@9g8P44WtzT0Th~hOJ?t<=W^SkgBmB3)4?bcqZY(w(IM? zv9jFU30)+HS%D?9J);J^0pV!LPTTEQOWHPVw`kkq+qT$6y__}jq7HMZsFxgGTuvvo zLsgf@L<>))SUKP(=hr!#a^t6M*%)jXaRA&)NnSmlK&&Mh9yO3&)P)%`Qr^L%&IE=R{bIod8|;x`gl+gZZa z?gHi`31t9mvNfUdF^4l&;G}N7&!?Pv>uuYwcN^=NF0c3dleyf!)~4OQYet4da*e=*wZrFkxM?c#fh#FFURNm$2>jb*~L95DRW{mrCr#roNTp37K* znN2F;mk*^ssE1Fdyoh!EUqA9y!qjk|okuKL#7Z{+ba0NSyl-t6UH zEyqibVz|w5m(lhaUOF$@ygSv~;s|qHv0I&B)DUi7K?|kj9OUMs&-oU@?p3hy&DQ!G zI~d>k+j4a85wXGw{In#W%9q7Xz@_A}2MXVI8*fxMZMSONt*>_N_Al0Oi+Nihj_JM& zh8;O;pn6n~P3qhdJB3OaO8n)92e0{DOA)uVF-Qr~oqitGD63()?Yo;KlFH$;2xXGq zZ9igYj+rBO@0xQ_tu$FI?NA{U!BnLxqAe0Uk}_2iGTq&X8fabRxV5Cb4+!l&5)`)9 zB0m&{uj&@HXGX=8_b90~=m7LM9^!&%q-)IvCp9!BNLf~zsH&}whrMlu*c*uNP+pCJ zf~O&hien)(X!oimw)p#x;YvmDNEm0@v1@W8ClaGbW$wW!fy9EMvr!`))ntyxqM|au zP(tX)IAn>TDNIVDC%Qsu(E@66sAjyVrv#vOf_flg#xuoF5y&AB$Q*oB_Mn74%{|2s z`s$-eV{cVaGhIN4A?krB)WR|;603$iuBy{5jggEtk^+L2)NZaFRINo9f*fivMJR0uD2YWzD@boOz#J;9L~gm1X4(WqZn}_+hqVU* z;dYZBG7p=&wCoH6huff$iox>K~9JW z4Q@jfHC-8~^i)G3)a^YRnD0`CB@q*e^A0#I#%b6Z?8ZH+XtKDcKDXukADg?C?UPG+ zx9$d#!6S)?fC(@>0pShJg)*A)YFA9*+@8mf?X0`9ahf6le4lBrBCceE?6@3K-iud`I#y>3tV?yo zIX^Dpa&4To@Ikx7H<`EHK}Qb@01l8e(CVv!qLOgZt+TPAv$XZ+Y_)FHY%MMzhzOy( zcgwhjG*P&_NjQE}Nl7eD4fhh@yq&fi&9^SyK7KvwEfd(_7T>s79zEt&w^whBM#o8jc9|&lxYOYk9@U=ioR__;Rq5vR%U@WV zxpF<~*6K;4l+C%aTEOWgij8AmrK1mql&3|D&NVqYr>VRLl0o+hiLMPH9EAb3oA`OWi)iRgU26EJ#zh~ZzlQM0lcz5 zBu*q{Jh0swba{F*?p4ayO5^Z)iyslbk9@edlao8n`576b%57LYomv_jgZq}FHo2Ge zb?dFyCySIm;>_=-B5Dz9`JE{w)(#buK%#?i*JdvfKA7v3+@I3n7;Atu5E52AUF0 zX+d7AHKlvTIL|L=bq~2_Hlp^@wLb2Oj}6E_tiAhe8+2T5+7`oi1jzdXl+|x%35N)rp<5a99++F-7mHX zE$p|SmX6@I_BkB`ZJ6fk0i(yOR#Xd2wp=G=t!lNENMQQ1;>J8F3>~!x|%(A|UQ7Ln7uM51*BAQ&n@qsw3<-;7k z8h!0y#>c#F`RZQXYAkN}+jpDj!DDwjTex7inwU08BbJgzPHqCd%buDyuD+x2jw`rW zJ9OSR=_9z`H`lfI%!;N6qK&1o!5*wjTGNT@n(@@WhM#D%=DZp?cD=J{9E*+_q?c|G z+%gNRW=icw7q(vu+R|_!s><{mCnDrrmu}xV6{LG+-?M9e*|auR+)C?-29q@MFlg|P zg{@6{4qQ-rl@~VMHm$>9*|tdTEw3VDe^|cmIO#_<&K^sJYvHDAQ8aG0E&G~WUc+s< z@wQl67SdbR-$gKK4Z@LzHO8f9MS5**u0HUf=erEt&xdX9*dybz@0OPG%I&*xw77yM zx+!EbHM25O*D=l2LrR6KIGVkW9=_z45KAukWpB5=&L1spZ!x%YSxkJ_>0@5DzXbI9qK}`)_Lz!`1(rwDml=1H`_5Rx%pmnt8OgDCqHGB?m2Sb6yj_u8AU3e8< zeg6Q|Ez-rg&t=`ikE!`7=dD8y?06mKKr(;RBN$O3P zE8e%q@g}}4-ImN2?c5;MAImVXRm4%+wRS6b)r!9qgKc#=H&*Qy?}B#7VR5gF z(Vr7=QDbTQTg{t@;TI>UA3bSP^{A*gCdIpK`x%#Wgu%FOH`iC!cG{aKmTsmlYjrom zd^E{s^KV^M`8~&}t>xQOIP_MMahGTto95HzH^=%zi4OQa4Lx&Lu^zd^q7dptGh}#F zSc*(MYHB2A4g?$(O$E*Ik~*SOih43W{kok0{Tve`j19soF=&h;#7 zRffSE&*YrPwLlu@vUaeFcJ~EQW=UG}pbrSd_xCBFX!R0F%;r@V;9&-%9+XN&mmc-a z(H(mbBg$1k?L^?BkP>rMnkTLcNJ22pMIj*sPBk>`K#pi4ilH z`x240V}Tw20EuP2Pk>QO4jsuzjmHvJT0MLeT8UIHn}(&htjC65zDmXLwbR7${ULNZn*IB3mO z2gOei$mX>xHX>wkIn;QkcvnQ#$2~WO-1_Cpi!D6yESDeU)p#)Ia2hBm!>{+kxL}#{ zHtz>^j?y9aR#j>^m@*VaT4QigM1&bs1F8lc=!QK%0x5LW0y-~xfO$u#RAGb!1TY{v zKtQ#^h%n-!qHw2N5G#!uPhtpIew7xmm03peE8MoovEUMN2#+Pb^8PKj?lN%=(TtWm z*z}o8nqzCrsL0M_NvKp|g1nlXT>4gTo|1BNEJfG*75FcGup|Q;T}sxJ6GxdnLdBh} zOW5t3Htn}>TV=lIw@c>P-8WoMr4L~QbRghDg4v3=6bfPhNv*w29duTB?9m3sgoDiWNW+7=tQ<6&Z?yDuJ5jpu$Beij2G}f(=h{B35)oGng^K zB2*H@?=m@BJWS8nwHdKA^SSmfEEID{4r$K?jN8Gk0LsIsKE;Pcm@V5I0P3|OT9DCJ zN~#s@HK@%>vCKa44kLg?U-gV1$dyf1!u04#nT60YoR$JV$hs!4l;qO+n63Wd^s5!26(3%5A z8KA+7N~ua{iWQ;DG#L6hv?Btw8B~Vkws|A3=*A89g}WT};<(77cnJ0asRZTw^rQ5lX153~2W#x+Vk+I;f&Cz@Um({+W=;i6GGSic}xMuACEH z5xNZzrec)^WuP(kDuNy>5JufjCm(tMTSHQbSZb;f$f#cB6%ja~8jrnHp;b_t$UeoUQ-@(tvZRt?&`8Ae z9qKC^;cY8Z)b^gGQJ!EJAEg1PQCUDxMthZsLW-jch(uwR4`QiNmsQ_dsIvjYAioU7 zx#iVmrN*eyzR6OoAyGt{1*pwdnWV7cUe&0@h;3x@ry9FfnQn=w1RM(IU1db#)s9(vD`hQ;Yp9y`$NB*0&6A&B3+UVhF~w_h^E0>kUqG?AEIKER zy;M}dbqXjSVhll)L4cwdkU|g(h`|)P-P(akHL3%vwFU>27+io3Nd?e6;S<@+|o=Lw_nZkvoiJX*#YPL>1l&itCumSt*0aP9AS z^0&6K#6H5}+`en69paI*7EzHo&IYcHn7o{ImvMeqvy;Bc{yltSaJdY0=Dt{Kv24+wvRc#QYR#RkPA=;l zu}d2ziQ-74XmoFBsB>M2Aorp%z#Q>G4am_4QfetxtYTzV#ZVmFjv++mk*qyJrio&X zukHy*o`5JA1PmyOHNgNRD5P=40+ZDOxe&Ef5a57nRT41O5i3nmsE$ltM_>o({{V?) zQMh1=PUJ$A3RM9Sh%$3Dpss2J%ft&>#YtEtH}Mh0CrLGtflm9i5-q0Q7BN$Ew?8?0kFrFlvHP~ef=8+UIJ zd5tPsq_WUb80EkW=VOsTUj}`1+u>zOxwM@JC3GCZCqWfK1yk6pruVh zUIx0iyN%A>w%E;oxJ=tyJ9g@tcbYYVw5g|gQ&e*Q08jSrH#e)BuK8ifY_}1)M?0GR~ijsYZG@DPTTpM(}WtQE(T3ua8 z9OgpD_=sTCJ@V*U?VH`S_b)nG0dbA)KfP>$n!U(q-rd!Z zOn>~h{sOakEavm^>T3p^umlAobu(nB#A8efsOMa|>(w2W!MDGxwwdCV>I+sewvx5Y z`H2KqLIqq=M8VadRFFfHcvVGa# zY<^ld20l?c90QI+!bz?RQHu?E%XpoHHuK(Z7H~s&1Fd9y%%qJ!X|y?a5h)yr7>XdN_R@-|O^v9<9Bbf#%}YO)3Y06XCpSAQpazS&#eFzIwooq^3Y zrk7CoO?nlKrj28DS{E$2cyw-S<8wop<`Cw&uEaPIfdnkaO*B;AIae6iTE_1irL~LR zD#+%L2e@{I3c8*2Rf@N^Z#!1+YA&|B$Zu_lr<()YBSGvsP6xQ5qP_nBCF9$D<81G@ zJ6l_~facrHGb50P8Z?HugO5c)-Z>7%vo<&G+l9S@Wd3a2O33wl1C2_t4L19;$F&XB z*Y@q(OGBA@Wnh4VgMUd~IGhqe<+zusoNsdDwwK$!@3&d*G6($4x1PxKmc7j$7rRia zKq?PiXS&$m+Oq1#;ybHZE9K7%+an!ALq|5C(4nEc+Gc@CbB;M6^4!Ol&$G{CwC#3- zao_hs@07KBv_#0+@y#=aA&vUhneA-tO8WM6*FFBx5Km;&Vv@4%IAJr?qmfIl5fSYqsuox3j`OO%xL{M>iT&hLVcS z>yUBnnl?Xn+->YzEktH{L}k^_NG7FJbL-u@+RJw0`?k-?FZWw}z1}-{47bMS-O$M# zjw}sr8fmAhnR2yc;_6TM2^FZxYBO4r?*9N4NnKo$-S750PR(_=?h<)cmQk5zlQTik z4y2p{o!x1xLA7pvrg957w_UxvZpF9UG)re|c^tP_FO1^XO`*}YJwqA_m5vRciu3MA zd(LjSj`_61Wp!s{E?;wRBczU3YXe+*fTV8@!nlKiS)n++rsultdu_P6+;1SVg0vFc zNXVE^U@s#Sh@WlU_Px^7TTUt5Eu%WoqkXmIFD3B_ft3U|GorhQlT!{vcD6`C>S zfM`qc@X+?4Kd&}s*)woA_Ts_jjJq>NA$Lj%E2RA>D{s5L)eKe_PQ8LLB!EEkD*%zN z@YR(*AyP71!JO8n-!@x08y4fZTH4C`Ha1N(ak<{W;tG~5Y?~BsXmbd2U5Ics1RkKQ ztDpLtux@soe|h8JUAbE9E#?=1wZ z!iH3$k;VK?jSS))RTZ!6l{0Bk8zpM?fZ?b+|lCrpqe>c2YXscQCD9iF*M0D z+Z0X3(maN>qqLJi6^QfPL!51!=Eol4b8~5FJLR4yTl~W?@@8~xJ|Yi^tqwuyt)_x@ z31N|v#(o(iaC1#N2qYn*Ezfk?w%CNbjpP<_9G!6^BL~^2imI9##_rDgA3D}}?rr4w zWrgjLhuG$l71cCJJcYTQfDdx9nu~6dlRP^OM;~gnBXt!>_GGfs%q;N_sRqOV)&R3x zh+ck$mXSHg6pct2G&CxOa0rAtP*#>wJCvG3s3dI7>S%%RBf_H4rZhhFra*v!ByJcgh+0TK zA@5ZdV0JX@L2@UGR2&o+Eu^R{uX}xpR-(;C7Hd$nQA*>A++u(gRT0l@9CZx)mDMau zx7;{9K_(#J)UcJa3}?TwVX)9Dfn3w>MMmHVqJbS&`xOKLQ2@981p>LKAf76>wMwzC zk^&TIT(q&kfP%|taSKeHqZC5T6>05OC2t z%=o>RDA^|4Zbp}oU2Qj56p$o1YTj-@-W|b8WoQ9@#UFuPM*OM_g+g ztAXgInl;VZLNc#>d@UaJtXatRn8E?*l_JAf38IZ8YeR4ydY~brGz~-IAAN z5)cAVDK$W+y->Bq5NdN(4AY9JorF-SRu=-|ve6uZJWwl-L<)ly0aO%00Rw^9frC&u zXhjgk25E0x5Gj$Z$RVOPOnNA&Um@*7L}k@$hiFJtaZE#VTdc!;*%^H*DgJ0U40`5> z$ZkYI?WQ`3)!cGO)=5R{YmzdZmn?8i1cA*cx`|*pC^=u=C7^I9$6wYEe71PBH5|n~Z$ljX!H}X5tt=RGI)K^Sm|H;iY?3 z%amu2d7|VJb3Nab?L2p%UHpZNlD0_P#zrC`-W^SJeiB{qRG$r0%Gn7uuW{?;{QGwg z+xF`dR`2x4#qFFwc+=CyN__rQybu((XdAwpfWVE(aS4@Z!Oi4&};RrZR<5Mvb|rUzMt_8 z%ZfL5-0dUWuP)@3l6l0qMi}inLqQaG+OBx41PYY-!~nq$9A%~+qVcCb7OKe z%>#+j_SU~-gP2)q#`a!6v+@4`yj**B(QYj)hTiEJ0}F_2S9O*qPXv(4 z(D>wOWQ^!q;X*y(5%X^}^xJ5c)+-JvvBox=JIiR~m&z`7k)`gGw^2B`tji^IM`N<| zN7HL~Y}(zV87zxm9l?@8E8fx^9U*ImtVd#%W088ZdAn~Ous?2-ZkKw4Z470m%*Q>x zV?3cN&w{7KT~`s&OqMmA!(`s~OK4=$2-P#GrEoiTarJ=ZH9hgD%FB!Vs zuJ}IJal6Lo_epHy7fpDhi^u}59j+Lx9;cTxiQBt6ZkuVx zy6KBujNVUiIBVMQSRGo`ry>t=Rh?YdVB-5Y^+S_gGj6s9+TOvo?J=`M4AHo}wUnSP z(kf`KT<5VR;Y;bK7vm#z<*)&dU>NB{cxnoR#lsj()GkGbXnmTeNMwM~!VePwKl( zz6RN}7RblO$C)Z9=SW-$d!5vkn6|m^9gXA*vNMczTTzABXJX?d@Zlo z)Z81aLbFHz1`n(le25 z)_i-^PBFS|5wgwO-169Nwy=Q4Trjg+WOEzg)W?0LZ!J=D(R0=CZK!t2Q3 zXOnd3*kx%Fwwh!kP|u-S#VYR_;2S-Q8+*Br*L&r}ZTY>@{i0`@f#8j<)Y#ZE0joN# zZ%)s&$G1Cgj>Z9Cbsv)vGs>%uqI|k(#n|PVxbtSbU!`1kVV{9*cM|P(vQGBOA0&`O z=bbaiF>{(pQ(k`Bx;?}ecJ{G03usvc46cZxXk!IUO&ZVwA^f)>1~W`+LD;D0Hs@ch z`-5&Udp3B5h&g#>?J^eE_tnX7E_nMAa;}9Cjjqz-JhSmv5k(o%;(Z&23!V*e1;jDW zw@bKQe6%t(uZ__8xOiPqMyjme&3&!*Mzdq!n||rexm+^J=y>g=?Y_Q0Zak}L>S(cEwb7P?IU|)bP%zRYc%+n($EbZMV%Yf;r%JwEO{2$ zH!|L!W&ZWL%`g&NHL|t{B9O6=!q);A(M)ivTg04+&3K;4w{spNyzTHd%4zpjTiru$ z10$4}-sZ?-Z5yeyBULgfm*x5ldAfT@b{|Tt*0%B=E>Q2XO5Cn?IsX8x&v4-c8vLQX zwfWND`X4f`&-dC^uPT$AblZ935wOHZl3FxVBHCe3a>G?6w%N8F+x4ioVBDVwwsqw{ zN#uuW5!bU(s+5ltz&6`nRk?3mr;tM);d0HwdkwPM;i5?F;I)38F~;h(uX)ABl}x#` zlb`LDJZ9r-<(mz>b{m9yg|(gZcI^?zcWre404>qW8#J}fX*!zfR4m>~8`lxzHy*8R z0!^~pM4NT(-NOWJYi60VMjH8m6q1^&;_9vJA|0QEae4h!|V{W#{3veG(i`>gHSOPU<(Rz1)>vJ!D)YU6-fGIU-I z!1%SE#S3P!hjF~PiZ|{T*Nkn%)4oR4<9=lhM(1tU)>~Y*)59^q*@74+r~MHB4bZD%FBo8g(wCqrb7^zi^NS3WrF z`lX*oYDuN_I!(=8Oe@u^an6?82iKv`yS-Fzt?^@V$0O}oYBmwGhVYsu{%55d)9Xfq^7qwGfiJkvR8Idrk_* zXlbKEdI3c$!iQ3-C>P+W6ID6cqs#3#5QnL&dM9ghb4q6R8t5KTa9*EoQ@N;fgAIwTOhTKjY2zTfuwG(`LY4NfB z`4!VY&0O&OvD;&H4MNJdZ5R(?#dLyz0rVg=!2lx!Qc(e@AwYx`MpLRFdypfD$Rd)e z1vFIxr3M3BPy$p`ZZ%P2G7x!gVae`nK2^%m^S`z6Wb(Yio%SX@eI z=|IEEc|Y@mqRyHxH%+-ZrKe)tbE`J3qbQ{!(?C(7Gzbks15^lHDx#FT6+)7L5}*XC z6rS|}B><|Z02-=>8i%vBQ6pSb6KGMSZUsPuAdT6gkdmOx7MWt8q8J1Y(1F4!fI*IZ z0)~hmB8rXAK@oXHMqGeYpoovEt4xNJ8ReSxP@tBMr3kNj6s=*ZtfgdcsG-3Hh{OAE zL1H&Lw9m0L9MA6(-CPzi)NU5^?>=0WT=I3r!~X6JF5;WF{dj+gYTGf?{JMc$!ZhSu zqtV`Dy>cnHf7kJ0GoN7B`MRKwS#uc54-TH?ZPhe-E?w!h$0OofcH4D&4)wQ&7Vb|4 z+T0taO;qtw`TIg+cxgnS4-wv-p5}u5Y~XrCBPC!Ipz%$ z9tK=qN^eVjQQIIETYo7Zs|SK1u4Xx`t^hPO`hCt?lhDRdyWw7$+w8Xcggb@wo0;9C z@~@(B(-EzFLZ!|wp*|v3@S1UA-p82UI2R${c6V3%Uo3vzu}dpj_UV+$9Q+$rMjY24 z-wG`Edt+MqUR#86E=}N!+(x<1`YbmM4-=jF@kaL;60OrzeY~9_>9R1!graR{{Z#V!5pp#ypC{;&F^xuqfZaryr z2LAxRKYg0wR=ycuuk=j~p=j1!nZ-)6OVm$E;Nf!K1@|4>L(? zfo?&=rV4Xcmb~X;6=52z3@j@Qr@INWEiLO7wB|*~m-Hn?U9^3Y2T+4SI zoPJ9#Cm_h?w0LWz0fs?mCZfC9?`n;etQ83n;yDiw^*?^H7B@S_(+#t3BDs&swVzmY z5(y)#ob%KQt+QU6YJ;4{XZ?3~w$9TT7RJ&Uqi~m@ez&+5_JFk+tp^?Ao}gOt%f0IV z0C3wTx7@sj?hr);&321+mb1wv-WPbW)m3sx*m2GmyKI}*`*8c%Cfm1b$KTt+);vzh zWTivgPLka%=oGwetxLm4KIL3Hec63KhmP*|kj=MGyxO+bTXvY_WOoy}(rYd>sB`>1 ziLR3?>igj)wnweC{t>!; zPTi|=5=LNrhOZFK4Qj%E%bSAL;)@$+7~U@V6daS4T){QiWpi2G&H!EzZ`WrM6I}@ zsK+=4k_K6!UT2l?=I+9={AJn^}=IvVKX5rE22{4MKL zqoQrI-y0Y|S$RJ{pnT8E>hgTfx;6Nz?OD-YLJld)INs%ZKM$7H>uJA`+)J_U50W;) zGtFN6c~~7ryQ@f3E;m-CQQtUksGHU1)xF$b?eOlKO~{(lYG9PvHMH>;$^7J!I}B(5 z39hq6<#l?Ses9NZqHVVEz3q^0(0DJPj^V9iB_9)7Bs#~v60+-@aCgSx`$4yA0>Asr zT|d5Bm75d{{9l&sx4T?-miv{Yk@&Xl1rUWf@xa)Popr9Xc=IXZ7lW;^3&8k!+vA!owM$CmiF^T;{O1dW9@^qmH;$q zCHT~$JTIx6KKZusE^Ka1v-YjZf1b2_ZhxNF$mp8pN*pv(!G#LkX4dP6k5cwMy5DNH zwy@tVqJ^>9-&{`nNm|+h#!S%31N7t^(}-HiGmF^p?k%|O_t*RG`*j`XA>Bl5xO@#Q zg5C(L<=em=;?mmGlbKwtZYlFEv(#<#Yuxr*IJTHGNC}n;xJ+EYYJ;1K6(t zyx8RDUSlKP?e^I185JKjoU^)8@BkEJ*w)bX#bu)MJ~4H5yIFEAmT0ZF`v~6yOySOg z;@V7I1ll}6YVkG07L|2Hd9S@vxM70dYufht4j(-&+?OnG@0$x_jn4KL1Rj@dj`|xL zc<=5TcYMY)TwJl9Q)GC}!GN7L?5c%%D-EZdahPs4-Hyh`cH1Pln&Qp(H!ro85peS( zqLHFG1H)Y7rOi1ay)MHaB=TgFetoCRNZ?_&vTT|nWie}{kk&(9x?-gyJYTf$g@cT zCW7MQh!ifUz+kRi(sFcLIY=67+5Z3%%C~U;05)lz1r{=N#9Xq{GeW2tA^|FZPgMkN zIf|e|O7`}khE@X7N|j?=`6%xW04Wsu^$L!vr71)vunMXZxER16X~Xc@OA}(9`&Y>iEUs+PDS@N|S<`GXENGEJ<2xyQrV2U*~z$h?JP%xqE?Noqe zpim>_C?a%@%Bm?0js~?VpnSxD&>En2&i??lLV`gkIfNOhov5s!P*<7&>d_ZfM?ghz zP%8ljovMp5vBko=JfsQ9ou#ddtXNpCZpo=qie-+ zf5hs2O5@DWT^yf|Sn_XDIlaucat7&Xebvn<$YFV-8pzLDWIg1q+pCOyEyj56)3EKa z*zJ(EHZ%`5N)2*5tKROX@F=$G^biUP^ysrzM7?lXX@-h`i07WD`f_)>cW(PusJDw@ zuS9vuTZ>C+{{T1*4SK80*F{fCJx9IY=D6eg^8_4=ZvZ^I!e?V}E-g6uji-ov)|k=N zBLE64)}laEQLPXwo`FlyF0SybE2=4vMr_X|H)uDRV|h04?mrQI`!4hJvw~W=K+<0FKXaTz=j=I#5 zZytW&t}%0~14sZ4nFXAjmiD`*!G87M`YASuoqa${y00#=C7qtB=EeI7TDeeFl5nLL; zev-3W#jJBd1w}^Kaj!tAw9!W5wHc_TkX33iLOpJ983L*-vM>!m$F!`gQN8dkAIL77 zbG>a)-&{3Mi=#HOPQ13^<&(OKY^b`(_66HIYLNkCO) znowmalBh{bgfFIa!|7HfE~3+cz~Zvm#K7j7h9QpxW(uf*_M}tG#2>P9_a>>LH(R*; zJ`>pDuAv-dh~tN1u`29xHdX_X>a$}~s>!o$FOkwoV{IglI-d7K8FPY|E zt0KTOS!lrZMG$aAVREC%^S&R)`715iyTvTchOJ{6G_kPip*ot!G&>Q6R`Fu0@qQt* z@yVs1X=KcjP{u#ao@tv#8j3bYI1h5wVbWlbOA}-tXaZL!Sd=KCB$OI^Xh0dbXW~niyvl@L1Y%jp@96MAVg2dL-Eb>^%(-edp z`W1%AMJlLQW{6y~K!no-2<%WTD1te^n<+@uybwyuWR3JRD#WoPor0)KMgM zDN|Lr&Ek*D)B!y+_bk9{cPOkf zuysH@_7124x{beR9^?pap(eP3b3mq6oSp1NDSClRkRf&`Fe--D0sv-cKt5rV#lRp9 zxo1O%LV?B8dr&xhP8pz$@B@o;QLREEL8H1PD}wq7cXT;_D%&3+eW{W65rRBA{PNd0 z8djyWUH3mVaohZk^=JmNMokp2;auxcXgjp5w2k*6f`byG=&bvKb0`qXflP{kWT?Rq z1cV@ADa`@%kR5%6MQ505fEivrh!f832i$?R0xMbsi9=mYIx0B7uHL2HZO(TV+9V8~ zXv4P~raSbJhZ?pf={^!btE++mTxePXX|WgMa5E2mVufEOK2Q@VbZ*&+J7FMv4Jd zKqu%xDpUhfp<#-KKHcSkVra#AGdFUR@npM_kp*hZbhG=!bme9=5oKD)p4S%SRJh$WJKA0@%H88`k7ygM#Lc&{@>_8Eq%><7=7(Z^ z^ipw+Wi+oBC$GMrHsrys?nuF>%(f5Fp70BU>HX@{HS0Ew+iBig7Ui{Evf|C{BuvwW z7!crST1QYZcaow}^JT5pZrU3xsccVXQh@TyfM+P3%~al-(s zG`m-?ew^NK(CrXh&#K}<3^$L6vfRkyM)--;0XS5(EhKxMTh6$@6SidA<>0q;weoG) z(j<(O=(DMbYfA79@`4QOr5+*~|Fu(A(=iWw=QBudVIOb468V!Mkk_xVhZ91?KY?mT48lP_#2oh`FK`2NzIMi+XWoQrp#j3imyb-OoMT zWCLLxrNO$yRFMH-evmVEOEq*~KB{mb6mmhh8_zN`Gvc&@Y2=D9Xy;7G+UG^2=cBD@nQaZa1t2Xe}sT%(P>tl#{(>~futLPym zvff$Q+)r%6)8YnJFt-lst0tF2oO+$VaN4(f2zMQ_;ybG=mg|Oij;6SN=*Waep5J-r z7us*%w$CirTZvTX@Uq>mq_>#0uhryC_`rG6+RDZ`gC6wJ5pSI9itN{4CwF#c z+%)SpHj%#OaMRVyh&xFB6&27=CoI^R#{U3lnLDJ~%XKzb;*svHbWq0D>jXOkQHNDz zE68xKSau2c#f+Qn?C#x5TrQm3IourJ_fm!^%RU-pnj@fW`>l@iw#B&EJ>k=V(4vELd{07c9TG?O6R_%N6IWNw#&`0kla|qxL;ds?y_tU$r}X0 z!P2z3rP{nT#Z0+d=x+}~Nw~K%Vbb1pbLJK~%#7LD>Tqsml&SWloLXMte1`e_3eS1p z9_L-M+F9=&=7`+yDbJ}b0kk?<*rc3OE)6#q;kF#FWw+#IVRJ4egjz)* zK2&z?W180KWesVHz2wp8I0omq+*s}#R_7tP+%_A@Hu)~!@lP8-d@?)t&W*!YdUCoa zIjhqaG~h-DqNs?(Vs@zUY0aswsiVYtjd#neCEM>dZS~f0-rid6?y+^WGBu`m7MVlb z3#;9dSv1$s);#oGpJVkF-Z#%-%Nch(V7ZpJwlFp+DUO#qBG)##RZTdmEsvDLzj4bx zLo{u&60%R5VRwQzz~?eT9DdJ+wd`Fs<>ckL!-^|!Rd_U2V84CCVl;f#_VdjX2WzB_ zg|tdY_ZvRxx9)aP-);9X-C4{l6!9HRIMDqaS2na!-}%QE*d~hKbiQnNQ;ksCM#s%N zo7y6YuYEh{nkpTy)Q%InUt8_=JEJ7rE}Z5=Xy!{CwPQ=2sgG+*a2-@u^Ksoa{j$ni z?ZVvC3qr8<-=IlLE;Mcd2+QqsE|6)YRf_33Cvd32XGWq2 z)BrU>%D!|_NKhk?*+O0`Asq2t-~V5vks)Fll}GO0PBVD5;93Wliq5fttpNA^?#J?l}L zYie}rsy1-EfGDD^vGr3$)i404r)xD~&}N8|I2#bsJ}#FYr9oKnaxlUcH!3q3@>S(C>&o#F(clhqkiG5;cZ9I zsv`5A?2eye0j%{Tp7a^4pk~WM+=!90Ho2mRx@Bk$Phtt9x;;of^b)%9ts_}$EAYQC zPe81NxMQCYU z&MOwRG2k*z8q#ZzMJW{@HBM?OGWAftVhq-(8qo%*Gg=JRPy;7oD0!p~frF za`#Czk2NlF#btF@7h|YR1AN3z&jl=5Qo;kPL+qkLy?>*;vTdK#3uvXC{{SnwyX7W~ zAC2#*h`zs)<s3^jzH;LW2WOXVQW6w;rWM5K(FzYG|~> zoqCh$%$L%RL9n&ZZ;-ppd4~xe;Xv24*EZ7-GfTyB;BQX-S&MtPZpXecwwvr@OJ9_C z1+)Z;(@V+wD?Dd5^w*Q3k}9hpN(`@53tox=sREZGqa_iQR1o1xAYxUCsB2e7SyEL+ zsF)hedgilQkox+4YA9C>(O3!tQh@_JRp_GXBpQIU$sE!O%S=@S1z9j56^NiCQ3plNu9ye*@ z+;(qUFE;xqA)ju9OCxQ=L*Znth!?aBTSh#eV%3wp#N@HLT3A?m-L^6~W3`3RHQHFl z#?tpiAgurbq~MwJXC72NU5{*UE90$*Ld(ZY9d=q8*Xc4w80kpIp`}(k40*nX+1qb5 zk+ryFb3pT@@yOP_j%mh)uBa=f;$gwfY-~2`KfJ7v+C>etBW)$IMAosI%mTD)XaQWW zW2?2ft#o8Mj$ssVID!vCi22K&aUMOq`tf0~x+Yp})7nQR%Pm^SgNqp>>EWOS+CV2Y z(TUpan=c08<+jX^X0bN*6gI=ijoKVCA;c42xRslDXtSG+`h{!Aw=Z0#wzh)W?)o7Y z>dRa5-@5pm?=WjA#lL{ zN)EZi&HH$!&^HIROT%Lbo$Yv#IodoVJQ5vN(-n&8IX19It<*mC1*#oI-)APRMs0YH zR+``0t1|jf?)zZGRDbVGTkLbZp2#!w)B`eAs`Gqq)*tI9mt5#+xNLiLZI**rVTH~u z)tw0oIdh)H$G6%~P3-KUyycU{3{0MF_UV&7jiGZ|))ut)4Mznn_^-R{YEBX1ISs9Z zzKLx1x32QG**9oeIjuCr>-ieuF~DgnINLDK-}bjB8SZvXzShrgw2IEgCR^G<(8ywl z2DCH^3IT$WaNuQiyj=HT7aM0U=eFB3f5>eFH1E@bY*ap%yxBcDMc#E)_RF*+h0<6J^hH0dEAC7R+3{W@vhkg~TkWwC zETBH_@3T{A;kMKQEO~LV;n%H4m2LcXEd)X=`rBY}Eku^W>_U@xI!g zhq0k25~?uZf+HDw>T($crfbFey=ifEwd@ww(>m7T<9xD?JGM~1B1`D@gMlNxKTZBS zTF0DHvf$j4Z|AmKz25IW^0cH#Ux;_?kkqnU^Kr1AP_W4cR7)0N2?-00y)zU}+xW)tI%f;IcMN z^O@bpQw+Pml-Kkwf(9}4Jf&)pfEp3BUtsh}Y6{;k^0bFys~@XT%ImwB;dcP#+A zH#y`7v>XX(#}%*BeV=(J7>|4O{{Wj`?Q_}1&F*!|*D=kK+6db4e#@T-Y>fx45Nh`R zTej_foXtJP+{;&S*&nsu?a-Z3y5ctmQI2&<5|@KlSFUR9@U~vYbDGKPUD%)MWR{Uh zZEv$|mak}ZJ5%GG?*NK{Bcd#8Pi+Fc(R0z`blYx89n)cC?B1?KklNSf*z(BBgj%uF zsbeqAea%i#_nR*#*}2B&%C;LzZTcO~D4@HteC>kj-S9LvkjUWXX>i1}(JI6ovqYIJF;VwpEE8oMl(s|}rmf+<>0!f-v^g=V!L zg}x?&K9IS#u6%cze;{M+T4t{_QAUrYKtLJM0l*A$Kt*~WV8U}K95nADxgp*fNF?} zV?b1`MHyVuD_j;;S@f-XAf<7*Tf*YcicY|bq2al#WW4DE6{yW?cMF$X&Lbbqv+M6s zV&qJuZ5_)@)8GOFR6wY&a-qTh0Eq&<*wAFGL|5&?H;%X~60+RVin7?SsM5@D6$py~ z*&d22c1R8gYOnw%y$&iGC2A@_{1jMH0V*mtF|6b>;M$aIn&Ab04ST8enQUgf*!XBzto+e-xp(z8`{rlP7TwNj+yqN~k$ z2sAGDD5wR?N$@<^vo%Vv%c!){roB@{)ULc{Oc?f*3+Ec=iYuOakLit``y895)=j4G z7&4I%p_%O!6rpHrgpY|{X|0V1r~b0s+T8xn^EVhJh?wEr;*@J*KTKID!bx6GWb9DvZ_iC=|M=6uA_&L}hzb2B0d8)m$=HL^E1y ziBrWMHO(y~Si*}fffYfTFhPI>2B?e6Y2O@mnrGc|4=_dt(;&paUp$ZO~jn!0Q==#_2R$HKp3UFxqW+ zwA^oTo?X_?X$+oZ{ui*214LvKr%sxLmqPJ*2|n*}u(~U5MRyg0iT?m6EC&P7(d}ve zDkhIz#Jw-$JZcMw?Heu2?<4ZAHzVQx1yb z!-{2G=0CeX9=N<~Bi^?MIR607A1IOUqSHFM$EMzzZQKuUy0fvqxV>%Mjh07Tmf+^M zPlPuCRnN7ketGGC9OjY5CHI+YxZ903+l{#bRtnci2M0F2xpY@mc^H1~dv(N-jpveX zTa~n51+$1~1G7_%l=mR^mK$E(wOYru?d)`RHh@QO8=mKuwYbw$iE+hpb#5bwHa3%k zpGuzL`>T30XdJjyUA}%XK;c@ zE!xS1EiH@^*42~;?5y4`MB8s1{YAU(*U@e>TwCtby6M||jbM%`pG{64WyS2eAE%?d5^^7so5*b9IW(xROCtS_t?K<+W}%SG-GnlVy(nQ*nE?%L6X#-7Ae(Z(G}=Fhg@Q8x&UXyB9Lv7ICpYx# zdE{R+Z~IAeX|mn5jegl25ITi~93^npYT;EiX`4qI@9XoxfsQuNJ9D)0{*5#daxO8r^CnndS@H=icA)4lZ7mI( z3xv^C%#p@I$vXTl3hOk`x*4n3mx6^Y*#YA;O&z_*GMFLLvOT!~#bVAaOTh$w zo^neLPrLFRlaV&gecFF9_A*-ewxxhj2^+1Xykp{OUNv=WKV&%u>$&as+^2Vf@(rqC zb!oR)+Z%XI!$lb+u6yKrwATTGmL{!_C*tsLt+t()GHu(o-t#WoxxfLE7r0TthhX+R zVCJ0Gnboa!$?Ap2=qBX0HrD6D>zhjgE=cVjWR8ul??rlDvu<^c(+=MIx$lfE(r)gY zA2f!f)$RaSG>Kk2e)R48r!L#M1Gj6dX6^o8`4lFMd5Oi@)M?dPI|Eg_#Wm6IBXJ_F z!N(!qrAGSRVB2;y57I~ojibOq$*k7C;G;^n5;7$x+2EsR;A!Smv*eI~o zMIA~gAXiZW;7}ugK^dk<6wv?xDvY2(l%V#YR|Ha`0x1Zp1a)hIAZb8G2pO*f5~?X* zPH7<+>0^i;GApJNjAJ{&%|7iLT$cQD_j5NAmR?-S-;|?7EOQ@=ntmeVk**6l{%h@P z56c~XX-;2CUgcF!^LT zvb-H$6VjNfub)mQ_Y^_$O>iorW;9Z@s%UE5@y-FtIhFft_KRZcW)Lp#Bsw98IOgXZ zN&V;qtwwBpUFp{W+4xSy9@)2#GI9g2ZwRC2m-3D#jUQ#b5PHurw=C3M7%yguSoNO+ z-K3^~Uf$H0+H2ad+={K#;(~TnppX@bNM)0=1yIeMq|+o4d7~<*2bzP#`i1GH)5~ql zvH5m;xXSZM(<4r8m^OvkU~>yntgc(fdG|B)&v$OY$l!g>z{hEhxRypqqwU{QR{rq) zOE(VhCZhDK%x&8``>!>B14v9l7M)I$e@mT0UmQCJ+R z32+L?mat-~9iy=lrE5q*J4TU?eN?STI+RhbY62BO(tzkt5X23D7$6l0rF9S~Vu5IC zs1i6dRHZa)XSoIEPrR%)juQ90xQaKTu`0z@nPLEg5MrR9#6&WJF;*pG9g3)(grKt- zP>T_eMhL46$wh_*2Q&M^RPacL{{TM+@+4TT;^JR+MzHZ6-(FunG3@;VR+2jx%Tk#T ze$eWz7-2n%1av)Uf?cd8^wDZHzdMr$7}|n@;){ z9{kpsrj5Ab5f&SV?kLbbn%Zfa&5J6O@UhOJz|%DvQj#Yz)IUf->|vm)qaUTC92I3= zNh?q=RT%}7qy^^z_Ce}ZwKUayL;%TUvOSd*P-|{&&Z0oYMwE*v;uQh4YpO6ks*4Sf zxMpgI1~^e_T~O`=R817XI;3{?D~e>E-XAG|k>exiOGyz(Nph^z zwvraOkb`8$R8?iPfS?Z*YL#POAft#mthNmARw28-wOJum74BR#tk$DNxZZh9E*PGJ zy=KxmH*0J`>ut8CeZEsxY*KLXbiLRR9%P0&$`tfF%Wp zw6&x=7PwG^s|C$#hlaH2T+~%3#P;Ia&|u;C)|nPeMs-9^$;B}~#YKoEA>qmm#8Lvr z_lo^1HK?7hK_GQ{sH3atQ9!){x&Hu42+Qh#YA6tqUi1sq24h?mMj*sell7no5R?Gb zKpZ}mLY%Qa!~mLvL{h&)F!VRtYE90eSsD}Q}tKXi{58{^0v+S zeTLFU8%VL$G000Vf8@8KQalqwolRKbK~)r6pb=Ug(0{n9K7jtud}nsrw)^e3aJaA+ z7O~4HaBRWPk~X+FRE;1LmOj<3BPjUK-IfLqGkM;fDDx}i+Qp)*2O{^9MMq#$CB@oy zemAmg_9Dk>w2sQ%z9Ae#NG_lS&itnuVoH*&i>-)*O6Ap7Oh91NaYCYj=1Z1`{3fEF z(5>Xmyh`Yr!-%hX<*T{bM|>kJ!m*pdEhrUb8-sf>D7q2N3ZZeO5FIZl7E&RJ^2p%G z;|0%qjQ|5ONv}|l}wBBQAH(PVgAmvzz zrndVr9aPuSSoWYe6t|_Kwxv<2K9Q)%L#yl*S;f4Pxz5Ufdlua7NWuuJ zReAn$W&LoSj}21ahh5x$=QMtB}&Ue3IviS$Ul5C zDOOgvvO#oVBU4-|IuJ)^wPH1By_4kD5#L3*8PyoEoyMe8tEy<3mMx9CElLJHy91u33f!abLWTkM)Y9Zoz4g)InL3OmixC8B3 ztwT7_5%>})U?D;2ngCirz8s=#U$ zN>Yf{?$<1aJWUB%tw{3MQ#x5HeZ!>`Y%Sp=)P#vvL`3vjMXM;oORBXQs}2gXjm;rN zDFqa@sl^bkA406Mhfoy3P~qXZVpO$c09@=)NYhTLpce}M6;PxynS0RztZB&N6-2h< zQ`*YcQ5yY+_fT$H@mdUq3k|1Z`;b1q&w7er>fBd70HwrzDNV3(nGM;b?PF75^`Mg{MFkZ$vv*v`6}{O6a%|Ts9@v=S9++;NEDv* zK-cuD8L|=hloAPRfxz~ri>SK=8YwkI3N0Zek|<()vph!>Z7-5X8a1tGsU-FUN6fyk z`oBLXnq7}(d54e0{{YfUi(ho+b$4WS#jWd^MdasOKFhjq7x8WTRjikna{MsFDrwY{ zlSg?(eM9N*q#G9*+X=skm;1fcS}y02q0C@-@ka|?P$|{fm15V-oTqA&X5`zB)i4Cv zTs|XAD%PA2PqT_>&3%`!h>pd!x-(dftObWiWn1O8o)+Lefm)5#yhV)10&!T%w<1k6 zQCL8&R+(d(94Js#Y-TH_*DS);ycyGpp5rS;7(nP(Egewp`j49D94n>0^vtV?lF@f^ ztdfMF%@xf91~;)(Fla%?IsX7So09HOab7k|jeWGka2%C`d<5qt)eY#uw$yQ27q4NP6Na{)x1(&7riv~y|*$$u=1ni-U1?vc6|dL z?v0pG2D_%LyH+p5&Am0{&Du24rkN`lpfs&AnSr#y1g!2+5`<|e$wguM(F7nMg+Z!= zI-tx@8k87{!cYQFxe*NVX>A5-TGWb;a*ZK&D1yd#yOo7Vt003YgD8U)Mk0+78AJpG z0!W07?-?ekVi<#(^4AJ>b}cfx%#>J}zfvgqrI|SUGYFcjTN3!Zc$%M~OBPo=_4Xim zEJObQpM&`lDASdF*yUsRhW6Q7Bxt`Bu4DY2nH13_b*5OvNp-ul>dlV)MJ#JmI^FFU zwADcam|AN}cPOO5j7A{zR92Qi(r{Bzt2X7*Q1$AOt5yVIjiS>f^3Ht~)f2?P(mJM~ zUs<+hY6HX;v8-6pO2XQX&Wo&bs;_zYdJGlSmA#RVmvy&{d?n%M`_N5RZRSV453H{p zlwLc@>=7et_*R(JTI%K&%GR`x(h3pY7Na$DO&}1nHw;MVv6H4e62jI+7;AGF6wtR* z5D!&#XGSr)Tzd#W#~|+9lxY>jx*Oh9wPb28C!jUO-Ac68gpBj!?NB415y+vc z85XQ%DvU$|`esl^IgWUp6Pv1|1K4^|A!ALrm&dT*R)vq;9Qgh+S~}(az2f0rzkD!Rg_WS)+Bk?q>ODnTw;L@oP2vM-V#~E6%$1M^OZ* z9iZlb(NtkQI-ttXAOzPW0*a#rP&G;hYsnfgF9~R8QL*;3qy2NQNrXiIWH?LK`Tp4&iEyedvMZ8;W z&|A#uXO*m(&10M+VQ>z6o&jjmJ63FKSJr$x)6O--8F1Z}+{Wvt13c0=$s>b)7HU6a zb||k+qM4#TUHimsY_;_X_X0gJ-&#W{Efmz|);AjV_(G{)LvR;Mal^JL=ONF1jk}2g zfS)XPm1;+(BA_f+NKk>W8KM!=ftD(vbV(@$jV)=ddYW`sT@#wF<8oNT1ZT$Tj5<|v zwbnz~HLbS*VcNA4rqfkfFcisDWdZ|0gOqx|>JWsxifr;1-rP}}jIdSDiLW3w7U|9J z>N`EFT%o3~XTkWE-?HrcY54})ZZKOIWC6wGd5#Z~uIlF&f={_+Ytzw0WeO;U*FKpl zj(zHfr5k4{vXbV;Hd}9zG`csmVJk&RW0(s@ryK*yy6eKPCp+}-)s6Rw-i|%Y*+0lI zhBisTGuoVhAo!gh;OT1@-|o{Xnb-ohc(S2pn^Ir%I9I&`W0DO ziSYq60(>1_}%TP~ad}v96_XJrzWulxRRfC?I>>*^gnRLaerS>?QkSgIYeT*sCpu&k(=+E3{tAoh$xXu6b$ zbognHxn{+cMr#K-#I)g^3TUd%wV8+E%d-_ym&nl$^x ztpSmup2gQ1<&=5yt#fbqrMq1@xHy*8qq#EV)-#LK`G8FGg%9FhJIL%t=RMBKi)<<0 zFqxr!Fb)9yD|oS#UbMc~c_p-N4rpk0uC=WXxl4})?{U$zYg!tz(+dH~K+R|$5%(gZ ze4&kHeU$boX(EN}=7g-b8o1i&q%J=NQY~!lp=$;hEiqEKhM#JvSDH~)Xo^?ypm5-d zH9$!~K|mz|%?GP-3RQ(KBU+i^_r z_LS5{Y-bsdtzAI*2~R}TG&jgUs7+Tx4ZL+U?xLESCHXkaVxR{MDiBBIX*8w?rf-Dc zh>@kItroRr#Eod8A}O7vgr9P;6=SJ!Cl$6=VT%B1hd{Gxu0YC>&?qj(&=FSRa1t~R zvwgQC`u;KmHrbHT`kRW!q=v5O$0L@CVD@dpy`_WP;7FKI+8H|z^DpH3W z`YpMvMT>J$SK@xAfKDMsqC!+qKpYtHM~aTb(N!gmMh^+|Tix+}9adGW+zgV&TEj-< z=N^?(wHl*o6BqzBaKfcDT~*&k8X%3&p~EFnjWsAXakMre>|2g>q*Sdkk}*cnO0k+& zRTR`{B;`t#D{vYPmYk{rsKV7094f0NB8sCh?L-1W3W(moLa9}>okV>BR%>R*X<(tl zNC8HZ!yz=qL2b3c1(@DQQmip@%SE6lGe=^fO;7<;8B&0BL6tx?(GeS*N$y1rN3{ld zhPj}}N@#&R#Q_p3FuarsTh+;+N6AkMew5W?SI8>OpK+0{(AV0`9_s0#^4v978ZNtE zntNEzaB{!9G%SybZW1?h7cQE5zie;+0IL?&y8i&f0bIH+d2?=Zj>a6ah7uf=8Lp@@ zs0~U20aP$;Q4OI101OZS*6JrC+w4sRP2+moc73_`_wspG>~mU36(!F)TF?hlQbpDC z$E;qgJCR%+n`f2n+2M61JuV*8gRuJ}pjTZJM!VBLNVjfRaxSkKC6>(@aF*%K(&st2 zXpOGT*w&{7nAVS_c8!wDV%u#t?Y1!ut*bn^*f6hB=TkD{iCr~wt+Z|qXcfftS*t2y z%AAx}1^dr!h0<&{;ev&;+d0_QwQJftJ5ejJa2t_*!!|pniU};BsGx2wU}?Z$F$$6B zoWioyEhrSwA!#|SA(iw3femxoIwvt#fT+`%=i-*0lISqs{s|>GjL5{{U&X zh};WZuWobes^e8ppCEUNo+`GzR(aO7(b?#XiYU;khHF$-la%pW4nbrgnn`VL;>Oc( zwsDSlU0T(S9St#Qz^f?ZKCAG~VH7ssIZj9VF-_sN+Ad=eSM*YOWQR2B)v3WvI4^3? zpnS)4f^XSt$R9n4td`detHryBu7?p&);gVfsV5e!;O){dwBeH6aj@{nMHLsB+On}F zR8Xn{9D%hWuoOmB22~W*L;_J+Q~}4rQi`v3IIOgcpj|#J6%9pMVyMI!L>WX30t^j6 z!MOG)8i=3*sKQYg(c-UAswWtz(St$=X1A+@hIGklR%}_bsbix!Ik>NZqR~SBJy4pAI;~>Gc^jDYO6H8K zg5F%5Z#SUgZXQ<4(X%R&u`#YYuJ0o#QKu$VwkUk5#zEL46<=(l{DWQ|URa$i+jj z=@UHlYZx5v*ErPv1+3V|o6#}gkH)z=Bm`6)S zwPZ0ps_2@v#!x&gXln*QXNt>Bgf;Sk>qWT5WP-FKFqDL?Mn2S(v5q9-GVE3*2E2np zswEHX3MsQtVQ>nJE*W;IRxrAPv{6yrxR@P7;uJpmt;RBCyn*oQ9}qMuSYuNLfDuFl z3;?2mT+u?TDP0z!T4VTBq^R9)2=3@YjUzA)#1T3W4pc!KqeVdW0qj8&sYL_E+Or(1 ziqvMIk}wSqxffJsG44Qw3aTWGlYkWnjJbvGXuyHhYZ}drg4&cMVbNPz(Pn^j#YIhT zi6^lLy3U9sF3{-Seh}eP*bX0!L21-ju92NFM6A<>Dxem;VkoL;0!M?2qDD+mNG0u1 zNF^OmO4)$wf_AtOP@=2O${O@5QJV%6L`b(2h&d?IdeucMqywrdKQOrAfa*~a2lVa8 zpr?Hk95qshwPLp#S(?#btwxmRXr>fYRdYI^R)+_N4vNHVU2|3f(OPD@O2vr9+3MeF zx-gO}sN8YDp48CQV*;|$w5&2tMr;CvEVnruS3-jc2rw#uYKcfd_9}&T3WPXjh^czw z#Ci4FPW;ce) z;3GCyA>^7+c~0tAO~1_<%afS>+pg^7;LeUaR>yZ~E1Ek`+d_VlTK}k%`AJf?-fy7PeS(*ed*VA9=z<{~aY2vM8*7kKwIfqGFMFO&qtm!{EVi#UqZtPTpxHh+wZ2z| zF|DiKNCB-Fl1a&H7IIgx<{V#exHi^Xy`9a#&M2pi&OX2nKIOI>cDOiIr%>$}{sbN` z)UQ!s;{a&Tin#%Vi;LDZxk7t(G4b-v5{QOHZCh4Pu8Y|U$*bn*_V zBykn;{8@E9%RJiT?o4A?#<8F^tpGKkPyjFh1yJ-*5UL6W87MM{(Q*1w6`x~lW0{dK zK+ z!O^@2HNy}=#1K_uMbR+IiZqe30u%%|AUcp5qKI-M1C>^5Q5mfi3yL7?MF+U(A-U58 zq*twRS!|}NqY)25)U7kCH1=eJ3knR*SoC1R$ z$KXPxNo>t7sl=YDRE~M~fM%`>5gGjaAIOmy{{Y$z{{Rrg9fwjXy!R9o zZ_=}?QYo6b#X!uA*HOqT5}mR zZZheBx2y17F>}b)1Lef5uf*U%?$Rikab`Cbw*asXt2#HT>`n(CsX-)>fn$ryIdLr+17B+C9O_FK3drBep#$8Mi`2u| zu+stzApYVE(T1lQ1k@2G9ub8xB@|lF_SE2d(;}^jDmfam(mf&Bpo&O(f}*O)8>vbl zsPT;eMN0sy2wIHfK2SJ3R4rB|Kw| z1DXnjo0SPf)iQ%A|B)R*R#WBE&?n+!)B!@Z_b7D$!sK!>%=4-4N3}5k{0idR0^? z1qK%3-iC$J6-^OK9v;PGHY!{Vak->a5k;uYPh}&YZrxb9o)>$PkzuZ)im=Dk1(==` z7g*|mveCgnYKjOlh%o>t6o7*WK(s)#C}CfPhdPIAef81nmZgvoC6uVx#J# zO(!vX#}eN3I5qzOA#aw;lT!q9>Iw)P-!&UqUU% z<-B6j^V751qRQ;r0sYh%*uX%NupB_eYBNaCL7~A`R;{b5iYyK1Y=?8&FLvpe9~ImZ zMCQ9M8%Q5ojYk{%x^7cj-|t+0SDG*jhDSj`BOT>Qj(Jf?wcM3K8KB3wHMKtArK=P! zC8#9i7HeuUzM};NIphp!e2)!d0dwBs16l@Tp1_hT<-b*ZT-|vV?{T&5cP@vG!1Ehf z5iR+xI66rP_?l0`+^DsxSB2F=3vlc?71B7>%RTRRw6DtFTw8)DL{mt?k8?;+)wS8V zRsFX6ZM)tyZqq{}WP5KM=?mJxKxut-QiUqY`pbdyO@oze?Yr6zfd-iFEXdI497YTv z05twd7%8h(Jvc-VieQK%6#+#8P$|U#rA{cXInMY_+sk%GSY7xgk5la@=*bId;vHIg zs}olq;@sPm`g6R?$GHqsU2O5V9~P&{8%UxxW{JRaY89wzn&N?j>6!ztvo#f-WjobF2cQN06i^R9b>fJ? z^+s#N1Jj-0n}&VqS0^5*apKR@nj+q8XS49oMRwEUXx+ zFt@X+YMK_9s*H9eMG9hrDL|?*&H zE2?NFpj3rXkT}y&7`WgSM#>-qduo3Q#cmkjqKH9=2q=Q6G(nn0a71RB`w%IN(xVWn zXfX!{_8^s|{R#%Gos~fCozXCfYo?y`(^Z#6#yl9>;hTj=u|r)zy8>Kvv}WUgO-U6l zH&|l@v5-g=d(K1H7H&<6uRx01+JYe+ z;chwPcNL~lxQZech4mD`s*CXAz|);E3l=p9_{cb{I!aK?)d9^w0s=w|6{4tD3=tG3 zVQD@2Ey~4=vm`a=D&h1iQY9|MMNJ#&f~dCx)K%Et7F9D}R8xYWH9>@+#28R2C?E&{ z7$6j;XaNZd%4C3$0tnpo6$_q8r$kgP0E|$1?rj_&vOC|Oj6WfB=6gJ+Ep7g2SDN$? zIC^EY>W(J3#_!TZT1%VezfQVislDqsF6U$3lj2=mQn08dX;D(O1GTllAepS73MuJ= z14?30M|ot++bQi{=P{QNx;Ht7jsfC^g(WMUaqmJlEw6rua=VyrF@aGS5DDY0nScu-tK~ch}rj<7~9(&E`^Z!@6hPn+*jMLZ<`05tLR`$Crv*xb7CcD^Cbb{X}V6GKq(5s%P=C{)zZBS<5#pkS&9K*$I{Xo>_VGKe!uqX0xZLLu5Z zppXO-G!zcdis!z)5BrZ0BLjU0@+4A|gOPpN5B<^K2UEBY{+)a_`T9F=pR-ZM- z90?RO>s8V*W7O>XRJPVl^AG7Bb+~p{Ah_;jt##X)MdwUoz?%03ja$&tM#-B;WO6jc zYF2D&!z-Ks_l{X_ic^hfSLo^uQ<)%-q}s70&>M-wHB^!KSt0y zS3I3DM+IE)?!u&MtV%=W)^BU&6`N+)=e|kz- zmBX=AE16oQA`-`s-BC$bDub!$GgQDhGE( znz3w*YuK>Z6M_h(eHv7&3n0}I9`Lmip@^2647!E37MUe8$z^p)G`VL+wIk!9s6|(M zO==cZ2_33}z(A-9#H#X>uAPgdbD;*OInBq!><7E5REx4fKn8TdbFQ&n@u;ZFD5x4y z1Zo*7C2xADlRzOgO9RVuNO0)1%G3|lslRKYm11L>%S=FP^r8q<6a*kOK*E3^Vf7*y z3=lBDN5IxF(SX(9W_uSroiKUJ z$FeD%sQ3ubN4A)(>gl2)TcVYy%qq&ek6wz3?|CQ_Ly8Hah0b=BQ&!EROEmU%T8vUS znk^s(mtoq7m63+y^pp~|wH*`_&^S=6*xaOZ2tCRwG71bWKnevYr6s=f5Zp(pl^KPp zSg~3%TUPWrEiz|2uVSFKL0mILUV-=pDy_!ll}^{9r4B&B!9YPp8lo`(MP(3T073;n zfj}r0g9QRV6&4_qKH#FGAyAG3Bp!3rCOO;_kcQ@V`;7kp_Gh(kZ}TO2k3bsM`fs<0 z-d`PLCb5XaUS3O@2qeCT?G?`lP0ms8UxUc(U7k8dIT2xnMOclsP)@->qNE5NtwA7Q z>WX010S!QOqOi9V15eU`=~WA*5Y28XqG-Ws{3?%}`JUm-xVJ9cUu|)5X8V^t&6`2^EXJ+Kra^G(cHy3+(X>E+aI6bcwYusIn=-_IiyR+yT8ZZMT zDyv8oRapjTDO@>>X>*R2fl^KY0g0(i74rW8-Zt&mJj%jY-q~zjx5n#9m_wNGWPY;O z3WMTS@@8|cO-iV(*B_TW14FQ<0Nnp9)6ySc(Ig4x=FS={zJAhNbJAnn=uY} z_K><)HFh~-`Mif{b0TAbd-a?fq%7qfFy{M8Ist*G=ur<; zQK}581_eQgpjAXqeGUq;Yj#!DC@i_3O2cY2`lyBi%U7>2qMS3F`aR)8fn{;T~=m=%(U}eS+ z7MNz5sxSouP^yg5Q5Zss8cHiPph_C5i6e`t#GsSQqKa2BMIZ*K94dkpLm*~^3<3-w zsI1b1G^#U7A({~m)DktSi2y1pMuZ&m*Pr|m4L|tke~}`UTyO5m>TxaX_5EPnKmDDE zM__9}tG)H^O&3;=Yv-IpcHEt|ZQHCD8;e?AZCj{6OMW9q2IQQGxxVsEk72PFyT$Bw zHl^Y=%PAlix}-Ev5>5)}nwx0ecFp3#J;Q9AT-nM!KXDBMW+**5euX= zDk`PqmkqX(OK3#*4PkUpmj(y83>&P18(!65@|$-z-_Ix8c0J>bziT_BcM?H4x{BhT zEYRmwv5W>isd*1!B%!~!t2V1S)6C%3iZq{$$IUmb%aYBp?%N^SE*WYsBL?A@4s#5iSgwE?G4EQ8*yy`P%o|DO80H#! ze|2XpjB#xM1VQ`0B$SM@87?l$-_G0sItrA6>qP|?nX0$2g3xHUD;7N8A>E&c_-N0dMOC97~0DYgMO%>_*&m`LU zEtBr{d#2vm$1#o4usCUZS__&(gH9C-o^jI$rMG1o-=$_nsU>MFAzF}wzp*Zu#o1>D2_U-mh(OwCsu&;m&`8p%8Lj;*NWdzZEE8N7S_+~( z?boQ>64L3`w>#~dCu6ioJj%6>%S+zcv8UQq(9!6knki#!k-e{p;5mz6E7zHoV~rWvV`1Ae-xJNgt4vE>T7Q4c1tGOMJ9nx3vDvhqo%(y-M^mdjz-KEv_$!-xDwgxoRd+Va+aDWvJx)x!AS~ z?c7^QdMu;!O|(Xjejrd99^S=qnv45&tXMGZQBApM%-0q1s*ED?+9>SXreF z+i|kF(R>Vm-UP%s#Rik-BlwJ47A>ekNEYrDBy4Yj)+EYm#E ztYbw>iCNLDUOB#}?P0OqU2Qw1j?XjN$Ty3dZ5GGOG-KW3GBJ)P2RXD+tscChBP6J( z-0Gn7SAL{$J4=ZzuD9zrZee+jXq_jGuW6xa9mE%? z7--}4Dw;NLh-S4Iu^Yews-iKUa;Uijs8m(fI~5fx9D1lF4n;d(f`QuP3=L2e1F8dx z4ECadssMmd0V0SI-HI$g@rsI%wNS1IJnyI&aBe|?clia!gi@#UXSW5tzs!~9JpkFF z+xl`Z~lC&Lr710-AX(dHn zj8I^paEdH7D2oxaliZ@G3{gi%W*z7lF$Q^I6bn#hiei9uaDr&Mg-zfAOd5dxR-Y2*QHl@vqX&n@?5tCUXE2w*D zv16vMS?Pws>K4xh)Lf$Zw^r{X<)VC!o>n*vNRuGb*lMJgQrPy=3~H(?N-)g_BlY*0 z{-@)oWU-S@>ASSB=rnwGX?$G&zo$BP({zXO{OmK;1fYvl_a&(t?p7YJUu_?SvALRb$kqXi+|mY+wP7A>(hgGo zFU(tOxjW@-Z^z5tdDUQz*~a$=Q%xO)J*%EmPAy|~;QEQJ1)zgaaRg*S(;@*tLs1Q- zQJPRVZ9)K8pi>=C7~mxLbt>wbC-T4wGzFy;g{lQC#ZWX+5tKocRSXIT2pEs0MFbf| zK?10T4OJ2}1P;)F+7wi+Z2}H)>((41Du40N{{SLI6~;d716LE?s&E^Ff5b6Gc2MF4 z7Ka?>RuaX``6npb+F!bHleJ#8jBQ-|e<|&{kH1tzns+8sTc@jswPn(4>r(YvNI9fC zg~g-=m~*-ccVF^bMw+ER~jti!x`*cxZi78Hy`ynSiJMgVS@Phjih!F8#bTFtBIJ3 z;i|RnT11>%nhncm+@{`QZr`}F1jwV&0|lpzn}99 zIQO`BX7R0_;Fs-oa9hW5b0iruTZtvBM!fViWTyj0y|)~q4_5g8+rLY1cFSuU>1_8X zSYS5|k*yAE;?(A~>@3Gl2CG(Zp469`{hsN_?7c`ECg-`ca@%h#XTF7vw`4AWvS7xr zxulm3CY38za&s@J+s`Z7TV=a#JB(1-i<@gn_Sf6CO@4H`3&f=AZU&S~$d6q1%{%ll zq>^w061B)^w%v%w>l3E9I5%Kxys=CV&6;W}8Rf~TI6dX%{r?+HKox-G67e^s+uZt+2ry_j5KU7P?toEn2|h4H^P)R@-IXITs$} z);w#H%^u|4;yE3(Z!yLod!G-9@LWU=omz1YZfRzRH@n8Ts>>eTKm&@hvt!His5I~{ zTEmN7VLlWG{$*g~M#GC5(9&FN{nhaiOVSQ`YBRQ;zODuHTzoaoy{3hjW3Oba(Jg z6|lB*Uipkgq&3b2V3)Jks>?3Etv(+B9$ip0B-@btxwKJhea>t%h-0u zuz2wtI-2q@Gnl7n5LEpI+-NqZrxb5r?vWh4s z`5CSJ$6N{IU~ZXpw8vJ-*i@WgEZeW zcH+&wq?*zjI2om*v&AEd*Xm>R{Vi`JfwrEiaXY2}*{?0P3pt!HE{ZlbW&_)$%Xwdh zdsxPCzQ;$ll)B$uWL0A(@i91l6^4{1ls;y&>{h3~h|&a`3~V_ zdtt|R8+fPWo0xm;+c_fM-rg_gE+*6BEpAO{%&fHNiNh*BX%c+U7dBjPp@6 zc@3Y`4rh6|?wn#hvK_;c?bmLCTlO{f`(#jPYnv>tCGXW&5F>6SQR{XK9&-ikzpu9& z3;QVcsejHr(xs>X0RT?WT`2(RYn(kPRnG7*% zV_O?thN5v*bXvCLoRehaHX9!*Wxd6|?B_+bZ+4AzEqv^5uOfIHU!m?F32UfSsm<*} zu*)n}Wskd!px4CY9tYKZ?{PbB)v#DO(96kp2)5~`jOme<=f^&S(3T2SSrO{&cAd7z zZD!YJWdu8PZ1US`BX5>jN>R-t#a^||NUtNnJpG%N@@^jvuhmvwM&Y$F#JE8f+fKL} z*v81xS`gHmw>0JaXOUU$o3s&ct=%o>eTBZ&Z6tG<;&Ve7{c=dq!XM&!$yzrXZLg|# z6Ty3ZbG6z;=d{hUG8twqh@4t(gMsq^>KUf0UP`mOZ+rawk-TG!TE_j#IGc01ZZ~an zt*s${z%;b9$t(IcqKe%oy_|UK=!zWn&(tlig>MeLn$vu;n$}pZ3~;*6cpEEp`G7Uj zvPLwVMh1%Gbh?>MW8Z8R2lXD>WFR}`U?c&Be73Gw@{Q%rwoS2vu$81kcN78fLdN*D z0^^+=Wi7i4Ad(#b z>WH|PJXfjhqSfZ*st$KAKH4oeE$3#v+nKi5TDss_-CIieoMLHn{{Twa8r*4y3s}u= zhObApT}^eg*xpVW*{*Hknntp^L!@AFrFvqqjn+!mQ%bhi)`4l4lHuR@!<>=U{@1hr z0E1%bmp^o4v)^8edfhCxjk@P{y_3qbvx(B&zLoGWRM2%ji&)KgF?c+N-*f73BC>~f zw7;?A_BTLHWnnF=uI>yj#fIVK>}y>1;#$FnYLdm%PHnFk<$KKg#rGKB;kUNr7LbdZ zTZ?^0+V0);Xr4B^#N7|U?618`&033IN$Ql`pLOE!#kO5sSvKBNy%tLiyfMzg>N*Wi ze2>Eb96QrZ4RvlUw_a_sa$TEk-)}89ZNGbT(6;6acUsE?@kC_;fzmbXaA_FgmT=W( zn&`9YV}5&Q+V+3>z1w%Qw7P9+SVPROY3^`|OTtyb==bXzd+nQWvbbP%wZ*j2NXlSZ z=*XhXyjADDF}=CH^z)D0+?`W8&NjK{G8t9^Yu1fe$CFuedM7F)IOM842PfUQ#>?tf z)px#01*}r-H%x+gSO_xw#Al#5>8dYdOX?RS;arZ^&u8OPL4C`ox`o>`)`QEI-R*dD z=5*9%mI%YDE01E=7F{QQcOh=re^EBpP0FnruZ)d=H|@OnV^Je85+!(@!*k~wX4`kV zj!U!d@34*2-R%v5u!k}>>U$!Uvc2tf1{#`Hq-E_k`?#*Q>wECmHYk#FL)afr zZ3;`OS);`8o&Nxwb8Wg^_io*6cAF7#BsTkSwE3wTBXvK@By@}+&KS|5TL+}!yO%nC z@4eY_i+EcNtKt1wduYPQCS#gQ^y_n;U6pH=OE;gXuElw|UnJkTHU7oL9|fhR%v&Dq zy2UE;Z*K@J4s%Du=NuC7A@6x7E8>?HFXVFDZkrA4@!CncTf%K;wwhC>H%%6) z82H@mD%w#)SGf{U(B_D7FzrP+n0BC$NYa6W!hq`t4N*Xp02BmK0+N9pnuAX_S}#Ft_j`X$w)4119URVlyL@0YXtr^yK`qR= z+MSLebH%*g+W2A$>x+g&fwVRHR+(Obz)&oz;|+3AO;c4-EN#RNrA1zfIyFkELsU`H zfQBNlwFYTGbRZf~0@Y(Q0;rw{$u&82O0g`23J%4Z+(PQ8B60|2%ArMQxmP3Gc<#w_ zyY4R2Z*DMX_@48F7~c04WFIWH<8kKP-hIyM6Fm22&uy3^K#ii2#^)MRCNy~7G61Y) zb*_?W9p`~SC)!J7o<{{WR3{61u0lIFrb7~0@6uT`jI`QO%F19!$bO~vF< zIP9C0uA0(+h&D&~y0cpX_<3Q>BCn`~7FS7HJj zP!{Sy90^1gFq1&4F2ew5sm(=Cr5Xa-C>6}AE5Q1b>Q%oRh1+)DN%zSb2w(xtg{SR5 z5#sD`y;3~?0Hr)0`gxnlcY^F+=GihpL*yQ8nnX$Xrh}zqNu>qsvWICAc(uB3Ms{}Y6%2EqX43j(bWPL zB9OHLmg0ySPy*0B=mij93WpkVL51DO1xgGWkq**A2^)%`zzBy39ipl!u~A&#*T++X z#s2_bgZUC69Bb~uhZEla0NM@z01(9@yC5JA?$t*zEW?;kbrHV$yG|~o_`F4&KEk%n0S$|W$FEH)bS0Kl4b8hJz=DCue0eeXy%_ghI zyxvOuyRG`>1IU$#Ce*alr%J2be`kaTq1MG))n6{$s>XFoTHl z&7Lcroz~2|8>96++er60qs$E&qiNAiO?S0w+RTqH&8_$~w#l!7@3)WSuXJtNcKx#Y zYqq`G#u7qZBU>14YE3AmleMgE>~*`2LAPxDe&2E5Zd+>*WKqpCgNuCE3RA!j+N!wA zQz^yIq4h6=x78b+!P~4uZ+^`cxVtTrL7A5hd1Z9gx=mHeeqVpw=ZEU`_kQ5r7) z+IU*hQz^pFQhFZiW9IxzkX*@cvu=>y&c^w#ialC`Dh8@J4y8u4c|F46oJZ9A-TQNE z+puyQI3RZ7))z%x-?ppHCl=og+a$lXn(9gI zsNnX;CDe{%h#+9#;YBU@udcP(4{5yE@eXOe+V66+P?IAKz?Y~elZ z$#~y$+->ipWQpe^QS2&YVv+A60&_j94vl1QK4>LKwQY{B8LdWYHoV6nA7q@DM>e~e z^6M@s$K~Fxt*5(!C$cjQum$AEXbGtRG<7OWbzN3CzaxW@Y!=(h7Sq~8bkgQSblnmF z4LW8GFe*!{Sxp-4`)}kMjm%Hl_xW~sqXbJ7cF;~FHTa9A6&;u^oHTP&v*P^W(%1Id zdJdnf?G&Tj!)RG=3od0h7Xhtgv(Pila2UT!a23vha*@*0vfZt~3R5MfM&{zfZnT#A z{&rj1TY&lIl!mdbtt#WtAm!X0++&(>t<#H5xI`~6uQvzB3mgpWVYzhC&ej@NO+$fN z*GpNGSl#c}oHLHe!}cgQ3s_mQZZR@=T_Z!GjkeM^%#;s?rQni!m5a%}R{2o0+4FHJ(nT8hSAn=GAoItcx-K&LSN;F9>QpYMZ-DI z2)4cD5?pVVQ2fsEEU`WFHKIt&F*UDmYkVYCQqC@q8=<+kY_PmZ1nkuutThf}#tvy2 z)EpJnEOD+Ku0J&h-T1OBfq_aeW*zv{Xqg9QfEf+*PxJYUs|ASNC@WMhFRZN~6qrjmP&p zyA7{)+F*6on85@vD)d>{{S{dvPM%j zx+hXV;gN2dtm?Wca85mQbG-5nXSguh+wSHVw&;iOp$vz!wG;E#%gZceHN19_eoDou=j+%XT=%>7a0X zL&XVgM_f}>(c`DwV&Xji0Cc|H>ki4t+iq?5LegS};szMZGdt`D3|dYKBp>Q z+peR!jwm6DS4QCN5;iu~j_h#kT=C@Tmp0;#0Mj~PwHc~0IfGrqjtz~CE_>W)8U`*W z*cRO0Lyz-L7T!_G=a+V~Yi63)$eKsAHb%1CH0X1%a1O%-o6p?oIVYQ$@lC27w`}6~ z_IFZVZc#@iq*8g#5#35%JK6!lh1DI3W!qMBkyn^+->H2}*)Juxl4}vRT(bIT+FoFZ z^E33$0;fw{2Cn5P8xB?KM-$q1Nv~tvV7{H~BF4(m?VfvyTqwxnjxy&G;+z&r<~vJo zI6tJ%xZSP9_g1jYd3j@~HKErMm%1H9ICw;q$zvI>sPnEP9~0!8N9&7E)~&L*fZ6%2^F*$Uv`3>oRXHu;!zJuk z;vCzF?t5<6x7qI&w-?6N7JQ>59&WZoH4PXa4GmW;IYzSMYjwMF9gAaRb8j1j8+>w- z*qw18j5v(LYn>{#%foRVeZsBzKQo@^e6ofcy}}3D%IO1JD;sLY7cs};0l}^B zP9FEE=i5v9KLOn=Hpv+)_X}NCQZ?0Ngb^bs;e{WiZ*K8(&NX~P)UGdkvD&k6zk_Ps ztzu+5hTVAf+e;L&G&TMS3w$_K5VIwmD|uaRv$Yn%a|a^zBIlM_IR4M<`)jt?w*oZ9 zb2H@gWpqT36mc|AyDF>dWO#Qn;&+~;@@CrZ_R_m?8+>*QYwPE}C|)EHAGM~m!AzD! z-k@`CGq!UMDQ|VTK^&G>(?4)wcn00FTD^>Pzmf@f&0o{>CvVc)dWQttmln0%_J*6; zwyV2M-r6`0qdZW*Q^P6oYKg?PNi~*wR$VH_@9IYun~zI#v|q!xU*1IMw%xWD2VBW< zD@$XH!aQvu$Hk}(Jytbzk+I^tGqyf2wQUa}(pcKX45he(BU|IAcB-sJw~J=rN}x4{ zy{e;|?!3>1Me225cD_5~s)NWPjzVXHG?QQOD zw{7L@BW8xcdDmj@l!eh4hNfwC2{ok?izMd%05v2W9?O^9y3b^|sN}LTLdc(X$Qojb zc^X?t-u+eSRZSGR`~4@g;`g>2F3q=Y+pLz-n>$^$80L~HwAOhfh#xJH{6x6)TE??u z*l~VKwOw!vd;PxZEAQ2NbY|s|$UG85Y#d{G9|7?7S;WcD_8ZSec}1z+#oM^H?{-VC zZDGEBgY}%kM~i84bSzyr)^ zZh6s5&3hht4lBm?o^QXy%CD~W&(@btzuB+Zdo`W3@lEl>=dsOan;WpBjY!E`&s3b7 z9nQY*2wKtCmPX2c`hyLmeI)h zHs!~yEbkz?+co*KPZ(@&^5pW(2qcP}tC&l|=(CgA2_4#qk+PhSN+!WYh7yz#2b2W7 zsHSU*BQ+C;L77DY;(!-n-iD_~mbw2eK^B1g~?fkEjL9}g5`Hin{khU!t zx_Qac=K=X3;MC6P!EocnzTtdA-pg_QncJZkcN0gimhQ3#HLybbMT9yD(J9mk$1K#- zPiuPp4$Stn02(OPiZl#>9Tm}yULV!{nVYYto7KCj9SjEQJv6Snf6@&5bkMD0SI_>E zdT0A{E#|A%+QDKO=TW87R#5E)zh^e%RUqzs8__L;jm-`H@u6}Zi=gHI6)PIS#_9xl0s1;`~b#ve)(fgS5MET;|WTu?ZT1cE#eFpSX`Q?dsf z@I+4>EpK`4MM?ocz!V0b+(FHKO!Yu)-fqpYyh*(fM6=UVE%3{+&&IUquL;d$)#m*@ z^t$tQxNiRd$;P{RsXSJ$B))gM#3Yr~uAbttIPq^T937pIwTx>R(AG2twXGBY3;+Ns z!NX8+Pf@r=?Zde%Ie#0C-!A!#?$Xfa!7I;+j&I~XxP2Xp<;RJQ(}Sz2eMV6UV z9NX8^{{V5K{{XMS{D}~bH}_$$?3VU_`-5r!0PyTmE3&lVMQDt}5Os7kJ35AdQ5fbh z{7nRRfKmutTOWi99KmY38mh?KS4rlJc-=OBX=8PLG^%K7BuMXw)T)T3w1#SV(K1ax z517`vp2~ufqYNN`($GV46c~FJwM31CI2M+I!!{N_mj{z;*RnP>p^-7M#M~Jh0Bb<*0|gNvhAO$nHkZA+UhN>4G;}AZ z?plo0F-^hs>RKv-Xxj^Z7B!}w03U%vRE}$0($@f5>+RSPs0_b~Za z5i)3v3655^?WpTV0u+@^8zYT^IM~?ZZcJzmX!ZeuB0nvynBnoZze2Z>Iii|)sin>s z0tg>c=INte*9}zfR9=nE)84FRqMDkQNas@9xvpcF>NpRwaTxb0RwaA9G^GIOq$^n= zEPX-1oIUGtin#=a7Hg$kas$|da?l*e+)e-kPjbs?JlH`cK)~BcQ2IHpz_r4no%KN^ zHr7!cP{SNO+BC>klR?im&tDv+#j&)jgB?#b3iIpl^y2U1kBMaO_iDHdqbO1+-kDhU;3A91pfe$ zThQnFDEfbTtV)sQIGP#&XabFB9S1-a(KS%L+Aa5Z#5a~PUBV6wo+io#d!7vznOoX; zeZ7o+U5$)3Q5@L}Y=|FdUvslLy?~7daK2ac${)p)`XTyqBi}!YxcDrjY zZZ^wH9nMO5!riQKYssMvlre?g+AL*T#pO2!!+R8#_c5|)B^qRgMu#!YJsi_eRF$FH zxQ`#cyEnJnU8TUc8e(*?M*O=Ans5PXR&uTUvPBzPZEG82je?DiHiosMumM03m4DRM zPH~cJXk9DKT=z!8;(N&zR5W{T-wVUxwuU#1p2*nO3ip76E^RGt8XIv0bF^XvtZTqM z+JRS4KUVF83fWtlVk;DQdoWj4Patbr8qq*74FZ4;<*3bTuQqL-`cWgCtnK2vf5$r_V`O!6 ztH9K=lX%q)_RD^_fsEQO;@hqRt0a@#ib#*bq~06@1k7MD=E3#cQwf!`ETv9d7#0D9m; zYAe`mJ5Jt7+pKNu$-tN*WJLSg0%|S@T!RD}NpNVZz9Iz)_LL49^g+=70Ng=gjRu(G zOq5iuU_jIZGz7^TdlV5mcevp|J&3FlcAAt2ReGR0f(+CO46Q-{dy!sO)i@nLr(A|M zf?e`bxCXekxb4sV^)UwIxzQ)-Op%t@Q$Bc-nH2(MDE0!F;k4vuSKjYB# zSCj;HuF=A)w2-SQ*hUyp5i48)rG3gO{frNFT;qbG(PCtI*R0umj{H4wb0s9Zt_Uf>XN ze_cI6X3Mnxp|Fr0*KuRK{U^m0wLC1M}c z7&G1Za)LFpM}{XmFy}Si5PKFe^txX|x$#~*9>K8M?X7cUmL}HbcCPr0@ggzxS!o?cDIgw?`C)nxp<1{he)YwD;vRf zeiGq=%;weP`Wl!nj&&17NhB)4+T1(PSc6L$MJmIG0_u#AOw6%DC1n&7Gz<|^52*u= z8>!Ry$Z5+s|F=Tn_cWLSESCJ5UXX#;_MZWK&TvC3L z*2(pDw!NUXNeMN~p9x&~x2}%B*ct^e9m{MFlGFr1)D`y~qQh~qn!@%WHLb%7CW+Of znth2V;k(xr-90npt=_h9=WTCxi1j;Ad@iAUGU1(Z1ui|Ysa>0kZ<|je+N0boBsx!q zXkATlzpETS2WpWl(YX0$DuT!ZU8tI#h$TUYF$PfvQ2^2qDUGKzQk!-ZLK{(9f{I~o z-lY(Hh9J)-F2xm|RDFd}o?AKuLuqO&G_?RFp+G7QNHad<14S}GDhIU!mmuc9cn5*O zBmV%e!TgC5ta3lQ2>$@OJKi7Z2LAwvVvu$=<=&`QP$DbKJ6bTrtw@@xA2H;Ta9U+N zQJonq)}h2isGwrOR1YNe#a34BEgd6;MFLuAwR+(cUQ>P|F{0;{b;dP?)Fox2VsY$M z4-;xasJR$cGfF%&5z)fF^{dI5%uaY5R$HPn??hJI8ho8YAhnA*HP+|CS($0a--_v6 z+e=}pSl%!()x`Hug^am1Ij$1tl25~27Z+iz0;p2*KXp|jONg&i(IQcetz>O$aR5@N za{}yeR4b@+Rhm#Jsu(%I*Pz*dS=6s6sYG+LlTii5~=d#7u+fv2f; zJ(Lw(^1NMe%#;(3oKJuJYPDXEZ-kp)ARR4kWGzQ3u*+!U9ueO4wZ5X>h|ZLTZ`|E*%@d zaKp4FhO3RE!LB7{wJJ9-0;5GO1q2hw$i_MJ399I*=^pnCXb(jdD`FXysTs9}pp#Il z29|^bRRaVJh$A!-HK#Nf;xzs=i$SKLR!vU&AYfVuIh8eC3}hr{L{b-(0+Wgi)KD(I z^-$W%0v>_2lA?%u2dF4K$Eo^%tFA{-Ncjn{0;ex>)*Q-%(imck(_TI!dtMEwaeHe* zT;~!o?5!6pIXZ50`Ww5)gEpSU+BjrTMhcfzN?Y%J|fL*(m_S*qQ^4wiy&Jpzp< zV?aSG04fQZ(29@*4W_6FVgaE+no0wu-2$MtDhd<~;XtCGd(>1fatI#ksINKAxn++R zSxE3PwIaCZ+^mIszp_Jf%{fKZ@yM?j$OgO1w@C28D2TLtv{gP3 zbv3ogt;J)VYH)X62e56o7qjybWgWBk7@~`6g{~3^tk}RB=91B+&+H#&itDcxy3P-5 zPAag9;A2tOG+3-iBo5U_$b5T~-|%lx_dClNd@WY`KY(HaF8y5;Qmiq>)^D6=h=05{e4+9X+c|u)e3Y5hEoS*XcnsDVQn= z+EG(7mG40_PhyIYQ3i{B=iEnPjpuUQ;AD~KZySV?lUh(l%AShoJY)XwoPF~7Ry%Fg z!^^0^;?`;v%mJw6qR8{y=hrzmZK=Cw8iwN1YoJ?sJHYcA+`PDS6N|dLvjo&$^pnz= zqnvMClE}p9OI^3w%0bj|CP`z*EHu}u&YG_$ZD}h^ov$b#QUVSL2q-G<+g9JZ?ef@P z#pc^gDCXor=vsOZtQ>OR6KL_$8P>x&oV*dcbTit)w z4gUb?*sO`GuRdS~I4x+Fs>?f^Xcf_&NZ4Ndh9w24tR88pO;<&~l^Q@D6j)y%^gso< z=n*P-EL>fPS5rl|=(did;#jr08f%Fh=NBAtS#1Nm(FvKu5!F#@7AnnH4Z&%WIi!$I zZOE#I!hrt(!mBMtRMkaAdMj?=w~HAyR${J_nbaElmrCawYgW=Z97oxp_nIzw@^r(R z=^&2vhRQ%Gpp39N-NOnf70hrrWU7!zL&!LEMA3!79II3qPCnJB%_+fD5aUWBC5Vsi zDONDM5;}#J+0hY|r{h*7MXSWL%ENneQDQ)%s$EB^_3o(lg__)|WYE3lA2pd^I%y)|rQDU*AehOLYS4&zFd z&hvN1a6z>)ri5biUvqH$C0Nc+OKlKi1s3C-JMvUQyeHthFMHwI>{E zipzNF@!g3E#IsM$X2~#*cG+N8t)uvATj5$BD$#4&{|t4(w4*9od?q zMmZ5XABaIX3N&C4Flqy#6lf6{L{?D|9EC=epOy+Lv&w>`_Yua&NcRRYfVuA`fB}gm zAo*L=-e-I22Q7nd+T=f~qm{PXWOES|Zk6~xSCVKobg$V=vg~SN)9>+ZHWxPAb*z^6 zmONru-+v1} zxfL^ejZ_@h*3N%>$F}=@uWXmezuX%4OEnIrLOebLTpZ_hTAU`M=Q8@ZxyGcLlh&ub zWm1D$D5+wR(Y>!@iyqTfy`+K&>IlgZ-n|<2M(1;oaozG~OMOD?3&)zePz6j*p!k|G z1m>KY=Ikv6R!#x}0tN^O2py<3{D+V2`}Wm7-+IQmlCjN>LeS?%=L!e1xe%_SitP9N zlhY0T_WO(ulV`h-hk!v3jfY5@JWU7$XY5k6?zS6^rTv^2wvq|0ZWttnR^;ZD6GYXh z{3xi%Jr!iSh|L2D2tgxc9ZCic2P6dsdr%ERhz6t?P>K~$0;pP`4swDwI=;l!NM4{# zOH7E8h%m}}Ai*bUiUsI7hu#&$a43)e0C0o(5-CobIMaEbGK}8he)Q*Y=7X1)AZ9)fZ3>eTLCW9pvtlT6e#C9y! z<5?jHs6Z}vUiDF8C;}p8vWK}?l`nrqrb-4Xppdg##et)-MMZW$Lh3DI#cOTi(lrl@ zI)&1)8%P{q6OA#z8ZLRahcw!OD-MjRtc_Iws3CJcv}qftC`s!?41T3qVWCw4xzn#g zsvJ}ta6ykG9b+!54MsTksxwhmB}V#Is!2l_Q2k^iic5S}I6Uqz-Up zPt<})YUYmU;mQyox+cAQ-hV{K`EmEUwRINpjOO%?(%*$?%?q7gs3R_KZaokoBP0mnPBAI30+?p3N>Ty#tuly>C%d&&JWTNi^aBri3v6?4 z8!LIWMN^pQv6FbJTgG1b3h`KGZ=C zB?E!lf*owN1A6Z-5=FV4xLFjhlHU9vo){@O?>r)B& zc30q)u(UO@uuxDtu6Wd}V>E9!v#zHT+mh*2< z)l@h>^hAwvqDb6HL9kQq>)_aN18`_|jDZIbRA zgrX~Wh9@^U$0oF9Nh&oQ>vXc-`J6X4hT-vB+*-KDb8jFvcIHFjh=!2q=h8e?A+1Ka zI2>`$u8y0t`by1%(tY~#aE-EW z_cnfGzySFXM&`W4+-Pg2t~sq?j}~&Sf$3J{Hy=-SSR4HdkwsxV_cro?pd7Lyq(n7+_b|}weP!D?rsj>aM{JIu7Y}07QMOD8X9&Ut4U)w zJ=xF$ZDZw4xi|+l-ba?vjwA=WOI~S)3doJT4wFL+fC(ryfrti}(5#hZhp|C3Tu@IN z$VG79yoihSro{1#rU`?nKFE7W$J$EO{J!(G$Ad?IdgiZjz&$*(<*&!2I*VOc4GsG zoZZA21$w*#h|2|>xh_24UiF~MwP_3xG6FuN3=lBxK*&6YA=@^7Z?#=*k~P-5g|p;s zyQXfL81~_;4zatf5o4C{?pL|`bI7iE{{SFs-L}2M%+gDQMCCj{(yVaKi#BMy-Rj=r z8;DsvGB!viXnayI)vjxWK?PV;wFlUUjlonUP-RUJFmVVNN^6P+*Hi+kC~7LBHPHbw z0o6q>nleBO!U&xwL3e!#_#`a%!nNTSD#`>-*M z;ycidp`-PKeczyB+nceMxv`fM@PdAYN|qOq8+y2kpMEPfWZ+{f{fa3}&kBL_FByP= z+jCR!rh$X?0ggRX7(w=;wKwGXj;2c$xYoH9k+&65axg%tRg%czT7766T@5RNTVj|L z4@`>9SW-n%O6bFyNBjb@Du#_Nb5BA-+Y5VnCMl0ibROUqb87_6Z3*wia&)F8X&Lwx zWE>B*6quU!D5$1sAr!2r6n0@$rX&h>oPw-~>r@0g3Lqwhq*pPLl!(R+1GpnYQjF5O z6{KSwLOYQbT17A`HK-3h6H`Enpi4<2xg6G8R=6}C9O?r{X(ot8$k-!^tj>a-^{p7A zngChYsvw=(T6+dHRx?`SOU-g!7+l&l!4sRCbs9Ig_9>BzaR_XU4q>SJ)>>F=X@JYM zMJubTxl~BTRls9j)J5xfJ8?y9;{l?9WnyNMqOti@ss`UE*DNkLY9*fYLY5{qHirUh zpLb%!bYW*zL@pFjL9WN}E2>nLRhCz(08e@;T;vEzP$9(z0BcoZS}LIGrhO4r?p@&+ z<4l%oP#S8`dw?F~i9--pk${vK;zJ$O(3L41*8W#IIVG+&BE96UFCl-7$4dV2VeKn; zv76C9ysf#Qlw(k(ScSRfio-xCFjXjZ?d?Pd4$RSYE;XtpVQ4E%qjMcl0mG`IK~d8M z0|$^$O345@po(DMFgmnp0Q^7$zrwwQs}h;T!ZR7fxPkTl1yOz)34n~(3OIBHW~y1O zo56MAa^qgaEW6khKt{or-~_$bpIiDuJkqU^`I;felOu0aI3LLsmAVq9hej zMF)=ch9ds}Ot}cD6t&by&W(FXT{ijsEaZpNQ22d2*jo0vhvegUOXzGY@C^=%P96WyF3wE)- zLsp73eWQ|UHgSpoGYc)Ah%p8r!~w>LAeGoC)KqixQCiLGd9d0x>y5_#Un@+n)Va2nM2TPLG}F&< z2TM<2&)Bo47Oq~0SKVymzuRu?U+`T+BrZSuMwb3Hyl)pe<{x+4w*JcQ8$;R~akbw` z9L^tU&+Ww2g51_5(%9*4vR6ltI68;is|IK)f~q_}tej8wlY-vG3j?q0N6uNej}>AS zdm3}`vY~GuLRTL9w(b$b&8}@8@WXp%_OKC)og13^H1xm{u++RCNA8y{wcD;PTk%A~ z;fAb0!vM7zaJ|~<`+|Cl70}&&ZXN0)ak?28;}lJi-YFhI(%u!Ivd_oyTU)fLFT@)pv5 zquKA8(&pRTzBwEzKqX)zy>nveCb-ru(9QNAHsT50Z@4klWz=*8 z56N&K>TNnJt5M^*R~WJ8(7MX`jIiX}as3>)>3mv-BAB_3AH^zFk734kW3z1byIHt( z(`}ks*`5PQ6{r*)ib$DO+KuR|EFdVT+|-Feij1NFfQOpmfYn81aa9QCsHlk^{)z#w zwNz%bRu=>Up%kR35S2hEg(ixlH55=KLCgN}EEWG+XB>HanagdtA%Srp6E=1C~e@a1h*29?JXza092`O zYf?14kDBwYC$&wwZ@U$({e)~K(`|PTCMTbV&1B36K{N&J%dtrKazn15RY`53*hfi^1ZzS``Lv=mzf?P?U zsVc@-n>-SeIoiWL#g$ss#}fSj5nVy`j1n4lFr7#8~!Q!~1H|@97ZO>)gH|xFX*llp$ zFkLn_=#oj?!=$3!>1PGh@e7zZUCq&uJ~hfnjC$NCaY|uHOs1jW|5IIT#`08`nm26Z_-tQ zmg6%_Of7p$UyBGJhg0%tn%*pAqZua^w>9mu<{N_M#Umtqc$Trj*bM7K(PqV!v}>IK z7Yr2yhRDIx6N-&COnh&PTxOu*PN4U!sanlWRTg4|3c2S?Mr7azy)`slV89S?rUYc7 ztuPQOa_uS+BVAEkhiS=1j_gGWsG&5ChT*t?;6s3|3C9(tD|B%!aKsUs=Uri6L74y? zF~JoZnNgM~s_$d5P&7{u6$Z4x(-mVj4RI=kCa48aDa}9tR0Hi*npZx9ELAlE;v1>h zj?ZeA=t-(6X!GG67AtUC2yGUTh>Qw_k<@8D*(pfo8{zV=-D=bNIGkJ$d$IbL7m+J( z$0#+P+?PyT^KV||rWM}fRTPEFfv91MAc28Eq+)|8s%pwAGKd|bgB1p82iU4H?Q3H% zr3XRUf~<~tVLgJsLen)o4m!h#)rKRY4V{#FS*yDRn${}^C6>tX)95M+vb9R87ht|8 zLNjo!eT6E)f_ebQbQB7uiH%8B3#Aai4AmHe0Vp#R7=S3HIiSo{KtYP2)d2wmbU}fn z_aYgrK_F_1G$;r`<$YF;XZml*gd{cp04DND{E$I+{F<%p^JgwiKcWxZH(n988`Es- zdv^g%nju zrOX8yRFU9RlS*PwMF$<^?d81pl3ChVT9|lbWXT@r^4CQ%Y0_>QFeHkWvA*>*Zg6zH zpJ&_leYPFG!XXW`0*z?Qlbf7+xyLfJ#jB2SD2-0jZ{!>LLL&38C6=O3Gg);i{Dz9t z;pm;Ks{WS~UWkrq>6YDbxATsBYa=3LPri=gCN=FcQf9f}mW)G7UG(6tUz^-xejj_I z%@BNK4~SyZ-lc@78fp>(s2W4OE)@p?4pb_m=5I%KxLNBh%u(D%8MnUl#?T1!8q()vR)7E-K!gaXwGRY$4jO@8G%HEa7x^?1{1&A0yr$<~`CAp{x~aSll}I zEa+PHp;Su3g2N30fa zj+(vq2lQ)wpz zm+sF5ZQ`5F2mb)Cw-4|PNXxIjBc`k#PH~)Vecc#(J>?c7B#`HZ}|mjvGke zw{1-t(DpI7nv+TWerHwxTMBg;S}IrY#x18GHZ zx*72=r?(HV;4+uF)3a)p{wTGQ=NPRfkVeu@I5o6d!g15qnNAY=o)3d>JUeu>e*Md> zF1MaRxj4%AOSfEH!30$yklO&q$D|IeS6yp5aBj9e&up^i+fz7=wf(-&x_Qy>TYQ$c z5ZT7y!uYNu61A<3+Jz3B6E8^?IR%L3KBQi3o2hi1ca7UYGq&26$8~jd32Wv6jcj8^ z4as9KLwL2Gp!zkiZ<{mX*e$KLUD>W@mvIX`nBN|tUmUH74NbzLqcEbqUillN<5$qR z{$rVAGaU2wh=Ibs^j_B~+4q-ojgO0Pjmpw(qhYwSg~xHYk4%^IS+%3cvvKe)*wfA_eU0k3pJAF2RINi!Ar?veTGg~x$=%fw({FJ8??T{*|Aze_swSE zBcu}eC4AecX~e11X%HVZ`HsTF09?AJaSA+j)1+CwVjO+s1BVg3|Is zsz=(*ADI(mcUQ(dHSAc+n^Tj-TEVdF`_}md2Y%Y);O%B9>K^f6%FO4jN%A)uVYpG%6+u6c-_Qh+mYlmRu zhHGn`q&?1t8;F_aGH4p&bW~vAFjmeQq~mmJ_f7+|OX_@9Hcy*s+wQixZntPGWs)Oy zO~`JE91TNBHFlM&d3srqYnt%xImYZZo!^bv$F=TOyQPdxp4(GhEOX2wk~vL$ZE$uv zmTxAfH=y-uLHh}~HN^QYmesc(`y+K2eS5U0W%d#5qb$_W!Zd;a_9+&;SEREC@r$PE zq(gPwgk)u>=AK5L<*WI!_Op3UW7!Ia5!1C9PS+^0;Qd&ia)l2TgDiOEn;#@*DJFvR=B15}2T^2BWC8Be zmOkZ}-B{uG+&aV4NFN^J__+1GqoKIHadb1W#E~s@c$qJl<3QYNl3^1*O$Oh$@EhAP zEuW|RzU^lwE#4(MY-!R~Z#uV>c}?-VHMgic#m}g=R~MT!!Xd|Q9~`sTM-Xr67+DY@vTEw!wRP;| zPDpGvUrlfMe$Tt`&GHL>)#7hEWNYLmO>Hgx6jK(M@F!M~tYK5sj#+AXZr#NUHfrh-!KxtVHHS}%i>_QG)3we>r+ahg#1^ibkKW0$?-uPYvcIs7@v?`3 zP}hRe9vzVmQb~AIi?(`uyx(uUGilwo2#i;kFq3f7(!gY6v=?bP2UAkxi*`5Fb7c=^ zSvV~+y9>b~72tS|*=x_m=OpB9b={ZEPiwU7?t6u_5Zk=QUijKTe6kQpF3B%F3~sS| zb=z6OH+`3I95f+yWY=1A%X z0zf|qCj|soT(18BjCyst8)=;_#h&Xn)3(oWOr|C}Z85pz)z0#mO)K1yYfyIo07hGE z4&!?5$8eYrncVJOcy1pqZhKw;^6|?`=^X5O-%Gi9eV-uPU3Wg~w{g%Vu-xWr#FE;& zGWNvxy{$4jGSb~t#b+#dwT0F#@qQ_{ay_07LCJyLFSkbg#B7o85L?9a`Z%GDt_^OM z=5r--msed{+kPD!ex!>ltE-E>mJPe+w##W}l$amqhL-9M4s%0?hfz3SrCG_g=hwVc z+}T*}@4dRbkUj8hyK|;5xM{$;NZ~E3LF(rKw2|buH|?84_S^lRk8YfH_+MJYWOEB` zq=s2Uax&vYk~0>&0^wS$-c3hX7z$=bRi`!_RRh?76c|wm=Tq@5MoQM|HSI(^f`Xlb zlvu8qtAXNDEinaY0T2)*=8-s#%o40}-SR;u<0Q?=&NTO6xjR!+{1 zO-9BjBVh1_1*qXCFp9Yw8qtD_5+axs3_H;h1XCcy3gbi-Ze^ubYf(kd>Y}U8#>~gW z@u`mmuWx7~gnbAix3+@X-aBh}+ZDVm42m`iHLYl%XdS@=mb=~2R4$I(kk#b)MZV&1 zxgGt@$C+<+xl0|a0nTuYTaz1zE+^u{0fM%CM!X)O$LK_BqS*GBcbWI7t=i4b>K0qv zT!L!&<27g^w8OTQL3m(LLFLe5qUr^zfl3gA<_k#fc!#e{mwlrdE%cIk?F2E=UTP7@ z(B74O2v;sHgd-JMq6ccBnbi?tg++zDzO=Ejn)dQm!E0>COFXW@tz$(= zR!vIbl5$C6u!${T>w!7Vpovo$2Ev+JC z7V(Nl3}7{_8Q=m=4BFN6?k{i2IJMP-q7S%@uA0c?TRQSdCsU1&2>0uN%SVEl7Hb@k|?mr$w*?Wb zzUj8z63DKZ8T}iCjR(t>nFmsYCFAXCRUO8EQ!gU&HqJk3wM_9xUtZm|c1K>UiV;_l z-mySkodK-k>ZHOI@3OUr|_^>zw&acf>Jjjrd)+p+o5 z?Ut?I8beuPE{V5r1Pw-iE~5--r6;Vdf2X@=E8DDYcFq3A$(D0Vb8;oOxOC1Y>Qf`4 zdmP5#1IX21a zyN=s-OCh_7hOz#Uzs<iXd&bF0`@|MHL3)X+F11@Idjyqz2St zNIvBX^#diS%`-Dqmx$yRo}k=v{kL@6_L~{3wsUgWJj>G@leXqIvaTLc3@y`^Dzz$I z;``ML-Lme+J~v{|nu1sihjOl;HHDg~syxA-zwzVa% zyJh_yq4F2G-d~hzS{;C{D>`#t73_E0z2@4%((KkT?l+;p3t6W5c9!)z%U_7>TbeVY z!Nm`%Z01w)Pua@?E-YfOHm7kFXpTcBy?$LWE~O}!j-I0)8v68mi#P5Un^666WgVT& zq3pP_WTN4Lrmg;PHI>xf7i8P{#|X7{(YI|(?aN_ zUB$ns@AU#b{ymD=*hOglwXvJ_hdMV;=6U}B26P_*2~t&$Q+B>>yG3ud>|1OTS;sxK z>#rrc5Wmc~lg#qGvfPaaimLV`=HFcHx15iQTy5L+t86CRV3HfFXk`_Y$Oqt%G-6xDi{(DnIo^PewqrE?$kNo6UJJrSC>q%VwLe@)>Z@tR%$yhD{yIaPzM&;AOK&C>()uPz+focO(@Qt5UX z43Qo~XWRKV4ZgpJYTFL^#_#T5c?1wl$nNbVnATQkmrEp!zr-l&g>N1t^fqU2l?A};btWO2t`RH-Dav}VoCKW;|sc;znv{*k(P6z>bB*@t_KkMYx-!}D-w9i(ueXcKEHQjo*EAZ4cy8^v?VN{W z-0l8KDfcNiJ)?AFjFa?+K=_$3;COBn9ueZ1D}c`h-RHL?j93Bw|}+30nZM`PRfczs8^xZQ5!y1k!jW2J@w zTMe^K#UqL^?-PLllILPd&F31|fwvv6e%iUk$0o6`{cmZ1XC0*W@xD0jV02C-82rN4 zxsR`iRcfSbd3C3#e3Hs0Sy(e_v$eQ_<@R&U8?LU5GPU}3Fqq1jF9X0;<8Dbw1p+Pj5L2(^TED#;3{U3BkFRZDxi`F*l^ zfyYjk`(1+0T$c&O%1fWzPcChC}5&#BjDC=k#AkQ`31rPxDlZpudMR`9|q=qS&JE{yy;K$tnZU?! zE2ge(y{)`ZHj%c6tGbn%s}aXig4A(__`38{Rna3HHBzdgb`=!uswu((4k#QHM2MhB zq6lV_O9@i7BV8<{m6bzB5`c)Pu8FAV37}FjL@t#_k>If1Hf~2Gj(5w+yj^(_IiOO6 z2f3~phaaMedDF4!+|W=VZU_+2XOaP?trb9pp%yCL-P_v$WOX``*wLGuPE8$2O%=nw z@D^KV>s~j>V}F{~$}R4n6RY5b&6%_!w04&jZQx_g+~a#BiIT9@k~BGl=SK>K6GI>b zRcVUFL1;uv8SFvBeQD=&?^}@I+Z=DW(<4Rcimo$FO12j1J|NnHd;N;u2_~+Q>1PQ2 zl;gq+fWx|75hd)682~8AtJgsK>aizlR`xy2O+MwMS&pFhsIQv6N89A$KBP-?wz$L$ zjNEN0_DqDi&Bvyyg)CXY^rp|a!MSaAn}jcGu24k;}?!D zg@ex8CO>Ku@kUQ;O0?$n^-u%aqLttffD$^DO$tpb+K7$QD5zf{Jy1sJLMk&T3IsBs zU1Xocfr0H;L>vkLh{Z+b{ng$@ zDgIvH@eEQcutv}Z2poW-l(#zjkXM!+K+si1jaA*NTI$nHaw;_y2$n34rlO>d=z;@< zE84EC*tZ;wc1pys#D!6#y=I%I4u*wc(F+>qJ1YAX7F&ZU*o=YiKt%xdtwg2-1z9ss zdIM8c2b$$P17+lMM{&7a--g0i=&j(od{DMX>!Lu$;2taSEkxC^;~NB9J7sKlmzTbC zwHM!9I_1p(P&I|$2-DIjEoj z%~VA*#+oTq8sb>f?kh~wRR$6e173(I?wfAiy4gu#xm!nfWi>p@c|}<5CZi7G7Ntub zfBLQT;lz*G+aO2(0G5As0cWMYoMiqxWO{!#N8?0#%Q&F6wvOJ~F%`YL1aQQ`gBa09 zv<|=)bZb)Ig23$F+2k z&ZCB}I1ah3BYn5T0~&gq*E?E`)F;3e8;7XKjQS!Xb-M|u@T!JmCbo96HAZtIpj2$5 zaBu`{g_DX1B|LH?V#c z#@AU7kT~EGRpyj5DAbL6Sm|C#QY~6*13<&twWB(j5Vb(AZlTzFP$(jp=7leq6$4nV z2s6xYy#drPq9B3~as~(pqAN7^AP%hxB?d9axO7z#h7Qy;Fd$?UQ)(pu#Q~xQXh6c1 zK;^-#EH&C)GcT^K#8)QfFs7$~bTv;`JKnvg5AsLfc5F_Hp` zoFa+>5I96Q$rO)pQCjPXjE~aXn}@w+qP7BaRMf$sD#$n>N@9W*$k)i`x5OEPoDD{< z&uRyzAra>|Yg%^u;=x9p&iI3mi}dct6uj!Ug|tA9Z4g5vYNCw@Z53sp=A5d>jBGa> zt<4~YZF5`*r`sW`VYzH=!aCOmMokSf zIjO6Bo3B~8cG!J0x{q$Oj@i3Y+jj#Z8bd{NOYN&1iL2IdJJ@fyUdeL?5xUMM>8)ty zH$#PS$;~Q3y);z>3WZ`;7SO8AE;Usg`_?~E4;I-zM#0tJcQ!ee)HuT(DCv*jZ+hN5 zIJ0>0Ykdp!_C2d_Zz;Tg%wJ!`4T*DH(;RXN$l@LYwYcG{v)Z{!tEJ%`ayJmP!sHmV zb||YX9Z_7D?+>sEcAE|QFnrrdK3aMVJh^dcC%MDxQCojPIUHM$6gy$k+l{T-OBm3> z<;hahN|H@$S9Yw%uP02Z(=4h29D#$84^oPXN$G&iML|;IiA7GvP+@|xlY;KFJ*YCB zh&=Bx+3qha;=ZwQk969}xV3Pp)u$ImK+jb$TAX+!;Mno)?%#RZVB8_Y%@mQHStCsz z!|Za(*1*Yu?FuRhZfK(DtFCDsfumAWLz$j1d$H(MWgF(9#T65#t_mtMAyf@Spdqy= zYH>l5s3?rC2&_a9P%s#wsGuMsGKzu+Vh&;ViD`ELh=2DRf8m|fo=p9B`ndT-?_IF?i!nJ=NC#^az0xF zolkPQ3wtjA0JLuQg7;;D5fDLW5>PsKJsW!17JY)O%iMwrx9R<+n1&c=?xG zdA4tR;cdGE$dHK!y4Nv9sz_c%KdSpC!?^DUdD?DSVFT_R2gpjo;TY6f9p;)6l4_Rd z^zicijmK}XzT7RXw~Oc@m79CyYh^B(pn%pBTuw+*k5ITRt=p_;->jp$W6K{ImA)5c zrOxr#Un#n8Hnx{pn|H_zfOfg9 z)LK2Lt2rVcJ3v%S=w$#c(#foouX6YcxP z+q+t}?`*q@_SNQ%ng@rry_IiXYynmNzM!U4f* zGg0k)=ZJ3iX3uQiZ7(i`X#`TVywg1((^t6>H!0*0>>PJ+-lZDbV*{mZWYb&nV?Vxm z0a*u?v*LWZ?`Vs7my_-ha$AU7aLAhGw!%3c(D4Da(?Y@Ul1+N4IP+V<=r~U%Jdcgq zZn8u2_fiK(cL2mPc%EaCp!RBQM{-X`p(}g^Mx{`-qNvpJJ~wN>K@>L^x7JOFmus-O zeY2gam_JX&msLlf^u>}#wr^HXyPoZqTgBzQyY8fPvIwIs4F&EbmCGrnRy$*L#$V%` z(@%e6w?g~7+lcM0Vj88MR|YYoD!Io1k!#KH&s6yK?X*7UbltZ5JGR{1LSgfp9b=9{ zB5)6NPNq=TC0zN(u(8~>?ZVhyZTC@LTasEPf$fomw*oaZkx;c6thk<@5t+?uMr~{6 z0EM{CTCjjsr03YBq>c5wU;q{xTwyI8%Pl1i$pcYTOvh2QDkwzp8;ed6yW#FViidoM zRtE%;D6#aR>Z>b1I@seb`$qs1Mbws2$#*_K0L4^#D5Gp_4QQo0ELTYlii0acsK*Ma zV#=*7bSo_&a3CNJ7@{7FNE9leBnJws8LW-9Dx$+%gO7T}ZgNKE^iiTXQ4th{6$8qG ztg=xR<#+4Q_q;UtT1Xw|ui#m&$D1w=H0?!tt(w5YZo=-Ox_b#Lq;j>ga8;5Jf;YCR zDm^B&KtoEX%660)MxwI;l7LpF0DOh5pc$(oRZF>pSV!6`axrUO+Me^7TVb`@Vsobz z6ay8UnvLtgEgj4b57dE507?kl0M8Xr zl&Mq?Cb;B#6g4ZMb|@1;2%-al%%CCCcAz3jM_QmhY_;fsiCV2Q=hfpFh?d zd!3(Z{aKI^9LkopA`MkNsw#F0Ei+OAsvA%N zMJbb@!9iC40CBdkvzqqqK^3*TOXii;qgp!Pt}{}(=NIOC6nu(L)f0($_U$=nev;oN z^nmR&G^1T!#jLMsJr0of9Yh?)KT77(63|_W07wG_5t%FAsi93y1bYf3s5Fz9#YJX- zst5rC1yP7G0SF2L0w9XjP*4$q1_KlXG?X0Q?*$!r6kqKKKanCOY5wh^oKtzH{{SA^ zfBFU}uE5+|+=}r2o((*|oJVle^WUsukhtSm9T(_n-Ablko81#0PkBA1z16(7*AX^r zd75LECyh;WP6ebK!9nGHQn!hooNpHFXpRvCakZ=f2Di;)XwWjCNx;jB{@=s6_T94$ zw#vd0Zst-z<_Ee`MI2;vfiEuWRhIi))6-~~ws0G_+QCOz&$$Sr6?PW)68UT$%>tBG zPm0f5dhnjdnDoPOzP015-Q?n%mg~Cj4t?GB@&&WJ_c_N%W2BL;5wr?5v{;v3D|sz4 z&wjY|A7lc2+Bu!0_P!Z)ZEp>WV|z<)ZlYs+ zrrt?V=$RlIn7{_ErC!92*SA`2n|w{Tvb2iQ7J$(l5w8;YxVwJVf;;6`NNW@!pq7Hs8APt}@A= zKH0Hfv72LGQ{=-tJi`Ddq;9|ti#@IOH9HNTBjFeO<1YBb+=d;-@>|%qn;#}g-yEi* zDWjFme}}lyYSdie7yK6conGJV_7}S!B)GHFbG2Q;@~wPLcrKZ&152H%fRI$9pkLZp z+`{jgwu<76Z~|D{B?UTa1zF7=Q_>fM>BhzYz(V>D@XuMZjrP^_J#(B24-IJN{{URO zr{oQa)}Q|X5cPBYKFju)a?9I3$En^gM$GEy*jxwF6~=2)@_2tr zb{(<&PS=oKwVQ_bz5{uYXGGJ&bskymjxZ}-rtXUpT_PshO*V1 zhtIU#Y~lfom&#~-b7&N9rjzk2X0uer{91aE?)*25?!K+sLwR8nppR&M+?MQUVS6}`ot@3;K4kjBP2fzt*M-5_8=$y>=MHJ@3U z^T2lk0Wn7{tdrCJjh8W({YvS=`x$#!p4kH=jlt2nj$_6|96?!%@t%@V{8D*YjB{># zgps?orscp9^ecZg_Lr3QJ*!DMWO7D9!BDz@BC4apdSK^&-i<_)`uh5$<(qO?&+}h* z*zJepp8o)~>n?5W?gx``6DERR3*wQX>~QRJO+i_l72>@p<2-(TDJ0iBRg{vO`{rwW z5xnSS!#!wVZ50Xdy504pL|t*n<~F)M5u zD7?pzM`aa8*47XmUW*p2Y+?fndzM;QZ}(JGgTDk0*Hbh!HncS%legTo&1SIN&$&>p zxizCPB@7n65XmUV8c{)BNjp(h z5>O+oQ9Rdu{BhmF2)MD`?{&AAhp=|1qarm=zEz2b@Gedz_faQbh@8p!;rSj0;x0jU)y z4&2uac{=6I?pWhWAeE>HIDfH|V-$26cq-ozZMm->Y5 z>v8>(*j+uR%}D!8t=r|Llk|WP=pu|z{{RWc0MuC?mxFqDW5uF#-7n7WF9C+>&C(db z_9GQ>1GLu^g|Ajxh^e?;GS1RlhXU;b!q5wgp6nRV1~|BYfh;Y4UfeXWGD#firejGh z63BH)roA;1g2fO=BLN-Z1Uh_GQCz>(t*4yt8|KrqZN_uPHv-uAA!^VId}GY>o=#c? zTUrlkTD-V3IlcED;@dABv2~8q50h^9nIBSI=RSeDoKJI9TU!#;LO4?skVTF^=`-Ql z`Oi1w>;g72^X6^i12$@KIGjxb+OuyLOE@~Pa;)ge0#GdTMFbC;SGG8!X?&7A(XDGm zNhh!csTr@9IhOOi`mfI-vDuj8V-YcJ(LV;o2p~ywEjx2P)C+lMrwGKuTdU}<6~uPV zCC4qcs}?ktG&<_w3OZ@X0rETB)37Yawzo|<*R^Sth+C<{s)J<8HK2AZwG0X=gOGgd z>!%K%XyhNS?BXrkw-O&Tfd2qDcUrsItKuH@thmEoF3IV?D~poxD=Y6YuDp$cE9NxR zwq}ZWzl1zXmN&D|)?SyX4qIf^2m_qZE7{QqiIF;2nH)_z1(vE^3~m5@DxtLnSzvHL zOOZ(DQAI~IQBMSrPQfHHwak(?VjR~B5PhLpbY{MN-gY~V5x-pQZb(ObUb~@|T$spuA92e{(&S&Uu+9*eu&Z3WipR#GEh)te{l^5NLxC90CF}R2nFT0*Zn~N+5uOMzkWN z4G1~6-UYSbaS#6C2l6CHm8AQ&{{Z1_=l;Im@eEQdb_R-tRpzyG#$lYpW*BHN`sler*`idr({E zoNIpHwnMYoU)$T;&l_2JEyPZeM;1A*4rYfnt*)GKQgSO{9iJ#}$YFKepX-om9ms}H zm(mEOW7n#*{qjZC<@m<}1@`y9 zTC&>SzxGbsZd(+k%_H=(%v~X+YAHmfsywIC-O}rLgOO}E->Ufyw0=XTdqlSPP}aUx z%ynrYr{N&fE2>2~c$cahj9)3c?zUTHo3Oc?Xo_KW_Wn$APD^61C)!-@vTiz)lTz-GF}4SEisCBGQvA1%`|1v`H@B# z*>nOOgPW*O)FiqZC~)0}oNX5Dv)}idZQjxdgm6g6A05u7kQ?SmT}J@iGOv1#SE_}% zwzNOGt2AEO;vl!i&g{Yu3BGZ!Pw;9@{wT@@r-rdUkt;cYho@K?vpA+3ohd??6OY z3OI+V4CNDYNcWAPUtC%;%0_&&{#TaA>jXDlbyuxY@zc~}!(Ut6ZA{&U+Z=n-?d~s# zaJYS|9LO9AG@~9|ejM>q733^I==z2+SL8t)m>vTUg)mmU)$Pq<>cxFA`}Q*KvPQ&oFNy{b#h2 z$Q@$XK3;l!tELi~_^al4bFCGk?>^(4yMFR5cFWrvO}ZIix~0TYzHdI>PcgnG9Xc== zQB>8w{a10h@%c8+LSea<@)yH=ZCdE!aD7LBJh{!ozciObc_=vdsdB}n+#RVhUVvYxZ+fi zD^JgO?(@Iwr*GPKX*O%GHIn?yW#dx-Ah4DexC2_@*ta<&W5=wow(X9_!uIvsh26A5 zIj>~+rEvR3wLeL!l4xahRpboj^4wdFJ0{y4I#100uw?Ics`zwyL}5(owZleUFJt4r zscaJNBHs69lx{bY-%MqW=z%1}7wFPkM&X55D|NcN&JssRh`G&SbqtghBP~?MmFZN` zHF*0?lb`XqFKsyY>f8OI>gHR^cHh2OX19IAwaFjon&!Qlu?tc$csBbaT&<0sUO{=A}fdivH!RGQ;cfHcPyhOO1RQpANN!p?%DN_{^BpE<4#iVd`wKTnL(W4bDI5D+c11%>dKH?~ zUyS!C(oAVp6h>7+g$61Lf;Z=+^~q+n5&2{R+f03{QYEF(N~q5)pvn=^21Wy9)k8zj zcB`v8B$0vQu5KeP(6L*Jvp`-mA;aNvjVd}h8=Gt2{lpMUQ;Vx!+Mul?+}`o@6-6tJ zHxFwi@Z<4xr(%^_SS^cRA#-%NxRN^e4{%wHT4`b@A)3=9WTM`9YG_>W&^@>!Hw2Zo z5xXDVKs6K)%;hS?TB*@R9bk_2qz7W6!EFFmC8*yeT~3Qpol#2sD6C4P&|dOR2k|X1 zy9+V^S0xqbZKCq+nB0jKJ^%ng|GxFlD(R0Q@Y1K=q+LoI_WuAV0rVmPtx#dF?xK{G z0aOAI3KRe{xe+5`CmJH85FW%52n}*T!UPT=P#>0WP=f`ueTXyVBK(vDT0}m;K;qql zphX`oorCB^4Gr!=gaB}&48asS*XTr1E-rc1nK+e~M66~Ys)x9YJ%bFE<#VqA>kD7~ zS#mH5Y57MITb&x_k~0_)g6p@>-G0YBxi-F!x}Kf!=*iWl!U`HVU|V0cisd;sdA-vd z0*ee~03L-&7NB`9HLgo+E<+e=06EcS)}%^FMP(EY)?-?#G5RP&vF=e&)B%P_fC=f< z1F^L@pqNsW3Vt&KQN$kC3<*Us zY6Wv}LC)_vT${hB1CMQ$EwPGCS3-_tQ;G-5Sbi@o9SyJADm5nuz0==b^;rTC0uV;# zs48FI#bXe2fs$DWWESkFnIq0kXg^x8TA`*`^$37k5JPY%-)fbp<8y+P}prb zEs>5FjHH>3Xd&H)RCs$8rc2>a{M3rmdHu-kRF%J4Aen;zvul?yxklV%EiPB_0{4tBDmSvWuQPc(s=f z4xuY(+%jDwl|vm~;2Vn5Erq*8VyEK#3pTYPaVm;oCJ3hw2t41YTwXp=#V>Zcf0UN_ zwnwsf!7Tna!|z(grEvcML%B+_+^J~j+yxnR8|c9L<@TDnXFIo7Om4GB z(%|B@!L?w4Xk1iNvO(r(2c`>JaA#g8D=ieD73dW~F2PDd7h;Mes+Hw^Md3F5t6_W~ z`FoYHGT6=lCr}kJn*Ep4=~|wIalcHtjn@w4a%}s{A8Tzp{EN8e1*Rv~t#Jg3R=^T(0~})MKDEGx;t!4)paCLx1*$US(kf=K~CdnhIqub&JJsUa~#uFkZ}Ya z^)w}EZuZHdBsqk4qe?D?>~(392_vKM28Xd$bU`(-&A1d*Qy^=IeOiAge&Q~TF73j& ze*Jzf_ie7;{_8_y6UrT{OKYTHMpa2twtFWX*!CFahiI~n#wpw+m62ACa1^PjJra$X zmVlH(`GHj-kQ7207|=;H0}@U^AV}^l=Y_JtBPEIAtdWimYlmoXs3-&96m8Wb!x}Sl zhy&>;sA9dbnn%Y4#8XKa21Z8qz0C(LL8Op@$)X{3b|3}d^u-1j1PQLE5P^e&2Glia z`&6!;v{eDl#4rp_XRs!KnA%2I_M&L0Wosq!-rtDO5Vs>WYr_;ykQ_iXs>W5kV_zWE z5Rz=Jdd8Rdi+ z8qjNkfD#c=J-A`@sJg4j%v2R7h!j;Rq8$)Wk{1aE7-oHlDPCK(&(_}y$5Hlx$P`r| z=d_(vAqJ;-x&q?etS1MD6YMH$#dP5G&3JTSColixkTgwY-P?d{Xk+x&7!=lA>g~GHrRWwaZ$m`)i z#skwe6s8$JC+I+i2cDQJ2g}LOAkQK}n@La>!cW;MiCJ#O<|K8-F~Z_V z4FuM-7!%o5Nn55y*0eEzHLU&Q^mRPq$7iF;Cn8uRJh6=J;j;{kg(6?r@*v#Qw zE7A^jc~=*W*H3TjTNCp4ZPi!2Gz~KmpO3G4=N&TR#qS#6Rc0I-1cgZ>LMAmYDx4i5*AIbE0{ za`r)g5Ea)^MoV6l14&l#i>qiak@ankYP z=+lFk%c>%<1iT~`foK#NcCL}mvsNmiR=iUcG&M15jg*A|EkHDdQnHGm(LmrJU=dCN zsA_mnNCF830L2l{J$h(78Y=$)@$gspk|MMpcNVzuedK@h?e6~onPQP0b%O;}w|D+$TDwx`V5%*R7<6>`@UfH)5I6`X^U?Ar~zbM8}^{O5Ug@J823G_U-a<6tgv zRB5O6M~d1+AG&^Xw0MP0X$ZG3mry`OX4By@Ig*;+C0V;vy{@w7L>(b}3LXRvZjpORa?TNch@ zU}-M6w~`P;t4$_GfbVjZr1v{4FR5VCN`|dH=EZW)9Acz)W{azq@_Qat`*XDIaPob^ z%FB5dlS>S3g0TFv80NAaQP)Y;j;gJ5g10Z@9D>`AZnt|!GTm;seXiBl4BP2!_qc#d z1DMEz==~<0s%W;=i8;Q>v`w~HZ_8OIpnix28Z;mZ3yoeEojTs*=`os_Hf==Tr%d;c89|}L^+RX$bu0b zYjE{Lj#}SbSX(mlb-J{6i^grXvRyVO48z{hqNAt)&&jd7QE#=z=(G#rqf0_)vhCp3!Z8YFU;8^OqHn=q7)ma8`NcKB^ zAGO7>%_YXp*pJE0HAIeSdxS^(mD6zRUKQU(M~GW1;!Ls65W` z>PHycHwiY<>x=!u8hpjB-)|+;;;;QCfu*Oonx=yH9_5=4A&y6FcS1>EI&LkbYoeYa za`Pg14{dvLMbW5#s+|a7(d^*BpM4} zOLmEN##~)Zb^BE$LPzhvF)*FCP8zi~j?fy{;ipX~nB94;^*8>W@;jaHirL@a5&FZ& zZ+bwWGh4jG_jhX3sZUp+v$g6P;Bp9-DDEbb#QI>z3j6R~F>}dJl5#zxWUzJK>2lj^ zMmRH5s$AzBn#QyjJ;$&G&rMxq(V^S@OyT!4M`wycz#v`HgFG3km` zUETS|7~^-b+3y!lvzl-`sT~xi8aS4XQnjUx#C0mjm8<@=_(R_>nYjyg#?vEYxQ<9! zD*>jcT=tJQyGrQgqURpw+;@MPOMSNC#^x4@9|Y0K1fE;6ds`rBb5CeZO%1(szBjVo zw!-RZCfr;#iyKIvaX4xFPGn%|9@M6bd}Ew(z4~`Uw_R5916k~*W1+ZU1Y%>5HPpv2 zr8IB(A1c^5^`kDgd#2m6M`(gD3+0vn0FxAK1@AtF;6Yc?3;PFXPWqL zt>(6s%&jXMBxo{c_G+w&TdlK~?0bgGCi7`>TeZck$#F9zgfvDf=Mf-j(gro6vNLXt z1N~*;dQX)l?cK9U)q8JcaV@wVzF=ht_A8*@+V2)St&|u0eZwxS?gqH0h}EtD)9D3V zSjn+~0tabSi||5DeH0t*zT86)k@z{-f!MKYQY}7LIFj5ADTh^-ftOk^b!pnDk(VP1 z6h)YCDS-%TyvMcTp&C6gL4^iVxC9Iu1_3}cn)f2JED;0{s3fQ>x>~)!VjF?>l@vV1 zLTWuw2M|R%rh>eU#)~ScBzX5Cs!qX)3JNkuh9OmH?*p3SUZq8Ot=-?Jj10wp3eRg# zQMb%r2x-L7eg)Oa#fKUcLK3KsLxJt+r6RB-p43!_Bn%ZrYl#4UlY!_~;})VWaUrAL zsw8A!hahVUZy9;UxmU0&Ycafqx?6@7T%cX?Npk5OO(7Dvy0Pi9FJz(=eM@Hxny$O zIL6A6K;SBMAF>kJjMm*AZpVgi?_rjBV{FE2{{W|@Y@JzR4oh!cRxO1b5RHI1EVf{Q ziJ(x3Bz`nfwE#N|kr}8}R1oDuhXfg^22`MCxe(ytk3j9}KaL@L5S4fHzks!z9e8J{Dpc;xXupu8xaoYX!BWHn0jqZyREa z6H}#tG<`usP;*=!TTcxt9bUbZKq!M>zV8-WHrX!Wc1VsoHIcLzK1m#C$k@?RT<2gA zd2Tz#cL(lq@(tONGkd&mnRMq6=3BxE^6g>Bu$(-~c6X;XwbAVKlx3P|sxpWmyB-Ca z)KHLMqe`?P#l42L_Mp35G3d0w7qw6W+uDd(B?ka1Rf$tZ*M@3v#Hm&r!hmT&KtOt+ zBQzCvZLZsO+b*{IfDAWLIwz9WyH24^KsXUmm|DjzE~#d*;{7u8vD`NH^5yrfy7OD) zz#1G5ih^GH;i%IrY1*>Zyfk!BMNyqbr1iw)syN3Xn}6p!<=)A%+G~esc{AQzfgNV? zHO()tfrg$DOmi!(x^PT*@pxU|m~wkW;Mf7Y&4&wHsaB7{xbw+-euL`ZOzQY0P4N9Ydwqxibcx3K_-P6L;)tJ;_5pP908?qRwZJr znz$mo?=Re8lH2tZa5nPya~@E(BT#H^!P395G-4H(PAf6h^VaRQ?>?1t*eR1gxVR-r-6t<@vqP#&CPOHRDNWb4~;tYCVdNC+eUM;9J8S0b`?$q#Q6Zuyk3s zg8DtJ=G|#)XJv0`X%j8&qGMYeF^w%~ra%QFRpod%lGlUX3r5yRXWYJBgYug^rGx2R zF`pN`GUYvuAEtA1*m!l6mK#lt!*2E5Pj>sqGFhd2&Zo=-Px03b)@A0EwEaoTZ+V{6 zzg*Z^ZQ{wY!+kV2E}BW8k+f`Nd2Fti;wqGc+aeb}uWvG5(bCv$_RZR3b~<8|lPr;g zkuDS@CFcpr={Y|d+W9Wj?YDDjb-8;b4`Bi9bZ)I$;tea2?o|@+%?;zbkZ;1+L-Iqt^}=ghd2BIa8u>3rz!ZM2ESB4I5B!Ofu=)GMa2*NaJG>89<*`Bx$2 z)9y0g?blXtX_n#QOO}gmZj=zluxSAJKv~hg^wH*hW3si}IDW}3;CJeK?b~jAuW&5} z35ls7(v@qmLcPpZEw+W0@IoVkFc}nVZ5SFb4QLori%hxqrZ(c&e&*X{lU_D^9nc## z0DP$5BzmV~IshNjqIR!hmmk?V*BNc&IHY@bBjb11GTvLg_a84iA1U#$$k6saglG5_ zwp3cvjbYE6%pT-cKx$(6Se&ua_CLte@Xhj&#_5FKGof>Hu+`kpJUPQ z{{TB{vF=wktuDES)@dMU&s$@0Z9VCaIAzJ@{Ts2ji_`70=F`P3@O{PX=i`##$l&t# zX5uMKRwdP|6!}wKY3jESp40Sq*YVw3?g4`tZCK4s^FM;@mapZW)W`FCliuu*ZXUB) z%X14R7MmlcxAOpSY@ae&s)wi!G*c_dXKLT7)-5|G)ahzuk9ymTUBu2BasCM^T(}s{ zFy66PNiP80W{V${mfq>$f6>D`9P{pODb7*sTIgLHCu@h4=7|HwT1eGjWfYZb#Ck^7 z$-NU6V|~l?pL$=-eXH3$k6`&Dg{AL!V@7Uq4Fld))if9RS9Z^6G?PtQ zL8v`K-ZhM|bIYikck5J9Zf8_Ge%13kMZ57~neWpitp^Ql$LLwlvNew#UZ<38wmXLy z-C^9ob&0i^(rU@NSX|c*!qO@V))R_nW{(ND&pzYmj~jmC&pGp4ZLOF~;xA~q5rS); zrcq}f%YTm3wmmnfyKdcizi_*2t9DBd>qoFg=7QZVw|kn}Wv5dbY22;6J@7%hSvo&d z_Gd=WWOmbiPSb@3mA{+PLM;dOr7AcvAZCcH6EAbnCFsI^Jj< zx4qQVCNhDgr#x6)UgffjSqRJSIE zxRP}rX;LjnT}4>}D+%ix|4`u-rYEV0Bh;RpHC>&R{0|0^A)Di(f zf+*0aGKB_F1|otWimEWE2Sie+0aPhO1OlN@ryP)AZBQ_aw*>($purXq#)>Y8UP00; zOjK8q^_y4qalc5%P&(1Tk<-L0(B>C?tHsASskHKjZ9bFi`-^C9CbEJ%cGREJmIms_ z@^sX%6Fu3thkCu|g7|Ol`k96Nla2OzJ?{;_aoytH#?Nxy?!k5TuPw6cFKtJe;v{D3 z^j;^)%PBJ4%h?~I^j;;gp5}X7IR604^l7J~gWLLh%QqeCd%K0scgRI=8=DlAE^FEY z327MvOqYJ2sri{{IY~a3$$5{$cDin#9Hjo`&heeH>v+06L{u*^@oOGqz{BZLp>4y# z#)N$cBr*cZsal8}aZy+w^s0>1h+yn{l|u)hA;ALzfq_8apfv-k0OH3qwZJ*96mU3# z4g?fZTHD)NTgPo{6Ck&UX^I%YYZ~6hfq)1l523)IkLIbkM+r49iS7f~=8wjL(a`L$ zDjKxgmld(xce@?d_3}^pwyv_XBzX*&{{YVxfmb{X1x^W8T^mx=3#6P-YWExOGV(p9 z&RsXM_~&y*qYNVw=YC0d!rJ>)BWb7TL{+{Nj2`?}Yf-OpDkw)0bHk28psNbAqXniZ zOaSB%V7KiUb|7}b8gLaI6x0CH;_CFkD@j;bqOb%FiX#B*R1T;ZAT`BQ5UVK|3ClDi zkaNFIck3PM>vY&;o%VaX9Ua}gCEgdi9WT>YIgTQr^j9md7O>&L=DAO$+qI7kmwuMp z<>$7Qrdx4B{{WXQ4Kh0%G`g63RwQp%S@f5aLB8;-AJYjhY*;OC7-$^VGX|Otj%6rT zFq>-5X!0>LV<%3P8fmO!h@dr=m+d%eWLy!k~gu^w7J5+y+LD_@cFq8-p#Z1watx(mLs@^CdVP0Nd=|vkQY>G=vHqn8s@VO z%elw0{;&OYa_g``Zs=o&&S(S>(9J$wDTYZF)lMnIXXCAwChqq)_Od!jK3;Z2&?S}n z-ym}u9a4H$inFf;X*gZQwavubdw8E^j_N}+_HB+ki*Gf?u6rYpevG@WlSOZ(B3-|U z-p9Gcx$c|g=H+v5tH_3}x3+GkmYTs3qp&|{l@%`{;r4sY#kKr*6K&hgm@Tv1?MM=_ zuFZ~Vt6szTE>#rY!uLD)#kT#(Znqu3{&vbZqO@$?(!L)Xo7&JtRYu=`*ks+duhp<_ z6YY?>ra4_~BXN91x(sK`Yp|zgDjJ#l1-I5pqYk_G#(3-4` ze-h%C9C8NQjq2}lvW`D43tOQXY+|(qu4_Z^7*e!ZYS*F)qcCVLI02bfBgt+Y67O-} zV&9#}Z|$yaywSJC8!hxe$$$@QL!&yi0rsk`y^P7)d!84)U0Tg)am#lX!*It(DDv$A zEqJ4aL{-UUriavdc%I+K_Fgl%UBe_$UD&dFS>zsLtyxyN?+wH^NW`M8S@GMw#?AJ; zcbdHH@t-Jp5y5eB6Dfpkx%jYdMZ&3}t9`NYjkk{NP1`osIgm8D&wJgjNhE$Rl1Cg| z=N!t4@;e8mSNwL}(d?X>>fg?h^IX9-yffRnN1EznPNt7@u|rnZX5g{eZt`!NuHi26 zy*@9Nj_PRRiIBifqZ~0tDBVZmIFgzglYQb_mg9EmZ8-(j*KXzp8(Vm7p4#7Q^XP=ErMoWoOEF57pMLt1R6WscCMlZf2tycn+z^sanO#(<>|opDQ>Gc zYwLQ=w`h{e#w%;f$L<#luDiLK#y#~l6>MRx!z`54d5HZnyxVT)xZ?Zl+byNskDhI^ zNMpOT63A-j#K|&Y1+iz#89dJ-ntmSq((zbsYr<~%MZ_$3AiCSE z;B<4xX9Q5WzI-m!$#uMIs68u0)Nf$f%XVMYyQRV1gpoQcspn%DXKU&mt&xDyfu;(} zVmxa-G~HpcJ0x79?Yvlm!MAx)n})(pFgEYw5!1t!Xs)_)Uu)Lb?e=?hj20GAHVaEu z2%v?zHH{PjWcK12^e&uRFmOXzH92^LH4_1}Z z-Degj3exV}Cy`&-HqViAX)m_NJ)&z1OK9x;_KayXj4p9$>Kj0=F*2(hr-R(`D{EUj zZR%aCYPAs<_WO7ta|D*=u{=56A*T-wX@Zt%G$l{E@ZHCAvf3MQzg#zV+Aa;$TeDz< zJ??W{+BzzEU}<$SQ?o_YZ+GI--*PRdeS>nA&g*Pr;d2=rZ*0*@=DJ2ZSHr7LVLJ$= zeZg)Z-EOyDFT1~ExW90H{jZYCn>nQa0HiRuw@c4gG~%wh`&mP6z_|_O{k`7%%5Lvl zYb#}n+SWE%Th*s28qH3S9>P`BkbO>5tZ2{(rwhyGc9dmwz!#@ zX?)Z2?U_F*+WH6N;HZ0^f)M}j^QV2 z0s6*4)d2lvAwh!rW03ctmOHr*#Y%l>YN@(%4X0^|kKAtKwvI<>jJ*6#&Vh5!DU8!M zm_RL!hDVa)K}NR{vvSgE@;YvpE&S#f>8jvb0LuOq^W zsAa5_7!R#QdB0YJUFm-!284W@^CV-ab}su|+_Q5YJGez~-Z8aZPDatP?eSb)zO8!; zn%^n|3hmJE%x`w~y+@jQ9Jl&z_CNIgFL!ISnY3j>?)C1pepbD0AbfSD4^XpKRFr8& zVP=qNhjNu-4Ry(7pa%-7gH=#Nx~d2$f*gUvhG-l+8Xz8J2|=3FQPeQ)=%_l7FmNb5 z&h5zIvFBSp+UR7OTia7?iY>0Hp$RlSR1hiSEQL)~$AJG{%wx0=3L4rKRs1T9$H z_Zuy)%3JH{L{`v>y~h*S03As=1yQTAi+0?Y?ZW!D(2!kax3@6fkC^p&84ik8rvqs& z0E~*mNtnVKwHc;sg3~o9AW(LwvIB^%K9vRnsxmrLPf%#IfOA=CltGli0H8sX#Z+P- zR;5%(&`HB3QDQdHMv{)@6;FBE?00Rl=WM@^&9u8=j%EWxL)0FGW(rH7)^T1Xv~hj0 zwl)#8kzX?D%wuJcRF?UUXc~wZEVZj)J;BMicc`j@t~3ZNf#C~riq`TDL$>TYWSfTI z^4OV!7~EeYj!a{ElB}AI2N~J7Ezfs6uYPHYX9C@$Z8-e2C*gDYd5%kc9G8>Y0(vZw z9F8L+ii-Ka*G>mM)xE!ySVTtKxHub^Fb~k(cHv3~(!WYsuN9Tj{T%fOa&4dFZ=MG4 zw}8jgip>}l5_ggIl`?cirT`AaLpG=#wLwsi^0&*YL7)vkK*ec>%F<^%X?P*S?Q|

lieSVH8W1*+fawSrG$3#S2B1OCeRTkEsK4vce{{Yw9 zhxisL2U!OXz^ITELxPG90I60YXwTa~q*}raa#a9=fFcD6$yk)yP(3ijqM~s+sIu08 z8mdzYWz|$+Xg?M`gQ6j;(G`>m2xYRenfm6oibv9#-p07lbg2ZOFxy*Of*^)CT1`u1 zYgh^X^aWC#@#|(Hg-WujmKLnEM}tfiL|$1a5z&yM=!w(fxcFBe}EqzUuyzxnF$)b3CPiS)_2B3qH3dfJRg~Kb3Q%f41 z!gos`#{rV1uzSpu97aYP%s!Qs%Y+M*1gE90_BG>mUPC7 zXu64-HvslL7E+*&s-;bBEK&-$0y70EDsWU)TbM?m@z+0U)U4$g!Wt`7q=+WF*6IU* z$ziz=nM$JpdCww4Z%(F1f9Dn3`pQ~HTw2eRt3Vch${q{Orrzh4=C|q*GT>H}Bi-w#% zUt`B?TTSOH-u#Q}nVk1(o@<~rmWGxt=Tn~N=1xF+0{0tRGjAOu^B%v%H#)7({(5W6gK$V)UJw$2 z2|%RuK&RS*37803twlGtG*t_Rn&Faz#`0*(ZsU{k>OJC%HPTSpi-T#ma`&1)GS$7>E*<5T zlTpwvc{Ph*C1`2~k04Skc5M@hv+ElbqM9<@RkGXms z{uas4EA@6iUGU5Q0N2~kJ`)YO_Hn;Q52fgNw#MC$aksZXomD}qsLe`@1rWi=4y+Jn zx^+cnqJY&vLy#SP6-0sI2aUOVf35AmQ>x>$Txe(%r|Fwok)ORXkw=K?+Z<~SFcP&f2wwh^$gyhEd zEbFS<*xcXlHd}p^x3`kE3s@VfSzVABeI;EH<~GYqzD>A8zV2}OTTQvuv~BVS2RPUN z0C=6Q!njp|M!7vaId&kCxDi-0~H`&89*0PhK}xdR#; zYlu}DUX{=ApiD!-Ih_5gOeLr*ElN{Rip@v@qbi8SP(VaY8&Hc43N$JOBoAsTt<1R5 zO4NCdYsw}4kO%=Y>uO4%Qh|7kABn5f935=X)TI3mO3|s@JXcA($r8lCAh_!C~@t#apfDN zJfnSu&{{wU*|x_}fYNK{JQ48`Pxz9Yp6;l~)dX*K4Ks1bEVUIkO{ULu+U|DC)_In< zak?p+hE5cyuThv*C48>!qkZ8%p*L)7#v99dn%g^;f%-`0KcjH1DqIiY3a+oFIF~1b ze%t)QJe&J-<=@(x2S*^lnsyQ}`V~tX+M^>{0g3=#C_`~H!Bnibh?$zl;?Y`z-PJ8f z*p}c6a>|P>=nZiNR81U)v^{#E64Z>;QE4Ru0)c`F0YFA583#J`+YS{E{dyndNQ2A$ z-AMhG-aqTj{{RxjAnPqBN}@)&5aHM$z-fspD;-XTh^2J~HTR$nAbSu1Dv>DoM{=PI zx0@fSw|1JV0Sysz_>;t^`*KDvZ<)0E8H8+wW8mS~~mGLDwH>_oA@5 zgwQ#^N(>%YIFL_8O$E|4d^xBiE{ubyVg+zZ2}(l`+4hp6qL>D@t;BYzRw>Hyk7|mn z`jim7cH)5|jMrJ|lCdeAI;x6yP9RWq>ZNKZNkLLnRavq$$x%h^0M?j}s3wKlo8A>b zl(DRHoZ!~9Rm7SA2Wl*q-6NTE4^gC&Z`E9EnPz#=`?$e#i9co#I{y3UUI$UuX?wVH z^uFK1Jh_fI{O+rSoO`$J%kcVDIPaz#wd}6EfLX*7H2Jb5wU*@3YT2zBD-x++fL^-d zU}Gps%%DqcXP@BN2$~Sae4; z%+g%oNN-|mqUfb7t{&5qT6!s|p;>O@nx#(LW}+n!v>+ldfH}BegO&Qfy;kDWXogez zAJg2&(^IgHr?^)I>pVwymNLIU@^3??8SiC3H^Yy+o5EaQlLft$OsI&G^3M^LSDI8) zItn$b*XNfBjQ%U@@Y>TWoxJ|3KaFd&a4mprTQf}TrTx$nUL5K9G5-L157NEYNwM6= zkLIt-e8J+My5IP3_VD44-+li8W76Bs1E@_w_)l{3-#)hc$RL69PauvMnq2uDXwcD_ zC1$$qVU~GJahm0MHTwrE+Bff*8+?v&wr~^lDd3*PB_ zzcPMrN7&odbb8{Fh*D4^jd08;s`9W5l+jc!Sag%vit+rhzoLos#6Lf1SZ)(&w{*p{ z%8OAlt@&n%+6bW;EwGG~LO6s}Zt8(b463Ljr*gWQ8SkN@v5{b^BZm5+u?>%tKI+&Q zp}VEz5(-tb2YBiI_AAo$*mpN3Q@8DYt>wD;(~1bDcxb^(T9K}vaK@5OOD#36GEF6OE-4na zme4jfV~JagTH`->9z@%l33fPKOjgYj-HOl|Ng4-!k&5xRH}u`d3GaPJN8ytn4c*_) zan5OvvR;1rK8W#oF5rWIzF`*7M%LK_Lf5Aky}z&YNcnFR>t@%6;fFl8^~>2c z*I%*G8%5{74Yjrn5j6E9A9BTWQBg|jsMJJC0@K&3s5L|lN{rQlAcr6&=%uO8 zs)2)wp@Av_Dis723?0~m%t-qZF6*##={d)CX-r$j`JA;$$Oz;UFH zq42a1r!{XRoYbD;O2cT7VX5{ih6PkBYDpy_LtS12vj-KX6JQopa3k@fMJ=KLsLrU% z01BdJ0nrGNqv=IUkWoOD6pnHV7Z33eveTD+;NK|p*61;gcsCaM+|f|Rhu2fPtAep# zHrd|GZ?{cmBZ#))&2!~+ZFHkg*<;Qv2dy(mmbd<#&1BwTwzF`KTaCQUs#`d!?>0cw z<+QMTUMe9UTx}bbrsHJGi&I8W2gE=Qjno9Oz+ecf(=~LW1|XmV860~vS!h*9H1(U) z`@R1FZ)W+oTp0IVm5!F)Hnayljibw2_R+z>jZN=b=8r$<&f#&$_h;`D?#*TOlwupb zzBu$g<&>jmnf39x&iJs-ov2<;(XX)?UyIpyq>! z&0SK!3bL86sP9oy0)c@*z<`0lR5+q3lpN>Rd^l8J_2_?*A}o1dyQ9bKuJA$s0QL6& z0EuFe9chGVt#DKa+(g>rT6QQPcIN|r*rEuI_ihaarylH(VBOkq5xDl`ij|w3Bx7Fi zMG(~>zJ%fr(umKU4n;>L*J28?Nvk(u&{ai1;_iv6GAo}c$G@uEI;=ME972LYcodwdnNwe+Q^*dl#1Z^cSL{fYEOjGHV25%%bSz-Po`g!snBCuQoo# zhRJqxL_olvt2L}*gLADjDAjB&+equ$wHUQR@!%4BI(M#-&Y-ojmSe5hGQE1MYDnDM zM;*Ljtr=JAShcAVdDX<67Fvkqd}Y-Jg!DhUtV+hrJ5Wl=1G=0LOb84wu0cUm+-n+K zYFki8a_J)$r`YEI04(`u8quZEyR>$DlP*b*Hu&7*O46NICuf-DKA`PeCFE8!QS+ZI z_Y9+|A$y3_+6odWT6QiQyZB+k-Y0@Ip~>%UrUY}Gtd%4t@z-WSSEaHU!(J>_FO<}-`V==?uEqUnvs zf14>kn?ZZc`4D> za(g}{$)e;NJ8yJ|Wn+wYF@sRov{cac5sLG6H>Tz~$IJM~h2D>U3&B|hTm+)YwhiB{V&-g+<6$enWV$F zGtM1`LTJE!n3d#o8(r-6yra~4tFF5pFLxi!xqH6u-@)1_D81wIwP1Xw=|2OG2eE0C z(!~YcthTcaP|m{~t?g@t3YKc?vAvewb3A`GH&-U$JHP6FVl8#)wYYojWirvE08WBW zL#PGl`h5Og?wy+G{X56HPuz4@Ej7y-GMasVQ?+^DO7~C8$6gtrLgQS}0RGZ}9YgF< zRpyTZqfzAfRlO{vX&5wzH2c8(Yc;rSir-DMYw;GvzjMW$?Fjkz!O6DJtym#{qF4V~>&^U(pySlDh9cDY1PF3Z2zm|78Og?58 zzl7(*jQ&q;plc+R=RR7*jU9-Nb?au*E;dU|#lOy4$YFPTB_Ev7ybln=Ts8Dp+j%po z({nwZ%<o>bBF>MMx^5m=4U4 zVFZk@?Lf2uWmGg~zQh^kI3OC_dY~cZh#So`K)T$37m`qBw}XMG>Jbt)Ky&)l4hSJd zWdaE1kT8IL*Wpsuq-!p&H8`|;%F9hv!_2Rva<9^gxn~PwXgyA4YBNc`ZxC%8Mb_gm z{T;gtgL=8g2Djc*ET%Hs$~?Y(eey-Qe9H3tAmb-<^$&ymZZmwz8n7I2J zTCYvh<#XQGw%6%CJ++P<6~C@;N+g-lTlZ!Z{^K9)Vjgm@e zL(Eh%96AyT@Ha5W=J#i2lkt7l&i3Z-OW(6h^Tz2t8uD}xOC5D}2JyMhO)swXG<2(5 zi62NFRI&Of6MJlQ9P)m#Rg=m zFqB4DwE(K1YA6VD4L2#|@bT*?uI9Ir;j+o)0Ua{-#_&WcjW?dkbP{l0%1uj`&>ajEdp=x!aCW?lJPVIqBTr+q&I7wsUT{uQ%Fx z4!GbBx4Vp0*3yxvxAK}s4hwr7Mmv*()_AvpZ**E*w95VB@oNB-Tcli4%Wv;=-$CxtEghHW`yS4Y6>QStFzvU%}6}=AmJNlAl_^@4bE9+ zwyjL-10g_&m7xO5DUHo@Mp^fTsS?!s z+GF!8@#0F&ZyBpmF6R*5quVMBuYvQH(9|`q4FKU$Tjnau&r zJ%{luwHZ(lW~2a)p;=PEsS2`jA?kubCJ3ev2pl;Cjd}?KsuWi@_3_l<5g-0~ALK}- zSms}Lu0-j0mi48$jlsE}{{SJ05!U|zT3kJ&#Y9pYxz29-5JYu2)x?w%HTqE!3B@y1 zH=j_5!8uS#9nl9hRbWgWJJxhk$l=jNg$}1&(NW6NT7zEYxW$OUc+C+bCLsjz%Utq8 zCt)2*Xu5;ssly?X)QnZ@M`~a+#Hm&+g_esWK?b;!kXn_S4;$&>`#F0OknaEr*8`Hx zZYb^y4!3u83e8y5!#Rol#L%f4tC%=dxU}W$T4aHvRZ%HjnhMjqOG!~NorOPlIodw)TD@>3{%2nEC4%8 zL!5J{T(Y{l@u#rdZ!o?mV;6 z?{v6jwYxOq-kfFiI?o%OlkxqwR+_c;(Hi?00`}V%TqX5CIq^-qhf}#P_2u@qBCD&w zQorO|CfLI3>)4^E*e(V2{s^g4ET%JB^Lk$m>NoD2cx8RuK9`T&y<36Pi*1U=OWEFZ zwekYSl5iAgtByUiUKV|BGU<%(SJZUAP|9Q8>NA*Q>il^q{>k$mRU>EL?v0(hO=7oe zaBewhs1>JNRQWrbpYtx0(DLt#bUq(Dy*54kyKcXK{*P$uExTaj*D={dB7)utA3=$8 zgAa+s=1muuB*z{dkCdDHy=PU8+`8qKQhj`%J%iz?%&(c(UN70Jt@=A@qhq|f>pjMw zbZrCiuXEwp{1*Ca^M5*TYrlpc(}&w${4}p(_`=B!w*CYvt6cadYfr*R0cn>L=5Yvl zUh5k{1LhpyKZFCn8u{+BX}e#t_%?m+k81w_f;z{iyo_%<1Y%bgUfI$cokpd^4-5YQ zz6;s(d)@pv^N-Iw#o@oU>MfJt&y4%$x#^3Smh=p+C;>r&xfB87wF*^ec{R9`Xt}8I zFg3&294fP2G3JA6VKB3>0In&T>yJ)>X@CS3QIzO%K@6=eH5nYjm1E6wPE5`}vQ2tu z>xX`h(lhp@c2({fmB)W}ZR6grZ{Xe=dd>NV>F1U8e?Cq<#JIlU%XgV>@1G;A!^`h( z>x-Uo^4d?@HTMPS_BOKK&s)p3zeDkV6x;CqiG~t)^wS)DUY}>%TP|{|_|>rJ+I zy3vv}J}3Nfmmdq7@k-D#srBU{{~fZ+GzH&OT4g9vhEM)a!=~Gn&ch^u2gEFDkxrJm;uUMK=!J z1er1~F{k&;a4q`RkJQa}^7cLNmovEa+j@50J=Qt*q?0|D8>PNc6BLaYS5vAF;9ft4 zWo*hl*PZsH%Wp2*uiWa;lTTvyb@0(>Ib=%L9IAp*AqXV%4i(8%)r}q^Q5GUO6jsLG zN{SUK%CZeIS!l)PorngcP(Zn$1rdO%GO7%!45|hSh5-;j9f*ge5llX`6gL@54xx*g zLKiyei&r72AR4&hPjWOy#sR4anytbO1%1J3n&iHza=5n(=Iu6ems(jk{L6>J`Gyql z4E!tA_5DV_1nlPhE6TnVb~f(zc{!Kry`!)Vd0yFpaMIz2EWW%U|;2+3Bwv!Y8{IRo3J zedZf-V=%-FDmC3v0mLBH|`U8f%824Kbqfak|Z4H`MI>t<13g zn`h9mRi^>e5M@*t0->mbD1q7vA&?rLfmGE)caLzA!baFUM|D<~xQgH$3x{0WP?lXd zJf4d!sk<)h*A72t53PRCJ=V?FopEg_2VSaV=d71V@jC#z+&x9!Zs#DkZI9(*(kbC{ zs@nGCSBWjV*Zec>eNTvYHoP}$41elg^?O$|4&~&&RTGFAloh0r=MROwol2Ui;rLdf zQ>w}lSS8i}05tsjiqkxnYOvE+$+xHMyCu%#$h`MJ1tX~d>L6l9KvidRKJGU!L)ds< zMLMpd9jkl2?$?VxtZk0jn*_F!-e1hZ$zgB;GUrqPU4?zYcvr+Q?(*XLpZrsHZ}+jv zVYe=__Wd7?ZhbrA+m6i*-OcE1Qs23+ZL1ty*xD*UHLf_Wy(Y!NTYGyRtIU2YwbbQ~ z8+>NozZLCz=T@uCkC~}r7@-yh0Y-t&QAkb*Aam4d-FWSI;}T%kN`E(FMMpM!zl-T3g_8b$Ci%oRasy?N{gyD$~rAG zX$GfeswHa_8V+~DEctIAn{JdfmrbmeHzWdMlx5$g**R)aiQEs&MthNUf ziArj;%2qfLLy=OFqPlPBUxj)sS4h##9RkZqEoP&9v)AD(Q7lfzw3FJbW}%jYBoIu% z_7;;uMg>NrPUk)wfX9ysG^oqDNVL*}ny9YoWP%dVeW*F_s@zv`-66HyEF*Qp?E|Bh z-GZ+yaR*aJS{&Df*KAzzmmYEUK2z~ct&FnT+`Zoa02yyBeHEhHJy_nh>p1K#Y+{~U zapmfHbWaUvplg~2VR+be+2J&^lihV*Qt9{eyO`&eGcG(dv*|+@sr=6Gbbwp7H*1lh zmJ!EMC2-TI)!6pcWB2>FE+0d#URLOK_HyrQ!hU;sdi@T{((=Z+?b6}_b2Fhiim!E# z7v=fMEz^upy^*gvI}R(ZG0Q5g4kPPGmOZxJIF`y82ij;Sxb+`O z<&@&>jo{_n&w=lDo6MWG)f4XR<&)+PfE@VcF4RG1R@Wuz`mU2XmwOH`()<(0wl{Vr z&h?mOCwI{-<o(KQId!$2w$Zmr3uFBqyBiREr%|YACbiED6Kks6#!PW%tMD$1 zb8{{2*~am|7L(fF#j^UVy9YAr=37{v2yvQG7@_H=JXf8LJw{WH2dB@j@P3<)7~_?n z(~iGgZg!7I_P8fAZdWh9s0YdeK-Je%fz)wbFz9ign%thRtMiWTc=vX(n0opBPhYic zJ4VwBq1)|Q1a5YxQxZ?`ol?ARDZ1 zEc~fjbMJ#yx6mzKczCb!l{d~X!~Qt9E@e0F-C zyUsgu^!Vl5j(==*vc0?WfWc54=CuNAuW&>uB}SDuDE#|pMO`JtROeQLH4k`Mtz*GP z#iBb=Oo=r25*5VA^Ph{Ys>M&z?X6H~(fuK+miF;|1byxd&dma3@j=gr?p1-oZr=ov0 z(YsZ@{^#C@$N4K}xZ1v{`AD!3I?Z zSE?vgKr4^qR1Wk;5>OFD2Ngl80tz7OAon3s3{es{5Q`d((Z)#&TaX5)xpJ=2tbzK8 zJ@|DljuzXbQ=ocQRcHxGzo8S3w!}j{Fr@OiN zah>fwI)5BoMdn!K1nO+9I*mmQMl~R>Lv@#rH|o|)Jxx~n*)FZFyux1RwZxN&bF--@ zy?GlMUi`P7uSw$@UH+duG~wOh6MAb4;kdTA6awBUu3X&7ERDn!=5A&E?`Pcfo)NKU zM<-@_PkvcXxxeE3N!|C$9l6Ggnc&WUc)_Xv07whK*~7n-$J1X=;+<#hx_tM0ahyH3 zgnbCuLs%HV16nB1Ist%RNgs;kZMxoMU~svOt`w>K7^5wTJ*y6cB?1zng+c*bRY0l& zGejDc1ySccLxI!q?Z^h|a~Rn@fsO>9a9lc>Zr#(+_nuqanDyIw-g?ibBJ{@c8Tfsq zakv-T7sWGch<36?eW2j6(dDkxcJo%wSarEu%PlPW9+vk0%EsCEH zyqvOuG% zh97I`GT6t$r+X_i>aw2x8KtiCPWCSQ0l*JH2 zqcY5(Z~~zVNOy5nn-6Z{42?M&Q`)9YW6h%2Y+DBZ0LZRJbKFD^bs-KvTbGTD`0~ET zyYUVCmrt>eqZ{_OGC6g6giZwnGKvHl3GjttRFzs~gaD@h+-wYEtP`$0jnc-T~+_8q% z81a%k-lN5Oo$PzNo0(-BU~pYtybdO*5n?ug60At$g%(yLF2zQXNhSpco#p($XyW@c z+qUT;Y%%y^iNDTEAs!gm4rKjFBEDO^yyc#%b7+_->zkJt?QQ=6=51}k)PKEb#mA{j zby*)#aJ~((aUHFedu%|?V`DDw9gMR%yx!!{XeV0B^VzGl&2^gv-V-yoM zG!nIe2PySKg>M!c$mZAz#6yU1JWP>WI2t*Y_0*H2+ zDkNbALL?@NH07UonJK{HBR|#lm&=rCF8CeM)L3*vV-=`DBvO{R2Q5ZwIo($p8nk3Wf-PY6MMX8dGc>jIp%hIG zRYM72Yq5K3*B@tJcvMu9Dmd4of)_XGR3T}q4rS{O^Bioo+2dnGlM!=r@CKqAR>s_` ziN$*V01@2N8IPy#edm*UOMBbdTcr4L``f=vczD`uM(KFL`o{5~upE4-NT?moKWT5G z>HC=Xuja2^=8qZu#^=ex{{U|ef8xvVosUJyX5Eg}a~{rG-N#S)IejUrxnqS$%B#-G zT`rv8H_=_6osZ7{0GF>9jo|#oUFK=F-PMe?-L1_Fejhf3hf$~PHkg3CewV7bTaH{Z zk8|U`13Gy(c6G~VFMghmK8p72fYyb1kC|SyiO}26DCinm-(baOI^GkDO=-Pe-CRi% z_M5mG!hcU8heN1-%^qB9>|Q=O+jP>$wB6{o@WxrYhF11Y_P=7=*j-ABSEo?AJPt{% z;L%dyk431>sU40BOctaltk;ieL=mmn0D@Lqlkp#NYG|FYhKghq)u{{s>Qhri4bgK~O4{FU?F+ugJJZ`%E% zETqp*O#46ec0Wm)2M>sYQt9R=_|#tOp_AoD<=$?#^|$=Ey}L;Z%Y4DXB?OIPgOU2H z#`mkPO53|zDQ1oEM%bi@j(9F@bu{V8dY=&5%PggnUJufItJmz|()TjY8D>{mZixLJ zx0&1h?5+kgZ*F6jA}Dn^;8EYfEm`pS@!wQmIPOW)VJ9B;TrauT97^{O&BIHIBLp?g z18AU8UR$5?n~piP!*OjCb6ig^me}MZ4I!n@IAXkhr+ek$tmgOrU+|oI-P?|K%yGwF z4V9(*SKC#!{22VyYJGWuSts@S_bxozdo8(^~2z}C0nXrNs=JZ(%Z zX_{(iV-#%6DXQqFb#9F#e5;-M#k>Y>c6(zV`df)S`C2ma*-$I}@m?2So|tLr zeXo;xTX!?wvxYOfJ-7KS`bljRTwT`$7QX7??sJb&$}m&A0=MD#X}7PYybn0<+`74s zW;oBUi`+G|%NKM#i_d(bVX4$7H3aN!DfOV2P9X$=q#`D3DiKZ^TY@6xrAe11Fu48&qab;)>rX2uzOd0iiI<$o32?#`baJK9})+VGP4e&;o@ z*e-XLUa~g`VuIRPt}a{&WNd2*$4)rWcpVnbS?478zJtd)tTsA)vdf-Q<0rTH;?{b9 zp_^p0Izqr~=MkRQxM>Xb8kOIuv*zWmqP!0R!rqH(yT{_1`lPpCtcI7Dh)bPl`r|#P*iGrw~CDAsWLwjh1k+;18zz#@)He zbH?{`V+7UJ6ZI0&`8ZTKc2re(7o*D@wZknV?D6wH#{Sg9tJ?47J7;gN)$U)j^y&8( zP~GxP(p}z2d`!1?5Qlp!i24@s={36NmCNjSo8D!ZVQ}eovDugPey`){dq`u77~2#~ zY;mw@V;TTx1E2wUkC)FomAPegx3wU0GG@BI)CW;O;Q_*^4L#)n$21L%5Mj!wmJ1z@ z3ZygW8c9gC=kNajYz_H>$}2CCl8=t+a^oa!1Egc(Eh3?D+_~$fI%xL&C+xA>?`~bs zncI#$ufMZZjlXH#S_!}2Cb*QiNhEPHIAbJq6ls2*-x8AyyK6h$cFp0pwT?4QCbs2& z4O=6c+t&e9SGYJ(byAS9JHtg{RHbQ_1QE?qNti0;d`<0X%~+K)Ue`1^rmZ;@6lj2e zsu`mcMTSy}C`jrBn$%Wwg#0;nqfK`Gy=}WD(Q&$Na|kT0o2qF}KE{F7&Nu*?BjrwQ z%y-{XIYdxeK_RvdF>O0sbuR1Ua0Z4)49-9$tw{O{($7tH{ui?ffj0AY*1G!T!L?~1 zeuac&#-996DU4@2_Xet>CmNg-SCjQaVH?K@++u5Macs|;w=}5^ix*Sc%7wgQTIPJ# zc5nWLZTGQ9rfrI7V!Diy=Ql%qmm23n9@k^hTxSamuN_@8(!Jt6-_!k;<(h$t0c|L8 zsn-YS&OYj{cyiFso7GCe<)5i;Gffy(79(m2*wIA@k)af2f;r%l30tZ;T3Ghhm1~6# zAqNrUJY#?K>ygLFww+S!&XSXcyo$8{0L@I=VO)d10alUPIL{>8IUdm-<+nV#7ZS+< z1QtlpH8j_qY(rZLj#Jam4_864ob~!$-eQDf7~eX z{{Toq{E1d;am+sK4*vkUJJA0C?k)cS5XHAQX={i8)hH$4;G&e_h{*sh?Lf6aDO3W4 z6;SO2Y5}B_LsEma0<@Nlb2y)RT0}Q6MRgI5QQ_!%gW9HzYok06?Z$`zi*4?FQ<;y0zmU6aBFIMRIPWUn%4GuZO!bv zyLjBP^hYZ75^cO(ZG5|8xM`8nx+lvWMyJJyCob@NLiL?(#>u;dvS4eZp=XuX~pcd?h!_ztUQJ<&-gVKk!MLR7U?e9%Z z5*EhON@TOD=u;p?Li>OXI-ra>?{KNX0^bkOv~?LR;^&i9GYgKYP_D7gqj@2KcG9ZG zS2pLmD~R3>EyN$f6r_7-We;OsF%AIzD~*oQrvkK5T#tfVw%62q%VAnG=GYA>fPHaZ zr>4hFqR(sej~~zGcxE~JdzIFJrB6leUz})+msJ-=A_AZ|0toHT*o!OY{z10QvF_WZ z*8MJt0SCvw`BMxvFbd*(|CS)OVnj>&rTL|v+w(zV_~@D6Tz=|wSv** zptX?5=bD<-I--J|#II+!bHAEM{QIxk>9EU9jIz#p=AT1y#ntQ6HOI9Cta+|@cOdgy zM+}Q<N;FDbI0S`<(9pi zxji6&b}u36N68@uXr>AP_6lQyE06liBkp%yzQz{nbWu6vj@euQAM#hM@g6gdi1}w-Pca*^sKyRq?pXUZW>=--1fXn(uTuJz5bHO+8C@DYTDNiHQ#Ia zA$k2bL#G`1`X43Y{%yHShfTx$cmDw6KKDeCjBOYxR)8ANFaTt|li{tmjYBMv!3>uZ zyhU#dOXQK*00t(h>uYasEb^G+HOlgEZbQ0U@=if4@i4vD4{SD3bqubU+waV;L%+Ls zbK&fd*nB^v!=mYC7XDeTSJ%$hZrb*tx9t{tdvdmgk&-&N4-xuT&~0Pg#!o}>{=2C8 z`}yvFR#yHAVV&{2OR@%wu8$3{hEPBw6`HGYKB_9y8VZ6zK!R2gk_ir);6;Q5ltq~Jj!W?xwF3!}|WLtm0 zLd|Y9o0WXJbUi)m6}Z(tgb<>j#5)W-6@v6qgBc_fq*j9xdf>GZO>T}K%Xu}=BHr5D zhP{?>N@KRR05R=pc9LDIC%gCAFHO{M-OT&9^2+^V!n`vMk7MD}zh=2*&V5~-R2Q+@=`* zS>5dIzsF;Y@q56{qA2KVM>h;G)V+6Ejro?n=a%>6=`hFJ_Sd!I+_LkJOLIM)vnG~i zHI9;9L@}V(3R5z%)9+oqY?{5FiTG~cTQSExvc_Y_Nv9X4ht@7eY7MomYo3?k-SIBB z#B=mVss8}O`dfcCe@y%x1Bdc^t@CDm?ftN`EO}^`;fhB7QwzR=yzZZR=Z>~$`7avq ztU6u!x3`ynSucZ(GY4fIU)^J1h^=y)T%P5 z925)+45|hN0cr-#0|IM;A;CpR0t271KtiDVkOqPZBOZPI%EYK&D0SFi$}x{+O2)ih zB;aQ}*HFNWmYFjs=4u)B9qTqVDG8=w6UEuGb4` z^dIJAHE-`vP_@mTOO*Q7S~zIx6+<<+)dZLY6$I|C9TsbGQu6ZF%GztoxmyLS4KhtL z%^Jpx$tfXUEqagY7W3*3`5xJ~#^&u&O`~tKWpzyFI5DzI(72qsH8RO@#o9eD^q+3x z7R|c5(Rsf}JaOAMb_-+7g(NqpwAn)n)|J zl^sD_Wx;RYhhg10rwzNhZLN;!YU{nEIh6Az2hC$zau@>6@)ouDy{94v7(+^OM8eP zZ*vo7f>EYOq-b+o4?+rRvBRF->(b6>UGZ_P&QpK|%Z2 zgn;USle<=0SADeoO;J!Ad4^z-^`Z!Y+0cbUc?5STAfIoxoB7rUJGPWRN-JG9!5{_J z(^Pb0{{VFjRAyzxtAlPMEGH-C)9(nbVam3x=V9f|MQ_Nt{_4p7Lt&1=k_wxf$qgG` zx;!rWmwb1(vgMAR*Qw9LJU6Ge=5O82KTZ?x;~eMI3och}xUh05%gl zMzj|7!mGjR@!Xbo?z8HBkAiM=neAKB$AU+94k=wpr?uS(?`t zYI*U!&cqoU1sl*QvxZx;VLvQm#Jatnf@Qy##k-!8PTm}(pVK+lcH8XWv9yBL-MS!w zf;ieT4QQZV{{S3jGfBz$CieDQx!m&OmRDNc&E=b7$J0ZZLVe4YON&VaK2da!6%nz| zbu$zhQD+xiaqnd(rmbz)7JHuE1@*LoNGE7}9NK~Gp~vZ3$0=s9uCJ!gV|OjQ=9yzt zc>%w=wDFkMFybgjXi;pi;x>d4%=%O;)}&R|b$w{4A0zb;)9omQrZqT~M6u^pQ5DO{ zeHP?%s&B;pC8lZzio71Zi&2`I+`Co-y(&kh+AlT3<+%9cz>mPW*y$^7*BVq~-P*F; za*hP)?>$DnyYfsyzcTsbImhNYfv3K!)O6bAzi%#Y(fod6x8a!KuD_B?>Cx5-_OH%K z+f-7N7!^iQ2Zr@ai%q%MN4Z(Y=3UtWC5@u4d?yp8nUOKNX4|cEatD;NAv!*#LwrvBd z09f9|26-|5NUze0Rq}}>nL4Y$r^By zKyYY3lFzLB7pm*JjeZPowfaAnJQnQZ^Yp)^Lu#Z1D_m>AqGuPWE?8$FsH9^w%}-AD61!!;Ybab6S;~ z0vR07VM>jR5{*NsDphP^HCb4hqNt|Gpmv>49od8y0TrT(cDtw0f$E?=5kTgE*91ly zAPA$1BLN5*P_9)A<_dce4-9@`4nGS|(t_nfXrk(nnvUfat=vKS1`8F^HE&_*)fEGW z_Yg^MCYLQlvEaFvrhBIGzfZVXOKu>#(&x4HYntHD9gsDxD!eYEq{}?}*x36|3-cbv z&rOcjUZXw zTRq$~{Mminz0Oa@n%C{^p&{Y!X{KWy)sC|1ndQu8T|D&ntoqx=%OfhmP}5C7pNg3i z+Po*!VesBw_3L>^WhmTDY6VZyR&H8yj`HipYUgmhxocZI@=C@4)<)+N#?O}!29Avd#8(F58%D0L0NOELtE zvD(?h*kFtXwT%?WQl#}g<$KI=n9U>dey6G2-p=Q_d)ZZt7Mu!5K($qostl@%AgYF_ zKpJuGK_EcE0U4lRXn}$ufI!1E5;WkTaY}b0hzf#$pjQe}-3BMvnwmARKlGZ8ZY9q5 ztVc?+O52+Qi%uCI!jzQd!DXduwihq~+ft=iHqZEWrT+iYhC{YK$#n z&PTJ5x-br71h9)#qJf)$NF#TT!4$o}<5Ijg-RkaUb8EOp47;>{ng|0H7P+~5=oUL$?60GIuLGztD^5bz>H*!ks)?E~ z!9g@(Q9D8jm@%S?l}4U>obbCYS+jhN#D)ptcbjQ)(O)h~Qx@S?k%0&&;@boE9y@2W zzUkMFv}S`l#Vb=?Egc%%f|Ye_3lvfo^*{(Jp-WIH%?2vVGeiSGE7+-{7-ZBj9kfN@ zGe|=ma&W<7x@hEoc(4Bem+=1pv|z9CC0VN+&+fu$#CMV|8P7~)8!RZ1+XsFk%rD*?=4R1>yBDO^BBG_Ip?%?gI3;qS?gK@@-hqN_Q=sHogcQ30m~VOZw1?b7fZ)0;@B`qgExxY+IAS6dSV zos}hr-O(3Txy-n=lT6Jcu=GB{rmZKI*3$A1F5(tX7J4LTc(1U6uL`(s=eKpj+;6Jr ziI%Xy!4xsFD4X!HjSXn`1=39%w>L7*>y@_p%hrJ6RdZO}^`9++22g4pr@e5?o5;p+ zWKpr~aC>X!S6zC7D6CnPmss)V(<|FK95yZX=Weu}#n%vgSai}xoPDdr{ic`U%Hyl* z{{Zrhz1jZ&*x18!Jb7Qme#6ttW=t+OJ7j%IJ*#u3pQ|jgcw7Er z&d%=6-rm+etYyDVdWOdwYz$*VS~>wi^e-n@pvv2IylEsf28vpdRpgUWqN~1|kx)Ir z91t)dfT|^K0a%q*<=OV+x<@*w_tV8(a$1a5Moyz#l}5_W3Y~5kbPG1Dizie!4Uw2M z_()M(yIY-6hgT7S_bk}ds}V;FT=%t&YoCkU)_`5@BQ>2JF6LHAZPFwmL@BB%9aDk~ z00mKqFwnM#t_qsIdB55qgOtm*-MqmAZv3~%Gix0D96iJ@LA|#z-Lmr4`##T8bLl4T z6TO#nT|GBWPQS0K@rUQB(!7#>hOb|-j=Q;J`)@Js_d0F8sX6KOM@DQKkHPSJsu%t>^8zZxIU6*3ejkfxZ zCV*y$u-3J$4QQgM=RT-&tBt(=rrRY9x{n3{#>p0R=)3(ao7kl zZg$Kc`$qmEuX;|`Tzo64%a-1MLK~iG#UOyXZO#t5LrHNxzX&Q^EzX1 zdWFOTs&@cL$gz(jD)b5Sv6Ed}$IG2=U!&`YS?a$SjIpd2639-H(H@dJ{6s9>{B_ah z?fFNmvyXCn{{WKgKCyA#I$3XU_f~`86+gx+7k?L#kCS?y+_0Zd;IkjATXW(frEr_RN@Yo)|2|se55wlWV@C4hgGhiJ)RbvRlCz&IFrhQ8P&pAVjj2v=in8|DE*$qu9ItpQmP2W{t{CA_A`iyw`@msg%eAZ@0;m6&n%{7dN z3|d7^Nfh_1-@0;Q_&v# z>?c!|mbaG2gvow9uhaM?H$J1i;lk41HszqbpHEcQ`WX3M6({D(`>HKor#!pCYQPUy zGNgA>sjY8M2%Wj#r3wDEMyzd*gqG9G&$A^jdD347{{R>KN4JyJQUQE+V4MqHS_tc3 z4OV5((HY#w!MiSg?NT@T%rtw&u+!lT4rnI0YIX!rEz4N9!Y2ve`u?QR!|E)7?sV3X zI<#X+CWE&Irn!2Y^4;*PbdwzN{ynPH^*RY$#+Ys!sA+jD(}~Xz(@xcHuOnXw&lz~* z^#1@bmiyGm*ykHapQgSMv=YbyvER$wXz2_y-6BMo$fk0W#!$wjLL4!J>QD#9-?i5u5H9J zMEL8d8dna{(OaX2UR&Ma-O5x`bM7-Uh1Qu4^-^%1?_%_K z7S~X=dubaiPxxNkLOn+I&U<-xbDCt=?mNEGVNrQ`4ZDMNmdN(C+Iwl5TPHVepP}F0 zuLbEgZ+i{Ab@lQ4UUv3J0P;u$ z*b;LjrW0DvS(THHk)+rp(-g5Xx>+l#;OY!}mz~v4GWwq{;5k`_SWR@9-a5Snye^f^ z4Qt%<_CO?`U>L6k`XlRhvDRzZ>)`aeR}tjb?hLovXQx-l(;G*$ze=;G+{=`5-|;?| zW^112KTfymduty?uN>Om?ktVf_+nvx9@iGHFCPv5s`>5jIqlG-{W7~tDS zA0}9}TwW1Fbsz!29NN$@0ePD}J{x?wzHh~Re|xO>Z^MW5&%NkK@2c+fWpxw+riz3$ zL4YdD0qBD&5D=;lxj@=_^+4ei!2<*Y3ZNqjA{+uxGAY^$A;850AYh8Z;G(NtO{O!B zcqvvjvB+OA4ZsB?YgPAGrXg+38GbY>p-iNcOlYv#nNf?4Yty2-C8HS7@(04~LPfkx z2(FWwtm%^;#H#7uIKR+(OF!3!#Wl|2%yLg!Y8vcFo(ZAT}!-7dBp`+cV4 z<+m9kBHCbRTJGWjp(6^b5yJg5^p|yaE}m{lw;z6Ge=r zwbEH5=q|q1r#32rYE?qIc;oPlO0p)TV0+DSs;IRLRHZRJssn$v+U^z;*j=zmZF3u< znTM-fD3a+~eA~pV=Hb4pLuqjBEVa89(n*C}$;O7)wxPkvoYAZbKJ`Mh0U#APw4rG(+#1ULD;2q1m+utndVdlB0PZk9bBT?EmGJ~soH z7!?FzhN_}?+kio3fYA_K&WeU*avAg}k3hrVZ8D(z3!AJI8Bo1Mk;bPUs2(Tasw@NH zu6>Hg&8pWlp(i!cF;rabN3xw3*sBmQxYsjG(v7qRj03S@q~r&%v$a8D(Xuh7xmKRu z^rT+3xT=+6?L(V~MVj2Dpix4UR0<*kf&hb<`nAU#>zhs1&Ii6*gYx$xHkT6MD;uZ= zbisP=zhd1olaD9g`9s9M47PK#OnxkN`u_kIx#E-VbL>`+-0j_Mc-96<8?zy}HT3DI zV@2ldT)UIKIKD&0_V%#qbDLRru-9Lwv)tTM1=Z_WML?C|v6I+|RN|?9PgS-X+b06i z+!iZQY&wcIYS;0gSK0J)UeSkcYsjxpk4?LIW0%ohcI%e$sF>%w zae|FBA+HX1xC)Z9ta;dYKUbB~ZRPYdcYdRBDCh;#q%OK4S$|BP z+Vi)*u5sAesyHqr11uQa{{V#H(PHmoqs_<4T}|hf6Y0NmQ#Yyi_wZ@jHY=%tKcsW3 zO()>Rfald`4f&rbT`!h)_U@az*yH?h=C@(VeL4pH7=QXetPCcwnI&ekW#^EzZbYj|Rh@dFAZa@GN#dtw}2# zCFQJ52CkuQN3;f-(Q0@7Nq77k8Fa%t^!_Hf;r#Y+StlS4WkZ93k(k!FhW_fgW0z%J zzZ&rDIL(bO`fFb=qqlc*zUKb`dNSO~L6QDZb$zAIslj-8^b;#?S#hr_dB+SS$8Tp$ zXRq*!&Gdt4XlNUS$PEAyNYA(IuPSUw%DgM*9q;};KDD_0D%cx@mlqN=ian&TR1C2V zsP`_t$m5rrdW*{(C)4<(gVR1H%pC-ih9CLKTx*3fr2><07Y*Mub(wOwEjd055q0ot`DBvxlMMW#&${{=cez3GMiI6^{n(cH|L5se#8IYS+ugc1Mesjdht` zJGnM6@!mer*0*l94Qq6P1Q-A7b{_5J>TG%kOHrf_|L2V;wp&1;L zNa1>&+s`b%n%YFj+5u}?-{62h0x@#8oz*aP2Xcv^xx|dnM^YV7Rb^@!oNzdz#gJ4{ z1wd=>MPWb?VhluJHB=DlbwpQ@=2<8{0f)6}GiuBX01Aw;qAXbjK`SvRKz*g7wd;a2 z<^tI&#`v0Z2Mj{auOl7o=9*=Aa^mt_(~a$$&euPg3q{N@yxL1wG%>(bVBE$XLgTx) zGsjBz9uMNXy*~CjUxzHGdU}4BhV-v>c!P0m-Q6vrju*5@@EIFw=JlmIFB_!RPm3*h zeGjDbe@U)eeat>9a-1g{$)@M+;ai63F69pL=iI%GYoLNJJ(`#(DEhQF>0UQkcC)(o zzK$VnLL&fG)6J=^_Yw_PpRu)`e7QXjiS<1{O*PK(^>MA=2K1Y18}|FP zZd;3`z1wDnNn?S5tufq3t*2Y6bEr5kYoARr)4k|?FG=Hfrn{GK8JB-6b<3Rk9e-!o zHjSRyuvlBRFx=!IIz#*?oJ#M87~{%4Ut8i^{Z3u&%(eA)eGSY;p=!Jslogd>QDI7o zM_{O2P$?iF%7g4x7>ETB!BD_qiU}GNQ-FY=$`lL`F!mxGV2WUYf+6c%vIrX*pf#c@ zC%>^qn%ntuZ(PdC##u*C8S9d`4_ub35U&j`0N{Eit!Rym(_dlZa7K zxfBUKQ5Y2jVyYsVZ8$gLRz__>9A(ZONm^yGWIzB1MV6Kr${>=8D~o#H!Z#Oh7W}hs zXXs*M8-Df=9B+-(j!&+Y=&j=ncvoQA=eW4qZ0;_YW4V?H-!mP74=ozLwVBCpHHuW# zX@rdmi6X(o_XI_#;(VVL4E!oAi$DMRfd&_bijsvz^G$K3GR&=L&Zmvda3#L*gg!k`OC1JC zB@!Hfr+NlxaUf=b%upAgyBuw6bp0zWXj2v{vsf986-9;&D1n~R1yLwOd}F+-jr$u$ zf%L9!!U7=DhP@C65C$qL16_6LOadvYYO5eX_7o9GH{ZdH}I6)sf1jXM>(`^73#S4-d^2Wl)hIn4!Kt1TXwQ=0Nk{IR`a5N{q zNYz+#=sWurWdrIlQAw(xsw&S=Dx$UTbqO7)tYe5Hs;O5;zyj1_t6e+8hHG((qQQwJ zZH4P#K?ILt%~-!1)K!Ma0I9>h4Hua6X;VAXbEq@Thu#DsUZ1Lq&P7>>vcqa};1= zOWxN05{|fZySe^ca=z-JH!kB*vF~=_6PXwDg@n8hZje@c^P9}W!Fs%`pD!*xo*!#X zyLy+z?P007l0a~)B6%NJ3G;F0^EUji*5~?U_T?H@`n|_>X}5yrcUPlY(Mso;DLRZR z%frdNPwLAIewNn5)a&_WV=VRynFH_|wF;A#O(AFJYsyydmG6E+Q%^X2BkxMtB+1N zd@m3AM?Qd!GD`O}*9wtUK29Eo9nUlMxlKFLdn94w9A?#y@;19>2O7KdZE-&LRau5J zlz3a7G1ce!w=?=wE%qIj3i%cm@PcYu*xUHR)Q&seBh+qwZ1TSP*jqr>y`TyK&|tM5 z9#>V@VijbS#)Sc_-pkl ziCA($ElPs@jQW9RQHb^_RxJWlQv?wJ6G800xR#n6`YOs;pNK(iuTi9$yA%WzQLYFw zs4x^5fD=VgUGh2SNXX$usLf9c14bCTsX;pqDhb7Xs3d{Jy})ECQ{I$@xP2padoWn8 zk*b_E%`J8YxW1oK&K)l1T%*P6ykn%;{QH>e=$voV z*l&KD?pr?`xZN*gYpx@7U|YgUx>8w=Z_f z#`fviC*t+~opD`+?6w=Ttzw$?Mrtz2!i14fyzY-{4&=*8tLA*i;=M%Q&t_$D z!d^~=2mycrMvMR$1?S56{I0J#3!iD~9o4&A`W?${j_uAT{(9bDB!-IqLz`8rc`-Rx zqpb?8EI>snrC691m0>t2uquj2AWDo-M&nlsWTKf?S%Rp_DuxIoU`ixWOe%n&Ap-z` zfISc}7@!~^U=TP&KT4vZk^So}Ad*o`&}*a)e5KCIqKz)XD8RKC$o0i(k#KB{p;EOf zFiQ@H`-;lwY!;(6geXQ~MMigw(GJq6aBJ*QOaMiNeH_9*gWi&s0~j<8x<(c4QjjQX zRTQph&#DBbC=LptW|S~#7!#7ziE60FJXV-pw}y=esZy+4V4zV_g#&##K>V)9(hr&rhKwVs{8Xkt(t!u1EK2G~!#o{e8dUTD2K=7P_=SAag;) zgc$3_i~y+}dMhGof%3@niNR||MUlLm1_&=f3!9H_YEmq=F{lb=Fz%v_BoOvyh?TG! zgcf7B8PP#*IKqmUN7$l++m2XuT8T+Ug;_fs+$o9)ngOOBfws%iqK8H}##v z+68Y*v87uR@b=)j-lGpo%*V?eb^R0l(N+GeY(?5FEpBe4b^)zm74~9OokkVq>4$w9tlhViuD8H?O|SX8^WCTOFU)$aeG80MHr6C$ z=_nj)*bATatoOGsWM7fs`&oQh<)5?pNQz!D>P^uuxZfFU;0O(byGf|ZjSZr`%R&9_@xzG>UThSttA==-Ae zr=^^F7Y9u(%Hg!30#$k;1HZXd5#G;7C+gCZH>LJp| zYJ2euc>4r*}WimRH|fds#zX-9~^Pp+^Sf5-70faB2_- zW!|M&tu%pvlkQTq)ZELc)SQ-DYp$kkC^PDVRdX)0q+~v{R846hVSrTb?iC9Qg12hp#`cNpU^bS7M6ViYMrddj&E6p7ps4Ei2G<81pQ03r? zj6x!7Kj(wb*~{LPjk6vISZu)p%+Oh0p;=1{2_}c=O3Yeo!i^j`1BYOW<@}$U@4FW` zkhzXFEn@?0%e)fAMlWwb>aSnab$M;>X{QJ19u?r7H&@~EO+IC};?s^fdM~Ncw#~}l zaog?ht=(8|V-ho|0mCEg$$8l2GLp{M!*yLgTN}A;<@vF?EQbYL3`n8~9^y_J9*a^l zSjJG`t0~yh6jX$U=BQ^}8aa@SavpgBzSo}gerCzW zCW3~rT)w2_b%6f>57N9}4Z7|7-rLSwdUaUk{a8<{gWj;vuVDEGi;->DPv3a<>1!XD z>pPiXyC8r?wbVtfB%iX`8p1-~V>6$*yEPS6ikcjhq)gIOX!ub|u%$s6cUmH%d#Z3z zMWI-fa#fH9zSU5{0|0^ANI0OB0-}fo0|X2L1_&7e0RvG10HPRSnl6Qr^~0c1RV9=R z)Ky6(CZu};idL5wfz@3Fwz`6!THJHAYl4FVkxcqMv^n%DShAxpEPHijkx_I^KnqO3 zq5z0tnxWb%fzB8#wE)mz*_xs$q!b0cF?X;m+OiNhkO;sPMtG`&DNNMR)Osrts@xnZ zeamr*NC9(z9afob<81&1VWf=+sQ^(@0DzN%1T+e=4G(*?v?`5_t)pTUIK1Xm)u|Q~ zRv^R}g1yUX=DVXouf1lqij&`t7zG+TWG)J`V+kur8j%1JP*=K~{4GA!n$%VRk_KfJ zXgSParUR*4VuRx@2CgI?^_2h`Fan69f~j1??-EDs3^@M)q+tF;s>W-NecL5tIG*jO z)BL@^;##gTU2t4UDE$*?4n*}=MAVdceIDw&>RLqXgu0Z)L|cZ;15zqf)LUdN3TmmE z0Kott5NdtuqFZ_X%$N~Rp)@sYnHy*b#1)p4HNBZAC2Kp8Pm&1bAU6!viBPaP+2!1; zD^SB)V1o2k-AbCOxw6s10T40t`NB&Ve)v=0B+g77IY8XbnIJ zfM3uIRnXL~i&IH+jyVL0O2}AFRU^G=lSV+3Lz|1L3JZfvz%;rA3Dy81SbFsX953S3V)_+0?dG8H)EgP&9&o>Oc z%6{W+{;27Ezt>OtS$$1(+~0`#kJGwAO7@@JQ|Imf08~rhePsUtr;@b%`-s8;JBuG& zvnTJpq8~mpQCttPeZh1qi(_3(!{{ZCIpIJ7{e66~7pR=jVZap%p&Fk^( zmER91Zho!Ieu{W~PUKUc@?JS3+H0WJSAGTronCjA71sG*rNi^@$^PHPXZEAj8V@BAW04_NLcuBc#XuY?#{2h{SP-`AA-Tkm)t z6P3&T-^nQAzNg)v^1bb`k%xv?(uWKi8)L~^wYz(M*0J%Q3EKRdI{yHseYV!co|f(t zMg_+pmSaj5xvy|F&bp*4KefyHzNDUS+Lz(jlixr5Sl>nX^A4%*?kChvhc`reM?gRs zt$1O^ zPi8UbY`xo%~r(e^i1mbRA74Y!4n zG-MdiGsNV#9uDtOxw&=AD}A+SJW(7>*#$8`;p{oks1AtVh!`Tu1`*K}jf^6T!E{a? z*eeq#qcd6`PL04(ZOWCSu%b6sQoZnvVuiR@wPv>}z-~4F0D(nEJdI#3F2nvEixsHV z-rQBdeUd6abw>1SW^?)iDha8;P<2piCN6pKp9#qIDhNab8mb74Qyd9Y5Yg{d0KR~< zAdH$+btCFQf}r9(ij4N64Mi12NeiTyhKw79RB0<2q;{UAR&_F{6et7Q3rZzcd#FDO z(<2wutwq?IqzZjYDz^*io<%CGhZU6)LBpadDEuOd)?z^J^%Tv05K13ZSCsWLXNz#- z7Z)Lo`Ktlv#UUOb)}PWgy@jj9>vsFwchet9<$k*@p06A=_%}WqJ$;q0^n-YP#>qb3 z@-1^oakJ3#eC5)2H}Tz{u5tF`{G9==uX6L>9A~UY+%C@nl7k>w-+wb%mFH+b7N-9c#B){yBE8uS+%JNa5TNnrYA3Q=UpPC zk}^j$9NAp^O%XxOu764neQF@J^;Y}L0ykVj&mg-EPICox`)F4QB;CHq`%Uil=Y!#= z9__mOC3+rV$RXHvNpD;=On*mg&&rjI62PE zv3i5Z_NlI>-XCveb{qtA65%lJYkn3L>$Z0H_c7Mxq_48;y8i$T=y#?V?M$=7wrTMD z`)co_cXBlD+hm9Ni5n;#0jZ7j_qAUR%S)Co2hMv^&8^wnEc@f7gF{vAUkJ(JY|y?Z z;2tv>gV2v*Rh>dcxC-amR;6a11K_Vzq)Vwl;MAzGj-rh#z2Lb;04j#3$!aoJ6%DuKwz_4#+n%eQPu$y5;qfi*e4aSVvcC=-fT! zDH|p%w2%U#oEm0`!yr^Hw-bf|5LpwP>Sju)*}-nu+AznpOIndSio$>(C@}zyHIY{l_If2TF>1?b z$?RHUxu4z+2g$%<0}uN`3{UVSLO8G8%GyhwH@UtW9TrtErT}};NHY9r37`c5V+?|WF4a)ijBHGe;L}OP z-NhnRt+waPt6kER_oalbvl~%@!)aK+ij0!yVV6ZyQ$8lOmH40A*<3J4QG(deR}SS_ zY#@j*RE$<@QYHp~1Q<$+M-khI$f&Vgx~0^>f^bb%#9{JwD#{sd0PpTmRiv6nUuS)xF)E z_U@TWFRdYPEvU$;S%{t%Ra!wz(Og5;3yaInQw@QQ-dr)UmaREG^Bi0~^lJ4UC35dc z*!@4sJ6LV>cXL^;R@}W)ALCWqUqkIoEq3L&N@gtu(ZJS*w2_F^?Ny@bx8c)IioIV` z=UltmZEeo)_^tbvTj<{wk5`#3%%tU4wY2^#S9#EF&r8D3&OKG-FrMr9r-Rb28|E6p zGnz4>nZplq)aZ7-4j=h%Tj|IBteeu_90sP_%I5)t9W(TwZ&dx3*P$<)I@>hYANIzL zo}6(_4<;ENUP%rzx~=XMp!!vv9^avy{L$81&mW7JggCXM8LFN?$)8?{?ew4rkYjvb`cbjN22*&Z%_Io4&y?&ZhU zm~p*=?!#A?-*OxzJtvPuk2 z0Yyp*%7LP&Eulc#LMebCq6F~AaRiV`(CFo1W7={d!i6l=(`$0!l*)6LS0eP%X|}#= zHrFe(hc;_>GogG&t^P?~r=;At?)NXP`d^vw$A6%kv$MOGy8i&`?0}5(E8D*?E99!F zQTg;V7@mO<8GDXr5~?M(w32sHly6dlcWY}LO&UkPs?Dn++eiFLG>YOqRavdZrsaf4 zNKvBe$Q4I1-weOj&6@=uS6e&|z#8t)V(~XE`I>*1?S20ML8twjJIjWDYjNt<+b!o8 z`G}2vMpn%udss$?AMbTlUb}APwRG&_^*&PSX5Urazx6TG-_2vwt;!4TD`LjT9W|?b ziP=%9rG|o_bR#8tJmy<-)bV`F(`B{Q=WO_M_@}+#cvkUcvGVQh*V1`Rkj%!hfRgze zF>_ePijw180A3Ep2|j6LaB z5={CJX`onY5H$5cB~?Ii!B~{FT4c>A992b1$m@ydf?&`TQ?;Y95a1$?2n`S%5M^;d zYH36SxQvukZg@ch<@yv|72d-oIy9V5aw`i!6bK?Fr~u7al+{{fLzE5)s;Fuj)ey{e z3I}v_aFw3Nj^&*lCDkDWfO;y;W&qQwsCKXndZMxNwU~8T)nrzDu6g_lG*(1hYH~>n zQwjkV^-?gFvbS;%&b% zXlesd%@FO4Q8OSV1=t{LVyEINH6n0S8B|sxF#$n{5^sS@v8$KjKGl}c5>OVtio~%X zbw_fnp_#;r4|*ylwFIEhD$QfgL$^P2u_zaiDlno68z_DbIDQn+l;O+=B^Ay-@G>{{ z4iT6Ap#~q`NSY2m_hD!pOL)WmAl!ezwNcrL6v+Zm)e!BiJJm#tBi@2m)Z&5K#*>a+ zh>Hvq6axeh--76L_Nx-3v2pN`(+|Y8S&v0z;P%tCVz(;WqaaXxMHvcWY?52y@OR8Epg_*y{iC=#<25j?rhreJm`rfFzCAbSBEsx*A*k{%(sxvzA3BGeqyLtR4*7apSj0BGr5DMjS*$d8-uh&MVXTw^y2I;F z_>fqNN9bWV8c>7UFhO?SZDNGc-G{MCv0}&vnM-ojN@fi@gr+MVSqdqefUjz)KoS*2 zi+Ou8>XeI&mmE}9T)6pRz+`duEM(p^ZOAyJS}lk)7j<&!YnF(fTnBOk9E3W*N~pgK zfVfnw=(44kBTmAzTaA7DHN~iOS*^ys@%dK9xE7ONc&ZHrf}NxK^hGMpaObbumOM9AtGq&sAYbx!*&!?bjExVGXkkj{~qJvQ2L%ewU}a z+qmuH&nu%-#yOtR$XM}c;~m68vfIgnsrgOqYUQ=mVY&Hh*m$Rc?{s!|_~Ut5_Fr3l zMcL`Y6hT3VA-HdXy_l;RsO|hk-GI=oR9%k(vsGXyrs>*HNek-6*8@cea*J7tsF9^b zH9LLC8KDOpxewdDS`H*Nuf1!l``Ow50QE0fo*mu!eRJ!6orRm;4X6JAy5i^ zts@e>wvWs8E985LJrX4=1|W<|BJH)Ic?H=Z+*?2z+^9M!T8lscvZm;YM+Fr|;sE1O znvF#X7)MNcDASm78|du4RI`!#S|1g=T;ku#bDN*Nc=_d~@4N4P--hhn&j`*>PJdSy zNtLXcH$^K$<9IBQhY(tDAg?L#xMy**DZi#YUk{@m5x%W4&3Afp46s$2LMu?T!axp?RINrmgn&CzQpQvP zrM)_S>Wc$F&okPZ8iBGh2WH{6ss?21w1_}>}X4a%t8lHa|jV5euXzy1> zbum-~8AL`=MQ5>8RJ@X|^2T|UsLiMw9+!uE7PV!#w{b11!%2WZSreRU1yvR!fygXJ z3r1x@X^d+^jYu^Jq8)+^uVMzOAQFQCR4}4~E0ahb;hRRUqZKN~t>hD4gy6E;Hv|!s z1+VC;SjQTwfr=HHuvL&Gl}J-kJ*uFy2L|-$q9i36b054zh~N<8{*kx-M5!5apSv`) z;#bF>&-jSLipl%W#or{&OvLy2*IG19PX@v5O&3&rq&Z`khTq{)x zQ?^iWIfT)vOOqbUEUQfj#48FB%3REQQnL;o9B7Jg z3Mdeu9$F00S}Je|6HJac3>8GIh-On!uH`WK{BLxGVXE3dJeW{U4Y+j$F3C11_PzfAoN?2s#{U3=@2_n6gGEj~%g=n0yq9gI za_vD`_h96rqIJPJpn_Qe876|KmR{m1?L|SkKxDLhc?wh>@rX*XqK-$k+MQ7Gol&Zo z&#Yo7e+sOGV7>IM305Ox6m4s1*R@tDoC2sq6+};rR;t9%w$ZQx@G&Ig>?+iW!0b^| zM@lFq7$Dc~{F`Li8ymMvkpY;}CeXRg!~#HQCW5P;=I%I8ioE`Z!#a+uUzLx0PHnt8 zOIr3CvA{TYgNQ4m!OB^5sk}@rdwwc_2W?Iv5o2ndqFJMF!s1-f?@I{TIN{#1+9GjP zkk!ztiLJn?r(BezT4|yxR>;&3!HL zWjf%zhoU@A^6686%l8mmWUh2WP@}6)YQ|2OmPQB6*w4bju0ia`DAa2=16z8W4ID## zxMS{Fs~%?P>hRMnRBc)+hXc}?D-mN&Mm<$RoYe^9*oY2rqM{EqkFJ*oP|(oUhp^Ea zxLM6S4ZxLSog155dz*P6xQt5-pteZfD$)*Mg=}wYcPuiQV|2=Lt|Pr|_k0(aLvd^z z`&PTnwl1%Z6NBS4rXw$*dOhqe#_xJ^{y0BV==zL2Q=+)#!z;rtR$Z0atghg^w1Vmf zYKC?;SkG%*Di^xPDU_CWzc1g}%WFKa%bqt+p)%8hFhEdY0m6j@5XM?w(}f-Qaaz@d znDeJaDy9w~VxpT?DgazYUqUOya{mBRZ}{fsY#p_>b~%DbXERe3BW28Rk1DAdH&{h@FD6+ekFZ(c4a=ye}tfe;vue^FAZs z+x;E>^_p9xo>FN0zxK@rMwv&g3D4Zfl7T!DZPlJN`B%9 z-SjBZGwo1Tnh^X(4n=Z)f3?d008n-!BL~b3@fuOyT%?-U3VE>$DJkGIS*=2Oh2sN2 zqSjyq0<5qgYE>2y$4hFEs^HbtT46M7B%rwzR0?XTK%$CqL7EIM2s2Uvtp;mQV0xnr zl))4{%JoDCNKOhW7ruxPxKvl@Q9#R%3WYKv6H&5x93KsaWR$h{;sZJY|Qt zqG+A1u1F5NeJido6?*0~kRzGW=dOdd5?K_ic zT{jG&7=nDTy?2N3nNM5mJnKKbw|~Qa*R!7G?<5Qtp7^vujx`3jpl>9q0DzO?C=biF zy{LqHLmUf5J7|ihd`6mO+KV1~;xJxnaz9FqE13fg3$O~6V{enpoSuLy8LgrzT4a>Zspu7nBbe}hbIGqcd+qMS?(L)xWROPD zNW&dLAQ)wnm#o|Bw=&(+P7l!hW5BvyzLUL%m}NB5-ravs;OnMVj59f}XQT7VfW6aA z8wN$=F2S1Ah}&S=w08X^advqhQn#mVymCm|2b+9;S+(dK33>h~UO!d4+``{a2he$M zqMO}Jx0W9l;Lv(i#~VpE>4qLCY{z9Vk^cbx=v+DtpVwZ~&7LE8bol#n`={RMuX9TF zZ-qr6cAAfJ(>1nS?w_XWqaxZK`kE|m8kPmU}&RA zgEYG;W16V3py@;*X&I_3+!n^iNa7mCjZP;30P0GuV~xt`Ik@+zo}o#3FY3LPcMC?J z(_BPIGduEHMmh)9yG~w)b?mxa+ZyQ`!){X`_2aT1fWBRe( z;d|Y@=2KYwuf#eW`d!<%pJ#8TdRsACRc+wt@&2gnP29NDw=8C>y}$I)5PrrUXs2He zE5z$IyZd+3IKG?8{ddXgrWX7goG-WZ{c0YN?ykGoX0esPy24sSE8_Cx8ijj-s0)vW zZfk{}hmq#~l3~%^19XagXpAJ} zie{dnL5?&E$T+6|00-?SsgJP^t-I%Cv2f`eE&U}vhc8RiPno~n_ditd{Qm%D;d47U z%r0L1xqZ&VbF=N!*f(#M+Bqzm!5d+41)-o&0bHmTx$a9e(}VL&I=$RCK5jW#p1SMn zasBenP6y0wE;jjG`(ixk*z!w+b<-qnG{kl^;sE3){=A)%k|*-NP%5=PsW@o&Dfoa~gbIS4kYJiEaW*?^hxq zY7M-CF{3{N0Y5_ZyZm>jw-@PM7BdeAzyAQQE63NXyu}CrReLw)nk~f}a8Wc|g`j(s zRp`JCQK=3ILq=4GAZ)yuCTkbrsmN|6$yLM~*=8l5qMJofo%Y{K5L0&`RvX)&cl=e>qmKygeitUln znmZtdixJ4uDhe@S)k?qzmf=*SP@JgA0ezk_^;Q8A|4wE~x-oWXKwU z0|D59#RqvRDBwyWt&woQy(8cyfPV-I6|A{NapzYw675G5(P6VHF%WW5N~kD?9q2Ns zsNUB-u5EOKfj!EyXkm?j1_f$pTe9F7K*-b-iB@eNh{pnyi{rgzvjT!Q%|S(EX3&I} z$_H+0ve|=A_;xHiGODt`fS@%V#2HY4gNg!il6Hnf8yYXYN%GWd7nTl*s3pE z?Ipuh&hYhUQ&rJ5%S&j+jVx%O1F>_ikk;=Sbf0puEEftK7PVtWRZv5*L=fz7K{F(f z;Y@o}s}36_Dsb*mOvdRLqR=nwL@j$zBi(|F6($1`qft&kL8$4PiZMz_BPFQKJDdhf zOp>S>r2`T=;*l*WG;MmVGLj%kLqz2FtTq)W0PjJS$FTs$s-fEAGeNK3XFn-BMQCD^ z0h#cXCpVMRPwr#>Y4*9Fqp|^Ox?4815<@Fnfx+?8xOSGW52un`r1e+XdD9(p+t1aM z`YWWe05LhQFGs`bV%GFPjtCIod({EQpio00r|u%Pm$G}v$SAR)xSv%>7>sC*Da_4! zNce%n-_a7bdrVqm2A(Gze-hMYscoFoXusa>wuU@1cphVc#l!T)pzG2*)kG(T@|&PI&+Z zWcDoOl*Vg$JdT&8-0C+b-rUzJ)bWmgvTu8&n|-K~IRi`Kbf7dzPlz-Eau}~4Z>z&| zEhF4`hnIKyO_{r$mTSjO$E+->@*ake#zsn`ochPUNe!K@&l{=pKc=_?Jq$EseTCTj zm#^_1%`lkyUvK2zhGmvp_w@WY`)@Y?0Ml+gZ?y6FrP6+O`K_Mi&J=JC6>BNj(7W_| zJO9HfIdvUP$6teP=|21KdkCLQ7n1qq*uX4rQUS-_ioURhj~wKZDlv-_inOr;XM|AHGfL(pm!nMrY;RGw|N!7(n%_DSm-Xhw)y|v36dDrLrT^9cB_%O>W?5!^$=3IT-P2H`X z8Dk%A2xup@=9nJk;q^UU9or@1`acKo4xN%Xf1u^5>P*!~nMOsdR@lj?k(TecLy^!Yf0zZf9-s>*rB{ z`oV4=L0&fQ8DGnEdtVOfwl=l-yMHrYUZ;-VHt$rdrDWEdq&Mviaq^tTFy<*nxPSZ0 z#m^1-b(u={{WnwLJCjY#ySMA(_g}f9KCWI_Of0!J*!x%IB+&-~2UmG+%zp%~Q?9t( zH!;!X?)gt|cMksmOSv-iOZd;d>Ko-;F_%`(62T)w*yi;P6$N?t-Db0s<2NwN46ZqF z$_ryJ@pK=BY0U9~r?!TQqAQtM3{RFv21dr0z3#|0qNM!@))-u@lZ~zy>Nh=R^EkKL z=9Vq429YC)ENspv;w}7<(yP<;T~B`Lk1w_QUxD~M==Sb=-QSsi;hxupZz!_a+{?>L z*PGUl`Iy6+z~lb_Nb&}+VE3);ba}}#*GlnxL(F|Hxouo7=04sPz2iKeeCKxuXm0A? znbD})-!-i+Z(l9VYpYLjU9;KVye?Ym@OnQP@cp~r$7?Jyo{#-ruZLgX@Xl8Kmvw7I zH)c5IEq120&i-mvp3G=hEsUY_fs9xduk%MS}hJ*)A6c|_tr$nn5+KelQMFtQmw1O+s-iROq zgNsKiIM=E&O?~<+Q*k4V&TR*ka0w3`z@CfK<$hmLt>vrrEU~?Bg-N%^F680s$FbIT z4o9=?yJ_66Zdvl60@pBymy?iS8IrxOd)VWTdfpGudS4CS-rf0F<9pt|8hc!ak>A|& zo>L5V5SB5`@+}zZY7DJkBk7lF^xNCFe{xJ;rTBMAhlTW)Ez8T|%KG~xc92km%PIbB%X)mT}JoJ+{-)qt-ngN5lwd`PF2LNuN}>}Y%IR@G4~NP zn1#j7!0yru0s7ad!!GvszTdg}cZ%ckJS(|*_b|oV<84JLiuRApmKer^fKyRwCW1gX zgd*E;Xu)Ns3Q-gVNmLiSHLiD138I#)R*zPqe#sekthGhTq9+6#%hpK1i)?*sQ!uAb zg{63XWZ{p$?0wIZZym}0U%l@(a0bz2DhLoomtO#0PS@q0$H;Zp`}zL>n=iFx#ALcW zWH%P=nYiHLkxCs6)}uKcp~DlI%eh*?UI}>W2Tt`HgG@US zDN3w?G|MzVV@sZDX-rDDkvWf*B(Ky38hW0@mqBVawT+`idrHl%NMc-bK)O%86m+0c z(_Z8Nw4hxs#SjQJC}Oc#mIf^Ku;>`UDp-hAWTx);{NJlkWNRT-(s2=h%sByzZU_b%Bv1L5D=U20xL zkU4>+v6m1eh_^qa)q2djz05Z>&TxK>x#j+gs_CX(Hw?7lb?x+I>vq0P)tquh;PyOu zk-es%hhhj`%4GcSJ-dywDW#P0vC+JKNm_DV=}@xRIod+0RZI0hxoMTFA^LXv&(NhO zHo%pKR$!|lGeA&c45|VS3WjOH0V-95Awd+3X%t0@b6W$FilIC%Vv2$}bh?=;FE);7 zDzHK^MF4Q3sZHLhXkWsj(H-ien0?~0^!_jQjlc3GLE=8_0pGG)$paI(xBmdAYG}-^ z*2ujPsDI(??Lj4d>NE~= zib|SxA`!&|ZpB4L`Y5V%49YaD9$O_kB&k*wqYSE`pjwKn8KQ7i7GrLf#OFV9hsph9!O1TH8ecWNprAAu*L4K3WX zC-SpVsM60U4{@zJlk8QgHF&L?)O#Df=-J&gTg2z-hH`ua)|7Qd73f!uI;=a|K8vjK z_U0Q?JU%PiJAaQ;r&=~Pjd6;!j2+UQ%gmAU8G0*??#*V$>TalqmlJOzlouKe6HvI< zv&L7Y-JQ;(UtF)$x@^C7;aXlc?b+|gm)Pk$pEu&$dmia`2&H=s3^0)^$?gsP)$MmW zoxFM1!1Ue&)^Ay+7EexGBgSrCuiZ%}m9*Hj1A}CquX%TK8fo>f3qKO$rZM$BFOzVS zUF`M$051vj)h6*yf6FFq&gS<)ZfII=PKJPgA{OKIE`K9`dyZTu@!0b+@lOu${Ck^P zWtaGP-+oSs#W*g_$CxCArhE4^HcPoP@6bNLUVg_-j@;qT()jNc@!kHj;lB>wW;5^f zy*qIWyVB}9NkPRqgi>-3QV!nV6Flgw+FQ}Bp?UXJ%hPo?=5Ne>-;4D>2a}}m$+>^0 zEdBSF-0dGLx3nXxPkOAa+slnAr5B>W)kT51!41~mJ-p5H zAf1JiFd7oa3K|iSQ%QJNeVzQavzg=hvAV}3=nYG{B-Tj zdaeHe56XT{Gtm7X!#vlqy(T-~+t1VbZ{X*J!D_+Bl@U7Q)nkP#G z;M+9=HN)!7Os*n2;z?chx?HpD_+E#^{A*{X#>tesy_26GTdr8_8#SDameR^7WsROw zWn%z-j?G!GZ;swGlzw-=;v4(2%=5P!b<9sbWA#B8pd$L>N< z>jq~d0C$L<#_2s*gV*Jc%hL1geRq^LcmDu!-^X8-r^V>LkAA7WHFe}1M$6_ZHEVPL z=jA!%v-^u(4!eu|*aeD?ilC;w`=00$xgE4_cc>e%Y_a<$;A9R{W z5XVL%1X8tofTz4H?&EG5N$7iT1z9m%zK-2h2z^_Rn$(atG4Bh#~F>d;pzVXH?`EQxHqMx^4xCw+#8vZo?9Yr zn|PuF;PT^#5LyKWs;^@@jlb%Tm;V5>^>_Z3PGiZhIPSyhU7gPs21_ly){Yun?-Z;f z%*Dg)3=RufWsX>D9u{3Tdwc%?FFB@K$)~l`_IU1j?=*GP^s|aKwpkj_5o~b~8o+R? ziR!&(I`td6-V#4T>T}1!x-RVa?xq=SKJ>|D3DG2EJ0xbUAE-srOUek?CM zZ}H9H$D-3j{ZsDE7Ogb_ksW$_fp(Brg*-El=6yzfcEh{FYWKZ)aQiiM4U3KJoNsH< zVGgT_01{lujItl!9)q}GyxpCQcKBlXKN9hc{;un}ejdzcDg1g@Ev%%tcBlL$c^bV* z_xs59jy->NF!^|1<_xOxG`H(3p6-3zZF>(4>3)AxhTrvNK91Li^jmG!F5|hqr0EQ| zjpwxZ-}KxTFPJm8d zkGV;8cF&{S#_5#P+Ls5>!k`gcRe1JkbaOvhZac0vmAKk+3xqNdUwe; zE%RrVUBI!^+soy7j1(^#L#pQF4m}qxkAE%9ZM}}ZWANRsmwHXTW;tW7o{wYHNY**D zaH{g(Jg&%0Qir$U`(DG8n$H!D59)%RC(HV7m5 zp7H>x$O`p66uC(?ydC;}n?3C27)zE_TV~((z3R+eZSx6ZtsXLS9r-V5#1);r%yXLK zU3%Vwd#2C1yEMO5_Eq}TZQ+4IfZ>lsC}T_pC^D_82urorqLd^MqUaPs9J56fPL^34 z9BdVH-au#_q?Bt7yt2AuHMQcV^)@S=*}HDRVEx(Ix<0x=EkE5`lSH!ki! z6@5T?gaoitmv|?H%rAr&W&mgjr|czq=W#pl7O}sb}EJtyRktdZOREmEn{ojnk&e9 zjm2BMZAR|iI_@@2E{u%d9&cqj_O*EZR>#c8*B?jauNA#M_sh!v0B=94_Fu)V^ox-P z+ext89~Hf1vL`bcJ~n@PaSO)iH?{b0W7&DL!}Q8^82+vqdwVav(cPwoxi4h+nrmmd z?ld2x89(tQNPC}$4|-x`s>Wip!sV6{I=z|uO3qDV&2SZ##Z)y#5CjIO1!#bRfP#RR zcc4;HQMvW%qL7pkNX9r&;-H~(x3$$VoKbZK38IU}D@^H{sbRx|n_8d*VOlDMYl+Jh z0R>RXqnLf-fBs*?{?UW^5~w_1-DrWtH>&107XJW}(& zfH6|2InHZ?hFKBQ6&gyy94ZxN!v#?EqA2EqIYGcfn6 zl;Hg3Aa|M^cIf*rI?V+<^@cEBk_qf#;%Cijx`wdooc}-tQ19 zD$`w7igj9Ij$e&w1QbG4hf}K5Wiwi838ia*>_IUkj`fD%2D+G{n=Xiq)s9%I7&ss~ zpahi!Qh?axaL-B0*pr)hbB;gg?5%Gh+~YOW=rI2FTz?AneHZ-9y`OvZe>qEfZM*(2 z{{V}vR=D(D(fPeAvCkzD3yLZyxFCV<=!$|z;Y1n@)=ds0xlLM)ERyOusLjdcH{VU7 z-LB2v-!QhincAd{z?j_c%EK0()#LAUlRh(reLsbHitJ-B+@0)aD>=`_NA?TUTSj>n z^0-3JghO;%-*Bsc0`Y%mzc@?7+WI@={u#N)DK+)s$Lx9DQLu6yu6SR)7d~5tlN^qa z%4pmuU5-^=KT)%u8eI75_I?}Jbp1v*#@Vi4gQ4u)Yhv12O}@@JU6GcWq(0ZWu3ml{ zSmF6*kC5v;Q>f}M_cOQE+4M%(g|~oa(GMFiZpdA zEwS=dr1oa2TGssVw=amAG=k`f%e}w2x1$~H9LLrDx#I6@yONH3+bnWCX6JZbJ=Ci8 zo+pnCZ@Kypk~ek3cMo1QxAc>V?0db1^!tsgZXX=1Y(d0=(Wbo!%&t8S))~v*n!JxR zc&Aa*XN20zyDYl>F0Z%oo!#NB-{s>UYq`|;Z(B9a z$(EhJ4f;|~f9mGs$2J(Hw`uAkjv92$_^jNzjJq^r9ghgvzZJ(Xeaq}ovhp&F0 z3;;BEKo|f9Kmfe=$J?#esy}tNvAMT~X+tHvf0u5K^Yad2O{<2UCr_B_T*D()(HdxA98hQt#Re-Z2V zui4tB7B$d;MpCNFD1`q*sgaT=YMd#&)n0ImE!SS12 zRL`sV+m~4~?_SMx<)r(cSMd%bVaGP+!38C`kOOmcMI85jCXRt`V`6RNq+`XrTXU@3 z*6_l9TzwzU(%*s?XQ*g7#`w*fjosYW^zt;rZUrmmNGLPx&2rw|?qPC!p91J_Q`KXS z>7Nz$N0szzWOR0yTeR@d&O}y|J2J-nbRWX%ydMtRymPOi^Os#NSnT6@amsr8KBr6p zdpE;1oRg7l`v%(U>%&kEn4xVo$n*AFU#)Z9+?Zo>uVLYy8@bkQ{JcH)vQJq!rzE%J zJ5byqh{83xH$vhZ;97c-+Oe~}H!<%<{9D5^=(oOJSG~erTXMTSV-K|eCWsAC4A5Y} z6;Q?PV5%mqP5so9O51i~NyPgXOk){V));))BV)2)6+NpK=-ggo8yi5#43KmG09bdC z2Geb}G2T13`Ld7y04gutc?-hp_dB?0>3yG*dOr5{Ti2EoN$tPM=)F1Gj@`tpV|z+}!t}DK;M!Lp^jB`OeZfOcG zsoPG7r$L_NSo6HUm+kz128mi`yp$6Kt8gTKQ;*qd@%Q(p+}6Fvg?LWqSCbH%pr9n98Z%)le731w)-OJv;41FI{)pVT(7i()C_IIE2 zzjLC+YZMLA#(*;<3`xqRd9RDy-MQUs9Y8TEu;w1K(8slk;7r|no6&mz01>|o_P*oE zzx6-U_q-1y-`~32Th~)YGYiR|K4b3iHiEFF60yw41u4ZgR@dCx!Z;g6#qz0m2~^e<%i%~?R^xu>XAD2miq zI#88aqt=Ht8r4qraLSLhkPCRnJgIEr)c_|PO+J*#BII^J;zkQPs@q~~MF66es8_cI z6%lB|3{iCr2Q^bxQ2P)XA9^4FX^JYgiHL^tpGseE4#|TlBrVvEuzN#Wc!& zIOX^{*B#$1cg?ar!qA-#I%JLC6CN{Tm$%v8o0#h#p7@W4=hE)oy#3eHJuQomP!`?- z7atW-SbeC-YOAOfG$1v5$jH;_0*Wg&eOMsloc{ol-*QdmymxDl&9;Vp4bVyRr5HH7 zriLHgUaPF$x#jZlewE-J8@JJHe&=@SmB(AJ>7R}MPkY07WrrTLYlv*yo7<-1>;ftY zu9kvuX!_Ti)AZABe~Z%j4;t~k&a*u~F4Vj+`|HvdFDgA15KVAZlz~Q>LV^q3!*AQ* zHy8I2+eF{BBZEiRn$B5CHM|~2P10^}W!>Ax<$X^(C#pO#uAsV+)HJJMlAhd`jr+~5 zdA;QFr(I{|$NkZ{+4&~NySM(&ypDGaNh62*@xF! z)_ThUkb||67|N1@?|+7ijPV(-C!KtqbpHUE$Nay|>$u-D**Ea!S-sKSuvSZ1MIHd^ zIyhsPUS8Jz8S;7$5%6vPla6y-KdN&6P0?%Iab4b_BO>eBk`c&vJ67@EQsI)_hC6r9 z9Ia@rG+cOI1$)U}r*|Khy)5m1kJD~mv%_r4>z8)VemtFcL}Yi1`LXq{Z2a9}pa1~K zbWuqt6eIo^s}m$_j~o?YWs%Sq48<05Zxq1cRTi*0R2^dk7#=%NX0U+Q1Q}Ers00I2 zDmT336cOtvq%zS08IUM*+;B8OlQqqV7Gma_k=i<~V;IV!Ff@%(96GnCQq3BdQEMDC zr4DEzl06bsWK>eQ&SfZ2?RvO@QS5|BjRZzjmfIxGr*rjV!5<&^6 z%|+E%w1Pn%)fA^SK@O_ArD1JxTGfjKUqTTQ#_?Jpa_-fZiew0+^GYKG)kPOMt{sR( zFCx9mEk#L2XsVI{RRplRz!sx5H3?c|4yw_(lhpJIptYf-p4`(^(0ty5=~Ae9#C7&4 zrxy=Di376W6G!+Den;3<63`sJlo$~ViUiR>gwzmnIipS~!lIT=W4P_{Tsjs@1?*8= zLq@!QmZ8R(mXm_@yH@<`J1=`rrTTx4WijZs_bxr|?pt=t%kuK~wzqsE)GHgOUF|#5 zu3qvrYmmm{KnI8&QJtNZVgo-Wv<bHt zigIFenli2p#bRUCdSi}T-UT(Y9Ifi5j_&jms#uw!q*n|(SDUvo zlT5C)@|}L>#(SFVV{pUKZmTbLJ?n1`1dhYKQC3Hhnhg&2b!d=(1p5|h+rg<|E|4^J zD(K}e7WZzqq`3?hG$*R+vo_fg;cFkih6=lJ0Irx}z`WJ)Z6Z?Mm*!ed<@8>_m z_q`tkk+ShEt;}_40Aa2;w2(*CypEeKcJcN-FOOky>vuK&ueIoyyFEfioKyr6R1yRZ z!$O0Oanjo#R;7wuHCi+hhu*5?K+)#trW zw0+jew%h@wu-v!IEyjh>xxZOn2Z+z@``>5ethDMgo}50*8{bAPL|Z-dqbJ-30n@_4 z`OAlgPlne|I&N#dw~wPAwz^9j+P#b8VZ65yR}g4w+!k_f7rLt|=N_kq?c3JJy~f`h zQfZOY%tqkhQ|vBYCs)I}mu#=J^3D0%8`~F^pKQ_580N_sdktFP9MUo%;uoDO;=~|Zv8K5#4K8sFXau;NfE}cw$*s~k zy_Y46k@|rQR`E7nw{4DRLp3v#0A==cYVfh&o13yuGZ)x(9vONs4$CaAo4dCiXRG>t z`slE|%>$_Fy!XZ;-FB_Jb+dJ?>HMsP8 z{s|rWvw1PX{4~9*4l(T(o_z9&p>re|Kw-t4sF0zdQ8q9x=lAE#B{N z^R6RkirP5GmJE`(FkGWPi2hp;a;O>VD`w}ZF0CDG27Sz?Me%PWH;U@m*zfDIUu zRa|hnWigXmT#J0YyXX9>9lLF-HoH)NOhEuPqg=#y{4ERA?`3+8&gMUsKS<~{Fz}9& z?(Y8p&Cj#f*^K*Zt?k==rr%=)m7{c9+psb=_YS_(n)aAsF`7$_g5)jdk7438BQ`0@RFJ8&#QgZX_Njcw1i1 zt65fLZlP@t;#h7cdvykp>{2ap?b_CUSL#EoK`*wBQEo+WY%t>~_nNO)z5U((?__?T z(B+SZ_+QNZUEcTlvi!euw?%IpO$}~M6lm@lFKGP6-EOsMgaL=rh<1>wBxYzQVIU|c zV}Zk}Dz5jr!?kT!H}ca=3@#1)ryLsJd0EdnjJEbX&WonI`?%phRdUWDvE1@q-hJzM zCRIPFl89*1ad?mW` zM&jdIlo7qb2QBrQ=G#u&5Rsfe96Bzdd%$X_v zc|f9pjMprX(V9hQhK$pVLJZT|gU|C$IR^Q%Pi|U1Y9^U2B&IEqqO`ALvMY}M%-qLM zq3!$=#B%9(=34w2aLRhWlaKJuRX-ly8t1vf!gmHG@1vo2K8pS#jms{TIf3 zFCMRE<3HwO#~b&1E4j8$FbA}P#{gPEs377B_s_}l#>=Hf{Lz*IhJfc%r4XY5MMk5O z?oQh{_ThX94~iEU$i|K%OMbGmo?YB-UWc&ou9|Q4J9~GP%a600o_aU5wtMUC+E5(p za3G1t^5pS6{{R+?)%bQA<#MmH^Osj~+rwslt~c2^eQvWw?cbfyDzavbb3{l7(u$Fz zwMCK2cY|rWdYbLCdu)^0we5n=IGv%aC4u0+l_VT%Me8?mnQwP9{JoFSdOrUEPvKK{ zV@z|?y_URnwT8yNp0=Uvf+gA)9qAzL$?LsZ*+HW;==O!UtQsTV%zIKv%QR&W&Yg1 z2fyH)mQDWvVr=u!UO?|A=9xLbR6Guvg7f-a@0o_ZuaWWZ44o$b0CykBmmGawuXEDj zMc%z2R)-}Ok~9%QwHUEU@Q~~ln6WDyMrom<Zt&aO!EVCo<7DB+H=lqxj5Wu-V`rqZJu;HB;=VUOZ8O=qW0qHi?(_8N zYoOn89yN1jZROkHYeP$7bZrcCLHw6D8n0z`FtbY|<957fs@u!GH!`=^##b@rTwieF zJB7XW-*Eo`B$92eMh|1gY<(~|eJj>=9X;B!EN=(h_*aT;_=eV4Zeu&&s~*ceGx*@@ zJTH>7e%WHWbp_i$M|8j`NdU}egN7^E^!wj49eZC3<31gFP5X@emySNq>;01dTDPTSzFe?s-s9Dn^?i&C>=wm{lA4%Jy+jfbyA79=37v<0Ft{oKJ&1&J@dy`L_n^ZshP1?eYE_j3oXG~Elay;zFC7jj z6|zRcK|a8dDo;7*Awl)6G7XX1fXcO11o!5OARuoqy$w#*fQhO`0Ygz<3WZ|}2vty-a(IKbdSE9P@M~misH0!hV%znqN!i&j#__s6;5HKc)rUgOBy+V!K zM?bRNnkgK{8OyPyVsLB!0OW=0`rLb)nCJX(ewF3i{{VC0*=+XC_CHS;>=C{>BWvR! z%yHUFrT*fU5Z9MYiKV%kB!#azEc&G{aj5NGq;j>e zu#NH(Tq%xT#VHm!F4Av!p5qHgjf@u&`(ir304v7oaPMJfsqcKf)cl^a3)y}jr-HYm za)Yy9M01YdJGzfx{l(#Ub@*(1pE+Uu>@xJ@_E$j;rdWmS9~_aA2UVdgSxReO^@iGB zSH~da8$^~eyUUOtGTvXwk)sOt9E!&7+|L`0doK#{9J)>EoZ~rJ>S=g4AZ@*?IR5h| z%Wl?W!y6{6M3I9=XmhY}>4M|a?&&+3{%Q5SmyURS&pXuYPWIM(Zk?C6S=jb&X!aH6 zK3>9rMqyS>N}`%ManNvi#+}MlmFM?^{#y3uK-@jcle}`jSGgnXHmLTScLvM20%jvN z!qbTU{NTJkw|lvUlbwBsl)O4_?%nLC4ZdII{zvrNiT$8#NTI`MqX;@`R6`FQ^T%iH?zZTue9pf5G@>0=}g;;1Avj59>l&wXI@_jKmF zR^Ml~+(itQmkydn&gTf+!x?TNfRgQ0r@d-k8W)?_>=tub?3NajLlv~v_VLFpy}$D; za~c6`f4#0tIL#wjUM-L~twtULpWbhK#_1Ok+G2AXD_bq?%Ykb&XH8#_27RXm;PrWD zmHBw~^RKb;{?5luvwGd@E}Su)zelIh=;rl2V~g#ae!;fZj1HKA^A{v|NcsN&6!Bf&vva+j_IEB>j(Tb=BhocPr2xBYMXkZH~WNyVdBr ze&#yfb>jJ(#wS&~+`|6=YY(pW-@)wg=)A|w>dhd8HDPCBhM}Z|R0>1^QJNzf*ZD7d zusG4ZPhz5jY)NxnDW!ZwAH=n*8a7e2tqlNB0f10W)7jA#JDDS`q|t-)lGEQpqo&lC zDX%SK!TLe7Tr%fz+~ZpqL>Kj{WZf16fVrhHcdNrb@9X58d+|FZ<9J0DTc;vg(o5u5XxW552 zzeL0KV{Qx|LiygKcjjkrWA-l(=;uwbj@{~K zZZ=i_Ml(sH@eZSNy}6cN zn^Wb1Rl`)ZvZN*SYC@2dm!0y^b6`d^PrJ zryr?YK3PP6Hs*f)@x873Xr$`)?bBD2mzH|mX1&>cmOUl4#l6fdn%+ju41%nYggK|! zLhmlGMZ2|@8C-IjWjiWDs|egiC!&OW>&kYiEcb20BMUC%h>&tF9$+8EE70|OecbKr z)%!1p^)qv4ZuZEmlSd1^#+uy|eYKEaxOHFhvi3fU z%Gm4IW9pfGiXM+cr;E!aMJ2kBj^7Ataa=q)e{bIMyyKp|RGy3{*Q?zcuVDEa7^;aF z5K7e)C!Ln|($6Qs6CC$bIy6+JuDd&TJf<_AS4SxH+9z)O((`wiYB9D+#;j=hou$6; z+OJX4e{*)`{TIx+&Yz*jXCB=#_hUG^?H9IwaHYIJ+l{L72Ukq6$k$U03ksP{WqCaw z<->anr)E>_b6-VeBJ*;Dyiw6a{U2zM;wn9rUa!Ni9HZ^L<%jn6^3(NSvDN88fL_)4 z`ZrV@J?bhO_g^*^y3a$TYua4NFb-vC@Ey?8B9~n_J8Vt6mYbUCrQ#wHN3)E?f9uqWs%j`mhzZ1g?9f$hw?&AEAZob!fX z+w6RIb>B!1y)SK@i%1_CZlXuwKE>*~Oy(Hnoqf-YY-QDTJAFU>J~`#=XTX=2bu`!+R{j=5UzhkBsYmjy~ zCGF$jEo*s|lsBAPaE@#PB6O@c8ah7^BEHHlTiEM`m(cd!3B8uzRfV0mPo?5LA-Z!n z8~b{lFNKnZj@CMd>T>nI9hb#p>HOcduGSg$%(VJrtcMzr-GcUygmX_>Zdlm1$jI?l zSJ%3Y6kZRAT`->4+Id56-$ug?myYd^1RC2#LfX^d1FG^iF1Sx)=KND0?^C%y z$6IKD&BxdmX&$=OhBz99Sy7dqMc5(ihNM6*Kq?9V zT~4S0aVmn;M1jKu0#|%K+tYIYJJ?g}%09w(VOc4f!0niRAqDb(- zoHJRiVlIxoaOk5-@<)NHih<0<2QK@@GQOWh{?WJoM5sLP-I^DUDZJ94{;_Uf`v$7Z zv@xWxf(dXH2fbNYv3l9HXduv0DHZ_tthCB^Dj||4xMxF53YAfLaZ*k#s3`05rhG>tbvNF!-Qq8Ey{e)x z)2tDRs*16i+YIaML@-5TT|%lQ2MVGcq!d$7cBrFV6bRrBYJ?%o_;DSG1LOg@sIds0 z&c_`+2}n5=?1IbISl%>-%W)Ys6d$FFO?|aquXgu(sqTK0v##%gS?I$50K=1{axO=0 zuhP>~hcGUY-?Dv~xwcPL< zS?7teNp4L`9N}F!(J{8oTzb8ncDJ&_8{WqoWWJQrI|ZkXr!(9-W+AnIO823n9l9xCo;!!M`C#Yx)sAxu9)wKC4NV|})Gd@9+uDhv%KDRTE;xPf zLlI=7``3@%UO!ikyIDQ=mUnxdZXUg7)T!wtk33YgiZz!K2AbBj4J(&H{{S!E^1R(Y z`+ENXf_?973iDqqVCtwHgi$J(JXHe+6$g{`FJNZr$0fLqJ$JSrrGU1&wEqCkHxAa~ zynd^1zqfrejD07S{6g$?QyX-{bA|TyQ+jF2KU{20x0T=J+jwkJkIH2~M*jeK6e~R* z_kRvN;pTq~{kKux$MSA*p5EB??r{Sjdh*{kf=j2~x3h2(Nj*-sM;#KaxcX#je{{<7J%Q6Vj+- zwcPjHNUj?!aXpQRtu@rvxxh#|QkXAU(c>}P&P&1e-fYU}wX>bZ%VpQq!fI`yT z$?)ZdT{BRc2V$x&J398PS4dP5&1-8jnE7I4j);dw=QKF9j-Z^C(^j$F&lzSm$$6v) z=~c}~eBSK#ZKm&Zyd+y$#_46IB!SR(lYmxDS+%O-Jok_C+j*wh=6N>dqT(4?W08fz zqNAwq2(~u2yRD_1k+JNOYo~(d#S09N(lDt5Ayl<-#i`t6Y}2}NlfZDVVHse!yGJXJ zi|%{ZJ-XiacnmvrjDeO=NspW5;TZ!FroJ+~8?%;s+U5Ci1OE}3cZUst!&dwou!S_SN%0?kSwhZ>+h zXVQR)I}jaUoQJg(q@L7;Aeyf_z8;j%1+5v>_YnD!>IS2s>r{zV88hR338)#>X_m$b zSs)5%t&|NKKn49sYOWM{;H01>bQ{H zZOkW217#rhlF{`q1H?IE`#&n_FwXYt9SYtS#kO0-+7QU2Xr@#R0eLvhF_H4y`FFQ6 zzPt9RPQnVVYL6fhPN=Ul>ImH~IIY|kAihTy`O&xHd_efx7cKm9%L_5)_r6@uYYwv; zxyz28tJvb!TXp8)=bLDp_S;73r*lROV>2hexq2PFtg_ch%bWEL?xPK^?|$jtx=&rN zL$}%fytue+q(U}ZZJtvrKntU81m=8HC3`$}=6Pw4DTa?#)NcOQ9By}B_U^w;`2U9ENb-DJf8}($nNEG)9^1k618@uIUybC<)kXnR zf{2FdT|OGENX@7qwRGjrbwdVS>ayBe#MUy66bm(|n2zO^m;#`Y?nGsJQiwB11Gl|K zo;%dd`aQd0eWM;*d44>&gAE8^BU`E{Mi?&_tlsWneKqu+S?DhJQ8TmP+vD%-c+X9E zf!!|-;dc`swZW-|IR!+Ib7??38(d28IxUX&UF-Q{>Ac6{-y;u~g|l}qJUb`zdQJDz zZK~itU8+}EPEA`A>iB(w?KkOOUhhGL{JbmDbUtj|!%4k6`1)rIzY5cOZF_&Ua$Al) zcI_-aV01cxYi5rcv-m-C=<~Q`cJDW_^Cr&UQPR$*4s%XF;l7trc2xS;vU~z3Qn(_x z$0~KT<&P!12AVf`TNt3kh|Ff6LiIgPmS^h9KThz>a@)_R!uITCuhS_#A-Xa0E1Ppt zC$=Zw8-e_59vhd(XQ|K4`(5sr9KWYOwmSA_*uBg1P;jLY2yvi53uuGM`k`wz#|^yl zjXZ}(JI8An;9R)%INY}KlhFDfEAHcmTaLe~S?{s0^mgJG@p)irK5Q3Kd4u?1Ilofz zygMn}v)1!G zX+X1|E9`l_1)o0+d3UkVA=IGTCiY?pF*fee;?iYlRPz%#X3eu000TnB1>x$n$SqH#c$G#_KTW{%iO>{%g;C zfes|oH5KGNPTw82@$V)VmR;UR*y3|d2y0HKyXXs#Q@h;TwsUpD`B3wajSbd37Rg!3awT8fjKn?Fi9W7J> zSUO^$TBxKxa1DfoOYKSCIDvIw8X~1Bz&}(VT(Nxd~s;HqPV9xir)Pq14D{$=b zU{#4lzyXq|EvO%fSd?(h5NUz~K!E3hsCLn{P&hUADA3hV2?0S9=WBYVs;XXQeNGJu zDo}cKRhJ^?z}b3}VS3@FH+-yt&J}GK^4DNH7pm(%9qeoLzb}7x!t=s&_~+9&BC_Rh zZ~W>Do$5&7+AO@++CeeX8ywGp#<&>?#Yxpn_osV?Ggi0!CoYr2^24W>E$sWf>p9(d z{{W@#_YY7wZH#Voo0Ly;Y2b>oIM=W?wO)38R^C0Yj@a_=Te)~`+3nziY30n{XOL}{ za~n9?D}ON1&16?dVevcMn_Kfc!d*QlTj3X^#$D|3@88jn8>gpUQMHulAEY3@o*|H3 zo}TmIqj7f=S&7d&DmBt>E`3BzpgEKhT3bseinI$!YhdeN(djQVKILN?qZWE&aEOMu zWm0K^QeG*bk&;ByQCeaVs}wm7*!{<3zOssfONd^`!OKw|AFWLB?_+1CJg*PxCdW~R z<>ii3Ut`UBTej}IcF%WhxLUf{{K0%$#S6S4uKEjCiP3H4hBjq8Uh~aePR{oB8Exe< z_;~5<{%>bh=Dt|L-4qT9K){p?3W{v-&$J-rJKc`q!8t(RHu%f-Yo}6Jhr$ERUlY4A z#f5s^>@LQCGa2ySZ_zp~qie-_Pm#HF-ox(Ym;V5h-b2YOH%lg6ZPSS%c*Vmup2s(# z3)$^uj&oUfJ`1hsH+p>T8W+>)YqQ!KS2vJ(A{le^Ay57Vy^eqm$o=3 zOu~+E8nC7`$F*4)%Di8!b9o+}Zn#y`c~LYT*T~=8Tg8{0^aeQg-X**4cc(?GZWKmvD$Ss0AjUm4QSAHKifsl-Y)Y^ z8`ec^>v-a~U}P+45wK(%k}+DTS*69jn2MsJ5uIRxk6(JIwAKJUnW}*1q7y;(AX46n zidUP(ot5>4oxyOIa*@#67J^2$Fu%pwfKJU#8xTH)S!ECmdLZ(g>yPgH`?l@20M>1O zcb&LST}J@S14DY$6YpF)oxHP?8OvTTq3|CN+34ox?pplb?wC(+Yt>uD6fm+Fm>Cpp z3}YH714aM<7m=oqL7wJW<#NjFZ!?mkAc)GEsxbjT*#rnpRZ0P``8Jzd){HHsERvlYD4;(}SBKW)t{VCuQ{|2Mj_z20RM+TjxSsUg z&yHG5XeEew6A#};G}qoJRq6LT*iTc}c)v^XdW@%K<2~zh+%OtvRoUxR3xkFu4&)W? zY@(hwMEqFpm8M3cC0pCwxL)+;TTPP68))}6Zy&}%6;+O0LgpTcT5QH_MPTAI___Geb3W;Dr3?3f6TM=_wU{JI^~6pw%=t1m8*0? zZowRF?j615dwejM$tNiM=c(#4-rT#Her&F*1XXFuIW?=}x%Gk4LPMC@o;5cS;D<}Q zI)&=EUZ;og!TJX77Y_&1E`7=Mq+P^GxWR@e=$6eaq)JH#OJMa@G4**H1CB_RJNrPh0cN3* zbf+WkYV!O$4RX19A2;UyqGQuzx7(gy`(1Fi>t5mcxm?sj06{^7VuGIMV;%K{#hlI6 z6~u0h;PyCCG?#^U>9_LP+{besc-dU9(yN=Dr$Ccg7b$KI4`8!+ykN2dEGW?tuOgc-K#kqC9hlSMnlMRXTx;$n$OV88%dfxgN zBZ3w~8+6ALLm1x1v`_`-Nu%TUH!gWxuRC=$0L>UE#FO=@6~_Hdx_E%v)_6Yaw- zn?qmH%;4u?-GcRtYJU)>8%3=#}WiXpt&T}H;-U6QKuo}h5JcOAM-&e|gF z-rb;*!HluDHWAc}!CoI%vGXzE`KKq;`E$lH*xZ|0-|c1T{WsJ2xrLV@9IBL<-E=qZnqgOb&XUKxxuyQ;eZ8n z&vQE_xoXD8O|yo*&AE^IW76=>0l03m#dmnmm)jWNTqFcOP%+ZR;eq_6*Qe<&cU$>h zpT<0QZ>N_GFMD@R&d+b)>@5(%3u1|Zk;VgKV?`PO$N(3)(?{nSWpcLLt*Ww0L#R#% z6_LvM^vvHmm4?d+2gogj?-_^6L!LVPEeqFmm%pAkN9Z13!t}ikd-;B^i`_YWF1HI? z988WsfsG9w#)=G=w3A2Yo0;6Lx3s{j=9?-}MKfwm5PUZnrC5l&6j23MS*RcZ!l)sf>LP};z^vA%CNZjq7$Pym(P}eAu2m8= z;fjipq)`KmkVwo5qFQz=v_}G>qH`#4LCe1J46gx*fA z(?DESS3>BFj0T?Ys%pY?FqgP#9Zm%Wc`l)7uCH)K(6~t5MY=1H>+eksNX>DbKNEUm zh)qOJj0ciNW}u)1QzQuY0_HdJs!y3Y1nm?Q87hVaRB~@y80hy6p5}$E43Iuf(ATxvSF7-G)8UNa9=ECS?z4X0_T`h&I8Uj5>fpr- zof~KvFl$8@N2=#|wHLQKMJuXDVo&2mk*#x`D~_Xz(6?u1TuYohBN9IVO%m4P7=suE zF{0BH97?g0jMAF5?}A7kbdm*XDc-Xkd8Uf+j31ABtk|#~*9;0XU=US7ZfG5@Dk-Xf z)dBN>>yKi(BDUdeZ+~kgt<+*$c}ADU;ZQ<%WtvxAo&5H*nc;i6PS-l!JukYlf6j5e z#!DwUq47xPQiHM0%y&3167*f$uHEjwqYpD-y@zwE+nM_3;eO@LJ#p#;Hx0Jjp|zR; ziM-WH0fjWMc$|HKciZ{e>6V&$Uazdj!>%3etDMXFbo_fB`p)65a9|!MW$j(;dM#FV zI1HCp8b^ih)YJRXfK0h0=Jio9M$IkBa;~x^)S`%T40T-6s#PH-hj)dx8;e;)kp~Qx zD|n@;IP@5)qi+i@B|AqG+_^N7K2}C#xeR4LO83d3ji?m?xC7j}NL#=?D(4sc!)u;< zt-4EZm2+b^gw`pZMO+($ac^8Gv8x&r*ERv^{H*CE)w@kUgiqpHmq|%Au3fP6IPCbn zp3ApX&g+>kHwL}BnCGyykVQaipoUe;l1te;`Hx>0#$CvU=!*AK_-!9j;HnQ&z zbt8Mp(#FQhR*uBfoQ6qwT^4eCMok{7byb?M3rNEyQH8X{0+Ig!5+gLKj&1AAm$p19 zo3(|@tuHqFxStHnC9kBFW17-3tyb}zEGAk#2d2D^PC>$Uz0PTb_fp5A?c$a5qb07@ zrhptOx!~615>T|08Ojy5kwY2cB=hIF0=HMBM?CR3JWZ5G|2_1%~}Ul6=EpKL1s9@Dpt21)fG>9 zu(sSb+lwoo=4WARk5Slt#}zV?%`3_2ck?*GH9M8iclRJ+G-rq zDhMmwORUyEH{8PEmB%TioYS%=I~;=4bJa6r1E;-R5hwzgd)A{bo%sYVJMHUVAC&1X zTy)eLYIar2s`PzUz3ir(Zco}e9JJWOORkvDv2SC#VCR;15rQLi*lSu1PLtpncP!(V z_x1I>PQPm2gFJ6Pm;Bw%Ng{=srh8*(&CemD=_}se56Q8@<#fht>@+WmW{DzuWQ^qY z5ayqFNp(#2?l(-Pm)44C-8|k{G-EMw_N`71Rc(xGS{l)S$w4a^Ga&?|3Q&EJOiH0{z@ji>d{1ZN- za%Z`Xn=_C3y;JXKeJ$gU1>Az`P<(;W+O^q`?~YU3t025ygJ<>EwewerPyYa04$UrK zbaZ;uFJ$Br)}@8;n) zTXog-)HZgE^DZWEWNaNt?d}~{&*6p2={dht-QLG*3!ZmOapPUzR%wNhv~oor~zUc4po>N92Ah;(MK5?|&{+^3OzV3rRVyuUd`FH9)31AYC}(YuJcV z+M>CCsoO2?-@96J&A4fNE@-(e89k@M_fzb-z85bCt-{SWG3Sf!{IS+;?`-AK?)K~5 z_Fi+_Imfr+`}`a3%?{xZ(&tsP#hGM{!Oiw|cP}SndTwK^e6Nc5c3md@+q`FG^v2Qc z!mGTmS3#>tm8O9~W)cXleX3Q76lf`h6H$Vm^aKy35rwq~t#0$W+U)yv*5Pyf)w3(7 ztDJCaN3`Ixa+u3+DDyf#lP;ro9lUwvfAy|q>89IxymDKvM|3|&8=mb)5b34+Blr#c zOV@Og?rz=6`)@M!ICT9kJvJQfp6qAiU1_4YFKYboODj>)23y0bR+2m-r7cMooaW-j z3KP^|v1@Vzp6dKcrD%6vAIEoFfpK+e1l2m<5iys44^C^A=EfQGk8jd==T)(fcO1SS zUmZP%+c;+!+vF0#V#i7`Yvm?V4|bwJQx2PN9#HChcdOo-Wu4R2!|Zw%zb?Itv((Ch z>S`Kw=sl`dqeIC#1UnwrF5xvFFTrgMemM`qJ%cj2?(R%6xmUCBzYfc*-kWoT=auwF zj`YJ}n)`5+Z<0ZOr}^Vnt8LQQixDH=}ehy9j;^{p_i zD`%D7D*MqzkTIsDRoxKPA$Mx5lC38+RC358s2I7})Tp{54kyG^5xs*@nzSth0n-&t zdlEJ6b5^4?K^a%vsu)wTK_f^&;0j`j1cv_V8Y7YTSMV&Vq>{MQRTQmfUWg@WZ73B% z1W^#mj%(|Ev6E-8xB{(;cQMDa%web2)$9C9Yq#vLxAI2ro7jUXF}3pgz07~de!eY}snFuP>h+o-xM0vZMro z7gru@@E#n8dX1*DxAO=Tpju|u>KK~VfHD~>#iel(D5?4LJ18b#p9Emg4DA*B z;D8q#tF|$*2eDzc1K5adN`tGSBBjf8KDmR9R^v5qX_yy2GU`@@1KrrBOO0&$(wKD% zEmth!yXDP~D%|)tA&MxhW)qu9U-~x99ImKqOOK0F9!I%rE2Y(E7^>~Q@6xU2E1P?n zC*l|H5u0bbQH}Jgs41BHI&ry@`+NTYPi*J2xel|tyM@8cJ{Pk~oGLT$ z(zH`uWn5;J!ff|RcKyoJa=Ei~+i;bVNfSe(5=RrUYhFR6daQOgcsi!#_m$Nf*|cob zdxapD>RgE!6B7nM##_~n>qRFF^+VLFyIY;w;z&6C)`!2$b6|%K2m4 z@aB_+hmciy<`EQ^EH^ZJ#Gg;)rp|RYF!1M zJI3~IJGDi%?Dpc?$|{h+ON*TEiSKd6&ONI#ExNWuD#<8NW+2f41fVE_iUSk`A~8_E zXcbW)#E_uIf)ztk3{WWot4NwS>fBV+NgZ_@D1z)!7mmiLEwl!+41xz^wKUiM0a0cH ztcH(^q3=?SoJ^xfZ&j9(fQoDoYImErHZvPfbG!SNEp)~_Mvm z_;9@Bds)RF=G50Yw(fnc0Xe~M7 zD}wVo(dZ{lxn#2(xcaL>$vM8!w(ZlKOV}se1AockYlG_Ib2@95Yo6y(h7*l@Zw>H0 z?d{Ba_+^gXyl*eH#qVxqySbX`dKqSUl0pRrry80C=(l$+d0eaX-JQ9&jK>~QXiF;_ z`>U46VGOfe3OS+>OPh`k!!K&i7-g0CXBFPw+ru4qESUP3VGNzZLgBZ_FMy)Acy_cJbFMrnyc{bJc0WvZdlK3AH=V-dRF*oT8rMBJyWUrkwb5aZ8}V1E>-^Kbx$x~zmyi5k z$?O^$0Am^&&?wf700XgkkC)3UZnY?PMOkq#QMoVco%7}G->SyT^l;Mv=?)KmJ@^Ib zdhOo!ec8%=uhjgz;lH-&``Jx5Gvj@ok?K7*;?O}H8^*TFGrYj}gIzyhM$kHDOP86_ zbn^+XI`lqf@m#ITV@oFw$6vcgK_?aFzAIAqA{7**B9w#(Xb?knZw1T}TTa0&Gc>YB zI8+w6P=bx^Ze_QW%NwRr>m0sqgOl)W(oMr-Bqkarz$bVC36Q{b}aeNlBW}X0(&TG*$ez z_I4bK^LBT!+?*dD;$9WK(q*P|hh|gq-)G?1>7iZTts@O^L|C;ry`1xPBAs_~gEgd?Z^0TW_Xd0Y~H8jOk1yI4rhYu-MDBMoQ znPri|vBU{`jsOOVl2%=?!sTW&opL?rcDd%lrL~=;R<`UB!wW-L&?$fv`d7Ed8I00DHtIL>-OlHg z*DF%E16qZ*k66J%pp#R&D-BavKUtN>>=4Qh+EkydGBH^phxb++)Ci^`s0~GN>Cskn zASKwi&~yte4jmOnV~PYd_o9@X5DMYgsxTIhY9NpbivpAgtgb!FQHsHyD25IcKuII< zsw8Wx>_IenC@eJeMTW<-1sW+G5nRvj2Fma#jX%;5eFgVty1P!eA(E$!X?QpIt zgnNgaAJKx1@9p<0&YVQueqJr@3oRt`SVx4Smr%#5g1yN78-kUn(8%gMfrS)lwrg4% z+GB=gY0pq`>_HoW%~2W2002|D4G~;0>DAeqm0~EtCW#7Z{sI-L5yB~gMX+c=&1uab zG(|`qf`PT51;s{?Ok32`y-KkQ1{FAtgyy1}v>B>^3C&bEs;I|20F`6P`io*W4kNfn zo8f1l78N?8@qJ-%>M-wZ+3I`GE_FXAt-|(Yd$-=zdQWm@;n6gbe3_+S?giR_{{WP{ zeuC?_?|GhX+wS$Y{{U7v-?{4~G%L+~%9ibPSzz<_jRSs_DIR*>GbF7P>aHuR(OO%! zHrAM}F=}#E(J5Tu6+}hl#|3mXO9OO+Ux?yQa?Ps}VpLElB9V-!!xE!N%VX=;BpFXF zy1FYOTB!LR;&H>dbdk(j&Zvo4-}sPPh9XS>s+CtFg05{xxn)va(l}*#7=eK)3i0>1 zULwYO%I@P^?mxDe+qb1p@#O6+x|X!4VU@ zRRw99h{s3OpAc0WYb%FHG{52*6`LBBrRJOmW#yL5W#}RJ&24Z2Kr>wKwtZeQr?I)3qVWh5eiPY&OVIQM$Ckkd3aII(A zUe9je94BqL`I{}0(i!p+2*Zf}4!uJPgbu31hl zxL2Hfb#(x#QM9qZ8VSk8YDP}U9MevUva-hqpqo!cSpwREIu%5E55K5T4JA-CparND zx3vajfa*kL5lxstD5@~zh*rp0`k#bmsw@VLHO{#ABBOiS1}EC9DA_!2bt{0xl|_Sa zG|`PvJTg9+VooTF_TooUuAmtODy+N^18Qi1!op4+P;IR3O8|TRK7+AKRz>E88Z}3~ z0FmG{l`6-QzPfeA!D~%%z$`kg+1d!ebG|Opt2H&{m8I>o?XKZu_V4(kcmyAE)|$7o zzn<1z>@CMB=uz9a*2lIPUANjY+4D5D@-n)pdID=f>{!EV9B&Du%IZ8%sNd7(WpbGI zc03fmjoe8y-gibhu5mh@6N{-{r&c9+dGsCYt;zM6`NIj0pDz6^g`cClLovF(o?-bc zYaypmI>UkZz2S7r zV{dM2r)#%___tHmZsoU@UEOiIX*n$Vf5%$exAHh85nA50!Yel7S{!^$asBJY39+?~ zw>kQpe8J*6;rnc+x#6a{ejeG)?!^l7Um^!FPK!~_)3-HH!dQf&6C-@*G`L4msI(dr zOz5*~q}$88-qQDdJ&6&Lk^+iXNz>~=6Q?{=J#SNR_;Kf7ZRLLi z!*Wiea?GT>G4;>t{2pfC(=JbOx7yvt#tCkTGF!^+4vCqy&nCYYW?^`9pw8njrSEq< z&(dMJmKj^7J+qFtwohZJ@lBDtCdX}IM)}NctCzDU%IsW!685_rUCbsg&-`Dny;o6| z=jr`EsN2I?4Iwn(AdWn=RP$d(GaOMf8?oZ$c9JBE_eZuS!s=E zR2qP20w5D#YN2b_q5w$;xl|WPrZ*p;_o-JGC-pm$UOxBsega{EnoY}tsAhY>Eotm% zuf2M|5Z<%kkI{Us;do=W`<%WkuDXAQPrd8-F9^5e_U7Ve3AZbTfh>a-vAO7HcWLUp zo|C4Vb6?e8Ipe-Lmsgi_ABSrj@4mbEJ!^3MOU-=dqh5#`G(Z5VmK$bpdu|6)DaW?} znZpXdgH{~_S|LdY1wsR;WQZDq1=JBpPtckn9OLd)SR4t<6b=d?xxq@*P~B~=q!Gyt z)X*|BSt5a~ag!0ApX6`B8#t z(KHadhjKSMr#fi;0B6~LY=0nqSJU5>7;|ow>>1+ z2MXhkb?wPzty2F0SC>!HTgf*z=sqe*n{(~V^(kSf{=jeAhn36s5CGJ2J#eL6*t26& zyoTww@An(Kc5Q=|ZX34dUVdrqc8hy>#RjQlY13BzOLJ1Jt6r<^ciUg2wiXxnhj6=w z`XMdjwG$zCoa*?Ac1DU+dGEViwc^{wKh_QZ01(90nCr#p2CQm>3yDF1lm>?s7yv-k zRAp;K1ZPAK;TV)PV+nZG_G{s9<0{r?5iJ>hu?|}adwkd z*Sr-f%GKW5FoNcaSFi4=qk4su<;-+%J}B@9wWlRzX2i~rRaQz~PgGFU0w8N0hy#Ni zg)3BDQ3mKVCZOUEZ*mujX2b%eSc#<6QzTS|hupO1Kpd*5VD^l$K)|S_e9dMD7j`LX ztGTjD?M}hH0*aQDpctxvM`{{~Xb6;!A)w>zRES*SqM*8rO>ZPF%0@Ya{{RROj=Nd+ za+!K8zeCFKaXo`CHfh+_e3R)AXTzj`aKfgw%&Cswc4;|2gU9m2ce%ff*S|lH;y3pb zP~nA5~OW3anR~Hs~NRk@?A&EZ@!Co#w|w#Qr9D- ztyWhVZZlccR%5mWO;u@(YXt|rO;t2qr9r9W7vNiYK+uy~j^)z{#f6F zo+5f`=oamBk9A`ZVDDV3q-QHA<_io~cVlMPXtoX>FWRx?w;&{`?) zJ*uMg3=AOkSy;8K5$sX4QprY~R#qxHL62W*G_PrCXKhy6+sAI#66dxiHZV_V(gjKt zX{Q|UT4JA3ICNGr)A9(*?ctOYNaQVd@PFf2&T)0yt#nq{>LQp>EXJ*5k%9P?MR&5E z{)&WS+{ag^VyL*whPsHFBqV3i0S35csu1K5U>&FhDo`t#)FKqM6`D#RwBU;w?m()e z4pl@~mf?(UD_SDFSMmbr*gPS)cU0i5i7Oh(p5s$g7VYgEF)66O9l54H^#!P)qMD1= z&{GqDMMxlh%#@5#jm^g-M#|pWIDnw5zbL7y=(Gq?Op3~&g8pwN&S`%kgskPsta-fF z&kvX!@+xqm%yg~Tj)87RJ5gL*+S|8O^G6GNUgo#(ke0~a-p+acS#Pp6SDd$v*^14$ zz$^Ax?=a!q%}RIYrRQw;M^(A`cJlY|`&w(CRCv5a-e1gIQj~OY5Yt}5^3~4o&qcoH zvfJ{%RhK^QKHK;xA6NFDHiK`uG4yt(R=>fo<6J*~kD|Q4{6lw7`IzhMtyd@Y6KdY} z3yU9;mMe)I(+PQFnlzAgRCVaFz1Cxv7HIY!8RhNXm#D{czb-Oy=JZ~dUBx#QWK6ER zd1Pdj{HGmwdz`y;xl6Y+dT%ssTzbCs{aDRD$FTqayr}t`Lr7JFwYeh4G2HnBm} z+BCddxwbDES53MG!WPSRx>hIyZyRby|sA7Sx8G(N)c{R0Kh5 zPq_!1=G=Dkf7|Wst(?X*Tt_X&vO)5P#ipNXg>&EAx#8W9b>Lnlhe^AZc}w{$ntFY2 zLuF?a4H2+tiY5j|(a-@w^##*}nn$P0JDyi8x!!5zlR%>dD}_|Fkq8yUny9P=PzfD~ zf`L$G3WabdE}4a5Pz^4navc;|RiCr%6JGrEws5}lPLDmz1^P!ym79duT{yg~dhPsn z{#?%~hofE#!kK*wZxYi4Lp4y@qMC<6EzXz)Vj$V-&oQS5HQ0{0tCJD8rAKnZrlm0h zl8OcwQ4pp#B9}qzL4~d(Btn>p=z~165DzGzCNV@-27oar0RpNi0mhX`0mG{47-ezK z6;MGPQ4%ncXaWhq6~rj2JKrJNb}J)$x!g7ga$wExbt|Qf&BamR?Kv+00L|ZY+cr-Q z&l8&&v9v60%)079o_Eo)$3ci~Pjbzx9^;SkOFgRI*fue4>v18D+6NygrfkcJ0Lt(% z*6(!|bZ=Ld_3(e(I6?maG^LS15WH09o_kk zQy=4t?6x`^zu`LmtTM|f?3~`cvc74E9{@BZc6@c3E5~eQy>&(b$LJU-7hVm!V+{ZS zKo;W^kCmX(t4yo8<;7`~kj7r%I(1T-HUX3apy;sN0?rkYGpBR->In8o+!lq3v4Lnj%bl5fjAVND5V4YRg6fg#fypuv)rD8c-EvO7Yj% zPr8^;*0~PyyGY|}((JY(+R1^!k~_rjX;{j&BhW$sXahBd^i0xfJ3CZV+JVBp)f8*r zk_HZL9rz-nn^8Jj?plmeffPcoBB`k%W50!xmePzrYrRx#BD#$A&my9%`K{4ftk$Be z(-M2SEVh8WR=-N1u##)hB2>ZHEifVUBDwTdA`=T{k4v%g+~-rF1Z1Dsc|tgY@vR+WSjsDbP#Bk?rU8h0v*qPTbza5O|auPx(gl37_3TZwbr8a?%*8Z}#o zJmH&joZId4#s{}HI(W;6_n?xhcUs83Sm75E2=@EAw<#U)3maRDfaBO4#%ZYQiY&&x zF57(T%RzAaX>7}jhmmp`*#HKC#5B5^hANjDvL4UM70lug?q5JUNJb_`k86U9HuCgU zSvQTECl1ucn zU4Q9k^ebNahs2?Zt=t(SoIDLtE^|PMcp4&eco0HVuDESCCQasl- z#QeLe6#d2?mt1_W*5A`V-4?9* zaQh|)=9j3(bJeNk9=H4-?rdQ78;cQ%xNR^sgw%ULSLZ~&RO>&%{^i(xL*n{e@NP7+ zgp&#ClX725Un_NT>F|HKVZNpDCPqno;m0b%>Zv!eKk;s_{6FqnxAg~#%F zoC)?)t6wrXW#z7}URd9H^L;_$tQvgz8rJ1lUqkGmQ@|!FGTb2z zu@OT-sm^DY9Ys53C345A%PGQt9`~`&%bgC-=GQN7x9nYt}MbeZRs<@K|i=yo|{^ljVsFKzq_kleq`p6b#!2UN!Q8=qxqRjhWmHP_*vTf^V; z4^4#A9CN%oCw07o(v7YDE35gQ=Qf3~wUICyP*8ZXT|aMcJg>Wh)@SC;$-@jW_uFcC z{Vd{E@tJNUxRsHD=ekLB3JgtjhTx~|G40m-+^?ECyzZDxX1Uxf^bAK-O=2tAeYm5e%g}Cu(;4?sz zT(T(K^Nx^Rq-Q`XjbVp+$?0*=PPOiw-s5q2!XG;2-OiQ8t^QG7o2J)2`<3;-Nb??3 zW1yRJ^>=alIsJ~d`LH;zaQxXuS&NCqMv4vyiJ|~ES5m7cE*+|j28aoG0SJZesj7_w zPAHW6)k2rk+EH{8@Q4NVQA!Cw;8PV*g~1f1;)(!BC;>nfMj*vNsvw615-^f$^`OhR zhs!zR<6#D;vbd``rJNR;4w2Uk7HdocwF6PKL508!F)E`i<8dx7%$kp(Dns16O#t_- zTInLbqDDQnMGmz=gsOp515gNzt#ega3L^>eH?Y(q4N*f_s=6V92CAWfD1kK5K?~-c z;y7bzbdPbM4H%MBS53S!&nb>GTX{L3AN3acPFCk%+*4?|d5x?hjEECR-Y~DWy{p#Y z*6X|e7vJ^%T-%){n|S{Kdl|01xq4^d>ZaAcYo%$Sco>f5?6rP*XB5y}(CC{7WF65g zHCpdkX@sIOfd)`!iW*unK%@eL2px!|aLodH&?}8p5jv*;Q9uD))rDh-2A=h}=SyDv z7Ld#Y<%)t=T-w{PzIj;_Ms9nW&^_dZ72&z>t9xF<8ME5o75?t_)Bxb_QdiAh?-;>)er*p8Q%Oat!12-vZqVv8n9!t(CX);AO0!spsN z>T@uZ3Xz>gD2c0J^U9mp?(Ao=dp^vaKGpF$Hq6ElBn^LdBCFVGtKs)2cHD1b%UT4E zm4`_!0+ho9(T!3~FbuC%sTrznbx5JjZIrOY`5l16sY;EEF}5*5n#HY1Xwt!~ylASmAQz zHCea2u#KAJxrMk_85$@)m5i)*!=>H4vC8|YCFMMB14(yFRuRz3&)rzL>ICM@ee(eD{)ugz6Ed_JEM%?F=c^LVBuF7jRvU#pe>ZcPfZLBwrcxkKL z*xpBVFj~i|+nuYQmio?D89&t;?WfdkB^mSNeC~Mo7$Pd1I%w z=wS70io1c!uj<3;zk+e=j}>!9n|s3WYe5k0 zr{yhU)!}(+<$Ryj`f&Pxk_(SpcEaMzdmE`h8IZ{F?D0CQf4H2TcKn;vS*}^(KANo0 zTDEctlEULy>8>M(@s>Yzj=DQvB=7caWAtRlddsvq)NbE713JkQPrDVV)lSc~pZq6# zPCJL0`N^p8`H^9daZA-tN7l2+JHPyx{S|I+T=vUL7hKP_&iIRf5s722 zHN_`UGT|rI@cQp8<MwV>v=nU2SI-~QGeN18~2Lav|(=maK?s7F$eq1 z)tj0B086j^x5IV+0QNuOB;R=STd(n zz5f7D)WqsKAO0Nu`=9>+R;k~34^Zx$VzrJ3O5jZy4z~f@KsqZi%eOD7$3Ca0{W~+? zo>%Y)x&HvKo4m3^w_Ds7F{Q*sWYI>92@a98Jw9{BJBUpH2H}#MYmA>Aa^G z-Nt4*XdPc)&kG<8$2X$Lo8Y zj)S4HT>6bQ^kILE5ku%7CYCcT`I72mO)Q@13f01Gg5e<+rxM+vuiK-PR~YfbpbB& z(-@^diRAwP%6$}_CQ|Ur>Sp=ZZcZClU-M7FG=7S+%Ws*xR$371K;1pmsVCaC`&<2A zQ=Rj_9vfUg&HR>Z{Ti@}Gw1GeIz#b!QN-4N72)dR(^>ky#~trFZd>r}A!key)EIfMm09$!(4p#RIN^z z4_k%ve_OBU{{U;xyVI^WCF9!BaVrnNT{D4TACsp~*1KcVV?94h$KUf`SGlL~ZwgGV^AAn{(-_@Oo3nV-53VxtmGE7lwoUP`ZB84&7_T&&>Tr z4~Q{MFQ9#^Z(hTFsZzyIT<9Yr0OsEj-4)I9?4fIkveex6}7OE&Cou@0+vS z{QG$D^ktN6E`221-uq^yl8+&&x zbo4&2d#J|^JKQ_hPkXm|eZ79R;<{qzmC?qn`LC$_ zuHn}EJg;bJ0#{nFM8>eZH_X)V9O`w_YelMy@ATi)si&G<*O3@@_*?o*sV?N9jkxO4 z+6Gi-RhtQ35^b&fhU_-GOULelNj$rIn8V1BxL3g0d|0}eehXn-SKr*b$aV>P54|h zvUY7SnOIJpZhP7_e)Z+eKSGPEWoN{Ay{nw-eWubkJK`cHWAu*nNb;V$Mn7R7V`$JX zVE_!M86^VES2z2#5&J8=6Vq{SfAw~$5<3_`P!t%bBQ!$*s9{AFg|$JHq6Q5LriRE0 zd(>D$`esyAZj+!urTNtY`GcwjG72E0e-E7a96rOmRO~s0n;MmQ!J(j3QkZ)dm_TG` zG^#2$O3Ek^(nq9&iU^FuD&Tr{BIu7%s5-D#B}uM>G(s7NYAGLe3qChv`5^>9K2AUZ z*ib|-CUdE(jqDwX3Wn!!BLd<|RgF#7>4|7|D6LfYPLagb3rfid6dhGWjgCjxkG$YGsX|F7Qq@i0Q}OMCmf`ZO4!1EsvAd zXFD>z>F;_5Ft}=Ki0&)NuSqCQ93gS7bmExaCR~Er-OeJl#cI|YSYT@#Ko>gFS5d92 zyd$)!T9aN)M&Zf0?XYuhH!En})EOIJsIGZujGEf^8(tUHXZd#XzUGcjf5k0)PTZn% zKPEj-chJzWdX2gIqsqg;I?V2$F3)cUy64rtD;<2M+)Yfh#u^Xth+J=7w)Q)IQR?qI zhCcrQ!ZkDc#`zvuVYIqR3f1yrJ8IT6;qP4Uh)el#wdd{mHcmU6x_c+zYP4RUbKCh0 zJ9gIAxO`!-z2&5w$#K#>>5o;rmEnuNUS9C+oO|25pH5PJfj9NPxH~~ITQdMiF+@GJ zZYz0CqVnPNIpddt?M-KQFZX1QUJvRm#6Dd6upzjJjl_o<^&lzxZRet$BzXjmfR%q^mFJ%VdAp~^UhdV`-5V=^MIvl&7aOaK=rkDO z09U@GtlolO)mJY&S*Lev>C5>pv(cTC4O@lFu;?Qg{RM7xSkBt<^7F3$0A}7FTGhX# zJX#39Pc6*ut}ZVOuXP#~od(~o``$k9oVvUDW*E=nUg^!tC)8=hn9^wZ{FtMFJHBZoHBTYjpyF#}%{YU=juJ}<34 zP8w;XV)*|6UElBg+_n0?j!0d_I80Ry+3j57Nh8Y#KW$QM;W=Xqj zAb0AEQA~i0Q~Rm%aP&mJJJ$aI^5^uVhk$VA+%|EwL9MmIhekiVCr{L$x7*iV>}vUk zt?u`JZd!eRPc*IIJTIBC{VVbD-G#aXHtS$nizyQ@rX7oY%zY8#W#U~;*Imr`{{V`r%g4C% zVbC{iwa|VcCs0D;y0;B9uEdt2qUUm`t0l%|^L%80U} zk7U|yW;0t^Tfr%zP=1QW*G5K7c4M)sg~(yA$?o+u%bXAl8bKmgwHz z7d)miajp@__p`fi*BgyXqA&jdCu^`GCVV2DFkXv)cfX#!kJWrXqxl;c?e^)%+uH9| zvbIZTq;JCZHN)6IE8a`N`DX4t-0bvPm^-4bV^l;JQ;1=Fjx=jR&1yU>*AKb8l6RVt zXwldPL1EQ)*ouNyqcyM+6GB#_FA2y!PBuJ|n>~$*y$q4DT#!h4d%na&B1L+y4|}Yb zXWf%p`p*yY#NFv`{^otnX1Mw^^yK!FhXHh=nV}JxPIXaKcN-nQ zaEQZwZp)azB36eE+$-!$C7M@})Ad`sId``5xZhHy&&M`Ro%26!v~97tr<>ZVzf z+OdY#IR06qzgyy+M^hx-%e~#@$+cr~satpngXpR}2dWOa+^#lmH)~S;!gD0F%gc`n zpWxJ$;dQ#@F~WYT`yVTJHZb1mv*ovrliPnD5$>%Zj@H^McyNjqHZ}^A;b@@5uQFpK z(mqRjcJ60$%br(Lyi}=Kl$4>ZJ?JHEO4B9|a5{4YWDtx2zy{Mis-o6uDxnJxRTO9y z1O!G=03wA3ASew55DXDR1V(B=HB`}2n4$=2C>TaN5K7pPJ7WPr;3Aj|LI)Tkt48A4 zi*sRi1G1}HFuK-YveCl=0%+0Rr6eJBb4HLqxkZZ3s~ks6$G9Fn))D3ux<=;PMC!qBBS`aHG1TDf+xSZG zI!>2c-pTa-VDZnDK33KE?>jH${%LkdAhz{V;@Sp?t=%Nin8hij(bTk8rB%Y|zhq~u z&n)~a9J1q!s%Tj~4My-Q|tb zPVPE;eJ?=as8X05*O4BclHK(E8NiH{tV*4s#N*IlJIc*!FpO!~qJ=R*ihzSCfIX@a zSh9x&8VZr_Kr>WjI)zaM?WMHv`BxD(XkATFy`jw{8j6G1R`IN4ibq=6+Q~G9uvDaStQaX?LEpV#SnA<09|SO5e;(r=zozSgPMKW zG2)xgZ|er({sD_IY<5Z%K?aBoLIM>An5xZ4)}p}-HCa;~AYy2!jnc4WE8d`t+&l_l z+mdR!B6ZA_$Kj?Yy#g8V%|R3HgK|KI=;80|Ms-SV%`;I)=37kE3T~VENEFMf?FP5BlvIZH-XVe1 zdzD2ww^r8ysQYL>q+J!CxLmx^v}pbB?xG^`pA(;_wz!m2o4DB815?_Ff^E&Pu#=fZ zY3?@}q$KvJmnCgdJk?az)bQEKCPJgNT@|o~z%vtx>Zz*JU;`mU4%qSh2p>SIAzltT zaVP*Y2KcE_*ruvxyR>46t-S5g?ps~ei_VtZ#_079gp3ckrN>!i?Ri}nQ+7A8+@GfE z;yX7r+<5FW?a{#;;j+2G&o1z~noR(uM}>Ngo~rE2j+*g)i{icux7O}sxow{hXVTh3 z>c=T_$CYhvS}9hD-t6-GOQ-$Aa`KVlW92@QPm3(RnfNcanfjM@$9WrhEIGNhub}o- zOnR;R%O9z%{0GAE=b!v*M{)InV$l_>(CWy?1Z@<{H&%+}yVTyp4vWDsn%uFz+^qq} zeO$jfr?|L;9WbdP~OOkonSFPC5rYt;_fzX1dOYZ`Sa4eBIS$`DPgXZOy+2;!%db^=wXa zMLbn-G!&@>(RQ6a-2E}@bMgMSFZz|dwzRd1LinxYjm4lBF^vX;p&(?s$)_i)+~3bB zrdeC>O(SM-Ed(%iIj)WtgjS${ON~Nmi9|8wne7RvnT)4Q6cbb4qeGLSUio{0e8kMF6kH@_QsGU(>s#S@>s*OUp zDAEZUp%o`+#8E|SXO2di^hH;6ttN*9-h&Njs9GPP5oVYQVzkJPorok9q99hK0{|*Y zp|wz;)o$1HXpM&wwTxpb(zT>xTuSQaUW;P2K3G4N?IB|-)-Or`001x;E-t4Hu11Qb ziCdBf1EQ#rqKF!}sIGbHmnnQrZo_IzT_Z%7uf%?g{458*s_;79{_O6~*V*}B!zN$- zjJr5v?d`vV!R*^*-tBlSZ2&h9W8B8L&>bzUDtlM1+uOO_CpXr0eNGz~e9ZpX+Avf<=OEVmSq&&H-uL3g&LdM%C1^JTp4exKue zGW0u`&Jtn6PgB0*nO{WwZ5xh#5CIg9>xXKJZzK#!#R0%#6&PMo3Q7u-?RFF2+wKy= z9eHRR*e3f;4-|02HJgmKTiEh;`n}vX^4iAy8R@L{E;aPYY2uaB5J^#>6F8Jqq0V+^ z4#2Ethj9vx8shK33dP>T(;ikH z1J>osYbLAu%;D|0a2HQ-9wDX~4u0UJ>bB(O@+Xyg>-uE>09081wK$N#K6iT|cjGG` zyxYC5v&x-k_b8(lscO~HX8f?00I8C_>;~rot?%a ze*r5qtlPb;UnzBy`Y-yDGu0j$BeeYMnNF{YKtBRbvuo1hmzBEd`X&DWR8BoX;jWiQ z>qx3T*NacnN-fT#Zr{xuZ=2JYZIb031G~xa-L^ zuW`ive&V~EV~2MR+3uVuB$lqXc?Okh!0`V7ee|f)r&?Xw-P^L_)>hAND6DeE;O00U zp~9e`oMxz6-rI=2Ax5Uc^OpEzfui-=J`CQFb77pQ$-;q+`~;st~g+VXzb%| zGtA;o*=SW0M{x`qgfUmVoPPop9NV46C?Th3RZ~S_c{`|FXnQJvo7c2r@2x=*-Q*t# z$F!!3M($T{b#+&;5rVo24fM3}Q8Y-2+lOXqXrw!gha>JoQk%!n)x?!TeA|ejLsfZZ ze3_o$7Fo3<7E?$^KzfvsCM}h|-3usP;ww@#y1*NN7zGQYWy`Ep1+wXb^UHTS^;Yxi=o#v7nHtCJ6IM4uLHyJSgRW<;wjdpRa=Zu9`$1svN@R%k80B`F8=__cI}26BX}J1cQ2L;e#>yw^VES} zi^XznmDyk>O}0*RfPllW}|G5wKLd8uVM3vuWdmw8teYBxII=Gp|CW$z)q> zQdP3On7iV}wCtkiT_stLO*8`}4%?Q!+6QhWO-&XYI;}85PC-;NI}l1J(4xpS?@?Nr zYRR4sbebk}zfyvuCUZap)lp@IuWd#s ziP$RDrfIbHAi@FeL4Z*M90qtQig$M+CLD1&D$`OLx%(sHN_C^b~&JW)drh);u{|EeGTRO zMoD09fY9RBxw^G@fX#E<*~dFAoSxI8@s0kQZsE6dmh1ljqr-8yn>VUg9#cedTS-2M zz@Td*XO;j1CF}O)y+^V2o+F*d!lt)dl*f;@>gzz@y`$hEs)8G-#8KC;MJmYgdzAiU z&ym@<;JLc0#aBBXs-tIaC>EnN&Amt4c|P~bEwEX&r>uL5)n#Mm;?KbOId5~F143Ditq=qd| zIP~)ukB-hWeq%d6*R$)o-ORi%J>2G*XOGb`%ZJqMg}7si_fN`;MvQ5SAzvjh87QRH zT-6v(6hH|;Du^FZKq^87#mBWqj>geePg*TRVaAH0++PR_HDSQ6G*NY7%DE2o2xWz* z#Ulr8ToJjqmE|hC_f4g>)q8F`Yb!dM4y!%+>2{qK{pE&#?V{b+X?1CP0j36$vk$F1 z^U_|6dVY-m0NYW`zicpqW!x>9OzSH@bxWQzwmMd-=}~V~BR^0V4yX zmwo`T^YHY?nU9zH>;C{tCJu4K%XN*~3U*Z2=%rKV;pv6){{UUCpDQ9ep78BI=SYbk z!as>F{vMdr^6y>$0L6Z<#ZFIB_-kvX?ebs`f+-Da&|nsSb+_qvo>l9w>686YUSCzX zqX&cLBt3#Ee<+1NcZaX&c^LUWti1b^-~5mtS2iI}F2?Ej<50m&KZKL2m-OWAJekyX z=Y;xy0RFf3rr>tVmdQ^G3z>=fRJ~lBEUnKa?*9PtVW+aAKB?|gyG4e>Bi?ckFLCd| zjamKGys@s+%3C;1cQ>S->GsigB=tha?;z*LPI(xAEbO~l>IHssqqbM6|b?YQ>MY= z<>wBn_F?t@D<9Q=4~4pnGdzAvrFA~4Eo0Md&c}_Pn>yP$<3G~5xB7j=87G=H$cd#Y z;^$Y}Qda&>6S3jt<{rB)dzb3`8z%7%DFH5S*KerjR#))VPnV44BN=$lSC>7^nI_Az zI*mJZwFUrrOv~t3yFCt5#CnPU08>BrRSCFf5|jY#rrv`pH&5UpV(nph$ntUV-nSlG zxhYTS*9@0W{hlMC{{WkN*?PV30S%-wcBuU~A4KdT-Z9bc4?j?X$ueic7w zwf!!?`Bz=1=AZ3|XY{X!$SBySi1xB)embdoJ-*1^9&PJqJB|MUOHX&`&eB|Dv)pbV zlk5^0;5#t^uKL$I&|%qZdkwET?()xX9H+nesK@E2HiR}fIRztWt4EnQq4rd){?l@B znY^p!j)N{aY;pEtvHLgb#gjDKZlZQH5C@tG$NvCm-^R6$&i+5ES3mowgKph(+V0=- z{{Z;ZLeth()cnafd@g(k@n*G-9Y>}vTmA=sO!_iG^M13%iHXu_#+o2?X^%n@{^oiQ zmEc)$)=z#=qts4ywOlp3-qhDI*$*wylk9LWYL}_q!}DU-{x#wKMmqHSpIpo8;aiQr z)(xsjTHCt`t;gGQT-ho8?}f{zJ$4tL2ZO)lz3DZ>JaYES9VR-8Fo4#J_aObygvr5`q@0%R&5yQA!$n%J6WnnZv^|_umwc%&s-9|H9w)2zx zwYG#bwyiZCqY$+4?9-ZH6jXqAAlGtR`8NH6{`NNNd{DTsXW~8(ebrdp%e#%fr=8)u z6L+Y?3(D7k^oGIj-0!as!wfBqAKyso{symK&|}8e*7>h`O{_5V<*(4{MSCa0uqp$B ztW(6ys+5Uz)KNy!kSd^35F8a4Q5i%5%>*c@oWhEXv;+!U+<{(O8+ADM0p6PEl4>k2 zdn)d|5-mpN<3-X|9t)HDHN>~69dQh9+izat=S^>mO>?9~=oL8NwXda{9Qxyf`kBE% zyxH&M`Bq7;Pn9o{DgZH(5-{F`oRYkV)ew5wfEXiK7g zAH^#=Xu8Ky?d(P@H#m&)8VhMpl`my9zKUwpk57+Jat?dz!KVg?y8aL3NQ~Ep z`?Yz0virCg{{Y$z?*9OoV#I0Kw8j+}Df@_ls1yOt1Gxe|SlZG_#Wfnc?bVTj3#vvz zp=VaKP#d`N z-Lw>=ifU-A{k|t+38z4=riJ}m7#&sB1LP@_sG6E9KFRJlx}C|Xp568$tr+9gMH=Bwy{dtl1wgVh zTL@8gQZTuauvZ!#N4BXIB=2ld)cp%mF>6~j%imVF3gJ+?NW+_RApP5)ZF^omTs})E zYDb9cejmYJtE>38vBCNef=RLAx$gGf_4+tRQ*E|29Wq|eSHLG_ySr4>(P5C9EY_iB zb7NsHz$+59GS4jT4IUVW!rtEUx=6!eW41n_?;gOV$kDZq$WyTNJ&T>K#Ddt;kEgLq zRv?-^3~?E>RYsH;befL2q*~g+Cbj@`T8vR}p;}~HL5f;NYx-7H!QoM_z8)~))ow9K z1fjAt^;MSj?h->A^JyTGxn&)&O4H#{YY9~Vy8?)buc)Hi37{2nl+kju6j^PRL6uMw zl@V3ut4=*~D=kHL5P~OAswv#q>uG#r#4#;FNslqO55kJS41nYGg;}X;RYp^_5rVbu zK^4TIj3nVjsFk9*xid-JGF>EdwG$ZUH~=eCK&vlBx7diI0Q_0I+OcbLH}=f(;=pFH zTg4`aJ2e!+m>@b&Vgsav3wjqBo%k9*4t{^E-&XaWG&PiPz#;*S}W9*jQ1uO z+j|~gMbc%|ZsWI)YnS?GG}k=Q_YxY(BvZ*D%NLM;8ufi1R_^QVeb<>Vm~>s)%3Ncy zR4;D)6DGU=R1|;)pXh?k&YM&zFHdlvRgTvLeI+jkO})Icx??TAt}Qk9H{w<(xMbEs;a~5aK)Ges?M~OR z+VY26mE$qSf1B`XX7#6UF4JwbPbnkAsq7U##_B7L@fpw=Q21%d1tKDQ7&Chx@jFT+3+cce_8CeEq;TItJZ6$ z=#u!t8fmP{69K1Dp@qe3yVTy;$L{Gs5WR-o*%iH-iV{7jXR(O8jtkGkr7R)it-2_5(BM z6}=wcpuTPEy*U2>wk${K*9%~$$ZDviT_lA56=zGeKTLAV%^h|9e^gk5f^f)9TeZaE ze=k%20F+AJI~YzC?a36CR084=02Dz0`;`m;YG_(lNzf|IsKr%HL<*d}%85iQc3==YMO4*gvyuzW zIkIjM=)JLqVOrF%2Uqw)g=Z{gT;{Jcrtu!5V(Yh_So_+O=}!=Sbi*?>W8s<99>8k6 zYtijq$GFGMoowfEzv)z;(cPKRxLe)M$tX-^`dll}I{|`Tk8a1Ax91J*XL}5E?bBAF zybqr357o8YYXDT6d5bI8;C&Yx)9zzF8up*}-w*00o3s7c>-EKFa(;cW-xGf<<--R< za@|q8EQrJSrFi#udke+dcxOS>?f(F7W2dJc7x?zK7M`$O4Gp^6<9P@4u8HNOj^>bY zuX^b`LiWe6-SULz>G zqtOtW z_S_9_h_qcq(A+2uOPhemEcaX0yY)MEz1=+`+V>mygg2KraJqO}3qxE4&7~cP$r*V+ zyH(4N72XLLey|lE{?5gSuEFyzr*fekcIx*PpvPU;stR`(bq0sK1r{{dlZyLP zX;HGfSno(xkshiQrUY5D;&9bYoe@$p(w}4mMDg3Trl%5yqV_am6088wF+fEEAs#`& z2#T1Zil|ZnP;0OM0G$AI9TBK70%Q7u3^l2$1gRpO6+-A8h%kVG3vtN+r8;1!T#yk% z?Ntq4g;r>SpkQcg(E|q_h#OX2p#juT7R)O{flUPMbwYy_QNaSq@RGF>t2B*AxoMQ% zQIbF!Is!^VM#-!JfulNNS32n?h}<-qg%yF?h6<%MYJecXf(g96R5-X|DS=H5TDz$o zEVKroVT$XFV$(qYt~sMFamFKl>FTZJ(ecM@>7A;W0Kw%kdY!x9>TUEtMe!**e+b78 zS1FIz@mE`HKrdwc^($IBsHZFer1Tl0wKr~(;!zY})9q96E||I6+1PCjj0e0`{Rd)~ zB1X<*veq3ic#zExp4UXk01nRXeqH z(?z5gJ)^w155ly}+sg8l2hZ4(r{6@)0fdj_ts5m)o~L=D^m84#+t%(`rVK3aHl!sG96_wvZRxeSv zIoS3)K3(f~FAcjt&B5kwePGz*aq=v#WfzHII`VG$ zC(*nA01xwDwe^#a$l%+HTbMD#jS@HhNw3tp3Z$&D|OiZnU}LDvuV#beZ@5Hu(8f0HL?=JU+;ijK5jmjiMi$e zw+?$*UuPEf(|Fot#w+W22187&KaDms~&m88b~{}wMS#? zlF!b=(;iIl9=87g($DBA^%I5x{&a}{00&dD_648ZZTe%R^50hhyRlfBzhq07p z+vRmC-zqne?5P1`F0XEOyq%vbb=h;qW9`a3^q#ZvFi2}IoZHSRlO79{cM3%yAZ3M*x)3uXG`# zRFDgUi?oW4#F_OLepwp69pJcIu6Hdz#rAqo%X#Z7ZcIh56(Ocp#}AY{^;0i$nSSS8 zIDO8OXTbZN?}yp0TKx@f?|JJZjYGql9iXxX#Bv`NBQEvRPNs3-@bI1qZj;-tS0x)* zJz$=o%Op6oRzVYU>L}BI>X^=|_Q=-d@LW4FzRiCY<7wMHWp(3Y6E{m*X>ji=%BbjF zq?-Gcv#FdljANI9_bzsJ^7ys-HF_H;{bVvdlm|%o+#wA=!9Bj^pZ?7BI%SW6X)pf( zm)6`r`rn2&wCH}JoNbBZduTIL{{XT67BIuXa=bWuZc!1t^?A<>@+E7IAc*1(r?lX) z-s(LL)2HxhHP;{aRl#-Z1VpsjvRY=~$VfPMI4w-Nk3@L?03*S&PseM;nhQIu>1M$jB&K51@~k*<+~v#QVfD-+8-HoAQ7 zKj}dasl2A{vDxhme4td8GFd3m)`4dpuRC<^yJh8`lW&fDmrq^BJijHl<(q{605QBn zIAcBrd2VbhsQVyQppoxhA5rr%y5%m9d*Rz%F3vsOn~&4Ry)UHOHtQDWHsdX`qq1}c zHcKEa)Z*YqfN>)XO7c1#yry02I6WVly1lElHs)IA-q%U@x|7}-JXlvH?Dc#eiuad3 zRkPksnheU7agP~uaQWpp_(`v~6_-Xu6-Ww;vBn#T%~on)?!{SQ#1UKwp+41O%ca%D z-NC&<+II=AcE&t7z1l74C%{1kfHF2BQ ztd{M@)_DLRR!AawulKYoQ$DJ8JY2dj1kV0!C$lRUc^|AZxCU9w!sFo#wPQvYW z$o~LIcQj2owp)fU_I-d;<#ji=>rA{u!8Wf9alXtg`&O;JA>FS-rVobb3?5dB#j-4!V#%be#C)yBA$-gLWj^vA8-^DkYMzudE5MxRq@ zVaK*TzGuy4VFk3Zd~!z{K|b}@95I(!9>1vZE~9%Hj^^fBN$IP;LK z?Lf_WARna&&2&Hu`_N#J^+0tXI*CBdss8E-14mU;QPwg6G)+=6t_PwhvOGxFS(_M6$nTeob$N5#$+owG7$Ia3utyAS z4URU72DD%R3#^Y{xw)2kT(Y{_kYP$A1`j~M)d3YmGfD+>N77WS5Q9||F!rj9q5=Y_ z4hktv5JuvJRGsxIG=Z(F!a}U7$+1-lAi-HuqsFU9W;+p7MbLa0f5R0OVTTnOj&tkv z2Ly|==ivTCidBwx_h*9K!xKVeW)-TaVm;Z#$=vHbifaAQKXD!hJbNZ2_-W{ zLt2_54JwA9;f^Q}o}GvRB8r5=QVa@|XpD#oh5%JW9PmI%=z)Q#ss)f@9I8`AH3bf7 zp{mOrsbciWz8ChV_T>KYVzYooN3;@S3y2JtMB~ZY}wkwOZ0lQb#@k!Tqt|O z_HTpk-$9;WVDZStb@4b4!d7co?d5q(ea%+k$aX7m*4*w^(6sz5bgilHAXf#SnT+RS z%i8eHr+4yg=Y7>$9&y4gL2=w!EA#ymUh-?~3!YtG-2G2GYs)=$U-b0$*%9A*v&HS4 z8*It%YwuiBiry^l@g?yotncN{&ue#WAISGO76r)$}Z+)V+I&Uvr0 zHvTooF23Fv<6h5i$(vYBcXxh`C)y`}^=EOk^Q|`VY}U9mhQ+2wSEy{KAgtZ$GMq8d zXNLGT#(muL?|X9LKiXM#?^&+nYh839YlTngB8ZOSTGD=nW*tYSEb4p@YU?rYd$PZ3 zynGAP%Yc4obwLlCSbkltf6Xv{x!a%G&;DJ~Ps_7^;ZU2>9q19GcVnADT|z;L_^CpArRXy3$uaYW$8Od7z0Ho_ z=-uqhKQ+9E3IRsO=O6h_TgSug=aV`4({CTkwe`=y*B*`8+d(Y1JHUyI0EtXZYg#($ zE^>d{XZ2RF^PYL-F~etDdo|EW}bo2n*B~){{Zci`o5>6{{YRf?b^TY{z}&#j6cl+ z+jJT$;xa^PJ(^10@X6VemL7J;Pm6Br>aCXD=(XSuG48SXWPo+VYAD=kM}AW0pN3EB zcG~l{-j`jgueL5+dM|mTc^j;CpwuLZ)CQg^5PpT6yf^$#xOv}iUyExmb%>ehz5f8s zH_Y7P7P^L_*xlx7>q?z9S^ogGas1pDFFS2_cx~n1_RT*OuJl>nY=G{cqM-6=AB$IA zVzj5RcAguLro4Q-?T(ZCe0zBPhO_io7{AK5XL-2)05uTN-SHZ$JUVH|D#quX`1~7O zJ$Z5ZlH2+xFk{R2NW=dC=8Iu8r|+uoz_ENbe^a&dzC1MB%TC{jlX@+=okhEx4T0w2~tG~T?r_{6m0B+0E9VeYSZrn5akV)w` zD~R|Fw7^z`N?Lx0HE;gkeJ`H0{=&Jm;aRjj8n;O02uGO2J{oiNY zkB#nu&loq#XvecW6X)OQ$;$W!Jb(KeKT2y(Pq~>|*Kys#HoBF05YPf?Q{xL$cK-lQ zUsJ{0@U5vhbsJax--FV_E2M}>=*(p1*BnRCyoaXT!eexoR=;q%lA1xl;5%02amuMO zH#x&dB%X^}u-jSe(md*xjTOtS7Ij@4Ju%xx$l@7-N%yJDUfZN&%|6(~gt298zyV>i zgbV@)7z7Ia2jXZwl>n&J%FaO93B&C6Buc>MgM&c!3L$O0*y%8#74ATuZ3bS%5X&eP zCZ$D<7XJWuB#mvTBU9*H(e_$1$EwY57}S=vm}Cc36UC*Xqcha@Dv4U^B7Q3D_qKx%*!R8rLdBNbV!3Zlyn3Ms0hvrz~zI20MF6e^%n z>Z%2BK&Lc7sX#%+P+I&5@2ZrHE=3Sg3=l9t%_6i_4^kCD73zW7z~aMb}L1PDTkLz*ZNiXe=zRSM)%NZ`>@ zp%q^>P6{=mGSem$_ojxXjv&F>Rgo<L}N(~9o>zpMoZ{{XYG2Vydgs3MZ-tr`7jHP;)P zs&t$?lwBJ6E+vrA8r2k{+0J)}mv;n3+iL(QTmS>7UwXP4uQ9A<4a2!qJw-e6L=99y z8{TV06&WQ098f920MtSS)M|hi9FQxIS|Gqc1pAeR2-&7RAa|c>Ky;3(Dkp)83X%fH zSG5%*Dnh7N0*F#DsrRCg*P;OC6N;fwFsjlG4HQOVJ&1x3Hbnu{a;gk%Nui|`2>9ue zL^M*lnD?tuuw$C`f)+GtRd>hdUa(fIh!T4>W%Vsi5id3NGz^wj9Y&eg6c}#gPWCzLrydiZ(!Up?yoj`F z-J)syk>?s7>_Sfu&-%XCJLfK&{{W9K_*PlyPVqRc*6|jRpXlUyr&?-oSN`35a%TD0 zW`13)zL^{Cx6r;b8w2jH?k*(4x-`PjdjJ5Rt#re~w&y!**YEk)sJGz59A~du+}e6g z!!4ZG8)+vk$V)5S53~ve*B*;%c03K=Hg(y}JJ{pw#y0kRLyXwa+ijNYEy=}!&iY+a zyJNM6JfwQv{{R^3_kT9#ci*Sj*|I3({%wtC@IW7dbb9=5nA`DR~D9djBhP=VMf(2xfb8CTRQIgO)>m2#y&Y8(Tp8QOO%}6XGPF%bz75f zZgK6sl6q^!TUc(~`s!=l!he_At>n=Kq<;>q3xUf~r954^QE}71uDqXPzrV5J7|b^3 zdv__V%KrcyJ&$*^@!gwjjf}RoZl)TxSB+1p{qbF~#!gR=>ikoGe%qd0FJ$2xaJKcz z*H{_?wHU2&Bs>MSD|uwy5Hx$ww61wKigIeO+%9ho9@FeaplV9nn8#3Y?ZTaiEV6(p zRs*E%S!kN-P!L8-NM!-f4yYDZmoeDl+*%Gq)2djqsx{3m4g!_UW;B=+pj4`qu5lEh zM9{(7+Hvbc?n6X407-5gsTCa3w8ZTzShJH?ebQCw^nvchyq86X4R2(&k?s* zU{Gtt+aAyWtc@-X_7Yq_3f_$B+U(Ynyo;BeENMCi<$rN!D!9hzXFoi~DJy8+5p(+!ru&_QPnz+;8?Dbv=hC- zy}hWZZD%iywK$9qxoR_F>oG)2h$^xos-ci#qa1Kjkcud(gG2-%%vBhm!~mj}r3Mp< ztkDQ1Yp4-NQVb4IVRjV=p^s`KE82?6pvv?>s4$d3KnGL~1v5ZER5AvwFhrmU1yo8O zjZjL=R1&s`scNEuHBnJKQAI{dDkl(#jJXud9eOJxHi;`tf~X)>1dMGBX@^uq&5Tt= zOxVy$#)K0wr58kv9X_=cAQ<3*hG-i=C=P?s1_<#~IBhy0Is$>Tv~)md5M~{S2&ZBL zQ~>}Z1X32_qLzpNKJ`(La05}uDMr3YjIX15V-YJ$A%t4Ro`V{MYmVbug~sX$v?1raH|ilEmp zfPvbGG&DhimB|BT(Gb8^wF-zx(&`_jRHwI@?Qv^OH3RPNOAS};+R)KVC@8a5ECGUz z8jCFjaivv2G^f1+k}9eKA=^&A^c8n2p&VWxh=K(@m@6i!Ye{Djc@8<1+POyZ+8&hl zE_Jxs+u9T2qRUJ1T7U=OQC3+111cz|$Pg52B4t`?GCdT9NvP7QvK7XN6xTFT(x@=B zWK}?>IbeZgZAWUAV_$i0BxVAVG-uirYB?+|JlC1XWiI_kv^zs1uAOhK3B&S;`WK6h z`I+D8$L)Q_SN_$}O+WpO->d%sPqow_f*W{Q1QE74m?+jXPzB|_D|dG-%&u8oZ8;@Y z4%g6Ph!-rYLxxmZ#<7xvnORx}bzLK!Y~47Gx?78vD_vw(bh5nSVrItY5?p9I7Gp;ZXv8XvpeQgD z4iOoF%~4(O=oA=*jU5cu_-d*V%|s&unCBX5X~*7?YYTxC$kz~6jMBc?y@WF|GAh6# zwHDx1evpihMXg!WMCNw2qP=@FDWV|UuKc@dkBInm*QpA~ma~s-#(hqg;rN~H$y~0C z<28DghP9wK28z)B1y22_kfp{g7(_o%Xz*B134)96uAmiRy&00<*+ z3ZZZa0eMvvH#}k_inpr9P2%%2=0Ft+Hj2ird2dRq43gb)t&+odwb|}wExx*@hK7>X z>cN`b(^o}|w{gcQFFNz~JR_*x*vo$z{k(mCj(U3=x-QRF%JcbIbvZaB*$ zJ2i{BOC0=Y#xzyVA)u4&Tz9vz+ml|`yYO!Y%dPL}bnZ{4-ch@P;wy+FxPjW?m7(#x zb!&w|TgJ;Zk5Rj~mKj`f;gq^mp=r!j1qM_o0t_euD=46r4GSGfJjkD{-{I`a0)bq z#FPPyB&wAsa?=c=sLtdL#*{?OZ-$7eSUMoE*7hhRYY}ux(4cTAiXb2%MG$_aQiygc zqDJA5L=VwL7>^w{M!x#N$wn@=Yt<&hBQaj6Vv zqb6(J*Dw}4*UbR31Z=zVWO1WJ?JNZU00{VgwK3nrE>+|2_!m{THMr|NTwaB*YnmL_2Q=hCsQNff*w7{ z0igt_r47s~Bl4OYd$3T{u8*-*Mn)Kn5GigQs1UagVg)#4sR}d21dSC{nsC$vwFV*u zLI!BUsE2EM1wfV^Y@o~}q8Q_&>)5o)^lk$+gGy43s@T)7+NW-5>nKS=HG9whLu^ZM(#UsDTi{yN!u755lmVr zqN6QQNal*7GX+AHkbn|^3{^^C#71aEVPT?!&U2l}?L2bw?VtO>XO(YE%#vU!?9FrB z%e#%Qao~Ly?mDb6zn5KavNU`*iMMCt*3$+NdvXQE=ryTxhFJCmoveGfyq__6h3a~o zr2LqCIK3+wsi5}ayFCj$zLZ2%xw~X;^4p0SfSRm}O>>`Q+%a*_v1=AGM;t9@i#K+y zTFi`aSab%mr3#cs+^Z~f1d7oS1EP31g`gP6H0n5ZB51Q~dmxp~HFS7;K~qCsEt4D^ zD^-?_q#(^bhz>PX2L%;|hXSIptN!jD^ z->d9zXLNJG*&}#-WCGb5K?EF#J&VZ3y&mQl8)ceU*1BTDt0DmnC#Pv$994{Nm5p=G z6)p|zu3u89^}Ai5x3i2Nj!zT+0C958@pZy*UJVN^0c}wj8iA+~1YHY=#;UVS9Mhg^ zXtI>E1YJ>>&$Sg3np6=N0IsHuX6bngpnPq2=_%o+IQA8qvS`!CYWHa_X=ry+ioF)z z*zuB%am1X487)YfxSsocZ@GGi>xM`Tx6eYxNb^SNiOp_fAy$>>`kdxl{`mcGpy~42 z@Y#i*7t6}&JvLhI#kiU;eEfuuZVELB*OuX!Q&Pl&ge@}WKDV%&ZKUKi%q#uqUbn>m z03`Ol`^eYg-S%Vl*Sg~v@!hb{Hny>NMnk|otIX-|_VM;UN5y~rtX^pzT5 zX+#j!Luo)mPy)C209~ zD7M%(*GW+O=|L8d9Lv8bkI8RU&wF-ZHSK#(3GmFit<66~{MYXG)~|`|e4grfcdhpR zO+}xewHQ^7$HoO3+V*C%u`|>%N0In7Mm;U%*SBaN@XN=>A*!oN}>HJd;?q3G{?fyB>S2w-ccgqdx z#h2DnYKhnuoF3N<+TqZzFK=>ZHIJ0*IxWthbGe-3^;P0WRnf zRjvhNbDla-DO!NSSisZJW{ELBI@Nk|2%Dy8!$FrOvmk~a|G0n4Qw zf;Al84_B}Djl|e<4XM^lrDMH-7Y71p)8*CLvd2L*>`N?a<1Z&e+Bco2d$4Wx*K-}^ zq=N^>YeV@i8MOBmWpm3N6N>6JTXR{D2Gg}giQ82b%|7sM{{XmAf3zU}M2ahw{n;P? z0CqQO3jYAw82YzAcfk8mp&<#~Z z4y8aT)Sv`a24D&dIfOtXF62^{V~z+jK+dY816zs%LF@<#0RlOrpixn|rl_TOsKjD{ z3l#|Hjd1s%jnR>jqG}>|r+TXL{-*A)+V~dlcNKim5RM|!L2KlDSRYp7;jLB1rCs#v ze!JgzR@J&*5N@W3iQL?r_}o}s++C)nXBw6_lHM_{(A-_uxo$>nC!F(*RnZJ2C)gAc z#`D!tBV1}!61CuUP+$!vrh>VuXniB0#SIf$Nano8^Gqt<{?#cH$ty=%_blk$s_&dr z0=1(k{PyJ7^;`3A|bP`V>LbKJM1fpr?%j^JvzZ*j91+Ie?o?R4AS zPj7bPkKXp~hztP3qU`wXRG$Zw@&~|ir(zLK>Q@2b>7RNlM=Z6vd+VEuk)??_X2rJ) zdriXSu+MVu(1Hy!rCff23>LMR3J!>r18G z6a}rI?JCHYm^iA5SyI$kZ6M|5VJSFtP-CQJF*HpTqvgD|&yH;-_E_I=_c%pu z6DT!EK_gK)0Zdmt?b)}Ewe373!t(2PzFfW8INR#{T+3~?86Zxz3bRkHp+#VKL>2EQY;if= zX@OF;9$M>lo@a=IsB1@4C7D~%YTDK@PYp@xRA!_h9 zE7s{?7?|TYIsW{bynd^GZQ=ea$@Jb?@Q>W@e9Y(eu=?`spM7yi<7;J%5#bMLBf6n{ z`}HiYvc8#M8XHWgC_T&SWAJ?W(#q4P43tQ&C_*WF|8 zy_H_O#J?o=zVpb_41JG|@e6NJxo`F5_O>8Z zb$DQML5ML1AjBAeV1p213_ws~0)W>AK^av6(~6211wy&lBQ}+w6;Uj0!m3q<(xXhG zAb^0Nzz`ZBH0{Y$2AaFDDv6p1b|FDEYNJt=0Ahn*EWTsO`W9O>QI}(oRTJRRK((Vb zkd;|uMM?=;)dPlv5;ce=Yb((N(Xe(Pvet?yrwv6KAizOTVklsUit_FoOG&P#A+bQm zNcVOIimR@Un_F3KXE4W}S4TPGyKJ1lf4JZGKz>dKfp2b2T1dsL{tE^tw662 zn|S!AM>78atB?NgN4?eq!+>x#1XLd4y`$i4(&<@Hh{~!klmHNbSG_<<1*9Bmixp&J zqZ*rwN5tOGV#`O4juja#MrrDO%AkzZL2v+6;1p?H#GGkLthCo}e0OHwY@cPjT1Rzk z{MzwC4{KZ~=AUA+rE_cVN4MRJa&GIwH%TCK0RI3ZkQ z8D;2D5iGR$jaAW1*(RW!v9o7^p0F7BEf;MNx71aHzs zOs}Vgxh+UN9?kmR=WDf=`Y|2j;%T`JsAzc}AS>Rowl)mgq<8ago1LxEh^}1M7rqyRq)6j|b4zJj)UI;z(Y&U-UAEI>a}K#kuVDOY+RlxO zEn{m7XgiiGP^K9fg-LHra#2Gby*`z71b}g`xezFd8U<7tqXj~FedsgGBNPC$9`pl6 zN(_!t)1mo&mwqHPSOuhx!iexZOuu#J`{wNGm@S?1u!mznDN1&HHC*wU1&$+5J%a`9x;(YokIsC{voPy(l4&lN>5oJ^mz4B1 zilK&RByI?ee-=D;AeaBajAwpfA5*cOm! zj!s;9jgOg!cU>O)%YG$?OVoF>{JCSL`&*5ZZL`@ndu_e|8ps#}oIcaeFLCyj*K2NJ zjK)1*i1oR3JK1jK`mfPDB3W+VAkh%S;a=s|M}w=8hHCYR!qfuR&i6=KNfc~8GlzQh zcmDv|;rwuZk-Njd=YRSq{_YOBwA%@dUyi32p8n6Fduv~sN2IrlLz)I1iZ5ACN z9#m0jNR@{*Pzot%pi+B~U~p9c5&Nox^q|&m^5}&2(PJj@c{m#8&Kyo=rDiu?lHH^* z6M;P!NatFvQ_A-4J7eeEpEBY~i(6oPQaFAFj-_+n-p6ihUeCgOCv&ab?&HH5`LgtX zKSP4=JI(g#yGeg`<0Zt$5Heus)((Jl3()TFWx1BM`qxR)ZS?z7ZwaP2{{R}_T78Dw z=XZ+>Y%49qO*P7z!7Ceh>y)0etljy0Ip^rZFR}D^V@?#OV)|#|An1hnZ8Ff(A z3*hYf5nQL&79THZZ+z$KXkNR-ufvbE_ufaJ^Kbcn_q^jykn!!Y^))uJXZ!%X&Yu4O zZy#gh{8Jq|oyq<@zSh`E@zHj8BjzG#A?OaY2T~(7AkAIKFcbv_AjAa$L75=RlnfOF zVxcKrnxP4)Rg*Qigcceo(6ZcO3`AlKL4Y7A3#dgq6^H?(l~FTYr#wMXQUg&@i0)BP zUCpJM8fxc#K}yt$u`s#7BCZbuXtg62qjSw@6=jSFC2I}}30lNdp@0jF!R_b(T#&gn6n@_k>H`e~1Q zsL%4@IDPMBv28HzTV1_`AO=9d9O3qzo1O0~%EJkcGDpt!y;fWMxo%(8_I58xBN)=+ z;2O|NiO2zoRpVogw@Bu@m#AEabKIY6#qEr+L}+C4{Kr4{*!WlvO0NfVsLI_o_`b`h z@E)IMZ@txJrdQXdpNnt9x!n7;?3-5UY%RAafgp;8yG9NLuEnkkdmTl}_i~zK_5Ls5 znCxLUcCznn->Y6;*!Bg>%6#bykY=PD_tic-xZl3c{>B$fB4m-=hM$F_#vMa|8P#}w zX3km3aeaT5JVS48Ww)K~>t&x~(eQoIyN4FAm=a#d#4?g~s(+4iN9t~Wv2eO|iT_Y<^pdmq(zF|$|BwXe|e(y_EZ7k>4` zDW#2RFC;#^Us_-KX=i9kR3v zpc8a;a4@jBTs793}&+r#iaCI9OCO5!rVQ|E~#4+94Mt-Px6d8 zsHbg&bxlN~!ZDCdM2)eC^s0hZSVc@l0u2u%-Q%>lZqv0}i~ag=3u7nrHq3F;=UkES zv~+J&Sle-)C1xm5aw~lBImS<+_bOR=ifi+!Q(PkWSsZkO(#lsK*J?JDb z%}pVM5}+;GgNE8 z$+qr4b-Bp{U~cAP7Q%!%(M70hHTxk(+L>VLkQY>Q@KS(_(gJ2NMabE zUm*RI5zvE24|)UTsxUL?L=zZADPjdJ2qBgtO+t#(a=qS7mycdwwuVTUe3qWCcZGxL zDrJ_FSF!M(kM})J8-14X_D*ddr6JJqku1$EmhO3FbB<@lq*v%%_CG7y`LlPu)%RyC zF_Z6mdV(;;c6`FE>|@A~*CA4+YZs2bxDM27muk#(jyKOab;jd-{hq@+VLqp+-M714w8Y1Ug%BVE+Iqrg@@$U#C%M^2@wk*{h;h*lgT~Vcuc$cAdiB`Z@;_1dVwB<*A_5 zd%|kB8rk$jav!{%`=jGqO^kDBn&$M#8SsZTD9$>v8cV{|@WXQOOPwUZVj+h&RQRa5P7&Lm7h>D(?(Hm@9pvq}oK(H+V2&|gvl|D( z*5nZ{6PcrNEPJTe15xbBB}*9DC8vij(}Jw%4t&I7N7jJ}n>^6bqK}yE@8siRY^;2* zjFw2p0tBrmTu%M~-o|Gz?XPo}g6~d~_ZC?t<$tHMDfhhq)>l`iJ8RmhsoikK z3Rb0A8MOnh+x^>+PEf9X!!J;l}j?JEnNH|V31nZ3@}DF?E&3)c94H!QN;y|1+Mr&W$P zZS?rxU7o4K7iQaR+{TP3O7?cYKaIpO0YY&jC6<#rC6=NmQDvYN1z44$=6t92cWY(a zAo+=j5nQ;@I4Jt=axOzSZ|cKwX{zC~_!*0SFkX zj6s0`rU)?LgEb%_$Ot76)j&X0WeS4;B>|`%P!Ba!DRoU11)&77w3CKuNSuY1%5y{t zlmi^m1qK38VX6!jR4{Y;l>;^6xcw@IY0~XTyk&xs{a6zT%Ax`yt2~@VnrKI;Ir_r4{G=KE?tv^eSeJQ zI$o0wn;v;{`~I5fW<%En<-R$lgOJ$rZ~)Ik>hn;R_6Y9JnpsNH}*>7LkN5D)(}UaU0eLT%X0WKh zQ3RC$)ru=McB+i1Q9xo)DUf-kmFZFK>b0Xf@fs3ps#MggD6?9K%T#DEKt0GZrvyW5 z6r!T0<+W{loF6Z^+C_N}{T$3|!1h-!a=N3M`tN0FxB6*kV`&(M(%SagC?XXhtZZ_C zF~4oy)*xd1>3MJ)z@N&`{V06*~}0t^TkR~11OP%!F>is9~x-dS41Bco%U zBW`Xj1nC{-ipj*)@|O3#^FLB~3+*6|S>~(VZML=Hk;2xTMI2b#x2er7YAW)NPOdnu zpqG2x?OD1^0k+z0$(mzRLS=9bYZ?V{>T*pIyyqR=KU4Azw{?;sEOxgM&SQIZ2Q`nz zfYPT7JJxJTc)rM*Xl`v`xQNy%+SwyLOI|e(sIHjSb6062!WP`tBLrekxdpiCK}>sA zYOTcIdWv1r@8ovdi@?^rz{2v^63}Vv1gj>r)yi*v@*8!H+?La9lF0auml);^I)TJ# zdjSerqRNo{=D65&s2?qrn6V`&tr zU}y!yrZi1byq6L6dy{M%gRV?4Uqw6h-!@jCI&+vVnx)lkd_6mqx|+VE;k=t}ACTMHJm}udFIUcG?(|*{x(Ga)Smb-O~_t$Uo?QPg(mGr3%9e`#4CqdZ0 zRg+P|d4H*VhmdZcDYL%n+isMI?I5@CNiA?C<+X7yt^ub6wW$?$zgPLk5t8F)-y%11 zx*b+g-5=9i$njXjhvF^9rLM(IG)tDg)_Q-yx88BRo%4N?Nw(iVRps1{Ep+9hQyUPb zEUg9@1ufO7bbTVo+SawL05zZh1^@wo0ak5m?)MANK6otP(jXO@@?hZ*sI3?PCPPle zWF7~W^A3MwG!EM%pXG&2@=ao6XMoqks5q9EI!{aMyubed*Vx_ato*aPkGJ^I>KSVk5XB5F z(G*P#VC(=;Eyv65Ze^ZVEV$Z`N+ZzMI)&#;0qS$XSmw+5*vl!MGlXm`aMt5NS{e$b zT$c=Oyd#17iRw1rV`S~GZI|Y^YldlaZOC_&KGAc*($^e@D~|SE+(_Z(IXb`e*!8}VHY0oE9}dUhzSmDT=WkOb{Wwp(qv4yZ z{O@<(Cv=iQV)uD-nB;RL7QgdQL`TBeekmQE6kfwu%l18|DBxQr`^D$u;ux&plmiUR zg^zSnHiOJ)H1X*a)mp1Aj#fA;xW4o07d_hdIqp7hYIB@S@DmZ54~AIY!(S711583? zk8E5o7t_}FFGaDpN9a``l)9(dHS)+%2=r8TXuEAqZ@`Cy2*F!-V4P`6d z<-gLE?fnqq7TYfkvc8rkoyT)yZlrmmix}}p*uzS_xXwIXFQM*t3zEi|+kiNi zb_FWq6`*EMIFhVTgL>L7Ze+H%yoOtdjUc_nlw9lF+&#hWby~n0+JUHbC+b{!o}=YSbk*)Wzu?$)w?6(_cVzbc4=>5R zQa4<3-W|XEpK-oph2DZmfuNR<*Jr8yJC}#O*MDwl`LERX-Wla-x7B5q=f$^$_5r9{{X(>pJM6J^u5{M%kw>FnS6Tn8C{*L{i)9X z09E`W-i#Npe1Zv{;7t~z6kz>Y2s4Pa-oI0vG&ph5=$TwSFEwj>c*?&&p zXwxvL(_E<-sc~Mft+cK)mNc0CL&?OS+@Oc*SwoCyjw5V^Rhr6B(R zaR;6C2X1};0294q05ZS@!#}|tMxWl*aq4jIZP@odU+N~;SB1Q?_e}z^ zN&aeP$kE*+Y4}>aZx72{Y>nIMTH=5cR6ryEON{~zUgfwF z$1)>8MGKZ|ay;wYNdRVgDH?6|_&lhw_>Ls4#w}VZqbfqE@!X@-ZI@)YHqC3V?;3wg z3?;OW_)j=jxpCg=u-oUx`X5E%o>}TTtb6zScy?Rc?4Ns=Sn?Q0IgfvPOcw6E`H2{O zMXYuX7-xrK^xryN-v0nDFTdUBGW~_==f#)H?)o*Z{k3lUcIjx#s|ne0ZtMh%H5D0y z)D`b>&Sf>1Sp1i&>34QB?rvjo$$w8=m2es$8hemU3}MT z-ydV-%=GFro}51T-f)8)+(&D34xrc?$9FlN5-|2Iy)D;k7pC#-Eaw zv3GivXT;{3fr135Y5;1g5R!@-u}~7@(E-$Gh&5CwsVEyBh!_%xZB#(P_#isF&_?=| zVo_@E;MrtiX-m57X;DTn+K`22ZYKoPi5aY2$NYH`8 zDf0*g4O9mqL{I?H5rnh^SC92We16}?B#IyBubwTz>!giO`h^z`t8=-xZ@Kh7TIlBY zQ!V9$*YIpOX4cKOjoCs$Y_c#-I3kD4kZLu{*quHd+#|#Bo~!3|Io`>1p2*!eh283l zQ~;8LoNG7!uhq45b`fGgz!pbLPw<|-edE-7BkeT#UJb{dckRD~bWKHj2gR_H+JI}P zR2W=3s|SVjt<5lRPiZ*cI8f(6Ft5_QUYhH2{{S=VJlC&#YJdJWx-K5lyqC#{aO$cC zuuwL%16FD)1F%F9MM2bp0@^=Uerrr8Yw#7sSL#DmoHXHx?OCnFXR$_#LIfa$KtNSN zLCik!ANU3@_JkkEl?O2UvJd;OyPD;=5B{BsH65Fx1t%O(Da8<^1Pg+r5GfTsh#HC^ zNa;+~RCGWnfK-2V5DK6KMm5MAQi{ri7)~ewC;e(@V#-?wgC1*MI%Ep4H)k&#CmLs}ZyNdpY?`qujx zyxpf_jnQ$fo)O4>7lTHN4(( z8Mby`KwV@S+v}FK$4svO0Gf%Wj*-;J;5~s$G-`2s+poIxEZSvtrt>V@sA+U8k~T6D zX@ea?;xYSG_bD_uw0v{!>&tF=1h!klnPIlufamTJktmoPgaZtFbyA2vhvA%4ZsNRt z+hnnOq>A5Bbka~hN4>?)bE$?kS7v#tUpDL;zU#H!z3{MG?=|unGn=YNhN99UX$M4<8bQ*fYhDR=uTHsDzaG8hTdlL= z^6n#ShT+b2%iAs@L#qPOs5Il6bJZ_n=nqHtNOukawTS2+XCKN)%G84y@YHnF(hAJ0 zUfeSULC_0>i19b!J(WS`eM088yklk7e@TCPSZtsKRJe*4knGyp{v~G)D)8Qb?5~Pl z({&7zJ9jab?DJYG=a*}cf;%wDW3{WoI~gjl%GCnplBjl?qMJoR1al~&lTTs+r35n2 zcao;7A~PKZIUwh}dg0r@I^6eGM)PSLM&8~-@c0M^9@Cu{Id#id*!ZT`?Yuj0X4&7l zcdYj7Ud_!eH0ZYY^cVJzxwMi7Kg)B6fc|5DqYpivyL&&yn zJ-11JyIiu`2*DsY_}@>n8$KtV;I$a9pD*_-&sBXuwYQDFRf#$+;Bl#n);c;_9Y98> zP!FIcg}S)M-d~U1-EEsj@e5w~EaZ~j;51dN z6Hv9st|hcu{Vcqf5B2wc~zY+Gk3-}yv4M&B#hFUVTK6C-><=8TeA z3!EJKQx1w{l#^R@ciHK;H*)Ubjms}YRo{IzzngHnzu4~WWwMdRXaSryL9fK-gGyj> z#d_`TlPt2iVP=*37e(exyms;1-^V<2oG-(ydA-Ygp={{T_dO}V$z;g(lEc}~gb_Sa3H)Q%erjf?e*W_yhQg^!aS z&j?=5^?P2I!(rvFyD6`8Pi>Ltt*)ZEfwRS{%YH2{Xc3xFYc66?k3ceb+I%Hx+g z>(}fg*p;~9P)f?RX)8y%a^63)Tnl~1@vzQX9wMWh?Ih3>q!r6^sKX1URqT2{2kLs9 zd)s(xkEfT~^1P?iX?FtMmx_6l+)hJeyNRZ>IBAF+eXi)dP5!rEhi{Hm^*#^f%yxgj z)#;8n^2YtSeh*#g&jgELhvzQ{n|7JBd&VLlaV%*$llGm}b?Lfqmo>a{uT|szKYGjD z+u^g1{9e2FM?-)(5vLC2Cc|9!4=Hqde*=6C!wa7g@h|%QbK;qH`YWMroU?b`+#R=Uas_K3|IAJ^2*XWg_;$D|+{zEqn>B9O+ z+9ZkqPm~(*t5ePnbB$MzvC-pxEWRyX&&GV!yWYE76S*R@BSRUn_-iGD5t~@b$eJ`4Ju<0kvxn;k`dv9g8&^ukd*9!Fl z9lkjqCfm3cwXG-Ojzgt{{`xm{S(x38=_lpM*Qw7B6!6=*WShHs-({Tr*+*ex$iU>i zqw{pkA;P2K=%SxZR9Bky9?91nLijV{gf?$;90~fDE%|QVQhFZy%Uj*fw+(+*v+0T+ zl-vn;sDyl0)5zBk;dsaLmygh8uHK%C^1R)(aq9csnPWb#4`f+Y=DuAUpw(YyN-nCe zwKd5EX4v*B70@7w&>qDEWrevSmW1YjhYXM~9T5Z$^+BOPY5_p5dqy?)AYVD8;E0*7 zu4td0AnZtVL-YH0i@+b7#e#JKSeEqe{0B`HVFcDm5wy9O&u}BD6?Vtw6S+YB5nft+05>P*`cf6)Oo)PQrpw^(dzS z1B4GuQB2eY04@PVE8b2>B5|+dMRR{sCO15bVB14Hz~_g)KHYLPw8spAUJqH99C7s5 z+4*Z8=S{u4uAaYSbbvs>WH1ZQd|tdssL?8C6)*8QK0-PL)Ik_}3L zN(7coF+Jas#~+|1Yi?_lp0|ngmWO1$m+eV*@^Giw9eS@9q~k6B02O^to3Hoqo{T>C zxvKJ?Cd#0|M`8vA23HIaWqXh{Q5XuS%_uWS1F=+3Ze2||g)CUdU~w5Nx&~-~LIu-` z4AQC%5OWW_PLaSOC;edu@+Cpbe(cU4vb(i2JBXnF0QPn$)OK?0f&@5}0MJzsw8Jz2 z<&vOORS;-{I-mrE2;dP&>^K>@BfC;&YP z$peq6P*57-nha24pp_JbwMB5hyxz@n==NRZfV$p4GSXrO4Rfg@Dt~=PEp{_`y~hIO z+czcScGB(iic2`7x4N_I3)3c69kSurSz(5Cfzo>UDIv4+pfl|YsjArpl7Axg(WMAaQ%zaJ{!rMvJ-J{ zvEEOh-`iUJ*q6)kHPM4#EV-T%v!Rn3Zgri{EKO3(CIv;IsRKQbF_-l zz2zhyFK_(V^Bzpwi~FYS(YgLbxs*H0wu4cws#hI96$T|r)OTJb%KbUBv9#HCjqcJ- z05Ue217wm%3X<(XwR^v~qS7UP34!fFgjE!j3Mwfu804iQ zl#cOKsMAl&cXPJ!%e%H?E{ze6_xO84Tcp+O{2QeC{Z<%WTI+qt_>R=ww~yM}xK?Q! z=Uh9sNijb_pi>E?UmEK^e^ZuUrhGHm8+tWsN2()+7$DQ~7@a23bjFQDfa-e)D>gNc zH;lHXstkfhTJ-xpbl_J=Oa;q zOQFtdU2{8(&W)oo){^HRq%JviyK}YW?D=P`&hf{)?XRZ&Kj8dZj_pufZ0z&qx`n1) z&P-;QK90xoTVJv=US1YuC67bYZDqBc!!8+Pbgy96lYr{B;+@g6%Po6aT61fKN6=O+ zYDb#fI1dHAk@DPZ7BWcp7d_?%0$l6~GyzLn(G)x@h}urst+q=Trekz6Mq9=l8%k2T zR8n$oG~M%Jn`?}+2b~Uq<+W>E!%!$P?7?&0+VA0Udp`*A588DTcFSigJ+4j3xDMgR zZDY8*y0?2JC5>cSgUhK}29PQ{O7$Dv9$R?pa(dHErxx6b@t3jO{H5S%WQ4cOW7^!Xt7t;;I*yYa+pfA-()c%+^62pSd1K$h zoa3dAak=bVlZ9^3+{Y$^Q}Xw*S3~<)?#hhXSFGLG&tl6jz4rYdThn-!&BslDs~gUG z{{Wk~a2{D{$#&nEV|=TqsLQKjYFPf!+SAalZ?V5OG1s@X`PYniPJI^dcJadgT)i{# zduRn4T473(y4R>PZXl8Fjjvj9M+fltuD+85D2R9_j+uy&smm{_5ClI zHn8dO!!5q{Sj{^$JU)@w$)s)@o!#JX!q+$eEA7^kp~tq`#(rzupYrzb!}#|+w+Gwp zt@+`yy=!X$o;YKa16dh^a6NS57m3s3G2YVp-uK4$^2?y_;d%FM)6v@Ob!Y^f8qu2e z`oA`7uCGg~1`X^{bW(KKAgMd+h*4s*fqz66Z6OR5RwY}i(*S$b8jeNAHog8RBitI| z+jp5G(Cs*pLJx6R&ubj{y`P78uJ=cByIOoxORDD6w#Bw>@Yus7lEnbi8>M!)>8=A; zVCc1m6B(ppCp7&n$Z% zcjoRYpD9a?KGFgWRZJEcPJ78iNDg!`zCo9l+A#*b1pnYX~|^%}K7WWP=)b))_w2eS`)@%pXH zjvP7O525nkMK^km{$G=Bcdy;}wwzmJX3MbJ?f4m3-BXc~mH5Bw!F1W%?qeg@__tmA zuA?o^&d+4z+SPS>)>QyOr{)`*cHT9AbE`}Iqa0tulfvJ^vALIb8+{S&JR7CE-BuX( zYpwQ9D!!j>g2RegH2(lOaNn7hzm+aOf{UL`j+=4c%w12;>ofFY@XvSidOVkRq!bts z5ULN&!-jLs%ifKXbp^3WPw`l^aPYZ#)^SVFhPop1fm!cfPxNc z2Wk3IMyLiV0tfdM41n}d5HLk+_sy4T-S+7$cUxHREgnOi45Ff~$o7IeLa{4Vwrm?d z&usf`rp_A}BzCvQ3qwPlKs6t5T_c^V*6@NwO=xfmrjMNVtGKRxdVS1rwah!DphY8U z0cmqfu=_%qf$dq`=kzy^C)O6Q21L%%1%0Jv)RThKS_VZ$IKc+Hlx&i3yn6d*j_uZ8 zI~j%73}}0UTzo=?pAf-ZZj^k_zIqwYw*As;OC7#V%GHiOMchHUT_4$TsT6l;=&hcC zsE^ZMP!7F3e)axaog3*3uyb=5=j|93G#-m<^dr=*!VxL3ip8$TUCh=y+oihCRM2c~ zzV1Gt$wMU8F&`B{na-x4hv8@1`jz0$jmH=C6P|7ShibgK7Jn^mJXaIANF>r3B};S= zHJS>nWi^ds!oHLkp7m7i3I`RU1{KSvR8wLyKplvo8R1WAnvO}oec$%G-NH+Y4Z-%7 z^Et)#?qGI}RWxITD&17Tk9xYwuO+yB-MMAFk-u%+Z7wvBK_&4$rMT)C9BY<1DWL8= zQ)k?^ZGzKnzrS|pb#4n?eDFh_3yA>gE+-7gVhI~cW0C?<+PP<(?@T>Beb27&ovG7w zTb)(>*WttLd%a?qU^-K=c6^0pNySttB>Rw7zKhJWnU$e?NFMbmIk^WejM5H#?Sh==>V}`=0V`;=)TC>7#wDu4|meM%LofR^y&wbIYyV%Z0oi z%ct-@m!`^Rw~g;lU9T|tr}F%^$l%ACx-jA^PP#^G$JX+DEM>fOTe0GNhV{%Adv(OE zkkOCw+}3{?)D%}8jPm6xhWB5wwXM%{8KtOmA#tuqsEZK_=Qb8PN08Pq7dgkE0;H=N z#~YQBbFMjT`_E80t6w8D?UuB2qa^8VyIqzaYE%CJ3>T-i^&7w8$N2i+rS42TBcZZi z?q%EQ%Kg~86}`Q^vn+y?+F~-40f!F|E=1n+9=G&XOXO+tkTeiiMa^Ew@j@YlV;@?LB44xgyFO{+7rU2OY4_dqpX z!SU4_`_`iy(bz|7SuE1>cIo<@_H&u- z-tJN5$D{sU;LELtbCSR|o(Jl21b$1}TJNQL?D`3=xL)h*I)68JuR8}qP4(^j=fL<_jEz!Za6i(+`cYE+m}LEL*%w=ekmH=HPu{*&jsV<(@VKC z)$g|acPx54(_D4z*VXL%8{NWfF@`rc8lQ6SUWzp@bB+Z?Lh9Ev5S&mD%tvyf%P?qK zWYtv-TKA#>C#FaRaa9X7#8ATdWq6J#+Fc{vfDHnqm0H7ZEV7v6HMf(R@vDoDThHX* z16<9wZEl-z;ZQIwVEz-TURQy&m(AVpPs@w%JWp>A4)EF2^W5F%_xqoB@?HhO;t=w2y4Z-nEXT;#(2 z&Z|}I-=44(Whj#b7)weTp}n|<($-6vT3sANQ-f(*d+3hcKF!_EVL8@X&1-pU71gwY zNG51}ax~NsRF+w+H@0%y&f%2PEKKMt(HxOJ)OJw>540q9qNz=0;fruR`6#FWb6=&y z9+XxkFo>RuNIx!VS|}JmP#>2)h!xhPjFC|r88dA{2t=~OAr$b}7L_$?Mc8kfOmI~e znKN87L`WQnYM>yXVBo3aOuj)ELu_YJ(`$ zaVw;Ar;dOGsIb7IrD($?1g&l;CTJe?B0v#NC=o;)R0JBJH7E(k6bR)O5R_6lpyr#) zn{Vpo-z&i_m9gkF>gGA0g?KyMH}Srw+jMg0;Q7hf-urcQlHeLwp7@H4IYmc1-q@sj z2B)>8wY{Va2fZ4?OO%&{)y3^OSLO0%B zzrsi9+rAh3evdplPB%YI*IC=AyOXoBMoAlFjlt}A1+QtSAoT<+0X0%BJDEY9dzO(CoAfG$Y(}_>qB+mr0@%BO!%_Z_gZUC5;{O14 zuul@*hyMU@82M~AB9C+jp5C&PSC3+p!cePR0yajjG_V60-Dyn5lC}H z0*VHRBXK|pswrMD%M?NoP!LT!)kb818X!0z$|{3I8AD3-Ky{OcRTRMCL6|g+9Q(!=*A~ecCs}$+PUXF4dY))3giX>K_fxWBn&|ZwGxX? zC?;t|O4lEHAeVcP7_-OeRTkqNsw#Gc79RkLAdh+i9sy8hvs4383@-Pe73zV;SS>Pe z3W1wkkxl?W)HK5mUZ(l$Ms*LcGo@hqSof_<8b%{(j@~UO!+E2iGg z7;=vXt?_QBslVLL`zHzXM#wlvH23t!UgE4ukgzqN zFi&@@{bH+b^aPHw`!e3t+^pD(j<`N%u3rNI+BLSz< zyq@%WJbGQ*%M8AXf!pTB&}4n}vulBQm6afLtyX*Z`eVH4I*Y<#pZjP#k#Y7gJ=>MA zX~_Ak{nYuG`e8gXskceDpZjS?CgZem{by^1EBaP-742I2nEGO03+li4^Zx*CEBPlL zF3>kCU45QwI{Vd`&s|AFlRbfA{-vPG6;GUwYSidR+ei?fpmp03Lts zsUzLCmrLa~_6JHvrm#xFNF8ZZ?@n5?dM)WSxMipLYSc2o_k!6N>gA=t{spHDwzHh& z`WuUB83?P7xlI|+8$0BArb_6}t5CJ?AQcAY+7TNCelDvPw<1SAi!C91hoX%k`I6V; zi%LYW!s(7$MtP&$psRc10pl@;xk}WnYw{$hs3bJ6Qi3C2?x1$~h$_TRG94C~FeOxH zw4$hA@*R%C;g+|z@LSwT@I@oTTx*sc7Bbw&8>O!^W5arl>~4E_WtKCxMCSU;LMAs6 z2uQ1CFK&WAg<39}&Tkv``r?mCiQon!h7}mk$+s4&N^*&sbqP`Iqewx8XQ+Fy7}2Hd6@YxDaSq8J>QDEy+h|0 zz{j`k9#h7I@=3d zk7lKvdYk-5T=4K*XCCLfy;nGI3gnRTQM~UoVTIBc7d$#iWOGY(VP6g_TOBTQbHAI# z@vj@{a_N3X#~$>ZoFx2RD^?5Gz7RpGs9<|gGffc>s1QLF2LcX733M3S8yFcILm1IU zwV(h8a0#PXWpcXPtvD#ioI)vdH0BUvpliAyf!0v}0MQabsK*M?Kpkd!0DJnNkL5@? zDl^C(hzN*wAkQcu9#~OTu56=~v?7k^}&bXse{ z$pZ%jLxK=xLIY5!!tjVwJ86;y^B(LQhk6522Y+hKtw^f+YCVcHEN(ceg77N09P1mO z;8hc_s4PaJ#LPi3phX=(D54|?Gf+Ul)d2+q0)RS-EFnc90<}TSJx^e>{&T)@v;r=nybeG`252Ep(%iQyuUl-2&uaSenq96SHAIOmh5Bs%SzxGderbBTb{X14;an&vw4MtdQdNFUJ@;zL~UK`d_s_ox|E7LnS4n#+fQ3C>jzz6pg4$(tJ0Y1eQO7{Xz zLW?!H;vTDScRQZ>9>Zo!;kI*H=-PjrxssFz_yDg_*KXXhn{oPAm3j@)*!fN8(#^tB2W# zYSWsv#^Gaa{{XyP#SJs_9@hR6rOHlj`+YX%f0rDx_Dfn#&zSL88hp*x0OpZRFVsQ) z_Ng~9ov$+w1nV>9wU^oUsl)2W4J5_q%OtEGBFLSjp5kb;mi999dkwED^|?)K#(Q!@ zFRNQXsJ5`VxFFKL5I&;ii_~Mu=I!}Ad-dmrKTq;T?@)Oy(Wc$T=6I!bN#;_ABZC?b z(zADR*MxNc0LMB_zxlmJGufx&tv2!My~|xCuG0;>eC*oMSZuUm!L*Uzd zGu^pgRs1nkn%C9~j|*-gwl&52qHO@~4S7ta?VJ}K-vz^ucPzi%_`!#a`k`{h3$8%e z1$4hb)I)K`t!pZ*!*{lsc&CKnZO3E1?)+^^eK+KD9T!}p;qa4MFi0KszKY$OW}W6g z@?Mu7ICR*{?)(vdQ?}BUy6bnjnd34;PF#b}505QuR7;RxExA08gMmXMb zTwKU2T2+n1I$+exrNZ;o#`({x?8gc8{wW*j2M=q>G2A#Dnq@e9C={I@-=WI+!>zJ@ zU-qOvk?_|#q8ZvK29YzVQP&#gukAMPV>8YDY@G4`0BFC`P8wZN4DId{JMpfcw%hbE zJm1#N+<)4O`lR9weO(;yXcQpIbM3$dsng-9mz(XUzejoWb`_=uf9=B=dPN({C`u_kGcltkL5!GwD z&lw*GEN{OSmaN{79?McJiINx$bzkhHlL+&v*SZ?y+&xdaY#B;AP-uL&N*bo7K5s zKjnKY(9~76d2M=+iGfet>CPDWMrZjqrT2d|XL`@Gv^3AR+{PX8I2Jj+;z+8OtHyJb zzDwTM;oQRgB0Xs15)c~=)}iqoEW`d*D$ctNbmHZFm(_n(A79`s^|z0)<+9schGC`u z0HZY?%}W0B1pffS`kg;EA79|H{d4h$oh^pt!kOt{`n4?Hw+(dSlgYhSoN~kK{1s>Q ze~W=%Cg>b|I$QX4Df`?#ZGYjNUcZ|UukdPaeQDUkh=Ri6LC}{*+WlmydfYo5@bXUn zpB8w}b*j?()wh%SEv|Q;vOLJ^?+w(Y>tyWv8=gws?cK(IrkXET=8=HgY*V@96XJ2x z-AybtS01xoSg-yYjK3E4I(t7FxXx?pJ;NGc<2plyTJqTlp~(1)7fHRle^2rBxnBeD z%rC{%eRKJcZ(gv^Q6AS6H2{L>+1L0|DRbYvq>X;Z!7%5!Z~Cv@iDZM;YnZ_@#Q-NJ zIu zUt8+BuDcGCXB@G{<%bE3!g_f$cMA@kB^tm`RPm930Sk70)k*>8`IoZ!2WV z&h5WU_PYlf^uviIH#@G3bkg__Fh-+Izfx{BLzRyLq-Its5&l2-TS+~8G z5>3ACEx6vn00KR> z*^S5n6Am8mw>I&ek>KazeNI=7=6~+3mA##$L>Qorhxe>&e*jw1R0|x{RR8gqyKtU(~lgFM)=*_9=TvS#T0ue}HY4)fP!Q6pNN3j(fm_i7P zNkEQi?m@4*uo$_RSE7wdqoPI>79gDD<#kH7$5*XU5-Nj=3?Qn3p~u{TnFy*03j;+0 z%Tgkfu|n8sI^z2eAuuE$cgC#3k zwRd(>!&1>!3~)_VY8SeDM!ydQcYnhg~}?o|rl zYAA~Wg%G4+L<&(#;A`3tAr;90ID1eab|4%(3K}uOy;VY#0M@xGGJ=?@$T|S;YKsuM z7Yu@Gq2)a1f&t|KPGtLVLqOEB%oJx0@(P}0!m^Gjdz@nvVlvC9JbgXE^^ zfe|BTbwvUw`Ldp<8KLg&ArWF2UG70;kRG`xt1;X6A))CZAUJoRcKvE8h91>Kf`bJR^a!jVqN`o9t*OOkwI4p* z!7m)=X7hJ~S!0Uf^R?|5$*QHVX?6yc?Ov+v_jkM3mao=v%5}aU+}O%XmJ)kCGQE_Z zsquk8@o>ixT_!G`;=PB>kB|QV#QMI@<@f&pC3pI##i>x~u{3LRQO22?S0#RCDgOY8 z^?%{|f0A2&R5pSIEp8}IJ{Fn|+zDHmLityIeyl#Vq3T}VV$}_l^0?PXXs9^Q8h}>2 z(4JM?m*USDqj}FcCB~-h8yu24x^+A_kWNI81`8SIdn3r(^7l)($9sBDqJA$U$nJeu zxV^V=wTjWNaBBz=4Ly}5&-@F;w|3>iJ57%V!fP_Q>HcrRHWBO|s9dlCcS8nd+y!bKy0CDi0z7uBU{Cer&^zV^PGoO3NBy%3qti)ugaUy_+I+R+NW!qcN z%-t?H>9?^sdV9ZgY^}X2*#y3A-ObI>EdYnPpz7*%0aCR#qr=?uZvDqhF~bkz(6c|M zoI)X|3(U>Fkm(?fgrP*~le_Yqo2^BEC~`2ezwS z%zY8zXX71ST=#SOUXtCm_=won5t~2*@F?)|-ODa^q;UEXn2qgORd=@>kw_XSgBzVf zA%llp6)YO}piMngQuXdt2kg~qGhzuH-m55!n%rDyw8>iX^Z3wA$m&N_7cK3{a2bM# z-CDtj!DXh!jSU^^6}VX>!vdpGQb}kkN{ZKAT}LHbq&#-G0uiioxbonoCB3}<2gMuP zk!fQ{r?7-?9sKdS%&xxLc=o-qfN8UUQw$?u!26ZbH+s$Q>&xk^e$%zM*W}>TGA1Tv z^edu%_j~&C{{VF;+jhpfzbOT1NAqm!pG9;}-fw?iU+$v)r)8AulEU53{G$^I%AJcB z8R%~x5b7k-XP%$tsDD#!aXHdOX9R9PX|c2%1v&*Zi&J@j9vWiJg?JNZJ5y&004G$TaGzpZPhTYMHm%O4zJx*)#15MrPiCy;_b%L=j7*{ z*6oG5*z=Ki0E#&M3&Y>&vCl5{x<0eQeAS;#wes`FzcKv0bhFj$PdBCe8@TW4$N+8Q zd~xm$X!AVZ%5^DL^rGo{J-+96PkWZ%ntF-U{M^4MF6U;RuV1a?xZeA_aE;<^t8|RM z$h;YtH61m|SZjq3QPC2(2(b! zZ7^@WbKT#=ZgHaW9(cOUA!C-Z0_-Z`f(Est)1?At?)CcGxHI1IyFK>q-f z^sgFjZf^cxhaXGc-ix8|*{<#R+ufMtthLVY?8b7Q$k@8MY$-X4NA|7t4yu3v{9&&P6{Y#KEww}Jt~0tRUL>G&}!^K1MMA+2faZ9pm5A0qI_MU z1u5-AtA;8ngs{1%BvFc23=Si)RIAZQ955=SOd5zfRYL}%A5A@~R-qmUQBb%Q6oev_ zAbfPK$2@?07MV>LsmVcMpaGUDG<`yfC=yBmTu^4L5DM2c2T=%yYs#U+&^uh9kU12R z8Uj?UM!tD9RgMA8b`ELAps3WgU1OPBe8&Og(g|AmHVwprB?AW3l0UwWB07cOTz*b{ z@6nU*cRRi>(n~a*M&D=g*_YbtG0PmWGFY4+6o5I8X{c~Gf(rIA@Hyjgw;MFD$ioRh zDisvBUFUAvZC!VNGhu{a3B;4w){IG6%PEZ3@Q*8`==XYz`+{{%@QuFi8fVqn$NWFXqn+(^J3BjTJ812# zqHHii(AeW{006wqagu2{J}Y~BJ>2ej-EzF@aMG)h!wDH6m9c;kM?!$Ds({fH!Kfq+R69q|pvvlZ?^~a>MPYEy>s0_cm>?zSInS>W0m33b{PaJ_ zkp~X@vN-rsf8I=N?b6>)WA1&L}27H@6si@DA zi?IN8tWCpB5LcSeH^kKxVwLR_s-=n9a^Nyml+2i(lu$FJAXEinQFG*yB3fx&iA@z0 zR`}J<)Osyi#*0jinJB4S6FU?Wwib3EnUKatRqR1LaRG%eQB$@ypq-6vEA$|c9>p3k zDguKQ8K@{TQ9$5>jz}0Ep#utj>I`uT!mt*qht%KQL`c#y2qbM0Qa3b11QGy>CWqnQDi}hEY=3hxJHf^R)=PcoMG8!A%PJtzH!>-@QmU(?EHqb#BaE>;%xzGTvuOB_! z^5<=AEu)2uE@K+P<5y__RQ8%JYUiHjS#!4NkhQqr0XdXsTGH?Kf?HuF34Bfkl=gtJ zlyt(WLm+Q~*mhT%&)`|nw&|F11!qaWfYXa(v`-()wV&d?^O)h9LWI*qBao9 z*#0iRU8{yZpE)T57 z&U-f>i*GG`vq!1o{+MlhRO0ITLAYE~!q>0}ntv!X)~DLL?Q}R}b-ZiR_@A10ck%9R z&zFz4;{H94aMrXol<aQ5;m(*nwU1Kq1wz*1;T-4xQ)sx7XpDiy>(pE|NDnK8tE9_ zATpUC4T9hXj0QK@Xq1kPE(Jt4n$fAE;21SVcZ;-wAPthzAz>gW#^>yNe&=!i+rR9= z>-FCIc|Y&#VuVT1zEl$7Fq$Kc0~8%XY?H2AOOwZ-ma($-Ej-EP&+LPsq>k!q$k=LcA`L&M`nomj}I)^cJT0G)XBfoC*yaX%n!lS;J}tGA;$$9OXq9Po6`!<=wBH#zdAW_ zR2W`(+P3pjP3B3}%80Ox``(ibq;Xs1gXkxbt7G~1gbv=&<)_^#3BXwB7LHRnMq+|b z{hgwnQh(^UE`MD9Td{z+BaGKDz0Iz;2<=9X5R>P%JRO#p;aMFeDzf%E3Swt&(E zj21JE1Y)i?i)#kLJ#+a5u~Rfujv%tMZzyDg(&~gM_&~;8i}wj5NEYSmMkWc^sZ4|^ zX^tlzDHrsIk%Hme>OHyff5Im=@P+$Ga=@Kq%Aa|5WK=r}DAQ#LG4|)rO475!TlO%% zW2y;ZcB-ruD|uLaVm)r@B>2`zwRBDY75m2rx=io=Tjet0HstD;SbM}36A(eS*c2;E zD~~4d0c7bA*I6ylsgqh9)YNox0$~*Y0_#*d2= z=mqbpcXH5c;@5M~66i~s8mfQ(}kK+(*Oe`cuRyY%0mOl#45d_)9K^#xn zo2!`E!W2+hKKdr}>9aoKbR5S(m=Oh5TTMrc4JWZ02K2zL=1TCY+N2Jqr^vPBc;YK1 zcs_6td6hQ@Br9!d3gPxG{FU0Djp`m!;eHH;*}ki`ml1p&TTV?@%WGH|ye%(qPU#+6 zYL>UFOIr>YvAw!7K%8|go^5{D;z~_4FtQH>$@hhds=WMd?Q3Uwn;JY>?Y*MwkZ!~q zkMxW&hl`27G(q$0zX27H_Pq~caPH1>6^?xr(Sb|JpMjiSrh~MQQ3*Gws(_qQ8%^}j zN<>3zBHNr`T1|JTw_TN_>*jp*d|vr8wet4r=6T0eZn#dKAR;Q=3&>Y3_eO9<@s^y? zcvT#Ww>G({l2Mfi@;QbAu?H&qDI98BRxtQvn97#Eid!tD7`u-RJ=UKMB9cZa1nOI7 zC@y!9_95Vn?zH~63c_M^KIw)69Qldf1JV!QGGK+cnxNv{LKAH&$?wt6k@Ow($T^NM z6c08RN~Y!j0)Q+tXXHenzE=xUD=L?lpR;tFkzYJKkBR~Z9#`!HD5ehr>c!K(((yQb z6&(bg$i)uZk~&)+s0H|_@JnVdJ<$IvKh}b5XiLaehuf#x<|-SJE%gI}Y8cONwCc`s zid<_3agGmBXTmv>My}DpeDyUB3MLmv7~s7 z$3{}^NoGrJn?N~+VoC$U&i}iiYJY~;Ap3^3fZ{2YPa51fAV5cH@E!YUfyhr?^@Nj$ z{~Wv;ON8Vnwrp&dv(3@2o^G`!J|cTgy|=tx{jPGMGYtGDjePu`oC|L+8d_jerwlF7#o~vPi22ZPrPDpfSphhKI{&L|E;ZA@8 zW4N}Gh`41Mp*1TjeJp^(OCRtFXPSs6sY2$+EX7P<4nS0=U-Ft}7Dr@ELym3p z6wY$%IigtEhTdxqX$p*Pe>o=`ErC{qYZEl95cvk1_Y7V!it$9ABM@@b5{tJ{v~j4h z;LDj!pM#(CzIIj-kk$%nWoFhAiCC6Vw6}ORc&33mJCa}{=!y-iL8&rj1fWTLh%3%= zhl--J$@Vs=*IYKX+ijR@;?{YljO)igl@g`0PHk(3`_&HmTaN5}SO+(rapQ+-3~D#G z+jCKT#+29H0{)h_3>M_K_DeX(^%?03HNF{z0($;UG*F;4bez`0XRO5_?;5t5OG!X- zG`X~mI^-Sgtj>;|2NMCiofIBttx4csOong>Di%LL>5V|=Ny)Z`NS1qove9p?>Ww9M zenxSs+Rl{H70j|A;lz^br;Lhk&L9A(MO=fv@Ha>_2_T!`58@YhPI56hPftqb_bK4i zij*uvGk6P#2Lfqntt^w2@CihgG9;jp#4+Ru!pGPu6Jtu}OXq9IDT42A#3qX)uhl3` z8ne8i!HH{x4%t}_zncre-1UlVNrh_&-e|SYgO@TbkOB5MM-FKw@iVCw+dQyBe;FeF ze`lCPhtO>&DwXlX5tVuwKnZ)0RTrg++@JS7Vji5yOB=cQk7JEd~DTH z`A~Um3^9Z>d0T%11-sEuD)jZa$QoA$0NXPXqqx_Z__zxVH4{w?O$9M4YYzd|ik`6|~*wGI(iN(Qi}j3PO2S1@oC zuj>lr=dcJVMRHdLarsA_+hW$lsFs*DAs1%!CVgTje}yJ=VY873jWEN5a=DFUZ`8x&f|)7 zbyCi!SlpP+4nHn09{}2sFCp5ze&`!`1WYT6Lzo(@y|0WohUP)@E;*=Ut{C1+QLVJ^ z>1Q>+%3_T{6z2`qmNb&_0Q@GYi93)yqpIv^4+^$Hl3(PeyU~1jqaag$>v~p-#a?%z z6j!8_sRFF5XHO{^J%BQC{U6Ck=qppPptlJruY#$HHnma$)a$ExW>>|kl?Kwuo9KiE zZ#r%ESI|uNBvpdTb5Vd?-S(Uqc>+7EhHD;>lrvN&*`hu*?dk&wA|Ip_84-14Q>~vx z$~9arvMTYTS;$_e5pmSXGqv$6VfBl=s4-Bg zOdhBwkEv1}nT!ioLe%M+PeqG6=*WV=0Xd-4espLq9ebr1LmZQNG-p z#xZc57K@BRne@{{x=hN(OwJr1a+tg&(*fC*gI*kNKK`ITYoDC!4J7ab%GexCKrscR-`V9`FCE_(q&uBrJj|k9e4sy&? zS^0O4-US7%3zuc#&(otPT%{=86e1-{vN`O1et-<}&!=}8UO!BdD{~i}*eMj6yQekG zWr}qxfEJ4wKIySVD*;*>^~NFQz$ zk_6gV4iPL~8Err~SN#utmrU_-lhipRTw33=cFq7TAU@iDhAK~>FMiuh@n8P+d#EpEMgQ-|58Fpfw1CPsO^98G$sex84B@HkQ@lcpTAS69P zhP?~|jvNLgG$u*NvN$%Ea^T4< zH3(Z`emi-ba<=~i{Qrl0^GUcm=io))oq5XEFvl$Z_@1Ze&JA1KxD20Q`cQs0HGn`k zms3jE*m*5B24qI0<`YQCX@_)*met!?FhK&(F$7L+9+gR>3xY-AWBBYGbV}=)wi5Ws z=mc{zP12idRb(|kM7{GjLl<*|$*F&lK=;pX-#Z)v@j|)P9RTF5xDor44%#%BI*K+8Bn(8bL5?*D!64ZXBg=R@g;@oJ*>Gl%xj7eu6(w!spCqKV z=N#`hk181zNh-((dKgBCwO4y|`&ovK*0?ZP0KM^(i*U-V1sn=5Q&*J z@f@pID!5j;nW;T+2aRu@!sF2tL04f1i8pV6ET3A&ah-pPdYb|UM;XY*;KkwM;#^5t z)dRwCBS9d7iiR%CoQ;)}OOryXFnNftMmAS58+cviRNSa_k=d+dJ08aQ9nN>;8J&N~n%n3wI z5M}wjACGm!$#S?5r4*ofN6=?v1uh`VRc*LJFij;D9TgiyFGhSp@LX2N8dOe4Rd)fu z*5fbH%lM%|Mb(*~u&47n<97<*-^c9RMzKlJAMgI1q8MwJSpRn#V;co-i%VPb&F;Z~ z{iTmpQm4)KP_<=xA@-@L7ZFP^)@bq#J6ch)iiS9SF7z2i^{g99g>-?G<7L&IqdJMi z0(zYaqrgk{Y4UaBR_fKD+WLkIKTnNmYSRY59qrpbaCoowEGrCQLsNb`}-;Ft#Lm#^oDrMIA&rMvU_*9|p6v=$K~RJxeq;tlRUE9SvqTmuh$eoi^r~(-gm42gOL-~Iz-r!J3z`yq&GM+mYNC6 z$0V6q;I@P_ZGfg~T!`zcnr-UvPIX4w+_qjcn@?ot%0rmCuoP+^%2u^j@?$vboXzz; z+Uj5JuAYhKgO^{X(xz|oetO}gimE-F1{D;@kl>!hW|P#rdnm{}<2XIWPZ{zW1DD#a zH3Hsgp~Y=A%O+wLBe5~|v00Ee*rdEN;3pCzi2qIxO=6yYjX2v6s#&T!6rv~u3Lw~6 zfGuXZl=O)<3#VMqEamLa~wrfe}A+6ezZuQ#Z7mS$irc@wjE%Uyu zwAwB{F@Uh$nvQekjF4M2()agyqc9oGjCjF^rH{uLPz~Xk`n2Mq1E(1tzKg z8OS?48wGRdWDxVPE>Wd5V>pZ5KbKQjb#?hs z^5tNidE~QPe`~(^wK%?v>Dysnls^;insoQBZh5YRpJ<1)uZ({6>o9k~JaE@{Gk)=V zYvY{m`FM97gVWVm#Ph@E-K;v2wX$9HSs(Ix)|>g)JFbcg)Un0Z(pu6CK>g~6`}o4f z2c(McK64QLlXGHnXMYm=1lu70O~^j(b-3~iqstjRtJk*cG|h!}Y?pg5R}Z)z_sSQQ zndZD2TR%xwZ-5}6aXL^ph2MZ8Pa$R&2rHeySRohDMm!^HJj^oyvN90rJ%rR?rweT>w4kauwJ30 ziFU9=aHuRE;eTsKH-_+o*-WOkoNcX&r^8kYXhogWKYSap`Fd8>@|Ab|&*9LnLo3*v z!;jEv4Sf0z^cN)s`1bcL6^@=CrUa)F3of}$CVT*)s5s++!b{@13Xu4AIFT60C>0fz z%RlF8HS5_trnrw=&O!n2t%e9cGUNZvX6kF*KQ<7Ltl}HGPPw(xyh{)hfA8(dI4^x{ zTO76PTAxf*u^DY+E6valME^9LE;llu~eFRGgi#H ze~;w=daNO*U+&BbV2Qbwz*c+$l@d+L)R->>BBZP%uEo^6_o($_NEFOkDML%l-gTrm z;=g@PjwKQL61;)0lQ_E1PyjTDmC~u9>4I|%ETQN!yOg5wS3-MRXjHSqq-m>3A|#>l z$3`+qg{t8mFq4%$y=MBKFQakv058{mNupt*1+aZ4ViP3jnREn1Y_ z5Of&NS&=!l*PZul6$Xyyf%&j8ft`X3RgX0uyh2-ouEaXar6Rtyx5U;zwwcBE_`ZPv zM_BLcuB4*Ad4nj%tXWP~XI2>+N@%dy0F~lL<3yx$&%Z^47=nr7nIo!0?dkot{K(ahQuqOF(tZhDNxy&9y*8pfh*-#u~+Wc z&);w#?_6zC7K`J~Zr#sndWf+XTmg)xV%)%+k=NXDMBqTWfKRy<{^%>!C|qs*n2(j35JK3i^{vzv@eOM@&b&od#_b zf}UI+uL?@qrcW_OB=)qElQ&-pn=nH^Rg;o|h=nyQhD@#4M_c1sNw#hd7mwAS9KA2l zw~Z7VtkS%Z@;vw!sq)1w7P{fM?E=B_1jBY4YbTy5RVU0Jz{}rV)|eonLPWusv+*06 zY>6=8JOjaSx7Cu_yI=ej!R!{NT; zwXC>8YPA9=fZ)ns4bpN~xgOeR^iI;`Xfi{$KaJ-!3_BO=D44WsBZ*_H`aN z+=uMun^t`aj6yH)W+9GrhgMY?zwf%@U0~(5pL`O~91KsU@ft+-7KF(7TuU{V z2p5*^}aYZp>-OEWkSkJI&`GJc6~J| zS%BF<8hELT4`d?o=OM7N2~sW8G>!;fKUcQDQm?6In#=eASLdMWPm`FE?L>gQ#1twx zzD)>#u=IgB`%3^qEe^7=-Vcy87EJNQWSk@J$`Gx;1P^l>kfZ%CNL78jB>AFxels~j z>JZ8@QG$+ji2S;fFpvFNDpN0QTSZIT{Qj$<7Ck#L?4DZY&WG0AFn-&Eabti ztNk{rSO|&i9Iu04Qo8duocz2U59e*#&guduife(|J0UYE z<(-BBd9|3gfhAq@SvT0HHyrWGt~L;gahb&fk+sw*c zRB#T#cm!@1682;eo0^NX?5Gi3)3aB;IvFjEU|? zF^Bjo5~+^$gPPOCf?NBF#zG zPg`Ac25;+N=tbQGpX{)uyzI%VZaB^e_ipZE#;o9sP9W(tD*Q^;%KCJAoN#*7A=xJN z2l(kqkdDT9|C&Z=;WtJ%u1@T&!7PK_KlG-hsmmqPU$r;77R2gT3nm95nB7CDNSMYD z%*rQg!6t*Rc|Ft5tH({_C2m-JSV{{E0*%D#$gV&vJG z^e^e9|bcb;gon7f)b9Jt62zM zjWB=3)$EeJtamkAGr!fiREOi+dgBx1jQ-rH}`$yl8cl3OubidDM zxt|&+Q_}yNuQL5^6%1ls{!3W@Dre31deR7{K>B0EBoU9Gqqo|J3KN_AY{ylUG;gOF zy4sp_2;+WE=Z<@}$?6jG$+#7)q#_j+Af$n&)`w_KS*O<`yaPms1k}g7Dygd!UUenQ z4-Ny^Cy|oQbb%Lng4eyPdZX`_aXVcp#V;t7L=r>HDc2e&hc+jd+H}ubk~*WjYeReX z%Htx9wV&}|8`V;r-V%%}L^a}x*{@mQWv_xS4nkU8#<#0T;2OfK`0+6MPz_Ju@sw|r z+Oi9t6eQ#@MQ>Bg$d(Bgq2k2Fkjf`xRW1+^W^cS_yemSEICI0BNB>4#C^WzIGvrpw=H6rGEWm%BPq5N0#vGPY)G$?*ynx7Dr#5$|^l`GKnz)q{S~ zgH(ZRcq-6priEUW@+7++3_<}w@zOlpAJB{|g!m!an`L)hW%=4AL2D|!8wGhJ${O5> zNR(DCQoVLsaH^=_Rive=GL`mr_!bA~;7N=Q@9*zMovmDI<*~#WP;7U*Z*s65^~jG`j9$sIM+s?#^l%fv`F?v{`X|{ zv1cEzt$Tq_>R66_i>FPD(`B{l>@Tk8&9|gZYn`fX^LB}`uRdU|NKn&?5aNH^X)I_b z#1Ik0G#tFW+Z%rG_W6>(&>y0~XX@#-Qtv>ON9E7683Tg1y!h-MdY@dCRR$W!;w-jl z#ho>)ICM$R<9V<7S=f0t+5514b&rq=@86W~emW*(YVlNsL&VVCsNB>p*h^rj^*ifr zsi7HyWd{rhb|)5)Xq4;f2OjYU85b}X&`libV|-8~Tf5y04})yB5< zC1_2q)sM5KMy>V8xB2sRo~)7Pr`b){vI5lRA@2nB5-6Rv=SZU)k6#f$Goz;zqQ=q6 z1!gm3>1kVFTKcc@E~{q;!uEXxw)vW?8J@rBycH1w{8wjxSnF5v82He-a_C*ud{5_?m!iwZ>UNr#{AY%g3%Lei~$ruF4A=6xPMt19%dMbSU>x0&a?eP^IG0S3qAM zfNS{6GEmW`(cG-00)$IG1K=w41@!4(twI7Jq3KCie3)Xi7~#$XG$+=XWj{1-ROLrr zyrrw{!!$L#F>W8Lb#Z(|YPg8`rdej&vVS4+cxp%>Oup_;m|TZkVEMBHqvf-QRclRB z;fEK9&66F{xVgQY0nh1$c5gtNy84CU(sJxwH7|O#3QE8!W%D~=_-g&@?&g)66CoGw z@@EErVa2i34u!JSTZU<8>VYc(y$*MklUwq}GnKifZls4478#_deYQUeOAw6W%*~^t ztb5>X=&0wYXz2{lC{gOIS%=S0;3q$~^ev$~Dh>=9ly=3q|ILV#ThayI`i@m;r(HYU z4=8S6RGpHh%`e^t6`Czpm55`u>Dsu5uS_18ugyFc0;>zXV9wsX%YEhBS*(>Z=GU$H zXR)xcTV-J{Bf9!r1mfG2GGo*;ieXSG%{XE1xwNjpjX#@X&yFQB4TI5}Gtk|ZigCA( zbB*f4z?Fh=`{j+$+L_ihrHg=;ZWlp$mvqmWhGVurKJxXWKGry!5CQUL`FeX2N5k3K_&LgFApaHbjC6rJl|hcKAOIm6*cx7 z*0?xO`yCNFAZ0AM>Gkl@d!@7zsgIUTc}Eywrx|?EemL75x8`BJf7S{guZsEWrL3L? zSsMh8*{{eMsM5jvdpJ~?@G2rm%dD6N!N(50cbvB_qMF0YkCw1|y3>YnnZk$IBSA%L z{SYxTvqv8a{Dq5xZT;NctFhCBj4`>8vCLQc`k%RE@2!P4Os^Q~dvF(~ zJ2!4yvOikoC_+Aa4*w8|!XYy9I@j+OmJ z4py@8CrOknRq*%I|5W0ecmDSO-$-V;^0!2nP3`9Yo|NGFCW$2;a-d;@K0tAREKy)w zLBT3>z^G|oH>(Rz_i3fo#TY{@EMNsbpNGstR}o!I`s! z6Na3^ba!akgJzIC+YiwAN@cPU41GeZ?n&csKd0lVUX@?=-`smxw5!rmSelw!C0RQ? zg81G&Z>$)S5jktp>-dC=1aONXWh?3-&cIAwxM%jM$Y_+uR*!oTs7G-?8(qXo9IcbbUtNz7>~fZ;Kiq7rGeuk9TILJN*@%Lpfkh^4$xZr*yQ*9-U%OT zYb&m^EN`yFu-?^ppVRRP?wjB5XP0HyPSFnZQ*F9GUvPiSt9q#?=>6nn)|&jOYo5oa zV@qLKraafK?+7FIB$_<ErOD(rcg{YY_K95eAS;SX}4LEu^W(nU|ngI2yMr)~At?U`}h#xXQ22V~9At}C*m5-Z9@OMpzi#G+AC?*0rM`?g zmJ5{E;V>Sd{nV&wNL-G)`1jKH+lt0(BezG?dUIK~TXNqx3xYZ<%(pL~>$*y#>Et}& zSxpP1s+evAKWMT_a?0{9x+L}+>+t94{{Ys*`))y7QInxLiY|Tqk8Ipt!5Wed@L;OSNzP+Zp(-29oobE~MMDp+lupUR^lyhN}LQPmU_ri$z5g z9f6YW6fm&fB810rsgi{5dZKA8=JXOa6<}IWxGD!nEIm36wRe3h-2KtS1~4qh!}uy% zM3xF#-`v&Eon-10Br<3yGkD$|EhlZR{|Q0$A0Qr1m1c4sGx@_@pG!jtGW}TGWbE#% zzfPgcy_NIJusXc$M#AcA&l|ouB9INo+b;Ho5Ab60(;%=Ox8QrFFU{wPfchGl%W@)j-f+5Or~mLEZ6UUc94|*^To>4n5fF&M?-jNB@m{RGI^i-A z_Gp+1p?NVi9_Ujm#VQZBY9{|nzGwR2;74ZG&hC<3&GP-m;m(?X_FExCGwMClCNltg zYHl5+y^VJleS0O9zQvo!XQqG!_{b6c@3ellTu6EBK9p6q-ZQi~&j!T<9 zN<41uKiv0ID%jalV(8aNpNm?}DmwKG*J1B(^_Om8ZSwO8jr-iy_2hew=`V|uBN3h{ z@NA>9SrEd$*01An)uvXOr4Xf2KIFjyKNOZT^K9Q4FH_)sO+-jJ6l z#R@A8%0b^hK0&4}&(atHBq@^fcJ{>SRao~gSx zYQ2NJhvNPNMEan{gcjST&(@n?NIb?pp)Z;2rhM5cX}Q|PM}biyDUOWdv9lZm^rvb_ zt@dciv*=IN?ynM;9aUR?IkZ02*q*1f3Uw~Qi-mPg2j{1k%ZYw`rMESf8`V3Zx_g5v zw+31$J=La+YgJPWT;yAIYb-N3*uO~%?+%nMci~Gxp8oFr4ei~uueQ0L>T<8xzMTKx zW|Ff`uAUW9yrr;R+?fuEpf4JNzWL3`Ip*(p#XnSbv_LxklIZi}t=ReyN`Dvw4C67crYPy*q``&_!i2>`c1glZXN_G{ht-PyVP` zPDf+b?wdtkNyW)!-;5|Rbq$a7;2Bd!;V;ks0G*eWV}9pyS#=qH%~=yIA%9pNI+s4> z;!NlHk}+%@+>^HT`N8Td&t?j|#;=<2uF%@wrpMgqs-{@`{9oL=*f{MIl~uBRuad= zdEbrNj8glKPJOH(3J3uyY!gc!OD2hjplLR&)l1-No z_FeB(dWW9#&@{&vH0=17X7B#CN`qdDZQss%J-jy8=}P4{QNbgPO4DvCjJX%ebV9aY&XWUX|F+edV`?8e)-e$?Q@0>DoOY2yhw0Gk zk+QYdC&D2?z1iR7CJtB3!Dacpt?Ep-h6WWjEZ(C#9l(OOUn!jJexI?c{uLm&a&N!J z)6Ii>W&*S3O(mK3DBvyrdOp{1!7Xi+)3<8FU*ld=qXo}3THXlD$|^W| z%*}vSH=D<(s|(^emVAmR#VCmy>Sk*>Qc4niJHp9ss&xBLm&ewNpx)Kmp=KJ!CB=N3 z$7a6#?Z1J$E9neRx>L@52tYr@ZBNRrDwK4%rolhZFf8 z+EoZYVQTyCos(T5z4_v_Y{7bYe(s&z`lE}3uu>WQ&bvEM8-|g1R#fA)PO$&Wv4Y5o z9^0d-;rT&Rvv7{s9W}_3P6V3czd5Z%S%U-+mfqS=oaAAZMsWn{L#sQD~lloU3p3+~hHF{!wXyebU!0;Zui- z3_z%ueR1b@8B!?~DiG5+Rd5VNKKgM%T;7Qd-TGa9mo?<0To+7{Ev+AN`pdNLz%4KG zpIg7WPQ-}De*p32y4zLDl(x*b9DJ+cE!>`wcOd)C01u{olNpcwQ&LW_Mu1w%Z&0kiW2Quee~% zE{2|wt3qw0s*y%BRnH?=8NjNOwt zy#OQ9vS4y#R-Q2F$?JwRh3=DS9L}Ung{L^+ojOrQh41plpD(#U42~u##Ilh(N0;AF`lwe^_{;WCZ=~uh4f++;SH=t0Z<^ z8+hB=bK#c}xa`5zCo{;#?$+6GJYLIWQgE{quG|Mt*vNy@EbYDbcuxhHd4(QBym`=- z|KanbTQXH!Yqc~1>5Ykc9QUqLNw$q&;-;Ab} zvYFjc`u6Q9Mw<(UVWT;9xMHKP)^ITf{#2xU8U|^oQ=6 z&h_`LkKHf=-^z2<0~6Ht*>4PH@6PbG6(919Vz`{Zb@r=6sxNJvd0|)ma<9+{3+^6% zWs75(_n52dQ{f)CZC1dSI3&*IHmomN3{{XoWbh1v>J#gUnIztXUMx9X=(FDarjWu{ z(KuY$k#GF=Lza4-XES1PaT6Gp06xE#c8{S_s~Bdlv__XKcB<8A@>W5d1&em%@@%wN;|G+Ys&ZwNldE?OQ|7>!M=Y`~o_{mwmpcvvn$r?6p%*-Y-QH zRHQ`bK8RX84?&-^>8d-ehvO;cSl@e#0-_ePvZDW%xIjGJXU1dJzx2TcGew{}n$K1r z*(u~*`t091KsmRxD|6!43M=TMWLxgxZJm|^ZN;={8}z+hdJkvVD8)_#3$A^XC8^JH1Ruhn-MqxQE`5qQIUKJaE#@AZ>I>#uII ziz9po#vQLP!LX8)oLCp-Nu z;opf9iXZ&5AB}KLWeH5OSS$K>H0vaOf3X|__Ip8}bE$D6jS(~9(zDB$*EMnw`VU~( zac^qq>MO5pYxb5^d6^lXQ1P432fM~XfI|ERdP^F`QZKT1Tn z#bTxQhx`(6{s0H=uH1VlAKo+iWBGB$^ysYOc< zyR`hX)u(nz?5(eYd|0Kqg7;Oqk;ADx9^};yVJ+*uR=c}?QpA;Q1*PNWDdAThwE~;5 zK^C)<3Q3uino*L#UA|U4nt32}^3PRx`i^V+ld?6>k;C-UMva(j+=d&|8<#Q>sb9Ua z-kFYj$@s|wC@VC(I?W+TYR66I{)-DCs~<~?vfk|Z$o#zf6JohT99p+{C|$lVd~9&w zJ>oAvcQq~ICM)|-s1IST;x=$t9!1Gh>(camR4!Wc-?!q@v+ab3vGdKS;dZ%UQT1tg zC($nt95m!!vF0j0uTGX8=j<8kG`=MazKfpdeyF;5Kw+T*pc?M6?=PSF{w})mT6cl| zRbI#;EYO8bTjb+n@;$Ffkx%ymbKLiyj_X#qZ?& ze6sQQl}WC<$rL1mR(_SDOWh?evhQvA+zPJysw=ntY&uI2;Q;U57@Ja=GI-1~QF(t^tDH8(~+TLT^m^5@F}vWWrF z`gN1azjzC5gS%Fnc(7jK@PK=1Q^(4wdyK>5c(GRFaFXik!(h_5n?X(F^lh0gRX3H^ z^Rf|#FFbu!;q{$@^fUlXP$hq^>d1Swi4b3Kpj1SBMb&^s)>--Ox$hr@H~4N3Jq={- zYyF*8ADYqnye{Wno9nt#E$j51=UE#9rZHs;mv)F>epS3P-b zUuCu1zcC9Q=1A|Y;0JYjKSvHvr0G64ckYEqetNrrp_aU(Ke@4*d}fA`~ z8vfqqyZq>B+qa~RR3v-z)>Ms%F)XC3&cQu>oAKO6llqY9tyz3;A8T0dU2CB%UH-c-DhIl2^lM7Z--ynYTVcsp&I#{% z3}oXTe6p5)*lSZG(|xucoj{MttB=4nSC$4~Rtz6!+L#H{LNDC%2A-assGGu6J^praA(Y80Z}gzSyzq%%1R+ z-|&oZ|L?0gTR)zmX;n6>2ya+f*7aM1~+P_wb*3AyLFD|pI<8< zvMs+4|K#R3D?Gs@R{l{|Ah>>pDnZ}Xon z{Jl%P(enw@21gw~;^uwn`EP>nN&y}Th5(v^FS2v~w^dWehR$@xyN-VkFJLF$QeT5yP9Ni%cZ@REcFG3hpz0YwX*u*y$^J4>rtBm#!fwJRfA`^>L@Y=BrNY`Gi=>1|DRMY^Gc$FtgtBtz)yN zvZ_5^#19uN@tV3n((c+gRbGxdFSpWG{|FIUJG48?aa(b`1-Gv`vA%8US}=VB0Q=1r zv8Ttcy8B%QeqL@!wrcw|FuYLSm71;udh~0h<;!%E`CJv@T&YCTV}hd>k=9=?Z^&M) z_J}lBPsSe16s(jVb1g@O?VY5PQQ`);D6PXg z!Ep6C>)g;-TI_I4{0YN+{(I)b*5xA~i!TGqGGBxt)f1AtakSepwzJLY5gq5?zBB5C zmfSPxLVh$T=4m|Nd9qXp@3b`3&!~TIOckr{okyPZ> zpU+yJI)6bT)M?x&6e(?Z1CHMql^r`|l2_^n?yV5G*7?-#Jsq zkj9F&roKQeoBXro ze&=puRXgDl6KFi_)K?aG5|AS%hgNNrO2PW#xkt(d;lnC0)S6hFg?oDFzhv~7(=HAD zkdoGvwi=X>rGfPLZu!kytk8m5#IOG(K)kIIt20JyV~Ru(|BXhiUmzy1cg(Y!@h1Q z9-{l4jZ%$#-XqXmh@ab2^~vLfW!iEiO%4@!urFn7*AzkcZCkTu`(Z5+Y_^ z!W6hD%*W@G5?6n6Rc2|(xNfM``X$5i7L0_Dby9Hmwnr;$%Yjc;%_MRl@3qT&23cd& zUO{fxi6p%z%WfZUGiM#NCZLus6B?Q-Yp`mRCJo2>TMSG$tw@A_8~$qE%zqFyyZ_O* ze`C2v1N1EH`>P7w?}i&+j~f=&O2=ouGL^i}3yvZM?U{_6@^uhZM4kaeBw|KX=N$oW zeAmQR`5PefG!!`^#&*3|Qxn3Cek22{6-MfI{muP-wOw@wnZd5ENVi(Pq%L$=BN;>6 zQL#ySq=_YW!DkzYJ5y{{zAyAsgouhjSp3}a%|nK{@u0e~%K?%tov3362ky+<3-sMh>~o?}gMY=N(QL>AuAYt6VhhYu@vO zM&}=yC7LF?6}ek^AGbwJ{(G2Qfdr*OE}Y}Pk`biI$C z+)>Z9KUMqQlVX>XB$L^sQg0-%gfzrD<>v;!b9y0KMt29+x5wb z?Yv<;Z%xT;=C*SXVAOE=GsHYjtRzC3%B)s{9*aM4KzenU2PJ-fBEVLk_M?#B|J%AL z`5x^$uKx$!#z)P{bmhVFS{Jt+_KTkuI6g{Ux@bRepX}$}ek$XD!=$pI+%sH-r1;oi1!B+?CXrR5q)N;K)5-3fZty)4^e{KI z?9nXR`O&XEHOuX+85I)_9nEMm&(4=Bbn+u~xkZeJLB zbfYHnAe3XsP3kdA?aHA7N#nC0cHsO+9?`0#6Z7`){=IjjyuOQ}drR+!PTbv`TCI+5 z9>lp_jClT52=2+@!|D~+S*-nSairB$S43jjX?LKi13=T+6W{aP)AMFQ$Z3A42a2Ls ziKpbZk1O#?e#g1wy%cj6IP?h_{`Hu8X-ZdXX`n2p*}eXohmmTTeU{~ZV80@8Llx>i zK%Du|eRV*M4}(a%dUi=+3tO$D6-DX^50ZvO!mMnLv8`DdqnBHPee)!WH@dmayb< z3Y34E8M1fsoPshg;vDc4ivu_#jeTveB6b!mhku&5b3SZsj%ZddOofHP%rl1r@k`5| z(UHYZSctEtQkw3ls^u71#dQ0a43$~z=xkw%cv~$G;Bdu-Np^VCy+ZX}!rZuHsH$az z1Z&jplRms0&&J=8+63TZ^r*X9dK0Hv1XO_*Yl54>xB>4I#j$CkVYm2iHQTZRrWLS) zCxJ+Id}7Z->>MRbQL}NvO7qb)*{@jpmqvdKGJ&yqhg+z0@LTreGYst-i(9V|+*FkOlfnvq&_{=~nX+-mDm;P3uue;2#ybM)eE#lo{_ z@tW<`Znq^(65+P6$^61xYCpc&sf*hIk7fS8(Woy*{#$=RGDJ%pE{9G$Bc`Xv7Z85Bd^xL7i0DHeBem7V^~T3YdTziZ0yXW7<{ zRlt$+ZTrP$_%W%EfSFh%kkDW{M5~*9PZc6?Z}bNsF~eQj<6Oe&YNzP;SzhmTp7vK> zBt#33HO8&+U4mXT_2_0^%(FArC28)U0uE18djvLn8cLK7-!-G_bBw-_=zyv-q+b;3 zH-_qGIvH8mm3qtlTC!cJynLT(>}um%kbg*V(r~k@$IJc%bvEtVwA)_rwB198#&a<; zz^k~^jh_wUZ|}K-H`{m?mcF#Hq$e{B`Tx#aHWw_6#g{gYbL|(O3(uRy zsnFndDgF6`VW6>a+5a|eX)x+&UUYfm>R||X@v&4+F+~dp29dS9TJ3WsSl0k6dU*qWw85O}WpSE#Fi*WSdS)cLsxDwc>`sX!#R!VL&^?u>R5$CI zp#N5S|NhA=`Q-d1xz~=#(Bswkxu=f_dvG4LKgtEIW%7A~CDRy}4I6?~zW$j#GyFh< z|GXP)uK-t{$n^wjU&HmndpwU7I;n8sj$!)_PH-5Rhcn?#-ZIK)%zsUAw>Ia^X*-Ek zyCJDih|TVte#b7q>*}1`sE@r7zPx)NJbt{%@wUfUhZSkU#D6=N!@naZc zyoXqy?pF%?=TooPcQTkVxlb!6Bw4&sF{5aiyYutnt6uuLSiRny)!%z1MmnuVUlNa+ zdsZr;*KGWe-O=Vt9f(3-_F-M;23PDG*ToRGtpM@M2P-S4-4jFT#wJucGbyRludhFu z8|$?12evFR@AP+ZL~fB_9btzx5^GEINItG)$S9xZ{ajPydG%gh*@JO)p2^jnZX%Rw z_{2P@g@(y(=0&ip!&0f|lCer*me+((k^j>N=_Wp|^hdLWT1=CME}hq3`TK2M!`oATm1=YLPiE|-b63S_|gdcGs-^CvQ&~CmFQ>se4h-I9X`D z#QO9rt=}sK%oLOTn!FYr9>Jjlwae}S#}rFTwI8&JvM-Dm&%HW%ISVR+e-wdlT|(rg zS8am>h?d@rH>g}EQBY?>#+W>xFiInASI?bw4t%#^5w8_rVq>CCB2)ELzQ;lpA*}|g zza8!DqX2%^R(wcLRb-Z?QN&sZ#U?}cT8{m$TW(|pE!5abQ+Txa!~lZ>Zqnb+?{~d> z|GcQ$JzcSSO~cJWb}Z=<>+qL?CsO3fKK*#woceR3?cN`QM2mw|ZSn0EbN8jBKH2@a z58pcRw3DS@t+~5o___)(4)wfUFHXK!;enJS|5UOOnz6UOTHs->bZ5mg{B!YQ;+Jo` z=3aufXX&P&96J6-pWC;iCj0trOmuoY9#U~zqVnnQo%3PVEu%Y^BWsFq5I=>?FvJEG z1G`4F+DNs9Q4NL=@eDnT;93(KclA;w`jonb7oDi_@Qgqz0C%l$E408pxF&D**}a-~ zb~1{5E>C-u{Tw!2obxS`OLwU3AvpjF5oUl2{9=mP4yF6@BKaKRJb-uZ?~y}GDO^!@&+x!8b$ z&rk9aBl(*aw}>YasAjp|kzk+PL?H@^7Dn^atlnKyzk*Lbg01p*SP8dz_`e>ic;~c8 z+>x&WNpR{7f0SW%RUoJ25KJysg%mq|eD3bSu?iV?6Q(ei4%3WZP2R{loEkTz2c*IB z;>VT?NrU7Dk*SUB?`jn}%=N^@{t$wOo`Ze0^&_~GdGIMB(|8QyN$+|~S!rnKC06wx z5yfPx$a8N&iuUF8tGTUh_@}%KKj|z4V<(^;m!{=IsAeX2fwzx8e}%FIH1rRzc29dX zyz;%vP7-4ZWs8`j`F!zC=j+1NuJ=ys0BZ5#h+kH4x`BeAI{bB75QntMjzn>yHT~?k zwxo>NYIAc`!>0-8k0r98C@#wq}o{ zESuw5(A01APj+WmyFKEUGOWdnI(imtGOZVZ>lq(J9np9`ziKv99b8_DtJwGuVJe1_ z!WbQr;E*{tow_jVTr)+8IOo`gMd(QuU*!J$SSgWy*KhuGpfF43tvQnyxJDyOU5Av! z=Y_IvuhUzzt`8L{If0eJIVm1|ZH-Ic+CNS|wYiGvP-Zc=oFaitv+qqh_HX++hHUXG zo8BbLcn%Kc`f$3$`O_hC$v-!%P7NGWbnp1TZ!ufq2`Lgz!%7mK*xOE4N1iX~7BfEZ z4@@2jYVhrA{?l|nu9J9w2k)ZbQ;O;yIU@l-dv0PZPrnOp64PxSobQdRiw+%6?23<% zFk3tITtpm^(Si65{{3e^TZE>QsOs$9=r?K@s=FCNk9FD*t&~gB79GBR#>NoYKAE~e zUd^V;E)V&qA0>21FBwWEf}udZtE67w8vM$~pHzy^|CgA%QEs1m=b@mBIcXE9_nXKu z!ZLW$l6}OYX*qgBWGSIdtHwmd*VI}dA|xt9fE>Q?o0t<|`}wLFa!p_ruEdk(Y<*>05pn|G`BO?a31lzWF$6ZD=~Rla>f|;VO!qN)+Uh>H99=Z3i(JcpKR7WiX9!82E z2vbqwPD`uz@zpTys}NQmqpAi%ZlDBksm^nkt@3M-6wVqslQ8LQ#nQ(QMUIR;PwB6? z5+qsnPvCx0+LSflWuV&jvr$%cb72o=EJ;JP!(4RI!5g=DNWQq{ZZJ30P(`hN*?46Q zxqdrOqKtje7B`S~nWK3ibTn}==XFejz3)pQwyHBHF5YaA5NWy$azn;OX1K?=ZeG4| z6?>~{S3g2$fATq_N2G#%r>j1@#lE^)vU!zSc%ZH`Fj;P&*MoXckBv%@ac7*N-#Y7t zngMyMSr>ggy{br6^pqsAa#nMqx_Mx3wl%26lICaxQreij`G9lQdui0C>k4Z!Y=CSX z?^a!gI$cGPL~0tBkzw}k!Iw)9Jvx+IHPgO}TPw^|OnxL*=J3AxJmijs(i2_HTi`h+ z=u^|<71X4)l(g^VW8e0|`U(b#)H0mFw`GfKlxQz7bbB66x($=W*CAw$`7BN|cqm+5 zFzz*o7oQdq?yRlt>m#U^`##<0PI-?w^$9Os%8;9B6`37!UZy?CE@WFmpkcvnM0oDB z;(*KBJU=%~)j1Ay4JQQ=#?g~QKzif~5CDP$$_>$b+ysm2j-~rd4+CZKIxQ6jzT*Yx zr((#;cuRPgB2(IJL@$;MxQ2G9;dZ4pbr5*9>kS|3UQ`WIEMDbHve*!Wnj?Z>46|Wx zziwEIqwA@yj41!@$rP@w)U@y|D}`lG0@LC_wxk^U;HZH$K}Pd0NaL{`!+CK@Q%u1h zLEmkL@k1SeC)%jl$Xr}ak0>tkTu&$^Os2Bw*?ZIP$2xvGyjrg=qNo;6Xc5k$3WJM! zxA*YzwQJxlry+&=d&>bY+rnk~ zk;rB@g!7H*kLSv!^b_=R@sM0SkO&s`2RO*uISLGW4d-^J<(pN07!r%w2w_rQm%EK4 zeAbi-EgtA5n=?GLh0^V$X`L`7yw7KS`N3Rn_`B(DXwA>3aR;p1W{NL@cLp@*zjw}j zH$6lQ+{ONm@iWqZcn`N(VQ+i>`Y7tuT>a%LMgqDeoOR_RvEg)3*((ztf0pE=$YG{J z?8!9D<-8a9=6P3#`~00Q;byAzu}_Ch=AC2`5t9G4had^!SR1J{8s@~wR^&QO|SQz>7 zfNO!Y(UbGr@c-OrJyP-3ZPBV-zZv(~r_T9qnrc@K*{Y8%a_WN1D5?k%By#jD7Z}IR zFbWfL(ZKy#IRs|)W)vz3^gw4S>g41IVqt|I%J6}?SRBOxWb=D%5vWnS-H4qhGxY<@#tg4#j}p|+g=C7nYg7Hor$kI(R0VKDR3~cz^+*l$ z#cj6?gTGZP>{2@}!eE{z9N~xf43&YaiElo6^%Y=VgLz0n%X{!v#Jv9$gxQcrYsAiP zNIDfb=`8ZTVc)6E}=0+Ss2HO_ZbB_9Sce1X`b9!iblE`MAl8#A9u3WNdyp6DVMH z`MmX)edB`QSI?6vXu*;)pYCFp&*>flEQuK8|gU6B;@lsjC59Zr`YA0WhN#iUM zI_5&_Lw>sAME>WLf2iNt!{|POm?`2^+}sY4d(*P;*>VQZFew236(%I6&#$-od#25R)um}yEadKx&wq}Tb%>$Rg?Yqrre1uHH3{AyS*JPUzwdGCPqp4NbzGYAx1y!CFA@| zhXxt{mYL(O6R+zUt+2a<@l}N6A6Qco)y&>+AJbh*&x#~QXlivqUtc+ifK(PC{01JU zjnErqgLSr_89WFcKp(_!Z`qlfcm2*h-oC6^JX)sTSq)|RJnA9p&L*yhr`7dIM$4wC z+eHh?)o3>~|HMOON?nsuODTy*zS|3?N~uv&&0_;K!HHI9jVB5Yd@24@g!a8YM^auA zZdMi~msk@K`}ob%`(MgRY8A)&7BW=UUlU{{fmIzbKNNo)^V$}t_>=!ugUHcna4_jnWkB!mi?u3O|Mvo`E8_L3 z(PHO5H9q6PA2fJBWT}?VwK0lVK_7bwG+>$=0Ipzo zSxR;}yG1K`(`)Hz^Byv(A(=l`;*e34BiE3l_i#1A*xVf_ zaNF$V(%3GL?zs7QBy3nm=_7l83V}0e3a;l;_aOhKt6ndTU0fKX962aP4APTI1qpIy ze=o9OGtNlUkl_992Y)h}|?|e4KL~($wO$AwhW* ztPzwJ%wfdDPc<#3lvQ=(+Gly32XXs7zRF71S`e)1F*GComPNG%`PamhSctK3(gdJSJaxkxGdHSfAn<`RWMCo;+2_$zgtmsE} zC77RgrJjc)8D5PC7Xw0;U7ka4hnNZ~sDSdG{@0`>p9`Lc3fE=lryMSsMJgZiZ^m6e zVRG|`O*ziAbE{Hti3n%RSC8$3LWE3h-mw$aIZ10Xs^VqjUGT`3$zn5%{Jvz?4&l7@ zan~L0;bj1qAt0qTj<}bNuUpm6H+8ZkKzJZ)E_BU8yb*S;mdkGn6`1kh24?KF9>-Tb zbm`zN$^3<>SLHJVSo6Y4`kMA#f-z)0Lq}urv#0KME%U5_0antJs80pHrd=*!{QkH= zvG5oAa*>^udHOAL(UA9Po;Rp>Uyo24tp~)9X^i^#_;84YdjxGQWt%>5LAE z&siO&&lxmg0NaKA?uOlLU@-j<9ZmSNs)bDtL#aq9_c@~!-J z9^}=B$rNth+sm3AUbTN7f6If1yA?Z}JNzx&{2P>PqQH38y~QEvwy7SVT@fE=ZGIdd zp{l9+rmU>Y)y=N1CaTIzRbGwg9{u8Gn3)ZyGcT8@f^=@59-R5;&BF3`#`$9- z6ne3oU}kr4gP~OYhQD$;BH!vq4ybjZZ|tf=<5V`s_tCtM^9+Ywaye*PB$OvunrpT) zP*}x*+(*7uh^0!{=+*}R7ch4Vwiu`#gr3G+|ErD2hb?U25~dWugh1O_Y>`fra5=fb zuy5WlShQhLEheu>qy#+5QAi+)prU1piPKZ$qK_p2u+1Vw70!zlR`!UeNS)CNy|5|8 zdlU{YGiPpjxCI_tr>OUqvYS>`n|Ew~ai^^wz-L4Px6l2a$FRr|T`7$!=h zP9q4uR6K4XuLy4Ogi{pv;f^|hVD{eQR+1#U>8tvB!Dh zP$|)6VUjNG$p}iCIWaG5TIau`*$T)Wia81e)UoM9oj688<$9A1^`9w(oZKvCN2Ke} zn{=A~>_OD5_7Y}F9b>B^7Q`boxnY8fkV z%_?8xc2WhvRVL~aEhi!3a_T2t#N?PwZHMr7rr(4^r5MiH^YO(<7t?iS3w3sW5TYg6 zdCfI(bi^tV?@d$l+nXQAD0?Bh1{!@$+@R+VFG_faNFj=j-T0ygv7K9WbaftrwitaF zq2A*OnO6=qNi^U9#^*{PkUBVio&lGJ(4z> zk&6@ibQkzyxb}*Dw7XeT>C}&vupL#ZE#gB7;to69XRPVX?*hFE%%`J)PGee z$u-s5od^7&833L&FuQ!PWBlh-#s_;10VFe=ky;W+rzOGD)h_rJ|OnQ(!REXF{3(AguN-b zj1t#548Cob|GKTwF6_uG+4qZ&25tybJlcafCdgNC$`}8Iba9l^REc8Y#tVJ7`W>J^ zroybzTe}z1@MiQ`X1~f86AzpxUtF&(-aYM4v2ka}CynRn5mI!PScmfTjufm-p0ePEhYSRh^uL_&Z{JI1W9Vxw`CnP3mA6<-- z@yt+m#^6!bvg&-Au+&2?3H%v)=Gl7s(fL>}?bY3#OD6Q((YG4qf=te)UL*GBWro{9 zSGUw>Q$bs=4-Rbt3*UZ96R(}hK)PTk^*^$xOY&(?g4;&er*?w0TN{ZBCB_V>T822 zsv;`5E^S$Dr#3LftGdX5?Ny!e6qNEJlf3p*VSbe4Y*aAVIkc!8Y?A@Sr$R7%l`VYp z%&K}(v(K5ey1~b4rxAqYTC=UHa~d5W9-ig{`5|y^(lTE)4@#cxl^7;?ugivBoE`Bc zKP4HQkiPC$Gt>M=q7a%w^cU2AkAK!Kl!yMFvjQmn-LanICt7oI?tqDS`sg4`lwYsg zmr1?oJ<($*zPT?UuAmni)|@(9&w`S1TEWbKNZ3qbMuroe=hUGfRe*E7Xo(vYOr`dv z{tqs(Kk2WHT|KMh(k$IYXH48Od%iTj>kP>x&XR8Y2A&AILWRFqZQ$H!WJ`feoau_7ZPT6#VUI=85jdzdYOZ&;WEFKT4jP*_> zR!VRsyKa4H{05q{VGIOYGr9rbc22B$P`VS_v%a4>vNbo z+>kWN`1QI|76(9%4dqRN(krsT5cYJFiuwx9@h{`4?j`3D7HC=M)$YPQj_Gg|@G88f z=FX3K#Tz&@`~n{4#%G?%)gHhKP~2Tj25km<^C0Hk= z5+OPA%Ag_D$(h%*<}g}4a?J1qD{HQ2DWAZ@vIYXO#5>ZhDCSaFB>pSV4+AK#adKHm zJXgsGmI4VPPT>Ip#%mtoC|$zi_?i;3(xG`DJBbiC{SmKTd69>=N*T{*F}hnWf-Wk> zTr@E&g;EK@Lu)T4!gwS4L@KxdW=J&+GV5meHm|Z;A>~#4Bow)uF}0d*js+sK{o*^> zV2zpak*Y`?uI>+qbD|ARZ82SOVnf)?>Wf~1xQ>L*NCQ9o?OQ0Wdu!|q*7P%0Wq;l7 zsd#3;t|3g+ubmLT#_4Kp8h{QjIX`d{aKEA6pt28z?Jr+ihaUy0Wk!i84*xGDG zD*4y;1vX;xkws_n#OEpA#)^k^?=q)i16TY)QaJFbDIt1iaOVph-g>tHN_V`5 z;Moxzj{uX7k8kLw$%q&h=EA5f%;IqsrliqPPKSU1NJ_k6W++1eXP1H-KP*-4P{F-TYE$l`mrw$J*S9R)VGgPYWf^x(su?LMp z4FfUP6ABlbi|Eo0h>F8Z3A-bcLS$Ome8#flRry){^5m<2I{_x`7f`!w-*oi_H9H2k z#bI0FlGVh$a!5@C(z#NNc=8@BikzH~wHuqbkU%6>BvvR~lQr(QeStF$3E}ts%Lz9b8G$=pNNeP}o$0 zI+X&Ig4}Q-Zs-QiJB9lLO>iMF`@7uF{f%}D=mIcQec4kA6QKsBH+nSzrsnSL-Zer) zOW{~fVVse5a53ww#+RR-Xo}IHtLaMSg|Q)6@ylfk@idv=4BuMB-R|>JqdCM7-!0X_ zqmCt=6-Z8-?gE0>(k0v_@tt~102xefS3Ft*APSw}0u>Ji&jK8iS!nV>l6zdyQ38GN z$z(rxxrz#=5ZUFFS~(HP6Uh_yl95VC&Hd-OqU}>Thp-wnXI9#_6=qa6YOt0hZ$fm+ETx><~vZ# z3LC+tD+Ab%RPZu};KcFaeFy_1Tvcb72^_C6S0j&%*7_*Q!a&JvxmhB}+rA=k1bwRr zrj5${sual;HVIwXrCn_3&@lr17gTF@$Cf}3Kv>yzVsql*GOekk{r3RK}4gExwKe(K;zDs2ezjwp%xb5p?hf5p(LwB1*;qZL6 zH`O+6l#ErEXyNiBrH2&wj=T%#$b5cqfhrO+I2${JhsWHDqlrzItWMyJkNwUbp$J!l zC=(#_Bzfry>!WkoRl8~NoO!mi&`FPxP+`zLt_0Bom{Yjev8jC*&P)BK+#7f)PiqoC z1g6t-Y$&Q5F$Ep~Oa{XdLgj>0Jb5o53!!MyL#feIhwI@(52kNh^6@nsbLC8v>9H&o zFH3sHlIWaeWa|k&mdx-<$nb!Ohar5udBdbIY#}W=9N)ER5YNmg(h^GK*}C9tNnHwJ zAM^B-?~#){*`m|g!qrJNkB%1VHTMe)*~M+nE1ol({DnmB@I#{U{h z`dB14J5|h)$^gj}TQ;rrn%29V!Zy3h)2Z+oSpkrnnw)4Ts!#1-E}}5}!CR3ZUpEhG z1A97$5h?*6p1dk^EFPSihx1n(sO*7YH0&X8#CN8J0z|zerZ_8n5sCgl1*>!pLtqgm zmf(8o7yIaO*(T5)D*hNsq%>Z0~iY+ zH^=5eSHm3?6ti0Nun)*Ns$rT+SXu~em~O)Rskf6)N4>U8n2pCSt!HM`%;o7d4Q)$A zM@TEce>9PwKS`F0s!(YCysut<%71F_;x(-m9Bc@2@0Jco2Od(7Djaats3^s2```|m z*gTO~3Y{epT;VZL0?(2-J$`a)mY=zhK5`)Eve7yig0(@|-EV6CO04ml2)C_fD}iKL z9VQ%(3(-^OxtBMDFLu+FauY{(qx27QX>089?Xy4G0|%&mtMpT~(a`c!*$x@?!Zupx zX=wCP5egZPYR&iyBE=})=3U=S1)!e9qHdMG{|ucnDv&)d)N8p>F(O;kM8)V?-%YYy zrCj?dvMh2`9zH(%PH;D|Fn^Jjvp$nIa1mW}GjJL`fU(k;3j|qy~JOC3H zxBw#x`J6<))(_}jY_Y^e;*4MD@W+I4%8i1-?Rw>Jzsy8bNYRLY5!101Y-E z5wbr}-IIM-)`PzwBq4q1#QYz5=j!(*M{BnsdM>wlz-65vZtHh#Jo4kWe?jAX;w?1i zoAc+FelNDc5`RHSe?hmW9amfM0G9bTuYE(?W~V-Sk7?V+3+|6A%wAvD0HK?fZcyVf{##EM!GS& z*%lUDHKqeu3?BPyBLK*ymEqgJAh|51GM4?}oFA)yLA#j?yd9PDcel49@lk(4^Od^u z|LN##d=1LVLf#5cbw+^^%Br^KBBBkI1J%#DQJ5!Nqz?$%mxU5_98wgWp=!l$tA0Iw|{RPDW z=Q_pvqmUIHwWw(fU?U!X2CPoLi~a@a`Th)@1gs0)OLjM5A@3w#1XVabB(l0pzxE|K zJ|vmGNbk5h(@!}h(!ET%_EqWtZ2NZWF8iMiO8k!vZvF+u$rmY*T>z%~C1)CgvAE6q z@gGb6H`qlMK+nJ>!uoE}el|C1Yk#gEnfx<)`BiCv&&||c_ab&W<&a6fr{tx_MO+0- zt?xhE;p@18em}XJ+yj0z&8q`QDadBRyD6hT((yR|ZT7Ro^0o5+I$=DD4;;=ywPvr4 z=Mkc65%R0R3+EW9;6IQ01=tuX%OPMpfKrMS@GoL3Z-#EAF1GTX01pO6B|pvHle2%3bBuqs$0H0JyRfz;cV42I5}8$1=?n zpt~XRNGHJ8UMJm6O)J` z+`5=MH_1jrZ}UnwZu5#zA4}+U_klE!BH*uL0P8Wk&E<~yr;7+wEzSR^R{jbwkb51A zgl|Iu7vf)3|&t10az+ce7 z@t>YsX%MRNFX-O}F)-!G|Bku#r31taj07<737lKhy451{@$Mug**|M0L!Ex-lD|<1 ziW#{@Pp|Ek_w(8`{PXv_^ovL}R1QMmC7_AFplMbBJ;-wA zzchi|Mx4QgS)+tueXDZ z+rKRjTW3NsAqcAw>%T2oSyn++Cs$twZ{Qoqws%l*u=B8YU=`GIaDV2DWR(Qiww^p; z{qGOqfB#M3Vz!}n!mkzCRS;j|4=0^3I{dAQ#20t5f0HzM&bY*v;B&weleCcx@ zk^D7pkXp?V&2G2p0alFftd~^c#y$w*IJzYoczd}LF!wPgfOA_jXu?H#utVSXA-#9AIkbf=+FP`c# zdH)jS`Bqt1NaQ%H$D~9M_SCr9ZY(!$>IE(38-&s^&T!p_HeZCpw4tu;t0evVs0@L5 zuASyC5lNosjcyRu<==uURU>O#;XI|S9={?-GH*HOTxZWXKbgOgS&>>**7le7?zt?@2=D4Sygt%AIp)Qba?=s<@e%M*aCm+4{VB zv9yoLD3FPEKNOV~IQK}IuAD~R59F8fP5Iip@McJbI(^ShRv+ z*PioT;D%O_+X21_+HF>(KzXwK_V^||P9YNH#H}N87^wg<2esVr`_qt1Azo7IFj0K) zRK4%=F+zy{XYcq`eV5Bxy~_2IvDnx2x;n4>f-7Pjy?dKD`%P<^su`yVH9wFC5^mIX z8&Imgk5}xYgY(%i%6bmzDJDGCdHac$56q*KC~0ULe{Dnx*3IuMT5rczO~R}0{xVln zAyjkT%G+8PK~eEDpWYlP7}tmXh%>ev>oUmNcyY~xt<=WHg9yiQr~cDZk9TSkepDu>dg=C)Un_9?!jIYc8I|A$a$i~GwOEcbJZ#A*dVIa9CnLGlh*S)j0C=c>5qLXZkbQ9J2Wgo6LwsYo7L zNR)g=^P2FB5*>t+HkV|Th!sO3#uJw7Z>Gd9hflt zmQK$^@rOFdV1JUrx{uzt2GlqwOpar|&zde_pw<-;hLGBW?9hfAvqr}=d00vvU?rx( zDT}QA(~rd%h$Hl@$9V&FQKI|kpkVh zBE);cqJueFS2Bc~BgSeJE&PI~Z`%{Qft>vIxCd*<|M6UeKF_bU9Pk!ZtFq zc6Had<8L7W%6X7v=OVp*@4O4v`&E7iW{&sGnWz)&$BSS)kz0|i4&4WWHrJ=DFH*nU zew9lcxwkrRvk2|(65v*SB6L{#uq|PCspqBX%53%ck0EM-Upnn;EX09@9~k75-HtgQ ztlw$XBN)=3Va4(!H~h%W7H0TAguMq;lg-vB9IA8(5UL=(gx-5Kp|?On6G2L75;_Pd z3J3_H_bNyap(9<2ARPn&=^)Y+DJmen_~$+MJLmiEx_8}wvR3lUJhNv{%dEZk?DGEQ zRNYosJ$#1BrT#zm zo08nRk(c(Czy6N!ync2GR#otCneM)fZ5;YI|G}4u;YL6h72T*i@$l@T=^Ut*6^T_l zwu0f>d~ZFa(wmWz z1!)WZRsDU=hlb;d-2yp3UuXy1?f8psmS|&KoY$MTq&i3&5BU5^W=?oPoG#pmn*()k|y%9?^`-~JnNk`ht3c;fx;r%a8#)`MTP zQ3Kx(Z|p4yK1f!sI_)}%RT^B`y`w@6-8|Fv^=ck|`ZLk3X7fCioxnUcjIn_(f8b|5 zW$xJrz4^l1LY=K&wUTngNgnFQrNY4-bmV_^O>zbV%$YxCz3#D&9@u$T|3%LAWR#}t z3OfD>wEWwB{!?b#G=Hj|d-+fxRlyw74g! zpWe#7jic>;zxZuWz_IhJ^5WH2+waK^DIM9Tn|?-7a}9Mid~Qa}L;FA1a_neIek8h? zxcAsehKH;@W4}N0KvKc_^VYcjj_#M$I&w*c0^4F`n~VV194pt|8}-YUg=)_#s|L63 zEVm9@#^ZrM6|-#4e;}ik5^}kgvGIfUw&MtU+VMl5_Zn8U;uU`dhFTkbUVZy;cTN83 z`}_Cr6nIVUmEX9-Y|}=JtK4njziuo8WiQsYwzp^~wRUp8dzwG(EoIV2#iTwPzkc$N z7{wiHD*ww{cY^OuB+pb3jB!&gxy=UAq@dv;L;GWQe(gE`gr+1^ST;KYo!&Zztm;W$ zlKHH4IzvQH($~b@DgTEBAZ|%AVg1 z?B}dVTaNzQryJ@)@;76K!M*&G__7=Y~`|8^@b)AOV#Te_~8~D}FHtUZ@WOb_} zhm+c2n6@ev(EiqM;ARRuAVJ&o&~5N|e{n71Ox^kaBs8SOCI1gX!xBenARTee%*+BD z{QpII=%Vaha1@Azn-h*Fz)>GK@^_d0iweu_aVT>olZ5%>I0u^1P}zpD5@R^ih42P=oA zp$W%*FJB~woT#LT<3F<{rywdLD~oh+lyQ(2=8zPZloS(}5ffJs5tmn#lu?wC`8S8f zg+u7;ybTTi)A0Xw!ceGxhW4-8e*UJ& z|L(^BwYJ|sM5>r6($6cv7q_@bXYPLkxZWs2yc`2ixb340QQ^Xsh&s7B zDT+(rwvVKohL()1oP-4QzJivVriQpQR9sd|MoUg!;oq>jo__xJo{q?W!@B)9tit~j zR`EWLGxqoLg?o8g{4*|6f|X| z6{Iy~6vQ?|A?9j^=v(UhHt|NRXJcgY+HCCwqT?0;vAAr2$UwaW(M%E(0O~`2R@+ zxF-Ta+&2Ls5#c|Hh?wYKiJ17#9g;hDh)GGw$Vf>k{`Z7OKtMo5NJL6ZOiD>kN=`{l zg-g`b|Ely~KNSBf_rJsaC-?U~07!!WlVFDc4+y{q;t>Gx{`Ldj;)a7yfQN_ouc7?& zMMO+^2cLih4?v15{a5;1S~E5fI`L;1d$zV1fT+h=9bj08TmyF8Vtf zFiDU-w~r6i<-@V*_vRl<$4%^}`6h-)5;Y#V;XDKwQ%Rd;$PI9zGEs4k0N3 z56Foxp+O5Hu=n8#pOT~_OetzGO`SF)(k$+!CtmlBka}4HfrI`o0VoJ?pg;m3Kn-y7 zN;kztnqt(oWQ6nf*clyDs+M9mUsw7&i(5a9WJ^9;6lx(~<*f5+Z&yVtpa{OAt2ISe zU0F2@XouaveLl5XSFJMlUA$u(Hd6QtK=z%+?d|9m_TBni>;whv^M-H(3+YkNFS_SE zH}ac}#V0Ztj^r{!t!=`{k)o#Gmlzs8B9I#NM$t7~q6I0#QudG`k$ia5_l0XjEl`{M z+_rF7(LKP&%5xxkY#3|8_sUmB%*5w~!R7PU(oZQ{9rRtVdj%^aMHX|pNV#aA@EYHA z$9)DGHPVrNkI<9*t~?CdhZMx%7iJjG6hAgQO-CA} z0f|Do^6JU=T)Kn7PbT~pL(&E07?k7me>4>Otyc}tcqkU0;jNSdVJf3&6>BEP?mu&% zSBbZqL`ofU3#K_Z)DMgJvG#O=mw)cD8bR|@wjuImn>w?I1;`k#c6u=`M{v(P8%_X<;Ta_^`WRfA7Kv(l0`A5{3Z@%`@cH)4yvee+@!Rgr zOyuf71>Y4Njd6{Lh%MN`yuK_}5^H&DRoxg(&hk+=ESCpUT2s7j@noM&mFPy z28{%^5N$KkB)27_1C3{aFO1MhOm;a8{g%NMys{|n30fqOZuu{OXHY8fWk2o$&At1* zrJxKgA@OVmLR6F!TvWHMq7tg)4|&C!pxW{HQz`jW)hfe!>&~W8TMiHWSGet7;thz{ zq(pqzF_%+L95QQhCJqTQK)$$sRIWDkMov`8Q$tG#SXO_Bw13$2fvCMDWBUC6{UIC7m65UEM?uA*UFMEktf?TlKp9`e56y|61{*0 z+aqvt{jOQtZWFMH9{Ui}L-}u4_8aIUq4=);WbIrq_`5(h{Kl*VwL6aST@Gbp1^}&& zWjBgbn#dv(VqfF{&3eAS;n<2XwG2S9f)^=rN<5oKtR+oGF_&*r1-Tq=LjiJme&;&E z-Aiu_a(Tehw4CyU&*kXIFz7b8ZILJC#hkCka}7x-Q|Kgk`|f^m(XIT+O~^-=9o63L zIFEi(A7J4@)!|m79)_~{3IR0xjm;U-GIf!xl+|dPmR}0z7M1OUPtk`i!u!_Em~2-G z+Zu!_F6N}rlHm~+^f%=(PZak)2<`A4_x^8KO3#zCYh#Gm9}MH$rj_if&*vz|)d{S+u%UQ+yWl*CZ704MY(tC=Byx9&Uo%DR0^FV;zdV&MyU|7zrLKYh z)iGY+s~LIvE=;61NpY}6PE>~PL{cSdK$wbwaeL~*3Qmq6l+ zuq;?KE!gPclyB$NpI6SAvEK@78-i@ycFWH{nrBc#K3|aX`K24I!(Nat&tQl9)4e@P zM-$a2bL0)Yz18zmKtK(PBUMaKzL+{gZ)BFuiaZ)$v@QM}v(nLN-I=xuE@pDw-Y3wV zygbCCWnYWFV@?(pY(+AnSrqc<;cwfjPwL^kMT(h73{G?5cb{g5ZD((gC?ihy0PAwA zf=AAq-`@^<;Do4*q&0l6Y6w7IO=K6hyS)^QuW_*-FepsxPZT_XTxC|V zfOeHK>4l-a;%OvlI^3hL%Np+Q!eefIB(DrKA(sce=Wu2&*~Dk-4caNbl94+$t`BI3cB2;)q5U*rwMba z<(Cs$LHt7(faQMO%oP&^FNGMj=3vP7?V55)XhMcZm**qxdZ&F4UTtZ&$lv6sg`ASm z`C;sHWkIoR6`x`@xlHbxsnhdti=KmQ6pwiy zwHB$=@2Buvz0+05ZfO}&WFPRr)as!!V_4q?^U6=hh#j~xxxq|Qdg&}!s-4fgtqJU>jBn8vSp(+|CGb!We6P6NneMDB1HkZrZ|>)WT)?eRY^o9cd- z;bL&WCj4qGrP0G8p@H*)j>Tz9iK%mNSNRwn);TgT!j&vbG>2L$`Mtj2wdAz-V^&u7 z>Hf}|>MqYvYV+qPx4WY}S_Ih`E{S1_q%)wd$-A#+X5lq_p}~#N%POlyp@Nz(UnPB* zt82vW6uh;&J#I?M0~b?()0{bYBHi(0s(wN~F7Tp&mHzJLvcs(D{q=1rRu7DwAEnye zD*SK~?zhjE9p&+T1~JP@UNPpbirk#df>FUwRa>uU5&muAvPEC3W1)cJs^h}MK&t9E z?%>kn4z3wxYgZVI^>Gfi*ni+C>-00}n!SE?REMTw2+A}2rzoEkZ)qN#T?nj;56hFn zA)kt@dbFHsMzXB?;Vku}pfiZ?ePJb5Ci+w<&&`jIxT;Gtb>j5{5%%+1*oa1et(#6; zI~zOFSZGlLsGlXX_wX!f{i(IPUR`xSm7yxPTw;cK;j`;l_)M&AOWrfXn8A!*8jv+g ze=dBaP?NgGYIAi6p^Z4JQy3 z&@T2&On1yo+fCqkTP&uJE9i-m5a?OvG;o-|RF#%SPyX%J5uN5O)EY7Le5Z1`ylg+O zBNRRNuI@lW<^c_+!_(_9{cI*bIGYsA;TQBKxmYNnsW@UcmV_&d{aIS+j_wFw+MW{1 z;aJnx!)u$`v#zGoBEZ#j(HyDalT{c9F9*$?Q@KpZDL`yhm0!St_(U75xm9?=TjqLmBsN5?kyKD%J@|)bF z^qe!>9u|q{XpZ!~FKL5v>NaZAS_tPLqe-q{-x3^t7a(Qs`z)$;8TC1!HJ3oFw}MFu z`$#i)p2OE+geQPZgO*PHefX<(`t$fk0y7Gd6j<~yIeJA{AeGs zbT*n7m9LMPpKxo`Z-%<-eAQn)oYK`FPvi=@EIttqcamkEH~g$2;}$*L$s-4v5d{`H zjTC7wD|0*wu2ViWz$t2s`Z()-p`kCMmYpDi+C#UBlhDa z z=C?uT2r(cMpXe||oC!VL}8JHX1y>S0H%k|whE<}!b0qYw_m{{0W#N{xNMl|^XB zPd)2%?~IZ02c--83!ER)-~k_Jl~*`4VC(G9GB28pSinGjTDT2AJ>u6In=aoS@&?J5 zxA_-gzb%Wn599?(*Elz@p(8ZpOrv~$a~fpU?_5ntV~nalJj!#hMeUAbQ)?X)jEgR`I2B$+<9ZGqAf58x?QE zj8`y~mvvUmQ^O8UrP2tb4X1tagg#!n@wu1<;o>J-R;^nFFx0-^XP)k}fyGhb#%qoE zR8Iqf0s$)3#N_U=$EzT^Gpra+kKrZLCf)f|z!@l(Y-v5zq&$^lS9EAB6CB zFCs48Mhq7(YUoV?W%pu>aRjRe8iTpq#*y^QI^HF3>6SD6FBC~$PpO39-y4Pals`KV zXwiz9Dcqj$x%jnQnc)8L^Ue|JqrATWwl5C*PhN~yC9eJjz-<@y-epY_3=+SOij-tr zwu!92sePdd`D0rwGc&IswIxNme%w48m|V4@upbcqhqIB8pa{tkvm&j zE~)YE#WFx-k>I8vHSSWZK=AeDW-D@s8`H&JZLb4DP075bpW#ss<^;PODcGI+Gs`_% zw5d8~@q}nbim{w(vLoY@oPKu4ep1gbp>nFMOhtW*$`QssdM65my|CSB--(&*%^jnb z+q#oN7k>v7gcTGMRjc5IoYujlHJyfB27-ThwMeQjp>}*Xt~w(=|a|OWSvs&TkP_^g7RiA zhaLu-)VHDEjohd~+C-uKg6Rl&U&T&g@d>@E(%`6pyNPg)=!-8L@cXnz3ve43bjYnm zG1jJ)Xy9q;l(%oiDY~}w<BKJcrn4*ie%(CTkNYvF{fP$}Jnbo;uf1<> z%h-rX_Wg|opFv~{L_;)07WV7wlGAASpl{iT~Ij(N!lNE zXrV-h^ZE%3cDm;0O4A!u^4C4vRFMu2rcg_@Z#RurK?~tut*6l9!)g3UECe%#{P$m5 znFnh%x^3j%m)N`r+nmt$VNBJ<`IwKXTGT&kJK1eXo$cH)Ya6j|H8HVH*F;BjbAHRA z{TY}4{qV>6k05=Z7!?Z-TSWLDpR6^lf*KjP`2Yf*@i_v9dt z_k#;sX0-OeglmLuxXr1k&<$f1mYiX@q=!p+N8m*%k0l?tf&(8 zw-0)=0i1xh97W)>^Xo=UW(3p*T<4koRF;rB0y|!xxMejVkm|BBoO+Mzp3M`uQGL7z z(m2_`64zZaH~DEz*l5fZmiyS<0!4IlZKD3`$ETx13uFVbQ6w9S6=D7T@L3s!<})C3^J&inZ~=*@pW@WcE-X}Nqq2sRtP=!T{5Z|FItLIZ z(9^nYy2j1R6DuR_uh?codm5%J;k@VF4`N~pcz=doJx53u9_|pU+}Zw!Ug10%$^mY3 zAdHW}an6PFoNJd)b|`h+Mp|T=>mM?`QWT5Ur=sRKA~`%uG@FHjK#BlaN$0oVMrDkx zWgmF_)dMJpzqbgO>@t>5D*md2IHDucJgW4FAR`WQfT%keHa@#(Ddr{u$^l=>^}fhnI@!ki7Sm~B$}Q2GqIR{tT0!%c;p z2Y;gu_E-zBNF5*!^vIxV39ZckL&p@qERk^p55E@kL*8|60ou zMnCzp`#$}N7o?|wIdS-T3s!=rX}26yj?jQLLrzn%KBm|9Di-tQQaY)ksEy78iw~AH zj|W$)YGQ?Yg}2FL8bBlihy5$k{if0gNglJI;s9lMXV!Pr zp==GTMswtcbd;MH-H4=si0*<;KoV2<-9QF2gE|hckG=G-6g1hJx`~<(9QGd07R7k@ zTVGqoGOv2RZk_8>@@k<{+&kjQLtPOfNa8IzoMJ;)jY}XxUQT<2%ehtKtM|L}^~*ex zI(RnawBY-x>}2iCkB~SGM60K+EO(x(>Xyasbh&_z zj*~$NX6C10iBXCeL%n-`99m4Z(a$8LL>DE43Hb|Hx#vXn{^Qffw{R)3ZGfGx;_-8xT7l*<^An8h+1y(&a=D$BbM~!mtx=3m(VbYXN^g=|C=?O==dA9X z&;fMr_uYc_%fVdB!HB)-=3iB|7fR`iBKfIGVLnwvNn{#)Jjo?dBbigWomc5F#r)M< z{SSN0a__?9WejS ze4F`otwK8u|M)z|(97T4caa8kb$a)o#1sXdadGnb<(1`tY)eipmY&KjK48zOFifO5 z0mqq_%c%+vp&!q_Es@}LP@VCR<)c!@7;byN(bS8Z`JPa9oIHCP@bdIe!1CH6c>wjU zc9{f|&~{$)0N;|8w?!ts>*%pZ%M^H!2PVy9hCpoSEYA0~S*A4Y_)lXhZ!uU<(-Mef zmh{CD68?t3h0CUi%L;FEdrY8nc-SCTMREQ?w=Q&lZPlIgM>;)-`)#Z2Q-sXrO+RNK zHu?b-eVhMC=58Y_3`RUehi)~YL<02Xf`j8+~JFk0t-<;E*7GdLr z@V1P%{SbT$5e%aryps}W)IQN&1ukaGh(uKwK6ae3@d`-djiY>?&lS(VB={!k?n>17 zHAIIHqF1<#Vr=x?E1T3ewOtBaJ^Qu1_xheqT&NvYv@qqw7lK*}&GYD;YdfKxF;s+~ zefh;>LyH;XoZN@hCyx4op!-(gtH z(WuMyaFnNpvzwi>)njk&g)bLn{ccT)q=D}7q-qMko$RZqUkavi%F!Sc_?_rSivyne ze~*0A@nj*ya2~Ha;?dU7Hw2>hS-M@O$OH}p^CWk5#V~|0fRSgsKKlW-~AHme97g2K93)OEt8~Tn3&nw+oI-RL&b<#U+ zZxmMC;R4&5mn%i!9~NU{L`i+C)|eo>mv-9Oa=$FRXfq+iThfRrE977v!wN606b~oJ zE~Mg~(M`vsTctdt)zkl~$}~`C{$o$UhIXPzu)|AO+A!b6_lC3}$j{d|Qi&B&e9emA z?JAb|ENAGOVrsMtpWtn$@2R7;gw|1@0pUO>{jcS!u*B9U0ZY0i$&)T!^hN zG!sE&GES*$av|1kF>^e#b$|YpdFCgX{yW^F+UmvBCBDVywU#vRhGEoaVmRye!XcYd&rjcK3(+Wzr#bYmg5#6n z!xifiKi0~5_T6P+IU;G(z_nZwPg%{lRAU6r|4RBteM?RU%SM>~crmtM8$Rk|cl+H6 zo4;!nrjpe=`|POd5-cX{axL|l=KTb-P^zQ-fGzRl*T}Tx{O8?Wc(O(mZ8hl`ztQW> zMk51eJz~FYBk1-4??W9_lN4Va@cjhi|F6 z#2S*6OiaUuHMOk6eNDFNK z6=es7Uk3o`*9n*9xXmp~1u4ke(Hp;wX-@ssAisW0wSd0urP@@bR_+JU4q|wi7sJF0SI2F%o*&EDdYMAP!EU^kucK(HLk%v-&$#sKawV=h ztz2-XJbiQe(n2c@v2yf>hL#v~v18#%3?^rX>m%_>I_7gDUnxo3ny@JOX)*ZH-a@5= zZ*Pv2#XNk7boe=^-212J=@yCdVpwp+CJy_bO5nXX74}3)DjTl@`9*<3TCrnCwIt{e z!cr>*uT6sWId~-L(Bew@lR}%&(1Pxc?%vw13aUKM+W(x~MPGOkhAdUS$`XpYCs5&U z`>^qKhGM*&R*1@8oYP@-aIH9XDGXuD6FUH0i7rrh0@w8SxMO>*5PWspZiQ5uo9jBGB< zfV*jEOdL+GbJsp3UE3;VMKgIMcr}4T9KZ78rvUNJwBvynwv7^=!s+H>)o?r#Sf`O$hNxV>PQ^3;TSFjIY`kM^4jTgqC*N5 zI%xN03o80QF=3N5$PK#+n_=SVtGoMTB1HHov4r^o$f^8=HJGqCGdSp@!~%IolIULi zCT1oed% z-H69!?7_<#h`-v2?dA+w>iT=YT6oP39K@3)BUip#^PuLk z8jBOXXQSr0a)%J9uul{$ z%A~2p$~Auh(^W~{V%Li1{Y;+B@}A8caoa_42ReOXJRsW93gpiM9J>V(N29W`N!Z+_ z%Gc;@e$yDB>u#~QRiKKE^}*R*Z>tT*9f}ZbJmL|B*d+0$e$Njyoh-(g?#0!Wjl`Hm z&=8P~d6A5U3xE{b=7m$4Zp~CH_ojplS2*xVe{;tSCvJcnt5UoTbuws%W>pFc=drmL z7l!@y=j&{v^SqLYhIjBNo4vzz(&>5}5D+-d%JYwvjNsjHWSxGBU}o?97S%(IJ_^iN z-L<3>n_@A~BITl?K>5e7D1Qk*1|m(RF!{^RtP$F9iF0}=!We$CWB#LCtGP9s9|XzO z-V{uPlOPCZRNDp>tLxu3qHyMYI8#cKUUH7LQ8xuLOoTW6b&;dML*kyzp19T|22MQ2 z3{{0wH<*q-N&Y*>So;_21uvP@#pI3N)Ez||%kP0ZZJn&toEhaIeO%j0F0B)#ljXu{v=wz@ zrZV;7`;-!Kliy~UCv~jyG!1YaGN6mNFSr;i<}|5Ep#n-4@XAeBz)W`w%m>aMO7o(6 z?_J_dA8pZOu!p&lUo6@d;3K4h_p;8YN3sahrhp)jU(%E!e%(NQ5*ORJpkW8LypFl} zO|H*1PGp41+CF&Wup9_lO6Fm zds>JUW&6h-x`dJFqiAurbdwGAjer$|y6;jt{L1?~p6CYM2A zKDQ~~?Ck9qdYsUy$IIrVovGP!rB4ueU=A$-I%8$X^2>btW41P(jEV)Z+zF|)=p>}U z;jawat{{DghuGJQ=QFaxnTd1l*`L1Tuu=2MDiwPvV%val#uQxyNR6lv^3)j6QLGV8 zw!ds&rI2Y(tq>q`XioHvl^*_Eo~+x8&m=uA2{{_F4x%4tEa_X6&FmiOYFa2(+$_UK zC+4sB+gs#$owIpNm`%{>%>hW^J_kmSuE(Z%vMP>7U5m|G6?-R){_#+g%iVH_>^_=Y zq)OQqkQ(v+{FW<)yW%}UWw_Mx#}DU?2a^`dR+bZ;@BD7Kji0FE=~8nIColJK>Ph=Z z^8^QX#EyfYN^ihEwgqiR^_(&+<{qc7PRo&R-2w#4%s$BK@8D%h#!XD$tOAsBEb;@jKX3d=*D^f&GMHK(yqxdt6DH^(gP^(pl@Yi^;h`xx5pjkV-3@ft^cs1 zJTH~IQk~+&QkPWf$H%nqmOEK#;ckFia@Bo;zPC#6+~qdwaj8h`8GU86xGPk~v>&h~ zrnt&I@d8I8M$3njquQ>}WHyK)0`lQt$BGj<(DRR77O0NILb=ED%w=T_3uK)vy1tul zRX)p>K%T84>n)xM^zxB}0p7=@7C)Jf@cFupG&@PSUAL$!G9a3A*S=vTzE!_|$D9^B zd`i_~O1~1?Yb(!n+Tm)es`=XR?R(d{LaxgXfuBy?!p#uHG>e{8h_^>x->Sb+ep|Fl z{xrx~K;bK6Cc%CU`K{9`#^=VDx0{{&;%Mn0KrXQd8F^%sWw+E_D;@4__JL;vQHf7T zLg>^rMQ;|t5U?7}CX}0c zO7@=`5{LVpjt(Y?A$lqos@63c(iG`_N*m|5Q)&Iy-dMi?(v6qLT_!3m@<%@}{~b1) zHNEtF8FuQA4h`*!9o0Pw{8;o8w(1M7IIr4LUe)SF-T!u*i`$6yBFA+A&rEQH5kK1~bqx9h+q(jmyBXRq zcV%g*=5)(r)h^@{{z)q&&n!I0?GD?}=Ga$m&w1f}{E@M0$$-Vbr(HPExc-bhJC8!} zm+>K6Ttmhpg=QMCBDLWFvleRwHxG2j{Oqz*%yM<;vz@rP z8@-a*H}U~k0KP8H8k^97`0BOaSd`&Rl^S4=Sp$cfVI~7DZlhW5ySCkRg=9XREfV`- z#N-Zh%86A5+=)W=lZ0zu+rC>iqaL`!L2Gt%H|58vi|!fc;*YsiuReB*_k9?QJ+v{P z8%{i=7q`$!0|)bpmUeDPioCP?ykGY#P{lAI%`x2J#lWh0J#}}#f~0pJeWDGdkcZzJ zEi?pvlf7sDV0~h2CyCX%t?8}r=ovzb3uU@(-SZ3q>OIKFC>@3$_8y5Ughq?UDAdqY%6_`o@utTI&u= zv><1*YoY>}mS8sqi_t$g3uJ%zSdCJ@g4K21-ur!ZjA=m(y7U8K1YI$gTsT885MP$3 zbEq-3*s*%R!tZ3~GlTCh7Z1(`$-M@r9}N!O*gd*D9ysbj0Ek51cftbybqd{l*}Hy3 zq5j*9rUlReFTR_PHj1qM|4w=yXD@ zJjC45(RVrf?N>S{au&^w3C1M|CPug53%bj`+&f#Lu~fM+gTnfD#z+(vRDtu|f#ugI zdPoZD$Hi+1fDTTH=UX(2sT&cv&ia23?_rIcPe?Pqq?^ADB`zays1^b>ei%$O{tIyV z{$`+Eb4vp~hxp`2&GiI9|HmjSOO{K9F%L2`fka5$BKHe_?~s!Fu4G>wvdcLtE=8^< ztIj}-Ms?5OHzB*9lN%F@haip-nL(o*msP4Y+>0Z{z2GS{98s9#xa&} ztQm)!u^0v0?-}im5yNCarrbcgK}Bw|R}OiN{KhCPS5a$k*wYq0EE%S|eUR}D9b5E9 z+#Ge$ODgW2a-3%UVOa(z{3j;+FCa@3b|_Exh$2?v^Xv#ao;S?bpq?~B^X~T!oHH1W zyKU-;VzP1e4>)zW58roSsxmw>o+8zlcf{rJkj)I8Ut*8aXcm)SrgIv!7Y@q*VW}(y z1&+vyyb>^MS)&coPA*D)g1G(-|5XqNmNBa!3ymBB5Uxc2mfYnkL5@uYzeo&e}d&|f3z$S=jL zql#NN494Z|kJD^^aQpUI5~HVaFv=fbfGvOVeO4Vkx01!%5+ujsXv;UPiM;D=oKlgU zf}oF7t2qC2XH&5HqW)ftXI~tf4Jj~mbS*jE_f6GWhws63OB(Rp6K=?ut)@s*Z}~4M<}M(Mi$xpery1F3?QIv?H>hnH6#4K2Mi0D1>w|!TaQu3C zOzZ|LhUBMpBBg*YDhPPt-I;7LMTC%y`>}>0rIljoYhu%WfkqiPjiOXOGK&Icj?g#` zQ}tzND$kYPn$Xu*YyE*vMT`r6POAOMjd7auh3Rh=dSdJi_NN zNXrr(msli_OeKG)X>eu~GuWGA7*TG(*L~N;us4r7(^NULF`MTvptOf*Hcq)QiE|!> zY!D}O(LZ7}1V7TXrn=S@FKkzGynSdr??vieR^z`2AzA59qkqEcs~j1|$(R ziBPGJV|&#sqx^@ zJJO+pX$6yOEI@y!gmvMxvmYaBma^1=~wK^&HNOq1)wugOwY8)mq-mB0`=8O!| zXR++4Z8Cae1_L;hpAu}(e2SB{I`+x{)9IE)HkM@M`3vyOQ7nZV{7 z^v+;NkYU7G;^QP9eLfyESyB>M({fO16{rT?kyT^IxhOjI_l3Fxud_JX+K0quUkIky zxLp2W*|uVtAI|;rB0iig_b-42$OlQvB$6svkHiUW{IxUc?M0>tv+yF^=5n7)9I5*l z7N1e6R3_bak*)lB(sN~$ZeuI)g>kdx`HVkxs(@%{&^if1vHI1lp`tF#@quhH1Mgoz z#8DA`>;bR-LtZ0p8VU$Qq|kj*$tY(JCBk2htfz4IVYS2q7;q9j?Yxx*KrjLcbw2TDzfg13e^Mk~j2NL2vx~K=W*4FpivaTnJO(rNKp`_%GqK$KM zejB-eD!)Uh!@jk>mg-*vaNpn0ll)l&&wdMosSeUVPy(56wu_KYG*aYp$8}YmmUWo(!KNDAp%E_`9=a_TQ+{wZ$8A@j&aBSmZ@(L@ z{=8pPg!0ksvq?yOcoX>qllYqS{3{4H@_n#F>Ha#NCaqhawyuJZTY*iK#fLK42dKG> zC;oHCOf@C$BdxR%4THJ912|o1cO^~m?kleC@sXk-(UmTX>PyH4OZ24b_dvhUB~HX( z3Y8MIj1~W8+pJK;RoM3w8_qixxk53zDSV&0hA~x7xYggPrj>{_{9!zKgZ@^h&+H&X z$3L77d`2A`mspi}zUp)9pf!_lL_czQ)e-uX;?QkZP<14AB1sfAkoR5TAgCyY4rrGU z5sD1wDiQ2&d&Br0A3uB7)&vtL;KnCLPmd}(%T8AEbnE# zeIE@%fGOX_6;69ncfHJy6?XakVoa=lM~*Ws;QE6(PNB|7mr3S6CAU6FvW*lHF}z_& z%yPu2=5RDxwJg>3`z0jxFW~&d{_#>qbQd4gvY{GvT58JXuuu@ht?)=o?3sl|6R#>$ zUt7EFxuJQA>hSA#ZohdAs+*m&P=zw+l2C=F&m>8519twL0Qu@vVx@e_=;>~eUAkYmVxH4!$`vg%o*bRV3z7`Ptk>fJtkP=r?I55nVXw=OFhuz35)d#N?3{W!p}pp!J{s0Fu0C{kNP>T)%2^L_ig+jfR2t1%8chD6D2{8)nx9_Svd* zp-GV^z=mzM<8hmLv`BE-AaDM)HRZ^#y=P@Kg({+}V$fG!ld}XsV#?vb^=0ez_NrSHpK=cwUl*#B%|VKMg*J7CO%L$@<_dxw|=!ELruQC;@MYO zu|*m9_f9TVi1Vl{mK+mh{KtEEAQLI%!nY7p}h#Lf>c%%H3kP~1y z!LSnCBUc1W8FYPssz#)WUDJwc-I)cGt!*}1{D}37Dmhe9skJ&wO^<>U0`@RU@+$H+ z(;menTq^aOHJjH$wpn3l+*>VvI=M$LpYbNBp#7V+E{ZuIdAZ1YlA0$DU$~V~7p=s> zOMgjVNjUdVhah<I(8HBB8u*a#T`9RYdKK^*yg!ZVS+!)^(cAOzQa1X(cr&&-DbB z__EiGl^AT59p?dVUkn^`}TN&&1#U7!#Y)oJx z&Xm}QoNpQ4c!oq@L}tHDsw z%4N}v2H>N4aDhb~Ps$-L{JNMRq*)9;#H$+Qn69ZD_`xss#x?47!wElMnIM_Xqkz%XAEKKI)$;_?@{2Oq9FfRrT<2buCl zj&q1W;HGiKa=xFcuUQd{-mY<_RL))Tni6^;c21(fJC|X39C|Bi%P86t=su?J%Yqb5bT+T z$YHRWaPZnCZ;4V<6;3zI)Bfv3tIx9jNB;oP(2SaGgiC7} zC@#G*(ifXU!E-PF02hwRoVqgB3iQEo*5az7MkZcGUvQIs(<_WBVO2V|V1(@9mrGc_ zeoWU)DCD90l?^bNMgIV$aEsP~79)gctVCD-Ob6UFWureIjD((^eVm?$atOyGNGAE!(h%;aHO+o(nHT|yyKR6a|E;ytn{-@jCBdNZ*c zwTU%+-x0AW62*C{qsjXh3+SCRMTqe;RVpmT{{X%V$(IKtgeAwa3jYAoioFD*So5H> zE?G4Fb4HA@G=)6E1CAWgd;UB08+G+5FG`G$pn{UC@!UQ<#ia4K#eET1pk5(*BG3dY3p!zeC znS#U^?0BXc|_{L#`M&!s>MZP?eI3YGJ=k!HP^c(hb zud$NX#)j)6PP#5MsHwqSLPQbI;aAhPIuESPpodz+t*n=2sT^MFjxs`v$x|tm?u-38 zuw`c34q8tTDB=osRC67@xK&=Xv&-jA_bym7ZNCh#L1@RZHb{yn@8{a0 zotOIbYqy4MyBX%D#FHR`3P&ek*|u1b8cLxfYtOo%xQWG4dd*=DhGTLno`YthvYKFy z3BTLO@*YeJ@r?ff_xgZ@6mp-7QzL|$i4v7e(6jxbLH7#&Fus^y$3^n;)sl@#A?8Iq zvUy2>*Cb3TFBNSGe?;!N=#4R4u1Z)ECBQr)DrX!_9dTEl2p9CuItlgU_sNkWJi(rd z1mg@!_bEmo;F(qKh1&{?)N0f=qq-1Sg$smP#_7*qY0C&m9EHSB@{*=SQ=xn_vwgX5 z#RIJPavW(EV7974pxO$U{{Vo9<$pQoHQK)kX4b@2C4l1zA(>*Rikue($B(D@em^}5 z_lS$K-mG|EZhLOWdOL~T08p@^N!$1L&sCNc@>n*A9f0UC??l<4wW7v%aS15?6y#zb?L=)jUYSV_VBxfAq>~s~x43hp) zQ`huffa9!0I5L@lo;MulA^83Bf&fSWi}_5VDknjWnY5w~vL_M2b*30ZL{U89T`Z5H zCm++G)mHdCMN44V$#u649g>*lpd^Y0h4~)XT=&m^PNQ93fvi(`=0O~8B$bRVprQeT zfJ&l5xxo$*azBoWg$(1gOgSBrO6wQVU*rftB#t6*LQh35{{ZvoCeLn7b<+-38)IDY z{8mdT#2xY?`;{^JCx7eEXL095RgnS6ZBKCuYbppzJg}ldtN#E_F^u7VJrYDnvKw)j zY&628mL#+Q1cZq5XlumBE0h$^{5mUjg0hp>;+eN8*3l)!aXYKcD~Xg=4f_|9n{P!_;^&c+EE=z5 z5#!xeeG|V{MC=!5vaj&TX8E%g6d0uJ=`T1VAI8dg4Z(3&h>jQc{yN<1=k%hQmtARL zO%?kPnRBwhoG`7Wwc>dj_d3yoq1eO$ONiwVg)*s?Ub}Ue#ZIARfn!UEJ3Oms()mC+ zZ$vng-td`^xz%h`g)m&Wq6h6!UMihS!XDV(>yquNsMbz8(HrR*(HCQQ*k#pa^>7sx zK?MN`Ib%8PlwPIlV(5G)ETq+1-OXjG(Aja}eUcS!NxI9pV9=XVR09_Ua2}cbb#oB0 z9;tS#BZADrsl1O4M2(^oelrDl$1&Lc;wwO;NT@B5BKJe}UYmd$E=mfP!ekYS>$919 znqv;KPY1*RG-*NS6vSL@g)AuYAmUigI@YXi(5DMlvtU>>vY40rn$D+GHD#F1D7l#? z>Z^{q#qm)ATq3Ibm$G!HX`~r2ZS~y;Xn_((`T~}2$cqrG-dE>3*tQ5SsenjEn|uhk zwCMA10%W;G9KIYK74@yfYsqZCzH}c+?S3*j@W} z=@LOQ*>%|CBkTG{!q0N4m>=nis;tI|1@mYeD);6`MFyK3IU)AP1V}jJf$B+Z754D)R0l$dBFM?PS*)^L+kk|4`BeLqrm)R>1{FmRH`tUc=$pDD)VF^hQQ?iyWa8lNf2X&bX?9Z}(;bPK~rX#O0 zO{`aVN^-<$pN{AgO0Hy{7gQP*G;jwfzT)Y4;xtYAiu>#MpI`l{KkN3T#E#?cM54Zz zG^I_kSWwz@9B7?s((K|k?wpr`;;kv4$C-S5>B4k)f&;mxQX~prO$#q*3Rs}g96jfAA zb*U{<9nf!E?frz>-D)MB6-^n@&MNt7QZIHo6*=}Y!y)X5q>C;0eRe3MKByyaGmp&l`yaM@7i0=^Y&)U zy8gP<{Yz71Vs21l!-w!$xhK{%c<|f@8&h$FU=`};F|)T0cq3z1S-uZ^c(5Kw8c$~Jwu5e_=H5=j8>zRS?5(%>T8mAiB! z;iIFjh>_ih+ruBvC70Q6#~@4|23?SuToMYBlJV*7tgCx(pEf?Z2DYMnM)w=}joV(x znJLB{k@2~B#fO+_(o-hGC?Gt^0}07_DrR|eR9pPb`onkE^x4sxYgep@9~NXnQG(6H zHAiGjoNuov?5t-}*wA`2C zxC}oz=;6UUqy#N9%aR~B?!uCFiQ^EXRLz@PeU9@wv6f?3#6OWOrGm4X;QL_M9ilD( zBqL~q&5`H z8Ism3;7O^n*Wy|^Pd;ZTbE8U+{*Bx}; zk*q(|85zeJ zOb24($RRq7cN9_;@0?gAjM4o*`?j{ko$hu`cyze!9 z$?+?`4ZV)V4W3clZSiqcJVVG8c?(LUgV}Pc>Df0muC*8ISFg5uP0LK3UN%&1&6O%6 zcShMe1(Il{L~xZo=!wfBLMxH#dtTY)@75F+_cOLz2-ec8Y^fWH+{dJ}j$&MJ5hG!f z@1|76sLT~}QO4<@5wF@0# z*A$smB(YJ}8+Og46$ac_6-e4ZUfer!PV0`Ha9T9e0hlzf<_XQ29r2GgBjO^cjEVz` z%fBQQ#s{~j=d95_@yZ+Bo;Jfta__~hMw%E=L0xtC1wXvoin;EJzSK|0P#?67WwTmB zIM4-SILn~Isfgk-g0$ZfPULD!l|@e8on}xS#!P+)YT6-qjc|x0h^W8U{vB)P;9#8=G}bI^sU0}) z#%nG_TzC+bdn#k~$FEXcSl?A9bng>p(MOR8!G1S1Ar&M{5-+0q^*eQ0L|I|!7E`O` zk%Ol0Qzeu>*i%IOVN=mM&wyGqxQ>LV%0(pNCpO#^?pR*xsoOpJnAEA$TWR*7I@6&d zRHpv`x;es$@>EpE^y@wrw@$5YElIeZ!zR^L%>Ly?&J*?OEN_lV8 zMD;BH0A7Mg6lqK~Ar%Of#QadtWu@OeDlcmx!8VNeOY3{AE90y>>7? z1?EMgkiv0_VS`otk|q^YSJ5;2b;$(SVkoyIx z-DpL}iJKBhf=ZYne32V3clnc&C-v{p9+e;B(~EKs$1sE(azAC~;ap`26;XSBbDn@@ zZ-y~G>O2oWIaSEyX~TdviN`DHgkH7Sd}`IBvD`9R*P1j5W^0fVB+gKWD5$EQy<}rD zTY&5HU3bYS_={}{r-|@H!kQ9x&q)Nj`7FB`m3lC}2;Jv67uz9#EOzL1xaOX{{C$->bQ9dJWb4vpL!?UQHImbcq9KoRW0&E7{T&1s zCPNm24CxB8TvpyD)d-2SZ&d#PmsU*y9dRSeNsqRR7^9*aN<5JhkmVH>f5Cdz zaIMxcSiNSjpuXCWJVRu_Dhd~MKzKn{3WDBId*`H>HN*<|w~@b*M`h8ND2s{;(}akM zEsCeA0%!5m?cg&ougAH}Hoj|e8&?}r?k=_}qx=5=JbyUrn@rwfG^LdFV`=@T0lCd0 zBv6T=a|(*6 zCW)R%tAzCL{W=LiOp-<^lGGLN7%L=Q(YDu-0U|1US3Q@YB+K6|U5c{-sWr0r$3sL> z@wliwd-haBR8E2o?IOZ$>k8P$#8pBPax(Vz_a$)?Dc_Ih(Q(w#KGB&|Bv#!K@iN`4p`ZPp`;O~ZTIfF=q+NzbyP^6$_D zux?ETz|EsA3D-$$f{AwoM^lL^_gsFs{+&=_TzU1}djQDzCVj z6h&XxvXG)DRf^v#R41Ek9Y+2*`=xOn-X{~8mJ_-ts^hmos&g@G<~ibYB`mgBafJj_ zCcsDq2Og<`ES7o*?=>Ndm1Ri<<^dV2l*uTdA`%gy=e7^}_Ubhfopl;!d#c&BG>IGp z5#%I|@*`32oRTIKdMZLcU13(!!Qn?;lB_%^Dk?2;=1w$=>WIFn>)WAjHNt3o`!!Q% zz|c{s20r8@0Uj!!r!1~l`sboh`iD%}b_jVRBVgN(iia+5#^TzNuk=Olk5uZim1Qj! zzLlbgD)TLwKG>F9b(A$ECf6#X$Bq~N9R!QXRWf{w216+!rp@JMNN`uw@|jX3OemgH zD7^+STu5^3<1~byDjP33-4#XCPidn1;S!Btffx3J$#KI?`oOT;f<lMaLB=9(|FZ4E^euo8hD6*7vbpYg{+(D+uWYDh8-AH29{Bw9oqeXFeVoliiu!5srxvk$XxvBYCXA+yAvD^sk0Hi1 z72rVD9OIV=aE*#(SFOmDKKpH5dbzEqVA%fvj$&(WNv@h+X{gu2akoqV03I+IfdHmG z=$w&L(Fd+2(d}IQ;Ahb*?L5UFm+rW3JZiK&N*>Z>s~>s z`PR1ahMCJoG_#F0(xh?aayidQZJ~!+>mFFJS2S1s6a;YV(kPmQCDj;pAS6K#{Gl1*G*1B6d#r%hbp zNZ-`gTS=$;AMDr@b`|?Z%j7|)q_be6)XY=Xqi=w2Fyy01-yHDUXfC*Eo3r?bp9uS8YF4yI(RCDw;cCg!R;V@rcYw z7c9T=A=je{xd%mCcPKnbq;r>kv#B6G@2rsT<&7MTEAg*C+>UQ!gA zQv~jyi^*}6M#PqC)wGdOVOOe4+V-fL@7Gip(dXKtA;MXHaI%-`DJ;L5Qw8>YV&?UJ}Rn; zjMBc7s#nh2!kOFo78?3PwXt(@nIv9r#^T;%=Ml%-R@hZ`JIabAoCQccXebGlTguwn z_uJoDXxqdcDxRcvn=N*&vvTH4kmT)(iZ&(SR1oB5WY zs-LfZz5X%l=o0S%_TP;v8oc^M67Y!hh_tlVv)`&Usin7vRj2C~ z&l{;^QREPl$$EasLC{d++!8)opm8C!8=BC41^DB`ImQA8A13*CGMTiB_t zCdwgq5?-|urOO?mi9$x~cvd{I*!IA(yqxRw5|v~Q!YPpGk^ zsu>a6alvjaf%%HLArh$(EP+G9f+rp*C@3mwy(H%n#=ozt?ZoeXeX3PgYppVRn7EB3 zX)&cTyakbcKm|C1VvZ?tB16VMH?`%ekFeiYRIy(0$+@z<*C=rtobqtABvMeiB+;? zFxfSNQ{t*BnD(z)SGw>^+_$}=3wEaic#rU-OxhtLjeG4^zKoz4k#cQKw$&6cSsecW zk5h3xnPXRPHIM9eErQaqHd(te&_K94vBXIaDn3%eHmQWqn&)Q zy>daYO9&n(3RrXVvg(U!iVNm6LQg^LojjzN@r#%0b@_V^yBWC6%4{Ux%w&;e9D-p@ z=M`MSlD6q0A|hkgr0c#_0$Wlxs`~Art10(&H5Q33`VcgQBD@@FLB#|dnF%0@pA4!h ze~(wdbb%tOKDbrtXn#IQKMKu`DC;bn%HX^Xo>h4cNq;Gej+!L5kZwOKgrV{_kofkVl#4e}LMP{|jvsv`dY&mCLJ#JFs} zGe_bGj8l+}imIw2i%Er5$NgDF>QKQgmuscUn_0 z$)?r26AZiq-;gh5^!)z41Ub)`*Hubu`wuIm+eMz;*O6!XDx%}8;=_|oSiX?lj`x|c zZ<8@k1S)EamEymSur-6RQq@{@gk&9I0z!iJ@-MG$jkipSk)_2bm^Plm6JMhA3-GM% z9X7^HFOLXU2*b^C%72@e=!@5_%jj0VQ_~qzl#R5*Pxu4D?LbU+Mb3L?tl5nx$@tOi zE279JJ|dYLNPoXL?ux0~3G3Ue*cs$RMYRg(?}MKq#>$#oSVU0}R3XpxMND;#Mz;y6 z=u)Jsi2Ew7o2l+r$bYt?N&f&wSNuAnEVr0;3>YFvzGIvWn=M@{GJ!%7Ta8 zQ1j`O=mj0ZL$U}jCz?E$6d4r3I4I$J6N0XIqG1&aq=O@Vsp&TXUZozy$*+ze;Q$gj z?KXvbC>SdKKgT)fBvVy0RS}I;Ev#=RB(6(yWctp1)4mxSb_^Rar$%{ zEQPx^s^r0KU02Q21SC#N$bapp_$qW6%qa7s$FUYosZS$(krN5bKXAFnwo}tR0XXFv zM7O2aNmjVLS+97L3aA34(IS7=gh`a@2yxsN4sCimap72jG=N2wX&qnla?VtEt~37t z4zeX!OLl#UMxMteYat|adx|e3K~&-@sEVpd>EH9v3UTK3>zGc%Z_n~sCgrjuh(I|3 zR3u*BiiwQp^ynuXHW;#=>n3sKu_Z=ZYutUvCIpH3$|~hL4bUt~x%n1yyv)W&U5xPn zF5}*;I@&0cik*wUs`{r{TVDKWfZHr03y#KZK-|G1DUj#zi-jTd{{SBS z5#uDpk$e9D9k`9O$uTsYR2A}`R||#q1`#{@FF_uAp)I<}PMh^p)cy;uaY6zYKepQA zzhhi4t})O~vY3S}7Qv4aHbOr!q`;CQ3aF3hs-mcfzpq7!GN;O^o+&uR&y0ddgqRo6 z!$NF?@Tu)Z!u}Vi(_{1K->7|usoqbfvvJr~W9akha~8V>&efXbru5~+j!X-{;@6WXrUK&rFssXgAo_kkJp_vL`0Fl1?nSkTjFgFO zvZ|^J%@Iftv)q7rVSgD07(U0Mf_g4QbN>K7 zijWfBkzro49#nOQ8~~Dq+2MBy#J?WjMMdb&hreec6w5Gmo^W4|`bKec{i0|W1c;f( zbj}z2daSD*?Z&nUwQr@E*2Xu?ohKAqG$9})MNE6gITS=+>*?1{oH5&)thc?6s-H!^ zuKMYZzhSSTV%ET!oj%lE zdC`YnED}MK*t*dRYHm8JjiDoLxJjQ;PW^8grNr5(t7{tBb_nq;Sd#)INgFGm|Ut2S@I|*Ym_xHpvoO;-}@38fjEU;edtQk zx#Dfc5!K|-x>@7hL#2GG|AhvRPYMMx<;SX1cy0KGgO@xgPC0!c=ZJVacT zRTU5g6?2ulWI|(IJy+~svTf-n)9Ts^*D}VVWjPv`T^3w;(b|GYE*d0tDJj4kOaVyu z;LjZ?F9n~ke#U!owbUo?vtqv*w$9Gp@-3@l7@BnyoB%ltqBSBSDEUQ^bx|A?6BH)Z zdW~X^yOSp0a-CU685w(f`w6>R*40}XQRxb5I_vS9ApSM7M#aJ=r72{Q6%dqqxAH}+ zeBQV8uJHVIEoO8rp1+p0CD0_ep4?(4*qG70$;WWj=Q;2Xc#s(*e2fFBy3K~qspQ+p ztEZ3Ugz?;|?AwOLE*THclw5&|*5mtMa$!A_HSr>-0Eu9n>d6YTc1@RQsQUNqNcGyp z&92twx{6-Eu3p4-wjFWFZ8Gcf3`HDMT&bHXDZ?1feJ*n|3U| zaSvymEIgvisL~~4@!M9K;6m3BQ6dxoR5au%l~&JmzhrFnRkZrySj@Jztyvcqmh&Mj z$BJy(0%KSw5f!%3+QN%P?m+}n#}!qdGSqB`sePmN3=1v0VRp4PYngF@y*u#HsSj7&BU$0#1$}sF;%Vo#vxi=*y&VFmnVPpz2 zYNQRR6Rs<0NRo`E3{{U(4{{Ug{H3h4dy{y$zhLZ^v+H48T+mK(-iu>Zk1|}dd65SgjU63U$sA;Os*`Af9E}w- z?$?!;SR1kZiAlTJL650wcH1uN4!`48K%<`XvDUGt-T`^mPr%zPyy2j>Zt_kdP7VMO zdbqh^;@42#_eN{AE6DD{J9psAfmurG*u|<^xorau&z$cTh37%EBu2R^2@)1dJxz(n zY#k$D*E{C!)|SqrfZa4CMBFfVGrBQ6UUw<$E;>d zjYYZ_*Alb};+3Sb?7fD<6pPw<&LlYskFui;*%9A$I7jfP$Tm44jsuW#ElH?F z(5WQ-TY0+L?4z;KwXy8GLnR0H}h=w`*q%#}ZonR$#=7 z&E6m`rzIv7*8t+865&aGy-7lDtMeGH*rh_Xhfy6Y=1sWy&Nzlny4!6y^M=qUIN>Ux zp)N41*fESRHJTW+D`2xa1RKja7fm?#7aeTDiGgMgcvxkz0z+3GX;-;&BJ8Edk6Ne? zsOz`1kfDs6!kG!V2$hXTaKbb<-SRrjhDfqb8n?v2ITv;JAmgm!UQ;#tc{>FSKDT*Z z?!2%L#z*iI9Z3=!gXTqW3<*oZDBt~&EQ$%BA$wJNvx=kPrba5cqxMe7+2m(SCv~;A*!4ZaY-VS}ux!FicADgIhYpKiLPQQ_c&RRU zsUr0))Y2`~w{;tVbap9w1Za_+HsQ9woZ97kkvb%#sM#oXQsc=~6SqY~7&`h!x{t2k zM)GV>;!J@Z<`99;A3n{YAfmcU?o~y~cSOf-r4qiL)ohn#*>2>v;4w#Hb&l4_HAkjA zama<{RXg*>c=!CTeDyzN@db{>W!}ck^x(IZn2ZFmV1T&Akc}!d+YO!zI7I>_R9;=z zs{-W#X>m2^jz@KEXI0H&L-J;Vld@&HeoqKGfGmiD3U^<~V;SjmFzQepzMyuZ?h~}v zr6xhs+e$AW%17i8{BjaPBvDlSjyU)9>e|KNFH-*iQc>?RnXMjm&B!Mtm^P^ejr^~dSdLug#p$fO6t0`qa8 zinBm)Knd;71y6UmeR0)o4g-ibP?(I#zEWWuQrQd(J<$;i$Nr?pOEKO~R z6lBAJC(7?1{AEST3MXMqe_ZuEgO9;vCc>7=`BfShCV}G!^7bUh>DF3^vF13`mx5$s zXoS^RANs_-7yca$Bu}=uY1$iqk_jbVDAKEp*9t_L5>QXq)iK+zZ0j!$LbL2zdRefx zaehR{TPGwVXwn;~9^p|O3aA&i)2W!Uq)3wUHwS<+Pbm85YOJ z^k$8N`HA0~WVu8|{{SgvanYxj7A-NekvSa&xyVdIF%)q`92CYCefeN&{ICbhDp zM4t7>bW|Ltf6r7+ zpDr`>Pf8F*WTQ(9;|>uVGDSpjd;a0ZReG6;Dr?6YR=Enn$nBFA!cW+-?oc(rs;)hK zSJ68!Qbh-?Svvzi_%23@h}om4B)o_lMIjzOslhU;sGpv#;7{2mKQ0_t78SuVSO{@z z(FoCai;76O!Xl#M)2q}eM}q59;n^H^TsvPhW?w9SW!7*g+WuDs`*Oax>fU?<5k@Vv z*tU`@fw$$TLy;H_IRt=hP>oa5CQ6uJPN3BqB#PS*gEf^wt!Z3H!^9pZTpwzIFX0Js zjQ*?A_zY2&?!EUOLkX<3zD0FAn5iNvju$9Mm{d>Kzg+t?l@03o4o!yRp$1!=opqyY zh^QtPfUo}LTqYN`I?WPlVWYa)wuhEt$#hhc4zB~silQb9DTPko^6Dr|za!AvZZv^c zgM(+qR~?a6IIa`b6Tfb#`df}VOb`Qg^HuhSR6Z&V7ZMUzK#@J9ikJ2qE(jz+BxQ)q-)2l4h#SzC^ZB;}+Mabg{ zpZ(s0)QbV{p5sU5Mr3@p;*xQ9nRjS%sJ)RBx^x=qo^Iir8Lqmb{EW!P(zlde%8Iu#|q*{{V+p2h#kW(rFq|f+(;h!ok)q@XSoB|NC+W~*V5D_U!yyM_#+XFJtoxBN3Yf=l)qD2n z3(KD&MiXwu6Gr2!72eb&B`g58>MlDduO#RON{0Yy*?Jf`=P3e>AF8$pC@y;yJ=tDJ ziTx9(v6D|XIy=m{$kwf*QIOE8IO9c;6;ve7N6~ZnPK!~Yv}y|T{zYirSJ;}~MMUz7 zs;VpK;v!{#POB}cE=&f$@=V{2cJqx`20V%eAgHb?E*Cf@RbS7iLAS>iJPg8{A%|Lu z+SfLH`H-*o(MJo(5S2TpK^pMqi}37@I=3o8B1myWa0iezCGEtK6V*Sjr$I6#sfEnp z#V%FO{MW00c$bw`2*g*qB7Q#!oToviEu=%Wq@E2dXNhE+j2QA3oiaxk+FqILy}!et zDI5+n(o|TBVHQMJCp0`zRNIiGf+DGf_7Jac>(D6Gv1m2nDlBqXvkk~n6@tll&{ry{ zmEu9${(S+bE(!Y30zz2u9*yE(ANLw065^z({TDg?dJiYb58~h@ZeEh~;`uULR8`2A z6m@-l5YwYwOynUlHeyOBv!Q|$Zg50LgjbKb7qSpzzCRs86o}(A_P-KTb@zw=0F<`8 z4Yzr6F6rthnEwFpbX2<;QpRi0CA5=dw%Il=nx~N!=I}26093%Ls{WYhNFLKz^9{{YsYSQN@}1>~OWb=$9B%PJdc-tq;qNJ6c?h5)apH;Jei^=0snSNt`Wok?Nl>=p1kg%X z7CVoGPcO7jl5xiaUYNd?wzW}QbURJl;;NUkoy}P_3gHOgcpZ{nN10&%0Jx6uBo^D^ zTuA*CdnR|3Aa2v!zw*hKNg}lBHrE@tn+iC28n1cRT$0?`jUNM76cJEGwZSPbs*hDO z8{vJqeQ7gmds(H4Cc1(-yKhXYQS7HrjMI`Ilrh|3Mll?A07VR&6#*qo{y~;^+|lf4 z+P;$>3omZw7Qac8qK!1*G|Hqb##IXH?SZYe2o>Si@C&09;cTi9xFhhBMVXc@MR@cfK_Cpy22 zwi481c^UZSCO|UCue{TTeh67oSO@j>uC=(vm$%(+b8D?Ht|k8fEngl{&w0Q(M9SB> z6;RPx6BOd0iOqR9U%#n%F(d6w%TBd+ihZn-TdP`^X)0+WIbj9KvPM9+6k@ckuP_H4 z0aYf@hl(EpLC;N08m81QY$<{xGAga7&Z-)%s;Xp&{wcN*0Qf)$zYtB|meYc-{{Z3p zfe~6BMa0WF&r4w(_do6H+P|weeGZ36ou%3A&$9x33^yBT+R&aVzba2K9(-%(^Z!$b^8mEOM5U&OPDpXWt7DlHD7;)k5NQ-VL~i*|gC!@F zzE&ob_U}TaLj8=Im^5uYI>sZ!rdD&!<^mgW0N-j`ZMP2(@mBbvp8@2F$#o)!?mH&k zOR|5jZ@$V3O&?G?=rL&$b8}=`I!`wAp|Ot@IYv|#6aff_3TUUNZ#*RaV#}5%2zK^~y-cPukLTiuH#WqV3{Y@0f5 zcKX9)hGhk{ae$FrATF?OAQll3Fd{|E1f5ACDe@dWJ_Th)@w$YYou-i{vUl^{jcFF0 z^I;u15*xxtA#L$#(R+e8NC4WJppRDq6z2B`mIWJQ0RBao=sP^ES+gc)M3VZr9}pKU zt1W?ve|b~JUaELS=oe~g_C2>y+H~DsGa8ILr)OO`zYC11#)VR%Ot#9Z!;ntP003>K z*FLJ@cR}h^hi!Hu-qhE@ixec-Xgbp^)5Efq)VSpAh@l~YmE}=m$)72zc~nG^GOOPV z8-B3fDR1TO-(AMIarrtN2jg6-wGpTyBIm~DE)z%(3W|7I&vOw>dqX{B5Z1TrO?vNb zf*Q-#+I>_rtvL(>MJjYBuf1pLb`%t>{{W?^ zWIE%?RTbwMmee;9ql75pDjN>IWMpavjtLh9Pg3e|U^T@a$Mvl&%F2Xe?2A3hqyGTg zO2}LW(po+u%lwy`yx=lv<7|ahP=LsLmsfaLwZ6xNQ@hNq)~#a5uhgVa$DeOz(Evws z9Co~DZuxMW5%pHl%&8d?c2W0q>)R&#H3q|2hYD7WwcOK3iF0RW#39z8&p9u(Hb4wT zP)13hF=?R$0m=X(xVTd#POQF-M3mmK8}3aHO{bLp&11YZWjNV&Kk#eVW5`4@Igtvg zm>?o6WJs&oQ8K+H(kE-XW6)$&1LX1fB0^=@ufzJUVikgy&nPk7Jt~1r`ZLEk@1WjvR)@RqvXJxBt0zC!s zM|ILk5b(olV$U)c6&z9L`*`JZj-GskTFIYiJwNPNw*y+$=*qBg;?q&qbe(LmC1oG$ckt#5T67Uli_G@x<0 z$W9J78MR!O171apqUSlrdd&iFs^?F!vfLp&wEC(u8PDco8A-8m(DouZ2myVFgqT6d z;ZyU~^b@2myLVRxKudNe!zO1TpW^@rNfFlEf55zuRR}O?*>TwsJM~clD#M}NX1y#@ z^@?h?TZbw$3ga-{kZvPRJInT}xy5**WmOR}zl^EQME#E5anV@Lfc1FH6j||sSan_T zc?*hu@l-`#UB4c`j-;3cRqK0xlI%^YBguajRH-grpUNjm=2cbEEGcm^MKQ(^eHR^F zf*oxZp4CptV8pA6+E{k&$dIs!9t1Xp6oA?x?k=BXMD)+Dda}^ic6ImK`_>iyVw4bH zWn@4gM;dX_{?8L76+=W-6;w{LmS_YzEyC8Cz+uV>?pv`QOEDgjk>qvN)OR+f%C67jxe=LidB^6esErXagrc9G%lnl-Md@fQB95hq z4^43vJGB!UX*|K>WC+L+Tx!8BATifB^Br{Q{+w*~M$ zb~iGup}#<2l%Uj?;wT82NNy1*83>}`6)}}e=cidckjyhh%4e-?;<#1v%|->7xxw}w zBt;>07qJg7R8K_fo$H)MotZ-NNC1~H;X5b4yAZ&Udo+rG0zc+b!m1}jQ0Ihcu^*oe z$ASA-kL1%6hz@*}L{m19xZ$$G_FqNq)rVwQ@*c8AHTf0_9B>|Z^uJw7b-YsWe8 zj^x(x<6!3{L?ZtHFd?sOs(zhoG=hl|Rld7m^mdy5QGq8~K~4bkif9;Yg;hBS_wVb} z@Y*bWk(#}D=t?JrawJCcaaUaMHu8+$9x)Xm~KAQe;_76 zn_N7Ep1e~zMErGp@HEy~e+`Jj)Fte|XP5`KqES^pg|9OqO09qPdxlDb_v6}6B4%ks zDyBb0PKyRBq?eZO)6015$+s%Hu-f=-JVq`43#GYVujUZu8k z%N6b_fGR2D;sP%)QO~=IetHa8ZHX-nq;$S>n_-GSx?4)9R`RJ9%v`W zoG%-`aElr4C`QgdYlI)>6+y>u#(EEHUXIJwQDilkZML$QdAz3-6w$RmZrvCvVq12FTK4GAbqI ziyc`okoXQrl!ZUIKceL`{{Rk&Nn>tPCfn625iu?kuDcbL!hDh?P&UgwiBMHhJu#H) zwCmxDP`ba1U#=x12+U2UY6}s{ZIUo}t zYn0-uyp!|Qvjy_SL^Oc)75$4TceXmQ4s^y_O5>Lm*FqeSCd7~(93rX#V<-CII+WzK zNWWwKaQw&j&GwSsgKCV$O)Z!(WaIE*Hy|vV2@%@?CuF=Ohm6k+suHiSQmxKEB^`E; zNsT{o-0dL2vV&z*m6TB;saZ!B?H_$i+z2T82?>KJrr9YXx5u%2mc+M%Mv)fAHm7hK zL$6V5Qf&(2_}Ws^xF3C+4}BeeR_$x zEL}J8<9x`{AR}n4x^rAM(nP1^r(Z?H(ht(#ROvLEOVQ#0h2$Jl@<+uA1bwdq=wOMYKV#<=PvIGgi z7*$_spQ_~(swm&9KA*7MKHU1+i*~KJsnIMg?6&%d#vvL7j|m?twO(aV-Yzd0zaxS1 zCliPdVlJ`!JS?~_e;;CV>=N4bSu?7(`-@NX<#j}cVu@@Mo_S5bD{Tyq455x5P?U&G zs+lS&5~oOw&o=kiQTLy%v==S(=~^mAw%6(Pw}w@Z$3_kmdfO-CgEAq5P9XyGX~0o) z+S;IV>MnadRMCBvu3PKrW2{oy(8;V&lfInUapXa3TCQWs;U*n@1s#zcQLX`lP{D9s zw-9RMcy`#S9HRR2$4jh~X7$dq8@gl$|dPYY{<4$i3cMyh8% zmTKQt(e~=P=bhH<P$Q~GJ+)GA0ZGzMe8-1uIFnz=E1&5+pJrn z*!P%Z>8wm;5wVWic$*Pzu{BZ=A>ygYTNPi?{n0b*t#@$J=6!axH(GQBS{ZPo zt7&T*xk)0$2=9X)RuqU;P@TXk2`Z|NI;r7g*lQ5=uckt>?^%tpFZOEBSB(DvDDAl> z8*PhHo@G(jMqA{fUJ*nTMZzaiUAQsOw2fy+`u^tDeN-4$ZZ`ER+T%(&n%qNIU5{Kc zQ<4MiDs#e)TMlNvxy|j)G@tY<^QcqoNS3t}Rl8f3E?wVSu!?aC5zLZcG8`0NB$aE- zjW(tEPuPoux5&d<+b#E2cFlw#v#RQPO{!xHwd6(sj#sf#!nU@Pr*bC+{IRC{Q@FmI-) zN(P|LR~SWZAdrfyEpZmX=EV@nGODTFZdn7pwx3I3U%TE{STi!og+@UI$69i}Toq1k zA~ZgC5yf;w(+i%;iH@@`rhS8GTYV;%%-FmluFMwSKWVNZhlL)O=mOt`OrKHClNo2kSXjoRkGMt9jtD_Cwcua60~$~S^jP729&qZLHt3PdZ*mQ#X%PNzL)#K8t2XvG1&S6vzN zXqu4ab3YLdVn;NL5(+}9FSVl)6kMt=AxxewhmoFGHOYQeyvD>0FTWc026`2=rKRLD|e5nZYrj2ll%a63C*kKjNjTNL$c*lPI z`Ybuu!`7_bi4IV|Dywp2CDy#=MQbDYh4xL1CyfohWQty;{%+k(x0t>Qx7D`x_0=}C z(8yVhX5htt&*G6LD{L7y`o!c70U0*DPYy0mv+*lG3HH?ylw)S7aww!p~> zM8fjC)2EdN!Hy`IPWUWgdTfvhxt0{tC&#*EcDYrvJo9W^!$@wn2H_%c;mZz}5l=$z z+taD%z)G#LdVC4{F0DsC&ttNj>lbrnzSKw#h@m!!jXJ1^jg|~BxfS*F$6D>jkz&zl zmNYN|fAMX}*~`ge20|ZqWVpUB5gUp`Epg?QHC*S{J-WugGkDtN&{kd2Y<4l`J02Sj zN2G`;5hKW4BaO2u5P6s=s__)UqGfw$tJkQP5~KLteC+I4a#UlG+)J1dn?#DQsr;dB ze2SP1nj)?h7u7ver4neFe`7ZGmSH7BREGO3RK+4#&hr&M4zwaGkmQ1hIYm^$V;yGj zBUx443=7F0Iokb+hCjN~V7!?F5kbd|4N(+L7eD%At0>&`cq>^!PTYkWn2o@g(YhR+ zb@y8_KM7$=9zyJ@p1oeTDBn0GGJ#s`XB&`;`xY_hks}h=bp+ATT&@e)q$a(S812yn zqE}H$Ho{xy9{N-!7Pj^?#On?TCpBT!Z~n!`gAU^RhTdQ3+JD*ua5VV#Qr`+ zb90EcqIt`M`A*5vTJ0GfYkgub{{UXIXtkQX`0|`K z=!7BzWb5rXiizbl&-S?ImRBCVX2zr}($)o?yN>*WUpj|LXKRwxV`Ak&hbk>y808YNEPii%1-*S0zaHe8;@zE(+S;2rX zd;D{l_^R2fWWOjC#6%+zU)pLyxm5K|-6aC!myUZUULQ4?tMQ#FU8FQQ_hSj!e>v*t zA8jHGTNmnKoVkX};_^t82B6CVxN%!B#!VN|6?&PX$BiW`;{)Lln>epL;jt~H6qc%} zirJv{%u1%L85tA7@p-7r5FYmMc(LThXP?7q3qKOJ4x zwVZoaV?67SB`B}M77z`^_a`pk0$Ei>M9QN70QWjD)lVJQr3{Cj4}&ZbUIAY1GSi9; zr{I)Jxh_AaQuuGJF-3_byJ>>}W0ZDYHr$vVT#`HNq9TX@s;h{j`s7tR z{{X|HBFwURnwo@lN%kMICm(Szm<2EUWQv~0IDUUQ=%aRN9AB*QGv#V~yj6#r>?TRc z97XSsZZp#Lql(g@L$dq5qgM+V;*H(xXq!X?0D6a@+zS! zlCDv3y_Y=!IWMA9gA*AcG$d*>{gm1^mnf@`@{(sNpYiCv(JEeO=S+3a7&gpeM_$Kd zbrnz$92ETj0A9+Ty+*?%d84--=*rTe2?-)9iW7OsBKGXL=#*B(9g7YuxdNcXnCtRo z0xlJ@MdC&y_~I-69ab8eab2&3+$V^fakn`(*`X-{@=^i?UhBsyEBW;3u?J)j3i!-M zkS#Z04EUcAB}HFv6Ax9$mQ#;Ws+)Xbn7a76CDpQk_;svrbAIO?Ku zD-FkC9&qD;+WUl)vSCLGii_QQetHb&5!hFXM{t$bJSg)k?)KzUk|N8%NySVY*azCHH7j;ZIyWuNEN{Ek}uA4lwOM3 zru<8ln5YRJv4M*7Jo1RHmleXQDk!NgbNxCEO~i3!B&bdlS+NmO=Ys~@syRXAILCA> zXY=}Y=(_Obl(&QocsUIeroGt+Nktd2ewo52L`Y%5{{YOdmeRD;mQmB>IB~XsO~oL> z`WK>q%b=xX6}M{%PybeHt4~Ycgj&{{W9*Dj{Id zE;$IA2p$u-k`g9=3;F0Wp7OU@0jX@MN1V_Z7_LRP2$fvIE^&-56ZPmL$b#W95vE-f zM@%G6Xp4{;a9%i6&vaG%{(1?C@n^|*=Mh4&it??ae0c(}2EO4`UgAmX`e&fZq4|~e z5}J_dlnR*cHYNLqGRH0P%4HFIqOaqqxbh4LqZ%F1wSk}Ii#6trLD>A$lMj0LRK_#w z)j+j+SWwMLGl-JLW4Q9Ds-Ph+srJvWe&3#gROptnshL3mkrd6bY_f>sDU=aJT<6@1 zsg8nBS`bWNxg1v+a7`MLE8`&+{AMJn+lj6-`1I(qycyBjofL(FgXcwM*=;JJ2^lXH z%72w}`TTVkbXM4WlcdFU;A%V0FaAhiRUCCybB@{Lgu?!ME&`YG4pj_@LQShGsBuA2 zRJ>de@V=^v_)qK5#QM2R*s~;CX|SCXQM6(1LZ+%1aCxGtdyzYThd>T%5K*fkAt7wU zzw!BUP~a)!;=PenyQfJ@Gzr$H#g9EsW=z>StBOW-LRme2|-gF}%K|kwwZmk|h-kWlb6uyN5@~5IK2lY*P6I3{w6atM<5t9p9x~!83&eBLWm^}8AmX3QttlTAAzG{@(Nw_ItJ-qvRikwkuk1H&bpef>zW9EV%JI7R=Md>ssSXRMVTTp$dqi(SY8xXg_isv*^j+YL3^sNS(j5e zSC3!UeZdP~)PfpQIYTx)d2#`t2qaQO;3FIzeb8(cQmP>l5U;0vsMfp_nW<}E-1iNJ zH55pz0M?dL zZtYm5C7B{zNly3}fp0VcRbGz%SytkasPR%IR8?M*2EVPSwrZ^wV%u6p(cFU~(q!eW z`42rQQVfX_6oUf8$G{zN-x=|3c>4>IV%vgW)Z4C*+f@^vsGqxREmumN7RJrTV9ka# zv0?aR6moQ!iHOo0aTEY~I8G{iyCV{o^^J#ExP*y{})_j7tX5*y|x@s;3yP z3}(O`eb$u=!Q7iPQ^_7WvdcAf3v|>iWNj1KowZ4UMYu5h`bv5!j!S)^Vn8!tUbhI+ z3$jVYAYr!;^dC%TCkd0atuyP_cWuW?x|zG(Yx_hiUxM?0CA!CoI|D7{P5|SCWWXbf z%}_`Ok|q^8q$6lI+a29KtnF7>Vd~YovaY6fVgoJ8k9f>?+& zJo1|<<3gKw?!B{FxvMb5YRbz*jS4b+rsDiY2^HArC<@}sLZM=NV9q{yX`4&6cs%{n6m{{VD^e8>?2MEDSp6Ro8yoRSK+d) z`GpA=E(?yK5~6p`1y{FL>Q~hdxi?nVZgq(frV|g#k8fWS$|o_|zW(6ahXQR7g*|&^ zJ7cXSefBIX8(J#bNfaeM{<_8J?#BY=!k^-utpyfMtp0iR-sa5{~ z{?2Q3U+Y=TP+680{$Yphs3S1pI5 zG<7zy5tR5XFNxF!fO{DN@kK1A5L2yA2J6j?;@35|*j5E;L3CnTgh+=fYfLcswk@Kn z2#$Fmfr@7YzT9-rz)p0Z-*v5?P4!%}jR($J#Jd79mdik5ZG4Z9GI{jr z;4o>!ugTZ#rc1L}0Z@d^jdQIsDABM;jy^6T9}+w%4}7O2$9|`4cZJ1y@*CK8;&WeO zV{u|vEP}4JkZm-sk&|J_NX$>k&$8fq;d9fB+KWck9fq;09?d9ZIQznkoXGZkk|Xon zMtq3ViQHStD54i-&t>XPX@a#HN?XLNJ%m`YIBnQnL-~9>Z%A|uKwMN#SwKa~qAx7| zsnqRrz(v3NQn~#+sa)6Qv=JUpnI<9!huPT;xj6uHC_G1s{&CfvEarn!Ev!RKsI}B% zMq;k*lUQ^Ugn`gN6fj}34q&I`9ICH;s$n`O*DWkg-l?PN)9c?mNgE0>H?f{=3|R9B zgO3*uD2Rf*am(F~!`XUB(A{);3SqX`--+|}peCYI$rMMXGOWC=I^PU?8#P~Q`l57< zlDB(lAI`v&0p)(OOGvg%D{3s003kn^S3PKHYDu9eKGi9eGfYlmx*WQ}2LW zD)vuami-r%omW0R%n5~QMAK5f6D1Y55fEHOA0lui$s(wtueYpTIB5%4-s?_WxN=`= zEPC-4ooV#SqspSHioU#%Nk8G=tJ|tmY_Ig2S2Ar~e4{q1+JvS_1eIJw1w~Qy6;XAW~j_4I(57TreQw zp(CP;`QTr#Pm~yZTZ?5W=?;l3hFf|gW=cQYRKlY7#uvY*P-~f05y{WnF<>Ih+@p9b zZ~;V86#lvI(?+Nc6&avDLoKNfBh4BXPYAflXZm$0Jd>2AK5aGfT14c$dtg5Zzv0#_ zRdDr%n>RJjMvyja)i~icl5is65^*JCvSr-*}c%Tbj2KTVD8JmxYmBCG z$3Le@G#u1~P`v?goVvJP(@n*38a0%v z-L0aNDi4}KQ_cbt80{$watRS}%Yx%8>GS5M`QnRzs zY!$F2?Xa$)xB(#Kza60?B~?Y_t*7o!MdOrT)1}M&DZ27aT~xa}501}*aI&xhGef3(&Pe) zq;xEk$g71#G!^5I##gH%itBUg<=)AM9zZ)>+-DpYl(1v(Kn(u?hpKg&vYR4#W5-#s zWdkAaZd+~sSVd4}Tu((J{d&cX%5{$|`BQ3UN{#YXQwq?VYJg^qr|l$E!Y)N|{{ZLf zn@I6CCR(PE7Gn+!=u(|X?x!Fp0aMXQF@jIRdUXe~$|Puy6KJw&++JeWVIwde;)(cF zB~(>T%hg1N+Hj%8n^`EMzVewh9pBgjCC4P5xJ)W4FZlFSONEm$T4lI_7tA2zY=^uZ zEQl(H=LD#@{W^e}Sk4z=%qS|U7C{WCh^QpnT(}sj7w$#Q2e+d1S>!%+PoE|$^zOYG z*lw9mt#uIzu>-)WC*fDOeDtl~0!JWrnI_Tk`E6woIPfIlgi%FK%kKR3mJqAnb&2+a zV;H4J2*d=!jtLwBBL|p#>Ss zklJmNSk5@e*NF@^oE242eNj|#-#@oGU&n5Moz&UxQml%k1!2gdra+vLmsgT;FVPnZ zjHf^>-eF-ibreDj=uI|g**1uT>q(9a$J05_^+o6>e5%>dpi^uyelMI_cnPxct7=~C zf|sHSr>1{B28m4C)HMdiEX0`r!NyL#^h8FK7sw^ueWULG01x@}o=f4Ts!WF4dPC7j zqs^4rGT5)RdlPDkiQB&}-Me*cW&t}Hw-E#p&m;*hw_%Y)L=+_yQB=kWGMPn8FGMo5 z47E)CRCkIq(+dnPNSkkpBDh2(osjUK{l(}3u;j}MH|h9`qh9cXCcpI<{?ShTi#W%w zdJW7z^(nxd0w8naxPg@8kyIgY2^BD=i`_p2oxOSwT_&53!(`XPk!+^g0Di|%a%iLZ z4oaPq)1cV%4mOppdsW2}Z^@1-CPpf)FRm0wQyENj5#1?iUlt6eep7Ee{{RQy6c7{0 zpsFgWcfe&k{{V+TK;<_wG}bMv-A4X1ZTVd#QbJ=q3qOL#r$Mr!KsjjRZ$x@TH=?u> z89+kk#Y-ru+dNS+y#yMz-eucUg(gC@^WXSjXsQMvxkCJ?VS98E>3Mu>_|G~%Nrs~6 zxTv6{2#TnS`0Q$^zm({=%Ty@{%rq&@td?Q2P?k$%nO`9(j(;e=-rW!idkYEIV6!Zw zvl--eJ8}U;+XGZb1POaC6;PK8jQ37~vc>aPV7(j_u$n5w!yrW!G~%izDcO07uYc*# zK$-Dgj>I1EUItO89X{wTp`HwozxIB52@+MfjWCHAo@PWtSaKUxLiZ=`QCu%&T&F=E zJ1FedCmX<1Cn=Z5v)Z zlZp=lOc&!QpY!T9DmecD;Wm<@#}sM6!>p1iHs2%y_UH9f@BTm2pn)1fw_py}#POYr zO*U+(@@Wm0@?t{2uXOGB=sp68CEEo?jkZQJB+!|1PA(a$7gj88#`0oKpl+BOwvy zrQH*`ck4{u^h4R53mFndDi6wrfo|M6@F2FYK4U4iR%z6+%>8rZLo5ujeC| zau{;DnYnvE$3wniRzw?d(@5tW$Q1;Pno=NbGAo4Sp6`|N2?*g_x?F6=; z3BE9K*wv1ap~eRMN~TT$p>`zVzxLbXj)`HK*@#v&&+8B@6*fzN3k|BqF!E-$F!6cS zW!c0;h{%YUwnN9slE<)B35YXlpRuaYb*gJAmU_$2q;0Fj!>M9}8Rt$+$KN0AND^nv z(zDqNP**AL4uhgA?x5U9egZ&(_*p`P+TJqgsB`{mTnm<$_A<#CE@Nt9>~1~Pa++T!0c^*>%FqWU8|#Rb(ur2W)QTK<;xii z$~UI6ZlFHdDL5dCYAu!#RMdJ|jrFp67Jp&W+xr9kD;?HZk__C%w5_Ij>X`1#lQKHB zC?7%QO6P^d7YSD!lsRLHEKWouSG`3puUn&{a>IJqEo36KSi-$sM-&}boq53)VW~RE zD6mFqL`_sx$uMq;9(7P_|0FdVNf-f&`@7HX11ihc3>4h6GRupeX4It3UTo zun3^~axS6Qw59!`nT=9zud;8o)@!Ojxo$k2Hoo9ySA16m=Gd1iBW)QM27?U8X#L7r zaZyK?P2LYa6E&Z+w5j!#oA#?yx61zjOWdnU^;MX$RV9~OaX_ZWbp@q)JY!8jCF!tbmeN-idbQk^kr||w0!ww~0|O3!mfcPD{{jUS-kP8ADfv(PlP&GcGwH4BA$CFN7OZ09DPS z>AP*logZr2Y-`1;CV`D>O#1c5qa&773`^Itd&R(ZGSE0MDu@-4uw3Q{RYe|sOM3$jHgIF=(ngKjW07&s+wO+`Ko{~;E z0K3`Z)_scI>jz}cxe=>6nRKm7NRTS#cV+(o_ICR}%7j$^9Wi8u=tqEGL%-cbZaeW7J*5qCSs?zR5_w(sj0 zxfte@)$X?1)FpFHw&O$(Dtv?npHyvmiY`S51Sj3sgtPD{yG5_l)_TPz+jLdXE!KPp zpz96G6NhSq%wv7vBjk-d+BoSsf>9w9#DbFF2d4#O|<96 zm;`1{8w%rXIl;nCPI1Ei{E1vWKyjr!@@?Y!siHs>M6hiNV&&PO!{+awsvC8YsEGRY|} zQ?mLeQ+I`JSl?mZZ+h;fI!pAL5i@5BQxJSDHEDAnB_L$H99=?jQz^xL$J;nX>fFs0 z=C)g@ZA|PkqBE^)(G&SrD;#MbpE#6ODf?X_Sn9k;u&4@|Pu-rVW4f%_+20`C-pV@r zhk=NLSkJwPZA@(@3{rVWT3$e?q(YfeOd=xmmr&1DODclGo<*j{mhqFPN->$!(NX@sYYDxmE4SIOEr?N(f5U8#@xmcT~nvI@Pl|4wX7V z{{W^Ng}Ge3;55LaVIf7KNe#S2L<(6|62?_OM8adNOV0_*Ojwepc<61ULS!vQOb9lO zv|s*6<7LCZMU@`NWS&LJWfRqL*1wev)T3%g_3YgbZ-XM!S)`PwG3UUVlL@F!b5wMj zPiYaTq6qq_Cs?-Ipkx{*?ka2S;y`+i?mWk(&=rfm#EwPdlG`jVb#cZ~QB6DYQC#() z$16{MMx`FET!w;Ml2{#HJ5H-EMs=AOS&b^MWk4gyuP){O3DllNW%g#tTcJ&{+-X~% zb~50tW0mi!gfEt_i%)}$FBSLmRYg(HFX`3i2(k3dw_Mq0);BCx1JkPpMJw_!*#U7z z4TbDK+)gWzMC_Pf)2YhgX`N+)FX1dBy43`td}u9^<5o-@WYmFP$f&u@kw=oRe06oB zM98!gB-?BD$WmkKvY@kH6{gW}$HfvS9PEgwT#K20zw+uvd=JpurIn>Uur};UdgoF* z5cuUt!Lk7tIb?`e(>;?5{d$%(lSM^H6}JxfdC5OP66%?w^F} z{ZmCsEFsq5&Ugp=j(K8CZBbb^2$2)rjHU%Jsrg=@5W_VSCPAmHhz9efmIZ1eqWeRX z5fxQV%1fO7dXzOKn-npQm_#EvAk5CiSQ&FL4TSL|@0}sct|5#moIK zPTpuB>};%Rk;PTrfP6-oZKphC@)MDW_=!=E~71jgzN1Csy=lmM>sD*RsR5`bJfMS@eiy`)U9K)4$6vr8(nr7Mb<2uiX}99%3>oI_cR+kds_Wz{gvhsu%&Z{#aCT`1QVW)s-Ou3#|2t#{{Y-XE-!2j69b(7KTfDvuDQLFa@8!Dg=bKU5$5J{ zQ5cOi$ICB?Avi80gdLY2-s_J}m#j*kWwAb&7Gw<>JzF%Id5LDC zvIO#~8i5ibVoPv5%P3!iWFFJPDwB<$;Z;>J)QuSy#GkpJDfUsu z;fNgeIN)94zN7tAORIbctPFWpGN!8qDgvUUS#6@118p#9LcRSLx_al+tfC|nS&Goe z(ta{S9*$=~tO5&uH6d-dbi^P-upX>d4)d8&h ztxw??8geR-y2Bti0`dx>fcM8?Oy{g1?$E_`@>IJB!G~ce#(o)=6dW zu~}DFzRI-H#|Tzps3zEwDsd(KGCseB=m}XPQ07OE6kU%LB#9U_Joo^2;wk!NJwH8d zAUermt9eG$kd-FkvSMp$I1+e>j7e2;pNuLhf9us-;gfP!G|2595$40d{LlMtwA*XT zB#Z4d4mkaKIlL;_Yg=HEJ)!a&c2fLy%d2@Bl4yQ2R9%{s^-v8!?gnQXVpJMhv}bnc!bE+*2VdZH($It)?gT>is^ zqQs{_#!2_!yg_-Xenl7lU065XgtnWH4dO+CC{@*Yzj!NxdGZP`?Z>B9j3V7f1xj6k zlLGTNqdWx(vu;B;4k@3`QGZXz&Rl!J^;!14NY=0uuuTna6E1)0SKb1dMYPus(+6`h0xE6{8wfulQLXv z<)V*~w$XA5N|?_BMO0q@0G@+tD?@W0H^@;26db5jaa;g&QBXv4-2s13@aQEgLiigp zk~~>30GW_4as@;&QWn&aJ1H-5{AZ%T%7T>=(gQOcb||`X4GGalNC1FIuwTOARaYO^ z@zh!>>#>}!hJ?tBC(>kD568-(D?E`#}LEB7d-e-%l z`HM{&rc4`gc_99BJW+7H4ZtY35=M8$elmcnkTn}Tg~#f<_}y5Yfv8r7pX&q$3nKr-V`G6Go!+#xXFD(ayZ z6vs&x6d*feV__22_`;Noxa`e>9Oy;zV-$XABFq|P(J&MRR)p7*_Q3bYMJK&|s}-HL zg;lM;RclJ$D~Pf|<|4*&LX1eJ!^Gk|tHGgCMI_~(Sx-)h$$wF|qNJ(b9lm*nZ`M-{ z*IGX!RNf3Y%7cFul?7Lk$5F%*MMNPIMP4JGi(#F*`Be#_-$X8ri)*tk3|idq^#IOV4r7P^!A73LwSWUbxr8Npw>zLXz_7HUfh39vo4mC zZl&x@4Kxa|YJ3XV2|CfFWYor3BTPav?}KamXap)H*#7`T>r!eC9j2J}#i&b*N>;Xr z*|%+12u3V&kqF4zUm>ChwCjkW&$$vJx)0Iw2hx^uzzKhr(ToWB#3d^ zW$5e}<)&V293FfhWJ}sO6h+GRE>7IWr)7~YQCn2iTWqpQ@@Q6<*Qv1PP?HjX^} z^tF`AAvNG_(F6#}WITbi>^)^XDVV!Mc3Xult=+?vdX=4UQ%7R;)N0BV1R{PQMTZ>) z*RbfJx>5#It%yAe0aMc1h;ssw>S$jGoet zs17;b1gq0?f^Ly^n#j%EP-ygeoX565wC@CBO!73vD^MI0nK9oGA}{vix@xX3ET|}Y z_UWthw^n|u4JBUfn$Q%9biY?mkkmLn5q499T&m#2^2=#enC_wh5`io33OB(xDs^?6 z;44d%g=IyyUB{DeyeyfF>+x(Q;h*Fp8K}mK6}1;yah9gEkH~Y7DRxB9tfyg5vtQG< ziI?=7MMXtD#A-+o0#ZeJz?mNL_QJwNiGs8x@!e4%Lm%2ajIr(NPPj;!pnt4yCEC6= z7Ix9~%~swHnMC-qZLD2$Z;lPR^oISaXi6X|y_2_BaId3OU&XwUUgWx~ZTu`8 zjXIr+IPEqu?m$~|TplXljIt<72x#gST<*Ee^m$WLWwB9pK~Gy!mr*qvXq6Q^4!ZA{ z&V5|xOi`w#JH(0fH5VK+L;@1$o=Uw)MeCwN{{T(Q*n)Fx9B`QQ?Us%^XJskq!6Y95 zg@)0TeNaf1=97Q`g5^sK)W3+*R+Cjpuua;wQs3M*rEIUj(&(o>&bAG7Cw^n@I4+7P z6Y@A3y@J3aNSu_q0<~}g$v*KAf@*-ExZWuQq`2zm{7W{3SXTkib zWRZBGms5QVx8Jv<58D)CBlTyfN4!4zzj5lML|COX#B1+Oiv z7S}?wanBB=txb;ZuL3f(t{h21K&@CK*j69o$vCDtBIow^=sdBfx!3Fu`P-AcU7huv zVYW0ME?Xn>TLuNQaL^hM6c7LaL{W3w$$Rx`eG)0^KE|86Ut3A4o3CpVBu0f_1N(~e z@>`PI%&=u76pT(VrintZ&a}>|CRB6{+t+dIuC9>a8l18a1Z}{1#^T<$j8;oiq zhyck7l4TUbh-6c%FA8|6ysxExV2s%B)x}1vCPJ1OZJ8!7DZJWoT=rBfFRyhhFHtOG zu1v7mC7%;&4FzSyci}ifM&S!hxLln=3?d>TuLMHEsvZBa zryF$^L~AA6j22MG(c2e@m1)G{4PRWH4QamLmJN2_gznr;y)_NHF~)7PPRgL zCb$9twnCWy04aA=TPsmxH)R89jY(;&z&&bSxgcXD%w`dUak&aD8zzf^#sl`JbR{3k zbu&Di!VLB<_4@^Ga$4H!aUw}Nsq@} zrAgUrDKdT|kr^jfN6igZ$)w3)0w5BRIY zc%)BgEM%KzYMgC&CCrFaOXGhGw!3RhaFT?5fho=AZv4Iat%#Q!43xH@ zResh(CXA|!{7eO1bAYb}9ywoW3Vu8FCj(uLTsr3MU$SJ3B`8U=ofc2djBGkD05Cb( z(FbGR>>T>?iVLp<>lWIK)r^8=)bRwi-2!>n6a_Nj2>8WS7m*68b$a#WADvMmY|UQ! z%aq;~ZTYJJfFvi8v2CPf94-VvsH$p;q=k+@s=RO+Z}00NTgIx{DZX8O_`;<5cFcnK zW*>#oX&O=Hq~a2io^XVT_)en8T)&>=8~UhFb*S;#jj+jRtqL%@V|vpKU<5`ThqswPrHjNLr&xoMDM?pZ5Q<2U05TyZ&Zz+rvI>Z|(oDtma0J1i?8HZOk| z)X$8nSrm%l{=p>AZ+aqrbL-Jlwf4rYUef{jXz9X~(^Zp1xDhI^k$--2spzPkXRs+e z)@)d8$`=qLKh4*lZ3#$FvysR3#yXJ)AF8h#nu+n_xUSBGAoGo?@dn%EO70PR zb(uqRHL!LQk^?azN?>?_sP=gfc_N~IFuCv40xM_O*1If?fq1}ChKYM3VKK=U`t_{P zW!UE>W3nuBH;f&1SMWogLDm({5B+mlE&Ydgm0Gf_E7@Yc<_Zx=eBv}p@BOeO58SE6 zP<=C=zJ=|aIoptcJ8qX7>|K@}g-ly5q0>aKpB<-w**C++k4cm&Eul5Z2vI#SiRshR z8FO?}9=ze!Sk~%{4N${=K|u#!FN{-K!8tAG4LCSnq-tx9_#TD21eSBY(zp5B#7ARl z8srFtDfsc!nYDaZnH%I7BV?BgmF%nST;rn7442z1Jws%ov6!*%8@hF=N(9O}br8XP zCfkjwuNJtvC@8(lKE1lWNi~Muv(A?aH4O!Qj2k`j!J6p1C7f4dq&RTZT##*%qNZD1 zVGB7z?2C@0Gq2^7(k`bJ6-LT3Qg)+t@#ln`@pTwOL6IN8d_-Rb$`*TL_36dsWaOK% zRvVY>-omnZkFaIADkKXgpGk>j1@lsJD~+Ovg0|8kitr^BPG8rnJQDDmDUh0B*5XGtobm%~1B5_|prAnEsQEIT zkvny*#aL|F%Db;>W3H?Nk|7dvs6s^sLyDaEvw~ApR76Bf_f_;1>N6$~rVXWSwCl)o z+mEcUG1&-{WwRX#@pCRX^PY%n`VMl7{yiEVx2}-Y5h>gD_ zH%(WYm|t!Q1xG2=&=c#oin49hN+UHg+>IsMhTmY!+ZRYuLL`(^3@c(KkMn*#-MUy8 zsCSmEb_V6#S0oAMvl$sKMnjD!B22b!8Q|1ZRXB-bzA@joR|UQ~v-NH z_a}A7Qx!TbTpLJ`V?~}SuNN}&e{FotE)5qsPDrYWjQ8p*WU+BA3d%F(1<6Wria3(+ zM;bIjR8LHqGiT+nh9tk`1u;_hcOT015bcE;vX@k0n)z{+RkOmY z2uLc~4pTT^`E`rst>KlsY|2PYI4KUou$lSJi4tU75fVioMa~gXe?44DmiR4lK#QyjlI&-LpO zFdn98HWQ;uWyqd)71T^85+x)>&O3<@=L_G}dUf(PxgE8b{5DPEj*-F0lA7X6ha65s zU#>f^{5rSED_qAWI|chT5hjRvBF`aQj#DCzWBjV9i`joplgP%=rej2o+eYje&>3i= zN*+eb$U-B`kb9yjFCMn7G6|alg(db@Eu#*j6C(+Bc}070TzAL+0H>hYTRuc6glMWs`TY0w&u*$;2)72)pB;wOterz~6U3yBlP0RGlvG7kOlJ%0 z{{SA080qWz)wZm_+k9 ziMxbR<_JlFR7~_iXza3W&1R}o?7HIyiqUH1jbXc5A#n+e={QjmYh=^a2{{RkxWy8-_6=SY{VH;#)$c|=&htCCt zI$hrRjmTt%L z%SHCQ+JD;=?5K(gzUAm5L7y@l_oK^IY+HQ+w|Jp803bf}$Kg97Y$QDyxt1=_e;v=dK*CakrtDIMZU| zv36E82YzF3YH=!gOISwmw+H(T%Du}8WrW3mH$`X2_^u|)& zvUsB%R~1(yM@M8S4=zU0WpnvdFkU3T{qCR{0>%Wn7j3|hZGS5BZ|lg4Kt3-Cc~!OV zf<+D~{d@JWIq6TcS8g!5Nt)|SxWh)O1tI5=1yMf>g!SZ|)pOD%BF=d$>0FGkA0#8Cx$cpm&4<2SDCoklC-F~UPwcP>a`~Wwq>fdc_U=K*GNB} zoF_I^R>=j61TgVQeX-+~URK3SxT2<25LHQf9wrcN-iIEJ`$D49+n0TF3T(Nr|lL_AeA2Qu?{tU0zBZgS;d}VVRGz`^~7U zW-U7E0wJd^N+L+9(9RZ93_GN2QH+Fs;bHv0j|q@Q`Qi5n+GI=+g$1%+8C>$p_u{<}k$typdo(MU{{UQRvg@CTuCx4& zlgi@8jP&=Uw%v4ATIJ+WczwdTLFA>8PB}FpQ|4Uk8#N>Yua8?-5nZmmt&Xsbxh#~1 z;WgzH2#hlyT?kSmEUO2FsZtgGYSA{@xZslKiLZ=F z7dT$CV(Q$8a;W~(-W$KY3yV2aqXN95!8blDX&esCsgv0SVG*Nj5gja|B4B$O^>KYD z`mnK=e-l=BRJ6W_^}OfoEwt-Kz5>gBYXWRM)tgT_B?R189OIuJ3867X5gwLnQk&VH z*YXFqCeGt4qQ;eDCYnOJmJ^>8aOC_}z?L{R%T6;MJ1vSKAgU_!JgB}wY3lYXEjr6& zu9tD8U2fJXQ%x4p_GV13uDtU}ldwuQ9~O8XI$jN8T9wY@SPuI1b* z*RECB{fL0$vDjpQlwrg)C*rs*2%x?%lZr|?Uvi=q)^`mQJ0%{&tRAxpU-43|=C@mE ze`hU*BwcHf-g$&+!APitQ^A*!8DtY2SKLax)wr$8Lw^rpsD3<0(@ccQR!)k{7LLv) zUKtVB+Tb?Bgwg;uZTp+|BISD_P$1Y**?qHHP_%G9#F!Blw`8=55TnG44e;}jaApikcfe7z{v=tt`fNS zkq?p?HrgQIS1A@z8lSD%qKj#uUdWSSUu{_oD|SfH+mO>L%f%jV{xb*e7h7lrTX2(! zikfj;^)1zvV%oi{eP5^6(rTL`Ue{?b7>_qycv(9+B;=%)GdvA)6>-rt4o zYWBK;ZF1#4i3ROqL(8z!OXUq!mWjBqQWQ%BdojaGZ5Kvu7lW zv6)Hr)V)=7w2sEk(+b;fzK+I=^PLHj-iqp*q$CmKc<_na!nhXYkxDF!@ zG_N=-g+WwQ_op>dTe%MjuC+xT1l=E0w`wNQaVcxA9+bWqav*a+R@Oihj;omFjh26M z`l2p6ZiKe#c8WC%S`CHEO1jx>)IoY0Nf#u#^KYQ5aoj%xfGfz!$1#GD>6uAGF*R1YY^d^*r!s{?UlhtE=B}yu!joaxy4`Y3^)H`Kclj zqGVU_o!6!_aIN-CiWrA=CZ1bQT3j;%3vd|~BXKc)&RdqW=KWSo}8xL8RJY)?OUT*fh3{G7QO_q=hC($sqHa z%{Hn4VycRvj_AL+5fM6gp&nMl4_A=ZqVuoq70}?e{JD_D)_RPAUFw%ATXtN)xuliLPr> z>ueiyWeD7SsQ*c`PzQ&~ARM=!a92k)a zWK0w}AWtzONfL8(kXa<;iN!m6aqA`i=Aj*p_Bv4MmJuA0cWm?SMxALfhFg&y1Fblq zDgAth78 zM}*3Bs;jE z$I;_tTTHYnOXx+E$}gh+d-b6@9mI*Vt?4biO~s5{9b{SY$x>A0ie1%5KdktJhn;*sEUdNh`+8o^_zCGHy)a?`lcmEY%quN7?fSe z%lyWwUC~$Z`RQmlXF4Nd2F63gATGFws%)Qs@X9K6%|s)>d8c68S0G7YwJ5JvCQ(2P zQA~w1oG*Xy=(r^=3}9+JnqzsHQQJZ$-Nr!-u%N5@by{UGBH2TRQJ8VLV1!E8swozK zU)L+pc(Npm5#DRu`%NklW4Sug=ZdHF{PY~jXF>KRo4D)Y7iAlbc6ES4-Cb@wZaZfO z#A-hY;r{^gX9ND?sUrGuU&8h5`ud(6c)&{*^{}Y2fu+Gcl2w$r&&&DD{AQ=DCshR{ zDJLK#5K=|Yxj&-yr!Aw5>^iyMF0ke3Yw+wFD+mH)5+F)m9w{u43W~O^^FhHX;ZX~v z74EU4Z4xg&!G1s3v5u-VMTJF0Mg5*0ER#Caj0rxY^JZmqFXE@-r^Us<8G zZ&7{MXFhCN-P*XXu2rH#a%iimk17%P&_wh5C|(_GDQh zG&u`_&pcrh+tpceX`5HjwF(`IvwGO}`$?`#YGg$>i3MLq@Sr&mRpHw?!hSK) zH)a%djf%Hd)qcf{)OyXSxYLe5^Ubxyq_pu8Hsgjy2-GTe-avT>2hB!NUF5lp8XV=LBH#mN4zsOYpb+Xzi6Fq0u6 zJu!sCEi~zTi4CYWNC*U`psU9}kIzZvFCo`oV@``UB-#qew_4Zop;ZXqWW?S;lYIw?Ma`iEEDOHPok zw3amxS*wrEQxW8gh(sdm4;dq5s@bYJghW(CRP^Xqm2FPgEFi%ux150n(p-|SerNtf zh2_bRk^-18&*gndFd5^^p;ETSDq>sBW;c+UmV+f)brDo#Fw!D4x#HoHFY3SB?pe=7 zmsXa)Kls{67gjKln0Arl6qrh+S#jk=S05~rxJ{Q7Uv?KC)4a1(-BBVVF(kuDNbS7# z2_meP{D_SoBPRPM2S2z=zpgsx+6J1~78Q`7IUqO=5w9wWDyt5PC=eK?Q@UYQJu}xj z=>;5-D5Enj&Me7|IPplS22}^dSwwTXW0!8;pN@v6M3oXWy5$j+OEyBj>o12BMC08% zdgB?&etOM{A!8nC8QHQt%_SqFlR7*ZE z9^RSn(M4t2*4Z1f{4Pbagoeuz$#4LGpR>9uV~^v}SD?W@UxMGG$}f#8`2nAG`aCs3b}`$|7SK>Lu`>O*HA; zunB@~SI=(`Hr^j)BoZho0;Uxc8A4Cjs?73&5>}QZx6PlG8e0UuHOP_+KJnna@r?UX zdNoiHuM7aSn2#f}<1+1Kh8KeLykL_P?6-DUg+Xhq7E8Mhc_e@05ix`EHY0**> z1Z~m%rZ~#?{W=M6_@e;Jo=$`r1VIJT_n;8ug%vW0qKLhh{yh~mXG1!uZaje8r{bx4 zA`lU#5WupEzW#y?=Or}63DKJwG3EHe;M^X33p@|Hewa*te?129ee_o2gnUm3>+uD$ zPA1{17c^Y|0MYsX0G~u*AljWGEL#5nBzKgXDGfdx>616J(qo{d);7Y!FZ3;CdTIhMakK{iKWe=mxWU zA=cwaLU1L?l3b>?JXBMj2?MA3IY@)fGX9`K* z{CXlo??$nS6%sS5^A4f0ECodvctuH2*Yxa)snZpRlhP}twI%d&Yj2CSbCp*uk(i<& z8h7K}R}1N$logdcY~jBmLu7APJ}$o)&`5{{J<3SFzL@R!PO=9R@m+pXF&=H`jY*mE z1)>~y$dsdkB6sbTK|%dGutEM^$6c8QJ81K?@ZooWeHbb_tchD*@$IB^6Z9CG1^WGLo3=X2!9BG^GH*DwwRBWQEz& z7dWblqV`cl?S;p$P$1aul_w@stc+o|j>uV7feDy2+aI-EMZyn|d#V!SlBaz2snnp> z6T&?yS*yz_WD^dV$3hocWkjAIAPQkn+yWeTPTkkGI!?T^^Z^TIb~Q2BS;%rk@+Rjy zKf&Wfm*XW7Ldpp%fC=o+Z}|1A)HAid)eCRSM@iR;wTZA}5Ey)^9zQckf}!cjQ56(& zJ^6J$TGEA%@pXA+XFRB;SK5n7A+1s%EAAX#F0@a8vS5hogov%6;eYyc_)BpTlWuyh zg^2g{5@XD!WzbflFyw=6QBaz6MbZZV2Rv036?meqJ9m68rM>ojMYT-p&oR`^C^FrS zQwheF6r~dPz92dAsS0o;MC2rx?!9VtO)6I3M`B$>gOVKUz+qFHG5}+`#J0`yl>3e^ zBtbUJaHyDG-Twd@y;4(>Ot*GbU8Ku)`93cU##xWxaudX9$A>Rzwy2AYXFZiWcj+Vo zc8f@mt6qCyg5A|MbH?>$oMS9SQ*p5}ax+RMs9}Ze$x(CN6RRRO#)U%c?TYeC^5E7g zMNMi8&U?&E5nFA8Bt>lu*O>|~eN?{)g;m>qe!*#L{+X_aWh#xSl6l$7Z-H2b>cvN+Dho(-u!<7D_0mQyI$A)#<}9dQH~826SD zReCe3({tD?7^c5{nUkuk>7*=Ch2rAlNG~+=;`1s!(U4V9R8S*CRYgwS5n9yjS5})I zt*ujQ?oVI2D?&B(yDlsTA`N#pSdkH3B34XWbIhpG`4E&*RegF@XR}o@GhxSsk+xT; z9A*{iM{}DEN@PU54sub!x{aamyHcC;PCfs#RNioTN$feOeoFK@6*VebUza%HSt&5X3i4uv{UTK+fR6aT)8Zx5W zCBQ`s_NbwIQ=-v|4Ufq8dppl&t>Jo z5fwTmh6c82RD%?gZF!A?1aOZ!SS!gASiH)EjQoRTqIJehc@ZF^iiRo)gyqp?1-5v; zw7AtofylG&&26g^I|C+rlHQI_gG%uLZ~;UfTzjdWRJ(L6EB^pFZs*zce`>UjZ8f!U zq`9%O^pqJ*!x@54Dhjr#<$Yr#Ofn>hD&7Q?u&T~5KFr%3vAew19*huS(A`FnT`|cl z%Cesy2>ASh7ZKK7Ce0PVT&@usTp)4jhy_ zQqrFJwA9XfXWrXo%|^|_b?@Uz*sr@59Cv)qINQ-5^SDh5ef_4qylK;UN>2M1?7g#N z`!nk1=s?-qms+8+pb1Lzw33*4pkhpEO)4p&pelw`OD-30s?qHAZGv|lc6zX_ z%tl>=pEf!=5qDqq$(v3y6rEkO(>9R|!2B+p$BBs!OG6&ei!;lA^zDC9gYkWU+M}N%+xWJiv(= zOKo@%p{H!Af~k_NkvtV(H*==bQ|!9kTy3GP!Is}UXO0YuCtsT^nF&PLm`G)p6{T%J zP0TBP?kK!dQ_d`-@P5Oeyw!b$F!gy-_iFYdh5U*$HHZ9@N~XjCWFGP`_cwUB0)m99 zq-)tar8)gUeR*rE*6Oph>OB)~jbmW`*k!12t5___qJ^=MO?a@>PFx| zVkAp_rcySM87o9+BS)$685@kU9Nclj;^D6l?1Z?SQJt>Cx=pH}zdH*`O1Ki16|KXK zu>xBl$^(HdWu$c`m~aG;P+L)PKVmKgR)clA-K_1p^0>ttlZZpz@O3^u5(8$FAX zBCZo11NOZF<6zS%pitN&wlZxk-iKi!z6B*K*=v%wlmSuX9xx&lA55a>D=okd%$TdE zddF9`a-u@>u71f;QMm1zlT5}^QE_>?M1+6!4m~i5)}e{FTAqch>(Wlan7b?4ogwA~ zlt4`h9CB2rq$zPmksE1SA;O>S9ubfOA`#-h;yCJmD*~uw-|7LgF)qAMRG$^OQJZ)b7*~^#E-elv2J-xj`xl{8g}F#kONRKF3OwVO8QGv<o4sP?4XI#=Db9Gn!^YjS8Zt zuz3~{f9h3U-DdtOaX#ZU=FID<)*?48Fyr&yhYXv|KYEVSftQHs|W zT|z|_RaL^TS)K_Qe`k0K-FK0GRmynCWA>WiH8SYVRbK9Su5Lotr7N-x`y zRppQP^;$&8e24`d39)Gjx5M_5qVZ5vU-8dGY7>;Q1ktYTNb?kA^;BO}{<%cxug^`V zX56W*^$o*&ZqAM)^W4|#s-Q{m*FP@MIY&uI22L7r0ToqGZ?A4$dvmX<T(wXBrzmH7H~qYn&Af?x$4I)o`z~GbotuV%Z^%BrTvs7 zWw>emm!d|Fpdk0L6p;{znTn6QKD`&`1>w;D0H(E%v96)sEI2U+I>^@;byZ)AgdpUf zIjTA4K4^#{m{jbao`=@i12!EOUe`&dZ{W(gtl3*?U{ZtbBbDqbCynU-ML;KAcd`M8 zw0eEtNiLz&%hci6S5d{MxjS0%XyV1$SZ%th*IVqv%f@8F3QX z6}ZoYTt{mv{{YLH_^9(>LC!6aWB&kec2!bI84gY*;nyJ+?6~@-vVB?x4fe_0vS0w&5(gB=e&|KhF<^B`jLIuL zcKN3&_BUsXgF48RqJv0Crkq7w9zcua!Z=8&{{UA~+$pl6KACfI9uP^HEV#e?PRVNz zZ&%NiRl_E~dLWvfLZ_)*{?U;3VC&7le*G%4y696Oxt%ag|Ib zuUV+XG7iguz*nE=MYGeqEq?xUO z^1-5HiM;!{E-D0#w!e|&3qhgIjSiDp!WquMarrtEdKybfr1pGW_xWX zIEJRuDIN`=dytAIeG`cKWAeQ~SYX^jE2pXrsqN(Ciy2Wt=iJaqGu(+&9YvFrSQ29n zwI#{O^f`{3O}zV{h(b)N^8!@PeXEuIe?3;xA%uAqQw^6KZK$mg17rQhOw5p*!v6sH zB)LUS-84aK$p(cS$hBZZuR6ji8%}_iBtg%0$LAlOn9cGTYLX^D42iahZzQtxIUuS$ z5wu=NE01z^{P*g$qSp2YX>Ap$F;L_{Rc=Z$f_d=2ku)Dw=8J{@02N-4(yLPIPWi@5 zkch8=AiS~p>sP{5*Y%9fxCpZ2yo^3W4Yv^x+6M#3B)nJu0CM)n zuUT_!j>EEJJtaVxarRO~wh!Feq<%>6kB@%pD!se)Y2Jy=M|u%X_r42$kzzZA19wX3H!pkO(T5HqeXq zaZx2f>582W?aA7xoY*NLUYxEnCO+nzHxU#vo`9f>pX=YLW>Gb?dWPZVXk<9`dyNo3 zT`-fns^L%^T&E-N{Ph(spe4wWES-#uOIW_lD5s6ZPUhM#WgIVm*Qy17Dp4CY z-)rMbjVuD))%PF@BJxqn{{Wd$KdyQMwZ8b1z67*o&pDwM7bq^aiR{AX{{UZKUWfqP zn@KvIm`8kCw0MwMu)w2g+BmJE7$W_29IPLZTKH)BSZCKUIbYE*~BfigrWE((!0XusDO$A8zWQ(gq9!F4DZ@T{f{4k|_= zZN*+3`Ekz`;*0+P4zs3~HfvN=pM3z_itU6%i(y*k2;&JVkC2cPD6a8Q*@`>uW>6HmKPertdac#xcNuV zo^kF@{Ci&{kD0g9v}w*YZ4$OzSAH{eQDi8auRh?mt{ZLHqrtSwqUFWHprS0a zfLk?fE0*iA)&o(i-G7%_l7rqm|aH-KCUAkOscKTFWafwSwuYBp#ibQgjPfBTAXd{U{TtJ>jNRWrOq6(+4 zRZcSOCTn$cRkJBnb+*21)^~>R6HIxW=fTwGj)^HBAq5^PS@$PyprJ610kVB;*is-Deo7-GjTaRVFispYi;OQs!z4ZHUa4k1KG{qB#g61C&-!|D z6VAwe%rGX;kwF|ILBL?Y1^RSk=0ck-p3~!EriGnOx8OTAI64y^Y4=Um8;Ir^DC*g? zsHA{OtJ{|m?i@QZrQJf`?3bnPk@ow`xXsC;tgwBlF4!!F&8gz(khBgy(Kf0gEfM6K zB_mQ!jmWn28%paMoo)?fM5nc;Y~L%nR%5_x-hmAap|q%Ipi1iTL_#5RC<+OljM>h% zQb0Ogr)S@{rE32GNWTbG^7ZQYYU519gE~MzDr*Xe!(t-C&Jq&&5Qqeg6;V1hF9^H6 zwG73%*RsS8(UTS*=&91|!(;-w>DNCDd@)SLdTvQlSYy4{KtUJq) z@m|4!6h-~8s;*AmVQFVwccX0aVcSTyvw0xR%P}eGUEv(Q6jkQHvpus>WeA)mh2I}F zLR?<6@~;PVIhr+vHvFvWr$YU6*4zP+l@wz(icun~Wb}C}DX}1RwuCZBoJWwUb+4J_ zn62!8`2PT3`{(ODTArod8sZhA$1SSLz~5>l)QIetqNGxA`d#$x>T4{@AOD;@5@sVNZ;4_KO~ezu+V zC|})FP~RKz+<9+Zro9#w`IdHQ5v!V0VG*=;NhvP{RUQf4)iAwFjSlQvTpzNmcYRZI z(zW^frOkwBbtwTQ!u^Gtyq$hrI&cw+pwM{GC)vTRvSk6xX1m06a_9A zM@>Cc3^lWFQ{LBpzu4Zc*CW_}_MP_Lj>nXfY2!8yMutp~a5oE|7ZAk=MLQ3nb)3#b zS!+jKx?R_6P0Uz3(pskmkc z+omD}j;0fe`f>GmscS2i^%{CA*lDfH+Faf(9f)-f$`o=@w%^Dy9_X?FTya%!sH(U` z&u*@>L*q$q4BawbiB~r0$IVc{CpR5pbT1?C6RatEgNMOM!ovRV`f}sg&A7YNM&6mV zM{<@;n7tnP^K>J=Ng?kWPPZAQkmE+af`D0HcN}9WIP@DK%sXk?r|?fTvBcF7q~3$C zyzAu!)hNz9(@l@L<#paIq6(J*QAN&IpbuYlNEdTxS*VpNspv-?$u|v2YI7w8({aRL zJ?)5mhPa9ds;_ll!gVDRuXOx!yTxJchMtpn~Pz})(^;G?Onl$Rt z>ll9Cw{@wAERzhZD!H=aG}|&_#UoFSs6v21goY-4$rqCL=~l!jTP;?%3i8tWz!-;5 zeoSi+j#&6YM3rD(7hXaB>w=5HKgz0Ivz+wzh=W;3#GfPZFB^<vJkg<76qR`6i1H=xj;~nM zqV&>Pb4I0Zk@$1twN)kr3i!v($EL|&3(hBxiWo%hTvPSRSD()! zRN0LTwxO{aQ*vB4fSY^!t_v-Rsfhxwkc+UVe%a~Qp4!knZCGlqDN(9$N)l;hGcLKY z`7S(Ma?uicf{G?pKX!BLp04XO>sw>A>=tostL$r8s~b0CRL7LxmP#jtlf*(h+i#l!M0SMZjXXg>X`m#|8$~aA8YgwaDzE(dw(!(5KxU#9h18f8 z$WK9nEuxvKiLkgPRe5B+q1*g=ikqsf+z4>lnGv~=VyOzaP9l?@gq&0H?aD8Hv)d5Y z{F7rUOm~E%1C5lZjNuSPvmU{p&~m-{$cIxBJc&{KK#qhlakQ`$;^!X3i}>_T$<(VT zj2X!`8`0WloVm~OY>99}jj4V+B61vm$Ec&NGUON8dO4_Z6>Zc-YN{f?jH0JSG|qd24@V}JGp&jN2&Q`~cSK*xembQJXg*U@ zWVVWpFv=<-FLY4CD*ph2^hC#U6)>c}s!~+^D*Jflg8iBPsh*8E>f=+e+o3xue(_Zf z_QE5QYG{?DYOrQ9`0{jv%4BY!hC?bnmmRwHd+_qglTUdnR6nw|jk*L1s_N+tBm`ib zmi3c75gT$j5n-nd#?=*&O#c8}^`*UYF2Kv?O0Brnb*PNr)klL}u+D55n+@jN%CtCP)HNeV$d@15!Y+ID zHeVISc@5m_Y8|N7ENGvfvV`^|Q%ruxGG1ZQaZTxH@{pry%8n6pfyW;B>r!%U-b~v! z*yTP2Ubvd9J=)b^My*K@K%^|#t{Ed>k`NULgiyd!s9>4$ZKhpV=APzMlz~?{G)(vFuIjnolK!7Zv)p6tFk9MX#*Y60 z@IPtDaUg@?F`#S-{{WUg7F~7LvSEbJxqC0Jak<1;^?P-#U)9u-WLMHr%)59k8>yJX z&%FF58$wZe{{SdR7K{@JW06nOIZmXDX5BV!688Pt%F4#I_w~w|t$6s{Q5BU% zR8?FdD5~;RPLWX{@qv9`b5{;EG(C#FpgP+ZNM(gusAfcjMIz!Y@L)rbsw(3OBh{(T zwsrfA*EZXf*DTzLWAdOus=l2Si8i0cE2`XZZM5Vo;ztz-ja1LD{{T+1sN20|0?OD; zCEqycSk}}y{ev#=sd&Z%a6y%7xV*`xuSQ#<^DocZsDz7VcLHG??d}P|6Gm zfV|l7MuiA_AMQ^~b+4Fdr()SWl=7?6)^t>qYTT1{IwCsiue-*sD)B{6LQ_Rdb)3eu zM_RFq7E3jACAW18#v?N6rUaunt&$cUaj{I6KNv;)^*brbx`E3wpL<<5Y1l}0$+E#4SAdTOiUJ5Is4BmNPTflvbZ)*e$hw;ta_lynlRL(~-cE?&a9-?T zFhlpJdbj03oGD88KB*{^=%F2|vfbTZQlkX(S_?v_|j9a+)i1V7(Z<=;OFA z7_L{Bypyv2I@_8{)-Ow`vbk12`(`*a4zt69gmP2Sv<#{)GK5;709RM zKTeVw62!R@o2g@&#r`qJW(1dsTPK`#5Dl_XkyDbYCNZ4j@qTHhT81Tsb+v7)zaU>xkT$QU_SyOi-=%m?&J)LALm{yu`haQgq0Ax^cIirpDTsg@TIA7DKL{xU! z=~CxUUl2Ab)P}?q09j~!isFj?-y!E1=@(llwn?&~S6E4dA|sHEK-&^rxgE1a_AltD zV}vBiXQhf|KLwjs={X7Mli68q&LBi-Re?qBAf4Bjw2?dhddNYgp4<_3Q?gFIw$aGX z3yqMGB%&lG5nN?KO%)gP{=IIqYY9;8HRQRn5mBs*K09w#2oaQqxPlSIT=D+lV95*c zDxSR}306)A_4XW`1c4$#oJk_3!6bJ?!l$lqiQmw=1Gg>62W+EADCm!{D3&DAG>YgU zqk!t=Fyf~#axNF!+o%OT4qMSvH7cRGb7RU;fbbs|A4Fcvil?fg;d}Pa`1Jt!ljUoV z%82|&7>MtP=SMXZX|z=A*?UnzMHNv$Dog3xsvtXf^?aN72Mzfi7NE(kvsTc_^*$=6 z?&7L|r{5ohPtR_y3iDzlgLARm)@-c8j7b&g4!GC;U^N}K+H_lNeanXlJ=pAoh`G;J zbkU;kZ?LA7aULDiI~xWeBlBwJDaLg<$2TGN1aVyCL&bQCuk`QMzIh>gcDIqI=vv@k zNVStb#w?bNY7>h-0+AgaaZp450LQrawh4~NE1o>F)@0_IZA;y9_P1hgWq_SC^~~3{ z*c<5Ql0XWirdxP<3X%$nAp2EEkNJAJhqY;Iyt5BpS<)p~N7tx?;MH2nb+|wIDj+~3 z4LLYQqNoB~R6$iqQAet(zE0L|Jfi*muDeln0r`<<$3b>%lQ%H2{9*7fGQ@_TUNFNgk6#a_ph={4=G|CDmSA|I5rfM{``X<)~j^A%< zQ=0vSLltv@oU0MrY6?8)3M8k)g=Ub_|xx& zN#aK&wrznpO`4HA!PFBaM9+RF>b3@r%6_qQzr?K_M9N9C9J_a5h^X^%T4qq3q=s#l z1>yiEfm`5YoRm;g9H<9Tv{=Mg)ze9@Hq8`Tq_vDM$aI|-jiiqAh@>Jd3+*OExv8cU zm3_;r;hQ~`o7NP3K0rzHR#r&zOp>gbE5?yPTTw(#28YYt{$%Wn(skgJ z;kwV6X{y(~aSf{Y*UU*8a-8d|tZ58`Ag(-I$Vhn^a#9~2GDM4&>ncJUJIS|o+V!w9 zAH%sH%-lzTxb6*-@pb0G6pYzv<44`=YPyPTf<&!n~x|?&E8>S2JC#ViHLy_p=O< z)*h^Ieq=N?A_o;orA`JWDht_1(IjO}R=d5|#FH;xrm(DnZ^Lcr^JIAC9dwso23VHt zt4Ye*4V)0CzEAd=>9YQd5Sar2% zTOKLuT#&n|g>_Y7cK+2hjgrM`Td|cJ=Ra}=jZWhYNFzbZNT{wNlPIN<{l}DCbQ-q} zHol7LvtV)#UzoQAT74)s)MS$L__x~;jQT+mTPU+ZlHEe z-|Lk!rOU3gtFR>`ma;sNO;kP3s+p>AROiR`l8EP~hJCTQ+GdG5$K%PDZ8qW7wt1DV zIs9yk39XpHAm;H2nDfIB(kM;UjtZSr-{{YUJIo5@f zvlIbTMwvo-I5vbNZlRhgC%G;t)~^$DXLP2Sx$ToD?XYIPm5eke@s1>^D%(w)zue|P zKmdT>u>gg6BJw36zN&7u9+&M3O-h}r2W>4S{L0shoI$XdM-o`RthO$TK=GL`h_is= zC|N}4mQl-{XH=rJk7r2BHc@rw97;NSrh%`Oe(ZrcQ>r|OBua1jSQiCANBino&pA=9sBQxrPj38#j3-pV@KBOq?>SC`HUI6B5Odcysx-Gt&!)8L`IoWQR+g@3>%iI zux<0JD7RXrb((0p-otDa&y!4x5KZ5X(z-lJhu?M75=GB(&;7JT>ZIe8t={T~>dKk> zj9}L+U$C8G)ytEddBTK#Hc9C*nNWAk^T>pTguYK`ihkwlZH-P;%eJ>0rk%9e{dU}j zq24=Nw9dS;Y`CnL3%>{VZxNt%dK_ujelX*)qV_tn}aO~SjHR~&9*XK{K zm9A8&w8WSwbx7;6;Z{8!k6Vup9GPrN zr$?MMCZBKtl4*$`ssu>5G3=w+HGGjrZMwt1VeFcg-Qp?=38BVyl}C-b`$^IpD8j6| z=%>I6Nxe7-!=eCc!`nYZr z3`a$A_SctSL>^w$n#W*0v4=J-b4)^zo+THe#gV!7(3SeWpqmz0Hd_Z)Fv3=$EE z@f;IddOuTaSD#^(V>8}`q*|*DYxh!FZ925XsibSd!Wpwni(-V zdq1z>uh=^Mq*`;c7M+z_YV$D#v`8f^6_k9CKwNO!BttBI;pCT1F#Y%c0LnAqj+0Xk zM7vF`@|zxySC8OUVlfyV_-7=V5KkEbi;9K_zJ%v)J!?^xvrTa#f}N}8B2eucOt|%1 zrFlgIoaIZ5y$~F9B#Aa}%Rp_iP{_7QtJx8AEy3mQ`g38nT?atEgS1=N(SJV?=Pn0>iM+LKH^Nf?B&f<8)P#Frf<;Yph;zp%cwvt|8iH9om#v|Ai_G|(bA%g#Oh zyvbVPQzThUkC==_GMq^AtA$zgErZv7#`_JRpZ20uTI?F!1o$;=vN4WOG~-ePgxDn% zOrWTF1c^;}t`oOcBo=HP$48*DpJ3vXi)<4bk*C9Q6SG=4an;EzEJnzC0urLCE%McB*Lm9bYmOtU7plxeQK{|N_n@&)6tQLO+{h2kkl2{ zOj|su3wUf$Prv1H+pN~2EZ7mX&8CXpEa-I1$CCls)w2}1ypKL(8Q@GR5t*O6Dn=@t zl>~aegQUsK>$Ye7rHpMFma8sCeW{8gAe~fo$q2$A5i7=sDa$GCUMQ%!S>+46iBay` zjcV$f8&QdBqqxm{ba-Uh$yn}@yAR&mLfX3^h`16Gkg6i4J2`_Z-8MtBwAxCE_hRK_ zBl*>cfb8*3Nb-rx18f748YrQfsVaZ$T%duoYc+8zs`hx(ZELnj&5S^YPV{q=YOm#o z-6t@m#k4U}@XdPCH5r{NRl#;k;QqV1#C$PFuoMZwAc3?LIWa1T&VyOrb7a`Uj1qi{{XQ{VUMTlAV7%*kmoxTB|i;- zV3NCm8pDc4IS_ErK=4@s<@rwdo>mbZwqm~Cn`)zk%qTS#ZC6XEXaHjqD%rg*WLE>Z zkvo7=Omh79PPJzZEql6p?T)unv9gxjs;Y|72;}3$?~zD(kC?I86-$z;uYd6CJ#I5= zZC%|)wDn^{39lT$<5$hqPZ9#EDK?#ug}(Xx^+=BfRR)h>4?>P@S3K)BGhsSPX3UpU zha^7Yo?$*o-?vlBy!bkW?ah;oLrBLAL}pyBd$@?48bJ@p=RCc8_UiK$IKso_*-NfA z?P5f1BLu(L^0xO8Uv4mbOE~rE=sKe_N~W>2j-@1D@S6#Q<|?X)q@C9|%Jt5II@{mP zo9QAFsmCP%l0$+9ML41_{{V&kI?drR?IAKQTR+7jSKTZ#EuJ;jfXsI=&IjkCH;CUm43eZ(^7i6<3*8aImqr`71I(Ruuy@R z5O@N#^tRK=0P2b=i-x?gzmC0qyH^X(ZCQfmk!4GDVsNVFMb@Owm8_J8+j)kh%50l$ zRiacwQE5qeFX4MHev?zR;mDNGWxLKjz0Eaac9(C1Z+utf$VWmlGQ@>(39cc`k$4ed z2iOaq{dCp6mkjMs=fRH-&woiZ@hp*{nH1Y#T6#Kx198C+l@&nA5R{h->-zN^yuIK4 zz}KmDs_kRzX)tW8UAlgZVp*payha4^BDg4MZX<$Kb%j+wsxl6$tOvO z%Mlb@j}O4Bz){c1h7niS*BxT4xN6!T)hcW^J+_O)=DS|&5K@jiBod`W5i)h8IY9Gh z`_B@h5QnCF=c_GmuY_Bj%8&m5j;?lV%7)*)y@1<6Pg?V)vEOjGGO^r}3evdNP`Kld zVpYdWHKOG`?zJw`4UNQ$X%1OdzWb46JZ(1_$euSCa#WObpCN5s^8-AQ98TPDy-sI@ zDeND4Yb?jC*XLHl+OO*FmL+tEk1a#4!*)9augqy05Xw8l+uU$ytDfu9U%)LJXO}PR zS#tH5<9lYrIMh(qsEOxMwm{wTKAZ(R!szp$K(LOf0=z$Q5U8yANxOhJ<9#u`kK1-#UxFL zO6ND4Q)HUw#X(#`EI5mSB}{cX^^=&-UbrnAXV&SdZME9?(wV$swtVZG$d&Qsi_gB; zs6vq4TCbJ%$vHORHiW+9RLLh-Y1@(=*3BDGyc-IeqANOR&$d)B+BJb&RPcjN3&gl@ zf_zj> z7Xql6&so5-c3t;HgpaW=W2mXGvM>sRWx-cT&_Tp`47j*OB~&5eoO^d)$3`WqBUYUT zI}As5@M2VxeCeaQC(Q7G>y5w72we9X@*-c*Q5W%w+iu5EDtS~}{h1m-)wMYSm*7VO zV3}}uAxJ!sVeI$E;SoD3D)l9Rqx&UH@UOfbWw~&wod{qIx(M;GP7t*#i)N^*C<=(G zz4EEw)1nxvWm80X=*-BC6)cs;*{C1@|KpNw^yqwwWX*v^v<42GMEs*yfZm1}jlOoLs9Kyn7 zu{LFd;l$s z)3stgN<^@2(_$;iCJOs_bAm2?1wW^+RnJvb{Z07XQ_q6SP+1i6&vIjkkwMkwN=>{Z zii9c&kzdt+Om)-CB9V7%hfVufRPM`ib8-^#h@_G`fFLBO>O+zYcNFZamB*)7<#h*J zy_<7Jt=h10>8G1gBuX3sgNCWe#?1v01$!O|5mWkpUpR!?Pql4A9@PRh4C!7=36=H1 zZyUnQfr{^l)E*Qtad3!2UaRU@&sv={I&0rLroPThfFuUVY$UpEIPbuFo&j7HMC^-& zAs^0h+ocF8eQ3mpFdfy|tAlGb=f>ZgkC8mepA;uVRkh}%rHpp&EAHxs*Um)9Fe@Tj z7)Ned$C(;ZsPcG+lPJF2dw8i~7X{lrO9ZRN4$37BJ(a7AV^sSsxbX{-+c^t?7F={o z_L>6m&$Lq=x^NFqx?0He&&gNZio@bJF0u+{j7TFA$_`O{WV}^X5fwZ3>lPR#{Fz!v zgIOLNVS>>}a-Ks-t?~lkCgZBAh$+jE_U+WYeWPWy%sFxbJ7)EIi>SjazPVPz2%+Uf z$FXtwRnAd6^)N+*yDf3eha$DP@CDZ7z>vXlMQz^5hNMV|f)vMpOm#%d4U!y~c2_Zp z8A$FkHe^`nyn;+}ylAhgf0Bhkx=Q*i-m=501!YG@K& zH(Ze|kuGkv$uc0QSVYD>tNuMtkaZ)-zStctO5!sQ(LAyaJMNc_hxv1KP)$)hhT8E3 zMaEHje1$^X_ML+M{sX%6@}>sB+-r){1!>n9!$jMNBC04S%}E6PNLRmFoo89XwoBh5 z$JpUhvc+;<*-i@fTb6vG#u8|YWGbsxCW^P2eEg{e>E_iSwbz3#*A1 z5><=&D5k(fHxZOGUlKNn<`qVP&gQG_$_l4jfjVEM}r6p!0_>T2*tdit7J+_zqU>i+#jO6oo}j12jfGHZysxo z!hK$CrY^qvgY8vSm~SK27G6Dne4~R2`nDx219fdEl+CMn z4!*I(9&uHvEjt`d87CY;0wp}C0wP9$shAfkZ!F`LWsJgcAYM*OMTuW9q_h!Dhntl1 z?Xb$WYFKB85vyUIN!11E{0pgF4C?;?^%U!)i5fInkG~!qc4Nt9$6S6yLQe>oWEd3x z0Jv$zSNCBPQBE1jr@D(*Xp-ye>>YNFMI4C2{5ea2VOwvJnjFaGp9;ad`-rpdS^BJm85$bR{_wCSsCidOqy!aJMB;*_%evo~mgs$sqUNu# zQl_yrOY9P2eaYM3u;cPtjU`jY-^xJZpi7M4x$s^bQz)sc%P_CEu>G8f5$^12Z0dC8 z4C2LxO4}^Uv5djTbQ^gIR8(JZNPF@n1<$p5k~Jg?Tq*b2g&QAJv8BQnaUt1g)fuMzR_ zjy=SjNmBgGF>_AbEGmXo^!jPDV7U>eCdztZJzNrIIME|2K#r@eim0z4##JymLdRM8 z752{;PO`Dn{>X>+9mJ(?pxrjw zlX4Zdu`g+vV>VSIGG6#of~_BEiIUaV5F8XlPz29&CG4y1>dvb#4wm1oqwM;O7&{cF zmrHG!QgnS>NB;mP`Pojk&1I9r9kg}g2FS`Vrb`H9VV*rFUuRO)Zlz z5o%;bw|-DcYRd1z46@oRa|3QWAqibp`14L&yRUAy*TYb=MfFsTlW-f$Ke3)`>zgSJ z-Oy@`zOGyIX~dHzIx_0C;EKBIYNWYP6XEJgNt9RXcTX5c_75 z@G0kB*HWz#O?DjSw1{aK39;e-0NN6NxcHN70P-R=90IR0z=(=ovxaXgO1Dc9`qqf! zSc96>#|kB()({c8#Iit9Xz+_2kz`br-16X~oc=SZijsTOFs^Sk&9hjEuxVBI2_7!9 zT95p95ZX9wOPd*$ao0)F0Ww#86~02IooGaZ5ZpSX-*IxbPJguGM=GX?plR7mJMtTSu_7KP+dVO; zr?iTVb6(IbHVZ3hT1XtHAy9pIO3?+xMhRONSd=Z4hT8)F0J=ij37{w`X9SUTcYUZ& zS?csZTQRg+$O?ORU|vJ3b%Y79UubLrm`pZ^)9-k|0gxb0D13>1omn*@d+t5c?0DL~ zu}Mb(YoBN4Sk*l&Wjl1lNKrg4EQcas1Ip^SO_8GVA_GA|!t|3(fI5%YTUM7A9Br>~ zgHyLr)iWniwK>j|XGUSGk2KnIGa-CcRnIUgIw*qP2$K^ct<7^&)U_sTc6kk%0eVdzo~#d2G1ASX0s(L~6v1zeA(doGv4W`niXM7yuqHmEXpEsAV$tf$r$ z#$-7Np~!M0O%&GzNliFo-bAC=5lMQTxZ(<(EUxLk$a&qGqBS)nX-`{Q*V)dKUnpW$ zwer~(nU3K{mP`N#Bt=Bzh@>5fItP@Y`i31v{^si0T}s+4Bul5LHX|&ema&?YZ;Xaj zc&N9*#U)&*i68j%B1i!1*CE*n1y<$3m@Hb6cAd4wD({{Wjg^iH#k z*ed;2&1vH(GxW^%x&sY?3$&QSrF~&>l=ylUgBy_ z9~MO$@+zs4WQ!!diyfD&?LapQfxC3ornfG-BjDUEg|}QZR+|3MH6}BNyqV%IVbA*c zdvLvPo8&arQ^<2;wWzqUaam=8u2{23ji$}vRZjsSh=QUDVZ<(KxbM`wBWAA6U|Bz= zNP1KzXH`g-X&qE$nYqlsGbEJzuN2@&xlAYZ>2I}U#{6Mjz|&{ z_B>$f@eeZ!)ZdQvq(<5{Tw@5~pz}`Lke87nBKKac zx#3~cWz(zAPh@DM3l)#PpEcOa;wh~*;RrT>h)IqlD2vGxiesrea#T1)8p)apNYF{t zD8}?#6%3lXs)T}wtLmUWox7)1qs59pG9>5Ogu|``Mw=GJR0LfGR+S$W1;{B5f9KXd zxl}D~g1w`(GKP^|Z-Z~P(Ek8o!*AWpK^GWRTrW=jfsd0Gs?9^;q=*(+aDH6__DQQEjn0W-rNA+j8S zqN)<1C*?bK>nfKSy3&kRv5>q{h18J|N8Sz+{ukE>y#}fjA&jFXkeWVz929a~eK4Mx zMd&rK%dw<7aNRbVY>W+qU)m+>*?acSW$2F{^QcB&A~zjhL2<_u+-{<(qVoQo6v1sY zBtu^yVo*EEE9v`DIN*mV{{Y?Sh~8%g9b{5cjNz^#%58FjXsV>yC+JDhQ>BC66h{5> z)x~VT%Dj|##a$cErL@EItgHeLA+Q@3u6b@B%t?R~1+ zALFG%ld)Dl*JG*@b>e!xvi(T%p1%12`9aLPb4iR$P{A(E05Njsq@ zBwuD%{ta0dTmu#{1l*) zSd#2FmBRTCzah~cW?V-ZBve#Hav0_6TL+Z_J@OzX6a(OR`KKRvFtTN0jXwrj%M)0p6->n}>; zsA?u$P<;hD=OD2D(x`fO4PRZEUj1IK+hQusufezN@Ycv|$B8Fp?bX$sF0t3X!Us^~tE0ug-~BmW%z8gJOm-2a^8)b#sL6_+00*^(w-o*NPZM zf)N}URt^$DjM*>tom{GN0`lop;e7gW)3c;${u-71|roo}yQ)yj(WVfi#~ z{{ZIMx~Uzw%)ZhmmO9{x@>MS4i-cd#Tb*N?1KWeCYZ9W&B-&Qpe0Y)GP6mS}N0B^_ z0EQ4$npG0V?)B>Y;4fiqTlMP;XHx0AHX2AFtTE(rW4NA2NZLe9pbC*90v8nIsoOm~ zsUJ^v{`XE|;=aY1`sJOAUk-dG-1gRxkAgeV-EbBw`6Nep3Je8px_~MKDz?<2?y=?W}EvpzI>aZ1x&ShOZ0a z(z}ljE+S%pA;38zp?a!iJNoq@E`mE{M_sL}^I=ITZy}r)s(CfUOCoVyU=+y(7yQ`c z`SeWmsl1QY+d|ge)2`Z8ds`7W$t0auSt$-ElYo9SBt#(|`Ru3NdY8hB&DR~bkur5? zty`5w;YIl%q${2xg@qwSR0S?6g-l^nzgf^w_7#}(&NB=w>kWjiomvzh$tV+%_M(WrpDm zfXHf8X5CpXpO5!6I9w?DhJD>l+NJq6HCv5zYW$J8B1|;ZM5e9Ob*9VBsVXK}T^w5rNN>z;#pc+656qV) zP_*P`*?Y_X0FE(TBW=`GT(7TUPJnfd!#e_|uc*stnb_)FarAmhf+agbrmNqA%P)hkJBHr30g)Xsw>@8R>fOI1?t4mXwMz#%3*+fpuR!78Rrbd5$Vn5a&& z#O9?yofIWDpsu>uG?UKr>HGR7Qd)#O9WSEZt zX-&q-PlTq3HcT9KLouKxfhut|weHJGh`6DDxd?A5KGo_q=JtA#MLg=J3w)<>7^ z<}2>Pb&_K{i*4%q+IosI*z052TUyz(1-hr57G8c=yNL?C<6>pVMO#%~T(RoCx?G7n zTIa8_Z1)0KSMBL?Eh=}jlCfn@u@@#N0l3kuMueLe3887OD5NL`NUEx$n9etc-D>7N zUZo~>+QdtV4qA8t$d2V$81FOvr_@)=#kD-CabMklRpf}2AzR9**rqWp{e{VkUKSN; zv>ZobtX7G{@G{(RR6%ebaEw%&Bj%!no~hKRA@+Sm%_V)L+MTZA+G|pPy{d(w*y#>Sw)im`k{i3QQgqj1HtI^VRz=qp z-xw>2<8aiMDeX?l(WuIG>^setlyo03LP_ITte^!EG22;jV?2Kt8H_G)Z4`mS6$BDY4?GvHSsH{9 z@3gDQRkiIkGhUhz;l+^{WW{bvY(|D94pMm-XbD?UbU?T^s_KH0iD4F_>f3FVSJ$&I zBG^gXq`_z+(Sj~t1+k32bzf9D3t$3QGui0ydUwx_H zA@=N5#cwhYQKNknNyoU73LzpdqOVU2H_*4)dyD!tj-)@s94Vh>Pd4dwYUt5r+QMPU z#1bH^m_+cje3OXB6~L15Cq;X8omm02&1`h-(kzkEm|N8+*4s>ST2B~}Uvb0oiwpLj|dd9va5Gf5cJW}pf>Y0hbG5jp3`c=vIGK;L3sfTUv2eg+3Cl+U`PwC z-b&TEO)a(U*y*4>PX+{aj#u%VQ)!s7hNeT?nYp&gYplM&B1TpAm+nc&jXZhgWTb?uAEp-iUt~>%D)xOpP?be_8YO&a5FWOydVGg`it~hS z!*R3$P*4;mn$9^c1q+g*CK%hR2HLgCotx{c&2LSwFZI2uR#{J1{{ZsXap>UTMM5%E z0TUDkNyNYsskx&Vyvq!q>KhGt?TY)&1U6aQf03j@Z&VoQA3!Sn;ejk)k(!fUbZX^F8Z>F zWihAguqm~;&rOuf2J0BYxXLKD@c@Zft5oWVMr`ySPF6D75;=^BL z;UdbMxBUlOg-G2*OBl%9eO`t$do6vN zZQM@=nRYv*47j1dl)H~0wHVysPb_v_9d@4$+7A6S)02v-LEk}-$6AcoX6KZ%tF~&%^ zqG5BqfR_8ss$NR0)u~~~+-)a#by=Y5Hr0KrVlhG3Zn&L|D&S`BOaI zg!SFEyS;X@w$^g%@!cEu5!a`^Dp4e(kWl=rHYRTiq$}NU1;@7)OtY%uRRkKiQKW6u zkFB^XvPs!7UwTMFaMj>qIkO>Cnq|`BUDOG`YWj7kv2AE-Ezmn~^$T*Sr`5%xy_ksD zM~^fdHrsVVK{k-dq#{QhL>2Q8@XmY6TBUT>Xk#<9)l*4-ZL*!PO(4}zQ(k%BBV^0qgTYHG1;?2Rsu3y@ z^%A1(_f)M;JK4~q*<0>v-6(4B5Fy5m1;H;k3^MW~!r_XzDut5$zSHBTg+cDbj}5TKdW(6}L01w>`Q`428rY z1dz;FNa3SsibA5i-9<&p`l7Gtg^bWGy1ce~{{Zy_NDNAkbo^O1VGc)~W6W*!7K$UI z!9*TK>=+eNPh9%havI8t$~*az=!!-;Yr( z7rldhty@=3K#ugXajTn2P}z8#L>#o9VpK(NNpZjxJ)iPki7uES&DAVxBfGRnfbPDEIWr_v&)34OqpQYp{d0lB;Iiz>+$%j{Jc^gxGQ> z-I8st0TG}e%BdoId-m&cRlz!qW(V<+rpdIQu+5T#A=Z?S`%N_2vZ=xIL?jOC7(`OX zuj@N^bWYPUXxCVzSfmQA5tKZihO4LerG#6!!Lle}8;-ZnfJUJ+@BQ+K8 zmB$rcr0k+K5~Kv!;S9;R@X%vA)4!E9!lx{DUZD)!QOWV=S-}r}XJYsIqVb)TnCY zArvX73+c$Pil3+T>R|i8tW0(2$LE66*=wJE0&1Kxzxs6nyLIH(C?c&)g!;Pc#hxz) zKdTOshH0cuAm;8NPRScY%@(>r3#6n1K31JBl7q5Nk zxn5iK3=6((7S$WYB+U-XQn+oNIv&XZ<9Vw{@kBy7tcKHz54t7pM*vkj;Y+F8ueHf+ z)m`?!y?wA#!m0lNOOC^@x{TY!xmXchls0vaqh}IJj`)qicPec1MO8sA>FB!aXZVwf z*513QUe5Z8+*pzI=h)i2tVoBjOCS#!w#&!_Yy*l0=`UddQp$RIbg4I!yBicQt{i&O zV|3vob@DrA=vfk9OgG;r3HB5X!wizIVozu7fR_l?7iTjsmz?_Nw(fcwNY>>Mk}BvHMb<`j1_rq^SU1dMsCt!Pg_n zl8vK=M2<4vJClf zAfl3(t_v9TXQB!eWH){6)v43u&2@L#Qp6O$3vD8ZXIXh^KC_547HC!L{2KH z-#F8FuJyL0kH$zMtLY&;-RmvV6p815UrTct zh%=mqPsJ_WY8+VOA+b5j zVKfaMWWgCWyb)1Va42Mj+pPZp2(&f3&!xVii6(t?Rj`q=NOo*0wxtn1m8eL<9|`2^ zjD%tZAwo3d@4a$Ko~((SsJVOZ+uId@y-8gas7*;Z8s%G3d0NVV2jV40Sagl};EHBs zf`}-Jt}X>JK4Vz7biGq(*TU|~f(>21>99Bw&Dd|fVe#7tXcoZJdh0Gl_@5#xZY!#<%aAIqxUQn(2Duj3I1)uz>EUzzezu$K z7Lr#}Z7)LYTW5BJj;qq!l*^3Eh=3y7fE>6ujvH&kii&$ztmcn=%C@!@v1aV!RDYwr2>@n``4|#-zNAl}SB+s4?Wk@tB6xwhC}xc(%4s7Q!9cGySEzoV}TQh;k2TPYKko)VNiXk z-`5!m9@ffAZWRsGT*srNg(^e$j6{SkH!cI}A~IcblZv3(Hb8_ak>o0(ow0Bg+OF;5 zS!)xbS`7ViG^s9K>&&v_Qq-h20~T8f$h1Jp7bPV}O+_>9%8yzSul6fi{cXLay;Lsh zt_j(%!x;_8{w*RlY9i7i6R0ktqN?MN31`0*L<9O}$_{GP`vjzFb*|3ibgl(+gq5wz zbg>v`L~MmcNwpCYTn{zE<0;k6N6;;Q*3MhYppwZ+fnxJ_RPxjsmE(@kv{B=7B}Y+J zlwMqs7c1R8RWdV5&BWNODD1}aI=v#!VAuq}&19zGFk&nsx~gb~3aF%tUB~wKUR`S< z!JRtVszrs=YiQHojE2ZGEWC~*QNh!1NcpGm*dm0$*~e{ zY-7z8aHTWwQC$~M(Rp(-!k2FO#yvX9L75NA{sIeDlieZMBtj-t$N01b

eQLqNwR zOsXm&CVf90X2d1#(rg(Y{1%&+TTx$?X1|{4wk1Bz(d0AFv89WZ5prE1hFWrpcFus}UF49bvH|>95u+~!S&b5hv zX%3#w7oia0Y)Ajz7QK9N?*cdeBd*v=tzRSdi7TkSF za5+DEikTuH;c}kU>pIi~9jivB)@-V_cuv%9ZP$yf*TQgrywH~;d6Gd~wC@#hK!@6y z$D%J+*fB}=JUeR-g$@&~q*$coY)dynJ9Wl-%J5Q67Ncpi z>JnLq4O-vX%8L_Wxtqu4N=EF)Wafc5xG16LS2z+UBp=<3VR)@*2IvwcSwo{+a;ce0 zB7t8bd7P650ikcm2#C;=?T8YfkM@;UzE6^vl>F4Fv$Y!7tXBno_~Q}Sqlq2&A7RLC zs_;7la6Bpo2BuS)~DGb|kz)_}{K1N8}Da*^~f(X2m zDv8v=Pw4hn)LZ@336)V=lPbaDjrGKnLk68LQH&~QI`SjUJl}3ED|l7rDaBEGpc^(2 zr)snndj`J}Jf0^bZ%{N>WWaIXA zK}=AbAr%tti!E6S+EpjoP;Y74e$J{5HB_r_DBfAd8wU#tnfjYEKi6Aq%dM|o)omG}kyA4qY1|E;9N)SRZWwB9V)lObCS3rqTSJMhU(q6S%fZuz|U8cH< z>t=}lxG%VIOHMXpx-ew6_?&A82?+#DTtWd<N-9dKtAY0Etpol-6;dTQ)VpoH+QX7lSrwBJwpMfO zy7$GFAmc!(#k0wxAt?&9syR-DjXg$pW5 zsHU$b?Ww(%qh!>MHpyadR7V)LWa_jt5<@Kri_^`f!ZNfEJYtGY8Y-f5PD!4Fe!+3G z&e^P~wwii+i#=)^aP_&O^31c4XAdRv6h#3*-CPPX+Jjsb(q8%K&6rQCu+pY|b!Szoydv0Emj+1yBP~ zZR9@NZdy4pNyq|lxp`i8KsJvjBq21wDt)&%X0f zMT+UIi?Mu>)ErJtvMIqwk09mh%~^B7i|i@7uK3=&A4i`fT7_23NOd|`MoCs|yC4J= zCOCqxC^*|lPq?B>g3fthx*cX9Ku6fH(dc8rk9llXGhA`z##1z{LUs0JjZ-eT@+e4e zE;!S!D}}^Uk|8>|Yjtl)lds$E72{R0vkzpJ^vPAnRV~Pq-;*{&&a8H%Jj1*^4;Ku+ zgdQ&`WqrL!!gDgOptSz^T~$)WyxaEH_B8irNN>p<*Ce{)H5Unw-7M|fW{{!Uo4YuM8=4pVH`7XP0`|3et)K2NfdsVSDvfCv7_o742hGTP?gJq=eOVp2f7jfC*zHTPe`~IWI5n zL~K>ADaF5d8mi>F#su5F>DNBK+GW-1j@fNCb`PzXKyk@3m8a4)xQs@6D}N=ojyO0- z=WLz`l{*ht%B<>n_S<6=)qi2oyGyiHR;X$t#TwxU~|(5i#JT5 z)ApMQ*YICi{{UdKHqtb64lh>L$QGZpl#UUrX!n&tv{WTQBIc^7ik(?bK`5q7`udjR zT%n_tx9ifDX9~g*D`w%FCnkIC$TQ;LcokQGqAoFnB_!&WN~oe+Z2Jv!J3WPTS}g{x z_DY(O8Dcwb$dJGjjgd8jc$sar;(S$nN@OHBF0~d+X}+t`VrqJYb)MNa>Ndl)H7PQty&Wtqxds~2e1rB_tb!qsT(qOSMO@Dd2WdXZzq-(; zxPJU4wM>n`+*9nmx^2B&?TIuP)r~*4R!Dq_XHS}}40yy`0YMrM0lor>oT{jTbv&jT zW>wtl_E65*Aa52fNuCuE9d*=>)Rsy+)1=us}RCc@d4FUg!$da7NelquPpWifM0IdA@AJDDOPusr|7Qz#7R0Fr$?Bcf{QU z_b8;ZH23apk_~+LjKZ4J54;gRM~qwZMl=I-N6ctQju46>@m~I#mxW2Q`sYM}Waq)U z8PJ@rIGZI>n=UJ}lomL*;~#r1f|gUaW%SCbs;6p&I9oIUvZ&E+;>?Z@SV<|@GYPid za!ghjREn*rr;Lda5eXM7g-rgJ3l{X6$}o?x+tyOJ)onu)nTq?MW~{i}hhKU50G@*T zi;yz!+y0g7oVPhlD%A$s?#%YE^QRijphuS^)T?nDqS^oRc)MFIVj$}HZpnI2E@@`Cq_d50OTQ}5{cneGx~b!^&ZWP?(chHZp5~! z^;nI#$k&**^TY!Ae6%Knmx!5rPnfR5G8NACBvo3 zFr0-KBA<@_y=TB7X;}^fGbmUfedzJqkqSVra>#~pm0sCG^!;(tRgJV$VMv7OMUHCW zHnHB4ioRyv6jTAir|m9DlvVDXDyPGhF0CDMV{OS71;*8b!790qLhz;)6$8;f<zIvxLjd>OyN2yw$vmtbOfvbM-{+>70I@1X!;$ ztv+!cKc3n?a-+H!MI$6d1y8~%cTS+q*NVjJR%=AlEVdsl)m}ydE1ajNf5tkHVIT?C zq_rH)S&&QJ2a2m;h^Sdl@bA@w>X}j$NutY&_?VL?l|&>S#oyOIr&LBK09zN^LKQ{9 zg8mbRNf+>_OP;dI)hiol++hMq67+75|;M%{>6{6L5jOLGT}ms?Q;Y`$2OKUcGJY+E56QLayifI*U`6Le%WqL z8frJ29kb}ILhjvNthYo+Y-`RE6X22w8)eB1f`hUaJALuV5mh}C)1>vK-=d&x7Bh~s zTe;fax~REjw+CZ=Wt&LkQdAXf$mG*)sDKdT+=5Gm%BMxLJ>S|{-{?AOU5C!GYYH@) zIBmz1^4e^hlO5KXMN(Izx5)^L@SM3PevI_@r@P^`D!A90rEmIyx(bKuZkvl#%VFONb4^)vD)&en?PUy zNUaKImJoZEdbqj5-mllSjjMgMYwQ&}9ga<8N%ZuwB050^T9a=)5@Ugpn}XBGenoSL zaZyC|%2w8+h0(9U9j(?sk+A9v`D^*9=01M!OvyJg$emaV~1QE;8lO3`;k3v zTHL!AO~%XSuWh7{5yr1sNjrYn<8DPN#S~Ya{_rBJ&a_E^=DZOL^XbwW=FhTe>%Q34 zcAv5?8-=oINn;9DySLf5Bq76yPPJV6%Ls_tN#J6BG#q=BJO1uTeFGnCPWt8@ez#&Z zY&BPVTwfk*k)yhDpMZeLx{M);7&wWL_9&vK^v6~+*IBvt1iM?k177;qY;Hc?V3XZ) zEsS#)BgPgEkH=|6aLB0`2X!J8 z6(a4{Vs`7X?ftDB{f}F`dWKw>jI^{fo<>Q)koAZy2=dfNcbb%gj&Wpb~T9s;k9DG-UcxvgN%E z_Vrm-j=_}t%G=qoEkTOOF#(fl$q?lj0f3PiBA);xCRKehyJ4!XAW zu?z8a2yDfzxs2IHjayja%Tgx*9!8@(B$1L27@mJBimQ~zcg)UB!tK4r#N#Yh#IcO@ z#xEL+B8kN|%@yz`n-xs>+CUZNsw!UOLCSRbiz$zI-{$LjrIq#dgS3Lu6>NI8MIA7F z(Vi+yfU4lcm-~XNjO9JZy)#8pdriIMfU-8>Nf{5uu!lt3l0rDZWtD8)eqnn^q__r( zsH#GV#T1t)GY~q{>}uM-l5O~%o^w@fHMlG_Fk;7$jmH5;TSW4cLSkvexv4Haa-DC` ze58!qn%0z7b8DZkS0qQOb~~i>wNv7)6o%O)R*akkM;Ij{^v(!LI?1LP;|_B#>rTp( zRT7wj+MQ_FD9qSDDI7^f8d^N!sS=v5RZ&rK$yE_?tl=#vYTsl30HdFit87p{DbT?9 z5h-#DSUQZEGatCtwipv)H7UmHE-R)AKf*ai2OIdu$y-r3 z2@Ozjh3uKe68``!_!79Vi$!$?`hq2c_7+A`tb%I?71)nFMlG8uAVmBwnkx9+U-NrE zUZYW9M%yZ-RYuw$o`TacW<`L+MipOvWS3P9h8+g@Hm!q5sD?_slPUd4;0JAv@4%B5 z)>M*-R}Lb>n)|9vipg=M@~hpAx4{bvsHlpmlwOEU*emvmZHkU;n<$pB-m#GiJ4~qy zZN+fgQhixP!?FXKcFOwUR~?kGWY|6~Zu4oX<1pQeP+M{oFn8m+)K^Q2xtzFz{nI7M zCNq>oR2=m3%DcU>zSOpD%+OLu2ZMf0oq9J=C=aCn=Q4O_FQppg4^)XD^ zrIS-7ZdNWwm9c9<37AY+M@+_fw-J;uKsQKNi>ZY?;D@sMc9tkeOtF<#N1VE z=$Rvr0k08GSo~x2)~rdbHIa52I1y|lIPDxcJ4~rm(qRj7rFh5`UUBA>gt>a5rxj68 z^8R|xHyV>#v}f#n2(De1Cs&Zv{{W5#E##SaT5W;{niYBJ1H=gl-aJG}6ZWS=2J7~% zVe^?bCbn}9E7D^w$6sXWlZ3;*G*_B%c(mxap7B&b;yut)3)T6!p?f3JO4^RXieXtK z32-IIZpnoy66KZOSBi2#H0(X{xa=rY&9TYyX^!%aMNZ&yiO2RgJYwue$;Qcsqig59zfe}G>9Z5N`|VL zMe1Wpr)GX0fvHKJ(FJX^gpStW+h*K}Ak*>C8!-o4M!lI$9jQ-V7ShnOJ~=ru;V}2{9wv95jNv&Rr-`XYLR-M z>^sLG+}2SXh;D017DE@BtMOzf?B3K&6jb+}SR%Vo2EQkZT|r2jW(lmb;_8QGrp-RTCepDBcPM#%8`;{8mY4RHp6VTri9RwjrT%d zRq8V~tJ+=u$9OiZYX1P9*IkpaO4)2eA(za6>q>7zb;-!mnfZu(e3XRLkvOy|#|E<( zSX0$j>@_$0-9#vxi+aUuxg`#1`CLg1lQHWIRRyNW##(Gu5mSK*sHRmqX;e(x>PnqU z>Yav|=@WCTZc^&HoEeM!e0HYJ=K8NTTNj>HLj!TZ!Zv^eM1|z*J5_nb-*2^cXG+&v z*63rsIHl|LuDs2XM7i@GWUOf9Z6hy>icVydT17_y2flQMdAD)w{?@kp=VZ8%uWR&H zGjvGuYeB}@j?G{K*)&Z^LliZTp~24@Dhd`=dvz)4XWso`Wg}vZ7fJhBy`I})qmJju zviNZ97^04=DZdJ`fM_i}D6%giE(HZ}J!h@hMQ8Mv)q7AsynTbV&8*yaEnS$EkJO+P z$J~h_foZm;Hfa^)4~pOeEb_vVXFa;N@LP_6t{s@P3fQeNc~f;t)r^Un#f0Olo=lN zHl0vyQDk;dPADUf-LT`W>N;Kauc5K?8~#$dFjT^kFdJ>Z!6K{W*|f_Vr(x1K7! zX8!;Pt?l;*EVd0kkz<`1U(QL4{g-P9pL)hw#TGcmCcA?U$9<)2O;esb{{TjZeQqrI zI|Y21lE+|ZrC3wIVC5q-tK-H~dPzw^aa?R)MpSSJfE2Ekd(Xyh_BaJehxhmt@YLcZ^pId!fynm*4Vmb8}?d)2!LQI!w08&SDWP>ei!}5+o?> zD{doTBg~L^s25qrb~ArS-L^UU#eApRDDkO4cLpADnrO6gXPP+gjp(93-+3GrL~TE| z1I5qEu9jB4vcjiYzlFEh{f#F2x|ZFYZkEmIFO$+@K#?S5xm^{)kkiDmxPrW-UC{|W z>WGs#R;^xjedYesxzt~|TXjbkV%kGlJ{Dp8lUCuP;DHN)pDsB+BZGzJSVX4skD|Z! z9a|1-`pny=3i6=j?RxjgZf*0GGgJmE{x|R`Ab`0x*COsol|&UTryjw`^&z3%{c-jD zq8j~>DXdcQSyqZ zJnVMj6CM;$`7s(nYA?ra1W^=(aGXdA9VbndUWHX$`3O3#lVoJB zLXHBCIQV3T%y?80;-#M8b4jVU+p6~6mh)mNxDoZ>XIrbVK@3BVE(_D%ZvxW->tv33 z7v1WK#1K=g-r2xwsrs6dlW?}(HpuB^^I*2zy{RN4#akJpS0khlB_WJ5njYk-`@4#% za$cqFeIg8r^;>Oiez~DrMx>PUQY`DBOeqh%!cSM&j~B~?XnA;*)HO2hioKA!vt{H+ zpQ_ZovT54B#d{^oI?6$hsO3M9s+g7Sae3)P@{4M3s-F}UR7A-iF5O>Ch})K-ZAqiF z`__!wC5@$Adg>99lS!AQDmXFLN?}Qs{7Ukw(QHJnqS?6gg@nl{;M!1k zK4M3CDV`M*JW&&=+TRfmyJo36qjRp<=-7Hs&5JcUF*y=5EV*HI zekj|m$#@YXjmDE67g>LuDnCQ>W1;<(}yA|V|O3k8%^6f6<( z5yuox{asV-oq017u!$nfgBVzLTp||vnV^fFQ}j~eY3cf9an>O9hha);LzPUSw)DY~ zE%sBAlz|+GazsJ^0`yPm`gK8f_82$SLn*+FGTASR__Dch*OCj55_*Y_Q~v-}$62c0 zb>lGEp7f>e+lY>^N{%Rrt`NOZ6Y<$PiZw*xRMW^g7-yuV zMB6ZZ*;O_SM^t57Ns>VkKkd1cPT!u{MaNlG`L0H^D!1dKd_l*WaUAw4q5`TJeu|2} z@#sM5_EFAD1n{{Ziv|tOZ`YcViV~7~epNcH2&H4__sMPNBrLe0B1535gItiRmVYRi z&r+*xRh+=Ekv3tA@t%1BTb6o@clN4~aa0`Rz7svViY;3u z9I32g8KR^!A_Ol{M+I?({=S_`Gn)!q&{kY0kkti{bAfx5k$Y|Oc-5^`Qi)R_tAg@3wkP&LUKa(zp^#bV`H_}jkN z+lI@JI}R$c4Yus1GHb{K#K9Ub@-92CR&uf}ZC7dA_lj6G=eW$&qgi~zdQdzj{8yW4 zU1^rvG$aQeaS;^^eWGcQ$8M#_cCr@qreWQ&Zgv&&Z0A6QWE1VH$YLByD+XX26Yqa@Xl^HjQU!t!GocltB@V@TM>%!zx5cA-L*B4|xOj zut;19b#0|-(cv6|Q;q^`Ixc=5v` zXq-uKm`!eYHf;X@a!tEE&tKPc*Q09HaN4_m&*HfB8!E{TD#&r>k~tCsZW4P)kxPoI zpo(=_op2)W>^JPR?LSX?skzW;B~>5SdQ&3ox7|sNc@o;ihR_7T34DyUDa{0gxULg9 z`R7`bMK`UVS>Luz3KR74EcU%lEYgb&mPPl5Dlk(Ul`K;aD`kXF8UnAA2%JYbW*MBT znN>SnOBoha_0#LG=fX=%S6h(jnJGMmpBx+{|Ra z%9y4VQ|Bybi)9i!4v9DqyY49rl4YZ1Nd(v3*?O1t$_q2IYc`vX$Fprz-|H0Fjhb#@O_$pRuI{1=Qkx1d8*utdywxO3aUl zZUcnk7xvmFoF?4o*)f#QTA3pghcMXFL)Tl4Uju7{HnLLuMyp*2Y)52T1w;oWvIMV2 z0%=6Jk0MU$pQ?7@soPySR5bRMQU)A*Ca6vfX)|qFBbz2e+*?&PLBV0MiiGC@a~<-8 zC6O+*ptsu5HR~-MHGAD%$kEQyx?M$)%L8J}rHGS_v@ujv5-~NEBrjni`-xMjQeIWg zoih2?Ch4}CvRT2`uW7c zs$p22Z5(2=rL=Xaj1@CJPdgDLzT&+Z=;y%P75@M?A7YBGIp5`E5Ta{OxYhOfbb2i5 zVnb^eSghB-t-z(~jHeVcbqB#=q% z#bjG}L9|pB@UC(ZRUjVYic-y;j-rwyJ1SsJ)+|usU;h9guCdx;wk;#d01gC>VA=!7 zh0S|@y%r5f+D=ugay2= zn78eNnp|slADHYq`0Qa{W%3nuha4er0G#BB?cyj(ofIjVtv38S&3+EvO4}Fz6Dy=D{)!4e+msC+)@ijD>QjiWhK+9&xvVJl=h_<;-E8Q{C zN*e9WYZ7j@wXAZ=5;*HotxOb3saq0dBUm=_f%xTk#9Q$ZDyb`qiPDu|{b<(F9!|Sx z&7!{&R=p;6v#!W>qZD!JED18FAY1V?f+*8&B9QU?CRZT;0Jcqx?xfw7eMKC*nAUN> zf*IzmNEmH8r#-m<=M+a`8vg)o#9U!hvJNpmxn|OxrutPgs&ttn@$NTAT94qD!RMs5 z=o+fXlG!gMR1iTg+=JZ}IdbZdQp0ecR&?}n(kN4GYZg6tqopaP*<6UYvDn9wNTdnKmkt_WRK0x@tkxvtou}2-+BTI|EWb6_u8JH_a61xWDY{NNCg+jN zoNCLuL+Zv1d+iG21yF zIW4~mIudyV#8=AUd)JN!+MQ;#4PR>C>#+4ItDSnq%1h}y{{WA#R|G{{b>IAn42g3@ zQ}PfaX`Cq{qGWoVRJEdNa;5A#L(keY5N%j`Ja8Ok{rW877 z1-O{>TU}|#ZlA8R+-FkCTP=l|F1qBgl^jLGD5mO=d~iilVWT8OPej3Xgs2g>x|c5P zShRs6>4sZw)`ERpX4|6|pN_EFuedi_A#D&95R^plnDtyKHA8K#Bx--@O=)1(Jz&g7 z;=N%t<{MU0*Z_rIY)no#1ZL4V2%;8Kkcj82mFlPxCB6xgq~s`Z-cBD$Srb2aNKxl#!jW6LccY$c0%0&S!cLF7KFBiKn%I%Ah> z&aUm7OLuCmxP>HwOv!CD*xAZ_RGlC+LRUo;TQ-w|@g7LHOm{`cOeb@uvqkmRg&DZT z^Q>7|MC_N z<~@vgP9d9o+#gW~9Yq|e0w?1O*^SQ1?|QA%KD~;?RQU{SH}Pntz)BhBkgS}2Opu;A zQPqA}I=N76hui8amB&&_6)HZwwB7zNY!!{hqOKMtuBMF%{uN46lt)fWb0I zOURci*06M_eN(8`>iZS6Eo!pf;w*Nm?1iEx+$Y*?x7+06DHBdLfDuGa`0lE``p?mp z_*cx|UpsR_4!V2vFFQQWwp1`9YFs(3qPZ4$3uvfdXc!>MaOAwlsb;N>c2M`QwPLBc z?+ud36O&jIK2>|~Ms+}$b<+V5l(Ec65kyf)TNUIyi84YxS(aKWiUx4K`kb&2#9zg|M7cWGj}b%cxADAdNJ zeAbm*gIgW5W0S@l%@o|`N0iEXET>Gjldi2VOuE$|J+kTEZEe_fGV9T)X2qmQM;*tA zY#=s3F_FS;=LE$;2P&LZL{(~b;+JbRHL!%GGjyG0O>wP^n428wZA(~=GUB?^BvD^u zlkT>xwxo`Mrz90c=1J5TUh7)Y4Mw*ML3$PON1nT6#Pjht6`&+*iWwU%I$rY>Ot+OJ z!g|q#mc73Hc}1{XTkA|nhpfgoXDf~b=foB(ZG?7Wt{Cvc@?c0vl+<~j6&30Yk+rEC zUeTcacdgV+qOq4i7IAiaGj3znBQ6RdlMlMs_?P3j*pedfLQEpyQ>Ln?vC@T|y|%u* z`zjaz03~Y{lkHm>ahS5Lkjp^KL$8)^m^MY@c?A$uQ-W|YzzX%A(3Ne-(smMaW=aQ| zi@KZwtCHGALrxoR^X=TjYv8hq8Cq^k&=~`tHYQgv*pW#A}Lp{{ULN zcCO8hB~+e%Gze@xAfA1vUXU`lE=9}=CL2y(y%zrf0Q#LQZM$>X?rv|bShklmWxCuz z;b~&7sH#^u`xr!OBPi4Fqe;bFUM1~R>pwWF<8T;tx3nK!%|bo4HC(GCv5Vr266@T{ zDH24>#BPwp-hSGRH}3_ZF=y6r~$Ugz?DHo7 z0ch!s=G`R|aUD@nR*^X=k>`$As?o<`ZiiJt*sHa6B}%HNi?qSF*qBM; z{A&VcAw-PI0(f|#AgTMD=br1?dWnHwdsY3^u%}&(dRNdg~qm8mHiC~aSl}R!^A!464D)%dmda3tPe63oIsaBK@3Aa}4^#(;g6^o{E+l*)J zbQusOB{UN5xUiQ6HW{N+plz{W&{sWeR&i^Zri$y95@XDe;&E<6az&MKw`8{74OEat zaN2Om5m{(8&rxf4x9!(h4gB~g4!FUmqp=j>oK_wu&NvsHC7Sr#B_$COK`uF7g=&Rh zvb9a8WwXA8OS#;{w4B_z5YzM?ry})=ZPwO+ zwb*}O$CVw2Y$CQ`H&Hs$_D6go?knzHe;cSh6?mGwl8HZn;yaIbkM_ z{yg1E&bA?-ocIDLE=zf}L>7s_27w58dM*@EbEu`8$Mz@cXIx)Z!Ksfmuj6j(ohO-= zKLyiu=)j1B9GD~W3V^F>Tt|{{5+#@eQ*4(Se!BHNgL7;nqcH6+8m4%pNr=fjF2re& zlnlD_pW9`&g+zt6jQ!bCGP8<{2BI#ruWEEQbns-QrK^)Me)=X2Gacz5| zWlrd@re;MN(LQ@q{BITaN*8DT`$>eJ%)Jum+b5TBKw-!J}TN^o}9D%mL z#EwjmZw9E^iXxA0-A}FXQ0Uaq*|47>o2Yh`Z8+m_rbm4WYK(^zOvH&$RX|jSC^;`g z{T3PtPi1;CreD{xP&J~JE=j z*;VX_N~x6X`sbr5@Z&#kuUpAEdDtVm6PP|;#{iYFZ4C(#6FF2&dwqW$P33S_GY+u| zXYrszA=U+>vO(gRbos6c6CR|gpU3!h3@}u>nw7yWe12j?s4u>ME5EG z09>jkS&M=$!iPyx!baxRm1{z=+7b4<=OJ*_bDZZYy)<~jIcg5_4+QASt-OYch;4Gn z262Q@PyXjpiMC}bJjjq60*2R%z}T);crFjR{{ThonEiUnvsa1cTCRPb6M|Zv1u@Ao zsJTS$iai!LN=C+6#d(ei%$K+9ajYkF{34>Fr&UFDcyO#Vv0DDNK}B4q%IuO z*FEvmM}=_kPq9Z@L~%`3r-S~}nfBp-OlK+7v`zT)7zbuVBt{3B0Jx}zLW_qnpH%$x zfI=&dAdvED_?b~WWK@-M3aR}Qw^|G=Sj1_78IiDl7c$@{xlt3p45x0()&k^2I5lvZ zY42~9zX_^ix~ea7^z`-U80Yb3wjGUPaYtST=Li=Z4|HDNs^=fqt!Uv5#!ixY=Cd*_ zw0k+0vgJrB>cMh!*|A+{LMJiesU5RZz!p&xKc7y$^Ou@SxA2R1W3v5SN3hPP)hTPX z(98N(xGsFMumEq8e86l0^ij_uLL}s#o%)^^j@C^_gRanRvf*#rt3M*wbY?3rX|SGp zGcn|_$jCB%eB7EA3`wye9I9hJy;)P9wbTMDXX!CdR~l4GdsvgXk1&phYGdNia* z1s)e$bsIF0*tR6A*fX4R>aW)e$;(REG@HBoTvy5Y(Vjb4v~bmySaLI9r4W%EBx9Bp zq(5#=GJFwJGa2iWxiShzePCHm*{tGMTpW{h?4~y%6jnf}1IP}bIt1snNms}yoRE{L zj)To=MD--Sy5X^-)806`|?`(gdf{85>-VZ1Wf+9{x^~nE9TwVRmpGb z{f2BkMtiaD^myjdz5#LF3;&`dRLu)tvkLXxmLa@k?dB z$4rj1c8j_3m>6~sM{OF1E{;);{{WNnXu(w6ObUkuPubLp5xs233u}wR0+FH2aXJ%U7k= zLV6=?y6X%_QE(I$c?(K`fK)PHYUcPHg<{kC{;zbp@01*;mQJ+e%1Dw^<#BoEz_2O< z;UNQD<$L2D`q0bi+q(G{iA7;sE-jKgS2ddzV`!>AcFc+_rk#0|ai;T-UP+Dv*>Jr} zzF|}C2U?p!vOiC0Z7PCAuvkmj5thxl@4N`uBd&^*t+L;ZP!j~;lBud>lc}pNPF8Qy zaQ3Z@HxpZnJ)ONm>85Ae-Z=XYd?G~gy8BWivOHREiWny(_h&d>rt3Ywf`8juE}N*y zm2Aazy;QFwR&f}C7;GawCP9k2ufas|_{k7(sH4DCl`xCet+=2+UF`IA+UxYSTQ#L6 z%Z$i}HY^D-9SgEI0U}i+#IC56WJUhoLn>;3sl|CqrXBX{y~(=g^vK$6?e$i&Q3_NS ztDTMT%6PO)sJu!<`3ZZK8#F;KT!mFtI?S*@FR+`~UW)vP;j7Zmn$&u@@ngq&Oi+d+ z=W5C_l5z!fa->O-&J(gOEtt&f%Krdoebe-9>c3&DpsJfgxLBQ8+>@>|{Cr2^`2nzN zDCQqf>T>Mux>#904kgr+Z&v8gf!~w>|#rVvBEG0xu!L5|*i#-A%E2 z^K;Xs>$>)vDc#|Tjk{oE{d~zY>sN%5ZZnFJTXvWy_ZP#^E z*7de^c~LD^v8`@Rq1W<HTxsVFJdCRQ2bNG%q#zE}_C;o`1|0qNJlma`Lkn*ULqKkE z)f@5^mR+`x?3WvQ6Y9{bEuiyr3RrLV6K93Yh)}of&BAKMy;4`zdc*VBW{=^171=W}&%JaMWo_6kHdKdsm4 zI#8v3kMngHn;6(z>vfM-k_kK|WeX?r4|k?{71AipF(9_E>`g<#{v zYSe}#50n~y21$onA#i|+#>@~*IEfBN3(E`CV4HO^((WBKRV`E*l;s?T1g4u5GkPvX zvQi}zY1DTHsH4k1L?Q2m0rvO5Wb80w>w4y`Sy^)#)~4I+4ZN;PhGiy9Z-Oz2pyv26 z&^jnQg#3Z%qtU1K&2O&ds~l=MUFhxzMJ z#^_RZf3Eb%t7l%;%@8KDG4m+m4aagzIC1Am4c8ep2J&RM6;k4&s)L2=tl5U`4)UV% z@)pfWtW0rMo%s~T=^J44Zi%?-CedIQftR#%mB5#(W31IhxTM-6SOBR&R=-$JhZt@) zeTHz%V%9_AsS+d%im66qRT0)igit&3{3cVPA>BxIw0hqGoVHaL z?YzrP8;1K;D1CfJ^MzXbv5GLp zULeaP>qKadNfd0G@^Q)nfcm0zm8g9d-3ETYu9H^XwzAL5low7k3U&67Vl0Tr>nNUf z1=8-SCSHTb2)$~lQkEC`t8=Jlb7k6%qh+d-K0RWv@Pt{*$+s-L?Sh-gYH5;8aR&Y1 zh*>F8t6iP>EMFb_Ab=={Jw;ZVbRBib4S(^{INgxH zNhQsO!eFAq7bU$K5U|vBBWcC+I7HF6#k}%T@(K@4)iUUM57||^&8-dn9Rv%Fbu1aG zy{J}YTtt~*f-~EBB_plLaGNC{CeeGh?F=F>Rz<2yeu=x)zeh)}!*i+;r$h@+NuT(X!>kWOBwlHjC+(44l z#gxm=kdzqlWQ=S$K&j+K6Cggq9lE|NH?)i9mq@Ry*W^-c8vRwhy3v(&l)-4@#cC`U z2qBF4+2pNmHgrjh%LsmH6K2xYO0jio86V^ndKl|MR5V7TqYEc_kNj9jNOpJ#+sGzU~IRH zz;#@(78=)qNg^tmkqhz~0pgD$0xGJYhH$>A)=);G`WyPxiux7`#1Uk8)wfnZ1bmed zqjXRJIT9dq&$mAA-THkl5$yFl7`05lX%HZ6u}AqjD<=VzC~|?$Pe73>NqFBEMHIY& zl2sHz6+-Gt=&ox1!re|xO*?1ZwaU5MG=^$ivZQUkOoSNZ_xGDjy2o9Vp0jt|8b(h*C!4T)&o4-r>NR2b^&@yaI!gFY{xfi_mLZ4dZOU zmeY-Gc9qSgRm`alP57rOKq-W0+(!?_Lf0~Exta&H#2(4fjmF9X-Kwv`&5MT~sf!vE zJ&D^_<;!g+i)b<=co9t7ZK7z9MO(w5SS0Pyq)HE~>vgTDZ$8l4(pKQ}(Vd4bvTwwa ziyh>VE6>RLWl5k_Xg}#iEc!|wb`4A&`#yHjuir_4&Em|tiv{)#8)@MO0x<)AH!@;4 zR{#tU*9hW~A}2}6`tMfV_X(RdtbL{G4ei<_jNZ`HSi>OVf^&EnjtHJ3aYK+2_d*`$ zg~wL^00p?2T>C>uZD%Spi^vSWV=hjz>wf#`5kx_>2LQaWm*j^vXuBU|AJHW+M_8;~ ziDd2X{fS?#>>xt6za)vMj0KE#nka@v!PaurcFV?@PHJSTq^PMDk~OVz&Wv_RyW_L$ z#?jd9&|3*O4Ojf)R>72U^ipsY(HEK!Ob@k77+#66!x8QKS!Z60YdyK1O4u5QsqfTf_q=<;cIM327E_K~*&eGasMkKpo2Fas0&MwAEItHpcuNn5rW%9}gcwQ#m; z3oW^pWVLB1nkdYCo+{WhE~tw}s35NcXo;1<5n&gihv~Y$yye`g`g=PS9ab!OZh0Dm zIb39xK-f6=prc>}h$fFA5pg6DMg6@+FCY4gU5oZM)vs-_Wz$ere-~|1@GAWIx2!cS zk${h2SZ%jl1o0Z>K~LL`A}?_)E`RXmDjyVfQ}UtT*-N#-@gD-_)#@g_`D&8DQXxExxklyk17lT2(Q|QCmzZ zCUTNoZ1ttA&1r29ZrYoEmg`qxXe3OGE<&&)iqnwiMQNtV=Zqe~aA-ri3a5~=y=L-a zmEI{n=iVj#feTsq=}P5%D%oQ>*H#PAOM@~VBp2j(o_&~%nS60m6<^w(|jjsSBP6tUfUGnx-Bb&b)|Yrn-y z*bQxpO(o95P?fR)_(So_#a|Lq8|_AnCh9zfMx^Hi4kW42<|=)+PWua7xvZs+{N-i! zoY?Y4fx~@j-f}@U>BP49%B{q8*xpAGzC05k2qBbSlEt2RTKb>Vdd$n+vQOH(M!4JS zCC`@)hS--e#vL(6*hk-U!ym>f*s1`lh(efN>WiD$X^!i9?TbHP?4QmkZBS)vuytv+ zW$>%qjIDT$NQcC&D{Z!?;%g!f7mPV|WYrk@(@=v<4Sl{P-hvKt+O&4(p!{D=n$Lk zDGMgzHoOG~ns@F8Dd+98s-?i*Dx+J-(-sB3%W}+S-ID@3HXzk|Pq5(`O!2CrIB1E) zl#x*rkjo8YvYk2HPu447SwVqt*vE)iYFXGz27J})GQq!@?^zY1XOLb5*!+z=)F8c24>jn)c0E4zu-|U_7@hS!@_QS zRb(0kW$%w9xwbzbRGKA0Tyn}P5_PGnh%}7Nx{hDNv8`B)SD&U?AK7lWxDcu`;vx!g z73IMPi1tD6>Y%NSJ;bP{?A@Wu%S&)t=lL4QAdc#~QCsFXWL$Me-eQEfPAZ9xT}fxC zmz287IE4M>th*+HZE^&bMA`=k4gixY9mEAe6;Nk#G zT|gDjAXMaw>7V*~sdP!bF_W&1xml6VM`yg;$J=+zWGs6cL_$;o#yhS(KOdf@?51hc zV?op9F<%l%u`6w_;9>AXmonOR;7-qjDL4w16%JflgiUy~MNBMCN4J%-PvfUldalYC+`_ z%58QoKa8q+r{}6B%a*ZSu&)tTpCRQKiwopMMdGR3(Q)6b)oG8#sHpVl0WLe@QG*?e zx|bqC^i>s1r~aKVZZ=$YBzB_9H=~qyMU-_DkeHI7j(vOQJy1Eu<=3>!f?h_D(Pfyf zR0XBtqDlIHUVy!Wjv&RE<458%9mfniCK2SvujLUj)<&4I`O~A1#^o7>>sc6DmrO@T`pAeN zK5O^J^GGpcvmwRuq5nfu+ED;OaS`FqEXo$LtS^HU9uzR=x3o*3M#iCchzvU2I-# z1k{=(Lg4NcMR=kn+sJAwY4-mBT>X!wUr_%5s{AiB?(tu8DLJ6qJoe>0RWxNeUKbrTF8P`WoDH;?0L3l8#SYO(h#9RTU z+qP(SQo?LX`1(fOV8j+{MA9sTl^_Z@$TE&kxQ5{x__->P4iv{3>Qp#s2YXkrP1lR! zYL&B}c^w7}-m{w&xHKy=(MX$Xn3p3`$l(xsVO2HczBmAhU1d`<>{(9J!LeeBl1U!9 zVQc(_kHUFfNG?Z?+5#W}mP7JK+tbyocH1MDBr~<>mNhX}XPO0^X)tLmtSjAFmhtDJ z1Izp~SzgAv-q4t66THPcWRup$|Bs;Zluez_qk~QF>4LdDc zK@#&Sh>8+&9{hhjYGmfK+GN$?_70FwYqoUOdm&Rc>ca~O%@`=Uk=G71zS6=HIHI`k zj4EMpy*Kd3(}ORySl?PRT~%3A1o_<^;~RXKhYBk&+fVI7^SS2pxEzsFxA~P(L3)#K zmhIK8QNMkJz)g!yCxp)gNz4#B2_3?m+WA@`d0k#W$$}CzxJ6aUVSCS+>Y z*&9Sv+3O|ASap{4@P@s~jJ&Qm49+M>$+d?-vR)@taK4GF437vl=(vguq4?eAO^#6)DeHF!*1up^&!`$mGn~I;XOfZVwr!7Lk6gDdOcXGJ zZnYGT#NihNGQ)+%Qw@Um%+dq>YrpJzU0a)X+4efrI_jy;S6*t*oTV%KL8+0=A}T3>H6X zns=}}R=X;SknEO{s2GI|T+!?rVdf^gG-OO-bfs#=rIZny7YTm)83Ox@|-dezy9>7gW;14 zY}r&^vSFJ}3WDE(zwEMN>Wg9JPiUqHd}687T9=HbFR3*XYgIY=#dKC}Z4trREf_8m zV#$RO?+cO@#TIxtU?i-Hf+CoAR8cOGj^2pBSSwb|%!x9lt6a2@+wW_$M#xE{26?wI zj9GaF)HYN|gz|V)_NbzgC2FnReU#c_RO_1+pry@>vTnGYhv#U@IH1LDRe}hY9~da7 zBoJJWCC{#qZNYYvUD-oriC<%)$AKnS@yvmI&yv^}v;-jHsWgY40s@1{5qsyX*jNvy zS)F*$v*U`*W$?O9-QXq>IWLFzTT)id9ZonEK~Tza>^WYeD4U1b5x!>ct?N=^QQC|} zb^8&JPpHa>3iGW-X%rkN*vsH4f^Y4hZ~S`-Dr{?adBPO^n7Wxgno7$^(kB+!EIkH$Oe9glda%-al~ykm zY($Modnsd(+7jxOlw!$5~%}g+! z=Qryl{E?kHH}TQei}6*)%bM~)P;Cs6NVyjtL)H0MU)rz!$l9q{n$-F6DCVnnF>4%( zmCpoN;^cQ&YQ{L5j(mcd1_xXFDjOAx30ea2+HW2Ja3{f*`%i%2)yDZY|w-W=Yg{8XC!y zb+(Q4e`J%eJj>>$)K^(28Hhw<8P*ZQX!!e81b?_nyt>y|m$oig5vp~1stUU;moZ$9 z)r}lFN6khn%r*eg9Cbnmh}w{ZOZe`ckW;RbW0mi33~nVcePUYWMS(i{cr0ofoe-IG za+y7bXau7PacS$p0>?}J3aD&m!{QP(aWZ;q?Yxpy3hYmb{{W_B!gS+VHZH)D z*gW-nBGNVEBN1_?lbR_K@&Rw%m50;SDz?39wz8XKtDUe!gyVGqNUb>$!dRYjn2b88 zgi)gp5#pq1M4pT8>sGa_A?wY>`mbG=0&JhKWNs70YoK=u1YGY$Jaej<4vu= z`!IsN^19GFO4eniDwd;p5s;Z|%Q0wKgyW$2z0LVfxi!LQxd`Nxm(f$dRg7DW)iqY+ z`C7}2yzv{4Y?Ex28f08#7;T25$aN9N95uoNq(6>^74k!33vb64f7Y($RZEx!D=laZQ^ z2vpS<-i_faBJxgT4zZ%Z@MOdsk6<#2OjU(t@L-LQbgp_#l74%+~tQvtQdDrG_ zfwe+$#Qwk z_WmL*C`LslUOW+w71cMmAc~+OW42L34ZqlXq&tMSy0u7p^Agd(+u0@?t7RW;xe4T9 zRY_ZUvgD*`lJ!IsO!Z{p2X@J4^|-mmQlI=xKhZ*1nrth|a-{y8{| z7_wk5a6(K89zETaIVKd7t9+K>1^V62nwt7P!A}0O3N_2}4$@S25w~2Fip*JVM?oMq z(GhS-$kE>zi1%K##+D4uBW#8A^9@n*8+P^_Y^hlbeGqO@+NRm6bVt*afAaSl} zJX^+93zufctout*VeG$JY}4G)rR>RDV_^Cb>=n+r9bCDb>pp3V1jPvu00a@w${tMz zD7{||O&-}HR;Jsmv8Gvp%LHc=jy z>6@czAYuzn`PA6}A?B;?LdvT3o>~~C*Xt_Yk@fuhwhi4v2rXXP3!E6H*#)+Mt8US|LsW(85xjil4BzD|IR}SGPf~t~_}*^QHiU zg)%WHhzgHzaR&rHt~!)JNYAxlYZySDZcB<#R1Yf4iHwpWdguQDyVVNx%9}ES1Z&KnTIZ}EcB2~ z$%xrFke_U`?e43EPWjJtRp>H|$qi$#J&6T51$}a=Jh^fI00qZ>tQ(;dFV@M4CB6hE zt+2T5{l!&5{++vZ2B^|oYMNUIAkoOK@ka63L|2YK;*0uq8*V75#cLNZq#^}^_+4as zVHI+Msp;DtRv(@RTd7(7gY~6tM!jcUeXYo!TE?K%V|*+{A5&`8$x<>3jho7dM5FBk z6zkv1gzbHrKF0e;R&Ql=Af>zH2`_J{jA_kQyCKV=_5I6 zwEJs#i$Z68whV2arn1}2`necikY6dFQ-v*NQ$0B*gQjgv8%aFC5akxYm&;|%q=bIN?+#26oN?G_t# zoNZpqT!hVxcWt)HoqyxlL!ELY?2a>eF!07iH8)I@+f1TkBB|DQtiD<6x)HkA*}|h@ zPuSa?SNdAA>J&|zUvWRwDFlV59r24X1cb!cQ9mFmA}W%i`Xbred^LwKm-PkY36ZL; zmcMyrvxx&{xPnjBS649Kog9uy%_Pf`X23E}pEN=RAx}lky{A5bSUXO|rn{qk5v5q( zLcH0VfjXCLun1CQ+Py9`he_gb7sVZfa6BBGXuLush~8JVytSWKP(IJu_b;+(wm8(b z8#E}?5Tmsv9I=f3gVGVFS(9HDJYxWAILXf^-a+n&je&DaN!KR{VJ}Cl`l1s$HLUu} zOZmDct8EIk{nPn4&lS_Mz$dsR$bGnQi7<+oMB=0Bmdgun6l^w~f>o6^HeKa~Y0KqpvyRQdXV83Mwiqh-rnXldR3tp0h(McYkhLof^sba|s%6 zXvjh>ja*;_URS3$&oJ?(I2KV?IrQkMkyyIb_A8Bj`3&kCyx1oigIHwz%J}?dN#U10 z8wQD4G8JG)Bx)b`1#^k0rWm)l)ApKKciSCr**8$?rq>(`nes4XNDZh5 zm3wEYysetDKAzh?(UWysPYRX23rMp0p`*l~T5E?C5!w05LQ*UHf?R)ds1KVOZX;DH!Y=gMeiG=KEfnLAi}R=PNx1C?bbw} zx!^{RqPHqI!oLcMP^)BC1aT(@z2^_)z06OT7oaMSWDKhJPOhg|{QF|>aXqoArCQx{ zpE68n5gw8fE2A*j2(Z%^r$vQe$j1`ij0<7PVU`1|yHj zV}ysB_)YOrbz3ALC05fM)f9-j&2Nn0uePl89zU9>SHtuSL^qLj~#E&!ll^=sp;RBIb zZPtaOY`KYo^7K{Wi-0#bdc-lHxxd%!zPa2rS&!A~)KkxtsdiFXQE1#Vao3n`Gt14_ zQMCnC9tx}5s|+_&ZyO7{HGZRL^nG2Jwr)kX+?$5CP+yfKz$IZMJIX1@LortxLm(ej zOyMO1tF;}kRD-@j+F|`^U#CRZnQ`rwJOT3sfkRbdOeqFnPWWC__F=}9jR4SGn&y#eTh+AxdNVi_MMcm>+q`?ld~5PWfF;Dd1nNfCC8|3ky|DEdX0UWjiNZY zY}|)+=jV(Fi13QGvJZzcl8&+cz(v6G1Xc7wLae#J?RJH0>1%c;TG_r>JtFzpVo4!m zO#vY$c$zYt5D-&}G74Q_Y>!% zPqJ1LUReOlpDsunBNn)rsP`pQ&!R1PDwQb)7xsgt?ZpD9akl{?%;yl}OoQ`WD1=|%+XnakhghYf& zNtETDDbk&2+=vR?YCUq(aJ{WM*CHmbOrepQ>x$f#(lmp88v`CHAWk&CoJ-m5T&}{_ z)q4wE+HK*TOe$m5?2g*1)k$POCVa-4k0H3M3rfHn{D@7a@y%3=ke76+*6=jbz}=uq ziE%D4I1J2#ug5pJMjy{(71SFAdFTIsT3t$wkvLh(OZRON;sXSEaT#&pEP$>*3)s5KE=o;{S*N&K7%fkSMK47%LB5sVM7w2K|bx78MCd%EIZ;OE_T~^s72FS-T z6;XI1@iJ2HJ+<}50&73*-)gD9a_?B#X5PoKkZ~A`c`{6SQQ@?t(6X$#f>r*1wB)@%*NIDjH|jMM((OgaimgsFv5!uoZfOI6sHbk_z2OKV$rj`slc`~ps;x{`Qo_O&OZJ;hrA6I4&&JkTn@WwvhbjTYM~X~{gl5XhR>4pmCH7<3 zLa2+-xqJ(26Dl=;*y&?jz@ye*ZI&pXNe3;-Ev6PQI{e~r+W6lgQCv04f?!Cw!gXcE zw_1M2vC%E{Z92*gANq@I{x(AzlDi_M??s#UQvKx#3pZX~9x$OPCjBLL@@e z>vf%LQvNz5C-wcFvf^BDzOd&q*ZEUqr1+j}+Y}~azsha;c$?` z&I?GW3fy>(BYyW)#Z_@tKt&u=;YujIhvO{!sf$&PZ!Ddq%u+Hz{-5x2Tm8OeW(qfhgj00S_z0Xe#1yPjavA;6BvC^%VY^)dlveQsibKxpjP>Dm|=M(U)IowDKzp z<0MB~Azm3G=g+d^)2#EMD%Q@9ZnJSu9=)q7`-xr>q-jJ1%|IQI6j@X-MezcX`4tBl z^v*iaR{G>Zuk1@WIxg1^yHuFUy55=PdSj4gIUD0TjfY`YPtrF*JBtYzwSQtF~VX@6H`0rq0Ud15sX0bL`Q zO6e*JyhecFx6Is829w+9lIlR1?#bA-EtJMohTyX`iFGFxu?sJs2_JLb!46#}-{7t( zs)?d=O!{@RvJ*3}B2*MvyCsbH_KZS>TU!;jELnC*sVcN_0No>GP|TIGaCs64k0eZV zLXOEpu6= zbx)}#N0(PwVIFqt9>i*_X4}M83M_GolA9<($cnNI6HAg`{{R?3BcAxAwhZa+Y|qVS zYuBsxFRDX0z66lo~{o{c5d7L?7`2odE@L;c0%xK5@t)wyZkNz|RjtkrFXpwpEx zwi?*+=B&8v*++TCr83Pd(=H~^vX1gJ689nCv&5#~Z0+{<>nEqORyWaFjK+nc`7MWA zs(hl(x_t$nU!h@ueW6ARVU(}fnVsp_u3GG?V?HXgF`?Ee51kCP3Ym?(@n zCJP3xJmM2%N=1R^$K9StiV*cGAlYpuyzYxCRJc-C<;e@u1~~ zn^Z+{N5~?gy)MNmD|gqLIYg0JA)$KwKaE*)-3Q`At!O#e34=@Ja$5fYc~Ou~N{EHT zc%nF*3m%?M)3q}K_iTwHW}&W-_ma_uUa#bCI-wga{{UsuV+4fv>EF8g^zew2BUeyd zNqBzG}A_8?>x4OzJROJ(Y4rdrXJ0er%soX|lEC;11qTCLaGiFm8AB9FQz;6-CrRv zZ?D4C<=C{s>ld?|5r~dC;EwZXsfBR|pL1SHn8$p6I=K~RGvgrp<; zlPQ!`U-)&I)eLjV*}+=W$5tyf+@EQ|X;tL`!ibtG;Z<{y$9}Qk5vY*VAShENDnNC^ zR~%_Fg7YG(h>E|070ws*=mbWP?IeeaIXNOb=r*(|7GtRtypGBrJQv$lPC_aJ#YfavJ@CB-!;I`P zk!J$IRm5|fZJrdB3$`=);=hiFgI12Hs>< zOx&O(e%ra~)Dd;I zWl7TGLQ4&W_KCp;U11!N6(lQ4Ch{`LJ;6)biiSzuI%|DqO)G7`T*W=NPu!qvw3}63 zWu!N$AU6g>mHz+@9srLWwwOU|$vuJ}Ah-%5xT?5BNiL_>l)m(hCuO}atn~e6W{a`b zlQ5*(Ga5VOb*S=4aj5Q*IFg%^$`hcR1zIFe^5>@qNqvk~>AR2De_C(azOl3I{{UoA z?XYIfkFdW8;&{|uY*>WhGV7eh<@XA<=zD}ixT$o>e8|+K>fKB19Zy!-wf(6{HLWrX z$ohO1zlwFVu$>+g?KmtrO`G2p$ruzhQW55f`0DKR%)H2I*JL@ZT~t?BGgm8Qs0jx* zVcC96dbXpu*C@^KAXWjya1@+tCCHTrl6J;>&5L}I9s8y))_RWFGwt7#4&Us5nG0X= z$B+*x$#uy|J^69kXjxZCkdcu!LHq#aRdvI2JwCeoA&uuzkrZ^hHZ;nr1Q=R{MQN3e z&tp3hBT8u?0Gl`_l#JYPMHEMpFS!>vV>iwZ?AH4B`)BoaZIv_%-IC-27Nb)r(c6la z#n#Gnn^lhMN#%Hn1H`DPx&7j+?Y#ORb;)YfdcW85erQ_idYrk@wP|&7o`U4uOmJNX zh9qTmW3b{HwjknwsF4yEb?QKgH*)(kYJ(wuyLz4!U1ej)Gj`fsnV<&goDgW{Fl@UO z;$W0X0G)NR#|HZn-$q7 zOqr`qtAIh3QXXAqP4iNAxH0x8-WAgIJ(kZ()}sAceHt4NMcFChNp9uGmDX8xvv5Vg z1mdH~whNgmCRH2cy)Rg@jD1;s_jbkg*4b}AeXrSVnG=~+WoI?9IZDf5r3Ndc*B0dg zJL5t`B<8r!x4v&lJS~xReI2lF1wh3tI{~??+2HbtWNstAbQQyb>n@j_3Ok|2NYNCN zz7wrTo%;J)`wp^uJSJ!?5-z`Vag?5$Ucifpt|F(9GOCK0?fyTWuhTN)fPUVp{u^{= zzNQ7WosOql3bFeMk9eAFBPujZu*tR}sPA%d!TrhE6DiVA*>?3sMyaIiJ2mxeTb4{m z>jtddR-(&3Z7j27-)+!qfMh`lc`jG7CVE@=SqWF$Ggdn`wINa#odRV01G-|WH}X-V z+1cS?%5C@4#E+;csj}I7+d=jxuULziRhjgk+%|h#he<#&Xxwn&*Ir7MCCiC*>%>(c z;Y;8gp9itEZ;^7s68;9lZ~p)W+tFzk6Ss;Qh}SeuO0d<+ah=#}K_t+yIM!EByV zQp29)RLUq8GQA~hN;}2vJ>`3s_r^2#zpTKkBeo4bzsN*n(PO&73T0b))kht1-UI-> zy|~4fG@pS@6`!^?CuyACE1ZK#CcaJUcdrp*mO8c(&Bx&eRO7nKsEjJ)`4SKsB4?vKfWb*q> zy9(=unbX##=!e21Fb&ypS_b2|D&fdN@tN>%h$^N@QwkStF6V1WeRw+tp+^=qQ}uD| zr_z(c<9=amB2-34$-|J-M2g}$gvwRJ!q$RF^I=n+`RU!kexrc>Fn4 zQ~*Iw+M>R)-D|6&RKL4JdfG;=$~Acjry5y~#D)duN4bf(;iAbyR@^RJg?pwtNS==o zH+WWzKHU}NZKX!+u2t&RjK@1L31b+X@w(<*Y!C&sz&N9oMNFciCq(7R+VN3sF=orZ zucL{v>DvoV&6_5Fm_9?qvCYYm^45SJm9Fl>Vh$FlXP)r-b$97>HU4SSNxXU?=A zg=+VPER~kw8M@;uAvl`3#FeJhNOOS>D}_rYAx7tG)g$RsXltjntGLy3%>MwS?IO1t zK-WAa!T9GGm0u=_rwB+$NDBmB(Io1Zf(>lSoq{&4GwTI**Is@k$r86B;N3qq;F}%= zHXJ9`YN-*nuQUjpNRbP&t~Ot7eDljiEDeuUM>b8$$(@Sz=iP-)49;L-y#g^d+b`i_ zc+`|t9rGFajQD~l5%*t|`7!Nu^^zmQzWS~D+d7K%M>hI^j8DA$*@jEyn<3}IM1~j1 z;wJIL2|Q?>$CQwft*yF~Uz-Xh#V#JdXJc(5jwaMTXWUK(`*FcyqfUp6TNi~CveFJ0 z$>i$Fwk2$Iuj{SaTi|V+ooos(`Kc}kcC&#dXi~`i2HQtH9NMO zD!NUi%`q0s<_P#9Jj2TDc3zw=E6E|jHk`v~C}oTaVLA0O7)hSXwpuvG*FtS&P277s zNjnpyj=usUUMMlq9#&DPkD3-6L_||;a;|qI>smC(x`khFoV zM)9bV37iTctBJ_6F$FEzv(zaswSAjdv2xpUemYlL*PG4V$(Gw~;TWFKHqeBDVX{`0 zFo?NDI)$0L)?s427woD%UNU)+klZrGi4 zjaB~UD)uWYx%aT!4LW6uv2~f^3d4=gXjI;S@X19%RYwWb?xKVTjG}eV>nir^Xs)%h z(fzI!Tb89uZFX)ryzXS+#w%c;5@O7CwD7P#&{Z|>jwBswc9flLrtSXURJHm-&thwB zjY{lHxmeY4k%+u)7%{2v4ag%}CUA)s5dPQO>>1i9WzLoJtYOj(Ogfm)w<(62 zP<7HtL+4X$;;E~Sx||h6IG0ggeUGy=*V0Z$ri1Xdow`$DVwHl?J6CNRC|)?O6K%G_ zF&(U+l4V>}{Nt-DF;DB--q}5>7Cy+|Dkn>kSffc;+X$`!Rx~y~MU2|>M&5Cy=iCrP zMHh-HB3ZuH+35>(p|iCoXUK^n)+JqZtBW0R9d((>HT6jCBw;dZn`Ir+^E>Vn$l%bs zAX@OZU6*35DA$(NI_+}12EGo@9a{z?9EMwn>k=99xa5aPTt!p&w}#g!DxT{ot!?(G z@UATDAJy%q>{MeEBi>h9ifb}w6TBn0VDpV2qi?ijk`)D47n8n3Z?@lh`-?iQtTnm^ZasNZ}w?Q(3> zYiYHb^=f8RhX}*M_mQ>pA|jGX$cLb(ev7LlqfxO-P{lNrq6!;FPWyHVt+v5=gd}`N zqoXV37ZhLQLWrV*rYZ($(Lr}QtF1Rew7937A6;7R{{R^knyGED%L?mas^bm|X#1@< z8LkRO=>GujU)l>u9jDmKxUYVFWajkAPQ5k_1M^G;%Le`$i>x%mPPp$kL|Y{wQRXBj zyi3+1HS-n^yC&ALWkao>bk(ENTxeV)aTxeAS&E`uh=-pdR77k@i;t=zu~$SXS5;M$ zC$j0DnMqtS^*x$YrGXgcDHBB*xV&9>+-Tc$1;-mvE(DFQA9qMA_>w0aNLwVkW}(Q| z4m`cB=*alI)Kre5LJIbL%Hqk+4R{f$pkt0Ylv;K(wmH9N>xo$cEQl412}PGKBkI|M z3QEv%LqJDS4I6QyB<8Ez(G#dF39D7G(MqSFykZP1DlH(4X#W5yp=q%B z8FbYZRYemE`RFkE&s5a)jX{lSEXz6fY$y~v3GF1Hm@Wg5+(ugDYvM+EiZ3r}E>%-0 zfmPK#J?t%(=6pnt7KdJx5dLj^b&9g1nPmjsi03pC!28-H@sN*~zIuZ4*()zBwWyS- zXRRKiUJc8!cE#7qM5(Wlyv$*Fmfa-?;g=MY(6T6*PhNpxlIdZpLJIM0Pt*-M=hx0szYF&Rb|0bFfw?ETUQj& zgi|zv=A^;)`psSfA zRYm9vYLnd8?6$l8dg=tb2=gX`R}v8%k};co7-=HB+7kfT0s?@K?Ig*nrW2{s`jciWmLNQYS&}Y3^!uQ zsH$irKUgy28OVam@1{w^M*!SWB@`T>u2(tUGkFR7M$=u_beNE9mhQ`8kt7n|as!bH zp=8(+$re%I7Y*d{imnITI8;*Ps+~!oJQ&|+%Ym(0=(D5iIxEuaV~a6a7AKU@0TuHj zjT)0^@3|GiQpaJ>S7)&Av1s>Ft3JrycA1fHA<|r?$aVE29jB*DNXV@-E?Z_#i)u<4 zXb=%q5mb}1brD)HWlq>D3EF-cophATmw}GH@yM+654YLFH7awmP zDa)$gUkMZ4)vs-!?AqmJyv=5oU6F5AmG8de<1$ajfdpnoi~YvPMO{YO6kH)b zA9>TkG_7FKLA6C3aZD$z(519}msbA9n!c5%qZHy&hPrzkoNjc8a+UceN=hyv84(Gi zh+Is$^5gF6P;XY;HLGW=X>?eUsNHqfQoNm(PJD0#Gj>_|P?46-K^iMrOeeT;+omdS z*xMfRe_aNZw#P_P8Mzv3E9CMx+o0l-p_cL(BfIt zi!QfUXvKWTZU|<%B3Z|58*qgUO$ES?0zZ{RRV=FX+iN$$1?|PD(CnPz)3;U*ESWY2 zY2t?1p(Bq+6GA5(0l_0=ih?8iv(@=#8?GY8iqr4TDbeVfsE9YuMh}jSzM>Bcib5sL z)`$hv!YGQ7BInbr>!NIW4RcyzKFw9OyRsX`-8^crg4|a?Tofl8Ls4Jb=JFchR~2TrDeSj;VP)_`1! z=_oqniHO=Sjk4k>(jbv4d%Ix~Q^)d{BN}UvFJ^0R#BOD6oCuD{n*|ld+>rBR>63`K zK1jGi%JTlW>JldEt;-2cJw5T0ti5RDm`o&cRTPfeikKcr4H3+c^7npw^)2+$Q8csqS2N=AWGPEl~Z25yZ8u z=O#kOee?&a-5x^XjvGU1Q8VaS$K^7;T@DiNr`MdO=D=AXk<`ig#fjY`*M2oae`N^mAL__tvla6;mmudh#7y{e|1aLRo(yS4*GaZdqc)=YLNa4|<2=J2*{D*pg=!c-+p31K?=7T-=c z@+Q{NE;ROR%)(of_nSlekeSF_$? z#R9TjY%3OO%~hn9GeF`=bz4j_9}%@hWP1ssDGGY@oFw5(zUJp!y;Dhr^~;-GH8eM- z>u%Xi@yL=<?A-3nnGoQaa2)FR0{}PM<%|^* zPvR%qywrp?z?dH?3uZ!szuHwXBwUvy z%L&&5q$iFbv zZFykV*IUlBW2&Sonk_;dr`X#C#}?$If_V}HYzt2~(vz2*D=fX_Ud-+I?bs( zmHv;t+;)vFqi&;GjZ&lQ`0m8Jw7BxeU|B(N@_sw5FhPX<$mVg|j(L}NPTx_!{d0#^ z{d;iUgRrucG2OM>#Lhv8 z(%HXJ9HrO-JQ7fqSyUnBCY;d~0Wyh&L|pZZWyl|WYjzt~@mA2IJsV=Pu^1AfOT=i+ zsx+z&0pQ!h7%Hk`Dn*q=>r$(dSo-^9uT$ABB|lWOy7SD&sg*Jd<~D^bMaF_V%0&5N z4)Rv=Bj|~YE!eWfYp88MZW+L4e!)0(=;t6_u6&H6%@Zbg%moAPO%J`b1s)5WC%38B ztmf6ZhA*)jwowXd$U)^%-5 za5Jy0sgoU>Q1LRuV%&*m{liA(KFT&CSZ$R|5-B1tNY%qcJqkrE{hq^ikrw!7O)s4; zW2)W#Q9(s*n00Z>46z)fM2Yh2p4VrDa&O43|2p`1OLsI>{OFf{q~Y$~HlS^yHb6-)0Df!ZfPMeVS!!zCn>ax{ZcAaN`7qWXg!lcB{Mz z<4FqGs44<*9_mC`#>L@X^;>L{g%Z*|t?bB$Xvkf1ZePtpVb;l6;vpziS{D4MqImQ~ zq}S&KNQ=@!?vI*DJ_ z$)axg6{o3ds^z;-^k<)O#gN>>XheUuJk4DMPDR~+c6x_zBwNbreXjEQ7TIFPv1@x@ z6f9wcxt}GASSZYuA14C@Y1Z+?n=gBX&Ch=l>crF<{T_kwq^7kasDUO#nDZxz#Edb{FEB)Y zJb57NW{t5nmaNUzxBONiBxHE!f^VI%~ZQp&m*X{7&{m2_eyLjciveacYe@#yir^IhyX&Yc34=A<`in#I` zs;86ut%4wmtf_o1Ehj{)+x6?`t#+1a_Gu2Q5*J{SOvOb9%RWfm#zRVZA{Px*l#zX$ z6Rk?g9#)lFS1R-iOAFH2q#b1ig*A*43keRBQXFxHB`YmNHW8stE}As0r;QVusdVtZ zS=DZrQ*`4S9TqH2Vn|DrHt_DkVDoZfK#n(Hj=o^Bn`u-LOT?kbM6t`Pug(Wo(Ovz# zTTS2d(W;!Vl;vDWkX6Upl+;NOky%h_*8EY$mfau^LRHA94<4#nfivYnq-L{TwW6?) zFu;yGSGI0IW8n#l1`$|fQ4L6ZVsEsn2wv55v2_sjr|eA7$Vy8sD4ncjEKaJ?=?Dnp zWx@89iLDP8{2)#7L~|f2sH#FK(E}&_rET^l?NxotRka$fp3727#iE-y;)8IxH0tEKf_B9ozkH#xsEc?%5_R;M zQr?3h`KDM(k@B2(+h~iEd;|bUl@SaDQAwip_ZIt1&!{C{>yFBO>nU{fC$Cbs5K^wW zO|)s-2_%TAFnIX{POPq4|2lPjlXNDoG%Ig0H!SATrFD~>bCTj>|GZAahyt^;%su5U-w9h zmmG>OE-_1?p0x$cibu)CQqGRx8+l!-4f7F5StlQ9`3!w$CV#N(()qDjZT z1#vtcRwnlvCiVV~)o3;v#JsZDR$ke7>@#W;)y=$518vKS1mtFqfmn5+WtOA^5@oaiB7)P1C?-DDLH94YdL@`7{_L?d>C!iyjrjVrQsCCa zrfH_a2{ij)sLDo+`nm5W(9Pa>@+l8-Md-GE4plo<2HNY)O_UnOkykY2Qj z9CfJ%qED$fZipITqZR$QQcqHoB`to-Q(Id^{H@x*b)MBupW?F$WROr~Jst9G$sEz4 zX<6h(qP&!sBAnBr&MLdR`$79B@2a)EExkU*o=`xnH$tp>jrxWCa3Z#lBD?Dx}nU$}^ zZqik}iy4n>1tO*p6?(Y@5tc#3G8HeDsN%HQU>iWnCn8*mxb+x&oUKTy@8uLZHEkQU z`z2I`2^LXCY8+``L}a5NRe2L&xb~ou3a43Dww19ptNE~y4%V_uu1mI+Zym!?L&i>1 zDh(SM`yk4y3O$8WLR=bPRB)@* z;6sNM7-7w8VQ8PPTPY7Y37KXMKKm=drknAqBF1=C98(bPe3cW^pk~{vZ4@5u$Cs)*G+ipTij2AO2lTWTsY>H zu$?x^=U;U2B!k(aPgPv3`a*O~K9#He*2TKv{{ULK8y{ZkbuUVO6hoBaAXwP}nt+US zkdBz4V~Q#gAubbJM(PK?$&;?x>d)?vZg+MT09N&IqMyRKI0RVA?O`yAQ>o6X8f-;Q2uQ&8hz!_3JZMy7+~SIZ58;Zaowty}mk zC;hDnij98KCY`N}8e5Ari(^>;l6F-M`9{exR| z&am;hVDU(C4aTe*Xa%=j6U*Y)k+Lu+1xQnhDXJ=T;978-e?!+N>ysRh_5;)r)$5A+ za@;ksu$svH=fT-dI7|!L4Wjoi#%!EaZ4kJrB4@bv#?i0q z3A+5pE*jctAxEZ{XpL*KWiYx-@aqb}|D zO)3^AZ?o3dU&$ZWzDM@vuY0o0U zDMHyQc2RLz1VU9sMJy(I(={trsAFb<8p3qj4N9|YlPCZi5rsRzKZTS zDJgLrDKBhF(9lAMTRv8`6<>v`LTTyx!M;OdCRFx-xQqSJ9A6k=8%0q>RPL&a(>;{8 zb~2_(cHUg<3!*w`{;88g8<;SJ|3l>B=-Cga5oHgwp z4>>I|^!=I{myjJ|KRzerMDdD}Cv@z%H=-+P@+~ zCynEdzqA1t*n}yS%KI0q6wVr?M~Y2`ruV~*Qf{UA9JB`{vSsB0ad}_`!6Zy)DwxNw zR@?;R%ZIhqM|LC@wYb$PV=3f(m%vStD-JNNuLR;Ks=ctQgkMgvCSFmRJwAMRlV6Pj z&?h?M>t;%gu5dwzS|$C8E8TJHh2!hhzC@bps(T_T*U`tK);#={jY|W`jz%rAS^aRT zqxyedt*V(4YqeU_7pUU3IQRfac}ZV!o+rh@AJEerv()y94U@KXP0VH*$(F98QjdY5 zqBu%};{{)6;RgwiPLvY)GVLRy5*+9Jdt73+c}GZ?RYy7Z?1(71&U%9xisW^xwT{jh zWC6A(rVUjUdx#1g;Rq-g4d#%iXx}=#(g@CymVS}5@EEI zW@v5TRU9NjRd8JW6gcOqs1(X)En5U7Wfv$)xhBl9$v?o6dXz9lP+ONokYm3dO2|_E ztK(Mj#aHmTB*$40T+ErE!+3Q(Cdxdi$vkf3j(u>bS?|`gN~|}5nQ?$bKaPFH_IK

G08&I${+%_wjS1#{JXuj?pu>E{!&eg=Pd(dI{d1n0snODPaj_yxNhU0p$<~{5 zvbK1}Q~n(^ZHYa|0I#cfk0o9-6&w5n45D zS&rIAHvn9Cj6@f(_VmYJO6!i#YcFY?_N}#ix-E6s)@&6a#)YmxM%$GR88VHzDbjre zd@Y$KBj+kOT>ABiI>gE4S?jvIT~W&&dtlbecG6nV&!CuaR%B_8gkeWxxZA!!XuR%t zfC!Ly_5sJPyu#dhVfH-QK{{P?=`@RVLp8gbvW7_t8*-K-uv~5Td}_Yc3?QO$^!#<7 z_WkO{hPF?&E84TzEFZYnrNosU4LxM{TYZaToWL^FNO9aGWRngOlcb`EJe6>$h?C+L z}LsWc4(Iqnw3yTV(_>bla|f z@TR>`ZndF13H?U7&1yEy4$4ch+pw4{i;fTisCk`mn*(^g#36z%D5=&yd1t?CthC*i zZkhHL(Xwi>r`!E_#4@0P@Lrb{_l6sUPAlk7_{c<@UT(CxM9N`1VPw8eyl@?}{b{*w z+a1iecRK$7uXMH=ZMt1_<+E!c@IY}*BeqVUHrTvk?p;zdCI0}W5jv93!*DuB)|%F- z_2<=6S%G(2dkfDklEx;S*=I;zGA4uTC=FM{KxAUuNW2tt#4x>XEvcLPx_phgR7f;7 zx4O>PV*+wgTuF5d=de7|ykW2&R-?Qi;SeKyoJ1_C3ZQkKvZO+td$LvEZ@Y~WJ4^Mq z*DS|{MN_J=0p^l)=as7#9FEF=aD2|AZh1fyGPwmLRO?c4%H907nb*nN{rr`N_B zOL+}iv+&h~ue1_BG=O!&BW@Y99gtrWs1B;HxN@jHXJV@gEzY8ny7DZkFd*D9A}iOH zb88%q0|7){`9#|cqhj*q8Q`jj=ocj}Lyon8ao$#ayIA!t7PRc8j8;YKC6Oc%18lMG!V)G^tJXRCbS{_oB-`2)ui5G36HysKarVhcRl`9e4oZlmqT-;U za#cn2&U)48mMpKZwR8J3P(5rRL4zb=wJEZaZip0y3&^eVZ3%ONR8mpOp>@oDYi@sA z+fc)cJ8`0mBEw{uwb1L}pt&*W4Y&+PL71{5qfDy-(wgfDtQ$5KN|h6VA9xtDf)POeL4jkFt)Q-Z@g-jP`o~KmrrGb=uBndjO|sc% zZc-S9V+GZD`xtU#GA+uA>(4T-y4!v+HpGbwfp8@4p0#dLb<&j-S1)5V3ZB*_%$SP9 zRxurXfZK!aC!dZAV7yR0#v)i#9P(dIt>v80BHGM1?Cl+aRiIj0!Peb+(a>@mwWlD% z10Gw-(y9V~obqNEPUxA+XLYN?p!Ih4NKM_>S8fkkH047Jwv=a*y5ix9suEaerZT2( zq6?g|iYPs~FLhpsSc_q+-|e?sQd3`A@95Y!eGYL~3&6@Y5#cNYX*|mLp&+l54U!TL zeN(B%uQGoNW9pmFu(r*fK9M%IqF$#a&Fc25<3NpI%@hcLr6itVw0V)k=Y&#q5KAk^ z^kQDK%k9g4+rGrxHsTL+*~NAwNRnkSGsPBLXeq_yl%S}ik8+8i=N!7v zI=H_oeys@-XzqU0U?<!C3ob$PYn zlN4JnZMxzq7&gKP5VC{Fxn*3!b$4M2*l;AnarT?8Dds*WCj^rdk>m`v z0MQ|Xik{pOanwW|SLpb5)|Zd!(3eioUx1S6Z=R9jA_X7^*>K5T%Bb@+QULcMFYolC zjNNtm?SE&R_H9kIf5H0FwtRrP*pwZwvpG>>!D*j}zSU*}zvt(?x3t7bdO>7qaQ;tcDZZlTvj#xDBiac@_+)xKhP&g0{R|6v0 z@=XWWZ>9dj^zPXW{Yvh{rfd=|V@HJ{9T9Q2YsqCl8Czk_#@Qe#I7n^|aJiJ=H+MaX zo_rlz*>;*8UUWE-nya2_RDupQ@}%0pl&tt%NX<4*3ynC@knjRrWjan$L;a5E)R*E{ zeTA#Ub`#@KRv%;$!mqM+9Cs3Gyz5Ky1IXK8G29a{?&9a&f*XbyWzN?oMb&6NzONpoQL7WY>CLI z(*FQurp4C8mnFq}seKdn?ZSs(o2(?ZWL-$CZN}tAg!`edgCybu1028=)``SqIVXN7 zNQxwd-%?#f{RdcP%GOoYgviddDp=I)n!~3qGZQ1qZLBogG7z#EcbiL<=Y{>fb-bl? zA?>eew6bd|DxHeV0+vxtSSFlp*1U??Lyly)a8KMQpPVLonCIHsrPf~K_71~gP`d4_ zvT0=`)=tUQWyT$Kfh9R^ysGm+(Y!oU7!~8+zaE<-U1m)q@BaYA>N|e3q%#R8&Yw9e zk93SkmdH%1eDH_m$?|Pcqas5`GDxZj9cK37xi%z8->f7%p~HW9gMT7a$xtFyuqQJ0 zsPmBH%$9&ngJ?i65u1u=g5MD$Jax+5Ua&V>p6Kmw{Yw^(#3|ILTg2UvBeatw5;pU$ zsCnLLj{{~(jv)|`sRtA_>5XTz58A6nnw_b^w=J1#!JY>R1_FhOx8aLBg%?M=@O*K&zYNT zk^#HOc&evvtrDm0kZlUOHmNKvey&IfNZgwFYA#*7TC6`Qp_D!+5wLOaZ~LO(B?ARd zT*S3P!faJ#!!Gvnp6*Y*#kGZw=Ot^*HspWD- zv0-au#oMp#6WqW508U^304cCL5vOB>V?|j10Ql-sT5ZpX5Rk+H?k2p55mhnO6yMpG z)`PTI$|}iUY-_Jvgz7uOvX36%nyik~^{rOAh{86A#!2H6BkUros)^82A69M}`qysX zW=N`UN|CX{mQ2PMT$MDW>f~ETQ%2l)rImHa;pMJpJYLdTRuGS)1wX@PmZWi6J z6*#$Ew9un)2Z)WgUURld#~UviqI*eu7gY_?S;aF$wUpx~K?sVF-cO z4mF$VK;vq0kJ^eTqPR>d`?`p$>v!F|Vzo$Z#e;EESPrJ!YinAd!dH;1Z#HNT3CS-C zpz{Ju3ZbC(T$W8(a_wrq!;4+2u>)Uf1f!cDUviE(qBH{9G|MkXbqTU?h|WVmhl0l} zDJt|&0aOfXbu@K)<@GeDXT*5pkKpRID1yqbjiIOSz3nP2`2B%M03Q9u!5P@B%zT`A=BBdh<zsh=i9*3KMjv=_zb0sy6!TxwZ96FJ`Bs zu8(5WZzE1jaAC!1u@z-ehTeEnf)bJO&!Pxp)kuEBp{yGSn z%AvaoG zmW4!|GY1h|TnK=!Qy5iH&+O#aYHp#G#ciy{rbU-F%E^bDku)2P388JWeUv8+?%e}(z|SPc8bu55RzL#F2Z9$>~-N~BZB3kEE9@~BC1Qpanz|p z*#2`(`EqybI_Z-vJoQxI!ANQ~XOv^|j1pP?;)u2wQ#InMUh>N0s-_K6Y<-(kSd^^G z(IeE#xs6{HrB>00*jJhc*=*6WnA$d;MQ{}`iYwVw7pY*8W3_!xW2;l#yLMCd2+Sp( zn_E5$vtOSINdwF=;&eciSV35tU*8jp+|K?jik0CJC!1p}!dg}CZzvTt@5{{UWF$A4&m!clAQT(UD_Qp<4| z3Fl%?x}P8f0Mm?o@lsr_a4A9*ka~mcX%V!0INPO#ja6)TdTd8z)k2FpL+0r{Dnou^ zHp$N-VZlb#5C=RtV^Wrxjz-~g^`*=jc@9;|i+L_RV8pHzZq=6+Taf<%$`fs{bCP_5 zbc=$9Q4tk5^hIq-5w-njx6P>zb-c+^7>BGA@`Z*_%~>{;=?#jv$Q8FTUcA%3Fse&X z2E$#8K~-~8A?gidVzT&;v`wL~^cIcJD-XDB5%>k?6r6SC@sW;2NqvH4W#3TTZFR@C zTh`w@A6v8dvFd9g97^#QypE!@^kpX;WfCX@j_?vSBorhS_U5%JqT4O@hwdo##-I7t z^BiisMAf2_LyZ-;BP+5^_M)L2b7|8e94Wk9J%pdRE=*|avb4JHsYKPRyE(gj{hnBD zR`Z~>T9KqN9zPL?%L?f&m?zLkquBXzqcdNQLMCRzgbP!-O`wfy1h&SC|b^BI}&tDc^HrJnji&7 z-gV_S95qIfQ`)>iQ>iFxqPf{>cAE{Ag|3$ZOjjq(ahmAr^WVms5#zu^bK2XUH_3dD zr?mw*A@^RWhd@@=LkeDQ@F4YY#5S^0Rv@}7LgQrDiV5fE~N(| zeQ|xXNn>lGZY4c?@4r_zBuT8ssBDOdJTaI-WlNjI$cYIIl~r=Qx|$khS>4l1r*^Mr z3aScT5Mf`q+a(UuC6^o%kYnfn0P=Njh>tWv_KG0#>iK8EW8&)#>h^n9?MW%AZ@h5i z&6_ll*$$(K`|=5v{C+YHBH2~-t2o0k?g$f|AKHqQRm!P;G#!eehz#fRe<)7*AJ zxY0Pv+@2?Jys(O@gOo%>CF<%`hpyhv*`VvHR*}gl6yUr~iK)mQ=4`wM3CGTciYiNl z$F4HHW<`}9VbkhY4_LJZRm+YcOsbGFTL@5Ow%D~EzBn0}wu_WPB|`n!PW@`_Q0Wq4-qPgko)kxhk|5N)2Trpu6H|&C?{U*7Jt-r(O7b_ zbaOW4a0BAY2E0)Sj6D-1m{iIkCrTI_7;M0}wVN2B6+}GDxgDx zFTyJS0A8|;FfMaua^9(|NdWjPj0x2NfjwZ-H;MxQ=SL96wPO%AeZ*II*25%4c2 zRT$)>g~E4CD&xQD)@+(56gAhFb<&niEVo1BK>_wV8T2v-0E|gNQGG|ZuT4=-W_smg z5LrnU)sGYz_Hx9U%tHk;6Ks8^qN{}T{Qm%lQh5=he>d}_&8C*xgG@(d$j`P-x7|s6 zs9~IBeHA)f8|J#@1;)JkB79o}be2SMBm?5AFEV*W6eRUTRsR6%)QD%gpB{wbw+<@J zXo^7$ei&5};<;2$>FB7PX9PKqN1Di7(??%AvL^f&l}Cav6fqylDE>O4WmHLZvKnS$ zl$h=+6t^I*IG7ZyUQCA2;>hVHh#8iq4Xz!UMBnBPenrylM(xxEBanbG{W27qa?wDyBqm zo|cWIBNF!cB;>gkFoLA3_)fAUL3OAyk`tlD!7nLE9?EU;Rrda=p3Bfliql`n&uLWy z`Dp%OMZk~}jzxJV=&9@Z=pdXwn*?H#EO-%&R2oG@UpXgpPtF$}zn-IMr0to)R~%#H zGRY95g1JFVB4Jbd^fe~Z!ZfjNJ0br7ip)mXXw?_{WGj{b03Q8TZ9r@W$^$JZb8;Ub zcZ#Btq7s_$z z{d+7aj5&h9APEQxWg8_l_a+rpQBZp?Uf#W@Jh=E*`=w^zPr6Uq=9P?1RwW?BZmuN3 z7F(8umdM;i0(1-!LkgUGVSUSvwb!(@CE11QU1ar5ZRa{Sr}qck zN}l{DS?&8e&+4^OKdil>RqlUjZd#oCI!c)T0L_NIDTaLPOA$2XIk88D49t9tyo4N8 z3m&P~r)g6!rDOaah+kG)Yg*(u`cL|EU5<2hm(wRCi@!UK&3Vaep|(-HVq)SOjkrQQ zlyHTFO-pUOnyj@UcT=mS(%gO(+}HryRk53S%ri9!RmWX*_F5!(n^ok1PGJdL?Tjtw z!j)sx!_hT&ez}J*Z*KMbXm!f{3o+nLHIneS@y@a)NE~q;aDyza02MG;Pi@U6+oL+( z(%itfz1XVu?Neh~>sc`;lj$|shiKai@fl^9XiYlnTnL4vPFN6g*qvjx&*m++z$`Rx zUP@huTo`oLR=Y)4`j>cp^Ru*=+;e}x+Y2BbWll+#svr03>Bs9NA{WyomIX2)&6GPdiA>LME^f$sNUvDBB-JG?k&d${_zEbb|- zw!7FDk@gbVroBw-up_pfJp6exWU?HKmyLLXYlX_^*`BAK9cJdA?e^K*jbup?KB+gT zFKuF5R#U-?B^G;)i1U#1gySPIQNjQg*O0V?JVko~JaJefT5Vr!OqFe0Wneh6nBAyT zM6Xt*Yr`C{)m!mns=o$1o>X|eBY{yI_v9(hBFQopH#%6-wYy#F+k9@dEMvouN3q9; zKEedKGKlz-?kj9E!f|w)ATDm9w!T2(sh58F8k5!>v}>(9dFQa|G3<)WS_wN8i7dS& z<=fME-F86(a^6^M%3LRnwpS`x6~=LT_TyRY*2|0M=wG zMp-W_#(>jNQ83wg1yqlgSBfuM>)&D9u5kSg)QImYrbc>lFybPWm2{pe>Ntv=Q8Gfj zc;OKdbJlm3R43UVPS@=BwK~)p5hYC8sNQB+_#1WF_$(*^q&82Hw9KbhlZpz2MmXn$ zMCn#uAC3P2cV0@P*;nfd1Cs)qP8F%wZ(&1?25a-8y(7;goMR5FQapr61bwofp6e%B zZ#BEeCChEy+A4bKLkc^)7?>QJSKX5Iryg+;Pbi8cDB233n)1qJ4OiQZ{>hB=zjPy7 zD7EeD+Yz%WhI6=LuHmLh_>OrDfu_}_laZU=<5XTA)Dq8pE`Fz`viSTOZT6^9EMVt$ zxV)QED*zGKrLx0lYHm971rUWF{^;=>C}nWH@z%a~mO9)pL$rkk=61ocU4^6zHlsb^ zvJ~^2hMVIEkVu&(k#ofWlZpxndZ#71tl!yh5^@#w{=>0-S5UT09APaUmHp zZM1WdBV^OcN(qnM?&0c5-zhruon|+GX8Eyb>emykwt%yVcPg*sjGFr`4_c7LaT{{M zOx|b0>XejskqW-0oGSafqIA7U+l7<$#?>a9e5?AxE!)dOT6QC9!^_6C*)m`Au*8%S zc>q8a#a=1N3-&HL!F)Q$>^-;a$+SCVRfw4J=6k{SXOnL*(HnCOUXU<^Rk?=g9w6oIo z=NB+P>i9GCntKgGMLbr|U!5U!&xKw-2`#_CCIyfQpPi*Z|iYBb3{W1I@MCE?1a6&24`F>Wi$=~k((($-e}foW~J zYnKYmY({EjFyF&QLK|4c;$1_-7^UKRBLge`tR$i{n5>ir|cWShgm?)6jFM+ z@J*)#>*LICoQ?w_RNWUFGX+l?a?W{4mzM877sc%*uwUzu?58ICy=nK?cOPIq5MQaP z8*d|zgEkQ3G-%I?8moxz2z*DuTuk=qjEzazb`8a!zIIA2F`By8spzY=MlK3UF)HfD zXa0M#f>M;lWtJ2Hi1GcR4v!@Fko6&aCpYzdhL+6AZm#2I7lW9IC?O)9XWH};EM+mZq$^#-off2Os zRY-Usw%X&Y?TIa(43+Zq+O5j#OQMzjqS$q0g7)Qf^Dh4YI_yw0I|jwp(0)q3+wFg3 zQ;3(iLzjN6scyd7eA{-w+&X6GZc-o}k?R%@*PM7$VB4c@%l=W*jM#~yf;28E{@~=8 zK1J6|)t4AvX?JutI`lnO_1#v>>&U}n5(33hi4>V32bpGL>e9Oz8d4B(!gB_so}7Bk zhRYXLwWrw4ey$Z=WC_wuqMatj*~b^ouNsr!3aUl|1H_w5VMtLGQ!2f7&Kc6}ic!^U z);7`QOte1>jlTjy5yS9AYs7CxM^`O2gos>6)mPPeGjxIWw#>!mzqM3S$e9k(HHB?; zC39pg%5}FQoTEeX7y^j^2(JR>MBt$NxpkS_ZZA%|RKB6K{l6j_O`U5yR*!cn==%fC zOo#FtFwD3xWxsAuDmjEsNT5rA>`U1?p51R)XZur7**B@swEc^2EhlTQ)x?~-lnmHb z+^m=U%}AQ8s3S7vJRE%Ds3s=fMOW7qC7nsXS?Jpv66y8{B)iwfr*0@!sk|;$Ho>yd z8a~^EspJJS@tTOao+ZcI)^nXNVO@`6v5_XOhf&peHC1lH*jvM}HVvkuNmgPEbZHeE zHv!`}2MDIBAV{j6be(oH^(U4#+U?ydj9taDsBd5(m0c#*NIxrJuVI;v$2J)uG4O-! zJ;h1HUnU7hDU3?8k1LSJNiCN{q)(fDe2c4?`9Xx4PUy)ha7#o2$OpwFzQ(uzoNy)Vn5(Tx8vx ztsyWVV%tq|RWvXpMB<8~1fl3V)JLLSTEUQ2=U;1OXQIb#PNG!jq!%Wo$ySls3W#Fi z5i0Xspoan@=vr71px0M>)@*k$rMpCYMAOqO^yZa9?=GqKr1Ww7nT8GCgR#lavZX(l+GTU?1vaen`Af( zV2-adL|hLXl2FxCvwe8?*wa|q{?E9RCUid)g=@|uQ0@`-!{P%D#B3dH^*II0lc*$% zk^HYfCKxlY{h4`jdv~tDNl(XzO(o%1s_ENh*4s84DJpFkHjT7CM-f2zIh5|J&|ZI7 zY#QwywXEysBVTRzQoMCeFxW02hkTJ&{y?Zs}naDHchd| zt997+U&c~+CbHyt5Mz+F;{$L-0UU8ujlsbCe;h}mFR%5y&Gnt9U)XB3J&(XlTx&K{ z{Fc>l8G_k-M+v4@G?I|N+bk$3nYf*mM?DnJqdwXtL(rks&UWTwY_%@!(n|+g0^&Iq z+;M_dS%!?lR~=O?n8gu;n!70W=qanP|Fu&y!>&F={Vb}h^8Of zP%&*dhy5T6grGIt+emu_Ci_)BH601QHFe8jV$sQ%{3Ug!&GhYpa9WDnq-%P5r`s^4v%AZoY`{ z8^T^S0aR2T4T!EmJMk>RUS8>yA6`>eZ`;oGVP7up)(ANUkP=_SCy)uoUNtdASDyk$ z97W$WSTuCHc$^J?J5B#h7yD5*#n)m$+WFho&rD!j2b zF9u=&YS(!Ibt0(Rj>|?4Ixt@)M#=Zb--gqVyWA?B_w+0IGd{N0 zDH+z*?z8M$3ug>kdd;Ich!X46TW!eZ<79H21R@kyc>yntcy`J;se~FWp{qx2rfX$o z9?D!))HeGKmQcwT>u*I~i6~r@Qd&nM6Me))0Gm<6e21&yBw8PI_+b5SrD+tqbe)lP zSk<+*baVjtHzsSPm~R7$qNoZuCvYT!oPQjbtj{_`ZPV%|HN8^G@;}(>*V#JtD>m`0 zWVYRZj-l0g#--Q1M&dmn-r*SC9_T7USmmCklAOM?-*up`q>&cGScyMnVbIy;+CC58 zh08J(07NAyy1sPc+iUn$$|8%0WXs$ZUnk$Cc0b2K=I^i=tR91`6O1++a(jl`t)we7ORNigJTQEq{=wxggP#*nok-E-0mMjVuEjw1}=Q4f%DGRi5JCG|z= zbVSV%H!Le=*v^3g-gB)RWLp@;AbjfMhm0Vg18p{nh^gz{7ptN*=EJhZub)Qq&y)$@ z0fJXV`MB)jQxq4uDvF3EOWeJe9lFfx1MFKkNv&Sd6A#6K^5VQM!z1KCs*)U363TE< zY>k-1kKdI4BaLk0ruj z1bbn9Kd(@2Zc_mkp0dD7JW0=SkdHgfvC48nY`+Rz6%`k{f5)ITYc2$-vD;7lG=UkI zxe`Se6o(?2{no~D8%?3%d`tgj=@ z6l8SO-o_}nR8INIXVa*-AH}(sQ0y8Xj!EMwZK`&86Bs2=*FL!Fv@>Me61?psVfhhc zqtcrK(x;mX=E8oocqey z6JoKP<(1$@h={rTDzC3nkETaOl`)wvBzbM28#0^yqKb&QRQ!Klpn%&}4Y-3ih0*XI z#E?GUYA#pP)fYVhX4UBxu1jqKRd9=9h$f0axZo>+@029((XC6ZfhFx$JlOLIryg^I z(b0X#e7Khs#uYK^(+vh{T$(fnWi;H-ARv5I6$ue}B4<8|pVOjfg?tx0(B&{9hT1Qg z;PgI6*pU3t4ZbzPZJX@?J}J$`Bu3i- zLhihm*SwO?B$nJ#wDvo2?pjW+vyVjj>g|YC`I9z1m0T~9({Dco*55|l@))>=NNN3& z;Hk+mi){0nW(_|^zgAw1wyn%`pmq5>cE>V%Q({YnR@ehf3yqc#{Emo<7^0yrL>G@G zZ_pF=2J-?Au_oVDqOjNYy9hIEseZ!RA4}NK<-;H+nsPhu3b2nx3@7c%kgpZ=>U{S1 zcsli#@_*eR?z2`N$0f-Vu%t#y057;v4FDAA^sx8TJ`TSgvNpCN6ZDDrhwliIwKtoHusu~uFG03%k! z8;IJLtmdhI1g;`SF`E?*RB1x-I119Vf$`gC2Fj)dc!2g)>r=vP-b^&Q=h!a`W}ODf_E{L?hdgqac-b>_5Cp$)8Yd;i$#r;?*I4Gm^|rpv)XFNC zw%e(2;?=isFr>3GoJ>*DjPSC852CuhKPe-MILT)N(%F3YPYS#2i$Ac=%UOcd8^NwyhC6mPfu&Cd3?z_bF-&~>E#*eyvv8gib_a<(ouG(7M zQ0o;{tuiuNgD1q>^2DS?7sdBoBjkjthz5kHh@E1|XDw`(g_rg=>AQVrV9vOkGkT_ z0-RUcib8{xMC3}p)q0zbd8<|iu|pGJ^Rq3mn+~;>o;MIl>@x3_7!_V5puCqKrgPSB zds>`7JO2RO&(s=@##e6YdQP`lz1}x1=-V`k_T8TnPL*UgmMMi#RrJn_HHulq^}Tsg`7c?fW-xcp# zZaoNprghkM6*`nl6qPq&Cl=FPVl;tD*)6yXHq?S}5vPlnwG@3g@uj)VXIHcqbaeC z1*auCOg?6Ug6m``jU#?E6h>{|^$>RESMZ(;_}UaOM4#a~m% z#c#^WqJWnbaRpH_h#rgS%Jy%sUwUcQYilICv|rTMz}KTJFrPA_<;e+N)2R0ro#IMl zP9Hww&xooLqNi@27w^&A`M2V1Eyk6r>{7M29))Mlxs!f7%zK>)P&l|s%OIqPoD(aA zBP^#bv8`g(J<*}B)aiDbSyC-h*r96lufTdr+6;yX=xoh0Abpn;&Sa##bK+c~0Vho) z`~yw;a`~riZlp{)+TZ4p>EhFGxoH*OAxVb~=Grm>LSeN)GVzJ>L_ttYbunjT!MUM> zZ&gJmExnfaU$Xp1Y~wv4kQnZ~a>64HIVlYhuuxwciS8VVD5t5L4@~XU+eX!SL3a*) zZpp4nktw^28iov@t1L9?*G!NK>&^**0X6ORsG@^Z^Hv5s<#&w5~tM%P(`fPS) zJSftvBS`WMxULh-fN;p6AtHi_D)-N{#NW9#ZC_7gXHx3%=ywq=>0H_RlNZB;dWU)ZA&mZQrG(q^ezKUDX|#zH5w3nPf8J zkTUG!iWUgDVbx*0peHs3Q;PW;9;alN&_C9{b~;-n1)iIvg|%fIo8NH6|E2 z{Dgw%DnUJgZID)6FY_l5Z4W%JTWNadm9M%*+VxobPuN-x!AkGfo23L3ni9fX?SiF{ zWC&v%l?9NZj**OKNmP{)M-ly*{#xVvZ~?RYtX6XUTk)3?2(|#u=ox}zuSxws4p(aNQ9%uJ!^G}%&E_WHUy1Ba^ zq3U)X{zwLzYCGj~<1hup{O$^xsBmai5R2W8vD>yf$)&kfx)!k&nikrhCWmaC;Mmwr z`H1bSd=wap)Ql@-9Sv1Q)WDAcEMuwH%Tuwp;>WW4Csz9RRegB@ya&;-ueVdymwAWBq~l42yx8Ww`3nT8Ad81UolaY+0{$ zSXGwGz9(9c${Jw^P{CV762=#$n!juK!k_BhZart$kIaJgv}A8>v2}i1@||h41ay`B zi-00M)Dx0%6#oD}TAgDqYx|d2+`hQfAlquszp+<*>iN;i3*-*VpEc)ImgF|7+NlbG z6+C!+uv9;k#-yJn5;TdAiMKka$@<+NnCW0Tf>+^Qo(ys z1@fA;?DW64+M6cIN7^Z}$T))wSlH~@NbzDwayUGZ6r5K|K?;#Y5kVeAm__V8Z{YfZ z6pIr_-f5}#np3!9&U39q{z;c+O?GVG2t)<}v?NB`Hu#Z}q9F3-zN6H*t5fV-dp&mk z)}HOUo8PXj?52@MIYAO@ws|0mvQ5x%!IMw?XzYNhAfT3i9di^^YFmAl%U_Lk_8!ws zu10yBSz{L4BHh%BF8WhUVvT2ZGORDcUclmp0@oIs1jcWqolBN$W2Us zdp5EUE-+*{7TsixwLDbH9j=21!ZPGO(C`<4Fj(>>}8hWI@?Apm?$y|T!d9mkc#zI zTnD+Oz50^B>fKxT)@!V6WP!-qVoRAKHC$&6!3gg%+fTKXOu3fVkt(J~3(0fih5rCo zI=2ljwS6Y`91`PGp= zKLea*UwGsjCO_M85yc~Qc&Q?1kL5a&^0_eQPQl)Us%ErT+mQTKwu@0?{A?EX0sv%Ali5=m63-Wffvm9MrJqfQfXRwd}x5URa8VS ztqq^+-D$RUdU*TnS#{S;NSA9G07Cds-0>r?vOvRmK?g|HOastxneIwtwOym%KUqU2 zH2JgXwfV_k1gA*}&CiTkl*0ibk0?hW@f(G~v2a1L9!N!wim`=Uk-S3L?Vq1t76fH} zRf9F{zfvC<-d7oHoFaS?@_EehTq66hytB~{c30PWmFBmu$E=q#Tbl+lL%Ct)Y1=u{ zUvt3w^BDznoF!2Kj*S-Q$B+ZAe)kl6qtHDv1E7n&gi5YqR zAmPhAsF4ZrMEv$i#8Xv0MxXVqhUpsJ9I}AZ=|oj<7=>Vk9!v)uShJN(MWN*G6%oQB zBKL|eI=U9Ljfy<$moKZ(V#1MKW|S5Yqc$$cn!vcqJ%$u92HDA>&u5!NBfO8 zoqqnA+kY&*lcKJ#Gg}RwqG#Z3iCt$ zMURfic%?&%;ww#v5-JnRo+H5tW#Vz+S3Jm~sva?IL^*RV%hs(*w0BlMy_FW2thPET zxKbxavf4C=HK!IhK{ncQBMdqOuQH{ z)xd635F)@rbc!)WXN!vKoClkyB{`Vk6p=cz-(W?B7UJ*O3~GBU=z4v&&;k|ra2qM| zR125w$5Vwc?{VcW;q~6T_I0dqlP0!at+z|7;VPX{X*&=F z$iVL=+Hu4Oln{kcO%-w9tLX_^)1_ZA=V>)}c3n-09Cpo~d~k^}70amO3^J(imBRv7 zGN~0j$bI`FCsIXPsWA2S+J|2mt%g*EmgT5As_OD-q6bZu)#V^a>4#eaOys@UT=k?M ztI+L2#%vl%EydLD{{W7#X1XG=6=yl(iblj|4KN}Psw>VQm?-k>h0?=Bbn6*UOxszr zW;DxLma?uYV<8Ye(+x09Bkv$KNJsd&)*dj^6VByp+?f>e1F3^)lULx|uyrp{Cx zb>@o*9z2mMmoC^O1wXSP(ALn)*j=%UtXl)lAXLR^;j@rZ8gcg6ksv`DWYE+cZ~+7m zRYk&Fa!}D#dMz`e*U5+ce%Rf4Gg4IKS&bZ&)yWbYX~#?(CkYkQ%Zb|vOa5I+z;e9Z zVleMdX(AbwR;u!D>u^{+g$>}yw-S8lRkO_t;Kj=w#1or*+ta$_$$ zBuVxqppgTFq}e8W2!?p!I?b&bD`VO?P%LdKYn+)DI?*?=qKu#h%?Msp2>g3+;(|&^ zk-{f_lSZQ5?i|}5f!+|`-+$r)kzRgJ<5ydz11lbbjmh0#%54Hk}B!rJrt$K zZG=`{RwAPWO5ydb!RGInM$J~(scohD#t64sEZs(uyOEeXk3v9 z$rTqKng0NeXVN`w>-djV*ILX2tdzkwU_vU6t8So?8^e@R0;X8kaS?kGL>+6`GKE_mr5)1NCrX$1diY_sn(~ z_TJ(+R}(#x3EQB`$KlSM z{{W1f4a@DM`Mw;bUTqwOE9mJP*3Hnw|8=Qsp@f=Z)K3fE#^gnlk7|Quc}~%BdBPg(yt>W zU)rdhV(}JPnyneH`!4(JKd^4o>-kWsZ>ywKQ8_+TC?ouh&jn^&fosT)fFx9L6j2ov zv4!u6c6(n+^_?s1J@Z46J3`&HKx^d#7Mko7R^Mt%L~Yo-E(dkB&b zeSJyh48MSCqNH`Lk5!enj7bR}#=^vE1PcLmr#Ucevgp3zDPxfWdY_`AV%utSPhVjD znF1cIML`mfDedPn6rXDYYI`$sX?R9xgL^0Fe!K*=I`2z|efv$3T`^>&4C_J+fHPRS*B|8veS?F7?vs`E}MX(!@f(7I^Dm7rd{V=`c@{Nu20#w%b%~#6~wr- zSC_FNS=dQOn>fhCM(fSC*^c6SjK8?PiNtvF>TOPZH`CpJw`-YHb=w}#JM0TxWgIaZ z87)I(m9zggDwHsY#PSaJ9FBWp7yn2yk9kWTd-N% zn-nkq02bq9sM;{&t&0Bub+<(*FQ*+O`Lqfi_mG zOg|xkY?vpeJ_F=12HR9=M35Cx2~-tuORbCS`wMmZ6YDKam=X0Aqtz!$k{P~ecKf)h z@q;q~W47{qc33Zn5U44Vt&yku(c=`)0?l+3Zr~OsazWpTn@wYsY5U z1X%5|f<8fI2bwEu%N&O!f!g?49i#MR(-)ML^DO@8fxBDImmsBq16BD4h>$q50PuEk~aQ&$&`Q!TrM%93LrswYfmKz_)wq@=B|w@AeF z7|^5>^L{VNlFQEuiFjL4E@{A*A%*Rp-D*=K^H=PDqhZ;}uX|6agL_jz^A4RRw;bb@ zbFtK?Oq%PCD{8(+lZk_l@I+DKp4@f637}t0eOSQk_Y`~X-wqb_Sq*PBmerMgVnDE9 zazmy!3v-9AaJa3~3RU;>kv#wr#TL zAmBj}Ndm2 zcDC|zr#V)Z5oo2ttgpUitsAzviy^ijk5vtpS!skZ3^uZqi3xJQs`u)4lXyDrZCkXp zu5UBxp4I0Z7+T$ghSDa?>3px2+p5Xfu^L0l)T9C?kxjRs?n(jS z?QX++c`l)eHp8jv7VZB6+u6@)D#o8eB0ro*J=9CXOS0f)R=`M zXP|YcvmdRCHRm63xaQ1u!bAL+CYx^}<6uffjz~${to7|XcuPA;jHELbriyOat^Iv< zA8o%V>~A;oW{$w^EEHCob?DLAX=JK8=%62wMAbO}sVa4;FzdI3r{X_bRY~^cOnR74 zSwAM;{l+E&1f#D6W%FzvRPdWjffG(5rc1^tlUEb0apdR1T!!CW;`3wEbSb-c)w^6O z`^%kzWs;T(M(l zLZ4(6X3bx%7Tvs!s1J@ZhCb6^~C+p>bk3W7S(OtZdOoW-0qg_eATwr zZ05SlF&JJg6o6t#haoiNDt+^m>QWcAlGt3)r)rITd0%@riUUxXdu1}`CPbxu$W}1o zD)`wJm9cC&_EGPjUaT)@b^A^w%|#ZD`?eK3Mx}A6wL<=(TJ(zBXS|QF`aImmjSXKn z38V!cL&*qN4G$ikQNLho_~&mdZ7pL?l;ld}t7b)$GY+;q23wAfjD*I9(F zjQUeo*^XqJU7D&B-|I_6mw6$#WVbctkbGKFVFf`2mjN@u#7-rSB0Wr!6?5zw`5ptNt)*W0J^uzox@O&@ zCCDJM2G!w3mVzy?>qW#I9OIHX#d~8mZ}oNUcgKUa(YD_)cLI-3tJb!vdg#ouvo+B~ zx@qWR?Kc{ht(z}4>fupD8c;HDN7WTPq+K6O>sx;HSy6MeLt|Z=^>vH;Jq@*ktji^m zfJj6}3NAi^C(KDr5fo7oMH4++o*G&d-)`0F6!SGIoo3Tw4Vlnl+Ws1YQea55c??`u zo^#Bp z(+)q+`u;>$W4&+6Ks}@l-Fj{g8jl9o^wQvRWR@af4dzHdeUTfAq9XQ3kXFuyFzPzEUnG`PeMjT1i zlr~MXB2-`%QjQKX>!@-+wp>w1I2`iz$|q0DH+>nQ+~4jFPJw@}v#M9WTD5H3D{=|C z)o7Yki0lU1P|MCoR>{#d6%yx^_382mR%u#n$RV|8bM7qmU4^FV4h7VB1riJ&it5gS zO4OumSZ#*8wkT+diT*uf4+#}9tZD3L&|5^F^)f_878F>mHaG6PhXa$W8mhSC2#kwD zir65L5c6?4sZ`xmeTx2P+PCk~$2~eY!iBKv8zl2Nve<>ivQL!r%H!tBG^U~ihRO(! zbxf-bJnYsMmappxNmZ{`S84GqCBtSwEZ6BPYg`#o8M$%8Aw)OT9QXN)Kee<)Q4pjy z9kXnI59`);Ra*J5)a&-vAQV@nO=%^{a7^Dbb*K0WFa#;cPb2wGi!o|7xzyWex^0f5 zqe-p?-xAqbk7n#Sr*P0nZP?5-Z-yBGRdXmEg;zZIju9;M0ei7s?0ZY2MIKcaz4fG+ z@Z;Y^l>3v+r$Yvb*BW)xapOW&QudNBKgud6TC)z5gDuq_vt6!L>d?1_EjCN#ojs|W z9D}c_s+A>{5PY+wkBQ)Y#*LSO4NE*Tzy(vRic3PIo|{n??WVN{Ri(UQBa>+HC7Wxf zJZ?vW7~`s>qJ2RGoM{wzd)JVP7gBQ7oGwb6>q*fqwjH*$i9cg(P$ao~CFLls!$Zga z0A#5)sE6fc*05@+hW)6$i#En@m4hBm+digoKcvv6v#izE1)IqHnCD?)YzQ#SbOx7{ zFf}#uhirjyMeWmZc>KNFYVNG+^)PN;!u5hkhV>M?MDjq7AzAXtD)5d$CRt_D97$F7 z@*)93MCi`)FvOJEY}sP&%09~ispu%|*Eqy#Y^Q)$8)V4E@xHK~6EbaA3SyqcMMXf# z@2?+fg2!Ro22&r%v^5n>L!6|M`5C^BDo6&|VAUBwMFYcNh1`qO33+szEiS)jiDZ!| zwfKiIm_;MOCQFX08|erhVX;+x#|=xKNmRKi_Y~-tN_9IFt4iAjnxndb5vN;O7VzaE zwxTbz$vyzjh+E>paV`QzSt2#TE(*HLE#=y|qSv!!WwFA9qZ4JblJk>eyD6CHo!u4p-#5)O%vD!1uEL?~t)J|N zq1DvtDBFs4%nQ%CF_|rh3!*4YvVcyK0V#W1<$zSmB}LT-Pj6RifyLG$UITS z;XnrL*$3MLkK_i|1OxlUCDdbK>6vSN&Q*34YIwStEj(erQ^DC|635WFC2*paH57wtls0wrK< z8$Z_YC%JtthQs9C-Pb=9q&@rvV=kmZfGs$v+eq-Bb46`<`U);ox(0LC?Dt68l&cul ztZw?v3bUg-UTrqhK(uG8&Z@TFwo52Z?3(58^ZRWs z)fu-S+q}~#gB3zCxNi8AkwskgWqsb!>dI-8XxBA8;#DhA=|&x<*=}*&Z{#qiUBt#z zIUYYMi8ci3^A+Ub2&bZ91)vL>#FDVy8`ZXZJDNYOY$)T}9elRknc#iZeO0$vbx4^P zT}Omal+&_sRYe}M8#bS==_LJyt<9S*wkEf++d+{pRgU14%L93bjq|c0$Bm>UM|tHD zGQO&qRY`Q^2LAw04fAfE)PLsOxd_Xz=|?44sDUXN@kS@4war*@5X<|ZxbNtT`)45n z-VV*X-aw-N08hczqPHE!>+a2FIxZA-bIPkMgdH>>M0mLe5>Ib@uU!;k;*PUlu1RiD ztCaQ8;*QH&FPwK~6a`4^KBi>r>=G&V5fp7(73Qc$IBGO)iq5aEy)KUErEEJRYSafR z=Cs7dA7Dk-oNa*-N5_E+Vy>Sou2B;LolVsfnX+2z8V0*c6I{lKi;r zG79KMR5dpeJA~&KIHGdmp1m_tC(3G;Zq4=V$3-rmCno z2!B_wKVIC8e2By5mlk`sP?gh?apTKHQ*9hEL}W<$5U1`GTqmzfC}e6R9qVe>wv93j zSnDZ}fJk2~qq_+J0y*XRv zZ$xac0$jT%sw0Sg<>X20)3xR$L`qYIZ*g~A{F*xZCqh2Jj;l(1WN;HV4VC1}hKRqk z5inR^T=k*}!nA`gRkqiws{+E9f#7D*wRN_Uu~IgkMv-{|3Ym9LMDD$ltlqbELn~{V zlXC4lj!SMeZGu^(w#gBwv8J?15c7*dhzk<(y3<&usYI=hL(Q8> zuc9GIMQuJa+!YmYgoT_U=O6LwepE&@4Sr;!764?-i#Zsyl%OoQf&`-={r$-aQB&8` zsmw)@5>0#>a#|S#k>k2x4I4<~WyIA{6C#U+6h&Y8b&Ov?Lt8pZ#{h)BPYL{;i);Jqt_I#e3@PND*!_~x!h%p$zYD!BaT9ZN|pYY6hA zO(y`qwu)sPmlGmFrGXLrqTxC;j+%XYwaEX*IE#-e)DzAQmeOy-| z%#tk2`4glItgzy$qL>dJ`Cs~z_35H4_;0rfnwRhrrn-)s$%PIr{{V4CRXuyBK_L~} zlUoTfR9WycDJhf4@B-ppl~cd;=rl}NZ`CvLC4X;&tqgY)urDm3BKo3|Wmlk(aU@qH zN2IU*Jdf@~a1~Ts6GR2=`loK+j*BilH{W6-2`!f9HqxNDpXUxaQ6V(^{xH1|TwQL$ zv6};L#>8YaSctgrf6>W5ud3sy-U0|O1aF#{a~FKQvZ|O&BK25v-PP5NJSzVH;q?0% zI?a7lv9ER_8?DHg>x=P}iIG1qBm@&xE?(mPoqZl0IG`=-y9_JZTPvAS^~-xozy8sB z#lUtHcfirnjsT7_jhk6TQ$@~E6ARy>lK9wcCvNc6V`PBh2es!!_iVZ`rJq zWR#nRNS-%5cw8r8_o}b2S&@m+0j>9O*oK_7oe1e+&ut%*0a50y8)|fuRGP^M3|5?o zZ4Znb$@3Eb04Xmk^Cz0zfeZW7OEY5>qfi#|enBPnx`cE<JkWI381Y+jIM%YUJpC($U? zZjO36yS7$NnB_jVrn6~DuU5MM0NU0L6RpCP4Bl4fE5SALN8NSfK}R_mBJpXkR077O z;h~naiMyjV^8UHkbnDux6e5LVun|>XSJ+N8X-2X6QJEKo@j^l|K}7c|ehG8l$>c}+ z{{a27?|(|n*niQ{5B+ua037#s8z@ZKHC3%faeRR@=J^ZcNb)G*hZ`gS^gnVYXHKzu z_WGIV)%DHYRDA`v&A9uXI}rm)Wn&R*#s zQ2P7r1iZ4tl;Mzy4ze!or747p|VnKd8GSCo^o4iazNbv^cK{F5bz>IiQIGDJN2!j zg0~qH&c|`1EAzeAv^F9+Y4ycxZr4;BRxFv6SKn++z%BryPCAY^?j8<_=c_nac1jPe zC2BSgIZo;CwKA%#H1lAkO-37(VIE9N7p#P0f;1(D9(mWhiqR-{-* zivcx?)|wjIGB*+H36dH}>UI)r6&f;dW2y=?$h6o9qH$a&T|e62EOzY*R#0gsR8JAu zWdh3zYIKa+j3)$4=*4JBTb5dAfWfhT`?zZSMqB0xt5i#wWQ0wdH0-- z`?2OpkzlN`f$|cPva!VZ5}=_zeViT`;Capp44d+kgKn)rUZsYy_%`cIUEt$Ah_j) zaM1ZGCm!6o&A3h?#+ym9X#W6UF`>{>huC&{HlHffSFoy_`bV#j_mED(#FpxWcSp<3 z#|YdNRYgHW>z%F1FCv;0YAqX6xBC*$Vy)M9`)hd9?X0U=erq+Aap8$YuKq#rHXQj* z8F^iA%4ylWx8F0b8%uWN9EB%V`|s-tPqenpFd31r-3%$V0WL!^#<%37?W~H}AT7vG zBe?Olig_X-L#d=B{SpY2* zctqd>bvhq8Q&?}IO9_A09>fuoghgEnU; zALkx>amy&81STgPc_$nai4h3(dU%W4-R0ZAS--U0N4%)mbuid|rJMY9Y%Lw8c{whr z)hUkO!gZr^J3kz}WQ~fegkmVZ;o;V-WLtCkzi*eXZ15=l!j*5n!3p)yT8mYS!K z{1?kD3oocV;+cMU@Lubgw5@e|rkSi|T8oOqWdB=>ZwYV+P> z*J?WbX0AreD+^{#+Ubh9;Z`|nMc6qaFfW<#cU5EV33 zL0@iCVHW18_7>LFyl1AvQW?=ouA}&($+(juIt@0SW}C}mj3SDnWO*pN-4Rustz92q zNW3UAZtW|h>~bQq47E8JNoeSE@VwWQd$OqC6;L$78kYh@>eoBWTahWN_Q!9ptZ34b zWHTD|nCdHo9wH-TW06(zApox&{{W79)TddFW!jcz-L%~QE8s5t(kEqS__6{<8|5SBI%hXN-@2K2SbYcQ5;enE+c(l z=(Pu8e$KV}=nXk=Nyqd-#8tTaXpU+|cK_VFr!} z+-z3OMi_9UBFwG_9T>&(9KwLJBgw^498Y0)Urdr)T?TUQ0HIU1k%L=dJU2S|F(oW# zpclh=V>KAVigG_8V7M5Fs&OnQN{yEqwH}$U%h{RM9@jxBq=F42sQYqUoPtRmv2Yo2 z$iW>5iCp&kQ9a6PNtKF9AN#J_(mZddg_bU?+LY}BA7+n@rFD^%BHD^a32NZ9CR~&p z9>SO3ZVP(WPm!Xf~Tzbdk1Ac`T#SRcy|@$j55JW4;1x!L?Tv8)3BaD?pAA zaQAk~nFxga9;>fyvNg9M>-$SkXFEQwow1hV$OKVIqY_hYTv8WXaS0vI9zBtH4?~j8 zJ6i;8nk?zW{?}V-!%f@AtAzq2;d!46k*nF{1;wIt2sw)Q@;v$bQv=BU#iwiXp z8DfSddP9$5Kxj{$h1;$myB<>{;!JTkqb{pykU$mpBJ%3X$;omhI9XfULYo(HXJFOq z=fLqyACnLh4(^}gI-SA&+&W>q?E)7QiVj&Yz#jN@R~ zIzXh2wUN(0X_8LXObR!#KGCY$>fpqwyVsXt&78LOMhYT37+h>*15u4hrbUrwC`e?g zDvBzKNWBH)Dpt<*@YPbU$F8}3sV3E;#zq6-Gw`I1OH!TYhUqAoCKXpIDa}-{OjvXF zP}`wXY`R54UCEyjh#P;{4=YjpOBi@8sP&}pg%wal5l}LuN`fu$QtH52pQSb3+7eYU zJnUy{7Se91g`` zK)oVQ#8;3xpOF*fCt%c}&k|Fm*C0n6u?B-+>q>7EPGFqBNj~V4ubAtZ>aZ88_ zAmt(+P9D>7du30xwH|vVD55mgdo9I{8XGNwINQD^!M6K?D2F@&Dvu&gg>BhJF4<`& z)hq_hWxC6M>9${e$OddhKx~l}ryYG25R1m!sED~7kYsu$yoeg?B1(&0mR(a6(4reu z_1PN=v6QDNU^Y=eSwAQ;0%CruT)n-O1mwjJezMrbnKa*4oGo%(XwBW(#U{_p>9{eL zJF^MF7n%@dUU*QlnB(Y6mT92-$o4QG4W^iv<)Gy$icN4}xC47vGmCqqJ5IZ>HBV&|7_YX30Q4thLa)J*IZ&XrkB5U>3@*&qT9xPcG4Ja_IGi07N)y7B_ z44ia_{@Ejff{JC75a<%x)~o2OrD``K@ZMToylGKP$Q&smO#D`r_ufeDry?U%B~>w8 zD*Kgsfm>wM?89o^b=Vse3%zetwTe?Vsi7)+P1i;@V>eLO0dLIfPq>BROg3GJkB(EM z@up(tsm)!1SkqWCv~lCIvMZ;@W5(&jZG5kMaPm0%q6rWxU`8H08JnO8M5vH3%a80GhEO8z=MMbzHZ(9Z3Z6h>nR8a+6t)wQc zqqxhhJWr_`@Y@jPitC6R_<|6$(h+h@AgeS)(X2HMvsJNfw^}&&1s382ur~o8U|CO& z#1JGSBv-to^J<8z#~r^NGX__#P=>Svtl7z+gG(X1eO5Onn}%y%Aj6{0Nnb@G6i*Pg ziOmsBFp8=Y;k9$SQpUFkELQ5Wts_Wn*&aet_=bo}=Y31d${c`+CoYCDG7B0P#{9k_}j@%8I6)CifOM?HR3wORbjsLVeu z;u@H%L{GdXMnu;oUlJm;oQvDmw-jQ2?_kX>GrGGD>vnSE$AJhdd=jAG0L9k}kmXMt zaqdpb{{SAbW}?BU*P4E|io0`@Sp1!CI!v8m-~y2HHbUDe?M@;j>Xr+#g5!^-dYU4* z%$rG+5hXOk5hltD8zP6~d%GsSGy_ypH9!$gSxm2FPTgG+b_k+!ooYXhstkuo=*HOc z5ALV;2ux8CNYxY9DV(QMMypX;iLcc#X5*WC3`?}Lk;sk`wBvjm_KFG)Qy%W>tJU+! zmndLQrbL+RcBT=!#iXeXxg8~+6mU%&4Et03eOIVA+%!i%~{aaBx!CsD$k4}nhp?~ zBQ)eipWl^C=GYu>bPFAH^gBiSp$wf(~X-hFzcvDh%Wn45mA3B-yOYr2=;KS>uq0lxjetc z0}d*Zb?DcME!cKsBM~7G;VfmbvR}L>RTdRO^AHZ) z$XCBu{@vv`oP%$gqtW$^dvA~SVe8e@uCZnO+X%Ac&ta)i<22l6U2KWMbD2g!5Je&+ zG#5QO*Z32+N-}jV{G2Pv%e!?wudDiw??6wjB{DdKxd0!*t8r;!paFErZda8 zShsJb)em|0bQ?`R{{VBSWF^hjtu9IFF`InZarx81rp8Ooo4ASD(sYrvUMfD%ZaT7O zg~eY+zwSTn+6rBo9US`My4W4nk57*w7=|$zb)Qh+L2@sIv|;G8r*>B)Lrd2ur5|<_Hqtmw+mCW5#75Y!w8@+Aq zm)Ms92Ex#5<7%|EFaH23=7}0pYUPw-B5^)Ba3)s-il#_7MD5hroO)K#e#)<*t+ZnA zLcF1&btgYI`T43%Bt{&MUf9Eem zzQ?u0XX+d4VZN;hR*YTFsEk19lo&t6mI2oCZIi^K>;yl0ilH*fA{J6e76u zADux4ID@K*#lck}0#qbV@$Q{o-C2$@{{VCPjH;RoP0GFuh>%}sW8Or9=O*2Cp)xrF z!++d&BrTza7buw(LiL}*zc}IRGvtQQ-ON(2q}e04@b=2_c|{>IBvHzIXPiZ3JmM&g z8LF0jf}%XS-&MRpiPe{unzeSPvF*DV!?3U>E32Z;W+PT^i+o#$CG>Pe5Cpr5i6WN- zejOXVkjz~ybt-5#yCYFh+~I)Q}O#b-~eSSU_Pkn?D*yy`p2GS(E;6je+2D)p|l zj?}SrX#wgxDiWu$xPa@1o&k~o`r)E3N)DzJnIsS#i6UqBFI!IpxHRcuWkF{qY?kIr zZDVUqNp#wrJ{ZE&CUV#$6I4f07uo`68Y#6f?iGn+lN^#mxldk6Mw11UPS#+P?F%!m-eCXG-$8 z*cb8dG=$d`5^$6N0FbfQF4FpRh(Bm=dm$d2{4Lg2$kib+XD*GH_7!g=cO#R)vm{7p z*?S=&3Fex~6GQq6^_;rbSv`oll9h&@6=ykS!+z}6Q${Uk<=&2Z&_Hd{&2{y zBW(d9pr)ke%_h*}K_-pp%M_LhUWW!{H z5nh^%tDvLU-!xDX=0a=45S8~j+|6H)sp}V3f&SaR{{VYf*G~R1Ym))zsdUvTZIeM< z`$}@%wQZ>?zY(!dBA^JKOP4iFBByO;-mte}L3^s$?6j5j`Yqfx;l_LHecZ*TL|JOjT-nQ$CUj4V)O1lc zL7W5VhK4@E$QcM1d~xb*tMg*(-gGayHhTLT8#(%xkG?TKU}n8vw|R>xlP1V+6=dey zQg8cnV*vzr(V)*96Mo`euUllZ43fDTvsK&O*ca)Ku%||a16g1n-;#7tSryZx8Y2;w zTdp@B4w5$0QVjfG+`<+~GcDd5ndUnmXOXnW+qF$^QTnH6+R~3rdHQYU6v-{UUk%Ad zQsjlCXO*r?;zCB#$fx8%CeZlfSG1Lj*N-Tgm)RGeZ0a}AcM9Exuj=!L#YO({1+uQb zkvJW5!uSJT5p}mCfs^sfi8zihgh|TFEN09yY}#ZmubOt{{{XRK?fah58ZCB>ReLo? z!76>|)2uKc0?`X;{lR?^q$E`ZRZglbkFIEM>#L(ZXaOU67t%C)83ier5yB%!5-Sga zE3KR2z>1>#QGZ^yB4e?r_2+fHdhwl=_V26bn@`!^ljtQLK#=kz15ayWYKkkLUfpK% zQTfmQ;r`oWdf4$Yz%*@!UY?2@28wIcxh zYVB~)BuqkVTYf~Q)cd%@NWFnFoW00BldYm2ow3b%t*c;^)Rr8d<$hFn;M>nM^wuLU z%yG9+T@+wj?7T3jsyI%`)H_XCnw<@em7Mlu+`+rJex;(MX_f)GL@!2DSFBtC5f6~_ zo-$1H1x%9TrYB{J?Q6XDO{7@MT`0yQR`P*KRZKG78~MDI5mobep#yKGE9c+6{h`-ZhM zwr^o!WiYYA;#Z+K?3KIHR6lJmV~g?ck7>1qQ3q#^ z=*^PL%aIT{1fC|_@Dh0eP*5r%L_ zWiCF#jZ;r&Lng_a8fSc#G9QZBtXe@n?mOmjc%PftMoJ<%L{*mSQWU5+xSGxUXj1%N z$J13g3Uys97#1>O1i0jn_}y(#8dXduKOqpVIPzXe)Xr4a7oS^KSnT@NnI5lA*dbZh zJQmUl$vL+=BD9P+Z$9fn+9}|22tZ1|gv!n@g3E?itzsNXcrf-j8lKLG*UOA;NRCdZ zi;R?b=;JP|vUJ4UMdYd~T$L3&brT02`(HxYHO;=c9csMw;)J^7b)L(dk~2OcBW@X= ziw3HME|CsPJ+On*8Tr8o5%pPm>oRQaHckGHj!W^KrjEpMkx2s3T4`RXd8`?bczvYO zU>Dk*^VI$tU7zXQ2S(AW?P>PEvtdtqXUv&J0m%brXIk`e60ULiCJeCSBGK{6o(CS~ z9H&?2{tD)n_RYHQadNkJj}t)p?YQoZ0@*9f+E^>1tww6LdMoWC?wTSvZn&KLsUl|` zGM6xSZTgn>ANnt1r`k2@<)@O}eCi5dGiD324CB1`fU3I7#&O6@)x4iSemSc2%FL$; z{{TpAwVzYiFkg2$CqlGW?5WwNVd$waA11y$*)d!484^C}wxVPp-bn>LdPusK{{Yw3 z)|$1kHEm<|ZT`0kBsp>?&N_;h+J?u5O2uuFMxIQ01PIre0unXk9Q7K?D|f0T2IZ+x z>6#TgPFcM5#eVm4`(-Gln+D>FDyfqR9pe3h1}bQTCL$df6xIHuN%bvNw`(D|%G>Wx zyVQ)<5;jsJoOsVodx5xW>Jk7C5+z>hUgYR5D(x3|ua7SJZIzTer{}V)LyUmUePwG> z5mhBR$r_WUCJsEHOYQb2e@3RjiwG9gcAFyT(eoV((N0HW=ZL)8Y zG}1T7^PWfvm0nG0T-Bv}ob}yiLpD2q`f!+jpTfm^OAU(>G;yXKM0d#2qAOr3rl^KW zi=2-E8!xXFCeXy?O@ z34K(aRnF6}|V$;#xS~0Z7w&hbv;}bw_$H~@3TvJw_c>xje{_3x}L{V{@SO=o5 zu${HuhPW1uH5NN`bJfYroL8)f1*pX#kRc`-2Aj{b0-5ob?JTrdbOUK;Yh_7#(A7Kq zc5P>}N^TpWo{MFdf^4nP2iMTAA7)v|ARi-RQ=r*=L+>6JDip=B_2O zqT_!h#W7aI1kg@H&ISwirdJ(Jt;BX7u+XAXQ)*Hz?RHkE##NnRJnFXWb~v_kN@Ajd zGKy-ZEdm$q5z1wH1^vF0WWCm()hc0sI56W*mhR7B;w*Tk{G5wG=}1Qj8sY+gVdN!F z%0Ma7h6$CmAsbPvrJn*+Duh$8WM5ehl%l{o%zrZQP{|S?iXtHz5o4flxY?)fyH>R9 zEe^U%(Ph07mhOC4V?FU&7Q|ath4Ju_;DMw;ET$EBr&3Jz0{xez>r*$%nN+hXHC8Dc zM|KTLGj4f&qG%IKNk>I09wBKN@EXN)TVRliI4pl{E zMOffqBA!QDQc@7lC0-@il#x4nSx-M)+(eA|N{w3O*;X?WJZnc{q(W(d2U1+ADrg*$ z-Y8sAa-PvtL{9UxL|7xQKm67A@Z!akO9>wbUVdAF@d|60dQ{YPO(i%jpkWDB6P`FC z_v*?EF{)|y*AcawD9y~)?AnuIUQV;)eXB-WR21+EWEA)qaQ^^5wO7#-r0sy7u@Rkr zT$QTplp}2=KhsI1c=QfcOnBYI#%T9SnIjmN#>vtXl|jQc2kHaa?(z$SB5mxEg}xazs3pbIbKv zZ#WJ|O-`bs-tMwsJ7IW66F?V}WM-&I71q&JO~eu9oFeDBdvnkX6sS9qX6Ij#T@B!Q z*C8<41Z0r%A+n@EqSqztyp+Fk@$8Az`Ws`=S!-6TyB>17`_h^_?-4JKOJ;@RiioJB zLC1<3uVGI9xL%gR(G7v7<6Fax3HPX2rD!CS_SzvCZ^`T|F!O|5g|S8TPyKs!Ai^c^ zX0m~SZet+v3$M8x+!1xeM@So7a^uV0$v;I;UZOWfj{93S$nEd|Gkn-M5g1cYLv0aT zRCLh@QB#ttDk3lAt$GCYNU>zan8KmRf~s}E;g%OIAfh-zs-=`fRYJ~ioo3dgNMdY6 zs+lS|qp@K|kr87!>NY}Ts0N(4_U+vjQ}DeOh{S#PuwdLsHhw9-(qV*DDMEmXoK+K- z4om2Yow_WI@@F=+3`v0Ns7y+6=a^DLA#{yYK*t#4??mnR{{SAPL0b}Gx6JKpnpI(k znT+!Xkylhm#JH;EJyn0lsj6FWr8_<|VhYo7qNJ8V-sgov6mFEV_NHZgq zNk}i386kT>OWcY}Anr$j5hv|ZPwI=D`t=JQ z!eo}chTc?DVnd%1v{h8@spU`q0GV;oM&6Ko{xgiES&-a9eV)Y8k}t56m#<{+pVO&T z0k)(!WeNWPA~7hCq_(7sg=y@gV2HovRm%SW$Do;9*EtiJ@OZ3IY)s090d3lB3(6v~R~X2EqiTr1)jHO-sW2KDv0_eC76FLdqz4pHPk5#fe@@+H zko1z&ix?(F@EG!oZl9?yJVclpUgz3nP{*q zc3QidYdHuf6JD;X2Sz+mf&|DEcH1OsQpO-PR1gk7<V?_0O_rBl zYWNwFwew0t&J32?V4O!C2rV|KZeX(ECR2w}WVl#e-59*t_AO@r0AjY->b0r%&}CF> z+O>mn<->jhZ8;_Rh|qBuifjUZZ^-8&;DkMIHF3A>YbsgWB~{#?u=Q)*LAy12OhA6Y z*(n`BpC)Xf%kr}r0MLbBP9}-O6nS-?v-qhHrhUtTW;FkJ@N zZfi_u#zfqqG~?w#Hp#L9R8(H4&Qo)RUoww*&^A41>>siAPvQ0*ou=eiY4q_Kyt#H% zCPp)JQRYoV!S@{}o)s){Bo00BsU|GT;cn{sM$5ZYHLw@dXByU7yZkn}vBP^_vb9Mj zk4S_lj}s!w@f1WRghfv*ni!gtxjm(pdvmn=Etg4iX3%Qsw12NF8NFqV+fSrt7F6pc zsVN*1R9wGhDbx}V8E29vNfVJ_XY$@`%nCWbXKWU7EZqtz!7GO6We8}@kLV$iwEdJ6I9Am5VF>*`(2Vb}g?hp3~q5WU5Nwlw`rl=WB?G@4= zb@`Cq%Wfl#MgavUjytL-h>9nX{{SAjUcB(vTRp70Z>%+VkoC{EFZMe=oMex@wKOFarer z=D|6+5Tm-{5<4v$n*p%$wIIET$ViEC<00?XFYB_i)>%K18(;Siy?wHldXBGn{-hdY z2c_AAKr#~HfEOZ5N860k4Iw-POZm!&6hy)yTl(>SF-~7Kt?U(alsDEaOsu$*7Oz0p zwGw%_k$iDhS%lV~80f5_D5hf{A|o{sPT|%0+lA%SUscbV*=lU+>lu zj7AYAfQgqI6gP!aDyx#u?q5#2&bY_ScH|3-OAR*3ie+k|-l<8~*-%keLn>r`JSeFb z?jm03nCZ7t-;!PZm1o-e>}_^nmw|?Tu^$viP2xXUqP;uU*pVU!@U(?1%u%fkmSvkL$)gMd&JPd}Fcm~|ieYof zbJ3fU;Vwj$T-ar6*H*FOSlT||LWNw*ZnWFT2E3njKYkG~N+`Y8Bi3(exYU==sIa5& z78Nc@scUaBrJD*hZlexVCI&Fal)fcx7D{=QSX5O7_L`!Jc~Lucj?za-bW7{)pI5J^ z+o|m>ZfWDmbK+UJT&K>fXT}P|#Q7qK<0ilgC?ld=RQ~`@rnh|0<-cjvw7EOh;15cj zxkaPb9+RqRuhKr;SWVf3XI|p02OL)k8RwN#@;QW5Bkk9pwrgC;!IGEmpSyJ$+6a37 zr9V*9;S=+#;8W`p>KP<)qlQh&Ayo6U;4-cvks0$(dXf$kf3G~5KgDJ2zwSHjzol8# zBV16yp!(148deRhbOD(RKuJ%U&2lS_Aq%D8akDUW4YN{IQA`k{zvU#AaBuWqV%>cy zv0nW__R;K`GcW6vBZkW^T@c*|26hq0435NRcW;{{SN_w%H)I+tKmvL=;i&$tLi&bFpRWJEa_| zJyMJ7eY!Nwh73uvw=H&aWXM{Rpdj!@eqfYmpKduKHgbKatqP*9dff5BeDXi_9;JD? zeZQ%(tZh3D-9$TI7X2ROQo3X599)+O8vIwc2Wa z&7$ldW^1!{8jbdgZmr+0$723vkh5+)Gc@>ip9Qu^W(Sql8_RAsf+~cfN9wzrv6HVZ zq59+fzG}NQ&@fkr6aHyn3^oD57d+IB_tPD|CYMm2lw67)(c zRDrGp7&|RH>mB-{aGxTa;DVo((NxF1Mu2qVc;kf(1aU|WNc_1EOsT27Zn>y-DF_L0Ayu6i_wYO0-N zUP&?|$8i-rjFYHYRQ8y!Z%kVkO;Lg?+f?G9pKE1VUm+QOs(L&{U~RIC^P;N`I7*Tg zzG}$_qNY1`>cl%Yq+0E>=2_|h^-HH1V{3Z7+(3&lq9R3@%Vb{YsUeYbkL?`$lhAsl zH__-dH9LIRy4!`SFf*Dv2?|Rhz!_nAvldyHyo7BcA!P|riz(ePiz7R8k-^$)3XZfY=igQH*S7gKOC5&V%Z@RWMHC#WDSu9`Gka|=t)&P{uDEVo1|CO6Ux4vt zqh+#G5Ox@%kP~B^xV&)QbJ-WFA^!mLGv8K6y;?oOG~I3Z&cL*m$*{s!OmPUJ195>I zK4c@~AKW4+3Z47)p4it}v0PDofo*%DHuWq>Dmy)Nn6?d1FkmM!Txv$A3`N3`;xQ99 z%u|UdprZQqnU$;86%&>J0ASl}>3ttys&<|F!GTjnGtA_6p?rdVG!s7?h=%u#OqCaq zqL5`cs&&sheSZ#{*XIwnA=>S{A)76@bLlX4prcU``|;9~#RhqcYe7 zVIlWe0!Kkrd4S|WRa4hJc9SC)wykYGgIV2n{qnzIt(mE6Y&@F;y4uHBI41LNqr&^P zd=g3J#+(HKLz-Y@+=V3WFTHI~ z2;GlsSo`T=F1|}Ik)*cYlx?pWK)4@jnj&yTK~+wNljZN(`%NS^ChSyt{WiWfs_XX` zt&%L_A#s^8nSk7WX6wv4s;kLCvP54Z@lK~@lS*X}W_{bKu{CJvI^CuG>Y zTQVsnf-IIBPUNS|#Dx@cnOu@5S!zc_>Q+^IOig|*cAF@mYk>|fy%sd4;jsKik-%Bp zAC2a1vX_?B$NYroE`2)ACSit(-Ztg3RO!;_=S{PTb20_S}#zxe8)6Au9R@p@rY+7U$R9sZbA{e5dbb}3E((<~p(j4j57W%fl`;g;Z&5SR`u(p#G z#0Ony6qO^0BVy2z87Y=rR4n6NgIl%2x2YbYhQ@cD8j&v6g0<$QSqxSj2+lOnm~cgW ziL??_p$cavImJ$=A-v<2B`RWWK_@j4Nb9Er~Dv z#7vUzuNYFa(o6V>!H`kJ6RQ`Y9T2=3DgL#xa;yw4Z#jzEutzCA{SCv zgz9=dGHtV!meF3mVuro@I#@H?ZlELaZCT05M%Y#b6;s*8Q_z$2Ezb=_oa?&mSm{>{ z$7Vv7!^CkTxJNo8*Q4^`AAZmJb92!ds{{SEQfFA*6sV_Eegrr8DWR1Bb zYWr+6ocUEy1wF%$Rn?_#drs6Vo%;U(Vb|>53p!y@ixx_U#N!ot7?GHkP)QV&i4;pI z)LFs1Vwn)>E7A^{Beu$kWVO=K)3PbU9YOaz=E?%1psFZ<@)P1HsED0TR@Gtl#VXRl zrtFG0g*xpNXgJ{`ta8HgA6%@Qst5{>@=;?4_+8DmDvpq^$>7XXTg;+7Fp_Vs-Y zdv)A6+Z?wgY_yNZiXsd(Xk+4=B@qxK#$G4wQNr*+TmlX-N~_Xv4bVtkb%#PtG_8hP zMBJj7&jy)ww@Fm8B1D3&B9Sh6FSQdr`j?bPyl&fQtKKcD>luYA@R8e=+BTXf#SFP4 zo_BZydE|sgjE*}lafy&=qPf1P)UN*kmT}6Ni{WymUn6DLV-YyooZkvb7o7HFL=_Rt zqAoJMT#D1D*jTQplAMD+hRS7+!nf7q5+mFkMKdLq6-3G}sdwsjyHNdL`izYrq$to|brw7JuGX6!r08M}r`B4*wSH3!1U;{0b9fpR_l&d+< zdD*gI#|+qc1YOK{t+<%>8YvL|(d?+1T=fxP${2UE+fhV#*pd&+W-@U`qk?j5+gza< zpL>9b4C8;v;NW{98-8 z@D92qNS`0>Vf6+`i5$YBAc}iaAG?bG0L_brc$SfN25Mbb+gmb>CuK;gijrhJoOp>Z z6%}nobIE-ZJrfJ@D$%OhjmlMxu#w8c(ba$MxBa%0mTSR*E?+=Xz3u@4aj2vJv(uPpxn!>Ae!tJtd*<`EmFj6n_IJP|}!3;yo~&#LxS z{V~+yh%wofYi$)g&7r}6Ey`uIMQ~Lxr_C3MsH$NTAMxsjFh~~D-;C^pYAi4~b@omI zh?I~)cu~{zMKVPcMaQpLR0m=O%;?J$RjJPj#eJ}Mk&v{As$9FLbzI}Bf$3c~GDv1& zk*h}Iab7}DC2?06L|o$uj)964XwXHkp5MhVZN))(ISCs6(jxs;bL;8UP^d`6j}bN` z-@+f0F@?(WPUs?@o}{_xgAbWpz2<+AHx4))rOIU2im0M0diLzA($!-_hZuw&_=2#$vSHC%RRu@ zcPLmS=ge3B8Bf!o&W*WjNM_PoMhr=kjrrR|QAX3+y|Ta4w?QHo_oPoaY$jsFQDMwy zlJd&(PhQ;s$TmM6QWVxzKn+AyRS|MU*%g0I{kj4WL1e&}ui*+*X9iRk3j#);{xnpR z)p)A<^clHKUj?UByms8%L}k@cRYC43C;84Wy#_RP(_gK2CG1rS<|Mevenp2#FiD>N z)$X|HC78chlF(a6s~&5@$PaQwMan9FMbAMVF;`jzZ4o#v8!wQ&`ll7ZjyV_ju0Q3} zZ7Il7V<|>-`y0+S0G-gywBm}3{{Ts0G5vZ9nVman*l%cUpLvZ|RrFb{-?9!yv~??^ zG2)K|IPpY|OOhc}#z{xorO7^p?H*pexWzB^=B06@!ll!6{DFLvCQVK5VBO zZ^%-W$5}SoKInP(eiJ`AbqP&sJ8#+)*EK~~Usb5+`XX z9%#?p2nfFSJ2;AhD4FwlKem5W!MthF^!mxxdp7d-*MDE@4Wvusq>4vjG^CqtwlNe{ z5l{&fiPa8Bys_-*e`L-lDbrl(S+rBu!-Zw6>y_cGY%&F?5lObE$hEI$E-CV5xlcOj zqhLf!g&%4UxluaYwylAvnNYf-yy*>|pZ?VA-)&|%-6Df{d25~&1(AD1lQ@{z?Abm&E}PabH)zm5A*$? zW!#lIy??iaop=YJ`xQ24KFXC{v|Q;wSl8=-z)Y?eBwsrulpb=@)=9SG#%~FOW<t%0D?O0a4yBx$BZWY3Z(l2?&HpYChL zd}6#;+A>UC$ff?rp`_C;D)+jdvvwV_`*ps#O{kud74Adf5M)P_7#eShx50u34c5h8 zJQoz}Q}Ax9zrTLSO{aNUo!3qO0A9ecl8LU!t5;r^Sq!V~s>EF`JPT)Q8NC_Lw_V&MMk8$jQNvcvSs_(kV1R># zMMdo`S#i@JLsn41vf6L-{a#J3zTKmdu6O&jWZQA#Bzin}fB8J)1a&kN2N~pQi_eea zeps%})b)!RrzUcYHB%=XyT|6xF&*#huuYRzpq-YNZ=3mOQTTJosw&koRw=^F_^X^Vlrh+ zNYYJ*5TnXf7a2x^I`9Sy#-r|3LhiY~S9pGWGUSPpfagwI*cES!<2uU`$Kt)g_S*tS zTmus!LL?+YZ5J!wu9LF%oEYN4sh=XI(_(kWWo0wr(F;1-eiawof z#!l16g-v;9KFUI+Uacw?!%r&tJh57%QL?LUtgrkeS#X( zLYWHt$g?5YMQw-C8+05HZ3)5=X%rmFiV|fLx2koFlb3$i@=@Fzwq2NPA=;kTCRCSO zjPRn9X(IshipU{21I1KJv7(~>iPxIj^~WxVpKzjmr0yPkU8lQw#0Njra6U46Mn_3qcNYq9?D+bs2+vr^E-?Qctj z(=jW5lG%kOH!?fMG8IV|kvQ6bCj?F|0FN%GY3-i9v&3B$e_2xfbEN4SMK{}awRYcZ zL!@H9Wvs?tR@|%>-B61GStyPl2@2A(>xeB*)!Ed(wwd-G z*=4TEu9|-btB1M97wnmWVq{Dw3Yc^_BO@1>mO#ZqDF;T zS9h+q{bZ{tEJk2mn;FOXOphU!+H4ewRZy7`PG8&ip!el_->;bII!v~^59m#kLALuE z63hD&Vw?5?Q3YiVxiP5J@ffm_rt9s5rii?0Li! zKe0BA4_tMNNSfTYF1785qd#`7wo)FEJ%(eSCSPg5WE>KX1R>qAS5+6Re93>5y}L*~ z_jE6_9{MBcorZ%-4T|!ry=brEK&g7g@`EkZwSe$Hz~o182p7wh4nRnm?%<|vvzDZn zjdX9(-&(h6s{MPp$+?pTeNB6{wtAe0onpqiRHv6Qrwgc#D)L`CDh^PW+PFdM(bbOA zAE3AQG@4B6`EuZ_mn;#2xt{1{4faI@jm1zvGeH3^N&PeU>zumJr8mB5wwKYC#=8Bw z@YpP$`JOmpudu=hoK6HNprEDS`+~fax1#mZaE?Mx_UC5~YFX@CpxQjvM#c*~emXNW z!9?bUEV!|%`%BiB6OFSMS4@so8KX$5#-3X z?`;HBivo+3T&=9#^!Ih!{<);s*p$_)Fl0-cEh=`UR@zl%O@0KGXqn{bmKQ2Sp5JZ< zskstuq@9cX#?kAwH<2wTQ+<(lQZreZva=`R3thYovgr_V^E$36w%c9Q5S4J9`byq< zic@y`5_LwO_(rc1c0bn8>Jp1iPQSbDm?6^5f_ z5=Dbh91Xs8hmk?h2FxTtSkD3r`SKtVAt3-LD6f9^QgP*9PKQHC^VT&r)fRV_uZ?!i zrNeDzq6?f~S%4-hgJ}?h3EVvqIP%VMz1TMGW6`#IGNPuKoFq`dHZ-46=4U&9M{Kg^DXumEZj&vTIM6hxgrD40L>0n{ zFK%nrZN~cI#@QUB+~PN&v0DzRrVCIVx{%|5Eu`~g#zdkeXb=T(+P0wCD}LZ5UT9rT z{by;H!gaT=D^oXtNsRBf(UMBlCI90&( zi?;b*8pqWdw0by$O9xe%Wd+2Ua~4xg&I$5-ZX0lcw)n8aXsOKw8w5o{AyvmrPS^56 zv)Gx`H7(C&e`Tk?t^P_sz^k-<(VXO2jq#HfBh9xNT4=@9R{4n_@D`B!;V+{KZQs}3 zYIK8tMFy5FsbY4^0kUn|LL^wiNKJ8$PBOug4ilg0{!!}23zc`Q!>HLE)@QLYpH667 zsHJvPa*`G=qpincQILo`=Q1EegyUB-%PnJCkkNI)ir^-&*c^s80EmQH197^_f`sQ9{2gNk8XvRn*K&axltr9E5 zrYhc4MHFzkUbNJ>ITkDmS0&d}HT*5z^;B6lvE-3UjV?nRc>ocXTJS0Q^sfR z0$*{i6R6X6!=&q5K7}V*k+;Sx<|hN1WZ5$vn(xC1%Haf|5l@JM%Vb_ZYALF!r=oR^ z{eGq|PT6&I{e7pqXG8<8*}t)D`u_lmozLYWwED4K;}dM9FcKAH`$=;1XZ?{;L&_kC z<8y`DahpLV<`PpmV^Ldm23#rDX2X&p*FvU&AR1WljR;9aJi;J|DulepimK*F6})AtjTRG* zJrXbxDLB(?MNB;FSyjvCB8rGcM4r)<8L8VfI*R>%C)ZSS;@j`j7F|uW_7T~!;~G6J z`A>PT!_7sM#pV=zg6_Dg~ARv9Rlm;#| z-Uzun#SuXjd9SEne_!h{0*z)}LrHe9np1-Oq-sp543Q8EGN%Ma-!L!I`w71 zX|;5e+;xUIc$9@26mW@ns^JsYreF$xA)C5=lU8aRD3Gh5>QUaGZRF(Qv}cJ(YQEdo-%h8cd+Fe{rMOs?mn(=Di-ptJwwpwp(?VQOLyT@hqV@ ziUf#@*u8qWqBUf>wsgTqWnnH{XNj0CPngRLzx~1xNbtch^0vYXsT;_p$$MiMK(cCW zD>drFDbnFPVN|ZhWSS%w(T6*dw(eAv`;sT>xK!#`BJ38{uIn)Fp&W@$xWYXlr`jV) zVy?Etmi= zofapx^<;=pi4+$kVg{>~^oV%5h!anvpW1QKB_vcuR8mAl z&#(A((;#VsL=dYboaP*hYa0m505}F65Fcu&W3hoLZ`_>Q?0(K?R6~`pWssRy`G{N|8FLupx zs)@;aDyZkTS=C^}MHWYoiXG+RuEf~URuXcQZX)hDW@-L zD*B=pG0wE5%ym(YES}r}p@-a!*|G{HHNSRK6 z%<+1&UWCy`19DgXOTak(<7z0RUAv(PFK^eN7*dL|Ob6q>c#y{yn0*kC3z9D^FZ`7{ z4CU98wr1h5h>SGck34?ZQo@jqKjYMGDhmxiWYD=F+D|e3c2vJ=BB25*FQz?Lpytb+ zR+pSH);5z{8aXX2JI9)o4nAZgk`cK;;+WwF#%LmdiGoGt*V2~R%z0!OooBHYv8|Sa zKC@?ga8~6-+N6u23XzBnE3Q5f{L1ndh>O&{%lp@fCs~<%xBXu+X)jQM{MH&xmtQy% z<)xj1H66K5HiUyIurXH~5h2PVqVf?;E)^A3oz-zSXZucEY0h2W&ECFUU1j`;M+KNo zx|Y&eSm9hq_ZF5gp(CJ1MxwllQ}*>UuT;ryiAT|=?Ryn0o$_3WI+mqd5(Q49F4eMw za>Mb-*4!xZ(+xPvn~GrLroDwSK8ZN>e<==x1AyR?XE`vm9*Uv4z|Gz_FN5WhT~0qh3J)n=@$eC zISVR=1RM!5gci*;p^eXj^(444rL*Qyzu_$j6Bzlfu$t z#DP6R=`^!bz}@4C7QRzg5nKUb=uEoV`BYUs#e(EMfysO3mSIxK z&6=x!cG3sc;Rk0L^^3j62A`VMjQJ77P^7r=gm|vWWl+UiPDUB#ps1BYbNvKDmKsTy4X+aw7)^i*^&6b*So%nMrx4j6}#)6Zhk*+qWb;>C?Bb zuJ%f*ZGMhK-M4X}OK-93>`BLI<6N^aBcH}%I{46}Aq#>HyMn@>j6{(I)~)70L~JXz zX*Wu^hKU!@609NmpI^FTo(mY18;=_XJSitewG~0n02!kZz0-?TQ zoKU;vdQalI&-#_4(rh&k)KqEvJd25&TM=2WiC9A+QQ;=Z_nVA~lo1?&sCU9Hdn)5y zy5Cia+w1*NTeBx>w6&Z_*YYOWf-%9N2%w}ZfG8-ciioNGI_KB+e#zU3!(F<5 zs|M|BY#DXtZ!T7{2hJ9(;20Q_sNySxt)QU_s-k5TeODcNzh^dMkLv9?;iiiEEI$y| z#$qtmHuQ&uPf zD54frlL?jUu5_1=E_U{_pA}_k^uJ<#i(Rd`qv%q$8O$*<7}Ug$-|?pV4h!zid*m;L zBpD|&MNV8>9^4Z>d8c`1=a+Asxx5;`+-AMBJF;uvVEvO_e;((3sev+a*gCGY3HZ`p ziy&HX8x(bIy2riYuH;o^#&IHJsj84C>1t_eJ#6`z^)gVeem9T3JsD zOE@j8snQ|FISkXi8V(hNRt?sCU}?aGqQWU3R{lxDjqY^svj*Qp+N|rT{tA7ixc#eL`j(enu-`TB zvF^6HjD4!a)=D&4VI0|bo<%`UEQ2JCk|`&lCKXk2Ii-?c;rh`*S6gF8tyx(`Wt*U7 z*LM4wz99F?Wd$7~Bm_e>RraF(+n5XT3oW!RFe0z0@ZcQL6E~q%dux9T$9rsb(bKd zW;eN#ta^yCzm)Q$HdciC%ddTK07UDqd(E`*qL(D%Df@lHj;O-=5q!pOwy06I6QpS3 z%c_dc6e%X=QLzvrCf*bjB*G#n=RV$+Yg^9;@8Gpax#Rn@g`sai=6tribH-;Kz=tyrs6%G6*B; zq5Id{?Ob4`w)bhU;?TgIqD!jLWmP{bQJYr{Bv{5IaT_6Zk|7cURLUaqQ6j>iRvS8*p;GYZ4xNG9BqTuRh~W~M*_W<$&EQZ+>X04U{obVw~_wcgU~l|Keu zOlK{jj9R+8I`E4qrjQ7PM-BCEJD|d#2$GqE&TGUuffg*Yn z)X|!C&m8AmSBZfpQNrPzAT-%?6z;#O^R`!i*NYQNcV4R24!dtBYwZ63nTp}Uv}!{R zB;W5Cvg6#HSDeZre%?OC5-v%Fx>>#rF)OaM-O#?#Zd8jsFI%x=W`5E%2Brx#>x7K4 z4c74)pfh;@kdw$?y+waAi&p)M-}S^BT1Bd?sDj@Kvm;KFvssqoMiQmJ3<7Nk4uXQC6<H!P4Y)_G_yYugQ)9@E+DMH&l5!jRSx(} zCR3?9ZN<--=S=#&M&C(eZCdT*w%DskDp&L|>TO7;@QM6zn$cy9`0UE*@8gt1iA|_Q;Gb(oN_~p_1r`G$#s{0LQ z)~&m10;yJ^Ycd--tVxyPG=15xv;?gS50YgB`42Pfd^*ML772Z?2X})Gosz9{Qwm#A zADtkZhh<}2G7>RLhR-I`o1QU6kfxl05D`?lCsOj)RZFN^MT@pW)~b@i$-76!1f5vy z*p)3BZ=33}QP65Ili|rzhZ1dgawPoE4J_I}t*NQ@2X;%{x!tn%ErTsUhOf2=HbT*h zjWpkn{{YH~5QRw*Kv(>(5oe`C{=ci(ZL_cLHczjKEi~36!JBb**nri=HW~gssCHHa z)Ds4UrwCMe5jei|6>$2=N_sA!-4qSVi)`67icME+oczn0b+;Qy5@IXdBslAJXz_=4 z7CIrQ1{F|9aH_WiO@CmWukD}ceNoYnGUCj%rE#f)%jky?t3tF7}RY70Uj0EkW! zrxPV!T|idjc-ge;S#3qQh9|jK{2i0)sPWvFArw5Ftl=&A;Ci911JP1-5# zp=%Izl5yGAmLm!sjhj9vTf?a1%_9uDq=1b9myZJCr}r|3nCc{1GA|sfVus#360B?v z2w1floH-5zHXdBMk4W(0=ERNH0XrsBBwe~G-W=Mid6fGEO?D8a(hvG>h31v@=JL2_ zBg6T02?q*lx%YY^c7sJjw92~{#QRNyaOSk+W`);~+c5%d1~hhrg*YnZ0R>Q1RTH}O zvjZIk7QI~d({m!Zc1PrVhM1TS$oY+cBW#n7GVWR)Dt*(jFMNK9nj0wgx{0x;GZI^s zu^~Vzm{m%OfZVPKg^)GD7nM~I)R9p;`lnLF1C6cib+D}D*xH1j{CLM2EX8s7?zr1V z3L+|fgb=@ZCoU?#gifWvF8&=1-A*)T8m>aEL0OKp_r)!5ij8Z+sWMBB7tDn0(rvGDAgqNfA{&8(BmLczAD*{VS5=Pn(bUGWZfn=F zl1uA77;UJ^F1m^+E#=1qyqo})RTK9p@=i#_{EEjdF_#9tIQW6rN8$+;&Xq~bV6(NsiLz(sF3Om#tvpRevMq*M8>S%+Hr zvgue!B}d?qiX+|_=%beh2qVcbtNP)3&(H+*Ra(G#h6+^K?MjgXj!Wby@j_|U%#I?A z0RXkxNV1-Z>(;b6>NfJU^J-gg76X*=A|#jqtvMCLkk=x0Riz^Ky{b&k_f zp}N^GSy@YfESuXxJ}C+@nZs$$;=^JpYwvLgi4g~iFD#O$R$oAy)l?O}IY(km+U43y zDU3!1oh&6D4e=vF6j4GXLhXcKUvE<1!i7p=H0UuYXreO;4y@SEap4~-vhOu#oQF|A zxahXHR25Y3j;#JeoRF=l*AkuRk|r3n%1H4e2U{`+mkNl#`%OiAXRK{7yyZ15gt-3z zE($vmz}adwpr4VTj?km+GNgG?GCnG3h>7Zmxa(d6MX>6c%}A_=0!+tMsWy+YfB7P$ zrO8Z?a4Fn)ig)WbS0Hq>ks8j5WsJ7I4a^s0);^4IKO!j$jhdRTG6vBRIb-*Fbz+W0 zW+dAcse~kw;^)ULr4Tn@lBuJeyDF;td#9>&@*vm6eY^K2O`K@_M^%XO49QS1Mugjn zOP@ma=ePKEDFe0}ND=JhLRa06%yx!3NGykt#2a^j7iA=0aFKd0doNaa1eUH{#G{o0 zt>|+q)uN3YRU8QIJkqa?(#ayCi7BQszt^YGnG)H@QYB;ZQR@`TQ&@d41K~j=$%=PW z#uxtpz1C>@(VFVGCje2`9hD9D1tYi)sJqJ|ymORALdq^N{{XK=Nvx`oWmEiXQkB7K zAQCY7ae27xry&*3uP;yk09U4?PlE5M5u zOjL_y{{W3*!i$RX3V(BoqH{y;geipny$1V;s58PMN^;F|o<$|(CW4vDFX(wp=k)3g z*YIV*5^cyTKY8$DL5+BWyl17`2Y`EWO!O6wx!wJ^icM zf3Hm&-(+1gHR2CLBJ-<@#Z-lGge&+$PO>yLWi6DIJouX_{{W6?h>B`vN`R`rl|@YF zppzz=Px4CBZVLwNMV2li_HYq7ar937ml^0cLY_{VgYg}UFj`jJ6v+y5fQ}T$Nx=?W{ z%Q5!(1vv|i=kTgM`}7-Y z-EM6)pd*IE&|5g|$@C>?mmmfHAGe^57v>~KWEvxoEx9m=tL?*G)x!1cOWQpL=)Oo5 z&DRsCaG5V8ML*n%YOBNg;e8jN-x^vtmGI;k{{SHZO2> z@!K^R&&uOV_>ASs#EGZ*T8!3;n+ia3PjGOPQ9Y^c z6-DcX`s@6)kc+9+Yg-13L#|lYO>ba`^oDF~o_y?~wHgY#gDu%6XyGu8JIy>ucrp=G zQbbhgduJehvdGrA4Sqhb^a%8}4viK;ChaaiI=wFBQV!RaIA}a_467<&Beb zgSAVeZ*%(kvNKhZCE2%sR~_i_t)jg93WLF=b;Sn=8hx`RMD^q$goV45D@&0vIzX*^(m2Od^rIq^<~(G2H-11YIvUywoiZ?R}n9n%b|g zbp3)=gQVFtNj_0K8Z398HEL?Se&B5|iin1-r!geKDhFDE&z_qJEBTs5liU&KhX zloBo`?QGmED`-%Q&fH&ytzqWDw*-k_6X3q^{1PsFcwVrZx$1hA19Y~wcTu54udQNj z-QA1QopD@|A;5pYt*-|iQv^no6%a{9NIjh*#*NQ+vC_V~vp6ibtTM%qPyy(tu{X0P$N}bzDl_vLKW+k?-_0Fi#8xaB! zln__#GD=0_K~rPINGd=WQp%%v4o_(nvoCc|upn+yH5m0;!N`gAyAZ{=kj2<9I8ee^ z$Qf)lau<_?4H+g$J7rZ9u`lJz6^yXsu2e#{pQqW=#(qtUkS*oMW?Qf2rWuOiIOzk@ z=C~?o_=ymwE*{nETP#@LpzO1LuGQ>!Tb*%>KeV)(XwdEJ?UZKCX1+Oc7Q)g&h`5Bt zIFm`qQ2e5}5bKXEcAWnJ4PRYCx814!y0QB+Yp!!wxTts{>vF6`$omnuv^NPyv>$&ycWc^(->i&MYZ1*cVoesLkgrz8oq}x*w##?G3NFQut zGa+@5As!{`EacuFpdVN7yG^8O>9=QKx^pPpjdAV_JsM?Pl2CkBNby2O6;KdElH_jih4!-$6-wbF5aE4=Qj-}Lot7HiyU8}yKlJScO59z%tMj_pQnLIaL8 zWQ&y{Dq6Wx=Sw3 z4ch0|T7^@{cMdZGDSVM?`(tbZD1%sSq==8UfT-e{D&x3kz7;XlxhB@O(bdx9MT56l z#n@b}q}gOepw`ua`A|Y-Fh+99S%c4_IKit(2!5r@wh6$-t@TM*f4uOx{Q<%;|#TX4sjD5#&ENph-*h2t#q`F5s+tiAi+>751L zuk30qZI7pBT2@9o?hS!LmXY0r%o2_cD8+5VZI=XxgGi$0aH^e4*4*Wp+DmeIQ1LZe zJvZzq(5={eK!sZ^hIZy1EmD`k#DRZrA7r zf%jbfPw0ru{bRhfIw#gv^^j@gPNQibVkL=_(x*=%a!ZV}$Q6bp31Cqd$O4#D)XNg} zw(_s7G_SKXPxmEf2Ugc6!L8c1x{a-!>Y_B6kYUxzd1aWs;x?_hv_H_MjgP0Df6_(B0d`4ASEk4>C3F68)xt zkKg(;S8z4TjkfjnSYhZ}hTh~>;;U>p-~<&2uOrSpepFCw0Jyk_sz`{L>Gk<)O5+R7 zwwLUCiUuv@MxeN`Czz+&<2dvLt(3&q9wqqflCTa--~e z_Qov3v~lK?X6v?epB8efZa8kwa1p0SpCMpORk2qI58r`A>uH6XKdmTPjOMv{xlVx| zCDf=gC!2%kMpj89zAUlCDr&8z*hkl=EwNL>lJvJGRL2=C zHrjbvWyz1I8Z@sMFBK&YU%MPh5iXg=mfElwZ9#*-6v}BDgXYr{k~k0)1p)z$Db_rV z17@kk5m)~Js&#*=S$z!JZ?LAswtBB;g+E`gLitoE<7Cn}YZ(-oXgq4FDk+>OqUCvK z*QB!eGS4u#Gh(>0Y9i8XXH_=ZJAVc&D1LS$5++0!da6D1MAtg@fj>@<2)bq?Q?RHzGg`74n=F>eEY^ZZ<9{CF} zS!f$IZO!gpC|2mY}^}_Wd!!v6>R)fW%+VZm;_4mjYk7g zLTS`_mFyf-nzxivU(PJ~@{^a>J0z;BD(L$rx*I0VCgw|2mK5qADnn7FoM?@exhOu0 zimHe}O|Ku{o}H|Yl3!jEFFxH3a<=nWdIOZUTQRX^E*MtXLX#Dwd8rE7lc*}#`P)-# zz^Xjgvz!at&+d3%jx?2dbwc6FuYYg(mu*T3bFHMYGPPO<$zE~vRC)DM!->e-R7FqS z>6PDG8O!ADtHX|xq-|EOvrk8_f)#ayu_xrhZd-0P+~|z3KOv!VONR3ZN5GqG$dE)t zk$ZC1E}O{TWp5R`1R7V%VYt+)qe9bc)-<+k>m?OiB`xp?7*z6s3&{Tf{lW4o0wOLt z#ZDzhkDbOoTCcKnTSJ4GED>ibp z_b;j=(7CQ|bTA^$`IZdDOKZ39 zgKUNeVG_TBw@eHftGz z`Lyqkz{_z3Rt%OL7gUhNP)JFA`5xU*vo!5nw#?IZN{wGiu47TuZ{Vx*WCXL9E>Sxh z$g+uv0*^A=KGi`IC2+W&Q4~;Xb~Ik?_D8bm7SDasn+eHjX}7yLm5oLOxD!9s_0{r1vOALMzz(=ZFsaLst{61ipg?FQE1x2A zRmKYW-B#~nwV)?A*%3ayohDY$Ov#Y)LaI|>9ePc5D=728W^&ZYPl_ooWXf<$*i#pmU&b-#GAFOef9jvbxP~M)hd?TE;XdpRWOU#D?oOinj4#xSrvE`^( z4OMIo%8eDN>@+2JR=~6lMQ&v~^}M>M9|V zjmCAsCtVh#IEBN4xJW&`hlTWkvrD~;uF2QyU9*Jv*4rnTTvsgTGUS$2Vw`bg1p&ti zP?bd2JiUX2Rp^ToZTlK#$7!-dxUVLjh}b}x@gt*_4k@B2MNxMG*}d#n0FT?n!bMyr zXx(=&?3?k8til4-s?`>jRorRo97E!&J1LghWwzaK$(7(vq9WxvcE(&P$$Y#-*Ve05ayA99=1m(2sNgtmB9W_vsEgkm$noE$`Lnv=?olcg}lb$CNBw zO3-yT;hxz~Rpp~Oa0&kaF{{rTqABm=$xYO7L2;jAcl1uImiSdov~4>pn;^v2lo_uV zMQnAnb@@H~XzKY0T>xcpAd0P_aYfG*C0z9R;8`qMOGdQUs3x2}l4#4fzLWjg-WNqt zpp33NlK~z?Szkq7>7KLwLp4Mjhm&JVKxpFpr{ys)uth9YJTaU%i-@DVRS8jlW;=T0 zsc3mx;jYl?qNib7H=F9Rdu)2IRMTTOgPaR5~!ha?3rFz>cBfk+7D)W=KE-j z#;Y$}`3=@atcvQHqg)H*VN{Tp9`zItU&{3;J@w!7TYJ;wHynzAqmwea_Ti@*m}24~ zD~>cpkR>(ts$>5E!S0<-*#H(PU`F0N_0O>`L@2UWTo;6bFsp)q;SaG;a=+zO%JNn9 z?bFN;5ahFP+_9~sCTC7-4ZhPP$_SzuDk=Wa5nQ5vzn-U$W;Ijmi&s-)CN!0*vw4OR zJa_PfjI!rLGCE$fgACwj-q==)eAlPm1JnxW((y8BC-69 zD6pUn5T+VeNqCz<>&Q@Yi}>{K)sao`3AneBWk!OnFys+v#k5XDEp{9xFsi7FjQ;>$ zv5Ewx8gbZ4wQZCCQ8q2Dkc#ZIqtvV)e|hPDr~KwKW|}S%l7ELm^R2`YZt;XBWyE+J1YXFk z9)0VN`mny80o_^ADKg(8B7{%!0OyhfBvCOh{{Wl6+QyNo7?-$WmWzJGiPv#7#S*_e8?<5+Xd)P(n$LU_T@k z6|YbgMG^!O{ZTTQ?Vf^3cxF?RMuH8&Wlfi|xd2ln6eRo-C#rv5f&`TpQHG5<6=Q1i zuC5m-iNt%S`Lm3tK`=#Qh))+%Lo%6hs4qF#*n0||@6{DC(8qw0r!y5vQK=C?*mPd> zPilxS{8c)QjJsOXY=f|*fy`FK(NNdBiaA^-2*ED`f7=qZ^OOSZJ3+#mO4j{ zY%?vx^PBEGrH%v&C_(L2G*8p4&fDe_lr3rngY}_fO$a`_b|g>!-;G=dl4e!cy7Yns zHq_BybOkwORRkB+RI)nb+W9YTvuI}C(m{h6^eJpDlS)q&Z2OnnG=$5*4Vk0SAvD{L z@)9m?arUYgS)1*745NpqNZKpD!r1TXCsDshJ6yZRCQfbgf5xpWN7z67R*^xKY(&vd z1)d0`q_b`_$$w@9`$m?5-G_tv6qjQ{v4GPaK(!=Lw0nS(3Br)1F*%mq&VveMgUDOfmL#b0;!35Wb%c} zVufXL~Xvy$C2eNyTaIv&6be<$wznf zmafdlWwuV-Y_n%an;odZG>MnmZMPf{E@nW;`M{v_tZiXK?e*k>xfq%%2ua^VN5V?;P&sm)=wUtKN{b^CIMAs{zE3 zK-`;Iy4^KoDK)n0(=JU3aNa1+xZ4rqg0>~&eXvs@B2RZ#+wNhpVh*!WQq;RRknCzM zwH-n*PN$H=cKY+4cLc~?ek;o`o{qwcF1zB$7Xrx&ch27gt)V|^-SyZSy=I`)zy3Pc zEpBWtEU2x`nz%yBM`i>VB1r6yFp3U5YFq`xK`f_BIP$ee%i8a@xs7X;I;CgScUBZq z;8oCFLpthNQKW~3=*0oZ?W~iKjho_F5+@VfSwZVoN#Qf{gCFYSyNywCsQfK;{aSbN z2dP@QA%(p(Y+SFh!;8uj?l?->lZvdU0JeraJLdPrm-3%!qd8oby8i&&KW0@uxNOl| zmgA8w9F{B#k_B3D1mn00*kwXV`6`&~xG!&}$8@gHU}STV>T9rPrvN8b$f(KPAr*H zXpkIqQPARv78%EBqCszhsgZ%HCuC6$>YDn)w_Srav^odzw*|1Zv){T>X0@oK7=c?SPe2EoY6+{I^M9QaG%Q8c+hX#EVZL>W=v!INtFMLeU5P46 z*0hF1$TS@Iy4s>3`5PwJ$?ctNvxiO2&9^^Z(B1t*v23w-u+{Z==EaZK^;4o03ANBB zktCv;%V0`zEIeSS<7B*u8$}TR05*Gg)9QVAF3kG6pYE+YLDs7!%xCSj*WGd5v6lW^ zU4de&uPb)^97kI5i1^~kHoJ(RII5%=+=g zNZ<8ev9#TE#m}y20r{**t-7m<;IR?XmGR#tkXTn7Qz23#G$iehPfdC4+y>S3JsFC6 zT?%H%zgBLy?WA45Tda7j<9L~r{E5-nDGxqq$jOwam3!aq3}ccl#O>JH)K^B1`$DOt zoo5EF!d+Z;--_a_%D2;uMQoW+^9VKrlW;OVm{nXRoh)h2UwmBMS?|k2xrGgEF5<|R3W*qHp|;a$8RtP* zbVSUQQBg3tTs7g(Ry*dAMuf$@D=Xc*S)V!0=FSyg#QsIqR?p7xvZM_IDlKKeaTN_w zNxuBL#P2*e{@uO>bS;X?b=IF%re40wTb<#^*>e~;WIpqeS&i_Hez%e=O;{xUV}+c=Wms+&zGlTxFxBwlC$oRA1?lyOoLLQZH{6sso& z+vc8h>Y;~5*rrUc^yONgCs`96xC5Zy=H#dIBN9m zX6t9y^&72@#U?a}?!~4lO+3X-Q>-d8DnfB6(j7n*Cj@e*?NmYTixdVVqs@~9#;Lc_xIrz(g#Q4KZIU+)3`f5wGUI3}nVdDd3tL8`17y@R4X5q7+T}}c zKW6U7YaY%uo&AlR>8`x;97a)Gu^9p&tdOdBG40PH>r(AYc*PBN{{YrE8+$Qy?Z(z5 za`|+yS7)tLb%$O?$)iAkuolk2TKH4mjJD>gmANvnO1 zG<{{NNiIm3<%=!664)6{hlyh|8Mg@AGK!Bj4hn-K#Qy;H{w(WjH^Vl*>8-NZiOou@Sc7pkAT<@~ z3WU^@aR}W5hy4fCe0Lget4oNSLt#i|Z}oyIzRS>p;x<$+C_eoau`q+-!I^ z7~b&^xQc#3;0>NZGA5;trOK3oCn^+fNARXwknKHJeSKG%<=NxOq8; z5mi;UTwYuk*Q=o;b-AF`cCxaof)@LYxW6-XlO9`#8Tl=XK?*wrD}-&g%PKA>1rT3u zRS{;zUAp3J*K)PHUHVmaxmPLC0NC9|B&>%S7TOr?lwfvO_cP?mmxp4NXA&)_Bp;cLLv{%$R^9?KJ40z)!3*sj{Y#^ePb5KWB3yw3^Yd+M|Us+h! z!L_taeb^em%yN9qiC7Csvc#NfK*C5!qT+ZA)lE|#)I~8|DxuQ$)yF>LQ+k>U#azwR zvtK5j5A!cs*G8M}R@#D&aU>SoWYxfFK`_3=QB>#F=Y~k9u4_MD)5`uzWnB$rWr70{ zCKT2tcqIP--Z;ZtZg|->dLg)xNB(n(wO&AVaUYHva-g|KXN&n<-pscBs%C?O&< z9xD$@bOg>b4IiD-b<`&m1bAUPU8|pvZIfHquGRSM?=6+^vaiFVt%8SNPW^ftbD4_i zIISchc3O(6xQJ?}=s+vg$dIk9ZL+ksVCe7K*utA|tx0U83O{L3i21flDo2q4qw#Vy zZ-`(|+^L+brIca0FYI=6Y$0qxHj#+POo&z>c-faUiRT`bB?#B$xGJuo0V)YDSB?=A z&iYNrGfDPjC=gz`e$`G(vgNt_ggB{QQyPTWj6pyq-WQ0}@}fp5fbOb*Bi734JDrZ2 zYw#e+p{|8O+C!glzSzK7l8VM`U}0HmRA&6L2?fs_c90ZN)FtihBoYiJ*GRM$HWm7n zEiSu3cQmI^Tb-1joKCa}^5lbR>#mS;;7uWL_8vsLB6FZd_o-S>y{^8ExYcTPyVNFQ z)$AI6yYR~1F`A1pSSu#HPz|MI7;(f!MI^wg33Z((1>J{Ru!!u>t#nJtcmDul#~ATP zT4q_W^k;%nnaP}{Ca)TSA0NSiAqnvB*8c#JdukeP)f&x~H(ia#ENW|*50vZZ_`z)7 zCrsXq!-9?*pu!4=w8cNqjCB!b$Yv(Uca~uyZIoG&K{Wb)AdEivJ(kd8sxsVk<=Goi zE?w0Ldlx}9KGUe9I8_p=;a5+xd?i%a&yo+#er#|?o^gnA*DSQ6jv|w)gObm$ey(bd zYhk&*^ouI*gJO0Mza`mmMl>ldLy+o=WFXi$hDJ(+q-E_y%6j#hkYirgL}zSOc6K2X zW0L!^>t9Et7ldN2ImmI9Y*5inIU*)i6WodUn~GW9;n-`(T~V>bk2aEA<5@7{y!V>Q zNPu}<1#tn3QJf;%HSa}=6Zy{q1kZ~;j z(oz-fyt!irPD9`)mj{%Hyv_DMZtv zNNu)mldO@74=*sfKGYQN*?O1+*4}I}DPUYisFc-B3b7ktIjEva1ejAskX3N1q@=k{ z>FJeDqUy|9l$%|2Mje=rQ@JdDLGj>@K8>%41$!z3Xqn=jxnn&^7j!aK!wR|#iuvsf zhvKL~t!=SDWkVziMyuZfspyIS06v(O6&-y%l``W-b*JPb%t#3Yd>ABi$rsotz1&Vq zk^Mb7teWd3-Zd%L>k{13#VIEH1#Romr5j*uPRI`4*C4+BP z@n7TBRHPTXi)xr`(X#GC@ArP4SU0z2C4zomgj{$Pm5M|hcqb&}NGiSZC|&;m3cX7M z17Qy3TAu~6Rit2_l@-(LU;i89FMt0LrKkL9wh=fGSA zJ|HRTzTy4EJqEZBLz0Vf+b_p-oK$I*K1ix1?NG;bK@sAa_2{Uv*++^^j}(UR8MgtT z&meSHk`khJEU7P3Oc9#Jr7IEUKx|^aGryHGVB)BtaUfqs^;G8;NV5*&=nFyqW- zOHVp{ri;GdMpXclAB0ijzMZ@EHJb%4J~I$wMUKcT5=YG`;1uTHGRhGCMHe{7r%@Ww zmmgxCf@NC;X%as(UwX5Y!eu>I^PY>0$%kP1sa$2=7A>Q#vMbMrqNso`bnc!1038q| zEG1XigqbmxW3b|sW*r==E1i*Z`YNYJ;LArGwn%mn+(dm^Bn2VDp^iuUgO5_^#bmGs zU8^AJqlnCRenEcKUp7<=KZIN^dI(aW*tX=*g09Gg5rP-Q97Q879AFfvm&_aU%(UF%9IXJcNv`oHaNaqpcr|(t#uRvN9 zhb*N_SB2JOnu-ys@=)R{fmQY7xzBEZQgT|U^~hrKKzZ2@D{1|}6f{x*r$AW0RUgq6 zbI?y^w*z03C8t|;i4OP$wN&KpQAkyPsH)+52=ikr4HIuLVv~oTV!@(kC7;u>cE>^M z@)gLdRe~tc8b=**wB&~0;Meq2Med8x7GgUR?3uHUfbCnaCz*zQ1VKM?qWTt7sNATs zV;lEh4llkif7u~kB#Vy3ss8{T{RJnt*IfSqr}x_zZmZd1+Qp)OR3@8pWt=GN3u7Ih zBB;fA_Z4vBA#eh3(meSSrE#%+r@fQsy9-CQIVMil|hazrxkG3#cWj+ zz3GmzFE&K!CSS^!+5W+wH+8MmbUK@8cUsxcm#1rNLmN7)8gK+LYGjl(GEXdnc?I7h z@xeFUa&Di=^SqnB$@=GZx7dH3)%9ppceY0@s7|XSEvUwLQI}vFN{AhRi3G_P2Aux@ zYA0Hq;)Q9tUcNzPv1Z!F~yHWkZzzt(SRx0}65 z9``Kg!xAYX;l+4bAZ4}*UFM?=8$v}~WS5q5xm3<{v%Bauv{0qN*WI<-?x~7P5gxs4 z5`BZRQ6x6wFqwJsb%vWoATI(E_<=#P6;eqnr3b?oZP;YGG27c>5|&p9f>5vap%;#cU9?+cxR7@hbt# zIPW;iO5ezf8e6dBFd&Y2(AOxuNJow)Pcd`MqO)qXt+X|YFZE5m#Z`YfHrVvGGutiUO4(fh0J%97);d0;S7mejRP||=3Ar&! zu3L`qisNsnMPcTN<84J=U&)pfl)BG(o*I~8`tFjU%}?wi`ss3u*@sDZ3Zpth8-|7 z9kO5@ACON6Ec+M4;(`dOmrn+g;Qd;96VFq3S0-<_>UOJXtL<8SBUTE#G&$cE!(6$S9R-(JZAm~IcYrB0 zXo{ZnlynG4)G(#)>vGCp;JK@PWm^=s zYU_Q<7ua!Z>Kd7%g!$GHnw2f40oxeF%r`i?G0ePbgt#NXdZ{N|rY9lKo!%GF`Exm9w=> z)H$J2%o_;j73odNG>mUURzO@NMQu3qH9^KzQ#tEDQPT}pOxQVJGhB~fac`_^)nCZ9 zaJ9UF02>!vRegsW7yPQE=o%MgR1(UMKAo;2%$tApC3H%yZkda%HuCRJYU5}-$REhS ziDcUY8Oo~2OqzJ+Jc2Kvlg=O!8$3}}I_KB5w8GuU+2}uB1)y#9n~aTx16$B4^(yw^ z*hG+R6S0zXBzNRRbCW2i$Vb{fs;kGXTb@ZatvgA7d+d6yk*0lzszup1&7q`&1&c?> zsvuOf!2;ZrxSWDAf|3z%F>%!|7>}wHw)!S+xyI@&O-kqMnKw^NveopYlLKtKxu%;6 zzUrbA;TalA;TJN=I=(O>K4iRzLy)IgzMJdLx~n@4z(YuJ=dqYn~{rcypR0f>^CE51ZjQRCNM(T=j-YWdZ^oZjiHx$J>QpjGWH z)l|eCJ>hfXIwdMV8byMDEDKJe56E~`4FxhQ?k>02wD6wYVIM%$wtal4%3U~1tzRu{ z)NBdG0TEV9gFoAntUJw6998|qpoqQt(pp^B=_cxym+_=q6zNT{+p#Rsu_+z~#{xz< z0`ZApgjIPWCw{DqcJLdyOr@KsxBS-5^KRI%jZK9Z^J5_za0p2oR}n?Fg%wRlIOXn6 zt}`q1`(v9f{ky66TI*M}65}%=o0zduExf3V8mm?e8)Uv$7-a<$BH#JI#FMvJvD3v+ zZ0(yPe-WuPw3F^_Y(*Tol^2})K#RcRzR0rMAqaxak@MFedS*W4(B$En&)X6_2z{X_N* zeuFmeS?LlDcYKhZ!VUVdv5wp&N72 zElwW4Rj{ zBLZ9(L8?t!OjQPK8b-|s*>KI~MaZ6Hb+ZK@DsuzLCQ{r@FkJrtuH${6#SCp(nk}|@ ztSL4mk3(6_PheYFGaF(-BM%?_!6QR8XhmE7_)MX7ip_2{yQf$76^;JKO|VC;fqAeR zRa@3fPC~WSZOK>I7sJZokDmsdP(!TSeYLIIH_^L-Y+uX&0JsElrYxH&RU@%UKjiJ7 z3id=uDr@A6oc#Py(nE^dYspkqQ4u=N7y7KcFTG3so@g>DnyT71id!kxvgBE5+EZry zD=AcwQ^NlMmBe_MVOb}ek>^lw0Z^2LkxLovYW0$H?QT(hG5*~CxweUK{9eg-7g2h5 z`dRC_(CuK_$W`+V)781ghaE(8;tX2&%_0&Jvf1O3AOH%gW6^axc)rZuJvtNWAFr3~Xgkeh88qKc z>(x_H`^~m=z>__hc5mjYKa@nz;<^T4Dudf1xFX4P@B1+?Q}@{WPuBXxT{lwt_jIZI z3ajg?Nwix-$jqRw{%t0$j7tbpT@Ywwx{j(it)?AOR=IaV>DOYhbo*I(DY3M8qcTlI^KF#efyI!ZMm zp_b}Nd*n=K-YU_634jT@LYWRJoNHOxN>w9itd*_yyQRgawYr?)Jt(6#kzS6=qNpa$ zTUMJSWC%pPs^a^RbJl)wyL7`z{=VMr?rS#sNj3E_acd-KVyjVOOmq<-Pk$H{bPccs z5nQUOVLK}IF^>e>%|$Ep%|WYLhT=qtDq7x)&lpdYJzOV|Co4`l;2gLFgOE}s;;WBI zi!IV?-)eoEy;s!e8o)=er`II;VMu-;u=+E>Snxin<7v?#UP6nP6qSACYt*~xtMfdW zwWY7Tws%?nP;6w}yv2p1lVyWYwjt{ z(;j}0u}Pa!>uExCjy^TcER=aoBoHgatt(}bMHZ8iDgvtZF0<{M;q^Yva{mC>&=M12 zuKc%UBFMNYFhPfg7!=ppj}6dyv{C_iBoN@2BkRkmPX{I&TNQ0x6^qcJI_;MK z01XBb$(X8W?Tc)45fzdk(HvUJ98Yk7-LecdHX*&LZ=wB1l^8y$kcZ7D$f&3rHhmNN+9 zG(_8oN-A$I_R1)ssx~+4YrcVBy=h@+38W+Q|xwHHrY(I^!7P)?HZ zy|F+ks<)=O9&>C-wwr2lR&2Rot~BJMmzPxyrwG9tA;EA(Ax^_Jd@QJc?WbwhYb4uN zT)^35+#xH+Uolp-Tu^Y@A>|?AR{xmTZlv-K~4tvhdp0@&s4(B|4*L2eLP zO=ivcDH-U_BE*Q?M!?sBGL5)msgG~%_T!=~9a`qG`v>P!>DSG<9wewWPKSk;nU5qI z9}vxP!;#}qFYUL5Os+5>+I4Q?oAqif#`fMdHC=3dE-id|>g{n!<-Tq-qC|958UTmp zR+$xWoN(2&#tc<^E^WYmN7&Iddnu9L+jYHzd3rR*T)nA!OS7c3qF}AG2nXZg>aYYx{T zg4&~*MN&>h+?5oGdW`6fjjhJln+k}RFF~lBuETw1NH-ow#Sn%oWcj(_BwX`x<5edV zkWm2zIu@j}wAEWjy4Pi0E3~@%29`KdZo!vG@hqe?(28f88i}d@0D>xGsf(r^M`P6h z?<=*nkl{1sTIfX3j7Xx=qs#;HiCqElBdDq0E1you(+ycvJ5%j8d!5`-p8ITKykoMW zBJsDCR8iuFqGFiB{(m^@HX1un^jVWG9KC5K8_4rkGa{&gFl?9@@=`%b1TIcADu}8oiIvVhQ>}0tEnQ}+ zMHR!7f<1MUV$(=##Y#yR7SLB7OMjK>m8^_(zZAT*=~y3L*+boPlwV{=c5HgBh^noHrkW zIEPlIa~sMK7^z@XNk4bxI*KaP<+3M*xZGWc%C{O=#V!VLa!tN z0QLqG3Mi^bx%~B5p^=-iqO!2AnHj4ltQV6gs*A}FvhXhJgkI^?ytf}G!yAci$z|I4 zL6;GwR6ti07YU!o^ytlqa9?@5BQiB;+-%#!*hE5XJCGW7_53gAs)CyPl2iF9s>^2e zm?=J@s5wzmIa>iI&4Cf3 za3ms#vOl@B9H}U0x+f*>iPZ(^<`ebPqakCP2*ZYh?nM(JL{#<4XQ0Nly9)YOqA?_0 zRwlT3EGZGFlVQwPKjNSI^d424v4&$4!D35ca>Vx4SDWH0zq`6+QCFaf%!H3!G5HaY zq)VEj%)$1lgSqFG{Gxhe^U!@|0k+~+m0_W{=_6g2ErKDcDk^>zKVE=^>yEn6AfJ*{ zCGj{*lqX3MKWct`eR>ZgqQzBO_fg3c>(!^*ce)W}dH(>#KMT-dT8t!-f~~m*UlmCp zKe5F9-TVF(GoGVTK5duSu!l4xqlWq!NBk%ecH+7H6*1G(PGE^O%54iw*tZE)voC}v z!qB4JIwIuz3D`MJxK2CZL?&9ob|P;H$2e5$-{-^0CfgII-q*8LNZ!329jykQjjvR} zH{r-ZeYO^3EVS9SL|lzX49Ai-B2DEBDP;VTS>&qKt@SV2jn?UvZrp2kv7NoWppt1* z0+32$Q2dJXerXaWJ1JE=x;f+BF`P^MwZxj0v-~~xW{0ty`j|E_?5Angij@L# zBT#DyjgfZBs;bE*D0Zi?R#!VJ7SVMPcFWoD?F55B1C)qm1TXML~FXs9opYUyPO3&<`lS96DG=#?8wCXT$pCUBYtJzB;FC!EowBRVI+LqQ zX2z>zx4VtK?$)(XXzL~ndL3rAsUu1&`AjwBZL|1*zzQ_rtGtYx=7=c2l#*jSP8#7_ z{cl~hZdNsSHFdj$m!Z|dqP4ht_}Pw0Q)}lBfgLtUzRjzk2H)=#LF7x+`o0%y&6*zF z2Vth#*X|mqmG^BwGfS$hta@llml;jDMHpLQgo?}lCwxK=Dm-QTK^LpVOWJs`=Hd2L z{?YaZtfwC1Y_qejj|sg_ZB=XV8Z;ppGG;~dn{1nct)dbbmT-VL%5zzP$(ZzeVtXj zO1Pc&H0ZDeU#*aIv~$^-us_n30fHva&#^sBG1 z_ZknbHv2tBGfM@^`<7+7X>8d?H;~F4D5;j56*NaMiiyBi++C&Xyi@UtTG#7uvi5x_ zZl?WL6Y4s5o@xD({{UueYu&G|u#qGqRzgEkBYBWsZIjIZ0B_8sN^WDU>s}THou}<^ zW!md^dz3d~>GU=*E@`N*o0mGWOt>yN5!sSHBz_|BpJQ#TazsS}PfPVHGG$ZyZ5I8i zXb))xui1UKuG7n?iL6AjeTU|ZsI9co*1=*c-ehoD^71YNpK_uQ_Uhjad8+9C!DmU^ zbuBws@YQSKTL?CdRunnvqTIr9=UKUSM>fqx#}YH1LoPTUa$!@cA(ry}R;Zm04R*UW zq6k$qDI)dVSj>%-Q$AAMj!g8;r&k~rmuDH;qf@CY8rjOZ%(Y5Jhf9lU1$u?7>{qdbns>$|^1SCHQ#@eT znJV{H>$$<@ss{BLB0o_Q#488*o9QW$a zEN20>(xX(xsk&|zbt2ajvnpj?!x5DwRikA7G=@CNLCJY288%o$Btuo@)~qK7T_bPX zc1YIWVC)yPvuWrK;<~p_ePs-XhN8MMm&9a@SOIQHGL1Ija3Mm#q6+8D?z&#N6@9#T zb>*dN4D1^fDavp83+a{do0T$6xrxb)&zf7vtUQQ9E;a&9f~pEBFIxDv63yj(>)Ooc zbgi;Zt@gcLZ`glgOQw0s9fHhjE~0#bc$kRcI*1LtgpMN)viT!`s-!8&N2I)RnKf-$ zpW1Z)0Lpz)_C=1(t<&$J77P0>xoIBK#h0bHK*+Z=o8a7K;%piUb5C$00Ofj@_*t96 zmA|92`toF-t@l`$mpcsE$*$@Z&l9p*y+@=91+_~Lu;38*9w7iSFytr5`)92#Cuv%y zpZ?f>#h%3(w=;Hv>v6WrJ83OA)Vg;KqP9k&M-0bSS~PUPh>=xLQN=;)JvvU8VcOo& z&`j4w)TLfMf2hAFScrtwO=^6JcChR`QduZ=kYLD;;{fX{HrWfU8;RV<{Hklyw3V4w z*VTHy@l#Ruj^(;s$@zPfbAzwOj_h|^uCI+PO{Pu2MhW+yLsaIXoyA0ZuTeWwR-38o z`rGZ_!>n>#`go$^#g_TbV4up015Y|`s3|FPRYfKL0NvZJnwF05S9Z2AB+l0LDDPj( zV2tf5-(~nOswxYOrbHA?0WpFl&O3Ev##~(%;`?db?&Up6B7!x03ez=K{7GX!F+KAT zoMFL5@U*0WqDqLp*NSyDFIfoNcBN@B2WX3a?$IjVLrJo@k=kq+b|C|?S0|_dQp9)Mmw(H#z>nC*T36sT>DWu&%e38`Pa?ZE372Tg8}&pjsQe6BXUt75i5z@2n5wt6%bQD zKH9pk?6-@8`$D&L*0;rXPSYr4>dj1u`dC=I5gK)wG9Q9Q+Q0H#1viXUMNv@uqGzmj z-I%kPm1kG|n;x%Th4vofPMc1lw8w<*?>bv>?8jh?hU9pRTGvQcn~qJRB8dAyg@9y8 z@LB6UyKLV}m&dis8eXq8$Q!rOQZMzBvPpE)^yaFP=UcA^0k;^A{bvMN{!o9)f+m9K zp{R-yCU+&AS3l}hk+$tjZSb|t#%8H~ZCK)%Yr32vlVpxDDYSZMN0`DmD)2U}D`Z|m z2Ghodgo)Onij|4C-)U}jJDs)jI=9u9zh$*dGGs<|24s4W3D1H|M;cWVKW_%X39>)> zR}0Gaw(#CbKbJ#J*#5iH?RLxSkYeh?U$$};1kDmesB*$fv7Tx)D=8My+;zY(aCo6) zg~U}8MaNcsR%D=i0ey8vZ>es7>C1|(mbO$o`L=r`w_B!%G}J2|XjyHPb^id1CAQdT z$%XQ%sW{?_rWb2cX(|re_I~3hRJz<-4Ug;%QMr|S49ReUJV1){ka_5q4mxH44LE8< z;DcC2RP3Dak!{H9O+CFS&%0{2saqs3^jzwhR`hJ^)y=`Jte0Xf!L_awCeRhR4;YgM z4idl5x-JoVmR=J|ul>VkRCdr8RiChJn;k2`PIz{vTau*uCN~Vg{bT8LGd=K zoyi23uCk6Gw!N@pa<47NSbCzZD%}e*c;pk3Vz>^JGj=;l-^q^5fmLy&UlXg5=fw-G zb_mUF_p`N|%U1?&#aBB1A#M9oLv6^AksTFTb_7gtb>_vxZHABwiYeffkp(&ZV_!d) zQGIEof3`?}Q(Ng{v)Z*c?G{;|U9`t1;H|3EOLdkWO7kFbSY;8yakKWgM$z8$8Tk)iN@tv#shugQf-#Q#tpV^AYn&{@-AK1t2^z& z&NT*J$FBXEYhhz|D`eSg)gnJ(Qy9iHI<^JlX}%yLhW7}~FaRLhcO}OZPU(J+o75L* z-PT-Yb;}E>HTDd-k5J8B{NoB!5E5Z#nON=LFnsxRFM1j@GHqtMTi72i(^!rbn?42)h*`dFERVlis ztYpS%sP3~Jw2c)J)No@&#z7ndRmWvs%8871iEiQZEYhV@mSPQAxlHLRQWc_MgIJ?1 z*g!r~z<+aXswPx;;T21gFMh6eysf==HF}gP_zwKNc5vU?ZB4Apd+1(4KnXnAHVQ@* zTWNz1C>b2*iDd^pb?ef3bM1RyK7wpD2X*WHR&@J0%*V2fFziA!W?zQXS#Br92FMBL zOU&q+k{d`^K~HiPdY7m7Z>(Rh?O!{$)@)uCwWM^utc_a+vY;hAiOzcwn0X#?$t}7s z2m@S9(~9z5+*J`1rR%BJwg&4OopzT7Z6@B^a$l^uNlgC$8m_^R8ENIe>ZEYa1ZAG0PXrpNC*iAPt`-X<5*s3qJ zKtxb^D%83@5UQa;vxqeo)|UGNZ%o^x&u&c!RzQj^GS@i|n*asRJ~cp9KiYtXsfDQ~ zEkCXFdn%gHoAwU2ldDb#@zr|etPq*wZeW|H{HoC>nkD8*?G#@cD)&-cq@7f$zkLDr zeaOaxU-l(^uB$Jb75d%tk5f4aCAccgRT#`PG65YFJ}A7^L{Ucrp0n)Lw}1ZK=ym-F zCr^(9Rk9$C>-#19u1SR@sm;2J8Hj4chFs&w#Zh^aYGP!lg1u{Jfug(Y`g^H0e_ZM( zRa;j^2WIVUS|Uh{tSU6Zy4zy!A1XAQgj9I`(ND<=Dw*%+r$LiXX-oR7vGjRc(JbOsa)7wCQtq{i{-msqcs}Xmz%JeuW9iQR~|P zR2foy#>gO{xFFkzP7$IiD5`*}bro^$wK~A|4YX{0}9!!|LcNsQE_c%ZU`vDj<&Wuy^pO-T^daEc3r zTjfhN+C8fhW?k;PRm!yXo6dECU9su0|Cd66M9jq*VpDXOmymjOCj`}^24 zr^BFPI9s&a!A)k#q!*G(qYk+cB9H3(ZH-7q$tr`R-hQ#HMUYU_H{jWnpQZp}%LVEoxK6q|9_?Qv!H zkUI#E9IIrdlIEQ<8G^EZgVXiMb;Sz8`|K&71>4Hdd9jQ!GLhXtec)}rXrJ8$##K=j zbNhPE@|}RS=+oi+DhW5?P|WuvhQ2Jy_>MFwhfGF$LWeEVKt%Vaa~>pUDwwDxyDdU& zTK%N`qHTpOEFrL$C8owSX&j9ZTX`XhKKY`Gsh8u522m9Hh$cbo|npV7^>e zJfPEVA&ag@bX!(^h|q}_r|!>Bkm&|==3?vx{9(_l*k3@Yw0nyY{!4$}5b<+Y3)m#N zL=o-Vtk{SY*%m7&9xnkYhgd~d|pV!eI6rb$S`sU$Qy86 z!hx8!SmeL86ZPrfGESFeN-ajQZ^ad+(nN%ORks*u9ahAJe;^`=xlhNhP(fz8Eyl!4 zZe-kOs~zeNUgmHOs;K~D2uMy4qN?E&txJO$a$pR`B0xt4@W~X8AlsY-krlQc?uG=3 z-wWT-7p&%qkgVLBO)?|QzU6a*r}JBIc`zfC0#MH`B&ds=dVh~qtr4uXWzQQn1@Y=_ ziKdmFE5ubquxrP*Kg^x`bWy8lEJl7*P;s}RJTe)}MUe5fxm9o1x~U>(@zfEUUkH^f zHpya7f~f0-*cHZ$k|L<0t{2f%e<}TXmIF<;{A%=V6dGPF8*R3nO~gbjuM|~YIR60Y z)K;j(F^;`#PtR0MzSLF?J)mT(z{yoJkxZxb_2@IOs%GC<32}kppAtqKB*_ED%6C#k z?!Lc|$3jhEE}{&o`Y8ZtlPndab+bi4^0d5Al}8y~>HawDIJ<%r#N#!xt1T4@G>Y3tOVLI+!c_kN@t~>-q>I?Sz59N82(aJ_t}@#$tF3?=!Y?8! z8XDk-KmHPDw@SrB7T#htgQ6K3&ydEF(PIE8sAI)HT>d(8H&#lM0irl)E=D44&jDcs z-tL4bi`%#9(*W4d3dphm9~F#gNhsCC$Kxaz^-OxEI-+HZ=>}6*u`=WflvH&+3?z!G zlB#~Ip3C{@GJ~66EAauwWDCzcowJbHDpo35-k0S14ZQTEd)WPpT( zN%;Kwr+>#mlj2de2wYkTMFqYC%ewI*R7F(%Q58CnL%pdgW~%-agl~vf~8mCJ|9`i_7)wokp3IM0pHB@BGM5b9uE~fdHyuL3@5zJqH+{-Qg!lSFIEU6hOg-@IiRrIA+-Ik`F&i`{R9(okmYnCGe+;U7eemHaPNQbt z-M^6AR+?kG%~g$Tt&UpVIB^NKxkxCG)Eh8KCIs3m0AzkN!m07=X(T_|+wVJE7pbiWVwtucKp+wRgd}Do;eFdN6 zA16&47QRf8PaK$B%YwSr6irXszMW-?4fWR7x<_BI>#DUIO{z-lHa0Q5F2|Dszs%~R z3_U2w)uvDy@+cSm-bk(C2~(>nV{}^myd+8wvG&ScRM?^lxv57?%vcfDQWTkNKk{5~ zTa1H&1#zIla#hNb=3WV&iu=7$Q&m2;M^CivJ4~17>sK18*NSWsno)*rzDDk2H4z>K zad~+cJVy(a>dw>9taNpMRIr!1UrmE${*YiRVaACJm-tz3_K{fzz6r^a>)z(no^;gJ z(?JwL3>kdwiQyqx{=;Q&q#JJWk3!=m6C>#j{*_jZ6 z5~(3}>U>Di=TD2dPS~5S`-a&jV}J`DC1j&=S+^uvaZp+2qn^mB zh)S)D1#T46zOrg|>tm})ktL^VX^vY>N;uU-^G=98CRBH0xa;k5Yj^eRG9~_@BqhpOCU>xa~Jn3A&cSQzw3M zE`hXPmY+SA?4{FAu5wIRmG!ELE%1{0c~_BeR~0ZB$|5hK+~IQ~>8aa(<+0aX-F0#q zl$#Z-rv9pK6p0Ayu}#Evrsg$dT)sNw-9-lxL9oIJBKE|R`A-BYy`$}zGj?mgv$k38 zUn8<2Q|vKag!64e28HsOA|fny)uc`Yjj9O=dqFuTF12Lz(x;nGu6=v8O50EETlui8 z4!w6T;^;-s#8-3HKjwa>7Z+rCght{fG7)&b6-0pt-#Ii)Cq` zZq`%*t}$j)0By;N8PdmeHZP$B2--$Y1ky+LX2?Vhq}^L zPq4C^T`Bo3c)5gQ;`#Xz$BUY_+nD4yR6d%sJ35||So-$QO{79%Z5*if4K@~TTgiT@ z$EdIL>DpWrH~YZ)l9%l5A7qWGzrE;PmacBVf8$G!w zi3uNEzh8dYpNDSUWvdn1ZDxXrYIaGmT$MlgOGsB#ma?0(n-Xgh5s;9?fhL+^ljP|( z*&286?Z;l8y}9Me{{R4c4uPvdnXcAOgR)uOGA1?q9Cc))v~BQK7(;W&+l`U92#BIQ zS0mjz>+Q~XT9p3)O6*$;P5%I|cBq;IK{_Bup|y&|&9L)tfIVHr<1z63UCF|8hzcO0 zD)rB|?DZ9IeT%exd-a75&8lb+=BL+`@F#1MUZQ5QU53Q<^g(Iq(yg2afu;pjyhl{@ zM*YLZMKLD2eQf2y?%7*F*qWu+>sC}2AVzh)Snh-+O#iBbNDb}vV_^fs+b~(PXc8)IxT~$WN^ ztt~blkM;(|KU>?}mAT1b_Tg-kUv3t>j#ju(jV8FQGcrIR2$Q6$r^u1T5^oMJlJgHA zL2tVU`Vz8M$tp~ZULMD98q510C^t(W+$$qYLYw7)XC5yee#@Ur=s6J0eG&c;5#~9#> z7!YlJT5%{{XkPU3x!U*;0T10H%J;`!h+C_2$5A?as<(Y|U@Q0>x&?uxSCs zme9GkJZI&7;K z#mP19Fd@kiTSFIxMF3Q|rv*$D`S%)~y)V1(uReoV6*m^z%&kqh@#-jacI$0fW>Lpw zQNWKjBck*-(T5Fuh)Av{B;(lnxh64tRV>xzEY0=k`o7&~PxV~NTRO=bMcj!(8)n4@ zYRoxRk*gz-$8Cr31ow!U4k#Joyi+#Y*}UMC?HAgcg=V`p=JDuTBO**y%rDV)E z-4bE2R}^Eq4LC~Two%uRA}NwDWMSK`@mNyrA9Q_{UA*fJRCpuVHsxi7w#v!4_m|>0 z;S9H2aznA(iNuWzSA#@?UfgG^!SnO%>8E`!_PutsA)U}^s&*L{HTCu|A90BxX;Kl& z!c?S@6N;>e@zKG{i-$>65q!K=bJw+A*tfPjPocLzuAyD&+w{Mnez#*{Ru(lKc)IJ- z;m3L1e%!0wF*ex}W#LBIe3X>Ez>1`an{4oBE@#*E&$fQdO=n{Ii(%FNz_!w6zc${l zUYzAc@>ae=(MqzXlt4lZt3vXixNQQe@)bhISpNWXb6cHfCGF#Q`?GD6s>Fe$Y+Ide z9mS5rU$De=ESs^Cz{r&Q?OH+tQYeiot89sTaH>sn!ga6N`y{>+b>qs0mG#fu^veR1 z>@dFi?@HbZRq0kvS3I^Y$5egfj}_xXkuaNglOXpJJpSZNuU>A}y7B#K-ot3stF;X_ zMuj5gPPOBfv%EM9&_(?s{Y83MRoS zI*!G-KxaYLF5CV^v7I$-0?NKaas&AFZX}Q}Qg6uCP#YjaB*F-ybnDw^GZOX7`9J+9 zr)m;*BcB&vb7K11{tb*RXJ2qhwZs5zV?8EIY(suSjY)U+gTi9CROB6(T_lqsZ7+Sj zsZuS4MLaszSlS@ZVZY>9tru!y*0AZ2tL%cIBd(KVju#Ur5C`(AORE^2oWUP%kzFY@ z85;C3j^wu)vnP2=Y4a~59AgN!sDd6vFhuN&-x*x>iFwO7ZuR43WnU4wmkfhYP81qd zOFBp`lTsjf*SIU>W($>2HTC8~oKX<)omtv%^iI;}^%Sa!vu*WI?r9^xXD$qh3ujFp z8X&5=sDQ&Qx5$hUvF3=QoaGgI-%sw6>o>1nw=h~u%q2X1c0FCW*t2Bho4C>9BUQ-z zDlWef55)Oo6$MEJMG%X=dcRWEx$@6&YQ}36_mk~~&3;U{GAx-$&c=Q$h~Tl(5IEyl zQvebWLFAs)aa9$1cB$5SbWMlU8#E1Kv2Wl~KMK}UFItn5N+Z-|AXz42y(rvdNn0g1 z3>Z#)(N$2@6ndJ>;+Jl!T&D`hoU3Q-wqnXpkF}(pb*kC3*oG31kvBZRkhq&bn zk5^T7(bq8Z7VmC*9Ti(}YaV-f^}>Ty?%A*q@P0%4#TTN{iNKZC>4RcGuY3 z!r8AbEcUXqu(x#VDd5eq_}5J&lSFEjin0b{@of`;aL5i1Dx3{^vSS#DKkT^d9jM$* zS}M0M=Y^)T8_Q=Q&Qd_#`3eN!JYnDzbX!4QrG9h9lcG-?d5qv13kB7IjhO3Mu%va1)B(=BMrZ%+0nwaRo)>tV;m4543fia?NQp88bG0J*NSOWk_w-NStlt zCZk7mQC?*M#|WGxY+K1Mb>*I{>OjhC?K!sJTO^l2;!Bd?%8dIn=2^D*KFbRai)gI2 z21mfMq(_y)7ap}CLF<+-?Gn^0_6c>5Gd>+$M#dB6Erw!in+-^)DtO$1pfdxSwQ)b_Dx*$cXnz= zEe=W?{jPN8*=%7$k_Z5opq~fCk@*=X{}q7 znl*d?np`<0rv@*Gh=p2D?YKgUghYsm69p2^r(3dXQmxhQWm-6*c6P8-ou`*#;fIXn zD@_>zHpt;jQ9a5-#FV)pL0`0YPq&WON?M4zFY=Puhc+6vY{_XrQRR-~#@b*WLG@MS zz0py4_m*iE5ZCE3A;Z(6!)6_9VvNm{;6!AdZYX$L7UHOYG|Cb36%}57sGahQ8nG{K zZ*| zB=uDF>pf<9QAYY?608f6N(SVyuSAU8tEb&! zbtA3^7YN77lUq|#EV3EMrhR*1I;BrGr=%2LI;)W(rw zvjMb>D#^-UsPj<=t~naP9e3ivWm|e`H0KlGf`AQ^ zz_|A!_YwT#`tW${>jwO$e$lqTwMXOkPXRzKih4byqr`OP>C{}a#&pY z^ccdrkroI{d`eLWNMbN$2>e7uJ&_Z#B9f|O@zk&zyq3_y_BG^(Z2%R6Fyw>9a7Ni@ zu`V&`-_xkIx-7=&H7d7N_gs0;D#vtrCy`IFFMRqhvn$cAw<83NDf+6nMoKUzDNP$M zataY5po)5S?paUp=*>pFV(oyK^mGX!bmBfpKK}siuLN8oV+1($=z~mMku_NBkd%|> z1GAzQ6p-5x45y|QG2K(FSlp;~D-345{6FsrAjgi*RSgY2-IvuB5V6!Xq8m>@i3K6a zb~MHs6_Xzs6>wZ%-HiGwr*5iRDB??>eF8J4%1d{grB3LEqM7$6d@rx3QFRVD%W;bs zuH*Rz$CP7E$Hi4$Jbzp->(N?>nR+}|U5bvl>tv6(%BZS;lpO>`?7jP^>(FA#zg-p- zR_CF%PB={S{o>&E$tr#nld8oOjULJrM`SqIJT7x(BB!_oSKs6nPwCsYev5^sW+Fm< z3o4-NQocaAc*249EPqt((Hmw9QX?&c-}t3H@JD7hl_V_o#ywFnj)9g8Lzxw*1p6;O z(++$!>;mhHl2Xe1RYg5<-=G@==2C0VNJmk*p!t)`I-c4U-_n*{=F zm2y;PxJE)==7d5-E1$w5e@>{!XbJTam6UA~6C^TZ_{#`OmBJ@<{k;=JoP8bvHIM9c z73QNZ5XBF^QB(4nRmVlwlMrE?c@E?POM@6Zh^m4}xguZcsJ*(4rY&@@5!k^sRBgpK z;v#b7-guEB{{UPjQ=q19blnD*To!B|ZpMB6>}eMAVIyg1hZzZCFyAyZRYwU(d3$+! z`+Ifmn{V`a;-dQ^!E|`e?RqAL=Eqz0^vJXCr5C z+eJ>@S;wC%)=M!K=>EpGiS^Xo17i5`9oQ#3{;XkD457^h0eORz3FHL?aercPER$$y zj<1$_%;CAnvh_(DHET{>Ox~xoZC_JW6jNIkobm}xX@UbcoH4M@!?SgL357QUTHeb=8ekN z=sx3@_Ab*GW@~4^-t~2vvDOllhUp>d@tYPZ-ED^j$%bM^hT~137q~Enyt=aEJ@>9e z@BT0PhO_Gxw%=x2Xbr@!md2%2>(S#vkZS95R@um{golI1fZ!64Ap>Qe1fYhT`+mzi zU`5ovzteZUfQslvSdQ!&v6;NLf&6g_L>SWb1t^%Y29|s zKGRv&H6OBXZFijjoIqp0pKt?-MX}d9!JT_g%yA8eV?z*bTg)(>-c=D4T;)eSXSKeZ zq|3sx(Ddk0)9e=QAxXTMDPl?;bL<8Z1e7KmQb(f3g2;%tQPm`mh)3PSiJ+pFTDy(? z7_8#y)q4HM*gEIg)*Ay`>nUA#^`p*wnDwqnZL~N~v%%vZi7W|3L;(jrGtV6LiQ3zX zE$~IqH5<+2Vq%w0ufLky-K;L(*{f@$*HzcVhaBU|852pNX@yq64LoRuso3*`UbSqV zQpM7LZGGiC?8;))>Z06J40x{IM%CoPmNG!!B#iC6r(G}@ueE@6^fy#R5O|{JILSyS zB)+`SwuYtaKW5j{e5*-c&&hVBCqz35a`K?$x6Bmdv=|X_lkP&QNWCRbBGB*ZY3%N* zC+k6Bzinoaz z0PEX>mTWY|c~!}lpsE8D9sqekJaL;6LQv$%D3B?2BA6w)Nf%GnAC0;-F6Q1OsS&mr zUmm^YWHmKJYi5;uE-J@te{!RP?g2qXRa|Ol-8z#{-!+Q+z0&E*9e$Fk2E7_Be$2~q z-k8IyB4cvJn9Ag`lC7ct0C3z;RPKU&lcJs)53#mKYGc;x^0)0nV1UfTvZ;DWSBr@# zp|~wMEZa!UGSeVN-y(6c!6K;lNE9w`9ATcv*St`m4 zZMN_2_HP#I2E9~uQAOB0l{+uQvy^aA0f3TIBoua%LutXZBtqt+fKpz%PW|(5hI>x4 z@~xn`VG~kx+SO7pLpKalY3f z>0;=z8iTl9Rh-x;XqG=)On94z{8MeT5E}BtRt!nDTTHl$O6O%T_3NztcKLC=@R4J8 zsRZ~=Lec8%^xFx}KVPQDGYIwk)dAMIsH?_Jsq#l$_i@51A}3us{;4K8{{Xq#-B@ny zpI-!Rsflvt>g+4VuS}vN3O7VZKExmp>3FRXK_Q6K&ocqGT*dUhJC21nCr9B`u_lQx-C_dtx|N^7u0I~ zi_cZ+-x4L2G{|l^v0|iWK^s`EzI=hU-{fW)LJ<^9?ay#)>zzOBy1gRa*lZ`-6-`XW zn5nLa{c|!^l;b6VV4N0PeYI6a)fFYgKgMw*=8Cnd9S{{E)3tRgVGeDTi;;>Bvu5L=J}2&F@JS_xU2u?*)<}@Cf=2Pn ztlGV1)nyu8?)o(D>N@S&NPbBF01{6d;uY?)hS3v`w%D=6T@_XKsV{QRr&99|4x!id z9qV@0mg4GrdgjA&{5Ur?l%TGx#+x}3-I@XhYh4jd1(%e76~%2&Bk9&;{IzWKclsMl zr-^%QyIWOBG<~J8x3Y~Z`>ri?rewab;~KpBBd&lW=)xy7E-IjyUY2AxA>M=P`=?&t zthU!|zQ3}(p_8#TlI4W!D=~r!Z@SfUWY7q(;v#s_K!r&%U#>4{YI$=n+rND)Iu-ba z&g9G5+X(aNElL}*On}U*P3GKIzqGGqU2KTK4G>3=k|$Qn*Ot2V+UD=D*st5_s&;vw zWzCsWuRUDV-DPt`=}3_vgNU}oR}C3)rem2(kfex(fDa*OtbW;S;40A6fV zwXt=FCha?|=FE~H3R3F~#47lb+LVa_ZtRf7!Vi-F00C{I?#>6AC$%}-jrrGD)IEOf z?VK%^;*aUt9k*q;)b?FQ=wuXIM&y&lF7}0mY4^o_>Bx+cjzogld&m=4v~#s+i`04t)F?4=*py7}zLQ%Mt?A$m9%HrZrFS>=|0D7aMCPix|ERv&MMoE|443M7{E^Q+9!?#O0Z?9>tWBMZ7 zVc9q6x}*1&E$CM$Za=75O$fzt9p*kO;>@EI2IPo1t}Q?(M-yC4bh}E1~vFu<bb7Fi({rq$0UVpLvD;YM41c;3V|)^*1G z8d$~>f^QzjEH1U#J`)bDol$p3 zf2!eFvE|ew*@>-NJ~td!Cp_SSxQdALY;t|U4qTTCox0G420YE(r2B%UU5T#1TDsS? zR%_$Li2INY3?RS;(IraeuA8pBrY(QRqE6%>F{Z$EbGmJre2!@sV3FyHjJ=oJ?dnP+v_4c zLS+ssqV#cSozJ{U5w+xmCYrPw7}qr z8&c~$(tj}77FXIj%dF`dqg4BrixHUa>U$lx#hDzZzRxm#wBpDYWJ#1oH?Tj2>st%k$ODGZEbT zA4a~dFx8_*X2VkjY1tYK}*B+)jA(`^?VlKFGPA_v&J(>9l_k}V~~2%4N17K2}|eIiYi({d5l z&G@J-06f`}`-s#ys;44wduG(D7RnjUp$m9*@T*_BjFl;|+GV)##Z;bk=mOiq+=OHI zsW=FnmnF;5a?NViYU?7vDVwC|TNH`X+=rwzPp`;!v7%*%RGoa9Q{nF+J_X4MQ4=DI z*0wIJE9%-h;xpt# zo|*2s=!ZHjY45c4(ePb=q@_Xm0bAQ;)X{f--`0jiqk0JLIOe4OE@xIbzMFf;bvZ{J7c7?rm(c03FK{(QFnLgE9 zb+RJ1aK1b36YV;~t&^zZh+o@WnEO=;NAuB7e{3DhhV`iv>0sY~7%4T^7;u8ggki#I zw;gPJe37z5FHy!boF}>l51z}9$eCpQY-q&mWFHiTQp8-q5xU^1AbXd(Hb|tM{{Rcp zzzxTB$a^&EizyCCip=hM{72txSb4`-K@tXu5gbXRM>mro&+P17%kg zrdFwh{yq7)ZbW8qqCy~?4N2z}P!PMSb}l&T1{pK9ncBv%wyUi3L+Uy`}y+=q1Y9^!dDswy`7kP_wMMed4ff~(0Db(?{n&SXSpovP-Yn3gUfK?LW3DETJ` zhB1*+$uH-(QBW&iep}dW!H&c!WYf^y?5>Is@+9=ar|Hlduo;^5lDEU>H9a`NXh~Dr zWQd5@<30QI7*jsmPfn{~oJSpw^QPO$?+18(6uol4r&+W^fjTq$TqyIrY}Q$L*+Fd- zcsc?Oc@F-(o7&O*B!iwfx}al$HP6?2Ss>I~nJCHu%u&CE+S zo%gy3nI6c4!G9{b^j}_p)LT-4^H$~vG~?tV6GSZU;8RV}=py zn-Q~#DOJS-$}D#U2^ad{y+1ka&|vLi%cu)j<^t$C>Juf|3*W$pk8f36=c71{U1wuR z^Ub^;Cb~f@Q=_~4nKVRHR9yOZ{B&u#)+04yqA|$Wb+mC=Q$$iiOnVRVpPv0z8sae) zL`m?@Ni=bhB{I_Bhlr07EdKzC^bjg5WxZbOjJf1U!lb||s;~DK3b@j{+76D1lOZ~#*lME96>}NgttH7=MKOS6ptdoUZ8ARQE2ljy~dr1@e7wORlW4m3j zBsV3xB_1O9*l>NmUk~jhAM5GgsNRFtxnV~s`A3(dNOjhlX%{HDRrJs23+d4`wJ+;k zYMRPc(_aoJ^E06_$@g33EytD2sz{Kes7k1)s!RU>Py9Odf4f|8r@cYgHHng}A#6o^ zS_aCoRQ?4R?m*;Z6!x1$sJS8@>Y2*=b-tJCa+sw4*`V5XXV#|O>iK%k%5f+f)z~PE z5Q8Y+m9lu;Z+OCOQBYbE;+(RprhcuZc{=8^cYF1o{{XO2z$>d-FuWR@7bCJGV>&qT zBZ2~k+b^;_SIXh5sA{cpb^beF%(N_1lsNC_2)P+}{`BEG!e zH<7b&xB?=oi4p-v?_al9jfXsZ>V4UCZw{dgV;m;Tq~K4yP&h0<@lJBuB4lQKreKT|vyCQbKWD z;ltCZ_3A=)pMW_(QBdtx57ufoI@j6IZS5w`*Wzt;_G2~Ytvru7Z%JvehgR5-k}<)z z5llf8%aIRFzUCiMMY9sQouR7N-`ll|opN%G&esUSC2cKrgL$n%YY#nQa*cvk+#+RH z_OA~_%KCLPQ+J(KyL*_cV3Fe%kPp5GLT!UOYVHc~%>a!R&xfg6+!yiG^(ws^@X_v>F; zqpoetH1_X7t6Oc6>|R!+>$f{QRdaQw#6X>XT!3i-90z$5`EQtHP!o?OF0Y@PhOK07V5%>dsJ5J%IJfq&ZNghc-UsZuk5n-248mDEtarHf%^b^un^`yHEN z3_8=G+d~}QGels}-f)pI+yfa>{ny!N0-sB6yK8@C(G|osmrEtYri$6ywCNj$$qVkZ z$2CMYk+26F5k(y2mp-}gawl0_=lIH9GXwl~sIKXR}o@u1AvTx}yh}KOg~z6}bEn9Bj`$ z#YBB%>$QHYQh#Ykn{OhXr~OGWmhIt3HLZQ1iw(bMqu2!H_ZOWS}?!tVg#j2ovd_>QTR2qAdF9bH#c;Iksne} z^0bF5DvhG?^<4Mu+qYcojcvDmk4muHYMyHAPS}>J7|oFyNI*!I3=58{VJw6J!t$^! zxGJr-is~nR%iS~DY{=`=Jk^W1LHZ50DqL@2v7q0bILhS(+!>cTypUuSrrv@K3zMT4 zH6m>sH+cU5+a=BFjOKAigxV)~-`57>^@7Rwqz*J!oLYA+mTUr6%f zzU;|>Cml$EQA~+Xg76_kT#n{Z*4kW6lKRd(yZLqO$f9v$OQHpR*zzLB_9(X^SBzCT zBBGcI^1^!h^{vJ#%ina?SZ+0wks6edn-pehKA_40AGNY!O)T!>JKb@0Cz= z{c^Ixvf_Zu=5L;CaZAM>y1XRiY0CqB>SYEd-nC5S>ezt)J?kLkg)5pCg z(;P0R-AR&EvEl@H2;3qURF!~KQ9wBbmUta;Tf2 zklg00r%69zOnFQJ(=J%RFOQm{5~&sz_VCAF3)UXJsn>2azh8uSEfw31TuG@Ij3cj6 z<>tX3H3pnfCy&bF68HBYktbZ`tt#Eucdq*Ve!`{t=UG`_X{KLm}a+VdY`g z>LLrGOg4>*zKW!&$P)-eyi)eQt5cT~YZV`G{gFXqw`?ZOI~y!}3fNmF%eP5te3FRC zldnRCWb3XPkZ}cQI2fS;Cl38%>NWF(->ZJI`x9*XvCWrpsgYL!A9m8CZM>7Q zEg?t#^my+>@pG32U1*5~r%?E*DhlLD~^1(Eb$(cfEI>)-r=VYN_QM<{kb3c;x1 ztx>$>QL`4Ejv!_zsNy~?8VawE#)b=o>z|pPm+q+_zU+3nyOs65L^{3dp6)A-Pis-K znCuDhnsKmj+LFivjH!!6>5&$rZ?rlp zOZ|8F*l#25xF*#r_394SibEHXp_ITYt{CUZpM1&RcRLf%U!f6 zA6XT|853kzyy=JXY&P`xzugrA872r|f~cyk@asLMY+Tl#sP(&>AG1$1> zdpcS%R}K2OapBJ@*iimzI%>?(Hk}WSA;AMApgeLjX0OYfp-iyUkpe z?`R*fvzzhdOj%NZO_m!K?-apMRmD~?BjZ)%U1s*1i#qG`^Ixj4+$YJhVdbvZDBOe+ zU@XM|Y~?;J3@Y$^s8>k_XwBAkfR^L; z7LdMKGLr?TU2&BU14>FH3W@GjF6gPgw>h!S^X=4MWy#t$ooneDZF(Jxl)r?E#00@_5ct!gFxf08wu zBjau9F0|LhT&j5iLRZNW->Z2;A4jr%pn; zz^64_A`U@GSKYU@d5+y*-d(E+j+DtIq_O`L+4FFFDLh6n`mGpMZ`$I%7_VUA*#BA zYSNpwddc{f%`+9WzuBR@?8cvl0PBY+;)?ud9eD|$6h#L6e(b8MS#lPw52@*OP1j>R zn0EQ!VzCC^Kx^8itX8Y0MrYXYJmhj$S|*STQ9;$_Im(cG`ckR(Dj@0~XjAMLact^s z?ySxIZ+M4f}NL8IWeeP@TtMo2S{wpKB(zT3o>DwgLn08_l!9h)e@3rQs2b>&iRTSD-w2CedMf%Z`9UfDL2 zt+#+(SM6Pf!n%b20Mqqx0tsce^98-`MWpu<5rR15J~W7-bZdLn8@v;? zsddJt%8?4G+V)Y$FxfbXIhQ}R1pI&6$T;$dCKJ$AIaQ?t zX!WSfnTU|h5$Qfgl!>Es-{RpZDD&hi-2hS&MIy%Ys@Uzdn++bXvF*Cq#hmuhuh&8- zFr-*YLXm)pBty>NpCTmzRV2v|wGlckn9fBV^(N7~HBlf;12L&-%u4^qmz`Cs2$yH#T`-FD(r6t+`XjV&YxHIDRW0z`ro0CBk@ zyipUfBKIE{_w2VA?M~b7g2&g|%)39WDh@3SNBo;LwzkSowqOWFVK@H(cgQLP_ap)| zK@=Wj>Z0_QNm+ekYo}S=NVxdF$ZYZ&QH>eserT1=A_yC^AMG}L8y@(xszQOz&VvH;I`@jd0lO^PW%xSc?Tiy8K5%sp-mhi zZqZ{=)VT%>x`}}lqBzx~P8_iYXS>B)!(Gu6+Ser`U&6#$8s^Jv%=){#Z?0_aDq5>* zn_ddi`7_*pb0Hc-&oLD^AOVW1x`l@TQ;%dt=+sAT{a0qQldkO1qH72+-;Z@yVoyCX zPw~$Y#}hXVd_0teJ2`}LKYl>Etq?WqhiUhlm!XAaG&K~hi(6DK+Z-6?^DMDk2GO7~ z;OZ+YT$KjGq+p{J78fmQkDWCU zJ3i(erps|AFkjglE;`J(>=+~BFQYiaO&1k#6M_~~vI=!D0oZ=H*6u7Ew0?peX17B! zOm}uk(#|$)SZJ}6~3)Y0r@ahn^Ubg&C#$>!5(lC z3}Yi?CSo0taB8dD)V+FBM;_QNC&Im*H4^QevQv=JD%s1;IxUg27CX%niKvL8n}@_r zJ*b)Q)WyVImgYo?s``g$=2s53=@3Sf6M#7CGV5vN2F!)1;Hau=)v(BfZUl<$a(obS56EZW%7kFsich+c zh=Hc~s+Jr~XZEV{PNoMcW@SGL9V}VZ0TqT^*c%y{CtWE);zSVha#93QR9tsluk`9$ z5DNC-eq3m9>?Ftm`83yYB>T`aL5xS`*NA;MNONy*>1Y+lxT8b zxY+!6XUt{bZDp{_gAw;~i|W&v6dp>e>y%EcfLd6wt;=!*XyIz~$p+d~z)bm@(1#jK^5Dl^*aqw=fe zx)NEO+Mqhniti8f7B0C+4(svRrWJ)qJ_hquyd_L>8)mp1e}ZSLq%c}k z#jjx=hd1W2FD^omDvBzqnFLk+Oa6UjY9TQ5?$_V>TX<_38Al(`mC;c}MOF2}{{Y9L z2wBRob>VzkLyGXE$D9O3R)|L(#S_2izt^bNpum+5-eH5#{0>8CN?Y;M9LdxaL{#mR z{eP--SB$H2XFc%TP!=5V{4-Qk;Nqg9u74<@`RF#sWni^o5?pduBr1f{Ki%080~z#O z7eN(|{?2%kTL&g2U~D43U5my@il|?X#JyH*MRll#!r8Ip5RgY1wj_;z!Gz$rju5PIB>l^T<|x09a`w+b z>*kIB0H@(bc;d_8KH>JXR;aji*>Jl#mH#j1wr{gQ# zFuhFyV#<2L478Z5!Q*a3a{ak=G39AL1KZuwg4a=2Q&C=y=(~qn8D`cAP+P*U_+=Bm zdZI*wl{yPi#yA`AwtiD=xRNNMC?N{^;87R1uRspEOR{zdwXL)fn0!ed2YtLGHi^s; zR~S{}kd(xz*23d8(udz3IRcp&iKvzh4IAXC*;g1&%hyhp z&J?iO+g0ziG^1cJtS8QL-byzWlnG+X3eyQ5Q|W+#6d0JIXP2IGw zuPR?-W%87Wv0kuoAlO$p4mc0h$#==-aJYmq6+{;K8u})BlegtRsV{KU{>Rc|YGM+C zjh)^!sw%oC)L3@9djxMtW;ycXC>xHdEuSIgBDoBwQeM5U^j-tTpX`Qo2#xI*EbETa zSJ+Oau7PNem5hX75!td%H#BZD?zpa zxS4*M94Cf!5VTmp-FZ07hg(#R+44hGPFw{IO$fz0mgH_(B!@^pTkIOn!Z%eCU;CeC zt%VjO=F}s_jS>Uxq%&yUdBhZD3FUVnWUlZLUw(RS`bl;IT87_wr_t!=l;(5;ouyi_CbZTAX+>QtL@+O}M!lZLP^@=QWs8=iXGgQsJZXTzJ+fKI3NN zEHuytNd%CIO*ogT)@szftNRb^g4yB9rk(bdlOEnhvo`w#+S*A_7zdha6LM`>J`F_3 zBD?Z({{RO4jR}&ebGJP3+~vP}`r7VC)^1Wr)>RG_r;N0Fe%cFFOcB4oiYk zUSdp#nmIh1AX4Hyzqi(=NrbBJOr~Z78>AhEYmDyOM0X!<#u7rEV{sm+oJW`!VYF<- zXPSbA%*qWc&-(=cMt@`Scd|10%a9`HR*CRPARjYKIQ?ZsU zHZC#cV<^zFE9Fk+z4)rt@#SFZA7t!|?KaMA7fx8$*sHVZuH8t@OfD__R%Jn8TO~Ht z#vWWeuAh7&p$ee7@K_x4awzQL$Z4Q*j^AdXofKShNV7IHR(Okl`A^6t%fivR=0}2x zsUjjOE!u+m7VRR=`aONrjt|nRCd(R4qqCHfOUBuP_**937JvRKigHGU2~{wiCZ;UE zueJB}eZnu=^q*n8Gux9SYv|P>Jpe{a$SPI9Edz)TpA3lzs`By}dKXu`*t^S$KDxG| z*aA%IsP^(LEN$0ajkin~lA?e#ue_0kA20^NNVy=OlA1J&?9W{P08UxMf3tML_LZ*N z&@o{q;=Zb^FCSamD=~U4h)Rww0+eVlnR$S1;AljA&I;q(z!M6+xnm-v*xmj|=W9Ae zjFGm{9+fHJw}0YDkj&BX2^qB%8Cf0B8}5h*xE0E(^<_&4G4&s?*^RG_^AXzAHa&da z)){tl5+;LcZi6l~(5k4KJctB}oWD88ey3Y+Z{a)6y=U^#RMEtM%{0f^hb(wB>u;}? zQpz<&Mu|x=+&!wEzt{8ErbzPvTUczm)6CD4bsZ~iqaP~h&9vaOgh=0oUqm%=QN-+m zSoY(WR`!$2S+gYMLN#8+Zqh-grJs9edQ3MhvGO?`(iA@$5DB!>YZb? z>b-v}0mw6DHx50sjm4nXf*k$1Y9_GD;UY+=$Q6RD4-!QIY|Ru^1wF(`+pcc1>_9E! zTcNwwx5((`(=;wnt!+V=2-nm z*VmL9@K~nzODkvHb`71Gjh$MWc6Fl%3>yy&gNEZH+>6Lulmk4G2$%Hfv4yt)*r2Fo-GS!zxSto|e5XYL*G=J4 zGeH#MD!r2kpW)VT@M5t!^kf%wb{H*A`TD3D z1ZSfit+OiIY{!;7omSEt&6ky5Q9@NfUwWszJxg*dp;Wuq)|2JieUT{ac02uLgoQx@ zEqYI!#7O`W6n;DYBqBD$CaS0ciSFXLPPy|8QTra@rtKAX@^nGfweP#?V*q`1waYk9 zScAl4JnO}lk;t*WTz4GdALK6*ROF(Hn0A}Xa$oQ$z4c$%n)du#yiF%kiAgP?m4C8L znHOQQn<2N`b@M^T)?#%8nkq`hJ@wltUmT`W#XRv)=^&i=Gb2cxs_x+n`*)B*A zLWdU8Gi*YRujXue=Q&_u#0FCWO$QJXQP01nPpVzmKizF6yBfzp`UdK%k)20thaGn2 zVWo@g#IhAO5Ad+B%sm?e3s@DGa9MW#-tr|UnYT20*yKlDn zTJ6;wrcD5=-eRpDZeW_28y<2*ROUUnDs?Qkil0(tC^;ndNq1E{6}HO+4wGJH1(fR; zkI06Mt8U3eL^hgNA8dIxC`dv)P?dAj=H3@%y0vKR>mfm)g&LCDlj^NQSF*a(ZX&b+ zE=|Cd<0Y>BgJbr35x%}5)$ z*R6JuYK9X{SP~?ukji_gSYh=fAmC=GynV^-M}FJsm6q4m`_25f_K&b4!us2M`ry}O zm-eQ&Xe#;2BH{?I^O?@O{E}ftLa8&dz@hleR}!>UXo7kq+6tg^St= z^W|SIm1ga1hNZwZlj9b?EfWh95(HgWTyY-35*n8t{p51CYmDW8xEr~bpI~hp4LNMO z3_XRxdrLQBe+L=Y4ao9qLNP~@az*e#b;kuf+>sR=PD)FQ*Ewo)k;xmT$E2ECZU$fP|yw$W#>DqnC z&6eoDfQwsa@s1oRM=ZW$#au4}xPA{811EfBh`B*tN}Y3=Io9_674bC7?MrF*sZ5@Z zgA(zwCLKa=BjQY=awkXI+*KF4Q+4M=zd_(&pkTo!l`i)>>#bGqNxG0VSf?XF6)z1o9mx^GspNt)GlqD+gm zt188Nk-V-mC0dd#iz)8`2KlB7x+1S7RqxNGS~}dyoq&`zLYtx1$g=U<>~f4?+0K&; zIU=KCPKY+4?gj-(#4;jGuWpR^5&G{`-QhcR9{&J#tQuJgo-%cr4^56x-SmiF7TgIw zH#sP{hH9jx#JU$2e9Af(ESZ}f;%Q1-Y=Z_thGkA%SVdeAz)&L8FAd?}-1Cwm|0RV_eNmUlW&si39I{TZ-X~7y@IK+V-$^>MX^*ptD zL(NTKUL`ve6(9v+Q@6DH@g?f)IBVXt`kk`r19)-${??s-VL6{1eTwb9XTpoGg=b#dBh#hBs8jt{+K906Nprx{%K z9{4gKQEv(iUY=jZF)l`*{ETZ7c-O&zJ@b9)7+yN$)3BYwo&D% zJ0jDJ0c!;i5P!}1g+ODWe_1$*0X{{BXDMtiag--;e zC|Fg@7aV!#50E3q;pB+~hu$QptM261OYdnD;9OSNS8O&{a;Cp3!*P`+a<-LJixFLA zf>{o#G7da~;dqFLvI?rFE}Ck{4VP4=Skg3!wiS&z2pE}a$fS~(QBAfDl|WSRsgsM% z?qrzcxyPguES;wN3vHh&eIV9DW(yL9yXeu;!Hy(c3Db~A9Ys-8ia9z;J&7=0&Wja& zfkKtCGh<%FiLj;8SvbwSZZIavFcJkQ@LK^@1XoEB-wo}VQuU2a@e zhTV&?g|8t)6D0O><%T`d-MJRGo|&b-DEVskQ)%C9E|q@HcXb5kbQy2{@1K z{lnH`sl7od9B*QHE2itLK(A%xv3^(^R*gQ#Ct7WVd6OqW#XuK95df5jJag8xTPrN~ zEitN{c%PYMx!N2g$ z_>5e(*_~xbI%us5t4P@qmoRU!DI%(pPy^ zMA^tf_ZCo7mto|&PL}=!X>qZ@-ge*O>ED4Cbog&OCdg3MrS{x#ys@D&>z-Z?2!Grm zQ9)8n`%rqYE^bchZd*@z`v)%})W>oqr8bocVkp7#e1pt`Hqb=}vLPxCRFzdr+ttub zn=O8lB%7V(i)-1j+wxvojKF~HGB+8rfQ_iB0Vf0C;_)Oy6+;{kBFaW}`!FWgQq+n$ zFFCbU#p6W)|$;50LV~7z7B4qwDEO-6w#-%{xZ=Fqt~zmu zxw1U5!NmUnn&mnTQvO?wt1;N~c${syF+~%~y~mdoOlOjQ7uTSi<$*aE&9#0ss764J z@%Ef&&j2Tm=tGRIeR>Eju=Gh&q()yOc8&Pg#-7t$4owj~Jv};&YFxNWEzW4*u`)vq zx#Vx!h=hoq{C;uYp{=!YBu;}WEVD=6a7dbzi^)ioQwiVK7{c^54aX%zfYdn;Da3iE zn~=+c?*;ak1U|~Cl1meg;G;v%)_ae072dc02{{Wvs6}P!SWs@I{ zgCQfKVNqInO9-Tk>+7DgWkmY+Y-w$#OLjgWS(>)%DTNOR2Ng9>!m8&Vit2+>kgKNgxQMho_abL|lG73%~T}+!A>lopAK` z6(lsvfRa%YDu_wNJ9?&7Gu!ddMZcw2Yv?WG6L8W5g)5781W4N^`0)TmMasB2OfTcF zM_&1H%K>(2G81U1t!lU=>++Zf*|v4Y+g8ZQLC$KqE^RA_NFX`FC#PELEiy5L;rYnkV8)qZah{biGp))9n~mquIOni?>3l> z#H|KyOry6f5#Nl@%9LJT5eT`3LPbSYB2RZ*?>809a^-wW9hXwsccomBrH@~ek*lfeHsF=ose(VP8-C$#lf}OkV0Gh{X*O!wlHrftR z6UJ^Lswj_F>(ZAZ((Ei(!>6gJAF`tCu^EH*BeJE&gu=mWq)CYL#Ng!?GvGj+5fNPW zTwO-liJ6mYb{k{^ciKYgp3TkysMxc+GS9qL%cC#I3yRk>k0Ccz9bf$*)+s zIWbyCqWb$!TZq@cX#W7HFYS$sS+JwYbRbnVIe~nfhHzptmmEVCHH>J9gapE-I-geh zL!`}vPWt<6ZQtSzx=r$~3yf_ooQe0diZ}}ozGC~$yM>T~PPBRE3C{|>F=W+!X+Ld| zWw~ta$e&xLY(HRC)9NwcL2=mbS9o0yj~&5NCelQ{VDm~Of$r^s9L=5@&mYjWrX9S* z`yQ+73+;nb(dZ{3zxI9WXfUG12@b}a8fYWUNainyC?P0k3)_l{s#UxAD9FSv5vtvxPiy9`u zxNGy|%SjDH7W_t)azpuW`Q*LF7 zPK@C({e%`k8+E5LY6rbwFRZ?KWek~H64}Q3L41Jpwzu@uSdRG z>o6wbe2FB`NCtjUsG2LH$q@1^JBJjPs=Q##om*3p_IABg*6DLut=6zpLb}D7>on@! zA}7)j@*zbTXk<<_qC_UW#YJ&hO}1z1$+s=6D3V~p(5su*C0Z-f)IyP-g7wk1728hIW0gigA- zUSe(lAQA{F0Fokg&-Q-H)-PVaRr#ItHlP~^)w>PE+i4onIXZls3A5nHRvsB~O&D>f z)lr2-b&&#fv`0ZXB6^B0f8%l0)Arx)T2o|BvAC~V@{IG;DEih(j?{LfOnM|oBegO_ zg=w$*gUH9oW<)A2r?^u-p0UYTT-of>+>;tCK)$fN0=KUdCk{&ZoFLCMCjk6q%s6M- zqv(g8wQi#Q{JOcQuGKod1$Stx&^G&wmFOa|i2)K!o zrh1=u{92uPwklb)6SRk0uqLi=>u8oVor0hoafvnD+%aXj5_r7RU`i>;RD1RuBKm8! z;JtpSt|p}Yl|8+N$qDFnH&+d^%{)1=UYtxAsyg~hBz3fIGd!E)j&3>lAI3Y&+G6$2 zwQYSLuEvvXJ7u`Dr`;^7{7rp(tG2Jl7;%K~E=f4x!_5m}fiE(uD5~})RO^>cx7%I& zek1kM>!M=T(pBZaMbPZ&8)7tyIBv)|GD!ebyddMG*f;w}ASk7THO6?SPTV=ptA14*TTjSd06=3+q}WzT=EXf#|nswpYrN9n-aQYs`&QBW@Ye+)qEKo7k=sl9;@!g zJ7@9GbH@Jw_cnp8B+#*=XKI)7UTuwj6htXZ@J|zuKFA`QAUugle?-FP)203lR>8MN z`xtfRdUd3Mf(bi>WWQy z_Sas2cW+hsH1gyuhuJFA7m{q4!acx{oC605w#+@K(w`*}B_t%)J!xO{{heOC#7)LK z@*8ql*F+YoVbKG?aw|vWC{H)lus|e463GgOsbe_47BpBX^MajST64-Ejh}n2V-E#%Rd}NBL(N(1v)pmN!?Q83Mue2?$Hf`!GZUC2C1p`Cn?s*V`)^=ulab zlUa!p#izfIhVgk!oOM+cRDg1ZBD}9H@A$dHb>4oH(lwe-v37r|W~mj`GaVU6cK@{gtk3vv#ffcW$;W z#z(QceOlxzjb2n}+|)tI&R8=e;o+sjt_QWp7r z7RONgZ(p>ZJ5RN6h3DRjA(+WJ)?+>=qR02RMs1JxlnqrfnCs6izFm7s>(Yh|D{Z5^ zr24;dwTl}>xnL$ef2mx@olzL7}Mg^$NA|sEu@e*BS#9;2eFwBu%GU3$ zZl-PwOW5`biR`xu2tfxMt}%w|4iJRolJN3UOcQC3PAkug7cTz*fCjOqeQy5aP{pOw zdfjtN5y;Bymt>`gJSgHmGFSvgRksmG7#>`4?JTca>(Xjo*B_$W6V_FKQvU#?XcmI9 zJB%%k!%I+cWW383(p|NxwmEOgR*_{2hmn*Q&7@Tk;30+dbmHTed9EvCYGE}!=TX?3 zZQBS^VgCT4V^l%-Qsqc)Sqq|%G}`173Z=zSbL~MD&Nn;M`C+@nwz1YUZ?5d`r(ZXz z9LGuc74OJ$G0s$aI}N%BfQAGD+L7di98vATQ>^#>R_80$<+eq+uIsU4Jx5If;?flT zqEWMI+pTZ{b1qY83UL3vH>8P&t_;&QP7EEi1nxh2FxuZ_Q&P$Qw0dU`v zE+MyrBvn5V7Z3$CBqLstZ!2@@t1XZ0f3G(f6Qak{;xOvUq_>j^rkJ^AI3sNf?!Jzj zWR7J+o8I)mpqg}@zbj;0?rIXNte{v_d_jQ#&g$~WnqU}48)Y1A$K}Xr30Oi>6a?Ta zlm!A+$62+PC~DJetNzonk+tqt`eTUWdnGc~MUta#_>+#DS!*p26{nbJRap`tLLm{t z4-TT|8tDH3vbPO(X5>2MUcXth#;c1gUe%>Wj%g>0;o?XSA-2yJNyQ}fcsrPnF8vX= z>^o{5#@AcCx{4a+)>VwHMI~xTnB_~b%pYLVD<33~44NY34m_kBkkz!n^<*5>jNEEl zM!@_DjN3((GDNG*mSDRP`-x%)%wVf;NRZGrfTHLk@^yWrqAH@6OB1c$PV?=wzpqbL z*{)?dV|yyOrWaR-TIEa!ttIa%B zw02`!>|z)d)-$*{5oBJSko))=v@*sN;C#!bzg1W85@$T_dI z9OO9O8zp&NM*+6lFaQKz(`pBSyh2IS!R-43{R}4{e10>RczboPPeUYF}$r_ol5hQ8G&8~ z(zf9epNt+vxu|;H)^bdfYMaNSX7A8zp(iM9c_DQP)`&aL5r8vJXvJ zp|fS*&7|12xb;sRqjL*xFUb z+^6kq!Gl%-K{AG6I|XhSFm}o5k=$ZOn44tXQ6Y3xo=qnS}9q$)3GD920H`)0G}1c$?|FS21&J3QZYP-6jkd%tL(i}EjF!9d#UXVS;)D# zU*@I9KZ6n)$}~5WN#@^hT3`rVT#AU8ud@oOgf9JMV*qWeo>%U*HrsX9x3yf>12u?Dv3nd_k0MQ_W5m%# zl(`aY0bT8aPwnw*kdIkRSawX=(!s92ppye`)u+sEJ&ZUYKQX9N+942V3DZ+-6%;^I z(+XS_GQ9~j8usvIXcC~s)8!VaX&su1#+(Sot1;J{Wus`F7MwJ7hRxD!MG0HxxWJ02 z#eBbGvc;Szx~j&%k1`_6+}@cbq++@=1_m)CM?+E)nB!t7B3#=AK_yQ88k2>yLH2E} zosgZzqcLMVk=Tz#0pweF(c48SJ}4?+t}9+e@-`%i*?2ER(~ZW#S8+NFfAvHNQ8o&e zqugJ)6(dflh|8R0NaWd%gVyEsk}yEvm?}hg)AgpjX{l=t@N6*+MaR zNgEue6vugDw*LV0G<$o-YjisueZbLYx|Q|C6}MShu_ppdRIz0pZL#1g>F0_XHlmA_ zMOi|{N7xhPPNq9LTLGumXUK9*b3YaLV;joAVVI4eIq;Y<0>G*wqM)xN&sXNAhixBA z*e><1+1hMc^(2H)w7G~=oP@H`?-|T+m{$#vO5ZABvRsim2%Xc9P2pE=v#`-Ynou8- zH{(%YrFWl zQpgf<;+Xm?kC-;WGAkiClJi7VGEDDPWqns?^^Ltnh0<%1F0I{?)Jj@1nI%4JswpJq zT0DkO1gL6GBB&rC3Xi+fIL-32pDu;1jaIZ{Af1lYo1*Mm z_;0o02I7jLdrOj$VR?I(y8Cm4PJ=nMj@bQwT{;p3reTX#j6i*+go;?WNYOErK~zT5 zl8Rwh(G@%OCu^ZQYnve~D?-??HW8aE6!vk| z?4j$`V*=UGU?)H3jOwa3PlyocGUukbOck+H3f`D`S}4&=(`gbrYBXDvC6siG);4_WuALr)6!}EE#?J z#|;poM-pm9YkkS0#ueNmc0^P~$52d>DXV1|N{X(`9}9u%4l1e;5UP48<0`AvuxW8! z{z5XwmgI7c{eT`sgTXPJulT3use)51$QcgEk1NV^TNHbb`HZ_FracK1dJkQ)beoXu zhSjMvnje(octIyYeX1y(lz8@3$3ZrdbCBI=4Ulz7qyyuG;EUriGR9Nfh@!uqf>c8p z{{SXD0~K}mjn;+FUw;+itN29D5jqqYTUfAc8U`J1!IkE%B4GqcP_mz*t`!wJ4Q|VE z>er$;zE2vX%(;(nI7l3m3;0xCf@`fuol>?Do%oVrsHD+tGTM@k2$elY+xY!@E}#fL z+N;kJ3~4O3QG|O65)xpQGyZJ#H3uGf#+i*P!ZJlgf02es$+JRUCF3OSos%fNP#`8n zgss8(25|Z23o;WAG_GM01%Et$r>|E5w-s1&x-ElB2`WfFQyO3Lq9Ji4Ufqd5h>cMf`fF zLF9LWwbW{BXw%XZTWJp*Lyi=AFZCYz>poGIvl21Hw-tM|hUCl2_fY1e#RXULNS>W( zy+dvHq0DESXvFIV95inp)kQ=>^k2fKML9JJ9>Ci&8i)aDR3hc0O_v4;g?SRW>X|M$ zPTjiR&bOC2$P)oecRCX=qpgH1Xpe=26G8`L@pJozCMuXBFhNc$-yhemmS;7U6;pM) z?JU_yrYfo`s)%yxN|j8(Wk-0Xi@9r- zEm2raesi^~*hx6dTUVRW;lY&`ld58=nM&f4Hl@dsds96o`ZtUDTN@OL_9o@aUFMwAsIX-NJdHv>ZzY{;}dn6s(p5yk|b@emeu3Cc05uVC*(Eo zUw(XmHbJs%-f5)>%!f4sB2`=_Ig%=91JgZB zb&~S9>IN0o$rSw*c_Lv~tHN7<0#@wkTWkqc5^e77=h0QzfKt)}3`MYoW?>7FKQu&9 zz#}znp>viL3yI)Yrd5t#o_BEfZFb(aUe~e4vZIwrv{6cP;aaUBoX3h%#vyeV$g$0} zH2(T1b6@K*y&=sV#_MBi{RO35Gho}ZE9K6f+@~xd)JZfoU?x~LZ2-2Mmy0ccnV*dj zQ?RoWA-`VHb=w`Q>|Jj5MW@-i-Q!HVHHl#oG~if>B@WKL$Z{PPq#KWjiaH=Jm+VYn zdRoV!{ZmBK>E$*XC47hWOEi}j9=9edZQRUPBZ4<3U6W+-z>D#NhaVpjRVB}ENuRy& zUGzrM?>@u&yJNin07FzpZ(NBMMA|KVWxHWE41$n?>{w>`v6ubIi69IFfKY_hO9L#H za_h4U()S(Lb!&6qwq&-plS6A&4#6P7CRsSqjRILpj#8E@t+?}m&&X-Ac26E6h)Ac@ z$vipk_ygZ|kD@dYs*6*Yu2^32*YsKX`(QB6TdLH{5Roy-Zb$|l4-bi77X=kndm^t> zHn%0SO0zzdwP#nM`xovD$XeE!qc;{cRjZa~A$BKC#8BYFFB4G((r6r!$B`0tPiiT3 zcNx9rGodRa9&w+?&*@8wr5?R$B#v4PDD&v~lSTyseP5B%{Fra6#F- zS{tahkM*@>_yrcnvrp6|SJ=m^+uNlWvzUR+xX#tb8rcfN0001{)121`M5w5!mpAZM zy}I8(-6rZ+F0F+Pg1L)IW-LJblDxq(O>9}x)sSJ%E9{4$*u&fA zORtv-MNM6pM~P!OSc<`z*szmh!!8OfBUx~a^T^v%9{oOK@+)7g>nzx~V_lnZu1%}{ zLN!C|Y{&eQZrxc%Spl?dDIN z5@edSWNBqR9fM`M>XLcLM$E8nhJiVWdk2!D`-`bK@?O^pKV|)!Z$(9{P}OLa`aBz2 zISaDe$#BK#meJo=Uxq;q_T)74Obbt;8*1saNPKvwTAg;8!<2W~e`#$jzh$q!+=@7} zN&p|e?Mu(ert5N`n$rghiixXk`T z$(eCQ<5w%&ahFXMzwUo?{tMFY;Y`%pmgV*ZeGQa4#-hQwy-FQsRod3ox)*-+nFSh# zi2934$vWa52uVdtDoNAoG;sT)YOVV1`r27r4BfsAh-_Ox+gXM-Ed`71C&xH5EF4el zIzPM>3)F`wzQN~`Rr0LZO3k{ufoWnlSF}!V`7Mf;P(zT-m3z{}ugW~x9`I$cU`!cD zNko)|dm!gsl)+79^}pKNWrOT}V`$FfEaiWrw%ZMbw&OsLQ579Pj@*%0z@R1ML2<4a zKvW@Imt3bkwR0vkYqIoc5@bNK`#QUBlFcQOxlL0{^|OmMy`Pfn_HVSHOg4yEmtJ@Q z3FAjpRJjN$D5f{H?>$B9{-5R1UtUJjv`A{*=hx2oYS2c`V+|E}I_3x+2`I_}I6^HV zxY=_2FJkT2Yc8>0qdGlpcF|P=+Ln7~MS&P}%o)7Hkw`JaiR0daz12T&W-KrnN1G7uy<*M$PA99p=?5!xZe@IA+qqCK7k{m|r3c)D-eG z3XQs`B%_2>T`$g2T?cm5tJike^y*n_vDi55`F8&R-h6&+Qb=pS-A2(H5fN2V;v|S& z$uON%=J^p{xOR`YgUk^)>{oGv0gNf&rg zOnuk&o3tkx&Hn4{KyJk0y{S(EWcC@7icgjKYa9{LCR;<`D%ybwGKgx3q8a+@TIKW# z9lGYPO3>u#4O&%MTBT*qhxZALx7a4x2`aP>!FiW_Y&JYhMR}=lQdRCLjGg9Iw#52x z_P1%U(!U#Ir(^4RJFIu>D|PxxS7g&xKqnh`WY|c6>&-DB3=|c~gy^`b#SjQP=dW4T zaD7!@_mBHq-rBgOb7rNQ8gvOP>ajw|AEWw+xNn2RP;G8{7b3&ePtWkoop zy;|$qNaVk9Oa0S=BY9wvJRZjx;T}+_3Tkh$Mm!8)ewdQwRzx z)-OxfuO2BoOL_9GX}-O;`1BTYD$?Gv+Q67dOw4W*t`iHz&{-~Jpli6Hx{9I-s3pXe zI_H01Y-|0<>-}cZ*qpVkxWAqCgsBH<9zFBK!P-Q%Xw(P!f@#*x^Z}IG2N72f{{YGr zIPzY*^p^E-vTx*Gx-EU>Pue%zw*9+7iA>Zen+$NE8IC^6KG- zrg@PfFIn%_&+%$=bU$7CtLpEuXf7yqpR%nr-@Y|hWHm`ceJt9ll?EX=5*rDRG|H;QFMKjkdo5kh3+RrnCUaS7o_jp!r$lSiw`tl`QDQ5=ikNraA)p=`M7uA`A zUdbRvY*ig_)m0l556Fw(RId=6+Pm zhn4z}RGA(jNEV|S5cv6c#MM+&D66mb?ribxdiR<&^lq;UR@A6A?Ou`>**kr;!o#=K z?UkR07Q4cZeHr)kZ=>B6!SC0;R*1=`1^4t55FMAxML#Y}-ZCI%crt8x^}0 z2o0h_8KWukuW6X9M}qRtNRA;qM$eDqkdPUBMS9C6<(n<==ivJ3+Uluw(co9^RFIvm zv!>nI8CYm1qIqM3Er-Z8W0#S{1SJH=B}F9bS&6IPRn{lE?3bNxeRjX9*|e6SImcLI zkWCj_W^|T;w^&C}3DjOhTvr@$T$8T2-q}_&zg+BYUeVgovnn-ZM0Xtxb&Ca!0ymx2 zVff9+!f_`&sH_s8i4rO(sH&>NM)&qvg{rd#8}}%&VL53gf-yVsCxcVe$qHKJRY3TH zxGV1e04ikr>cvzISFGmsyX&TGDQr{71q!>#7C=KcoNQywdTPfO8a3qFmjzWMR8_#D zbny=kimlq~t94yg4ZfE)ndtKq=Te-LoCLmOZAK&FfXszQMR}=m;AE?SCGB+5JPr4J zcKdammoDLK^-);}hb&SvBNfLPZK&{D%b<)r3F8(>9dnN?_AKY*R`su2-LW5T*j%&N zEyBjiQ`-H20Y$8c>4`a7+p=6o-*<*s@$tYLoJhT?nIhYR8fe32J0DuXDNe%L4b7RI zn4`N9mRXq}%{nV#<3e!+umI~uNEqyx;fKyGH!7_67T5?a zD;5v6B15sCKE&2dK{zgX3X&gum7FlPWV1FOmKA;U`&lDO7FzTdTSn5izy;1kLX=)- zP}@>g`DAdaNQ9!8-==pIL$+HfO=ca<{91OZQODk_g;6W{el{+tw;{%*$96c5OTL9w$(~R3{q0J6SqGep*q9%cY zMT*z#AEk<)Pq%wxzgtVlW=H(J8}e?Sw`7TznR%CGu&T>SOc6TLsN;$zd#6*1PTS#4 zMA?|8*%;O#UL?to4m;J6Y|+$>6{SK()y3qZ+sq?^CM}wN{3+uoMY_?l%-C(Vrl|Ir z6*1=P%*wLJ&m$G&RRh*t_*0Xl4+je&%u*)?OVGu#FtDQP@niOg}7lI&H#PNgA4*>z<(z@fJ z`*59SM95!N?Bi6`rK@gi4o`_D4TC!SZ7We7kP=bZ74TXXjAgVginb&ms+sl5b*Q>; zkxfgXz_inDwd$rCtgL|iomtyS3uNH@fGGhfmO;muBz46SdE+2LBwiprlBbiNy|@1W ztSc&Gi^|MWw4UdU|cp7{jM+}`mJ1!vu%peLj-y}3tOk1d_H8q~?FW9rD#UkC? zaouxOH))tsd?N$TGZo-@5QrUZl=31l~+@OFZy?0 z0Rb9kLP4=9rrd&r%gz(+wp`p1w_-)>H>UE`bG5Z2 zb2gg0`>n(r+V15=shG=mA~I^?xZBOV&@6r`B8bqsDvr3QDvEqiL#^bIS^b@%(^Jv8 zH&6Rg9Qyc71$;UP(&f7)>5e>75=_*NWH0gob+acwa$rk7y=GrQeD?ZHHHy1R**f0F z#b7+-`GoA6cc70Xicy&c8}PnO`4vgGK#+N500Z6Coo(_rZa-}@x=eO8y)d=dEr0eo z?mHa|tw?TFoaYi8<}Y1n8cYhRr~+sF=)aWB*kOZh`t|MWYkEU>bkiYM-wxMi#d!cM ziSI|lz|?Y4X~(4lqU=@nBfNhm+U9Nry8Yq~vAEjT?KBf1Eo^jiOw(o6xY@ySZ;c&# zX*kgv+=zh1#{p1Odjby>T}kZ6w-TjTHBLt$dm52I@SPD~q+jdB3XY;mN{z4U&ID*;?16Kgv#}d7T#Zy{s{`VHT z*JKWFR;5hIk!x6O#^OqGxvA%N7&_UzA?0jc524oS%uimKsL zDbmOugZQWGWI1nC%GX-KX3EM*yol<1lb4p)(pUc{)lUmkl3Cw2Ao>FH%Oy(|4nt78=@T1QzW7o$CqMMgzc2#4^8-8*%VGBttM*#aYIj6TXQgmcBWUQb}J^yU8mF0KO4 zi!ja&bcpFbJ3=DlhP#*!Y^*6 zxPp!{a_Z&9@uwQ;N*wt6xS`|Q`M~y0k_}T0+IL{KpeDdH(n?`_XUM3D!BgE+xB4ly@08V>jsmPectT`2g)Wgh%L|bTyIb{dhiYe-!*Qx}y z8Dn0@oXbFQTWuMArq>Db2z{uF_~qSt&7h*=)NI*T!u=+m1Moqr5VRq9iJ)qQ1SAde>X3 zN|cgrc3T=*5=H4o$`yscsv0`2m>7GwWJmj0RmKza{PokV$dz5QBH@(>t)($HR2WiE zW!RcFm~sDjdsGWUY`QSYcTfxh6V1ov%!=E)KPdOy!1P1F1BRq zIO+?o#}UAZ;ETE^S>0X6H>GQ((z5L>rB!yhOJ4j2XIHl^63$GpNX|x<`vT!I;o)6v zrW;pyVNiz(si@~J-EDKAH?wy~h8!n&u3?AXjyp&Ypk&X**7jgWv46NUc( zWcw>)lIr59AG-GYz17`nCFj^upy-UibZjiOVpzj%93Cjq0ojr=Er6mbDH@Nt2*no* ziFok6CNN>jy^0k~58*7SbSV^7sast(8oEgi3Jhd)tQE%B;{r40ZOI%tII2zOl690T z>Qy!SH`pfhZMOdaU;8s$teH;?tzt!&3dX%f-xQY`2Sic#n?3-FUfw9aGD6Qx{ucI_ zccA+BXR&sjo#K{`Jw=tk!>NAM*!eNvu3-WrYYnHIVX|!r7sieWDC7_kd-XT)n;+PoUbDH+KC(}e3$N;`_A-xm;kESVoQUL=H>>A5^Cv8!#> zILG?hMBlO{?2;;3n_VyMsdA#5THo;;W=fH8$$4C9*+QU!#zOYOBV^$gWL@UPb9u3B z8|_B9s_nKFZhd)twt) zx0?%{Lix8PJyUq-(^Xn&5yEY4T%RB~uGk94YvVfq03ufeTUFu92EEZ|i;J8rT0Mwl z)y0GM7Snrp{SiFgn<9=+iI&0jayyO^a3zQ+ZK}7;Rk8l!mUG@`D4AJK{j7!7B{6pk z`Ag3==H!JMWZ2d=fKgpRX&rjKfGCKIf5Y6TcM?c$99H&ENo}Z{*$_5M$CfNu zv1_Lht8m*^3M*}zHu)g{3yz|vwG;C)t^@2pRkua^bqq1Ej3YHN|$T7JzWCeDo_ zM3;FG*geH1I>9&Mj;g*)DIo)bimOM~T6Ha`xv9w3AJca>>|t72!(_%ZG_eNctmmRS z!lOWP1=U1g+fH4SMYSxW#4jiBsCE7JiY0|X>+k8*5aUf|vPR7vCw#U_D2#HPYG}hq z==N;dCo+Vi=$I#;2qW% z@(%$;XnNmUu`iQ#&Va&ibvM6Sj9VJ27Gp-)EG(t5UloRkk%l5dS&w+h#*`Pkct0m{ zK`z~I(nP4qk}GUmy#|HvRrvHU#^fYgq9{lnHh)OQ+Wr94<^tA2uVp* zc;e5><96)T&0fn7Li;vL^L5#*jEL?_aj7sLt0O=c+(yME#vlaXg|;tBU(Z$pR>6haNsfMNXudblXdo z`p(ZLbj?Ra`ie!r*e=ntd$4V&a#(%F+hxf|9uv?-L6Civ5OI`LHxJp(Q8@K2=auRS z^wWP}*!`ELgv~gXzP>Z^wjq6FR-}1jF{y_0(bddElx;@9qu4_P&vaDlQ}%6(dgQOs z4OZ5ZXo%xbX`IbT^Xww62V>8)+uPeyNg z*(zU|a?_+Gr&)Y>@*z@76ecGtvt+i{j9Mnu*+c!*?$9q~=uwTE{oMU)SFO8cuxS+g zZLNgCh5nXAYBY-igD4dw6ow3#_~2-S5>XX0Dk`d-`pxerl$|cAueg4~%ncvz8<>)B zcJ`XJtgia*Jkf58UwK>xVZIXKGQg9=@`RAxA^}|SE=Y^lKKG4|v!|sU4}GVlth)Mh zXrtUUi}veeMY6wsOihXEQZW~0e0HKo2OaqWYANP?yh2K$?p|GEuWNXv>n+${(si%q z^&?mmayB}<=h=a&)mu1XvZ7NsJf0$sEWA8b$G$N06-6~gJOHAv;CeF#UA`%D-0n z-rir`H}n^g-n40}h|+=R@`Bb$$Ow|1IdP>%M^Q+Z%qYr|i>SO&NS$QOTUVZe_Z{cf zTRo*V=ejT3YkeK}EVVi8%Y59WakFKju$Uz)%HNF;K%4_~%i7jjR3Vqo3F!}Dv9Dw6 zM(w`6`u_lD`qOCpb}6m3cAaWZ#nq``tFV|9g5y!2R{_S&$69FBML`G5t*?))^WvAZ z+;Wc5^}hLUvc;ISPyKaSr9_1+KE=0fy3u*1jlycltc<3qCe73r8)Xf#BF`^UB%Q8i zd0w}#FA`l$ZC;COkpgDZOcEwm{d=NLsf4nwZ3ULrWT~!_I{C0@<6>>c7gUe{RNMCo zTXWLRsCVCb+H4b{{S5q#PKLc;UC_lD$$^t zDWY|W+WTLL`7c;&X|DZiq_T3Yb-CLn;b`?d2xd}XI~w34_@Aa=snTrZ-J$ON5Y5DGi|uA5e;*Z9L5*F=ry{}kUjRb0dMhNtMF+{@d6@V$R*4rF z>UEj>G`;xwZiydszIN+I*6d(XYC3IA!f!Wnq&(eZM6<+nV!&lF96{`mw%CSLl|8DU znCq?WH0vaf(@pBX>uUP=wio)tcY8IStyvA~BXokQ**s0ki9Sm%H1iT2fY7|CqT+CD z5L{`&K;vg!>cx%;i@*JKxM{Rk_4VoX?Vv~qmh_<-OA&7hxyIUu4h5`GCm3i&0@(P|1ge+*_4mTPrqDji`udaPmd~zDhV7KuSD#$BH5MENCYx;x?giNC z2qiX4@y0)pl>oUaqGeNUEtRS7Sw?agz!ChB_1e5$$FtSP=3AK;4^_;adV*%*(8|5pb9=@}HTo@-`vKmm6h8 z5S~tgC;7ftAhJ)6l?>EszRot*l&-Y*%Zt&aP&tux|C&Nn4rkP-#-5F#-%ClCpEq6(^l^*dZ=uodm@s}`FcI z?D~juD+gb`k}{jCiD00NED(+i_`ppO1VsG^hk~N@d0A1LowCb;Ye#0{-_l4L%Lk)L zac!o+nr)%G9U;gz&_q!LIfo?&aH1)d>f;|$l=qm<)=Ht?o{wX&S=5)rgFXcQDssRbmR*HpahDX6-bwnf0cT&D&>pzU4;9&?dV#(Z>}a?*4EJKH}af*YI)3){{R{J z0FGn^7(eMn6PAco@FPCKlkO@+N0Fm>NJSe`RTj7r0;=*acUp_CaoGYz zOSd(3Au?P57~&@vLl-@)bOpJMC>(9FrZo+^u!IEDxxDptz}~ zvXiy%aws(Y+NMEHzh!`ZTPB`HVzV^z`jcMQRGL9fD2jd27peOCUc1h(Zu7UIrrY)= zj}eISEvdG;z2eTMG&xr`jgQ4OWQ+;;NZY*GaRGb)NGZVx+~TUJ9bVn%Un@FW;O#)x zy%w#Fvvb`XnH3?ulBYv8uT)fq4>FE2ipugo5uX(x{n_uybj_E-^wwu=vozg`%UO|G zsCyhn( zk`5cW5mmsUsSu}J`*BkEp>d<#ZQBS$a3Sj2$wyGZL~mE#86Q> z&8wD;*VfzGS6H>JY_c`2y{(2bTH3cRJn0geM&zv5V?uP#<3{Y-A(E(~U`LN7$s)+o zVb-}%UuizAiCY`Z9ZtWp>v1JZnCQtD$?JEM%&6mE8;hil3jB8r6<3ELK!2NR-m$K0 zTO}60=h(9?uSTBP%133k9wZ+uH{E6s;3YKTsw<>|98FYH^V3u3NV_R({{Uc3nPlaS zbPa*~2+qo?My%=ChhYBzU~T7`g7G}@2w_`oQ^|!Md{sKu*plJ9bk{0c)HVm?+NBQp zcz+8?n*q4&{5Bk86Bsjmnn4G^5eSHo!zqMO6BV0(4Qi6!G`Fkt=5`_b3G3}?A=k!( zr#Cue8Bwg`wns4@lG{y$ra^@F@GLm@1QG-y>mOaW@UdcjAnvJX<9AyFZNhRx4&3W{ z-+`GCc=G~{@YVldOpvmI0r-ytw`$T=w&E+m+qQFSDHRD?J5@uffE$+Rq# zWNZ6L!M72#2bu*^5>j*5tY#h-PuD+P>T~t$eV1pxVy241t_`HQI8~2*|j&+gKL}iOipn3j`*G?!xrV z5JN(1>*?jTOPMw8hh>o#EoUSrQQ$`uK%_R?o%s^Ga!e^54!Xlz7 ze@>+hlEu{5#vG{a%ZWYDBqsz1Cfj)dPkO4Lp|7g`an^AYtF2HQA}g9Wm7BZ(*S0exvl4CSZ+s`VI`7|(Q!2|XS|dL36uQ(nNFo^P0ZKK zDLU-S)_x>bFw9p2{@YIx7m!F*dlDk|MfCi2o%By3aNDwG!bDdYN1BNx#@ms}MO9T$ zxhnoWGx_hHiY~4)R_i^+Qa^=+IX*RCaj7l|N4I4{{k;{ww4}{(_AMnkkwj3SI*6F# zlyix8>^MaK0H0Z-RCXt%`Gpk_#(PRg)5(_dB&aBhj>;&xO!Y+gHX#mF*PMoa7aQ@H zFL5qa5gbMIPV4yVG(%|_Fc#6DFfkmB!bRil70M#zJNlxpKvEl$(i<=QQ$Uq0RaH^K6%rL+@m%y1P65)@MS5YR*srP^BB}0d z(2!I!-x>8!$5FT%u%3ll%*gJakEDSYr$aP)I3ou1 zRb29M3yK~+a-aHjnjy(4BYhUm(lR|=H9QhpEc*os6&I3zGON@22*mj;iXj93;z*DT zIi4!f5uzfAFK*qJJzNY;L`zxLm2Nn(r^P0e97W_Vy4d9Z0K+_U)bIx^N%CKWLPp(s zxKGY!x+8)LnN&~HzgE!#8`YDxVMe8_XiON0)jnisfZ`#cBdd&ZRqmd>dcJJyj0{h( zl_z8=H!U?3Vhe6YG*OU(4w-Oi%==Vuz3{(;{PmgFCjz&%*WRt#iCNfWw-(;z7v(hD zU=kF?Ku}sh_k(EONKml7`Dd<@?^NyMfU3w2?6;S*t(?ZKA|7n$RY|DHPXXixG9R_X zH6k@Z6a>NwsU~{8tdf3G%upuB@%k3R8f}wy8=lNlirt5T31a=o{OfHvIlHY(}{ z6-g7auU2;6X#z(<)F~@kw9_TZI=UMF0Fkxn_cGmKgtmRAWUSUCq6?%l9br;Ir?-$~ z`!89Ysb#2D6q?f!>$hvIvJd)3_T9;}32IHbR?Im<(kx2o{#Mk9gLB3%sd9BaR2$?A zs9U@h?sccFzQ%~b&n>agA{tgpV? zeh1f=Z&Oi4jUH{N-&o9PMY)X%MrORp*TPJMR}fGe>hN`d`O<65Mq zJGpygl6hgImmN`k=|TIPX`*w3+z^!w6FrkE;I~pLHJ0}+e`JwwtB&^er5Z!}HC+Yk zu>woZKjnG~{KY326-N=k9FQpSK_pypctvreK(o_!J&u<1Q;nJA7|{e7R*=OD#8T_dPK%*ysW<1AC0`=A8Iji z6a#Z8C_*ZqyQyy<%sS_+4tavuUc8ZGEq3ps`g>4%$EjT z0TW!Pinu(<6%`w7R@ym~pTWB$Mt1sUlMeDD?Z0H7`Oc-NKN0pI7%%{yKw-a8!NF;O zb+95+Q4>`@>DF$~AeOapX-l%ZL-p2yKWEZTzu=wQ+Uvtz9Oke@@yB++QB_=N6&wV| znJ@v#7pI;K_Imn{aF@F_+q#~yTlMsc3dxUBP1u`wBE|UV;5=~QPJPJet|m}Z8EnCD zUAtM~bW$T!8dY_j#`X3S8uf#_r)0rh&p`0dZU=w% z)l2re^ytjUhbE9?v;3^p6_7Q}vTrMZ97qJ)Kq2AoT&GfZ{u08u%lgV~Zp{v&vNp{{ zVnO_LK1(n~Rpt>^2or3CC`& zW{<)ar4h(@<3kb>{^}}wRXF9s_LsY$yJJymx+VQy+pKHTHft?zpsDNk%Ll|E$q9%q z#aNL1Vgz9G$_Q%c@f0*JOVyK6&A(g3)^0w+zuY%1QYX`P1jLy;rnM4V=~H&!jSbRP z9XEUg;k2Z_HBfO;2*nqQt1OtdrfqvO@MDXv?{$^%?k=oh{XQ;rzT!;Eu~z*q7W)3nxqX}VUcFs5inJZQu$mE_mtONWAmmvNuwbo< zo(~EHDqy3_DW3Z4#cQ>h!?XUUxUG1GMawg*-FheUT8t@VC`Sd>8gYpY$8Am3P7WZV z5c6NiqIJF37f#hv>UZ^xLvllql51{CisNR2IV4i>m?r&za=HD7A5h7E7Z zCL}Wnk@)2}gnX@{Dsn_2QV>kxFq!4st##~Pv&)pe{{Y@0RQ+XPN3J5++Rb6e&qajy zk=GiC>Ul+pCaBY9+Lt6m<&_>JzP)R=h3n<{O?RU0vGxjG#y-I}Xo&Ts7&AH7hbEpT ze2$^VX}2TrZb7aG7{Vrc=ks@$OJ$D1rkSh#p=+;dZdAl~dUs$+aCSDU(Yq3UBvlzx z+?0sZKs=hje`!$_Q3of5Nn;sz_&n;G=vU19GKMr5_Fre&I^|To`)ZcVq>o@w##08= zCxON#CqL}C$e@B?yJY}+E~xFJP5Qs=EjFgZ?Hz($#?Pu!BQvDv1l^qbSxv|m35Bm@ z8)<^_zJ%YI5k(wKf(WRmKK&-8<2F5?1|M3)nM0FV~UO_^XUISLseufsA_ z_~;@426e2)U(&-jsb$59+fa^%E9V2#&& ziXi_0696SfnaQdrT&HcD9jud!=+~=#n=aR0+36EzJu=3gJZimXYqkkeDn27h#A)Hm zVK2gTf-f*_!9j3&0lDNfRkOFccIFc#X*3Y+?6p1K{{UvywjG{yxAvQth8wgJ-(|CW z&{W%LrkX_JvF5Vlt*0dB*dU^kPE)nE81DYK9iqGI{R(vLgG8?;<~vn6h!5Drmt3Te zyzI*)bH$b%=HrIax;#|}84wV;1tF`TMoc7;WgCv?Ckzn9I%hx8ZRZ*3f9>1s3Vq?vvi{Ed zF0Xg`<6(mCsVXgF(jIEMvS2GQMSx+YW?RuXG$X{YB!a5$P)n|VJ-2nQuDObCXV80Q zpy%5Wn6auoUWT2WgIfDjVOGvF?Xcr9MYn63i1DoAZhitWFC)mRk$A-mcGOaOw#6<^ z*Amxxt#e|2nk%fekJCajHLdRO0?78U4LAh?5b*{%@ z_4m>?dyVZ~8=6gh+$fG&LW@2^0t=$&FffoJfPms3Fv_VRa#UP){nBuJ{%XV@u72S9 zw?w5&UFMq0?H{qH%l<3t3%e3*#;IQS7(k9i-#U|B$R~$ zRMMgP_AM{kb-UiyRl6?a>?+_iki^-t#j|zh6;vJuSYVw1F+v=XsPJu3dUWr6Tcw`y zWyRe0`|9m#HrIJJ^rA(XS#7U3WXq=e79n+C8Nl?q%TZ^n$Pjj6VTW5B(olr`%4SQEb0Y5TX>mj$8g5~W#_ z_1eJMHFV<-9muOpH#$2o5n&@~9SxNfX-IhyJmL{A9&@f$n-t!`^q#cETz!9Ja`ljc zb1Y+79AcEf1b%GD2ILt6x5!qaWUY#${Rk^SXw3cd5zXZLw)bHk>$jRIxPpR?)THcqbA z$6q2_k}X7)rrSwuP8K8t9&Q|n#BG<2UC6P=EfR6%ubG(7iW#9^>)PZNe!2Sg>XT)^ zp7>3O?Wqejbv4FgmsL%|beK7$xMV8S?i)O|$_1|LR`NGVNd}RLRSZ=slFX8m zBQ|9sSSyFk4abCwisQN`Q61%L9d6mH{eZ{Rnsi-xYCKFi6-{O@sVkk__%5TUejEh z7nVwimlQ-q1stM#x?0c2xLvW->2{mHu;u;h_7GocI;1DdTDj4lc_-L6W+X8mlPS`0 zTW`iE!XgP5xQ7eJyxTRY$AKTQr+>6r8ij4Hy7jirJO-{)nzhQxmi5DRZmUFy?73`= z1bfP%kZe%Vw+9&MdsLbh{@Gbkt=wMd@uJq=?US6e`&pPXN}hFmCgZTsNUjIf=GHrI zxU4!U&mK_mV7QRyY2;2e$mI{)nr@vBQIPhxYo{}^)F#gOzbzuR%byeprx_^?vGN7N zK~?iAnUawL@#tq72`6uE=7(z9_1a0tX{|mqj_TVC>9VE-TLpF1M71XwdNU6rcs9*M zIe6RW%aET*)gTQw*1um*)u^myJ3nBdh)&L=i83HZvz+_SJ^(YABa<=pikw|_T4+VZ z;38f7;>+!KmCy8F(&)C<4((NQF6y8>b=CJ4b?FYp=;rH_Eu@i}D!f8$c)(4(v&=(1 z)2!YLbopt$R{g23v#r-y(`%B>)t6#F7AwgrP_UxaY(+PHkpZ9-<{*oO{@a{?J3>A6 z;~FiaP3%E<#Z%Ijy{70Pfk)Tm!{q^9mUavrsRXiJEI%Df3P6n-4-s1~5o}m!P1(_F zu5RS)i&$YFVg{qNHW5kqm}WbY5R{aOv~_)koN#1{pOxIYlIz8;*WB46*Rw?Iy2`qF zRxqbZMuZ+2uRR>q-~bYKI2sZnE1Xfq=k4v7E-HFjeU_f0<%l+D#azaM$=9SdOoZl5 zeeDm7RFjC387QuKk|BC^3r!bL1-j3l787nWK15`xa>1~5LL65SKqMfdDhLr|6ub5u zepjfF(E@&2V%lQGlLpQcjX-JjedI3@;Z*@Jyt1f@qP&z*GlX8FNTBWPd9Jl)vE(zd zjCPuoLZC4eTqPt{L01T3iiwWG8P9%!l3m;J=YI-P25ntMdu0icXm~}A>8F*)O&8pQ zz?BpH6W6IE!Q;;pdh}~IYbC&)E$=MYGh9J;h?*l$5+Vq;yb*nw&veI31tY$bg~uyg zTGG6z0n0dJAPGD^O}sUr)&_=VA)LO(Qz9m7Yl+cs+SWS`ejj5 z*R0?x2I05u42|}RN7e*97K+2@*g1d^9gWJ1y1-SUf+(h>{0e&u*xi#L{KiaNlgEMvUk)5S_v*G74N%9+=9auYR+N&9H6A zvf`sih;6Hl$VEjVRZOS`7u%DGOBNFQL5 zT9nk2;7uT+#{v~ZL{DOJ{{Vt^{{V+VkG%6T{{WAW!&rHr?M+~n4Mh}HLBU)nWd8u} z^jOWR+WQrg9hZDlqcSEw>=GE~`-r}|_M&vDA`!o0!a%lp55UY)i24bjnRY~8NWGVm z{(6xGn3`Bp<~l?*NwPaW6Q6FmWXho!eYxLncnMoHI@dxG*HL=^oo z?$1(%%ONV&s~3SRCAi_1!pgRY+M0@Z6jvFnMU0|!68P&Dut*SXFgiXVB zv{y%m6z(dRU)4(;Z=t3NxZ1Ru@?y^F%7QE?O9xir`+?S_|+Z`s#yGE5?q*m+Erqk;hdvAyF)^X=PuCtJgr@~Xlibz=`0tNSD zDz~k^+O$?ha8SaE7l|%iope~I5w>K%8by6ieG&+bI)q_X%U zFR`^BuUVN)m+5(XS@v_5Oxs!6oJiGD-9c%%%#)0PKJSF#gRL246$ty_xOJbZx)pjfl!LmDRv%ce_nPfwB|BHG%d*@~rP$Xi zUott(7*Xs|8X1KmQ*oYc!9?c3A|SVx#6bj+dYg&#=eV(tQVIrRpjk+>i84a75}_iv z`A0W}3RI>D-#0~7M}R7_iYb>2x>=3xmbIOO?F%h3ZFt^Z!FujN!>pHONaULWtPx1V zUZ}zwWDmMtg4us?1x$oPtjWf&WxJ*7`=yH(6K&eBqh{{KsI-zLTB3h8FrP(r#DK4x zQJiFhfuoK#JlBFMc21vBn_zs6Z|bcU-oc0E{JP z$IO%*TnUc_!YHXHUO8gi^4)J!tBeGlO6P}(^nxyV$F%pe!?QtKXy**6`o4x#wf z#t0h~LtvEdge_+|P*-Mn@1n4=RT)%WHq>QDXg*_}1P>x94<|tc08x5&;wY^K*F&+! zvne()o0}@V?C}Kt%>paYS!EZtiD}Ga?vAVf!XNtFLW)JdxRH z;~i#PferSZgjRf#9Enogj4Zb3DyNJYGi^BnCvKPzY%w)m!M%o;W~aQX-Tq@%a5tN2 zGdRsC=N(}Z$ri!35fw~S+H9~$Drw18dPcPpruDr_J^gyr0kRe{U`?G@Et?rqZ{2X@ zM4TYl{FM0QrcZMJ05B;JZe43xrs1%$dvUeaZ65jh#Dx`+FLdB9hYRv@7n^S7KbVuSPq_(5MmjZiYSUIpzjG;$1P1jjOcyfqC z_~5iRj?UfGJ-6%MwOTt!yBkEyTSF+6!wAA>CTBFQhxcWppeEN5&k-(3g)C<8rBiP< z`*t#Qy_yr07CNZ04{~aW;BHO5jHupNf{nSw=7L8&yy!SQ6*(!2DxzxL7TtZKM1s2E z)dgkTs4dlMX$~{$<1c)5RDh1k2H62<(~`WTig-06L@vxC8CB?(3hOpMU^%cg%4AHtniqi(kuHTULZxrz60+r*1K%!eznoWuua*-APj@+GP_R z*D2Pe#d0s+Uv67Rp^+b5*Q1O(xb^`2n2-VHnFB#l1sstyPN@cN>nA0(re~jJ)IS(an9|J&Z4c@#PzGKeZiER3ZJJx2)c}o;;K-Z+6`?d4}*> zYn4&1B$WMjJ9Q{&9ucPopJC`RP?Ax!elIIZM7@s!s3vMS{? z)Rrf_lpY%Akso+lR$Act$S_0_6C>t4NeplcZ*Et|^fcA(a2$VR{{U5NOj};qzK~M> z0XW5l6Or0|lqpByMR1Ro6l@tJYbvHfyhR(UycuYI*o!iqy<*xDZGK4&o@sy{l{U(ccvz@ck)6`f@+bK$hO{Ipq^5T)xp`&rx5o%UOeujt>gB~)n|y?Co`Mryn46tkF7oT--B zBPCmCE`l)~gf&C*A$XVf;d^wp_=_a%t`Y3RuKir;zTHl zfrkk5jre4JkuU6bY<|bPuB5YjW_9Z#ddkV6 zBw{SOpOCHq95MnfD4f(!2HsIIzt__A-cz;u@Ll?MV%V$hcD;}sh!?k2aVP2j0A9_8 z(K}?6jIdzjax@WUM0jZ7GK1~s>L#4J#p2r3>$4pRty_Jr)jr{@PL_XdY+KZass^?b ztUkeCv&nHZfULR*VOM0lY%tU^>n5%H)zD@0!gUKSJ95d-eXMAwIy?Y#I8- zUG;^F%&^MX$a2YBuVma&5T4>ZqCdNbXO(px2U!xp4w z>ab|sxOz~=Vm8gJwB>x7#)a_lvoYsb%Bz_N8+3iDtKQB$mhYpxTITJc{Y>xJn{}l9 z%VXE1vl~{`C<+;QE*vipCZjscrl!3I%0!Qt5`gj&Xpm64ySya4sjB;Lt-kJ~xR-ZV zt^Gmw4wT_I#QI3J&dA%Uq&Cl)*%3vkiZYPgR|V7oPbsNmi)aa%y?bSA{^eoz#Px@` zx%F1JBq3@409IW#+$u<$JZXz4ijO{?PbxZjB}7C7-%0i9iDdrj zO#1RZ-S$`6TF&>oT*Ire&?ZKoJ7;OnH2B~uQxh+rJB2H-Eh2=$6HBKlTkdPOWa>hEh z_0KxY{hK^<6UG#JWvgng)OMM=>{E&hF;$p{9SL1|wi6ARqhj$Q2=H-Nl6Jz1?=C0Y z_OajFWZOk3w7b*LwYyaZuGN}_bzn`89q$Zad673;^8V2x=2*(At`$1em5G>Gm$x0X zD@JOo8V#<#x!Q#}@s?DHLe~NYV=Ky!Aub7AaZp#6u5!IxT;_fUbWPFO16Lwk33R6l zTVm-uV*5?I2vrdLY&MOu;IwK^5hhI)F@j9=TQi1>`r4o6tpcX)YwoXP$f<`8P`@S& zh^9pHab_bg$`c&m2|+R2+w98A33t=IKDGMhyH}H|-4vEA>*K;=+FeJMM!g=H zz1OL38ectPk6oz0qPY8I$koQn%)hM3sA>(Ww(O)o3t;)C8;Vh!RD8^lRFFXzmI{3@ zlVm;9O^swWf9o}&({&fYnyoI?gtA9bh|QryH)KA4D#lp=`xTUJhSW=vE&*Regme2F zVA}q}jb7*1Y-=`pUE7ypRc9q3BMi6^`ADgEHE+`CzLM0wSgb+nevu@SSG}E<0 zsIJ=FllBMLRr<|69C#ClR)F=qxDwrx>%zo`;h0fSsX;$B@!2v#1_MeB9hy0 zWzKiPK>5S$~X+K{&8)e_wS5_ZoY&z*mx7I$ouawf>Sl4nH?I|CKn~fbGX~%rZ=^D3?b|^kvP_8asbedSShZsG!X%FK>%(vtcA{=>tBtq_0BnudL~K6K-XZAKyA9e&j`TEn{{ZFA!PX6^Fkz6RY&35V0#QCr2nn`< z#Fa17d0FxPy!y^R*fIXko4a3Gog9apfmYnf6vlDt;fytG;EwOlW=>S~}xsoQRJh5j|j7jbO!Ax=By*$W3D)Hg>X%fcz_MMX;|AIVov$MzT1 zwAFfc#cOXEH=V%RXIZbTednjdjV-nF$tiKw_c9IO#SqB@_ZQ_ltmRhwmboW?YNEc6 zZHZAPz4MhW)d^a&kmOS#n)%C;^8ny4jS$cQJ;X#nN=cfr(e#W&uhb~EFX84zmtf?0 z_l`Xw{{WVv;4Vp$bBmtdDx}^Nxe9-m7)iC87M`sLrnfQ0kut(15|pWkW=Y{A;3C|1 z2$u?@lvOWwa;mB6)a@|DnOFMMTPym1<&qUub89f>bMcH$Z3LrbB^d~w0TaqY$yXe4 z)?}>+NP3o247nAj;aJN8W=c3}jjOVSBc@#BXo7>>7w|dCdh{A8Y-_>G3rUR2czQ@%Yq)&^Mb#BHfJZL)FeY#Rp>F|NbS3Q++j;0*8LXl~USSrzjz#wy76+$#^Re!jOpM}P8{W@6=L}b~! z9yFIFqdr9eX(JvG5L!;|D*7ku>(+6kjeXV*JUG%xO_x=-C8MeBRc|VyDwtGNMat)> zv7Lg&cGZ^=~X9@t_z zBDQDnmTj;yBiXtm8NO}fw1UX5C3uioL|$GoQdLfC)}+NkvzfGgdflX(mt|K^kqv*+ zC_<9iM%`-!KvBixG;P&FaMcTjaEhH#t8x;0B|g*?~+ZFYwaHvbEIfs%YP()9b{s{#)V)L=SMf< zN0A{H;|U`uPJ=JFxKmCk*?N-c2IA;nY052r96h66(W=FgnRhMlhd$m2*hW$KUo8uQ z1b0W&0ePyDFJ(ncTi5GzQ~f?zy{*KWRTXz%Z_1dnE*+0YQi{z(_OTVOk1jGCM%^F) zK{ID3+!YYXFgMpxYa-vw1~i{g#9%y_CQk|OnbL& z)MvN0>;C{(X%;c8s_nFT6oA~8EF>z%u!7J%$kXOstwboZQa4B@V z`Eq4hZo}b7{{Sff+hxZiIO}L0IHw(eBzeFjUf+&F>$yLI%mksF&-#s<$Uk6|jY8GO zQqsCqHf*G$Pz}UC8!bq2Lk%)W3YhGuzTo$DzpaQ{k@U>}0J309O@2P93f7);lLqr? zu%8}SMT)A|jESe7Y2xzk@u$z_vb#=qQ?#t!EVms#ZpE^c zi)i{aWun>Hvk@P4r=4PB5spE5W4N4&!BuU+B22212D;lznZg7qkzsBcgo`27BU5x0q;N-)s*?A&hBB@XwrH#F{97iwxyQb@9i~!P-brYn z#uoes%0RRNs}YhX0l_%TkdlfkyimC&HLoOHUIpsUiLGz!-0NFgmG-eb_t1^l6Ki5P z(}MGW`=+vyuu)Z3yn=}w->Qv|t8 zs5+?N3Uc?aBnwuLd7U0}(Q4&Uuxw6=}P#*>@%xhY;2>%Kw>O+$Q@EcWqfGbII5k=RWP2t*mkCm zJ7AK|z2vu>3EM{y?BP2t!}!M?QM7TlToL9D2`Y$?kfwbRQ$21*YtOngzppB)?X4tk z_VIT0m}&y4%o=^w2FY1@w%Z86NN9xN{?y3;E;{A)t2)a3@!e(Vvx3$I5KYy0Jx0a$ zcMZaG?z-K)Se%FFLdtM^%p#|NjzmZKLB~nkS20oR`^87r5GK{_8l#m(7TNM`is=u_ zoaKTu{jdC2)EaFbM-kudAtLcX^iDl<`kftl?cs0IZnZQG+SECtt;K!y1F^NZs{&~} z-GsLrHbNoMxtrLvQyl$ETUF8N<>DezWYZ^TUykScS?3x*1x^z!Q6X77dLMIp9FOd2pNNa`egrXT#9CYoL z%U8Vq*>HF6n=M=F&8ud6Uy9E7#?2TlE6V0-BG=g3y&;rh7D%g!)Y8!k-2j(*_ctJ|y+2n*-lB7jpr(`22;7*vp`3*%=3FQRggghM~j8CCEir1SQn@YWB#iW?J1x*`-LXX)W!b zG*(+4)mI(3QXhH8fnW<{@V>)h$qo~e8;>t9+(L?vmFrby6T8OQ_ZHn?)nyGw$q6LZ z)oU@h?Zr!OAlkePa(+`y0T7xr*!S*SRWa8d-LKYX4!0*?Br7c;ijSx@-J0&jxwlf7 z*jO!kt>&x6iS?7(W=m%AH0U^~0m$ndKykp2iE>3n;nsHfw)t=C`@e@oHTNxl)0GtW zUtHVCZjx5H8p*AveUkO>@>d2TvOF~)sL=o#cmeSDGKK1fm>!d__Ud-aac65AU(~dhh4YUKHSr4Ki688xvW8t5G`fA%WnB2nHPwOvwbjM+43qWkdZcovUc3kPoDxB zt(8xbj4KNe$8c<$+z_I}*4a z)txt1+iSMyo7~Oj&s;X)?6*ufq*?V7t@O7q#{y!f{znXj@=ynh_P4dVng0zOV39?Q@5 z-MbdgjsOS!uYIYg*0UR5-?ZJAU%G_bgS0;Tkz0`k$R{ntgzUl=UGR{&$B+KwYNFu) zp?iBy)t=H`MZUMu=>Dww;aGU>HQ8#8zIb+CNkQi@xGK{mxauQJmQ zv<(0s08sszBI|uR_4ZxbfL3*J;6}P;vscxrB*yt=5BOLP&vhoZ#xlr|z>oJEF&7kg zr!GguKm1=^dUVeYeY<`_qfOIyO53d~VYsl0bEV6()vu&DPt03Wj_b}&vU#C&f-Ly_ z0oK8IgMdEqL2<>;f7iZRovh_rY&15N$+J+Y)oL>p`&ojsyHIFw<^WvFHdaN56gzRSqGpjA3LW+4pLL^i~$`Y!t zyC^=LB(;lVqm5Y%8K-SuK|4#VvSp_chSeW~C}OgRq-i|S2z;4R!4G9lD7|Z#&-U4Y zp=gg>1&vGbBU!Utf5No|(gPWpaEsjMKOnk z+;0$~SH`u|JZQl?TErn(b0>p&#RVp;2g{MtBD30Z1e zuY-nbAzBp@ZNecWRQC$6^}_3JCe;FeLBjw*CvcdpLPw|M}4T%CWFkGI1vR~ z7LiDlh<|Z-fKpVHov!_xWp}231-RZDZ$*zD42_B*D-5{ce|j^-#9)rwpplChCi&q* zu;Z-AzcbRL`;HgXR#i-ulc8&ATP|FCWTk~N3-TixEV!kc77WS5CJ0qf(+%a+PFPaU zep>6XNPT-pbpGc@vDs`jv2_?TSa5YZxrR~OjK>2u-+9$S95_OXMa+!Qm;AhwmrlK} zZ#*~Kw9NMG{depe*d-CEZ!#4SZe#dGgP20Y|^~TR=-jBIOxcfpiy}P!x7HwLauE}_zO^WQv{23V$5(}JA8F5rcu{Mf_ z<6Pdb>)Ou*ueQFo)*d}yN2t&(;jMnOi}HdxzY38_T;(C?5m`q;$&Gl8pl#$w6jjGW z5S2Qysc40=-Do<$*OkouH(@f0`css$ZE4x^Pn#`7k)d`KHJiu}y4yr@TgtM&oDjKn zn;N{|F1Pwl9A+x^>QnmiMyTA{u!FBnjxR9WVV=UeuMB6&9Y+BT0!wI|k+B>meI;dD z-ha0pR%X#{c0XiY-d@tIcK53r*wNUBA%bZoGTK8B@hC>hxY-+k;uFM1Sx)=w+w!|k z)>^C?6*gfvMSoy=x`~uOv!ADJRy)lig4x1~DC9-UM1a~CWg^BDbJVx_G=Z-Dm$2N! zxsze3S4;a2g`WjK*HV>b#R$$zDDR{3$~#LH$xX#^#067C5mn@a*r&?lTup~tvALVD z?3)Y;n=NH;o*&uF%b5vd!n9CoV+6=B3knEo2YlC4LRGQ|+aD6E9@JRF5gh)ByBUXZ|w@4CLt+cx=C+trO@ z5Vbp)w=U~i#I(PZb#U7#&nv|f4zkc8gXZCgDRD1n9x2qlc`Q{M7uGkMK8LOCpJ;58 zF22{5V&#|B8t$s}YP%@S$dV)vIUY)*UNC7I1veYO3h=_J^6F)+%a??zdg&Uj(mPG8 zY5xEhK}fc<>2?`k$W64PdNDTt0LX$(Hzb~UlW^Qo0!~eUc2rRvPYFRZw=G)xCu_3W zDjU}+B;L3Fnu3*#GV_l4yu6^tX}q~1<8+kJ6D_CjBu3CWwUMolbldN4taexSRi=@r zSV^UyUs@{sh&8UrazaCjj?Ik3w|}-k1fk5kkmL{xsm3kEE4wnf2J=}n>utMd*);pd z;LqJEt*3t<6_T;;%a1-X8*)lE_>vp14|2#lOW8`z7xOv#^$KeZ-n6e2- zqT3`r&9xLDQ}&voalvP*m%{YctQxs?9+?{Dr)m=PN*wr2I1O@fMZX%nZX=DUx0EAX z65$CEG1S~mSo3abe7D~g6sFpk!a#ne5~C>d=w2q-7nF!s#(+j7sw>}-s`Za63RT+$ z4ab5^$c@(P6cWL$eSvATE>Ed6t1rl<%|!`Fl~dfQ%@^H{wewU~Zu3=R4n!)N*5u2Q zMFQ38`0o>Q8TPg!!k}aYe7^NTMaDb&^!dKQ*J6o7HYBB$J1HIS z21r6EE6G0t>b*@E?ptFTeXDIxw~G1LR4a3lu;5k9ktdAR)l^dQ5h5D6ys(9i-TJ*` z6IT9k4GR_Q4W*^^0g`{P(N@$2@L4YNWgra-ts9>^V;Sv)l5vpX(*D5@d+C(oNP30#H!D z$~TV<5_y{f^+7dJ&T*dKob{XF7?ER7uHVSJ*Xtdzh*0?7JP&fiP30A^K;@SOOBw#E znd?1f&QXq=BJRFymMkL!P^YN5Q8Cv+j%{$uqHULDAwu*|`2PS|+6dE|nKNp*Y4+Ke z%(9N}os|J4P(t7;YNOc^J#+c$z{JeTDNo6zs*I52)cF~n*(w_jkQNc)QC0UitDe~O z>QSm4i$O9>M2;{(oOnJui6N=Fxz2wmsF@sodShbnS#_9_Z5GAP)0`sZMg4>mO;c-Lsbm^;!j?#2rylf5l`CdMqFk>FY#g4u{29BVUf-1O98Oj&wk45Q%b*z?%>l<&E#a{`w);R(L zndB2+DgOYxRaYGclOl|3R$-x_i6<|TeaW;@OmhDK@DVZk^aPHXU!4KApB0SEcO*3V zE>#SORI`s&fZ*blikAtqMW^P-=xa2>6T20_BudXG_eD67_F5&uZ%+pm5_?P{jN6Q8*Qj$ zk$d{03UyUgofgPrs_ZE;MEhF0b(eKf0p~omuGS~SY4+4G@g$T|H4#Mpyw}kOtfOFk zW3TO()%Nl18LPIH0HIYxW%Q9EGb9HhWalK!ali(Ec{U)5f`p>E$fsGi1u4DE)qmD? zCiKh42CBwHse1&ArlZN2*to2=M$$2X2T+m5_<0u#jEJJ5>TWEMLF%d3F(X&~Ob>0f z@P)S|Np@t}O}z7c)QlJQHyjTRBSt{3a!|tMI+rJsNqmccr)5l!Or}i5%j%9HNkzj(V5QmxNbnKC7T%ENd-J5MR!EsP!x9aNZ}R zxB#d?SHGVTlZ*}ll&&tfkQH;k?&Q7GskWTaf2}mqf%P2pJ)Q+_yCUG8uh|ftY<@S$ zSdz?-i=f#U5VUw{urx!@6`#7Yc~HjL#~mjNbIzbKO_j{{Zb{ z`KyYZdM3kH3KeC+jEWFAk>ppp+by?idcqzG%bR8J>)JAZmsQ4YRZS{&4^mm z>8rlt&}T^2<~db=L1x?0=GVzUZcEH#;=3u-c2uqe@S*^5=467oN%zi1>#M7+@4lh}pd+2WLx}rB#BFa9y7AN+n$de+%Q9Oq+RD@kZZ2jVag>&6|Y@{q}8wDgs9yc#qDGl?+b(E`x%DC~EjA@RKiKqA?3SIn-D#Iz)T{2_33EVR7LFvQ zA0%LbRGaP%wyG!16w3;|62%+8ZnEZmv^qR0TS#%MrZqC&rYOKkQtMujGqD;_i>;JY zL*#9MlBlUKEP7{oZ?9f8Y5xGL>^8m1gG$kEVbasl0w(_eRZ$&YdFMVtM}_2d&Q6;A zboYMI9$dI`!ly~)n{n1YIkoooG*I>O7GOth#w@0Bbofedm^xe)ICl&xiYjCLao1gP z=D8E?O|HLb)`w51+Kxq~p9l63iwHt1(g7V+k(6*BR6^p=DJE5W@!+f1F4k7(Y;r?8 zGqN{5cB(bl&PSF+Nv^#RmCFgIw~j(EhCQ3Vsa&aF$aYhP;`E}5o1 zW4!Cq-jcB0m|Eii(Me$%kKl~*$_4PUDp>uht{NgHRXx2sWQ6*+g?k_Fdu^6ACbg%~ z!;M_jHfOOz4W(q_Epvpw8TAz|coaY%BKwyMgjCO3>DpPr+oj#C>SfE?EZ&Bdj|C75 zG3}$sdFEnEZPyY(!%>nZ<3!7#0e})5DvGauU0O~BsV^hMlVwj54X&+w8aprA!G|71 z=V21Kk^BsU&J$7oLtICfVMfC^>O`|b;#k;4X5>R=uD#aA&-l1@5zW?u8z@SSyCw1@ zC%GVsBV&bCR8=HIUXoo)m{g~YNmU`~km(^prZ$4HUXzyyWzSbt8#MxKc_IS$Os912 zxmD|C+KDkEP&an*N_M%XYf-9~FyvKf`A+3zIN}*1AOIi-6jCHlZZp)YDl?W*LqdmP z4n&Xi^x1A$&Aa|Nh(#&(&<0XhW&sy(oUX&X9 zmJ7B!ma}hG5L$Ck7aDEdgI8qRko;MP7F1>Nzam43NZ|4PgMd^%x^{8i9EbMqi}bQ@ zR*>xCPoRE_7MI^;YpRVyc1^Fk5;!zQjoV{$q^^Mf0B=8A zY#OZ#GIlyTdYd?vGMw2iTWs5#949gFX|N}7)4YUKq==UwRS@f4cFtV8S*n+G+V(bf z?T$SK1R7enb;e#s;QCs97DgvqBjF~uezIhR%zSp*j?JMeCMS`{2EYb{ppX=#W z1n=^5f>+L*>yhfgwQOBsMSOzsA>#-w`}rnGh3l7H6)O8u(7wwrvNu>ZA5u!Ws(zX3 zDQ!P?bejEE*j`kMCdc%g6D^|bgogU`n zYjJgL9>I!e(qJRbNCqIcIuwUkb(M?>@*Z#mdAE+@E8Uyro>AsjNN?@mvvM( z>6h6yI=B0Y*7a|+zxeBI+i$NX1#OzE6_!sUoyl5kOai z2C3I6dvm4fJVP$aH|zT!uk}BxcdD2gr5lt9wb00`mhGm_#gw-mGh7qTU zqwxUwFbDG3mKw>J4wr=UT4{>B!uU=|<7K=a$P8eBvOjF_OgJV&3$@c;?~v5i*j>f zNU?Cgf|De{9e!JczbVI5l$;O%Xh8uGQB>7SJW)E%S$~FmS=xUtw)$UNfwXJztulWf~H2+a3U@21>rYbH=Qb!uPk^S=6DO-GyAK8orZQ z{k2m~5F1RzPE3fPiVvBTWUPV$wz^5E_yu_y4*t-1N8*589UX+tvVxrJ%-zHz{HIs@U@6H< z1}ca+@0=lsuO({nDlDxEhh+X9%VvY+w2Iuj2WBC%LsyRmmdtaz?tTTOX+P*wLra z)?GoUpQs$2eicNsC#quHO+hJUvRxMq3J?MU5ecgtLB&GkN|QCcR-5G5l| zSvQ}_w$nPzugtKrW>tiD*^Mf5(4sWktefC!r^&%Y5*1OvuUx;{lfvHi*tmX}`gYPz zxAoS?I(_5OAiE`} zTliex>(1+Su|T&QxwGtekuPSpW;6&#J%j@4zllZk8TA1#Ybc$HOufM zlz6gAzCXtn-gDUF!iK2hdB-1Kn=ssTeb(1+qH3jFR}`x|RF;rw^$D{Zt!BnMA|}$s zNS`tG{xeRh5GWeqIT8Z)>PaZ24vNR({{XCOt&Z)_vHrSuTE2xIc`(YwdE><)~#%W#%9}2 zC~?MlVN&(qOMw!0O~SicckGA0=(*JEwi&9%kroRtSWb@Ir9(JSBv>p*q&DhuC*5^b zv1QEG=$DmCx6SS00VoCZOeQ zgfT}xM>ifc851HR42}cj7n^AmGG63WT#5`2`lVj7sI#xTua&Mx(=QI9>tK1{CIRLJ z)rz9ijiaLbk0=3WE5wr{ghf$m(X?`9mbYUjzQU^JT;3;cL169}aTxZz^QfrM@Df8W zYN8_X^-Ofebg!|DT{h02VXk&1@zur|HxL3UMSI9DHs{7}MeOp#nCLO|~44<*O}{>E^Zap9JGF4MtQ)r6D?_B1@i6ZxI!7eWJaUJEHgLCJ^Lzn)`J1 zv6_Klb+9l7&1b`5Ps+yyC4Kh@K!19vxTv{bL{6oM6&A_sNLFzYQ?jh!5zU=mEVlmu z$449_EmVHwlk$SPXgAA?Ga9YC#Scu5Fb8h^6b?SGV;}vlSJ)bZO{}T0{_l3a&Kz z{_hehmJxjvlm7rz>5Gi-oHykdvZPGPd&veHXoutyUR;;)?L_|o9+3qq(F{Usjsr^1 zAYrn}3a{-^MPEflT;r%V$a$lEw)}zepLNKufcHZ+?aRO8pvp6A8JC`xxUr#>(*_Ei zn@;#e{{X2nx#%&7Y&`U}miUuSnF6|4RXndE#(fu{$}_SU2~znQHo|aWpj@J&u3S&) z?L_DxSk?HhUV7!ScGjVJH6lT;$5MQ8$Xe}@6h&3fUHbOphC4+Ky*<6h*e0}#Us+nz zh=WfOK)CVEKqT@y&^6qXxgRCupR|9kUHaxQuAPeeQML)2o2d@it{wgo`LJ=n{6le| zZ3ZKJkd&0m%f&saSw!ugyGbX71Kh5)1dmNt*f}iV+Kf8`Ch#&QyyE<)9bPUWiTg69 zg1GJ2lO06sJggUn91V`LSw~iD8i+6)MkJFV^FT=ePz4+n;8;Y*;~DBrX5Yat?5%0Y zI?bK+C8MoNd0;U9y$T7w>rbhp4Lr{!RB+M2Pa>!7L+9&+>UN9OSnP1GQhkQMV3t&t zmnh`PvH%_xiW1`?Ll!(h@B%Y|aTNs`GvGvusnwjUEKP$3=U|4r1o+EMRZCdbvTU;S zb`mTYzXZ+FRAI+OQ4~oW{^B@JVKSKNNrvPi{dYE^zhj?KYV?NLX3gjlT!!Js0ikMB zhSX>gK)?|dKvyHh#}t#c1$h^>&kI2Icvf3h!xp9@L(#Vj3eT5j6WEHaHx;!B5aaWF zIHghd)#fC4_Vu3(OKP%+A71PdFLXKwEB2~aViWD&RN4_ntg&F7ejFhlCaP$Q zf=0{$-p{;89Za(F-qR+%YSr~lvrWIF6;okX3sCi#FRVhkR@1^`EyvWrTaM@b#>kVJ z@!$rSeZRd=d>qg<2u9=TO;@0sj0BJtc}H}Nh@N~wRYiRhtn<79m(<#$ zUt?_2D?Xf+8*SBfg`d9DUy)cc>kc{s#7d{eK{nb6NK%*0+@o3V+=r>HDZ3^p_3eG% z^o=F${?ATP>SI8lALNcQg9LzaSBYjIIELDoHt4n}h=fjHy0*2tu<7?m5aj9*Y;EGb zxa>DfGVI9kBg(D{qDL#HGGx*;j3|i{WM(cNe;N*7Vl1AnsPXAKYPC zKaCEI$X8a>PqBSfO_;*KhXibu(G_qM33+=&RTHVU&%){F>?+@`e$%elD7AYgeyxkB zMH>BgQS!zLmv4RPG04af$>+SW#aTcsCp7kms`q7{c}p}S>I&_j>w>tf+S{d{HbD6% z)YZgo=U#eI^Qupn(}Lr#G$^eqJH=2@4A4=vF0N{LXZ8mDbFXUj)|L|E%c3a*9-@YF zxbOs-4v4!QWJii1_Y_hCcgmoSaYR$<*{$xmZ(94yRJn~wZ?jiNx!&olqb85ELV{M` z>3XT?-zavK^A!fcrw|E1^5cn;%BrF-Soxo6=x1K_I#R2`T2@Y41K2PfQMx`%Jy&bz$p9kz~W2%=`vByYo!NY3R zf{D&c4!lCq1I+=Up$lj&ulEQzr&jap7F62HPq1}u(@vF9r0Uh5$OTrXy*QF*&s#_> z!x56QCj?T-FxoOmt(qt}CBv3`K4x)CRqYqs{{T~zqSh{clGMJpr`w&74{bMTI@Uw= zCm@lBo1gMSCW_l_x(y$+g-;3NLF+mBYvVjEm<|0&H%OqmV_jWxqBc`V+|3qivumo^ z1|!lmkf%&lFS=PGC+?#e|!0!j#aS=nt z<7kd@@s}blT|n3NUFB^w`biU_SkK&c2F4Z6w^bq}SrK735lS-3WyX~qksuUAm?Hkr zq8DRPRGLX+pS5brtGfuhX5qBEu58-0NOE-1yn^It&DFIr)}=(6EamrHkr}{NyQz5u zTU6p*S>?HS$3y6wJvNznc@`rv_BE3otBc!u)p^FCvebStp!r;E5yusU0u1p~QcquA zx=W6Irn=Wxs<5$Y7U>FFIyV(f5$R(j3UtQNrnxFQ=?brfvgYE6D&aW(ano6o9C`L- z96fjJUF%h|`I?@gw^K7!scjXkKxvsXpLRRkW5H#xbe=<1WSsX4SwkgWD!p^IH#+gI zQrES$`tnxV_t>cRoodySF)C_jTE`iPvE4#pUTj!(aN!biMw5z)yxbCj&P?!7-|NMSTJpqz9|{x3c``1=a8bJqS(z=H-i&g+F7o7 z=9*@PWSgr`;Uc*!<;QgeW4rzN4G6@BxQoY+YyM(%fM@40>TTh0Q zECPJ6Cef)%rSi;^iUBBsB62}M9>OT9yp|kH+G5b^CE3y5RNF_UW^848Le@cNlLaBT z?ly%kMo1kacz{I^ml;GvPs67BPuctjIU)MdZn_Lw+iCLTw<0ZTk<@+!gCC5d@D@q1 z1LTT|T)Uulsbv&We#hPk!Pn<~>n#B^!SVl62Ui8y9}t_pb&RZs~P zQ?6a7X@7?L_v@T_Sa5#ri&;zcj<+{QpmLK|W=yu9cN#ecgZvDt160pnw>RUI5JyeFU@r7K;B{32nBqO$5wzv9Boku6ZZGP zck3Pd^A3{Pb+W=)$hE4D(_D5qX-(>2mv zvSQSOeY@TLL85A3Lunsf>oorWYP&M8?E8&=XvBHnfx^jKnCtnK6{BTvs0L|~@uKry z9Z51v7tOnBmz(tzOL{$nQeXE44$pJHeY=`!ir6nMuBR1)mJv?mh>!^*khs?jgJ_D5 zFE2?tcD-)3J4xx&`t=6eBkLWfMBR25Dyu%Rk>L9KY1QFED;ZUl!w^YQL>5%!ur3f8 zWch~$M_d5{>!jQYvT2uVIJ`izMn!K$89u z!eE>=6jAoLIT!a%+v%HTef`zjrP@)C*#HX`qRe_71d>t9c_8a zn&^tfo-vK?Aih@(Q4^DW*Qt8*vANr4BOi8b6(3OTHU9urP+V+!y%wvkR$E(Z7DA6l zmJ&iaG!ux8@IXeSJb)+!Sj2S^3=+ECUVQ#jc8cwP?&qIYW@?{azxCZ*I8tf~3$^Jc zF+R<8NJ4djkucT5WFGNg9CS=W&;7N|rwB>A`r59Ym{NA@ijk~l%5+_Falvq2wT)Wg z<@*9TF2|1hZW@2$6KJ8xlaUrNskh5J_z?SkW`lLN-+foA(gu-pr^Kvk(`SCQV7%=s zaanEfW$M$OzpvTIZLX80>h8ylBVc|^WMJXgPIaV*TOq$Il36jF zt~YbZvW1rPQ=%tS_zJ-S4PkMV)zY!=J~^DP`s`NRiaq;v#6*emOx@$#o>9 z?aJe{*zKte+Q>BU+M5cbB3E6ZPB;hl$J z{{UDsuGdLs+Uv^LMTsTB@(gxI$N=Mj+VOGJ_NIF(Dyk$E{T{**HwG>>SP=HsE$Szo z4UFex$yrY_%S{Qo+d!-cxUQFBB=(Am5fLdMhKTi2QlXuaEO=uw?V*WVZCfN@O=(F9 zkA(_Dh+v4K_cd)0d|Zgom+>VU3sS4sq1o-*M%1%fswdIwhfUVgwm zK{I*MkNtzWZNFb>weLueT*PfgV7Se8#bAu7zba9&0jHrtPci^I#3Oi60J!Iwc21{i zDJWZPJ1ze6U*G=6sG$lQyH>5MC)g7XNjX0Fa=hgrP|+Lq#_~9h1_`rX97n099o_pM z>YHn&ywx^(3q5i*%!f`#EnypqroNbM-{?L%bVtla7)Dn*C9F$Pq0#ZV86nGIPLz`x98>RjGA7Ou@wgT4U z+0(K1=9@LRE-h2gz$@#d$3s_Tv@to1q)9|z=N$4(8ugobStE7!wN*(&HZ30K7RnP( z+}1s~zcgwm#uf#q+lu@^eeani*IifHdNX7IxKsrKRZHZMnX6gReNyb5YhTzPZT3R+ z`^(M8V3@NRYC93sZKKB@D{Y;FPd(!vAgZE@N(K%FXI{9yyJ?<-?r*avJzWb~wyv3@ zLbFM>?i>j0$7VEfj!nS^#UmqbF!My%u-S+rnQ|X*eI?&w+ke=9U&f+K*;-!FbTvgD zQtD-5%dbTlh@kA)Gb0Rlr7NzYHtQ;Ajqr34NK21d?Z+hKpSj2X0Bt+V(Qo6v#)4F} zjXV5Sj4+#E(o^gNkhVDp@I-7#0TBro+)As&J#6EZ)$64FdG+Rzd#}+O<}z zV8~|S7VD{nq>LDywg?-=|fYYO!O~lO8xU z!o*NkA~LcC)Bf8n0F#aJ0vstf$i3S6!pu+l)}L(Jwb&5fqM2rT_PZuDO1g$wYH=*# zP*)rdEq>;JUB~aj;PKG|3?u?%YO#oC!x#cp5u)o2peAg&8U47`$w$gzPw`O|R zV67D>WYnk6k-mV_Xo_jb#7W~%d2&u`j*Ny(xYiPjb*$4$+9i8+?N{qnM*wEmTQaA_ zqRHUUkvZT+HB!oory?)MMUzf+yQ|gOL$I{XVX1fe#ULZ)YYkzX;FTT1_{0J}^#oKg zY*(Hako!{|O15E+X>7IH*0(L_@IQvNm<;`kPS=t%^>OB~hU<#S0DA=RC~BOX{{T9o zCv2oGQ0lrw)}7qv&PY`*H6ZjT(}`VWqJ2pshawJ2xFT>ciaqT3OtsfetdD7xCKY`R4A zGME$s%ZrB<2ax{&n+ugrv-8NXX_?ckEvq7n(rm4+T3GuiMsc5$7+4YmWyb(eP#P7- z1Vk)km%ppRBtjZ0l4ZI*ihT@7^JN^kQ;ngD){!jUvXIPERu|+n zg(63tW4X*;MMM?f-AIlfRvx>ck-Y+*&2A~dD2ScGl>DT}<1nxgko^v@+s^t?3&qqR>FujBs!l1b#T zyiy!8;Gn!!d8uR6u)WLIthCd2@hPBBOL>N49YKg~wus}3(~bK{J1QS#MPKQTtel`t zb5u6E?1>PZaydqju;;{azi6o-+Afl1*c=12r(|Bi`>Q6 znQaV(KX+o}imT|Kj+)M)G3Tn7R#KJ7QzAC97-3m5Wc;Y20wTWLpKo7J$5!}F8K<%b z+HLt!d`>DCH~WwaX~}r@OlK?Ti`FcWb(@y!CQM&5P75`Pjuc}Ig0!og=lZTu2dneJ zrU=Zfgu%Xmg9-u3%pg@yW0+3Ji|hGZew}l_g<>v)b|loacZ``JY$hR{0<895Q7xs)YT_28@eCqb&Q#E&Yqmk8X8Er)rDcjT^$APRQ%75w#Z zGVXF+u&}UgqzHD9WBElNr*8d~I`w@?9AQ46RJ)0=u<1#1+7$Dj;U#%mXcP^#$uJ(iS5%L> z;V_-?*H5X6UEM3IA=g<7I)Mgoc_Yew_T#%aVv#<}52uLD1s}>GD&SFb-Fi;k;1}gK zq}@r09b{PS007Gd(6ZSI>nZvKu1*12HR>iWlJ%7h=nP}#cVc4Ru+za%-n%Z-}`LaHPn zh=!<(jz!wo%+ft}i3(f@Qa(ds)thWSmIRKJdewqTkz26^G<4cZ99q?7`xGSLxNi5{{n$Dgla!6vZ=7!t}9+kN=Mp~{EsLscU*N*ku`LL z_$RcvXQ{U^R$pOFzuz|sK#?kn?S#rCeK=wG9@YxS6mRly}q>)v%-ivczK-P~Bm~kkJvk=M>5cWi$JD!qB@v z_Mc;^1l#Ry;yq;j8{pH<89DM%ls^i(ya0(%Q{0%hvi(AgAGWCK z{zwdQx!6P)Z|oaKV#${lL6nt!E7iE9(q)xzDj4h*WiTgoN#Z%qwRqEc?8r>Ve+y365n=^F# z3+T9qqfLtAyGXS>Wi=^hFxtIg#u_&1in`z#=Qz(Cpr>s8)8=0kpRYajXWLhQW$b%3 zZsj)ht$Jn2w$q|Ct-g`PA!5Elk%KV7c>=uRiHNRns)^QryLhLGl}pmv*J~REg#Cs+ zePiD(l&kPMGX@lnNG`a>HVV*BWSzNg zW3M|QwpCTab(fTtwIRwPx_Ih$>#&{XjLLnPaU|{=EhO7{RszvTsFL&V6d2&?n^Gaj zNx|Y*0T7GG3xid{B4as`t@Rg{ss7+9HU9vubsaW~P_&CdwUv#82W84`&G#K@Vz=-^ zhy$JhP{4CVKwjPQtJAM-OEKSDRiyXzAF8aVILfwghBd~n^ycEW{UM0~f%#DZrESFQ zLH)z@<<{A@dvcfAdLP!Yb{KzSZd2@zUcC5u>g8QLahzhjV>W=~i0zxam~Vgx3VYYN zlA`s?x0RO_7UNN++I@#JQn9+HuKLY~D|VU8w&=SuEH~i@J01;!19IIG6Zi5JbrZ3B zc&TE|;knwyGf5{&*YFd4c5c460T7)xb2bz3*DOG z?XJh?rBSuVrn;EP{5z{wDIx@xD=EzY3dL*jjX@&$i^^ zoYo#_Me=Y|&Ew#>aj;QLspUz1zvHJXcEozCS1i258ydxq>{lGvESqt*#YNTrz${T- z1;xZwkBl~F}j#FzIjQ#^VnEFwu{>o!ZRjNO9t zq++XFteNa!;XZAw>bHKXow3*bi}en_RY3-QO^g}Z@KcqH zt19qrD^AFhXCWjbEdz`z$m4|11V9xO$2H~8{W$4w)UVM!wzv3=Vz%9vYG&M6*-DWg zWQs`{XIVEK(lo$;{{SZ@BTl&g00sfnPF~?{RC{!sxkoq0wsGyI-(j%W5x5P_ix$Ih z)>sPnXIL=sM;7EnaXe=jk78RvITt4Keq>+9}GM3_k2PLv4 zHbO&&XWmoB+Y>y~vVD-Hx^Dk4-ykq!2&3<`CUv|r zT&^;vz0(ONS%vL;U(f#lfqK(aoXq^pTe~HU z=Nm2@tLoi@W42Rkvg>QyunsM|6nU!3S4rfKapwsZ8zB@kLR1W=e*Lk3Oy*7iyQn(HpN7E=r% zIHUlg=(sB9Hxr6UzRua{3Q_%OwrT$WU;U5vhP69Mv$nT=G|4q}?bl4Yl^~bkOq&zP z4I-0(4ijsYc~D&j#SbTDCQ`rJ+uoa1t+ef==B#%~GR{q8I^lK%_8<8Sm2u~z=!JT#Mm~(D+&57rk+hBhi5-gCC>(Sd-0^$Ow z#Z_qKl!Z_xoI&Hmj(XQm?wY;0;d);^8oTWWGYURO_%%PnQV+$0{#wW*k z-C@oTFyjX48un>%lRibhvsuhJL;G5et7fhy>2=NTWZC4()nmrCjNtr9)(#W+v2;=C z%*J_gg5L}Y5Rl=q0Tq;n5I8tw zfT)TDqw9p_#(#?8uF2hRU9t(=MI=i$Gid+v066Uq-DlkFNyKX{gTwq9Cz@il>Q&OC)Wgc3iF#9co=-_S&t! z&ijj3pr+Pq?P$Uk#e*$JfaN5jo(#JQ^LIL6hAV|5Q4}`Kgz&DK0LU5iA$94$2lNz!Kw(XIN zmS^K>$07}cbaR6;Q5+ncG)0mqB&a5s>oB~j=-=+9)9h!cDd}`+Gq!uXkAQNUf=xFE z;lJ?SNb$&dtL^b<(YHlOTlSEmV3#uQg7vXI@44%B-BS98?3pttt!^L$?SEEgIXd02 z!hKnOL{W7B8i^s|L=|{B@=i?wssgUJOiQt6>C%Zn?f#`2v+THcFIb-E4pJ}`{{YNG zS5{N)$`=&e7J=a-bbW{d=Md&8)^A&DO@Cs4y6W|heX32YyxBguVgyT?4X8#uhGp9^ zl#v;(9ux+oFC{rIDyXSBmesNx&yBiCT+F|Bf4F^0zd)wDsh4x7ZnLFL+}pio4Xl!I zopwVal3#hlYCIN{TnAAY$cG_t7u=J#UFCSX=GcEA zH1bi7a-<_?!H1QvKs9khgcW;oUVVD)wzb>7$m^KWseZQl7fU3kJ&yX`B(akqEg|c1 zU`M)rlVBh;=*Z{dZJahnN}{Ua2_Y|A<}td3ce&3-W{%Y|vNzWn{oFtF_P2Q~r=rxz z2E^5}V9mpRSvan8B5b_Kj)12TMAVwjscoKq<5PeBu8nJLQ5NFu>-H_;w=s&@5IL)o zB1C!r06Bv%woQthuW4m@3M%1Uy6ndK;s@8d-l?_&HZwK|+NPJa>`hp)4m5_~F98`?O;c2fHqxF=j3A8#3ih$Ej*~tU zPP(7lkApXX1PR41$i3HHdg9*P8tfZ|Uty|AVcJ${>t-`t3Y~qg5yHHfx>{p&b)LMcPbkMTy8rli*`tn*3bbNhJqXbSVx7!bqN#O)T&{X z_EyJ4#?>vS8@Fd@acrVhNQ}X&(mcY!qvaovs2hqy{l9vUa$X~pNSb1#muqP3ouX7I zGM86xlUl1X8H(exWHx^(x1hQR+O`0y<048VMTH({sfrBJUD50_CWhao-NCJo@@O_| z77-u=wy(Lw9A&3ka7~txqHM^V5l&oG(F>PQTiWcV_K1-w<7`zHpIcGUo!-4)0=4Sd zM(~+A7v?haFM!VJ!TqOYfkm`vvUO0duD@n8R&PXy8grGhnE68V>28aKmIzQ( z4MjM6_~3mOVpx}{+rp@Y6HosDM9gzrY`$e~`B^vlH{?uk+jQSlYD1;*jkVy6l9GU@ zx0hLFESsw-F=@6MN~r|fcCuTQup6uhCz>KKfhCkQ!%8N~68p(SOVLqy^!C;uNUpH3 zdPTJTgmsyFTzczWLIY2qH7KZKYI0p^8|K4=*%}8lBSj+R`lRI~d^Zp`Iy$HerT+k@ z-B2mI?Nh9gy7|g+T5Q~m{{Xdt7TOYM6?ljJM7{d6hLCReh*S_SzPz`NjSWxL3CrDez)dkt6ISkNrm_8s%fX@!?yTyioT zR`4X_Eeonjt)U^PCm&vwAu6uo-kSCOS}9ifqN-n2Tg!bNb@3-2DF&!MAXb5Z6;q#n-A)msW}7VIwF$RcVyk*LD$_N@*2KQk)pOLBi%@s8UFwdpAz0wQu0f?4RaS! z;a9A9P>pA?#D(BDS0JyeNT_It3ZCUoEB-w?$pBq;PRishg^;0s>U|*#qK7G$TyMsP zra%NprUIylSYAkp*jKCD17$wxT))cJ&Z$b7vBlx4l+X8x_uL&CA zb#*G%!d-2JEU-d^4!Y1xjw0Zjk2)lVxb$2IrgPmBsK}kIo9PZDF9V+fQ=~{Qa&yYU z68n|X{fMMp{{THO6|<2qU92`B15MGqX!K#^h@gb3;x&TGmU6w<*Ycf7Hi*B;$6#kL zPeYFT?V>b}67g3R7b1kI>71fs5szS^jwa#Q>cd;Y24r&z7D zD7OJHWH;lH753ZaWPm6bR7CatJ1zjEKwH0hou&vb$B-!Ob`g0n>Z@&vuQCqkf|&d- z>(vsQamYdj%6Z?6%0C6CGKzp?prhZuQCB@s{{Vd+G@FKsRCFIKj~vv_RKVLL%9`ad zpF~gb>hW_5+Bt^>pzt^j-cZGi@b9&?}2OtJ7 zWk+r!YT%2ak_puL0O*onaD&A%zm!z#wBFy)!hC8_w{~XPX%)8|fZEm4w9=1_WxU9w zhXoZfCWs(}XWKrX*QMiw5Vi_4WoANVd!OoUj!;C@E8TQj2#vC?za}8MfM42uwO?@} zpQbu)GlWYIuO8W>!HndLFb^lk*=y%1PMsnv*qm*m65vUexT=VQii`ME>iv;iU23|t z8H@ZS!!fIxh2*A>Q6MMmP79F^5H%s9666lJWH=t<#Yt1w8tZLK;0mBD*pm}n-dSee z+A9&H{{S%+v~EIIm~ef9_aOX)5E4u$b>xTJ3D%j>iu4Qm3hOwf77$vjrZ!6F>yzV0lJlX>u~$??!GGjM+Bw8+1XJg^2tKwoWr>>rVDl6e1)qZ&F*1oz=bVXVLcS zarJcu!LaR;HWsJeRor|R8jRJHR~-kNlko8+u@MyYAzyg7e3L2F+gKCQD|StnRDW2~ zX*Nx}R;ZB{4wTVq%&RG%BEmqKZnGEG74%y>m?3ptid$x}K`+ zxz2;y6%>U;qkw|kiDz znB#?K6-&n*w;Fh!a6sH_R5*vRJ1Gj5F{{fqm?AwtOoad(*JDhqx%0IInUp~--zcju z5jJbY3{V8HKe;_oGu2AlH*EWXntEt-JFiR%av3fJBXPw=Ce%lQA}vbFXdj`DIhi~=$U38Ob#yTOuY8%G!G4j>6SISsb1VvAB76+_+ z@3R3M*|cx4W$U|K@2e?jBx=q*9-$paz>2oG+nDH#FeG*7MO3&VxrA|3+Ti6;^Nm8L z?QgE`m6K|Izoyo-OFC+ml|!c7j5rY7Wv5veBtyJx+;$uBoAPET3L+w?sv>naBTg-2 z>Z#ZJz3dR(!nR(`R#nielKw-@!nYmG1ot=clq7NL22;5x!5(|uZ!$TeU-~Qqu6V#+@zLF zN^l}eZg@_R2N`&HpL`l08uBzlQcv5SUAd=+>JQOBP(QPMf2&nbk6%{Cln;D8l3ap* zQ}CpN#70a43IwJdG!*1qOWe2|r(HVSj5+J?@Am5^`lnZ7MB2@k&VJO)O{thNxY*2P z#}ONOhMH{rEfaVbi?D*GNQqH8ox1Eg+;HWc#BGP}o2z-%?P|K!tX0+^Ywn`WgyZm{ zd{$tjVJ$yOVB4U4Lb(1Z;LP00qX3X*z)a$Z@;`Y%@|V?Ay9+sJO8uPjIo zy|nXeXUI`#aYv-Wexm)7=?ejQas&7`m40(n2J zM}x{cF+@oL*$Sn|TLl~-pe{J~;-0IklM}4Hw$DDy718y-^v%WbEA^kqs+7;+OjYP@ zM?^@@E97}4Q$^++Q@8C;&rx#Bm(h`I_4^0el$0ZRrq6iVxVP9Vi^Afn5U@olpAig& zHB=;R0Th%ybIYt;zuQ)9yA+VwS3C2ySYWXzVZ3L>-~&k{Dv0B%=o5&J2`X_;L<#Ai z&spnbx2t{n-oM>^itC$whOd3B?etGQdohX4G5lHzq?u7%P-*(d%yNQ`ww^v<9_;o` zx&F?wPpIEZ{ogh}VB%A2+YY^0y56B>w&~|r6L_56!A6pDpwvf6A}cA_$k?n$N#0&> zBZR4d0Yy%?oH=tVRp;5-*|1+=mVvENyS2)4^?u1}*ZYwgj=l)Wm97v+`8EQ6J}rot zf)l1dq$-KWv&)jc`ui4T{l=SBtJ1-$ogxqvjf9k5Yar>9toa)NjIKB+oH3jZMGN)m z?I-e0-#*9K_6vyjw$_JWj{I1RdEXC*J+q9h$5&KjHVQ+;O)!e0os@dk;UAO{c)TTmq-Z`BlkD!6$~xP!Aq&^C+Nl43x)gDk9N z#gl$gm}$F6%tLIV6nF%p(|nDiL{vlo6(92|V;7{|bnDwDa89G5*tO=T$a10DZzM?T zTn#vn$+IWSQRfWJ6u0sv%p)cD;;);$rI{lLq$~qa1pmoMp+?g zWd775ObVy3>yFY`=`Gd8bvJYS1AlW{*kR9ur`FQMkwI|vusHNcxxT%}&v$ z{EW8KmJY}xeYc^-M`b!BqT4bR*U)}C0H7*(zzZ{;OOj(x-jbkRThvwsAO8R$>vXQO zQA)|(D-@5FV~sZal91De@62ziSqqwx5Q1w-O)e{7SA+*!?1`~KS&w%YcV=Kfm8rqrnJ zb-n)pnc@=A+wn%jytb9VE8`5yb>E!J}N>8IZnBFSZ&aLrPi$DxLVz_o3*tgthZbi z3bU%=#c9-F_=}>+!4Huc2@%$ahzSeZ`RO?>#l+{->9kIx+-&P4RbH_=MTW(xH{@C^XV>32LGUz<( zj2pX5 z12H0O{Eg+(RW(87+S{=t{t!O3i>_=?vS;@Rl;Z`5D9%t~Jhw+UZyhZ>6e zE?34y!YQJvkpqHx1#Nm>8|%_ptLJsK`mU0m^X-4->Sst`9)V#BWY%rszZxn!hO!)n zXxx_(9#*>#WiIX~S=?i+s_Gxv{{TvDG-j0S#b$^sV}C6kC2WY+%%Vn+aUNuqv=}d; z$9!Snyv`Q_Lqty*Ppxk(N13y4aW{KAs21PqREI#%6Qh+459ZcINRJb(%@*DkqpO1R z@3qX$RS>c!h%XGeuI}IJyXGrqeTT8j`!iy+vH8_Eb@B=grQPJm$&+Eq+2Tzz4YLnn zhzE@W36Cm@r)=<{7T;&o3cCU22uUZhUw{5+zyJqrp8O#y7q0K4h*)T=)sT z*agCdrPVgg+ch0GS8ktd)}w3F>!Man`tG@*S;oYdypoD*Q01{HT9G99IgWL;6som#4;vePj(wX^N%_bNQyhngIsgtb1FnQ zy(QtFuabpofLB}D#=eS{Dmu&Uw1&wDEH;;#rz7mWk$fzL`wGo& zZnGtb_nP#rE%^!(sheOVNQ&zSt_Vjqqc{%vnj!HiC~-jIq>0w22xt1sQ>wj__Kxeb zSY21bLt&;Wc!M#KgNTj86hV8+(YVnr5JgiS4vPmt(2 zB~8N^%vCh|Xy=&}JVc{`1oCA?I<{?Jr%qgL@GGES%8wQ#tM*)WAJ|cvd7q0Mr=Yk| zjN~Y^*c(j<7Xd=T2p&@l(-PM#Hb3iHiS2G}S~aJ9hM_{Vfn2OT6dg1nO7@Yl6^P7KJWmzAV_({+Z6*`5V8(72 z!%+u~8wi!AWN8{gA}KiO2P8$xs&VSrs|pX&m-Asd?KE2p2++ivl9zVU5=2u+$X^() z3rsd>*pjA57bL2PN|+^=S-qyNdVi#EYl7yBSiN&zl+@_bR?alPDTp}Kc;zP56|(XO z3wiOj0G-!3Uw2tuS#EtzsZ#BB7rVFE4>pnsTdl68VFokKJkt2xL@r38Ly$K3;aB`{ zwo7~(4X|l-A7R8e5cb=6QK3y1uW1;Pb>%0>URIkCY?~$oRZ}1eIc+ieb$)NQJ9og% z3s>3W{QEmAc#J<8&kbAwZNd2N5SY6dQNdqp%($ZJ3!da&NNQNb#rqU<>#wsWu{f(E z#*pOL@}y6C1%SMA9Bs}*0TJvQ2gd}8CxAdf5LGhj{{U3BUQ~p6*ZP!Qa=I976c(>c zlU1`fDzO@ISYgb_e!N)--yq~Pi-!RSS?s(!@)LX|+FZ?kbmkoagARdKEFF&RxkYM= zFa){H^ErV5L{|W^gn`6(@y{tCsdUlp_xMf4n=04f)Oqi%?Bd8(m~hElVW_MGVe+~t z@VUi|sv-ifwFjk`Ma8MLOKnjKRlSiqTHI7^mS>vAL~PwrmPP_tbJ!#;v}=^~{{S&B zQmGDs7h}2DcIvH3`MZ=Tv8*a|ub5`UC#|NH9P+w`J9w-aN7qWFU2(AAB zS+}yxw6@wF)a$L}#<7i5h?VcZFwQ%&qQ{csa@>w##pe{$Jh`9`4|4UXVq2b%ZqnRZ z!y2mrT8+ByQx^OFzdqnzSQVy(EHt)>E#+hI zA`?+6uM_)nTtrn_%yT6bLlkid-o{F3o&CLC67*=YYPTwwl@MaVqfmXRn(M^T#*HRS zq!W_iC%Fhkcme?_66e#8S+Gc)=EJMhjJObK8>!eq^pi2C&dN81Tq6{8TR$NDV;)`C z1}cc1(Rxd&ORTYtH{@8%n=fEW*hdNlyDCgZ2}k7tH`#HpRcVw(aD=_YUNOh#t3$g| zDrlufpL=U%Z1Qp%jY@Q8#UF8|Tn3rsWJ>Ftg-Kj8Q2{Pp{ZpOoZOJfcsj;zYw$Aa5 za>e=JkmO%8AOYf!9nvP z7?L(9qM|&L+Ng`!7po%R$-f9|D$?Erua{Qhq>(oTNdc6|rWH{z>Z*3?NyuGx&C6|* z_~KWTK8TPN920 za&qm*`gPC3HdMJe{gOkHgzDNhP*B`)ON(j>yoo<(a#ch`Me5nZZIkSteox zo{NsRE1zgel@YKds5Ds$(IDhl;}y7d+Qv##kh3$f2o=CiL{a6a!V@kCnP^60bV}*M3j2m zi6aB%>e!8a9p6;I z`ig6jlTLA4rYM-J)+frDDm0k#W5`i#j1ZUNfTjgSaD<uxz6#~aBv<55g|$TQYE_TLL`i`{*7^y_h>*HZm% z77%M-1PVCx(k4Z=D*A+0$=g6hYD=;dfZS9Z61F^Ysf@_Vv4N>k8!Vc z`TCSkI}OEz*zs^+!XzRUFA6VpQYBoGsTLPrDy;~5&83vRc4e&%P3hLsMs^KhL}|#+ zMi$*mH&~E}C+B6vAv8hus;`iRGQB%?k&ofWe_egGsqGii^!Sl1>OvB&%}vri^W|4? z;+ssymcuQeI*Wt?LN(=p7X8YL)+cT7)t3);lK$In&hCcS>sRJNiCoQoqU>3w*h{@} zMB}*_SOY<2aBAqT6qJBhx(+w=nB5~~`(~1=>Qps@D`=@EsU|xH*_kiPvji4o0x;K= z(k53X;tBz#R5Gq%I?b}IoQylEzD>8L{n@vs_4YJtCN>YQHE85C6>Ombw<1WtDWi4r zWXyQB@q;cokVJ5~V?6%=gL|GDcHgo~P}rb-QMzmF?DhLiU(K5?3pQJ$kMtxdf~F(l_pcOPHSYqr{7)xTlyP;WJ&b(Pw+w`+fpt%%%s;w-ZU z>Nkc+y3Zm3al{qwBa9|G%$w-9m3#i<{<)*I+$J}y#IwDdJ=nt=MXh=Zk*}YQ9xCZl zOlA3yLOM2%ld5J*_yXjsFZ5o#{{UAVZkj!9C1m1m+HFOhsKm2Bt(F{^AqF$8xQ|GY z=P@(^c@SAd6(SrPoJA9sGo19@?VeQxh*y(Zw7-`zsc@@~D^`-h#e2!*!%d2)W0I%} zr*#~ndiB2jtmY?MEybaKxau_(TC-X!QC7oU7G_>r#fVWDoRSa?8j=sX^R7I>DzvDJ z#~Cs2-81(xpFOviVEs?_LhpZFM*5>%l_FN57F0>M>3KdRc`;lg^FG^B9TtuDT$19N zv>n8~!nsTrPQN*<_nBX$pHxV-uFzmdb`ia?R#=oN=fvC>A*V9n^R2cG83`!kfhhL( zV2OI$0iS8Wsnd1a8yGR`C632x-4?@a^sWYSnhxOy1D^M;nm99CwO2d|`?P9zZb`xRYX^<;OJ7TyATAiraRd zaj1QZf38z7#qG34RlD05?|i1>I{B)&kGNc!R~Rz}$Wg-a^59F&7agZ<@W*NS2zt&? zJQq^|wq=a@6|>ls>SdN&5W_-Tki`p+w-`+JO!n(;Qe7>?`(AxN^2bROWVJOwXWL6B zq|1{TL^IQvT&JR^Zm(Y5yKxfq z>(`nn-Id(-hMs(*krC#_m@lfBw9|-(#jYTWfl@U5cfxhQ@0?zEi6*Ja<+wFX{KWv*ub}5BY{A8@19w=;4 zT!`1im+~87w-gb?bVadMao=1LWD!v^oO*Y^CrPm~FV?{Oa3NO8nQM1s4VJO3G@de; z?3WM~1YE{Rc=AyMUvCv&*j1lBe_CJJ-u^Jx1L_#`Nw3Y?t+?#>whcs~)1kKUgHwh? zbabq2Bbfkr7=O;5E?Gpua9?j;e%AKQcAez8KM&N|blUEVr|G{~wQYZJ_R(E0U81e8 zd<_7sr$%Wxw(>Yd$}6Xg0ybh~iX+>u*x|c%%-?POaTc1nSlj6(>a2ZVurp76axT9* zPTvx08&RUOO$}qfNxlSVR6vCUG38N2!sgua-&*1apSQM`GIbrqmMEggIME((-Hya~ zQOM9E1aH6mQXZCiTe4%T0`z4t*MseP`ZdWv6i#A)81x`AeAp#g0 z5BAK3R||q6F4#`5*7=QFCo-&t{;|Cq$rf>8M~`0Q79_IF2jj2DhT#B{k{gf2+u}){ zSWj^_ow+Akj(=MRC4E8IO-7#fBMdQPJX087K-WA#qHn^tiildtigC&vBpO+p?vJ zXpdFfLKrO7#eP-=N;o}%ShltTd~UfH>zoR?KH2x zb@;T`FUlHw$u^N@OTUC3Sid4GX%*sFDr~wWPbzXz;;4#(iyaD2u4c`aBO8(*J|@hg7LCVQ6%Z2>GHnD=OP)IKHJZO-=oQwh zs>IiCF7%ryH!@#pbT%$&8JMm&L%9PaM#)nMG8@{{U`VwSMknxIVU`ys2wx4W4~-GTt{0 zx|l7*3ekZm`M#4}j=&lr$Z=d%MMDBis;Y8DwkMJf$@h+vKE4c^cao0YO|y{xx3I92 z^COJGZO|o1u$)DdG2BcL8emmKiwd1X!}FKzud}wDnY#)^-yhf`YjTy@+JwP+t=*;8 zBonMWaY>em90KI3h(-Oh%Ll|?liTKWE_U8hwLjDAzNc%vQA@XO4grs zvf`1vWN)}aN8kliUMPrYxK-;jw;#(tKlBv()vvSl`dH%o_4b$h<9BK?S`=zDX>P=I z@`+}zHo?a>luAOO8mbD06hTuCmdVeS`(TW}yf8+oq*mOmwZcS#2|EHeDle zre0VjCRAaP!T7*LRtrp%#v%t`U61_{wmDz4Zaa2~MYQTR6QItqg4K&P zlTtfGz_%i`rij~plt!N9+-@%C`}kB$%Wyq*`kBKVNJg4&P@Jpo8ZU zYAezLJaEjY*L4G>WLIXsMAy$dL5hXI0HzwvF}-5=yt2Y; z@=7~Q7&7>}PN4y!3h)yn9Ovp=#V<=ID7B5&-%QvwD;kPf5p`CatGJgQ!N}1q21&gp zB$%@pYsVxR3=w1z#B95Qk}CDrb#orxUeQ-dS$|_Jt&dDttwg<*4P04JTM0&x=f`c- zVWFE6Q%J3&gsnKzkn&Y?sb)$;p565wtJklsEC%kryx!c2aj99^Gcnu82gKyKQk;hk zW49cL{E^&4cark&{j&Eu_1`J=9YL-AVG+r39*G>{#Hg7aUV#QPAKEpBDISR&n4|6>J5IU zVBFN4$(A7W*5$8m5sE9mNyO&mjR0&IKr#&{&?K*lx zvYP&=LcumFBs@WIgj)I~E!)b?#Oml46$cfzBH1u9Cp4cS2b*Nu=4RuB zsGZZ?KIBvCXn4J~8mOBMEXszeDk!710`5%nW+PJ2T=N6K0*I)mfk9JTqGKJpWJ}jJjOHu!-0lXReXfzaJu!-DF)CfEkdf=3lM+kH$x3P2E^#Lj)le)ZTP){4hXzHn z^)AJ>Uf6Ba@XltxVGduwmrEhg8xK5qs^o@>Msw!tgnS7b~#ecOfmRP z6QW8nqbo$@$9%<}J~0;ktLJg)mkJXRS!D=aoZ7{8 zv1u^s5wzmqlikDD6EZ1*H=TO*&3eVB>#4%JGjG*DIrWe1f{mjsv}|!@mX#a-05KY- zPPh&U;M_H`3D%5=^EJ#%T) ze#CUEAXD8h*!u}aP=w6mc!@kHu-mX@<;zX5;0Zc~#86j|C!%#xVlAC5zLf5~(8h(f z+ewDQx6~ec1|SN!(_;E7qR=8qd`YqtY>*I%!6Z>t>QxTYwY`Q^3++Cpk;~U6^NDFm zXX1W1!>^Et!%>qceo;oinmhucq7s%DJxOHpEc#t*a#%L>!C74qLcN!ETfaMRNO*`q z4H+J5;ZX(PeU(ela-A<}`9ul(4wbZOe`OOBlFMhQi3*tS9YKjU6E9(xTaK)Y|x zt=~#4F(rJa>|cG^gJ{EIFEiZSH3cL@4EuPhs;BGLZP>aqZD|#YCIQH<5Cd$q!=MG_ zB5_GiDUV*s{{TL-CZ@A;!Yo~aAw(3C+?GkO5KJnWACtzR`;e3M?wS1b^h=4sG0_Gg zIHg*})Qmi$DoEI;KkcgeBB~~Oji975*X5d~EhJUpYt%yC3i_99_Z^y@z@eHUG>ZY;?5@SHg?9m98E;rX|z-( zkw+cH5p$nZ{=I53Rjgxxwbp`)QdZE|Ww>lMZ%8w5nTRSL7YWZf&OhRvcAi-;PS{%3 zWmeB_F#`&Z*2tLiYRrb7XgI2aNq=#=NADve#89ZMyA>IQ+WkWbB9BX0sZx1S8z0&XvhVSMGzoG9$&lD zu5A;T`$I>I0`qonY@RVGpNT$g1L|ohhSEa+0OQ6seeDmZimS?Jkss8TP!^lE*X%p? zlM`;Mir?0Csv$H=wO@I{k|yCBRxCcmrR4aD7;#iwWce>yv6)n++oW!+Nc!Jvulp6m zx@E(itn3Gi8Ei+tEg z*mRb3t&F;t;`k$2Ht~d6HO9y>?O}rZ>FZief#b`b41#uTIg%E4$)m(8lP2{ ze<}M|VN~*qFF}tU2xZb1ur2wWM_VVCDi{u|{df3T$+rIhRQn6>OuNRug0_w@g#0CK9T6rZNGDMo1V!+lZ+GwOR#?w5XKlsxztr}YG7kR$Yp$?; z0qt*Sw3@bcv{nr{;BqvYrifgYU|>MwvRxL;$Vi${QR;1^F(78$<-#aSV&HaxPxD?Koe0{QKSi0NWn(Xx$Xw zt~M&KvHri1B(W~)iTHK306yf4G3lboiunxC2!xl02+cEu=htT#-``&)kF!3t`maFI zwAVH7vX5)ob^%ZRNuY>uWLCg^fkzdPw2#Qp#PP%c9Os3}C+7B+&U`Gq@V>v={-rXa zhhp2xxTin}&NUhwl9;O0v_{;D^my@<34@Tlz`U9Ef)eCSdh~UlhcDT8%k-n`Moz*V zU8cBqbvo3U-zAr&@`nYFF$v6%1(%VhUTyakOi9L*9_}5w)!~(k_C)PE4Nb)^&9*sF zeIaI@nMb>9t9W_^8SSG=_Z8Ip!F0D(k)km!TT?=CcF8i`Mki6QD-?V`AY_}T;|Tmq2-ReZ;;rUdjIe;VSp* zuWqvc095^bvxpO}Sj1pu8}*42aX@&{{vxe$M8GN{wnQkZy~qnV&rY|G3Hv4Sy98_7 zu(q>i(QI30x;s&hYb~mm1~~C>f;x)wKhXm}%6947ZFILM_$;a^4#2u&WsuB*O-eAlhaK+-IU&mcR~iR6AmOG@ zC`O(>VmTE=;nzO>cC**ClRr2A0KshNTL;!rf7N%kUtetdp6yIhc5QcKxVwJ1nUfYs z6Q3EV{xDME#Zq|nLe7%ADXp4Tt4RgyK9zB1b9%Klr7GX%a!orDzXnC zGgsp>GRY};(NIZ!6%iM%{cbt_*`gM@WmcmB>zRy7jQ}G64f7G5Wx-eS)BF)!Cf#jG zc=15Ust|tcDk;}IBGglA*3&Jlb%yP0W7Zo5E=`l9aV=Yn0P9UdL}`&zY>^j&it$86 zT#9$NP4*2lVwZ6S(!JXo3z-_TQZ4ECz(SI46rtv0Axv9rJVK}(kX0~gp8Q9wwP%X3 z=r783%~KY;Y^sVXiQ-!YJA~s7&hawWnb7#4L^6f56E#ItR7B(n$djv6A!WxQ)7!qz zuXQ79+D6tzlp0NTIAJ-8QGzBpa+b5-EzR20npb+g`X zRX<{}5_E|>EoEcI**86<;TAolMO2lPCc&;i+GJEf1lKv|^Ss*WJ59+4Yd*M%_9xgg zCH;fGPSpOq)1kjVa<-B1YbPVGJKhvH?m38#I8F;-E@b%kQRIAjcI$3k;GMI?ch}OJ z$=rQW9=qu;uS@ISuFA%BT}|C=wEqB5R5=Zpepzxd^G{AI6;*A+Zweo=Q;LsTndysm z^0Dl`;HTJkrz`EWx|y5RY#^@M_adx8Dad|D7#AfNFw)2J5UWbA8v9hwh&$ltht%!$;sZoK0Bq~zN`ud*m2CTKj9lJ!!!x9(}qY5U}0 zmK!y^snqq->Nbkz-gc-CLu%>;MPf%NjWF7_fcg$q&Pu2txz2nyC9xk$q}V?9)Mek= zYECU^UCgg3O+rRz%BFo=b`q8qaxjgLfPGJdez0FY^4NYW#k__;GKI)C{{#0Ok^ zD7i#b9I17y;46LM_xufy?OCvOWg7>MiRIWUV=!*n*bGMeY_x*fc-)pQ};2p5N%ylu)}W+*vP5-z#-?VsSX zZ$1R>HGi%5irq8pcpH_^*IQ&*Neb&$aAP?0b&Czj4?MG(0(L4e+u#c0%=0dJ58Q}6 z_h;dEIP!kjC?(wKvh|xioi`I{%K0#^>KmOfY|V%boS4ry0l-#d3}*qRysef!$m@zm ziktFj2G3^u7wl#j`ogzv3E#>{hYDfUy(T$VM6WpVNJh9E2BVOYA-wMeaY#Tr5vuj8 z)2;Az{@!ZM`!hw=Y_>hQpR}nqEkvj+rT+jGw#yk~Nj@Wh5#rcSks(o$bd^C;L~P_y zkU!kG#Ijm-+;U~!nW_!lyiFTZ+_res)$H3>+}ghsBTEVDvsOdW8DXIY+-OA^7SGE1 zhG=o+t%g%jJmZ9sWU3|W1&DJDCfWxv;=K{`Dm~p`Y zw$aX6S6y+z_5T36E7x7Na?c*BUahMAclE3ZPd~TaS=?V*!eYkx)<1}oMy&uc`l|+G zCGYOY97h!%02w06^?J->wckewo4?neNIw3du~6FXn-0lp?$u@X{HB|nO-qV|3YBur z&yd?u4FF#U(N)6ADkrg59Cf~G{NB@3Hp@$2t3I8e+9B>0FILTwV|%LC){(JbC$cor zMrq$8g!n#Q5=W66MNs_lBJ`xI@bnV!?ZB?y93 z0{$boAU-8*g%^tR6&&@}_1Ks8<$j3mx*oK}6@7N00pV+1gBiOSr6J*${DcRUh8%B? zCeQn4#RU<2{`})A>noI(%Pmu8XGGJdPT4D8g>MyHu-WJlz&UDsz&X1hl{qRWw9OYC zm2sZ^bg?^EAbpSbt@Q2c7PqQV&bpy8YCzXQis5{9DJ~vmO3Lx#1}f=^5T_AS5ib2_ z!8-3Mt_}9{wta%@I`vy09urbn*%U*Bz78R%f)|S%iSEE6Ywl0Na_TpSO@~E^TW?;$ z?6uAR0Ipg(*_IY_cw9hkNdiV~^=w;Fb=7rTG#6DB6N!G_u99NXuG{?bWY8gf~`1i0vas79)M1kR+x!aS<_*QeIhAgOK%av3FaY-)Yv~s;R5+TQgwQ^r@o~ zV=CD&#}Zal+D5oG1SBGu!KWos?T@RiSuy%3pJr`e=z1-FbyQ7;mEi`X*-=PXk4c{z zV{Qb|Na(I8pK%~hXypirM2QmKtd{L;Kh<^nG@XK`CHPw_vgN^!@Vzk}W=n{1!KT|U zE3K%aI7lQt_~WWTIMwi6`q5>{)0Tpc+2*PwT}fz*!&fZawp97b&Vzkuu_gE&Ueu&it~{32+i20(*1e?$ zz-sZ&b|SiRE8HY;eoz-OFCP%e04SGm4y~=lHLB~9WP;nb*)SYEX0pegHpv` z!8co)Qs6~Kos6d_8t|DSa^k*E&rw#)yQ$2?`r5x*X|2a$tmMn?w-9ZK8EH+o4$8{C z#+n%_j;D<|ax}>wynEEhT--EU!MNCVn$4nqpRiOn0u(s19ezx>E6K8Q1emC=44g3U zGd?OG^`IK{3_>5UexT8HZEDkKsMxRmz!`5GyCa6%FI%xXNHTG(VPh)OXo5CI!*mP+>=<4ZPF3l>{{{Z2v^^Lk>II@l;qmtrAwXbc+oLX&5k&vJ5MM4$j z-#vCSl2ENHXx}8m`w9i5*6bqfuHCsOahC=(SqnL{8pdoZMX{D++Ap+-5w#z7M?AXU zmZt^XVwtH05{lz*m$cqk2^@&@!rT56KyjB_dA5n7Y{A4sM+JcdK_MkB>(bRt+o0<@ zx5lMz3&0Abn}| z)~&F#PC|}xm`PA+m~3JMr8R8bH6c)K?j(pRzqgX-HmIh@xmI24S9%mm=@jD^YM9Q` zV@Q&uF)5LKlz+(PWJxa?1H4EOo8%*cL{6$V-tQV!9Ow0oA6_W{l|X90+bmfl9;Uft zy#~g6u0~{|%t_G$$ZrdL{Ea!66;U||ps!a88a1WV?Cm1yyD!ewHI1sG1>~D_nZz49 z=Xsd7AxP8>2~izF9tc@MUw2Z5##{T&t;?H+t)fZPb+nK!xnmAEOR5`?o$4hQT%ST(eYkWqWr%OZvU_R2rvbysR}aXGWJX!XNG{D&ZHDL37C$EukkQ%HyYNeHD!c z#|qXZ#9e9TFX1htvYV+^-Y|v_vIyEZiqWW;Ap3+9xpw32>T~QnOt*BJ>LjE1Nhnm(?CPD;w%vYpdtn&O6hRRgE}<{3x)7K2B1|zZ^*vNfB2craG{V zx_ljqwj9W=T)QHrT$Gz##j%=rUVTg(WwzY`RcJ+hrO9$jl)`lF8m3L-;%gQX?llJG zrL>q}P62q`iJ5|mPO^)V=8MF*_x}LZI-O;_REEfQ&oae(Q{{z}XK6{VEWDh6nS@?Q zm@YiIa#UXEX^&2(0oIVLpvjZ21JYjy>Y0@t&o8<`8IqbADrFZd$BO#@0LQIMC^1_a z+CRW?*odvzilm}#QP&}|qN&7?7bC@SjOW*^_QVjEEW#v+P|`e?0f_4BauHF}K{IVg zRaG##Atb`*3E!;A0HSV0OA6V|h&J>^UK4>;MR?~ZY3Mn|6Ca-4Yk+EPvzBsk9y!;| zizSDe0d#mPhK8fWTtv=z_h0Z#^@$eLm%P_@?!cBA2E4A=M& zh`B>9SugSZI_VkgR(_hHho?)EJ(k^<5%q4pQAdfi2tuN0xE!uH=eBeB>!j^axjx@a zrq{NYA=O5YI>5-;wL-$W=NL@t)}}D zbxFS^wwy$5wgN(mgC#A*ZRL*AWYtMWBD@5;?c=t3Cn}gItuA6}l~M*`>yWLJ=GjwA zNOC5-C6r;IPERroqIwii8X8ND~a4gF@luWY3TQwjENnBxRfcQ+Vs!DT*cA{H)~DHFLKXpR^nArcS0 zR8d7Q4EhkRj}KTivuF@&qJ`qb|pAS0sGFMZr~7!lL)jNex5#x$U01 zER9CbW`@8N_r{9ibZ;b9-*ixvo-WEt*`n|c2wm6uCrK~1t>ALc>Tj`!V5@iR-?t?F zkFiQw>}xtK39+l2Vz8WZ$6{pQq-hD45S%p>K0+AEa$dRYjcm+}w|nhhSxWeBY8K4O zq^xSnP2G%$_yK9=qc)~XCFtm+tIeVmMC^H0oQo6Hkn#QV|Ckj>e}x1-D42r?STSR zv|_EN0HcJ8;v`pjmVdnPdN?VP6if}(jdCfpC)gdftLs>j^tn`zOLlzOB)b&(6Wu=q zDYfzCHZ2f3sE!%DJjDSBxaB&|-^*O8->>(5YCVOsZpG5|53L~0j^@WzS+5KSn!GY- zm|{r3=Q#w?B8GXQDyk3ye*UjM%gh(H-}GCU^ZET*N3g)0 zDCi*h5IgZj>1M72N~PAcDou-5hPuz$m77J=mUQr|qy$;e5-YBJcba&SWFnJ@0ON+& z1pTX!BqY>QG!M7_y!!KB*I`!uMFO(+<%g|pBt)GEE5=K}k(y?~sY1)DjNr1#hZP~o z0rEvocdfUD&0T*B>%IF;oH};4=8^oHqXac+l`C0H%}mHhHz8V45wei%foNoLa{-n1 z_d(8cI6_^g`&c(8Yi&W=^}W05DRSThse06A+g6!C9EZcIab$#mc@&k$To%-ca#{AS zr)ilDVdb=ATd4@t!E*`aWgj*zl2X2i1_(?iE@%YdD)&yM z?QHPZ)+{?8w0_FKS?JU(kJr_6t6*2k*~W_It;;v%yB#c}zHGK%EQ~lGnN?A>UJ8Z* zoL-Xie5{18ume(mNc$C;8(Vs7`+Nuow>1IqlW@gMIp(rzV+rlCOkd7J` zIVkmPz7}3w+q3-xcR)2;7uWl|Yx){bg+9*FryYlE%m-z-+b+7KULquDKuko1QE~0! zgk5XDZr!@X`jeXJ%D?vutkG*L_4q^nXYH9YE+w%~PeBsWF*oLLV-)t$N9TVd5SRxt ze32U$oK;joRI=P_R`l>3T0O1vd2lb!S8?J++eTysYSx_`BVO@H?y}ahZ36S1#=Eb?Np|JC( zAv`Q9D+$1f9U?_eh2zrO&if! zlG=$jM24z-IUop{p{WiP`#Sdhna72lzHZMo)ebRtRa;xHAJLWLpi@}Hm8e-$I5MrF zM&gaTA<=c#pP42{j78Hia9jjLMNlL}*Iqv<#dc<ChlV99ldhy}kk~`nRb#sr~nneunw)WauCu=HaUQ3O5Wkv%zsc`-&}*HcwNi#JYne72EH%aeS?S$BzJkF|L(Z&k|n>s_VJJhRr# z%i%9U)%QCoQ*SHTk9Qh;K#Mu0Yp|=zWRA25DgOX$K}(W$MO?2_tnDt^y{}&q8*lYz zqw4M3z^Ibd8#0J&Etvvk?~^;2{9+jyKtwPlL_)!LL{9nZU9JNOd`D}fNAtI^ zRy{7xG$$l0kiRT&fmVvSn;%w%ka75n@zHU@ZRtm3;UmTF;S|oOnED*^F>bDuPOU zT{7aG)RVVWFP2BCQ9oBZa@QYSf+Zh@HI=lFJFy;hd~PF)!!9-BB`!hzz{++kDk}5) zo?S0n#3{-fid232>*{@nZK6qH{05`5JQgRBMq79${6>OGOO!=YOsJ}3u79@M*N-jr z>o=Lg)2y9YL0?U{eV*G8=-|ys8ji7DDX8`rMh-SEqYf~xIK)*%GLZR-`3nuSE6GT4 z+xE`{>G*z_{VVns%7;2C7A@@ZqDY{tbtA!QJUC4d#*G=5RD7l)27!VlHC6rS zBE4QLW5HYN&$_lZ{>^e`>8{pk>}@bg!I;cXj|hp^TUJ{b&%{T{Yi>Me`;gFk`1_}3 zEmgmIU43J07czBA=4p~uqjkkD6w;2dr=za2jucr4di$LlNi-P2<+>=XYsG7~6Od1z!DB?=0NTo6n zJ>o)P@_oE3F0&oXD`IKMRRcVSIqFFc*84<)){hQ8w<(E_GktL-*RJj>faEzEAB@rA zn1J&Rk!1lJ@TjjG5|1%1a>dz;&;7jZb1C+@@ihBtjT`LkCKcJ*?Dht--M@=3{{SMG zA8lg1UI+x(0e^H2dF66QnDgGV>ie#i?^*aIT4}DovCX5Pr42*s$HHiu`qTNEvmpASVQU=7MURT#>G~-?T5bb?s|wxwEh>rh`kaoN;W;SdVpO zZ1k4nfkk2Z@`}`!7+;RAyiTCFWT@&6IQ2XA`s0aWnD`xy;_p4NX9g`22w;fB=9FBy7Nkg;g{@ig%Q^YNfEvL$r-(;_@L>xlQk<_ z{WoIOXVdBX3<#rtBGL~D_OqEXkz)h39P8thk342TWHOj}*$KhNJO2P^1%GjxBF!g^cVpjH>YrfHL*M3B z$!7W35lUnObioo!jxUk6m|#h^iL?O&R8Q_E1pT>Av+oMsUG>}2s6T-k=`Y=}SQ5#z zGKR##NdVYBWemhs_8V6d+PFbg75rm!vQl^1pKrp{M!K?OkUA}5oz`XBI^%@erW$NX zT`}&h7>JsWbWY3P(8)Ge+%$Tn9C`=#SxXVt1ot#!ONUu%hBv~4img25Cy%spF8T_qfn z)K;31PgZMi*GjbLm^|6fKIros#p*N=hv-UG|ZQmx}KF=u75QBp2x7i zTSqfwvYay>*5!%|QsTb99fw+Nr&aeKBn4?35dQOuqKU1>GfW>|Y`z}syDGEI_2WR%Aae{2;+NoQ`-HP&&at;#Rl4E=`o zov7$_R614Nm0r1~73E`r5iFjP?0CZlJaBay_-{vYYiA+FKl+V%rx(^u9T{#)| zF59bJo#mdTOF50ZYIx1ax~KYiRhvroe5z*JNPW~L@`|HT+fh|4WN%*5&ROu|EsN~U zmw4H?y$@H>Z?~83q1@QBU~oLKUW;cL$5HiI?30laTb!geqa_+7KoAv7V_PE5xyhI7 z-MWW#uH7`NI=NbTVgob{}rHH#$ z-K^GHeS!6^rMA6mOyoF}e`ZunW?Yw;vYk3YN{t)WPxnADrJpR2Vkk6g8`iz8g$3M1`JY^hvvhND<8Ec}0ykuMyO5KkH+V<-dG zy7idHdzUra&HYz-y6ThlP3EGix}F4vAB7qug9fF9foK*#5yBv#gLooDU(>&;**r6g zCsWn*Z>+T_71Ub&bXhP=TbyDnh&*M56_Q9OW@XG#2@{f{W30|wnVh-5?Ee72^`EKr z_pWZ`sarx)`2fT>T(Xcasf#AVE%6r77qXcyQB#Wb(p*n9!L_@j&$ssbnbY>0Xj-&~ zScy|jc~pSp(3d6GnU0Et`3s1uf~Ku1D)Pnz6w%h&cIyXi9-B#jE$u!u-Clh%GVJ=f zPss>&X8Y0N#1lzgC*-alC*Bp}*>ELsKWcTl$ILM8JC@C<3`;8(O1`XEY#OetvSK?= z$%{A2vR|DAmruq?%$7S&C=eHnmpQxQH6}+E z8m?7SY@1gfioeoJmYR@u2OKsZjMazO%Dn~aJ; zfNBk|??L38x*+byYogpeRk7__X{Dpr2*unOa^Zl-odvN-%@ih$(@r5Hn}UkdWJDh9 zqV=04U0M?*Nv+f)*J+ooz$oK{uABwz!Y@l?R%GnG;6MLTPA zKY;rBG(>W?yri4;vTPfMuT7gSLmxIk3!sgoE@z8|ZK8(}RaF#H!4@@qS7Bqx#zB4ipy~j+W2KlPhf)&lqk+Aaz+4@ z0aXzXo_Qf)l39iX=zC&)ZMs@S)i(-yO`_x&-ED>$!EB=OGCHS!EMj1Cv0}C+1=YxM>2sfN;EN_Ys%YbYOaWjzK4G72IDZ~paW8A=gsxAX)@b2Gf(g&`67kE;`llqSV_ipQ`MZ zwTR(w{hQ&oH zxVEdfEa{Q%BfRok*7(pHN9A%pG2^@lfF`YphzSy(yQ%EJU2|Nu+o=A%E9>v{%e0aq zq&YC%ZniV<;YD<&om;S8A$mHJp-2-HWwcT-GjUI z=}QM1B^gY{2Lt1fBAWMA_UAHkg^Nuvv>=0J{EbfG{KarHs=h|iY;B~10LRk5wxF1xnKn=1CFOstV9q?b8|#KH}XnLbl>`C%PLipg=-95i#1 za>8U&vYJ?C(?ZzmCqlo`o?Gh@g=-?-8{m;bt~;o}Opf81BLLwrE~`m~*P1V7Rl|{B z2I+Zbz)-NwcDn?ip;m4&7-jE_k(uN!d4;FTi3%XOoFb37c=leTmL>>n8vV}ErBAKB z*(5Wb-Z@!N-hLhn_`Kx+W8}?Qf>A*Qg^fCb3N>6IOF$`LDFCLY&-Jqa(yk1Xszf zK=L4>6OIvO6F-7n-rSU}b9sNVeW@Cfsk2*l>y8W>+Q+cmGcR*NWD(at{A%SDu;!>s%d+(|>0o6Y zjgxxpyK5;E=i1h`kV>rFMw}KA!Ej9;;%bek`-D|TDcF@4rRx;I4|ciQqEb@X(!Wye zjF~P-VNhIQ=&=zTS6L&*M3?($ikwuH7rJ#ZG2v9)SK7&}iwVVyh=EsOsl6FfY9BUVG0d%^-no0VlyO_&P5~?&`Db&U&|_ps)(weuS;zj_j_`Q zxXEsm3AWp3B!UP;ic5vhqOLl9mTCuP8qcU-Q0I_GTM0_E+~pW_+Y#;LB>l@U28{=MbHXMkgsD!MNZ4#^j^7Ux&h53{&Ia~gr;FdZQ-2jid>tDt|0P7^z~Kah5Tc! zb@0z+Woog)w!*q;xfZ5F%QAVAij+1ZFJ%m|!O9H*$R6Z4MUV=A9w-6Pc7Msl>= zxQ%lW)~f}Gjrg1xOt?oCJyA*29z;Hi%iLJ&(K>A9UPXtpTw80m6?&C@C5)E-O`CQy z6kUqq61c##5rtOSZ2`nY1uPK~s-pFuuCt9zR9il!vcp+2DesxtcB%55oV9VDVT#zS zgD#7}%w-f8elh<5b(G?~`zaFSy52@=lH8>HiT{b(&EYu5UU@h0wfQ_KxzBkjjW zd>jB(Rm5=92#TsBh2o3SP5}nsR9(t$ez96RKDaG&cEikdao^w^N<76y`3^Rs7*cHz zReK38I~nV3@;O&ZPgOH#XoK;XW%8iZtJ*)7!DV8*@EdTOKx~_L2#=GepV+B^#MQ8{ zyOVceNo>vgvF~6{ZQA`pN(tK9tS5#Vw(N3YU2G#Zh=d?Ws+rI2T-eXe1=4o+A8T*d zCTYt*UTUekI{30n*>NECG~|ohzeVfd>$1t%_PY2jQ|Qb)GHcRa zxhPJ>ZZNdj3O62Gk9dMH8j==Jxte5EbJKInKRDS3Xp3*HuCw+|p6n}`tjmoDYOi~n zP%9mX;z}kS6qWtq7FUn3ln_x+SKZXc=UEk{fb06TroDAdtH88;qD-rpfhtvmF>YF- zvKCRM55+Qw=(OMvaYaKyK@Q2*FFsb1tTvNvy5${~r&*rk?mQ;4&S*${m;aIWALBrMTHeArwPJ!S=|a zBB-p~X|}xRDIT|r7fZ9;sBajQZR{4w5yiJg+gD_SCSoBt+CUc0K(+q>aB=?tbM#%H zF1f2evC+kq_1249Rjx}W>~%>tjtdaRaz~dK3d(aNNKL4?Ma0y^3x-qPxp;+G5PpEB zO_Cnlvq-F&wO`Y*D_>#-lE|r&^?Wek4n@kw^?TX> z07O$zO|hnw^~c*z$8I|?p*ilblYIGuX2}~lOp>e0<`6J_%6)ZNG^evau-r(btDUvQ zx}QCt<*4+T6D(Ltx_A|?vmRtw&ySU-$@FqTi8`y|PCQJ9D7+`nvTHhh<%Pu-w=3*O zmb$#9u{%qURIh=2%vTYr>F-U6=6DHAl=HzzJb5e`cD8Y!i{{Ysm+|#C--qT@U zt*yKr(Z*uSwQf5q)G}DpO;lQZn{x{3397ig#Iw>uO+ahx`E6HJGk2r^0H}h>$hF;; zB~3CrSS&n?!aSxAgU+(yp8%53wj`t3KX!9?Ft50MA@yh2pJ1=p{{U6Zs94f&$Ts~4 zXkx*&i+0I^lESlW9W;#Nt%@o-Bn|T7grY-?-~F8)-9N;u$Kz* zqV=e+Yf-tG$@4Qb{wc{&Cdp0yW}Ul=C#>&y$V~HH2lU45^**Jv*G;a}w);I&xz=2D zDJ$88^A=1b!-Em$NJt_!!aW#NaE3+9g%B4uM7vbepLBhtux%Q|&#ffN+pXy(NUWKv z#70)8Gb71cY#COXW-r54Mw@WdMd3sd!lI8z-0S&W7oSz>kLXhB9Nh2X#(`}jH`$+G zQdN2WYtv*h@gz50eNZDd@|%E2q=dYM6F45X;hJ5k`fKRv(I*v4+XmS>6z6JXXlx)x zOJiY^QhCSa1HTOf0R7YISQ9@ zMZ)$RB4ev++Ef1kb2~TKIz0_#^_Nc#OJG?2|dBvBuLo_z!$g}6l5jOjZZAAf0V6*M@UieM%V$UlEziRrj zB<-5gR>yZ=Q#Q$zvkg`un%T;EfC->8WFqm7E(h%f-a`>i;HlPm&Kl(^U4Q#>iN0%d z>+J39^qZb7+i6a)V?DNG0Jg5meTJIwqNYi<(HtTK^%d-vcI}LCt~EWYU;5JXZ(T+Z zZuP-2=PB4njwL`<%R(rwN*7ylO1jaA{^1taALrzqT(w~;^X@I*>}GE0rBp^}Z=pL8 zn7aLJc+~ze;N$XMX_RdYfYC`5ux%0Z?4HiKNv-6Zz^Xc18@7L&)+5Z=iAD9ajn3ZdcagIFR;LYSYxcUNC7jHGH_5qZ@K2Y>xd^Ja@yQX+NS?~VJ$57t+T8-m<`g>UuQ3T?k->;U5+ka%(}pey zBKIS2KHjx|4ECJqVtg;TDNg%XitHH;R98CXqt-;#{7PDjSf<0)74iT^TLO&`azQm# z$KFDjUY2#?oparQ)mgbBk5kp2xZA5O+KIdD6phE98a-P8F`5S2CeBHmqi~eocaJwP zYKo|<*1z1I8q1qjFV(tEu=d<=Hp$TvO}xJxnG8dbDI<(n&&HV^8=%<(IdNmWNb6(? zg%Tj@-IskHhkoOO_WqZ#Ya4tRwmS-4Hs$<_qlEnw6O7xa-CasbMHk zCfoL-ht@x5?7Jjhon?-GdvL4xQKW1UH9b>optEwe%U6RH8<=4v23%1mSrz6jI&J|9 z7a>*Pu3%9YU$4L9?bGlacX6&`vt*JZH7jCa{{Z9UiN$SNaFE?7@?~>GAVDBOYy?R- zXDUd!?bo!i!?#;5V0$~|HkYpjLz6E40=hG~1{{7Un`9D@H`j~%Q>?vh=Ww|4NE`5t|A2#R6nG3>` zBgbu~i{c6?f|`LLiVj_QtC_-`WA0zCzRCN(G>d5uKcl$eF{5cJz&7zqBz>3NKu=>Q zCD!>Wp&=L;g5$Oyd+k0foH{ngQ~S!_>RTF6zBp;*D9oXb%dtW;sK zli?Qt(6S?p=lb>1X1UzgN5%Sg{cEIAYMY+RHf+b-WBF)OP*u4lDqALtON>b|uLWs5@_@Mz2a!cv9OQF^Ty>r8 zZ}6x$7uBb&SJ73mA}n`^=AnZKqnM^E6xt;P>n3xv$;Inm8OXn(kEPfnt* z(`l^Sx3HHXb?J}6IZryDApz0`q$nGS;X*eRO$XiBQ?@$kCnKCT@3h~8J}o3hBQ}s9 z7q$Wyqs@I$r;yr-m2gbdyxhzaxc;QR-nU~4RxM2CEE?Gke2sf(vq=#u+p+l8h{-FC zxUPVxGGK(tcvCGAn358YIm zn?BZ+#t6`r6i>fo+c&KAL93FsdgPby>+5gmZmX)S8xfL!%QED)fgc8)<_9UDYr3f* zfakUgFkNOU2_+LC0Al z*|XKF>vc$0A6{!WS2uLgqwE_#>v-d1cP7Sb4U6#PzH@+E9|16e$B37YWfeswT-lti z)mpz)+^*laZa-+7nvS=zLT)p4sV*_M7QEqvvRD@zZeM|2v-xN z`NQwF?P}ECmqqq?9;2vi`i`^pya`(`+V;|(Y~w}OETK5_Fiv!{a9{En3N}P)4mpBF z?VhpQwp@!k`M;Hy_n!X%d8y0#<7C%Zf%R9`zjihobRCj2GU40AziKE1>2~lTlYcc) zw!!w*c(y29(Ge98rLte@NwfMD{{Ypuy4Tt|yV33~ja$IW7ftJ>7rG%w&ck@8% zOJ*B!Ws_+56KUD9K@}oJ&uJ~2#w7kzbshUwrrY-2-mYKSGH*5wdHFUFp9HaHd-f*G zai1NuMjWzz(G!7W*`haV z>>wL6ADI5MINM^{53m5m)rWc)tcq^)wC76t;9_mUZat$ zmhGxrHzK)h$z5@}^5)XN5zz-6Cl$m|ki5TXXN{crExD`L>0L$-++S4vZr|BjbIjT4 zmeXVEKV>`PD@zI(js$RG!c1gUmPo6FM?{cNeXEfrTl(j>F8#NM=zTZTmHNYRnS#Se z(~UIT79fK{z%|7Q8W0>07Z=qroc{n`m%rD9ohWY4_C%^^64<`0jQuNbN3W-V+sriM z!U%*UO7gag#l%D*RmvB&GoGZ4Y<_$FnfH9Vs_9Q7kz*t8usZEvi=r()`iOie+HmSx!H(eaVj5jH!)k(Bw--x2tBhEBRpMfBJ^XLyf~_@Q@Ei2W2>pw%C?I6;TjR z@x>8(1-I!cv}>)4bAJ0nq^YC{Rs#|&)Sn<$KoLibu*JnWWKXY%#T?|)?Ee8x?#x@bt~r?#YCo z7x@Ww@P+kuReAx~e{xEA{88LNRt3iU_sIVMY;d>_+P=R&!jZ!ql}u#aX| z3^?~AM29AOihY3%TvGnnwgN$n=O`pK3+la`BG)U`^QF!=E8c-iV6x}Sj7{xq7=oZbp8%(viCbelI@jWsy#)@$pVVBh#@y2b{{^5W4 z#cfG5o`qa-EvfY2OBk|3U2E^RWK~{akYEZXG6o~;vaP7LU_^Ovc_Ax! zp4yuI)s<}j0I&3k6_ZvS>&-ON?#Ou!q)>=?B=WbDMZkz6WU-#|jh7eqw7UZ|@oS_| zYEmUR3M{G9jG{wE$Wc?`x?{3z|Bx&a`Y6ZJk>PO)})Zd{C6sY?C1na8#?zt1w2%ynSy)v#nN1XHMDPwbYzPHj5>Q-l1?s9&@xz#&Be@2&1FEb&ktwst#cb zmlPyZEXpbUA)s(;9=@}J&WQnr>>;rsh6=^hY{l66_`e+3jts+P#o(OXK{7Q_9!b4Y-_%RRtQ5-z*xa=Lo%O&_i0^<<|X2 zu0z*#YUg$ta-q+vsJS@+sMUk7=aH^lL>60bfG6%=MB*waqGvhK64zmzaaKb{lnsS}nJD(^$FGu3#|J6>}bwF1{DS zB@uGD9x^8#aD*KdJc{>4&NI`|3WCfk_t4ZBo_fryX5YY?Ts7xJApFqKY7vL_@MKMAJ>p*VWaU<8j&vH}1m@ZZ|pk zA!q&d19cp6!SFUMxVR!jOm`gi$5Kw(x{3Af%FVpZx>a>+n)b<6Euf{dl_c!>vo!LN zUQrZ5W%k)XKonCS!j^i~kvnq_I@DdQn@P?oL}Co$XZaI``*rgeZKsAw$43`39s&X( zF#+zXh@4YBXL|c0KEG5mtJ;P3WC{A|&sj?jL6FIkGJZ<92ImwZL16{9)RA!J6;XXu zrN4!v^LBc=G;(W2HQT#pon^_^jG#jp#z}!DP)o*-At4H$dwaWjbvdR7?3(87v{_SB z(Kh8RgGU*a*km+J!We6lcmSMJSJ0KkRq?M7z^I~O6Rk_uPE^@y@tud zvldjZn8`B2o9+30LIe&Fq7$Cw_L2vDbvpCKO&zY;Ccw3`dQ~HT$V#VbM1X-IUUpj^ zMJJ>I@)KXc~fka@LGdlh^|va5k^W&@2R7P`Y$69WpJ6#ZvOzUSeGhkHeJr&3VU?( zVz}v5q+po}sEGrI#~~v(IFhOpf`}@DiO1Ki{L2+(HDj+q;rxn4oo{L;wl!j^YSN;6 zfD?)eXC1qydgqk`tE@(5(A#>%L25N@mff3Pp^P?Sq)$DMMI}|@KDp0YvgaXy0{v{I zQ##5!TCS{#7qLu43D=C=YCB9HbW!5Gv(^9^J1uM|cJiXifnw!MgL1}OC4!B~5OILY zr(@!%J+u0CaCArV&`!nK64~YAamfbDiOoyM$}k`zN!-wp33K@Cm5u!>*5F%B8{0XS ztgpmrTTU&L4?0eEW8^91O9Y*;ozXpeb=R$vh|QQ07Ori`u*H3|b}m|3KC|RK#m1is z=-wwm#rE<9CvqwJ_g~xBS!7DAk#%EwZA~7i#Q0jZOOWjBEZavSH!?hvWaHAD3aVSt7x5f+L~_9N$qyizD7^9YkCMLTr>laI4Eb zCQ(ecVMj9h1GYPR6;@Oe6^0-%YbH!~BD9VpXE2engr-QYJ&viiz63!sCbd9fVyqmSGO=&g< z!J)H$<~^NE*XvQX!{r;$#n_G`ETevGWLNeYsG{|oxI-l%PNV}nc;hDJNI4wM&aoH0AuM%L$AfQc7@kt zKOwRv5jp<=B#@xB89%hDiippbkqUVY7p8BdR#p2>rMkx4By6@!>pK;uy4Jm~Y^4Na zTt|x)t_dw-MKa{cKH{LLx8-fKQE_l9)8_hW%pSA<0C76zlT#P#T^>#IJ4S}YmMi49 zDVtWTEW$J>EGmmg!jd4k=Ygal(V_E167~*K_Lmk)K!LISkM~B?4^_~Tdm&jZ*mlz)v{ZC- z5PYq>4iL0a+44NfHj2wGqB=Z0XsgJVs9v}$^@F<1uef)*t?KT}>ZYnGEUIXlix}L8 ztKCSlHiieoWD#Y|Umy~;2bTzmSMkfIB6N4ev8gNuix0lMfRmlqWlYD8%lrOEfn6yzK*Zn#5F1@DIPq?*# z_MWv4b8(rS5-$*9;ZE8_nJtSEoc*I|sMYrv z!nRbJ9W{Fl)|{#2gHK~NBdW_Xq=T*y0TDSD$S7)lh`EzEiF;Jt-k#>#njhMl*W1tO zpItoS*Ur)@Sc+5OO#nCKkBnYcrN1a-Bc|(b18SV{gz<-4>)R93M!EMSZ6o18)T?Ff zPQ-^2Rs74Q56tVL;3zz#ZO8_syatGmG926j6jv1!t0yUrsE4@yiG8fkq?f43g-Nxt zau!js9f;9mo;awXa7B)w{QS7Iw}XAEl;5hUD>XY3@cmH5j5UcxU3oS#B*_ydi3iLLNY+gZCQ^KkeF9pJ{TmJxaQp0wg zwZhh|uWV_kclV>5Ajr>ItCucPTn;8umkchM-fQjqPbBAfE{{V3Xjf&RM z(AQjcJf)`j5NWn(&3r0YZkdFXjTj7AKW`!YA!`Om?b8Bz-=J5 zk(_VXUNbh8NwHK^5KmOfXE^Hj>-EpH>)Ypr<*wQ~?PiZwnzX;Q8Tqg#KL(h8lX3wY zq!>8ug2rlG(m>_qGItnP1br7hZ1A_L&E9^LnlpBaJ^I!rx1#I&LBCl~R!muJk=c&J zs8ztRkm59rI7#FmKO$bp3Vl0E+Hjq0l*dUM>%EIxV%tyCt@T;uNZhDDXY4kOtam4? zzzG%Nj7>$YDN#vrhTc}aob$`8{n_Pj6^tj-DsNNj55)*OsDNqjZQ{BwY~daY})jgpZra*SZkM+zxg$uQ-KCp%x8ib zI7BQ*S2zkZ?4rw@L3o}}3T?QZy0T|q`u>LdLzS>yR|easSlC?Hze2>gQR`;>rI8*z zjDu;ZZm?$10>}YGz?cR(`8s!+vi|^Y2dew;_Ya{_THNd3Va(mWxBeb%&DUdfxb{^w zk|)SEQU^B(%_Ei(T?XA%MIKr9b$Wj(a{5&J1<(7Dv6p9eNh4;op=n^2%d*57i4oh& zDD0odtc=p5N8&7#O|Tg8{`BUnm8-|}F=?8=-m^8yI{mlNjJ>gJk-wM!08nh2rCK9( zk=!@s65Et1gOJ(2qQ{A*Xg(ky?jw_RskrP)8y(>|EkC@o(Z zmW(#tg-gw`#ipmZTG)A;Y#mPAu2b)F~g~ON!yaWT~@WLZB@xrI*0FVlEELC zny$8zWmi{Mw_7Z1Y-c+rC^q|!lZ5ET?9#6;Xhfmbdwv_UkHXV`>>s!_pRx28KEG#J z)mhT@*|l|);1O%6?mw82{e&@YwSY82lKViSq~Qs;98umRh_-aQv6*<}+plVr*X8wB z*#7`j{co;mS2G_Y*lui9_|;F|p@>iUvE>u;1;!pAC^1=aT6qY_%llYc{@!yurMz=r zq{XD!*k8wyGwcbDKI3gOQo$mVD8n$(9w^b-dE|8s(r}QE3(ZkG@g?iD@WEztTZL1V z4NkOaDVy;#7Oppt9TF~HLY&J5{nYmhqAEN^dnX?G(QAL%7qn4zJ!f#;7Bn%`?A?FeQxpdc7w3X7jE#QSgbO zA_^xj(PL7~JzM>QWl_K+f2=121(`OQzS+5AmCAW3g%*A z(xi5_A4fLoyPGyP2=L-Xg(#Vl_}Dat(VJ+|stTeqqGsB*PPc_|I-p&pm)H{QtRPlO zYAr+x)~=h7Zn&+OLsNgo>ME;%n^5 zl>C=mCSr`GX}K~Ev4?Pm;-a1(4|WAq6niFY_PNd-b{)P=wKJ?cOG7lO>YuxMQn>6G z_Y#p%-@R?*eOUkpFy zB{VKsu#yd_FCmjnqfTd*0YAtBeR1tGpKjbpygs_qG>r0e$#top*6Uxej_UbfY%(QOz? z`K3HTxBexC#Azt$j8u5Qng>O<93@^zC;*w0j6SyM)-T<4-&=iO3Cif&rM|Mvd0Nit zrUgu!eQu%Y47)A^4#;u!ltd08HsCx6+ozu&AYQrI#u;ry)_(Nd=xu(ym9%X%PRg^r zW=_KoY-TjVxN1W3c;%@uZZJ(pb;hGQI8KVqxY#aitO_j!WlYvZ`0OQ|hwkL7$97KKp52S| zkI-68W}z&vzPDmLJL>i(n+rYCVk*lzX zQ_`ckqtMdoj7HaL=w!NK0<8(51(ZPHn{BwHf(gWxe{w4JUtXrkSg@n_mhG|qL8WT@ zG{@LV`dKm#bML+o#zU;B$nf}=nt-T^3Mz8#l0?FFKBa0uAim}Q0CJyZ{gFsf=-{_f zyIl6?wV4i|@$ZRqdyIr4ZRXw;X;6FNdGSv8PP3)X6C}L3b_dv-lWw^iaJaH)*k#E8 z%OuNZA?FA%4h|bt1>>JwuVwGY9d+y0=PdT~$Azo0UNuto4 z$^f#+3yceBrjGknGOO+%PM<0CP}?@T*;Z)WyBBTY)QL9}TJfAmQ~-%UcE18Ak*B2d zXAGo=%La{?yn7LfDrYyE>DF{NSPn`0%^u1$qy88lVvAt_lyKO`VxZd3yag;o=uE+wGuC{F_mnyu` zd7_RJy7aMfV%z&CQyp%G-r_#bMMVY$bMUo?*o7#jxFm=zgeh(~++HDtQg<#Fy#X7_ zigj^^H>UFT%-vNb;K{SHr;3i$$0*AC(W==2Zd$%=rw0a46(^L`GDM@vd#_Tj@_Ve* zs^VSMzpjmKRM<7`$FSF&Zx6?TA;mW&BcP4E&nFX$KitZaj!1`!^$lyRiLc3pwAB{zZ%!d!4HMxM@3b%aeeBlK&S|*(FNyz#bz3Xt z$!yuR&n!SIN9-Qw~P!7M;ec=0{_2l-eD9{w@I{GFA04 zisOKSg!u__%9>CAzQA3Kao9+ZU`Jo+`9gslFiYf-t znyGSB@6@?KDW7D{x!ddSWL~wZY5IkO(dedEHwvV!Pm?7vT3{eaaApIF&j-ju3{TGRw~RL3W_!o;wc!!M}-^H%^n!O56JdwQnx@MSb z)IP)e8)k_hce^$(G`iH6E;W9@k)_@TIr4J3{7vq)kS)u%aa9%KoGnNYM`JXzV%be_v*l#mLS z_R^E(Q%rBf=aruWD(R_k;pKnWWU7KhoR@1y>8WGU@6u%bp!4x8FJmlCW!cP}OIB)H z@;@SU#+!UW2tp7OZUUz+MoQlmL0nykxDR&Qc1o!47R^_*$#N4k#~K`xlNHwfP`e%J z4Y<-cjOUHF7=_BQV`)UnqzDPp>?rg_QA)nu}#%d z<!LnJYWb0>Hb$tV=erzN z3N<#y$8Og@oSmg?%JprSM5&K?F}QK0u?2-mD3ju+hr+A@8W#r3v2pi)9(=SGS6^jD zlYezN*%cbiRg|iUw7fG};MhL1(UDSIgYmo&TwzAgcoW?YG(qt_( zINIfyS-PNo-I5P{Lh>OThaXRRiu;u^qm=4={{SqVb>H;-w`nVP7>>%ifn8+m%?2|r zu=|q_%;QlYGOo6+$X8wBoU$r`kW@q-r#Zm+t8K@YxnU-S14IX4LaWx##Qk`lvFUdPIg~tDpI@Bddg~A-4!f-4g7A zewpH(ZsD$kllEJ3C0DnwYt7Y7tcYbeY??UlKNa*67bB4h4~+>^8Aa~ASMZC@^|7hT zZq(h4vR2kbwY09RZip`I9zbZx`q;`#@!@!vkP$0@sHg~~#~+mH^_Z&u){|?KWv^M$ zNwK_0^{XaiIWCIGI1M=Akj!au&jXa=ss+VSF`ll(rbs00SHarBi>#BkEkvt|5kVeE zrG;_W%A`KmliF&ismIeL-=*isWZbrj>vt<@s@r1zy_<27KDPie>lok+xZ6&8Hhy8x zJof#aXZ7^5C^XAG-p6XKm#bg3B%w4;xm7eg?tuY{*b+fSpMR0+#Kr})x8kT#fu6uRp-J+-5wm5orsTL&Wr!Aq+ zP#CK2MOa}}WvDXJuaJC>C%980sh{&Ab<#|%-y*vlZO3M*jT*(c)UCpe49*<)zwu?V z)PQFwE&{q_E5$^Va=A`ilylUUO3k>Y+-3#0+ZVEyZE)T|MlChlN7W; zUGutyjMx%1`J-1N&8d!S?q+26Afj+$Jat7Nbj5Pf5~7l(f6b1yrR5XkTyC=?9*w6{ z(p=&~&$GC({x#_{87Ik>Vla902ay4@B_3_Aa+yvmp53vkl6F5~R#MTHz|=ZQ*wPuh zy=Gg#GAq;LtE>w|>Wd~wY6yx1CQ7(a?3n4Y_(gm61-zK`#Opevb1SZ#j*o1Rc^vvg zFjn1hr(7`cWl2C-uJPuIXq{Zs6N+OCV;#Oi2SJwSGHF+(x`$(%CiT z@&`3R$%nZY*Qwv8m{8nBVo#kLL9Ev_{i;k~2LAwZ*fAy&DoFTo*n?Rt0o6njE=r=L zt}1@ta`gG*mFX+M!puQ?k)RZMGv*HzltOi69Icu9}Q@Jj#s{ zw1`-3a;T{#wR>_~(69cltUZRuch}$7=513WH%qorGOp3bnHc0ug&l};7s~kyDgbRd z?*ik+M*ym_?7S*N0i$p6u3kB^k7cio6Zt!P$Z?!{T!-6KX<1@AD@yZjhn1-E9tOP$ zO;A&-ErHh0N}#*d>UM2UUTU-K`(20%-pbD2C4G~1^{t@4EvT~Kw96kQUlAc>NDn=^ zmU^30ZQzNweUk@TjKS*BBy4-Fox^_+)&x4|-Y6~2YnfQa0|yVv&^k@MWdyjTn5kV+^LGhx*>{=KMSXn-DB&=X^rP*%BamQHkAe{F|93V0l`44rL zXNg;%^>4iT?z`&i_%h^dpX#kb6F~OpR1UQU3`n!U7=G2rvYV3Ujzo-u2Mz3ro&=jD z97+77ByFGXH(1x@){SnG8=k335hG~PFKw-irOC4Q;S)LU zajE+Du2I@$eeu4xeB^C&diwiOgv5n|bSrHL>@68D1V`q(;P{G5pEKqvtpjL+s%y`! zWS%M*_C0njo%-xDe$s(3{=LxtV>A_ptJH zcwV(geLE*#g=D+m*xz~0t=%YEmJ#fop3KO5GO*jRooZtUXydWS)sf0LyhKb;5q%e> zjqrP8>^e9WjO}s0fUT_7cDZ$R`xf+}Ho1drT96YY*QAMl2rWL_yjWB5_jyo|iASf; z=Cg3!vcl1R?bX<#zNG&EM#cJi&-m>xdDUzgwuwGLb4s@6gR0zz+i4@CY0r)c(l&_` z-PFxyTvz*!n_cxjy2BS5^B-vGwN}$*ZBVsnmMu~>vrSTI$y3b`N;49ao6N zk;GglR&cAYMTbkd)qQxzky^|u>is;L*fjX{=8i;~+eGAYY$r&2<++g+MO0K2MH4dp ziKxeW!rRttQ0V^#NSI>TQ{i%F|Uy9b5HgbbM)HfAP* zOvqMQCFBUAB4ykAgOT5A$-hC=@9LenwbXU$Iw+8*Mzy`5+vPqG-ZP9%gorOjSq&?W zgMsZsbGeI|1r9;W=6Y)Ox613-ByQT)owr=UnXXmq7LVFhF#-@URTeSgMiqL#eTxV# zKA_sDGDPYUuM#Yh3NK8aYdGYcT7h8Hjg7-hE~C6S-Sq~cO&VP1Yc3%@!Y!FaPt5&dAJ*D0P>bxv=yK_hl~@l@<5f9+Ht`!FTHFnG=ib4H{EF#a1-ZfJSwO%o}mALS6=i zlrzASgs0!BWsZ`y!=0he`u_lMlpA)dMfMfjlAb8d*-fa34MTmtY*opGvb-z-LSe^a z0}6^LZK;MudRVgZvo;-@?Yki_u2|Y3McrzmLA}zoy=p4C2Ete}FTjVwNHh$#K2tJz z&l7-)$jNdm)?_tS+0al|7SPV<_Sdo4tz2n0yER0qf6HB1SIJa%va&-$;~`eV&!l+r zOqE`ANWJ1cNvGH0Rk8l*e$3G5W@*$q($H)56IF{!`^KbMv1?YM=bj{nEEs#*gXA~z zYm~@|dUZCnIihmE-PhRrCZlanZFQ})0`e>%muC_*=tZyBvTeT|$n`-XSdhYqsBr`p z5?t(n59CO*xrnOkl4Zpd1elJ(2gI&R%9)Yz8J3&xQJhh#=3ks_;LWau`Y zMsehEv|a>~OH<^-x!*PPb;jeT>hKqM+kW6*bWNX$BQ1ymC?AaYcvc=;2{$pO;siGasT~1$lA;g0uyXFGJxnFf z3j8i7Y?B{4ND_6+TG_>B>xDTEQ9g~CVWyB#T|xs;PytfODyWh#X<_w(y4-2;%V&FN zlP^w%YAh7S1tYNvLOk#&_*JYP8)4EjFCVc}uqojaE4~*MF3}kEy*_rmOu&dTPWpf8pq#O z6Ka!Pnofml@m+?sqHVmax#d?Ss$_{cfuSg){FcEXnvb771j`>lqEnj@+q6jF6*X)1pEo<~)F%TRnPB*F^m>1_;ov5;ZYt0ML481nr!uh#yjHN4x6<_fOl= z>UUknG@H9tUp=r zIPv1bU+=ja!swGsn<>mt(Q;p^#t1yt7c88QYAtiez#<**J-r(t7CGPt1cafG7N_V zeB`Zzf-W1*8;FQRh>ORVV7l+uS+-Rpwk-XcvUDhP$lEbq7!14(HcrKL+&=S1g67y6 zhc^4Fab79;Ub@M#%YJNDORiqqweTd(N#hV1CKzB$Wi%wxlTC{Yk81moc`A1wRLJKy zruk}j>(`mb^-rH|0pwc=0#APoOq6=ZQDZg4OZ%ra6U=Tn@gRx{DxjiaRS_}QJ3aVx zm(tJEE9FeJq#c5W45~{~j+VE!1(u>RZUe~FCYbgp5nxfZ1wLJkd*iJ2m7CgsOkSh3 z9n_2a5RD2S#Cbo2*WoVoPt9YvKz{xTw&t7f6*${Pe;7yP*q@^kf6MFmcX9V=Qv*zESB__ordLXtNuN(K%80FW-D zjeNlZCO}=_t~A-Fx3O|k%C17P{cW~EpRsQ)UC>g|)Jtm8#)=|XL2=lTSLCa!;AER| zMG*yDQWfsLK1tiFk#| zPDSX3C)l+>^>xf^hNF~%T6yqu8RAIK^wuv3bCPzmEa;kmTD4my~;bhjqfgwr_ zvR$oAICYw~x8erLVajwHdLpyrR3;KRq6nrD50+IC6Fp|crdlo1+g{%upqXd1Oxg_R z!Hb~(03pPqIP-2bVLjKN6XN+Ytg5zdG$5p?qVju@bL&HWhPkU$>)S5dzr4@bJH=MT z9re;Gqctd_RzZxQ6`(@IU;Kx8xUV`~fcdH_khzpk?yj=%r*-{?zw3xQ&XT(3$FWt} z&sn>aNsct?smpP%;+wCIEuv%r!6ysILL3DFSF&|%X2pX}-oZy7ZH5wTHBa?uL}CF| zn4GrXj~So>H!NhUPPW@1OUPBhQ9pEI^cWOu9@gz8KlW=SdwX+yO5@uCH4Xt*xX`3= z850INd7E_~PwkKw6dv5aH%6N(9WBfEHcD%|>US!v^~nzGTM-Zc0BQdK1u?dPBSnu5 zp?xJ1k|Tm>D+!@b3Y|()} z=n8p%u&c?m;EkbVy490BldO{uA@yyxwWHM++VyYikoFeIsMT!9fZNxFF@ihePaWf8l1v762Odcv>n+(j%rM}? zO~?T>Q$b8NIZoMCx6m84J5O(G4e6|HH_#n9>`J$Y1nLny;gb;Dw1D)-BF2)8lf1+c zd}f$b!WUZe3KKH6zgw`orY7qtuP-2tleKjK>ry@o5(uA&%*Rnx_l(6=?&ztEDXEuF z9B7A2K<&l7TtU>Fu7xUV_O!PfDg|qAo@=10}h>FiQcoH^>BxeBOvfcLslCQK;~phsH(h?M~ZcA;}$K8dHV^x=HWoDjfR}tO3;;r+Ex^7C#@7jlQU@seq122hlptZ=VQZp9U@Sda&5s%?oy6E6@rlqiuq= zXfK+(!Eg#=&nx|L+pNo*ie$HSskN=gIG@flUt{Bov5KSIkaDh=sv;lkMMT1PUdi92 zLZ8l|*z6}I1zR%Z$Aus!y(NzmpAnY7O0y9OSM;%(UH5=3O;Z90m+tCj4j>WZCkYY4Kb zfynjWHpS-R#C3Qu%fi#lzZ^usfx^lXDEc9GEMu+p?8tmtItz=5`yF~MQ*FoxABo43 zwgRXjA%@U+8Y&OCdt>pOr(3DL8(;-s4pjoVJD6XPl`zJylx9meL#9YCc89ZN_7~1I&+~AyVRsxkTz- z)54dvx$Hl!S*H7|#Gwe)(yI<_yAoi`kZicJ88KnznnxRt@8&4EUfq+5D5PfSo{LP> zdTm2stKJ)^meiRNtR!soqz`N)A?9wyzcYxaWYH^Pe&AJHDB(JtudHje-WB%1k?Jam zyA4u~9+fxczpj0E6l_-RVw8yJ$=R~xV`yUmie$~fX-xg*qP$Y|;EM*X_g9ZqYbq1Y zYY}y^mi+1+ZHTt%FyX!<6_@5SgmLo+OUBtajj1Xp`A4bRTj6^uozv_{^%c7u53XwE zQ8jTP#wSjjQW63r*^U(HPovV5kz|moI8h=7a;2VFM4h@I9ewRQT5qqRTK$b_I$gsO ztSl`7AeFssg?q>3c_PVc!yynJK}2JcI3vXc!d}^wZEx$>HyE1V+8V3&l#(OVdl~0~vGMo=Za>H}*eRkYUXa--vXGf3 z-Zqg>k{X(-Dj=umnhLXis@*B-?Pu$IO>ML*J7*>nHmwV{6MhTDB0M)6X`v{%ZJtU` zJKvYJQF2{Q+_YhD>))$(N(j~)k;1K|*(a;tKGo;ZQCcS3YBNnhcpiQ;P7f47BJ!H2 zCB`$Hu-m)_Z$Exi{Xwzp8pRHsQzJlt+qkQ*lO9E6O5~Vi4M{NDslr1>JQH4~*T^iED64=f<>CxSe$=FGA#_LBcjMc?76&1>1Q8Kx_-wjzaTKCSNa&BK+ zeO?uxQ{4T3X|vxsb^{8_QPdD5!j#MaL~Jc2%w_h98X~CS@IP^3ysx6$Z}8TaEPm-L*xrO9gyR*gR~;XvIMfnRiYkoKxJSvQ?fHuicyN z+}kj0v$rBRl}(RXU1V+iM!* zk*gvl9Tj{_Cg`=zRr)g6^~v{-J2p$!ZQjgbWXWlwKnI#e&>7@~FebHye&#~lWmZF30hPx4kGlMycai< z57QrDYV|uzU#}`?tmQ_uy4x2t%{Hyly=VZ zY`=+a^&B~$X6;)X#--lRxOKQx)XcirlQN)0mg1N;q>Tas^X6illY;i!3kDU0qlr~B zX|8IgW2bfa>{L;Rd|37p!~$EuVu-Rhf|9C{4;-k7di8NNVQEYJ$;G*_aiC((F)%dm zME8I&;3}dtLcTskKjp?cm344h>F{>OEvib649a_BahrN+O_E2L+kgPzNEIPd6KoL) z5pb#h06wzTId|?~_UQv>WUj4gV9M31quof_wT7a%#2+X~5nQKeMYLho{7vJ;iOi7{ zv-!>($K{2$`&nq}D@RMVdT!e#BfL^&%z)Ff=h&JodiZdfFDklT zrlVf9cFNku0|)k>-v*3VRK$W0`J}?7YQziVay7}g>Z|UksD}YubvD-c$FRQAzu71+ zVC&l?l#2A=Vnn^A!KjO4NjRKw$6a;caY$P*0&oNYNpXbA8W!=4#@(XFPAa%8QfQSH zmO9~2JwgPlSWVVMei?|Z#P^s+TsYbO?-?Ws$#{!y7alq7zKK=i_FG5UQ)>RRs9Gw> z`=icD+boUu8;xvkMfohXA|q_J&?8UBWLd!Z5mh-M5|Xa0xSedpH?DobarNcwIa(Ea zthp7?sDWPHaL8orTY0rufXmG*!q6I%YR`~dlBlNQ@m@V~zq78o{95kcr{aCfwCdK@ zSLw4yr?_>-C@E~GGgyzhkC_CU2c;o6#CC<39ya?4_ZGmLO!cQe(i+(R0B;fBXLz@@ z-f!U8Y_KCozH+g%M1CD)Ly#>p{DS~$D~~!azKtm-B<5UDh&o=r$#}=-q}MmA`U^c` zT_lJa-Fg6N_c836vlf`J@;Kasb(cliZ^|~yE)Zc8m$U^inVW7mp4QHqnw;%w*G{Xk znf12A{*EKN+00?TK^nZ&BSwxgLDV;nLYvJtii#-Xs-$E{E7qr9jxjrJ^4FM?w6{Gvs|+?&7pPUQ3v;!(QBqw_??) z_J6G{R+DI(wd=c-KjTUZz~mQ6xbs+-9U2J+5i!m=il7gbJ0UMz?DlbN4*FY9`_Eh| z>L0cBm={_l=-Eh#TL|jxsVe76rgb3^)}Y7{VB9QZ5PPAMs^T6x)@=Sx)^7?8sYUhH zhrH}|I#!pb{jGmAAnV!=p;XSo+_Hw~qfSq!DNjdbwq0z=NLeDwjiHG9L#}M%&#bAoX;7;wzR%blbNMK60mq}+ld_Il#}ssyK)T8CCmPFu-yv*K0Wh6^ zUrNpIFN3wk%hGOLve@Jdm{SaA=+WbeBVeFHfDVjx#z9Nb7dig`1?$m{ZZrF{?QQS) zYTZ6<%T~|6+}nnQVz)93mY$joIS|_M3JZ`y)h{qE5V9(&d~-0@7{{@RGHmI$55u2E z({56+G3Okud|)J>EFLN4UKnsw3&0gavxJCd+5b4s*!MXcr|%e#eR8_MfZhEgFTWIQA^*C2JpCCGXq zFKqt+Ub)EM?Vl!{T8=v~;MWEC)>zj>l8!6wlc!!}25Q{K+-+3^oxrMPL2_y;na5YG z$%*?rZPm9;N3%nqk!7;Nk`Gm?&bU_?eg6O>fF_MM9eij$#YHC5+5^cKkzo}qW?cig zI_4gzw01kTv!@skNr-ICl#&{f=nGQ(j<(vXP4?m(6u(}?y)DMN_0YZklD2ii%T0~z zI?ak0M{>x))*&+-i6tA28G#Z!(1LS9%6pZ63DmQlYo`qsSCXu2C)a9sX;TF%r2hav zc?rOl+ZCKq9cn0(4?3 zB$#Px3_}J*79q5#=a5CQQ!pY>LG;S1@V~xJ*<+{scFmL@UrPjCc2=?zX*C+v% z1enY#N6gg;(siJ59Y~1Vs)DMB(V7~nqVhz|=fv~vd7gZ`YOu9U>+Q-ZA8~86`vu)~ zSv4N+Y_;L=B=|pyk#}DJUCFZ3$IbL5L=itKue6bP?8LS~EuLogxK?btCiAFOYZ@+- zDwwKi0>Oz*YLQ}s*j9WPaHF~7VqmiSsM)p%{{Z$7jEIw@opkoB{^_Lq3N^(a+M7#v zH+m+^OD4lxxY{bgC9Jn&zHUdC41n8WNWMy9(56w918le|@!ww3l1cqSeyrAJY<7D_ z#Mau>53piV!#D0c4n+R|Pe=J}L$&b5gfH?p*iRcyG+xnCJYiIWS7~3Q);gW4Hxe8@ zvMR>dq>b*;B1}|EHGoc_L@6>D^0tI619(#X#e(9C$vTV_;kODY?wgGLg0x;b*BY#{ zlNH~ZYayoHenb{rHw0YE9(Ud)IAPp!4|rJ!lJmqesCk4z@5E9e}E z)&>MrU|(?^ZSYl7H20YD6;;TVRS72ZX9#+n4JrBU>aie$uEw50AS>T*ldSxu6LLyC zoI&On_IX7Se`@jHS+`f}Iqs}218S7~B%d4k2c=ien(87t^p?q9aqcQh9mNxENXvlw z7q^x%)^v_NyI9U7fR#4yR+QVWOtVA@5uuNXspcq1WDYb$LCBMl3H!Te9r{$V%&@b1 zQ^L#m%Lk|Y2hdvcyBWq_j8Vl@BKXjS5E~>;SRUN_rc=K9(#eSw6J$gFGX4|XZ(Du$ zCxfyD8Zs3H2VW-72r3FdAWDe2CHyB^&11J5c@JnWuJ#MoETy?T*%Oqp<0EZ38BJO< zFjM7$1^)n~@R;Pj-kE&Wy{FIi!7+zE$N70wRm$YaG8~I4!5wZh3>qRQ$de&az;3jwTDq4Yb)ef)?Z>>WHYS zm{sfLp3+VYQ|<30+O~S+V`9!jFoGWl3=j;#5>5RYVaK;)#r5hpjnl)>CY)^}2PtteVxJzRc(r zRu9YwM0ee?f4_!6|qXNey+x5$a7;p%j}^Mjf;|##%LkTc$Ro7 z{{Wp8RFqX$yqzrM`=8KGzM9g$B5XRO%ZmGWM^x_N6u{0O0{;NUAVFk-9Txm(h}+1D zs9w@Sl`-U3H?LPrc97z-fJGrqr=@tEd9p4<@%C*y zlI1ds)iGE7LG~WGr~Qeu*hh zb%iZ2MBXavw@F);p9tf_sv9HH9KV|Luw}SSlP$tnY?ETqD{A}vOv{fpxe70~M#b(g zG@9S7wbQeoS)<%U1C-UXaf*CN^5cTL#fK_w>UJmwy2$jSNSqAK}HORb|`HSw@mQR>bA007;#ZQovfUkG+j zu5|V_t*=pv{9WpEHVw&#GWtw0kre!-)Q6>e!_Lsg_PDBI;&K&Ex%}T}mV3_WxM@0r z8$=nmTXf4u;NEPTpTbEh6^~QK5M-VeM+jxO<9wttql0Lh>sjg*rQgAnkKYA*ga&;yD5YQ}&ty@;Q%9Mzlup7BW*ZO$_~#k=@6&6Q-F^iv3BLDx;3@!+N`G1pFp^Y6^e?u zur=M#;x_*Po^#Br)>Y8v9EP42*^uBGHypSEDL2d)tJZr^-H-TLI(>jo-exWCxpF@# z>qx-SIQwjbvvN1cDKUa9mc*Jy9PSw6M83UVyQ%F5TDQ_F?j~35G!p2wbaW-vQ&vbR zYVnj%CfHZnFLNY_k0Wdn2oLy*Ca&RO%Hq}>onFefPnA;!st7wjWrH4Blz9U%n>BHS zb+;rVEW5x7zCegeh5rCAS@y_uX7B#iwzAhGNlA8*>mx1PCuR%^=Uo$Q;mnXq2=5L8 znZYR-;6+6<)w4VX3j~*MscUZEeR)1LWZOfzb%*$Jv1g2L2(ZLlkv8G9sETHUD2hv- zYP}#}J=aQDTLHn@BEznUCAOyP_Dx9U&5VUtMaHEQNU0!PMIR7kc#3w%SCU&nwb*jw z>zD1icLfc*7z*Cx+pjk|O!*!)KO>Db{gzEvx)CD#L_ZvQ#hk4iD<83TXM(la(&A5; zk);Z2Zlm)_&nkKe_oAWTGCdl5Ryb< zX&y&BGW-gNk7c|VG)se2?3{Ye`+#P-t!cXbyRr3I(dU%L=T~m;+B$LOw-t{Y=5?w= zhg4IRRY$+Ha;c2V+e3^AQLN$3)azj&U2RPxr>n}IEVgw~2wY}kfB=dgBOvi9vdwxo*Z$q%95Zb2JosSo_Ol#sA)*BR`&>U_y`N4k6LG}!6ut?J`Jg4=HhF&7eDb%9bIWI_tD#M^C9k$V?pOscO* zio%?zwm3}5fxP@z%4<#DiaPm6`AoE4CPA`9@fZ2KB4vGX)zJx!=8I6bvY`I}QKZXj za8HXWGid8FMf2ben~nG8oOvoIY-Mwfo<Yk5YRT4ouwD4GV}tPJ$8uVTK4RVFLBRTA8_DEQU26pJ3WK z80Ps%LSxb#1sBdv9na{N9-87si2B!D1)dT~_9w@FNAR?|j-XdU)cEeG=JoWTg@~m|xmd?HVTB!1ZYX%C76~+I4a#?nL0Q?(`cMj(S^#8#hq z0Sth-7aw;VT{*W;lYHl_r; zMF|(UlHqN)v3U;L{@MDc>tC?>(0Haok>jJ;Pj)v;t)fg$MAOdVyS^0O(%L`+A3 z3#y69aGmFFx3%&}*Sk?m-ec74tZTLR7dx3&q~>cR%4L;@9z1{$V!>IJ8zQPm;~+x5 zPsrp+5+{WdH~lg6+^q$zeyV(b;@w*K^KIs}CL1MUrreeWC?d4$&ANmFF85AIrRkN{ z^UGZJPgHMN+%(H(bSGvk<#I;DVOLzt2y&T@PY5<@Kuij^7}WTSVy+QjNqBG7;{{SEA6VfZSsPY3?sf#t~ zBv2!`%St#Y{291o+_vOE+5Q&X3C3KEK#1EM-;dC0(;_we43`*G!7U zfo8R&1AS(ovH}k_(GP_ITwlvgAtGW~XBuT1gRh2>qSNggb)5U#pi8L*29lB;Bnh>| zYZN5dl$ggj@TQ1>fT`P&WHP;CUT|0SUuJ5QKV8+!*J*XiZJxH-qaCutTdZm`a2s`6 z^TuvCghMtTc^CW2q?yVhCJArI=;*(5?0;&+U$5ZVeNnnezl`J$=a3L*I&j)*Oj$75 zmlft*WSs@_`3MA4Ja9;zX7#I>So@8c);~(jq1<4*_6OIr4nmRt0LdEs(VJ^UcF-s| z>u?*&9dpgNtdX{+q@bqeI+%65sS0?twCp)`uYIEi4vDiV*KU;&;xe_ivB5>yFdD7Q za&BV`lWe%#gdxRwb51IqTNdL@_t_c-vcFl<>H~7D>uYVvvwkf2gyh-Y60R12 zrjn&9)%?{mG?b=8+;Y4v>QPJacpNl7$+A)B=Mg z<8-3aAsI)C>X8Z%0HKiZ_Oz(0dt98Po8i|V?diX@zOix!sr66R);h+kA6|E2Kd`r$ zv)Y@pwA5za7lnoxR${c$7>h_mridh~#Yl*8n>nTI32pXHgSJ<*x@}c)c8%J7sM22U z^gegnZt|6;(zV9Fkc~C6d5F%s;1pp7)zso;lR`~Q^jfK1s`~3l*l3*9wZ}F%I~20D zk6!#ajG=)#!!c9jxhdDlQL{60Q$jd0H!|QNFI$^qJd15<_H|~#d07+d7B*`wpPilvMYmAklY^uJo_A6;5~@3FlG=UlccOO1a< zkj&_|0y11U%}8+295GXEM9Bvy`$yU)y=(5t$vVq;bvf-C?8a;Mn%fyMEibFmUkT46 zGM^B2JH%#cw&nzl0eg7GeW``@*6WvPV${;MnRXSAIeP+KNjNBMq_+T+%)P)|nlePn zWD~!ruUW?Br#VgA3?_s>@}WN%9C=+-GxB*y3Ybq`$=~sgi>iZg`qNdWtJ_|uqH>pP zy@*6M_3f*64m|HRjnsXda3S*L3y|^e?nGXsi9EkNbWir^GC$Xq*HI(=gRjX6ClhIq z$yC2vC*y+*xheMF<>N6zCecw%#{-vz=qEA2EE zlH0_mxCR~g%p8&6jx-|LdsKk9j&&w8OFL98yIzAYVi`BjYVqQTP-`yFWaJABwyeDC zkGv{C2xN_^lT9j`DvvTwO4}mNLL$*>`vnvVf3vri;JslLvpQO+p%^Mr$H3Zy9$bKJ zw$$P>fZ_iDeNj~d1B2y`-FtS8?3a%Q`fII6>v^x}-(TBDezxKmy<_(2x(@79YidPg z%HrFm+cj~7$11I(j=YVhBT((sow>@AZ18YnVX)g9)Tq9hi@9rh^A9}re&tP8^mx{D z0#_$(ELJ3NWyidNt$Rn0i;pEhL&meM@|Ic3+*{q(ZTeVrHz_Y;-^RRV1WSo9$wr<<9>8cKpXTeo&avA3`88JkfwkQh!*f*p7u&L~wTrmFbtWx9Mp-yXXz~cp!7S3VBYM9Bx1d6ilJ>S2NjqvzIKm=xCbO!2GM3db?D%vuozLWl>3D z(L?yq=R;8!l3R~I{pQd_53r$eR7D;ri_@)U_*QavSAWy1f4S}rRt*dZ-z}(vnP%se zNR-srJW7s}DLu3> zb@m)n{{YB8dXQyBIQ71lR`CO7(6y`l`u%(!qqLe|$w`fLi!TwG2cCVhKnE4#Y=uzK zw9o7%R7|RM*DKd~t#(E_#Bq$=vz`(mwesDojLVF+`>LqYJ0<@BFt*`_2+6fXFUq2h zdY7_%Z5?WaTWYnpGtM1au6pI33TACr}ai`CdjFT!RE;q-&WlX2}dUcr@@7rTmJyAE+N2` zA@@oYSuHme?~bg+jM8>j6}41SF*H=>DcqB;cDl)Us$w?v3t%0NZME}HIT@CMO?iXk z621y5M=>CEOr1B08%Grr*to*yu04Nzw(aoke_lzGlXtl`Ld#>llIFvhf5^dY2HijXD;k);#k(mgEpm& zi*3^ONzw0G7A88|MK$QYCt6}Bm0BP`By15wy5PFwXKnu0`sDJuwfD7)3o5#qx(>m3 z{T*vs{o@s?%&NN?c2*2B#K+`IPA(9~Yb=|?#Q;SUBD{L^d^uZ6*BU0}s{a7EJwrp* zEQ;C&)j;6uSFgr)D9A9fkbrYxwBbevtKUbNj^VF|h_*mOkyPb)?HcRaUbVW~{{Ue6 zyHkkPs9Qr0Y|$i6*z0ZDYD8%k?@3sewN{WPKOh~BuETBE#0BTU8Uu^!oqBZEJ6Sxs zr&B6P^&eQ&+P`V_{U*rSIl4DZ1R98vY=GJ~oSQZ0U1`8^l|}OWfow1y&e+ytGqkHZ zt<$Hf*fpl>hhr;mK}v z;jF*#Ea6bdaw~FPuyoN?$Ju9zy3|2HaKu!6h##MF6vJbmKJlTq*)1eTxsf3(^=MX0 zaXaF=#G4!RR->DYyBQ;+Y_trt40yzpniEAO%5`T=CwQhRKAg0B+X_?fMF-qDmx(Sy zl(l_NgK^_5gjazK05}?D6SA+W_1mvmjP~uw7T-~8q*cbPJ)|k-+sGzHSTNzX;dsgC zm9s%7T3jYa8OI{ZkgBg&WX*HD`tYu{iPLs@bLeX)`4d%W9s!d2c;>YnoG=K|IH3?K zj!?7yRqno>T$jNo&F9)R49BD^g<*FxzAdx@amzV`#HY>q9F7ew#6Y-jMOAUgEw!kkgE-#IF03s*gl~<+h7~V*b?Dd^@ zUUk@%*LGIbZA>QBVn;aOt|*81T~F_bf;tFTPAi^1nO?be@AJ)e>o0G@$)|%!bq+Lc zP#UGNK!dBtuNTQAI_zfLnk8e}DheVOY)`4$Y-07jX|AJHj1?P=oV}T< z+V(5kkW?zGCd3~Z(V1BdvoXQ*3(c4J6w`{Lis4I&bcDQk(5u&IxZGC^J=+*DR+9ku-*sb zSuvgyIZPZMfeTqrjzg9KI z9W~vP>$cjQ)wM-=Yz%PTS9nI4N(M@eMnV1b*^0Vf>zx0i=B%;ta>gd$Z!+|2smc}a;!FgT? zlZxg@Kjld8i11KGRe3bym|syfRV2ncd3EXF*4E?@?|u`yoEece?sDbU-yG{Jc|tD$ zv0owP-_$AgYZ{tK6W-M?9yY0O4C6&=d$3o^ z@(F;t*hnRHqj+0F1qI4}iL1*i)~?}ormc0_n3dX#M_nvxCM}ehu19UC=8Uw#qpFXi zudWn?RXCne7YeBPO9EkDZ}m4?HvJj}uD`L_J2sL9M2l5=JclbB@*fbAWP=4-CrFIj z?v1LUA|FiQIg<=@+CS0TT^*H_$Z@OL*jterBmPmE#eJL2!Ze!8LXH`E$<)CTkGXsE z@78wsSy@tFM4cORrCKW;-N{WfJG>@Z8uq8deB2_CTvXa_b1$+@sxl@1e6|9-mG8(- zk8PrBbh?;QX!31e+T=mHqrY-Pk{))na@$QXszihhzZFf_P=Ij0sES=%b!pzaZrNSa z_GwhNy1x0N)10>SO)PBZNU}LsFpWYy+K1d$!V3Z9@q%|H6!B#T1q3Uqucb8of9uOj z=$me|?)2OXO8puGY{n;N%#4gY%W@lJq_@k$@;H)wt_blYF+v_Wx3p1v2{4%7tu8ch zjIgIiisW4=OvGy(ejC!&$3@;?v12Pv_*rl{8mAFlCtI7Gp%P@Ri(uciZSI|>>ZFA{ zcQlvZuBv&b*`80wg7=ICwwWV+$3L>tWRb-}Q#|z~;UUv{qOrK99V+frNB7HVufo+V z(lE_#y@+igl8dOKX0m}^Ogx4kv9KNuFItKScX~?|TOPk$?irG z7g=H77zB2ghygZ(&pc3Zj-9j-)!@N%Ua*#0Mc{xKvWx#oZ z0V6j_wNP9N=e9b|>lewdRCaZ~s}puw;&#UM@{IHG+DI_oiYf78$4M@N36O{%AOST{ z6je@2Jv2L0Y*t#86?WmT&T6CUnQ#9931ZavPg=JzsBNea$MUOW+byGMhZO`-#PwX~ ztDC@uqf65yf2p*Z<+$3Z_L|qi_SyL{AVrBTJG`5HTNQQY&o~8hiF*}Py{f6z?bgm| z;2s!#n68{^_iW{AM#({PoL^I^c2rips6?{CFn}0RF+t>5QNb!@ES`L|t14}#-BV6_ zTpC$=ixJpzWKF6BG;LO(8*I%@#6Wckq$EcjGsai^{7_qfc$4+nXSf8-l zIS%T&EcpY_R1_qljAQM#~%_e44M)lqiCulgvUqzemF8h z;5?I#6DCTXB>}#~Xd?p4BW~kP=|A7=ieYy@#5TD7*>WxFiH1X^-liPwoEz5jT5(Swfe(NReY* zQzAOEd1;p-jfAx?dJ7_)#F`~VQY6k33ERI{rM?GQuHF(MO`R4pdCkRG6>7MB6UoKG zHqa46va01%3Mr1W{@x@CskwG&Gby5aLyy=t&nFd7$=L|3wt_vBFevA5Wr>Uv9y@dUoyH}Cn zAaJ925#vyGv{f$i?cCC8}V%XL`!Nyx3IHiM5yDSLJ*-+02(PTJ} z5%*-5tl6Bc@MX~x>iXxcs;gp8Who^bQo>u%z|rls9;a;+_BrdL8Jau|lhau!v?WE^bB<+hAC*9@ZJRXb%h^Kn&n zlTLd^(`{#8uv|jZt0GZFpG{)(jI6Y6p=wiQEX=}8br|jlyof)P4}UI^qo(BxO4;LA z%Y{`xYig;u^-}HuBujJ}X+a%n=7CYfbAx=vOVs5BPa2^oE=ax6I?kFAqWzbDs_d2@&Fay%4VplV2^F?(EE?HxpCKY?=m6R_ zs5lUB*~k$TM?6thUc14ZEov=(>b|^=RZVmI41{jqz>LMLuXxGBF^OX)NB$@bK|U%? ze)2^{;;5ZBA`~I%aW^gU$aRM4>UE7y_!h#nRqH{J*hg(-M>BOvhTCpgatB33gNNjM z^=F2q!+gC~99`bF!Hq!m>&GDc`$!kBr^l5Rb41U^CUOzTvffoy7u(!dKJKSd+rz8tvr$oloqzgfCk4AMK_$+AiK~*4w%5 zm6UKH!illYenG{fTBQWDZOHAq()+~`Q4GulNVDIvvmHLL#dAAE(0;ITj?Z7L*fdMK zII?!ynT@u~^I$@g$`He5Bki<|kAW0`2$T^~T}AKG&785%*23&~`XAo=Zo1FcUs&rk zwE}BbX&+W3gxiqhvxdnWYzg@9t7d9S(GV)OfTiEIWV6j~+t5R?J;FAPF1}Q~ zc0_@P0#)S_(^&ri9U@DSR3x)Gfft)?v?1aIqGicNdy4eQQ?-|uRcvuSqS&tDR%_p5 z&(;=o88=!Mt~?r?SLwwJ%^P8?e|4lHa2!{}SJ=41@k3Sf-)nt;^r`H1RJzugIrz@T zfnfY*3eLFsVX4gqy zRSNBjdq|V@2RDBqP{?{RQ?HhH6 zDxY^*b!qxX5@xd!c$iO4Dd$in~AQscv*SKF1pYAQ~DOw&$gFe zzxy)ciHUWZ$V(WrVN--wg{Z*Gk2ivFODZyCiIZ3nGDJ-EoBHo+pH}eY^RWBhTd0F0 zOOd~Qm1p+r?oWlVSjTz#jjE2xvTa|SN{ZQ>R*-;(M1V$5-T))+TWtRT7V`M?anxx( z(oGI6e4PS|U;hAaC4C6n+ieyt1CZvJqfSZki}Id&W8_{l;v9{o!13gSH*>ZzWc>1T z`u5{pr>e1_)<4!mu8b$5r0t$_Z)=dPUu9!Ja%6Z7M{aVcWPF};@gR!0K8lwv`b#~k zXFkCH0CK-t>-EeWIeW}m4#=s#-YP0d$xK59ahFBGX@+KT0utaxA_PdPgsJN-;}8uqmPXIOFBn+3dC>g-5kCVXcP#7v?ihAK)P=Me|LQ^Y4v z${*JI)NQk6+v)z_`sKfd$DY**yBA?1{23UQIKXpu*Vsv?Sa zxy)+ylf^a5`^V_T-=tFQ{{UNUe_h6$+?9d3Y_`E3##EUj9vTBo9FlE}ivWB%qKEG# zsaUp4CxM zp?<^A1L9K9Zu<1LbsFn80uHe%L!~}kX^ynaCStt`LrSEG3&@^S2Kjjua)_NxSyU8F zuVk);K{@zPG>tO2j*hERBXp{3ye=yVA|r88UvS-Q{Hr2bJ}x+z_9^8zCLtP|a@6*X zuUv_;$VodN)-FsK(OPlnkxsGC6C&D^Kx9BjZKw$-A|kJ%u6j;t^CMMm&A$C>uv%I{ z(j(STPng--J2REUc|$3+Mq#r2ro zzPgK2Gv>vX{6C1S$Tm zY%tihC~EY%Fr1zy`^EC+8|Wg!8iQZ~z>!h3R380E&ua;`&udA#Zc|~guT9$l_O?4c zasL1^N_sjNMv4xrawa4*6p-K>#K<@A93bI&YSf+|pI`28aMw2Y!MNXTZ&q(LmItrD ztG4IQk0uDH%7oO{1REy`8Y3i1{z*sKh4G;EERyYStiF}^)qh%S-(Ur1&!+u5f3|C+ zPr`b`<^^WICegMDNK})+Asv9^`-Wz?HBltTZmj*YOV>QF;`$=mFauwH?;6!a*tM4L zS?iQ`Ey=sQex?|z*OTJQ@T>f7yx5b9JdE+cNU&W`t?-;qV+~E;rhc%ltFXEHZ)BYo zErCp@ZdS~8R<=S+I<6tZW;+qpp#)SAZ5tyVXnembFInX|q#ySSAM3{J*ln+`C+S-q zy4J$K*li_pgRd=vt2Ruh*={&K{JBHqFE@*~BLUB0PF?$6vA&aQsJ@@ozWv(QdEGYn zQ}6XiF0#ghuuOg*$r_n$$AHt2NX6IU3$cJ!M2C=v#E0zi7k&P|4*8CV`oXONj_|9f zHMd#WLe|DDy~C}x`>Y!-I_t6Dc`)!eWMX_BK~x?*eY`W@EOM@hZ(6OPYhvBrySUfhs@65T$7a1`&eak4(KY)BU{=a)%zc7|HW!)4 zAAF=D5_q@*il#s4O;6jgK6&8++iSbLomsAZv#x)nWq6;7t-`$pSq&qo3^6WUYIs#! z0co5mlJayBL<<<}m)-5fjeKV^w**SMt4F3kygOyIteY7xoZA-UGGMPb>kfi~GV7%% zToO?g$ftASy}I=NzT9%*+96d=vlk_c7LOd)B(Wxj8xc9hYEw=(ky&gv{&p~p@*+}R zYKzT!-txz3#NlU4+~Pf{UsUZoJ&w0-<&0&!PRz9x$zCqGEzb0YMh56xkcmC zt+$tc-Q=7XHM&hQqBikevK*TO*V%ej(9syj`E5sVRvJT-;v-?liP2?8DvQZUbHr1x zHR(D|+jhErcI{?(b*<(0mG%yas86%eXV!gtIs*~)$OB&U(zNufREXt+c9=F+GvcO; z8RHQ(PcSywuOf8uEMm^xZJG(TYj#wc%(hwh8vJ2l^! z=a~$nxQfEM9gqx=P>?#kB$FEYw&|k8Pw9WH9Ggau+u1uX3ticuLk5a1yF(gEqYbbe z7-~yW+>VT(l9&r>g~d#I=*rvrZ|je}?{ru6=@%DuZ@X1n9o{u9R=-|RWDMhu{e!MZ zH=9RIuWwlmZAI||C3f$E8WV(G6&odPqU<1!%w#BVug5k*}x za!C<+REbbefpHZ@PPNsAE&l+=8pX7I-*4LN($!_v%C6Rh`#upJVG&#saj-ECP2mKI z7b+dWMSG@+FwafA=}>5N+sGFXtLf%MDyl{}Aygx1MCMjX`3;>ghG@ zu_D^lHY`sT<&&ijWVKR|%yAO*?fb?|)oux(v##jzp>Z7}#(q z6D0yU792%{tx5>6l~9b_M$}AEIDq%=D5|-rhS`ukq{KDJnD^>Sc^?aMW(4n*HP zwt^EfpGTZ&NL**i-w_s*4UcbJ;B}L<#^t?c`zX%(J&IjwCgWKG`Q35pB*XEAk@+qR zc_$sotN{@#tb>j5RURqHMKg}9{?uAQrtlA2<~(JUdwgQrTgc;h}+7Op~VsJMuXnH$y-q^pvN)#Qz$ zDJZD({emco3)Ng~G}A10U#`M*=vO+l*Peg)N#gEnA}}ONCRwY3PBrGrFexy)2UcN&DWzeSGbXs>F+HZIm7{ktQ<)1s19+t~%7%u7LwU4-@E4sV-Ob{dI)v zms_ttjB0&L7cd4m>hVpAyLQv#GM|M+B=Qu2b@vF5h^eBYsV*0_ol~*nUzJB$OC7qc zo$2KCkvMNSQYV~s5nm%MG^C0F%y<3hmkL+{IuGi7zX=1hxsP)%HZxTCGCecIb^k@EJvazqk# zOR?No@Yt4r6ipaJAu$mV_Cn+RK2PU2ZpvSWJj2KQ*XF@1RQK# zLqo`s<0POx{SkWWdru5_1lJweENrJ#$~$x&Ze!H%xjh+-@Xn4xtoTL6ZNpp;gUtY{ z04k9Zp>>MgnIUg&)#Fn;e>%R{?r(2jZfq^IPD-bdRaM`K;wIZ^7$rnhK|Jt86-=fv z@y@mWZ&gI6Dmj?m3yflQ@3f-Z9iXI z+h>B+Jw>Y9CmYjAgO&FmMCyB+uswm}2d9FJ1Y_?eRW=wS* zEp(9`^TqC zrj7NrR@VkCeNNA)R!?puj~~h?fa{N(kobbzXogJSBdQ^)pyfKuxTi@`Y&GAmuNv7Y zW6D?$1GDaSnH967y+->au~u`Dq?3)0ji(4fo?c^6Q$t?eO3#x;V^)!9QYNM=Pe;k!Ks~L)d4CId$x{Z5%m;BRqPq!{S_(vi; zQQVfplf@o!T4tOaRF*FsRPE}xd4zo$KHJ86KpgchW`M0sh3@P%k^|EMOry@(3^!}YHHCi z+=(ujvW8LE5jAnLGZ8`T4Wh45GHrWa)~T*V-u?}g3K_9ty+mtYU2d@Cc?L7lCo6?0 z-WM7GG&c*%D651OBvwEsAJ~fm(@+JP86vaAtZY*n`3RVdA? z=$_P36+~R4I7l4|bmyX4c=RjyT7JV<7F|8QtkFnzEW~gnHtUE;jl>i{KtLBc80ArN zO1&rb8@3OsKFHMRVI98t^CdGw{LESh*kLSdW66wW!z%NVLAKp>Uhxo$;M12Z_UYHO z{3-=jho-e%wO4Gndqry%x1&h~+RCWzM|hZE9*{uW!VZZMxR@k$cwq#UNjuwZ;uhk} zm$7|YVP|`?*MA{(w(HcT9=bfZh{PELQH8lDDg#ZEz=DQkXg<PQEBG*q#cFwhc=0GW#G7`x|UsX>v*!QSOtDtA~4vjgCy}I^BY8 zC3Vb3Wz4muu(1BrSh9oTxdszW0!C?EBNZZf-*J`%(+k#m+~zZ-&2MR<&@SsWR;fzj z8cAY1w@rDaOa@*Sn;aRof$tP9OrY_{B}F70tF^b48H@H`$zrqr0FSGmnN2QpkuGQz zgqc0r0P4PA>!jmirih;GFCNH zVda=_Gu@^gAr%57|54vsr6TFl`N#QMKVF{NSknuL}RZNAXEc!v=z=t zv&!U?u5*Md={pX|sIhZPZL&?cyJ2Cn&Y2a*Jg*1{xZrRVQXT?$QzcA-@$S8J?KbKS z$&9|mBQ%L&iJ*Kq*&xm_9Y-uMq zZ+XFg&nK90nU@tXvPt(p?k6Nfz^V!+W$jDam@0Nz5NGci>>a8lV|A@7c2QaI`6Dco zM2hTCX)q+(lA(%&32)xD+$-K9Y!tX6D}hSp%FF9%tep}#S}}o;ZyLvK1GL9wrjE@ z?DTcCOkXwO7$f{Vq>QZ!xL`5~!of7#N-CknR|%Cw>o=|7Xq8{O?G7_LQMioo{{R{A z<7(=phHX69GSMMAKrXl_N^0V-6<*)dtFt))%pGs*+wDH_^&6_$QzcD++busO!(}{% z>uvjyM1fQcu)Wb$7q)t~4vVRZ^RVT=Elx9%*Z{DR91y-dmkHo;wL?`g|;6g&sxcFw5%{K>UEpSn@ZMg8nJb`l~hs*71?ZwlWtdm z7x|i1MLgq@BL4thwG%mLfvnfWuu6+M$Dvh9XpTJ59uGqzB2f=$@iinxWdv}z#}(?( z3RQI4`H|`@A8ooFVdq|{vyCJ~9`ZBt895k2-~@@lL4C=NKE3*yvJ)<%zp&1+tC?Qq zcGk7hXQkZ1%q9X`X)ZAufdT=WXhwtOJRb#A%44f6XE6?!f3Vl(TF3h7h+5Q_t^WXu zn`3(JTyd5W5z8ja!bk|xqM|g~AY_$DmpSV{{`V?ye_Gdc9n*T)ZKXllBJU6xv8vVU zmAHuM)-~i$A2Kll=Bh|UtH_CPIKp(5bxpPP_1wBWvuv`8d(Fk}^2CigML51=3Z83? zNpO}VR{=rDWxxm*-|aP0;+;0??xtVvc9dV-o39;3#dA_3TJE>8mNbe{=HrjZeON<5 zZ_Y}X10dj7<;?NbXELf?o9mi=>grb8bq=3RDXUz@(|pwM{vO&SM;bU2o`oHGL2>d@ zAwp?X$x%pA6;)ETMrG0IT8-wuZS2!8Y#{^N9i^pxSX@Rp-xV4rBgb=;t|G09w4mCG z60SuB5ms%!nJ2ll*QW7hCryb>U9zNbgvBny5@o}~61qvOMvmrM9C)iKOo_D^$bp1x z`1W3&wyv9FY9&1>&tIK!rP$7GMoUJ*w8zSju5)>(xC%HVs6-$tAgZ0;TX9o${f66Q z+9qkYPS;wuGyAe+#hSJP#3CX1kH&ISD8qu*3^*sdD3~lFXIY8fdo*6{G`94$^p!NC z*1tmXGZy})JFsRLiMTE>Y>9a=ON^^&?Ic0QJ9VCP>(-bcQrUgAr&CeeOL9HsP0HKT z>~5=7EgY!qsIrd9WdzlS#8C?fxzBY`&r`F0JTpjju0p!AsDyI^W`woQ{B}r7=SDG4 z?Ta9-wkMS@E8<0j>^;+{%_rY#R+_e-t$!6+6)IzFX9r_pYucAG$;l3Yn*c8{;3%L% ziT%Lx67p4FL`Tf_vh#}8z*^95t}pf9^x$kiVYeMzey*}O3n^X>GV4{aemrA|A-Kop z6jkKn_ftVdCBHGN$&I=VzS_56*?z%$cxLRu8?M_4r+`MO41zRsWBY8#ag-F4Z8kVj zQ&BKg%I75T!n~PTu;0XRp10HYIv@#E`x@+UW7XR?T2irKjpNAw04MnPo8b2|1XWZY z-PT<+MgvQSz7zoC2ysj9k`l_hr&aCkh z>$Gp7zP-M(qob8Ay^i`jQ>AWKKPKQ|wBk0ofeK5GMvP9Vnz~AUMjJn4oQJYoS5Paq zeRZl|v1o@{s{1mlM3pHtTIzba72+oJUpSKn>mElQ6ygq(YnO{X$UAkbDrSN0pYJp5 zKdrS|Djk36%dK&#aDFY7F2<6YmesrJEmuT}!z&maZE@@-g+x^lR|dUjB;~%nTDQI9 z?5%>s>#c(6=GxaP9(o4lpk53XoV2#IX|crCBT0LZkbt8KVu#2O!vv_kRJ>Iewd)m@ zmPN4WcCp&}MuN}Du>C_8xU1Htd_V(PHkML~OO|dmA<^yZm-Ov)b?X_&0GMrLu%EpT3;Y*WpG|FFTx}K>J8sc8Sdz`Pruub>IoolbO*sZLZOU`U1+{SaVU`usL?YxXmFqY4 z@wKn3cy$ld8lT^m{{UoL@1JD8?N`)bHq1nZNg;{0R&t&v4f@D0ioD`+B*F7c2jy|c ztFlTOM&xYR+A(8iS|sHA|RMyMRg3%-BDri$MCSo(>n zV-#DFayAauM{&3U&0w zaVCAlD75DET8j~7$p9fO`KbQ@n2=s+)iqv6$0VM>UaXjDCLY`I3d%j>fphkDu-H9V z{iQ5<8uOKe*_jIqw7!L{j3UU24SDVO#cZ+_SGE+Eg6|v0+X&k;1_ZgJV@DJlS$4-qJ%fDKczk z1B&VtnF`TH^P)Q9fwoAWg_qLHzE*b0uv0*z-|HEvqTIB4T1GFn7Dg3Qv%Y1*o6ks& z+Q(9LxbHZwJdYZRfN&I74=ZX-#SQhVKXh-ORaM%59cd%#D3jf$)0&$V4!Ma2ZX)~& z_)USR6o*7!QWF$!0pE(JSe7qtFD;bsYJctSMV5hiS0C*k_ZfK!#Nb)49 zwE=*5geE+u0&ccV5;&#_?hwMxw)^tc{^|T4uB3fx!A`E$t?Qfn6e*=Yu>Fr7L+v{f z#hE4igK*BBg!tl7`84yMFa`(qij$dL+Qv{gy0U6}wy%3*u|WE->Zd6ir@FJgwP~9x zn6XMskl0$ToZIrGp;@WD8OIqFB_Y7^9QBQnu4}0N;vItCi$&UY4YlnXQgX-7uxW)M zsd6n~HzG69Wx^<~ugFJ*6wy$Vniz5QTy^8q4#$T{t_w$hQ&8-CL6Wmxwvs?TM%)#` zIGh_%A`l)zYPip)d-blpt-P~UZ``|7ir=blUq@f5el)fW&5<|B_)f@FmPHhmRo2l7 z5YR-i>bMkD>vm#4ICqJ1cDh&oyr-Q`u54FM#d~F$F_`6TUs&qPtV);-DhQaqNUs{A zuO{%mi<#}bB+zM#z0pRGdrM{n+-D`~mk9zaC~rZomU0|)=Dfq}@@z@5jMzKHPm5@& z?(Z&Ew+19^ayQKY{;-|&=xAS6z?{axSqg@FLV7)&fq2pk;+2OS7ak@=Pz4wK{!Ai| zTxXojZt=@x`QKxP@2Jp!w~Yg7wQEOdrE6ko=~ivOF3g#qXC_0cqaI3TM}-p#D%z(U z8gl7>7|i_9+j@(iueQCdX?M%XR~l<9GxnF$PNO#yMcYFOX9k{Gk+kz5$dhupnwX|r zUoWteJ!;BKmqY&AWNa@TeTLVn-&iBALa^JdLJa~N4uZmc$u&&`g?08_Cff2C0P#b0 zRTUL&{{U8;;10j_yj=)2J+8ZPv-?Jyb&oh2Oua9Zpuivb&m!;|(w25!)m2p=EBBsPGy)-nki)?<0^7t{wX95{3y?wdTB)c_up7 zPPb0hdA>#IDqKsKF8CovxHo3E1+ZwvhFupy!c`<6YLaCYQ3Vk*%aG%(f44T)FMsWm z*rZLn>@6cmr`74|gzC5Jh*AQv;WrXwy5|wd>^Q^gg<;^8f*vS^mG>z2>&N?he96a` zqpY2;^maGd&~}X$r&YCirr-MVw@9sk+>^Y1#hOdRaNJ1peklQ(c^%@8h^st>0Ke_^ z*Q~xAtorbB(|)*#K7;HSTMgui(k!d0X>O~)8mfSf9ERuDQ!^p)P?RqWq7`uv%*4e6 zxL}v2dL_tusa_ZQ?zOD5E*`^1U;t}mKLP1Y3|EP{(cSWoAZ@V`d67gF1rBL}>Z0w{ zA^nrAURS*~zy`1;F|pUN%uTScK0xDSaa>XHi>QJid{dDq`YFmo;?9a7+v(*mK z7SWeBryH3f6~vKdI!}CFM4Ju+=!D~E@|)mC#G67w^~!YFI81(PZQp3@J9fc6VhoBU z$jgWPXo;(fEu?J86u6iOm=S)$Eaf|P>!)6yl(tEvwJTe_VkWm9)=P}hNF}b2zIPj9 za-ymMk`goqZaApg0(MVvA$RLNx^ClLY@D36)mnO|Upol)u2-_`Y0NMUKz=aA@v|(( zLrO~j0EMza;9kQnK84ktGBJBiNY9su5`sIPe^)QQ%y*iPJ;~`vXar5tajZeK;8D3qNFm{Q66CaluRky-a zZ!1o!qiKcmG)P7&i>eiIK^5JrKg%03x*Q&4NH?kWcPP+LW(Gu!FIE{U8+lB z`b%S|vYSzB9O`Xi#-6ZFENN>N6J*wh65H3x zHPXEev~9YnkGSk8kHhg15R)GF5!2%T0Flg=RXeDPuU5cDuVse{z1nS3ngtc*1e5;& zQb?}2kgIqvJk*y3wi-YDj!hut;~bLZ6-ZEe#D(OkR?Yo0(B9Ob+rq7C-d(HvG@7*W zcpes@6AjHYG*+_r5kxXlMY+kBtk_Sd3VUU;m9NhDq9=X@G@xXx8z7+5QuoHf&*ZpsGqr2 zQG2TOn|KBL4JzP;MBQ&@nLA>f!^5-Nun4H)k^wf;PpXkM$b*N7c`p?I02J#sI&_|^ zc7yfCown>{MQgpytesUttZLfILHY8h*}hIHG0T`S6|ZkIE@)~Q@$w~3yx+1Yc?NNn>$jMW zkkYNUpRuUzG}~yB>nLxUT~G$5SAnH=JZSRecms=o1`hECQC%k$Mb9TBOePtkb^6oa zU4N&j_ZUoGxo2j=&}!tYHgWk&hJDf;V)B#f@rY0&KFdzF04Q9_aZvCrl z`xTU3Ro0+05F6{J(Cv#Rnn z73p?Xi57FNc-#S$PrDStNc&O46K{fYaDl;ehnH7HsTP2tM%aG7-2S|85QhqGa_T8=Wm)~BcLK#IsX{wv(i6G!8 z)ktl_XkTrlKmh`6L3n!;2sZE?+|WM3+J4Wr(Qg9RY}fU#=d5CD_SJ4hj_^MmXI3DK ztMTI*6C4*RL5?2Y>YZm|J!9+5pZHdja=&(hj(mvl_8ONSZo)6Zc}g-yav{leUXvh| zRKO5GNfSN$rnh`4xFG#^Q?E^TbBwjiudyn-Qo5OGDkb^8^NtK<7~Ut9kL<6J0XU90 ziT3v+bHYSTPWGGX=ceddexm)grp)Y#QtWKeY%eX)JdZtM_(WWUVr!F3G>S?i@8jx< z&E)b(e&_7nZkk-BwvViZ+;DGNqN*0*zX)2I*@uyqMPm*?6h+nIM5Kj;RqI!zu_3@| zerj2j?xb+-hD3NzqjDaVHMe8;n*Eckku>5t%v6Vv5;&x|#uT&6;KmhjA-5xbVw+(q z8VTmZbxaI_CmU={9BsEmn-|TqXxAo--0*|j*7{6Xmle%yT1KNmt?TgUABlM7bj7Z9 z#-qs>TUU+N!IeY~ET=E;c1}dNQuT>Hls)pzje1O1nHwF8U36By+{$yNBUE*fs|u}ud1ku0ESqssjVi_HsM$qOU;LwTODzJB`xA;TQFHE9>h`+?8y!?@ zuGzWPA+5cAjUvF4U0mme)v}UG>|o^jH|Iv1^im`w6-*-KaV6g?nvoi!@W1_*w7Z!s z@9WW3vVGUvc2t>d0wd101T3mHs;CG8nCm7RAMKckdduWg|^%k4g z<=wn(KQhStP~t;n&QZ-lwMNasUO+sTmkeXquA66&MlQLy>ui)-{iXNp+m|NBUfEnG z>9qlXB~m~j7SXX5lY?k^5?;yagtCp=TzxiX#8%tR(K5lyQQ=o6)-jPwz#7PMI!9Ge zV34r9kr6xk^?O^K4#%zeg%V3=BjZ|4p2&;rx8zb5fk|8>bCUMs#dG=Voo5*AaoD=0 zky6*jt&%QcA22@~VC$vj9!RLDuJ%Mv>))qdDqa=z$Ju4NwV&d$iprFrN6p4_A(osc zS~S9_Clo|NRP`*PXRf)ak7L>ejOGDiugoR}^XN@avTEfOknTp=&7 zOvOUk?k={dv9!)F>)}~h4qS_XAyRHk!v$$YNl|$=-*pV87b%{snRG`r*P%+D+mvwa zq*z2o*w>^3h#@7Gkcgdec_w^`%yOl~6;xES-etZx5uE-je3M~F?!Q|pf~p|e8h9O8 z?gFM!n9sPF;siN!$Hhf>_fDtIdp8N%+-+XRWU2mEE3)5=O&lueE;jja08t?(o)3Qq z5fP$NRsB16>v_Oj`w|Qr3AWJXPgiwT;Lf2cxGcCcNbDW)v*l^bI+7V9yOmI^j8%kzbVt#=55ATbA2(tUlliaoCd)hLn}UR0PV3VL7iQ&Q|sQ?jp*E zeR&Ia+h)G@t6ZBFr6u<6rp1>k6cITr8oaDaRTjw{L~pymsrxx1d%Cl#1#T6mpjOP> z{<)-qCHL;5*WXZA8jC?0SO=5H4~y+O=o@5e`wgHWCQm=*%={C!+)|NYYzun+<3aYO z_p@46%P6rgA;^SAjLDEmmz0}r8xjQ*X%SI)a^zW2#s2^W+xS_#Bb7H(U7r^9-5x~8 zpwE-1Mw3?-EQNW$6uIvFMvU5VTNg!DUnR zCg*rkFO1n*>gLVZAQ;TXd6jS&apH*Z z2@9Z$jx4&Pp8nP83FVbl_tq2OYfG-|km&9~sV~$Ge1L}g@xQ%Y9f{0GbN>L!bC6^k zAuJ-FbQE5-w>&l4C05?-j!TjfSXx_I)K)ZB(j`0p0NRcuR$Q3Oxj_|4ltWgKe2bSI zL_t&iX6Y!kW%bR6(&J1q*Kgfeu!!`TFE{Y2VmaYB>hPdoOd=D0L~YM*M~)XNofkQD z2DW<5Cc8;bv+q-Gin@+dpJZ%MqqM~pa>PcEoS1G4ZMJ6Hs^SAHmjMaI$6WT8k=Azb zpI>oZsu)~rm4=S8V5GTa&VCg~oJ3VL6;~8h!Y(SE`{S$gzF1aP7MoDLVQp8e64J;g z7)M=Y2?hs+w#=e@MwQ3c#Du1zX^+oV^%zLgY4#mF!)LgAXQ;cfNNvNM`Lya1Cy$&d zEh~Q=#19&P0+{m25+4QW+VhyRic!`+oBEsUH|pTT+IEfo+gpY|(@t3f4zLl7xw??# zvfEF(jrsWz3368yM~}Htb2|20+e-VF-PgZg?-J^3_1Vzehb^|{R@tb_vYKSWO*TXe z8;fZ3A|TUfsG>sSq&<{+zZ=5tnY53t^bLxx`tHYEz1C!HFd?qJ_6rus$VZyNB0~mU zd1MnPD9R|Ohk|zfs7uyt`G{Se^;gr>QBj#&GYQp(NoJv7LQtCw$eSKF!PQ( zA<^b$B!Zs2RZx*S#+!dEs<-zoEOz&`Tl*^bGAEX^TdhHi>nB#NuWYifRaP#--=)Q=*sLjOncSFhmbE>?Os3m%whL2+LlHlUluFC0%jy3B zi^WX<7uZAX#__HojSirHUQ%p(z15Y4)Qy(m$8HsvgC@ov&ml4nHq@uSIHYdM=yT+X zA|d@J&KHw~+n-*2i6?lwi2a4d;%l-7O*LJNNcG?m8%JKA!wZQLe1vW|`+(sPxT>fK zozZwpY${oO!?DrT*H!&>Gr@CX0A)~Zb0D!?7PQcYI|&SDIBVl7@g*l)kSg!)A0i@T zvutau-a_`>n(ESald->{C)yiir{uMzRn5M7SxndC2uo_(wZ(KmP=M44vNSR*e&iDB zf4RpCXFgd%jaR+zl~flS&n8us)YJ`5lH)cc<%tC zKwQ6B!5!c3?X`B#rM|w|bwBiKNO&)2Yk~zVlwqL*OgVb-BXPkSBr_((NeGb$`z~`L zSYgn<)6r$!?AvPH6Pl{nq$=C#PVq?-;kr#oj~GyL_7D_+P*r%ZCC4Sjh`VU^=^EJ7u=!BM#fJ6K0iqYq>6M5oEgkDSEvUO4{=<;4PojR$e*n=Rj<7BFeP8lj9 z2$K4DPr@p74OcrO6Kz>db~_GYBv~Zp(5WgA=g_}6>rz6gJ%{U< zI>bwsb=`j2sV|^B(oM9Kk|ZU>!9$7-H0w^Hu)=@=`%{ZpRpz6~E<@?YpJRQ2b*8}7 zezp5kOWBs%sxsO~J!mS`n=8kh@R2f%ii1rw@}i=Up{gcV1>dY%-^e{h{{Y(XrPW?r zXm+~}zWpks2n3~NA(rDf<8mCdvS;NJ%pY_FZ8D;WA}Rj>ac<2_dG&s~x^6Y4_J!`x zO+oeJyEKZs618qMG%1M~9%<*R&cZvnEFiRiK)G|8DiDgQOW8X~7DGD@k7cfGnq{`J z8WC&uO;4wlWG+7BNn~pw$u8Fj#*S(rC}HFN+5rMN$d?OcW?QC>L+=PP_Y3t1RT^Qo z&Rcz$#UbLahY+HYJ0W=!-eq;tYzzgYXmX*FTxw%iAv0X5q>T>h6wQNNsdBPxHrU*C zXzIZel4Ab=8y*1*%}WVpuSC#h{fU2&@Djy)n@iKZPx7TQkZ#j{gUB3`G@3#0nB$);@%u&FQ%X}1-8)?N=1QjO>%1OsFtlk>EuVEb)JPDh`C=@!$ zZRrTvwWQl=9iQ{g-pU)uE!ae8oK_>p2kV#}`s zAPD3Qf*t|;MsI?(*fytCaeTGMH@ZAz$)`jLazezb!z8;upVm^NBU)(5M6?rLjp4R6cT_#^5nor7)qR+nF?qAeyUQmHOtgu!eMHXtS!?zse(=uIS+CuV>|L)>Xu|fr zh>gBZOTUcD)|4qqT#4~)vM(wCa_@^LTRB|Hs&?kImg+0EIrO@(+n;6F>%$%W@_I^Y zp}}TQH67VCt)ockFv5$kzaz5$0BOD|rO9Red*F-L{jXZtZ~p-5Kc=p#_3x%e6AWBx zSGr6{k!IRnI37p-G$|=8ITR&CaY3x03guJ3Q=XQ^nBvXC?`V^C_XOI?U5Zw-7RqLs zF8a1RZogrBEz>eP18ufU#ouWS|Qms#^u1V zv|>Tnu=p_B>^24AeZY?6s^^V-iNKLnReh!?U3x!XZg%;3`(OT<;X7ZYpt-tf#`YKu zO|Nk(N|h(OHWR)fAaI>E7Mgrx3*3=Vm6gi*7m9IPdv)*P_;ix>nTIOMWV)3}Ljz%~ z-nPNAIBi=vJRPY6cpH}F=NNV681bXWLdyaz04lGSD5=(NRI={)b`=NJ7gRQrcc=8} zTWw%PX}w-V=A&3Zksf%*a`JJ-d7f8&87Ov=VmvoLt}|A zTBM%CbWTBzE!7D&z%ulKWx?mb9a0hGzDxjzv{Rp3oUwc0P3``>^(@M(d5>6JvsX_& zsR-0yZd{X?ZMG8lN_0)*2SH6dsJTU4c21rW_til!fBOn1wP5C(W}89DM$==l^Pt)d zaVk2C8KiI)F@n4#=0z18_9kz8l!>}vL%W_u{?_S)6euE!fvjW}F!_aAw-5gquE%@vR$ z0zy>6xye*Z+snV>9-h6WxxBdc>v*;V($VX+`qs}`D)Mkktd5c)M3RDlb|k!ku^~}0 zPC|r=h*>XgJ$k)5{C_FiziVa5o(5pH$T-xiI~5P)O|<};z(yq!AMW^4IeST@Oqlln z0Nkj)y)P`@UfEFCBzvfp*Ki@mhaIJoETQrxF!@H~oJrs9t`NyZFuCr%mlNcK6{M@Q z*z0Sy4WGjKM-YW!6@qzMR{Nkntf^rdR9@qsYWM3mtaP2bXAtQb++5XRi6ahsR*AuduClr)p*u#R~#Y$p#&Y z%DT|F<7`WCfn&J7LtZ_RJ;}g_DxFPlEu21uYS!H3O{UtC(5Ez$B#fErjsx-4NggPs z>w?Ot5%yB%IQ-!_qp$Zu{{U|qeS`N_;jY7SF1@&4K&)lA!n!O~Y@U-i2wp>$Ldpn; zsv0VS{++*fR`iFLW_@A)>TD?~nt`~&Wy#Mu^Jh-3BaYm3L~c7o1Xkyf!fhMdywygZ;9Yt)RFH zq)NF#B=+G`(RyH|?`XcD+4c>2?aHOih5gb~hopmXWwyez03FO{#xM^TST~f}Cs!-U zRX=KVt!i(lCjF!J$J*aj%e0##>-#j*pielI)|%@Og|I2D8xB0$q;oM|IYlA^?52u+ z(;1!RS<{l9#kW^#R?QP9brKjjVo>7;jS;hC8E}P%BZ`^0t*9dT6~0I$h@5-vB+w0e zP%pWy&ZAqln@z9N@?zrcAjnt_%#*|+nk!8=hY`W@2xl2oK3K}Ew_Q5Vnanh6pIX_| z>;*pZ>W=D$rOzQoZL)G(OaxavG21D?rfSIoykIIkgDcE=3MOXfDU;H_hp1E4g+2cO z*RC^E%y*;8iD0e@&2@P+^i%jozIPPFTv2(XR89n|#ZeQa$-;KMw&)~{b5@gV)lE%} zl&39hotgH7+WK)w>@-Y#WoZah`-`rBa6v^3zv)uz9lA}qIj-Gp$9DZoqis4W&6>r1 zixseHA7$7u+jhoW%EtU}z>oZc;=+WXc^onmBot*-1TcJ(Ns|)YKMh6PjWBlhHs9c5 zNoxA=wdYuJQ!Y%hc13whV0_I8cpZ{FTx=EP#yR-=b)MWg-uSO%N`75yu;9Hhw<+65 zP3+A#9y`zY4Hf63H6}>7T*!+g$dV7ZcnM*8)a}79vSh8E?PIyDLa7;A;JXe)ABgGI ze94Zxh|*dBJUFU?ji)5ax=vubmSI-|^7X6rbL=}NscQbs)9Pa-q?>snZZTlv?a4V2 zqe*CU%m9~?u2sTbAc8&M)3`;u`!iT{Dz#04%g^Lu-%nceQF_HzP&keP7&gHyg=8EQ zL_|P90w5kq(Ph9}sw@8htaLq^$LtMqZt3=AiL&&6<&I34kmNaFv+KD$$)kA&!CgNq zrNbOa#|x4riz&9uVA`A*+uS);Le8kgC8AfK%%29?Tmn*dV0i_>5OHJ*fpR4v1w>U< zSvPoG8h2%(roXC#3bGAe)waNT9F4XY&W&L26m9q8uyKokI`Fn=t@1<;99IbEeSH2< zCX?(PwVjIUmIb7zZ1&2lD6#LQDV@!H6d`IouaK0TPXLjNO%sTv?oi5#W_-lf?N>_N zFCy)G9o$CkH2Tp-rS9)TN|$B6;kMB_&odPOamKk9jm}(@NY#1q>GdZK3su6px1Ba^ z)O~8cvWLepxu=ULjXxwGhaOqK8J6CV@-9t4oKJf3B@qq$$m{EKTcZdZy+z{(tu;-dM0 zqOX*d!E8q(%O<{w+F_!B8%>=}{-C=jS!R23mUs(5b0-N2n=l;mp`m!lRknl|3WO+K z`j*p5)LWfz@%Po59elRvYJ?Kg!R3tOBrPjkQ5(;5Jf~@<&{LoSNe_bGII)& zwicBAUFN|l==&&$Jj4g=m=@Y1cg~>LgF@JQgp`PgvF^`S^X&~gedY7JHT>4ASbU`{Kb<`^hAlM1fV`f0Lap0ZgeliSLOq5}AGi#z)LPW#J31AL7n!+DN5h^XX7{Y5!r3;8`PWMcVl7D6M3l%*7AK`_aY7(;P|Xd&d3}X} z!v6r3G1l#qgHv0z(so#tP3;a8Lx$hYtk&h3Bh5782$K)I>MD4}&I*dX(I$MPbafun?A#11}nNf zt$12$@gz^#$c=si#dJTkh(;;r$eOMNJ$o)XnJ1L+r?psCGxcecY@_^PzuK9bZ+`2_ z%EPV)Q4SMInDR2N7>G6p#eY8B^{eEy`ZGSbUh_K;Uj<@Ij#4DBr^kvs=0NysGv{pB`isc=9162ZMrT+m{9Rps!YJrYoD4t7S7D&6v)G#KeaZ zLp)GfCYwQ2n1r63$Os7+9h84gyM0u!%Xa;Gzd+S<0^Q7+$n~rtRZ(z39sp&+aa2(S zrBgvnXOB+1=Aj}?nwTJ#FFaR}WXxFF&>VLdbXs^@2S!PfBWm1oR7FMZn8>fWQ?8yt zeJ@$1dhX5~38arjCtLnK*(&^o(;g>X6+EM<j6C%d0b&z4H ztP9XMiK8VT$z%%x3W{Pvi0*K!-|^OZ{{VE;$!Glmd$_S_xtd0(+m@~~V+{<7NZ1-= zoq6N~B?3-9F>M7y1S{Ekx4i4Zo@3XD$cX!`v1dNqTZ?-E(FVDYwAqc3xat#x>tvqv zUiijS^VGLiE9%<)ZkdaEy-vn-FqHE)yHWXkGR5LCS0p~+A*i}$;-aFK6Df|!nX+s| zr)p?6hB<6cpjpc}=o^Cp+KvcQHGLv}kmII#uV|SDfs+PRrqu;i z43LFGmI+ZwI#zpL2J8O3*8ViOdlY%sGq0Rq;N}Xt>rr2M31aOfJwL~9Y zq}rFa90gW=UGq`-OU#II>Yl698kF6yYP7{My?VMlJzlmfITgi6 z1)l@VwJ5wkLo+2s&ov=M4(h9nb(?Y0cGGl^r?eSbOM0*J4Mb^&P7Js>OBnCEg4=46 zW4@{d$pt-%oEN|JUb$O;3%HQuI-~IA>oHw`Lk0`A74l#*;R7PWT*dau1rZSyRXeI+ zy{NrvYdfuU7W#!%ZQC`n=3f*ZKf<{o6vc8ek6O*#d2?HFfT@p$ z6{J8Gz+Dni7ZG@>lI3z3T=l8i*vf7(6#Z(Cwku0+MS#d$b(%AabaD_Fi z!M^)S(b-Twwy%L2ThB+X@ig2kfr%9b!B>Gnjw+%J7@s9^a=mKVc&jG=07Z%Rc8hZ_ zQ(Xer>C0ccUx#ZA+0k_reyNmwe9W4H$81EOPQ>DX6MTtO)0cj@{@%P}T{yfdChX?k z>=Ej$wGD#OlDe8R+GS)%QKHw{jw@8{RMy@WMj5u~6K?#XF*0pQSCMr(^@Ulpr|PuV z!0*%0Vb;m|_Ob<)ylyZ`cFQGExUnHt&8-xDsQj2#$qmypM01#-=dI+3PP3-1J72DT z?)v-b-G)>hir#zw0A%Skk>olIS+LMLqY<(a81U8QGe?lgQ<9+NML4xq57wVz>;tm> zXA@ldkL(hiKE`E8L$moVRJ{2xfP(x5@^D1Ri^yt-sE@6`lRu*4bA6iD zx*Gk4t4BXb(c?=^!+99;q7-eKT&H5WUfQ-%#T_99b-`^FLAJ=hX@PZRV+^qV&-%*$ z07a*luiIAMJFD3*#Qy+HOz|rrE<4EsKpKoSj?>dz7=wtzQXcj+obe#i4!? z#eroO=3_o4+m~KzDml3&pmC?c)I#>4I4Y#Qlk&cuNi~}d6_O_Z04j4P)ci?SU`S4% z93jO7K{PM(gNlid{ZpmpBAWXa$?7Qk41I#R`zYH7kT!c(<|Ibrl<{q+8jRQjrikEz zHb1zDO+T>kk!kUhb*7`#HhJR3L`P@O*P(-p4MpNK#QPTs!&v|>3Y32#V~^-6 zoiVp8f4EQgAzcgX2X85+*wfy9ct=-2>|%HL_Z?~QB!?8@e`_wIN@|a)DJY=!9!O3- zwb!rG?$<4*-D(v}_7#0%ExUtdNcu-|yrMJaZb7**)}thGarfLG?FJK?apYuK8)xCq z1z*#Cgx)2>-S46n$F_yq%e<9huQJoqo;C&8u*P8=CZv!cx*%+)kqC&7o)l*-PSzu7 zdKR~*ZT|pb+r`nSb$w=gG1k9gvvMO+95+#1{v5?*II!Xy0%YpCEx1k)@J=F%mz2G} zi1pW7b$f4L@0xYSp-p3X29H&tgRT*L$nsbFgIG>CwJyPwXd z*XW#%>n<=2z^s^#xrxt&1v72KB6q+kk1ky^HtM<)**cCRHO1ni? z!vb85t9GGAiP=)?8WK3kEP&*Tj5Z?LIE1R{8kiX=D)lA45ADtqZl>4lukC+lP5SbF z*}m^*EB!wMV4dWwd8jh@KJ13ghTB3$+*aE0ImH|_=A>MSb(zWIjRlK;_OR@$?{5 zUuPAV4(n)Z7P2D<)Cg?UzEEmvnS3MyIQwdEI9$oZ=1NMYtJhw$mn+MV6_ngn{Um3XD4$&Fsq)GPdR zZk8dGc^@0g9nu$@eN>FaNwqZvMM*ny>D#Q$gnzuLZ7W#RY`4n`S8n#xk{cBsj_Ykl zB(I)<3Nc1BM1De!T~llOY3=>X?p*igFYA%Lk&nIAF$Ts#*rv4^*_BpP>syr5ugG3X z5*utIHa``vCIp~t0THPoDx$Aj&z3&2@Vu-y+q2cT4L?e&W)9UFBs<-b^HrHHrhInc zG4WY1ks!t^V2u9&Y`_%&`w)V9jI&AEjE%^Cu&J-!r`P`g3vu=xJ&k_lt56ees-%3e z62zcPjIrF|E#YysC-UQnWDaE!N?6pp!v57YuctMg2XDL3b!~fpmO~N-!!u*?%ZgGb zlp~WqV{-wQ8wlt=@j=E#!6bOoJxk$rTk4yQb#-p}x@&s&i&HuTV%OmB)fCQCI(Aaz zGAUgZ>hU>d`7}Zf_(2hrQ6+H|6gr)`o^-|OwOVX7UtcvUJ*K;${eLc%E;diMwd+3| zsn!k3Hd>inK^^DS9C-m|N=|BwnGQUI)-1)26SMySZ59u;x&3`B?cH-vi%Sq3gQ;xx zGHmSZE+wJ=0Jb}8eQWAptn|igYS?@u zQtj?3JhnEDGTbFAxC-xO$Q>BmLU_o?4t?Yds0NlA68 zT30J_KFO)8g95xzfwgXH6QelN&x+gaBBL!26-7~dE0ycf&G4PMj>cw!FVwRc9eTn> z*;NvisMYa?LL;LPSw~Ujh(+U6@(L=K;ZOG>W39RF7a#jF;+I{p8F3;_vwlm{t5|AN zFitgV?Td<}358xN*n(vhc@|eG-=bNr7TG@7*7ohYcU`Kz+v|wztgB6aOC?(L_@LmK zQn29)uLVL=@(;OG1rxC<^*2_2vArMcYU!KgeV=$o_5B6rVQTwsu;pq+b!o@M`!U7% zs@twQ2o1W?w5Dn$-`coIZyH&b8k?bN4z;yyx}M#vTIw_G&OM{irP!rDyHe7(DX9*| zl@*8N%5#@tifR4aBJoAvVn}2oUCU|IH(Zq2#!_kZ zbkLPk4l5{0f?hrP^^zxRcn{eut2KhxRoEeYVPe>^Imn>mBXT2>D{&f-d`RR+H$;#? zl!e4aRYbxkO>&)k4%5S}zOwQ)XDZs+nPDJ6jHXHeb-yS|HC`ye3K=$L3TR!Bkd;%d zORU!Ot84g8nz#x-#Vof_>3KrIRrb`IXk^4634=zY+k&~mDk}G0@{@pQ+OO7=>-EbQ z9JFFRd{*Sll^olQ4#`IO6YcT=RT2?EG*w09gsY##w^m!#D5zbO>>F6-vmdXI8p4rH z`HwQj6jTMp1q_Rg5h^GbZ$(AQb#*)xt=}ysK}@bFyA9AmeQaxi`3^A41nLt+O`?l( z01*`xMR1+HxlX0*>C$WIn>{_GS#qI0Wdb8^BH@))gi)Pi$dHwX5Zgj3VVHdw2JXyIJ2N##+srXTRkAd`Qg0p|y1#ie%ED6lT%(oI!Pj zX|x9jc`iS1xmT=SxX=2$GWyHz2B@LWttk;MwU(#4Q?4zWb}R6bcX;ibWL|j(6Fy(v z#Z?E9Cs}K^OFbEM@3fAlJe%2DLt9myZNp^(6EH|($ZXY7W6f}+B8vML#4UzL_ZR1? z&FhZUoqb^KjeW!irA*gblq56!EdU~ac92WyG@*U@|bM_#-p1~f(bJrMH?|(i6X9hb(__{x92w5_0`AL)>Kzt z3O@CEE+ot7QwnFvfN@3FVXK60J}h|v$s@L%iGRz-t2lJsFwdtDbvBg@l*XJq7 zWYWFN_#`+eZoA|kV2P5U836~h1v=Ks)KU|7nNs1>P~C0SReL;J=bqSV>{;YY#3z)R zl?|7hX_whm734}Nyt|Gv=0aQz%F@G5v8fG0T`ZdQZd^USBk~-P5(QMUwO_)HlF`0Aea@ zj0EL;nEBY>jN!P~4}TAk0=N^U5&>ti0(nG-xQSO(XJ1xI{Bh_0HEcPvu0T28UszJ?ky+O7Rr7*z zS+|c}Jwh~uXyi-~^R#a=@fVCqJc2pos+j4#g-W@15dO>8b<2v+^z7ONk$ECx%}bi- zGW;ZXCAzG9!Ib2L7ILkMBBw9^00k|(6yW`X`s`b3>iuY~V_vlVh5p;c%85{_;*uMR z+*CzInQh`iZNJ>^SFj@GCNqLDu3o*=E%sKVO>AkbV#OI(aU7J)_a+POj~eKrs=TJn$wO=2{BkEhZXDP=Ek;YT1$nM2>&6c__uIpQl~og|@*Zh69WP3ynOXJbu^!su1l}{)vR9={IYRS`DnYUW ztHrWa6f!|UPfp!p^tZ}Ow+qrk?5m45TDrA^rfaZgHguI4ClR?1IB$9UZ962~M^h$5 z>Y%S~D40}RK4*?=Sg>CcZuh&nXQWGAS#0TBB2V|j0 zKy6w?@QZ=taC`O??Z+$qI+9w1idmJPVQFtkg2Pub>*Pn1We&Z^T`3VH0H{3-#Za1X z5whTdswjPl7d=}nqjN*{Zk0d-0{h@Yp7YS)^JnE*b9mHvI{LHU#qJEEsHQ!>)X!Ju zTHDP#WP`71GO1q*Svvqpkq-1{JdFeGKGSbH;ETLZi~WUBQ{1W97pz&xF|oDvtgT4o zUhFXrupqLPk2fJBD?+QlV!kR!=?NBmeAJN?RTCX+t-3SNcZyq`Tm2zTS6=V&juSDS zemd}vF&t50&moGc`CCO3LQIdUWql><&a*(I?>73(DbLHLja9NE&(+(pmRgfB#7969 zGbW$gZPyRT+M05}_RnsYtf&W9wd>m@W11zKQUW%+J*YF>Y0{L86mTB{WLf^;c^xGp zEa7rX+Zes2oWj3Lr$m)t$h}qu)1ue@YXU+^B~*p6g<9##*){;G&XYRqXNO+ZgZG`d%3W*5WY^BloWGra0Bp)-0D= z7au1

H4uwB`NG5{e?>6Sg{bzM6(PvYXp0lJYzzR!VqL+eq#cZ?tHre4lMoi4%&R zGez|5U!JU(SVE!M>-CxjtY@jMgOb}qM_Dm&qO5}^TWuE{36;X4l5tj&OdtF@Y>ruYJ@PIEyZ_p&3~3E4B8r&{oYEsik5*>A1&8ygGZu{Np! zv|$}!Tt4x^8$lIq zQ<*EOnD2!3RP^gx%Q6u5-OAful}E3@v>M6s5;S6l^JvJGx5iFO6?-`HB8vCUeZIcE zUbxMRDjoHqOuCP>y)Gl{jAx_CaT{2VnF$ky4g&j8eQ;g6wkBNDM2-B0x+_ZS#bm7f zjIqSbqKl}~u!^6*iYjEWgzx%wj7iBxcEMj;v8iklWJPX22=!B1FB7s2Sy#SF2&$K4 zK_7B1dv@yKx>b?66a$S3!Nj_r58XW6l@n;41r8_xD2?+|5?psx{{SAQ0ymeF;YSUE zDyUXRReI_J>%mbGul!X~$|`d&CRGttMLjx=Ni3xM3w`SKn>wcfAGe7nG@2L@q&E^H zt-8s)h=PVHXoR7ZQqL4sUhCUfNzWsG2$b5jd#uYT_6llO*G$cI;FDlz+AC~_6F~77 zuXG;$CoI~^v=Tk+`{yd%ebZLstu*(Mv~}bxnZnq zPO~j-0-eZGl;=u$RFt1IX&X)mq$S+&2%f5o>x<8laa%~AW=!aJDH=7pp~{k@#f4|s z4rSC&X(}O(Fh05b^oMP=SZD^d zeXq}Ua-Pv5zSX8qJ#7{RV0)BMh+I@$bHb`)3X7hXtq4*pYu>bhO?CDxc+jYJLb4i2 z4997QhCzTMPa-fb86p=X!t>5hjJipT?Vgby)=~ReHC6i^NR>IdkdQbr@|k7)kMan- z(A|uLLzO{8Bg$bBI;YZi*V?3}w}0elk_7!$slt%nx)+v39 zTZ?f`cUmhhWb2DJN=sAVxR6koc+63yBU6wq5CeWUJ%{eXDlc6&)tn@KjFFNatFK)E z)xt=x4ZKi{4UBn)$b%9ExQHZPRYS-rpdxqoXB{LWpW7}qE9ywKj%({3=A}liu#*>* zOABUW@HWI{Kvta>5crT~I3nXC)x}!6r0H6{Jg8GErcpqKe`ozg2kfn`keJK5+2^bO0JrBx1w|A!2tQs*6a;_cI0odH^3_Yr70^C% z9d$=4AKq0}>UM<8avoecp(>A3cICf_{RY%(bZ7pssQTMx)RS7Wu~&c98veZwRCu6@C*)zN zK;uq0;j5@B^Ps5b0^)+0Ub}Uc#~$8v&Go0${{UNSwUOA=b{TOf%}z~brzOP)p9wsb zvzn%>z(7?Irpxe&loif(;uhK1`l%@#}hDvf=`2bUhA|iKH>sq;rw{ZIQR>=cqu-EP8>XO;6 zMr3~z6}c9!D2h0P6{Su}j=7OETzh>wrYkDw)ita#?cFj*+bS~IR|FPbixY?v!+u0! zWYy_LL(L3V$SU3w)2U{cg>8NGM*X%%ZQE_yHDx7q&n*tN@yc$t*|!B-aAnI8eHnQh z6h@UB@U}v^QZpqQY%ss9Xdho`lVaUa?G~4*EEv0mUfVJyNSOMx*cEfCf+NJ2&aQC7 z97TPoq8$~sCWzhTogc`PeGU5%`Pb&kbyf(dAjT&c5o~!95|CpU{oOVvv|CLIvwft7@7VtU zU&g2mURP^-CFOjLZ)KW~ z>(^EG?Td!&mXb@Xw8N^T)U*cpCnlA#RU;KFBK0J#eZ>yellJr5<7=sFJ0i)k2cX4m zVXw!OOc6OLmn0!O8bGkBrsL0&9@sp(RL;{&2V-hf;=a2z85S{^0R6z+>KEKu1Jh*r5E37n3*X(sv^z6kremJho z*q(8adFb!9*+_0|F%U6uGM^nTFq=Um03PX;N0SX zEvgb>3|#b8&tz5Y*DDe~KEK^0rb^FO*Y-=Tgtj?541;Qkm1@2x@Zg>&WJVZlxa^mn zdFI<}6WlzNSJ#m0cBweLIFn?owAYG!x_tw2(`ts9<=2ArUy^BXq>w>jITZ~&YTNEU z@u-`A!A``3)_ZX4Ir3X>_S)iuT3h`-%GtV@l6ET{rL>#!b*i}zGQmi4Lyi)@so+Oc zd}u|<5KuWFq`k3zdGepK?B!8Iw{Eo7wHr>gGh&TTTExdBM4J|_F9~fv+vMg*-4qsG z6lj4AlgvEON3CA=O=qu7xYcoQu+h*vbpEe1M5vWg48{1y1_3Xi+`lfl&Zn0n)1Y23L9da?i1e( z#6TJzK0wBe5qQRLWk>&BTPUNQ= zPbh~6B!iE%=XK&GhdK2=tnzc{7fAa509e$^<<0HkO`1!Yg9ARL&e! z0YM@}>e$bh6aBM$C+zLpS(T>8t*4u4+uC%SiEjS@9~G$zjyA55Jm~V4;I=E39wJ1j zU6(7BfiboH>dS3NmQPq+&(YU3(JubB+F6w7e5n?ej5#gnkcu!h7Cd8BMulB?c_NYVVF#M!0F$TQ za9*;R^&Ms>(U6VRMI>S!wYyB1|aw@?pdUrS3QtTw|@u=XQW$g(|auW8%EJ-4jN&SeFRIu|ReqOcMyib7h= zjAa_GB>AeXHVg}SG=GR52#EniN86nBbAoo}T5h9*XBMs{WIF15M6HU216~dhCZWp? zY6|e2gK=}nL89a2USGEhnc;g`Zi3QV$aU*?;@P#XMS{z6V7BY1D%m`x zQ6x+u4n;7z=^3qiT#arySHz30wQX%WD>0Az#TjfFY2kUOhs;D3*L>=#;3;KAP?OP9 zJC2=Yv&ll%70}jFC04U0mV2)%!;0dHyzE9>CLB^vBDchI!Bo){kurnoy>yITxo(Wn zyB19OdgIGn^jM6v^R5HK7^KZl?Yihm^0UoE7b2>hR|%fU+=Zqkqz$2lE8aUvwQAgu zhWiBL2`ygud{J5)rv}UrTR~JpCG}3G$#JPInqqpn`d#_i(KoqeZTD(@={I$oRM;goPNDa)-%4K zj=dS}&ZhCXjW>Iwn^H;Lk%t>@NO+tAMJ0G!M@a-p8)+1m9hcszo*z>9bosq#`?{M| zZ_rnTgFz;$1&hP0G%m38)?xgI1;)uoiJ7`a0HQzJa|41!RaNkI<~tYb{{XtR${Gy@ z^Iv@GnVDM?{bvQqQe?~ryl=8e@Wp@y74a%5f#)c_y?UK@Ib!+6zqS3|v+L@<&!>eo zg-02z87U+pG~+D1o=1ESqkNIoA?BUMMLo)hi<|rwVQwGVRUc|lT3j`$$d+nk^INSO z(WT3fCi|*nXecEl8GJ;LP*htKUImfrx0ZPWx%%^IzL<9v8$@dFuvQT7qUr?HW1zd^Q_ zN3Fv)9g{d=7Z;+*eoL;%6*f@`QNA7~+YIHy?LJxgY|*zGU#^_B*)RMXWvzR$;pw$d zO+0iFWisKLP+e%e!po9OTQl(th0l+X3yxxZt(+|hlI^H|zT1AX*rZ37v2B7Ak_VY0 ztI&!vSUAfqvTTHQ)ZFquq1W)zb}T$tu_@Yqkw$Ecq8~M}57H!4W(NUnQVv`3;yT zDz+-9ZTHD#)c1RCeSTonSbKSkY>uT!M3U(J=9ci zq)Mo`w|syVP$k=4>~c0GTU!~`k4vzu)+DnoR8|;NR-JLD{m-&*Dl$aTWEDN$-1T?| zXX|@25**Yk;99KM5n8x+S2TJt%L>H_&}6pyk%6RRAo8}^a^k9-Jxi-E;VAyO6Jbqm z%Wl`NptZPcwlN%!uT#1c4m%!kTNYgr;(iG)I%a9S!MlBLCg zI%&tXj?`!4II3+B2s-=Z(`bm|i-?W_53>SFomp{E^;=z%9Uc9gND{U!afmB6z~4gP zuY=(ow#Hc_ZVP3H5ZiCsTo?R$)v%z|s_7Mn8l|$_E7)uJ%~HZ?J6T-Rr4jj$G>F`j zHdrJCXv|SNcjfKsd0}DR(rL|Va&~Ijn$&V~JaC*5>kOkuAbF<6whMwPHm-rHxx|SS z(R0~)&s%f=u&#kHD3kE1Fk*#anwe7SaBv)2AvFwngMOqr9m z`v_GxRJI0mw~FJ8!fwIF)wpo{=8E8;j#sd%DT;wF9-X(-LB{iga}en*3g#460hjg} z%)k^$1OwxF*4h*txc)`PfPJXnET&Yt1AAnhgITz(J#I7^_7(9TowHFq(v+5>OGa5Z zEURWj`=U+qMpY3PDeq2_YXG|SX59g)Z&R@Q(7B_~?kppuhu?$9oFsL(l|OHgQBeg| zJ>REIjR?_Mw+cg5@!-}=sl09IEi0~p$T+Raaln${{=pdHxJLVXai78?w1t9DHPDIn z9gT}mNT;gRs~K@(BxQ@`=8XBBBt!vyO#sce32>jc7*4FbC!(}(w)S2|h0CcHcpz&!O?CbL&p&Fdo3U6`x>EL<*W7I< zSQG3LMwsF@;x-MzQ4ui%BphJ9$XLC*WZ_nYIelS&O=o2sV@8(%BGy^Mv6#z*;wdXg zuKxgS!xq60+^DJl07@vYex}h^hS_67dX8yk^vC$3YiX2j)l-P#V-3dd)#(^5vkzB=0w4%Hid(x^fBtUTApClRFwa42R7LMps^ z=huX{mU}aG8mHE@_t$mp)mdrR%|( zxOevZzfZ?oOiZYxZh2lZof2Z~9e^n<^l(^0{vD4HWOBSwtfLX4#=O@+gAsWi$ zNyG#Y7a79${{RlU&fnX<()CmH^p9FuGh48D#9p<2(yqybRN=|w9|CY*C<-1n%}qZF zU2C=W&KMw5ZF+oPvn}Dp`G76H+bqUK81J;w(Hf^ zs9uqxrPX;xtMCGoh*392i|F`ZR3KPWenLS?>Q{{Y&l)}+N& zRri(qB=ObVIX}WeSE64-2N|zEFu+Kow#=kQ9&JGzbsQcUPQbY9dV=%z*DPo3RkaXh z$Fi=5AL!`|S0-C9VMrtpeoTnz!5w`Kdt~qmh3+n;tjTnPd1<%WSG{REmUgoyfNQa0 z{amM8C5CO4lb%--35J|Q634w4iVrlxQuVaJv7deu*7X)qHga=|^mTM3j+@Oe9GiAZ zuK+GMMIp%&M$QRgfn zz<&NZt|t=LYz>xZ#p$Je!=fhHHH#mN>}zX@mAae>?G%X; zWLG+kOBQ?}ra*3@fGHBM6jdyD#b>u$7aqSyrR%@?k}fC8*G4tI`TNx?-O6UL>5&6u)SyW4C^t zZnYL(n|RDENdhBIJnO6!HiIN;_j2Xg&vL73f4MXME7p5XR@Gm*eT!v8VO^=S4anB< zUjc()@pIy&tt64<$dnl(GbPG<@IIX+m&xT)&Dia%oJe+2gOWJU$=#;;7>g&yhzi_h zUKZ5+nG#^dJ=kB>Gurq`F!yO~q*Tn-ZzQ*2BH@OdhZ;e{HpRm>(Z|it7>JDDbpU9~e!2XWXY1$@a8uVUD?{av&Bv; zEjTOWH9!?~i3D-QRwaw#w!-prvWAZ89frv=OUYD|m~Gh*RTBmgl#?Fd>_lp+NVv)( z^vUL-Zr|&xdkLEc@mVFvTLk$~(&AYjWitjKiY!>9SZqzj5k>K!kGQ+9S4m9OdW+R` zRmXON2Es#Z@nn@v0bFrJqsSm4MR$s(5kEv#FVgO+evxf`BFo|5SIXC85uAG_TjJ|$ z8K3_ECm7}`zuU*6mI;3;o|a4&k=@CKHZQ_)nURUqQ&$_nc+C@vI7^%sGlfsjS%j|* zn>iDjmQf>DoU%tDNI)Y-g$o|_MFJ&MR9@@b9lD!}1#7Ad2j6v>4M=)R?Yi49q5ve6 zKOmQovV2t4bKPspp*tWADHEk=Z^4qbd0$nA|Vk+#^VG+e|8Fg!(7R8#(aH9k_A z)F`932KlPMH%*6Imi&NIQTd7kmU(||6qFMxqP>&9Q%o!C^z-4|l*-A{=GQ&t=CYhe zo_?o zsHu*zYQ=>JqPHfg=nl1zL{kt&@V4S|PDa`%wGgxG>YZV%;SREg6$>!R@lmLn3P(@KRG)w}jFCMg(21okoh^Y0{ z7Mp!+RY}Qikh<|9pdmBNlPE%ns)#?=tM<(6s@r9R@)o^YV$FPzhc(wGv{k-V61T+T zBr-&Vym;i8RQ2wQ*?QkeD&{GzdZrvr!oG_^)S*<->(ALkrh!`Ac<|q4=M0-rVm}1{ z^i$@XkvpM#i>{Z5=QnnUX*D}&oY{AJ{4Hxx*4ln1xdJ=SzdA!E1`augQ5zI2q6%Xx z{$=W0>7h@oH2`kC_N)L~u#kYjy8M9hA_}C1H=7<_H81i4E^?qotH&L4yd#qL_4|(B?ZS3qBqqN=e1SPO)WfeA$!AwSLR$tqy$Oq(6<`uJ%us^E+nz+~*@K z)*^VNwP4qrUuqLfNm3_6kBmT3-yy1?tLr$myt}YZM%usIOt!0{?SEccHWjb8{*a}# zxr;u$7@5(~*c~FFKErt_QuFUkG-6^r_eUt9W`3Dk|XWBrN)xO2C z+Uqhxs>%!_Cu^ge_u{hKZ8+MXw4)Swpdo(MMIG^3oig&9xP4u{X-B8ky(Z^Y-gamF zRP!~*ioidcS2(;+e9YC9<;!Bx-~Lx~FD4G*ic7o9Qg_ZnuM88q*&bp}^!k1D=_ zV&7d8k=nI!lsQrvRvI>&n>oZqeaSDArYp!vw7{-%!+COs<+WZ}+iu#9kumSFzn@ob zivAzQiD(m|nTmtLP2`1wSsxxdWGmasLaX1W*B%bD^TVMaZ69P;{hO%irAs4enfE1K zQT@Q>d~}TEiMtTrSB2)m5e737*%VBxK=W<5tI5?~vv|dlV~t4lYmcyYX}@CIT}IsX zq><*)H^oyypB=Gp4Un3Ok{F`+%n*2{5e+fdKDV!a-1+`m?e!-fKZomQ)E2u(+1h;_ z*5$3osfup56c$5yYDnbb@p4!98&m`YQsKpYs49u*p0}FyiC=0&gATdM>-|UP*K2UT zR0l~}IjJqDT6vLa<^>%zZ<;EnyWA_DwG%S9Z|_~=)|dTL^~;TT7?CCUO>U9_qE-Qh z0rdp|6ENY=lH`4SW!*(FZw*O(Iaw{IO}wkHs;z|*mYy;|g%yvFHKHPnDss)WQ$>+6 z#NcM2NWIhis=YdO)3<+_p4JBGGj-Y?iL=bxKmDMFjEHP-7vf4*qmq-}L=^-V8WAJ% z3Ku0$PgLpOrOqoqulDWcEiG$R`)75!lzP70{a&M|9B4PSZOcGv7!xsubFv_dhg_}B zWz|1&@o{+riYbBXkA5yXkhUl3-r3F1we{%Ib?~x_Hm6yMV;T&}aqMQcWDpgC@VX-$ zlwB}YKtv|Fi7KaA?PvJ4*Jp*@{^GVHkwHmPRodFx*}^yxt?DF7jeAWAvqu?gz^(XX zM3dzaZQ&4fQ_K4WQ>}i!b)9oOTDj&iL&C(3USu?&wXtS^)@xUL6@S*!sx*qLiIfv3yCmHpmNDIw>}H&Ai^2?xC~r84 z#T9XsRTNzGv#%0(Uj2Tu+B11YHR;k>q?jtrqp@Cc_M$+|t8zPSE3v?4a06`F0>h?C zycga6Y<1|DTrA6nN_Z3n9u;hgR>qbL27FSi47jQ{DAm<&K#OHDT0(J6QBkxE@IxfW zS*EsaH<~QDmes60)qbqnNs~`vgmRyWUl3~?hUAD($8F9ntB7JMSi-8fDu{@=`kvi7 z^r74JM28)$x3Hff_va&)n(Qeohlc>5psYN&N5R5$M}umLs=u{yp01}@n^jd;Z($E& z*(XYZ+-jL+0)lf&kHeE8g+~oVrBgF)$3w=2mE+l0m$$0L);2 zqf_0xj~G>&fHsxGZPpMSMG`0d=vjRlRbB+Kn zoQIul1*D9i(f-!V)fD~MRbIf0*4gwCR_4U*q3qgj zy;&wy7WUmPZKbT(Hgj8t7Q!T#S(MauK=L5CXw!;9h$^A#xx#hloo`oLca^VUtU;}J zRkEA3+O@dulDMec!xw>;;_-SviKuKFrx0FL=1YYYApPT&Mzg$x@0&day{{XTP{J?qE!2rfXqSz~nSZvU;tINE$#=7<1P2WxKUtw-gwf2g|(xcHP?6~L|($ED^Srmm|wS}e_+E3WG;H(QOKL(5|^*x_Cb zp-FXPxX+1vl10Dmqg()aDt;H+)RxHQeBlO~pHkR9!HZM%o7GqFs+g4|v|=KUVh%Xt z%Hym)(}?jWkyW!nMO4aqr&Y2Qjl~ecy1Q!HRA{vS01b&cZH$JYn7uEH#|>F|uNb%- zRg-mis3*Muhoz)Y8cxF_V1d5EvZ$X7wZNQFb#`R`03ke%z*}Y)z3W^~Hb0!ZsuLhNFFN~7lLDE+aBoeTNYx4CzYSV(YWKgOx%L8Y*~{aDqsHVX(EU z-HYg!_Y>mMoDF)y4U5mtYg=))UYh-6#|6fcQgTv#*T~0~2PmW>m0B%px9R&yQ~v-z zDC`y4?o#ay$7GedxlN?#s^`l=G;%>Os^PkdicVp&LCPTrm)~UC(vG8HtDUycwM))a zhuVri%tc}%FvP)m=NxPXA(s$zoN;>?sUaYu=E6gxgL$>boZYQek?wlS=L)hfnTMWz zvu()|p}6>>BTaJThIthr&%YgtVpW3+U!c_-g%aQ^9`g$})mm9eXy!g$UF{T~=QI0K3>v+zEy1CzsW9Re=T_ zl{ULs4%L|e%HIshk)pi!iA`H}I68!afJh2C_pkRCxUWr28D~|sz9;39O+ABIW$D(o zQJ->0%mWXOu~7*~+y!iMgbJv59Onzv;YMmIe$%beZ0w~Kg;ilgTR8hfTr%Lpk>+|r z$$7SoR2Whq;zFm$^Y~7!u}cEQO*&WX8<&NNmP|=&b=jVp$Vxa83FfQclEX>PLg51h zO@eXaW_^`9y!v9$st2jy*Sl4D8~tUkFl@uEw}C16g46Di8xiH@wP|>?PBxB$n4uz< zbX4hQI~uV&VS%t%%W95-reqC*spdkmg@STJp#msyYC%bTMU!kBaTDB1rkuThDRapu z21I_scxl>B8gVE}`Znv4jsE~U9iyv8y!eOi6hU8Zah;slX9)lrXYtdh zFJ#W&BO&DC3W>|Iapa!t^#1MGt*%4VHI0U{vq*N@ZmVHh zt!&VEwv7z8@PEi7goq7>Pb!(?%t;XwE7q>rx5{cu6kCIDLA$D~V)=q`wj7fffX$f= zy_U)65P6Wggq#r+y*)oYN!oZyN7ya*hpBc7`L?dkw$`VGa}gO}t8HO?xnn52+|>p3 zL2N-BRN$Ub{{W>|tCL7JTCHr2dL-Ifry#pTYd2-4w^<9|LTHKS5$7CMjS12e5hPSn zZwNl@^(AOiPuz7$w05g;0%euF+NW8IwMA1Bk;RgEnChvOR~N|P3J~G7Ok{GHS!afD zoeEXcdaW!5c4zG=>zz=!+^pLO?m7%2OOX;(WgjrR7>TuMMSr+Gg?({5MDU$Ke^I0E zwcEbmNh#Kvi0iPoT836IOn!TVn(u;!fJoq)x@O=aDype^ce%5L@&OT_t*V{7-Xchg zVO@UY58>OH0i|v^l%~=}gI*&xdPKU7Mz)H|KGNK4C~%}h zaALD#5xGWjf$k@O0C+^*aRq&SQAeg&9WD14&7D$a$4zNPOJxDHpK8o>Y@Lx6)oqw9 z@;@T5>y0UnRTRhH`RY!(&KTsz)IQOw);1mRw(UkmGZF&FR&HAmA*9#bIWeUmJR~o= zjEaI~RRnN~h`l!T+{UBy>s&|URmcw#%!KHWy;`UJ)|qUV2mb)M3k#fjb>i*IWyaqa zvSu<|JaDW&ZBQ60A++eG7$ro*DJrz@=o68{f2`M4jNRJt}CxWt;EC+Q$WlVsutNvvyFX`5RovX;@beYitI}h5n z$va6c6>_TEct(%92ok9Z^6#JU>s=C-+Kp8r0oc?jM!J5j#wXW!)Vu-)PPhU+{{ZbE zW7QXmHN=qEt;M%tDnO7)4+N!FO_wJsn)Xk!>sL?3v z<4mrXLe%Eu3r(?eAsS{3p=A|BUr}7)Q5T3WY~Z`~*KRXQQMK(F${cGC;Rjk6H!nzx z{Qm$t)w?(lftf-k;qg-hFjm(hxzFj=y7sXN?p3u%ZfulTR_|H3KL$)!4aSxWQW27d z`k|r|K&q}b+9o|oaH-PULq^yKME`!8>4|4cb^$X!U%F6S9t+V>Kfu7*Z^cFF?W~lA;$SxbTPmI{V#=`?Fq?q;&OuWL+d@GjJWFsK11B47R8Wx!+)N@Wb+M@!Q++M|wZ7WW<<`i^ymVzAU=f8lk)42DAHkA`u}^zHuA1nt_E&7CQ>;$q;3g zo}(TVWe+7AvK@J|jbI|n5&lmQaoz~3pQ(05)iJMN+ce7ubV@CkW2~sTl^^*X!~HW{ zk|i95q%|p&c0*tsNkyj6n{5z}hjJg=)87HB?3-(gz||}@3d=@pspUnGZP~UhQCHVX z6d?1v3>gVZEQ$)Yq~Rixb5QTna7kEwk3mzRS1}4E)XufF-|P^MT?-a2`0Znxk&P;& z8M5*yn{1LOrx64tQY6YRS+{s=sC9j;pR4y%mmaB@x}9Y?qDp3=!fCq}+L8^plbmI< zQxskbX@qdd_+h5{mJ%(QRoeyWrS+|I_i_{E#iB%+MEi@LTQ=o!F3vO$&Csz?NkMA83I95 z{_3FMkEHFlfO1_$9lZKITR{4vT(j2cXGe(w1XrOr!9hl+M}*wQ6dgfze9fqGLVZ^b zDrHlrgUZ?Z;?<9>ez70qYGeIV2GO50vEqTh5)GW?@wCyYzT(L6kqc&A#Cdx`eZAFe z)L;H(rPJ!IEjQ^AAU7uJ9ear##g@b;WyvOD8!foll6VEQSDz&iRU#aFQC4MVYvv6DjX{XVnP$Eo_ry)fZ&r1)LWxM_HS3_-g zbx){FsQVJOhM3rkGNsa5#$GpM!g}q~QEnJK$SFF8ib7mRxt0=5r0a`IW!XNp`L#dm ztC^CvZPFt*cG4_aQLJ(rGLp^^H{(8LqP&G$6L5$HMFCSOnR|NhvS}ec!PoZbB3kWx z6*@G*2vVAt3TRlq>}MC`yFAyKwBN-+KoSPjh>=_+?2FTHwtiMrXBdHP8V!EB^P1dy zST)*|`7*o`Y~`GPkil0ljWkGLir|xGxa0em8R@EgcUgM&)#`d}nrvC|5}xre5ta9GVsQdbwnB?tu3q{op( zI~GUxCOTH49j?wBJ;ucvWy?_5GG@Hrg1#9IAS$bWB-+BEmU%A~{kY|Y>oO%pfZcDy zl9sMYI{2@wp(zBY)Wifu`353_1Y&}?GVR~L>(;Q-HoFRjs-E9yZjCEki76hhR{;;@ zJ1GYa0g9ONcoi^$xW`d+!kd$rBv{eFYF*hOse$55?{N4 z8P|?Ok>e6Ng?^422#7d~$B8GVRTH|WuS`wAsG|zq7Q(JlBvO*#14^!^xJBQAI=t88zeEJy{kT3v-SBmySs(m329@=W~J? zCQyM#lBPJK=Na#eb(m2B@xC~37dG7HVycgFpEeA)S>s*OHVt}qyu2tNK!Nsbh{== zOpsHo-rbiPN-MBz#eM7 z8wW0|7zbt{BB{KAgf_);g_I9w343~H9cp&d5byR$4Z?u5b>J%iU70?)2$AA&atJY- z6i+E}TnPUF)T!U3>-ijy_EyFAXWEkLbktE|ng|F)JrP9__wP9q>@zqta-9H=k&Y6svGo(s1 zMoh=Z;4XNGVZzUR$4zwM{lB{~~_aXIH(iT@YQ8YOfRog>v#&7I=!?K@j>=sVFgh??) zTWUCpI)tnP5);_G4Kk&<+Ix&%w(zX2{{Y-|<+jDA&WpTXZdCsOWL~xLD4@l9MRa=6 z1|rIYkR`aJ4#pw!grpThFgynyXtTF$@J_ob!Cj=OD_MyjKrgpyVOReEHdVLxwy4c~ zb#$0ncMzsK8aqUiA^6*lrr|oMctjOmw>xiyne77K?tiW}?O#=!vHfQQ><_XlXP(Oe z8F|(MEVgAe=7#faHfq4IO}H%!t{4HRA^S_)bB1KHkKcX4w>he6ziE9V^=%BDr+KIw zf3a*d*dY0p#1e720cC2y{Alhp*#n5F#EA@%RE>JZ%-nAEyOmhzpKpD$vDST;_aE6b zQsUM9PpeLSi)%RVrL6mFg;>=Qj#)=n6d^wAlKBV=A;mcfDhZ~3`B~BoQ2n1@_7~E6 zOr4icq~5J{P4cHxo%SHdVP;yk3>=dN9-9cAlzp2bKp`~s>51La=DGH*9f(j=iNzZ_``PA z8M>o9SOtw3l0O0zMv(B1dJlESBwo6HzIpJ^YdUe{uy%G)VWcp#uWV|p7?%h5=Sn!e zgjU@rBrY5gbX#1H>Poy(ReHa(t+Mlsb?-j7i~C$Hu(vw9h*Zt)mK#e^!m@XM4o$d>y1I`u-D-R>2<4+0fY{ zj?E=>bthhpGE)t>Ey@>MCtPS6AVt6_^Y$h>e%o$eY1(Aj;xVlqJ6+SPHW-N-LlNu( zo|Y}By$S+DZCNQXaJ(IK_$hgvbxAm$IG42tQZ4PNa%Q)l^HJC7W5KLS8SyQjd6b>!Y4Ta0*#{KWe1M8V?~u^U`3iC# zL;33N6t$r{xNH{HRI`%~y>>!vjUp@lj`gu0?;Q)F(r{k2tS zToLmEVAF^eQ?e5N?zz^wtzAeett@0)M8A6HUt5{eBwfRGMaZK0LUbyIEQrW~l_CX9 zxP+X6M*^Jr*y&Ms_uttsr%1JrR{rY<=1SH6yoTf`lcP&FQP5xfb~u}A#!%IvQFD$_ z0Fe`-H73IBU1nwH{{UeVv84-^t}$Z}qd6vH?Tv(KF=UcD$t!3f$&P4kWN;^i>hA#V z?Cd=j^^PvvF%W<9wR=|_D75ox-gpgVJktb4Av`>j%AxI2ML|Mux>DA0Hj6rIc{8Be zZIl-bzE8&ZF0~>twt(0HN^k(lv~44EG|3CR$rCC`)x;Htx!gH2Wlc-<5pL<5V%Dyj zgd?}cu-_w=?3p0LM(MW5g0uod{m*FkPP2F=)OIN4{h6>1@nu<0HFl(KUDd>^XWphK z!XZYK^p_RL=FppMqoynF62^aOqO8GSRcaPLSGBb3O-QWSU~AN^#`{epO$McG49{iK zZoQeR*gVu?IUEtsGhonhByAVgV(OUFYpbsJ2#qAVYDz7p9j#8wU2qblSJqYxXA!fG z{By{*+;LMgH5JNn;$_6TUkwk{>daDDZ8Z@hT+h`si75t;aHw!(z7?u0wGL|#*%L=& z$YsG?ivlF1tK*&*Sq^b%bHmb*o zkw(vxf~Yt|MCz!mma%_U<#p!4X1d0cBH}aA{=;pRH>_D;k-~`eQVc_VWGbSGwvDhv z=Q1VZjMZEGL+1JuKBZXKM6Gh}1DjEEg746-1e7e1g10azdoN zXalv`Y;G)X8FDRNzp%QXp+@n#+f@}{+;of;Y%q%3Xg?W9qLPDoQA{UpNNJ+7)9k&e zxC5+Ag>ywh+tKT$r7JLDJ|8KAc1Oi=&?Hnwgm9zD!1NSCR7qh`AJ}Zp*J*azs%7@U zV{s;6+s5D%V#I9#+KUbM$q)ei3e$eVTqpMUr=m;;AH4Y2t+F#5)n&>^3vW|o*T#y- zzAgl@G?w2d4I#L{Brt;BK!+sfw)qlZ!PzR}TBHg&F_{LT*$&ART4|E6XkH&Y2Of@i z9sq^mLGoaECREyNbJ!TQ9 z%W2f|Chd{yuUxBsbno znVwu^v1t+uZpC`JjwsK`cgBce$qPQJY52Xr5|{_}ZD#D2)e{@BI(ThGi)Xg#$qnR< z0p``gVpMjJ5nXOT3S+>it*WY-3KADrcvxxJ?rrP7E~OFTV?zG`z&%OBnBuyxtA+IN z10_-A%NqI1o<9k^kXqdDr%tX7UCC~_v&$E)wFZezwh5ubRq+*384wcYf}DjoqI&W| z>T0chVrIdwg_}EFm})X>T70Czu9(}V`*EH*4zng9U>PhrC?TI>DCE1Mq@gAz;UcN) zy{^h8weqc2MJ*ff1tc*?Ueg~f_KA21ki6yujm}(&33H5M+4u_@>}!ac)oXEIvxPP* z)+@JG$Z_c=L1GNZXgmwuM-O_QQzA&1Om%fHJRf#VuA@w()pcrS9_4o!i0`AxNG;F< zWMKNa%vI+H*U{t*NIF?d*D*--BqNLB14HcHhx&jI!cT!%r^XSa>vS7yE zKG3AqV{Y`a(yANr=Klbwr7KN1u_OeBm_8g;vT?rtMKl%k?6~Wk`RRC9>O=`;5*?e3 z0=(o&ixwNK_c3kE5vF@8@m|^db>wX!rXme7NJmm){Kn-UJPH%UxIylnlzkJwqW9>w z=soNeoRMUrE9^uD#>2lCk+b9d#r;Ho9a(V@Bt0Sfwi^bVeUoD=Vc(PBN}z<|eyA$B zUapCo5DT|qTM^_2T8h#%E@ecW5>?8nXWF0obeHl0O0SRP*(n@o;+*K%W$5@UI3R{d zDvE@NXeyq*i;k?c!t1akF-2P9wvt(}MT||VlC|Pc5qFS&6oC`bdoSzPNp__r+1GqF z^?Eqc+qc#$T6iw1CnyAiu(xMlQCSbAH0YEeN=CpfM(GnV80zUQMu!uuLJS3aTqgOw-9Z|3W{h}yDqPQ+u>!rEk z3XT0zz9r?B#a|vS%9Qa!nVB{AZU9Aw^Fk&<^n_A%-dGeb8kfHwLQJAr;d->weW$WW zMwSdlZtpAQyC+|R2~3ud9A%Y6vK3auRi++6UwR@MDiIGJr^?_pF3-C#)Twj6x7Xvx zgauuzGceIoO`4h%xiOw6`9t->kJ84g2i}M{VAAI8tmY z>e*-JEJRXq9hl2*c*zY!$Q1x`N$nEgD~xX3gzKpqi*#ROYk$f8L#Z^sXVwF;fAZux zUc`7aVLS6*?o)3R-YQ#y_QbpIhj=Y#1eLp;7mszfRi3=?~2n0 zgm2{}MMPCqY&-ts!u0x?kz<;7$)8*9cB^%7YkzYYhhBPRq_+`K=UrAMHwLlh$cOuU zIOVq7Q|-xA2MMp5)Qgsf>^;iQV~q6#$8~R@G>vgie&2p&5@wBuJUe3SUTB4MLY zLr};l;~uLoT=E3lS$#{j-S0!S{hMpK?yxB3K;5V+VL0q5Ko1j+q!5Z^*@JHiwDL4a z1@2EmPM*94Z>TpNo>i95J6ZbjNyhr~Trv9hTeD$l;>B^6xwz{<;EFoyW5kcd&InaI zilU;kBaKoBWJHl=aFC2}Y6HWW`*OjDZoN z0x!r8y)1cUYFJoh_M;KNy%^Hs!>&eww-J@+t8K{Udo|bbPakUqd zBGL!$6%-ZfcDclFu07S(IqX_fT0Y;iTsNYOMt;Ff>b^8{mj$T@@>&^)jY57viMGM_ zQt~4I0C1c|#=LoE$78nn%P3!@ig%Y@)7vCYRA zaQF)(U?iM5XE@F8JS^#ZMbGu8+EBjQYwLQOJL`H%`r7#u>9yC%qLpgFarlqFBwLH% zK4RjcD|mIa;v7{+t#zzkxVUwl-|F2T>?;boTAL@FkuoJ##^k@1A-KgRNwVB%F|q9P zNk1dznNsD+NqFHd(kpFF_I*y@D7A=|6?Iz^4gUZQCTWGWLy+S*#2J%=Jo|x2U81Y# zVa9U0!Z(yGmGK@xK*}H}DmaQ+!6IQZQx!h1xL(em7iNtH-&xkFr=%E>T4BEgvz`d? zKOse2UJN3jih__PNiv9;>sGCtEZX1q10KFih?8HLaj_GM?Atn)+&C?;`1s?tt`gyr z6-D>Bf+gJ17qYCygFCHnvHwJ7WfsuYB7V*=f`UB8!OFptSgLQ*k(| z3aI5(I?oA}UVW+d{7r@{H+HXFK!U8TZF_GR{7Y$;C=tQuS#2G1Gf1eYCi{3E>W!~j zmljQN=B=&6P48u-JyyB2SggaHuD0tOYn&;52{MvXA`FtWttu*U6BSg#lK1NF#l2Sj zW}&aqM}GR(>w1b?jf%2FO=RTCFP5<+I-uprxa*3Hj$|P|<86^RJ~aKjldM~O5RItn zl^YD_b$Z9F_J(Q!rZ!FKi0(pi+B8{8>#^7Y0OrvVD_IiYorsMvgVmI)s{a7(->`nL zxUAQ;$-x9h8?tNQJrUbFw6BdYTuAaxD519Sk8W)uVG%LOJN2$;YqS3VaLruK*JLG) z)O!7j#o40$kt|040FRE*I#PmDSaZey0F37mP*5dKyG_P)0MrkX6rjtOGws-HC#7Zn6Et=QYg5=zDAOj zYL|HspROZ$$q(^x6}40kAwB;9aErbbKSchy>oPQ4rkd1dud;s|&8cWEWJbp*frX5s42h>pn-1QN{0{Zo- z;guKmkJI*6_STbb_Ii6Cu5PMkj=`wLQm%hkxp)=-0G!N(<-q_OM-K`nf<2LP1JmnU z>s(*=9-FK|n#P~nyFB?b#?$w&v$v0~3r@DxHXo~Xs~Dag((cu$OLtvXjx|0>wH<&an~cyq z^7*&pUQ69Y#2%K};i-+^V%torqH((|HrcoKX}0I8eTx%eV(xy$T5=o+G0lZ@gONnI zph9i-)wNdyGCodMtt??4w_X1LN60OfCg#<|TFCHZQEV?pg3GdsYa{}YAT{w@2<(YS zbU71-BgGVQU38aNvnyZKn`rE?hfT54DYc)j{@k2(q!h-BPHuk`iniB6UP!|9rHbE- zNru&gKOk~a>z|3?t9ky3JN3@rrD<`#zK8ZjRhGe_*2ijZ*VPZoj_$!=Vn?;t%8=?H zNRG@I;4zg~2tq;w=N`Y04PZv(cL?gfes)k1sB?kjdV| z=2q1O3$i9fJL9eO>#SGi*V-R$&0ny#%_1c!$%(JZiW=;yx@P|X@!t|rkony>ZaAtY z+l;BGFJv)AL`CZT^Nar8O>)$|j>^|cZo^NmkpOFE&WZ9>Y1k8`u2kj+(Kzh|*))%it`VK0djWa^><0{}`0Wr9@WkJlf& ztnE4Uzpu5H0Huorhy~yJfbZfmcmkRB)KMVrVrPW?Q_D8;&SU zU{&bCNrs6?RDlzuleN+>>4s-`1_QcOGIb)LAktPBYw_fUGdE z(J%;Zp#UK`1PCeC`pc;-%#irHrklQffe^1BgSFLB+zm#lpixU0=n@`e(x~h%o$`{# zYF0r7kuYp{UYq0oX!~Q-(7me22WLkL`5^a2rIEp4@ggM7`++(%Eun+K0O@MLd zYozTf(A>T8i!UX5ydc|Ad~4zm15sBSMCY8ZbX@gqVtGz-M9pt=rj2%LdYy8GoP~}A z70)>}u`u(0W!DME6$IS&Wz6v8iHt{8g>2on!Kq!m(@T4KKt*Wl^E@rMecZoNne+=T|`IRdQ%e^CSk{r(=9e1C8v=|6}0x_1=$r=G%2-E zOQoGI#-ey`wsV`A1}%I^Ei*nLw1e^$9yd9?C7z9n6yvH%lsoSF&} zW4|&#_hhJ$x7k(u4&gc4N%rW~yt-@HFG!j4AS;cO&*RAbjJ{9vM<4K~ zB}{Ybc!ih`_63a3uc=?sgX^10I#rPp19GkAu%{cxCz?u$1i?aEt|Nd#gq#sn`Kp;^ zESt3p`<=_$?S7wE8XGdN8-WEW?cPQzq{@C!6Wkn&AsZDlVZJ1afxuiGp%=HQIhCj_ z^d%<42VdA^xuRLRj!)-fPekig_OPmsF-eHyQ`{!sWs`e|ppl~r$e+1Xann_%nyJ8t zwrN{)uW(}TmrN=P_SUTJhYY|3{va0f)L`k#ce<0q? zDfZ>rS-l}#klU&%WdZjDyKHzjU+3&9$iM=*?X zn`#*Z_afMkFPVmml8Cxol|>sBM-eldonosx2e08vo_dANw$h@@^v|q_Y)+aErrd$SEuaRF-WM zF8EbdRq9D@sP*^o_M0(WzjY0$8vAU+)FVd)ITAeLZU>1QF+vpb zHsgg0WU&4vsf-(jtps+99(0&jW|! zcn{i0h4|#4A&#@fKrKRb7RVCT_R-q7T0}_g?$iR@j7N_|^uH4kNU((Z8T<3?5mF*m zMP9AnMy`0)+V0zLO4HM=>bFVJ=SP3XC5cb51@_r-hgHUfrpROSMI=#G5zis?UYUi8 zZ|l1G+f99(EpmHXjNN^0nuT$&#%3fM=EXd+;B3 zVW=&WSaaTr1Pl0F{!^!lo)NW6%NuRmR;IFGXKAn+9cJPbaz7JKE5+jp0$x6BCyY(P z{{XKjInFv^LxEx6Nc)MgvFOT&E5~d{6SIIPSlU^p`|P zK=2#bhw>vr5_E)rfefhC`611e-6x5a${7$9}Z}n!RxR7hgqsG-lmHj4Zd!JXp$# zB6h+ks`_=fln&$gIdyiCWK}$N&QHS=iM3Ps;n;)>SF+(bV=3FKH-Ch}WSY7s$YVJK zB~?gm70I43VFk2B6>d&cf99qL3$Sp?YH``Bhn|?lCqC`Yo>d(&8?ityVC~+PH7KBF;mOzN*+aAPM(` zoCOju2#*dzoc+btv+z?50G>c$zn19>PSiGedTzdT_S;jD-J_v>*NxqR%E8|o5F<2( z#Fp4=`>w04sEc9&?olqJm58mi&AQg0HJVG^4pk-Xdr}4J3G$vMoPv%6kG#us%K!pR zE=A7XG2|plLQAaG-Cj;weRU&UwSxZ7vs!3Tf#+`PU6irPc(x3Sj5G{1jsy@_8WwzL z))(8)3aQp|tbzIl!}QjPw^`F`lP^jnX6jpdOm`g!F4$N$NbGphWVl8GEfZcYY3+eI}zvOGRt=!TaSaZ$8Y1r~qn&8Yx-Ugm7?<pJ*Cybro|D7&ovYVS^)X{y$2?Ze&Zs4!K{GW-%^9WyYU2*lX<8$edPVi^TQ z70+3nW^k86{<_o0>zkX6TkiYlI^4~k3$nB-rr3uTT$oQd;&7b}k|v`v;g~caiC9p|sWW(_0HkTJ)DZgzKvnBS~qJlgMK<(ITG$ zGjNLu)~#57YyH{%cd72SnkU#Su|ZjB{B?B_u&FlAs$n*5C4IjXSDkcRQhfLy`Gv7T zaSx9hIb$l2hh_EUcl&_d%k8Rmk8h}`v~KpnxyJINZAcRYWvPh4LRXe7+w+k3Fa5|+>_275n$Oual|Nl=v0(vd^Cf=_ZF$AGvEx52md#bdbRSc9%y|?Q zz^Njonv+g@9`p4!{{Z&>!>Y}=-s|J*h}&`?SJ+M(!wUGUDl0J}Fpo!q59EZy#)es3 z7c@?tW%k~1<&B?yztVodzuY5E*fwvj4s#m2Fv`6hi&&^_$zobK(^6I=Z6oR}AhYBn zAAh^QS?xBaY{(b&M%!oi*Vvn{+;tT@9qpZ5xKwsXE{r)bs_U!dNf)Kab<}1vXzWJC z8xuuecPybAEA`owy?%JBK34DbMvwNs$M!WUYx{1&_FK+uBOhaSOSKf5wM$BpoQC&} z5ee%SNJaLMM~JC{A0+DQQd)M~b{&nct~3pUMzg#)dgk9U&Z740njTVON^#k3I|H0h zb(dIuMVGt^@iK^{t)r@`rf-rl>tAf{m0O0}pg99l`x17zuqpJrU}BeJd@N;$!Ir~} zqNFlu^KrJmORMHV0&fUJYb~*O+-mzC&Vx#S>yNEAf36R4`%`@mtz6B zCLNSyCnHQ{x0`dx;&{QlxZkk5mDH1AXY9AWyV*Xd(xX%qnDtlAw;mkrX|^fK40m5R z^8Qnj5y;SdvRG13K_YkrIH;E_&fLVzrAo^$_X+g$2)fpl^!DIYj8QpHMP}7Bi$6T+ z^B-npwVM>oiDai25l7q{&~Q9ada}tete4q7Mx*!p+lAJ}wEqCL+SzpVah#E98*GhO z+2vi}4#GK3x0g>iUmE`abjKvQ<(^l!J{s$ic{S;K?xVg`*z4Lpw?9d@u%?kuugTjM zx-DYv4~wij8as`N$@5D@QXou{elf{8be;Ba&FPnwI~IpdvexRU{@A>ywzG>U-Q9PH zGF=Gt;|$vPQQS~v9DUCj@NuHQAZex?0BoBSJo4svC0?Do$i(Sw#G?C;>zcvVt7>fI>v~5O zJ$5a`7bclZ^2m`an3DT(nlzOAo+5GLL2agx1eBKnWj<^y>Kmq>{qD>5R?vg2RK#X( zsi{~_Wwo%quxaq0Eg%$FP9sgLBCV6kNT?0~0S*+CGq&7s=Y%(Y!1}V5_4|5lmh)r# zCT_`HXIl!(oKuL75}Zh6aAh|X{7yW)%1RRD8$cYA=F7`618QGkz}08$TaATPU8MWz z$8}w-Si_S0@Fe*@3S1myKvx?x_W%bpUS_Bwh?&`9#lPD&D>(X`<`OwZVzJ=1i*Ld- zIaHF(x7Da|&N=an+O@&H>B9=9M5DoTVkzq#t5A)z72PeRtfnjLj=n5t(w=%%lZM0Q z5e!^-KpF)vDv~cH6yw=2y0NbF`WG#zoE)nGr4KO+H zm1S2Fv7zP!Ys$CGI5S-?A@By30&#^_p3e#sisrU6%8Wd$~CJk}4W1dXi;TKg;Ny zdFyF5)nai3B>+sFX&t#z8gP6B*&i}%f%i;;XPBlqqW=J1lJc14EsN@DyLFDkc>IRu z!v`e=bZ?L-+^1|^afvTD+KF;T+V=`5@=`2{t~++v=Pf3Ewl>yJi-8d1WBF~m2U`Hre1i|sHRx~hT*D>EZfsNcEu>n-xH>z}Q(JGxJS9Uvd+6)Rg~Y!l+)0dH_B6k-Xe;MxJ%?A?5m4z9RMQzTlOt))-d&E zblIP2{b0>+^LoibjMOWJtmZVsawEH1lHD!R@Zz2^S_D(iii z2dK^pt$KAE_g8Z@(x;JP+&9VIF~L{}fDI84JZ6%N47j+2C69J@XBd;p;>U!r{mfSD zkv_fES=6`RueC;QZ*I0HS*&MbfoSi`6IWS8VI;RDa0-T`yqp!uaZ<-JuJY{Pq^LKV zgs4BTphu!1h7qsjg1P?yks&e6<9SE`S|#M7J|SOKR7A#l_3*|16nFcp`xU)n(d!v6 z1=Vy{8HcX2%$6g`<0lO~<0SXI)lId+FSQhXxL*Bs+?=x|t~tNhpP8jx-roNJFwV6i zY?%ycl}^Ew^z#5|sS_;Sf`9n!iz0>Nbuw-#Afk6A#qGk$&MG~lbEuOJ6T0lSYg}L< zx2h{&9w6Api5Wseg4;qX5Yfb3DX%~JGON;elZNMC&-jyQsdiYgqM!Pm7?m55TGY0t zvl@!~g6R|H=!!LkG|KYisJ*{Eb&|2$=K5Wlr4=P@ZB0Cat$rQdgU>~BW9ZaSNWhXK zn!4Ml;fX%j4~Ywk<#IVp^*c$9U2WGy*Xx>&_`4nDHGa)D{{V5VDy^B+oXIQ2dB#{u zc0*1-@uG+{an-dBNUn!2>7Kb)eW4drKki#w*tRW+No)JUC-O)+f?Dz{Z0X zRI~|BO$2T^8=#~~=FgP`Fr9PlFQ%qnA}oD`_OY_TXX`Cc^k=uK82VlIYh?FdbItk^e5FD!i7 z$zp7jrypUU%DD`XUV2)Qs`4cO!mnBBZ1TDoI&y0j5+_*ONBa|cCoL*SYhXo6=HuE! zaHPP1>~%?P#(?LKDjOYZaR3k@&>3 z;J`?4Fq~Ue@VUj-%PYaO5$slU-|o|R#lAb7Jy&PaZR+({?+xm>?XJHby&g%h+>-HO z*BB9bPAA1Bajs~p;(OGPQ#zM~vqJvMp!)`5SXI|sw*J#`HLvvJ6RgrqX$|m2i2)7r zZ9&-aNY&IeH8liY-Bwi&om@1V{@E{lpJ7tv+woGvN{I46DbZ>kL25*K3U4X8XaJ3f zuZdHayV`@*H-(q0&91!CZ0jZLY->)~&R3-0$aRrJfC4W#%&{|R)}J(gE%rY6Q$-wR z>Jei{oiYR3^}5WgYG}1zwb|IgCfIF~BvCMs@ieFM7sRNc?iVm*f(pD^n6|9$EGc3_ zt#ub-j_XS=b2goA*OkhWdJ;f!pj3UKkZmbC@bV8{1;kNNs#QCg)Rgn0#+CeWPjIc3 zs05!mMW)B$wKNG_Q)Njqq=KCP0PYSI1y)`{WzAKj{ZmxDhe;|lD=8iu>-ke>!mhZS zOd_O~6CyF-18H8MY~E}W+B#URCbgEtOc8_>oO)-Rmo-oEFhU6Wvqo3T$HBY z#|2XiVHA`yTAS@kdlt^#y*@UgHRQwdHS%q{x;WC|%@3Z7DVO03O5>>6_>lyNNV%D( z?n6~qv*F;VUM3fpjT8HsQcrqzk*?Qy z4SkD55A{Vv_}1FIYng93t5vj?q~%O^n~wEiy6CG)-y%jtq%?)cDn0x4DpidJ=KPYb zb;Nr3ly;FUZk((5uUAB%c}47_EVR>SA?WR*HiGGoVFby0N2}p5tsc(X>UQ0Q4oh*h zi2nfjHQPLYlH}Qu+>nk*YDqRG5!cS@BdVw(7(qvQU{tvVZlR36e#IVR>fbgEf%OJ4cRlsaZJQWE#mNKqqHmPh@3HAkZ&(4T#Pd2hf)0L_i zv1TjIpbO6-nZAd|BjezUg(OY@S=Rb>R7g9dDIsZBOFT^=Ob4V^%{glOWc=N|0TLrb zZa7XE3MmnyWVs?Lx<#g3!8r}73OQDY5XP;0MXkGH;Tj zVaNQ~>hB=m){tv!8>5g_)if8DubFAqg5$FY62dPhRpvR9QJ-wtM@KBD01zKsr&+Wg zjejgGV3jtwFd^-U@Zz{J$m2?Oz&M$#Q%6Jxm@9^)B0c#C{?uJ!X|k0j?X>!%n)FK; z5b7yyKa;hV`6eHg7~@Qf5-5;1^X9G!vL=c?m_c5%N>zT6KD{CXZ)tPsN!ZY}i4*M} zaR{s$Xwo}vi!Cb!9gi!1LtenXyt}VjmadxXc8Y3E!UJ?V#eMy5r6G}&O}KF!bOo`( z$w4O39a2PA2^0H(rO2_4rJFcH4#h)YmrQPq?UG^Yn*>=iU`D)UW9B4-Uy#I-X??DV z22lk$8(Ag%^{&0Qg&U}UWec4jYP6AG8jxk8XzxW(wPdC-!6&;7qeUhgY8Y|sqS_Lo zuO(5&Zc&7Z^cG)i$=~ZBPuTTKo4b~!DmIS`vRW2OW9dNSQY_z>w$5EA$CLDJf z2H~U5@ZPr6*nHv{5hsTS+ zS-~TK=?klb4(g6}9Q2ae%E_#@xsvWQ$oj<)hUcx_><`MAue97N3Run|xdN&KuK|%X zLW<(Ko+^lgflPHgQ^yP{Hl0W6{Vx87RQcL;=(8Sj%TQOFnLbpPn{FUVMbMF@GxhbB+rzomg0jDoX}v)R`(|enCa$ z&yQsx%DT(iv?p7=Y&5m?QnvAxv0C53O9u5xB2iW&(K6&?ZA3{^&4a;^>s~|#t`Mvv6b9Lj z>tiBEj!Sr9UoJ!8B~?W13ZjeZoRin9@`Q_-wT?G~oU645?80iO^&(`2rqBKJ&+ z`u_mKuANgKQ(sUje>)CLh>p~@EXZNOKy8p|u~00cD2f87eEO$Xw_D<(tUZftxY)vi z#`XncwJy5j(iTgxh$A!{*+C}Mat{mOU%3>QDw#ybU1wP)z^_GFrbv23%iFnI4Iaw~ z{zZfdFS@QsY)M*=9h78U!J&|mny2TNZv9Jb^pt8i69^Z9?sMaQ#sp=^fx^3I9*A>e|22o|3KuFtd zfgwJ}gm~cnqFKju#(MSJ%861~N&AZOsf&n>M*6On9LTip$IJ$0%rX>Vmx&35Mu`-` z734ux&o2Fz-nrw-Si^0p&?0L4Ja4e|*@p=48XaoB2|X*$#9>lj2+TADBX#0vTmeRS zWE#(}SeLY`0vVh2mg@fxS-5u3-b0f&n8EFHLAO_P3z?E~; zpEj~RX<@BslP+p@-?Qnb?prhGbj=OPEc#XaBhzj(cOFCv$@WqqsQ4V1E+RahM;jqf{fUH9I$nlw|BRe zJB8G!OR!70w{?)Ow`sN!!c=8@t484X@svU^6fCIp{_Nl=AKTjH#MH4ZHTcJ}HLUA1 z<~JdkkXx&pV4*fVW*JPw5e&FY9z30i(NP|mV=-!%+qN|?NB;m$>~$kl)t!0=f(o+S z=#9A47vjj35L*Wv6+&>GM?82GLc(>QnOoBJH`0?4xt_Wvtztfvfl|S;oTA-J294u z!LV)d2~LnS*t7lA$e}o*SuFRN#UtOUcVD%q)YNDnb88yj)wFH2^QpGmtE7&WV8oW6 zj7-^DG={A_+hAa9p$nqY{{T!Z`PsAp*gx90(fXw&_TTm9!wLP9a=wQ_^^~=2wrz7) z2i;dyL57oxIPn1^PCcFqs))Jw^^3M}yZK()AK8CZ(O=nWu>QfW+&0}_OEnv8)&f*% zSGF-@3~MH%lcYwGqc|$~k(v5C#|lbabe7^*HhrV_Z``$id`z-t1f6qNVdj>fZJPxl z*Ed$&fb#h41)*w43}7A&s*{;6M5IH6=O;MlI-c)$@22%+q8<$x1wt`Q1!3% zuF#A}yM)!dryMJZsD=!@T;*{G!IV^O9M2!xtJ6HSw>UZ3eTzw?=n{UW(KKeXIin6W zN7c6*baQ`R8E&}Xsm_;&I5_hjMFnv@iiQq~Dt8%W@|o_rS9bpZbU%BK+N@E*`pQjS z?-H&wYx~y4xw0lV8KG^YaN<7XK#Lioa3GeSxC&SQTv&DHm?{hRddr5xLv zb-CVKIhH4~=@*fqGL+IAt&B4vI`9d-3AqhJ^Y9}gH-$utn5K6a=6F`ME&XBjexlaZ z^}fL~ewgA$uhkf~*()Q*g9_q1liza5)cC6Es^C$VTdv8`R#~GpQC;$^x%J~6RhcO1pqDh_7!u?}B0RO)aj~AgWm7cY zdtT9O(sz%sH9JZfHuW_@v};>LivqEaUlYa!VABQ>;;4jni2)mLnUP?X4S4mLHE&-> zU$Q6tb*#mM_c%|LyKOL8YVxrjSdrPaIC0IW%;7te*6)sDh zuIHLzq@>cUw)omU$*x_!H&(2e#T*wlC^BQ!*h#E@Ku9+YmYgy!#~2)O5fuO&6*OMD zXV>^M+hj0rHU9uj)%{iV{-vgl*K-CX<;)3I^L7SVnRPX$YstiW0HY2tI`D=YA;*lw zh?JM9)AipPx4N2+ny$GTezSS62ET2xu+1bZMgz|#18z)E86_@H6u~%dBKt*65O|oQ zX`Z*M8*hU&jdCuxSy^W>+x@bY`&i3Wa= zlZ2A(rmOjSJ&i2tZE=R>&x2Zf7{t7_mNk_vwqmjtQW3ar5qSy!0BZ0Y0JbD$o~q9* zG^!fffR7#xqtfPV(;gXzV&}+NwS^_(Nfqok+oaN)oL*d#XNU>%6<%F3-zDrvZlczn z;_qFwm2mx2@`dN;UW;=8*l0+6F0iBLbwI}|IL3Sb08X_Sw^A>sRasSQb+%h0jqL{e zs|GXdt$cVj@0(mkQ*7~18X0jCBJ7BT#FL?fl+`II;nFt!*sBm6pb8+5QXGq z+))xkbx~b)TTH2O5hWf9y-v%#uga(OsCE}+t3j?PxAn62Et*~Pu^6gmDHD-~!az3J zF&NvBz9v~?F1Tjl0FfxCSgV%0BkSjPD+=9TSH0P5wn)~MA2zHgNTQL}OO6ddkd2#U z?}S@a!m5d)qAT2ToU^f-Y}4t|m+Z=;)ka6y+HDM3fojE5@h7^>_8LKu4=TKhpiTxq zvWlvIztgQ=+;BVdRNSK8(ZQ*e4c&fY(3zCM%tTcekyjC%M#zwy#uo|Ox2msRYc9H) z!hAbPUazOwb#TV?z?~2wi_mv8xFa!Sj`g)GP`p;McZVm7Z6*=4_&q}+yzLJ6RtmPAvD z=aTfv(sAKt_wruY?I^9FR9wP-6+Y8dnK zN&YQ#yZps>u~O_VOGy#jmik>p2keYoar1diQ<9hH^H2Be|wboO5a!ZcdQP)1~m*kQg)x@pHJj*~KMew%RsQG+~tCdCQ=4f?| z(%bARipDp4?SDzNu6;hlq`a(@)o1ZPET_yS9C|rMLv7c13nbDwguGQSf}Kmsz!s=J zwb&{ws(!YSV^bepTdF%!Y~jqcmRRNGgB`i`%OvA4^l~*riQ7 ze|PGgsxIMB^Cwny*U`zEh>g_JBtr*XSl<=dhV0~12V7`Nl8CP*UZsmDOA~etD!$6! z?#jnC>Tj+qN!qOE` z^4oz!eY99jvDIv1MQ{>v9^$+foHb{+6Ak+q1 zQoe1Fcx^Af6YihPVZ)6aNlPs!PW;JtfqeBk1Shhzoq5?t(JbaMV30pN39;)RIw_;t< zYt%CS){4!|@{DOPDcS~M*2IYHoQR8j__M+>HYlmgM~|>c5fl+@qRG~FI5pw&uBr|b zb1&Smfa5GW>+sQASEan_IAS31HbUrRRZy2Ip_mTXZSf0Qx!69zsk3uTaO;Ow*I~cp zno{0T^D!C`x`OOhm8CRQ9CuRjqIXKv1!Gc)_a@^*f34JQ{{UBBS3{Eu4GYp6lF(L? zzSBy}fKl3pC_*HywgS*1=YszAk~O)*(SdWX&>?IwTZ^>P%LTBxC3pE^hQT8li6w;d zBO+)7NZBK6l^$xMIjolk<7d{dWJs);O9r;&3D+xS_?5FcFq@R*>jxWP+E4Bfu+l2~ zOS%v5E~QqeJ6`v(c`SBlQg(YAh!Sh6D=F2>6INkHec?iq_nACm4sar8f{*s`$yckM zlJ%aOWz|ccsB7)a`u2985?$l*uPiR$PCEsyW;w_gn@7aLOKzxR#!aarG$q8<6RB-j zZkc0dG-XK#DuAlK9##4g1h~Vi@ap!Lk@TB51|- zO-9hmdalj94O+1nSZ&l)Q8ETZ9giV!4lgq?6cbVP>p0d7NRKWZEiJ64m*QO9+{(Mz zNfHcJB8SJXS0}Om0Fth+kVUqYw-+ud;7=Lq<}>EE?i3CzTJzc*ui9v5%adKMOkia; z-^gqM>lrQthS@h{_}paMMFm6ROPrS;tZH~K-Cy2MpRem$txmxnl9D38ZadLq%~6~T zHjO^Z(OYC|qpMA#x{i^m@h%9Yi3fda`HvSTz~zvfatsJ+)-2TZd&?*&Fs&){VU$-MOkVq!f7O(iaB78&o50 zRMbn7xs^fdTrMmP+I>dxMMmWnZRY;~Z34PG6Lm{>UJ3`AuWaJ9a$02Q+HA&x7(`&md*Jr_raN0N`%%@P1rhq0ZtT0VDC~55W5)KIv zORVLd%aJa>Slm9m(e(oV1W$90=+!o*w$0>#*$ zEh+(&39{;DtwM>2PCV`n@WnA@A%ET>3A<{xALoPA|0fFq17sHq_WM^?zbU@Y8yURzH@5G z`{IZa0t%v#l4l60s`C=W==(*T^^@23G-Y*hD#9=}mNDLv%=qzzNxKLl4T&2dE(m{Z zIOTncsh*x08ZYLjI?O8dnL~>zDU%BUQUM zN(<^YhEZ*Gv1X82jFFJy$B_e*h$x5#+hj$@h$7^%gz4H(&KfJGMcE72zS{aN2N0 zFhiA5LPb$U!jg0r_tw+vpicVh!CKvwNJM>$3;Mt*D*CXllMsqBql)M|9pMsQJXKL} zNrcX9O;%d0`{zq>Zic8e@v7KC-E&}R$0D~D!hDxe{{W8x+yILWIzVZ~L`MtlLF-%w zXz~Mpx{nKK&|+FZ(Oa6_yGYKs#MxFAPpKctehH~80~>hmALu<-aVDR;q0wN= znRpXgj+RGYlG4aQm7q%C#3%5}a zShjWLDGeF(HUV1U`$>r)KK6+hwp9D3e+%2J?OSlR)MKi+ZIyiExRF^|*vcxRuQNpa zDy}&7M)w|eb$~~h4L2S_tAg`*MRq<^xh6dc5L7#UeR?ZRhyzwL4Td}*_%=fkN00+3 zN<#8u_NtJl{1?AgC5V>M8*_xn{>jiKc%3EgFN5l)f+mx`-@U{n4*S>;L-t7gty7Ug0p0}YY7;1L2yG)EQV#uZgpk7V>k z{+)D{i!ifm4yNX_;n=?Ab*Q%d88*Obt@lM#c$i!X5}_#Pvi9}sa^o@=4CU0cks>ho zJ_7OFD5o@66eG6F%Id0;iJ~bYVM#NE>wa#be{5#9b-fIzOf|Av%;O$qm_=3&HyCaN zViyIjQVFtNEuo@_ar}C9dT&03c#*53Ti90xGg`#$efd_hV>2b-dd_>W$emXJK>@aW z&JjA;VWkxOFD|ut6+K40+{Zq@EmvHZT>hlwxlpSkh@%2>-6<^_z7*^slQR`nMFkv} zs`a~Oa?QB1-E)0r{^F->iq7XA*%p0MQ%T1TA+XXLNF>lUEsG`O7Dn-{2&vk38zbWy3^|B0@Bw$jhIQ2}C?#xh_T1-yvIHtb?X* zw(@sP-R2oe_|qtE8F1t)QD94qzEg5IynqU(>mCACQc^QaBIl(WX*aZ{nRE62uWemp z^~`jgF7kDgQX;bB6I+nWZZf8ThAQ|Hnu(i@{{TYA8PBxL}FV2ba zsv3zM5ob00U@N5>F*CqfX;6@fRJ>|@jCu9g(R$-l+e(*E`^Q$1743@2+WINlP&V2+ z&BI^YNe{b|Y+$QxHg1CCh15|`%JiUve`oGfb`3HkzhGP1ZQ8^%vDuhNu2n^vE*oUa zJ|#d@9!;pK8?7R;irRqZE34KeGSKXMl$*b^UY8l#8=dMLsXtXpgDFZeyu)PMA~M^N zC1RX_ZN5#$F%u;BC*^U1uh1$tdGjtBzq7O2%V?D@ErzH~zU`fDMS|t|uiDB&gAtKd z2t~qh%Ot0QQ^!rkbgaYrWtxCgC`i=^Hjej0RSJyh8#sacgZTCsJ(4()3#!6$2 zDLB4v{`Dnu_b*G<{#yAg!rm8X)^yEJXm*oCrTW*6lx=HZn&riyOh`_INV33LFpeam zjqoxxcyg=iBDT!u$)rtUZj-rH>wjVFTgg>@w?RteDw}3u&ud+d!)_AGob@Zn%Tdxh zl1;O5#{uccEu*qnr=^- zl0-!%!U`bd$rA}|_eJBXO3>;4<9dFp^@V&dt@gIwkE2mO4FzW5B0svu^0-aIK?x5y z4LEWD+W|oZF-1X4OT~w6D1CcRuerA0TUAbf=&AL0PX7R}@vG46(=N1B9zR_|`yi zenUjr6F}Qyh&+W2!cIz@yLGq6hPrmhu(fT{qgQ`s({}0dH>P)4HL{nNX^0#m+oMR0c|TX@xde=OYI2va;8*K?=C|v}*UvXet=!B0LQ7ZGwbjfe zTzKxvih%*kdl7P6$x~dCz`pqzGRley2&ktxcBMUpbq%ZPYls>at*bWvskPZRJ{=$h z^O7Gkh|4x{87lVR8oK+AMdR_?HI5=JuQJN!&4%)@W>Mc%TvmN)U9jtR-)`!4?Ix42 zRKtkLPYSrij;x@Ljc_3&R7lSeIHC#&NQ6keXM_{mKDPUF?>Ut^@7Nm7t2UB?DL{)g zCfEa0Z{)tSoCe`55ac$th`=&WnUgIjfeVU)sCc}R;S)^1ji>KhKAE}wQ>al|Y8vdP z*1~J9$t_{m-4~Ljy9WT$ag^aV6x#BLXBl4^AzhYhS^S&6lnQMYbG}Xv0y`Lt>_J-y~Oiwo0TZgVR{?ZTt7tlO*> zJX2$oHIoqT5!6Rbsi=gmc%3(0SmL}9uVHlhK7R^C>-9~#lT>OZ_j{+s(-8*uX0&D` zooaCGCRaw}n8P8b;*zlMgj{7EaGGfl&_8cko4YGsxq#H##;FdYY2EH71;sTkMw-LU z*~ER;9s>lA5+b~b$PIXNGa~G&fUDPi_Q&FTH)yo~0Brq|-8{M6?}azyRhl>MD-)~`#~+RCTazPM(SF&}bimJa^oo4-}u~$`JWosJ!wYj{Sl6)<}Hr2*sAR#o0All`5 zI4jQ{(#c|3r1EB&vs%>LT50evkg2uEZf2dxk)yc!u-lHZ`9?;FB7v%ikTzsP#EnUF z-bkfeD~pTp*Y_&O^7P8Bc_C4|eP0?x)Q=%0qsLeBopDH8ZBU+YS`Gt|0{y%fH?J+r zWY5a``j2A0k*WQOw$yIa(QanUj#Gy5lv>#WOsEVd5#$FSR=k7{DxnujIlUk^JhU>heIbCafoxh^P! z+qy3#_3JSlQ}^%G6}ukcVHSce)iZj#r-56p+0ssMT#a0oOv@)+c3XY8y1-X*v{J8SlLC7VE+J>A8pB!f#w|f|faH}$Rgm9#PKY{Q=Fw6{6}8VJP9nbCbvwqtUvEJT zR9xzmRW}nrh8OWECF zBWlZUrG14w8rh?>b43&5R=}r*v0%!WO0UhAC5E{?>n(9qMMi-9syPvFw@6DYK2m*^ zuxfuxN!SxNT{{$U}v5x1CZ-Dv>C&;)_E{9;{&daInBm5&~W zA8y_#Z!hYi>y?`me_z%~Wva@ST{!il3Z~jaW5j2q!$|;t+;1je=Oja3eYk2pzL4M8 zw3R<(?0ePqcJ_g1GO`nLp@gz#0wXNbyluRIrkbg$W_ zX%)vW>@tk}o0?-p?4CpYIh!*l4nr-InI{6PpH`3K>MJmgGXoAg zB){H%OAfRur^AAx;Qs)3P)vUFdA*kYvpTlcsjaP(tv!ZZCKW)~*h!nD-H0$I}G~|ZCv2Yw|#TOhBL>5Pjecev$(WAmzU)EMv z><(G1JMl(7DBR>_H3g4B- zWJo3kOL7iDhlvre1pUd86zCWdo|X>3e@ynhD^}C@Dp{4+R&4nYC0<*}L`>7i`9ShnY#H`w=itvWOfF8+?VLAqMcD zxlKg4m0eEo2F*kEWQs|WBb{>;@am%h!)81fj-NLmGV;j>+fpSHa9u|UR{?;^%WPw} zl@E7IZKJ?qYtmcTXm&AnMxh9h6~>k;K^d8nBu8LX*y^ncBW{WT_|w=VowX){Q8&?H zU3=@3x1tHo9NS;5BB?)DWhu24mnJk(CwVl77~KHwe7(K!Yt;FXsW-`+d9t0f>-wxZ zO?n>TX659`$!g2bvtIL(*&+b4jHKXWiztiD1W@^S*9yH#aR`+(8}HTDVYF^{?!l5Q znLV%A&GJfG`AF#kw90Zg&ZB~kv&~bRIqsv|s=Kqo_m^uoWvxie+SpS^n_k@Dog%7a z80PN)Y*t`~STPhe&y^a2!O19X zqM;i+MWTPoDZrdW4$IbWK71!MLf*a$7aGZZeKH-+-vQ?5YkT4gk(xH5O&{eRjc)O_ z*_*Gt^TJ5lw&oKksHi=9;zFdTO79*hyuDYe+f?HRa;CS&sX{JmUt`#h`i8b$$+oebVy;lQ#GVh3 z3MXM@up&-N?+_ryTkRyJ`EWN#8vVVe+V^cP>+#)dO{^99?KvQvlQGX|Ilxh*a22J( z4-`~fh~Xr&R(USVvf8Vj(e$00R{no%rHx|cg`C90Pn45rnO7VFbWF&{%-C^E@D)^6 z@zQljYOlE5b_fnZu!O^}Y}*^Z%!RC2zuK;x%c$$nkORn%oK~D@g%uR=JWBz`shQ!e z6#GI)+YmQBb)T)aS7Ph>MZ78vez?`A*?t^#WTQ$*s+l)b73SY-2!cYWx%QVyC$uHV zYirfM&DL)pjccODi#}W%(O8VLMGVy2Pmsh$+*YBAwrJa++T-2Jv1cyXdgKk;)~7pC z*lq7=UZ-NB6K@sX%Kdzs0EG~U8k~(c6|P3&9ykgZpz%apXSM5Zfv;HIEZ>Q(S`2nq zSF^Z&SW1%}SlF6lk$i6>I0n2=CQ!L&3;t37oFKOV*0K#Z z{Dgi4Q_0s;lb;m;oi1Xas^S5AdXjpJZ#WC_TBX(|Y;a^nxYnZ9#BvN+e43qJk{s|k zYQrQX3gDYgFnkLfPbuu_qpJL%XjHyzWCc{<>+b^d<;7JKIOC4GPM_O1%3}&**y%NGGh(&a zZX)Yea^A0>MI6pLMTvn%)m#JQ*t(#cj1d#Jd}lpQ({5qlI(@diweMD&tySY|sygI2 zR;(;%TnhH&K3*0-@zK9=BW@l`9lgp+)XbUfU$IOJhO;STNO{*TV}Z3b_WuC5ssx!7 zUdXA%KjYVl=s=QwSD0?1I=aLL&FA4NsHv+ZmHpr5?fLzBBW=6Q$@o{bQa_Q6EDf1$ zsAchMAVvlqm)nefsrvOL(XIO8IguT0vW!N7A!80r1+iX0<9YPY6y%@dp3ByWP$A5g za|P$or`(1zqP*&=p-6<)Wz!-DjBhuNM^%YYKWAz>9BU_pENKNwN>4u8y@MuHuiDd4bbS|W-fxWOV2 zi^_nkny!7xl`eS4ucza#kSJ`l5nk4j7&i)3XP=Pis`viNq7o|h$oq*=7r$DUmMp@3 z&LHg1p%RiT6VjDXj%toCZ9XU)tDBE>L z6O6QqT%KP1kg&an^V4d{S?ZS;v^s5Ms>;<%D^!s5`vU-ax&x9;7>3zk_`H#TN6yc; zy7A@NdcC^s&qkp|dw14r-muy$p4fQJkt8e%#k7SHQIr*wAOYr%ifEuDs!8Kj0aWT_ zHLk#9TkB6-Synfs%C>n{Rn>cFEO4CbEd2D1%t+%3V3fHh4(hynb$nG;J7Ygpz`3TS zt*egh*VmyX)7o60C8@Jbz-*+RP?WSh@un z;(g+EISChysPABSFK$Yly0+^^r*^Ncf7S7~sPEou-(TtOGeq@VKoNmDWmAIC!+p7F zh8$_cBv;uo6COf|%RNlD!Xeo2k)gM;j25ZlP+U(7M|8Zx~N8={fkF`Hc z{J~L7e@35eDjtXRd?{N#yCujP*3T9+h_)>}-bQ21hs-2Jb(Y>yaS;K8!J_1|*7}#0 z+Ap-EIjUMsgRg>8?Qxw7J#gkJMu$E)wr-^EATkatw%KshiPR26f{4DOp3`Up_5Ego z{4ex{hN~ege(#Gep*C0S9+hKLP691NW#CrD#sMB7HcWvyqV_IGtJbX{_v~$YF0=Lr z)|K0|nr)TQV&-j*yJaY&M`{ECDb>wRL~-}6jj3_WR9<9=fQJpLijqlnsma4)-!wgE z{Uc!$Sftywf3)GatbK`HT+4ALC5x#A_ML|wGmeaSXlMop<2(?fgz1tXN?`bl*6G}45NfN6CQ3@Lux|+h|_MEyda40i#QeO^=UC- z{WJD<%OmWct>aYQ+eoLYlO2h=mfKd%ax)ZIRz>ElTL)jB{BZ?B5+UY@h2v~LZ0*+J z#td)2?uHhb7T@h!Z{?!WZ2>wu!=BWMsb6B2Z-7fcea9SOw?sTfk=!=G37`QL<(_@J zOy!x^>fzFdcd0$LU)lGKN@{NHPgp-t#BK0)16B3{h7~PCV4Y=|FL<7a3aCaN2 z%#c-Aj}t_nTsAGReZ#QD`uYe%V{L&+vt80Q-`SDcNUq#1jC5_3k1@vElIpT8DLAot zJZde03I~vqb?eV8{HAWVJ7YTT-=Wr2Y+}-(BwNZGm=grlqn4acG-F{ zM{YJ;R~1Rs;GLC>_LlN`+`ihQb867;q3f?#eWSEj>)S0J*Hc{BNV0(`v-y)zx6mI$ zC1o0X$<+~I6;xA^A4#4oGE+^32i|WpLiJSUzT4P#`KvK6>QY=d5>7Hjkp(9=2g1xD zjOh}eox*i-o@9r`ZITxYC9?fPW36nPp58I4e}bQF3uk?aj=Ng@{lZ3w&4C-7rN9;i z4PrE{koiE(I0_P;c1YZo_#)QCztt|8`m5>+dJnOFs@NJfwN1iRym;jSxd<-9QkOlV z2o`9uo0Z8jgorLS(kTFp*^Onq)x{g?pRu%$ud85dcVS&f-}0leqtMF2!Njkz5``t` z(VTM5(3%%f2vdVZgc(5b7N@^`}`= zS~jwpiqt7_ofU4#5;8dKZYX?A^1K-pR9Q98(Oc`?Wd4%~#VDSurns$X==!9`5T834 zV=2Iy1_N%$%Z?X>TyT+~@gebNo)IKBp&2Gz{ZAA z?q@NyY}>1m;kd~LQ`x@%1gz;BwVK=MPBN}owN?E=fc1JKsFQT>p!yg!3sOV ztvIIfBaft(P#2Oa@lyT0(ruxVti|O5tg;UhBR@(=tTbjV0{qPRkBrH{FQyEzvI?yB}TVu9m_A>Tp2aw zkMZ7$>uT&%Y!DvcKuS0QQbj~VPU)Y=QblrS+TT;`zhUfm)?0N1Es~dBiu1oy3&!Mm z4O+#0(uFAIG9G6EO+lw4`3Xz`2{N9yf>-2E*$q|Cm#u6F@KEe~Bbj|05ETL|QWV-U^5ct~h(!ageY)Qky7j;GGQtn8tnQzyNw=TO(%3Tf?Ge2a!Rhvr z8g;fFiD2O}sM}A2ep7Ib08MxTVS4M*$$nh!=9RV`qV8jDQ)*QW+q1GO@F(e!qLE9q zbcL04+eo=_)oJA=;j-J8_z_~Adt8xwNj;c<+~2z8GK~+BX}V~PQ``medO&jv)8qr9K^&Aq(U_>*m~WKhOF!v zv1u+T0>$T9kpg5nEku}~CAE_o3HE$0CKN;oOi>dEyt?)2Io9vhnN#*Fr$&5#^qdmb zrQ5(6{{ZReOtBFgP~jG1%*7)1q>mRcLR_e>R70ANUeDK<^Zw2M00l#{Sw)RiCLYM) z8*eZND#YAJU1mx_T^;5(%~~>Rq`EfFd(|y+~mYpTfh%KWZxAN&N+AM*LYcbbG2#cYxbM}0Ak6p z`+rrku8XbCZ(@H|mpHyl6P{@vt!l}IM;~%OC&?KWhs=NWo;APLg#Q46v}hcDN@Q3v;?R&`7Lqys2LAx{^ZPyK zvfLU*f#w(C-Gf71Tx`#Wp; zqwCsjYiF5jVWqP=g6mUXj?^dXUJs34R%W`E$?B^jsUMge7N1CJO*>PyeJx+9I z^y-~fU)UFPa-4`7b)=SR7}zfDn2!9LC+0?$jz)d9WFW@`aD<#ucgw>FtZbez3R+XZTDp4 zGMO@5l-qA0NO{K_mf8ORsAoD=pV>n<)>XWUiE1VCVC6l8n%17Q@kxrR!oZeXMAf0sCd&%B@@Ll;++-q~RYzR4+O;<*<;j4_g1~j^ z*q2Tcq7zRG`Qk3HvW%H*3!3rACEzF}G1NB1ngniUzIQgTrZe#^AzK?0(gdYs9y!j( zCFGIK)O=J#&3!?5^2KQhe#F`C5USQyCH}VIPl^0JoG0K~m^_6M$S+yEBk{=HK~*tO zR|%xT^1>|AgF?QoXH{}n@r5`lNFmYrrW25=ri zwKHYMnjyXM@f==o9!E=-6i9iBaUQd!ysHNF`iRcM zvfN}u)vZ{w`O_+%Y3oKFVj?Ix^O|4@wp)ByB_t*O+M;oDiVs#*H>`bT);`R|rnOw$ zTgXz1k72I6i^|$h$p+HA0a$$eZL|g85^z(Jm#%v*`ao-F6Nh2?*XtK(Qo8P}oeeeF zG6hmn$gdX^)SHgkKjCwbqpBU;;wC=SRGJ)h->W{+`l+p2Oi!_*UF`N&Q7+`yNNQB{ zl-#vxWx!#%q{tDBB~)-#P|XQNL=6RcO1faswf9nH>%RuisO?nqV9JlKYhfiCSqSql z!EGIeygpRVN9ocQRQ^+vvpfy%Xv@|@SAd|5n4 zZ|O21t^J<8ux-O8hLW2@g|fB_9yk%~4GmwB_L4n|Oo^d1kE8Ar=pXkHr6J;_(L=2^ z{jRQ}ijP2(VC7YvYf>j%l;+{bu4W;)0!j^(hTC}jr0Ea2SD1?9k9K}l<&@pB_VZKM z*=4PWrtBZdwDXfqnNg8j5_Uv_ljIR$kRy=2(>x7DL)@Ka-?DM&vS4w-OQ3AFLx#){hk_xZ2=`g-8YfWA)8}97QsBRLvhI+bZ)KVC z*o_(^hRCU~@;exvmheS%Bev-;7M(LjnX>IM$pV;Kstu&2-!l@gC*0(AfQ(2USA=wTp zN^c;l%O=VbBBH3_IHSaUy=Y}qCt27Y+U_p(3o1BwQ6H_Si(d1=J*AGK`cE=Ze+I&@ zA#K6qh^Ubr$<}tzQgj%yC$Ely?nb3ZI$^{HC)Dsj~glRylph(=NvR#5`)O1;HZ)UDj{QzGm@!- z9`k!X9WBfolGk?F?y)XR^&yP2o&d~uCzptk#C9^Es;+whDDhR})^AZhO-&Wt8++Gj zN!a@cID#T)tG|(|1w#~7mrG}?Np@tE zj5{pY;8G(?W;0^YIKDqCWbwdUNF>I7=I-X?=%ek^_?zITQ+kq5BYa+z9CsiyB*_ao}#+6V3 za6+Do?&H@iwl0$P7p`kIN~l`()SFEn^0q9NtXqrVks0m+$IWGw0dt01_bCtx@>Ku? z9<1xIM4D6VEH)ZlmtabT+oeUHCvLl|l`gzKGiu2^Q4ImO#QSb5DriUB9>3*cVaiVL zp;ljiFqbaLcFxTmjI-mjA-+Js!X8C~KxJIR?IWP5iNy=krI*sT=w~*cWZI^`v@>Bo zmK?OR-Dg&WBu69zAzLlD&moGs>!2c{;gF_s+OB$D+(4D&i${M~abaLO_r$jk1!M5l zxi*^(jB@gn$7F+n9g%4JbIOi+GzrN^tDjpUVB=doo9woeW=Q=n$DB1)V0cO>ug2%&C7q9qBex_Dln<;UilwI>fpE<2wHU)`20vlJy%X z@jEcl?g<=QGaNW-oZDOqVRO{?{{Z4k%l1^PT?(Q3qK-ch#oD>$=tj8qpZz_Tx8tuC za`XmF2{rG>dFBiSul#2pZE@u{c^4#A{4Xqb>Y`_k95?DGu&t`WdGC`Mzi5+Af;N0d zx~4Fysrm2t>RGBD+cI8R;T2Kntds3Vp3yIvxWK4rn9fmCmOVS7{{T*_F`|2CA;12| zVO7tNnV4 zBMl$KcZMNH#MY*;aYK}{Hkv@}Md+QE_5D{p zc9t`QCbfu9TQvAPZ%oaju-;1ncf%>;jmaHx$pk2F;6+JEaEX-lPPK0wDWI(NNVDwW z(noi1A&&Kx%Tf5c1mjDAGE!0Zs*e=loPS>H)XQex0xiA0)WEWk?R1@OtI19?uTud5 zIMRX;KgCpdxyiS9dlURW3)Zp)dp&ra>Hm_^tGQ(ll?HP`HO<+l7=at6XSuq|5lZmoH<4{pRMB&Rl(N$(~zSj6B z?pu5dZOQ2|YcCwAtdi8dMaE?~aAK}oBq>n5ZHvhH`-NO_3ph?{imBD>EQkeVsphA;0oR{Lqj@!;l@kSm%vK%&0$VCWo?#%6dDT81B1>NlS z-Nv>S&88)^YVATKmi+bMT;nF9>M&^IY^*R9=j1^C@s=@I)|rKBRgBG{1B(6Z_E}2TY-X1=LP%!8 zn+PJJ->M>!7G(isxgv$#MlacphO>LG&3b0uGKC+keXy4ylyQ}m1VJIc7%0debNu_E zdoeT{-YV5*PH#x8Wu13vBdYq^^pTQcsbAZF}Jq95XUg&Rjz1bcERY{)BgbI)@dM2hca!TwuxfY_ap(2nZGlVA;m&v9!?@kfQsVJ zt9C_ze_iiYsjqCBzMZZ+_hzlO42jWn{oz*0=n`WjREZMKF}Ntxa-L~q@@$k9P6dL%iYyzgkZ=w{Q@vZel@(?>g~8mQ~=T5y+0V zYF<|qlus%^dY7J3c?R4yy@Tz2a<-oLY}hrLO}e()x&4vKae1nbkv1z4f%gJSe<7FL zR>`Gb?s(D1xbf%KYg2_e46eSq*(|7U>*`a&5u*mff_ONl!$dg0?Y7O^XmhD*!hE@DU9wC1-r8d?%2SaMreVi`&LX_r;E~Lo zYk+Y=5fpQ)&!%q2mG*yeZhv0dzZS;ozB_wP#Y9W+T9O@!#;rAw`Z)G~pH3o_F+UwEou9``bonnU8qYuGp=w#$)22se9@|ugGe`wAn6BCykUYQrqX=MTcKK5TM~DiSyg*>KQBqBPaNmVRce`2PS(ZyJ<(_)_a2 zTIn^6MUGc4MUOIUD@IB2lKrb-Wf3K$q6flMIOya3goud+N!G}Ax{tX1cUZ)b(=TOL z{dx$mY;fx@S(iFR%}{v^d~d{dIy1>$RAM=DP%NsnMyQ>1owvg(pKaBCxza5kpSIiE z(qFw_MBTQ#t-l%Cidd$>Jjp~Nk06dyg5amOB(5%050VPrw%;c;$ooFWvaz$h5{Lt4 z+TEP=o0>VPIgz4;6-F>lyEG*703*VJj$s2C5f0h6wU;F2sn%yExZ12R)81q3-FPJ0 z6E-YsH8n7e$gEDXoXnSHM)<_&JmYP%gET@WnoJjLuUh_VJNQ%6;N9KWyJN8HlItPR z{D+&UH=B>jV;~|DCO!$CU)@Jbo?IZni1A+cr)}jg0tK~IxOYs~FvFGa*R>nuL_d)x zLJ#)1t7*&w&4Jy4M%w})7N%iij?w{k11NujcGsfH8fFgaE6xNFP- z8RCx`qOY&2`gJD_WXZtog~QKFZnhjBp3ALB8J7^8X|$0Yp=6F@jgN`5Bu+)+6G0+X z?k+6MfO=Vj%Vc}D7!_2dJB^qV;zdQs<(L>J$n{B)ac|W*{N;yua%N=`jj-Akc z&#RYVu0^igAFpb$;I!BiXA_G1<2lmtEEb$VL1aVPD59x?&o%2etA5|6uy3fg+W7@7 z_}?9<=#a&u6j#|c)LU?cJ0ce!+sFJm=Cp@#t6IXAwb0*qf%9U?x;Gs*N&{^&i1@Uu zC@YQ{0s;>tT&fcKbexg-*T4NWU0q$g%%akK4aQ=0?Po`2A_*7{rhxPL43{{Yo-4qpEN9=blUu>SzK*5Dnqxf0S) z%dwAJUm;0@jOIK8#Dz!~KKv$m&eB5ky{@g_p*Ih*{{Y++O^N$9_BM)<@qV^-^Uqk< z&1K>hXkJ+i5whE8B&3WsNz8<>DA=lRtz)-YC?ETv`i{Pu9POKD`&qUtn2!>jtzt+y zDw*RnDJ=OX0hFSOF0=ipz}|8SoRf;>-`k2@2zc+(L6(zKNiUzlCbS_2t-lD|K$|kRrooPR@T?BfHMt*_y+jGHrM#@k~aL z+lHddcR0N3Xn>hfRwl`3m;gQ_G{4YcI(P*nnd?XJl$%F_Qhb%u)no#EQZo8 zfDrQ-#)su6nm_?jR6s@J)ax-TsoUV>jSblB&Z&AaH#RGROfpVB ztOzT97m$&$AKqoeS9hgfrz|z~rLL9r{)&@YTLq< z@3yj8iz-q)tw=T+@FyokxgwyBM|N8=jyFvbb$u3H#I1nYk@gv+cdA{meq)sJr?~>V zHS*)cSDJVlRT62zCs0ZDn{7yZq$!@?inFz>G<}jP{d79?$ZXnJTzSNn`M9o2B!Iv% zR_eww6lLhHv`TH0L{2pEDm$FEwsKX?u zL=W|T>-7ZKH4yZO78cT*Ir5;t3~bp~4akC^p0w)qcRl=?XSCVJ2N9(NYV1~s_ zyn~ikr)cK%^KQcaLMsfo#K%xwY9pZcxyQKS!B+ryCKVT^F9T4u%X@cgBSqWmwhbmU zSkoo>EnX%d$%{LiQM_&&?u?hBm>IT6*tVH2K&|#vt1E1@+w^U5_bOVBZAGwh%FAi0 zSf2@)5ZYx1v1Eygwo%@Br;P-~2~|k>uLVpYD@l8Q-RrD|w#APmp^+xHYOJ(;pF>2H zrDJ5nvQb2sH~c2+ao780pV~rQ3TXQ0M2V|81^vfn{z-{!2G4eN%*e5%ZYXe&z;W<- zB+Y$r^0?*znne>7EE3(pKebGNWj_cTCqS*|C?X#E6M8+Sx7<0;`W7h>Rt= zKwO0oKu5-?J(EM}*4m!C{AE6!{-2XwMGdP9{cq(%j!oRP=8O(kHuJwKL+&->CmB&z zRnAxy4$3n57G|bRfJxYFb{VuEVX+WwENHCW*r)32_B?U z3icN6iWl&0)T>h@NS`2-rcDBn>I_zrItyf`Xf2@dZz{Q6GH(yAnOlr`TgxQg0FUO*ErD8(D=NmR&2C34lqi zOqS4?yD`}a<77%o4We;QJz3TmNVwN7Dy-mI!oRhxp|+UKM2&^!L5T-s`)!{FT6eS2 z<1QR0oFraB!L{aHuKxhk7_HVd+hc*NSIWD!*tQqk3$d`Wex@697?SK4WItkPPoQyU z%fwJbSCEg9R5}HS(P7fYn^X1Nsni<&p(gG(6*lFyHRlao{z+#@YoC#M5aZd&u>?!&R`+*s3cOknd&UWtL_kvrh^v(9&j=@{ z>U%>|s$G?@TkTrIErg53sclIeav>Ck+7KZ#Y#mou#_&3=3WB1J2vH|$H^YHP7lOL)1$!6m>TxFms&8$lsJJO_i&JQ}nUUt`yTzii*C9U7!jvvFv5Vt- zQB@FqzW)GfFIvx}%{wu)S#J>`Y1_4tu!8g39DDW}bfK+F3gcqgk~U4g^8l#ef+`9k z`+JvCblttRJfXRzv*li}PmTdkdp#$N|jYpp6Fvh!sfK_4Y?m5Kx87h6>aG9$?q zQ>=EIF|ES21@i6ErO2IF7uVAv!8RzSwu2GCb=H~^7zln47n^OML{wB>D5>sVw|Gci zuhVUI?c-`{<_lU2aHcgj=;|XPybiSQC*i|n$)|yw5j2k|G!23#2(UdjJS(BsY^-BZ zuCUYQOR5Wa@==*FEC@i=lzI6P;DM~5-{ z?h>x90#4dfB);_aovCD-j8NB{e=_@sK!p^$DyDxL;s`85yt#XAZj$aaxEo8($J6J! zj17ZJAB)bHoeg|Vc^r2QlHia73RzB)=QU2ZHoA_79!8t13l}%`awD`G4DfKDm{Gy0 zwn-SUEVK(K0FkgxNypxc)+D!^;Ui|}w87GKxtbgXANb$tTIu`4)sDXjx-0l-Y7IkZ z906=ev*hv@BvT~i)tr)sYC9XWmD;Y`SrUHaSWXtjxluIqbCD%EbsU(8}VWh~iOpLmDL=m4Rw2FKXiCRGVj z9d1jB7iPmxrdYs}Jsy=?v}yGcDdBA*@r*QVlg!+yf`}+UD(96PXhemzMJ4^hlWa>A z^(4){lAb29p<2MUg(G%ZQeC%fBvZ>4RMg!(@ib^bQRcnKx$l)+^=y}#wydwMSlI)3 zo45rO3Xi3AGqW27VZtbj9!V;smO;c373Jdq6cj)e?ULlZXSJ3l{{Y$nBSycMv&s7- zd6zd)slS%>JtGSr%VQ{9Z3~QW6jBrhoKWORh5RQkO-sfj_0BA(=TuDy>;tk}Um(JC z6oyM9>`xlwJcV=1{vCLIy+RhRIUcH+sE&-E<7PGv0Fo&@2#BcO7qKe$&rAbss|rfK zHPW!$x7jw8J;>GziZW@H;zER}>xE8|q^%(~L`NZfX1sG-h^;=uYnI*0pdz25`?)4R z!`G?{!3L}vpJ=>M_eh=K$)}MUKv6LN04l3$SXBKwicqIwZGj68D-Jx|QZk$v1n#6` z$$O{yQ40yxK?!y*i)B5iZUIR@BkuD4*E1wW6|zqJfm6D#ul#z7i#exX2J67eP_ZG# z--4u#5&0DzaWkBD##8#HI;f9)aAefC1|wz?h|Ll&1xH0=7ZLV;JCdUR0ESbeHX_J& z2Gco`Xbu#nP)hm`CK0kkQ7n3MULuOUy?;Gf!pc^cC**%CUp&zUvE(}YD5>sozXy$Y z`hV7$L{G}ETbx%sRhtMww0YXcwizGH-TY{eaE`oQHvzQ%K$eWJz-`xjVJJmAsS2tn<$Zs5>D7`@fZnc98D?2Yk2b)8SUSf+5S(SeBurzf&8q&zHR*8l>Gb;=LZ~BgVN_Q=A;}EOaQsqThR!lv(X~WEaX?qH zW4B2(l$`I^(A%F^v{uo`3-}UUTJ4GH4aP-{Ew3R(uxQkffKf=hc^o1o4EIs%YoRh| zrrTMKRrbYIIx5J9`%FCAlZ4P1IEYc( z3|jAk<+8g`E+pt}PKOziAB@W}+^}s?eWIi&N~pPBwQm|v8iOBj-t_wm_pUZ7%I%pv zrLpVi*s4Ydeo~a%5u_`i01KAeR!q>4P}@}@QR?~dg{T@zH)($|%Wr0nZjlLmG!h$i zXBALJ^GAs$z!1b7G8WP2{D^!ITQ7IFrqxBZ(Bam~m3>pT&ZgM4L4eF^3P;+Q$HR2I zr76iTlR((Ge2jVI8KpRg_K@u*d^Ebk?s`~fsPp)?zS7xcE2JP+HO9=)JR!MeDaX?RzIz?~C zf0IP2IV2=i65yz%)xD;0&hH0HT7#2Ub*E{YMC}02WSehvN? zszHLbWZ__a=8ZvPx!6Ic`@x+{aAJFtwnN%nnvIdFms>YU8h+4AAn=Bh~g=7S#r8G@CPWgC> zBBF+InL7Jx&xcU`P4>6f6>%gsI{h_9-&J0gPw2X}O2)0WklL&4lW=4UC?I$ui|zeTiQ=B?a3nH*Bt~gD7Nw8qK6e*o;x$X$*y_ zE};_eUTBRdn)PP*TRIcg)Ef01O6U$*eXnZtS-XK+SjL5C9u>4wek9oO0k_(YQQB}s zjbrn9QBX+Bimq&An)abPL7A-S&TmuZH49*zmfH382k>oKj1xp@8j%i334}3aLAO+e zFn;tALk_hoTciH~W>IT#KAx9T_BNNcZ94rlmAVZrR-;~aBQ}zavV_HraJp`sCLMM| zhKksj7rYB6jNQC7E;;vEXY1dp{>RrX{-DzuhZA$NSE;SGdC#P({d7UoW(;=1N0Z6q zVa`UX;CP!8b;K3%g`9b*f4EkIS^Ep_c+FhsfK2MHIp)@?HuJG=z4=w5rXaIW;)oWB!wpr*onzAmBo&edrfq%sS4}sFZT1LT74%2a{Bl;TOut-Sd5I>>^n@! zm2W@bX|i?HtwVAmD7e6xA}W%K{^gS4=ZXXOMW5bq^l!AT>)=!CH1(0Hs-Q7hC(U^@ z9ERhYJ-ZPdndW?CzREI&OV7gJE(wD!t+me~Q|P%FV8Hd+z@L_d84V_M@zBA74+kmR2sg zTlS04n~5I20szBFFysK7SH>{92;;6Y*{gZN4l=UHzcTW3`;TYYH7%q4U8~Jzt5f?= zUSZ8esr;O&*d)(klCgG8d5JjLB&QZq0JqJ@ki9u^>s@5dP#f!Cvi`dJ7N)yf-df%C z%Ae*ewvFZmi3%axL6s4Pg0<^3ktQHZS4^9X*>evPsF?WFx}26HeYG9BU8_xl2Wj25 znmKzE-P_6#Vhhv}sRd<2D6fbYkx>OwIPhr1IlSh3BJZyTXN5UyyVBI(C0Exv#P>EE z&0)>1?^M_r3kf!GMYMWCIU#{3Bb%?n@|Hwg;Nmg~%a2!iFH+5$yU||WSJP_M8(!6Y zu+(eSR&0craN(7#IL75#Hb71_<_S&%rpkdHMO?~ZI(=Ii`OhW4wkj)pmJ}ne#E`a@ zcL`y!yCz73{{S9SBE-gB!UXNB{vqG`fuR%c1OsrPoHA# zY-MHuH66ftiEgWcJXSPJJfN5^Bq~Cmx32wcOE&U>v{l3#8G9R5Nj`%0xG^p4n{=J7 z2<HTAs|NA)iaFr zvtmn>H(Q%KS*P|N@zM05Wy|+kM3Uj0mmD8EeAgL1T(Tqk2lJKbGpuX1`tAKpErM>^ z+qX3a?zdSMM5ZNFk-Y4C6LmabcyvU?A79+5>=h;bnCaKFyu-Y`ZWSXHuDrC3TH1!h zab9vmdPvN4BSJDD}*y5mlROaUnHIUE-?HW07!EyDD|ms0)nRkDA#zos?KCrQ=cjUvh{sIwqeO_@G@yo)eZd-)qiMZ64Wjk0fnv}TH` zKGDZnoJx|*c@4Yz?_AryvC_1^_hTS*E6GsgU99+)4LvJgVS*^asLP~E`^eZfjv{%H zQ3#Dd{mXOfuPtxQ;lSVSC+kfSC#8!GqmMUWzYQF0nwTo# zx0e+CgeWWR&O1!T`gYw}-&_T0R<-qQpw?5=Xty(tpLBVr9FXHtB0n<88*&(^vaZKQ zo_mrjgn|ORRXFv(*JNY7x0N>;{X6VktL)1s>jJk|W5oC|Lc_lu)JGCJJRsXSj@i2E zI=O6AmkprzHS4AAZy1-Y>z|PsFwFOve_tlgVXdSJ>Gjg1M1d07v}D`EksWp?iZmFqFqA5O)q)OK&Js=l$0Sh2P}P3LX)d1Bm_qS?OmWRWg2)-9== z7|S1%vIGbSg-7-VM-eXjTX&ka(Xij%SXS*i)|;?Fkke8qU_Sijb|+#s`@>-+4a62> z$~PG%4G|NFsG@iiis~}6WSz!}*1G)zEZn;DQsPI}TaO@4*}AfF;zKR95KYBa9BADZ z(L`SIm?D-?68apq_PfB{t!^0*dQRIV6!hQCKrlY1hCJ zzCJX^4nwc3ize2+TR_|P81#v#=UsE;6j|+fVzrfDtjpcjPu8^+I=|RIVCzP*0ob$TQnu`S2}3SKSIk7zi5f=y zgyMJykQxdHT9Y+rg_p3FivIxF6dFCI#*rk4hOXths*>qYO%Wey992W8yIL1(EDZoDfiei;=1#qIH`S#V^ro`lAwIN;%SHrF4ti$J+?6AUe_$Mh*rRVD`OkY6+MtA_i^IYAciB#43SzPo+(hOsgZ(h;`0tDxl@W{sJg-i`{;MrO=R zk~EgtRY5={Q*g4TxkTzt!oO=l4YsA$H7iQ@r0rQ4Uv9ScmUac6Cf3K>k5UfU#%qM@)77E7+1T#ZG+Mtk#6Bs#n(}|(jxGZpezY|f;DW&`1h7-58KD5k)_L# zTJ76uSmIenbPxGn4nOhPj6g2@W{Jl9>gb_HJQp(O?c^Gl1$O|HKx@Af=?$8LeXZKs z)nA?U?Zr7;MYSb)n~OPf$Qm>_Q~ zpHPc%cXf}%eH^S>?r$=ZiZXfp!13`DL*Tr{?eA+{HLy{rxajFHN4nvx>IZvAbHl? zbQ(t9b;VEy&DX$_kD}vR7mksyvgB>jwJW;~PVKP%A6?PkZc#_AY6B6`t8s7&}tMcG@oIvhAR)$MAGHS=b~2+q9xb%y5|jki6)M?CJK^L4~C1nh&rL&lwJ zI4+rjtsZAclW#I`%BO;nYUo4;6T}hTdEkGPhg%47$Q^N1TvX(Qi~YpwIxQk*y2AHb zu-R=A<|S=vD>ad9LPd1v;R7s_?YrHkjl*csNOGAc6$F2BFYp&i!&Rn#Uy$Xxt#g+A ztQm;ovLA9p>0-;k>AJxnt1SNj*(S@2ZVHzo$sq*Y6JUZ9cKJ}X+NXciaBV9N(%0k3 zv5jujl4cz8kZd|C;wZK#BkV;IBrNp41gnZGO^9lzT`?x{nKE2B5+XXopf5)PNl7uX zRYwR&M+nwCCoFeC=_qh5mf4o!v!!g-tp5NKCghzBWuws@Y!Kdgg*+i}eG3jBv7zy* zv}(8%&u+8u%~#(##od{jY7IrpJ#s&UujYRs{Dzg;1|{H)J<(GEdC^{8B~!|GKTK{$ zp}%pHXCLd@IhFO(A#FA`@MLVZ)prg(A~joi@I|q471IW$xTWF&$s!7=`*ECaAzy7f zjcUDFdD+_qJC(23R8mfqj*Wyin>pahf(VkCHbRNXJyVe`M6;4OUmesj-8x z*44&Kn~Fn|$8_3DG$OOM{xCt|5Syl~}#IjbRdo$$BqqK_bh*d2~ zY8Rd>4*7|tRBampWxgV$0ms^k3OVjfAJ=sW7uq9pX`YLvF|1v`^Q_U5ix$o+k=lvz z9hm-F6<;TZlK%c=oJf}|%eQat74(;Fs;R0rU3PG4R(6%GR!6aUR2h>EsZu5sg?usL zK~~N?K0zE3rx8Hny>;W?Bw5y!G#46{n+^`ed$J{kYfyLc)}8=3%-yNVta98NZP!(X zn=&Osd)f#&7SOqM&#k&@PQE%;%sXDMtWJ?0X11#Svu8Ag<+5}Yn2)|dz@o-C8(=&t z+A4d+(nZdC)a`txlU&$#ohxCae3`4HO-d8ZY}Jo1%!$p_FavQ7!baqYIpG{3D~eea z##JYhBvZFbe{BNgjfw`EQtlyK#Mhf*K(jHL#{ABULmWt2j*PsGs{6Z%XVa_UOdBKi z6|pLI2zHL#Yt^>aaV_lIZ^i=6o9&|jGGsKWzI1dIT@?gCZ2=WelC7VD9U(nX#<5dv zE;WDIUNKtRZ=R~NVvBPEJYt3oF z`4L{979(!80?H!B2w=p9{{U=ab=3hb1gDZ7SVZZupy)qRYX1OMTeo|%Y|w5kWWQr8 zQ8y<#lyEKHak22aY=7iCA$;bg;co(px$dde?cUkKCH==IPLH(d+s3zQdw!h7tyN#y z8pUw=qca|SM;U}sbAdD^ZNYnz@-)CIXV!G)W%KDhBF43fmMv@A-jgR~qnWmUA!S)O z&>tD14hy5?RYi5aK%s#}MB-WW?&c}GdcOM|y|$Z1t$=%6UCzQK-L9H#oLcJGE#TW` zT!it1Xb3Ly6dpd_MU^jWCM3(ru2#iyc3PxqyWA=I@kw$!6KmTUuQpCHX3GyKkSYsJ zv&4;iI%R?CC4QmS6OI1>A6n-&WjN%R>^dp`0Bo2=dzb5i&N}ivENSc^TUEOS;z;w} zo$Sb9#B+{diHxdx;XCyzg|P+tf{ZGrmCU#!C;`=R9($jV32~ktndSNKo~j8VDeh6t zt}4X$QCRQ9c}8<2DxcRM^TPF;;bH@lWDV8ewxbA)T^~6HMDjxLwtdksSi%y1J1b$QMdWeaZ44d+ zMO<)D{Pa}1=bnizr{=N_xjpYXx()IX%PJ~~oTBHFdVYVR^r%{rF~Y^S5FCh7N<*~r z#Z;Yb;uRhQE0jV(l5y8seJxyU<(vLMQ+y0X1yCAX;QJ!} zSErhl0?h7YIW8@2Oq)wYl7tp7i$MxN8n-9GEM-9#-IP_&OMetswZB~J)%JFdY%`}p5-**t#C2IO z;~stCbz6?hO(7_sbWu)9L;5dP_o<0n)Vc@jwk4q!lDd5O@L7IC?zavLvk#QnAczUe z0*azPy85V3b!Ghb>jGPlDso#N0uDn5%+hJ=8-#+g`Pn%~)E! zw78ohReQSS=H|?1pS_WFE-SS1tlv3NoMl;>XUB|ofDN`;^#V{-Z8D20QLl>L{{TyJ z-Uxiuz}epxEi+VzjjPsiDiA|VC$Ad>p#)Y?j&^}Q{VI}K#bpmhzd zbgKDr9;#dc`Y6^hH|S#0iWTJwxhka1{?ba;11pRVU`sKCR#;CJ#?FpH-Rb{o#jv;h-W;2%1j!Gi4;S^OOMQ~j9 z2yw=GUPRh|xh{X!GU1@sAksovj_kJ)&Qw+zb@q|Fwk0+mcLrHJoMSR7AV^8=_3K|V z7tu>yxwD6K{jD5mm)0B z9EzJy=8a5#<$fr8#@x3_PmES&fRWYNaae~GLS!uLRBP?C=MTT5k%mon(Zy? z#{^1UOHKMqcc#|9tgyVXzlD1i>m@c#lZ{7$Ce)Zr$%P@l4=|C{I7o==e0TuyL*%k` z*wV!M)9$#|A96yZ*!4Yb`ln!K$#jdmI@Y0C+8lXi>n$k0sOwHP;(!xME5Q7i!V)S= z*BR|NA+ve5>^jxGrp6l-&A!iJcCqKRwFn0RB`{L|0ETU(dc5CO$XiDhrB_rF21bEHWiXBFSn|B@|&^-k;4z+k(mwTjd+->RaX?z1y>$E(%n9f zdmDid?H}iUv!FXBAmt;lTKJi&N;VSO51^3DpQ7E`0oK2D?Z)@l~f@mCvH5Q zI(vSC&`jQ}^#1^{e$9!u%e>U!RaIST&(%E$Hl&SRVAqw)CRL`?6~F;EkK`ATwsNRz z*=%F@R#g`t?ay1P)c(`^TU4%#wMmO-x@-RcT-iGP*liC^M2S>uAI90S6@_PuC~c@H z61#)_>pM<(yf?N>4*T!>gKtl?`(2uCNmJI*+ji^1#kOf;!lFmKu2d7Q z*&m(I1WpYQG}Gf>koOHJNE^~4&zTUQlHhkSnQhlBK>nieQ zYjfhGXv8*PNMRMGW4=yvRYeD1FcdrkUNz^}`&*82qPBNv`w99=>iUnX?ZOmk@Fc|7 z9@nj7R)jYRm{ttVV8&}^BJU>Qx{t3iR1o60>Gcxv6~>b*ez@EvPWwMiEh~BY{nWbG zMnp+5DQj4pUI!x9_2yL(IK))&`OQ_bUvM}{<5}6P&jlTy>v}1FU2Rqy6zgZDEjdboqSmJQ>7=28+F!!WjOmhd~J&jilTW8e2dpjtj|1+>mOXxeWhb~mfDrhr}gz& z&8>kh;4CD>H(Ho3ik!E6UofRO!Y{{ff(WmX#|W^}N!w>Nn=_aLarIS1dT6v7y<~?Z zt<1TsY442^9$6 zYk&zjnaP)pc#10Hdd1`XRR`CfUscpzBzRKXd}lyWDfUsgHizQGl}624Bm{9l1e4mi zUPXjO>oR0?@89h2w|!A|`*oK46sZw)%g1BQSz{f?Ux_9nqff^~0yJsKT!uk&1zZXb zprUn~*Ot26i~j)YPqsE4Q)`P?Z&!aNwI7RL5QY&$c2k}XManR$I7Z(OaH9JN4Kw~^$T>}GjnnT2L9QHy&Tw!}<5fvAaHE4u zF&c?j+A!RQBPnoKoik5pkF^w(x%O^nv!B`ZC9Gb3JM@fuXC_r_uvj%7>dM{8 zigKK=i)yCfMUKRQ@e6&u#Gpz@D5&XmtILBw+%rF1!}_-MyZ4>l>2;XFr|1{&MRGpS z&HQtD$qQoo$OwuJKAcSjrwIX6Q3H^dSpBp6ZngU5-W+YGZQCxX^{G1xTeFp^w|JIe zbs8eI5w}H_Av}irz+m@~2%9iP;mLjCNTP|3pR#nEO^x>J^>cX})o*8QR)1(A#CPlF zhAdZPRzUH@tcfsW11tm03Nnk$*AY>^=&FRIiYbn@`n&yFou|y6&)Uw-mS(E%5kHLc5P|%)(5!%TBZ5lllK|vBn5+dT5R|R^+>dmf&*=oz|oyzjj*V~B% z{v~FsEywGrVLeeTW;6VAhvIF(2q4Ik3#WuPFhzlH8tZ;hjLMxp(aq0&tD)U3?RCj9 zwXH3N<5)$lV)mF>X}Ryqc0e#}M)8jnZ8Ah0& zS8YtxRLrHTdX;Bw{{UY-G2*d%o1+objcYI(LjgMB=Fw?L|qot~~oSQ3*SKUR0 z5vH~V*0!NvF$N*ZC`QvJ;z@ZOaTT19pz5BZ1EjD3_y!(3~rYpH1%8g&WIL~qCGIR*c_#WgtM?BQFMu;Ujyhr z_+o-asEON;Cpxl?8fB}8BBxT_cDR*yiwV1#8j;301rj(IJnPe)b||zS1Z;p?AYNEj z$2_sqR>jd8vG}^GQ&v+`JsvEHHc!7L=?z@`h+KkHgc%FUN6l$)O2HqG2)q?nwkkE+ zeMPSQbnd%LMO7#L4P=hHvu#eg?Q;#-jJN(vB_Y>TA$VIcAMKDKi5e;ou{zYIfoET#V_MmE%I(>mlIQEHor>aA zDB6d{Xzw3>6Kd1aT5j7TaUz{nCdj2Wa7c?F zT54Qg0&U0!%*+NuV%WM0hJrouc+Uy*Ei`=!)iX|6$hLt$T-Zia@na>kg4I*DmQS>g zxX}Yd>Z6Z3gkq`vl_gB7Cu`y=H`w~q^$8f?nI0XAT}z377O08uj}6%KA81leJ>YG) zCZpK}Op!oLi>F^G3f1f*n8v*Jw)_f5i~@lthmz)Ls(56xCAQJ^iqnlEn7*sccyTZL zioGN~hRvwnb!~fUs;yPV|YayWnMCMTXIN;yMg6@we0C-81FV!RX5eunjK~4 zi63CAOI!Qc(O7yExeo%mG72IK1d5^K750|`<;5_ZdYTpMZtU$L$B|K5iM3YANwQJ4 z9D)ZSm&5_7G29Yq)ka!C1wq0WxVfTXEU0|4(<9l|-P_yj^%WZg(`ha?TiJ|PsY7BL zM6D`-BaSpeo&!PVM&O9$Q>B=stxoA`ZGVQ4)r@y*ebqXvOh+kkW(c+YgNDn8&w;$8 zCCEikxgJRn6LSQack~e&)}zK#~a|nD5)U5@St&IFb*+9#Oc+)gv_YG<~TTHq$osKHD7q;Gt~K9OtQPWX}I#L zrpRsCuRj`1V!jeZ;S_F4$&V&Ep{cOiD;^gU_LfJn7gZ6pSM@!rUZ-yv_hrDNzKbNR zP$dL7(8*jgHq!{MxNo-ON=k}|zL@ptR;)&E=q6N!y)*XjO_9YGsZeJ8roaL)JdF{L zn~A1P98}N^a&H9Ex-)Xd3<88<(c2SklAfF&PFrO`dye)8Ed{jYuh;;AT&mI<3 z`M3LK!zgPl=%iFvOPw-{;Kpd;Jsp>a=Mn>K@?@SubbGzX0D%|Rw_Ckul~r!*+g)tU z&b~u$Sy=56hhL|1t+KLh=AuIu70EH=qBK9lA83lQJ?x8{WgZ>k^&S z_Ptg-gs*n(q9d-eobm8&JVp_oZ3*OU5JA!&$&}!k)t8ND26Z2@E~HM|>XN>{d9sSb z6?9#P@ z=tc-AX3-*WZ8F*6%<^8#`ACsZW;NP(+VAP<3O&4A+W2(zEaBGjbf|!WN~oaH0V^n+UBZg;^`7_eNVa$S zt>;erVf{NrSuX3-=;8}8Wf^?MC5;<2NE8e9I}ZUN*#J$7vVDZ4h7(Q;+TaSEr@Czk1zvb14ql_Q(GK zE$@6|!k{;WQ!rG*VXnZm&#~D;!OO?lNf-HG*=fQ0nY#tVki5?(S zLPuHR*mp(FSF$ho=b#<9tQY67>{K*p<&#fG!ikH8l{FMpMHS?jRQ-GYda;=qO*mHf zY*x>b)1qe*NWkJCNtZu^zDqoK1q{?N2&iG^#wYzmO)zvX(> z&;q6rcV;+_vNj%{c&u z>%|aASuj%Ug~yn2T=d&EYFP8_cjmDf>I=8)s#3^fwHlTvwvZ$kmynbkY@3kJhuG;l zhKP!Y+IL>3>yyy}js;chN_u_D&W}htS0LB6-DKYzc0~h{BZDx>5m823au42q(k!n| z+dM{~UX;!_rygq^78*cL~2(dzAW`INflz39WV0zH~b@#37H zl+jCS6o&weRbG-Lxdr!-A}c!0mmnY1)Ns?ZZv_^1|Nip`Fp~wR4=UDG!M-BOIgx$VMW{ zZ4lM5X-fcHc&-s!ZRUz+SgW*rblL*n>gn$`=pzBz9eJ{db(P;41#MDm!1Aks!9)9w z`0`MIEc^&1(TfKedu7MZ+Tfv zxQINLxfH$S;HvJHqe-5-9)UgCpJ?3evK-Xwe#(sm>7SEdDM`6*Lv=!XOuYD$o=21b zT;w7G9JwQ&(ypAR#M@}}@2}FbDaNmj5@mENx6QD=TUB)lisO{xBZ3aP*%YPzmagML<#&_NbRx@i$qj zpYLYxH4n7us%QOWtla1^+5SiCz1(S`#&uY#iqL|8F3U2AxOj;lM_UB}AO=?|DbuW+ z-(a;j{{R$FQPF+BOQuwRAPl=U!%4m+jt(hALcy?075}Htw(It5wt8K zuA}NZPtzY^m)19$zNpPs(;D*P(!*PsvP~M+CPNn-uX4s3GEPoMOwqw)gv44CXbe#} z^*c+PHNKPuecO88w$)8s|ygF$DahK}#&%ZC?i@8{WuUcp9%}x-=71NUCZKz7GKh z1XrB*b-O63O1ljrMSV_h%Gh;pUt`uk|?_Ur`YIMj&} zB#~o^p$Rrk2a}&HSe&a5r!-`e`T>o2JzLwiTpwR-n};UtHEg`L=g3{;0RsCL|d<05*`_ zusazK1I+?F;q^H1AAvoxBByObv6t&7S?R}ZbPiD zr-?hr?SqiaO&*r=j|5T_LGhsbM3=1D`B;Wc-&S5dXSD3L8w;;VafjzarH2wlY$gn= z>nnljm?UgleaDd16U?j3dj>kWFAzWdnm<`Rv1yPtU0vHa7Lkppw)-=0jCnS59&tsv zv6T=-e66zhIAN6i!lTwXh{Be-Pu6y_DD5=L=I+hgHi#NmCbM$|&Jtj;!AU_;4aHJd z6S9v1JbSv;<}ZetO-E?i=SHBLbv-tCZo!=)>sE#K;7yL-jprdsd8rJek2ffs1O)Cv zT+6bjR@lu{x@}$5E#AhK;zsxOm0OeSg_@#2Jt>n7aW|};WdvO|)X@}7{9p8m5@)M; zS!{zF_tsk0&#gn*Zl~?Lm+(a*w_VfUni2jCpE0oX_a$*4lEVTc@tbf|k#b6gr~}e= zyOETQBUk$aRE1rq>Nf4f(IPanqr{l;tBdD0N@BcEBDkc(#BU-vDakOLvN-EkE!LvJ zv4bR2BjG4YFp~kUn`VCODrY>vG~rNl_-#F$-d?i*F+EEG?_zl(~|) zHv-fd7M@}bm~lG&i`-#M;}dgnLBV$CJlZ8P~S$flU`Tnz?iMOs?OV`pfMdk87{hU)d(@MvxZ5Got)xw=+!=RIpPw6pym9 zK%d)bvEUfx)sq%bH}+?&D=t-vITQRxKWA$EpE4v1%vEZeRmdYjdszufgNdy z(NVX-<{Ssn!gv1KFC3?A=ZN)=y>ja7o?iO-?bl(@qVKmiv8n!|x+#$MSmpd>WTb3T z&Dma9>ZqtB^KnRhuRh@ywK(N7+pjws+-duM`~9+Svl@Y|{dG-!1^G{2Tk2~Q;jAmR z{7uJo#+W8e*5r$?y5k)E$_S<1dY|p=%HLl90EY_w`D3!TTUGW>pY?oisONoUu- zRJd4H5#_u#2`Vfn)X&bQNjbH()9AR%M^_o_zoG8u<4a-55Dq5n+jy_aqT4}>^2?+Um-SVuM2LBW?)Hc!XG7Bk>gcCOer5FR8FXyR6#Tto=5n{m@|{xSgpQNs}wJdb1~T=xBaayb6qC(pPl=&J8D zt38`gDH_;oF20WI_l>}x2KweAMRr7xX?))*NHpAdh=e9$BqX9nSm)mBr(3~My4x)- zC4(VhU-hM=(l@Riv(?HIGNwn39Ae7{;UP5B;%e()|kl~^@T$f!%W z#Q74tA^9@=sBNgf$pN_FoYVzSxHyZ^5%eYB?<2|kH(_b1TMZPcVAZ7LZVRyimcg`D zW%6}7%N&7=YDdLziYA%prwMm4@2O_pSnbYVY;oBLzsVeF5umhq834>ueUw5JR)_#Z z#0?PxJox1V`LSr`K-yTf*V?(*ZLM0OsGjjmg8NR+K~_>Ej1ZBu(h7@s&aayCf6>4$2l;ncCPKQji6Htfb& zUMTxTnGYHe@@1SF5}F_gqUHn}{{W;`ZKN0IrBAt>4MIBk+WQOOK!XexQ>?^**OUR5 zRe1?|k{2I#ab>_;Q2M`S+U%iSP(yQMIS#pChqyN5kBy;7NQ)XqKnWKeSVU`Ptl(Bc*exRY z0-T-sm7_Jki}2LWE0EAfn}A%^9(0kh6l`L_lmsQ`^G=Dy6AY+P>UqEF;I4cHOjkMrYjCv%6PDMk7i`ps=23G5j%J zCx})@lucdZz_=$>L*of-V+ViUe?Hbpv#9j_Q|R0=^KMB&tmyhLA7rw>Bp-S#eJ?L z8oYNbZ_X+{lH@y4Wn70b9A(uuej<3xgd8V95Q#D?>byxhx+&P#4{q>m_8rzmounNq zV=-vp(MXFDQ;$eDf41#{w(+vcnBnjh{luTK5fvwHJO<6HTh%2^n6V$dv)J7PZ6u_o zo=1H7AZ_U}2|22u32}8uxS;t-L$W&1txu~&ay{JkUtv}xvH4c;TWp_Y6v>$oYS zDP<+(avr0*trg6x0Gp}kwUN^EY1o(+d|x&qHvrM!mDCE%}ci)vwO)@ za^^;-60)|}NtoeSgA85mPRf9dzcr`LL7|R~ql}ugA(0Fh1uSvytI}-pH0xUj*w<4J zSg+G8T%Wv?vkI1g$lkAlYT8OqF@ib4Lb%kh~h4W>b+*)cRz z21A!*RTalq`j~#8Y7Ntme?4S7OK(7RDU9dHVY>5iR&f!sC+-Dp-*cj#^IQrd4_LDV zt>`3O#~F6+>U19B6&EbOR^H6uUNlEIk#V+x{I+`q{{X$ znWq;do3;GhjE}n@TlppPSVckLf}SqwE)V|f^}7{!ePczv(%myrQ>=LGPsy-WKPA2l z)WU?XxN9kWo_FN9AKOAwBJJon>piSSE$FSiTL( zstbe+rzbo}yhqrGh>OzRQ&l#x_0<;o+{XT*yOmXOtm;N>ZSTZ%{{WpAWjf{3$W#L# z0k_Co4m{LRu?{FW>G$(_Xs=JW?b@y7^-kYUVWK~0HWTBsHS*dD=cz#(kK%^;Dm@%T zQ45Oul~A1Si;ZNV{{ZYui*3rfeP7rb6Lze^!kr;AVk}0>zvm#Q!@hm1f z)sh~y(=hD*$NLNY)NS!9<}SHIR&`NY24uM|HIxC2jC^O~x`fz^rI(!~0{0V1WKMtzZ4D&YtdaFoEj8C?6he$q^&);?+@ zv9(w>^*bJ?9t_Igq*$_o?SqYcW=_QhbX`252Z+^pqTz6=y|McKI`B^~Q*;^e-xkHj5Fy#d;Q_%^?h1+yDSn;B zRS|kx77`EfH58Lb%gs+=^9S{K3)(`9{{Y~war*V76_pxYo%5+)VBC0bgzg@w@i;!_ z$dk}jIcNIkspx5(F>Gf$ViD8hqffNJe&KOqHlnSM;R#c?lK!110csR>r@^vyA66X{ zY0@{lHzA=_F3XO_DwtGX$5l-6WjLDHy33{xOK4enl1v+DE^#+Y)loR2=lp$f)@X>; zd7~Cn>c8>i&JbxJ4iH;W@7Q~y^3Qc1{kqZ?VMuG{wOMf)<_Z(>+=pT-?tcy`DJrH@ z7(~jV{yGU8ZDb<^vxedngMGKzl^gugRM1u2C+$>FT>k*~`jVY$Y>5^QzYc6i*qH68 zIKu*I*+xDPNb`gfOk=(~^;yE~#u4jxK_d^#E?*_COXC)}@>dl}Q;LaU6&JGgsEn&d z7|Jmx{4$%7%$g+1x`oI|5WO-gi;lDfOqvZ9wL5O4S@v?*;ym(lB&FQ$)sNlNLfM+Hkg@om7I5p#`3b~SBtUUhML6M8 zx38~To&Y)36z6Ee`;BqXYO~}>v~if32;#sKWf`S#Tv9g>*j#ZGLR1`&=c&8_%k|`` zEmtYs%D;hl^Thxi7Z`RTDgcv?#T9r3I|zvh@lMIb7pbVzX}oN@-Hm>WP|Ud%*6_(A zUN~+At$daVJaQc8%!#)iX$4p#6f{gHeppVj^G;Rsx@CLT5vFev;#5fsI1@d7B1(YxP@2aJVt~rDWA)kj43>3AH6@8DJ11n?R+5 zO!WT% zyfrs%V9vRx>H4P1%j}s-Z)!GWH0q3q5ML1I$pJ)!(J*MaMC_=YW^$^gpXdn(_w7wq?|#?W zn`72?7q)hGjYxsY&bl%jR-^=E7TkvUiz+QC`@AZ=hz&5k=5VnuLHg!A9p-I3AF&?W ztLf&Hof+q#vs7$Lf}rf>nECmdh}la;RvQo`F-~T=!X&q5;#0Q8VIrGq*souBG@Xv} zvO86f<}&P>=`h(w(o+lY+G)X)HbkURQEUkT3%ZVTt}y^_KGC0j3UwSZVTx^fZJon= zg1Qk(4P0p~4NE~PdkzYmlO>MYfSC~y^IVGcJ*dXNxM|n=HtRep?6qr+z64299c|%m zmc93ZTXwz!zxK!#)j)9pO$gOZ30nm&pEhtP-KwWgqHF7)vnqCHq|iv62EN=ib{n=a zl>iXq9gN!*C*?lsx}%o;ji*0zr-bOXty!+$$oiXMS=;`<^^e&b!UccUcQWOvY%W2| zvufblx&+(JJus2i`6~FqNdW+pEuv0WuY`L&QtxZ}`&+7(;6@GNr_RF@-vOOa*r=Qi zJbW@(k1D|kTO|NeC2V+cPCZ$1NLzEh0Q*l$+#%L%)Rl`3$kVkt;S>#bU1g~bgJ&qf zT%7_Fibeqc0E;N3N^Tbd%uka%vifR==vce&(x}hWx_{flc?La|^GE#sjnkm}Q6sIK zVvumyXoScGl)|EL$a2AEUQgrg;ZQXn_R%v*sH>6po$Z&^n!Jl$e^+$%=En9^qk2rIp(Kk# z=L$4eyg+U|9>hUL$*z96zq5v|=Yy}+aDUqTtq1M78x*~->l%937^1bLnlf*zq3ki| z<)WmJ@U<>P$A!aL044<5IOmN76pO6qj4wV`x779;ztcr6Q%#wPs?(E%Gm-~j(zO>b}9j?;1O}M+D zvHN0u{JQ#?^^SnZwV7tsSfb4antT~2q(9D1L&!?1LKx5Cxy)GBe@Jb08sFFHr(DDx zR;s4X$u_N$ssJSdR<-D$~9+fKKQS2IQ z8CsOv%IO0x?%14>CAbZ~Po%b^Sd$HWg=jy$4;$jiT? z@|F{I-Dz%j{g!Li6NZVbOr5JrhU95Yq%e7>9%gE}gk|DJiM(WyM2tlc1iEfc8TNHy zHOl~vUmn>jEH)U;TG~PsC;TxPc^Hl_oPbm?G8ItfLTCH1UCXCF+Sk?k+=kkZSZ~RN zuCyf8Wqg$}d4c4QoAQj*gcONzKIBwF^uXh-rLI-`Dr3|Y-)CLBaW=ua#)hL;l|2}d z=Z4Fzt%^1dvP!Qu9#U+T7n7oZsJ_(eT;B*sgZ2!&Q`4qtuh~&a3dZmD$_kiE5FCii zW*TZvUPC7x@vCL#kX$g?4*>G2gDbEz}deKTaL?{#MOb2_HH{atp?8j^w&5EC5Ne~&65~U$N+qL5>;-j)0B8*B%;0YOsU@$pFQ7m;D>t+6- z8!y=Gy#0yR*+8mhr7J!j#QfIXlNnH3S#e{!0BT-9G(#r9N4FfRcImB1M%^~64ZB<^ zn)FqjbrG0V*Z1|0KBXZcI!-jCrj3yj_f9H`J+g+RJbK6M+~KK`@^1Q%>_4zIO@7uC z&B{azSoW9Ix3**x(cQuV%lYW z=4r(-WAbQaklCV=*Dx@irA(dSO0Io3A^;u*z^0 zK1J58Zfqg_hqY`C*Jw>wYCA5^GS6v?VJGWYu-uVQ+pR@)+L*CPwI^f*qjVi0R8SVt z8E-sSu3xji!(Dk_pH6*2vTZv50NWpCeY2=uY&zINY6F_?z)>OWcJWw5aG*zT--lu68BZ>)B5H|9^ItJYgJU(*L`%vny`j2YQiju#zKy?Tp3oSH1W7ie&Zf~ z^iB($ud}Y2=3e`X(_dnaBf3>KulAgsR`#;ib$!6T#pCVEZP7`QCK5+NbvP$7CFCGH zloyba`Fp#5yQ;fW-@fG2Zf~{mjiy!WAjn6L^}A&4kie2&LinNpt3Xu0`$@&)ayY3g zq^^SHtRHM7ja*+bG@{9%JX+%jlmo6duQ%DW| zkNWl`8y$k{LHSorJt{ktcTZGM#&7tQB$#~ zq7gTRTVRQy?X$KiaT~dvL9<@&bEa1o;atKj)+9%3jI}tN(3ClB0Y(Be9G|?G9b3!;wv;M@ix%MPD(N6vJ2pP7 z(@!b*qDgJY&IF9OUSt#|`1sY8R1a?)r$_*A3@xQS9RwKEH4+?z{Hj}sve(Ylivi_0 zb7e;$Y4cN15m6*-kgB-6dbz;H+v@)Sva0SiZJ%7aj?T9pILMhpV4No1M&Q?!p*EX<*!ZxZ>oAGCn`cPbtPctBo3qXqZ;d`(&xhDAgU> zzNDzTw5XM`Gg!{mP|?}PMi|`kgz0fFXE|4Y-JE;dRZby-Iso_l;W~DaP4Mir-@>WVm*qZuHXrYo^wu!ScGS4SlF=>=@%8mY{=kBu-49Wy*g38R#qRVv5#8 z&zW42>)5?%nN#Z@N1T;g6`)gA*auuda9ea+RRF^AZ`Daiy4R&L7J*B)BQvQH>K2w1 zi5o?vR--{P0z(m$q-0ILqJoIiWEn)lBBm93Tb@EqmblKJu+`dY_m5mev4&FTEMjgO z5Fs?fPde*}BI3v-6jC8EAwu;M9^(d8aG~#Z5F$m4TGou=l&G*JHr=U%pxM32P=raM zaiPgM$k(4>K~+p`EC`#eUSEyfn~_FliTpIzqgYIWaGr{W;z}ZJJhz>1iY!vV0rOSC zE)g)3Sq`N6@gcm+eFYq5Vp7&4qh%I9@=~7}BA9r;zIelg=wKBEq(W4|E;^dV(~}9k>l%ZX zy7TT8OAS9=ZBr%Hb{aPC39ST2xHP5;tr`*tq6r6g6tJB#Ta~S49*1MOjxWJ^{{ZA3 zm@8GMI81zqqhk<0NrDrNx(Xy;sbkkDgt*_OC)b?l8#b$|$FWpzOk?BSlyZ24Ea$d% z0Q2oK;Ddxuw!=;;mmp;jMH35*<-sPd!bZ7KurlpwT+G)gn~`!7Vzkt0Rx;(X2^F}_ zCL|d+ilEWuP(zc0`^*!7#1+=|P9r-r9HM7!Oan|BC@DZDau6JlMjS#BxLL4IYPM~?y zwJ6SQ^?F4*-^z|PvhS?!+-;}TipLUR~xoy^@Jc95mPsdiAk`Akq`~(d&N{R|zgWIIaqdm5KzeoSCxHv>HKm}|ez2mZzmKxNQns^X$ZcGg7%Co;*f|&HIEX~sB`Ma# z01>ej6zr&-I?H!XPWooAtLu9S&U*H$T}snSmi?n)8bL=FO~HcvP9TPo8ep4cU2usx z7al6OUWkdH?CxlDY&O@Yvasb-M3ZS%OzVOl9zc{<8D!t!W+*LlS5bQ?xVZFAnW@@n z#XN1M6_&?qr7~MQ3)5{kCK(G) zi^g(Ud$KqJs)_wFI7LM3!R_h~nCnat9Jmg#5(u>+N;kR4!uPkEBb=BSB9fx|XP_rO z894kHg8I0`vMEqi6%`8u%~{W)BfPy+(Rz}IM$E=`D)Ok3+izI3+=(jQQKz^X54=~m zFJhvqCV!_>feJl>l-H`Bj1knO^A$kAC>XD~MHeDTmFNZh5E>)RihrB3hu&rC z@8uy`+39uS>RUKq&=C(YMtppg0hWNWL}Z!eghWqO*wJTR?7`OLYb?dwcNS*EIW^CT z6gX@@{lIX=l@A%Bk8Vo292OV1Npr~6Wt~B!ZbPZK0|7qdg`- zm`7*7xpJzVy*isNh?bLgOL=<&lU4TQGaQ2#1#B~v_AN$RiOr_Y9{_d2PDD))ltfdHB*I~4^T;nfjiW<{Ov1^VD#A05 zR#vvy#4~nfu%llk*o-N*(~YMLnQ_W{kpNLwq8KmUkOp<>Ha38p4PVA7rx~{*8!^G8 zDWhc=-e3v0S|xc6P`HP5RK{eAOpUIx?(abjskh-ebjv$w8wm0ir9f|w2(HKjQB*7= zi^RDJIsR47Rv}v6nwBQju2jgd{%N0=Uu~nCYON`&k35XWu$T`q=aRuTf8N1&@#P4z zy(QQzeQRvKleIOmZd)GHu~^3WR*wB=5F)g?$lwEY3Jm zjGwh@s{ywusAm0JZT3^l+_Pb6UX$CWgurt6hSHEcE6wHeC^lZ~{`C~a__yDH>#>%L zv^7gPb{jL;bnR-^4O2~_GX?q!7r7XXV;)Ay!jI-isOx@H;?ZPH6?#c`SGO>isQsH^ ztlYC*173x=)y}F5C>OU@kwD)Dn-of{8(-UqE^^415p0D>m)EOiphH>(ZT;uiI?n00 zy{|&Fk2+)VtE!z>>9yErCS)mochFe^RwW>U3r-qiE5!&$rR`+kv_hsI(Ao_yjcrG% z%h>2#ko~T&VX?_cm-aW&hrt>n4KM@((I7Nx_Ixe!PDznmxz2C>4bY9oinnCmwB72u zMx+pJY!YAD8r0}f$>#1U50#vl)+XQq188avkQyLkfbwlfQgh*T**6iV01*s)=zM^eilX3p&XfuHw0ef`F*?Qlz@oJMv`<4o{g@+lWpa$%p`^DlL(s@#@dPPP+EdzI}nQ(9-QYWI0=$rrC`u zImKn_FsetCBnd~ZRb*kLa55sdWBE~MD%yGG$zV0GUkTl-?OVS9h8 z*``r^s{M_h0YVfJjO&fXoZvi)=K&_jTP`ETwCkQ(cwK$`Ra8(`+ZlDA)ZbrFeOL9~-&?3|R$pue z(=Hr`UMSB@rLLW66y(7;5!yG%V5Fx-<3m*7801I(Y|7Q3`d*<=z3Y1gx7xd8kiU<2 zH(sUL+I3r-THRThKj8;swk8Dg#-NV2L&U%nmlRaDXNBNXW@)Fl+go`T+XmwXqC_|f z-IV9nBzVB^s0&e>WenYPTvH|G?&8=sBgc?ythj1jm)JFRR4{D*y84=`rjE6ztYE@puc!^367p6x9JyP}jNVJxSL4s7Q@`EXawu+U(M9wk4~rV_PD4t{6a? z`ZMy`sgC1d;Ho%)rQ;JHYKoGnFI{q_UXb8@VO&&NUe7MNRn0nlIlA2QZeu3&h2tFE zbVWhJX{A0$NUMVW;+LxNW(lQMy-B&UQ7K)EN)d`D&o^CUUz)5uCNZHh;ERJD2}wr< zl_exhCv49R0_-&xGWClF-j_>NbF|ls66ppaN?B245UYUl3QU?lo&vH)Qa=216%;G!wsULq7spz`+Bp=*tQ^U zQ68hY7a%2jQj~TZNY%jeoxn*7Bk1s{5;!fFlt2YgkwFnv7c%wF=*4+p&57$Xp0Q-9 zYXP>~8mR4gEZK3_6~-Aa?fF!@k_f7=6!rajy?mf+WwOvjV!r9cN?RLXW*mu%veJ$mAu~mBQwocmil%O@CtB0%+pQ(F_PGMOb)LZZx@2BefaA}TOtLX{#+tDtXkVUHCm)0#)0IEV%GlKXCww**=r5NC;!>Awq+N+8R_~Rb3TTV1=un+hR=u4@?o$BLj-L^e; zyKh~xSGQoF$j7jG>etp%%!$anQUXepXBu%{L=AZN5_Vo}96`?(a!R zcC6i9$b$TJk504RSw+E=Wv5ti!%-weMv#5Iv5fwD&wkUa+u_r%>%FdGu}z$;9cTGi z?YrZ3$5LVr4U=@x`2q(X!nxup+rM6E{{SX-xnsTkR!%9-Eu)bR!j`zs3^Ve{XpO!@ zB1tfaEt{>PE&&%Dd!nD|*Q=*(?PuZ3w_oj=AF|%tzk2)@-*t}!PmMXp1XyxM#}jb8 zh}Z&Sx}qYd;TOMH?c2BBFHW6jU0OP7UtLX|8nb15nJ1ZMz#n*^55#btkn+7L#{~e3 zBuIhoBostX(|#>u)Ah?h+?K|Ih3aLC{8T9i8V+VK@qjd-+b#kra?5}OW0d5$;;WR$ zT5|0jL`fBzs;MtCC;~u%);Lb1W%CUbi_el2;GDCCOlPb%q<7sO@r~D9a)whgWJ)A< zLHWuky%G?+DAGJL{?kTTGkDQa$2jryRN}E_SmQ6YE+;jh)|SOp6K6T_EoQmDx=@PZ zx{~h0$PZUl*bm5VBD)~+3ONv5`FU|M=h|ze@+&7IJA3E z#c8RFds`x3l}>Ux(wwo3<5=|&=9wZO;)=bbnq~H?w9TXa!s`D3YF&M&8ou-WEx1o- zXW8QG(n{*ix+BV80$hkqkvs@MgX2G`=<@$vpu?sk8h^?r|8|z zJVtH)yqQ-fqTglPW65$GyI!s2}PXomtlOAX-xPYqCAR}Ys5+ui7OJuygQ^y<)eG#?TT0d4A zy{(lAxf$x)c33nEFpk?qkfc2+^5oklOYz%2Xy6aC%8CM=I`*BX4EC8_1+^4?UXs%H zO0{W2>yf9AY4yYNTEB*k&V3@uj!(*U_p%D{8>}g~q+$ds$0ECvS%SY+>{`Tq+fuap z%C=6)Q4NU@A8vE7p;gs8b!E)QpLAD{Jm_)ct*VKNp%NmBqQE!p{ZC-s$o0Cq)U1^CyAj@p zT{=WmkjX|O0~Uqk^EybJaK6DIBSb|`v=313*Hv~^^%AWDg&VS!07B{1OBUioh}(ZK zUXGxINg)uGqZ1Ku{{Thf)WjUnWZeCY67G8!R8H-;vSu+`WR?m^3T#K(h`%Ma5#Ul( zgpPwqss`dBWeC)|l467G)#@RyQSO#s!4)*MVl9;?nbWtOH2@WsAd70-YU|zHP!Rx6 zXC(aJ2&`R1stwXnEc4<&qBCmDUT$&EdjUD#T)u$V6Lz$Y2pBDTm9J@(wFO|b;5oAdF zCc1Q6i@3~Bb-*2o21~I`s`f#q;v1aI1RIPm3N}QJlCL2}R78TmYj3c(yOjpLm~(gC zYQ{9!+U(}WBeH9picG+m2jch1awpFTBd8#4r*&1}oduaiqn6>b!mwJDi58|D<{ffuFi$!J)osSX zwL{6c+LsdX_C!qbMbA^WY=Y0wej33;1_hCG)jxI{(niWIfK*OF@?L%zMDm$XQ2_|9!K(kGjP z583^+NUG3)seyv|Ie%=?34d-nzg(f(BU1(Fu<0bac6!LIMV7womi$2=kY6om+K8H|qB6 z>?n2(jnmj6#hDr$O6X>c1VpfK6iP&d2F^%DCeH$dU%ULh`i#cd^^G+2i&tTTk=vdh z$X>`7ff+_niTKh0RDr=pfE0|BR0xv_o%)*629DG%(rt{0v)zAQqOgF(ooPk>z1)A>dsPauS{}mpNvflZ9Wo_8%AX`%Bq==syBrm zUDUrSy=t*^hjU@0R^8sSvVD6~r`^-lN3NAv5u2Crkp)Gzlvp%*3AUH}W#rH5y|L3* zNzZJ~GhH@qLPTQk*RD<-aa4BL48VgCSZL)*uXBFe8*w^+w(&jlOpgf`7LV%jeTRE?gJ zeRY&t_;HF%H)1Q!M4>vzCTRM563&0}4v9Tt&>Hwi z8bAORh3q5BS>ca)V++$Eh6|0qc-CxWHEIy{cCKp3e~|MbyB@06BFAQ9ueQ^28*n7~ zT22_|*b1T#E|aXLs<~2i$iKl<*e%5iHPYIy+Mq;<@EkZOBuo@I?Ru*k;pS>>ISWGvv#YU1J+x`o;tD2~nxQahh@2hHBrN{{RpaT{KLSi;l*t z)?~91OD88CR(*@Q*7Z$X@X^}ayD`Zo%m61OR>6=D$!-$xRA}Df1gI&@laCC3?urem z+CqtAHM^_rj%`3|?~vC*eTAJJw+$nIO^;L8hi2OA zq1eTXrm*qW*~T)K>+)tGG~6p6De&UchTCCo!0JmVefpEAn<7t8E#x^(c{TD=C>-2#>2V$YL?^lthq4 z7$r4PQSL-ZjORbyJRt&A^4a}+aMQI7R!T~SF4(d2FTiRSP)b0(l90{&0w5!B`koc;iVp)8b^0Dje8`u8k zW~X^5R|8JMQ>zf6ly+m*Sw7;xfUP{&2Oo}x1P>Bp+?;dNvfjLK&sj5sYD>8>cG)tl zb_rT9)?ZJB%eu@sX6QcMGQ;>l{HGTVI!>u`=IZ4fFJdM-)=d6t?DSjN16tavX?8lP zjcskvQb#-6VP-6;c1WfV8#3fCHF>cn#S}|9PUY&oI_%+N_M{=W<$Dp!F@8F>^p?5 zN{m@WlnWUb4JfOnlR{3&JcBBzox62WoJi|0W`c1aX~<~}P76i~+pU{QNJdNB2cJ}4 z%ANYnxUePL2`&nQ@m4+5YX?YX5akI3QCEVee{Uu1zprknD;T0yRxrLWeqV?<5Gv*7 zmBKL<{{Y;iNQ%CyodBxtaiYs@*U_1BAM>>>qVCa`x5kRTh+W4Xo}EaE94!V+NM0wR z68VYOlu<}Pa*DZL=&FgFdi9_>9LE{2nDep1NzYeZit7#GMZ)&DCZF_(CQyH`Zi0J_ zM1>YqNbU;~qqXIaF_J|Wo5^JWOZN&WCw%ptP*|TLRkJe520Z!E$wFIwxVnps3NK_+ z&vaDjqFW~+%Sex`cE(di{Fm9r1I*Cj!By@eMa5BZ=)E)ol_it9a_OR0h52A^r*Rc?kFI+w#3@t+2#8$a=*r zMRW1Hq*<{iS=A+6H|%KYS}=n2JoueL zMMoQuM1qRozNo6al~*6Cbj(KmeY;9sYD?AZJn}k0@g;+fEVkyds!7bnNqkPYT#L7G zPj~Cm<*SN{69acHOxxJ(NvxYC*Q`yL#N6MQ`5>&A?Vw=92@w=gc;OR0cDIDEaOtL3 zUO3D~Wy_k7op~Q>Dn*WiEwUw=ud0%(%{C|^jiRFWQe5Ra=f-k?I_+lA!`ptz2DNHo zJr&3YE)1YUkt+wz!N5c>ERH6isEUG$iThDH)y&|~%S!n*kgjaDeU3}9rO?+ER=ONi zT2bPt;wz+$xK6lAoKyEAu1R}!G;Fl2rMs1{gn1GwH#gwSuCa%46xvj;b%&dMxXv`% z5h0gw5>?}rG3m&4lXbM|^4X+~Sx~eIHZ+>uf>9NXq3{k0>~wRGqNA#f_{~s(S29gkse2va>rdKt6G!>e3B!w zt)q^d>7wgQ6aLa6Rd*xFIdNV}tDAAC=Z&9g-)XFD>vst**4oG+n;&E=M3CHJjPp;c z5k@-&<7!wl6dW9u5f6)~DaATT)p9S?`*TzKCq~)g?I!Ig{adSy`Ia<}rEP?_8*C;b zMR{2V0yMuLjTOGmB5_QrGJsXm%U)`<<<3TCVz%4T(C zi?2H`!Q@eC#~oITfyF%W0To1C#W8EOA7*bKV{6)Fh$C7>#7T|LAaG{6QuC5!yCu7& z;@brKZp1g~Z3a0?mZDZ?S?> z@E^m<@yQqO;0e}#Z~p*LIa6)C{f85I)Ko8ae}<^kyXlc&%YBzY8Isd8;DL%d-ZId% zE&BuZ{{VHgF13;)oa;94w!W>T`vQ{h>1}UOrJpf~ZdXJzyp?+MYmjZ35()R8N1AKo z2$NlrwNpgw3hVvXQ@8f`S|3$420z#PRZseT_!T$51~r{!NjXy!)jU2Z!G;&OO=5~{{Y5!HM*_6fK^jTV_ebsHuM2fCk9Niu5E;2+36)$ zfEsv(T0&eP0wtf_<$AOeKVhY1&bjqwxffE>BuSG-$kCFv^q2_S#T~_dN|p{jRMAyE zqS*%$1s=7Mb5_&-(Xu~xd0RcLMnk7lL`S6J>1YeS{StYy|F*zCJQvf5vS*YU#CLP-xi)TqBGg&Hzwx%&f;b0rN^ zRi$Lw3U=zL^x8{%iaE2Jl*X?)R%yX?QPw4~R~7h*;>LYmE=Tf9Ae@ks2%S?~G#V?F zcXPH1MX9Q8Wm^!g?W9Rb(jQ+VNZ6yT@rp6p1#{#BNaLh{2<}yLo7!(CtttqW_WOpl zJ|uc6wRVg=V==;TCOpdv{{W5Pj6#8wLg1jPiiv_%$`4bu$-x%fS<)tiXF0-&VN%Nu z#wf^S73#~xA04h~%aVejI<5C2PB~QTlS<_FYi*!D)w_WGIcrG6L#td*akO^6Om#tV zW4*}u`4t}_RQ;-n$#L7RpE6tsk*{@wyQ;gnmg3B)*BA&selqiio zmjoT+Je6^h$6NVb~;Hp8eC_JJ(9NiSj-78yuNlAaR7~?GE)H{MKwGi zqAyso_-C`p&oKV6Wj&y=rqyS(F21oJ1a$!~iy zp6-RsO4nGTo>6AH<&g-KO6D190!)anp%aa&@KV9@5=Bx(6kex-@NBoWkjoY{6cfTs zxV6V^dH||tS`EdH<3AoSg84l80pJUj!7rz`t0vSfOSORJnj#U6+DGNK?%!7#f=N!q zemRrU8{#Md#5oT!_l|pUFGq^5E!uR5Ft$3j(THVrEh4|7){rT=c` zM~H>hOsQoQ5Ld3nz5; z?7K}B8g(56v-s8zQ|yW1cU`tgaSfCisHE6FC*&NEr-=tX(k@0wD}?3O^!1)0e|7D` zb*_;qn6sC@@i)Z?MR4W`#o*a~V&Dkxy z4Ljl&BB7rJPAcfCx6Kt52ylu%y=VJpUDl-SdtG&=fxBOAc2+uFg&;L)8gyMFR;R9U zfNlglIU+Q&j4l8QFxnXtqm1%gmt;=4PR(}fBe_1X`_o*5G6sdP%#$u9XtvD9-6fWR zAc0l4nw}if#v~oolRT9N9s28zKW?1AwudGRecfaY&11^!h|vMx0UPNGTo&1IflyoI zPLDEA`hQ;CbJTL?@vhiv{{Ugs-B84Y?aV6L`sKWn9k&%*ZB|5~Z`w-d!-vchAG?xw z;#NpjU$i)`t)9voS1nANyz7{EYV29QINqAG%+ zXTE%Yv!(jndZ%u)r<_>2e!ZqxYcxM$Zd5Mb{{SQx(Gx|yMLR3G4I|F1e} zTy~;__ZSdr5q2SFN*`OZ`8kf4HByZokzVbZUJMN+;i!s$1AXbP97; zfRN-f7@3h3=|HVAK1G!12oj@;KwWRIYj=h$>(|4nC+-_e{j2@J{XwKX59+Evt_h3F z{{XTp*f|%sk-j&>l4lNKw!t?0Mz}WI2Dsrzn)mBdm6K$&GgH_qH+=!gmGpZBtSwhx zgRIg&a7{ILDab&rqtekFMxVg83+`WXCm#6k>iu^3k1u~bqHmDiw*LTWd!3e^9&0%Z z|~b^Rtxcre#e zyn3xwYTNmKOK+UafdG(lq{dY#PlC2UNH{?f&z{LPy*v3R=vqJV*V{$2lJ?K7zQEIm z_^rEMxPZ*2WQoZbBF%jBHq5*T3K;}-Id^0@pr=+}!#$UO*SaR7tC!bO)ug-oGVQq= zx7oW@Ol6SugsJoV@#=~*j+x6SQIX^f*WA>18Z zmhU0kXm-*>kmB0ImW+@vX(~6c#pa)7(-I|b9MM%*tJMMiuX_4r)h4>|*iJgB_b!Il zQxGMw2l(fa8#f3gvSRL3c{WX`50LnZ`}(5Ck5RQrVou9fq)W64CagxTruI~ItA4o~ zHrgu#J}!ZI5wcNjNz7qO7|&G^ENUUsT28Xpb_$I_omA==t(zIdeb=iPb+VAudiG7D zW#E)*oX`-QL=!GS%cqXUD%~d*b{dcmUOY5t_T+2{{U8xCR-BSGg5iMjt>|q znG-|ko%6*ya)8&=(I~a*ik2(%`!*K5V(fdwD*27iDXAdFDz;3UypYh3ng}8%5>*iu z98l% zzGu*N%JYFLeCXB$4jisRXsGZbTtHFQ{fU7LVQ|`Djn2~KosLb#H6O~hy0I7*491k? zb&(cpZo1>_gl5`#w@KDGlVW)l{@|`rQ>@-#W2cG|EN5EEy|mS7VLbd>8kx>Aj#)z% zh0iKECGHq;d8aj0HB?0GxI}2)n)8|s`_IC!*mf;aReLEa(zZxT2HFSt{7A8$GBI_O zUpXlPpo(D}1rh0>&5QEyVYu)x7uCBYKw3zs(?MqIsl`p78IX&Q`&R*;IqpBNO#|R; zHS=uj?P=po3X~|rK2=*{j6EhW3oSCBXowFRXacG^MwELgs^uBLX}HtkY_*W%N7-Jo z8p{;0zWMF8A;lUIFp_T&n34|!K^0uCKMJ|d*dbHv8-&(&n`v8ZfY%I}4q3rAVzD`> z5dgdf+n|8qkSVANl4V5`m!?(3Fs(yXQ)wcy%VLh?%bNKGF{UkrVYkWVTL&9ywn#u# ztJx?X z<4Ji%dm2?r1h1G$5_6!u;?t`_tt7E*6nHDj2yUTgC7hBbdUfrjI>wB}KE-PvV25Js zM#X$`wRq9^Pt7(|oD++A>Tc4gumtKG@^g zSFLJQNw6_@A90;H>0a4ecqiHa06q*VNsS$}%Wb;wDGPo>B>~Pvhp;E(t>S!=qg(8o zT+w!*9F1999k*|0E@C?KO)vKtfC`>Pc-%zGN~nq|xb$A7$iFBXj+4Dkq@dLsw23~> z_+;0|t$`Xm*|g0Q{{S^1$Pq;}6<`VH58Z+!M8**ob?po@*-$*^){}J|f}NmtR5oDR zY;K}4V>H;|EhT{np%Ai>(G%LDC~6KTKX+S~oms+}W(KK6aut{V0L3=#(l_Ip+w&ZI z<-``>84p5a+d?B?-v)$xsVXX}W3ti+<>T1v_&TRm)fvHrP?a~hQu7;;o+f)mlf)NmbD5)^bWB2HkqqN+Z#i{-4#i92r6 z4O6{Yr8{M3A7cBB!rK2 z-z>7TyGzJyY^>NzH{|~S9MExub^b>@vD-&gNPv)pk$YzemhDxEp#4_??R~kQW^9vn z%BI*jS!P2*>(H&yhU58N_M~GsGwO=GRK*jl_U-OOzrkRDYmF}<9P-R4q zSqPnKD-s?cNewKMM^(=s70TltsnzJ6Z<9kB587-uuRE#3b}WV6BW; z$o~NLkVly|ihhcHhuS@BiqkK#AZq%ZgbImpt7$9kYa+X8vPu+TUb9&)FpRk_IEyOu zG$jS{0-v#Xs%Mv3|r%GvGuiG7AsrCLKjBYb6=7H9U8E}|$fu>iV zvB)W}B&3fU4R)9stb*=(UavtcsNfWnS zGC|NEUC(w!uH$QQvA-@xzpX)mE~}rRqm2EPrTp3LNp+W&YlPfLkAjG*COzCy5l7vh$6M{%-deY7_hM5< zmKC*O$+sF-$fV^-2pR<;1^sfl&wjiQKuy58XxnZ@;SJd&^oNNvI9L>A<>%si6&1#c`YmQ6V3j~S% z6%`dfO!Waol(9i$1LSVrq0LtZ{^B~(V7ZUzLEqEWe?3qUh9k+duWVWQEF@>XBcNy~ zF5$yYOX#Smsq5djT1Lj&nzdl6pEY7SjslWkksn<5@0?{53;S0%Ui}hRg(zm$y2`Ti zO$@+~Ikm|rB~c^>*VPv&xfK0>PK$|?r7Pm}D@0c0!(c%%gGT{GQ9nhbS( zdNQo`s{MV&;?7s6K$#@fVaaV>F;+;OSq?80CB_#S#&hZE*81DwD<6{A@G)R(VH)D5 zGmUVCF|KgN-oTjmkErRLbUr>NeRYC2hiO zJeWjO_0Chgoxdp6DBpObR9e}yDpEv>wbCUZsR)Z?jf@a;+NwkXN6CGjzn-;5x$)mQ z@fxYLklcF4VwB66gb3qu8pF>Vc?Jqdq@JyoMG$)?Iz?)YPg>36avqWpr8P2SxGzW- z8fE8^M4WhAbP2^*RFPG3x$a+%vWb^$uH|y{U7kab(%FG9N_j3vl@$bB5+<) zU$l(1s1;W5L|v+sBNWv|30wHC5Gi>DRa{3fiioJWRqF3y^%Xl(sNA!aKH(;$c@Sl4 z^AW@+h z;!irclrs_I%y{Pui{7u%syEfJE-IlxtBxAP8d9*1SLo_YHz8UN7f_s@2H?Koqg;*5 zs)+Ex33Yz&wUtACRbw7RjS1QtEs4rKF}oV7cIL8-OgO?4MWu;c$s=U!(rwoj-U32_ z?M!2>-vwIQR*$4lo40Jt8_(`rLOlaqSm!E2#}6y~=MX+(eWPQviv~m2um6 zQHvSMw)QMBC1_gqdE9xb!Gzmn6uPt|;)4AQYQ544?vW3?Qa=bFhuB(d*hY zIW$`HGpjD7G?D8DwNm9D%MR6-cdh|7G89J%# z`#TWh*=$ix;zNzhV!aSW#@q(H3noKH!CQ_Eim4irimGDuzR_eI%|(8tTYIlkGi6z` z%9#$nf?7utg#esa<1`KcD`>IWQgIi)7xxfc`mzY=4yFGvG5ao=aK;YguO)tsbyxiS|;F9te&{ za!5GS?ufQTta#B7%ei0^I=NEA9Co3<2U^;;Ss{7$H6$i!>E3=HDV72ctBlV$%fJxX zM~R%1T(YR3smVIb;Q;S18*a8tEs_V$*c>>n>eO{dDaPctI!kS%oZlDZmw-XTBn2E7 zJ}8;x*G{ns*E$aMb!%0#NS8g5j?4=heMUPjS4D~OpDz?P{Es&&#u3pe4m|LVP3|I! z-Y~vYdbU36Qtghy`%lzs^In9rA=?x2CQpk69TijYIPoylV@A;nzmx~wxawb<{X^l% zp{=-=co8Ig+DGKs$Ejn=im^q<8%#)4@e#T#tBSwp$!8cv>o#$V4c5$3#Hgm%WmC$5 zBGsvq8DWxfj}r#cyzA0sID>~x9psC}RaHcj^NdeAs;0W5b9Z2-pr?g*L#^p-xgKN$ zl*E#;DMuZbkQr@QMpim1nz-<)pr^2Kxn7(3@+HsIAA$US+i|^w3fn6`l2!g@-D=U) zh~0S3m`08nM|Bwl@q(gu${#gOIr^RoZ`dBuwn#Ijv$R$aRL-YQY1fe`vs?ehFN6=$U^gEUK9oti5*f72If%{_j-5eDi5?Zd*|cQZ@L|YC0@vu4%k#bV;Q+l zSjU*yMOwCy8*$Jnju?+7{{V4e43Pu1m(s^3SXOIWMWI>4dPE)G^J8kuXl@JOX0ha{?4;&HFHS|L3Tf)k*KI+#aTTo8W!)&Ic)Z3O#Yt|_u3@J^^WYHtA zf-%Tsx+uc`0BB9Vd{IdM04uJYy|W*lyL@P@KXYOJg%pX-7y436SN!(|931s%5VOiX4wzrMlI~dy+p0S1{3=PwML4q5i(5fH`gJ?aG zQ5Ui%OFeb#F8=@yeY32el)7s~g-bDw&AHU)F{h(LKoe!eil^rWnveuY%6SxU20VSd za)_(aOMJE8FK!jZ<--$iB?s}LHn>p{hT=yU&o%|iCi0F@oaKd8B`oDp6*|T5diKdR zsn@OR^|}347Ou{|-CTmG8{MV~%G?uJlF>Ogo>}e{J{>5r!Hz3)*<`uQqbajz|LH!3{nh$gSM7~OD$`7a?yTv0_KPhVc$FI^HqE|e?Gn#ZyRPwy=JV?d-P2B)QL$=J zsP-6}4aIRsueoL{u#gJzM}shA8^T0#(d-}*CRN<7p^FTk_{*|cL?)ygR zeHF^;&!b>Ber()9e0(-FkqG=rRw|})9eI#-)AuwepPY_(d`scKtKzycqQC4w{{U=y zZ`!**-0f^~_Ze}LWiz!P{LzDJDq~4g7=@xXq)u>6(UNVTF98hTRZo2_lgV>z#gnTh zxv|LmPkY=Ib=@ufLf$s>9hnI2jci+Wu9Uz_li+j;Yef(|O_Djuw-<*HL;>k$v3nSP zlCjXHeSfg&KV4|Hn!N2c1C39rv!0Tiosl$X+mwI_$jMN$sEC+MB4@X!r1_a%e)nq2 z{{U&yo7H}_yLQ>RbEqygacD0dWveZ^>?KUf?8h|4vYm3Ff0%~Em9mGUcK_5g!N;3Mg>DW>} zwz}ANGnYZC4TX*Sw%35%sT%Bwpv7x$G#GQ4tKbd`j)QI{98ouWbj}q201?|}?5;Kq z(^nytPS936u^dahy<}yy%t3G)_~SifHcpGB z<`Kb`7m9ZAjzvY7cA<|ZR7-j`X1}J*+pWS`>~u(SlE%5k2PMW28*0>dog9dmk{}2P zk@8-p2JLkZxn_)KD)zX0B?S{xB0ngU>}+MUNDPdjlxFBKtuOaGx10%OaJ`_@ZKYmW z+Bf`u>bI1(R}9%5EC~*z$dymRMx=6ar6ffXX|+%UY>*W3$yXg_cEM;T*3dP3$dYw; z;%g4rOnvmKYvUnJh+L5*oPzR6QzUDFCPgrd-znN&8{MpwGE8SB92xkX{J!KjptSg_;*dO**sFf@7d zaL4;Y!hZO1al{dct{)L7@`T9PHE9*j&GuB`$rV#FctftC zNdjKWE+bbH!m`bWxkR&ZTZ$?n$$UUao=+eODxzb$Io9z-3x9> z^F2OrvI`^oB!H}|UD41r?Tlo5^l#QCQ=I>mtDvLQ)Ez?1I1m01a@Jwk{=K#sZ$e$E6G0KYN5f`$rQ?Cd@x2d<* zbqei*+ijE&*%J`qx=2K0R%)aS8HypIG^yCr_3!GvYGq1hW|d)3!FpB5ShGH4xf3Fu z5l$b8U1`4<2_8U9N0Ab#epA0sXb|*SmKyxoX|P6GsSOloBE)pra3^^M4P93=#S9EY z1XVIBpV1PBdYJB9G4tZs$Cm&($B^@!f>bpFR^4Gl_>eC#HNr1-@A%JCwZth~Q^=7h z;85%?u}NO&2v*!mPYOpuXn@ zAlO9MTbZjgYpndBn*tp1ZDchrQje9m&cBsywRIF-7SVh9;{n!X6>Dk7W@9Rpg$9@>iKg3S@O2bJ0ED8MRZ&#yQs|XwORZPKu-F^2m07H6F;S$w zuVPHHoibRHYA?9q{Dx7#BDX;$CvuH?xvEIM3Y4*CS`xLEyG#Z!oi1l#LBS$Hx zC5NL&ZB*3AnO1~fG*!ysag45~jzzyR`+TJua&le8){&#d24zB-WYh8)eP_0*9fx3} zkC~twV&W(f0Q*`j7J8pE5>VTpfo^-$?ephY)s-{SWyXryurcX;O*GVXZ8`96K(ve_ zASis>0v^hx)^PAw)ioV``2PUKZyST!{)*PYT<__%4{M;;VW zB3>wpWW6sw8y+j#?V6A5jkG7vrFhwm4t}*Ajt5&u3AKeDC2GIJ47uf1cP2}P!eu$; z-m+O4@G%2OtkyKit?hOVJhp_>we@lx`CM!ww%er*;EW;+n{7A-p7az_^+f9*eDKY> z#ue7F_Ea5nRh0?EwTh%LTGm1APo9p011RJhevGo;00*)q#S~8&RkCH)rCC4j3trds zO-t+gYk00z+-+=2r?09nBaxqS4U-R?`$B2;MImi@Hrk>HFD^|IE|zKE{BA-PUC?0GVbP_WYg!(fW5mk5V;3FIzr`?%>86)23{fe_vGIRTN7GYj!5w zpqG0pB)PF>$)3bV{LQ>3ZwswDt~uR(;)RU$btRjW*R(aTZXa{m)ap|1t7~oLO07+y z(>B_LQ&SbFg8L$h(5e}<=V8GQ?(T)voOLIS7`%3?>pOkJVrHJQd^^_T*4AuJ*EH1f zmg7Dtb7Qz8@)<^rvm{a^R3j23=jhEL%SihAp6<^?)*Q7e*BeK+&5GR+oPYU-5rl}+ zHu$fT;>2uGwDbic{Hpbi-LfA;dW}^3XaWd*0duJ!DOd6yJ6_!IS)arsNU54bI5wA_*db_e4@c z!l8b84K5ppTtD+ehzU)Mk3WdLrW3=nnZ)Si_b(nD5Ap2A>(QL!*z&P%`a?bHP#49BO%7!wiFYBDJI zPAr%2Ci1IpV2y9!Jg@cfR) zg4!`DyrB`JsD$Y>tLe#juk`6FJD__KzRLkAxJw)#bHr^LXN<5VR7Ye9|i`Jzu z7PKPKFwnI|t~V{!H=(+U2HJX{k(%d^bzFYFood}MU|dnLH!B?SGvaI}NOuG0Kr|F- zK@mHmcSTP5Uj1bYQz&d6v#@qjadKHY+YP=y{z|LZT~u6t(L@yd_v>FwVp>3+_Okdr z5giDbisTnPoC~@(UR-5Vfik#MOm<$U)H0PLSjUwHAX8OLfiALZYTMIP*>&uyi-4%9 z>;{Q_imUHT5+*w7dYGKm9@#V|Slrq&#p}(Rk4O_n8E^~Q&oX3-%16aHcK3cdn<0R+ z_4ShpwR~g6xvF=_`ZU@aJlo(NLIm!JN=i7-bnW_eWkS4K*^ItFB8};d$pu%VwoW!G z5`VRWRKg>I%B~eZ^zGK~g<7RaRVAm&&Rk~eVaISG%U6m)!(f>f7-SGd9Z`5Pq$Sx2 zGx+PCtbnx@t?J5C^~%;?`0(7139R_ANYeOR7Mw-?*&!!#@0HK>>7|4LZ6icxb+mR% zXR&1I;K@XUO!wA!{& zTvr<6Vqk)ZoIU=D-yQk=tb{34ch4l56}uDBCe}-fZC@$YenT!wClHJk5fIc>Lka?@ zsf@0DI@YEUEj9gu9zxKIB}gu5W2zB|qz}rpk+8TAi{D^uT?Yv`9xO6Ss$UI%a(4Y!xh8tW?~7nx`gtFT zHl!rB)aY$_qKv~iK;wvrD2}Nr5re3SocHbi9cSvMBE#0}8KZJNbyRU_h^G`GqhPHW zlV}bjW`c?;^O!=y`Y%`OmB>qSfNCmlE$e=43p$8^^l8<^ywX&j2uRCE$ORBu28l3T zyP_iX(p19C&0Z$wDomZ;#%{pFD%6;o@RN~&f>#w=AV!t40}e{A9&)IO{vB&%;w3!D zhTJP1KCQ#DZr5pxXCh;Ui^4yRK^vCQa84v5T+^E62?cPNUa`(rRUXr*XqNA3^lzE$ z2dy&ORC5VUxn(1nvirwk-c_`9#@h0cBI5{%h?wiAKGs2f&t91!>dQD%XUk@m5CuIv zX|JtwhE2N>8J8QHljaYSp9VPO5Jhsi>Q35?)O7m|Wjhcj>}@*6zZtTtdiqoCpfbXl z%5qyc1Zf63pyjkd5%#z}x}B`k4gUbb>+5kceYVYQaNWgfJF7Ph9BG*C!c}yhiozyL z9VqB(o<-s*#XAz_eJm%t8sBc+G;NFj0NM}q=D%4s*z~D!(pz1~-ec>UZMM}qz65I6!&xKooQ+&^fv+hF0-K->r@6PJiZdNs#)ZfB6^>C`IZO(Cgo@!fis2}lAsQn0 zTyn~$GbV_4O-p8#A<^jf8rv;v%nE{t$ao%CUQ~{#N@%>pnHe^!L&#V2jv20dy3bCJK{sfz*s3SeoeK}0RIiXv zNVR;PMp;r3LJ=3-Qo`p5nN=0Wdg*^=ME?M8+?*KYeQ{S7rn6yZajm$vVwIOIHJZ0l zV{Xip(YmJkWjGMF=o0f45;fqehKfB&-+4}D%+KY=vmTIdx^f^xE zh2)5sUc4W(wcBlby7iKA1ZdVz$mbd7BR?3zSXwgS3B=$@hdC#3R4zX6RPEPa(Vezd zKW7 zg->dg+^p53tLob2J@pOVqyTl$UOKaWx@4;wNv|~DkK&A{1)w!(P`QUJ36h~NBwo68 zu6A&G*{SMwYS${hdPv!J*JU+s+;VWiPFpfsZOEC)nd{5iZyN0_wagkE ziydQdsIp>$bxn4^CHL+(8z=r`7FtFt8?WbJPwHPt~0Mrz3gz9Ung$PopqolQr>Q_Vu)2Cgy0l$4(Hh)`xw?C*7(()#~v|dAjJ6f%T{Ii!mmzBhkHrd7bEU+L-F~Bh$c8*+}ht;%_!{ql%1DutI%nywXK$iZ?mb3wEcKeW<7IU)Op7hV1sTvF_KJJ zk#bK9qJZx*XWXhwuMvG1G@3m}O0k7i^-I<}Q>U{*{{UR?HbSg^ zeX$cX1Z;=j?iJyIhFPkD8|bzSc!WVgTQ)#8?hMLvWTjK^{{aHwnNXM-Q+!;}cN@9UwA_A5=dxJ9R+Zox(R zIE}1pFk!X@*4gq4yxnQy@(E;1D4F(&ap~x@7B0Q0(vH5eqbUH+nB>V(D`C4Cl5w&X z18`!1Wg0Ad3$m|u=82xM+qa~U!w*N(R#P)5=oq8hURPsV&u&_&G_s6eR3@8LKsS77 zSWGJCIPSTZwOlkmuWOZ?T$hQsWqK7UBrPHWc$Q0U@F$&ZMGdkPG!f#djCapj`nEOK ztQB2Sbjzl`C6uxmkjkB8q6=@JDU*QfZlZ{)s&OUcKa75Qlf03BLFzSG$!)Y-9Abf3 z@T&|<2a;EoL}22Cj2I`z!hQsaaK61;--d8hAWuM@KJ}RrSaD7?k*|^tD7WI|M%!d4 zh6akNqKls2uT$w{8MmT`aSggS4xuws<4BUCqOxo$AQ~u^5k!d>9sBzAiQ3A)F#;Zt zQZ-|%YE#er_>V-gR!moeM2Mw=E zxeAvIBeOWs#)dM=azjGWIo(kZ*9qSXj4lxqtxn&9@-J~%QC{;>K?p+}95alm%mkZh zQ1T#N)KXOCgzww*>dwsL=~OV%~^=!wKI5PmN8>USS_~UCzeaHMZ=SULWtLIVjJt=qV(5h4rEAU^0e+^{p^E(!{+Q4q%>om`BCF{fAS zdZipmkgQ~E?)<0ZNnneSM*)zmGT}UA*(=D>Wd8towkp2tq9&(ps#Yy3=WK^rA&SWF z+TP3lLFeU3Xcd%>5}RUVy@Ul(7rLUQ@D-=)foUX}88YlFmISC)R&(4I z+>YV8k(z}Vfg4WfLKbuwpbTt_p+In61dJf!wC|0^@*t|E$w3#FTjPZ>>e>}$ z^`%>*Z1C4x(i{!m1iKlZK3kN&N%07sGC@?3+lHi0CPg^{E>#n(+lG|4DK<3|_Q)E= zJJxkqXH{FS)6NierWsi=oR&t=hxZ+L1rZF_0H}lgI;f{Uz|l9oxt$^%vrI9##jUV< zQ%vH%b&EkLz9TO(JO#(3C<+mlG9!V?o;tJUE3j$Xtonmq*AsTw+_c@cTE{44>U!tI zir^Gjq5%2JMZ-rI92ChH1iz9`blYzMMp|hX`twmXdHV*dQ6^K*$(T;DWaW#~UgIu9 zk{(|h28!A?LSn1wgvl>Y?*5@?O@8-E+-+oib{h>_Cr@b_rsCw7afr;;d3ah%1r*Am z;Q@bOhB%_HZjx}x0+Z?6+xrTyv$tJ}Uc-Fa7|DY$L0M*7jQJcxaU4d`fCOzJitY%2^hWMWz2;e)DQ2zihs;B3vB=nPo$E!-F zooxNZ_>8$Rj!bxwEKnp!l5ODu_gV!tY*5$xYNU#2Nt7k@)mu_6^#;O3Et_1IXBNh- zwSKm#Wv!KO@)6qSA(*aBCe;VX<6wu+1>A6`oO+V_spU86C{ZeCwifob<ifAgyfJEA7yqIr99FL$acs(0<* zuN98%b}{}jSHI$M!#GFejH-*kn?y7`r>`zOy%)Dt9=j&C+EY?~Q;~_I0D!=+5+ig` zdlzLv<&?trO#YoBfjbshH9kv#j+AV8-vQ#`c?0(kA57x}ACJdwr3YLVg|@8VJc``l zX}N3}c--)Q!%+3^tCIf!A5YV$BWtpoZKtL?FxZb;Z;-P1@hJ$H!nnVc%H>n>&}g2_ z(wip2C}gKcW>BAW9OsCtierlB*9rbT2B_|&*-))!ij8x~aqJ!RKzS8%=j~joBKqSU z1Um+%TQwXAfym^7^cw*LQc^`w0eKTYy$2oB9R@Di9HeLX^K2!>U{UJ13GHzj6wd-w z&lFU`iux~f?a+G9m6`G-N?;gn<)mhK5~>f!(0Mmt3B*$51LAyCZajGIc zhoL^dCPQhDI%Q2wz#{CW{l7);kMZc;FH4)sd|A>Q6@3jIkqjF|0t80X6P8zrVHcP9 zC+pGAmZxi(o~te^Ne*0TC{SAkR7CPGAWSdic>1reS6Y#TZzD6!yA?T%$&kxJ;V<`5 z_Z3l8y?Y@6ax8c0Y4U4@0lD&aDDmW?1aWMNIeU@WA|xb0qv|>Ry}zRMHFF6j{8@Do zW60#qiAW^zsIR>Mc&H(d?&78BzMX4WusCY0D}b7dFw75EaLt~>Cej4Pg1M_WF~nxX5@}q0TQdIhqm@C*sIP3V zWa$)P*iJ)<%3Oy5Ca|RB(8{TBUl6pYo`8UgIsC6#)WFCZ-|$y3AGE4&P&FCCi4g%) zz-Pr7Mo{vNq9U$W9n-6O2WZXCpa(3XN%FHLlx!sBIRHE)MCftH>@{9LuUy)UrB}?2 zA}l6YQ)Wo8Pqz4?JftDn?#qEAM8f00{8y?x-9Bml|C0<@WIN|6& zyRxsRf6rG>lCndT`bdv-)3Ttn@g0502N$@gprI+@70%w6?Ud_Rw+!LhOYc^>3LGfv z;zxvjcu#9sK?xG8Df3Yz$*78Q^> zB94z20i*D#EG z%Pw1#==pJ3uosjEQ4^cK{31R6WKqZK`RS^cPaS}!od#iihNXhYP>derZbE-^0!p|+ zR7F%zUZP<=*~n9w*I+p!G=Y#3=17i%hQ!c;wN+G9L{Luu0H!+a*O|3DYspvlu&ckz9x!@swN_cN~?t9%f1t%Eo?kz!g$r7GSYl_#Et{6NtfbL5pl&| z?XZf79lvt=r)24BBh>Wtwp%DK7bC}>u9=WTUNt+%+GMv`d z_9cw7N2>M~AtFBwK{+GviLw_#u~%I2moh^Y{mQ63dfaGpS$0LtrK^`wYV6u-^mt}U zl-n#zkij_6vg~;1jqx=FcZi~UIN=3Twr>L)8+V%AYVK^*oP~)pn{7=N6epu$7-$ue z2MN~*RK&R`m+c|+>iRel9NwR^A4+HR4lR<~0Iz#WMa6AIc_#BtL#Abr&0L?}4VBkYTX zY>T>!xb1YYswZi2soWBvqjUKUO@L7Fy(QslB(ao)BshDMY?=uw@>N8@s`a007hk<@ zBM)t*vskd6m@dB$Ty3|%lZMnHWG0}z`YcDq4M}nf$dG|W7m{N9%|K}hv+DKQ^-j}W zBHpIi_-$4)z`630b$~eZmhD>*@y3kNwy4P~g~*8$2!qz7fr3r6C^%rX^^ynC-o$j|#4-mnChjNVL|X0ka*ViUiR- z&@|G>!nYg{xwxnW!#>p{9+5E_`)g<4b*mDKc=O&iU<-`N0D1P`c|W#oI7W(`QPNRC zZwS4(;X1YnwHnsZO|$G}R?`f&c0~16fWF~Nl8lyIe1)SyNaBt~hfTDR-Q`^^0sZ?g~BCq(3{FcdzHHgJ^t2J&m zfv-ROorFMy`+*#l4OPH#v~)14DyZkG<96gaxze|Gs&7uccWkJsqG0Ui9OfyRks@}# zYbsB-lJablEVXGIFB|4Q(OxV2I^{d$=Zf8y-Z^qxb=ER$O4?MoHu9_;ljLdCFDtGn zkGN3VLFQ!gASeBPzl^8r?JoAq9X_UH*tGOo`gu$@uI=6`su*&l$bQ+k(Z^(bwuUUE zLje^~1RhGLd=Q89yCZ9ZPhL=z9G+?M)a>SF0mS;FZ7*G~`(9 zHrI*uARcSt09EXYJg<8@V}CzWV*K2H+zRZs&R5@9)J7^Zl~+Sv?AD`JBM7`oXgwLf z{O3!^3&oT)OerFws`b`nu3t8+jT$uA8)W^6wijS&y1B6A4SC4YWWr)oOq0tohd85+ z224Dt`hs$Ef(}Hw?W|bo9ea7Vu`Bv^qWpBVc)+=<>cRw|22{boB=M_*%O31>$pQUCn-BNPz8uOo;Qr#F=TuaFxL{9E$SEW3BnR$8PyoO>Vrz zxoI*ejMLj-sSH6Ql^Cp96#1SeRJgDzal{jnxZ17_I})N_2`Qspfm3;6aAP?9Yf42% zZXubIY9OufB#vMJDB>f2^;9HP>?_Bjfo;0(s!}1w*;G=#J*;b%A+{#eR@{J+0z8#r zNWp?qB3zm%^A#Xm^)E41@7gYH_H*m*bj{`m^HJ?=Y`(XjT^?x2fl+?c24Y0WI?s#+ zv2)4AvJ+Jd7?&*bootN->RP|n6&r0N`VA6w?(wc%ID4+?F@lLHw-}i6%qi_gWwvJ| z}{ac>ShN?GAq#?b;_~^l}F>eLd+6n#@%Jr7emN| z;Wi`)yhbC~I(t`k^MbO%zTE4KAh$*;{7JIy3PZBSQ!WtpY2+sS<>WQtjAz?|F9G>= z+vQK!5(Y-MP5d}N1S3Qi)#+?Jg!ru1#E4o>K;bjnl9K1PRI%fhrat=~lH-24(kv@1 zE9L93TA4LAIH=sY0I{7mkz~an5MPYo5F+y=9xKc;x$0(={a>!tY`V)S3E0drO6P^w zKqGl2Hs}z9-#bDgrU0qOieP;`SGrpnArI90w&3yZGWF-S<V5%beJ9fiN&uN42pnxx)v_Z+ zLtOXbz3r)`@@qDQWA+S|68 znKoPQAV?<}L1=@>ilvs&Q4v=kqI&f^cG%R3mUU2y?sc4IB-p_zgBDe53V_p%hxS06 z&Qvf9m0!sxSo+~`;aJGavz;Y*HtYroE8K4=A0x-(XbUU&6ij}r)>JYfTR?Tj*fciU zH(P!uA8I=H1SMSlNqet8R)aMTSpEewP6-pu_eYt?83e(s^=8$f?e{N?a*!3 zQP@nY1kjKdC6c7MbR28h-@5WdRbKwM_38<)w<}*arAH)X*U9E#ywV{zAzMLQk}vH% zFKqsu1V{}`ms2VHqyGRD0SF{yu&7ET&u>L6cIt?#m9yZ&j|sDZGC{Z#ASo#}q-o>k zC`!C}dLn)opxV&28Z2nYqh9G51MxsOiIYM7u>D7}rg6{)pBhzMw1xiP5{ZfyhRguY z+Og!2j3_Cqu_da=eVW(Sq-Y@r|S;uHNlbqdXfR#%KI9?pP zqM~&rEJclE`*P8%hK5^D0WjO+`~LvAh=L}+=2T4g{S&LHjS&rsS+hcEq=@gd+XliG z6-mIrW4;sz9`FAD09RAwu5HnXO+~A06~cduHW5`BX-TEjhprN6P}SO z6lR%_NCig)mHz2AsE9ewY;>0w3cF>EB~!IhAjdZ%KH)7aks|Z5^oERF zVWPs44<|)C_aqhNl|k!r7#p=y#Ree13AooA4CY-ZwDZjxno5rgj>k6*1X&bT@=hs< zFXcZSPQAIrA#C%u{dLVQWccs=diZ9`??sN=_3ixURbO@K3P9WH2#pSMiVBFU$dj#P zx)?5IRqHRY1?KKAZ=~0ZO=*TBGdeYcO5%9W!q~X2G>wsxx_MI~K}6)Ki6OYDb=Zt( z*KuB*YV5*{jSEf85t}2(Ei~MKK}A+sHroRea{`U$fbz=qyL2?B%(6{2Jysm?B7NW8w*%7VfpxW51qLkZF+GEa&e2LLsA~H8tX^lvGZqH^Q44o3GMGZe-}QB(b)(?0VRgkG1j~ zuJEI3`Am5^2>_ZJra2e8)K@(&goXOj()D&7pH)H~YNN9KZ-=MWQL39j&y|)L7>_!F*)}A~6WIKssQ&JpRK= zB8Zn{R7CEoy?J%rwyHrbNAeb9@`@vpA+l(kUBWN4T>KUnx-VJsp+s=!IS6KnG_mC` z$e4njG*VF}z>yQN5_@~~p}sOpVV7K08L?u|L}-VTZV4G6BCb33Pi_@Er&%9Oio!>d zjp1H$NH-Z;Tqt=|mDCYTjxvec{C_6Aie##U z9=yFe2&UuC%cgNeSYiCddP6F$nMWMp%zZQI+x&VB7NZqPxJW0hBcM8UIdG3`|xWj|d0ItYf~9P6WS zQ|DI{iDuE|a6-Mn$vsqry?^J>POoOdCcPoFd{}X}+fS@?c|8K=mOU? zGs#?nKMk8n2txr$cyZ*2Xc_&=g@r{ge>wH&2PY{q-Lh92@w_DxwZZn9hNG@Va8L z9F2v;qR5Jy_+QE{JEy9m=b+myqG`yx0};TKq(1aw7Wsm*;t&}S<#0$ynEwC{fL)m~ z?KD-d!g7-#aGry}*ZbN0`%?@0dUa*Q#K&qD!L?#=A`_lBea5D+FnVAiz-Hb***i__*?mH?Hd(jkfIsUy(r^r=(D{nJr7}?LyR*~rBTn~s5 zFMRgKRTry!A0ow8;>-RmNK}-N95*{7e34W{l|2Pl1)u5DPmoYy`SM?GN<71@BXMFQ zCFIJsT$75IWkbdh7yLS=J$Xsn7=&Wr2!OF6k`67a2uQiYf0=mUQ}NWbaKh`&ux6Gj zkX?E6WF=)tg;dDVaorIEk|On$Ll|?~b=IXwM;k&}5@oZ5LICa|gzQL5#eZI|jq*}I zDi+_20@MirGNYz=Ivg{}fA=D;3#N=;j7}t{kVxKvF}9Zrfdts{8Am-6E)!fu)aj=#^|YmxUF7vyrj zolPFr*1~Dqgfu6`r6(9dPkM7zK{77Nh>3*8I+m(yBn=Zu$ysz5@y42|%YnM9>|81@ zZ2G6CP+?PEOjKJ7?UTaesNhRaaR?FeAp-p6aJ|#FK{A`=4A`$QsN>U_l^78fIWh=> zNQ;!hD&>8DUV%vJ`UKua0IY1JWgIjW!^6ig#(m|u70deo_4M#)~p zNi{J)jv8t=Y+*1Bk|S=%eFvAtaS;T(a#H{$oDXI7POQ9{fRS|D8V!Ip>2Mf!ie-GL zlB?jV8{;-&i|XQ%ad3y5U?azoaw8%nOy^%*U{up&+Cyf$ZIKQ=cg7c`HpA_#7hic) z!KRyU9P#c@BK1}E@6_!*MK(;4RXXDT0PH)+QQCZ-WsN1NPdepj&Ut}A^S~Y|hvwwr z5T~)B_ZR4&gba~0Z>?#&DOZpuL~hY7HT9CxF+Ik|`)*EQ5RHXG=13#K0CCHTl60MQ zK7*@c?AnpcsI=AP-fOqClH=I7T>;=GjO3EOPfKjvULPG1$B4-Yl#|8DMMQ2&X-`^< zN48ppjqRPpddm1EFI=yK9R?&g?KmpS?W(j6x`@z=ND5>Kgo)$ll1tfPyY2q~wrZ;* zR%&vXwR|GWFZ_03J(&<-whzZ_r3)@L*}D3OA&x;qk_xGIO!evQQFn%~Hn6iW5V4PV za7qO=lMb8)?5e-=7y~w3MvRq6Qz4XJMODJDTkFS@LN;hsu4?o2`&i|(&DofN7RIJ~ zlFk)$X$~~PC5Az%Jnl@l2c8VY_7;ux(j%r^jlI zwRmGBlodu<{^ykuOWc`H$64o8FeY4TBQ4ilejxlgHV(5DpO+%RwEpl!j@w|1;&M3Q zK}{DVh$WKBZ#6Ii6STEfu;$j+UNZu@z%obMej98ugq8&f8_5v3G6)mI3Rql;b`r$K zP72fZ74v3KlFVC;y_We^jE5U0z!kF~AZaip+v1J;RF{{2_+F+jg(LpsBkWs4DAPY) zRl;sPg?)y}vzx%$tbSrB$_n7cIo686>&-o+J}@#NMv z%k2m>(+Z^X7$*5~dGqXC2(YV;oqEq}ysPM+S+%hj@>By=D^{+qb{wlC87Vg+6zEAFYLFAD4eLfB^`W8R`+yPbP(QdQ`gYX&eAMam}NodL`fYd zJjSJvQx#m}k6V?Soso!Y(w}1`i+4)vFeJ!z$&NJRQCphpV%@2}NWNwya7K7GA;*#N z$d)?CZn8^OdQ!IU-%I-YT?@AkTeUJ3Vl?bvj>IOW@j`A_DB$CU>v5TJw;Mh@7xyV; z6V29ly?5Kb^_L^Kw5{ICqw4!~)@=^YX|$}al-l2TW5zhqV+$sR!-N1}%korJ4a7$e zfftcWDedcc<;L~bZhc2j_I8U>+`Wz25~J*NZ>F$T&VV|>u^b#%&6vodLhzxGG@aT( z6Gh3G^)D`Fo2r?%^}4prec`@=J|Uzfa1mg@arVKvB=V|?J`NzLv|qe?k8~_`ijt~r z&*aPC)tEd{- z^?Ehfb+p!q;JnVqLk;&rJP5K)a=1Mq_hsQvOfE!lh-ke{&~6X1( zD_Yrg_qXSwZKXC{Cf!495dnE3diGwgZq=Svg2w8PUJaFAlt-c$zhoIU;cU{ zleNpp5n67&y9OO|m(GCTmyxh#TLE4ro(JlfMe5iA%ZK)~jp|9l@ojqd*H(cXwdrj! zHTt4PMbMV}jwn9kPN4`ih}k)g#Jp46p3q);9JeLeEt%;No7k)CLKev~n8vx7FG)w9 zF&GA5E-4C&g_Kgtrbj8)KOR)=MGItst2F-K4kVe3NJWITOoL)4E!R*~fw653#}kHA zf}rtKPh9mao56>udTw8N(L-^WveC(xZL5qsmB$uIpj1`k#0ZO)6;snabM4=Jx^?O$ z7M2>NqjFHA%2^F&!KV57g@;i|57kjs5fw4nRTr#w?W^+)W6E?$aTknsV>;}J;-aF4 zBq9PzUxii2ezLM-TMfvH+cTM#G0I%7Z%0H%QROh<<^@bAB2LPy>b?DXDqPyhvD}8! z%liPFLjvre`GSg`eH6I%&rxx|;-ojEzC+`6sY@Nf5#pxV@?4;=WmQz|{X6v28`67F zrhh(3@Z)%aizo=3Rp*-J$=1{StAg*J%5)py#+(ZLnF86zv69>9@+t^{kcg)~{gAMT znf&J-y$}_w(O+0LQ4u1~Rr0cGsE>%C{BJ?;WI3h}*51Bgr_tnc(BfLy-aeDvDtf*F6T7LTfcP4tN}l)VYdp zc)i8rYl!hg{{R)wKr*r$(-|ukS{Ve{xa%ycq7bNM1HbFVKl*i6MpNf9{Y)wG0l|>W zrEXV~DvD00jFeaUa!h`6(Qs1IcbH&8MFDTf^fz2oMNskwG%gA1yuESL3_zV;w9Z42 z(sO`e<@rdc;sFw2P?ZzhD2d;<=c6w`BFs>2*3H zd;b9VI8L`KHU!=5l71DMF;2)V^FdBd5VFXs`1uow-LfL?D~u0Xoq1(fMuD_QP%D|d z=FX0<#&Q<}ipV%-Jl+SeprDD7ARat>s&&@bfpDrPLL&Hd(yi(0COl8cX;l}J83{{e z#6blkc~NkSloVA|MO^i|Xf){`$;&x*5ZNbfWXW=_l*oZfDm0@#{5(i1juN2}+k#yK8{Vk-+6?#hQQ8#hGQ z^4IF)p^M)QlmvC3AP+SN>gVl5_OEsPbjj#1T$(_U9CgOs)30Bza!swBj8=lOW8=Y> z8jBp%%s4Tp55xs7ZR+?yIq3x?g4{Ftt}#&m;591v(+bp=ewxQ0;^80yKi z)c3YZ*J|!BG}_l}pw^9a*iq_Yi|)pX@(N`q3w(X@Ie{-F$PaPv)V@_NlDcdk^%~20 zsj_CpN~bl}$wY+RYx~fdn!;+W5*s(c}-W6u2B&cF_p@C<$BHK zDT2-;b0yVV%>Yt9YxiEBO(4HpS&Pa315?77q0Xen|apXox z>)Cr@Kd)YQp|W&=ZZw#(1LKTy14jXJ!Fe&oQB&7B?7yc#JWs1u$fn-V7lU5-;GD5j*48{CXo(Pn+W8#u)~DrmixEs)2zLFC#^qsSjmb z{_gz-y9p4aJxtmE0B^`9i7)q*aMe9=`9=Q# z9)oqeOI=$MiccmcO^(rn&aP9Q3!i`T;Q)!5Op~yFZdGW ze>h&CT^Q}gv6VU2$e>1*@liolMWI6%86_28aFG5NstJNOH(`v+3(7l%$+xh8Ug1SU zHB2HPf79#TIutG?bke$)0k%;i!j_93LK-*m+;mWsN7WSz9nX`4;5M-Dm z3b_#)_YJ6Raa0jkK@r7NU(aM!{{Y?4FvMB4&e1f7=Y;wTO7CotJ;N=oa+woU=ojwR zBi9j`U<={ME;1hro3ZG4h+(MTL{ z`|-hcUdpMD&q4J}fszyJk}@*OimKnKAefFtL0A6(aH1-75$3Yd(nR8GXF)H+>&mO zCj0=1z48A5Ru>A3-?u@y3B-l-oIn|~!9Y+84hkBIgSqUPL{7=+>z;ya_$ zO}tjtRLdr1!<1&+ln_xdjBR+@EFvdxK;ojQj@-XJU5o81^1Zhv$7q-);Ia^G#R?>Ay4ujQb>}0; ztfF#I!i(l*<$ggmDHDmhi-aL1LExBFQZDvQ7;2Jg?cIL%88dXuV*Ww8*4tL1ib`-1 znM5x*@~;pQUO=J?g~;^nG79eH-Eth=rhfTO_Q59NdrtjxB1|Q+akN>CL|+|qZJt|K zJY<|j7mAT*+(fp22qUgsecKmdu+&kSXpjxaES z?TuBnLk_Hpy(+G2Pgr~qINoOpV~mr^%O*%lWzUdh1qpD7o1B(uhR(X-%81o-in2Tl zi4dBA`$h4Q zM$M-heZwb&odG9E8bTHEaS`sEQMgu_)%yWg?Coo8q>vHO$u!acB6P$P%mp8@8T`@&6KgYO; zk$W#%DT8OSio_`QGA>|h_fzIZhYkeh@`GT|_?SK z%YU^q9@X7>N7?si)HkKV@&WeL>IP|Vgg1k$~RNKxlJ#KH9V@?|6CBftac_#Lbo!0!=(@d?RUWZJIvh<_b5j^LqsxTAMXiY` zU6BTLHIIqaag_uY&n_wwCO~`PU2JEyYS=zpXQ*oI+_Zxi%#$NR)*~?*EV6Od+bIP7 zp9Z8jO@b(sU`V2=li|;+v6nMkOqTsi@>zr8wX=SFSD8R~T1Out`7z`=$b$|b5(|RI z6K}YPqN?YoY5li3r(2!5yb@zpSJ~0UOD%$RC8ZmTF|@YIK5Fzpb-oNS74AYx(vxJo zgg_UzFt|<^t?iuU{vD-~_}4~#GqP>&{hOufTTJ+pAhl+!9don~JqAN_U3s=9PG&r2 ziA^6oi*9j3cZz#c9bfcy=gS}JyF5Qkub;G)y-)h@Y@asiAVD}`xW67Z7h*8sJsDmW z(XnmbMA$2Vfx@O2_jSIW7+$q?k4V<$YY^)a1gOahTTte=5`vP7A}4FwH3=JqR>EIkZxlNOSCyTJW-)1glGUkgEXZ)%5N0kL^9q*{ zB{FZ9VQg?ls+o#Y`lD>0v0B*|*zo7V-gVA$btsOtA%SWTBUO)_b5%Yb?j-IA(~tUl>piw2!>ZOl z)w>P+y4jCIvWTY!BQr&(Ul_4m1t)`nqMl7SiK!=k_+HD_Zxa;9Qx3ZJ#@;-aU!b*p zBrvvh@(H!EaY%`@am2_tyb&;%<~)6?h3hidELvDmTGiqtAZV^7BDmkn6~m+j!CZ44 z{Dh&E&;I~Uxm$OZ_BQNzTi>E zB~Qmd#N2r9!)_F`Hd|%IM^FzaNQx#63a&7Oi-i1t&!{6f$Vrb?AH0ZZ~S$0#!8-un8K&^PN>33l!Id2o(HDEPyCR=;dr))3&ne`doO>_r$H9RYtBCO zg7Jv>^CCB>yy;-bMKRwVsrqz5Caano8mB8;7RF?Ml_}9a#=KOVY;d^1VKMpYE+avH zYgO$jw6dW{&%^l9mp0aEsoJA}gi zG0+f;#wB|Y=c$4|%cR?CsHmz$MuMyQDu3(Ini*d2fTcCyHseK%41|GR#^;$y7YmLk zqP~c|5Mg5*icUvo%Iw$0_TCltpsJBLEBWo~j*Fqq1F>v@mienLG)fI+RS5}w%1Qlk zo}kv?Hr1={2_vnx$g>Sm5fo&p3ZVZ0?L_>q>D55DANcIs(i05Jh6XBAOt=y_To1|x z*?W?9746l5ay%IXZ#x`aMshNxe74b5!S02`QB-)Bsv`cKYw4Q+@1Zi`u=_Gzip6wy z5!VC}LEkW_n{J5ZRX`0DJAOLfT9>J9y%f9Lc<6xswxSR z=Z-Lhs=wjV)-O;Uhge%Vg*wWi`OmP*MTa=vMQMUTF?Dgvl8C9QqNjB3ozZdC>)I)U3#L8*xxV|S+RB0R|O-A3N{K~v|UBYqN1qhBhpl`ek@&j1S<(vb?(IS&u#+| zno>iC>s(PD0#wSl>Vg(gQ<7mlI>&3bgsL}nSQR@xQ0ygXyVfYnwXucEgK^!C=@7)u z6p>^_9FTMFOZs)!uQTvGlTUd~VNPTgkp#8)S% zPkw#lhYfQ@?k2MShRz!&!%@` zJ9y~X*eyE&C5C20j_AD5I?%SO92QBM5s|N9A@>NX^=@0Z8e3*9oqIFXmaKL6{%g?( z5gw5;G(uKpxFp&Wz^)<+4+IeBltLvX>sI20#da*BX*SDg)>P5twIWjh^Pe4=prq(V z=HE0yHFLsAj>XA8##=ox>{nvetDtO!A|bUwZSrHesJSqBMHk*5E6s`%WZ{cKnM7Qu zqN3-rblq&m?OeUmRco-dwm*=0yJ-7#i3W)snMA%8{er4S)1EF!YN$$th+~!QocUwI zEl!K1Y#Y9_wrs3?8$DvKBQj_U$S)tneZ^K(2}nT=SKNwI=0yeyRxc?c0Wy!!d=cS6n7oeTQEcMqUw3pvoyB zE;6a>+ws>cRzqZXY&UCTaLRxqL(CKRii^XALC5E^b(>p}lF~N(R^&P(@%&%-#Mtvz zjJq!{`gtc)?S5h-(7qj85zaX_;Jb$L+=05)b!(p}dab=`@6nP@{^&aWlpoZhEL$-+Hq~N<_ z3A2#vLxo2j9CJ?i^+Z)q&q2H4BpV9(Et_BY%=u(Ancy-2gb2g(iQkqJ)1ZX=5=!ys z+mLN=PEG+T`edB_-=5u*3(!wz;!X3)j=(cw5B#?kr5qygR00!D*c>iVQ_)wT5m!CP zP$aNUlk$li6)Y+QP=AW&pL`h+!J63~Na#kT zktM=#BwYHEDreK8;$nmI<~sPFC3WWEe1ZLdj-e}LzL?5(PyKo#RBDT$7_ zu9Cw?!<4xQyip$I#6(y8z=@A)r>Ezj$fM4wDR7%)-;CGy3yLDD3*OxE{Z)IS{{VvY z5fOevrC!@fDX44##UM@!N}khGQo^Brneqa1A=OxN2h?uH> zT=x9+DEZhb$CMS*L1)CXTVBo=B|ukI6SCluRTCbby#Z-TGVKs+cneO%F+oAfFCGf< zrxjI9lK%kd)dH*Jy2w~E=l)YqNLFL2mK`_50EoGMK~T{b^VAX!L#(X0@-X9a8&qFv z3ZsmwprEc12~d?+{5lC!A~LQ7^&+o1Z+YXo*R@(U`-=Ae04`NgSMiR3T(cV!wVz-^ z3?-r?Z*Wlqd;wL(R8GjbM8fodo#XO8HFQ}~PBegRw?)KUAQ6ZvkQbp4A}4hHan%Cc zV3?X8F?dN5a!izUIN?zR0W;lGpJo3573dB*Bt9c`PlA*;ArppVo}8DOamV?9{k^|l zpd3s|iqjKaG6$eE>OnCqA}Kh&K|=iymx?AAKc3xH$G%4f$m^yuB+7@#2b%VhBZ1Ap zZGThsL|@NC8<~S0_DV!n!9o{_T#O2+swk=?No`-;*^mFl-LN;_^PM|Oi>9Fx}s$}r|Hm*&9;>@8C&}cMh0JnYC$1cBCx;)a)IQ|9M9xbbIYj9$PyomD3R6V2NcY5h(f2$ zKmfn?7EynvL7|iQaE3$apBvH*BRIJa6WzekQ~r`3-;Yj%b%KnF*si+Q7aegeuXAT4_ zhT&M(MwdC!1CW&ppsVo#R28lri#$t`Az^Zesb&q^Q_*14t3qUxs&c=%n^=^ z*g|cSbQqf{;BB)LFd;QeaKH*LbVaso3R-^Ut=#K1Gd8JmeqP$-`#8)$3Fy${yeJ%F zMxNq>eTNH?b0h*^g2G$mHCfW>@~v)my4uOqTYEy(m{&X7f~sW`k6Gr`(F@1+E6enYwrkD7p_2~6467BALgH4%VX05db+UD`@srG;sI;zO zR9BH9E;TX%7j&>9+3PX1{Z2y%6k2JS%st8iEHek51$5CB5WtX)5jhd6B9QczDU|k_ z-A`ND6%loZUndx5+@1q&9fX4rWg1B>sUafeL|2!8PNr=%xd3*T<5fZfbzZ-K`rWZ; zt$df`wyGl$#(b#T?h9g05(#A#$#9uow~`MwM(*N6q^GQ~e%_`Va*p+u+I=KgMr?VA zvaBm)DvAs5F+?uIoG)3H4Yp9HY|S$xX3#6`r^0qstR%5{x6U}m;NwrVDZDl+XbmqE zR8h+I&N`PFuoGFdxhtkZ$d*j8kjbsf(N(6{g*jSqkXkog^Kds8#NubU2@)n3q6h51 zS;D&wfvtipHn(TpHzV1^nv8t<*BvyE^35AjLoXT%h$3W_G045$UcK!8jcFrYNc$d> zWc(K5%-OXV#-XIxgYX8b9I$>n0X4_m05>02+vKXbL2+~4N2@bR64d>EhwDq-W9+t_ zXkTthoI9@!h|%W90-YtOjw7qhfqYf50z_xdzGU6W5(JNeL zGbJJCY&iR zIA=A{2w`3gKgi=b9bG0kJ(6gM%PH;a7pB#>WAvlz-FnV0!>JR~UB87M%1l*Z_ZzUD zj9EunQQ0i?<)Dstqj>5TQ$!b)tTs&2wR$AvMeK}i`} z8RX)jn5GFuQ?jD_3)B36J#+1OX^jjB1UQh4jg!Egm22IN*Pto5RFk+{1-mG zTXrLTd#%+>l@dy)ibNq9Os~5#U+m``D&yRl{{Rl43wZ_D^KO#hVmDK2LbZ^Veu=LH+6HFGxOD0?y`z(-(L#E*%`4FsL3S66%Ub;swnru^pITl zwJUQ=uk#p<#PO!2h#bLJ~q)1a ztj1}Ab#Q$4*Cu6G-Q@!p*|nD5GH9$|)Ck11JRVa@ufo4&D?nZeYx?P2<`dUXb_RYTw%k=e+=7B|dhKe&v ziGy&FI2x+=^zDUDUWPQ)wK0cg%~K>K^GB6lzxNyE%|MYoaEeMwpQ`@=PO2g`=Lh1> zXqDKt#TYDjl40d%J~3a$7q%CusTH3RLzYtPn^c7y4BsaE``jh&+AriXqN)9Q7|K~b z+f?xdNx4=0-8b7_JlZD&ix~aC+s;?~dMkS`8!?rbt~fP}wk^O!6jU=)B4fA;v{`AA5*6;1cDxcrOw4XEGv=1C0nFt`pT2GAfDIwFSe*>LpZo z;7_ySHiw@V6_P?#&VL!g;XfTfB1~8@Jd)?vn=(aJfKl!L0CZGU{C;uk-`A~6K!zIm zEu7V0LGXGrT)QcYLCqJ%_(gFSAMxvUqE&&$g-9{cv`4@4T{d4Vgm+s~;twJst}uv8 z)@9_v6zX}B1|8kg48n29?njJ_IBMGyEm8O2%V3bj5f4eZ8xa z73j{g-F-xPXxL2=6j78-2#J#^-Vf%OLAHXD)Zoo1ijQ% z5q+wjz0o>$yck{FXS+6`cK=(8pYt}cOjVl3n;sX>owHjrO}1V-0XDE) z5EHK!Ty^T=N3 zxqzs^Je2r4Ozs;9kss`S0~Wiw9@{4(BS0&C`Xdh zi<0EZsTwYDM627Zf4PeymDFgrcCCVwYGKHa*GOVCa%ae&CIe3zmjwl0MzhwoaQNY& zsVJ&pIj&Vv7xSKqvuMoY#GcI875M1e-d3FVjs-amKdy7qfrQ&2v1BmGHg17E0x6fj z2&jfAzo{pDew_r!t*xk>;&dC924vJ>R2-ujmrd8MULolK_<&Rx$@6t$K#+SUehuw+XxHe8wkAIn$n;lkgAR_Smc06sh`Gu zIskK9et*ceWPVA&FO4h(6|z@EkwNY&-ADYZ+Z_a{uEd?MKFS)0ioqC);->^<0KB3q zDcMsBUcd0@vg1>V%dEzPv6_<5$VR-yf<-4$Nk{cjz~}ldIwprjj+D=vG7$vkqQ0Y?=eOlL4UK_Ch2nLTkp&z!S#Sp~ct{mfILEwGx@Vx0 z6Xlc5JgN`9B0>|cfe>>>Ne~nfdnzF16&IlO7&unWy&Eq=vLtE7kF%nVpZ%r6_8?L0 zzwln56!Jrw&4enlU+p>p0v8oh@`_>S5j(GR6kLA2PCPIh17Z@ZgwFA5>x`pc12Z1?b&@g3?e$P9Bx$5S6pqkVmQ92 z<4!INSM(tyPxy2g)C$BWt{hJrLI~bkB~nIRL_-lzRKh1@{{V+dHo8PF%5Exygp4eP zWHyL=k$8xzhC3-Dd%x$lCE%t#Ss^# zi8Z`u**?*<;1L02T!QF);D-&2 z#cD-d;E?#MpA}F|NmRKaDj=>?(~s-a6Wsyv+^kZ-%_V&}uf3r%0Z>KllvTnn>C;mh zX^)J*BLa@bSn50%2&Cc)B8rOsKTp@I41FD^z#*s*u+5Y0w;>anUh8G9%8!tFSZzjR=~1$~=XoHOp=i z`s7g%dW1tyn*eRtVSoc^T4dumzqxw~9vAYt@BaV}s^o1!X{Va5FeG)xokyH|xg+a? z1Lf<%aJ`q&dYX~sSH-C>Lz;d`QW{2MI7p-*eao_X@h&)0>8kQ8E>|hC@&nP21trFp znq?4?3%7nF$vPtdY0m+h;7mPSLWKK2gm`e+l6n`fbpE~i2`@U!{{S8V$7sO}TO%Ie ztd10M`9)Iy0Ea>20NZu;b?T`90D;Aq3;wprvn9fI@9XNFu$bxsNWrZfXX6mDK0*>W zq^O_T1?-9aSJ$GVM{V~WeBEJEbY_hpvWuQ&l~r_;^dUv;zP$u@9YU{S0gsjT8-1eX zlq7H+%Vdk|g+juj_s2oBTYADn&WIDOvSISrUg73ZB_YZ$w3P)v#~u2x4psg^{{WQB zs&U$o0UozFCY(MfNF(`9%Bzg^aZC49tVQt2b@gq-^Ud=se3mmP;)BE(^&&z+LH??% z**etij(xhT{dv1swi_9QW+O2q+)9{&p!&E$$$ZW*2tFiHUc=oNKd)VGInD*?Dv})^ z@e+-zR|N@WSOX~0r;W!7IH+YwO|egRyN9k2bB>y|Q#{R0zQZS%F6)hRJeqW-c1#s+uASKTZdg8F$u?3OS!W(2 zhAk^krxS4mKXMjFAC<>gvuUVPX)C@A`P%i=nEJ6@$dz#G&#czuKQR0+#bA32O(24{ zi=F~sxKz9KbwlbVT*$AkQKp&mr^jK~ackOE&sm;@HtxA}6kAMP zhHLDy*fnJ~iYt*IxjaY!q`nPF=Gv=mw2F8{BqLD~z$aa>3V7-*U5Bn(X^hIN)MRWs z4EVBUsX&ihv65lfI=~7Pv}Q?Q8U+%@Frr&wFR%t6jgzL3X_9iWLizj18jR{>C z@uQ%M$P*%Hgpsu(6*Tf97DtY8FvGV?i?Ug>S#289hhlzhK&>{zRC8e|wk*ndP4=8% z)k&s^j8Qla6p*?0S0*bTxpZoc{rl=FGPZ@U>MudIs*y$~CAQ zh;c+f?!Jp>ZJd~_eu(-$6Q68bN3o%;*(<`HKF-6=O*pb!m@A)|GD>nKj(o-E5zbjv z3?_K=?J{ca$8-Hje*6u>+4Cxf{a{S$0ZEP9krk(Y(abVLPbyE<@HDurREecB7lk zHz-@LHY7fY!920r5>8)&QdRdas`l$lwnmQ)rGY4$CS*9*%@}VIA)qqCx@fAOyO|em z`REiZ4##DT^nZ@WnmwxP%tubk>=Mda1|b}i?N-$!|IzTyAb~X8pSQ1&M?~kLsEtOdk~{G z5+Cw8@nk*fUQaZqHYLSNybxoroZzF}=8d}R7VQ0Vu0@}0>P?dCl7`kJjz(pNg~31xam@wOaaB-N z9xi5TLW()UOXS`1=n4aoE}A`V!5QYGI?9ENrp*bq+-D+=iFQ>YGQx*-Oym4{(i-Se zYjt%p9XRq+_~)a$A(SK_l*@*KW63h2VuRZ~y64)uNPKyRqt@0x21{!)K3|vL-jdgl zmu}faPx)i6O|(`%{1tY|u;KvfszzS^MadDkow%yxl?4+Wx(T%|2*J8_^j|7r$ZV2w zaXe(IP6ibeP#3m;``rhWz^yh6Jjl4 z*HPwWG)hX&96}OQ?6?)eraN~|fZV5K(USiFX(YAeSEi7-g~(ha<)2i+Dk5j~PNJdQ zwGLMh0yc(#8d*;V96E@ozRZ4k8m4pUo{HA*mdGN=csWdo??}QboJ5zgDzB<1s;^ZW z<-IUmC*VAXHR2V(q8PY@gak;wqN-k*?T(0!$M%1eg7kD}&c06^bxs2BxW8)t6)}YB zEMcz5ZZsP5`hUrvhE4g=9j)+0{`CRif}oK8TjE?YK*KTNNu zuYQ9X*#{CVi7qk!0FK+Hjj`*&qLlwEo(_pod-Bk)>I!eSzbDvO@kK};%s zdZ64~Nd+Qr#`LDq^gOB{h$anki`=`aB7Re-1vJB|QMe+R3cNt1st$SiDvO1V*hO6B zJ9g+de-@515r~)N?SHM!rG7C|eR#H<$sY!kcoU8XU~iJ-S1a!_##cY0b!Xui)urWdw_y51ZlQ+JSQw(N7@&`_kt0q{ zC*@GTJ-TdFXC9&i?W%6cV)GNf(iLeSq|HpWB_&*O@I}I)q5&cjrd3fDJv!^+Gqe&x z%b7`JtkJ`U^{W2>Apo6-t^9VHa~Wk!h2G4nU=&qzj@|lZAfDY=!+LGaeRWidddM!e zw&f+}Sow{c0z84oMN5*Ip*Vn^!5+$sgy}qm?Jq}!w1X*N!ij3@D&j|o*)Z&e0mfNi z{KlogRFIW;qLSyAWnP`TVBK$Wdh-x#bd74rYvWCiSy68-RQ@4IUJg8bkIw%9Gi-?w zQ9E|^>E?0{)^68qP2XZYVP2D}30E>YZZ#zridsQf{>}NsD^f4V+00t1Tg_3X`0; z7ExC#`&Co7e^l+(FIP!)S=&m-VA;8qCf{rk1w@pEMDnVm>))*6rz_9Rgv^GC*>G#s z1}b+)1c;FlQ}d3XEhPT{mx9nZqvnS9xfJ)W3!MhpE8VN}h_{@@` zw2$Rg8vHLLO#c9fZki+`t3Q-7b-C55!3=YA_cq#^@KG;SP+xC;_~;-;Vbz4yWO*eS zmI2=z+5Xueu1OJ97r!J-{(CP$v{l&9;XfSJvSu@%GC+@I7gbTrk9Ay}w zBIP@Rc2!>82FO4Y*2>;f0)+v@cwA{ynL0QT$}estsK4Wt=mmsVT5#Nj!xl{?n;^+x zRMW`3MHkT!vxNSg2I&OZ($iOpa+qd@^n_GJ^1P;~%C0*m7ykg?9R%?sg(h=y1YA*Z zw`FB}6WH+kSF-Y4Dx#P!A?r?)@-{($VcfMW?F zKB9{q7tMMIc1~0H5p7 z5>jGZPvlrc59I@iL~|S*RQ}=+=L(6GUg`Pjh*6_Sb=PYlk)0pvEiGBSx1hV?Ij;WCN^BdcIEN)r zL|prm9-sR47QB)1q`$@25w_njZI@hC5l|E?lH)vZSpNVH{Zwy|HcYnQ%@6+oDUunE zY5mN4iVEinhsXSSikUd1#)B=W&4`Ve3$exFVeJ zOwFMPWm(?D{71eubm z4!DWL)Cmz6w|?lo`VS?r1OjlKR%AAenLeGkHfWqlQ?e#gEB-5vsMRQ4i$@{(EsThc z$Ox>;QdRMB_Zg4pvVX(z(?MyBJsu5QZfP!4&JoB5a)sSgSa6kls-h=kU&l~=TLfMS zY(7d>lH{T?D2tT_*N~4D@5NC+^iHm#G|4Z^u}?W8u7sA^me->2B@*U~{{Xc^xA=5c z=?u$D(IIonebGph(Y*FTMgIV(Q81ppM2%7wJivrZv*McCx~>wJa1}xlAyxfysgKv7 z`U6CY>@do|9ljAARKYKiG6vwU>xBi!=N$%Q@)TLYDN&-3`@lntDIln-=N_C3wt6cQ z7vshuAo&hB45Mb+A{#*IrcJb8+=`j}^b=YLLNO&P$tj{lWv3e+Bu$VIpeXvODy~UW zqA+R2IP$4258|6XN0^qWghUh~z$$v>NfA0LPr1{rW+$^-Wi3Mn8G`l4~l zsw#SP7!82Oj<9D(2VZpa9#(MRIz$*mRZiI@Meop0b+xRR1j?GcN8_`3zQ{)uQC(6+ z{HhnK`u6A|90q61azKCMx}*}LkR}vdL=@x4^ORLy-==!HYb}aAmt2-{9&P7Zh%w)U z>U&5sqC_M9Wy0lCt0+cMZan#OYMEDs!Uma!Kq^G>FC3enp2AC%^#1^dTbEq>Ojnl? zCOd0oCXwf%FNEdKixmJ7(_m4hX?TjFqr8_M?5Uut_Rn2<*(WSk5FTl|&yOkr*$hN& z+r%L*O%WfIT4}TtB^K0?w+VeqIP}j}^GH{&)|*Sa4XUwPI?7XNsJipX#m5|y4HA&?MNb=q zstNAx)SFQ)`xfk7s=jKvLoeJh0yB2en{DKO$%9DITn7}M=BiE_AR-16CEpz+^fS0+ z-IbebX&~$gu?6^47A7R*sPN_ZxtT_A#XyWhDl6!@R4>O#a3IO2y{U~<)LFKW;lC-F z6KU$d@?*N&4wAzcUYZU#**Mw>zSyE<{jHa$TA5UGjEb_)WBHC8z_pG+KHJ2cje~80 zlE7gIP?Z!@fu}Ct*9klG7_1WVjqTHCjatYo-und(`=f)o`J{xHL`r;$)m2$h=Bkl8UUhmBk%7MTSTUPektNtE`Ia$NCRZa$;2 z8P7z!uQ=7a9=0#C<4*w*N@6*I3WMBG)fbtmE*CiC>ODhL{{Yx++FR3WTky*iw4;(v zxvIvS;&OaP30wZsIHMboKBA;b(y5{lE^vsu>v_VtalPAmi@0oWIPh80)@f|Zu42p_ zfClsIfH^qqk->MeE#Md_~gro^~k@fnUx0;OxXPVNb5=uvv zB<$zRia==*#4&3Kh$`lCoKup_(o=qed0(b(^2Db>W(|hDS2`A-B0IdPLSt@6Xxx1m zAz{Z&qz2U&k*OdmAeUN!k52m@eZTbT8%ciD{c0VI|Uxd9Z4IW)kK^YkuA3W}qdfY;V=e!8-oYg?)6 z5+hTINL&4-$Ojct62;k~vc+^Ei&qo)y*`E4 zWit?4P-MaC1?zgWM8AE~i=>MZMu$2{XZ%7+?DW-bd2@Fv%b zo{EU5o|)vm`qbhKs{|s`M7So>Q}pr<8)R#QlIgEBb$ts0m`?uyob{W^CndmGEj&4I zG^05iI_F7M9FEH((3u*Kr!4UQ0H0Ikbub}>I>xJKL-_J6h3K!)Oaod)9*ICJKIi^mN^5$*S^$czIk}TbtH+Qn1CmM=R zNELw1U4!BV=&)!i*Y9t!pbLnqopjtGRxj7Pu9rczY9&i)bnK}ULI_TlRk5rddEjXY z*Mv~nZKT3C;1-aZLgVX|zfnz=pI_E!vmw*KYVJ12cO}a^DNau&j!PjBWQL(zm37+QmJVt)6XGlkPcdJ|l#}ItRpVG%%x ziA8lJu}8j|`x={TqbDvSuDZm@56Y{U$pg`4GadA8=S1B7s)mcmT;fT^c?e|_u6??q z>#y1CTGVZk`zY>J*GZ2Mr5dAX`p6V@lNB{06BS;{Ua6GNT|8!mPB1aQtYUoqUX0<`$tLG((Ip?0Husihcuscr^`7NSIfoZU(i$Z{3?E( za&JVVMtQqB*sZ$Uh;5?IVW3>#SrX)?pPpzr$Lr8)ir31sW!D=fp~!jB2HotgU`@w8 z$>@k^pX1O=jPsHswKg{;vS?jcjv`^i755;PI}#u&@n2uZL5+bn<#c(VDAAgPX)H9o z(2Ic<1$*ZSoc{p#x($)oBaX2U%sx!!3AHa$Vm?*WAuj&_y?d{suTeo{BcUogEwW23 z9emp{RL6tW1c7}~SJU*)dZ;SY$uVBBafVc6I{~(yXFk*cToNMsX9|n{Jw=ab03y3F zuysU%Trx8M0Qf+PN`;K7Wmlny;!<2xeGEaeZ~)yU>?4&PLcX2-Q~n(lwreq#1JYY% zS#_l+W-^&YUS>n(fT&J&=GTu9p_(9J`XCh)4NVE_rlM%8oruXRj*dJKt~3|7xs zG0~Y4&&1SGMMl-YA7Zw-_Nir8p!dX&L6C^hn=n}iC$_1AG;~l*g;VefBB{_oVH{zn ziW{rV_l34p(G^TuKt2SE>Y4Qa0FOa5m*g{6`mw|$gYCHRcOX^55og!2cTR&TXzXAZ zj4I?k%s#kPFmM+=yZ1!SdI2gZ%t41Ck^^sxj1aC7 z#pH@(?_|L8sw$YqaqH>P5!!UxVfyFQ!;1Peuf7HU0CiDQ4U+o)@9WWCSjBn?Ga=40 zBCtX~-Ryjq@~ipvUtX@IZehQE4kU;wxc>kgCsqhj!V)ygFR{<%;inzW z5K(ZXPGcDKUfpg~u_`+<8H~%3zrR$XV#_6mTXB*VL@y#`R|;9`YGS^Q#hq-M8Q%pa zLXgU|+!cGo${7kNC<>u=LdWMmy>!^kf;FuTXq~JGY>BEExcQ>t$INnwDf@V)KR=F_ zkqP*XF?K^s5oA9lha^pXOhv}zNy@8cMU_q~{{W))>dMW4TU}iDU{!O1J{VC~&E-!l ze+ZHJlf{Ka!5%pm=c}oM?boo?WnAfCQOWqxT#!wm3L_1YlCTJw;)&TidSj}OWCJBG zd#p5w^_!jmko%;Z8$nWROR}n#6%{a^y+P}hk*u17CgrfRkjl1~6JKwdDRUxamc6OcW72^gDQCeMTndYQ z_?lzY6W2XKuEc__40#dF6lOSF(;kRl{r-XNm6ZYICkb8&iRF&dqs0+NC`76F^v*h< zEz~qAViDA&9CH~)ynWo<$GCCX6DjHc03LvaiZu0wx~Gmj^phR7JgBN9*A$(FL(~5n zg-L0C3>clGM~6t~M%QE`WYR-PX-R1uqr1a_#8674M362i1xZCxq@+v0yZbME;}hpS z=R73$`R%qJ)9WnIZ4J+dd9hVkfxfi0pUZN5rBpmcu4CUTdhhCZ@{zw0eTJ2@8jdDo z*>1nVV(TJs{zOI&gVMgr+#s4vG2yls)B51z0oeuh9{jAG+S*}JC)>t{Y_l{+K?&T3 zuoVO)E`;KKsk+}wND9;Kxs<5j^8n`Kpivgz8O_e?aa;%(!*s~-N?5Ffsf|lR+IJ!Q z80{#{390JhS*ngoRpzoeD=*t&7fm0B>T$UqrR{oFNK6qeKy@V6Hqt}-1@g7dW1Tmz zu!Sy_c}u~`8Y-#bZjYl`^o_OEyPw4+w)pi58Y<%C@Kc`|dRn`jo)XubO% z!Sk}KAwQ~(`KZx!=}l-3*NizM&sI(BBnm!=PdD(Kq)#+VJ0I)F3PM`(%y)b!ngu?Z z%lK0mZwOGqd6(ocRAe;8r?fJbn(kNAi$)bWeUBRQDvPC2+EA!d7)#a+qj4H@P(-I; ze8~nF)HaPkRbeka5~3vrn^Qm|&0+&;#*`T;bj;`Yy5tLr=Q~lKG)5Brta`wi*~tY} zK=~1b&9Pvp0}S#}c7}dAWtU01Fy)Bh4^C~beqng>hXE!Z3P8Xa@hX8{_tG&%bHwPY z7F@n&3iLZrxxTHT9bqIGLYS-36wMM7J9Z$&WyU|K4^NwpK)|5zZNYXy{xSKYFj=lN z#=M@!z2-7?lC`EnDbaaXQ1DD(vK; z1@|%e&W)wurju}`x5(c(W_)n}+0AvbZ0xQ(!&+zZtC6SEt&Qm$VQ|%O=BA5nKI5bt z?*LLy!t22^&Mg{iMkF$tA_;CE?ZC9{EgHt#u$)xp$nQCe{LHabP_ zrQ=c4+u^6Mp`u`B^~C_oyt4YsqsgjY*s2N7?X)eqY0&!zy=DojKL|HsHE&fJxYwsN z6L=Fmq$!SAnpnfR^M$5a9}dD8&K|-|(CKnp(jwmyNG}#Nvm)K^ECFQVo6M9ocea@C zGzs48ZLnp8YwLgFU{tWsM;I)E>i4aA8Mpt&lk{l8>~}tE4;qR;X~45dnZe+METei2 zivhxo1o79p>21+pC$Os=s3xM3DjcqCHNrNUJpc6@JEEGVlj7wY0v_y#-AjNN$e%$- z+w(73f$OHi8aYJ@*6RiLv?Ne#l6-R1D z^5X2MO#udaS?DMj93mOKTFi+Djs}dsbZ#d9pc3g_TwaFWks2HP%?@Enqh)Yd*AQYy z@XA0BK(*gc7|Z(1#){!|-bYQRqCw+@j|zRXuqxi+1FoMKQIis|2{4BA0B}^jsvpww zMDXp(`d;nEJ2g?yF+q0s;?id4qtw_SE>s^csFxlSB2?vZmim@(#qAq%qw!@p_*=>6 zO=)Y3hMq6+UJ2>LGEbqi(ttH|1(qCLv!d8-4wTQqcx!?YvnpF-4 zo!p)M=B;cqdjNjy)^)vQG4Q^5SXOWXAoocnZAlw*@`i|qDv~miD%HD6;38zn(MeSX zGy8XY^3fiZd;P*3jXChkYRmHAiqCfG0{o(Bl+im=7mby7!Rbv&DxphCr z#31XqJ=#~U(VGisnZ-;?ButBk;7L7Vr|BF6bK(#9h`@m42lFNsG=md{t`2s{?U>05 z%x1;{z&Ts@@7r=0a*Q5jv_Vg0j{L2uU<;|~;%e=T{sWwoace!sl?2!Oh*&4`A3l{9H!ei< z=vW+W5OL>-X2>YDSYXV|vRD90OZ8#OwvR@mum4m^FrJ}5#BD9qCYP)&b^P5EiPFes$IP}Pm5I4N*ff+gxii$!fTHQuOS zH+jnrAp`Zaq}1X#u1;(h%y^0k4-W6xXXona^lV_Qpp?fW(T=L**UevjKrY38enRn{ zLYvkw=9q$dI6<~A)%wq3z!90+Z3OooOU$|KwO@{mW4lVqC@CJi`GZ&z(|?u0$$(IS|T@((Cj)-iKH$$1Nm0(70Kv2AKyC2lIYEYFA62K+%WsM|?lq6~1A2d2I*!uIu3 z2TmW+)nKErMlO#{&^GZLj={&TCrcvJ51;T= zHX?&!vU2IFMBOTctBaxr?r@25J1n^()L2NGi}VIWzW)t0ypu%s6T)XV)fex_!O5QM zwx@db<@Ll9^M=FV4SJ8?Ed)C$?9fT5=)2t5CGto8iY?8LgP4$qjpg|56h#auiGF3~ z$kFPLb<_s^tQZ`i)2Cs`6?0I2g{pD@Jb-3C=~zB)1kMa*bBU7 ztf6C*%BdO@<09E+)RKa$p>n<>nCgZgpvb%84)Wx-MT2xk4&nWF&h3N5e3;30Ooqv} zBB|Z)DU^auTCyd!NR-@Q$wRnG{xgE)C8p{&{N4q77*{gMEMMDSiJ*b(bCDFF8A4Uv z?HA`Yd8wdf9}`W3Vx!`H)o?(MeXQ94P*sol&UMP=cu3CCtV8|skVc^S*qJW2f#0A6 zSNj`J-Qyo{FAm!!db)gBxU0ZcC?8LTKjY29DnrdrLt7k!55;~YY~Qb*~6>fVbJEaHLy^G z&-2MDub6pldF5wTEq@Bzppvjm zi@o)wsbG(t2{-jj%4j6;^QO@f603Lx9Kst1Ng}dn@b(^t|1?n~LOIFc;h0D!*=I0(VoYO)NDMwD(?NdszmThKikO+D}HPUb)uNg&Kmet&tcW`mmBGctdqd~ZVe&*voc2pzW8 z?J4>f0C~&^nNSTeyk96B){%NYSnqWbY_%M@+WhC^dvEU)46gncW!tWK<8iu^&a?N{ zGIEEWXJpPJBu4oR?Q|a5(gVb-CiM#m{sG62qIXETvrfccW={ym)?+~oV=Jr@SG%Qd zAI%*JK5`+MIT1xCJ8P<`j#v;61}}VFPc&y!+RIN08z9Z_K z;Y%H)@p{!me`vga4-3trvzu#u5n1%8tR-o?nphGVZz{^)34b{!+?@^oGsD{UTP#Rl zJXlw7Iw$vQ-X1h z1$QqxZ2^+ChQ4X#5X5u(+7Ce8ad^cpmW(AACCG6;Twb^xy;cR(H5cZ=m2L`*3TZ0c ze%|=0KJq2Jl`FjS$h~Lpo+)c@Xl}ka_ z>Scc-=ji#8l}aps)5UFL0C9;W=Z9Y>C6NrVw9Sp19mc{2yn@BHkYT)r^$ys($=rR@ z@eLdP=1H$gP-W~PduQH#qnaoT!8+$m%rpbu%Qf1pleGt4*asvhCmh~e^iF4VlGh*h z{Wz7)e8)*}Ju+g|D|eZHtmO;zp$MiMI?rInfhaGAP}}4;E-TID4NsSjC%F{}>q#^L zy$N8Uc6`b?2I7>lJd9jE=^X8x&nyZb$?!`MampZiqIj2gkhd+*7iDAL)I)*$FgQN= zQo-!uu&;of5iVk^EVdJokJz|3#w*4_PWvR&Qz^OvTbfj7SvGqNq?98dc>(o%c9J|F zSNWCSG5X_8k*P@1DL{#o)>ySP@@Rjjsiu#g3sH zD`H#RoVs>oma4S|;zKE~WGW6DK4b`#3K%1+1m?dC@PIbMhyxme?H z`I5=nBBj@s-Dlg?E;U4YdYS7v`$0#ZuZ_snC{-TA_tSduJ(VwFoP}P9wvg*+$v9zk zUHg$&u}y+MB1FE2@VqvBHqhknjP=fCDajM=I--X_Hrj^#*B*DP5?GHYAy=d$Z>(I5 z+j!d6@E~<`%@R0q1qbQaT2t4T&=$YszR&asgNuc*+^&|69@|YT2i&VH@HKW9q}1jI z)bm@+0@yDE{}Y{W5-qB)f_lX8B4fuxhs9YRrFE!hI|G6hDr&Oe@ZN}2$WwElzO>#p zvx*ohb_pRz2N^54?M;HuKLXqfC9r>L^vp}7n`B(9&YN_A)Qg{*u%Tz8n+#=qBJ5cw z2PCOVzOKjKs-s_HtBDrrFZd4Q$ORGs4!qc;^lDXf10|rJ156sol^Eh28*2M=mhFRLF>C zEB^r}mueDuTOGr3O_2k`(F{xbO{~??CcQ6V=vISh$tVdCU+E|vPV(lOCX=2zU;dfq zU9S?C7Pp;92F3?(H?RR0UsKzYclFo2qoBxTcTb8&d}0HGWolOx0Y-Nv#UzEYrGRhT zNg^UKsG+4G>Fo;J>e5q?KWoRHVg^^VPkPldp=T>Xs$Pg+M&(7Do!z8nHDTL%vdrk4 z%0eQu` z+r3f|NhRy}cTV1NS$O4D5CWYL#}R;@aQGV3?tbCvlhl3l!O`izMkbBsC7(r~cNQf+ z>lc-l9UD+f?m4bvo1bFpHiU`sl}!@E8oC)`E_z>M@}v>>q3Z)a*^q;L`04Lgi{(~z zt}Zw6mIJo`jo5Qa7%9*jKQ=>NWACPK@s6*v#D%&>z@kD1uVE&wjAoh`6}k);8+#1S z)X<6<3Hsaqg86IBnY;1n{So<=MpSceqbYAop#@2LADWcg(BS57cW_WDd*pRsfy zWT9KopS-EdWk!~Ffl=WY&@OH+_ZCeLqRanp(^n5%lfo~o^|9N|{f_#1ipJl?Z>NhN zzCBmXT6aq%ie2M$O;Yq4NAJ1(a7Izb&u65R$NYNej3fcT;2zT4&hSNXcTfq6Xwf0kH|03@+4YE8uSYyELn#0GM2dYW~*-c)2_Ah?dC44{8j;VBjl+`E)7dn z0@-2YkXb_fV!J9mo5@D!byuKDLj!7*sN}1g|2BO!+e)u(d>?H(j6YX@8)z*OL;wKF zCkSdu>vvgJkKpdcmM^U2WiFqZJHFX*^+i9zg&=q?7kq4=XB_#I`teloOksIyu&bOM zdwR)@e}HFo2RWIwZ)#m08;SsL*ixl_8KfmOJw5SI`l};tgVJxE>DQEEK}w2@X@tBO zI`^uFwvD)O*frD=)l@m!6?a;420oh9NoWWF@YR;HAo>At+ox}@%QmAwC7vf4s@J!G zaKif&IDETQm)KS5kh=X6J-dF;2~RrueGHjuwN_bm*U`=|=?Cze?hZjD4F2WY+?>s# z4dg{&k<^bDa(@+uhwf~Wl_<==MXtQj!g|RY|Y4BX(>Xy#BI>EY#y6>|Grnp3R)kAA%0dR+!`4 z=F|V=^PYI56L5Kig|(3rQnE@Yf`p7%9)J0BnyFdIR2OPqi+a=;LF?>R)k)A;T95Dd ziQe_h(kcLqmA;XkHLIP;P=5o#CMLv2HvX zIPvD-rJBX0K37wK_?MwKNuNf1s&ho${}Ch#yu>!GJFYq8Ou_ZC^`J7uBNo9$RhjB@ zKD@d=&f7dJ4SfTaQbsz+GfG*srE}Y|98fa^y5*PY&2Y#=#)pWtkA^{Rx(K&@5^&p* z7pT@yo|``F^4Q;8*a|jUmKG&pF1pff>-D{TwX0#c&nu6V%4CgKKVUc|0~_s2>iu7r zY|&lF*8FGZ%adqi_1i{zh^-0!+6v;)!za$VsI&3zX$f4M)Ddy!t3u4K3V`>?g;IG5 z5w5fvw;B>JSXes9nkyh2FHR*ibn{8=d?Z3prF#?K&HpX4Vcw0k{F$E05DAj_EtaS} z=1z1$-6V!-i*G{Pz5wJH?BlJkNMDVPiH}N!O4_0`Nt;j|a|HU_`Mi@<2?s#D9*DgI zm{aWTE|p#D^?P2m-1idmaiQmb9&@*JkcXqokgTFrM3~|aH)fZ#qHjLR_cY(PPfvHY zj4E#eDio}@Fl3xT+Sck}H%kC(W3f2Y_V0b+D}4AHCIsjfEMoqEPxDYNYDIu+gm zYa9{U)4m`B8J#1LSbx?zEyvj!nb%O3jC?Y-WI`Z}#%Pvf!!UbIVXyT1lo&C@r*7lH zpHW0gn8M#?B#+J$xCs<6z4GU36YSTM=(M#4WDl|Nh%vZTDB|Oq)Rhcn=T31vohA>~ z^~>riB6}Gy(foX+rju3m^_m-7S(H5G8W)2pZ-zCHBIMEKXv3=m*WD>rm=}p~#*VF! zUOM!0EZW@f5JwdUzd1i0J*8Vy7vK*6{gya`C9CAgkRmUmgmciD=BSW{IG1UmeMV33 zOAhD=sOEsW4HH{BP1iW}tTX=elUD{Wh1r;5i#36_y+QER@1dv=n(LGC;Wu}RKg8+_ ziz2yQk0gC0B1A6n6iuUXw;aX<={rLY725GMOlOWdzs_`oiD-!^zD7!j+Wv(?$3pGb zqJSBO13e5TD#P^mN?E%9lqSyYZKpC=HbvAo8vtK=E;M${gS`v)nbOI)=W8$K@{i!q z*0qt|PSXN@_40J|0_ksX9l}05KScB(t|vGHIO+}Tbud4*Gr>Jzx8DWDCJOXDbaYr3 z_F}$}Da{(%{k=Qo8hbL&Y6iD;s4Pl8LWGa!z!=k2fe41Oq`sZGV?*8w-A#ISO6?+) zLfZ4a1iYnnoA0Z9dTHA4vRdMiC+9H!`%oiPXlUrFQpbHpg-UtZLciqDdCyGzDByW( zo9WSZaR-eq=Q}T@VR{|HW&$bOz6DkFI^`-&dL#w#ZPOHeE8Pa6RWoJvtGM;gF{g0b z-?OvP)8&@ShW-w^=2;o{WP%LEYCXXik%&|j@^mpr1@$M+=4dH#BQ1k8AvJ9kGBZv> zcDC1j9l(|@&lw`^Ag(zDlM+DeRm9CBq^}^i=GBAtzJo#fZZ=B^Wuq; z1~gO9yfABO8^xapZKL^QIB`~QM;~Ug4xtfMFlMyV;zuSfYX!lvLpwQpGE6h+a#Qgf z#kHVPHT~Ppioa@dmp`AHC5K{g*L2v3$+C&phpB=A{xeL)yksPk$9yXVk{eAQKb(?a zb@%if65CZ8>`Pol+iY>JU&^vV!6w0N5wZ-e>+fG0H z@J!d-ixSb!USyp*eB6Sqy&Xg|E1E(9r`u#U{Ru=(a&i{E`uhG{+Weo=F==ezDrYgF z8}qWP8+UTXDXRzH1Ew^?SA!XN_y!E4?lyQ491;Z_^C;DAH@C;S6@TD>Z@U-Rorwu8$Zz#eO#Fv!VP1 z#M@~=<86&^rF_yTYE$ zH0j{e5uX(_?RJV`g7G$TZ{l7j;(NsOozNldJ#Jf?>)&@1B>7 zJ)yDAsoWG9*HKk3#uh@N8HHtRlv%y0h8O{1-tC~66iRfP!j0taC42~u0vnq4*X7*E z#3y$`{Q$2Z8_ANsjHfs2oY1iJ9#8}~PhlYA$bYOY=;&ZgdXhh}Tm#=_Q|%^U*2At7 z0!@~Ae5Nhc8$P4Lf8h*i5~1{z66$s)wUQhsP5m0NRrJ5>q_s?cZ$Qr=x8WgTAv}N2 zjT%g-#Fe6lhg}s?d3!~KtDf278$!$+T;7^CQY1C=(6b#HXo^J^23b-~`^KY7=ddkh z5&XLm0+j=T1j>Z6pXOypFaL&Ad0_ESJPp+;F8 z+P1r@N|UcgiCtcTDspKO#5Obm)FuZ4{aE!r87=Ft&WfzjY!qxa(~HN?V<3G;O?Q0!%Mrh zY5XbY%(H*H{sCV` zqDOmC#8ZH2fzxr^5@#;elwO8MTe^)-9AXBL&m$vpfUJ_ZLzm!6t2DvGn=-TRt_gZE zM}vBGnqT&K_!BNY^Z|xtTo)Ks&k(2&wY4R8z(0axiSV*g90*h&fjlK$bc8GU$1gVd zq$Mn5$Y7DVqytdDjpzTm^+1F zp`ZSOQiz^b7+b*|yH<^N*HNRmq5^ooMHUci9jv`{1}raMu- zV}sSSI20AS3A_C8ThRATSUKBP6`FnDQ1WUuX{_>XQ~3xLL8qna$x6FF@d6&`6*qW% z$tN-BjR0`<2>Gg;2Ksh?Et|C+Qqr$)xxPPsLXVQ+$-9s*zl0!0BgSg6BwNnLt_fn8 zgb%Ef6w$(t8ZDsMwzJ-g(EyY)MaR08R`pVi8Uya08@hHR`+_~X8&`D`^4o)cfJGsb z!{;@6W1;K$GUGW2jgyPJ(liR(Rf?J*Nl;(T8lu=6V<1b){hR)e;Ko)O4`&Rto3_MJ zsKH9_IUDw6@~O?VJcjr3sW9Z#fIuSGsoOPQUDIgK#c;t0uMgr}RaaH2FX36muC4vu zEy1?>{l?~;wyoCh=%OEo46#2A6q`_Xtv9aAqv)y9NQW$G?2iDYO7X~|xx@H5&WsyZ zu0Z2FV!E&ic@|>=_NX311NF%;Qb504qyL4EY9Nh% zm0hRl5a(p4rxw{bNXHCy{KqAlVSAT9`UE>{xbmAXg2Ao&))gY5gPE45rpJt6dOU zZ(hz>e!`DQjxMY6%6tY$gLW39a5mPhj!zt1wMl;$D${0BeyWc)t$1xP#m$$hvPvoD zu<^_Of}l>pSxA#cVCtD=W!bh4}&eIn_+q91Z5iKJ9S73UqJ3y%} z%WG|Uygix0CH)DTT5D+NJ$h*nBWJ>zSHzHIT&qn+UrO{V^brKO_3FD)%YBiT9u;pZ zXM`rw)!P3NG@j*qd_cgwj}rr=1&L>MEvXC-C&!&fI_bk%|XbezE@Vwns{KBv}^FE9(eLdwZk^QPAz;jh!bhH|mLdcLUknX(T>65#RGN#{t@2odZ&AGzO({fT1&d8f7ZjVW~U~-d__i0 zJS`>t-%G;W6tbgCJ@t<~-Cj|RP|8i$amPnr@>%`oDEbz}>tk`)#=mpktx|6%jP*e7 zd9MvaQk&iXd|;cH9U1o#TsP6hW1-s!u5s)|+T{8x?W;jat*NUJF}t#F$h1O%&$ao= z>~@nzY?s>}pY*Uh<>njo;3j?zEyah-%uD@#C9i)hLpiIl2_4V;E&fWzJe}KUWn0U@ zu_t9R?#04cQiBQy%`=@x($cX^KKr)Ie?0PDUU%erFom|BxX88+zE5kSt@-2{mExug1^^%$$nW6&5z{o{arWn{m-!@%826$V%+;Rm1Cu$j~QM`ecL+ zvD1Y_%jnO|Z!KD^`G<4JN;g9#{}FU4jkXXPCiVI35qck2>+v9uJjOWiDz6^ym-@8y z6hlToul$_7#_b@Gkp>;LHG<<`f&FudAGUBPdcWAxRL%ZE6hJXv+8+1Jw z+d0iL;(j6j6BprOcthcbZ>Hx-Y_v~5q~HPcv!^bEr6;KN+qPW<4xvuBY`9#6-{1 zcH&5`)4sMIba$wDeST&-SH>sUXfe?%W*H~C)?m;dEmr#!^#@=(+V*h5@@Pt{3}+7)L*mQ=NK2<5N0iEkvBZ*K?!A$cySnJehG!{A91Y2xGRdKTuermiNp+ATGSt>(su=*9pZ|Kr% zsBvF3;UowNd3hZWP#8do#+;)VFuY2j$j>MxZ`me^f=X^D6rq#^v=aG0_gg_-j3Uis zOgc!8 zU-7q(wD|qRR3n`m>6ZzVJm-Y_BT#h&|K7)Y=j-x&u66p1IvgPGBC2%3VR+N4rRD0p zNtjl_Q_A*viV*>2u|m&A+u;?G3G-u3i`= z7F4{=NL&u;ki2MU zmmY0PfiDWu)|1lZe}f9gaUtMM1d!n_oJppX$HNKgImV^1g~Hx<}K_^nl@B`I9a(;S`C8dd;l(49_-=6n(xV=YSfW zl9k2$t?J?r*H6j{O=g@EQ3Qp)`uge|+r!n>Q~4+w?~j?R$SOmk-{w>@-y7q1KAIA$ z)O#b$WavLd-kE*CW6cbH^D5nsop1gg344*yE7+TQ*oI%%AF;=L6{$o-u|5 zluKC?^BlURHX3pUK??o43ArDW(?sgwDmtoT>zu}Kw7)XC_?KC=4ZGf2rDI0(zC2)% zBzw5U^Nk`c2t`*4JUS$WBe8)JcX@c(rK-=>v1#8AJ@pNGl!mGPD3D=yPzhAkox|Lz zDv?hk=FK`c&?n}fEAl}<=k>Ot9b!)zk&+Pz+nCYwm1IF?AvGiAV3|te@Foaz`jkbi zcURnZ3Wh_x#WvuT-X=wqqBwPp@X{v?7+f0*HQ5$U+^JnD6A<{8qAd@`*3t?M=?Ugt z9^}YiyD*rV>>I44hJZ%C14-g9VEU0a3}6I1Up}F$-vK4WnZ*32&JNDf^82OE+tx6P zxj*T4cPAv2gHrS4dEe5Wg#V0b+lM zVo80jY*}zYUEtDGG#v>+y;iB=i3XHOn2UTu;@3-@kS0r^4$GawxJ`n6twe`Dc(wJh z8PLS;6o;h;<4qQtT;oEQPMR5|S8wHa47t`Il`-SwA1Rnq%&~)a&hNhpu)FQSz4-b# zmlIRyaq@bx`D^8+c2L` z=aKN6cLC6nNz!S4T(iUpfAcu!B8MP~c$rj_8;*=-lHP#t@86ZC#G`xT)dwf?#Z(TW zmA-T{W@Qt8!<#uv(88FH8uZ#twsX6dpDW~?_pH&0FZH9n;n|3AL#on$1iD5rUDyj! z=fUAf_M>Q}HVI>f*k5ATDA{OyI1OUVWw9mSpb({Hes8tl+>B8RiWmjIvTt0v_BVUE z9Ds>UaUE&=k8k_&q17>!$Q8X2?n#*}tu`@3(lIDSiXq>Du`j)vfLGGTR&i28$yL|O zmk=knG%2D5JDBI|#eBNBK`}O7?N1rMO%^KrMU3QYqZYi;FU6F#LOqF(%V3X^8QGZAsiN zSd>NfTPSF$2ca*m4-z&=A&^O|6YDnbSkj4qo%|2$oc?YqFPyJYJ|F~tDQx2DXjG$K z*;iE<7=$a+%VW^C0uu}hXLd+`wt5H6I#2!ARtNH)?|+hfIqfG?#TiAJ8e5-U8@J=E4gU3U6 zLpzw~ySLe~SND~jKQOy;Au^Q|yY0az&)WWa>CvYRD-I7O+D>UA&dX z$Nv$WPW*AFPPv}@{Q3E7nW^DaDW{f0`yb(zpAd>{m!I^J$kl*gFw=X(dxL7p%@tex z-{D=!`W-A1Z-$Qq)c)&lNYWZ^O(T1xEyX4LYQT3f*F?VmE2>j9Cg}0&ypE@h@F{gL z$pQCZn=BhsTbuEaC%@cGIlZ)nYT~{b46@fLQ@ev2?Op(mksZV@?l2lyzHi&v6dJus zSA1l^>PUhERP;ZfX_=YjFyC+yeD$r-Lak8n7YffZu9?BvcNq`AtM?u2-*7hzGz4r^ z%OOiszJku-ip>%VDrO{Pq6G$~sV2?25uQd7dbKHA%VXyD%NqL0jAtT=cC7rvm?qYg zdqqWNf(ea;z)7*y_vOW^gW3A(FG}&$Xi+OC1PCgAUG(!XlHVoy$|N0wW~FxEeWaRq4(`0KPk|h&kwX2FM z(RzQ@XzuAGm?v7XFpW1SA1RArA`=Cn?)wm3q;4L+th3$EHJL-qPZ+>EX3nI0)Cn?o zMc1+hvSzXD`_t)p;yFTB13*~3}Y}6Q4 z#{=dOU+32p5*8|b{C&@c@0L^d%Ri^D=hI;lBtmjTT0puL*)?(EiN1FeH5sRc;2MJs z$~gzMzT}{FC8F(gDi5J#z~{e)Uqup@a+FPb1B`NO_rYhzDOKZPGd1RG1JQqkKOYha z=KC)`{P|P9^t+lh0zQd7?am};zZ(hA+vG6dv=+~=%lXlJ{^goqegbj@>3?Z9`{khp z;2p=hV64CpM@M@t^Zk_XtjXyTeUP+UBbFl}@z_AcSxE5eVW;sikW2v|3mV3OYpbnp z$G)k_yEL!V&nzB%d*;3*E`WR+o?C8h9{V8S<=4#&J&P4gyr+_QLKKEV_;18B>(&jM z(*m!LY$}wCZt1CPmQ3X>^NO6?KbM=JnCjZkW(=y?ctF$dIjWUMyWbG02;$z)xCLtB z%uUe}Rs|EsvPgrf*fsraTn@&(k89q z2Z6zgtm8`$C<#5`VP!C=lCE9S1NVG?%81NiCW5=Co2QX=gmNqzr>5qng|1zh4R$)L znKAnfbdhg)R#R5r%e+>A3XVQP@YtOMLbjzGcFEu14WqG-y+$_zEG1fz)FA>Vt()7 z*J92Nnj?-(F0&YkHzSx{90*4#YB+%4fbZpv`ZF{!c`OvL%G^|4HajM)NvWH0T>D7i zcPYXy;u2Pq#@i2h|JA2iBaS-1$ZJ)qzY5Jg`9cw3PHC2>uXU(Yx%*aV&svDU5btocm{ zu^&>z!O5|&$f=$C)6#anrO`MHUrAIXd80&l$et$ZN6G>hEDx%bav!1UKF`Ic^^%M> zB2+bjHOM8O{I|GPF~Io-+pCR24(|YvA#1j{3oE$@5O3cqmeP^}1OjB6k!lZ$dI*eN;c93FE-l zDd4++soBEUGli#Tj=GlKzRJVKc+npt5T-_;RVDI$BKS?i3nkXBsU&*OP*xl+O=vX~ z{Cqoa4wyGa+Roo;@@cx!+wk6(^Rc)qlg&7j8XJl-VGE<+*oCJQ=!ZolT8O7G_;CqF z2>&%ewtWOFCK9OA^&X+M-paLErrCgOttY$Hlb)Mk%XM-lqo0oULOfe-N%+?XH8#yc zU#PQe%PV{e0t+Qvic8vBmDS8cfwEa9cg2t4E^L9~W!T&tx#x5?K?uh2a0-eDlke}Q z!454u!>$}2h=d@_lOfWQpwWK>li2%^qfgoLa!!J_J`;}a2c%5dWhXN< zW#K=B6>r!-3o6PVGr`RwY#);p2hwvsJ`vt>`k0#zQ*Wbt zGGT@N;hv_ z3GEaUy1I!!BGC#e{~+CXWH13^W+9Z^?kZ-IYm<>>O-&Nu*NfZIok_=kyK~i*VimoIT^K=%=~!f`0^Gx+^1WV@!|5r7|2R zVx`q|S$5X-&|c*AsLAcbZ;kh{vf@*(J1Z;8o0xc7k5Y-M$*m!0wmX38`jrAfZGNE}Y}&MC>2wuOeB1*)rn+r&d8?%K|_2_{kn zRq|>C8pG!n!-}$m(gH{rKk30jL!O&XLKh{ORP>E3`ZGvwKg?^&9yl)H6JOPNc2DqP zJ^Ea>$GIBUQn`O>vwN`rl57&m}k1E(sY16 zN#ns`+g50F6&CXxUl8oI)BW(2Pj^5w6+l#~|jyT{D_cSovujpc%cTZ|M9u^F0 z=LgsZs3vzhqA^6Of3aA6kZC($lkIIxE=_z}O`+Y2Kgkr*q1z1{CFvm{Rb5kxpL#pj zq%Xf~2oY*=YgwP#O;#lATsi*?jo^>QBb5IUl*FJ6li7Vd1Qa}d$qHlF0%2JYfoyy= zmGCPEb*_&Ddd`~xNo^-w{0rS&aCE_#34f*{qGUa{_au2zp zcQ$AhD-|$z)nIV@&H8IL5t}F(Mr=T@qu;okczU2vHsEs(P9(q`rj@!e{|J{qN~yn%UbS)!2Xda3{u>T3pPLO4b8Qb} zPx>Ar=ZOKAA7tPTv5o50(rCojyzzp)prpo#IayX4fx6M5VSRVb=N0`6C z$~9g3Ist<-r78!td;wT4Qr!&fi}p?YlzwTJ!R;ZqH{fxAwXZo*6+1_Ru$#s&f!o@w z3!zPAf4z0J3n5C$yz6Mps$s*7k)nV z$uhZwjBcv;gp698$6PL6(L-jO=6zBHD!biI5Jw6zR}h$;>ETX6=BgWq3%?*S zU!m9J9=AvF&V_rU0Y(Y0{Q|R8hj3ej0%S0KQ8&Ht_VRJ;XPN=%i1`gZglfPAkfrAI3ekLTMiyJ z_@|;T_GiZ!mWGWfh)8+B=)*PW7fAyC6`uMaBxcJjG&4OolGcQ4BSqJPH8NYI^t$ni z({nyz`PFEBFO|t&hk;X5E`UmDeWl;!Hs6{D6MN9*i2iY@&(;tJ1^dG-jt_zOnc-c+ zltH75hD9sQYq=cS%-Q(zVf{=-9;n@kpdsrS#3Y6^Yb+Hp*Y>Gh4AHUx-7}7AL2KjV z`!F!}PKhSx?tzXKOT=2HHa$ntagQ91AJ;y*31E0teV)jRss8!Zc>$s@2ti{ch=rpo zw0{=`B16{8il#Huit>g4VS9;r-0l4kd^C6xdkwlc-M$~wX!{Wa)p_)Q06pTf>Kuod z(lSLLhBRBG3cd6&$;96CcYV(!WTr!nJ6`~OyGvqVt^BOkrqLaprt`|A7*I9a=*sPqzial0E_aKUMYwYv(cZYe<`b zYPUOOlTO)=jqd|ElSIb#fS=3iv%XS{s4{caUZ3yuRIMsdiGPC-AqhQt*zjtSbZsyk zd9jxG`*LS{{Lp?R0k*^?*<3e(Qg;t;!=!|w7&tSVB+bp)?{%j4dFyc|ZvEnIRc@0I zHI5Pt4XO7xHA(ANsO1_wmeojgU7VoE;dE&c>l-V zdxtggd~u^o2SE@Kkt#(%k*;(Bl_t`pcMwA8A+&&k5J3f%4$?uC-aCXM#Da80dI^X$ z>7WuoO2WIr^8K}YpZnbBdH-`@cg~zSGjnF<%xre{v$G-UZCsrkEjMp)CTWi;e{gT2 z57(=3q6(DO43BtF_zsB|x{(+>TPs?S<~NJF>O6jrMk$7sgxms67hSG85p4LzXZ^mZ zvS41GY9)7PIMy#WQ-O?6$umi=;9;^Pb?il)H)(Q52Eb08< z>|-w=54A@Pbvs4CFIV;ti8Zgpqa+yj*~9a{ou+9U9zQo^9ikyoMqKdt`z;Y4($Hgt z^((05HD9(y#E=IxS9!d6xRiBcC1Pdus!zy8+OLuOo4PmRYtyg1sM8XNg^GiFj4g*v zt?;B|qXs)M>)g&h`R`RUca5UWE8X98z*|+VjP6}ec2_?~;*&u?bzE|lTEVswmkO7??H&~kqF(U)F(f0$vf#lUIWJ~ z2l>BhgqmBzPSWt0=yD`gn3+_L2heC=S0i>D(^Fg%O_PR9b*S7N%O}ZRZ;*Uvhmi7n z>l`oXm(=1Lp5=bKH`n`9pn;4O$zU`cKa#r%{%sOt+m9d1PdEisI%x96m=ph#;mGj*D^^b2X@%2sLVO$ed^LPPk7NQmH>X{pPNs!;;+|qLNyrmPnxvD8{-28UNwyO5K$F)nQn|VXtUU~y*-><*p8~KaAPQG8F7#Xw(Hv49cIu% zSDrqXN*ujD;~&qc>o0KIzzW)zFoFBng7d+k%*9mC7>)|F~bE{Q}R6rn#uIZF< zBzVhG>9f*>**05}6?8}mC=hOTmHTqlfcKQ4$SA4m)90_4sG~X^N@0;|4_7jeceq={ z5akY9xw_|SOo}@#ztXt~!fh)D)po@kE>C*eu-$&M)7LV0Y*RfRhE$kS#wS}nfW&Y- zaAu;n(A|7WbTM#Fb)w^Zf^jAHQ$D2TmRbmx;+%$Ks&q?N%!iYaX2RF6&m=I)-->5A z1l}$ag%OJ>3bI9gg{S~`-@pQz#jH3n&P`9$u!h)P1Ge(J^@}RJ&u(ng<}rWP^nksv z2t^t)uAu9St&a42RHxOZ&sNtwRW`(!>`R3PF_U|aD(rn zw2*4MUOBsOXsBqQDd26KcCF~zJ%)L4`h=UJGy5&iMd``j+88o=Jlh!aql)=lsog#L zIkSeghw;k!=0c@60Y#VtCXRy0#}Cvv?M6lwxw4tXuG#D=+7>yVpW$8@nRuKG{`jW5 znDzelz2i3&<38)9v&Gz@etPlEaNG#-lgOzItEVw)kE3mGs#9*prto!q7=tC$bK4mY z8B`YSE|Tij;_fXW$`YTaLyDrObgq9VIxA|pn*ZdXcCeOvz3o8=Y4iDOuv-wB{ZsFm zD$8)H1cDvD4FtNId5YC=8z6 zWby5t9eL4Z`J?Yz8`YKU70>Hlwps0i@l=&$yvoWmNrsD27pD^RoYkTp^V~2t&Zs#~ z&!||Z5Z2Z#n;@W}|H+yCZ5`3~`5VN}x+3Si%dbDJdz;BQ?+@PnW!atS>t+pgU~e5~ zycc|<)Z%Us!*oWUE)^rvaFJrPekO?4725LA|3RAE<6u5Hk;3zt4lgoJ%GMhTxbO2- zo$ZV)bReDPQ?A;5%ct0uNiuW;yn}Op$*Oq+F-JvNv=I~YS@H9OXCU&mAkHj8a+2~& z{%H9H2Kn;6Lm)aH3ErZ!k~uEF^XR27Qiic)7TK$heSrKp_f|xi?%sq36Qs??=u!`B z+(UQp*;(OtWvq&UN}CG(eHyVdwjBtWXECt?3!bp7Qh%LJ4$werh`NZ5{hKLoP1?g@%hT$Y-V+cG6#C0a1h=x?-11`9y`uo zNX+j`rvEhz^I}M~YlUk#DZoy=OZZ8x!Yf9vu8{$0t6=?p!~7Q;CE2$Ssv7EJD*CmG zh1^);lbu(V`$BodhQ-6;57ZP?L@dfyp5sUpM|~J>Wj1KFo8G(ue~KLYz=&*PUX&Vt zpxiC9YyAw9dGbVMzGHeH61x@|cBZ{XdYJLj1RH$;T^w~w46;-GN88Gv@i{|FWTW?e zB#BPAN0`9Qg%k7?C~wW1ZPtPKGQ1pe1i6Il_(6-_MB-Fd@QT(4lgO=0rHvpE`t9Pu zaY@#wW3j=4j}@+aVYT)2sqykU+vpz~mK!*cUBN>j{Sa7YUcgHor8=hruBG_A+A33s zFn#~l1A6a?#L}$Sg@^cwn$Cq0dDA`gXXGpzi=JCSE+97#91h&jy*nTRaFEKS7TK7E z7D?ZN>FZMtS{PIWjp{N?%#gli69^1@p0}^~RdGiIED?l8rGZyt{YXer$t3sOLd#H>?j(2a)Il@CljRJ@84# ziXuKwXOqox1=mZWmED`Q!f|T#94h+ZGbR}WmDuKt%@roR)PV?Y1>C~t5QytL1aOLY z$kc)2Ay5zQE_5qt1Gz2@HT=;W9yuQc51Jn3%tC{oE>`?>2xQ^Q+AKB>kUui^(KysW zdfp+x1MUl@15U$-z{V2ZNpJ&=By0Rog%xdb^q63pt*9`}y59Uyx!FJ)nPHW42t*tL ztcQUAAy5mx)7Og!AGF4TaFdgVzyesCe9y#H#b)#9X_5VaM6Q{qnI+_HxA@LyTWt@u z4KxS`h}YrMZ4ZGq+}ZuALqG)n9Rb#%1KHb*obdsdX24lsi%VypVx8Nqhi;MjgcK1v zLA|`MEc`@b=qW1sKL1(fW#ldrtYf3%66PQ^;~?r_3T$HVwlV|kr{xpHQ_Vvc7=x!i z?v%(>k0Q{1daqofK<{>bHL+-U^ zOl)_MYjy2~+LR?^I+vj!%F8b=h}g|S(q8)ce2{&QQ!G0KJdp#aT{*C@#Ql;5tZ&9F zp~1t`tK7_%YhCf>qhyT71)vWbv>oerP7<3!!S|;0aitkQ7I1RNxNNYq_7%4qkt2Ed zY>ClY@t_MiA4^#y9auXqpqB5wY)K4_VJ+u1wBwuk*ywH%x z_MApi*r=fLoU4d^yGCcp_G+D;_M}eoZpL=TZ{faziIj}agSzht`W7)07o8)69~Twg zR2JZV^qv9r!)MvI}iU(?;@Ao0zc-}l^D-BO#Qn`(D#*`1ZlH zajr@N{v=1hRMh3Xw{(y5ucUlA@3_FV(DE>GfO=_fXUXoMbm|?2rh%AMSG)3Zu{h%n zUEs_a-gbu_WLrV>__lvbDMiO)+p!m6ce$*1-iT^uo|fa!vTW z79f3b9_Egp&Q;e1-}w?)P)HXKG?J)YI1@|sdGg7@x-a*O>o%3Y3SM^|{lI!=S+#IlppZK; zj*==3uO=@|_NsrpGInmUxFhUqA4lX&EzcW|wkMw8vVqv{($ye=5vt4**DSejlXC;k z=cYJ_(}(2Ig}LDS0N2FTn`^MIVII->JnRe7UMlT&sXLx+XD#wn!rAW*`n+NbQ8S-) zx4E)JED{yF$#q?DRx$E{Q{laOw%2za*K|-<#@=Omey6Z7P~Oj76|Wg19!^s7j?8za zu=MK3WCM|}y5RQcI9YdYWf_S46oZxe^2bth17+0_%KWAu(@e+GRT%9Cc}J(S??y#h zcim-Vs66Je5P#NsX-E~tX2XFvrl9;NKFLn0-STT9y)y55T`MD!UFCXbHs|@bc|?|0 zfczuI69-S3EzTD@TzFo{|BmN+I60=!gouc^$xICzL<94&D zd@D=s%P)-AbuRc=S&l^NbJQ(g98p(hF~&G9Kl#S598a(Oks?WC`R0@5^nL7!6K%87 z;e!l<~R3 zR^q5P!+k*t$8x7ib)E>z`RL&M9?<_-;BXB75!cn0G_N0fri@#;(?+9KUaU`fn&

_V4F)jAym4<=OERcNnxd4`zoxhEkfeiX!ls6E2ZhD?kNVb^wy_G z=i|BF=J8Vn$j$33KF=f*kQC!8qVAE)e2ibe_{b1`{`u27ogWC*wn)8>J6E_#Go5$` zZ&_S^p+F|qyX)`3(PVmBqSk%*eFY!OsnbCw?o=`ik10cvbTo5~(aI$>`NgWOCfuSG zpJt}ZY_!|2cufY3TI+zjH(r4)#0$meKaJI@W@@3ice^m@b{zU1Kd*r%mL}-d0 zh1pDDdwE|pl)ZO{(zDL+OF>&RSZUfAh<<6WL|VL<;bXTTmZi7{G^Sg=Sz{`*IQyPusSD;1;u?WG=jiVH6%N%I*@j@z#D`eWD z>upHu91=M?)Au%Hw?2so8$C3z>e6a1gsH|?mhKC%ewn}Wd_9_|kDaBktbjg(1L8b+-!Pr9{~w(DXP zne4m$EI`1Yr8V72Soy?V;hfeOqq&aWLx8itFtIb9MMEiGS=(k`zggaIVcdJ~OE&7> zNeQinEp+Yr2yCyUgYk51Rzi7MchR-ts;Do@3{ zx86k|7vz~Cb?1&@o+>DZ^VxyB0o8a7%_8Gd)6PumGHfDZ{C#D&-zN-Mx^pRD->bM? ztt`!~=Is#AR?rkV*H&0&@=1ikawyp`#X_zG*7l_6E}h3|NUjMY{!6eLTdH!TO79cy zzzqWxE1cKDK=${Bf|F^-8fPxjc7jX$A@u5x6uvCviq7~UttR72*-@5!)F+!uMr-V! zK3lPyR(p0ct^a!IoyU2Nl$MQrAV5sJ9K*_pGH{sBqr7>Ao@ISuO@;r`%D$WcH;7o0 zEt{{dGLHg(>Wy;VGo=pFw}wYWCy1>Xf*U!-Uwi)J;mVh(6S0xtPPXcHHfU~vD7ziV z2uhb>8hKtcCjUU2vl9lnX^~kt&p4=iMT90ZFK}{%UANG$p}@}j#kjHT2(`V=cJ=sP z>bbB|!8Y=qVewn*>7+0HG?a** z=#m>eSFXq{kQBKSpGi+od!zZ|&glRUB>qx?F|+0nc>l`b!ihuyf%_#dn8eN*Y#DrD zl*2dC*HT2QCY$L=XJQ`qQ`m5QE_l!MHBD|_QJ#E!*5g9-J&WvT!Db_5`bn>{Uww=T z=u`)HRLcydI&tF}B52;XMR`Ra|IwU^#S>wVM|3K^*Ce7MjTl8FLndC#J)#$VwV8Gz zR+#>l*D{Fd%DG6zXXDoOF@++RDBF*b^)UyR^?v-Q^{2j;u}pIB;>D(ZWX2 zVDa*3sLU7cVFq}M|Om3)2x=vM!-0~tP7DzW*`iGH1jBJL3$(H zTPv%Ywh(!8;&Hxam~(V?!BcvcLttE=(Hh*I4QRl|9SrGmm0nxWJI@lhV-VoKy@oR$ z$Z>R5SEwRWucY?){v-7KtCWr224Q-65X9&p%Eq@_w#w&~w%ux>J+_!wbAX(P#*TDe z2p_+D``$=c#52TNRNq;{USp>G^tm-Qt_}q0b%qY{~ z)&}oDk8WUI^R7zu^m?)IzIt2;`KC5!_=0Qp;HiG7;`bH(JnI8}{M2__{Q7tBRklWC zTiGu9aO@b=&Cbi)6KVq^P;gu4W0%FmI7K-L)RiloBC1ZV-cV1_ceU|`DnlV~J1D1! zCe+Qr+mTcJk_@MU0_QJx>{m8-#M zvTijTs?S@q1oNy|E#0{N5PtQJ?r2twVsOwiZ%tB3<(}2gE4R=$)$B9P-0O|H%=;yW z(~=P3?;4soXx9~&Et}swm%Z2UG0}2TlIvXhXk{qQBY{VJHu(ITxz|0{v~v#8^a%#oX8LvaD9^6zEj18C1H86uq?8_|%wK$f}ehj9iB=WJUaVRir4- zW$E-k8c46Dh(5yB`-r0svvB|;jGgSjmK2kc66X}T0d;b4 z^ah(%5)52-^7gs~^;Ckx+~ICeH*ZeqKkY6pBP}W}$tj`)cZGZEyW2p(e3YR+P7tV` z+Vy|BOj*g`SBEJm{O+8?(ZgxJR+T$W_5h%z1qc8DKnXAq0RRa|5mA2xPeeayy4N60 zd_)uCz7vuE6RnduAE}xoG>RhCjby?eGLHoCw}|az_9@31ZBM8UXE~g zuv3J^IL~X@K%CqNoC|=ssJOVSDEKeQDJ~{^NnBP;^1t!~b>#_8`CVTU+Tip*^y$ak z|J404|1bI~07L@-1(=RhRQ!^7G|BIFAmNB6{X>gK|7>$mjzl$@{)kVYwWCk|p^ajQ ze&$0&OajCb0mr~R3EgZJOZ-O%`&g1ce79KAKeSIQ#V>upUW=vrMV|oaV}H^H#-2Lj zgZ)7g5*u?=F6m`486YI2zW8NVhlc?0g7|m8kgvWV`At*FW-|RM3$(7R zpZbI52mskX?T|nM*(ASY2sGI*ngyhP+b4l9exxTsx5(^ENBV%aN>ZAA`G^(+>FVs; z|CB|@7j%UD?ZAT)JjlTQ6_XVcl@%A`6qA+}y(B9pMdl29Uyz9aXS&}5bcg%D`JjKK2k6rfzI1ZLZ7_Y?IgwW6a2S+98 zQ?Lb&_{Ic2=~0^z_?aL@(C?_d!BPHe?20WIL4d5BE>pLvK(mgryRA!4H6_DFV}_>Y}(-6IqP zx*Om@(C5epXVW!+=4h(0R?-594%Y$NqYz+spCEUL0UiQ0l$4ZIlr&USH1yQRsOcH$ zXlUpd&oD4BGBBK>r#W)Jyq|&pJQE$Kran%4`~)rSiBq(+w5JFs+EYK1(EoqQ;P5p- zPYJvL?vN011H|-1B=kgwlVBw&4_k;7K`qIMjvS~k!I6NoJ}DVF1trxnYNG#)1nr3A zcjO6xh?Izgn3R}|f}E0!gys?$Nl!w`byAG%nyw84w?~jT`Kg$f71w#rG3vdsy>!_# zxKD|KH&*}a^f!o?#Och+2YkwL26ifMv%Dpl`VD8G->V+J8$ir%s`5X}epDUbGB}6L zsd+y%zhz|a6Oxcy+dBMZTT0E?!8bH957joZumetg#GtmMM>AsIc-r?&Hh&?~tr8hOV~K8i^YD8W!P z(~iyPUDMoVG~9TJ5)U=$L&Pl&2gcP#>Fy)*-#?1jTA+{{ZY_CJ{|q&RoqjEw?6}3U zK(`=2)x&8D*(c1S*NjBTkyI4JIyX1|f4U1T8hJ7+79X15gb@(tI zj_;N}huGD}EAj+Su5Hx@?e+!)u15J*MB%plnNEja@qs{4FbT@r$s6@;)}Q=QJVG(- z+IW8a)*TlCkG>a|V`sn4w-hGD2R%{uvJmuQS=gX;LD6qabjf$`2sGW9pPLHmcZXwL zI~oUj*7mY4mQPyYYFz`SJ~xG3ZLV-}cfMOWo-}3n;aq(&KtATu+h2PKbRPnx$gJzt z2Z2wUkaS<8(JYN=cJ&P~-s~s4=So7HdG5zLFC2cvf}k4pCnN^%yINn+-h5zfnc5^( zv(ILN%a&zRh+{`>V)l!eR%nsBZLgaKjeJp@24{82Tl>vLItwB(%XY)P`dILh!(d^v z^)PMxmVG!!de8$O6&Y{VayPqU#aosJj$Fjgv?kskNeJG4z4z;0{4PB0bqE(Hssiugv8hlir{`Glwsj*-L6*a~;XIW+ldtffkrd;u8ZT&JC z28%CTXh7b0ITN1pJvG(-mgKC_2$Rtpj`(Dz(Kc5fc{y}a2|5?uU-A@ved!&?8DFRy zSxHV*NTPpgMHB@Vfe!$mssxvK8&=U}K`vhrizp9i?00l4p|_OA28dKaM%GHfZj$Wn zAC0MVloBAd8$5U!zuxw)5M|VV4t~YUsukxfFPinz~d9VeGro zrhF?C^o@oM@l3llIY9$XZ%WqkVN&ed6`@%F`47G?t$*L&-mwaSS2%T5{5jg3<>ap~da26&`L7 ztIom^NbTrU!0vIJPy#Xw+piQN^(L@r3Jc#sV$Xf+tXmnd7Fqg=-@ykT0*8HA?<;Y! z6TXe$rdr!iAZK65?xTGtQHuo+ue>y0Mi>Q~ZKtb2c5_7C;wl{F$eZg!-XMl=v3>cZ z#qU;1Yh&|CY8BITdm2@QJmhRy3krE-_7Q=9YgTD=WBQv z99x?AklpG+MMOaO?ShuIPv7>W`qmF{J)e4~z^9eux#QoQm%qiiu-acG;RxeQ@~s^++9L^OH4{O9$cJq`2Laa7=Un>K-&vee3N2~6*hBHoia3gafrg}e#P zrWOG_3R6aq@u}tFy}c9VG~r*K=JP4E_BD5RPvx z*S9Ae&mM5}i3ASpPjwjJE4R=}#2EF{=K8*{Xv*U|sB33G$T^g)>RqMRWeMD5YnQs< zVlCp}pEqk-=OFur`IONxL@dJP48NC;ti1IXob0w6cI3j=g97`70K3*VuTSie4H^rv zqRjUiH=rM;_N3I-{V$Zb3~c3bG$#*;;aHuQlj~N)mCSSR1BKn;$(SYE+FqCsXpTkf zY@c-_F&A?pmwn>&$2+{{8!Doz7W;cuRuPTzPn7Asz*S&X#qok@XZrZSXW+AhnM1%d z&N=I)x3jysP0iNGQpJYCLLDUn-Qn{o3_As`|C8{AHIvU$;1hos zVqtEe?|Vs$mrFaud~tMo4HA~pYj9~ZU7tF`5;I^d#W zmcOFfic#sh7(=I>xWD~ta?3*iL^~M9-od>o;8twhpZer7y4~M8@@n)m35x}E9XN(F zZp4>#2p+6l`YszOab|S?>&o4IRgK3qXH&M3*^@Y(uTQw%tF{f)V z5BK1;=r5(P#wqK@0|C0B$VbWXL*NKTbgoE3Pyr?-`~z*(b$&2NV5HWwz{G&4sYN@a zRP#nZkLlp0h77B=C7f-@%s^P2TkGZePZiu^Qfn^h*5I=4heJTZvxb@ag|HZDMwxxu zjHWtY4mS_Sr;JaUrcr}_IpNC&lS-cQQZ=z8g%ynfxxG1HswU$viU%h%My!kY3%pw! zb0JdO&*fi^mX*AX?XzLDTfe)#7nr!2k+J_YZ&8(;nvp8E!Lf86 zt{m^0A8+bat%_uCHd#+!{B(SEB9$b#F-u+T}WCdGbD}GP|%~abF%R)A^{%< z5yYKc*n9eD%2?6SVaP|FgayTfHu0Jw8IViGQ~M5VDW=&5HsCXcE5%JFP!!&{tOH|cPLSnafoQhEgK#ctG>^@a2JV;Yyn>Pv9E-a>*F_uL}F>gr6s_YN)H z=UC$dTzsVhr;w;cq;%eZLKi{;b%tqraLgr*(`2?Nqh{(eIu88Y--u$o{fCl_wEdpZ zYSb7sCtRcgvwCK=aziWX{ri#{TwEW*wE^>8F{8Orp6?s8pZ0yX=R|ZSOgvTQ7Yi)> z@-R46<78FL#gd`8gY`Xmt;W>mM&{+&waJ620*6IctgE@nq=;1hl-jM8e)cE|R*I{` zb^cBFLX6iwEkxu=93g&cM$q9aBgqKfk^m9c+FFx=CAq$GSKsk7BY5}^ ziC2`wz&gr7!rMLCCv*zM4uOVLo|#83X{@zXrxjJ>MgtKUqlZ9| z4s>Y9yrkw$`0YgLuMfZ}%nNlC!*`au9+R6_b1C>-<%KWDo-K|?5pPCMY1LSUK3n_prJ}jZ zrDlE0+ADcuqHSa9U{;#KskCI>cMLa` zRW?+1z#Ew1JB%;$j;tNVRhFQPzSP%C02tMGS@I^6RiL#W0uL<8OcraguXg5UnNoZx zF7bYF(J1z>HPs%zwA*TkXLYWMI!F7AD7RMAi)D-(i;LVbSeB7FH5C;WrX{Z=U!2>u z9JtWX)FPS4G^A5sQrl{b9mW*Cd9&oe+yePL`_b70g5zwJXtb={PQmdb-)`7$HdmyH z`XP*=l&zgrx4nF8FsZwZnA+i0m-K^?oF+xRmAgpOO4I%ZZEY=i@#WerR!ngrrC z?B1iPp4GG6v*ICqolMu|%xuI3+g%JlFJiBdCyXF^Xdq^m0mVecP>TS`>WY!IZT*9V zl0)EhgQiuCTG@6U3ciRj)Z}D(n!3S})f{FGdo(iViuY{8CmUsDH5c>E&W^hax((=? zwVGWVr8aG7L@Mt~9s;)U$AsIP8+{$d;5xZlV;Cii9V(ZlcY9j?Qb;*ua{~w$%EEri z%jQ)OiX0aXmsZW(u-?H0SaTX(%xrXV;~57(U^Lt(S>HdU(O;LLU5mm#uS!5#NKS1z z7cRo!`6*?cOg)f(f0WUPaSdi;+}96|>(x~vPP6eXSW0zvlnc;<(cVM#IW+n#R0in4 zzthV;_r=JP!y;HUg(?4J*&JdSd!r+GQutvP>wX zYB9mKYAV-4%$pXFH5gOuMeG>XuwIEap?W)Lm$-XnQoCFBTmJj@Qwwuu$2Emqx(eMk zYUI0-AEB_Fy_$U-EdCJ4zO^EAr@boW;XQ7qWmxaBm`u(LkXIO|F0o9U7!Usre#^$}hkMdGw?)e7Qm4#5S? zVsJbDlX|xb(VyE|?$j0KfRCcX!QZTd>tw4!r1IGupM!a2?sDJVG-k&A5*KuaI zc9J>Jn!o3}n)$N4`LS1DaEXJ(k}1pQ_Cr>DOihHw{8`a{{YwbLh&b4gbaQQW@In%a z@1EADwW7+FmZi}<8(x$sK5(}T+1mOjz1EDmb)_YCe!2_2c><^@tE>Tkjpe|#UPjZ~ zZoS%thrk;}hXEt$`=ot+C2ut|$(&0wf}StuDe`RHD=FORo{LbD|3a~3Z4GzuAI?$vBX*1rUcfN zd*uz~UvTLq;B2A;-iEx%!fspke-rHKhQK>r(#@TV9WiMG4H^1gsV*KDaSW>^=-%e7 zGfzr+>UV8B?LEw0nR9dNdum^dTeF6(Rx@Fsf^DBxqjV#y9J1@>8XCoy z_sQi-sw6f}8DP$UZ!s*u#!byl#^r_9$4C5eBG8O%%g`Z(v@;lSQjN=-?0Yr-9Le>UK8Tlz_SJqywWP$mSzN2r`{297sG&W?hTd!C z8*M1-6)`(;vG4|V$H0|Q7P?|{`R!^C>a@4D8O7|HbB%06s`Ql!Bku4*YTAkPFL|b@ zq57eUMnSxjqpf`M8HyYxSm9HJ-WZs6MHvJby9Q0D?G32IM=eR29|F#beJ1tK;~yDc zZAZ~j2)9Z`V&(6)l+bErzFRc zFWg$FHY3_`!#WJ^NZ8pe%q`eM42cU(1D6Y3x>V+l$M+@IcTbr=-}vGaAdx)e>6dD* z)g+aNiCb>O?o^_hzHWGt+25IEab^FV1vgU*!WTEbzz zgZolu7$@+WyAvQ+roBB2sAu{M?eK~Nb-}(q=W~YEE8G0)PrqpxeG-+~Dzzz4cEGB* zvBVu68~S*?_jX!S1>QlVnKryFV;LVXVuP#NdeBdcw zGJxI!u@$SDDQROAknsgq1o&y_CV`2yGH9b9PAV4_5*Bd?oY_6qc=mJ%bj-?4uK8oP zKs)hk$+ZUDR8mhV42jV=T}9RDOg8ks6Y|x$DLxd`v?BKIP&lnHd;x|V)YwbllTyiJ z6??f$o*VEoDZ3(~4qORZY1|1w`g2U_@47^__O^FaByEAOO9&LqzlOV5kuR)5ESQ(~ z(P_R5hX5Dj+wn>0*sh{eCu);fqR(8d4-5Xbkod6Y)AXry%VnH2>bP0px5siWx$Qhm zd6j7OQUrpoFY(Q|6nuOkfXQ_dhyMDwNwLswt28ULf2~gDd4Z$9WO)Q8BYL=*eR-mD z2eUD?_x4fJMgZR%I&8?M#rH9cpsUm z0L2^^gV=Co^_3HdJ+Zf*mw?F|5psJqzJ4QyS((O9`u(8s(-uhW9mP+b6-`VM0;9OFAv-?xY zp!`kCaQB_MOEmIZwIpe07WO``mG0w;%cc$%KAM%S_@a)FJqkH!{IqH;QKAq}l!CVJ z!QfNnMUYF1sfPfWExhQA`MQr~*=d@9Gd9=`7MvCr<&Kx`!1{*GJzORaW;51pd-h63@R<0xpo%s~;73n(aYSis zmlSGZM{yIqk}=J=QEVEXm&aluC3oR%EvlZFV-4N8$5@3IW6JSf-gDz|y6?%p-cd{1 z@D3X?y$fDVrOYDRYV7=Sy>XS$X@xE2z1tG(WsazMUI5BVEunZgyw*^vg|KBwV_Ok& z62gdooch|Jv%uxuT-e(;BOQ9B?s7~v(;cbJrWLsri4V{k^84&dC#_{$XHjEVvthYS zeCqIpPW!KI(l>Z~8=V}5j?ywAR6^IVBJ4x`poIc(GqUVmbZGjQ;L zgfDF6-@J|oj;lt}lv*#r4_e1Jz6{qinOJ|kNdBdfw>(pX?bgB+ z91BhoJ&@kQ6a<-{UGl22!TG!#whT?RS1K%`${F3N$ay~^T^~8#y5>^syU4m{5Mrt! z9FjGr_wLNhpdSi7+P|Wimsb(hekXt2+?-9_@sqM-`UkvI=^=2*p=ensEvjUaE_YTx zF0wDsf3(|Qp~q^xYmPl$w-NjN5ZDh}##9|}&wl$}RV6v#m737uE@}08iFQvZRI#>K z-Dvi@P>m}YHo7SW4{C|3XI2Me?Gtwz2v1_4*N zlgw1~(;*9m9;yrPV;@2Wc4BZgZjva~5t}Sm0Indd}eZYIm5*?Z&>Xvy6ia>G+BCptYBgJNU%G zZR5q#l#Sxtu=M*H8$vC)ty}CbBPzCumd%$?yBU4>RQMjeFW*zug8se~nhC^f$|yzN zrF@x3F}AE9b_ri4o(M1xnCw(!cOW8!+`cM)UaimA?jIYiR46Uq=uy|2p_-heN=4%MU#* zq}eWPOFz!3hTq3~@m(;wBm<+1OirtYdHV;scze0xHu~v) zyhjDODO{^bta%w#Egn02uF1MD$AoKB}*x01fITy>GJXRI8P zgXg58x46-it)XL|=X=i;Pp-Y6nKK>wPR)wU9ZO1*PKhNgCdma7 zA{Uxt`S9HnFC`O8Y^r%0vi!YEv5n0@pL1^utgNkRZQTAEEl)^O#OM@!9VwmsAjgEQ z+dj+{%8IF`@?PxXP)wbwM{iZn@SyZgoO52>v)f5Rn)?YO?lS2Kl@|Mk(CORnQ->_b zheJMn(YNl~Dlxrll2>wUFHu*hZE4GY43V1hj-xZ;vUJ6c#6J2ta&Zk@*sY%`yd%7P z_d%{7#XwF;ps5ptH{9QBU&;z2Z;X#YXZbTBM;f;Ibp%gsH1%-h)J^Ak+!<35%-Gxp z&HH3Q+CB1$Fn&*@vXrW}sJ4>slNS_Ai3!U!eGk+MbRFN{_jqU1Q&TFmBk`{%k3n@$-WbJ>&R`ew!E`0xHWO@lUhGE zi2}zP?y=gjeAYfEcXGb>j+3~B{6-lTW4cuHDX-}e0GApsr$;@NTdd-G7#X}LDbNj# z@EuEGGnvF(RhS0%dpN#l9su5_fg8*#`Bxsd?F%n!vq2g#u{iJD zU0QWbIw@Hg#yh`SQX|^vg-*lqMpX3f;Ny1Be$#M{OpjSY2jnD-)jbY{d385;(JhSO zboz>hYWG*Q7kxg~Q#*h3toq7?=Mz#EU!*rH!0QnCY z@U~6^ygS3&-dw!E)poIQ1fCgCH*(wwJ#_eS_Pdv7@*~5m^@*PwK7J;05`5){bcA5m z{4EbY%#EI&3Ns(8ZK}Oo&UBL14kwVdhr>)1V%Iaa(~8)GcU&1$dB2i*?ABkA=mr-X zaT1Pc#Wz=JU_++WOMGd{-bWRrHprDNC#1bRPDBi9}i zI#ANu6nPuG-`8J#-J4^=S=-_`IPGL>dut)55*tv z{Vy_HqA{`zg|sRaHH6OSEyxzJSfl!D9yX`0!u#>p^`oCTvdkDspV4Gsoj%}bEV4I@ z2!*eZoaOGE5KAXo-{KbVy0GIHu_d{F@V;|aiYI?7)zgHfYxAO0ZSGi8$vCT4Vr{C$ zaA4GK@5hp28k(-PvV4U6-~>@PYSwySwm!p$ z4+ZIT6|=|1p0%I*+O}g6ZWVjJ8|&oc#w*C(R*%+N#~fga6*g8%j4Eq!r$d%%uMS_K zZjOtKO%`oWA8F-u%_P27!p3_chpa1C^QK;GV$ub^2?eKfd52?%YXTGhz_Tt1ivrTu z)wM`Tk3bCP*g%{L_|HZx1yB-DJ7VC$MtlXJ7LyjeBqjxdbwovvt+b(h#D5<_Y!G2H`sfDkcQ9%qc(#umRiv zICyXZ`hW_c3ETofC#GOX38ch;OMoc&M{qy0z2ymq+v`KU5$+(=5CXF40aY-$CjbL8 z@&=RH0sO!c;0|)200Qs<&jfeO{ZBeDbX0@uuHGQv@Tdkfwg?da>Ew2lIT%lMB(0=n zs`0b6-*eJH1e*$_AURr+wN}g^? z{{-B;{|RW?x_bSI(RT3m`4doqxhnq&fbITI*4H5}4!@e@sCobZq9m0-Z9u3KNZWC8 z+QAXFSK*%t!6T>U>Gof|>#qMTciq#@z|hTGl}FE&U<-fTbyqvi|Haqya`isq-@4;^ z)${dl`C~pHG8FEqY~yW1sKJqvw;XPH{k9?kO^^kBg4%#4)c$8S|52;~2vhuD#p**` zfAVj6Lav$;ayW7)Af9k{V@D|1xu8WmxjFo9K3YPA9;nlGxVJYP<_dRn_?3j_cML&= zf8ihh&DSFUSpOx0`ga7V+aESzY>}+})Pd+H?u+=he>Cp+j^b#46$*Na_dygLVRRoq z;*lO69=05XnSX}CGsjV`n@3@)qceCSI!XnCItlLBuMrFy?2+u&5%&flVs8(|xPoT_ zo|Ta3C+B5y${&vS5#J0v|CW(B;t(wV7w0I?A7B^&#~1)=_&*#0h5COZ?x-y&33>k> zhs0OGYJ$hFcHP->0fw+dw?OMy{HKp+)p><&Yi4 zf$WpuL2(pNSN@l>C>%WD2={+uk;6Tm9Gw2lnkxE)+;xt4U>?V95Z>T6Y;GVn(;I3B zG5`W7{MYb4_EVU^A;hS|95_Mm|91UJ5T35TE;YY8h0yr_&e8I6_TO`- z@NZJI5Ga@qddFMc>xO}r=I;rN@;Ce6gsB|io_^O{og99*6y49t-}uc2YffPYwYNbW zO{i2pP*3mwA#U`W{qN$`whl*#_6zN}->0gxTUzF)zl<8lT>0gxTUzDlgUzF)zl<8lT>0gxT zUzF)zl<8lT>0gxTUzF)zl<8lT>0gxTUzF)zl<8lT>0gxTUzF)zl<8lT>0gxTUzF)z zl<8lT>0gxTUzF)zleV=zwb=Bnl3Kq@VyNh{bdSX>aiG zI-)@E7l_{cf0y6{#6j$)IQU0^eH@kX6Ng1{1a1OLIhc3Zi0zN|%@jN)tg5 zk=SoH0!kDW2)Y#!5nJrv3~t@~{P&!D{x|MF#=B#@gF=c$ty)#JYIfh8RWpj^nvoRY zpWz)4mJt(X6Rx{xq0WNUwyWb3<04W*bymm4#wXjZw$~kR+!o4`%ky+~#;c^n*z1m; zWTq47<*VbEkQAX~ZAvx?Gcz;Ov9>Xd2oE)9&W{WYo2w&04TKOYCb+3Wr}uJrVD)AaeK2}!Hwk!@^j=9!t#GdDMZ8YanW;!{Fb zo5UyU{cK@rL~>XXYdn}#N75n$N~WgR>q2LLj3O@aSF`_gx_(v+O@#sfvw4kx6EVjp z7HUZ5V7yt$MW?`DH-xbgLrtR-=l!btvtHuQQzCy={fAEc`t$e$e%=J{!OQEP-|+J# z$Ho2XN^*)*8VvZKb^T}UWJ%o9JimzKgw&+42&XhSGgR;A!;(|{BL15Bf9Tymza6Uo zx;Z@T*Mk!wY;63Eg@?_Hh>eJYXC%X@$m9J?v~`4YWFe9@0HRp!b;%Z{uw*1XNVN4z z2xmpEfe6|dN7eB*B7RjRn~=>+%*g>i&tUwsJy@#Y z5HI_y+P`WMUZ*XbR-5b=ADIAMvNE?cr&!J-n^{mSt;uk3=R8Xt3Vf5z=UM9N{H$!R z`;Ui%{`+GVb#;EMmGNi6U?X7s|7UH4#=umKpZTb(^J@XwO2+$Rf`HH^l=oj|#}rQB z{BaQF-|zB_SQQ$!#?3dtaVcw6L^7BF9LY<~oXKP-OB=Y^$=Td# ziM8|J?;a1GlZ?q;cmCh6yE!^SSa>8W7XGl5m7EwGx@P?4czM|_O$bYstPQuNKiNxo zLKrLD_OF3h*;rc754T{Nm|KUNnONCaSeS%{heen~goT>Tx3&z8m~UzQvo*K)^`mQ=FHYTRJ;BTj}bAhuKCZB*lfoY_TLq z_0EeBObIGvolmFy*OF~!uS&C&X{C7`UFi*nJprX!?(vO?x{qLXh zV_>c<$y3+-`7Hkk_OGYvjPncI&@f5(y}fR7Xj(+L?w=P~|7Nn@53{heh?q|y110}xG#x_5|3<|Y0dPpFrIoFjCXFC!wE}>mqdpCHKfGQB-lCu=Ts-# z>qaIe#OeI?#&l8=bVA|4UshPCWG?2V#fSeXPJhktzkX17L=x+7Gxzt${OW_w|KtPz z?Td=AF}JifH?uJb4GW`~SVUMcO+qa!=9@%PY%J%SG0EnZRuMm^^8fo6^>2q0W@AQ< z2#*Xm3AKp~GqIom1=~=f?TccDM?%JUrWG&Vi82D*e{O9vOGw`1o_|FXdX9oT= z1OJ(U{~yf2UuY*JDYDm12Q2fuSUDCTh?Ty6KF)5QPUFz5GDD&dOT(7ZIM@L$Nrn@+ zoUWtr2Y{?n1VzF`!ko~sr9=!K=$9LipI!z>P{rtm!^HVh( zfJ(r08Bm`Yo*WhjSA&63FXcBD3R&s#rI%#36pdFsgUWj*EX@4^4v7pY5c^V85cNxm{(PLA>a)t`(g$6wczQvH7QKO){`$jvKSZ=@WO^FI{{aHUO^soL$#4rA<&E&veeG89R>h!aIL_GFuyoo7GemyHOcAQSe z`y3JL^6PqXn*XnRQ<4IHT~AE${WXWtq3*sv+b0BoVa5g7scTZVrS3`f zOASiBmii?~BE4AJLpne@SbCK-TRKB}i*%lJvGg(NlhXCl7o~4V z-;wT<9+G|ssc;l!)MaMLn8;9M9A$iD=rWNqNiyqYaG4^RV={c1Mwu%zoicqgFJwN- z%FC+B>d2bN+R3`gVzObfY}xg)J7f>YR?61Pw#jzN_RGGK{U)a@rzK}BXDjC>7bv$% zE?q81u1Kz2u1-!UcSr7t+d3E_Y^49XM^2_C;<=4vZkUu1UO1?$@w)}wnI|T)W zX$r;)_6j}eYvPHCjT3*L_+;W|;uPW>qCGKy7){I~78ChIA@Kq6jiREW zuA+_NGDVi+M#W;qYQ?LH{fZxzRFzOAMKG#8X7VE_76zjC-lb(TmjEtJkXcN`I!lmwu)`SO31jL<5RJl)*lOD+V8C&zVh|y>)iO>}PW{ z=D5wtn8Tg(z);z6ks;ggm|>TZyb;AH#^{hyJ1UJ@qEYBU^mk)vV=H5p@gd{ebLHmR z%#ELWY;L!SlF4F|G!w2#zp1*Zr|Bls2Gf`G^yks%<?Hj+%#=A2jcpuRPy*{)YL2`J)!b77-SQEku@TmR^=yEn6+WT3K5qS@Ep~t@W)# ztV^uBDI|(7We4S|jhxLAn+-PSY(Cmr*{0Z@wjHrEv5T?e*gab?XF>MRUdcywXkqFIYV7adz9cF=POcPMvwy4YxO^x~6?UoJ6QlC-35$p=SU$90Y^ zOJ$b2EX9}Ja#D4|oDMiWa@KWT<;-<{1vd4cN!Z!Fhb&RQ;@ zE6}O*a{9X_YadB#)%>WU1uf zWI+lE6sMc1hN;=9{b>u+4yKKzQ`66^p0YZA_02Wtn(b?zW;kb*t(9FHwzf5MR%TXa z|GLHNO4m!RXRdGEptoVmh9?_cHdba4vtqJ-+hn$>VAI>pw9SoMw6|>BGLY?(&COBC zNy_QoYPa>sHrZ{gZMU}1-@bqQH#{7_o@22z*pBNv$vca8e$R`{yS2+|*Wumr zyW@A?&0myXSumv_qhMf<*Pi;lI(zZGZwprzUMsRFIABe_RD9c3LAmAaJHADexw=(zmxwBvuApq{u= zMk%W**DTL1|5_1W(O2nL*;Zv;RmIWb?BYsuQ@MjD87JF$OL+pm3BUA|`l;M%LUn5O z^O}&FyQe))x1OP#;ny0}mei@$;q_AWYwBM$L^VK0Qo-%B?q^#Y?HcQvOq(js%{q7R zJaT?lGqHI~^Y;rG7v8lbw!FBw>f%7_%GRDsftR}4mbKjydI+yxcD{V+%Hk^*uG(Kc zcg^@V&a2pbrBoc#F9lP!NJ|55aG=F_TY=FiRzIuEu#4|@J&C~@fXi=5#p!zC{bU)GK| zjNE(``0B}M(&+csJKjutQ}Nc~ZRWOsevv{4EmvOkJpgc6FHNv8W^>DTXCh}s_5C6k&WAO)|&16tIl4#H~0~? zb*D#X;0HL3*Y7|7^dl3VjGP=~=aZcvBNI1%UWgb= z5I<(p=zM(($4%-5{szawPPZx~cUX#-Zk`&j2WCfO+H5N)%{k#InDy)9XD%5Ubq>7Q zviC&oKX%#qZ&~^No|Nw&`uxA?@;@fedsewFm`)vX$oNBV&+USq8%{Gs)y`Mupftp} z&Hizz|QBP^~Kn4?)}&o7T(~kfG}Js+->}^(mRy0N21c>^&)PFl3%TuFE8Mx z_9E;L!XQ~DUv!`Zi%^Kg+L*k%#oW|aLgfH)&L=TXDw|rg$Qi936Z81!g>n%h;#Tz{ zsVuyHdM0*9k64E{WYNC{avLbz?ZV*ha`bs8lFq=6uMlx_P!U{&%4}Ma1~==zfE!Lj z(k>zCbFqhPnx6n`)>9mg95+!SFj&eLbY_-d#*=tDA<+k+&KEM^F} z+shHUGMlD_#mfbbm9c`Kv#G6Jad>S8lk1Icjr;vlvs^+sT6^}B88;i7b<@c8oTig6E#YY z3AiEt<)p^L6zIiRelrqlI9<#SS&&$I>58KID79GAH&sX@EG)qq#k?s4c&#&fd**ud zHeJjYr3k4n*40q+KED-G54~^YPHIM9o?k2G&1e>J9&NsY#O@rWZsT7wB6G+DnSCAhw zwry$EClX$fuHQ&1Tbq?dO|+~M2F*3T5Q{YjF}XokkeI@>7XBa(Z|tQ2Uc<`(VGz7! z`;0zn-Wb-{jnJLaH4xS)h0_sbjMp2ljK%7E5Wnawfd+PBeQ-v#lyuMsw@8v`w@R;yd5-6A*~ZYYCp%Z#Yl-$O0^EPQ0j8qMg%kP8ta9c8Oyv`2bIqI`W?D*kFfJxO!3~{*gek~))dyxW6YIWtYxgT*Er9$&}LIXAa^sa?TK;3 zd_MX-T^PI=7wmxbeMd;=qYsU7UR(_|SIe*NAgsfv=}AJ`G|Di3Rv##j-O9Bd%Eq!? z?hoPoC-r08#O(57A_0SRVc@#rJ;xe``gfv|x~2pMLa7Z{Lb4b2}(LxGHC zJh3ZCbTM~ZIeHiV-4oKwfu7@l&;cmo4_MBxTnPkRybiAedWgzk^5jN^LDQKqmsjdhQR`M_6_ww=t1aqy>}h3x z4}%11OYt@sDQcGjkN9NlxO7!wOGDM zn-vk=Qis8U3GS)W2jlfs9j}p=8M3Oiy}gSIjbo0dEZwV9Rr;Y^-N3F>%Xwg1g~{)E zOHWU{e(S*m{y?)+LBS30^OJI9PtD(GvrYyHjNo@!3Nam>1I$9m)Tr8Q*kaLATRGY_ zrIXZg$Kk>PtogjHn3wXg&yl%Tqm12)_^*CuybM2jO8>2%dFrc=k3}8yRJTc?c-^NZ z4lE}M_rN#r5~oCCkIHLwf*E(;vVtZl5Hxdi?4+Q|@(=nZW(Em^ZW*J~cf_$KC3Al7 z#{1}Qkl*#j(CcFzhsRVUc_3e`r*1m)V9~Ogo4${h%NS(5y+)4GJ#|lrO<`rz9`9~M zyGiihN(H?mkBSMxAU`s76stfIHMp5p|!$ z=sgYYS|%SvIUB1L22r@q%^KXWSgaAGvRXgh;8jCyWb$YkK%mqT>`EwJZ(l+cui|13->li zKM=Pp3a3@X=^wy(J#eiTiOEDqiqO7u+$_3rJz6IOeWdGyFyPi0=MnZGA$QJ{UL?qq z*hwSS`t;)UQ=^$&;>L_{zdI~kOCEhOG0g~=MF^AE*^G93VrPKx9=dsJShW=-#EzR9CdDqTN z^YYO3a}Nj=vsH{3q%kj-w^$X|F3;t=amE9E8~MvG>dHW1(9NEj}e#9l!#RDxn4E z_$6sp`tL}r=2~WMY(sx`+=Cn>agnnj-D}+|eG4xYBR|2S2?`l~OH?9sn|%Few{|R# zc>3PU{c%f(hx(nmyPw`Hul#xw6%G{G<1ApcF2U$PtK(BG`e-gj6ZgE zC)~-e^$U|bKjDkH?3oj-k0u+}KhuX;g zLnh~sic&{%b((fAT&?<2P|8`aK|P>b0n%+7-!Scwow(?-cqFA*vYE}OSCO2ON-cx&bMJDF6(|bUg!!z1cI4Q9y+^-;G)!m9_xeebt zUaa>`oDsI7g3Ns6KX^j1S6>(#c6h9VYeFM(4JI)P5GOn4R<#ezoU7V3G`5gV5c5E8 zPOua60!pwJAdt^u?iw*KN62989HmhO+{(3L4vWOPu_=3Qbd-_*08Zo3_+3I3qCBZS zK+7=Ah*g{-q?rz6C}B<){g*YP{3fE9zfgm_l*v0Z>d3I$;Wv^j(N)9!=kROyTP zb~~`@1!QW2FxYQ>Ah(KvoeZpdEo3Y%gTJraBM{P=Drg^@#ss<&y8_8;Lcf3ru1J() zCJ(yL>y8%lXA405YzIw07#A>kC0O%jBpP(lPK2E?43yG<*ORHAKt;ZgiB+3%vm`>U zrWqY*xPe58`NANHi7A0Sbr`~VbCBhou~;>kI_M3P(5%5} zZGI~Z>iL6>8FA8N28Gl_iyrA9oex45Q@l?#BLq7UifsjYFOn5dgepT>^nw0PQe!a! zVwK_7gv2UgcU}pD6dF9SW5Amhia57%Ew*DG64Z$#JP7qjZRKSR;M0eJ&NaoGL_I_; zZ**X0hM1?acLc9L0n+cN-Od{5B$FGMFX%-Qd+O1C{A>+&!k@@9#sz$|UAu;ge;oss z$hd^W&b)%e7g~b&6b}X0P;Xr>=FE80?^y3jp1am>!-La;O3U&Un)(;Km*^oc)3slz zw$0f+$LqaKz`<5C;^XPk{kYatBq2k*Ppuxk4V>)G0yeccAOx-5^+tnpSA)xiM&E-z z*a)oTGn2b_HIus!N!P-T8Q~|x`ti!^ElSwpp8f|T*~HXH4em0PwJPUd(T_7XnqE4U zskD(cJtSP-(fx%{@L@ zh`tuK_?4WLF7>mW@-0lqBV@wRI{O3Vaa&(xbsCHN3KwWU2ayweYmDo;7#^Un zN)QHAgqZ82*s`H+-D}@FpUnukuz}BTS-G{)nJNGJ#=>*jf<^5~RH0d&Y=US9nj8G8 z6my9!m|7rj7^@{&o7aTY?s1v`LK(=Wi(X`eP@maJXyGJQ^I90(5Q~*h??w_SWfynl zkgVSbO-aMqbc+$Z)=$8BLi#A?b*=*iIgq<)7#HjUy><0FA)}4SWrKjbkcWzf>d`)+ z)A!|L-1Q1b5MIlsZllzI;dr~uwiAio@_~;w?6d_rN|V6_TG&mX9jo`kpgBnNku+2c zYvwZA*F45eDHm}uAh=*pj8)MI1c4=%qvCNT^E8{0C*?1zQg&P#R+~~j_1{OyEtK!=jrT`reuj5kTsHMl`(LSTpt zXLO)Lz;$wAH-mou(D)JP>J^U5MnHD@iZn`DGDzZ(C;HN^E7YUX*)VqA4dVUhp-y!S z-xt6;Xujz}x-MvM$3X)JyYeYspYc{=$<)3R(g*Pd_b<@1@~@*<6OGsewg$*R%lATR z`&&?GMBI=#m~9kvYwm9ge>CMw#>Y*{h;G2 zwHwbD-Piv8`SlxS`<=ACz#z+tl?o16{djqUr|(^K0EgL@r~shqHI+#T=}IbJt0e}# zCwA$+fE!V5?6A5YaFU=hHkdH}_{#_rMC< z+ALXa7|0K<>qs{kUnxR{t$(v&I)i$^o=uN}{Evr6b?FO4j)4Hu$@J*6%o*GkyQsd#^*Trwia< z&a5WBm>VvUXV1Gq;lrAXx!GVuX<=P(1#H8wHPjCpT*qXb;g!MMD%FX^0xv8_`v8*4 zrf#$q?~_+}njKUrRPF=={%O5Y8v0zkRo#BnWBVzPWx|8TK{E;YER zj)7odN`Nn}goR=xfO#?nBJUvR{iT&Bl+8^vq`Ex=EJ zwE35#H91CfXM|1w6I?n-?+Ow$oCVAJ0h{LA9gF?83~z!_$RJUlm9R%+V4l{t3QAj; zTeW7HmV?AahesV(&JApM8%oo{IGxA}GPMeCcrB!p^bj`Ku0~*tKLMQ=K!X^ZCw-8~ zmj(+%NX-X4B7F|AR*sD2kXN`QOlg|p8x}{!1-d8E+N$pw0Dn}J$pv_ ziwIrrexoYU^en~n=NrzLM0t7d>;K zi+Ph5y168Wz1C38t#6pJOVxQymDe7Z6^zqldSnc)AdCfUX3(DC7ynrPj#wxXC*l7Hf$ZO+FXep|mP#{7On&4+j(BphtnJA>c+PMf!euPFO%{f;(e;l4|8 zkM>8*Qa$?i+AOLirF3;K$-3>mkT#iy#2_nnzt(1DQxQEeCkoLbq|uL4Wd=MiOKUvqPo>hQbD&9G63oGE9RaDOOrE~#XNNx zzPuM%KY+=bv|hludukm3XzgQc+Dt8+S2cYHcG>(A)2u9P9@AB5f>Z!twI5+5avo6- zA)5x6gFBFlT?**Ym5`$}2NhQULKgrW3J`BvIr``l$ue6-uZ5=1pYZUNv7o(^$dBlO zz6O?ZLLE~;Dosz7L1LKzvT1M~N-$QmmTN3+jDhZeHtog3#~0_sB-2W9RE{ETy0D>z^o~8}G`jwxnzJ>yJgF zgVnFf)%A~u9SUAQb4!+c%Ei_^gP@q4vWbrbl;zSp^XND(Q@Hy9afEv4!{t3u%SR4t zHlY43?^^Yu%*%q5(~JvL=~rgGNLTn;v{a~@wx6wM92-My0PBDDK_(}%A~`E)&Lt$M z8NEN;jjVjtQ86O)J+mU~)s^nEHfTuXnIXBx-99-M=e*8wm-*KW?woypjr6V@LC5{g z1wEib)Okzi*2QEkGjnNsJ<_A=j%COAcawlw)zX?#(LxQ5*dZJI%NvLZ_7;pXGn^^xm%plU6(&+@~<3BY5_`RK@Z_Wpxpo z@I|j;c-)ENv!l3eE#Z3LvK5Xs_}R-js=TX>bLd zpV`zwPpln1mW&*ssQ_1`qgzTbUu*k#MNT}m1I5*p9$RPVTk#S|<##*=rQm9)8sWD2Vc z95%(=00ll;p*Oipo9uqVTzd5)273PJobmyZ$=iGBEroSLnN+rhx&xHtkU%fYaz5w#23bdm9Wp zm*5)e5Z(aliv$O6+$<3ey`Xy606_uUf$;=_5Dt6!!`|IlL!%J|_ztYb6P_Hz2PJu+ z8*X`lH47vSlc|*wG6#hKq_+Ux1YJhb;Pekd>MI!}zPPMy1P{2L2L{f@crsOxS1Y9J zABH=>6BZC_yPpDHl|{D`@AEw@Dm#fK1Yefm+Q$}<0m){+5>i1&hPDYph7+6m0R;1M z&~8BrpT6)LuHHGpF~pzmMxz0jQpm)bDO}GjojoKI8KS0y5g~~%fLeeSHq3?Dr-}in z3-W0~lH+h*sXg#Ja4^N9WE%0q2;NYS-ZAbZ0&W$XcQI;_5_Y>{iu(wD3IRo}#Xm#L znHndge4uP0@xRF*)>Exsvi8Zva@V!1cb){MX@NwiUaQ+{*-=xdkw&sH%sEEw5r{pg z$3>5;2;5K4H4I#IZ9~F|rNu1{8GCx9l(yt6vaiYy7Vf?mWxTz}dA6;ztyrV#vO{#1 zPZ4R$XYW7Oewns7Nt&`NR;lQKn7b08CmL7v0-NF|kpeo3JBX?=2XLz!{R0J3TTW!B z`=7>V+_^yyxa+>IxhM2QP_9~Ms~LRH5-~pjbtl#01nI#^{O^cMeVB%5=kT3+gF&o0%x28R41DLPDtB< z#lP)A;{2LQu$v`|DVS-YtKH#4r&|WD>2}@OWZmYq*z$(s;;=XFA$2O3Hxg^67hS6k zTj-L#K=|}>bK{Q77Cq5drhSWk<&y9^d->^U$_mCBYnKf*Gi^*}2uhE!-7f*+x|X?{ zMkDd;je3!&9oQWZEIc;0!*vL#;0wqpz#F95)UC}T?glOr1-i@BxKGS%tKBI=BI9}5 z^Te9KqxDy+2D8z@ScR2`otB~7Y>6SY9eu}1yoz>bb<+TocJMCvNPX-^f}at)&)cpQ zpZebYa-pYG%G(*kpWe(c>G0X)pS&le%8QF@ev}A>m2!^DH`IP!F zevEmRe0UB!dzmqMtx1!aZ4>6riNPz?vP^}F0DLMSYz^+l%2SzO9j5{oIR$Tkbr(y7 z4$D~!87e?JUA@HmXxn!}6aRWJWWXrP6M>)Qp7v$50R&hI_+>$p)n)^kHmO^6`zTTG zpUR{@^mS4}hie>j{bT*=CHhsmlZ@Q*ictt>@64QHoCtE#j_Y%)3Q{|gnAP4OJ4aY6_c8*+k3rnoYN57s}^~~+rwc^hB&0W-od+nzF z5zLtseExJ(yj0lLb>7rJ@I(6U-~q&w#o&$OD<(- z?UAmFsp(x`?8{xHwa+D5E|`;aR$X+_x}h#ldEelvJYTP~Y!dJC;g9NGoK8^rqdtq< z1Z(>pU1I%)Klg<{%mfhWaRyVP@OpGqV(Ix;+)z7EWDSM1y9Ysq>(0ay0Yh_-vY{e)!RB+8K zAVCUOKP2PH32s0diLCnj`>#f}=)NE}>C!Ey4{6>O+pi3*4TOa?$q zn#2k~Z~I(80)Y(#=g39T>WvyQFB`|}A$41_x=B1`u-tDTX>vjCeb_lyAp`J)dTlax zf>~50F|!-hzg*ziX=9r*>bQO zNmuh4#Y$qbbAexUL+{GKGteajRf6Zc18ek`XzmZNUYJS15hQE{Ky7H1;p76pA6U!e zArS77HY5-RRSD^ZV^unx69SrjZ`LWlUHv4VWw33{X-Z%A%RfwHtETxb7UlJ-giDKm z6DLR0rnH5rC9V6k(RD`KgfmC4?k7Z^xabQ zB>wrd;_PjmZC@;|x)rZ;JmC;$5>mhJke-w7`N3vC(UkdR&X>2oV^*%2nMZV75Cd8%wTd3FI;$!apImv#pKJS z(v{-lG2H9Nu!2`!gr{IR`Jyf&ar}#;o6nitYHIbY8zJ)*g zJULRN(2UlO;3kn@KQRlt?r(*t2<1=At<0i^!5&gW56Kc_X&T7#SG$sPRekH83}mZ6 z_ve#Lce+KtAI!p9+gFFUKM@82uq*;M9)OS7J8&?nh&aPlAZ@?j9{Ge+dKfyq-1znL zlUemHDL09s%on~dH)mpe2@KV66^!KEwV^a6;#NW3yxvUzsI*O(D6d(=$kdhbj&!-` zHrsGV+}T#%T|o`_T!4J|60l6>eV$=zG}|NZX%C4K_f}lgqQR}7t_1q0VkH~swC)BH zYw0~!)~F&Xy#mNGq%@=+%=Bv~XjgMnp5R)}MiA<8j0N;8p+823KgmL~xb*aOCo;B0 z0$mq(Iskq8y849m3Q<)ws9ogn+uC6A8^?9V`ZBCXJbgzhi1kus?C^(n;;mp-PlvvX zxLL12$^znmH-hs109wJ7u;XWiG){Lt+M@%MyjNmK)YFjYy~A1bgeD{=Um}h#%*Br9 z>NM<<2p4sz)w8Er&L1Mbz*Qj^)j1+G*|=7`kNpx{U$|g089QnGx`hY&5PNzER#y(} zBGrtWO{QrPpT`APmtM*=OhXcOrdRah{AJ$2e1t(3+KIfnZfW(=3QxmS&>nD5@d3JP z=){lKHQh@YQasqRTJw3J?kZRRVb@D1V&1f&yNc@UcKUnOUpUtg%MNsI zf6}a4m0xCN?1BJ-3$Z7_KEb;OsDfTIV51DItO@~*&i9<4+8*8qrY+A8^Lw|<|8*}vNVU`KV}3k;VwB+R?52pL z7CQWL!R{{PC`nH+YGY8__^5B+tnKKc9IM^e&utD#T}fuWKiR8r^2Ff_VITH>CuCoL zyqxeUaD>HeA3~h_p1`Bm4Up07^x^Ki&d1)G_rSCZ(lyQmQ_Ia}PO_mLr zG-di&NcioAbC9Th8i_B*63y{{-KN{_=lz)WVn?<7X#H<9}UY+34FQm>+_h%|&dupyY?8K30ONFNol&SY6Unk9FqHTz;BH@p*J z*wT>T%X`Nq$})&d@!fJ(Fa;l33;=>|{_~0<*Q+_@hZGp+Wg>TNBnl{J7E?1bX!k8zScg{MiqOf7m>n4 z%a0v5w6k%zf0u%+(tF!avl>I4xT5iD6Rf&7QX!#A5*=?jX*=ZQ4}=9%hJJ@MZF!oM%%n z!JF@2hYOaFYnjsIy{v9@$;(%SyBv7G5kb;#lm)8a&yKX3V zYOI}jcY80X=#v~7_<}v<~Nx}dL^VuWibMz2Jj{OHL7Cr45PY$VF}6-rr>dW3g@m&8K509 zpeMA6xf*NZvVs6Q**Ja2#8emHs4*p2h{B~z>^HntMUJ7%v@z6Qt7Pa8Yw(gZeeiWF zFAhu@qz%NVMQhGrc2N1ZvC>3{O_*5-+!oMzd3BTOk>FA4HgHIKFve@8 zAPVsE`Jhb9E9+D}+7x16Lv7xJ^K=g?VQ0pe0OE$>wJ11Qz(YFeHeR<9Jf=Uer!*mb zZ@a2(C*nTOw6r?=)VwlRy_YX9IxQ?IR`#1qz4FHY#(_hknoXbP6z)W#9Og7k4Y7T) z_u{0FI}FlwKpWTvMF8ne);ov(U_7iJOyQbdrN*LBYALM=UGQw>G?T zD%1^lL)nT|7n+e3@V2@jnrh-mCz3qnZ74Q%A?0Y&0c;YpEbe3jr8!|>&06R+a<3tXqkB;W~ls1QO^dYxvXa! z3Lb@>t8bhfc;-gM8TRU{`qFF5lBXMzo(wd!%dY-oenIWd-<*-CN-&MV1yWlr@xoIO zKG?Bs?KC7^53hUE!pm+gdOwmSL9+d0yl78y5hDYg*h#mui6+zsaoLK>4n4@yRuoM# zBG&TfR`JJ9^x1P zfyERqs09>|j=)MJi+3G3U?4yYfmNL*WJHra8iaJQPY#m61{a!qQ^^E&MJQ++QSsm< z9{_)!sPsZN9`pd5enPqhfO;N*rPYA+eh`{!lwLf?rp;&)^Ph~H-u%z~v^YFS)^vbx z$PUBl6`81bF&H?e-!wQK5PW*5MVMO&EKCE?#2mD@AFsR0Z!DX79{g{7x%8XNLQz>4-;lLeTvRoTYleb& z&jee;y?ud|P({r4tsU+rLFB=vjWM3sMJb4V!G^OKt}TTI3wANE{zb*#2}h>hU)Vf1 zC2i-);VTnmh;KsA9en?dAqcDAV}0h?fji9&q4H%>cQ%R5p0CBfo>=(2SB2_iwK?kU ztE;Eo&)wr6nfL5NM(fe^`faC;o&_C~dD|~7+T*jcZqm(lYke<#on`;^`XlZUpU&Nt zOEyI4t=!!Coe(sykJZpIvtYx471H|R0B?2xVdmeF^Vx66^{sRMUDUS(lv) z)t)DP?e%$lV?yl`pQD*v^N(k499VyxV_4wgpcU})`s$=ltN&Ou`>G_~=jc;UhlLei>*Gar8^%n#kWTc-U>*+=Zev+miCGxn)1 z=|BF?N&0Xv@oV{YkEqC@wTT@W#(o|Ig?F*rW2NuK74FWGR&IIl<&CEEgW}8ibLBF8 zm2$0#prn>yQI%{eD9w729B@IB@A%L<4y>dNU_Nja>xnXD@Rg7W6se-xvy zN8Irgio@bP(**~nZxw5u+=6$$i*!|<8nvy+AJw?{=;)a51}jYWYW&rc7N^%+SKKH| zR!>e2-D$a<^1_M`p^&amqy{%Ki!RE(r66tH#D*0jshqqs>TsEd2hes^7guN(+<_$VTuh(;nn#VZzL3aoog6JDq5+Xzxgvd*)Y*!#u%2`_(rR$vmD)y^E%O>p-h3qF*1rhCu4Ug-0xj)58wp*)8#SS6@bZ9!~&RE z4&k@3JHqERX!{a$f+L9{`W7g$2ZnIE!b>5I$lMAjFJ{?GYHSj3C8(fx-}aQlrWM*0 zfc)dg9vfe(paN!&aKa!?*C;(LFTq+kd%zn?YT7=6PlY`vbTG8ig~2N;kXV{zCk}&^ zZ4&Svlm?=U#PR^=LbgUnE%<9Xz_+q(w2bUzyD?oT_aKu@W9xxQW?iMhjcgWi89C^k zwPN0Dk}wz`BtUc_vOFBDrxaLZ)Pukc$8npfG*TTN><&PXB+{Md4{9X0k4h{e1)zL~u9+ zLRd(^4q|oHNETf$zOZ%E>qR$Le!TMAyp^ht1_}3{n?AYr*xfSY)Fjc3Fx!x@SnlhF z>r+?IZtwAIMmsJKHy*%e?7iyRV~9JhsrbD+!-{WlW9{nlUAWrS-EGwmq!%LBCIrSD zcDLB^=0wHK^`2cbef+|U?z_)=KFvDy<0-9eqSJO;+stOD+gJo z1&5ggV#=ulD%%VG~^QL`X8)3dDe?mw6m7~{tGzns!*-?oryxqPAQ|u|L z+i~^jlP!viE%rE7PQ0eKVaB~gW!d|McdjngUsk+2yoF^T+tHPyc=kn7i{>@|cLjCG zhiN(*s+UborkSojaj8F~byJ<+`dfisWa%4}&XmjFJ_?QByVQr=N_!f1C8#1w;eipO z^jevN(MW!H<3ZS})zG%O&oQ;K6|j*wmmCP@oddCbjTO>$*(U9wG->$(lC@*Ev?OF9 zU8tPjEb+$b_DogU)(^ZosG-;eutyHA|+{=8n-^}Mb(8|xI@S88~`r_4lf4mMOB#ZoU{!m**8_1z60O@;Kc$K{}W3JBG~nm3i?8B&GZ}rNWc&dW~61+AjCT zp-PZ)#D;ZQyzHvDipt?zAy+{lz3BB@;tYx8@GHcs+?_0$Asx)yMEoW!vwrZx_Hd{* zl1>F1_I3GLg&MQ) zt(br5*OB|%<``2VX4IaJ5t|l`Mv;x_OP-gSIHal((so1{IX`03j6xY(zu+6=TJ{)< zmg3A%OG|ahlzS^WW)2D?j;d!e}C&Anf(4~#c<Iw+lG46i~q>zGP|W^T++V3KG;gt zjr=g^@9Oh0x<~n9BD3A5_`B=By*9TT>{)jPXURv$i`DdAJL%y?+n_mC*@sp%it{g5O%deh8j z$8L|WKJGqac2BTiw!t(Sf*<~_`Y2m$Dg5e_QWHpz4~K*#NWQ5 z4e4|{WZXY8>hVR>C~M_4<3YNs33XU2)i}ko&O+#0e|{wKKkK#NO}NAwy?D_;t;^x2 z&UVV>v_HNVEk}^f;G9m_@>3pmAZ z6}#2C)3kPhj{*f+=-MhI@idzQb!v~P?_7K9Ez)qx@_5bvqx#`^*8YQ!?|Kq(vMBc7 z4DTs2x9=|+8=xuiw>on!M>{?%%W>hb zafwlx4qDTw{8SX2>Do_DkSlofUd`{T0eASj1WgUR%eY>GPOQX;J6{T_i7M{&a1$ zKb6&hr*mqSh;g#!7qW^$cdcQoVP5%NV~Og7wd~)g?V3h7=H#qZlwQ}tVg{>JhaV99 zo2W+6S+36I)u9?$K==`h(;t>3?SE5XdYR%Xn)XV7L#*b>gdd#|jCo-HY7i{AE~3Uc z0n&6ofYW%U%o37FNQ|MlRt)^@x+1X}kOXsr*db)5Hg1WdkLpxl?_C5!_qMSuE=n6U z-klBuX<-?Ba=3a!v3LitrO%mzbs>)412R^R94l03gdMHWEkl+@HHqjXwBT>Flt6UC zQdjs396U`xjwy@l$YB5}tr-?qm1YzI*W(Sr66Qi6n@L)jw;Z^Ldu}kp{Z9)n>R2oV zB_3TVjy{0r2b_-x8PJhIEnk4p7vvlvG32dC0F7Q89r+D;Pa8(Ibl^md<|!I9;2AAR z+FnyzJvsy*o&j&X#HK9Z6ov;fwp)O1r#!JyQO!!|LsZleXiu9j*iK?5$~r`xV+Fa4 zC@euBaBNwTd7G|bX|R_ZnellC``lGB_RdbuZUn1*4wJkcFD296z?%K(EiIq=JjDi& zr--Q-`Qr8_s2YjmN%vGenK5O(os2rsfvQW-xNacB%|m~%`E`{=U$i)8lN$ZHirLb6Pwg6O zXI;7KL!i3@5*k8! z7F5Cc)o4Vr7Xbr?l>lJHZ`k%GNYUePdifwse#W3zsEx1%J6fqsCsjq)ChcFa^cRP1 zd6RMLPt1$DG}u>DU>j+sUt?@F)e+)4qFCYg{bvRp$*6bht!u@k@E!SIze*acF#UI^ z`j~Tid4kW?z-RX#S!w6TNfd&%IU+dou!_p~KXIaiPsYa?wK`?lN-X_b{@ElUgUTZJ zGHx?!)$_&0`Nb26k(EEaTn%FcItCGtKu11KAobf?nKxhN7cgB7>B@fGfvb$gB_js? zPGgJy-q&Chl1`mnY1$g&)uZb(@8t5~eA%3!L3N@o?}>Sa-}HP)$_>K^f0H1~D0BNC z@g%dnvh@mVISz5e0bHV&)OJ~2+TZ#V{6 zBkm==qi~&Rh;uT|d%Yn6^T^WaN34n0>o`gd=<(rc+e-E5(@CuoZ;xW?jZF{ z=-zGKf|OkUr5@vE+Z*39-AbJMH2S~$8^ONbuUQpcUr_#nZA3?z>jKH!ezz9kqf zmp$9a*mKy%CgIQ2Hl!5|$P0wz%rDp%iRs-9yKq>*A=`8k^!c71glvT@5NwmUN+6XG zmnliXkYQqak$YBQM+?phV{%RxLN9Q9sLUg(;rWik>9i36v8nWk5PMn({ECyFtMKSm zn8ZL~10}3InFW|Y%hRw&+Ek2Uur2!DGeG&mi3dT?MPRH+F}mskP#akRg4v5h6~W6? zlFKFibsl2PKyRp#QUIQCtXKhSdl6omdH||E4`LzoC~p^R%VC`fy>T;Es11?;uo=;| z7n1Zd127ixn~*tYsody;mHV9&wu)flJ!y^ZfL)eY{bwzfuQ=O}7?JiX)KcCLS8>l3 z<&t#cBC4j3mU-PjPSDWTng&>n@@IW2V>Y&0>U7K>)8$R^ErU1WBWZOSdB>0|b1Y7N z8P_6jrtSQUh`G!pC4J~`qjKuE{p!;A6uPJ+_(Ot*IA6@Hgbv$G?R~G3q!10s>DYVI z_ofFT`GjB9J#))2O&`2gktEPPE2O@7xX(opXdbqIZOtcTcmWl|l_cMlb7Yxh!}nm= z&fNmbH;zt&&wuMp4OpCc8xXVKiGOSp)=hk(Rv^7K5f#hwW0&RY%|-Xye0uid z3g37G@OJkvTU*5ZVs{n`JEP)jl6L$n?D_NsJ-QTLI@;QQWVz4BY+IOCe6F%lJEzA- zC!e31S@5Mivb-tc;kDJ7E%{5zl)s{AkiW?-@xIDoO4+J3`oB^AE`~N+Tw-W9-gk!i zvLwMO!jd%2!EewAs0P|EEhtBlPyz3<2}q`6J+O^Be~Hx&ER{W@?t7IZ4ZwZ41kJ>e zauuF{-P+7n|_FRrsgDPRWi9dP$W!x@?+b-;se&ID3P8fKKGLj{4=- z!7d4=l;(G{y~oGh_)){P72S8#&yJra_2Mh`K>4FgZtO+|7WGS z_12K#x1i%I+L}Mu&gIKSX|1wqzwTQ_+Fq}wh-^W6`&M*UbIe#nc6^M@M&;g3R2@8T zd_O>f4R)eZq%)i@RMe2I+$Avn>8|d^hlAS82+tLhpeoeZzAfR(_&SpI?Gx;;+5y5- zth#)GeUiWNrJ#=<3z;E{Oodf*_g?<>(F`l#co4j2*(UBHVSB!f5ECN~xvo z%BK6+TQ@YKdWTatH;edKA0UoExxGMz`HrcQ%`gt-gt5IKe4 zd*0~e0j~#6fN%jfbcne@137!YR0$guMXeS<+Rt~T}e^9eR zU=GV@4>!8I&nsnBDP1jS(wrEivu*E|bep`7Qijsf6wG^VRE;~Jg#=3xZ5q!Fg4h`O zy>^Nw8G?D?3YBmR1w>hE2vDf8U9i8bokO-@f~0(nL6uRom66nVH;l;>+iIS5f+ZU` z?D{U+hO49`4kN*86{8g_st+K*3Tzmpl8F}>bjy)!2?k^|@FTJcXX~_LX52PSeD@&E zu0jgZih-wT3|O%d5?uS{p(aoVfdKHXAY7K0Eo@uRs>KD0U@MYAfQM6gn_xkMZK0e& zx?Y4mamE(^2vi(^i%D4qz(jpp5HJUlR2kc9;nSd$HW>h#QV4w^(ggEGXv>(+g3rcB z796C4=Y&7);VR`wIveHs|7sqh;+?=M5(4KAq&qYO{|F3g^N7onkGiXoU`B%2_k=ME zm-S0&0%>Fmu0SxiG)v{m9=!f88Tgmci!dGH<-VZb9t(gPi-Zp)Ex5^&Elk5wo27z| zujSlA(SO66kfwLQoq9ZBgJniH?yf}`mq_ltlJi?QCFpZfou6_!#hLHp`|0PWzI%>{ z1tgrRF@IvG`F*Nr+tr^;(J~R zWg^nyZoo68C1JfQ4GKBDU4`D(zb)I9HI5+QpY-@2nS{@B#A*47fI4p%UhH7Kg#Jr` zhsQO)gJmw#_pp9?G(ayTzZhZc>eWg$iFmD@tC1Y2EIoNPsdUEQ_iz#YQk274M_$U& zHk;;l<>~Hab-|U+|2p5N_g{+%H2FQ4!`6+5hgPg{^&aVYTyhnsg2W)Zs%brOF`%D1 ziX*|1R>8LAv*4m{!9#~~E{$N>4dEV`?@=(gj7yT#)S7v0l@yo}wc{+fa&Z&G99w)c z=)sAsumGIv5UzjxRQ%;0W0o?l3Ym4z@TaoifV%QZ-V*ZaxzD%=nuqT^qHiCs-a7T2 z#VANYZ_UQGy1ZIe?fRvYLF)S$&A>9J7vq9tOTL3~IkydB%$L}Zin4{;qoqO&5v6-f zpUKxCxB117UbuFxl^`r5qvdw)-9Iu1a=WeWlXd+0PL<9h&etwXze3`+E~IcT45Cw= z>!W8W>k4`Njh_e9Ql+Hod494MIlE%=#o!+qLub>Su)O{DYxT;}zc%W=o^m!J77myr z#frE2l$mwi=b0qdjeQkXzVI0z_W6FVGbI!G_i zRP2JsNjU&tsHIT_#>fDSw&)p(W+mO61#~pL+pmhCszHG2R7m)U1D! z<;L@*J?boh1$T{=OhVCu&d>L&%-6It^Hd=>3l$f7lPI3=O}*q7FQf9RPu!ZwUz6JF zH57^)EK9!sLuGh-Ad*Tu-_3B2nZ^Sh&8NlCbxX#5%8_2|$|r9&)h4IM6_-qD4WIra zyS!)Q!IJroH9nNFo*H@cb_kiwbo_X|bOt*AaoY_`-=4PMVCO8Ob`g>3i)q<=&354^SYI!eLK}nVn*IG)cbVGep4``Za>i&@l z^zk^y#gT`mW}O>FG>{V*OCd8)(L6s-ffwjOG;1!P_m1|ET|QmugBaB3I@C~vRp`Bc zAGZqzpIwguO9AjKCwggu6-=QGFrK{#5Jxw$kg5uxEr)c*VE{hDHYtH=dKNl4U>o{h z%@3S~hVxc+DqsRc+!WV>rS&7EMSw#o=mPNv_D|S}D`6J&6@~;GXcc%I_B%&8oQp1LQeo3 zkk*Wo1x*n7|Au9Q^`aDz_y0&WFU=&ddBPP{cQl-#=D29)_^^dj@D8Axy`V_=fO#D zT7AO1yBdEIp7=Eo^nWW%bi%eZcH@Dk2ccrp1C$wp1tgVyWpNH*m97|l!&VFk3rvF) ztWmS8gE5hwxriz#UdKQPeG%z+C5B)EgrqUN(_o1!xJ4?NtE4n(6_1Ffcf9_n^bxdivNu&zTC?XZ_sKaZ1bLgVCf^22`o1RX*?r_5?H#=V!L z>Y?nTy%6j8qeXgQ{6pk$OY&3f+2}>{l=DX(C%Yo-uYK0|w0mmA(o=!^o}qwDVD^RavTK=VcChS|Nd zVy`Y;)Z)xPF|vM;i>moOgJ>@mbnjrn;b5>bK{Nx6h*ge^%oD_t0fjJJFsOxS(>w+1a*FNmD<9a=TXSq$e3UD`$Oq*WqEVSl!Q(@i z-;P5A#J2U?X5A0m5j&>@JLvSL--Qu-#bd8rJJS6&oE%nQEuw1$I2|{Gbk?nK<=?+o z1g#atMpt(@UlkO-7_~bvd!*Acf+)jjxm~2&X_Gu#tNLxEcxi~4(;H(yDuAQaajjB{ z7DsY6ZU&aXA$du=hwHF?q#^j~<20u`F1%=oqGnFB*c#;Wz=x>=Gvi&4kmjZz|Hv}@ z#o~EP!L*Yf-)r06#>S5+M4ALA|QeT*R_M z7bA?*hVz#CpM)GeV8>^dAz0vnBQ)NI6MG0o7w~go*u`+bH{pfZGYw0`uWb{f9wPAK zS~ybu12kDw{8`XyJv;9zJj|7C0>QVadD!nq+G$~w(u2OJMWh8Not>_z*PEo;8UbL5 zF&r>QWXYl%l23lLhq(RRd0fBzW_>lZ9@k;2}rAwrY^# z%UuvAZ>nf(_@=VxnsQHUjrpIUr&qwhjJ}16Xh)UHG1Q?-)iw|6l;>_kHp3}t7v|#Tb7Q}- zOzrKvFNJGs_daNvU}k=Fm*S)xk}@~eU&?y%A}MvkmA3FP-#0!NG?JRgFdUaud@r3^ep2~SLyfRyX(pVn zIIfu*IH`H_&GPJE*griEyu_+&eSL3J(%k z(Wqq|nU#7i(O%JnLo>yKgPSIaA9w4AS$XgFEzvBe^cP__ZDls86Rf|nwToS!N{jz} zVZf#I8?)E~`VEB5TaY9HiU;X^6Vl=fsN&#eAS^4t+=LRflj3Md1!HQoQFi*?hZy5q zBU_TUsDv{8%NQae*>w@9&%r-@o${;W|JuPdl2W#RW#%tfqI!7$y>S?C`b zYZJ5JcX~I@DJq>*Oy}Pg#sT_lmZutL$O>rn9e8Jw&s0XXf3bhH4b&U{XDi`k-zGst zr|DZ+hp=TkqiMNg_3<`A#A-0?3BA6~&58HZZ`#_d(`?S%R5xc_(;n($^{m&N3&vE< zY2Ws7u1|R^k+>I^f5BV!Q@+JbnX1hTmuAZ$@2Xw7i#i9x;17;y#S}%S~pQMNkI(dJ2sFO2lHACTj z);B?~xBQ*oILfrHh+CO|CcNEp)a2o)v{UGa3$B4*;o_|xQQPOrI1i(&YE5Dh(!3W! zlvm4Vs)ZXW{$kLPla+%+Jc;heXDM+hQB~_hDi3(!H$D~dQZn-Lej1QoB`-x-wF#OD zR^E6di@b2+CRzD>MSse>lg>sIP{#$4t*>MkX#xA`H36LsRA1nStV6*Tx~skbCa`Rz)7aaoQ`@jbdd4;~5sG+D5yVb|3=g{V z3{clmx@jzx%UrBPd?Onis55|XP{RZex`u7;j1+W+fxwQ|e1^6y1kh(FJBpXjMOCX5 zu#skS5}MbvN#cHfX~TJ3c^2xt00F3;f!>Gto`*n%-xNnjEduD>8Ua5<;jdIV+kjJp zryK_q5%l@OD~7xm@EJe@z;ocpkFyYqedt;-!GT;n(oj}uG<+|qUPD0tu$9k`W2ZksOpwyoI+aEnb5-O^>5z{s(`$3CwIG zez zPu1ri$WpHC%rhF@mZE_q-e_(*lhS=ixZk|2)Ap|FMR8)s^ZqI6lTj9vcYGghd{Qe! z(+8c^Jj8Uew;~T%N=NPMk2rqv<(zt<{`Jgg5*KG<-dTJ zs#!Wlbu+b_)n=j_zHPki4%U@27Zg@p9y-dJ;q5IkVb)FN`yF!G+ULrTv2o*wy`$9K zmZfkir3a-JcLlRO|4VSj-HYsWIi}wCtZg>^K-26rm6z_LiXxi*+%?Huvyo6|c>Qqe z&z;uMN704tw)bru*fj4L~frP@ek24G86JvqftW+jLRd1Cvzcy6D8*$J zwwaDqMKd-29KFKULO5HzpC`H`{af4-;p(WzX*)lZoOVG);E71W?d027=VD{dvuW2g z^GIwBoEl&R!8T2%`;W{=ICOk{5YuEH;7uP`k74i<@~$taL6Ysx)NTy1m`5CT%Q|GX z72ODLJjEef$hCF%g|~~~4yWN=-O|c2b_N+vwaL0BgOaJ=xq7YSE^GY&O{nQ4(}$YW z{Y-0)P$Xk1v184KA+rP6KcFJ0;c`Nel|H%4>deo&Q!cgF@5{YkCZH(*{>Jao%CNlHn7-r$+Tl0PaF0-pSw1pTiY;tR-KEU z5M{nCb?gxvFu)k(w8*NXl=Dw0m@i$raj&(k-=Z&F#Ykjl(Qv+`RrSPDmj7`EX6SGrt!(Z9*Hx%9l z^Ugh1Fwnd9osi9GGA=e&oL+PO9~rjz;Cd>J>5CD&+1=B^k6(Ov&n!}5${7*QtNVQ$ zrxyHS_3L%SY_2PWf}s-*@(|E~Rrv^>O9_28*v3&1G3Lgqg_Kv$pAZV;A!Jbw&4@lV z_qrqM*iB3Mn@6mSW2T`^^`>v($`i;#bl-W3;BOqHOFOGcb)xm{fiD3)<^!rT2%w3b z6jeN=gL(cYs!Lzr79S$0!Fdx{SNvv;3ZRGpthKLSm7wb$v(5NESqPkL?ckKu5X=Sm z4G~j#n2Z5zl`aJbKmIE2kpd*zltL{*#ezX?8xj+Mww}edLRMJlHAbrfd(i^=fsoz| zj^ZZJ81zxLWDEwkHlqL%ashd`wkRMp1_3pLkLOSD7=a*bpai1)+#(j84A~io$kD(r zzcQmd%B9#Ro! zCCFa&r=Zmt!haa4p9a`!z5L0_5|=UC>H~{7(`tZUV>b&yYW}5f1f?hwsWY?{83K@0 zxGD`bZWq$B>GfYMU8;dvzflp+>A&JiLTQmeo87T@u0 zjqzFX8REdDPdg&ttr_Uus|v|fCCde(di0hLOp^vj6NOyPPt;2KM%$%aQyRL@^=E!9 z@Pb*ay*;k#4(~cEKY4`SIZg4>`IUv};&V=?f0T>zJ|w)BBFmRcStN>Y?s77k>Ge4BVbcxtow?8N;pS-bqJzj7$lV;lbU5LSl*Af|jXw+A? zyOBDx@m&SCJS%gCbS8;UuYIOHJD8IlI&r3gx%DCaM|^JphbG?OZ#rlFtDtw!tYa;) zRAz48F6XUFdijco@08Rz&vyqu3(gTR?y68rRq{-oRn|yWW;Q>x+Itc#BYLT-Nbec( zrD<>YsFS^5Wsm{D~aiVv1yzn2H@jtTE z_+4Nf_T~P3AaL>S0OuL$e`GG=mR&%0r{`_d zxrXZWflVPtid4YE4*10d^f8F3VA-occRXbP>gC-%ob_o2aOPo%f^vM>Bm5?cdLA=M z#}qcU8ZrJVdF@@r;ysQj*^G)48G~=N1gGVSQOe|!d!e`F<61JZwedIKFz3FID;RP; z$$Ym^eXGOR#w~f^&VPB87AqLKSQ#d@Cy92tdG+-|uQU*Mx(0mDLCdZ0Mbzo?&wUQ= z6HI4lw`&s4h{cFHkKBKzLwIl6uM!~lRaJJW(Bo!T(>3Ktp6~s$S`!EL^AEB?LA29o z$TV(Fe8;@Svd(LEONE^dC1kbeow%mXubSdr_J--jscyBi$_ORZ@(qxG5Jp!UqLo8W zip(Z_6XF|)E;jb=FL?~??SGPz1dBoz0Iz_573p`IpfE0ZcIlp>ilT(FbhlyY$*+3X ztOmD4HBo2Q8#&MHzAJy5D`d~d-P#`CcaBaLb>h%?@!0Us{BFIQ}4;Zcj8t(jE8}M!#g{R@NV*J-o+oe)(|9(Mj`i z6@U1sj`Y?3^WmxY>N{=ISEjg`IG!*4y5i5X9rq~3}_hsS?{ z;c^o?Pr94bs21QX6hY@>)%Hb8y#(%PfNlXnAK`_L&vlTjF)```zZsx7f;iwM=9GsZ zsS1IuLdqgwR2&j@Cy{R;14(Q_@%_%su=~xNy=(Z7%s*;8B1-?~Zt$0mA%~=N=Bm2d zeWTxJFIQFDhpl~(B1h>Gl#UYjL_>k7JB(eGs9!#zK4IP)n`IugI_ws0 zc;Wf-dO^WUtmGdgW0iE_^+y*i3x9Pe|1QgHa0#xwtHqwaT3XLckE}SFTGoql#R>8@ z+i+2rnBJRlK1;L8pFrd}FsS7bU&&2!dz4(cTJ8Ab}F7f2$Uz zbZap3nsKA=&u3whUo?FR*|#4mo1MNa;P3Z*YQVF0(W-1l%V?_y!Tr@P`El zkLi}6D*7;D(5him$AO=<382}p6)xg)D%Cp#ou3l%&}HlhcX5!~Fk9-Nzg83$?=gV@ z+F|f0h%LB`qH5?Uc1895g4%Zti0mtM}>!%!zY)AW#%wZ%O>tWKw zIif)GmF`ZYP7tem+dE8G&RB;Axz7wzhSV8%Z6~UvLuiaz%K0yg7JSdk(%IZ}yitW#TA+`=g zuz6E+&%Vl*Ep#PO_w+3vpbo?g(ly0~^CaY43I%!;)eY9NMq=|WnDZBNhOFMeI@r`H zo9r+@9fizQFOpn$dnK?=*}_jCV*CZMAX{8+?YR0(1)@z+qony2`3s`On0fd;rYTRc z6N0AqESxsdlb&+YNrdW;!(I`hkVAuFd!q5{L3)wTUU+X;$|)XVJeZ7^s&F!8JASJ* z&sZ0u-u@V_U6(7>%wozjtE#iO&Hs6{7rqA3gy;JP1tFc@;>FWuU)iDud8jJX89FtC zCPb6$xKp&8=qLES54=vt`cpQ&PjzXe8hciJXDo(Cy-3o2t?&N5t$N;TCzHg!wA?H# zj3Yb6`E9pe^1rpa+iD0ZuOes4LyTrIM(Nt-2?I6I3>u3OZJzNo-UsSIPmQ-(lx$U) zo)2{kg*I@@81gP|mRW8;g3%yAB z!W4iA`h>PtN#dt{{Lr(h-ytpHHj;PGUa{%+=vmg{?8c$HFL|8aIMJX_oHM`f{VtRi z^KR`NZR`z^qx>;;>iz4&HckRLeEAxRqxzbJu{#&^yDDy4{v)eyG3brl>InbK(YInW zj7fgxM|-Ah{~y`l;E*(`@cZV&ofp#*E^qU6l~r?9cxVHB_Z_6?T7CY2&JRZij2sM` z_Mctq2*M`k`cC1_4d#$PrE1m9dXVL9_CYvbw~;p7=9xI-#rWEI75(M&7m%MEY?Vrh zVGRyLl&l(}?z9zY;zjx)E}ajDka|3?n=^PDLl7B3N?Awgi>>oWb+eytPEMQ?_K%gH zYhPnh-xqE7>N)dCllq-tw-k0xVLQ|RW7aUt4FVo7Gb6*E?K{8EedBiHZ#@OMr-;&l z#qwhZrI%;ww|C6RVrNR7hnl~?BFCaf*TIF<6|y{?K)OD~;ub^&17UfXgh*>3h<+p- zI0L*5U!6LTvsOM8LGvRJlEsWXr9!?s%>>5j*WxCRSdgA6ku50y=F@XBO0E0!;-BN< z<<$;n^GDI2F54$430!MB5)8ikV6>WQXy`J2?qlnvnF1azl_c7@px5JeNX+~UrL@aZ z;EnHhRe4WHbeH5rmlteyvwG3pANjdCcjZ^|{kDgSJSy*hG*8`q=G`*O_gx|N_};|! zk<tGil``Bx40QpV~;cC)j_w3>K_4>cb67QRyV$I(Z^4f?w!GQR; z(~>Ww*TWOGQ(Jfn?iA770ZLmFx)oZGm5@5Nq@5UrhDPXXAE$u?fb;1DAq-0)>EQ-$ z841)Hg?}SmEj-^s5CO;^4>8Yj_$SbW!vuvh=eFSmAw7~x_ezSOSkV}mWOMk~-y&5v zeSZQvW?2Zqf-27w%IjP`wg@Jx(z2Bk_m*WVM`+{UL$3%G8>E;wHx4nVFDCv*NXN70 zj4il|NpPw5pd6~G4xCZ2D4_h-=Pm&4$k4E7r}x{oWr0R5%8_wSvUG#y)nv$>L`>8 zgP$WSd0jaq=1SbtXO^+dTN|)!n&H~T0yj~tw4<$S5p;oSY>eT3NT(87*`_Z$^R%=S zdYaOFA|p?COYf9F%{0ibEE|=0tNTUF>DQ)1onw+C_s9F15&DV-jcU3dyVH9Io@l{Q zU#VfojM?wC24*i&J6uwzZjE(gLxyXkc&HBJ92HlMp)XnuXsTzXbThConw_Bb#%74czc zLhbEvFLilntHC`7p0x-LYI2$@>K~;T4RGu+^NA`=MqEpFsRG#52;^+uOBSrx81lQ|+~MF9f5V)PvYc(C@%10AOzp1X;gjQmM{n=YZMVO{V7xjiQb&+H z@z=?MCUh+~YDIGfI#O0X{i&j9%KlopbXLt8jUOWF95ad~4Gc7M$~1Ka8lIWvC7 zphQ}pWoECcyQ1PBKl@M|r^A*f9JsX_Fl!kXY&E8!{v*Y*oWF9YpGk(N$zJm2jfLv< zG0}L@&=@Y}3S|F?vQGJ=v(IJbxyuwf8J*5$g}cZ%It4|d+g8fwckCT<&-QNGItTtt zA+NrT%ubIuz!f%9s@qfN6OUIQ%z~5eFwMJdsJTX@5G0m|kl;nOg)9mMs0428(-Orjy3Sa6| znU-Qs%u11owB;`fySX{*_;lf7*dfhDcEc8b;7v$jK0cPay)@HolN#q%Z3G*sRp9h( zY}Kn=ce#W6im_2b=BiaL`nTsI2HcV4rmP{KvFyLnc!Q4c#!M z?!Bcwy8$w}yQ8He>$<6828*i8gwR{pj|vZ4FSX^RRiVVbCd`d2lw>>*j%V3(R__e{ z)=kM|1_sBD4Oa3FGqZuPhNH`|ni=!6^UhlQFL=BeIH%Xz^27OiuX*sy46!L(8!(hK z-^<^RD8KBUamy@S&d7tl$47EKXF(+kE<~b&9m23aXM*B+(_R`Y5IswoW7o#fNYOS6`k(zjNw7zh&OVLl&G@{!{jcXWx@>929(ha3meIF9EI~gNr;UA*}|&Z7!-7 zLUCNS_&8d4EnlR;W{AwHT$hJWTul=)7_ugfUQIf1YnTU+8rTDC6HMt22%vDQ4QbnK zQ0%VmB3%jq{fe+AW5gG@?;*K1JjyS6ER^mr!0eCorxKWS|DOnciQ-B?jU^zySRY~CT5%`9! zK0O3}-KU?m2VhiA0RLUBFaNv;s-8$~s^$`>U&0NVlQ@X**};ECCX2i6OE9O%--A^Y zIzf<=aAhF72&qNdJy%uj3&`P%aO)=#5JP3?vZjRRN~*# zay!*!{xE9D!RPF;FFd+?A(6=EA#L>?yv(^e8?^#zq~pL`5wv18UTUMz6}9Ze>rKf^ zfsxlg$^Pml##j_DXg#EyHtP#NSzl@HDsqJzCI}(s2hREoZ5L5?t*TXN9EjuVT&78( z`KSsT{bQch=lR-FSp_9+@s2d*bM5CwXLx&3!iLV273-BvB_<9rt{Sf0m0cxDXlZ)w z<*8C9zRi>W&y1;CDSmD)wn2rd>f=Da@aF91THo4bCR0Pkw{nl_^8cd6YaP_j#;2$G zyH<7f&u?BNdyx_&I;t1fchU7Dug4D#)XAXFj=`Ukj|VQ;7Jrhr!?J18JKb0{^u&CWuheN6+E&u_Owvu_R>NzSg)}oeyYwxv2d9dHmv91R5 z$qQvV=c`7Xw$3-6e$yM@%H?%GK5-h(Xx62yGr7(Wl_=0?kqdh&j7vwk>9u!WbTEfm zSAIBGbNRM@SSMY1ce$9Jv5X;KG2FgRr8tK;s)_33Cm_8dmkUxJ-qWDyVvi|fZT>rH zTHQ7>Vp`-lme3bE z+poX%43)bR47_&>3IrOj3NvePw;85Z*7CO}r2R-aiRihxuzaFjbS^Z-o7To}Iz-|3 zox|v7)}oGl*>`b>pw!O=GG5e?cO~aTFR~WRm+DS0WzQ-9HvMp`U8cO|y~sq$$D$+C zy3-aT)yM5lCr1;+M4gvR3T@EuA4QyZW7K%xHBTvEgs@OSNQ=xMVLHVH12{Uq7GX68 z4`HYdgl>1z`ikFyH~tTpig9XBLFhvlQM9GYCA6Tfj5SP_@nlCLD~v`@Np>4F#G<#h zv|M=gQ_fJiBdU-5@87;ZjOp-c-$^m!Y4n($ML%O+9Y zo$LYjR~S$J3#_@Vu4Qh=xuU3Hb^Ba1Mc1z*C)v@ur?6MO%qCQ{O z=N|Yy(B(ZHden8Gpo@6*N564QDuySat9jz$Z*sB{k=smLM>Siu7(>6iW&2M1E~nFo z*WMp|R=d9}nwL?wT8$E#aSR^_nDI(od3aCAGZCZw#r;Kz9_LrrfkXjT%TZiJt;qs4 z%ixY=kyy~s@rMJ^2Fa8*5!F!~(@Qz+Ks}R(qePEgSrua}W_hSEU80vJS#}_L zN1Mk(W$Tbi@H%VCw+xs1oXa!xe#*}BfnJfjdpo>v7sV|XXsPExdO_im0MhZ%JgLx6 z%X)&Al^d3m|Af~L#nJ!B(83eK-qpf$^FhMvys!!V24B#vm4HqMm$8eOKGqdc>?KJM z4Aj%tk)B##nys1Q5IeYjUv`t#X-NL82lsEjo>|>j{Z4s9;%oQ5?%yBAB35`rq<@RF zOVy`7ePtCRxnORzA2OKJE$w&q1sZifA?MZoh9mqxvPD<8a+|%ntaARy@N;IGVPgCp zvbRB367nXvbtD#=N3JS!E3pQqBT8+~xp&bTvoKA;gU=*DxFy8@i%QFA8L3nY*viHq z6+c7K^}v%Wtz>qOE8}me|5(dhjA+^S@?7n^%>N}GUD`W#-<0uH+6%38%vke$h7pB9 zHadsDkWX{-skcC96DlL%QahvkwFjvZ@v@9O4wN?8i|vhc(JV~=-w<9o@)TNOtGPqq zsZ#hCI&(_Dl?pe&GYaf$rwAEv{vw5;$rOM5iWaUJ@`j)fTzEnyD;TBdmtR?iZ_SQgpUIeN* zTA*hY?@JI{h3mH%hJ^FQpTWRwSSGUzs0Mi?Tp{QQ`3ov)QZ5EBb7YE(1SW^_uPr`I7rX@FaUpCA z$h#Pr?tw}L>*#--%z(|~-|j%HI=BeFFD$EYwWc3ba^jCrwOZ`U>2uP#veN~;*gIwHWEBK4n&I#n3RYi(;lzBTX>Wd%D~-|8 zdAMIiO?XkrgAAjhrpf~sKHhHOFSGfAL0uE|{;t;NDR|ORW22jn zDd{s#&MV^hY;Bo=WyfXF$)9)oo4Igly6GkU4m<9$De8FVOgGt-J0>4nY(o)wU2KO8 zhf}Ps?RI~o@-8>@+dbFP-+U>N;9L?f&*5^|cvMA0(~(@$_1Eg1H@~yUhYOrYwgnHp zQZBB@Tk=J>u$LZa;71hgBye8(CSk2*)4FSY{QXoq6_$N=QpsT&*>AnMld)>6Md{Z$ z*IR>oYijXi`QDb5(8~Z$hY51Qvp%W&$=)xzT_tywUxnUbJXD&G zUY-#a{gM6H;2)bXXqteEoER$6;LJ^d&X;b`P*C8$G1+s^XGWA`*fSSmKJ zv${4ePlX2M)fuKaPY3uv4Msmti*3EhaOzfhfEPwgH6l;qiPNR~ZOe%NY`s*?)DLjM zdzqrOSJm%Ms~1mwc<6~<9+0?dE?9oiWKv z%OaYZt*2FOGVEcuI7AjxlwwS_9*u}~;yQm>W$jAUtO+Ct>NX0XI2vqIw(-*4EJcq9 z$w+%^%0Fe=)jA(_#TIw&Tru}Mm)<1(X|U7L^Djm-x1mT)2`Vc^m03z(lGodb;gAuX zuZ%X&9-~Bd_0}8;t4gk#nfD;#ZFqPS2$`*WL8EG?dn=B0bwYL5>=teH2YH`;Dh^dT z9REV+^^!|<%JJYm-?ShJ$Db^TwHtWL4^G z|E263w!j-VDf#nGBV7g!{i*-n1xD$W(VGrzy*hXFV7wi3(9AnbyR-JJuv=K#Qze+& z{9gD4G~S0h>c~>ia9s3TI#%+&o^E(A2X!L%{0cE?O-9SKD0w|ip!$xnX1@GvM}PI1 zFeA5Xx*d(JraTU5$Qo|7-oUhZI>dKVs+i_a?e(sRt37vmr;{#GDpOcy!$P{0w zr?VJX1W6qzoIkuQe8D%}+^1=q?`aROlPX{6iPLrZ3PjnE6r*6VzDx3r#Hy5V#V-9T z|3}h!2SVZhfBfva?3~Q(b;!sjGkcFaJ6yzZ`$&z{;halq73B%5R_gCqw&=pHH1_P&2<)`vZD) zuA$M|z(0oDnsV5Z;itY=$7(trGSAL=u1JKBp!b5wVr`U``Q5GO*I{i@#=W=4hX$Yw z2G1HC9w$i!ayk31Ob2DgzG%lU{=+^?=h*PTeE!&*+uS-Mm#NG9+=e1WfOMxQ&~)N( z$KW^rgdfXo2GihIMxERuI>A^B8HH|vfw-rpJf&>&nducH2bF`U*j=cA@(T!g~4z%z2aSgbb3;0RpA)zjgTKfh>7{w zn20}OKV92qm_`BwR6xdQm2Vyjc>1MaQ#ts#1kjI|z*-)>_Q1{!2t16zPfY)7GNNSz z(4lJs!4<*NPip75xWd51sgJHQXp1*&PHcn`Dr$T06$&KG?1q?;Wjs_3FZ7KDIs+Cf z(hw%as!6;G6O-ju0Zp#;N{!zn4H^#&hq&inWqn;9-FMJaw7>hv%zbaF&GfeB;0VL( zltq92E%29y1`CVWt<%zR&o6d#!S%so zvFSyCpYPLgY`0y|K<*ZZLK*R^(#RUr7@w9uJr}&dTr5h66@HhXUdfF0YuG%G-W}Mh zNiF;?8ZDLhpd*6KAifR3=-8pQ+V7Jfvq^`ORkP>rA@H=vZ&;x_vQ5jP6$ zbwj)o=2rzhU3b0q>oX4QfZ7480F>q1MUVv}fW^Yx#O1NB2D8?}#R91(h_hOIBeCT0 zPY_b0rU1~z0Ht7cW3hCv)+$;g_un~?+Wb1~1(4^2&jz|ROH z;7;BLyucPPDXv4*@mYag0zO|15&*V9W&B2v|4I!@>Bx49wvR z0cIaKGQR=clN-X_8GO+JdIJdbwxtFYLg(;+>(@)fME2D=)!$~Vx2iVr45m$kIl?C5 zx);xJm>Ujq;aHQ3P<0oIAXF_EndHj3DJ}otixhMT`PT-RVIaXX!n>mYiTc`sW8+Lc zE|~_#g3yEx&X3rkT8#RbwT&y!O8I9i^aKLX$>sk|Hn(kVz7cosuj|iciegUq?`K|e z$If<6(EdnHJ;%@_`~iK=Gs0j})vzLA$=K{C^5v998lTK~8?};taam5vy!kskrle!5~{dw8VI?`lmt@e5QDuE-Yg@-=H0KfR=@WsF~c)xJpGAEx!xjs;0PqR;FmkNs7 zJ5q3+ZQN_wil~bwdYN07_h=iY;bC6Po}$8bBj9hM-hz7)j7;C8$JL>$CCjQ*?!!Lb z`c*g3a|a#SSe92$G|ME5G89{eq_5`LFlyYiQabL^F;$BGEk6yVy!j8p8#dxilqE{R z^q+94Ix`yaO6=na_DU&1+m z{d+`~lm|s?oDiP;H$;~n-c|gNk#g{)wB9QmOHgA~k!HSiX5c>B$i5slxH*iUy4yVZ z)Uk8iY%3vhmYg%yU(Y&(dlDv-D)*7`&0C%%7sa(+KZkK^5zLb-({^oU(X~~zA>rk) ztizY{`FpXGt#2jtK#q}-LH0iYt$;|Cwuq=8DzBl#Jumh6uE$>=%9(gQ!KHdpo(>Zs z1#97-$8RgKLu4qYlMBv3oBPyoKb7m6YsWn;ios`LFaP_RZQEy9{^~$L=5`U*i!#+j zTu5@qB6#2VsTbjQyk|D?^+7&gPrc&PN2Umi!`?Lt4q-XFGQGtb%V+;VB8LYJafD^R z%giHxOr*e~6J)I4G1=D;;+_73ENqrCFTA&ui&Oe!&H8tMT<3#9-_v`A%Er0~B{XNY zJay+1&6kiXuFFCLDA}_QMts({XsQ({tS>bFL40wM$Q3Kjk9ig<}x66|OfHWz4>^JzfI z*nf)M_v&B}n99tagh?lUw&(ih}a_6_ByyiNO z1f>Jw>oTtgTjZ6`haD#+`XtUGJc6#3t+Vc~?rymOjRdl$;@Q7G8lmtL)@K~|t*9rD zpG!P<`s)4G_>tv&%^{X1K0^oXE%=fpw(YA0t-=g9m#!mUW7-$yq>Os%ctBn0i;a*g+4(fA+&WB75z?B>SC4CAuE#GieC@y}4g#YoAcKkmW#o1hbUQeUuB2eY!A5TsM1w~Kn8XU64oO2qn-r)B zL3l$UyE`wISv#tF{G)KUZKP#f73BypM!=?7eS40`N_ z-D)Ho{#dS`7No&$vp)|JeVx(?83lRK2D*5x4!Zk*i(^XGG1vgQBzxfenIN7!T&KB{ zr~2)k?p-}24qCrgSu_xqXo@lk70A5~^LXBv-yQWLb)iLgr8n9X)P+ccDM#O?yZM?6 zWpa!$L4`}!`s4*35(bK7PIXr>e8w=>>9A~AP@0`z$W=>@&zMojc6JQRHad2+b~%d^ zu`GQ*|9*KV5uwv z$_MBMCN=mxSVfP3gZ&iTCcy$->2oe7;jkhYh|(f!_GguLzTa46j;$**Ij@0#y-r-?V{~;-4a+T)nNBx^QaR3gm%Ao8S|2X3h6Z@c=VLRG>B-O?rc494s{dvj z)VTVD&4+YIYK5SGZgaiGX&DtgzHhNb>z}Mpe{cVNY4~AEvZ}cbvBoq;%>aIL;c`Jx zEWV}Z#J}MyqcXeUG<$IlcfaAu1N)%*PF#k)6qdx z$;(E)UL_?&bHsZWmQ{Zj?fqS|KTsdVjLcKL3wtgwV3BTQ;iKWGMsPlSuKhvu6>e;q zqr2;lN3*%;`-$^}7`U_k8EKlUh1gh~mF6=uxo|H73D)O)Xa8Nf(R4JPEa!5vuSo`4 z`+0X#t$#<16Vg_s2b5Y`elPzolfeged0pS&XHb2`9ltZx(naR(BUQ4cm38%anL(NO zp?wj`ZfG&a>hAK(mM~W`!O9+ou`be7p@XD=@c}q>-92Bw@az0e#i6{Q&T-AfH+ofos7%>srBORJdU)eK@-#(6b^as5q-2uaDfA|NH zaog&d-p{78S&!ivPLaB6Qr7OQcywwVDlfN9@-oYOiVEy zwJLoWzT2pLcQJme6VTbry^-OE;LQF1f9fCTHX<+nXJFcUE%a#*2Qy%hQEmc9+FRfn zgw260CCn#W#vjWTaERqUGzDGPKA#Rfti>RP{2xRBv5o;I@mTm5(DY2{CvtT&ngb$o zfE4~DML8#;?fU>g22O|S(YDAA=0j6EmFED1qXfDRfYMMeqLR$##S#h*{8;eW2BKYS z#n6D#VL-Q_k;?duy$7`8;0+I2jeUXs|GRU>8H!i2+bIaFFR-6BEh+`sn|)%b$QZsKfOO zUj!gc!TVuYlZlj;uG-A(!3&cuaInYgA@<4!Vu>u)Z&rg<7ZXAW*VrTvcI%1D)Dny8 z)`tiTC2|Rf8Q@)A^SE?EpJtE>$IBuSf`0NPcv~BHItzaz1pyhG4t%)56iG3VoPw9 zd|W{GAAT{-#AF&xq{^WwzYqR6-M-Gva>pb#b8VJZEhe+^?`!7m$=gz~`+~Y~O~^k8 z7sVd#%})QLuH^Ug)4doPTm0(tfrTx5OE+!yrDRD$*NZNk7D=!%c z(lk4?8MP>kw6nL9>Y=cADXM!Sn|0NPe*D zwupwjsD%XHsxZoy8O{NU8uYWN8?v7I2p!*lJQqo<}sweVq`o{k=84+ib< zG38WM8vhqj^Dlqf593GA-aU+KzR8N;@yiq}1 z7=~*)x7F&8s@4y_N-iDedXe_-of6rpMR@3YN=ozM+(trWv9D@eN)=&?q%Ha5rUCE9 zqO(xVn#w;G&f1^bRl<9aP5W|9btW2#cZAMOE-O5}li-hG3tcCi#nPl|5n5^1=R6%m zdaNQ?YBr&vOd@ar-uuM`{djS=yl!Qw)cGUDQ7o^ve6uIUr?V?pg*q}sw{~xU(kAg# z&wQL|E#{Ad{pTJ5tuILBX?)qpP=@pEPU&u09sF1MyZ;%9{zYOH#Wyu~qL`F7^O%aC ze+!eh_+xP+X4S%Zp;q8|`tx9gEk~6Ux+R69^T|8&BFvUkZIYth_VMA$yytj3%^uPz z=^;$jO5Y)-B37wgsUk=K;wM%4Ei(k5Ptt5MUT$uk=^e;>w~{vZ_-n1! z(@Nm*2wcd^?iU5gY;ShnWcA??TR8g%$%Wb9aP*Qs@k3YA)PY^qj; zmJs15<{!B);px>p2>JrXpS+&e9#wy^e&p^ggfC((2`^&7bLAKi_&_+;Iw<5Teme-| z?w^AP7ETyrhUo><$lUAEEzq?AeI%fF(6-jAlr0zJ`G=-8{+5ipn9GO`NVNJkbk~zF z{bbGDqNQ2jZPu>rbH{1+qKEGae9Zs;pd@X0%={PRC*P&zxkVN-_&IRp$WaGuvQKKAkbpZnX z=uSnTaKdj>gD>m=Vmeelpj=4oQ6`q3H&_BNDrS!dKJeSm1NIh0>;fj?uQ0zg`01ht z|5zcSwRBww9&7-5fUkO8m;ofka}v&N6;aIXJv604xb8AI<(jI%BK{!15i{57K0&;FUoPhVy%X2Uf(Vb8T(0{O*lR zKEwDv=s{rui$UFL;j!);taS&x_O*H}{F|cMst7_9@IYKZwfuUY4d}+6X@^+kXRvCx zMni+$J6Q4i!9R~YTPFgACrS|1Zd{E3kUNYMfFBRyFxJnn#7Alini-Apt6ON9luAHW zTp~I`2SLG}rEpX3wJfTZS_{*PCZ7ccA}$-_Y%uIn)EJ^Pxs;~#wv{IT!^yVIQ$`W) zX^4i>YS7PQk|W;YdLtFG;{-^xZ~R7dbrh}%$R(yWlpKUj{LB*;+pte0=$LLOpQRUa zFHfGqZEqT9N!py61*GEpD`e7M@wum~o+x9g9UxhkX=82+hum2|J?+x6CuZp?U;KJj z0rt@I z(!^z|6;zjAzT6(lV*Ig+Jl(dWu`Wv$$xPO&4V_fKY8of5aVvc1bdNKV#}>mNiPa)_ zG&^Y_mCm0i;?-iIW|oUSd~y~=aHa2Jui-$QGV`p=(d0c|W_~kCD(5l(Mbt9HUd#Kh z9^E3MoUN!+K>l`YF2<5@K#*qgSFG$Q0c9k*yS=^DEb~wm70QN_9~)=oj{f_;p|W{4 zr0A$}_N}?jV~0(>VH%iyzwNEVJv_SFo;J-x--hGC8i~H(X!Seng$Yn~t(i*e7vj1} zE1{{*2&2dJjX#NGA`bcfoVty9?-vBhgdHC{ueA9Lt2$OK@ho2yj!sDU{9;}UH%@|w znn&;9ADC5CHul4}4#r;1{fF?RB%s?q`RtPA1bh6#v^W2DW0WE`lu_1v6wHP|4B6XNMd)3 zwT6-VVm0o!W&xAe26>~v8Jar)J!HXcaHpH(%prSTN5WkBk3%qXK!Mx*)DWvwl zaW=m+7u7Zmdj*8gV7UBrlxW5eX0l0_v8_?s=u?8w%q!2Mme(z%x(jNj z#}&W6-zWNTt&k>OHic=to~&DSo_Ryo^7divXvXZpKx=1*o=8W{WDEd&(eJ{w=xl3G zN`Z!1k1rHF(&xO9-FDbe8NnxxZLD~!YFZHE{xeA2PslGF_!N&3G}ut|E1$M@*v zmV_mft=Oa(diAklXCM24^H#Pnq>6oRy>Z0nES!NfVLN@&~_7jK>+m zivYiU5JbqULEcR-7o!d~=)_%sFF4D5sNJlhQtz$ZcaCc~2bZekOK+7L@F5!A0QI}M z6Tl|{6ObSD)n)y_6TXrc{Du$Dfa<&v9R36`f+FCrvaL5;FU+qPt3bXcjdLqqVJTN0DHY^wd zGW|_iE5Ja zIaLnpC7D3p(kfTbzILU;E?_QSU;lhqWz0C}MVmO~Zz1uiPWe|s0?F&t8LR619rT^{uXquhc01koXbxE>7;+;AD}{fg5z}Uh3R{oCs-~FoQ1s*l&t94u z@j5^14W&19znQ4jwn;Lo6d@=Vli*kbN)Xc{4T_nfQJ*j!v|IwSpX`g**hko@myLah z!Q`(#N3~KjWQBXBJAu;~nsG=A54`M`-xd905pVFxv*E5;Z1#6jBSDh`sg%z7)16Z< z`{b!#MQf{!7|-dlewWEEXqg*ggNgD- zI;|ce2~>D1$>M?s<}H4MaaKE|EjLklcj*fJY?UAYO=iaF-`StFKgwr_y3H9qvhJ+D zgwr2b8i)4;zS>+dk{W4JtNOwo4r0$I5yLt+kxjGlC)_*iw3}_*?N<&!OeW1uu<+c^Hq}wi<2t1w8c2F zJh>U?lh|aC55^3yDfdH#`z{AIyG2dYx@!97Z=VzkzRMUk{3Y}_Gzvvzrk@gELuNY zZWdj$KatrWQI|OJaeB7g9P*55o9sUO|@^CV~N~Y@w+hgfU#Z;mX4~=kFP~7{(2y4 zgx3dIUxx+$x2>Q5fJB#JF2T`3@}7c&{vvu{YQ6nR&tW6Z^p?EV0_Q31AkSxZe2aYF zTUw!m^qF5`p67ZTr0EmKa_-f^oqPlquG+WE+gpTCdDL`+o=KXl4Wl@cy^e<+Bh|07 zz2`QZZPFk#zzP>jWuU!jk1q~%2)ifF4*FZ&Pm(r$;1*V_#D!klI8O5c=w;M z{91^<)9{D;Gu^YzbXMq?HZdb{qx#>cw?tMy3`y80Xg#Ym*t`d3sIsVPL2a!#lkhh_ z0~81jN8^hLA8)a@hD}Ey>W1AX$QwCxmpP31klmGmiFc{wC7EPi>SE62I${P5w_4+aXhi^37){lNqPLd7mSms8q zu22sOpJh>~PBC>$mh5?b-8Jt?&YCin9>@hoo{fH9Gd=hMz}jjoyFu5fC9d5>*CBCJ zJSDVsAK!JFpc5#PeR;vGCE+?7xX6mbsQ1Iy?^=UQRxA)SHr*Fl3%5ml!9#cULrp=0 zx>Kl^-yS!N-wv9`?#|cl`F0SB`^5$NS#wg9U%YAuy|`9@pikHf69M>XpdQxKhP41R zUH^N-U{6g7xFUS6G!mdO5QWz#fh9v$fzUS$D`+}QBO8D1*64})hGtd*GDKdFDB!?t z`+)}0c1tt^VH5~CI)Nh_w+3bjqoKLL{p0{RUE)DZ@V0x$3$}=J@W9u~e*re$5oE-N z;A0*(>Na7*m+{+G0B|H+7*y;BXfL@D;J>Wk1G(-Z z7>5sj1QEA(Z&NDJi2?sUAifT=ln((>AFScE<8#;Eeo zo}p@QBQz{N;+=*yz<9lsFE}&wzHwsho0Uc~=pJ0XbYqLq@ZdOEFk+|lJfsFm8MiK} zErM$0>Dx5+Z!bd`SbA@u%H$JnMvv5EPr1fxI9W(jl^+&v6bf1>GGX8|?ij?@xwJ$J z>?ectCmh!si*}_d&ru%Qs=_}Ff3>k@?#r1XMiLnwdR7Qyw>0~^-jX@nbun0G{*KF* zSB%l=`WR^sR)%@jm0RK$eMcV$x}Ny7MPnoddvPN`}kg|1`nJxdh%xk$hn!{s}e;%_iKX)nfnA&M47S z(z5;N_yLsns%zqXUDVn}iTcr?mRO|8$uWymH9gZ{M!sxEm!ez)wXK#eH0b6+Mwh=` zbQzdBOTIKic0tqn&!5#az)U6897VeDK6sQELmAOqZOdt5S`NlodsrFddCX;Pa#Wq<=Sz=Xrv0Ykufq3++AyNiiD@UX;&ZDKw zA||!C1DEo2{6K|;hDBSlhZXftpK?uQABx_TehOpso`h5q(f_@R^Qzx%wW_k{q>lu7CPcTTzzsT2Z&dAT+4eI{C)s#&MdBB19bXt*-~{HqM7``x!k+p=8ZhFHNF3f z=r!IDjo7^EsGALM_%_;uX3iB&jkJYeUBid?G#uodHycSxNs4K zd|R*6aZ4MmG3w>Q<2?T5BJ|tthJg%J_m<$4+sMlnM)b#L6{0%sDZ8PrHbP@dzT0_jOD+U_{W0^^P}rS1nQbJIV5E+P?=jMRkViZW=b7|MxlSZ6YL|0 z8nBotDE{*>Og3?PM`20emFw3fI6Kx`qTbydgg<(lz;VBd+zzY`4X=$6lf*lVdhXt1fO|CZ&1u z(q?@e-plcGx7_!EHu}D27DqBO^Ow3EE%*T*CdpOZ$Nm`%m@(+?LaY~zG zWR*ctazm7NljM)9e&U8(LL%?PG^kGsu1wqu-l%zh@5!uFb2_gw8{nRgIXo3_%^|6) zVLh4hoA-gOJR8IK{)nB%DeihBTC_MG`J~p$Zs337(2+FlyFby`OjtA;BQfI zt9d)PZ>-z-Gh0|?l4qZy1rJM<{oUKEB|-ma{^vVC6^EtAG*n+Gs#sUn77XTf4CbDb z#S(%5IH*Nqtl#pwF6A06TK@-FyKyl84)~&V2gu(NWmMlCg;@p5fOZpjmefB0i&kdm z2ut={glkB;>!nDA=IamJ@nVd$J=NKdA0`Vc3GAQxT_MhO7VW*$Evix<%H_X*A7~e% z=F?&|wRd!11d>1Vg=KSl1iCn)AI6&MU?v|~n|=Aax_Abqr2|v0qK~PfC@b1WJ z4DZ$SDr$|FK{hMKLQ|ed{vSl4rOO~^?R$z3QQZxC9yIKPiXG6eW$fC zY67pvWZ~ZJe#gm{x4hipKXsy9Hab1a00$n3!GF#(R@n9YmzvnBTbUYzrPsGPmChqw zJ)qUO(-qj?T)DCsH{*%3ogj>;R+pE(kaL~9sGDeJYmFO3`3Hu9IAgc>gEp_|x~$7z zVnjdAyXHdW1uy<+&{}Q>C_k?X3H`*KH%s?v=q?ZLa((#Mi^*u`;lld-<-nv@;dzei z+%_@Eo9?Y)5_b{6`7xLqOkVIlN@1|9<#P#FlA0bABuUmbe z2SVWLyBw#^`9}N&-3e`WG=ocv1RcEQgW#ojyfcfc4`v1LS&;MgxctSBQ2{8vny=_K zJQA7)JCI*j0hKYAqFAD9aVQugtHJxDlRzQMP2w^DlM@n;wFLjupo#xj?cWy&Q1foK zs!3nV1y56qH}d^L?Fw{39?ZH)`Fy?D01}SRB@;aGEx^YCW#?HCL!1W@^I5EQ_fS18 zK~Shv>A)yW7t|BYtcyXn>kq)3fL+TT6(9gRG!22Jy1o^@zXc@fC7n@G%It#vytKoEeZaU;f} zrpg6%Ef#2ilAm4I$Sru9v6iF*dhkV{UIL($UeJw^#WkE>(P2!$pxzrKE5RQLu$fYT z4~)(FI$sZOyS66!gYtwIxUd44w()f)pmzG}&R~5k2pP;u!Dc}h5M+$N^`i^KFVSGL zu`Vov;G^*+#9<6;WspU3YD6wdTx!c8v2M?i0DgFnR4qf!!GRu{E6aeZ6;&=dxLF0- zd5LM~VuWsbnnV;b%}h?vE!c+kxcW&(99qJkieji)Cp_df#kSxZA%&bYXlZ#%yc-lyR- zUU|IP>2!#HklEr-9A+W(34}xz(3GXKu$+6SZ0)T)`x??Pt~Nu?CG^su`C4&FOuJq`=+Np9h%YEhjdlFuMHw;UNx#QssB-E zvxMESw4C&d)%G+uN2ri**GYT*gB17(qzUVvgtOn^{CX%(Vv*F0c)n=DPB%)A=}G&D z_o*3iB&O?m5-2}C8=)03Hs6>G&$?IgYnlg+84&kAG``5kRl9l#ZMjCNs`6}XX&GM> zn)6!fq?+e)aA%0n5Ih~ne4ynr!W~FA-j(LnrHze77BGbP0e{a`CyLl2+5fTC{* zF-?`>HsP`xCTomkP^z6HWVQQ0$osC^h4KJFBhf(y{Bl3$fkivK1YUmEak!DPWxdG> z56{qWf@qvESF}~2rlMBHN81g3YSrxrnlCUOtKz}LAd>-h$SiGrKV8z+K&j-wh&qgc(_y(;tj(ruU}O-WHHCP=-m(iErLX3%U|ZFmuSF_P9P3{{V6 zm$5hcYGHiMc#{~+{!U@N6Jylp_gyWLJpkkThjf6>yHzj!Rxj^2#lx&1nA4)SRbH6k}$90h?+y2U2(|B^$V5qr)N7NsP?h_`?#@_7>7`*az<7v($y zwI0bQ+CkHK<_?I~KU*w*Kg8Wzd|yqx++}rG;g7=R)~8Vqx!=Z97jxf=R18zHF4i(1 z&P>0^GEm6*Q{0_K2f^t%YReTpVSd-Ebx2`Z0GF!ApJ^0gY7?8`X>JMFTUw0rhM(Zz z$SPD<1%ddcjJKiJvEi?`o0RXA&NUQp=A1@CleF&|S6h1UsKo@xbY6Z`Y!z-)kcfKF07~Xj zFc0>vce^l_;K!xRE!o;oF39-k4)6iqm25l`iu1!28pxGkK@7oA$Y*N>i@y_7-^ck)5 zFNlg1J8&n&3O*Z*6XDoGgG1R87|KBtdjy2gPXJ1V0EDquC5Gxnmhszomy5wKFSxd% z?ZNl1CCgsovbd}{o(5hJ__1CO&8>I~B*Efnez}&#CBQ*$cUi`sDCrKS7?13L>2W-=??G^jiC5eV>tI^0j zsIwV^A(j*-#@iGLNG`vxi|z0)@)wBFU}#&uEfNE658!phgm5PV9MNG=mj9TKtM?$% z2PwOoKzwB60Xx$mff=G`rrUWM&S2gswK*)(`(PQ@AREkDhTsOd_B`}8ILrUb#T?yp3F+Wi7jWTI{gowcWszbY zv9wuHVnW7woamSHSbMm{(YL~qT3B%SMqRU2)OzE1Pd_%owURpp}!UXqzZlomwU zMU=Z}XSX@yzMAf13%6n1Vo}qKm8p;h>%<{B0KhQ=PsS$w?iYA7nmm;%thI_spi< zYl@7%@Nk$9_+hlX6yaVGfOYT8mMH!8grV@St)<<9Z&QT4rP#gwX)u#qul)^j)v-)H3eQyQQDj@m^^LmgB|I#kD zAFpJ$<~X;w9Zx!+U$Kcnlt@@i0Py|7-nk}-d%JlDrMZCIWY_2*sbAO zO)OpRlLjpGY#}OjWF~5Tf0-xv>dZjOM9MBN_gAjJ3Mem4xB@NnLV|2|R!*mWg z4F?&EzTx!vvDLijQASy;pp&ia-py+KD51B`*h$96v8IIOiZJVVkADy$w+V8}8y`NUcR^%6CJ(dQe~6sh zI}V?xnw;EYcp2pIwD?`u;lX&;sAsQmQH(^ew~`Y?mo8+%U}L}QaHwJZ`(VB24AhDo z{&BEA=}2pBUG5r{>d_0nj)D(OLjiv_1$flJrI7(uC;MA_%D;!ZFvSsC_j5X-S@=<|ONi6<3pA~L6jp(B<=b&vO%RGLs6=D;W!=cQtk2=s2G^7222p`qrTY*~Lq8Jd;0b|k^=Vh3N+}G;Y!XbKO6$PkO{KkFHi^aSs z=7TT0J|9co5UiNfbcFMdB0VfWvK%G51t|IYy~1!9QVr8H`f`N)gXFLY=8ag2>GNGW z&hkrENo$#S;O%!Foo&<4Qd)-(-Uy7#ck^8r3^wg>gAE)nsQPtUc^W z+&a457;qGW4-r5uc^xYYX*MN#@Er69^>Sga5ull#OVTG==^=ksIs#g5S7sH%p25&< z3vm82oA>{0#xW$I7N#tM%zF(g1E9sGbqpeNI*3sk zaUgiC`Gd*My`00#x$nzy}7oyj*biQ#8Jg zAXp6616#*uIv7w)wO`K!Rz<+(vkfHdEll!1f~x|$$>O8&7P=-I-0081w-V?UR~c?Z zAVo_7_7!=1sU3@?8nxvG3lghx>?PrG>N+_Zp8+uI(_@^Rj;=~`!FXR=Tc4% zk9MGgk5Gg@&odpyQ&_%SG5mtxB%^darDC$wIhDOdrdQ5{?lxd zeT5h>6{$fxy&-o|fnJS|6LS6a9bQ=$EYy4D>!4<0lN7O}<{=v_rB&8=@!E1G*25^1 zySQ@HbBkZmG-U~EB=`i_T=kxdO{fUOw>v-;oWtg@M4IB-z2n)-FPe!hVikG!&q>!O zuZ%W2SdDp)PBZ^H7W~*{d0jBKp5)y9bMmxBFd|gm~M9u{~NqHQ*==(IqE|TTLC#!J)9Kgz<-#R*6#w``hHGL}ZBjU|2L zjhk}BgZch8M3WHLw2Ewtg~*KFazyP*1B4SWAbiUf%eH$`n?U!}NLmQRXLAzf>|-*G z5b`w_JA3m`QyW?BbYr>pniijrqSX(`5yY<%8f!tgkU_TSKo=hLA;QOq-`raL{z&Jd zHeO+e?2$s}|8aEQ;Z(nW7`N#Zg>xi(76%#GBP)B4<8Z8qvN;kZGb_j5TlP8~D_cf5 znUzh*rmW0F#`pL5{Z*H)%SApu&vU=u_x-w?-XxQpG=hIiO1~rWS4P(K^?bggTk6Pr zA&y=e{}cm-hi2hA%^yVzvGepC@YaFF{X3GXgC=JBk869m5YA>z>g0F>6PWxy)3-*m zwmdN%%Y5#839sOY>`dm5if58{iWU<0w5puaS`HsHWWQ@^M2dkf&4hqgaf!N5d5mU= zNX3{Bq0KtOvC~BL);U6>O)tQV(&$%bWdbUNJ`~!%=AAFE7HcZ*n7ScV+ZdlgsZ2Y) zlXmSkD>zm}@)v{3XV==HF$w=XR<~FEIBk-(n$0e5 zl?8ldjEJ$U)Uq0z4i=IACx)%D(+KyQzJT5w@E$S`ih@obn^bsURU*MFAHXG%4F=Y; z{f?f*%J7uO{s#)96b&~8S4-mH6uGa1+Tq4v(0)BNI;>YRzRtXKd65-w1DH27>%YNx; zzV!UW;=r>DKXq(-{zB$o>L$K`WNNuseo+;f=(P}jyZPw=kMmNy4Y^d9bIV8lUhW?^ zqDx;82YhtS*r#fF=96Q+>HWb{uuJO!L}UE^(La&Nf=Ekd*P_=826m1N71`x_-`(WD z^)jM-tCC!nL-b+SkG1w!d}G zowDby3Qql{|s*l zI^99`?T1{9FcKurGxFzN3}n;;9qzUQWGSH50b|CyQV2?n5v158u?XM*TW4WLBZ+_| z!=-yg|9}h{aQXaR%ozZD!{NV0@fIp*qzecDkb>*1J}=$^?n_yN6q3XSfkBRKW!cVECjSQ+ ze3Ni^87EBc0;%2^DPGJ4}RGLjEyGca}6Z-j-`Fg@`#tc zOQrwF1iTM^N*!M~r^w~^QW!^Yyb&*uALqpIVAJ)FV@BGT%&i_;;uwGiYi(ZFc(|gNGTfGsW&S$`;WkLQ<$Jm2pq~FczD(@I^JJj=K-KpHAV>~XJB{yd%a&zWuZR0i9eYmJzH?+ieb(@K=KC^4@x0kg>G5QBDs|I| zv*I-7Pd_QQK-0*x(Z|o~2^Wn}lzpsUQXf^vYizq!_I#a!s^9#p5U+)7|L*9}pvRy} zgCS%KQ6BgIZqBE*JM%&1MNP1{cV%~jDLoYAZ#3Jcxc#LEqkM;yg=I)t>m1{=%UhWw zGt^SRK72>C=@bHe$#@7*U7@kE322h+zU&(g-lix%h+5ola1EgS7$<5j_{g z0AIZ$=6!1}pZd_D1k}J#mko8T^xc+k_a>4l&7tXX`!%xajKA-#M=_sf(RiwY`uFin zQh?0`ea8Ko%WpTy<4WH9=Jb`I=xGu+eSiF@pK+vBGiRMiFp9U6dnowVn(PFvXlLN4 zI!PBYZlZb;{{|j4UrI+8@7yA?iHi2DiwIR9@;(WBMQpti^g(&EVRX}BBwP<`9P^gR z)IZ50vH0J^EV?YN58oa<5Q308H=S8OTN*4F6UitNuPwU`;S$kL;YcQ*y-$c2Q5$?p zY&d_Hg4d9cJ8(UvYm)wN#{FmB(Y=gc_+6y#D~e8YLHW-0v6>byJ6-4 zy;;fG4sZH%3}RBULhw%=x=s4uiRw5?|JjzA55_5KhM$z9UgQntG5LizJQ@4cmvqN~ zGc)x`gFVr*M-lbhoa4`Ugnjwy#P>)!MBqEF&*eh?cV6(O%pG#!jByUg07T!uN0C}& z+6;<e3z_3eMxy=4@ui z^-sS=XSGgdzGn^p)YswZM7qgkM<+r>e~AAcu@tm?h^4*!#fnjxjcOJ7kD%lB@=~yb zyMJx4Z5WYJ5TaO?cR`5DrBxC_(dm59S8E{wJSu6vXSTRe@SE|8c;_Nv;g$f&*f-g4 zub!9xhzLiB@B6>~hdj-C2eQ3cvij6ig|a6DF}MxmqRuK0bEoL~Ud0(xt@WrvcY30M zdlxHXJ7dRz0~X=h+3bDY(S2>w^VBr&4KN%8PQtb_#Dlq10TK-+;_aqiuX>?f|zXJ~rXIHTKg4eA|HFx|p$`89 zOx>5tSlr&~5OMn_4`S%?oaF-c*aGZufbBOe)>S!eivu9nJv^o9ZZQA;cR_qO0I|*->17--pcDejX=5BqI@U(d8jP&oNR)xl z`uFncxwGX8{=B%jss>W)JLNZSgIRxo6_mUkUZ6qN>bI{_DN4M|#xiX(`42Pe5Bgq@ zi9R|WEty2oL5qbEA9;7ekcO=R^!YbAu>MJ^z(qWre^c=Oy~Oblor7V9qU3K~wx+{` z^UWUURl}?(Q>92A$q%kQe+FGElHaq1tJ=RjhT(MdhCR88?i%#o`1t6NP-$F5y9!U0 zF@pe4r@s_kr-8``l^ArVUgDF>9O1gZ4dQs`@VKw|{L!4NIP7`@3MiW#Z6B9I%Bb=t+BE%(?EA;AE1AyAeHk#=JRUF_O=c+D z?!E~8-c?u3-TcN7zskp-Os3OKCVv}$smg1|`^@@PUzf0iTRI(%pME>cZ9OHp2QlcZ31beuOC_R*nLbT@xfUF$idgP(k+`%VF;x9!9;Iwg?WJ#mq3U)IEWJnT zY6Ji?hVx&4{C10BkK2)i$*=A#T*DCI!b2WnT|duA&uZVi?HWve{4s#P(u}}8oW|@~ z;>XNf%ixr^j>Tf0@}xsj-y)}#S+Cz+N)aF3tE0z8YXOWUl^mZQ69O%|6=rf!2?8XW z%eaOWm=U=6En_$3?fmIMqciB?0jACbkRJk;CYL4y%W{lB*sC;Ci9>-}$ZR=R^>1*} zP!F!$X7E)1+4w9f$W3b)Jn|!{WSNTn3^S7|bA%=aFK=%`+ zhjjhnq<7m56Rvw*%#!?wcy2k|*scL>9pu=wl%m-|lq590cj8guTc8P94QU%K9c!0a zui{kyRdkDddsWFH|Hx9DZk$Vhz9u;NXIBe}JBd~JQY++p zGhQ}_$*HA&bYhMOqe8(t^gTF9pq2k6)+dj!P4`JN-`3m_eaWb+xv?7;*>av?pJdQ9jj*$@6emYAf;AmY177hA%SVvI>>zK@Q`=9-eq|HxSKd zojzM_lEoF7e`2<4N)=1gVD!XCaCW%=c~0k9yZ-2bv^P*6ij#nujLx6_+ZmSa;JvjI zCh%MJ1m@~7ntz{5PIu)lv6+@pysc#<*G`gC{Yxy*Nf6HaxYLZ#p=?{jW*~(zF4x3v zh9ml#Zt1T(bZ#XJR6G`Fq(0bjQb7gsn1%Qv8erc45rBKVIvz<{YSjd*1T{=p%LC2H z?#Dn)6-$GzU0{k#jqQec`GYp{1 zgD;{!1yG6o6EU7lo-;N7zWtVnb||(L$i7?pO0Ns2|M70_eEC}yB>y3OEG12l$>Hui zbfLGwWTw||dTdU0-*n$mAEC@TGn8$ct^J{aR4lBk?H=TV&>Unta9QT5`h5-~(#Su# ze0w{+UJ1S?ADdqraXZ?#BgYDw+ch{YR+ZlOmX-YqILC68i7$tx6<|VE<|BkGF$Hf_ zfIGN~;14IvO!sHiH<%UH@@seR6%@hN%I5Iq`>kgL7lW*kTbc>ePrKRIKo~Rl|Jdpu~6WX}%!paE^;Ow7D0GdV7b#*CeGxt<=1@ zj*TG5IQHjpme}(&Y9IYLiXzw7H*i^AI~MRIyloKv`+(VE%smeK;AocrP8>6;!1z+g5Ut$8wgcS zfMz*?O;qXZVNJ2-$DNgcp2kXyxoQZRAP1SP*D*Cn0!Pqq1wd&m(^xxO9D$lLrfCUD zxB@KZy3_x^aF_qJjS!IaImYufyJDEfW}!`q!pc??KtqDB&G%>l6lEIbo)lN}&2HeS zaK1~x?rlW${+AD)FA~JoLK_vqKHLakt}5OUqE7zc5fPhsb4o>JfK%mbk_XqiN1)#i z3FvEJX$@RV!<;Y=y!qUpO(Cpm-Vq*2qYE?N3AS*a0!lxBdI`zu3O3hxbIx9vbKr3e zlCotPM+;Pe7w85A`x@|ev&H>x!Xm(-ZTO}MTg?|2OKOg(V~7BNwX3pB=PP0>7C6b9 z5@ulr@pRmd2v)G)-_Kj+4K`mjw*lXcku2lWr+J{Kbi!WdvleSWdc_g^&uXg=3%&lT zqSc%9{OW;{EL&VhPk`lKMHj&)uvYIMSHjm>SI3vJk~F%V$Vzqg8s3l&WckoY6NVu>iB9ll3V)>-_eV3!3z%>%t%CYRTkGmcg8GKn2ER*ge8oOLG-f7r zDpy5driVL>a*BwfkQjAvL*Dtk>W0aWQX#t~9?~aga+}vKT3*_gTfKWGE0XV!O~S8O z8jx(W7%;jVy6Uju6*EM0Z50tC!P$5!#b%)OyYBIqTPoDB$_wYEL|dirCI6a=w<`)y z(;oYgG1y{8acmmQi3(qjxYc*gq-e|@v5WcG^rssbvnVz|iLrr6skY7oK?kwPvIAXD zNnN^foya>Eckm%AY20L{Xlsd*SyV5CU#N;CnxI0OK$;N1Exz{{!h;y9`x?Ya(aJ%9 zKh(PfB0aKtz?q&C4)X?~gq^SO32#7b26@>gpc715vk@(X;2L`XDs)yFNIjI)7a&De zPbN68{o-Y#RkZMmwqXFkUyBf*%yC`fYO6;nx)I9yGjf?R&`4 zsvqz%M~M68qc^6*kLKUd7&IDLPZOWk+Tg4N9;&3Q#N60d@97h-nDX^A7w0Ovt~O&j z=*(v!d9)I@jr5JHohUt5NF8*f0qoSFfU$ooD9O;1^cvlg5Ew|Z-1&hBgudu)-oo}w2b zG`b7?kppJYgm)ZQaV#?`O^tOi+*Z+i3!IKn>)%e=1Jzslvf>A+7T=#9-0eEZQlO(qGx9GBTFJ7 zQ_Z&4yL$E6rAvgBsTt*W!L@e@@;Vxq_YTQ%0{u3>iUt)h(tbcv*L{zZYJRzVOrqab zzAf`q_`X*7S(2u08rkeDRFwB3J->vw*Uxa#53Sj+SgNR;Xsa(F5>}Dh&RnZwPr9k9 z$P`riB&nnTSNh3hT}RKh079{|8%zaoj1b)m zG*X26pbJ+=>j`8@_4u6H~8qQDgE2j45J)z4b3}&@z7o8P2=S zuXGghwx!qhsbn#CmT5&k=BQ~`(+ozo>(TFK<*`e&oE?Jt#6f*)`BVTFRy&mD9>zY|KVQmn&+T+2AmvC&W& z%9ORjs@gRP^h_ON6XQvRf26(Q8x(}bVXb$c3p{$U@P>7*>ib&e+;?di*N4(`AGpYp zr9#&$A!sB4;Y`rqu1cV?D}sQvclGAgI~&s^AYO7(u`COErS|cbN@Vb1Cs&X=Kf;@g z%@Vx_Fw9Q81w*Slur`AQ>O@o*cm*i`X-?!AkzK2x^x zH3nOT82s%xwrh+h(bHY`-|;tUUN~%Q7#;hL?GH9txZMMB<{0M`5eIQz2d^y*Q@*(q zr~u7lSpks_QDzUmM=7FDF!h%ECfxvD^L+y#F+o2qP)WdR`~nPvVe;PaCf<^tz>o!I zt)^FakP{n|i+!X??g>aSMHs<69?}=L7(pe291YreE!6z1MJzxXgDnllz{H_X&GIv}{6RUZybC14rw}cc|H~1B{S4>nhFNaxppZaV0f1sl zC}lXjv`u1q8JpS$2GDI(@E>3RdrLY7%#L4P(j!`IE6X>ph;c0ibzq>~4sAsrfd0Pe zXb8ZWct|4V{P(Y}2!II%JS<>AZO#awroc^x10UY)ti%OGLzbO{5$RaqO!q@L0)IB3 z2jFP65uUkV5i7G#UqRp33xHVO@ChkoQzzEad%mElBI-6rO*}6sDKZa#(-sRavs*Fb z5mwglfR4pZ>%Z@-`>p_f8wkb7^TFpsp)dSZ;dSM|1F|8@q<(tgu;*Ap6tbHO0)2{n ztU|8aVqSqEhe0=r=QH(Xr*^?A>^hyn zp+4jwUs$EhP0{My^ofxCHjZ#$kS#rUt9+e;ZIuy*OB++F=Q1J|70)lb{@T0A(2U>= z4%fhway7TNY1w#jsGl;tn-P7;xqXqHg|dEurabH=`GQ|3pdu*~Ek98^*Mi>lY1r3s zX^8)}A!(rMj>+3mrQ8kXk=$Mj3xH`b#V3;mRk*Af?_#PZ-sgXanp8V7i=nU?fA>N2 zrEOhg?N5I7>mSej+=tKmj=Rdfa%4}$-6GXfLTjex4?MczfRC6HQ49@XX&j6CI{BA! z^L^mQYnsEzGB8EscA@weN;fFp`%? zmBOL}xa?mjvoTyEOO*nuq;;&sR(&>&V$>-wCPuE7a_|_OSEL>li}hQg3Ph$qDj{>g0Rdg?7h>1e4)Twhvf90B<`7X zkmL3lD5^w_Yv$}ndB+F*4#_Wp3il709Pk+4NJMBc99%yxPojL3&(V_cGnPIjlq!}! zxUsRnRvRHmKQ~Ko_a}osafh(-zCm2~WdlsxE2@%;-SdDCPQvdvT3U4&h>Pc64*w`Y zyP(QH681$B9>J~7cJ9{kY*A9`UY7j9LTbUt(oyoi#6~=4_1wEP>jSmzb zyfb@O?Ab8$zR9@XUU5ro8(KL-$AQ!XPIkFJdRP75-%^zQNK{;+akrREzrX1UCKQuK zxpb)oT7n40lU^kuqRnM(A2V?Oc}0pPC}KT{g$6s`OB3xsU&5&mYizv=fHCEy=DzP; z1`h?|*fV1wJNxDQ3O$7A{y-jKy8RcTEJm-bU`wn22)>6|TDAjlhVW9mib=L%6Z<~S zqk?YJUEAdv7;QQbbIV;bb77sw>A=Txjs3p=!x@^bP`Di%PuFlzR za$lo@p_sZ%W>UNhn)6pzSj8tF@;yA?hCbDFe!=)(Je931k4LfF&ju24#bOVv|K`mf zn3lY4N)J9uUmKIpKWY$oY(qB}&Ipur&Mm*0;5|B7RMs-s2}=rCU9O;2zu8q->bn~B zSd(!{uFSu7)WrX z4+FLt74W-eask?y_CkPR2*@Pcl-Uz7F#%`F8XG~$tzjJ*$pRy>}s zLvcHTiP=~JBhM`k1qo=>&s?hiOtW!kg14AWPZFr=9uPd0dcKi2N^0+*RNej${ z*M~4~=uKcOu3c0hVb4?Lgb|o)Tl&I?xsO-%R4Xv=i+{_2e1$eCBb%6oG=ZI=U>Fam z4b?LkgESeHZ-rT?!Y5Z?F8Zz@uw=}VbybE{2?ebslGw)y<3_-@1kTVhdaOmWza(rH z1hcFrIxAiO&NNkYH-dCEK{ld*7lQ+vO;Vj}cuPgy6Rf5TXnY>fk#+;MahJgdcoPk_ zWn&t~ZkR#7dzgk?Tmz}Gxq1vKTy76{|A+ue?0y3>63tsSZHqzctM)=hFE;+|n*^_o zK?O_0cxPcoP}rKv{sIu>B+OgZXiNh=OL%EFq1GI_R#Oj6)5i_Y zJv)a{sgG1>WJnp^#AQ}-kmu&bL)j4Cb%}r`*EmQ{PVgId9r;$xOmxYmSf@^Dn91w! zPhf}}^#mu;*O0Nu*y0$dcL|wBKw(+uwFX2voW80?uEua;prD6I7y^l9JLjTZxK6_K zLBnB*BbUo{ptR&VfqX)Zv9A(N*vEd6`W3e{ZQHBB6pX&Gc1zfb*)T`fr%#r#{}HSO zri2-w>dWK1q3@lp-EEyZ^>zmKs{Do!9Jm9F<}@D6Gozmv4Zgb{vR zx5qW?C+SF1d%-&Bv2n<_;V7_DMav7#yEJC~ke-;7Lt*Gu>icq)@l8G|`kE)kr=R_E zJ)SZeGIFm8{2W!m+EVV(V;b++mUxuM0XRF!Vc?(>FJGyO1gdH4r**oV?R{f z$4gUd;dj0yO(b$MGfAwk45S0 zP&kGHK;B~-UPb=H)zD^0?inE^eLdJ;LM+-l-W*u>(>E}&IYw$WgTl}| zsNrXc@!a>va6N4vE1%QlN`oWY$`z2CWW4XA2^aETnWt%?Hbhnp1*!9-oj>t+h`De*bIHn51J)I>9-9e)hmo+RT*BfZ>Oh zE~d4gK}g=2FL|TCm%QPXk5c2oMKsE_SR2iQ$}M?UH~&*;jqf>$qd0-S-JSbY$IDo! zn>u?HOS@y;5S-|SPBq^fBVT_hXx)&SuMs2}T3bu>1zfm^4U`}f-)Hx`dK%pce=0XI zu3odF71H?Sn9|TVkfY1{OvP8v4k6#n8_X+j1gDp8 ze7L#J?09KHOA{<)W}AsAC-FPr|73BE@o#5p6xB(7b!X;e6V_D!hpc#4CF~erpIfW^ z5DWb9??7u*1>OW~w185gI^FqhDBU#rhokk4ctw2z%8#C|PI@#fp&_#nx;?(yKYLXc zd|Ep@4ij?z2i$BN3asoa2~V3HF@`@hg{2BZdhCbMwZ%wrENfqEeWjhG=Mx6pud#W8 zvX?qMVVdsEmu^;fgy=*6YDKzd_cBh6!Q|zM;}c5yqLeIUN1D}dNtYKA>3;5@qi!{B z;9)lWvz;lq5;dNvYfT_C66mV9l@>H=XsJ@n&fJ+ zGsl-w)VC)oJLA>!N@wl2_AbAg@l?~w-Ra&M`0~e$D;4n;XS`j|c2j<4Kvn$Iex^CE z;E?Z6k#1&u zHI?;Z`n=JdZQaJ(=u_vf@sj|!1Z&j2L}PlJ-X1G8aCwdx>X`qxcd)i$6ts3eU&VSd zEA;Y9>pLe*DLUJ3+}{IYM@!1!;L@NkF63d%ZJ(}K{?l2x(++gtG~@`6-tOXWuJkD+)?+u!r*1+q((b@$ueh)}R62GtTy1_OL0^5{I#X_od zgp&PC>2vE=Iv$KXq8P32@}T?#WNx%x-*OUScd$H`d1;&aEy7QKicBWhg4d~P_(dmf z?DUr`8p(ik%LPr%%Hb!)pTPCr*suxvwuBVWe_2|Wki;PN+X#ZRI}KoH=?&kh=8FUv zYtD6W!ba#zbm4**g-v2-0cnIDRw=K0wbcQ)8ohA%niz2So&q;BJ@y6oRyTPqAo(&h z3in*}je97TD|iB47LRfhtU802?3vf1xae*e9NXh1vxtOQwJwKo6uC(N@mD6}1(>jc zXiQVmxGmm8pA@bjiB-7;iP<`uf?4FsJ~ zJ9CYQVw9X~1>XVfAC1dUSXY80M6#N}pD zwspbZvsLg3-Tm0{?6hUM-{3yU?XJZ5fL1%FC{mRlbZ@6qTV)tz$2W)!?E+ z)#0v*a{gN~DM~=%bSNo>Mg=szmqU5VMa!z(Q`O06_yx^wrzO^BHpRjc5b2da-(Hlm zR^6RU{G~qC65{zE!7Ch5MVb?4JjMQ>aNX$h*YV5hDcH3qB1*!Jx}$aOSF!HnKT9-4IVCUILx+GNhY&w zNMD-XEv-_mgTGTG&I2dH1&OPT{#ruCAI%!5a7WN^? zS+sjXrj{$!!rn2wUKJdY+0iqR)>%{ydi06e*|5*KAG_RaQK%E2)5fo*(=x?ZvgJNu z=xAXwyIR@~^U?DIt(Vgvp3sDt2Wt{rVI&>#m0R$lkGOLYDFQU$0Uq**&-i3D1SVd{ zz>>kmBVF@c?*ryGcT189YOJGOye?`cc{iB7M$>Y*d$s8>T1Td{LhJMl#NA~QI9G&*G_5lEIXV_P+jvOd8XH2znJDl z8(m}sCz@DBbAF&Y6fYLNJvPG!Q?+M8_!QoZY+1Jw=nhFY(E5+S-)+NnvnVN7`x-%f zhrOd!@=y?yG8bJjT4JIY5#2BLa8P_UwxHQdndtL5cJo)|=vQZ+$8Elt7qCI@R)QhX z@vI58r`KtTOcU>Zm;pOB z^tmvSKo|j#1o$`*l0?FsMtwookN4y1yPf<3$AgF)SDLeZ~&y>_&MCNInKCRWTXUyldGaltq3&?)W)zoR54M2(Z2?KbA6*;N9QCFi!i01Ij#NejJZl z>-~wbAR~Rj3ofjMAo8RC5cCH}fs=QZwH4;<1XgUoU`3Brc0u$$$25Z7rKltrqE>?c z3+gb-c2WlnpoyO`A%KdlK_Y6d#;m}3-%LGU2<{DXpQkJKe9xA{BT(S;OdDZZ1E#U& zK6s0By)IH+cuC(UKQg$nv2fYiUL188CTncs5xMumPi;kR3LWt<7&&Rt`-x8OC{QwhU5L|FR=j_2pfP11N z7e2yVj={-;B8yGm{|MaR^#J+j&IFmfNP{^bVi)~t5E7POXPJ25n%FkIkzl19t$^R} zoPXmJ#RxgkO?afM<}e`!RV?=jZ@vi3Y$FE1f+Xq}z5+G;bUU0+>n*>JoKQh>n;7gK zAQIJc-$Fv~GmbUzpl2#1m_0(-?PIuYbrj{jb)ccGRM|>?YQ7;!l!g?n6`gi=c7!^N zOZ(RA{bJmQru|G?phjF%or6}#_ zP51x@H19WS+RR$8BX!x_zd@3ZnSuu8pPY<$Mm`D^-_M+6yc08?U#$DOa)Ny0(nTMK zz_@wr-TL>KpnJJowtW)HCb-Qy8Oy_(ynpBci09W4fl22l%gNR$IDvUu$(DckLBTr& zCvPM?a7)40@b!_g-$q*RA`x?c@118S!FWd3HH=kByq6;)Sz&=rF-u_vMx_KSyx#YG zC+qj{nmX>~ZDSv)-bg*Un@v&pV!6|Pj*2&tsuz`!K4UTLYc8ZOB_&_q%iWd0)yXv_ zEb76>krU-pbNCOvom&+GMvoIDz0ctJhO+@tR`NAS+icc zoEZ_}@+tYHWv)~tiM`Z|Y41L9$+I0yQ2Xk0AfHt1uc%gUE2Sz`Yl7?uJP4F(Klj)k zI=U&c@$dZl!yI_O{xx0Y#50kzr~HMwUQZ#;nwdKZPr*9DH5iVhrOEV~{I0rDq0+rQZqLhlckq08yq{8eGS@NW5Z65a>fCYG2$a~nCx-sZnF zkzJ$SJcK9_+aJc)=OVJlWCq1(MbZ=eOe7x2f*A2TueS~wsFgb^z$U`qwa3=*Osg8TaR})96GeaRr5zy^X`@-aHPFddS~9$VQwJ%hev=7}^ub z$f5!j@N;;8+U_iNx&hx!0OGZ>9QZ@P`U_+#x&wgqrXSb=bf>ZHFR`sgFdyox+5qsp zd(BqD>puet%w#xCu%jTX^!wcy5v~|;48ie%M}ckzzF<7^(URKTvxg@I8=L45vxDaj&jv3y$6U?V+={WEL8Rv?2Ts9c$QIwN^v$^WzG5G(iGV6^SEvWP%8 z5vS8gx)9&qyPuTD&uOK+r9Gr--A{Yt?#o))v^7r@+I?)Sk5;qn{oFg@C2(eaXyW)m zX4~%e2utREsgu8y@^g?u^?_$X*0iSxmsR1*!pcs(<2zv}u0^dN;3DM=2BYB@|KB9O zaGZj@09g*bCs%!#Z{>iq)V30ANhPk*GCQryI1rZWbO%EKzxHVtH_;=yJ5J49rHund?9QJSoY7yps*TalZu-W z?R0!4*lGN&Qb1L4~tpH~BTY=vyLk40Xgc z9326M^L6iTK&HzOQ1k@LmCLFiF9Rlcpv?~DCT!A;grUpmi-G5<+HnecAE)~R zZPEe?HZ66hiwhgzJLL_eC_YrY6VTQtSZi5Cfgi}z?k~VlS|*{cV2uk}dO-Em5C{V& zs@H8`%5HVlBA52M-juw_Vjv#34IA#1`j9FrNABVn&yznkOMLei6?}@7stMb+Z}O=U zzMFc2%}#XGsX^Q|0CNliPN%qBo{|mS9FM#(nxWS;fhIf_d5{B=dZADl9k(fji0|)> zOokj4Z_x9~!;2&IRD)N~-PfFXYu^2KsoVW|JCEWwwj10>*U`UbfmK9&xu0u7@O?q7 zr0aZ=%sD&P+CEEOeZc2iJ^B2VzfTNp?`9Nvs6!$0PvTCEFI`NA|Aj6T7i-yRyb`VB zI+x`#IA63;viB%=s{HV1R6QaR3iYkxcHI~}MQfU9YuY4^bYCmVL!1QJ!dKF^&*iV* zg{M2T!2ZOfe9k@KrIESiL{9Q>V}XtzqkD_g&US={ak6w5+_o5mQz|qRJC?>Ed5ZbPCr(c6GtsCuGp;_jCCPp!&WYPIXM_5WjG$f?W+?_Uw#xdCtYiW1-(0vq6 zK0cJ~27Aq??;G_W0sU8|_?2t;_|7(8UPA;;&nr#>#eMP;r@m58%1Zow;_9vlg9sPI zG^|h=47v#7AT~(Dbl7-RJIo;lycNn78%`=_K=z7O=bQF5{nnOS+^RcmWLNrhAo1E7 zTSjJR!=ms^`yGFy2=5a4F&N$#VxS`dKpRBH1V`4*$E7h@e(8~#w|#xh5ALF3*sT$H#Z5n-$5QtX2pOcs(~GfdgyK+>aM zh+pkc@DW34nqcb7iQ-5(`^V#t2hSJ2ngvV}-B}T}B3%`5vV^Z%%nE6}Re!-sp6y^9b+nw6U zOr0&^{OC+D{ghqTN@`Ym`VX^6`0*+qO$L1s+1XO@-Sox`v8TBloce}}J)ScWy(0Uc zvzb1$>q(4#{OMdKI{Cr3;W@r<%melAdM)dR%SyYZMwh`;e+`z69$P%&QkJN^YllIcf9N&5Kh{Gv;MX=Ky2c zIHsBt+M41E3aH(>(nsr2=QYLXzn@dUs)6}f41`xwcvp|o;u%+$sW~-d$3$Zcdd6y` zJg9iZLlSM@6W{;RAR0QQ9p>}gGKR<3YrxLpElH;<7=|lPLF!D}(8gHQL2g2&gq-dq z@7lFbb}z6zI{+}AG{sMr8ST14dwTN-@u{{sE{gr^Ng?sb)P>8(+w`9kW1Rb92%MW3 zYARQSHV&j@o~ZBMb^h?nQ=moNWJW_ulT>0h?!NJQ$L5+R-B%eoGqW`!`-C?Md&4Jd zUb8)=cRMz$xO`|0GMsMh=!>7aO}`X~>{n+F{7SYfHc-u_lnET64s*uQ%@ zr4nzxj@8MZk#-8_)8(Ke{^#jb5U-AacA?cih2=sxB z6FFH_X%bM|$J32W8^IjLW482M;HY(8MeB^Nuxt7?TZ)OcBTBM7GRxTf;{_rE0;7#i zP_kTIjMj|#(q;a6O!!PLE*1<928`)b>#_Nbuj9f^6#IxAmE`TsA8<0fI7q26^}`Ds zva6VysNn1p3*OZnpG@(WU=;+m|EBeqe*RTVo%wV_UvJjBaQpHroF#GcvAY;Cy+y{#{2o6URRCJs^RUe;ZOm+-yPGJlTU4X&71Dj zTJ@O=({o9W_`bk-U%c-_-$LrkeM}UB5ReB|ZaeP%M}SQw`WzoEL8tXSeJ}QNxp*9RA zvFg}Ldz|rY=fP9Fy+7yT6Iu8%CaNn2;QTIbuNL$2ciNw z`xDb3dvgiX0QB}%d}FyN8}S1`8yEo`QWAKk&Jnc~TbR~7upz8tS@4ecC%XdL`ax{-=CQ1R5teCfw%x__Eoq|?gTLjK{MdEV2aj#|w2IXY5d{(1q;3zq< z(MOeMV>`}wHrg}J0IP~XV+{N^G(%1v+bt9~Ht?WSq`_VxhU!O+=I}=yVH2_Sck-sE zzKDjb<%}?O#$mtO>8_b)$tpiD9nQB+6WD8>cqY+N_Mq)bb${sEsnN#q50P6O!Y(f6 z(D@ECx~scKjR8{0!ebHqsrkjfs1*ZjTi7rxTnuEK-rOBooIE8o{&!X_4Ry4%A}irf z-+Bn3!b?@pK3EFtj?y$Jc4d&^Kk1UxH}E(tr=iKA(xGmE0ABHWIpW0zrpXV$K=y&B z!M_Gk6z>BPmTw}iY|-Hj|Ik`$PzemGY(5lNvO%5*fDx$RBV~9?&1IaJFcPwew5>2a zw(9MMqOvNFw!$c0t=dBs_EWg8#*3eweEpDO;T0gc3cn7|4}0*8Mk;_Ol5%n4e_lX@twA-MEVw{Z5GnY36MB(JDbm?~bfz)h+-m;axFiH`BI%uO)3E zwdfn|No^5x!V6jAbLMf|%WpE;{#5YiW@G3?v7W``|E3KbT&)oi8e^INR%;(cTK{-+ zW^@cgD-Q~G$P90Mk-gQ|Ui?T^6J~$;il{nK{=@}dwfb$SOm^gHLt}J}9>+zltVxcP z>cmOMWIq|rjc?Y~?QyzCM@`**#`id08)knyw69KgOonK!b=2)MPEqV1MS^|GqVf6g4w|{gQ}7Rv6JV>T(NturSG6-?92xdywxf~ z`L$?7D0nC;%kUO8EM27x=34SSzRsG%#dBl|4#tvY@>p*5Wo>;j{Q+g-Iro3nhO-vN zyOwP=n#&v8|8-i(_~V~yCxwmiDaI& zCXWm$prT~Ca(iVwttO_IJR6!2h|%SBcI}BC`^T@#={;E?fnvIR+FB;9t#!>gqmR^4 zT=3Cb)bEZ*(sm$~8m5cZN|IKy6X8nT(F$qNYSvNX?jL#+P68c~MAS24<7tGh>o*R1 zd7dS<5?a&ld0c`Ns;9R5PVVoS&Cz{?aV*;(Lkf91^}3MORUHX^SC*5$Jc*K_Ivafj zdApG0A2Kxja*T*W`v#ml$s`#o?%>AxuQ#^}cYL!X@aN4B#otj%pVy?04I%%E7d<*q zeG@9!rO$kFcru&h|1sI_y2Ym`uC{!nYWb$KAyNEjsnAGgHObk!c zOzUs?(wOcwMK=Em;pR}}$F=X{WgT)}8Azq7G;8a)+wiyghuWXF>GWU!RNACBkHqu4 zn|1s&=&o7@P(3Nasbuc}HXD*CZzI+yLWC3#%VPxsHdAOrw>op12Pu242k4;WMtq@;|QXFCUgtPmYO-%kQ5L!=WvcNQ#q6A)h z=lbDlu~I$hYY=ZwFy=l>B@ytPPAyNaP!BaGFqjpfqzm)lP8HkeK#!l<$i_?X$Ic5g zgjJqKajdIQH<0Oa0k1G~gJf|h(goh_H~u8^ZZMmR zC!MX3^j-*wrtbB_0So+D=Nh8Gy zD`kqOw9DV&7Ls`YwGFtnNol4xb0VMFeuw+%rP@f9)w<)wHPY6+{G?*%Gj1UF5*s<0 zbUvKv$iV`{u*YR{Px(@*`ye|}+~WYhRK~2zZ!RZJkJT)x2kDqp^5>|f|8aDd0Zq7H z8>W#)WOS#DMp8gR>5h#?x?4%x!2rPK=Tnc(|ug2}`fTVY`$q}onc>iw7P3}@TFE&rO@ z3Z}f%#n4q-hIleL)7S^ripdBBk-I*QOeqXcismuN?sqbs+wuVu{Mt~RKZ0S-{uJ?M z3bJhY2N**+$lO4!oF^Dd>4B(8q3h5uDE8<=&q)4`>bw3+8n2k}Yn==hElwqtK0tU^VR?J)Ac_7ptuMN|dtuV*EJJXI$D&*F!P|HnP?6Z>hGR zwntSZMh?au9A#516NJve*8U)@_|w~n@WXD55$OLrbV6n;ApS1sy4n9>`~l6M&;a83 z8<-yB!QUu&Gl>0D?gEnrzDFmp0MtVl1Qro-;2btvTo2tRT>pbKBeKk`(W$$Rr6(Lr z#QC*LWO6j*V@Gv^zRohZzl1P_iEFGjCV5VX919`59W0|( z#Dzw%tH)BC__b*@nsOg9gfl(64x|@K?4RLy>X)JBf%fd+Qz{M3Wba_Te5F=3q9CXg zC6r25CYmzYz_&Q+T+v@`Pm{!^ICj(aF{K@KiGOWU281#G3{wvOVN{$SA@1J%f&YgA zF9+5AfSF$?o(=w01<-ze3t446t#E&hBn8S58^442|B2yhA^@#}!iyK2U+TQUjp-5C z$+&(1pwI|C#-JKJ*k%CBkbDMO7bdqX|mQC_z6qr_uGvp zEbz{(#_JOuL=sd5<8oCq==_ksQYI(YVrA)a_ln?rp`kbtJ>46CAhh`iFBtX3Qf+Ta zH%pRVJ-BbjL;4UPNjbRom4tYS&vJH1`chob-}40C+plcs`ypCh)4pc)5I6rM$dqB| zipb+49M1jB_bX?3MQGw`{iQ%E%aBxvf<|so)U2!S_bmzF0{7ZEN@4?h{FH z!jN}Ox7OPGOTMbKr>VmN{n%RaMYUa?y7^wi_?u_(kj%#fK`wP6m&g^yZify*3D0P^ zZ+jxy+bb6!3jtPy70~t~z>e%&Ebk6DN0OGywLqNeq5m_ewBmdJ&r}XN*py=Cu!>70 zKjR6!>3@c?HUyxnf_lK*8=E?2H^T4IMi4LTRhv3Guxl*&qX|=1=Ipm5N2&twBlhMx zVadunQGG4Hb%=^`4MJ()i{MH+TFM#74 zMlv`ho;0oko+Vb%a^+NfyNaTYx$YDZxEASUFLB)O(_L+KrfDVEWY!U!47oWc|4GxT z7#DCi$kYrAcp71#ZAiaeypqDIWB~6JHp?SlC|R7Tyf&8C*GK&6IM8{4grG zJQhAO&2z4C;h@#jYyqTe}td#-bimcv1+3=@Ge-qnX4b* zX&Wv|EH(UFbf+BX7wa{sQ1f;O;2ow=H6!8$W>-=r5R%6FRS|WQ2{r^@Yw01TP>a8K_A} z+Ina<9}N2t2J|n9%CxXO^mgQ87l?7Sdq5#4`I)OuQQ-!PFmKO45T2@>6Rnm^ zl{;*=fydp(ejajq!n*sEY$t00)4hsA%g4+an-YhavT_-KzfvWa0+1PI_tr~i0f&^O zB_-?CN17?IUmR51QbZHFqIgJ%u#9{#4ohY((YudA%sd&sbJuZHX0pY@6pSbji~iV@XxkN{XBK)C z)SeDMqXT=B{-KWL?PyB!9OJzy6Y~$^dyx__^t6XsB^~Li&%o57R4`b_P6umj*DmW$B{Emwv3R#!lL$S&iAcRr^G4~$XZK0#qP zr`i5+=rpzoEVFqEIcYde{F0!c^c!Ba-;DL`#-S3(Rx%EEq=_s?r;bK3Gdkz!Q-fMzP}N9(9<1!l%rd9KCF31YU`Uehcpi zYSC}QGumgd$tg}JslI-j5FQh&RTfPe$EZW9P-v)q0cDAGQoB~lVWjwbuX^mDTEh4k znat4Xll6^3WWl|OQ?|2}7`Gnhlpmb``Ov#1y)eh?_rlGpUB(~3l1%!Ed1mWw8R&hr zRDZlk@+X1Q1GWNj!vyzz#&%>vlJ<&Cz1LhZvo@}C60T6q!!7)v#8g|?Yh240x3YgW zVhBxNd-5f{VrAtS5j~{7F1oE4FyW%yj^KxXkU$zs?6~igc+LMK{lFS2UGCVOrerqF zOjcGjws-rI%FZU~5WO>ICe+asi;RC!->6)J?Zbh22~%WVzIU4>#pDBDL|rvcjzY;& zRaU5}dXvp)DaINQz_!cP-nlzmxNC^kKX2(+VqyMkBG=kQu|(CX!xNY=`FBM6g|jsd zfn%yS>~i}?>t1nN1i$0udwn6?Z%q5wB?wv5PezXBcGx z;x5fR)19y;U7iSYc>v<6fF80#ydfaSTQ4gCwl?7EWDZ+Rl0d?zD>@OjV6$F6O37ai zN`x3BAYO<8gxa57&wpw#pXuajMYfe^k&IGk_!5D+z;UVWWjnGk*6oX zk$Zunk5uf$KN_^l4GL_V6kSZ3L{XG(xcK9DO%R_|%IPpYX(8%5yZGK2a0r)jH=K!# zhXn--&Ucj*+GtFVYV+Ey-`YA}FxQ2cgqDAcD}Da0^5$&+u9o4A&~egSKj_;hiBxEj z1;a)G)Fl>rv=HCwyoecZHc($h|0uqd1msPhgGCkSBZ8hkm{sevM}Vp{sS3DWnmZAS zQ63(9EF$ZSOCTqy2hi(e>2`tO>Enu+uCMC z23Zy2I@gqJ{IP)bHSw)+a`eA9RR3YvX1sMx)BkkFKo`>18=K$X8<9F*np#zfL}ncH zgft`&5C`N%>rOvqMF=%m`Con^|3SD|Kga4!k3L6yNj^Uwz%3rnwd}oq=R*E=ZZk=q zZ;Rq%MZ#FzQoRKOa3J{0jJ~9n$bx4+RsB)+nsp{Al#?@TeB#S6{!1Pc)%rvGq=A&b zuG(22n;Q1P->4i69R!#MIk z=?#JaDNyl0<;`dCxQ(wvTF5`OL1^Q8VGjWj5aO>*oj>>vV-PkW)oD93Ox;3n`3ygN z5yP;C6{w~6YY8jL!lST-fU*})``QnrahdsGy9E_OpE|7LI~(4vLyXDqzx?xJ4XQSWqTe$UKeo9K?l1g074w!qkWDB){GlGY_w-hA z)x09tC?|L$#2+)oIBIWNNq#z9vd-_N{*&%Uc@#0C1S^k|eIo+j$-Y>`3M#r{Uiu=U zo9t(z20z~{Ve$T$f!5|}Yxf5?=peDwr$)nuj8`48Sct7p0dSQVYz?|OHOh+rFsx3l z@OTyefzgqBSIoFxx~LJrk^2w+ECrKliqM^ zblE2uckLt3lJEMp+jG~Imj9!pr6ET#&9Y;SVNvmfu7(-(1#U~oij*EKQ6ihYp% zv@kj%n|zk=6$?XGx<6yL6|p+uj%%O=E6-S!nS0#L)9vskw(kTEe7b6=2#2fObM_%V zbbCFWPf+xU-%fNo{jcm7tzS6lAX}y${qCY~r^-%68RC@r$SP5z=&>DYD&TOr81di^ zp6!_%NQ6y*2b8fLXJ-*&9L9a-QQNJY<^7tf85bSy%ePLr^^rd@Nro*@me4fD zfH71=8Qt%6aN=O)^{$m~*^b(SKi#TPsFJfBKLvRr!Dqa@pgaT9zqBV-;70G2dT3Jn zES5ZUmNAQfw^t4*aK?nW`3xe}WfffmzI1H;Of^1d4?9Zz4`X-%%LJZ>`20x5|Lnwb zkxW7FcIa&h(llfgQrKN++XSla}*ujJ5@6KES$0ZhAFEwE_C0EzX ze-9sP-458y>bI9Lsh{bA1}?gyVmz2(bQbjbVnn+zqV zt)8I#?479$vEN~3GLMb&zjMjekQv=}Wfs{5J6Kh$sgV^xJpft)ac#v##TPOqz^1dW zx!>%Lm(!HLJ3cpH;}goLYqGn7sU!w`@U5&+C`M(UIl3<1QiQS! z*V(i%>vBlLN!C_R!zq^vUT0Wca;18O0O(b=fw8E-r(wV!$qwpGj<{! z%>8yND8NBU(i|i;4)oU8Erk(L3?G&X!ZL1%lEfnuQna7e)WR=+)NYYPVDOyC^jK|u zME$sJ`k2J69gD=UWcR|AkbPwaGR}RH->rVUK2zBZQFyH-yRzpU*2@=LhzRSG3hSE< z>EA&$+3ultP~Tbe5BS-IN6NAGQ*@%;+jwrf8WY_Y)D1@jg3$}}v5#v6_!rMaD`nrJ zWdiM2DW~n7%H{;-mwy}@J+#Ow9T8^;o4e}LwSThIOkZ{VWbDi}=&H9%jaoG(L`e-7 zwhej*W0x&Ne7~h-gxK2OjeAp#an;@17v5zysYrYCbQvN zqYAEZnKDD(m7%%GBd?p)@f|;^D#-m%qF(kjA09)<5`7?fz_7rb7W}P2o^JfBQ8)!= z`dh7MsM#ISGw)XdFGN>mGQr=N0^c*pU*3epeC}=ea6BBc!3`~y=PghILU zFNohF!k7ET+Xwn`r@Ye3UlKOD4lspUH`eN;u6|?_`f>Gq)ELg~ zql694ktvCZ`qLtfHR;;W<}xviVzyRU(#L9IM;yO@Sg~H1y(ow&w$(-5BN|3C-npi> z%4NU)599b0g(I9-^6Qw#LmO8T@nmcSaU*3dK0s*jY4&IWnNDEiXH_#8?adzc@7DuN zJSDeS*YEFqR$*$z7BSMXFBw>bxE3XLLQ6dD%QQUH#G}iI|HEh{35;G0)(&&z8jaaL z4(wLVXQvotEXI^%JK$+7M-8!YuhGR@zm5^rL2_uRj{HoBFo z;LqHXHK7?3L|STtTSHB$*fr;{Md4$wSRnUNHe5Xz8Fd3WcAQpf@I(D9x1{?oW0OXA z@X2!*9k?Vyn_#dGQ9^p*vV6;qC>3TZvEY;o{Cc={s=x8&8``-$iiJ7%p3oZY7*tY z7wjcMcyq9V&5fzubA!%dW*&ujYi|a_irZHDpgkaGW{7R$4Zljk@-}*K4>p7G?X!4M z^-wfnJXrd{`04O} z&OKiF7Cdw9c5KqtmrmSQTT-?)+<}Wfdcb`8io?FoL$q;$JJ+cwx8=7)gEMEtKN_26 zf%{^pB*NRXS#AvVpuO>;hfMUjUj%!~e5^fjZ6XbY4hWJ<-v3ZY4|K&5zSU(htQh^3 z23vRpjp!sE31{pI%ZT99F~a3|YvQf?bBn_Sic6-=f8+2Z8kbXKrX)GwT5Ie>1lk@` z4gUa|cG+wt#5E7sh5^w1N9Hj06}2uhwt2sabHH%^!)7G z?|uT$W*Ejt>Aaf9QIl=XjGWH2l+Q&5|15 zuh}3^eN6Ix^MPgR`Y?;$Jd3ww7yE>bRq;GFZQFUDtTE3QMSm;{5m1#>)y#A-*Rj zXUXs1xGc0k;Y*(?#W5sR{6wW~xOs9vul^kyuOm+XjAVV`H40vMsSUM|qS>^P3~6Y( zH;}e}F%zuROQd}JuHUz!A(UJlzlOiYBJO6lB5aBF<=d5k2|k&w@<4Zz*aWQF0mDym zg~02m?78B3>Z7+7J@wG+ovXSJqk{By5`kq2V)?l{|6!?M2_?t@btm=VB3*uXUcaeu zWzNfQJd@q8b1q%_GKRx@W4N+kv{X5Gkfp9|Zmkp6))7BPK|{&s^tc#2MaMBFY}`9> zR0MO@BKVKx7KM$-r4Pa72BA)dB}}*oa1I=GkQ3lwt30yU>U`!sWA$>Sz+30E)+m+cJAQu%a;W>0<~B_A=g@wN!CIIjaS|VH zFD5PqW2{YAgrQCL4R9T_Vy-}Z8rI{B+Y%hJSqHNWOar#lL>E}jb}co;KWyKjsrX7u zaP9{t!uf~NvGt~lyNzeZ1|3-oBU`yc<^F&&XGvN7^2pRLW7-HA#xGT9GUT^P!mV7H zJOP{2ukF(mOi1&E7`n9f%}wU^+?Jq&u_)cyv{vI~$9y5%ROW~pap_y0;gDLKX_p^S z+ZI$Lq+D$Rmb+h^?bvOcFAZ*^C)D1*Vx_YatGbsmd-Gb-IJ<+U1Qd9ne>crx$Xh?8 zZU@O;^$QQN6Izx*PwBJJy1?z7yI;kZ7^LR!C_HbouISNs1rzT;c(l+Saov0b%jB;O zW_!7^^<0SkGH3r7_1vNbM62KOQLd{`v(9Qnzu?|{XpkWyctJn7X~3kj+@+!bkoM?zyJA*5_FRKa70wz4^!e!5iHe55bw1U3Yena4v z|8q02*wozsH^MPef6~!BL6a%>>hM9;OTxcyUy#w0$jJg*Yi);~j6XR76Kl74chp1T zk!);HrJ0G7H81zbmsZBSy%b-Bw+Qd!;Ve*n#@y23FB1Bff8XXlLO@1u%<*S;CeTi2 zC*u;g9}FxCA@$HhTOg{r0t>{$_ldAlz-^v^ zco~4TALd3MbhD!!x_|`hZ{Q#Et^&C~)XPeMu>{by)7}3S*I_K~@jbz?Mm15%nwnzi z8A1fX$HW+dlk@BWukod`A7fWPX&d^i#J(#VwmAL_%&&V zynUv0Uw4_``>LLs5r`4x^Fe>Md~d@)O9^fi5)?ec&*Pfso7M1;CCclCHkDE*7Afzr z^%I^jJ9B_?Qnq$3#Zc*|&RL^98%|7P*zz;!h0V%q6DwkZ7mRAP9w7pF^8aCUCw>@c zIQS2vE@Nvbc8NLdQ}3Hvb2SFu3k_qxLT4qctK)lT`b(d#uNlOCFBP4ix{0UO)qQ+$ zKu*f)x81QEwlndF*H15rizU*BB%ykpQp}G`UNI72`}inCJkN7I5yQAS)il&7i`(!Tg=nT?F4QYE z3S5UuQf%lfgV%pGJ%tb=GGi9p=+X7?N_}tmJM3!k?X?L4vbDe5SKvPl4!vP3fQ~Ub zKnz3j04F!7{J#ZtX>89HO<12&sIl(iO3=)9QgvY5j!HI@)Yfd>!F_X!z@FrM=|RfQ z+AA&!ZxN-adt;Y0Bw}sp^Mm$|R326H)YWd8H1^Q3yHBmLakVS%G@+bI5_$`)nsw}- zde1L#+Oy?ZbE#oofj;!!+KciEJihIj^QWzi+FLrj>SJuNdM{&2iIz;lTm>FFXU<5E zxz%nf@P;2W^TLZB7Ngf4=~U>bC#kWVqBSS!q72lHJa^-KSDi5# z=@Ok*=><`#yE8}HWBd8TU$bThz^jbg}7&T6s@$=_&p8rhltBz^rVzyw39MD?rpV$Oqcg>U?AJ zyko{*+})DB?Z?I2#=Oy9->Wx!AbIu$?;G?COUv3`)tJEA(gI5Fjmq_?3`SKxeD}lE zXKiq5HPc7=ODnIzif7Bc_GA4bz3i_#HE+Xww$-JNdY_Hmd!Bkh>0vYLx<+}%^0UNW zD8p%0PKy|La5XgA^LXfjoa`{L6%{J(WWqMQ;R-GkE;)&lZ0FeSvFl{}2QkLMLCEcc zp&XTSOjg?}nYbl6LO&Xc@!QnuNw)*%L2(2V2V>uu=V`w!6=$kxZ(k)3>8fB|Hw8Kx zTaR9FY4f(TNki;?kJ+2wo1c=EACYNhVs|2Nv^7vv3fV{uSBKV_qIlC|dD?(mDX!)Z zv@kY#teRQRzZo^6g5zpU&>GV#a1nmf=4+wo2_A96gt$ z@Q!JY^2EA64W}*bl52QPXZ(4f)<9YiqOhpAZNQ}NCLSx}=cRp)A_3KMS7<5ef@f6R(pS zub>%O)DGrTKSa-uke%mAsqj7=Q>e224}*MSakx_?UoUXSRqN?UAbE?LTUoMI1Dk|s z!}1tSQ(}W-?n*_=b$R_HNhQv-QDkdG6^?K1k0R#3ZvDr3DeT&>*%i)Ja&CKFOH7az z&Zu3p0m+&}zY~rf(WH*>{F?6`uIBL;3P%w}7(v*eRO$^)bQ zU=UwUx1P_}YBlC9QvMA~|B3$Sbtp68_V;)Ek3Puk&A_`0DYLIB3_V`t6B>GIwQwj6 zo$x1L&wPVF_2K+b=E^x7uKrmIBA1iL+;OiAeLmh+By9eN1L-fFtHwQ}uQ+={+9i&` z9^7A|RGnA%{LcJ2O&aV`5sMDhwE?CP;u`+Lf@#rgQ1fykJWGzq=)lJu;x_V4>2xcp z)~s$g%U~>Xc0ThjZIWz3C%s)NuQJvXEd1wL;=B(x{@T=+hx7%&e0gTUPyw1`iRo{S zHe=o?etR{1QnBSLy%j|ugE(Wen`Qp~$@IabVa$s4W}dFMhz!E4yh&tGos_*~HL-cQ znt!H2mf+*3j=YbZ>Y^UehC=rqw_fCgQJQ-*XE~EZ0Vhbg+BxEfXiQ_$buuN-o$ahE z_fpn3MVX)0nR>}hGWHhs@T&>ft0CKuLYKo3nd&%FLSHyC@2y<*UsNnPxmOXT`g1Uz z$!TFu&hIrZ6^|a&eayUb_{tNaUp!~l1j?Y+d5_Ze(8@fJgCyh-Efapib+#gAP#6N0 z{6eig$4ui@Xj5-%U!=&)TT#Lx51HO$QrKtaKVQJyy|-g`+J=wolB{-Av4L-4~HL|{!*nXaMuv~jDAW! z$CxSSjfyVTBCE5IDGss7uBDJy@ok`DTCB`B+6htPdTz^D(nZ=M(m^g!8kW;|SKCO1 zV@5vD(ly(#@`C@7$sk2kW8zeP^?J(EcBJys3$GStR1ur$>Yt?gQS#UyYXL86bf|!G z4Ec(PwNmaupQnSK{F8?h9(~g2dah1{O2`1H+iQap7{H&mLpwcqV=N9Lj1r;Wfi;>3 zX@mh1{1d$KZKgJL)Z8vMbtNEmm5T`Jwm}2|@dXl|u?RSE(xjyj4YA1((Yc@DqFZj2 z);d%ZpCn~e@C~YIVkamzja(}|Yx}uZGur$>*X5NbvAIALSLxd&jRgzzsuG>>&o|p~ z^qQ|cQh6tT^$RO)S6$B3E_ry;&_zHzEv5z&J4ifVE|ARh+Ry-t+|X=-aJHF^hzL2vHB!Sd{QvmdA#LG zSHND$0ugT>ObXre8vrN>3&2~)@vQ(=%n0~t1r&e@7cAo-ZbiYc;k4OVoBF?i^aDQk z)zS4hA&ZE1=|ljZjkpzt*WfMI{8Rt~pgM?f@Vx;#4$U9wN0&V|Rf=%DW&jgknjV&?>03ImC5oZ zirjxB^;~w;7YZj&#|$X+E!6MyRj>EArs%S8yN|bT_|q{X1fQIR>@>X|{Ht+ybfif! zu#ad?4y_eD9vi)0xEDiVSm`sq{$VzZ*}2n!p?I4+<`yW(siJV>e#2KpHk55(!sD6u zX=G>VSqZDMrSK%CJUb>nlh>DZ$D&(_<*``O@3q!lcDBOt@LgIKs;awmpPw^qwgw_D`z?M4!5&(hF-o~>dy@wfn^8toeaI(pAUW68awrR#a9llSe|>47U%D|Qg5Yh z*CRQAvq2SAE*qx(YXL|1}rJ(_&V_Q#q7g%1F(0n4#Waj z<01wEy{w4UNM+E`RAXX!0And)inhzGUU`wYMUHn-OjBd`SXsUu4*||VueW2&(7?CS zk&TXm_*;N8%>~k&fDyzY%;N!PIL~##jqs52x8EQl{1{xJj~M|(vEgAK^zeBT4Wwx^ z#*~FQ7*@hG*oOZrzMe$@ni|+4-?jkfb)CL1(6nQEpLz9m<3z*{#o}C}*YRy$I4oA| z2VGh=rP>1%0vjN3hI<~pOTUJKhF7ji% zSL9ofp{dHev58>nrwxXc^D$*HYepCC|f&9kQg-z)7I_z^2dfO9}ea z$h~8XsxxWEEKKI^xnhRK%ultCW~FShQg2~>f;w5x1O#thZaeUhdP$3XV>d@KHX~4b zD7ho4laJY4u>f$wV??EprBj7x;3>%>hSj{U&~Ro$Zg_~rr@6X^QSy&0?6lcBI-T}c zFV)nf(`U_S#HlpqJ?c7i-gq|KIY(raBX#^ofjjFaH~$CKn=rBi`zG&-_p4v|`4iQ* zH|?!R#5w!En$j($Y{QE^ZaW;=Gsa-43+{9AI|yB<_Fv5qzD_zax*h5CDUN&)t<`9| z)7YcB@nkQA%E*mh+ovXF*QOVr4LwMi&7%HW?*e{l#xOtIF7Kyy;-aV@496$kyUqb6 z*+ec?<%Kc#Yx30bkIHuRLeH?Tb5__)uvVHaS7fq>HGbC_k}Kf+EGsvyJGfQmjl-;) zWVhrF4G9zh*?b<%y2t7>ULoP@b%10(zF00ZJ!_WLVe(vvCEZEfV@#(_lh4rpJH(PZ z))rft#!L4B`+>CD|Ej|6dCvNijGx4VqaSIoOH}l?_QJC67m#4+;}o7Q9CTgC`p6UZ z8CGy`OxDD9j}n%{=X0hS7pq=|w?+Qo=(sz`C;e>;68OvgRNfOe)8f4ai177 ztU|FbHESb3Ljk#cuV|SD0mHexwyCEFU7BOSYy}jrm1;4hZjL`Iq$tP^&0p`3E-{N% z{6>3~9Ufahu%nys)?uVfBB-yyg)J`YL!-^~Ddo<(&4+siibW2hAlX(2F+v@62i8}m zV=%yWBm7jt2!bh?6~F3n;;8C*)PqNNM5jJd;vRC~PwP#{Y|dZYMA+dPwO~@y%CM1WW49!g0AnO4e{Sv z?vb|HRK7n_3|b(kUCw;kvtUD&^`AYKY-8kc-%PZ3v1gv`)6+_T8_hJ6u-4>ngc#_}Q(oMs44KKh_^cz+NV;pk26X5m^ zy-H?rUdw6Yx{)#EmfN;zuL%{GEL$@MGLLd$W9bLBNp5!vkFtgLFu#RYhP7m1*6Uk^ z`Xp_qjI^tAK12*f_ACUVMo0`rGKlBC({*dJb1 zj?IyHKbFwZ<+{J-WY`@t`dyVB%4e>qmFguN2OK>(Dg z=vCZ$IEIvHx_*(Q<(l)44|9p1u#9Hm^dbSI&#uzHvf^)t!0I<5%DVy!x3{+G$(k{* za6=a~6GYdwi)Qk})WtO3_<5-B#P1Y<9(BXDB-QS6)au?`_Vqjsyf42BqWaAvY|^|y zNlYCc-ZM*<1LKTboTOzm^wcguTn37pv%C9bapvC*oAx5>X6t!-@xri9n zJwsSu%`5{3nYR`H)3$D7fMM=0@SPdy_mTqQF<8BH0M_dYME%p}hKl#J@#0v!NJGZm zd$_&Tpo2LHyx0~pw?h|mhnz|s-~V zSzkT*t`e3MMQObtqG;*?ov{M2@k=<2BuY@AaG-VRbaKzAi|%~AYN~R4G&u` zLLRVM0F(JAFX;K|bWFv!J>NJ-*Rw-F{%p2>4eUfWU}F!tDk0{FO<1JA)*%W{JS`U? zj_f*d5O{KpgfzNJ_SFQrQ}!Q!zh+ToV>BmqngQ$2+M#QykcvUv8i5^{tAARMZW2<0 zo`Dq?-=3}emL(G3)Xl50Rfko*sbNYJMvUO?+ClBkxG?@XitmzVUZX3lggl>M&%6yz z*#p)t)mS)Mp`@5rTu}Io`GcT4(_tW=rK^U?xG+O!7PE~Kp>*hMo)F!b>ZflU3x47) z?^R+4UDP}%GkC#XhG_U}SdWUz)yvC!zNQG?TSVD^7;*ciBW5vT>TGln+?1u#yX>U6 zWe2xZ5`7-#JU2JbYp3Q>NZa1WZb(`vhpnM82(Q0C2>q%mtYW#lv#yQm-jZ|W3KXKxX$m#@O%2c1H(yIp^E7cV?rx3`oe9gj?A*aqGiyeYl26925MoH% z^B+X$fpW35djx#`188d5)O8_EH(wqg%|KYSp%1!73I&o40LuGO2{HR()H#TVBE5pl z;nzc3i?;s&1o2-m_1zV~YGxo#hIBUB!2XvJ51(ZO)f(l_n&q1rtX3@vz!GzVd0RdE z4*Ezdl&zCskr$wP6LD!VsS3^Xs2RudG}xju9@~P4M4A z7vM2)6k*;^wnPK-2l7AA{=NBbQ}HcCAY!Do_8QYe(r z=Ap=0h~JN8^nv5KW30X+yE0a3$|A++rAf0Yq43MPOn)A+rWnf?-h|1#{fArsVHgxG zkMFiV>F56EFy&Ea)6%G7u<2*YEGdHvJC&(pAvbuDsdIrm@d6ey1h ziV;3u?~!XwTz8DS6*s0+wbQd$3(?;(@@9$AfnfVGhC)M1M+Jx<1m$dVMBH{b-A2U{ zyMVq{-E4^Vy4HCMM#=7ia6!f0v$6O_W|6&$KL+WmX}j{0SWYgXGtK{D2%hek4Td?HN z+$<*88V7Ae79x1viI0eC5cgwsVQa2{0rFY1&Y{7ZWTG^QN%CzLHuGET%eNKZlDHO@ zoJF$JPp8$N7CuNXHwxVnxZ)9ypXJ|bp{m{16p zm&H?OTi%A+EOduoL{|h!3+uJ7kP%NLiu<1BueiI=8h3fP(I@fDf*}~2P}9+q?{?@c z^M}nWY07rheNWJFtIVbF0BwKhL@26%2da6Jmilv4>CgF>!V3ej@bTj4)jf&4tw^<9Zc?zuHXL00alDn-Hh-^$O^E z5J>0bP~g(*25g1fs2c=^?IOHNcXHtVz=WpZVmGX!_=f zBTFVRg2U|rGlci_Ge`8-DH;rhkh*Z}uugm2ri1mf+%N%nn<5zUFTk*;(D~sHTw#sBvvmF+bqi~k={$z6;FP~mW>-#;gXUXwU1@a#Z(76|Ro_M89p$fe*M8@xS#(eT7{x8~tJG z$Iy^CqDfs%IlUhh+(r$X+H=Y7yr3fa?JaE-@|PowSkqZpe0WBi&+y|T=7Y4&v1r1o-81Ehe4@lDn@HEoFjw?2p@KL??;{-|JG;b|@ts=Z zeWxJk{owZHCS{?!@`bP9REqGqT{V<4vb1XJ&y7?n?|Z|TrlrH>DX#P*bmp^Za-I_= zVQ>u_<>vWryvfPee&&AH#>dg~ll#@pcU!<9f;om1tBzVzkcsm#I)6vbe4)s5W#D>A;iZ$orJA~)Nl8V@y{)1(;JV5OM09S@Ofz+lw}2r{7nv&JC?%ViW%Sno zixdr>b3omAg+TlT;w517wd_Q^J3*Q?1jA|`eYdFxDCV$Vz~Bq<;ssUQMoAzo0J$#U z*>sKXQjo<&!ipnOkS`0NRi{B_`jw;Y5Ctg_3b6DW#TH(46NcS~TZW_SiXrQ6ur6!0 zxst5srIBR;iO}nouW|(osD{d{bLT+k%SR7rw-BG^mUa>p22S zDOn)6NzyaLUnp_hVjxut2Z~-ICY1IsH!+ynkVFD{b3`u&$X(lbHAUNFU6%=Q7k$^k zBPudO&%v;#UH1eY+w<`Gt%!9}xkQKfR_?a#F0DEpQ%oNh95vuQQO7-Zp=3Z3QFg+l zuKQ4)djDVa!Ds2v1-?ch5jC*}VdsZy0!4z=UY5z~Cs*ph!L&NV>y!N}1IC}e=}!HJ zp}IE8KO8mP(S5dqufoIuCEd=0?(-lEnav?Yl3%K`?=5s`TrB z0P+LeoNpfLfmQQsBs{;cvwS7WG^qzvcLD9y^dP>rWT5^p(i8^_c?vSZc3txHHZk-$ zm3@3_3g)VMn&~i@@{*N}A$w3w7W&&lmhfYOGL7R%KPeOba46lyz*t3{xFn)V`3mN) zz(j)x7UGqs(*=d#b;5RF6I(TAOonzv$m*=c*RB?&fF*F+?_N;d&i9P(Nn?Jv0w{AZ zcC;wci~}J2AI7(nyg}D<_dyrA`XpR=8u9dPZ{gTURZ%+%c zS+j^v)eNO@KE^&~zV3LEQ14)5ndzIAq<)DX+DTcK;oSI*SB0Vh3lkUVPoK3;@-aR4 zHR^48pylJzWF3;LMw!5dIL>=>K6Sc7sh2bFUMQjQk`(8d+b)|GYMT&m5OHcAN7yVR zFW!!rM)u=0``k5bZ6q}l8yI)w^Ejpy&1-#;qbOONFX?)=Qm@eZ#1r)&hKNGhG69`( zSF#P22$?dhHUV`lm&2mef|n;=X1HIp&9mo)xtQ2zZaXI>OM^9uMV%!#m=Ca?A7epz=`%orC znufoYc=|{6j7M@@M7@+nOq&AX?bUP!{c}eSuSJl8#Yqz)M-yRb_e#&^)x+h*--jwI zA1|*BlT{Ps%q1(y5s+%oTxG!Q?#kWff9)JJ`UF*lerTbcAj6%# z!oQTw_^1D=588t5g+ld>DDGv($nQ5-)wrr*?-pEI8 z-j)0tF``PPdGs-~*g;xa-9iS-1kaM7`H6q|Ine5UMw{44$>@rX^(fxf&#+)q{I=A74VFqtZ8aAJlUQ z))UmLoO@$;RSzrE?9;xXuJZjI8Sc|4o&JQcOJ{K7mm(mRjg`pQ{Gb(v{6@F_c{p0) zgSbwlDo=$iea2CDwanC%NAs?R^)ffJZOU6UTr|o!m_~r^Xq{vyA4USDqL-MLP&szz zJAtZFvt@3sMw@PXLp9yoQfTql2fBl)Xt@B_pCwk^Jxex*$kXC8W)`LQY%}K|%hfFY4~}Ktqhy27j_|2=*U|VVa8TI7c58fVxN4aC`!iRJ5!0NI++8 zegrM=&;)O*#cKz1jK*031rYpB^4XL*vA6ivGt<6^u$$+DEn9G@eFQG*kBwW{x&Vtt?)gnu#Lk?X;@j1IZu|Xap)^*Rgwl>HkEn#`bb$)mwIXAx?Vr0BH1Ho zr=KVs4g|b(|3|+a;5a6RcBxU`0y?(~8kty*|4;xrT?8wK?ff<%g+-Ef5=a}BZ#qLw z_Wrk&tu=$x?;>cLIqQKmu6YY&$PnbKtN{3`uw#K=wDP|ZxINPXaO*V10g|d4;12=O zz1@(YU4%g?7o^Ry5@dpN1Z~oT!YlqUMaB^Nll}vmGLmg%V;uCz@*#Ln=J&k%GJyBd zk%ybPYB&PYL;gYhp?V@y%uN98%E7i`^EUPeXOltL#eX(5-@MbKU`o@E*!SMWqqjgq~~l=_?DE&GS`FFNR|F~OlQ~AO(h(l zgB&$vwLu0-ApC1h?8>7C#qiPnAuAV!*#Q@A-lIdM)P?M&!rjK-G9RAtCb&@>6?Z6` z@_duQ?*<18|5aT;Tx)}HVQc#WuB!hsJDewLb3F_5_S4c$>Nd^{BqMd~i z;e6_*y2g&@bcB+IH($BZ$f6uCS#l45ep*H>96#^UfOxA)D98;QMoYMFZU@%@*t&qI zu;=W*AnEF#2rZ;p&hGF*qu^~7wT%S)4f@T%isky`UwT_!-HVmHij_0WMdzdLwS}^8 z|Dnu@$&msTCs)l@u0nL+TnxlK2hG6CBQ6jt2txS;fD=cWNIU=-qgalv1mIF38e}27 zfoA5sx}!!C_>wXf?lVjYC3agjsSa}SJIQ%tEBJv}i4E4x*!ixC<%-dzu4RMZB!&kO z766C9fLT@#aOb&u??Ag2-GOCy<{ zaXw~fP&|(5@CS$?;YjgAMh*tp9J_|IJ7~@gU+V%7rYjPYs8$sV zmimA%3{}}aAv+9KPt{Pf-rrlQ-IbnAG#^~ukyATpN!fKk4240GKbA-UqSIxl=)UR) zGIi&Jb62154NRsi=N^K1UF&;~XC|JL0(RBAD&26s9duV<6&GV#%p(<5$7`vHQMn8=%l%3=*SgAP{sIDv;fRYP{!zf}^rm+R)# zIp2l=>v2XN0_TR`KXTBWT^dessI#SsyKmuUtUlGRj!5knF|4REnktA42yWueWG?M| zzO1G7^knaK^0Vhp{7ck*9t+=d(Mc$nCZJL$>@(qUF~?Nd|Cwn`wmbt$fk}#djPax! zdi488^(bnTQCZa-dwBR=CyUAq^d{3?VEwQ@Ts9m(8AH- z#rD5>@=}j_qBn9MDXkT2gY1`yz^V&;y=Z%%vsW$`b~8J36`MiM;w#OF7Fz#w{?k7BFLwB-!x zd{$thLBsmldNiXb3^oI->z>jzCbEk1;%e&s#Y}~kMB)9iWhB4mE)wB2`3NcOvI(@bzsP#WZ z_zK-wmk&jDH?ryEC!$VF3}|4G7V75ZlO;jeg8Xl0A{^7LFX#NCjC1DtZT_~`FJTb$ zu+6a7uP)bx*E-H4j-crrIlG&ILCQB_bn6Eh1YW%2%ONx3`BG@7S=6XZFUx@Mk>^g; z2%Fsdq}&-#Pqr6A&ZD^CUSjRrH7~ggQ_L&rQW68PtO&;z!Kqjhj&y!M8yZM0_DBcn zpHbf_J@dv?rTcbm&&eDvZ0^sy!GCr#lS~dIYz0gOQs21rA}~PzYDgVa_%)2eY$HI@X@7uOUv|vLVI<0aR0zHGQ;%9_H9^d z1Bot>3O5Q*lcr03te&FJHn(sN7Go$;`B+MfPgWGW?Eu_}Q^{(U1pG|SX43tvKv{66 zHXnMF_tX9_t!d-;xrX)vaH`fK5Ia*7beQ<@e!FwxOh)EL%q%gT{95ngPd4i!%v?fC zAr!^t$T0h5N$Vi*n)cd3_AAXHlABQFi$ALK4Winwmk-l0t=`n@6Kpa(uUzbV{x)P1 zRfN&ynrQfuxiYB^sZ6BKaDL_fCE~c(kz>}IdX)FYG!&re{{>_?fXkM)8=ebLWqfH# zf#!(#|0Yk4-$H;alNfLcnQ~4zt>AVWluAMzbT{=t7FBv>V22^{pT>H!iC9iy1;hknx>4eMhsF!(P4WFHgA5%0X0NxmmM>y0jvod zAlLXYlQA<*U<~{Nw5`jVI{!CjBCi6^r`JR_Ix(F-0yj%A8>pEq4Pc@G5{)n**R|OA z)MC)g830#y>*ojjMP@iMl8^y_{+7qXv3JS|?WP+6dGp;_BYc78{BJH1fN~6(Nc&z1 zaw|Qvu8%;!vaWB}k$%&26r(?fGNx~v#jDi~Qf~bDKR0|Ov|dpg2GZAJnvaoNjs648 zoeA?_5h7xC%2afla~YP`=jJ?m^_P`*U1J(;lfsCdEZqjHi7P&pK{9SJ{vqdB+J_4Q#dbV?a|-0?&3PiTs&R|W?WEF zfvPSiNkiWKduqCVjR8|lk!D?@HM$s;Hbx?~KIYJ0_)8goU3bsDu*a{qTYaaai5B7H z#kGWrp+_nxHw35wsX1EU(CVN+`CRQxDdzHu$@b|sCh6eWfTrQ_504F;4kv+?B{i&u zH~}4mKLBARVZ8@;i>1V~gQJD^r`DD}kAEV_1~b&}LQ?i=p-tC@H-8se)w$)Vek~j@ zWO0_;5yntPyKyC-W688d<$Nc;E4*8(6Dc_DgO|@-LbxGuy+b*g6VXo)x ze-{jc$k)vT+Q@WsdXrIxoJjSfU_#4hw&Po&d-?^_6+_cK_n|nID z)|&Lkum`mum-gDu_MRthnn`0tVC%{fRBXnG?-1HF*Q7>m3WlHSLYz}xoy*Qm&i`&I zuY%tp&G{4ZOn*Z;E!-amKTyg$9%QU=xs@Au?0<8qiEbL&y1SUnViXET8XB^t)pd3} z!7ze8CjXL|bZ?7SC%PPmg>t_~VkEeuqAAJZfR!K426xpna8!6)uclHC? z3qqULEwycOCo*;2kXJE%UaO`|j_)MFYM?sSOx$aiOvFa_S&E~GtjnN4{A7j}@$`?_nOs-D~PGtPpDnOIP)Q*_U@xI+fqkk%!?xu(La6fImfbqTMf<*Yg?q=j zlh+$I6_&AOE}F8WBU2N$@NEc|CO6*Cso93dDvXl5O@+a`ZeU}>_d3I>%D2-+Wje%GmAcB5$ zPAbip=FrNDWR!{oW^5@{dqB$K3*sx#{|Q|=L4G}DAy9+%Q#1c6h2b~(kT&Vv*0QIPl?Dlk;rPkZbA zlHc9{qp3qcfHa-ym$Lbn?`wLjAV%DtT&HKisu>Nq)@vo!AaV#%-c*+&f9LcX&bq)z zrsM*4MnIC;QqjUvWP0b#rZ|#?_?aFE{eAC%I8!yS8Lj7Kgh(_o4!mkZxtSB5d!N7{ z*G#oCF<`B-(Gp+vfl{9^ds4s?!qQ&D0rTeA7`IQ4s(79kmF-~O-_FA_{#gi)wZjC3 za%7<5hJ78$*G(2}6|Vfij2uNsT&Bl_GPY(u_l79vo_3m1d%d2i8gnb!XPTIMh#XsAo79+RG(^t?P+M>XehUDHksUfnyhQ z&@PxlI_>~_&}U###vl7sZmW;h@~)B}meC^?aNg#Vpo1xk);JVwFD85tsRpnKd_CZ% zG%esQNxpI|M^Rii)xX2&B$?kWINI2mNI_IC-VFSn)xzwD+zO?C5-T`xdsTI?L)sN< zr|<}_vpl&rXLUY#TRVZ1AB+Nw&bto(Ly@}E(?*tRCf%mNdv-XwEg3Nrq2MF!|`xKnW|*C%dFY2?-FPAup9>$HrpIobR0 zOs-GPHI*w23sv3>eMP_|S;riA(eUBv--B4HSP${|l4$PST9sFX^92kN1TVGq<(iOFdmY}y0d z#qPTVA#CFOM*!)-F2gxhkR=s?sPdA`NZlNL`Mhe4?Mvs7G@hCJvhdmH&I|dqD-N=# zLuKj*#y88h_qh!ar|X~$A8o^CI$E_E|Hr8*{#7$Mrbr!k85U8kWwX^|M$eqNK2;}v zxyl{nnsbh_U^A+h$3RSg9?L%V?9$2y>q+OUQjebWbe&qa_H?RLK!dd}I$ zyTeGq!dJhB9Y|?my`Ep9m7`+%8VB`N%cr7`#ZM!<7ZKRpF<366j>vN=uxj{LgEJN3 zyP^aaxLSKK)!?kTZab%z-!gxSzX;agR&qDPQz_W~L9BMsNz{)>u6jPTb|CuVUv5K4 zzYT3}_2`?9c$dmLskM!p{5DN?Pl<2r0(f#~>9)N<|A6lgloHT`Ik$|NREt|9(xL4k zfQV!^7}X52fdq;#i&udg9QG^J09vIR-WzO@B>Oa}dDg08Altt*kNApL$4; z*=(6U<%1Q3SH}Pba;$37%B!EI-SXfx2h=D>&~{JAd^B(=YpI=cwI8(G#Q%74(NVly zB9wu)Svf&POPv=hNeX*38f>$S6Y$J^&2~H-(%Nj1-|igG(ov$Q9*Fb)rI!%Y=;X#O zd|jhGHo~ItgU7U}QeegN@0#jV;)!DAvk;jN>~1(S>Nw2d4Wb5(b0#Sz-^EBKStgIC z$pkQ^C(kL!95fAdne6m&k*U)?^rL0JS=f){j~zB%X%)H;e&r%i+?6SQw&`4SGgLMt zQEQ~h6W(;x*0?$BaiLTvU*bYkwnYgUW|T#2)}L5x8t!=JrhQ}XeZ6>^Ts)s-5Rd7= z-a~sw>6(PFPY(C3aPqs4X<|F#uCgt{<+x0o4d64BY6JfwB>*0EE=jljmH%$J=RLPX47AuiJ-0#QL*it276}&0JzE#B^)+1s$EvF{~LUnVUyvHq$oo0$_*5799 zx+1wg~j9KO8Y8LIg-ah^tTTDk~#HG^R>+H z{o8?sgD8R!pYbz9KjwbF?5aO-d!R9ZROe%uVhj&d(+jH{yfbP+Ej^ZgFA_wPlhkt0 zuiUDuhAmd_Zs>@UrFntI)u@S26+zH$^9Qrp?n^~)1d z83O(dIlJ0L(1kX0Ab0(N!j}~gGX-ev+|W)!c6aYcZaz_+N-wp@6`c3rBi4hJ^79#! zZ^OPqNhl3L{*4%Dg=-t}3`UDO__bXz)*b@BK-HgP1qcdg(*RJZB97j8slS{M(4CdR zFA3iH4UjL6M1-^vJOuTmt7Qlgv)2#My-+uS3^u(l6#%XR0a;};0*TODct|I35QmJJ zl1iXMJH`v~IaYsKp{@QzNnBt+C_JO67v4gO_R-qz}afxv(?&A52 z(PC_(QqIwu#`+q@1+n+oYASc>I%j4$?WY7!D)F(_h{{8LnKX0+vE7nh9P6R8s8?=^n~s5g z5%{z~r)8;cZa3nOCMZq8gNwhdt*AY*KGrhB7mEF+P==;hV)2CT$7@c5ID?{^Of``$#dNeV8qp^&U++U zIRnma=QHHl0UgQmc)Bp7w~Fr(kc7e=kl?MY3=uVoTWfZ#n&6d_Xc zz$$a?^@VIeSowpm@43XdoP;Oi$o2?F+6NNTo_MoT19|ZRy~b_l6#dP}9F`vc&Zp@0 zkKkhIH#-^l>Lk4-b3D^|-<8uyuPG83A4@gk08VY^D%kv)vglsv7?N4E30a3vi9WCM zp7A~s%CTR=ax1Q^E$jp0#?=E5j*}^?a&qcIbvZAXiUYi_sGw{JZI>=+!K|yg(t;Z! zvP@HPiAg(!9@B|P(due%v=2XHne)N+t%i-3no|q(uX}3);wA-b7TL-$On)#P>s3*` z8VL@5BIh<#MU22Iwx%JU%lt{#3w3POWK}Yr+1;f?@5 zgL#?<#q`HOHoB^$?Om-lNkEBYPsjlCt%n`g-_L{7sjS<99S4`#1&mgtE41ypDw;Ux z|2W6{LIoex{~j_`&#&V2PrX5JmZoW==?Eq3EeI2Zo5@Km0;kEp)mW?WT1WHFF>ZF6 zPt@QJWLo*dxjbQju^cHPm^u?JvcKbPnS$Di(+(z7(T8?f5&Q$RS@0*v+uBdN-8GDJ z{zyf1R+#P}yxt2-a8?bOzLSk)CANq@Y`D{)VpYv@;Z>pqhUOH z$nHEbRjluZf}vnsJt9#ceg;G{b=&`IZqBCFB5=j1jTNy@&dNz?8wSd(5>Cyin)A}9DcWDKEMTmLaBFX7e(yB4U!inuA< zd9x71$n@GvkJFAl@XS@a+3BNdl68VqHF_FIrI6g(u&IT&?;7{@cFZ!3l@z=dh7m#v zX+)oU{#H}rfsEWq(Hi&XF$H%;ebcuazV7Cn6ABw1Td5_#$I z9vs?E0l*q5|7BvbSe5_Ef}~Yagr{KbdgXuxdg7Q1Ak|RMxuZbtCacg>3Sc4RKRq=i z-T?s+rs~+cXmD?9_FfWyLeRLjg61vVzweaRVP8bUVV0qle3&v=a#| zQRxzqu(N}8&yJ2`F(gT6zc8e^v#Ws9)UKj^@TKdq!xNpr9;>CO#VsbN@lDUlV*`uIM{=xkx6U-Sh064wMP0C=5Xq^%@zQqq%$dDlwU(RcTBy)n@ImH* zE817(w2K__=eKgb{D)66(=N+e24@WHQUzPpCPXE2g_RL{)(-q?6}9A`xfR%U3_(sE z;B7&6a?Ia{6+t?H0_+~N6QIfim$_$;!efS+9YDF+)6i!a=)ic~06Wn|Yj_0Uw)j+e z0|YnA07V&aiHcTJ>}kOIbDJMe$XuL6N>wCnIYt>EM}M~esvI4^=5zm~j8k@z48BoS z<$o$uHa{uGXVhlT@XM0KI)75Hkh3V#Hn~m8$4QVs2}&aC%#c?FgP;+?NV{3!{v;np z4Gvb`|DNX}3AbkAxYR0XZ{<0daTDwEQ{2s;KFH2(A7^`O64|N0`coPs3F53b5(3_n z8+6gxlY8Qal-B{`K3l*7-ypsaTN;LGZUz{H4Q>HF9{`OE#hK0*bcUK4{uwhzg8be3 zJq@5pI6h=?jF1$)hTXw^1Fh36wWE_`TdNzMA9+I#hXOySSojNoq>92#ug6RQU$H?d z`l2he8wpU(wt$>cSKgQ*?#-BC6t)>eN%_$K2->iVtpM%O1jh6X3Ewf3BWN%1&mHIJ zkv-6Z*4Hdm`=6gctEC-vg)&DNR*Dsg;yP`u4tJfzB$ekVnWr7CU+yLaU?Pegy~YkNE42wGrI(x&V&aC=7vf=k=v(z8bLRI}Pq#S+LVu^v1qpfe-< zmf!V;oyW-v-|g(QQ-H6$*pruKJtF2B_DNV*g_=kTk>-q`P9GG`W8 zrxGF&bu>>Vye>PJ*-ru!zy|cy(*tsIz(O6H1Y@ig5v8r!M_jItd4$sRrLQ6eppRXb z$h(Y<_z@&e@~t&1>+p3WVK#{1YG+O^}j zs9Hk)czg3Mxt^{o2UuZ@H;mRVK8C!y2?RRFjDA7kS|rQToL`E1?(=bl$4AH($_1?- z*lEJs1WcwwD~u{j4RjpjBs(Pntlk?RCfEfZ;yJVjK+Ij2ww%g5A(Crrtr$o?Zs`ll z++5v3=!*dfeQ9_}1l#$4D8?5(lr9lL2R-+na}K0uh$;2%9`<`z+Wnak0ftQcvp7Y`%kuMuoa-7b~wB7fY$~W?7~CqppCnPm>$?q z4Ui=ZfT%-52q2Zv#BqaPt>AVl0)YH6t!-a^gBYd5!4VL^J-FxNv;_cTKqSYr@#!3L z-2a8+M+rGRix}EiH)iHPj7a~tqhI)ikK!u0-KIIdnf7GBG}U@3D@Yyn!jviLTz>N< z@}G;t5^Q{Wusz9JSZ+y9Xho2&ap+tFaOI={GHq!pvFhwkKaYLztUvq zF;LtkS7r?19(!Kk<^5-&CBc_Bpt_Wj>}_*gJzLVyI)0V*;AJcHTB@4381`qEfxz}wBF2TL%}#iSLF8257F}An1fo#5A(H-C?ZP4qim}JuHa=GYI?EuN8PX~hg zXlLrPByyAubz`<=_!e>Qxo0*i%w)?vU)V~TFj(`YBwwcvUfMXT5Xc97NU+Oc0lckT zr<^7)WpW4aL=kL`;Ax+Ki<|Kq(Qeqo*q7lAGR}bM^6bh%2ru4Vo(aDM&QZb`9+%N{ zadCTVU8srF&fAo4d&3nK`5C?L=!lxB_Qh6K6KcAxbg?Q*=an?DTKE=p(te)T@EarK zGiGrZnrzeP$nMZ|9_AzeytQxYaxrd@=SnhXZ=Bl~e%mVoUacH*&HA)?UP><^u%ptR zMIK2?D9=ia1@n9OD65A|Uem=cydBkpDWFNE*alaDzGmWS`7w2D0#$d80)Ch8-uR=V z!-l5&wloc3=T|cISAs4mvJywfJj` z-sHcr%xKg!lT17BV-^t@Ctrm0n1dtrG83$gI;%-@sx_=a6`2b3ef|Pe<}=BxAD6yc z6E$gHUPCiR8?T@3Ev`m}h{ts)!%G_tb~#m9I(swp9y+wQde6Xh&nJh2(;n0=AJ^>W zZu1Cb$7K=ZDbIqF@e6jGHbILC0@+~1cn6n5JELbVHl<>MB0=E{LBh2z9;Q-!h!AW9 z_=@5T7uG1S#_X4oUx>|j$(bkFRK$A))*g62yXJj99_845vQ59$lUYLDw!2e3yQ_<%jO~52A40}8e0s*Qw$3SYU6V2= zUYVaMuAD}Cc?6Hj)YqPe8_I@?iL8(lUwa=uf^XRvLy$SR8`2n2om6`WU~&IXFKW2uoM4?*-@hvqbC^cD<-N>>ZlI#}Z3tR9lLtpE(US_kEq2T&^BT!-9eWdS@R^ zJSz_Qc{FSsX!NFdJ)$V+3$~&>GWewAhYBtZ9tfgFq|s>e??m?3uG}s4y7h3)*izVV zztywvH*U+U%}TanoE})E5*{Q6Mw^J3%zpb`G4ra&VI+e?XI?khFvaB!Wn$wL54(vm zYu@tBkB!zgMHeFuc4~cp3z_!UOrK*mCwTJ?a}N1FyE9#t>2&bS{AI{`Rz%O`st4Ds zCVxlVIo}E22P?w^vnsdcmCH$$GZ<=bjo}ZW8+@>gI|=-N6MqC4mJ9Z#nKGUT1*Cl( z-HW?9{pSXg8zF2CuFx((rMH2+-OV-VmoC!z!3k~D;T+)TCJH?_xV-_E{b*F>fDvxd z8leYriu*N;h%|#Nu15o*0cc|xkRGj9n(5^DM)j}@?1uZ+uye~%;Huut0US`|BcKFg z6=?n;hL>2#7d<5uK;nqsw{Do1V?9xR7xu*`APxtXwx}Lo^mm?V+x# z)cSH}6^SZq6QrGMcljSmA>+5LPzebyJHSs}QM?qoeR`N_SSwl5qyR(l3>UlBEY9vP z;&ir;;tZG|m1RSrsAS&e%==6ysq+K-E67CA4?t7Ljd#~C$pb;ARd`lG^3f^3K5Z#1 zk)NX?_51XNzCl&j8Nb_YJr}q56A(D71Asf4o`wJy)9^%`2mTil|%IxQ1FycRyip7ksL%{>5@V4k6ief4*Yp3%+yCcTZR z{o{jn;tp0ocV03LfnhxCG+aEK2W%?uh_U;ll`t9>BOSI%Qg=oS0= z!Y&ts^VV9?h!Xu=XBmb|_*Llf80luK!qfhsTwMln>^PU+*O<>D&vyjfU-|r?4<9~W{Jo^53Dy%gRN^W>Pl){IX{h1lp7rN$ZNX7 zR@Ub^44Zif6K$-FIZ z@al`c(4>H`au5=&J953dy8Il7t6aE0?$3VvdYG>@Y*Y@Vmna|%Nqrp4fo+wrgyLJy-Y_6bE=rW|s~A@r{xD_2S`@EHWNS7k$iEJf`${K`p<;A%)8h z_;d%r`xsV?EgKATOW44q>#6=Od(5DvaXS{%MD};sDP$3#d%8Mq{24PNkL;HYs2;jl zAN0fc6b%D7#1aI}*A8CFrsD#<)! zH6J|k4A5kM?}o<^0jrHbA0WO&+YWFAB$ne`ApWC(1_&Ct4KfpcCa-^*e6j%C=`1 zb9)q=BTI&XJrfJc#HBYyJKwM!sr>ro%TkmwYVCEK2aUTDf;b(UVPlNkwm!LXAVUJI zD{Wx|O8M(Wot~M~eP$8lwf_!GcC0hhtEY}Pw*(qOsPT-+V^Nwbr?m0YI40bAOwe)b z#c}S~GlXw#(Vte22T7rG4>E0;Nv;i33Z|E!q^RYkf_J_6?_lwjSPxu855Nh1#TcDt z10xgtkcRt|l7e~!o4zH^>6PXk)XQDd6g63(;~&YIv8h6>sW#UiF-5z$-8$^OqWVXT z?YXp?kW9QkZ!OwAM``)rwxy^PdNTgNw7j|4!Aj6f3d}TGWXZe=(YMrKM1y{Yx{hQ^ z({()dkdVCA>gdndRgcI8chy*9C)wE99S%D0og6|XDbjk2S0fs$VxAtb}oxOay?Urtqr-aW@f`*?$3xAdB*$ zX}Bu+>wUK|z3B`dZ4LOjRepMmLK_X|HURap$YbG!owRu*;`7@SSz_&^rvgaekE&?L z-tRAHD>$%FE)ik?eu9D|_t<1Ab@9H)Z3Wj~`|zymff}fK<%3^o_GLU{mAtbxN<^bk zl%s3i-nT2$lVj)2duL*ozsT&bYC~IJ-$set-TQlCd21$6qtgoD8ZreFf%Lq&%CUc} zN=U!kbRF>#ClOTb;=z*ay_VL(OW3!Y&IEUo5u6=LlzK^&S+MJrfrRTen)#U-?v@st zTNO>*Jhc7ADZfF&qf{r*&xojD_h20Oehc?ytfP7sE$8e`Onjv`(cz_m1Ll%jAAFl( zJ<)Lz@n!yezfaZmNTZVg9O$~-Bq=hyWFT;XW^El1!+Fyaj(89YRu{Thjw?TrF<2pE zc_n{pjqi9~`iBVfR+>7JD>}^QGRwqfqQ=xa8F9hZ6HDyT0RenoZo!I~!}(qxCDX-$|aE zgP9*_8y9FRFS~%Df(v2f|zhUca!4GOW9Dn71(7D}>R5em4#tAAAvgq2Xn= zVcyZcnZD1hgjOEEW|&L&(epu!J}RYT-K*gP_*;2}2ybGzTMtWX-W-alU-~8?aY2Uo zne4`U`7_FZMy?EUQuRTUvfonwp{!YJ3ZSj!=K8qL>k45{yxCWdyAw-fH_cBWEkFhp zx7Hj2UsnJdg~SgaIeJjN(u*1*MYkvCLrc$KbbZlP?&+5pmv34>KtIZTTX9Z&+t46`(F3h zBWP-9GHUQLeae=Ezv7%J#6F&gdxe0nW6;nq@@!qDvYVyjU{XlNmfItSE8MhCms-a> zjsvbTgNwy@lN}u1I)kpuZQ^)*V3UM%=&7Ll_x6#=F0w|$Z$u+btHicHf#SRTAaUdN z{={Psi*T258yT{?L3LPcI&ze5{UQ7>XBu;nVpHcrdE4SZYdoqK+9`Dgrs&^)&t~;t z7zX2d|~7S}_qf zHvLrnIZ3G+E@v72FtK}eEe^aO^-Zn03!W7N-An-<251`^MM=fX5TPU-oFemQYOwIm z8=dQ3LQ)6T!i_=^zuz@ojP-pL{LN_>kqJ<0jvt%L>u&*?A#l8f+o}AY9OxUc8bk+T ztjd7vaZ3b{k92Y@iL4re+@nefY!Z~0!1gP$}5T)JY@9V-jhqh2bki9($>YtBz z*0$J!S%H@`)x$iM=x-?rxi@bbY0*Z;Ui2Tr>|jGH{+Sb`I2=aJM_1MiYFe@*jp1*x zDiE|0R~zjB)%FA|@fW;ac|{CUXCb*S@B*Qa{~zV)58Nl;$U{oE;3v4*MUiV&-P z@PW94vxJWF(+IoX*qm{_nf`NiC6=irw&hc9BR_v`g1+*eK)k3?DSt0Hjo9)s@zBxz zIx+F1p}lQGMQm}nACaAmvzV*g)^Cqd6qHc3ULLC+Es3lD1&rZ=e&p~T9sS)#kd&t( z(4=u#EdI2MxR4Uxg$M1zYhM5_bn~PC&;In&pZgBf+1T7*9sKG8Hh>r~1fT_-qgQ(x zx&#pd+L(Vs2zOO%YJi@-5j|DR=(64y%CyhHO#1Bu&xxpCXZorU@ksxVBZ-~O*ykf^{C9m zgw(RM%Nzrc7Ed{O$IV9KHHtv?GL)O60WQbXu7mI#rULak#C-moxvCCn=`Goa^YBZ` z)Pt0yT1&MUE1$+`=gH{B`@#^Jna3V}h84EBRC7h7DR)ZCUkr~d|gml95mSAE-!&7yQQdtoGI z2nvD!ha%=$rCbvj`&B>;wp0(% z%lU#V>Fe*#6Hp-A*5dC~UX+yL#m|$s)>$>5OXKaNXNth@EH#8*JGx3bPvgwITG@Se zI^;@Be>ux#vm2A}@UHXu4$=i~DI4Pk6al7c*Fu13rmV~d_#jle;I>18fKN@!G4L4g z5^^j_VzHYU`5Z-ZQ|>l$q0}{!a@EOfM4Ibq{X{c(B8S@&!f-o#lT$bjYDoe5JtsgP zE2jxFg4cBcbw|TG1keL>jc?>wI0M>}naFEvge#!p#q|YA{qM+E2ZWfqfkW3m(N~Z| zfiG~JjS4e@RE%DanY`HCg-3e|0*E)DO-66nC=9@_S64O&;MAA)(0{s#iSOu)6?$ll zLj)cJISZ2u>0YzEAcF-udJ38pV0_G&`U~>Fw!EF3%Qqlm#f!MsxRSExc6#MSM5Owi zPy9kxHjwwyJrV=_YW7uQ+M*TVd^XciigwMz9>X|Pr0y0NiK`#rq6*r zdZK+Xn0x0nzw!eb_xdm2?9b zSK$#^3)Tfi1rg3n#G|cVDj#)&-s$>d{)ghu@Vd~#JmzP&b8tEZaEPj@iV#Nv_kFEO zDnGP4s9c48`KxBT)O9dolRFCCYfudAa(<$7$a8 zb2Cbpdnkyp)NjdPOvN&*t#OYM=EQFsCxJV5HDw$KOF;sDE2_I95@A~7OT%rciC)^N zu@IJ9mq{PEdSSeEvE$3Vzn{K|j7m$(hL&gL40RINxtNcr)I*B#vzW-}+7vc-P?;9U zZcUFH>T2I)&6o(WkNR$W;?a(2N=RQ{A0@W+DuG743o*W5ZFz$>(67*Zv*HL?Tfv`hzs=l1Deg&464gQ~BFj zd!o^)OD-~sxr}uC$zJTEW-ltGvd4O{l47R0xbGNV>|yaaq$civ{fd51L&{tIhuy|H zv}oY^$Ct)a9q4~B{sAB&1v0v78GL0eC%rYDnMp|-DQoY^kc_Gt9-*Gq*>$p27p!ij z9XVKSy)zY&Lfm1ZCRiEk$zYT+z2{TO!4JI5)kg)dbDt}TmRyHYNSQ08{8>6oo{DNo z)6xUuX3{lTmwz)^He8^H-cm;2kd(UfP_<{Ovcy$y%pJyS4toU$Xjdt`gcP2&SYC|F zTNl3J43;i+dy@iXQ{Coga-EH+a-cHEu954&taswHBMyr7k|zG%!2c@*~E4hW)};N)2v0D<}b-AZ)B;JA9xR4#Hz*SBy^pxpu12=Kryu>P!HGaIemZvMp=5e5F4%?#R7or!Qrm)``XOYtos zlq2sQa}_I8nbtiGjX&Tq)HOKDtxRxrMv<5+e)o6IN>+;iMGDo@Iqv`u3yO)sj)XYL zP&qLPCg)$GTk1kIouJJGPr60!_(1VqZdD5@P+cMwxFf-wsl-TEAJe=GNR{Ffs<3mc z+!(C5bt&(3N9cG-5L*;!X$X-FAm63s_FhX*337JR|A)f&Q~*qpirk?r>p%5XO&4DC zSBnYxN%VwcL(E7rMU@u%Ju8wcq85y+K4s;+Ln}{Rvk*vaZrE_>wixbEh3a0e|vk|`F?*Yq&SD#cdnGJZq}dq(?{y{B111PSyK|n{Q>{(CuWW< zv!)@-kIoahBhO71#_bV1fcU%Qt)qXQm5u9b3Q9rh#1#7F=>JF3Sw=~| zq!~((lm=;}XGR(+>6DZP1%_@AB%~RJ?v_qPx&%p)l$8EG`~SY5T?>~obKlp#_IVyh zQIJKZb-fW0@S(uTuVz8v!x@=^5_Dp%o#COJ>xxKnl0lje zFq2@N37j!fr}+nJBMrw?kS`_R@_CNNd7v5fehNJG5qJQKsr{1+Y0T+{@UKzmB7n{0 z{jatpF$XaLJb?cNG>KZMQ1RcIQGl>Rf^1QdSwdEp_Ea(4?oaVM(eshC7?`Tcf5{Ro z3%I$}AFEI<_>ke;E#v}S*n_*Z9}T#3E_3SVZeIGijqO-8nI!Xn%w4)SGO7q&zxHlj z$0%rF;y;<|rjwj(#E#l@z(veRx(xa4;-oH3;Z$>ZNv z+zq0ueOjz)kzyaprB{R2no7&V<@kLkzrHfH+qh%2hmGmbb=@9tYE=GNqVrqdQ#qja+Kw$X>I!qLhxqj($1XEuA z(Nrh&2gh$@YeX-2NrKm>i2_*IOdTK_b(Kth_gLp8^jj;w4Wk?zyLVYV3An|VzOZM8dBYFEVnCw(2jvE zA0x>0z$&?4Kbts^_Zzgaiw9_#T({;b<{(dveK-EQZn7$%1?KVwNzdeeP2@=mB6=Tyy;tT#m4wRMnbz z^F)bg$?^hOvZP5Z7Os-t#V+|z(nBWQvvExjlUY#zIn5LhC?n!bdY#32a=%GyH=c6x zd&N6=Vo35a<+;kF1j+Dk^$ug2;D6UsoAWPCM<^Dw)CXxrpW^j-WeluRQdAvLUY%Gt zNLnaZ#gDtQqliCEYLW(rM}=Su+}Kk&jz;nNZ1iMY$*=z^>NDOjYL*|CYogFvyg5^79IRZu~_Hs$isO;Od+>k^*S!ao2m*C$I7G zeCeZW-q3Z2O-9s=Dj3-Iv+DXeJ{e^FDm=w2AE)e>6NazDb2IWO=2%gxwLD`xKAPJ_ zmWXL5$a+96qr`Qou7?BhMH%DfbuE?;SGI0C1~9B6lLJ{fU?x42csg9&to70|AJX#wY~J{UU_k_ZHJKm#4NY$cZvFT|nDV2>WEKl3)0;RP$)=c}Pi^n#fMn#y4HHww3Q3y^T zclY@}jC3Aap;MJ0jr+)E5llq`K55dC7sS$2?iV)(f_fYbKguKS$p) zaEGK8iZZ-0ad#se8K%?e(3@h3c;Ut~CN|W?^Z1qF{atZgD&B`DE1wdN#b|-7C7t;$ z8!yrH+cn#*Hy-_4ujGxbmen;St&`4gIM%Hl1@?^>2cBP@A8&s3zRQhqzZhjU9MKV! zD^=AGnLOBdWDGIHP|IJA?V1@j!r*;2?S!reLGtCYO=9+$O=*htuD|2)q;^rhlc1$CbF=`3^V)?>tWG{k>Bsy_7v}!wggb#bQ`w8m#Tyl9WioDQ6S|~mz&TYr^O@2$a^^Dgrcqw6 zgq><-xWIO{Rk3w(v5IO!uZa85gF?57U7)agpF6>(!QNZy7=8h&zpRre6L5VNj6h4r zz&bNf{+;`ft<${KjQu*no8${-F$aFg5Z zOzweu`fn<--u5?pMjm z*z)^#0-ud;W8T!3okX;&s_>sP5mJ~5@6z;d$FWg049yX(1EOulJu8Y7)4kcx1s{Bj zOP`J&-Pb82!|D5s^`Xyr4fz=vF$B9`Cpz|ynwmLapI3^uxDADM(Omp*311@NUenW3 zQb<$+b+&JF)S5yz6TgUoxjdb)Kt*y`f;&q2&@mOPO5#wv$3iP#lHQ+(iaLX=(`uNoP+Gkp7nTZhyi|$Uorb&Op76jZC$=%u*gjoq zJY3Scnb)4>Q=rQm+G{Uw_r}_({E%~!eT*u$YXq!%-C8YJ9As%6*%uWpoxRyp@_Ccj z8#{4Dx5dBA(Z54^oA38dS!wAOlI`k+T>9KafPXhvc6Nnp$(MVRK*OrEjdN#!FlS5j z(TkE%_xFuTX50V0(QlNVhrQ%K=#Hoy2rKKZp#0Y98lyH#@vVsE{x{1J?Nye@ zYXSJy^sdK3UO$?z5{=lSDZu_Pp8{WvIB|P(5kJb$C&t5~H!CbVUh;?Qyu}m2ZOg3- zl@=wup`+dKbXgeLf)ZY?_5I^#z7mn)+WBjTr!Y*l#r+?KWbCmT@KGC7CN?>c$R$CE z3YdnQn4C7|Fe@MuKz6sf`3z+~1+niqMu65)Z3%eys2zMT23-a#Ot7PaQRPodadiP) z8wO2IGwLnG8w^2IsDNVx*oLej7(mwY;nhOP(yP4a(X>?ShP3L)xm=DnUv**ovA3%= zX&XX@?y=}ivvi7Eo=jCPk%RfloS{j;oxMX=C9h1m;mbaCa?tRiKv_}-@Q2ce^^t` z$E#4AiH8tlSn27W|q#FTXR|B7GV0}b17HEAe zWHZSe#J(QT1!@6}0BnXC?ZKX?c@CJ&F&s9Kt>N#A1mJsXNOY34Lic+4gJ2;bW?BWP zt7#BDwUIi8wI5q8a!3!7Gw0I<($GBlUC9a8*3y7ZPd%ELMqIv;H;`IZgBc@}o8qh< zQmC@+_IvFxn5n%?(J=^|8$B8(?MVckwZ)PBkpK&OBiBa<8X=Cf?A#nrmCJ}4l;slD zcF+_M;=y%mshH+BV~nYS3y}R{0}awumO#5q^N?q`kZ?8vtd*S6u8)Sm>Y6{RPnf`KT>)Tz?eOLt-D zq@~GDb%XUoV{$sb+>cSE{Ocg-uY_W^MBfh$oByJObg|_tmU};6+@;cs++{~wKX>7t zFDm{#z{Kjkxo_8Y^7pO;X59L8FtMpE5H>z48v+?Ev?@=Y*1lD}|Jq46YqNduj5eA- zuL^|W9joj;dp=(3xzNG-oYp=VnKV7bY>z*sy?2{ZK9!6wwd3ItW*3%PclSGuzmS=? z4s|3jllE;JM&!U}3V)ol@%)$y4<@eVy5VPxGa+*p`oP4CHvE8j%k;TSv&GiI%8-%U z=aYeL&Bc8#52ww=?1XW73OURWB0Qfv7eXG{G)1b2XOB5s=wp#Uh9(~hACRL()BUTu zG9Vq_2~=ymq)}q6BYhRnIA+)K%-a0fYMSl}&?MkfIz=u)Y|#N9p>stm4Pq!WscN>q z3vjrpg#P&3&zDCJmgblefYK&63zBMz56D4~gFsnL52DMb74aQn+UDp69|`5eh1P51 zdG{NuR*?ZRu?4!C!ya6n9|9L@1q)EUS2qAU_Z(vh!~;Xi4cR111n$xkC-B~{A+T1@ zfdf?%z#ai>ytgL<(w#U3F{K44tS-K0RIE}r;*mnIs~401-y#nRsf&Ji0wES&Hr~%i zJKV@702@T**xq6R1&1AHB@zjRB4Mt71RD z#R=(R7P9J>F)DaSpdGFyx{_%K=UgDGQ1vVwrTz9JazbBq&^0h;OvZud*PFgnk$gAW z>-6j#N;YjVw67z1(11c{W|V-G@@P||Zq8#!1>JNjG+rm=QyaDP+}C?0p`nppsc20- zsHv%7mV3!$8QXA4uig*W`Wh#1^%=AcUy?@*1}q_=FeoJpS*gjR=DRuXjHY)!B5*F$ zjyt108P#yA(9GEq$3brbWfuB~i#eB^)Yg{qbw3y< zFbgTcSrX36F5Cf?k_iapDy$6(o_>eE`6k3JI*wWrtij_*O;eUIu+8~;;7fOk6fx;HKzY^i;IWF|cJ%tRfkV#rRHLKKdV= z4An2`{uPju_lxT>x{wtIjvH2_w7R>A|12{5@1-T3tq4~B#Zav(zw=WcJ9@aa1oleF zm8Ob-l^+GNn#9}dK?}fD?;=|I2_Jwu?Mp=75?^-=dC~RfUgpRtXPYjlbpj#vE4KT5j+RPOETpxq9fXN4gJQ4gJI{kCs0LU6 zz_VuF*w@q3!_6(fZ2L;lR@?=wKHb<9s83C9Kcz$!{i!1fc-^anyXiTPH^*$P5$^Qa zmw$-Z*QcScg1t3Cy8#2=tfAYd=|JSoH~4RP@-aBlp&_6PuD`sYbR*I95uzfwRQal; z$7vt$&TZf}vYh|a?cVZ6JiVlk)v@_S_N~OjF$T+%!#X$rxhUQMcUV|x-;Y7oKUvhu zEpxJQ73t$S&dAp!`!9=~nX`i*6=NN@XLq&zhao(|Zr6x83I@q+uM_{3FyCHnXWbPK ziX9PsC1GEZpf`mwqZ!YW>%+MY>?2D5oQ}|b?kNfEoQHfN(tysZ`QIJG%NCTN^Yqo+ zk*lkC%}!?)=;t9V^A?b5)n)o>RI~-CBspro>&FkVw@8~`|M>Av0H}>B`%RF|z$R$> z?2rpk@*fyO2Z96}(A=sMl~3yW3qJcOQ%kfl)(vFca;$HquZJYMos5JHOP1v;ml*I? zXwtfG=9jWH-I$GMEeovq#%iEtQho5|9EWI|B{Q~bzrKRvsE$><=^xUCL}dmSAqLUU zIhz|}rkyP&4_+W_C{ zut2xSEmX!ga68sI2#b%WL6}Zn9 z0t6p0(1ST2T&COSAGP9lX$t^1pyU%W(*P1Eygv{+vcU@AM2Uida6WNxcqvRR;jgNeExpDW`Z9<2-V{DIZ)#FQ~@jgtq9)6o3en8Ji*(%bQRQI)@P zHaVAxr6yui%e~|eyL0473eMTnfPXWG6k5b!a+a|o-wk1oMSLIMdi$f^N$nqOYCa|E zCFzh)ikGCg>(+5VMLQ)`wU}l4-h|20iD1vyPGZ$f8C#suMfIKPYJ(+(ok>=Eo%b}z zyWIK9nrKax3Q7U3zdXS?`sL5qv`&THNA1mJKArN$WuGcPXBq!1#02BRVvydW3%i=S zOH)$pqH2mYQYW0G^(1Iw4e3VP7q~Rt{)e$;WwFGY6XEer=;!m94lS(-9Y##Mxe_u^ zVcPm9*N@_vIw?6NQaM>oIm9h-uUr8b##=-JHI|}izaeOmlV7_+jkbyS z{@lN56!EK2mo$l2(%YcDD|F0A6%c6pZkF*MMq1aeQ~aeU_9j=k1T?wJUlx+ljg8D_ z$#@Zvhp{|%K_?OYM$WC+;@b4>@OHqz=l zp~DuRKgJhU^ktYnNMK9wb4f``E4qM4*a&5pa=@sK9AdTnVqkW{JFd_vExh&0Ymt8A zUQGCGGpacRX$UQF7rk0XIUHy?!Ulo3)r<^T4;ZNMc)p&JL5L&QkyZi31!A8=Rlaz1 zmw|c*5*eWq7O3(^fBWHeh=H7WluG#vtWIcWuqPGj;}UWm^cfF3fYJ>7_>+~4{4UKL z43GrZ2ir_BkpI*Gt51lh=4ur1$4K`+QizhkcvjTvg#~1=&eHp^R;QYN;|D;1OQeHr z#4ycO;(Qb6IxFQJw?Op>A2$Cl55T!GxiT~IXTE-yjxjle`$|`Lf1pcCkw6402-@{p z%+ZjVE`N8QBxXwSS2%b8wuz)-Th`TVi%zk#Sy0f7-q-E}_q*He8r2Dl-As0E?k5@9;HcTUVCU zry#86x9kMvi6wn@7b~dNMm4!&ibXq}z3Enf=r3WF?+{rBv8?nsCf1bi@Tu8D$d5d8 zpL~MfetLtq6(TlhN7!*G!RHbB|uEgItBH z?>e_W1w?Cx(z+8JL_`}!iB}gw@%xPk#~qfc28RH(h59xhwa5Z; zKS<@x7tt%>Q6_Ku1bEU4tuKWwJ#^$DUfi7rpP(BDDawJlexGCv*@d6ycT9M%DOmV2 zJ<)gL+oS_&mWsJZf&v%a^sSawunQo}j((g)usZ8WTA&cm zg9oZI4H<%by;KXk&__p&inR$%69M)suayl*(u2|##6CGBG^NRGt)L}OB%lno+I1mc zWieygZNGC|U!_wwb5JYTE_xnB(^74a$$v;?bqdC~)%X#(dP7u~j=7P+0l$9tOrCt; zix>867rtd*`y)FJU%l879@3Pjp`uUEF5QQjGg8mLp|{^hOq|USmk7tH2Y+qmg_3jK zHNyVGuuS=;zhx2IkuE!7ImruOfl}uEX2alH9a{+FGOCWzlcV0#Y%yZ%dvNE5aC_*{ z(hqMgaq5CY>+}D2q4c@c0?ioKmzxHid8iA_X01T8Va8hn?;L-Bxte$0EFWQ(vcS9jimOL=#w4KZAuFU7~`1b}LjP=H>1hY~3sak+E zm2S!|Ux03L3Wm)~tcaAN!&^BXpSVHZC*oY5eg8;b^aYQ^JZ5!#c(E00?I?htnL=yC8}WwK4Bt;+H0NaF^z{d3={;E z4j26yNYa=_xT`T2uM${Zbd79Pe-{}3n$s@-Gv8@v_yy>OAxrO zS$*~AP8F$=Qv+xtfPq&P8uj}8Pm28g*8K4?MMVoX)~JhTmD0cIcDlmsgOOm;pwYXE z#mHchckZcKT!>8JOs8-gtr{gudGg?beQr^&-gn4G{LORDp;G2RwPjs0@D}7Ef%~Z67zeR1DGO=;eGrpbpe)4#aLbEVsSeO%)+;D>uR!U1__)Eoys_9P? z>#9=9LzyncKYE{JN<^-4NssyFhf+X^dJr; z3Y`#R4AY2&ZZtfLu?yn(>D?;CZiwEs{4)YApa6iTF8pMv&z)2EkWGDfPX8<-Xx7s) z{eU5=dmW{b@&`Os9@DhpnZx_gH?PZ2`;LGm2{8x(1bKi#Z<0d-tG0VC0jy4^=6~FL z0O+5Nfwd-s$r@M>wYneyvp+RAQA^DjtK6%oBVDgQy1aL7Hka zU?rs}w=uZT3^v96^L&FY{$&lDjJb6SqXb@}3AhPvY2snWR`mBowcU+Y7H;mJd&5 zqPdxd0hy{6_(T3Gak(qX68^fbGInO{>JP}-o7`lw>ut}?b5bh=1rl&eWB&|D z#rOAUfhsRIH(MujO1&2UNho*bhN&*zb>fBaC1mix<|Xrnb=pqQH|{RAS^T%U1F|$- zR!%o>{N1TvacI%I_p%~qzT*K!##^>H4mY{|`pTjJF5wO{Bg7MDnAL|DphN?>!Vo1J`QiG~?) z7~g8(ZE5=*AX_40UCS54s_CC`qck4dPW|s3qindI7Rk{Foh#Oo>*|EIq!1p%BGBN& zb^ZXHNKpR+G66%A-`OeviF%2lg4d3aO@?@%rXYr|Ezlt*$M6ijPH1C6C$t@p09N~0 zf`$$@CJOLo=o__O+0jJCxARiS1(=pKvGl;@S zeT3HIfj{z^w?N0hYLIxa%H?mwON%&LH5Oh=ORM|?qHeWAXTJRhhlQppG!T-42gC8O zyArJ}nJpVv&x;g;o^gq#Q4S_$R&$4@>(PtGVF9i)0p;R_aW_E{o#C%Leg04cC-0gr zFQ=(tmOj^bq}w!P`NbU-X~+wnG=4XqI^1n(oDI#Vs?HLgJ#nh|1`33|uY^v7mv3(? z7y2zP@^6*jR;1Hx>er+rByDlQCy%|PFYO=rykjP&&ta}S%FRvsQW8244!_ z)eDL;Xeg3Jk)v_9T#eWv6}ySM2vXZLC551ODQcM5Z<@BaG#B_@SW+3uoNxefar={= zDqmNHvCV0U62`DAC5vxf#`~^o1eM{0|3=i^55pYs)}{h#U@_A-66+|~^1dpllsSj5 zqqJhVOhFgZ*tuj4@U~T?z-p=s#Ijy1zJr|#P5u&AG_Tyf?|s?H=s4z@w6vXO{WjMP9|Lcy z>((KbE$K>WUYUoeWJJMzOAP;b!e7DW?jxw>L6faazdI)^Kk&dO9ca7prq**OIp=nW zFh^>H=1nc}JQz$#a)M7T4?{MQ;!0Y5BISw4C~LH0=x#2o(bA)&2fp4QL30?CzJBAw z^)%QwXB^FPJxNWmE`oT9!5ljmajU#Gly-SI)L!&^$_nEO3G>eaTErg zHu37XF^dgbw%rSVFN!iJsvDMo*4#yx!fm107FTi-1?KtrD(B8i*cU>(5BNUXM<#!{ zJ&Ok`acq$XfRgy6k7Mm>;cl@NMKJw!)4We1yBv(cpaZI~ockq9RDXSAaULrg2Csd+| z9L_XBwzSi4r+F1A`AIfEf4`3G*yYK_TA-k9CD<#yL%4bqPdt6VN- z<8CnSw&wi;yWjRq$H#vee)EKDWN2D2kA6RYWn-d~bD}dq712wz{2xYB)@xbW7mk@v zOF>RLh~M;xt2x{Yg}p8wAph*N-Zp z?KH79|3k_f6^Zm4;t>Jfx!YeU*Ya7&zkco3*m9GXmI;_$rE5`g<^q}M-<$18rpEec zTdjp%!5h1`G`yeBuqIn2KXB_V$LSj-tQeen#%J_>=|>J@xmj6=>s{@1)r6)^<#D%2 z{8F3oWDRMdrGxpdR&v^ETcA+LW|yf-Xk!Xkxwj}m8&7t*IZd~13f;;q&72p+lq08% zw|aQDPED45k(4n=n^`>8n8lA$&<+S zCtCuaYqG0Q3-Btj@#!N!NOjb`ecW1+Ag5Y9luJXb)9${;LAN0%mh{v##c416FoEl# zhc6w2`Hw@JL<^P5d~XXo#ZB_2jZaeE93}hTs?gTt&Ofy@ew(IhOs`i`peW< z^Q13P5g(yHgutX#xe7YcIZ~oxC{KVSMmCJr05yA0xf6f<&m;@A_)-UB9!7xrbVuH0 zmt|SEyCHBNdS1IJ#AQSHkx#)&{I%z;T|mgpYqbv9 zT6mxVbK__M?F13D8$$mL9A(-8WL4)NZ8n>Ni@_+$r?05T}I6pPm)h1l=BB>p?g zD`c^<&1&AQD_hI3_4*qC5c5IgWt6)g(RO^UjmQgQL;vYG2kTUZ6juk32=wwYm2@XoG@_1I z4&7Z>&)W8l2|o3tts`j*O4hk;@rl+iQ3;yF8u@Vlh4lUV_@5)O!}eVbj10zb!+CiW3ds`FLG#oE$w8r9}vDaWz5+{k(C%*VZ z<0e!0t0g{RDK*%&nqDS(sPEm9$LWX#T^aG&9p&i$MUq=ZA%s;sn4*ge7d(Yn74$Wa z(30pt7olj0mQw0``N0O|-i)N}?UyAG;l&KnX2edv5!&yb3Z;(~@DDVgNC3HY*SiPh z3)*8a?kt}}%V#6dlA~(@If|a!-aO?uR7nU}>{4iwt*T62`pczwCQLc+?Eq1g7~a*g zuU@6Jh}+yn$1F2?j@Gx^vme-+P4#ePv4}K21*M*hjNvCzBei(^mr7Qc66wk>oAdTk zGxW?8xCYtGsRP-hsi?(}F00JxUj6VCfUEx#V%LrE2TyEJq{{z$wVoQ`904%_ovec+ zWZB>1d6ZSaJWAH$e@Y7SeuQ50O$|IE4%)C95Vh0@-I8$Wgq9WnXX}?j3-rfp0R$Nm zy#-up9NpQlR+<9?&lA8ry(&Sgr4ib!?PT}{;a)rqLc7;)2;I+a zuwH*yH8@B*hEL-G2JqRR585=_l|np?ibvLB-(tXwuC?HH`NpH@;Se--W_7rr_cRTlWZV=bbocy zM^`5)AN|(QGtBUWcCAx_vUaw)6IyHb)%c1Eh|1AgClgbuYJoukui1*=kMytAQ?!;e zm8s+>)Ni3Q;qK1)DjR=;xUCk4)%ac;$U*Al8N~HxCVUtkvo!4oWb?rG6@Kcj!vzI% zggmigC1o}=s-LkDCsq93^{7KFwTUrJAmhVxw@t-G9!0+{61eUx%~0cf_=JaR^?^L* z+F||rUj@8OYk`&o0lE+wn)bK*w=7Hsu~{`Lp6@*=Yfn`&7n%XkM?!YB;ig^aiw5*{ zve7ghv_0YVn9fGb{S;By`a$ph$;hY=`T6%@Egm@s-tFqhuO<{YgbH1YNfGxC(=4r1 z#eLrRPvp4YriF6#U!?BwIQD;nNG5e?j<;@Fin#ZouYyn}zG~y|235A25Ek;G747l- z7iRml&wr*6;m@3Ps7cA=v>@|eDLy(Bj9?r%dm6XKdZ9Z95D{df(**wI%r3;o`i+$5;p1Hhq76;D?_!t4n;Ez=b`z zv;xOgebqm3oN8`h%y?Oq)K>#YhN(#lB#ys_rC-I5UM#QvOHY~@WpN%;zA~kb=Mr~~ z6?7YN#*y~Log+2!sOd%p#B1QqX{L&ytkzK~2gv&Wt>X_Jrq@wM0cHO{H+K-?2H61t z+bO5ve!hIP?Sp>aDs34$*eT^_{z^|?i+?apL00z+dG%vgn52GD;E2z*7w3fM!mCu1 zryZpIQqSq_Z$%&_FSm~I?q{tcsH4#z^Zm!qJxfVTtuc!f0w-^~9GKNb%Y03jZPP7! zr_T$2eXBQ29Bm8Yziz?PHmGlHHGD~(sULFuB-kf8k;KYsaQ}#@sWnLPYFvT>Nku;tlYhYI(_Lro-`6P-T`R5Q9Bd_69exO?lk9>WuLoyyLIQ=R8n7HyI^9C!7Zc#qXvULqq3URFB)p!4->9L7p2xlclNsx0Q-43b?lBcryk=Ci|t zOXHSseVXFIKTub}B6_u*d8*lwr`(D1^gAN-QG~}9;b_mt=ZdP8d1srN@30Yfx!29* z(vJd6$&4}MsR`;Oo?%_o=#t7j_eJ`eFi=9NW8B;nZCG=1DNpVylJRWrl}?tcW%4`MS+pMB#n~hYWqR7T3mY_loF=qDxp(H^Cq|4~<|1j{A*}@g*PG{Ss z;xg*k&zQn#LzRA~9{?1>$B|9DHaf?Wu4I{%0}tk_sxj?Hn>OdXOv2@J6=SsfC%Y{l zlDzgeXx^6}G#_LfRBrp};kBg)V}Xl8(0+A__lNZYj!xTpB~vyiC`M?&ronh1>1R=4 zh6w&M^<3Z2Y(;r7Ww&e3y4NeyF=ywx-tcql&#$n`el2a~{p<>)6YeCMe~3miwY0Ow zJW0`mgU_B-l8CRX?cy$*B2A9<$CA=NvTBttx`$)75LuLfSU3gImG5sA$#K>uugQmT z^3zzQc(znk`zOQ1J?sl0c^@tEM+ez7@YxLn4&530)=?2G6MA?xjN-dyMnMx71NBVH zPD`~Xpb%vfm`m>$T|R5wC95u9RH3Ly#E{D~<|>X$?N+|*@b5p2yn0i+clPvy^Rcvd zE8n#i{=*2^5O>9Y8&942R-`LA$24B`74$X17IeVw^{Ka%$wDC1{qDo~+Za`E7Gfgu z8OH{G7R^?hHv9lNgKz{>+UDbO?x3Us5x;;}9-cIxDJj+x`iT?rVm`v@LU8l8=QVr3 zeZ!SttLy&5%UX_N#M^$U9-}A_FYfE5{1;M26;0K`&94IH$Pl%T)3JGtDL2)~2wjIs9YZ-{fs^5^y^P*B7+!qfak0PAE0 zP{CZ9H}HSmsL*7<9`s&%1d~WA{jgkW=wh0oV4QJZK;UjvlN{ZXOH2TL4A^9r=@F2J z6iqHpq~%IKj+$j3j*rBLfB6qXS|i$&b!2g!SCPVYDcf1ZXB<53Qv_@02@5o82EII- zInebUdam7h{x+)ML!ZkH|7^q-5-%=z+=G9XJtm*g6F4dk!V4)Q18p5%e9W&@xAb&% zW@`GJ^r+`paXz4G+wGs`Yty2uC%Ya)>o0`m4Fg}3^voNGV7QHv;< z?t1ybnm@2vn;Wgig(q|!Hs0k}^0y# z?aO5KoPi_t7LruXC^CLZ_>CF$#tyg#hkbQg*C;qSJ#AB)KKSy{Ds3K<wO}iz{G&N832{D-!)|owGj3pT-AvV*W_2&kTh7+6q5U6k1WT(; zBpuPX2iJ!qHhpvJV^9}9|6$0?4@Wjow=18<8=HwZtes`0w^rB1k|C4(RJ4w)LUSGB zdv|5}@3nd}iNj)(087Knc*IEk+}c6Wyja;V{sifEd9p$gt$Eg5C@Q1V+W0<$AZSID zHNSF-fzg@d9Z{dfApY#`4(Hq5pMbU@voZnqaGlr!8hvC4T!rS=Vx{<-X zEmRTqx~Q>=RHx~hYse{MGR!AStf2*YC?NEN=J~`Ht2oADk+Pb(RlUotn}X8@(r~pB z$EC;()@FfHITTPg&ne z4Q7dH9}AQ`-v7e#Epj`cP8RvM-^8Q|+>l4{NA*7_u){1Cv=)?t_hRrNyx_ zuF2c;LVM5al$BD`65!zbIP5BLOr|w?QPG~*!bm{Jwc)#6RT%3uO;_taAm5Z2F0U*Mo%TSi%mO1%Ct=-Mz4G9QJ!c!g}m}io}{)bLAb~M070pZc0B{xqnwzlTEZETcpJ&k$5qBH7- z=Z7GC8dKZer1xzIPYDu2`}|N zi=pyG1jHfusFTZRu;DR?1GBE9?0|i28XP}iBF43o;Vg30T+t8r=)X=FkS4DYrgYXrco;w4l+pWKFZuP3^{{f)0!+0#Ji>Mi5W z0Ox9#@Xo`<^5YvVFzO`PH{v?8O-S~!Dlu1$bK17YFRF6?t=_nBXB7$kep^+l9>j|B z?DO*vc6|{xF}+quI#h*DQujjs;t57$1e8C#?z~jM?5Ur#ENe$dK((FmJx#waP(CKm zk#;>LTY$>()D#u)WA0Al#49SBUHZS&J#ET`cQl__I6JpD4^V57%MkT0`9~3^p?rDs z+e5b?i3b~)N^iPFmKpEjuecMQiX`ncI$PPHzY+_)>5Gj7V{$LH!Sk*WX@OnJIqkA4 zj0T;*NrUh3?=|H$RtC55y}Rsx@_&8u^F>qWZEYrvyFj!J7nS0AE}^7gsMCl(t&f%N zF4ig@%?!~*lImGB)f=i+k9x*_;a~5 z-H@Aap7U@M&a1#-iP%KeeEdNV(s4qy>PzqWk9WoN?rl!8izA7Waj@_CI-GCR z%4nbM&+{fNagAS=-#*j(=VYq*I&iM{IH=|>`!y8Z(LeR*t^1j)q2i@|o-_LBwi$-M zO>aR@BbuhL$NVEez*Jx6@w(pHde@dk5&e}(epJe`W=@5+%7Ea~MDky~yO$#;G|s)W zetrU#cbb;sDGOAi)Xy%xv*Mb9EsjPWN74 z;&9~>R{IldAL1@iMpI5T0Ei4dWCGW)UUw=$-JDUrI2#6#GXnr?weO~mf4c7?JSM<> zj8EcOCGYFz*hZ`QGIzx9Y|&|flAudJA>2Y0{a%IphWo-@kI*$$N>N)1@6+7z2wnPE z*J%=CmP{cZ?TDXH$!>w!2=SV@lMgs0}Yty>^)y zkL%I5nV-XO4ow0}biP(wB;sc*H!+)hwRjKCy}TW#mYR8_ugbnU`EEa+Qf>SXL)kZ> zy|NFcSKxZ@?TBLS!)aO@aHlNTF*RtMa7z0&jyHgTorAvDYdWwgHy~(fYqliONPE^r z_{c0re=%aFUR}z5rov_2ATO}|PTJv@yPME}PE+Jwpi1WnPOl)AXTHX-mp@G@T&k12 z*UTc)oZq!vcCh`}dsimM+faAV%E1WORS;MJzJWo`>KHHUZ*ZQuz3V<`cp$DnYZL4D4 z;M3Zd>*zxf(8X!GD*(^6hrf}{zYy9vSr(P7vBwD9Dq~nHq8Q|kNv18(h@On{eORB1 z7M<=7^7$|%P01Bl!-A06F5tU>{T25d;Eu{o(7azqKg6C`M_vExH@OG|rMOaBh_R#_ zJoEC}Hpz(8Ons04541f?7U?bRdzhZ#R`VHB> z7Bop&bGeR_k}BK)EtY9AB*r!~})V?Yr&XD*t5S$&&Q3_V^rblS*Rno4$isv}D$R&{{5 zm}8$+bHR-)ytC+680@0z^=C?K*|^`kcg!WziLLqUHG4vQtjNs`Q*l?Pzn_!76=;;z zdw9wg^MTxW@j6+lJ!6`rw_hs$%0R!s>2ETXv}xMz8`6QAwqt868Eeg3Jdv^gFf?^7 zHlrpN4qm2B)@vj^+d=(py7EtqSYmVt-SpArXm#5(`clahL%j9s6_i!yqLb{xN^8+< zYt&8X_m+#>ZQ<$I57YaoR)R*JB3O13h1@Y4en1Mi00l(5yHrY9JMOFaP$0_%{7cE5;bsA?C6{ZBiNYzATdK3-aKn!hGwiAy z1hTO*6&~;jOk;GnPyJpMyoy$Do=R4ao8=DaGk)Act{uo>rPHCLVqQ!-jd}W$^;pEN)~?s1qh7_53TO??{sIw>#5K`JNV;7Bu%G&feTo)PGo*>w+32U3mx2? z`+8rb<&!gKRrM}C6U6hPimm%t;`e_XomD`TT^EIEr5kCG?nb($JBIG=lCGhJLAsHW z?rsne7#fw1A!G;v0qF++_xo?W@lI#XoU`{@&ts>4LTJ81Y{g9MN`A71WU9`_tKV}2 z<@(dk3#uq3_EiV^O3j@_=Rk`u?vWN=8!lXH=}%f)y`B$pLzHlO^3v~k)eYQN!Vvz; zj`lXjvTfknK)QgGL0h}VFtM-Z6tP=T$1qU-JJ*l=Z=u)|0B`s&qoWKpfwTXGP#OSg zC&c>zE0vuNVx6v@q|L(WN_v?z{Qq#$z*T#U1$&RHqT4?N=dWkYyLo+Y-2(MM ziAL2bcW^wFGCM}OKZ~U@(*1%|VV}e~0&+6H#>_5+l8s-LS=Tr{B8T;hq;siDpH4z^ z9P>nG6q7w)sg1d*J_n-C)6LIGAWHNbdEm_GunVdh*>-GO!%239XjA9Ol~~3(s@=&Q zjB;7V_QjH~y%{r`KeGqy^#?a;O*^V9?E(y0_GeS4cor!>7rz_vzh$YZ5WH%gutItu z4L5Otg}`SWW_&S!A9?Jo^L_5ybSpasd2$@5&*=a=HuW4d&Z(f?Cx;fdI^Db0s-`>Z_OO{PK}ep0XlPbJFP{b7z5( zt+@_;XeNR|`uJC=>?A}+UOA|HdW{*9F&VD(7JB9Id#Zp(yK|BqwUm*k-<7Z<)RS^| zbT-mZ0a}Ez&%AG`~N0E=b8ulV4TQQ;EwKn@> z+mMM3191R5QV6hvIXhK`8aKuX*G7D)0^HX`CmpPg7(T#n(K${|`34{ZZyW7RhmdOS zJLI~Z_}mMO@0ag>bF7iJqY9L|7YSoA^14*h9TIF5pEy!=AZWKCa%lAQx4Yl>?Rg+O&+~s$m5#VZX!2O%FNKp z?iy72M`k36z1gGp27v1r2^4TulhhuqDT_WtBdILp;U+xClDr#znoK*?mDtD)v@O0S z39rQ6NA1~ut8n-(wYD+OsAQY8Q&*ZY1mo(_DHdtTCMID@aBRtz^V{6J?W3A=Ox&7+VyhjKuR=R@_pz$<=XA<7hE7HEG#!vz{pIUKb6 zjqJlh#t2nds-*lJ2DN+xu`{rz`g~XrbQkVyR}eCt-&Bw;S|#c$hA}`+MT@QjZ5dWb zH?%Zdy57=*Ah$y)j6vG@IX(>eZ~N zqnuiS9QNz}A)vE&dfceT#OYq5RrQ;+3UN=$GoZ*xLz9oQhccux`Vzcq!QB#}an~%` zNN4sIZT&6DF{a@3n-;wl{H8+Z->G-BIcEtx$|m zyS*8tE!n1zYHeE0vS0kxDsPIO?WYNThv!9GwCbAb3={)O?0o-f;LpA)zdw*hrvAIy z*kNKX+AFAj6*5wX3k;*PpY12W0QyO(lYXB*Wn%~mFje#=Ey;T1sQf^gv01doWkjZH zTIwpfHPus5DurHm_dp>;FE1eF#OU$&4JU!qHj5^oixA;`n2Q_N32lepm0J8cQS}a# zyd7g~dw2+wS~LW@ugST-vd+`BBY&h7d-&3zG?c|}lR64l$Yc6tNx6`BDg!&69Ct&# zNzRrMZd097rxu&|D)y{Rj09$n7|!^3qoZIEGw_*h+aB|0m)1{6>QXm}`r}*|C{$b& zAU1#Q8}aEa zyQS@{0Pd_oC;xHHUw7^6jfo$YAHC6shcelq?wZtAvnf5dNr@ATjj$GS^r3B97lvJi z#rqx_9esfMQty+E`+!T-mNl`(@&hAm*WNts<5b$b?YyKeAX*UMbPwR6dO_Q*&lwfi zNA?K4FeqwE7Bvb>pJlwZew9#)p-cg0sD70C6Ph(%o)G31Sa+$8u~NuBYEsfqW%F@= z%dOSr3)CTg-Y+SP^sH~_=7_zb3-B2{$*Eo3yYHf^ zJ5PyBjb7?EUR!SBQh99-*mE{cM<+-yu!ZH;V(q)s+l{{^ERs10y5-(k>hm{AY&%^I zY}-JFJK%+)*2V(^z78l3kX2;k1(gBoa9>>KdEgpj-LR)SPt<@+EcYX%sS{rg zkUQ%w*+v(cN8*VHjRvvMre92WHuG1|)H%1Vx2pf?b4Eqdi5&1Z?cwp-OU<|k*|;!v z*LbJoHA#F_tFiIBQ?>o2j`ucH9yNA2Wos{Gn=@ZV+yB6s7rnicfWs?0E&okp2N4OU z$A?Lt1ZZYF`+)QH)Vdv&=%#Ns0kvfKp4Mo+=Bgd`jW9eKG?24cwtJ{V9-}P4d?3N2 zvnKpiPhx<~xcyOY1wMfp9P)%T4I(O7xJ8D>a->ty<~;CwvEOK1P44D2|Cpws*Q^~A z+|L}@RQh5>Icu00#U3{0H6iO0zXK1%TDleGC>ebq>F7&_Usc}>Oc_Z|0W&;${!$(@ z*J7FXTh1Qd`nC+E7z8!)tgtMVwL=9rCS^QRg;1f2=`t-`*UX9xD~xMDckQ1sHa8v5 z4O06noB_I0+%9$vBxsTcl-fUvCGTkr zyt%X@wAs$$t_?ihT;oL@s=Fo7BMUso5OpP~pCU}9$LDbWtJLfg(8$o`7ha@}lGqM* z7ou^3fM>{gU#;zsD^@s+L!UK269i6%?tJBP7z6lf8>uy zlW#X&m@8;|9bM=Y{vqfR_bqezDm*M)VOqp!EL!YU+D&&^A};?BNkdmC3O1rdX7`38 zFZG2;Etqy;IPK`po~kOceYQc-QJA1mfF_2ipCwtej-g|{&+rX)LQ!E1Yr*}ijx+3D zH1o7dI}-hUGFt(k4@b6)2bO?*W0AZD>$T%^i)$M*a*3ngb4TR*C0dyA_bu@6PD_zA z@jm-P{Ew(o;Oi9ug+9Z^#}*oDsg5qEaF)-b5%iGl2|`wMa|w~K?^^`1gX87>c0Wtf z1m4?%Kpy)1#z7A74bh9e8w+|TM2icE3(U>g1y>yv0=p!#TvwN6E+2bdW(MS@HV!z$ z8vd0H50w>`y=V~v^N}c+tIvOJQHg*b?ar zGW7^tvJ~FUv+Cl{e{Tj0XX{?U<^52JyI&FAnWXDh*m~oLyek}YFRbKB+HgANVPJbu zDUM6pP;>=#ZOtQR-IZgdD}B=X+br-b$AE0a&DFDbdeV5x#PNq}ID>Z_n|idsODZd3N)X<)Is;k_kR_7CJ{RxMP~-5k7* z0FdSDIXx}vOd=7MCRUtg%I1+o!d4VdN729Ax%m4#Gx(*s?uTrV^~Nc|5wXF%qj?hU z_$4S`u;nf$O%r6pJ|*$XZ+~DED!l}rF)QfLlS8{8EKR=aEc6}B$OfKY}yFtq$ zQK{mn9*rIiqlwihI0D%F_J+|r}) z#BX%6->b0o+%@dG*p{$5`E`I@3_PM zbfWo@wUaIdoV}@+4zgbmM1DyWR>Vgf@i;%XeX)Dw&dhDaYm1sDse7>mRM?=0)L{R_ z8p$`}3ysGg{vpKeyA!(Ocxg&LjV+Z0k_%{do_(OfgE<3#6>tB&!&jRj>x!HGCE2jD ztGYWnTe`7{^X2K>Q~-&Ql~5+*Mf+YOP<*cEq*oAR_?>i7+W86p5zMw<1d`cwLO*(- zsg%oGwr@*$CkQo0@FA`S%Da&EKLHGboox0Jo$#E6&Rq^bC(;C|8fQ1eHvt2U*uM%!?1)>m}XV5hr6HmQl} zoNX_=+<51p`jhobX9FwL>2PoQFO|cOJtYjaWld>OU%`Re_q_uS*)}5 zGZ?k&)ZERx0=|2rTJ4kGIE>F!lZ&`G>%_7g3hsSD^k5o$Fc9n7aaBlplXA zeVGB14AVA`CL5+vXr>Y<8|um;FL!n<$>g=#GB`^=yUf>6Y>XZ?9=Bi#(~4>~7x5J| zqupS9DavBaQhWz~^Y3r<0R%A4{OBU=sZee^J;{2? zUxp_K&w84SMN3fOC(ZEb--e}L zHQ(H+D#Wl?o%*-VIgA*<@K*)!q>}j2Qn!olZ_Tu$|Gl$Oggbs;v>l_#2@= zgD$dl0}pPhG~Jx%Dsk?8)-@>Pa20`qgA)DCFoI|n`KW#I8z zRLVaD`NaDuxwhXAa(^uJGlSUk%3oJ=W|C*X{MOs#vS#r>k&o`Rof4u1xHue5;qWrqthyI*sn1iDs8ONYAv zTKi*Dt%A&Q)e{gP`O2%mJl4SmLj?e;UPwS{R#9bsi`Z8gNKq=30o2eVz@WO<7-XqG z)=%t@x9~y=+NUY7$QdZ5`-gygI33o^_wpbwWd+_+{)a#!bYj;;GB2Y0+lVP^Qd^?g zCz20czY2Jo0r^oco!|jp(-}9IC}U{h%|whQIboh+gHFfj^w+E`@@HE>JR;011^}oal5=;3VY2q zj~eY#4)@;Ovbl2fOWH>2xTe+PHq>61dyU!P*%XR|Tgqr9_7Sjn(bS8|%aU2b8#2e4 z3~6yVr|jv`*^y34i@Ju43|i5i_lxP;7%AeMDo~Ldf@vF={UAfeR{+=}WV~qI>Pdej zZAji=U3kcfV(i;mwMIJFg?8pGJ+L)b(yRD1K5|G>(BR8WQya~P3_DNwgpZ@jSae7& zq_bu5a=E2^x0={9{=EymN+W4~3#Zz0xEJKd3F4n!wK+jRJD$48=wS9O>o@e9!+@e?b<9fpUrfLTO&n%`SE$=UGdU+ zFEvAU!=v2|+_MRH2DYr%`SbX5CKQHa89?}6cUyl(p_R2J$bEW#xvIb5srN#SS{dL? z8w&ZD>vUc!4Yg4IB=mScVQ@Cs;Cu}bk$|xu^)s)2RWR^D_$Vz7Bu;@P0FZDgVV?)4 z_?19(l?bXoWln@?nj$09eFkHgTLe<20AbdV=>Bm}4F)v@T0qvdiqLi-kDU){{jY}S zwv5#Ej_ns4JJ4RL2GE|%#HOzgfX)A1ojqT3|jg~D%Z4n9Jh5$RLW&;u+ zXm4fq0I$dH1uE_~Kx!PQ>vejm0L-xP@*2%;NLgp6wn-F6Ww{@f_sU0d`pNguLGGUxy-W#^{1WT7M{-oTN(icGyq*pjF-8IKqD{Sq= zaE;WR^s$Q;ENY|b^eN2t^OS3mUYNZxJ0m8i4Y=i zbfW5=dOnS2uyoT|Msv2gc#u9KIqC0s*BA-_=e88 zeXXC&$SqDmk7`stFaI1Wf@Eue>=7?hEa7BITRggQ@^>#Q#%EMhrkHa9N>3|w9QIvv zgi{eu6(BQcIoY>&cf(!IE{wq=-sY@|krW9R$@0l|c{_>z<~A=*V^G$!NKPqs0bmAc zZD3_KU2pb0ic8cOjn@g3o;E=XT2RhhoS}$kgPP^R3*c#dHazAIrfocZ>U&uD@Q_zf zJ5Ih{FT&tzkbD{R^d|eFLrJ}ECon&oPYyo`uR?_7ci8ir{%L-eH+a!MrY>uhT-{$` z_T!#6-9b@xler^uor6Fk+X**L&||q#`rNyfE^X?>Bq5=&Xo}~zw*7$ckeoz88cNy1hGasS9L*;QaB1S?yI&W zA53U*)_47o!QZ-GMzw6$koqgJvQu9}6zX;AD1stx0)T~P;Uq+fgl-4u;U*H>ie4)Q>&^+yw}bML32}a3olCE-`mPg!kf16=zgZ z0@}mgq!nR=u%3GXuL_3fWtryrNr`Dbh6J6d5gx(knhU|b7dcyHbq3MJ#IIMKLi&k^ z-M>r;AJ@2HNK*0UO#cv~$75%k?7%7He2P~7buBL!`yVLXRB)AF9peT{E?L=UT^)NW zx&)PQihATU*ry5JafnN>Xf2xf>c=7fl(ww&Rpn z|Le=&5UnHYtU)UOp$2By;b1j$Uf;6aUclSFh0oE18Yv%+%OCi`X#?$mrYCK&u~5LI za@!*qt1?A1`eYoS25)aGl4|5t9{+u4LCx%S{tGc1=~!SU_96m0(dzxwUA3+z097Wf(x8p2z4MIKCcipnXbWi(WV_YmX>IB~aIlKrh$) z!STth!Mj4J0$ax=o^j!|xty&o2&sVLaQY+Os$!7dtL|el;MfVlpCEryqacbAITdM6 zJYZo@r0rN>=|cs)!e?`M1na2T+mw5r2HXERY^~~=z@n>WulIV|7?~2a&X4?P$c%3* zj4`$SGw2@HWl!aG(u()qp3}6o-wqm~SrFIMzCtU55QwH;4i+jYE~48f33{mOEi}D| zxLVJ$GI(!pats6wfkjjyP6JZwobDKD1qa)8f;z-6;;PV+I>v_(Ni3*$M{Vt?An-E$J5xo?bqnYoTtBemx z@Z;UhK1B)=-GSY9!yu(kb>oHZZzxD`m_Ag7X_`zC^f%JCe`Dy1OA-$Tax*ZVy&5hb zfpGqUH}6|#i%B~0Uzdud08{KFt4RfgsRGit3&o%K=Bp%DA7}=UGTW%m<@9J2*pANE zb%{+Z28g<)8#cUD)#N3bfmJ&IC+yrJ4wU*Gmgsl6b~LMSVWddG0A*95HjN?z@Q!^G zL#E>AjQf6 zP${gzH?8F;v`0wT0{QdKcVOE?V`=;v#va^l+dQ4%cL6s@pnm9Jl94%od__WI`b95|rXd zu<5Ax0~k65qinOr*MNT}#`V9mCBjsOA}WG&0nfiNiB-98WJc*^hu*IiH(PCDgi?I0 zL{k(~kSRJ9&`ESoe;{k)Tyg0jRQN@ z=0U0OtoIhRUlgtijeQ*+5q|>HO^qkUe)) z1Ixyh=DWF7pW{vsmLkh|n7lEM-gCCW9T0|LX3rmYgC>1HhF!2<%pKhvhHN!7rP|!p zjZq6adtC!RRBSI}9Lu&7!D6nSh<_*B?|Sn`y(y51ogz+_G1>ulgL60)Kz#*<$sKQq z9TANIYtIgF$AtD`pX(0-h5>FYP_c_y54`?r#g$i|_dfnN!$o11yTYw5=&kv)B=bK6 ztMs@If=o$J@3MW?k!t*_8s)}O*x#)!KDju5rI3kwiMhCVN_iH<0|mgp&0v#Lb1mV? zXZwH+?HQ%p9^K6|Xhqyf$HK5FIk(%9o>xloJ`?VvyM24k{ zrzc6)R?u4dKZs(=R1oo64Tgl7ydANqy!8 zi)eTrUnopRZvCkC$4gt28$1r?`-fmUo@B+05fmsrYxkg;BVl-#Rg1qo#*GLqoN~`4 z%{4`-xIX2ZZT%!)yt5dpUuN^cSZE3zi`Dn0kvh?ht29VYI-WGLijn_oO56bd@9`3cK=j@{3K%C=Iv0HZ58Ast$E!a|?8V@rKA?{mnVnS|V#cSg zes))@tp@rxd*x_%Z>P4Q732YFfGfuEg4#I$gJcr{pb!GlQ!o7qc7T@s%B_iQjfSe( zfQAwPtNb8#1?X5k886f5&b>da>$56`8;Bi|w~)I2d%I>-H4urVR(7zuy7jZT65kHh z<0(!dHE5XtHq|CWR}EG#ouJ#HSp46B+>*Rrc&RLJUxOKwPo}|?kxr?45D5mkzH|0I z@;YJqN~k~;PFuYZ6e(6H)fuCY#wSC_B7P)OG4>J2i+r|vtyXt+6^P~am2Ag&ImqM3 z3+_|aP@T(6w*53ImrPLNAdyz)qYK-Up#GyWqy;>6FrwZ1UQU^ZASnMH^zqw}`pYuS zMHojk%yOo`RgBXZt@u&i5M1;~Ip$5mfOKRrhnK9sO*n_tX31_YH8n*P{&}QC5ToK# z@4{bAJa3Lnm&b2V8HLTSe;`EM1*>HAw2})|w@~z?+%^of-y!jC5SICV`Sg(R6?iQ+ zZag(qWDLp2cCR z%szeYj)92;mg8yqS)Jg3_wkfx$6w;t5yGfdXS;Uul;r{e>dYrr&uqSe8Gq|{`W8UP zC1OH8zKtf6b8@{$b6h3UZH&OB)!_ba*WT#;TA<+Kj1Fna4EDFH3|_e3%lX7V1mBuk zaO-paaO#J*MC!3s%|{LzJzgkUva!OO5H>_?x&dQwVI#_U z9E^C&_p@=u^Vo>+A6;dTo4FHW@&-cAQ? z1T2z`_Z(w47r8bbNs4WTTf<!Aqo)hEz)Eai}@ATt0prPUDs4*tq&Fr{@t(-o!k7ukfCag;RAtJB?FjXa0A# z{Aixen&<2MKn94Ajyi6?Ip!zp$o@dYs||7;e*_;gF_)6a#qth?$kWS=4_`s}@kn1K ze@>Q}#wnx(nbx?ulWQL-vy*5Id&zAiKXDnjRf*-&xA;<*8mk17j&V8HYwjNEW2Z8< z(ET(we=1!T%!y1=My58e5;uz9%78qE){SKxbf=89^2`E^9cp*ZQcQ_y^Oh{}aSly- zi|atFMyTtV+u^49g?>>9%N4yrj&Ev)e!qxXg{qHNc+t<0A4xI=?@;}|RIvJExGSJ) z4|F?P*Jw$}n6@CTRXFm-?_n5=*=jV6%Y5hQCB8hB$N6KQ^I~0;W|oJHs11S|7(!k2WHfx= zk~=domQ;9cWk;OB>Vbes=}at5bifMZMek%m(Hu7RNVPrxJ3Zr$%|ETMt3(2dWWadE zWG|j;@bRRzVVLhc4~NOhF7?GUQ1s%vQ{PzKlW5Gk6$$;4aP2sdFN8Kesy>S7{T_iO z&|r$HKga5AcHJd)5p0oPQQTRA$^dStsh9PlWWEl(2I!b&vi`Krijz3tReg^PsS}_8 zI$v0h(y-C4lC`uAdxe-=WujVKVk>AYp3^J;8FPn=)`PX^9=EcD4_Me|Jc6{oSBX+i z{B}4Rm2XSdIr;mns#G|es z{F!3M^N1At+m~`r#@eZlo;;CFej=vivs2PfO+5Df3Xp96nA}42QX)7y=*xkW%~O5{ zzL&Rp0R?-&TSI!5S^aXb5r&_|jfexL0Rh{NetW1y$(K0V0~R(SFl7YMIE8hTI&XG= zB#rXPLGz+A76sh#2Pf<))-)Nr(~I?p{1d^%_YJ2|(M-Kh)NhqGY%Nw&ThIhn$g+XK zM#dYpxQS7Po*oP%8W`-pC7$FiA!zhtDJBn77h;3Z)*zV6TE%aFn2MS9R?Ln|E)n+z zps2HVO|aVnf`wytSU*xd7yw}=f`0(qb(wyYdO!T?)G8v3Z7c?-M3HN7itqifGdK{_!}fqTRGLcT&0WoNA00>6xJI3nfW_4KQlUFGL)=2_K3uy#x(KC6RtNxUS!IyU=aNNEWCVl?4$k0KZPmy0Zb*<8 zujpqoA2(>=!vz+zLU=pV%+_Z(&mIQ($I%_CcT{kk4ekdfX4Y+Felr9lHglQ>?Av#A zcu{)v#eJ82Lxa~youAFdlpiP0d|{CW`_VH(a#_z=Pb4uD-M;jO5NI{T4J@bh~zpp zE@fu%H(_buuaDV-bQMcDz8+R-uSk@fJ&a9t3}oViM99EGlkiB> zK3?Uxt1G&4P(kkvZbG~a0A#bHx#BRJ{T2aWGY*(9hMG##TR}R=KU3$_2B$9N)XMi_ zpRt34YrBCDRs^JHAdJ=314iscN(}U=B94JH5%b_Psm`e(-qGJqi!5S~%pib&3p^;> z2;IK3xJFz8L}%;T9tf7!qNZFlBjo-F29aS)!Bm#6{30-Qp8bYrHBQqxP3f8lj&PUA zz6HMcz&Ko1@I_g7o_#8(*!br^gr==5R!|cs5^ul{MEP}ct>A6hgR-o#sBZ+>40-(8 zT}797o;4n!rG_pYBNG%N?4t$C*=zbV?U9F>#{5$+>Ya0Y*OoHmKiPdtb&q+q&z?l| z5<7;7CTtb6_~@;U2#v9O>^Q4fIKpbZjubu@tVgJ%KiU_at(2!!CmMX#&hQazK&j&B zZ@Q*M=#*xMXwBEQ#`wVpWAB0^7IZNPYw`4XaLot8q&uMaskSRbK%jE|Lj-4fyFWnv z1mK0fxW{u{wU%it?_Al2z#@155Mta_ag-Wq-l`mHQa@je3+(RR|DIGh`Blkg6kCHV z&$V^V40>){oj&L}j8@)C0nB!@6;IFUFkTkPc#~GEzyf9!4*EB*8 zRmblCAuIuFqByK%?O9G=vG)En*}Czn)WigTKClF_=JD>ZY+$f6Qx@x6WlBZajJ1!) zXU>IpGA_I}qIDja0#OS+ysgCYL7A3e#Bi{!Wk&8O$wcXb{X@;jx=n#f?wXY{zQ*(( zRE|Hi=p*lhH;Qp*TaM|3XS&2JQ(>+=hT<_d@_A^{n&#R#!5Z?LOYW?8t>&gSm(O7) zGPI4vTPISC8P|7V91WivA|)id+}zRc+=>$k*yYV-1+Bh~q=i=aKB^pMVdr5Gj7?>A z@QtC!8htt~>$=MjeX=;D1UAZ#7C36W9h!TOVkQ_A%)c(k$6sSTYYwf)gEyXwV!YM; zAj@Tj0%J+&#!e!5l9J-_Qg$0*(}74ZyuXuQQJl%Emuykw9B3-y!1f9>q`?pI2Ex<2OhRK+R$3eRT;lD1)1of3ZUdwTV#=NB&)UU zDVHv9`-TouMdDRvq6e3J`mDpCv9fM7D(m;{+K3-bNz0N zfMp;Y#J0({N`C|3Z8mug^llCz9q4}{<%RZ_D8|ImJ<+{q2rMrSVsyK3&IbFanVn^a zq&0Pg;CP0wD`hU7d}EJYAMd4(_GJ)+o0(P_PO6VQX|(vtAh=`(@n4AV0_Jy;pXv~E z6`lNeot9?DXmmh-Wq<5`X*bhxV~p!jrwsidX~>*Mp{)*mypVe8FARO1{ce zN>H-oNlyYWMj~Y-{45r5h?KGHJRmsf--Qn@xnN|Z3A#F(}@qcIWiolcMee>z!v&3}d1h1KL`W zH+gC7BA**SvSk^2zm47eSo~t_v}S?MRU7D29Cl-N`{FJs^1j6+l~S5-QTp9x)aj&h z$1id?An}%0SgHB-wOQ4d_S6rG&4WM!)uB@OHL3PF1}U6oIoC5$m@qS=f<3%A%iJ#S zb5h2XsdxH#voj|%PrL3})VarvT!Sg5GM3a#(9CFJiMjDQhCstxIUV6zZ}X7;MclPX z`(1d@z}{(o2Q|Ptl*fEYrVtcsrp#?cGu`+kM~|T>bGu9NhI}rwf^E#^f;y49E@bfM z{?xp2)UNxP< z3FWKMbZT5*HF=%!`YlV9Zeqa6(^h--N1{_*^!5t8Ax=XQUt6|`9=vyZ>8s9Z zB)n?m@=A9t*igfli5JrZHVvPIYSqzfR*s7asAb~Bn#?~0@~~y`Pl-Z+A z%v6mL*OzDICH^6-_})yj&U{Z23+9R`pM1op=*H-n+26TVg&{Z%B-z>|#Ai7X zm_KM(?i>-9x@q}Ot=nQwVRVX&H#~K&1b9Prf>ZK(qXQt~1k^IdU!s_SVF)K;jXZn* z?AF33^IG{sRzdZSawpJ)F3OfPWJ*(;pXGI+xP3v~UA$>L*6e(ce;ufdU~p1d?nVEe zLyYOuz(^$wXy5KRBp6x1m3sy zL)X1D2_dykf}=OOXi7iRY;mN#1|I7bp?|zyOhI*5{h346W&t5c}Sj)g}E=$rB(r1KJL zj0{Ar27^OMYa@LHY1pjmQ7ZwN8mgB8Mkv7H+iIMJv^PNwh4#P4yGcO)ps~$3hAleE zc0O%n+i)7ud*qUApEf8bDj64Hf43916AC2@rKy$;7l*~VZvm4~2l$}j$2poTN#%qI zNpr~B{l|u_{w~YC^v~e_2Ml0Y9XTy$+kKw+s_6b!!=!es?_ynp`Y>`l%5tQTF*DeE z`q;a{9nElyLH&0sytUJC^X(BT#wnYTNiW)T+^%PN{Qg5yyoc>A#vj403P%c{xBEGp zi;VQn$$B`rYPy*;(zvAAVNZ_A37Ui~W;ck;G8egF%-Q$d*f23L9q0))Wb>V88|7WkQuDr2j_B=8l{PuUy@3>2~p}8fYlStGFGn zM$yZ|Y?AR-m-?M}M{E+2rgWS)Y9Hn3;T&zSHKI+m8s+O+P|_3Z9{icNU8kzk z&quh@qg0ARJk?`&1`VdxR@$u1F^79=)3rDCY_T_k(iv1dIUz}g()9>LV*Wn~?*VMI zHN5(@fV#Gn*rj5nHt8{Wm{`u4cl_p<_T|#qW56QeYzR+l9L~nBU)emxnpkDp#GJC( zjzZW$Zmn{VLxdrU>xuPizcAQIA5xq@Qzo5ujU$(BZbi^9>?BWM{A}x*s2aF#>3xO z%fJwd(eo;CS*B4wD7&kb7fOo+Im!MCsCij_=&Dk+ zfoyY4yy1VqX}>a)7kZS;$S{Bu{jJ=C=q5-=*eE0k)KJ}ZED94OC9P`Vy~6(`iUndZ zDs@77PaHrZ9rX7miO7UO>8@(4crqab^eWjD-7yk2kI_-90Vv{bNNXX;>&TEc{V1Yt zzj~nufOoKKahV}{^5yEf-kNZO4_hm? z>B_Ej?0R^jjd;bQczNOAJk7ghjMo|hy^W^ASKs{P5qx&h=~LY&i(1oBt71>vD9RQ{ zu5AM8z5A=p;xGz}NCzgL>%`Rp+_FN=_F_2U;J8#p6vAVma<%(hF@6pVU7fCqv`I)X zl8(O>RIUG645LYSE;L|;xmqcGHe+~*M?JO{(w;^UPmPn>Xw`+6yiD1myCW(D<}nv; zt}w_5w;Q25HOuQBtTJTW>1o)1@*&!Y8*18#VXTU-gS)1^+ebF)n zzGQYrJ@VuFr}|vde6=r8rda zlC%(jyS1(iLgF>h-6E>rMPuu20NVX0z@mU~`vHjLRcdtA%0vOb88}a)+dds@HUx6b znM(!Ice*bW+)>G?=0g)c6K{?dw1(>HUTFzm?4>i-p)9%^hn9T-@(!wHNrI(x7xY%< zi$gJj^02&T@|N`ER@bF4!4a zFS^XHXU9>$83oT}?sNigN0bisnBZzv_S)*_otG)P6Pog;b?`=xR_xM#dzN68H=&YDO zH_OOut)E+{D-$0Dxn&Ky&!(C14%Cag9~_%YtsaC0W^AvKDwC^Vdhh9Kw9!BEx!G3B z9heYulM`3(sw*auTe;$1%04O$bU@Zr%W)+Z^b%{k_8!OYxem`l^BaQEj)SwiVaCG_ zD1J--5Y`nS@mt%-+tXxXJaxD>^K@C?8l8cr#~4Pt%zWh(QkMsSTRY;_j{+_hHE2MK zWI3#>e6#?K#ie1Td{FnRmnvX(Azwh?l^YSiZcz2#7t7&XrIa7yLHmVxlK^h@NZ@al zbFj$saYFQ^dS1YqSHxgYGdcid!}?p?m6Ve|MPFsEnH1G;RSQv$5oJV|;KF1F&ZfpN zk&H5KvzGX~RUTBn8GNLgph$nwP!eq3(1Lo;9D(Lj?Ic)+Z>pbG83VufR!CnyyZmvb z^WD||+;|ymx!n<>HzN3l)UsCKX?O3&X?{5MoE|-f!@=<%0t2ijHp{q{t(6|pxbvdJ zrJRm4+b=5r5QcWw!etZaeg0t9s@R#EE}ytM23#Bt6V0== zUZ~fxEF*cQD6u>xzd;OUltkO2pRnoSpVE=xDsyMK3_H|evN4xBO1@~x&1OP8p*H=w zD!aLXF^-ByJv{d8y0n|#Ifh{?-Mm#{154>`>;RNd!v9%@EgTM^W|~-_g@zT3-ro^s znjvgafOJ-QP!Q9XdexS0KFx>pIQ4Tp@wXZ+h#yMWk{xzFwUcR+Y0$os!f$tH8KR+j zXXZ4XZ3=eWIBFmrTC_hz)GTb3wRGrK&+v=EdM^EJDQf#J6u8g5DUbJVr(FV-1k`}nv|AB&JK2c0xb~BvM*e_H*h$TWWSlz%rQh%NftuqW$>tX`I5j^NM*2#)I{arqMlG)y;(2D9aef>>uR!_SnzvY9#-H3`Za?1ZWI?Jf2 zzP=3)C7sS7(%s#SbT>0}NJ*CxA`(gt-AH%O5YiwZFf=M9T|+1x0)oWng-iS9=~wmk@pM45X(mhfxf{8pNPndTNzvz?uBfw8|<6{8R6moQsSI z?A@xSp;|qba%%*d#bQ4oeoMdfhI#8%TFl-_`RCTGLdp`-+9@>tcJ7+_@8fsEV4@-? zvlKqhfumly@ygcoQUN6hr*!IHJ1z8!k`rHO5#Uox4*p;49Lar}#f|0yDzEkc@&ZlF zEp1T?*#o5i#RDCIBZe*0B=KB)%cr>S((z(I7of(t;n8_%?cWxS55B1Tf8|FTZJl=wL#c#U9ORnVjH%uZ|)<+K1 z=dk9;*DSC73^T>PiT|+`d#mtH0zi8Tr-6DIr>>PLUdm z^+Rkhebs|!^Uo^FHD=X)(3D}*D*SP5_Yp>I-}T+-fqMP32$!2cIMIsF)}twKIVw8; z?ERz~q&+&nGnlo;qjsin=*0FVc>RFBdCZf7lgC7u#4!vpQgu(M9x1L;1xwea?ag^% z@45JQCv+MSI&7*No6gK7#C2ymXQ#E~__oB~h{6!MqwkSUVYFfi+hH{}aV`s7^&Iag z7H(W?PTR$quk!I>`+6WT5EIys@SMr13z0ZSLM(<7@GWhhM%m#02aV8_MsEy zMNad6XJ`nYjNt>1%NZGSPFnqxL9q}}JabG-wcMA^kf2a~%SfhXLLFftw6qOnpuicP zF~juv-dHT2tylS!O| zM%U@6Xn6yxEH!fE=!OeI;U&#&UmkeIld{Ggx5677{<(sTyh(KT>wlo}M;&n1?iX!4 z2i7x|BDVENkHg0{?vm;?&Ty@Ix^k=!SG&hYi%JAh6J-Nw(tcOqK335ZtfPkGEqfy< zGtE$IxM&!jP`3fZncT-jJ8_50sHI}|x6mGHbgs`z zF@|Rs-=kV42D|C&3OG6ks$rvT!eQeGvPsqjCzy@H?1$oq^q%DN5dE>X-JB)Iz0D}E zOE%G?C-$9**~o2(i@_BzZl3M8&q~4;Q<4w`D&e4`VEb$XI-qk-cBmBsB*cz%?F%L>Z+XQcX#Od0-*gZ$b9Dx*I75icvhqgMen7eQVnAx+9> z4ORW*uwq15R>5cfRcf`jwigRl^Yh+?{6h4JA_k2LPSc?aknzbChoq%9VcGwVo9|`c zt1^958)&5?F>zd>eRIY6X~@m?_?)))%}w)%bc#c8l^J&65HI+UzabOjzTC#B`a z;12Jm-?F~iRx&_aVU&3I;qge!MW7&=%ipqYD52aBSTaJyA+pIp1%pT2>{dE|CM(a# z72F_whQKnpW;mzKWP1K;51;jk#;2WX+Oqet|9lB55%LJ$!rBaiR&Mn{eYen`wxHRR zS;!x-0P%!nM=9N`XJS|$%4aN+6lyE*JFTZMPpjOdPz*$R%@Gz)1-D9Tvxa=B?TJmg zfI#il7j2zxcfwz~_I~pG&DjLeG=Hx(6QQUu^=NvrvmeLP`dxVNrCk=~IMKJ&=e<9a zZIjVnNw2B>{Dc6PYx=s@hjqYAjVGlsG}4#+$N7otWq@=@VE4Ra{y>0s`#u1J@u{;6 zM49@dV9^yWLcl)OHX0{j@TJzBJ(31p$C{&(@T-vnNk*k*LgiJ0VCxR66eMQk_|5P~ z&sjzK!ZZ0hLF_MKnHMvLWe&!TvIk^g;+nBAcu@6heSANk*5!`+(teb9MXj~oS*@Zn z4}$ppzu5i%Ku^ciohjDXW=lIhCt1cXakf*OMbTpHpM&qzk4*(=S~R=kJN#)}>yenv z0@STRe>iU6U-VOZV!hsz>9CLqj7n^Yncd->QoNQYz33~#w60cv^Kn|);$8(q%V2(x zA$xhkp08FdZ)VrqoZs{JAC;k$5qpw3Djl=9=FSr{)_B5X!-&#U+xWqcPT(EP)UmRP zQ<^VYI0Dqu+p@(23M-5sU3N%-1pf^eQV?LeK?GdkDL22An%+@vp?_jkAvj0uX@7#b~6AJ(3V`9U=l&0NM6~r|3W8)qvx#g>8PjN-2DxKSkmQY{mvlFf{+5Xi|Zl3%k z=^)X^-nqM!@4D;+-#=4IjY}mM)ja%O4Wt)&fSo>8voKnbRhBlTKJgq;}URQ;KTK`^ClI%$8GuuUFRM{CKWY-&gz;*3#OK zJ14ocR&R#WrRwbwBM{^HzIx;IcSe@AUBNf;2mwb#PW&0 zQvM2g8*Oi$ps`m01>-*Xnl@HtQq11R8(BUs#Af#eLK|@FD63{eBYaV?^KOWnm1ZUr z=``?8x z=^Ecb{G75UL`d5ScNt|#*tX^iOZ0`dqO1Y33$6!r^&NeoWStvNFLxEo2Tqxn7;(y- z#mDJH6k{h36qBIhMW7Q`Dn6rS(|$0Vbhyx}u+)oxszxf64eP*wS9 zQunTBOT+oa<%4)b5>6O^On(VJ2ps>^X7+|7EDNX$fAKXX{+Bq+{R7gEL;Bu16#M5> z2fQU@RgiFZJp6*VU!6@SdJ*0bx`&1B}JD;@@PNU{Y)qn%GGFB9g}0z-K&hNWlt|s~lY` zl~pW5{J{4J5qN~Dlw;eZ`oFGi$05%wCV=%u0DZ%No>#~Delhd-n(6&(3AQ<6pwno-eS4TW0 zeg2T2Mi{J?|63p?Ev$ zz)YlUW=-hFBo*?pJ3j*Q$9oh1h85rr5=L8xnw?z6w#c|X{hP{tp28&1{NwU)Haq#x z%eGz!+r>77kFGj`ZiF>(XSfK@=}xYf?dxzMHh)=_m5cXPyuGvXb0-ikP=2$KdA;4M zqxHi<^L=uj=hf*Y&m1huG@EShPQm^7-u4NYZ_Zr4m2Rr%>wE+@4~Zz&Q9DDsz^(3e zV-tJ2E{h=rq%Es3HZe|q)8rZOi(wE&sC@PIboW9M2(x6}^xve$3{F0d>9;c6lc?sl z7HryuR+m+=y{{fz(qG)(ARtJfP~S(OHCWp+JGxRpq_%Mj$*74eUI>TD)fc93TH$zf zpbEokKMf;ltTlc5GA=<~D$s>&@AqZ(gb)R?hk8$DuESN8G(5CP3K`z@b8|;3X|slc zp7A#FENTB7{uv$$I$fHKu!*rgfIxwhl2I+bolO4D(^b{_0~`amp}y`N^?QJT-Q{~K zNU!LAl$9?m9H22GN^l_ozbd(B(}B)%R!0=1>N{9sR7`vYkfAId;rMC;mwfaJxJ7~v zNXo7F!aGQ|Ljcxwc5f-Qh#p*6zz2JuuMlP4(4CH{wufYw9p`J)xSt#>_FD!P#AS@{qT=Yc{rwQBKw-`<~6 z_h-_u2Fwwhp`Ojo7o-E~OL^D53xg9pIbI_YRRq-39}O2qg!21)1g*O_9hbd$wC>N? zS~uDtUM*nJ{uq%TrU3j3;H5=ezJz|BWYp8~iEv?0lbM*eck*-B&G3JoNi`cK;$aJ$ zJE?3pZ46~8kRk^{Wf_IfQ>kL8Riaz1on<(`u){J7GS$h?DdsjFY_I%2Pc_nLeJk)K zp8j{_QAZSeUb56teUl#m#Pq0Jp6Wykh%BxuR2*^!KjgxbuX=>7SjFOEazcGqt*o_Q zy(E?LJUL0#D!~>9)-!?(&%WN#hW#9!u-iz^`>m3o5>LfIz-imzjQ_gd#J1oGc3S`d z0)B!m31C3+_gBCG{CEB@dq?e0tz+GDQyfMEU~sDoctyMB&?%cBgqx7I(hF((YC5;D zx9oHHuCNC)Wh8 zhUlu@Sthh0MoJ}gH>c4}t*{LBXUl6fqXM7(S8#;7Jv|@GX!OCUGf;!P+*SqWjGNBD z{)}z)=>|H-v=bl50FGTCW_~klc*a^mE#7>7t0~K#Df81!ZFC9l;3MCo$Jg=TZX(6Y zle{X`D$5a9yi&Dd;?JfmPOJR}s$^7Zim+D@kM?8_z#4PL z13$HnW`eaX)*9CzkgMKBd&fnH(l4bZk+548P_dUXaXNMGa-hsi2r%bZ&>>%jt#^;* zU{9}#`#-AwIyW?XUl=yNn1TI%>Pu@WUmDf6Ff|EOhN1OqU*4@Ljh599#ah-j4J4C+ zgRpu#g*-pxPVsDoB8`yCTL5cR+mdR07{3Oa{G8$Dvp_;FD@CHxK9WNu*oAk8oz1uL zishk3VdBm_@Tn>0+sdi&*_jSS-l$F%ro&a!`L`US%atn$T|2wgV{A@ycw(RMNDowtTpBC%W5~3Jc;U?`YO&iyKrOSkr z@(%4e@t%sIO|+BE&uhUMKI^$nw%MrrCCW{%r#lGG76s|0rJ+3`L9)q@sl+tNt0Vm! z3;^uhSm?D>2g&z}q@kp3!TkA=vspAu z_$e|prHv83N_tO5A9z1h!1qcQKncn4!o~*EKPwyo!EN;Ok8%Y`k{c4Wj}~uXq}*oe zuCfUJ8oxNU*>oE{oUkpP5y2{+*Cn5YcyW!jc0G|ar|_PzM?VogA&dQgGc^yhJx0<; zE}@bi8FqI>c(AKGa$^_Yeyd>BrSM*=y&;Yq_YX2L#uQq z+qTaHCmt)xhKr5s(1qt3R`1VN@6`s)?RASwNi8-HmH$y^E{yT`n%Q~ISaO>(f2JT? zYE*gPcr9_yXI0nSVf!&+wf*8|&&1E;@K=H_VX)~=UFfWKjCbe*FG&!AhHJ!E7y%5l4!hwnuX>+0sI50o3p++^D0@q>_6Z7{&Bi z5zIC7+CAOy5N-R|(TP_PF#&Q*Rg6!Yr!gvMwi9Z_-%Mn&GfhbeQAz5w6aA@VS^4{X znU6Wj09K-jP#E7?Vv(_9(dZ7YDRzQBsf+>qf)kF$I4KRv_kL}g?O9hl?hyh2?A#sm z-TPZ(@m>L7p&W4#bboH@u>rV!Qg1g+xriIVl6COZBVSlnp=3pn=wXD#;R?hLA#dFT zJNVy(>%`a8APBJc!517BMj-xAxTkAYjS6oJHs$^Tv_zwi0DIHs7iK%WUF|r^0%E(o z0&XCZ147FfD`2r7=xi)_yI~ZuCRL`E1{Mn@o*bU!M-Aq6<2_wbm+WTCa;KlrdY$su zg!i?G>yCHM0~C#i!b})B z%}nVFs4{V+?wDq$}Ndc7IGtyNZLd^5xB!MYd-DdNNH=Y88&hOoT-R8b%9QMVC4&5ix> zoi%XKy)bcn1d`KNF8V)^EOb>9SP`ksDMSOV()|ejD!|bhVbf6uTxckqoqxlrPnsH5 zZLNnc%m+}#_0=4nelb6nWCbmQ+LxdVU`p&IDC^X4$F&S0_Y(Vv&C9lEFOrw_ZcWMgYee2 zvc7q>6S}5;$J-*vox2z3QFmwtx!lw8(~l%zSOO?<_eoNW7I5SMdvyR^v1xEw!j)JALSrNf1lr!v%V~^|f0&FRMfI6}D$A zCzPVzQ&sd-(fZM>wg9#2^!ED;T(7G!9BpUH`vhM>&3w<*&FE=J0rO;{Z`A^MXt9Ls?150ABxB!6Uv6lx*$et^UjPc?ouUA(y6YZT~wUvN-9gU z)_XO^=*0+&5SsgQlLqDKmbPYBFssfPYc+a4EdRAyIkbz=BpALNAk0Rw)4M}IjTdS*f`%Cxz`k~L#px5 z1=nLZ_;SCxAD*o!9#{!rVnC7eZXrCEn>eocx372eViH@eT^JBLie@#6RCJihdygKq zex8w-o_kRg)}gcDB!G#u+mZX4c=5|gyb~{}mpzxDRveBDU_AlI<5rW{9ag*+6UxtQ zoPX56DyVQ5OPxS|UE`dWr}NA2$*;!^?0wA=vLK`W9OLH2DmrUm7Q*+01(UiG$HT-Q zxCB+Dz2UStfi(76@$YdVF0|0D+0ezhE>Lj3(KO^X$Uf@>HQc^NAy22tH9gPdiUY01 z@khcVU)k!Klyv?-kmg}%;)j*`&^&rO&+(%5%c%?py$05w?pf#jX+OUX#a{SQoZG*! zi9I|L9&e|g>*?EBIy&xvLz1+f=trJaxSmw8VzPP)F7SaV6`pH| zpSg(`8M1!Kao0F5_+}kp!;8;B-xSzGKE2{~-HXGb>BPk(U8;RtPF|YwdV3l0FXX-U z&w(F5_MSGmCK3aOD#x?E+|#RQM7T5>c{mGrU59|^jdMn^Bm@bfzeD$=CEA*}%%Qwq zc;)wqaL~(F3{GVizm(3ZZ2LAV^OMy=B97yH`_pt{*O*p@<2;3~oPhFcTLVz40Q;e0 zJ5UL-WZ^XSaC%Acn<>%el>=*8LPBXK?tS`wCxJ78`QGy_Z7x2Hd|vL>)U5I_6!1`J z9l35aW|hbmtNItO{7%+KQxFX=HktGIbz2^S&Hb`+S>$nP6%8Ist?gUZIzC^Q3u9UHNL2PVLymLdM&^ zo5_85yu}ja&4(-07CB#RYqOYYq)J%tZAnT0+9!NUw^C9@y0L4&cK5*<_-yzhgN-}% zi4z0ih<@wc+hpNgC7ES*{3Bk3!jCeufeU>d&R3Z~&TKdyynzQr#OV4|^jPrso$tG- zlQhQ#|G=<%Ywpyi)aNW^^Sw-G?MstH>Fo|lq!yrn``2`10T3(Pmw@5y2s+SO4Y(83 zb)YN2tEe8$Jq@5!gHJE*kq&)vC~M;%fR<&bu;u@A9ktg~wOcp#$WudjMW}1xPdRB9 zuMt*%1sqq4FfoN!ydyMx=FZIY-mb5(n?4d7oa4C86!ETN4Sp_5MH|LwbtH)OoKQ+p z*V)uRx#ef?rNp^St=6p2YP3}0$l3{y#oq{vIl8y%3>ekt3FQ^{OnQsRr|g{M+xN61^&!6)zToMLzB;z!DzEweNev^2ED5 zRi&++Q*>Cb(Zi2ygrcE+K6o2DB5#Rb2#CpvMi>=MpvqiX>?BFlI=vGJZXDUN$?+U0 z8fi7bEFr>~LS*6?5sgEkzpj29GOc%a_d5@ra{GzLEy+lb=B~ln0cCz z5xN;UT0SRu*yllj*5w{_3xrTryf32AX0G-oaMV)bER9%X@Q8OiRldHvLaNOGk=%vL zNWX^n!?39;jNm|&N%yIKH)h)lIz1e(7N88ribmuH0`C*4I!4EN&iz^8bV-Y~$31|R zx4NMXSebp}@{y;i-Bk9H-cp7lx##uof=asR!;Qh+RaOK)Sb$xRsShxx0`lU+#iy5B zu)&WOXvDN-36gu!KvoYd^I$syaSui3)Wuj442E1^OHd4;4td2$3`n%(7wG!w^7(q<6hQr^4`;|cv{W$~0$z{Rv(;>p``e7w-qx%xt3_X!()oViIQC88BY3-Hg=F?DPx!KO5S>de=EN>2rXI$=C+nR=^n$lllljZ=dW(c80SdJP6nu+WxMy<#OuW$2F%30_X)z> z>xtMK1j02u9zB#FD1uI$;!TyEAl@rvE9~BxwHh(#n)$ms7ve*ZjtRW;hGWF;G$-$X?DO(LwRY)xo!f0{(wJ8Cb_T6KpA+xBoxEUlW^>(JNZycwQU zs$Mj{EiCg;n&Ds3??~b->jc4izV(NtKh|zJVyf_B?4fP@YWXrm^qMAyu$@>2d4DHVqFBCB8r$2`3u|uls9qL;K*IwVeW&!hj2P$ zcn3ov0Hz0*obuaX*SmjHa;a>z?LDUHER8z@y58y1B!}6S+D~8`rh6Vh>v8+$o)4i!=8j3TlDe8 zASFi{wl8@EV}s&xc8gRQ1xXR!{uhaUl*1AMhN7YI!qrQYB8yJ)AyzkR<8z6Nhb6{g z)#$U226M%!(=#U#D)Hy4ir2lYckDKO^t#40d57js?>v<^Rno(q_uCFpIx@imu%3NoM;mzbIo@*AjutCr3CJje}9^py0M6JUsf-t~3$c8gSqG z7uW1ZGUjS~{kqbXBEf32CPR;|Fk~CKo;o(cN|RWstE(G$TPVRLL3S7S!mHJFS2T&s zMFj2t7S~E^_%HO51NRjE3e`81d06I)_XDSTp$dGres@yOwSZRVC7f006MnIwZIKT7duS%3#QY)q7Kc_}(``@C+ha!4*a5 zqK1t?1oTJOT%uzj=L~vWF6lFQ_DHlPSYkh-_X@@5zX5I^nkBF(3;5@&{Ox|NR&Fxc zA5(^{`@CwYnnq^fX!i!ay^|?e$C@kt%#asN_T6BTn>g%Kn1i@-dQIxuay*sjCC zYbg;An+x{=Sh#SI&1jK4F6&#EQ#i-u;cVh4r>1Y&u@3IEcEep+a+%wvxx!%O*`S|w zk8K(_?27>nS8Gc4X9JHpV#-?7Fb@puXBeuh$^8zS-@u5fl#6t)7W70l&;J3SGgx8(Cw~gxfq@9Hghj3pL6O8j&D&mR z?vkF0%gEZn%x)M@7otAozOW+P)c=~F#Hzi~9?M7~8X6Z<{c+3sQ1A3Xgl(vt=vruX zd`}q3sY zY`7o4uaB4J?DRK3^_)Btu1yYK=)lYme<(?hC1Tak|2c==#slGR;Eati)nDv6* z^vzG`@FAtN0!d03d$Z8q>nqc8(kUhk|KknpK59EFVEN`D{W(vaMPcR+wKbq~&#u=u zHR+p`>;c)|cR%H>v$o^Tv*o_xoA6%JQwO|0vroIA9N7+Yv@3d1Y>^@SAHpNf{U3UI zwDKJ&MJk3jbw$IIJc625f3|Fo6i;ZjiD~}K+YLHCk)u;Vv2^_u-!|57xjdf8Qpy`7~)YGmj_3vP3Se`iOsOaA{uvoIN8UZ^Wp8uVBY$n^+DUTLQP0 zPPG&n<#jSgsKub;%Q-O>^&WTyg%~<^YX0VN_CFB6o#VtiT!(m4lHJ0BZ?_4%;-z`U zA>0Q~I|0i7JK*&SZ%E=^p9g?iVY~pMZ5HCovX3$)0GeaCA<#+#d9ykw80eJEVF6UF z;&*7o6D0TA`z8~ESXDVnE`cNUM|JenL3 zYp{^G_c1w$55mmCEpLqVB4-7dP&hbyVUnt)uFY;QW9zB{toq24V_Rg&a(Ql%ZTb*->vzs zr<)LDD$>o==f@+EDc($H7f$I%aOcz^E$hhL#|<=YzO0PZaj0_ddMj zc-v(W$L$+t2jr<3uk{iEQ)~sN%oKcgu?Q8 zSDONWj^@@>RvZ6RS6`>)_dnVzEwq#{$PQLJ=wZ~IDSm#2g8gC4B?q$aJ}VBr+>5K1 z{n_FVuJG;#V}K3!1T6M~M=xdsvyBVhreTv)r`W5qW%}IYp>`JH9p%Gg!U(_zLB~;6 z`n@-hMQCq9lPUGnpB;6Mq)R9R5x2A9VTHI)fR(*K5N()l>3@?YjkPu<7~3eKWPLbO zp;YypQy2g6Vk}lrio#(p?^c%-Vx!O;h&104qpjfRgo}K8muZUU;^r23{0OtbO3*E7 zjVG68wg9zM=?(OaJ?c?1k-7q-yxZJ$^DQPNjnS(e1uu@oM|u&`-Mi-|`LWH3;wMts z2h&Y&S#aEyaGp$LienGR1TxB=<1Gauf@eD_RSTG_ie@8MwZs!Vhkiu-%Y)d{+erv5 zt*w>fZ3>l@Wn;63--rANQ@Euv7x_X*Zcn7XT;_S&3o}QF!iWKJ(ujzl%$xqY+gyV; zXDEv+Ss?F-@P%DVmh@vZRRRA(7j7Y~Cx`iyAp2VBi0w#0K0iYPvmZN)OqIEKxLjt~ ziz(}pO`LpML8HdRl0r{v1J0idQja;T+chN{LxnV$b2)HRX-q<#^zY}hR9Y!{d`ncr zLhMr${MguxVjOIjf%w}{^VwJ7d0sxRPjcM#=k1K*v?F()w-g9>Y9e?_+CD79x-IIo zgqA2< zBOJ?cxp%Qib9eT3+^f?_92;DW)_kZOd&0`(a>{-N41+G%MkeuEtbk2Nm(8Q`u;zyh}Cb8Y%l72n|{3r#hOA|f^ z&d^lzkC?O{s&0glyrypQ*0HN>sQOCDayBn~&yidI1{+%vE>*tFVrW~~dcB7pI+B6m zwxY@8P_s}bnsFhZ+S_-j5ga8TG4L{#ihbd+gLQ6Rs;wlb763Uo~eve6Lt_E4P5TRzbG^ea|{TB}Wn{ z94~)7`XmkHdIh$AFKQNlV_uJVTW$9HoHskIUg#mkY^G{A6WW%BX^M1jT&tQtwoQ{< zORv)HM5g=)^l;dR?)9yjgnsm1X{qk^b>dOMm_U(f0 zluoMvZmJeK8;7dSV-C>x!kz#{NNX?jGj>#Zko`I=IjD*xVPXZO6`q-GV> z#Xny@tQt$vc4AJ0-ed^hdO|1=V&HU2bxor&>`OvJqh8XIcX|cZ{@p#z4*y|<(AwXU zAZ8L8W2B`n`y!7$#wheIF<3jk1Ho?0@a)DsSR^bvwQ_bWy*|J}OCgz|&J&`Nv2)2Wkoc(I%NYIvU%Rz#w51K&nt<<&Lx`mtL3_h-ERH2^I0RcM z`#MhL7;QOLJuM)eY2ojE(Q!H`NEj9>+C%fX+(x zQ?L-7F6>Nt;DfpoD`?Fv_|HSp)obQuY_pRDw)W81YBS@t2QwHQgdGH7z&>xN@tlvz z0||Mh9ao9r&3WDgQB^o?+rECDeZ4~5R0-@>#9Fj|Xvk6e?B<1HErzbE$B7OjdcKNR zxXrAKl4A*Nnh>M0!;|k6SB`g66I;K9aEt#8H1)+gG-NZq{Eb7dh!l0``Ik?-h?mO{9UfyDMcjrj_lmeJ;N$nUJqV=!C$ZFn;~G zs_1Kne+h)uqtrM;R$a&7#PNFl!9z94dxo7|>TS`+)wT2|6dgp~t-$dP)Rcu}4<;!fwt{ zusQ#Spt_Lm2pwn-6xmUytJod_^#%pvo}x_2Mu zINWmABX6$A{{lb3&zI&zxD9m}l!gd=3b%B1=tN}nOTV6h|Nu%hvZC0?Kd$o6!CeLVK4W_rVuQ)lKU74N27y( zh69Nn)+?0dUN3_l5br8MnVIehWP5RtAO17C=xsG(P0G9ikmqb+g$hfP`9{CDcau%% z3*LHD#6%aCfxb!HxJf&eOZJy78KG4&Qs_m_K@t!;VbO2X2DM`*_Cug|o>l~9(v4A& z+PQ;Z(-V{hx$KJx2pd-LQ;VP-Bjjg6MpfnSO=tfAH}Sv;Prwzei0{EOKb|t$7RdW|E6!l_U_;p`(pPy=wyT1TC zKkMSG<3SLFyG>mO2X5!=j=|qnSy{>!VS=G6h3J^uz&mqGI~~jLB|Kc@O|#~et}0}S z|NF_xCWHaM;fR(gLMvkhg*{v5EAvz6er^-9>Z1K(OT*EE_oBsTglS{e&?dUri^PdnOglFBr|{04~|V z7!%~Row6uJx$*#_DX{irHBIXO__*9fulQnJQrqNQk)mG(ih&rAd62Yl_&`~j=E6gg zW>tEtc2%ymy!M+6d_o}`truFMf9D^HZdO<^$+H366LeW}U?J8|n(i=*F(Zp7%3P~u z=wCgUUZw=I2ut#g&2NNG^2dAjHc|!KW3a3kP%*=Kqk9;JboyGH@rSIMN2F! zMPQ&|;#izeSGZ_GVFK0Ok#3k(n1TalVwCv9GjdIXeyFc}?N^d`P%6IsA%1HsCnk_n z+}--OtdQd_=mGH`D2X$0pzjr6o%bPxw|4;G8WdlebQ%eF`^z~yQ%Hkn%oe;uj*uq%N8kq_?l_PZeHP&gMHQ4xs5af1gFpKI&vhMJZ1 zKRbn6vhokn8qB+PA%Iy^UpN+6Qp6s?Krjn#lh_9a?jhDOvr*O-_DJSR;56MU$CV(^ zTeVoU!8S|dNhg@xA1kK@YlP3OMK(9Z2!lI1v*zrpwmWL1?%W@nyiK&0cZhq$h}5%3 zA-6-BBHeaftXra5Dy_WE=tD2os#8Q%xzVc4cW<^9c&RHa|9~L+Xrk3mk$8Q@M%$fb z^t{JasXFl-*&iYsG*i?XMQA8zEjyxc3Z_Uv#q=xWt;fS>Fn|3_f{6F#|0wlgi?DI1 z{noyoG9J$bGT%kFtYOCq@+Yd{YtmZjEA0q zU9I)wo5L_oY38^!gmOuUFt} ziX(=?(>|<70OP*iTH%cae(>?}eR}i<5V9h;Pg$>w&o|DX?d@8QP9&!IcE?KJY#L6S zmcR)=5r1{@XA({gFmAiRpPS|bSBf=-&pEfRbXB_EWE(m%IKD5tM=97jO9<~`=?I_D zJZQOG(Tp*>t_srrH49fDh5Roz4XUD6$r#b;B9}2AqXE4@-v_Y%Z1~QhYp?NMk1a{^ zW{7%Mi>zt(6T_=5?`18=uXakeqW^(rbjE0hpFi`C?n%Eb+r39bRufrHkWcOE%SF7V zn4nt#{~MnpKj0Vy!{u@7)F%pG?ou8JJ?k?_3!LN-6dx#(HClAgy_T$~<>L%QkpR6> zYhxe*UjwXRB7mZXEqzWca58-G&U+hfZN=T}Y6Nz5s#e8LKaNJkiJl)G2X9QZe>*Aa zFfx+9Vhl@r?U2lX=P%{w3vpk0rz^)~#!S&!U2_0hoh$mBO}zS+P0;oA+Nx-Fs&7Ie zkM5X~c-U2Qzm;E!zuWa}k0y`qevJ|0Eb-rKh1P7rFPw9 zARzr3WL5g1v`-Hb$gh(A7mciulL0>L+jc`dFf2~nxY59vk`5(p{~_Zb`)l68d8dK= zG~FL&@~Wq-r;c$0{gYAe4TkvF+`_i4nwM2v1#~%Pt|TLH*^vXS^fa4}sn%{1F!fxY zcduA+4U~`D`|Gaz@(7gFE-XG}>(5TJYG#P;X@bxgH}3SSfwYa4>2&H-67BsXuc-V5 zerIyTU|hddo4VfdUb13}W8@esMtM5M0riV&th8|LpiZlfXOtRo&kczZFa;I0=nFAp zDmj-(MaKDvCs&$tbKh|A#<>=;lQ+=(Mw)))O2~90pIxF6*~B2}^5ee#IsB;F(QP9^ zK39W~w-|GAg>%My23vk>-tQz+zrf#-{xJD)= z!GhdYJOT>#77&`EZitWF+LOh)kWgSD=h}#}0E(FIRej$fUWGuXrJe2^Rx<&-(SiYTpgi53 zeT`Q;a-@=Z;Vpehh{96gQfmA&n#4T8k5jGIZ!2WiN^K%+b z$*Ok9m)ER5LsFEL=py&6hx$11H;&jQVtu2cKO9hci|IIBaglF(o{wT@*T8oQv0Eoe z%6-?J;d>KrcEp>)O3n#2TqHsX`}M1Gi59OqdS(h}OT1q+p!GCN9j>`neS+Pv8h8)j z4S^sb#XEas^%;PLhJ^!NaFkVPbPLMr2pnWz>wfO_4hUm$ylmt2c>>s1ExdtMioy!Y z+DJM8=nvlILti4?03T}=#Jji#Afu+NMw9@5J*45*^7378NhOFvt!_A&izCqXf)o(H zIt~PWj*<26!f{NSPi%CeFiv&2Hlxp{di<%;g!kL=69>1`iw_Z5Uvw2*-F4!nP1*~P zTUU-ClU$Ml5>BgZH6SXFHTOZH@`*dM{hvSl)ik$im;c_`LH{NkGQDAr**d3ME@v=p ze_;96pfwvq3Is=NZ^PWPtltSDHUPe>m&w%nVqIq72E-R~dxu6=NN<{koUzSORjgd2 zNDvC2A^z@jr(5tgiCg<@-;(`ah|4LQZV2ON84$7W&q~CvkN`3gimUbr(>Bi6B1A@; z^I%{&a;kd>N5UFjMp@xMsSiN$^9Cb1xlM(h+dCo%F~!H8uq9Yo#(u9HO6zk;J^h4% zO0ks%CvZT5_6XZmq|9!iAfAJ}LUFqJ0jzPbFCeDVF-Ij-Zx0wL~Z z;@FB!eB>=|S54pltNoVh^|kWTRWkKIraXKl!fDIW6jNVhPDnRW9Y-2kjRas{!Ey94 zb3EVpdPn~QF|Ay`b^O4^;OTkwiQ>R))VCS&WMeW2o$^$MPtM4g6T#KU;#S!0WW*QF zu7&%;RVUt|n$##XsCG-o;K%l=C){%9*#=kwjsU{S27h}01CeM(DC!3>**(|b=sSAg zOT(zo=!SI_vZkUF%bg4qakmt97I-Tu)7O0aBHpWla-YPzrRe{)J^T+;mqrBMo{7r* z+}g#gDxGAd3E<38UC5CZQi?{t8~!>cy|agg4cm-tb+wgw{1^kwNGV5b#8l*L29m7!SSwhGF9 zMntN|+*0Kh06?K6ou-A8W_Hvl%qAU^km3zfeoqv;B)>zO%d_At_Rr0ZWbU&WojmhJ zv#ejR+ik&_o)qUoV{{ZPtjqU>-HcjWT`5uz8V@iYGXDc{T?l6ik6>ymL{n|4!kLCe z!3JN#CzU+EVHjne|MOv+r;7$WujeT1!HrPhaOxv4`i+yUa|ED}nadd{J`sbbhWfMy zGow`{1JSqFG@IJ?U)}-W1veSv5zN;AJtVw=lrBG3;|3vPX_1g24Z^6=sdPzqj2d0iE!`zdx<#dXjBXH+PNf@x5h`8c$p3SmcU-*U8fWMH z&i8xYpU>eAysd45f)^WLvM5T-5q71x=OR8}ws@%xXq8|!gMvIXpzF%I@MZ!aEMo?9 zmp$S~$eYeTYcE>IJO&Oo=R0#0E!_Pt&%>yh`W5;9inXXBL%g@>yxlY-pNbwYp{?b0 zYt5+SH9*>fpv)`CCdssC6{nd+r}(-_fp$z8wfU%pFq(D^0Fe*R5qlV>&u*|mJ#^ZJ zwBtz_uklzlRMk9+UZ@WT63OG+Otg-;GyR7#yut?Ioq_d3MX@3|^<=irVi1ZIK|as< zO?yEYG}B>oBK&0})h0olJl$j&YTlk46#6?w?&@PXl&qY=cJt~m*c2qUa=f}IUasEg zKMZJny|$Zc-gnlv*eVvCQF@o9fyN!Rl-b?e?mfzGSrm@+k7MsATQBRG|9*H~cU+q6 zkznkhp!KP04a2}Pm3Kc!UF9T~y2w8%LZpm#dt4CCYsg}qzSy@?{WbqW9XBsy{1$Aj3zNj96YbWYOOd zPE2w_&%z_=>CtRe&8c-mncp+xQi^(HstC6=FlkA}rkwZ0>$+1pQv)4+V44LpfxrJl zm8bAmJZQmc_f#!>5OF8`O{F;x^uoGm3|7s^i7WaXzE{}**;6qWphAB1-uD*C9K#5QAeo4%$r$H2rI7*MdcgM#63 zW{mA#f^!OTuU)f5^)$(AY&{A2NRPFWYgRs_ilLpZ?nDTxCfS80=1;Gz)B&AUv(CFA z7+V+ct|9RhTKD1q^+|w*pR81hs@=H)Zngl|v@;o9l=x_M(B!o0BJwp<)j2w}iT#Od zd&e)i2&bIZi@pmob_5mSx?u#_LK-mH<{S8gbr7M!$33*5;bM%HuW1oiV1+0lescYTZw}#U;hE#*Y1HB zDpi0Ryp=RhAH|7(@}1Jm;ucPAhYTz4-@N~-o2&>66AgeumyDDik7j@iQa3G@Im@M69pBITK`%WO$#(cwS45%T)Q( zxj|iUh0D_bgaRz56OSw(1%_JMFD4x66atjw8v?@FlP)P1UYHT4z?|S#r@b@QNn(=@#JUecgGizCBk7vfIM{GY&gw_ zne&t}`$dlbwAl}V@M>y|2-S`;gpUEKEOr*|Iw%2}#BcfEz|2p2Sv_R_v=X-2AgX3EWz$rSh3JI8n zV3MXkU!wJId?X?;3Mi$=qjV^%e87J$+zR-NLYct;E z;Sn&l`?dxdcN(ATp8$5}>>+ixBnruaJJ9a0(%q#-*KJAu=pKqGvoiOe0_B0< zXuS(}X*s_+J3C4nBSrhj)KKreF^;73P_=s&1B7kBCa6{!SeGjUqXw38$d(E{z>q?U zqpB6Z3DbuFUInaQxE8o) zvVCYBDSotbjkW!Zxn~K#@Z{l(vddNGY06oT`a1eJ3D=b@5t5+*r|AqHUz9_-aSa42 zpP7uvQE^de^Gjp^z8lfD;i~)&HI*dJc&1$q;OUR7L1z4lZz?tBvFP%+*xxv`yhtD=<&O6r1w~?ge5UnIbS!PR^4H>YelFC1dvEdMNVuYRDv)9FG@hI~4bS5w2*_#%pz>}sKZmg{IzKH*P(F%*f z`@reT>x}C1+svjUG;MCYfG-eH?a^jSkllZEnZUPYWoymbV0nZ3MiI9qy7uSMESDSK zy2ovCaWg3a$NDpzYM1c-@LD`XSM@H?(Z!_L#nkZ4wQOlygf z>{H!~k$r|Q`?PWO@r^&LsR^@$AtaRUmb-07`%iYXCg{)~>C)am5y2nDT~!s~5nK9z z5P2~W-pdAF;3!QfFCCPl$$ne)+mUON&2Eu-{OXRX#tLSKDUS|7?+Nm%;Fp2j>Zx(v z=8Zrw-OF-F8TcDMUeOQ~V->MUA*zZ6fO`&rYp5%Ms;H4znj1>sedTr=@HB&5=Vu`} z0!MsD!_9P9TmLAnEe>mxR&mbt1KZL7VVAcjmjduq=(3G9<@%~^M&O$A3|JUc0#o+7 z5XiKS^c1jW$moI8=ecr5@?v!*0(YL-E>!LIX)IB@zI!_Y9@#TMf!tXd0Qn8-wO4N$ zxCcE$>*%Db(0vrIT-(dW*cmN6)WJUr_Mf1_Q+@r$R*lq;aRg-hZx;8j-nPk(X#-w8 zc6!!Mx{W%0YaHz|<%6k-M$MD7QB6@93Y8c@RXf=&lc`lG7(nFF@AFW*wapKHT{vvE&^*P$0IY~LQNHd*lOTXwftc>40J{wGl* zc~c=Kik-3eLi+fJ@->ioF!yC{e>9C+jN*OEiQPjDhrZ}!di=2z8IN{NO&Bx&I?GcI zgA{F#NGY|C6c;67eGhrp?}leocUE9=D)af)Dzr<#9Y&jAUbZZ&jjJg?UGc9^;ng>w zP)w0#_!x`ItZqD8fdlffcXj;YWFw|=Cig^LE|$M6fC&{_Q9cktSmggYQcM6N7!5G~ z6O&j?V}G#j(1!huh2SV}W@Df}ni|TJr;vfGHk1LCYz;Y|#NjJSrKJNE)3@1?vgl5o z@P3d zl&D%3w=;y9f*T-)J^fs3x99=WBpMzE$#m1E|A*1qySwj4b@t(1;Dr~BPQI9C`_(=} z1{MkHhU{8AbYeY7&Q$SthIx!?x!8+nIV%^Bt=<@>e&b4o^_@fy zZ(yo7hsCXdqGx2{UtXd9X#cnCH*_80$VUZxy;0`x{HzE0#uul*D^~@vl!l8a^02~Y zHbqw02hCflJY&$zwL6^NFpPJ7Dztkhls^GQPLuQVERwybNjj*qpwlZja zyqiaMvsa>X849#4@&9`L$|$s@fsfHSyhzKUkDwDhL~S_bwD)nDFw1ICR9WkgOtggX z3lg|j)vW#={}9Y!Qejh>&;1H5e;2l91+`=iRG4oM7jTBtoP^g`Tq}l=Zvq~5BhD-L z81bh5z9`G$Xv=H^A}?!IIy03>^}5xaX`Rm#6=v$;#x2n~6+>n;2I&7V9Mn?PnnsP@ z(q*+VuEZv6D7ld6s$m&@3HBWu4sQNVBC!zCB~`YgQac5$7?_@Gk;&cPq?A>tm`IE% zJ}~zE{S{WMXJJ6J*fSy+*lue_Jjia6$gRiZYYlZ?tf&~-WVY{Le(9vuW^=6xt6VyM zJUTrON8YJtsrl_H36C~Q(bpCnuq^$8B&fP&V%`B5yNrpOCK^5OEz(5`BkM5XujG7s zXdy0jP6r~(Ho5D7x?`V7)gLjiPbt)C!J@G@s>RDNMbNILX?xOF^l??c64IwDIvkjka8W`Wj2nB+DNX!L9Oq=V7FwHXAoB9Y9f)KlLr_5Nr3VcK zu42nWz|Q9jq&5Ip#yLP=#Qy^fTT4;M#i*kSs0+M(USYB9blupgR*I*u=wtq8;^_QNb41`*`sdF9 zb$O~cTzg!bGKYUEHwVmlXQHK?^{S=ud$)SH`|{P-yHsq+c5lx(Xh~Ab=O>N8yp?^Q z{5Ea@ZPEsgODyrb-(E%-p$$gl;`%_QptZji7%A7eLccy5Bg|wETOq5uVV|Mpx^uOV z*77bJq~B_U|LdZ!RSkH1z@w*Q$aFaoTCDwk4&JPKssUX%HUn^Yk*B~Wb2`O32?F!? zv={yzUD4ZPN!8w%RY-#p0gJr8+AI>YB~lgnP?1GnB-;m!;(A>vvgoBRT*5H3G-2-~ z&h%s)a;am++(X}jG14;58p(QZ#6U(bZRLv&<={nSlGFNy5;OoO5ZF(!7tlNl=gwl@ z1R$0=H%1VLEzUWRh3vsIbafww#KSUZFnL1&I-wt#p-cgD)^>&Vd^(LaqhcrwT_#^D z7Y7LL=Rdy)7=8eDSCqvqL&WalHd%cciv`>|TiSB)7Okuy7&z%0aHMmdkA%0)Z3E#^ zvrU5a|Hnv22wO#gLTYle6o2(ZZp^3+bM;TDM%g)X9@fy;!$ZbLxFbP(-J0ZZ?W#ZD zZIu#kaH>#2m>CJqFWEbqQ8j0!W!kG(8;W?BUUw!Q&rR?hk7Mhq?OyJBOOcsoV;|$X z|F~~=izF~C=VP&pbsPVvX!lW*Lwbqi?}cH1er(Yii{JePWC2WEQvkx^vEY(z^7S z>tM2kfj)$1DhmIEpLNY>6XYr)es7HEauqN#tUv;k7pBF+`v!&Ff2U}h9PgXYP!jH> zJA;bDeyTCv?yv7`X<{YruP0<3SveL?JftZj6~wVepP!{I9n~IZxUgz{hpqiC?rg&X zhpxOnk$ZH0i0iNRu@G4pNSlHh#)(n5hmCg!hc6i`kVm&GU1^^te8!fK;Q$}$gJ~w{ zJLahM6K8HC@>yjmObg)g~|38wB!gQ3*8L$tvhTdc(t?8s;2x@rqt*Y78ob96{Tpbc{E{ng$wn7Z&n zIBgtLK?#jwF%mh*IhgLrY5<)5H?$y28c;Qq*Aq8ZC$0H0+$UuS?;0YVf{GC~Y)kTI z2U}b^hM(MDVLy00O?~P{zjxMH@`Jk4PvTk_u)n+3y47p8$-HG+ejoMLW`c>4U^SP# zhUTk)g7O+g<&RKM2LX%jTJb*_*8UGVZ5=KND+X}Irn+b{sO8`K)XHxib!KoVj`+6x ztS6UTiY~lu!mVo?TA=93itPKN{r_3ts10&9nnG9(2+;ypI^}O%NXw6lxlKY+e{baL z`MbR|Vto$f^r)_LhQAZ0hC|F~`qo1@<;FRNxA1||)gQPX@~v@egtr4GRfIYxM#fyh zjmQ{3r%q*g(yPMT z53-Tac_HjU{=GBhO;<<(%*pRUrOhHubwx@r$g5(-i{YLYXzmWBKXIwUCUUZzY5yxF zE_iel-j!29p?_ywq_3T>+^g~yC(-JHd(B;%PgD5_RXK`$vqbFU==Wq+s~YdN2VKqf zePp%^4o#KRq^`a)ZJippFYn9KL|UiJ@DCXGbN&;NdiBlejj=(0lo2{=CMB5&Dv?kg zcOr%y;iOj4HN^w!NB?2$n2A`Y3Y&-|q09%H*cND0u(xvu#pDeWtis=7b9w2{VIlp= zIQ@R}$2`|ipEN~|cMdiP5kz9f-K!i;JQ~{Xe0VRY+?5uHkPfGV%8OV#5|y{gE=&``w`QSVh>*UN3K;L7C=R(pM}OXy!AU z5=iS$O2(U%x8hC<&5Roh@eCV*e8(YTVeGWL-}YOD)}8X;u*V|>@g|C=*e%N6#=^In znA*R=rf7)LoIKM%1w69r)7(qm@>N4*Rz#V~2-y~->|-r{+P?X2gH zWcktKrh>@_W7H|ZF5mLLCR!7~W9mAGF%+ikxt5!L@P1iV>)JD-*;Ze@Rw?U0sn2ZI z-ls^(`EM6S3s6`WxHesN4p8qs@c`urVF4YatHMr!~kgkooId0sDBXVhbci9ixySWs*<0q||}a-Qh@6{kFM}P%Zj%{{Jw9 zjNfNuFnMm0M_!(}P7V8cdJ`|3Pbzu-(MwLpv%$T>w%*R#xe%THO{C=HDpE!fc$VFi$FAQWypNB9l8L3suA^TAWvXJ3BdmVkW^vTI#BjUAsV1u zpGJ?00g(eJL_A|lP&ef{fyNv6%c*cnHziqK1Ab7ATs0Z~;iFmRok@MnYjX$Ha}Y&y zQ={TXq988}1>XK>k0wA-wO80onig0v$%oTq-uIzTe12>i>7-YYGLub6w_2I=@#f#9 zl7up)shwgZDEF1ess-be;ZcE;_s886?}n|fa4k@0 zHpp{o)3poN7f9YDyKvgHw4oEDD&nhHZd}&bunpj%2Gff^aEu?5&akPM*RNo~wn}iMCS(3=HN7#$TgN(5F@wc96N>YZRSa zPAAj3;l7EuM_iWg%;+>?+%~r+JhZc5OUS_gFs9li-=IAJ+@m?>`S`~UmuaBAIX-Zd z2px|rAlt;M-BD0OA!&@TU=^W{0XipO;9U(pb8gtD9&)N?luON5*0t>|l3!D*_@&(%;1o0a{srD*Ic6fzpsb$_lN??K$4 zkU4(}uiF)+Dq26B@$avGrHczH!@s*Q9E{07Bl7%Sk`&|*n!t2?$=Tylm8zDQJm4p% z2=)Vqr>|H!ak?D|Xni;^NELe~rQkoo6G@;UXmt(`g)o{abj_=lt}jZuQpo@rLCZ(Rbh5MB!H{qNVF0(0p^VJ-Qg0z;HG^n{$DwZi zShXvoG>=mCd`b1Jq~X1Yb?*x8YZJjf`W0tYi-@^R+sqd)b?6c3EyK=$P^z+a^eZ_9 zVAY)moZl%#^n&1w&*7#Zw&=4VBb~osI_SDn4_&x!YpQ=Xs0l0Z|LH z9STYPS3*OC9m1PML-?`j#<@Y0dViq-IaYS^pbo}(?CqbqIvJKfUQo8S z#b`doKB@<%IxT~3fJ7y=|F6r+yXoszZ|VFI?{rQ(Hkl9cpYD42&Kld+CW=kL&!4;g zBmEG(mr(n~C^9Jt2ETucy5q@)L7BTh*PAgVZ5SGV?0vW0+kaHTIcoM-%YvjavU zX*wOp+J|Sqm4OIh)VNtu6U)qBWkbp(yc`|m&o3RoMP#B;yh5IjsoB{2>$z4g!mL64 z&5{*=HG|h^fva(4|9mQAac&XirH)a^(`emE5qw-|kKDIJbzV3&}B`XCA4@I0A-Aw~S>I zWLc;DR|@^p^*x-i_%c5vr>UI@(@EXzI;8_)p~r)_4Y#UF_=vb-%bbb2Kh0z*)HnjN z=@8pG7U23!HmQ5Dos;R*JnAI;X^6-<)xzng*)ax~z3N{|9~uF46v?W`HRD9amhJGQ za7*0Jl_wf>(vKB)=WG7q7aa~_?l}C|jqtfz?oZ%nS+9%cr34Jo0H~3o{GlE)OZioa z(xn)_>A4evErfet*_Tz-8;hyUs~CR)agIB@*`#bbG8;?ZCnRVZ8qw#|NRyp;Cn zYnIF78wYn{&$7=}Wlw)0FidpMq@TmQIhL-#SN|V|x(XnWgTw>_&yFz}w)kT*`^_H!A1|M#rz=1z7sVe9T)kZ2FUgxWaW4 zn1;uv`?>*((t!Ukknj6jrA1s# zzb?@njnFp`ynOjy`apWKKZGBDR^wRh;!L40YL?**kQN7g5s@6BZ;d}_w50$2xFb;I z$?>Y;-9tASAJn`-nis=pTXwnEGd7?)D7)G zo4bs0x`c&%@(z0I5(~6d0sJVLwl$oNwtk3*4%+j^cgW15y~qvEy}fKb#IxE2=|Z+V zeEw$C9etrPwt1f|3;^IA^JN)AaZqaJD^DAhH0`!!yB;s^Ydi8ppW$z?ceRJtup;lK zHTFu%9OWOPFCNX@GNWvH(}WRJtwza7V+A$@Wuo6)F*L%t-%;(%*ZHa=d|{(mU?H4} zYVq)Ib;tJ9Jd?v$=bi0Jpd)clPd{#nS4Paxm~9anOZv~UhXod?6jait{1o8a*n+y*4FRnoahYFoW+kbQ=4wPbB%mjIM02h8n>Ht z=`<(~QhXJ^7YL5l1dI+<;ss^>8R1H6<9Z*t`Kc)M}Y=8+pk3nZ(*dwOO69Ha@ z54q@lPgj5WOe{2y9+;A5WQ~6+CM-Z_+d8@>7WN-^+mvO6XH&{F0F3-Sa&KGurNHpX z&f$!AbV1Og#WSHMzT#azElUcGfD6W!vwgbaeFB}}U%Q*XLh}BO{0UGV|aO7)+eyMX`lLUf(qd` ziZq&|7Y{~t$NW>7OiTyfc0yb{4w|AO>APSa1&dGN>6@2^>Yp&1=zA`o6(Pnb3-;Em zeXyes=g9_rq5IOHz3ZIo#;Wh1ik^Y#f9+B>RAce-u|#o_a=n3U@!hd3cxU9k8o{)) zu=o$-bLgz^lIkg|OO*{%37LE$p_jrMm)NJc7iCVZhPNRWvBgj1wm0{^GnfP0l!Oxs zC9bHb+mEMpY~BOt_70=+9gr))g4vAuat_@j76tOd^bJN>+GfyV%zspfDxgmW!wd57 zuU!Kex4=h224p4@b!Oaug+M1=W}E*F8P-yaA)f^1mTdwlDmw^81Ig zXysL@i_y3aRY-wOGR;RSy|1?q3}WwIUsrf}(wn)}Bb8KepVTu79XM846-{Fex;rYF z(GV(D^k<<8&zx1TMK?wJQ@=OEVo0INc+5pk4}!(iQ6E>ySf*fK;OF-Pr$anh6|TVH^bVjl5+_3zzdPNYE7-baKGi#zYvu6g9dXs0K>#)O zNUhwWhR3%Q?KE^c2jpHx-t0DBhJA;zrbUO_aC*Iswjm?pI}~Cr{!TdrQoij1zzD14 zEF;qDq5Cw^3IE38s&F~|%Z15bBpKXutI(3mj6a5qKI0^SF3jCJd^X%RNI#Os;Ixob z9-Iy5qsz6@I|U!44*m)FKC2!~%8S7o@#J!Mo{`YbF1KkSa1pwn8Gv88`|4J16T-7i z@isH+?CgzhgG4Cf!Ir%vkM=f^$Wgov#)Z6)}e^Y)XHy}voS z?c&Sh2uV|VIi7p(1nGWkag?G7s zae=p^{i%SWB`~jF(rT}c9aP!zmiDbxp|P=bQYzMvCGVoalxsC5N>+TiV)yASD-m&j z9(~ugP1#!);q>gZ)kF@87UhE>Xzdkx)H0Fp#coNE;b*5-(dLYs97XjzVK=3>NqUOT zC0V!y_LldFOhqZGCF*wlZlZf`H3kJWLrhM#*}bPdZe!qzmF;ZY4t=uuI+g;R^zqri z?^+T#mma=lPU@B~u4jV$JEr7uRb z{``Ho!$&ZSZ!2c1dA2^L$lLNOTHJCho;P3E_wzqt>-pxS98>7c-zrT-f8)F#wcOX1 zT>Iv{L=%!A{0_=W<^AMZ448BgbJcu& zB>QF|{5>z#c|BUpxog%7@){$GGO;b2!4-pn;jiu~v2jQ3ME{0QB&nY6C+{-{u=led z-{@b{B4C2w&>9`Fm)0KHA z203w5WL!qFDIgFrR=lvC@+W1zmJXdzLi42kSZ8d_TGdd1O#6ERDYW;GkNGeEbYux|02otvT zABMDX1IMR;wNRbYN^yn>X0A)u2xz-4Xg6g?tZYy-tu zYitN(@zHM5-mSQKO`Z!Y)#K}5Kfv;qaq(!Hz$#{H%d-i!!cY>{ZMbHqh+UdiB718) zkWl4*XRWqrR{9qis<>PJ3E+!+>II}4nfe^0b5DLV6r_pvfgT8chd94(Pb&FhXzvh) zQP4P0S+{yGNI4nH<^YE6&BP<|MZ*3xP@?GVk42sz4f@`5vD1V}g`NwIcUs&b)m=y)RX?#|FR^-dGqn={^;>%*QX5V2U*f>yWayPPU+_ggSbiXnYZ(84O@7R#?V7K=SWx7#ULiuwpiMgF8C*doMd(@&&-(S4R zsIWjN{1N;)N-{{BC2O;Oi7oTWBjV^vwq>1e$lF}))Qqqti67xhg@~sD6#_w#yW?0G zkDlx%2-d5nkJav1i#8}-lJ=ZMy624tXPW3`nO?Csc~h-F+9piY4vPa4$3Y-Hpjfb*Mu1UL++onyAK5K;q3+?Z=}M<33Yk_k%3MNr zY&`j5C;$H1ry0HxQNoO5z~fh`a3HP)64Ud5zYwcH651EAW#s$1de}x%i;^b_W)1I( z95V6({9eNUhV&kcbka8hV0@gg>lDSu^&Zkwr+l?#u>RU@pox zQ)Y3a*6W7$%(aK!0I(Vb@Y?ye&tB4E$-5Dq?bV9=Q@VvQrr)#;t(;x1jk?08#KJg! zp74fbHIceN8x^yjB-^et(j1?A-35LoLZ(*<{8VB?sV9GF`$sL%q`E;MwXo1hb)sUW z0?`^Yx;8DC$iZJT$?{Q=9H>)v&@HQl~nh zor@Cxp>}R<8oLhaV{zRRB<(y->gQ4!+1Bfhpnzx@r9Z))6q6IqS~VMO=yso1V#-U2 zPrLSc+VSJfg-7;DO-)<}EyT>*WLw_pTAOJd2q^Tv=vxlqqFfZjaJp7Xsp3W0dsITs zUI>7@wXSx>^g80qBSb&A#XV^i9Wn=YwRo+-7GDEeOk(AUXh#Fm9~2VsyBu6w1NjuL zHIRDu(7rk!-|B<+LqC>dbQkbdahG&ZM6k(`UVb_byE8`)4UklWh{-WHFzP91FEg#CV1jH-?CX#Leqkj=|IyY#ozCtTr8RsRzNjtWdwAX z?3Nh-%gk>HLMxzr1L9IWANpYMM|%L|`hV5Eb`Tx3Q9CRbRR8r1Q3ViVsw}f1TbRp0 z-p=EE$P5>a$ou*Xf^rspT!*xN9nk>bT9Zhhz;7vsUXg{4x8iSf5#i(ekq^*`&Ko_vbMd5u?;)gMaTHKC5V`Py60YpP!lk<_HU)6R@KjRhx@XKtWzrxR#BX zLk|_;y#PH@6)EnPCFCiM9YWa7A<+^B;F|!GQ|%M72QMSTXe@Jiaa8s~?iDbf8s&l0 zf@?=8kb5W&FC$+Ny$l_6p%U@@pAGUDkkb@xQgo#;P!&xXt^&9d(_1g~$kk7IHt)R{ zXz$OeQ6%=DAv4v}jv=#Nf=xo2+kX0gLuTy6^_!a@gYv6mV06476=YNCq~A0jy`65W z5pLWRoK0>zqqd;w&qRM9_>IpB# z3Sr6cAbjaU#^%?LBbVVhQEJqo^9`%X-t|}!OJy$GS#3#KNM4%`B{HKe+S(CpFc<8- zYEiZbnHs(hs<;_ox3Gtv%PaU4ZjPr1i8N;E>Ka3Yc`+DID!3;sL+UA?FyF`SPb6uX zG~a#4MJ;=!l~_QiLg;{P;nKj_u02E52%C3VJc#*YvRQq%U~&l-jLFDa0Zv<4jw%6} zafCKNyW>|&Q8~UpV}S5-###uZxvI9$3R)8bm%_gu@QvbOT4=r%FAO8}*L${wrt9S8 zE>Y1W-}|c6mhIb-&%Yq4)@HG=(jK-*9`V_A^KI4HaU?{%tlI~6`wAzZ0YtKiuYjGQ z-1SlIp0lsB`VviHw6p$D+k&O4R`|_1uc&>w3Mk@0}^Cuh?sC+h4h*@Wp|K?uqMMf5W`So?w%X;j+ ztPHn4z19Ke(@0*V-`Nms6XcYdW}1=>Dc7x911WqTQcbOpxKDl2&UFotlv{!JqB-37Lm+o6i$Id2mMAu`$!rh0VA zJDJV8n}7zLgjyaE0=`M8KqO~%^qBU*nGp&d1`G~)NvYD|vutghKK`CHV0mMS+P{BB zJXVM@S~=JLxK!eCQzlj`mrC(ZeiidPJiCAG7VTv^{J{mBVvt-(>d|`{a4++gu+lLI zqKQzZQTV2l?RSDNnPhp5xRaTPQi|pv;_jUyH>(hG8c5aC7N4Hm@E=F5v9T7tNi9r2 zVH(mNtgXi14c{yn?cK9mMZTyw;5*Q;Nh4o{Bx7W3Rzf!)va!Z!gM*osGTy`x$f604 zR8JI2I(dH_CK75cjMrhXQ?J(y7`5qTs(Sfo~$PRNNK| z_U2HQ*J2E$`OM@KDWZ?L;g+)n2L_H4MZ47oXAS`)r&w*PhGP*_YHwN>Gr$ezZ~Bex zsvFpn1|AlNzBamn8>T!of4%!Xelg`H74EmL#^U!bJHL)^cR;1}J=XVjF;^>0XWW_Hgw|bnJ=e!d{B%ia91Z59QD%B+ki9GSXgl|a_Z%Ew z-g}vnH*^tLgv?Xow*c4tF^w?rR{9S^=7WIX$uE>h)1T_4!bxR;1(sIGPY4Qg12`;j zL)`~FU-cp9fkz0j3=sEDgbp5`#v0^rGvTUgQ&^Pl7W2gH^)vA7CsCehvkt{W(WPOE zL-;b}7uu`NS9_l{9HPs|xmVk=PAXIa57NC|VkC=fM@bln?h%Ric}4qW;pF|NIE@r= zBdAg#n3Bx&Y!du>LxD3VC8lP&Nf0#RoQEK{^xtR3ma~Sjs+^qvH}niTPtUuo`0hiB=z9j{HyW4x--ICA&Cq zbcG1kk9S^;uYG~H!?%sRDl{)32Sz|NTjv#9F7)UB!4i%F5~;F7W}KQ02EB&!n#Hm3 ze1tpK^s^)Hqk!Y#sq78`uUgr{uIwEp=jku+SHu7MaKOEo-S`&%PINpWb5f_JHX-Ut z=cJZs49^;2UQS*ViErkz6~eeTh}fXYAD4tN=P3jVP0SsnkJY${q*K#_TU8a+a2O}< zWGIa|UnwvKPY>THWYXyn592s08Bf2v?*9<@9a%k4b*TM&?5@k}PmZZh{XxM|@V*@m zo_Xea22qz2<#YN52$hbEo;0Afw~oYz8Dy#rn=Xn}2$|B@Z?*3V6ucVqV%v-2j`6Z_ zl3P03cVIdcQvGGL_%rKbBJf;!6thLo}Ey?mOCv;cqUVZ`lMz;LoOT;OT0oMB-W z&4uewVvcB|%@W?yFZUozdDbR8Am@pxf8&q1t~*8^bw{bNc87iAQZyPEyW#+5m|7Ln z>2l=yZj7u6xx9~P0Xcqc01JsmgPt7Y?!*X!e*(Xa>N!Q;$oQh+67I!L=6K~PbL@uS zuQ5WPQ`dX6FI$!Is zE7oo50gLzs%H$Z8C571by1BeV;m-l$n-mZ*L(Z*%VCUF9kPVg79*~=&{}2ott6BCC zz#SeCx&aH~-UYWB7D2T@vgv2Pc#?(Ks`khN3qC*TJV02$J;RiQ6wXNg&F=TJytg`J z99B>nsah(UL zKOR*a?LGe@7SQnXH2mUy*71Eqxm@WgG)Db=RC$Qy%P!EnU2^SDYkN(o<*3vb`WgWp zGB+hejTK|AVRa*N!H0r|%qP}}UU)OvAaSK-!XR5-hQE~_faI(Tyj9u! z9NJtC44WGi;4R$t%M6*vvA`M}xcY&_shd-pCFRo&DH3pLGT{>y6PN^H%HVu0BvRip{TVYx<$8YI*joc56;=+4N zW?F$pvDY8ZFlgwTK;L0MfUeZ^m3_d~xJhU9R{cGX#V*?Ox4*!c8;>?|V?u<>$s#~*sOtNjDy5i!JzaaF#I zh?Tekg4N5?R7L$s^KctPEbhQ*f3@H`)rguAA*ov>?y~-7k7{hS_ggtVya|x+8xHjM z$K_c$#Q`SwzYJoyYTY;Rq{l=^tE?(lo3Z?D?B9pzAc;&Xm0;o~w&il0E2wK-nzTsQTj??_ zvFyskRJv)@{uy=?uA!wX{&?ZEd}4Gh#=e@>IMehd76H7;<_OUGC9l}!Gf~Q$%UU6? z1L`YyWzLqz<+I5)4xSK1DuJ%8bM3k?UJOy#76TFqxx7lWq=34nMLPnqM)At@-7!!E z{7o#NUj5Zc;bMqTFNSFeg$JNDbY_?fSpzX=^Qjt~t<-UGV}h^yV|c#Vp%-Do&8w^MD~OIEXuqVW-7U zq(Y-L?{#YW`YqUOO?T;olB}1~31!lq2@@50`sTsnV`7`O$51S_A0jVLuqkZD@J=k? zL$X~J^MIGtOc177W<@E-d>xzHzlWb{xoe~u-|L0O4wZQ0QzMMiMk`j(mfJwF7CV+= zp*MHS|J9=UpN%(#WEL`AsrR}#;inX@j_s(q)}3ZGo_2;57_u3dP=z@D-a-WRPJrEp zdgyRIs~imTfP~kUMToXX2Y=926BPf4(X*#$fndC}v!i7;x&HEtmYPkSS8lNIEHyMQ zxd50c+3XUqJwLcGt(MdyJ*T;R;6;cfnK|@#2W<{iz2+xYy7S7thyo&{gOB zuGi(kY?RcCHN!U~sMI^;Wp)fndHY!l8s2I@35SQ#oNC0xzLH(_g-Bh}kGe-(_1B_+ zP+8O?Rdv>6w~bu<=*uL5na;Xg5FPxj{o~=ljg_D#!WeceHh#(RTqc+4SxnrYQ9_ z*5r-fwvJPQ9uGU!ZQssA_|kbCgOOT(X}*6nEaFXtFgvptoq97Kl3(I<*xK7!^E+^z zP0y3;5sh4v+?a?$$XCF8PjxfC8$BDuqQH6l2XMxBTOptNGZY4wnfT+-5gzf_*YW*B z2n4J?ZJ?t6gS@$v5_q~Gg|JZ@vP#Ux_DR?FZ&x;g$EE$z(zO=Wrfer&R{h}jbKlxh zk9>Tro;k+zwQTv5RXMj{?m1Z5tT(K3yxv+)_d!WDUdiN-4@|&-u>R!^_3tpge|s`H zM~MmC87{|aFyqe^ob*&2I>qk?k_0*5nEnKx-wum<6XVWrZW8L;nl&uT@}S`QG}%^E z^U2B?x}UCJkXI7>{nC!yvc8My%H*ynVlE&Vy5q8JiOk}iXU$ufbnOY`S;QxW$# zhU>b3^FIvuuCym}6LVRNP>Ld4+&GmPpZfR~N-$!D z@7I`^k~_+q>1OE#QiPq8cv;X|D46O?Q*d_+3#7gyi=y_@BEtan3E>r38TG? zsD3k4mMf&%(_d6@q+Z@CD-~6R3hqz>Pa z0zwX1SCrs2O)|0Js6goaZU<$F8<>Qq#iW-03=F zHdfN(p6(H_t=%-`wqbs`$Jhn(Jvzl1Yg8%+sn88_oJ@!i$YaFj^q~|b)YI9T6K~+W$xPX*Ur~ST(Pme&8)i% zacmrSv~8Vkh}WExq(1gyWhLXim{cn&qtpwC{|l%r8-G%>8f|2{nkd2$J(b+^X`P(3 zRabj%FJZ6N3YSEyDp#Ch$+Q)8VcyTU^6C8Tpn3^J-%vFoiDhir+~27~9VCdHd&>dB z-1vC$DyXQ+Im@R2x0*z;ktYC-3EB(>Pgl*C{2DM*+V z=z><B)N{BbWeh0~Dw9OVIjE_At_*t&6@EbJA?D`*iGPF$nxdUR=s>U7O3{)`Q zC+2|X_1(IYCO56}3EYG&5vclSfjsy;K!D*xS$XJ5wo-=MvIzDCMv#W2S2^6%|ws=H!_c+N$l83uSi469>3YcNyOmH!YYcg?9R z=_VDjx7H<&Scm^0$u66tNx58Vf(Cq)SvEDs7On91%B>lhUq{Q2r>>PwY)ZDt_))h3 z_Cs+NM~4y;55+ui_p%LXliwr8ScI!>;_7!coZ>>#0ij>Y2w0sxW~xlsY29I*?DSPd ze}U*lTNeEaAn4$dvdQIF70PRwc)YWHNxmL8JAXwGK<9=bg==l=_M&EKkBV&nvttc* zOzpE?0Ih0KuBD1!k{wfLc5YA!u-#od4Z$vvfJNz02w*TE2|QI#W&ckhYM=o$Ji?`O zL#A3k1r2%u6<$#(r~Bv9M_x>!0ML56hy-{8qh91IAp2z57wAMbn1^Fk zkyW;C%;9r?DYaF}WoZMSeO?XN$s|kvaAg|h9tYPa_){PhficXrxLS&ywtMgg!2_>i zjc<4|N^7wcH(6-@u3qDkAzjX-WFCbJ!Lb#2+5{zRo~dVAX&d$_8b{M=ZZa_BYLwTX zNjY(0e(f527$f(1LoflN1`cuL8KSju;_3<^zJ2AOlMH*W9_FH`Q4V%j#3W?PqNwlw5o~<#q2X`7p3Dimqv&XuO~0$cu(#8uzRSt?>8&* z2PK)+0qO)P^pm{Nw2;dG>y=Q zb3=v^;B>eC2lD?ES@bgg;iOw=EpSEXLbX@}E z(i0QR7M~3;cI-KRR3A@O&zZh$!{rD=vOut5vJ3PI&kyA>bLB5)dcelr{LG5%` z_w}nqzEH<6){7)#LYbwO+-;msuc)lnZK2>j&1ma%qaf|{yk9*AQab;(hZKPpgP`YG=G%6T&FrVdROeP&mLbmk2dYci z=}UdlQMINCZ{6X=FG<rGkkC*5vV;KjR2(&uf_sHVxSp6qtCL>FpKkS_U?frQC-hp6^e)Gh z-7zJ#c<-FGjm~zuKN`dk=L+SA0$B|YImN5V)PM|xAt#GHyIADc7q67{`m3!thUnLv z^!hTkq$e+JJtI#LV`~>@6Jz|R_UQ&mlIGYSV|=&{wXfuEI{1ekB+^AaY+OnO{7d%^ zMZZ-SuB;o#G)gn~qK}pY2G8;d4`v1IBhCuuj+uKxF?Vngl1UEBF=!pbNO>34dQt6T@Ry+|SBbBhXxyn%b4xy`wd~F) z9L$OAz901YT}4`0t{So3{&ekoo7QX3I>dk*YiQ#)raP!&lFPdv5KnRuAh>p1hyf2$+ykXWpvJ&R3I{v1E-V+;`fw>y^3PSdY>y%l>)>nz^1|j+y(98O@SAMNc>7U<( z6UB<1QN-*ICd(gO4(TlNLn`Dx$hxa@RJL$e2T)1-HE`eaR*95p`=#Tn9LoL5%op+Y zCn&=5I-SJXL%Y?tst9_jTeKx*$`25B!MZM;q`5KVMGNEM`(^167H)NwJSJ9f{0Mt8 zO~QX}{mb#&Y*~lOshPD`p$KwNV85;G59<4aj6FMs`j~2sUHk5}^9N{*8WHYv`-h^% zEho>3LR$YU)fR|##GtcVZPk0(XG)1gy=YP)3n-V?WKu_iO54bz*>t3ej;xI$9p%X= z;Y!(^v9T8>YmfCj!JM;mx%mE2w-}z{M#FZiJ`CeOsXlX}N}60?2ATvZ;Al&_#2!Fb zo0V!@^pbZiGg7ogoZqIE$kAN)`-{9a4hq?Q&91?s+ESl7zZI{a7x+D;G4i|Evz*UP zhhgnQnEgGJRSD~!(6W6~XwCQXA&3gIqJ*+6#(Psn7=Ru4bYwEwxGvD)Wb)~m3zsag znE;1mzbpj3sAG+TD^xg>j=wd~D_-~Ku5&-0$cGfF2V9_TMw@Xe>&)QZWlnZ3?`S1P zSL}lV(_0&a8>+_3B_xD7R-Y2yz8P0~XUqM3!}d+#dp687sqrR#QJ;M!BI z=zp7E=oGq;PWANk@{u73>9j?;R4devB^~Z!z-Mm39u=8%S>)i<d|gPpYuGeXg|Upjr}1QDS|U6+wtLj-~{FVh|Xyc>T~fl({Amlr1qZFQ^$ z0fyMliBTR7N>F328+1VCXD56)n?fLc(3|rZzej*m>C9wf>^Q6-(@t}aJZ;|A+6^pr zf=v7oH_FL1&rpL0>%_L~(G|vz@@W0F=UUkvUORz3JBX^nS91eM6Ah{Y;taq}`N&$bJ7lf2IJ92kLtl91 z*`&4tS0wHf^HY7ej_iYJ0*uzCd5V)zaNaxm)Rtl;yHlL^yn>aV$nhq4YWYWwV008z zD$Cx(%U2w?dsb0*v`r%IboJbfv=v)7J z|NlxQ>ZMyC)|4C=J=E4U0RROCdKv<41fdJ}ye|-(O7mI$Il;+R50`t{3XLDKM*n6g zRvph9fYQl%RC(V#{Nb?%;KjvmKr92sFmSlEhqZHnT}}Wz+uHC0u=pVA*5v-VZC2@N zh^AQtb~&5HtttQQX#j_xS(JfY@U_dN`k7iJ+T^y+5csSa4ZO{~avXJm?YMwss8O@N z>Sc@Hb$;CzP#me{X%kXq*66!y?(e3cMda5KU{@OlaXf>BY`X_$I`K=)b0jXPxyNPh zNU0@Zlm7!5-Wc9^EtHC|*K;J-=%ps57uZ-Svy@BqS~LG3_4lZJjU!7!P>Jay;~dg5 zL9L&o;>oJa%9?hfN_};(0ajdLlKl@o*ZUf6>Ert$^Qav>y!Mp24rl@w+EO6&G+gHR zk%}bq(oT$CGxB`F4+pMLV}xdaeHRrtBILE5FssFPXGcIHs!X-xNXTw~rkNc)YC4kK z#)_-K?YQVp`#c072HOV8mg@c}bpG`j?BcpeRs%VMw@(8^yr9S;q=>9V&kTUe0W~YlHp-f;S&6A*W6)B*TzTn2TAZXq&SWuA zd%M>yvobDkQu+~r8&(c}E#)Qm3D;!Nr!o(%M+JAG(Ti5KMX7ZeY~ZUcsxtw+z>Q3d zBG2@I_}sOsSD)#iVH>*<+NicNh25cyV2*(vm3Sa|H8dYIiN+kR(>rz)nMo2|GC=qX zj2o!Dx^If0%**)@BZ7zNt~aY-sjmtUm>Qo2hIHO-y@OvkPl1bQN-dPf$D274i2>CE z36(;8vrpJQs|QD#mWfX-7v6vQ13Be6eY&!AG&ndys`*`N3KYEbWSQriPO>ZmJ$D|l zaW;eOm$a`UtHeXAvL&Fb=}^vct+xpZ3^Z+zgqOB08g?ocIbEsWX4i$;iuT>OxIE-6 z4euta-b?q`_h5vyEa6b_Kk9Os_WKIX|AHWN;>9$ zeLXigGVk`3|MmhvQXkB@!woUQ%yfNZ6uBJW*GJnCx=&WqY^|PiiLt?hHk%I3JMob; zo$K~`bFImLR;^Worms2(nz*%Msu@&ItZF@VnaL<-`e5hJ~ z(0)#3>=vUOxajIhu;%MA+3?={S=My9zlUq1r#0im2P$^N5=}T4BkMs}ZEN6`*Iw#4gCKG=-8~X&f4cX-%AQ8CtF64i|*SZ$--uyVIasd&Z zmzVhUmP|ak=wgs{v??k7n3aQ3TeL9CU3rLujfzW* zby6(e7)O1q7H3=N{UlMSLjW*Of&{ab8mv$zez_u0sol=~Pa^saCvcl#gJ~&F9%W7^ zt6M*X#!d#r$3clG#eDP1~cnmQaBk8yRop_lTl};{XQPcM! zJq;2oCDj&PJJ@jRfOXX0d;F(i?Wy#YLzYCWA2>8UEdQKT!2x?M!*g_}G0RZZ%!l2hM zH!J(L_V`@Cv`-O|ZfHKhPlMmWmP{2K48-sxlbLMKmOHj^I4gd}YE=g+?g^+dQ>Qen zKBa?I3mTfc64qPvrN7{@YC2JA$b8EH1dnfrCG0-Z(0E&Dh8B>4dQjDx(i?Y1g~=<> zu5;P0o#IMt#&vy+$Nd`*vLX!t`9HVPlT9K=bHVXm%gIJ}zNN14({hdqu~lW~9Q~T0 z{_E1_3_C*TbGCk-WL@9weoYzM2H0CC253ChHdHz_^qUt$qY^uC)WkA=as@eN6e33} zUK)t-FGyPu+dif5#2DN%*@K=!Q(*K>z|AO{Rt<)gDdHn%3~Nuq6uj@S$4ib)tl zi}ASdM`5j{vCvqDE5ii@?#i zmJhkezH8zZD6^1?)Z*`coS!`_wG{Tk!X+kFoYXShS>}G%G;VU2dywCvZ^VKb^9=_3f;C};)xKv+J?3Wt~`>Y76?~ZkV65+s@GDM zqhNDdv-l}QHc2Xxh&!$YGb_(I?2n6(QI_%b>TB}1t;t#ow}tHr?4@b68^?i4H`&BA z#wubRA968X3i>T{B_+>)OFa1GS={eaR&8eb1NY!hzsaGd3N^>@N5aHMcu?!4V}NOw zd`yl%&8X19;zlWds9G{kI5$IN9{=*zgT&_yM!rQXX_6~Yu^mhLYS8=;j5+)3xqOEq zfSM6B6bd^hmD?cT5+3ok5NeW{clkMLL}U!})LPko?8rz2yO{;6KPrAw@};0$S|^tE zU4uWawwh|am!&%-EH(KxLIP1G-{}%1LrsR+pxb2W4oVE~xDjZ104O#{D+1<>HzjhY zp0Fm|X^%9gVC=wnXl2;RYl|!CZx|UgkF~cY$Wg-war5=rvBr0tlhulimMEf7kXP89 z9d3e(+**eW$Mu6S635+NHjn*19gML0wrFt>*KOkc)D}w9e!CxA%s4|^i?tM{=J714 z-wwUnSVQc!(#97)wiV@@MuIoPR7Bif_MxP$7-XeA zQt{S#b%(-@gNT&5rtZ}^GiQlDiIWQ1D*rIoz{EGBR8Y$Ri{Nhzx8S&rVm8D3LD5Ce za81$67mO8EgnRB6!Mp)4i!&yBtP-_43?tG%`WN|C4r0YmDd;>nZXid$yxjD!_Tnq? zdDq6rS~s|fE}qytqy)$(d02+?@L!`Z>cM{*70RBuv&v0xR0VRBvHVFHDPSROCkK{hnahwRffr$G^?agic!EDd}c4X8KF z<)-~VI3#h_PZmX|&ENhpEu0_=tzyCbL}*6^$IDdc+Aw;Io~4Vs=e;m$*qD{+ica$9 z@86)Vd*H3NVJhCl=K_?SQj4WhHBOdktX3iK#n7EM!ar|KmLEC}jTIwz)1us zi_2nEU+_O_h*@U@yOulXeWkd-x^QIdxMaH@w+s$W3tZJxW(kbMx7@*g@?Q=Nj(MFiw&8<-TsQ)(G;gt=tGCD*{NvfTAvP(w~Bx zSSruRalz5jovs+Xh5O9p)Imxs!J5=fn=HDlZ8i)7t-2U8lmCA%$dC#1XG^$2WlDV2 zJ5Yc-yj9D^U?Gy`?~rTZ`a#4ChB~m>)fv2{VFEDdHVTl`_QAuDuPUB2f*eE-d;6?6~fXxRN=|X>h z3iMD5oJOP;MXLff$N33*WoP{jRu#XX_+_ z0H&%Fp@HXzEYC(>~L5LRZa)9uwU=3l3_)R{h|&d4(hTTl#w*t4IoM{oLBV!o{ez>$%7Ai< zea;iylfwhMEs}_mB*Urv5|%<>BbemZ^6^$|#b9D{duO-l`CV zsyR+`E#t9zV#~ArZ}F;{npoz>>ST(X*y$PsH-TaQ+?Ir3Aw5|A=z0E;*e~O*7|71o z6~DLa4d;jD@fL8^;PE|nhhL{|RBks7?Uj3^x$W+=A&c-=2}-_Dmq5Hf?6 z(spnG$ozAl?qQOHY=5QR8(YQrcnNf#tw^b*i4>wwIA@G|GdiE?vp;L?>1CYj#SS=5 zrC(jh%up$TZ?$KEYndlCy8zc6IurM@wa7-suPXW}bNxOdj~ zpn98Aae)o_Jtxs(V*x0l6x8h&)~ zlvl@DB`e^YUL#bqA_xv%k|)Wa>X8=ND8TMffs^0+^&z=w-Q^#JWJN}2$rkuaIcCy6 z6BMEHuFCPpy6Nri8`%%}%4>-G^QEG0$=O+w5%TFH`-ESjm0~3b=3z zoL7y({g%Zdj-IZfU%=lu7K#yM+pj8%5r8hqw~8S#Rq2FdWjF~catja8@PJ>uHF)cY zb_-9C>Drb*51!)Xg-!Dob+jW6tn`JX_(+zB$WjKUdIwP7kYhrvGp--}(bdm{FNF~_ z^_;Q{6lb^>TPQ7t7C7RI<1hGX^|`Wo zO^yTLh-al%UiV#ibMc&sOOwr5JfiFb@^MQUU&(N$g-0#3uEvdZ^EuXw4`g*`5)2m^ z$02;O*{=ANW<;>?++SNAjaA{x@Z@g)pjtL9k`63&$*F*rh)m0hd}kF9@oO2kt|zg7 zAov}>#qQv7GR;m|5ny7}OiQ_PQDuMkw(48HFzs6#)J)q0#c0gSKU0SMS?>}KjosK^ zrg6+fSxJ-^d6W&EFaGsg`7=|RSYd2RCBiDidoxbkXB?iW6+Xhs)3E&@B+4x>G0R)S zzfU1UQ6m%(;UtF~D0{$H9d!FTQ0MfDZcRYr<%Y?qD(YO;d-bMNqj$$nhu3F!L=gWQ zgMi66_u%k=6{YW8t+g7}3w5tg6~3O3&YF{ItIf)^O-gh*l)>n%>xzYcrRfIcE&{7f zFhzm)`NorJBlC)lqp=OPXV3fwhlWp)0O7aZQMCI%^|~o_BwXf8My>ENPgP&>%7_8A zzI*JyU$MAaB|VJUEN|4#1`VwrEOyTOhj_{M$HA8U)n*pJVBb1I52ET=Y{bX>X0j-a zM|KA_a{nWYOJj%Puhd?%4((uBIql~`hQDjxx7lRuue?Vp@Ea_MWrt|5ag-kCZ_ZWu zX4bw74X3h+#rxoHCdRIU4HFf^WJSl1xU&#k(7LHgVBP*{AuSy9G<^w5Pj-z%2HyR1 z^$!#zb7G0Z8T96$0FU=sKyhXz7m%=N?eH-bj@p40_=71aj#)gUNvL`jC&&#lmzJqM zX|cSTqT1;rmS3ISeJne%N_EztVF^BqHT1SLOIY{dR;VmeobYrSVu~q0lsgRBco#f% z`Obzo{XX^Q@U*(btCT?(6}=gKw=Sg~EM;c}{a#1n^V%*7WHRvx~c;8Q~tc@Hh`u+TQ?+v7It&*jh4NW(Mt}b(M zQF=i=&7%fUix)c;<*D%f9|EdBVO8bnTg%3eT+?(R)_0!8E8HptF(~Rwj_4x7Wk6{M zV!~~BbJzgu3Ln0{nlfQ%?%l<2Cod$6UkhXpyC)|GA*-Dq2*L~4yD#OJB~7F(i@cZS zaMAt%@N|`la7dwUG4;BM(ubdBtCE*;R7nv1i`#FDjgJtNfx2Ar5AI9a1+PH}%dV7X z3C=Sp&TU~v2q5mPZ5)=GfxOvUJ!Gbl{cc*GoI~wpeJ;koVybyG|Jh0N-g^RVu%KLz z&Jk4wgbSx-4(cJq2sA$M)y$Z?QtMwRkA!R^Xleu#1!*$#DZ}CkP zpI{v~qpe9*Wfj*7qJM_M_?0etl4h|X{8&CXFOZ=Lum>AuOLv>cic5_$M7JxAcFa5< z8_AOmz1nDKF9k#6mqc+1@r%&wqJ0Q4w3s5PUSl;@Kk;WeroeEyW?@~kzQ6~p+OFuP(MF!RK})!Tp^Z9p>?(u^kv z(wl3QMMm{j9>Xf6%Rojt*1Ut_PLIOBmF|~4gttdwQf7>uSOyNIczqs{#1A61>MC^+ zLNh025vu>Cd0-Fr=jUB_3E9b2g-7N3_g)+ZX`Z{en$4!XPZvmZw`)+yL_vl+2`g_MZI`U#g{ttd>aRB{eRc8 z9q`BPF4&LS)?3}Eh z)!%s|rGBJ5Q*%|0SyNv)*C4!}dHUbRksWV*hi5!X=pRa|3bS>2TfDWk_5{iib~|Cv zM_;( z-C04c_Xp*ykeD))V`ava*10l#OhKFwuJ692YFPPj^n4p37k&C(1}N~s5Tuc#RIc|b z3=*Vytv!s0Z&GVF4go1svg{#61x9o!?-^q`!HtHLX;4m=_=WZT<3iFK+X!{UOCr61 zNCxL))Og(hq8Zemdw%uHrv`Ot`oiIwS3j)1`s=HwocPvRs*e@y>>vI8r%b@IAAM;X zpEd1dsW`YW8O_IK=yE!;%3v^BVV6-JJ&d2ao2VNLM!A8}!Y5_*KAF|^)QN*UY&8}fEC%yOZ zc3c2>n@@)Yc7c1Zl0yvItD@^Bz-H!4m2qucG|%jCwPMhF=EY|qk^W8p8T{b&Ar}LC z?Aj3%kJ9HD-QYbKe~Ef7*)DNu@O|IhZsCavU(^fBN{i!}^j!Y-)=G!IxPo|~&$lr66-grsb# z7pM2t>{|$$I^OHITC#THuQ>~cz0v*@%nyhQCLY(kDzdx;WBpH~%AA6O7B<@uzgmAk z20gPPCVML0zsb&6-F=XV<$|SSzdv$kzf+tYPq!MMR$|5$J$3vU(lF_-x)u%B>d^-x zQOGgg0lnj@>$%|z^;d>q=Y7ByMBFZEH41T$9RWLN&syuiTQMc|XyoCG2lt-x?YCF` zH6C>u|8cK_N&puB)tZYZU^1Fx$mO1OS9a>EV<587cf=>eq0zo#G_-YqCCiy zOkki7bS>A!O1zbgAZ%OS;XxSy>B=zj4#A_}Ih94!%ye04R)8~rVGQBK`~HyqmtiYI zH{6HU+O@AvXX3_7HS#L*2Ht`zY91aWeOvG$srkF^=Zw$Zt8GI~@1QpI@!CU!B&$gd zV!tT>u;627K{EG!Lv*pCZe09$C-p+t|J6LU?#eS)`ve9iXze0LsWvGeSZvcxvs49hTWKM! z|9HsOaLtyIF_omPMOmwU{q2O^qb$f4>WuQ5tM<0|dBd3~R=NmMmU#chCr0*x%wlB> zr-8h4+$5ZOp?KC*g>WGy=A%PcImY(e{TrS6M*Y@tz!U(RXCwtlrqKqyIvx54+V}$4 zJHFliw`D+~uecN?f**o36Y8Tb)?L-`;vp6?{qH;Sws^|`DP!-w3k?1u$ModbKv^yU zsRMeJ!=&U>s)28xYUy+uZ^t8qGdX{gr!OS(`b1j=TzYBf&pkr1A8)r=oG2H+R=b{D zf27mg)s+-uvmq86q>7^46-4!A9A8>oH>S{dF|h~jhWx-ePN!orxZe3{G`vWHrYUku zUxajzy6at-K3i3S^9i!R+0D^dNjhzY7nPp`C9A&Q6kf=AsO zmg#PP`yixTghUXA^)N&+dUg5qO0y>3eMSAJ z*S9g8*MGjI*!1S`TpYhPva;{W)-t)&=OjuuILBZWdlkJFBM|!I)DxOY_xD~9I^dc( z4X_#dfc#QG!B2Ak@jl=bqMp%e7>4h zMa_&Z)5+}vh(AfJ-mt5EboPdi`weQt6Qi04V>jI-oetJ2W zrg8KSgazD9OFBQWtDW1tDz4`GOi3aQ@FqO!fT1HCHM7Z<#(3H_>5|5nE|!+`5A<<0 zWPkUjW3yF%#lPotPr0W8bUjVQ;J#dUy6!mLzNsM?Zw`Cywz;f@G5YK~$k0mOFgdfx z_js9PnJ$GuNQT?XIRu)1`tnZ=%{Fu`c#1w`XUFkNvQ2A`;dF5AVlkRqSBZSLi7Yow znM~B3z$}ewU~j?d>Y|R=e;K+^4LK)3kWKo~UmQI1l*6sjB&jA6(f3l>HeXIa1nD>w zG6$&N($R$G`076V#xosvW8{|L)_%=(PS1iIZQ`~z(V>n8w`&V^*~MRY1bXOliB5aR zru+C>e#fR>jM?2z7Q_$ZI{B~A>}|BuM3dpb2vh&+@B#mAi5!SX<0J8t$1J06w(FZy zhFHEQ81mL*=2K|T+{`bsn8AKWsL?YJ z7I<4K23#z*ymd_xnvZ$N0T)Nn=~IQH|5C9Sx5Kb~ zK<+vZ60FbMa>oucBlMfdIs2nR2-C4N=UlTKU%w)0#>!Y5KK+spz3=j~Luy)wk z-8m&d-l)1qIX9|3>U`6?h%(h46~Pb^5M+F}=5*{hh+2612bv$`GC*82E2R6g2+-tH&CHI(i)FQ*mt%p$av*33vJ;|;$C3@7A;puSw*&D-P z({FWy?Od2N-nd*}w^_Ei4FfzG^%B`O*fG#Y_`Ihoe`dPjVH^0Pqhqa!ccM1<_a?Y% z7o2|vv^^))9;KMqDCe<=bAKGmK%ZvISa1$Vm{mV*AcCr4=0AP0#@ht0*~UH-WtD5! z*H#gA*QzSG^;+xYtI6AKCziZ#vi;puVByxO0vVjKn!Gs68X?Xo(ZSO;b@C$x7}wV# z@1(N+--L{`zvdw#N#A3}DaYs0eO~vc|IIsdr`^oQda-7* z+)S{@^zqUt<&|0dM?+Rh@7-Pg~i zOkY#KSV^8QfdV2dZqr#C(Vo}bS>d(9ZiAHfbjusx4w>Q9uwtXY|3G8o#gK1Q;(Aqy zlLYP)3zc>PPQ3ZJ2y1KP$3>t#`0$>o>a|`S2g=29%P9GtL)NnYEipxPPjb0Vj{L7n46Y9g<&}+1ZnZY z#yZ{&Y4i1%r0kMyHzDtQoPEAFIsF$}m-_y314?=J_~NO0jE@nGKK-u-K96MGqWBAk zW}ZV4i6@>1nI^chy8X4Qnd+Oj#I2jDvM9wMZF ze3&cqhg|*K_+6RXm7KULg6skwQ9|Aei)iuXapT>I*pRo-Sd#poiP1qA1ER!ahju!J z!94v;58a~`VC=R#SljW|TWymC#DO!*cRf~B(@(ulonVuYPM%~pG_c*mC*h8c_`7-w z9UIoRmu-I|^8m1X&^ux)RpX%AG1?j9HAU)WWw#Gf3L&<=*?hzfLd{v123#z7{Of&_ z&&`f3mT#4jGV=qDX!5YE_x9K2m3Ge-R6QRw49#WEd&mU&#SSv?3$3V)c94EttJdZ` zT2ajM0=f_?mJjKtl2+$$w94^x`T(&_AO+)8&C8H+2;Fr}z~oxvWZbYnqJ>H6FH?7s zQy^750wy6oQkiF%JUSmQ^%B%6(0+DyIh0cVf1Mi8P0?vSgMetjm zfIeQcin6MezO5XCheKGN>C83cKm12jC-^vYsgOExPcoT6`#nqH9S+NlA&_5q;yL+9 z`M1ri;z!Ff#5j9`d*w3a0_ArRke3KU8^?*AF9+0JX6~^;N{qXT_5)L&S-F|eT1%fHlYD@J z&_3&=Z&l0M3OISg>cy*qULk9-I>S`0s#I8iT9r#)W5fqd^_XGPJGzWfr9@D7x&`bO z(;?$pG@7gH~0)a^YN<~C4P+0xOLBP&Y0_A<4M ziqxInmCU~XF6Ca$TXd|T%2mHk{B zE`Xm42wo4fzVVb#7zxx}_vuR?T?O*7D!F>qq0Ju{WPlzt1|vALa?$CLr{yEE_DbK? zH+%H;5JdlxlKS8;%XH5E_fpBv4c;;OMcDq+31uF z2x0x>yYQaljS)ac@sh1CF~&UOHk%|qlv+t4+-|Y3=bCLTwMHTDP?d4;Eu#nY^mwA?9S=-@GnTae&zb%VTv6 ze&KlGY<1 z>SE26j`I|_-N8VH>`uO?_Imr>*5_5Y?;j;^H0hjAg@xfEh=~Wj-sTSSAs|V(+k^X0 zwd6^d$+m_2b_6UR<9*xV5Dx6`Hs0qoy|aF>ym}k5tNoFiGk>c^U4lrOJ{MSImGPo7 zNr+UAvAE5_`?DdtbW*QZtJX@!*Ikqi43ax|7H`sMVkUo2)4cl9U#w@Qr`5I~yy|H8 zlJ|VQUNDo;OkO!A+alY5?HKU|1D zFf=8i2kJ+S(>q_vWDtkQSx6;+Ul`UIL+9KX`5bYzZLt>*n5L_@+F0#NjmuGP{*^a} zbXLz77Jg|LKpc&JNYB1j65ZQqc@V#)VLTKIXxok2bGXdXdiL|4q7`6Htt-peBwqL0 z3zWT}5ChV2m%u0LH7#@btDe9S8)yb(T!QET>~hd6t8$3u>{06sEUUs(m8;;MhLuPj zeX%qPQ^7~daWG0(Bhde5vRz!lg_ZQ}W$FiamAT_pV)?~Qmr=|?D^$?DO{5>>!%?KM zRdQS<8f|)>lNQ6ZPNQXY{=2zu|6(TkHrp2ygL&$P?$^Dxjjj$AC+QBgA}`(Sh}h`R zZgalQZ#$ju5RH4XJHd)9-wQW9$&RlklTaCaG47 z+o++i`ZDKoqb^0{FoUkIfs%HY(a#(A<=c?W2AI>ToU5XoPr3C=MtlaO!_Cz#%Rf-M zH2(#Rc~m9IQS`HBr=z8=>(0B^!fsG+P5Q!-2MEeFmhHZ^fIFZRw@9;+g^iGNjoMwc zP|*;*NUFE^b!9cGa0357wOM4?9v)d$f3q#I|&BU z?Dn^W)x*nn=h!fLUDac0aJ;9@xNtUko5{pr2NH*V0D}Z--GL|ABGu6V(Yx_|$~AIK zB$2PZ8-C60Ua^jGSdh=Hz=`Q=Frd=P?_FogR?!LM@2ct(?JNcWL+}*%O3XZ)hh6v} zN3!(TQm5Xg0UZUnxlSVs`5(@LfBKH*P9=%_aPTa=?II}05i{Lfi)Bg29&=(`(S)yqt7s&Da$k?Wlw@nYNtk^;pSHQ2rd$9x!&)K|MI_CH zhnZEDlDcB4XSYvKBab;y8=r;qkfI4?^Ua?jf-GgUUrB}!V26>%1tqtF>Q*d2@)N~VcVSbbE3H@iNOxbE1ed=+!;_uV}SEoNObES(9dlBX8W?0nAc z;Fs{VX8~vc2h&d=<5B4%He9q;1rA*udR2iIFSskn9Jv`Ibdij&6*M{`QJ$lZ>@qQ) z2E&PvW2-GbDhc9x5i$lxO2TktRmoQyT}T@31lVuU2XFDO%#ZZQPhoS!R$JF43QCwP zzV8w$w;x)_9*m4gRWx?%o8igPmY{nVI{843E#9aTFPSDSK={xMZ5A+BZ0a|o=8pa= zc`{@Q6f>egOi=M#!;3e#PWTw0!fH8ftyKwx;F9P6I6BL?Cf~P>(;b3zcZ^0_U^FA7 zM|XEA2nZttq!}I3-AI>&z-UyuMMkKUw8Y@|-2dk-ulQ`c@9R3x<2b%YsQE$mKsDpW z6d~R|mJoLtO8nN0Fa2x|8I|qo4j=bp2z@p4!t(?ui9Y9*>jv60WO+mtj_3{w>)BM& zWAa5+mbYDnn*hf%O0`vuUur|EPfh~IH9BpyI{O-MzjB(KILwJ@p)Chor@!qH!G-}n zjNk52gC9jE{aNX3?@!AQOPw&+qfdbAF%JdRS&~I(X({0NZ1b(cEV3;z}x=}akTr!S(2c-9CSkUNXk;O)zo(suvij&IocDD(br z2FChr?ZFSb?;mH@kKL|ALi9pJvN-&1d+rI?P{5AUlogdQg*7Be1OvS9bqkeMjB6Yw5@%!hn zugYI|Wg^HM!@s^ISFrD}sn=pDYgD>6+YP4)RH=9f8Kq;_!^xMyA zn-2ns+KK+#pZyX=n3tKLPJ7r2vcaJjs_*FrwGPc^y-kZ4l3aP!nE&n!`m9NtdEc5lizFk)b#LK)Qb&w)JTs)ZuF-x0Zk`Z=j`>LGR>V&%Ox|hnfu&tP~R%6%+a>#8)UiBP3|*aP=11=Di&I`#8!7z6WqT z<}RSBr2ki+V#K6)uw`&LD@f98@eXez$yZJ1?|*1ikU_T`iQJaB-q5?5+}N~w{%@Qa ztQMKhN-4!|V3+vEs(_g(-wK(s#u;M~vA3f4f}qXVW87m-c|k2EmGXSSuT%puKX{S7 zo%&-MxaPlL^O|Xrk)hMmn<}QlUzqNJCuLQ zhcaBCM>s5EivntF43(2LM+W0U)N!^<4c-u>M06 zN$66*4MA2m9wkx>|ENHw?=BF~RjO?VV*Aq6J1!7(=ldjd3$Yq5j8nQt06dQ_p!^OK z=t#5u{_xX;ITW-M1fVVep!~|Ogv{R4*X&thWmnQ^&vv!fm7MZ}gR({DtFu%sMm$?e zDsKYI&dHOe*!&qjRo5&&ScYeCl?YzMAP}oX8ap1oPPTCmaB81hpY|T3X-`bvNL@XU z`u}oU3eW(zKnL9-LJeY?tarxU0NQdOmGzt;HPle+w?Y|#Ag^1AfjjO(LcPKJxS<@q zx4^d_K#3r!?gagZ1{AOubYq6>6W8~U+}8KJ#mFtK%564~FMyT{gaEa<-SrM5oxHv^ zX8=~-_{co8#khyG4d{y$V_u=OU}+wcX#x#I6@mGoi?P6;jv#%jPDWI!wOTanF3#a)}ewI2O*!QigtNA0xYd=n)tyyI!?gtz7d=d3v}&GF{@ zJUUMz*!FY_Gyh1#m$%oorS6-E4t64KzpUNy90bCGg~R(}x2w5nZ?urcA}^G!aWNK5 z3P>jc{_A#=d_Btwd7N#|vF`%OS#eStz;2MK88iHa`9Z;OsU~u*m`jye&OXp*{}5XW zaA#85c^&xD@Wff{T-x-SdiL1dy3(U=9Z_RC!O@i$%>Jh4E?`3hQZ33gXS;&Qm3S_t zx1U}834!O)N)tm*cXg5g-A#>3`LInPgy*4u^~}$B>S;we;j_(?KgrF8(N#O8yHyFv zJN?wZ?6*(TBs}A(>ocFxhZpI1qeWWgcHS@YimFN1EiRY0RITM>)}?i%A1cv97JT3S z-k1w?-qX>>A(gsh&ht!t>FNmoTvwr}zO*K-e~6&mg6D zmPImbL+-+7I-l&`ALTn-Mp~8o{){y-R8zBD`idhsPm6WO{gQEFYJ=gK3D85tRoJ5W zz4})IH6^Yme{Og|1I8SZqZ=DAzm1~+e237OrRUR z@iX()cG$;H#@6a@i9!Hh+ctlqQMwhKbYl=lR)7hMOhShKgUI-tiGaJh<)2PEMEhLb zr}*3u-QExGu&Hn%aOAl)UDAkEr-LzN*~C!H3uH_|~n2`7oXZ4UQ6e$~=~5$Ck}<*;QGfA>t!= z*kbDBr~aZ=wJe@326*)4Vi_k*R1RY(@S}sNADBHY*ckTE* z32c{a&1kS*cL5`zq%ALAzrzgmeR&*{_*J2TH~XM9EymY$9}(cHQO;(;fnx#hAb5)w z6n0CFVN&KnH#-w$Z3D&oS%h_}uwH&#U?wLg{%tPQ%Z?ySb)SXX{raHs$q@FH|9K(z zC8;i6tM-9R2S%1S?#Rwq9>zzD;3@iz53Wiz7?t<$pL9t(qE+h*wwT}5Df-e0SA7h% zNHD2pCdv}&$~qzs^MNMnXN%6LucoDZ(MVm|M{SdcO;G&cG_?=R)=P3_s5g54_>&ja z{2(xn;nfjc%~v+3y%4kRpu_{iwShl2xKSm)<7t}9rg*$eXLrX~^6Bb%Ec`^-e#1z0 z`Y+Kchm_HXfP}vSZKoEsxIfLNWlNQx%!D1ME*eSepu=vfduQXp>UnE8!S8_0kwu}c zjxlnR3FHpZ89mS9PMMpkQvg4(u^thS-H7wtQ=E%g&|K~OdzM+^Fvk^VX^+vN z%`g9GlX=?W0Fv0olO@EF`jE~j=M@nmdLWHE?%`$X+P|Sp za`BEtu0nQZYh(E=(@W!O@GS$Bu*`LTzX0!1$Ux24G|Ck=4=hCk>Vb~+0z5O$latEL zt~qU-k33KwRZU2rhU&j3&s?f_&HNaz_DRPjLag*RVtT}c&zE2;bWcCb*>-7LzDXX< zZ*C~%oEzow7_e!!GS+=VO~ClYB6}yAPPmJ}O=DB%OX-p?$xy%lL+hMI^>|voo)x-O zYbHq}uT1Rt65rEEa_!T#Q6_omII6U6;Xv7(cVaNfhZ)5HC$>qs<_9h=)7dHuDy8pw z{~iU3zSxE^lI81-H_A^ySCfHQ7l#I7XUiuKr&Q?PDxqJB5?)Io{=j@Bbl-zdHDd>w zzxo(wRgnU<$Wb%HT{ot<4Z5IIpLxyAkG8VpBamkArlirPPeVrvT-KMzPBJK##okp! z>8`26Q?QQlZtI_P6k=^#iZ!Wx)ch3iw_n>hXeWv-Xv{IOa-7$*vo=$m3bXzAu%F6h z=1wj0^gGrczm$CkGlz@0o+YjC`_-((Pi>y-uH@kuhjT1O6I4UaGlyYA3t}of!6u<@ zkg61h0@#)0KeQveHMGo0$5hR>t2ck+=(5aLlGSKbAg4(gBJ`}Nk9FS~_?l|TE0_9w zIYS=VZ~Q}&>=|kc1&e?CIPAl25pjmn*084`ZO7G3 z-xt)gqrUM>G2j#@)?8`g&$d{f_)4yJHFRV+pem${>Pi2tJH8xjt3(?WXg;6E(=oHK z(%9e?6~|s@A#N_bRKwg(dJh;se5>WYx46B1z1H%R$P!|TQ1-fkIG;_zY2sN}7MgcD z+=A3n+BZ7@*7M+2Cjow^@_w`Ecp&YmVyvrr#cmA;X(#W4v}O6LlBSg^#n)3m*u~P- z(0A9u3&VE<#yGX1jn^LUT+7o2c(`S$)S91d?+bZy#u;_5cbwAJSP0T?K3%yNIwQS@EWiQ#Jf|y z4Y!u05^bHHjUp$+kO_$(@ZH$ihxd6m-n=>uSQ|~n((EEA4G%$Mrrn(cehIp5nKTP& zh|c4>anUSHCzo&C*tbz58Xw#vUdqDU3Pwuta%^+$ z!2i64IH+B3rl1k8=AU%wsH5Y>|H#A5l5M?#XsOBRSz0ZKNE>$H(Oa zj-~aVrs)6p;&gC(f_gFyJ)zo7k0M%bNRM=(sUz;_;ZT2D)qjm^i@VMm8d|I!^tRbq*7(CZJZ6 zToLHI(S!zW`$hhj6f!g4K-!Z|u9aCizIaDm+irUgyv!RjDAPa72h)g84jJ2)R$KIS zs+5@!BEJtrf2Waq=Z`h?K;kO#g+p7U@R;m)z&*3;Z>pUc+m4`S)(%U+5Bs_G%o0ZN zOQ|(NX|_Iu2m?DN_x;ym4Q13GJc5F+v`T#Qgz#nA%=a1ZUZRjToYTM@b7@bzA+YId;-MO5?KyY z0ZvB;HbCVp(}i`{D-`9{L;r14P<^R=>Mq@Qu+Q#l6fSLBjxfRK9bhNu#u#_#3Wbg? z41ngqC-zOv^CHHJfCSbk!5vDlAPf}Rh5nO*HgR_&ESgryt6xi2Wy$@ofE6;Y9{whK zj#{h|e=iVsL)6k)`gOfoFFyk$T|wJ}X0K7VQ~C`O?17v#=e1s+bk3u%*H-{-$r{Gr zhRI^pByzR2q{ztejE{)yc}*ngm-wwZ(lemTg#bfh#`rdXVc9W`)NiSwsrMMC^h%bf z6y}2>%vs2FZtLq$2L3m#tz79d{bVTZ81m|XAS?)Q9*~VIl&;GKAH2KkPEz(32znwa z)pjxH5LVli0U8K_Xb#j%WIe|g-nO4MG$aCNwLYAm$9E$X+J;<|s*h-VJCuWlPSHdm zIUe?5A)%Y8K24FLbhte_i-ySv?WQ@DAENIa(`(q}$!`p?^z(%=J)YJ5 zG)kz?hv5=XRA*6qKP`X#m`moaO*yMJ64t6&`#knmVf7zl|3`GCHP7z}Q4KFs2IX3C z;L4Oe7kiTb1ngUKvu)zQicjOI+JhN2S2A60b!q= z+Z^<%8N0t`zicMAUKlOxTVRW9jhnFtI>W>m)}_W-M~aWTj`tiST%Or6=P)^^8h?uP zZbD0Uc6x)<;xpN)h=j4DP;H=1S^`kWul#_!zxxYsOkr(d=QWTT&9O`p%P!_0k3~}W zRemv_Y#J?p!|WHXnMFqgX3HDB<(yU*e!g+?+350#U%6=|7eI<#1IUCsf@!5I*`@t% zyf{d*%&3-7)yPhf)Q95~8)}9W>6YmPMDz!}%ap=~p%(hU%qdz5GX3t7JXM*C$0E(O z^qnQ~y$83eEv}btyDmMNmq`Se=NI5TNybm}UdeZL>wHx2Vpt8FugB?5hfeEcUfXqm zKMKUTrg=aXxC=y0x}BR&n?nFIIlG7|_ZQ=}xF;C*uF(X< z!j^yGV*Fcru(e88x`yBzGm|`P_Dt1}z>?}_OIqkJP*B&Imz;y0NTS22>S?`D5xf9d zcJa`n&rH|vMtdwp7SHB#VZG$pC*S+{l^BGp8~WazW=b8nGZXP!wvj-+b1R=yjJ4Mw zpojgy--rrFJ=JbYFS~wG^*ayvXoV>;>w67@g*!kI{?a$bB1Zb9+peWLsd{|GFxjmIj%i~q5JYbG<6@~HscnA zoO=1WOIxz@J2^-GOEb#gi=Whq%v&K*y7BM-L+f4h#|AK`dDl{G*V`W`Z8j$#91>yI zMq$}+9~c0>0S65o(ZKM!+1jc1c+EV7K~!XqzE1tAta${{#>P4_$)&y@rhk>^_&M<( zo3Zb1*tXYt@&5yPPGHN>9Mb3fW;3*dIfJ6vX1iSjPY3>#oCGF`|5Bh&Hn%O{HRmqD zf-jqPi}C$vDdQrH?-NXFhGP4{o}g2CsmheQ{CDrXwcZ@I%1|Zrqtl1oy}?Y(Y)O`w z&S&Z6%=G!9wr6tl*v7S~KrSS0!QoWV8OO~MTo)?Ne$)L}Wacdq-*V93-yIjGw$H8( z1?b)BfdSPge$)A0O5gNVGp+<0x9gVb-w#UI{4?_IQ$7#14EG>N^K2!oCz06ID>S%v zIGDQ*qXP}4I+AqoRcZvSWv4H)H%pi zO{LKY0>Q;vpIau=C4o;TAa=~iKj+D_^l|GSZoVLr@&uEs)%4;xIHE!pWlnBVFYBGo z1;|}i=&WWD1-{KAdP%w6N54GKq#tFx_=$M@y z{YS2*Y|%yDz;`BGk|~sWNBA_3-CC!j^Utr{21>SBafm@87xdU<%}l+HphypfxUbKS zuDl*=YJED&BBo#kZx#Err4dKtSX2g!DsyCag(}p7M(%1+)i<>dQW_4=#yBsw#tQw| zAhUFz>IRM_Zp|z<9qCPTaw}7FMz4iG)%(3f)keZ0IaU&{!<=X+!T~!);LsGD_h2JJ zTQ;d~d{077jZl}6qxUj%euO55P4F4xH#@++BGT^LJRdHs%}3u{M@O}{DNzZV&%d5j z>CnVJl6jja-{pk8!lk1Cc@|c_@&50*QzNcp*}>DaVP@sJu&Ys)UI$i6@#n|l#FHjY zxGt)HR1rIA#@;y1O6?0gays$koZV52Pw^-}bh)eM=0`!=3pxQ9-L>q0Xg@!({)Gk@44^u?R_sfS@u z8e-CoZFFNL2Ha zu?C?4xejNA(|(W0Kg_ZM<0q)Cf98(25 z?D6$za$VkeEMpcd*A-b*l{h~WIL(Y0pMpb`6QzZ9g%2f-W%B#mVxHGk=(naB>i&a< z>K;EfwA56zO^4UEHDBPEZq^tXGrQ3q?LG*0&nxLRY})+TpxIX;SD9l6g;mv`x!G1D zZeY|lH>UFmuLR#5^)&8Vz&OUHBEIR-s*kjhw8FkZsLG<2^26BH#j}|VUZ$N*>PCm9 zO~RsK_2HCq$E-r;HN@uCgU0~MjT=?KQl=k#({<+{o6)h~{^{O7 zR40oqNq&VOER*-9mBWx{YJ_4@HjOiHua@EWm3#H79(W5@`kLTL4w`z<~7v`?t03qJUT~ZE3U;c38+8H0J1f=5{}VZ;$A8Q!CFP$_*Z-tDYcv ze0K0YY}pZ)z!sZPba)Rk`=S?91+y{mFRH|G!UKy<+(WlsiL*fUPl{!3x&~UPtO?o{ zN5r_;Y{>diaU&aBHTe)HAqGs4A5h@9l%giYi7j-4S^7GA@S^8q2W`i+l4tk^t9ZXEWQ6#;4UA`HdYLN4lE}@;rbleBMSw+^s*k|L(X+}1q@qG&- z?oDOfe}ej#Z~kuQrq8A5SO0hnR#Y~8c} zz=~@$r8YVS%YEES^5|>8?FoaEHX9GpP95{l4VHzx(mfLSAl?G@%%Ab__(#u^sXuHm zQ=P!Q=u5QRO~@|$lN-%JOOUd%>;2he3r>W#o6g@$oUck>eGb3D6B#}S#pdSZ*pU4d@w?zYZHA%` zI(LR}B;aYRltfs%0|_v)1jb`9gWjon6=-FeqT{AT%dWPCrgG?!ro}EiH{`piPCe+RG{#kg-q!kOj z%JA@`T`Y%%1?0DZh~{?;M30Z|#YK;#;`{2{br1SRWqmRDt074Yf|M`tP=A05&IB=zp6od`O`SjFch?H39V$T1uCslu)V_m z#2C-VmOKLL-pV+oCH)BCa|A7(PQb)(sftDYZ)4-L84u`9tGJ$iS0q#~Xr>2cJP;Jm zqGrdrhDuS5`dc{53++p=@p+JF-v(+Fm=E>K_B0I+Shz%onQ|3j)U8 z2V}ittvT_RbA(=Vmv^o*Moizwh13i*3dTdX3?j{}@_2U{%oxI|2y!ATT*D2F+7i%c zabgP%)FfdBLqPxAt3Q?m+gwT5ECMgzn*(fm#UEPySeDAFNcSJNZt-RkeSAMEP*JMZ z9EP^lY|BhYl2c!!Eq7VF6&gkP<@+T#hhL^yTlXx5cDJq$ ztvvrC)8$-&lH9BM7e&3 zcCNiMylLZ*QayM(G*JJAbJvrQ)dh@ZE5jo9AKIGJmon9`TwTG2KR(0uM zAruB_SgwYj*$Cc6;fV|A|1}q;;?0{@gV+NECiR=1v+(%AHRlzYwK>PE^eM5|G-@5~ zIg8EzY{*DTo+g?9HcSYzQ(PWD6S)4=m)xWj5Cf9OkoE@Brkg7#|Dm-^CBnG)_6w~c zF4-2Y=@&fZSMcc`N0@=d{p9)6{W^5_3w(q5w&+4y{0VmM^cp_St z0!l@pUV~Uy9P{m}G(0@Qm|UaZEUvXXMjfh9re{Y2yKI zx8D3W+Zf%v@=^vD+p`+=br#Q}Y?K6z1avsMPQoQGK?l}kZIK11C(KsK?5@eu88bL* zH82EyHS>k&Fde#5aKq$liWiF<8WR9LnWwk}|zOp)pcn(%Q z;%J9E9V6v5Ce3^2f(-WVl(aFPOs`zS9hjU)GB5unFm+F(P88)c{~BPLWV~Pe00#69 zkv9D;nMH^EVJ^|dEHJ4%=FhO!Ayc%`&mEO*hi@fwyt%J&IgBY;0?PrrkdYQ#`h}e2 z^s~y(wO-yVF%=|6<4o7QxeRNi zO(Z_Vxei}zUb75J(+oWR_iQW&WG{MwnZ-Ng^R;}OUY!6}w~buW7E+)y|Dun3IH}`z z_=?TOuwx{Z7gGj#{U_$Z00xcP2QYa3+_PqKf~=zY8`YUWO_2`X(O6lQo-VLhXpE+S z$cJ2-OB7#M_i*VsmMFMV4R%=akjgAl=V1+U{&~!m?!<^B$Jz>%YK6v1e%>WOsk~u4 z~|fr`rp}DSm7WX3>vX)v2S6*Zae>>(L3#o z3B6og6QrYs&v9gApt%MWtrD_ag^5DY5`JPQsUjBV%ftU!G<(Kds36KX61&}QjGHE8yspk@ z@tDDDfdWM69~-lga|!4-d&r!SDL#7g(bP5_AfCUh-|HWru+aZ5^ixUnz$tgSwTKkZ zuOeqsJu+dZWb@iNef-d>$0L&x9n`?v0=3!DyhX;`BieI137>a0Qp|mFdf+NCB(&v4g}H>eyR7>TS9C*RnLnbu%zd^QZZ9 zz<=M%Y2ML4oBl;$YgFQ#C2ZHdA<4WD=TV;O_EYq;=p`olo=3K#+V1_a8j~2@b#s(u z(BDZ>$KxU5`QLB476q-U_U5qIwvg_Ps?zND#pII@HdH2LPM!WGi7NpR;^_Q0WEz}v zsseOyGsOp;!D;O&t^%4Ajt{yE6<4O(iIiL9kmwJ)L=ti#A@6Tmu{PY+*q7Vm?R#I$ zzB8iGpWXq5yNjLNw3cl@Z&j7s6`1P|rhNs%UnOv)t$O=h1N7)DO3P_AvFU^Qahq9n zv#wgPEc(jtoCj*nh+q4dB7eI;o@4PR?OqLEUF?@CS}63fNPYjN)u=YPD~&THmY0fz zUo#572HY{>*)e29U2;dSoA3oH)`N>C)k@bjx{(K-^Z}Yu9SLQ++q*Iw$kaF$2&8_i z3w3edS+l?~ z+ZK`FFskXnc!(*R(b|l`^D+W={C0;Bg6NBN0u7~T4Q#uY???*|E3Gp1m6^BStUG9d z9=)C6=bVhu$~jeyOMuJ1{i9n_kj`Xv9-xQ_cni=r9HcM*B+)NY{~$Qa;nIB3>EP$R zfA%R1Q$6Zn{%~7AnKS!`u1-NJLD%}v!I{}~+rm4aX^FI+6sKR_?fQhLJa0|zn%8!- zRm8r&nP`0DxL~#sFJJGu)J(RsT;Tr`sbgGTe*|}(o%)$&zHpolUhCf1ZdY2@uH~2X zwVV;O`y~n)@)KWWZk=e%j$6>@fAK9uF6r|RsmiW^q~i{8j>jhE!#ybr2f2AZA=yG= zucGawIt??TLq(hYD-$5d`nc<4ur?L#1!nTnYEL`1dog82lz>Z>6aZ`{$JVg@IQx;h z4X@m_CP%S=Q*-2T^SJm&cup48=uNn!R+YMoQ?Refiuh}mR3~$P(}l->x)&>~o~V~f zjP}3u^HP_o4~KZU#KreuQ?-PL1dmP9EapjWa-Gj-|HPB2K;-E=!E`OmPVCoDqdI3idQRNQe-Hv-~ zeFR>`@lJCe@Z5@YUi99zBeGS42(i%8`SkWuwkMxDRkF~{kCfVfwq%;l$-gUZhY78F zD%z`-h=Bz)4*p;-*HbgftVMPrHN~RC%Kk&^_(S=qSmSpBB+&K(t%nN;9oXI%gauGue;!nHg?i zRy)Xv-}$UVPQ{6L>(SkOiJnJ+ytK<0cXHuhvDB7?U#Qv7C}%wUuZ|NDWRTa)Uja6| z<_(l5&nj!N82td`V}MxTeUToJO?+58ldNVD66%W4S^^ z9&QTr`;^tHt*ieL&>47bLZKVXo=|}9`e2{cagtCHknFvn7SrUzz!m{%R@N?X@On{< z7y8hAS1Y?++ipV0YPt%kAlPW*Eemg`wYJ%p@MNbWsq^n&dSh0S^7`RZJ-wKhqGs2+ zOIrBy18q))G_rlk=%!KD&-hW(lXrl}^%&%*+zH_A-K$G*y6ZzNDkT~HOnkwv#eI|k zzV)7%WUtQnBIM4YRS`E>J0=*iekQy?T>C9u*lOK6(68EevVu`-t@%mKCZsUdjLef0 zur+GPblHi!9ENto69O5_llDQi;a;`9!pSl05Gw6 zmnN%<7(Y$^c)v~g8falQUoR$Eg)Z{-lrl*@oAb#AweH9%>bXU;V*62Z^0@vQ+KY71 zaQrv6iOsVes4bpeF22~YOLu0xDg5VZr%EEui~vKKAm3#5A2%k4B~Kf8Ecls(Sk-D} zkCF=Lx&)!urAE$EvRtUJX-A}K%2hEng9mjl{Ko>oC}}gFkMl6R!l$eh&0!^c=PKk? z(VC|at6+2`4m^AUaUg@i7kB=IeeZ%Bj~K_Y!z}EJiSeuj=)=YQxrdL^k*eG`Z;8d+ zWF1`ewnEjgS{}KlPO9%>A50{<)E3!ve1$PnF%gVX*HD}H;fdr>xaB%fWW4`?+bt(w zyf#Y517F*<4iwg6=saO@m5!UHBt9eUns~ea06?WBf@XU|`-Bs-`Uirn=ga_XvmVs7 zg8}IB^claSPI1J=&1Z0*bF-I|mr(0{;h(nUim{NOYx5~_dYr$bVtyH4DC5X-M4N|B z8fOOV*0>nz)rG>LcQ>TgSA9Kf;-8kDvgytac3AXgOgK0Cb+*${*&EiquyECs#u{}Y zjHG1&WAbkNi_-n|*uHz#X()w3f4(m)q=#z0+~1#>Ec1YrA)Np@!p8ACbT=y;kPFa%PTLZ~8EeCTXzVBTw93(7wS40Ul%C)$;O{tmtZS1%(pZD%1>I45= zu6ayzg;3M?nMAd+HXf{}6M1k;m0Zrwgm&_Iy#}q}mIJ*Jq$V4$9eSyE6J$;ph?5H<%Qs+Xkm*J9kK05O4W52$Cj<;A& z;n<64wxvhjz7M=*rnlBMM;;8{@>SF^>ao=jC57h{AMY4@-Felh+d=!Uc7LLw5fpv} z`tmNCQB)XdOtr-a)=dT!K}vr9+TL{4)i%{=VpEMNPd01!je>o(Is%P)cVEdhAl|?k>;^z(uN#Bs{M0S-1XuhHnOlvEAX=>(UG?_rD<=9hMn@prq^oiz* zXHe!Bz9rOPK+psSi^8m#I>?B4I7wn?*D!N~LVv=1!wI95nHOc}C{f>zWc~Ss zDAQb*&Vs=?IVVELJM9ss+H>YVCOKA~V?~KdV}n~?3W#!aqRpZ@Y8B2W1?s63uJMSq z&>sNGb4DbV9HEj~v(|mdeHv2(&s&C!$DB(?4LyM@*Iqs)qD@}I@29U`W&njaXYV;9 zFeEpAj@BI4|Ar%5dt2@fye+EKM**T5#^gRQV_fBJLtQ6Q-xSXFVcYurP!)vN*S(>sEwA1 zccx0aREvxFqpzz!_8(f?(>R-1G(WaLxtl-}SGpvnidO8`NX?O{-ILZa5XjQ`Qg^b5a4K0)q!IW3G)wfyF+vk3 z*&6sp_F$^-W_6JDC&YJsQ_6ROEpO;0agijrYcl*JWqV+ycbT1UE0Zh6@Am?B7HG7BCH%j5n4`x1GCC>*1?>cwQ=JUM*#oC46AB~+LzH==( z`NU^kQYrOFr(HVa$7B~a9E$Q&r*T%CRwcv~Oe#!&S=k|~zoAA`S<~sS*eDxA_fsga zBBuBLwf#bb+U8?ERZyiK`DkePJ{;ybz0GB=aH{rbszsY^6yHRPTURk(RRnzJ5s)?( zDn>uIx7D)@okRNxyp2ke^%#7ToW%zPCLc`zKZG$~AsSpqJONRQx`uGTFdxE85kYtiB41;D3}i9r=C~S~9AF7R5U0hM4>cz27*94^ zLboL4MCePh1;QKRode;<;%lxTH5VnZBT=0xCC^d~`tQE!;4!y;_4~oLoc0Ck#RLsL z4fn$p0+2x#7HM>?31B1y5bPJbkaixC%?1-{320Df^EyWVvoNqn>PR}7tz&aIOM5nR zUA^idL>iPFhlx~^7N(nl`@AJyO!eaT_ySuA*AACNZN$V>_?r&IaxXQ0A+h)et9iKs zY}uOpIeWQ&@c!cKK_GP3!{a(PiXMm%8F@)^)lYs}Q(Z4?bPuFqgdT5PDadZN{!A55 zv0IMjy|!h3^?GW<%D~Trry58`U)i@W>3|lV168_`DWExVVC=|3NR-wb`nqMG1o(f^ z4-Ls!Q~$<|w`M1OmKfwyfcl1;>r`Y>%aI^Tw`IQ(R}BP9ng&-7U;w^n^2G}`>&X3# zN+p5gJ!3Vnn*@vSt&{$ZTV9#q!0Yz89q|f<*7I`6a7VQv65vEgm}4e$QP$nXE+aJ> zkJG{+K{Z}O4!iv_u=$-duZT4Pj~?T7QOe3*RVUK1y8REw&3DZ0vzb(@2?l-C=CA^` zp0tCv;wmguE-zufQV}|4`eJ(u7}h;^w0Ey0bAHMUv=|1zKELN6Uf29^ zj_%K2i3MF#*8Z#Feak``f^1^qJ_UM;DFf6)p{0Y`rX7O{B3g+|)tx+^jJ+p7LtChb z30c1yXp5L{xw~#zp4$_s2Kopv@Cp9zB=ikD0@KsE305_r#_4=SHo~pjDG&ya3QJ4q zTdJ^vUJ`jV$+{zQQv~PI4j&e4k*e=!Glk>-fD`p|_|mj_gvFkRmf0>HqSg3iCh2qL zcFF-koI#fq6VWZa)_a4@4Uvs416AR=^(5%lD;$9Ph_+4X<9_U0uX0;>ZlWKOrW*=% zz3sG00U_~@G+|P8JGyBIR^b4tAyaD=`zg%;%S%_b}BM&=vbR)4*;Y z)@<7HB3Iz?`K#IdZX!KMXWKj9Pw@(R#E^g2 z>VPoyRcSouHacS!0pH|keeRzDZSqChA8H}6!A1S=5 z+Md5o@coIYqm4@rT%-GT2N}4CROSpum>TIm{*M74lLV!v-4=9GAyhF+Z0`&(nv^qTZfst2-( z4h9QUL7LbS&5z^li-(KS>IA-i7+6PYNlA$Y*?3Cyc+hTWBVP3h^9I=vC79@4Rq}mKixG>s?h*LgSzs4b zLuPP?ZU!QGihc(#<#UX7g6jmXj?JZ^^RR58Vpax=58%FJ_gNi-vTtMGdn?w^cVeFXLgaMX(g;xwPi zzNJi#E%ZP5rs_rn(Xu`z#F2buW%e-dxN6WR`#2-ODzAAEwVZarH3@OJL1b%pI-1je zO#xeg*UTA2nez+zNg`cixMC=|V|lnO`vd05lr@%9P-{W^C5tTL#2CTLM))qG2kI=h zV%cY}me`zWT5;t57dx&|-Bxg>RDM<09_Wr!YArmVVg(}-hoYb{FQh&n|We}`U4LglYEh5S-MM9AeU zv;3pU!~XX^{Bf-lTUkJlstI?E{nc>AHU1u;HV*0oMP@0-fSAX@0^d^_t$G(Lj*BH}<5G zd)0q%q9Er(DGkJ*Kf|Rj=5y*Yds1l{95+7{4O>R@rc6r()BU3W*@Vb|mBQ1URQ*>1 zS>x_V$IZ+4R>8(PC6^r}7nup?V>&M1zg|D_O5lATk9SC zdf_DNh-5nf0?=TVjrpeaafCt1ns(XlHtnxXXFBPE)P6cQ$p69RN1q=KA^SDR77i*p z_5KOV3uKCj2L>wZ2lsw29BEap_UhWLz_X)#z6|>JkUGYO!v78p7-FoAkJ{o<-&$pp z1s&G7*!Hl{A_B&Y%cu;BVCtGRT8;=t_=*L?&cA=x8eP6fi@JZN#Q9(xJ!scQs;0Y% z{fD;Y7Q2+=dzQ64&J{uk!bq`w48&u?d92dJx?N9>T9KE!7O_%nS!t2ptv;=dzQQfG zvudQe>H#mYxjEC?raJ*j2P}dtMB+%z*Jo{SmB&Pw6DlP~zh=WO(ku;<(vJ*enkSk^ zgX}5HFc+6p!FyeAvp0vT)I>5`Z`(r7e_RlUjTS7+5-Kjm#5*#wsTBwb`xnJJ$u0;> z5(v!)aA^lHn+>6?U;)`QMz+VPw5`pN;&PDh=;Us;r<(JmTW|l&dwV2i@>+oJJos*` z_u$=Vd;{2iF{osqEgfamLtcMt;%Z~u_loI#Fxt52kJq$%mN2NLs!N3{ebjB{kJu9P z(pTYZEwR}j*)bXp_#Ii>)~Sq7y+p^%ee(4;+`9z9Tj0spf>3mnH1hUEFSecf$_P(` zJd`gP9&pZdPtN!I;8peb{jsI5pANFprNw_9CJA zG*XvUUyF-Wlu6~qyXnR-QV^oh@mbD9K%mGEF|`Gxgll$lbBcv9%gE&Z2&ppuWU&9C z1lgA?Z1+X{v|l=j4)P_MHhNKKed=Zte%(&Gk&Or6Pqf zmR%};#hLYzImpbq8na6JL0DD97tl7DiWHevsN^x`(vGLB$Z72phopZ|MmO(;FhF!( zH@$ankj{ztg;IE+x7Gf$59?3W{`Isd_B=6Dw4 z7bj7$?dV%)=156rjmctA=vGeA75RU)6i2x*jhyJ-%2E(#m}r$mDjh?I85j|vG+rh zSv%BU90ocfxEVNmBd2>E9eyWL4HEk64t)6k>M4Ldmd^iyh@=p|QF}T+P-tpldKO z;ZC9_1WvF`;9c!kdGckQ0d${yOpLGEw)bfO!2EpyO|QdU_nVV9z_$M^0F(%Sy2o`2YZE&53BpXwD)wPNz9qgTfb9NV#OclV z@kmYR5qjZhV6%4NtH%`sn2yF_4aqRvb98|3dU8PNrMd0^FpvR>S?Peou5NXv zWpdHo73GbD5hg#<|oq`j_7mlNUDVoHIfNvdu3;!WR)W6H6i>AjQ4c1Gyiv4*EJ6;50F= z2a0BwMOo&a&r>L;KKN2ZJv6!{VyOEL;LP+r2VUt7M@P!}hAx+#UQ3xT&Z9Rk;(unN z>CHpaQr4rOUOsO0R0K{+EO7}D&*Dxz@#r=JX@-wU1Oo!!+AmXB08(gKoZ5Ad#~Ic6 z%@67|($bEBDK=GU#YLyTwTEf;NzokC~FbUK|Y$H|a` zRfcahm`@8o$zO}AQeC{w7-DLJt2i{X)HSBbm-=j}(13k&*S4LVEJb_fzE0XD87_`* zLJSo#I?dG|PvxI=9?BjD#+{t)VH}N2Ni!&py1uCm0`kAvu&9QP8-RVPeeL=2Kr>&+R#|SY02ZuX!;)GwmVBb z1<3H?h4x>rzyj+9p^cdil-~9tdrn7+%||(8G}d6MJ5K?TF1+S}$@QiFVi5;s-9Z*XSZy(;{w z21c6se)vk?JYDIf zBL}6>Qn2xams|M7hG0xYhfUYEGM|LAwJyhg%yG`QK*HKe#Z&VaJ zrUzA-8k6(zBZd94`%VY0JypR9rpdvcUKAsNNENn#zVGT;W+MdhfIg*K%PGP!e~&`# z0ty(-SVlJ^K?WDIZLadS^KlxgqxNL=J~Dxf zIYojBC=(nP0!}Tts+#L;_K(qIigbd5DMQykIre2{dh`1b~Rt{`O-0_(Csu8$6@QL`%&isQXX74pwXIW~U_(tL=~9_Eh5z z$HLM!W)#nwse3e*)kJmD$rs;ATw}QTN!T--wD4CiZ^b$8~L-pF1DIX0B_L z?aN@mY{BnwqQ0#Rdj60fRA2<>AcD_cwJzLC0XziKBwySATw60rU^U~Eh;sxsiN#tD z{zm%9ZIhH=Q%Rf;M0%f^QlVeae%jP4T%^3`XSfgRl4kheTKOeZ<$4_4HB!8QLsiZWMDt%iM&F{UiRa4kF zI>REF`-acX`C*6yZvZ&su)9<8`+sm{H59Bq8Up3eVCnm88txo2e~!ZasZdDErN}W0 z!LL|D0qT0km0zj09RoSoMM9;D1)<$l1bqALltzTw@>Z1k?k>>;tlZ+QrI3S24P`s6 z-RY5nZ+{jr*uHARG)RRL;+bZ53jB%l#nltPsPZaW`8m|*X4-PSXnrxgFB<-3%MPuWMKGANh0$;3A$v8 z#zqb5mbE6RG+y|p*4xi@PpWNGX_(-HZo!JyP{niox<;Y=)!rbOuKTq}yd%xZUI+SQ zGCd`zD!#P4uRiRjS^K^2-1pnUxneRS>eppr_<1|VuhEIVaHR(Fw=`6aug2{t<*bSw z4Ql$Oon$nAY2Maub`4~&P3_m8BDrs^f9haV)Wq``OO@*H{T>c;D1Q=v z9JL9CR`7X*Xl5yXathv|TDN7pw$wm5;lDd4)*MB`^H7ut5#f+UT{rNvM)yFnk6S+> z(%j?#T4e#I3i5*$#jRpg55_f7hbtO$m8lU9M)5Ts2uaEt`>ty$7%(o;`uWZFbV2lp z1fc~>chy!AWwv;&R5|AMY6Lr?@av;E?31eOl1;zFZGP*&2Xxu2=k`|+A>aw=-X3zt zHCd6hBZEoD4s|5ws;VkfcG83C0U+zbwVd-m?1si;ZTe=;tOGT5Rpqg-nMc>&0H(e` zUJx5;i&vlX{IU$=^qMF6KntM*{@_0PreNsMBwLPez3vJ5*nre81Ctd*kNCK;FOF^E ztUJZUPU##9#T|NY^7IoUct#781uHFSRTGSQM(G=Qx@xk|FC+5Xg-?@BJ} zK;{BOm-&zV9A{bXM%Zu!>+_5qd3Fc*gtfStqQ*r9DQ_bPnuF=1!M8A+QkRx*VM1{) z;)g{#CIer1c}5|zS+Zt-RUjVg;Uo1?+$CPMR2|u?hkK!%_8*$+H>bS_=DIng@Weg? ziHdkz7Fq~NES`_~PL6+nWyNOBRO7T;X*dxQvp6P<^bPc>X_A(*kt90x6t8z`UIn&O zwdIL--d)DBlg@6_l_&IBz#-796xf%s{?2#EH(@3f`lvMT8|cBg70mGFVm8qYMzh=J zIKiza#_r^n_o6QdG4O_m``wQZJ-5J>%nsnYF^yRF?8TipLPX)gH)Wr^4kPgdk)*76 z7d%$0^!Gr&ahnWbL90r-MZ1!uAaBZg=SK|v42he+{o8$}oEizmzkU`vqHmbUeBDeF z9F7-qF~baWO>wf#lby-@g6o~999vg6A&AA=^oRT#%!PdSAs_qq+UGcZbB%>`g0IK# zk!>_&gK#v#dqx;PmD@e}@W$q=*$n78MxWU`rd_6w1f_14Ufwx4suA>vkD zQ}Um_0Se=exc0#w%4TLB-KcFew2vt zg-rdtB2o6cm$+;A2a_YxQ?Y!rL74y`*@%+2g?Yq=bDtV`1&o^^y(GSWg=pF+Kh&P`$&( zBSkVP0Mbe29-zLDQA3+4ey)9v|7?KYiivis*3ZR{l7^D%{N6p0o_^)^;bo(m@wK4L z!^2#_b|7mY8}ISYMOlw$Z@l;?J{jv*Rc=NrCzoJq5pOf+~8q%aC&M6(I+bD z4P#j^vS~#2)aJU@yf9vXcjTQ&uu6C-@0Hi4?Kw9F})lH}#87HWrczS2{C+4$s&rfT%Yow(!qYe7w?thQ0w z>{5{Mpkn2>93=gWkWl&O=CQ(od}jJj5=4qe>W`xjj9vJrt>_mzD7X#su;ql&3r=(E zNwr{6`rClWzB);=9~cpda3IZ}@EsrD=X)dY)r$f!j*Jh$WDujXtJW^uG)H6ZXm!8A zixF4@!@({BI)e{)FryN>)Qt^-hMKcDp*UWtEMWUBBH+@FD(l!qrPQ;=S*YGu)RtrY2S5g^f8V;y zlAX~$3t5-@C*Ioy+PAj2=D9RtF32w-#X>vl*V>%h4AcirI3Ac$fR_F|UF+#al>?W_ z>1)I|=tT4Ypsx!mZ-$xtTv83X)+0+_NuDHhC_baW=qV|I88!r1HZ1hXf+;}%_qf?F z+Hf>vZ2)}9>qcZdXtD~(ZPV+yMK?K$^%8D@fQt~3(1$CFwY~YXHwnb1w$(y8T<~I7 z>cBLkiuGdT0b=F+{A{87tQ|{-(IMf+78rM~NK$ujTYCl54eg?)0J&SLJ=CockooRI zJ}dnES@_yqSEo?V+VLdEZiLW5=?-G+kuAg!UJQJ)4wZZtxK8A%lE+(kw)5sZDQQ>n zOHq`Lb=a$M3tLKMKXkcwCeOJy8;9W6JT+@%HLp71E}*;2C39|n)TmdzxTP0_OLgjyZ;=0BLJw?gVP+k;x87LZ2v;zWd9#f~haL?Bx2B=W(XUa;F&?H^4H}O3she`p6^sUiYZRebIB@#11C#KJ zIL4uUG6u0BnR>4D`pBSxZm&L7Voxgw00%b3Gm@A1**5}{LJlKi{)ASEQZjeh%ps7b z$n}44EWyj@|JTKfwcot-tKD)`9xcJ>J0q>S6daV<*gU;{-DhXRMqd&_?@;Di{HuB( z4rz95b$$wxL0>mj96!1%zVD#)3#72FUIXg>JYyc5E03pxLDG|rZBk?xM4w3Us>2)J zMSXlW7UQ~WowAMBwQ%`==DPDVKd}!GF*Vk&*UtSQ z6zfL{(S~xjSFbm%Ikoe!80Vqw@eYzNDe)j-urv^aG56+t5dT6SuY4Xj^p&IWtKw(h zCHk@uWECS14*HN6TJ`X>H^4BOx`yvw3d4vWS03f6Y1xEev(vb4)0I+LtQSy54?UY< zlgn1QJFqC49Qz?QA4gn}R9}{cCl5{DcLy&7^(r$@`pn%!IT#{)FENQ@u~56FMZ0@e zZw#yV5#2`}C?q6-(_qQ6Te1EiscmRc1A{G)rn|V~+SZi$+spAPXLSi3EvZt+L=9dR zBU$E~nt6RO&iCnDY+5Ue$Hs5`?Yj4FF!~y{DHd<9tJjs`q+(k&gJkwV*~usuTt%$Q zc!7pf2mhfb&+TGR3_Y?|Fxry+nDc!;R|1?}!MF|pgZnJZ*o#TQetKQ2_z8vS{Mz-w zi6NZw1vX#h?8Rj%DQb_0o-&6>#|6_}g<^9&1EvdY)@nvnYogR+KQE@Fkr~S~>s}!^ zS&cwVlvMdu&8wi^Z^+er&V2m{m(s!XT!<-ey(mq%2uUf)e+0!H?|HXznaJ?CZ9gcy zZ1>G~z?Yn!uV|Dp^LAI%jh@4s{qd8(R;b@W3@R9!4EgHq+d=MfcgDqUpFOZORVRs% z;Ctzbp+Dv+r=e}>dnfWC*T@l&EDq~g0O!Qdzmz<>xgo3jQG&;>HqKoJabdeX8UO(5 z7PtbXCJ7wa7GutIe7f*@#w=Enbp1hUw8tiG+VoQIDT?9ck&bNiiQ}ChMR%{`wLA^I zqU1es@j8314fnp<-)U(D$c`z~QkGQX=g)blsC!8kR7(HBeGi_rtf(RuyjAtX>l>o? z2yJB`L=(;OGlRWNaxz#kI$||c=2x~yl5BSG7ou;Z=e^AzfAWx!Y-o?N$HQ!rwQ_&1 zGHk+asq|;VIU2;okTTn@*UZ)OG7v=DC6ewF_b2{;0S(Sv3KVqA)+a?{RgG4aLx?vr zsW3{_zBvl~UYMw5d2tzVEU7zU);Enjx_`;m0A!Io-q#B4Oofe9w9x6IN3My^$dLwm z3B`HgxZ=Bk;!QTWPV)n>CTXc@p?LJ2a>hH8&r50LS<0OzsfA~0JY*PZ5 z(L*olJa^qpz(atAlu?6G<&+F>7HflQog~2ATWwb{g56Dj-p?)T3Zc(n3VBvRd4Wz< zBc0#63i{bPJ}ebMV6kj!TeV@iG7C71f4e!%kz+76aH9QvQ{&B9unLpWiAwOm6b5Ni ze@#r8!QSU*CxJ9@zj4ee)eKzNbGNc{=%N_vX{96xYc}s6zz0qo_LuRG;XbVV1(pnG zlO%+-7F#~z#E+jaoRIS#!CJlDsfJ8+3u#rfVnj+WR^V6@4?L{q^o9Kb?LGc0L>~Jo zWQ}eS0fL%MqNGsb6!B0PrlFg?CNRRQt%nVGngUzWAgQtVYrWqWagBroNFaq%ccp3s zcs6J!veYz76eCX&)1Oy;2}!=}{LCUQjW9D$S#mOpY)q4uEh8Ybxg`(M#6YJ*;ok+! zmcmPp*Q~GgU9xqu_~e)=&=`%iCo@cD_()-$pvHoLJ@bk`?hNVlZEOnPf$agf(q}4H zhdtSfg^Br1e`2?mzX{GHlG>7UqV>$c$1kMC|XW1f?{GiVyV%=iv0TcS@a!cK5vSY(3Z%$kumoRIMV~==+&oLK5_R%8n{qdBjI}XOWLKw!d>~jY?i^TQ*)Q9+ zu*jBnWj*CpXw{X;A+$kCV|nh%d7BzId@U&4&?m@sU~z9^PPCx7h{0QQXWx==2&DLA zqZ(4$UWoo>sl2}j3vZ0lCUL!{S1+#lP4CSZi78fjvbM$!x59@P(fWdeP6w%({#tJ1 zxsr-_c-3BJVGD0&W>JQ``8^Z6L5lgtVOat5EKVz{ezk*-e1FIh`2Z3$LlpN#U3Eis|6Tqz&oTdXpyNA*>5LT zcSC2fu*~xM3hgpMnCm?9wc*w(M#IY>nV=APH;i^;SOjYE%(gO0Z+L<3$3;XD{b^GJ zcRu{Fzn~eVb@ z-zzi?jc@l7fVtL>Vk4AE4%7L-vs=O+du8NExM;Ud?!n9AZ5h6t`ZEDp4#2-b_O<2J zOgc`{wPH;rMvCU_`a;+BMh`dsYr!9`aJl6>N;$kcV*wqqR)?q zK2THYI!gt4GGu4|EywEGul?zMs9#iF^q57vONv)neR{PWQ>8t#Z?=wD9p-sIp7H~< zEb`0RnvI(}3ZdMk2fEfMm)o-T$LW0EE7QQQ4cQXD6c}28m&cTJW~eiSqEwyLe=|@0 zBRVm#8-P1%T>y>&SHMM(ACE8aQu9(5;APZP?W&WUI0hGL_~iJecPn5q%OHYg1?`l@ z8w?YQB=jbYQ0)O;(6?CBDYSL~4rrpfX-?hXhHG3qa-dt?Wwmp^FGNQSXefT`aqVZV zQYy?VzkLz(kdlb;#Fh*S9s?3cyvwno^Y~+&tpC~=@iJkq98h6id%bSJ z0AR+n2XCf8XwMuWGBe6h$yBh51lC;*3EuKwn2|{j@Ht(eML=Qh6w(f)o0$JB8?LYT zNgz6puR1?=x%h5&uBh(SrTELvqu*;0pznRa;yxf& z2RwF$sXNTh4n07FvJ`k5C=vP41pz%@>rVds^R~=-c?ZMH2>tuKrze;+Y_1zlw%oIy zjj**^>;!7YQClr-K6EOpCV;9tUqQNX7YKw_fbWiOunVH36c@KZ03CHGDqIf?<*sw+j4;)D2OneZH>X(Ea)w5i!!)fK&QkrKlTgbNTar22^VSqE!t4NBt4P zh-rYycS1IkpkUEw$9=0)hZ?Y@ewr)?eP;u=QnPdP*Fsma{?u}Y=!*-dByFF-7+l4| zY~bW^{`153_mZbJ-mu95uJy{`v4=L+_ii`V3XC=h7*fomyOzFyk(D%geKLQDKG72o1@Ku%k|uKBViv+q0}@%^3B#Lvov_ofkH({Z6^Ns`6hSzbpk zFZ~p)c|Ww58!F#JMvfXPOld=~WdN}N>(1#7jJXeE?Q(m%kv_nnoR;^7W>t6KUGo3? zlM%TxZN*bKEJmmHPg2_sTl9fs(cb$w_%hENsi9S#TeL4-0g0q}%TKOGa=C=%iIJwH zp*ui(_uIxB;gt&SsDSIQ9iGt&`-P70zbH;=V<7Gjp?yD|XYuJtwveqX1E*^vOz^_> ztM0Zq=qEo(%Y*zHGjJqWc#0CMNmUh^+jgZfH>}Jj5(&4^#Uhr;4tx-wem3w#AiQIP z|AIf$id07CwOhwB8|FHrJC0Dn&C4O?+VJ!Jhr?WSY(4JC* zh47gN`UoT@@b4nB{i4;9?xf0ig=_Wpn(33*T#trXSWKF-FY7_@v0vlW%@WH|XI*5O}Xm*Kh9IGR0sv z>%JMj)=!628>Q)*20SKKZkj5UF?cDV=Fe?O5Z(!0{(m#NO@I?=o^*OF(dF;SW4V?v zp3boN7T1_Z^{x1Y^+{yw4x6OA3&Yb?ybn*p=*P&@U;7UOwxBoNu?#~miz?abjUMCH zcBO${KYdLFD&l7%<5+8R3zR%r(A2#qFq2WD1(@haX}%n zaCodSNaJs%0KK>P5zEB5Ye;LpgQ@)dAA;aRx!sivFuEA)R<6-~Yx4WGHs zsI@?|JYLf}oYz<`-k1b37Fg;|N7b^_Mz>b8L%x$%$-+J=8WUzi;GrSh_#d3`A*N8A z994f;tK$ZtJ8J&{q5f(0=B^%D;gf~b+ztUBmdJjc(@`g-TS;)(W#^R+5uphiatopba;8#;?FO9R+3TMZ}brodj$ ze3jrfn&D#X1xy_7HFae(1+8AFZ8g{NhlgvXA)0eB(5=ijC6vU+VIBNwsHH3_8BT=W zo>OMW9FFo$^07&OP3iXs$Z%+%`0^9jk=k;DB6B+5aJzEisijEbeu8BTufvZY`LO0x zs{*4qP}`BSg4t22`DD3Rja3N&%fPyeyEW2x=Af(T#W8Kqft2F|SuvHC`q@~g;kOqv zOh6MGmdjGk`D*8VlE_h+y&gB@MvdK4Sf{UN$!pG^)@oq73}VQsW!eQ1@UK_D6r>Y< z4ycuL)iF+|Y=s|PL~=1o{@L-`bTlcg(p?E;I5yP^CzxnedYXKq>Xf6;O|P!UzGduEF-epQh+Rt#HpfwGbZx(^Xf@%PP zvbU#4PdT2sjtH;Bz2+g~vjFf)ng3o30R*&*g@-8H9X;J-ad0Ba@vqsSlW*kkPVYpF zqnMf7h3aR~FasIy>)~reD!O40$t?pgp&p>p z``E-j8Krui157t^`VT7mOtFXM7-`r0ipk{3DM?sU6?dy9?~fox(N`bc%$wMCDq z(*8_R&P7}EG=cXiybW>X9n?}lV$817A$UvdAN$9lE zF|-PW25~J9T`!+;c?F%)z`PrMM^ijI$|r3f;LGSekig%7rX2uNXqAkWF*K2OMPJxW zI;FuPPRH=D6?ev&eI6NU$gCS%(Vjh()`&rX)`%pxcMF}b&?a;W2;k7tj=oFs^Lo|+ zg7*|V}gs3-kTwS1-vjMt|4NA4{blAKsizqf|Nn7{dd3|FthNV-v_%0hxC zfzuijaBrwgC8<&GDN!(pKvUu3P~+r?5mVjebT{t1T@nUPkF=cQ$fw8xeOl!bf4p*Z z`)q=}C&W;+pM9fbnj0LRZYLLvkh^W6iMfUNmO51b3iXB_xw9m(z{lY%ijBFM*^9nQ zibx24OyW1$_ii^+i^+^t4WVt4FdK9w5|g!jf9?g?o=$=mASd!uupzjI4dBk6zWm2AZxI*?PF5 zQR7&yWMW@Gv)oG$K-ud%k&-8L=_ZMyCSyQfY=ap~y2S}%pRKZQc4;?|P6|)vn=~A7 z+;dv7oiHp}gAGtd0oDst_*e(gih%s;P1#5P}_E%b266_Z4 z7>4rCP&sULh%eW(Xf6@iLlOUxvm6flW1km!3w`_-5pIxqqlBpAz&dc#yKgf{ak=C! zEH?BLzYU)(a-m>%k?|ocjRJ3ViNOg1s}Sc#Jhjs(3$uccrs5y%J?*veib{|vyyVT| zJ`ryjq49-r+(u>Kt9N%T+#%9y4Ju8jD!dbS8Tj(iqNjem)e3y9?94%zsZSbGR(n-F z=zaFG=FAs1cqzIAcK`9^BRl7zi&QL*8Z+wf2K3@Zh?K3)K_k6t_4|2)Htje-$eS{P zKCKCNwn`iq`}y2l`UN?Y7ubAAX5;2Rn@phS$AAQN6XQgUj=W34B37QS|I%4VrxQC= zyX#ON{yd|4-_M>iLN;Tm%>j@KQp*=Jhnc1r6S>V(BuAv=svX{|KsOrhF(uiyhLd03=uKT?S z+RwU#)5$t#n0U$(PrVPf9+d-0j#`BnEd(X8F8}iEXWfA}EtZ6tXs=o}mSc_Y^s{ck zpY^jI80&XA$925}Rf+uRf*BJ4Bu!gjKVkz4+&87@v@U*HApBINzik_PS&c^Z*DJZ2 zs)=(OZx5d`HBVNFJ%C!LYhX}vEQT}T`L;I@ukY6RSyX5hAA!@%Z)S@2-w!S4DZ-~k zKD5*vPUhTlst9i7#lYCida88ScitoO=+10muhvbUNyc@(mvBQs4Unj|wq*jTOPXCZT@LfPU zbS~{3#uul#US&Rb(r@@Cr#!3}+WxY0VkP$k`~;8IWg{vgrVE7H|6G5RTYmp}$#Tu6 z{U$IKlZ|b0Oq@2(vA{QdYE)mTV$lU93yK8J#Yk10 zw&Qr7+zv!DRw%hs83?dDtFw~@QJ&&IpQ-JR)CWrkECAKRB{A6=|IoD8`vIP7KRSYx zFn~rkyDE+ey|v5|@v;Kf7>}}+x0ZiY$LlbVpt{U@7I|CYT6^#?PM!8HtX6bH{+5fl zhIbS~Wn+xDqo0%y)HfWln)h@ET8c)~%iO{jKza#r3X|9Jv~2FLzaGUMFRbkMWDGtz zT4$CXAjOcdxm1qAepCWBs}E+*M(`}}gWxMv{t>yUGM9@gDV(E|R%Z(aexeqg4WNvy z^)XfX4-TPZH7z)ZSK}QoWf7|V@ln*}w}{m7cY#^5rO0-{*bJV+ykC#W%Z&{B9Hl+0 z!H=0I!gKIRZ1BG zinWoCNlMtk`vU}9Hs9mr{559K} z6u*(tnNh6O0{m0G5}HII00M13cp1R{BDplhD69&}x6W#ektUTclFwdm&;|wxEt4~s zG|ZG9^V@H0Tvq12q$&_xno#N2{owiWWUP-7a~h6R<@M!0iu6yDcppl*H(LS!-O9;? zf(N`t`qV#RtjZ2pTW@;()U?NLlCq({>&w8zOLp>5<^+QA#$Lu~`s&{SF&M`HIqV>4 zq(9AtLOWY1|Iz+UZzykkm%7K!A(U!fjn60VjlZ{BT}9w`M+54k>0^?WTtSU`jG-RH zFH0n*0@_jcHtw^k_h`Svo`BV1J;9n2Rqjb|_;s4Y+U|`JvyDS+76Xtsdl=+$>6!+uaJWRT@fnhG?d(Q^x#ALDyiuRSm|DbVJcLcN*4vw@q9jD9>ppAPo zJRM{coGDv53uim$8n8EMpHc|xQuW&2OBc#-8lH5mWV3chwu~A-P+YV(!HaHxHvNN5+w}HDo@lsuZPqWBC9tuOX=pbG6KFTq$F+#No z`>f0cH(%IBIBl2OfujQ2^54%&;}#AgDGl-lW@3)()quv+Qr>XCftm@SaTn!K8>6-j z&VGl0owiSnT_+B{^O2r!u7y(J6ZQ9!%G}-b2Hgl;^@k01_%gXP)(tUmEQ*i~L-D0UH+>DFno9L^s+;B*yzms1`QMu+vAC;tBt&{kz~e=Kq|hLAAR>VrEgwrjoQi=Zr+Qf1yo%p`22UIiH@?e(nsEc)*# zOBR-O#?fw8i)(|~_d|ywPm%2^yp7ch9Di~6kT;C?syrolZYW+a?Tl3(&igG8kUL76 z{<$_UnYR8o37$cUqAyYm)rHISmD?eRzfTk!kxR>V{D*75Alg}b=ck*g#Y{o<&kD@- z;vB(iZg^3X#Rb~ZEME(K=2SeoAAR9O7^4a7FwdGg#HXsm!PNrldgF#ZD%A8@sz-g6 zK}I@8jzS-}%R}sC3F=-ep|71;>PK(J$OLx{v_i_g5KLsLmJmnK=aXk+UgQ+@i>k2K zjJf@=DPM)zewL*wT3A* zSMz(B&PExP5fSjsvY*&O-P$`F#RS#N(Agcp%fC{QGeR8RR#aon&OFfRW%1zDi4)=1 zPQ}=J@ea<3`C$dge9QAHHfhw8a&;}$Lkhsz^N@wu#ykg9LM9^@HUnAw*mQE)pf~QQ z=P#cyzYMjaoiw;kE~aP9^NzIB$Oa6UwE_5^cHHfRxvx3(##7D-f(Q^zCO+!7m4%na zF3!dCv{SeEY3b86!?6&a`VBXJO8;X$c_OH4;!JVXNNFJmSK`qB+HCF7hHs~>1ETEg zuoJ;qngd~*FLz!^5pf%rx$2k@NINMz9wakq?kf0*qbZccwgNn>Stijt`4u>nHI*e$ zkrJ(`>>*0fr@rfbD;1`hyut)5x(@ox6gYHpaGQ3>cqfm!p=mM0;a-QLDTy&EZdNT_ z8Me-mO5;V>NUqJ9-Id{R3XFJ};O7+qTZg#cMOqbkt2(>CF3hEYWcUv)CJ{Z+xN{K-N`XI^g^1g<;@;wrPki`Q{2?IO0rxj*=sbSC?1V?U^3Tg`1L* zJ3^G4to&40C$p&Ca;o_Jd@vH85SeWVW?&)NeDC0P-6C|+#ZlyY7}2b$6ipej1J05e zFEH15vh5(;s#CXNT80;QMwwO{I6YK!!IicnN>>duJ&CoX#5KBL)mtnVyl}k-XS1YM zjmb@Nt1=4TvS{!7Ou6v>O0eLLgUhH|yc#pIBdFQfhp6|n{@nN#*9q?eKqCk*%ueEZ zn`WtU66@-}*@hT2{JbjK6DeL#VtmtlcKv_WoYUgPiQ=?{NICbHp*7@`EMY`URz;_z zGMEhdG{igZR{QZ5rFA_hq^|{(T56UUDe-r_nyKl+98)Ezf-KX;*~$m3N+RcvN<}Pm zwh{+jo8%~oymgS*fF`I-NfFu@5U}Y`tsji55oq_qJ~pRq8-b!kGCoA?*nEgiAJu-A zMsD3xu&J9(Y1^7(z_1|3>$QNKx=& ztqq-fX6aUEJ=uh7Tm_x78tS&*z_BL@bA3fPp)@{LueFIhRCM$e_~6NOr+`k*lIT zu_BJTU?}5o`AgO_H1H0nH4%TB> zn#@Z})=L-1$H`KEwe0-37T$DqrR|twj-Lw9I1AWej`N`++R;ua?=UuUE59Y5dIsNY z)flQ3`;DZ8=Iv;7WdGx(Cn_DYW=Es`ceFo*PLqS-KXuRLaLFhmFzUVU3v3I0WPYf9 z7WD{c+#>`tJ(7aCIV$r0J_$QZl~oOYOFTY!W(9xYzO{v)9SWKBY4#JJAo`%Su%JAj zo#3eJLZ-*=JJM-bK7PMs%Mu92={!0VM-DSF{I_bM+qKdVoB(Pr%&=_0 zNGc9yJ;m=9s#{-h>9~kAgc*_Fl?Xv{J4;@8bi4JeT444~SmtqCFd7?2_FgD=} zV^HJWpSY%1eTc-uq1X#(sqw(gT@S&3!F46BUB9W5^-{t`0A{T2e+P@(4T1mwO_(8j zfEUbY^Brh(c)uYN&WT3{yXGj<;#^hXEc*b9RGGZ1KaS5Yp-kxDS+b@B__DDAj-}&9 z+RbP;&HSqVP5F3MENAl!(xMHJMN**|fGtFQ!M+U{V+$#QIBGF)@?(R?;hSJ?5l#&pT+I-IcdAnDO zvvYpe^^Fh5pVt*VhWTCrGsozr7-F-9G2N_+uvd9FG%z2q**s&J>%sLq8F-jWJkoWB zZY90vy_!{>=Rx18Ce7OQS75$exiLhrX9xlgV1F=xQ0L&*h^PQ>v7i4LH8qaRyBGul zlNra&qg)k$3#F38oT4Jp_Y904`WgKDi|DT5iMVI20{{d3iicy+ zqvs6J>zNb};Pp9~y`K%5`a&*iHOoie*z7^D2<8j1ul6Bto@vn&BP{Q=OTN0}x@^bf z6uY{f;HvD32c=YEtrz7~4waPM2-hmiD6RoLt0X#Ix}-I`5zSSN&#%>az=A`ZX;qa9Wt83TKehKj! z^YJnL8tRBxtD+-r76H1I;J&(wj|y;U@qHS*Xvz6x$mu^2Ue=HsIqjdd25RzUP`Yw! zBW+aL*Ob4uiv3}EH0#q%yTpxp5XxM`ttfM6@K>SrC$)*t;goCdU+v1xtY}hwF@dH> z+j6wZ8?7&9ulP+UA6mwsu;5M>Y~%SL8ON&(1Kggxh?O&MqHR$tjdk9}U*l$NDFmP3t~x=>Gy5;#Mt@nC!AP|C%Nn?G2aBlR4$ zPo272OjgY-)kIfY0neOiwzY@-suGGqErhM6P4x6KjL8WwgjPJS47X9rcOQfbhwCik zL@ilH6Id9c&utk7%W-)9+v7;ELV_O)<#C@UEtc6@%{_ER(t>Z7Z5+;$Cs*@eD6$7t z3!Dq(q6?=o7W`57X@J;N!KT7I(9i%vZt1v$t*b~c`0|bj;98`#!dURfl=BHl_C>%9 zg!8(Y6~lHvuW334vF(0HWWKVA+|Y(@AClLzpS~b}E!PE~`Uje-8hkUHCdbwO*w^zu z`PF?_4fZR##?hIFv;mF;#%%rTyIgBjbqYUb0*+u8muk6B34}*jrDjpnU+O zUj#R!evufyn)u)2yD{Se*dyUKAKRC%T?ebX3p10V8Gu_v6o!vK!KEhIuR5K7YO}W31%~nsW06EKPaCe+*)a!m+Z8F2huXe^N#oLGq#- zhf2rKkjv=Izy8}0wuvEuPI$@&@Zl!E7)R|e+Wc(LV_mNev`MS! z6%W-0aP^sh{sHKlao&1ZtK*UXH^q3cCM3~WyR}vB+brTnsrl`v#SPNkr64s zD(UdFYjH57N?`jXbT9n(I70g_>)dm?#;IMyv%Xe=2a>iFA{mwZK=P3#jh;}3W|;sd zTDDaG?O?{rL(5nA_nSBAoZOOC?=y7;u+Us_{iHY&H+WkTjNe+{{G?a1yqU_+sL09y zOHw5DUPRIM{r&TDCR>yUp(!k(BmI@MBnc=njQIyrRL6*?PQeeGrmLeI)XuD8B#_&= z(>iNG{!ojr8kM{bD`xi%D*nKGoZvU?;mJ-zE{OJgi-|)Gg6TGRSQfEYx3Bm=pCLicut&znBa;is?L234m)_qm|6s~bPKDoI`$!1 z*rFz*44f_~&H`U$#y*?iaW{`6vJA~W(S}u>`kz*|71VXKb6|=aR8Nv0P#L8MOJMcEbnr^iMg=j2DlX(!cd$u^nbgR zXHc*siR6tEi58swGaNCom2#BZ?p%oF79+%L;n(SQZNxbd{ai zE*pP;y+9foQzXE|7mi@v?j&S6Lsi=Ka=M{JmTQC?WGxQY>iDMD`zKqk`8XO-bQNzD zo)|#7S`P|Q(OV{h?my{w& zt3%*~Sm0jcKmP|p&y{lk59%!(i%kMsogkeuYNxq-Mgg zu{zd(Dw`+e!Nd2M?d;s(GH;dJK$H&N%P`1ijX-ajc4UL*s_qN3c~ZvYUz_Q~BnJau zjMg@}uXo#6kNvY&cqQtGB))6?UVbN={=_G5b{5t=!hFo|Jb9gT*IF^k1Yrv(v$MG~ z{xnDP&~?B}`JS2Ppm1u-Uc-LdLY}jY2mc?4$SCck_I&2KF3Qh!LI%&(O>%a^MvlRp z7H3a!ID73hS0~q37ot%m|6wDi(ME--Jtx_wA-_I`PC}e)}7Y3>vzHgctyAq`_y=M zvD~8?Vj%qc2Oglj9xOa~HYHALd&zPh@vX@gu@dA`ddsFnI6-k8KG5XZb|e+6g=uAE z{%rTJ>`bO(urvD@e@>sg=~XMhsV{#GZ^THs=>MMor`EZ^IX^!qD<2L5eRnOhJujxFR-XPOI9Xf|TzZ!M zxV(mgKT1hFHyXe@w4SxK?Ju=(42oqgA}m(C0RCUJS@qSZ;bo=nYw#}dimO43CW)!b zAF|qzj#0x_f)4N!+Xjh0>0JeQ?@zgxL1h?)b$xZ^42kQ-z*l%Z#hJcQUa_O5q;1q3tas5I@I`tuSkI@!XeH#~n^iSTZzc5Ta}3 zm;WdfH{&3R6eyN!7%tA4_cg)1hROQ?OhP=ay66Q~w+!G>tzz#$_dgw~jsFMYg|w0R zGMA3v81%=w8r1knco})Q-;A1?<}JeOl>XRT^UGk>n>wX|euouJCyH+dkK2p6wjTQ> zcqW`gN(yXh<3)ovfRg%LcdW+cP^o%P@qeJ@jmp2lU5L+4ZU9nH`|t7p&y`;jwYSGR zkYwfGdU2D%>jMW^Mu3(JK>JKzIvbI=x&aB4&$ME=uk3ttKI-{l>Xm50fRwt7=DU$y<2hd&iSzZCY1oraf1jDRZog zS$S^6`I^7e#x!Xpik&WH-t?Myz0%{hCs@SsT_yU#YuMY9h>DuNWbN5M28V$EZ)bO; z702(~{txldHG4Iuy)8~b=ZF=+3N$B9W|k{5In_8y5}eva_w~)5XBB>Q#uKp!op?8R zc1_yBX@`&A{ z6`Z)rZ)0-!=u8<2v6}erMM$@W0m#pT562sv-)U>VykFUMCo?J+iyM=|U-0ZJLbakA zAFNzBI-o?96Af*rsM{&Rc|3DUT1XwTk>C z?|@tNAs=uRTrs?>(PQM!siS>tHS#MilETzx4P{1Tc^o0?w4>%rV^s2NJ9&9<)I<)a z!$pEV!SB}wfCud4lW~V=z)_Q(sJHwNHU>H{xg1T>9u4sCKG>BN{QI5sQKPYu)>;Ln z8`LhaR(lbiCCldG+%i+szL?r}cPI>ixpyPRR0^M(y3tZ6-nArCW+wA{wsIO*qw81S z%b`30h9z`JQQvnDs*Y;Wt^y#=#Eu`-q_c)n>AXVP$yfX7ZJBbQ@|!e%DI6DWg+Oc@w-2!3%qsJZzBvxuN8SwKM7pCo zzsv&`Myfr*gWLaP&Y))w%Jhzv0yYmt&B4pX|)X2`c8@MCUoi3X1L0`rRfEH8bziJpkDBEB6gNHR@&V zCEH9+2|Hu0u{i_e&Qra99#C$&I^JIr$PUdc<2~UOZffP72qhQ9e6g^b(FlMn*6qe* zQ-L}8w|Hgsmeo?xZU#ye)K&Q6M6?jNWF`UIb9<&iH~j}TEv4D@?Y%sf4`y-B4!2Gd zSxlKg3#Z+ET9^Yqsp9Z#(Vq`mFKZdo#J$js>{#|1*Jy#}LUB$%!_`y&Wva$k0ed!6 z0#)Tw86IOMl;<`az?J1BlM`q*Bly^pIs&SQM$QoZ1Ci2giG&Hhvl||s+<3Qm!fmwD9 zWr7dzrh9&Ui76uv*voszmrVAYrChW@tHscs(Q{bj+(d^dXsV=HzTBl*4) ziStx+9IY29AYji0ZcCF@U^xgy3jZ$VFsA?$z9g89#~Z4TT!r~B4p=lhx*5{O(1shh zJbyg&=A0!a$kzE!jT}cm>FxsAnJoVwTgdl=7TzdvH(Gw$C6%}LpL1{(wK$(AT6+ew zJQNj3Tkwe?F?`^2nx4b9#lSxQDM?-S4?pG#d`lITBo+H(V>#rt)t2}}uzp}D-(&XM zZW$AO`xKIq6t?v-q^`|%@wT5VMmrQO?o2qjEa31zZ(5=?NS_@=Vjb&n@|xVopBLY` z8HUTqeJSPHoVYd@-Khudzm%juw9J~~I7NqAIlZCy{KKGwF<78TO6w2aI!wknUvT!f zebXS6-7emp3;bL8P&Sj;>hA&{a#?c~!@~d2@ys^H$-O|BK2-(vH6wdV=#&5b0QbR@ z2%%d?wZME^{x54j_PS&Duksg`u4TcNC1>T`LhBQRfEgF^$+k?TW*qC@9Vt$}O zr%2Uu-#RW?wQH6J)p||p3aK&vL2n=09A#9)Onu2o{X@TiI2Ad=g0xy4%c*r*=B)nY z5#rixR%OZP{z?zAKJZ=ZwwW`HI43Op%ymvxl}_>J2^jrn7oxCjGe+O6yCP58*p2j# ztt<;QT0w@m!;P?sD&6S`B3So>D&s9b*3ko6uG*+bw*EmjHEi zQeoH0#I9HVMu>*>%se%6P-Z1U%X(Fp()Dr$7`t-aLjZYoEg)SZKh+}^`SRRuNmF2L zjbrxt%i#m}{9fBJU7jGbNKPi#$Tk0cPgs4%!PeC1(S+HQ-~6_Qk2QUa38vGlmzh$Z zFGj5%yiq7Mf?V$FRA*K z#v;^=Z_@SicE2da>pt(RUX|67#=cSK8q`8vMWz7S1C_Tn8+R=|6{l^_#Z+G84BbCyZ9jmwO`UtV1Sa31tf9rb-SVcpTdb&w<;Ir~sWlKAaWKk7?IK4OOG& zq5xX0lEl$4bJU_~6JG6~Dqu@d-3ajkFZ(p{)I^0nai?X1O#T4+ByMqlu7#LT9e}`MvbSZ&f1&=;6qmW^}_l zuZoe`>pc3eS;mp6!1HG0zYr)ebZ23;ZSj(HL;f>UVTcS=ap3c23-AzK?)yuyVs{+#d>^K{p zi>uq}={!-a=p=tZsBiY(UkN>NWD2C#*KT1e0l+vl47lQn@%d=_b76Zr4pwpk@dBNO zbUZ3Sf9Q(mrqb$=K6iiQ(4C(DajC_S^9#^h4Yo@OPf(=psS6uj?;F=Xxnw>t#hlVP zD9q)dWytRxvG31_L+iTy`RE7^wmUO~YYSCgg}-vUg`%4{2RmCTtgCXpT+kHxL!-_; zF4@?fUR!m1BG|DME^zNJ?53LUw2WVsw*T{1BZ389EQLpNbl+sgDA^u@##=&M2Ska) zU#|bPx@~UrEE7FTH!qd=%whYwLclaHHzP{oIlt#g{5Aau%Pb-e%W|Mra*=4>fN)yWH)Zd!+v4RAN^D z1)`&`-RYyg{KH&x9iM>&c%mGZGm%ykwUXXQy-kll}dGkAa ziI;%bMYOpf$ukdo!adMn3e@NX(0&*-M>$qap}sd55LmUYe{?fNZ=9jfM<460G|e;D ztd)~>(Z=iL9^#uz%xdMK_Bop2fgOq6G&RGs;ECk_KyC(uwqe{f@jhUJz1LhSUd(;Y zSg)v6i0+hEtM49c>nlPj4!o?c1c!YGfHVJ(Cp3D!u%*b1az6@46Q5p%G?>tmLE~bsS?La}fxp&}KghP4bkSc?{$>r5ryt%%=H%vLC^t4Q zWsK4i10s4-MUpkCHSTwJgcDIPP{iD<_e%`?Fs7J%-)UM-4y9M3i0s!;x<0IDV(eU` zMvPoVY2%Gy{*s!anTg`{-C;XmMytb>yJQNa!FbzZIEhyutEDLJSb#(y>D2SKBSO1~>{M)1P9a+p#f+l$PeFWT7K!noTOY_&fa5|S(hf6&c zW~$#2q=kLzr{{x!bK*E8Zi*Z*b7R&l>4s^j`2vUAY`|KbL*(5rsi`5V^9p+h*VX zGOuMxuj<^OF*e4G+6|4#&<~rKPsW}p%S4jzx65df)UG$|9i3B3rI&LPPY1_5DGtgL zu-Jt~&V5Y_EEu+o2`HMIR>Q^!oUS7d5A#6i1Fc1hx*nqhOGll9mX9N`Cf&)7~B}g z=;oB&f=7dmS{z)ura0w=G2*k(L!g*bIdOY$Qy+p22b{tfhN=22U6{-k093F!(a<_| zkywa*@4T`IQPV3Qfa_x`WClK;VW1}idwVC+stMh-| zz+ZH2t98@h-*9@BDTnR5`y<2Vq}$uM?)yIwRu0<$X^I-*J*x5J7rBtQZ*?>8PY zfK7Hc18&}aY9uVUu)+MB8mFp^xOjIRpO=Y%ERAoJ4Pxx@%s2%_y@kCdqp_bt0J@(>B$W z%$*Hsh)U*VYH@S{tNyT$A4B_nBAI0*q__jimaz`0_el*R_BFhh6^H#!&G%kQksPeh za=~Ib6kz=LVsVwnElJ94;o&&E`QuSir2_toy;Ur2-EJMuxmV>gbka#9$y>=7b{xHf zMoB3c4igSML_?}cvfGM46h1wB_1A2Wp-7)>M7d;1pgp$+S>Rd}VJSUJ+dk-|K3$*tQ5SBY_vW*r`8*J3yxt)}^0zi`tVk9bw?<;kku zgsu>%WBR$PLoF#5wWInF`-{Qwq?+Da60&(|%$>!`r`GJX`=%>i-nMHNHsY+&ZgWN9 zerfbk5psI1wTTv04}Q$bmN%X=>@U54wd7q{hjIt;k_&%XRd)TxZ<)C2h|hiK$|%xMnG}Pg$nkPxglk*!jlyC& zsPyf9H+)I)XwZYn)hWwK(yH_I7=MZAYz)c0;z{Ab0ZuMv2^R{8Yt%(($8dc^z-^dxvxDfS_t+OetE@n$`@j{j{k_8mZNFg zkUBSFpi@W{Y*_X-zwB$z8Ku{Tfu1vkJSrC9ldG-?u`@P33aJH6@J&>&_zrQ1W|2jVh^CBv7hWB^ZlF z#Ifv1>PflFAuG%faU``w#>qeaJbrkZ@R6i9RxA1BoJrvZp^8EhI_o~zi!^Vt<@6rI z`nlp}!^U`(?|82r^vT{Ck#S|``lanMy!HsYsvNqtt(x=QL^gfGw^HDVI~BK_reeY- zgQKQ0#~z~1W`I&%N5VpTMj<;45!3SFpk^%M$1U>M3>u5 zb59j4J@bu2=e!*-Z}mXlb662FjD1bty9;`MC1(_=;}@#>hpVeaAo^1f$JdE@JPjE{ zN^;{zd^BQJcF=32A z4qcCvEs@YAYukl=$^Kjp~cG%>Fx1O>gKMJa~ZurG2IBKEoWf(7^2nJpQ+81Y}gl`LP zky7q~4y%EyNDpP;te9e#HXTbZ&g}ui zGGXqwYQF3C?vzEJfyqlOL}7dw+?Xx1S*&01+7OlX9$}F{dqS4nUJ2x_Y|B`-O}cNa zp>U*KAmttwQ29sW0KZS*GExTni>?*WHcgz1l#(PyDm}JS>DyL+qFB7;R3KZA+p4#} zFAJpn8?UwQaXV<|Ils<-{I`X}Z#F#n*`neFH2URJg~wkrVMO_u0)e}RB&F{4mONo% zh$M$G1grV-CsNaJJ;zl1TJA({vVoCy1f|G;!Or%H&L9-H?5-F}q1)?M44Kkw2ZtUL3Ecg%9r_gZTDR=c~Y|J@-{+sE`g~>9zvupg$TH*6&D5rao8#nNI zcm`@4X@i!(D5|3_+Yf*qFtPShK}ta%LxkvQ$K#$Kc#^ zuC1T5SnaXk7&3BCCO&rEB93;sfO+s>pFStbBgeJaH)$@vkpAS2^Fr(W0cR!;uxc0D z9u;;>U-*=cGO>vAWbhAUj3_Y9)uTi26nz$j$IY2ENE2ilKH-E8MM}M=9 z>jo^K__cQx-XI16Q1Oc3{e5$T62I-Pn)Q|c6^PCQs0`I}pbQ4^d~$aBK-!#kUr;|V zc{1LfLfS_1^x?J6qG@`6MvW*wRPI1}!f|_n5mMUC>TJ}a6Nsabz6HjReBAI+Q%>L| z^NOyT6Qi(wNIlRqQ)OoD2SERRCXmj>iCNb!u7orjp=z?>Rxw^I5EuJW&bbd1`ZsEp zvS4ngAF2qq-R8gD}N0rM#Piq8e4Q%5yI57O(?T{LR3P!GT<8a4nA zsS}VIEE1UES^Jfi-RE^e(@Z8sNptJ%6-)F=9fMrxb9=&WC+YRL8>L|yE&AYEP{Lj8 zg9wy2mg*49GgIySez&K)>*kjb%N|P)H#O7X6iis!NCfr{jwK&i@mcPNOln+;fCD;dN=(Bh`X%=>j z|AD+|OdboDYDB$n?k|y{Gy}JT>2#z0f}ZCd04`BmV3T5j)y=bU0r0I`mIfPaJ;Lh= z_GjU>`!ch)qef)EB;UsFN8=ietZe6$FE%Vada~Q0OHy}f?~=VU9OovAHbcv70Kg=> zV!Xgm+52nM>_rz@t<6v16<`(LMX-TIDPx%rujS?pZ6*4q+xLy+ZEc+4OG5LFW|RF; zf<2|QAy;dHV)?;3woL1`Lh3wrgdz2_Pp{G!tJ=X0tbtU(@~fW=xd*K{$XH^op= z-YCu;c|X5S3cr=G#cz}cY?~GQ z?&%Gys1jZ_UN=$)|4%6cc%_pHTqVr0koCbz7CkZnnnU*5;DC8fRv|6o>y0uE`WJFs zBSrLW2jhEE-!Bit1)!t1NzQ6)i6=v(IBX+EnSKZ8VtemuOCOSPE!K(AJW6`w z5UW$kYTh=G++hC{TZZI+p#99M5(BH~ln3+BZz3|BdweB%E8e2;vZh8sq^(>TpIl|- za#>L1?h;`ElYiRaq^Y2jg#pviKo8%LW6&GWL!z9o3MV9YF!=TEB^j$-gu1X5ltXE~(W&#%<%(XZw#?0v;ME6uLL3g=e z{aBmCR$IxcWyhA?Q>tanD&9Q5kNqg;A1K@g!OmO>OT<;gk5J%#(x9brp&_9L$*UY1 zJAYhx=%nG!BFLo1{2-~@s(7T0QSmblxU;^99p%u(&pM?xY{{Y~EO~SeMAMaS{9|{S z%SEkD%af0wU?E}wowwHKBGvPa+{lPT;lOM=ppVa;)LSvw%J!betFDTjS z@O>i44VE+E`Z?*1%mP9y~OUG+#eOHZrN`hNChSDzhGnFj9d=Bx=c0iV^{BQ{nw z$Yss!!7FPDy{y1)(ZjX0;5TK4O1$yZ%Y))>FRLxVUpps=x(JWBiV%mxe3uR3#9bH* zwfeNPNE6~G-XY+Y%;r`9oJx4^0?YGDq8xW2NH&QTphbjBrFWY1vZj{h-#{OATgHd~ zzBfr88GLpFzKU;l^{PG0X(XRrm-vEU+QPFhOwV^`AgQsURITyQWovgCJ?x%fouzY^OZyqvOzj!N;Y-;NVu@)uJHs|#+-~e`8MpElfnSnhG%&XLw}nU zK5JAe>`vhg{2$1q1@%R)EgvOFf@W%cBwaph<-=_xTU9Y-vf5opt47v~oFH|PSF0`f z>;pC;?#%s8kj@Q&_(Vn{4xZZp5XX0;hRtuq;E^4%Sfn4sQU+1$-Tqc6^Kj`q>s1a= znwkhSX9Szk5Ht^A;kfH7!Lh@^M;IY^|sa@PYKD@Jp9zjXN|i6`h?PiOsQ ze|z1dp$(H|EutROG;>qwA4{Opsq^d#N@*J;czG@~5<2rBYyb_!gSq+pcm#laqZa!m znTy!37CdfSx>a)(1t*?29zF<=LJlocup{w9vaAm8-UH!{R3cZNz>2}c!&q(lcQ69I ziRP{6HxEu(W|n7J+}zIp4ZHc54C82#Ar7E^rtaGAe&nboas5V0o!*f7rc}NcrrJi& zX_zqZU9^4|>8Z)`K_MwEw#1pDP(iH4?ZJT)RR%c$U=vhg+Z>fdnk+K); z=m%RH8yjr&8{f(-#@Yz-Hm{W4VL=@!pVN>=Kvk|=TNeE1Vt?e}fqtsuMDyPR&F74i zBuu0^hYli3E!Msp4Kh}da3j=#p}A9P5 z$_R|t9-lSJOch>qSXG|y`y~^vx#83(^v%B}sks%n+@W*p17ncERJ7IT;C`!m55U=+ zuq`}t=p22n#e0sBnl&j}w0ehDEx^2~REXdDW5B^Hd-}K= zExFlqAXUuDUeC-Oty+!chr_NFoRj_{kt189qcbJZku;_>?&>R+y0+15eVhBVX?VmX z7LSvGc*A~~Y1$!7Kf-7d~93t?1lPDj-K zE4NQcP9HuRDD&TFU-Jq$8AOns^E3@w-Ne9K4; zys?NKN*F)4Ymod^d+ITd`X&%fkBQQ`K+W>>Erms*(Ind1BrhAB)F~!6?yo|fYD$Fu|kpD_oYQAg`k2c8#CZ2!QrEqpD)7H&}AbNand#KsC+@eFF_MQ)?98~8k zoS1tp@qhW$`gncAem`GkhmMdgkaP{v2%_h94_Tp@Tb37ckadz?r3i_JRC9er6#N7I zo(ic;bxD)kIhEa0SM!GXh=@}S>FYfRKH;i!xV_Gc-YUt@k?>C2Bk!_}i;~fq)80erBteQ@@~?D-_x1G6G$E(9}A5> z#vz+ebX3nIq}qVU=C`nX-2d847F>U$Ream-3u=}9!`$qTTqRk;$b zmG`3rGIU?YM_Qc(Am$n$5Hja?KG;hdSnBhRxImUt(jnh%^H6RvG;}#dc~s_a_emXw#JL0 zbCm0)B~|O}hE1JEIO!fr*0Ru%eMr=%$O8pEx5%J#EpwE0d*8iR=K`^setB@S=(diG zNYD&i`-D%Fmn)a&Dw^`piNz+~Zp>MF>pF2WA(nor?_V|1q5=d}OpxjSK=?s&rvQZhY zpO%`|a?9dz8=Wbfd^8XclYXAqRd4+^-*)brx7 zvift|ku7eRb=g0jJD`@w*DeyN7$@HGnfP@C~~#kEUN?t^D6Kco^5b@ zrtmN5;WB-)MNTc2l7%oUwCHCb{^hmAwSn%7IK?jGvZLQDLwgoC;t9SAFKl z%_Q7Y#h6FAx48~MMr#IZpLtYYTQh9$hEpJhBfZar`$j6b=jiIr4icL%m0&&E1 zdu1=?j2$^DonA{R;!a8!MJAWZ70?3dqS5)DtJvds%XpF?ezo&LlC~sM{4uPd_EXFX zB-fSVcIrP3dL_8#bHvs7;9JRL@2_hnjn%{YPrx zv7%8R_z~X1cq5}TF?)Ww@C0zyUC=8aWujv1#(C8|imIuU>F6}SXKxSV(izYeU_EH0 zkd;&=CGCK`XZyh!t9BUB+jrnT4*9FXe7*0SSCwu2DN>o_SXx8z`=GlBkwku**j3`#Z><79-Btl zO?Rq4Wlg+g-l+~-efMUs(A*oVV!(qLIQ? zr<_QNeWpoth1!1-~Xb6ueUqV~~{dChDwwWePrm|qGT?a_xiV6!ib(v(Ja7y~rNywQ4C=>YI1Gtk zzko_I(5n8P?0l3jO)`mNSGndernUB8f_Q0?jm8-c^t!Rti=5yuc1L6(loP*}h<*9r zYXvu{RPDDFYCJczFWBQcD@PS>Gw2L2oLwJ2$vrfS;PbXh5XpBeSl@8sE0#f}uS8Tb zJIDA_9tY_ZpCrjRGZ{NA4LZ`MKg%#Km!Zl?!OROOO(LIMSRxPtiD2ph%BOd25h~H& zZe~*j-|}K}<}~y+e6!c+yH=uVq4T8d!uWz=g}*nw0TT!lS)HlD74X0sm9|capo%B4 z%QCzV=sdGK|1d88JM~17yP4{ z*CGgu=KrLhXOOn_0%0Eex^{wY;fW zr<<XQ)6+ z6Z_Dg{{rlxl}9-labPL(;w473X)L{og5|pK!RNKYBx3yDw1qpDh#WoAH_hy$*z#9| zj)_?Fy}(xGy^Q_>Q=YL4hqYK1qZDUGxPRpX=aaAytHsVY~w9D0GOZ4^|;!@|b;#ZfE9n0|$AfnqVhS$=c;!>nxW z_gsotL>}ObHE+TwVAt(v?_4@BF?Ls2RK^mku1cj@%b`OQLl1`Y-ssHb?xWD<>fewdyvxHizf(Xlo3zuop#6p@(^NbQwN2Qp@iXJO>2v{vG0W^{`Q4mN=h< z<_t;NS~p0p*2)6_i+HirP;=D+Am<58V?Ui&Kvo65PqXl=nN3qw8Ro-c{%fL9X=Kf* ziH$C))=W8C5=HeAf_I&B=Yp~Kg83edVAi)f6szyBdEK5|X%2Cm97(64CG=lIn2 z)?$S~+KzvEVcc^3AFH|_>d2?+#?sTK|4>CuuZgy*Px&%McOJnW=k?9iiR?(ik!iCU zn?SYI%Obe~on3%<-CV$Hbl1UzVv!iTik6m^D3uP`w zBb;!+puGq7d(8ea4cj7K*2t|F|IRg@uI&0%%BbOwoszBq+Bm&J zy@z`?SeE&IPpr*GVXXom7+<>IKsa81@`7?BZJnALexXU`^i8h$qAC4}c2X4JM$~qg zHrAd5B;>2OQs2}n4)p@fiaTkw+{Aa`jCNdEyy?i6auPWgD0kr~p9*c^{wQ_arAiBkxAbUh8_8ksI*U2Jj!& zT5bH*TA8SLNt=dOWEGvtq~ni|pC%NA1}9UxSRrBdk3RM6eQ#N+5&Uh9y8ZGDEJbu- z{*<53_EMu|EDvx@%HrWT;SNEce2ufaK(GEu9YA?b4_<32Zt5J5w?8TlXzK0@s3y-3 z)S`6BxWWgyV1+b8Wv}{s=F%7YG9e*Xt!Ky zYls2o;5DHZQXdni=x+veA*GFvEER;|xzmaZ>dO0tY11k;6p!lc&wEhte@Lk*m~3y1 zEI&I7YLK!0sGYe5UemcMU~;;gJjFO4X>6 z%me>;K01R@VSrqa0hq%`5F^OrAD||CCtZXv^2SE_;|OaXq4^T1y|broFbPL+Bs^bm zn4vj|Tge(7YVmNly3NJsE!ZsVyo)p;(eR2d6LWnCkddILZa!m3mb-R3ALDX7Xu*GQ zD3I|ysw{nD682nqN(72p8ycw{cK7xg0rQkfPt7*BtiUmN?p#vHAnc09hLY<3tvU~c zQj^bl+TrYW@4^#d9%wdk1#OS`g?5k^W&o0^`cT)t>l~37uA|+?SEXm!dV$b_Yr#{j z`-cshen}t@lgyn4Zk*FkO4s}nlu`$Gk~AiCgW(drLgX>WCY#-}kC*#XlRXd3XA`82 z>xQ)WDp9P#kqKf5g4dM+%4DiZO0qx|>OC+*LWcmF0Df}ymV?!`LqQH3^mSxOMXVwf53zCKvGd5W^zYX1e>r{^&gQd`m!0jdiJVm=O#)G5R#$P!47L z{8?TyCCT7yHSq^0v}tnU^8dZROhs-B^pBjtL7r?%$<+B!Lw?MoS;Nk+Kc`R1k5UStQ_~If`T*_x|B%LeNyo`fAZ+NTfwO?D+BZ>_&w?av2@_OORbM<5Br$M+P{;mwhFQu~bbV#c zii%N**(6apLoc!bU=c~1?${->H2F=bdL%^XcoD)F#v3c65e2XojVYiDoTaZ*9cB`_RYP#TZ(E6==G$N!Bho{QRyU^geL*&7eoLdtmpXS56NggJVEgpyx!kPk4}`(d<|Y zDgz`>8z9{g{#+NsEpM&G^dYU@sw)ADYy7Vk9~D8%2*D55j;FtqDsFrdCV_^xSK}E% zzZTL%&>TDBIg(i-+7+oGuWrp*kM%8Z`j9FE>{)3^vVUH@!ZB~louI0%rIGlyx0llX zj#<$pNSOleyX`r0vjJ!a5I$<*odmcae$tU2JHF`tt2tCRQvqS_cliE2eZd)JVrZ&F zJpBR)6lC;0xx}}->nP^ys&Aob!XIvTE^STtp7|JBmWC;k1TmBEQcmj}2xaW0lRur2L=IyCk9E1XZTdfPWqbOJ;!&&PKeymgD}aYcu6k0p+&^kN7`#QP@C-9nD_*fy=Vgi zb@jl=@Yw^vc1R7SYt#QCir_tDp@Sh5}wTU#r9){R+X$|>+I{HI@nTMLk z6*LzKtQ*gv(A`y_c9b`LTo*${S4phyW&LcsC=wLO`Qrm`@k7lpOicp) ztyOxIIJxy~)3x$1-%ud(kKS#oeXFgT7fksaIfw&Rvxnd~6mu)%8R#+UchOF-z31}6 z+|YBu0m%;ZphTUXLNo81h>Pg+8-l4mlghX~@*AdYf0E_pFFQ20O3>QUR#{9whkNkT zD_#j$i;k0I4uO6DLuzP|E{c^G>{5myYoj?yG(l)6o!A*WL->JpVfa59DNS^lkp;fC$phzb~?Ixm&;ttetQ#4d9>$uf+BAu_)KNBn1`yd zYvnX622QI}VzGE3P|jLsVQ&)vlZ&gx@+;2eOL$alP=SBY#UE4W#P@%n`Pb^}_d?FU z`aQ2TCbzncqC_xE{PDdVoY^Rd0y%tH0C~K!uHj)et|^SRZcq^_P10&dvp^Op5B2|c zts>xjS$0(YX6d)CWhx<~`M!?Ot}0E$ zTpvJT`G7q1#_V9^lkGt1v!kJLK~lX*+9F=Jgp^}0vcM`@wMIGD(uh~@A0mnlkO1Ch zCQ#LGP+Zdu;oW?lZR59O3$oXfTlJYRWyfGHU+|3N_SmQf;*=AOYunHB+kl8vnex4? zIrFhX;2b@UMg}ScXJLl4vmz zP~7TqMWdC-M|~T}rrdCPsJ7I5CZ<;&M28WKY|vh{;_wK62no<7;MwFV|NFL2%J+Ei z4!B<2o9PZL)T`gnI1-%C;G%ecj0TKLGtv0*v|hVUS*!B`+NARlxwkdEBNxqSu5nwY zS~mRe)XR7o@-ZHH4*o;3$=oKKHCf}DueKi}wu z2m+qSk`~%sc%50}Z*#Sxcy%rCoweTUSE?HKVLw|RiNHPoYx1J8XnFpW3V69!#bG;D z!X2m&aO%IUG>5`B7q#ucY-N#U zuyo32_#1t-W|`4#Bv_s#h30`?d#`W6NO{BC8sT+H!3Yz%3GOB`Z+YL>!a4nvHbuVw-7s11mEAfcFM zF9l)+z?u5RN1>2aB&1@55sDHZyRZF7Wo1|eY~L0}nc~x9kYH9Y0;YTykph;uqCaAV z16=JnKGVnW#DwiC+b^$~u2ttX=`H{Gd68n&dwu_|`yUd&Q_@lWG`;UG9@eh#b4BVf zSDb5&R|Q{P$#G85a%u1g5iJe25<;s9B)P&9d+X(+VdQAgUtQ&7Xidcdox2=i6FogH z3Mv|aA6sGT&WindoI75>JUP}j`ZZQ5b+^Il;wSfio#0uTP@6HXfd|r4vk?+Tpn)d{ z^yVF(?6Te;Ps19$U@1*@3%ggYE7)(e6@Q_aAywSfCZh!tbqyiB*{OCLbjHqHE$+&L z*nkWEcGBg_N*99<#G2q5G>oZs@cdoB{L1lc_wfrKR#Y6V3aN=apG1Dfpf5wTibpNwPS*Jwu%Gstz>s zg=+$xSk`jnAxESujQRae`pG2>uTKj=#M!RbW0X2(=p4T#(-Ax}0LV^4#w(`}F56b3 zL1n`(^+`&iok^T{nx89mWN!VQfA+<#2H=p#$Q$tw|+ZLYKM_K4ezxy**_v)sUbBA=-v9At61Crhh(4S zh$ZGYbMPTs3+u0cg^3EV{5Tdar^CD5+TAZrys{l);u2o2a|Jv!3S%ZGzrF3j#tWwd zk_o-gxtDL8ba0QNgvJNiwZ9u4VIn(%Z`tYdV9(o!2%E1CD-xSmzym%+IC z!h(s7Vs4=G45*1b>zdSE)>ZLhm+&km^2=rZ4gOP+6q66cJVWs>vHxH@N9T9K^wDYcQAF!OBy!f zGowuRO6_&$_9Es;ZBj7uIMnyagLsu8!!aNzihqWHFw388BNh6yCE=K*mnm8et>`Xa=!}~qfrG(d4urn_j$lWa&uw(1(a(szyAtVsLPD~k%Id&G~hnBWt zal0<3Z9pxU-J_mA{)c4Sl^V+#bZ7rHS{JA zlT;Ke+Jy((JT=}o?o4%cj<6vdz5QoMGGBvYiP;F~5j6wT^ zX5xy9-#5FD2nO>G5dEEaPMZ?x$q6Uw$ZQV3f%vWJP`D@qQ~Ms70+o-rsXRBQ-@|wj zzML-q8OX`}T}y4x-gh9to9 zJ@O9l#fk&LixGkh@B-hP-@GMht2w8hvbn6>@FAG1909za5aAq#|97ZHg_evN&!FdH z1u2*oK1j1v!ES`59xJ#X+TnsJ_f3L=$0o(PD=B%zXNXXtoa_NSLLIskoBE?~)_i2o z&t3dFFhDYfJ;R$W=PVoZQLVFa?K#16x(h%kT*Zztd+OOMIPJNTK6KP5f5*w zll{ICMoeBr^T=yU`3~GH8$#Z9@#rlw;@NH&>qD&Hxe5_d;{+tSR%tw+%`sEOkM{HnGI|T%zMDeBB zs(9k3@uQ`nluw?ive5kCQ{1E+pAE4Yu3o90A`4WnawWtYEeoYx!=aGMUpRb0Wrc=E zXEur|IIs4n1|xCC?rWn})Vb^AcigDrYNlG|i%2fLadua^NOMeMZ73WFYbI`^rkwU6 zNHS)9TRp7B*n&dUu7k9Z%DfznjNWdCnw<3-i*q$vvctEYs#My|Au^O9^U{#y*lPE~ zV)r$Kj+k9|`z43Wx0LU?a(ZL;LCyN;^_+8>tt|rjrbq;X4*u?{Pi7vGUGyKiIzQHD z!C0IKemvKpS~f2{o8<%fz_Mg5w2SI=oi8Yk;|qyvj}(p(#auVfnm^7@$TR+Q`^UuA zgqSd4xPIMw?J-HumyC5Abx5V5%Tp&K_RhKDp!cUrY8)IicS-u6AJG4i#PqLr$~Ku%p+;b%7-%#UXh7HTo&%E@U9(Z}=3N{B(^N0BYM z^H%P;w(^A{eWrJ1fo^CxwA2;49V~oh!|D9(qdn&l5GK58bpxl##_pUr6Hb1Ecn)b{ zMpE8y;{Hn?qYuL{rz~r{mG4og?t?U?h&kBqAj}jSI{9=Tp|jgOmPnK;T$Du~=}1f; zKM?5Vk=$OH;q0OX>0QUF!i<{dGt_z}iKysMSOn^W>;?8{&!9v5d*K;fhsY8BAEu^U zam+2pTg)`omJ5lj{jY4EHghYl4jo8On7Ns`FlJ(EoQ%ZG+pG=XsQ=oK$i>A13fqkE z_$nMhU+FO38@YY4xeg3O>t6310YU49z8MOB<`M z(*p~*WvU7()+0+rl5q&)@l!c_fBsBf&KVhDEpRZfPG?P#)IaXo;jXJdq+V1_rCSIe z*u1(<6d`n0rCMJvyNrpm(-_B>Xv_1S2EKjVvA&B%9`5n=MPe+ z9x2D=Ti%NwS-V5FfT$??vs?aQXsrxhdKMPlT`;|6gzv$a5H;!1ndpLRa5--K1bvF) zBb}h%^F47|?upelNp5-Y*LNKE^m*>9JAS)pWfX)uZ+lA!-RF=c>Z6)Vnu6@WP5|nF3a+y&DH7X$8wa zWXM|V7!J58I9l=Zz`<;pw<3p`I<|c@IUxZia^}}~vo5r#p%B&pJ&-B#8LZ7$0@x2| zhylBkqUK67gO;+7&q1C>M1XCstpMQGr<4N7jv{G+3k2ju^ta)SRBrl^gn*e$)YG93L6 zX$9m12+r$C#&-;Qqwj!kPI?Dq{D@#}fPY;k2BqW+FjIX(Ksfq@5TxthVHpA#f!dir zwwSiNu{SXckIcG>Jby8fGr$aqnvOEs<_j4?L5e7S&KsoQ`+$|XxG6>~CToR2{f|H| ztWKvW4@rzDUAR-XCq${A&GW=`HzHx_T-~6*2fwqnGr1e~Gz;E!1Zaw#31b!DHczT^ zz+^Y)X)w63TdoN5>O3CJs-gMwlSm!|(^?gm_YHD`@mF}8ksm#A&7v(nbqko1| zL)<*CCGdRjf!n;)xSRvZ_rcz9$drPF07pj4(}yfaOTdh0sa_2C>U{8&i)mChD3umQaD!-V7eMa&8lDDe6+a6r zK}Hsw92ytJH3S5uARpng1((6ACT2BP0g$GlVM+E-DOM8+XMAI*)ZzFV} zlOl4Y4OHSAhdFr4m`S{BjBb{A;7z7SeZZMbH(2KCVHdKcG+})>*M&sv;Oj)`Yt~%f z$3JV=?`n9=Ym*|7K;{dcD{36tZk@Eh+sGg#&N&foHQz|))N%*IQ87RPP*&QuF1994 z-)l?1Kk}-Ov=4j4D?W_3Kp?~B)@#zr5o_`9U0KS*t_od_BZ`+2y(Hsf^KCFwpd-xv z;T2HP%epM!J1VdR6;Wpo?6KY(SF8Sq#2c|GWNFrtjvJ=nUYk^w!2+w9q}pZN)ASQb zCCohf;nUNyfV=E_ep2T0k5BE=i*X00J56v}3v7#6XdH2EWV&)8i&n7LsKX3uOvM}q z$ssHP0bcBcdnqP(*_1==pW1q&U;nHW1^a2~ygWW9NKMy9jFpMxTSwRNfj3$o%otfh zI@X+o&%ExEn@y#kos1j8+A3r*$Zpu_SVw$+0q+^>adbFN_01Rj5>h3JUe;s~^-4D; z0va$dJ>bk>63Gtz?5--HKx5hBEUOe-1Q5qF?jl?%XHWDxqqI5<#A6toc-q5_MImd|7uRBx&1#Pua7J!z=0nXI4RRjR5wzIiTeC`)!zLbI~P=7W~%h zA4P?dlh*`tzIhKnYA|Ve0++>o^L57X$3SY_XX|e#({)nNLa}i}BOKe+1v8ir zds^|h_AJzA>vcJ#2b_7ig9?twT zu?d_cA_1bPEmuCXu*Lh)EZnd5Eo@r}WxSGCTa~Ei5+myxC$^vt{oD8o`Sb9GLawUzFo*Ik z7NO^>0otYj5opxulT()~+(T?ku5+M(o|T=mBsr&Hgp9Vu@e%blm;kr}Wh!ckN-N3r zU!_P-q&ywGV|%Vzx%C>P#4(cp7b_i0$Kk5UygY>+E997 zy~d+=eS!jMBx8FTKkW{?iV3fZk8EHWmaazM`YQ>b44n3;2cU2rJONIc!SE_Tkov5> zTWg|1<$jGY#8f$HXLA_UYanHNdr^(yk_xffh<60IlGMWgLf9`52BJs~nD^G{@>XWJ zVHfai6hqJAiX{a8(F#+z#9|C3KqkYy6pt-qzytz{4VcRG_V(}n#VI{8YrjMJ zJ5CSP)ne#i-``bze3tz2W2X<2ri(KUR!z0QC@^OFZe3`qm~?7GsS5fnl`>GfJ1ECn>gdU}sjx2T7PmS0 z9%*~G@?l^GMp2muKQYWMP0`XN4td9#bcl*!6uPi;C*_=>jxIDdE!5Gz&{tiS9O%=? zN4es26FhepJob*QZTaf>R?YA9oUTMH9n7XHyAdM_?Y?IroC8GAy zja$S6h_vA@`YhdK^}*}mLYX-34qRCoYy_;jB7p|~$6t(P7_p4EtbWW;^QT>AMzYhd z_orNXElL~pY*y9rYEr`x54o1PMZUh$KweRVZ*kaY@_?%-i zc0(>zVQ+4q{pMw1XdQWG^yQ+jUxlwE!h%GKYRqJ>M&^}9Ff;}JNeVpY8DLdTPUmH$ z3@cH8tu`fS8qj>j;>n?gZMIk!;>H0N-zC;I!owYfRB;>!_*g(#hdafe02)dB_e_yZWiiL>+1;HTi%K?P=1x3IGp|T zWRtnnk?tgnZ6IAOAn*Zbi4r7N_@47l9PGoNxv|HX!YLX^(~DVm00VYE?ZJdR@u+TD z_0u<+N)k_B|I|Bk&6?FsKmA6nJ|XQOeSbTFG^&u8 zo)!%bDKx&g2y(ZnK+7(&c&9tW9D+$oT@y6(=@fN|zta+D+Xd1m)o}{?-yu(@b_=300nXAh{ z7Vle#IRX~Y_%3}8Ou3{opX!jaF*h6{re$~Z#R54|VZP6Ksv#No>p%{VsQ%dMr}3Ch z7m#SlFhS3TA8bg?8HRXKA8e-H%1GHuN?o?Iew3f*9GMeM-}o2XQ}0^|JcK4#`npnN z{X%s9;cm$QPZlnGQ6^p6f<7xyrfOAwbm_QR371ac zC)5Csb?(K@5oaIG{)c2h$`mjb;~`A?sI+@IZT%y2s#NYXM@wr!z4V(!KH6hH+prR- zQk7j>?f4~j*x2u?e^W9JX|CiX{AEp?&dMhi<{W?)0wthKKEFWt7lFuxC%d2MSNGT0 zXhQaazj8LaVz~G4^N@QebEn__AkaNl4UpG?A=67>oFm;0tl6^*&rHXO_)9iFl|RjY zF>dep&a;<-r%Mr*@>tiav>tylk)3+$O(ruHSAX;+H!)oM(+1t@7Ms}OZoO_L$m?tY zJHugR|U~l1A{9CJi zwf4OqaM*SM_7(8K<|=`q`b<=y5o29X(xJLr+x79FBNE&W2iW)8z5tgYl!o*lf~?Yq zhc*poCVy2+d=g!w~ZBJ`6Cp0b1)nd2jL5f=WFkwIK>mfuTv=I_u2`kCVw&V(S<=h=VO3YX&^a7iz5EHopkq;{Ix8lKSIbI} zX${BXGb2d<{nQ`c;&FiMcG$omsF{J-p1GcHv*4J(j6Rk0)>O3!u;Y-$ zI7_pym+tOlpe)KlYE51X9K(sWYCcura>x#x?4QM8em)cW;fE{CqC)bs%=*jex!#M` zy(ot>n_6TU$1BG{Xm`?$p;U)%05mxRy`AIGy`D+-nE|{!kC{)t$3+#W>vb!0t7@Cn zSZA`<+>sfYvt*})4^zTtOk+{rcwVl2P9S4{bRrgL^zo4+sph#@u)7OV&}!MfO!fey zn{eB8D%Z*DtTlnS)0567@mVX;?*=B#;92mk=>w#KiwU zrIK_Jz2mpt_Qf|jeX-qRBn+cURg;p8l!+~AyYYxF;j`VIG`=O1EejRecx=vekjBXo zgU`{eiN`uSLr;&F;YK2Pq9;S@rT&u?(W400JGMK)Ru`BX13MeCG@6Fewf6k~A0oc`pur^~dMET8j-(X{v>-?ntAv`GRj*}TtBT|tuQ*DR$( zDu*@er9Q@qCIid4x6s{zn^t_U4q;LUiL5H|1$Hk8((O5n3YhpqcgzeHD>VVHVEYyz zp>RtF(yL4#kIrFjpAfoGVRHrN(ya-;k~Z~x>8*a`m0uZqWTsv@1o!rP-gQ>G^u=!?LX zK1a{z+?GE)rzK?mc0I^=1^l93>Pa8!8)QZ4O6q9(cODK#Km5LuX8Gyw#0Cn5dx4?f zj>(RN_K2D)`z7+z@B+xl=ZA19g`I(~iuj)WnHIuy;k~%^uR^qA87KD=qDT<-z!yTy}#t6$a;s z-s~@84?ad7dNGH2BEjEiZUJM&o@v=QDQRFjzMxJ3YNb4=$W&JH@(}CQ!*hUhe zuaRf`{ap`NNMe&hHr{X8_hHCxn04d+r3zNxw{PC;35IWgAR|B`x|(7XK3Ka@@$6A^ zOl{C;1DHI#LRAUIP`dJMHcvfjzDUs-pL)r}$cl%sX$9sBf>?n@k7X$yUz;j_6RG+0 z6=$d!Yc*pzpKZ4=)8b#6*Tm!C800tj>=yclW!4cX_zYRv;aLWsdEX=eP6C(lq@`n- zN|}r(8Wn>dbzBU;jvn#|#`HGsGr5o}AbcB*Z#T7YQ-+Tk(b2F#cg_RVI}2yr#;6Gz z&5ux#Ss%8Kkx6vP1=>q@u*7Kg=P;nvM=g+~L%tqIw9S08AdB0pVT$|HHZrJ+c=m+KT{;A9bKT(RKlt(P8WcrLZHhZ;M^GCR&D`Ry9Y z&Ee?tyq@nSQa|-gK~_=>Gd>t!OG8XonhvOKTTMrSc=fpAevAX1=W(v3bKB8 z!iUuFV##0Al3xIZkTa64?8fIX!txQPj41?`Qx4p34mx2;&FO0QuO=n(mvXXfO*t~? z{^qV(M%LuW)$4MCDW0}$+Rv*xfbuD*pHsU-Yq7X*(cQIS95bGBL`HDSUwI&snXb}E z^E>1!K1jZiLHqWC=I%9V`|FY~&&2b|pxwzjVfucS06+=@6LQYxJj-z`BUb47h!U3D zu-%%19GXhFRKI+ldraK8lpUlzqAtUswGM3sAB2{r6>2R0eZ;bXaX<~vKVpY}hcYTn z?fi$7<8^H1sMy7I5Q|yApCC#s!o%2)J^f%L*f!+{c?Nx8v{^T^ zUm9==xk4w$0he#@=xlw6_=Q!s$Yt28dbz!1dTR)H(pZG7lqImo-$*wn)2t-^u{Hmm z_!{H%@;U9rMLkU+8B({rB4v=IG!>&eAG}Ut!G@vuV)jMAt|K!{+06p;AR&Z~DNs_% znL&+@a*MJ%XdvrXrc(7oeru`fToNj!zU=?Yq_q(TRX6H9JAJa}>KZPnwvwMGt(~&0A})5@p+1-L?;?vt(@k@CfF9akQhh zpVU#x%b)xYDW$N*OFo2%Xyltfy%?9|7FTiOE7Dgt(+sXN;SP)(npv%%z(3^_+E;h$ zytUJBAXD*zHpygLj0{#y*1(7>FSS1x%*m#I{bsrN{iQ_g@bH(1=84{LWJ^QPbEDdA zQ^=^|mtWfg{BZHwJ4Uc0Gjuz`fkt9c-WLDTl1KlO75+rr)RtL)+b> zHxdJ`+qYiFp7p#7z5TAIyI(Xw{;yU1(Ny#<|46;J{X)|1ZB;(KAU-`35NLu7YFK*L z^OITLgs)32qhY?+*@S^=@ws^FMR0P1Vj%0ITAztke^cf>Z|eY|gH{+BZENImJ@3_X z-;Z2Uw*9H&r81Tfd`t2_gBLC_oFQczTSGFg7o)fd2o)>KUR>%mFLl6G|GlJWm+6>5 zmi&d$45s^RJ!>v@EWR(@EFYmyUj=&9&^ny5mcb)_MXIk`3gKB+=Hac!0y*u2b7l0x z1mg2Mj6-Vb13u$|vml$L_=HtRp-POI(|V+!?h+*d8D{CpJ^=aLDTl@EyP&`cS40l` z?tP{XF9YLXJ-`1tjH2L=EVtKjx`T!;gb19fV6I9U#eDUoSUOhk%|U%OJcVu4oG^cj zL^|(*hItGmI|YXsT!|tg1>HTN&KI*Nlf8r5$jHtY%Y8=~+FZ6tb#xh`%gV7}5>xzK z;F8LNzis@-S3K6LnnmItlII~+Ti})6fkQ1p&-OVhhvLd=j)B3(r@YtwKb)@*P~V>k ztYU4J1OFze{dNg!XALeX+B1{Ii@Y1R&<}ip+P|pn>>Bsa&eB_7f1F?&Xqm6({OlQb zMSHP&mu!J0L2#vaH9tF}*;6gQrw8*TVtlL1j2c~Oe=yNX%T#xIU=xA2uq_&F>68=k z^e~zpd|_6o{*}1|O|J1FMQ(ATRA30MDz!=%fd7iW=>#O#tj)F!&sdr_DSfWU9sG>ii5 zXBF0`Dva25Z0L&!oDx&loo#G`alztkly2!Cxyib+g-bx3)yqHssl1FxJBrkXUf|@m z_Gzt?I-f?ahhnjjv8Sg4mPh=FeVV9K>JNhTjAuAmU9XdiA%)NJ^#>xtmarwdpqf<6 zFHZ#`TpTau5rwS1}3 z8`k}$pUou%sOTExR{v%{hZ&4T4@J~#)UIrR%+Nj|JzW}(0WT#4>0>>g5$0p64zSqy z8hVH3X|PSW`kmTf>vLky&2EF!-2&*-xOIKYf(M{m8)SX3j{IiIV+q72Yd1-N#h>3P z9#H1m_L4MD09P_p{pby9T4zV|I1cx=)`~vQ7=bI(iDaW5{pjSvbepG+G3-FW<_9hCgYkz$>)WkTBTUy`htKP`}~{pGdWu7xEw_{q4w zELFCkdU37H&$L2-H6Byy)nq;;7+N#)Xj~q5d}T4^Vax9+zuFdc))Q124G-qT4UwCe zBv);jpr?B+v>FG=`;(6<-)Hnq2LcTV!BxTNzCUNq0a4QytE<9!6CEJk) z&|>pfGDO8Ro>V@mF=+4;K%NSpsx0}Z$XctwFL50y#q7`5ji&&uGl>1sa^}{XQqSvh z?>vY_GDG@XwU#z z09h60@nwG`3&+07p;!I91l?(6)w&VMDJ(x&A8MmRND-LaMWiroe&Uqx{Z9U3J2U7% zTPJMXyTp{k&Zu&zLV-k8#D3wT-MGG8cx|ipQMRl*@1eh#GbbQ}FCtR6=qff=uaJ0i zlORUdU>yAc3Bqx8n|0aN9F=frJ?yQ|gluq_Z!i-q^xWI&vO8&5u(=wLu}j__srMFJ zdW5j{`}mvS;oA57ZFt$N2g~^k$0?iF#7sgHZu3Nj_82?0_UIK5aaT}*yNZlufPH6= z-3V~&vKePkgFFyupm;pPErYk5KdMY=t<%y(dU>#7q1rtI) z+&86#rLr_~&h<7kQp6@|bS*7WFPj?OmeFD_wFndo7Aj|aAN#GsXm))=50eK=%SPC&W9tbG5o6%9S!u_B@c;w(g;+S^m;V-n_~&5+JB$;GzVfM+3NJ_tJ`LzO7!O zDP$za$~QPbL(km&trg}gbc|ZvV%38RQc9bYnYSSu2i$UgwVf$Wn&55M3o!9<_$95c zI&ZREOOCeB{Xra-@vwXB<@UgKV}J!oa; z9A*X?K1Y~ZI}WI8muP`cr5coZ*~v<=&<6LJ={r+9w|Vf;V!v5)=ZJr$rOMD79LL;) ztGh@oJ=bM%>0;rRq{63(l@M|0Eyzs{`?MrH*DW2V2VX}yZA|AEbQg*0*4h5#zc$A# zMlak(**>nhoZz#>PXff<$4CKS(JwOEdmr}6KiZ^}6G(O~SS_6ED$9huRwIwQN>&IS zW88Z2n^)2J*fqbtTM&)^+mv|mybV@b;yr{w`q#29yfn|8l%O$^L(Fl>0iEf@h9qkD zFLI-`vU1a<&c;n*tQn-gu>3!_qvZ52a7X49P2A!x(B==o#~!bJG*16OqjNP{=%jl@ zt$c(PUN;opN+Yw7IXoc@d|YvWv4d<5H*|QzaH>lGF5;tTYS8P+QVv`;$mWLH3q90m zxz6(1SbWGj)4I~SYB!W~V9PouVkAqZQG_$C>_|CEt^Ta=UCl1zzDAkzq@vrT%{<#v zX)A$P`9mjXUeLlhBjFPMOkO;vMlU#I7(Ne6h;*1(lVmZ9(9R;dR5hQ9Kz!%-%Dz35 zA^ALWkx*?VnJLm50halgV^XIWOw=8g!WICawZGe&GM-pw`bT9~O;iI!eYqR_4P?J} zDRs3UVr_f&Ne_l;+wNt3hrZ_}hgU6w05*EI#w@W6zxi;2RF!{VCQVRd8QO6M#E2DG zw#Q!_q%AmCJhT_3%pfPrqVLy*^DzO96!Nu7k`&pxNRj1^_8)zdqX`W|X)hjiQlF+? zm{!?kGy}? zS&>WT%M3}2y;0GEM;7&et#DP;SQC#uIhBLISq8$3I-`=oKegir)`t)%nZ&Z?W?t3~ zNM|XWpsceA8}4bOz0LOqMJW& zWqJ;xK*ylcsr~k0K9Fy4vmdjc_Har>#d!~z`DyTJ=sUODp^(PgV^2j_>jJ)uSE>Hh ztWU1M5inzz$Z;a=qklzA@o4)Qr<1&q`e5;oaN0=tbH?=VD07C{wl}yVO^r*-Kfojm zL~!VY87B#j@tUoFR)juUB25tiuqDm$Y^(4UyGdK}@Nd48sn`<#yG;i{KT<5V;?3$y z-)~a+D4T}lS&|sD;tn4}tJk&uhx1C!nW_G`Uaf$RMCT%-a;Wyvglv$=6z`&aVNVz% zE%u_hsPuD#bfgTZW>euPHa4VUH3?+Y$a82vgjS+}RdMV&xsS$9Qut*R`PP_cZGvI} znJH+~%`z8hE{6;MFX>$qQi`me;|J!Mbu*BTvm0iNL)?0&|e$E#auc{)Y`%BJH6_RtvFtu+VDooCs=SNPJq8; z#gF`!o2<19qE(;tC4m4CLF04m^?n@5BH5fPdtu>;ouN0uwK;P2y}0`bij-^UyAZn% zCnQsJH?bCgO0q06g{ByAxCgl2DSmRy+43{nM$j(*Dy)*|nQ&yJm&3&1GAY=sp0AGW3z6#xuzF4)3 zwA|7QQMLbR3iu4paKn|e=4s*&jr_!<-etJz3Eh3zNLs~FpRih1!EsW2;lknX_WY5U zVbf8TTH$s*H|7PU>%U_yo8Ic8=q=?qY6{+)t1y$K>q*wiVk0YvU|7hnr(?~?P(9Am zt<=PPSVnzIn6snv;AjHmo?LZNgpsQty8(vmCJnwdW!tGmkWL_(mN~TRdjaJN=$a%+ ze>yMMB=_xrjsi$@r~;7jC-g1pwd^?Hv$)m0jTB1;Vw6S)bVF6&r`hkG0dULm4oXNC zMr$UX_AkrH!O<|GxGi0!iTHk!Sn|WYz97;RQnI&mnR(>5K?NcvTi)-m0d_Q zp96Qb_sHjSS){q{SR24qkz1!FD@PYaw=C^DAF28*|9Tf>Kj*kR3bIYK3~Z978mTbn z;e{W9@{^Gu{k7xfi+s54E;gaRu=x0^R7x=`Qch+Kbop{9Dt%5>>P#C)6&-~OBqVbY z0y;-Ick>RJjVZO+JSLOof%18AJApKT^cOf^{Y>go9h4-nK@I-|C7cH0g=>Wj{M9&4 z8lCF_r62mmk&e%|jbS|F&D>(DpH$jA zSJai8e9Fu8&pxv9oz|2?lp_Zftzp{JXWzr2;OO34vC*M9x`gAk_&URJM|NuTUkF|u zcbz*jpvwH*(4$0~s8A|U{-$p)jQI6?9G$N1`oPs3qQa)#so0ziHzXhr4b>=&^G$G2 zDCZYizJIQTdW6dETi#JbLP&C!Z--E9V@R&I$4o|7J4XDvE54A+KZ4Mywf;i_BEy4X zz-G1iku030RqvuJp`kuxj<~5Y(jtT(0nhVCUcnpYFsP!??|SXNn}CE4 zbTXWF?4k=1)V2%zpF|DAEEJF#uw?C6FkKpf1I?)$F!@dYGWxq`lYO3@lbzUD&XJxi zCIp=_<({xvZ`b+&h`sgfp?+hWQCIZqG%evU2DwZKC9yy6=$M3UiTztrsTdWR>u5Np z->jHqeI@!{TQ~HPvaM;m{%Ivu3z^6R3sVMuCmmh6sG4$*}t=();d-|Ec>Y9b!E zlWFXMX!aD1Lwn-HSn`AREe+5)S+W`(__T#*Oj@vCmY464J7TNGQG7V48w(5{7OOxW zTS8@qRVp_^DwCd2TEaJv^lTB1#o*H4bw|#=qZVOlu38s3?}|?&rbDL6tjAHWisDPK zRrV^tmNscfq=}I~Fm}}ToY$NilN#Mr9G;5Z6^y27Xtcj@4-S?-@2k-?12m`G8bewl z9{X86){xY{oO!Q(tO8abWSXpnkL-^|UQhb^&M0&DH%SZTO5;7{_TNaa?FNO2A=O0D zWfjrm|F(~I@EBP@ct%d5xuBzs6fAzmijJo1jbT+qv2-3f#GYD3l1&`en)J=8UD?7f z+vVsh%e#y(1bZ?|#b&tj$>@I;yiwle6m8oAkUOgwfxW(vk#FF5y&H=V$=TR*?HD=2 z-Eq)P+lnC<^PTqc(J1)^Q2xfud=3#Yo~c(GYc?Fi%xaS0=LZD-{`Jdn%Wim z3_-g$i#d?Gw*pwv_FY5HCMs&)B=$!l;{A1yXu~Pk-AbSb5eX+@L zY&P@2*(#1kmZZI(X-;q(%!iZJS2_}Dhohi@D6r%wOmY;-$C>E0QU1J&O7r>@MN_E2 zz=w9hA&3X&Qv{3dqVTF&i8MwrGtt06-n-mNznS7Sv13b3)DeDMiqXFXEsc!w^ybLX zJ}AE3_7LF1)VyXIRaE6d#Hq}qUXj_^*mS?;+HQVSiYrRr6uFFQEiqP{<|WnPw@{Gl z8#fkiea=>qwTt^pQ$sf zZSe>-jskQ8LLX%_TKDes$O@8^k3H?GJ!DSL{}kd%8NhtPZbdoobVuj)|{i7-2M^{VJu(jlq}x8uM$X;Jk(u_W65ILXLZA+Y#>Uk{#V-E z$8vt*P^MCgofXZ#xG_=R<5%(KA1%LKyU(7`<2#t8rM{+C^^wkl#lS63LEq~k^m3AY zlR7VVDkx*UOL&H zo&n%2C2ohG%7M0C<6lb(VsruvkpKEkY0=kzMeba+Dz7zG+W_ttb$?y_dCA{|ybFSV zVuSqRi-d~wj;FzM@{zs^3}Szsh`>U6?SawxxVNSt=@%Qz#LYuBlbCy~wiv%-HW2*Q zD*0#$rCBqshX|^!dg6v@ZLv5SXJbG+Z(d9fjswy|aF5^y*|39Py_sLc1c||5J#Tv?=Pj9THT|Hao zCXC5kE1Pmzs6Sh`gnUer{UW|GtunQ*_41a3g71xO;O6?O@)?y%eGbF8ZZyqT8hh9s zWeeZiT%&b{C$5ck64X#9HbLZ&$-_s4fVt$I&Y3FFMf!5mn@2f2nt#8WP;^T1?W=p{ zM9L-T!p2$58kJBlSe`2=3Y-#c478I#wTng@;*m#E^d}?V`Uhbhihf&69wSK_1$;^8 zxvh37VNTj5P%$e^&Q+6oqaUmdog63pUt(nBS=$@FrZ-3X``aDRD$ZtzqtU z+s78KVr1yMFuZ}GS1y-2a_PlsoIhzZX8I;$@ePEV#5;yBd##tSQweoZ|vx#1T>)uk?%;E zH@pD74bS5y$f^<4QB5^r&`3t^deDej04UJI@u0Q9V%(q|jvoTqo(9>6qB;R>d!RzU z&-Ca2ZdOm84}L;r^TyrfAXmop>p?>d;EIvA**j=hz2#$Gg#b$WfL2HuI+X55#$fAl z#B$YBUb^zNr`)S$g{n)h+?+?0&hxy_eGZ0gw_4keCO#o&^|SwhkH^AUAEZK}VbVFZ#-ZK372+vqN*&LAKaV z*?u6$NdbUGlS|h8SPLB~ZY_>NH&PwQ{KHkI;%(O)!QdhlS%xogKE7KY&h4ON+>x%> zqUUIV$FMtSYk&%LbZaN0-VF%4r;0G3fS1Q_MJzW$vBtzNqRg^zAs8DK4E$ z&u%mhlsa9qfNn6E+@1ISjfJ_1tFWKm==J4G*GnTE*hzfG+@-k)u0xN(nl59?ou0RQ zwwOPg&V;r7zV!m?+Heyt^V$I~KL@$M5!Z__qAK3VE5n=K>&})@((;rKm&-ZHOWM#5hPFkUm$-BqX68L(i5t!36i$8zA5P}RmkZGL=3 zDuFG-_4pyISMAwITme=Qk+|P?55#yjkDBZ3uO?>0uni$kuKgP4gUnio4-I$e0xh|H zR06gaNo3V_)(;!}{dHl6aYCgxAQjN&&sE`8-|p4%%AsGD)Ov=&DVtl;I$IgXq_pIO zXVAB1N3eE~-`mjv{)8+2CZ(m2GX+MnRI>aOlm;t4t~wx*aPgcSzB@88?VcE~ z`+7l25BJt$>y*K&QZSzlW861=ZwyQI0y`g}zt@M^ch)g?hsFUzDK!D`Xd;N3%2F<>8z%3u!Gu2XE6a)E_ zuhb(={q!x&o>uCsV%i^pHU4$>Ui)<0Hxc4z%hpk9t7>Yuuyj1~%aRopnq_dhGAmvK zLy-R>l%QuGuyH(Pj1l0)%y`$>@xJ&+2C6yXwxYfI`A7TgZtL!d0yak&aC5>#p@ZY27&-5`7Oy4Rn^aER#dO z^1MT+XP-g3FDOI%x5f;j4zTZk9FWn^KZ9%vZwOJai5Yq!i&A5ZYE98E!<;+CujJ#~ z*`G2mXXp3=JZVwvXX^OH5(v0%woj}{q@2cyZ8MX`($lL00JdZSV4W*D4rXA>fTyK7 zcbU8;vE##mG@!0%f&1f=d>UCV2wL8TsZU5C2diQz#&p-v{$dN{VL)=b7#nvno>*A< zrI?yafe1+}px!($3-dwU0Z4;}C3!VBnee)=A|ZOH+HeyHxJRvs1h zm{FSHp`xn%wp*Yk@OmJJOU1x2{14uwG2WsvusUwibdSbe!* zhD$f{m+f6vC6ZmuyI07=PB-J^?5wp{42}LI=bR*xo<&E)t-THrjzW!Bq;)tOdL7y3 znn;>zuzi4)Kyz@$)mhmCk&Yk9aS@mIfjf<#)0;7fn>K4G;FN!ukJ%lPIqX&rZsK)B zRSp^IVd9TuK;6YGt+WT8gnRuOEYHQ6Nwd3+3tviJoqXj8ZUT;siP^T zam4GlY2RzFONJi}%CJqTTYVVN6GN$X{Eb^(so*RuxrMbDzi0r$6P>0x*u8ZF^Po}duk(p2S zZjmnaBO;7G=myKxG-01i?$@JKQv^k;^o{=#`x`OXm0=0DKV)-=y|L`qjmRz4PVVe~yR;#pZ@3+3qFTIDstKNjC%d!x6^SFUBltjp6q8tOBtwHNIRR z9UZ&q%Rk%pQN*;CAxm@XKbq0o7=AD)yl!62^XoxHd{=K)URXOK%jg-$Qx*zATz()7 z&MY5?X`Sp_)nMos=@(w|Za_(_?68WcZQrepo?VQNPSLa%;D13TOG_2iy5rBIfy; zk4_Z>Syl*A?G=MVGrb=wD!ieRrxGtZ;DYy?zs)tYODd5z;ve-SB;dNht6veDOP}$9 z`k?%u(p&xXe#Xx#u0vyABdJA1m_=C(PX(jQr#ue&C|T09$?-eunieHD12)Wq(=(tp zh4!JEmz)B2bM|gVgARG}dkj)D&oO>e*1N0Adjfjb@!N*|M@Gc*zmWX%UGf@>@AVxU zg()W68V?%312M6Ttg?V${ne;b;7F6Ur(}vG5bA zyV%fwy}hKU{D794Xd&LK$5QY!6_G*JMa}w@f~`)55uGn#)2(BU^Gg3-7x7{jy(YxY zcl96AhiyG?p3lf>VwGw6EV+@ek>|p4%R+8t3seW3I(r`FYTfwJX8<`3?@5(U0T>8=~=7n9XKbph)x&Dp%UN~lGQk#t6|`b%H* zk5sY0(+54Hyy4o$uA6e?2_D*r549I}el$N(l)#Ss&Rg$`)jP1?sX?o|1O|ffJgm0IR2@oma3U3}WZqZE9jGTe*`q#-T(6~QcO}aKue|#Xwooc~mI`oqpt&y=Jt@_8*ArSrrF_`0~z=+;W;nErnr|sw4sNINzvm0yr%r#9%4vnasP@kz`vPDQIzMF$E*@dh{{Hi|_=q!) z?PRw;jNLKTJcJ9Rje~??6V{xEk{Dqb89GvLBa3ljAFPYE+kMefseKlp%gnx&QeI}? z4PbyxxKtr4OihrZe>6aIqWIBO3JPF`NxBvWjnt@Dpo3v6h>#`=DFgG$+d|PF@CL&_ z0J4iy#b2mw2N1bb?sqFg>rIj%2twnQaw)$~S6%a}|G#Zuxdp;~=B z7@iS)xZID^0AbNGae!89yo>@fTy_iyViL$Cb>QH{8|*-N^vGkCan_<~hH)xmQ~&CBwg7MBm$MSag{NXGzD=DlPe6 zBQQN~Cr)I4R8EkRPI!Y9$9q87Bp{TDZnyGOgX(p56mfn0K@1y+;*f=O;C2KKv z7=Esq{M+tNQ0Vy3hxmjptufHYXr*zK79(bR4@-Per4tw!OL|F5pFezCe6&1|um^^} zf>&;Lt$R-bqV#|~#?)-)c~#231XBV|K`bJUNnCYXLXXp;+uHNf)#(oEvYoRHazOIQ zP;X4`V$lw*dX^CLfV3_yn+gB{ds45n%RxhJ{Dlapt2!Z&ZsJDW8PxUH`~JyQ=Vxf8 ztCDmat7@mKl)u(mw=mS@&Ib?zq1^!g=99$r9ilR_S*YB9j~SgCx+sEuxDC>5iy4Td z-3SO)n)*J>y0KZzU~AC*7Ww77hR=bvx6u3dMPi?LplP*(bs@w#z-BD6#=oifCKVZ< zxOUh{P~;exknEck2~@OYm(q(v%gQx0#J7)jl@-iC6lXQG8!~e$jo%oC;eAD^+F(6; z)BW#z6HxPFMAc{eHf3-{3U1P$;F%uc_YgK`mILo@T0bWlHJ1Jsy!r%?aIYg5C7Z7K zt4}T;Me~4Y)LXi-lgr?`vrK&90%hr(JH1`irl$SfLg5Ch*WgKSCw=-tb-5wzOxcNZjJ!CjAUrpQgd zKv+X|FC)Xkfr*=h+x7S2yMFW#X|O-Vt(<4Ia&x~cj2qbKGkSOO@32XiDr~neXi|#J8y)w7i$ya`is2NFnU$$(YTl{&_jBAa1Oq+{01q8)b+RR1*yZq6~Q=eg+V&2PX|e!|6;jCx6-22xprP z4yYA50;!>UI0=zrh@7YN+j!=YeZXEQ8t+(Qr?Dv;vrxF2geP;ZI!uNZ>(V<|j9wiMMO$`ZOLRFL9qOy)Zy@EU3j^5I@{^u!epBrayUb zembV1W*<(b)*Ix(mQ5Dvis!7Vd*GFa(#ueeitWG5=sY(%q_P_U6<_-_m71)Ftt}S! z&uAO7IJDc*w8PI2+vHUeBf>G{jzP_$g^iVs9a`fQWt;T1{Ol&s0zVVLj_q;uAJXSr z9&z^0*VD2I61XCHLI|H3bSs+A*^m3vr+eTE-3f!lfhS9MxV!ti_%bBXw_(=Lg<`hg z-BBu7GM--1i~iN8YmE)rIaFJRSt)XVg-ChGoDocr@kMQQAQ(LFxc{ePyfR!b2OCAw z;#(r|Z>`6DnMYx*lXBlipqz@|Vt$*lOO!WEnpc8^yn-KMAKr*tz8k<%325?g5w6gW zKZ&Z=BY;toWryY(m*ekk65N%tWcLZdq& z)Z;0^?dyL1A5uc&a|X!@DtY>4(j`UQZACTmpUU&OPRV9JGFolGTI}NhuQ2MWh<@xN ziTD}K>8H5L!I)1Rul`gQt(9o}Y8t=iGv1g4mcvPk2%w8l~0z@%owT-ipi!vh-WP&mo13uRjrxTXqt;+i(if*#y^ zASH8}{KAQ<&)+Ixi1)O5q@9?`a8MlCgc(8`Oy7trbl0hx4K#gv<~(G!yh9FD43v6Z z&=W#MAV{7_f|$-LUxk$PNCw=eC-~bEwX#c@E!6YU;~&B9yNRjq>97v~N1C@So{xi3 z5Rt%?j1iKZ*OQ4o(6f~{^gbAm<}nr-_--awE=VFAMggmJh{4kkGyrIOhq&MDy)6ZX z=S_)*7HK;C#Pkh^X_U+o>wIz6eR<1>iW2{a`;)J` z(;2mpB(G2e-AoCk4zC)p{nT*Co1_mGt+pFv&;;YsqB9fHb|k;NiGtJ}^#R@b8@epL zf++J(Sw-QiMBZPW_XkeW)K2N<=Xf2Ic%_k3L+`{Ng?~IJ0aRYJIwA=J@6W+~qi+&x z-6jgOxxg^NOD)7*%^L@Qwd;@ep1#rLPWlTi!h!Pb?4-bJ_7j1Q{-r{7qrCG?(e>RB zyP-eLg!o;AN!=67`KbabTxY?S;fRFi$p)w|QrrO-r-OyVw9K3&GB5nK9p;l`%2j4- zOfZu+(>9Bf3r0%Ws7ciB7dYwPa<5sV1iD5j)B1jLkHfC=-;lJw-o^5c>ZA$T>RsFC zXr803hb@9f*5#ofZrdhwQxL5E%1hElJu_ykENjFG6e;CoRw ztMwm=h2%?K_L!)tIZn;LI|Ckl?e*E~ zW>2Ldnz;_S1oUdMmnI22ms43yubwoyd6b{`61zKMvhSkr-xsCUU6bziv4~;GsSUF_ zcoHlS4;t(><{SgJidL7ehTa&GB0%h zAE>cnxdIfJ*e1L123MUfy|P~so!r`>>uFjR5R!2h6GxDd?I<%)z3*;Es;Qa=$_=}@ z&)xtEsz3x|!IW8Sq0d7~b4;jCJ36KcDKOWT;#1%I1v;U8f|hB^-Oa=SEYzIhDD$^w zAk7|}1yk!H!`eaI=Axl|5>^{K6^!R6R~11M!u}$bq6O;T#9A<6Xd^<9F6C7*xX1a4 zt8B}t2@UA7+itZ}b-3y*lC=>QHnXn7nm%%Aaw?4b~nYdp%&mG!vQ{KUx{BI zt>wevmOs*=Bo#!npyb#Qy2+ns2o@e=-@5lRPVZqS1S3X!xxrmpo{2acuI}B`+JWp}2n3wE(cdgpYc; zjpwHFgSxI%HD%`z!H*HpLEzhpBv_~-=407W!^3vfng?mI_5;5g#Rd*Ncc$NP5VJ7$ zppiO$H!8g874lLG)EzV02u^9i)C6+W&g#ozs)8J49sB^fGUbw%+c%r!0d@TgDu7kg zg9>kJ+<2*g_BCvr!W(5z)$&0mig13G9eBZ7a}s;?e@Nd;NOmN!dS)UrtW%9GsJ z$-J%%-qPX}&jm4~=dLd%;Yo@qB=iSV)_s3^Jt>taZAWB4#FwzfQK(_~cawAW+d5@Z zpIc=Duxt2%bZWg9NDb7GEY7f3RFBKTh^clW1OIqw=-aAtroF+eisrPwrdc z!Nof#=Pc-E?D+S>dwKG9t}T6}9KQ!&lS&0u47SBNoOTHJa21&BkEYf)6vWX^Q%6+o z>AJ$3j~o$%A&?o&n#Wq5as<|(I{Dwu&pB&dxux=SfuaRB7LUx~kE+|_aS@I|g?;zC z6QUlA{DwnW2NJ|_wM4}-@;<|d-B-=0%~#fa+{LZF)R=i_Eo^*ttXzJ&%zv zW}m>a1zL6`X01mo^(vPV1&Xa7;7p_u;Y1#8H%Q;_nMj@^8jC)1KhrEl!M5_{TuFBi zN43!c&YKw@O$Y~rc;h)A2AbC_G5Ux*T6FUl0%)O5SZ_|6Pt6zseji8rzD;gjh_~U< zDPHh|O>fHSppuu^73bO*UPUXC!!-?ye#&WABfGEdKjC0}%+<0341H(Sc{Kte+slP- z`ve9%%FJ4+{-mIKI=Y8AYCv|egN!y$*>SZQ^g4x}Q5;<<;5?#1qF^5j_l(Qvi?gb= z^p1KD3et0um~b7JU6SM=Kb4O@A`W*nVeAP`lA|@8cL56m269Y1(zg9ss*F_52ljgV zT$R%lzB8e-2`u!FvHg#emyWCz-+Rg(_RTri*TX5o;KbXfY)+zJlXXi6+S+#<3r|Z) zFZIG|=qso}Q(XlP)fcWTFOOpN7iJBSKmjQE`@p%~EAG7acVJr!yfVG3>v`DU^;^L^ zE?3?iAKA>`q#U^GhP?V4ifXyXIIQz+FwW9j7l_7vKCIN1TqJX%E-94(Z#Ilo^|;r6 z|3%4^r^q$3LlFAZA9tj`NN=cj0In<9v-25Yc$5HMi3kMF(7AviZDtk6`q4}MKo0q+ z!KIzw@uIdP(l-~= zw$FfQE_z|s>#D$U6*e|DBCq$L5?#$vP5PS8T}BsV074R~?(1l4zSl#si(9=etv)4R z`o++FrqnK{I8x@f&h%v9H+*S1G;(lFLw_hi`*3GIq;5O%qtSB%Z(x!m$^*;YiY)ZN z;FqxIlV+U)3Hx5ovzK@ihB!DaI*l$k$c}ITg7RF|@OU|k@guoaRYil88m*SD42%E0 zDe*GPyOU1Sjo*IVb?AWae2LtY=-uLNF7+_Vm4PA8YXQr`n7fNd=XguPA7uGSlfN^}_JcxKsDbx{xRxcvvsCyc<2}{Qz z;@&WpaoM+c$FQTA9V|}s#?ilk#XfnfFnGGO!=}QUX^k$su6sI&PUfmO-CdB)iB^#( zit@vv|DAFoaEsMCwOl(qFxY?C!0=d;qu&wHCHWK7tN?2F3 zKnv%Nc>>WpZC(O>41H*EDtrT5Y#W24J=?s=Dcn94C~R-g5r~YEkMKU>|nc0 zPXw<8%^4hGpE`va^*=+l(pbl=_)GqbjCE2x8-;V}t8~`kN_bjHNB<-p^VolSfpnj@ zYOn{WZp|_0^I!*}?Sauko_CJCs@Fyg`O@%pZvUths)^^$Md6brc1@Sk0MZbF>f&jV zgnzFjj``r|5TU%~Q#g}(>8ZG`>Z zz+Y8iUGcKkmchhP#7D)J_Wl3NSYB*vq8#?2>`}Ut>{OckN^JGB;C9h9ajMJAL+^@ZabD+wxTHV|KrGAkZ4^TDD;XY6`&RmKaP8 zSQB~S4C|r{;~S&fX1pJtT;4Ko=lr@5!EX^P+NWDreFfv5FjwH{<3c{#PBKaQ@~6c8 z+W}Eh1gHcpjGTMP~?}O69qYv&Gm*YdW8)+c)5-|Wu%gUP{xB2y#`F0$?{$8zKwP8Z- zQvS)=&QDsbVY)Qq0S-yFj_}uZ<=vxQ-dJO)@&>w9w#QbV*|y5vQqK46YzWnYtXlT1 z%4u_wy?wBL1q$8$hvdCL4nG6Z7;P%=1mUdf-p^Re8Q{fecba3*u{{Yq|AJZflvlzG z{$9z}7PY9b#)K4VC-Gz%nz2gZ<9Vfn^_H&n1|73DtmPeErXTWOK4tk*b>TtV=aVWI zv@Rx?OcA#K#{iZ7d#qt?Sq7L*804;|hzG5+edg9FF+3dnbQX+{b7uIpAaqulQ{QZNmZT*5e?TQeclk?+e6Y41mM>Mx>1^fIHH3)k(p5 z%z%zxBP!#8b;7pVCcH&(s-?W?J_A~Ny1WfC4&Mn@f7@K9Aa2vix|`I;A$$ z3-*e-{tt;RHGvkPM2m&FME99FAmy5AKgorkGPI%PCKrz+FR>8a@1&#|)qW?DGkM+} z@q$?bi~(6=i$;bP9j*h23x9m)uSEWs?X%D5u}%3k?V{Rl-|;A6tzl@f_i)C&uUtEc z765G}qQ%3T5%a+>77p#6GkX-%%H85X?Y zztN& zBv1k0=2*4Xf@cw=RdyX2_`Z=m1_@Y!!o;eU+D`{)7n=uAJ%0u0ILq8tsF^_aF2aDI zlU57lRN$U7_(}Z(98noasM=Bv@3g}-`3~Lq?t>`PZ3_E_YpB-YxD*m(hK^lIUzcj$!jkTO$@{1RN3792MNJoq__Hpv1p#CH73Ddm=y-NC8w*{ zj-h)I7(Ik{4Etw4!=yEZeyi!GCxWSt&jMHHgxfad@xJ1{9e#O>!lGw1>Jp7gsLg4- zPUv^1o?ozTc%)TW;iN%cIq{eEDRTIv3MorX>2fi<_>CU9;gonqjla0mqd3jlxW7%T z_7Xcn$)!fwxT0KxLYrnS{@Lu&OTz}cQKt>JKn-=1nR1NvyELZ`X!qh}nQ*_?rfh?e zCMnDAKO~&{kdH%nP4k4Ze;W!3SDjd2?w>1$M&APDxoutW*sl*DOH(Y`8_e7Z!S|kP z)U;nOfd10W;3siWukvQb97Lu3j*Ov?mw7eK)AS=vi ziCF#lJcEOmBUAPy?=gSl8(bO8=Ue8j3ET5uU5w_!6!j|f#*4zO&UkGer61Sx&zxCb zPLP+A*S<<_e~#`C+QEt{lSs6KrLi%Yb{;~g;fuSv{)ZU79ZB_B2*ZH00@8%(a zVl|bvmn9ZFzuyxN3T{q`z=~ z`Jq$#u|)T*fOXy-`xvN{ZQ?r1&;>P@((bk+`Mo~f%;qlgl4;(JCM){(brO&L&&im; zney@%j$d%RuSO{a1re85+k3v9bz^o2UBkzg1Ru*prcT1A%}7onS$tJJkbyC~#)StG zz{?1X9|~&evY(YTMJ7fR<#q4l(Q@-NF+W(0Gv!g9n|rLlDpk5ab2P!VlT{7GL{-z@ z6-p4lIEmH9hZViXGcle=)R}>Mo!+C4XoUw;krLMF!_uPwIfY9{v36^+Occ1$1G1m? zp;FQL(U`}SAtkcl&2W{;#zRuoU}$jq8k$0T>a z`hv0=xAXViqm*1BJV;D!eyKJbe>wOYZfx2y;jK%&ojYg)_g`aX@D1B~k zsfft!6i_D)0^LzQ=@lLryDyPHlx*zo)S4@Z`FeeQQ4X`FcG@!e&8*`hB6Z$;a`zoJ z9#hoIRQ#fSFR8-4W*9^$JOD{U$nM{1vx+#4U4uREWh;~xjr{5G$(W^KNM;!sRE99m|koDhPi82A+msDO@$a@loUBkZ6xsbQDDtWlNgyFs*aW z(igRdRiiwt&AKAF&A0-iYfpknM`Oa03f@!U51F!~b)wl^j*I(XY^z4@ey7|o+F zcLNi-uo7PA^_5kk`H@mW0{`B7FIhE2K^}S5tA+wqQ}hHH?Pq%A(f0Lw5wUtfH>#>p zw@3eTz~g)7kk+?B$4haY1MzDidT_W_j+u;;&tP6g5;zVvRg5kW#&98R z;coTu-}!bGxs^RRXGB6J>&jUq<80mJO>3E6T0rZ{i5NnkF^**#we*Jaa(}CR9-nSj zXC~Po5G68FRhgTCciw^CCR`Cx(Ifi|*}7-Meu zYhkSdI~#r{*|#(VtLXtf3u$=GiVbl?1Z@5(k@QIo`y)?E!#&m-?ib$KPkSb5^c}OJ z`SuKoMipPm@WYYEPd$x_X^WY#>+YwvoXgZeJ)r9i5n->ieVv0?vm4p;azlHc@17(R zbNQTNYM~pkv(s+fpLvkot@-o`6Rtf4vh}!206Ls|&0kTkR30K}zZlC_l0NPMLFujR zo3XtIF1fyvt9I!d>D6JMs8plWLF1{vy6mjv?DDku|Hjq>>AbqC4@V&HwK1xdYn&F@ zV?24o-a#fx^iGYh|B;!l7Nm=B918S=E`mOY$gbaxV$%+w6TB7R%epi+3tPq1Sh1{H z8=KVC2tM5sN_Z&i2&`GT`xP}xON?J(+z=}*#addrGUN6Az3<7Ag>sTt79$#xozFMI z#)S0`=EkP;7>#8z`^QKY-v;)D{T(S;pLc&eo!)X;PWF>L332G$Jd3Hp`?gp=Lb1`9 zi7@>&B+@jUJ$=yWA_;*bgE59GPLBrANHFa$H?P#`6ao)2qk@WYOL-K zVYUta_L^IlU9DfGCb!YxD-t2~U3uuShT1N?88B+tH3Ef#Li=S4czZBVs36&jgjbc& z1EP-Hotl4DkoFjp?BhX$YTpZ8Z7%?%at&-vQ1Xh4AV)xJA@V|J(pC{>4MBW#gtrEJ zh}7zYV!Fa}&x)AQfHlfChri7zxOSoBE)*qOxOIqyqqdOmO6H3*vx%C8>TbV7*L!BI zXl8?Q+og-y0!-IW?OOXk23XE}q}J`Q-MOxhuu5{*omRjs3HWK)FWJQpv?FpXG^LIq zW~v@1X5`8m-{8oJO`QAiijM$$*KMsl4mukJ=tA0~9uZYYZRZFwnc@s@!M_Fi<0zgqkR5G|5+PR+ zvbOyhc3z8Rgp6<=TTi_4M=f6Sre3EBn39P|K;)oK4>r`|7uM=07Q$?W(T^?%%>ym~YEew7dSjtCv ziwbBa8>^@H;q89FPYJSJ4{wje90YtDs3CleE#(&57CXvNZ;G#jMmj0wB@)L{{}5Go zp}D0`+|Xe-{?r}Nq^vM;2(FHTToB%mI&)2mW@99qeRg#plHlC{JIvDNif7FKN?iMY z8ldezq@{7XWu`G*MtfVKn9&^#DS#i5yspB*JIbJJsZDURy&nfx;<@PSN2eJ5a(Y|eT!`z~7Mi<8E&N8gY_iy8LH;nFPfC7@z-OWaK zNT*U#(v0p9K{`e^QVNU^P*S=^s5B@@?)TjP=N-oZug31}y1w7@{Cwizzk;gGPb*dO zBu5^N*jQi2$z-{Xf9{trG(Fkra~#oW*SI>U&bF5U)&rga)Z|Z9Y%}DJfwx8?rQaVA zo&t#-5=DQXWJ3mW`!vB9RGhSPl@DHz4-pID#a?m3!u$B0A?9ZUr1eF$!b_S%>2LS4W05KCj6$O}&UQCqQshV0 z=ymezzP$-UGofdseoOiJYJ0HQqOmi)%D-Id6zFBhhz#-#sOykwai zT(Pc(=P!kUYkPOJ64Ju8M_>9g{I3IlvRN*`KQ`Crx=nwi8SNDp{c;v5)bz7gLPDpR zvQH{W^H!5Ff;m+uBbySNP+lZ@_enh^8e&nEp9Fkyx0S?TuU)i%7YKm`Q7F4V9^^{C z6k?KhF0Z))=4#KVab0{4to=Qb{Q{f?QjQHS-zb<|+R@yY?2xOI6BX^vl$KY=(UC$Pqb=#TE8GDfG2+w!DJ{HEjBL0p9s_cF& z#1ZQ3Yey}BFvOSj9|Ed{#^^Cf7W-lty=i~H0K`-Kz@8vL?2IoqUk^#NWh_=!sm$Hf z=HS6AH0V~6pgK3q>sT|b52YrXNFvXH(WqMBuykw$8Ld)(MyS=_CnlSf&^A)s5R4$B0SJ0~R{b>e`qBf)3?l=} z9}H!TZpIgRnA~GqriWfH4~LIje=$<_viAbLgMyz;BfAa?Om*)%umVfzU#1&&V^;BJ z5&QF3b%EV0jqh)rG6*bX&KO{)dL^qEmJ0aQ`ED{3-#ogIAFd4DKD=lIe+%BZjrAC% zak4j7{WX>M$8XZ5L~ZWYrtn$MG~kO65LbwJ<}dUhcAAae@IG{@YI{k=0~0<)e+eFt z6TAnMXHAA0qVEg1i}4!l)eAF1;{eG_{q|*(!&j5TVHvAzKAC*tMZ@s`4kK}56;Yhh zc2tvrzhyq7X7Qj+TNbFR1aChn2;vNMMVk}5d}Es;*?tLE$S<;bvjS2EV3(^?5hb%c zW1~pvb@!IW4HFvfs472Y^{*_?V(cVG6YL?m@#*^f0v9&@ErQ=O*=?5p+uA)UW z1U`EDpnTKX38wDSe1)m50uckUh`d#D-?V1wNHS?*KX@mbL6|}ZGcz#Bg&M153FrqQ zxJveXLD}ezHU!t-Uuy|%!`shPP#qW>r`^KI{ybIXoO}Lbuu5~IWBEF=cks`}rDQXr zzE`-MO!Hse1(%+`Gc zgrE)gz}v^G1iSmUSAko2kKJhX3^8;?sY(W>>GJknR#Gn?i&qhqSzGl}lv&seyV7z` z(D!y3D#nw!P8d7gJ((K;J}WeDUUXpIYOfV7h}O@oRJ%2G##NBP^(&6;;Ykl@ zo`DYEaPuyLUabxN@zx-)(`|0+zaLKAQsD7PtYLR`Tko+FaHA18jNFPYNvCM=*m%8- zp<3(vwytol&?$w)+I9GYveUb2P7!K?S=@~akermI_z<{3CDYoY%_kt_1^ePtVug$m z+o^3*yLIu|+3OLPh>xl1R)_!wXQog)t+niyhYPr~#xblzZyl&MyRra09se2~f)#<6 z=)h1n+agm3f=E0DPP{BEBOo)*8_D{kV#w!ZkVnJ_$or!w&MjQsaRHFq{}_S? zJ^Gf7lI%VBX`9p_W*wU9r2ir;h;_$x49+4jL4MM}%sF~}cHt*5HP^f51lpW(49G@L zRSkp{$nBD82ns$j2nO~O5e*PO04LUchOml=3QJbJ}0hMVNLD+rp93b(2e z!SH&uQDb0}v0@Z64ho{KW6zZZAVMrdAh%S~L7ZpE{V>b7jF3(NTtx59?>MWE|A5H( zDrb>_L!-}jO&CGHahYV5)1Rs~x>Ec5E5Fp1oLIAlPj`a?bEAvKK;|K=UC6Np!`zFI zDjnNAos-3VfN%Zx6s96LoqlS}aK(iA?~^$vYuwjyzH2F720>MRlO+LV<`aw%-p`Na(Db(yp;`q(#ruNs@Ff1-g^N8igd+g zK2J-%+xiP(==u-99GXOMRaD_t7|ox>X4@a~ZLA~B1m7)@$+p}-NH z#a|O)K_zXn{COAhxd@Pr_^hok7t~+-19Gbb|9>@8AkU~ptWrium4iHRV(%9MN;7j0 z|DnZ$y9p|39x{4w2%3si#76zfFq9N;k&@=f4wM+4Oeho1UhUlOqmKw&RQ zd+c#CE?DlqK9Q;x5o%9bslpAT*&D+(#@DV1p3-%P`XX28)>+kq+1Y3q8=4gK?>q$RlKCX&K&pg(A{C>=#$)Gqhj>9|l z@d>6;HUM_?G~cJrT2rw=xgO@$C+(;gwI(H0GQGYeIJL%6^q=)m%m`A9+;GKNG(bVM&HK1a3 z^3;Imyrs6lU@(}}l=(Tn;hGA%_cWgo!EFeDcg)lCETt@hv%HS6>x^~(V6Tbe+0Pfi zT{=)3kov{>|LyCj4-8=+-@JL%o%hn;R1b}$Q;Id~0ypg|VPE0~h!gaRBk%e)`^j6X zC4omXyGS2yIr54gD^0!Ifr^~Yr8)hMG4egPSv;uGTBX0CnuM0@OML_f()3H4U?x6R zcO3WaJFKS?j_x~Uw%02PM*WM>v)3!0OLm(Hx?{Q+qLYHphtwM4Y7FAvJ-sZdxzAk} zB$0`EL9Twt@aDb}8O$`?prmGM*Vj08DYjp_d9{aX+b_DU6CCO#ej`95Kq>|`PkgS2 z8#B%^$9Zdc^C9Bs=!-v`tj}UIp@!QkTH-T-_-%un4)5jB{1VSFd|Bze5mzm#FNPFcUS1Xzj?UkhALIkco9n? zL3nxR?K+Bq`jgU~_Eg|aoh%HhoscuHDo9s_Efq13T3$nNmHb8-FFfNAFUBjOXv)@9 zo+vy1PD-I-4A*W{-1L5S%bJAZvWZXF-P^{LEcX`c>tPb~wp}Ei%9&EYjs);0o~&Zo z`Vx;zf7&fA)V;8N3*}DxE9L`I(`}*L|evE9TI(mKoN{tBtw`aF2`0TWY4DzwChxfc8#Q{ z(wxFr-vRM3+pAuuHM-6NA66kXG#4rc4D~x(0U{X96urc+DPwOlaEz*0V?^A8^e&fz z&YmJ69mphmDSkU1tNP_@Ze^%FE03?VGaa#%+Tn<9P=RUut}QnQ4I8imO?(CGd#{u!=f5m6-UhjqCa#!ngOn%Cu2+gP>`VsS z>EGNr6|6BIF9uA82+A`SxMgZ|x-oI=VavMVmD%CRZ3kMDAt%ZjJNJVlT9Utt-Qw@f z#;E%oA{*oLlN{XVCWeNxcRA7awr|w$SNJlr(yBOCXRdQznPtS~TJAX{gw6rD24F0a z;R*G!5huJRQ`W#RM9pqDQ{Q~fng4bmD-RdmV0thrZHF1;L)(<5uGLKrCO?JW8pJa< zBKG|)DZG|696rVg&L!UrgCsjWMpHOzD~JnmRyZh9wU(ph4Gl44QUn~mUyTYI)d{`ITFQveA1`*-a|`|FSAikZ9mi4!M} zHQwyT4mt}Tv11-tqvht`I+qLLK#T8ezrKvwFc?+gE+tz*igWhvogwY0z&JY0lYm>ci(%-_N$Wm=#A;K+^6MEo}1is5~qn<`YYYVPnV{z&wT6SPLC{9Uir1GkWyx+1Si{QUL@NUr4GAS zp<19&$8lKK4r+pBN@oRqSp4->K3&_u>BsJboPN#PhBOK0aqK*k(f;Mb#Ex)gkEE)< z2PtB5^ncW_gR5RLa&j}|Pw+A5sAzz%#BgWQ9D8r>`z9ky=-s-L*pTI-j$-^nCNqmCUM^uv2C0N50R42xk z^prQ{$UY}D+_?@v_HHD_%eR9ojNHB8e#Y1ZnHBrZ(JE0CYe%a}r?K{-R@yFG*q+8Y z!pZRUEKZQ4CV3q0Rh-XmhD+TwZNm=8M^~G2xQ}9d=sTW+VFo^`>E`RNHZkz$zc)6w zW;wDSQZI5H`aTqr8oZ>CGq-O_HN*yljX1~8UY&d0FssmL%skF+Nt ze%)^4IO0n{n4Gv?4c?~kGc|f&(gTOo*c8B%)7FcD(XHAF{Po9XPe`XU5Y$vSg?&o6 zQJ+qMv>MJ50H?KqOX!$*)bBJ$r`Ig|d562cRn??x<}QqpSl3nkI~lw-^yWMZ8nfWDim;H;yS_~W&l(H> zWrSoQX@j@OCdPDQD}u9d0Jc=Ei@!F|3SIr($%{KEU_}gA(2}#`*p_g;SE_uOF$&wui`wS8Mf%%_AC|hRYB#}$-SMua zFyUJ6`sv8Y3tANet@9?qaBzu9v+VK0-6y9WGfO~x0E-rvb{0%sOalt!ijBgM&(VRu z0V!KEt1x7mzuObi#=lJ^*$MQ9typ@QWQ3tpQISwEvU4+4&I~jrq#J|_@^TgDI3JGN z=z8FwYGl2={@g^U7lrBv|JVz)gN{(P8p&Ql7XQg}#E}33tG~d?jmTpixR(s`D-MFU zDVNf~3*-+BI{-knB8)FcNG`a3fs54Z!2!;l`T1!@CLz=T-uRO;jOX+pZQ0JypDgmJ zfB?6LmM;_rsSmmfSy%Gy59XO@$mxEP1+6@#`OzV?+d8FC=Usri=w@T%@vE%2lbRlKJ8F7j%CUh-K}CF+XuNG&)^>NTWhq*H`Zb64+7cL@ec!@bxDW;aLP~m+?zQmKJ8)3UbZpTu}~VrOIl^()0&`dbL6o z%UPM`3MTMcR*6wBR<>3YHo5#t%9rBCHHUOOJy`Z4pf>52j5~`kgTod+BCJR@>tLPG z-!>(*aK%(t^s%K~`2uQ6v*Tsb>o@FLUtz?c43eicJzF1fTD@=0G7=q8TY8EA{J)J! zf%J#9Mu#qe&NU64{B8hyF;u$NV#6c(XgE{d``X0)-9j_YQ^Px=*g64b(@bxSO#@{m zYE?0i;T&Mck>R_fwVT~5h5r38r81gT-nm|bxT#AOPkAq5{@5r0_3`I$QDLmK?*n%a z*YBPB?LCFHdE%v`|(fMTbo2bq!8R_xkZm{LD1b{GH4|ne>lD{$af4 z^V7`|2`VR9GJs`qc@n@);pea1%T?l3G84?M`MDWx^Sa#YdEz0)X+lx zocB+|JL_0h0bWU}vy^Qw`Ne~%yor{C?9a>CT}H$X+b8> zutBP>_?MG7<;+zFsRpCNW(!Nb_R~4?(-EA=apdsgb^3Gl5ZQ{*a#4TFS!w^hoBVv1 zm=c99gk+y{cUQiF>&QgKd)~$f@`umx|Ip}>#C2kQ-#hiCiNh`U&G6g!M>R}O{8tB; z8T)Yo7JBYo_GG@#+hNfIM&VGH$%(p!#GTJ$kDC`Uio`!T;00}AqKsRM;fe4e0g}xK~zaeX51{>g08_ybTRewD_ZR@-p{)zOu#VELtChu|RSnFA= zgD_#OOl^qQrGdoj$;8fY`gWZ|Z9V#mX8!DDCgcmvtH&s)UR@=F9_yzaG9h$gWm#Ul zr_3q->e=^-UPsT-z$5^L3c_a`JnlN>^IVX$)-@qQ?oOv&LR~j(L0eW%+JwBu>$qTH zLi>F>8BDIc&^X}DdX*Zlm&QuW6@ovuzJWUTa>UiJxA@vCnJFP2!{`$g1XRa!jf5ZJ z*H+1pfaeqffq4a$KpJJUccBoyQ`YfXW;CUM-Q;*6X07d-=R}mB2vz*KMYKY;0%9&d z!$4x?AIe6`mqb`V+x*8_eU zPo|&lbM_}Qvx8TQSGTR!H^zzA)74bjVxsVTRx{W6*fO#lWvHu_xh9Dc)qx<2e5jLK z=ZknhcH$gL#i2iTT2tSkf!|-mJ8yM>>`0xfZ)00_-*VFU%ea`IR;V(%jiTvIj^DiJ z(Y4a~wrrHT5IbG2H#I>|x?1~1H(JBmkRwsJLUY=WHSnplB2Pmsw(pFn+kO0c@1<*K^9R;#2~`H8%byJ^J6MCRv3e3cWWqWZ;@7zhog=mm%yK!~<6! z&r$`fje33YsYyh_$+n}vO?-v@-K@+KyG%;ml-4!Jp_Ayo!UHsUULzmS9i$Xuc;$1B zDF5-KUY^~w(B#|P@@FPs-_2d5CF2jIJ3WF1orAnRYRkBU~v;^fk_J3$93rl>8 z7yWG%kNc79MYOl$BYYXvw+ye={=N6=C^VW~I&_f22I0xrlt_^?cp~-K@)uJyM;n96 zCg#0Jej`m#XtIV&AhuCyOz^XlYaWjAb1WWPyAe2s8hLX&IrY5HqR zhcg~pL;oY$qg=sLiB$0FX!|oCfq4JNK~>(Es-I6@z~z{%P#0z^U+cG8ioLHB++wJ%bWmcVxO*57*^kECSQ#|>y&>wl`fP=RdGmg^Ia&PC7e~KXUi#W&_Q$=~=;gN* zqPV>?^jlEfGLF(_>>J0(TsbRiA2U*kf7By||GZ%p{3%|2oIT1%9)ucyU7-f?8oeyB zSp-?G9jAGsMz4Il#K6^+S$do3+i6g3R&t4#Va6mzb26ZAtlP&+3N{UFzPE|5>$G)6 zMlfm*rtJ6u6D^v+V%Vfh2Exxvh+Jz2w~Q-EMim>d>%Q}JauZm*R!s|xTM?XPOk$7D zZQ7n*^(CedkeDg)Ztd>>>kJLjINCu&c-2MRsmo8X+0UkVH-Lry^Q)_2+7gX$qNm_V zjyW^oef?A8PtLK%gdHcFe!$?b;}P{30C$uVN9W17WER&xj-7pJxUy z$fc@TfHhitI9>*MB{7(SEEWGE8~xlLS91(LY|lNyeM7RDS`>P+FjPaIy5jUWt|E4=yOE3%tVd8$m4m3%^PjTECfY z1sM!)HT7EY`2$367GOz^5 z0{zGhm`M_TDusVpKP3k=f>UKQES&dTwpEQh2UuPYqepzZg&;k#=n8>|4ku-$=|0MJ zE=pa0eAP#qn`Y61uqCI$neaFjUoIJBy=GAkbcBTDOh|sk)=bUgvDAZ`~j;9>-`p&;if7pX*)-Tk%_esp$f_$Hgfi zlyi0coL1}s$rxhd7nlT#^W`r}=>QqB=Qx~yr~AE`O+GNu1aDP(N}kCTPxu+4V0;I* zDenf=mOL)yc93<@0fG(<0$ixPU8BceAjxAyNRofuNtGg?h_Q(Jrk#{PU|APp-za+4O^qctXZ605SK1 zAMlJbLPBAGR~+KLb^tbuZa-z1)yH5j7}IBHPt|AOFh6Lk$LGmwJ%(C=D+jcEZfbrA zHrQUUGCBgr16v~m49$)J#cDZp(V=m+q@aF{el`U%%_|IrFEn>yyK-M6EO)40*TnN# z$%Sy)M;4YubX<7>5@x5x8Y96S+3ye6|DhqPo*FW!m!ymjXY^<2n+u;uEgoF&qY2x# z)#^W-;+`C8tPXRpipTB$e%@5r$dP3hwSUSG<*^WHyfe8@A$VLQ+h$?Gs$n4~YLLaO zLjI!xfcatH_*z$bHu^QV-S`o{uT#hzq%u@8{dF55B_f)oWXav@QK!mj3O*yCvj373 z&OJnWztLtVnl-jQIlERqm}f;%78SH__6FH5p(&qxPmDsL=p!MIR^}0kY z*sF4f2Ib^Bb9OW<(W1GUET0D0uKb6_kw&ON^haq9U#|c9jrBO2lI4@_zU}I?Rd#@| zL*uHD%Sm<2sEc&brhYsacsQ!Tb38rr!mzIOYXtP2BG8<#89*D(d-1bbpsU;MXdSk> z9xqHlnpP34c@fq|S)G!B40a0jcMm)-w}M{;T&hpkTCl*lcup>S62#F~-iWjqKP9&UlCj9bZMY3Nsp4X;u*zKqNU2Bo>QWZR6 zHACs$RbQ!Tcskz_<2%=cnwU1R>#W+8-r*k7RYJ|;$kMD5spLr0Dd|IpvcigGhR7tS zJ9}9ZZsFS~+;rw*e=A)VzO9NwX;MDgaH9)+LO(Ue?*l^bT#?mWKhLKz>&&!qiY(&3 zT<2t7ly()%@A~^C<7>@FJ`ZX8#{WXBJXeLwnq+s}wqx7*{hj}h5~`9v(7{3TCWjsm zO|l=NKz`=awH}4B&rM_}?4mqht596eRuMZa@0VoYyNCv-%= zr_V5~CMB^7Aj7A(nJzvJU5W5Im*&$mE@z-O@TGo8$M)&aO7BKZ@8D<8HuSd=T7tl7 z+;tHOrzki{oWGThq?h!pOeY?BjzP7sYN$yD&>?Pf{&?K zRBAJ7A$E;{v-<%jW`y@eH@8sLo3sHDV)&A)I7Z2BSyKU^9*==pTLhbe6gq#YiGsXG zFq*p614T3>Q~Q#eT2gw;SP4`2#y~{ z=;z&Q@?VEe+C_wYUvU$L92P9?!L)lSM3~8&Yo2!HNl6@cU7GLA#alm7zl8@$1hS1- znb$s}ssFe8eUPt8+Rd>?c;g%AGp<99w9W(F!uNN=0wbLHCN%l-kXR$tTeB#FtOz+d z@MLavVW`@(+vOdziOlrS=3zO;hVH11wJh1;`Dfli>Wz*pa`Mg>WMAiAp0#~)Vn^!f z(mCUN7)qLW_bCf_@ZWYEDzIDhVi{aE%J1Y02=WmksA&F4`11EZ!(EkVUe#- z>2Av@A|+0c%EDmn6VW$|jnTvDPA!nVL<0F*a9>BRiT;{ZMvPUPk)~Yn-13r3kDG>O zp@NOcgNiZI=XRZvD#_xFGhX*#*L_7iY*UKBlVIUt=nl@$*2b0VZsQPtw)BiG!brh< za0yp;{JwxMw=8?Q{&Iv@?S<9p?_3tAN6t%>{#6TEvXYf+e$j`NJiViSZ=$-3x!A}l zRP)u&uJh;z*Ox0-O$9}uB*6fgcuj7|-k7@lX7j^Ez1NYm3-yYKvFMe0e(DG+Z@^(a zZ@Vw@MfOcwoy17^+@QywceA<8yiUdseXa_qE9D38?RI)6M+Ti5eU91JmZyPdA!iD5 z9mO>vIZU76>=Db4P$2Q%OW=E#U*krt4JsdDBCU2qbPG`ZhgOQnrQRXGhxd2=T#%#WlE$vTut?e(Lg)MAdxy!t#@HeTiK2c5xN_XN+~s;yG>Wy%3Zk0x-(Vv#XO z=_n|EO+Mk3*So3Ku{Hniu|mhylnu#ZN=0>c{HU;Y0s1#%5`B1W_Kq*sbc4Q?Zu0vR zfFsBz^?^(9d#rNGD< z3I=(6Wsh`Azq7rNGD+#UXy=Vc^1>Ht2PZ}F$zZm+1fzSk*fM>he`Hgo`dStW~rnPsS&T)=u zu5-m1{p#TKwe_2zN#e{vGV%LZ>OXjelcpAaW%~{Kk3MC>Ly{KB zjZ(0l+Tda%6^>@H8PPJm8!4>pGxm<{-(S})>*r$~ax2qfK<=^U)|b%VhCuT-sT#cX z6px~X*KPuX@w6pi4_hmHX&ONbw*rIz2Y)ZC@-rn!2Yz?ycPSVIw1vyq;5p2i)S0l7wcm z-wxegeftA=1E1SgJfrmc_EKfdO@aoCZW2a0#Ign;b)f$7exq8QkI{669GoBm zv?+G4cty1g;BQ)*S5bB%z}dUfiR8=pxNetpSeu=Y(FYE!Z@YN|nq@Wjz1+N!@HCt5 zhQVC7BU9v_{xV9BFA~r*6gY@~wPZ5fpm%7j2QD(vijBN}fbk1xnUp31nzl0;z1y-S zp7o!wPf@3^ZavxK^EfLKtZqGJD#_=LLsJ;m(`kJv;G=8+uG;$RZ6JbQ^K;Xo-UDd~ z_z37Zn3isM!98s1Vi?%lVHVI_eu#o{SH--{y*O-+>NfR()=R%75`G!nY57KOb` z^NyU<>o*DS8qp#bR^|xr;u`p5SGhhdFCHoT_nbp`!L#E2tmXFvd**M1ZQC+1s}spb zPNCUp|Ab3jM^5W%HlHswHFL`M3)d0Sr?&QouS0Ta-?PGhtZO4 zXZVBioj-J0^@!fNsydafTiu3=*g8sn2DtOIDIPDhu{5m%O_TDLI*aTFZIu3<6mKh^ z;I~@VE}<>W>w+(0^>rZW*j=qhx^PhoZ9iXZm+qcOE!%DoF3pK)0!vh+$TBr=Bf~Vg z+hw?lIvM*bZrMpx_;29Eeh0osAq4ix4 zVyy5nh(hAgBhS)E#9FK)(VL`gu;I@MZ8zfgQ_bJv4-=kjTDY2@U~gT2AikgLTBw7F zhyDezOwawbJ(!HucKUYz^;)1tW3D7byoMe=`&6n@dK+fZQ;=TJ*{4yd6mxV{PiiE3 zo5@n%wtUk4{9uCmLXbOf@O759`I1-eY9+~++{&8KIUq@{fg>V171r3WX`%7EQU@0+ zsZvc(q4z`+48rDU5c5N>O_QpOMfR2KzxO0jGNsZ1dj>bxl-Nq1O#T!dU*i#BNCGlww^m zr_@&S*E3>@86yw1zqV~65O~vbD`2c)Ca3_Xz>_s9SeK)6?)1yNyt)+^zHPZ zYczb@oxWVaD%Du))*b?9>E!_+6jVSu$V=T5GWxD-rG9MJVj&W^v_hm|NceCjkb$kf zg{xe%!gh^DpNB1Y&`b5@u=9hs6t}ncU$6`Naofs;{4>=~_1bg!iw41riLrR(LCO-w~p_a)(CvWC*iaZ3~xp7Y7^GS`**i}?|b4}o}w;$A&0#J`G zlfpWUDt7nvBuRFRf6J=@CYW^`?HM07cXD)J>cH7 zab<*JS#ibexQ9lSygs&BHFhWYv3h#oqjO(U2K0U7+-~5pwK{JYRC+XKMhwgB#?zI% zJyVpls6$vq)RNjnKyn}jjg?Gf1#Hq-RlZ4jL2#u{d?DzWx;nAb7W@+l< zk5wr9=y~>ICcCX+N9IbSbtz*gLG11GKh=C{=4+f=m6=oA+cY>EtsEzb|DidQzPhvI zq$SI^gHQdFC|@(e4A&{-LP`kV*x0tCjP`r#FvMe%{}ds_(5t=?31b_4$;i`6OWA&v z|NJU=KlrrAfz8v#A5iMP38*dbs>)x`D2vKM4!K-cJ*~|}y7^jyoh&NFyU*&X^3n+X z=UEhBI(#=E_+*6q+W))4wdoN?Tb5s>``ZcP^L=xr$5HjDZ%(*Ge?n3>HW)n)xO{d?oUe>i@PkQnL62MmE_7= zsBz*Rd!-qdi(HIlpH&CBwb?L^$J{1*kIs9W?y!t;&fV3$)CwDpOnck*_)PcvS4HQ~ zyayz+VJaa#nW_p*NepqK_`e*B>3rzY6z()HAkF zHQ%*}cOg%cTA9xQUjWxM+kxN+u z?Bw^lmHDRfR=qyaLQqbe^3E+ATfuf_BmYZ8#>b1MJMGYmz-o}|EO6G5?Lt5)$AQX# zW0is=yl$#l2fR4XiDy1T6)wdp_%4G8{9x_zJ}V1Dvd(_n$N6&loHX|35KT&LmW{@2 zYa=H4`ja;%o@em*&*joiCX&n7$q=)U+RRtF`$+euzDG%-Oj`5q=%dgWtKMgaMy}>F znvQ=D0{4x#|3hQ#&qgr=oOH4yg@%6}Fc8`j`4BJzTAoZ?*Ey7ujYj?0nxS{gU1eNK z4Fs*GvvdNUmZ}O)a$cZ$i*7;>dvlP`xFz$T>iUU$v>dtKPKT=*s zMzx>#w+MLEgse0-V}7RyTE_Y?0i{;q88@l%v_+$M7HD71yOYvwYBd1i_SdO~^`L>!TtFI%OpJ$RiLbTn*KgDqM z1<06DW0~6V_NRHVdo7Y{#_a%L>&mN-B1&JG^jFt+?H^$xE&}M<9dD)I_60_vZf@|R zD=<6dw@Wpj8k!o1veF8&@GHed@Ck{I?|dulH0$R@I3=WKTgk*(*HW+Qz24XWZ7 z@>7MrZx$R|Y=8fCtq5U;=16cUscn<8T&rok*Kts^oB1hdIc2dqR^xPx{asFsp^oZ- zA-qZXrd>J5`)^M~#{KeD^K>_}%hhR9bMTj{9-|q(MVa73&XEr!I*p~Hr@8GO)j;A6 zQz1+q3O2mN z(=(3F#0|YKhS+8w+7vA5v6XqtKc^7@)$*rf0O64HP zs?6CA=(aK_G#53^4nrTT1IHY_CW_2e2iz|mBAbFnl24MxQO5Hh+L`rC2&5`mPrIl1 zy$tf)0TWReo<);ojowNL(@k9^<%B41_)H`Oe0Ee;Z`2K_BuvK#)I1tynY}+g8Gkqy(~)!WE#+Q zo93yh+0ldQDDB&a8$*BT4~R_CyJIXkb--R4hOp3|1CQCNM$}_a_0Mq(Bd^dOO20+H zjnh81K19=_USGaRXPKW3aO3mit(@A1P1aDX-)D7?n!Vc*XOR)_DD$I=mC<;NA&u|g zz;jU2zt-OfH=ehJ4oG?Fm#!V;E!buQf`^*W%r2vq9!l%975Mw{YF<})VAEyJzoZ)G zr*#%VTlQ%IWI;Ly>$yIL^{_CtLZ{H=xSOY_8ae6d83_h!%C@OKRdoHmKoH}Ip{5~0 ztbhi#ezR`d6VJnYJ;i95;0?zwgf--h7)TVQN&{1BHURtqPc~hrl9~E*xM$iu&mPWI zowlK&yV!LCSyH%_dp6hl5aOhaPm}J>@+ULGt_4H(8E>QK4;EE+unq9FJ3d}_Q{;0s z`2CM_zkp=H_`&w!$S;%!v*#b>nXm&UMi@0?e)PRzE5zhKG%n$4g&LIIUY(UnhAPI7y;-0>?)aP#JIPP?hId?48M*p!4puO;xRk$`O<(u98bX?xWJjs-rrbK z)zGUh>SU?84; z`-lUaWZQq^Ylm4bW0cs7-^sC`clIZk_Zl542jCIGCE3NQpHRFDrGE}Sc4q1{ZQUPf z5=S{vb~B6QAY+TVvB7fRuO_qH_*1{+i01!e=hON498*a(P+0n@>Hug$=5x}2wLDD4 z)pB$E@Hun;XgGy`Q&PRX^{F2pS=rhT$5>}@ibKKK0wXLzD2P_1xDJktYdFKycKJLK z5Av@*&Visso@@_wk~x$s(%$a8J}a8c(tICy8QVoUZ$nfThmj@>MokLl78*M_dL~LHYI3%*w3`j-K}d3%43} zM2Mw_orL2*WPD+*#7D_0JMIqY^f1VDgjs!Is>X>gocs?mB5k3>%!yDmR;_cZ7)WVzRtp79aCyg8w8=~s6gp%ZvGv)n9_@KOO0~o ztk5iJK^$rBBK6zdpr`4u;6w!9SVfZ#bry>x%Hxjcmql^*l}og*wZukbcGfFuOh-4t zMHq+Dv^bgpg^&nW#`FA6y!^$#%52C|{6@m?5{2;MQbJqWSD`HV%Q`CEAp}xfPpVs$ zq={kj&O=Bbp(mP}qnGzbyRNV?*RlH*5|p?RnKRS|oEcl62R;tAwi#b18*NokV~M$j zxmh8;X}_;d6u4-?^?zY=vSCq?Smg`XGI_I&(ZmiUUVFnu5muI;J^(+V@d`s0n}C_s z1j0gKqz-87Wyt99T27RVQ+3{aN_~1jHj6x-wCYNzyj_82PJ$7vSgG62-r6_8-D}eg zE*n-EVa-3ME(J2yYtDI8kED&a1q98IMIp-55d(06E5A>vxwzbo9-SJ%J|azzD@|iz zu47Z_5Rb!F<2!v1j)Ef6?2-AAybU^={E2)EDAM5zO$x9-Hz1H0{@(`8#V48SlB2&< zYA#E%Bob0&tJ9Gp<%jOB9GM#x8(p+rXl-GhUL~6Pg;($I10&Fr_gVX#1MU1aEx2@Y zZbVKOg7)$G=+<`s1IvNK*Ht2vGt5%*XI$iKWJBd_dFm%SbWL-ri;0H%gVFL@6l>bj z|E8v2-8+c8O6mIYvznKZ7?WhpNDqd~0!BQ!J{m%xcz?NLh8S6e_#iWhZ8-ytQ~XS; zT%0k0=|!kjm)vV>GZpA`3vue1fF7*6QC7(>JKpOKbVdg_sM6`v=GNQh`)J00r)0zy zR&#g0W+uf8K4yX0Bv3m1BWqo98BDBr1*w3LBUsO~MeyAOTPm>^k-j#neZ@FyF)+uDoFynvtAS zIqU6^GH!q&V-JYjC)j3DKM{*QnSk14&j5GFr{HzSHZYTnLJxre=EM%b2wU>OKXdBa z8QFr|)?rFiyOu4F<&}YRP9ZXvQ&>lofoCqBYbgCTyN*ox7tIo5;-(^|apWw+ZCijn za)qjlx6z?Bn>sM&$M>{;34P#_wCK3BmdUqDH`?(pl+sr9{2Q~jNqN&9 zG+s@ICNFIEYBo})MFnIhfCP5GT)p}aWd!+|N}cQHjRn8fvWE?1nV8kP!ft;%?DpfW zwAQ9 zVa9Tqls-@%@iXz&bg=4&YDb#~%?I<)cY++RWoX4)Vt7a?*wCPQ0#ll)=~eQF30QwvycERYeZYd^y*S>z+}sB%z_ zjUlZ4;9-RXEbQI>VhheQ5=2B@0j7qkh00#yQ4CJ>`8`Kt;@uc;O)KK3<4>u7L!34O z=F=YQH(oJ%9IP3PJDoAb^s#3VF_6h)6Dty+J@wIoeHiO`_M+z@3a>;=2o#;4RUV9; zF)DqVGPhL0+`?*QfXA%nf$_sZ4#~!7a!ZBt;TpuDxepKIa-|XdIecv?$qzZ#b3N;p z)}R%_15^b*X52X{9XT(N9@e$1VM)KCz?@SiPb4j)*Ug*hZ1*ZI#Ha9R=U_(v(yznH zkVX45*Mn~6Q<1~0$rnD%KViXl>b|f}xH)8(C=jRYkc;~eEJogQwiX0lmm1!kAoqX)QDP0k zr-a}YS->3v{IyDy_l^8PkO3L(0r1KPgd3!X0?`=_5lx{XvaxI!D%` z68bcdiXpgJ)o!>MJ?P%6_7ERa6$rf^1vM%jUOpKskXl;R-$ActsU!GT#sVGk6V6`| z`Uo&!%nnYlsAB$9klb zhgf3hHaFij!|$HwB~i3IhkHh$O{G6%%o$h-YBlHFfRFM>I4%vev-a7KYxz)1*6>|D z*D}(CGev*Ulm3>xsqHp#l-y^gVoWR^s}zVHk35m5B; zgf)tlM>dJ(Qj#VNF@Z~saa&YIt|~b!m}pRcJSw187|;L*Y_R(A2PamtNo(yDrp=Ab!t7(;;xg^0KR)+tkSUk zF9u|mZE#-0$N}*8tKthdUO1zE2bU`%(6-(P@bQ1pUHU(fRrJvtQg!4E?dDo-2bM=c zEX^DUa&J$9X2`N3ra2l;35Ef2VB}|}qrm@A9uIai{Q{wLE_hepX>f_I(b3^PU)gDS ze_CB7JZmm)*ynEiu{SL=A_7d9D1BsZ0cqMQ%^lH;sGfE}=G6ZapNfOh+%Pf>VW@gS zFU$={X2?~pVXHkk@8jg(OmnmN?G;^_h0J*s7q=7fvoh93f{6*td~lvUq*`n>^&&K1 zW8glQMyo|?4JD2~=C@Hqq$}8VM4o8-=rWf$t5E|}8LLwt!|@bK(UaFNPKUa#lSo1H zLPc@O#kXSLF=@G?Iy2d0m5C|%+ZHnaLx~lU*=xF}8dde136_?qFiEQ74w7YYGabZJ zp7H4Bc44CBtB4jZ((x;shkPRqokR}yI(pu^#W5x>`eC(T9bqyHtT@H)d^ww%Id$+M zIL~Y2|0YS6`b@tpYck7d`MSw0MLqtC1lb5K$@ak zA$C9aPkQ?!(*z7$ z^YB9ZOV*?7gwVDPj_^F@Ftc^atO`mdbJ-mK*QNlS>mqNm`&cfwY{d4^YRg4V*jI-9rLr?v|Cp0YwoldM}#@Vv! zs2*J|Ro&g=g?$GPzDEda1$R3UFM`=tmy9(0lHo`uJ!sb_S9i&B@y2#UfTDKKX#ZO0 zQHE&KaC$1)hXp6A*hN}p={N8RZUpUwvjr1=p5$(I8XW<0QNO4|x=VL)-~RJ&V?5u& zeD23_E65I)!<-B$2&POg* zWuPUxBW(nDL5+kE;ZYhSH{ro6WYq1nKaP5IzGEskw+nw8F&I z1(lHYS6Xu|wSI>;@`5t0gCpyRm(-uKkYB4sUa+S3MH|F@t~HFIrS?&HoGl`>dnfTG zSLOFL#KvN1?o*qUX00X`cqK@N@V0gy4Z7I=4{ij$ykUTWx>5A?)%K&d!XJe1^vV54 z1NZBFcYXi8hg$$(@LCe!hyuGq+kQ8fsWKfp8CbgUq#c+Pi0OD?@YML>_L)D4*Gu2R*1=UZcgOIxSG9ty*pyY&&4bDrAV!SB z#k96>R*@s)gpp#65w-08>cFU!b}Dp!Uj*4kW^%`@C+`u{{0pfkyP?eFsV8y%#FL5K zL3Eb>$mr?i62dHfWI!gx;pplA`~w|Zb$TN~itG1Fdg4yz#J(n>l=}Ebdnd^_HC2Au zH7knv*-huDrhigXf-)D196prunw1hODs&YtI{tV}uv7e#mqKNX<6mu6thMsUe5caL zXTqX#>{R6hc83Uqg0XrdVN2u_5V8r^H;sDV)1~F|GKK22oFOhQRP=2J#{LJ2SFFwQ zi{t*tbXu_J_Zh}XFngZsxwe%?^tIya63@1DhX3z4tg5F#uZf#d94yTm!PTA{HqrA6 z_>aT>8T+XHQi8ur%)(zX>rO7*3f>NWya{30xNT`MvwrDVc86*65G$M&u(&nFtTf)v zCq2P(;b8uL%Ny}6sK3f3kj$L5(I8bxG9X2X~if80PLhMkF7qwG{NQEVu3UwV?V{xvK*k(~1j26xm`I6iE_9B-k>C7PM%VV88 zk8V)ZHCF{M$7;U^8;0E%5y1a<;+Yw-ERXe1dvNKr%!E{qrZwc^nUDLiZqRjq)Ga`r z{n9YY!4srs#uKz{s;Df&S`>~z02!i+U04?7mVr3TDSA@VKJhCm=Lc(`lac{&apLcaO3Bzm0favJ-B`a^wwJwz)vnNF_GfJZw*SAsk*V@!8_5 z8LfTW3@5(KY+#Q-=J%NErI@$%AT%fJ`?DM`(4LmLD%N26%m?e$ReVTc2G1ODa!@`J zn&YYBo&MI$SK7Hq-8Vjv>;Od7;6f`3G~Ty0+Dgm)kbC%DA}6cxcf)o4QU^zZ2>;pl zPx4>Yz1)md!gTc7uy+P24E#Mv=_vZkeU{CY&{c0D{tEvNzSw7?6-{%!Z!ZiV=L(2H z>H|3^-+gpb@tvXYX)cUaU5d>8&oMo>i8dXTjuR7#lhft#%_tXMLe zV2U||R}I;v>r7F5Rw)54{Iqw?MI(YF-;;0J<&Ins^qS33p1iH^m%0rmGyE?g{h}snp6-{tHO~9UJ~#C7_93$*c(7ih^RmT0v-6Y0T;0onA24Q5^{D) z1(Vh9yxFfO4FRTpEz0u#KuObgp8x<_&q3(q#=|hgy|v-(1vz^cq-XiM0n?&s3pXFU zaDxs6Di{S17?U^2-i*M~Z{y|Lr;-3={j9fwg#hgRA1KYACA1DjaawRkhD5=Ikq9Ap zPcyjByWL!c=5{|lZBBgJY-BZ70P2iQdcBSMd+_i`NzC#$yLm<{_ELStQe#1*@$4ep zzzcf>d-P)PYVht&y7}9&{u#Bmp|q&}n+e}`H?wO|*0+TdUgffdd?T42JmDj^=~>Bm z{5S1hrKL-J+It1aAkc5Tm|pkiewr~7RGZ!l`&!QH{H*sV8T!46iK}DrZm{M9?RZMF zve2r4^V5FPzkhc!r%kVj4Ch(9p^Kn`epM0>nduE86!9j3ahFVWua}f)$G|~x8gsz@ zDNQ%ovEM(R0Jlh741VIz*J*Y}g(D0`?3U|20bdiz@cwzTqq~W*= z0Oc0=GiSrzHvkean5le!;B7dx>ruXV?b_O~22k~AK!%Jw7;PXE-w~df;LXV8+)wzB zA;PL3S3|IX4`_qZT_wJ+2r|RI%c~#B4vlTq=!|sdh4nnC)Ax82AFzgXlgGdR4<%xD zh8g4N$o=yDA zAKMdO?-$7uNGuok8qP-p4Of6tGv}=)e21EQ8|hHvL;Mc_|HTC$xBv!bf?_&{xD&xm zYzV@zwO#TLR^H#CJ&_Y`;5}?LS{$!NV8vsd)-iSi=Lh_O`QeXi#OfUBe{UQE`5Wvc zF4_A;pVF;5irQxqEvVYmv|r6*Rv>r}+mWlqoiuqNn$*p@ooAjid<5(UML&1*daAOd zo5{B>%{jS$sx$;t18xeHj01RR9vRA*1HaNG|09w|e5|PK+IXNbn5mpdO_}Lg>A{?a zTMSW_x>HrEKvZ_!zPD%|(NBC$DZ0E;@BsAG_{G`p*X-&fimZ@X8n8iHly~Bj`HR6+Uo}s(n+B_m041XjP1!k z4>DfUaY1VC_!nK(9HDeARZQk&e?RRR4ijwIHn10*Kn)GczLSfUlt$f$5hb`n8;oJ| ze-5BM>FdBRmt=z6OAj#FHzj=yptb^AfiMd&JW2vD3EO6x3pQJl)Zs^YI*U)3;bp$e zuW*q1ECxZZl-M?cUt9gNfL-XwGARKAKpZ9*u?j< zKhHmZ?oq@-wz&lmAmTixo`-!Xwl#WZYFUU4Wf*2i8)m*pfR zuhLi#U}@bCO&1i{RCa}4?O{XIR#4e7g7Dot)zepCKH5UNnqL%GEYtIO&_)V-ui~(e zJ^?bjfRt|3VMru(v@*Z#T`a3w-)9E}of_#f-43fSwTGYEQ6~KI40^psv=w7e8kU70 zm?YoW<5_Dwb_Hz7VGK)&g%eB~Tr#F}A4GkQL=66*{ZrDt)R;k&e(Y=Vn!}L+Q~4^m zZgg&L<2#Mi`^7wH5iQ)u9Hw~;G!b4k#|oC~C1WYQZc;!>51o@NoOiWfP{9CTqHMW# ztixhZbc%{?8&GV&ygq=IOS@cEBxPDVduYRCPKQ4G+5tr<|D9%9{0keN2!7nFcSrfp zt|?=m5eNkxX7U4tmittqD1?xbxL1q4kS%3LN^7vqN8jR#K>a)anMifY{>zoZYI(X! ze3z4Ds9S@~)MPf|{W}#^$=poNV6j+lwH#3zAmEbfe34DUXz?!$ruupHYqLrnWrhov zb}Ud-S5kDCujx+@GZi0dxk+N*X{OrdnssF@WynI5i@7(;8sW?TR|q5)@!ZGAF;ov^ zRdExwp-S$1US@>4qVdukeX43|Ycm^9KqgEh>XaP;iV}m}ztHBJZX3-q_v`YG*b35E zb^}utX=3uh-N7qE%~;L4irZE7ZVj8AKAj+X?yiwxeMtJ2d?oS1koj_zOHyn^r`n$O zYmwaX;{K@@Y7_e1mi<6_lsY4*-58k-O0Ab*GnXGmZ}c#G8oc%rvZ%=FYlf>$IL1*5D2k!^?|mA-9f3nVVP$*8$0;`1J*TJ@Cfo356oJJzZk{Bh$&F`skH zkohlFK-Xh&8QX4>kny&$gPwxjZE0#p_8?#_bqJq{Yf?ZGaBK{21FMUtI^(NAj;x>( zf<7+k;?g(M=YdiCLu3z9gKJ~yVfiO(uMpX1XLN=p%xO#2x9Yt3u4gH3jQZnc-B%PH zrd*49dzn)5kro?>yU?kTHH`;3XsA4>muIPAVO%sR=D~^pYvw_$M4)ep-%k}2Uau*( zpggL0%xd;jXv`~IWa30t&P*?7@yy-`ADnc5*22@&!&X>4WAFN??-9#}HJbEr82aw9 zPSyDLByjulZ%nna^|u`#L;DrytM#RKh`X4lNka@uzILA3z((&!8PtL`5ASCdZX}Tedfp zHp>M6X6)iKa~x3BAa3_I$=I~Q@5;wQsT1o zBkRKLAm&%E*ML>x`u-|zrThWs?|s?5wJ|pem@*6U!4BPEgqr6uwiwnq{~wVswAs2=1UmMH8#xo%HGPOb@7spL}F-c;}gmIFZR^+PH{1bZl__NI%AS zxl^d-HHeWYx}10`)Jgv_A2<1HVQX16&u^r`TFDejgtJu3<#qpZ1P)!wdN}-x5*?~X z-r@AzF1AdeFphmmW zDjH6^_{IEm&q1p)aQaz?0Ewm)^>3}GXu0MllwAPNqZsH3AhJr-0Em_VdN2U1#T0)U z#qFq7-EaX?B+d_?x?rCOVvoN=+h=yFfKY6y>fmO>38wY`2U$3&ikwB6qZ3yBgqs@f z+6;!n&E&Oy*g-qh9!11p%Fy4&X#kJQRt|8AQzf-<134A5xA_03a2frif*I_)R5gIR z4BOAb2{FTeVK11AM%T*jqS5f~`bO~@BxbvtVcTl$N8jJvo>$(D#MoijjGJ}r7(U)>U2wdgW?sM^qy^*$y7x9* z4gd@~+2QS+-iE`LrGt{-y}k~#K}jZyZ!tSzHbw@9Rp&#nxSK~Wn869~5Gug+)zK@0 zp>+w$I00r3RhE6${f4^`F_^uP9kgSI^$gmrvg_k*yKd?U1da2RIq?;PWs!rVg}w2u zwAF22Y2_k!haBUUT@2HUe-gTTPjB<7=u;;CdN^s3{Ut??QiAPk*=8CfbJ{8pt|h=3 z`#5&~s?Y0%jS^0@`B`sqCs< z(p~a~Hqh8Ma12a-@Q8PH0xX*DEmOq{2cbO$gN~S*v|l zbc|8-ADU=S!OG!YpPCTEKcDBN*Qe(XCf43aQl*~j{S+kIsshAv_|pY&xv(#%&Pnkodf@aQ%AQXvuKP=RM8%GCh`n6(h9=#1Z&+~|M0qaMQTw`u zHYXX6@(NN}RqVa&7TVPrqL?9fOSPz&LUbq7nfVrB0!jvCZK?MJu^ysEo&p$*xW$4E z2U+})Pniq^0Xv>G&z@VZ;-9m$>?4HUum(lq96z@G0mdHaZxhP;s*d!@mz#IhUfRp- zr1Pk-eBZsH8QhrRs@+gobuX}7Z!*C#)pZelAUxYKH{AG=#edKrV{WYbSvY?1GFc{| z?K!BfLoo$0G}GJad7)GA{Qi7eJwT&0M3zi1NXyV{gq4Fy-iIfPDk7n&c0p|qvT|^v z(ijb1!Hx!}+zrlkNE)OBXQ7Mb-SMe9AEk$Z$Z$ z*@u+p0JNsIjFkebUt(;BiT%ByZ?hILTT06M;}U}PR55EyJDD38{iSZS#`%SqCDjo78upiPbOgu5LFSADuNtF{~%bgKds6bWnJ-G=j3_(nl> zLIe-E`1Re*zvbZIS7oo|#h&|8aY^<}Q_EAm5GK(29vxD|9|UGgOnL9@fN}E`d3W0~ ziy;ahdd4t%ulw&)-mr6CrZA*3Dx8$|y|yl?it9h{zi_nMjN_;0nA6v{L$ z)Q#{5aFD5@+Y<7ae%Py+FHAzs1<&;|iO|Ih%eV4U4yWX=w^RcdD z>Vq#^e>rEen)J&uar zc8u1po2UG-*$@6=ir5|1QeW*}cZ_z6!K{?HEGZ&Ao)S6DG=aSe88D4b1TR zBmTfmMc}3=HwavM=ev}F2{cJ2YPnYra^ys-<13s%5#eKfRbveogLgdc{ch~ZT%8T+F@WJ)c#EX^4# zZMqs=0?HyqOJwIvMI95Ukp6bs$p3|$X)V*rs@vhdFDN4(I=h0>xtdEdr7^m&4E~`M$?3S=qx`3&a)%5EW_95omOnOC&#Ae7sytYAItM%v~Q09>jPH z1PNZ5uJoM*-M=@iCf%AL_Q1e2#FEkd;Xc?4P#PKx9W)mvJY}07(-zL!R+{pb9T|gM zwlrm*GLF+yTY5dV&-Rm{jywdyuSO_e<-sXd32GDIUO9Hw4LdRKlYv-+4B z%o`EmY6;)mYPy5f-HOrw*=A<;Pu^65x8>lb{F*g-pKPnSb`FdFDF)mI94=JWY?`|} zO2&fYC%m;+a?rF`iznJmN^vgULL3e+$QJv>fub8ZA=!DIhQ@P+7lwxg=0t6ThVox_ zXlXDPeWMi$G*5rU8aDs$rMipB5uHrId7dWpWu-i|k&gl{lsPh*EgpVpxB}lCPa+Xe z?PQ`loPoP$D)lsFtWNh>JYBuY8&wZDpiRKpeT;XoAfe~0c`x{j-nsJ=0e^NYzk;vW zdeY_|upZ$|5A(5!&nk850a2SXi#>B7(hAGt$MVm<#bfBJ`I#CHyu^b43QLH+qlF*} z5&suVGpC~iiD30W@|r=_toTh*1){~3bR?xG?O08D9QzLY?68^ORdUc^V3Ui{oWN&g zG!?bdTnxQk?5h7Obe#MyAy-!E4Yd*5=FMBN66pU&MyWW*+KR(J-yAG>Nu$XYm*{F9 ze`W-zym$M`dI8~*~T&=_)rmlw68GK|x!pZ9zguohyD zz_=6Lr{w6ndnNxxcA@TXwqXR04t2pDiP7#;(EPW&h0#>MV<_@vBeJX*2*E4ThxR5{ zxc;?;De${N5Z4vnkm5o>gjM_7qGR13ZqdBcyALx?{A}BRbZ%5Si^YWz+ITx)eeMK^r>EfWmvFNNgqsX4 z#Qnv3?tVR82b~vV=l?^L;mcA9f`%h${od+k3B!#YU<8UkI`Ehlm?F$Z-EAiuIfnWf zi*<=|`L}dC)5jM~Dx9dr_rBsJ#V40qGoUNShD>i=9HA*$-7Q|ZUo)CBp?s#)$vv7U zPbT@}Hm0khF1{>x_fPrUQ^Jeac$xE7j{l0AIH0k5iYJQ-YL~I)~eEndBCh$AfEuyPEE7 z>nS($n{5~Lw0;CZdJ1=4$?YtimNY_-1#n-eVEFSQ4$Z$VA%C8* zmHS?TR_C`cqLRyLt(_b2{tI%{G=O)0G=SI0w&Ecrx~93d4W#s6ynz>}gri;1aM;$L zArahm*{FR2?f%Ghh#0fMy)Aq8iJN*iW9goz)2=|?P%8DFyXjhH`!RIm(dx8i&oplO z%!6K4S(MkZeJWbWUeAJ~*gyc;-<#h)Uf#3%IJ?D3#8)0lYmyxAY#;Ys7b5kclE>L_ z@s>i6^HybxS|9YPXvTB4w}{1s+Z)x+X%=HXsbvblFNJWNN<$dGk_IQ0ocK$>TLO|p z%lVz(f99&d!TxSN^pt5{m6kDg)p_*q(Eiyxr;+zgG(&XU_M@;p0C+k)*Rpa194aX< zy3)dF`u6EwQuCXx7#f=T+WI?i@Vc-iA4~f@(Gf4kSZ#HaUf5iq4~p;%x=Vj09#6T? z*e-1Ln1@S5Z^|wvi(l{0Ozb~HM#hixKMJYmNvQDr{sHBF<5SZgg-vxZ5}Ad}oj2 zh`02&I})9hf3jP+^190EhT+gbh+rYr7bDeY-QZJxb@Xkz=ZN%@=l6_Gun`h_0Q|eO ztD;!tAKeWchu77leZdX6>{(7?CjUmFa1>`7V}Sk2D34!qqeeT(qwXY#-5o?>RjYC?}FZmy5JKOWu$*#vF*rgaMf-(QZWWP8m-u+tRH z*lw?P*Y4TnvxmvceFyx;j=r3u8BbwnuV1U>B%Eca8xteI$`bR&7iT>GwvaLZek(x; ze@F9f!p7CR+O%0Ze&!`V&nGF=r}+;jLqR6ZL%;kyDGH}Qz5M**WxmGjj~rn=@wWI~ zXR|xAR|Ox0Z@%e3|9ZQO{H>~Nfc-)dSH?@UI+r>1krkeC6sdL{sGq%1iK=5k!I?w} zVyTT>+kdJY+NM|Y=%JhI*(@)oL|sWI)*VQ$8u zQu*RG`=pL94eN5YiUYxy*pK_}Na~cXD~*Lb8s`w4vfG3qtCnxi53zmHs~S^i{FS_W ziQ5#M#LSGPwPEDS5%Kl8=Y2isS5y@N@sWd8!58ws0&L;jtI2aOWS4b&J+*S|(GB%m zae6samAFi{*HZYNs0z!9fGzc2K{m#HRAv5zZhKW33EOl#dSSx1XS_Qfn@IYrb|j@% zr_S3MGNrQR^?AQiKvy4qn8_5k@loj`+V*yv4*+P)^I;;|a3N|Pd+Nh4{DRz_MpzjB zTS{(0biI(k+;>pC9l^rB8FX){ORe1UYVG|=Bcb9}qHbn9=JmEj7o@{U_X;J?UskV6 zGRTW<8dXHf8?qI?Uhr%oX!zNoM&Ak@N^_vl1@smBN`C?Wq*pH>FYS8m3$5qX3~K;i zHO~HrBB5T{wZyBUKPFtBX34vt&-a;kVoH4D`+(zsi6#y?26TCN(wpG!pyrkFeLMbnwS3yF-95YNT)<%@w`o(p)(;kHQllT$v7p!agecay6)%zz?F&4i<1honT6*&MT zh9|2lW4tUypQ5bfpyypcCu9VV9@J^DRM(bGFsjUYO#LW0zDvol=^0m56_pB8>0JE} zrQcDBkV>Ff_+aKARAw7kUW^9U;p5olX3RFu{JIQ`0E%7oJ(Nq@p{J~;I&jN4n>7#EkAQ>-q?`Mf^RwkBb|1In1y_|trBy4V{-&@(nK=}Q01Yb1HH-aVwADcAZl z-_Mag*t6dM^9ymx`@;BF`^8GL(e-+v^m+I%FlD!QetGaTF#m_5=(6}0w6DDJABxT6 z#tYH0GP3E#Ml58EY+XDt^;u8#vs*1fNBpz0))HYJZG@`F)7vPtC`aELw8m5Kr^>NR zc^=X~Dyu;YbqJ@F-v`AXW98Q^_!dO ztE5)7P~T@u`-23r?suOgDfS;Nx1V%XuT824R*tixp&NyxhbO9b%=#?-0mZtOLCWJR zPYt}8KHgo0H6>2ke(xAoVRQ0rdIHtF5B%drGZ~W|BU}&LG!F0gsq{UVzdR1!x>fY^ zcNF5)*i-7MQkJL@`@;yWTpJ%~!5J1#`f~wGa$i%cm5wxDhOV5A-i?#LJvMb-%wg$> zR=bq^>GJyG@FLJ}taJl4>0i~jO`-Q~-j-jK0i)r-0h zNpDcR?{_bA#PH<3i^JT%xr^buE&8%hclb&()swIlMB_YP-xnN81ZCV zFnCog^S5{;t`piCm@*_srF|+7EYG4-O4%x>B{g@l+Y>*(k(t)!qLmZ7?($=ZJydZYX1HoE zTzcmiM%0_S?|wg@Of4aC6<=SR?gJU175`=M{5jdGN9~@s-F{n?MyyJ6+V<-WFv+q@ zsLVcV^QU*b!c5FUf4TW_(b<3htuEwNDsKMOx|3H!HTW{RF7y^1V1CJ1j_#hK;+l0loPsT_&@Jq+f6o*WV;Z_?qz)jUO zQjuYLe1W*goD{_BrJq3MH0_h~_CZ#r%x!K20u+(#1aEbuhSQE(; zy({vJ^pWuwCo~=esz~jT=FV?u&Ru`UdQ#|B(r21cplRA0w_cKB-#E(63JP{8!!~w%O84$V6IPicn>Ftk}%AG8*!5YqGKI~Acz;r z^PCd6b4kCe`raFYYPOEIk#uS2aC0Zkzl=Fu;FV`z|7N zVVE^>0XJG3v#rm-egL4#Sl7?95HF6B5;52ptuR~otO{MoDFku5My}h_20dbjdZ`s% zRgb>ZeH#U}={d>^ttt)H|D4?F?fg=1fAFy8-&5VX-6YX#vph;7R*& zyCkKM*h9WHLE{4diSN;Kg{vtMp=9VvCB1Nf1CTv3Om~^-zSso|a$O=flNYzGPqdi) zKf-we2=WHlTIE5_MpzeO6)S-MJuL7aoDW0=i

!HUgSWE(AzaQ>s}#3+RtjFN)!& zB@*aBli|$*beJ=LZr~P^0sHl2x}6%3CRvaO6)Yp>_%rut=nt;4`SxH@I_drQPl6st zD)S7ncFZllfFJZbXZ=mfdb{eSWt#OjMt|%C@C!Phc`7xHOl^MbSX08PY6+v={TZ&R zSUmd7i#IWBtXAz7NztR^Z2EeO1>`2ny8kLZRL$Hql`iisy$#FGj8c{-aFRgky1W(@ zlHu*mTZ>?X))^+9H4hCA6aJXo`4 z)Sb7k*(#l)A&T`#){@oRB`rg-X@Gn6eNDaMn7_pO1WQaDbs^&d_w&R}tB_o(J~fSKdQyGr}^$Y)$;a4Z(&SC&VZkT0|qsEE(na**G0?Kc6igCt7;S zrZ}%bx?e<)P63yHJCM6=JB3D^ok|+_(>D^6t4<+e`4D3gh3s)Y4aazB`|)3-8F>u4 zFM!euuhQ44Hp&`RaQ$|GGw-Dfn>PD^TQ_Bw1Z%g%3N7Ux{9lw zrs$t%EyuTFCb%}R7ja3(T-GI!tP*sgTW2^Xik$2V)?57!r8Kvz%f@eO1EyX2&aadT zYp-;iqPQLe2>yipf%mgXv-u!AWzrOkU9`e_<|Pf4&aRWgfUp5^(*ZEbQdO8=JiWLPRt zvKuaJbz|}>(ot}QseMj77>#qAp@_XUJ$*sjhSmys)XN%RQHejm*jfK_>#3pYQf)8bIldfSA<~iT*3%d{F-te^LajSw@ z;GU#H=$5RU$i7y+kG(^=_1LjPS$-R#v^op=%MI%lv#7-Y_XEoGpb4%2yIO<;U_+{0 zZ0j*(fY2tREd9TpQ3fM{!C=>|J+&$1-=T{sRCgcY6xYD=OA?uAprvS ztW=U>r(>uQv@E5i8ilAz(2;9q+(g5}LhjJiZ}y$Y1e)1{L}FL%bh0x5jJGo->II1v zZLsF+ZRWl|0p=7PoTjwEXd=?!8l5~~@CRX**JiJIkR(0oNPC&iABCHbj#@(B9f$;T zsZPuOL-7Hx$h2+id}=)7vqxL#VLs8d!*{J3|3j9GCM&uAJQjM|grK%3IX;?=SutCK z@|!J7y)k;o)}P2?bJNNF)icQLNZis`t<1nUBCWdq|Hg0ShBl?2w0ix0V7Ual8oGA+NDdHJJUl{EuvcBHVX+ zXJtnsDxNYe`7SsE7_NbRFg~rjcjo+l@9rq2C;K;{(mv6V2h>DZz1vYc`Eud;8|>U( z-Eo_K21z8bes@WkJ^XV^5k8$uuLfWk3><*A^4WZX_X4FAu6DCK!R=v5kq3m{ssw#6 zQEx!dy|H&d`L}$1@=(p_v8wjA;DF$hM~LYY^!^s&$-|GE*C)5Q@RLzmhm04B0GFt) zJZX8rd$?gsnw(~{5$eS0sd6HxF;cKvWP~Es_58e7!wpc$ zxr#0CoN1e7(Oi~r@&vDS`y#+6V{tUvNT$B!Y&R3;T z7dbQKs&K$fRUacY4nv{KNn{Jd5#!-QDh*~@y^Y4#=8XXE+of19F!%XCVH(s_Ytr76;SZkVv$a2|NGl{zZ*m4Rb4bnJ zx;x}A&f%vC#o7r&e#p)2KIS4da?UG@(xk0Ay07SNdLruIk#0i6~lSUv9zbF1L ze<;$~<>K+LSt`LBo^(wWnAN+&!iqK*essrK@}dXG0#;JB=G1C%I+BX+Ka>q4p~%nb z#8-4-3tVKRTb+-rg=U-tv`IT{ojm~Eyqj%476tm#TJ;OEX-m z*)Vo%Ik5}o&bSVwi@Ssc`klj#bTD^a{>RaIhqL*%Vc2Y~+Cfoj6+xBS)ZTl=uC29| z+O@aXd)D3&Tg-|gHGpIWN2GBcv<+;W_k%n6~ zSNZOeKkUZr4R|kBklNrStQ1#>C-wd!kP3n!5#V(qD7l6$oU00;u*B@;)_t?~K3cMc zb>D8a9r$mxeH-j2fqcm<-G|nDA8Z>N>!>@%on1uUK@z=-69?M^u=D;o%(d) zKsx;&)(541?SjQS*N*tQ|D+$Cl3{_nyo=-yz{d)mx6Q`DY26EDRt5g;3GD##Z*!Lq zfiry8uT_xCS|J4Z<@&SZaW|+XZMt0brx>noZF4A97&url~RwW55!X$Qkm_2t{g)~ zMw_=Zgvt0B%=hsc_QaLgys8f~Ze{Nmc!rW@Ff9v(c%PY8-Vzj5ukM770ijf<_^hgx zGIS*~%wh=poqxE>YGnus9$!_60;WAw*pgU{pe>7f{LMSMCOo{0?c>4AKK@viR|QYS z@*0|fa72SUkB?iOP>%gvye&2ZCVwb^^JZBttIL+U@*kEsPc7=FiDQ3l`m$mRC)-+} z9wrolB))6>)1tfH$nEcV&W@mh^BG)BQ{ z)ot(UCK2PlYd%0#mQ6F}=W4OQ-J3Kt8@0YP(`qPq3#z?!j;F;!gB}YJx|%Q~@()fH ztIDIz;s3^ynQlnBOT;5DA7H>t07foieZXVdg^T`1o z1wpCGJL~rE{hk-YXXjS!+1u;YEY%auKfTPA=sv2HFvi$mHpb>}#hasEyQ`H4^~Z@3 zjx>@>hh`?yvPoRVewEZ9Yuy2Ni?TIj4t77Bj}cF*8ElW`(I^g~97Bp- zEq`0FR3ck=R!DBxPNDdrzOXlhS3+xo)4Zu8>c9+MxpQ`d$;_4tlk{o)yef**MO)0O z;>%NGwvYMcF`m&>eL8Y7Tpq+JU4tg}i;+2A_D@!-lW;g$F6W2U(HbS|wA5=t3-=dO zFUMZ0jm!>@zC1IEl&+}Odm+3ZS0qr5J5cQL7jUA+9u| z4NydqRB+=~i<77P4hR_om^2B=i-q24jn0A35=#y5JQjqX6|y`~(U&}{9?aUgu}Bg* z`|$Dwdxv`ALXOwMkJ43~wnM5d6h2XYx};|#YKkO>nCYn=RQBfsrGog~IX5W$K`}4* zcXUeNR*q-2cF{v>$DrsYgG%RF&|9XGv!*1#$Dqb?L-P>U_$0lmo`z{4O!6E%TvF+Bg2Au{raTFz>Z_tfvhungfch40zVeLb!$cnRNrvxo_%pW)^}{BhT}#H$5v z6S0H0?N&dA++$1j=`-!yDPpflxUGD~1m#9hX&I)XLOV*L`?>nmhh=V5>c^ogBdsoT zN3TzfhUq>2+BQ4|$co`ddeAnNYk-D=geD`mKL3Zk7ExiUUz#kxk(x#vClg3$&(p07} zvf<}i--8f2-&-{dJjX7p%^~RppRpM|y?EyvpSU{Mi?zs0zbm9mvb~toGoxc8XgLyv7eiODdF(o1ZsME)A$A4b;cY znSyz4Uw7G#yTVE>Eu6G@%am_QEPdX~O(NHanU$1e&W*4lyV(pACyV0nD|j{Gb77*s zkkcRzVx)Y5KRYs)7NN@@h*ge)Q_^R`uc8XiN*p z&HAR7*(7<{TKRb;CwmxHyjhUV~%0Obn$1f2+m@JE@R1Y&8NPu27`l0sc5OW37D=Uv-Yshek( zW13lc-+?2>ONtnGw=W@Hc&&+k24~6{Z+C@7Mp@z0x~-!MrV`E7;NPRjxA-p$)4o}E zv?BN3Lb)kbp{>lnABRlf`dFkU=sYHTm>G4inJ#`<5w{xcIIm%N<8&Igjw}XeGA0H{ zSPo4%vXRql^S3;kp4j;aj$Fg_sk^ljxsb@`y1J0%lGRNs;55Y}XcskH5Y3A*fAEB8<7=&2 z-Tu*^0&ZP?{IcA&P;gOawroVMnF-pBK_xJ~?f0$cbezEra^9ll(fbakd%ZS9kNF6t z4!q`Bq7Kc&p3tm&ZF4p^`PtPE%OUK_9)^ZlHuCNJXiQ;Uo~asdNb^0*3?IKmPut8m z_jlOIB3n*|Z}Gtg(dXX{gd67Hc}@}8W+x_euqgl&#{#IgOf)IDN{3~pvyR4`_(Pat zT|Gg$ap|RN4u#DClR|v}w;N{B3lhwu(xE{4kX>ZE82>I=D)jA3fsch!)3R3buo~5A z88Hpqxgx$ssXQ|!{cUe|6Lr>j@navU)xlW5pT>{kHC(#d&&Q6${?-9nFtgIb+=kSgC zfiE+x1M?wZVF|L>kAiukvhEkZuZKSpUxa3DBi}rdE@jgmqV#Q~o5Qr4rY`%@4bDb% z==+VC7wAjm7ea>e0n(Fj1HN;~)$H&f$Ol^(0P zRu#apx~V_7p|es?EaQ{}jQW!>Cz!rr4N$mZT_?kq7ac@QDktU;m}B=n(!#hae6fF6 z?9Rycdm}S?O1PG>embB0iUL1=sZL9j!DRsfmmwlwGR{Z@l&8aaSI~p>TlOG~fgKbk?%Ml(S>H*-Z^qJt#TSL%Sm%p790lzT{gP6xn1= z?VagLa5o{EXNN?q1X|noNn3P#GKqnVvR?hVurW%JhBRy_gFBn65#Z|Pzx}ZOpE{OH zbu$&mfm^W7d?0jW4yI|Bp*Z>Z0tO97n%Oo~KXuXWjDDBm{Nz`<(Ll|yHhBBgtq+Wd z1X)lwOw4V;4@DXP78oFJ?|1^lzdYYbz=MGSo53ei@S?zM19QRpaXL?%0WfYL$(64)?6L)WK7QVZGGJYb)d5<` zO5j>rGPiF5nK=4u4D#!8YgYfJP=hl6)yL&^3ydc&wi-5XRT{v1IPJJNMpM9j-xfwA zJO7js{9VcKwh4R;0lZp00Qr6ch@WkMp|hby+>Yf>VupV}pM1vn--*?Im!;kX?kdph zJwhCg86F{L0^3JGSQ>~fw0OFVhy;Y@yB-0=z?*TBR{|qq!qz%x?eE#e@Ys4Aca8*) z?K2hO!mvh>H^(Z2I)8uMbn)1;IEIP`h}@fhN$;;m&3BiAk)!A%W=QD##hJWnCb#~N zk%epoacD>a2^86DjFnwd%JWID_=uCNIfV+shoGfFq_r8zn6`R;ovT@5{`&*X;i?Yu z8O1dF=U3L1aXH_(e*SE9>q1pyrB!jub8n<9KgjE~$^Y)`Z+;s9AzL9{2ivd*6Z{<6 z7zO`P8RsVQ4O{&Z`UBis;qF!+gdzZSyvO^}#;$fZe6t2*mEs+8(MGZ-OPFfVeD}nJ zZ7L;4Ei-|PeaF|AVLln7%IW5fymXBrFc3RO0JnkV{4Rj-iMJuFU0ryAWu{AM?7S&p zqL$L;O7{_#^{%U=tiI}kwg9)?kNK22o8H#2?M~UnDXQ+nF_~sPLN`!3;|C${ks|p7 zBaT}&7EKN30P>V1*O6Z%VKPUf`g4_2haU^c#y%}Adm6P}3Miqts@MLiZ&=i7cL)_5 zr?6yyp1;47XIJ5ENl9BbqNA7;vIrnt^6Wam;ytsSQm5s;&U?okyrS~`S(hP;`vp(?uK%DNExejI1V>rPYD@7UoI}&EYOwbyGxlWxxR{hf8IJL8i_#kWJ09 zJcH|+6AVm_voffs1$89~n^xWlP|$}FyaSv3!%EjV+holhqD*W$XY77Gpdpm@`ZL#6 zjVSK%tqIlVbBCLhADJFiN@eD&w5l>asrfC9K4aTh95x7L{UqArv7=XmH}CRxZAP;T zN@Ttcdi?QPRtpQS82G9X_ikIjSn>ochZjoH^B5mB8Z2+~9$P92K;)+exQqU_7|Y?L zes8C%zqfCltbZE4?pLFCnaaGMe;Bil5Rm_tv8zEKdKOYu+kJ0ma>N4CU$a)-%`&f{lSl^)kL z$dl#BeC@>t5^sr=oK|0~%^xY;id7Q6f2#Nfw8}x@W*|iQQR3iPPMXlG%->ggiZPQy z91gD%=Z-qZjfD-TeEQ);k1~U=^k;paNSoA6pZcMAeqvw6aA~xge|C?KCxU|2eo6<3 zJ*dqF)dV0$9V7z$vi;Wa2_NZQ29RA@bUviZ7T{gzV2OB;-0q<@tnRudai+7kosM0T zjSpX2HPei1^ItrS+eji?DZ>%xzd^QV$Fx+wrIv^uyi*IX0M$L;pe$}5T7Zs`9XW)@ zYhUy*eCXo4Ks##HPg8={aGc3Rc6_1 zPF{IKq<2}ek~N|lv!s-^)T~s_=d@8}Gv32Rq#RgG7Gt=wqcAs9oDANU>)QqarWzn; zi~drW8T1+T`qUR-6Q6yCacSR}ICJGH;2Wt~dEtC9RuJC*4!_q{=v14F>5s7VIyG6J%uM zvD?DU49S-0K+>~DE~&UCGZ(Wk zRDl^RhJ{nsLw|gv-@N;nyCQnWm z@~Nq*Lz+E*;8au)9PH#u>7$Ir{Eg;G^2Q0024{q~;PuTK$%2>4pUb5Dr&)Y*Cl4HC zoFHfTh4LL~GQ0&kY_0aEsbs&g|=1j%qaMEv4oG*|WFRVBnv( z^C~*%#i;j@GK1QK)R-3Kc10PNu;1v*D+h-r(LJreuj=iBmd!~V_0AAAVH>3q=C=7O zPyO?hiC50&a)`FG$t=!_bH!kN@^h2X66?X+V$(j7kzu9=-rcpxvz#JaVMUQbX&RSxlpkkGJb##S0M>XEnRfRb@01O}L#U*!BoxaOZAPo~yx1 zH2Q?AzQvn~@gyukllRc=O`Ay(72flHwW0gvJ1ZLXTr=nF_e+A@X$5g$af1}CuICTb zPl;{i3S-`P|31n1hb6LAO3r3v^Rx9+psSO?Hm01#bx2KR`R9yeyaySFRZEyI(G}3Y zbWnCz^sJgTXC=ZbdD7#c;`^Q3@`bKZ0l=PD|EsV1NXJ#T)1ajG76|`-fZ8@(xyY$+ z)kWGM|I^Mk0ND^Z1q_(*P$fwB?5o7R%fenTu`E}sdC^M?)qbv5GaPqSje}@Gf$f9o zbnnl`zhs5}W(=J-U47Mmh*`{&HHc($eA&P%xVpxpA;}}yTq=(Rml+McT4kquvNGFl zzFOc>tM*dip>Um-ZTWEZz(1_kdu<_#9?q$~wwYHN&)7#QB;P-gyYk1#oHB~EyT%LY zg*30NK1i5hFOqSrWhl4Vw%e?64D|SUy$;Qc?;CkmL4QB>nQxjxDTjb95%@UxJs%r? zS6_-Id{h2bD2PpkUme5lK7V>|DK3`X^+3ETK`w#|Zf$VwOL zm!oskZQ-es3w>;^5Wfn7T?1(EkI9Z-G;J-Y$G$Poanuh9*RwOX=Em17YWv4c;L9B` zKNgW`Y-=qg)+Di*2GewrcO2bHdrxdvxc8m^VeR8PW8p_cNN@13+z6ibr~wS(?n3An zmrCw;iH1y^k&&0Cq07OQXzqBeqphw^vYK`LZ238Nuq^fd{vDmHwfg%f7#Ej6O#}-1 zC?KKc+Vmj4S;>XZSU3Kjqc{#c>>$+0}vsv)y(xz}0``AK;DDyO|+!K{-E#EOLY z-FQm4CAbaF6>h6T`Y+&qoSP#p@0Gc`ZUi7NO8qQ|IxGJx!m5*I(ZS?;lJA;eNiK3` zTX3*cF#%AF%{2-O{s@D@Nj{{$;BnJCihhk=DF@zMyBH|$L#2og78^Ao9xo(;G!ekp zpHgC&!i6>{;lv(`L53C^h6i!lSR2(dHb5RTLJi+PBtn|hive@nBJf^NtO;>biMgsf zAaa%1YPkK+@RBZ(p|cI`^aM;D2#LQpp2l7$D031W_1Qt9+BNZH&i7N?tkoP84p9k{ z{KqI5nk&SZxBXkVpA4DBSJD=XqZDWR110yjR^P(pNniiE^iNE+O`Nq=+s>bVYz&QT zqW(3z0n*L>b~Y)t9X?f7`-Vs>z_>CrBN<;+7!50k8`+(F;cO0kDB)xF(}}X3cPhiW zqh;TK-icbf%!vX??2L3HVVZKEYAageNlKBYptm~@er?sJBIFG87b`Ncm?MbhvVU~S zkel5ll0*U*jUUXf2!G6({Pv_sGAa)RHW8s?uBegS?GLZSf`I*`+2t7VhwN%Qoy~CY z7{Pys@8uGvVUU;M$Jli!?Z+EiIF$i%6WU3JV-9lF^+j2H)oHZ?(7@_xU6NNeMhP`n zpt>bcUk_I>m|A4D zWnSi{44~7P2z1~}B1&P@-8N_jVrC$ZRL(U(EADdyZIcB8M-9RZJ}ACi0Is!=xD~UQ z#!Od=dQQ=yCkO2qT6}-r4=0y$fx>wdfZROO6CgK{2JL~1d!wEU(UsQO!lO934nW*xP)r{xSiKoY(mYVJL&I4Y7*PIHy zpR8@$w^^}>x$#ZIZoR6nO>-!;ssG9b449A?IF+U|CgpsRc-{o9-Vb3Nbry65+Yv@TsNCcgJwA!v6(&8ML^#}= zFLEOKBwP_?AN25pX>?yblYEcZnP4mDKRg@4Q#XI6>ty`0XV8~^VUG1HGqxh%{c*Cv ztzydZcq|n(WBsM#2ZAD(fU1w-b;Eo(jVv3ne|th^zgIk7A^l~can`yz#O}?aSYYhY zL19!~O&t2!KFnpyR@y22H+)9TCSLUsx7DtpOm9*}291b1s zP-&VSmF3%}4|x>dO4;YD>!gX?C86G$ADcFhb+z<4LOhk}X5&tnm8Im;z693Y`Rrl| zCd*gQhYsv~Mzqq_hscdOz#g|Td=%z?n|hOuX0Loib*P9u2!-dbU5fhpa~)oUj+2dk zdN6=$mt@cWw&@?YWlD&T%nE=Y_v&Mc1={CrfTqzW+bhLJ2f?0otjB~UxR)XPSF55A zpHC**uJfH?tV)T$`i?xFIuxyyv9GU+v| zX6b>(J1=ppb6g0CH1B-wt<}c%TjRKdG4iEqHNW%#P>qz6c5{uO%9t>}!Q7MBuN#5_ zpTA6G*jMXhHLzQ0$zmqxEOf2aB(q+&wd1_l39oQI)AzMb5ZEHoj zI6dkab`nB9QA?Q>N{1qy%QrW-HYT#$a&iL(O^W{NM=1`-sBIfH_G8I7ncPoh9NFjM z!F1b;E+@7e7o=YjvUmm1==wo2?w0bbZJgR0GF%+T7b#S2H@l)dLGKY8ZI8WNO=C0K z%v~TF@F%a2b~7?6qFRYCjGZ0J+xG~Zq1fuB)$vlhq*T_T`^TCIL97MCuE&lQ2A>4u z)zFCsin?VL_fG^9ys+G(E;eYi!sOP1mta1eJ{V79@=(WF(7Rtq3y2fLg&53w3+^gv z2fUB@tQmkD7aN0!zIQ^NoyXKx?<1^^AqvCd7unKMT`wQy>|!Re``u?#q3h>Nm7;SE zRf*u5od6`RXo(+FMLdUA?ARtkZhyt&#EXu3P4@ zP8j>tf_G0AMW=G}>7zLyW|2q8Ii>^FNOTG|Gh`qvAV-KhWaY! zviw>EoEGAyJ>^(Y5h0#$^67<>k#&D@6tLr2*}WC_73k4c(3BaY7p@mIrd`PxeOX4i zNH*G)4`h_u?{d$d=1>SOH1O@FIlMnu9ijdr%1A`M))kr+M}*YrNiposRlwopOc3nc z8r%52V{?L(X$`A$deS}2M!6-vl=2P#;oPA(kW-jtCr8}RXyn$k;OTxYurYeN11GrJ zcCvHa^fJ$S5q`246=;=Q+I)2YM-lZ3&Jd9O|kM$(%R~ll>lESE} zjp@m~KV@HG@=)<0$l?)qyG|dMg$7w`)9;OAKm-t1D+vUZd7McH8@ODRdzh|ZjztWi zj1WJ1H-J^5V6udxwzV#Cfg(%mLu8*@Bt%_(Qy3-K(m{>*+!cNeU+y2_*8Ek4=MtTq z)+q(ja(p;AW@&1t{&C3IIEMS%+Ke=3!c;Qnk+`AoZUQar`Yn2@g|>&)*bb;A#=X7= zKGl+%Ii5cAMGP=x=YJ7;(Y%&6F(Gmln!5NDNNseoLj??(=?p9tt>5emMdgi0$M1Gf z&4vc$Q0c`S4f2@vsK}4_l1MT#F7x%xvCaPc%Rlg}48~MZ6dy$_$3<1UbRg0w{2AXc zRXq|yeL5PZKq;?ax2yHiV9xvM;xf11fH?h6T{zt>=>837vN&Po0RAW6y-Uf^HtaY1 z`S%RIQic)9_oh4F3sgQi-Mz~Nc*Y6j7jIxB@OBecr~$|ociPYxr$l(dcUC!0D{%8M z;)#~aVVAwl&};@L@yMS>@m2IoR-|c zLDJ&gP8-z7v|F3G0d~+5#H~er0Wx z8T0B3cxe^5N;dQO;DY?>e%L?}Lst>OF(5O1k*X`unzZ3xKnCHw2rL)Wf13q08`Vks zpez_xJzOD8{?IgJAGjm?;t9ag3le65LEEq&dJF@vs8TZ|Ldp_{eXE;RL0(OV8q8!Q zkoUT7>INJCSEXj@sNYee%$TJhgKlA*AXgd&xPY-2`|m~2yX{XpIwX)ry^zVBEf`8g zufy5KNTzY4?du;^lN)PDe`({zc>O#08gJ{jT%CLhO%2fMblx0KG~5u_mx_+Z(p46^ zUZ|Ct9&i?H#;DZd0qGDWW_%em%D_ePCr4`eml#7Kk~YR3j6!9AwW=mZ(lLyJ2-G7o zciXoh0<~eXo33b%19kEV(zj%wBu>rjBWc8|l%!ZL#&|P=yXh$jg=J1mg*7n4j;DeZ z+p|zPRO;NJ%(^4(y>Nf3iG5x6;VZ7ON|PYVq~+PamY5kKW9@K55^zsSG&gXh4=W3gJssldcK@)G-kGiiQbQ3Z z8Q0<-ql_@XKn&&gD!AF0hjb$uyeusSv*`rdOMfXWVhrNXa^4Z+rqt`LJAR8V z)X(j_N?Ur5#&%(0UA!P3W#cCyK$)l6+l^ymLg&zOo+GM9RT2IN`(xj6(Gj}vK;giS z!3=CDkIsBwZ?M=B-N39hWv1jAGbxCl>-;;A<0%` z7&8s3fZfMW%sa|=!Ho(|e2&nRlN?Dp)xun8?eF$ZO=|o%J#1LMBVns38{wGcITnSJ zjA6TMu^rfWI5uUG$Lo%jq9qfU+)JeaUv?o$Uhh&K3?{__>Qr!TWnrFIUgSri9adY2 zh2pBtQs$8^YrY3W9(!=`+Y8H! z_GV{&VRwPfd*53t=EM6*auY`T7r%u9erboog`=FKx`zzmX0oDxQjHTWJ^&N1XIjlD zS8cVuB2iT}mw-am)BLHdt3E@qnNvLlOBAlfawjO^Z4FfD;1TflKy_u zOJ+LYaHad8VV2@RooZWHSmxaCTHLLjAZ4W>iP>-`qOM~cUBft@zX6AbN#JDNjoN z^+?k6GcSrHJryk{4<_qRx^GO@e0m)Fp+J@GnIfYtH4NJ#NAe6PDZ^E5+X0t`>?FHft(rc?x%>2>C*BO^B{rxd2_&JNuvbpR+ z8_tCSNztjZHIS<&_Vj$E)gj6-FAsB*rSl- zD_9l=s|x@1uUS;7j8WUZMV|cv-c`5v7^H*Fxsq3`r^|*JGEgQV$d&O9 zJeG?i3GR3&f<5$@(Ce3wmx^)~bzX?7;^yEH-(rmqva1)D8Y9@cA5vns?row8qtjx( z^R>@u+LDxK`I1U<$h>8RI7}Rsf0H6<{8R8=w#3-()@nDXiG#tzKXD8-0Ar5E!9c9q zlEQiEHL?~lw@&U*nW;C7mM^gRhv)KXJ#v^M?_8_geOX$6%Kixad+?HQoTyIz55`k{ zYi>F0x=^>(%h#g^Wbv)g+1^e`&%i=fj+gTOyM@JQokdwI79}?8VXc`bG3M*7Tb>>% z`%cE1^WtpAzFBliZmGwA$(C8Gzn0qh^X~fJwzlYg*cL%w1_4JToy7l2uaFne17bs* zXU5w~OX2sZGY*3%(gRwugwImKp2U~1UFQt*oN^>tjbeoQTMofdM*5Z$l+Ph--F5k76)fVR#5T=z5@a+y!^gvgS~ zEe;P-i_z21{sabNrsj3fd$GDL!{9PyaGT&|t+ZI(CWjWm>M-cN?#J$}*vZiIR7;C= zzQBd!w*pRo?YX_pPVV0i1y}vw-WZ;2dMzFBn~9p${Mkk>!_*-~#-%AB(!2)t=k`^B z7&iH2(e|)WN)`Ii{xe~ZXqWZ-N%k_9tZUzezxv%;@(eLaSX-xcOp_w+wzSvbgR);fwNfh3>#=8ecdm+;y%PubB;0y0D2Up!b1uNnA(vV-*SG z;1s*CQo;{-ltyZEEdZ9JHXTl4!gTYR>(^G|Jw*yewu2q9hjpAvnrNJlL6xpnmfannOru8F@|@&4 zf@eR5FrRgd&c1FA_LT0Rg#QW~Ym;{}xUXi)V{hhiYbbXoWWim%4!(5=udmY-^Nd*v zxgrnvTY7}hq(QhmDV%!OSrG4IUB{!ZB)akP`*+Rbl$b9E2ir+)&814UPw;uRqy)Wo z`k(Ui>km+PV$J%2~CpZcc>A4IO>=ce-e@4NQI2{e~@bdjyJWLDa59 zhFaW(0)_wp_>%iE_vpI-q;SCf0f4sr6vFqH4demj*5?C@dbZ%rxG)m%ly%_Wen57J z08%HZWI*pznlB#9#;E_{J2jMHr*~AMIJr#q=?Jto) zzLgv+gAe$ewSOSMGgFlQ&@Fg=hn@wbPYkB~QNSqf$wGx~1B=t8AK()UBVDzHb$*Nv zHKJzEAI^ijM#>Qry1NX=y&}ASe=Ftn(~gg743~J((9FEPN-5ctY}KelW(Q-M&B%%p ze(e6+-7b0Ms7wzXOYb@+5&GFi-r-e6h7i>OZ33@yY$BgJ#pTB?4>qrn6@v#eN5KxM zsHePsPk8=e(TKVdC3)GA%wVO}z=@A#?@U@rIF$Zj6|mO z+@F0F-T^R-R1U*DjcFb_19={jK;x4ExN(;ls6P?1rsb^k0Nhs^IF$(Aw!8wBNk%w* ze^Iyl1fWN0`L2?~^^0X(x!-#>dY+>mdEzaEVJ1PYr4JGSf8}BqaMMbCkQ8qG(tp!v zf-D|oULqL`V1XLu8o;x{5`~a{0mkIP-vH7U5@JHmu-<3YNL@*PBFC=&XInlbe@~f{ zN|1Tpvi-{I#_>Oc1Mv5(EU*LiFF+1Ra

  • vJ_qOfOY_>UyDdhNCO1*oa7;3%0n)% zd^}aK2vV6L<#sB>ZLUF??R}z~x?IIUaH}VM0dJ`tKHzotL zu6ITZeU~34&{LE60Nuoorx|YN;XtHWF0eio=Kb8Udk+hleEnE#Hi^U7PcvYcGGYuX zL}knDAJ$WJZAqqdiMyU$_!z8qxkl^Z%I5D3>;@&4E~JS?h2~mnsNZGaMaH{ThqmpK zN{tTE9Dz~l{uoLeG2P%~sSr|`ot=Ty@(i(6gC@({9r*FLN<%CWO^>15$G5Ug?UU!!7h_l^RJj$O3^MngiYW zZ0*baWIa=xZlG7Jalots`(l$&^?4~&w8ExVeXgkUvAG)S33pe+tzUmzIo}}YVstss zt?z*>*!-K!bDyW-vak9I4Wkw{78a(7=zh^j@_~5(bR($}9vfU(xmN){jg{_RoSKvc z6*Bq{%YZ-*G@*Vl;PN4+JED~%H2CqAJTN!I=iFW;a-~q>Ms^tS^XhZ&%wh51@O%%M zq>*E`d2vDM_lBUr^T7Ai>S~og-jkDoE7vx;a6~$@|4e74`q1;nOH-VqxK|agh5LfA z(hwSMMFQ_s9wSoKEYGL^@`xv`>T^q6VkJ?&m?V*%=JDEWjC0df&sN(!4&{y^)n98% zr|beY7&W#=TJx*ez6TsHy4sK}U25fZ8nT~6Kunz2x`q3Gv%L#5=B@p~)@ri!$$qwl=v6l--Co6YAlQNHkzvx=j1=~(^)LiSjg%(uW&_#bK02{UMPv4qUFx$&O&H9GBR zKzbcHdUP$nktf^5jSObOeFwK38kY>Wv(Rr2J-7IUX1qU!jvKS?34LH-s9=>hi;QEc zNc?rG^Hc5qerw~GJ!2#`ZEb+r&57A?Re}HUZdd#qngPQE#r~PB{Yv06Ppo5QU;!00 ze63a+5Mt`{Nc-RR;tX3@vUX?Jisu3>;j<3EVu4ENvlY7^NnciufN%eng*v8 z0%Iz}uBK#P3S~Bm+vB-$GSDgGum}?UQQ=QFfuRAQWFYv*fnUTdS*2 zs+V1%y7$1Dzfp>&18JO~LoxGhot*xG6y%xPZv5gsc2ilN{mnSN`^WvY$>;8)wrSGi zXfzP*Pe&4Y4xrPm{;X=$fW?OitcgZ??MXs&hVNYY9AbY3YRw72QDnzE&XK2GW*9Ag zzJFNrXk0ao=bJZ$5!YhyUigqF$Ln0Ovmhx3UJ~{9Zk`TOXa;<8^D1a`f)F7=8N2JdPq85vhxCQg0S$3XR=#;873sH_6n@x9~$u z@Xdr%T|B&0y?5pE&2vTQDLpHv<&Nhb2`<)Tj?wYizSTHw02^!wI3713kxliA_R7u0y(L<=Yr);h#t*x4$yzh zSCqrO%X^ZqIi&j%l@3U`DyX#XIeD~Y2zEdJ!*aT3j7kU*tK2wGG1}IfZ-4R{Jwj4A zlq~Xxp!)dh`H9CjFN@*4Wpu(%y26i1gr~RyYgq@?mB4}7+MAl`b}PECj%X_4-7FP* zhG|y-9edIcu5O7B0F&TLG~*C?9QtlCXL==Gfncr|Dq5+-+US~_ zT^fj`VGIoA$PG{FU_Mnp8qpxn(!b0w&^xvgW^M2k@f1-9kn86UBx0@xy&kz}Sb{0X z!amG`9GkXv+n@a1hxVSIf1A_TMWqV^cKTc>)yk(pV36`U@pwAZ^?CvQRU&0ECa?Tq zw$H+~N@-X-kr|==2wWb!K^>zQ z9&dd%c6w4pSLwq94(0Ye2|!q%KkpK)n@uYX8)ZlhWGP33j|;yYvd-BqDwOEOb|gTdqU}<@lG+N5T&>pX%o6&Kk*-nL;>lP+j;qMi3@9R8OH29?(oz{GX`?`UZd8EZnQrb-iRx$RUn$GvybBun zq7k1fb$J6|E$B!{_J=6jD+z8joj$$i5@VP8hh>SdWAA91W8XP960(-v>V@6X8A=@w zqD61&Th%;_DB9)LA}uk!v~)vRg+qFQr=OfhFbU>mJJ?B0 z(iT6Kvo@sB>u}!)!G5N~^wquV48!vVX+-jvnlivJ1L*ktnRN5~_)$b_DY;}ZUys+9Nz9OdUnl}A1+Y0Fll4HuHau9OC%TmP`4$Mr?rvo*56R@EX|^8dbJ zG>eG}lVQ|H9{yQf1v%A70Mh6zTz8%$XdOjAz>Bnj@S7S==jVbDJkQoY*us3}hU0OE zfn2!}42rNwimy3AnMnd!5}52^`;9VqnfHS(Pz>GJg(7&SJhq{2B~-H>fFW$w0RToW zYy*d|pICrhm~@9yr4PK-d(%h-=n{y4+z0}=#>yv0hWr4&l?G`+gOrO2z0qj;yHY@uH(FR9L_LePN)?$JVP8DPUuj&95$4J| zcCb4g&0@@6XY~HV^T8XDs~*&t3UiKuX)O#b6GrAlDa_3`iXycORYte9-{f07$k3i7smY8=tS?ZVcie zn6EvJNmZ4L;tV< zQ$h_xkjn9x`IA|jPLw&rUo2brAyE5|^pZSQi2<(~{(jwTOxbTpln5En>hlMXNWf3| z2>$`MUo+s(#$B>)So3?(M+dUes$=+xGN-1itaf(O)IEl*Qn#s0Nn>=|qJE#+X76jw z{ntmSBfX_Mf_73$FAn~OGO7d9OsF}v8$w1KypHb&6sz4j_%3W47%pUJ`@l;ZZl?;? z#+|sk;f6oL-zqSEB3*ThqL-r?^3hx$Xlio0-+y-Ns{c2G9@KCZ7+XK4|^h6uM* z#MdjxgFHNn*|ti+RG|kG)d`VPY4$~8;qR54UwUBb8MdxM-)3t*J?zk(x9uYKU^_LV zFNY`ra^9!(qc)Z{5gK`A{uO`joE58+#N5GkpSnUN9ZDm>t2(prhE-MTVE;?jdbyff zzFVmRO!3N~mX|>>;MeC2(IsmhOQh>X{xX7Q`#frpJCPaCU08XhWb%g2qxvEFK$+b z@V8^ST+Jp&i&F49-snv{wWE+Sbq3_BoE}&F37hDxZ8hh8HwQrTm-z;<)j6+bR+m0 z(=34!Q#G%+b;=2CDO=$9nvuS*kqt^C3?+A7N805)h)H_;K1-qw?w33=uR4=|{2Yy? zQ7M1bJng|DDX2yOSC?T8!*K2n-_x=$x_z!P|M_?73!1AdTj~4H*f3=&aVvte zm`0EvNtHNW8ed^cMcw!;6&vY;$V3YOP3`yfT4vccx4ryVhp&bg;xn6ReAZ9}IW;Ml zom|H?CI77yNt}HksA-<|BC4M^K^3jIS8-RfacydZB$gSz6*C*D_^Urf-pEERN~`Ti zGQ#C_tA&0eG;*$*#bp)nRx|(3XDFN%SxshHFh%-6#O!2i^km0T@RZQ(UJub@rBrGK zL(AHkauGb}MfweI?P8W{ID{918c9?;re#X~C<8UvUJ9m$P-bxQe{(y5b$sbE@p4O8 zyAI@&7$0U&L(#HL3J_!zP~B|<-8`$qyLzGF_|$LL>SJeO9`5A5*(0T5QxsYU#6g^_ zL)outuPI*{P4zq2;icb9OBGXn#(WF^{q^q8-8aP;y)1!YOk@5?{W+V(P{L5O7gcls zvXqYb;koB-)~r7l?2d9(t8T@VS0b{8Vx)XaK%kt}W3*xyvq3|n8L4Z|=HB#6iM7lB zu{0%d^6m3_%E{olX;Qy%QawzG4ebA7JseO32??0`7b0Z}qga7BVKF>VylBd@MDwwrY~ zTZxMZoJ!pn+bcWXOo(WrOqOz(`4raPm8#dtqP!VkqN?S3?hX7ByPoGh(P&bPK$)5w z&eyj7?wc)WSLkT-{QVyeiTUDi4NBf<2i8nIeimRyf3ks%J!XuJWr%)R!;;JrzhCq@ zO8H@d(w%_$rnF1wAmOPc01lyRm7iq zlf9|E!FwubtIwT&3K`w)NLW{7#S5Cy`6|_}L5_=;J60*klXlR(Wx#_b5EHEYIP^UT zH1bNzJ5>if+INn~B#08nFyFRLG#&~lyOl+gXMc35RTl1xe-Eyh0Io;fjsj!LL*MoT z-km_J6Dx_bZN_%Z-ZdNLw7!dOikJecJgEUO2tJ(c_=~HvEOY0>#7nOi@)?WG@4?S! zJZ>^znc*(-x-NO4?Rr6)-CP{Y zf!t5k>v)z(eUYTzYx*C}LQZo;72lBQM>f8BGE>as9N8fNeR~G7#O1<))HOy>(dj8{9kxk4} zohjw|k8X;(f*Z+u0)eoKqrKJLtTvXcw@wwsw}Sn9-ldd|>uSjYSQ)v>{*xnlU-+eQ z_1f(MA2pG(XR+U+Bl}8`+Uz9tQ(w!X38(*Xj(pxnnG`Ge{AmIITb`Qq)spVhylQ6? zwa_2838Ox$|A99U6v`3Z9Kg9|p8M~8d=osH!@hiRnJ$w=G+CD5#U8O*8PSm;1z>SY z_xSPBKKMdSj&g1)nWPX^-8W#q2#8WIx3<c5oq3CelYZ%vw9sGdpBsiL_q3Vwy{aa`D_BP~pPfVDZWa#VTYQHoKCV&Js zx|FSK-HogxaER#1w>G~_v})-y4>9x4A4E8pEBzc)QfUN>ZXj%;(p$XT{!Lg)r@@yO zw|}yaB&hetcpsq5#{b=A#lXhJ8|F?9PfobkX>-c**WE~&sjl7n7-7%dJt&kCgr~BN zmfdk;9F&&?`vTuW`GRcAOft70$c;2eRG;hfuIJ74wXHzZV$J^v+SUAr({bBroCBGm z@`L<1*UsGELP@E3UYjue`wZ&d98BfS%@Td=8@M;lV1HkARVBpt`vXa9N4C`twZJxx zBZlkQ!8agI!z^hY;`OFNuw?5lkQe~Lz-wqwelcLIPFAQAgBJ$I&iILnrs9CuH^`h6 zTV?P=MRya~p7vK6V+{L>Jl;e$zYQ4LMWX35%kwcN8o;D#+dK!nN-6pV4okmPSoH)q zM%$5ZoMKGhzQ#wk8t6JfyU)szEv^&5)<)ZPiBcPU4_LBu3PH}Ycp-<#W?dD47z6|V z%-=Sxg$~A3F_44Tp+GQz-y&3JRq)E?k>?D$DhZ8iooqi$vaNYl$QzPj`z(6Fba|d2 z!(l9L)_8@;bONToI%SN6Ne`CQudHg|KR$UaNH z-k(@DO0n74PD#?iFgVaK5+zW&FEH{DJ@(aJ09v()GV6L}Yy(Qy2ta?W_yd6l7gJA+akY^M z@h%3I8wE^YaL(B*V7)nwCEynP8#W3*=nDB((R*lnqc_?Qt}mjv2pplq92f?aO-(WC z%Dw2Ej?f3dgTsyF8ek6X&iO%Sma2Zypel$X#8FX{c7(uR%a*4=CLhXI_us2G7;$MH zn#W!*`7iKM_6!mGp8r8;+piBRZFv=uAbrv?zUm{luBS z!Nt92QktW}joCr-AN}``Z=YJ3EOnwS4ob1H<4veicAS^T(hrud>W+SL@cO|03EamH zEXxH3z!U@0qliEEnv25%#r~q#j>hkVG-=f-o6$5(LQn6e`1er2R1;10kM76VBaLBO zg=Qb{hR_=;EywPH-N7ivvlc9yF%gq*X&X_|95py^h#;)&RU{szeb2|s%<6rsKDAKc z3E2X+dbPh59feF2sFV5W;T!YDBdfGLI!(iJ;Yyfbe&#wF2OyN*)Zd8P$3CV1_aekn zR`MO~1mze zB=w)>UNZsU6fR)V#wU3VVZzQ{Isa~Rexr=iz<{WuP2(^07 zO81U|5PV(12F3~2t0Rt$!IxSL>pR25UG=Y#jp~<7@B&U)ghknAS~RK%n04#WmY(ZDYMhRt@&9)ZU^x`KyR7m;wRZYta<(Dqk{O}f%V;PgHA!U zuY*&jfzkHo$sJp7J)2Wlv{IKG{{?nmmjhEhBsx@B@S);F;|h)Nm#UDEl1$MWTz_K_jJA79Yl zZ!=33N0)Qdq9;*+^uU?w8eZ+idtM0Vws0b*S%AoAn04dv@7+)Rws}gn!fF^J5!#eY z{dixPT}zMmjY72J`ID|6*Ym~6ij_uJ;TmTkpQ#HS(l0Enr9Ggoxm#*A>Q;F|uMNvs z4056lb<89Ux<3%QT}C*&|KiB-r4HRZc4icHyL0G}`41;zQzz5O!l_xkCg#`6+PKc` ze`Cs-AM+TG5Z|w{-S;gcRGXIcwJ?ok~ zu^{2qv@YZ6nWu_T3ScR9^9fkJp-+CP=6ra-n*5=|%sN6caJx~8;@n`elscu{+GS2h zy6W%q3LLzmTjJR8E7j1@lBT*l*b4gaFe<46EF=fR18LUlBG?6h~g{5n40AYh9mtb`Gl?*gH^_jEwlhKtL~ z3pz(=D1mmxKm=F5Ck`S}t&e?#4g!ACy(nIhbrPZfq4l_zur|J^>OkQWh$!!3Nsxu! zo~lZ}FR-}|awVaGz(x%iyyX8}*BT6gGuml+zlU8FixJ#l zt9W9YHeSr@%*$zpJAo%qw4O&8)7HN$2znBe%D#%+Qqn4d8jj#@6v#dPhSN#sF#M|a z?c|bk3r3&xMM)P83Q2xri9R9Fng{~gVNV$Z^a&3;;ZRKSxkgL=gYuo>QpH~Y6~5p? z`nYWL1Eo^HbiX zgE?nEO+>PUI{4T+o`Za6=XtBZd)&QrypgFyk*;LtZ}~iLPvjj=8INf<92Vd@rd#|X z7*~;+m}$BN-3#ZD%qPc)p3T}Q!{m;+(RWN#2}2ZFY-)WuY+d zXy0ppRfe&T1*7;x(LL4{%M1gKqcub`kWuHqZtPu|9^%ENZp0ieOx_l*g#msV z&X=+t@!1@-Cc8XXCN3)Sf~3+WPOIn(c`%iR@^QsXh1bwA)4=2-T^&^t+xGV$E#1f+ zqg;~z@%to`p38w!RIhM1f#RPBjpHgD&oZJ;%uET)YX`4CJV$e+rR9O1U`g%;jTCD^rGQ; zOMav~`%`|<8oJ)XKcS{m=gmDRvKP?+or#R)9g&^KTrs+WKv-Uk)$|N2|&@QafK?=r^2irht~;X(4^zR|?I z_hL;)QRb+XzHuww?L?!2!}E2-CS&8MAiY)Zl4@)7RJY=Gd^z=R3L~>p*GAg^aN^Au zdxi}^aXUSEG=IjVRY3#4vFWDR+Yb`PbPM)KH%Kf3GJF&9J6l~Uzmt4muq=*lFFYD*(fB#&=ghz8=Axke46&FAU$%~iwmI0YgY^K78$uBt0;B%P63oE zYUmJ{Q8>u3={JEFj&3Cdpn0_CQZyCVu}-4Ibdm+?y>0!9oAwxB|wM?t0B`ye7yL$jP~Om8xm1raZw29DUJ?E15PF zn7HD2@{yaOH_t_>dMaHT^J`62+TF}Wtu_@#kP|(P;Ap72_i`+0mgR;Usq`x>w1v|s{7$g4Z`R$u~A7=1-OR{mv zwN0^_EYs#gCO1WvS5NL$5##2K>GLP%KwH5R`ZN_2-kFX?>&|Y7*DnoK8L^#^QwQ`b zKC70Fc+o{&jNs@umPoymw**;HFXHYe`LA#5^g?p=n}Tys8$FJPQ8DMEzrCzTePoA z(R$#cPG6=?77Y;Tce?EmT_>>q5bD@clXo^q$4?1flH$#>gMXI&i(x~HGK~hp#)B;h z=Q4*N67GI}P|5U0U!s+BTlR|tk0pvp{AoL{b)NSFUc1hnDu~3RTLWG$bx~b}&HD{Q z?NJa@a28^P&#wC!V~ps)G*anIlSl5Or+i&fb~rc7Wh=#E`CV@8KL0;!E71q+b7tl( zjk;h3Gb*bM$MyC5>izdc$AYUo2E(OGzNA0Xt=N~amj*hWh}=7qCXNi-Ht5zJ2T?R% zpp~UhH#nyIpzLxprB{N@O_Mjd_s-M`S@{M$mw)V9ACyi#`nzk!2&&q$GgXF5{I-OH8URG9!L~Tp=^I!%0@=pM20qrv?5dji!Ol^Gh?_O;6mbg3oQ%c zQbq!u*`CRdPqVG=hL#kmh3s> z>=b1_DxXmcA!1R_N?A3(Jt$LL>3nxrf(D?|NN&(38V|?v>-pr2GAhOY8R< zT-;KqSN4|8$@;%-=#{Ysy89>onI+&k4!ab6snCdc7cOn=Zw?tP;pjt!^6)L}O3DkG)O%B9!J7_5PCK%t4>TpbU#y?qRO#`GU0lM8GUh z@K@e5ic>iI_+((OVw?_;b_7=&SvD1y8qgWAb=h85%62`L6M=>LTe&V+-<7OI2@NOx z)nU|l<+S{ZA9q9#uM&~{CE&-csQLg?Cz*;u%G*HxUZUOgr17DF=d?t0@uxRikc?;g zam4{y+$JERv+~{wtCI!U5<-KePd!z<+Q(V|xuFnz|DDV3@oU#pZ0g5zz-<^m{~`?) zP=I!@M>g(27|PA*wRQyl3KSV7Z|*E|zIycFui((Tl=3m+6rXh+$LXYq_%wG4%maw_ zxg2BTaKJCyAdNO1wvILD7sIf`e@$@}1FR~@=9~P%lfm=Udonh>#ZRSu(j`+WKS#cM z$5He<_>%f(C2A`=%<((hG3N+yz6fl_=-vnezVE%Yw=q#x{#MOj+ZCv~mT>>Wq52Oe z_4s|m6m!aCOg;a_vPX=up``XCj)EmMf;_= zp~El=DXF7+PQ?$?lYW?W|6QM3>@C1G>9}p4^~-i+MjC9?dh!Z=WE;LWhLB$8jwX$0 zs3{z(>AeFsf33yN^bhn|IyvIpDykKZ^t44e{72DEV`;?H?v}ozLaOx4^X^O;qH738 z9*1}Gbc3w!vcpYA8A10IH`sxRHj(1l&axj2r$oPIdqSi2a)gLMTYcXUsmwy^N741W zWWtSKx$S~~qpYSZ{C{vBJ9~bDf#_nu^Ue(mu5>9mtD)Ymh$m0fPnoj5Nm*ZsY~Q*M^)A}J z{^0d`<#YrCp*>J$EEj?VisvvJ({okO>OcWvki_Bb!VBegnVpQ#m3%xx!=DBxoGz?? zR(T?tT2)ewSBZ7q_a09tYZx=;5Udo%n=E7CYzczk*NNL@8@`9fUcGU(mI?O=y}Dy0 z`mLzLT?+KLx-XEavTpW(fAhL{T7gRoZfW125Fm&?@17aPnPVw_z1-(2AuFT^rd4S8 zD{Z}$x_J4KMR+|^rBcKgrRU?iQe~~9#MK+Q4VNb%j3s8w0F)A$Q*Tzo7vNS9h@ zj&!c zb9YTzr7VMf2U$AMUFC2en2)1C^o98r-7B`v7%WID{=oa}d0WuJpDnR>i+#!==o{6} z*Xyi~RG&s-K+z0ASnZsUoeg9y^=Sj2l zcLG_)5<#GcD=$fGkF35o*Ye4i3bz+>u(0ZP}O@GU!hep zfZU%%;8FeKe>QbgE6_G1LRWi*tvZdI*C_?L5B7L}J_G#BIHYqR`&8c?K#bPI2RZSF zn?P5ehyYnsSf>L3tfa`6gu{kFH^P8Xf;b2ROE$YnJOmJyPD(()@@>+*KFATsCQo}? zqB`X|HNf>2tpvBnu)oq)aH;uPfmvU)X0Cst?|kzdKyu5C!soBe~e zW)$8R(Xf?D;I)||)1Gngh56>C8?|1qCsXHu zVjTaIx(+124HNzb>mP}0rftxg6@PB_9`_jkdh_RirfB-cfyzc(&fet5(bYUgo(_eq z4=h?n@iA1k=@CpW4t9cGW?^kcJ<`4DGU+fAd2y^~HF@5Tn;5E1Egx?L zy_#U0Jb}t zM+04X3I63FynE`3tOkPH&B(@y`wpE0iP?5wsk{-{*FEV$h5foL#(Wb7@V#x1rTEe+ zCLyaJhmg--wGKD|(M}RN_G`Ylwpp{CN|@vV18cf@a)N=VOjWH41(`hSM3jKH=JiR@ z8_Mf)008Ht1ZWI1B6sk633&(DN+%p>T_+ncP%esv<%=qifx#&as3#Dtt_(b5je?Xn zh%wj4uw|Yy?H;DH=S&7l#zVJLn>Hu=i)4mI5{^y9dX!oek#pO3S>Ffadxj%pR~!zD zsiPl{OyYE0m!rM;pOpf7-d;VI%UWD-qv~GVLH@vn9G zMjPo4&0K-zPqE$BHQ+n>U+Qn!n>M#i@;q6JEg?rk$JPEowPnEIA|}p8Of(=)j`ca2 z?mDz$PwY%-h3?#60TU~n0LfHMUwrTc(@)m(x>-x=N8eHH>HT-0ZeG={&cxvfXQ6P7 zLTH-Ho40QU7kfg&#|4e&P49H(nRtq>om4VJhcU6>vC`DO=pr(6SHcx+QHNoCc+aHv zS47P!-Yq4-u;@~I$z41U!^5+v%qrF3c%BrPHMnTQSchIqY$_3Z-m>>ai(g`$7+{*m_4m1E@%a_9h!3NQL4=1%qU5M2}q7t7f6;HbG z78$UaH-QOX-?&cU==e65+n3u^4E6jIMtd%mVPqTn6q|yvg0W0UkN3TA18BK72hkEA zoD2`5J*p`k$kqI;Pp@W!rf=o@$&UO0tEw@$NpIBRrL1=j@~2@q_lLN;=DkX1%^>T` zR$u4vNUAZ9ZgFE}$|YFm_arp$GB?v3!6&aZX9Rq$m2U066dKQ-v@ypc?CRi~ z{r<_lNV7KKMYk|xdBL_<1%PvP#R2fBWGKILFtSP&8WaeSqza=)sbBeLck!Rp$xKmp zZS6a)Kl2J!h$d9lHu?`|V7|hYa8Gcty_fY7I1YWUd^`l(pR0e?^6yP?M~&i6aT?l3 z$vYfT+lSpAJs0d_h<|Qqg>Mwh`Er=m&q863G~+)U*6LePUD%j1`)pdnQ?uAe?cHb5 z&w$+zf^0-ARB<=x3BI|yZdd6^-grw}@Z=ccF73!PAJjQ{FebU~xk-HzScrXe`?Y8P zzKYK1gMjgN%A6JtJ%_!SviF#QueK05e9t>n`C00rAbW=WA2NxC(BeiG4;{5=7Gi7A zCHq&34fDkz9sMiOxw}E$ucP0e!eT7mQawG+LHroq=M%0>)%dvY{WmV)%sGMW0a4PdWne3REN0f(W^ z2`+E26}9YQ5-)xO`KmbeH^;DOTmbvkmZ6meZN?MX=%eClcQ4uM47?YA`#^S78t^Z4 z68gEnf5{GMnO&FhY1%$7*Vc6EVlL2q|H5h3+Blvq@tH~)3C&RyOC_=muGauj^b;Z zT5oX;R0xMOLTKNa7HNsse>tC`dW@XoQz&$qVB_lbWqD=PDeuGIw|ZqvE!;l(bJW(s zsUXUuklA++_iy*6l}_5ub=IOD1Z9F!L3MIbN3C688`>BYe&_|c%)ahp4|pL_E(N(U zc;JL<#@&E=T)UmXl_SCrKFKG$-$O**vn-G~l@NMuMbRm;h{mJ$zjU^vCa4)5zzCj> zZfEaxdtAj~=~S;50W%x3E^kyFt-$P@=a^SaVL?8K(|}%bJvIPxziHBz<#|R^ z5+gXGmxrtQkK*h<9IGmjR(DO8ywZO0hwb9GdfJ07ya`kTi9bd!U0CXT_!a3&<5KDN z)#F@$w?-$A^**;SWCO81*-v^!PI8)`*IN;DF#V@_lo0$4(*&xH+>U1Ub_mkqUd3xP z+reR|sn{eB;9w5$KZaInxwZ^U{_bnk5DmLZAnySxWLyGT`F4jnNYw?~WBsPj7m zRB&5%`RP}!T3e)PUl{9^R|&0r*hUW5vrH%AtJ7Y>ype=qk=_7MMAIG3J?9ed(PD=l z=zFP0kGl(l!(*#{9EYS~L$*}|pyzdJpmF%b!ZT4a6+Xu7KxQq02dSaM>*ISwFv&4_ zxujsUulDKQSNCrfOzu6m+qBuAi%}K=avz33H^n~rqrn8eiR%b5ns&j4pD33ys;S#t z094JW(ZomVwn^3a)``S?;aY&>`nX8<{t6KsXatDc0g573Hy$l>n!7ATkT)zA=k~3OztmN!6Q^nt&Pp0>n}$b zE_BHdKC96n2j#$67^k&6fWrcM&y{A9i+J!eCxq`#OHAARrP5%)m^J8x(nTv1CI-b^b z=cn zQ0$@$CzX&t?YB~?_Pob)rIE)a`YcN{ivgv`+xAV-nOrX-byUwfqN52YHGx zN7I5bsw1*>fCgFVS$>4!Re}lVPM=?#V_=Ymu&}@Y@yC^eE=;5p55W!DO)OuQ{B*Fg zBE=7mF^^y+N%=r!_);!C>4Aj)r6u|!u?^5STWu8ZLk+5+G%C(g@Fk!R1V!T%a~}dE z!JR)K6GBl5e{odW6k;9Or~_F785tn85;UElOSz4@zsbR?y%Lt_AdMu9N&nMh#&!^p z(*VTw$G)-Wwa|`002%Tn^hTj;9%YkU4sc3bRkEOCBuA^jS(j=@UCLX_Onz(J##PX< z)_$j$_c!zTGW_1l`~+wLuzUyI& z7{J%*`MV_v*_IJ7e3#OrL*svTUk)#o3b%}sD)kwu%oKdLdaxV3dN9LC0UDxQ#Ge3W z+Z{oUo5mCa+u<@ynQ*(orX99)##YW`>f|N0FecHowT57_Q2p*2Jxd%f8Pq8v`VDu?JMj7ec!VLgH4t?@6NWMY|!1bYx+2z75hm2smNj(ntc0oE@cVw(#O06lX9QM z+uW_u5E%-m@rbv@5I(ZK~i$W(3#uZpzD^_YU5+oUYKks^lBH4u11s7`h|cRFn7s}BNa+v`DK z+1r3yof`3~%ZlFs7PZB>(-BFX*zF6fSm32FM$&(}xV?CfAfa|jy;WNc#X!tD3IG3J zEY&{@JSFkye0@L2Xx$8$A0O6Fz&e5Mv87Mf5M;~fZQmL|(C0XCytG6iLzZ1WKZK5% zWcOSP!1@Dcj4CCj0NxMWydJ39xsx}K?7<<;F%6GAA7z>0{Ly9G6mzWq-6mT|?(?_ZdzN|vbj}`qZuQEvsb5cU z7}BEKtZmeT`Q;`gheWt0Inor(n;>fdY^wSUPHFi;tzh6_x$j6r_Z(1lqLm_%ZR!{Ah)Z>>_Z7F3_tbFoKmiP#$LakmsBGEO=Ao-LGh1@;>r?83j=G?W3r!i+&9BYu~^t$ zZhazAn%fdp;+T5rLSuh%Zl+s|OaNu)8*Zv;wD`%N8-pdT^#;Y1ga2@reSa<2Ps$zR zo(~bYlmOS929ZY3MJEvThIG?qOiSoBt8Pa5uWWU; zV(|^`h9MzCziKw^Xoc@)xc0}iZ;WrNOk+CJB-H2B0*X~`+ z54#t7EYrTHegCq#WMlELo|A)q=)E1z4fk-@3qx{RcX6~R^0Ol(h+s=kFR7MPlNc>U zuDtjKVl#f5UxAS(n(&vS$Alcd*5)?4eZm-8tRbm=Od=tuF4+5$t^RS5?wCrg{?>2C zsOgk$8~_~Xm{3Bm&KbWR(m9@0E&RRbjUu0fe+uCGC_OpC5W%t(MKE4{>CFzgMZn)e$}el!ku_3M2e_=%`ejNpHJlSXp`EMrH}u4kh` z;x?R~pqPJ}=d?U&btUjPv;xJ&Y=7hD<)TQmO%ylBsyWN9nwE{k97O~t=a+)RZX~dx z%A#Li>lhh-jLwb3sZS9m6}zlsw-56PH|U%?5SRNzPwn*+pP+AzbjU|}eXQ5O5e{)CYdB;dTc1hU;+|ZiKyl$nBm|5!?T=KY8BY3>RNP|MIk<)Y;&<1Aq}1;$-B#_ z?p^qx^BG=kVALN_>>l@wIrxhVA~*G9;|pH9X6r{MmPYQsLG^sMZHYU|=I5_I5TIR( zrm9HaZu1mV;OQM3KJR+*{=SdD@94L!@@%5d**i!;Pd)BnP+sh9Y%c%Oy@^4|`J87S zxRAz3K~mY}Z6}cKwHc}_)|Q^N@pjewj)SYLo`y(1=?Q87AuwuT)eO^NZ-B6bai0gD zW53*1hGhQcebsoIdU9Xvl1iJ3e$!t#onWq2DtOP8Tc1`pB$p--GNpc-dGb9MtjW-t zUYM^9p~k<9T^M?vFeXFfmWP8wCEJLThrb!;q^CuQ=kl3SK##iE0~u-%q|tEy+{tn( z!K3%=bJ{0%QllEzVR_lI8^BTekIf1D)Ip50GrCUI^;zWuoC?wx!pHYcP?WmO$j~rB zs$}+utzlMjrQA*ZeK>|0*Td!0yp1Z^(9aKf&1fK4lQp%R4CpK%4HgFpvch}0<#c>+|8Zo==su{zAJ&%)-;s22z!)9+)=u)O&Tdr#hVj0B%%C@LD?JHx-YHDj?uCo^aW2VslYq)CAV zt80)%icYrhv(((Jg4Q(`|HI+#&SXilo=xT}nzoC0_=;5sCqGPnaTg(MYSy~^tIyP*meM*!k~0-^1xy- zNi4Nq`7AK_g$c7PlpS^a%(d}2U~(fw%T^`F`5z`G$S&*go7>=cc01}Xkv9L~AgBMs z`DUfGX3MDKbH%)&yqBOUv`Z;GchO&0Px`p@yygA}|AP7Em}J7oTFkCgT6Hf3xSMfR zfb~mmvV{9Hlw4id$*nF4Jqeqa_#@zB=orUlb-({`3farZOE2=nL2Q1KPb)L;N3G@; zA*0t4Z$H%O3(3=dflxYVo@7xbbFhpG$;!(AeXT3tvRr)g)Cgx~7isbbIb(c)F^Js) zjl~&oMI)~h2+?-rGnWyof~UQsUr-{?Qj8&eJh4NXoZtzHkU8u8@jcZasvb@yTn|mY zDJx&LO)x%8G-XeHw%8%`df;zuf=bzkDQ0lVd#2m!Kbf(|Hra6RkflMkxcUjw=fs4F zGibeGuGh!nh0|m_#)#?rS12zswFY7Q!);{Mh8>O9%`r5WWEGKX0!6&O%k8m5`Ga$b z7~CKpkk-W(6qN3g9*q4w+g%NE5~w2dVxa&UQ~kK!9Lq(NoMB*}004X`5N2e4L$Qi% z94V>v0+1d}RegsTlV>frpMle=#vecECrNw2u}+7JM4w9|0CFKvuk^b?q>L5hQVJOJ z#sE##gqWfG#UGGM18_K=>H<&1#vf=r4(|6m{v+Oy{MwIfWbOVrg?zN8`-<0CmiKi_ zy8G-Hg~D~^d&Sb_$=}T^a@4DJuMkmp);F(`OkfJvUsRn(CW);@SoHGPdsZ(zZs@xm znTDf%R)26RemV938nXLw0I7wdEK!f2i~Tl?7#UJ(k`emBawXznKzsh@A|reL5uBUu zq*$C{6FO$EJQiZ8^ffjd>|`qADIErGEt7x1Mt)WdglhA&^}a$KAB!?k_<@&j#I{c` z#>D5*Kx2t`Es7$l7Nd_vJ5M%Xj0&1I=KAhBpuOyO`Q4$8$aaewstZii`x-#t84KVY zhwHl?!1YNMJE8%QB6yQQwsbYf1TVG}urE6IRDsv}5edKr;kg7p@YxYQ07|9aUwZbU z!`}O9VNvPVdTX#<^~he7>;VM1^dZ%HgCZaegj;3O;7}XGB(_*;GK6_i#ZdsQQ%Z%r zIvwbD5xo{-YROw)kJ`a-x8vOuwAJkRQY2&?bE{|oDxVH zlRG|GQKhmSL_J!`BZZ>GfD~hH7`M~hMNPxRk3!U=+ z=pH(r$CqQFI@7eiJ=5`d?oWav0szfNh>RFkJtUeh9vq|+7ZL46yAy?j^oYCFNDC#} zGDx3$nLssnwH-GHC?R6o#l zX8o%m2QXccPFI}*BaLDpVeOr+%)RFdHYaQ#e0 zrnoMQrKN({x~KRo@zz)#m%`3Siezrph!-!H?w|2AaS82icW>9JWJLurau~e;@GZG@ z&-P0HS;ZX+t!fge66~;%%W)FoHD12^wY&;0959@ZZInglg^ zdMo;^zk|Z(wtbe@Z?J?TykeNE?Tp57S%9Ewb>-uY>OJa~KW>@rCso*VLvk~P<O1;H~3%*LU;r!UWxXyQzwo5xs8&`$fiONi`S9S1E3v&G)k?Ota6JP2Q{X zym(hpYqhKw^L+&|yq5UhqE3Hn1^mX8+0wfKj4~qP2nWg*lSfzAFqQ@>`E+JOv$OCd zrIz4LSsk3xdGkd~_R+zR$IXo<|B^yo&_~HJ-C$&34>T#|@Eq`xq`2F~39i6KPJUq} zA`Y^7tG;2uG@tHm&4Ym6YyYg|Fg7aduCzL1Wgq^TBBi)s$9CKssF^`RkV9KQsp}`F z-d_k6#Y?u3j9TKgM8UKnmLat#lfMR^UL)FL*W<53xHS*r=gtwcca`YuI%&S8ce|9Piptiu zq;V-&DnvWJf7r&VE6GD;P1wqQ{w0>gs(@6d=+RE$dFDA{WVmtB`I9Z&wRdNEfZ=|U znQM~wwRRU{I5k%Uv!f4N`g}6$P1CZA;-IDXFuus zP_1k3rggA^u*(Z%am z(4rbeVHHZ6!Jd$(!#OhDF0wadcfVw71g%?B?AQ|6;#62gxD~Xfivt+Lx_5r-{9_cn zy7m|4sFVu*@r1F0ZV%7yKOEwJ2tI1uU&^<=Pk)eSm$&;nD6T(@J;p1=lDVypnj@tz zez6HgzVrDq^g5?{i+u*oX_Ssv9+x3ra-X|*WPRzL{*3L-#}Qxo@9A*C8TG1VYN2z@ zeb%peO_-GH(6GL0#KS0uzk|36*wQ~;;MQ+0C51qxU&ZJD6N9$U?vTV?NgU(x~`Z-nNuQ*!`wf zo-$kUi~JUWr9y<*Er$|yhIOsN<4Smo)k^ED4cYC{L~p=Ir;={?chq}1NA~E2yiNlv z#*O{SgF71HGFA4sfkdar*V2x7RFZuqqJRV9F!QePy9Us~-$}TW4T{^uyQuepP>k+gJ=*ZksiWU!h zSE2LNyh)We{y-v&A5mAk zt%VclRyYonnH!-=dBUK4Dpw5vcPL_2SulNIHJz74XYu`)bTpZk-d&13VpBT>@3F4+ zwAtA`$Kx{Bkg7dTs;humnSt~N0*4Y;39AYoHu2W&?|&uSPcSwChk5A}cTv1|599+3 z19VIr>Ppl7=9JmtBV61nya5ziHZRmt_TcNEZSh2@wAyvgZ0J(({$5mL-ojPL4BX0C zst$j(PgvJP#U|(_j`|Qb_!Yf>ma41K_55Q@yn!LlKsj>)EdHyzi`3k$GVztTOCoH% zl4o*;nr**TinDdhP-VGgAig3bSbzI`NXVoxkSOyE2e}3d;`9%CQww{3mFRqy#w;Je zQ)Lj!(op;gepmT@a?doN=Gx59c}a~*MU0!Pv@Ps-y!mOtJ5$5XZ)c#2)BJ~`FRor1 za0xCmD-oA?mAgZ_uUk^!KB-$4acR8!6YM{egswk-B(}OF-nVHN{l27Tu5TANN}lV? zF!eE=S!U0R?RZ>!Yd=^Lr}qmyC{cc?1}`@Tyg%^!J#>c2#q)SK6c!$^M*<*TxXtNF zJDg^u_pvAg(!}dyeO@4!Z=$YocKzBCO-ZcsP-|X_BbWCWS{!XZ2QpPT2MWOZOsA*4 zFs3J~{g!B4^Tj-jz81f(3AF#h2wU|AaAg-q+ld0_^{RD{eYw#T@N=m69KZ_tn9~Q8 z9H8xFS3%Auv5kPh`W0HMS!7wJZfg*wRG)C-KSR{lf3AI)@*%p>3NYUACf{|Hzc#Nm zd{^}=&jr)8&dL99e&$iOR-Knd!NfiXOcZ{9N28zGtN6XUR!0kiMwaAWTE40B&PG$s;AG{CEPB$sg5ZmT%TfzWXpi<&=t zD|X(Cax{$r3JD#5Yk;x$1UPVg-Bh_#EShvS@aZ9v&bn+K7s;UViKVj^nvX$*fma0@ zmBj(29mrmSj&EvVS2z%W7Vf(xvO8BeHp_xx{6GKk z3U+cG`t`%Qc1_iMiU7FTB@{o0XH>WU#p$+ooRg9>uS+BPEd-OC@@`(?fj~iY*Wkh# zVzfU)>%qqO>9~lqn6I+LCj_GtCJQ|tBJQOIdkK-9V_K}+dE0bSclb^McWyIGa$Ym> zNesxUD6AwIyA*GhX*2Xpm#urJ?&JCmRq1O)FOWpatQ)mQ09g5C#KYpuApAzSD$48& z$aSd%{2TDrcs==53Nq4r0k{mMs8&JR8F;0xeR%oz4Z7t$$-ADVof?Giif#i-Kzdt> zDi*LW0JTkR=2y4pe8s9}=SzsWZ9dSD5wfQ)09}?I0SNWKselD)0<97jp+U(H@2f#S zQ60#`VGG{p7`??#do`$?#dP9HPu0UtsssQ@=G3=#=Up)o5%1!zKL?I;vR* zF@a+I2&KG31gb@SWE{bKyd&r_XnxiBy_`1!o&I=OL)64X_P3Ph)B(CmDQooMTe zyfSGD#;vve^LjzSW>c<7)3R0LLFSlQmIRuojp^e6$xfiPF z8NY-uC;lHrXC2nm--dCz5kb0R2n>*rlM8j+B0MmN%3V|1r4;>R3I0w@WHw;wCN4@DauNdHVy)`rW4xW7#sJ`AC`T;Dyl25Br3VRuZ{%2l^$(c zujo@RfE#Z#XIIb86)c6>s3y4>T}b7vuoXp!AnupvYJTOfe`M|gn&lHy;zZ`>+0tA_ z+f>LFgK!Fx3*ruUd~)i@Q&}9!W%Bu3Ylmj_&{3J()N?5XPmcnA9oJOFy_aw+b z(Rbq-&UxI-el=>KzEt$tq5ehFj$L5425tMh%DZe3zG;z91O@lW{z%1#G@E!O!TolD zM}8FxN7Po!aq(tPkk+%RD7l)bUbJbvndI8gPyP=@rYAyOb|>`MP5E<)+QABYyDnj% zxE27{jfi2?oWb6*A;ex!B6$cCl2nT*}aG z1ZhoZYcQt)o^7v@r<_dtWNR-ByOc$cdmJZ@b@kuFi!(I z35m#S8P)-O*uZ-y)Jg|v8KuK<|0mmD*ep6y(0hpQ#TcI+4C!3Gu~UeH@>lWN1F6BK zWt_|&qSj_*cc2YHSqA){v0yyvCGzA=&ZuovwLEEbUG1ApKdI)VGW|TYijh*2B4H&f zc1kCt!Rzr+Crs{;+asLx(wt$cNX7uEgRB2gez|i8wF<%M;b6)+!`(PsG*vWZhM(tW zNJr8%oTic1nAjhSIS(ZT$P>N)P(CZ^V`mJcCH^GI{gWO?I9M|%A445>cP9z31jqA# zwsHj%AR+@k*x?HhdcMQZQ4?p*8AC{X4!qsEr(zuX-GVfMM$b(V@$Y6ZH-pQM7lCM_ zJR?O z##SX`zx6;NBU?Uk@aQ@!RRV>%>g$umxT}W1IDdpefQW3fG*sAxJRR&7nE(MQ0^aC?wZek4aXxREkvRfko`CA^ov ze?D0)_lbhfZ~H#GOa{N8!N8WC#zP+kIUkskPF|7i6YW4vS0`M=tuG{)`uTwmhrQEC zf=W(4sP2hh-S(T0j-JY5Nor)$pI05rH@E$Zj5q%DV>OJ*n{Oa@p9ISm1$L1J4Etk( zI>PVg;&P%kqNJ4-Uk3$0O>Bqj;=_-Y6!;RVJA^6p3hp#G6inVb5!!muM*NW$mwse5 zxj%cE)Nnekt~T$lB;QeFCL>iHRL{Dda;)ClyS97dLB#$=L}OZsHZeDP^2?QEVFkXS znkb&;md3rKwbR=)zBpa|_(NE60|!mr*<>)a8$iMQ-C%@E-Z)0Zc@wG)1q5O7l$V7b ztcWZo@Ck<&>6^h(V3$k_Ml+yT@|*H`;F*igm`8l)G9=w^(ipIH_z&f^tYY>DiXtDc ziKRS?CN&yq9YF+m=*NF3`@KU$fuH!I-FG;I@OM<`B`yfoF(d~W{5!TG8z?j{x}(1% zaQbKJ3x`YuBnaK~(_C$V`Pd^^rgj+*Li6QlPU5!D7j#EIV~ zxD4AhtkuwYCmENOU?z_r?^fz`@|!iLuuJ6zCDSTegxM6w|5-v)tGav*;3H#uD-&DK z*ctb`{;beP!bj-SDxPB#v%^ish3w1uU+)>`MEHcW78OAN8l5(QC;n)7a7Y;IDAR1M_zbN@V;ZA%eop0ts!7gk|Tx`&BvaX_%jhyqPg_T+ij3>zsr zOh5Ik6sgMm4#u=!4%`Hg{#1%8!DC|s2{GB+7d-pI6bUAmYBX{3D8%&P+A@2E|Dog_ z0YKPHk}>BWl$C!AB2F*R9YEi+EUCp?1iKtiHWLpw7C{;LXYH+ zikZ#YHw55zS|0J9*~p-A@8ZrO8TUGyMM!T39j2Lb-Px^$HS7c zVW8zDH{27TTzJ#;I@n;v#lmm8)l99db(_xWbwPZthT^pLXx$!YQR$JQAJUww#dO@Uo)*M~DlFnCFn0 zqS#E9_sw^>#0NpE%o-}K|Pixoi1xT*0! zl#Ycg&mlvX1BRsaNnE-;cEU-9I{R}X>!;lt_a`5Y!Ks)S*E4_XahW&LDNBk$d922< zs1hLa_B>W+RI(}VwwdvIs2eDQ0F}6cONDKB_tB7`G6%C%c+GP&lKs^XYjtwGLqkYc za<{>AI;xO6ED%~XILj2G6t6GfPAKGzIJ;GRlzL%`AIZ+wZ8C9T(L8vO3KJ>jcSpA; z^iHl8%Wqm`AtTwgrU)>xiCKzo(CMn^bh%N@UmuS(O-f>H3*QwteQDret1ynKtFd6y zV5M7lKAM);61d01x1nebaZz6h*S9iK_0WNiS-<%YGct_r!)s$=|Vm8{k9H#<_W7Zz>TKBzT0Cq;zEAx_IQn=H8cysPv z++c&U4_U#E)F?qY8?lD?z60Nuk%IfOwgULa0(}-YO4;-Xz&{iM8!v{KP0(?Ws-M?A z3ZR$$HNgZ?D?R(Ssr7L>eg{cSsy^3oo|C$)^+$*a?lqb*g3~Ya!&g!9H3neINPJH2 z1lc(OlZoGL-5t5kCt+;!T1~bY4GPFQi&IzKSMMX1)^@d8<9GgIw+td?6_6wUgg40h`0t zTY`YDStLs^kk=u3(nR&N_D|QRVHo6m<%pFJm{BHQza~!h)N_sFBL5(#?@eqfqq&l4 z?1|I$@yx@OQ4$wvRmdJOw#z!TI`ZuDXIiR3JcEcEWd>-%i96DiAf%$TI~~&k^4^{B zk0jUt5DLDhvVB`K84T47kxdDqoY6}xDl2ZmQ=g+S>=t^d#Jcdl{>MI)8s;oaYjM*+ zvf6+(pNqC69KqJ)#$D(>i(>ctVCyL0hyF&){O>F)>R<37)mm26$WO8pJzOExUbb&o zVgIPKIOI@tCwa@)yvpg@jT~{C_t@w7h@;!t329y+kphoKnsN$& zE><=BN3n-)q%uI1sc$0pgxVqP@p2gKx=DiY;dh_O-oHO&Cam-WdYkeb0cIWN!+!bNC{!vu-FT*A^$u&Jo?*wn<53?~v4mZ37ke*dU6q`ek zn0HQ^u}Fx4*8x7hxlE4oubHaT9y3}{lbZI+L<^sy1Fgwwt1!G)Vx8i{^U2ZeSTnzC zl4RM|m?`N!JxB}2Tv@mK;|oD@+ft*q#GcGE*Z9lNDc&DDLBXqQJ0lBaj_=pCh)A%k zMOBkVz8fSK{KI~aEBE&uqB$(ku+y?iETvtFE62*FUx(PoEAQWj-+Uk67FV7$-{}X3JBs=u1U+y?@N*FSI<4Poou6rf>!g};W1%tOpu}y z1BP+0cRSfe2$Ng9c$P3JvG&1_wmq9pPnr0`#^**GXz4biFs7L2;|{8nDh(T=rWOz zgqF3$Hj=!2(X`nfg`TR;$E_b&!b$@ZlM};-f)Z-PCxrFu( z%~*vek0)`P2B#3W@Tc)jbl$&tJf0~i|!|}8VizH#*ofSkjL=6FG9dJ_yb9PL@tLq zl4s4-rqGzi?sL|-%^hnc>eg{G*h_+jIkjila%3rvv}q_5AvllrthoRP(1JkMh9_^Yy2+=vK$ zymEPWGpBcAkWYTi{?O&nOjhNyK9=YxD1lxMiOYuyX?lK-AcpK|DHotM|K9@y<#za+ zC4l9j%4WQ>v7N-A5IIPM~F^V9Jl6`=DD6w-{2MCIZT-}OIGJN!J& zEl-EyqO%XyBS)UjRoualn+9BQ=l$m2?(Of*pnEH#3+feWx}dTqvY%lN0n_&uQ(5Q9iYk#tX*K`Udh<*5mPsjCqQk1n zRGI8ofj?-cLafyC*V`bIg2VKoB0Kw3GFrovbp-!i+kV9T4=gWbC*&Jd-;;%d018OO zLHbYN%*M!za?XHL>H%i$XNtElmiQaR9E9-#{8vFQwy7?fyx*zDeB=kU@0f`2>lz{?rLvV&DlX7}b=kZpv_ z72#_Im*i<$um!52)Y(-St!gT6*~lDX1AZKBcGnxc$ooz97^XF}6Z{Q<9tUCV&*4;{_=Lhxd;`I@wl;2njIu z1eq&y8{Chx4)D<9wFzPh0iCu-Z2+E~%{K>90KMr2N^d!ybEkX2^Vp=MD0f85ux7bk z&7wBA_304i0$b7YZy1f30ofO%2s~65uT8kV1{0bB1a(|AfXPX0Chz$LxNWKVFCV0= zU=gZ2kE4fG%IUT}=C36L(sTJ{7#f{gujXW;YtqiVU=_R0>>jrZGH?~?sDJc#zgHM; zkz>dttS7F1@n>vI_L|{{p)pO3t~Iu)(yKzd$KcPqnfLf6^!D8jRQ{k@>sJOcNR{`bmhbDtiPFW~JXUtO7mk%=C>VajSB8_zd z;VMVxSL^xoY3uhsu4eky%FG)BT0?<=6>Uc&4w&}g*(&vr{=Nf#3i@TDP7r%yxbyseK%A#FY7U2L%Qxc zFk&BzVc2>wvY$JWOZ+Dr z1nFq*3DR~xSAF=P!g|ZX-qq=;#u!XxI3uC>LoZoRF!BeQ6{45N{b|{-9L$P+BM}i z9aYGNoR5)OylNnk4ZTr|*g~<1=&o;7ZXZ7H-!M+oL7y?;(tj(s^JB9_Aw&yJxj@X% zG$4nd(&;4okdKPB`0bS~h}gn0?3n0xrKW>)G<2Dwu1^s2AeI2nx}b)TSDv!KU7O| zXJ{(hb{O8JrWdBio!0`@3ATaOsJQR1aXz(KbBAP>;15?fsnTyQ@9=4M>go$lFoO|v#u{isSkKtk@=CJ zm$Km}(@TuGw%~In{KGnKMTTa2YAZr9*`$lCclsFZMFkR`K zr!<`;wkQjUlGDs0+j8U!Z+hAfI4f$mmZMqFw90M3T`BW{w@MZHoByE<*rByDjuvR5j1v(*GR>4;IRI@f*QBH8E-9{PsY%spO%RgSEG1&H8pOT4;>AABK_~Lu(fC|@;lV5-Z))@@Nu_J#0Lv@>>(@Reg%>x=gmObb$=2$f`&6h5 z2yrRDjEk48OpyO_m%vF@V^C%K`Sxji1z$vA7XR_YxMk_-gTVfI%U-~opS;_snGoc{ zmp*zwybDEPS;--)9 zf@V|i9JVH|Y`n8MqVMy6XkOcMN9lFiGUerhfiVBUZdhv2<&=z5jcS3_B)h17yO9%C z67`perPCwc9Xs#k-tkP1j92sG;SRGebQuj}zvhvG{zDPwq28;kQpi<7Qz8jViQXLx z7j4vflHvFd1vMN-M>tp?^Z5BrR0`AK;!g8vK0H}iZuK`txaMbOxTso;u5%ilW^eixsc)&)Pna^CzjC>?aP2j?%(s!d5CyMgxV6oIXdl zUwuxkZlI!8EW%<^;hqEFRokw{XY~mDF`fg?l&@c%u9b6A4$)*BoW>TOGyaba(>73WxRTO_2jnD@ zhuCxUT*fDqr&9t~Ya44PgUX)(ix)&VwJ<9BZa2|6_MQLy_>+XyWweTb-y<j$t(JHs3*o{-MawF-+IG-zp?CZ{SUzQ5FKrJKA27PdyE~lK5>oQjZqisU47EMJV z@K`XwBbf@+lA(%D%W3J0*a+|rFB2YS6y1LFaJZSAD%-yuhn!IO;1#gZQy2crCN)$>Yc!zU|vCkVpm-}e^gGZ z*{XKSfC@HuEjTd6e`A{ zaV4oU#TMMz5UGawSN(@Fkz%bM0lPKrLi_vUoyUi9mcc}nNA9P--fUbkW-;cyx$+24 zP}r~7BZ8n=RN4u&-Ui8O+Nx~CyNmstIii~2se@u)8?6eYhSa{L+}i~8_zfyDe?dWC zr!mbFr!C+)t#Zw6zP35mY{2D|j8Guu!d3uIm2Yh-qsaT8^6&j?1FVKU83ZS14jcIF zcC-f@QqC$Z_VI5#$UXiXGsXR*rpP#MqVa5;+cjiSbu0js(CV)_!>NeTmnEa=r82eC zjAPAK3#1}&KPBIMhaGsOM(Cd*_OC}NXb}6!D?0bl7-&vq!lv>$li>)P80Kc0M8jh_ zbz2G@k@{E4Bc9VYpr4~O1`V|j?eeA0?^#r8$xqK7X%Y3lSmj{Y^Gcz@9vM8@@K!`? zCX=Yq7}*8EtavE!O|6ZdIB&ZrY3c;ys0x0eXW^H3>VI33ZQ&kw6hZLPtw1W~qd9xW z(?z3;cwP4b&oz~^u_gB|3JU6fC_$zxS}$;gijLf_D@E9=<8&zJk?2p=Nqd9N_Td91 zX7>p{mc9r9YioPbhfrr`skn*!HP1)REYsnMS^MGvisg^yj%s|5EmKBsW<=bu{imac z-h5&6#UrAHjB7ggh`@s(r>dT}LnZ`apQXgXYoiNyJ)@_v=62BI^9q^$`u`a!R`3eL zuYft*UOgTdO3=SBX>I}NAKidVxM`>-(07FXK@R9YqWM4Gg?3WqXY0Ka41v|H0Sx;8 z&?^pMorNnzz=#B#mZZ!- z;!;XANAU4~;Bf6KzoamUfNseOOE$p>Dd&-JlnyYJt9@~p${NG3N0 z<}f^f9tp$Ra{{~>XYrZvPrlTEii7P3v0HySgtc~a0v)VvS=WzsRo?-#h%TpO}wS+i9|#-y9d9(6a1xwvJ>$()F-75936+6O0Jf5J3; z)!$UMzNf$V?b-N2SrlC}N^55M0Zfv-%@)q6J++!W|2e&-l4jG^}V_`}kRZ%adb?6yz4^0(I&GlbX>&ahK z%>;#4;nq4^oVPex(Y=QyR5f2o=pN~G-JcHJi+Wps9~t}uOfSnKFoip(&)|ji&PCT0i9jN34V~8_r5@<@G&!1FLWC-;I=X7l3iGOYVQ+rARtH?dyx%exs`P0vxn``{Ka1U7JMW&@ zzC8*`Q4l|^=!rH>IO*Ftt)w_pEAQDFpCt?aCgD~(A=)2$6QkG@v0}>4Qz$|}V_8BU z9Ju)0WB`wY%BNgSf}71{gE>7q6-^m{9&}lRX3z?S7{=c48Gq}k zrNkEj+dell?CaKWY5XCYqm^CzImDP|5cb(&Az=EQ%UFXxOx>xtJ?7RX{2;jERN9AL z>g5g6G|^gRXn)d8{(OUZ#8r}B0~Z@e{~{_P*xm}vIxCw`QuN9eDsuH#r(2yyJ9LEK z`MiY63_dZ8uab`0zqAQB+Yms-g-dt7En#+Flp#v6`uh#d8=y>2+$R{j?i@fDqO1s-Af z2>uU+``sITo7H}w@~kj^#GJAZSeue@e>}8@^fekg&%XUccy`9WjogR-2ZCScHefWA z4Eszf=j-9oE(o7^9vxa5>qKXL4LV`qrwHC}FLwdT(qEPeWn*O!6_6qtU1Sv;G$9^s z`{ATfjcv+Sa%ki-kODzlq&`#68&R5%EKbqMuSvAaRP@UWHUbvkZSR<4@erjfsjCaJ z##UGDC#Q*JU3^3u?|;sE&l)SaTE5DukLhSmk)31@VHK#O;H?!zcbW|+K2k3B=+u;Qb{AzBONRqKEgL zR`SaQ=O>-~#$+7Eu)LA6W%9on`uQC&66`%mKpevBc(pOI+eMt(l2Pm6+gqUWPCww;2+!2({w zyv^lBVf^H%w0w8B$j?%?b;f6<)LWS+j%{o9>Gh`7UHxwEs?DPAS-o{zQ^^{mPS_e9 zUn8I^;ZyT%cA4D7TI?mtfumAWK_^ovMyr2}rBbxj)cl!}4K_oqq(-?oiwGw#;OYJs_@^z=sM>*y}pM`Aqtz?0~PeOzR$QGB0rHAnSU#=!=4lB%hJ?` z{TV40eg*(C`tvby83=k4E3v z;Z~@nuJ0{Q;uCGC)~jCykCtUtYUvOdgr6aJ8hxx4!#|9!wZB5b{9%oWqweZI6cwFd z^y?4E=kkkR>fEzWgk zAdCB8cJyd5Io>;!d^Vsx1joydQ!hsA^Lvkk9?& zgm#$z%YNmQ@(UTDcO>w}2+!8>Vp^lIu_Q0#)!Bu(j00g?>N#+|He@vdF-CbxF^{W6 ztRL!S)O#3K@2yHf?eni^S@$0_fP<00n`_=fjlqi+x22EMd$3A#qnT1MIr%7aGJ81xMz2jz6zE1%r;zNcpW zyDsyB6kH+CE%wKPmb~m)ug1d(C!dqO${$v(wRIl$<|z0SRF>=i1g?7TWv-FzntB)6 zW2pbF?N3UPodjg3dP*Da#wXit<`Po{EMAe!_JCmvV_)d~5`AQ)NxK78g-~!xkHG72N*3`kdI?d{f8s z>eZazY%O&8&DwjW57F|Dkf^GZM&y})dHL%1RmLl#H$JFM%hYL;1RA8}U5e48J5&FDNJbBXn4I zPcY(+wjY{cp4;W7`YSw6x;$Ki-AqRe=6?qdCao-W)8l@=SYxjpV)=|~v6vF;6jrK2 zn<7>DceF3EXV9+1P7P5in9T2}JrFG1utrc-j!?Mf} z{C;D_r`A>*|GR7jQmfG!&;=<7BEXy1x?0(RtDxMnTwB3|@MoMhc7Sp@Cm=8pT(jHT zLS{UI)B zcL%RA0P%&StOS^Xv;k8koXq5}mQJVN5v(T8s8#FBkqoTLmq#`D_GUo28BQa*62XGN zsklG?-m(#HjkzbFB`nHBBO`F>GMO(h&Ul3&1i3xd_@goqe>AT}7JnQd6)|&upQH4V zqGUR-dh|_AH`?5=sIQG1iX*nvt(wYBtPvE#_V77zwNJzn6SO0mvfK^y{Pb^^fy#5t zw^{UA=4{W`_$AFnwO8wSeFPq*-rXm!Egg^c76)77LfFmXL`m|;`M-(s($Vj`ph*`A zl0i^VkKYnxd!XolJVWvJ5~1S8gX#mI40XVphO)^(6c3(d+lMs|E;T;@GS<1^kSUQn zkif>-&>g^Q5lflzj)fErwIKZK^@GvfUx3@ACG4=kzg~KZy+|F>zd-Q=%@6J%Y98a; zst#TVuk6%dX8`iVrw2vwR)xZs{-M&uyndh%o|l1;m$PcbVVTS^o>A}Es~;}MCq-z# zZHiaP(C_e_utA!`dabOGW1ovHCNFJ6%Rgr#44NIBte<8k$1)hASbdCZi8UDjeQI}g zTXZ_1vf6z|B_q-0#}Sk+%`z$PhbfCX7ug$uZxhz(n;KqWDoDs%=&NBW_{9p^Hk{%Z z_@jmV*7YSW#b9{MZER3-z|^bz?lZI3e62-BoN_Lt&M2Q1u<{sPdOpxQ_cMnuSva-a zejlsb6a?tF=Gks+%oW_GDK64NTv%o?*@^-0g(s;UZwus0$r%a1fR=whN{O%Sq*RQN z7c_N+~CDY}WTL!}LrR*}2z#?D)-9u&<_$#oId1N8momCCPi$PlO zs_gTWIOj52HD9_wIndK?Dx<5o{`BMqiBNqmLK!mke_QYH1UH4)EG4PpbyVtVHuq{| zYF(THR$>;!RCSL-?AUeZXP6{j06L`<4e#kq<7*PP2HDM5L$K2XC`JA4#e47Ig zhe`IccFphR8Q~9`#en=#A5C+6mg#yZ0V9c}`fEZQp{>pr;gP&HS~$l3X)MRTRMp)R z*daIw&1hfLR&&osIcB2>4);$zyH3o-iq(C6D1ITjyph5Xk;vpSZX;+G3Z~{F9giU+*lwf$VpRViV;yJqhHdZnZUUB+ofhDt9|0V zCC&#|YsOhKbyYW30mR8T3P9xhRBEIUP&08I7+5NXZTRplQcYkc6F zjAkR-xG;fak8jcw*pT{(wRhLCi9DH``)Z0dq>wi4 zY79FXSdlzcH%3R|6VE+0df4+WyjHLSZW_LyU0;hs;2S_VrIoGxX0F0k2#WafYK_TR zdg1(04d39zeQaI9xo|&<`X90TK0$TogLSm(>1eI*bDkl08e7Ji|DZbQY<_hE2kzt( z=W53GZtuPK8Z`{{OQJmX;xiVP1lvmM$;G31+piXt=AmLU`PrWg`lR52f;~=iG31Ze z%B5z^JX=H%W92x z*}tg^3em!Kv92^zK*hkMwfS2`os)6=^ycVMyg_exr8jdsZ$CU$n0Ug?`5%aa%P zdqX*&s_`rO-E$7ic~v>yKB#da*6DAEHaXvrPVRpw`S$@lYZF$cK4F9lI`+w;O;QYG zma69p81vrC+mk`Gl5g!5%MT=ESH#A6qlq1C@W*HZ!(aOM3zc;Lp{$RuB9ix+WG{G&U^zYoS>DTefxJK# z-)r0d=sK31|-&()M|@OCsz3F zAUhJlqTDzckPARg$F!WPY#9Aj04rh6%_M%5-We0Ck89c^RxB682Jv`z&%GF|WBk)n&>6`G1gF0hXxrFEu_TQaRa#=NANT-8OF}s1fGXJC zIJ0_+dtI}?se)5#pGGAdr9<)Kp&~X0=RtQNK&<|l{F}HnJR#kT-U%@z{&pzPg^pPt zB~;prrs3-WM5MxG@nMg{-A2%evMFdD2J_<&1audY{z{EzQi{2UDGTk2mzA`3oqnIs z`zy#7!}>+Y(GNR=jvgIR{}8S2BIQ2daK$yZfnc5w^$&y4!(u%Tb2C~4Rwse6&!UVr zdTxgsm?*X8)@=u0_5#O7NhYy)s>Kf1vXyXhUl!`)sp#s{dY=RJ$g=CwHq(ffe8=Q5 zGVX677hdoSwrFQVDi%)@QG%CKI7~T-^ujxn?=DesKDsG5t?bA;3Dl~OFYwEW$ICOovAm93H?hJJSc@mBuoBOP0Qkymwe zyw#kTShn(S%y#bIn@A>Ul#PEJiI_<+d820yhcGodnLQx~TLiX^#B?U8xzmn{W=G3` z6yW^7TKi^62ujT`x#YFiT5mQ9b>CIZZTWzNTLIU0P%B19OTjEtt5?CA0HmUT zdXiC+RZ3&0JxwO{gQjOuI7Lgmu3p4D)cKQSuaBZCW9qxq_?JW%u_h*$&CL|r(xSMD z=ie{`f2JZY6OLP$^`qq@7?2WX?>N%?XZn#vc&}8OMIQ1AO?IBU#-hu~wHmIc$BEb_ zkU3fZdMU(KOYA8Y%#s2o15%wHSp!{8gsg3I+r7_&@&i7YtgA9L>tSZ*$-e-haXkMT zv%-W+@SRYov^MaMzZ`y47@doy@VxV2Dq3D0jEdll{D?D{UaqB~xV)35+4vnSGW>~j&ySFS(e)n&jAL-$+H}1uzu3>kG<1pv2Rzy&c&n};=>GMxY5k>=j3xnTj630=sJCw0a%(+QAR#N1 znQ-jyfwWvs8itDwCa_vv-R<2lJ}$K>xQn>uz&m)N;y}ezUV7ipg(DR4OtOZzZQz%~ z)Zrbv&j}|Ve<&}i_{SG$lEG?9gUP-{?{Pw~X%&-JsW%%XWuUF}{kvb%cC#* zGr&<@u<`+jIA9O}1?yk%TYJDi@vZ@}Lgsb{fo>KJvO-|u?`VL#(06;-xi16?1x4Tr zk$Kg`m*}I`Y+FswKQ6Fh>FecBK<+olN;0QJU&~9Jj zY|c)Zn10SDFM}M}akB`QZ2*K?=z_IHcY`UHNR04P?Zwb-rl-UD zrbG!JTg62&gLbEz8Il$09QXoPCg=5y3old^s1*ikz)@Y1fNW74^4>E(Kx4=e~+RnE)D7Gidn}xYq1vWx0-Z>II;TzHS&Te`~5G7kQ0! z%jO;b{Yn=d>0`wQ3rb6}`|b{QfvMF)?ax*0|5920`eAHVDf7G@2<&l%q_b_%%J=eO z&yA+ws^B-JUeTF;rY1ujXBI1yj^R_o+a4JSRV~)?IHP`1Gf|Sjdb~CG1{+ zPdcn>9Q06x0Uf72YRH6e1pqjj7ajppgK4J=tVQ7+VUIV&KBHwz5!?}a;HKYl2Ivnc z&Y^w~_Y1VLnD>yWbI+Qe!0+2_xdTkE){%chrbW5u2JDrOa-<@Ofp)rNj`BYhRGz)z zpS>Ub?;y~(uf}?7*v&g(GYQ3{g@Q&@)`kltwEz52CftU~LCNh=#%RUs={6#zsJ?yQ z`HuIFamt^FTHXt$_Rqbn4iNy6#`yAGd{O-c>@|I}cZI9!LSR}7+Kg&$Ymqd6 zpf91u6+OcXYO6!Ch2$SOhA`A_iMm42B~xQIWR4{_&3S2i(oO~bLJAu7w;AbJ<8-%~ zNv!zY>2gw7D+PqV2JX@FiSACVdArohW^WmwUg8r=s*o7K+zKk!l8War8>_4@12@%N?d!tY zm~$V1v9s$74bdWuuKoUl0f|h(Nu+{*R<97DPQC0UIiaKp5|KZ)fJkeT|V7xW|8E!Frcfq2j-fB13_c-CAJ z$W7uc{rvwukrhI?L2{(U0I5`?03BdCpg|Q5gH1pQO$tgu{RlM8|0{yMkyQ)J1tM^W z+X5=AJ&J)?V8{T=*s~1WOp&2uziXB-V& z`7_~y((;=HHoK;L!<=uY<^KO=r%|?_TXD^2;VaQDH(tdGMQ-&DGP)b2AFaK}+?3{6 z*YY=Am0+%gT4Lj>s#xzC>-TDqkWI>1UEdI8sBC>!>qV{Ra!N}xjT67XwmVz0i2YDn zFhsl~;ksULTBkcfEep3G=!aRDRp@8HeUb9K(gf_St)cxH4teIyGao4omYSO~^EW-- zg!ksjDR^h!^rqmj7g1g>MPGY!pZvCDNmqneYn5DM*v5T{>bVe1oue6!7y1Z!(G|Id zkbI^2bGJY5ot#wK)uEu6w{0{De;34B03i%-=A1~EAL9EaBb>@Dkh!k2NTO`9qYx*_ zqm^Gzxjiul3^_Lq;@mlQF%}cHu)d;JpWb<#F9u8^#OJ<&`+@a?3g1S1wq%nxPt;7c zxHYjHO5Al%w0ofmm$u(U8ibA{0yqS5j)@qjEw18e)p#EnurKNc9PN`g?BTZW#z3^G zwa0mkPrc*7`;c;n(1envpVfy~DQk~pqd#)(o>;QV=4IGdu7-Cn^basU@$+NuTuI^a zski-yBB{8}A=#Fv00)JX6)SUKR|?#1zGE^@iKe3TcJ`<>v69u$)FXiCDAUfsBfl5TD7MELF!Dz zp2-+`8<+L-WmL&ulogkAS0vOVUV^QuKhUJ z%I%QvlD235sfYY-Yj!WRQCI)oaxO=mtw1|n6K1)0UiHK}&`Qq(P?}vZG|La4-n+4Z zQc>jGF?$%dpfNl^R5lf6^6i=}eseX3g#CvCnx7N}KScu1gnIRpqKAZ}#t@b6_Y@ zIdhdCU&>5A5%e}^kjzv5o9Jr4cdLZrk~jz*h*_rEywK)++TfT--q)FUNmCpm-|aQg zW86Apd3BPJ6A`@Uq2pm89-%Q$&xDc-l)Vf|OJ&sPt#wp%`WL;^CDTpbXDM*6_#Z`Q z;m}myM{!zdi6PwxjBbzy>5h%=kS?V=h0$G7(v0o~fzc}6NTakMAi3wg?_a>U@w?wR z=X?y$#=|W#J!Sohp7vP}qt^6O@0~S0DKaJ1s!4-XD^HcCZpDyG7B4$jS!Q=cfI0Z8 zKaF9X-yP+lvZtSJqS7?lffgCVgKOi^v;vEfeg~oxQNTz;^bf7FLN&)Yww=|powLqA zcF=d@&N^yXqtzsuOVS}An7oO-J-Kq!oj5wS4wY7#JEti%VDyutjpZ4G!`Xo)_#lKx z>*}>z=(n*mE2sCAWaXrbN%U!?C=?(}Z1F<66F?BbuR$S26(8cTSWN(MaBu0RB35<9 zW~z0Fk*D5UOfH$Si8EyO_lfP}&8Yspyvdt7!!BkW(tkReZOj9f8|t_e3ep5NO`BeZ z85Hk3uE!n0WIFs!uD(mEvhfI2<-YXJKHh46NfiLwYMWxuSl>xJ=3UP)X2djhX`OT( zM@vf7OuCib=jB4Yw17S~1p_Nr{(A>;3OEhjZqjeRbj@`D zl0aOH^Mmqlv$H^|x~rw_0zHw6oQY-{0>=y;qsOPdI_9pxMGl?zJt~&ln)dGA#IOtbEH&o;Wa$o626Bi0) zNS2`T9m6o=wyS;UpY;ijv`aoL`A*BgDx~|WDYnwltO{o{GjP@lk%xtVLw*RKOu1;| zyw;uHw0mWwy}m%kN53KDJvgQPPBossZ^@>RM{`vB zAliSqrik!x(uUH7UsX*D<#0rV!PuK3ZO$+>S7MQY->Ex0X9Qtt}BAn5P$l>!z71#2eSgf}scgs`?EM!0R=D6$~Et@-lv=DnDSo(5M zHj%OV`FY(L5nKkQm7uI5(@QRJA}O5{x@81D&KE+K-hR8vl~xzEyK4a0;Met zsjc^}St}B8-Fd`>BhpI~CZrPoya_olVf1Zy0in&nNmDqlA2`!&guJZ2WMNOQXmTh} z46Ld}QYP6al)zQ*sQJn>OALR0ld$s3VXR7NJn8s4c(v@4TR%?w~E@uM`PL-%H!U zdpA{hvdHA-65uYwhpL|9`|pHE%UmI9a!9DbD>R$A^y9-Cs69dHrEZ^-w7HFP7aw%L zvd(dDi}Bm!P!TFUfWE5IoBz%Bs~VwSwySi(Za(%>&cr{UszP*1fM75T%aqBLzkq%~ zMS^L*;gyIG=y9Eke2qY^tzoZIu5G`rX>Z|~+|NsuR?IrO3kEeKN736=D`xGG`WlrNkx zci(>G%FLQ=k!O@-&+olFH-&0U{3gBMHVP#e6ktklnceHBIV z6@O}OA4RY$iUYydot1!@zMr)bKp@~DjdVUBm-!}9c+vs@$fjHXc88rsJs@uxsx)b8NYhfAdlvXY znP>$6`O<)Y-VzJs(GZP=>2TI0S~3Vb$ChlYDP|qY0S(0dt2{Nr$ksxe5$BAB5KmTxB&r9|H%?U)KkT}JEd37I8DK-1-69pf}dK(jr=T8uE+*8*CV6cNDR z;@k!Xy!ckKk7j((&dWP3Q^+)BW))HtR6LC-0&sDw#(>_#i)Y!I&j6CNz72&>omtmK zYIKmp;s5;fKpw0ET3O)EwzmM6#rZ?$W0L{u6aa9swz^e)Ist+vd?Y=g#{rlKQ;tXQ z|3M|YwQPn4Lpktw%k{{Wn(sK8V{VVTb=eS79r=r8w7T~gXSY3oTJ9?IF1-4WC|tIE zvx|0bn6ygE-Q8!zbTA<>Tfr$gpMBzz>-C!x zXt`AE#Z@+O(S)Ow0ePQ=Thot?IX{ff4%YW}&zxzwG^*5VVs`ZYG2WZ{1CWU%)G|LO8;LMpb>Ta`9@P_z>9pegT5@L3@(cK+*z}WGykG% zDIvNv-1dES^s}{@=yOGy!XqmG@0e=7N3n{qciJPjw+p(}y5?e3JG*tyi&R{WN)pFM zoWjSrT+S?7sGIxJ2Rk;Z2Hih?uck2EoNa0eDw^+|)vnJ!o5s_V#GBl0$1x=ul|c19 zwgaNN?nJg=z$gHmkUVwyQ}yBlac}gGN(vj9$TQNtmh@;&`Dx)Sow8+qCh^{4lzeFr zotx@X1~Moetw)1Mh1%zmjTXPjOKN5d={STCGRf{LsK`$(v$IKSv-orduRLuDnX-lO zb}YP4`Zc@HLghkALQ!#gI?yYNRI^p%C3}d2BY!iEsMNxSV-GA^dk5^Au@yG&eI{pV zw^fhJ;e!#r|9?G z^!jU?6_L}&pz6zgW&7B!g;OhjiSLYcsC5d2s}|9T42l3LTM%*4z^o|sIcc^fPP7yS zqFb^`wW~?^)LD@#5>VUSnZc~f)wxXsW;49_;U2#`I;#>DVEbo0Z94U@H+50=>dvjf z*n;$a10sqyjSkYMid(>~M*(D3`UUg*vSy#pm#QK4Z1ZN2(7C#EZ}yU#vSO(^zu7K2 zShK|Yoh=59_T<0zaNGbo{WLM zQiJY8>9JR`>#dJ6al?>NSFAqF*kQ%B05PV>8=128Sbqu$B9THYVm+)^3il-MGO6nPfQkOEUr<+EpO#O~QyDZHTl4<$)=;~erRQ@HMnFfLab z#1vn?v8}_TU+j%8b4s$y6N1?+DfeSNjxJ7M0}j53VQ-6xTr`p2CtLdXOJYj{SK7d$ z$zyt!Q*v5B?@Ac%l1Q_d(JQl3IU;p)l8qe`nWQ4Que;V5;lLc@1#&ocl>a*=i*NfX z$DvS*f8r*v;ip`2N@<`A0Kf-^Ru~i zLq|SP>UuG~u4Uu+ldhGeyD?9uk&(K~2ifVYqb(2mzd)LP6P5O^xQQmz#G6Ngt=vlQ z_9?)NBLC%#_dTm!qDo!9;g_WIcf^xm<1p{3u=b2uZky;uZd|mX&x7mhnY`emFGfSB z6w=vM4S$KE=sO&0n;+aM6$@Z4D*vId+18=TvN*Cb92m~3Fzc2jql}@*x}8Sy(Ek|3 zp=H{kz30&VWZl6SJ`hNIq7hDWZ(Em)i@7W~9<=$3OF-%UuFDt4ebOzT!xt=%oN~w| zos9X+7@i;%a#*ES&~n--O1bX4P}iD3y?Tsv75v2?%hb)VQS75mshjB>7y~m+xEGWgk1F56^3X4GWk=Z+dk%*E85Pip z*Ux>akn?yoUYIT9Uou0#OLw*XEkNWA)W+jhOQHy!c2!O+ZrS{P2r0g%`6m|fiz{Wm zatmfmxYK#D0eD-6zbtP75)erTRD_vvL9!{3tJ)<5c&;PSZ=DCsnhZ#Qh^Z?Y2MGdj zFJRc<<}lWNyg`_02LOKIEk0N~2dr(Jkg|vxQo-0p4!4|fSBG>5kCAfK5z_o$<9}uf zSzu~kDgT1+0K`p|cmsIjtBd>b0WK~0{fFfi9OK#H?o9YApQ`kyqJt@V$9k*3TUkMU zj-Ku+*6(|gw6X1RUW#8rq^Gt7zED$4WStn>dgLr?L|`*9#E)wcOJ@k&?3p%|xh2ol z897|BMJRn4eYNNpIUxENWN~1rf1=gVou=rx0B5+PWEkNu?Cq|ngc=;c9YVS|Q}fop z5t+Z~$wU52d(L!;Q`WS_wi@OAMq{vDanf-LjJguN+SQe=hSe8>zQMm8(tL=|w|B5+ z{HzRR+E!R`MNYAOuAWM8J-xi7&(zfl8uOAv(xW(FixOAPoC0}Ck-VhLXX_vr0=ZI< zL-8?+C_LK16Z$Oxc<;dHQa3c01_FfWunzM~(tBWAZwjd)2>T4#aBc&{HCP~1R2l^- zLpX#Ls3m1?XlXp5qtB?UAXCauu1VnC{pbIa=uF{Tp)NplSan^fIe5ih5~cD7$d~N7 zhAU<^8QRcsGW}Wf?z8&6sNwx0G4v(_3rd42A3P=?A%c#;L`9~Leon45{(IZ7 zT4^en#0nrR?Dr16VwS=i)Y&`*X&iVt6tapOKI^W{B*HC9(b~S}dyB$j?T=(Ff*{j4 zr+{OrP3r@!ZvD#ztUIC7Qe+U`?dEuG4HpBfNp59{J$Dzd+TBuXY*A3-X82J3FU_bT z7sy7k7B!?hwTZmuID8(kE0F`P4=CEeI_&=>ZsYG;Z5F9Ooe%5qRJ}$R{bsTxWUx&I;12 z9VGK=%!wK@LOJsp(u^-xSPF8yE8aJZ+)>@F38@kO^;>YT4qkN^TLn;zB57N3B!CT| zK#Q9c*yj%ds+|A9eHqs7ua^Rn0!sT7X!&w-99B^bxFd~wk=f5S971tcT4c|x@1o%) zQ#?BN`bwi5G1OXRzw3mNfN(}ui%AKWCa|3pnamp;KiH~_lnS7LA45ihn}1U|Omd{Z zNV+#`{A-5nXhbqyjZJNk)88ZV6>x29gG+H$y@( zt3OIT!uOK~Y}5bnxvwH!h&f9!*0tISzwbI{CrVOi6O+a0I!-$3d>WmtJU#GP9n3Y} z_{M=?bFXEBkO~oP_(G8e@%W|TYLJDcNk{th3?fgQL>B)Ry>zsqHl!Liu04I^TpPn7 z2Z{Bkc@tlVko(V8o9A_{Rk$?{3y#8ushTU@m@C(a=PYCppNa4$G&f{=)!Kwpvs5V)=Q6>@Lf)0u%1S8XocLc?^EZB#pO%yCugM?mi`hBM>3KYmch#%VziPxI%N$}W5JHAOkFK{{PqmF$ z)nwv_T-NrP)@jO-m-s{p3;J$91Vg8{+Ds+bs7iwdepTar!;7e6hmc_6pwq^Wosr&e zmvi~|aaHye;-(XOC2%~1x{%BjwIs6H_Ny+MQ&p|0kSn;&!YOImD@P@aq?S+j-&5hQ z9OwoPVZZiJ1SGXWf@kaWOLZOdFoO>|1IBl5zzoPu-fEzq-Eg1#2g2t#(0Zho_3w{y zk=i}OR>eYKS80RM%$VH9_#aCD^3&(ZgwO19@n7BDDT;X*;o4!SLJd#zS&cUT*vMkq zq|l2e1YXMZlT(y_oD$CMOsXs%B3Ev?;5jmQEfVLhrD{ynScfS!PuC3SYPr=#o4M}O z<(C+8KVBQ;i7A)Dbo%n|JsDH*Thw@%9XlEoP>sxuFe!!!H&dj*gjb=vqI2u?S3us9 z_1qWQi20aJU+cHh+;{TWZuu&eF^M@rqqA}HPIb8KwNH^yNKl4AY5(yPzCIg^W=?A~qdrOxbT${6~n^3khs zr1o>et(Zd!7ZwJ4Q|9hrs>E0d3ek+O-9!wgqCcaWaED!$cQuB7;y-(!4n_TR^0seE zIb|^RwNKm^cUV#5d1W#131x6C=IgU}K2trU5z)xxZgb9H=Y;vcj1D0+m+rX%o(I3J zmK2tDh7*g-t!y2C^W~)lnQWb`!V>fpRiF5jJO7ZMHj~i(Q670bnyRv_i%el~^~;yq zKL4*EvYcGNZIYVc{#KTxo1toGM^NghrI);@q&OjU2eqk7^J(L zI3iM#|Af|WTfmH;8KYnr#xUfO5B;f%m=z~`bsxuwv!<2Z&aJFOzmcYF%SVC>-lx_y zSGphVu(U8rd8$k*Px>c(@=SDg=e&6UwD6=39+cPjTjq4zfa!&(wMu*k+sHKbvlu<<6UY>^|SAHSYl@3eU0&9kGg!O7Qo~!Inb+@@6 zY%yOz1bRSAwlPQjRqv9_f`uJswmjSsvD8q{$u(I#6 z?o#3Eux#ZkCoQ11&eDj`6CS|u!ZqC2 zM2)BeqQ>?*?uCY|OMFTK7!pc5s(G0HR8z~+TnT2*2=p}qE=qjE`?uFf_k#-I6p$Nz z+B=@tUxhGbc4ehl2D0DaqBldhvyj%WWW;b4B@RhZI_YeRt~z+|>J@YM$jqZ%U7El( zr!{OSr!QPaKgg7aWK;V}gDp;^ zet~-y6IodPU^#^A8 zq+JofZDU672k)XDS!98id3(4#IQpRS1DmiOn`qnF*ZaLZdb+84&E8i zxP&Hc_9s9pECcDXW5CNO0k43ue3jxx$L&S9iFT06{SMG02LP6q;^ATd6lel=UI-S2 z=gJ=Q8GwnUh+sW&e}Kop)u|_i{S4OGC3y_=b^1beAw_tQuWHbIx@A}=Jn4p(98`>Q z6m7yl^1)mQz=r==nIBBRS@b(CPT_+l$KDiRpN4-i5xqTj>$9HTWOOPk{EL?Q21o%h0ak zTFSU%lWK^DE$;p6Q7ZXK3BNR2Ad~Byh5Fr$nn1{vp&j#|$}!4?kTZVH%!;d4&ow%D zz%jA8Gk>E!(SImCw$SxGJETh{SMlNOdHu>nwF=i+v+|dpD%gjxfInJIibzw^{Pz#9 zGmn@JvPhz`7%7{+6hTYl2yXVqaCI_UOyF{^91hIz2Ep+-p>LFVISHo=O}mY( zc~uR$P?dym^gW@L18reZk!m`JDvW7%*9UlesVV$ApZbn zOXTwQ^VaH))+ZL_HfdgmIfrF6i87)6?@|q~suiqmbDE^lD7}Wzu%S0Qb9mXWbtF7g znmg~}1%fPamLK~qPMZf8e60o6Rs2~-I=F38$BoN{_5MQvE{|PWd7OfgDN91lP8j41 z*-;-G#sBdX*mjgzMN&158T7Ojh;Ic7k>T#@tO&sSGooUk6gO3)tf zU982vdpxBMYtwIwoPdwUoFaK`({k@<^J|t4{#xEe)rpS z22x>#>L|#h`o&!C?2X+vcUkkf#pt}z>O3d)!z<|;L~oLQYb7UJeOxX1a5RqHVAgKz zcc||<)4V&yG8w`2O$6@v#X=kw-I3x4tg*tdqV z&%W{z(aDA>G&qsrZ#;Yg!fra&(rAo{dtK@uaO*03#F+P!-xd=pH`4YtMecMu)GnVJ zbu`V#JFH^|b9jitZ}B(V)FmygXxboukC}2y4dhLRejM6mb!EgpbUsm-rC3{RVLl|| zBCP!#BX@}k^b94N`jO(h!~-nh{igYJoTVDy$%%GZ=!vdF!O|*T84BWs zyx#n?3x1sHy|=_KpWW>#vLg3CDddDYD_(wUMHd5W|DlABtIv2bye?lec{Ug7=+L3| zWJ3=QL(5Ij=pv0()VsvOxVs&1cDEGM&jSowNwq#0^CR;h)7{F(N?=7?d>2g%LKt)E zm1}}KgA%oL6~P^Iz-O`)h=J*uQ~bRx5=+y|2N}Q#E-VEOzLzKKbsR8Crc`)xd>i2j zf{Py-b$bG9|CAjZa|0x6lWAd*8$k3<*095F3;-+H;0;s8LvuFPZ_x1Ap>rx~Uj zZN)c`KGD@^RJyv*Y@SNmm0vjxtM7clKbyx9h9zjV%DeeKL#=;91uUE>GoJzovte2i z8ySM{A4|;%Y=H&(p99-2-srxDtF5c=^Aoob^q}*7iHfW+NV0a}O95ac{?2FsE8fE? z#7Iws%=YiFLZ`TN~1xz>sB-b6Py zlSmUIv8t_C&*fBctJ&wl%f*qSza>L7jlPyN5~`!iTV-r#Sm}uIt_M}|z&Lp))>^(S z_lvnD8aZKf-)+eRue|B#?G;(Vlj@5#al$K)XtNL1jBX+9FRRfX-|ooDuWsT-e_*@> zqoPGtPpp%H4xM=}p-nawD=H)bBw0mH-B02;ypI%6x&2*2zoux;ZIh2EjA6y7s^N{( z*lxcPv%mS`H&P$(7i1FwtU4BVv#COvJED0mv^-l^MHwUry-Q5E4P6g^g9J+&zPL>i~1=xKg?$Q55RPIoR zPCoL)q&xkGlHIL)4xnjzvcYc4KYZLXv6;{V}S@85rXq@{wQ$6^ny7mWs(U}}AKClE*K6)dF zr5}H0s?a|~y&BP9W+rE^Qge>UT9b}yxDW$qYm=+`>y|(h&NS%u^z2Ll zuF2MI+zm||h!l2876~QLs*mKuh*W5>disFZm5BBhXQ^kt0@D?~R1^YUOUkI+gtdRu ztOUlf{pt(AYq3>fs56K@26B|8;vRH`b(i5R%!53ffWi4#@+!h?uu-BNVX9KUO;}nF z-Yx|c@0<|FleyAM@|r(`FfQT2I$Nj|Pp2i7V}l`adbU#|v4_ue#c zSUb%0tR0+spLeTZp((OQ19ntRll&`!_cq(2YGOtL{kzEg>K2ont^b#VYMzPFjiW}knE^36<0A97CYTkRBg_!f7Ez3rOHm``KA@ur0-~yan?4Wz{JP@8f@A-U&BVx#&0nKy3gv z_)XMj$k$}eB1P~Hi|@WNAOT7%UkKP)U=1Sea$#(7yWdx@NzLiu7Mw{{<$j>eT7NW945#BCGJg0BEA(X_S zlMRRzJ9T-}rR*t>koczX2KR=9GzC)2)}Wl(uA+bHrUQqyoL>s=)qtl?M+x@Jpy1~& zuV}@gP*o||t@l5aJtjN;Ot1G}-DO(mOItA5Fq18)%kte49AE2dDE=gG7ny1?K%=f{ ztEqqfjw$El+af2)VcFjVx{F4klcpY^6?d3O>*8DQsXmBLh*xxz!AbmXj|v=BWv{aj z=#KwsGEuq72;KrL7|MfLZixufrIwTWHOc6aQ3#8D8nL!w>F-@2Rgq&NEC0{X6rlCX zG%82NJ`);=1vk_h{QLYL%2wv(G#yExj|30Ek>C<8p7vQrUCFbq-__C>1K8JXfN>jz zM;)U5ZlPL~3o7(F#IR;&n{w$B$OY#)^)JFywmcBnVpxKNs_u8|R|+~1CTtuVkJj)2 znna+&4r4lVlTZZDRwjBvVaY30z_M6~>OzYeXJtQNw=TlD!v(x_)(MF5joF+psc||P z==FB~Re;x3Bb^rRtPHSqGbQ;T0CA@2BHX}}eZB(ZoI+y=w5|em>^*+oKLoFr^ixPlJ{T@ca9rRz(TCtYJvC#upd0Mly)k9zJo(> zS1#uJh3hb}p*j{suy$takii#JkY2-!aY`Qmo>v6Y5TOFt=)04Vp6%?;3kPj4(GOr$ zeCd5?&(gynBfYsy$?A4?7sYAZ@vDI(>=T__Q1$N1XuOKTq1POlq-ny{j}Z$!RMc~ za-uUaajG+L=ojTX!cWgGarjMYmdhob(fj=!xE_;uc7_5I9gqKR(L=cv+S3FMoH;54 z#yplXJr z1sLPptGQdf`l)}s4S zaIrIO{FZ$a!-c%{>Fk;;E9?bW;yAKniZ^PzIv{4(?UdJYMs~<;JSTYsG}Jd1U*WBdXgRvPi$I9)+@YH ziE5Umwx!o4OD31TXu1R^9}H0#C+D6b8|Tc7)w#}hUjF_Z!GS4hlBL4Voy&qa8(B7Z zpYcU|ItmaU3kvX@hNb{PN6atsZp0fjbx~Cz#KkEJA*}jGNVsj>JDKA#<_Nzi4e7CO zZ2Q6+fdUEg{5dNo@|3u+huFkh!&#hL>DOmoh;Ys^wWT-nHiT&Cq}vc?_$#F|Ajyj2 zO>^=gwF+r1oOIs30e5W9y>2yvn%j=L zVCw$F1v^pC)o>br%>Pj0LY5$Wt}_xmI#(9I)^iz~mcQ_k-39A9EdtA{?(6NjG?QlZ6ij2taQF{u0Xbu=>tM^WCqYLN2L_DH_pN z*Tr4|20Zxm3?Db~8*FjFpa)8Q1AKmdO_!iLn!2HfZyT%@qH zf;S~(sB(1Q`8+oY|G&N_{+{7>p;`zj7oD#2kF% zrc*j1VsXcP0+Z)|DxR}Yx;khj)K8PKv(`|1EfG(7D6I6BbJk9$jRTkp^RNW!0eexH zv$lekMRq&5#@3=)OQQ96XSt1- zS)y7f8#!F2k?ws+MkTO?BnZZd{wLW4sVz=b<&#>e*%q!o+0j~rwP&(AxwhZcOw?OP zI-0W6^m_f@NI9t7Mq_TYJ{y-MXz5b|gtlVl>O_lv7*{o7BSL8|_SO4SICiLLyy)oD zQ7uFNv1o^%iB?F+Qo48VY6!7k==~Q`U+C&`-HDix{bUw*js>1Iey#yMUh0?X_gSlgNp&6}CrC|;mp7hXKT2r_7WN~&RZ6X} zj~B6`kiZ{I&7~KODu1YZTAC~6{QPAzR(4V8$@xDN{Frn%GmQ(^KE(hs>Q1&5oF}1+ zevA@s?!)%btp(!JkQq|XEer&Tx4mC2+pv{CC& z147Y8Bb$&Q`kX0kMRFfPJ^Z=uN0j-Oe?ZtHt9hp669KTLgqd(&dBNx1o@0zAMp+0? zzA-&T+Aa_>6ET{>S@&> zUcYQIsWG82545K@|Dm7K#wW+&kC`&*lq`|4`|^6)0g3x4Wp}SEjb(|YU&ISbX&0X@ zHf~j$_aPBNN;+5KJDJ>F7>MQ7gXL_f=$8LZ zp&Q}8iO+BW_-#uAu!B^pR;~2!LgF?zqg|yGqG7lno$S}B3xqWt{C_FPd>iF2WO99C z&sHdo`f`4Fek*1P-FuC{&(R2MFm975qK5NPuXK_X{~q*q18|cK$jqr4&-w8{GnEjD z?@D6W!)8u(@e1DHhhdfegG8wW$b#|dqBQW82R$-Yb^%J)#zrc4!0p-=9YVZFi=ual zFg0tg6{0GitQON6l!dI_hvHGD!)BANi)v9LGq1T5D-H3SfCf!seV z4fueUL4S_s8S9~vA`~oU%k{u8&>^ykv9qMv6EZ1^?6!u>*585r&@$_S8*8X^7y8S| zS$u6q{0>(3>`IyMKGg+qe8=+@ZA!GMqtt&4yISYQe2iKWSaFV4h z&vC1&`U|)|@{>GD3^=o~OrhH%e~!y~G55rXW*JVVh3kYcJ^vDxCfUKme!s@|*1Kjh z?i*A(JRawjbkF|86!TZXIXBxRkBzB-BI+>hOIF}I!md~td~?p}RHGa8V>k!twWS>{ zZ)`7)D$n*+Tv557;;t@RT00lZ!Sm*-r>C{b(nL69m3;iKg$ebsO0E9f+2Nl(l+9aX zfp^wpxB4`}+pSm?KmlLC>IE<%cM#@+b(w|Q1Fqz{x%}&T zAniv>HKYaBW&sp@x-otKq2NLKVxFIyAd8ije2~_3FJW?cy!$1wbP~9ePaKD?5ag{4 z$W@yDz=*NHt&LPZPrz+mzebq{xuC<^v8f`jt?TVs2d1__A1z6AIn=ew13z*tkX7yb zRNPbmej?Ly6~S~Ae`(6}0ea#4LuCT?O^!uxmdw5RX_>lV5bM2PlIjATgLMsyff`OD ze0(H~It;DoYG7i7K2KHR?3c<@+xwfenf$3-T`HSFVzVEF+KO7EP0ziU&El0Is#h$9 z@n{`y3V-Vh&IMQO`->U}XS{#@T%qd{YwtM%QE=8=m|PDt8(A)Scx&0_R)`L$%6o-` zMQaFk7nZ&YjO}J+7XOSKIq2LQnN4TKr8en2Cn}UdV5-pP6%AC_6Uh$lwu{$HNY-$T zeztTpL-Glv>!a0;H2iZ<-);4n!?*4H+luu=t(IOH{fB}Tw#CKk_$Ljf(C+o;EC{<^ z5QDqgte~^&n@v|M>m3=qQ>SSqUzefO4q?8s@6}5=6!QQtf<;-@}a4^Ae5YD;&8LUfQ_|bg}K6luE-V1waC2nyLXjto zOt7|Vl@Sq2Z}e?FC3Vzurf0Cq82yfy=qbTXoln zRV)>t&*M7!mky<3OHl1^jWHG%qrXZ&1QO-p427&+ZQD(aDr`72?8T1~Kx5~e*kn=V z`0B`^dA*anRaY*iSlUWv9sf(3NokGg1XoA(?@pO-7KuTULae6(!L{so@_JX|<%3*JewZ^Au`f- zpM~c{o(RC>zY;B@73O2htL&5b7B#=l2GZSlslSS=H(^;@GvnX~>5VtyTdZQLK7WR$ zv%NRG0G*{m!IXvg)TcQ!bV;NCn9DWkH^ zL}rMtKJRbGKbMz){f$x$v;VJILe^#Zlgs%=XRZ{B9sZ@eswW@=U?x#LsWCS09!evP z>$sDt*xSK>lrXquPshr$#kP^M`fE4sC9a5G8h%+)Z5;BQ7|N%duCJm2aY%EMr`;PH z#${v|X={qG1`Tu{Xv>hI;|s05e$w)++~TcmNIt=dOx#QQ~Kb3s(qJ4@FcBcbc`ym2R#VhU!D zhSqL}A496)eTrat!K<@1HS#csAteBcZjfOI6dv4S8WLRxBPLy}eS36bI5Tq@4Z~wu znhY4H-_GjOwxW11@oK-Zh!eIvN;@`>M&uu5F?t<(%u&Wbt^HHMzd|Poy zPi5bf9;Bx8PSo3ZC)&3&yhPt&s+OVyo_B8DpQP>$?othgKO0zwY^{~hcShV(?T5W3 zLmayt^2~&&sxjYy6TT9zO62co-K{ekDKb|Usyp1w;Z{E8+c~xtE zj{SP9GgJ~nsqLz>&NtD)j47icxGw|j0J*ZYg^Ta;FQE%r8~DA>fV*tcffPmpt7A~S zp}IvFctJ?f-TOOha_x`56y9u|BXDD#f&~8wBDfQ$17Se?ntScYY|?)yK)^s){k8x= zENcHoPlX~S9|ZY=i<4D-WWG{EqP>8ul4SdF5i7V}*>90dQ?L<~D`RyO$lOeopY?0v z4ib%0sf0du-y#sxC5q+Kexldj1T~_Te8InWJ23fzh&YM4<^%|=+o4s|qhhz*s8V^8 zA2i^MO*$!6nHyq-wC?IeE(NumeHX&8$y@UAwLJ(Yew=n2Po^wrhkQW47pwtP-Wb(3q44vqv#m z{PyUsE+eqfOLvm)9ZO%ijMTf+GLfBs)-Z))J7Z;N;qZf%u}*3i${_3(B-$j?cABsu zO6h%I{FzO*ZF(Bf`AM6N+yKdxE|2k7>99O2l4l{+TrJCsQZ%e4&){GDoBvQ=-;4S) z#3By3LjR)cP}Y|dE^fy}u#MBx*ZJZv=HtgGzG=6c+P|1}uq^n2rZh;LK=_y26gNf| z5TTvwX(;&Wo`w}4C{zY7-#7DfrDB)2mr`>aQxJ<-LJQd>Dsxjo4#MCB^LXq8_8o0XKEp8c)MoFOQxv8Aua3e^MvY_G* zlM3dIQsD{wb4BZ|Z#D{eI*ieE*xiaNeCQ19J$&EvNkwK4zo+6pwK1IMR#>seWAX-Z z0F%b#7G%2%16P5M@_FW_iCmik-m7q^Wc4yXqp9xectt}P&x&if#a-&C9UtJ3@sa;! z!n~WtuZ5GkLHVTg`x{i=Zqu4ds?NF>*5<^KcXcYCD=T;el#aDqZCbQB!xj+T zx`i!VSS+6b$@pGu5_|^Q1R1pC@bF7OrGnm^ZVK_hpgV%KPY3S8eVMg^EqA@3cqc$G za1&=d1GE;@5bwbBYXU%bUGm!m(8|ygwSew|T0dVLO=3>z%^Df0Ds50NQ+ZR_j7N^X8Y>}SovGNS878ZtdG=2iV@ z>NQ$na&T7>Gcz(>vALe$^g7XZ{~K^cfuk8#%9BUKy?7W!!g|__fAaqm8;xB05OWjR z69|wQ^+q-no7J!D2cN_G;K)-chzPyugm*ODU%=XHlzxC5`-z|k$+64Sb$v6Io}T6eES*VkerFl3<0P+AhM8NSH zF&O4sY5Wm^$*^Ge@dI8|4?PB5&=l1REX65M=W=}mVWlgzGa-GtsunjZTnRu03`p;a z%IeQ@E>4PLT7KHuXH(oXz@>U8ODdcqh65!fWQyKMc_A>C#ZJ}hJig>xlvijMKmG3w zdim=3t|&E`tu|X~&e3qgMX=Vd$%OpDU@H8^xObinLlXR@JuV6ytYFu9OnzVf02|e{ zEXJ}(n7-Tj(yTA&L#OflbCwagr;uh4r~NCOQX(jY0_u>qq~x|D8kfTKG^LVBZPfTVP(bayEw zAt3#KpZ6o*fNjt2J@=g7=`|!`7>vg(qL-ZEmcbg{G|$u>f#UZj=E(S`moan-;|G3N~~$(s_xK)@>*cVYlx=c7o9 zs}$tC!#mqfppO=7oIzjbh1=S)c-q3Yh!5fAlOp+6TN&5Ze5n=@9vb6F~@4ofFc`M=ib?LI(L)YPG)U7iyT zhCa2)D8xQGx1LYLv3-HU`TTQk^VPeQTxDO8EtxTJd$2U)eL-WKKx|XD@wSq&{3X~> zBrqw~`%;Gd=S@Z(%;|;Oo}>Gk_-K)ws7!`w*7Vme+m0n!<6q-oiX4UCNneg)KO|$w zlGAs)g)$f~GgIEz?r90_ubDdK>}05j4?DAmG60OE9kgf^rH)h|c4_?Y@qeI=72hXe z8IP)uW}@?I9q~yteb0CsibE&ZbbanD-_ja_nw$IQqt)2)0$fSRANw-Z7pC0&%HAbR zGG_Q8eP4Hu^f@voId26$A!g|)jiq(f?{-3lz2%tu``J%3cd^7j!hd#Trx&r(HO2Li zv3*tVK-Cb~sK%;Lv7&`%5eLxwC@K!lB1`+n+yRoWWWmzz5T_$%!fJ~4n|no%n9`@m zc51Ges1TE_Qo0W{+jtq=1CH$p1{V>RC9J7OTwT`F z()3#qqKON_?mYTLqQj#~=}i3Zk!m#<*Q*~nJ=JRTcTPV@{}p#j;Mt7GMkKd-b_7|m zXAz_cx)N4aL8x8uSxWp0Z@uMflv14}NuGFKm$~<*mrtiU3)xAEWwAGZb%K5&!x2x> z)j2{7&u9pF@Qog&4%?=16%G#_O&2;YcxcuMvdc^h4{uB1@OFbp7Px$5z65^Uobjej*d8B>7fFmf2?uS?7IwngIG4LXsLkCdKSn! z`A3(2<+iRIp7T`~V<}a!#(8lR&!rvz-M()#Y{1wVqVJ?to;qsEenMlXK&4_&Ti|PZ zCTgn=-BlJ&;AQ-El598QyHE20tI$6WqALWK!ojYVZ2|fH>5ZhCZfOC)Ux`hC-Ell2 z`tr!jC|J?HkWr=;rJ&9*duj&JM-3vyPB|%fd7BBto-dRRHti@qg}Wfos;{~K*`UnR z5fV)AmqAWe@nrH+e&S#DaeS(j$YZVV3|D_D-M-=wUkTX#Vhq)Yhu`(Pi^jGuTb-7pT!E z6<|6!1P&!*s> z88uU$VysaLc@N`ERv%yKVI#q~u_G|}?bh#gD>cFgHb?V@eOk)~;doh(+UK(>6wZI^ z9@$192dOJkS(Qhw;9z{&W<>G(W6KMe6btSp5#6<}>o;$*1hleYIO1rGzee?f4Mp(z zG4C_WG4UR~zvGpb4^8HF%fRHvMTM|ejdX;OaNzjESMaF_-98t8_})g3&G8=E>7SBL z-KG~uIR#*2rqyOjo9o&gxkBt?nXO2UDAl@X#vW^)sR7m;}2#9<0AZ{!6i`o*q#v1I`oVJ zw>0<)3FEX3|ATicGpG85Y+x_TjZ`vL!fj;e{2g72a6guTC4Z>i@2_@W zZXNUg+!csrs;7(%Mca`IG}(AiF97yq<>aa`I;Nk@Mz`Y^$yqLf!HDaa~*_T`!3A04J1 zjp`5CNjDOPpS~EdPf#AbVkPa5s%PC`y&(zaOK(BmghEU=J=m<(81Z2Su@C4i83wKU z^%v6kn4jK^7RQN^|B+3UuU9^zP39sdan|zfB{6)-`vzg0swHVqyPihooUY%FlE{E6 z43N;&3GZk1EGLQQS})bK^H6iFemaUQ%;kG$OLFL-o2v1QfmG9JK6;tawL^SYVTqJn z^|Vbe<%~~ltzay^?NyRkN`S{3m)cjx3yEH1BI|-uk=62NXOKtpt~uw@@2j>eGJ^>p zm&!wTe8$Q4a1IKOP)h&SDO&4lN!QmY+7F2v67wmRDfnNO`(jM@*r1+7)vn+T7)|!h zcmcEFM=*vyJ}?-x<+=h-0Po=s1l}B?Fh-hj?7sG-_mzE*{Ofp@nXUl*(a>x-yT7TZ75>84>1UZqJFr?^|yVTxeZ?F5+7 z<4M7>*Ij;boF{&+A2as0y~nJM?jP~!kmA`OEu(Ule2iXBjkO{x0*zv~#r#_YxniR^(+ zI0Q$A=^gzj?Mo|KG>#)5k*o#yPdmdS6#zU`M6?gt0w#1UQ!7cI8UU(KOCJ+Ug)$Z0 z$b)n}wQd7epkU)aN>3BP6H@g>bSesJm9+l; zTh&!XXn>LfZlBcaHb9_9l^=9mA;aT=2y5uL)gRvh=rN33?-=nls;=gN2T^kd)c&>_ z72BXXy9ptM#MX$auS695Tq_aH!QNh!^FrS`29O$V)Rcc1cE8Rela^ga%kf{Lr>pv! zXHj#esWeKZdY^qSB_8_`GL)NuUgbimB$_(&qvR`9ZwQCNYU`v zwd7NwJ@6aXf7dUddVOvM`IH`~l)iobBR|vApzx(5j`8K4>=|8| z))`?0w9|OLH;2*%DM=0lmH$zJ)DM2c`W@U?U$jYxtHd_{2xd-jevv|;6UL;+*^87+ zyGP}G5k4GmO@2}3x_w!$J2$$Kg!sVt_aRR-k@7`=Rq%Wj`cny6naD3cPgQ16Qg3Yc z$=sdn&aO~esQ7Eku{HCi2{-+pI!cM`l}rSXq$OX*@kNA2HkLacRurW+;K~L(nBpja z=ueKBeT;$xi`@%CW^7x92cRiqfxzoTu&PMIumCD*k?;QL3b9VE4Fr7SH@>##K-}~M zCK56T{tAyiF#3gP<&7$&3pznGjr&g=Bbw_(UI%+=AWcK_sftD~*MHHmltR!*FM{8ZNiihyh2HR=^{cm$>}awFh4nyKIq3S0Sd9+|ZDVfi`4z1Zyx^ zGU0Q_Xh%ji^G+dvr5Im707?Od+5Kq9emo@^g_b2epgk)aUAt! z_1Jr;suM{^8QT)IMl;}q^PUMV0ElnShkOZ99KM$6lC7!UGhT4By{*og*l}P%efNUL zHLr2KY3-}e4t{7J)*)=q6#qHpLdLgK*Xp+g=!M2odegrQ^i)kR1gT1~!!vZVhk;fH z8EMm-HY>COW$N-zluMfYJA3eVN5k4L<7KuTWQuvLoMI7ujc{czJLu{S~STzj*T; z0D-iSvByKZVEwe44=WmXC^b8H@7Z2qL(2Mee%xbKC8FXc^4V+?r2w(T4BW^H`)gYJ z9A1k5}i)(O1(Vq+#qMC;Dfuih^`4Z zl#|hA>rSKZ%F9Kksa89{oG?;(cObQy^~SF!*XPT6&Qb@A144ORS|(hc== z^`zp{ezs`7pb(KUb!tO|u2K0-{K#`|;@5v4%W>dUc>M=4rAj>*Y`X0kU0e>AAU~9*~hY2`^r1UarB_m||sDpLaD( zHv`*%5M>3V2C1|n^pkoqnT#QTXV3rnZneC)e&~vPg{kGqs;)k z^!(Z%P;63dIV`Q;u_5hLZ{S5deQ~7s>z6-x6{|NkHJwx`+kk!4&fx6D$qaFiP4!n4aV#Y#$WH(dJ9Gi1b9%3(?z4iOGje0U z2mjkJh1+b2I5%=V`aDuIefSWNh>;~azhk=GFJAiX_Yd(*CB6G%CX?7YBA36ov?FU{ z8pKknW#X>|#&^;GHzxf&-yy8*5_l_{v7R!`n{pWH#8BG%Cv!Z&OJw)p`yKCp7-yD? zW+glB@eI2J1a8pdBV1h#Pl~Q|5LUu+Fs51m<01yYEVIOa_+qqTQ$52k|IeoS-fhzP zDc}o@56Hi7d=h_V{M|ThGoqg}Dw}h0d zEaJ31mvAv~eI`qO*U-coTOI0;WHv}+)OCHTa}1aojvBB@YJW7zhEh#fo+m%`7Zd76|^R@lA=D%sbyDGoN)imJM#;`ASULf?;a*PiG2G(D13|ejD!iF zU;+zscmvA1g(~&)Z`?&S@8m{&H;z}PZ>aMKDrl3R|H@S2J|ag&4BxW_%d7#H zNaq1e=ZAvwYny5{D(i19mhYDF3~ONtAK0O?y6-uCWS4WO690(mHU6lf@wa(0C45$` zx?cWMwEq3yz38tOJMd0@Yza(N3Xy+fund+~L~lwlvGHWi$btddNOa+yjf`e<;P3W|nMZugi?l?;cd;SVhHEZ*?7KVX2fA^ww2%`Tu4UV`!(E@LfH0 z*5xZAi4f9Uv`|=!2KPxH-h9SQI536rSHCYy75H6z)jbz>{*IGD%In+?b4N1i(;s)1 zi@qu4JuW2-g-`~|!^b%XqR(EU15>*mWEwVx3ZfLWSYa7m)Akt+5){wV?BDZg=TP$< zsvkAf7h=iot(rcV(dB5obM4kcx91L0akhjgEOE#+NN^cBQ)`8aZr>M-r8*t_01$N!)EruReE&)MAH|RK9Nc6~tTR<4wic4C`&O|c& z^Y>6=RONQ-fEnG(K5IlRukv0t5@@kz0|F5s5BHd0$l3;t5y(~O1ks-V9|j00c7+ul zs&7@7ngSVG_c$0Dj8=u~<(;SgZ`S(8z!AHQVA93E2xs|`?Ydq3wJt{sMTZNEy1wQ~cu3T@?ai!nuS!>!+ zV^_!T*yNi{YY}@6C@JzgETe~CWyMLLQG1Tx1KD7PF9p2tMpx_$K&M$Ystz^Q-!DzX z%MH+>0#aQIZqb5U!c^J{QdxNcV?U~KiY-jl>Ba184&)x-|GuMnDfVBz-4dpm>=<}k zZ3>|E%IqyTN`l#vuA#$ra7yEI!3Rfk=lMw|Qh3@SFJgiK0?}dh;Xf+ztnDxOaq}iY zqK-~S|NK{GRTCajbu8N}$^g3A9gklrz=PkWyD>X8qb*W6kI8+^;3UQF0CZ3m_*7<@6*oJZ_X#Sn`R#((qun`g*&;$qZ!~J?{+?fm``&Kp} z-%zdBIv)pMmyA~lT7YNeoL6QRNMFv%|MnX&qy5MV@GjeEGcaswydPYYfT8+lSTpRt zUVX}?4ba6$3#=ZVf?UtBuT)RPk#iurJj1Xw#0!jWr|0QK5wk z5tjMu+Bj||3x)=}aHw##Hrs@MP2YnVo>>9qUU&4mG@$bv*i)3lKG(5(R2dU}ds_I~ z3sSX19Embm2Kbw~z_EvEJuKu*BZ6ll0=>q{2InsIhvUKMBRGJu#}-l1P1-Ji6U6^6 z6StDxppnwXB;7x18i>Sk+pj()1?s(EL`mMJe3%vK$gR;SAMbkI*Bb9Qw>Xc38OPGB zUA<3~T4q4i64`Fwt|JY(S;Jy&)d}(f-%DECk|G2O$cNR~qL#PIiLZyw!qOr{lU>gD zb2B>m>4xnIN!TG0%6OL))A8|$Fu$>5I}JyhN44|jA9-V5Z1Gdniv20|Tc>r~S4Kzm z*M2?YnO@~9{UxTB%2~X|W3&}GwpLt|-VZf0vftqe$Q$I3b<-vn?w1T)IhlbUL=*s{ zF!AE`e}FdRM(^fgZ%wDaG{7l=7V^+9zsgElv@kAOipjQWiZ(TwphZN=kVz!%?p|fo zD{%%g1tbRwQo$nQodET=VA0-Vsi%uw>#7m8)b(6=9_yLfNV!(OGid zIqAH6+l-*=anmZXL&9(()iD%s#4&47N;ds{rF3aa!vivUx=|>_cxB?q_eL;GdPNNN zlub3;kXk(vjC*)`amn_OmP+Ko_*bUZx1a3;Twm=s@sI4(Ws-qE>|_ZoGOtfft?-nE zg}=G>_*E#2HpMn*dl*b*N0TiIw8c!9BMD*{@nsW@XTPW1IQKFtEnqV8=m$c zarnxZ@+ReWDp<9du$?eNIEMp`mNm$hcW6R1>#K@9+V2#Q#q+ueCHG8;?2bN|%Wc8U zl3h;E0JlqFbxUJBDXp0_Ka2#w@+PDh9vM8bKZb8=$5;0jBpv%`qjO`~nC4pAsda1C(QBolLw9sf8c5NyZY9p^+4HtKQ^{%`m=8P6 z52N1K$P%w#oQ#X3_M9xFA=o>_qYtk}GLe}n{Bv9(8qpZ-j5v>waVNFWSbHm+6|uf+ z!s^u1jf6^zzEW>+b6(r#e7_L^60i4Oqx&a8)k{odZb2}li;x?Z&~*gCtZ@G5ST)NL z9iH%wvl-VCPyFwQS$1@hK&zog3?lVcaN7#2AiYG0Ov>iEWSo^|@(3M$Y{&TYPSq)?^G+=2l#uA(X* zDLA=lhvXb$*Xw*Vq=P9XcxBw;YPzO-?fs*-ubH+Xlre#*|l<7dvkp6o;_p-4`|7* zQ%Y}Rdj_uRhQ`DaG*`P^yo60v^`l4cV~@O`ZA0v&OYz+e#D`SKoFr#3r6Me?WgCuz zBkX)mnJZFw#~WmD^W2z59ruFz1%f6wLcVoGKt?l8d1@fuG~%EczpzwxWLeOA^ve58 zp{=Z<eT_H)f&EMxjuUIS}TEVsaE$U^D?5aXlASNspXH|<7(vo~X# z50pf964-iEdQvK?pDtBA{*m+>!*?vR%4#rCu-Ku-!Nf@1@Mu}Q_JmDQ%4w%~YkCFd zX^@Pa)*gH4#63R6)J?n580RZnGW{MnuGRZ^Pu&X{kvH|p0Yljr?f!qRl=)yYV!f}t;=gM4A`B`@$IGXT z=Oe5wn#Ya@O6N1t2Mupn>2?<DK{Uc`jq?Pq)qHf|EWTHa zlr9ZY!NCQ}T$=`p7yrgz@Oft*;W7T2rf4~UuQiF6*0Z$xaDt!+jEh?NPA^0Gg6JLt zf+i2uLo}!q#ff^@T)4J^aI;_+iu54ujon`WP!Aj&BB0MSoYhJhyx_+mj(T4M5U4ml z4<+KbBp2~nbpO&!t%2$)fxW>Cpli9>KysaOkU0}rCX@;lX&CLiRi*M*VcV>E8n!K; z!fID8sIw*@#i;dZQ=NEetUk^;r|^v0?MDvXM-~ZQigq&EEm=??;PkM+GszeAIad`y z?KzK!W6T=WCcWKiHU5yg_P8Z%2O(1y)h-~Cs(Ywns>Gj5338KEeL2Lv`UX+ljy)Jh z9y(P%xF|5stfO+i61j$Rxl8bg>!q{fbM3sK)eNNpW`~dA&_7~_5os{!r$vpka`~92kN=2>zjf4Vz_kh`?+@05wtL*S z**8yP#*Hl%{NjOqEkUnYMmqRrI^(8UHMPWtbT2(@hvb`>m8?=tFH0Bf@DOwN{oeN? zy&pd^Pmm1OIt#16ldvRz`;7TXQq%enlb>Bzc&^6>H*8LWJJ4s-Avc>#OgNuyG%an)9ktd;k)pxPN5+Oz`b z&gI`TPaBYP}Jkir2+7h4`%B3a~eO zp1SIm@7FqxG3)>k7m&eeIU^~opqQcsW|TnzxV~u<{L8f;uZxP9Dj_TJ_-^u??yZmj zgyNae=6x6;9?T32>rb%uwf?e@QA$!6iI<`V5B;3LQ>`<|DB-7jrX+xNAH`MqQfD;1 zCnJgFy@)I`q8d+olq&d&3i(KOjYv#?6aipKXP4F%cRqJ#5P-?>alrIVa!3k*Fd(N- zz#K3F@vL<-BhabohtOMYL=#)(7LH0%G`RifqVQ_qnKP`J<+JJ^py6OH&Z6^fQ{&Ar zO@V#a?FQt)#Izd!3_u2@rxHxAdtDfS90kmOY&TjPQSLp%hQ8Kbl@>q_+I;$)4qzP3 z@Jlr?f>m50HHIrMY&YaU1G-=A_?0Z!E*WH%DY%D8Kkh+`tBE& zyvDe(-|SB%H0yt+Z1%abKZ)_YVX%avl!?PbBaSGEybb#qR@%sm6ZRl}s6@%ix%7P4 zE>PQ6#5ea|O3S(sai$^y6fmke`_-~T)>%xjQq2NFU&}1HNq<#ijl?E}mIkyz9``6;`;1V$Us!&#fFt{u%w#BlR}J#UF}z$YlJkvsiw|tDj`*e<{T^ zCs&S$WH(TI=EpOdu5($(45b=f>GK;^N=u?LkZdRVl62;tPU}|nZ{?_+;aOg-Gdp580x?0gHT?c;aV4Lh|$#$2VLJnXCAn0Ek{p!C@Re9$)TkBWWNec8n7??krL&V zv!(goZ-mK={5msJfPJ4sX-z=XFRvMFg8QvCNa1PX6SQ?=Rm2whsS zuXkwmO@B&=Wj136o=Kz0&(yBdRDV0BrA%K{EaDILg>p|%DZInnW-7*zr~h_3&hiUB z!{rEzS;m6Z+|iKEgJ7zR?#%!c;cF4sizL>r2SFnS)APbwXPX#otv)PiWp0yEft6N4 z51K9bR@`!}J*a&A8YoDNy8RD>4q{#HXQQ@{1~0u|$qm|quc)p?tt2jxl}mR}bX0$% zFidq6^7?yFknnqKIj-`AzR4i3eLf_GD*Bo>5XcGSHbDDhGF)V{ z>-LduTREJ`^V6y`=p$dqna8;)n_c!cyU;oRj?Z4V*#1wEs3+dyK8sAeM7C*}t{FrEfik-?l4 zFPHM4E?f>kGXOPF2Mu1RcIr2D<({!Yy+x>eOeU+6FI85TUMe4nQz2MpRl+XDPz8)~ z+>IjNGJFLY7oWD|_=m~Oadkszff zTM~_6C};8$?~R~)OW;qW*~*2qzZxS4r7+_;_Y=?%&&H~&-2@btwSx$7wx z+w;MOXC8_GG-Xw)`w-DuTMzf+-)vf+dt9rwVOmtNa2~OIT}|KFm<>&d?mA?{*}szh zUP#j@LLaN5+`>W}2^u|rNY%Ny9Kq;M7oHCWr>TuR)eTI#^p+DzE#@7&dgOowvti4p zmWkFD?>DON{jn#=xHj~#Ja4G{@u?_rk?PuLleK1TF@Cq+1GqU8@vA#Rb+cZmOsiiq z0nrP^=LOF#5uz~f(WpTnub|KPh3#{3e1?HKMp#ywsD0{Y#B7R_q}OD1D2k?PpJ8y5 zE)%!eesBFn-{YNS439&C%e8F_Pvvk|>cnkPtohGB|Mn4Ob8}z(A4~({M=xHEgG=aJ z(+`9+$x&f1_gf|uU3|N$1ip?|tV%r3i#aFW9gTCP=5;j-jHM83aSpP7BerzW4%azR zCEk3^8)7>{r$4RZ-kdQD=7VsxnFun$XLsH#L|Qfwz3@WM!;)%2INncc=I( zQ<0I}LNkwGk9sm9)7pttc3e~bv#x)hbw1zsCE#k`L1tz3ETisBE4J!Uy7a71_SEwvp2SyV=GEuDZb&wy8 zE`2A^>3CuZ%#UZ63lBi}jCsR3C=cRkU@_ZUBW(~k&4N-j5k2y&0a;L7&`uBG;c=uF z=qd^0#`NY0;x-CLjZ1#?aon{x1Owee_O@{Gv>gBSy&su~lvR0_K;dUBnEL&}>gz|| zSEzs|S+&@B%UjXSU@gguo(y_Ls2wD6Qau`gc0RcfU&7G7kdgot#~C~5#Ws>8vczap z*6tQzbW=A#wsUDtutbqUtIlFeK2hY+Ae;L+l>hwvA4$W5C{+K)p(44!77mygjbr$= z0sU2;EhYKGxjC?rem5aYZaGiVrkwxUxutQ)n}+=B(b6y-U$9ejClQsiY!j$o_xia_ z8_)3T|EDGkUFz<=jBw8i%fL(CUb^1a4j>FNdH}J?TXID}-ZbBzu&D;} zbgnpn{{rM3{TT`C?i04FjJCz4+x)yoPnDP8o!8zmw!`6Uz|<9lmJrrm*GH@*}sr!;7yZcRbafmt_O zmezwm8Ib*Td$`JR9#q@#FSCypeQ)C&I{HfKs^slMK@481KVNdF#f_Yk%dMrJLjfdL zApWHL3FDs;K|yfM{JOp>Y=VqGSfz2>Iv;`3p$#?IOwfiAfdD6v+eNeCPoMNwOOG!nLg)`8p!HBjDn1oy$@|BDevl@naY)P{uJ~E6Pfcd)lq@S6uf) z4zoJ46-s}2JqJM;B>L7$cB<8mMtj}G@dwP?K$r)Vv$T(%W`j6Vbov6!^wUMt%XqZ zm^?A>+!6C;)p9T1~PH@Voa)JQeCt*cNWycIgK75ZKKN#X8v zDLRuuDFZdE5R<&{_;+6~0-R;D(fi$tV)Bi#u+1wq$@zbXZbmwN3O5mMek{|B6xO$3 zsM4M3yX&h(6`d>N20O|s^zgZ65&eFh^ibXU(N;gu<-WySc=26(*#Kmi(f{Gu$1oqu zMHp@mI=ZW)rFmCc1V~A=LCq_kOThBgOgX zwF6d6=Ei>*Ro%pN%pZB7w-lz0o~4@lhFH~xVGL$r9=t?O?u}R@&v-|tqRqcmF1U9* zb+$=1&Zulo^~DQ)0_(&)Ue4s^s<21+mu0l13d$wGh<)uJiX*d;`!ot>!8(jzM)#T) z)v%iQRt)eEYT7T~SBpaQb)Qu3Ap4W9WOa^q`i-gCkE%no)F1dg-GrsC1@4zgIv?%0 znRbk4a$R{kWoN&sHrZ#SOP4WZfek!oF|M{P_pSyq3N@W*8?>GY75syxSQeO{veQ0q zudZ>{DrUop$EZOyAvtJf`qt2Bnx`VJTz%US@{NK#V{wL<^8xB|;4ahHY%R_q>3C#Bb;(%mtG-T)U&C{HJ@ZkN3v-Abhc|p~9SPjJ4n>0Z52$J-#d3+os0At3(aXt5P&zWc za!Ngv3`S4Z-S+=hm@A^X+TD!fidMSu+q0W%x@@tx%O6ncIJ?B0@w%qHF%HT5mglt4 zvtW;;z{1MU5IN33*KEQ>1jS6suI0myAJJscc3546wK!XlKcQ0rY>Fnh};W5F}3A{Sh@ zo@K0hbBEt9LL-h}(4MK(8R!b?&v?3?LfTiV_OqSjzdI_Q5HuMAitFQYo78dl=u(cYCmDA*7Ocj1yoB?DjUA&D!RV!9Ueq z`f~OVt$(twg9~f>QgzJhYECY;gHi9xjb!VB4ILB{Yj16yRqVd}!nKK=>{b8hF8db> z{vcyFy_r}k>1lm>X5C+~`{=xt-qlO*Vq}HZ(_e9I_?muv)nS@+v>}8kIH)_QX(x^p zz-MgI3fw&=)EI9xcacoJ(fBu&o*-JaYgxg;iU5i_>a+%Mvgxy)czG^f~l29Sq4n~ z{Rz8yBY(>=pA0wjSqZ)Td5pGK5Zf>bUCxPBv*raSRGf6 zm6M*d*NI8$I~98Tq4qKGPr)Ew`j3?|0*Nz5Vx72H3G8;k1_pWyrd{0(^||tDfjn1b z-L6BZ?SrlKkC)NLoD8jd&b-BN>ul39>-{PqYx123?Yodph-zj7r89`~& zNBJEMd+D|U`Ol5|huDc&e-p_9mll^)Y3JC?$y=?V++#U4;EBUqqm`l>ydH#8T{6|- zlQkuhtX~@D6hK$zHnEo#s^#?k-5#yW1&d)zi-+C~6y9Sz+daCSJ+<>o=>n!U2$#1B zJYHTF$eTd&jD^5?0I6#{{5>ZH4--c^j1&PewMJBua0AwePJqeRWK0TB528jUq2YHM z3aw1KKH~aF|AG&x%HR`-0s0Y8&^sNDr*{$UGyA$qLGchj0nyc@HXxxTSMg*T4Kili zzQYE2w$=>A*4oB_XorL<-be-6^-(i#M0Y=PeQIFY$M;+ULGVbGV}htqqF~F-b$A2g zV9@*JB4rL;Eo}Cz;;Lw3dq9fb_z2@m`+Z-7hR`Uq5dP3UXwMC5xt~rcvw`LYaGuX; zg-&0@{jgO~FU9?JU&SIiXi%(~WO8nvn5O{H;(aHNxfaf`k52DoU)-25sC{g@8x@qv zqWv_$$D308DFY*_Z3h-}Tzez&UaRTnCjqsM8B#ra2Z9eX*wFHOw?}QYYHG(?A1}HO zBZRsUBUBg(j~0*AWIv>*evYV3EgR4C8VhyLDZ<^p>4R$@Q4Y`b+^4AnudRBK(EPM3K;}1FscFY3oS{&;oz*R zYg5Dc!VEGVwTo!h?X&IzZ+tQ;pG34kX>rS&1&v7XR_Je25a^Ox^|P~DO^6?jN3%9~ znlJDK4vpQHSJZ?wYgM=)T2ycggJn2Do;V$%Cy17QD8P4FFtEq~0<#G}7Ie|d7wH}G z3gK!u&#&d=d9jFJ$!3c@t0elWRyv?+lT0#j03KrrtG<&+#u1<5H8q_)37!t2gxe`K zDk+A%ZkG;bDKbQBTQ-Z|S?+9dWHKLw8lQj9%5t@tYU(F7U9QHOE6G1HMZIzme5tBU z`D%;!w5LX?ywAKIvht#?+DpUzkSs9K9|?FraO#E1IBT36S0wxwp1>xZHt!ef1_*ot zyi@zDn#DT4#(!$I3elSXlp!;WcwrYrAgt`@s7EC{@#8bRVEosSz9py zib@}IxON{2uHDg1P0)Z?=<~d5iD)qn8{@gM2)nLteE#m;Cc#?*A_;P|?Q+n2{h)$i z@IukygbfO{IZaUg>t7O(E>;Gw25r^;H**qv;OzU4I&o1EI%V zKp7IvgPhWFOSOWGaM-_wiI}c;dMR2f5?xWD44)R>dO>?rCKApxlq6r!g&zYRak&M8 zP%6lbd-|no$q@!}KNgUFE_gd^;fG1gefnXE*2%dO<+EYyfz!aHCp^QKj zz@|wTWk~?^4}CW{6QS(^`i!5{uj`Gx=;wg6r4i_N2gZ5}09%ozA-MVja36Ci z*ZY9AzNBd-IT)7)BH=7wIGBMq*OC%>&^P&;IINup;%H3}5vOZZ+a-+5|H$`U%NY0? zHxsV$(u&2BpNWD)v6YH*2?@%Dz95E=TqX#gIlHo&A1wO`i=&+3kD}LEb*yC++)aXY z#dVP5L3sDl2#kPWe;Y*5Z&0otBH;>S%UBstq;l;m5-GnYKHA-Aox(T!=j2{$6Zh$P ztSDRXxw8v-$4KyM|kZBfVibi|myk_NKmHxwn_8 z(kOc4R-c(YX^GxB>~pX{Jv#+ZvhtW%NFVc3q5Stlo}Sy+uaWC^9y5Nxml=&bzwBSx z+_Gu6F|}dgDu|(P`7y!0S)z9G=}!R{F&7_ZsEuW${Yx@D_QgJ$WUw62)aC@o(0``W($ox(XV3b0$J-aSx8-H0 zRXuf5{Y!}VeXISGloeuvjdp!JgUtOSjt!DntY*VjKFhz4uK1;FGbK$;eAHM_D-#nO ztb$ls*3Bz#%47;R=F1GIzkk{p4|%7|JZt3QEO^MBb|$5GnRKog_EI}iC+fA@xxHL4nu7|nH zG)jAS0iq7#}AvUp?gC??oP4%`ZzPY>XYLVqB7m;i2Dg zxk{$+t_xF@+2Bi`b)#;jTKl6BEnVS5D< z0bUO-67ea8gmTxB^H=PaOCGz!q;3n}y#xQxV)>O&(}}NT^5zB0r@}8O+kI#VueHjZmKHADejh5sB+zD6Y z#g5;xB7&AB@*|+6sZghMk-|c#oGgN>4qj}*Ir{})zV8QR<86xxr z0QbpAmD7AEZA z^h4?ZTj@&Txw7IbXcz0U5b|?yLV7K%L!ggYPMxU|PfYkBQRT?mcD%G8gTbUNd2H{s zQrMLHM^fC?VnjEg+aucchqf!rMU%1==0N*|J>N{$n&y)gX!xKM0I(V2kM-j4Q%uxc zD^`{v)y3^eTW!#!VAFeNxp;H@0ZhoP6P4}rQ&jfyNPEjIKCqrp(iM6h?yj5?hX z`%W*Fl18}L>(}1}axqCira0s}GYJ)My#c5|Klx!xU-l>FKk5#?krKP15Ka+# z)aDl&CTt;=+)u9L#d#({CnsCii63ZZQpWX@BDK%Q8^*>|Q7HYi`$oKo>F>+3tMlrN zBHv7ymp#*~$WZpU2S_hgi;FE$gesqvlc7LzvEc6TLs{(+nyjBvtupW@BZYm!itgVh z69t!&JMwmZ*7K6S)d#eWi(p5F=mKJ3I_G*pIPfY|kcnd5%0H@8K)*DrQm8?_C(s*W z40^(+(r1=YisCU5{+FyG9h#1COkdQJtWgqk_LI!`_Cda9)X;Tjf^^HPxfDS1{}Z%S zR{uVj*j(Xp>2l=>XX0_rI$I{~r{rtVgCzwI$Hg&KmSJ#4Nd=Zd z8>B&E0k#3|xDQTpi_kRB;K8!oA^SjRZo@ddj3{hBo z3L-wPtWhO55>m!Cy;<9oLjDers>EP%EZHRi3zH{FoCLA8|=L z-RpG=s|ACfD#_eK`k)j&{OWy%LBEt-Mv39lo6aF|#p3*K91e-QMge+%)sphqUWV+O zt!@Q%Z*}E%8>jwp|;nSxp zy#YKA1dCX};qelgh@*Z_|5FJ48N6m{E^T>`>Yw;_=%Xqztet+Zpb=I7kCTf(-j=T= z|Mf)^oF>#Qd~pBQbUN+B%ODu^Q_0YQ^eogDnM!G{D7dXn!f-^g0Do}ym9cuw&ZjOt zMsIQE;G(#i)L?fW^U1Oxs_~kE;7AI$e{ztB(?;!Mt()*3?vS74=mB33?Kqd#^WzKF zlz)z+y#b!D4>p<9@?A0l;r5=pSrj}ze66i*I2#|0TbpiK9{4JMWY%!2$@9oiXzAYF zY`v^3-BSXZJ8RkSf4LVqsj=YwDnUS?fA}qoaUs?sH`}8J;iPg4@v$OYU)+PA;j1;I zOZIxl1N9Nu^9jHn6Lp@e$S8iqwciI?g>{5#Co6tRWq?z zumj5zpxK0TCXwt}%88gR(c!uz9FkUK!^S^)%Xf;e<_ae* za$3uP9eWo4e=46DAJYg_$d)$T0_k5*5HnD3t`}OLSKvg4Y@@pd zWO3x;kG($tQ$H$a+LtvaM^q5@9uDaA0B9Lh<^!Ad@5&Ak>`S5dlU&^8tZ#5jJ-wYb zx92a}bkcX=`-+tw!20~X!B@ZfOIK6<=K3^n7h9NpW{mMF(feF~NLA@;T9L zDsUJSS8Z(HF5SkKdX9^{dj{6Fhy*gY?GDYCOGHGE7nSC<2%1WVu^pK3+-)NPGGNPL zqvqjoFS=MRk<2hUft{nj8b9u6=zC3<(G%@m*E}4QlKi;KKi%z+5LGXAC}WhW4+*gs zYirT~7N>)YcoSPzWY&jG zmcY55B+i~X(^pjAR?HPGo8>WtDbpM6((dgk*T-y$#5&J8E`5(ir>XU?QJV--Ip4z# zLW2PD>1S!cpXC8JcA9D7EI)|(D#ctzSJ;;X=N4qm>dlpPh+=Of(H3CCKsdh_onMK^v2eBBBO4V$g+8k$^SaalDk4Rf+E)lFXrr9?0pF4&qG9SxY2$PoSIDlpq9X zp8~9$tu1sYlhIaw%=}Pj;h7F_rj&o55=KFnnv0l`F({#OYtGxh=|A1*8;WT3dENxI zp!NL>6A@3S+w5Sg663^2J|t8xp@ojrPAS@shJ5$*QToyWB8cZ; zt!P6-h{nO?FfV)d%^)>rU<}b2>z&H#38!FgxtEB>TuNj^T4>2rZR`W`CF=S*m+SOd zGKxZ{<0SS+snT1Oi&uc%8Ji-p)XB$vV!X4vU}NiZ=6z-D>pRE!BEi$CAADan9{w;l zC!vNqPdt5tQZsXF;`j-lHYMW0ZfhA?MM9`xISLn1i82)gT;o##<+a4GSoWW#G)u^^ zMf7BZR^ThImQ|;-%i0;ytB7X>uTkf>|D!_zjZb}*Rf7H6)Fm7Cy?&Fv|wA9S%>B{oJlF@Vos-CW29pTcv z6StQHn`uw-vq_4|Ud1M?Xr2ar1*h%~hvDw>a9_Lj45!B+9h4cvHST0-6TDMe`9|b9 zJcA1l6qQ-Y2Yg-5ZM4T@n^0hFaWbHHq~##hJOgmSzGDn&WZ6U*Jt>@ezghnb?4T>8 z!rkNey;`4RdfZvb(*s_ZU4|zi9S@mO!IB8s+>HA5sEST|fxG@Cj~x^bkEM7>hV~VOn3rAvhww!h_ywM z3qv(A8lw+-9Lh(p%|kqdztb5Bnpt-Jf&L<_&`H!uimiPVHO_&WVHq84seob9*Tq z^*6d9;e=wM&1`dS3)fqr&&d^c4Gnlm7rezp>r?ZcqPdH2igLM+s*ujD7MxAL-`5I^ zp9@YEff&lMXd z;WP9`XZNI|wp6Ram6g8{cg*L$EJ);_!8Yz2vrF0%r}j)RU-{=imQBvUflCuS2jMq< zZ~9LAM+<19A8CE=<&ni>B3~_J6nW+f{f4h9e}T49NKYc zAgz~trc`KuXu_sr%6rFcYT#UZ1) z#)hI)-X5NUJHO1Zw@W|Ore|T|W2}q8;82|bXXoa#uY+*>vG?U@z57=5tCv|G2c?_2$-lq{c_IBTF6mzx)_O=G9|1uCD z@_rG)ggF+a9Ug36a5*9FLYePnP2q$ccdU=o6MtP#kz7WYT5RyxDgbNoUy zv)SdwSW@ZRux2}Yp@TMz=$(ZB0dF#wVMiYJ693Snbo-f zPNwO2cN(wXWXrl9&mYPCo$2Usr(Qd>^EE$qQTz zY;V%`xmXnS6!Ba2-Drn`ktD3G*+JJK?_U#gtrz4uj%RryBWwt03qPw~tV_iY!&EW| z05XS<`Sviazk<^orPj;X@tH61j}^;~?6-NhYB}{Wys$-rjO_JH)8V}(AzhHT%fmgz z!%3$bUhx85IO5AP|C?xbm3laER@pHHoB^6Z#-5x()OnQinSoOU(cT) z=@QpLHo#pz+XkWNk(JJn@vzVTFK%m%VsH$zLi+`0dHuualWGA|Te`rlF2KaAK9s#V z(aZe2>UxE;_(xSXNur~Js93(wWk=L^xBtVKQsYsegT{&>JNu1l@M8RWOGHJf_?=)k z3O*==`yNrIl>iVvzBobvFNwTKA+lTM2Cx`8*9l=@o%tKDldNcRSsIino}X!svTvMz zs+{|sEYgzJWc+sKY85FaHP`cEY2;43YQIJ<1|uy{4`#M!%ywAWA)KC}3Eue+i=5sB zzEyd^b5KE>pSex~Zp*6pND`}uY!-_(8NVSpjTuU^_x3PbHc^+D(?U^!5Pea-;_iog zz&_Wu>KV7;2b;iv|FFIT30RHO(4`d6=pvN0twn(Wb6Kk47Q0~OAJ?95+}AJ;R<@>v zJ?pX~&jQ^`?}*=>sHVy6Yd4{s;j*0Ij@LbeI<-`DLN6;LiyV=?> zHDMkM>e?1sSj$9Mxj|{^#xUi!K_3T8ToY5V_~)^o;6bU7>F1kMi^d7>FV4=VPi zVD9ue!EiI;p6K^mA{q$MK@}iV*b2n}D!{vB6$fooF(VBGO6!K6drCGefm{-+mU8zI zv^K0En(6G$y0c&DfhMxxCyw(dlR(IGrHFZyEy=D?-UwOkc z0r|P?O`CeO>I@&&T>JwtKWWQI!V-blX)`+wnNq|R%8R%PRi@e?yoUzOQ-y}45 zP=T-eW$$JpYu4a-+a%*N(HR-Nh31FhJLy`)4k=tVH5WXea!3Kb-%vpYgWFDzvQ>xmgpPT& zJTc$SN1gN~lDfS>HWLTNw#bn{y-$2l3i}^eX+o=aMFW)cU#(Ke2$|C^cSD*vXpmo z>jNd@m$=n#&JpA2a8VQHHpQB-FTaNguioV)KYjP%=2yAbe!>ca${L&Rbo|!q^s?N4;QdZei58diU*}8=^0n-%ahk*eB~h zZlvaVqjR}>7+_GNvObl)qjbJk0^N? zl+t_V!Wz76UYXZk`0c!*U16p>h2dr#UM~o931qcJ_JL2mTsWB82SNU<6pZtWpg5^< zvGM?g@^V|$?;3cWyf^B>>bMs@0yjw7T+O%>rtAQ{YH8wZI8J@av~hZl%`vxnZxZeD zcJ2C+L8;U7xn#e(0=4?o#8xwN6Wkj9eKO5w#w4$e??V_ztol~<6d5qWL!vQ?`+ ziJ6HN#jp*^1=OJ@=kA0FrNcT4YbiW^tJn6orBIcTJIIUxxdV)ZNp_u_xvLDE$u$=7m0+SF0K3nL6|A<8AXh zD^6C-s##hFpE4))?z7FS7UCpaP575)8SP&Yb8^?PeDJc6z4jP-;?No$x7YDWm0gWe z_(&iEGNOt1$cwgvCxPEG^q$%`Ub=A3TslOjH*gBagBzazF6P5m z?T*IKh1e&hk7QMBMYS}t-@GL>g8*KFwnaN-69PezV^yt zGn4Am!~BKai5vUSu&E8Vj|_(bd?R8i%b9&CAsiKbp&imajPtG2+bYx~^r;U`c~0%m zFwrL%Q~I@8^rmUGs`D_}2}D`^32ZM*D~^4#U6I{rIrCtqcp6}^eUGw|9{K|yyHZw` zc)Cv+t*16#a#PkqR3rw=sq%#{&pnl1Z%i*$-FW`#%ktE?=8G1RWor^orb^76elG5L z|E<1|ZBb~`^w;x~8x0B%B|+Q$p|?S&)hZs(@+8VE*>@>!pOGx#cE)qU8hvzzyHqAv z`|4QF%HrFC(mDs7fB*ml0`SyYOqirMcjqp51P$)bL`6 z5wF~dwK+q!4Z-sk>jC)J4HieAhY`Ur8cr*I6EcVCpuQ$phSCRD zY4wA_y6+Hi3R()5@ADTo0+jDJ-dkdkW0%qB@bri zV`2EObo&#&oVUX5I@1*$5B7=+G9nqmPu4kl`|hTGf0DA3HfnIl)z={khxCST?m>s$ zF7$z`JtdBZu6jRcaGD+ruziv`ZAWPV|k?vt|czA%RQA(BD5`hRfQ zlp8w&wf3Ht{BbvtNE+sQB+gWEvHSY8!^+0f0o#Ok8Ix!_(R~=&tBO^1W)~5iX?7TP$7zPpDv#|8@_RqktMuMVg^2 znpH1^q!-UGF6NbNGWF!yT>6F$QS{LFXTPtHb93K%%0q^4`yBr&U)cwai=tnF+cuMp zMYJaa-qNqKb@ylKa~G8?sAQKKx_qMxO>_k8>hIXUxCL7qb)YUpzZe?F=DOEzPg6de zxBT0_6rgRE-IY#UEHhnp?8YNhn`k6|KvU`5MJ(~1iWy}0(>iPPa?tj9!h67i0Pe0A zcPaqxkPE=8)UNdZe=F7GknzDqq+V0hyS;c_8K8{-nMMGn#i6t1#I7rbbwu6odIhXq zM6;s;A-y!uVc*P01>C@nd6c|c7|>K%YL>HvK=Vn3`0-^>Soee=`y$5`i zh-fx)8$oujMQKBuktlEU;l}gMvVXwf?w!6{+ul>HV zrv$}F%QLsd%F}fst;F6=J!m0Z0j(CFbjZgVu2x z{S|sE6$}w;aUFL=)fE_G93@AqGTZ39Qu=wg2W=z71Kt+D$KKaewhnmL=a{Da{$Y&g zfey=6VbfHXbwq27&pfbiD89I@)+YmOf2%-|G*i?SFg*q%fdq#(fmUY+WK~Go$>S*8 zh{6LVMLz!zIPSL4FTurWP`R)^kA-(34uN!mvrf}0PD5L#BVabE!1|5~ClS2s)twPi zP7-r(j7zO4@ud3u65etw?Ihgdd))U+vDoKz{GOjsn}~O#rpPYM?K@o_rbl$wK^~Vg z*B+WN$(92&d|8%$QsMYTDEaM$!p1n)LZ|4h4SEG6yHo|+mHq~90^a6>p4Ibh-1?66 zDT&G=hd+6+7feB|Fv`@0tN2cmL)#x1=1If4C})ZFA~n`b6agvNfCGkiALpytncmWF!4){<- zjQvw%wv35!6*A_@O6LG>fo)$u>6kC=5kO@_e zDQ7P&o;;Qn97y9A=TCSpd&56LnIfd@_2>(6uVX>yt*Xs_6&ai=HvaI{D zA3xs~6g!$Va0wtpD1hTMeu^&$ zIV6Wc+{(;T1hZV*3d#IkjY=%*(%X0p^(jtZ@i?fZw`CO(*iZ~B$o}ed@R2sObZ?^H zy^)MxvNco`k>v~BhzlnoTNxD9x`+To?^aLa0_F+FPn5s!wo@I8-v{Y^-wr)viyyxX z2`EkXI}`>NoD};PJ4Dg>2QI%dIXvjf{4Afa8p6wrjTvn->mqVP>IrH;3<{D(x=<$b zP%B|CKbC@!oL*h68>^i!*<1PbD8Zk~P8M!`HhlZbVM0yMw%jv|-NHv+^K<3Fx)rI> z(`bR=AWtWj07AL*`v@DionFT8DGVh&7Kfna7;@p0lqJ{rP5>Yp9x3C$I|$XY?2CW4 z6gU_|QPk+C>%KC&n?&LN!V?nwy@TOYALnBM_0Pqf!C7bzT2_Myo7L^@Kk52#qBn2j zSP>=>gkTogse8x!a&4pOEo^O3t!OKmI51Jl<=*NEtuC?h2UDp%r*vH?Gor{y&Nop# zC<8*1zKey+A2VDnLWT6*P6LZpOEl0a8mm+04B{jUG9C@nus^jizZ; zwec$yPTxoljgrQrbLoTXLX^q!FfyT1m8{<0kviBDSVbLLs64IQ@K#N|pPY%o*4PY+ z`PK3BQGT7e5k;dPIgL;|7}of;t+z9J{5ha-Q?fT)sBr z7$l+^NgwXdcvbq&EKTngdTVHC$NH->t#0`7OaTWTL`89nO!L$Y6EweWJIZ#3iLG8x zr_VAI%ZZMLmkvyO{$4r&a2r#GG}YofLMAKSSwe+1(2`W5XgZ_F%O;USKn=2|eomoE z_uoz!r2Ik|B-B}|cp-%*1|d2}MHr4~?sBR#`vLs8n|3^SHtMC8-y__T2b02~rLH2! zWM2UEJ(b&)@u@hU{iFiYMC7LM#9yC6EIXUV-zu#fQ^L^i762ci!s%k@tbimt26|5l z&hm{i?$kYD!5gR?=As&O5R*|k>J$>ZT6WWM_0cLMFgFtdHsWi8DH?`x5A3a4@r)DQ^+6YQAs+7(bl69Sr#RbqO^>J zp6WYy{>N+=VN;Kc=wHd@kOCUf8lj~xT(#)ueI_9A2-WsMh@nO-@F$0(-v_NF0mEv} zSVGf1UD99Ga(|2{p3+w13{2DB=vO;KlD^Wk)96&s!Tcr_M2fp5m%?%$bs(>aFRR6i z`H}e_kva$wnMrX*aV)91Tb@Ngo3RiUd)5{I{lF){@+nuAVkMj5%-c|1xVJ(uZ)enR zN!hB>#kz0DD6ao@PdMnbrCw@QUqF3+WtfU|G7L-jB|^P9SGyW5HSv$GhF#nBwfFMp z<2h$ScBul2L>1dO?@tNAVoA8Jg5Bi*;#CQ9hmFRK%A=of_IrBc`RhL~5}y>TtB&GQ z;>Wh0ZGOA$auWVZt6%GcduH#M?h1N0Z8_us&}*jtqyra+2&%r04b{IMiIP-T-*3O4 zF+bznZZUmTgZLpAI#`?Rop(^s`lL-EcQn$`%qIFsy}W+?p)&e%%{%QAK*fjNjmSp-afvs$=-(OF%M5@F7gLq+G=WOgjzx#2xACPGf+oF(|Zm(4S2OO+Ms(GH_a zle-vtN8`!Fl@{;|E!^;1vsUi%I17vxtGe$nuldZ=|Lg@hw+2_TF-m;j?q=ZwHx}IB zGWS7m`|=F(Y8lGJSo>zpT$^u{x}L+N?O@8a%{R9txsSrCI&?%FSHoO7hVd)#f>|t6 z>!i?_wgqA7>QgLw2yG=$%h^w~6EJnm>!yNsvIH*;t}7oCf}we@>cOR}_whJCndEM! zrm~20)qVT@F-KF#MBp8~h+`9Q(ihTBBN!NH;cncLK2m`3K^zuxDq2b84HSpid&BHyq`?HsBq27&ejWrj)R%+(ct`&L~ZK>3xB~6=(>o zwpJwWjalCqb0w3cf-dgy=UX6Q1hQ$7N^#^GA&Twz!ug}+RJ@Urp*D#f-qBQB6T*#r z3Yect=)`$=gVyw!Rc-VGjjvyE2^G)&z6fmfQ>{_HOViEDXMX5sxNhVPYx z0*n{e*^Ih6fICUKveyS=jP@xa=zz@cHk<=NgLX$@j9yljr?fYuxn$L;5^#ZN(&rcS zfIPDh`ar^XbEO^NZpNZ+Wi!16F(z&1^#sE>l?#5{ka;V`D^$mSSOr8C2G=@KmFwZ! zIRblJ?+6M&k4|SJn{WZ*BB5c;h9kdwT(;^?iJM(xbh+CDQnLA7a)V55kV8nkHpmP}D*f}to1|5o4uIDSF z)+L*GmR?+Wt&R0hy4Bw;$UeQi7<;uBXxB2O@UvmpeQLTS49usqzP3zo0L)W1J#SI@ zL6X%jI;!8tL>kk-rFuPU3*@;F-xNKl=F!HMJ-N1PUnmP-^*hDjG0*ahjJQ}Dg-g>= zUmVj02=LHy_z-ieE`;nSs=EZ%VpEI4-o}`{#l7?msI??wn*DjmdZtn7#kN-05SQMq zur1Nn&Wp90Aq^PKbP_O0$=0n*lK~|iE>+5Zho92jzmEB=RS3U|@|J#42vm;YW!}-kG;ef-N?y7!BUDG1_JmWgfON}K#1HK-hw4URkm_o#HZH> zYz~}&#1MD zlgCd_k&Qq~(602stp}tF^GAFVg*&-bVf0|<_?CziL%vn zE8IX=f5@YF`q3Q%%71_Fgvw@H1U zfi27Aw`rntH(I!pA^;cRSYHJh;j#;YDuMWX*+6R*9BH|@1Nyi+>dn3eRLgx{R-{UqzQDkA%pn0v8>JXHdYk|6 zURmxO+Eb;1EvaNVGzaL&BNiIaV}riF)&xAGF=Xj`FYLj&be;Be58vv9ppdM4EVd9Y zhWeGxt?iIv1(G1ns2LbBwl?xpyy**isLY&NxpjD~{pSz1jJW69xq`_kw^F|tc~aV- zUx>cQ`*><=`>mFEgS~GCaj4DzuxKopgwq`TwzS9}VStw6$AYi2N8{LqF)0SICX^R) z5+R>iycltBw^9yH8HVP|DEm%LWy7aeTf@chHkAF6G)%Hur|#p~9aptmw1*Yh$th$Z z5s9B~&GLc8DK}?|6Jc6`UFIV_2|51LM~#bDGzSG%VSU$=D|m4_lbZ^})YGts#j^jf z`WEnIAzyVfDMLTLq=2!+#iUeS`CEV9B^DuDH|K89WH%SDpW<^ zrQ;*z+OjJJz9sBUERz=RuRL1cTYx#9fV`F@BZ|n%o%+^|itPkVTix#~3}hSd z1%Glqd0}a1^?45T%+KXg*ViVqD61n5*?z;icWQFj#gR-WbE`gl3GaNzEYIt}H|d=G z*hWPx7es+1y^HBpV!bCFQ;ir(5K|>eZ zXG%$WCl9WGfm1CS)}fr21-4Ec{xE8USAx@e_Ni&3F6J{lS?9vHkitU8T3h7m>)kiP zGR?XYg9_(q~E&QAFjRUli+ci2Y;7MDHu_zssFY+_-jM z6%2k*zv&BWZ%!MYrn|gvc#ypn!+F_TOg3yQ5EzdD?~X|(gBq4RjoQYnq*KIs zyRbg&=X!}=q%GWyVR2}n_(v<@nR)hK?k#n0487rwm6d{)-lt7iTOc=4Ah#xve*Q&k z({6kkbNVA7&x)JJ{-%8MUwM#)7v)LLmidy~l5iM&y4FsKkn3QmeEChkN)08Kn+ZR@8NsrmWQklX7M?PgRYVV`|9KGUj zrWT0{OrYZl! za=UbAvW-2GC@QuXyR=7Du@G?q*h$dnSwSKV)NuZB86$&?)Cv)pI*ps_ zRi4qJ{dY2v*RwW)Bpp4Mfd_JhEA}&7cdhTZ3qd*gZz6l)Ksz~Z_=-hsn@ouWT zaM~@(2`zj7zFsBo;V-??rL}oYbBvhrmw3U^)H3Ruce^Y>+1gt?<}vQ<>#{MRJ4Dv! zIkcZu*fW#|t-HYcEkEt=V-bdNmCOpXfhBechsFI#f<*#My{dnSPa!Zo3YKeGnmc(y zW7`Qch4<8ILH4*B8_m(&t{;2|LlmyUgU0%q=cnL4+CT>M_j>=gTr6q(!zqdv-^?66 zO-H>1-e;FX|g8pBMvfj_eInBwGyk1e9 zcvC}-g#}TU@CyYhzHHZY)Qd!nJWbV-R9^~U*E1yCS#O&+p4fW6qY&y$J__ZT<4VhM zOk>&j56h54Ly1Z4Drt91^%}id_l3DOBBIq(==F7gF|(YDK;&uq6*Fci5dt20jCs zKo45_bt^1>XkjZ|8zjk(E&lmV%+?U{E!JE0Y4YEVn@cK}I5t)uCK>upYJtjY-0Q$u zE3ts=g=?-N`9jAxapBb$EbLEWr=^_};(})H%aI)3EZV6;!AjH+vJg%6&JD3I;HgkzoE*L8X}Oh! zeil{Ynl?oZklrnsQe*GxR)gNE+AvfpouY+rX2DOi_<`#||JuMI96fET(DWQaqP2li zZ2yQm({f+*A69sG+4EhW4Dx<)eg%*$GpSaumwsh5M(61}!#A8(>#541;CwQ}kfnn) zWtBs>u}q1cceaknejE(qOhWgkrwn0*cyTR?A)&M^Am#S-C@eMCMbuhc6>1`;=CNOLdO^f$OnsBlrhGd$z| zBfwjO{r`bc<%1|HT2lH6+%xpezr`k02@s(0$rD8dNoCKYVt|7tH;~i8Jvts_avCE0 z@DAh>g~Z4nh8xLu$|*S$_1(=~MKTe5B;YDNsfe=2c zxxadS22yB2gxQ;FiQxZ-LWBl~2?(ot=nIvRek-+3#YEDtzul*rj@>OKMlgSD)Z~pB zx$ED_9N}Ny)Ag|e$>A&qr3$}pBQ(}JvCU0P)}GdsnEQd z$?fyngPLzfI0&^znrM5I)YP2%SdxGd$dScP{)YtyFv@^moh&$Q>7ylQJz?(DMm&!} z-Jt;c4pb^XKJK>UVXVI&D@H)vHcRsGA`?W{$YGqTG5CTGI2UK!==$_~mo6gl#vm1*eBXQjl?p%ms5vY037U{H-R*wfV7O zMYaIhVP4|%kTa3YcLp}bRD;pjznKK3xBY@RTc3&VY`zT`Fvc|AfQ&I>0LpP>f$PXe=m^mitX#tCdu2&fs_7QlL)7`-#9oK&mz{}?9o4XR zS~~66SGwEpcZTr017$2*68Rg{$#lo{I)H`aIP3yrEa6uH5RMEr&aE^(5Dme#u0;va z7>=?55m?7O2)R7_?NbDvu|iIxMnGoQ@@GKT-lJ-Tl~nS9Cg z5(L_=p{q$)*#!-dalWU6LdSrV`>Z?5q_qqvsX(|S>i=JOb)Sygs{?W9cgJ^f?g^6?|9Ka{3A8Ttn8a18Y&2jDE@*UE?@9EZ6onz{^~Syh!miZoiF*p_JS{@>laL7@+IlQbb40=L-;da~67i;!}5@_oyh zmzWjb3Sg-oG=xX+l+M)DDcp`ZQd%G`jggRzIuvMQ*)vOow}~xEvhv?Kjdkt3|`qA&2gr~>VOr?GOeNDN{f+&Fx%d$AxqH+T@bkZ86Gp4wB zjME3u6NbHYhq}K8TXNKk`~$5Gn{FPrhKxT*%H-X=^uS|{pdw*pJWk%H+GQ?%DB>+p zHjt-z@eoK=7DS&|V;tti{(gi%1@;)(=gYG|Ktvu7gF>KB-i}bP%Scg!4__Zt-l-CS z6xtf`wnJedhGlgX(@Rm;>$*fgyHYJeQnRM187?H;bHgQFd*)*HwKQ3vRM;#=9#^d* z!-rM{HWG_pC{e(GOf?8{d>Xk}u}XcEY2NE}Wm~2iv%Yvz9csALf|vwaW=5JG%TRoir=b2|X`Iq>KvTJzWUDH#;J)3p zb^rJeR(Fw+;CmXX1sNE8@C2D~y5+*@ccsZwXd0HJP-Q=W4tTR}Z0duOm!J;|iH7K* zT5f}CFodec#{TZQUl?X&sG2wMc#DcBzH|S|lcylX<4beY^{T`ig?=$Iy7~6cXPH?k zj$%ePMb9Fr?f2CBgW6Y3BClulWGX3~JK)rD)YOJ+PMb7}f~B~InIavd`H~8rnaw(P zyBfJ+3oKo5WUc2O9G!3}-lWC|4j6v&PKY*rSQL}^Bt5SgiPsR^&3fjnXJ_+FQjB&| zvu;9#8gv3=39Jlg&q`Of#i^NVJjmqF^PY*vnBk>-NPF^Cq{pk(a3V)dA?s73cc z?9){^Pqy=6M^g{n>Tj}`g%jL#zq7+x9-Sdsf2cZpoPWIA-l3edeM+B%tf?!!FQpCM0MzJ4@s($D z)-yfcOE42@xZaK?X zR8I<-(O1|9hCmyun1sxt=f7}|&scpZb~B!Dly~T6YB^3~8}VLg-ps@KPO}SW6lcjw z$Q9aUODqDUoz_PJk^rIc{b1lDBW>!0B5(j=QZ(q4Ec8@XvH?TLAmAuBJKl$9W*+Rr zNZ;%YUhp^_3g>MW{6o)%bsF}J8~N$St754MxCKI|~ zO?|E&IE1RaJ-U9FWyw;u%VOIey@S5@VUA$gC|(O`gsd|~iH!0xjrEZxVbE26cp0n(V`@wSS zf%And!e0zcQYm@?aj?f(t#jACsweJE z2n$gGAs7D*zPHLNx^6H`8y&)aq~42LjU7m@{jZlXOnol%&}GkJZ3KLd8?|}2{crUe z__sO-H>L+#>__~Er5lU<2O)%8L7=~4b{=ipF0RMn*O_YkdZqu}P?9&~3WqA|;ShDp z_a9a#`-u&Xjj(^@mip4G+R}xAyiagLB}&%#*9n;6gNvcl2w(aY+Sy#Re^REaU-*bB z`*KpZz&m)!b zLj=S_kiBFE+2;fxGxl*>qKU*fz`H^=(p3tOi}XDllc#~svKg7>4Rj3$^#xK5zO1C( zE)npl8ovI$@e%gFSV&_6PaUA(nI271otgIHlTCsxzW4RtmydO^&pNWX37=7>Kanb{ zg(&MIQko#twX@;-0osREomQLKR80u3qn7-OCX6(vR z%k<{Satz8rXfE|Hb%FcLh}M(bNm=iBnEPj663T-qJtxM-7)N*&>aVb^9=$w`_z%nV zQ4ziC^oP~bR#`UcwPUifWUWYqh%;W|+>{z#F#&~+l@|t?SfI9#u(>mseE2PL^NsyId7ma9A=w6Anl}o zr8I%%@Jblp*4Kw}_;|GtK>$4H6#y`q135eIU5|_Eke(x&6J_ zG!g3y;UQ|j!g%^J+)v@#_Zz};iFki2r88n}InkS3R&di!XM6_R@%ze{OJK!-ZHFUl z&SSJZ#GHB>&r4iT*=-oe7Np%ak#cE#X!A0)VuSd*9c*eC58YTMDQxHI0)N&monK>L+PJXY%9L|2(!M2KAG_OrdAJ-{$%ieoMLgr3G z&wBnhfS++n%2~iDuBZE0Ad1F|sMYP^4#2OB)^?k5f)JfhQKfCj@ zcL1xamm3hg=zm?P&_>fLRO1n%UOifpPw&zaAb9QZ0`REz|EK*|xy6a*2=$r{$Jh1$ zo6HV0A7j;lI(6N6K7-Q)_w?U8zr;0TQCrjgDnh;r_B3MoG{6cpG?1zfAUhy4ghhBj zwz^reksb(Eq#kIF1!jVBQ7|Q7lS07VMASI&y+rE6DvloS)9O2Xu(Oc&%I6MtpXYA^ z{s8o`7VHyee8}XfAWLHe*ty{I$%pHW^k5FN*Nz+LG}kVYevo~mofiWjxP!ieOwdEQ zYy`kUB+u{-7r?H4@44B3kPra3hY8c@R{=M~eNJ&iW}Y=jdc_;VoyW*~D;c#6%s$3t zw+vl?U(>9XE(5T%HSu7}aGV_gkBVfX$y{83aOK-nFOTIg?sNSOJ~Ts7q_m1?LdHB7 z2g*-fvJiL#GMbwRy^!J3n>P=l@Mi;3lhrK921pY)6^6zE#1^7u0%{bLbFfjSAWss~ zl;hHA2C2`49DCZx*Zbd7h0A~S)hlAQ`ZQ+VO4O82@Xty6&HpGm>!_ywKMs%XW=MCA zP>_`FZZ^6@YNT{GOgg2cySqdX7>&{$k_rL>N=bZw_jk_z-r3IXz5Bf5^*rGsl;F_- z8e84x=2hT>>8YKHSjn7sP(p`7g{;c6Pf;jq32)d6{XL+JbgO@-&tFb(FMr6q~ER?((x$XHVC^!;wQtStyG0;B7qc zDOTZNl_w6Pgvs&q@{#hUH`Int+Ho{`6Yu(AqsorOxzO+?u!&n}s3@hL;*serY5kSD z(w1pp(c!UdLSWE_K_lmrlZCaTUohZS;nn*I9HV&7; z?adV5(7?1yi}b+)jW&wR<^)Z|@o$Ubn?dzgTuRb9uf7v_2&{=m9!C3Au+m9|{>m1t zc03h00XeHfm+&{qJa@!i++Sbl{1>YnQJcuG=?!_NBmB0CfmdAW2ojEAaHOuCBJd*Y9xI%PgqQ#JwwOR>*6fUY+2-@D3OGf2qwb@nmv0Kt8UbQaXaP)V&+VT6U9g&kq<8g9z zmNDWj`wNd*KOT%xH*wu7&DE)uD$LXw`HW>&3;U(-CZ1sm6+-_yh6ftNYwPq=#bF;> zl*|>}uqeYh2V6pa7om7lBG(iOTW4W?6#}dLc7^c*Xd&6m`UE z4ZRo{#i3&RH4A~gO!(giak34@>SMU;Cb9ASBA`9!ik)jj}3qP@~okzmUVJ6 zSj*zi(k%dW{Lm}^owe$Jpll%4N>Lf0kaxBo(|ECwf+#vv*>M17q)PCim#$YoGXMSu z;@Nml$Bf?j-pxRorihB+OiE9)Q_l;%@I>aH2V0jzMbOO!pgWqI;amiA6p;1_J*XdL zowbZO%AZT5$y@NnJwEiay5?Y2H;_OpUf69ixdSH8zf~!h;xDRfUPWoB4?Qj&)-~~L zKWWVro#^xX%j+=G?KS;jcaSsF!rxatFiG@oszN403_WFV=)NHm3x!0TNn`(Q^~c`x=}9{Y9}eHQ7<@fBH)ad68Js0#s{y`co)e-1mM3_tvRxkgA(HApjC0&jZ|kzM_(B%&f}s-8iv`aO4RKfDv=E=d<+M9`Ulz zSfkjIetqyp+pC(3WW9dNxj<=(z`$1TP1tZJ_vv9Anh*^x^&&wFj(J2Y>QjFLC z_+eXS5iRbaA1V^>TlLA84;B|+74LZ8gwak7?H#FQm3JC_Pvw4{9+Fyk8+O%twFk-O z+d*T9vjMh7v=q6_kILvXJP9ix;o%oqi-x;WQwedz8umjLad76%(ezpki00<)o=2WoAkcEsfb;1jT%ads=93JZZ;9K5jBzPd8w zk%bFhQR%(CwgQFAZdbiM28w#WQZvd1l5_n9m5c?}yd@=oo{y2lm?_}Q#j?B>z&u}C z`u-WFp;(=nF(bUvDi#Ea30-0Kf3%Qj;~??$Qd;@>ukI6@5CyxvMF+b6ll`67Ym`hl z)pdsJp)J##OfC02$uQa^Q*k9DZPtQ{+`CcbAp)l~emmBk?k>oGY>1ni0E1mkcYy#kP@ho5$Z3qI#y}rEVP=I7ebR z-XVh3!t(jsutYRm9I%c|U+T#Q;B491GOK{>-P_*}-=t-n9+CKxaL#b(rf6pQu;+0& z)~KMi9N^TJcCFTS{qfq5w^5Aide(EkFb}BpOX$gkue`@a(Y~Ey=wKdLALC#b6@KYk zOpay!fpEqJ_nhGWTStzm2%r(61nD}_CAu||R)Tb!Gz1fMa3Pxh`llT40BwbGAC4aY z##6zH-k^q_vd(_u&R_q>XAD;^)b^c0n>xIgYAJnSxA1ouv5?hjLDUYUDQ!XxjZGur z7Wu5-2G}XfkI4KBohG(uZA?Q&e=RmV13?(sL8((#zmspI&Pn@C?eMN-#4LDWmq>WU zjqf)HZYx(z%1AM)lXk1}XV(#@MRg7mTk1cWbak?D7KPSVMAKg1``6@tkFhXMq99Im zhCP~{#&PQ*hxU00%EEi;hu>vkSy?^!4^skPe4K`sBHnH6Zql<<2~DA?+O2b4mkG=& zJrSX(9jK}}t5zlRw?L+q$y#`yr!Xo%Tp1%9TrQ5kk#?YDLytst!g@cGTuwZn-nHiD zFr)msxtSo1PVi?&psb>NQ0V!tW5}#{fyF%GROKZlKZa|DjTZQOA3-aNb&9wFMk%&8 z0L4O_bCo*Crq<@b-yKn{{?6qK2F^cEH3;XpdFL$>H;cu20qo=)cnWYwoo7=jyX)TB zs^LRDc-8Vku90R~klAO-y4o6(mC!+(hDfI_c|_w6%~(iRQs6EO>%Qzq+sFKEZ)(@lU`j?y+3Ns&h-0IlX z?LM2dbuPSH&HI`_O`Vr6Pxd%Ql}(aV7Cc-n3whbV8qDCA6#EtXr??@P7uwhJth1w+ z?g1(~s^CwGQGzc=YcFrL52rv1|r^Dce-886i*EJ%! z)M0RCHi!acQ}Mwau5mAQAHV<_=(Szrs(w@bIeKVA{U%=8BCgI;J#L@M$Gu6bR*LRx z!XK??Tc5`VjlnWly;*=Tn_5LIfE^?I9Rc=OBjgZ%%bD~CFiuA zZw>9h@{tI?5gLSg?07C*TUEeS>97_yjt6rD@}LF`beGU1HJy|`@;Ak4GD^VY=kyI6 z(Wva##LRUyUg7*`YM9E;&rMCjatRC2>z)B>j>>YzDK;1%bB?#yKt_bXm86gP0;HwzV zA5d%P!|a5xtamLx(ijHDGAW@JraZ31z-sBX^$0hJfu}W)$bz!R#Ew-27F`>Ho$Y;& zcl8If`@rhw)($91ihfvQKQb^HWm!Hi9PrsY*u0so-Y%N-W+xfhO%M``Mt(Kfs^=kFR<9E@|#WekVXQ_r1v z_CuK>Xyj=o7+@4Lex^L21{gwy<&&n42{Cyyd3%)0&U*in?OK1Tj}d0GIajGe;hGM~ z(28mU2nR;zdVKs;xGP>LztSzpg&ON!k8G!V$z-@T1`}~@ovQx`JiYxzUjwQp*Ke+x zqLAQP`@?!Q;=-7wy0KUF-6NKZ_vye3hg6jlcQ%;A9p1aEV)MeY+IHll)YFyV7HMhZ zfCN6mz0wKO0hIST6pa;4H(k*2kBNvN%>L&XJeipClIN3QN&;%h=SYuYHcZWU6N77H z%UrW%JA@yaFHRQ zW`kswXl+k=VswrD4WfNS6AF93>$L>7T!~#y4=NNjeKVa5-?vhG^sxz@Kr13Wwdd-Z$2EoW!=aZB za}sq`jwROfXG{?W`Z*w+%ey46DE3S8GZf}R(8UHuMKgi#;nc-o4%mFfL8zv2CmAx2 z)clEhmwZ>}_(hWdbb~aT4siATbwybR{UImv3s_>{m8}3t?E@jpQQ@bL4>pZIwDvyk zjDej$eV!{u8XCMqjRMXhb_v{iGIZ5WW;#(z@A5S**6JG<1+_Qx^8N$8y0?|Pm2o|3Efv;%$61wvP|^-s$VOZvk1kn7M_GGx zir$;F$$T+~T*_$pILww>f;4`?H;M&4v6r>T934tMng8`N3G+U2V+(X07HD}v z^O|DmnhXAMol=|Kp`;;{Y3-}UUX_A6H5$ilc?ffNjWN&3#fu(tZPc>B;8yFHy5sfJ zb;XkCD9B=a0op4LP8*-z1T6tA4@u^7EQ|C#gY0(cv74c zh(YHAgp7EX-ik-+XwP-!6D3M7&^xR?hU~XWjAMSN3YP-%EZE2)FwWj+ZlYOujEkcH#qqU>I;O^jf22&|?PG4voyZKzuEtoAUY5-H)jIFQ10TLMGcEzzj~F?F*QHZaTc3Jb3Kw!*qwivPc9V z{;;vn%6WNwT^)}n$9Y9U4^c`e z?x(PTXP7zmhLWlz);P6f@BLR4+^b|t6F0d5r_bbR14jka5wetG{SV<%(!)PzOuNjO z{>~^{qQvmhLysd&Y5aB$5$zj)f9)c=gRv^_YM0|T)tw!F$b@{^yA@1yXq`ukf9vsAU{ zi}g)HG8ww^c|1u7n^+U4NYyiZ>?~pqb(Kq)6Sd~f&Tf)b@?CbJZKhNHYrA<|RMqif zsJjEs1c3${_pfwySJMx6$)Te95rw8*xRa{{&;|+=iz_6;T z6d)0@oDU>*S(BrJp<`jb06>-SuCDVJqMJ}5?@6>So}qmS=m@+AabhD)wTU}!kuVEO zz#+Y2=+>f8Xk4RFVC%}p^x}giU1v|2kvt{}tP%#ZLd9~-SsQMFVJgOK?*x&iS7zd1F0#W3f&r?#A*{!@1S7-eV{n0w(6N0q_C???T z0isS)14WwJ4VriehIL{ruO(n(zxOa@GveJ}R;K$%Zc}fRrYA)z4Is0C;Eq~(>IB~U z7DN&5HfWgF;<$3k3@m#*n0Y|#G3x$JdC@l8lY=m@1zep(p?ur52`E-r|Hs*zGR`=( zz&R>`yE8`pl^{9rPyU%$N6xb5llR8P49_T~DiIZC){Q&EwZ}RajypW;h>Nv(p^|v$ zRAB*qBSl-4=;05f;CO(Xr~kF`+}XRJcWtdndgLG-!hu7Pd*xT<@KqF*ORZYYFj|Be z%?{W-tpWhaCVk?EZY0G*mOQvWIlCZwGw*j{NNs2T6|i>=oeBVU8w1}WO>V^Z>Si#9 z0is&~^@9zd&^Xtq&?H<0pjS93zps$6+2C(L`K_n5vDaudbs3Up(_p}L*9(Z|Je`wS z4Z*IF1318WnsAG7#0@ZD92FaeT!1|xfeoR`%nePXQcQm;x%@Q0?LK<8i|;lK1(0kI z)NV`q30_oUm>)BhI7h8_Ao<)|$qC|S`JwUTZbf!`F^jAQ%O5#h)l9xqE~Fr}$^na_ zUY|~|1<)e6YjO^5RWYd_^lDrsJqZt>+gLTQiS1YP(g`PulL!9IL1_qLzYDNvg%$2t zAOnh;74*A~mlpJ=a3iD((RnnG#1FgYSYy?>E@s@T;jk zM{F~c)knem1zeaa7Xx0)9&I_D6(m>t687WT%j)f=W@VL{~6Mj&yNulZAJDs}lsgE5e+0K3uI!t8V{X^8YCcL_nNQDwk4?cGWpv zKE5Ymo#0IK&8H*U4euDhg+&pr-^Z{a0UWH(KrLquRQ3r7ZdIB*5n)CFfSwrE`jlAS zgTmDQIh#U26>f|bjFwYS9)oU{GdR|ce2eMXFci%{fCFi}a3j8!a#9ku) zm#(@4iSMVI7RtFR-y-ek7J6zNogbaJMG$f!%$E-A4ekP4{zl39R%(#>V`7THt25nB z;z1;3V5k41?H>*Fus4 znruQjO6lvUT_BaJZusr-hXIjYIf3MK0MS-(FV@!Y=pBOL?+gAi1n!tcRq<2PjlZs1pm3A>$e5jRqiJ35 zHOtd7@cek5Y3U@-#IxuJ}tN zQ378e{|dg5PCQ7TUO>=bd1AcVYqjwhSj6hMHua898B=a8;|HkGoLT@9>TrJ~q=2h^ zU%hvrHK9R=se5-?90kyVBo0jex@nGWE&Z33Ba%mK2`NdkKs?|!KW1~tMq3uYL|1sf=d?p`JghSB6 z`R#zHUqTm&(Pv`+*_<-%E@0{`eA3COu|WKZc2>#dVuCbGyel|@_mZfheaZpoAe|TO z8>N}T?=isBRCJrGr8(gbZ1GZq?rC=2WK#(i9FMn+U^6iiWX;&vgQp=lCWgTB7zqQ* zZ+HTYhYx9rC5%2L#|RpOG#OAb>&jCb!te^;m%XfkAC{Gwlwf@>{v=xBq~|9NTz2(! zXbQMQ!BD?iLkH$4z-pa$o&`|!JQDt8{<5pZQ;x44{Nq?K#Lpt#-btF&*Za4cczJi|+7xrt3F^*=0ao@|F zoac~T{VV<5^L!n@HLy7O;|+W)F{ffuK{nDKMeo`b>*I#lNtdF7lU87v$bNF$)R;#vJkcuJrJu0n4l3)4toT zT{buRU3e9-2qXH<&~HfKVlqqYBDi>2+@62u&b!~&MqmHBwzpZRnq_zAReTjEw+R{d zl;+S};O%b>@_g&h-hUn(=ge0Xl#gY;FeQmtC1U+kC~6+)xM^MeQtK_RcvP`GPse`p zQtKQdktvRf&vn=4 zA!?He4mA>at<8a@3CN7TT7aEWYE>2GUD>G%uz$A3xWt=zO14x`A49@|^O)p+T_bCsOuC#%BTWP|)Xs_;izW+jrbIy4Qwo>x8 zvC+Q>oMN^B?19PuK)kK&@Q=hcXfvd&IU+Bd+2UjGh&^jKQtBo`nZ|BRA!2xrqh!47 z;#+=dX=jq`i!_N|lV_J79+Y<;KWYrP^CV3)Dk$eObtcreyVq`M=pAd~DDlXn-GmGs zh4PziY3Vx*6@JV2-*|1NR;ndskI?67L)Bv(e?#(+oU$f1e2+*%c0TI?WKXm`|7})q3s9_37F$Cnu5S4ig$QFrX2EnR*drSr7dGmsp2P!UFhF{ zH*RQB9)%rj2q~O=0{srkNzJ#mPsn18S(sU0s%1*Qcp3L(hFnrF%PCJfziwXId{ybP zm7z8*d?Kz7wg@2U+#a!M@UY%-cg5}IAo#iptwbyH8EgddeCrn@b+XDj5OG7)Zrn)m z|5qr`pO}!tJz!92PoyIZcKkVZ&&lxl$S$wKXBPT34 zqyJw2KO0!vV`mHZDwNPy`vXOuH}DNKFz6Y7-I#+Fl91giy&cqVn&M-vGwl2OlKzY> z9g}qeNg0FL@xZbhYRtSGHG8egjg^zmB2B>;O8BX}Z6TeO30*)p2-kwYGv_4nAOTh! zSsqfocq_)rPA$2r-lx|$a-zShL)q_tA==WZ@UjA3K7{z=HrE{&?w3LRF68W`EB0G= zPfFS&(Ci$*PToqZwAKsANWs=_GA}PFW;nQHcj$DQgCGKF=D0!j8M2;DgRv*& zU-#Cnj}}_|9f78{*GOv+tWcB<`M%j%bz@Vvr0BA0(~vCfXT1S-Y#`A3@q1Xs%EG4? z4%>yxQM86%d8@^R9ai0o6~>bD^q&6NTZ0#*rX81}WgHD{xFTy8R?LVf`)vD4ijI%i$7**RhowitfYS!bGXzOvBQmp2v zhi2(JbL&5?PCSq@TzTl#tywr-m2GT5xVZo?8i|Ew3>P3YxxN|>Ohe)auaQvxVI+!9 zxixi1RPa`PWA&1Eld6y3`Ba}YUFJTVBwBRcs-jZ-M=Qgn&g9r@&C7e7>O(eKJR~A) zKbV!JqU{gcO!Ov;<8uSwNqq+-)a54U$u;R!yM4#fak^+B7a8|!;y!~gj>m=YPUP&4 z`IBAg=qFzT_{r4LlghWX{WQDiCB9QWdKVY4h=``5%ESTq+ZBg`!uh?i;3|vjuSpZ^ zIaihrkoSWZ$=1eM!AM%y8~*aYT<2P{`MuQcpCRW`ly!M!jgUEK#9l*nCFFa@uZ0b; z2f8bWvQ9P`vd0e_s`)9E2<_Dm4c}`(nJP1|f_~vzT=_Y{UCsS}KgYR68e06$s)M*o zck5G${63T?*e5rWXZQ zdWoB zEZ(gILx+Sa&sr{iB|(P5;pY99u#q5l#s5H3t96PPoS{s+762D(!EUt(trN1wL$k+R z2JhMcdlPFt2t)R1u4~YKHgYCxr#{iO66MKf4Xpa$2TJ46ObK>Wbk`nnjBq zRJB;usS-4cCtv`t$7QdsbFnRdk(Z0?n_VsstIJ(|Uq3ApPHJmkX#||t#^;)HFuTXsC~l;WpFOh? zyyvcaHHO+!nqq(}688;^k+^L{iGvxAwja^1irq)OH$lqgAm5=J(%dnBt)(HF%p>7x z@I#HjeSCTojCkz292#tUA~h`dr>3I7^8Tg#v*7~|K9%eGYZ>*yolmK5geRJzWA~!# zPVY4j-rs502r%Knbc+8nv^~Rw>z(%H*t+#vFv!zHPC~z}|4ynk#zfqHtvA5_QWaK~ zVK?`##HSRHW(*a@r&nN04oo5y5IF7I0<{Qow6rQSoc13o_6Xfyi=l@6DV6ua~xFjY{G;C#O^5Uk0LUVc)4usJV2{?@417+)szjKHF&g;(-MAUpn>NZ6 z$#r<8NtMu#dccY9X4u4MX>a(&eH*=I1YgU7+w%UeBUJ*b?ilxuE{2qK>Gq`|GN;Bu z(qombKNBa);=y)#vqf!}z7vqwI>HMUY-`c2rO#)nxD4w@p_Xmw_^K6fzT3pA-Y88*@3=(+YM$H^I z2be7*1JgAR#z|aa9z>;x)XjK|-UXm3hu0I<@{ijL+RKgm;(p=r25Itri=1qCs*($i zA7xW3;ezOiV=}3Y0P?4S>Mi070G-7aM9BPEq7!L|`@FopgfttUcKK!vgpkF17;UnK z;~74g$HgNF=HD#y_rFOR_*DQ+a-o0M)#i;Z{i)D*Gnnxq4LCaQJ7&Ygg`27^Cnb#! z{%+XVR){;SEN_7!~A z55kE8N~F)Co3&{&+7I)VyIS_rYhL5{rmfjZbZ&|AW|mqedyY$KJumDMeVmGJ0-j=~ z0tElqTR{JyZEj)pc4ks8qJFPdAh@AQ%yh6kG~;B-IL-_D>81V_%`==LFdUEcN4}@j zy}cl5UPvIX3X9U$T9iAbksC2;Qv=@wW@44WSV6FOK`TD{nB~+TdEcC**9s9-s2`Ke zXDM!{KZ_H-Bw&Bzuj)WL9TwcNhq-fMY!LNIUmO`w$755WOk6%oE0>-w=sPP?9bKoQ z8Y(^W0G$F^MKAjN%2#+=7j&Y56+dddc@+As5nZO42BB{H;4kAw&-OY7RwnY|{|}-M zMD0CBJSW>u^)DNkK3+l7D@0TAmW=YAikg@11O#|na3~rG`u{p?uf;o#F&Cq%NUD0@ zsCC-*Ffo+L(l)<;dOhDgAdSbJYNit$nkW6xuyQkC-&|a=4vQk}7vwi%O;z_e&4T@U zuzY*3PlBf}MLf|i$rIpq$-Ho9CRaTCx`jC%ZHDW)(@sfn_u#_^+2-EV5Syc7!DPGB zUyq;UL%-Ugn&~PsFAMH_`d}1(N{oc^Gy;~urFhHr$*V|BF;SIx0j=N`_v7`(f{M~C zqi!!L3ir@3GDF@mdb$GFt33(Tt%1CkjHq7?c$s-QLAXmlM~>vBwRk^o+cu7?vCNtD(U*FZRe3U(liwc3GwHGo9>8I16H533hvyDb zaf>$ji};_0leGuf-PcS)XQW;pPJicoa|J&u$_j;Q^Zjg*r)f{ud{_Yx1MWb(+BVNz z;k0i{(DAjbd7O6enAgfF&L$Z^)A^?P@39%OlmY)`1~;kse`wp26}65yQwV?WPtBI1?p(IOjL?beohafObguRm~wjMg5V!qPG+{ac^?G zC6V_Ok~FHU#t5$x^f}bBoXRCG6#PnY@%k-eo+F?17UB3LbuCrsPF1eVMhxeit}ri| z`1JJWBGQsLCi#Wkr-GISw*FprWfa3X8$3pM(i@R~t5oO?g~9A$n%dZdm{m6_w->{X zOs5vQ&HYPO$w9?Y34}>w6>n6Z$L%(4rW%;i*I~V0#%xxTM7oc2P4^5P?^$o>v*kjx z*d-C+T(UsUaK4|qzuCZ0$l-A1NC1EJM`m%`;^RnJLeiPp_y9>s^_`0Dh3Djti7p0_ z77Ts)KK)nbdH;IuVx$VN9la{F!<=cMn5NOe^$00NYV+hel&n9H__FNgl2Ws&N2*;H{R9sF{B~!0{ne0D!I(wxXU8C zAI-yoxPTRLFh6V-ZP(%&X-MB883qG8;-)&uM;P7a`?NWeeihkedDJi*9u~M5y7lOw zaxlhxW`>K)?k zJR|O{rB0QI3zl3OII4foF8wZjI52yjD|sV}1@9tq{|2`q05IH4fbz@F&$s@LKle#j z;Wr~N2wL=4_8(NjR=-!s$+d3Dv6DU7Y(v?FbuS}U;fp{fdwmsIy-pJovy~AJiEWq0 zyK-l^bN#@BCl06I)V|KNJ{G|KR}`Jn_SfF76{UuW0yGo4Nh*v%mrw!>Qm$Ju+L<~M z+=L|M2*lL|Kgu9i&yeB(OXY#KR=;v}IHBO)eKLEU)y#(N$VzNHbgt^e^2(b+zf1TP ziZ~RnpHMd6He?K_JPKQ236i%!-AIi{gf2D^LXNE70E>29U_f$l)F2G5gsg%dXrWHz zbfHmz1>T+h4m@ah<{o3F>r4Owbne&H44R&>Zol6^VY7U$1ckr%`Mv+)tf4n{OA#=9 zP{*C2@*DC!_}<&p_7SYE`~;%%ihh+`1kolsD3-xGeGBAux-v+eZ$hSSQ6*JoxJ_*} z&d{JlC*E2h4MHAD1$NfemC<==(x?i@eVe2yrUSrK72ElAu33HqdfoFtvfaMtRWjjqxwQ{9d>E>^8+`&Sr6?xX7r=t2aen0w+=eX-t+C;j z@rp_d10fLMSTJ;+hf}oJW~>4badngig7j0X&J1x4hLvX#fcYd)s+j3R>VTqT^L!1Y zSW;`_+|!V9q_Q1+A;}MEH}P7_)y2BX_;f$G$B{TqR zj7=>&U{67GPv(A8_yr_a(fr_S2dwX>ECFj}067)|3zG(V3LZ`7U)YNzFQKEwAS?>_ zmj}xb0c(h!Jd^vjM!|oe2|*69zV~42mB31e^DA!prAEbeB_%9G=v)JaZ==H=U*BuY z<;HV9gKywofwI#X-D&;%$#;(A=l>(f0-D7Qg$d?is*R91li&*qSrqqjO|C=c)KH_=_8~d}$OncqE?}r7McD$0{GxzB z?HX>D!n)g)^JK{Rs46!BTW_}lHQD?JI!M&{`j@gkTcv?HC$l_!mhl`QW%WxR?x%I& zk11xcI|bB{mZOco!vmK457b%B^qN%2o56J=^3Pfr)}KQnztY%3Ok(+dO*7xoHv!38 z`xY0rxD#qx{>va=|8)nfd7-C%dZ8-Xe|wdut(^fcMfm<13_Cg;EZ`EKJOQu7z%N(PKaI}BuCwNs>p?Y zP%Sr7`=h|0FtmBpnh;q`H)p3|T&+Gn6#UflA6InsY|I~Cxn^^o|hPvgdj>%2BIhr8O`gx35*v{V3w9Zt83uCdE z;wgMkC@kN-EmF@2sjt%i13!CIP-RaLJ?hf%rl-?DvumE){3EZ_$d)>OFbihV)Or>3 z8u2hN3;$I9+5J=Z(lxtNgNwdejK_`x(cS1k*M~nDh1mUj+h4hjma$1}lN3n>K_INF z>S;qJBL$~!MzSkW(od$TQcIFEB1i%;Jt_9$V>KTn>{1oO`R{K;6OJ5lu;95Ll3N3i zG6`KG4bjFtyPA=B3T9n4GSXU*9s|VXT_2DNKtq`REvlW9dE}ROZtRQw=Lr?wW#8=a z1E3sS_en=@XI;T?(k?&u;|iiRv;c;mRBob|g7#ThIrl-vJ?S>(RPq$RS{IAj27Uo) z>D_ zH2XlpT*p5beMDrc1N`zQDE+iWtpk@1Xb=q7(qPt#|H?cf;6UAjT zom%7QH(zZfva#f`rk^4j7A|Yf8<-8?&%-GA4GeY1dGL+cAm74RnW2MY+1TseXQMU3bD>=f<4f3nWAB;+W zpEGwvTw^i$Hz+g9Y+N6>(1KR!hT-l~xERj7eTYg{XHw8V^ALeU;?)@~@TAKFh)wpM8qAZbp zwZ?oPXA{Oc+8|R6-p#X=CDHIrtBA9$>c~30|FCaUgmSBPhh%g7MOJ{X;WO;cBf^!J z{VJ1qB6#%1(=jn>pS@7~6yt8-yC<5jp135Qesi0R52vZW3?B2T_8*Zd-QzPL>yqn9 z{ymqhjbJhOw3(-~6ChRe5M%OR<mp)-oE+^dqqxO+DhUBRNPn|W4 zIbY&z@!Ds4{r-J7FD$0Y7p!e7vlCUY|x%|b%X0OKy3FX@im8xfO z4wKkL?4!=!%hI#&e|2?L0UFtl9l?2F`1X(>xSvH$FN%5fJG$){D)k=bnf~b;o9t@J zvrfnkv4kq!CG4lN4Pb0`V$35*IQ4{`yzqMChcut;mxe*M$2ycCb2iwxTtJ7G@nd(F?d9Q(l@^fa zlB2S%N@Itoos(?NqAAPK(&o~pHXqjrg0n7&%}R7P&}K;JQ6z-Z%HGw!c@sK5v7nnF zbS3yTzV4+M?+5g<-(NBxbxX8cGbdte2)5(h*2x(Rv1sG z)nZ;%GoTM*d$7;kg>d5aRoIn@%rQkarNW8y{3jaU+Q7*v@?u@MaI*@^UTD(Q?Z5PQ}WtGSFSo_z7_28J7xwGMwNtEi*O$<|NcVPYI4^R>Z|A*=7QWv6tgn z?HaS(|9n>%y1RKN=%XXCx*lD^)iOudSWMn`KXK*X0(3bEb?{Thv$~zC9jdO!dRE^I z-9upHaRNfRvo>_vQ~7!9%nqI}dKH&L_}*nwXTUTkfD%?5_IX(3WsEnjSL=`cBup9M z`$Krc9~M{WAYs;E9QZ(rYyr2=XT9H}E`|CQ_(`4J;SR7)(GY|WU8G;UKmw|iUpKvrHhctBt8S_lQpRZH z`0?@AMpAPb;kP?jsKGKd>>W;YkN}F~Ztz%y6r)*h0jn-~tR(1n3a(?4=x8;Y{7bkaQ{h?BPR*mG#^sEr7f8KZ38|jaL>g}XMW$LX+sYs!f(-J$Lk7Z? zu$K<^h|F+*Zt{j`DHQdQ*Lh>@;XO}vLKXzN#@MKfCLX;6Q|r*ri*Wz!1?hE+SLkPA zmS~S?Jt=FuLfRL4q$Qx02gBbhBvgiCe^PphHzUm`-6z|BYv6d8N6-<{$cIKXejOU{ z+lgFqiNkV0_jd(6E_JTg`?oeZo-*x$fC>^?NxVbafn^nFQzt3l+d$OG#4Sm|o_6KA z-H-r1qvL{B?MD#)9dPvdZINqJpOJQ_Ok6d_oJE3rD{;K$`*2bFA1L}!kkQ{4kU+qm zo6Psg(Hc~cuyjmdi69nI!TKe1&Ptr5TNLc%;fT54ugDL(6MjVD)(U@zgk`aXzKQsY zhG=I|L+z;2{R156z{V#ftml^fZ^DLlp+XAB$8|5g0gL?_OIF}01>fRxH*sWdt9lm7 za`{5#PKfWssKJm9sjS)02LB}VK?Z_Ov}<9z#ALw>tek+R$)oxGd3)cK*vD#A_nWw6 zJ2W@S)p-iI@a7opmuZa-A+2bXvHWIm)xD?_oP^+GJ}S%1iD05EtzJp~ecV~ozi!yl z_V##1>cA4`ZpLlU^O16W4tHsxw0rj&5i#)2LBfn zwqm50{Ywfq&_(dGwv3a;s~X;mYnS1idT&%u@|yG740Vyi_E|>^+&&)QW~3~tR`Qc* z{eI4mk{7>9d-mOOmxX7K_)2br_8&l>ljK2~1GVp19{z8nCb7YJ~i&XZAINrB;Qt#^SW>^wJV@sGmeJ z9ilEtvG28?Bum$O@S)k<@TB&+O-Z?0l^j?U&dUC|o|IfdEl>k+JBS$x@76EccKA+U zEf%aTYT2hVgG1L6Uw(pfPOn@EO#9zz4X}|kLcB#Qe6!RNYl*IehDiyV4Y^ z8V?h`D!F0V5Xl~;A5E@;3s*q*gLF+%DR zD0qSGim)%u-8ji@ZFaSB1cVxN9EaOKFSD6ATukf&!HEx6OkURRY3Gp4iuSv#Dylm4aq2ebhx21fc1E32C@f~NwtyB?Qbfby72dp~ z`1yaUf|U!St=lYdEZ&{9+7R_8;UoLSQ2X-0w$41e=BYHxv2Ss3CyHXiAsDC}KGOdH zH!6L+grRM*$V1d@WRCJBk|KDY*YB9dH08!tkZW_9Zh(yljuT34)cvL-<(XLHLB!2F zDO_5KcW~-eITc>yk@mTG47!|fZH#HadCyc9);vC=YW!~>m&GU>tSGzkjGv2_?PXJy zIWU9PFJhVtNsYP}k~m+}P&Xtmz@TO|*>WnM7Hj&7-|~j$BLhOm)K;iqM_xew*DT8% zoJvdlzvmn8FUH?eA)=7(kJE4E?!2(t3~lXymLHoonv_nrW6*fV*)?&$bU$y8`8av7 zBA%IT1XoS#xjZ%?uST!=I0}bc*rDYh4x*HC%dgSX04X5`bf_AaF+#0T>GMAkT78-? z^5oc{;j>~2%f%z9uLTNN{{XB1020NCTlHE4J-U^YnglcekCqx^YwR@3ONe-o)ipdr z?6vm)0F83Uwa8jka_aX_YP70~Y!Aw>{;p()9Hv&5a@oxqJfWD@fcSq*2&FqXBjocj zP#u^wgTIf_i79wD<|m!oTD_24uuEv<;EJS@{5I$Oyjw7*J9c=n(0UK$cjOh#+)Ju? zhM!j?$}P=VnxprB6?iW!piBny5?KlId~;qbO>84Z44^0;GadVa(I0Kw)^qq~G< zAXpvOkTlB)WV*Okj_oDpvK``eZ-B-8vAXi)pUaZqPl{H?<^}noH?-7Z6>Ak{KO+89FO3Rh3lyUlno!G~@yZ**Vla znGdB6#k(wm7Oa2}MSsZNtCQhsSZ>+ACh7zYhNZ@vcI0=-G-Rn-%0( z(R=h6SS~?i+HIT~R9{=T-bPxbM)mg0xJQ6lb(u08r-nSgi7d5-ZAwz=3o+cBfCfg~ ziII#a$>p(VW0q#GAZoP#06nuPVW$Y{Z)D!-qdHucaS+WQ37VM8 zvPSAfDrgv2`LipA+)gTH{#Np~k)}8{ydLNdAz6VuzsTj&{cqdLL}{eRmi28~JEQkGOYABA!Khk~$x331U8Tyn;J+m8220-?>4{fij;L=(~S5D-mx|@|}Wd zx>c>REdYs06|Uq}+P~!-z?rh_v5E<`7k#?;Wo@ncAQQ;^h{anG(wmxiU{_EdvQ2&Q zR_Nos2W%>(bqhMzW~LB=l&U$BkJF|WD6k1_hWMc@I?QU!uM;ZE5u3b6S67 zM;eHMF3>+Mzh$`cs{a70nG=m8ChYG<^VXX^uxaiQc+eMPN>}WMQ}Lt!0IisE#9fRt zj;ZWg#+=L$T}A2|kP8JQf3l`m;gH+n#SoWP>`nhKdQ6V2;eR(u247;d2IVWHFw)A|F^~Nmy@ApN~S>Npb>Fa?n_M@mr1;3acxU zYf)Xc#ZWhKTIxl8Rw6>m!AM{>`&E%g*?b_XU>4HG(U(tv?!?teG(Tv!C-K0Ps@GPX zpX<>;T^DpmQfg0MO}e9htC1;F)x6g8UL}>BO)9tdfc>Oz+6u=7EwWo(e#=68d2c~@ zrKnj2PXa#E{{XA}*<9jC*|!{kJG~7VBt@1c4vs3NO+g2^If6wyAZ<}2sHh)7Juyng zrAQlMt(fW5)8DAV#cJ^d+< zWx$;_0i92E+Mf8Ov{sGFtw%$>W6 zdydB6VJDs=sF;_=*6Cm`->+Uh6sxbnDfym=ZsIvvwqZK`d z)xbhmCBh$uH7K4Pcfm^7mA=Sr@+obEs6!Cc>}*fyg={-;;Vg**sGc<_bKh$6Fne>!1R zzXfQbz3MxB@l~ZrBZ~5V*cG)c$kK}4>VM)m6-~nuJw_n(6x<9|PDshvu?#)UKMV@I zMp)IrQa9Va6<8FxETD>Q*Z6nBt+WC`#f3*xLrQ(vs>2BCtOb6_uU~3ns{|r5P#CxJ z_QhLuX|`3^o}Fomx>y=j{W#=NsL9K)~4 zjNPyuR>J1fh>4j`E;Oww#QZDi{{WNwS$j)G?k;9YW42xgV#;Xz$)y#3*TQhBvRh9h zNger(giYcI>#Zmt~|FN26T?4w%e}QZ3HAKraU2pu`x#PCyo{=-i4(ys+3hRwNDU!D*pgC z9?Ov_2(3mK%lb^>GfI{nHvN_ToLL}lINC)d%NsOejQ%J6kL_~9N|nWXeR>R!6UG3l zGyE$`{{SR?J|E`70}_VRuVj)53`-mEATbpc9lHMjE=dhs>vP>KQO+0w1$cZe-|>yQ zg#K(Qlvw#?h1Ay~jL59c)u1Exeh>HKVMU?t^y(Apz{?T^B2h+QTjJzDm#-c_vxO-> zq-K%`?wtw}c&Ei)Kz~2^M;l>D2B8#JN*01XM4l(TJTNl}MxCU+^rkyH7v-|#TV8{q zeqP+%vRqv&aZRWwJ}%V$Y%OK&nl7IurMjay4^5N`f#Z=X0%9gu{sohRbt+U-<~d|p z6sYNumvm}6%U#rQVc+6EWw*;(Nn@9~O}>BohDwV}FhF6w1Byi#*H6W?`D(c@0BOlsdiyA^nBzGcyQi$Pm z@w%$Au^@arznA@Nhz*xYS9%59vx~_D&mmeK6=6fsD_T?hoSiY^9Fca`cX6^_G{^W@8U@R0LjUK)<|zilTx~sq}9aFz?M=$3&*;~-?D$nd?2wQme~ti&)!QT zNV{-t#VP!sGe|p2@)|tHsn5^@~{-gb}=8Bb!pUF#yv%9 zE3AvZ5%z+uSM0Csxek>(`bjv+zyu8FN!>h^K!T5A~~nQD#U{!9M=l(~jn zu$UyuyAZ^m6M>V5BVENjDf+QjeOZqE0Pr}gxYyxPzm6*IEnXy0j|^4CSXG#SJbU7< zqK>ledkj@;1s`GAhjPEu0-^8kAhC$tTrmp0NjsmC8ZL?vJe5>voHIr%1C~zwIxN zgMTY!1UGS7C=ca7h6S`Hv8F|HXz@rZ861eF^&K+YW{X};!_FYFl*%HOWKxwPiaUI> zHP-}AtD~dZG?P03SK>e@IF0*$)*v%UESrSl%hGg%(<~U(iDvzu_#8BgS*__dNoeVL zBaUi9fKOxHSHm6^;-oY-Nnl~pcm=>E5KK4h-Uq z^!VDp%l`m2V5E|q`F~rE+R{RZ(emCkbMaTF`L;q(-L^BJh>SridZZVWf$=utxh_mO zuCiW^K!ergL6D5r2qx?T`$q^I!bsUzg&7>f2bifGb`Cv&yxjI&=^IR~)`FX_Q_N z3WVcB%=Ga3b0MiP(RB;09)GRdmWoB8Qao`CCA;3djrp-9>}r!p5sNC7dQq76Q`e3p zH4UDfCFEoW2wfah^6F21I4PZ_TEoL?Qsp2n5Y#AQ5BnS}2}MtHD=3;cxd$VVBzz*D z@h|eSVl8r#QRW+~sC@x!8ACV@)Yt?2RXwvR5DqltQIgr&#VW}E00ffsp+6BH>ijjx z2(#l!{LMAwQpY8#B{>ddl!i6$mcgoA(#!2Z?m4aM7-WxQI<*L>+MK@EEHs3x%wBeA zEIz!yx|GJr!N1*nhYm$QZJd3D$}$=a*yCk^eo+2hN#{Ladf<&d4d!LqzwuJ9`Can> zmueqiMQ)Z>;wVKD6rzvyN5Z*|m2Wim%OvWnBZ5dGw5hIG4K>Iy?>6XmYi?t? z+G-`ZK zt@|QgKh2RLvL@J$x8?hr)=917tCa!JbqD#p4?Lz&w;~w?d9`Wf8~bSfw9$ae`zP&x zu^3~Fjo8mHJ0?=;GwZQ{q@=MA?$}Tf;xhR}&Bu&}GVL1P-oh%%Th^(l8+7d6$1TP< zTC&Kw;RP#?n-xtqk$`*!=WRg^W~diTXG{3mb@*sEf{?c%N^c#8XC zs&roU-xYA_L5j9^6z__(BRxSl6{Q4st}5RG4#KsIs>`X?(k7Bd z>D+e9BO7a+s62b~KUqe$q&0bwNmNE4m8h#`bR$95PF7xQJjXPutntd|0U)pqN}i9) z?Pb8Q;bXdonwWzuh=xK`jx=3|N>l7{!Ni^foBTi~V91`0%uF2&XN^sF^%;I9!ECCY z$K^d`uC(-|d<5pSW7yDrte6(kS$2V|y^Tzfm$gB{@2Hmr13G>ts?Vn@X+~1a+O(UH25f|dVbfcquUvy;fhs;6Qqvwoeb4##z^*;3+rz#p=3ZR~--@{+txr#U zDyJ=yx!Z3a?8ORCU;@yS_vDdDFPJQ88r-COxC70(SBihD-!8{4jy70q^Sw{Z_R-AN zG0hw@g!MvA@UsK^Kz}Lyh5JpJv7qav5?*_&`Lj@wWI`ChQ|X>mUUaK`A8M5Ny*A8{ z)RNDr+|6vuX)!MRS%~-~jlrWYHTW7Q`&eYkC<&#z`rJm|=t&gr75C`$`!^BwSr~rT zEX0+EDl~+(^Nz1)cE;Q}D>V>t_(5L5ziXCP#95dE&Ex#QT~f$Rb48u1S=m0xRy+#L z&^OxRt@}A}n~HJntE>6>Jkf9ZH3T<}5(gqs)Mg* z(ml1?C9SI{q$uT!9=!cU{ej_#V=87EUWH+&-nGg?ezg+=%BSK4aM^y%GHgPAb&1_c zir$1V450jcNA1VUuf>&+*b0s0!e~UG`g0IFZolg)_5T1X0^4!uD|SuY;8`6OpmO*d z--+pp38hT|Y|6B@8^|^*%#pXxVU|@j6KGhpNbM%Mny*=!ty5M10Ac*2EHbvC3PrD> zamf{E>-K;(uge-`cI&xh)6iT>yyFEx0-FQgzSxqKr(W|i>JyC$+ScIDKg5%8n3d&mAEzlLYN~(ToPTJq?5+@Pi4?}K^?TcU$Zh1EnlJ$S zKMa8X05MLCGSC`KiYv?7r`0YVD^~S1^cauDE-Tap{#=ZMWJ+TU%P^J(fAnNL zkEYwH2ar@7HdjoN^LJ@ya~;T)o?DW^RF8oee>o$UJ~<$Q#mAXvG8nHJUVDSf(ULZz zqY@S4m+TLR;>k6h_n>}9`JwJ-z0ehmuv@Cl6NAVgW5uJdZT>D9gPt^9mI)FbuOS1e z{--fqwV>1Gfer+NvBHMS9)#kS*wEotsGxWHaaPrUJ5qxJuI8=We1;WTK=<~=TTpsa z@5NWwh&33h#x>r!s+l{~_Q0*9hgyJsosJb$`F;4R<5AR&@m00jytn)@SO3wMM3(7C z0*nU4oyXCVYF_Tl2t_;=pAp~i#a61JYOw^9xE(Q7rqbOQh+`b9Kr2)Jw;WYcCAfs~ zh?vIY0;07YPxD|Ql6Pfz#TCPfI0Tx1nOub`yUihLgx{@6*!|cN7L{lCq);U5u-cfV zd~vd|czzT;M}fsFS_4{%TaoszDyU*|p_;_MkH5yuS`{3O1!GV zrk!cNDOL)yQk5P6c3B zK!2txvzvXIRl8UC;;V})nr^ek z624xfLRVxAnlTk_DB?V?q3@)c*jo#a9(U{oyJ*Vyy_{0LUXW{$kjx znqEhZIFY>vd{r;h9o9BvATw+L>%LnCjE^|gEV$3Otg8P2w08!ZGG=(>>qgH)O~*Cpu1%b8rR4+838~BXEYBb6@qx z?P7#36@AkH*%Oz-}vDF}q zg+LdeZNZ?!N|tIb6}kf|vPN390>AJ$QrT#dHUN5tP%5naM-$S&wSiK1v!3mvGcTnX zI|VeL?Z|jx2r8+jLhmZH$~!8trD^{F8sS2NTNwu#BX%(n(|R7?7x`FK2_$bTx=R_1 zF;eIS3a{D>-_5`5;XzipyR?C#Gm_HGC~3%`-+GFDtSnJ?9#pi{9JGksRD2a9g?t5Z zLlpBT<-#oro^sPj~z%UDfz$?Gu&R%VZgB=zKD2!CoX=fca9gXmK<#`f^4 z`eBqQ6*T)r*bR%f^5Lc8W?opDJFPr=o|#|>SxZ|<8_6mC z?}kY))Dobd=Si+~o{9}xR@Sdg8 zpYTnEf@Z#1p`?DHP~49$zwB4%l0ij9VJU}-NUO-22JS`+KvBQfBC@yiu3crlViY7~ zb0mJpwh&p<4||PT^vt@F2%)-an4P{bsy-Oee#~_HZ~XZQ7Ez5Z)$Wojc#IF~kunJy zL?uvDh(+W3Sq5~YdUXri!ELH9qiYbNvbl{Fj>*Xr`^NtOQNPy6lGzx%^YbfDg>I#q z)bWj7Q*cRi2u%_P*W6jEo)@ljjYTn&4 zwr!USN-3@?xSh62dlQPSa=lig<%+EZPSrn0@x@yzpn$|vug?{4kpiJd&VqyGfm=XZ zcVXdBDTr5;dG`L}QP)1F8qy11Dc*#z6&C^)wEV^SDB6@Owa-&rB`2N%3Ft)xv7rk5S ztoGt?{K4L!bOWf!_)Fuhxbtd-^qdt}1L8f#5sr{^633?3tZc4?Y$)$iKm&37-X|uQ zgdU`B3yH3$LklrwSj|CExK{rFjj}-n9W?C}vA8FUgW&|9qv7zvhB-1#cPh2drxKx} zGK0AHsox|65>fWLd??(JRSa}+`|f_pr(U@#MWGr?Jx*f610!RRZ>d)6(6?0N(z01v?Tuk zdBxY%<&{j+mjL%z(}K|!p+?>xA(*7wkOJk8of(BG+rt8&JjJ40Yg%>2ov0!`ypgp- z3e#_ehw`%IqFBlBhNEZ3w#E=LbXmd6$9FdSkL~mG-r(^KcliQE^IXY^zbox>v zv#;*TpgfbOAUb?sw13IQmfqv}Yc>43WxC$XqT*EMg~>Eu+2vio;Blrb>O@XLDQP5% zwSFVv7%r1ZJh6$)oJou@&PC15Sq3a2#Dn8z z3(7x9N9?!k^Te775qQ46Ji7JVHjyhl^axg!q>Os}AMiP@nYU|>6dzlDSbkmGc_&O; z7*9KiDD%tW$M%2KT*Z-cV-{t^Qlt+Gb;{dNvPKl~3$gq%Old}YF)#}1DdXJa<0@e| zf`@Blfju+@QoV;+9uQVn%uRt zyqto{NFZ{jQl+rOn?#}$30mszSNMQ2&^KnMkHgzCg}8H|jNZ%_mATCsp&(ad(zW|p zc#DfEUcmu%e+=OAswf|2dRHaQAQmru439|E5TKvOF((4-Au-i7v?3(vc?A{BnCu)Z zo}z?{(wemeiu^zgzu2~8o!p^uOf=0pOS!!@G;%-@f@(qgTu<$B%7|Ni8RYFfEj0M! zl|d|_3}Es=2Vj3|{%XogbP7ZHo%xmK9TF(*?Y%i|5~|Fghcy1}9DS9d{{Svym^os1 zvwxExn~kd$({87dJLP5~IX4VHkw4Y`U$u}iw!tG8yIS1~gy%!ZY<;sDQKu><)dZAa ztFg#3XpR0Mid#GFQ;Mx3y{d6n6$`i&_r+cD4UQ_&Qhs=<+E=0J*kY@=w_tHsaqcl! zBG+MDRicNNS`ms8UpD!=%gVM*e}C~4Q5;K7ayRm#{{Y6{vy+T%gr!d|{{SEAo?x~! z-J)8tVyO}P8~v4MKW)F8GocD~*)o}I^B*wkHxt}WleA--RhBm7wWl9~Pvu|u9JDYD zQtMEb&e)+QgptdxMi$*jR;WAgQP<+cu|&)Dh2|Xdkk^0;+gJRqoiYrf z67S0`THivu)~+>nD&-v&Dk&(4@tzMFmf;;kR@PveTU zRv6l(-eT2K+S+J+XqM@sW{x=+DQ?x@_G^~FZsX*Z)cH&EA5OZwX{MD*%Bd9bntXhZ z!qKBI>~Z+BDni^?NCqFLUhCH3(8Day%kZ+wwFbTp{{UsOQJjKj7|G}!R+c5X`jnQX zrgWr=jYWWug_x~8ejkf36LAb_kewP!YnOwJaq{C=0DMT_Wc)+oBN9|0uM*PQHiBE1 zjg?BoN>DKEAur5*ulctqEwL!5{J*8o8`@23!6bo5h2-Hz`M25i56AH2X&|RwK=Qxn z2QXV&h$5Xx1UIP0zs}!hY@JfdM6zpZtGgan{*Anhlo6f5Bf9?pwUgm!;!bU^CJ`yP zjg2d?18-v3@TSu1d+2o(l~fhEg@?l1GS~dS+FTUKNgE6{U?gu@8O=ovDfEnqWEF1X ziV(xnDr5vM{b(_WvWXP4M!NVJQV&dT$Z?=P8~EkY4Irn67Md_&JOwC4Dl!*Mm26Ju zLs%}F<>mCko|FTT>(?#f*{g<>Bl9QetHY#1qtt2x&1uS~_J7pMB|35=j^3l7d2Y|k z@RtIV_??g9c;+dW6Phvbhn+Rmx7KFmJ2lkK&WZ_W*b;avaj*KVnILT89&1~RNi35U zx0zK$Vw*AQ=)AIEsSE9NYZ)Be2v#?lM=2C>KK${tQb(%&SId^)Uy?^CUCAv*H2z*l zej5F*U$uo4$9%{yZ)T1nKC@!+0%KlW6d$n5BJpN+{{Vu?0D~p>nvdxtYp3b3Y`8s7PU93U_(`th;)T>c8)BA}8se+C;Z}@b?rX;tXsXv?w`$_9 z@4hP0V1lEd#a1=g1A1+Wtv4lw6j1o$t0HzJe<|_rfl*39t`%%hbQr5#J9foaQ)*CR zum94LK@eyC+5~gCtxqpul4?bpX8lKdxf2JzAV=NUx=T4*&zkUU5UC3o?Pz;U4 z6?I?3k;1BXKUTPQwz)D1!iEBs+x>5|{>PRql`W>=RT!ymoK*faz)+gQH=un+dPPm> zYDdT)+RE7kWxeEYwM>GdmDr#8s}!nBbHTWk6*TElidvA!TY?pcZLvS`wkp0b@smWU z1IEAbIIBg2j+|H;R<*?~GJ~;FSfAN6CZ9$stLd1?_;{Y1HzQ06&{hr_HuVK*;YQyNL{9WH@il3R)3~ z4$Z%ZObX_PGH6XtwgRpe>_*E$GZDP4j7 zIU81uizwp~s@JJ4{4rM;WRKyHkC+=_3fG~>;$yMxw)j=SV{t;X0Pjw}>~Jaq`YD|m zP!*`4JANJ+WEye?C3u%MvHDR6*+HwxDHT!NpA-DKpAzdND5N)2G}j88IYcVq)rt-@ z_@sJ_nh?|aV&(yF9U!A}5vdJcs`YQ!$dsj8h1t|+XSVdXM^dImb5J(otyN!%zu#-e zAX@-HX&QvOoYKQ-#LgHqLm>*Pfc!!y?yde;#gS!CMi)}v640v00*|r1PT#xwFw+}b z9i72}KClFLJEx}&Pj^22q3mtkyc7K`>~Ga=l=i^ z!l*mw()5W8paR5jQ%)!THpNoaV|OWpGe)RFGd|rvlz%o9A*6vXTsxY`$BMJBUO#1- zR}@+oQIy$D31c*fK@OBy?&IiGRpv#Zh(|cNoO$FRLIvkVzV+ zexDa*Uid9(ky+`c9v@q;sG#!+@hK;~f8`7|if$?FWSPuyAFLvhg#Q3|Rem4t&%Q*I zgkn!BKL}%UB?lmSQHR^(PqTrNp0%P)s#=>{NsKeFP_pk-@hR_xjoK?sx4zKqrMg%YWF67`8lGXN+HlYHw&@s0zWm1(rsq#2bkm_17WM57qJvOHj#Br|Q4{kYN zYAkP2@*T_SX{aR5i5zuRFUSIZ+Qh%}Ru#RO4X2mV;Y!>CAY~j|<~o!7*&>~Z@)X?`hkJV~VQRE8#K zpoA)*1Rh(cQ}6!(U1Wh$600vO+uGb4(xIH~w!kNE^K6p@s%w})bwVhzHF%1Vy+;Rq z+n@7&oC)ZhXfw!&XPzMK3GT#Do~jq8ExwZ*Aka32@HnVPe5l)SCYQHW9ND zTeZFV)D3TO3x@!eX-3AMwf;}}IRefpZl9*fX20Dc$3`-6>IUpwpYJ*3NpGa0dkF5L zx4kp+0fX>yMhm(YWgirW_P@!S@6>rf%z|aqK*kK4S6!KQG zo?zCsK~dTsG9`9I|3 zQjLbr((+}yyMVcLQYhbG)8gVk*2s{NBz)0>5zt;d_VA5q&>$<(%bY*1>-PW#TOm~@+%*1Tz2Qg zVhWy0_IKBFT(q#%^7weR!;kGYWC()e8IYLY*;=izib_8pj0R#Tf7t!3p!049!dV5( zcd|XP02ZeO2C7H;&6yE#vKwOlVb&$nH3Xh^3m9P&1t5xTx5fVe8fDVt(-CRTqvl1H zD#leKSprB{kii&yB|l}Km+a;})073gZ_VC$d%LHTL~^SehmuiVPsDLgQBU%JE>S#} z$;-!zxxEwqamVuNZ&&8W2&{=k>EQ|L34%Pjf$O71J9m5fOP_Gmfl5d0+ zKeSKn1^txc`#ES7*C|^eywdIign$L$iYmu{^HhH!{SxihQ0E_ z8hEWIWpgPL9ouRQfF15t(AjP2OHsZ#2!i9evFn{)q=hv*iuh)>dApsYFeYA9f%OTV z-WsgD3sv3@|PJrd9474@fDm0DjKH#|(>C4YIuhO_I{#kOJ21 zNM&k#C#sNe6ahs~&DJ`7#BKG4RROnch}cnsFYMp}pB+AG)uw$HQzJ~Dht;I@A&?qx z_PK5LS-;{rhcQLi<2*s`Uy)y(S9+xLS?l*PnM(qTK)k`+k^WL;WN|iM3G#gh1j%<8 znkEk!=tg3ZPCz!jcKbUY8sKEn29-aKD$w}4ov~Kdz8I^5x9ox`*A;gY+yV2&UG6vV z#V#bBz%=(bp`w*F-k7D%;CwZq?kS2AZ!>v-XjV^l%j&ZInCnWP6aGT})=n|DxlW%y z`IdX_TTmA|gv{4+kPy4WyxFFSQRlwc@7`fCWo0C+xUN%F>-=SnTUs@fILNh zS&Zel{Qm$9QsC7THTp4Dy)ZWw#a&iA4Y5}M6m{PfawjIH?92htbc70%WQriU}pHe zO}@@IX^zIy-8ag*ZOz;l)>7PC+`|xzhEIY>$HT^cU+&lau2@dV=8U}1Q2Lg)Hq9`V zi&i-{P)EYs^x^vn_HbH=DA?){Pc+uN66H&A5wM|CPATetGT>4vtt|zyo^45>GodG$ zB(OvK9+Q68?EG0Ez_Tqic-p9lvZH`SC@Ej{aGK4{TWFjX#6am0>1P|KF8iMUhSp5xY zCB%x%@hw(0A8Eg5{tF=66h@Qf8?9!Sy5Zm)23S;6g-6-vn9|7SM-B648ef-ewEjMX zD^=V(4o&mqa+4xkgaBina`Q=dI#!xhrZnd5y3)U6{HAQk#SW#$%afpBkEUvCB$rX! zdTOc@h#Y<)`%(90IhrZgNE98FlvXz|L#R8nmu_U2)nY=F`zsgnoJ=p0jFruk+*rq` z#VicZ60)+E6d;59OO;hN##Zw^bIY?qYj3BsaZ3ppf_SiG#9GSk-ul@dDs+;!m^$Nb;5`#22vM(jj5&d+u7Pvz~OmQcv8>*^9HS!Z%d zBd?~F{_ZON&S1|c6SIas7F3`pBd$_goyLQv_!inCyQr&sVOEWNdUn8uz%=>cOMhpe zug@D+l%B^Gb1@s9_*K4D?TWgizf4u7cBMWM@7EPjlHIzY1Y)XY*@yv&pxjX4R75cd z)__!;DypO&qL{0NI&#HZ1P!rQRP~{zD*pig)04qyZB=6~#!x84WSXsUWr|jJeb`s* zl2lXnyJD(erR174`jduWK%q1YEAQVGOu(2iEXJp?-k#X18uHRMU#m*tkdVW}k^Pp% zDBB1Mpi+te*;spIRW-Id5YeYG?OOcnkYpV-vd|GlBciCM{0YF7R1O6hc?xwSaf(|= z5>ZyDsqQQH;7TAViD-pL>B)xQLgKCj$=yNkOe(sd4cNE0hAPnHO$29;jd4QtAa)e# zQ?>pJv(42ZBgH& zf-B#*%OaI(5!{c}io2CIpsp&nnOg716himwML~XrW(olt58I`?tet;}fXcqj-#M zRMA_NE5CF7Fe`mQsVqCxQx$261Z-Ztsfw>W52ib@0YU!&ix2H)UO6}!W4jcVFR2Gf08;EtOHd!$2 zE?CW8+06Q{f-a{MacxNUI+$>H3LFn^@a|u=u8J z&mZ^aXa4{pax8&QLd|7o&MHa5po;Foy*YH_ifPea+RJX&45YHstG>tic>e&#*i}dC zit!#n=)#I{oke={GZyzifU}ww0B7Up{+?B zYhSU)6$+)TwMZscR4$CvR|HUh&A75q(KRKWcZ-ROlK_ktWuW_94L;GuQ%xe)dt0#y zQ+M^QOfDTLs>A)&AzoYU@blui5>lO5=xZPeFi=fcpa89F*0>W$>!y+c$WfRA#8+WX zyuX+IYzk6c9^&U(k?y#a4^Aom`~LtfpY2hgo|`LIRRc!|Vh|v6o`(zK^uP} z{{S(<5LDsw1R9jLFe=Cq6;zfK75@Nz@BU6$)KMCKmu#_$LJA2DH`zfvsq$PZoHme` z`~xsCMt&H^$NgshY&S?Mdce4gfU+UbQ<6Cgw~s7C0;HFA`h>B;J5`tWo|38TKWa>> zP0$Li)^^iL>O$)bv6An(t zSayl0L|HCerMgH8m+K*?>=>8q^8ReKsFcPnKD5VWo;$BTpi~Oa-O?I3@VpKtH zN_wOcy#k8;s^dvS-rlqme({3Fb_$D9YtgZ$R-t{R^Odkw$Ps9q zs1yo)qDSq2lYx>EV^p?Mi6oJ;R5w;EPuf-cTvrw;-k%-JQSc4KarlsK+y2!%f2)<2 z)Lq0-v_cY0j(!#7NaeRqU$UbJG^~5ex)z(}olBoNWwo_+V;g)SWkL32+xLt9`}n@r zRhCWoqr2B5h%V!|N_NZ>yPn%eQ_vst{{V?(Qrak{+Yfvy^Uu#a2f5KAmL+FMXAJc0 zq*I^#7Fmy*PEJn*jzw6S;yCF#9w-UelkJ-j>q-L7`J#CStsn23m&dsrf0`gZ6=cH3 z$3(+L(Is>-!y>iBi^`8wEGx-)G4EW7WFEidnCJSpJD^rZFU(hvR(S+XFI zJBN`BOa~C)Y)AQDvy+UAT%ZdYT~%)-mf54?k&;n|?WjL*{ani6z1&VZ*-qImZWU#k zKTg;aQnW3%+5Z4w{{XX=Mw;YU-hYK>&;rz zEx6i6YneS~MQ&=Pc8qv$_P^E49EI59h)aJfzb>E7dc1mgl9vAf-dr+Pp=-K<{$JV3 z38yS?v+Zp<#tk;!J1bzT3@8y4Z9qScV;$Up5uvNo=e`8D$&cF#XoSzeasr!z82hjD zWQe8!+6P(krH-p^);BUSZP-+{%sR5S+U0~6Mdb5&Ug8rrpLX&d1Tx7P6d-&-d3~fU z{;p+X98Ml-a3ilLKT{r&b~`O!?H}@4ymM<9&~%fPmJ_W*axPX_RIFeFLe;7F$}(9t z9LzG04Iil{)D~-r{aae{CbS27<~B(i+0McM6(p}$p5i_!b6-%3(Duwsxe4axVaFbb zjWfu4#-@usq#WaNXw?+T1PN|AM0vey^5e=-X;XSPYCTwa5=hz00kXgO8F-C2rhHFG z)9oxHnpv$^gue>EUmFY=cX#1!Jz(%E4u<$|+vAf5hM9oYgHX0Q4uUN;u}c%(E} zW3Xdh?N!TwEhb&h1M{AbZD)Rlz&EB8i3_O!GM+ybe$uz|W)^C_ot^`>>~~4NeJ1uR z=+onZK-^B;sCQhX8gdTrvcD>P=NFiaSC;JME+agVg#t46+pY|e+Sp>1N}iUf%k6EL zu4?L#XgoTcRkk$f1#l|T?0VLN3c95CuZ9I`t@L~1t$@|sPWyUn&PIkpFJkh4bCm3Wh zmqW*Dl{7p@KiT-RAUL$aF8s|qTCKI)xr#7qd2;1bwgzA@`EC$M%sw!Co}&XaG%_m^ zr>W>`(Ysco87BTqx%#cg zqXNv6PQIEjZYj)vJ0IC!<;vMg%iC=A3ym;GSQb*jN2y+*kBfq@zD%@KrkI^%op0~yjF63OHMTfsr$)Cb`B5j*Zo}1$Ak`UyEdZvFux@Ee&jj{{R}~2~iV!ChuV)Dn}0o zlu@NFI_>)^z4EJaDI0ZV43P$r06;kr;BW-f8n_V8bg@Or9zn7o?bDo}&<U2)SpD zIL*AgLonGCorPPIZySb3ce)`B(u|Pq?(U85kS-M^1d$%yDGj5M?)U+dR-_wANhv|v z@BRJ&b{q`$?s@L}y3VtIsr_mvWX&Tqz4RZbh`DEG-c1-?yYD>~b^6VZ>gz^#$1cBC zq}JZT0hOt|$rFU#_F6mOG=<2K|3^JbM|5;Hv$I(mNFaw~@tm?jPbM%hM!T5|FWe?Z ztP)eSRW~$r1kpMNGt4{hRtw33r~O{1^1{&1fw@&mFNuyETJfXO&Hp-vIQETt?G5%P z2x%vjT$MV-O!c^`9rS93Mo}*cbGh~UxvfnPrP^m=) zlH_~6tMP%#oDW6;18*yPW|3EU_{WbZ1Wa9_Qgs^SIIe)$?}kEw*IQ{yLJp%!0%d)x zISl-YW)y&8_;P?~u1WE=9c^2s&w@a3@zY>Mhj^6aRS8F5K+jIh@({)ywr5WZ-XbU- z^u}8H(wUC_(J$fn^kHW}@sjlY%)v=0EGhpUEtCsUDLV}DRyi6E$$&O=yCGUDIH*fs zMnXH7_tyKb>Yyv3hHYA~SJ>!<#*dy^)mdj7*Z;qoCRZ9R02sq?>B>u>n=p6iTHStt zsC~`qJiBs$G6M8m-}33W5bc>Yl+QGqgZ ztf>0jl?UsMg%{CD0MwszW13^>zBY*2d*tE@s&nBKWg!EF*agh#K-+!wJ3sMN{f4fP zL;-Q=4Q-qi*Z1#fHENxIe1D-3<^}TRLa@AY+#<1(+?n%_|CFE&lSVtaEXOizj}*OO z!3tfDI^GGjv3F;f@Y7rAAi;YdT2XO2^LyghX|R5bqk)``RZrezPLl)2p=hz`0Z>dB zM#r?Zy`*hQJ&0sZ#<1yGx%C$XVwcSyYEfU3lfKq{%2T9&QGJ~?bKS_s8JGM(ccM`w z1i=Cmryq+8ZB1)qD`kj*d9mhf1=7%8>$Y@?4Yt7Q6SA+-@M z?xZcD`a%YbwAr8ZazezD9;8A>?@g*$h1t?#vu5Xo3kfl>?LwTo6-5CBFrIF6tm$T6 zs&`z?`}R1`z;nlYS)5A;JO{G2yZD}(uiswnSOhUA0C&i=F1w7KDW)87RE(eY9q=n# z_PKaiXQ-rF(V_`^b`~Y3B^WruP;m+f z&Pas`V~0b^&{J3cj$@#cPT!Gnn!>~$X&%M-<`rn=aWJ$aNP4ho?6ow%8S9yv;Uv2; zd+6l?5exHc-^GkZdRA~O>)3j<72JR!u6D#dWQzdN^qEWFh|7_KV>pJ}0XcMk=h|og z6ZirAXP^D9gl?H#lE&iXmLo#-e+J3sf~V8hP`zc`@Gn)36<+Jllr$17j5CM61Dod| z3Zd+Qy#(kvg?f+q3h{n@wYO=oRpUje)Ji)JHBy#0H_TmpO#B)PpRF@;{W!)a#CsONi{B(a+ zB<8#{_=c77+T~D{nXJY9R@^b`+HJ%mVsdBQK)9{&D!ILF_&oGlvCyzHuBG@u;Nmo; zxK(X2h{HVhiWRXCCb{tRj5Lhp_xiW_<=xXqdU8%^WA#F^tOs34I^Z*p)nbi*kK`X6 zNMKBe2kb)*k9m6au2wF1U9^#f8rn+2tR*O@7~-Ko~cXlj4AGF9DGDx_LC%=AQ|U!8J}n%lKIv$%#p0<9{^BuL%Ty#+ z_U(;Wqh^P%8pXH!K6y3QbTow5&Q0j+U9^18o0ob?E|A>hYcrHXcJBt1NZCxL4S^Oc zH=q2SwrzTH!3?+a;ivAfM3SW&U)C>zbfU11HaKEVZ(zdY4>mHGHFuLMx!leuzhy{J zsc}`JOkN7D;^0~ZZBkvWp7&%=#|2{U8d3i9kCAv5T~Op9^?P{Yk9I>UoGg|p<9>%l zzCICMDn6-wUZB2+gid+a3&?qLO^`$-!1y-ee{E!&U8wW7Hrrk~sd_Wt7}qat1v8%i z11*Th2psbh<^KghFdI9AyQeQ>S0c(L&&hv_!enhjw%v!aUo+BoesmWZ%U${Drjg{M z*nUlDQZR^Khem2NTMz`@?#v-6v@wb@6J+tAtNA33e|%4#ou0r;?_x;blt5!c@AQjV z)zZ#TE}s-{R4etejs<o_X?$;QD^O3773e?FfiDk7BI+%TSd+V&N9-9-*((Ob~}#q=*3mc~E2H7DTKpUkdl z4k*1VG&SD8slHAF0K!y6sn0si-UNP7aZBl~9q8&*$49`c&rTn@Bi(js{K(Sz0d?%H z4ndFLQI3}9l&W>;2&NA$z;F^>ehP{~HQ9{!NE<%+B5H(a%oj^a}sK1B@JX_^-`6=f5jj^;3Gtf*{KC=Rers^1Y$b#RtV4r zs|-Typ1kJrm!I_qAXK(;4SOv?+q*A`^ZQNj5@z3|KPrRtc>J~o1r!lx10mSHpp0>~=>SdU>}JKHto&~M7T){e%| zqc-j`>=*z$;wC(=k}VIPt6sSckLz|+SJdNDvEBndbBr2t zYZs2!WzyU8emq|bja&6J^Dw4D7_Ydxy!ctXCw`b~)HF^#uzN+eteiL$n_UnUDBWgE z=?<)oq`)v=|CWDDyr|CR=LN6J?$LzsI~%L}*!p>Lvn2%|gzD4DEXdI6i?v;Rs0nX# zALci@6CCS2(k>emeq_pqrv#Z}TXnS^w=GYIZ;Sj=yFQRSf%ATWWI%6$au zccl1eP#l^6DOGBYvFFia*@kVe0<%01&UtdR-#y~lbWWHJIEcgxg@WZ#Y%F$51GY}{ z=L+%cr1EFivej$@OV~w@baM?#D&AqX@@5MkzJbXR4RWT3%d-Vm?cQzK9<=9(ac^AII& zL!`ubEYwkVgrR(8V|?<}5AvAL@>s(%Lx%ZRV|sh${j!qf4)d1Z`lr5nMu!!Rt*tTf z&*h%9u+kR^|3DzZ%uS?pY0 z{=H<@zf@#fJ90@e>e6DgX^f+$H9Z7&lpM_lpVKp9-k1r8G;SQ{vJJm+irvjFMkw14 zrc7PAlKY<>`ZU8zJ8S3W(`HP*HkIZ1MEPSnBvJbMJjl?de;STVdNTMdHN3|I9F+fF z>ygxq)X0n#KOK)hS&Qh1$LF%m?j1CodKLYs5|xabm(*L}6Jck{H0X){&>-*k=z^d? z&?E6+8#=cTGqcF7s>6$aAPGPs9=3^So}SY4ir|GIJN^#T&R(w!Lwtmv+N+h`p|@8@ zxV4u<*RZ${orPC`Ob^s`is-N)y9DZ%n?v(i)s_eUHv$T#9Q^X}qHT!`{dh1G-@D-6 zFr@wFQJKu7*+%w5wE=&*JfHr%Ky?g8Zqb$Vt&Nsshnl3Ux$IGBm#{<-0D%$Os-PLq zHBWgF4@vuEq*hAQJ4f~ZgNmn{iNPF?$EZ2wk59Dr&%>nc-J2w&o*l z=~_kY4IzG1%38O!EJ+s&nT8wnbYxABT;2A;KoplM<&GXXumY$Y_g%^S3Az`8h!rm= zdo$Q+i!7H0Q$BN!PG9tiqoCiu*)ga~ZhWu_zAV$Zq2lEZXsnQ7F2}4X@)#x!5=HUK z88`SW04DgV^w$eW8y`*ALigvdXSeDEc$_7E8dE@4-yB##+xaRBH+};)#`+U7omrGI zmhrt3;1)Dk2a(VkG*eR(_i@AeeOU65E9lL`Uy6X8XK;8y3B+p#PJ5GjDIF~D1HXx& z&9wz~lxH*<*uB3XUVgF;C)2rh)i9b{7prs>{EMT|(YCx645`Y-`x9G6WZ3AhBBqw%-zHq z`|YMTYPX2Vbdj&EK)n-v8_`Q&e#ix9NLQGW=VvlD3Z|@LasHIej2=LtIhL=w{3We< z%|5p;UTv5RI=K#bc`3r3+5nzXf)%Oq4n>Affr7_;fKh%+ELg%?;|DO($q(mt&C4j+ zB%1UCE)`@bquP|~Ezz}`+k^g%$S44{_FZ5Xch%! z8Vej*r}?ETZ<1~@9}f&l{0yI-Ctx<}zI0*MO+0KEF=g55|8f&!Zy+Urm8BITf9C0f zUnI=<`@h8RMD_SG-_?G8P<28oApDS5V`Xe312cd#TmwBh32(oPERCuIgHmPGnF8?< ziy;_fU>Es{s}mvW`j^VaO}+(Xa$z{$J3HD^SjXsJ!U?^wdsnzzay;`;lf=Q5mCKh;tx&|hZU8dI^-QyTk?0y{V4zaZ;#+An-B^Mf{uHOnnV(&;n)lVOHiXP)>x z)})}n-t{mzJY1JFtyNTJP7mi;F4_78BzDg0pr(RLJY!trf||Yr(xex7+Bv+|lm9>j z;{@Pw`Dq)a6wM~);?eK16+6_Q|KCWh1Dl2TAXO^{sUlbmD5t}TzFTPs`0yA|R3Z=f zOosF-*!rGJ7_^+EuttNcmGYUq@XwO+Lm;BZUAqo5d}w` zhL>xKea-D`MR3_lA6!we)K`j(;mO)&_l-&UGPdF_6Fm8>D5?_yo-Y;WSTZiBd34BY<`<$BfxY!H|E5}}@Ied84=WVrC_Epj zHimz4&c`d+r742fE8va}6^yOIvWkUYV}Y2 zY5e~D_N2+XC;{Qge);&js>8;Wm6J@hoWCO{UI>9B(M7SbdHQ5LJj^n$;9t^wHZ*0S z)NLuZN5b3p`RDMOk)-*3s|4r;DNn&qKA_7k+L(^Kyif!5M*+8^Vpe337~1dG$6!Uwt+k+#o;z4b)*u`%n(0nS@3u6q4CKl~7Ttm}Rg z*MH$xe(Is~pdLqlDRGtJJNQk=yx|kvVN9*+RjFNM^%(`QUH3;i--2rYY<##x_$Lz!&X)$gAVi>n27V$~3?F zcl%S!6ih|i%&BPCRRxEegaqRud{RqPt@$i%hUaA%#8`><=Y}V7)trU9Ht}gu7f}}n zA^dMEk=->SNstsBA>i%k9r4}n}m%<7jXfS)cDtkPvktvWuV z=`?ZIs=uiyBl7KA=L4LOfj*CUt;--F(^Qgl7ia2MShsN$=wMLv+G$>HeRa(9SuCiB zLuO&A{;M&K`}^*@vh?eEW{aqig8`kn3qe-Oh9A(0?F14&5~Q-vewS(+*g0rtQ?UdTsm@yO6$GtOjW-aeA6<{ zF8)ED4{}gB8qr%*hj?K$$F5q)&(bWHG;sPDX>Up9$kAMlVa@Z~pn zF0P?Wae7$b`^QTo?XLF-rRcHGA2FCFLl}G1ZtZFXk~{wb=tJmika-;JHAqzprk>@->Pix{azUkHPsGjt4_Dd6s3Kyr6nxVNw4q zcaneo8QpTzi%Of~+^1pk4L5;M?`X}d0)Z@&S?1W8(3GO(^!l(6&Xuik9`ImGZnUOQ zqxx8n9z5*U2=hXFoN|&whuAd zUbbW`mgk6!@_6F&JO7}IGGZ&GEp1ck+)^!`P%{{aP!_3&ZE(43)-~T;DKOb>0txz; zuw;@GzYYAdfH*@+gC*OfwMJN(0f)==Eibh^N9+tychc%AveK(TszO&C$KTtXem7Q}%0V!H ziTdMKkVQ)K$}mrySs6?C(ZF?b4Qo>Cw>irPw|lOPvoC_ieSPgMq4LEE=Iz1<072~| zre)Dvw>FdQj^sPz@G%)O>%YJ5IvDlgl}H2OE4-_@!$yJW0->Q&eC?V#v1eCr81-H2 zdjyInvFiN&q}5AUlBK?plFh`c3h&-iQTe(@2RzRX`p;vhnqwMwzL@~UfnUpcICI_m za%qC2f28ALgo*Q~S$Of+H}k(w<55EwNm}7qQ^qMslGrWly@^6G3x)SdpN?Rn(;r|t zTQ-{?O$K>L2CCbJ*+dXJpI9VPn_Dl;wZMd6&pAjUPDQ5L1n%L4BA^Ft73_ehLU}Nx-+q-N<8cUFFfgIcl-rEaClip9I@Aqc(ZcepWYqs=ar91 zv7`wydKA<9!b#WGU;ChX9ZUd<%vVj=}N5?jlheT@Ij%Tfre zvQvsFbKxU+fo{>bg|KY3E*(oi6WhdU6@c2btBgor{`OVPNOj=jg;3o_3vj#pSq{&R zT`3GZJmfS(mtz5t4dYwe@jR`(ymheRc9lVwNt4P37Rr|v`5fHzUN`3m}0_P1*zH5#QgsVjU)uOX%&pV3vMPimu2A>R-_As zAKdId1Mh67BPYWD+CX=<`#9l50{i9x!@cMaaS_I9xat z@Q!9T?Mj%c4QH03G~D^7@vN~1-zTk&(AcZvwxpL@=9KicDyOs;f(;EflN})B)h$Hc z0^LHkSx=1t-; ziU6(d*Zu~$WgNwcs1+bSe*d1-2R0zKFZ=#$F9;CKL;pzL8>2rDDANTONgs+(mJRjb z7H;2c!g#UeHIl6f@tar3TGVgts#8dF&oS>4vZ}7|WhQaP@mqJqZoZEXqXYguzm1MM zh-bcJpobQ0tT=xia)78KR;LZV1a`r)BpVj6N|_f55SQ8OQKbeB%42{}$HTni>R0E0 z_nfw$rj(Spj zMO3)?uQa~NK@0~zr8B&WzSsH(+WnAckYRE3O1zpymZw$<;+d0MlUVP(3}$6Q`AX|$_f+(Q+MRIp-*b{5s;Gg%+^7CX znmr!u^*dXUD$9(u&|gE|TOn)Q8xtGN<0&nr^d*kv5qAlxuH=4LmW%DUJ%%&LWh*)guU>N~_QY2Z@#oWNPGrXG0)kS~jJ57pS`S)JF@oVWQ(>qT5 zYL#@>n7X;&i&Y6oDGFzsUa)*)LnR0}x{%%bLt7hNuxx`q@HG@mxvC4CFM7q_ z<7=Va?fBl%#+jnVP@W=vFns}+J30T`$% zthLS?ySg2dgeUAQg=Q1{3lvwJa-02M8--C^eL0scRf`;B)qc-8`%Nvq*6Jzz1#lgq zaWL}%iue`F+@v%x5@~}VA?&+xdVc;PSl&ICiB^CThGy=ueAQ>~7cE(Tu4HF)iBYwu!( z^nCNAI#1SJR$=r>-D^qs#>gQIyrSCX3`6Hk_*iQd-XQyYz__^W(xEcG_=>B;!^6rv zf}BzD8=v|{8RTGuIYb0sy8(PDpE4@W;;o}@GM5{`xVwUq`KGdDU>sP@RuL)JNZ^fU zLji!*GM^)t5}#N@)7hzsB0oc#QB?B+TBYRBT;n*v3d%O;&BqD3E@JHoJLFR_@U-sW z7)mFwPP`3S&cft_L5xBk1Utx5}C`> ztjU^UDwe&fQeNEhn>2XFChnbz>C{pp<%@Q;p?zoP)fiBj^gobWhEtT8a~Zw!0{3QH zrn>!sCR9(n5|e+^ETIm`WNt&135;3Nwl3D9u->JZr?7wCk<7+LEzk)p{wNtj7sFQA33iPeTzmwJ$|6S(Nfa-i*pZU zC5qv>wi^++iv&ta{zHM*0TwEdzI&E;#~_;x0C zN`{3sRwrDYGL06@aU&kWC3`9RfWJdnnP;at6e1v8cF9{#$1v9s-@_UYVy-14SGo^5 zasuyqE`Y@p_y2)LUcTtdXpVWwyZz_XYf-Yu^&G>|4EPM5h}da$B$4RdbcR|7>}pR& zum>cTfM3FxT~oI$U=yG+KfnY77bu}!wP#x`&5a`p))(B3#+p=Rs`gunK z_nQS@KtA}Z$Jz;4<0R+^l#|C7)?MLVd0BD2pE$I?F{%S(*&OZ@OQ-%(xA+v3TkMc9U4yHvH78^t(YTeupBHI29X7Y{!=u zIqdfjWbxBOlWG1wtbqTAs zLy1N2~H3#g-Cw zyiNhhabC0buvpf5&+WTA2|-EoajuB!3#m-6<_!{5CZ5<1=}_%M;?YXairk5lx^Ovw zYW@d$KA774C0m|n>}-{6>PAn5J5)b4ZA}l6>`DR z$qHl?@i}(r=Atg zG$1ASq0Rcj2Z|o(S$^%$8{DjBl5qamG`yu7(f102HH2pgr{Kta6A4PGT@@M7U!%(0 z+(eM)ju+Hf-T5kDDlgH@GLUl3{7tR{_B*^p_#0()HKlHppG`bwUekrxr~CsAEHEh; zC1!clpE@+OJ7_C}idh(uSvL(wt=#S?@LO0lZ5tt%ZmB<-07a{$^1dA zLHp6UHj$O*fH+hSog^e8c+I;k(E4KQdVf>B@>SfQYn&jLB+l}J0G4RMstWA9K@9!$ z5fSui-&Mkd(gtwVjmJU;W?B`ObB{hccR`O-NBOMmZYvgU(OazcKy|UEH|Qz=h+p=3 zFWfY;`QBy5F|MD*&OEzK-5XWAVt7 z4&D*H1t+fyv&4+07ZLjH^e%Zc&phj!b?9wp(;gDQ|4Nw{hP)SX&zXLc^P@92J!+up zy;@_K0`3jiu8iuf+gnJL91|fV9^6BKv4GfhOtOEz9NzhCoK{~bW30*+wr2Es=Zf=O zl;R&KVibLZ0N!z_^kd+K-OQjUdXtJXh{; z%KCc$WOKHa6oMz3z3WDmPco+?T|oM!VQUHtwTYX0Hnm8=vx7*6(~Z{m1%z4)sL*r{tt^0p}RQ<~}B30~U`XJ_p|pJzM1EZAP>NJw0&5hTZV6xX>#ev&55rc>X23#$Wrn2B4YW}V`tQaq!i>mj4|r(w zoWrZFn^mAE32Qpg9~iYVaj?}8E9lAn%nrY1EXh%X8Fn8x^ia>86H&+bhZ0hSwb=6E z!MoZBvKTB@{gxTx;l~si1$h?|uvPzWAqU0q3=T1nuXTAEfAScoRhEpl+0$b5k$xxi z7lmgbnnJHaIfnioN&T!XB(WFF%+j9L{f=UsJ6<6!P63Ff@P@VBwYvzF^ZsV~Y?~l_ z<>;#NG39;e{lLAC^;JV@No3W0LwKB48KOA6d``0ARe!klQ0yD>eTm5fqrya6=65dq zWtwl1Z(j3M#{d3A9cAArdI3FN;-e&woO+n_DIKNVa4f}A6<&!C7-cvH`m@Pt9`=II zi*G|Fe;j&UxrLLi(oH2cZa*Xf8`F^qe}%je$L2p(&lDAg%i+tVb_AQ<^nIz~2YJ^w)EV5axc3rS$bS)vA~&WU3a{1*=- z?IYY8(&%qk7y@?8(Th97bXxYgR+tuBKCAqM>0nt<^eE%BVtKn3G>e=d>UI_7L(QO3 z0l=l)YxB6J;v8i`@RpGmIxXfI*axMG)7q8I=~C@Jioc3ehp#9E4QUPC5nQ# z;Fh^vpv?I{a)`?EoWle?3tG(nA`emKxSY!DcXm~=luomN9Kbo$q~x@&vh9m@Pc}ra4DDRf?;qo6tBcrtmrGd z>^k*AA>Fw#?qZP9N;?<@rzhxG`S20NyO)lyZ1M+rj>7MahT?*RgCAh!JogrW;4*qJ z!P@!W4`ucupjP#JIcWrECK6I9{ndgRp&dwAGYhpa9zx63XUpTn=qbW1rt<_OGOXY0be_6F*jTG}Fwl0Z(6CDu{F-MR`7 zeQvnQ<&6htmMUhHIpmYpdLX>*nV82s_>xz$dpTlVGaC>uLWgT{9_F&d6Mhe4Itu_D zLp8J~s<@rzAFqXkcD10(jE3@ZfeQgYHMUZyL$8Cp8}tj()GTslR?aMvC=+G9g1w_j^Q5Hi!bh*rX**F5XwBcwgz#(Z$7-FCUoiVI7Di{Q}l7FQ3 z*j_+Wu&i-IUl$~&9@!XQbX+X*lrf$17tP^4eaRkgf5V8g9rwqEWO(ozZoRvkOUgO- ztdm5uC50fnq>=a#0cJ@csnYfHTH1Wl0h3qrmdMs9ckpWwq1nnC&WXPnbk_8+k23JL zBha&W_6@m(wEw-tSe9ZwV1q_C%AXLPkdG_rkX31I75bF?OoiE_j5WrF^Q_P+?;DoQ z-{-1Ivp?HNhgo;0Y)I%WnC`7fcqSShSk}-QO+~Y4bj&l9xSll%{6|(q+vm4=OCMBl z!oEDR0&Nb;StyOMIpgN@dCa`o)e|29OpaSm?)qBB-^`lzQ*oIzTF6&ob`{T|7YyGY zxBr3qckq0fs1j2{xLVdilpm!o2VKM!Dp(MWK86pcXM<0JoLxNOdM$=-?|ksubMQEw z#gqj^p$v^7e!-)U^~TqYKd7CzvG#i{W+&$h2z{0QB>6BYaJ3DNKV~kEgM6kWcw=AJ z-XctXGds4nIN~b?4_pz-ZvFC#eMlc;bD0?8IodD1D%8)yd1r$K1+8@k+GUDkRLZJA z7YS8dGL5bTycNZ;mb8;t7YSC=a*OH1l}zg`gh7YxN@`H+~rSRB>r-_GAq~46bZ$ntW702Z%Hb=TaEppPBV!$iA4G`qbsn|mCQd- zB|+YY5p9#3!?bstOC{vhZ4>@$Kd}b*?y(gx%gPJ<(Hv+(f8FHjqMD-f-`% zk~E-{v=p}isSKu)7g@)GmTIUI5_z+ls19#gg`EN$#SsiWzN!US8Kf%6M*+t3U7~_z zYAPW+NHI~IpF!NxS{`iZ;&q#p`0}L0xYbckOfW?SD7)Ive^P$DcsWcai+gs{ z4RDf(unY0_GX32QJ)l%7U+ki}OR1Pxs!0~NzKQz+&r7D&plsHRYDbn&Jkmoo{Z05e zY;!Q=gL!D^63={htbL6Y&)lqvy5mn1K?n@w6-&XlFKmNIPM@7v+!*k8V&-z;S6`r2Sw}M>{tMBmV67h}=s*f}EgUa=+ zJAH=_QVn>*KlU>TUUBlEUl=Mtb*b~aU0U2?F?l{$FJ`xJ&0|p!X}UX0xy7i74AlNv zQ?%5tiZJ#sNNy8?ktK$E*RK%DEO5s7ME=xd(7hq&|FJN z(%@(!?=7_NOkCM1m`t{Nr=ngt3?2nrSahatYB+3BCyZK^1+&CY>{`-SRQ)8C%{B>n zdA!Njj5mKw%oF_gq7T+4;ShUAe5asAJ{zt5UIJ*lz8%_V%6k3vgx~SYouT^d=IqJ* zA#a?hRhf>>n9wmZ7jB8pMzC_KQGa?l1$&l|Sn;%Ep9qRDQdWBnJd-n>eof~a#N*^r zBRYSsMDSLNBY_c!xp^JIFDCMA2TlP6!mA@ zAnI#L03jIu?c-y8(@C;ZR8r)DzD_y{&vHJ;2`-p4wnC=i@LzeQ%Jl2q=5|xt=ARzTHJ zxR?MEj{>iaTc?+$wKpRjSR-&MCd{L0g8wEy2e9KJrS79Oe>mJ(OFdck&EoY+@qN9P zT;sBM$nmUm3w`)I?Fx)L;#8~9Am7-zByyp2&DhrYB9n2fH zrSupV>#~;a|4N-%^Idm}&O46p-=OGdvJNCbDc2Z-%^H)dY>?J_=s!fH9+vsecio!| zEX~?qv%JD8Z8`7+Rvm?pSj5_5g29WjN45&jHF7QuyD}!*|6{GiV3K@YB)jhI6&Xd; z@IokmY(`tA`}ntMEcu{oVg2y%wQtZOUH)tT4=z>y`J75`Oh40$ei#Z*fWCMFtWW0- z4y)nFH zZpHDqh+nuhKf(+|?z!&83{GftNLMC28P%lWLUMD+P}!!WWCwIx?{T`uVJ~m8Jo>qv z^{cZHL9@>A-WbGM`tMH+I_Y}HQf_B;T+Tei{B;x9C9YrfoFBdo6pR7F#3d?hJ(2NO z(O7)#J2E5nx`dVOg>^M4qxfx09}sV?k5aJ0Kj{V*FCShXr)X3)Jg7+k>5hRn)3)xx zU-yoH$C%vg5&6l!PB_G8$+R(O`NoAVq|(&IhjsV3SjddnOM_fDG04Lu@hI4LI$Y~) zge4&Ch!M+`c=p!eKQ}(R(LL~N?M`>}@YU3+D*o#&Q7ev(U<+Iud(Fc6m%>@aIqS+U ztLL9Nhm#YJ1q60-#=N|$n#q-~4lLiC{a&wMKDlN=qRvF%nqt3`j)Lu*1vFUk-WXvS z#OwV$Jsu6GOC1>4yd;QiqQ&nG^E{lx2OU>Glwde=9_IUJ;Pp6LS}ETXSILk)R9}va z8I6gZ#Ov-o&sTS}G3oLxp{oi!XCO92d8$Tez!#pghVj7A>Y>wFu?8R#n+IffTc2iE z2Ek!1WUY5}xn%QRs&(|Ml#bA7OzAIpL+`8_e|SFSX9s;6tYjityXG7J?f6AtICMsJ@6UP_9y{N3Pay^2Qw zWtd;5h^}blEs!q+NxVgwv8r~U;Iof1i;&sl5L%cIn0|fDyJ~>*oZOpB?*CfpslO<5 zVK6-A<9poz7Dyi)ER_GKnz`ALIO9DH{YTYO=B*gE}!5@IXIwjRO zXH=kHD(Fkwo?b*?ZQs;((Q2*(DS!9!Ic7&&TqFO!AM#cU*~+Q7`Yn?f5vm^dG>GuJ z7gMNOI=oIDvGKF#qUVG$z6_QmgqBpVt*CREZltW&UE&*fcVd2$C?3+yiG9 z3q7v3NT~zsL+ZI(L+}go-vk+K(*Xk~D0?-0Q9!!&#F|2=k#g{kI=Gfb#}uw-58s0t zy{tra1ko@w#Wy&cu2_tJ8xW11Vb7I4Nxsg^ym)!yGg4Ka>LV4Z@nx6B*Pys$bK^wN zPPr)*S#x0a$(7>B`y*&@3#k{lM;jsjBfVN9fG%EwHkK6`7gmJnWs!n!_!fU?br2Kh zgunb38+EiRd(jrB%6bU_SfrK^g=Pwod7-12?)Fr_gz_LGoGM8}R5M~Eu@9Fo;@icA z2c&UJ(AKnJS{KPHD3c^w#EO)(Rqm7{(T%_8&+32S3aN%TU(o2`-@NMwj_ZqFh+5=v zz2O2tNTibk$XdgU?;G#~0T~cHDL^p9lhYH~z`VNxmYhbqK757l;rDzhaEHAj*BSDW zcA4EuFNsoi(%%@~N5PEKp%Q-QfQ{u*yW(e#T?9hD5=rV~3^FlHW&})f9AP%vA3E)7 zr-;LX7t8)zC5edSu$1eOC?INpjiH(GvqM}qUlkh4Ni0Cj%G8SATtB|AI@P1E)st?3 zk9+BVVQ2x4anJN*9$;gQZ^6h&=r%;#wE78{F$DDpPKN>HpJ~#SoPrF9h5s}7*}iu; z$Ee4og2>p1eI1R(=~%PU5Paq&$^2}7Hf#=>D+KOD7l(Dra3RC6fQ`q{IJN(EWu4hY zikN+l$=^!daL#|AVBaU}E8ko9Ex8plzm}{0be^L#9&xpe=g{+;q#!Mt+ZABCGg7J~ zxK_J7q{qy7qfA0^Za;oJbL(S3m67X3#bBy}t$?2l(8B~+8p({j3=~J@Wcq*eV`*qt zj$fH&q8<7bRbu{GDK~W|G|($QA45?$YlRC^`))Mmi3~>Yh3R~v2~h#pxN_iFC!ODJ zlB?pU55=&siF46b$gLFC%ayRYVl|xzteTpmh%_!QrV&AMC zr@SuN0)EZQ2_Fd87C&?YIdsx-hC*OJ9b{zJtzg*!|a1=9If`hEiJmI%O zu|hpG*<||_-Nirm;~nnXL|}Ie3T`L~>ie|yDOK=yRD@ym5!LBdgsqK@90}mQ zpzCEd9DmH9Hd>jwE2$me)C1f*=mzd>@w{PaD*7Iixx0c)YB>J4tbG3!i#{eC+#l*x^JfK zOr?inmAKFj?xSih>X+hKY z6LSQvLyLLW+w9L1=UqIMKh&AGyh~1ebeD&q8@#eboC4z$l33b*ST_e%a3SH1 z_qem-%BCoWJY8j_J9)Iq{%+M>8liY6&(&q}=g~lNg+WW(J%vLN&iy`LP<{N`uHT%= zosX)XP*mQ1Ufy3vo)*@TI)T#Ny}2N2nL92>3rX?bn7p%}(DKYSk+>=mmi5X2VlxlK zuoMfP_TlFp$9Go)i-T8^YO3g>7`DSb&zYl5o1N0})p&Te)Q0rs$nbV_mq4`RtOMnu z^@o$CxZL&~1}T@xA3;et$89I|)lY|Bd;JdMv^@L0I@9?B-{% zD{H!L%4S4PD)u8$qw>jXg(?>>wJAo7I7Y6kF&R~(ACW}Q93e+YqQY}e^;+3L@_zuT zK~=s(({(!wtCWrvcqRdn0NRxJnPl$YW><(P$KsO8hBBl!o~ z%nXutIALs${&Bm=?RPBRYrCn6LK59bt$6IxmTmgx49l^Ix6omGjk6rLuiSMz;8yup zW77(>Bd+`H(|lF72k7uPs?H*m8w25lAt=pZ6q6 zRcOWb1y97hNd2$%vn)6zgvaHH7X9v0Nq9Y4pc-;N%g260BFHky=X*OrWbX=H@#Gq6 zQ~ht+W)qbK&+I{Ihq7sa!iAk{pLrfPPNZEPb>Kp$9cQHR-a`&cbJEC$m~ zkIPpQX?oO(khkv=XsQvpZ9+cKX3HZd9&u)?r`uk|7>YhogHT6u2g2L$mNXPktu>&I z#vlx?4LwesaMIeopJw*W>5#m>(M8&a{ESIZ7`NsXz`RJTVQ{bN@_L=sP!>G0CAKJS z9UA(~&!$O41K_rrSy`1fLm87N z^2WIqyQVDBSJIc0BmU48`v?5BKeLkt_h4gNCN{c5)@iOeRu-+f1b*-^_<{cbRQ;@+ zOGZGK>UU1h=*VcMHWDKMcc<-rAIq6k-~+o3xR&PP-|FrR)+(%v3et_s?RwJuP3foF zR?K-t&Vkjjjm&_5W;vJP_*eEb112|dj(5B2{{Sy}hS$s% zQEFOq@`81!uTlO<%qa>kU^bbU!5i&C+ak$^dBaw?OO&y-=kNf}PKTG-3h^eN@YvH3RRJy@Z%jog*l$xzum%L7r}GWHxe?C6BwqV~f7w!l zCrmh!yKQ9Z&ni5e9780Cfbyb^mPSvs{{YQ^hRBrDOY;Lcghs+hf`IZ9#1rDQ{jc@2 z9znh(mq{~pL6B{<6tc-ecQn}7-xahZ`lPET2*G;LDyXSAstPYG>l&LCzm+WP`SK9K zySV;YrvCt%F|<{t8vg*7w1v|qx4eQeXi$j=LCwFFRsPpLSty%fAwlGtCzheIWKxjJ;)ORr2JoGuk5XRZT7I1F$`zPx|As}M}$QILL4sK zs^1BTkMfWBEQ573>sb;+Wd#_9;;e?WQMg_e<@SEoDNXHeZZ4tp`0$t0KNl^C{gF=X zObclxjFG}4wTM5YfrOD31Xt}TB>kV}Ty01y{%*4Rw6^-?s6|DMqn>TPD2+LFHLPE0 zTkT-BRJP{HwHQgalsck@jPvCjibwK&zC>k!w8$~re=gtMGTp}FZHsra|yG2MlgQY^6(jpn9y=@4c}3T9exyTx>KbFYAxP?rb`~x z$gM9{H1@>}s+v>^k8D-M*RCqjCbh*{Cwfwts@hWmyQf~bs?s@o{=8MNzBsFmYA9*r zinL{V^!RaB&i!ljVy!B#fvzg;x&ex`E0PIt;&$(fxs-TftA^C4Tve)`#}#aqJ~*pY z`PUVH|Ir<6!s1yWk(4_kh6+Ft{{X=L(*FQ9WK)4@w4Q?UhTd*+s{CxmrGOjkpAY*S zizKLP?>I=K5qT?OJ zp%MNkk{T0V*!eCMrGL{=TSyl6V6Vu0MSj=aUU;Dst6bSZ14^yw$OsA=sJ}OF*t zQj_VrnZ3Lkb@JP(DkO`3YQnTxmj)qk?G0yg?6e-;aaQWb+wR3$ z3f-ww?@U!_0Gb-&tN7QUBf^-gnP@BaK=2r<&ML-*kLtx+Xh0w}NIp2Kr=qL&c!A@J zv{ew*I*z;76>QXeeGj%O(2O_Q8++ob{SIBn&&L&V!WW}Zj{}OW^uv5k)u-MuS9}Z8 z=hC>Vg<};x@mCN?+jE6n3)BHZeX&*Qp+@^RwiReIAEUY73bv~nkjhr0uY6Tbd03(J znyh;5`mlx)V_N0fU0F0PuOhy{sn`+x&Hn%z=58pLU7li|P3AkBvjDc!oFuBmy+Gr{ zd_Qf!yUd({!@yBLmzqFHjn&elG@uw9nzL>8-`~{exr*moD7%h(1@&itRo^%n3cr)}nPe|!^M$ztvL_Bcrrlew+5TJwAhQtxhyhR>FU7xqYz(Q4>UTU?x|FPE z;-IPDY?Yw~A^ORVc-Z{T14t#cUq)lpD~EzpDD56=q}HlG|UWNT(C zULn-Qrg^XK_G_cKgr1k1u2Ce;ZT}+m%PH?xT$x?YYUQ5LP0J6nXI2ml{fD_832dx1etNSa4n39Q4 zu1KMsI8$@PY(8AD5Rh2MoIJ}V?v;0IXsB)?WP(m@Plj55b;s?qSC9D_0^Jv_=o%%i zi(?gqiU{G2MHjy>+AMs0a{^||vWTFWC_SlP9=R4vS;~&Pp5%V4RZrEY+1&f!S9)On zyj8+JTPUFGQ-N18P&|HEs)_LizdQ=0&=TD}$qo2os{9BWQ*PD8P#4$hYC0EvIH%Q42wPFYZR zm9~#5FgBke+uTOV48geiWsllt{iR&ZmchZtFH`9aLs9)1XZ5MsSR$=tQV3(W*#7`u zFhp#-8BT-F_04i?`-PfG1Yw$pL8t@3_ve|gj|;5HGa|#h+owx(3)|dCZsGyxq>Zcb zA>;8ozFO84{I_wbL+T=vaO}zea5|B?yVH~Kz{Otw08dns<)dRQ!9sZvQ5#UL6@Qdr zRL4v7?iwjB6ZbaJh}_bonsO2-{{Sl#D93*cP}SFzip?7Q0FE`~@So=6mIWvayQ?`7 zqILCc%K}lz45#eKD**Ekng0NOZLB1j3%p7g0LOo~@oxKMOq*gJi{vlKX|8V$ zx2s6cB;=Hl$n`jVlu*C0c>dl}a&Wf{W@Gv>PeH%BL-yoFVL~5i}|&2HApLgKWF(!>KiG?a>msk)Z?nq_ z7Afa1IGdN7Mu4n#@c^ayP|AOlFYL$9{tu32;)hoYHd@#`;_exIz_QA2=bG{wl395U z3O*#QIaBsH^7wM|8gaPEPrQex$7>-&x*`$@98_~&Pso45e=bC+M&D}IpIcZVUJ}Bz ziGd&jPxoPem-ezlW+Yngtf^@25G3-G&O#`oeYaoc<(9^6GJ<2Md1N$6F#>6RZcw!r(gD2fhS}FH~^J9p49D-WZH`EY6dE( zCQC#%{SA&DVaphhM$M!IW*(UH>$zvL$NA+$1fW+(pJyuVPC2b@&)&kL$bqNc}CgMiu zf7veGKF$_2)RxzRLvIXHIy#gx0=+t`d-2GYabyr%EO5te$@|VKJw@0xK6x8$3`fq8 z!8mE>j^0aP0<*LHYsByW00Q63gfK06bL$aW$rQ44^vzR$iHBX={anZn9Mzgv;4e{# zlx~K#Bk2DCEB3NQs2febs%p1#v7j{|n$n~Bzn3D~0~gk`n;lnQwYHfkW07a9T=~S_ImS^~Cq`M>T};s-y%4rquO0 ze#>}eL|bf4F}QRO&@;=WT1LNCkqHIKqN(^+m2_4zCkRp!KJwCx?oFD>8 zCTbefc0TQv#5ma`i(NJ|$Uhj|sr}&<*nZAfWY96&6Y~z5kjo5qWvwNU73Ug~9=;$| zf7bq7j}@~JrYZTCrCHhOtpxQqCx;{=v8g`;ylqc``2N;HTZbzVAidY}TSz)@mMu_* zCQ8TyY-oPZFZMaA%gx+k<-0jxY2b2}=al)kQc1O$t2d_6%8>}!hsQuFIH|AsOPNsQ z;pW_@wsA*g7$vDI5=Bo_^z_AogT`8Rp5mdL1F;k|>>J-KYAGhKVX5B7D1sqtE2Sfl zmOh;~-8oV6ZD|IBdWmbh@>=)I`xk6pADOH^doF#H!Tm@ZySPdRLs5<|wT0xlCP4Gm=eLs-K7A`#2D( z18EvX+ajM%HUXHC%V0JqmRZ2ZirR};4Fr#IZ7g>2uu{BvMJl=bQ7_y3KNICeum(6i zEi+SVyGevE8jdR(0~ubg3Fo>|KG!exmm_TI*^SNP>sEs2&;Ycb=;6Z!KgeWn6aGe8 zH)$z+7iDe@f|ibOM3Y4r?AS)Q($!v%w)v zkv8!iZ&R00c4;#yk#r3` zGEcTofVKG1?@m0ipx(=M9ElW^M-}3voxg@k5S6rN%M%)VqS>l?tsJ3YkpYP*(9`1y znB9U8pCOKsK?W)M3308%OFHzlFW&Z$U zT!4dji?uD+v}CxA1*vFer^Qp=mH6^I7W#}*-YPn%=SK#W9X7#_9{Zy%YmU!w^+eH;H>WqktQ7|$wduqDZOrFXHYr{7 z*WsnTfm%gZQNg~?0x2>-EQL1$nf_DgaNT)|-fJjKR<{S^ zttsMb2;^XXCo}{%FWKk&Dl#NCGMyydMakrf5cJt2HK6fnf14sgqMyu3JY?E@M%>Xy z6F|iAk(-y=zyhv@_H%Hmmu#tV_Q@OUJ}A?E1O1ZWrL^AXOt#b_E>a$Gs4C^@z*FJj z9exk^ABzeUE%jv6{{Yag=92Y_{A}nrs*ke0KX~s9Tg`Ef#HCA=oiODnZoaH^&yLO7V%29M!m$zS=un-yigL9`!PxcbyURxkh*tq;OZ z-_4ceE!f4QVbaBwz%j=`6Kv{xWfyJ0QDyvQR9lVSx)1x;fk+gP4_40#a%-G0A*|7aaHCw z8@N<vczN5BH3J)mmb%7U~TWv_1DYtA`}$yuHpU+VuFSr1co8)`ThMNc*u>#Hpuz zRibEW1qLd-zdgy{6?I41C;a`fR)eojKP*+hjn5UJr%Hdu*j0Ap?No2~;;!bs0-ROc zYuNPfinKxL$bA^AxpA)}zADfN;*P}A!(;eiwNy)f!lYwr$2`-k&u&uQ)cQ`u0>*?; z{{Y6>mx2K9;OcT1u*iUz%^d6<5QDI${dq9%b79Mqt0wuS8m^p|k-E$jsT@xsN&k7zDANHg&8Ob9BO_kc`5jt{FYpSX7sHN^(T#1;yFD|H72`!+ak;(q|$9M>*+@(GSVF3Wt9MQJ`Z7VTOn&0UW|q8(=KGp%y}sA;Wt7ut_mXtZS5iwo zYY_MW9XWqyRg~=H;1gq36oaAYu+4;s|5p!+C0zw+X&f6I{T zOE;?`w082IKu8v%n<`a5dCQJT48C~1R4zy{bv&|2DK+i2&Eo$6qqv4MveRn({6E#g z8j7X0yTt;-DfMJkp&$SOKjkm^Su`ZNmne9=N$QnwWMZm#lsuUW{>MM^uoVs5AoF|0 z%q6|NQkIrR;wnWr!5`84SUD-(Kh%YVtSc;WsAKj$Bm|N+JfvJ92{)U3)p4gyYx+LT z=UJ4Qc(C{>)T;jgKM%9ZBo@(@9%oCF9C1e?JgUy3KtbE#^(GDC-WaW=K7NMTber4D zRvxM-^%+orT?)t>`M=2IxdIzwxq9Y_fBI6&+VgN`g(L&!GhZ%l&?A{?u?OfoWD?TH zUBF}XVOHr=xW!yOx27tziflyp_TF(f<^dLZp2Y$Yz5A~lm7-K=!XEst@ z9#_0+Y;GEes6mX7DgIZ&KjE_aantJD+io~M7af`Uo49cEdhNUm+9 z^%+}$Sb?c4_K|u0pY^^hP=J6(JnI}>l2-)&@8TlAZ5{sIf7ZgO{)2Biz|0mk2;zf! z?fXw(+Qo=n=SGz+nk!WT<>O^u2ln=p_bwu6imzOO1ynlYVS_mQ{urb zl`FW@(Sg0WSGJC0`{hOor~u{39lyK(0E;oS(;odKb!0Ne6YA{T6a_5G55OOp_&GQ1 zbN>KaAWLA`AEw(uX&b|COU)2IkHUFyKhGn3VYD!PU(JyDenql^FhoilkbX*KBb6nO z`IndPGP5S=o!+JmE~HH6$VmvmVI4?URUNOU7($F1*93T;Euu*iGt} zlKF{Y2NeDEKA$cgwLZiC%4M|GY^L*Hk4d>VlZh^F=ZzzVR8WYin?iX?t-3nLCel<{HgX@Q#9dEdk?8WvdEo1*++)2Vi+!~V8N1QLwV%#qC-O&txx z7=hve_%}%GVz zKg<4HO2zZP<_@tAt*Sin1~Dh@$0n&@zYS_XXEpgHW!qto2zzh*;)boO-y54*W_Q!A z6+$aig=XJ?C;lUt@^YeIMg%(&K;J2CTz)f!SA_t4LcdKZimWYNk3)*Nc@4G$#}!Gn zm$?MA6@DF58dvY{nHcHC%4z3!(v4spM(P|Mg}|@FDzdj0uiDIz;hor0SiQZ= zUkJgBxvZ>cR)?ei0L7om>@rrylScCXsV<}F%+kHAjp{=re1%jFL48E{c`y8w$Z<9Z zrhaX^z0l;2sD7vdnWP|q#l9cj$TmzoOo&Sw>g!m&w9{^23mgmytfjsu4e2C&J{Q~K zZhr?HAfU6Gu_dfXto#*dAC(9n!~C3^Lba+0h@JwzqaGmFX8vxUYnSrmOE`qaX;l5B z_=&2=2nZKETYc7a!=Opt@(!D!l9I&iN z>&Bdj1$u5jV=T6kEpC7kMCS^62(Cd;>t^C zP3*00;zS;|?n&hzHKMhCCFXx;{ag!ZU2{#2<5`N~Z#@7YCCY$#f0B8A$NL;1OD53t zsLV!tS(fEmpB+tG`MFmm#Et}g#f-Mh&fq)_JO0nN`nYb|%t%UL{oK+{0?7#j(h;d7 zDIXU-_xQ0an5Uk!n~Tjp2$qDs+$a^>b_~??%YVkW32evB^bMW5TEvhj;t@iC2HOf| zrbl;m5kYfx9zGqi44*xIXZ~BkY37rwUC!dyQgI<_d`LjzRyOfgl6CF0%@6<^Zm16J;Dpc+e*X(ij$jP!HKedKggPIuEl?T!L zSxGKLMJw>&qvPLUm9sBqm zEVdE1A0|rV#cZ_XwU9(ALmi1Vq5c_?;&VndZR8NKXQ(@M01oYo6ue%=by%&~ERdQI zR;$1A3vy z+3)cCe>MwRMr#^qFf0yMLKGOk_E1iy8MbQ-IWR3iw8ZA>f?kU zs94-MNnrdbf<&O|6%>X*>QWtoQp zNkRnx9@XoYaDvh%Q8vsj?qiZ&)ci!LqXGxoT&TvIVJm9#+TG+jq+Y8jG~-H&kN0P` z7@}vZ81vtluB^l|+ehk$ehs$D5A)OFUyCf{#uB%d{$P2t^rHP*c!Jyt4r6r+KGFl% zu3}DZb}>&kn6yWLs)4>yZeZP-c@xTVUlVh8UqP4buT%4`*_VqMJC_GhlnsL+yYh_i z{_?^Fds%i*gnEI8+7wK@W1`_pC5BsP<*R#G&>&_arP;_PGCWuIa^bUzNvpm#;D?PP&cD`s8gn^|DDX`x8i0sEyJuoU|ww_KZ!P{P1TVHjj( zx97@LX)4sON_#i#WR}^FMvam{DDFgs{`AM=DSulw`roDA1!NI8(l81-gRK<+*jetygF;I_aSHQ}L zMp4uPd@vNZQA#l%I$&0csXJ_au~!6Y_WE!t)~{30^u=2W4%VOIDk_r+bYH3pvJ z6=(nlU*n3cEUmWx0M`{uz0D8dinxYe zpLQzcLPy3a>~U2^j)S+cAKQwwNCSxmz9N{a#U+WR!0n2p9%0eUvd1C#kvb{rPrG|& zb_r8~sg1BbUdCs-m26oIJb099f>?^4PyD%-3xmSNlJf2gREqLK9DEepx9pBzYJ&k~ zOlsyfNM1*OQZ=lhd~47F{M+OkLmjZT)Zw{CvL3hW@#Vh~el9Eg$^6ZLvU(?#Z!ToK zc-NN?+LVAk&)H9h?QfKpLFvAl%!?$laFR78*mXbT^1zfu)~OU$0plbFQ%+s}Yx`KH z*!``c!0+Y6>J=`r5XZRAkt#*5QxjF1f{npvRV+bzL|N}79%ct8fA?0c+j`)!depgQx+9H&Y$ z779$Ys5P&{%~$PwKeO=R2uu?4=*|{qS$UykEGP&+WqANGN>AqvZfUG!)9o#zmRj+a zHY66}1e_Q4oBeEwZG+c*l`(x5&6q0I6{?}+tNuc_?E#wk^L9`>CqE1BNHoYcI-nYI z-{p!Hmry7-7*(f|zi0qEU`tNMy++-JD!1Zu@e)6VD%gwZ9@whZEZ+#+{{Wu&s))BW zsotl0`za-2S>lZuO}-gUr~<5pOM{pbYJDmX@Mz%d8Ww1O@lL-+v6vC{{WL; z=6=`+WoZ_pt3I_V+QDWCj0fcHvZ*1MdQI?_W$yVwlYBw~{tvF+%RG^y1$34=kAV7r zXP36zd9Fp19P{6qCA}=RG8wPt2%e?2PzO?5)8p{*Qy=^m0?rgSDt<`(q?28^Lh&-R zidI5blxj%(MZabL0GIr%1Od&L5t*pHv&)~73#Qs6FK`TtKwVTWz|;(==L2BBl(S^L zM&8@eP=4LMk&W#Jm8p7xS@61bv*Qnc6~v&;Oi z^|J(rY76QA0Qtp@9j!dOEbSRbxtp0|+*9G9%4XXaw1q3zDQ#T4j=3dUz@e>cTnf2p z-)G{dQA}08M2*K@)WWDuM7WKBV68(!2Ki)KXUXOo)%C*O3x`CKAZfxTqeewOB@giP z{jM37;RvGdytul%Lpq_Le~E{}TEA)DKA#WsWqeJXERsDzu88{er`74j7DaK(b!vT|RYz1u_=@3)L133(ml~y(pK+)`c$XTNCY%tZRk~6r z+n4U>zY65o5SMvRRn)beO61ENmT7ER1+1%3c_`xCkHa%^%bJX7=&)!FrrRu*fI$3y zG1LNnCT<@VM3oFzShCkzIlW~l(H>|=!U}K5d>_pp^M2MCthQa{1i45HOAwmXpOU#X z;zx>~i~W{b;}&%TF@#3yOl%KPT9e`Jk!49=7_1m4AKf{k@ie7!R>Xuo)$Ddx1JPb# zg-PYM-#@jM18qbxKQ+NE#nc~CQ3#dAYM_b}#knu?;3b@5$`eE4g4)_v7ZEoaQ{mWt z&|bXqi*h(p+jW}e)SXfywk1Aj^1Zj2EM(K}fusGF8!{fwhb0qC zBrH6m%Lyf|C7&x~YtSIJ0fHLOxgtXGvJn z;j(tLNjOC)RTnewIph!Z7Z%;Fjltzl*=|3w*g!!j9UPgt+Q#8+ zqH1vjHyWLixo8bXb!}5ijS?{$GdT$plCzaITwkX(B;v*Av{v1ks;?lzpTOmHS`GBL4uvV{Ag{Jfm%?SShx$ zVImZ)bGhW8ALazt{GM2*nL&mtW{%Z;B#bY@7}V5tTnS7rq*({Xi^Y0YyB{5}Di-u4 z(21nx;vyJ&WP%&9_wf_JmvSym2Ws_(c z-QCQkI4Xn$a{Z+vZ;2cEva%b5n1AN(y&N$no{7s)oT&*?s#d?=bNfFD*_S006z56P zXSlXgb#e`UB~{|ZHv2rj9!fuF31Yifo+z!J!Wj&Og%q(HSLf3w3+B@$&!MZ?M+&Je z8jdPjmG^A4OLnsavIUmL-KV}h9wKNLdUyq=+U1hswmcM(YW`#@Of7Q3C-`C- zyh@lw{{ZDAqWVjoLTh2f#zx5G{=wt@-9MKEaDrP7q{L8XT7HtZ5Tr54A$Vw5Q?CB=Q1CNO3H z0G0k)ZA$t%?ir(rO?eieBPEPp?K!1eJ)2w6kdIfBa!RCpDOw-dA@eTWFv`CwyuGJu z5y_}t@wlGeP750k?!VSw_v8Jn*XlAGr(>tY4>zj%>k$B{3(znX8G`JXN9I44>!vLojmrIl1C#Uj2Grk^*el7w2Z0JWC~tkj_SxO zOtnUleL`wppU%7S%Yn9{Ss#!uqiuT1NevoQk|_Pi6{8>Wlx7~NdR*-Z^*xxd>0Q2A zqIws1qjl{}3g#?&Vy+(!*s7Z_uIGGJq2XHBdSb4j0=+R++`f!es#n7mcW;D~Pac@6 z-@6rXsOT|Pfju?{0=Tz)RiNALinLqkIIBbA>4hy&cKmTy4f=KQ#ak6WXkxCdJ%IMY zt%eofd{uVcH~X0?jA5{g6B}GTmxRa|zRpwY{Y4>dK`h03Hk* z_M3n2a4MX>Uz#ZvH7_}1x^ke~`TqdoOUDBw@$GIcE#g}UjFHOp_?YfS?IN)pejoC& zO(Vs+B__B?eF8X=tHsr+_G2Xdukx1^A}uctpBft}Rx1ul0Qg8x=T|TBx2gL)aMCR* z)vkWMEyGU=ksxM_$ zk+R8gepRjKF)Fa;02`0x;(Tz^0&M}SESCf%69WqxFe0=g-|a8^EFd9{>%Mlq(Qcx& zwzHB{W~`EUFL#Z4J1_G7)*clMzsvfoUc@dvZfiqMJ0Yq5Q{k0JH$^^$wyR|&uqu`V zW8Wg!6$*tNxADMPEdY)7sqh#Twx}3YZv_;sYuf_05EEWM7rrX({{U;JhAOm>I`qX? zs{Yp=UIPlW5D&08pM9}c68``-J$x`Lf~nsXTT)LE*Vxk)Txxs?7^_03?a+JTu3&08 z5kb&b6>v(PriZpF)gwYEoA_d`AQDO2<$+t=eVi)Q8lTL4u~nin!NSPA}>l*6XNIj zb2l7ac6r+fw6d5en7h(J$>SvKI&nk)01<4-ahUeEcU5~widdpkvoPF$!DLE92lFM` z*|SG(StF91Pb1r>{2oQLBYc&p&ppe+^rsRVf`Cmo_}zXc#Y@+8YYTXQx3^@C8A}BK z@}cnkpS6&rT0UEWYQaf$nZc_NNKiX){$qlZYSCKAkhHh2%hvlb@!VJa*SB{2Uk)_3 zt#NY&oPtuEB42=(8}Iys`G1+RTq|fjHfw}tXq2Qp%L<*?6Z6cdXZhPC5K&SnddNgW@CqEE zy?8CsxT{{FZL7D-61trADtG#C|b&D5F?qZMmr*;JpV zg95a*PP=+^j?WB2FA>P^6E68lSZP0B8AeT1ROQEriA!q8>?r z*;auM^8WyrhM1wXIU-q$C_b}%B=`#aL3}d6f{8Ye*vB)O86l7f4Sb{!T!) zz+2UPk@+pAX*S{RPuC`uRhgS%T36vr#+F)gwF9+JiOdNbc5saZ zUl2`lw#EEF-)iAhugp4;vap(H9Tsj3A}(mWfUm{>05s%-67pXuTaP?lOuE!%BwKMb zp4-rRDt^MZ?Pfh2P+_$|1sl2c<321OCorhoX3&2_=-*u4QRytfXK666c4g7R_af-D!bz} zrrzTfTUu78zBsBLK~CEa{eKLcOI(<=R>C`p9U1w1$Jk_}`enzKy`G-?!}_==N2JX37G zA;zA`I!<*Tw=%#7bollkwd#K``#gVVEITj;(`!q^V+~$*npI9*_-{JoNWHQLbtjg5%O%4kSc^)QpXJDk0{{RvGMavqQ4wpJg z3^31EM6b^xQWFb^5v|Lz2@g=LI+5S!kp+OO5c#p>8kEUP%E z5&%?|JN!%bc=&S0(gm{5Eoj%et?YK%i?qL2h=VGC0)H?1&m#W-z~ok*lytiAw~6WS zlTYJ;AT?)t1Be9^spPxV0kQsLzBI@vMJmT3NXRQ1*WwiK@e$*arUcSsW`WQ-o0@~N zfGRujt_2S}{KxXG#*HxZkCs?LswVOwbN-MA>@;7p0M^WTLCq3-Sx*vjlGrzSm*$6-hMghvE}cZErOwsx<2MiZSIhCq z#>)ifNz|=wtRlEa5(iP<8=r0D;IB=G(}2_t!&F)axb4 zZGy4l0RHdb{%T}xl`@E}7J+F}K8y)nG-5hXe0{s^gdn81I;_yh-jrn{?$odQE*Wr$ zaix%iGkTM-dxtIoqK7me@VgwiL|}Fs64sH^r?%a&$uW7ym?2BswtHz> z;@OoLtq2QJREGZmW$}DjQ;-T^*0$PJ%r}!wSni@c;#K9r0OA{(bV&&PrNFW_nf-AR z`rlKIWOf3v6+B6c`G3m(Mn=NInFPAOs>4-{CPh}@;4ucL_FsqFPx7)rAfBl{zo}|= zZ4+O_sVI}wj%0681wZb&V=MjJFZ>H(;bUN;{Kc-^#XJjg-lPUPyFv&og!SUTWtIFe zfEdczPn864#z;IPYLXeZ-=U*#jDjFlV$^3_l~{ogkVmW3sjo_Z#@Q1VVoP;v*#5C0 zjz$*|fl=Mm{9IT0&Qu#nwlAp9Sd4}k+_JG&m*Q#@{n`Do{{RumAcY(6E>9_q?B!J; zb7>fwr~_miejY5|KW8Kh5)j_Dr4*?J%ns6o4t+G)iuD}W(~B?dW=J8RhFNac7ty7} zexyNP?2-cje_CZmNu|1hxQ!kwP_s@@lg!W^{vJQF-wq(HJpTYf@_;vzYABKj(P+@S z)gmIixN`XS%fn3NVv~CVb$ctw@=`l>E{Fjf)}OY=;r{?vBv?{kr+J<|Ri}bQXwjG9 zC-&JzTy6Gv;*uSzUBb4}8QImQ!Cz=~|(7>S^2Om4R%{L|J=pmh}5O4LUnjjS~7|p@TN#eyHE^ zu4cwG>ZdLu$+YFwHS5!)*%r8#HmRLS;TZcgnYw?l%H@=d14Sd(uX#_4VtA|0bfH%NCkqr0R_Nohp7JEXg7gdjs; zG)gxDBUDmQkp92V`+3K)FVFVe_jR4;`8!vEU){{6|ERfgy*#<4w%1R(STVMKx~bOt zzASnjFv3sij%?H|r0v??TVY0@3NO^r|M0P)FR5VyQhY|q5^y6v4nh*^)(WR7AU8dG zx-mGPoJ;Xdj+6zAOY|_^6YIwwkKYl~;3C3is!^0(B)09+lF1K0AP0I$M%4_*uTPi*wZ*By{Yqs zW*?hA(Nlp2tr~#zF3<+b+Pz9()E!PRwS;D%h!;K`Ry@^X>7cfh3%L8LvyGtJK_qGq z$6Ek!gsJGK;mrJtkE%p0;j-k^5kR7E$l!$qB7#dDmv<#}giA1zEbep+4*UIYLe!i_ zuVl7`Ufo=8-({F5B!Z7G2G}DhlD+@bk!Xm}|15CXIVHpJ{>=l|P0w^p8gtI5w{w56 z0rZ{p^rKPO4OF1*!RC^6G<#IgwM<)p%oRgV#U)zd3(kRTf5h!7C+h^>Vv?sIc1HCJ z$}5#1g#=^Ch)-2E9Ts;*jFX%n#?Fsc#LF^G&4tOhw1)dHuFV+E#A>tLkzG4e3P?u9 zEi5w$F?zJ}RD{v2%aH z8z)m29@64~M9I^}UHLaUs%ubBffBvsLQwmJlmZQ~mD8BbMmsD5Qsr>isysNeb9WQ= zK67ft*h1Mps*ArA2C95=!s>0v6MN(cRd05UlY;ObKOvhXxH?k4LRMwAi7?%BlnGt` z3^!*=;sH3Xl){SMhT(xvMERfwp}(H(#=Z5jq|MUpP$&KQ4?8}?EspzbRKP~W_jv`= zgMKG16|zr;CqzO7vXs-;?*&9zQkoECqob2&8)O8}B)vJ}TMecqc>hLa`(zWZSt@mC z7rL9Z>JV!s7f97`PzE&6hU8pYLaQO~R>#p=@Nj+xp8A?_(_(U4gFm+t(-t#4f^r&DXW7pRab*ZOG`!YFl5@TA8(+p3M^xh4%qYqjM| zLXBHMJ}06SjZV^sE%Lq>d|6#^nnh7Glpce^ZY-r`%P?L-mX^r7z9PPl>2(6cj|m`a1!2WS?3t7 za5ThQf^jTNwuI@by}DGF#oR6Jnttrd+})%ZD7=k7J=c%oXr49b+P}ng4v^Ah__u+K z9h>WC-OJEg5Fi6Frn11PLm3X)IJC};X?npzANQSi^+>Qre6?~oZK}=rcYj}TgtHp1 zl~O-7|88JqadtNE)FfpjzfqTcu|8>G#ay%K*qbVv#_>j7Nn}4gaT|T)?q*dx%3rF8gd$UGW+se>N zNiGj>+Q=p_*mBBgqNH>7C8wH?>lp@c4ZG6YpDJWuBlj~{^Kq8~C|CTHPlPkKRK5el zFwjcFDf5lxCQK_qjX>67F&F=2IJa|0^7QxA-{jHF@Uy~!&+NBB6TcqUx~(uh=|?Ti zX~sK5naL5A&KPQ?=Sx8m{b{AAm(#X9h>UGqvAi=Lbe_1#g7lz=5@3i^QcHyU`@Gxz4UKztZ_f-vu4bVsUv||0$LFz-HWo{6CLhLhH@089tQ2% z?LWo7sA;_ZBT_6>WUDDChUEl;O5ZVDMYvPTr)xRnc(GiQ#<0A#CHfDA+f_90c;l$F zYIE8@>=l9lt>rZQ+YRvOQkWM^rOrU7oQ=PnIo~>&xbjlN?6HS)=fi4m0k>QLaPo7L zC{>{ZO&{}mvBKT5xJznrsdMUY`-B32&n9DH>k2tgmm_DaJF3?P`1Z*U# z`c-`n7dTE!@+$TMybm@89U6rye(gCls=aXs{5kEY)o;0gBKs8FOiEgZ0GY7yryB1g9LyEqhU+uX2y8Bb>ya;D1o96WC6YSk;RjHbs`6`o)yQiC1=8xK6B3|=gHdQ#@Z>N^^Xi`rCo+E+;?In)e zoxPKBJ`7<}SI_Ig%6Iixxfr=~#KxQ?%b7|KQt+%iU^Pn?pXhku>(cgQi_RkH%h|^a zca4~waveyouh16B>6beYj1H5rC}BTs_N|dp3sW@e>k@t3C#3aor+r;6`)%_nRZW@l z!yi%DOF>0M*3#dPX^ToA`rF8uet^m)=+EUY&9iH>y|u0OCDB8?{AlOIA28@9_r(JGiz*&bEK5!aQ zaeI(sb^g(vwoB>R?Jrfmn#h^GJHF3NyT~SGHAU2@f1{)a?5Vg7D?vTM%3@o^JXjtJ zdcbmIlkk+Abq8ObiH{?5HBJk7i8vLw_nfF?VL~DA?|Bekt;qUUfgw@^w1{CZ@P4oYyDy!P>n=OE~Q)}2+(pY*!bpMvq_g&&!h^f2mO>D zGi2N*ix1xKjQlRu@{8j{J65`bB_K3^K6k_v-wEhgA5-}C>x073TepAL5w0d|=xBy) zZ9R*6JXNnlelsP2WII)WY9`Azk@S8`cG@XT11t}iWld3^=o9{SbKNO0H@Ow0; zi5xCcWcw=%WA53sxiS&LVx(os20S>W(}?BQssA)`m1Wf|7n?pVg0GvyR&d6UoBwm4cb3X6;R2B z+HgW}IjS4SG6UX~WT?$-{{Cx@^Si~Fl5qG{O`b1SdDXV-3k;Gh2rd&Zv5kH>9{*G8 zE$yeXGKG)8uk`YV)$3U?!3}M-(`G$VMvZF`lGZprSVp=BaXClu(o?!%w+D6_J=2MdEnCFKEjJyRX+}77)-yI2Ud## z&~7k7=X`Pvw<5K(qD|qMeH<-2PNygOShwl>M5$R%X7K?N9$v)Tzqh*6l#ppEsB=#w z&ph_Nj;ve182Qa0L%e;?&5b8>R2a>~6pl)(;)7MFpB9d$$l>Sybc>+|Qt`sSw7Pn; z$i9ph)M}FNz$G_k`Dq3`QRb1H%kLbMNKBho8mkJt92b8{Wr@}LwF@r0K0m1JPnrP9 zLWuAdkJIecFk1mi^mo%-s>C?~^Q!}R+xZSG5^Gxf??<*xBctNS7s}znoKRs3@@Coo zoV>G31m~%7)-Pj^whDEhrl5v7TfZ)AlSWp8Np0JGOr)IaUV2jKq_W; z#ot9>RgnvfN-3kU+^S#5gJdk3=QKRgXF+2ZUnw!X$_z@|#1GWfaHh}9zkhS>{S--C zdMK-+{1MDzIPaA`wLqD=yObS<&?O>#usOBh=~%F(+CIvl%XjHoDN^@nYOB6yYuJ~a! zfwH6?iw8M*5$}!6%u~_rwF7GmwmyeEDtbV!Y-ZlMO9w*LF3JP%3o59lIWd659Qh@| zhFz@6Hg82BxSOlmK^P}!K+vz8;+FX8Ng_+#{^I z$G;tzDp=d?KaOT z#2RCP7>#asP0(Q>QHedHZcGaSPtoa~j@^t0ghXGNvWAkT*Z-Q((OIZbzb8Ddl^ZOa?)pE(d!6U^1Y$zE7hrxX~wmPVs>Da)^ z5zHChpQ!haHp&ARHee~kSy=m6T-Sr4(B@3@c7k%K!7Y3OBk*Quvf-v>tuaBGY8B+F z>}KKsSf>Gd^hO)qkj!nPb+Kaivv|V_?iTqK!uU$IT?^VgIn+4z44kX6<~7$``WJ~U zP;?|qDx_P(xGL)0*Z4#OMZ&NK(o3Z1e*(mY#S`%epx(9SZvcmC%io{xkj<~K9wcv( z&A{t|h{Zb;+A#>i26@MZ&(+^Ni#Iw%Ct`}+AsaP5NG3z!S~oS23!NBWEod8c2~}f! zt!FA^o-wTQ(!M#??vkhypO$m3ct!W%|Mp^nG*=7_|Sa>8Q#7zPsao(Re%FUx$;%Ls@1~?9n}XfyLc; z_(J;)Oa8L5wpF9NE-a1AE#q>W!a((Hax7Ks0nxJO&z;$6CXag5BOc!2`(ZaVp5++I zr@a(;2I9KPJ0RY}Jj0)Y!J8A#vUn}PGtDZlK>#ZU@>cQ5i>JjHf~dvn!7@c2f2^if z#fV2sBT01+m26@SQ#B+7GGIw{zf9CAG?{0nka{>w!Kiw$OZqi@(vDZ#_L+L!e_krR z&q?VqqBGBLV9@Wh5){js!m%1}kb7Y1vFTcqGwdi|%KV}Gf;u#j)`J#>6Rt`zxlqB= z0^U2Zk`)HWtVIU!J=cDqr=-;g*(vO5W)h=!S<_nk#cYn=79T4Z>=_6P(2`>u_9d_A}MbIGafktET1HZ;oD%gutds<$nXK<+uuaw7Pgjv-;E7^>g?!++KZ=Y z$Pvq)uYZOHTux{hZBk`U4Yb|~h~<7Z#9Yc_v#wB)ir9TcB<@hGoc#NxU=a`6`P!9j zRZ0K#y^h)s%=d2(AT0?&7E5xqA(=YYHxswzGN^LacSgE=t${CHE%pdLq{u%o<(;;W zX7h{ViK)*~u1kYIM0ydFzWfg*u0_F&W-mV0Q%vq17CwPGEyVQF{Mr-Hj-#ilxxC)v za87ZeFw%*YO-MTJJ9}GHl zCqK2tCjxe`*yx&a-1K}eqttgClBX4LU0PQTD|Urfwt_+p!;RL2OA%b?>+ng0 z$@b9fm|9ht6RoBfMM-(lO?|9Y<@1pkefj;@J#1>S5(peNLRLpe2Klb$#gvAK9K z++bwPKmOQ$>05(kl)EKQ1aso4ZWHa%_q)cehn$8lia+0Kz$whg0Z81(;M!>e#E}KQ zf#DP5nBHyTqc$Mn$dBd5nS_g zgiNk+@<60)$F3lV#d(WItGkA)(T)D&K(e?19`I^`7v&i<96Fov;-n0~b(g%P78^EP zFW4)FN_CX=EPQncAFNA>?vzp_1d@JwVk^St&oUQge2vh<5B|OO-f+mz%IRy1Wpm>Y z)sw#J9vjJML&wuIUuh@Ga9iy`T{r1+u}YAgO1KndA}~?p|L!j6HkaU#tq|sNq!1T% zo40r%GaJs`T{xwD#3y3mrgEYS_hKaSC4-?D<}sKERwl<`1@k#(>8O6nWK6aF=r*x4 zQ)L+4qoW0P&$aOq6LxN_wA92%HCHRZ9%5ns&>s>7FMTXls;8wKshMx#@n={d+x{l9 zoEeI*hY|G&NUBDpWgbMqcAYwuMT%vrUMC6rpIlNtl|7{~tp6X0tXD-;%4H#7w$VaU zvKtv5?7Ll=;lFXbD%iAgg}4ryK;a!NyqM~@9WMR4_P(k) zfNw8eq_0r^C2LgW3-ru5+35t~uFEIIr9Z^^2I7+r;JPMSBR(=|#XRs zg`{BcGaF%`ke7>3EaO{W3!iwl9LXx67|yZkL2sWB@>~5ZlMLCN2|$gV{%SquQ8e&ZPaXplkS~3)}&+^qS8#Ab$4%A16sLN_;xbO1ufIv z^`e!nFIk-%$iQ>4kC{dw{A=VeInO48m=!}%{O#mdVU*hc4s%rl>J!zO3+xB39rBhk zorTqDeDxn>4-S81$w^kie*Wm~QfDE2X*kjGXsPkMvf~b^SuSaw-7bWXGRc*cvFzE| zT!=qUx5y#7H0DD-_Tc;Xn<+)%;Hy-U?|s`u;hr$+=?#>rtfa^{j8)m08DSgAB!^yg zg*?(H$IfBVT6a~;OeYr$`iOjEprOl~5OCG^ExrnwuL3Zof)1q#qq+2yBK68{E}fpU zy#Sm^xOU^&js475B3)CBz};*SGPkZ$UYV(^rdvM|(WH70cNe%)jF$-V^En5WmQ!$1 z*g&R>SjS7dWOQ%NV{Fyf$!Fu|3lWLGkCOex)Bsy(mNt+y-wB%gf`KfZigefLET3_) za5!&*lHNLd=cnSa??ANre(C@fF~(Ecjf4=FvS9B)sxrnu5Ir_?woE08Q>zVtt5kx` zfPZL{s(DFd>dI}$T^-3~y|=Td*JL>rMNRmXWvfAry!6bTW{Fik9`%qtD(2`C8S6Ao z(M+dZ&A~^LE{GsVaQ?8wew{$7_)yE(mcywddp>X7ACZ+r*2Lq{>S461 z!m1DTQf%ZwyumZ%e2T=V9&}LYaMn#y{T|@}DsF;qWgZUM2OM_#KNU|9QRK7#h%3xe z>Y@&HGQRiiWD>!V1tLx@Z`LP95@!cPx|Z16K6>*MH%$biKdBBntOrowe}BvZZ`71B z2s4-z7^{<N5c~v8T-(H9X^ZDxb!2=jtlT8#tOzOVGx21wdgr@=JD1@eq|@o|a@k5^%=&7$xlC zdAJ*r8N6ut%0Iijis)3%2;~u@q|edZk&3Nw*2@@)nF-Aou8yY0#l5vjo4ye=a3pt6 zSlRPLs&HNxya+KYlcjrgy3?6WIW+Nh$6UEcwU-pk9hs%4X>|Tv9QRQD)VeX1=1YY}6tJuMnRbn95V%gP$xe5`LqfMC{fz*DsRy$obE^xj1 zv8acevgn|%XL{|?lsiW;FzG~*o8~SwP7&)uU1k*Z;C@s8e~${jt{uh?&4RrTE+D6L zw3m*Db8(lz74OV%nkOoW=ZZa#7m%4+JQXa2Oo~g%eV_Gqh*@QS_i6pmQQ;2NRk30E zId`60Cx0x)@{DoBmuLwe!=fM9o@66QmKmnOtC-cp32tc)89n1_9F;BKcFmoS}R`sk> zXk6mOe-4y#z2um>P2wXYt$j8pq|JU;+O*D(9z(?4CDJOqlb5Qd)-Jv@ei+u&porpfsx@{XNUmtDR9#R9{Z| zgMFSbo-qZ(Dmp8n!cTK~)*(imIT-GRc83q8sn%TZhlJN*;MOn+Gby^CkvJBhAO z>+@>9G>W>8Gl$lstY4%^T8;nhZ~HmF?NSlNSB&R6A= z)6|0WmCniOW0_vZiOq^z1j`fafg}{5M(s91^Pq(;1mPTMH{_^ptr+S8+5~w-Vu#!y zjOXL5+L(MccRZj@Tst81>FF^*@6(Vg@2$)W5U8$q0kykzN3#VW`(UEa@Rm9q?S2=S{O{UP+xbsf7Q_^T#4 zMGI?RTC8CK)F1S~_v>E^g&>V&JF{|~&PXU~Nr>iSiP-+n)8gp>~Y4Hzec_ zPq%5>_BCmyW!1REPPbu5@F^3NrkM!|HAMBO&KA%E$&koBNcGb;=<&4Y@UDn_5fYJS z%h~Mdp-pyB&u+#)JX46OA<4!-SG0a!Q?nPfIFhKOrQ!zq%3tDOJKUtIacWvjUz+yR zU&qk(ti=)?tM4QcU&%VPWtIuzyO1eE!pTh1M&`&bawzAD6l?3D2Tgd?&=mFBR3i&C zw^U2?xgaN}UP$E!H$6Qk&nS~UX_ea!S9k3($h!FhvXMZ^D8>eO1b;X38$)$Te;uZ7y5^#@@hZnp$%Y3Pd<@*AVx+yH^&x9n$2 z-H?^14-k0%IcH*TrtTnQPgR;z2biUMOK&bseC*Z?L7pV5-P?}>CMd)q#gMTG{tHLg zB5~DHFct4`Roaya&zP9YR6y{@oU>CQ@X5$Av|2IJ4YhSxA{752xQ(bhbHlC8%3PVJ zvr&?Q1LDULkS9cCu!3vCloGwbzSl~fBNqnI6TeH*aV?|p|{Jw~&gvK=3 zvENhLfo^ApCu-s^eb|1e4i!*ej0^hJc9z5jt^4L*nH1Pz+h|RuAAE`3y0L?AMw$Qf z-zradvtzw@J?lq}cc4~lf?jz$#=o4*oda#An7y{mlUW&h#qUc0IjGv)a({#^uq*e& z9CLVNC>+Kj^{{Kc7hb0b_6fyTd-56eslE-jLwaGS8%`DF5#IDnhab?9puao_ z_L806ylXetUkPomRee5mXoih~yqkysom1kDPPcV6e7O;r><@lO?} z3tFdL-r8{^!$Oa1uo`NtDF528e{+Z%(8lSoIby@7Rx7$86F|`_zA~ji)gQ!f5}J7Y zg@JDy9{CDnD7-*X>m_+ON4z;&4X=OXHKYn=7+BrT_BJ5Hl85Nl> zc-!9}l=*XNPhp~N35VEBhA$dEnZ*>zn*N;iK~nu}LC=Y|$q18R^TVBA)?FuUpY7?% z=DxQ#Tc@A9$R{$$R_4d~jZ#W#TgM5W3+?Mz*jcR5<3vO3UodwyGH?0p@p z@rO1X)CBMRHm2Jdy@_3Y%`iGdL1B((IC7Zp$7^Xxa+{Iiyjw>1jT?%Hb-}h2ZD|JZ zc+%*ed$EL!KE)!!;QTshVSRj|E zsn46q1Hvz68H%VU3NQYKhN`6@1D|TxPr3d>spFsIr!)8laV@O!l|C;SpwcUl&C%I{ zFM9~!r+=o=E;K6?KXnr9lH+b@2w4o=;qxUY=CLxD-s;$yVDa+EXfzr%WhmWzhK_=3 zkw@B&(*&1K=E6MG6t@Zb50?L-WWe*-_LtcUwR|lg=1RuuP*Z_2jGT+hP^osK#IH0l z0ss689C{V-#xC?mp6+Xk1D@q$abd89@`y4s8%40AckdYuh~;DxM0$KiZTB;gZ2Xh4qdiJaE*4Qblf`i?v0xJ9qbXH8!b7) zocl^T8|x2;D0jXnger=H6h6wasRqzBxE1C+Ix)qb@eIEasM9-@-SK1SdE9Z};*|@* zK2*&!#WqArQ|Z?fUU^4o6j9X=8mzRer$g|ndC5%b(Ypm#z(l1-qY9m zbFcC%*NX7$WaKZ7`tF}gM06lHWs4%`y8aE6C<#=X-EdIxb7aW>zl`R@NrF|rpF%vb z^nm?P`mYH|aHcQ0DkGSSUKM$pvzq!P@9qtn%Eu<OmCAMr{)8~T4Jgwu>>tZ7Fs z&3ss;O$h9jqF``JQp=`TL*otj*+X6)&-`h2u$~}y-Zi!g*C=Q>>hi6V@zcKHo!{;< z<5Xy)JH<-CSs)jFZ>6&Tp@NhQtp=J?lLZdF

    )5dlJ;0XRjfOx=metxo;kw6@?|} zqd<$YHvuQkWw5X{J#x&&Ba}jxw0? z3aVi5=is#E-7_{qOhbw>Y)ZXVl4xN4s4C+4e>=G8LMvp zz6>c8MMKpF8rQQAkBMROwh0=@r_ zVpGe;y*kaESEi{K%srHclgNOPe&Faeo~&TMsVkbe^l}c3Tw~$dRJ$LHablW*-tKKO zRX9tvOy;j;tcxLEqsFQAN@)$c#?WFx9uEUy~|6@Tz}5;lq>8wbH%so zENbQ6fW;kIJK!~A=+sh{vBtU)-WxVo7G&?!O#Wa57zmB9SO3(IR!hOjpp6)ZcSP`F zxiqs|MIXw}{f83f(hw{>bXBVx1=xJ36|nVz2F?*Yi^&sv8w0rv6Q%c7sCAJJm7; znk)`IRD;jqlvC{FUd|FIROd-|R!wdSoL#q{! z)YJ3y7pFKU`@&|u+&k&?34YZv0aGg%rVC?A6blCNvU#hUzcm_*!x%2Jo;=bCbWV6|h0N|n|An`wB(fM+ zl{`1ge%epai0zFrh~j0}r~P@Q%-m+{B15F_q$G+#@T^m+)k~eCmB9ruF5+)p3-nSB zhHoJI^a+P*sB6lvag8@{cpTnxIPtM^z+GZ@CB(QH7ssO`vc>5{9cXA#=as2%46Ya->Q}QqVX#8*gAj=7?%aZmTP% zur-j4xH`2C7m4NPtx6gSbCViTnf95N!E0MgO#6 zgyJxfJ9*J7GS$_fnV}S5mfcKkTF_IpFqwY)c#d65S#maH*$!T;)4mOp$g52=!8YWn z2j90V#BvT7H3x3q39){`wfcNG_Xo4dST2;UgNtxD13vmnREQ-mV8;I78qefnR-fpn zusqvGU(I-y5emtWi=-E%hKc5~;gC+>MUZEH=%vEOu5s$qD`c}*Z5@JViP%H$6xy5$ z=}BmfTa2<)mjtRfs%^JL0ZlD!WN{F(koCYw3!ODw1i7bQ#PTwhEDg6%(9m5PBPe!_ z`|$p?exNb=Z|<+SbjOEPAw$1cfe5QU8q`4!KK94eIk>7D|4BeYgO?1hBYNHo^j#@c zUHvyg6s@n(r8qXJVZD@dW$j8*MM!7)Up;^LSd3MlEkBQIvlsq+)im{6rRvHyx+rap zeGh=;-nK&}_;`6xO>Kkbi+%m%FcSbf!}J|LE1f5`R4XGi-AMD*wOiEh-!@mer;eVS z3!4@@n5lbDW^x2pCXuq!4D@j9Guy6(S>A1ov}?60ni36cl99VXzU7oUe7mc?#r;A} zLuP?Wjxv@!b@8hQnc7G9%zbNW`4E$73C-8_7+6GToKG#5&x^p(95sXhHQf!<@ruuU zr6>+4M}sfuNFx3r+*_iW)Ve<7R;Vm79rkL&LKBo`mQN8 zPn=sV4-Q=LUv>yjWMjpm52nmxf+ya46CbWWLzAr~kZtVyahNZ3iDd-j4wQ20M{U+X zcC2AQ!LVmHx+}byOsjmlw+q7=TMrK7NC^+s2tF`XQ&BA_y z(EtsEHyU#@zdSf;bM$OEIZDgD5PVa_n+2MP(ajYKbs&w8CSd_R?bWW`PKPzkCbe>x zSV}f@lX}u8iNa|ZcBTffv_<{60?P^wPA~k zn6r(JF%L~1pRnUnTDXln<9EE)Tw!VPnO}~GZ4_=)siMdH@lZyA?2@=cPnmOF>s>B+ zzBTN$S9sx5J;Tk9Yo_MnrWQXRJ*m$e3LSo@CTpY_rU^ZG#$s4-M%jPjdb`l20HHLe z&wdb;mXW=J=V3N8^K`XcPSX|PcvW%nyODo(D~CIJMltcjf|+yzDV-9daS5s-cfQN) zj5C`lak(0&gn3F{FF8=vo*XLtY_&E%50GVtC`Q6m{ZtZNZ&o51$4SYs~}Fb6q^=?_{Y-**CfN7Ekw# zs1|c&>=Orzu97o8O@yx!dvHKjx{tQE;-@uPU#^|OuY&gM8{eU+4QS+L#1dG#^xyUl zQ&el#%q;Nd#AMsa!C%)*{)>>I6iw~_%RNVvOCluLkOSH}dv4)`b?hLxXL4sxnw)}3 zTn)E+7-Hc_@iv=g=?-)7_q4j*O!36aTA$L_xjHn=_9JvxM;Q*DCsy1tl`{u%k}01{ zZ|>T^b3AxSaS2@--d z_tjfp1ujBfbtFQP$Nf;eVn!&sf{D8B>>DLa>L1#TKR5U^OtPy{OdQ}DEuG2~>uGZ~ zo%mGfDDmlQ&#u z_z+1~-HYX12+x&TeM&3J0J|BKn||EMGo19Z=Vlc(i?|L{xo;|^U=+gxf$Mf0IxlYE zdDQOxiksV-{(@DoL=_BuOwI|9Te8i`MqM--XXvK@#+TX@4JCpa#8(tUW++({%?9+rOgy)eB5T&% z>U2?_8s_?z$ybdLgI5?r*a4(>G#G_FrM&EYNG;k!$5uw#N07>;=^%4?Uh@A*0-Y7j5+^ zGPlCD0GQVdpIc9ljC^dwh(Zbv#{Bo4>c1IGo^xl-R*t-?tWqB`dSdb^& zXrT1DmokfkEbo&RFEb82J zuujv2gY&=C{D(60@uh4|2Tznhv>IY(x$9srJdt7lL5dSl9~#_ap)|Um{yxLNqgzw1 zj6A=|=X?wSrvtK@j<@i_owd!4$|#$;s=gL5mT^U_4^vMBA!as8f5DrI0$s6%Q#6f8 zB3{QoU)*K*DHh2j7itDISN`>!LkJ0^?fdBpsWJgY3Bhb_LvSJQ3#+rY_1jfJjcUybW8yib8_I?H|(8{9SpE`xF(KqpknV4j0ieR zj-_|ysa~agt>&w4tp97KkaKqd^(t~~Zpn~wyP~W;ToHS=DBRDmJ61d<0%z!&nZeht zw36)cRj;l`W>!DNc5Z&1G_y$$NH6KKSp(>C9YfSB>XqueogTUW6b#~uFDI(ipi&io z|2;Ka-uiiH&XF&t2KMzCe7(lkKz*)FeL>4y>EIxcXuLlw0hw!~IGzgs#!awPS-7y1 zecT~zK;LYD3Vf{}CsB9w(b2)g0zV9o!_63WES?5?o(5HI&hJx~+b+BXbTH!6y{?6m zepI~QJv_9jwMnSInNH2#T|_SeLxx}X&bfla2`=6W)5_=Gl-t%bQT0T&jTLE)7tu$t znbt-$=WwSExkbz9l;Ld|!+7QcQT(xVQM3i|&dcy(Nve8kis3G>77#%?@ZKuQDGgsqA zW7tpP`}J7vs(ykX48!;n>PVc;wkg`2$DCOC7EbephO?zxWUQ#Ou&rz-9?6@Tvchz= zQ@^#Y+0^Z0_Qep+K$|rR?1*c4o?uM0hAub%vFt!bl}d7q`5g7zBe+xElO>o>B*O9?ZLfWeL>b8#^5lg$S z{4r^Llv$*ZYF4%=bz8O|3$6UZySbSlAaaaa&q!6S7U9yzxMB(~c$_3EdPh`1DpmZ( zVRWJD(%SPub~X=Dqj6v5XOTmWS%OFD#=&jM@V=Ec-Cmn7TQiu}T?C<&ETM8T8vAT> zXgr>nPq!dx!?(VvEVA9GE;IqQ`A(uhcYE(912DMRl*%w##;5e%tcx=W)jiO?js&Nd z5@eS{9)k_Ts_skLWqRI@Yb5URcp5GWD&=r8m&PsqxG5}f)WpU3HhuF#l#f=dg6%-f zIQz=W^Ah|2UK!0?3w7upE%#bE-Wp~zW)5tg7_y)q5HKy59u0%=I;Z3{T|ORQnySE< zjIJ5~AqBPcS28y@rhdzNWT=X$_bM~`F}T|F@NGQgtWHVlf~DIEf$BtJL3KaGqB6&si{7^;G3lN1K<2xRny30HuePm zw}Y(O4~}Ngj(1`98%Ns)B<=TbT#?NTkXPyNbz65yG3mUe`2*AC-um>3Ksnc?#B&uW z+oRJ@**t1<*FvxW7n*ekJ#%zZFug?UL|{OEES9crXno(O#cmG&0PtU`25R*_e_^Ty zv>RDyA6_Q*d=`O`9w)=VFPPk9TNe+q$e7k<@y8zgkrL8Ka6!SkQAMtAm4Kj3SUeHC zAYMP)kE~+z{aRUT6B;8dzte)HgQG2L{eQdd%WED@qx@gomB$lg{MSh9oYr0-E+l%3 zLb|=+#)@EN;BjxdnfR1`=xdV}zi#TWWpR_+=ZKsGm)^M>zB10LbN6F~*1pyYDKroP z9!}w7e_=qrvdZ>d@DGb8uk)j6z1=NRClx(Zlpd_am@~|0j|!h!2zj@kn)FWYnr5SEsy(Y=jfKu8fs8ff>a=1PQ}>p;4DNsgmnI0zoPuaI-F2hn$`ayz@N zvnZ1{2LZ#)@5|0~3832PL~&>^KnOI?+64Iv7|%+k3#$8oHfqs&KR)b1hsdvnn&&@7 zl1LE8J)0hytjr6N(8XhpucO09(z(CrRysTTXRbFNWH}*K*~+%Vbl3MYxHFR)>phE= zJ$@%ZC=$3P7+}8*>xbTd;SRH1Wmd<*s@881ebAm9MChLGLQT&J2RN?Or}&4PLWr;b zLz%QR=rmeBJ3j-LERBQP`G(IXyaK+*oKK>v9p$dM4EDLlS0*DEQ3SSc7Y6=4!9sJI znLLDX71a0+oZiE!J_A)xNbJSY?8sDIh)^Y364`-x z;j~5&7<84WqFMX`NYfM%1;Z_6z{1qB_gr;8ikG0uL%?{5E&z~y{nrffdi1y+1)vol ziM8;S(ay$t8&y7{Eds7s(#M?u$a>mMgDZgYBDvoAg)sRoT)&A28+|I*9`NB(`+EW( zg!GbZtAIQm=o%Bd-K4k@n;qS*u;5II-9|+H$QC?cz7J1nH{qb8tYV;rj+M=M_!{3v ziW%rY8VIog#d5yU)25O_L?dtqUh@)JnHkB=1?x z@wDaz3t*_cjAPV26Z#KjaPt|TYyyk;h|ccG%_6R*Lev~b};TOV`O}+R#obQlHjwfy)#|wG&Xz`}@tXnzLBONwGvT4bI9(Wtb zr4foJGk+MFE5~KNhH$fXH>xW?u*_EmXWqX5)tKS5tz1_*WlMVL=P!XAuAw+7lhehh=aalYp_V=% zf`qOWf>rIy`4DoAe_Ojw>b85rzcBbznBh2eXak8tt?MD-E0ml`y07{yeCSd*)BrX& zhkZ6^|32gMfDL&Y=8JN+{wvw(_X1q|q+9X($;JjjvedC_-V?2Z6ig!c{k}M_ZA@SM z-M*=~^;KNON2_;zJIvnQ6R$di!lf}6WIw^CPRO!L!72G43IiOo>V3a1Jl1PtF-e7U zCZ@Okr04V?-WA)w^Go<)i>HAYt9$}O^E&{VXa^G=_iq(q;IUBiSJx`6%mN2Y>HLS% z$*}%FYQn_4orv8?e3h1S5qiS+D^0K&*;KjfBbTUlXR>JYpjLPC5aH@4wR!j}47Yj< z+{Td-6#tAD+DU0&oa{WzO;n|K=sD#ngswvK&Q_x#a`48de54`a^px;}Zi^+t zLmMNtK{t{eQ;h5$drFk_*O4Sw1M7iTwG-h@B?I2yTbc3G!y$14?u8w-Mdwd4g=#FO zy&$X%qGN!dsB!n!GB`VPy@@GDLK^{`o!g-?{4A%d&#u$WWf*Xi!R6Bpi?Kw>?!1hY zM!5_?kw1g~IW*w8L@BHJ^FNBNI;yF^jng1V%8>3HjdXW6jP8;yk&AKW?tTMYn`*ZjOJRGUDuJBBWtz> zAMVa3S!N=x@1P&6`}9<8uNp%MFy@MkPp;%@Z+*Bn17sH&Smov6g+OLvP9sC6eXi4% zab6bWaV!^asAC`D_q$Tg>xT776l1da0|B1AoR52izn-}lfkMb1SGAni{EA$uU&{Z~ zucVe1dxa#5XN@eB0DTi3<7ud6nY|+iUm9xCY<~DKFwgb4vtfPOov{5%IxaRRaUIvM zpSc{U1Lv>T}bG`~sD zex?d6GV$)}ySF`2yMC}k$EsqA*}z?FV7uAEFHexYo+YuLUNX33zC?95<*&~ zOnT5NmZ?0_G8+vO;+Qk2->0rzH8XvmHJ0sXJNJDAb1R?n%ZfWsG|R#!L-%_NMG8rf zgg3Kgf!#IadB)i*&QRtJ(Fc!Z1*`(KuPYK6s^{&6n`QcC2$$EU2 z_?YH#`!4D1;>nPXiZyuX_ZtspO|R20@v9fz1+=jrJ38XG&EJuFAik)rE}WLUu8`M_wSUlA zfl&%yr7$EXAL9RP_?#8HUp$b9Y|A=yC=!P}wYR{^vP*0RFGP5?iV-L04J#M!p_(UE z#%E=|1*I<{-lbEm?sqzbNDq0h*QmMp0xEII0$^D4r8+ckUMMqqn5*mEy3a&0LhdFTCrrDG4LKtN#6DO8W2XY?Bwr%TAfO z>dCU#w0}P6J5L6qV0;?q!#H4QAINPpE);ZP{VwOWsbAEfXMX#B*JOD=t!*5SKac@w z;g_Uf{5K8*!dL>myt7aaR3(voNNYUyw^!nt;*TOVNd>^p=v52UbwMgl?vjkopvG`K z{d#bl-@5_x5kgj4%Ksk>^)mhAJB0kw1DZk45bKR76wN?E8B*o*n~fkuQ%%|eNt_H| zj!iVdQVji;!u{yA^YEmFvBVFg=QO?6K;N>Nc&Im>{~zkNfx z-H6fAH0_Pt+lB|a5oEBVfd$eBYSEJx-LrpIwTHdN4iW()aFFJidf{}a!Ps~nHIy25dBp<)c@^}1!<_2z;K-oURL(1O3&ra-jPCI^zw%T_Lm-Jx&470q3TQiGE*DiliAnrwF|5vj zdap~m6b^*HUFq>*r>X)1A8XwaK9A|H34I>Je5YNKXDKD!)*u{9h^L@qlCgkHro@L$ z%K+Z4MNlHNHhR+a2BeximIAoE!c7jh;_o&jdj)fdQBjh0U4??vx3YNt2nHx?9@hqX z-kl0*kWl8cg~*Y8RuYrj0$5nvs`3RH=f=icTTmsZsD z$F`%##Sf24#{$IL;!H_v@F|Im{^?!IE)}-`pt)p`^M29?`4f5;t>Ss+8@}Wmlj6nq zbF_R882d9|HFRJj%DV^~&jtUOu4#;Lu<^}mDyB|4und{Z!q8mQs^5m-r;R|XAAkmj813rls3) zhy>(6l8X~@?ED=h{M$d9idt78p{h; zAKbMWzWb{A|Cgf}ko|l^4Xqi`pb1lX%&&HUarVxbJ~GRn)p0q+jP3MT;oLfY9`MuV z%FAX-8L3ITi0o0nm|-7v4A+QrnC}DXiLjig57u?YexZL|TfO1ClW}R9pAXFATzP_k zn_HGJMJcH1z;~Zh^bbv{qeNMqU=-+pR^{~xh&$%`@TM@UO@yzN-}~?PEJFNSM+pSKeVF7=$vXKRM1&Q)tIenw_+cEI|4 zQN_OARvCpCDdH^vl4J0$-fkOCbSV3*IEDb{=bgy30MkO9)gOqI=Oifdf{{a6KeJ1V zkbV664-;F?!Mtq$^4qkYl6!RKIK^(GcY6U7&o$Rlmu8xoC}2nCFY4Bg^vazdUr0-v zzziJ=&b|z8*^SbcwVDzA=Y;n4pv5XGG)#e5Y(lifNFc34L_XW+0EKti)i_qVeWa>V zekS=is3=A;{j5h&60M@(GIe&)?*-^{la#7Oy#gKzsb_tFw3tge3+v_y7_B)Xe ztO-BMg%=kOY}zA+`Dnh_x)e79N|}{*kTdg`(JoN;vOvgB)OV@U#}(LbP+U@j_S+I_ zw3-wFht>N2(i`?9!?e@~F+Ezr^b>!*gSLuOEJ=zpft=CE3OZ}9FwR#%h9imRonjbc zrspze&@K!y1uADqa{#wq2QRvXJF6FRF-&AvZ>e^`2p)9=Z8v;!$a*wjWanuT z^h^CBQjv>99ihNwHi*iu(ebKhE2!#Y)R(52prgx;rqQlB=S}4T1XDy#qKF=!8qU(r zlE3DEUe7REXbyk8;8ApQE$-`=(oiQ>I=bXy0*1@_M*0uu?3)ILoR6Yb3M^xxf5^7Y z4~GF8WaY}dedd~`KM&KllP06!LP|rhh4RJ;eRtCfg`1E{mgUd{jA(!WO4andGaHu5 zq`15Ydv38|!`C7p#29X~+Swnw>+CS8in?&oo^!SF{e??fs+n8~FWxyTY#O->d#QV4 z^VW8Ogp)pHoyn@MCJ6hfz`T8@B{bF8&1>Cu*dS*0{Q=vTvkBbhQQYe%LCqGOrR{kk zPFI)FA-!U)&JTtEcCgn5mc|ST^$FCFOxEYQnavdSEzQ^NecRWFRBndYeu%<^mGG%C zy|f3gIPP^BR=B2J53v{xDw3g>s4?h3^1$J%9q`H7Yum@zm#|JmH4HZJpv&}gfgxd7 zyAr7oawA?A_66c(7u6MThSo;vV)u=D$GN>7vqp<|#9O#abKHH4iDODr*(u-pdzkXH z=iN@+jUCWvH>a0xyrDcL#=#<^t^Rw*`R$+_Jv;KJ)l%0l^ItDp=gt49Un_qvM5ug! zG=aNDC2Dm1Gq)rAw709ALPJxFpd{^RIim52yYg|>uL_s>3MZ2DFtMiJdQneaismp; zxy*z4o-R82A=vuNztEw%TGO)#>xjQSp%gEJGIt^7lx2bYKEHsdq&*RTmL>Cu*FbsE6ht2At<00Cr;1lY>DDwuo@muK#mzHqm`2N`{+av(K{1c9 z)5do$6X|GmIEBqRPlC>@F%XEJ2X?^-=5SaxI#$EWpvBlhu<)H$i>{_#GbF>Jt*-sv zVn*HgvN3|ESX#s=uMxTNTy?d8mcqySqu#U{dec^>=vUU%hC#PWUaA~rWVqeo-*L8alY>7>PhbspL8SmpRpF03IBzN!4viPTcPwwCOZp zeYHCIWN3e7I;el*QS*}`L1W}U1Of@1ca5^BlNrI^CG1y(gR^9_Li|?9UD?!$G=!3mOu;h@}8S`^9E?AOAeRP z+9A~L8Lq=Tb&wg53PlYGayqW7MvHZg=mW0aATK8F$UqX?_l0k>ox(Yqm8sh%enEcb zO7A&rZq*F=H-o#EwO&v3XR|Z9(+C8NVKSiOproF{d>$O`Njhy=3*P|Ipm~0z5C^fA zs|f#qZ@(8sQ+$!TtQ#9(&pZ1E=pVrZjcupP4qEA=hg*Rx#NPC$6aCBsPKo@@SS8Dx zr?3t60>ye8TkJ;oG)V(8us#M^yU5k@w->AnEzy+-jNXDz9gJ=Psm(M}`H1R*|XVCcPSi^b6p#aT^S(iH) zU{`ra@N!-nHR8+jq}Qw0fatl!df$8I=de$XCq+O0DCteu|Ko-F$$8MY8(gN$jK_I9 zLk`R+SB-37qy5mPpwY`5=3XAzTJ$W`o2wv^iIgy3j-21u2#ceE`j!H5=Y<4 z>*R;vKTJ{H=#P|VOgP-VzY+eno z;(eCSc&08VC+hO;W$>Sj4+s{sz`~OLm5;%x?Cgy1M0o3jk(hBG|3jF~P|>2@pck0^BjoFGbe}_z(z*0}(;9ODV$ZKN_ z7kcnK?_2}zMw*Oi3dce$9mDb$Px*Rm+)Sm*1mWOPklLtvy&=R4%ViDDM+5#fN*N z7owSMrx6HVm^ef>W4VD%kH4|ge*Y-%`=H`_+H0*f_h+NKCFnau2%}>!G{s-xU_71U zxy9wy(541yNm2YCFpiXecJrwHhsUMKnFp+6~1B(w!`J z=R1Pdr9hwQipSpAHDCFgq%UH}YVD=Py$h6#9WgoSgTC>LuWKl-0Bqw}*+-2WDC1kJ>RzZ|f`s?nS`wIPGu1_ZkY3KZtH^G%fagfmqIE*Dg7Yxt0o#LZ7E)*+q~GwG8f`RkGoO}h2bFF zSk1!238K|>)BfmBpN=-^n>IFl6fLKMXHd-lY1}&?^CSkcbxP7c1C+Jw;!qE1yyyR{euGLr{RH1$s z*A-|`{k>3MAKS`!;NFLIU!3BvwpAiffWK?lE9a+^m#R3A5rm&Nzxt=z&y1V zlQzgA1Xd7QQNr&$Ha-d`$>0`Vf)ogRB>7U}z?OFt)6!-JkA|9=5PR=c3xFwD*@lI8 zpfDAp3d!~{Et%q57@YJLx%g5%DGi6L+{3nFcA-S2!+2M zLF>`_JXE^QmEEAETS*!{pik0dcEsh04{4KeHJ6`rif#EeivL3}xSh5Z_V^vIbZGYR z>aes@_3od|=0>mc&+MOt>R=^R0kcdc#837{f8q`;fIqM3XB-koCP> za9&WG5Z6x~;}^A?FM40Q6bae=DGPB?NEo}@6^e~v4|0){kHgnS63PK`)&M>%;Y5%~ zc&`3ayvaD6-a&YZYO#|%BkPnh{rfb-?1CjNB0)Q=n*Q=2=6BBx z>j1hx!-OB`eJR7n4q9WC=e4D~tHPO1u}KOWb})%4!!Jojm1H-1HUD`w5JN^ z@?Q?ZHo>LPs-4qHipH?8clID_P>{+|1Kt!r@R;M3x-Ok z#b^^aoDZfO(>@mDJ|-G)!Gg1%2X32xl1{3gO+R9Spppvgk5wWIzf%-H_m?nvkiKJ+ zZgqVM<{q3N3~*$KDf>d;ePo&_m!_W;hM}4`O^V&8Kus-H6Ch;SMngXr&}Vxnn+U&v z9ptOXT3@nuyr1u%)lPwP+DB72p0YAwNgNJT9k67&yXR<}!_x@rR{xu%6lr z8Dx(cz*G;0*TOv@`QxXH@GQ+jXUv~F6?>ph9+t1_;6^BR2Qh@{`h6Dd3j6j}RpPM} zy{_By2wQx0jaJ9^tUCcpgT>jz`c_|szpDw^-kJPQ5*RP}Qv@A2RyjD)(jZ>e*;|qAXwMdb&>2cxPPY=ew~SqJIr+JL{&XPSWqQ_mv#cz=3l6wK-f{ zEBmXJl$IZk2>?mPCBzzo`h$Lt$m@5*;f2xYFqTnzV<0qQ$C118>RAXZJyyU{wx2rF zQM#L|xR4yH58t~CAaACpXI@>Gnlj-0{dHzD#Fh_x8ZL?#zL}bW&^{&6x_I zn+K}+(!jbjv=6_%O|`$Nhy#o7WJ~GDik>z6SphMiHIqIl1qfaG0t(H=}Qer75{G*9niCw26+)w-060IMF zUIf9w`(fidcOnmH<^K0#1n9M1mwDZBu|la4(p=}udTr1+|LZmP$DTaQxH(=o(dI!i z^Z2#R4_x<}>HpV=0$RuL_%3m3?Y`%otDARmg7sp?VY&!Kp_f$u_5!Fd?(@*2bl_-G zwzcbKeAKCA<>u=OdUU_lb4Y2jlUYi5RPHc}PE_OQi8`t)GHm&-e?GEI#ruYzO}~|E zOo45K7+c=wa@7AV>*Vf@5932mkz~18*lhsDoe{g=AX#Cy(TPSiA4!+@rg{n4M%Pxu zVKF8y<1fxFvyo>?XC)hciHZf^lGvODrFXCeZ>>4cm>#eq+8F?w7)j#1gJ1-p4pF(r!zHT&_wC4ls;aM)pduh|7lP9 zB05;Z17%Rqh5=MC&kR{<1yhc^VUUVn_{@7vQ^yq+aH*%0r(+eat=XDXUN%h|!arQP z2TD#(>M%l#BC6=};3@I5berifXr~4-n=SNuf0$cm^w|RiHWz^)TNd44wT*uQgm?8q zkbj?t>iY-Ge%Xb*@HeQh)^_PwnlC{c3%^TnuiJNHy|_x@b$*U_ljqy&<1>$Gj&DY+ zw@dvoz2!Qt*%;e8nQLrcQ`T9E_G$(&Ko3HeID%>1ZHv03J!!u@McMO}CxxdfBDfo* zR`(R!viu8|;G%SF`;>GTSPq|evPUg--Y^sp76emv`B?oU=0$*(? zXjxT0*Ot-T=b%Tf>9EcbuP*-$c_xsN^h93$ye4clek`ZQU#n3p>2pdS30chgUCB^~cDnQ6-w;Na$9CaUIyPzS-V z?RVHZdF4W+O$`qQBnY80$Fswzn)-0T+H_9HNxFe&<3?rRJ{Ka}HCmZ_Qr9@4rdC^jU^G|7DiYg~VY5uWcsyZEVpQWc=oc-TFO0B+{aHh$OD za!dch=zup4i1a^6;kCJ>u0WT9Rlir$<5?5=jJ$B8bG%wQW> z4FLi0aktCmDzNSZdbuZ;=ZFxZq-eAj5{+bCTUO9lIMuM#$i|$8P8B#wioe#r)?*r* zHA*qlGm-ir4MeG=z3W!b`o^ipm0`2 zW|n}#_yi~3W(Ymz=FjB!cTRxm7#4%+BR5oq?|o3_rpiRoa2q z7kW!h$G#foeE#N*>Lj5|yz82c5z^7F%NeW>C0?6R0Sy{74_MJLcifl}C(~oq+`J-E zdGo*1c1j|1AuI-ioRghse&=pdR>J5sc!ToC?N_pBy#a=7f@c{u@mSm{YPa4C5V~Di z00Wn3q`2V8Ydek1`wY6iR8}REuxCg0MX|8wD@mkYS=a1_gWBXQD|Ngcdfv>g?1^u)LSqpU7IH?diuF_H*HE#??pf8F*)No0c0NiBSW!yYEWz z3;gx}2`1?=8^X^83-Rq~PJkiLe-ZSOE^|@hgZ!Mo@-ZXVhnQxVG78<(zORL3TDKU` znVAa1YZ;`cAtH&{O)AUEZMa(7U5w!VBHLAX4X>+0GSkQg=o3u%Y&Q}!9YP+ukDH_w zsXG&~;_pK^W*~9c-tj1)p$oC|n=q5k*t~qBvHm;97df&jLsUlc>UR!bdZ!ZSYu(ru zvRG^m~6J( z9I9atW%#9G)%;W5Vz~bzIIk@ciSiyqjSa>>*P3#%WBjra3841G`VRp$-F9;!E!@)f z(CD?A;b3G-*@5@`dju30VVhi^J%WWGqmS;YR3mdo;c<4t+~`<7NSS3)VT5Y4D>{Ac z6E}8Fa>|#2E}1W%kv(LfFqAaqK;l~Mt^~&#=wE@ztZc_T?eT7~gJSn*X_ov!^2#l$!A)Z!dM#6Y8D^97aIKKs~y1e0e*@x|LHG@<+1;zW9 z@KBR}v(z6^MJLB5ZRizOR2m-R(NwqYjLH8B+@QoW`YFw_QSrex;ddImF9n9&L|vfn zpf1~*Z_9T@#C!1L9S51f6!}-TD^J}Ohr)60EgZ zY2#M@R{hsu7fPxbpw41CfvD4*cwcOvlC*XNHPwN(Bm9w5_yKZ806Y}HmgjppX5{gs zRJ&k<9AYogVqOOL?=)}zpWL#9QLc!)YXb49z*UAvyG!-xl>*cnpwxtEm_~uucmWGu zpYqpBeeR0iggtgg(Dy9Jjtd8o?2TIUZU4rwQ62RMqL>v$_YMiKUgFe=nkOOgREHIY zM0H6y5?r_XOZAj+tEjWZH!PZ^jhGVooKNI4NMAh;ull?%O{$OQ&Zf&17EHp$=A${Lu&#Yl#Bd4S4_u8mxtj8`z%O#@tA_0o9c2(&{cq%8ce z<%Y+2V&~v2+=to)$q27hZ89OvvJT#`OBHZq#?eYSy4-_}lA`=93H?+^)_SdZsqNsT z^zK=Sv~609X>9$HL}RCScDdWxd|& zoaIX=!7&u@>Q059p6x-&<$w;=UdeO7tf{28>K4ke?;r)$yQ(e{0n&XC&GN|El$UjG ztRgCBDGgh$#nK$s(=F$shqsn`cmz)O_rR9S8$+<0Gnt8%qY6hvJOPiu~-Z6=Fm@QjT#!5*BxMFLnL+m6V=v z+il%wO#{mH3(*?GB?d;Aba3{62;C31rFNw~OmnSIygjju-SV9=SN0Cl-Zg~>^<;AN z9l1+03$x`0ta7%(UC6F&wW)g@RBIDT=`z$mZ^(>T3N#c^_9fjSrEyyePXa3@%BoEq zhkkeTFZ`Vz7Sdk?QMKTh;k;DGk#9#CtrCcB1eEwy3m zo3yFn8s&1Oq~F*i#3V;Pxe1xyQ?h2nwD8z0_Zzl$r1MS2PvI+zRM{0#;oG^^J{L{{ zjb8*xH8R)}-3!tY38Cg%M!j9Qs~W2sx1J{aiC~)`qw6vvVfx3asd`pMbx*&CP>c7nX$X-;JTy|$n){FjDZ|layjNEi{B!&P?d7=a?&E| zZlOAJ@d`%p?JsL4KJFH5C>SF5J_&z(s*T z4WQE!1dy4mXcGFLyuc1NMXZ=s{4rkh^v!;4$NE7^w;gJQKTd{AO>!1ug!TtrK0g-I zBS5Nt5XW*l(ZIfZL`1y_LqK#|ZCE=nVW)|8ygqtl;Bzn_O3#Y4_Rw7XHA?`{F&-P4 zze#TnH~fqDv^ z?#`$;NHq#1`>h~55IA<@xz5*tR&R#4%ci}BR!NhYkOPBF;H8lVg+DB0@%fxPK8Z zeOH7V&d1{>88;8u4?2tos=)*qRL3v*DBN)6fTn}Eqy`l~EX-Du5^aG>^Vp=3@0}!D z&FtDNT{3KmvF=Upn2U?``Su6SJIttv_;YQ&iBduO9p3lpirx)UOYa|ypX*Ryv~9#h zx|ZzL9DOpHNZ#3Nk=OGG?XU`1g-YE#7JFUze7@W_bsFKi^E_YCc~ey7CDvSFe1VoOubC> z;jc}432%UmJ#u>yOBL&pc4qCo3^{HHHB=1&F)0AE3g}1C1$;F_zEG?B&FAmnwnNvD zml0$J3G>*C9YR`4b*uD^9Sq$ zd}_i5A;g7Y1091M>o!k9EsR@&gp22627|XrT z?rtln0M-m$5p=TG%V4)VcNSGPmw7lt=5UY&5@r}Cf$-TAv1Tn}Me3)vl=SKGEXvjk z_E&Y@_EFKf-?H-{)gM%}_OqRE+%w$6X-OvrM5Y|)TMUA8jZdOp@E=rG!M3H2!5Jw= z$_I-u_LN%&EcRn+%^>PcrM)}#kr(H;)h;{PoF$0G()hz9PGh0yZY^dec}V#D^Aqf| zH{PcN0>7*nQ!x_&2#_J`&X~<2dt)f*N`_*AgwA5Ls`zlA<(TK6Ni3VMZtu{+$w}V5 z*;bi~@3;WwSeJn1(7={?^O_fyZX}DzI>X;OJ8yjDVud!zZ4L>$!UNm#`C7UVkiXdGVOY{h(Jq~e*YZqz zzHJ<*g)C|zq~j6|{UMdRF^avh)ZtMVLc^B40sMS>5smm|-&fRQ&8U}4 zcp0)XchghBODE}S-OLYX1ET`wyI+FLB5K}Vvrr+0U&@W&sfOQOqthR)!Nb>EPl$mh zeOvTyA_Hb={YX!6`c7Lm0smP$9 z*3-4~d!a>nhL}O4AjH?&RE_q5#Bf&`O5y^UrGWpII@p;;)C0zs)2C z#vmf>jy-5AP>IuaIc8GVPxt_@2X-G_>tX(HA+X2W zvv%+b-Ormbqbh47IIQNp!#n`;3DZRlfXTqE$=Ilf!&xpyw`0ag;lU@+b~(gyv2Wn^ z);|uR#yV!VV>E8~3&DH;;937I-AGWE_KA9CE-$C=+yV^GJEQq*P>W3G3E)SO0|W7j zvOjM|>}j{v9*Q5nc-X^g|KKm-To0C%t<UM5`Gehw%AJFM@D)a;4S7Ci9~ST97dN+R~PRbQJoi+ML4VV0YZ zHbYYEo9=3k{Xe}s#`dX?I!4Zt^(YY%xrga&o{|*h`)}l^BOl^vP~SLV?Yz<64%;&D zU`%Ja>k@dD^VA!LwJo?<_&5Z+Px0Tpj!-=`yfP#aTvS{;cruiTRVk9hSdTj{KtR$-aj8#$25u!i zhjtj{0^YN>Re(S%)%RrCh3fGXY;jAk5dIS^cSre$4D$IwC{j5Mgk*}4L;Nnv#eHif z3pU`erJkQwuxCllv%lPW)qTha9{S*n`&hJrAn=^apCt)VNbs04Dmuud=vKlTLK0L zZ<#6iD;8l&m;aZWq`QG%*I)vM!AZ=3%etv3eHm#)8aV+fb#rG)6*gFbUnX~#>uOoc z4!Z;Fqz6o7lUP&IlhQ#IjV1NbNUz$-6(OD`yP9nt8nQDzat3j4l0OzsS!RcBn5%)N zyTb<`9hrj`3r~VGLNcZP5DCmWVQ&|L2Fe+lmn@+Jy}Ym2i>~Hxqv5U+M0#rug&A$E z39egibgZNJQ$mEyn*qwv1C{C$Csx&oO@3SjAYE*fRIR;uG&_J*>tS<%zS$DzQW5JQ z(}OFaXP|4mjkCfyvLrd)H&GPeD@F)rj zMX^ZRcSew@@mVL|9I$e^gir+K8}i$AYBjQLfrVEd{4AtRz2=$ss3o5b7eO$LC&=Ui z0fa5*FP$MV7(s{+pHWFHnZ}2*}@nUVhJ{-Z=A=b-INL?+{qF;@?^U6Ot zYAi1!XLh{KFPq7WP5P`n=q1L5Hl;J~yL}RG7(=AVVj;hjcAERTvNm6)@^m6`_KdVnUp;}?E|CJE+=eSM-2i;n7 z;Jp2%@XnCTWN010!)oRL<1^pBgkxcIry(lqto*TNdz!Fujxn4vn>-yy zl~kkcwO%$;QsD55Q(Po;c~-DFQlf_*smSvwxaBgi;c(i5+(C)HaT(#Aq+q9(?!I(4 z(JP=?8)&)UP`9Kua?HFV>h_;@abGaosB*8|mFT@60klfqx4=sDk;R$$OvG@POom?B zFkRG94zXc2IZf-0cWTP`=H?&^TA?eX#dV>#75};z?di!`_=)4-Bp8 z6co>c?vh}B-qG|QN-2YeCDfG!h-fggd}BmR1|^EI8GfBDHD5ee3Sv$@35UYxq^ss3 zLJ}i=%R?8l7pfDi(TPnu?Ti|q-K}x*3~rr)1@;{6tDnuPsA`fm3lAEJ(rXc_b#v?A zI_9~s-!btxN-@R(R8d`~2WDJQig8nK(aj!MIh8s3LF4J#Rd;YwfBGNo;tcz50+XrU zy%?&v7%D6Y+k+=Vu$3~}vT^OiUyjeHIEzK(HFD_V7cYhPY{?edeeWiT79!tIl5;D` zDe0M3ycAR6u6+g&E&@c?_z4@M;4J6AF8c*4u{OB`RYDWQm8Yl)Ne>dU>G*Pu69o>V z>=>bA_v~+-RZSE%;e{Uy<)5fNlIel!*_N}o9Ek*QU-$9DWNVOVBiHrc+=X?FM6F&F ztzSJI$IN#X_>#=Z%niZ?LwY=Ip439AdHMvVYs;m`7q%uv3$pzg$m}HE0V%wf{HAzw zJki$`ZIl@mq3;?Cq{a9vIibB9zy3pr<&d_^B8E#nP+fh|Tq5P56=z_F}mU_ z0sn{K)fLOqqiD@=Lzz;}P<7~?9D3)^{Hm4hnb9>D@+LVh>p}I)fpbPGKXT%bg0prf zqVm@$kO#%%JvpQi>F@90x8R*>wZYdJi2Kf`1(1nx()uH}zNZ8?w3shJjdxnfjWj(L zD?k;`nf0!4cQ|_1JbycA@fPa~JEc8+(!9=xNg6#rNTgmt^6vNo(AgMLNyT{j-h3&t zJr1KSE5rd+`ey*)6M9m=*)Am0<-x-!}Iq=n*t}za7AA7&!w1 zKv#40>E)4Ymw@ikfbJB-@#^hQhGiPtbo!2@0ipwWj95x!&A+eC3d+gWEoOMjJslT5*>}y_WwuSzyy^y?~SInrNRJp~VO${#{lK0@3TI z@p0N*twj#;O7F%NI&=uwX>_^Qcq57?JxrCv*M|qz!OLC!RtdRbl=VrCYJJFAi^X#e zSG9nBDn=22R!uD-#!7a2jC)DzqRRK)4gD+_vmf>NMz92V1&s15wbCP+eK z)edGcLz|(M?;;BJCMI5hreE!`b%)!@js)tH`e0~bmJC>5w z?IBLqE+ND_=_XCYmk^1`mwf(Qxpkvn1Pl!jh@R@tYB8=b4ElJ-{QTzN=o|VsgJ@JslAHdk^mJWF@BHc(=5-Sd`al@xnR!#fay~}c4*?7kE9Up)*)kL@ zS6ds@z+_Z!fyAHs;cobB3i2fS<9c7wb~JLCH*cZ>s(7f6_lX9xVO04N46up!lYn?n3jFL5z23&oo2?I|+#e`i!}F?sRrO2=awi z83~pdvz$3^tZu}jqDA=um=Gn}UiHac=aCwU=^M+kJXP4H5bo6kQ=Xd}#(;kU`vn}8 zOQej_Dr$aO^GgT&2_dEk6#sea{Y$2eys_XR8{G`0WAqa3-1N5)8a*n!%6}nA_i+|` zHq_}uhltcFu~^{h17b&t@iSDa=~MzksdNKlfo#}GwJeOSwe~To0rPE?ZfSSfo7H&%T}?wDQ>X25pyhOP~Nw+|Z}A%Qbn)qcmx#oYWd$`(!?y zeeG$%o*tz7;CE)(z2cgdFm?kQNxts`Npv0TKCjhIvu}N8{^@T7Ix&6biKgcr)OQ(o z*4!OXYtrmZ6}}x~g-A)@Kl_a72N&EIgO}($hl@PKc%)(#KTjGFlNwb1I+DkX4(#_! zOB7XSRC13~u6sUbQ?2&EPv$>$1kDDGgCuawyjCX15}UhfMjmQQ+ZNUoo0%%=PM^5Q zgXUlV4iG`uPOH1rW1Tp$st$g`#=F+J5}TX_onHm&;`-;d3KT6q4M7~uZwJc zkZ%H6GT|ZP1CjN6V-DpO7spyW<1E~{ED#YO%a*qt%gFk1Kb5yX)?l;1GM%DT(a-b6}KB%hSVLcVDJ4?*CGJW9$ckNf%yd*7*k)8q1dtaWv+QC~&n_mG=Yp$|u%xE9&X;&{2U0UFB5Ei-$ zFkS?IfsM#6;p$=-1~fDk4c6~ephW#Uy5Cj#Z}~=|>U~k=LVA0r=FK3?>%j`rjl6!D=?i&9jZ8i4S1y%^}^#A+}3sm9=@>3s@+(TNbwrbAo~CJC@0#4QnK=a7UX18#*$- z=`IOw?EQzpXWzKqQ!ZpmUzdvDBwd-fbJ{}x{(TxnbNa?iot#4(t4svw@CKK~tiH&Q zJ#P*y$xxVN-deNMmT4>-DMmJ(tUwoAhVfBzMr+7o3b%s()e%0F?I5nx(UfZ3ghXOG zlBlN1%rbBloHmV2T`1?r9-kt6F;35e|2^=o;js^hJ0?{I!~cHcy~Wp-GirR2lYjOP zZb+c+CYyHheXo<;vWY}z(TA!gPWn1A9J<{Xu;k-T0@ETOjwS*;Fu{#^HgAmuVN{i~ z4D&CJ+GNS-xr@%i0TK;}it5tkC_&Y>9$IbakJ~~-O1@vRyo_y?DdHmtoL;M+SYGu& zUi_ZOgHz2vdOkEbQieYSQLT;fHs3vRf$VVUBTi|Jl7qr8_LOUkjt$=}#=Fy;7X(jgr9AS-WH~0iM;lwegsW(irKoZwyJxN1Aqgr1Cj^T0%)AH z+F+QeEaN&udmM&{r+L$tJ`{U}*3b9)_{1iBzhTRCP7{U)wW^|t`^OtTKHwgnj6GSY z0QX4gkkrR)MS*=(sdMY6h31yb4}z@LoD8iWo2i|@wEpGZ!%t7lcr36+BeLo+t>OPn zF3uLTs_BF;Q|880$9MR}Nci;@E_hL#f1uWbDvIrdt?g?OP&I8GSZaNEPtrOHkZJ<$ zXM%(@&XBu`_Mu|3pUtJyE`}`u(M;N1XHb&F#C`K8_Wp@Mx zO>8Y|_nsf9GEI|0zt=s(DwIWrd?vl&*>n~`0>#h6O(Dzr$>Sq0=Hf9_^CwfAM}0kg ziZw7rV`$Ok*xQFY(I>1Qz%7uO-eL0+OziqUH4}_25=h#9c##R!g5roqQ`YYP2KE2KNjUja7-ovkPzR*`l{$ zj2Ei?i<8q^M+%=lFSTwxjoOJk;9_izmY_C7Ja@$5!*`16Bvo?d*NV^IGq-^gzO_{w zCR6jevN!Pq!9{XjJKH1IuhYTwX9Z+XzP>)^4z8uavWdDXXNH2s%M>e7g^Iz;`DPD^ z7kixF*bgt?!TdQ}r)qCB2c-3KN?~&rz5h^los!HnUG4pC1FTv?z?D=Rmi(S3ob>gp zcKxe?!U9b(_AXqO551KkYG)r9UYj=MbM#wN+%~LXD-`!GFo(Tti^qb(j*@(spKd8m zfow|#-Xu?xC)QgEg^3Yu3XatGBq){JWSgf}3gwcB7C|i6!`7)CLw`mt3l55T4&ViS z<``?Hs2;VvfkoH_gePbtpDXp zei~&Jy;$LhCse5JPKO*%uG(ia*iuVR$ll8bs^8elO%2L+KiTM zGS1ds^9<4`4s1!3mLw~A{J+5B$usL^=KuqQXwRkaQ6M?y09+e4hN|ELDk z8?ki>{A_`Pg;PGFZbur5xTw!UyH8!AlqeKh9WZZZGoK4Mx6tGC9ow#ek@J<&JnK7+&Y>T7L@M#ja zk3Yo{{fL{3#&xgsw;zf4vQ{-P&79zsaU21-ooS1TcgJ&jg_?sBB=&Y%3hW|t?WFr&*m9_=+^0_8Y z?$mSdiiT&>t!WYqhi@>Yl2u!3Vbt_%%E2I4P5gYf@)%Q!gu%AW{;V=~xav{ItO;#Q zihP`cWl~FFCi=I2>p*-;NhwwiL{D+jT0QTtT!Jmovvs*rmcgg$qjI?%*|d>{e5P)y z>Kck$i6sCX5jz^ZtV?Jxp++$&z~or@^GuzdUC`J5EQYYoSNgF{ zl3)K&$dIn*yMu4yv!yDBFGQoF2OgC>M0}lUqGn7Oe)S8RI9#pkRnllWxQlqu1y5cc z!6H9lH_WZ@P6?9+%#{G)dq(=ET!E&UGCQ;dMh)&if%4pY5*JM4C_C97j;ZJk4TYSp zZ)(^cV?}eJIjzF3>id(Z<()Vx*6-mT*(?4mJibh4>idV{^oj@X2kI4RiDOaLEODwT zohB0NAqFWNnPJ4W{8A`?+|?P}fB=-cuRK!c!9`DQ2X+>j4i1du+6GEkmxJ@Mpi z_-AYDws)Nsb5hQ*k#>PMxYezcRV%lkiXl_P#J#|kKYY78T>IU*;`BF54eE&S^C)ek z;xj}Aon!Ff+HjN#zSv(Te1{!{8cZGc^|1zpvo!fQ$suw(Nx5Q@%;E&DjDm5+Jv0o& zdaVwX@^h>8CN2wfE|Lf7P?E0E{>GX%+zfttp?$|yHeaXMkZ+Y%Mlus<`%J%i($q}g z-;|(5@(+dc>~S#PK7UhF%}tb>v3VKxHo#&07PvQ6A%(x@@SXCg{p{5?r5yIyXuQX# z)LIP|abiD(k~S~`_UTAWfG4)@O-9fbaTZ{vORNH3Wcb+ulgZI=hIaKfLMqiwvS6JH zb5Z$X4KOqJzXP>|lWT`?qoIUpU>#gpFSWb|vX7zA2Ki26L)wko03jEKNe4`JG!P5t za5IoK1aPa-74hR}r?u5>4g$$P1)l*}%s|~j@a9azs?N>_tW~TY7U>9FCA1zm2OH9r{2?lBv}b z<&z=ztu#eoe~=gJCH~p0Jp96HrSkVfbiXbE{qXS|FRN1gC^sSyI|kkEkbb0=jA46) z0RQU4PK1*F4}UhLxEJ(|SjPWQfPvqxkyh4k6Z5Z{?TW$Qvv1yW68MU^u%VgT=C}#DP6R1<^>@ z3h_GD)`BF(^&_UoT_V1{4* z-dof{eL-*>h5ap7sIf-(Qb$oE?di2M6!Mj-??j{eZHZ6e?J*RRfK3*=Jj1%NKx0jp0)KeplZkvN0Y=@-1}q*wSRcVKVFj-q>uIzAe^Co)+0>qR(w zq@6wVEuA_9Zbb4rs-FW|hcRqXi(Xa6;#NJlu8RI^4X?1z;c@>lud`+GV3~75*|l

    @F4*k`Su@5!J`1X!{6uh%s09UvkBXP?`IfCkuS98iob>(86z`KmBF*SR&c4! zK{jrmVMe-UY`h^w^xxZewFJUf!J9>K83&#CvvQuzmu*val*RRYI?vr@) z&wc~-7A4`_Gec~gUy^d#Rd925hHps7KwU^@Xzltp0LMbC4KOwXdB82tMjD9JwTix% zZEJxSkTB}f)5zC&Y9%CXIJX9V7F8~tMQe_bY0FA>QTzpVki@xi1P`~!mG6Fi+O?r| z$3tn88VcbOr21kr<5d0YttUGnV~6knYB;8;R^P*PdOB^gq{ScY;SircROFU>A-24n z!>H-{{)!qk=kD$40Q(V>N@{-~r1nb=@w8xD=7)C$?4@c0&9ov(;uC+KP4w|{Y`gLD zrcp>QJ{C6;4xgH~VO%{WBJMmqQ!%5|_n&+eY7KtwuvqvlNAu3SDJ%v)=VjVyhNb)w zX2Z(Lb~WKl)uH6)qx0R27mGstJ0KZ z&&#eXh^no=O4B@9QI#xG`pVdEZB2jbwo%K6k^x7pG!Up=(eaAVN~o^eL(s9lI3^SD zp$Kewc>;`yakADJL$u4~Z0jqk2|V2xD77JeB!B@52KbhyEj23)@5Xn_-TmthZ(F)(ZN zQvYRwPL!4(@~WIEPudi=x^7(5t*HNYBg9MFTC#osn3eJ6i7&~ZPfBh)$M)uMsWQ5= zH73uH(yJDn{2f1UHDH!*jNkv5er>sMpu%KSn8vIYv{*38NI$5h&U^)R(2m9NCSc?o zSd0H(b-2~@u{J6z?LSAmGTC@@_khXKzlOYJAzgRDZ-XZVWFo@SOc1~(X!5<4Rq9`8 zDIo#vNWqnl8eLqjg(7p<0ToD)_RGUy|a;XT>UCszCq_SuswZDzQgtD(AqBbYO^ zo^*ec_^pcVaN1-QK|9@ri}liRxhvJA*=-Rp&bf`?Q@%7$7yx4ujqnw$|Mp<_$q=sw7Qeb)t8}d zLiMX4xbgW?H}KchGB^w7Rquebh-_A*>T%{PWz-Ct8ooyJ5vua{GEmDraOGE_U9xso z5)#hZ-qMi$^#^jNiv(pvCqTzYxAM1jHX!=<}RC~FGv5IsFk6m+I zO0^52;sUPdQ=wbq8Ec2l>UKZ72$|_$+0UP{?)CPM4~>)L{=R&fUL1_W!w_v;UGgk| zL8}iJt>REdXY_vQJ=UyzwxY802Dc`T+%9C>tOO=9hu^VL;teTMNay4*xRrj?fdqckJhKp%|4j&p8$Rk)`<9HI z{0_59lO@C))~Zt{-G96z%KJUxd^R~jHFRS`QsTFK+dvYjQ`KXW%s_Otmk`!kx1M|3 z86xmX=OHfY{0BMHx;uSwu0_k&rI_|M$Iqd)#EFRC6u*!{(#l+ydB2wkv-ypcHelR(i@In{n zPqe|0T5EU-skMp;1~ERq0|N+<+m8LD0y!e+yHn0>jZ@&X8vJ4;Lc0qf3@hUEEO}p) zttoysNAd5xkZfi4Y)9h0l60J8tsHm0*-#*uJ2PkAVxQ|v0rVT&IP@jI#<$zL5_Xke zy^uZZ)V`HOaufjTztj|qks6!N!Y}`NUPV;7i{QtHtN>HDlc)0UDz)V2`jh-8F4e@b z9?nlv%qN&@6+=h{y!UONY)L+*X((ILrAXHl3W8srEsFd@X_`cJ-#0B-HO zgGdwS+eLaA<%WdIv+t_FOjF(7@V22rjhi8c%TmGGJIS31v#?CU_SO_dQQ4bHmS3@7 z?(p{5J9t{Ar~;iLAR%O@A2IRk<7+iananzW`SHfz3q2i{T!pg{_9EIaHvAW>RpY5K zKX-@e$K#*{BoVp*!9Q|G!$*V$m+egF^eGGWIY%cnsDW)uay^g5KI~>sQCtXSM%{W0 zZRqE5bhPJ#dF|xZD35yBKdxp%Nw;jq2Zvqwy?SDB$etSt7msIN_oVl2QclI$f6xC! z8`0S@@4TSs2j0o`wkTwh|8n}yXqPF8zj9$ofpg#5eIWHVwEiT(8=_+UP7|d(-+I>C zFrs7LOi}R@<;j{(F#OH4z{GHE%SgsCwTa+Tj0>}&#)M2V=PT8ZRrk+J3jArYQqYGL z9CrJX_D~|7mezxiRA4wAHX>z_{Y_A5$x>BUlgT#b?yFq2hjAaNX^h0AQC+NcX~3SQ zL*^l|ngLmsf|B5{Y5@0DNMf>`>nv2A~wN?z}`WIUNcL2`0K1wPTrkcPu8{mXV zBYp>}lX`x;Od>eC26Vu`{eI6jV}E)HH@s61m?22dylaWQriLttV6u1UqB6JT>YPN?ii+IjkcdU2RgSI^$}$GQdd2Bng@@G$O~B zG6K6fxS-!**Mr1qI_r&iw#ksU&qlgV( zUPtkF30Pe549_S>o_?|+$=Xa&$c85T2!4gEc;1P|Xpr=N#jEGm^ zX{7N~xY8GB-5$m@oQsyGiH!#`v3x59H>zE6R>yty+5v!j7-4Teb_0Grx~9FX46*tR zIZGZ4wm+?q^#5f$ZB*!Ythrx44qfgyXXxWLNfUIj(CNCi$YLNYZ=1RDsM-7hA8jV& zQjRgk?}hM(H~UIRF5SU(UY>9Al3nxB#XK=x#I3&1CLNeIO!n>R9MdO@ezD5rFVQp& zLb&hQQ}8@&Z?zPUW&XD6B;T>SpP#ghw>CWqun_56r~Xx`9S-|cZyJ^R55@mk*65A-73mnCiq34ThsLkl&D-y%Lnk}q#MXry`WZc)3H-klR@3se+^PJyukxJjn$+K| z$x`A5>3qPVNEbl)Yr48Oe(TY+LTF+Oh^o3iZ@j-@N*~iG@w|2o#ZjFP5Hb2e(A{}` zOshq|s}(1AWBn%v3p2JmTHiW~JpGpq_Vi=_h5mEa9G1(`EW_7mhp~NG$uo2%rigZ2 zt9x;*3j2~f7se{HMW#cfs`@Gr@!<_rOAw68(O+Y(VaUvDXC>F$HGAQDTRF4?B-?i8fxC@DA3W7eiB}I$_p3)C^GDZK^qAiRqM02RuGV%2-?h=H81`^$kxW+h`eP zY8QqsVx1?33j54A)|NdBZE}(713mwpUKGU6nXVXx+S1~Th)(a_o&Hg&^(bc#BOjNH zW0Jr@rCG7--@&=<Y9HSX(-O8qwv`0xe z%usIOEQYy4zd%gMRgx2SawJSMdJd2#kEr8gp1+Er7{8N02Cc9@bjnZpX zRJVp~Izz+aj%S?LchYjFOq?5MNP?`h59nbepHd4_Zh>QAhCF$y&SmtKziUp2Fh48P z`xWj*IxVtJ6ZO$9=p%q(&E=IN5bn@gARdnyuW<}WYew_rAI4P4FXqw0q?ir)CXvat zg=fOiz4``(b*1 z%-OIMVn7i?&dXXu0>Y3xtzM!VGx%d2rnIJ#|oK}^#s3$qgrD; zt@aO&_1n@~tdW<$)8n+TBea07Zj>IZg#$tXL4KepD#<@~A^PW$vdRrDv=)o)Nx66`9Z2rN-*4_P(AMOMzDy?r>@K$oN|D#Dvu2xk6zFzqi~ciDwq(hb(fO(4g1MyHBZVgXC@`2+1h zTd{z35I3%^o9h%zUpbH>Jn^{rJGyLS2qomS?3o_`N2lOWWK7@_EaX2C$B!c8b^f{# zG%fX*LXO4>=r6yx#`cP5bvT^j)?>>+ZHgOsZyuI99qspnrJWLP=#Y6 zA1kjOFOiGKpEB8k$MJDIVCoV}Ri}erMxsHie`1`cT)v#4l}Kk7UQP0CRX(VJR1+(V zCv{O)Rek*s>q6|)w<2bRpo8i=;-FXyF8PzOgKwEN-c+6+}Em?L1lwPksY0m zS$o(K)QoitIM2-%g$*k$-7t#!dUeL8Ow_&T_m$Rn!8CWZy3aW8hSR(LtHo;iHi1%8 zDb#pCuJ;dx?I{CzD~(>!akO5Q#q>f){u8!J2g$^^r1M0Hs*9WcDQHc$x~?=&OP%i3 zD31%!{aMiD#w4HkAS?3LL*`nn&~$Pv&rc={jPOA<#?OBTk~+X$3HfB?f?DDxR2Rx& zowt952sTR<*8yZiSNEggJje-jQAh^MN@}fjgT1~g$Z_Rc)nZ4{W2wo5l)65CU?&yl za-nuAeTykf3-ynL51$PuEu5N^@UrF6J0YlT??!)bk306QJDRqxVT(<)3s!<=SHS~i z!a*w*HKtk%Ob+NV6lUy;kOIf;XII3eL2bDI)%1-0Qp(}dM9q{Asez{BZND$j*!k`_ z9g6TrDC?zhPBvAX-6b3M_K*krNhv~8kD{AmN;nytS`{#cDmZdU!11l$Ek8WitaRQn zy6goSVYq;YY11}TOTG_jMsqZ<2%H@hML*?BTtQUB?DxJ&JL>P|>uDHv5WZ;HIW?Z( zK}sBLIi}7OX9&e*K(?zq*5j%NUY?Hbhbduc3by5_o>cK@s08YJ2?9h7b+pP z#+fR`k=!hMq0_+mT=C=9qe>~4E-@zeS;t>(o5Vj{Potd|Dp`p79skO&`Jh=q*;mhf zCO`vMP$X{HW4*Z;&9v>~=`u-m)n2Ou+Cu{@s9ogFqPCLpk#+}m-0BX=R}+)0f@^3T zLsH*tvlXbH63D)Ja>eBv7(dv|YQMF)XKs48b+Pl^05*9Vd~&@P;wV6d`nn!W>(3L! zp!#qUA2R((Vf3%8gHA$RXU3L6>;804l(KR~ln{$wjBdb}i}niDXMc)v3xTpC{~~7w zLVdRnDMgwji5hqv70Bc00bk8S+l!w}N0+V}4R;FKlP+8Hw@qE;Th8J4{R*9NYsQD+ zxkF>`NvgDws*{{C4s^`RE!_16n0MIHUj`_6EP+|bv{93j7HpabDL)rxup#xr=sh1( zOeHe7AfSD9KgnA0CNsUJR-fxGoWnBZEs=C`mzYGa>1E#%3Ej;m|LU4BG!nCjNeUQ* za+Ch=#b#zCBc-Y_?Oi|ksrd5NJVVX^W%d#&L7_2L`>dw4sf!LaN6k8=oIUL^e*3a)v$@R$unF&@Ox3eA&GwyE0fo863rp97SbcU>brTIg8A~%M z_S^E^XZcfW>jpS$?}CZ`_QGzu^Uazd`cIu&BeV;{b)ZG1#XOYN>AvFWX2lZ(+OG|! z;W=z@n0b8R1*4@+b3Y%a(C%t;WMt{qaOSBJ@fl+(E)7gf068_(3Xp;9-2w_qKn~DA zHIO%k6ZWF-IWx%RD>Bd>^1Xbd0%SN+U}aG|lhEs~`&QSb1ms>EKh6&ns(@CFQ8z9a z9%7%swu0)Y=;L9N>JslcvHoChA* zmXvM6GI?3`E)4w}$u@}IpdSe@VJ;g{Btk&M=n$@Rw79+lyT9A1;|6exS-=%Gp!G1m z%*}HXWM9gtVG-311nhFW*LP~)Cay9A*mQLzT#XsIKeqsNy#sXEAx>6Sye+Wf5U9r1 ztDG3?-0cm=gDu~-pTjxv9%@4X{tkWo1tgTYYKI5>-Of=P+OENZ=MEnJV+@0~S?$gN ztUvI>GRTfTKFtC)u)7Q>#CO#**v?RH?iwLSC@Uypjh{jp+*pDxl)Y%3H%aLJ5a#n% z`z^S5Xda9N<_AXow_j#wb;HOZ&&q~E)B5`v;L1+DZj+6?FHui9m;=wR#z>J=-y`6ay`o8D2rojY~c2JPEK3m&=ENrLQYK+Bn>5LzS75*M$tzT$%Ie>sdco|X9%65PqtIE zzJ&v|j#*&9AGPa&BEFmr3pvtRbjo{e2Q+m=ePDbOtMbubEx9Y1N*UW|S%$-7r0KDB zGUpHbeIpQMuI4L(+1bzmol>XQ+V>9%?_ai?;z9gK<& z0V@-=*&2&IZUkRFkqBryiiPZ}ZUJrbDskD7{H%U9){Z2{1Zoux{$T%Px^=>7mbE>1 z_89c1pRF7D7{+{=@8Lx-(AH0nV{lIW#zb%*z^V9k2}{p1UJB-ieXc0J)~x-v;78^J zU7;0+@{c~H_M8c@9I=rE`KR|=6A~6eKj0UFh|Elc3Vb{GvKlK|lh{&3}$l_K29(LZmSX%Zt{+7rkn$QASHc!0g6YTODBZ*6slu6YaDa zi%Jh*H0{G8X|x%D5%cHnABsv6uA=lI;z+cdEwRMiC_5IFF=#ZqG{oyv)!!$Wz;|&ZhtQbhX*o-i}g4pgRVtQwn4eMCU<&fuqIv#$J z{BltW#W2;)Uwf3W%|saG8hAbMrL)@{l9WlhurGeDCvIm8USin`y+Thx_%b!O@Jb1( zS+{}3?(s7byV-if3LArC3IfS?3!S-7ZyD`5pI?~`a5#1%Re|t$h7zF}FR6a{eVJ{H za|Uw@ml6X38Szuglp=-zQA28bw!zumVVz}+CI-gmsg7m@ik?RKut}b{3U?*pP?fhG{?3vyn8hF~wAWpI0ihOnNbf z2Dsa!MP+4czqJw-<~I5wO-R8;}-3HIMd$FLA3P#?sB09KerW2%Zd{Xp=T< zlhkxn>%#dxMxL`l5<%$;z*yFBeaw9M@;G}da?CT7-NfDE-@X zU({|UTlIWad@FrOVnpR2%o*~n$%yk46MbL91EZvr2eZ_eo5OpGK+1l5)69Fl^LmOO ztztg@yEiTb3`5}S1^k$-OWV}@K9133k7AB0e~)(*i)avT0h zHg$dl_|J;A^7w|*h%S-*0h)h27n}9N#EQV zGJKF~B5aBQR#iHJ8NPpK;ZA=XS!DgAcL*v@TyGx^>KVGi4_oQe9zT%x_IZi_yeo50 z?gq4uoqoyJ7PaR#XZYKZx-)o<;6mz9U}xrlWzuaCd5uvHG-Qj;pOPa@#O{~x`vud_ zqGBru=Em^_yed=B>zP9SuIHuRQUDpiI**D-!Cy>27Wkt#iERleBoFjH=Yrgh|(U7Dda-uqcHjFxyCvg=}UV*)1 zxs)2iWRl-+=?>6Dw^OYpkg`sfaHjE$H1PnMltj}T4_1{^C#$sV6uD|$%h|rXmu<2% zoP#yVd;>8QF6uQJn7omoqmXazhEf}cFpD)4Sz#8T&Fd{ZVZ zJyFXcwB;Yl>tEPqf(R%fa^l>0d{Tze-%4Tcad`HmUR!O!iga#T3P(shcljh3dBWa) zDe#V!SfQWyABspzKivIX_O03AaKM#R8T#8{;0Aq=QNn40&ntpQnJ$)34PN)Q>MzRC7 zRjjgNH0LmZUR9w+@bcti4NI40&QhymC3j`!tUUIJtSolwZKM@V53r?+cq_GWAnyDK zk9RisIUQH)Cgp2TN!3wZFiOp?iH;|>xjgSal(5Kr8YCp`kfiMNGg%LAM3uQV%9v5( zlBWz_?V@UuiU@Okb&^rYSJ2~-@(Mr${X>b~L#UlZ%^i&D`La`%%*TIv;ot}~ZG@cT zwRrIyL_SByc+n z*VWzQIQfM!PaY@K6w0G{&i#F)K8cVsC1X6Hb8l}^Mb)0DD)K0LbO&30bfSLC@#aGV`p!DJe(pj-e~%mzm^O~fou=Yy_hL+vUJcXPX(w|mSSS+t6uI={!_&v+ zon#w-01MFgn&b`U;#Qtf3P@gn1a)rvNt@)fWy0j7XuUaCcipEleP_;vFC?z2KOp~5 zz`+~?`LGhKS zw0|Hct1Yifi|W!gcka@Q6@HLg5#T|YALr7#9ovS zu6hOYs%OVu>v$1krfSn%nW9Tf@}kk;V>Nk*^{V<1vWJf8T|7B#l*ww+co*cY*W2-}w26Fxw)pxXp_wxY9jfEC17V5Z_( zuyk43fSo!|?bBG=w(e^_I5(j6Vt(tqybrXi=m0Fjf}c0sxMS^npgP>mL13Vkw8FHw z1NNo<8gBTm0w{ZhQnkZ1x?t6aPBw+LcH;-@hJ*Q}8ULmJgN_rbf_d>`78g-P6i9X> z!Rn%tkH&jLW!5*OOeRO*z3Is<+J7j+e!D7PbZ7X{lWkjiTs}l0**loab!q?OZQ1!8 zYo+<}`+W#otxiF{RMRZa#u&(NhAlBRD3X_nj@&$iNm}g_W4wkPisoa%zLoxqyizEV zuEN}?ru{{hAvYr)@{_|->x6P37)=||K`!)_VH*y4bX+)vR+mkGj6W|LQ9@eOdi)(o z?-_aJmeN}VZP#8fhYaPn4%B80))AwwfeiF>%UOKsMeR=`IUn*=G3#D=D+hfW?PJ?H zHK2Od1Gjp7+^M}hLuWBQ%wMQFgtm@<9aOt3YxqpuzYDEf1AO2bo7|LOdxuAk;7=gq zdCNW)XSnZ%w_6o9)c3l^aXZEf z7eQwe&Jf#)56R77Q!V!X=BS+lKP`->3wL;bG<%749@3ZHXz??({^#o2SXso(WpPoJ zHQF}P^7aP;u6I^crKH>!f6O5Aw#IVw)B^;ZuvH^XV)uIAex?$0IRmBWOJcL3f{>=R z&rDxZXPwao^GoMRv3psypX)Xq>Bs0f>vprq?@$VTsoY4-YI0V&(tpJ>d>Vz0$tu(% z#@b%CO=^>-<8YY7h{_Y;DInE8Ukxd=%d-6(<#=rxKsc6OS%2k2PD@6VE|8U^@|^TR z_Pyj-Nos<~)vsNou%#@s;4$T+#|@iJC80fBPXfVsF#7;N*bIXom|z#hSYOSiestGD$l4 zLpfS5SLaJ-Va4$0gE~)Mu0PZ~FLz_8c-xkB=68h3>b~*lq8foKl)~3PTclP0)i7kT zXEY-uX>O!K*~n!kThmMzy)t~9n6rs_dX=)3CaP4W)Z#!P8ucsTTB3UM`QF!)WGmy#KWm*!%1@#f%uJ#|~ahwK~W(wRcf3%+3n)-)AqOt`gT`4L;Dy>Qg zROz&tKbv*-%^zE0Gqe;czptB+ACz&xSaEHcTFE9FmU;OPMWGG4Ja5nF((I1?UeC;1A+OLn&^CwiPi&88=mzKWu%jqEM+)E&V<~&t5c^P?-N~xiNuE6 zKNLnT{eh9y6Q8zt3V0=-xgtbP5`8#$fa0m9GV0TG#C?TS&gYJws|J3dmTFNIE&vRO z??8ujC|Nsf=*UU+_d9#dK2pk=<&gLgT;B9@!rHmna;(~Hk}=Z?s%SL0?ydYor<8}U z9O6SH5AXAR464RcH8uv0iRu?tj1pIWFRzRDyd#e)Qhfr<+jpag>)mG+5z?a~yTiAj zm|Aj%{4GK9PejRu>XFzZo5aA6F&#OYEX&nM))sFTBZW3wsUeLbVEa@C59@2UMK5zo zS@(<##SGO5dwR3*zkkUdD#D^e`ZHXoXD*g)$=N#<^idI)XwSs#@6S9g_FvQrKkQGn z1*a7bH?qiDe3ySm2^hp>PNHK4a@OzNm+0JGZp<{T%U&-$WlV*>wdVX?H`mj1>d4eg z{(`aSa5g>OFh0cD5EI*aFM<1`96tyWfunrt6l%{Pi+>$b^G$>Mm4E}TbsTotg(BDGwGLkJLBb6pTsL~i| zjDZFN5Skj;95+zss*QNRG4kJ4@s)><3G=q7L}omonV?^??WL~`?04kkJfN&a)n^FS zVXHXpuKtG-aG11h<}v3NSm0<$vCc=Qca}2dVA^$qq}jJlTd+~~X}dHrnYtZOJRq^t zV&m7r9utx{NnG83ZnIR*&7}&Hzb_NJNytbxHhS}mn=}rk$F8UM&HqdQa@x(w<;A8- z!CH2Z2f+-!JI*#mT0ooIX-k>Q-vofD$P)ldl6nSYWyYI1pdbsb+kjyv05_ye^J+@aRx!-G! zz1v#m@sr!5X_s1erH|c#v>}bc&U^;FzcOnOXB5xD;Uk05{WxJ52&H`76m1+L{TOw~ ztjwj;VDurX~wPM>P3F4_iQf}h;-u$F}thp?)I{(IET8)vtB?kIfq|h ze2tf5YZFFjNSaf|G$bWRbzcC;WRlXOX2gFd&F;9L6vsRuYH`H(OxhP*B(!`%==>c| zJhWb&nOpUhzF-L)5+vt%@Di()ha#hFA&HIWTr2Q#r$2U7)BQr<*bTk1L6sE4zZU`# zmX%rHn_bSN-D$l6_5FB6*L=T5bR+W`OAO;^VvU0F#)e@ZN}?a{ z@OmSGwKblDr)!jT@5JZj-ys!F!{C;CGiB;4(Q^9~g6C{7Q*I;8WVT*-Y}U1+7`GA0 zo)xr(Asz#XmaRr^S&-G9bl6s4(#;zc6~-S|koXt{MuMO6IB*UU#eyx3?=yCwc&#Zx z(Wrlrs?1k?mMO|vFaB_-wYQc3lw5DeJ(3Rl2+Za^=}`!F_xK=30ajsvsB7+YB&Ju~ z|Dze>=ov&=_qw!_ec|(-OD_8HsS6&<@Vp0p6oH0xsap#dRX{=WpA-w#iW24QG`@;N zo=Kk^W1ieNxPdA8$iO;cN!yrU?Q58E}I^ur|i~|>-oB> z&scn3e`-UmDBMwaLo;qV#`0K3f84dtxCjs8hwLTmx`1gMOz#pbvPCeVpAD+N80fM) zx%7O--l-+;fK-@A8XrZ0Ktk0w{OewDLw@vcJm5NIz`S-6!$^)q@v`23=Cq5 z*hh-k_z)cP^ZKjxGpra@EUeH4q>iQ3s$UwOd_FK1qD7P?^xpXQQrzt*u4D6A#16-I zgp91dFr+8UNlMi15J+vHudE=pT}LC3?ov~h*E#{;)z)AsJ?WGxza(TmuF2nfUILGhp(;A0zKMh z;G7&~cK+*Ka#z@x%fX*cNu?H{+htY(8;=Bt-sbjt2f9~bVPyDsDQ$Ey7DPk#qHJwk zGAueXZ_~v9h;&V3SpQN!;`bmvzZq7&8wPyx7FfOy?No{x44xfF!oM*$p+aSjhfzcV zO^NBAo$OJfL>yfCtZcc=e3`PAfzx=3#C9;H+W!{Go(Do_r=<`7Q2v~S>Xe$|F}gw} zVoNS)9NC!qcr@n4Ypd4b)^Ez}j^H*)U{Ya)=f9_cL}UGv=Mtwj!d!~6{qO6YYf?m* zJKp%RU^j$fvq1#~SkLoK-!M%uu3`3GT}GP@?Z=XNn@C$Lm8sg3^G60-hzrLs^NMCy zRAQ+2(`LZ&KS5g-;09U%)`7+T)8Cys+MPO#cBCIH9-VEwUFxp|Q27VGwyTZ{h?h>i zgG z+^CdTb9ocwx+7)>(CGc@rCHo{Us96$2DJl^HU2Y zvJ>2Fr~Ja%2%07oP4=|Sja5_{$*YvVqShx>ZdoypelkH+_xSTBYxdup?prC-CMLAT z$zZu+dsXzwrqX_)NZ54j^___IlQ*0m1|`k+qU#v$)Q@@n{5ncMUDCGe1a=MXmwTl* zl~<{12+~2%-Khm&s?5N%=oMrD*|oB2YC_xpSD<`@(+aF9Ar&AUBI@LD&G_nVhU5#H zk~WYpy{aHk_bSo)3Nop|_<`NklW=VW?sESNHvoxm?Z6II+tBu*by!L+?9f)=Ly3aF zo;KZv)}eSIvS1-^WbcA5AW+>?F94uX_>>182FjT$KH@_lC+7|kKXXXCn4nOZx6sWo zvE`O;P#rPT}Cx50D$ z_y0%HSvbP||8X2+rY6tSrt8EoIn8v(sna!`)8=${*L2@>oMz^<%`_*rQ)6sm42SRU z^ZO5Q?(=!S-mmBL@i1+9+N8uY1l3~Upg6;g8Xmw?d!S_*_Q;Sw?69Tp=3%R@+D(ze zdax=1Kz~4VslYy_Ji*?%EV%##4Z|%A<@+(7w?4co=D1z%?%BAgP3)g-32qwh3}biv z|3jRRNVibt@tQ6#gU%zfaF~4$Bje`>BRWO0zD53z2c%9jZCGl-ZnI|h85o`vHqI^c z#Y^RZMD)($_wojLNuTS&#IQSO%ksDT^feiH-OBNE2o`y)hi#odLgv_Ml>DtM`+TdS zD5DSOnVVEx1BDuS(JS+;$?typUl*3PYp-(WXXJZgw7TYW`|-jcZy7_C|n zD~v6B$O^8th@L%v3P`0}5pocT$o4D6SK=x%(OEN|%EtNs$J1DhPTzh;3ep=10|Ipc!}D0tYYqU2hEphm1d%-X5<{aj1#A;~Aa#CrVr z=bM8Q)0NSAFU;a&dO7!BBsH4TLtSGiNrr9lUtWq`x9E^3alK70pjD<1cg~TZJ_pR` z)2?fNBC$lZk;|?ybtN;9wNAu+=oNoMIEq#gf|=jLlF1ua){G*-;mtI@@nP%678?3{jsxh@W? zhbzd=5=d961rb$tyz*lIGD?1i|KQN1s=UPbmeuMrcv98V{AJAs%zv!N%LYS}zT(bb zcC|3&p)n0vQ>*f0MQ>Ld^Tt~j9SI=aYnf6-vP;(_=fuv939AHLe4NEt)>Svlb}$Wd zRQTxYps=sJ2?Q=Ac7KlpsLkF*aPS?mbjsPP{L|b%U1M@?(6h6&$whO0kJa`Jdz2RC zj+9xI{at5WT~F$}QmXLQ{tB?7CoRd77EtxkN!i zYG>vuz?d#`!jaD%L|&TCt`1}!FJAJ#CFDKRG%n=P?4y_<&Q3~fXV zVQ|-^8pY@R*_R9d`hN3VN$dZ=+8vWdQnoe1wHNrI=W7U~AXnY)uv-KmYw{)$%%h$X zy%p(v$ZZVH?v06zd2lIB$~$=vocD^Wl6<1;j#K9NDJa>)Q^;*Wg4`P!SG2GX;`Znz z>9t4dOnDjF+&piNkZ=Y3ILm7dGmZUi;YoYW2=)H*x&-aWQunWSt{EIzu-{lX0f_7L3Mu^P%A|0Y=cBkT^Pobuz*I zYxE90ixJPS(oXE{oJT2p&MVF?#6T*G}GASU67Gql_zghvB z=}=bsB-S^+tXUO<_AV9ZVne-hEsG-J9G2NV!SZ;@w{i>h^~mBgIYl)j8Ro$v>(qP> z!pP3_BrE0;&4wZ?|HDe^|7y2~;@oFvEshF~4AS5+=&d-N;jQ^llkJ8f+*+4(+CjwY zi)XV$%;7Qknp?yhVfQ{Q*{OM~ZM#Wd1Mawxj6%evf`90&vtj&^#xYclqQ~Bfb)in) zkYU7{oxVWz4Aw?wSTbZ7cn(FLmVQb5`ld70ooL#vP5o$6_;15pDjx&mr2&7knFAoU ze)gvc%a(`&t68U3XxLi~(RxFvmMfYx=U~8c=W3bqZ9sPYddQW7K}}j8y}zQ_iE~bB z2to%wRlN7S^wA{KbGmh`BGx$jG>Of5e9q|DKZNFquE>J(y&!U0e?m%2UH02a>}Nio zaIL2=@looA`SQo907fv{DCe(p6X?4A)r16v-2a_VeXwih=P zGu$2LZypkC<=3;T1*_^>jquFESL`~Kq|a4#`|l6dZ6)+{=nU?2!5JHeXb8EP4y%LHd4 zWev87G=1Kgw~Svm^JUwqsIL7BM?p=Iz`anxD z!SQ)F#vqN@yEXzOF>c;QSUb=aUAMXZQ$cxbY9*grsv(vE|#>H&4GnL+(8xZ6XrwNx1-CfK26+(T5epIbZc0JKP? zoTNsUt{4bZ+VZaD#CP=7$Cny+3OEWKHiub1wF<1U_`7FXT2%KY(AA=z9A4W7 zr>qIxPVw-(BN<%F#}n5VH8C#r^!yP+(htY`v&5dBN=DMK1bM3f~_-gTlWQ` z;m+g|t$HTwplHLAuV8e8x`0lND-EdSzyOs~+;f_!p%&QwjB}hUZA;&I1=rg_Xh@~% zq}_r`1f;psXGRGw5PVgzw<^4=5u5ZaabLfRLe}YhC+qQtwqM?d2Xv*GokV>%x(Z}G zEfmsRN@0xcSNVHyM9&FQKip`%$`*P}&axC3+ZY0e4W5n)unV-GKM}Js$f0+S(&ZzO zE#g~i_SYShU*PwLIA%(B3my+XzwUaIQ*Gg?-c>Tij)>57lHVD9o`6OHf2gar)y@S= zzlF*+LcUMhr0=+X2fa;}Jf5XD-tyIAiEJAM-aM;N!c$?LjI_Y&@ z-v1^Ok}W+noJ^l?9k$T>FtsmPK-J5W8`HEA3x)exiil8gM*Lm5s_U+ncIGT3C#HZC z*wu?%|C9kjO>L7*F}JfVJuMpNcYnmo6wM66&K|ZjsWT~Lg`6DG4!P(fH9PAulLRJm zop4~rafZERqiI3SO8hP2dfQVxIg%XlNr?YHEYh_}&ccDx50+|G3B{6b*hCoN>mEP{ z6{54ZlhRDM+CPi)Wlydmhl>i&vFtkSc4&9EJO8x&k7tt~_m(S7!O5rHhvrWzwX5py zo6nsy>05IrlZsFp;&w)2!Vg#MvJ_GCrMt~*ZfvbMs{_Zk9~Lu&%E`xddDK0e7jD{c zyRhiz_E^+vvlgIlgarjyv(jQ)#nx3k*Ojk*Ds~gF+xrJX3sXjy6~xh(7Ih3USTB(y z?me$gPP^==PZ85w8oetb8t$*RWX(5Pg4Cmsy8mGX9`AfdCt*y1=;7cbqD_^YDa|1n z4{}NLPOqe{^zu3!5+OWi zACRQ$I+sNhQ``^5?0q_o=85VO*rR%ZSHL-b3KjYI3X*HG=f!L(N3#~jH{=YP7>*p$ zPkqZdcdfS=>c@QeqiZt5NZwBHuWd>iCl=0U#NAQ`-#3-@&6lDH2yR8I61mv9Lg>az z!6WQ{4obc3lwV36V*kU^Hdv6niQ>T-2YXozIci| zF=W@h8%93;a+J3_xI~Apd%4_{jFEMgP906{JE6UBA&-Q zZNNVl595|G&<&5q+q^J0|16LY?cJ$F#OxV_{@xti zr?BWAGyMvAB+C+G_zZ%7)$`IV-Nr3Xdww$0lrzWO(FbQD%B#Wk>}BwMv2fRv@tbGQ zI1c&g7s;_(uT53f+yONby`9mNa3826!7h@65QSK{cyKGr<6w1o8$V_l%@SC%UqVxx zsn^I;b zo?jm3{&gj?k*_sZ3u43j_V6Tu)semg9LAIqRhXrkaLMDmb3aqV;v!lP9QZhI*X$KF zcf+A|^=BHGy~pu=k7b7MYaiSOizTR7OxiS8Fc&$Ir;>QW7_D3lj>QqOt);5g64!YB zecP_%vHqX(z_K(Y?@HD+$&s9YiaGb*!X|!NIQn^tjsh&!aC?$#`JJSdU|FVv({FcF zw*F(TPvNK?i)-N5iE(!?Exwzss!P)CfTm24PT)9Sx#kqhwZBeKg2)Q{d6}X#NeCBT zsj#b)@r)@+K_BolcSFf0T(sD32Z!LU=c6QZoe@(Lb>TUIUojthf4BXI)tIM9la!Xl zohL$~GIjMQG*2cz_aoKEaI$)g*7z0bu6b>`yD+>Oe&b%HL6tzr%inrxtk?Sr);BaA z8q-b;GdUkBe3zskd~f+S#W+d%WQY;u>6V7Y*E*GyHq~pNzOGR>%{O}yp7_=uTpR=a zo|bk;{esZi$7AM4OV`55`WIZocxAE2mEPl5LueC4O0Z2~PVYLK(SibdSCU_b*@xHo zL>N{fTytn!)IHIy?W$F8eEI~j@0(E`mfx;JX`j*uQ1$hpE&s^dSD*Amnut5D-q#%5 z0SR!gn5wjCg&p0crjDO%mwc)(Dx>b#7#nF@xis!R1=X2o+N3Iao%fJ|v3_Fi)6NAb z!ug(823Z-J?(}3l)SP;!WRrZ5-`#-ic&<%p_|0ki&GKFHL>)9MG}7|8L7m9;HyM;SsjdZz9fBdp z{7*F_2*=Dm-`q`^{&>WGlx*?O`C%$1C{Y9>PUxxxd<>!1RH z)PzxLR01lmN_I*oCMeXrolWsA<)~=J>P=Hf&;$HP{U9S_XT3l0j>jw%cC_a(*ripZ zpTR)DQqi(ct*&dZH^e?&;asEFsii))Y$uf$K=vk2nCQhNo9EzmXL8kN2B&JR3N5F| z6WXlISn>>ofbt_5#?3oZjSQC+(ezEAG+(IlMv6-nd-cy@?YB(qwNWVO8 zh9p_`c0A_ML(g7N55-4Vo?|{lqJ~hCI^>s!8Pl1Z!LA(f6*Y zCRJL`+;@Ksn`>#`zA?+JJkHI!0~!S}6VTUHW8WO2+4ROuzmA!B%44L~uA5&-ykpnW zr*3@P@SNpxOMc8X8XVVv&k>HeVem#*43CV&Jk)uf#CQ82Opddgoy$&+KQOIM8Fin1 zb9`aE!h^rW>Z!MMg;52fX>8lI#`QD&?pLrr$^?w06bC5%=mD) ziRuue*ahx!h0 zBYzKh%H8+0QL0)r;sn?#EunpNfib@AZ*LeK8j~|;<7>S+T{eHJI_~aKv`1EBg z#RG4Zesz5dIS_G%Dv6k`Kj;kB9>MioQO{AWHa1oUTR)jD8)IGo^90H9!(CXFr7AL1 zC5`=MUji|0CbWn;zXoywWlXlmyn=*e-kwnOCq>TT8tGR2oi<=;)e}R@z zIZ)nQt7IzHI!33T-0Eo`Wy?L{5sH`^dNMre{+*ww?E3`R z#f2V+P^WoQjes7b}`#|=>SS<|WiKS#-q9CsMS3DY6Xst(vCx~exs^<^oyuSAq#bZQwOi$teVbO=0 zGSMZdn4vzVl7FR3nfM)Ml9^8KdpIJ#u9BXmon5OLpT$CR{E%CX6|XT;MSi%FV~E+S z63%jND%f8Y#!b_B#}8KM{>gLZ4SPJJnbEe7o*v;gHoWlL9MxB|g^)k_879iuscj*I zL;OWU0p*eq7H*UmBg6mqinE=eS5jDY9dLlSoE-Mx-o5F39bjqd-T~oH9=>YyB4_+x}%+^hUH+`qx;N+9xWUhE3QSY^)nxP+$ghviiGoOvrxG+U8sb|7$XWs<08? z3j5sV(e*P$sN+i2>(ITAon|t7ORre;^SA7`@6kQihMD~#f5w!rrs>9Jh-P1Cm3|?* zW!df5ac6eg!|5PdqLp2mn1H@>(98p-kGx==td2?R2)d)46Ah;FboU>q`_w1L$wk#> zC5;^IwVGX1aEdf-p^;3U#iwB;j2EJ2W@vcLk?MObp{u8SWV&n^_3<0cp;_SacWP~+ z^TagSRtwxHBtW5G6LpM;lVX12?x-<64Qrb8x(#_lW%yE^j@kyJzN#jtWaat{hn&s3 zz%v6&Sr~i#gd!nYB)eBuP|Mlv>rX@t{&8VLRy!x_LTF35hFRi{ZVZ8Ln>S8%la-6A4QFeSyzeO}VqU&y%_5Al<5w^k~jAvDu>c5^3gG9sI)> z4|nlBzy;EH-X-2}a;W&v7Ve_F)I1F`F)S_p5if5W{Fj6%F|qE~fQ)Hrd~g3qW>Jyc zRGY+;O;CKZ)wmFW*R@$H&EM;rj`DQBvME$$n=yM1yxlzV;u#w?;S;%#Xg5=4z7BfV zCxG2o%|f?Cqm}i_80faRJLBUuB4=9y^Mk8=u;V!fvJp2D)_jg&OZNpfDBI;U_7QhE zz2|&w^NT=vmj*Szdpc9J#v46;q#CXdiTXc`g1tY8$#l-AkU=4vSK zfr!qL4Y}XZ-91F~jGs5?#r@%5d%4YmbZm)EXrHJkFO8=C-qZlTS*UFL-C7_On$m$0 zzG1G!I!jBYja6H1F&>A^V9(d!^I)q>$Vi+*Wn-YJ*r3Eh(&I6<)wI;1p7<|GSj>FVbT18lC=Ig=z>;p3&It zbm^}DDWDo@q*O#~CpPa{tNiS*gWB~ zB9Ob)gXOW9A|;aaGMvI2#|&cq{$A5kXsdix^3t z2RD*WuW`U`L1`WZnnl=}?lm6ahQ#&VpyS<3VXH?w8TQ@cl7@CJ`|s$x4mzKL^n~hv zicK_ZDFV6MqX1l6I5?yjGSUZ-_W=o9v3~DspVg=fBw?km5>7XyB~{eo%m}H2;sjX@ z2Z%7jLFRS%+Sib&vPCp}oV@o>VqXS;$b7Wz9YYjVcXMsqn$u>46Yicx2Xs9WZF3@0$iUPpbpZ@I6bw zM?4{=x#0332hfb;Gs_-(E$WXMEjI^--#k!;h5KAv;stfK!R6OsFWfq;?}px@XQMT$ z(wUPtK2cW&cCF}7dJINMMzlZXLxO?=ceB}ES*cl%EpO@@Mtl1=Q@>#RMF()V9;>D0 z8ts2af|ZQ|T|T;qlj)4kly)2g!jfDk8*b3(`8i?bI}*7cN{<-xj+;;H^IQ7vwXuDg zMUGRDt}4nthKvbjrFcBCIeqW-{?xdl@KUH>oeBG4VaWi3rkBbcOAmcyAx}A&k@gw6 zedL(sOW6Xia>+E~Lc-=6@%l1OhhL|6irB>R4s#kTc&~;yCC~Joe4kI_J$je=?@4={ zj&7Er?9-9H9}3C0b*5%3Kb%Gk|CK*jTD-P?>$=nLkSi*NXN?sjkMO)+w2d@Oex*jV zVNR|M(T#G{yE_;sX{lx*d$N~2$(<8kW)-7yBQhBc;*(ofWJ(och-G79bQmhmzyvvY zPXH>O_u>vc{fNI6F+@B}yGybJQX#t$HBzE+_d=|xG^Xs2H*l)t7%VW&xg_KI@NDRLn-;Q|JB+1vd@l)P z;5%Z2?WwPz#M1@vFsUl|Yr>m9^(X$dC2_B;OnSY|{* zg&sTgK3mBnsoEv5(-hBxnx*31$Mnr-S{jX0d9Jl8v|f|?s7HvjR4K51+tImLcj_dY zk(ASE##!Q@=~9;;*x0Iw{yo!=TRqEi!2j@c_u9`?w8t`Wv?8D~nCg_x2+V~TB@_X8Fq&V)?H^|c9 zV;TT{)hP0*!e`DNoqbUrP z!j{F?Nn&|K*(ML$CyGDW=_y^vNY3G{O~S^2r?U6X9Lj4H7Lxko_OHiYQ}aP?&2`&f=bMfk_0Ga6Nrke}8VeXq9wR zrqPi`y{%wtxmRrCRDVuR*vbeH=d8KX_Uy>%PTVpj>fcDZNP|U}#z60~FeYTtE4T=} zDwCzEYw;5VnKP&Cddd($A0&79i<=@G z`;j&N*ZZ4H+kEFo5D#i#mHhGOvXE(o@1a_njcsWi2wtRo*=$}vNIBHMhG-<#`46N zAW+e{rh6Vg1VUk~)D3VI8vje+oJLQ+bLEn~8PihW(UFo}F22n|zJ3|pDzbf0_%ZdC z9t%TE_(yZphfdEdqYLD<2N1k`vC&INb3Fe?ZiJf(m(`NCa8S?lE}&(vBvvl64Kg{e zQlFm)tiYKWA0{m33YES=9sIrU=#xg4v22jREhdRh_cayMSRD@hrdNfY6RsPgRe7dj z=(qX|*yuPcKkfSWQchBZ-}1vJLwr3j56dPDrmtd@9C*J~-o8z$^y3B;4l3vooc9!g{jSBN+z^#!h9ut*FSxZ;?`Y@rUK{{@x%j?o}@2bdY^rc-QH|S0D z`~azW9W7sYslQ_!?zwDja7`j+}b$%u2f<)*ubI%RX z4e4BJ+cdtW&-0CQq`JHE%tup439kHVJiXSzq&a&^DSb94KbM=iN1Jpmn>BeQbJ zgo1p4eV_MRR(gk@wdf5`B=p4L-R!qnzN)Z}Z)88^w|}sGK-guG+p4pe;Efat!Xtq& z5qj;lYp0VV)Isihl(t9{ikP}Ch@V1nGQ!bXPGlqEp$QzdEHyfBdg~=ZZJse8lIid0M?9P=0(>f0Ug<@OM=Sr}JRQQB+o|754sLp0`rVgD;NnC> z8%>ZTd!?Wfr59E9ZqZMX*X_nXt_46;6qie$O`iHeE_oT8w25w+Jn!z;_Ap=f0TGG4 za|ZY4H8pp)`C(9yfEp`UmCGL^+XfJoT6p+*cRHQ*ts=QU@Qizrh+i=7+2^mzhwQ=+ zvX&QqQ}y7P=T^&0CAnivoKtG%e)``=O8Lg7>#`zVsT*7w{-}Z)l^AFQ1&+UJfmlb> zBV>Mz$I`@7a6zTPP9;_vXuPi@${W2h+nrzeYT%kD?}!|B+nN2W-Vd}fv-8+~6O7Oh z=0ppr22=P$?oHF@^m(*63Nu~0bjhY@rm0lYn6F&Eg{@qmXQ(aqP?x-R3R_8y#s$}i zpM7_4qH-qFmH4Jq>C`HN*^Pgc+vx0D-aOU{3b>HeIDePv)Y~nv*67$(fbFGN*x^$F z^PgI4oTcYK(Dr{D2E9W9$)5s4(VX|hO|B-BXmp8Smz_bLTbkqcI14-{@K2&KK+2H@ zWaKKILxkOw8;R&f-{-ByIKc~tNQ;@3_o?8HtQC-Y=e^*c3^O4Y$-uqUgAugj_$abk z5Xq{jXoxY70qgvojn?X2BV2pgoBsLPX!&xP`{LqXK;Hv3s(?D~r`8cPGZOj_LmydM z^zHsLn5bsWiO~Jrd;|HD!JMq}@VS;B&sA6bBQp8Wbiy4} zW`Hz}aUH)|eD@>QYe6rk+}&@B%r{g2FJ}>-7=C-8ZCSa;-HIP;KA%dReHl~Yslk=O z|GhNUj#-CY=}14GRzC1!JFU;yL!U9=N1+mKkF?d?HHMU>fc*aG5uN^`5y*id$X&Cz zFc!&@W>9c~&T;ylm>FOrKYqC_ zzl1tUX)2yd1;J#`_xZJo?{q2~SD&MNd>?Cj8Kr_T$&rw{U^ifYGz3gvvH1;q)~^%M zO|~+}kYVy3TV?QSIu{eVaf}BQ3fTm(nUYsW07#|Eb0{3x@{*hxjq_i_;o3VO=QO@? zD>q1s5S86c5GhF15_bjiB6jPFuHnOo$NgoH*V z5|2FyAO8f09TV1kqwEvYUTsM5Dv~HWiQxO#00;vLh8Q4~Oh5M&O4y|qhh!ug{o$Q*WH+SjM=!$@&-mv&iN;LZHP>*<+HV&l zP2k2J0HfjVr2YBF^E35wTkWaGAV1RggC=C(rPOY{jdipBBzBdjAG@B!@boac>8=RQ z{reO1M9c9n%4`y>;6cNO>$=qDwZD{=bugBnnKIBDl3=`orNczu z%Do0|+^eOw!%KA3SJJqjNb%@s`ezz564>PmbU_@P?cW50rtu3^c4^Jyc=6YTuiwjF zwv-DFEiMyr;_9&)9Dx_}cupG#?~A$A-8tT?&)R2*_ey%81a?J}8UM`#HO@9o^^(kg z%L%VOKgqOXB99a$S}M4{Z$1|&F9>?QezhzMH`k_q^-9Vcdw~9g7mlF0d7o?qmyzU}Z_cDvYZ@5byb3u%>G!+U+f^cbUbXm+bS2?8{atYi zHE9p}Jn<;XcGnaIo5)ig0AAJu(d zyM6cJ#y&aTMy~#A-FUz=dX89oMxt0Rm$JS|~ETduVVQ`NiX5h8wG z0C9d2|nYIb&KnC6Q94L>8K(BTk~5abYw)Q~Cg^Og!29Aehl3}4d6Uw3pk8i(7T z)MT7hM`;$u{KDT;Qp382_5#-5ugZ$EoavkFiz^5R(;!gt8+j6143^mXKhN{F;U)fm z^w0_0+r6ZZt~}VB?7KU#HEHoCt(4<(KY3U=W z=*UA1@(?{` z>MKRM*$xk$`@4Zn$^{hJlg~Sh1jgAkGhR{EUw@$S|8?f`5GuUluXknC>`Or)A!HOl1dM zNl>tF-H^O($K9XSV~LWhJn^+!hpk~G1V&r$JrrZhS(O7HaroUCYsw-k%3%5TIaAlpkFBfe`uTI~>!zwJQWDtZcL_WImVR0;l^MN! zqPy~M3k9;)JASgXXx&7g>!Ix3D3Gg``a|Fg)5(Nvnnf%zKard@jy5UP+ z!>N4#VS&y`&g`q4VQ4i6YQ0yP>yMaZN&P7h+ z5tm$^;ty$@+#TS?f7UIgZ=w+UU%QY5-@wxy7@!GK^aJ2?5qwx`b&Sg3Zb4aBPhyCt zkUuBJ+t~1Fcrm1hf$))fAR2CZ*y%4r1D_c>V3GP1R2gKXv|!%2w3tL#k*YZ%e;L@k zj*;!?5szgXG(Ug2dxh8^za8}w_V?DJ)BX}D`&cAXHPZ_5NkY_ObUx=McU(EjxI0ey z5~>ZrItp~g6z+Iu$J@pDB|-z73mobA^AXjl$><+@8HT!;Cz-U zpNd|0p(1XkZ!sYOb-(jnG0f&v|BOXiW86Skb+D5M{5vS7mh0wnZ~R8ED$04FHh&LM z^!LMG_7WvS9nIM9+*hy)uHK4J^IkVzJb@|xlb@=Q6rG0HKD zxXqLaqLvp_)3YnLnK)@V%t4r?E!%ZPj}t+rU)0q8d~oAZ(Behf#rl&RW$DVi_`v9S z&A=qckr_fleYIb6rNkm?L#8*Lm}Q9))pT1_s&w$VcJ^Gc{0NEkm_TNB?16XbX2W zWzvVh)QSN?Bqr)kAUxAaa8{{sH-68K<#8j4&SX0WOEI@#sv)Ov=^yI81CvTzMwiDaiG@&p59T zC_=+acUBAXhfHTV4KJ!ZYh?VH-YJ@-MKpJ)$i55vx2YZR=WGWTxqC!P+)3Di@+up5 z?knfbwEU`M)ZrJ+%-5Zq@pE`~CO5H1rm(kUQ>xSNO154(MR2+Z>iXmL{<)YGF|%>{ zg@BO{-4wFb1nH_4>UymU?UsxFa?5c?=h~W#2+t;%G`k*6X-H2sbD9QUio%l z+6|hbKz=p&b$z$TFv*&f;9{`$9YWu|E>sAT&Xdecs*wDvh`1$IE!pFow1 zpc||vs(*`vN-yKaxD6rBMDrvB;Q<|n4KJyeYwGe5IOgZB@vKE`cjTJZ#$5B*AE%M{s0x%NFNQ`n!(8wxLL zxFlO)uYw%Up=A|UPEm#tt&B&h#l9>;-c>Yz4pRe?Gu?6E%7?AHuH%aa|M&d}RM93* zs}8uo79X&XIeMwvyiV_C7>Yt$CE?uE-v@7fL8~5ru6X_UJIp? zF0#lk-nfRDUADK~#O`t`R%N5w#WZaV!ZFMeNPe~DB6A|hmoyS22K$}u&jGG z7ER+LU+7`!A350OOVAS%**x^=UXHz_1Wl!<=3V1?bT6py>$|P$*&k2Q*}%3#XI%Iq z_xBD>Fq>ey*lKElypIB(4&PUuJ{EZVPb{`#Nb6}DK#{aC19o+wBLbwk&ik)};BBzG z)+4wy~j>7y?2Hj|hO#u#K^n*N~| z-Pj(3d1Kq){?fbq3aMxGt%Nz@7mAAKqu;UopBPBoh<~jn_~;*ywhhN`0;30M8qVh9 zLc!hX!x3|~P2XSp(ZIvfPp-ckA?0h$fb!quR#Yg&OZ(st(#!|*?g|MtssS%=w|9ZN zaaQ5>#v}O+-?3;Qy?<_76%CnIdhWc{(FDI*ktAL~K-4erBoQHh6=xO7Op=yl1BgX+ z&;QKoe369ljV-^n&zOYu_GLkm7iw?xfvL>r&g*E$VH%46wZ&?hePU=JZ>2lEfL85s z*+092;n(Q)zf)@&ViezIme3I8?{^$S(=k*NWdq%K(cDNhR#gY1^TSI`3^AA1rD}-= z7g~*#Vu03#1RU3WUo|PH-YiTMjo7c|$9Bj_d-dY;$(=ON$~GUc&lj#Vx_*aH@wNAXbm2T0<9b}IK<4wZ~V1oa+5 z+v?e|H8V4)0lGG^^6YhgSh0ZG>0AymY1{Fe14##_qqt>LJd!F}__SXy1iQK1W z!Sg!jkT9tx6nKHv`>m%F|EC{Un%2i+5B{+An;qveiffxx3$;JB{``qJ&mP5tntvC- zitd_|sA}k{+}W18b!Sg|RR;gup_FPAC>HE@H<>B;;l6W&CFNN1v_&10Lb25kQ z#1O>c=Ighn{Pq;S=#O^0cxu;y&8Xd>&b)=F(PF68Cug?YE7HS{?|8W;*`QBmRV_7hudTghyJ|-a%S!K}tRJ^MEk7EcMrSs{^LRmmEUY)EHY3+$9 zS4R`601>8=*bA(A){ZkzU|V)XuCg{l$<)M_2SJdJ#fn3SJqcUoYHxs6p&Dlp$w&LmG(94*9Sy%pW1SQ+A z%>MP}YVvL_4+(NQl-FRT;eLjxnY<$0~|uwWS&*b6n{R1=v2 znlxSVFSHqYN-C5;rf*IomrcS3$g>~LUxE55LIp_^3Q&%fu-qOS>O~S3;Hks?UWw$Y zY`%b986r0dF-cSBWIVHkXl`fGg%I*$4`!V^Lt?Hi`<>&XFyo4)4pD1Z5^C*>pG-Aheri}~Y0(xjP1pRAT zn~_#OGq(VjN_kM7enf-_GM+*ImTg{1X%Kr#Vlb6cQ60SG)86ZnUSfTL_fX4F7z*n) zrH|4jL0lW(6#~cZ6n6erQ&ywchw7UbN|xa;UYCIf28d|k7irn6qNJzVPrri`&#w`{ zHk8Pe+wU`xyU1^rGBqq_sF%TA+NIBGY>#>p#qDO^vW=@DEGEL_#g>Vdv+vju1mml>UBlW^2AApWpiT2-B~NuX zm~B{M_~_<4G4G{>L}z{{E=%=^*1II|O?p3h%0~E_^q+~;h2S!P}x2E z9>Ms5sQ}r$%jeS7iyn)J2E`Y+z<9!SEAy2hkR~Bj)vr*4o1@U0TE9U(K&lscath;T z5iW5)`HcX+8ZJ0vb%XJ%-ZrP*dv|wjC}+Xy=RzCw5rGfIVQ^NgPN|=P?ZD!w2uq%~ zVMoQ8E%Rux?;`m&Lv?8rIAg$UoX>2^ml~$z-|o8BiJQi%*%tW@i2qYYzi!x#R&Yqq zr3|XM*O;lN*Q2gz#&8sg-Byb9D5-6rbB1M(Tf>abUM~bL$NfAh967G|NLSnFCFI+L zIsxnptyIsyfY(sKb^{q`0;&8*q1HV>4W_tJ|VEhQArOtm?5?G$cl&Z@e&J=vw z>w6V(i&*gBBt=T&@8!U7%$HBWKB>9=A?04hOw$JQ|9jtbLJt!)Syu2B9m3Unxx${1WXLg|M0al0 zKAlh_jAXh{j;Ic*cv4v+s>g^tQtC0guUjr{Tg}Irk|5SCe7ooPp{913&)yU?{>f~) zY~}98nhcwhnKxIG=b*o(=1-4%T_s!%y9&FPTDU^WMu&o{hoq1?fnN zRZ`}ESg-8s($*n0-$i_7@XfQiGcWwAdKFL6RG%JR>Bwf=D zoBvL1U+&{^(xXGHI;Au6Ty6Ewgz;Um@Gw)8+3juZssEwuh#K}m$lJAGt-#q^IBo~0?EMXGwjFhv@y;oq6zR8|9s-ABPepwk zGMA-lq1D{_So*4MojS`7A0e8#IVvi)yYscDjbs}O-~PHY^O6-%-Dc8t3;!xyo5^!d zV|=114I-H}G~mJO%A4UiebfW6*=&gTqK&~6_WNc3PO>POqs!Q5v3<+dM`Xwpj9Xda z#`%&@#!8sT=AFYnI`S(W1+UaiN3Uz@rvSzIZ(}Eixojlx1=!m3j-*qrs7RxE5l;Fn zO|HhmPZdRN=!FZysy(B4fjDGALpL~j`@+OT3>;XF90R$Fks0&n zyvRcvu!Pmux>$}7!`9veLx{&5i@**ie5Jwm`H!|Gck#NT-6S<+#N}${a5w!o`=J~a zZ_3^p)X0@22RT>*YCGw{Q6*7?U|*)Rrg}kBa#*zLU){ZyzCmXaWlphapiF`h-OHoM$w%e*>cAj3MKOF#KiAa0n+mLM;!OepSr70;!?s znI#b11V`yLTyK#7`+BH05-7Ug(D!3>`<%yPYi@t=|wam>ZZMn(l!tWc-x%Eay_f9VHkmF~0+%Lcj7m2Z_ zA=jN%*=4PQ8KqZ0aSJ%XTZT-g%Sgr-!IzRktjG#Nw0}Au$(h?KH2Ai_1bj5cGG&FA zoqI_SJ#loZnxfwsGTk)=8Hojcti0yDeKUfo9dtmdez8WfPllU=x1(oBl%0FktlVt6 z)7Mn8loW_*asOE-9$Vf2nVk!M24Eon+Q}>_+FJFE@ ztC}n~J`JWbubnj9Z$NMq7fLU77uqZ8j8Je%XymUYU@e0OipXqpa}z0lLA+Gi>ZK7X z1&=pIbvZb3M%X!qnL{wBClZi9?%4xE)wYKz*qs*VpsVI`bqumS0Qy0aO9<YuD0gKS*vJReL=rwa;%z>KqU2|68*Uzz?)lDxo)kTBWn155GL1U|I)InDL@> zbs|wO=QV!<=K^PiKO0l;z)_R}@*{;;{U;D_C5B#G4dhF1I-64sm2Uf1_IoRzo0(lT z?Lx@=Pfzwt=E~M|*^63#7}9|qM65@LDceA9>F-XDwz#SkC5DebMAG421l^%nSjb*^fr=0-si5`eKe>e-4S>lMBnlP_8CZEPaXQcNZN z5G?d;gfn}{E+E^)*y-NSW$fW7EdBf znTur*=Qpg9QuhpG=ahnoWuRlHUHQ2g+_GMhuouiGhpFq!A^SkMj!@HP845mwRlgc0 zj!Yb|I05q}raS#&Shdw*ztZ2~$n*Z{eh-6bL#M(@;*V8Q?H$D6qlsV%;E4Fr>TvPB@NcA>R zeF`{MeW^=%LBEv(PU0Kh==tBm*}Zv-`U&r{M~_!QZMmI4Q~gD63c!VVfcZ6VI!c(t z-yE)5Y;iM4{?p8XfFR|yy~_-KC5CPrIBp!h%rV9Q8bOip^D#;@i@pKGNmrQijWpSg zsH#}}Bi-*FyNiZKyE_lcRwS^yh7r$pBX^`4_oFD!n*MT*0(D$5BRra{;y%5sUza@I z?52;5;U?V?Et0W+VWL^8CYuX9V;Q||+hJE}@r<}sF83$DTYbk@Ga5emns#`v+Ih2& zVQ4Yo?AL6fKwndgjK9GHY$8Sjb*)fRG};~QsJ~<{MRZ#j)cNlJeS%f)M`u2Y;QZ>5 zb$aseUl}iPBirsFj$_AH#b9T-q1igl#L=+*<5*BwIb4m`lL5&*9cUabj=qt)uv6$F zej4i&TH;uTXT(pp_mPpg?NH_I;7ezmJE6?&t8PUqxz{SXkC$uu-H4G7Cb znRpFF)}f(PLA=sNm!tq7G*-yii=t+l3p3lbomN?Iy5HBD?b+h!dV1TRrK2aJRWy9T zdXeXW=tb;pHK^AX%_SD{$z8BFwybjX(X$FQCH3APcWWqx-KX7nm*Y25)pF+Xu+X8! zwbbSTp6;BUep^C@E7k>{N9sR8o95c<3KChN+Pbz_j8wOlr*d$9H~U8kpTr($`WMV{ zOl$%WP_5i-OZ)c(S&94lZEb`R0c(Ark|f2dGkb&G^N@}baNuiQM;S4=GOK!?v3ZP( zY)6!NvJPF9i%Dr3+uCUGr8m<^J%)OW%#qEm3_XIE6&!|*1BYjbKzA$Ga z0@bEIckB>L&2>IXwT5I2!P&plgSoy(*S)sCv*l!T=iWMb|DGYxf@bqDjbveLZ#MNY z>XOynB9v1eSwTKz`S9>6K>wko1p=qx9h*YVNgIaT&vl(FEv*_-JwAA4{n|0&sB+9#dFa?FK%A7M&P5st4sn3+P`S?(7y14sv^1|uIj zN$Euo{F66utlN%)*Q;Opps5`A&Ie^Ts*ukSd|DKZCE!?lpc<}Sv+s92Z&Ubc`^@K7 zDjm}(@vpUr9eWrldml!ahKGoHr=M=rI7fY4&W&r=VU6dD`5j-?|JlBOE8Ek>Gw<$B z*N?uPq?4MddCeGw>unxnHxtYa3OHq=GmLQ8H4YIx9N5DF>CN-V;AUZNJ=ME2&_1Z) z#spO$9c9qT$zG4u`QR%urx5hgT4R$BIV4bCl(fwTt~}4mKR43GtR2 zD_s>*n6VK%30kyWB$qv3D``H^?=1?gjvcpVd&8*{U<4xWgONVg1_5frlpdwJcW%fN zYxfaV#<4V;%v)o)-Nu}VvCUX3`gI;&N7cIf^A9pOFayykl8$S6le8$eY zyN8ZGS%tn{n(f}N^CmAD8&9m_$tjl?b33a*h1h>GO#rplGShGMSU0rPE6F&cBblzU3ybtalEa`T+*5(EN!xoxo^OF$=H8z^3AKvT^$L{C}^18 z914&GFr<6O5RR~0(D>b6^eUOu$hhpbe$asU05OnsKu{}G;K-% z6ds({Vm}H$ieh$bl_&qwaK>;Vr3){mx%Js;D{R%mf7x&(DS&Lq{vm$RQJ!lq2AbNg zI06ULTQt1#x6Ktk2C+YZ2&hWIv?^Y0CS$uH#6y&Vgo|izkFH71~wGp&gmoc_6 zwB*uyZj(i{3?66-$TGniM zXD14WSdALbJ*ObVw#x$Bm}vW$!vb!yhC3m?`+D)ka%w%u_6}KO`isVj^k5Yh~=soQ2<6{TAcI;$2h`y#P?b*_iI<& zv{yMPQt5?n3@O%m4x}mHx7s|W&{fStc8-JbpZzQ1Q{)iuxE2kHcB3j=%BjKY_dsW&qmRo{SCicD3?^b2I@T?iEyWZfmxm97XZTbJr5f>}1%=>_va4f-dtvr^NyrS> zG&1RbJg96Q(|uKyrK2xRK7W6lbh4awK33XQx|~Wq*>Ef6W4~N~Aa|N7rl?)31!q98L?psnca{ zhVEMrs+OuU)sL~RmdUorl{Q8z6m4Eo#8NpzL#o<6n(dzi_Fq*H4VUo-wRdw5E+*JH z#;4|92y4Ey+Ze;@V0Xv{ZATH%^f+Byh3U~PpoF-aEYEz{G z43z|fN5Fz7YN>}4$BwFTOW=(^5}m;Ia+pjkSC?!7#?*CKky{@TJxZ29nUjv{Zd`r zDva!tHnG#48r>!PSXr`FXnQ+-kq@GkWFBBasD%M46L=sT81u%a1SFclL(9b8!T=EB z)KxPYXqpU>Y5?l-tH$U)1U1{9COH78g0Ntt+Rh?WVh5!rfiXzKwimzvKT>|;m2q_J z5{onH{ZqkarW=UD<{XRo31+4P8w7}b2*m<$%RkfjJBF_WUIIN-|8BbhZbVbcZb34F zu1~10O`!Of6OprKcdQn=nh&<|nFaIrS~l61dLgQWtIj&V$5nLt;Vy1OopqHOERqS8 zA&c_J<+LadiU`HA{&s8M$h{%O+ThZFtYlMp>(369heIZyQ|_B!zQk-@#g)rG#u$` z0#g<^8r;6ZEHnekUb($`zGmb{SyubFAJ&95vIk0Kt>C3_QQ7M>E$ik{SSyVYLYfq2?vOpxDnP3MO>pCC%w)%X z0q~%vpFNw2D}pX^F9-lu#aF@u8uY8-`qT+aMK%u)RVr`;c&qL4pkaUJz-jqs2ZfD$ z0aO&q`*ZcOV$rKxdU>D7I*ne5#u=z&r#~?ecY9}=NZ$vQ-98ga_<}EmPs9KP(wIXZ zr#hrOs`{F1TD{ISKuS>>Xnt;ovXE#dmQOp-+OTEiZD-}PK;}_w+p5mJeRyLBP8DIa5 zY7sgdYQiY@#RSmR|D!Dg_IbnQoftAU_vHwQ6C1dZ7I2#bz3_!!$5DB zx=N$LECHS8mFGtWOMbzPRb}RVF>5aw`fMwF@1zEf&7EJuiIok!yH^_I8yOWha}SBE z4+@=#sQjQTTVovIN-Ng=ohfSB4HUb`Bqa$-0SkcuB{SrU+q^OC{wyKwYl-*%)LNwM zYer(`(9ZUSkTS1=$(b+xr5L}8Y1Henzu`;P!wXfZl*2y0or~usD>1igS>NaRdO->y z*_b-5cWM^64;e<7rtvku0F^Xz@}9@#pSJ6Rfk!tDn`EjTwtQV!tY+>ZOd%or-^4pC=hmYd)ss zpW_5GSSwe(Sv|8KW@t(a9>!)@&KKCeOsoZd^*Ed7h8wiAd5{g=ExQ?pC^MFs?FylgrUt@!F+=a&~|>=-pUR{CAR*VZ4SLtP=N^|G$cggcl`BP`Ev zTSq4nH!pNdq#wGgjCydCk=r_}4KSzlLFeEg3}0xHC{uMEkZFqiy9bdGUtCEZMWKa7 zvz&K6`hkP{%OT%6`%B0D5#9==QT96NUm&jyA|y-BnEof-LLB5-)gZD33jC=qDC-n$ z#IN5Ab9_V7)()Fal1p6-&+R}9*f8UotZ|Ja$$&+7C(j~fuD*Wqh!%z^<;1 z2EI?TzdCj534dTo(|SvBgnv+2;yf=#+JUj(;0zJcUrA9Y?si+16}6Wlt*Z!E*{DeC z&S)Do>;!RdfPuPjdexq7mGa-JE_pGBK#$3bsn#{1{7oJx@WdWwoU*ses!K%`QX0wGnvEn{ZifS1*h8gQi)UzAOFF%rfkMAUaQsB0kmFHPO%`BheX{r-j+a}sK!SN_jk_Rno}p;^{+lpm`)s0 z`0yb|Xp-W=<0P~$Ii_{0gSyfuyEW%$8Y{P;xqFpok=5ol`+VY#9C;p&vK_@bQK4z{ zgHqVhsL2Q6)W?izzy>%QHC77lvyHc|7 z`ye*`cb&(ZlQaI~&++fK+zf?7&_+Kr2?kpnb#BfSlf)k3W_h`@%-5nSt478JdJ0X7 z6G1bxrA4CD!!=*JI@qXJXQo}%_?qLDnAjf{2kn}cM6#K4kHAa*=D$-onkg_$^~Dgc zxQT$EwG9V+jqV2_iafRcl;GR*bBq=I`$xO9MQ7$U_mdRAcN_AADeQv2)}oAqr_kEu zvMm((uAD7)pCdbM302-=sdhzo=*f7hQ^%Tat&9g!LEd%(lCCh~eIjo38!0wz+QrH= z_D|$we3i`sE}Q$Nun3%NS4N?N^vT=q)o^XkJ?{pU_#(xSB{TGfGA7~?kRaM`O$kXV zozbY(z%u5vz68Y|HH5OHPgZ3fyx9W3QVvA8&-}91R=n#ES#UD~uEiU9jU(k9K3V!i*9HmGLzLx(}CrKhUd0gy@IHp8!+6INOX`KWn z67sN-mq|wnb{_eW;A-b0NUo3Ve*C0=c8X2Wdb4v2=UwrL1PC9zg5OHrDYnO(O$B1; z>_7HJib{=2WS$@Ex__Zts%I4XUU$U^m|W2QVFcyg*Cus%%Y7+FOe00w8?L#L+l!{Kf<1o7yT2FVf1 z61p3ceT>E@SFXhUe6Oar)8{v9`q>_Ab)yjKWmP0Tf_{`1qaH_qG^%%sJxOwLy3^6R zjG0`ZdY?OSGFGHZib8ws^-Wcf!amnNJLDe~=Ap^h$SfR{4I#u{XJ&I8t(+`fO7+Et zPq1hM#;m%}d?!M(CpIy?0ouB(W!ew-XR2gNe3G@lrd6RvqDAy_T~#l9B@kH}gX9JPXylt{d?aT=>n@Ff#G2*ifxcZ9Y3q#vb(ytk z*?J%2Tezns2=)&oEeGuROu5m(ks_nma#z$8>O(VPK1LqP%M6V6>{$c(06#6gaR9W5 z+WjQXYlsZ^(;Pw%f?ux;x(k4hqMw@$9t}MKQORB+VWVcKECmM`OIRtbYdg=hQ9w;e z6Qfr8xpV6XTSJQ=MmI)-u(TJ?7Y1KSZ6|KL8}dlopBOzi=JNFXEels1&D=L!F6z~* zF(wFG;}V(%J)Paj^|3{fXo_(KasIx4A}D3zS#%wjem7D_qD3o|V#LFI$>)trx7V8mET$cNAKFb|^b(9~Yxf~*vU^|egP2x;ezo^$7 zFC+yTCqZ;(mLLruiR%vMf%o@^7ojGsvEB6^;Nr7EI7zcB@I*?WoYO%)I-p2*{H1ON z|KNXa?0)sD`5}_SsT2rWXQ5=<9zp1wgI&`E6Fb10NKO2KHA+fc8L}g=H$NWKSN|0h zsdZ`x9+h?bzenrZ?uYm*L%#J-day2@hUa~Qhkx|Z2wh>%hA!axXj35A`S}G%dooEh z)p{Lw3()w07Fn?sl;4rn4v+$yo+@_LgpK0WU+j^PdjJL5KI${ZjxNOu>)XC*H1BWk zNYq$9;tjIWs@avKY5fX$+~W@M@cdSQSiKnl(s97Y10~@cy*7M!W5`bah~5^iy%gGk zK~06zCv$AxH<-zRMV5Y8p8|fYb8&gKuW)BB9Dy0*Cd?Ir@q`~TVQ=5e zsYHdwPo|asFi<7ofMigA(2$a)w5g|J*kPVP>lECL#`r6<1v-{3X823w1QfYvy7`9KTgWqRzcgp6*}O=%w24H=odJD>4^RDCB5&*Ig!C& z3nEP`3x_ys8w}eVGkdI0cXXyl+?tCC{aJi4>-zYLyKyL0TR&3;+>$Bh3q1#Zn*}U;4{mn)`cag zvW_*%h>XY5BJ3W7#&B489*9yrj%C~ttDSqumJGx!Jv3Zz`3wVJvkS1(ql z84LtJH6=ch54zUIb5>;Jj9z$k2*caL%w-m)(-ZmpsLn_k>jnSYFq^!gfTx2N?{SN>3>>iy#Le$pz>#?jW+gh-sG%+?iabzm< zB`=*fE#>vI2?b-zw}}-DSQ`@F=w)3vz?6nB(E<#IeC^xuCbuddM_XVN`91g3e4<+p z%jg`=X`)lW{kU#MlQ~%h10)&OOSU`u%|$x^C9__QGtZ;(a=4Q?4ud~*b>l=OHS(+a zj>9YmL&rc8Q(4RTWHH&bNm}~g*<&jWS*4(T9QnHe#!km&F+=0tyPUtmx$EmWvlyOWpZ(^n3d*F7U-!b=^XHg=E_AFg_&>|3dMPfqUo7J9S(9 zp0$Kj#btycCY604m@vLcJBq?m;z;1wxAvQgAu-BmV59oMIJMys<;)CuCfeDLGv5s< zN>=mE`@uiZqJ84P1x$=mKDFhlkgs?c`{vQfocJiUI*OE^b#b;kbY%)LRlaU{@_Zk> z&hR>o3q3JaSC+TO`addcTQ&HGe{<%|P@H|jP4X{cj$m19 zAPX|3~!y38>ancvUEc%`-2JCsQ&}u3vbT zE^aqU3p~@~!bHCL>fLwqzfH3T#pR2f$QOBUqpsLT(TU#LsHT0fGzwmYCQI$N3=yg3 zWfD4O?3pKT1V|$jJ>>qcnUpoCuFZwY{~i6rORhL+fj7*UtcA_cJji%^|ETbMyTGY6 zfA=2#H*OP=ARL@QSa*%j;!#wP<|fNiCBO(f`+ZF{_~WCl3w!3p==vUlYcrXpir}La zxM;y3?cD>LN*UJHSOf<{hTll10tdX*x#!oIjMfZ>8Z-Bw@f5!LYF!iWBN-R9Xxf#Y z1<9q5+8_3hB>i8e?%Mg0&nA0Rdx~$Xhv?k@*y>#gKWzqjgdEJ%0UWy@t`LJ{;7;)x z*-yD@fSP#WVexZ6LeNuC>Pt7fm1@sQ5@cs<+e~Y2%HfqOB1Dpn(dHR_KY~8x z56^EQA5iAIP;SC7GW{2Zfauo*shJcxA0ZN9eAOSNs+TI|pX1l};B|TszU?4G995FF z@#q->0MeIKhdyK&S|W!PGge7Zf@q_yy<<9gm`(`@~? z^B30s9OkJ`i+>Ge9enl#mneJH1Cy~Hum5a2ita3m zVEnnBKy{m#{d>PAgevHQe`Y78Z-K|U&R9lJJK)_xcN##KNFg~0*2z>IKf71i0j_p$ z1}Y632>{>*Hmk2JUDJx!Hv{$m`y%xYguxChVPp@1c1O>)Mql*2;XeXrQti>2mKS`* zi&X{DPYRbSa}DsVl`Avef(4MQp${kEsuh8HU<4eow_q`^<;ta6jlq*4{} z>7_A3gI#iIy6WDC7mM~tChvr5zt~g$fRs<5RdLzEbh&UDs3oT= z|9!F8^m=xNrA@tjb*|W<*D|D&{(zG2;~stAwZCtT!C=&5#zqe@@<%sGG$`KJG_RcH z-kiM5K^GQYl}Xm0K;TPPQN|i?J5heK=uFXKQu|EaH&O%f58jOFY_rd}ZQQgBo;82D zA?2u^8NvLVpWYP4lt6qCQw;vB?V7Vm=~JXjYgmdqfncbc|K7Tu;C+}gtc~3SzticU zcE;lu3TRbj%oNq>py7AtA*{Y$A_25XysMx91fg*$0IBst2i7Jn0arOg{PCc)is&NJ zDDgyLTj>K4Z?n1km9R9b%gpi@E|La_9#T_h-1--2IiajChvTy;P=YB$#Z{+5LbA7x zaaGr<2x@@SUfCVoWEKch4ga=Woxwsd8t4G{uX(O!q#e^zZmM48OSY7hZ86GejE_x_X3&;qV9rTLt<}u!3xlUgNGpk&IB+L zG|Ppfo-80rqM^f=71B7;g*w{&MrKPQBQ|>D7_zQvlqTJh`4B3B*;Kx9eP68V;e?&<`2#SGnK1Yh0>< zO7z9ntqx;iSs9s3+;jF6{lm|)n}rwc zbn?I+%T_?I&|{%z?bJs0%=mk#w-o&|lwFnIw*uLudD&)g8CC-qP_O}R8gGYt>jRI) z2qHx95t~4|C4xG}wEwv?2HIN0aGQKS0!yFi2+f#(Xr{huS2T{YJ@`(!j!}YT9ioqW zb3a_4fZ6ZF3m#o5pbh+=F|(Mg<`iWo=d&TP^RlJm3SimXv(hRhcEE5ki6(aG23kJh z*BfmjA?)T+S+$m;8@l}fQLrHHBfBNWLa+$9B@TBK&>5ZFwTi48T<5d^?xQ94j`l%q zO#mK>5b&RK0XrmSTsnN#!)V}aI=clZQqVawr-Oe+`7%W9uRGE!tZ;#Db8jy{??3UA zd2ecD7CPN~nh#srCSxO_lsic#ZrRU9Q^%Wa38tX195j+@vnt>y(`R|lrOt_YP^JWY z&O_=5SCv!u;EmOZfm=vcwbUqXyf`8daDgi>*W4u7CNVz3)tz5;_SwKu|KTpPO8S!e zvS~}fmusK1*67dZ_;D2v3B^fdZzO8ZnG<=e%&g>hk2q${)5$%vrWz$HmGJ=H;p0PM z`wWu{+k0ROesDOh@N;34{4>V=Ch;UWw|&vC&~VBZ_BZfE_29u$lhQQ#6_ z;1W*jD%9Se{wi==plqv6ZCKQ}@c;pIG9h9OPEJ>juplcEWJAnvinXFrq!hyEz`ofw zWVId9nW%FuhRHzobbC?1Kzw^7L8zI;&}jE7mKv0w=xJ~my>YbieiJ(5zBN3WqoP<0 ztyW$qBzt8_??)y!NvJ+uzn6Kf7@87Vba8h>#8xHol=)ao%eK5<6V&n0f|co?JD2fY zyEBZOD}_B4E*N*EF<5FUK6H*A>005@cQzwnnR98kE``Apixrt|dG9rYC0NZAFw(zl zR+#Q;A#@{rj|h36BGrG?uPBeAn_kTIa>%fgtKcNh@L>DQwB1AZW-e-pg>Jq6<_f98 zM*J!U7v%Sg2s*|-^QLK+wxH}UoY(i)rl)}2=Jl8M5#EH`mzg)m>GJoUyjBOhKbKSl zZ_~7m9h~J!S_*kbDVxbgLVt8GGkf0+kj9oUi-`7t9?mx&G8mjLduuH~<^H zmhsgbgK4z&Jq4ew7@wV=Ipg{5@Y?I(Ow4!aeolJ8O9wzlJ$0~+g>9H!C7s(_U`(Oq zNCs(l#FEq1Zw52270GK)`W_5|U3WIglq(3~(KMTJuX*XkFcs?@ff1c{KFmSgng)MR zH4QFzfqVz{GN%%xCkpNR0qmLwb95E>0lAm5GbKf~ySqFUid7^H{cS0XI3K0?^7mPk zHoTQK^>lfHa(le~0>N>^LY_VcgRTbrZw3&OY85r3 zuI|OMqdc{)GJT?2>T0db(ZOT86l{^X^5nO#m0RSAqo#k*-qjV#1`Ev#J|*C2 zu~C;3UV%LK=i=CnK88-(kw=_p#ip)=v)^yYj_wCe8kA ze_t$Grwd!dHj)aRx4b^du9Gf=<6=mSJWt~k8$+jth6qF%@f{2@7K7Z?KT)@`2HktJ zJWA#6KU>U1RVNAgD$JK`L%xk0X0II+!J8nk|DC$>vqTqT{)eZ);bapLrHD1Ffc@SD z)#gppgvybQtD)aHv8pAB&45uGF8H14;0I=HA)90e;Wx+)6-7jGgV(JWpU|Z5vpA%& zq7WC5Z6Jc1SE*CGj;)GS1K~GX1$1h{iE3TOTpdchi=(!Qv9-^}p;VB|pYtO11(?;3 zx^K4r9QM)L%yRU-spL4L!el>>djXpiVn&vr66cLw0CjYJ-M)(J9k=4K29jOBksowm zx9lPNub;}x7(XSqxPQU4ZK4ir?E?MTL0!J_LimE4?xov!c-BexKR7X`fQDwI6p0ZT z%TXMXRVJduf6l?%d3jdqI5y0LxT$~Ku=oiKF44Q?e`!@*!9L>5`g7lSyyj(fpyn z)<-jT{ev+-++NnN7{_dkms+lTuSlcHeeAa4?T~f4U(=p(=q!jXr?Vtrwupw^dMDm@ zHx6%z5KcJOmvNuA^?a10QjEJ6WHky@g#piVirS-eTc&c7y0m7oprR;wkc;!`6Ll^l zS^7Qi$j20u8FE%>8;$MY{lV3l@C1XeUYxM9PKM=JSR?-x9?rBPsIdydTz z!-oeBW|Bx(kJMggH!xJANo!00!kw6Z^iai}>%mm>C8=g-ulOoM2^T2k%tF!%e4k%nvJ-JZNQAwBZf{#s?rMM}_}%+~+RF}*qUT|j27XUJK> zQAHicXnHo9bSb_h!JEf&DqlGlbK|#QafWYcOTCiJO@jYkcI4-pzC@|r6KPG`E%2td z&Jjn^qGd1aOZ6$0Nf_~?Ph*E&s3!Vug1PhhliBoe$El?oBf=5BdEfiEd|C?mO(#QP z{vHvG1P9qW1M0ozn*B23;U6RH!{6So>i^T*hHg#P;HoTQ{lj)A0NZ{qt{q{|``t?A z(vPXMgi`3%3|6Zuw%R$tDm%Bq&`e6B#CU1xILTuVs*i5kBQ{n3h5WHLmOhQ>#Y0U| zk=TL?jhp|*6Tfyw9N8><0$kNdq4QuUOom#%40-M<| z8cpr{q5LeD=Ro$;;Bo0F9j=Zw>zrZbVmB0K@vIPJ!b4l^y+=u^2Gd-)-QP56lEy&{ zYR5Jn6QEM9;<^_0du6GXMlCX@8&aDn_<^kq>)x$ zmW3H-KOzT2uZpGX(SAac6;idTI>&2duR+dK@bgDIkc$fg`LOoiznRXS?AJi#Z$>-U zt_j_*Z~}z@r)`cW?X9hi>=Ii8U2CLq`MX*k>}T5bJ3~Ht&e3EQ`!%M%-U1ODCWd0V zvNBt}R;ZBrc-B^XK{-{!@OdLnOpRR7xzv6WiokB1iSu`|qtuA=qU%PT^~gXECUGXh z$Dre@pRN|SaWRJ~E$+Le+GTN)?=0@tobJfYfSeoZV2R$ojWDz+U{yx zhMB2)oxwU*iS}G{)Yx{`T?}#!8eV0_OeK1(Gp3$_URW)?&M45LCAP3gZHUR;^OeEW zRyZ+4*Jq4qW5ajMvH#h+WApeB);R-p0Sa;_rfFVfyt^gGxtvkl>s%!=6e_K)Knjq9}^5V-Ibe{ z6fTA#6MSQCUlWm#bOxuaLUNP{*_OR*DtcbkR`{C4v*Vpg2OiB@(QeyP8byL-aw0+p zI5M3mh9R&sDOxk

    3o<-$Lw#hH2IkPTDF&+$gkEkY9c;X|%LfrRwXVNf!7-LpfIh6uhsB zKL|X^y=gkP{)*JfcGdi->^_Edc5f>JJYz-w-jni6vfZLk&5CHVD;0RYl25 z;l%D?1^v9>Jn0SBeOM!Y5=a3D)P=aS{xi~~>Z$_Smq|hqs1Wd$KqCVF59riD&1?_h z`X4gzN9c`6&7YpGnk7_?W<%D7i{(3jN*`>-2CJ{Gm)svNmwxMETlPlhwuv)k8VLwr*%ZAkE1aLWC*`L#3pQFtzk$5! zZkEZ(c{FLamxe2pOU`q*bSE8(PrWq^yN1uujIEq}dyS8b&}6@D|{B%qW}{%+Qmv9!0Y zBmZlx1{s?9dl->?dQ;8upA3?(FV*UX0j&ZUH(Yr0Fe79^HE!*_U8#zV3*(*YO6rQC zYtqHv#I4bi8J26DFW%NQ)Daz1Q*wIS`!xq7ir;fT{M!7zh#Bo1Z8XIZf&=*vju|0B z;o^Bb$asUPwedVmE3C2eX#_$t{Cm>Mlk>J+MlN;Qht3%71Xk**pS=>WuG0 z+glLh)r&_19nBd^)!vi?RV^!-`-2#*xA?Hj2H|}+tF$hd4IslGD*HDKg)tanjWVsr z+x~-tEhES}WeC|sj?Jd1C?GRrdMX4H^atZUxWII~%3t4`&!^K{{Lyi0(=_dBDSTL` z*8}&s*Y9xnsNU4#;o^^CByak@#$|bYJNMbX(V8Ji@90abgEpW8#bulEc(P_?X58r$IjC!Ph zS$!;It{RB!3GgVclE4L60G@&qTHnVl<_x2F@dUJm{-}pes#z|N(%xQhof&2+z;Vp_ z+AP?@F?CJK6#U*2FcFtllKY5kX5sBb69ZWCC-_P!KC-07R1}yk_50hd*m5lL2Urn5 zP^{HYC4#5)jMH6i^Mz+@lPMKVFvFiqTiW}P<@0(AqxXl3DoK+e(xF`Dt@J1c2cqlV zchJntr><>`-C9heKN7q~{cQTzX>jC|H1KlIK*1QMwb-n|yU+w31`eHx7Vn1|5#hy` zZXcdQ_422P77N*hUCmn0NJiB_#)R7S{k{8^zf{iJ3r9T}iV1(oeo2@!d@KqS52pF~ zY)p>w&|YH!84o*H+A{Rt2^(692wn~Rh{D9V9+>T0$Kk1N3&Tj%r>&;V58c~8j!2Iw z=jL(9Z0_Sx@LU*UjC5-7ksh@B5AHyeLU}VdTd*gxz2?a>k_nZ`DR}-7NCuBKEu~~S zZ`rba;z&|Zdryl|RIqyXEJXq#YvOCe>G$ebtNIYaIrMhvO-oE|*mwb~MCss#uNz7Q zXKmRWV)U*M#9lL#A^Q)x^ag3|p+Z@%JCk#sf0USEXb63wuZ73cGqySvOVpZM#`JOm zDQq93osy&uq)rbIuzt&_b{NGp_kLOS$Gf!fwFW8S%)E4itnJ*w3|mqZJ5wrn2t-0z z>|Z-*X1mfW2Ffyp&HEDP5L$Xll89a#oJf0ZM@(~8+C=`8%J@;!Nt^IN0-%{0BG2Ki zUj;v7CI@j?v#DhY)Z`>TOGP;`WA}5>i^y#RMpo=PX2h&JMJY(XH`jP8;y>FyZPFr+(2cL@lLR_R8hR7wN|LE`s5?>_*19=7wG z^F7ynUnXIS8C^1VGLb2JA0{%<37Z$g-m`XCD6Vp0q{G=<$)@9RDDHVCNj!>@tMZJN zJezxK%2e1LVGJGGsn&w$rBEh=$?bx3Vvtg-m}JdCPmtFb~{qn|EQfK zX$&!CgtzHJ@$UI&BVrZ&b)&0 ztT!~UIa0wu0X)+vq{vlvdsk#34{aBjx`vOFr`hJ-T$C6W{%Ylo0v3>+S%T)H4O4NJ zR3g{Sx4i3n_KaMW^;9v+SzaD0l;Y;3Yy1u;Z>XIbH82we_VnAm(y!|k=@WpBSR;Ntpv_M{&NN0 zRYueA%Z%kpEDLYJhsq}=k0oMKNC%L-n%iAA9U6D)dqtmwb$WI2_Wre-$b8=l^M*B7 z>jHV>7%o9fPDnzX5Qfdz4Q#lOp7pEWQ|K^)LuVz&T>Gsh#*3bPy*s}nUvEM~q0$Jb4*1Au~@(hfvIWxGL*Rm!PfM{52Yk2-?f)=Dzx??Dzv+Dw}{R-eHL zb-7*R`(hLS-Mw#pFfodp6Ely6YZ}>}k}_6%_7n~o;>F#=uXx|ynYv}W$l3fcEq@0} z)$1@wylb|gfz*YSlU?;D9Bcm67$okMIZ5AeXLkZ^^34YFydgkg*=4fGiW%<-K@A?g zHpgi-yY>HwZZ#FpG`1U-=Wl(L9D+tR56{A%BmUyKCuON>w3S6DMc1B1--~+0n|VOy zAiM^thTt!yYQLrp=+zvTiRof~Zj5r#sJ~YrKKun}E3jVmxGt)2zfCgLgjS}Zh@Kt; zrsG(1Qz=jOTv$2;o}Y1D8t+l%a2^XUWee&ric!VPf$Fh>((-AvY6_Aob5lM&llFe5os%X0TZ~#%LP< zx5vc|FDn-#eBe;Fi!G~3$AFn%ybjbPCn)A%x5DX;3i|{pk@}1ok|>LV>WW+i9G5l| zojZzhk|9;zWXB>G`+( zUWS|9$ty{<(GwQ&+Hmn-6uIq+M*<$a28>&G7Ve z#wuxOZwZ@~$25yjIeGnMjnQUI(0;+b+H(hD*+1SvJ!gowPitc-tijYViU~@>SNwWk ztB9ij0E6qs9PH_kU}E)YUs=(vCV92&F$b7NJrtSbnTPm9{5+;cVA-P9_VFV=(4|ED zW}}(53~nHhZ$0kdkIwmR49b;KZ{g0cQ%^uF%Kx@>`K6dWCB4M(BHH;^4)6#A+9wv; zC*AdeRo|!hy&1cc$zxPs%3z?EOy0?q!;lUl+c5MnU*M((1 z8*w4+*Y?>>89Q(_x{OPs2p@!y!)Dym-2Z)`j^kV8`vj^sB|;8zkjw`^?VP*t5>qo5 z?r^qk3qnd+JKh%7eGQr%eQ92qLnk&hgW@EgpVkV&Tr-F-MoUbK+&}c0j9kNOWITRr zy>i?c6(rjv+w8+$GbCCTMS8ACEWT?%u?=`#p)B=@hZCT?NUa}gD2lyH8ZtQTdf25| zAR`uK4VN~MwnZGT0st{$&7*$_Y~Hr=$2 zP9T87r~}Smn_+3^^XZr`UGe2wdZa~y`s%;7lcqU;)mP&Y-qZ-*1DViz>8=`@g18u1^pVFH*hu|#VjtJsB zc>*OR67F?fTbd>>0Y^V>F-LeXtAm zjB^Lw?IWWh`khn_tGAyoL;w(W4Ddbf0)ql?kM3KQA+Wz#YHEa~HkOahi#B6cqIFoi zgz+zw859fZs*-@^&($A0{02U-4OFIv&0d$GEM-O5e~dP90HMh91ZdYCSqB|#TJL5G zWzK6=^V*HJy~R)!K;CX@pSS#>VDoQVnOaqoiJsK36IuumRPu4`l5C1!aA0 z$Zlh>0p9sd@V3|RZ(v~26x0vgxs191t1)A&Mz!*_aT9N-m;N=OCe_D)Tn!g^2qr$K(AvgO`LF-rYnwaiFB!ACcOJ@Ye-zpJec zI;FvH4in5)4gGPfgZ)s9dnz&wo55udUOQ9A$`~<$`IxdRsOoL2epdBeY5n$bKX1JHLNNP$yV+tUUA_T`Y=Ay-#ZZmB^c|xME;=ZF+6( z-J9l9#fbRlJL>;=@BdI~gP`axNdG6-qy5Y(o=fXL(6{YYC6pNM;oaxYPkQ3uhZvCA z$HK3kWyUvD-ynOV=iWzT42$+?x5e#5N+MRTJ#T?MYs=B&P_-$0?m7o%MawzEMziHJ zo8R77uUTxaEiq>MopOB$y9S?KrKj)Nw$_e2wp=-WHHhWRhkUVL+(R7gXIVFLXX(9% z;yj!D+90!`bM3>L!;`&nXIaseMmrD(w76kQ>sJ*|jsX?bkBy9*Y}0=0ww*A1dNq~` zcI&jltFn8odl|}&sT{@Hkm&A?w=EN4b6chV9vU%a&!)qe^Hks0HLb z`=d^$0K1dn)(#=Pv8{xL0C6%#JgK2EutQ^~cOAQ~5y{iDBxCJlHaI~)Tz+{lDs=oy zSUm^qc20Az@NZB!bq0_46$hA!@^S5(&|Wn2vooMp4a?8Lvwx@i()udz%+axxM(d{s4F);o z^NLOJrA!-K#_-aVC)O;&(6UZc!Pb820nkWfs-|FQK=Bb=Df9a}OWnQUh6-P6KG3WD;;g%eY&LW@9=%QpgvW_mSPmcl z_Wem)6T6SKao_KCdQrv%$PR5Q>2`~|-xVX!MI<7%icLrWlIvJ@s9u_!UwY0JnVoA8 zf~fVOTNDTB@9iJHRSH_V71@}|+Mp`;`}2M|b2O?ez5a&=KKs9}C$EjEEdlhwCkq4~ zW10ip1lNGk^1am1u1q3xj9!4qZp9wLh3y%66bP%XdWf3#0hsHsK!n{Ss(T7}%Nxf3 z3VWQS>rT^&V6Y9AJ<6 zdrQirK-43bLYBY>>vVSUTV#I3lH*4X9=k8*k9ybd1+4fRmDGIElYv{n80%Yvyljtb zn#TUJr{|(SzfT4uh>^*p`E176-vwKi!U1#2MYt`lw=4Or{-qNp>C9xEOTZSYDMgg3U{G;%e(7BDIp_r*uUi_)u0wKxu^4%^NK@r`P}?}+fB4H z4oQpJq3CnM9K(lCOAgU)@64MT17_B=I79pO0=LlvZdJ~j9Y2g@bP)r!bd&F{qs93I z!0}3|96?eth`ySYnUtktyJrfU{=kgM^t8KX@h9WL%k@-v>9=OL3HcXq+hR};eRpy- z$CRmc+7rQ>h20})H^%S>F_s)ec|tzyXS7FXFxH>4SF*&AT9QnV6~683$)S4d?Y>TQ{4IWPh-Ri#|~U4w2*G^T-Lwxdd4y zO7tMjV9DRQSJ8d_jzJFcBqaAN6b8Q(7gB+g=@DW{=Q-W-;IvDi@1o17mmCQTsTy6* z&$dfz;>~I1>=&eGiYc`a9-{!85MPY*G|ORt5KoR_mf=1AC+R`Xnrbpt=~~Cuq9)_w zmX&tyE10eGJ@NgpTTq4yR_EKaxnaB(mf6lvl znsxNo8r4iu6QNw4JaxHGbFCA`iQM`RWH#KDh1INo47z$r&_nZ}Y2uIikieSx?pmOVvfFO3dkM-nXZ;9ZT;>OEuI5`E{aal4m4Aw_AE^1z*Dp=r~TwaF~7pp z-ZMvDN$u}r_0%P{jeCmesDeBvpRC&@|LJj!rVwckwWpU?-<&$P4elLi#)7`|6g;KY z&z)kBpkXf4SSHYkoT}T53T(M!n9XoXn&y8qm% zdi;B<#>gBa!fMGze+~DomMH8q8%zD|r$=Ab90Nn;A85EWg{yrO9@d{JYwUV!DadO` zNHhpmx^|V~2brWmRiu+XXE>L$BhIWzD5O@X8h2b4^b9}EQ^v86U8{WptXg>b!dM5s zJ<$H)6}FQi{zw-%cS0#E^{BY1dV4{88%8X|`5sGpxwLEY(ISz6AL5iN)u}fdZV!25 z;4zI~MwD!Q>z+j>#S7+7Dg0~bJ63e+(f#uxS;t@W@}zyC4AFGt|)|;Kjc1HNE%i^+NB6)W9Z=^gLw~& z$r58e3jFPMA8L$!Gh(!N@tcDs0#j~6!G0Pi0@xt0f?wKTcqIlDPVYbrCIQ!r~-t) zv4?eD8N6`KZiUui+yQU{UW!Z5b=GVY3Hrd+i=_|ymI6|V8?+mP_0 z_zv?*0`tOz9{i7@_8kmSK96O_4gCkMGc@B{P|dpFS2#!7YU<$)^mkl#^6VP(F?mBn z`oA$|hTBITvl@mw&ek_M4Gfm7zH!nARoccBKFxb)lvvn*^pj*oA-6#1!R4{+4i``xHULh>bA+YnppbzXrD1IrxY%&1dntlC? z0H=&y%7=jNFaHAU>o?nWNG>4nwW~F31fAdC>7hdU>2*OPt)LT;FL^Ts4{&X1rxa)+ zp^uHTOUkpc$YP~$-QtaFW^S63i{(7>k}|LNFF*GARn@pO;A$E#gA^&`8v}gqp<|py z9^Itsq%J})qMrMobDqJn>{}nf{Vf_VZR?JVS2Yjb`%Vm*Pr97$Pfp7$ z3c(=?$|3Ew|8|e~uD&6KHF!@c#6#9`x`gLcc((p-ZIO2)C&BLN&tR=CyI_NAHTyNN zbBi^@n-ofe7H>dcKLq=Q;!#}|Jcl<~C)(=s%U7U>_@S~s>CBf_yldFg`snr>Wl`+5 z1a{8^4mlucz6~m5AI6Oq5V!OZy4VE=N*%*H=`QB&nqq*4mXSbOz(OGJ%=ve}S?Q7m zY(Y`!3pA%3Yu}aw(nPBC#xHli_i&7e}Md!`jzYu%11+ ztTXw9BTz0vS52^mxeWl@jvOyt z4k!Jjm`_fZoZnd}Q^xX<9XF(Re`F!*W7fy26ui+AtGf1x?^=qb+6NtW-dYL>xdykt zXTJ0N`2H=DS-lO`M^x=R80_dEET9za6wEVSP0=MN_#epdkf)eq()L>KI+kDXbU|h5 zVVy@X**p+q8A~g?XBVr9<9JiRJYSaRBNMj*%@f0GT2=goAJs=h_bvWxam4NvB@`uJ zWEusXCm6Bk-V@(Ri*EjE(4KxxS?$Bl>a$BrYcS}2h*wiM?Zo=!@<8zY}h)*tGu z%APCk*KDV@u4Ela7t4+XG(2@1hfiQRBMCojjeIq#tMZx!4tD=sf!dnxsNxS`lsS^V z7W@WU{CU>`HmmelqB04#?)y@>-vs;<{C$j8dM^M$Mo0HO7Rn6cC(0;$=pN8FrofGz zTGGJY7h^5rl7UrO*EV@an-s3LQz2NN-L-*~X`^(QSU7G65levGWLZD)0 zpa8mIw?}uu4E+=~=X}y1kZhHye-3AE^DQs(e~t5JIm*1#9l(Vcki$tvDN}VGw(dzT^n#c!<3GRJ%`$Ez`DkZ;u zsZKH|-Odmrh~_}}OMLl35)gfjQM}^bo&92NdZ?xC=-8LW@5TMPn)0lpMVtN3nA^3} zv!2ell}m-g**e3q&N}7H$9i)*fhp;8kYCcYNd~ut$!(MPrNV&kNPt7)`=R!Dx!9P= z5DfK6Z#AJqu6vCP9l=<=RjrwKnKBE@aauhG_gV@MyB*OP@HeC`-8W;ak$SvA*f5+u z$9qQn@WC7fJaVT@$LrJ1qVgCfC78WYi}vnE#F83!qHZVU&@iF`rh25)9$=*sa=@{! z2~i+glwrgS3~Tu*rJ8rJN6HT&{&xN@g0{dPJM-dj;9{xLBtgdv*8z80GkizP3x9klBy74q{>?3u9jc=;+qj{atM8Vp;6295VAQ`=+yI{r4w;MP|3LAFuV{ki0s}?qN(@ij>nrEQrLZLTvkbGhiLh?AYkZ5&coIK8gw&g&BM>Jy2XKo)nO&wGY%t)mL%^uTK2;2CTT~-m| z_Nor{&*DRi8)RNT=G}>rdbBg=Tw^UeVPVws4sIomDgAWbrPNIA!L7Pzp1OR)N+%c# zuQq;%v4=O>HIhaC@PV+i!*qvg#$uM0_^Q=%QzrbuSGEle%$Cjim#c92ZM}3hItY}$ zo*L=K>LH{qz%!k(C7AUl6>RL)HT6d3EDxWgf2FNg{oQ7;ZiuruiOY=2o3%#^1Lu!y zGbbA`K7!A*yyGwFoJEw4P*_ISp4=Nwohj!u0Lru)oi4-|xOzFi>_Z1(u z-ug^+lOguT{>eSr3yyi$us^XWNN^&3Lg+FP=h5@PtJsb-?#ntb2`1Y&H+~x?R2OhD z-DakF?ymo31NI-@{zSFKN`U>mY4Tqs4SS z*d|nbo2TapS7UkI0=kTES>Ju4Ztv6otr_+KJvc>2BUHXh*RbJ1=&_*ww(`k>37KhG z9~|LiBHgNJ5yS_s1gVS;wFeqKg}qG?&AHH7S{+r1VStgO>sg>1Ufo+nIu#ASzVU74 zDXLa0$@h>R!}KooP{0fv+hYME4EOi4C9v2Qp_(_$3UN4~ zb<4T6;%Ny^dwQ5{sNl?W!cTr^!(YlcS!C$kXeZetD$(B;j_Y1@=zC2Z_h^~ z$9!-(tGuJ7kgZ_K<-PzkFQ!>9Dda~yBi+sbf}5voa5vDgQFf@;A?u5r$^3lo-($px zfg;?rnx`>KeIYl)r(6oea1<%gY_<4KsdDr9B<4ikg9h2xe0~!!^XV*_6Pe<{J8@#V zu^+=~jI$Hsee|%Qw$bW25msBnS9*xJ`4{ZbG+Oqj??2E0=#=5?*TGFTRKRO51Sj*M zE3{(6XV8wFcNwZeTK4d4_>`B3OY8YGSZEBzBEGhw4-hOI-xTdQQAMdgQT`WZH~MSj zru0P?G^@2|?E%1*4y!^1W|J~)uxAR-QYLA5453z}+rAj1%iH*hcS^)q$ts-0q~p3I zGKCM7G4tq3-*IcxR&^HI#COQKrikEJ=86B-XS2piE-7B=Y3-%xD$ke4hK=EKd{5)gBq6jPmr z>^_L>>Q-tS;55?3bgfL=bwCKP<%Gw5Q{jZM&gJ6~UL2v5I z%2@8CgKbi~^7SFX6`Olsn2(&^MynU(vgENIB*x^WvaURgUP0h*b$xLgmrvuH*jJiq z9$9+(%im%PwZFqew>Ysi8eB%NFz9kQ zLj78LW}j(L6TTaNGJt<2ou;-CjS*&aQvSqV$A3_^j>az5ZYi|K)F_blzVR{Paa`>f*xCC_9= zy%#*!?%<{{{a>GVs;IKEihn>y!j)22aLK`n{J4gE)YE4%*<#6Yil!MX~Wzj}I> z-M6&N>QSh$^^W)dftL3n6I(b+M>m1{JE9@M^d4mfAyzF=G)KWv4aAWmd4L(sOa0+? zW7ZF<4%sd`D zjj7)Ht`=G8IQz&eLZ98 zapsjD^U~C~jr4Zd>#1)|`1Q9ysvEuC4wU4We2B2&&>9uV-|5XPq)qJ5h5}#$i^h}F z(48^TB#wNkRHolmF4IEpBe)s*1<)5+Svbp9%h9g*+H`@%YF#|>M{rF*>HBr~ClPD( zcWm-esy_v{(q9F~tSQ<;G8HFWQXbP&YCqhVyN}L_zxgGUpbSg0~*)R4{X#2>`du;C`2{^tCJX{)k{YIGy{sLlg+2@+DK3u^=AB7mAE>QRe$i%YX?Z&JSg-s{;fwsX>x~&Cvc%Fmo?bA^g|^wgnXAto^~yw(3)``?{rD zIzZk`k5j|pmUIlKc&8g)vo(e*k7MwB65~~!gnP)*yhP_=5?YKah27z!O9jXeI$GV~ zNUvR#)BJbtqPna@5kD)21@@SJJs5NpLpflbG%yoF-Iry)QS6kZjHa1*U`F^KXdQS{ z(>0ijOfILyxUDX;^+YNvy$~IQblh|2-cwt4R2^t1J4LF$mR!CfKmK$36~HHU%<~I# za`=mTGqoPvGGA+LVs@KNzw{2!btd$NHGjZrJQ?M***{FCYMIJB*o82T&twzw>Bra~ zcVKYC9vd=;H*7Oe*_>m}eOs%nRy&{|U=-L`2U5+B>-+ zOofzx1)R{x%Wr#thc2;?Jdg}{3_>QiSe2|J4Z&qi;g_)eO53hTI{XDt*ribvPJIn@ z9mEg@U2r;TEq{0kEvx(W7zDG`j&yz;1G`08<}BaR;cs?u)K~i$rBIw|!hkX&AWQ5n z${-0F2M(Ecbg*swv{E8yE113M% zo53bCCJPB;1f=czY#h3}7#G>ka64meSO{`b0%&9Ny@gM&h$tlLzkG_fGu)?pFnsFE zCHXp+Q#$v?Ldk>6rR~A0Fw6%1dkdmFs*hgLh!0*OUK9 zt)rHN!M`?sC_XxrYcUb4CSSX-f}q|(#2)@4hwZEHJufm-E@T+-=RSo?&vT8w&l?t$ zhDGjoOA92hP95s&nlw@dUI|kC)NHT+a~H9sUqa1D)kc}K zlKd37UWvmFAkbHB9rXF4^lBE0E=rX6#LaUPw5Osh;Zrm9r9zJO<8vXUGT?0?bGwGc ze}I>mSEeQOR39{UT7}KA>-1jnb>6wap_m96YC6;8F3noD3UQgPx7jf1GakUufxw|l zbf(#*MF_N9SSqAJ<>{sANtd1oSY7R=AOqdYRIGEP$`5@MDooLLkBt;?$AEv0)9#CN zQXIBsNS*I>f zhsoq83;C>E_B_UJKedJYl5$5^{o%P;pyGLY3%~QRJPmhlg0;8Do2l5mf9<@7XNY0b z0zezn$P+(WXZ1TF1p|e-5%nA_@aRjjrKA~6y6B7qk=p-2pF}Le{qmdT&C6vv-iLBb zB`tX++n%gO=7}4sw|*uSZ-^HVMkUeu0$*fqLhSke$xI%eM5LPsttBU&JRv;2W47Cz z#(B!&STNX<+!~6jgdcCcDHZX_(!Nr5sBXdQncAsF{}t`6!IR4fg1>%O@b6HL+&ja+ zWoD6qI@j%*JXsqZtVMxXn1RF{7zbZUj~u8uKLq-OKw`)hqpg#!(dvNToc?dUfo_a^ zK{8J;^I0yzi(p^$qIABFOM4d$$KTJ&2vTTY=jMbs<|n43Hx9e3c$2JCn7MiS{OX0luD0=ziUQ~x| z(tKlFXtgZ(*W3%)v(n_8=xd%reDR{+>s?sr00U8cuGFhfdXvm%)}8S;xW@~9en(jc zHa@$oq8AJ%16;3Z%kK#-@0MB~h#!Ory7kD5PNYptd78>?xm#GyqCjF)_2z2!)sD&w3nUTG^ze>k zqzfh62n)~RsdkTu@Yhb%LJb4%f%WzCF$s6I({d=f^^=wImu}`*e|Dcthxz&!E^wnL<&S+Rb6f4GXn23z1HII*ILSAk zzSw&4yQa9jHaYjZ!++y+%a&2R4t=an*%cPG9p&zC(mb1&8>>*lOqI-{G(?hPS9G0D z*3G8C!Cm99_RtMHg~@zqqzzHw-x{S>oVa7_{Ce9^!L+w5x$9B1Hbg62Iya{DB8;PB zixlz;3L<~oEHDMYySb6hBEX&!dUVPAES71>Z!4(iQe9pS(h#e!avmwFruf*qPd0- zCvs%?GRu2=RyrX|c;+$Y-%j$3Y^MIq%Hum(tO8a5v!l#hq0dy@26O#yCZSU-MhCl| zIdgS|KCCnvO=WC+nrYZwyER(%^1@krGabLu%Rz=~cWq8B!tc~1Sz8#%eVg!}dMh~C z9^Q95=2q!muu9Kw=tM|^XOg|zC;kl2ve-tf@rKKeyUUin=sm2DtD56${DP}K0k$ZS zkMoq+bE9SDsu$|-HD-Y$pcK{V=aC~3pU|mM-;E~*i1 z7WE!8k)W;h=3{ZcZ58CGsX9*b6S-h~PAf!8m^U)-Ziw53gFSw6=LmZ4b>o2R>~elD z!|?l1)q!C1p%l4g>C&1)qSa7m$mmyg&v44CuVBMjz4K`gR42H77>h?i`JK?&C9Bg% zFNt7UgXU7E6FxkP@DcpADc7v>PygFyXs^=8LOr8|LE_)-BAe6b6@u+gD6SJ-4iJD0!=4DIF zar=dRZ{73j=nRDRZZw<#(z&K*7lEbO{Sifx_aPYo^Q@OCl_eHJS2^ zGTwX9^>amxN45?)QMhb%jNw1qle3C5*y6XSxr5s^|9zT+bsHRL!ph$(1^yjvnnwdt za?xh~f@Rxw&0wkHEwFn}atpBIyv@8dz;AkE&?6UZMjL=K$Cw;~o=0yTqb$(t>rwi{ zf|k=BHs8=O8)ZQyWsi+BA850a>vL6J=M(D0uZ@8m(W84nC5KO+Jd*sPchQ#jn;8v8-yz>C zF;@(0Lswh_s2YBu0z?~j-C+S+_@q*UK1TJsT|UPD&0jncZ72xI`WOpQ0xdc(kJa~^ zTF9*9-a=!So%IZ(<+s+j6NMWGv$#?mQ;|~w^pkaSKc<&8JyF;9*m4su@gK`Vm&OF_ z*{LS7h+7DSSZJKF3isYk>F^~zOpda)p+Q9 zY^+Mya*S{pLM(m}Y2!LgDEBm^)3NAyCiiVE5Z$6ERv^R_4t*@XvUn#z?N{BE zTJ^2XLi3?83A4Cf>uJ?!hcFj)K1D!)%}Mow?7%f}>kR9$v8)fnUqi8nO`>>g`WJ3p z&}!HB%ZOFw)%+J#Fz@5m<`aQF#4Wab4nB$hPnBPD#xF&tWt;(@uo*YeaW|HQ7(-`e z#CNcJ9Y)L2Uc6EIRRjyX8DB*X-e*|b4V?#F%)Z$Id-)7uSzri{0LGRfrZ%B}{6@*_ zWpx1FSq^jxxi$Z(fqr96G$VG0h1s-Lln(AUyEgyX#qV^mU$!wO9Xk)dg_X^kWm`Xk zebjfw#&YuwALKV0%iYe94noR(5c&eZ!t>r+_-pT#p<6xaI&`p=U0-bILav%*;N`E; zCJ?1JKm>Ek)tjyLqKpIw11_=@N@Q2qeI6>CDOgo4M}^Djmw~d{Y&HLfHp;sCt#e}= z$yaPd^!il81zn;Z72Fe1O|G>ek;r^qqGz+9-xQUB*9zPM;1YG*5pqyao7X1r%7mC; z6E~R5HdN_bTVTEio7K0B9Sq;M0bi9-46dpH-GxuJp1PDSO@>j2@B)7;mOI}WTfa<= zD%p9Sz1u?xEWKaL5u%)u+DmMR4G3?fH`nJq2D}&PLs0!>1m3r6W^TiusxJt`065*8 z#rC*FwXgd<8&{kyLk(WYQuzt(jaxKnNT-)qrMa@bEIB7g;=xMB`7l<`Uf|2NDPs6N z0&#VP%?O2=7 zEC+u}KNhQsK+Yv3V~I4<(!K--(r{Jj+ayhI*^0+G>0H-|dqLgopgQX z%gxGNs9mzTq4jZo`*1_o%h* z!~=J_Im<$(knhDW50=tMTQ?}*u!Int=40lXP1Db~+zYU89!9ztetk9@@Go-h@Kyh% zuCRK+RkfIpj6)fWm8&ijIDy68BrW*811?)(rO-4@I&L>Xhcojed7otI)iR z6)__D%GSTLm}VD!l3l+gcGt&yJQuWay|)7dr5TRGi=u&opHQae>rf<$z^SPBy_Ra- z`LxQp{g~>0=ax=;-ih7jKjSPRJH0Wzq|-~g=gd)*J8CxG2^_d??@@+_X-- zX|2f;yT;>XMR-tGdyDqR_Ru6#~BeZq=WhEs(&IUufjDsx{lC-eBuEb0otmwKu zRaP6Ba?=W_+nlDaB3x;wL_@)DSdD?KDB4Lx z<%iabqy3K_>?4GttwN0H$>vW&Qyt8iA?HO^nv1B9b~bt>3+7&(vo{f+OeyJ_W6X_f zkY36ewe*-EGOt^NT3y?K9!~z?xL`_OjB+~7gw)HqPrGEmh67qHE&NzC_BlIFBAl0C z=j1<7{w`wT=R%hhk+gUmzxSU?5cll508pwJ@%e$s#(q{M@O7Rxgn|1M5wf)#x7_5= zQH?_yFL%(xG%L`1TcnT}pD|$JQnT=mqQ_PBr>jiBFaa#_uEVkWVBT?4x<_cbH>q4e zzR{k!N+7edbZ+=0V%3D^HBE4LQ{%Rk`h1BsEoX+vsLWJ##14^h&e?7nXVt2$Q`h^Y z6{g|txR8Y`6*e4TSr4O5V>FLzaWJGA52={03yBehWWYJAVsCnp24_sO%v7J94FA#? zk`s(fdx6c=hL*_G`G)zfe7Af~{jjrA+rGtsnsf)nrJP0mOZ5iLRESgY5Iqld29eV0joc{ArWm)3vo?I0WjeY{$)E18+uN_HBb&H=e)W8L4% zrS3OPl6rkdw7ef;7FdDYP~w*IT)6EYu}$3NQWes!o4fC#*BT4*7kwj$r}=w9lu;|l z1K#IIFi!&nbkOb=z9Hrx`h2_3k9W4w$U`5j$*`Psu8sLnv^-+0a^E9V5Su5MU2g^R zyu;XH;aC{1!{^2irJEnq*>!kbz99v@EvP*92$|kelY8h!Is?x|ay_-g<*xoaL%q3L zZL-NMBYAoq-UHCx+ehOy!9B=oIJXyq5Hl7L$=(_4vk#PdUvFOP@I3C%=1cVWQwF$` zgWV}x;A`Qvj*-mC<4btF`gMKnolN_NxQmL?D-99Bw;^1U`xrhwsAzrbxnVx?9xbOY z6{-*;eCb(?p7D1)MM^dF`fJMNwkPAJ#(C&(@hXYRL=sFpj4n5dk2^S%^^Q-#KXwA< z#3ln@Q7g|Jt?jW|_@8H>^&&*-r-D|Zp@g97z`1v#rlh7-#h!a|3_ne^LO`^WY|H4W zHN`)=##GTedPW23hUqw=EboeKzFA=bAz(Rap!)ErA~eD zcJnaCdBpi+AB}_lKwVrOn~UgDh9kROgUUF;f1shQ8)HHy9i0JFduz1?Q8BwlXRQFb zFhFflu42$-QV}%Y>bz|@<%*NeYdM_9!iuL<(#2DaBd@CaqFF(bH6g;We4C)J<_p4oonP^6(K9x}`nQo>)~WeQ zpIOEHYV?4}5QkxarwkSd+!6+z@ESY?SI?U5a4It9>a0`^58WzT=(WkX>`%H{C z`mU93etXZ!$9MEt6e|t+G_y~ru?)y~ThHpXW*7iWnTwrtjj{iq824WOK7_RM^u}4_ zVD|}!Z8gtyd)G>)xx<5mt}r!%?BL#{N`R_)kxD}w^MVl{9P;wg`l_8fqdVl~BCjI< zZ{e$_KiES2OCFyS??mzSNX;xy`g4a0^=WKpfEHL^ETgT91`&NFA-~s*@b>sdp%&A zVb{uLk3YA!O8p*I=7LmR-Ss?k%Bo-gWcEDnp%w0W=4b3R4r-(rrG5;4xlX3{lZYfH z&(g$lu)2~%l#@T3n=j>0>wf9Rzw=#R&z(m5kjcnJ~Ps1E4S*&6TY4 zC?ndh8p`k6jFLr>vBtJb;6P~lb9grtfagw1zJtAABpiU4)5}NQKU`D{WDm_*Wwc&Bb4|)QdYF#apIr_=%o|{(ADd0L%Zgk zZmNbSmgoUvjd<0I$CLNKRb{4nIgEK|a?fd807|(T;wmua zN%ly`V0cC6ildWq*RCfxl44oU?ZcGz@fJ$|ap;bJKyM=%_jP~X*L*#ycr!kfegLql zcyagR(zerbBosp4Xz;vFYULh@+nw~ReJGlg=t<4!miEZD?#sem9?2AYZWLwc?}E4E zvc@_(g@`OWnGKp_&NQV&@{JP`qb|Qu$Q~UCH<+n4JG`xCUI$*_`~Z>kK^Zo_HRf_1 zU#=^LrZ;bVIpfIA#$PqgPG+W`Z|-J0aE&rE{tkE@7f%8Kqr^@W%G}BR{0e2%XujMg z+VBmO3f!)pb$)Q|&$)p2f~5$(%LBd|fL#Z>M{=v8zf^94J(48&Q1GtF^zpGUnARa8 zs_q%k3)5->7puR}e%Ek>uf2^thc{qoN0pX9m#~;?_fSR&g6LgTNJqKd;Wm^R@MmTN zRY3=|99zFoMgvRD(AJmqD}W5GofOqPgr6zvmhb0Y$qz;)v zcu0LDUDj&TC|HT#;3ArjVB}<0#Q;muHm&$`)Z(30TZ@UMqJ2k37_VMQ7sDCtt366% zge84o`N$JrY(p{q) zWC)B#1xA+wLj_SmnDpoOe1HD{FBs3B`@XJo&ilN(0EQ8)^{c)QX-C)&mg)1#yy7v>g3FwwOX?+!2iJKo?1 zpb8?Nn3qeY`S7dnWq_Ngnx@tb_m$1oLDAyog*Vs@tU@XB;a%o`IM!{FEV&{g&bi6C zoO++rBM+}7IXcBOyL4)^KFYVSFA8=<8@+*1opk(%(}8;H0>k{RKU(mjzK&I$W{k;y zN&#HH+-}!7o|czn&n78%{8b}2Ate2MEa*jC=EFEbP_D-^@m3=l-|ahyngtB6uJKBKb&K-4&G+C zA$ioh1ws%HG$12)Pwg)6hUfGyCDVkazsqDxtR%6Q16&Yg(R!=P!bPLIjTlgmeI_}u zv?qO_dY6%K1#^ypYxOqUPD?l9_5&~@y{OnFzdK^)72}<0!AH|VFTKJPRSt_&WnS97 z5m`PqTV&!c!3EW5|CZf%IJ^ur+(Dx@{iHi<F_$r)~&{LxxW`Jg*N%BT)nA(DHL*!^zG3ZnyoQDo%b*n6m^~dG38B-mxJYujSkO%&D{mjh|`S21*hiJW)~W38L%F&kgG`KE1@Y&$JWcUh2LuQZMtg+~s3^O+dLc+|D5p zLqz9=r%hRRqH?`1>6sW;f#eM9=lxdLa-m->X)|885TGxRk%<)R{1or?itzi(D)&W2 z96FaxaklIak+MU}?uYtcYt`iPW)^fKaKg+X#b!oB3_ovGC=}N`_l_>izcWHQ{Vxuq z2}(=4BpQMdRH%@|Wr~d|pY@_=Ef2CwNM~2Dqv24#O!ok?rWv>@JE=dm=|(7>H>a;i!?Ya$H67^b8sDWilE6*rfcn31Azyx{^sN?9SaOQG%1+ba_w$k# zRGul!w!uA_Vgj)+op7c5#a1I__SsbFEcN01+9umX%(}^wICUY@edF#wUpTpR1`9;L z^k0-mp1TWK&>qSHR656g4t$Fw5H!UyRamB_($$lx@LeFTl$!BHAhml65TnuOJl149 z=XQ2L6BexA0QD3pQGqmxc(XLzvAK32bHEtb(lOET7TwK+$a+{;OpuWw^qC54`X5eS za^ASy5^eHr^V#)M4+?r;GP3MQt z#lIX1)?w1eynpDZeyPw5wZulv)!7$s=`HC%rK{mM(sTqA7#~i;zX{(&D=tccUV=gO z>J6tj&lRuw`?RK1_^w{|F&9tYbgSShffQQ*(oSm#e_J>na68TA%A@Da;mG##Gn6Nr zq7JB`*MzYRy+GJ%(mF7Rd%c#}13p1QY{v&7Z%!H)Hz`}1y>A@C)>h2ubHE;k?RV-K z@V4tk^YMK=s9L8}NG)i;!Bs*3&cYECcA2{_?Job}*Os{Fi4V^4GmRX&jCB7Byx?=D zdY$Q~f%IZH-=evx_0Dm@!G{B$sz>$3|A2o=Q_rYC$Gq(P)1Y=CHK(UT?dhoxFou!a zWwV*JfG?3JZAaHkIgGZAXxK>PiOZ^NG6A2iuEGP7%2*PMyjf@inUcaLB+okBm7Nh3 z=?b*)wEA%Aa1vH+?Ob<^lAKzrYOO7+Vs3y1|CKe@Xv34zZ7~W#P69a)?p;|ZaL11( zQ$9QN=7ZMNx0C2pr|IEd>Rf#lM*B~fu4wh*KF>Haw?h_u(WCZG%-qM2<6f%S#YHS> zDV-VU==-01MLT#LC5}HfY^QC}JBg#5@RcH>o<>&*jk8$wuan^MoQGFuTvtW! zSzHheYYG}K8&<{Y5fFXFub7VW;0Bcp3k$qnE#25P*Xl@#&8T9q00pt>M+(k0JB>_( z#CSUwMPK$;4`fLdEz|1MG}2<{q6DknEhy&Jg_}(%+>@K#%U^*Bf~s zs3e`5ugepCU(&%&Jbp3{tCD-NE-ALG8xgQnr-aUO?n+huI-#cWC%~6lu;}btf4fb$ zA5WPCipnI#Q)NHE?g~o!Q)#iQZHw~o$qR%`XtKbtK}Wl@nLRqb`o=|9cXGcTKh&hd z)nk_3xEzX{MfuXWU<%K_-lt4xnUQ3S<&7aCy{~L&x2xj&22$*c`rtaf0a{-&jpGJj zV?H5}*N_!Cch7^vk+Q_RMn8qtpE0+6x-Qe%&piF{>$}z@q}e=y70h0d&IP$BR{j_L z3bc@di&p{HaGm8!oHsARLcLeqxPG(!ob8SmvOP@E<9*vbN3JoTAR;9c^jcL`=?VEq zTTk@erOB${$mST`E34Eg0On#}eena1aD0ls*=sU0pUF|UTWhS6;43?EZov^R2XbPk z-*L-36uf*5VmB zrEy^*+!wUbr-9lVIbU|&5;jn#poKBP!mUP*dar1+&=vyoR=&P-JH$eXpW0WxP4=}L zrF`0UPtlbf+H44-gG1y=@2D3!IOwjB zilpr9g>ezYZimr)q5pARpkxAX3u`c6)Lu&~=#=GVuf_bmDhf&+jr7k0{c;47aRFW@ z@ZP=_bPH&i`5nM{JbGH>-1NG9m(Jeu`Zv6}b}s?I;G{2{z`LPkH1HnU%s&83(iN~; zhM<>fL4)Z|4t4({hX9`=c^V)Ot$YiFS#q^W;Q?8!K_m+3Ewl${C4-mF2*iVZKu1#W z6Epy~ynzh!6aVp<4#Q|{*AS`>1Y*0 zK4Av}xpHR$I#AO6AIj+CfO6x z_<3a}gwr+8Qdi)70}KxiJ!$bsVoiu#P5)r1b9-yzO$3X%ue)>W29*=g18 z)A?1Cfd|fR03)o~dl{7Nr)T3NdkD(0S2dBWU|424)MBp*|G|y6KQ6qb-tGsyXHoiT z1Y_d@)9>@kJwz`}H=`3Icc&KV-Y(Z*0Nu}Ne*IwuAX%13yQUVsv{wxukkV-ZEV`*rE*J|CyEg(T>Rx7ukZM_7G8p! z0ZvV+!x`Qs1M9Auy#(XugVKrvG|2Hcz<7Dz0?O)mmy~7Mm+6Ef1Ud(%oO>e&cYIO( zY{R{eqUvWs&3X?$Xm4O^bwJds4wObK52OMNNxE_V!*Nz#G0=^zeBB$)gU3fTh|h;o z`@VdMoZZiM#66lk=ty-Xmt!faSGs|XZj!f_|;;jbChE3rM9l!aS61J5icn$ zoO>5A8uCy-w1Ax#y({bd6nP2XH!vuKS_URyV8wmD$#pb7#Gc&`P5htZ^);bzf z+0lwRbxo$~6zS^h$y(>na__gAG7{eHzBdcOx{ZmqL)jv|59J!wXxb(n7xr;`>0k(i~90ctc37Xri4l+Q{c9^} ztLqdj92+k@b@Y&=jG~79dR>{>>)UjOZo?*&2PVq{AtaGCp;&j@-z8<%wLkGG2#1(0 zyeD|c@!5PIGYdozvI?oKqmueR|ANZ3R7lLrvL`A7saBv5oqjfM!}lPFp#v4t?CNIZ z=BdhZg+!wi1=gjiZK5OK!#S=U%wa}?rw;V(BGkm6nl{aD=8{Sond$(id$vE(&-@`?O?(7n&H zd+?=T;nmF?eUWIX{e?j#gsNI~3GH&j1FSgyVki@+d}lc+uUfS`2GG)i((5j18{_%T z$$tpBzn-70V)L&$Js?V)*)*=2y~gGK1! zY@xY&Pmq6M8)ofB#2J_Hn0*kSK%9`_taUnl5E~%e#m4-54rD+w^Ya$^R5OTpGXH zZF|out^VNhOkE-MphKal$lSN+xKEYSPvtrt5843t_RRh((i_{rPCgjCq`NwEV10Wl zFb{Fly_vyXL5}?oXJuT5&X+;Y;+Y?Hb(rYEVzuAwiSZ#|iFUE~>amggR_c*oGzERa z*|6t%KYmv{%>O*e&+}KQ>XKGTC3KWDOouh$sAibYIP05IsjZoqd0jdgKBwsRKuGaq zAU&1ghY`f*lIe1kkf!m8PZ-QXxhnEeiNDCn>>{ISbmYWVN>}N>c+YZ=QyxrJt$hSVbWyCo|F;4b^A}m?y&9GJYShsHhLG%xAdl`aP!D@ zImpQu_IJZ}gT7uiD;OSX(>zTxHG-i196cG^KBKp&OB}iw74u%jY7M*ZyY87P zowLA!!Y$nB#W&;W8SuyML6T*RWZ#Je=5F;$U8VcJM?mlbgO-tPV?>5ubdd5>&!|bi z81etp3W%UWd((I$TI(JIN&QeQk9MjLNwwP}v-r9~40dsLFOQS@XJ##g%c&!?knVX_ z_|`HBMeAZbO=8?kmpNFXlanvU*tR^5Jn|P9fAOmzn|{Uj!v0R;7ep#u30Gi>G2n70 zz{+C_5^Bdt(dnx}u7l|12 z`Hc-7@T(CnJ!a9GSs5tCJKHAW$OX!@YJ^bN4K0)wsOYt;StI&0MrVsB_-fRqQ3#4r zW12}8W5UX=aN8rwLf@HL*=JLsK8*?KlsWefm|1QiuW4q>;oJ&oh=U%O@F5S??UlDV zb?0!Yeo|d=Xs6iE>9$Pm-tczU0dhV4z_XELW}Uryi`@OyuNZ7VW9l|$7FHTCDjG=w zBVfMEBO-<3FQ?{Lpo)urZT6JKZa*n!pB&5!A0ouy>ig9D}iUEb|a{a=jY#T!FCpK}YpyE%^kQl1+{ z9^BQ8d2qqs=OqW~g*G;k&{)572AVc!f#xIx%L`AD+Xau6j%s$R9c!Ge`Ww9}Y#@#B zmkWh$l_RQpXsHwqZbk|sXWu}`^bCWj$VIp~E=Bx>r=>*thZWMVzO0gdKSxToB=Jo6 zl`Dz-tunhJ+*f#+M?cy6w}B4?*ib|dlJ~{l6*n3g$><-j&rfM^8w~fHGmEnPR%iTk zX>wk7y&lKuH!4}zGA11Oa*rY*tQzk7U^7c{>}z?g25-{q{W;UCi0NOp;NdBprMu=~ z39sTy2j%14f+Fy*){8N}Q(2s5`dIw?TkfhJw~?hdi8ob`u_8vK9zOUx&sducv^_4< z6R%sbS3rTzVO_OMg|JK(=}U_PBEs4!!MinltR)Yrp}3L}zS5{chobQu)d;0LMaPa( zAPfXv`7qphWT*Sl<5=6G@&x-9XydzG7v(D#1baNq$*x|xrd zE@tA3A?lsYS^uWFlx1?V1u?uKO~S~-W&=UIpqP#{B{SnDTg9f4^b`{KQu~inM_iso zf3hGacVw#VRCHCqpaf2M^{G$W16Ezav{o09nT=BtHhe7`Pr=pXRZNz+HVt>Sr4ly!ZI!067?pR~X`QnkY=wHDT3&{m)AO{H=tcrO^ac$e?;SefyI;!_t_Hejzfyu?9q7j&U-kUBW8D{CAcE)P(7Thq3bCliWPC=7lpIj3d z(|bJH?C|%o)8jl)&Dd0vT93O2YI@bX#`HC6zBo(c6W3ySM)kiRoua(UBV|_D=S}lgsmYK2RbHiQfQOaCWT{Z zaVvW1BBbhfM}X$vz7UH%CHI=?Z-##4Z1p}T#h+f;ec1g6D?22=?N6%DC3$ha@P1c) z93I8vNN9qC?}&4k%hVY3#jK&#?o{84Iro3lT(6eOIvhcio(dEPv~igD!y7(h*MMN+ z`1vlKukFQec$Y2<5Vab_qM+upzG;GXC~XrRr6xG*CpDC&geBWR`XrrS*VYMq0NE9} ziGt$2Z?`lF25_DWn%>4?;EJu1G*F+Z2TVWe4~iTYy&47{FuAm(vsJda+-s3mI635QORw;?MhwC4ue-Df1a*2}TsO@}`x*~a zp8^$m;e;|ZurA(zGHE}pb#T&30-X)b;14NTVtn2dxs4i0?bY!-{61A4=cqP|>*aEt z+WUPK{+dTa?-a5{{~rz~kZNqN{>b7FrQ+vkR*niD^VZQn=G}A8pfI(3^`Oe9z$?q# z_XYWpE=OGdgj_H8s-K!JqdsM+rzc%Whvd|j&NeiM-~wMz8PI5HWDrQOI`Jsz;S#DqtwrMMTt)jJ5@D=XP;1|d+;6Yydw@K1#5?ay@ zxx&Z7AW2g9jCAF)Sd`s(h&f)DqM&)4vnK=%V=y!3b+>G5g=5rfDc3^r5|){ z4ukf#;zwYobwKk;U1&Nhcp}!a7SxloQvw4om;dNZHvm^&>;UTZ9!)FsjG` zd0*52Y`jDwC_q1Sgsm+n{Q>4j%bx9a@P|RmFwig6SEKbpgSlxknII2xWfxw`QLR#n z!@--w{vw{PH0k`k?0wN??vrli$?Jwf*du~!bN|`9pl@33%0r(nbk<8&6M2|_V+Y9G zSgZ~>;a7kEQh%Fg(2`@*Dx;rDQEk12egmvE0jbglg<^^TLXEd%rV6hHOGsgSxl!ob zjq8~+(9L!3@-Cm-(wVfhjDi9)&6(pVytG*zFi{+Gt9riMi|Y3g*46E%QmWa?w4-L$ z6AshbBKq0tZ%!NAX|hzRkgjFH%67n`@r)Fglc@cB>5QjctPpK4q>LP@Si(KUC+ICXgojS$6hk32(GpOq>xz zRmk(Yrm`0V_Qdwbp*%?mZ@IKC+#v8L(?>`;m0X%DAe&k9aNX}t+xmp2sPZhn2?e-P zjJ|Q$;OL#(J=Nh&^W2P0v7&R<2AvDtuG@GTAmk_N5um8>wI1)Xqn0Z-te=6wY=o7B2qs%_qh1;dp&kb z80g(#A_>Gb5WdLG@<1z09LD8l{KDOz%mc{XwA2N<7);;$th1kg<5WS2Q?s(}toKC> zh9tIa1r^i{w5iOotyht=nR<`zYAyEKsckc;QbBJl6MnYPbNDsYeqY+0{PUPknb;AC@g=$>jlVYOO}uOZ75ARZ|A*6**`v2o#Fp0R zRBG{LmgzT=>fT5u&O-#@%TM1zEmUS?M0sxCZOsS({UoXl^2LIsWQ2#RP4u7OF*sVs zy5BR<3y0bB9?jHyN*SRWZk}DKtjo|l^7Sx-CrW=v{{S_2dGyrYEO;&!h$N}+cx4Ln zRs^|b1Q0yti$a5f=MssS-?Yy^x|aW4C3Bkf%XoaV4gczm3)dQ_T9yL?)yIGQIXRG2 z_^)8@(3iGw%7N|Jb~Tm^#+jk-weLvSkb85@dEaYcQm5)|o3O#2;`)$&GYx|9*5qAI z-yzUSuVRUB(TdKT?>KT)({deI7LJ=22POITUCxGSi|1Tnwod+g9>zOx9(ob$ihTLp`GA(%tFZhY~*;yOl_{5FZDJ* zx-zNADu&^?*ELXCB&D+brQ59VaJjj-GN7Pb`-?V*;AxmPt{XX={~q?wtosasTFz^T zWWTlnsj<+^!J5Jhu}aD+-M8zAdFtP72gLsl$6*e~0-`O<`W_2Vf@goKs7~1vPR?ef zPS>lzJi{|9JfxvpuKF*P3o~)38q<@a?&{>TY##{nwdKnMZlGq-gw+@{74`!(iec}@ zDybovVRgUEzAyf0GvmBez&h1K_jrVYqVvz5zFZWOe+AbwVe^_H$trqUX=)r5KbgA$ zw*}Z?u)dVk`~LpmB6<4t?0-%TCXppB3b1=y*8;J=y94t;7h#t#ncqQ-KyBb~*%f=o ze1^|KT7r(Q)B%GCPr11BUarc_nR$f6d^T?VNBE1{HA8lxcj^rSCS9-@z|svIZycYm?`hkDjfV+j#$VP*KnSlkBSdbyVIHXy`W@|}o39SGh6ou%CxqJy z%dgIMM)e<7>e^YCc;Wq$!+PC34|x^n3RRj4^6=m(xu3DzV+jeGmdcp+ZJ8fslL=8T z&}8Ni`qO)Ye`BFSueU~kv^@_)`uv>^Oc(Z2ufNM88q);UWz$oeqCT=ZwXKA^TuRy& zUKVvSUhi=udER~>(%d&)%FnKO2V*df5XKnojBG_^l zY5}ddrB?^tmyyf6`yUKyc+N)1wPedok{}_Q(cCpE&tm}U{VcvlzH(-r-8S=_o(-K_ zc@;O?KkVtOTtgzfivoWhcBDUJZ50o8vd14L)#Sr&K&2nc%M(Cx4dFKcJ6e*b8U>%m zyfGAYc}>o7$>TL4Fp_PV=>`~)4Tb_0MT*_{ht4#vHzV>rmvb$mIiZ8m*dX@7$P47! z0h!1ElP6W3XJ{!rQ#7AnL120O6s@&YfYz%(4&8&tKIqDe7^#S<5m2A?UkY-I}HkXK7Kj~2V&#bp|An(Sklknb2L3Z^!idwa7ADaXmiepa4n z@CWURcy}?Gh~8O(i{#CUPdu3P-H65;Qy6 z)bENMZ^pP!&}M&yaOF5Ei`pXH&SWsE@lJJDMF*a3p~tK;hna(DvvR-hK;>w3E$kO$ zpue{d=En=Rq~oQ9mtRGE`s=#oX!xsx+|(tu6>lX|hh7w9=ZZCp_z33Orkowh#r!tf z+S&o>DyGaqyE%0)O;wiJXA8~(RW+~j=SgcLekilYp1L>C{ZlzOXh)?SW*;+9NH(Vn zP!m>|$z)KSnqLK8!eP@rVhuYwZop{>w~ThyrDF+ozp_ZlgsVOCW*&lREa@t-mU0T3 z&V|{+BUYR~7SE~X4ul`J2Pp}$SoD^xgSn+3nsxFN^;>;SK%xRXBRI`_QfgdM3(iHc zav(xi-mT_=#Xm9iJbN7^vWhD3QAsnW+?6*c_`4GGy2VGd>9w5a)RdIgT$@zisouanZ{3^a}oNrudQ8}SmfFlj>=K~XP+5N zicw_0xH-Zd{vpM{DXHWv&duhtt^$c1ICa41b~4C$!*$VY!qg% zvu(Gw#2y8e|1>r=?xLgkiCH4&%+nSrraaRmX58ueaqcFy5kI_&pvq$_TwZA$B)^Hj ztAJPkgHlT!o~;P1V1yqx?Kc=Y5--H=I_em12m;Kh=Cj+ywk@w{3OC-dv=ik$d%;~pHeXylIyDmff7>8m^ zI#A{pPWdi%#1!V_Yo_a_5P1O!fFO~Ou2IF-f-p_w|JX)=OZdxrl%+-L2#Yg})lT9c*PuNwzd>JleTyyoUNt{pre4Uica6$-gy?#1PBwkV?3 zh5_9Vj)v{Kat^jXl7ttwbhrcQc^u#gSLtWV!>rW#58YB=%%Q6ovF!hF)I5IhP9ZR> zzn}YEsJKP09p(#PCL>XgC_mzG2PofGOxdz{(ZIWSAb=k;nFA8Kt zo|QknJmI|)C4`Sa3sNk5h?8f-YfZMm$k(I8rVVsCkYB?A?dVY#3lJp)KW1!-I`9H` zjN#$e&Ir>t)POyt2LYTb!>W;wFPq*_4Uf^;IIREg$4u6OzC^nE+kyv9*UBn$0ZvOP zQL8Q3pX!dH2Q*OGg_l6*>mei86qf19u9Ji|i!fZ)m+v)2-Oqu#(ZLFrUm$S`S-^038~XMEoox$+QQyX3 z0p0EkctboJ?Mlhu7x13m#c`Y^?2$l_@;)ssFD7Ayw!#mjDTB{PF3yQjetEXHzJ-`; znZC#)ZC`);2uUsnIy4~flP6T%oh$W?F*mLLp2iJqi~Ju%;(QA-EyR&#D=6+=4Jxgo zO~MNksJ3Wp-E0LeDCA+EgQe26N-WWjkjy2Yu5^&oa8J`3nfAY#22P*WpP5y@b5ckD z9U2JBEHju{NaKu{s*pC@o%_aO&*IL|(K5_gf@5j;o^Jb!?H)ka7=~rNBR8|!v9ak} z$IEMMI8Yz@ zn2H;q9oN{(l;=Kt{LP`)MlORT*>^m(S5onfGkNvTw@-(gFhBBGvNcOI#eGkvBLsXpaP3>4epkcpk2pYWhm?wKUt;L^1%D-Q4IISB zcD(#-b{BLc??iT5XFgKW?`vc+o<~LOp0C`4;D34ziXBLcif(h*0D6^t8fFC#7=o$w z{ey$Dgh3WrkuGC#M$=J^HVs!F{JS4?=IGLOfV~-|MDFhdBKXX6Z5-34hyDrsl6uHA zThV#iW=_xiPgga=RJ;|M9)8*LWcG1|E7dm`s~cr!=EAVp`jk7%x+q$C+fr;YQ z>Al2!k*viSQbW?HSGM*K%u&4P$f`PK%EfjUk57r|d+q?v-7lBI;GsCI_*e2Np8|PuXUcTn& znvi#I`Bs2lJwG8J^bCK`?Rnj3D;9w&<9~H~d)*Ujf71_JI(x4((b8aA(IMUM<-aGt?xJ08*90?#YrXqERezrAh_bl$RaLgHgCC4T zebc;yrt4=`@-lfuyIGLq3D}^PTVS3}qvCm3K96V)w6U>%irDJ5K#C(g&`z+%s z(`)>irzhRPnk@uv0#9GNcbkxObgpW(J2HG(j{$S1=7vjC*gs1Ox(Bn*M|Hf-&*98p z$}yOy9WD=~fPiV&dV_poV8)JpHl73y(2Pkz%xSrz75m%AFE8I4S#@WmqFakr1ZpC9 zIy1?w&61?Jw1tdzf66Pp)HrRA9UTd6=O_oD`$LCie~l#5skMyg^<6OUtokTS3oQhU z4As?C7jT4Id)9@%ExdApt{Nol(us--3&F`{iCQ>hkqkzmj#6TdUm~^RNDEh zot&Vt>~^KUc;9GC#i7w>{6EXE?44PAs!@VzrK^@be>D~jX4GeiO_WT^!;9E4K#z|h zw_?YAI)dO2kH84??BMY3j=>w4k1&t9E+(Fq{!mIWRR>C_f)R4^HhDA1;%)8To)d}~ ze?Z#Lb63=RwpW4QWTnwtTK(Jsx|vLmxzUK29NSLS*+cemCi97y&w-S$5)(_~{pRLEipNR#6pwdW$3A|828-HHID z2MuvvD0kp56RlZp0nzbO==r0j{KURRLAGD{%E*ubMO%DhjubikuN6%LWrv!V`M1sT z>138ha<%Nb)}y}VIi{9q?9P;?Q51~a&E$!k#{ydigf;D^EMu2t2?nkts zcG3C8`z29s@#KUrDAN&XuP~`Aw}N^4=C@hr`cpvqPInA{Yfc$Esniwl4ns<(cB6> zo=#Fmj8=v<+(ho$s+-l#>|0M#R4aeVk>KVn~8srERG~YyKD46 zt^aNNWOU!odz&x>jR$zV6;~k!?hXb~&Qm_6-v{Cl$eOzOd9sAWtZt%vNwKRQ%JIC5 zdFV#~?lmtasQ&tqOVaTV_HK68o}w1CVt=EWKiBmUnI&%(#E&!g<9)W6L-I+jT1WO9 zUtdJAP1IsNX8|v%z>mrF7-vYXBj8sndch<GJLvcu+=%^`r$7w}TO;mY2uPU{_ zk;9I0GRf1fR}5?%U}7d|6M<6wZ*L{X)>fO5<+Unn@Z$xyIEijzJs2>(0L-=)^>uTo zt@ze@^Ae%QerRDyNE`4K{7N#Pg-cM=ORei2uw`nmkZ&)V%L6wXvf)ef@+4o+Ur1E~ zF+Vvaa=NiqIV|grOOndn-ry@8Ny4G*=6OZCXN*i0H`}fnLN-q}+BPP~W$qJNFk8a9 zl|!B}y`?@*uI)jOsvS-H%4!h3dI1QXBY{&{?OU=h5K!xJ?5bLk|2p6)rUJ-Oq|dp% z%4#Y@aO0rgmM;w>m?^qZk<0(#BsrYW-dnd9og~`qLiA6g8=QUHa@!9a6#NfCG~VIQy{VCQ zNzQv@9$%=NDaO86QFN>;^9_@uozN}iF-INky*kB=lO(^iA?EAIcO1b!Ec}p8hP00> zJIBjZxo)Z2B1^$d>7B!xxmCZrNYydOBw^-Zyosi>K3+7c|RrpIQrU1~nddL8P4 zxcMk_BdM}ECr>K+(rxr2l|}vSIk~~xMR67yd!C53d+ob;ht4eA=9zV5o&^)D1c^sE z?yA7dfurWpDrhMYy^ujs+sDBmoYm7$@Z^u9)|bau8TgtNzcRL>W;}9Os8-1(B%K%5 zq~DJi8_7h;H-c_C*psnHZ$5luY89J>U#(wBX@|2f=zbwjTkP-+&9~vZR@=9fqZ;!I z+r2;DQ=A=|6u_o9rO)ooovBqF9#C%uB^!UoU$Ccx6ijNKubkB#-xC^)}Fe6IV6 z3CK+L*&k2n=+T!w&s-1)Nuo_JW5-&1mUKT{f`m3x&wjAeg~mXLDr)!fOf8{1g*00C z`FtWD9^&AH22aM3z9LQH&83(6Vma3TZz69cB9l0zJ)Q&{EVWT>*}^9?MW^&;?$nCQ zR{W6m)Xl#3Jqs1#p84X?=wGiQ+tM=Htnau-7P9KHfN@)Bo|$~ZCGbtO2{}m6u2b)~ ztx1g9(lDV%oc+NbVkO3@4P{Hr7t;b-yA}kJNq{;sumqS4>4G_6kjA=J2SDa(Lh8Ll zL1=))(nvcy!#=#{eeW)v^}k{;A>s&G<-49Mud_=6|D1hSm>JLNHi35gl04@RRPB|z zQ$29Do;ArL65F_Oc;weo8rYZGzLtRSzfb1ye#X!12j)~>**yjlx7M@TdH^{Zy;Of^)%3hBKnrw)exDV2~-gV;}~$Squ6M&^|h1o%3-w`YPIJ?|{k~ zlr49i*MB&y0P9ph!jga#dE$&nf7I7xM?uvs0r~f57jQZ1S^ATie6EqV+=y~+8np!i z3Xl7k&6Lua$@5dtz6*F{c*n=$9%L&QWv-jr>i)^@t70$JT94Lw&xUc>-WGaXV=F=% zwD$;N9lLAXm!_pyfYVj+?_Y~*4_?Kgi2J!_aqovK#+-IqM3`V^lRHZHS8gk5L6v*O z^HkQf_!LR%WS>BOmt>NL77I<;x1EXRCW3nbyzQsyvA`cDb&4WieE$PJ=&W?ApKF6{ zhpe4$o}z4nfh7q2$>&!nQBKv()_71Y{%Th0;BR=NMd@YZb{sI+ZZ&;2$7>FDJML3v zq#Mij8(#t*Y&^@a3Tb^!apV@hzv12Xz!W^~ETeGS4z6=DMb46R>9rh$kKqlreDeZI z82z)~m;g53hxoul@C6(}qgNWc*EG6Rz7;%5hgO1ip&;R%dXR!9->I~B*jie8wr_Xj z7xj>x-wRzR`RxEqc*OBsGpZ2NXsYKQTvIrHHpQD^`ynfKj($bUHV@`Vf!Ys{^O z{=;F4Fof3I9}Y&JWUJ>d&z~&W>L8d>L(a=pf&>knJ4^q5jpz7CsHR{NIp1e8ADPDu>5{?9ARuwE;odWh9 z6?z}5c7(eI&}pW2Dw!Z`alvuFij z5m)DGQwEugM65u94tJRqb9`P2A)F6(x2Q8YE~!Gr@lt2Gm}cTXNGwbDi#etdQ%=%N zSL)iw0LbKcVqL0qu!!t5%^fVQLhwz<9yu!@4-Ve7Zv42P<>1-~e3UY&-n$eoDCTHQ zuf9_V;fb&Vypxs`GOOhdFc*!+#40~`_ES&Y` zD4nP;`;kc>x`ii=I8mK`h%sALKzYeYRWQrT`9ty; zrFY_(R!GsQi9k*CW*sU{5M-z6oVl$gRA`;fiH^)cJzArqiLCdMZFcPj@3;B!haec1C@OmIWT!EL$KWK8!;U$GR~pLtje;?^H}BAN2;`@ z`y1Of=_#}D3PX1SS>-x`y^=X^*3HlCz^Kj{eB&Dzn{@}>Fnqf9(7D&!28P<{&ak{P zulU4o{PLFC2-?XPl(V6nQZboWa3-pWU#)ng#s$R0x z%~~h6{v_95okfqxLrzVx5$xTGQZdwa)wZ@f<9RYpaXGL*&pBv%F6wXiZ;K7`xUx%} zN4I_~WX)yEU1&6Q;?>qPAb;L9tCQ7Nul$E&J4pPRx=>`w&ChTsS7itHKO9OQ8?oo^ zF9?o3S)l<&xY~^^YMF-0kGOv}y|^2q9bGhhHgnb}X(-9a!@a;)Ge!dVsqTLsZUNjq zp6+G`&D!cnvoEcJ=W32tQIX#FUSm4M>Yo4pH4(-hwQt)DhWdOlzc985nT zSmIskdR3NNa=J_I+U%WYQcr_o&O#Az?-3mv>=&r@j%%hs_Utv}E1n%gVU=Oxl?5v}|* zWRouT2#3q%$eA$%S95>8os~R;;uYrm)8Xm5^}XG>P}c(JBOnm=+bHXKY9;J6K&yfv zVgu`L+dSRDkuyAPZUy?@!8|SiG;CX(S~lJ^C!gVK{|R=epo6uHy=?Y)gywE zE`em44PN7xA^F|W^_~uty@QKZOX&XQuI~9bN3Fa0z+n8MbkyiV9^pocs)}ptCoD3b zj|f67*tFfqtDpN4O8v$3{S`%Lp~NHM)Cv{R+Yadyi2h&_uc;I4NN7T?N*)N1{Qa$Y z^E#>dQ}4qdW^#G{#P^>WeiA;>I5)x@+{^pa*8)0F8%8T%R@6F2Menub7VKat6S_hBXC zdp32#CaQ*+t&J!v_VvK0{8w^|#0ErlzFtmHdc~ubUAM~%?z{CkxNT9CRpp!7hjORF z@1l&=XKxE=bWT8LntLmay%LjRf&~{G{vV&-Z+sG@VAc+{g zF8c)R;`5WF!TivbB!V^@FX~>F`YAQd`ugo~y>P(gAVvrcDZm!i>Ia8Q&-u06o#Etq z1)85iByRV)o^kT&*Fmc@Z9V6OYg`G*;^Sf-{{l?*Jjbq;ac-hmn5TlnYr&wT@LiJ%ZjaTqc zb=I$QVUqdQCfdloWnK+v2!v#%TFzzun5(E?HKK1#ol=-)32GHV2l-fWzEXH&a~v=s7hBCBEzG1D8VI=gq-G>JiR$J$*wt4m z#iK0~d4$62{I3RaeDaIj+>iBD(1$qM3gI2)S%MQWcX`^c)*mw+bQE%dsnzkM+$faN z$2!AH9Xg{rl08~|L=bBRTf?$;Z(C0SlLn{CW^a$~gepQu~a(M$5HkDI9A z?}|{t$o@G{cmKF(9c{bIB2@kl=dA5dE0yMEGbu%7IU(j*_oF+VeFFk9D)Y1z>R8)Z zyGFubEYK|}#66w6@o?x-t-p24L83IB0tJRMVktUP(l?focE_o`zyJDct`kTVzcbGP zF3mkD_$083c6BD`ukB9vw};iDQx!2ZqvCSQnfFV8wIp%7Nv!60Kwo$&kx^2NgCvdP z^X1F&X2aT(23`bG;B%PN!Pp7aNrrgOLUtVPi+UTh-YnS5v}x=9Q;&{T0nDcKl7EEB z;2q?>>S#|Knm^TY#j?sIa4)Ft6Az=V*n2d>XOG4nB6pqktaUqYNlox&sWX?c-ZI;m zWzdN+J8pd5+STeD^leA_wj`A#b4kMZN5R$fpI-)C@m%V>nZy6Xxt5Yl(nv^rFc?g3 z+y&6Wb)Vy<9=7_s{$`!&f^g6`)U&tV*~W0NHT-BZq>`-HDY?osiZXwwru%aUDgL;w zK9RL^k_%EE$=!Prc;i5C%M8yQm(8b4%!el$+T_2m*IU5MYf8L>WNqxoY4ZYW2%2D= zTZczdBY8~xMO8M3T@M%gvKoZl(@C%#|KYrzOaz@>4ORe*b< z5U*~R5khX6(@tC0@gIFh=qZjM#JDS~;ix9!qj?q&+;5DN$p@P*c1(GkN9je?O7)Zo z^oBW1{~p!(e;l1Lo1L{}nJ;077u`mSO1y_JI$_Q`X&(`4e)tIG9 z&=t6Um?`#1GfAD6?42^rT6BnYh|(%)v>EfRCj1<_H~lH0`+r_;u1c3Q5Qm(KT1>%M^kaxH^vNn0NUK4@{=KzlSv1kAO*Yta^txa1y zuLJ*d3H}ew65J&8UNc(#F;1z?ro6gg_f;2LZEWqZ{9O1&3R1y#59O zhee|ipwuG{8Dw`O$TfuaDwDOL9q@rq6y4`QE+$YRp1>CnJf9D?Ai|*_+seM9fp0It zzktl>yHY&5m>0U`-o>T%dh*Hus$qpbRe{vN`{N~}M2EhhzC^yI8539g+lAO=+{OGK zN~R9m2qljyR|08aCykj4%TZL?PE-Oz9T&N%?uPlBbI*v}h3Ksopws#xu`~M2dC$!P znQ{Ac1w$#Kw1$ASNJ^V_YghQaPZaYttS}xOLbrQyG>z&=XR5c)LXyS|p6J&T&b1~D~)Ux@6! z1K*pmawlD&D198oy;!;hbpGZ67oo171hUo$D58?^EBGAu{)CzCw!)c!dHQRz@Y-1& zc=o#ZX&uspdkD}l(=_o~)N~pM=U|;HYxUZ{FhS`PEpF$Hl%yuE7dPZlHLsYoozKfiSOaBAluqkY{$C)p}oLc zow=%_KvXgxb$tP!x*SQ^Mm4L0oZuOO?1!m%#v+BM@UE2L&Qe*Hubp(g)=o@`dEK?B z(HrmOjthUl?-N^j7y9%50`EITB1jM!_)*4H0O>xI?#!5`alcJ!TDpNB zqT$8CuZXb6Q!<_*e=L47y5mfh(=nCE=b@SyJapIQk*z1zR$UK$i?6rAeTla|qvK3# zhf_0^zWi7qDGi*fYh&?fs{`t&jcbp|0R!d!uNgGFXtKjmvY5KwOWAqQH%2T~q(CAk za0e-H3-MCo7527Nc?#dmE#6O5GB-M|)zM3P@!VkHgF~u-O;%wM!u$gkT`Ta@!vCQi zz02g+pF>qU3)BvskTC`GEBDd%<~JDFr15>dm`*GnncXhkCL(x6sxWyRthL38smAin zc4A$#@wL3eCi$~p^%u1=+f6g(AtV`_8a!F@}TuwO5SvTbvEupi`P=}2ZmMUM7ZIx>|ioyZLaJ*8Ie zTh7jji)Fe3sm`lTCQ}$N+~7(?wVlQU_~DjChIq%yw4_`WT_s^Z9o~n0ct}Q%4HzHp ztj-iPe#}Y~%pto!|Mong>c!3Ve!R1+3S>~r<-BPOf1E1prkeP$H3S@Nj35w_`%sDa z!r-h9l2ZTYVbRdYpgnEfRba+qje&A7{(u*nx69Y`ErXYLNH|II{d44tBD|mdY)3Gk z9aJal*H${=H|BpYOq_dZF9EHR=k=?b0BbHJ`$^P=Tf1*&Tgl#nB1>fdI?=P(2dgtN zl1T*kShDL-*pth26bDx7hLyNrIpgOTNlZ_@nDTH@* zAPlaN{`ntTd^SY$?;9P;o(!WSY;-eQSEwVfl|5IgZT;HSp<_|3$X;$3CBfpI|QIjpSfdR~rv7cvgZ^Y#})EA&gVLo}X`;@Yo+W}wEoE06NbVv##@sYuBVI|CHa-DVbaWFYnyLM;k>&Y0$fARwC=favvASI%$F_(n+7@}1$UrJsc0wFIRd`-UG!!{8r_qq} zD9Z33nhNJxuU6IM(e1^+P&xq)xZ_KWZRuPOuHUp>yt z?>i*Luu!5`GJEf@T|Z__qItzv{qTX`=~I-cF1O-818b;mjZfZKv1maZb#)ItCSR62 zVvS4ajmnDLR-#%k)8Llgr5c|*kj`orD|Il(}`M^EpC29zUaEc^E zSp0j!sD*5lTPkprv%B$Tii@HCCUo1^x7hN~A{xetv8g&v~x34fGpe_%!&66aJ4O19&| zOdUEx=LCdYYl$yGJDNhTl&oM%YT}7`z`pM^b4YNP%XPY%sQG?x;64WK^M~+g&TWjO zX!aR#(RI>fFE1VUAK%sYY6k*U-dl&LP#voC@9zccbd17j`0cxVK=4mfek`GuB@rM? zFwQMvW({C~*KH9ELo;Xr3qT^c|35T7!5q(;ig2|YYi8;Fa3EN@hIgZ*_IW^rUFdFM~i^ zC7L59FJRA!^Jl_Z&4CEU#SY1mXoddWh#AGAe_XeBrE@?yL`_mN=)+@83waM2;!r=< zM|3_{GAbTBv&GaKZ}2#@I(n9=iJP~g+bQ?wBTKA?I>OI-t5wHwm@F>GEUS)LApOvR@Taa?lUq z{+zU0!QO6C#y3J@)6YX0F2?3?xHOn`X&c9uigRG%Za(M*{hazqwd&mJx~Ye?k2_7v z^98FIQ%54WlZ3H;NRFm0A(-zRN6^rRn$(r(iX|Y$T+l79V^=J+5#pY0!~T3TrFcUY zt9>Xije)FOJ>opj4H$oQE|82P`dZxkL9zP@+*8COV==hZBAz!u*zzFvsFYgsJ^QbI zB?^iJ!^Ogv8{)|9NcX(;HO0SRQvGyb57fmmmO1QN{h^opxi?Qtm98(m_fE2jAlCgl zVWFGxK%YJu>p?yN_@Yt)hq>ew2V#fMJxSHWeDfdnk`{c~DgP7|TWWA=!=IE{?Jm8K z(7&owI=^V-=z*!iUI&*tKwLrthC_Y;R-ISyPs7>CfAas#5J=g5R&DS2kj>5ZvV34E zi_(s+k=XP4Y=b}fS)Rnq)klwO`&gNGiE_7QUOKHeJ)^vC{t>TV?rB_pbQjZz6&t1U z96~XZj>0XirZX`X=tp^lUWzAGG-*!gzQh$~zT%?30bnZhY$9}q9-10~@y{wDpO8w@ z#dzo?;_%x9g|Yq+ca=*fiHlp3R4jq>8aej6IHv*-5fpKV!-} zE{Y)^F+@mv_hPfp?J{jWlhX_S!}q!?X|4tOBFe>N`7z5whVX%=gS;vF5+^R`9ad&j zV63c^05;)e(B4^E5`8)Cm$q<;ApJ@-hA8pEJyA7VjHqHNp&yGA(2Xcs!+A{90sP28 z2@rU>R*2*V_vH!(e-vGD%*^*sF-3Kt#Oi;D`>y(%{fYBuYK^r^a+=r0)Bp5=vWj(M zND14;-TX!FX4gm2YQ;Ib|BbvwhDLy>LgVF{ExTZP98U(AuA2b8HdO>bIep;MEjh)&c!p0{IbPhq{7%L{Ge+ zhrQtAZ6Lk5bVXEe)1$kLqzz2b)bCWS2L{Xa&%mVVh8a}&0-|Mu=PJt&@zR7ewI1*r zk;=*PLo*A|kTBKOO5-U?Rg6OLzP7-x{RFZK*D)3b`8VQM^i&@ygXGx`&O4NH6kv;= zOLF~&Ggwv^))y}ZnXLs~S*Tt~!U_U^AxIrwI*jI^ab>Tf6+UwBAW zKj@&QVO2X2u&s76zovh=TpdHuV4(8?JU3TN0jk&UC6wEaG9zU(odd2qu9yvj zkO%?nC-v9Mh(Al7pX;LqYl+(dj?=s1cW8#wH$)`HH)ysP+_C0&%?G*f4@ntbH)pga z7B)zOQh=9(djH{ObT|GMWctEZX{ z+STBQZr#36-wkq0S?{#0hvSfmy|XxFHNGHjX-cs{tY|T${w_N+TFAIea}F7jr0pZN zlxm6E3mmAV8rH=-G5_P#3gMXEWce>EB5f4w`NZE zNW4zC4jzCy@3(>LR- z4a)E}b^9`!s~f|B*kRzyd}AJoQb~izM%1Butu+uM~%$*Kr#t~&5LSgepUOg zmA<#Cic-U_H=z^#n#XTug-nEkjISO()-wt*7q&lXdCP?f#?05X*5Y7^=;6fWfS=c6 zKIt6Wb`P3j0H$A5l3_?Y`U5mXP{+=KVSCw6x;Y zzv1VJrEkgbuhVZ$&@2CHs z?Ui-4Des*>!~}W0Y~Ef@QOsW3P;`1ZMlQ?Kp5eaPJcGMfY!FB;@pO3;x?+pxOn@+3 z`{81;syf{q%%cm*`FzY3>H)O85-L(9k_0UI{jW|FSHUBDF+9I-{+CBZb&{C8L&#?y zV~&3hZK>`zOhw;{Bv_l5*;HL#sGIm&kmN(&>J{Lg{<2TNWpWzQQ*pklvxpO*i-}}xcZ)TxMlV~5{0yyu?u?UurV#Xt$ zjQsh4?0GW{cEe(}l&nI;~5;j4x#Qx|Gbxqi01= zDcBQ05>REjSM-BNyV*prMNixLn$(GVUNu+9x?x7~ZHJoyMwmuT&F_W|nyfF%Q6Oj} z@OhX%rrb2tmRw6v=cM9y84~?Cpfd#HrNdVMVaHt>s;06HC$W&F@BR+CMC|sn?HAjn z*MsC1utQ7>U(j58)JIZJDmfL%{$OX!;Br>c?)HDo90p&QXnervtBe8Hh@nx^1an^k z!3Q!iViQGk^sc@4Qv9)_X)|49HQ?s^C z!La}LK#ZiM^EMr?FsU8op5{_kaj#*fx~HYA=FA*1qY)U)x%dir=IhiXSj83%b*)tnPkte78N(TLC{dIJ$hYlo@|8sT=>&6(9Jv zesxvJqeS9^p`OL3BGen)iS=_dBJrinTA@h(OHhp|7m^A9Jn5yUbhETB8w?PMo}9%XIZ4R z1=6Idd3lBUm5G3cwQ6}^^(9#gKilWEj=rHNAtXJEp+ zRI#%JLJo7ny$8+=m$&_|IF;fjJj)nO3qO7M?vxkU_bPm2TB<5eghT>xHoazoCxVfm z@SvZ8{17xeqmJFx8cg84oj{+-vfmnhA%@9M^X#a7$oW3nafe!befC>{71=xG9|xW^ ztyd0JCAlay)JigP_2sBi&e~jOhJu$pLo7%8@oV|+e*?(|u7Zi1bO_vE(I%ZM}Zapkw29J>!N{up!p_ zZs|gLe-h``5NVB@Xeho9lVI04TR0LF&(4=BEgl^R?RxqFnk+Fb199)QXHuK}#dvg7 zB%UdZDOh*D@g3*4Ck|jFOR!h+BjJEr8cM3(1_CiJB8u2*lTqT%#Q8NzPZ#!ry7lqD z=ez@e6oTbBIISO$pLtf z>7^QdpGPrY1gbQ_7RyVr*KJHDqX}CcZ*bi2Yx1>0{NC&MH7ds3pP>$&p=l}mKVqV+znCuuO2@cdC|#y6e40s4p( z>5Eo`+4pnp7+bq3{@MVeccED^;|qMqmU}6Ygc+(+m{rU1s4h35=9U zj@0ckt^~bvuZ;}g8xg@QqQbJ8RryiPPJvzxlY==~jt&%xY#B=(|KS%zgLCue(UMBf zmRW>fXQeO8YzwUK$iWb*osZ3VbHN?sYT{AH#_?h6k5>VE8DVTUb?Dwi#Rl4#U?{le zPupKNMi~3V$Z)6M9spiS_xiNyMJW_;=ipw2?Odvq%}b)XD-LXcwT&gMQ{buYdsdUT zEqAm$87979{i69$VflcrJR3OEfqmc?+lgf^FcE*bk)3As>%C^a?YOD#Ne7{;#xpc@ z)@fAf-H(LOtTz^J_L*C89gb=&z`Y`7hXk1LGc1&MI4TDWP3Fvtu~QMjJz6&=9an|( z-mb9>3@k`jG0Ndj{D9(O*%tBBIrpyc2$q%ljJ@sE_C-NATdV0dYq2@$j+*{Mt517@ ztHF42w8x~o8H3-U4@*+m(05+ zgz26|3D`|zOn#2+MTTM8g}ZxV^eZsu+P!5H2ota;aW>s!=*aMGAsr}BOHK}k&_2Z{ z3x<;f#R<2jf3)y#Kx--}JhZP{jn@xo`CC{1``|3^m|fpl`_bENpxckoepWkDZQ#vR z7ZvI9JIbWwxs=#LOYI936?Ss;wCr_KEnC=II?@+&_QDqX406dB&SS*?9JIdkxN5_J zq#)2&t9#+B4opSy!G3?dpr6

    qE-0>k=@n5Y1(U0E+5o0F4B{y$yVvZUC&ebbwm) zi3*@H;9X)huGxKOTIN1lXBBDw#q9$4Ew<*%FZc0Ku3A&d9V`3_e&b{Khi5iH!lVHC zvjT50GLgL&vNKz`bzY|~(a6ocR4HdLHj_MBDNX6B$Ig;MgOk6uP%9rc?~hu-Njl4rE`Ok4b@3r=KrOA4g2t;RrK zJ6|KK+g{BBQk^qbMAW)_+_mUhe|vkdEjsDyL2d+%M$o+19f&>rD`ahfg^DJ`|25m+ zVd%UcGvQL0X%(A|9+Iz^cd*O@`-dj_U6g_E8}W8<48??tHj^gF|Qlf8p>*FuPH~*kwr5qBcBTSQ^Q=eq(SPLr;CH4nB3c?{Db&18EyHz*E^mx z39LVF)M!$Y6f^bb?NT_N=Q1c)9^e?7e`-hWou^${tBVVHROH!fSgTa6tudOkEJ(fM z>@;#gX0%|_BF~f;fo9TcMShzMCiA)q{(gb zmZJseXVk!RNM#ylSdKE-|~ zlx9H=JH7Cqg^op!WS*{-bc9Xi6t5I-wV{l|&&)aQ0I&I0X&Yz*x(E0%PVFe1yhOT61*HtKM3QkD?(Nt;1b zH**c+^Nr_wd(qgx1!1E}@R9O>dZTjb#ana-`fMvFq95;?<&m4f1TL$O`=>zW5^AOe z1chgJJEF^DEHVnh;YpVwn#ly->|GWDD~21m;o=2cuClJ%qsQLk23Eutm4}PWaU7~R zJT=v0?4FUlJip1p7C0|)vbfr{Q$R#-Ug}i}S@dAnuk1XSH(|X=9CLrB)83v5vC?Pe z>ZX2gDS-l=PNF?$oxgU4`)e%>*>@8(BXnmL3l9L_myN7eaZ6APG!>NmNl(UM?6wE& z2+t1h5`3^va9_?H`t9{JdE+IYnNULpZR$)g ziM4L}z!gl|%mXg<6RD>Rci4HkUMi&|foedo5;%Sz**07|k52cap3(1mu+|{ek%+w} zil$SaOY^oZ2Fq*&`=8u$Hw-#Dl&$rYrME*R!76p4mGvvt9}6h(iAW9)$7^$qOFnIY zm<1TfJf`NK6d&Ug+R!r158A)3r=*c8Ig>QV(ODXvKDEE5BsWjP_vF;_KG*Tz%$-_O zCc`N@58VZ%-3o^A^~rjo6-D|_7~0=Qts`zixO#Y)7t*vJ8C3TZ%k(3!?&h9n(93be zDWtMFd?OZk31N_B8+-(8gk1*CTGQ76-uJVEX766**7avS0?xQj#q}>rM44&k&T`yjID1gp1#9?GtIEaG zBEK8Q_b&<8J|Z@j2Ov69NVURxP@S1OGyT;!$Xk*jyF`s}!ZKRUzO)CLo*9bgrm`+n zva_Lqs88NvV$_r}uG^l?KTuzEHw#0gJK~!t?UZ~|m@I8S1Hs=5kwKVq`kxySk;0yW zLP{$|!x@94!nn0I#q#IX7Mp*Y;#d+$s7RUK;P`I+3w?HU=^00l&kt&HcK+y*a`0Y! z67x*@nkKVni(D<1ELuw&UsY3X_X=B0$^zp*w65R~#&;ztrfgX?x^E_@H!>5~h=))X zsE|bt*7@$iDvNdJW}#31dt}DyJ}z$E&JU6yi`suD~jH=Qan{DJJIo=Avl zs4J=_In8`qWAO&}H@WbIAq66Bwgs@L99`($G|ig&>*rIexy!EiOYKNDWw4u8nZ8#0 zJM-=~@1|!FqO~~TlOT*-(u9R@H4h=`47~$G7J+-G;3kI1R0&l(5gy{rbwQzP4tXN? z{;U^8RJT>0f5sMdYR#d>8?p&iK(mNaG-UkAt!%i(p(X#C6B_GYO81v|Y|1i2A7?~p zU|B@VZTHnIeqNX3RsRkh5iUmW+xKY%1}i$coh0V>VX$x%O%a0@&X~7h9~qTvgid>h zh@LtnD76*q*<%5xd7WGneGEZK+&d z6q{X-?&ews8C(Q%vc0f+iey^JK9Ro0WjA1z-tTz*`X_B$kP2v zKG7lDbfi?;^MnrK8t4hFp~o|(M*%lAZI7$Uov2DBwaS-%=eMDG_|)niC0E=DgE2^5 zR2=V!PU63llHfuc<^%;1=*JjmMKSM4-v=vYu!JEet$?05SRhtB5h z5;N7TR;XFTq+jydx~z#N_~I+^;Kv@a$8MYt%M3#i9ZM(71&(smeflZHa|cZ$=*Uy@ln28qOM}*j?x~P3UJU4DCkyAJvHS@vfz*<1r!4c{qm-;Hy3didKYJdVa;Uu- z(X<3B_tdm9c5z$-O7RHQK{AsM3aFZxHvNkIi|>Um8do+*>b4)*c;pv*-##X4L@#^I zwx4$QqQUI%=Sd;ZS2We_LnQy}+nT+`k%UeabC4%DFEhk=nGmDH0Dp7_p>||cNA(BS)EeO0m2(_QPiGEFGHW zQCg3*Rl;br%YcbKd(v0oh4L&bjD@lEkBqimXYps(CZ&%fs?caQ>Eb_1I;&!Q&SB&Q zqg1OSBq9Rz%U{bOau4Qtdl}?2B#+L!nfkizrNqj9j8*DxQpCsMHx2{++ZQ+GeVDXA6G!L%CKIedr06C?)H}a{I=o@5T=I~N_Npyw(KPl*?9id zMvx0ERIQzewV=;>+pT_&rTM2<%6YHLz6y^^x)go)|e>`x041@OVih_S`@B1Z$h>0zCouOzIg;21eUP?N#kVtup3xn58-adyuzP za|(Z1q=55cuFqtqi-az_jj3VCcM(@LzZ^FHfitrb#L;s)SGdn(`BZS&*oa8bvrJz7 z|IjpAJ9UlHRYh-gy@aL>@4Cil)0EFKIo(Y0ZEG8?*{ArSVOZ|wkcJ}6#R!l`I$&Sm zQ69B{bxax9vu0OUFL`{^1|N6>+BkIrRiIpkztkHI-tN_dQH;KRY;;1!25@E|!#&CP` z(rp=SrL=DXEkL-kz7?2};CI)<7E8OpUP}&O!EnwaYwv9{{+dIancakkE%XU{z-!^! zKg;?Snsi1o%!jy>TKAYstes5;=?X(TU(O(M|jw5Z@IABw(c2_XgvfV{xCQGvte#h zgC1~iGTd?*^54%>)V~R8Zhyg3J=oWx2V_Q{ZS5!3%3(94iq<*wo(A&m`{T2)VWU@D zgBW#tmKE6$LN0kld#QfF#I_i~51QRV8n6B0J_lB*IV8Wd$>23k$y(F{0rb{jqpH`G zPTT?sMKX%3W{M5+{(&FUNpyO7_s6}=Ok!{~ROwS#vQ;l)z{AFi8Pp@3ab!!fUrbh7 z+PyCbRkS`aWgP*OAoIL!?v%806P8$9zYTg7DIzf5WC%V`s(3(HSG3bn_eK;|F8P)m~HR z_Vo(#{B%P$`o6my|6XK>)+6Rd<*2trb#yP4w3Hn?pxijZSd7!VapC(|zmMz`--ykS zO#1O|z?3?tTtviAW&R5`gRRREkoRG`Gf8`f=Q#VY0p2lsobGnA?A^rFwmP@ty%T#6 zskHb*p7{nVY}~pfCnxEZM?`r2s>74H0*SlvpT&O@iQ5pQkbG}#v|7R}toKg^@#jRN ztg2Kv0MTYKg3m=g&n)*78q(8nXIrkX!j)2zUZcAXbqM(mQol;GKd%>(L)Q;{S@sBA z$Z?Xh2nc8DtJ)P1>VpZjRj?|(P=~0Un|BKh5-bHa7e}T^6)12@eh#~6*wf+JZPIWO zo*h_W<1fj#G5cLc1(N(QIyx2KCwmHY`Jg>l)taFhISKXQn6z?s!quHQ&M7K$F z@pgDn#B6E+UL?rHK?7nGFIG|@6(cS5q%^Gib-u}5fu=c=hazU1nOcKZmGRl?H3z_N5~eb>sjqI$tDRGO(O(!&Pj7&{E&H|AB+%sC!{74VQ*uM& zBX^6(yke0d<__lZdk~Vc_buv6nDCSmZ<=M$XAQ$drC3H1krL6LW4E9$!5>4Hce$|) z=25k~Mu{w)T$9W(&sdqM=;E^As5{bRY>N1tR(O_shEZw+BL*g^sS)@*E}0LDyxiRc zy9I_7>NHmczx18lmiiK${m%tomawLUF%Q}*y)ZN$Z=Ge~jNHr1X6``+5;TpCBlP4c zm?N8OgrLjZ98Vv{&xL>+q&8lcS?vcLb*##wq6aIzk$ixqkQN^kZ4ihvlo@@|vC}cng2eU~Icj zCtW{)4XsBJvw*ih508sJrq+fprjT1&yK6FT4v#ascz}14njtsiYnWtg86K>;`^PPZ zx*8K#zF2PX?Z>Ubn}#(~a`*S(@?J6OhsK9K!ex4B@9wUiCa*>+erD&q=Wedun|HPH z1Gq&5bjRKmvYoV)tW{+nL(qMw&Qd83;D|=}$-!1zr)XyCFmyQwd!yT3vUx3LKh87E z>@GAfbbp+6!QCg%-{Fxwy&Xc9wy1AR42a`vaY%aB``+7tQ=(U z*~)Lk;H!0tO$o$KT?E3MBH^x-R7f!dX|N?wZ+r1=kRD?T(Gr3QNrwYwLS9~2stS|caa);L3P zECHLskriPPr|Ot^{#Z8lCFVf;uvWq~2ms#TbXMD)FP8Z;W9Y@2(zx!a&9oPm^<3@f z>h{F5?7HmAJ`!Z3*G2ktXbQZEk+G}U9DP)bh3@U> z56)lpZLQp*p62YclSd>61vZT>)P^bzCTrEwj=ViD_%zbEg4C{6(pdsNxUwZ@`nJcU zUFv<=*Y-3^N_AoHN`!N|n~Y`x*OU?k9o0&*e+^Ll>f=niE!4Kcwn_~;{C6)uDxc?~ z#o<>{UlBa0B);AGF~G6tIO~-schH;ub1H@*Jut#|AIzx}T|l8+xn|zN*rpiZcd_b9 znXobSYpjJBK^Xb6@HHe&EZO_r-$;=_3>fi5#P96HAc9Ny{tHv3bt zrLtDMec{HXL;b+y8FD&FzPfTWAlQQCgYD1|d$m01qt2?MOk+x$4)-PY^;WhIEAeNK z7=)S!eXw91)X$R)b2hkrH<>=2yE<+_=9wX6$Gw}mRP(doS$IQ9{%uRl<9}!iBNGnfN<8%h-{v##nx9-^AYQ2%U2zk3}v~}gO&V*=vq_b zv$Z({lQ(0C)}q2OLj5z?dIyKQLV0O=V@E0a*ehGc69&HHYa&4Z+^bRRGFgd+X6R+e z-?Ix0Uc;$Em7vv{Z>pkEtswkssCOhZc09J8u6bItkS29CZfm%#pGF_CsYdmw-t?k) zcXH^1kHwjOU5;BlC9e&ZWcB21I*#n~dIqb8H9IH8^^L*m8c$D?(%3OXE~5RIN0U#2 z^+M}~0C>HCRdBa=0#N8VoNP^gs$gBl9;vT1e_y7E6R6Bw$xwavChP`?E_b?VP!5^C zEnaaMJMx$qsljhZ3T%)eaE{hLwWSvqkg1U{k9A1NNU8dh^l}q^F~=}PkH;}mUQ;cw zx)35BPHpS_z?oepcK$r1gJcBLZ`iPTF63$JOq3@b+ltqDdLMmgz_#TeQcQ^H=~-&V zl=CiJc33rvSLOq4k{enJ7g+~ zfwC>d)C5uD4l2Gg91tTr?TA6LS{m6ySRFILCp2qFyzklBQzu_vH>!&vQ`%ZQRfS*c z@V?oT)aK`uo^Uj*zbs|XR@KGrdAW*P8lK7fa+W{fgYk*d1RbiU$>0mFh_czOS%1|8 zdybJe8#;Fc+9vb^%7Zj*KU>+ug|_3nLtino*2qnkDT$s_H~FVnYP&aou+uKB-$)k| zF0C@gAD|*DRu~Ibj@*qPF^#^Xo3oCTSpf&uU)ooNXM}SZkuZ*7rJSlmGoBoVPO^`x z;m*n77rG@dAj%MZ)9-B9PR#HinG^dbC_*#86~e%ry-eQGft}+*Xff&`#?VDwF5z0{ zA;QN^K^JR&s(|XqF4AQ3_P$NV7odfn-bx$*$b> z8%|wB3qIqNFFV3nu2wQ_efAsHCixP8{@p8s%w+xgYUdLgjobkcL}q%$E#gGhz$N$` z+Tp413TqwdictCs+$Visoq6+UDO@%-Uo0j3(Ck-{fd4_fYP~9vyJ_QV><*sQQPYvy ze`vsA;;n$jXP0)|{wH#tL#1k}+$8e8wse=JmzR&G%+FiZ^qzwD!VqePMj<8Rp1K}P z%<0K2#ix{Zf4 zhyc~RcIfdO$SDcF1#+XB4ezMdd@dz?KFpmwUn%%nw78<`(BOn0I!yQjWHA(B0OS?m z=8$Pq|1XdMsUJYSZKRioP7>mQ`X4-U_Ou_GcRfJ~=BVI`$PSt#Ya{t~4(T^Mk{dQU zujq5%hIL>BCO-rCFVK9y3h=>P9kvyX+d#`28F{{Xfy(yTz%b+DuN_`QIl%9X5_!FG z$x7lhM$uLr#67P=1G_oaMYod$JS6k;`?BvQURlg@9UUipL0s_Z=~3&A@~%F)WfLei z=D(3IR7og_Y+3xr)kKe$SwwfzH`;z|#O1;<9A{~jty~dzAepXTT0*%0SYSf(o#Up~ z28^)4!+S01+79e@r#r2LksQio#&DxZvJ}&J+{#k_hwTccJm#Qr#&VJxsfXZZn$PTH zo z^2Q%GQ9!*Mai_K z{3tKzqxD+*B*^TLh21zQc_8{xbQucYe^;`K{FZhq3aY(_vH#m*QEg8Rc^6k5cZlnYT%+;|*mZ zx2cPlkFPOFG@l#q{2|YvBQ0!2O)b}wkvTBDP+CuWRnM|Q^dDN)gZaBiGU;-{#Y{mW z(C#o92mJ-+(9`&1cPc`)(0~;`+G)ig1HFnH)q9?Fmj_bgZFQFH?mwRAFNjQ2cRxmU zJg=}7t|||)-p~q6FaO$f&Yn?ve6za;P|UfCII=A6!X-XRvC!0ISVnymkX||t%^2nK z>hSZBsFgq1V|?5t=LS(JVZ@IffgheGb~PB;Syq+5+_ZbMtjCv;`@oH!Z9{gyg)TgP zkyVW0Dj|?wu=Py@Yf*0oXv6SmM z5SmJ8REPSkI7BhA{kxbjf0LhXaD)=Wf2;Abb~Md0Gr;B#ry*Pi2rJ9be~Z1*@Bg0C<*2WlDOnUZD6to<8gb_ts!`6cSpz49Vj z;#*}X1$WVode3Q?E3Mu#|2rVTy;VdDL4{wrJWXCaxjomomXhaGy50+gvZcX>rtp{u z|2cRw&#}jGIA3zo+gK~YV+~|OSe_jP%QPnMc#Be;=3e1%dl77`yLw{2W3^h$=IofTpc;KA*3@%|%qAI81cSG4lY)@zxC4`Zpx+{XoG7x`^pzL*Mm%N7-r zq3I`N?|UeEMO!W+$Rsj!Wh+KX`N!Xj8m=;XHlG^|_TXEBgqsxf51~?tclM5R?4|~S z=L36AhDP4XTSxDiU*XB8Kl(6MH%b_>QcZqxmVJxvr2V^+j`yNrmBT()UFEx?rREy! zL}UoWXJgMB~cAtk;EpKy|+NAd0Z^L2Q~5 zW7VlkhSN{0j~w5SO%-}FS4EPjSXXSXDsUl~Zq-;3+WnzO<4=p~E7!$v*(D=%#)1Pt z*87S^7CFtB)H-_82*zNXkVwBKSN#<2aE+;=qq9v0C%p*(1YGu%Yg$6PGu3aBA;ONP zVUwOGS@kcnt@Rdto5p(L*lnwoazcn1=R9Nm%#&SHaYm<171mik!!_;#(DAEk4UV7A z+sdW6(&KP3r&SJDGkS`q{heK9$czW(mDf%IXo9lrn?mM-eGOL6pFhpBDc`Q>l0mEk zzIs1!1L$$LJc`JP)ldTi6A#-|vEukDaKxU(lcO?aecyndd0${8n!`7moGWKXXaEs^Ndp;;i!Duk+Q%D{SPfX z^j33me+0i{&hd}s_MO)6-OK32w28jW!L#p0iM`E?fFp40oNHmspfk436ZrS>BEk-# zqy7R?3ae^%x9mV{vJFI#bEb-)tkF2@$8{Z;$1I~`6vl+R$SfyzvXbX9mZEFTf2hN8 z5uviEnXPG-Phj+@ftCg5QOjGg<#HGIxKhf|a?qQW>l`hyGP%EHVVS#&b_g(q%7NJN z@|Omm@VOJ&UYn!@Ld%+yoA{k^nMv2Jzi{y7SG%)XP%rU;} z2v8vIY>9cFveH>~kVk4o`lS6fR{XL_zMX(zDACS32KSog0$O?SY-Np0GCNu*V877x ze$kAX)Li+3D`p;It@2QhDu2w{$u6IWSqap5&)>G-StrGQD=GKo6|?Gku9*B|DXom( z*{%r|G;#6XXSlyLX+e#ND}zQuNLnz3aCnW31#a4q$cyNws_dYj*m&+OO?V^O*k;b5 zHN4P}Q4&p2YqwusmwwKiGFxyY`m4=cLUdHJtzt>rX^6E#8=hvA9pC&hJ?mzTd4Pfa z0;Rv|LZ`BxB%vKHhU8kj}*%ss`ldu5cj0 zQk1#?+u&HHi}U$=WnV&}t!`<>RqN&UGuaM&g1er1n;ZAQnI#BPt*Ph2T5=`IB`dSWlf!a`=m?05R4I%&NmsFPWN@5PdCMHa%m6nf!JNr_Z>zSDfa-l(iuE&qQM zorPbMeH+E;Zs~4Gkw%d2&Jm+ix}~I>(KWi8F}hniRk}e^X#qj{dGGfh7<{%nuIqQs z`5u3sbtbo{UiKZ{nfNU7aOmk{AXyf4_S1XgEHJA2M(BM(=Ic}v;HYjcl=w$4oq9Zw zHGjfpte=&wU+0bPq2k)5pf2Uf>)__&RqEhWWz5~}O5oCl{zT{eHRHaZ@?#)lI^qP@ z-PDGGHaMzX1Qv-2>1aM{6Bsq7&n1)+zcO&w?i6US-XYO-Y#(;#m1lW`!+SO+{#n(M z*2!FE?K6`mG@-Z-5uL12k0U>eCnwM4Nzt%`X7hfE4GkKf3rmx=6xi-~)cUC|L!cVO z<*DunUew(fYaX1kMVP}B2-vk~s5n7fEUT(K3k?JRr6Z)%5SUtIHFCAvB_0()2ucpj z#^DBWn^t~uW%L#s(2Nl{G5!%5_Ccj{`)T_K0t*Umb0i=ak@P z`U~e%Y~^*1M41N&HFR9n(EG?vbIocl-l3vn^%eyV(bttH>hb*JnepVf6En^0=HGxy z+WYY+-Jhy`r@5u&JRLR@qS9v2hlB$`9Um&)9pav%d0x_e8mHYX$EeWB&A8 zPd^8UZrK3Qtr^d9GF)#OFrT;riYu<)%CEdl*-r)ET$M>-$Bsm@NOUn-9Lotp=bCHI z{rR3Hf;YocVqSg0b0nLe0UHldfTg7d_Ty{Dj%mMRL%`ml;K=Gbb(*9 zaY_N)hL*r zc99&Gh(6r00D+5hc<2wJXnBtsW2;C19R(jRxBVG4UHn1~`pVfvA^~)}r8%hRk~rh{ zkhn9AlQ`Iaq3H(5AWPMffG&06S{i!hBLdSat^}Bko7o;n?SAwPYu|wLm z5|i#>;e|a~R`6&+WD;LSUQkugBmh&{c{3kF67t`|PP@@?Rg2WoQ$)ll4iGP|)H;-& zT}CXF(BG0!h4hd;G=CKMp0vcAYk2UcZ>rc<2lGh|`1t3IL|%hNQ<-hWf^1Ek^7oFe z=+Sb~6IE9yST=vVq7WbvZBE%E!XuR`SFN^jEa);{Y^cJYoVtZc+^07`S0b%qd0^K? zR15r@%H#Gge#x~^Z!^8yK+-2g`H{OTE1fLkC}x$V-Qxmj`_`xK0jd~3bAz<{KKwKY zl+(iP^)Nuz=yT^7R$1xiIJDTneE~vV;T`UXSEKqVr+w^y_h70nGL9cP0V*jQA~~q_ z&^!{=EeJRwSS)nWhdV5gIHe+mE&$$qsRmXm0N_cw*TxtzlE5a5-H7;6^q|v_f^AcM z#49M{FZ~7362d1FP=8`uQ+zsJAz}2Md|md4O<#+ZnIZ~=HVPSZz{T_GJP53lEJ5g{&a2N+vnV?QNlGK5XF; zs?_yr@`LqxxWduVwp`(COtH!}>WS}1zp<)UI^xLaUwVHpaIVt@=8;5J&Ke$U015%u z;-|)r&RP%Fp2S!BkV-6LjlcNZ^5pkf3ppISlZQVN8$-u*0$8(4VlM0q_Y>yIa{S5O zmN6x_q}fZ0mvl(fXRA&#=N}w!lGC+m6n(m*VnwEE7Y_RLh2?tOGJO|S{)K+KNIXYz2mv4(hm3W)Bx9M< z%;<=jwUDMSctYAR>T%KOiq0+C%GI~?t+c(Ho{1QnAqb$@`|OUtPe#P+W$Q+!W3Jm) z%*3t?c;_k}^=b?#KgtapSbFQ{N5b{0k2Tk9%_{o-5Jw(q@`>^+^Xz&twT~wf{O~3x zuWS;_9xI`IY?>-%B2JK{cO7tgaBpHi9P1z{F&0@=r148aaYufxq-lJkOxRB1R&4HH zW)LK-2Kk^JQ+*hRQ2kOVX(eI)iMJ{(f71|t+AsB-+B)B9<_Lj{rs<=yl!5OKLi&L4 zMYiY68B-MDFU@K1zAmG4ml5b-T_XBfv}qS(QOrw{Q8M?9N3+9(1XQtneO;D>(67yx zkAMS6^!3QJmHoscq|Lxe zUABH`e^@Py?Arg}H>plE>VPaQz|vKNqcNPkHj_$k!fwrg&(lDie^kqjR8ztE+O9<9 zL?3ncn9Mf$HhwuW{eHI`tXcB{o>iZaYWaRw5Rf8#m?b@)hZi#g|5U9&q9g0>SB&6k ze*5eX%-ho#UIr_LN-RP*<0_qdOy)6RBtCXeADcTEsJT-{j1J!`1heH<7`BPrd~}DG zcyq2@8qam1jJiCn$VBW}C~+0FOz~gs%2zJu)~XUsl2wuzr)LRzVxCU=kT=Plz#a|e z<27>Wls{mC?2Y%H7|36u>#=nzaI}rS3Kaz~3%`*!qHvs&qH{_+OH5(OkR_YDvxgSi)oGzG=MK;ekHS3x0z=XF__ma&QK?`NKAT52^v2EBgK)m!MCxVwH-5Z)9QRek!X@jyZ9frwh?^lyXZwv>A~b+9&h ztIeU~<~-9l1VhejeWy2(<+m=;cq7VU@LYP@;gyGt?;2|5cQ+6FyY@;2!g+a11()w3 zSr6uhFJ^?NvtMEB~7uDOcc3vDxV z;9Ud5HGa-+_id^`qB131M~n3J%=2vL)DF*2%tb7bPTX!BcOALy12Vode-C`NMnS=C z-eIU=hdX2WhevCdFFmMY1JGI zHr0;-rB`3eqr@c?Tiu7<(RF`%%7Gaj#5xvbFGhSey=T18nKgcZqxSegH5w1jR&)Fg z@2W8+${C~3N6=->GOuQ0$w)2Z{3G<_7FeX|`Aaaq5G)Ztb=m%1a<;o$(NIhZQcPfc zFVZR2B6M-1{Dl02A{FbXKRtU%T?eg<1 z7mihEtMHV6i;6UZ(%ZfD+S8|x?#A{IqpC^YFTXd22_ftIKaGZ>gS~4hj9#ZC&wkqY zsJBsxZD9N5a$0^7xT4jnK`cX9^wewu^pdrMn#71Dsw)3*s(6K4#x#~hJ-zXf8cCeg#(OSlAQzF3OSDK<5mH$J45aZR2437OwF|`dwYMy?qLh2Qn<>ZQXFnSz&;l)g z6Z`zWHc5wv*0Q54gr{GF+f#}qcU&f|If^z%fV%r~nor6D(^^rhGw#k;5to)*-f~*qi_iTP(S;>C;Ez$PY4c=;j zPDi945pwwGj;Tw;&9TsW8pJEhJq(Lxj%G@wVSnl3XAaFaIVtrIQ8W$-VfZOcA|QG3 z^;MI4WWwRw2zS1{gj(yoEx+8rn`#81zjV_B&dcAK+QuO{A3Z#fV^@Jmoj0yS084K# zpu+?w3nRv?jKl96}=akf-h8Vc=sBuGRJ;(X!d`v$_m4NnCr7&V< zyRG;bfkPZ=Xr9!%40n=_ussw5%2WG0OO%5u+i=!7ldDdG#hhlq#x9s^ z=nI)?o`wY%v!WK%?_nd9D1+|TtG=CkcZ-mC?beGv(LatQ@UsnCg}Oe^05_pxEa?0& z>2UPG{=`})Q;_&>ABd7taf=#~EPsG+*Rf%UYphn7z3y3?t0QU&GykI%L2yi!{*KHH z?s3ByDMzf#O-n_!Hyh!y;noVpufRg;}H zn5;zW^4+WBI1z^9&0d=yO#`sFQmUD>SvRy&X$XDj)PSQ3;uGg(CPf$FSj%))hwneW zAP~-+39UB&dsq7BkL(+~70~>!=foAC4sQw@6rtSWFn9F$a>24T!(`^?pCAlAicMb5z+c|zz-;u*Q(+8Zf zwm6@RcR}@G>H!u8M83svNgR-83r!rApH+S3BDZdICc{nQYV^q0D}D3mT8Hr+et{od zBBEW3X4*#uqz4<^XOg|Si{~?EQ^BMM105YB1BZ5-H{RNq!HI(V0h|KTRtoMEWbUH1 z&lUe6L{3KY$)6yuyISwAB8aU#9)^u`x|GPAf0h`^EIAF6gHT;xfBm?0^z~y(?D^l3 z+wc@$yN_=K1L`tc`sVge{{3t_aSY_wyC5S}3CS5XK_a{Y`WHaeG{9cO1+wKe(66#q z15KfF2#*>tJ8$gO+bapK7TyA^LJj304$lhw5FC*I4&Z{TUDgr<?aj#w#QSS^EP~wz^nzAUkYR4MeRj%--`&*FH?D%LrI!`$ zvFHMRnn@$tqFaxr5|uB@o$C$ee?N0GAg|KiW3)R$1M(Ak_kxx1UdiXTIERl!j6!on z*f+Apg4XaztsJ`N^K^p?u5si2B7Q2cgAu4M6aflR^%lY?wm6V-g6|Eic7i#Y)YTQXUqxz57hT!j*ADIat|sH- zVC`*=vxtC3V=ELjUNkt?)4|D|d-d<6D`b-UvrBOO8B-M;i|8zYo}5&v8Q=SlV)ut| zR6OQOHn2ByK1joYAVwdgJrCqv^^$c8GSX>i*X{t>atRjvR2BIm9@p_~Zv`pnD*nIT0 zTwFwRSCT4s7QWAVNg{|tbF%$K^A2W#gL&bbj`6lsw^v;v3 ze(BcmXI}!d`eZ46=}1MUyl4>T^Qs=pkBu9nN|23VejRT^=mtP4;eoQt2sQ`6yj*8b zo9Du`FeO{Ag6fRUm3P17wI+?7E7q0wDKn!W@4W+P4EgRIYS-7&{wz~d{w6XE0H50l0;(PE5y8q*hmR6wC zJ&~QsL%KEOq~6lb>rYlmlCkIN7duX9R|d`4_`RjxN9cCt&p_D9@nqcl_j-o8?PiGC7brN-=dENP5iPZkyb9_nFJrCo^$Ebe}`cu37q{muDB@Z@jFqXdk zz?_kZCHew?vRyswNzO&e)?1M>#*d1OjJgjanT_3Aq|j0d9CoWwDhCH>?8a101Ya;{ zG&~Q#3Qfu_5Q$_j@_y8&dSJALYAMqr42F%a^S&CKg#habqCD2Wta1)xCJ`?g8%^SY)ZfftTCuv2mM7J)6s6CmLJaJk&Hl7UfED8}hvF!4(ag@FMfti9G|kxX zI)|`9U&0Y>s_Mlx$HF0PnjLk-vn1@iP=!C!RXW>klKm>hLx%Ba>hS|u4o%e`smF68 ztV)aO!Qt*bM=NE%Xw0MfVi>(<=n4!;IONWJG7?q!pl{LTk~Km@$to_2cprfdt3#Az; z6R@NuT}!d#%lX}8Tvtfi>LS^=sNCpv^%j7MZ@Itjb1UoWwlKs$7p}bz;N8Uxx`j!* ziwhBMgi^&ad!CiXKWDS22$g&)AOFI9-QupCTdE-_P&INTc^2*-=KP7nhF73DyPgS~ zWkmZA2f!K&A)W4Y80Bk)ynd~B#VhgnCSt+R_g<4g>HhzdVmx1t@VG688|AhC>;d<& zTv(_P78HhB#d{U-<=MO`tb2Y(WGXi)=k^2EW72B|PCQ5l*9=dxwe6)BM!(jB^SfDd zBGJw4g_|a#>x;4X-Yi2^4ONJ*y!gJW`5C{dNKdxLj#^SV&Zwse6TPd{sEL+u!w#hF zPyJWlQGIpv+9+_wPo(_t28C5Lv?Ro( z`}I5U)ck4-o%gTm*SQ&O+mm;+_S@t}%4EiJ(KJ5mv9NUvw!N|OVGfvguYTu)f=Z*Z zTts(WubPhM;9B+&RwYZGrr=LfZOv95he@468I&(A9aU}?*xsJ5MA=xY45;)g0R~w& zA+W4Cfj@xZ`=R9<|B06}u};g-2%_{@N$~6&URyCA@~e55LoqQ!M$8({@=N_&gc|v( zLHQ83qTx_9KIrjggmPQdVYa5%DGvd~E88I58~zaZe+U8x*&F=V9a*mZrOk4MX(~p# z=`M{gBRf+AKs|0)rERJj)XYTIqn1N_X(Ewo{=#8Ib3jA#z~;P;Syah*<0}^lC()5=mWKEFDhs)h}VgATpIh@Xl+IxeSX>F&7(>ZwpfibEWdyVCtNxF7Q z$=8_w=A;f+_~eUz?#dxXD|v9(XrH4hNaKpjh3&U$B6%*ayXd;v!X^^qL-(!+wc>Qr zg|D-$(Sfu=nS}QX+j%O#bCQ@%uIaOzosChc19KTdNh~s4B)?p_aS)}=`{_jB^W?lg_|kTG*Qa@}mX1lh4V;Th>ZN+`^>;_x zCe9+0N@9DSzbXigajAkAFVeoqx?ab_0%Sj0M3Asw<^HuZ!Ob#RLxmPu)^0r7%1&s- zSlByF?>@S>ZB;_S4B`IpEz?v&m1vgG)w@doo6*AhduTN=-`pr>33Jd3p^OuuH!t|@ zIp2Q>siCBU>}SE+*J9x29W&L_Z(|iT8Ujxo;#q=g%{?aM0WF5-Quq1S^$+2yO^C!y z2w3`^6vD%Oz$rcf`*R>Ks8ZBbd56RV;e273#Asx`*b3%Ll`ac`S04jzuh}nHIH1Ph ze9&j7*JU=t-|6g$<1Cgk;ynjp<>VVPpLaOT9_(0qJF-qG13x`A7xR^f1v=ezhGgbB zi-w8EmwvDOxyiDkFZ9@p2pxr54R`C zq5W^(y+~Yr#ouK+F2V;al5CK;M9uUa_S+j<3O87__1~!;vB(ThY6x_H0EtJiWzuzp_8swG1=05#!|a|UNc6vXK~YjWB|sms`u7t6 zjrOZk5U`+)W&FDuHC1sL$7+=qdjV>PGmty>ApmgP7Z5_u0WO{1>WbS^m`NLJ8Hv}s zr_V#M({X=^moyk6eoo7|inmHS+AXN9%Iv%9vx>R3CJb3_s#`|dC&IVg0592-tD zE8qEYs{G=?rR(t2akjR?7iP z01uyt@V23yV|f@5o<4Sv*Iv&^!E{Mac|8xcjO@NvKUvR?#Z4L@tLWp_pvyEYboN38I{0D;{M?->bjg1*e^-Dfg z_*Dcf00h^WIWl8L7uP7XA~*g=T;>j`x!g~7cn<^X|m7Mj8p9A-nf4qN>RXFOju=`S%uTCF1Ej53cJ6rfW{9s8f zvHScET;TBBsSMUYXlujz7bsUNasx!SX0InerE~VnO{2#Om=V=7qJ?dT;W zi#QBX@@zfV5(0xpUQ))#6LrmowHXJ>_ldqQ_1vkc&WPesv$;i)kEYF~>sYh==ITaU z3~`Z4_RM0Qk_QdXF5&4u{g3mQ!vJoEaHHdHZ|cYOG;NW64LN=4T=$De6N`cY7sM!{ zjPAcaTRW?06hScKy&w86qs9DYtRa&w|G~538}|59c*X=e!WQQIU?ntl?pUt z($Xk?_7@B&{YD}*Xx01F{^4p2$f+Ui+;7>9=NSu8G`rAFia|PWV@t+WTX03 z7f8F<4C|$-t4v+L8h*--x3?co#AFWs4s>ifgkhrRJQwlF3;reZL>}suM|wBDw|hM; zmpf4vSsu{4ln{K)sLWhY^Zad%UMJU{^0O;^rxPi5hOwpW z@3706$AKA7y`crF_%UjhwsncTe|NigojlJ%q-+!yWj#tSihMoc`5C%iK*>raaWOjd zTc$vYq*xp(g|ge)MJClAQV!U~fqQgxwKbY;&klSY(ugZu&9vv7;>d1$m&{t^;o&*T zF_cf{F@n_+^dCY?npFC?w@Vcmpu5DAV49vIf%0D%NNH_fZ^h*W=$E_HyBGy18Zz3R zs--hE2gl>jgy?3cAFl6}N2U|=Xl$JsOl97?B1_T|xsthU=>ouIC#a1Gs5{}Yy#XVQ zlYRNh@Y#VeIg;*DV&^P*?bRgC4nh8_-|{I%8#@+(>f*&l@B)5oKL!0r$?{JM93cpP zwYcnC8N`c$Lo2O=&n?}CgcDTAY$wvMpyNM)g2u)Lc~bOX^V@bfXGxCGflN_7M?J|> zSrGO4s3y{qe(|gLYfW;S?T+5ehMWZi_crsb)H(tq|sB;TJ9)&28K)0RiC`Wphv zZV~u3By>k3I>)4AB`>q3L|kw2P5+F6fUwx3f%4@or`;Cb=HN~xyBD+d9y8QL>k|4p zVg*~mCfaoX$^lnl_;GQS99@RQ=`ca zI>0m&Y#7|J35eJm+?mV&J-1b79m!D(S1>?N5rpxF@C>K5rzI3=8M}HYl-7nN{FG0i&4 zcBX@mh$F|5^dWxDMXg{B^KDK*PI}{%&g?!JTx(&an;=u3E)UX9v!2zzSFWhyT>He3 zJ(58Do+^;K6VhP5K3GV6sfv5+fpU2j2~HCh06Ou$+Nek=ea1xb<)+Yaq1R7Mw;*%* zw)4jOp3h1R$JgH{>{mpsqmJRa48YKv7_VKp+jwxtH2z>+;@mLZosiY?`X9nR9v0IN zD44EwHm$vk)TqjE+U3|-aiT_NmVpGf|2IH5QWMOS(@%jJd)T~lRG7h^yBnCAe2-)I zG^5{Ap2og=_t0F!1G+aX>Ol=HMADg-d~a;tZ7ipvaL_;@x^U-LbQBW5`;t$szqXt5 z=7Gn0!BkIqHXQM5l+R1L=24|N!Jg6v$&Etozd2RG_}INfDbGA%(Pw7>{5Oq7FRbEy zTJ8D{N!8;|4@aFP&1>eCxO@;@gg{k(hLeQ&0J{8}c2VLkc znP6IGkF(#sEYCqzO$8tB1rc&1@ZjtO$p`FZk)1;*Svx^0a;9;_lEGX6Nefl$aslWH zE?)Q6QHe(GLjyDZuz{Lxa{c;elbcId_KvVJM`Lxn<(I1XJ4-iNPC^B?5AKpzpRVgw zawq*!ce3$db>wcW{NUmg`b3VHj!WtgZuh1&bLoy{R{aixLi%RUP(vYkRe8+F0B@E-_77L868jH;B|^>qF*`p2yLmL z%#1z~AGojtC36Noy~X(KG@Dm!+cJoj^{6!AN3O}LJ;3zm`tpzGeK2)K?zkWw>IT=JVPl8L zq*JYL2rq@eLhw?T;>b3@#KxSI4;pLkgFd(T(?G(AJFO)ufR zE5YCu63eF#f!K*6S^56k#|NF^O0MEkitkBkrT@8hG3qAh7<;+u6V{5MrFMsNj`o`G zP~gJlI(BVxSq>gEYmeJ6$U@Oru@&IK3yn{v9tkeBy1Qb{b7hk@P3GGZ$ULlaH8src z>9((Khm*PlE|Ps6kE3;gm}If#k*2`AfLZu#7bC4biwq;e%tatn!T-Wu%*qfPwE`{c z=(aejJ~4T7QzHG`+sK@u7a(5u>13{<@&od6-hxd%rPf62@jAO4p12%SgNmKN-l26~ zL#yHnvwXYCAhqOsd5(d(7E0aSqhE@2Z{}P|?B_ro7U*Wb1e=A7#H8Fg48ajcc_gSCq{82~$XkYMNo;cTQRq0#VPb(#HrMDYf zo~%BpSepK$Zunwph)C6%F%L%4V(ovLY7U!?j2F$6irp<6fnJFb1=F!X>-KU#i)Q_D z5B?gCq)p#f#||C7IOT~XfluilJN%FQtU8xc6e$OU5Oh<`FLH&>|Ge}LPv#aRQS%tJ zHAQcsxHph!OBFlwo7t!~CrHU%6(6VCo%rbQfLiOq(!#QWUpEATiV?&e-D{}~3%JgX3Oa0M z5E^u$dvO`L{Avm;`>LN=%RX}`F&VgY!ItDDt=C$L33vVDG-m6UmnjGwbg-r->YW-9 zHD-3s`oAHNXH@=&pltz0Ktw<)hq!vNDSjfD_BnulfOjbkMJ^oEe87o}aMpo4or1Ss z`ZKLcnDfKyeD=@>XS$+tO&HdWcSjyMRhvkK=D^NF%zD-9y^7RxN^1caSQve=#mBp; zb{&bpk4_87DH$Gc1&*Cv2wcp!o})WYYp>QebUjLeqg$xKdozI+c} zUAbC&q6_fuj)C%DY3&sf6KU3B7f9y{0IX}-pV)(Gh60u|A}8(6QInp#Q3Fc-%pG8T z>amIeN~jPv*qpJa@z+Hv8a?!vn)F}KK+TJz#z$3-)SyPiv%PvTpW;zGTSSWd(ALd@ z&`CMoqPO{GCzz-+Cv!P^cpO)kD|e=_J1?=a`j3mP7;<|{4+e^di?#H7 zd;s09l+9jr4<_?O(_;mj!wv^})j2LCXAXd8i#ok|^nmzPo0ll=&|*lDGe@fmT?sL; z=^OMqqN?imi)ckch3KOW;Cq~E`G(49kWnWh-2k_aeP}CttBwc5@3vQ6-6#xpiw^XK zGH#87H#(kb@5_a2Yn)NA+!80{a(X^Y+@7NtmYo<&(_R!6t&Vyi-8~g zeGa3unTVE^nbMa3K}Ol=ld6JykAXp{gdzTVel)dwfyPhJk?J$EAI#6@tCiJo+YV2E z{&>L@=S8_(mB&gr;GJ=IU|{ZOhw?!e$`i^1!WPa$zJ|b_*XT#r>r=h_eO5%h1X~>j zIf`0O(8v7UWaBVeVWzo3l5@H15}uUkKT#1H&J@1vwp)OW>mQnpc&u9>y=(ScolQV2 zC&PNAY20dIR@mSRm4RxMQzTQ`Q~FZQ05IOFg$ZzJRpuMzoUXXpwLUFDjrq{~>$W8-*a`6C^p#DgKRfx=L$%ZimOjyd1XLZkLAR$?{^k@v zPLw3L>c{Mw$3O6sv9AM)kg%H>xF8CZAEyW5yc@57XB^1{Z7h#2kYj-o$!9Mp3Dtx4 zwklu`7Q-l9GXzWD-LceN7$@e0Ys#=+55oFMs9XaTI2KX@-h`P_5y{J=2Qr}E2(BE_ z!j5odR7u?F-w=L}HGOD4e_m@IqS5!~`=)kzJav>3c7=Mf8?bWc#g;_?+Zak`Qn?ZT zik|TqRS)q=?4|Y~0t{{Y%&AOe{AlGPMF_4+#60|y*vJPlb+Y~FA@5St6IIqiFhY`+ z`DET)G}XzT!O#*j_IUv zOU~>!Hyu)e6<+J>2#jS<=4di&h>qRf>K5fQv8i-%#Q3pICx2gx?mi&1?h@;{D2lb;+(co2ZYA3zUzgQL ziHO7IdUI^cr@4NBJ#ZXla-W&JW{p4J57>H2@izN6ED5aM8XF$TFtqFQgV517N`a*` z&Sn^sSoUQ3PDuZ{?R#~#Uuyw}X6!i>Q5|JH!S~p+-noB*Izp$2?1tyYvaOP#?nGCk zES4JooxD6gz3<@@W0#RDp#nve>NJ7si@=cNdgvqmc+Bg@!riZuikjI zm-nAs|A4w=--Lv!U(m7NuO_I(TOez+_?8>S-?O2}cx8WTsFJ)58xbj_BOA>^*iWnQ zC^Ou4OysZmGHFQ^pJI=z`E+?k2RH)xu7{=lAfkJ!6vVZ1*5N|DrQ>Z%O#7BUR~=lm z1y#45TzEUu1U#`l7{Wt%K~IuB!>W#CXyd2JJoQAA3;%3MqgI1gB#+Fm8>5M&gKeE; z|B`GMSREFWzO{oj5;r_<8Zd~QeJ8yAh&^Sd(zSd6{qQw>xhf+;3~_pwBAJ}%%+r<- zUpac&3wwS2eKcuYs2;V?T9E$XlTnIn1Bz*F5SYpsqjej&tiow94=0dk^TVD#_6wTC z#lPbeifmap|J&uy(LGL&r?eUxEMWcJvSWChLG3;VwO16x(A}16Sj^R?f#3;T{5=#M zd%#g&R2aL{Si!2J)Wsv++I@R67+~wa(e)>uLvPRlZDkGd~tyUQr;@d8-!b-y*ID z>GEc%SgTGZ9(E&gkp^`OoAYTEqk5!TE?Y-;$6w``C53x*8NHVz^XVre)@HG_zRcVc zm3Q^kG*sTG8*cG}KUQByJERfRx$S^rAQq5CRs zdbqFkD(lBQEjge1vja`=S@t%xv(5$ah;?<2o0S>!qU|(f^G6*_&LaN~0X6PX!S@Z@=>69zXX0NPJWl_I|tD@KB8HE`SH%1agd<4wsNN6*^~7BjO1lMn}Z(;BOWOYMKXv27!OXuCt_Grq@YFQ4_z4 z*tnf`X;f&1MAC*1%CUnV)TCM+0HCl}E^nu(477a6YY#nn^%t*eMh&n4eFbuF1z(PE z1~r-e3Iy3M9SCVZcJO=^4gB6XgxbU!)yVBMgWI6Yk}oLqTS&cK@JWYo=Q)2iNrK?? zFfX=Zy%O5)Q#Yd)cs%*Fg!_4CI?Y0tTXf5Lmxyam2_#)iN46EuX^?eFriG9J@pJ?w zYSO&Ys{Y8w!KS*wZCW@7?K3bFAz>9V4qQ3;nxs)fNZJo`6g!{VjZ`;RR5 zh6STyl=lfl@y^&ExurWasmDCQ2ZmadR?t|>#h;+J!D9FWNUe080un$6B8E7?Qa`vl z)eHn}7KZ1AZT=fI@MJAfqSN4*vl4C7{7#~KRJ^#dzCo~GXOQeB?>i*xb8cu#1OxwU~yJueo>)6(Q9Q9uL3b0GEtKASRTCY?^o2rvG zYSd8Jp*NV*VOdtRzS;i%hEB^}w)+PjNW7mb1=prr=+(R(Vll7y246QZ}U?B)}3Cl)WfMcSP3~6{pH&yGUe2-x;hQe}&XT zS@6nq_J3b>S`;FR+i?{!o?#BTpwG@bT;?Wx-qwF{EbuxDsS@2!ReZtkBxm@PtW)L1 z)@PC&3A9zxCxp+c7VbRtdU(&##(q!WmD+~kk35GV=>0v|ae7H2kIJDT><{>HxX8Vq zyZrVSDgs7NqvXYy+tF8%rcu$OW_7GR?)MwA?h^yp1S5FHpdSZPHa6UGr`;`EWQhg| zY*MDD;Gk6&)`_q2Q{XD7j%p4uyM#C&Zr$berIc@{>h+=$IWMx;%EOn#A9$n=;%~vr zh9jpgbOZ=GNIxLC{B-LxS!fyH^SZhaMdhbe5n6e55w?fxgPqn@hs2A_aZ5MXxn9g; zWI7gCn_QtC0yk>hO8tsY_BF;nDc86iL{juYwMp4cT+pfAQmDuw3J>KX&j{z8--@e< zA!}3}{AcdoZ*(Q}8Ure)&u|5*}MtOcBNI@u4Y-i7b^Ei`eh}fMWiyB(5F;dLX+~H5|z0b>?0l zcEpZ?-9;0d^!sG*tm&VqvDT!v)HOYYhoY|Ldjb_1YkMNP7mkPEafatVo-9DeQbSdj zLj(_H+SgwG*5F(O)!?g2l?x2!%ma!1bt^H^guQsKHWwLVO}Odg7*a3^VH7jnuYa%R z_grmbAM+k(M@FG+eec3#-`mpPdjJHTX<4vpt(jtlBcnt1BvzEb@#595{ZYwJ$ZXLX z9fYQ0#bypO1cQ(ipQjH*lU&Wc(9_K3VNUrgcI4000q$;SuO_5Z(7J!`H&yZR$UK6t zX)QcMdVP8D7|*HZ@cAx0&t!&D&U6gW2VM$&}D zGA(OA@wCDmYxLWqB?sn|8Z3H>Q5 zKOn*DPlrt&qObi&vKL0u)~SV&Y>~*VZYN& zseSIwB3y(@q&jVA3zKPoZ>uxp-J7&EMO18?bXDJ)^>XO+F?edQewR(srXl9WHmtUW zMxdKyWYo4x`7H-xm5;W*mu6TJwlrFH#kb;Av-sG9Pi87u=~8+xSz5u=lZ2=v%*`d$ zLL#Gq}4hLb5nhDz&!aPXARtu75s!i)KwNZIHD1``1Ir)D(O=fgO&f#0~zy zgQGJx!6Z-h(N=Mk;ng*W44M6+@KiGE{fV!vPG@H@pF%GI#3LXOzvJ4HaozeI@x}1B zam5yU!Rm{5Ja9+TIlUVlpEU86U6V@b$yjvX(pTe$emXwG$HpcLT%aXP5_oh^)3xP3 zH^R62DYi$m-k9a(k9(^8q3Wz;bJ3dbb2^7~R(Y9ljPxGXt6JfB)UfH7SJym6+gXg^ z9S$xYFj-tT2swRwM78eOS;0JMDp9Q8aXLG)jO{D%w$l_sx%2f&3CMD^@i&8<^hP1v z)6_&n6%l=|jOOj3kx*upH@G!K=pC@;}KNNYi$*Bt^iw zm13hay{3NHP`eaERZJ~Fj4W4^opT8~7^0(+oR$}pBWv(Jyh zN6*hru4llGDF)FyEq7rQZ-^C)YhJ+tj<(PvGhtmU2INpnO$g|vDCVvaQLULucVO%U$fy7IF!5TeF+=J zCZ=>6?{tv+gasZY^Ee4vCYVw7Wq-KRdhcI-bf)+!=Ir^~+N0SH@dQd=nfX3PlY|*7 zOac7NmHB7d&xDp4EuneG(PN$MKLmviE>I#Oh9aO&8RgwI@iMd|5MO^$Od_?>`BU4% zbl&m6eL2mM?)=6D-7x%>?I<;CagRgYX<&FPF|(a`t@5!IMxsP4W;KfYv97~{?-{S? z&5zILz+~qf+&f$}#MEF`j=%OFLc~a}5=Jupu?yT$$B7>np!LRefbf3mrC#>znPdi6 zL1k4eNQg6FNU;rJV@EJ))47`154XwYXWn@ufRrUFbE5{$C<~YZ5ZRv!9Icnz*(8fq zGQjv?LVi!JwZbZn#<8NU0(fOift>bx%=VoH5*;h!l2t4C7#zG}9V?4{bGwu|EN`zV zmTg=R$iaSpw4#iJ+HD#vO3%zeEoDS@B`VS#RS1 z4HxX4lwd(G`zQ<4HKGiPsnGSG%6#q_PL=^4#vRs$cU# zxrEgHmHt=*egcj`Kn6pdFk4L^3|u>(x1_EB5W&=iDmfPL2_dbEVsA8^LA7keYcmo$QaAmQ2PA3tHP zVej{OpZi`bb<*v=SrQX7f34=V9iAz42q{!3pb%_=MCwuoxNPVxX!enEAmva`&P@?Y z2qDF4EZkK-cnriuWUk3A9aOoh$Vp2{yiRhV*;3^!N&khGY$|HgsHv#OkGlXJSj)qL z@2ZqKCZmt8Uj&j%4B?E}b2Q0oY4seV8}AAy*|^jqDQVNI7jE97svih(GerU=kZa>{ z3ZGq_u9y6(5W_M-xB(wiMddM%PPRB2*pszi3)TUgD0^g3SE_d<1xah9T!z5j%xCJ3 zD?ks0`TyQpoEYFtY6z^3N?=`m%wTUPXmLdw>fGJmR)0)-rZGocnb0QX zEDGRkWe?|$z81}9#|)XPQJxHET~@V`345&j#&;jLlA$Oja4SPL_7ouW{63o`G)sx` zwcaIlkQsWQ&4w_VFqAF(6m)QaUb<#(@8M*$ra+`H^QCCt^d|S-gMq;*r}T#_l2MTs zhuxbYdgWTC#Z^u!VWpEInZxOUvth)*|E}))9dYOu&zYKnhnLEvo!&2yCloNB@0KyL zzi_diG3c}!`u#S*{K)KO4e*qi2N$fy`Cb(5=tRtQkEvTma^xw&li>p)r(0~#Q6rC0M{ zPY91L2eFF-KrjcMcCH}NiBO;?H6`>9#PZ@(ot>0=O%CiQK}b@Pz>T?blwXKxI(Im0 zQwDOu)+3Xk-RBGo#1s~P4>SI88P4z^i@YfJ)bj3+|E0fLsP5x%tdaZbnthA5K&~?E=KNn2RbN z#T+`+6{&VPreyI)gApc@?>|55(=6z1o~^Hq{2Giiu)z%(LNK}b^*Ulgu0*xW*@~w< zG05`5^x(^iwD%yTd!LJ0sTY%`z#hWrCNxWm04!`$R?Qqz-qw|7TV`vWsmt3-nFfd4 z_b-jprC)f~$R)`Um;=ht&@KsQ4+?ZKC6Z{ zC73u_XNZPk1oJDo0PuZdO>!O4Q@O>%X9!bGpHM19%!CsupAmm<#z&hvblxb~K2$;~ zJ(+S|G&ugkKJ22V(#%WXNoH-WqhhlY#m-_7mXc6%vdvMRGIHh8%B)YK3&qhG3?>va zK@Qi+Ef28R7-f%Rm6&p}6Z{8?fHRa|OQD-cgvV0BSLRB7&XZd@g<|n7d_ekCeF4Gb z<}ZG!{Y4C?c^+G?tG!*1#`YRyWw_O-QV_bU_Hyobdc-P?T~wrOTD)2INR*=s z4-XsCQ@lWA+yy-NkhK%~fle1){g{`qMHD8Yir4)`XnMoIg_cz4qK}y$rbQj#ds0E5 z{yC3HC3d7lk=tvs_j&<>$;$81*W-kFRIFC4O()Pd*H3Wpwx^KgFZ9EmN8XJ&d0jj& zPD&-xHpvBUJ7Ag9i8x>LvQYYB)(AcVI?bJqmP`eUuDs;&Dw)$}e0rbLkSdAskO!-i z&{gCmQaZy$_0u?vcn220fK3mEQl|gzN>fLP1wOrTuUzqGOuK^nIX|yL+vd`8DBE36 zMI5JDkWgz-EUznWfEo=Oun)Fv4`3oXCK4l-mgWO9_RYFJWC)~xFqw^WJeg$I3{khF zjCScO45@$A;}AD?x>4eyhQ`eemxe8(Kgk4H(tS^*nWLZElxnQBDN}@bioHv2Q}kN% zpLAe%VIbrn3yZH@tP^PIQqoI7Wr3HAH+q0k!}hjcoU$y`1(s%v(h79%lHa5v0+((n z{fy&=lC6s^f`Z&H<{#9-Fp{OlP!`{n7c zThnLLd~s(;_{1p=zSK_fF6$#e-F$f`LoQ_b1$Pwz#~?xK{Mxj6B-grae~#4GL#ayV zX!yMXWYz=Z_Q6W(c??KFhGx6ps`<~B8yb${EHsQzrCCg&p#1kj=5MV^hFscs=9Mbl zq-P}g)-b#fEQd#ZchjjXD2e=0!PD0h-8RzE*D~2kWJ^?>10@jr4`dwV2=Q>{Zi4;L zWRN7BvqG59fv(obibSmeid5zoC+Q50a;0*Ig0IP|CLAtmm5WF_w1O{jEeh~Fj--=6 z>YFs3dg6@o2vr8&V&@HS=P597GfR}dZ1MleEW6zZZIUvL=;LZvJJLv>AUTlZr%-hY z;u9G)|LE@g*`YnTB=907dLSrcbl16=M2~XCAz3h}U|zzJ{ij;qH1;Hg>=%BdfXpL6 z7@Ht&0lZ>b)u!UT_2LXqxD^~(MB-BLqs7-F0+;EZJKYA6l$*D;*yk^)fBB3Lkbye!n?+{P8jiEv}@vPVS>_eAQi>++h*QW>QeH zoFn}Caw&hH3Q!E?ZN#i!seoZ@lD!<%TH~9lHqU{R#?$h#Q%7nr7!>5(EwD;ebrjM0 z`)z)H(VZ1zx#b`eABV>NtRXhc0>c+C?;nV}uC;~y6F71lCxF{8`FWJvn$63n@z>>$ z>d;~Oe84*{rpG#COw?m3ZZ?w|Qvmg5<>&Pnn9=QqUvsxtlu)QUMJ{zr)BrJ+bDwB(ZEuLr3^w3pc-EgCE!3On>mR|3N zbhW38AMn>Ua+xo;FES(x8%Al08w8px^zlC~SLUDNh)b)tvEt1&`F7~lHRXs)01Tih z;bEggjfKFgPNM2!ZAp&C(!#701D$V|eElKC4-fC@vrTVA zm&sjfQ!U|JWul3naegeBLF27K?gk4VM43$QfFvepnH7<&yFoT$TRk(|ZaPL8hGcrBXOciXL#$j2Q=z*08S0MD6pq2q&ueUvqh{HKcG_a zcZY6eEFu9UVDb=&#`}S4&d45sq0H0i+6wz30cm-&1oi*00+XDn-; zAaJuEL{b7In1KxgJ;506(6-=pB6>x7hUznrvNcbO@82XquZ!}p${{WU zrzJ8uR>Gn`FwPz(Pa>JVSvd~(1 zk3*(gCFTHVLv78VJwdvhC4kMKtv_}yK~7FVI?_h?%W=W>RBk|CydYw($?4LZjN7Mm zn0(^`wQ`U7*^~B5#XnH=v%d7f!JxoxJ)M2($r@wn8*77|iuahe2S2m-FLHV!Cp+Qf z*x?t;5Eu6fsqH?<&YLQVD(98G-()0dWP&hn{ z@38m}q$TLqUNFYqD8_s0=wO$4TEdO;ke`LC?cWT`k>&vNB{#2c$m{#o!zG}HYLSH^ z4K7PEoUMo!QD4t$O0-p@Gc`X+Oe%MRs7XrX!d|h8r>j0MCZC07$fJ zyE2d2t<>~cgn{i~n3_ON4I)4-0aR`F0mY61fM?UPlb~?&ch@HA^yJTvTP8Wc zurvsj(RSTt4{jQ?37c%io93_y3SE7?Pi9)~@5bwQTS|%LheL+2-$c^}R)vQ4 zTc?Djg_=|vz&LLICRXlM;V@Zf5Y;2szOe8O#V`-5NPt0Z_7;Im%CQQ79HcF%UtGc3(&4(H zIO3!=rZvR;9HT{K9`?#K1`PH;MQwja-x)Bl)2rlN*DAck{TPiy(-kRAOIf>Q6Vh2$ zEe3@Yl=+9SCc10z%-V$A%|K))Vh}& z)s<8R2$-m?SWQ>zh{K$szug&&$R`n7Ng~@iT#WWB$2aL$*f+jNBAZjHkVEvWgIh_6n*J$v@t7-+LE68_uf-jNopLqavQHGID!|uHU97L7-t7OaMVHp+YXqgDBTfN#q{u(s8nLkWSVBLg zgh=MVazcLp83)DM8i-{@j8@>uI9!`6s$0LOT^t+Dm~Ybz6m2;(f_oS+Xnw)xQJfpC zcarSPfAcgHp?ymF52TE_DdOh?)Uej)&D^1_GziotzC z)l`8!63iRs*otW>?yIW%b@HeXqGl4z7Uyb-54>Zos!>gu3M@d0(k32 zm))I?kXjd(*?yT+54CpAuN|5x<7MAUqf=&kK}SV;guUL{XW#nM-7T`PDk4I=Zg8Gx z<|Bc`yH=HB@tReFjNXzr0zi`^B%a1M9oo9Ddbu!_Gu9d~tmoR1zfbdco zU4k(`vc&!E0`@cm?xIeu6z<8Zsw#(^4ed`BN59$C3=Vf$=Hd7RU8ZyY6x-R{ndHL< z@ruFqWj4C?Z;q2xn!y_s87}VSJ8#?1KQzV>r1H=eLmMM$<8qqGU9u5?>u$X-_7w(prD@d?0&`1PwPu4_4 zlvv3$FeJ-cg-NV+@4MxrZxD%G?W2Lmu$p?1+>s3bMK68E~ z2YxP?jSPiN8}}6mS!7HXzocwuGM4txml!EE#6g&vgHtB%k z^Bf7;g;Io;{7jNOFw^}wzl{!^1~`{SES6OEA=Vrt-1>4fXqvKC`+WOH@r^8&9SdlK zBde;X!MG|C{d7UL?+`o>Sr<6CP-Zg}NDX;s79vWt&MRN~Z+xwTTju0!KT{Qw8pvD8 zx>!VXga%UKtn9&5B2(W`*LArQKe1!I{ReXHd|kq_BB~`)`TSYU#OCkxXr*FLH-5!= zjr&XbD|8~(P1fG6$tcPyfpBOK-62I=H)S~}_&|wf2~!u}TVj=Vu9dXjwJee!LRUAx#PGEHF$dFQcm`6uPO8 z)q15*acEBpbUxP2iC8;bI_xV2>|_q50ewoVO;v`;7{T}jI`fx@t$Ov@C9Rlfl_wGd zg<-LPpCw$uVVs*P^wquf<|1n8?DQM{>a^S=3#@_{uT;nl)#JIY9kq{Z1|FVqbeSHrD#ypwwFz^RK~Q z8Ev8;yJo{4(A$5Y&B8NIdBr95(usB)3Xe{LDTae@K{jEjH`J43FL|lP`d1GV13CQ^cxsT38-zdl~b(2*^63w-;JHDKHk~yD}>m-(U zDX}*ePa~LV=bYm}AAsa&wg@gpwydcGi8p2&uaIa}8R`@Q_4sz8ld`>~u*QEMA{Llr z9yB+q7m)giR5_l+NF-^KlQA{7)T$g*GmXrmX{C=Kcu%L&E>W2mobnY`i7H(=as`8% zyG-;`&mxvdFPY-;&w0MVof=N9rh;epvwkMIUyo1VYlJMMK4J4&<1sutEp>L*K453( zHC80F_~h7N(aF2YeR$t@RQu8k$8Y96ayqiN8rkyL{`#K*o5_Q_nYymm50qwh&1UFw zCefnful&AIlt~C+R>e}9VT3L2DWF|3+`R`g7p?DWJq>z@5{XTP-~X8Sb7K(Hu@GmB z7m@v~r0PLmvHiSFdXL@T&9|IfEYszn-H~jA+v0;FHPVcK(~4ZgXx`WJ0?tI2AkR-y ze_7Dz8_#~t9JVdNQYO}(!LnAKXl@HD38PeWq`&F}q#+E#6JN-AjzyG$1VoeuI|&UT z-**GJmH2Ugt_0Nv=UUOrJL@~&8Css8#%M<>kVM8ow(%$Ok_e5(OcQqL!=MTJ`dOfj z-~`FQNiL$UL+b`iD-2IMUi|`uxAGQp)DO5~Z-$$u%Qe2oHQXKo6W2(dPg`LCw>6}C_-&<|3E-ggsJCW$gFdi%&9Yg+A1)UNyY zbDWy@xFo`;(XEW^AVVx38{&Mw;B1b@PZo8E-65tx?dLP*Uak6kEe|x;`$ezD{2wSy zn^L{g(z26OTTu0b3OA#ys&$P4Hq@@_&;3BnQb`#g9I+yIRVyK^hdlpSVs=*jz`MsU zz}}*>?TdFVID7vwpg5SIJ^O+(d@=%NPwtP!*5cMh9s4vOP~rK(=g9y2_d42y^)&-E zX8v&Y8rlOXLcPG{q36y7$`d`Swfx?Lj7BVZ=`r#Uqq(qQfG3ZNUdie56@S#7Mvr6S zJeUOC3*#RMCAb-NR@6!^Uy_-Ge^pQ`gYHTv~cbEBm8w0o=r(XwG2gyjGkPy7{~u!fKBP0g>6sr=!$U8 zpTF;dNOOEUCqMO1cJ=;TGFZAGmZPyKQp}IJ-*^_A4j;(q<0cbn_;zOo^BL*J`Gdqv zphB2mMxq(=W?|9;Q(8jETsxOl7OALrsf zu;YaL&^(#hw6r@=VlER(d;$0v5EeWm=nz~L?2>-W29$Yl2b_VAVa)5PflV3}EIfZT zScA}hqAOHh^{TfR?zZptY7+y#qj(!PLdykA?to2Mx;?CJ z!$%kRz-kDt&xN(Xp7t_u!?SiLsIws4kX1@OFb+B){7PD#Ka2$-Ej6gA(nPNtWx(N1 zYEKtP=E|sNoGZiPXdU2eJw8<-(+lE#$y<>$Qf+1s(vaDMEH$E-(D;MYuipv@+caiKS$(nkV%Fdn6`Ej59MVU!&Ab~) z&)!8dl3V3#`7-8fZGsUXIl}uhQ!O6kP}*q2x9g%Rl7Ie3`uT4*J-%<0at=iqC?m$M zOzmR!bzGFPnRxeOq~;`tn4o{7*K6hyLxRf*11CB#s#mi81L36mSho*rFZA=abS&Tq zNVwCJ6B58`1AlPRcMkG=IZy~JtNB}48raLczfTDc=ZsRT)OHf#bW6J(eE>ffS(DiFGKTUDs~*%4C? zOWIdhy9>7;Gp~?HKc4kOFiLIST*JK=sXDwS$DgkDRY&?V>C3BQVP3;jC~GMnq0(dm zu)O!(84;d>T1`wH>At7U2|IF=$={CeRF3-n1Br1R!5wnk9YO5OSYw4DS@^?% zX0d}X-!4a`bn9zDnj^j3Kv(|yi}^Z*iG!Q{I5rb23lmn0g9_S{udt;&L%O+{MSPgI zFf8E1wd6;VdV+ABiX=AEwLb^E4DVWSde4g3Q>at}@zqQV&Ex5oHnvZ(?e>!@Da9+E zAp7!+%eba{$q1^us!yIm>XSX4MJ+}yr0(L7bp9uORfSs*_r23`sT_3xPS$dBI(kf6 z<~UI@(yt0Bf3^Z&qAp&*IthY{N~kT9bvime066`PxHsiLF~630TDC_*7WF`AK=5&K z-63_42O9ULe;(F)`f-i%WIvn-!b_qSQ+2VMimiyNRHkmwlV~Ob3G@Y)Wtfi9*+NLu zi4K8C95{sHE%B5Qh>d)8do5&^nsPN9=gn7`jr$|q2bc@bGU;ODfIG6tNpNI2@1ueq zy||sYaKhvZcTG>PuX{D~vQP`lT!Y!r9z?*n-=>pr4B7K*$m5FxuTLXQLrvo0{w^T@ z93gNkRw>19y@g1~lQwfee?})wc#Znp`JrSxuiR-Z**;C!p6CxC$-suG zPVSva8>*c%TSb|iQ>YnS`J_Zh724k#nWR$NIpb3Q;@EM-@;y}OVS#iZLCp0YD9Pa@ z*H|$s2Tn>Yoa+tdqv6a^{g;T{gfSP5179OS}kICcw08vr8Fy|PG^G%pX; zr(r5*YprlYrhFh1>7R#LvG$e+dQ1j~fIa}%zQf#^} znP_%pGjwbn0qbk0-#>yVp|MVPuVrP@;s(Y z=&iBkAi?!`sxbYin9^*?98LKu6c;TN7&`l2PDdQ^?1GS=zx2jeS zsK~)SjhX|O)1&w4ZU%GAD$C}&j=~9=tSQyv6_*PDsq9b}(DT|5vBgSe?hXg0nQq-M zJK#0J`q1v1aAL~h&okTeTtHMQ%e(wKKj#s{U78&^hIxmu>aX6Ityfk|-m5AK6RWu; z`+7^Kz^w(b@v0^ELW5DLo1aX{#;4ZNF>#YUk?on};S4n?K^9@rrWrcZVkDQ(j5Y-A z2(n1EvZrVlW>z5!^aUr97_h9|bYh&*FkR-iSqg~E@$VrcN3~DdKp8rP_sQKJp;~?X z&c||>0)LwEJ&_s^ccNz?O(*Rj;+RyV4}V7}+={kpl&X*U*K;v%sg}RXJ^lxi4s|Ri zUt5W1ou>RJ1=0;q98Zw#w*FtMVmS39 zCF8wRPinJLa1`r!$?pDhl8WI#K;t@CJj6J)KH@)K^_tqBbF3TNxc8x1E5~26{mVC8 z^x&^jSM(=W+7Dm)syNmpVA$-g2`9q z_?`ndrugf;B+NK?Uqj`uhs{fujkw#`W(TKJ%dZ)BleBiEWQSWccy9e{1m)Z|?};n1 zeU%=Mn*2hOi`T2p%hx)O)plZUYp)pMHAw?Fjn=TRI-yJ;v+LbDJ@SEkszz&Hgb$Ts zoo?!dVnE^M-9v)>7r`S6-KKWKSm7Ye{VcCNh{W+$1#BLlG=IjsPrg8%YbQ4D^z?>9 z0MgqTG~M}r_>(k)-2RRz0c!H%?}fE&aGsEc7?8+SP&RwTJb!i4AmR;tKpDsH zi=TjjbYk2I0qaBAlm|W_HEcQ4coGT9WWb!WE%$4i(D{WTQ-oSL%EmsJKGpc*>zs`= zJYgL3k|H`vT|k>+Tq{K|KYTJi<$UTMQ)N;uBf_geqId1q7{tEv;#AuM53F^u%acF6 z4l}rURkp>nVsyHB%S4jyVi1SP{m`Z58hf&zMlt}st6W$QFvAy`i!8jx`3Ktd5LDpa zQx)U#?^|x;In{M#uC%hKqA3FTi|7aKX7U5-B-MSD3XsbWD5!#CY>L?ig_BQs89*;D zTyI!p448aT$A-**s^S}{@rC*9)e>th0p;$f{ReZMX$nM=Y;A95%qlXePhcU!wW|eZ zSeshMI@r@)O4+B%6~TZ~yoE?jWC^x4eHUd`X4vuev&a8!_aD8(f5CjezE&AXeIB{A zASD>=6~LA=Tg{;4Wo7S~cdBPh6OW-ht%l=noIMvF2Gs4*SSivYjPWPCO%EV(+;r79W)MTWHc~4M7wbw(%E~Dce8+|SM`pVO;w%B4| zElURYA<=T37~Fo{GF9%i;}V!QJ+;!Om=_NXI#V~3V&-A95QBiJMw2Wp>?+92~RwR!*n0tL7*kS1g^$%1wj zuJgfB;vcWZlOHS81md>RCVXXRPVu7t)@E83V%Ux2()>>3(0fgclX1gaGQ+`oHj3B1 zc&2|9m`<}EKIN5674j6wm!RJ{8_5k8K2i~?3RwIl7(Ey0?hl5A~W>&cuKed{hy{-Bi;NKo7wozkw{di*wxRjm+wppBw&>XG+QEe^}tR4~Y z+4xi+0_n;)VQdz5t?zF*zan;(I(C!rQP|kvpLvq#g}>`+v@HrGpi@5}us`!!&=_#y?f13GZGQ&zO`ycgLEz9ZT#VXhB-6@jkl|08XF*jnY zsWDMs!pos5jjRk8o&kK0T;%S^DMIz|UeUy(!7{;I1xG|OMIQ4R*u|^3(EA#^{@OpNwV|;;nZ6sZrZ;v5o^;^+Hb_P(yWcvAvg+n*%=fA8)qw|rsVKW#*jwElznkQXk3*;wqBpaiw49Q#F{IQ!HEN}%;MtsIfR?N> zOg2jISdfzM4J$T{0NL=Dkh!fg}kOz$V6;(52nEm-=J}oSN6tQ4F0?PJNQ(kE#cq} z0@*_dV$VYz7%@qg%Nc>UUlg}&D#hh6VVgQA3NyWNyuyvBO0*>i-=5T;uFzV;d;eAO zAPjNwD*vJdokT%M@bR#1K~my~a4lG;-J{5$DA6zIJun5KtjUgRvs}-L<02s* zP^Fz0tdx=bY2u)_$E2GH-eg_2eRX0{EL|#)P9iIfXB4x-6@Lh-iRA>-k(>m`TG-iP zk-P5Rj3W-fY(#Yz%p<9|zu3#Iv4e6UBNX9* z&140$9wGYrdaQb1j?&IPoQ>)?XGSOqa0e}eg)l?aGPS|$_HoG3_r9WJP5Ohjsw?J4 z3`I7)HIX;>|3FJq705g_!Zn7K*?bQ_lLKUJT!b+TZ#wQD+?6a%0z{%(LQsgCZ-^PZ z>R4qNG)*RL`Lp6VQvbxYh~bx?Ox}wwu{o{Fhm=bQ6c3Mm6;FJW34HtadOtlwe9hAR zRD#!t-FX0}VGn3B^*NdiqYcz*KWOBp5bgLeK?vTgr5KEpYxqullTpE&;nrf4maKnk zi`dgQM>W{n#HzVaOLCIByDFm_v(;CqBjU{u49MOI6R@@@xAYc5;JM z^;RV)^Tnuzj~JVzneg@_P9P1b_C>0r($Q=k#R8bp1&@Efs|2OU{Iz{;Qo=3=cgJX5 zkE1o)=RjPpQpVx)v)E(`ZA}bg=R$ep;6-`5$}r3B_zFIXFHp#{PGlOJ<$KK7vt;Gv zsUcLD!t!n;F2%irr_-7B+_q7Kt=tac@GFvx-Chav=Tx&Rg1spfkf|wKtSd-Q=3~{S znNgMwP2>;u6q~hCO`HCKL^9)+K24>{JukI)?&Fpc%IW;13{JBan^23Sb5bQlwBpac zi%r0R&;xmE7P8d)DAQG^&QbL~L!XI~Exa2Zcv^4bq~1kadtF zI(o9HHS#-YO$(^Txb@o;gB$AR3=hYnZY`egG~MmV8Ya+y?$0>wNo-k_hy;eG$7?O&Z{9K@dF<3V{BO+r|E{`mFlffwC6lCV zZt>Fj4c93!g#3a4_e07VbeLY=-rnjEIlUQH6s%8sY})lED(NKOngRsMRq|pf&5TOT z!X;+7@PX4r`jb+))9_`wK?;-MESm)Ok85^CQpCU?Tx*!9vN8=gsp|^POQ#a9EZMQV zN%g&AfDW8aS(X3QV)>2Ke1U9o@A~yKkHcX{NqQ?uta76 z2RF^}HC367a-H4tB`0WFUjl)EF(|D-#pbX~LD^+;;j`s0M|bLA?o6A>lIL@1tA2M|#v3)K!vYU9erD zKjxmoqq$B;&h0j0omrr?MMU@?fQmN&>@I911y?Mptx^QfVC|z0NNvPIx`!c#`>QfM zO2*gP{ZpwTB+A$ABn++>+nhrb!X0Zd_yT7Cc`t6gx9Z-pPHBZK>R<+vdr=?StY94+ zTRG-ZF5X=_Gxj!Uvx!rZM*xYAZ2^3E+hv!p_bS(&MQ4m12V9Euzw6}W&)B8Z%Js4wKn421+G_s4mie1) zsqWV0a^4I_tMH^@*hjDP{^qQ%n3W1)B}^`TOtze5o2}dRa^mj5R=6>YB-GEMw&Cry zPTvo$+r3QCe{auVtpnK5CX(Dwa2*k={DiF)@E}OA7B3R)te)fmK;v9kji7L7B1C=vVhLX zn3Ait0@L3KMN6pVFQQhoV5&zm2iDq9zs8unh5Xl$7^#Y-EWtM#nh?RQtmrRksYdBm zi3^2E68$EtZa4yIr{0=yf~IK1?;v%*BpLgwq+}1C_|>cD{lmDl-u^VOezs=RW0Jq| zJEmcI4`vnS~UcMS9aI&yZ(mTrt^@>LMoYGH* zi3Ac+)v;J7W9akl$~RYXL_;V`m+IUorfwa5E_q%7*(in@*YSOlYA}G z*}lg?y{vj-Y)Dqbbm}s0Q6!m-k@VHRQVg8_&_t`a?rb^xk#MZ(y#?e;62|uaU(xT1 zNnOjPUG^DsN6A%Sk@hk_$e(R;ovXo~<5)J4*;aiSam;`o_cA$wrts+UxU6rqdYaun zK&v^PZvKVj>Wm9~z;_F+8Pkc(wPN71(cp8=Gr^$^D;b6V=3n`JjyH_t1`bDQuBQmGT8H{x0Fv0T)(Xb92s%SOrdD4^2^U z>DlbhMY8lzxbtJzNLRNX%a0IqOkgoHi0_>rxc|lHK*xFW(GMTqtLo2sUH`Y!%v>SP zTct{}*p|1Eb<&|4=;Y)TIx>WQX}7l*miwqjhdC6pf?#?jwlvPKsmC!x7Ll7wgnz+W zoauU4K0W{FA%XtZt`_pPf9XlczCIzXUvk_GyKE0q+wFe%BPg=)G)QoD z5YeYL@iF6Wr=44g2JaoNQ`I#{ZAGVCz7m}+raV@~T>541uUj~3uQ%7Ljtt)@&0>MD z-mZqid+nPt^cPEX_BiO>C&H{5!X30y% z`0Z60o|pHmSMT-lk>ileztvUn>v=n2BQKkrxDj<*-)h~MalyOp1(L*Tm&GeZ%Heh% zsCLz=j7U%&a&;(JiKI9Yx1-FW$0H|Ht_{*v>Qt>)_`4i(h&y_o{2Ry-G;$VK11W0r zQ-?)YoNFa%w4$QQ3nQre0Rq-`gHVl4xOQPI*gy!k^>9A|O04Vr3$lZLvJF_ZD=|K( zZ6-^_&McMYK@sZcCS6Z%Iqm~}Q{(0nv-JG0A4|S&=`}V7^LY^bYGpMsJ@ndtUd>^2 zX^%|7qUPU_uq7muxJ^#0zMLAZ32Gd#WuL$6_Vw+_q-0JHq#4ft2gOBGfuieFV((edm3Jc9TszFN-7-5&6mT3i_5Vh z>Z=UU9}469Cnh;Y=^lBwrd)aK|F&g+CP^qaae6wkMHr6{yOhqgwDHQqeR2{y?4z?FjQW0Y*mdjr=qs?j9MdtuHg@~}X6_Ot zGRQ`SzOi@Tip_I|pXJ8pQZ11sgt>n>9~8m}6%=;d{U(*_e{fs25yGo_+uJves8MAk!z5v zgW2jOp6CRxt_4V>>lY-Cf6#3r>nBpF_F{&pH9xNuNxE_wI^2l2HC2zxq^IFU&-E38 zuPfHZsGNh(Qv)rJ+1FSbTX5KS7m`pU9G;~{UH#Mc(lv#yZ&;&b3f|<1w2yY8UyTW9^8AWidTaPOW#XtwGb?@mhtF0(etX? z(AM4$J+X*mD*aTzoE3VxxpSZ>x#JWXn)(h2IPO{Bm}w=_e{PDG(#qL7JI!%ZAWFQV zHb3=v{UyEaxM+DDM0apfCu$!U%#rf*v>jhziaoe_u`?)H>R0=>d-rJNiJqqQYSgv_ zyBRlw&I2sn9U0Z}(F?081TwQslitBi*+_-Q9_fT|t$C9Vx=ti1`KMHdshV~>?OnH= zwCZ*P{)&MR=lj$Qd;>+qzkfOYdtvGj>rKnbCi1{|DL?u3ete#oo&4=##D+|%fzeVz zcMe|cyjWBB^Ls=J1oT>_5kt7K40?Nh`cxt4fV>CC(0qM&;-qiTQ?!|J5N_^Oy=S34 zGCuyG@h8)j!_2*8rkUW^7>L!h#LvdaYHu+^rCfofS?g1Hk5Xsl!`Oow z37K@lMKNm+zQi#o3?_uEo-=d*=l@$DP&{Mn)nZ;4a&Qwq9!*ekw{^xm%NN_G7ROc_ zRh%cIgbNJ=u{Hz7<^=c4eyAQcG98R-b$=mwE{c&b1|@*}QUlrH`mby-?;YsD`Xf#Q zORthfJS|#kq?Wh^#d4kIK{%y_DuqMT3Ltwzm$;Bi@lSP-<+bff z0JVioTm{g^%EN$`jvW9%0)G4ez=yot~ms`yWMT71dU^g;Crc0>$0k zp-`;2OM<%;*A{n*1`qC1+}*9XwzyM@wzw3x|DOAlr#xhgAGXB_EdAf zJkxo~c*2EVC8&HoTcX#;(IOc-t#OX^q7iqQ`bm(t|IZ|6<8#3W=fAc_Iy(APx}dqp z;)WI2_fZf}MPS;vay|+6s8%6faSd5~9C?*6val{K+E};yabM3?3tciqkXWqvKVE6_>>YLd9b?IK4Q;wrqgG59rG2+K3(hYqs2AkV!1wO> zO-G2=8^MQN?c=@*C|l@V10Xe!uKd085n~Nih`lp_iFmkw;nl5FOI$dEcJH8COdV{4 zoQ%7rMJ#kuy1E*dZ&JcHWJC1e<|6`zDZYX3g zqgRZoj*_Hr*Go}nwo-dK~Y)^7XH1~-mq3x*l1O@fDUXAxze zwU2pfB|dbgXv;T6pG++`R}Gv+J9{FKOkisZ`2zIcU_rAZ#_j;f;w;z&**UBc?#umP zc)dY~I-P)^!_D19bOWDm1NHz4`Gd6z4;1O^PAF$HV!KYLp61<%NhgB^gtU-npAo2WYo!#_7yu626W7dH#kDgaYFh_{7lK+EGP3L=Dn z=*~0n5$@d38_y~0xJ8hnN6d9maSCtIF_9D*qrKS;Q!HGHM z;hn5|t#X4v-8L@%UYb&-^mlv4Z(=5l%qgD)$sdFn2Uf%8FBqZ6I~-Uw;d8z6hpj-0 zBjeOMGxcr?3}q%>s1R0_m>^FQ7qfPjQh3$Hcy(QH)q4~wBUixuZ|P!hgT>jkZ2#hH z58A>AqH$3$h6J-=L6#)mRmYI0sL~=IQaSu9&5O8dNM`VTSQ3fvv(8=L9kbjLGR`Sv zTBJ=EspraqR6;1^2MP|SMC_|$yh;x}7x1R1W8mEoMe2pbI20rq@d(^}1rhLuMl^ zeR(9e7K28W(}W1stS^VvF!5>>Lf13#0DHKX(41dF8uA0Itc6S^1_ zxKFPq*2~=<9X6+acsd}6MEbSr?LGjO8O%l!zUc;~Nwqur7$D_@9D!c*83?R2Rm3Hc zYQ&JgC?F6P`MOdtv3sGDeQh|>*+6F6Dxai{dveqqEiMc9&qb!KJ~?b>JH@OJDBKRF z{zj|&Gdl8P$qBZZlHFHJjRdP7IHuy2yQ)pxmD+mS<#U-k@@gGY0G1@7%ycs z4g(+@UZi025y7V1>B4k*yiZI!lMtm@jnr^CLAO@`)We=e_^gM(vv}{b zbr_n`Z6NziIDQL(pL)|%sG6MpU9Tw>Db1p02EO1%>z^S`>ngv3X$idX?f}fYre$>T z`}VtgKJiA59F&jmHsOLKV^6Q0lFSoY+qmg7WtPii(CUX3)YaO#4+n?Sn(cYaM!C}Q zGNeaL`nD5kPzQr2jFZf5l!hxw{{9E2PAuo3xd_QzDFOr_``NyYs~quXQ%dgi-QT-H zANuzPw{~pv0_E|T*7m(H{?5$7V%(B>+{4G=h|0hsdCqUPBjF^SyJ#$ z2~W$M%A0O7_3z*lL+iIuq~1)kCuZ%;g^u%ZD_&xOO3G>I92Pbz{pa zodyso3b@sNRxi!ZGR+!u4i*IhJG@QS{{-1h>g|~H*tfA&YN;LLHUjgkcW15s6cDXq z%wK6ETsZQt&&kjhDjG$|_W3{+bTJnu7APmBS&tnu3`Vr0c?zsrSWQrg&l% z0mxo>3Y^_oR+@HK+ph~)X)gWIr`KrGKeu1gxl1r1cg)#0o1vcW=-H~=oFU=I?9i`n zz$mbV2J?TirXU@w(y{pb4u2SzJfX^QWrG{Ou*@(pXIRlMMycBQqsCD@Pn$~7rkag6 zxf{VhoGNxrY>BzLO}E-6Y|LXXkFBj?gvq#J+SMyWPcsS@#+1LNjy9oxVCYJIZV-wP zqKDw$4Q>qtC8o)h$0XjL%w_S|8qgHvuePa(uGoWPENs&mk~$+olH?uWowM$rmHS)A zs6e~w^u312Xr?)k!~h@tt7;SugpP8m{CD;~^MSzz`E>n|U-B++frXNjdnx!9qZuQ} zTQ_GPW(F^%sw}BzUjF=vL2s=u|5?^aRbEwt&fBy|_CP^Xr2I#^wVi%0uIERK+qB~D z(4FH;hcn2P;h#Xkxy{X?u41w(-TUk3k7o*RZBps0gAqkN<@?Wh9|Cy0&U zESsR!D?Os0e0g>Eox+?;^*U*bwBil?w;kruns&CSDTr=i=HhEHyh1UIVbKM=5i+d8 zZuDO5?^2A}0r_I$;kX98Q)F4}4_BxCHWxlto!|17NgtcXc)1kKoZ{PxYb<;j;J{vW z%5>{Zig5Rd+#{}~`qGR$(iHuu0)M5*J>K*H$3n9$zVy5zOwUZ2>l}MpgZ8FkQm>GD za_Fu)BsDrbV7-DTc1jW40I8xCWT1}CGJ8mXgBq1d+w%X?@Hr11oIb9x>(N-fdXU^{ z9uQlt&?=*-e1y9`X0>D&|r_&s_n}uvE=<= zMDH~ff;1-G6g^4b9+S_S0Sntekl5zFbw@~{QxTXginIoY5`A0J7!+dubZ{2mlIr|3 z`5^yTID~BjiDjQUI`JCP_PRz&*v-o(%@j-I!JEba1G^7U@XS2zVASF5RrlP~B>XWgi^5Nh_mJX7bCjBfm`geM;O>)2{sQ}De?hs%H-6&EV#6_-{7QwjI5aqI zeXhMEIQ8NEtBbbOwOEZaC5v`(&&f+YYzKX_>1L5woex89IOtON`ff6_1-sC-9vYp7 z3D?V_G3;|cnibY{V$h}t#28eQCZ#H_9)JHFmf1-1^>xvSd>mYxe0HrF3 z)P)dVDZgHlAZZb8?ISOJ5#?CFQ}NLR!hA}F;9?AxHea}*uHjA!zf~Y-qp2*#ugz6z(7(+aHb(h3;Bct!j*p@z=Kn=@1 zc=ZVUouR~^nd{ijy7DutyTO*Vbqqb+V=9sKCZ9 z;#qK-#{Ntn8Ug3raT7e7rSQFDAbC*CCvU5%uctx(X1Sc?H@8H$phl)@decYZcwcf zx@h~s_p!R0{Ph|!gu^K(5-RSu1=&^B?SULxHmsn!c|ZHuy5}hYCOa#%1)R`PZFQjY zZ^RH&?Fy1IP9vYR;M&jlZUd2RE7ZYnWH|eU*In)-pgP(}cczVlpP1jDq4Oy(8&IX1O<6 z5a0E3W(P98OVka%My25iBFem_Y2Mlf*R6=cS_kyiIzuUY0*xBiU0Io9m8-HxCG5Er zy{-!NU%N0w>3n>hJxacZ}u_5?8A*-=b)9y#T{l^wgflUYMtJyBb zl3KQyx05IV((9{?@`c^sSW6HR5B9UnI?IEiXEA_G??%}+qTBS4{nDr#QpUDM2Q0L7 zhHpj;$;tFCfXrh6Ft}&)pS7%oRIg`N%O(E594NT?WuSHeqoeT%+M@n^DrTyp*KpVvBc)*i-pSgYt}XdopFO`;>nuGl*S*tPtGMv~a*`r#5stuJC2im@vLDc} zqpz$3;*@_i7N8v{R?>Y)w1SjD8|v8jp29R>1(TnV2JZ+4KjWMG9hO%dYrDZT)cJd* z%L(4Q&xF$;R!^j+R{gDn_>PgL9dCjIfG1&g(>>lfbfGpjnTN5Et{ciDc@WSf)mUQL zgRC+zj0}|jAJ*;J`d3W1NT8K8_zkPT@SQPJvs1S}T~b@OYxz~@7ndwK$^2y zDD#+~v4-cnhCwP^c)c!lHI48mHCk700=kCH6vi8YHM;Ji|6OR z?dP0piRR^z2(~91+kq2=5P^`UjOUNXKywln1ldb`wxBaAU97N*-+zeSgCLLLF z;zbS3=CvBY;Z9Ww?-PS5&{Vj}p?~7`GqFmLOA!&b^LVP<8h+4blcKfPO8QTo!9PnL zn}cD$Sh;O0lPa(^T70qtJ_IihR@RVcny^dR*yB;*4B)BZJiq;5t7%X>M$Q}BC{BXD zPs|HiFjqd)(9y5?WrrSS?j?Whb2gQrjxc3BgTngFcY;`2#8OFIX>+jvND%+9nIep1 zGL1s&*N@F6t3DS;Z8IO&$ssk&H7wDEwS1;xtNyu4-JF&*PPvw!Sj|38%a9Fy#tj&n zAoF@xl1oq=r@mF0`9ph9)77MhS2y4AoCO8h{cyVtbqZuZt_k|Nu-u^;o)>}|OMnBC zL9HxW&oZ|(yhVGa!Fbruo;301i(pZz+jB`Rk2E5ord^|f$)urQ!K5_b2a=}ltYbWh z?kccE*!a1Ol}D-yrWWto?`u)qe$8U+$WD^b*UaA7aE~a1dMMW_Isj9VYM^$fQf0C+ zOt}0>7-=P>ZvXxgKraMnHkf=A7?moi%I48y^m>-2muyeAv7hPB92xX$P#ERO;av?i z#IhHPAT!o$#;oXg@<-7wX}bT@AG|+7Q@do-+TukLhux}(1k*p87u4AJ56*}IQQO2* zfcP%#SX~ig5qkre^DzWXEpS+t+kB>I!}P>OiC_MfbVMpp4P3&59f3AXdzTY{+%!@- zTF-87qOB}fzL<(6Zqhc&Q>B0UEKo@ymt_-&XVjn(3siq_Pbia49Y78;7kM5+nk0!=8&Scf#m#-c_&y#(2UOT^{vrREtfv!i5o}0{P>!#$)hM2) z@u=RJ6(^E~`CWT$-GajbA-w|WP!k(P>FX55JV;uKbzzLdp4R9lTfs~#`=eR2>9!;m zaw3L*;Ug5Sj(Dqro*`e&l*WC_uD>;$$gO$n!zomWHU5=f0m8f|4ul2XT&7rS`L16U zN}7~B_03twLR^M+b!}eLjrG%=%e!7ple#s~DII0lpB^p0Cmazs*35T=Z6P!w>-MB& zKIrvFvX-g@3u}Bh(H{>hB%Dwmz`YL6VHjva_pI1$L7oAB)kIb!`Fs&eZpGsp%D~Vh zz%kO_OWAL`OKv%t5|52N^psSfHs|HKmPFX}V%EX~6eF#FbcHJB_4`w=myPzfCWAR= z2JK;tr3+dt24vycz)Va$(^6SSr~swjX+62UbT|qozF384zw%(ExNBB8Qo%Nby^nS^ za%bZJ`n+B+wZf32Y_(U@5=-pSu3oy}n+a5vUlCT@ugkuAn|J7n-EOaaa#L4f~BwPkc#GN9k^w3^stD*fW`Zw5?o+5xT_a8cH=|r*c(oWcms6nzkKmv(0nPL6i z=@{#{GfTfv$V5jb=;=@kuuxfpCkH;#vdeEM()Pud#vI5?)CRr>Z3H(ro9~xY8{6X< znyM*Ddb{Oke|!BlPW<}&&E_@n!AX4mEHC)S2YcT2HPyF5UrZ{+)CXhg=-}Gy*N+|Z z|5PMJH~^U$vA?HJRgp^;vS#B$`nSiWpk;$F`RrRQlIEG6S%HnrX?!()x%V*E2GoA; z>x{?Gd|U1tU)HB4+I8{dTuCk<5`&UdoZEY5Km*T=0ns2Yy~UMlW79+hYub4~#xUem z6v(+>r&=FOh^s=^ML0yJTx2(YUNE41-FYyPdNZy|wp(8M7Cz=k%60CzH%!%1#unMt zspGLC1y@lhTfekQxfQ%Le#MWkTHlhzy{8-hmvQ&yJ!RJgjKGl&R;_13b~L{;kQ~JW z$5j43K_!Q1WJ%CB5VeYrT1y{0tN(D56-}||CR@b0#4;*_h*O5F|Ef*kE2B})ol2WZ zxC>fDUi*WFgU^dd19_zbS!>VS#*?59D^(()x=cUe`!@LvG^JKiR~iF>TKSa|MFUkA z{SX!E2(!esy_c!vD{_<%spntV?OX#tF&$0quaorHF1$_o& zxVO`fRdwpO8pw6hW3VLafX8c&bW zs*8`F=BT&9b~nok2R>6kvpp~OQZ@3YcRP-G2T!nv!xLz$yojFo1g5#W7HQgJNGCa* zq)!aP{Pr=;x2(`;JB9ha93rG&SzONU*DVgCh&{Q&M0(=)5naJ7Ttw48Y^R(Ev8{+LPH^(lq1 z$9uTSF(=W@5{tdfK^}Sq-<;@#V&#vh?B`pnxH3FJLm(WG#>nvfUQ9fV@&bL^z`g;O zA$BC&`dq?;{9iGNpnt(xwh3>4zaV~uOnWn;E>H}!FS&xsOr zZHf3;85dj~xvJHY&2r}YDN&;>4vkaVr|g-Aa3Sfn4m^3*gY0Z;($xwRIa_BpNUGNx9nd8o$yM{)7PfF60E5Yv!Vv}uUUlPt!F$P1=i+Ek^8 z%A_kE1`C>e;C;=V^872pbi+U&s!MIxH?UHH3A3_mYm4s`cfxXLfiQ*ozcOPQu;_cT z)LFv@4T)t~f~=U31qtmrmm?3bgyv@Rs?_Y*&C2=0bFDyjh;oYOXh?we#x(DeSWB-X z$z>9uDn9xm$%(x7rGCzK#j~i+MEHplnoJhjEEXWHPYt;Fs+RWup5ORXd$-}ne%{M& z|I!a~r^^HG#KrMfddPPp#`-rOfNkY=#fa|Lv9gEiprVV8E0OB2{8WX&h7MiegFB=e z@L@%5moET@Edc*99RF-t{XU>k_ZZjx{LNv@CeWjIVJJLZ$^mhKI=1i zw;)?;7tgm1MSn+@-0Qc`U_?g<(pikZ#*WW>0T5$w^as!m1flu`Xv=V7uoDEiPAQ-( z;ExL82{e3^tVQ6s|0I}8S-HViURl3GA4W?)=mq{@sIoq9 z5-#VI=`2;48X~t*0%|`-ozWF8Vv+Q&&P_;7XdCP~p+=&!H9c$;&{_c8K`<^Cn<3yl%CH04ps`~b=M_ZrP^9!F?mG?%J1~2!X4vyGV*^( zXJm!A;IlHD;5&;SUiuyBofa$zRY>Xuk~uKD0lrSq9Ppvs)fzu7YPs5U>d@;LDg(Iqr6cYfK(#^u;NrrsOzTLL50CXX)CztQD+i_C+Zl2^^X; z)d&p-W;bQ(Nc$KQYcQjboJ6{=|Ojjy5!&`Dn6+N(T?ruKqeLajv!%9F#85z)Uo+cR#WkUhHTAIh^Bz zH+HG742fp`?9%QS;~HdW6Ku%Aj=RqWvK8&&;P&lOEh`LBJT}n)^MzX*z})eQsR?BT zDIErZOvPY96C1o9v7g;lJwCC?`6ipWea6WBqd2Vyr`uuAZoit`?nG3F^F9y2u7U&W z#1q)c=34FS@&zVnk@=9Eb0beBYdr>ri+c6MdezieRZ|RQlV>)?CQAG^F6C%#ByWE?*6NNWb7zAQIjJ-Zb1aQts~r!*?_??@;L77qq67v556j z7%|ok>rDI|Eaa?W*`Zt6J9sv`)HnDw?zqh_j`>_IL;ozej{yCm>-AT1a&T#|$b zAz_#G8;QH8g7_Ym!YJ!pmZU9*xg77wPfm_@Tn`iLTS}vl4Zuqpr1uy+F`7yv*sHyv zZljM%q6>lxtf%a@cFv6dRvWsM=E9L$y9yt~mWFs2BFf`jaT>nxrMtt%;Lq=PazRky zu*S{ANF1~;~CVR2a zX|aT+B@s&q9?4GV5E%W-$mYEHAR)R8_b>Uem#H%uGD#RUc|@QC<_$tE+$Q2CzpXgag4UR;4*<=0k*a^PM7tWD$LefnKjmnAeydb$ zNgu6%AiDIs!4cj5z(g@sXptfcKtj=f2%^=xw^Huh7yOnaVd7qDY@#s-?X)q3$a(+u zd%2P+<`*7)|FEaxME+0gpA0vn5i3+M|L%7hq;BfXD0uW6A8o=qpY={a|KXNypoeY; zAQrUh$G;5SxSU=c%q3M{ow+MG8m7XYT?jl$DM6>P%&N`&R*7`cC#*W&qSn*6shk{+ zskH$S{VFTN#;*${V8^qX9=)3yd{6 zH@?zvu0IPnY7A(P3dVnF2{uNG61RhYaKPmbkG~&_@zF&6r=aJ>W5jZ^W?(;BqW4l0 z-y||z> zm6KqO5&?tjcXHp}na6+(7Yy@csW)592#Np;5!KrzdR9_x;9*TK@+==hj|sUM9k{C7 z{=q|+IWoOmi&aTZ(&$+z9<9AtzkRu%GPp72dMoB1-LWwY=c=B@@k0cq;@QU;+c!sB zgKM39WA!_XjPU5S5)+5{3^&4q37i=#FeV;VKUF_P8wnChA6HbUtdz8+V|Gpnfwsn| z$;kR@ER`ByAnmIEv22mF`V&q>hF*1)G5f1^rcgE>On|CQ!Esa5-J82OmEM9(Mu0nDjFI%?NneW5tqm^u;Omf^~Dwr}U zY`JQ!?Wxgc(OlXMVrIVE0>%tjR?<}-t!*r`KVm#d6@MpnDSmU{K79&42uycsEIf~P zT<&VmY!>WlEZn!h_XbadEy_?0&;vx00J77fr~`XRs7?1I>C#Fhw2mW^HX37X7Rf0dY>)NzE_Gadc zMBm)Taip9DjT`_8-Cr4dY#LWYsT>^%=gMN(*0P}Ua zjB&$t&TKa$j7N@WHv2WffR!={VM}J?xjsP+te-{J7yJ42B!V70Q5OmM+u$)CG0oq9hR_g8)sAAPHP*r^K zlS97vot4gA@L_J3&aPuPONAqqrLQ*U`%S*hEs>iEYHPjNW|6m#cg@7w<&solpSl#1 zYrdR(^{4scH@s}NUMlir(VxO&3)@QN)nQDalZY!F*EJQ~_zcw}!@@Fz`wy-)LbpA1 z#E{)ItQ_PTFEnEKWDhmOLRqS~AE*<%P~MS2HC~cWDc>{$qr{+_nurDsln2K$;yW>O z;k#zOoK;a;ipAWfsbo3SK{8o2y$p!^Ed?a)`EAh9q97b4sVMP*MGoG02H!=EW?K{t zNYUIR2(e-=JzsOPb~pl*#)|xfA|Bg)T@j?K44z=}AuW~68(NncY(vjmeLt+G)BB; z^=P?A!2y>61#O*S%B*Zy7QRJ@vr1s2%2xUi>FrU z1hjmd>oKyWsMH5L%#YM9{VlbT{`7c_uevt-*oIFAM&NKIqI594iSbrJ={Pn{h7gyu_s<^LLAWA;274TynyR)AGXF8x|}gV1hubQpQ=fIqrfy zY?T~6Zg=zrz_b5+UCoLp0G(6j7YO>Ptey#y`~THF{~?!;4rl#^rV{mgGaS^*p=80Y z;3SkY{h&b-fPRo1{U6eW><%fNIB6I$)Z4atu&hX<6&5LSG{HC2#96H(Rw?c^s!w3m ziH~tuF5Imei2}U2U716eQ)5XGF`RM$qrUVdR(NGQ^}G34V|9+$dQ9TAMU?DWKt-pyvg4@9H^MIuuJ~+S3Y~X4ubX$nK7Zj z=}3MHUGdk)pg0a`ofW}Pt%-B(a`yU{(Y)oH?Ryug`x$5+yi()6vDeR&jt9N09KN5E z`+aGT^enCdG4DR-Pe{<+`dAE-vW=3kx!T)rgi`o*ttr}I71h#R;svH8kLc51>Po^Lm5@a zEMUxI1;%;-H7vyjY;S@%skTHe`P=(1mvdGQJf?mbxZ|4IX_RAq z1f&R=W1a-8h$*gZOOr>o_$-6s}s7$lGE zKTy~BF{PH5ny#_Q_5U|}F^qpbNsjP0mG>cGwG=GC=CinhQJTp~+S!i`&trkX_tlB(^c_ysS2Tt1)I!9P4Lo ziS?I;CBAOy)!@!82^AGtpGtNRFAh_|mF120_JQ?x$0XI8K*?jQBoe$5m66VD@CvY! zb#9?@xSuFn^~(V2myAQ)g0Xd5V-!_#El4K4HF|LwNl^rH;JC&@`c7cqL^FeWIGS+& zy`>?L8&dV6h7MdpU!9Vy?45$7zbZzZNPG*hQQ~`>)Y&oXX9`_<1>pH11(I2Z}*i*;m^L@zaUP_oiC+78gpG<$N3gbBYs z&sN>h_*+hJ6inXrq?Jj6WFuJy_H=gb$! zEg7JM-%~wHS*IQYufUUN$6+Voz5_2?6&|u6!GKp2lqDcVEpELi|osEo^T2dK2E3REmBW+X;;N8QEX&Nm`fSxs|r+b@5!jSFls8ANwiu#vUwN^NZ8 zMOe4`JI36im*S6oyh9m!DbTs=U)?Q5t=0g|LSmzDN%l(hLxkZs&bU+s(=cOIY9+Qz zS6T6sCc~GDTWRXen$zj#d;R|rvx{Y(+J-^w;gL=B(t)v6KKev2m&m%0(tb>n3D-5M zed#U3A^2Q_0F_(K>%nWH1tt^c2TE;dFNubRH~bzANjBByPEe$eVd%8qZM$_cF$Gtc zMV-|@0`a=XMpoaOSjL-#A3OR4icS$iUsa>jmu=>U-AAPrR;j?C@_+^bMMDz(Mef5~ z`Jd|kAz>}`>aswMus_53oS+}X;8m*cyl~gF8bv~DYuKKVNoVqz_Aer`K#>F$_3{2$ zA&R7Loq`Rb(d4M_%B~A#@PvAB>)RN6x)ep6PaO0o-J|Xafc-cZH1hJ<2tqa(Ks-%Q zyL^#6`GljIe&)Vc`*pJgm&tyeowqSgUVk}_`Hk^TkH?13cn9efFEHb5))RG`#T6kf zjr}rtYNLHSmQluN03NWM+IZ3L7Eyj^)E(pyL~7>_ywY8{@5lJ6{s#nhlU@y=?+<{e zx@okizw$!fnv>;F5vu6;ahp*0pzYuLKZWD=gY?VO&?SdJX47r^r@WAH_E~3Woo-RB z*M}>}LDE~-Idq*(_fRg%cF@!b{4v#Ll0ZC{4t^}3Axq63nH=+_C)g(5 z^8|LhFK-m9(F=8a%-NVyv)hn_lU&&m8gcz>r}8`8Js5mVYPIq8%lj`FocRhYLj}B> zfGT){fY3hRO}#69bF+c*UZCveY=!Ql$OK}k6m7L)T1E^FWz@VoTJk4TQyYW)Pnz$p zK&B-Choli(FU@8RND=t)S(_xB3tg_BIiF12N9E0ywNV%;f z!J2fo>GCNf%FAu-UHTa(wRm!+GPkby|G^3DkIq=HwS(Y4KvX90;H+LYlKazV46j6T*w7lQ_w6B`GmauK-`W^N3 z?FR=Y=|7YBkz_&>bz)Hl8a5X%Ks5p3Q^MANoOHAsQh`sChA(qS6?_Q7U55brKem4G z@``f!=Eyr61*9U{RMyoFv+K(e`j!sEFLL@5VZRCJyg+J?kPnU0tfqZ;O{nu1=M34B zAxg(wf0v56B~d1{hnJ7avM^Q^7|5JsrK+z+U)n7Du_@{kxq^vxk(rGCS-&@JcjxTP zex+wbd5cDle}6N$a&GukBVL-4rn`l1vFSXuLw(xEk;#E(6~=DjH7y5^HvwmBDhQX~ zPr`YvETnLBAIE9sT~hWw(oefqV=Q`LGR0XQo^u;-Am~j0?22Fu6xe8)Zg6ZI)Jj}f zhvccLMAP^RRd@le*iA-A@M;%d{#u9HF5;2WLhg{^QS-Ma`J{{pxrl4)EE9Z3}6zV$v8B9w+m!pjJJ)czS1jta}nji zcep>{_$TKf(q9(RL^gZj`AQa02$npYwRZ3Cf+Epe6qAMTHD zILSC#U^i5g!0hvNzqmFD|80F!g=0v4o4+Qn@ad84fne-}?g}4`zt%)Ss$E8znu6um zq}p}v&{nDXF?}eKEkha>FN%BZxuQxDMIZbskb)%`_>f7SD6Mmr|E%1BPvymx@HH1* z%i22icXrzvBe?XP4d)|zuLV-ohB+B*kFBW)D^Ub&lUonWXTd^p*<)r!V0MKFow4SgxNpNw^vaq-` z#-7_&sR8QHM9@mvs_aqbh|^Dn>uIm6(S^A(tt&E5tGmR7%zqOuV4mfpV;<%*t4@cZ zjWV{~fM6_09p||l+p+t4Wbf6-Tpf@hJSDLB^t^lrDfV?5Iv>G7|2Usny5)Ta)fYY- zIf_+JSSCQ6VdexT56_a9FaMVz4)GyRNB!Dj`AEHb6p;27VV%{QE1rpO zrL+$*0}4~(X@#X;@CDsN-z0xv!NGT%JZ1^gf35rOrKQD0UIO-QmiQX?!6ZW?dVIX& z9c#Rv8mFgIC>_~4Lep&42ji^uLo0w+#A>>bf{z{DF z_Hbh0bUsLnXp-|Mi;cqAQMnRNE!ZlFUGhnck=$uww8W^Z-G2~VrPi`17#(H6NJ)aL z*HC-DKDg|YKk6c95~fni*Dw6YAO`}o!Hfp3B%9yLY=&6&jj=Mvg-DEjeL3q44q-|k zWY<7(_EN!)36G?)>Y~X_vH_KDF0a~Wu2^;FE6Sw65taid>bJ!h?+;-P8%mv5?y2cn z0mZ8320m0-3bgurN9yPL$BqCWAAR?^7UATcXU|82&$o`FzCHZ_#seL>kRyoMqH%Y7 z|5LvZo3}py73#v>J&);NhR_d&NC-}xFcRhW8DFA5hz@CGD9R+l>_|b)WN_YPM69dF zcxEU!nFM+E7f^h`feiYzV>tRcR_U1vH|FGu5peuY%IQ}P!muS>G^uCHl7}6zAv0Bu zW$oAba*)+8tAE%%f{h<_17largHv9eW`>~mp6hW#NtTxe9|rL@!7e@B$uFO|j6~oJ zrR(gD-09Y*v7(O=uGZ_Yy<8T@vot>;^HKBpiq{vp{aGx&!qf&C7TAWY^)C;_@>4vZ zZP7G0xYfB}OfXG@)a*^V3b3a4+7XAOIeQuiU3sl^Ccq2kfiHXmh9#_+m2#gki=w$P zLWUaY#)zT4MRV3p^1Ta}EHwguR=VfzqW;`$RXKLD_I^>1}HdsB16Q*lJ)QwtkYBelnq zlGdJPAe#>iq**R~S{iCF`-SG7x+@+*4Y&Y=2mgI%hZGe)=I}Iux}|dkhu_*`&Ml53 zUG|1#gZk;UY}=FD^43{l6cz+|@1<${y_sSCyi+@fE;9=W;MK^MOmQeh^aK+Al%>KM z_tPrKbFPe-Zb{B!wl-$!SRQI+$*xr^t!Nphld z-^&`K2B5a78C=R7W!o+(NV6Mpw;q?$i)6#%z3;{*!Yio`GNmW?9${AvFl>Q)_-&c& z+oc%asY}Ciw0bDdOwNv)zh&M=Qe~2v_t!6x1h^vdoel3;<=ZV9X=ZUG@wh0iP$# zSkx+~M3qg8{cit$B1Tg>z6AffbD3Xry4|`jmX;=vD!1Hw`IctnDA=^f)X^Yxhqx0P ztlizg6hF3ssU`QzF4?Gf>NbH8f7n@Dp}&uav#-f<9K^-Qje(=O1@{5O6V59Zih7MJyLxxyCYK z#9C2kU#Zm3T!v|+jy7d6GeB)lKQAhAAwsK?vqiS|`qJ8^@RWTUlWA|U*thpx8^KBx zx9d9ROF5Zb$*;it>jU$)Hb!KJ0}Y+I;K^Oyk}KZWE&lLvrUO1dr}+*_0Fh8zb3XY3 zox=L*Nc#IzyrIYo!rOw40lE8!AR=zErixl&iN_kQO*W@);-V4QC$~g#k_DEz>0#T{RW8 zNQE9pSKRn!x6MqvZskn;HCxPOoOQO}ga#0YVd@*VJLxT9=^q_!JXF2G26$Q~=)efJ zc5jN#U>#w3_vcFXic%)|F^(OW?MkvC?X?GMv6Y;aBU>nMqU*QJ@FFcyV5N20Hp%Jr zh<15LN6f3f3c{33tPC1(vZ#*GN~RQ2H!}s2jHi+Nxa-emO+4C7A~%0ZymeEUi;Jsz z+5{<|+XTYZ7G2V}!Rd-cgf3{3XywD3!IKl(=$66~rfqGl`JTJ{Sg$;@U&cnG zNl1JqN|(^QzJh+Qn$Kc-m4eveOYp(m~{LDjE_zQRm=c-5wkZ;%E0! zP9WDAAi%N85|v>a0ihx5ue2L~Wz#!Mu3vjnN2;yozk(6vj}g^lYQ$7k@#=op=}HX0 zlaLS`!LGYG^(Wg+|49dzJjHXQ)=vQ`E<7!KUI0NNd=OVaUmT{{dp{%~wP@y-m-icM zc2M>90u#=TB7xNafC`>$O*ugQXK}ao3IbwCS#f!&Do*;ALd$SV5Bk!?_oW=ae+txP zp6|Y7ll(sbT|uJ0OG9p4byimPr!V$7orW&AJl+p+rrTRgw^IWo((-NvslUvkmP-Z2WqN+GXDTF;X)$o%4bTROOrElxA^$hywLrc*A!b5zSOQS zCS{Br$>Y|W{9GF%S%8$auv>txeg`BPor4X|21Su+(Lw5>2PS3YL0*71NvyPQB(}R{ zXW|=@N8A1j+a$!JQ_PZR{H__6NGJnD-xWw7v;Iy`lK~q@@2?+IxBAV~UvQmFYiOc?b^C#?&PBH0{0sEiyF7Ve=4%H!&juc!qK|s6Wk%(j`HpFR?bAGK60-W0MrJj?Nj~>7_7p4+JndG$$KJx?W&uQ9FN)l zU-nrhs!V6s2#8!;KM7lYE%W~Xh=KNUOh{wXYkHoebOe-(U^ng$PQEy@8z-8C^4(d< z6~k_f3WeIGO;u}(5H?mZ#}mUS5=||Cc>e$r9r=FGWx^6!eJ$?o;8{^b>_{{OPz|{c z@>>g9j-Pb0NA+unqfqh;om}wz5)sor^Xj#O88o#?m*w&vO-)H%8wm}bRtVMNq0=O&1T}L(>@H7Z% z_Hni(Bj*WyaMq6(H*_4FbfNnzRy@Dpas`k@->=tgpGmx;!^hJysiE7T%OYv2LekqC zD?4~v*dJQj72ZQyyZ708?S$@;vO7tsT;_j z(tDNt;<6S~$7lGuA^oMv-poom%5x0TT)f{3trRf?s6XVc0)SF$C@rsvzq5B29-&3` zK>+^OFZNhMc_+{WyJVm!;kfP4@9_*Y#I7EMi}i`4^x6Vw!DuRe6H$Ri$`^X1P&&&i z0<}C`4TsU+2PRz5#x>&lkdcwu!l~ogwjU2{kSusztXc`Jg}TPSSR|i{qKB_Nzv4L{ zQNotkPGWMNus1%HeKr8|aIF6T3x3Z`OqatYCR@9$LsD5;L@Ww#Q&(~E6i@Phn<8e| zF;gtoR^)N?Ex~CTjt=!wIalHL#4sftXC2kdF%uGSs8Xl)Xm_K3GTh@rJDCIfv6-2r#?lFF>2 zqv1TBBflQIEv0JBJI6}zg>D=M?b*7nbHGa4e7q5)6>@++BOxN(nH zifUSPQP`XN8%o?v{OZ(oV8`uTzhAO{cFXp1CM@{-*aowrT}Z2LU}#m?0~+=f_(A^w znwtTGWO4wluW3I}okJum>Ixz&?s)ts?0g>+WF-o0j!Q?{d2MxVH7z7Qi>ntZ+a9zk z#+ zK?HoQ?Z+`OCY&7q0CUB+^;N&%ap56{iNqORqoYB6z$=K^PTt`Cv^D;0ut>D*$1mZu zvXW?dnBk=Y*KR;@*)raZcA;%_jie*2%n~Op>jA`|1LEcOxei}z{G6oh+y$^NHtW7# z*Wqg`i}n2=A}Sms7|E|RM}M-P7yGj@Copz)Sg}YwpZ;;j&NAzI3)x&1^=#jO3-);Q z9CKeV?6IDYRtCQ;rO83x>7wc>Atcd;-p2@HSWcLed3RA%n1BfQfHeVs%F7PzK#{Z1 zl03xz zzZ|jx%T`Hnhns3LbDXk(%`;MmrE9+`X4GsQEVnHs+gp|rG6qsd0ZoDL@nAcmsWI~1 zkkszh*<%%EJrYkom?{OEfHuV=qQ3Hd>Fg-{j;lb8XdfV7Bl-C0LXq zEkh~&uMRn|bwD6szK>D3l34a+Z%>IEol88DNu9 zjUaEplKjgM=AM|VblJK#5K%}SOHM2rI|YtV!jBV?N{aGvy?sSE4(*ZITk`(^^Bj3r z@+~V;ou;$79}J8bzcOh@`(I=BU-q+EsKz;maf2y)^6_99ejviCM{s-Qx!MNJd*YW< zxHPY9Rop3xwLm@2D%g*atv>u!RZkJ%*s94cNZ1@zN#^7?>x!s4ay2xkz6D)PyfIe! z8e*<1PPnUKKH=XAu5JGSvlUu8VyYU2{kEGI)-NPjQlUdJ+>_W2rzH`@#F}CH#;W>^ z##KBZO_sm4{#UkVJ>L6|@xv`1a)=y(dT^m>z^Qnc)syPous)~;8)Iab! zD{Cy(+Z(fBkcu|=LJCjor#>7H3euJB zmbE|s((kLkN>eCirxigpIH7R>ntm9oy)_*M-q@vm0TdXez#rj(C|zGs`kXtpE7bT5 zwh^}z6u(y8#e_=GcI|$HHhi`k8QxRiJD<{FM~4W(o(U=pSc7ghSPNg<^}kUREXJ@O7-uI`Mm#_a+E7m=y2`6KyqcGi^X@M?F4L&0p4CM?E5$(Rr1--~~%kTP!J zLS5*SNp&`-dj9~v;$w@_K)g^`B8ECl;uyB3rtFB1BmdwC~;5 z{G2MYUV9M`x4w}hmB0}rZd-qg(^2s@NsTDar$rR5ki*EJ0ho=5`#eznyeL&xwpug} zDw~+e9|5H@L9R(@)C?B$J>1@^5?NcN0sV^oqrMg_FHh7A(?fH5I1f;gY4C*~-3D*B z=`ZbK8J0zLXB5o0(+}TAx-@J;wSLOFxcfOU!7CSr>Js+qKC-TB#1>!mMRL$urWjtc zdv||$c2E@UxdBMX9&Omb19Zw6C0k_yoKl>ru>Sxmxbk3CEwyJ?D79w$D*dbeR!9~S z4@vTxxU7LdLbRzOyn)~0J+k6lKBxl?QSO?tg{^E+J0s)OEnChzbMosO&3W zrwX(k=};?QzZAI0@7Hh!1#+PuXMb*(RkB;HMR7`?G+oF8zqTl7DWy7}o+{vqXh`3~ z#}!mnU_1wZ994N;xYwoyXb`^$>58vWy*|(%b}Fi*Qlgt=RbxoiuPS1zCO)z>LAe(M zSEVbGk2Ddp%KXJ{mk~>*UNggO2?b_YEo;*qWTVQ0iT{azBIN`Pd9ax#1_Xq4zPwil4HcvF06}YX41J#T% zEVKa7*X{hWK(&=?J81O@rqh`N&l7V(MNc2|>5>J341ZM6n$qf7kow8U2L_Y_YH;z% zQh2N&CYhe)U;?o-6$Z55rYq5tTj|hPpHi(OuGAz@ZN6F>Nn^K{*HSAPSJjBr015Aa zvH>ZY&}@hrjo1#Sy8i&N%1CboIMLL{Xw`|Cxeh7@{{ZV(Bm-QEWg9*Hx?9W*BQ;=q zFSbpo69vR5@_PKGREVe)uM^l|Vp9!fOG_(QWN=#H+m8{@3UnXK_OPNMFNW{ZjQYZ; z)c88nk4COVk}>Y2y%ED|r6UO3r2>M#vx-p?YqBD!oO6_MS}7Fi@Ui*hYf6#b&fKDD zqUyup2CHA$SHi97w+f#M#?wxSc&8A1(~+sbidNLj#ulFH=@DW<#G;QVG4DtBP%y>9&@UDi~Shc#%__gpp3WSN5`D$Cl+0 zsa)Jia}04zvRhWXX+uhXH~B4!rV&{|ac?1=QJx|hT>u0!_&2}pD_~=4I*qNr81E(k z+;2u*$RD%QY)V2KR=JDo1WLqukW-1@>oKM2Q zj^ux>`&cO^`%Au8N#fZs(=Hsv9lVSh>M=$;iqPe*DcuVV-PtlE z(Cm_hP_>}1`?A0BEQw|n-b3rOHmf5LMM*qIzC|c&t#aY#Yhg%bhl>LL0Jc8Y6eF+s zSzruFQLww3TZXu}c@?EQl=~u|Wq;Ml7B-H6m~G~gf8I=>pA)&Lz!dUHG-Q@F`olov z%Og{b0pj0l;{O0AEXczeD*IG|13s6ixOkp2!ZtK!+j@S_#rs)9kOO+FT~DRN)`Ngv zDyvGU6#c*Wk1RtX7|xq#BHhnRmq7OHeKp-wsp}W*EB@948)hX*o{OirSm*l7h>*~d zp?=reD&J?WKdHcx^#Oy&FXn(uqUfE+= zW7__irCX{9U|0~d862qChWT>x^72;G-PlY=1&PlZ*Q;{-Ehj(O z{j91axiW|wr&^@Rccm?=)J+?3A%z7A-J9m$2OP56xOcQ{_fcq%ZOSE@XwVr{{33;a zyY&=&Zp+Kz{{Vu*$CJ`Lt$AgtTE{J-22!?UQ{3qjAgrXxNTji5lZDJh zYa6i!uF(&PnRu_J{{Rmh!;p4Ddp*1Uaf8cp>AH38(JEn{ZZYsR6j8aa`q_(-$j83# zZU&oWE<>q`pl`HWOY_Qf48o$LW0FN8VYgV3V?pq!0DOiDWyv7ab$8J&0$rYPI4{qq z9r*D-&5{scW&(3%c^$~*8wwxC-yuw{(Lt8Icg2%om&1P?RkADNim{I~TpO7UnlnTI zuQA^ z{Fchh+hdG^mDnsrril-#@vtXj>H%Nfs&e?&CHqXv_Ogjc7V07Ocakq;y3ws#UF1~b zQ`FO@YbGeWd`7}}0}iIO$Tqs3H76BsZl8uK&;ak&n5y(Dc5axe&Oq0;Dzv>1OjSZ@ z0*?#|vLGAc>s(b@l;0IxMK>5#%2vH=in+M3p{^>>3N{~hD!DltaR8Ik6g>CLdZKFg z#(2U>1)(t|d$9iXm+AO3VTTNo+m`#h%V z-|VuJj*F4w#G&rI@A-?TT~BQ_>lak`grRuQ{@i?a{{U66aCtNF0y^W(ADH@L#d992 z^TRC|e(V+Bv+Z6OoJ?b=3GbGF=O}d@K67v8>ok(tTYXDNCPW4uJx;O%f}{?h@Sd8DSZgz z5_**+P?CP0nG_Th>K1-!K(i1EH~edtG^fz=2+ZK|I|aamKdo)*eUa)`m8W`S>5Ko< z?^Fp=PtlYzQ8!hW;TuyGMFLoSTX0b33P6UV({uJ|{>LqeVI&rlZ*ORyP??@e}1W1Rco$f#Z{EDtDR{&Hn&7C_jx`o~IDyH&s+&{t;f0JLef|l7Ok#DPVbaYS- z$G6e@T(T_K?Utb?rErQNbZFXyvEpg|rW7(+bnwK?pSQfV9YFBN+Di!YCXXhd1c!?& zvVf$HK|%eI+x(naM5ahNEn<;gq$05)N2 zIk~!COp(Vfr2K|rIjT=>&1)F?4_sAwm5@<;^`;cLi!cD4{Bc!{Zq40K;rL>xVhlTv zi`yg^$&71O_kmBT#z@E~p$5Jc8JCQQ3n(l`;_$|jp@?xsQq(4-9k|yrTr!iz<~<@X zsM5G1zY0A9?a{wz;F3U3?Buk%(^7s-JZniKX!`vAFY>J2E?ae~u9hjEtj$mR>;q)dnmR5|JF#U;hs&Ll$(Yw3}=4by}E)({%W zOf_vqVTr9JPgNwLUxW@M9l0O%vdUn?^^FtMynDxgO-N7_8ipWzfAH7{WyQ5DYs;7P z?d2^svMUxO(TV+^hy7d(f;mi3#lcBLUYvINUo4AMnCMjt$^w}LvS`WUffHuE{$I0P zvBx20&EWE`qXxchc}5SQ2yP{rziM^;wEqApa~CLfnqq37L1?<9_mGL1l~|g5BVs&r zSCCP5c%^Bp$e(4+SZ-)3nC?rM8c=lVeX&-(BHv-R9sdC4tW~;D)VBS1>48@nxco|Y zJ-T5^p=K&UVL{gvEdlAc0Z+av(NGT&xy38Wsi@)s9w!toLRYTJI{yG>D!970!(N@n zMGHglC%X~UWRkiz6dpeKp>g&bSH1;qpx2Qcm&Ye$_w9$wjJ9HP$|>J^ZFLaI8r&5lWt% zm;NP}ATfIzV;s^v(Nzz{A1~Rd_z%w%mDlh-m}N7`&RIZa2ua`%z8j`I(+C*JXsHYU zGSiD!t$LRj+L+O5&eC?1&>>8e-cN6}$$T+Qrn*h+MrQPtjk<%((_((l+Bid0leY4g6h&~4$&a_i@c#g;zYYVkU@vlmv5NZn zBf3~UI5)2^0k_+4wAdTA2tjuZs~8!5M*Cra-*ZkMCCI5#o_m`h*AUh1`OuNjZMVad z0c}RgNOdM#NaK1IE?@lnV@S34)BQ?A1+e47m8qxz{@X4yDq7%Zeb|vIXD3KO{ z(EiUJ+_4KKYpC6RJ2>D}kxIJDP(qFO{ga7MQ5t>Sv=>oZLaj1PR4WQ{1pGXee#0VQ zK@7Ldu!wyq#L`5St4qp-c%8kn(A8?%y~3<^?{hz^ZwxXPVL;5)_&5ImS0I|SJ*vxf zV#X;r8=5^HM1V}I6kJalc2is|0(!Pn#maO%Wqu`sosat* zh%BU&-dsx>%W>(mK@g)NkKR;xe>eF#GS?I}-TbNYs zEJqeWy+QcCCH;(pAeif{vfD{)>FRpm0;hV4{?h*dFY{mlm8pJN>err>uwV0HlbDdb z3o6s2F#AdTjrREctjEb6oZM4-QlT3SshDoSFHkz1QtFP|;;oi6+omeC562WZiVd+= z!k&Ov6>oz9Kmo;CD93U-br_|fet4@z>CjRxiwe6eguji-`FqDY_>dY*J|+lkeGV~%DL>jpbx_kM7e>Dt<9{SFLW zOmQDkQT#Y(%XlASzh-(A%_eO>ooRNC1c^2CG^uj2q%!zZWdF+Dv-3{{W^n zMZSVql3Qk4#wsdE+Fyw&C;ToIpp;C>Wnz}&)RKNE*6hvd1^#}&v(;NI4P@@OM22C{i5-{rke{@<6I~lfA=6yE+LU*iQ!4WyOC)q;1fPaqN%|l4 zvXb8(TeE9;pq}n4SrxSjBu-OIgau8AEF=3U)nAJqCMOpVWLgK8^!q*yr2x}$ETGhE zO&vd%4;8ied_37CvqZN3u~9UNIG0|>?3(`ols{_`Wv+WA7LvS9>||a+x-(Xb{c`gc zABij1r=AF=)g-!jWl&ZYP1JXzA^TpZ*~pPi_@!lzU2B?U+-zr7d&wiHiB(uiAMC-z zd@9KQ0Lz$D+1bQjCTHZI$t9Kr)HSdmxq8+J#TSYDB6J6jshE<;<;N4%bWIZ1M6^vl zzzCp9kf2j@*D;B=GBKpmgQi83s7}Ci#auQu6gX1zug!_>?b-<ScAXKdm$M$(;pg8iA*nF|AqbfY8@qhrUjpCK)S_!5L=DkYZGszx~rhpB}C!iUz!yTPIqC)m# zw%V=kqMuZ@P^>A*m~H;c!!I-(U~N}JjWr!h(UGX={9P2+a5;ls=yI&5ZJY5AQ_{7& zogh7nFIoL$5Z@Z|A0Mty^8KWZG8_v$yjwo0@(&TC+nCtAd_hu02_MW<_dXeglbf=` z^s-Xb*a9-9_isubn5%)sTzYh=#Z;w{g*c7-j8zQR45NL#a4OSwgJd;him8M$9!D`v^M$w0H1tSu|v2N#ajdJ_r+UPiim|Uf`PL6BS@L9-TbqFC z3PiO$fcszUa{O_!(UNo?1*d*vHiM>^?jU8oV!>i{G?J(7J2%+PmlX$F!NgGd7KwA_ z=}xDr1a#xZD8M{WgZ969_WuBv;=~(aFHa^@2bAQF=z3-`#8N@Waks-yY`9a7WK%_s z($!>!Mh__>lmSRR>Em1|38k#Ucpu>ffN!(0KkI*$g4Hk6w7|SBJus_YE_SIO4oL}(mYW^5np?9Ug=i0YczmglC7mS~-cGi=idfbq zcxD`A18P_O*}v`o0F{v-7EqawCx~i-^YW)!j`PdX$Qcb;n2szz-%gAB4gOYQ$`tLf z&xk&{{JHbRx1Kaub<1!gXR6B`Yr;XZFU$FJ3Q=zilbWZ;A)+ql02Y#HK7aFd{m+>7 z>9nMdIU;fE37H9BhwKI)&qdoaLxazEpxNn-X&NkqI9dTsss64>sI_yfs}hb#DAX#W ze{7HqWTCYv+=>D?k@0x_IUvNb>zg?xg`?mSWFW@fLHYdu0LsZ7m~4dd>~qfYB=Snr z$5k;&#-M*PaU8fd3r#1}Kx0m*9JK`o<0K0L9H?Av^qjObkf%$2RpfbApHGHQcDMi3 z?~NHLN`X<7GD8b?jPKCmluA$lD^uZ$X|n#?^sXyTt$K9DD0{o5w-pAY^cgrt+Hy~X zJm<|#g*ti6l7*jIbo#p#R*rR}7VX_|6$wSn>3gPG!7Qs^ z@tRi@JvQFv+e|j{T*kAGM7t42AI;0{3=BzA z({#A>=#p!>o#sV6Vg&F!yVLgYs0ppL$+v<>ylSXmLiQE=D7Y0O)HV3h=HhrF^yyF8c45FqHUq@h!z6$iO6k#EMHR);8K;GVD^&fUI*hEA zNre^aB#bj1$s&S-zb@Qx1hKiT#AKKjwI+s5!LNaAv^5nn49F~JNZ4_wAWd>eL}}M) zrNPEvNfiioH9i~TN`;l|#G#BuM23fY{{WTK0ZQ-DvFeu}Sw#xb0m7uzkbct-*~pT} z1wC_8zqq@O2nh6*d6bW+>^U=JfI%qRD5i;o%Ej24kT>h&kt&U`xx2iTqOb0U!Z@0f z^T5xVTd!!hP|BCKp;}l?c(5c^n_`i(3bfQ5+)NnrxRBI06F^t(H}d>HvwW z!{mqUW=o1g6u0svls~_k9&afi@jU@Q4Ob#dAf8y;wvxY95+cBgLR;~v{{Vvj0EWTM zHj+uLOGE0167uU4Z9qIvPxW$C#FU2HS9_OKl>{yn^J1iN{q?7F)*)$NhPnr!vK^sJz@+Qb6U4 zb{J1W$y1V5U4?z9PGQrTYi5uG#YtDCMS6WW3PDu1VpI|ZclHMZB}S2(r3fD4xD~KP zIhLvEQH7Gp5;h^7i9Qs?3ZZ>p?!f!^#Ve{%aVK$$7cu9%HGDS3TT~q@w~i}nh`f7I zd@w5GN87RR*y61M2E>};t%u{d6+R~wY%It20AHR3RRTf%;HD{BQD0`;*cw+FLvpgB zmIHcp9dLyu=6+_D6!?Tq9bEEvS~pMG{{Scatk~jpdAYIHvD2>HJ;7EerKni<8sa zZ6Q2*6Y|}^)yYzn<4W@-&ZS63+>JS@1wbC>fA%>s7Ks);=PNcB0h!gJW?nB7apJ_A6B&W z(3c#Td@aX%{{XuO?O;&vF6z&8&a#5Ca4pQa1eN#u96hlGOhRcCw(kNF zr|hWxoFK5OL)u?lpq?}==t`FYzX<;TC0pU9DXUrWMDo17p(Z61HT|E9uf>(fvy4%2+S)@Tax;GMkcSL= zkRB}!C!rDp`w#xF{6`~A)|OftovgH{uo7v34o*-`DlKi)>>GQ`Pug$Gge(ibJf$>$tjxrqD^)rmV zm!>tP!L@M{dUCKF30kTEf8&4J%$EToXx*idUN;vCRg?-SH4VvI_OKSfQJ?Ad7YM+a9(EKCO!5-LciBnPh^SzMb!;1!q8 zqOgpJM&PS`pWa7+6v$HzmqM1|p3>u+T*)ddZmL2?N9~?pvyveZl`{KF`Skl(;?&f^ zavRcbOplGgJZ9-YvSSd&M#?VA`l}VhPazW@MdNYtAKT?Y-G7;ImJEu{;%9@@mPKW8 zUX&yHR%R-baFX6f&S-%DWo3+2fW#v}7BszgLPsTFwynl5tbcfPwzM`8g2JhSNDxEJ;X~K(n}YpXg85T-15rHI#!2N zGum^vE{h=MQO_2OZP9<5{alzWQV1*A?PG@8>eGWp72;I3U4Nyz`N8&vy*;A5LG^jt*CY@19kX1wdrLSL${xr!jPi>I;vPk4CWqJ+y zALcm}ta;?EK>g?xF2H2qLXrC={{U^l{i^0Rb6Yw3c-gn0fD{4S z_2vt)r*kKur_U6+hsKzzt52R35|C>CdD670O|2t2_n8dve@G?P#RtMIN! zV*!M+5|hEM-AN>iWj(=+RlmJ)QCfYKYOnh&vw$^thrJ(bs%lV9x3Jz$Zi?12vp4Mg zEym`17OJ{~H>eV^uBw;noi@@BR!)>bJb zcQ=97>4^?phgMY|4;pVAnSTq8G8B5;rmJ+ZK?o5|@N!}CfGN^X*iVO)cxeVmtLsyy z$28G;KV1|=Z`<7cr3yJW`|~X^4HkJV(sgUHjdeWmO(IltQN@Ke_<;WansT~rL0eeP zq(=;J%FE2V76JW$h_^5J96_Wj*xRMGytnY$dQvj9Y8t-*9fXv%G zpZYgak~n8{HCoV-{Y#qETjr@ zXDemecb8!|%I|LQNU0eLsYuL_ zcK-lj@nELdNuFqC=vX2|!Z|i56jN&QXzP~%;L1d=HZ1EU+eoP#&9YE~$ck^t&^5SMkR{s@_ZT?!hH{cKw{9VabH+W^A=P(t{~-60b1oKU9Pw5zbS^249LcTzvDO@n1J; zBI-e8UxTcGw-UjfN894*_8fnen=V1q^DKi$zPGkPZwMh2c=IQ3hvFab*;y9MHRa2@ z*>!cfP>|TF(Wolrzm>meV3@Gk6Gqt=n6*aKBsT2DQZdO_rr*q4_OXO1a%JL3FE!{i z!tq>?X5bny5Y?;uT+~pi{?<&ij!F?vH0I7ZTVfgC{I2V_hDbHlr;y5#>_7k$QB0E( zkZO9Em=hdiH>d)DKjK+*Lysha-$|0$1^V=YC?q{YoGIfHVFU% zVoZ&`sPgTX)U0EG4Uqr?G}#T8p~NUAn}OnTrpC`U=r_eJs+IdhSFLeX8D?PA1Rs_K zSxTMpRiQ@xYl^MmO{qo2TM7o}VT!7QO^zzG8hrdQR}gVl!QXSgzAAv#wM&~W0@A{3 z-c{scWKgu}Ur>&@AT0%r`J3}Cv<)fsJIy|5CNc;qT>l$1(75c&~E)k+3i4~;} zj~^V!gHhR6NY&D9MA~uWi5Ou1HR`ART#Umgvd>;No6@Gh1`Gz<`{pZZg9wqw6?R@!JyyTXlaRJ}=3Z-$`0BSu$tZf0M0>4=WBtb`C`^YhmaCHgaQzs?;E%K9Ag?|kfMB{ z<(9Bvcd1NnFF|k#r^2NDftR=jOw&!cj(V|T(k(>^=rKs$3vps3o75^R-M(0DfeY_0 zV~h}f)d8kX0ffylh%M#4n8|Z3K~kgvLG72wY~uo#>Uw>|&m1#sS&$hOzQ|MXw=eZ_ zif;v%+OqH}eliUMclvOEs#j9U7&HI^waY_9l3%T-Do|Iazx#Q0H9!B=?`mjk+utZ; zvgR==@3lSgWE9{e9u3z5Q6aY53b{xXBDkv$^VQ6&Yd4@waw z^0Y}k<8$a`h`#2e<)*fDl*4V5(OG0Q6f=1_&2Yd>@Ueplrf*8o;ges!cllwz&fpNM;S}xw! z-IZXvhP-1A$i}n>?EEYHc=0EN1+2#eI&&6^K5@4=z)!PXmx%ssd7z3z*+wsZDQLoh zm1(&nufu?-MBG`lQT=vsQPqi6E&B2-(ydzdJJ>$CcB+mk8KK+aKMZQ0DAm3{?Sn<&)}^fDsYj)MnnN zw-w1TWcqEL%Ai?htO~SHpmsZ!rbL!hy8VrzNbNUioHZ-Z54FGiYk^Yja^~TA+{ENV z=`!&rZdLD+3dcvBCbEO-=sCLVn*sqN;a&dLOa>(%qnqorFQ`H-rP+wBcJT4ZHI!zh zr=`s%l7s*i6x0g;05`*kC{v2o-g!;CkkUpzB`2jvZyXXVgRZSUs1ac*vR0@Cd!6|l zg|j6yTLe{om0CpNU#aQSBWVh{d;yhAQZJ;V_Js+jOd%+niELt3Ei%Ty*JDlp0NCN8 zwh})vYevQqb8R4-lYrEzsQs=gyYl}4D+eWEw;IiEzet3F7@c357OOo?6XE+yg4t6f z{GIb?X@;K)%2Gn?Rr;+D!u*Gi^5#BaVavp5y`fsYT(_{y2Q)S}JvQ-dQn<)RVBQ|s zRbx1)^%(P~MFRq?XC+8LYfh{%s!4E{3R$VK6lVSixqKW++FYhYS~GkE{?Bjqvn9r) z7OiZPIG!a0iUQqf@?33+VwX`%6qLP})3+oZv?Pw7X9^ISuB^VI!yKNpRN7T)xnsW% z@_aHuQe8p@wg@fxdXgWq&GuWdbza#dAQxI`JzrE2BrX60;$6D8CilfuH93g0H*t?% zk6r?!x5d6nkcvYE>o8}MWZ6QoqYo0h{g%STWO`b~Bl?lIH?Hb-;(o~g z04F3EvG&uJD}{-N0mz?FZhl!H5pCJoHM^^cSJd3N6$kvEo)8$4q2?JbuD^8@jJr{l z55h-(_IWB{X*c+GD?ntC+(JcLlT(rRUic{{WT|q~l!p?K$7-)%rwt;?RdF0MOk{w% zA+GFtfsHe|2)#Q_7HVQAt5Ue`Jx{{btJpK}fvkto>r% zP7nwXAmj-&ans`C-}!SNF>|!hqiX*Ek$1X{jb|uJhtWjR%c?Jy8QU)+YDsOsC7XvD%M9E^8Ym%>6b!vMN=khBa?dkX1HX_;=gK4WgYkmFcSpBvp!jy+Kes z6ns4JGHUAb-%nJwjM3QadhPo}{{Su!5K2v{Tv^_=#hR(0N;I5(x8UE?EdivIn@rLE zr2x0GDe2G#2A~7)mbDXTZ#2omFp}&Mc>)K;$vlzc$d0R4gd z!wNuI9Gr^GS#8=fegcDY{O5hvn58PYy@okdO-^;FMf)}A8;%B4)}st!F>@NUfErNz zCx6)^`9>%O6Qj!&=~j5YAPH}ZfN{higy!n?Vs$}59JHfy+rTOR04x1$ENL;-b*OG_ zqPCI&Gb?;5T9y80PCb_mqL@|me^Wn}EB0IB@%~(x4O5cnwD_P~Xl$s> z#PViZnhv~&zwG3xtQ$h>OoU9jEM;Y)rBwV(SM87TGA+rbovW+c#LWUi04#YhtwHXs z_M0RNS&1rojJJA}Pj_W9DF(3s!lV42KWTrP5Ku)Tbw}Z8!e*->1ixyLzxy1WutDiB ze{pJ2#ye!f2FDV6Sx)vL8Q~p*+Ff0!1&5v;Li=;6swo!xh_?jJ5U*&-Hmw-tNyCfBp6MYi`cFsRN_l|e3EKaTATf$mN>_DEV{Hh zq^V9#GS#DI6!iy2r}FUs04pTK1pWyTgcCS#QWsFow%c)Riz1clw>NQKOBJ)9tIPe^ zJvmeMd@^^l5q6f%G}22Fz*<+07B_Yj9Q*t|c;zL?Pc29;=6~HHLee^oszImiU_~nE z`ufTPy8T%;;)8I?e#?KxPv*jkPb0dFk5tL($5Bzxk9Ge5jj|<>Y8Le_6_VVT3YJ&o z2Sd1QizT|f)$1NH~}ZTmTshZh-e^XA|Wojlv;QzOillQpdIjiy?x zoRrif`kw==jDFJo&TLNGI@s=Pu+3{#)-_lWBDibzM)jGKW{++=GXD4CugCj2REv=i z0{;LnXjixMMfHbyo<%R#_d|=d&73F)d|r9MQ=LWm!<}O-~*rzh~h6 ztha@yjSZ;iQCUkV;#%CPDi7NRoj;rXmPkQ~$ddVGL4cNX>Z>y*DoZw)9Pio20%&LHDC8j3V(Xpi#(L(LlyFRKa)Qx>@;h1d&KoF z>&ci8_$59(kJ`)`<+o)F0CRc@LXjsJ#SwM@bOYs-Ick8g>OlEomvs~Zrxk0EKMg8I zDwXT^t!HiOB?lwKlh9;ep)lUPLHh z-Dq<&5bEG+C1#j^nY^j`S_4io$Sd)hf&uHg{{Y6>lWrgh7Mr05)7A!+QP2{29xi{@ zKjmO0l`>l$AvC=@HAj+8VuhF*)bF`$jAgoI4U(~=q_Hxz@&&1=8lhfcC396G?<*h^{-fGmua6dXnBLay-Q(E`=g+5sGb0)m^*Fq(bkt zK8#YS!~s`0sv7E5;t@KWRSz6we$6Z20;+;Z-)vR4P=HkKaH`dBdpMSjQI>Y4EA%!I#{xSN)vHE*;a@w0%i$;un*x3kCstkL5XJV$@1MNSw2i z8iZKb&?xQik}Y8$6s2T&WMCreTJQH|ZOLWr>zTku;27<C3jkbNF)wKnO{;x`kW|@C{>W405=m}N`t;en+YeHKJE)tV(fh??peRD?BW=vR+>pi^;MK9 zui5TAab^N#EKM5hLsW0JDo_^|g5-Q#H-X-nD4J@Rv^&_WYsYc7T(gO%hLN(`M)1_H zH6wo>nHy(FNX$?uQaGsWdgPFS)U|klG4L%>*Qd`c3<^Q@q065Z^!itBUoV&WS!K1; z|JLtehmKImY>cC0zm6<|746zWyO5*90#QoDfW7dmZVyiQs!Oig{^_T3y9!g=GBHYv ziJCSZZ>U8CcP^%eJ|MM5+w{$dld2+?*jl&N)=OF>d`C0XFg?G?$d*B`GuyO}62jC0 z_hq5!`#BcNS8X<5smk_j3(HU_HwPO-AGgxAI}_;(mw6%;Wg7=?<}LpK8sv&WMeA2a z3DR~g>oNtZj@|eBIa4$W+=*iK5>nAb{{U_JhOhjY{{SlrX)?2WYum1D2Q=x#75@N$ ze+*DlZ9?HL6{4AeNQf&@y?>4%FeQ!OU0hrkT4 zG%NM_N(4p}JB{n`9IzGztF3qHQhLpB539WZ6Q)ddS38yWU zM|>w_0G&d%w$LTqEDWF!7=uE8X`d=Pwo(;!8=JX7jZxJAsWk$>2)BPl zfIBhYuk7MT2%=RqcwS-XT(SDn0$Q~jR}mn~g@5SC>`=Ayg6`&u2ipGtn{eA2P`fk6 z;M;Gdd-eQHGr z>{yzp+%F!34XPqRUCYaGvlSI3-7GQ>|81(x;4iJSXU@tG%B#<;^ zsl|3X{?`8heo2ay;wYEaiZ=CXN|hgOpU?X%U**CTAUeFW2~=@FNjzz?lh%~NgghFB zn#hSE<_T|6dJ+!R{{UmR9925hAt_{$Kmq0nQVFPDyPxL5#?svq?&`uR6agugidm`x z*Wv#FXNXeEoSZQDxSFW>k00g9u}L*~zN(E3 zF3%M{B1hQ={I8xWgRzv{M99@bqmuGcH|g;*O;5vL9JQ#HFXmTC zB>1=Vkk+J?+|%Lz04tV2wndLDKt@Pvs9*{9@umjE(kn}OAC0_>^3uGB;sE+`Ock`b zWLt>%y%sjFQMtkxNt&uX_*-=R@eG*&?yw~t|)M-jyz31cokw$?l(R@A1n%l)~}w< z)$Sr*Z5Sk}*idylVwFo7n&t?m<4$O-K|LxuVyMzMj-XfX!iPB^)sFP*C=$p$NgN$!r|v)ns=8CtkJOa)-_fJys9~WC%?-w z!-;9-wWMYfY_54FN5~vltc|9Gh^0W{riZCfCPd`JS=hnhU% z5;mGNZfo{=nv$pN{2#M`$(&$-@{gY-y9}2N>9HYKk5E6!>ObJH18JNol-ot?!UfI4 zq>4Yi3KWokpO4zfwG^XWifb!`isnyQrMFrY0)ea7m-8~@m5%BSBpfa$F7T-pEIuMX zm;F`3#ZJZxTbrL=V&1z0K(zRFsQ6EY5(6N5A}uv2R!^ziNJPB82^dgSwrc+XtNS?% zWlFk^nmtdd%{rZnM(DK%u`i0-XF+>AV&0*hVqoSfapX_gdj9~EjZy)$J^lO^j?vE4 zV)YKAaoxTj_tO5>M4D$9l8@0!&jg7hA-atimUG9F6IDfH@Rt5e0!Wk-Jrc$5;4?kJ zF`h`uz;aqu5s~u2yHvJzn`LO9=oYncR#4QbsQ9bT_P@$plUeU%H`*HBKo(RG*J4+r zZMWLO#2QtK$Nd0COH3jmNT~|UPr}=LSb)4+qc1eb+C+vGSms3%0!eBU)iTJIsi7@w z?`|&Za-1OhB<)X!;`%-;G9ipx)9>tbyQw1_l}Kl(p&R|Gcl%jgH{GQ6u*DtQ++4hD zv?My7R4jOnvMqr&xYBHNm_^SqB&+c;U4tLnkpBQRKbIy2G){I>%Z*w_SZ$@Gkz4}R zB9u^m5B4vFm55S>CWh`P#9>xfZX&#B2iit%>-$y6w)9OkUN*G3o=Wq2@k8+O+seQprW2gStx(Hpn({9nz4mau53-syMRa(WhUx7F$;DO#4HuLl1BE7bcx z3 zzZ|?53VS6!U5{0=i6A9pg=@$IP^#TH<&8w7@m|fMY6))|kKR$(@#GX9TXX$}YGEOe zWD;IkYYdRunmVYH(%ezL*T?e65ln{Yokvg+LljZ|`ebfW1pv^kcQwe{Wjjl=TZv8d z$I=om>eK`t-{kVdu__*3)$U~y8;Jc|Vn~gS=9T*{xfCOdT}+^-;A7=&i={{Vf4 z`!vI9okJMY?Y(eBlXa|vulY0|@hpif;}tD3+EPDc0%Q zj9Z8`>+Ij;;AUHv=1HUuvJoj9c#jHwu2_XhtaRJESQN;D;^`c7brfn>?SH`iyptA5 z5lGxd6`CjeL{fwNpuh1ft(Z)Gdv-pHGMe-q{&*0>b-AbVPQ4$Rt$}+fm0`SyZL=O8 zxL@)<+hubcLCeJ|dRCwLo#o9%y*n$fSa0zv9wwjVQ!%^}<^EzknFYSDX>}NQB|@iR zRs$>GErMW+VY$6dl;48%P<2T!1_E-$< zvIW7LClt#D>%0>HI4~Lh7QzjZ@^0{;ijUwU|S*4Elg<*a`DO&7}{!@6i zNw6DFG`%Hc)MQ)PS#D%sR61-4rCK!~w5x%Yrb}r0TuSXKwXs7yj{A~p@hYeLt#|u* zbR0~nM!l#aC#PzO>bT{@U>=9z9KUP*Y`W=$Lt3Vlbv%;@=ONl8R#Vj+@5(Yi-Dm9K z1*oy}=Lp4c(bvt4SuosJuWQ5&r-u{alSQ z;-&h1%#q%GTHZJr0~e@og}DwS5BRZ1*<2tnl#n(H1h-PAp(zx4gjFYF@TpcF{{XXu znq|Uj)U_QU^#dKVlGBb~7ZcS<3tDWo7&)jktD$L7>DKaE-bhR!pIA59RBn||Lp+f6xd^w_l@t9oy9LQN?`6r#z)rxky*ivoj}Q@)2!iXCXY3X&jsEzcvt zPac2jpW9q0LwSqL`em*2*`v=j)QcI2qV73<(2@QZRUdER_;Mt+#vNX_`C+C>VWocZ zht+cGL9JJyKTq=JyELr3Tri-_5FVW~8OdM6YM;9mY$ZiHV#y78dmX0Eek0gqfF-U{ zrv~ByatF2wWFBMx067C|tX}Bx+i483!Cq6bBpMI0p@v%k*Eh}A8obta$zyWIiz!e^ zuM$t%TINfFP{|Zg%ShLf0o8`&{{XFur}19fL2ep(5Eo)S!S1b+V#zG81eUL5Z3t_k zyE0U%9_{?YBm)B`Y2+wJsGnSNZeyyGP-=hA`Es0%u-)qqs0%2Jig!DBcFJK3E%KEI zk6wOZ-)ef4mUgJf(7Pl504W3Z)?eHI0F5&~F#~4@A?i@=q+VW^)Y|3ayO9cVSx*q7 z{D$~B{{WSjaEBaZPG{6D+(#9oR!}P|kUx9GZ^Zqdfxnk2Ft*_~W<1tO`iqP&ik&(V0VM6oxu&Y|`o(J7C*H^ z`zw}PQzN#xbyQ>pqBL3#qkYR{3T;OEBGNK|XsJ$A+vSss0>-ticv@UX9B;<4kW>x! z{jc(JWU&Dcr|3_AaJRBJF%VBKt?kPrBG@)(S{Ie0)FkI3u!#i&jfw5o`EwI4VHYb7 zpN#IzbbSIXI*SlB>|1@jGhZp0J8XD_6ND7ox$Tv=uaT7n2qc_U4D83Q1yV@>YOco> zR0h8lYxBid7VzBSs|Pl2oBQ;pDyRwCpkl5x2W^S*#ayDl*A;gV5A?-cb~R)Ee)y|= zx=`*$6;RZ5D_t@pHPfm9rGk?}Ku_>{UTzZMb7a-G%@%YzvH4JoChHunK;AYLXgc(CffM|?b(m2DrL*C%oIPQixM@!uN= z=9b*2t9&F~)B#^?vi57O*+s0$Bx(lq+c9M2glxaPO0RH7(~!1wlxg-C7QBqcr1Ul3 zp7|nJh?G>S4;eWC$VuNI*sXB{G6U+Okivv8twu$YqED)jiccC42VqW%Fsc=GLY$IS zAdQE7G{lyT>i|m-t4h)c9KXo!qYSQaUMPd|glsM8?+%KuXSK_5> zPW|x(32nqEie$KcEDp!qe%3ejlDoiH$%1*YA5B@`g={zQkh4I43R1 zAmWyQYWV)V3f(bP8`uTRPZ63}3tb)VOb(WF{Spq8{2DJjT8L@`$s$!D%jvJUn zLCk!>sp*qyOZ7WxOcKKh2ht#h0;GR7DGJv2(v2I`Q#WB&jW${WE~T`tb)Ug}wyS;Cj) zx|$BWf8tnaHkC=JTj-ZJ7gtwK={Lm^Q+fgRQ~6g23`w<`j-w`~%8=9sK&Rr}syTkn zWW)y=T+?kcO&?N;u1Fr9+$0q&M&E1g70P7Y6G@e=pynWA5nBrSBxt$R}l0j-gO*Qh%7?q*{gMr7fgP@;byRxg)3i-Hk1wZ9L5! z%EAKw0K6On9<}WB{#v=~+VbHQnlxn~d>|DRuf*A1w!|i1^NprhwK=7CWsTuH>S(=w9$mQ{#>yRz zGWsz{A81vNL0VHVo7)Y*Q1t#<(!V@XxA#K4Yw>PriWbppw$%5EdgZp(p)7G+py3jgU`G}L zn|~ZZLREdGzc2|%mA5`SblE-}uokk%OmIk55ruzftv5YBjGGje;%IH=p=MO>MMBoU zv->9`gc-JlZvAy5>>p7nQ%~8G-v~h{Sy;5byCh+wsYX%!-p2|pGiPEWW))5Ym|9Y` z>w$`2t7{Rl4Q>lEnv|yW{{UCR{H&Nl15u6}$^CnRBA}o}dQzjSKZ9aW3T>k4(JV_e z&e6)8fo?>D{>6UQ8e&RqrQbco4Q|uKQ3~@?pKtkDOLtr-C|B2^kzR^YG$lwPg^%-O zgA&H(*8MxfEE1K30NhEa4Tp)33ROO~(@5IFph#>KWiIZ3W1U$`;@^spzz??KT;w z7kXQ9dUD#zZt<|CFDsIS^JQGqR)cc)eCMLJ_?R9I1JR8fxmn&PX*-x3dRV%s8U7bt=7FZ{%loIWed>McG{Q~uKn#n_5afzuBQ z62!daszmV{SY%-6K_DN6{{WeJe=i)BF{hh(!b$H^D^v=$u^Q1$Lf83U?R;4h%xuG5 zW_Bgmvl0M$lUxm(Cy{CQc1n^&z(`3~D!*h8iCQk1}CS;hdME#`P7 zNtiGa3O6A`xZKwxXd#oPn`&bEz#!YmJ|jw%KVZS~vU_5D_US`dq4)K9Pk?1USpx(ejYrw1*``RztA^2jlscWVD1rS*7Ke=jjk;j98#_;i0zEn6nVXG4AZ^N= zxM5OKi_6<_a3hSolPeGr#?AgqKkU;ajujndSuA9MZNGHVF9$_C0#7#kKjh{-%aM*L zrh_e~?``!IJd_C|a!Djpkpm(NDTQro(OXFGAd*E_h^QS{S8-MQOO{(t4WZ7ft7>vb z2>~GcA;AQP*db;6N~b9$$&6_esCiCU?w3-2261lDT%tW$jYkR&{Fm+H5Q)fvvYTGn z*x8F6F%i9HKA=HQi}wB_@q9nz<-w%c=AXi1ScKN`spO$Z=0csjeHmk2AO@jzVt%qC z;~8!auC-9V&CmRS_HitLN%fhImw9oiMbFbzCx8?!S^(gkvNA1^3SL@h^NXeWq6HkZe0LEi*<-K=#sdxB6~K_QS(#Q?qDqk|Rc{b0_G#~sEveq2JT_4f2N6Q6LAf~w z!?ITu)Uif+urW0`bzwt=ji7Z6S+1n?A-AMaGS!&1SRdr$izRrZg5e}4A|{CZ6+dZD z@L%S|2&S23l1o_Vybv1p2llcl6sIbn2c*m8iG7W%O((3!)-LJ^_P>3stScCVx2xE?_4E= zLP`B0&Oc1Yx;h$$-|VsJ#N-)->NH!GSt-StcLU$R;Acq=siMv-Cs_%&nZqe8D_GBA z`#jZ7&5g1Ko^uwVseWAEJ(ctZ^G-!of@)KWpNSEQ{{X{exVkK$ByE?E%^NGL2(EPA zGD{^mhG*!x3$ABr%x(pq!m&c9`w_AVSc_CtbVkqj$cOT{R`#%unlos)~B=<}Fu!})>WgvV!!v*L|e%~Lp@Z>^C zET3JSbn8)3>nJLDkwD$Jr^_r1N=2wfSq!!bibpWsvC)6%k2=~$;wwOXF6-xSdnQksUD|w`4l1T}u;uVz-?|;iiU-G`z z5j0N-0@2sD?RxhUX^66+s`c6b0M<3!Ww&lGE^BnQZ6*B+xFdlkp+*h5x-e=K{jc~e z1hX6RO|=JyP`v#iZ1W3qBT4DTyG~d3Q@DuR4MR!Q?_IBBjv#7^q!yt+%lx^T1FkAI-d(V> ziQ?zYfS??L7 zgwn=R5=>?H-Fon+cl$hBGBzy$Qgdr-`bN=S6ax0DRg`^}Ve#^(V!vxEEaHs3^4h>7 zF-iN-)dh+8srwcFPvu;IXK7}ssb9gX{az5Ptg0w#HzKU#`LaQRgb~A{O$_p@G%|bz z$sfC7YJb(|g%q3V`iwHn?dvL{?4a%beDOsu*Y%lgA~VAv2#ZN$I}(TX(YrlyO);$- z%J*8u+>$Fj(xK%Xy&8w2zwA+RGRPy%kbyj&iK6*7X5I<;l_0fNW9y2D4nM6axeCy`ByYTn(a8Rp3D>YF`G+6#0hl6H( zK!+z?E1BJnd2d9M%#5<%m5{>0krGkFGMYN@PC@y8$1JSmCAWk}lhxf?$y7xjq=Z-E z6l3%M0GhD{gp_s2NJ!)KjL7DM_Fr?B0@gy3-%D)E10u!`MH|+it0m2arU8Q=gw(J! z0M?&8foy09HkvXO)DX&hc;K|sjsBc2{{VL2QNZ|zY?mD%!qqfw1*}01+|>8)^#1^r zf>|vC8f=yjl;Xyu_oXr%WtRw9ZKA~sb5FHOQo9^@%6u@;vWf|LeUfTE{5(s;O^9AM zYOrM{quU!=TB#w}(5-vpX{069xkl+#J$vB{Bo?fmqJ(4nvD*SvZ?0R^4xbQSs6GDx zYYM0&A6RcuSfzhvm8rtVnl4zBuKNYse|#vbV|u5aG(A2EP1WVNNcLn_h1N9LyC2$dRNDeU(vz6-~Z6> zMSJB8oGLtiSh5Sb_N5Lfbwxe#Ri#PXbj4a>w)^6O^M5;DHMQ`9CR9>KBTlESK3THE z$<*fNku3j8vYdG#9wP&~l2^5kJ#;3L=At;RfUJ-3G7fC9t zr>5ifu~WKNp?O+ZE?Rg%iXZ~U$az#(-|Xa!&>+aQ7P(7S^pwpigULXtBf)s(G}r=B zX=e=TA(xV$+l`Nh&!!f@iMsOTo~;VV@u3J~n0zYlDZ16q`J zx^&V`veDm($rR|<6dVBD zj{gAcaaBL4w9yuj5pL$S2le1ebZjG%B`P`7qt~a)5R|U`7#(C*t;HxST5u%nFA+Kgq+vYz%@P`&^1i76=F=^se>!Wr8%o%GB;`qY?V=$JC(MZC&x^ zfS647o{GmJ@eR~=$QHn>Wpy2_UYtl|Uew!fomU zVa!uxEC+M_G7Q?RjK2*6{y3}8JmdM5bERC#Wu`=@(QYp*?g{;_EA9N*l?-;`&n;|~ z+kRGK5qlN=sAund`P$;Rdf5r+PQ$q*|TA+XyOOV0uvd{?{CV#F3SdUERw$ zDrv)RKpvSP8e(T@V@m_X;xc%kH79yuVwX#)MhdKKWNOd~ZTMt>Vp!v9LK8Db6q0(6 z!-?<*;-K)!wU#rgL{v0(tLdbSSxRg{9are-Ot3LQ>-Q$|*xR`eDy=Z?(N5YIZt;_+WOIZ1^U7DX|ele8Dxls>&v1q2YjiUt>m0OQ}{Bu>1?(Ok}d?Dl? zWYeWV%x54sz%Pf>id8#~L{Rn^67Nk9+Nt&%Qwp}I!=Rw?!mj4)@E#}JU{@?;g3KyB z1}G|#v>}4&M8Wrq)W8 zQcYN%MXC0&O8)>-Tc90_y#q4Sr2zXoeXI*fhm)@P-25eywG4n&X;0g(7?wE&22rfp zr=rtK`>sG!ii(l^^dAoSYmO4@c%XQIX;M`HFbt=adw-M518SC@oGzXlRgftaC`ci> zALVQ*QPy<3$)pzyoFj;+RG=jdcR%dD*Ts-5fuz?>ycRMaOM610M>?J)nzKLhzbsHq zri*KC8hdnd;z?FjW~VK_!v6rNjWOL9EJn%*Z|+=)CzLCw3U=x7KZYw-lWNn+XDO1} zG?L$u;YK{ty(Ru%hxTw1+Zb9Z+V1mGjYN!O^^nzgjet87gh{SZq)qRX%+|iBlnJ8* z`dt0%LtL~S+6Yn7EWWF9x{b>!1&sV4)D8aAf0dFY93?r>E^Y2D<+-)HGOKJ=z+wnL zv-?YxvXG=ilXIFjl}aUk7X%7_tgVs^PzL+elhwHd!y>l;4$H^kZ->Vw$Axiqp486> z0yR}tjQ;?`v#-k(5UXjY+ull!O0~17O7RAs7z-e260+RscHWSPNMk${bmhOd+W2rS zT3t2e!wN)9GZxu*DtiipfR=E9JuxDR1!21K@PF8Bffm~n!klWTmJwUY9DrZjuM~(cE?j_8jbE2sG}pywJIj4i z_!v>(+yFsdr1ef-#}X1YO0DfJ^y$5QRwPLvf43Q@+50j4Kefv$A-|e;rD`_j?QhvA zlDGrnt1U;v@b%&R*(ioG8z3gJNwo&O5>_Z*;f+4f zEBSJwTY59wD3C^_MC}SY$>8pLNU+UpV z=9oRoSZU$oW6!8_y$yaYRo<8xQ){ZM(+9N*>;PADw=KV8<%-f@scM%NmAMd>iiJU_ z6+L#YMUV(fSxoATCV72MB0$wVcIC_bj0~wXwfd~FaFSvJtpO&05!e&^Sg}-!{bc6O zLV!5Ywlx@45jFj-lyY4mK+&kFkbt2F+CR<50@Dbw)#si+t|TQRzAY&Z+@t0{Z7K1p z&HSHd4W?1FZTFmHwX$1Tq4gyNQHldy!KV(TzsYu8A=8X^!1@*fb8e=`37H}d4bVp!Zdw>R~!D2ma!a;BrN!l<9+eXN}@ zLP0!NcTmY{CYnGfEgN5SYC3n-MV}&AME6a zM0uof$o95skz2t#}I1skRp5!}&M-I5?=m3vB{agIOQ;KS`N z?PX1tfb!RrBGm5}QMD}{!m~`l#YpVDJ3l7-f6Igh!;*zEiC$eY&E~z~JFyOZ0qGG# z$Av#@G9nxqZgxs-^yk)XCHlamlNOHKbM}7M`*_GEBn1Spm3>%s6}Y>W1QH0)6fuGD zvG{%oH~U_n>}E09&5r56m!lUJk;7qR!<=S7T2GCb>{E+>c^dKf(EM2jbeiA!yG|Ny zwuyF3bHvJCGDx`+9j8{=e|($Y;e8B-lKN2+?g23Cq7=9kUcoRlb0?{`@gf9G~*dP z3(J?0Nq@=Oiy{FLG%8r1i;X|Y%5q&cVLP)r>}!~=a|Hb2)n&5L{Wy5iW*~wqS`C*h zfU?yyLGx_-HMIW#??j55*QH7S04Fm8fJz=MMCp!h<&1@mr~`EeuS~EoD%vc+rX7`F zV!Udu^Z+qGv;6fx5BWHTB}dG9t>v-{7$s&C&=)a+l#gyU^yO6L_S@~^N^!(q=)WnA zM^UhsM7fQO%>JUz{FDXSoF1HHQTr&_5Zx*qo`s`WX&P+8%GsaQkBbse)E%8iQ3lj}=cE@%v4d z0@gw*!Z=pOC~UYSpw&X|fd0}qe~0|6Z9rLVsn7Mupl^mQT{zZ;pBC(PR>-oXHO8qu z-R$;Y#xyMLs5P=49>u#~BI1YEh~wi{6*cQz!*kaLC#c)!inl}7qZL@~KzGGZ4DT?ZT6>S< zilQNdfTs|NR=Vy_%DAgQ1GijNgL&)o zS$wB^^#!tPt`RKKFpw<~j}htD?KN`vW8!L_P8Kh!{{YTHo2xN4k7m#Z29GfW)O8E# zp4ogb(~XlcVbX@yXP)-!n+R1o1T|(Pb82t#D`rE9%_Z{1k@F4Dp=zH}w2_b+)svJ( zxu*#a#?tcmw#vzE8$FLt(Cn-qm8?k#E**qu6o10yOp~2eXRuf66uK+|!1z7&gM_kB>*~XlAM8=4vBTtBO9Xfo@B||2PC}!kP zD052f*D=eI18Hr*@z|*yuq`1k-QgQ-JkY<)xu;0Y;jtoAC`V= z^IH95%vZ-viMJNE+YmpNNq?U)XOy{dfDEI{{{WF*SJBlOEXCBzyGc71Vo&@p{4P<( z*-YNUL9((yw$|}Ny@W~>f5PKyNG)H?R<=%UA&?uYZU+233wEwu9Cy1!<^vbf^!2hw zV?38KPI)^>#O{BUe_?;gT*(2%lX1+yBw;Ul-aH11Mzbnhy2F zkaLdp`Qn!NS7BP>tGH8himAEa3s#^C;S6MGJd@5*3;ET)(O2iO=zDMc*|W#6bn=$y z=vEsmWh3`w02{X=M^JEv1&(XpV2@0c#8sr`p@3p~oxT&6(-d}{3=-Q35Qlk1S-+H# z_HwdYA`?jM;n878k4;X9$V#n+iH+n)xfZkLUS*0{{Ra{zX;p*srFRlg93$; z>;t70qv0Pugi7Jx`E)%#Ue${(^ z)<=Y<)B7!A#)%x?1joBll^A$R@r6sv*D6{Es2gq9+~mY*ft93}cJ}&}XLM0002&M| zLV%HsT;f>Zh9g-6^r!5-e1F!(C>>W)xPrncBSl!*K&)%IB>jb_d`duIlP0g_`D1-r z$O}v9SgWzC5WSoEc(0B^+sG93-8OqjERrUXI4~taJ#tMhxw|qa2Sq{c(=hpW@G`CXcS;qoy{H1yp1d}Gd07NZc9ereYtjA6wd92>sI2+QjQiO z`Kp#+YgVr>_)+$k$@Ev`z1mHo#cwO}nHk*F)X|RH{{Y6hg^)WOWuB6h_Y*&nBiM<84-n9jXff*V7BX!~EG)r%jQ8FGP)2 z*?kFqFn}*3;ZJ;kHkzcOLbj|@H9Q@u$G7^#Onzb@uHQG~m zJTb=eiCvWLJNNz>U?nU>x8lUC1c7ISi``et_X@DYvNtJ;a4r0*d$vj;uO~DgnC`uMi4c970~y$g zf&Ty-Vpc3ZS(%^XHDi^zpejc*9f_}OZGnn^qW=JXBxL3Rpagh~x-Kq5OqAP;dnOT~ zFCh$S1yqmJxs(HfO_gmQRe5O>xC8=0ZlLzB&kGVMG`iJezq2;>e15hHx2d?OuH)&- zXS;SGNl%o&Fl5v9nMxwBtHnMlfW-&KzvPw~ubH=T2-feQe7mbIt!*9r0Hjg_vkk!q zreNfAp}KsiuC-zE%y#wb5+I_2-#w^tO6qag_3n30AhB!PZ&=7^Nn=r&&~=#wvCUfKpfJA5pw@?fyD~s=7|s3V&Y^O)J6Djngjo?|pS8dYD@|R@VQ9SZkE`=iO@;>w#1o5Pp^4 ziAYrm9G5gPC{{{>KFtQ@Px7}cizLq8_(5PUEYw8`g=v(E(x#rG*Y>^~oJ&-rY=2nu z4W+`Hi)jRhn(>f|inqe+{2q}v=w{TA9rbxUy@L_X30T8G7CQ%+b$>}9gspDUG| zTZqiCPU<9Sw&Hw8^SAj~XlgSlRpyJQ+Dme?BP*8(oDaoO(UQOL*$QMb88USKo?8#2_OY~Dq^P=Ut->K$?vD=Tu^kSP`HKb2!p?4^E2MVL% zvxY}El8$h2QncLEcBhU4kPe>Op~BGyh4&fo}b+`<7= zB>XBEQ|#p0=`YpgdpRxd2vI$<5hDN{OlF3xyEiX~;A{78I(||ukQqd?SHbx6pdX@Xd-Et2Y@LhNUchm94JIR z^2;APRw}GR0J~DXMg?D{%9pVEw(Rav_AOq=w~F8@nn`x0$)HddbUi-|43}w|ly_WF zV-Y)4jw50)7D$~y`pxMHU$h%alw2{Z=p^%vBVURfG&-M?+ z@vrk`fuw{Mv7`@f#tP7vn*}K-I4pj@cRjMRscA&g6&r*DWIc}gOoMopCa~KL zE^%`N!J=C8R!RW>0J7|>{{Rh<8zh@f9?;xMoZ}9k833J{yYi!S%LLjCP)sfirK6NV z6i7%{jEX5BJFBnSl&^t9gB~pKB*lf<&2y6v1@@#Wx z*MFt1;s)B@NR1&~)g15@-|a@f-m7uS$hJW4^xrgoZCm<(Rnhr0vKkj*_EereqNnYx zf8cTv#opU2r=tOjSGjxfr_Ur;q=sV~EoxL$bN>K+He3Tm+Z^+3=Tef(>vpXyQcltO zB$SD2Ki!G@QbqB4U(bsm$+XWRX}Sn+MrDjni zdv+d?Z&7F|%BPn#?wJY5H(`n9^lNGPB8gAO(!TkG>@9-+a;d(tx6|#4nVw!%JMjR2 z!sU?IwNI1AwT~goV-dV(MwC&N7ve2LPqUeU!YLlNI!zy=ZljoC%Czv@H!s=AwG_ik z(C4>QfhJhQw$zNq)%e31OhrGEMg6bl!pDh`=^t0}{7Y#p3e!zniGg6nT9o@eQ=j=i zYXe~273X=b?H&iQBkHcAiA{kY8DF~)#Dznn{*qg5Mh8`y&=+dbr2H)(AF`kEwgQ;! zo!{BnK?+}8afaeOl=J1t{{SmLd?6A+!KEyS*SE})FD__Ts9)JtENML2mhmw$tIDFAy&1V}#XbK3$ikXa)^&YQ#3r}2EbC~7@+2f%xN*DR1}lHEwd32|NqL@}=&_d9$)%fItx zKrSf^ZsKdJD`ZJ_XvY$u)Q0R$J|BsGD&kv%*gqs>BSWjuxpT|5`{tigH+LFCv(Sj! z;_sMl!M~mrTIcyj*cE8-+ZAY`ZnOaSVypQ0)Z(rL16o%Kx~I2X3h%eQX@y%|$IBIK zf7ukktrsnYR@ZvggU7xq@&5qLyGdWnw(SIdv6|0`1NK6(>-#?!?B;F`P8MRvZ8X`D z3P$SjGX`&f5{f?3w;zRM%&KsVl1sY_+q>6}*^w<~4FTf65I?d_e$VdmC9oZtDY1&o zq|wGq>QXbur^DT8{{RxeQEbCbyKW59jxtxF{s$@{kSVU6a?_3y0pD;sWE%pMw}9MH z!BVG)2e>`)D`<^GMDVin_-IDPgjXdKNSL-Y6^MQPBC30hGaswrCHs!uxGutQq6hip)Vyeb=;8UgRI#Zv8K%(mJcv)<}O zQV6P4gS#K)Mf*nqEs=$=>o3e7GWofTURlyTC=TCPyCg5OQ>A~&URhb4IRg_f{I&e7 zo6Fad>sp+vaj8$cN#Mt*UjfHu%yTb5d#7-!ed_44Yo6u`Nw@>y02W-|;Q4*F8P` z9(3nV-SYnceRKYNj~L|H;q`z2((faQJbMZ;49j_^4wy}MrlxZ<;K1i`ddij2^zQ@nU4Er+A-PF$fjOmX)Y}m z-q}`01q<@*KGEU)`CTg>(`_2_P!V1UUNiPxwxAyur;@aQ%w6MEWDEk*lp8RoxX6H{ z(o1^?cvqV#2LHwoqU~CXkxbrl;qmm%roP0;5tMJtH_`k^hYzd|_`Hihls51JEBYH9N+|@@T z@qe?xSqBd_tt{j)gB7pa0DMJ2+3?yalItYv2@r{%J9((#hhzISIgkU3G*+cF8eP0l zOd4|C8>!p*j!ZNbJEz^Ht2M+4=+*WhRDZz#0F{=OHlE4mNNyo9#+=-Z*_NA(poa0f z%MUUeJ7OeX-d4Y4?Y2gl1PnfLX)c+iF0t-E448`&Q)_QCLSe1EfyGJaaMKGa68Wo8 zd#J4}#?p1D_TK>koNXVj`Ic=a5CmpPkW;MzJ~>q~P+u^`t3b2OM4B_lfT8X2{{Yun zDqc@M*KT0DxqB#9ks%|M0b*GEJU^~hLwsdS_wtWdlS0)~Oujyh7YJ$2gMYLem-$(X zmK!=H)+CLX zveKr4nK0H^-QJUPXCu54I8rIYsrY(v{hx~@taANjhE<*1@>X6^imw{>!l=Kjz2kjy z=DwTMDWxC%R{sDXVueM$w2i2FaUW&Q;C%3fRg+6g)9KcZwQ^6{>sqpR$+5OL?D{-&CdXA_8;LX_@PG1vzTjsiQr)vRwJ;y@Pq0y|P)8Q`h zMhy#Y!oRfSW)#i2u@s#|%%A{jdRO@6O`%pcX#OHWuV3uIQn#Nkg&3cf)WDX}4FMxz zy?UHgS7f6|c=s4pb4ZTdnU386U9hWwOBz{eb;=+O1n~ z4R${+m{q3WyKck5a4M2tTl(KtCX$d%8?6UiP>CoH+8`d=Vy;yRIH{pMsr+$Ori6-` z5!#)8cv90a+@FcPu%UH0{6nwm#a5XZo!pOM{Bcz&mN`czlc1%0eK#rg*^=+>lSx$Yw-k(Z!rPvDj@QD$ULzMye69J~hjOQ7Bzf_6SH4 zy86r*A`Q>_-{h`Mq>EtQWjA+>wjQ#Q`_)>6kJ?Y|#IuN`CG*3f+wh(J7pD|0LU#U9 z{BRRYfHLHT(v7yDvBz*dNZy=CH28u2qIzOCOtxkB4QZzYc`6u>fl041PCKy68ZOd* zF-E$O^(5mVRiOiNE74aK8zd&g+EOHtFQ&C*Dm!#P?6Nf3ZCdKHv`!{e<4RR(I`!*{ zs_CXnYhu%Yc~!ZR4_=t9De1RYT7-*i%g>L*%(UWE`2PTxkR`K)IMJ+Ug(O2nFI3>) z6B0Z8UuH4?00n^rCK{)eB$D6Kg zTvZ7Y!)rCS*J5S59Nc<+2yfbx_I*agAf}e9E#lGT^&^m#F-*G={J?d|uv>RMy|IN) zru>~_dJXCPry|X(dzHPtD`^0X+YPDGmH0(+OiHG`V?5D^KASxmjAow+AGE9Xo8iTX zTWfZ=mds+Tl5nMHK?I7^=*fV@t4qf4Mw2_N%s8VpYfsSy<=1zi9gB3 zu}DJ8stF+~Pw%U`4fue6Wd8t@fi#91WLDD2G!C+)jIz>de9yCSm{) zsG*N~{jc({+9?^O#XKdT1X4m7ISr4o@N5cF{{S#qO*5sLDh)5P zOE_&9$u!a##X~s&a|4eKL!$EgOM{Ymp{=!>l(xCCg%aZ6D)NdV7=)+VSkLm7$P;bR z70r(MdqLH$nLT(!_I{Zu6qHX*huLSX3o?9J4iegCIWw8{6@uAgg_0+ce{vA@H29DD zxn;WY2x^(+E@lzuNOu8M)#}g&GvnVY5{?RM9z*{W@7PAUW z^gk|KB3*0BrRNel9it04FdfJ9ap+ z(sk*6&mu_i$}P&_Zb%n}0OWg$t{gb$-Ot2OlHiH(h+(#n914mjgJAFAjYau9_`o_hc+DZ5lM0`JN z*Kih}YYQG0{R?}p0LdhA3R0uJd;K`t(kX|f5V%)04@Rd#D@;{YZbg;TMzmPi@~w6i z#UXyTrP}KdEvBG(M#izo4LFmtasL2gl@Qz|No|&od8H!;on^FD9-P(Wc#XKacQ`>o zC>UU#@lUA>MKt5n=8IJz8mGb6{cMu2wDNOWtd~-}ZFsyu<+6gm5|vKP^TkPJD+IDk zw+i4ej)&f(;v%@UvHST8UK@2hOqAQR4)|3tyVC8g;Rz2YJMU6{iS8aX$5Dm+{m7Wt`!--yO(Mo=H^%IVGBqPGWnug7{#J7Kv;TiidjkUX8S)D zNHIb{_KWHmjK5o%6v(nIR5gEO{?18Cjm_H_w}sjVJXwbHKg{E{5Y$jM`dGcV3dhly z)GVM=Vf^XeB*N1s)M1LI3dsp-a(W(4J{JCO_Be#4QC)~`ho}Oq{I~^CRUmvpxc>me z@<9qWi|WM~lHx{WU|1zuwBMrrp@j&|O3Fo8+|M7@WGn*(pdkE9%}3ezf8nsISAD81 zcP7=G5I=Xt>QRo=c$?zmTnYjz=Sl(OxDHvB0Wguug*Q~?{HTWq5Cb6ra?co zQ=^6S$&|=li|ibF?XK^y zbpaluW$8j#(pcMi{{X(7Ps7Fk0LVE$O+_s8f8}lE<+Dkp#~cKZDbM2HuHR)_=GiMn zCKtLrj+Yc52Vo3o10BdI_KzR+a$%y9T}nMSRh=&(Z%xTH%MK(=5iy9iZCsVdv6G@ony zuZQ8w0AXmS^73h4=+_9pQ;?tD0a{3Z%KKjG*)A45YBmsE>9(9&MT7UCq6QAk0N;zZ z^M5bwT@9IXy$m;H4LT_-v41cS@ww zy&2@XnL)X8L?^HVt1t5|Si;l)0LlGXe@aPYhnFzb>$L~`)tEYgBIpxAw(at8}eDRx0XzHN{*Sov^EG@pQ#p>?y>M2Zk!QVL&@#t9c%j-xYBrnqsZf zf3@^rR_K0=D$+(t<=eT#R*QI-n7qkxs%tuh)vEG}HCO;9hKp6^z8!gH#~gS=t;;Jc zW-VssYlPD6LdvZ{>PP!>QoKoDhn7gqtU}qBnEa@=_NMCD3*9dkAhF(^h{%aDkfe5p z>AY&*hoa;H!nLU%YZ6!l*7MV5_!uuuyfU^)ot$yU6%~UsZ?{~DZ3#Wa!c6LcU5gr2 z4wU|ESoKZ~s8jILozIBDZIp_FGzq-`7_BT@XjP1nb#3X5ttmJP)c}$)N|9&YpGWrL zLQSvST-6dJRs<4Q^;44#QcAR`UKnX`T25rJW4ReN3H7wBsa>|(qpn4g$u1~4f@m)l+of&QsUdu^^TZ8Ty zQo%zTGuVT^3{C}03k>;~LMzOK?|31%+1vS6s@r=vq&OK&a)Ch%)5D za}i-W-SqmiGOWZ}FaRR#YuvVMabp9UtjmzgV8t!k;>vnH!j!LK2g@@yE(Y-|fi(py zSE*m0Y@~+aD_d)0bLKF9uUM>4!d&cI`M59qZJ4<-)3C>i`LeI@ji2cM0MUMu{a1}R z{U2-ndj8g7@f)`@fK@;L)9)gqu29aM^XZDak1dB>QXN7%4e?8er%)@37)Ry?wGEpp z7968qOe^E|dS-3_;A$nkJoeJmUzLjYix~-SG}&w1pVgU`;1HUBLcXuzGl#u`Tx9=X#a zEE|U=W5@;AAD_!2LuiscEWJ|pv3v?p82ZqW)HnGU7T7+s!shHjz)2xsr2?7`&;G@5 z7Qm^l`Fa=vMPm{4N|7rALe%}3@PNmOHMX8vB8uJ?{oS|$s5hw_a?1f}BGEQ?GT%!a zcPf%c#M6aM2Admn8pXF03 z1h!IFsKFJg2={XJ8;;pNCN#u#UoE=SpixdgXSH&CN&+g+OqRygV07eI?8-O)0A|=Y zlT4n%>2$&pROUN3&&T$ukRsJA^BuZfqjF%Z=Wp8S)cx2-$fhrKqFh-jKxQojr-f7i z0-qK8Su~^I@^!Z2Zg0SVN!p*w$BqDkQteYry1$>$woY*~uW3HQujo%Dl;N%y$BZZ|Q_JvHSQvcarUaRIL%awLEf45OJ?CIlFRt04r0! zfW>XAyGTksysycSa!?N9zhu+-P8GG{Gowf0nJ1rjk4$}Qieqe+5rwvu%Q{s~#-rxhXlRoX^Ci1m zw=>E`CWrw$f47k=@$QAXoo*ly+Yd>FIg?$;AHxN*0*X@B<}^0shI-c;*|PVv1d*Ow z=7;|jD3VsXe;)4E>dU0vDEF6uAzt1dz3z!_3$8-1L5WSISy^Cqev52+WlVkK2woeo$B3oE&Dkj z)Iw{a>za(VwZDxxt5FpN38(FH_r(QHBPZ1s8>ao-rM?PRW6&#qHWnzq(JIlTR}un< zRhEO|_( zQ2K;6mbUDEwIqpj3}^v04cY$y)fp0zx)aP=t@fMg#bGE&D2p_VK&p@LI{Zr8{k6yv zTVMfW8eK1BYk@1lZnB?63kO*cf4exJ+OO?m4Y$eyA(r`a_Se>VEyO(Ksw|BTX%`uCewVj$B>$Y@hxS1dl)1^!?1@#A7KQbnX%i?mrLiR8LqDM7@q7WhBa z<@;FzTfloy<@cA4nPw)uP`5Igl{6)M0c^m_lXqi>7S>bi?H1nogpN6~0tG*y%7#K4 zC4?1&N)VtxJ~7yI`DFZ7J`f7Fj`boz>5<`)GG-%4(7*~Q-0zUKOGi5FXnaR}ZIv%7 zof!%F3~hK+?hrbVsy|gQi7+t?dh5&IS&WW+4~||kQ;u<3Re3b}YP4=S1wRY_05;t+ z*vi~_LXw%aOG}U>nj|t2%b?}RcL(i!IcF0N6!Im6S`}^CM%x@}?| zG$pLEdUA#2dxKnyU=B@gDIg+9`NJ)FGM|VV(`*S)nbKI^(OAh710+sr8{t0RYM*Bn zR&O&UiwGL6HxL<7N|mR?zZw2)X;RybR`TB2Zj=OR7^IQ$*bVr!b^ctC2(<|{yL*dt z)9>Rxrw3sn1aWWKs{NB(l_9H*QfFx+x2nd<9eXe$oqw2ZhLLLbnv%~Iy}UI^8EG+A zr$hT)zBR%c%8To(WE$ZMOA3G(GW7P}?5;_IRiqRk%qXT>vLz`|_Jc3e@Zyxs6#8j% zF!Wf)$OSgv`J4UL_5T2Z!l5p+{l)jEY=6_724$%ze`N40@co_GViHq}H(2fztBKg5 zjzLNeK=^dSZD^T%zisMz(MFOGz^E=jT6O!ewAz-J1j=K%Gqg=14MiT`XMeSU1y5MJ z7xyp%UFCt9c&Qt)9Jx5yo-6#HwUP=M4VISaBgDz;B#WU>1y?gdV&90F(T<7LixPA{cGO6jR_N015r3!o_XT4tceWxP)b|tH-40!lk8$Aa+Ls6kA6b~G0EDcoz#tQ z98>=FBnGOqsRR4YEBha^$$=rOC?U3)j;4*tScG*_R1fl(?Q#9ARD|k#`0XS0fDEMc zBdPxYSLKoo5)G!QYc;}06pW=lCQ!9ry(|3L83u9LOH0vHN}5|Fb_p{)pz_@oyn=^6 z@f?V4ww@^EyXALk@~sd+Dx~qrJC@W+}_R8k5uy@{S-fplADR6l}En56k)cV5VGXc(wa}4R#!e5E%)R_9$rIX9odK z6V87yyzIKdM7kC41%|I7ELYSg?5#hQ7b`nAA@m7#EBkL>P`E)8FA%Qdr&i-nkL>>d zHdqTxg)*NlzMXzOAfi-P^wvf|8kFDtfAVr=s7Qjyth|M96oLt*jLiF>TB`&e<0)_E znR&lXWN4laOuCl;1llKXzN=T42#51<{%`ei zYzRV&*VZp!ni?X)Pb6*0Jy|&P`#3GxJS_4@rxU*Z; zbe2gaj!{5>{h#$t8>SS;{Mn{U6lokttz{AB#h>?puf<0GMdgS#t>}8Rw^r*bBE@#! z5`+Z&Kjm`Cw8=^JD75qSfiaTdSD1=3)PB?P7z-$bg|+DJZ(i6(G>}R;EVMk;+p4$x zRzGJ2ws7p8epcRyJj$??0zpW_58418O!M>QoACbjYFbsF?g<1orhmI=Q+PJGvAp`^fR<-^V#amSecCB$%faBM$1#i^| z43ccB3m=f{l8Cl4*gPA}-h9`!6`IxyhA>Rxkwz4JB>w<+&+UcHjB$YLWt5bOhPz-y zF9|nN?wvPYhm#KJmR&XQ+dJ|Xmv3~)B$oWbE+&vL;JYEEHva%yG30H$Y|1B*$T7@S zf!Gi-DLbM607ooe8q_!jfOIDovlN;OTZv~`$txc%!Rz6Zv;fJLP>Vn+2Gz(mC6j7P z6vQB`gwuYRDr3Z%E#epWjSV_v2y6z`)GLlusHJcOp`)H!A5}uJJ8xQHrD|s2DyQS` zUihjW7BT?63Eywwg;cKXWMw{?KBan`Ahk#&*4k{A@&hT`b4r>6leQF%NA#MU=%SPu zr9y30gKwCmTfAK_o)0xnB=#6E>Jen60mw zF1(xO_L^_r>H4TqAuCdxeiZ_p0_G-2*mhXt_p52*xIrbk42`;xzF`pDC2BgRwHB6~ z563eCLMia^%dz6(Ysr&^hUz+;w|~63;jakkMW7Z;41z_~ngG)MU1{ zgtY7_;Jr`zBO}L2;Nn^3-zZ;dG?P?cM%11{G4_~#&nEqx#L1hv&&7hCjcaJO>LW$s z7oZ*)hE2J^QYNO9ru}hC|J3g!456L6xT}$rc-Or#NNl(A^}v>@M)H0bLJP(G-+FIv zjK(HqcdZoec$zJISNxpW;}jh}Nm*3=5q*2`+R`Xim1g^8zSklD02TiLla{q5H+pO- zd|LWf_*ANM-+I^K@WowjWtw4kWh1q}Dl}%Q4L@lYwiTq}Yw;X(FuZ$!SZ`9^`C33q zZZ7Tb{V5}5VvbKH>+ePJ$lGX*CK_GY)dvDYaWw`&M^D;Z3R5v;{7IMwElTazEMTc< zBUxPB5PDU71_G)QS=uWTY{gZLSx;TRll+`*ctTk<@L41gf&thc8hhhwz=hPj(W_bp z2%OxJ!F)mcT{0Hiz$r1hcqfaRgX+~pfqDj}SPPC|5NV=G3kezP#=Sd_e32;Rkj~cUck=c`3 z>Lzg{Fwx2inp9MrBru6ftR{-e^)BXx`TRkg5_dk|%aNvNyPaY08N`T4UxX5AKytwb zlO&=oQU;lor?{mc_2ce2+RF zGARnlU8#~VrXoqnh9s3GDxqmw15r<9{%ngRp7zoiq-QgQEZYihKbE7#aHSKa-P_y5 z{{X);OC>=joxE`j3WRO-8Jg%3OOgW-&;hWnNHHlEr8H7qzb6%Q#8B){wiUF$QPLXq z<5dX=6#yQj{{XG~Ss4a#lKV|M))5u1p-CZ9X+ugk^L#X?9D$2vr+Q_GkiD938DH-S z>Pe{Ok)+ynq}`(^x4v@_Qp;2D)OJ?D={pD!Xiyd z(@=&v^r-`Y#ME@4>Z~w;gD}SRZA!}7ktRNz^HzaK6sPSL`yFyjF4CE86v#NyM<7_O zXy5UUzwp?lESFJ{Rz`L!$Kgd$T8jK8pUs6R39hb9>@!5IAc`~b@dA}SisY4ET|VMp zPVtHsZb3|b1NLA1oHUC{b*ZC)K=q6TTW}Vlr+f!yaTcF>W|6UExGeyPmRb$}0LqO2 z05x(!qG4>Bftm?sf~qzEFbqjQXP5J2!wRJx7g^O3PClF=+mkajOA>eKk`|fp(gVyM zVUGEYzY`ltLc|f&^#1^2FcQKLt7Roh2Mg;s#UcW3Hn`?W0jEZ1{{SmBnM=3D7ok}R6#PI@ zdNgb(NBY0dm_^NtA+n$V#)J`sJ8@d8)9kGwnedcMgpVn$fdp%KfZr_fvE)5kYymXP z;Rjr1mg;wR5HOzIRme^>-2VWw%Y#c68q}AMB$CLhKv4GFemN4FLTZxTrIWmT6mbV{ zwADWiG9;*r&TqA8?E{Egl#+FDdVe<9ZI}r~+^znPGZO6slkpwsY1OUi z<2+<}IY^PV&FsJPPE1otPMF&|BvY_XMvRON6jqew{{R}~t$|7m(dpNoox3_1!!H%7 zG(WY=+Z#<?PJEG7O$o0KUxg20M|;yBPr@>$vGe8u0ZbD$>{!9yOu*3 zxpHpfUJMvek_YVe!o>xuMfF(c`oyJ{CMGtKx|jP=f2;c|l3Gq}kgX$rD6AH{{hE#G z^2XZAc64}z0Lsh2ik^Kse=bJRNiEUzKF|}Cp2kms^ zg>j}tqu}%;wp5Mk%4)@yf|cK{O{HEvBIPAm(n!`Y;!s6ckMe!_Vz!!ISS8c}C!-EP z{9nvB{4jfdFRPuuvv zhDK7MXd{TwdZ(5@FCfuwCA+wr*Les$kJ{U|Vaq+axb*xixde5nUB_zm%wk-{K_j`~ ziVzQOg95vph`$k_9vyJ19g58L8=oKRiYXF_w>l8rDO^^X3Q64TJUZgEsBW3Q4xZSd z4>0HP14?$nibAV}P9$|ZP<6v-r72J_Eb1tFgT6>gn3&o@dF9Io9-1JG)G&4HUkaSC zO{l>mzSA{U4R06{@dlMNtxm+Z*~^AN(s7h5)>m)^FC9{&)S=i@zbu%YusFz0pjK~8 z2?Hfb1RsQh+vv*yYcWJg12mhE2E_;)f;=&{04mD9s}E7ixD=%-8^*XTG=Y1#c}4}m zD9mV$)u=yb<%JZAyphZSS&3Tgr?B?LR}@nyh;uE(5CH6d%EeIMT(`G#0ZB=w;Pl_e zBp8&2>87|+T9j5lWYExl&(Yf?hArkD5_`oSoP^6C#06+rQ|uCQG|Wk6lN4%WjfsTt zA-J0F)4#qIv`k-ENLZxiQxGbI3ULRh!jvl*FN@t50&W1a4~PnF$B+Eeim6-49Fm2) zX(M~V;KV6ozqnUE;|d5&p|aCBr=u8Kh`=o0 z6$bwRvHpJ+C{WZi{X+I8TX~&BH#d!_Ll9`cYwRsCwFaBgv|EiKLt3&IV^-urC}~Di zt{|kFMkS-M^)3R(czFWU+3Wnn{v(BgCA8>00~C|-O4XLMYX1Nx3r#A^qtBnCYp;8xRizD{DXEPyMN8u9wnub zs7TCC0dxeb9jb)%$%AZpDt%QVe}XeZ!2Bdqq;5xsDYds^I2}}kEJ>>!+x(s_;e}Cl zk_DC~RU%0$3sCg>a1~juOQ=|snkm=NX#kNWUO?COV{Y4i&I)D3jr6Q8noD;F_dpIK zZO-7S{iA_Fv>Zt_su*QZz_}|*4Zr5RReIYs!$&;axDmi4ifUwdA=i7^M z9FHSU^?Y#K0ua}CO=e_kxp_2z6<&g$67~A1sX~fg*WOnLhEojQq4di#NKeAm`&`f3 z_;FxL1N2bT<*lr$V+2VmDCDnC*njdHzD7f4=*p2EWWBrAE@7~`(`@bZ#O8jp8Vd2I z(YmkL<(PaF=81wC<$&^bp=WQZU0TC5>ZqbrPv!pakX}53@%XuATZYpiOiRl#n_X*A zlnBbq!POzzH?JuXIwwE!a`56v*>3YxNwtx4Yyn8wVdYv7+Xf$wD71dLe?6p<+eF~Y zaEi#o`GNR8jBS`>8lUApxcX}9+Lg!`!bFjx3OESV@{xHD_iybhf3eDrLf$djKK}sA z*4EaR`lgi>>1A>WB4#C)LGbV%DJSgaP8r_L9-|#{Tc>Hm)JK6mH!47C?bqTAI&Ybd z3Spz%T_miR6(yPYpcD!}o0oj9Ow@0#qk?Gwt-~Im3b7xwlCk}oD$M?6>=6Ep2HPrEqA4HR>ga5imWy2Ps;+X+o8o$&okb^Wv0(0&*_IkicfYw zWf$j{VisC*8V?rJ;A=)Na-kuu3m&7xr~Ec-E!L(s5h%FzC6#1=a%FQ`t9Rdjfxne< z5^M~T(^Rs%V#*0<4M<`^4N8Xp04QZF(L&{}R*Il0->&=gKPJU1ofv@U?R490X#lDHWu2KBPSv2NN_4=<4{f9dQqwIM@ACR`Mof5BW%cdJ2m>Q* z2{k)l43ix_q5sij?Q}fT$zowh)Eu2-=JSp1a`)EpdmSAfIEC zrZ(d1PynDEazHU9C)f0QJw_(_*sTY`z|n<1FNXn*vyADlBzda)PP9!rNJFnCXr^Y| zDd?`9d2-6U7IMx2*&JkLCRqtCcV{Q5_V&zy8gUG`l_Iz|N*O>3cBTWeW4ac2i+=uvw`q}J{A7}nwv0kW#V=i@d&de1a%bKC~sZM z?!_v+`_~k||JCm;L$z{-P71W{epscT06TQWAvErbEWNwLgbkP@$^LZS{Xz zGTe}Z@SffuPD+z(YwL1qOC)xZsz%CC5G%yf?7#fmhLp)4r0a7U+Dap7AV8s%9#kI* z>w|>`O7<6a&`Ql8B3Kf8il6dvKt(34b8?J0a8)!1#}pL}Ue;*8e{O__QOjUJKh2Yl z?L@InBkOvklH1DOqR?>VP4~%DD@_u@*Gi6CS{0P9sz4-$Y#>_`B$H0Cv$%<&xsimG zEP#EWPW5kYSU42qS!pxGpHT;q+?FDw8uIwET$b&TXjgw#uzy}<5(7}}O0`eIqy8h1 zC9)wOX7?91q}<4g39kS*{{Vu>+D#xoM#_sYk!r30Q(n8|go|Ay*7{02I3UD$SEYI! zm8O$<)uyvs*(2cG4NVPb1uNmcAh9VPffO>_l%2T8GL_}n9;=cvKn&j9AWMEyDSjUf zK->5p{B7%c*)$qVWFjeZ&%L;SnEy97pdM!6^v;P1aWNB?Z{UdJ5qI#@=@3z3x zkJ`qX(bDOsUbT`UYa4AGfcGEGg(GAsw70T>EI@eWwn`Ys*>?VBlf?b3izF4^p7%(h z6+~(AG3pQb9Dde7hG3;SNtzp}E@zXJV4aECYCg)Y3T!1T)insCVd@gD&%b&pAH(@@ zp>~&e)_~kRtQ_sY3aMY_Vg6Q0iBQvR9V2^)occ34VH&R9^uhv?uY080-XVD*EX7C^ z*l+t^JZVI!ZLH~MBHKnn#@tts{{SnuAN8>aJMOJzrn=5dl#Y!`9n^up`SHmH1$*iC z_L8%^JC~^}r*0?qeoK}Hvm%yiK3$3x^$}IA+yY*wV0v$W#Ug2C@0R6A#E_n7YDW8Q z{J9er*v&7riRF=Eb=ZBNd-&jHc1)qMmANgoxg2WMRwrSLS=}(xY$7)AJF#a|K&RmV zoVo$W%Px$MMw&B7W;B#^4Aj{5%ZrMsu14{|E!uR9$fZXn`!)DUr|oQYfFG+0 zwds`Jyn*RXnKgA7ininNz^lTO_ECOkV~Vs@tGa-Fjwoqc-;d9>DN=bOU5tv=z^Yd+ z5;6wu)OX3mHB6+JcP@=b`z$^#J{g+`xEUtL@9yHYj!997MN(@{nUowpWsBT-t)!QQ zyV5{cmfWZa_`N)dEu1uhO%*J|OLp>3N|34-lkRr-f14Faudn00MMN@0$lqz#r8XhQ z+EI$I=`D*&cn^b-P;0P1^G+$YIp%W9MOLCm@R8!(&IvbTqQA(D@?QegAvgISZ=MLU z$^d8AIt;h6t*la_Gq)g)2?P&_@BGIsaX~{%ro(jaD!h@)(E4ONw105T1~8q_7OB? zhzzPg3Av~2{@Y+>6V(}{`A*)&-R+)7EUQ}n%k*w1uMAleY>GQ;g)vES#K@HutqJhO z2z_(Q(dy&e&a{!UE__Qh;sXccJt^5VPH_r;1&6}*>B(K0Je z)Z*uLP@|{MuPh;nM%?Md+aQ&Io}uYO<3qssWRTs;q(ve%n7JXi_8@If3^c&1Y1$-H z@h-o+@MHSM6k2Tw`o8xxi9p+ZsnZlBZ>-04G|^bFSt9CX1W}0iTZi&f_OT4OR$I+J zo~?VTpnpa;V9~W}U-w@R^0G24;w^`-oEuiUSJa?r70o%Kkx%49Pqmo*R^@n9kGE}M zu1np-S587|)TYDi`iuO{`%+|rkSk_Sq*&bCDo?}$A>XVTu~EfC8s;SOlIBAYihIw9 zu4B0lS=5>>Mk=Y#md6UO;HWC~BE2ht4aqMi_y-Y%R>?XrqaFK^fm#x&**c6W<>WS9 zz0NAO;xMW4u{H3;iU6!(t0v)kFgQ?ER!H08s2(Q@hNM`W^Px29Uf5GeGC40908rb4 z5Bx}DY-t58x9>^@EUp+8>`DIsjd1ZWF|@7xr)Oyqonw)T8kGH#d-0}PCew_6sSYbP>sH@%m@^w`&4wU zOfV@W%&#A(1Fr&VgtcfX`&IYCi(hM|tkAO%%Y#MwB_RZg8VDdhe{FrgBwG43-x&x@elW#QIu`R{J-+CwWQ73 z*7z5>kA#E|g_gTl`M=|A7QqW;<%=v#qkMs=lL; zR<*B9%`h1!g+o??TSD((m5?8cU_%;wJip^y7Me$BGquWwoN=BpR#n@-^5bfwD%;I^ zvcT>nX+9(;Zb$Z&e`o$S#UV1hjtJxRt~n7?@R7JZ#w$sE-k+$;ajoidBOS zzcs;W3O5?7Pje-mz(~RYal6&>;{l1+N${{V9pLnk0;Jbz}V2w+;!Y~j<^K(+NIV)Z>({{S!1g@G&Y zty@=-BD0D)W*ZSE+ZiBt&B!CF^;e3MxU zcDiwB-Y`{T2~JT^8vg(-1v=m*kX&BD?L?IR5~Xf|4YjXgV?CF0I%&WZ}nZ_5N@2aIK~9Q_EB^bF{t0qCTqT)@5I}1> zRQd(y)JusJsCI4C08Y(8`&qNcJ}~MtLx9pQ^HYOGw~kxpVH@;i72me~u`B>$Q(bBD zi9W3(m6D|L6eNEoaRrqm_R~wJ($eHAET@%bsURQj`2PT_{J65ENg%koxe>`K#lV6> z9;1JS7!QeC6d-J6ORKnai`j&BfRQAVeU(tu_)Bl<{{Sx>s%K`*aozNmhoswSHgVb6 z(IAaLT2ib(otyTVzne8=-#2v#fD!br{W1*Ht!-n0q-c;YsNCF+?fk@HRqu5eVILqJ zzh}n+uMBHbfnCW@zAEad9s|BA*fr_X65t#_wd;;p?pbfy(+f#`56%)c_F zk5tr?PYmDa(3uEb_pe%iHfLfK;ANGdo#KQ-B;_D=9Jvw4an;u@w;d?+Jh58D9@w-A z5dnfz;@|Cx;svLUlMgJT-CIXFYN@Fu$PC|4%PNp&4W|!lD-f3L@dgztb`<@b2}j&m z$sjxY6z$gtVpQRTTcRiTopx=hiiVR{PGTfpEZqwZxCmuvw7L^TNruGJ;lRmlw;2$H zT7=u&;*g9<6)4oF9D^XDZB9*4q$%wErON{Hu zmKG{kW8w5=qAe1Wn^bgOOll5Uz{8CSHJ@CRlmMf3px^Py_-qbDHO12)_0`QbByCZX z7}`wL*HKHZEm{yZ74gcY3T%w5r`m0_*Nl+bt$3QVpRy0nFfwG}cDS)yHqtaGtbQPQ zPQ&7V>6-aWmthD1oT@7Jug@!HzJT-_VO8r;HXlwbgIm{)aZCT!?iug?@buk%mL7ZP5jm6L_^3fF4L0V07h6~DTHJ}PolEZ(0T>=H$lpPW+4t(D9d|0%R5Gn7D|A4Gj*x|0ENX@ zMQUyk^K=N*73fcoEFq008lH}0Ru&W}&OK%%><6*^oVAGv2hs(spSz=5gxZ}$SAG6i zTGMFswuS*bDm_|mNE9{xY>PTu95+$Qt^%w^wE~-wy>Kc$uOVj?rxsnn8(=|UzF~H^ zk>r+dPTOS*&<LH__- zBpS(4^3*AErs?)}1qW_j@D+BGY4wOFGAk*Kij^jnKWTC;fm+#YV@?SZv};)yvsFj7 z`3h&mm`SL577251cybg4$0`DUYbGGnXGjZwGKOFDhISmQ$O?b4T7J$<<3O1yo|g9a zyn{2VIOL?)U~;k<@h20>Zs{B`awC@-4-AVdLFyh}v*+qW!ZuCUeS!Y~Qw=X2Dz)Ok zq7{*x5k??&u2>?|DWTxjt>7S%OQ7g{GG;A&Nu8ziP@#@WuP|H_x7t5vD=}^2SviT+ zi+ABU-hlT0Y>gv{FVw8&kxKFano*DI$pvA$y807@fkeifPimj}rwbcc3}~vW3yIl2 zBBx?c?EJDzXrC?V*EaXc(b6S!uNEI<{{S;&X(mbCtTzzDD7j^#6GmVt)jYloD79TO zC!RBJ4->^pp{d;d(F3MLgo2PyE})PYuN9Zqs9yg77k2tEQ!wp1b=2cnVKT!s4yYtM z6Hm9(Z;K*XC(`IqnHuI(!I^#{XcoQLV5UH^389Tk3iFCKrzt4LzADN-&IV|U7-SI- zsjkMV%n!v+@^V3qwdHdtGDoNeMM8M93N<`7+X!QmW;?7ruuQ8I=1*3xh@|lVZAR~r zETOn{o#ZmANp>kSQ4rH&!1Z6{VGU`DeprVp3YsqT6nw*mrO-D|;mLRY$)a+T8 zGf+CzDI|bM{ipu`TOtEtnvKA`kor+bL5KlLa0EB68}Wo$2Jt z42q#ga0LMV+^n_)T5c$7LEj?H%@FIkB9x*1coNc${t(RFJ|ouxuL?n_0DeDq1#@li zgHH-}z^hpJZbxjfEuj>s0Jnj_RZO8Lk=Xln$f2+Zr3v~5D!rUiyK?b36|``K9wDpP z;Z?0A4-%n#O>#(Tp-nk;#a5~Z>J56~RmLr-yC}d?*8@PL5B0m?R+8Q|-lD$a6++(n zObXOjq4CQg(KbJ+G%2=a zQ(J=RS}^I?_L~S4nahdk7M23?a9k>&0fTiaKbD`ea!m-?H2VuXg^C3dIjdKxuhD^t zOSKyb^$8v%f&>y31e(-=)04vf~iRvxPmv|B*2DcXTsqTq~a%3sSEA=%YhV-YpyNec|AW?riD(xmhi9q zM^ z%1o`kFadU(qiM?$s@=QDIvaMa3GuIn5EewT8(%D5$@P0H>G{|Nqio)xX6Rgx*vYjA zv*`Lgu9rZec7*^%dv!M8eG~< zinuu-b74;sI^kB5ig}T_G~Wsk*OuuhCQZlk?kS28k<77v>>96X_Qfmc6!BBP;fe~# zV+h26abn!EvYr46c+(YexCh`b#M8pKLlPKAo3z`jDAw}L8f8<;WE-A8%!~V9>Sgeg zOrn9({Lf`F(lGK=a4N!t5AuU_8Il}n1U0NPvq^4bE@YCSj{cgDvKF4%X)Pop-YZ*o zSllZ$Kr#-B-?RQ!K{TsxsaP`oYUZmX2D|{=e$Og@m5T78uYAD_>{>AP!N3S+96_h~ zUM-RZ1}T!qEyNV{RoPV3if>W&IOMIbhLL(*p_0w*$fs&_>M|s=2q|7WMK+MBRdpwo zXaT~hc9*JLK`DmzFklqoQBRM2N`Q~oEN+Nrx21U1T=f3{SJ|n67DO@V^x4+&M72;< zG?ngawJ_Q#TT+CFF~d}&RQChh{Z_`%qVq?oS50VwE0RkBO&9Ey_V}?>eXWz}C7h|2 z9%@nRT5Y&yJ_iM+o3Pd*yas6>(5saS4-&_}!`*PAm7%z^xwsHV%hg69hWtwZ0Fr*r z1x+qvmO89)C!mA?SE%{_0L?fR(^=lzh6+U=uObQg?e=h6I#8DC=H?fU5QgBPUyKlX zadycuNi=I2G?)x;Ik;Ymw4hLTCYtc!yC6eD>!)~!idUWEweYlVKmKe2=lwZSlEUP7$H3!sIO^rvyzM=51+R2e? z9g|Nmet+niJ%hfZ4C{UnkE@gvElPdAv+4f;m6#HR7ikQDihSRverMfZ>d>3pb-J~A zC}7|V5Krv4Ux55e`#E5f8DkG~3@>fXvmuO=za^t|{a|K5F1WQD&0>XMUPP-Jw&P(% zp~>3{Md-0z+t~}n1?DPwt8N(6zC@NlA~b(q;3ulUNV~8Gq!ar%8H9D#oo{-k-f(?0 zu`978Z?kp4s&>{E`g?j7e0?cCDFG*!`rCb+R+aTvLC6ponhKNlYlvecl20o^s7NNd zR4*6AuNx3a{{Ss};XouYtGx&OJtFJT#T@Y0)0)~<1xmT21pT4@!|dc`3vb7ij&D}- zFP?n0ab_aYz_COm7$h8cy?#Ca0Bd}~mML4G9HD{vyUxizzEVcz9JEL{uFR|OwJdqB?G3=J3|NGz0Z9JV^i44@y`0KWTAN zmwA@W%wpySEY}o9h|rIV;pNG?WMr5f*$3s{=Ed)l-Yo~rXrj&|PguF+10S^Ld2{3Y zJb!03^Mkd=H_)1Xt!=2lmsS!i*79zyrnSssDao|I&9`?}x@5N&kvx*dLsBvW05@k| zTYNvu`&fl2GA7l9rn_zME5@wKc0GTWBz8b#>^W`$rdE>XkBH{PDvs^k z<*>)z(~~W7V)_heBl^r;r*axbl7!U#wGG}p$#Cw`I_-#>ClIJ-* zw9{*D`P{;-3s=Yd{8uCc0#cd%W$N5W@7Vhsv4gCyWc3Qk_COo>*A+yG6_Aim8ur^Q z4Mk$b4+6`vJvXTtcn&!#GurZuCe%BT;e;_Meb^C5s$1fw*^w5RY>^g{N&OTb1!+=y z<+}!sY>!K}`n#$~pKEeYK}^KTT+C5=Z;}VAr%}iyWs~Uy{3kRS&hJHlY{{dDsSF0* z8II&Cu-_Con(R*f#uay6sj$G1zmEKAizolr?_qbXYDQ4bmNJU_emJFddJdxsp!JqevG5H`9my(Erjw?2g}!XJ6kM;rxXkiLEi+U zNfNcbWzk~RQ}=Gr$gBt|XlOd*Z)AZ;xa>V!aBa~~W6Q5hsJ00s`CYoj35r5x@W1l>G2AD^}jig-*? zy+F+bYinr0apG2{gNQjL9&5(1ZX%c|K8#f5x5K}Gm2u)?ag|S67KF?lL~JM-fZ`AN zKKSt@1pCS}7U6L6@`$MbQh?KH{{XSbvZTa37I!Z)%orcD;anm%#FTTv1c)Y;xjiat zlLDG#SoPMk1-!&=>sosn_8DMnEtq2j5k)6<{uosgb1=F`S)^cq1)}dzd@%tMnFy^2 z*~QE$EWlTq=DRFEVew8-8;<2?K#0vjHZErsip)GNaUF>CRDjRiCuxM0sjCb<49J0 zVjVEA?u$l21&N^_>i+>8J$s5R)n?PZQVq}Q5o(@~z{P|DN_wcHy0o;X6C*xdRo_ZRDN$I<{&B1Xsg zx$)_Ow`CbnrL$PHQ%4NIGf?p3zY<8~_-Spc`@2P&NJILFq)^cH{ja9DqLS#QDoPaQ zu0dvAy?lM}DGZL-r`1eRw<1LtfzW@I@0PVG=~|c7xLYgpS0olEx$S{hY8s4Oon8-$ zF~mq8ZlB7yqy#0s%ZS6M0lv=u{{ZD;$ro#JCZ#IFEj=j34@zzOT(H|zqRaGX;kGER z8D?ZBVhUA%WiXjF@Y=VN{{TkMsy3$#>n-eIqmm{RWhDG7!M9{j=gcgU;&%9>!XB+} zYb5b9##Lgc#0cB{i0haKXJHd)i1fK53R(F9LMgHNWhJmCw$VEv6f_wE*cF9Tg=MGH zfs+0m)a~GLS2ek9*wFZliB|{$eY08)m=fG*MO-MSzAD*3X}8~sxTH<95-IdywOFyD znlL@-;elELyC|oK#Z;wFP*9KuV}z?hJ~a6Lihmpmy$UZbo;c+=ePktu3M zVgPUe9We@rGK$st5nkRHRY|T@dN#+WbCMBYWYar1sI5J+RL6-2s81p?p&t(5*ZAeI zi;p=Z`lRCAbDh#PPyiLBN%zc=vxO!bc+EA(uOkb9<6%-N%03kT0GqPV8p=_r*iCfu zEbalHh($FcZP__^*X-n}mA8MS#Q+a+EP>dO(`pWz{?1C6S{h9<)zGYq@G_DGD^vWZ zzW)HVf|Z8rHjBY`nh{zz0Z>8xpY}Nt%nL;>nPk_IM#Wxe*m5sWO@EaS!-!g@M+7kH z?rnV!Oeq6xxpwWi{%n&Ho9Q=qAzIq<*eGJithC;nRQT5vCRSQ}*3pv;V3XL6hxOzW z!q~Qx;*vrHT)7$wk>l{-wAC-Pq84dSFloW7u>}2--nbc3D&qMgCx`%c<**(<9wBL3 z7(F%ND$!VMYu2OoTfR!xlBgf+P!kWs!O8|u0V+Pwf7;`Xttv}m({VCY+A>Wmu>@ml zNIB={4+jNRAAkm+fCj_j#@3ZDbeJJ46iQ^7)YMc}K=_r_f8toFKw4<_q0(X_hI3!{ zN|H}rRX8aYk92foMt@LKcOryjf(jP*P_l3&wpW@k)NUrEd;b8dk_~A@_V*9T?WI>q zTA)bOP!IaqB~-b2?X;VVNqEW&SK+AuF&_^sATcRDt;~-!aQZA75C;)LIQ3n!Y*|zm zhIbL%o=8nb;-L1YhA2eKc{QA}eO(8sut%UI{{S~5fT&1(_jZeB*4m1jiDq>v8ZeBp z@K*l-Co$$+yg@MhsPe=!q`Ib{T)jjq6u%Kbza4qDQ6lCCrRthpj-?-^ato;)Pf?T! zGcic*JdWR;+4ix(T~dtw5k{y zlg9!Yj^B|KMJtLM7RehDXcNM_{{XS}#adt*fDMm^8&$GGpixI^VL}R9U;r_%A0EGs z779%Wbl}^e9SQ4%EhIY6mOi;4dE4Vq6=aTpm90c?{;pgm)hJsUzVdX*Cp|v)SmZTg zqyh;av9{}$iL{s{kLA5}A!qd?RXdmBYB%f4CC1mno_T*t<#O`fP3uoV6-XR^--eht zlfs)^TH4=2Z7%?p-NB_rL8cBR0gcV34=+y@&X%;alkEe&2R8ku{{U|kA$3hIX(=|`0Zowp)*E9=`VE|lj>K^c z#IO|W?et(JG`1-%@6t;fS0O9=z$z+5dN1sc=EYFjwut(Ov}-j8umZe=HlQ3scR3(Y zNzIMCYcNa1;VSx0+11cdwX?x(a4Tf;Lhij zE3%4U2~kPqA}I#J11C1zZ`1vQWSFVkM(ZRn%tP%~Bd1@7>BWjJ8(3CaM(l#17B#5F zRW3Ba6o-Xmh@PPCFj{FDBRfo#+#vAVe;@eQ0#xR@P*1LSALd~|cl~&(rM=oh?01k7 zE5~pv+Z9s0nr&SoI(hWUmIa-9Q~Zzev1GGIhCM3G+1)y^c6JTW633C@^8QRxmU{Qs zI*L8Kk}PqnB(ah>zh!UcUKnW!y`#EF(Uvb8so3{D#wbR{(DM@ttp_;Ax3P}I^$=7vvIinB0qyHHd1zu933Er=wyi~`j}JgZt# zzws=UF(}w2X{qWcpr-g(uWR^Wby&v|r{bX8`(lPQ=4~3w%uv0isTU+|$c=##DqP|yP=V2(k{fccK2LU6rNU|JLs+y_4pY<+z++O+k7c0 zrS;szaV#jnmJL8yc;Xl!*HlX={fT7L6drEFU=KpS&&whqYGwl%kMoy7 zn43#DE}W<#K#VA${h{%EKkTx>fR>Y}0U*|YIPY7Xwx1u>BSol^MdVFCWVk$IlP!)A zIkZbqPbZ#Vd9zfyPgU+7?LATIM$gD9llG%p(YdeLb^9&w<$wtCVaFoAOG|Z?ZZ!52 zPOGqH%q&-tQzJ4t{{TPP$eLs%dZi1d>iR@7UM=e? zJwrynykwx{CW%~pL-~<@EQ&#E%i0y&D7;IlXG@B-GD4&%H29k7TjEx4*}w{9iNDab z8@EeqmXMDkqgiksqXZ>|YyQi{uu_w3o$MA=eUbF!NM&eCV=UBWj71@+C#XL7Kw?TR8{R9yXh5FnbTc`sd%p&F!sN@-6efHY} zCmG_hAilz!yYEARQu(#dTbn@>Jxu^w{U0nA%8}Y1lC~4-tX@J(dSjpm?1!gZfs<&8 zx0v*$v4w7J%YYk+QP3&&!yVX2G0~~>Vw;c+6jyA?j9gijVGv?NEq(t0w=HQ#T5*gJ zdUmgT2}0aK>QpA+^zYZU5W!m0N)f7w4ODbA>4hpcDkDY%?FxW>^5`^8jmc><#p)?5 zTJARAGQkc6tR{M0yplm2cLdh7C%#o8-vCcE*856ULho+K|NY`@o0wp|a{{R_2&SXafi;FEpL(a9|KVIvt%4mSM zL(D*@Vh8g#`?0e-9uXGGO%{?=qTw4-yQ+g-+Q7E=<) z2x_o9)2GpumcUq@o|YtMhGnCz8aj`KhW@Ag9z~fc(x#~-D=b_`ru3-lR1es1=KY+N zqhw{~w2~=?Z;I`OC^`evhc20XWa4CjB`ec3M~?Jd+#;)Yq4uZ6mQ3*`AcjniUM3dq z3n=V)efduVJ|-=1=K0h;y4!q7Q(i>Z0fR78>2*VOZWJvMkgE`P>G1$RXDK1F(4Jn> zWU)Y~RK-F$SCOarMYq7Vo2(Hm;f!STtE~+`=A0o^wLLI~O373Pq!GFLaMHU-aeH#= zA_&V$(`~#?1S;!#L^lq$@{kP)54Xeg;ARlod@N!%V%Cu#)T(v)xd=K~VMyvGHpmtn;S z>-}=W6vjwPIIJaFvpewEBX?u)f`uDYJ-bGZ8V~?l9}FxIg4po&5tXUX z0bkdK)|0zin{-gJDC8+x4(G=OuL>VlnmD_BN3aw*D3&HRmxzqg$0DCeLEMe9Wq=gR zeh5?7l2u|r0G``+{{Sm1N)BCN7_4j+Qa`rFyWpj!AFi11rD&UVFUfvh_|t4nJ4Z-B zUsg9!6+(`S^yF!s+F@&Ow*{q*>%9m&eb_)!mTR77irpH~kjPl>M@kOa5^1s#wOdt= z5|^x5Sw1E7>OiRdzvajk2>A7}bvjwOlhEJ^1a)t+_U?nM4U@8yt z@&1^oQ_-}WeHJ;jd*v$VtgN)4sUwdBJ9NQKgqdvXe=tX@UbHZRyaMq+Xeu`5X^1w1 z8Vsi6%eIXCrj$5W2AoYR+PPp221+`$f;XidwCJ)Sr@}Y?09TLsSt?*8m1+w2^)Scj z%!AW@TL3He$N5y^Tf7;`XBuQGv);OX+R^-6Y(w`MaY?UyP zP?`NH3a-&V+FsSCd|4%_$?knV2ZA+tk00h38Mk+9BXZ#UR2rXRds7mj6{Xp&*QQ;F zqYyW#C;52zVyWe=qgl9#DC zSz773q#EX|k^|~DC${Ve_gEi~pAent zVsNEqk9vx*Zr@H&TS9DsX;!Emx9gB*xU!m1mZx!nlaO^3C)*USRXYU~r))|Zcodq* zNbn!m0N#Vyj%D)3rUaVG3LUdYW|UPPr7g1U&%*5UX4;Qpvv570Cn?hVEi3 z`!g?xL-gicA#T4eN?Q)EEKv{xIqnC=LGAulT5+_;F3DBysFonhFlLPXkZSGA<=ZV0 zVr0ed`QBVD!T#{j0#CzAZ_g!67TQ|N^^qpPFlz7OKbQ7;WSEw{4^_g>0F4M>N!q=N z;b7?0O(P0}%DXp1{!jeVg=qk7gpwI;)PfHaPQ(leMq20sd83wEs;ZDd-nIR&_$;im z3cCJ}0bhbBo?xSgs47YS09yb`lVANqiu!zHas#^1g+IzW(vKG#nHksvy`o9~-=OI!#gH!A=wWXStkGyLkB^7rCiRwMEw2;Rw^!FE%n9S&h zj}kt?pyR(U=E*Tlq?tI(6#tAMCM>WhJ}{x!)#gpi(5znb})-gwM&DE-`wwEqB}WBGYnGj3G5*IIRFC-A zAdtSo{%E;+gjBT&QBW`x(*pC{E2v$I`yjIVN7HD@1hMJP5ntIqZ!xAE{3C>J^}itb zZtG3cEsfHu&FR*GtH_+9O`(*Vud6BNQU}@|8A%PH6J>o3#A;C(DXI9WTIFOmgi5O& zz#hc^08A9j1!$Fl9EZi+jDsanG-vxoa3#R0J|phME0niYrv5wPs*I$HH5bQjzeXyg z>%a3??-;98ro?P}*L+p7E933HDyXB6Q%|QAX`Zes#QeN*RpvSx5y<@dVughqABAa7 zl*KEHxl&q+Nc%PXaaNv6fUWwmOLVBN+jxvn->A#>M_s9kx>(*p@bLrRt`LN}VIgp? z)D`*;O{}PTOK&GL_9;XDx3((X&CrH2%|d`xylLzgBoI;!PUZ{9#0@fAM=|}|jo9zY zlNI|v%kgEQszqMiqKl2PNCADoBkg}T_GFsUm9mCpcwt@+YFSM{Bz>Q=xBLzjRODLr|8AGJ&^X{Fp~A&D9#W?@bGj0scJw0Bq??TF`3vVYIw!l`ph z6|h9Om4OTPK{Z--Z+{F`7tTA_6=9K;3EhX<9{hi66;ldhK^jg7SN)Mfeq`dRHX0O` zR})`FByqgPpnV&!yEZC{fuoEGE-DyuV@=0T<-n-BO*%WN5@HI66s=E(af+|j6(I}~ zh|XxPcixoT;t-HS3tPmxTwvTOH3jyk-S)CdhteTc^)1}D1*z)W1?&mJf)for#nyAyi`a)xnPV+l1BA4-{BY%gKc3xwAQ1M_;~_6f0qJ;O`7_T$d_Py zR}{NYl0gxLBj)C`XIg+ghwU5+mRc;RJ!v1)yNuD5s1=9o{5Y~98z!+lH|7;7@v5*x z@RbC7UB7P?Q-!T=52mcr5bO#8upi9d%l@`1n5BUPNo)@iH)BFgJWqTmwXy4*OQ}L< zL&V3}pYmG@Eh>)jE(DXv4P_>%O(?^sAN6ufSK8@yjEka6$fVWJk81eg4RR8DM-|q zr~qcEqkG`CREIa|Y-hG`J!sKoQg&MY*jDZFWJ_Q|jdE>clu5+2a)1YFQ*EJ`d{tcxesCXQ5{Li173kJ|qLSH}VowswX) zV{3IrVoH;Lg-=S7ZCO_>SKX!-@*7yQe{@*|aYsLTJJ_JwY8l zXmU&eL-{*Lvs*Wln4Z)bo#uiBj7589qUc9OcJ|ca|}$y9I~(< z5fmf8!hdHaNgJXy3!8gue^TP$2xTOFnw~^_6C3YnBKeB(x z_sV1~zZ|H%zRoM1KIsD^24V#W`#_wcoYN~0a+g{4ZP707Cjp#B#hs*5Y5w|d!}-@Q z00&>WEPfv}7)hRimL+@c#f<;B2;KXl-=m7LiE;&Y&Wv*%hY$02ldP za4=SeS!7DykAgP~LMo=8W{38bu}gZsm#3FEQn`WdXuO%4l~M51{Gal1wWJ=Or^TW2 zSZ*JK6%16>I`sqoHpcB~J=4){fiEax7}sia{gxP^GPFomM&m&r+E98QzxJ_JM7t{d zHl=o<72gnq1h*G9WeYc{>OBVaBl|{KO=P0y)V`)i*2nJIm1|Cf;2|KU4v6G{02Jyn z4UI#=Lvp7Pumsk)vH@4?s)|wQpp1cJ0$*`Rhp!Wgfzb3m#~{oEr%u;oye$p54RB3( zF7)5O`8W>DfVN3x2mqXg|)mRkrY= zOkD^A5K~Nd&zCBiVTjN)q$u$l{j9qiM9nZAI#ivw6!_vDLD>Bnn-^U&npj=(c1GBq znPCk;qBxYTe#rbX4TvSy;*#WBTk@5`_{s{XALT#U!NkwQPb?MM8qZEfw5M@jhw#Y; z1X2rBwxmA+>EqWggN-z^O(sPs#C0^wj?Ex0pHzy(q%{Uv7$Qaw#O!(n%z4h7ym+{i zE59sxqm^P?M^pPenOJ>2GYskjo%vASm-%5PttZxe$;o(a6})m$Km&Olm#-s~oc7rr zIEz2gG+TWl)hulXrv!DNtx2h`T*r~OC<;u1*K%rdDPBc(rYTwhUAp_?hYnTiUu;m{ zd{P^rr%Y1+0RPeGes}!HO%8R^^z>QpPVdb8F@w^+E`OH}JXg)DE?yU$d5>G3{RP&m zGrN}xq5c@fe`RCo{{RD<2tY;FPG(6pgwN_d%wVBaGzv&Y{{UeB0A`tx1B_ADscjOH zjHF4_J5Z8O*%>CXN`|K?u$)4bNZ;e)4&a~o*C0!5MWJkU>xPG6*8RyhK(| z$gfi%rsRJw^Day;)_9P zdeO0#QOBD|{{RmCX_5hnDzf>OXO)R6hP$f_l`*zMXMYsOoMMs@L+&yqHi6cd#d?m# zy($66YJaVQnF4@qLi0+Nuq9(~TjM2-K994JrgoQklHu=IPcnsf0YF{oJS&6*+H0k1 zA_zFn4PuLO6;=sY43!FBhpKjapN~sUG7Yz#Aiwgf+x+-4$m_qHF^V#!8rR zE{9wCj82M-dA99JeHcJRtGAjx3q-esGOVDI^!TE2;zSL*Oa8mbvrFhz2H&eYo*MJu+oXuv3A$w(|f zuPS|#-z*l(h1a_Etf1Ua%cUx#sQ&;b9ws~pzb-r%cF#W&hz&To_^I#V%O)h%I8mh^ zGhaz=iz0zA9}0m%$NaDLuoBKNN-XtDh?SCBI{~rk2eV=dB?L~D5|Y;r%FZcK{h44b zCuBv{%G<^W29I7u^dBrz5-(nAg@k-Osr|Lcmc*}8yPiw+OMs|F0?<$&r1k#*TPi1a zA~D-$L1X4wtmR3fj+W6eETq$wMK}I!{{Y}|EI>~5ZD;h*b8J#4Q%(gzsHY-ER+1?u zztx74WmP6 z`ikS52CX{R_E+)3sHN}%gO;~F^UQU+x>i4a1?g0<&mpGJy}SMfH>?p?^5R|oGrT!LlT>4{{Wcwo=dd) zgWDOb?Z{tJ7U@&`jr%|4W(@JWjCn2TURv|EhvxXz^r@Ot805ey1wYA`=a|xsIX1}z zDnR0-pA+9HZ420Ns)5Jam=d>%J?gj>X>G?U*XN41vbukE1w2oDRZe@>KMIge1gJ-C zzamQ$;Bi$^7zg36(r|@wjhku;`;X&^D!7HIpg0w4xJq**j8)8QUL@DY6HPs z2+(yCJVlG>pO{H__a2-t5=7xu&q)XKEkBnm=EH`RbxmYnun^OPLZ*c8U)P0HMZ^yq zD}ZCJl)1k?^Us2(57 zizJdALsQdbTRDJur3}H8Q-T4vtNvRYjk4iSbmKC=uJJ>^~muCTm_LwXkw5^8I*METKw`PuL}Es=-;|#8}v9WG=`SqXqZdN zl2>6t(-khioteElfv_OcZL&-VNk*x6XD{zj3YKHZ0oi|Nmu^{L3{eqeL+ zp~VSSv8s(SXrj4L!a{x}YH>Y&AM&zbAeHlKiE|lGi=R~_bw1}Vj9h6KLvE53x{kiL zNB;mTw%BQp5>8tF{zipu{U=tSbJVZ%3gc|RQJ!mED&gBwC?k5; zie0LCkXr(lYRaa8T{jgQ@#FHr#J(M(^etdck+sQooq+;jK<#N5Dr9^U_6=)LU?YXwbP^Z3dZVEg^M$f-m&^~ z7?(H=pGNszWc?Rxw+z9(H3T(k5BzJ8C<*a+ODs;ooYH`fz8P6;iY(i-Qq&azj^djf zsJDb{1^_+=0G^|IWJ@r-NE@X{9mYYDvT-C)Nhhaa^T3tdUOI*qJ@Hk%RldU;+3LVE5@64t}5X#FADg7W-8MFM|uvF+ZAzD9nZ|-t`y;!j+V3~dE* zcNN5xM-9XfK|Kk{(*jc4%~p9+{S`#-9X1;Ze&57)X8u*fOl^M448HZ`qUQmji7kG>w;6h2(2x z4DO=44#a(|lLrPANT3Z?6`?dB_>+pDua(|5RvetE1&_Du#Z+{~Xp6;g06PUBQ;?@s z7*zvvXXvtXVjf;f;B?=kQ>9lGM9B@Ywp%;7`9`#{{Xd$qvf&n#k}K~ znaHahwjU7UNA2Q-SJvi~7@;8;f@*0}f18deRaau1C1pt!L2gu|e>DyiCAx{VXGu)K zeM$swI_!aGmKn)q~p^KDi)k;u*42o25uC65>rFlk0 zLXC(3e!Nu&4TN{Fkmryq$CGsc^&ZWEnrUebA_2g85xA=`tw%wKC{?htXi`HmhLnb@ zD4-+uR|?uqb#(Gbq9aNz4;_M@w99~Kz0ekSGtMPKin9_Jay?IOxEU+yGfyw66!9c7 zgUf&$asF-maim&0Z9|MF(s3)AYzIpI))2uZcarK+Jiz=sfHc^S-z=IFTN&EoCPo5> zVEnhI`mKVJxvi#+3`oGR-;ZK26a=QsT2;DU zEEvBNUgP3M=hbnxNtTMTTieFag_N@vRzfJJ{r3LYps3nRZ&qhr-5iEeYeQd%Q~5Ds zihx}_%?I!O*QA7!_H`q+)3ni<;8unnr#IMsLKwn%XIKb6hazCp+P>OJ2-!} z(`HN*$QAHj+*-nkcp02G6;M7V<^0%CLWQ=SG`fJburCd=Z0z(ZT9q76+VweMv=qg! zOfzx4A{)X>BGiy+vE%;$8)SiNF}58&%j)yXa3*M_B$OgU#CX@2{4PY6!5VTUJNvrI0H#7{KQa;ecQ_rzBwCwa5M!4WNcgW28rGZpDzil6)eB znpAC)VQC}z5+>m)Ifmpd83@~v{{Wh>Qf)ogw42B+t*s)BCgehvZOYJpFZ@R$kjAwe zQxuA>Jj`ShDPVZi7ANg(@h==wiLw{zBz&DEw;vA;{w1fw#ak5#q*2^o$Zr66qlnQ| ztw|l?b#0V;;Iz9&v@p8~*dml5f_X0O%7I%OLMBT&Wx8`>%5D^OWuk-Ik}uojxOu8K zPnhZ!>m}Ggq);lJgng_mRhG^aYC;8Dq3CdgI`}QMzb*tdYhUS>0@gwuZW>sJH4NRk z3hp{&lmuO+&CI+}$3iMckA_lqY>Fb`B9D}kjvaTeU-d`xWn{O2mM*exl1So(i*f)j z?NI*!laaQ{RIu{Kt9dYzURKanj2e|7_EC^C48}59ev#$tO(Y+x#ueQBO;3pb0Ib=M zDch46Qfy*h4gPr+Yt?qAOjTfB8&;zfJnPSQcNc3UkZvP9N3xIF8I=v3N$!z(buElw zM8la@4KiXmYUW)tXK21eAxNr_{LA3n7 z(V&hb`ntQoLoBaTCn5gqGJUMTISF&b0A#Vnxng?v%Gs+Ts_t=0;X-H!%N1;mhip}% z;=O2mF;(8=;;!4M#S2Hw)Z(rCcdjXa|I&-<+JkD^jm`X=;d4y3R}ZcYCH05`#D0G1~O-HqkbNd)DtB;SOJP#S*7Y!=RlWI9#H)!;D+ zBS}LLqO_>)tIH+}Sqcql1>9{qMhjG)E_W^ByX4VL`Ekvpk8Lq2>TW7F2fxSrJhHOP zrWaa$%m~TqnBy&9i*frg+N0^53?q_&%&S3)Xkcdv&WkPLX3z5cB8uOCS&)dRo} z5-}m1c5g_%F*?I?Id%=kf~U49lHGGreK<7nL}q8905v_b%4!?2{W9M7Q*zBwQXh-A zN*;?`x*@2iH#4io)=r=Mb_ur;Ng|oyZ33q95^`o9hM&wqX>YRxT_=9?8opTU%QO#eW8}H$f0ZiJC z+T!vPIyq9Zg$r5%LGAC6rprdlWg$h0CMD4Fk$^NL{{RdrW6)}M0%|G}0=UTK?zLW(I~gm^H?B9PG8-Oh!ZU=2@?^K!{%vmqfAnxA@i#H@E= zUS-s-B!*}qQ2wEfR-U(+8MXEJdYLVM8Tk*CBrJ69EHmV`whQ+~GpbH9WXbc-M1?LLT)D82WtTNv9DI$-`|)FSm+gM4xtAZ^s` zRaGAOu!L#UWx0LsXjBtbSX$Ul_${{Wxa%J`dUN#T#HiXUu{lLHkYVF7PZl(&JY6v+a_ z#Uj?NqYMqOA#eGuG)MbUDs7+yq<^S6)1!DQom>XtcYxp7qVUD#hQC|XyPSH z%SK)3IaDS{F)6zXn2an(8CU>$C?t<_`#B)jBtzX#B#tk(w-ps$wWn;EV3BG%+?ME4 z+tXOx%24i3+XngN5-rgPzssEkTg)(CMGC_xw`n*El@)FX&&$MRCCR;>t8=K&ZRx`< z+?s@`+P~8xgk8PL`eJC%Jd#x_PQxpcY*DJs89)Kzy$cSXJgvx1V)Y0fp*1UgSDyq!ON{~J2inI@E_r)uy!+O``KhJDcqT}|y z(e4H+yOVAftMl)QshL69{{R7su81odfwzt-sb2jtR+eDv)RWz5inK^OZYhemSBWc8 z*jE*7u|5>m z-l1obzh#F|JA;L319xXDPX*Nf032&20V_%ZKjKxzX_2E_OBj|#YK_W{fS=)k3L0A* zxqo&+2uV_gp+NngcEN1GPgWUTO0iIK*MN9Pp-@&ZLWdo??4l@}m4rD;!Ta9&bm z;;KTDb|ihD7r{zOV{ZdlICUe@Ca$1RkC0q6f>Dbdoy?3xW;T&Ww%DOaunb~_oA+zQ zqX5;b+ZCl4?Tx&vAY;MD?;<@;`)}g7LMbQKrqivM%O5rm@R-z-zeZkX#~WT03|f7} zw_cO48))KIP~>&#{pE7NSV}aUNMjcQ$VD#{qbsl2tv>$%_$-qZ*N_BMl2;*-zS53g z>`p|bE0a~8%Gr!uWO-)<@*9ee59a<{39CqTZA@LP!uW%5hzxuy$kg#>vBk6s zLg;oeU&S;qsQ5r28iP?_v%F4fM>HxJj-V@GK><6lY2;*kn9#>w zX-ZdpxX^#sSfH!wcQcRNL_)|?qmiHl^f+xCDUO=6BBjmP60(8K$=rB8wV%kX)>ud$f1GyWv)B(TM@W9HFiCS51W{1(?7XXS& zQ;{3U$@^c+@Ze?&D#uTCgmYGJMTG;3f_qcPAX8|^wpLQHtHRKl8UP9Xt~`I;ir5kg zt*x{dG>YmFIFMI~p&NWF$$w{$?Bh(W8>!Cd=1X|WMyo|&z_FEq2{2?{ z0*3OF5)*5? z>6eNufnG2Pb6xh@sD2maiqoW(Z{0+dU8^B0vH4T}3lOAI>nIY^UsfX0#>S=Vxa~}v z8&|f{<3|SAkr(ofs!x1SjAjsxz#cWo+EDW#xn%)>1MLIT2q>#jw~#{qi3=eWpL z~@k+$~ChaF6QUs!5O#o;mdGBpkZI%OE!A<(>?XXVu`Ya2Y&9~+vJ z<4W|%@mnq$NBwD?T19FQHy!f8*CNL5pfk)Sn3ixhC&1=R94Qr-y0mssmy~tcXevqU zyno8clT0El2cvloC#k6s_dPxW!i}BfcuoLN})VII8Y6@cXe>H(oWxTRUuV zS8=GR7^|v!dt$Hu(+A~^87~q>mbKZHeqHl#PJ(i!_p87#oPDA=`Y>ZF3% z;zo)!2#z=3_zaby9xf!)J^kvgMB`x2kDawTaSCzvHj7)ixwIEo%b{{UPu2$KvKx8`7*x#L zp2C@6Ekz`URsAC0xr6|R=0-{;(J{i*_wz3(q^l|0w@kIETFXjXbL%?>TKqe7`Qid4 zD_?DJEafWoU~5BP93&#rT~6j(c|$+LIC4ZhCVS(82j zc0k{1v)oRrZcJc`P#RR6rbgVTV*qZgXM1sFSe2HYST^)0<$x(i#jQxO1h%7wsBOO- zkU?l%vmhR>;Pe0tEDfOMWcAzAYV;`$y*u-nY9Teh?OK(oU(S+Te@9NHv%X7N(SJ5ygWf12by1h zG9s4>DsU3ph!SZPabq>zymv5;QICX=52FNyq7nd*Q^<(D+BOD0AytO-9S+O;OxXk- zo6};M6x&Q{ipHs0fKCv`MFXhnGu%obhC?d>Le0>Bs178iB88NGm8H#arc`y}fHhmG zH~?ZwS9x)HXx^(a&k;ud;nfi4+hffTp$ZmjcaaA|tUG^uT#R{H_FG0BN zz5*3VgGx__UjQ&tSp2?n(vwz;LR*xQ@>Oqz7#<{iKtH?x04_+xqSN(i9=qfcxQ<8R z6g|oQ7^=cYhyxWqY2Zk!;PL&m36Wp*j<61@P*a<#Dq&DX4SVFya03CSGCQ(ZG@}_t3@KXHpN?YBExA#{NuLPYWno;P zmmmi!2!#-GUi~U?EiE8Myt)(6R}G?;u?hi^Lm$HsQAvKIc6b!00Cp7UPF(?QQ`sVz z%EX0kOVWg9R6~U{71BIJF%_=fAZ9=gJc3ViWhbtN6a$kIM{~E1Oa=t6cm!V*F{+R# zPZ3PUjU=DNkCWLIP} zfZP}CnvTEZ;;6x=3x@sVW!}CeK_2)CWCCcGLKFcbL|RaR)|p+lQUdY;3{oCHxs)OVm3d}6i`h(fvBP6;2o;!Rek`Io~9Dk96Y?G`H_!X*H^7hnLPC*_bOumpKl zLJVLnb}VYylbQBqFX zU@RpTDXrfnjn~z^3Pk?^3O@9&vFXHR--)Ii^V@A&F#eb?-`k&M0&`W65wQvYD13N#fnlO4ALXCPq_ks^xYy z^=~9;YF+3Y3{d= zGX`Ml4=QdwnQ=-o`W``6-A6jns5Uy2^a?bx`Ns+B@Yn%2HQK*=#B1a+evTs{w2jerD$^nT7x zn#vCOR{ff#iz4y(KFvpczRP~jHkxcraOGi#k0zii*WvxHUm=aHCNbE`1F{Xk6bEu~ zv?XnM4AVj*VB|Sc7*qU{_hd^dQ@ya3!a{8iry4&c08|=&&e;OY7DI1#*9ea#1CT1i zZNIJ+C^pk>EpD3S9h%*$c-N^vFXhJA(rZ1$YO&1H6>WhF)}68pf>o>Q)7Z3WW{*6T zHEt$^SGgTX#g(np=X+>Ax*|VclmW!lQ^olI0IP*iHvU(alU$h<<90HY+#FR2tE)g( zcN}4MKwW?09DTAuERxPADe5mCEC&h=*dFiimN?}Bb8{c4vAJY2RcHrOku0JTmhUOOIu?ZfngFl{8gb= zS|8bQ+Z9YMZ=t+awZ22?@#dtO?euTU6f0?(SoD2k%%uMSyas_tuh~`~a^fU3=r%E zek1f?WDr-ph={rSAcZHyA8%}fFsWfL8GTgvUTOhK8W1T;U`jeCnrpX7c8NlP9R&&g zd2SdH?)TICe7_R-b&rArzQmRvGZj&WKu zO!9g|FuS>bT0jRKwqN)0fhUmP0$;B`K)GYHKm}k-;jjYs0k+=nG zxgX1$y0@9;Q4s4(eeqoEoI?W20R;a5m6bUlF@1kf^?hwMkF7Y65zA#&`$Tj5Jewd( zUmcCNEy+No+#v;dMU_qeh)a}bGjBRI-L{mP} ztP95kmjpbJRG91HHY?(DBsc)F+dGMFt)rp@RwN2n;lWF3ez`o+B#=bpG{6dw2_$~V z<@-4T8OBT*tQywj#|HA!v{eVF{h!&cRCaQKwEqA|j^jmVLcdv(L?l1vR>fkqSIOQ2Y7YT<~hfCvNaZ^tAW)HQ3=w2RQMBU9~AKG)-u2rNGK`r`VK#qn|!PxLAFm>1OvEh# zKA`f&>6RscJNx7eo1+0~9sJVBf;MW?renyt*x~|TcYI``)D>D+C?(2{I#0A6E%i2O z9;*~;4>PbH^~qaIg)`er8#_1^?YOyf*SlBY<^HZ4Xe<|5jiHddDmM6bJ|E=dlM)X! zED;HLN-M}v)87bAtFRu}DI}`hhFJYEQ^@W|;fZ4tx?6E0pYJy`r`?b)M0ez^3Hr~# z{{H}mNE>S-hj6aRAc;K*3YDm!J!_L8jAk!zpLuFXE#qjUllQ z6~>Wa6RX=9d$hEV7+H%NG{S9n&mrMF5g(U-#ovrt6cZ z8d-ajokrr*O;1VJ(SgvtR92zB9y~|<76KMBwjVCPrF>TKmwTEM>OB;lzQ-^1auyt+ z33Fp}UIq9x;IYC0l0{bd{#Eb(R%1)a&xZWcJBM9z;u|Osmz1ah7vf*pWk0mb{JDcC zV*yXFe3g5md4En#9@bQfJ5*3uu%Ti;FPrlFS&2B3D_q#&H;@w$^#a={Pwpej7@$qV~efpHp}Y0FGWmwy-B#U+=GzV;zfNT0#(B88^7k=)LsWsHSFfob*{~mTaWq6-s)<7# z$8q~V_d2E@m@f7EzyhSAP(4qFX|&B8&U5Y2b1! zoy303b>FTk)9_MNjR^3P&nQtYC& z`YV<(K-|tFP{xW)KqI~akQ1*g!AoUnB>PorZcq6?7wqN^L%W|1lew;~)~zIg4{}XT zR2vCFrSO_g5f)@UD!=EpO^O3oxsL7!h}Gz8@Y0}z+X}q-uI+90UtPx#$YCJV*Y=aA zQG^y;J0}*`b`~O`j6v!eIugIx%PnXsuWt>)^OivrZSbUOXg+M;|` z6(Cgi{{T@=O4w5)wTtS?uQ}lgtrnet?SPbo>J#;_gt=OMiVTS?z(rXs(t;!{KuGzI z^|B?BJ{tvK0I3K0x39KF*#M0|v4Ii*LHsea)1GLd+m|E$P6Vl>vDDY&C$ZZkh2k?# zTzC`vCw;O=B@WV58WBUaDZUn>fthMYKvQZiS{TWUd4)~XX4x1S2`oVUns{bJTrc&k==9j&bXt8r3_PatSWJ96WS z5fVJJPxV_*-NChAxv%o#sJZRowAtk@Y5^otm>C4V;@i=zai<#8j`gQbm{^prM9}Zc z`m>)(A@)OV)h8!xSp@R6y49pCMFRyCH1WX6szq*40m?V8B0mgi2uHdM!VWxMn^$v8 zimOF!1;QDV(_c@m4M?Z+VGBq|Zlw^))1xo|pIO>l-X6q!MIcnN|sw1ah}3fHsYrYB@YmzU?fg>GUz zh+-+&Q>Pq>m<)t%1%Ku1(|5oF>IJAAPhXx(#T1VWvW&Y5}?WWmiu;a*Dg|@#9{HWG^ zohkN?!KwC|pR@kUEaGV~q+QO75CUh6tFr@8dY>GXute$FYg&c{m*Z-vuf!|c8%l(l zgkM=`Eom!8N2sWJc)9-onsG{T4B#k}m~LMP>;d{RDYSGp@raqHqd$GNQ-K7j*~=ox z{{Ro8Km|4-f$q4{0uNHZl_D(h10f|r0;Z>KK!2-+EP5>tOL-DRXSY_}g?2vQ7um_N zwn+`6K%jgKTY6HU{{X>a7!sp)%*+f3yvE0R0qsncpfUYurmHKgZX>v}Eyz-#hxUHX zM7G5)(6sftc_KnezXlG*h3Q^mxEUrfX_wI4&a+3!T+}pY;ZO%oCwvGgrS6uKn8ZpJ z9u*9`GPm;|Z}M=VP77OmC2PBe4>HgKr{Z-7kyVcsL|xsjFhTN5}?Ee6w`zR33+HiDZh6 zA(aKS%!xIzhT($TEY zEM#ybf&C5@bU`yvG2Yr*%aLD2aYP(Ew^g)`CwL;p`hvC6>+2PdY!h#TT5aF#8(Qc zh?b`>A3ax~Z_NIx+75|RCLPft={Yb0RN zPx*8?Q4NujPTDNDGVr&FAx8^UpxvqQuZ1g(GbLVInY7EQ+$%E3q9#^eI}YdeeiN6# z(?&tW6YucMk-_z+bVg0WoyQ*oOthCCk=ph5)gTSBaw?>D0R5xz;71D|)HOt*wccHroKBjVKUh-s4?lG5SO z1tlxBNa{a^To|G(;VBu6JzBdn9Fn1R`$)GR0Z2lUO>0w1`{I`iDS01KM-9kHMI;0B7^*%v4djX) z>k=s?R-m$TZ~N?DAo##Rsah>T0tplocb?2Wp@4a$$!h2e!GigglD8 zqZ~tbr;bP~8M>Z-Tr!fXcKAg)_~m5o-Xj`KY{Zfy6eN}0tvr45_?HrK3KvSVikj{C z3=-X7cvjU)SF-r`7zt;(L#tdN922d2<}Bpwu*8KKIGCx%l>B}2G}t+_4I9h^!wsAf zsZgLY^(L7o8e0_2{KAN|iAu5(2mlR-^5ml9$t%2)DH&Sau$oQDs32Fd{{Sm4U^eEJ z+VbXGk>n2a-lq`CY1Or>NI6vVrr`LTyax_SZvljY>P<)8hLjsYODwV$jDSaBkRiMP zH&aVh;!7RJY>x^|)F+|}sroV{vOA$B9EDG8ferCcQN-+b$N<<)qo5psuR*?A9C>V` zEyJzP))tBrsIOmau6*sf5%kk6Yq5DZIAlu89T+usuTDSZe$Ei%RW8+UzNr~gaPnON z#X?Xh1KTHb#75E>wRVbOHSfenzW6V_v%|hh>veIcw2F=Ctv4%?JEnvX(Qvo^{z4n5 z$cXo(lP*CQd#p(;UV^`JNrUB68Z3yGgw#`prOL zKm%{FJy$X!92pd|P+9ISD^&&f zMq^F-@3&srjdbkg9`x$#PqtfSMsWZ_E`O_#No2+B|Vc>*P3TpCrG0eb$H=!O;CFO0L4N70A+B9wG&FZt+FF0 zqC?zPrZPz2gnu!wd^E#~(%7{)=i_ecM^Zp6YJ4eQ<-ndxH9cNEHW?Nr4Rp*@gS|b^ z`8cy1vE5(H7uT)nw2Z)jq%O-r`#e_zFvjkA7bUhQ!y`?B=%0|n%emQV0Y257;;@ zvxJ0eSuMb$uPDuH$aTSKP}TLzO%})EpjQHjqvAdb{{S^$WCf(Ufz@?8UtZWN3i6F6 zZU%#=B~kHzvc{Q$2Q=gIj zcGxKGi8PqT(>*&vib&Rblzw%hnp1Ba!poDn&Bu?uH@2`Ait30}Nv_9g_~t(qxjZzJ z>edJ%q_1C4@dWN_a=^fZMWy;$xLGP?pi&m3ZTz^QF1eYdlY%OaRoHA!N|3^5zPkFs z<7guvX$*$H>l*(6%{aCrY;SL7A|Hj(Ps9}0Z}OS4L7;>Wne}U1F#iA$d1^z(HxyCu z5B0y*#F}Lo+F#_$DQCM3BBYlw@^@iK&1p!_`Dikdcf*$1kfz58OV7bI~9Z8T|Qgl*8*B!Upn40i*A5IupW7Ca~mnj_g;BYG&y0SN_vbY#;4RuRfy<6m+8o} zNuN}fGbHwmvPCb(Ko#hY`Q1*iwlKsQ2Z&@y?wrnHo}ry%Yg3cml8;X0u-SX zBl&rJJb%f+lx>U=+C?X95{xN?8$N>YAk`x}i8kl9|v3iD) z1+qoL$wWiA@c#fOe))krc38kiwYtAjd3>^~ZlH#|v4&Wh8R%eO!GrW5kBgW2IVhGS zJa1Id2B!mBGB~k@GN{VkPX3<&dhq^i%?<(P!>7H}yt4vXq{XFD7&9nkBmMGr`%8-| z1(s=^Z}p-@xpJ}!6Y7eC{M0Mz%l&^+J6jD-T zF&-YZRV&c+9lzM*+R9s~NedAR(o-QTBLYED`z$!%w%EsIXe{SxT5UEH>mVnLw4(}f z2bbExY?Q^cm$O97!4VabMWq@ke1FTxvQ6#PwCOlp$yu6=O==4C{4rE6xqEH(a}~8d zvn_rS!~#E`Z`r|W0!?-;?VwpBTF6HpN_kM9YV0XiI zs*M$svcylQ%~Kn0D9V4x__0dsgThi34?2Zf8dn0U&eQtH2g4Wzik1UmfR;cdvFh_` z1N{_6Ol7F;@TnEqIpDU=70^hRLOGlmq-UiAR8V(M@=xsJY);P9G<$dC*AfK*_^gzn zUSDUI^KXXOD`^@`klZv^k^+te0ye;p+f@CE{?~_P%#WsBkS!pH2qDMhc0HNRZNyyr& z*=dg)qD6#*upkZg>A!|5oLxif#$#nrUux5EazTkvj@Qz9NI{S(0*9_miW+HNG#;ZB zYWylXe2xU95&4e$S)NNhIXy^`xG>y4-)!&jC56Krxji!0Bu?g>0AotCX}yUpWBMGNdlzetCoay>xEpazr(-J z6e43!9=NLNQ*&HZqMty;TcG-JR|;aTW(+sQR)+pjim##T(BiF@-*bw%w-H)zinmJQ zt9Wm>PWYyt z0R>6h>ByF0W~F6!aSOv30w)LJQ${2FoQgqXLfN!}lUqPZR;lDFY2S@cTxqh?9cJ2X zPSi_k!DEt)3ypyNrICKtATYGNLmr?E5)l0sM+TyU`Cq>rnxk%HmMH$P9Uc(81IRWY zblCl@Z5%9HS=OL|jDClzXKFX6+#j@AKFy2#q+J58;-9Zaj-3^8T?{lTZ6@fc#|8l0Mc(QAj9_OH)@; z`jy39EzGhGcG2=hek88JY4)*HMaH8r5i-Z{B)lDKv#HoND@Z*?%GOnBAqCVw!oN-s z!q7TbG`W#p8X*-N*!BMansG~4HqyrOPGm$WLe8h*75hChC74UCnp@H?Ze3MDrzO}L zcLM_@;@OSFrrl4Y83n7cH5)SELPv3CeNHe$(knM3UlMm*Sp=!>q+6!9lB%Hgs5Smy z_BceDaO{tcPpdhNo1J!Q)}VVFuok*QLv?N>WR`^mR8$c|jj=F6%RJWPh>cXzoO|QM z$Uq)wJB>-5DOwZMWDMIQhyu1thA15vm!VTml*p3ILkI0i(PKQxicD63GKZBO{y2phIh0cGZqF$ItUpw^Y&4oqb@^8~Rj zCrU)1^~_r?S&UBUmYh98{{UG2UCG{`EXa?WjgZ$QPnVk5dd+aop-`2g)E^3*LNg1b z`oaixh^Ve35vb%}wR2iuL)!3LMRcdfFH22AqZ4eY*Gp<~()>&dF zfIog{a?5wN)5FucBg>kow76N>dGI`_d($HcBQ`4u){8Xy=B&2x(m6}|id%XxJiC6@ zNP3G|h{qdeH`;8L=1WaVMMmYxraJ{gzXkh7tp5PBmThPmHz-+B13FtY+N%lh85zCL*bC7^ue^YshGw}H8}X1`*>lh zV{dT(0Gwp<&kM_)Vd+RB^o0PYC+olMdTKvwF*8b>+#&QBkR8dW@up!pT$0U4%=Q{= z!rtY=NW+k?ah8lmT$*K?G3LiS)A^4jkcadvOL9y8`TFo*@>BMmvmzRP_KE5TMjLiV zm{LhKKx!F_At3xU_;&rCIhh#Ku9V3(Q1%zR?R_Ee7>NVlkMj6r>8zD4Cs>N=-GdVq zNm6OCHLvYsNku-TEPn_!1QJIYllwnw_HfcIT5F;rLnNcqLAWEwr^kdaLtknT#}S%B z0+F-rzAA&gy_Id=MmFzjNDD|2z~HYM1v~!$t?_gJ04o8LJaAR9xz+r~6n2_(%NngxNt{p(`loknjkZt) zndsk@Get1E)LuSvI}iF zEs~b}2|E_=w~zB?B=QpMApsOZLJ8^d4!K)new7Co=zC(W^sCSUF-pgNwKb;Ls>JRo zP=5?nrbXM+HN_5EnifiXjq8f6XpowaK9T(~K})qwA!nxkn}0PbDVIYh3rXJ3M@<|EEpoG@cTRA zRD$SV!5o)&Fo|l&RRRA1V&4`_HIx*W7ZI~GY3Z@65J)@r88);wr7(4^YULPJO*bRr zjQ;?vxhh4Z`hB!>I^4!s7!4H&s4ByLe7|P6fVQKn`JzoD)nRP1gr_53BZ(V_mqdJmQYt}3TvTmf1T(wlrevP$VAaj*l1+v2Ty2WpT< zw_I4MNp66ekPm^|6{kc!J(Wmbd{woS*N9qs(-m$37|1>$PCq=AAxVpq#F4|jPh6M`WKgn6=~TH43EPj_Kjh@;uF~C1M)0)K zazdiC0F#$RqGH(EBD6e_T&vcgbu}Apmb5Bq$sEuvxKKSc<3K5}{gQvl#VX5c)~pS= z1=tlMmxoQe;3|d})7ZHB#9++JQLx|NlH^NZb)AG)x|~zX7Z~AQOc2!z9*%$F#r|Ba zDbA;;JPTN21PzBSw98@|iV50Fg(5N$o2Xo}n(ZjRZ_vl*0lh>$`zxDx}I+nc1p4;7DUy($A^RL~|mD znUbcU5D#C6;gc3YAEQ{s8?%C}3T-AFA)}6EUYR#8~SDxp-yxseBI_9 zLTh*)D{dxt1W@z?zTc}D1mu-5D+#TYeyt>L6R7(X+zR#Lf15I#A{h6Z(i?(pVz!al zAB%FQ8WGEv`Cb^PS*%!nd2RhDp@>Bpj3G3wPw@Smm@G%1bOoRPvimQo{8kUS?qn=~6JN+Xf#JkKAU42@%C3%{Cz0{8D zPv*iEFCyM6X{J;TQFcTf{2Tn7m8cY*^+VJD*M>(o5*yN;0~An7x<}_mcSxtCNFy+M zq$nlb-6=2{r5k|}ABmx)An|?n`~&>P-mi1ceP0(%Y}uPE6G|BMJj~ZE(QO{{VkXvB%k#Q6!a1LzA4X=_(SB&Ci%VW9!Qq z^tJ|bw5Gh8s5U8F2{4)|K*0>jF=| z!J2PHX0cu0i!NuaV^<$nk1T(tz8A#!??e_L)(Xm4ih%~M(qtbl1ZD$o!VQy5RBP)z z2W#`=-bn>J{kdn z4Vp@``NEeMz8Z1bB8Y4!S$L-}zggj32X?u-2aco-Sa$^Qnt_EBDx}X@vFPe8rDr!- zC9_cawO-kI(ME;;LPD?pB}b=m*(Wcdh7LXRU!lsda<9*H>`_=u5 z1Z^glhD|2-;8QIouXwR$T%>m=3;EZ@)%9(eeNs(Zx?vhN44P%pPJ(^glvNug>WKifnl zKyCVpLv4SM#@NQ~;9lh)T^onOiml$6e|U&HX%sq<=EfYh@Sfb)Roj?AI|hsdEhSZR zhx*IkJ7xZccR7&V1mb`K*|sr1g)FMzIg(v?Jx3$bY;QA6qQ%ysj6r1UpDSklKb0^?wc?_(|s6ZO1gkrbYFW!Dhsh=U6 zYT3lmb5YQ}z)%$Irs0m_0o8_!{-h;$-KiCK-hjl?uip=0Jy$z6f)LgyFpJmPpDEG+ zH*vHSJflQ4Cf_&}s z20s-TU96Ox{?xzztm!`^3PW>Un@Q?W^GLLK$j_HL+p3J-v;|U)}1?uYkplSMttx12)l}x&e&y3cZ%dk;o9<`Om4^YC8YD0`4GOSME3+lq_Ts$e;7;`(z%)?AtyT>+U zZe)7U#~NN1z;f~e9P!zLG-_RuaUmVW+a}jcr+d0%1$?=JU@?GN@fPEW6JWcL_>}%& z;YZnH8xRT%+dkEVn7l4D$J$ z#Wd?m^q!y&j;^DqPZ_R(H^sWIflT60pQz{*wF#LeswKL^N}@iQsRUEk@#|^JPm+Ab z)vhwhiI*zqaxi<_{ecs9zUG^CJMBCdxtrs@OCqvHxX`zbIR|mnKZXTKwiMH-9DJZ_ z7-m;LYL49NnnE$EPh_s?zOOK!IEH9_Ae5yO+GCpi&DD3R2$xtmUCxvg8m%Ie{8wx1 zjOCdrT6Fh!N-0$xZ$T*Y;x$2?7@esf$AqtnHaz;`D5I3Baf4H}0wwoRns1MbM1WIN zb(mGj-61;f#huaDZK_QX!k?Ly=*w||*qH9`Z#%kOx-n;tREttSKdxS9?s<#a-{0cS zv}GyY{|_MicPe5#kUXB@1EduG^Lw3wWzXN~2waO`4Z}6!mtC@3>fc7!eNJlxi0{*5 zMrbIr1cETxts+S(D$Ww=I_!ULH)H|hnohsS1-EQp)v4c7C-d*6W3RBD9p(@FFqJaq z8ZHAl&s@-#Q?6eOsoCS)Af9&I6STAEPM&Qy>rKuX@9?}oX|S${Ca^_3ziHzj0*iZ@SH0zShlfzm2D@Y1SZXJx zT`mh5_}2y402A_u8$e1T$PMGzBd{U&@+(iz2}!l?)1TkK&J`EDiGb1N!fHWLSbvka#~q{YC`m%V;MhHvtFb?+o=rvgsT-7#+!sk^+J$z8#B6D4G0 zdqC19$@Dm;GYd;qPi8GYs_? zFiKVCX?&wyGd7MoWUNAf)BNSqAp;)=#;V6kyKXT5!}W*PQDyRAz@Fj<%gFqNj$7VkR{yQ)#b$}vC(3|P{^F2mA_$jN-F;%$ol2rnxh!D)>3 zMYtP(`>&XSOXz~YR(<<5uW^EJi2uP@jrjVwxpQ*OlSQyWxQun*2F|rfa?pz1m}{tY z%ae}czxH%7RY5_EG!`WwE*V=VQcqse~;(4TTA5GPmN?LsVBkaq@is zXIybS!NHzB4t=vANUNzoP5U@@2>8;}p2@CCBKkax;|9|~80|`DWIB^vG$@a}YbgId zujVf{rNfEgmM);`BrtD6sI=%rJ6*%)S5ap_cW+g|Eke}|th!s7vk;pN zN9N6^uh@1Z42{GhHb7W?@&p=KE1Zc6n<^Ur9GcGX*H{P38d@lRZGQM}w!ld?TpC@x zw-Ye5tZ4239@OZ(W6u-<;J@6P62Pj>mXt03Ye+cNLD{q(8}?SfO>vtfm**w_t8AWk z;)G@Z`6oGF-;T4il0$@Fn1@se!}FhlSx1Tu>_KXH80PK23vKte(;j+!51{B|u+FQTRYRa$aKnhf8dV#gnMV zh{wkLuWylpYhltUeleQ%o};=Xe8v=iFx3Ob!f*18>&jR2^$wysD1RoHX7aB6Pjel= zeA5z2TLGqGYMiF#S+Ita`%wwN-)7B)#7?N&7Z!;!LAYoMf7h3hz+UZGl5FnL%Av$2 zl3DKY&>BZ|P=8FbvY-7}T%qX#PW~p!YJ`Q+fk311ty=ea0yQ_R+(xqiw_qztN0z zZmPjoH`8<*HKj02ss?~*PoFT3-~%Kg@U7RI?AAP3Hsy_^Kc*IUfWV5>YN*$@!)5kA znU5ah9Kp@|tJA*7Zi>03(pDWhw?28&F?e7j-pzTw<2Bds%XjF=i4v!lpU_wOHqaBa za)Z%fvd-j~1m|tpsSD;8ECs$aD*y-8Ms^DXQ>9J%YrCpbmbaHo&P5^GG$OUTgzl~P z4{SI;Lqtg!{_FhseyWKAr6Li@qnprY-7@x=0%S)ia_xzWeJqX{feYiHSe_#n&|)Bk z{xTpUeo)THaAG5iEZlJ=$AUylZN>uc^509&qTk=;0kYUKoey$<)`XC0ce0v6dge8M zsGzsP$8JlQq2M$2Bx^pE4$1iiLv+(gBq2YoJz{^xQ&y5_6aEg3P+=c&Um-}lm#1z# zxkSQCMOZ80LZ$RASQ@vevYtR#g!14?`VH`!J zv)smbi^{gn^v`50{d@Vv=!?PDw4d5XGxSm4sCuhrS1KNeko;Z_1@DYfgar&9tC>kL z^I+j{tc&WNIzsAoJRUo%X=dI^cwClT4z|26l#u#oFIm24;B0JZpWHf}QqJ9gX0+F3CvpLK1(-X;|}1b4Xs)>;Bwc1S9zPY;hC4a8UxN^`rbvMwQ%{=B z3u)?axR7(wd5Qzx@?ql^Bbn&wB);^~V!rn4BaHa2k_aTFx1(93)bumAY+C(wF@^xu zW2+QdvCjHPTh?FbggINejMcfoJ0?D^)`S!Ptq1Q+-9)WmSM$BDJVC>&u|qQY>7m!p zb~`MfkmZRO7^7L374BS`A3c`gSqT5h z!=34&V7cVys#z4@*l^e*+PzSP)JVgk68olRrAEnZbg|9rs`|sIy9biVo21-SKjR9f!_&xY016RzvG|-Q^mHT>5K;0KwTm` zOg8m;PReI#6v!Qyuzc)F(o9b>|8Zu0atY}`%t&_05mphDKgyExWp;f@&yh9rCvN)##_fS^}~-u`rUOFJgW@rX|t_b#aes5H1d&u98#fVRk*)jRXdSo ziX;^$%+crPz){8V4)vb19r>i@;X;yIQvLC^pUt|5kkrB8=tUmin!;*wO?JF_%3BRR z!WR^ckr>c6!E4M7;{u%~EU?E3ws7(Mx+!kFBY}7@zY7kaopT(Cxx{L{cpM2_PM$pH z5YEa#8PxU3O^iikCMASb)P4(QvTLXDqZiJG?I+1OhrHX!xpdHBUt^4D>Y?P!P?sS6 z!<3f28D94^MZrKCsie9dkuHcd9e&`*QTlx^%@@fg*WQ%=f}=gKOu??CNN#cs1TL_h zN0zEO*{o0r;eiqqlmDRM*w}(Ewj{m+ArZwe1GB=D&_5!rqDv*Xdn~_oSu`{-d*pRY zU}`9q31hG%)fez5Co~O4>jmD1zr{A(z>7R%$)W`lBi^S!tg+HNx$rGAqqvbT0w za>?Xi%1vA^`kRThjb6Z4rjK6QyNg?y1{Cg*Uz2p z#ZG!YSup!mz2fJQ*q2wPi$4^Q+I)K%_U~#PuH&i5fkzh7>p?-mB53TNOD`zBMijC6 zr`^SVF}x&aRy6fL$gj=7ZzExJFla)&`B43(RU)R$_%E90o96>cUK8;q$atF&LKN_c z-ZNpTT6Zpn&l1#>e;_cL&>g)YkZ9DtAD8_T)A_WOf78CP`x?fHB=9ZBHF_a&!%@!F z%^Q$kB29wNG0gF9TJ^8l3WHZag#l~PM!kGH9&r|1oO`U8-@CNZZEF9UL3#A9jX zaenDsX~f*(_GZ2}-(YJt9O$}eUaC`(akW0=mtUtP4S0A&qAEb3BW zApwcVO4=HFM5s6MuZ2tqgFw_IDoBE8mi8Mi`8|ei&~8b!J8h=_-){*8(7>+~2W*2d zaM+Ld>Cm+ro5Nr4VhT7W4iUW=mR^vvs$25&;&|cxUrWaKEmwa>^!A&@XC&r5Ipr7p z*bFQF|1TZHOW}^3Y+J++F-OKBtx9j|HB;85Ie^flOA!HkRPmbIz}%A#&jI>X@R>fuMEu9jAG)X$#mbqG58Koxv8v4UaEFmzq^6TwM|VPYv2^jd#i_O=ec(eJhg4I zi-*Z@DT2me5^a^$Fd~P-=qwSV+{*@szeX&Uxfz#KjKePm9GidAv@yXHD$Q$3ow>*~ zqUbuKZ?Z8Va-H1|&Wm+iOcL#j6=*S-l8`}SV#2bEVWzMWEgmDHBK+dnaAc!r^y2UE zh2mbkwKN}cIoD_`2=Vj!W%%E;SRdv5Ef+K2Bc3KW&PasBY6bebn3rzF^I;wI!xW?O>2*#)CK zPPpSFkCfL~N>?*8ApfJDCgM3B1~;|=(qmIUQ51%aJ4l;bWp*O@tH|pdhN}2DZHNWolhJ281F9IIR287>XbqB;Tu#X!-C4{ zIY?4yq)cQ2z!lw+-h@;6KY;zVAQ>LJT^UuFum+!;jsTaQTtP|XeUeOz2cd10?X#{AYhSL>6tjf$p zy-TvXUhgIlc2W&Rgcw&LR-^PGCYuZG{OuL zHy2ln*E8OHsj{OSk)y1A)*RbcPgX>G*W^P4ca!|7o0kB*)&Glrl}thw$( zNe?3UrM>~*ZR(9AzUMRR7_TcsY_pw-PD4yY1!|nmo*=(;0YIs*_-&AtM8_IuD)j=$n^YWtvjK8T zFC)MDA3!#@dOz+i@*D{}2i=A<-&UXN@hi5WH$W!Z+IkD&6(9?nl+vc{u5+ZBKTC6) z;lFcZ0owqu%U`=1lbBT&jBx}adK=HYTD+K$45WCEL5WnK0xD9#3mTLBW&tc{yO>ws zIrnwGg~0#P35^t$>KdYyW%u`UU-Llh{u2^#Q_yf2w9)4K;CSfCT5CT@X`PK(ZcyzC zCu=j8tm-AbPE`6tX#(wPJSIecOv?z)J`QFp1#oEx$zaJH8;7>Dm8*y4SANc|JpTGw zuMtBcnWBfYn|rI++mzV3wLj59xx43ME}ADOKg3ryP+I;i$4-k{d7<5(_wF7q$n)*v z{OB_d!`q}t_mtln0~g8VZ659~7ky*cHvIGe{$3a6LP?cfLqwYac0l6R9Xx=p=ORG)rn9nTzCg5HIk(SL}U|YZ@QddNxL5v#`HuOJ0!$aq# zMz9}iTl>GVVP0PXJpI}5%#w#M$>4E8bN#D2Q>|KE)~m|mjVJtEqS8p$C+CE#B6mmV zds90$67tm9%0W&NKDAiz{FO4zaebSOSpEI8wQ?GoQR%tz=1yKF=>C>z&6umZT#jHO zE;RO^0(|Ey2)kpbb6{ynWpb9`w}4+)2ATw@tn?GiImgUm$>f8D4C8VP5N7>6*5 zRVKVF$z+9HGrsi77mA^XXm(4CyK+o;6jCRBHY^_^-me`6_TV-p>FbRQ<~3s;8^f+f za%S&>;`e(fRKgAi(~{rYAGN$PPG5Z?fS9QKUPa%+^4GQwGbz2?j^r<#Z4sm+b!3Y3 z*8PZEw*Zrzonk-d?!hs$fpS6w2~+GWt{IrKo@mP`1AUXq>~JNST>hNPT!5oLg>~EK zUMr~s=@(O5Fdz083`TGH{oX00E7vrdQR-G;*Sc-^xrzLJVZ3X3VgbcpcJn{sEb;-O zO0PERxzhAIx=h%`u8OQaW|iO42`;^yKcf>|eC3T5Sw_AJdiFNZ$B#b5Yslf&(lq2R zd1tkKv9&ZD`m1hy#Z@n~iCE9dZsFyNg{e3ag7CHsR6kQp;yk4 z=K7X*A6Bb(B344drFaq=ku;y{SAMf$@#7x+#WsDS>w;~Yp|ZvaHAi*!4-f#paY)8 z!~BHyox?J*9(|yr5r&Vw&}w0h1WcJLiTYezXSK#n1M?kqjU2;NXI~%tz-EZG$V#N)KzigAu)B&PDc`5!=AjE#O?p4m{*nGb`< z;%i}N8~cKoFxt=p&3H0GYxbV%9SA!|UH=ELYHv2^@TG@0u}BxT~i(3*K zqzR}w-=w~>clBUfCV079P^ zwoQ%Z@@2tG9RlagOSsGEgoUNrH&UP7b#PLCn9&W&gVu34a>a{cTpFsn8T$AT$4j&C z>bZUxevK{#L0F+1;dpdJalL2)&jF`mL`0FXJz`HkrK?O_JVQgmT{pZ0oZi7LjHR;( z0p8$L;jrTHQRJB)$<}q{7RF*R1>X1UX-UkFd;H|>YA(Q~A_r^+>h*RZU<#t-KY=4z z@uY>5f7X5u(R?UZl>>=Y3{1U9Ipg;DKp`hWoJ5-ugnledA44>eFpaNI_ zS^!#hjrvtQ1rkOk<<^YYnmp?XEC18L9VyUOL9WT<2^1JD5;F{ddtJCPubm9{)H9a zg;Ve6SUDEGt#q$BpwQ*bWksb?w%}-ziZ+4ApYzW7F?G2wuXip4Cr8Ga3+Wi>?+;%n zc!m|c`8JUiV32K4&UYM({i8mLRw?~^-)j$IqP*d}6 zh<(UZkSZnKe8HylisW8S_oE3tpk&#(5gp4@a z@}9Ji1V@T6a+GyiozX=%G<~fh&(S`#oI~=K=G7#dq2h3Od{}R_>VlEW3Vr+{*W;-N zUsg4EQw3u^Z<)IBjbf~H&)uH!Cr$h2dvZUIM~x;n$gI%4F$Hn2on-_wCAl6FF)X_B z;KR0WsxYVfZ@yDlE^M;!sm#$sUKo{%xTw_q%h0x>qR`=Coya}{ip?%YIKY+Qw2|dU z0>suwv0amdx)) z7N(+ZB`0>D>h(nq?3k<$?!5N#FHS;;RNCX8C8i=do))CS!Qn6L_X}ojchsA&`0Dk)$-W`>N z3;#=7<_d37vUngpZ= z0q;IEkWNsO^F=DuCv)moZ{jdk6YcDLWIhg?G4=f}G&u5cG|tDLTGGLJ^CF`t#31s2 zfZ%&qp>v^Ki+^6UxTIWeURp0kndscHrs(U9cprc6R6-OY3On z@7xzY3Y#*|);8*-eH9`#9EE!tjdma>+4zXjHi?%eeYJ$~bx&vk1?&Nk$n3I#$?5W} z`rG5^K{%kNk;8pFF)=-G1qy-d$Q$l*oRxsiCT+# zbxA=^NVLlPX9{4Wp?3J_q~tER3s5sllNYsa4*LJ#_Ltc4L2;!!yG?0MUeUBUm&G7Q zw*I$)buQUtZ@)1MH3N(blXYL-vS5ao=j;OTVV%#ha?S`hoi263TEzEhq{&p%?+(j* zN9{<)8Z)2bzkepz8tjH`@PS=gZAF~#ZH)Z@D}R1p*+LDbG_KGvq(!o2CDx57ZJ8hM z>Bg;H9jAgCCFb*9Gggg;*ST~>01XOOYqEK_eMby2K@v4;Nj0pDnc`GIh#sOmsoEY7}Eqah>u5-cMS*79{LxO&VtHpAWwT3YR@KQ<@eA?j9?W) z)y0XGcTMM7_KsUDBFnL_)0Dg6D??fpTddfvTShBIw)v(4-f+Av$)ut>k82?R6AVIw z0G+k*`zBE-Of^;*#*(~vQP0$0$5~K_#^37$97U9}_I~=ReaPQbYdL^tdPJOj$Bua> zZe==TWD)j-@m4iQ>ryWWljKtJLf8TTWGVO>&)Y{2e?lx*IpKO)tMFTKdqk=jXYY3} z{=%0Q-2@_PBO*-S%+Samcar(kp8d8?HSU)@WkI}~X&3s-ea{Oo_J{QaJRhunVkmUY zt+v)l>2>@X`U8^$549L+tZ4PmHDoYZCdOR_`DOaVN)~Q=blwv#hIjbICHtkfhOVGN zma)EW&dX4}3HM@^WPu{P3&Zr3wqho8?D?q%!ON@{`^1dyy8|d|>0Dkun?(lQfh;lq zG<}RJv}4HFo!9lY@0UZ{H3*TY-$Ne`{{K>oJlDe7F>2$ud;yWy#ObMPo!Eg{D~PS> z%$Isd#-0j=I?_mz1y>dy-1jpyuxyNHE(pz^QR^i;ikxS4yas}P4~pTH{v^4R4Dn#o zfE)ep&|SN&i6}EPgf9ohtz^DY3?ALH*Plzhv?0zp%2QtdQN`5iUK#VuC@+rbc>7X^ z+h|-l`+dt}J1b z^pfzPS)*j@MiqhHj0GRkhqbva7MjuK{iezA7^E) zqHLVbA>yp!eH*Ac@c!>a@+wf-N5dZ6in|b=&8sBc{HilNJ`K>I-N-$+-0`9qnq$Xn z!5ln zsdsgT>4F1>8l-r<6$=OX5-P0w3Zyc9jo>L6(b_#Py>my`rNH_v9dP-2tx-Ux51$5P zsI4BnZ{2KN<63vAsOUcHZk>C1GvmANC@Qaxms{ru8@{CC$HXqwqr{ z@Sf;Ygplg>y}RC_ca0-B+P-lWs^*9qBSiqIfJX|8;WH*xYC|>bcq!E}Mgbffgf`LF zI1@t-j8%GD0e>ZhmW>Maun*i(u;41QNd1+5&IR6)%w-l1(aqxDw6)wZBV-C3;Wu&u zquFZW%v6#s5LS~g+Ce}79b7wym)O_@8Elm56PY0|k{`FQ2d{5Hv-E(xKK+xjtLY*( zT4aQNRdO#P_LnGjQyPE#iVy6ha0R;x!;lI`$<;;D_mNuA<{&t%6XflB=4Jst?!3of z)+^J|uwx&^CI*jKqa|b*<-ji7axghA6#Bu03?r%}6G{2lS-nFDWQg30gk8!GUt_vU z5g33E16m6@=7G73cV~i-FhqryXKwX&&KA5LK;GvAyIUwD)<@(}cABmhu9qD1X%v(dA>c#AtKFLPGVFachIH^h#Xchu37yG-|6E^risu=aixX z3^!95vBlC~)4RTM)n)XQtz(d*+Cl4Y?1#I7Gx?fDN)LC2%fx@vjv^v(Ynlmuef?w@ zw8fQQL?zji%<0c6%3!a%p*PT$(YC9!<&wRklWwkblPdqFV4FoNK`zsw6PIZBi(!QC~`pwwGB*c~Tr#s88~4>@`mc)3h~{l(}(Q#)DAC7+Xgr6ZQ$(7y7`H7x}HnLA$LM}I!=W6OpXEREePXpBfUs#;t5!Xmg>Et;B4p(PNx+{*ixo} z#kkCQ%F(zowi|cK+;XkR6S4P4Z@pxvvCeUdO>W>!3E9N>pO$lMx`kmj?V`GPiZG_{ zY+TY9=>%>-x#L(yL;9AtmDE-FD#U(<3_sC_gC+@&^IGPkJ#7x_fAO%EcA6Z*3BL5T zs`=>c&^R*CD->gu=;gawTNAjC-ex3zpS0TPmzcT4&)*x0MdY}c{76_k{8EfSS3M%9 z6sKccgpE_L|B(=}8b5>9FG(WsBn+~?vM&5Lpi1-W_h6{`Q}=F-8>+NvW!@?_RZ-@G z@iYF34P1Tok|h|OjpdRVV<=&RV5LhPRumazG=+dPgVmm^;a+Sq4|6%Q&0x3Uj>`&x zaah`P*64g4$d9txW^95E6@V6idr?u$vF1uKw%6@-_8hVov#bC1Y>m|S>pqs&!mP=# zv@LXPa1&desXFks$tKr1FUi=uS^k`ztvIy;=U#>HUi&_%2<{Nj-8Rypxb?-TMhF!H z0Gx+5RepT--+**`M7naZLr+MX32~$~rt|L@%%goP>~ofLWaZzr*m@{7d(jyv3dF@( z$v4NT`$B@-EJAX^VW3OE2J#7e%Kqx#&4?D ztlx&u(0O9Tg2P<~Ru5?m6;?;QbjxUnvRns2=)GLrjlA}lD|EW%2U)P;HgP*e#%y?V zJ$S8(5z-KTDFL-j5xaH9KxfQ6W{oOknS6{1A)9)bMLtG3E-7w>Q2}8qn45WN|62?k zifW2lLEVo6`8LfisvL2{g=xC#w)Pu$kHdz*hZewGbqQ=_fxGibTej??Q zSYp!NglFZ9@u&Cz3oa*~=d37DLZszg-tbm9THU=(8Xn|JNx!rH1);wlNw1+H7DIP% z(-AodrVam`M!&0Z^Fy*Gkck&D$t|B`(joQ<0nLXh?Wc7MAkpK?3A zTZrw~lg>A}7ya)wrv8S1bAph+p;t?)f~L`6I7+IzvH0pL4^$e-W+L##m2F?|bS(u4 z&FnEWMHCB*&EmI)KgKU_H*TIo=iRK!6&!ZpX>ZacpfAVm#L&aCW_{tCkmnhJ+By+- z-kGc|D`=~fjMvP?;aaGJ^WlG{_gLT)9OM9c*HE7a?VGmOzn?F-H)hSUIhJ$iVoKrj z{*RZn3cGJ01q3sZFOw%219^OncfTJ9H8|L#-J^Z|2MKG=lA|b=;fL4qv^oF81c|Rp zu!&exNul0=0!|v402$e!>N8eiy=T}MRf^xAi<4Vajk4FhCT3nq>jM^MgIgz6hrJk~ z<Bw&ZYH#1+WeLq>`5Xx^FJxvUO zI0r70(zoi+QQ%6Dzm!1@)T#R$AK1_Qy1W0p4NLd}L(1t%OO#ZOh)ZE-g z2B4*T!EaTH1*fVroHh&l@~na9H-U=fcT-xb1-^)jRLQ&KhR<2uw05~dHYF%l|LO73 zFOrj!N+lbQdJGfxj_{%c3hbf6>1Qe0u_EIRsY`~GeiQuX#5fz_2ZK?$o2e>Ld)9(J zGW?AsUU~To0@B_X8y`o4T^Y=rLXV0{Hq~T5kEtyHyYj^X6T98w7db7|nKryiKxKrQ zU5`8Zdpcv=pi+k+Q7lCA*)!b|Y$FuN>EJvs&ui5#I~(FqI|Eq+(B^kAOHjpP5AB2< z^uK|NN};O#41TH{%5tp=$%H*<7_(S?DYN2)!~Mr=RE?eEVXW7-Iwc^*LXCGjlO{Eu zfSa`@BQ4?aapqWy0Pfss0_`ZT8ov+wHI&*n4Z0=3SaF8{p-k76BDBse9lvN2Z^Re_ zmHg%vvnbNg$7vp6RKJ7Gzl*u4-mtI!5tI*=qJ|TfD5e##&ixqJ6#B?3{MOH3ZmAf+ zKKH3tHcVpDf=xJ%((#{8X11Hj7IQkO{D3*vu}=QNDG(g1DXoWTrws<_`5??+L(A3bfy^fZRi6-s~t@B#W`y z)#atHfLv6<*nOabvv&2b&yg0T`N=-8&RN4@3{iZ$pV#M{02Iifee%~XyTed3`_q5VqyVY+Nq8xUZ$8 zd~VJ9*XZ!&vs0=({5Uq{Ij=dS^W}0ep=#JF{mRvxpL++v7uTXr(PC!VRXX81k;&!t zL&tq$$Z8^jhk8W#;I4wh;V(nzh3o28lCO5(TF1==0yIPI=TPQQ$pW-DcU9(9VzP>>ZeR3UoR_nIQhA0sZpQQCSj@ zmY6eT4Ey@ZOVD2QaAqm;yy0{|$bftEjbLYVK@nx=N`gR8>Rrt<;-Iv1t94C(MyV+_ zITE$T?T12lP7$MJ<>oEgc;`{1MZ~0D(5<7g2p&Q0(H}JiNYb3*j;Gx2w*$=8SQ#Ny z)7Hy@FeoEG9ljfbCy_-|m}v>GgB((Gdfbg1zAmMe|DEsxzZRM+GvWkQR>_F`^ZvG# zV7f^nXSm|p`C7_oU%`ugx$EDbE05|qY`RDszilj<=@31$%x7NW{NCES6yceN(mMx= zAASY3%Ka41icIq~>(hbmwg-Kql$LF#<VGARK)6p_0Ev)x72j$3Z;RBix}vT^-W zv@`@@<{5JERcvoEREjF08P8%`3|hW_khWIy0+nU8w~`*MZiKr(UDpsD<7@DK(Et_~ z0jwt%ni}Q`HP#e`n!6fP@+%kFC8esl@QsDQ55B&T`~kWDz@`r=;`G0nQpQP@-miYG zPD@a(YqLzm8(iH}CI;fzVAb_|7dkt`KS`rvSI=O7G3nsZiAAjywP{)_j~V<4>`Lrp z=kDz0y}pWA3mu_*n+Wy^4;H^9MF=Q6kWZ@_UCi`tZvQgy!OdeMuwOw3ISCY<`nZy+ z{*obqaH|ErHVG-Dwn$>%$PjEMLCekOu`8W_INqWy+|4nJcN%~#K%$pT3Eve1(SL1) z*J5~j7`g(wq^pKgQSaN04%Hl}H`788Y8LF;QM|F~`L3nW8SVA-VBv4xXz0N}LYZ&- z2~k^@mo^2WxdI&J8hCW;Q1{hhPAqL}Ym8SV7}q_1TvvZ(=X_Ayklte5e`L~ZKi)n$ z5(T_K$!)2R-HA|2~@n%;ueKozc*ws4T;y zSdI>wtd*NEMxypW%w90!Qsb*=eBf=z-bxO}f~g!$efb;L)nqCY;{lzXKbE5m6$ z_w$)d5n5jb6HCng;>v=uu5H=?ixwBLcs%{{QDjabrnA(8KpJuRPJWP>ONA`_a4u>M zcLS35KL8BHfiDWFNt zej|T}s`ixhm#8k}HdN%lM4AbN0%U2SZHj@I6k#agw*4hiuVo9@3-a=fr#JXpAT@k+ zggl0P3}lp?PzI2F6sqws>_WmKOnj{>js~keh>lxjMUgLfe@WyK2QZ*o=aI)Oo_j#C zxk~(~3SuHVu(SV{}!dmCKZ0ny@~tu7{5D-|Er$q|ph zMNz4g-G1xoPAKn+pw**{xu3DdS=dCw>3hf3G96hHA0ZDj7s16=Z*LAKfFAMtE6K*B z;b`8>>}@@@+Q5ov!!$?6@KrH05`Dv1=Eo6=ny$<=Ao0rCH@=AYk&G5$OqpANS;D{) zn&h^ykTf^2hMtNETCcP3{NtGnXbo^`k1Q z3$!hu)2_0EUWM)kP4*=E@?k+W8cBiLN5A3qW?!HF_#gAPgZCptD)%uxlv&}FUR7|F zLBKCLEASjEIj3jf2FP8~`UKu;g5kS?)6ZcAOmZ;r3aCgr%Utd1Rl){`bzuZy${PBiW!PLK>XNP)q7BjxNXbR=104mZBQ5OO$p z!>LJmR6P$oXHOPwl~wAD+2h!GRWkp=2QlP|*eLun^)A6yttBuofkp?0I9vn&>bQVb z$#go9_}+Ik_wCjPq8J=*nIWGId7ErTKW1&V;)NJ)JycMdU zO8x(*_`TtWNVvhh4F2(BejB~2BTqagN6D0PuHoqCCwE8){(vm0r}nk0c(0#wl~}}8err9(AU;RW;PXS zuNM;Ce#kk<%C?ncwrXx82`6qEzE7vSk}FF`XeRrs<7ylMW4Js%(~=`R0d0b4|E1uG)Ku1ccXYVP_jnR+tAd6SAzId*BPZa{GtUUk?pz(}d z{_zi(Sj|iDt~*NJ0uur?a%{BcEY=2>V=y%QJd7R&pMi6&H(kMIyJ4>kXZn}Ia}plE zOziJjmafm#igl2XG&$keyk8mqF9WYOhUXVTrTY@9ymjoN5w^mzK2#N1HpoRUlvU{{ zC2@mH@Kf-2RUo-kq1PtOjT8xc#fJ_q6n1Z7Ss=C8IF)qxgj1SX(@rVSEe*bxd$5{nrT|pV9L!EaH z3}^|Y#HTJLBg!q6Cn(>b){X37hJtX zeTGsj5!w;e?>&i1P`mn!G@hwhWy#1inVZZ@BMdaIS8s+!*Lw~|#`Mlce3;0>g0}d% zFaG8rqv#m33k>KcM9bbhLmYCepG%RN+#24_$rrCa^_KN*5=j|g7$aiGI^Zp5LYz>j z7xo*>l7OcXY0lGh6l>YIF@{|)AHqEy>H}3y!cp}Y<#p$ix<(rNl;Cgtv#a@~GxE4$ z3%mV4j?Tib$@gu;1EfJ}Al*4Y0Rcg}y9OH_QqrZQbjrxlB|U14ZcvaemF_MD0R;h( z`o7Qa{SSZ-pXa{s>pIWl0KK%u%!bzo!v@}L38B2)4`+el#B>ZuqNJgspjy)w!_);V zO{=OlDzUrc`!V{6lQvwdvcVn98IvkxN}&^ARoA4?xg%PF@gSR%#$eIP0cvaA?{$!- zxavbho8GK8tl=@Ar?=ToUCH6<2#}bX9de_Xh9-w*$F zq^JJ5f@PcVn;Po6++F{SodftGmy<;;z^ zX#joHRZy_Q-@^%J>b6;(8QF4MxK^h+7tVBKz?q!0^Mfwvg)&NkC(0zsxZ@o&DcGPi zj$g6cee*eJ+iTxJSk^FhT!aEv>W3FuL=O0Bv`-pTC`BFeo^yH}Wt3=M$SyxxXR8yf z+BHdYdCtozu@tc#qny2j>J;>xNNd16p8F@x$GhsviChUyqS>VBkL#UIqpW1sZ*iW% zc%;_K!!!TN`DqObS`is?_0H30xtvXmf-HjZ|5bUNt*8o7Jh}R9(fC|BL_t@j9n3Nj zO~d&p@>aj~U3)C|?qS{hN(O^NcVJEAoh@0vEmS>tQU&bO;TZ9IojY_2rLwb{QQA^z z|Dh3bCowRW5x~ zRHq{HP{PCPw&#rtLKJ@dicO2-gn6b$DD>=hw9_baqqOMpV{k6V=}Fe|zu^cy z`a+HevHJo%V!Bm|cd1Vytr*M2lT%`W0MD8Jh&NZ`nA`rMVG23 zPGQW-$u7fO$%hpfd}}Eflo+FCRB^Gu`}abtL@mnD`v@M&fj1pHddVil+NFu}Pq#vf zjeJxfkpO`#;Hey;CXnf?eTD692zyjme!ab0Ucjz8_0wlRgf*sP0kcub{4_BUcOBr} zrCF&=%Rj2V4^)n7h)`Z7D7AWCZ;>H?G%F>IaCTd0s3uU%I-4l#-~N`Y=9|1=Q2#{N z#zX#WbW~X+g-&|Ll>l>EM;y)(-RiU+4j6enW-JUq&n4VNZ{IV&;}06oC+N@O43i4| z%HZu*(ptn9M3kg#+-cTSc^n=pc!oW_lbXI3;mk9io;HOL7UN`@&srDsKFwJb#+?+X z(>M~b^$^|4bjePU5~->-)QMfTXfj78&?25BP9w#?H!|}q*=q>SJs!PvOrB4vDjyk4 z!z?F1=57+CJJf=JH9xI`su{a%TA+0ad#3eJ=kccZbI8rG{TuHJpV2_>75BVDep-&~ zT0VXL|GzyH=Nr$uZ6V8}@7S`DAZ#5yYd2?iLd@Yt%cy&KnR4jZ5uRp-=F-rYW{%z$ z>`=`!mccE-Mn17SXvK*c)gtdxM-g)E@&KZ%(RS>_rf5xNEx6wgJO z@}a?0LaD~xPpqxp+zX#9+mo-ABgJ+?pFBEN`xCJHDn7H4(a~h^$zzQCTAny)&iE>B zc{_!QyjyiPW-YWNNd~9ww$tKRmJs+W8jCI#3M2}FY!Hg8w%uC}l zYfU>Zr~wD?KVf-=wZPX4z9W@SC$jPp%!V9V7DBxV(!stZa zF4j?-Dp=D$&{9vTvpoI|t`2vG@`n5_aSaz2!1ZJPzWT4BhV*z+(}V^&b`CSebbMu_(xq*o{7Vs3lO+2`ec93 zCfsYX+HyVL7($ZTRvC2o8Pu~8I$g*izr%CDcLBj;+lF0CWpOs#2t~Fmw;mK`Q@bFF z;$EGKSU9orng8(9JSI`pU_2LtiHV*dcOh(4(+teHo>XToM2L6cpueNJl#_}asVW0D zO=6s>b4=kVne%QplvX|!A2GqB5Al_HBuS;|41#h;6Dpu~ID6FTD9sdwGY+Cr^r~+> z`^F;t*?k8}r<6#C1_0|^>K?T){k&;}efIw?D@%(uZ~R}svl_gafMd91i)rATRsf7X zd^~^SiigZ>0WRxGzAYwGpcho%C?gC%>@)8D1ld#K85(^z3rznKlAMBo&aMT_##+yB zsc@<0er%5+7&bUHpA2O4sZGx3&Tu@gYrf+~?1-OO;F?{S*C3(%?_srMp5-iyNoZ|J z(lI-$@UY<}^ha5_C!n(7?rm6%N}%DPj4-TZr3Ei)04!ct{0q7vI%MwrsK|-xRH#H_ z-o;5oAztz8QH@q=&C8SY3bbO-+4!7N!>z2`a!i6dR%KPq{3#*IM?s7E4^8vuohAfV zsF!!jFcCO+zFef!HqMZ3Wl;moI5b?emo(|Ef-k_t&#Zk4C* zY8A&x3-pb)g?FD*uwS7_Wdq;~|K8~(Zm_;@NPWRd$N+GQU*7+-XtO8g`PgLY9^S0) zL9J0HOr&RJecXhV2C@)ni{wWcbN%>ik``Wc?%W{Pw3IPhZ>th-rqFd9@NAjmpV~kh z8!w+=@rTJzjh7&_(ee5N^?lwR1`MmMfC~yVJULM7?>o`k-%S-!kGB-&wxe#*`w{Kp z1NE<$AK@6Bh%QcQZtc%hJK*)ltGr9j5ezW6$}^hLwC{@P+q5N0aS<0U)XtvB%b6a4 za}#og@LLH;u@ou~FULdiZq4V#Ol26(09_|p1+LNU;s_^)ws!X6-vzW+V<|3oaSTSI z@@R-4U-ILNFjz;~ThfSB=%;C103~ax3X0irk|Jv!A*M`UGuHwqdHR$@MOMUS;JbI* z=a5IF=wuOO@#cU`3`hw@qA zwI2`zN+Xn^%Lx<55zKwh9=u)o0YZjZJ=^}8tiDF%H@+*S-8e(6`iHhSzR%XrWiGL? zDtfBPqDvUObjEt@t=KedznV(AiXv-+fVT>?B_vB2SlkSCx@h~G7VYN3w9}q2Y0PC3 zC^6mIX}iN^w43JVO&;%l63qv&Mot{0hMN9ASFyl3r=xE}X!{>}2I&Zw)vM?dq_YkN z7}(%ERVNn?k2Raf*M+!Rf9{k~djcU!BJX0+A!8qXCxB2{uji3Li&hr?&9O=COOv0n zXtsl{Qr&t7Fukf049>_2hb+eQv0P>wP7rO>s&myi!2HOf=)K_p(G%k&0OrwbcJ2o2 zizI#LKV*UHjHu&|jo!h~#@RX}TKll%UksV}7u?qsh=me;j} zzsmK4K!Kgh7n5+O7dW33;5YeGi_}hH{t{@1_#e)QHio_(v_=JF)i(Aa03Cz3cYx4P7L}H*e}CFXMib3s)qRc#^wm9 zGe=5-=DZjkznylv&czJ&F%FoiHx|%-cjI_Uko;5)U2n97%4lvd9I_m({bSpaH-rK0 zIg@UsDK_+TUK|Wx@2#|kQP=GkX9=3A;j@O*KIljMfm>6j;en(l73O-3g(abs;zM0T zq4Q7p_*$(+^!%Q3ME1+KLhRukfuH}E*hyYSH||x zkGVY+0903 zE7I8)KKvMBe}U@MFn!Nn)I7r9_LUr)n;=B;ds|L+yN4M3ht3ONAd@7d{`8VKz}4OD zRI#Y3v_|SqaBRqtM~9izi_jo!Fz%%+*}mq+C%0Zgjot(T^>F5NEGLEH<5; z>gqbbfW_{`DHn8)3Wh(Zk=d40;<+<@X==8y$FE!6%oL+{J}VIKB3!{yzhtpwde+9c zmsCS^XH6D7<`loq9_c@?G~z_Vmlkbo>rL`?RIB?ZMmooyT@i~!VZZYvz3bI>JfFhb zKb4Tw$Ae)O0jaP0*9%@e{W|&|2-gW~&89*bp)Kf9(Iy%`Q-M)BSq^D3T1Y#}Yjk8T z>lXAETO%W>Q|VR`ta$__+vY7U)v`*SYGKHfBCC|U4t7&Bs z0rrQ0^J_g|d~1V>_qO6L2n-XGo!R^B z!u53iSX0kelmfcZ4YpdBrGG`(CM8FpC17)dz~S$jn!6^+gCE{VcYR=n-zwHAR9eOw znJZ{BR(yDE9`rJ*lRLKc@Bz-snspKH@tymKkEn{8cxtL3)lPjP{?ylmxRk)*F+~DP zixg#VQ`mSv4o(yE$^*a1`YDPvAZp}6Y=SRByzCvT|7-ogrqf_+LX*aIO`tHnVmR*n zV)Mp=<(?5bPhoK$@O|3HOtS3Ux>{3^*oJ;L2un#``hBd)%! zj}V(4B-~Zpb#(vHIRvm>*lXifxZVc83;FfV{U%9fE8ifPSk%l9e^EkuV#XISpiQw6 ze;Zzbv{PR5=s~>S^*dg_!2uEE>1^OcA3DlW2D9-Od&R*GA|^JKgBn9dqx!2+7DQbc z_eGiB@OT$srv$^$Vf3t-mujN3D87z~_G2jaqM73=$jQsxYs|k%PpRtIKx*|g8}_gZ zkl?n;8k6|h9l2+2poUbtdg8u)vsRP>cJY3n7!&ekXd}Cr)*BcLWf2Kw6q~pTgXj-> zvE>-Q!;E(9k9NBYQJdIiuXH~Dn!1pvDL^jnNJT8Yf^jFU89U&hycM+SdD3K3Nw4Z- z0Zeku&YIepW{8G53xVh+=WrIPh(?5Z=jGj*3R`)nvBy*1aVM!?+tIw1Z)?$-Sn`DU zsK+$w{I{;CSoIU4v@JnKccrUOY-e^(`qQF(?pws(&wjnQ<*BL%_{VlvUX;ZmQc_~M zyoPC4blBz~)dVh_T`SQ$5t758K@NRDZvA)2*;EDZUdqOPwaNwra5yI(O>``gkwAJl zpmk~!9YbcdI4>aWyJlY{NLIW^Pl3$3h)FrS>y*DApH zQ1=m2IL>hQPK{^db^Gs<3do)Ye}h~-we_L!(yS-&#~*sOy8Rb;6O6q1J<}WF4M$Xi zgz6`#{UL6A7dvQe{F>C>0cw+}j9U-alRGc|OhOhspn~3kj>6VaeE?E#l;{PuV~N}3 z9BS>eBaO{=H%M>c0OAkJcVL_{lwX4@(@>&rWCw`!QGJY-I>tcbs2ehh^UC zr0Jml1@Yu4kiUNqX%L6F7-Rm2Z)NDh*4^Qz3>x zQta92q8A|+o<(A}wnoffB7pQ59tFsYSyNqtG8Ab^|N*b-ISaMI| zc>C+w*QVOM=%1`Aq%7nLl_x=QS8d~yxidnh#3ek%d)|2Y@It{qqbu?*8$+fv^PLh9 z1&1nd8inV!^5;k1M8ka6k9&0=bIv5As#lg&nXg{aw`&&ma?!C8 z+S=ob3)h9(n44Fn=#?Ma@SiK;a2ULjU&E?)-aQ}igK!%-d5{DbJdmt$V?2U&hrGIDG94+oxlUn19I7(BD#Q$H2|Bn^gaR zc;kHWdryL!xD+A6Z|SVYIUsVZbn>kFp$qbpc+=S9J-ww2Vwd|oi{6G-^C#LvV^TgP zNwPORKFrYJav=UfjS|WC*oMww*n6T^C+Kt5yg3^GO7f0p8MNoR6q>j*Z=KsTSUiVJ zMJee;J6bq+FqY^xb@*dTOx2h6X8@IL{t@n}y!aV~!^s{My{|=obRqGk3(tRK7UM<4 z#cF1PujVz${f?#Xn)u2kT4PZwJ+T*c*9vx;KA#D2-e2bdbBx{CY3=lh6}IpY+r0%v zUim}q!HM*Q*K&_#nU*<)u^QGKr8250Glqx?04g6dElRspHURBXcBKpH_Hpt9s$E&H z7F~AG$OO_c3A9_qM?jX@q6KKFd?@|!a%wtYzdkMLcOw>}T;2|uQ&6?d1MdPLlGT*~ zu7LC+4`->J-W8SRpd;?dYVfaJ=tpCGLL>nh7;?h9gdG+26=5k9`c#ZBPm&ON5 z9frX3ud5(v2P1qc4pa|~Kk<5jLChT}pVR?wLj=uE%$?t!Sq@r3FQ@=Ezv|uy8zN*o9}=8x6$TVAS*6htC4QG2{DXkc>A~G?b@i*z>bl6c@#&CIirZFhe) zYfK=@EK=r}F9hr{6>g@gwodyn9((JWR2iE}@3f$-J{70T*}xvwfFvkA0{3_m(ui)78Bt|)7 zT`!qfgy*Pdkl0-IdDHT=;z^?vW%@FXL#$V_EsYN8*|LF>SBBgZj%2 zQdo zG^?!t#);r^D_33n$FI8SRJ_Nxt?-~L-eQ1MvlDA9Pz@mur3`&{$5Ww6YN%E3E6X)+$!$->K?TpVYa7nDYm5Idp?gEMNq~G z2I?_AP=0f!L=Ra=Kp9}-^WHW<5|*zGDuZiB(t4bI2HbQKTNJS{@y7Hz#&@rAiO*tz$n^K2v3% zGZxTbWpUYJYoKXm2*l3OMw4UL47zQuBG*~VeVp-V_j1;r)qqM-#Prwp>YkKZze*4i zpVf0&{*{XfsI9ExiW8cdG|>wwVmC4v)+w$!V~L9Jw}S6v)EP*s$K#ioz(halzKm6A zfILL5}wK za7!>C9L}#5M87l)Eh2--;NL8*T0}lkpFJ@DAz#p?^<~oiD%1JwP36g(Lqr;X`iq&p zIl97?fX?ooV9iW@iOcKThp&PB%By>R9}d7|I_K^=_uLFL8pVaC&?y2P`u7Us`6a7$e7IKzNV<#-2X zLYPf#(bFy3Dlt*3#@#?sFVxh@c@4Oi*XuNOcNj2GR~pL8WplDOWr}=!+PBucZkcsK zz(#(_3gBGm9XRX1EC{cZ>#x@1rQ67(J?}bSt&{Ug>YFJerI`EUPH>Rs>q&v1=sS=x zbTObSx)kKs*(^xob2$oy(;!EwrjO~a?vKr@1{=KzTbBna~j9BrH}LcyCmu4!e81TKGzXSG11QZ z%`EJB*kF?lYeu)#CylZ|Hb0TJNtzbWUk*ZL)!X6=9YJJhD_e$gieB`Te#$S>uB}#hBNsLFUtznP0!ylKJe2Ad|+~)Wr{)Ar-%n!h#hF z&|hCk!<@xGxI+k;NYwjloUeF)Ud1y@6l!nrE}QQaeYJcymWBNB9|)!)cmf_#IdXFO z`XA`0W0U?Tj~$UCy2|XZ@0_SVB+X{|R8-{-nVFqLSKsxTCpc({wfE#-`@t8DC)0)# zL*$9+kNF=A0~|F9Y#FhV4Fv|YW*;gEq8n`?8Z!PT=X5m%9SI#HkI54*&<&#h_86Y9 zRt(yrm9_cJ^sjyU(4n;)n@BNW9Q7XS8kg)1qO+ z`4{?aD3^BEU6M;1@@+C~J3ptMSr@)YQZW6#vvXTzEENwIr* z*S0lJ#0iDC#AO;H5eiRJ1l-J2a8ta3g;r+9TKOk z{)S3um!6`oWQLU#Uk$iwX1#ndKUSJmwbpi>mZw~oj2b|AGpPkfK~#z5+pzXYw; z-DMT~_r>f`zp`Qpg_QR3ZG_uqPM0?9nN^ZPY9LsESCg0;)hEW@`~Buja|F1YgMnG^ z2QRLQL>-FNt|LF&OrTZ5{BKqneK@B+jh&o~hvS{+Tqe^OnizRwP?@f$1 ze1Y3#Did(J)vDTa3Nr?~wyz`5{3lmv3)o27eJWYV?GA>{taoA;(IG6g7!2FQs;;*} zBQP#_r3fqp1_flf)vk782if!|U#+r5m_|9N}mFtQo`sRSU^rE}8nh4*yF-hY%}$pD0*HUk2r zPKq9TEvPMGI<8QxDVEj#=n?hV;UtcrNynsA?`l@EEL=XT>V2nYzGU^2#I-IG75Bhz zx^1qsVTq|Ng6cQ$i79nfi%JKEe)|SyZ9Vjm2}rXYnyJOiQOnu;JUHCfLMfW$N=f`x zvX-x1wR0tFuJjqiDhnw7y^EKZV|{MnZvf?asUvS{nqH!L5Bg{OqiM zNTl#et2(su8GR!|gg$?aMWJa^TRnx~7?fHEA~5+^?+6AY_3>{6e*k?XQfl_CHKbJ69v_9~vx0;cRf=q2x?2)zVvJ-ji+ zw+6gKfgdirokbvHzZ+}={W;p#a~0vc6dFm(h$GIVBkXjuqDpRB@(Ql#`qRZcWa~Ra z&i+)Pv<&~!G~EfPtVN?D&C!|Lf}#c~dulP!+=s};e@&dt@7v4%G0z{jymR8T66~Yo zQzYCB?klM6rd2_5D${4-^OJtTn9O~+6V`e~aTU7$Zp${qWoO}xgc}Q@pQ>?R<7+V* z`-Mt?#@6;P!Ggz2$dj^lMgRCt67&3e51H*N z%~D&agtB!ES(+KT6u=q?#VR0625Yux^|M1nXVN>v?+KJ!!b&#jo8UGVZ}{Qb+abYI zwKmASnl=>R_bz6cY%Z_U8H{l6VK4Ncwb#6Q){9$ZXbybMO*{q_d&V4a-#;i=$59*3 z2X~VjXRY`pP4f?_mmwciAH@sblUdRn@9c;N@)_QDKozaM+IFmsf)Mt04H*73TRMt4 zfzKqrhJIkN>8j+RJ^(YFr&_8tabYda6ZhIg<8P~FUck7E_cU?XpXf(la<959wi)ZR zQEIq{sq0M=)p)MH$+8rUaLQkLR7GRGo>{RQY-`9Zho3ERgOqCO`)cCZInj{^7>X-Y zF8#{g%pP%4jszvfXI3FFgV_EW{bj6DcQ^VZG!wBIr=stiOvWg4e$G)f-iUaULiyaU z3TB^iLTd2IqZ;I#Zuc9POBH7h1>N>NbtNS<3^X66Cj{$bvwm{(QADH1Rq*4F`CDZR z;)&^?#_q4EKSU^tiQkaS z)zg!)Elsd>GNDDK`#OLTE1o9)-5i3$TgG)hN1funTkm8{3*BGMY(BOsCfO zS7!fj5}4{yA;ptv*TjCla%xI1>+?*AfA@E%q`k?wCe@KozDWpwI^%hx8d)#LRU0#Z zb{u1Z+Ba{{cR=U({!oQ2N$S4P^sR-)F>?8zhs5_}6&qUS*1C&{$CKLe;GAa}9-Mg^ zPnipbUNHHjnaWRj42+)PT~fOk85TiOZhqptrs8m?*qHMYUJ#NOJr-^wl+AUT9W%un zDSI4S)NGMWWgT0IpKX`t=-{}|!O}cihr{h1!x0m{8Hjs#r%yvoDq2zzeb@ z`m#ifo)k+J)(+6S@5oy@4{z&ynF#8ai6LC|9KlLzO4iiaYu9)(16jlCn;l_S>BNS0 zVTr!O^q=$Uh5plzaF^UkO3}%I#veAAQSD|A;|^untPg$s%xIfZlx)gs%vkm=GY_65 zIy)SrHTSC(1OTAyQulIW)n4!aOp<~nlQpGt1ncRH{`~8pqR>!4N@F6a6}`mLb#5`h41l2;35J=5ghDJA!^uF`>)@>Z5P>*Z?NMxEj2 zKm+FxPJ_Pb^Vj=lMi!d4R2eL-kvSrYB9_lU2 zNjHd@8g!qN=tBr9FMi0Etoi=bE}~*~t|)Qm`|wIJM6grj!+V^X9b!uImD3N@|A9&; zKUW%>38U~QNE;bApZw|j8&A(hIY`tjbmxUa1b!fC0*eGi(9R`S-aIuBI@lH+%E7hM zoMLKbJU%vkl65+knFUN~uvdBe83T_ewioN%N-jBf3ffFogOWFHZC+`W&2K0>vqSz8 ztFj_y!+`&6bL?}w?7YG{hfpeJN*Ns$KFeyPI~Y~@O`v^0e}@8tRp}*h*-ydN%-U8o zzw7QZmnwIT38RF#I+wu7X{Y?XsuPxTRd^hC^m0prk9%dh2 z9)K&?4%ArQi4i%gfN@U8HJ-|Y_wc>IVT^=EkO36mDp6f^rRB}tnK9^PBGDm7y>8A- z$uccH%W+>Fey_EQZLQL`mo7)x>a=dtK)C_0OhmY2*-B$S3}SKg9JPLi*jZ`_@4uZ_ z-8_4iAaXd+Uga#3-RWwx*_p6KRIZOTdv8${yOgDFT)_SE61;YS57}GOGz>w>AF;Zspe)XQ^IP^H$#yz8n zC;*;tV5vH8dW?BGE{x2zyHAySopQ@KzKuJ)%bQ;$wDyIayPp3MKzt~tt{<9Z;Z|Ca4y229tbc z>IYI&K+Iah_3_^Ta%eQPMhD-;79IJxqIf5(UtO;c`+5=Ey{naXQZ|vOlGpo6ZyM3X zs&Ji^@5|kRdXwj=mnl^83WSLG1X-!F>ILFagY=X@)@Aauyhp+&Hik0d*21{)tREdX zmvr~e7Bjc#<+@S^@Ns?aG{7vexXw(AC*&^T9MtZT%;on0v$6(X;bNAkb&%+o*Ngu> zr#@3dOVt4y4~r(Ga>V-*m@G*B7x!z!7uqBV{ZDfa*8}ro>@>~ zH*=A6gG%|BTN>Ttd$r)EoLsZV2g{Xm6ptPkNej@Zc%1PbDBQSe!*FV>d%QZ56nkts z?bgVGp|P`1R0e)b)?<1VFRX4~- z8mI%D3pi~t`eQwcp|vGi5klC5>Ds6N|Uw+^0|8vf7VlOB<~Ojqdy?{YJ!68w2=`uPY5 z&n^LA|BMZ(9NYN$q8%Kce5BP9ru40Zou1(|=_K+?!CPw*+zdn4iI|r7*TvEV2O7no zOSd{qYe-R^Kpo+Q<8_!*CTpk!pHT-v996UF1~6SH@XWe@Sq$s5WhdpNtSi^vBz;G)}k1}=!QynAO)*Z57!dV)k~ zRgsXYk@O?kX0|OU9Wi!K*G*ZDBijc*IPk~l%+)1q5uF-6Ll4r_H}1$Dwee~uw6>(` z2dj*?%Cy%%BZ0l_=ytMsA=GMqmnzHl%K{t@tG)ak@JI3WZaank$Uw4u>{O0|1KO4U zP>nDa$ikXo0Tt7TRMJS!QcvmR-^!&LW{#py!yEw+FSfJ9f^!#VL)kEn(T9wrhp?k< z5&0;A*%rV?l2%fX^sRI94fpkDI_gA&g~qCS!{OG^GjXq&6G|~~-n+!4ioAev2k*1{%IPf`by`)gZ8>5zmH%?ae~b2g9N>-eY;hFQB0B#!EWqEVK* z^SE#oM z7jN5GK}E+eeSj;IFi&c>2<>4;?OV>yY7RG4s~0niADZA%ZEC$OToBu-80ECySzeC0?!R)Ex@yScrST`oCc9i6WF|7m6VdgN zA28V?CrbX=#*WX#QCGCdyr9L1%Rc=eZ0sfWzi~+BN(U;0%<3Bb-_#QnXSSoD;`{^H zrxt%eX+5B*HGjv-G|go}ysFo_yZ)4>EXB-syx+tMU28hQm+`!Gv><~Os5onX5GGVj zs4>;@?SGM~(HeLmx3}lqHtru%c{7kLr#(2-Q3aU3ac!Z0+j|^6HMeQmHoD!OV`z5Q>3+Nc;TQttdlUZJcEYB*-1B;dr)Bm#;eqsixQmB>fWwVqjg<6mwjCm=urD3&j|pxH!~QnuNr zC*&YP5C}|^_%$qqJlRH#dBk%CJf;$zu`|1H$tWRAg!OGN@U5hjOL_LB zna2DF5|PLsPP$uwx?@CytyvjiDVKe+>rnklG(=vGH~>vX!fD0b@rIHRP$XgY$=r-@^|d4ow2wlqf@4mhB!U*q8gqdOGrgDOA7lR7xj}o?$25^~Rkz z%4$4eryx9@QDW?W3E@W&krULP)akFgNts574$+51NBRnw?aqmTSXTBzC&JQW8o-6$ zCp5erxttlFgtB6sRKm6c9gxoXw12po4xwr!qj#{*$QPTQ*NY-JCgOD)_E}fD^lx!9 zst?MIin2@qY#Mi4TZ&xi!il1aiST-8z^VaO{<3*@Kc)LZe$?G#xXFx$?<=v^@mj(0 zm-r=)V~P(P;Zt*Y?*WK9KMP0kvvz| zHzenB{r*f}EeO0FNRjwTomhL3q2%fC%}aX%e#VR!#E-LY#CL>#ac=k7vtEqbGv?^U zOU~_!v$fI{%eK_e$Z8XUPJWXuTOW)Q2dqoCezJrvEF1-Vt4o%@Yk1c;hbK!-rAQn`L*lgO=Xzbj7r{zBs`bW09`@VCk_fWM!) zBsl%0GOf$4Fv|X`Hz;hdQGu|qk=RA`*>v(kjqK{fG|Tt^`;h0nq29$V)Pu(lEqSPi zb&{s_MoJ!YB%}%_A-ZM`57-$*ZFqic`{?u$+b$a|tl79~Q~A%wK!r2y5yBcSKddH2 z{2cJ0`AnVQDrad7{lltm{jv zU8?5Q^c+Ike(IG)k$kb3eK*hfgiK(w=V^->B3Q|HH1eyyLsn3qyEo{sCb-;b>Y47lZvbmrSMSJq^x}Gfssu?+~VW>6{lvx8CP^DNz@L` zaYug?XYfJ;4n=y-b*>$Lwc*|7UWK}lPTc(QN%kySdGNfN?LE)7gZF`_odIV&842o zid=OQbH&pjdaBz&xU$EK<0{L$Nsl~>jgCq6%+fRe_~5vEj!t*kXuZx>Wi_l2#n4_c zjr|_t2M&dXIZ*~GL`T}oG+jtbHqWbBfGBlPmTINe_u*3k%zMp0*_?$oS1#-^Sa!-~YtXC$twm#zPcBuNfD#M`ioEXAQ zzx_>iC5en9*w#4YNw!D%KIaSU8t|O^**hEifxFvsEq|;FlOZ;a9nPzbjETmM(-UwxGJMu8OFno`Zw0ow z^{Kbo&3@LjRI$^kWCw}Ka%_Co3F2hzv5R-ATiTel>9 zmYQ>U7pvbR;4M}t>_WktGuQ!pcoy}U1m(fS7lXb)m z?0KOTqVgpBFhP8yY5dwSueN*Crblf4EBILI+Y&ix=q7t8jo6K_k|KdCH2R*0+5>&d zo^i}?0dr}T!cw^2!C+j?Y%$dPSE`ViDkcR|-3~Og8>xwSX9J7Lzd~!nS`A0shxyzx zt>ys0l&=v{Y~=))8b1%@^2OR?Qx|Nu|3NVsyC(Rh4SZxgZ2E^~AS^1{HonY#DSqLTPl=uj6q9LcO9)RGRO zt6BE1&g$8$qOeF#$llJ~3a5U2FWQ%txxx7;={-g^Yy{kx8{Fwz?SkjHBdFw7J4hKe z|HDhf9*(TVIU4W>@2SrJ2g>(0%C{_Zc8Jb0<9M!G4A_GJMzH^djS=0EvX*JI=|wR`y^PE&#MRp3s*mA51e<>evej)CE`EO z&L^d-bA=e5sh$^DRxl!4?)*GA|7&kW7UO^#C_w=~lOvvz{i5EvDBPdh#NJ0UwJ+}+Kjc5q z{FosXzfQHYTZPzr^%mB-!p-KGNXxSL%Y=A}Dfv|W4DjYZmnFgqd2a9Jv2tzm^wB!! zf#msnfYN|YmT=eM|!wQx6uyTeqT`NPa8lid7pSyV# z8kniw%J>+BWXIjfI9X?6(nX z!7j3A6(s`vZ-1}wIq$ZrsF@`~XL03TXNHjwdMJWG7{ZhLj+$H&!jd6kNrb-dSznb_ zK5g9tA9>t(_Bb3dGccFWJdB&bpFkcyQO{+jyP>@;h#ei-~?AM+J_!A~;70 z6z-iQQOp2AU?JO#>QLb&OSe1F?j7tp*#e^O1r>&(N@}lNz36wql^Qg0Mq&20-U8-M zd`c>_3b@D7k>RdpjlZ-Zp9t3R<@LgXVcyIrJ)JXSUgC?ZA>$N4ZPOHS1xP~^qdI^} z15G8c-=j8Dy_CWNWI7~4_e&-3c=0O1Eu5UdS2>_&{>>=w5G+4!3R;Aw_OJNv1Nn4a zV#LpTtx9cW+6~aC_m=?UM1s*&$Pzl3R0f#RSN7|WB}0za-U?tLrdWd;jp+>$I~e-6 zJcodx5A_l`OYKJFxwuO0kpU2)L}mf;go{USGNh|@BM03%HB0SLcD(ri_K8`+r>AA+ zKW*t>lBT4je0#y}_Xmn-S)6VTfqEw7K#VTjKM8ygO&jsmF&ihCBqKs~%`4#e$_b>J zoc8T6oYdL}vc_}gAUMMP{-rR+3tl=GM#+|V4PX6;@nfKxiE0yb3*do0RMK2!(g{;!R35BTljNflIi;K79nYh5G3n{g0=d0@D{?Vd2VowK$UuUTrSKc-( z)=yw(n*VGsT)Zchd2QXoub}h*XRFY5-+M<~Mz2guj&G&*gDyi-Vy`mK{YXAg3nqYf zv1H8ZuW#`uUxRr!p#i_@PzlMV7+Ai}FmF1%Hlkf>E~!soX|7sZ*z-!>B{-~wHY|M` zNhuf&J>24o$b#Bor`*jSZ;~yKVK3?^fY!wYIgv+%_K|n zvo|4hfx(r1X`!_3_o#bWm`cVUMgrg^^VD(hcx#kbG5(G3k#<}vwRH0L`}h4?AR=OY zg-3DIL44Q#KhNvr+lPX?AV+6h|8`D8nK>Uur7nOtq@$$hfdY#imDv{t6$Y*bMKZQC zoLkXRjTW%<)oeoA`MK~hZ1|$&+NWuf!{gbhC%b(TyTH~RuAf8wYEbBcLJQZ8cW0}u zQPdG%v2IjKoIsB2X#9MOgs;ie8ue3WXedpc1HRR36~gj=yk_0)%Llx*v{ZU6a}~;2 z7Vyy(34zj^xpD9mw)~+*s_pRQGs)*&pIsu=N3V18f~&I#8rf7g4YTJHZ{8-&{hII! z7U8U*_@(Ox=MPK^G@dao3s!6V``}id&CP~9db6T5WEml1*y~ou=9uOp2&P1}Gi!+v zrR!8@ffll@hTf6vnDqCsIrW&}@es4Z5C1|imnbX=Y*}`)!H_e1MP|#_27>HsA~`ii zQ|@}#S=xA|gY~Gq1K$fH_2}@rVAtKO*it3FLh<%?U$44>PKND@I?gupuLgu2>GXVD z8AaVAG~PCac3sb-zL@Z^%X@SxCwz$ZYzAM>vw|-aQJ(+ zv8&VssJ#(P+t>zOtaaGJ;_lyMd%xTu_{+gQw?7jt{)f%9)FoLSIe5WyS9I=`HWB6L zT8=Z5s;$;6Ogg=9KM6Og z{ZLG*1|EQ>!wB!>(b=yE(*BR4^NwcoeZ#m}n^IAG#)_?G?LBIfAgHajqGr{e zsl92by<%@_6{+1K_N<_-U5eV@-~0R5aX2R@@B3WOeP7q-s?u(wP1{VS{7giw^Q}d* zliz_a8SC8k<;9pWwbKOX?YiI=wen7&*>zhp$Hd>>`V zKoTG4PY2X;`^=N(N@D?3eIIdh!~5sS3E>g15T4S(|1O?)YDr zP(ElfJnnDFXm6obIiT?TeM0A?sObab4oqxGNsZ6W^xfBX%}Ow}SxaG(xEU^-6oO6i zd2bKiv-vl8Qp>b}z@HKVQ#vwrs4PGFy$GrM1)Dz3t1pw7$(Op)W{JKt&{$HRxRusQ zd7CaXwBA$q>-NQggY*8{fa9sS!Ykp*m?>0#yOTtQ7Q3(a@Ekh$CnfcvjXS*g>~wPo zSG@LV|2m>o#i%5607=3e8;(Kd5v*`~uYz1##evdmFsp|SwA6GRXh%clQ9RLYQnGpJ z+nEFFOwn)U*#9HRJ0@0LF)HhlC-q~?@soNnx~@1SoU-^ny9nPG^3ez?uuX}(FARQ{ zDszibj!b?r7XbG@z3LdhvWSipsE;B(lw^`|R2PU;qWD?OZs8C!DyqF^5GgT~{6!sJ znRH;d@h()Y6&lJTZE{WmZ+D8bn*Rx?EiM;Mm+2=HPT*9HI3V*ez`-^T-+D=01~M3! z?diD1>33+yYZl`AZd>^hB{!r6TFWd_yCOJ4dR?X**`&UDqVL}NSFA&S@*9>BMfuk( zX0qJbs4UXNnhlIh8I`h0RG%HCo|#1FSId*mfvnbTAbwnFaGU>F#*_gnp~`An>2ZMQ z_#Gn~2PkB%UMv7msPtQJL#k#$+bFW{3RIM|5FQ8wl$RL`BZ~rPjdn^7-Bh*^rUp!> zc8#3+gP+OUP;k!Jp-OjXE9>D!u~bb_N1`Xu>fT@$tAl79wsf@5j|@2_g!YnHd$ zZZ)BZpD`;u)%Woq((zDxfMjg7i7NBCgmjS6nIxJhZ0UR=F$J;h&TS)nNj;QX8Q*5; zKCqCcejV7+u-N2}fc321FUg8sCEp9UV*BztMI(6Yx2wiT)uLOlvh{1h<-G=~ibo^W z%-0!=g8VI!WjSurWv)MrFOy$H=HIix{Q}nhSy{yw31yCVh>B6DJ z^9T2NRNr`8{b^DwWzzXJb973^e4HOi<4=7~kmLC{T(1l?O!Bpx>q=zrhdQ;GO={BK zDaOUa;;s(>sLvm>X8T`LRAWL^^nuD}E}Gj@PcO5=wq8S6*H^_F-<$n3xUe0MQ9K#B z_BQz%Xk>Dpf}+Zg!Alm{3_EL96jp5I3Un|>Nh>@qI>x>=mjE|DJrm3R%Q@VFd>yKe z;8VKGWBrOAB8{Et6)e`J2>xjDG}EO$V8+#F^3brW{*e6kJ_9h`I#}q$JiEFZwSvoJ zE0Jm|)#RUCntHW8w9|Ae1vxQ%s4kv+sc27XfQ9eU{nz-iF(yMs*9V+9Je(K&2)DuW zS|UBR2_a;LYMO-?F|L!_x55sJprQk34>b{ba31@b#yNz%g}o7F^@Q+|7H-EQsx{73ba1^KbJv zNuN!gk*yRw*|n?$clvvdkgV@}4`wpVkw-hxN&HO83jMB^OV!o{3oix>p(9Kjl(@bD zBj-uJxcHLnkyl<=+w`Xd4P>zru*foDu*yHTrcE4+)oKH8-Oq=|5*)-#qo3XbxL*T* zg-}SD2_g&RH3YH*eLdto186yo2$M8xcc`ZJKtXpP2C2=>M`l=!x2kc&`9CclL$+8yi;35O^oW5hUZWS zw3Jj&T9{u$cQ3}YNDk*g3Yo+Zx&-iwr|C0*$MUbtl|Krqfo~Nf*97}r<{pfxNmDM+ z+y%HlKlPQgfyzhb-a8RfDhYrx6y~Y@`7Nd{!uTbt@d&lx*4k_oaR*APlqGGTo`vl% z%9KBpnuE9|YP%h>R3!cfWwG-dF!Im&?;*N-IvUmyZJQuCHtsJ(1FKPVs8r2{81)*a z?v}D0a%@3{M6~j(764LMat08+RD6Jn_mOA7)N}L$G30*Niz7tmc{wob#w!HCN1sFx zb&Nm`8?yiA4^R|G9Ehn)mO`3bqAaoH`tG298lJhx_W&TRGz8i=ztV~PZ#Ku`C5aZT z6mhv0|7XDsdAfG&pJPG!LAM8zq@>o}rmto0#U~mHd^6Q!vl%v%07 zs4bj)*kK9%^z*bwx>sG#-RPsbw&!PbVF@j!I9VT4t-i%DOzkVVUZCyA#JQ|FQPoC4DrUv`@jXUgo!9k z-FEbMGM9jb&F*<+zGp>;`3dJPtW>omFPAX>^_@J2l0^I8=$TrHCIhngI_DyQebJVd zYQU?IVcOG~R4T$(ja9sDumcPb1l7~~hO{G1*#mW~2yqIuHt#-0WJyH0p6#_~&jw$j z)~R}~{Q>ZoXdl-%>UMwnvNlJDSYcuzWy1RkONf=vgqZUyKGwuf@pDhoE0C?Q0_vwT z<+B&sILErqZ@Jx}&s)(R^hOJR^TSDs4@D(L@v=f%FZY#G)+acgome5?iyEdd8fV9O z;&xn2;3lzWYgL%nP(v|VJ2;ELy}*(&2xKutoX$w)V4y#7{koCgdJ@2U%pc`%fU(K2 z!3GUsu?0S&p2PfToOv)+ivHXyMaXdeu`jdUB1`3)cgjk>+YeQ=M)=jv^0q8T%_+?-7n2z%+ z2)esMeS`&T$?z2%z1vA&Oh}xq)Xui>X{n6j_9`9phe{b4dnimMy~gn3rHc}0{<*xY z=hG6{>PAnf_&r9fsPnJYpxm}c4!3l<7h1Sl+<#BXaVmns30zN0eFo=E($<5V%#L?@ zn}1{<3`dKDib}(fqZqnVGd*{%d)ECgnyRdY+o`wO{rnl!A+y1MCUAN^cG$}<@PWP! z6?0f5W_*LvV;?8_F^{awe^|Az8*TpeITXIObtL2grXF@L9PCg+ZPJ2-l*CmP#_T_p z#iy|Sf@E70Q_BJa9UVHtafnap5`qdVK6qJ1ct*8;0qLaAmfDc3ispNlKJ6|Dr&hI! zbN?9N?Zlh9qAoTkOQwjN{rt&YHaBV7G{0sND|2q4l>tj3hr#iMxqUY;9i;vdkT#}; zz9je8k#5dp09uoY_A+b?bLc;;KQ}CO%$#Y*rupR9``(t6R}_80(6t)#TgV-us%awH zGW*H%(<|^IPxONH3yT|(%8EZ7gKnd|wyO_(6RMWR?6kjf>lTjeGvfF#TPi$7_SUT? z_vO&>Go?{fUV4!B&)W&#(@xp+ACWlue{hdP9^i~6fz@NNHbHX#Mju?PU{uYGVxBw` z(?|Isja!2M9_g`;U(tiOvQBc3jizxf6arC}U*2M33RCNX6O%Z7LpV06J9*`44Q5i3 zcj#@j2T$w2QHM;4DzYyHd<+=_hnqR4XLSmE)ku6qsF0I$$T%7+|L>`w_D&{*Ldz~4 z$;R;^@Y4$a+nEEE*Zea*gB{ zamA>*<{!RZ9W|+;hM(0B1b$47dIHWE54G)3o)VZz`*@!o<`6o)`)51->6ks_XYtPz ziSbZL9G+6}*V*YiD@45sn{FJNkX+w<`TTGR5q;&hKMP^nXYLe6Bii%JW?eQID2>dF z=Xd`Oy6&|kK9Q3JOFIPOU-7e7n3Hn14*ujB=L87*1)s>jf!gk&Z<~fLgjt&(Hl?0l*T@h8qf*G~LR zsk<7&ygg4vtat)Hq^B8ZXglKfFj%vn84wnoqD-c`A4acwWM9`XJ3BhEMQrJn2LFIg z4;BFx1rLI~SW?hQGqNdfD2>BwlM_qgHEn`rypU7qA$=Q8uF)2)$AR@0f@v)5RS4A9 zX27o=(z1O-SAo|V+*W0)PeE$XNwzP)nDn~lPtC|{h|HF$FcSp-EqNu#h)3@nY==a? z%p}+ZdByOyk>eZL)Hw566WhWNrNp@K0N~W`DJGz&FX&5z^16IqV3tTut-_O%(?4`R`4W5SL?9bi5naearYK@P5s(h=#cnOqrn{U=M4Q7U|X%F zNi<&@gZ}r*^)7kY&?$ODtLTp{-UiDo5mRbXXKWSMJ$dA+wPp$gieU@z%BF- zUoYXZ@I^%QF#>tNt?+k;E>hdVt8`rzzyFDrRRKEhei3r2u21yj==8ppG|%$J@t+jN z^xS<5o{HrewsU9g=z<`&LRtoU?YnHJ3>gtsRjp=;+K8u@K1TS#JZ{d9H``(&4gNiL zIV0qjooF#kzH>omYeI0L-8Z8M23|_@8tWJ(0A@lhLgeKT`5)HDea;rJ2G@UBwD&0q z{U7cv$->2pmPW*?(yF>+=&p)y6>%?vSUN`TYK>keY!FAkq^?IQjPpZv2j)06_Bx7Fu}ic=|=@JETxbP2gCoc;0TSK zaBn4;*WOWXheAv~n1dHvOrat&Jh&Zr-R4S*rQ4hcm?=E3b* zm7GaE{xeuq;uRYTt)U+mHJAM#Q&Vco8SA$HS!G}9WCb-Gpx}-U3~3z> zRRNiRj;1kL$z}A328~JofT*bE@8^CfOWO8r+a-UXXn1tKowjC3QL1+_6^xGj#D#nbKBu}Onaq6MmuExJ&Ou_EIQuIThZ`G+o#NDAb$_ftH zh#FOCD)LF0k5J+-xh3FX3wtFKW$GD#Q%H+6DF)b~RrSNuc6Bvr9q!QA zYv>`6-@8*-N=htb-2|v2C}V{7L7BW^z0d;{J-~bN9~v!wzVMw|?NjO+3+~B>@gO5J zkIUrtMlCVowHOtz>5TLWLr6aJ2fSH+W0*N|)TEb>cFLC+OX@7vDqv!zx9IbJ>(}o#SLtPq6mn-*x6{v1*M{)+x%f95zp*xhpnY z+YfxQLmL&Hu~|lNadJm$V&voP*_g%#*%x_P1%*mG$Y|L$KLj&R0qJtOq6?-_0X8aL ztH@OCsB8_UMp1S1jdwm`S+4s#%pcGIUn$iCm|=>X<*yXgX@L$hvwu*!u&=AuPql?w zTsgSp@jfyC`W0TKX6Fj(0%L!NRYS z4zEioEsytvi+2Y>#A6=RJHrpG?i7bY?S{PQ52T7^@RYo%S@jxyu%3VwvTv3Anwigo z)+P1&?c^dyl3DX-p+WsKz(JHMC|j(rfxg?_*P&T3#K*ZotZOPb6a()H5-TGwnshHI zS)XiT{i>%vBS#)vG5F7D*p`a%6+!rWn;rm92+Zsfwqp@js3k<-$hS~*JhYPcZWX!+ zRy)c0(IjGJq+B&%;@Ns%7`C%h_r8rxTOy&Cj>*w;0#0#ZX77s2JM-p!k~I6%h&-G~ zUaKVeO;m2nhcw!XMwJV(l82K5SK7twd!NrvY9i8}8$biIR?W6QDaA%t#*-Fv-4l16 zq8H!~DHOPioE|&{(lpdJO^l_A`W$~wtfRv+g+Uge$^M=GYBlY%l^ZRlvXedx-77o2rI}hMQiKiPZ+i|b=)+jYH?~YKHAhXBT3*{F-GpE$G_)+ z4BwaD^DA0dn0CZkL*0_@XK+c|Ocwm`PVa=1pH`%xA_y=G%F zN^Hjc{Q&;#>xcw+IyU!%2Vm|Re{(bFQZB&ZR{)ZKT+(B5vHM`kn1LgZy7ydpJPGWn zC}vkoe7>ylB!jAw%3Dpp81;&7?!{l{Z9e+Ko`eU5S77i0rM?^3!%KkYNQsr9P(k(; ztBMn=`SYKG?KYn!374jmz9*nKz4f+_NX)*V9IjLvP z*c%(tr?f!pJ#3?~_L^UTtIVvF%2m11+oHZs0>j7J|6F$qpXeiueUVv|t71MP`L*;> z0N7eWB_bz2)Ag{3P+By0sRZq{ojoj0$7X>}f~))d#^+3kQ|`CT{1nq{Bg`3jePSMo z84#$A8R|5LWfBvp{Tnl44|s9p$HU>Z_J?DZFrElo{|H2z$uyncx=6pfB*GHqJm7m7 zcwe&l?5<1aW4uqW+R4uS=uE$M-rA%FSIpB6#nKcMS~yu-&}PVPPC$W2FrO=X2F^t+ z&xL2Y%87ZzK^GL-foHfj=0f+%CNRaPp9o09q<>aiessfM6ZZpB5n1Ndf0&phL`CHx z@9f|ZM2O*oKlG3c|K{p!%b8PWW2kO0JR5xCjvn{o96t@Bd#UyKiLoNzt;%K2lQFF0 zo07q4B@b#trYyzHzI9)ypyvi-)*!u68{H$<_bdV_)4;Bg9#UaY?Mh=9>X z>}!od#+)c4e@3S)qX-=@z>GQWy5F#S_Ay zpWU9E+Wf9X#4Iabj7G=`GYdN1A>KC#Hp8{1JrUqI;G)gexX~5Nm*j71!{wzkK@Uji zt?6v1JCtnu>$C( zu-raQKsUG_y>A5nxs}H&>}9*vz=@K6eh5C!kz4YGJk>^i z_INCp{dwY{H7_OGiZRh(WBEG{b`@U0q}@+J{dnwN88l8C)L5+=W%+b<6F`vVy$nxN zTJ7INv?G-@IFz;#Fo|2h$zUHAZ4^f>X24s&gv>93x@vflLcNGDK=qIcC12Ge#Aoln z%(Tcp=32F|OiW#>-UTr1p0S^<3n7QJpq*Hwlw}g3)lXA=+^+19u*bp41$vMr0}0@V zZDO}_6z5l-1V+%eo*^uf=saL?=@l} zouU`GCn&hQtUel14`K>HLDTrAu|%M4c)$Y&$I7@HB!F)_~?H;WH|fFxA` zz9NbwQe^e;QwVeod$pmRx`8181qa#d81&M7Fp2}2Fkd0x6m2#D1NSmjXPICmIO@5 zb33Fq;wsVXvv(s(ARU-MTA7}%QuqHiM^JR&6+EK>&@ugZht}RceDjLv$j&6x79V}} zuwrPWHR)p+{^YG&G7WQ)wlH;Zd1%rZej{E5 z8I10++z`!&?nd4Y}XU}+} zp~YQ6W~+Cy9U$W^jA+SDwA^}4I%{foYH-A#yZgq-Mb<30#e~Y0;Ntfh1|$^k?*Jgm zM2W!HbPZ4$`9`ZJo;$=Oxw6l4E@s{xoJ#ACh+t2zrBD`*Oiei3$Os}K^y7ZSjAU=D zlHcab^TbX+pvlhhfB0auYv6OGOQv!2c^5k^NI!QSlWMy_tI@(a^lu{@26GXEilQxvui{(#w*wduGSbP^$~${pmQP4OKDCiA zs1p5wnJg0WvpBIp$3zV>min-Oct1KnC;%M9{^L+Fo)SInkv=?0cn*%|Gxh?oa*yKfGZ^v(CzXVXy$BKdJJZ?;S~J)Gm^l?m+1em z)`^N(9ospcHRY^Fm=3HaFn2daX|!6r0AacHt(yVJp%yZb;ZPzhHw^nOi8{ zr^t#{0?y&#SQSv*TofI}F#cPShIeO*ZCbxJZ05`7q^EEiu+`T5Xh+)>$!k3tOmNbP z#RL9bJ4);l2JpGmPCcJIFo8!Bz#YudLM^cyfxUVv1usk@`tP2eVTMKOU@Hp`8o7-Z zY+?oyyE;{|SNZl-!|54({WF`pSvjn%`EUhJRF)*?WO|i4xN6O=$Y?=XVn`GJ8QQfp zo;!HXv58z>IsQV`Ss9IywspZl-&0}c6F-^Z&4;eOfnSm43K(gafuBAVDe<%{d1jPl z*nxT&IkIhi+Tl$9_B+R_MR8Uto{aykwVQ~K!;4?t zeH_Pf2u-$j*gFvnt>NH_B8Ask^Ro$$rN-C2EN2gIA7`l8rQ=h}mNPW&<*%hTA2q4x z1&>VBFTY6tLAcU-IT$lwy1N|#XN}S^!k7aruc7#*bE&#nrJtWasJ7aQVT9#{+P3nf z>^z3QvzeUPlig3wd{-#Gu)W+7Co{fO7CQR`1TQub1w=F_Gp2?wZey4;s8A;1d=F+` zjEpbzx;2u)qW$xZ;41JPP%)FaiDKy1E@DV&u51e{XjV$#515>=In#0;)Z$iT8UO?6 zrOPq=prd&d1>t_ST8uqczrIii-ZNmQT$}fzV#5?%D5_5W*i5w~3OLb~0Kfiobw56gi z?JD3FV-zNNog~{-u3x85nnU7AaJP3EqbRY(3 zG2YrEyM}+#EBo-oU>^{3TiWL~8gR-*kR=h5t_bWs?q`blH$b7*tZ1lUzpTOMDANH7 zQm8fz10iC#L>UCss?ldL_^pCz$B4v-FK>BF`Q5sf9G1X0Q@g07(wCYrtxRAr5JXQ1 zIH%($SOsdF3d5=`WY*u$D*s(kBmzIVG`&v=nV|G0YM1=!yq#NK>i~K%2&O+D6E8E> z2AOxhRz8;vCcXp0T)>Tux76HGk+=~j%T`g6<;gv5T`7<_(4))dSx`?Ke{2$-jLm2s zcYBhuJZMHx^gF#)b6j6C(I*wZVUm4|pH~uHYd7bdUfU!r@UnB{BFbv=t>!TIo5i^D5h zEggqV%)2gMyN>QEaa;@RNk{X^Nhw0CnyXA;OQfvau?RDa!=vDFn`o5nGPC!WAb(c4 z!x9mkOoB7Nnf)J@ZEq*07V(vCK5+cWCv9%s{+w*QD!2U1*8?0Xw?l1;Rb#{AlTF*c z9F5sH#A&C2rUI^7;_ELZtP_Z9{hW%b#X$Ac@baA~XtP4;e%;p^c=1c*ts9~owo*Gm znr$kd-mIaFs0_Qv#8l&7e9XS9r@Iey!sAQp&bU?htH;|qq=v3+ZK1Rleum-=Wv^8> zG~oljRyUoLoNm``Pdhb#DBAno{~TbNB6uWiV>8|wU)!dyuhzu^?eR6Mg47ygFyHSc z`&+U!(VkK(7Ig`Sp3%>HyhsT{X;h%D=f(dXEOB57)r=~;t#|NUB z%d1sb)pKzaOK8?`w`0?srTr*tzCZflytd&)*}*hQa0HzA(ANdAhuaKq)v~(b%Goof z=mZ=r$z`=iZVBs4*xEZ!R`*7mz44QQ{^vGZ!1SVl`K6q&w3ra9YR7D^%2G?=={0aJLmDn;p~MFog1>3jqX!aX-DsHUbJ0t@vOH^5)bf2fngAmSuw5 zK$jh_yQHr!U?vfz?2;khkV0lDt}z-^!Q(vs)a-5>Dk%ea{u&v8$|SSUwpjuB;a{n3 zS5Hi!dkX!5sTU+H7cnKMhpdKzP_Sxoj$@Q5R&XdSQgN{zf(Ze<9%Q;iT%AZut!q1E z2LrBk2z0*w7s$=--Kpst8N2%8id#nL{Gm52{8+}WE*6MxgZ)qzRSW{LWTpO&43~lY(93#9onX(1MNoJBihD$flSEI|JA$ez>#$+$Wl{=5n6+I3v}Vm zN4uQs*EVs2_lpkQ&ZZ`HW$#dxk2ecoVBv6D+{s2()79%HQB_;5!jETyivr)1FMus` z)3}yr89^Qm!zC;})t&({ZR1Fd_%%rb4+#+j&BRx&bcTORSK)uYP?a&Tk)Quayg{FS z_X@MUD@J$U_PgZ`I&F3T%;4-Acpt?7R3h*3oO~lE$d_a8NNUeSLi~tj>U>vJY=^L! z0U78KspdlKZ{PTv;2KJ2kiqddJ`%>)Y4mgp%yf_{5Dw0tpL`sl3gSu}2=`Z@v0$)e zrM!G*(c@s&>B*iYUjFWsv%dOW4=)2ZCv*MJ(sCcpT$TOcV)J3y%t%SNmtnTLfDym` z%dVUKcpEnDD3iTBO6qN@h4d*%aBWuHVPS0CD(QQAod&j!Wb8ffq%j4elPw*rqB1m} z%fdsA9BHDQT4*Lf{_cN8M3cr|=zJ5oZc&?!sHxKQ%(@e8=55{x`XwhEj9y0#;~IYb zz=Uj98;u$l1cE4cbEoycmUi)E2s0hCMzMHEe;hR~F(Qn5wWZl}|Kh70%Y9XCA4zxa zpwys8xj!241s`iosHm2DX`R(gSgDcj@lv?Y+st3Zol$iOZ;d|tG;6po{A_q5^M@gc zmr4fyNUDm3zQF7Ui*hnq> z9aH>wXZkcQUpH5<{LBnAP1`s7*P!z?*Z0k8mKT>R+0^6ontCFRflu+0@uS1-KjSG3 z=H8(CyDXM=4GFPCj9jq})F*}_c#R74UPtb&Z~^A6dE8P541I#51eMEohVGF;^&;=t z%FAXzOl6&0NnpjYpM%r&R!{!KjA}L~v~HXo;RJhAj_LBe-L=gl^__eaIM-^E?YL5a zTP0=arAUB+sPX-W0W+l33XbzQkBu1SI(;1`1fj}B$~ zIUC)ExT_|$u*gPk=1$^C>k6C~Bi}wDB{vG3Mo30nqROHfUy!o7(@B4$sl8aKJPK)Q z4gV^;j(p)cg=bjBFS&Md>_a6m{hqd^tMF1m5u`X`dk5?)QzUN68^5?z3O!E{By&4j zc^_}ipeKfOEA#8_(nzOAK4QX`4|2CONAm#TzIUPPtURi+t0j@TvI;+ITWO-`9lASm z9noTc>>bVX5gc$|g#*$ID-rb^!#xDf6APZ+r)p<`PRz zAA=fen-X=~FM9PKSY=U7qp7PztkFdDhD5LS-8NZO{Az}(b7$(VGU)24lfD46GDH;1S-gmVjPFk)%o%$VBhyGIH08kMwiwV~1* zUFRZnp!P4Uqut+bYxnhZY=$vH=ZcF^W-LDmJ{Eq#uZ!Z%`t<&BC?`i~UO^P0OpZm> zcZ)}K!G7kM&rabd&$1pxH4NpoKl;`;_A_qIt6=V4I|pwLyMwZSwffdY;=!Q6F1t)4!q{|&~ZfC7E_+Hh_*;U#u&R3!MOe9ZXUi- z3wsGGfm-{`vdX9|X+Xw*!YjAb$M9QT2)yY$VZX@Bu5}*Ybf8?jJDa7C9w&kJKKm0p zMS>c7Z(2m`a_;EZPKoO;_c~e7Y+m^fE+Riwe;GRd;sbqU&wp6oWHv2F|4m!Vq7o{{D}_J)V^%b<%M#T*h_J*ls^~N*vNR?VcVVoO=89qo{qo(qcM(n`1uRK|Hd zLZDHu8&j1Uu5ce7$SzcfYPmsyu%A`qchjLvF7 zreTHDBGxjNF->m_aMI=3orxNj;Ja5tDQQ0|_TP?0!3FGaw;`clSiawl+*?j~8}UuV zUq5>RN6f^n05BjzQYxOKujK*M&#(|sWdEQb&dy|ouVR8^;uEX_cu zu3hywb*lCD3De-~%zl;#Tw>y|tOuAO*YD=+q@{?x^KwwI$KUY}djfNQ%#SpghymiR z)*lpgsjnEUy-uu!Mh~kdxu-u>kU!kGS>viV(Cphsv!s7`rdtZHat==ivRmV_2SS8v z{eN_D+Uh3kQyjMQ+B4h!br=g4TT-U;H2%j&Tgpd)Nbhh2tk5Gk6@}*L-F)MBZw|e* z!_Oem8sfLs1cQMMLzk~X4mklY7^yl158(9vRY&nkHr-BbUM}zCqUXsJ@3i(AN(CJr zrPp0tBr9_`&p@colo9I$t(ZU8f5oc7g@zm5CS3<d)mdcq)#VK~13C^46FU}TxM)zxmj`9(NOnQ zM4wIjGreZpBw7yOUZrjwheah{px|Ed)A@EtE%vA;lqmq+gLP;J0Dj{1M^`m@6}u^D zL?<>p(%Tfo@75+OVk!y71rV(+2kP~ZPIVVWtp6KmGsf|2`_W9|JH!KS2 z0sjO@>HOfrib_B)dMk+6LohOLP?kumSjaEs%3yR;J)|m}DQ@Mo0#ap%0jlp1wIbvN z-q0_~#7sa$are)W(iY&-UbVM`8VFGuK{WcVYIc?9$|X++V|wVOC_Io6ri7~R0tS)o z9snEw(T?ELCdSmeK3VkL0*u=pT@CvvOZLhYlm$s|h&SxFT$3p_@V~eI9BRyZn`&yn zaS^y!z z)d>O@=Pw_wkZ4c3Ztvy9k3~L*2c@(5*2x_HB9wm9_W5o!I)zWjIAuIP3|l0@L~u*1 zieQLun}>EG_{4)XCWupgHAIXyr~$ms@WtNqA2}H{4ad@3M^y>co=W)LnDxel7aKfH z9V-I(&~MEhMcW0cuD|i+s4Fl~;Tn6ST#Q-J2Y*co65r=rZK$Mp%sUYRzZP|7#g|j! zbe61iwXrdhd-?EK$**dIB3_C8I+3MNrq1Y|> zVtD5bjENtJa|)QZwsr}j#3T8Oub(rs?l54JGRsK|^5DIvnx5-OnP62(qZ7wdo|H}- z%#w3yAz#)aTXgYQOLHZjG9nZ+3Qjp3Em-AfHrlswm4xpEN&Izqfd3_3NJKi7M<_hz zwzqa~d`kcNBzQ4HT&j)B?ZrS}F+mAFOW*_}Z>&v@uzC2$nso~D%@$Ej zwrAP9^8c$yp8@&_lDYF7EzXR2Mr_V1$%ZqBnc=^>!Tu2Y{hseLxp^e*Xq3jpO=hs~ zO?t9o@|3n$)^Nve+>>Xme+4$mN;dVFH)RgC!?= ztjm?h=pXP89ZWTvrYtEa!E&*{r6Ywa(mbPvh%o%Orq z`O{HRB};gxpQ*Y!zd423l6v99xX#v|W!g zA)Z3;FDyOd3vatYO#q)#*TEk&H(Rsqb0Nlgr&p=fRk%$@`D1^BWtAi8OxlNh(>y#` zDTkPsiazKb`7wLvLTP$~j6(`K&ypbKFDIVdlop-nutgw5$sC>fl6I>>@bjakKzp~L z7T!hivQCGVBpvd38;$b;&0A%N=Yz)GLkRq&sQN>S4uf8_9npoq@jtun~zI83pmj@@9&* z?2}>z$`(>av;SfJux>eJ9^U)0ozKPMTkBu-`)yBcrN)qUp^{H~ka@hSobkvQPb zn3Jaajk-47Kmw=JAjV}@IFS715MffIXj$L8w{e`wqKsrnZO56Rjct8H%dA6jntahk zQV??blGZUfPetIb+nn;Zm%%Bmy{8=GM8|LlXY2TN_E#pz>C0VjnGUP5!)HhIDNnXuuog<+r| z?)Ob=TBnb`a8+CVK!{rN@6KlaFw=#Nl?`*wM93&ggWji3Vf-YWJ?)9RQbRu5l*Zt= z_SscD$(2t?s!n8>$KxE`UmhsO^rX|He(S$<-s`Ate(k^dogE*QB`@T;aErMyC%4kL zEoo1N%e~9U9h4K%`HxuroEQuqzS-@H?QS>UP@KITZ`peu{9Oc;7XUYk?RW7t%!XO@ z6@os`EXW}zMAqhOc~4CeiGR4YdBeu@0l%Wj6wL>qYLLi|5OiV*>B;8yjWD@tTDmw< zLDZcm$Z7(nXhTR-(G>vgR*F0aib8VXehTW4?d>`LRS+EhISuv)W$C%DPkvP=#%0Q# zV@*oDAG_M040>H8#<3@bbns>{09Mdn!>5nEp;-j(Mk^&zvz;~fqpM-Ii0WF!l=##T z>`jn`$|clwsisQfcMb0kJsvXx=2n7VF(${mYKe26gW(Y|+M41dZ++EYI{JeTMNQ^i zOHF>k4ApS@q-F(TuQPO>qUnSR5>;_HbW1D$(*B3#(jxfiqh(ycr-O0#C3qyey5U}f z%HmPG^%D=y_m--)_FLGm0^}8FPpn;clT32WmB>zWFltGPq$S~t*RW5`U91C>SgdWfH~i@Vk&jp4n)*x34m`3r%kuL%`S zImcHGpDe>wF*`nPgKF@&*9u!AaLw}rlk^}5gj#O8VzL@Fc7ImR<(XQl-cjpChboEC zGuk4C{IK+q)k_~DXrX$6j^||0TPl(_mCGp7;FAeMxkGry=sQh#x}l=1=Jr4qK;)K! zp*01~C^@T45yDF1MFt8MHf3-sAaAEua$fg4CW)#b#5~1QYBqg%7rk+sul1c5`o0!{ zA1I`@d)L3S^Tn>XI+r1_{aBkg-y5Ki3A)s%i5c}6c3}(}u{AAr6(l(6H=G=tXX_?5FD+O{qc;RzZW?r)4{#)DHY|&Y?VZFhrZ<&_rgdwU zdh!{qOI(G0KitV(33`gOJD>+S$Vh|Vr7a@fesm!UZ2-;vi_%9w9((g2)?>Yo_>%sY zUpSQ7aW-0j50+nL_W<0XNN#MXAiCzBOfub3gh0!8)QC23F!jP2h7%xTga~a> z^-VAaiD)qDeRqIpwcEW^v}S~Q%@2qRsGI>viXs|AX97mtiB3~ux`pe&oDCZgI{j8*}R~oY6c}oEl>_EA)P*56qRvcY#<$e5R zSNZ%c=yo~2q7+gw1JRj0@|zY3JXrwt`Y=@R3K^ykU_OX|QEnAh6*UU(dI6;Th(>(8 zVet)sY>f;NfgKojOpCy>_9al3P_3nWOx>HkKFGTMIe^2vFGX~;IaBB}LN}FAZ~>)$ zOK646krluJVF!f$&>qSH;?e|Y_H5fWH$>Naz?Cfb`?+1cI4!{T@BmEA#7O{sr~3^G zhC#l^k^}*>VwpEpv^78UJ*p9PJOsYRi0-%nZ(vXyQ#r8-a?LyeJRVq>x*F54MMML} zO*;|#-y&pI2xnEjIAZm6t8^0^dZn+@iCZ65fxKxHDC=0UE3?~5zz`S&)CJqM$980v zIfk>cu#iHN4^FjbX2Nf+$)4x$h8G=QuyCz%<`AyWJe`HpEWz^F;hpC6`w;V9$!FA$ z$|dQnIm;G;YI=Co-4@^H&9i`+xu7SAACqyhHf-DyEG-AIS}gR)Hxh@g;D| zivb60uwt4udD{?ZRHCC{kKU{i=lH3U9|JR{G&r$`z?8!|TQUbrpCRsLqSETUo#^zO z!Af!^*9TfcT#o53@a1n)aJWGHCy{UT%KZSXd$IUNRAP0I_G?d?RrTj~n?$~Eq5&-X zKP7b6?xjVRnnuU!)D1`)`G>|OZI2DH7%2KzMT@yjt71rkN3sNVdb72h%UJD@m%18p z$uD1oOX?q@XIh`KJ)PsO1gy6UDCZVN@9S7gp?@Vh>TEL5Rm@A&-;yogAdyd z?mgFiUg!Bc^L|SuV^V37h*@j)Rml3+?~sk&e`sk$dX2j5}5(FFv@!rO_)f34N^3UwHrF z$9vqUZctl22(scjX=l~i?S(d%O!Uzk0Fx0p@+8j+amEA9p<{i+q2~&*Q%&7%E<6{5 z*?8?nNfi2++npho;TEtt+>Z#=Vr%EDLlFDuAUTx0mb6*avCpczC)izZVuGNo)=+II z6Bn)^y2PHB|1Ms5#NBA^{sS)Nue{uIi?jT~XAHBwa>3?)6`s1=2Cj=K^MQ10>`%rz8D#Y}@bl0*?T)nkd zRcaP5^L$Hqdk01(xv$sywd*<6Lf%9!-~#_u{90&01nDBvXG-BClf)+}>wqsr9^(KKE*4+EHlfJBa>&4M7b7zbD;Y!c87v)H#?qof` zzJnaC@{knM!2U5dMTwDae2MdrDo3ZFS(DNLpYl3+pRF@4FYzBnG=Mso+00`JSU4@j zou7T?{pNt6N^>zmrqTVGJib#5_tAHWyN}+^Uz3%nuu8I>QVy) z8Eq}P9@kq9YEa{u8b-~({V<*hMnIZVpQyyGkQ*v|{iO8T;)7Q_yRlJ#+^?sYW#!&) zvGrSG4CP8Ixv;6h7Gy2H9`D~9O^co;M)Ic`(MsDPY}`r^FY^4<*il3;M6dgPuuwcn z$oAYGBB$pd+axr>cz|DtpGJ{*?a9=AF8P}O)98zF*!No9_E+xc!6MBD=$4~rQ;{y0em#toXI#Gh8GSodkzObw0d~#viC&^NjL!gdn^5!Rs>tSqP(Joy z@QY>eS-Cy(fD*aL2{A;(p;>*(xnruclZjr9zv892;QHymkmSI{Co4x&S5?;b86fHh zdmUQ$NO~$K8o$Z*a(T7w7WQFjZ&G&@Paq7_fh1tMy45&g9=wFak0@~`>~yD8PbOIf z+n}(A02xVsnE_~^c}~Tr@JbgKDzI(@@+?Y_nP(XyLJD;ZHEl*gt@^@RAkyxdm`Xrt z`6sZ;6s&?X+=bi#*0`%Ps<#9~*7Gz3N+Gn(RX1+YbryA8Md(zx{2|QhwY#8VqqOKi ztbw(aTOZq&sY&saD1`om_J`PcAvrk{8#~z3O1MIUhDHOd5+D<_gEAPdjA+vGbQN#L z6dEM@(hCoH!+GVWNJ6Ii#Pb)c#Kc9HOSz(oq8bX=;sx)1!hD}lmlKxGpj%6kHvGWw z)n{lVd=7>|TUF|P)5ATm^o6Q80{R+H;H}}Iyb?LArrnxTI2QU^Ah@sAmF8SPUBf=| znJD)-@6prf8b?eWuEr9nsuaVzCCVJps20q3Zw{pG9Nat+j0oqzRQ5A2dxJl|IH%wA z*7l>=MP~g`w73~&_}%Gn{xu)Kd4oOfLp4z#TlgKVDTpsi|ExtR49(zhu-B@*1$@%jFJP*Pk_j|82LU%)TylUZ4L?Tj6vP;4`(# zuM)lSuCmBCci5X1z*wj|y^5#h7MtFInOhT&3JgCUFZN_XaGAD#t$I&FLu)^;;_c4hRCYr9*jW(Q-mm<}oodguHsv(rIeZv%$3 z)st7JLnxRrz{r{SthvbN(YYVu8RwHBWjQ~x0glDR4e36teP1w)?C}~tKy=v%UI?s~ z1R}M|zS9{GC`hFdO2!r;u)3bYlSa z!jh?^ELs$z3@U5-4)PU%l0e!)5{&m}5VzQB`CDJbS-0S~GU!GspsWFn$V@>YMc}u- z2fikWFWoI6%|Wmz0~pFA2jFG27S`8*_iDrQ5n%_SrW885U{vZh=&hO&tg8s*;{eRe zl`X&&KEqin?+f`=P2&Y@?(C!xZ~_cdkXQQ}$i>(=1BOaL7ywYZ@L@C}5yRLU)>c*= zHDaj&m_erh0Uevh)bfN9BNl+sgTW+c1PZ)NQ+?7~G!igv`*Hzworf)lu%3iP0#e7=3L!zfk%yFbT(QZ`M7M)@~m z*!glEHRrrj-a%tl^mjU$xf<;!OtIZpK^&!rANfL33VY>}`KsW|_QW!A>CYm+;szUg zqf0*~dQd6_fB$Og^jIhL$#W(@thDx~6*EU9|5MK!$x58BN@|na;`=&}!fQJ#CS!41Ne3}wJAHSQW4k25?=J}1*3H_w#Iu*vPHD5@=b~KkMGp!Ju zvZOCE>4im)zxCil8+5goD-LM8=~{lDcJF|nQtC6j5IZTe7k`7tvwbmWL94X`b_jbN z_O~um4VqsG@);;K^&`CGVXvv(9xcx=_ffDtZj+3IiCVXarg%}OO#AvHG1n#g2}$C+ zh4MFab!GTNp`TvNCeM9BQ8H+7yCx%yeoFq9+IH6y{u@w#={{!eNLZ$tAmjagm>(mOio7{;~S$Tn8vycN>S(yi%w&4`UB^d#HldJ=>XOC9sw2&vsl^PCEXQH%lj90j=xf3l9BOS*YZS{xVTd{n_Hxih6J3Aj|`7}zsQD-5po3@8lT}GwX3nbj<;k| z>h8--d@Jj_GT@XKa>k2hJ!{lx)IL=Gi@(I>Ds1=js=+8aYm7DG+}D*oqM%>x%Z!`$ zy>ro)q7J3&Rr4y2*>PVdNoC4;PqXvZNJ!c_Kz@zR!XYX}T7Dd*LrR0+MdaiTTUe&> z1X2?B@D$2(`meM7D4pulEeuMhT29Duj9ZyBti#v5v#mO-Doo8L7PAz2O2-?%-7bbB zsp>7!Rs7(m=Ft3=o_XVlgI}Cl$(Ny_3@b$R_&9!5ot@F0%bg&Z;w!nq8V|8?7GI-n z^wW)aF$_2P{Y-a*x%Q9L1i2grX(Kiy3K|3(atCuCN+E`XAlne4k`*yCuYdiMMX#o> zw7j_nokK*NWm0Y2q~0Gn<5_LQKdH1?uUd6XCUN?B3?D7lRRxg2aa?oP?i5f$OJPm^Fr4ua$o~ zZmZQo0jHWneBoE5AjihM{MIu3ce{KJOr%x$+1O0HNm!zRRsU-+_t;k3kY3^Q z#74sis7@qF8_`7g_nDl6XUTy&_q{tpO5dpI*}N$0cQ50i>}(G?);I6-M97B7uxylq z-%X~wERK6pY{=vM<05Zcsn13gx3Lcv{2@dw?^rN@&nTC5_T zr~hnXbr4wBW(+nqy|*Oloa1~0YvYHt$&zXS&tMchYZa04CmKH$*OGO}n?eM>sPoWb zYK*-NJSanY@d1D0wo&JI5Hx5Gn8&l(=I!gWHjFK#Yc_q)JK7zPI?vn`JrEcDeYC2W|U6$ zy9z+@=|;1dDa_~iGnc9Ua~ftctn}F4jF}W8sW+m<6D=s8N7QU_?cHs&Y*Kw>@uq8Jmo<);UZyNc0wER4? ziuxnauHa5f)4ez7+CN=vB9-3oq2~?$Rd&Ew?pVBqdxaK>Z`(H>l>Jxky5-K1{l-nA z(p*!|1owPlPj(~bt`gN9I)2hK=Eo%_(WW7?y(8XCU*Tt~ivTay1U$TsT7e1MA`QD;yS#oo7lTwFSD zrALFqC_}`9;_7}bPw7H-It}alKeZ;~I5a23`PC_gt8&KTKXU5EvYS#@KjrIVwY$A- zidW86r*`31Fr-M0JXVwyfzC1Ae?H$_ba?J7KuDd&y$?AC?i0BxQJSB+96Lt3RMn{D zp1zg4;n4s3t*k|eTRc<2kWaqp_J=f)Cg`n_z>7#eYBbvxkr{f_>&r(OG4=I6mK@%< zdVuPI7j1-6UOaMWl|NXx{x(=TnW@CoJ@>6Rz^RxRclJ)!J8l?;o4e=J%WI#D`3QwYA76q&}691Q;LFK+<1H` z^FNL=iB*^j2Pm0jUwVPrc`N7w3kA`E%W+=YYAGfI-T{bfYU!^IT=zWYMAiWC;?!nD z9|~d2(T4LthsZEHkpm>(7Usw%ZHRYGJLt{~k<8|~*2m{PCywJKs=0?@6wV8>MK;z-kgKWNA`1R@&I2;wxfVeJaRr)MM&ub! zVV%|h@*-dpL zP0W_XJr&g-U;gz{D#H~~));WCe3~#e=UIOFQkRiVTkvZuh2m*~VW#V1^qw8l&-vmH zC0$u`sMajeIoT>joa+L*bJ>6z?GePVvt&ErD4Hk+sY5D8Gn(?Ebsn#Jq`?|i^t^?I zUb$i?akZwhNvUR(zdKzpico*b+U6ik+UnWfALMH*RCmGje0v1;b{2O!%s^tn@xgs;keQ#T-#5b9zyYmVf+q%?F zgE=FIY}Mv+=#BhE&qVkBhTUq<;_uOADb0mO75J&LMLmcdoeDhV30d0zJUlr>ELfvl zz}00qW9)}W;@Viuu}j>|W%<%~kN(wOi^vLLmM5sM}7yOc}B^|HE*4UpV(w_Fwtm5(@-}ll@3O^KZa4MflLbB{^tu64g?|U$*^@^?5CG2R3eH zeCk)-lMSm4PW?{;)0gyVymCC5xhYr+A*o#!*+h3Z8eBxD11!I4=ql7+*Wc*wF)J;! zt8TgC*a{f+|79(4O0=jMBY3LV@~OSU!k4%KP7MU5UGGuQ`X|f}4Q?zOCG>9cMl+Fz zk+pF$?ejIA31f})0^KRU$wPMB=KSjlm+D5|f5|Y)!Ml{Bn-zM=^qRshz71EniHZPQ|-iFqAIjT6n$zeWl zswbT~^>+JmGDFR|;tWZ^+S+CC#-X+0hiU2xYOUCPieIPKsQ zC5ZbZSk3x&jkIM;=}1&72)@fnOfxt>y0Mk3@+IF%GQ5Z{xsX~Bh#TK``S?sqpL6}y zt5=|TOU%HcsSc{S;i(sE64Aknp4IZGyvVLD%3vkN2nXh%R(T6ZOV3@=sTefjgpGqM zw~pd%S<_q}*R#Ybr@r*9t{fNYV3Gz*uC(PEHi>WQNiNDJ{ZO|DXS^nEn2kSfER+0M zAaK|CA0~UMYp}pZTWznCGd(96t+(k>Jq)Zv7)~4|zZbE%pV0^sVqoSDOZ}BB*}od( z*T@JGoRqH(p$Mn62`x%Z?w&!eXy9a$O3K)Gz-ImHjvWGAh5!RIXUN;J%rT&AIou=G z0Y*N--FZ1}#L0#IQn1{vxuh4~L8GDu2U=Q;rGl22rkes znLq3JPKQ~sy9OimpFE*GRj*<%aud?v-1F63%gwcK!Nrnr;z(-2ZV6?FNuOkJ@}}1@ zV?H$H5*cR_Fpd34`uOaUToLzG&L=VdMa^#4jw{$q&abcWZWr}K+CjN)8Du<)7(Rh7 zucLBR;2MH{>h?T5*K}dIShbsiHTeGc`Bdj`)sI-y5^rVIbfs-`#3yio#=4e3P+^#v zU}|EIXr!#U6`y10MQ zveD2Z!8u&zzM{xnrEej^*JDI;u%FOYrt@~Cak8ju#rE^NJkLCZ zHnRsnLJ^mm=Y}aBsAr4ohZ1Sj4p)Yk?m8=TZ0q_D+uaYvpFCU~&R;lbJ~MsG`I-OD zJY#UXV2$N3dBMtuR(Qi(apGmuK6N77K%LO)V3Jk_l>Bq<&b2!qiWb2MZkVID#=-oC z!nKQEGh^nm_nNBk?n`wA;<>etPBoHqBPvhcF}-MDscgYqLId~J!PA`l4nj7ngCFxW zZz;=YkT2`6;$``^6`)pabB_n&<^*6CLp=(;!*RMQjdUApJs;eZ9Lj`-%owPu+!8sh zM`V&5SM|xT1hq06ugqF8=gfJMA;SGeGKm0Yzs}>f#lRwPS-BA zsoPiKI(OzGbh&L)Caca{zm>z}`Z0F9fYqZ%5f15}PL%N{n6AK?@k?CN2=@*_O&y`; z59Ow8&9WiWEF<}L>g)mekFhi58ESQ#)FQ9#DIPD$kGLXs9km=JT5flKigk}Og?7z6 zQct37F2i2E=M#z&pW8N~3c=;zZ>vq+?FqHnwQZXv`=uQzGZB3IN5qe_nkmZ!-H$wT z(s8vmo|_Gpc-NUVPf~((Jv;L@eEM-gReWNOIE;QWvC&IAZ2_y054)oCZ>SXQYIhVW z3<}b>JQpke9g%H6TytwrU~7zOsw*;Sr(u1aiWB#bk3be2YW%@)D0K9)NQ&V^d@o%c z*C6;s%$+$8e`mHZwSH>DEN2}&rlnkto{)Ad_WT_t8@FBrtoNKGp_aflJz-D)6PnRW z-bcgUe$feAFKVTH5qcQEh~(^@l@Kz-$y}T#$TtqPG`oJz#H9X{&*jxq3AOMy6Ls-9 z&=#3@{zGWq$W~W>2@BJXj)zTl&8YsljBSk=s-ns6I0TrZYJA=QRjLg=YLuQ}##L;< z9NxzJ&!OfAT~Pj?Y~cdCz`f{>8BPFkt;Gq`kH|v%Xxd6D(LXhu6TkMb)zb1OCb5qR z9Te-7W45lbC;F* zH}bh+)z=?h+vn76XaLfwFdE$h^QglxE`R~8HNDjE<|y`CE#j=3`|hJ3V@E``iCJ8 z5doY)%i-cnxT_5b1W<^@>EM6dVLeScXC`raVJ)VVy)wWQ%zQlu)St|v7YpzI=9uW} z$@A-Wb#!XlWAnOy-w@Q4YG!Ptl^nHQD%47S1}>4PcS7RdNDZG9s5yI<|0WE9p5||N zf@CiK0B2MzCQf|yK=DZMADQ}w22RAlPLeuF#i(j&p=wBhwe9+ zo`1@5O#*ee`;z;g0=HIc-(ZD?5)?nyrt;(IB`6?ct zBQt4i7fE+9miv2_XCVo$L|I8ae~qToII>noJbL!zm%w%;FqdmJGngm7^tC(F zdf>0R(U!!uUc}0PqzfYWU;gF0N|M(FcQ$Q-hfv3H&s0g7y;mY5!CLQPt1>QpPl2tY zwJevPI!UIrh+;7AGOI`3$&M+JoJ&qnJ+_@v5`|$Ro2ayrrYZK@Rk6hf*O7r`PlZ@o z9Ny{W(KlWnanV&oF`Fmj;?(N=7b6|r5H|vwN+z0#E5{O>4uu0%d^kT78?ymrMmZnEX~z<6VTXI<4_|8@+`=P@^+%Y~&1K9n^D5 zV2*bRu2>RPRh6d$8b?tMxoPHvBRf}tCcGpoiM=FmQKYyN6sCPB%BBfd|XYK(1f z)?7|RjisHQc1yg(OF}l(PjUz6pT=LNj(}rtk80)Yy`lOV3;MaFEKreJW4{mLH>z&A z#DcZgZ-$p?oABs|Z%;wl1%0miC>d`#^OK|qNk)eu?e7yMu082thFe5}?(;}3^4&@P z;q;9U%a#P!la9#!u7>I_+up5Wf<|3lj+qP=B9KR~i<_Vw*8&;Q4K>Z%`LDuw!&t;b z@oYh%=O&Akg(d~Ez67d&37!~> zw4}?jF;efS^Jv!(Nb~b(7fKzUGWms=I&pdT-*y?ib`PBtUxn1$>Xqe)QT7Y3hd+h& z@7lg*UY1z+zVH6JTQnb?bz)A0WH*^P97(%4dO%XPLcEb zx#BzG`hs3{6E(=1n`zTrER7@ViDq|aCd7b|O_iAHOq^A6(sNW)kJl9%1*>YWbWidua$^F8J%{)p^Y)Sl=K9`+=JlXtLR~Zr~ zzK?#TL}_VP;U6OXh}m1aa(_rwY5u`k?2~p-(7DKcp3w;wO{vpyZGZ7Vr$ja8Fjvra zk@|zf5_>|ELN2s_d~h-TfsqUEm7!);lD_*ggDHo3ypsLmRi=P=h4hmxO<1(7ShsV@ z1}Z{BDi;~ZmGNk@!p4u&avXy3RKR5fWKXJK=sNd%u$;N(&=)@JjAD|srl}KJ%L*9b zuWnlmG~I+0ki?R%M+6$3-XHY0ClTqC!w3j_vvN4Oh*FmQmm@Mop$1Q`{HzGA#`fB+ z7dSW9Xbd+DFL1U<`n&bP0w(nvzM7VAt1hRq`+xNFaO5nLodVT`yO9#v`&`OS?AJ3Y z@<-(H6!TVZWch{`b`*~)O8=~|(Lt#m|FCXUh6??O(ahA<#%ncf{iwlbO_M@SeT46j zsjjdIo#ZNkjm@Z8WeW+|wEd9v<8Eea68_m%dLa3jpRa6rws@&GR+_bx`=TnZdu~L~DX0QNZRCD!k5)&et9dT4 z7sd!l#6n_V#r&QMmOQH9H=_u+I~Oee(zlGTH98IeXsf%!({H5^)_~{(K4I?o_n43H z$38+MR0p!UMoj)*4Io@JMyy8j)?@%-25wXXu95aDTL!kGI9`Ama?_}T|1CZso{(GW zqo0(C4#R~+KoCjg~_ggBnxgtJxjv1 zfXSw3e+^$7SK!eLTaC)j0D#V+L1E%4#uZG3weZ9+9XmeVVMA|dr zH-ZOCra1R{lPM9|G(az^uVbF25|!HBnz24P#}t%&xAw23wm41Al}$tVZ+W;qd#?)f zlh6G?Gaql)oM)4Kp?R-bM)Z7GHS5bcSUfL(o)N zLtK(xvtM@8`4Z^~vm8)+rLPNjW;~*qrH1=TpYaT3*e!V#(7+pP@M-WJG=oSCVKA41 z37)~2&Co>s=*3(u^;MVrUKOd7#Fzcc=!u+*->WWBLD$rZF7AdRG*PawiZ$cNGL{RF z+zQ@ItA%7o+VchbN(=!TJUX+?m@daTH94K}?{+tnTfm!TqV3i%ktX*l^GY-ne((5DO z-=q*{a;nz~=#R~SlKGBhK~4%jt#Al%NsO}qNzpwz3c45rGS^pK13K>>na_YCoO7gF zA9#%_05IyBriFA`LTZ70RpOggSQM;n+p|S;R>e&f*QN6r1OS_nIsVz-TB1Rz8lSJD z-y77=h5y{r$|00s{`7nxPBDiO$i^*ZAKK&sGc3@g2yPQG&@=^EN?ol1@vgaM3E;*! z4a|lEVAJXUqUdpkLbljaWgMzg;7O5OCeY=KllY+Ph9+Jq~mG zfEm~Gy}}yEJKZW_#AGS#7LC|ffVGi#jDkFJSe6m~r?3XDlr$w6>io|dK%T%`1N2kZ zPN;n&M>g;85evxaHjvFbhP72)0BmFN8t^ne@_eU0)ezp*FNwP zuviEH&xK1N+{pC-(?bUon6uIHfGq)F27srT>Fkj?Mm*(f&LZ_kqW{X$Y>5Gwmz0b@aiRUK=4`obhPtpZwg`3=eq-kjtKu*EKV8jLYv zQn+%n>;%!Y@e$$e8~TpS4Yvs)%?*$f`cR*UrS>LbVX*CQ=~o^4hGTR=9cfS`(C^R! z>>H?7@JqBpLE53=R2ofvD&tjx-{vqUkFM4((Ix6@Qk45b&4_ZQy#AR42Z7fwaA)1z z&R&`jL{A6qkOP$tTp27*e@XllsU$eI-Vb1u(L6MrHw)T-{S9v*-NP`w`b^a@={k*@`8$v+Uh|)Gu<-WoC~VUuM0x)R0xKg4iye@F>j5y zl4_1F0Wt*hU?4 zEy5M)sxOj~ujl`3-1HPaDK^nhV>=yWbQQ5E|uqY~lkpnq~&m!~HJuMw(ztafIoh4+J81(-ReEDUR zN$jQKrm>4!i)jCU-<1TL2@m?-)GJ27kuL6dp{MoBg~0v2%fd*$&QV)n_jM&gNoRcd zgDY*8+oKi14iyDi_MTNna>7;LDsA%Ehr_+(|+Yjf<1xv@U>1zIc?0BLsI>k!oVM;O~#YO~WcvJTkcA zV+~M+{{Lab4SA?NFAN?U|H7wywRQc)ZQvj1PO*zh=<6t#tR72Wh6+)>FeX~F(Cbx_ zlNg!2V2o*Rn2fHFlq>33saNer`Pxx+oa7Z0m1o%T$|ON;+|7NOe9!1KaU);Q-2X<% z_((@}VXaZ+VSU~8XfB!PSz!y8(b0~Pw)MNp0LRXh zpe+5M(}~hU2ao!+L-1_){-fk|0CtTLFIa|0BshEnjloSHRsL!YOTi#_2vkRf{Oa~<lV5Hu2PdEpf+{(~C0>mO}Epkzwmx!GR^tV*lI2G zp}NP+SCCDW4PJI4$Gv&wOQ>#R0wdRuZaXo^PM0M8$#|9Im>yd=tb9h0CQVrfKQK1v z|HRbq`bpGyNTEc%P=ohp-3CozYFkqu4#?cD!^W&q)K!Uw1z!+1nt@rDvCe=C(+LA( zuzd}%vkuvjI==99Z2hD?$;pW;j^7m8EW-ZuQwcvZb4$aN ztQ25n?oDKPbH9hAx5hJ!5%4kwhqLd%TA|%Lh6F<&rDK6(8$;k3wGd< zCC-fN3!XWg&8J$t!%kt>)+2sZLq05Hk4SMJ!Ds~cnvreFg4+k|lwd3tH))qe#O*yf z0(L_`y#_V!Etl@A@1%3^pKxgeq5e(?&T{#S#LEz2TTb|1n>n|?k!und7cc7s62oy! z&9lPUNB6w}6H5GLCj`|#bJ$!HR-#Dz)E}B{u>#Zn>qp2(6Lq{+Ptn=ko|fFzi_z~h zfv@HJsp9UuB8o`4ysnsezt;Pxbd<%bu(fK21G{coKpnpe;wNmQ8hJ{C_<}Tqtrh-j z>QFA1XmccRe!qR#f+W8kVp{`EZ%*;=GDPuQ{FEGPHRyVl2*RoqOIcrXSW1f;1Og-o zq(+3lLwX+Pv07`S>cZ}wIom*)@DJ`po>-Ym+G{Q5v4e(Jo59=)3SmJGE@&b)2_ErU z=CtGRMI1OW_KS~}ns)7e(bW+>Y{&a&2PjX%;atU~A}poOp|KLCjys^)At#oWOW-C# z!`x~&8J7ry?ex*ZN4*N?F^r5jo2V|BZy77FX|;9|Ear&`a&eqPZ!^3}#9kihyAUq!l=r|^$# zjK-|BAjnfCP1X{AYm=TVSeuTDs41p(gPa+}RTFkKVyQY`*NE%F&+-0bun~>75!PbT zAroYe^atcXM8Zk0uSsFfCg4Wd@zl2fq%eVA{yy-`qX9sP#g(*#_^^h9(ZfWT7idH{ z1=wt97uLkG44RQnr@51`(BK$S1(hxX z;_r++AaAI*0Bw+?=o08l#=ai{+@1rbK#ejG921xWxnKmIP6Ia4*B5{_u3ylMm}K+;JYz5#KVk?3eFCz?4uAqq_Q=sj z;GEV@g8WLXfO@v|&T7fC5zC)VN^twIwU2qs_c=OKt!y9AJ(bUxsFCCMl}PT(wZIMW9Y8j z{r|qgXW0`l-)32(5dO>n)Im%i= zN#miUZ2-~x1q5WfERMAy|IP0(XcbGd5dSrEqA}D7$|$nqRbw9+SGFKzeBeClJQ(5k zs%TO2kS!;XTEu>dh#;WQDtas^0*1vw*A|(mYxr5dNJqU*qFpX zD>DayFh}NOem1tg?yrcIYam+FaboBGoJkVG=DS>4LP;z6_m$kin<;@XyDruC?MRqs zlr6C@BTPe|OyO&-n7E3AoxHDNZ_dZWg$#|&4)K9pb9a}1C`52ZJi6MA&-G3x(}j=J zZPdU$Gj0e8PS(+R`ALksgUyI}o^obF`+f%rc5^*W_ab0?|5CE-_%zAZw5^*vev{y( zKnJZD!FQzm&L2O*TTxp@;rT8MKfKcRB&xJ0uPnkbe624=2o`3e3WO4V3HLXNX%@dA27i3gysSIkhEdlck1zIP%;8ifDf6U&?`M5mTcd+FP_V;P zS-(y9OE$ip4O5$_fcLSR?x<}!2 z=7quW#f+^O>KO!eHHvFN23J2!B=blX-|&SHp3&?ykUdc60-mY!3 z+|mD<^hkg0Gi$8?Lm^RNDHBlHBVMvLMV3XR5@HUEx(dKvPR?oGi&{ETo_PpRzNiow zcZWVmV~xq)UT%NLq)nEISrQPol+?>@7NYhCF2qiG9EC{A1@t@m3P>_N6B##)odE2 zZj_wt&=pMl#Xq{=hfxzCcXI<$(IrU?{MNCKT5MFLfs=VGSyNu+TLCMiVE&U8T9=5Y zH%i%uz5!9DNkH&4ZFSIO&PLSSQt8tDowPy<#Wa@Mu-qtz2v%LN?02rL@RaTZRjGJa zH#N@xFhGx!4w?w&yMy`U0-TI!3}0mcl3)63JI;WCK#TEpXG*xZ41cxJ4-|w~toj$* zT)}RjZAn3WnwR!@2|y#sMAfel?{2x{jPPcxp~X$>iS&lcMDA>M?W*}7E3zy)>s>Ar zQ|Pb_fR`I1WWpZ%ghz zl|_AioZ^V&Y+O~NS*%H-Oq4H@vB zjTr@*PvxI#0^4iyRlrg;hhYFL>*|4p_k8_7VDDx;?ImjJg8?9}IAR=N$kQcn5?X`~ z(>!UvHLiQYx?v?zhh|D*wFsElbRIq1us6?3GBfa@u2;`iE_eKkWVCDa=$@74Z{+ao ztt&roCzvW`HUlCSfJ>NlYXW`{%cxSy5>lfIZgwE&Y z9)%;=sg%D3f&qfV;@4$HpH?CV+Qp39Y6l`OmB*2JVd3B%KJ!BbEGW)Cb7dRxI_uM@QvUqC`W&y<8x_R?3S$cON7I+*I3F?T zdCOVpj<=hfNF-ULJaGhzRE=dDX*583*uC<9hFrF^FH|Vj!mKJ^24e&0zA^OG6L;_Zh)_{w*K2(XHBW-hM6AJ> z1RIYpozLUaHun2czGLi3CDdVDo=swQlrVrlFK7_!m0B7myc-*Kj`3|V+Qc%GY_DBE z>=dbTs!VMccW4(Iwh)~YG+B5Or_SjAqsusnuePsPZox19mmg4;xL7PdVzE1svkybc zMB@Xx7$&R{Sl+fT_L40lwAx>MfVA{$gV(Un0hVjRA*?}e8Pw{!M%1PPK&^c0>wzha z1{k%vKS0{?%YbtLly0q=h&WgT}P%MfNNRR8>y8Sn0WY{iJz;H@#^}Z!x+8u|NQ(hbbGnMdHXRUlG91+Dt0fHNPUC%mVLr_ic>tT zG3h-SU4I_sq|)a}c_eSAhEh#hD!!19D$GYnsul_H_bk+QW-aW|1=elu=0+}f=o#k! zsLBwj=;C5PYl2lA5&De&;Bv^2(EybjsB?yBcOY zNwH8rQTWsupueyTIH!Bh6m@PjvYq)O^!nSk}uB;Q>Ll4 z&7<>%w{*z0%_+9eBmmAQ+|HdOQ)+kGTPa0?W^ZtdxHW4(QbkrLB7e(H<69H98rH2J zJlaj2v-2--wnYgANuD~&6+9fk&W*GU(>~4%BX<1HV- zRjwvv(wj?ZsTxNL4Le(?LtevA-24AJIW^PJBuVJ(%*5q%ygib?llrJO#1xmq$&=RZ zs*m|+a0FEI+h9LXO!KGKm>)@mW7-PmRj_?DVCl`h%?@p(63;fwW_Q;s!DDMKl?`sU z`$&sRYp4J{-_YUjWQtA7N@JxA4zUb4@+*4t)gsgCdaE5%?0o97y?VLuo|*#RR=`ko z%@J+(O;Qq2!b10IzN$DpK`;}%bx_2&Y3(XXO{$zqj_CoP|0^*(9u#|CGyHT=?whUx zB1;4XrpUW~PZfBaZkX=6MD3Pz8R)x@rGfJnpo#lgrsv&s@BPw%Ng;pF=(g3@^Sr-8B@5Qa9(>^P^=}6n8?3IxnSo~r;5;ZvjL)jEJp7g+9n6v1 zWL@&`Z(?UzQcrfg>g7XIr2tNM`A-)$;q_Mw6O)cQvR8)_rrj@Ymws(=J}fRgnCsK* z_{NO$-p;mD8GglFtvZg&VQ&|(ZF4HCYud~ZYR&|TWj8#%MBo+F^KS=-;hd&iblINm zO?3xV`qa1Q#&i5U-6uZ3QUbwWEOXef7oDlKlBo5|dd!vQ_Pep6L=R4Z$Ym(4c|j-BCKbFYGWi%mm% zC0w0(OeKRq_piR9pfHW5gG9-CK8mU@E5>9M@kPZ^yYWkL^cbl5*uaiIU1spA%iT>6 zT>d(WLAP(N1i160^Q9jrISMW3gOZmx=hX!`VEXScqpV0jbf#U#S5(%4lLZtb+%t|) z)c_AKegEW}u%olnHoF_?p|$#}JY2Xi-&C@YFDG%rdR%odX5S_)IAyN=ZS;kCH&sv` zJ{oo;W$N?aL4PSX0s*AEPZ$?2P5$VrlC0VXs7*QvG(P+;1+F zk-J8tZ_Dp&j{MFUj+wgGHUG!aRR%QKHfp+&kRdG{14NKex>K6b-J^%JASE@rkx-Ck zj_wv1t%P)UU@inP9Z|JX{68#-e?fe__V`sAY-(If z?_Q@!y#lsmo)moL$~;@7h+wI{;dJcR8y$55d>Rlx}#Xhy67DG8RGy8w1g#;U1} zo<4t*NaR8@9_|Lo{lh1dzI#<3=oyVX36B0Lob|lBDe!wM*eW8tbNYM2L7gx6umZ-T-(X0`ed6aKvTf8j3kX_=ee%L4 z;@jz99LNxCU$$q~1C!A*4eu5?MGCZqSDer;(&R~Gn_+Uzz>lB(wLc62ZK6!kM~U{q z1B06n|K7}EN-e_-o(NM42c?3TPqm?MpS|$g!TO>;XOzBnn>~49HAYG$tb3m1Hj4`&{l*YzC>sP0bCa!HQi*!k{2#?Mb&LdOqtdq8_B)H}l@u&3}45 zICpr&k*zf3cF)1k_m2j9rH4WHOs||YEaA@apYf{I%y)OBKLgtYEpW^R*7!%7OU6rM>XiqWLtkysOa!_*nuIW0MyFO25UklrX zsn(#xU0x|HN9})Da*4E>0XYmYD>(){b>{Ue(OwTH`VPK1xhBd9Sz5Oh_bW)NQ*c76 za5tU9f6!B#5vY0E=S)|>x!V}3l`nBaICHR$F_v0Jv*Ph`#z3JOb%)=e_gm(eRL2|S zDw);Tu{gqzpdKNuA|Tz`E!P+n*t621lv$4m4?~}^zRuC`u1r%Rsb)-TxqbJ&?k^RR zpq~jvHjCgC<)bZX!xhisF{MX3QP6p%{xUjzI%U1Y2n#1na#*A&?yosO`}=- zG6H$gA=iJIJ@`gD&kNwCcxj>XIH-=*5L+stzpO7W4Us_r(3 z&WC3WZ1#pya*y2^z2uJ#h+YOs1M>EBTk2kri3p-5V*de&6A56l=DXrI;{3Wm)dq=Rt?6>ibz8Q z5{-w&3k-Uoh15h3bWXXgW&*ch#Ki{Wg%C>~Dq7FJmRx&j7UBuCel$M7r|6kdNFaH_ z|FE9?x6d1PS@WHR8L*<;tpH=a+(OrmKmxu2vmn4^SYSl@U=`4kpqccDv*_435wYff zjL^06rlU@o zS1G`9>H4kEZi#q0RQ5l=wXIqyK=RdK*H=KNWtkBswC7Jz5q0tuUmzZ63OD=OuiXGl z4lP1F!3~vQYjZ%h;!9vmDuEU8GT$F0;RSV8?Q6m3XzPPMs6BuK7rte<veFzn;ul!VAp8xbD)$6-FIBOV zhtJk_y9M#83ns1&_xMQZZi}0r;m{`t%%F!${idE|d?2ptn;;>}*>5#oG248SW@N-N zbe)8sMc%z|^*^kAlC`Y+R(Z|>iA_mxnntdgQbDtj^xx?QR5%vFgw=z!*M|TsvApp~ z`knPvV!`l~tUEpK4| zzIiQiulOhUGV9V~uZB2i8}R<~ax8i-_5ro{V|#*@1_iIu_4vl?{agrR*l>Xn?VUAz z*)Nlp|La?tkMIfvLa?b0<*l53!RaAlJkN@D=YB_Li148gY0Lx(<|dkH>4{2s z_1=irU(V8o62LqUr{O46xsg8{?#H=C_~H|O;hglUb3ma-smw(klMA-?lB<*XKT1#g z!lai!fdH|y0A=UCfWFArE4%omSgD)bfAzHb6oQMVKzs8;`HJD4pO2S)-x3HAD}@13 z+`$qRJFWeOm=(Jh$I$3Ycfszup?130+Xup<*)(5E2SxtiFsq_CoyPXfRSO@^iHz*Y z&Q*-$PQP*NTu_kyY^!cp;)EyhsB)E+I?LR&%mpc>##%SH6ur`3;*9ow!S+}Y>3~y~ zIdu*8AlT}~TQzH5OVOfE7%B2rX+2!b8n1@@JADR3D27yYXCqow^8e9b{Oyy;pXN{L z8D-u)VaoZX>5tM{eHrC!$4>HxnPjo;pD8uQ-z1ymY!YvC#NTYITK?;B>b*h@5hwSEC~%kk535V!(kE(g zKwC^JXh+y)@AOSco_4dh7@CEUh)cX-OA_1(u;EnI7e zC$Kl|X!3B|i%TDKLF`Iv3k&PGo;(ej*SIifjhd>p+@}Oh!EaXwHCGNHmW9pJ>T}*F zx+B+5>A6k*#{Um1(6=;lBmS~Ru0jP?(Jnmvi2arLN6GZnTT5tMu6|3`CSp>JhUX$# zlRzdj{QKyP@qS<+xnmPNoltM>4g6XrKM^Tt&Ydzf_#%MgHQI=BZu!E^_edBv^Q%Fb zM7n$;mY63wL_){|ZZNUIee0j0^;U76hVnJ?!JSL^?jRhWv?{n%d-fZHe^Siu?qK|7 zkK`H9mA5U)6U1|a1(V91@;WO;iB!}}9(Ioz5Gz&|7Poch5G}2#9?_*qkn7xgH-V)5 zNUgP-F`KDc_a%mx=(qfNSj>#Llt|0tBW0%kh)CD&tv|LmD#8efZryScV^CgS>iA`154eWCtZ>tDe95Y0H6m zaYSVcU(IW8U%vbzComd~um@Dn@#R){pgJ?w>eZ>^CxnBW3oNPf2B5~WbR3h@wA z2_b`d>M9`73L_h#Bt6Oa@D7a87-yt;Xe?ewR!SVi9~(UE{&4XW8EgREAc`SnirFYB zhe|(=Ru{_e6F%Jw?ebgj?#yrYTu)C{yXLxn)&L|aXWoXNtR0=LaJFhA*32Gh*#&ES zG4l;xcd$;DA@he|LBp7hgFHL#FqOfPhtZkz=LR%5Q@6t zEnt9SVPB=5u~oPpfp=axcpQ#NT5589U~bg9>&!MqQ)MS_l3ITq+Pk1QgCnQfvH8?Z zjG>s{=>9cqz85{pSL3J$zY$e!b*2 z`NltFA5+cq7ugMPq0`OnJ1XU`pc(EPS5A&?5pN2V6EBPmnwKKmM;puc=~HB%2>;pL zz%f=5GcWH97pGx8`f=4nrFp^_c;%~*pjn=sbnrEeFyRuVB1X?CjH)VbG;-QOw^xB9 z^Or-%_XFx!tv3uB%-Q7*Z2DW`6Xqo7f|l_RL|y-+B6VOjq^=brP&Y9%;knn0RENn? zZg|va*9&AE`BC<)^x%P^OF~}3^O)8}+TTHGqXcW6wvHr$m8+R-dG8`sux^8iX@6GO zg`MQgPxKk~LL0WLOEBh!N{U2JYc_2vA=bKXzhjJz$lE~hqxm(-qp!G-KpuihP^F$z z4a#}iagpdPP}CW}tpKWMe_tINpZ{0pK6h3DZOa4uNuANvU@8@-ClEY-yB%XuriVN1|~+y=KE75K68F zPg2s_5Bzz>|1GQnj7mOuXb3U?GU0ZM3+O_|--{6M7ptML8iwCs+f`e2h@tx}vfK+l4OPxlmS2_a^yJvEPd=zT6qa z@pe}84(3`ik*AHbm2@^@_EJz0D@$+eHt;r&v}`GhwJ5gi;?VVjOozl?3>wcq(R{G7 z-kUdUYL8teip8MEayg6L^C*>1rWhq|e zwAcbmV+B%H^FYQqCsplIhOCe*Kj^pgt48sO7;Oc1E_xP?vMqj{4FUWj ztbEJWcN#cTJcipbd3}p=8zeLTK75B?dVGl`Kx5EjBK4>bD3Gp0p z%i%;B`9u0A85{!3J|xMUR7&z%n=;b(?FPhnhlO|v4dih^u)E%!_>QWs2|oX+7jj~u zEw*(RpPPi6OzABzd9v}Ow5g0QN>U+c>eIDSrkFPWjmUF@0#s(zWEhKn440Bg6%RV( z1S6V1#=dv+v^XpI-?NgcU+oaizs$Q|n@rL4b_o%J$4Bb>r;b{Vrng_;1-g3(82@bc zav#Z-w>#Ou7k@2U|AtyhEiF5vk2*y;{TeIm1Ad+hiyrd(3O17~#7OASTj#&vcWIVJ zhLrvsjPsNYNL+zp)v}k6WE+bFQt9HW*Ob^Sa=Uiw_HE+#1s<3E61xfT$@R zhUqqYe8Q7W=*K#?zL~l(K25=|jqyh22 zOsHHUZ2R|AFC#pGeMV5Fa(q1wn2z4c6-++U2tz@;U6oc%obwB3r_6inDsCqGOTg%&&#rh}Y?V7)taTOLwYC zUOBgQ%w66_H#T;d$GCyz7y$zk_5Atq8o?TNPJ{WhOpR_+;cLjX%|vA8^ic~KuBnQA z&r53PL;Uf%rb?JQORfaUj(R+!NnJ%Hm?{Hj;VVLBefRr^p|LY~PL1O4QL4`R2_kE# zu7GHlJFQlEHfaV;2~Bn7&6C2~bPPP^b(*>L=y84t{&UCq2-$}_n+km8X-&-}X(;~D z^7x08+&z|?*m2Z9x-xicHZ4M8Y+5X{SsB%9#W3C3F-@ZxRi!9~dvBM`1iMAkZB~m^ zRpD>QG;y=|cv^!>AWXT_5e% ziC=adTD47*%}VGD-eWT!ePkzJhL87n$qC2ktDP&eoVq%f1QU*w5DV*#=(UXtS*1H! zDBoFjTA`5`_OIeI*=NZ-kFcMr<3tee)sI^Y6yy1S%`@n$7zeDzRF?@(n__?z*gq-$ znpZQR4d1B6_vZty@1|MLKPY)`!#R8O--;jXC}Lya8G?aHFc*lY8<-}qbpkf~vTE+4 zV-t!{gO-e5LK^Acf4xusbx(LhFd4J!)wbXewzJ))EwGB6U=Vj+8%xD zWE<2KL&zJmhJ-dV-kC6hckZZn)f)p8v}bmDyyN^J9LyV@nYr1TB0_Kc&YL`Ix}cHfZXccDlxm+!6~!#B(5)`~u}qMDM+n4ehx zoc_d-rV7M5MfZGbEK2hC6Tp{DqquRu>5#GyROVVAG7RBXVMTEUbV_^sWL96qxgC%L#EG# zb&SVX5QolY&UCf%kx`vW-9arMad+-xQL*nb;!K*@9T&-cW23a1tyhp{gAY@xG7Q*r z$ot1n!qF2PaIG`DK!F%Ngrg{PNWNG2(oUq&_!n()B3pYcgn)`T&!Md%cJm%r!U#7< zk>V_%k$Gq$#{6U`qKP>nKNWaFW?PN4{OrfD-V+%|_k=LTwDL8(@;?;3Jyv8m#eazX zT@rDZr&w*S@&dv0p5t`t$m%-s26b(!VXk#%r5Yw~I7ASkM+~>>ij3u6%H}(oJkE`e zb^W+Ib+|pk87qZaYyI*w!C^}R&9~iZ%CM8R2G6}vTR^6Bpf%I=X&Z1MKUb?Qa6k20*<)PCTTj`@(}ylCGxu@lC~Ehb^!{zH)G7D;dN+%WZ@Z1o&`s2>?W69Du6} zTnk&OImfL6$2N#LT@g@^30i>gY#$Br0Z+N#BMzuQNkeat%?gD9TSoj<*s(E2;%UuS z<@|+r0Bz!#cRT*-wFyWUlP#;)%B;RF97>z8~(j^vmS6Os=MoDZazS2Lpzd+`-){`ri?&A1sB??=5+E{l?@p*17e_8b;0 zoT{2HVKmyxi0@4HJa<@JrEZ{ojl8pP!RM9V2u*JF!Kn-WPVB`&<%K1-TEW5zSc1JU z=v&Ja)zzmsuWK!HMsq$kX?CYRWQsR93wtopW}I&?S%o;S=}DHlrO(AynB6VP`ZfHM zZm88mKlA#th41RY?4S@nhD|aN_Hv0*z&>Tos!jA^(+GJ(+24sP593cz-|tn}0&}ah zqPf3vkKK&gVs*9W#7N(^tkxZDDp55wcjUlJA8AGz)#KI@d}|THG$p=Fv***JLq=Qe zM=ifLjwV^^TXcD$U`-Yw!Em>DEl`~=LLnidY5YBr(WCDCzxGJT6ydA|#!%Z|BhbdWW%8G-_Y-bR()WbIrSzQ#_%HR9va|a^_9NRX{5F5@EWD z)t8VYK~?yv$-+uVi#id(M>WGE5#w3o@tY3BxSZK1s{SPp_w5Y#G{73 zJ1Z-mM~q*o?F&uUr&$gvU$5uV%n*ZYXx7H2&G*|ved8qECmIZ>4+#RCI5k9O5_{&G z3dCZI`RFs!NHWJ*&IW?ASe)oB&xTfMKC9jm?o!C42{pg=Ls~DRE%QD?mW`&@e9NzL zs~B-W@SP)-dVWh|f8!fH7h9S&`ZwKZvNQb4k!D!F;a2)`-`MaJsx(-Am_1BuHX~@v zNxFCRAo^d_x0dF?&ogTZ52XBz%aqT4hL3q*o9^rSL$au>GDY9xav-ND!@E@PJlHf- zbB`ug#Y$si)P{{By4q~chIygAHr*Ng3C0F9?3BbmX-qcLGtc43tVOF>iB>s%zn2*4 z_b%&h6znx}_D$2UA zMxp3ncz0cUY04$uDVQaau;ak_!JR3+p#}sg_HKRq`?EZzmscSv#|#D*Y1k3vk8`^C zQc}w-I6fg1vo3Qgi|x+&HzP=#M3QHC;+q(eDcHSKHcf{aZkpYbM2W#uH_c;^-Ko+0x6;jX$(f#>F7_E;<5p8(u)iq?NxFXWAGERqa*k_n&aPUz9&2Ej;~kdx@hB?xwhf4gk>@eOCdQz% z0#1hov};?$ODMC=C>i*c^23MQiPiB_rBj*ktQr`7-OhM!-i7Qi!tw9bF|^-L z5qY{bc%JdDaqj0vbNhXDD>vuHj%{xpuDF%kG}SeW^VRbP&DXiJZXoDk7MT$A6DQL= zUGv>ZJ=C-O7uocPA5k*wQXQ^8vU{yznczrbhtC@Ga|GFA5vRx)9(Pk1E$gO`p;hWe zT|e3V(YiQ^EL*g|tOBgZAqSGo%!??ZLvJ2a=jc{!C^vj)(!}ELG;z>w19)xA)QJiG zG3`YurJKTGx+dHm!S#jLCH2C^_Lk_M{dl(Mq2QQ(oIiKj?=-GFq&I%!Fiuq1$QORD zdc5ZgT<>AYTG+E++gIRYC6>>NpAd~iKyG~Kd7~WQr5NXKwV~UkBlq;yX$ZaOs5v4~ z#%zkR>{S2TgPRX}D#8?E3e1D?rTR*vl+v%P8ZQ}K^Bk_Uk^Ky-PCNl(e`M}icp4w7 z>9%JOQ&aU%&4N_HPAj8rWLy50mK{?Sr78`9;5kNCKpgq}bd{hrP0d>0S z9@+RzKL^gLw|<*p7WD>QC2g9hS{g)fa~8_g$;J@%I^Tb^Rb2NW8OfA%%58)3Lh%{K zQuaQeeb_9aQ+5l*DNB$NRw=!AOweVgUuu@H;$ROInPaeBm{r+|?*SV4UKob>51?ac zmh=i?#qvO1#a@KC#Z`vFhFGrc(Q|=MQBkq1fNgup1beT*Ea?wY5lg4Qg+>TWXpX`l zfsn0v(_kWe6o?BkHR!rsLiLCQ?ybZ@JSgsgNGxGB#tHzt2#{YN5)2dt;oA^UoNZ1S zjja7IiR)Gx`^XlXK0sOT8y+IN z68&TV#rF+iT&=GPpb+WiB7i}P-b-7cncQ#$VknHgeS$F|D8B5nN0Zzx)of0L!sfux z`qX6@3fVTEhf2hqMGJ#onY>(3#XyaSXw5=qIf7JYk;9d}Tkg-J0aX zF~{T2+{jf(0;?F9Bx%znQ*xZEY=1odQM_VFFfF;7vpm0&(ST~6Yp_Le)>mR+2CZJ? z-og9}9=lY`sanlj5pfvVE>52t@bDFHdGQO*>XM5w0*#6{AD7eucJGHRhUOu5cgkh1 z)Sl3pq}n1{6~$>$A?VQ~gnfXHXcd-XdFuThnd1ua_@?;P#eM#9j`~V_A1J&6j?f&| z(-N}5xyQ@faSChq*3%iqzKk4HZ+--3g|)96i3R6VEe$<%wkJ}(=D$B(bn{N%^f=bb zJwF^WnoCM>BIbHT{PhhXujoCRu9SH?bTe&bC~>o;@iaA#aqnfsJfBS8xIz3u4(>Yc z{f)3DPC`RjS76_o8e?|k$T=wUP&*qS#fx2;+15?t4KPiGPMuY1lBGcv-AnhWI$j2( z7$wJ8y@_F5%_fK#8OxEjiTH}Z3UQi-*rp&^fdAbm2mUglS5crK}#@<{oripapt zd((>@MmI76t*KMAIGtLB1OEdS&Hj@rsl^{LNRM1WB`Pd=HN@%$E)KPo#jg|f26@U+ z1(;|#@o~kaUP821+iR2-J@riaKQXB6fq6nu>Kf=;2c)3*IR{^R zHA~w5-L==drkI2uuF>zU;6iu?0~0>qOM-D=3Z!Fue{M|mJ!=1SdvJHQmnpOlBR8o3 zddVF)3=E(}y4v}eJ=KHf>bK=X{4X$Ayag9mn6f~vy}kzm#nf1JCtJ0^q+0lOr3E)% zR3$(_b`Vsd7?I!1u8nhpGk;mVi2hvaZYE9DF9w&nx5mwAo|I(l>XPH#>+nx^I($m5 z7o?s~qae~6#V^*<+f}?!u}gXA1*=q#Crj$L6bVIQ13f-%kO?vhlKU#piWW%7LV(&X&a+?lNBi?`y3^ z+#GgXj_I>EVtky)EfuRhj652ih)ZL&&_a+`sF>jVkQn7v45AI{ zQxBi#N0nU$?KrLyHQBIPulwVkj9J=;7-hxHHxSM&>lrUcNp1GrnBiG#%9D0oyQ*Fn-LxmIU*2 zNX5)_P%i_Eu8Uu}r2n{9kjc(qg^FODS2SnLj;DbuILZ^+s*;$%bmsbN1>DU^!rwh7 zS+-jQ|Eb;H&Bs`crVNsFrT>18Y#9Y4w%8o1{K$47#rMsQ2}M^Z7tRtqW?_R!c2@;9qnz6c>x$BY&aGH0=0Bb4w<_dJn&thKkHW_v z{<9KRyl>cE`cCo5aehoCR4@DyG=1e?Kp1S*L{P)VL3vA@M)v*f!=^-j1z+MZ@4y@} zY>gXVzu|dNRSPyYl5)v(%~tTUd~A@B_b4YR>3jpLAf42lB)xZ|j$Lu+{pqcgQDajE zMRbBKwSz>+JwjHIbmj-7*32-^g=0=tDgI@k~Kf& zYSsC_U8i>TTn!($&+7jS**vq7)h|ido>7lM7~e|Wq!4H~O&QgGeG0nT)XZAV*|LeH zA}F4xksD;P6m6Z6^=HT*eiNCR(V}jpZn{d3a0uofy{J2II-N1}QoD#G*F;uboR5~= zTL?GH%xZzI_ag0D)b>mQ&NsPypGLu|73B|Gm75YObSvG&FZyNbMFd^R#qq*w3P&=t zBy=U1-t%FOD_^O z@vTz=LYa5&zd~4zNmUib;#zL!+8(6z*xGUoV!xzYQ z3E;vf!1LcjwoUA|LXRBEW&guR9Ghz(r|P!>G1J8cg;tmNOCaOPa*d1Zc=Hm7fE)lu zO2ZnlK)T}5gyzFOh^53DcmQYe7faYYKu_~tg}vbN?_DRs2A4d9P3~XV*H(#{gZKoA zN7g+XaBr~`d>V%b+usNDaAhU)q0|(vbbp))u3IW>yKC@MpifF*A@qs%u>!~OK zrU*SX?a}#XR>vl|`uZIhb70=<>|LsvaSdDrbfCFG*A@y~P2B~!{QvF@2w9{8LA2)H z-BXn92?W;zhQPB&+oO7pVSVxyP*7_!vtw=7oy7C|)iPxAhY9U72hP{Xhp*ojod}K< zZByb52c2B2_S84Yg#aG?2+y}1~>_-io6Sj!7uG1W)p%ZPERXLX`VP*Xu#Cjn~ z`kds4#!8mt(`H`5Pw6TY#3RdGiscAH9MQwPTX^4w#z_tB#WBc|=_JHoq5jBiOTOlY zgMZYx#vM>y>YmQBdo=~=bA@U4+MUPr1$o64oWl6{0h2onMigZDtz0@^jdxWD+UYg< zCPNC8KPpDON5VI_ykvL+7XMJhV4nFCR!%2E+}+=)WT~DeiEkCm4$@RSv});;>rTt! z&cf~Mr4g8KZqejQ-+=3r*c?Z5azzv0 zW73ZiVyhy!b!ogM-`nY$sTHlh7>Vul?UKQhIn7_Eh8?es8?n{Q8T9Rt31qA*a*{Mj zb>R221_i~)(iw3G*&~C$p3Lxw$wxOV1=%+L{8&@AX^>jz)74dW z3{^~kbbPtYi9qeNIj65m@GmVHoG4S_eA3T3yX;VPz=>gm}p<49_E4ACGe8IKQ%jq$=I%;EYPpJl2&EHOQzg zg~++ukKqTGTPNmd*^)5#*J*xpf-72BX@_zO%D?uluGskXO}io_``|p6m{SAhW>mf5 zp=1vI{68!e>gG1flI(=K!9UdDa~s?RTp1Rt7J2MiL5qp)PTPOi>u1dbBK@v?Y}*vr0uVLf#J#Ng>31Q z_mdh}l!UBu@V)|CzQglUR;1aRDE25yDuaN-JD3mZ%Ov;b1L>w$Cjrt4Z1Jof-43^f zeBa-?T_NTUcG}E1?yJ|lf)rPYF~JvUTOpnT3m3%r2NYr!sYj!i>emX}9%R4f5B%K= zegu=9a3->uZj!dKe3`f@Ofxr`KckneV=iAd>E<08jfj@taLM)HEsNUMZ|#jMgrpeB z)7@8e3p#l9nbZ+qgpT%P$wIUB$c3y%!!v$wboNl3mP>BlZ^6By(*(gWB@+GTa52^Y zX@g1Q>1KS-pzk*gGL2nb0?-qVr1A3SpBQLdRbcu|{GBdBUP_4Srteb>3|7ba(5$fP zUAm37I&S<*dXiq$oL`sJ_n1;|9aoHzkmf>+1uZzfxpG?HCv?q9?>|xs7w2nfo7I5( zrPF;1q7?-#J+ys|?MlR?MDFMpxAYnGGBR!Ea~Zm^W}f=72iC4X$bOGudv(9Od@I+K z?hDtMp*u>n9OyP+??TR{1+L=U8!gZHe!iC$3sol<c$^DK%I3s!0w(z2@1PlyPmi}I4! zm+#q=;ox=|0%?g~(6xDm{we##-Uh1$&eN#qWEI^|q>;fV%1|T0?d?OPyfVC@Mnn0x z`69OS{dPrUgtn@I#k}G>CM22__wN{VT*zyw=4uhgQuX>+yBfl1e7(p&i9VbC6hg$CzWL$m^hJhTDUsM9*? zoD~BD-DFRPr}?mszdRoCtl9YT>U%PWKl&ARBmSok90Sa>8pj%m8^J+t!XG4!5}Alz zaTYTfF{k_w>j88ZN!clr2sim_rW0#njQ!pgmuHA~xSvSqn~C;J|QZJA3}RF7Bu&=-*D0s^#UAMOSFOkZfZ0C1Shn zDy=mq#moH^qKP4_#yQR#D_*);y=sKxsic5(|S#0v3TjbYQ=j24BZgJ*{4|7n2A z9R6WSzZyo!Y&+V$WNCg+gnnqme(;kX&P#)bt&0HTp2;Fa7Viu`%jp|OCkQd~kK(2a zMn0@`la5HIt$L4SbY}GbsGXB%v5py&k$<%a4cZ}PeFyJ+of?SWZIM8aI>AAoIvIGS z9CUu3Dvc$yJ8X5x*ojDa-)7xG>&}&|>t;wJ!7z0sfe{=n%=+DcXGbLT?5f-S1&1a+ zzvjiN5H==V`KvZ1OCjD{b=AA=3e7y~5&We{WtH}++6^JH7BtJFQX}fgH3zRk6^;HX zst*F3SDpszG?&*l9Jq+_w$x9opjf5$%UXMdwnkjdmRJU-0-6d&DA%5c7CxSf^h z`OSchI;tRbI})0xa2Fkry(VE z>&O;e;MUI;2hOKoKrLIV1}fN)JxUW)SnL6eG2CyDepU=B4PmahVENc2Dul!k;z}I? z(2c0=8OD5ba}nZ!tNEWHOpj!~0anaX8Vd74^8<&J74T=(f~!FJ|M{%x;Q#7j( z_uSYKh=(^YUcqON0n=mvXlx5mt_Gk{^eVtVFBxuuFJAN*ELC7VML9=%U8361!~hVM zFxsPy{OCY%wfLv735aff!=eG|nx!jz7GgEt^OFF&Aq2MGdQU+$3O?9-Pm>mgWij6! zz={dY!5;HVu*$*Gb7zV|>02+M;$|&j>&GUB-T*VkNcv&SYcEkwFEf#?@-jfkOW+6r zs4~&y5O8lNB_$vUu-UnV!gq&(076Cxs4e;E4j|-7G_oDQx&{E)hQ#>WLDg`Vkted9 z?asRk;z8c6n*!bJ0Hf0FU=!M3=Gf$avpbEh4eGl zZ94BBYX0`@hj6Fdv$Bvg~7;jJ3krH3D=O3x^x zZebi+DeOM&}fRR{|+PV-s%u z+lJ$lLr!bHAqb#)i?ymtv-i7GghM|+lhF>i7;R0_^5@4-gKE(KtMh)#DXwZX^1Yt# z*=vy~Am^rgQ!A^$1?z_9STDU}^E5SL${LWl*2;&Oh;iDJfHXQg9ioxCP^MK5r2w^^ z7S~5)l+X3s=ce7nf88@<&iD21dS;>Wz{ZC9o|Ef97U6~_mv1650i}R(?%pghw{B=20eF4cp~^Kf`=$o@m%r=w=Z1FYaso+^;) zqN4dwV!uV)+HUGGM)u~yW*Umccl-ZG7V8*bq9LF=6Ggav8`#HiH*Gs)pH*xcP&h_s|>` zhEC5~I}DuOD~*4GF~nYVmrV;C7&8h1}U{^$l$!Od>eYnKp-QhP~8wwef3f6rvSm<#|LQl#mlY-anOmRr_<-KkX_04-EEri0f5ZvV zer&6l`h$NXyd}et#PGWuUq#{YF};~Hwi(S_lUWpt8CDMu9t04Rj%qXHda z{5|+?OthM1I|mmlSnTpO^YY|M@7u$D0vr)>!VZ~L;qs(7k!RT2hqeK1(^*6EOZPVR zov3{|I^CJyGo-l@DAeQ6Dnm5tG;Osd93!IHq~SBswRkZakG3OH&sf=c--`PRT1L7}EAMeDQ%AiN*T8`j+_#gbL(Bjx95ZtmARkP;mFQ z!QYsLZa(s+cqNt(yz+P6yPr~?#&=flKGCQxc|1mDW8xnLC-$`zUV_1bZu9;*Ugr74 z3W}GA&aCkwh>|?V+|1*=<2ajBPU5(G;Y@;I?ETd>kGTs=Rj-+JL9uy%M!^I=`Z$N% zS{`J0MGZxDmanYP#t)w*elDUN5iD*!68n58i8BqC4q;EL*0qe0$5byu6 zpdHj>a!rlBf0@2p7*gef*-Ex8h91TLVdbWAceE->Yf1$4y49mm@RVQL3YwBP^B>1k z^fta_i4`prE0HU%XuY7{XBFkR^-zwqw^ihFalYKw3^*Rp*KAvi{Y2JOPpWxZ`{Q7i z^)ou}m7)2XrIIWTvxGKeUzeR?=qv0PeObM!-oAi3?(;uypQ~eKNK#a?Ju~!r zx;h(@>b0C0@LjAgf)14&3V#ms1Vl||N>}!JsCgX#ZrgF|MNy6Xn+HqPxBlU;c~uRLUjb? zC&7B!0ElW`?-qt(6aZjqZDtMx-Y<++4KdnD+7D#1Y>~?*{a1lt^K-$GO7c88`;|GpcYMDb{_b;Ds@XC2&_VwyXPzf zf$~^yFkz@#dbf#e76)5qWH7+1?f=)d27sJ(&yBEgA_dqA);tphNdgr>V0D6nPTwo& zw}AgtyEP94tUDBp`v(4(0*%UHSweX!$**5GMSFK(Yj#9jfBAw z78^D9wnLGc;nio9YpaM{PCk7xq{W)}DOW;10uvW&L%$j$Ee+lOPW;@CKG?hErBmzt zW<-Yd20fSk)@!7m6ZH!=2Kf=s@kWVddJXa$t&%?4!A)%Ui(PKPY`FGnNUh~eC5QI$ zvf?Mxah#c!-|-%~oJ-5|`@$Q&S}{Z0j+EU{`*@1iUO`8`eltl4`n69JszTCK#QzMb zScSWYqFIJkWryQR2DLn8=JcY;gz3gTCq{<0TG!7CB@hC>!jM0M8q^gM;k$dDED6R+ z8yo|xBc98v8e_&PmugBe3C}H_pUS<8$l*8$+J5dye6Mj~mVW?C>V$lDH@UGwfu#g8 zPRyB1m-5YT(9}_(_`6Cg5ez)Lx^K=$QNE$@wYxd|*^IlI4%kV7aKq~$JiSv~)ub)_2 z#F3tl;bANFaNIlokXt+?5oh{Svxkma+;(KvfK zUd|M$N{F@?!6C6hjX2JV8m>2q6itQIP@MF+(DDm$7WtjG&kB}W_~^0|?JE4a`p|BM zHL^G{d?GA3So54t#AptSV%htw8-e{sG=Bc3EjXCY$c{6+ss#Gr)lFyJ1gDZ|o{}2m zJkx&<;a=cxUWFG!cz$bbbKg7iov2OrO%tN}^C4fly?{nC9RcpStlaJZ-RP{)+#?K% zt9di$k=TbGSE+eWgq@ia$CSfYw};P_qAiW<)lXQlljbJ5Wk3S=GWJ)x-?|k^hgbuz zvda=4wF|kfD=l+GpEc_>c%ig~;m*iDi0RhyK-!wy*q+t+Au%sTGn?%T$2ED{BV`qS ztqPfT;|7PJV}W3!i1#(9O)y+rqoV0)t+i-jk++p$TSiRphOc`PR4ec(?V|O>HH}7B zZ6R#=V<}E}jvUJ~QQV<)1?kL^)@c8S_X7l8UW`83srIhAvQ1FZfXIu9ad>?~Hp&TZ z>}5{S0LwIwEkhs0TBxslLzY?3+l)_K2J-3kRSMcE8pXwre*0ZM`a0$Scamq`F&y%| z+rRKgbn=9=pn^*`GMf6G(kNv_*CUvh4%3BOZPOOY%T?Zw=1TfXCOq&tJP%mO`W-7= zh5+Y+kW$WRm0!Xkb8(Q`>oB^})*;!b6P^0}*aC=aqjCvzDBs3yj=KoSqgk>KBI@O& z#^xluj}#pohE+r$OFN{tq(YGYTZlqP*7x`B_a`2FxYxa(*ZXzOd7ckc2UU0E9aqss85v)-Eh zbG<5*n7DG$e`{3r^OKbFoT-?-#rLKt0rwy@Oa$?%c!6RqTG;VW{H$oUmx~&-MWmtN{s#M zXRm3^HQ4*`fw-ZiQAxt{!6hK~XYt|J2cgf^c06|xm*`guUA zAe5)ULjzHcn)C2N_D<)F6l0(GG`KXU^DW#V>e<#XBd278jc~(P{-l1F@*RZ4WUkrG z(@f-EBfr4pqg%>4TJ+cf3_tYWS`pmF5}lqBoyWKNCn{2DYOZ7?M8CSa{vz~A^JCfp zj!>Sp1nIr8$M5v?WjCXmwCZqk#zT{YypvNG@fr0;20afvxKb&?|HBhqcd$9n9;PT^ z^Spba!sQgqs{|9jmB1wN8eWiWnsPWxcnHOQ*%s5)p!b0Rbs_>p9B-lP?^|9Sh}& zy`uA8%#Q)-!Bh`vjZ@DD1L`($Br3zM+u|i-=?gYqtd2k{Bk4tgXKzmgsivCN_EOJ4 z^A7FP$wKe65qtrIvv-5BF;YVoze%oEp$AXI8wh=I5vcIt;-w#G(NX3M`hHv^rp=ow8j;O)*b`K};eaOl1V3_lZ)?5kgfI)FpNA23Vl z^bAHiq8k|>fv$nR4~1(O<8u5x6nqLK7r(9N0Xx=Y;{uQ+AyUCq@Tuihc2LM=vjFvw zB7BK6^{6kuI>Urd9)rO~eCKQp`-ovz8T7Z}%!)tcfv*=Y04SIyd|47+{>Tj8!26yK zXUf?|1-GNwu*Qb3qucU;vHU3$m}Yn*Tmeq)joU1y`3(5f1<=jHAXwPtQ@M|)YVLP&S0qw zZMwP&aE5rmhUyc( z_VQptCv~NhDHD6Z9a*@wP zo#1W!u1UpQP4p^fdtMWf=XS6Cvqy$fEK?PimE*`MN?3qP@JcO-aDlL=+KD-@v&>?( zq;t*bkR8LBZGFNTFE?~Cur`ckHjNPL6kuof@os%%RUfUUtnu&%{x8NojemKwRc3W| zMs9nPa!Ke*v z0`c&Yn{f&ZsTvtO9ksX6kJ>#Y7Zfwj6BxUT(d{1{*CRNJ8(mK_=gbaEFO?Z;4eyPu zDJloq{(M#akeIc^ar%v{`t68tH&RY;bG+H(){!KS?CD%iHZ?HC_u@`bf%E$S@?PWX zhS~(qaf!$hlRr3Di*HAtm-3yOf2bqgZ(8G^ClC+rgr|KzRhJ7X@;TS9-PAw+y!Cn( zOS_5|Hkm3JGq!H#S$*|MN@g0MTYdC@iUi-B{Yrn%pKx5l>Cm&? z9qM>D|3Uvj^j3Z8ujWHWN{$~I8(GBIJ(c8x3z@yPIEIYr(eA}{y`6+|pcxhK>Lm@| zprXMs>Q)kAOy{M1i#Y9ALM+b8?7o@g>XXZ`LRsS{Tj0)@(X7_pY9$Z&o=g;mg=?RuL# zU4_?zZDTZ!DwUzhub%+l;-hvqP|so%W_K_`np}wyAJ0-El4t&U3T54WOQ*&@V?B^Z zubRKm#6nj1UGq0I{j-I@t<}6UolC)^oyd5Y^7Kv8k5PAaX`?!XXVL@KN=sj6Jue(k zDdIfZS^n#cCb#-#J;5-e8|7RTChn9XcoU$U3Q%&x)z>EV(PVTpes1FF`0wTjkF!7+2eKE=(`K78N7hvu0F#W~kvf%b27g@MEy^`H5XfeN7wY z@kAWzJ%VRroLIEvXlBlXevaW$5YPFDPh%}(&{Mpwq&(Wlxq#m;*a1kU!@Q<`ozR}f z6U@-tK$Xk)bH!>EL&-?CXLXA)2p?_PC>Axh<>&iWbe5hqI~9@dhU7d7v!i&U`x7)G z6It``@!8pMKVNnIw5@WKy{;LmahLf=#4zfPA4zYMoL0v>%0Ws<-?#04yv<=tZKZ73 z{wqH5y@~{CRl-ULiP~oDZ8zOPQLooD>V=bG(w`-ekd&e0i)}2l@@_0QjF>S&W%&*J zQLPrQcppNdEui1mNX?z&E;nKDsqu}aF{x@1$uduaSSCejCVKY0jK8+?+=#zDNMKqR*f>pF_&hJHk@I zETx8gO?VpUtl8sD*7jaxc6&M(yHQ@8PC5KSvodSp(|>sPWu)9r*u1BscSi-$5E(kc zzqMz$ilI5=M&j1FbIo|VrL-m`AXV*5xfE6UX)vH({C z+21IkZ0gPqSX+|RQxJQ958OB5_oW%3UUIv@Dnj!1q?p(}cfmyjQI3Cl3hsvHUuMf! z(xrYZP~`stAZduyM$C;}7&zL5UKm@33VVWqEUNAA8y0d6(X~q7!rB{;q|WR$MX!Ex zpGb`m8qM5wzZ+i{ox4#@_0zX>Uvr>z8Ct;9yf@z+tAg|5uHz{< z+z8^5t3H*HM2yK8IGDb(3gW7bkDfpa$L?l#P7d`zZ^taDiRn!=&3Dy*NEQ3Ix53+lYh1@i5)N0HQOu`~dUa#8G;~9M zp{tI!+up%x1MqW6ql)|lpp5dA)NK>o^%b7?x=Ad!*BJ|wP0phyUW?!%OM+Q)s#o1i z;US57sxOv_Yw2{3&8dGqZWyR=a)Ldm;~itLx=9uShv-!k3JQljUP`XXyG^29n)>Q& z6|pU0XoYD10vodgnK|q?Z7@_!+Cf;s_RQ44gkA&@Ppl>pSc4=WO@OUYT33<<8DYXk zC(==fPmn6m8a#7>f_E&TkR%6y2u9d6fo|+=ng?-42|9E$ILCo%0~L$^@IW<_I1cGS zJ-LP@C20rOk?sMq<8mczNordJk@$B4YQgqi8CD-(gVb+FA#xmo=zc%OXngH~n*HBa z^#a)P9YBpWY(+~4v?7?en!&qsd>G63qt?N!^e^HVe?3+S8*>6f>ka=27yadK?@}DK z3(1v)0n~$_T@cOM;IjZ}n4AFV$+buMz+lhsU4(+mHC5vfDW(8X0e$=rO{NX2mWg33 z>X^cr>MdI1Mk=H^MQrCd01EY6;2RrsGtCkSzXLG)orCe|EzlB|nF4DNf403#T;Lw0 z)i}d1R{+crCYJ|70u;Z{l~Vj#D0oGnKM+E1HlUFD&6ohz8pJ6uwF96CtiClKV+Jpu zX%ImGb)5y?%fz~Keu!jXrPdNb3X=c`+$6Zfns2u68aBg(3E0w{3|66FE%qj8786vY z+?NNgMXL!PShzI8#L_!SSYzAqW|12xL^FB@`b`!p{p zM=8D2JLpExCArrA<}LY1pYCq;&(x~L8*FDaa!yG-9&yaBP2KsS=6%UEy5xlY_@4M` z--{d`&}hPii(sB8q36u@t-^cNrO@)NpaXsoA&x~wv&p9$gdfZcSrnOdS z#D{b-&XRK*O}8;0hJ>-m7(dlz+ShDnrHb26Z<>m14){(^P;;ksOI&CaI%LRbzZ4bH z{!VZsp0ksmpZ0u-2A1wbFI?^!<4}`*BVa|So8Y%*f&*?po?OOJSt&*^_y?D+|GdOp zY`aQk?o+_M*y|)~W3bGCXq{0-Pr>u`1=O1W5l;|G>1Dc*gy0R!IH&4D3p!ejdPJ=h zD46apfLB_@NRr;|!Gw0f2{Iv7<;7Uj%$~(4{k+H$gKLBun(3=Soh{vXAqBnviaOg* zL4MQ8NTX51RDJw`v~oyXxNlsQUTZ?9HgSW)oq$%z89DRKF%OJm;Wv|zKDf!C|Fag?(1X-sd{6urox$xah~Uc93ouS_djHY zJMI+r{dw&-q;=cL@sFi#t(5=#WvoL_LC!+$YNH|A+|aZ%@jVYKgr;K_{L5z7VO!gK zE#BOz^9^P(P`|}(VOn?N$%NBOX;KJ8JmU|duEGjEvF7A+P^pw`d*m!2a^CJJc$J4N zxey{NqUM~P|J^9SPOF=1^Fn9KCCSntpz0y-TW;^uf!l0(tgmIbAJcQb-RW>`&r$zG zO=SO0c`>?nmBPC5oKfr^`T*F~e03*p>dar83CZ75st+4SG-ZfCCv0I3?GQqzS-5B@ zX9;696p#EPYeWTVH)nE}Zuws@<7RgsA+0O{ozy5X_X7p4D1a)C?~S z2PmJ|D$-N94@Bi1mdp=_INc%S*?3yxw_wMd`n8$0)(`|37k>ATzOJMA)zmac%4v#M zUqipEunQCKF99*H)-XqBXYS?pn6s7-VLjHKR0ht%oPRY2MPQ4eR3;xo_GFx?IWo+h zJ!g(yX)TX=;g=HQFaNEs@tTZ=C++;!RfbvflTif^f&cBl9^OGroPBH$oTeT!|sJ7|;Vu%p!9`xDSg5dqe!>0kRQCQa(PBW==jPSFb+%)!E z7cA3XBzflhd7=~i)_%^qXRF1GvN93b3nd+OM7!m*Si4|0pfudTA1HhHXK0hs?shvyW0L4FWXa$D4rC)N zK@*A@Fq=TIs=G2Q6tf41U6pyP;4M5vI6{#6_oFS&xq;Jc zM`XGKRYZ8pwc=I9*Z#0ScS*ol&*pWvUE=oL`P{I=EL7G$Lrte*E$=4y3wfylU}A} zuA+Z+_+%~bsIDp;R)m6{#Mw0N4%cZf3Fnww$L`bAt*8^K_}=Ir68+#y^byU*%d)HNRi)Cm3jy$S>v=<6 z`6_wSzs%P>DaDeilw@yqKf7&^RPjyzJC_r`PACLGiQv>zBzf>`G%{PxtGFI z^0VEm{&z)e(*3LM{nQPNH#&ZgBufgD^W4lBq17`Zs!-sFj;*k*;^lDjrg$JeNLxAA zx2iP6$DxH^#4i!B;zIQw-qG*~?K^|kwOS<(RHYJ0jgUcwG%)BWw!_3IOT>j(+VvMj@yjxTK&Y6+l{Z zTrSas=htiiCaHg106w~<>68zOnsxoh`j^Rt&7-rev4?nI?Nyjuy$p2>R9%L;B9nj| z3BanR6wEGgoHn5FLyBQPS%9Wj^wb?)4^0??p^$9q0EWK^>Nq`2vH{YS7UUWy@)yBD zBIg4136L99LvTp=LKpC}FTdy&OjaGgFtbpfV=?OT-W;mEbuN-3XZ=3 za3Kw6J`9d7pSVzF`V%)z;&gw?#vdXPA98^6zr=kNZ8}RcoA2nf59qSl?LLectvmJ~ z!0xI$TNk8KXn;Fz=LlzV=Ofs}v2A5y&>${f$xjAKKAET!&M;;*h!AGrJL?Pq`#``b z>*;O-&0Bzbfd>FEC6(PrT{x;>QeIG#%uZ^8Z$`NA-QTFw1D`5ieyepm-&yM{3#ki`s z9-^sBJ-9ipy?`yr#S#0_>BiuX^r`}@n*E+sjhgmNYURVH(Sb>p(M?exB**^8{0O}3 zxfSC7y(6ijLlY$?Lq$T@QvbkOO?{(}p96@Z1Y~VY4AHi(>3m1V!t*ifh3<|0?I`Pfwl^Z~ar9k= zmWHf*56t>bzp@X+#n>}Y^3=xrh9r199rvYrgSRNkK~K%qnOCQu)Yb~g8yub}LZ&-m z8(~WrQ^%vBbfaClZI5b!lc;yU6s#-*JNs`nkT?|d~4Ma8qD7bs_jDCezJGa=Vw*!KM;SMQXQy{Tu5Bf5zfAcempvF?-tye$h z3zkrF=3a#hCc!Ain5-uLr~lz$%@CuWvkI(_NTQRfVsONQzlks9N#X}|jg_1nk5`30 z2)|x*E>ocANQ}8q)gaW2Z#>{_)yA^UatZh`|RmR&C@ZPNND2sA!G^^w3 z)hbwb#A*!G;HQPjtaxw~l;m*H(3S4e(g)K1z&YYuy?D@aqEh(z!X}?xD3-h1bgH48 z;YZ7YHA)HQIG>XxW7N!6I4moPe{I+|p>`5gX}>WRv^SAIdl6_PCr3VcZJjVQE*=;C z);;2v+%or!I&wzDDIX!g^tkc4pse#surnpOp!u_Yx9%?xVIDkoYVSkn1sv3}J2#Dg z@OpiR`<7ExujJ!H9IO>SwX|w{7ky_%1;#{sO5G#`S23z>A-Rz_B-O=b-G5mrbI@GK zaS|h3zdCdB3^CbmW)A^*UfBO4k-f3v7@Vj3e$+ZCNZL0zJ#8EWwx*Dg$OUI|sT+ zl+Gq+q|P4Q(Gy;tXS#Kwh=(tHzw9}hUytI@1>fX~1#BsDj7r&-ov$*83C6{zIND^) zD7UA)ZFJBj!F5X>wIYRVb=-YZ-}u({h80Yhf@YS{ky@Qb8>dPm!w)vD=c>E?jp%~^JL7f3F*Qbqht?idSr35P)Ep5>jS)cL^l ztsK{1Tv2PXhj{rBvHRCQ1TTygKWxZ*pK6$Xx?j2*_~ORiCUFqFlEgK&@!}n9DbUf3 zVv6!*)mW%mc@Mz&)CRc!?!tPOAN6e`?X-NmcL)6YZ?KEjrg_3XTpOA0kVH!LG;^FeqGFmiPhwArklL0Wd~uV`!3B; z9&=@T8@F8yK?;1GFD1D(PS@D(1NM8r6iWlY5m-k74 zOuVef@!D#JkrnnujWZ8F6QwQlW3c}Yc-fD2X*{gCjBD;7&~n;VTSp8fQ#7`JF_a+LA`|+XPcx=qsVXAth{@yVM+4oD+H8wY?Pdfnwy1 zfLoitQe=8E`i##S^JV_T(F}FgF^&kOw!a(E%Nvdrqxq}hxl0H7zWgXAK}UJ5FR*Tn z0vU|9-bt+si{H2$1e@Jxn+b%wKSdh?)>9rB!htOvY6=LW*pQ%UC@N2kYo`n2i}V8G zoDx&?+Rl0;BK)$i8Co-4Pzh@eN7rN4d;t1MRl)~{NNs9_%}N8CSN5LTk4Q84zqzXv z0t{LQQrfWD0_xT?7I^tRlkXD`uYoJ;)HL2t~a`030no!(-p9A<$lQxI1!}L zr)!lj+959wafoQE3D-mTW(e>%qN~e5X)e@*H3~FjiebHR=0j~P@K1pvAdu*miGj08 ztW~aqUGCWH#Molk6qwQ)8wet<9%Bqy11_v9p?X(9*AxRRd*J`d&WT=L22vkr2Cu9< z<^|H>?a)~-poiiEN4?yyW*kFvi1e3PESA|7jSMW)g!fnh)Bd4EiZi;t9B&6C418Y# z`<0*;=8rX21aQ0{dm;+)j_SYA^^E90Ko4aBP*_|5;C1br!7CXtb^yU&nTY{(3bzu# zujRh_*BAhBumZqyGmbB&2Mlc!P_sNb12onOQ1gLY*aUtVVt)|*EO7#cGASI$MyyXj zz4%dxEN$3|j>6~~mR{}oA&7BvgxUk(DG#{!?e zUL(#N-3b6(HUs9dK70=r)lC^G)T~S_;fm?b2m7(~5I1{JXekURC~_>wN(RHi{=^RP z0f7t|WlD9<&)w}hu15nIE%8}O*n>5yLgd0ju15x`Y(JYj74|5+ruK?cC&VrQWdK%W1Szz3nL% zO0L1U>hvJ$uWd@qD}$6N2ihq0vF;y^+1p9V!xMeYkccIF2OPPrziz-rxSAmGNw-1x zeZm?k$4G{3=9NPlR6z|izj&%IC806HD4JaFm2|t$Ky5=}xf%B+XV8t*$wU_PxDZa1 zb^z*TJ~`c-Pv=*t@PfRYlt}mRCrW@AuT?au|DsSNg1z49fdIUvMk#zc>Gk5M8!Sj8 z#Z>L?@!xg)vE~$SHz3#v63|T#zu;$!MOi-0jizY8%nm_Rx}shn*1Q)w2$ImFYptP- zQKjtm?aD-$o;xv}<4ee_AERp-N+*v`$j%DWbb2QUA&(~Y=S-IHU)szN7+rod2~eX7 zoK{g7A>G9_{y05Dp*x*Si44chdpIv7&?WfL z$5Q+pWu+F_8mNy9Io6V6o@76j=A#&IZ%C6@ctQHJf9}V`c6VgmXV{>U=i&ah^saIr z0hY0J_?@zY>_6RQtU1_`BPLkpBok&&%e(i1pcrL<17i;-QDVZ1dk2*K<@6vkmx(Yu zVZ*B=N+^libZ~i6zT)Zqe;rKfkB~mfP6VpYZZ2$jKtdQaL{k&QsQZ86$TEMvj_WKX z48g-Y?VE`t^r`$hl94Z!Aitm}Od<9J+Cv-dzn|P_CbTd-lb~=zL8XSEvxk>bjr`aS zI;~9Q$DX;&%gFnq;9T8a{uATNQa)~`Aw5s~6MZ%F77qS287QgTuSiJd+|o!bU&UHF zRJe`*JZQAL>x1N{r@JEkj^v$~@muQ5Q1N*%dWWTwsqEy+J$?rUvHOGS~)DQ$N0l;X!&XP`Cs> z$mQeJ#b-IKFi2D1Eu6+C-lQ-;XY$**lPCIPJ!(96XTEScSqz=a!H@sug?1-tho)Ku z?qSV$6vN>VmFba`Qt*4~yod#brVKSsFLzCmO~kC2gcY@?=H?WS}C>vE7F;iSAR3&x)-i@x&{mWiU;hMR-WA%@*1^mxa zsduI`BT{mAOoC^4MA?dnsby!q2gOpbyczSpwkE0@KXE?Ly=F#2mvFg8hPnb8xt21q zXJ<}ZcU2xyN=-de>u7Rz&Ws!8Sex7?pYLR_ln`th$weJ0b|9y|EzzZrh{f+Zbe-89 zrkZ8leb4mS-gRwlpCX24Np|+1aY(2HQq!)y*f2NS*uL-S`sC+NIB` z>zp4NM2ihAzuYXT_H(yrYSlY&OrQCSS?{pO=x%-U)R=?80t$o9}aPL z?OFOMIqXyGj4$0e)q-Y;iL1#9Y3}R$uNf*NzI1pc^jQ@dt71G<1Z<1s@h{kaJi5GV zZ-tv|Hm*Z_iZCFb#cls zb&Z(8=Czt$eqHoT(%JisW>-kc4j3Q%c;AP67HZc_l}dNtx{%pjX|S6{y40(oD-xcj zz??6Kf1#sr?@*ex-T3wpqfr-~ztW6Um~3BHsfmwRlqb;)c4t7#x2%lt)UeU|tCXkb zo#GCM*!R3cBd;hEV9T|`&F3B}`a>qq-}!~>eVq7NIAQa^?4y>fjl3Un7Wp6oXN>yD z;?#Jo3H(yXe;Gq;UMwtlYS3V~O>l(9!bd-S7|kdbHCeKX!Ev-LKVOrH`oD z^L&n?V{jnLvp_$k(8b@++-M4EPC{t})9N+ydvHvrJ>hYxCwUKMi)2TG76677H{dVe z=MT6~dhj^kg`uWfE$Z<)pS7O+%nlM0Y(6+mdQMv&IrO0fWvzWekT0?(H}&HD+LuB856nmY%76g}Sx5qMI6I5}+pJ z;PWxk3ScN;1{QW&i;lMKY`k}-T`ZfagFK%3bMiL5;Ohz>K!y| z^DZ%9!kfWI9+gP|Tm0!63O+d>4Qc397`2W{=qVO(IU}CWEFYKf#?cf>8)4w!gB29= zCKzBi!%wU$5mmAx>Z1-?K9#VwNf0<}c1JV3#|OVhxsOZ~teO2cWBI5Wlnd&-U5Y~@ zU2Bk@R!xEMPal3fT;Lx*wnxEc!Gf-u*g*tQ z)~N+@i~o)N4ytl--IVkm=@#he7c_{X)qik;u{FM_POrqxT+KzwYdOza1gw$5Iihxa z#Kqa)hca#{qzhnxf+S&e;e z=fucG>?6|UWlriQI?WP|F!jvPEm8xE=7zLakv(Ql64XUukMticTvmh?tbR-iN#^XM zwGOaNdh0kaqB#9MblV5gm2YBtX8YZhpF2rOMIn~^;Q}|R?mnh;TYIv*l(|i`1uw*b zpThmm#fm(MZe#34wFc5o>_0p)oHybQkcMGl68L0f}R%0m?W}m$X;!(hRnscai zuM^%(&U;uh>kcaau&(?j1H()ouE#D^7Rcl?qMB~e)jw1lbWqQx;o811tI-cbn)9@4 zl*rx86=UP-V771+ZwYYqP87!c=J=`P|LQU2ea6+_QbP$MA=put=$k$SM9&5qh`%;7 z3i~pMt#!_q9aM_v5*vM2lx)JYG|{7b!xs;Gb-?2?_MnJb9LG_{d029f?X0la-|#b? zbs>Q_w40GZso432A``C#1aI=?Ai<=(vwL|ct33w>O+a3?luG3&cI1LGQ$PH2`}}~f z6r5bRDa}&j-PMx|>4`TX4m$LBzb0H#jpY6Y=u!Q06}7WwrazVdn}ciZ8@0-x!G!88 zsQ5hvUu%$XyQg~wr>a587*zRj-B?S9&qh}2v!}JNXG-peZemB)^l=;chM5BjJ=P^oQ`TZJRSK%AjiDZmwd-gtVqrTNnKr3OgTqdR#ao4E`~40=<0a0 zu#cz)=Q~2=5JW$@++`bT!(Za_C~URo!+}*zS?S>6{T1U!`NB|i22tRT{c8jpucT;` z;e_kFQq=vuj|yxOspcK*R3w^f!uK1FnrjGxl|F2>-IA8+7rd#Nr|YpeY-@4{wO!|VJyAbhfs$q>3H7>STPp9moZ|{R_K9BT$Z|!IhBsg3P z&h!mV&pf6~A=eU16l!{VOl(a5hJQrAr1^rgy~R$_jAvlA`f!Qq$xG){=Kw{%=cJ|i zMdE)(GKUs#_eQK+998(oDLcPB`}{am)(Dh^zp6ESo$-YBjax;y0L@RDm7LT4R8!k? z*S3lsDc>4GK%PDm-dYvEQ6oBc@oyGx*-6NTaHId>9wP;28bBzXaTLgcWv@}81Axz zAsJihbDzzq>6DkI-kB9%!P*T{kfbO0&t_A5plV*sh;*b`{L+$aGGeV*7ILZj@i9iR zvo8LD|MShD!avnoyZ60_9;D#q6;Vu_`flCzzN9*&IA(3HqkWrOUI)-aCd2N*PHK}R#Lp3?yJ_c@zbklW@Ok z#sD6xXJr?tad88CfE-yMIXNx>!!hs)@9G9vV?6=gz{DM0Ns@`dn18|{*xI!L%`xmI zx)CJz&A!UbKvC}O_25dAsK0BN%xr6n@mJ7SC|li zM1c&PEIZ9vQLTza4@4NN4Qm!OfO=`e#>#dy;U9>7z~(55FmDG~gVcD#LM~R|xK}%o zCVW-{uO4G;Vt}Iu#fSl}D96%X!*}o|_8}3(B)xzZz^B{og9l!>2b4>d%azVrWBlj< zEmIFv3dqXMzXvmkEZE)Cj9kr|>=G4blQL}PiOUCt*3SwSr zhZx#LwoYYOWLwU!@QRvrZkOxF`Bbe`r^6RD1592xj;3I%lh^uOhbXbNCF1*#u-LGp zXId_!{;mzCmBgAfY1MspK3s{Yc8@!hE_NCEN2&-OiMvej?Bx4V&n1k zB)Ks9bPcL+9hYtHWFVxRN7s@Vr`9D?8}RQwwVus#%-9M~H_REpI$vcn&fA{qsUB7? zhL)aoN0?UJtVrr3^MdfU(>4kyI5xoaR~|%4AP;c-X`EBGez&se$x0L=DNaM(;P&xS zViMKN6ATPl@-Ck!v}9Seg^(K1hBJ}r(vGfQk&gI0BTV{_o1lF5+$#;mTxDjG^$eQRLD1gsi;%tW(`DsbdKVFvE zH#E6%mFQ=W9D0jJ(~%`d)`@9z3{~rb3;g7DH@6c(M#?nW%uIWvEpPwUBi3(!>%;FS zd{tVJ56K1>RT$mIKbP1E@i#0t(zwI~kZv};eSXw1F=&b2-F{NoZ!LInS7O7Cjkk0- za@)UTE29J}JEj8hK74Sai%oNC|L7CT%dD-Y_tb(v@*d`L)6|O&hbxuxrk_iSI(@>a zSWF#sqqT%St#lfOYXYpK~@5$-8W^Z>mzz{i-JHNd{!ILjE(xkkBV0rPT3Pxb36O#8MAwzCCh?Kob;ImC#ePU zUnj{HN%NGB2<1iFgv7WUQ##lvuF~tt7LhhunZDPNxSTz*>uX^VE}HNA<6xZCLc}Ax z^u%uV2>)~c;OoKl4FCA87(ZxnC3pBJPgtrhxlH}?K}&U9M2>Bqg4kH#SLd>!Bf&DK z>}&#o{mVHCCyr8QdJRuPlcbcpy;ztMO2fl1w7}!;+jo{wD?Nj2{r~VVG4Zt|sju#h zWN71DHyn96bYErTuV?=5+fWgfLJl`2KQmSlt0RY?4c(i8ncjKxrrVbXPXFPJ%-d(m zer$p89ZCbb({YQo?qfyAOdmEY+kWiZ!sfFSycLZ{wDr?l9PCYx%tV1EDp)e zO~d;Y#kGc{%AAo}L3eZh+7;IG>6vP|Fg|SW5>!_&crB$fx6D}{l3s7xRz!9K8E50} zCK$_6#M6uP-h6Gz$}eXk0ssr|Yd?b%^waa9rQW^K&$gBVtPGI@yYFJIlF{Ydbt7T7 zjwg~gKgsC_1MIT!)0+y6C(jbgX}L)nmNVC%)kRH-j&qyy{W*UzP$!I!C|mn!(V2oLFln;p(Hb#`TD9mypaFy;Nc=^vb)v|7B{ zc4zD*vB$G+j_683xfb9_0Xm1Xrw1lPTEcg& zlH2P-0YvJp#X-|Z&;k{FvdBkN8fY{kl|A6Jj^E*1z6ACglOQ2>*r-WvVMspR| zCX^P#>iH!IKvGPdx=aDxw6EP<{*Bue+^A=%50QA}m1mfjCdb9F{j$z6bbWU{G!JL4 z)%Y0WRiuV9C2BISffor*u3=`ZK->zEqTOo%buax^0!6{4NMIB9fS{9^jK-GObO^ZI z5NE`c(`rTWJA?zz51n>HRRU~D4hm}hq{;(8sO;V{@E%7PPDiX^T3zJ@(akv^u2l+3 z{VY(g5&M3gYUY872>08B?aKuA)gGf4)VhTK_< znPXD|tS$M13u;2^0`EF4p2dI+KD`9t4Ae{|3ie9}pt-jJW&rJuZc$}_4#v5J@RK!+ z96*~x)++POJAgPQJd}g%Ahw8e1RBtoz#{(fDtrN4ZBx(=oEhDlvZcs-DE%+X*Vx<$`KV)55TGgT>Z>NS#gVo;lsRM$9C5Utig+6#qVDr%C*Q(TWPc5=Tuc}1WJ#qu?S~=H2BF5U`$DzkxuH~^nG@pB$( zqDP61!$Gx@zdq1Fy@q607AtL}3*SEx?+`jnlvh093(i}q&m5O#)pz5$J76c(g^L$d zC|7cQrkKvxEb(ggwmutR`De@D<|a_rWunQ%a#Tou2ez0e1GW-OaSQ{WvJyqfKN#Lg zqpJ@`r8un`JA0kH(R1g5o3828tgOItfZk)rvY#iI6B-_p7ad1h|(aBMJ=ScJ9Te?XzDNM#oucB_=H43}cenk;Mb zgz(lb`G0s)HCj#E%!c2c_3q?JOoyD=s46Y0Zzkt{3?(RkdU*hYEh9x5c;n@N3NBM} zqf{#?hTR`^J*|Z87?U6S9a*$lhh;mSzOLFS`ykzmq||@vDntQ8*|D~*Met3@YrZ2r z-*~ye;2>D@d_>m6aJl4EmsshX9fQ+vDzx0?RA*mr$UUr<=Cp{iQsy}Z+nOWl5hG9yTt zJTf234lGM0u87$EGNhrhWmj7H*&=sg)!Kmnc|=Qcr~hOT$qFq?lCUE0;q3gkBFlID zCQS6+T*aD?HyD_vljar~)^0lmiRk+LN~NBu6PWNKOT+LmCyX`8>g*FdIEyCa6Ti1L zM}y_WQ<)}%4G}y3YJ?}5rbgRS25L7tFN3J89>v`MN%oe66QHzn4h0 zuKk{J3O!dwT2kWc`$bZ-7f}xYyITcpQ1PH1U7sF=}s*u2jK2^d#)0I}N%_ zFtE!Ik-Js7yG7=EV?Cv@Yd_)f0!!Uog*W&+3cm;dmBEGKG->G}j4jJYHe^%O2eiu`oGS0x3j&0l9X;OXG4i;--S z?g!V5ywfkxmbPm6_;yGHY8$631N7s+Th17vFJpY|hLSCH;y7=D-2d>Z$b@v8vW**3 z3VuxifKHNo}jp@G;iuHcli^;!7Iv<;zYCdUQ$1*Ev~&R{xmMx!LnSL6PVQ{(3bBa8>$?F<^M~Ctd-AR&*>%qQs(a}qc-`0~)A^M9< zgIwq^+C2f#5UFkXXg&0v)wrmJl(3Wp^UG+IZbJt36>G(^Z(pknQr z?Bo1Tj=+ua>JKBP2>^ibO#q)7XAZLI;*T-GWI#l*;6t?>;>;DA88L?WfDzQ^WqutxVmL@U} z*gA4Szs^O@A!6_VJn7ukK+Q7!@=rh^DD=Xab$LlxSL!W8y^6Svcw`(WCCA|Oh5Jh>*Gd;lOs;F@`Yrdde9;>w+vH2?cAsTxEYGjv>cY4D zf4UnB?jL`pQ?3dW&o{r71PE^nl=Rq>Uvi3;h}_3{l!_`ZSVC@#yVFwfn_E4CKYtnx?i8T%n0?p2q^)zO;EVnAfYCdr4q)OhSPWE+dF@4c3;GG4 z+P2!w+(28z_UG@IrK&qaj{1f;x!fvC`~z0xoyq9=MN;gm<{8Uj*SnMsyC>9rakMXv zx=NP__T~?_K%c$Wwu;WFQQn6WEpb+PK1CFB^@ZXLlsImefel@%$WGJyr)z-cGk%n~ z8>lL6z@?DTSmX=#uU$%2^H8Jw4I$Qd{P&L-4OBmile=vXZGe;;dDW!N@zhVsWP}uYo^OBghu5v&`F*~h_pHQzW@3-cUHNwOPTCHh zPp+(A<08a8#iO4H_AE(%l zm7kJJsF;?A=SQeVN!HP#sICuHCNFj{B@{nY69iikz1#y~bbjNmv7dc&T!x&mb9)S1 z%`LW0_^tZKzVItTkhbv#df^ZqUwwBc=eGiP7%V0UV;|Sf*cybG)|ar)ZOa>$ zhPohmqQg9*8-SbCza+z$2{yEuY}l$d`GPU)X)dgCyg`S*qr>&P?nMYozc$6F&`;X^ zn!|UTInRh8Zfkfx*HxzUm2cb3k_S}PC4AgzNvC7)IbT07F?Ay`On1~B)ZsU0@Q3^o z7408Df0lY)Xz3H%4q~CKsmvcW_GvZYxsi+dT7OCbB_vY0nVtR_>P41KG4-*4JDNNJ zSbU*+idq2ozL&kKhs1(Eo?ADTNW?AauVAx_!B6utyFaTNqE z*h6l8$0(Eyty%l<$p?K>6*0}~r7c}0tEZVE!{syF<)u)uhd~<(jx}Ph|8mMYxR-u) z>S~}!ftgRFeP&T_c5ZF664;=q$XCoOi{0GnrVvbw&E4!VJ4)LeL55lF*?hQ)NNVSJ z)Sce3F=`n1b`ktf=86zIe5PbLek@o@4nLGViJUhP$R^2c-PMb>%VXLqUL^({(Ru_hpW2s zJ%^ltGzGMdv+wv|oYIT<^R{gJkKd7F%gE+L|NCR0ce8=BZ zK{jxV;a-eA^*XThg8k5|Y8Up-vn%{LSR}4swrVKWB7_1;hWW`I>4CQAS2L$ z@r}BG_c|Nkkk|LnoygZvJ77F{Qvgzkt$j^li!r?*H-)=95aY5F?uv=toc5)fB=udW znGi$SFdD;ph`7bkb@$v1^J(CI>Yv)k0@Bvdb;>~X8PiH9=A^hpBOVZQfG2JljA;Wz zN8CP`vDK<5cxev+Dr|oNL$MezfUsd)69JI0foTI7atj%qpb-n6=2QuFiso$rDS^dg zpfR<@Bpiq zKobh0Vi4l0pknpvV-&hgpERrx-sU8DzYW%!B987#;|5BA{~+o#mJ@d&Kv3z<+-^w7 zog_a7mKq21qG4lmkYs7OW5c58cnUO^uX*=y4p)Dtir*I#dCj805(nfWF;{%y^)EsC z;CDs9beKK$g;&UPf)*@z#SG3KMu7)}ieoZBTb49;r=da7`1%NVFy%KHc;yK&8b=C3 zLx2gft{&I;FWS&P60~#xSp)X==_=G7v}*)|2*M7GhbA})9rDNnLI-@f4v>F2@n9Vf zxlDk~3xrmj)vR>XeDMO@QZewA<^nqnkl4;*VXfLAXZc^qGKf9Yh2a&G!DGI6t^aTK z>(w_b&%H~ba+L?~=k0uhzK*N+uJg%p1^`Q)a5y$va=F^FtB_`0+3h}~V^h+t;~51~ye2cn_wZ1?;uWyO2W$zFrO+=s47({l5# zZ+b|EE)Zg;1^<+p0GpHMilr7*=V}Gad`W71yR-hcwy>w|=@$KuQIErZhFuBEeS;mM zZ$bJJbVVx7%tTz)Cs@gMM46gyJGaZf;Uh~{Nys?I-IM7Vd{za$C{=NJG@v$a2bWW# z^Vzvc3@BseFpux;GaI^}I%^l#%L+(Ed1! z$e+8-Bt5SF*Oz$Wp!{5?T7LrU_u5lXTA`%CZ;aLCm87u9-MKAfZV`ckON_3#6EKad zE5P6oUnzWD@USw0+>_SKxTQVqmwPQJm6E<;C^VI8aXuBr%X4Ps^)ev=M|D^w>b4g{ z#$COt;t0{IbkD2hMwCXS8FZHie}L zlP7be!+FQ`bpxe_NOC?4<~G;LU9cE#k)hwT;f1+ zV12d1E~IYgN|lX^MFVFXnkr?)wv39Xgfo(@(eS!}%&22WmNS$yK zg=Wbrd)He$3$ZVB@*P%$=BQQQ%xPP_^*b8ojZfix`uU-tJV(#RuiJgp*BFYtBvd=@ zxfsQ0A2QIYJp?Uu1ZHJ*&^sp~9TKE3V48jE{~|E!sbu7sf_YT-n;WB69O=aQ95z@x zMqkr+@*UFx*2kIBqiYrx#?A4S$s)7Z_cQ_>DIO4CBEgHZ&7jY1#4`^biC-^g=!2^2 zRBwbrcs|?vP2ZfBa+&6*7HEL0`=ZnGB+^0R?lNw+U~szcZ;R*62F{GtZ)4jn{M`j# z#a(9+R*asRrSV=GK`({|vYs9E@FIQ|;l4{jTb$Ab_sFX&6WoBaU2?ve_oyyxM0*MIWf{Z^Njl8Ps0~K4D-a3h>HpN{cea>}V(9O>t5R51v&-=y z({4cSElmsqO!4mK$PB%29G{(2Y;m~sc;M*uior^z{#Q+@!ydi`l(Mw4ANDp*{Di|c z%c-l&b(x5^2K7@7pSR!Y@67m7CKID!6dm;=Pf5c)Xr!^ogLL9e;2Hd(gbg8Jt1q1? zcxJi8QH_8|S&0=X@z?C-H3nhHT(!@I$c;9i!kcvCr{_D8tD}HgeoL`2rgBV;+|t$}C;Gcg8OzYLIeGd>SP?J?8L;MfGn+QixeKtWicir0 zT+gDh#N*4-QNqt$6I#pZSX=H)_t#f75m_L4)~T3GkW+TCi5WV|)#c>I0t*Z1De(;# z@oNKVS9mGaKV;f#dj8?wst-HOmkocWc;7ijeEHS){fkcPEfRNEkI`*4vkUB-X?gx? z?@u(nd9_~bBAMKs?bkOQa4+pQHrEFnRx(>0pPFw;Wbf4beH2H@Ej)vl&K3g(y0k^P z5DtRPUPU%Q9f(L!y|8~k{y+m1XOBY=>Sn-p7z+M)$qQX4&=r7g2a34C0N}>-5RPI6 zPJ#6cAR-*Km;mV?)h>?lVABoH0Il7wSn?M9KF)ElXb7}GUI>D&424TN*n$IW8SKlQ ziBf6Ca4(_|UNBGj!&5#*z;T@%v^@u~Q5Z`O6ug>Fo-fl-|D4~hb-^s;dGHzD56++f z9Nk8N{R;Ju28B?Qf}jIx0LTk~o)8oq`1&hWIy@_>*-OT!;5=5sB*uV^ z`}c!#Q`o}kA7HAmjqAii@BfRhi*btcg@53y2k9bnpd8%>RsBZ>@!JYD4~m=cAjpFx z5+Epj5bG0gt{~;^1MU-U6ym8(k1lM|e;w*w*?_YN2ImDwunsjke+Os;nEtmxVN(a@ z4fxH4HWY_c+XAV0AV>H+q%vv&qg?^(0O@TccVrN8AORAiAth#_W?OUA=TB=2TXPzK z`alCowsA;G094ph_gQveZqN6gVY1tiKswsFi>_M-!jM+TB8Y8_u%7~DZ_yJVIT_#r zb>!<<*fjT_V;oYX=MXW|4loFSi-ZBXCYYoG_W2jihBg7#_!OL&TFJY9fg|5U%DF4% zDpuUFaU0!g$ep@;sP*S%Q8ln`%t;-IG*@cX34f;AfoQE>Pr7RtEDW2yCUtG&(Gwz= z5!Hj!Q8F4)+f3yrVjQiaE_l{E(^NCZ0~A|i~YaNIwaxhp-Eg!rte8fDu| z9HgQoJQ;EG~}Up1x#D$8RmBJ1Lb`8{Hbw2T~!5Bbw;7s&^`PW z5xCdovVX?C#3=2OgZ_79(qj53Ej?fBYOgkmk5PPjPNKa~Yg@OYgQ(@P3v-~2 zgtF1yUOnM=B>SD2$GJ+`uX7M*lY7v*LS!J_{kZbWMlij;L!VI?Cj@{PQ0E6^6-nb|UOD z#jgQBb)q1>!LH`8d4~KF;`;|B0e7LM~ zn0Obh%wr1tpLV`~7J3$ip zG6&@{T0Z5ge8M%>yo_yB_K2xgn^`Q4d5Nuc`p1aK1h`beI+In$-rp*cab3aI`)tnz zWXh06o(7>o^^0-7Rh|6EWgkSE-wsM&|6+V&*Uy37T}ucuk+z;vO{2>zwYXjHb#Jt0 zvr~fD8u)2HhmIndQGROA@1ah3qYqZtV|Hhu%W&Kh)QYjW~xOLR|EZvnbzSl5LTt2-$F6Bx) zLG_9zr-8q#e!Q#cmM+W0(bt7v>nT+RKQ7)v8zh3+H^^A(wI1KivqPG%IKBu!$ zA4<0Rbh(U?bD0i;1;IqHZhd2>9=C4#Tcjz^2s+3pCZtl3AAIwUk8*8SQCU0PMv0Y{ zdeu0Q*P8BUoS?mAqeb{pKy?*+f&_BW=^|Vpu(lcBb#udL&qBkzWHY&rBQpQuApeevtWoaV*D|lS{ znbwp1&Fme>l1)JL#3h?KNdR|U;kYav1f9S))5z=6C1Pn`n)Kva4b={eJv%lYroQ%E z&^U7(&)LQP8_()50{pebdrr=DLvyywNJ-cq$~>G*Y5N zMt)9z)MyPDLmM|feLW14j3CjueYP=L0YRe5q8z=$H=d%ZhjMdqZ^H^+u!XLhHD;Sh zf7{Z&@@TfDh-2QM&E7}ImS7H{5;IXR{PmtV0Q}XI3~O8j&3yE&6C5IU9o>-+=zG8| zm+YMpFztZB^Rzz3Ie?~uz8ii(!MIV8gC8dDU??phV85>Z=*O1$fhbY}?Jc0HADNCk zg!j!{$g@G~i=;6z+#mk}kw5X-7sTixz`6$&P4h6FA?7H=F4!%HdVmCA$v2!(bM2Y? z7T4aw19cUuI!hCZzwcqo;_aYTsTef%$i;2=#5>pmT;9s@BWw%c;B~xLr_t?izSu~a z&f*-RIDiJ=HpelZs;kl|4|5O1z`9Z8gQnBRkbiMu!64$)`*8(q4cHvtOoONgUkXrw zU2v8Kw&lxwbFfMeOy38u+&uEHZB2h6Jvfi#Xn+VYhe}{seDe}dsJoTbu?qgHq6esu(r2* zu2>o`a9|Mv?-1u`aVcYzh&;y8RkLB7zM~MAx&M;;L3W0(`8miN1G)c%^o3%e?yUNz zfEDxE1R%s}1l)rXq+!fIM*$mVrUXdB1%__Ni8*jur~>Uu$s|DLp!^*u4E`A>l7Rk_ zq!+gK1^61ofg>{nwk!b-0WAig-wB-Ty6P9V(VcpLL`RHYRi4Vj=%oSs2`du*2)It% zz$tFtZx_@#Mab9?1KC9;`EW06i(~-mrN@i}nuv`1Z-K7E2FM|w(qVvZIAeKm}CHXxN4S%;vDe%AWQ^&aavJ`{=Z5!-~WYaEIJh*NvBi~y(rved>&FKPN>s( zL<67P{+rLE&g@#<_H-jTcwu=l=BnHJG{2y6r^?tby<>m(xE6owOLnTZLpkA-*SZRv zclZlEJn2L$bPN2X8`_0D8c|yo(t<*-t{7+8iEmZ~bLCOdy)xC8&t5fp$&!_}$7mHF zWBO!rgeswGv_ZccSA5?YDPuA38$(0zN?NkFsKQ4aSb0iGb*j4&FS@v?%zY7;vkcvD z)0Y-|uJBW4A?OfCF>b#?!7u8vwo1jAA2H! zLDEZh3ej+$ys5>9o1dWlKgOav9k)<0DVoQ&kVb4WYojxv4`rFWkl$rVo6G(zbdcQXFPIm|)-wGB*C_|FMtycHv(bY+UQ0q{MH^aE=V?tNzT-(X{W`x$1z>q{(E=wgf(CJQNmX)Nk>}-jlcK)1o?V>J+#C5 zJ$N2kGcr4#XUl5pA-lO)?48c4MHI=7dMA$zAbs%)3w_ zPqexC{-umCBg^~Rx((V9G##Pfab324`)xs~%s>qUO`LbgSaJYbs7G9XW*R$FJ%-QG z8HUQHw^%gr4uEQbTHYx}2_4a5qG}kWzxsH*)^(#E+v#kVG7Zn07LP8mN(sUyt@L&J z_Vb<#-_7N(Vm~XuC@UQl_x(lg(zSeptPZC+@X2Hs_Bz)L>KD*e$OLI-$YrYyk9@z}NU}?Wft`fZ= zrb`}@m}uDk@a3ATu!mrVW4vyE@*Y|#`{ILyeHr{dSAd13gl?T4?p(faghdVG;fEp( zVjgnUCT4?B{Pox$C-Nn0e61O(Vq<^l!Pc-?VEM8@`tn%}O^o$(dwc2^LK(Vakh6!x z>SOzD+VMFRugVaAC{~k`7$^wJ^vws4>z?SawtaQ#m@e_E4;#x?uDc2H?X!sdlJVYc zp;@=*1@uLp1_x@^sm)*ijQ<^Y(AY9Y8@^+opfPqw(v$F(LH*v^C`IcF;WvAGiw=sj z8>HMb5XJLzmo>M+oDYu!N3hdZB7c)ZEiPIrI4GNzZiFY!JdYPQ6ytmB=4Rx1&PjP9 z5#KO9)7=yd`F^#_;IICOp_U4spUG%JrReu#y4WFt-ibd&v0Q0=8qt3c&b#Esg{A{M z*SJ61KJ%c{B2WVCcm|Nw4qjk6ogZ*aTm`+(YrU|A>K&9#5NU)`%_P|O-O#lqJS3ZF z>}y^W2os3b9kk{J1L1iCu;PUZgr9(%Czfq=8}Bf1H!S75V!aWGSlHAdh-gBl;6TLH zE|9;0^`Cshlbp<#1EBpuLK6z>PzPIjAVgff3QDNWL5}Ac@bqCQ|7Dj4<^Pbz++m&} zU_~1M`u~JDiuWzl6O69CA=s)Q7_j>d3qS_v{X+uXcJZ8`oCYcYdjUoNFS9_y5;Qvh zlE>MDkrfzJ`nm$vMG%Yv`*j%Tx$x_PKYu3D73F04&qy;YH|MnIGgypY;ya^Mj(mj`4*L;`Gw z>tBNWU^>X)1r-ZzY$qVeRAQwAb8o@5jtun?x-A)Pn|HA0m~ zAg4g|W_dVvKk*sfUch{h17 z4vaGeR6Ppzd377-XzExE$`ZMEWDuP^XPA3+Kxo0E>{@5j2J7I6ID}UuLhm!^sGtxd z$Oqs;fFn@~IcPNkQ~u_)GmP`SujqC#<<|^>T@<8~r2~$IU(b6Q8ft;=h(UJ&FbD>) zA9?aPkf?#kR>E{WB7ndM?Z`K-Sb^88(0>J!&`=WOzm(JeCcZE@>2sk3;%+zw`FKQ4 zbpSKTlcTW}FEs%@p4tA`V>3Y~9hZB`?hobwj`!g_=ubE&I{WwqgE*c)r~? zi@0if*h`hQFznZEyg5hOi)Tdh=@w>hN%&c>$#Z(CiNz*M%oi&)m1SA=IPaSn&3_xo zjxP5Q@8Bu1SOd9XjQYtxI2ik4hOr7&wpjdhpgGFL@O<5?3~OhgazztQBF)hrlr}EJ z%$F<&6|z|snZdY(9~d0cbu8+;BgV2Kv@j!gyv_K~SJI}5UVUx*4b^y8Vc`4Sy*lMh z82S!P!2_a)*S^+?$HV=EVn7ohU5~c{j{km=zuTE@z{D#qFF(GHCdv;ZmxNfcuDE@4 zxx(}xFM$sE$kV>eqy`I;+Gn0VBXLipnlBX{DIt%diOo@hzF90ESCPs6>a5~|7Pes* z4aM8h#HWlLz8-sgD z#)E0ROB&OG@RZl{W|HlOJGwJ014F~nWw~#kXVqgAX9=l<;5EUx)7;jxUOkGD;Q_Iy zkH@cZ^@QkFRi>TZxydBMBB!3!Q2WX@b?u<8S5TE(Mgqn7wP$(wo=Ur>CnA{!5F3n_eF@jL5$+QD$9(-XHM{=V=Wqc-T% z9_s#lPqfBwMeQmoQ;4=v?r?msrdndk^~K8+En7cheo|3J&nbqX7Sg#+Y1`|$Lkz|` zig&JDYr*OpB%_~tHr_85E`t!Y%Dz(|7tejQ*;SEkI7X_0u1`x9@l~?3w0i{zs&b-j z(-#(!eY&NQPOO=lhe2}1w#blHl=YG99jSm{ih&sEN-oxTe#P<^N@HV$3 zo4Z39Vy%+t-s0oAOcu7AZhxI?QDI}i)`OU5|Ye>>v0h2TyYtsK9eH(d; z0-x8ov_x+Og9?#!pUlSrEFq}eaEK{B;HW}jP%_IZnNre|{G7_o_smdd%Q52fFxT9L zNJb&uHSsoLyMyYtd45?6IfEGwaGET&`cFL)~c7r|j~(LO8E z8;V}ghWLG(y|bcR^xI8en7^m1cN!l%@%(aYd&K7SIfs2~`oq*OpS~?wFy$aX-q+)M z)J)9P*Z5&fVIvt3NaMn*qd+`|q5lg3{t6hHHatJ$=<;=jZ-v#Snds`nga>9Ob;mpR zWk*`BNt_BEV%k!X>^_Wzh!Yee-e29 z78{5Y0k*FBHxH9K>~c)NN-6^pT=6YngD0vt1X)Xsatp3l9HN0F0zOn60PtUKF+kl9 z_zjwe{$tNoG3c&jRZw?A48Q>gL_s0E4~WZ?D}%12k_Gbps_%uO_(M4VJ-IgsYJ5Wb z0kGSCVMQNd>%EtUh!N}p2E+-#17N{G&$ieC!1ONE+wVZlU-efB0|#9xH1Gy*85@6f z07F~mlmHsozIYGBNTwwNMI4x1t7;vXDzkB*Ii!vH4)677S0+5aFIt83YD55Lo0h@r z2!}}drG$w993JKlu?$=U`9lU?VQE6icLu}pHp z8>(>jOF&EUgG>gIyy}K-bxZ-SLpq=p*az29nG4sgqwTL%tQc%=5wY}< zWl<-XUfd*{CYd(6?G^neY8J_D?8sSAz#n5S1d<RGd}Q6alJAUyx%of+8p__@i{UFf!e2VC zp^)pw=~g$b4!+AuWl;1eIQHKJc>IW{Lc1U7m=UWpB(RlLA^e81MYy*bXDI!f>-GyasoZU>?d|ZeUqgHH#?MVB zY0SA#mG^oL^9@>{$Fd@QK~xeM?m5fL?93^o?ji4d`>9wxQ%ujaU6#W$_=G*lSyeI+ zNk&XVW&Wy1nl(DiY;;2gx6Zh-ICbrsRcbI!B*e^9wvWS>AgguK{49U+Iv~$UW13Ps zpcKD+nCYnAx31)sJKg6#;PdrzMxnI~?gvQ95&2p4UW!o=v9d>Iu{l4k|qQ3}+ z*m}P$YA<(UCLLOMVuXkS10`AJ!tTdWT@2O9ulELSbnZdf{nY(CAtju6`WU z3}O_gW1NdX4YmmS0&3XVh?P>$s5FeF{06(wQnF1e#0tvR#Tz~j@lBv?I4zAq?ZQt* z>OxG7L0UG@uiAm?ha6N@x(1i*dM*I6H;PfZIPV@>vKQ5{mz7mBmQM6zSK3|#{>|B6VhUsOG!k*ro~Y*qOFiHagS8m6$F(pYx4 zX!9rbqh*LkvKq)&Rs(&wvhHg^f$Idv>L`mu`NrN%-Xjm5;y?5bRd<6-A-LfGAY+-F96Ir(RrcEXQrHJ?h9sC?w@!jUSHQi14^&VzyvCk#xZNR;HQ8+MKP<$Wdvj0d!KbU0Ft^1xY2c**kF&YImi z#i|p86tceZ1fF(Yoe0n;t2+SXR*5D1=#DqEc@qRIr*EquaB9VdRxYF86aZ5fX$lAw zMpdhd0itiuo+d`$Ym6KAl%#)V?qzsKs~=tVCl4_3Im`sXJsmE z4+E%Qw?Iv>UM8HC&+-EOwi`)LL#HBWb~h)-hdZ?2G$3FhO(RmkOI)Qjl2L8lL1ta%^b2}^eX{@9?Ib_V`F^` z@Z%Z~rLzh}dHaF7*-WrO2E%~pPD}>=0nq9(?ck056Uq(c03;q30+J2)PfbvWBw(@| zhkCz;dWHc7z=E1m&EB>K*qkNS(JeeV#W>`(@CQKFhXt34XdTGduD3$K-n|Mafg0<8 zX{axv%e5|R4PD**FL{v!c# zyyP1FB@A7>vcxB(rl(H|BjBUtnR%w@0lxPiok zR-=M}P8FCVm#jwEIt4Ey^^#ClT&yC8|CE(C6oAc=vaA$!0jhLjOtD z&X*?|5;G_L+3-SJN(up{jR} z`iC+fT_W6Dxsn3E2Cx1Y%-2udw?BHBQ?|4{q2D-UBxS%I^=k9I!A4dAjfKi|W9jEX ziqx9cZ9MEI^}Q!hf##IQUEfSkMwoq{cv*OOr$_t!a<}J1f7G^d(=rKS9U+A`Wh(t* zXR?dVx4#ZuH$2~TZ+ik4BNNZKyZU|_>VtmS^$cF_0WAjF6zigQ6|iZlzY~Z3IVIYW zS?GF!B48m!KC@*(AGts2(tl@z{rvzbfp zxs;9dZ`+`D!uXF$uxNF!CJp&&{Ubg4vV`n!ddM|HfqvmPDQ`NIp{R}kMzhcTeeq_K z<_j2oq7$|dd8Imje~#tXtn+Y$+X43Ed>%@q+}s`8zbwdC1^;I9*h!-;I{)@IipuaA zo3yHIr(pr9ROZ7+`mE9s!PogWW*4?Z3{W>0O8WCh83c;wURe3QG}!VpxZB&Y<+(J% z_WT&15U->Hg(2i zMwkxssIfZmrdlr%#Jo*mbHjf?0PYu*k z2fYH1T(JRMa9ovg3>sUmyMVcE{s3r?p4a2F_W|yD4xC5B1i&7KM*@jg0GKnzOF&MH zc}x!;*NeOWsEt7KT`&YtwD9#F31^VEMjzRT04rq043ISo+4y(-3yH(Txz?cpx+zPn zz)5KN%pwm~pwwmHY%a#xZvr(_V7PAx@QY(F!Qi+8!f7kLqt!0pZ~lX{qu+F3dKztr zoGS7#(cBWf;`WvyB#$HDy+TxkglM@s6e6u{0TT(J&!!`mE5N5U-H3BwEdn;S4ML(c z4H@}5)anGH&Uk?`TgO3A$M6o|pYsB@h|q1d;Td2c#jJE-I_b_ZUEqb- z&z1f2dIf`ZnEID1R#hCRXpr?hmA-JSb`^j`!NH&-u3Z!4;2Og{!Ope!W(tt!8x;5m zxL3V4x+9Fc5z&VS*UCW;0Kva`;=o}-?W7O$Cgmd(X*vT+tpa910xpLyC=~6r{#5}Z z{N;45JNoPY8Z>wkH2(F~Q+|s;8M)-mdq4W3ZD=6x7H6@~co(D%kvATL6`P@;AaA z7O$65H?B7H#V!w3o@Y%a{ytWM^Eb6K%XqOIK+g}$s&}H0H^e;`(Sy9Xa_N>{4?>a{ z`RZhaWZQ1uudEkfGoSWlS)eis_MU89cWjbdqOL2gF2Vj~(`K?VI4*4oXLV{BFb>OH zwqq``wyOBd^qKhibJ9ajn_g;vBGpMj#+y{{Qf@s1Ope1?adS0TRmtY&k4nf!_>N1K zT=RoZ%jJyOIm%vEa+NXa0hOzKga_A~*M;66-qW-d;)_-^uwW1V4>Qi(a@jA`Z)` zK~bczyQ^W3&PCEc9k|HKO!ncw*)WT}C?njq;&b(GJ=6a+GA5N?FdxxXKTy9&{S>A9 z?b~p00L@_DT2QHl*A^}dA7}2P*UJ7x&XZp!gA~THQ<8-8 z57j08yqFp?CguflOhtPank|8DL(_bnL*V{%-ZNS zH&BBjX~a2KV(_9zgNir=>wM*^AY1xS8PuET-062Fmu0(oFRXAmMFXD%1b3Z60xhM@ zWVPP4!>&5w(N)2Fg;Vlwt~gUd0T-8XwUNc-hcWZavXeWCkdQ$ZhUe`$vp62ZX<=U$ zXYE2UeH;tN4_fKg9KU%4Uhr{3yK@j$Ic%XSg!KmDnZx4q4e(v5XA zARq~gSzl?dxU<`u5BSnw1#F`=-0yEECKn^Quy`d49>>YC5dl}jYil}c55|HFMu*A0 zF|A&CSmb7%w~Xb_edWJSs`#G2*;g?9BDY1W4;@Al3_V{eKjdi)xL^6+59{W+A^N?c zVr5wNc3ppZS+7!VdFblzrXgzIeA|U&rs6{WWbHT4rPzzfTU8T`rL7xj%SLymXLX>J z0WbCWp6cjehpWCf{BbeScbR)To-o<}WV-&Y*Jx-d&)|a!aoF>*k6Zf7shd^eGlb~e z5BG$oB$yGF6fD&@9a3%(pN2;z{-*kqX}{ua)gqJ5O|XWRtfo~v4CIEYu_>>-EBVG6 z&fWCcwpc&2i>~ZH$c^^haGwpI28xk-E zG+{nSFmOabb|)p7A`--9fcVjP`AsBfBqTz2v|n$=L%nOo*erVv;TJEWnDD>=69V`q zLEuiEJp^hNCue@(yu~@#Uv|T5;WO31K0DZc3Y@-^k-O;jk+~<}@#277#cN#?9R8uZ zpv=+tpB*-M;TUIM7sa3mC`x&!?D}5V-0{*Sn05>y)!=S^Ck23ytwhBCBF$p(t5EOO zZ8Q=VK0#x?B?Q2}2%ug9J|21i<3aKJN;Ru-C95ph4f@Y)C2w9H;}8j8Vlt3{A=n8D zlabmWfFu~CrjaQEIWNw^^bC`*91g@xg9^t>uGlL{<(@J|y4k?5Lj~l?anljzo4~dc z@G1hd-VC1L_y=v=&@C(g37!3e(wefbH1ma5TJXIlim|TVF4{Ho6}LfK@Dmi&&T3wl zkQdRx%B;3=v{ZAIP)D=3&|q@dtk*Fi_Z|14wl)@oskCk4pHP;0evcP)4mO9b{xl+1cqY~!PDI4Yv$Ovg+lNU#~fk6uXyiN#+l{&b= z0+$U?&hU#y_!qija4>0GmVuY+O`}_<@Ary_%Ib)N#+}GR8wLn>HJW?hq!E!53Wnx= zX`m?cc^(Zu6K1f(flHDPMr#LEv^7Y2a{&r1FITf&5Ko^9z7|1z0U$TF({ur&0ccUc zQ+K1_DSYHPC4IS_RzOv*3_@T6W;S57C>vHOz#Ko8zM_fdpdGI?77qYQr&jRn|IHjt z%HMo+g|^Y!0|QkVb^u%j##kHCf!uzJWeVR`@b(7xwk40<~pauosJhqfJ!v z0}OL^@(FnxWNw+Xw=3s34D5(hy9%@Ht{YFPN`w)&I}<%+8Ev(lRT}O*-H)+7tqz}# zwNn#NbMu8KE;%3EXIuzy{@$N+-G0VYEQ+yLuFifX^KX%kbj>vap@!HxW1g&rN(w0w zpz8sw^wKpPkFWK~TC-uQZgm{|S@k;iMX-Swv|@S-se*sSeo08P3We>s~23RTI8~Fb>CRt&uvGI#OiP=5Gv(^=tiLC=Ww&>bV)q#Ri_1Z@;`gV;{Gp5 zpCNKBdwv09!9gX6{@H64N4KB;W73m=JQCc2v_dNepuX1o=n{E}3bZVdyplGh?@&P5 z4f-eMp`yJWx0QkvVzSKW+4D;7C=|1Mv|64!D%{kn?MtWC;3P8RVtom{-PpXPA$wA; z?U&JVP+@`lcAe2u_59UK>br@G0WxBZ=m*Lhadz6H)TnYbp!d-glXzj$Pz&PQz1?G6 zwH*H#vb!J8e(>rLte?(u&078acUWgeV9LW=ZqPiXe}0&CWY~SL)yrQE0&%jw(tDfA zT4%Ge5_YS>i>O+48*Mch>apr}G&b((j^u7c3o7c~UmcJUap-orLDp52fLNM{dXx&l z*ctyGly#Tggl}-(Ao7U>-xaqdUg%930gg?GEgj~!-bu(w%e&xchu&yC$Wp~SxGaj_AFjN@FrH3vDP6@ToY6cBtmSN z**Kbd=}d+&%PyX?#mbO2pGW~5ji2xUgcy7NiU(|jrZ0wsn#LcGT-wdgFl$os@krX9 z>}D7K(C9O|cJz3YyW-hyaOCwltW7x40e$h7%2DRV07dHevsSfHtXn7b>_gh#La>&Y zz62m2bm;+3DrOujhBVO;N4IJt0jb7&idBb(A=J@ikyC?Z6>_N3mg&zk)lX#o95U zjyJIv_QOdD<3I#u!$gR8umDd<$>Q56*g9~$qEsQAV15=bqFeNUl*W@*Q4}D1R42fv zk+iqU(yBc}NcadGCviZ+0iZ4i@rfc(!3Gw#>_z}@`dIq{?u)I4pa|~De)M2BOW3N! z!nSyC5lUt*^R2$39W@k`!L&RVW$8Ev`5;T*R1dY`d_dkZ0hLz;LEn35`wfa}9PJI8 zAe8o_xoEJ($Q`wutg zxM;Ky2P7J>r&vLeCT7g&w%0&SqzYIvIS{_NWvOiQ72RqEA~(s4Xk`#%spmkf0|kWT z?-LMxb%1jOkJo%gs51w%6P?k4b5I>R!{jk30+9DO5t#`}c@tgGNbgw6B>?R8aqImn z|a-oe}P64_P}=3DZdU*KxM3}lofwT`wYcvF5uA|m1Ri>dlM51oKD>V@s2&x693H}eRRM%O4*_};)vn1VYE%gH%m5z@_9ZpEfD8C zrggZ(uCeocc}AqyP9PU z@gc|>I(~gD={WZEhV;Gj+jIpkZoV8VThc3qyRBZ+R8}dEjw2MDy4|h!tnfr`41ODn z>3;@T9fy;~s2dYT=Qk^!Jpc1v{QfD?ruJUCZ(&=cPXGl?tZX*}MCtUMzr4!s&#R-B z51(3S;hq`7@KZUX#6#6zqXI9w+o#Sn{oNlr50$xZ^YGKl&OF$b-1K~*5A)RImhCll zcc;qfkP}T-msH5y7Nrt5drJfpC>Fv>RwJ$mzw?h1_T=YglB?BXu&L+Dva^$KK3s@g zpdzxge<;XR-JS{=DY)I=S0WVS0IVEU*2Iu%9GOacD%M;;%L>UaIiBw5L@7%7VJLz0VqAtcvhi zkALbqx}z@}Kk!_1b7-syueyqxp|sNpP(;VYNG5{I)t#Yvs);fa~jZm2Y92tOgw z0x(VC%~tn~q0)@PIVAdY?`@mMbi#{wx4CqD@B;4zSlQ0!dOnhturA#`Z}9tTYaXAI zAL4$+?H4_$ByErN^x2UYZz$P~Cv&_P9*Q6C1+Hh-T>l*GwHX$_40_ah&c_FMHl#f^ z3Sqa(n%S@0n(>b2R(1VOpKNv^|Ay1!i;md`^EbMks^cN;MT!`bQ>Px;h0QhM;mCzQh_tY=`UQe`K8#?&HV>~9Y-4K zb!ePUHT(y8kj~nxqV^Ff%P=dc(dhM7Bw$^*cAsJX_e`8w9$t!lF||;j#cbr5KcP`Z z>MbJ?;YybcmZY$WBk)rTJq%oCe-!A1kT9Tg?uo-iZ$>6PE*3% z0ccXIcPJ?JbX<8-bnc2JekBQS18`d(k31VDjTw}aS4C;J!R9#v=Ai*OD4W2FO9No+ z8;sGO2UO0L%UbwsJ$NKgRwWL!3A6wBr+TaZ>H5m3wt{cpB)Gd4cXxO90>z6Lcc(Z6 zEm9nc6sJIO*CGK*fda*?SfItdNbtP;@4f4;_u;*K$*jo9IWs4FX3zdfVp~b!VPb$#LL|C!Y5F;d)aS)O92;V7yk;G}K9}U4`ZAYjjIL*8GkC;jI0uZw(qWbo3 zWtqe^0pb2ha+vt7W6h=kfzkN+H<1A0B*uy;_k2faSa-zWg>r0h_#sMo#t5m!lGg!{ z+Gx)%M9x={td5w$zsdyG8lECZE6NB|aR&y&2NLrI$@xl-w!)OPod*3k9iyQ3(eK+v zKc3$sZm`d{r?D3E#Pzn?E2RsF4O7o-)cp%c1MJzPHlcx|?Ha-3@JCBQoLRkySj|lG zZ$#2mOR0OF*g@8qYHrxvzrk;;hd|h@A+(rk1L{#ZDqrK?)j*|iS8D$J$I8Cd)3U2( z9&9| z{PR9_@a?#8jcG(+__7-Y*SyvX^yWb3ElXKx$n)%RBKb*}j#W8vY30kw4dPT|AM`1|lMJu|FctkJf{MRwkr_hz`99UQjaEu)e$c6(pS6-H_RuHGFq7fvM z{!ewq^E?>uT=tLo*LLJPI3PGYVt)dE{kzotqRh0;>f>8KbGKB{#h0z8AlM7+)c?6x zz%|O4HUgH^=uxbqB#KIVANg|4`Z#^73ZuOoxPMC_F1C__`d7)qM+=jOCr>0JF{$); zo-kJQ<^25KPOlto_4InDLTEl14$z`cP@bN-c?h=4tsZ`!c?h4L24!i{x<&lB`>I{{ zGIxDCUy0z4e0sS;ghSF|>+AE|rc&BUH~^s|IgE)JBnq=?zE!nqPXc95+>)L8OMBJC z6uXCqwY*DE37H{1={k329ao`S71phuYK0P>fO>DK1nlqn2 zbYf@&2S`8-j~BwkDqcU(ZYO?4C_J;|G;km?d8e?*#5Tmb$GCAmu?AcB?5?Du$O#Sz zWP$?>?8=7BbNy3SsKW~;4|a$zZgh$fl>F+TN9pj77;+Z=vW&5q@3*YqDU=-a$)5aiaMKAEzp2J#~n+Ap-fzX0|n;Q%+)V zx^-}vL{fE%n_DqlJ;IIH&EI`wC2{jZkiU7jtDQK2$ftopwQbGw-6y~+l4R@9#5<;uKGG+o?BCM zdrxI(gQ&E%6^0;Eh48ML5d^*M>ID&W&JoJ;!70U~B+kL92(6hH#Kwd^0*SVdkc6wX z8!;L|xD#(*jTqy0)w-|U+0-yL-rw!iB;7U}ejx7LIvBxHeUn%tx{84DHAo{$9**I6 zHD%952=MnxMLD8q?wi=Q_7x5>t0fDcte~ma+tv0*mfRo>d@xbqw z+>+`l9fT4Ng4A_N(^dN!K^`wHT_&zWi02_fA)?NWsAE&}8y?P+nDQGc-hQ)*{ZJKZ z=<-~AoM=JAfp8{lNBlP*5kCe&n^PB&Oj7hHqsG3>|$Fdw8l4$buno-tT8TvpM+qtA@-T-Z*^u9@oSe4&l6*xFEzT3BhAPSS87wW3Wo(^>5AUA7cArS3CuGe zGgg}RIg9V*iDbfKy62eHG-$v66Iv9%l0BUuW>6o&=C7YP#52v_GyXbes?+`-yR&jf z(2?LAS^XTU{YH22L^N#^C+xGZ09m0fgXD%JRa_>`qTw=1r}1J{uo0Qe*{>#d%l@Os zyK(7$gDX7mM@OaqS8odbU%hD%-;tgYGJ4Ck% z^9#`Ns@Xd`I{E!~Tfy1SSJ&Q0(bL__)5G4wk4}t^SJBhW(?{Ryoh{;PO7`!aZSD0` z75;Z*gha$dMG&9*e~#XNkD~57A9r86{|xbe9mq~W8-h+vk!kwdpe z-engVfCWAflZ0$tl^*EJ6OjBxOPE7Pr%yx&5~`seK32{dgm5md*Q^yeoS&Qerocvj zSLqGH>T4dw{m-0lUqo6dd_VGchn(C6FPe{oP=ce_iA^<#v@U-(N?kR+yi7Fo*{`|D z;;k9z6Vp2+3W2_eBYd7DlEG?x*>uiewmA%WkeUV^opmU*8W|;bjuIFoMlN_07y|qJ z0KZbCy@xz&LgQL`mpU3yDrL~RjU24wOj{aFKVQ}85I*+y_oNJ`IH(~}ZN90!Un1=& zAR~Jen_lzm{TH?sa$>l3`|w@OXR68}YC) z@Z=hRRHgeORP^||>rmhpr`1+_a?OO>`^Hub?t1{+p4@J3onO@1j1G_AMdoRikfCl3 zN)lavAZdip{*kQJpqa^e8)rCH-hp>_E@A0wlB1oS z?WUgGRZIKfU9`2&OU^7L^}I6RzAYpf;3ODHbnxY1^_ykzmHRZ`xw6RHyn=*|_PSAR z4|n%L4G!bk<<%Y^jq96-v{fJP4c5)eZ?r*M(?A`xq8}Sr0UJH={Bw)m+eOZ((UfUZ zNZ9+qRXv=Ibu~U@qH(57^ms2MWd$BW>HLzn-EHo?omqWE=g%{zyf1SDD1O#hVi;6N zmY4;Ue@hhM6|cu064Ge9J6U8EU{l;aPy)a^;ZhHu`mh1<65zNu~L?g-2)e%$*o8~eCI{6PYPf-V_Yi<};Uwf&Po;Kz9AKLHGOT`*mg5+QqFl)@Lf zIb;nXQH&CTmEL(RCb=QEE8i@&L28UK-FR%fA@CO`CV(B*=NeGjf!upGASeqR2}5}X zgO2ggE{>RwW0Zmpoe3GN;st{&$Q&JRVxii{iqgs3+hP8n>w=D>9AGi z18BF;MwpOYUsT&+@qQ`<%lXs@>Eo&MHIc^BC6Mcov2p;$Fnvg!xYG1k=<5O9m8>f* z90C4KLufLgH;i~~wPLLn4H#6#O$UXm#wkv#7|g*iw$N_Bcy@5~8@5Z)3i&1X=K zpeD~qznsMj zyXKeyk9wU-Hb1L+Rg??2B`$*4PZ}={M$=$GJX_vIpP)bc7FRoDmX9lzy?@-%Ojbkf z@r)maPi@H>!+vRcx_-NQSZQB=nVGh_x(mSr06DFJQtLbg-{P5%K-(@WnO(Pwi-yzU zja1eiayE`w1>S+^1!%u)eNX5Ecr1f|_;h!MgeLWUuBDx{&+py4-TXOGx`3~sqv$|Z zkSArbt!qqk=Ldp;MkDu~&o@&;uZ?A1E_v7BaXwSk9oeo{Sw%P_U?ldwK**F<`b7qN zB^Y%s(O!p>#r20@!=ZdkyE40`J9qfC>;Mj531R~ov=7egx|%*K?xi@FjD7w9P6eC; zjUYTtIOYJJ(}G@+h8LC{TT#nLi#5mhNZw5@>D~I;=D!CrKA2N|V`0R^Y{Cm=2!%IU zv|FZEisw0SQG7i6mC-lC5qX6m7u=u&z+JZs7FN^8mj{=EFv+8DJb$;hpC&w?T8=#i zJZU?k-(MYH=F7Ij{UaWXd1W6y{t?5FIXy}yvJT7pq6jLCCk-%%^>BfQk?El zq01gn`Qys<*NM#yfgQ$BMjU`X&Emi)(G-L(mXswF(5@RLl&c$0>ZPs}DR%{mWjN&d zf?S*3H=)46RYc#Dr*|Mw)!o96giM|H85>~y>x-lo9|JSd$63G!Uaoyq6gqMfEelH$ zcT%~4+7udsvhHrp>Q9X9Ungp6+37!H&yoN|$uT%`QPVPp<7xb&C2EL&=w&Bp!3;3R znNV7YRic>>zyj($*~9|edJ2h|&BD10YMmed8fdZKs?DWM>Pau*u%rp(eN$7$v=+v^ zFwk|NT>NLS@J+y3ThWgKOG{y<7CT;zwQM*WXvRfMk1|E_Zm~{q3ahd${?}^~h7?^b zdzLAnS9ae?CuqLx(-Mh`kRs)%aXM2Hg=X@z#T+>`iyD6RHnNJBPNtGCIp9@A95N|L zML}1ERZaA#z_;|(bb4}WX+dJ=3I|OJ!Jf&`PaR&D=`VYDR((3VVl1`Hy-dVmu?5RV zLJ$g@FD67w`t>(RNE2lreRxP#bJOgU3i2){9d`plhpTxbZt~1LH@P(?(Tv=2((`~QrOJ}xxm>^T{z7aAg7|NyJIkmRXp2gUgU4?htBSf2DKM(D0GWi!xAz&U$}8{6uj&L;z++VE%uD4L_sCjL`5hAS!d`&*nUdlE&&fr+Y-+D ze)=iFcb^CPlQpsvbPl)$lOc%$@c^kv%kyp|v=YAanjWFQy)Ak*>dme*S>GpFY@Czj zytfZHu1u;;8fq?g>uNkr$j0K}z2nsvrejgKgi(7+DUQUEg#nYeT+M5K#CkkMJe z6!{|$WU|!2EzxlNfMj+yoBPd=##$vuHbpK&CTlg#p~Nb{)GFxAjzF2Trj`?hlLwzg z@5q2MYc`J`X*g$sUz35m}3zxk(un$EBLs8M2qGpeHtoOo*FlN|#wz z#+8sJpx-h6>@a4X^T4Kq!@@ylhg4SyF`ado%;OdpM>l=<%PCJI*A~i9S)k7VIdN`h z`dIGIpI%AhM~gvanUxSX>mU!9VzZ|MT%iXQ3V`V2uQ4!hlt5mwgVZg5DcL&-|Cx}} zLDbolhH4!BW_`53lxm|`l%~n)u`^VFt&t&1{4iY{orwm$#JtY#bWlC5pKlczr96WK zv(nsT0e;>XO-8TS9GgCqK7sn!WU{bX?qHq6m~K|=(wNP)%+)5I>_r2f#gW*q{p}F%%q$F&J! zdZ)q$l(n*@*mBCB?_A(MlJU=~G)1y^kim2KW<~L{PLAcFVAVn*HV<;X@MkYUI+ffv8trlQk%SMcTc zUpwEI5_T3hG#gx+rt4u28ki17T+(ke0D9GQH<^ih5?(`b$zDA*6;6t zP4JL`DKwco(hD*4dZ~@LoIH+jCR>qw5D&`ImB5X_ zz>}t)2PI*RwTjsW-mQUQKt_UJkQdMA$1Ss^#yzY4(~;$4N~t6KrsJ-!;dI4pdp)eT zGr+N)NEB_hG$BG@8Hd~#_4pWUhf0I!pzMM}1&(if4kOttk$ba|OJQ$*_n1{9v(q`t zSp_tz1pDPn>aTtdij?YM6C7HDf732C%W_BA?wDr<@t@EQ>?&o#3Ga*_XJ zritBZM&kXz;^DD+I4)H8!obFC4SNOymvMjuny!OB$&cFXS)aZ#5^_}=fgWrP!G)74 zlfy}mtB*&>gy>~NTIcuRR}cJf+es(y+svS3ELO!f~?*lKO3 z)qPDSZ{X}EWMbjwk#MGdK0ZL(VhyjG@TZKOn!OwVnVKe_!({Z z6B>N#rmBN>A>3pCt?5KjMgCu#jO4WSLuONsrFO1|-hWX=9Pgag?uz0oae*fLa`$vxN=~|OJQyM@vd69$KpF>4|`XgT_wt({$c7dcuv6Ksl&?!Lr zF>pj?5*)|+vjWf18fLuJ|BSO08V_2?)Tz@(T9cE!quu>;)l8-Zx-Ev2j1Jts6@C7_ z0Rudbhez?%6W$t`zc2>={p^jH+|e%f87;AUDfEZAtZ5$u;GML=2LsQw%tb*LJH}^E z=UW%oo=;`1-^_lsOtD;ty*Ern6%0VCXaFlwIukM7e6d$Cj>`jrdxBN{<;VI5m*}mu z<*Z57*x$7zq$g{eiG4K*5S(z55no5iWfR`z@?RxPGtM+sa`f-|Owxp6x4506)jY_| zTUIMdIet=~qpa@Rs-R=f;b_-dA1iLV5xZ*Gg0<+*5pS)U(WY0&&*+QFrLKSkQ%j5?KJU z3CfHq)Mw3gJ61_?fd_gMS_=t#x=e}`eluEqN-^!Y9|@AX*irQWbnLU+XP>ml)#94+ zI?2^~z5%LOI6G*I1O$DJqSS_teg5ruAh#@xAOCF+_HMCbYN_=H|4^5Y5mTYtb6D)1 ztI5mWvBXNYtmCRQ;7u9{^d1Yo@$NnE?*MGf$FczG^r3cs=4|D`&KJ zzZfFZb#!URXa#20O|khdM%b-T2S)miiDuj!LA%!p+%KBM=M72lkPHGCEFi5}y1zc& z50~k`d@G}Ivsem1bND+b?0AvSE0Z$&QtGLfB8&Y9K1nFtINhk;e89YrK* zw#M42({#>BvzFiX&0SJBg}eJ}hd9N9&_8p3_wYCPbt@&g>}J4J>D`6PgRRib)>KYO z12FeVVb`7l63^4svh>}7DpFG1`s%lH{6K6kDz|g1p3-d~R34f>@Z5PO7S(~ND?*Nf zeMj8Ti-Tt%)%*Pqgi;I(su?+-n|j7(j#32KcD#suhCPk_X?(7MQNic79;RvUgmwsL zFpc%}$4o|0rbgpurs(x`OiHo9*?LD&mc2%Vb=eh7xuu*AY|hGlLrz(C?ZNeRnQxm- zThV$n{6Tw$>@nngf|Qd;pL ztq{Mhj9tXwx=#4g%^0n5L#KX4td@Zq-JO2Dn=(t!x!6nGn60g(=t@Bidduis@X=#W zh8shl1qUA;f~nRx!Wy&t)kOek64%6zrRGryQ>M=Vf7HSSd|*!o7nXdSzir`iJ^o2W zwEwf3!{~^b&rD1GZ>2w9nx*;Abc+hq>s-e%C*?Ao%pYIOiG?4t?5z(+VwCM}gG6BMxFz9%fk7##_-t|aNtS0;FC_DtmMxEy`^%pj zEwuH81MzYU8BM?9bAQW2`;J)~KNfXXRq5&}cE6(dSdK_9%aemKRiqf6`k;Ru8~^iYQm#uw+5RB z`+z7zX%iNLrfRu#SEu)lW1pOisNyhZ@|zfN#JGr1SK5ZV!0Ct~a11IC8Q9{a zkNmDy4n+pr92H&au}9MLEJtJB`6e^Txw$>IC++W5wm2-Hqt9*i?`EgF{AUre!3G8% zyG_f`GHk7AR;<7AMajkbFZ!S7&%Li!Yduol1wwq=)}ZKjpiol$t98Ua~$7HEDm37P~_-zf%B+0SiDy&lw{d-;Sp@ zjX-;hJOBW6BcS(mzB63mI58;% z7~xL#NT-(8!{9W+CU0-0%f=i!K5Q)$Ef5J!Qq55i~RSR5P!-A81ZYDJuKeX z>W{b;3KuT^i6*fb4tWNXl}*)ZWuJd22|KhzH67`(5mM~=$Go$jBb3i`d|$uZk?WT4 zvoVEDjDH~A!f9u(sdjx)U;i;~5<7v-e|AmECTtEN#Kr(Hsb7`YNQ)<34bH<%cJC7j zKqt;_(Q{7c*Tn-0 zR=P*^)I+lj=e&so_#`?n67+hf7Ul4mJjtSt7 z1u70XlGZ7Btfr0dB3SnNo$POQV#I}M?lrE}kKbYDnHOopfjxN!&d=c>B0i)}fgBm~ z_Vz-2hWur3BG2JZo;}oEnC2)lI8x}ifKy~IU?A4TJ1tkJbCTJ>(Z#It;A)TWlutmj z*yiy+pT%r$>Q9T=_WPgQxiLGAMEtQ$JZyqN!AXapc3g8Ntjte!{(6p{r|6B#fvD&p z6tnn6l0C}Jgj&dUz?0Q7h&A#qoi_Y$18>j%6@2W&%OhSGu?cW~zc084SEr8d9q8du zFr;&JGLFiiJxcBvrE|5JcEsNy0f(XX<+~b~k(FHe!RnEomYV-)wB3yb6=F$p~wjRHFbM6b~zWXQWLg{2JEThk9LLDECP!Bs!0Ux zxftNzO&9z!V`>@7dK!6ro#71rLONCXaFi&i78mcQ*J1(6plM){aul^;9SFZ1^Nf0+h zp4%YgUFha~fJ_j4!n6P87i3%()`5p)oH|znM5RK)1s9{p;7TO|8YGWb-=D0kwu+u+ z5oIp#9_dm2wmGzH^2n)F{?pdpp7v3iRJw>zeL`^uCF?lhQ@4#cjk}Sq2vSbbTr)Fz zLR@~x8LU0o1WY}vCh+x<#aD5M;sUz@})LG$!*H=Y{0JaGZw%ZXQ; z!A#Z?lpt9hW)X$Cy#{|9$062mm_glU(#w?1WKrr&h+&>xV2I7>cuFD z9r&8i7&f<+?uij{!dvap|J&HU)L_&v^fZX^&|N@AS?;>wV}HRXIa zhKv_NRroDgcR@mhEZjzajbHw-h;r^ zl%CKe`u%*u{dIGwO)8s~-}NO}0?fSU7%J@%MEdgR$nyv3{Kq}>9t;Qrg%l?dEI$4U z8fdxx;~3v(3ZuDS*gpR=lw@gXNf36-d0#c)`$`Px1~h}D)F{&ca%4UzH0a0MiXfqZ z&u#jbNE7?3aH*wYLNC~S+>oXLpCCa{{t~2#o((dyLlW^S3KRQ`#HyNa2Fe-9KP)$v z31+eWVKD8i5u9-V3%%~wgh_Sf#bQ&|B2$6z061c3$Q@p%!jiY& zmu{8^uK%71_giuYAGXdDRXw@9b$vZ*#Ez9Y^_C$v^k?i?ZCH4l7O%FM!16fM!1ohL z>Ig=iXGmfU2tv2>8h%i0d6(Z9eu*_r1t7^yu|3{@`7s5DYW{kH9&bJtZ~6yy+d2k# zJT%C@e-sV9D(ox@gYfh0GM50K_x_lvKA_Sp;-H=k<-}tNo@q*9UU1xAo($Lv~H*&`a48-j~>2bULDTVX70Wv%_O-Y0S0|`C_0KM_{MH zuBpsqtzsV~Xqy?Q8dO#=`wbOoh>9Yyh@A-Pb@!D(F;Zr9z1Ki5(b7d-mwhd5?bZ5@ z7mjT+hyN z@SrSfb>H$6F1y)P4~oN{mamvi*qBXTJe#k^k8(>r4S-q&4pa@9?rZMb_vw@v6fs{) z3t#c#d{LH*F`eX$$>Z&lm=Vph=0MfQR1-XRN6D}+;|lq?yGRdgW*;m>eKlES-bg^5 zt)kCfY0xl9_N6mA@I(+zjuJE$Ul;2Praa^}N=AE!#z_Uhfu8Y%A9z|l`Zr1l)35bQ zrqx#nJ4Cs?He$_J{Y9`5D#@)pnBj49!2gYx$kqO&(ENNJP{!3{8DT^h?1-3jHlJG~ zj&kw$BTgOy2DUktXpxElROE)+M+fSAw4rTbM}lb6GX2?saZO@Z|8$+nCH@3=irt)6S5^2`})enwSm3AJhzrzKGJEofCC$2>?yYa7zJ*8HXk;++ZK zsY1n+t*m?>13m>BqmELEd1G6(c0E0vZtPq69<53SmQ5Pxy{;919}qTs>SfhuxW*x| z=T7qTpfDJ-)fcrgK)}+WH#^$`xnrHZ!gGV9kM2DfhLj^pV1@&Ic_g*ElrHXm#OW*^ zv4>JR0X<}o?HwbIDjdUWHt{ACj&WEebenLPnz-XlfR8XsWL>Zba^q(TKnDcC!_ojq z2);0kpxU}3+k;UJN4%t(;XU0^oXGO?tf%ut9=jUtd!M_DB^;;)T*r}vHi0|1BOWt+ z+40wIa-(D8v%~_t>Vi3W6+MZm3hN(_3fqvK&NM4~O69oC%JW`p&ZGhTl|M*oj`J|Y zB4_YPyp7SlR$=^zJ}a=N5~Z#8{VUF(R+sNVq=He6+f&#pVtIB%CU%G`5E96J2vAbG z{w0yjF0=tL`26-5+NCh4;lQTiFTPVq$qOw}$Uhk)!f5bOM_G+IA^;}xa9F7S25Wce!Yv64BQT=GIk0{&ecuJ2J z67Cej9$+$usk0`FzFy3vVB$n^@zn3b{dOcxcQE?GcMl=*LOQ*)8?lq-oGyXRB*q7% zd)5AMSZesbJCU|^duA<$f266n3$vhLc9fjH(3Mb~fN^~H(heINmObQk{+5o}jGoko zHnvrPIP_Es}wCz*86qqTF{4>%YsDdf7;VgOhqDp#cASyAtwzn8l> zRh7~GcuOvlo1uL^19QhlcLF{Hk?4E+Xd)n7nf%A|ljccFknkawnY~1Z z|4wE7yp_wuGRO*Tz2)9!xP;Z>X_3l8WPwCgs}0eme)MWU?-)P(RqHV^U`nuqj$3YC<-_Jjmk@ zl#KGWjU4BPT9n?BTN~O9=wRflBhfb$-tkL(RTyDi1`j< zZW0rR5}W6G_{5d>Y+iS}xsyD9eP&i)t_F(Z8)^9XK-dUymgv2h)n&EV0{Rdi_SmT$;+wn~XoXE^{lTOGoDw z`Qja7yr-G7|GLxVn-I>3U=(6ecfL|=s|$Vf_4p2hFMjr{m#qJ+ZgbATXS>Q=ACQL6 zQFm8{4`f2R=DYRx+XM!&8fUPSFNz-+EKxd)-bAJdGDe zJR_-|&;c+`09Yj;9V(JmGx+}2+jXz2*z>zHGb|7Do!r3~2QN7}_~dX7{4pX7j`w`6 zDtp;6D*LLb32=6?Va$~>P&OjW?+FW~$_xz>@U35D+@wu-;fJ0vHXT&-o=xObdB}dZ z?eZZt83s%Bt!(Czrm6c4I@sGtVIj#NXPEP0DKzEJYXev#T_YvINY|rKS119L8Zr++ zt6MO6CS-Ujt_(IB@ z7rTGx9pZ}5{(t_skp1NTXQ_|CSQo}Yq zsCf#cZvhq#mUA6${{Az!Wwdy~ za_;ldwBA^zpK(dR$JwLt&57BGNuIr8BNR6|?!!VAbZcv*-n(Yt{e*+5oI_S2@Xe7= z&`v=@owrFzXXLB2U@K7CEHhCY2PByPWp-5P+?A}HX-IHwuib=X%3cmkZP|hbHRAM9 ziyzkD&(VrEV5w(_A>b3W^n8230{|SOCGmzOI5uXy<%2v!>y*IsmuL_DFAPd!O0$AP$c@4n%9Z4b zwxvox=)R`-Wc7QKAtYKRfr(&UbUP=ce@Kjfp8STk=+Wi}e81^*mV2T11Anin9lI^?Xa`VDKvik`k<+zij&Df& zylw0zku_rPO?{*KW`_7D7|R0j%$8el&}`7UumU-u7vC?xdGEf4bRwoPKqu%i^-qG; z)A9sa-$Q<;8QFwe_GY>TgA?=9!F_4Bcpjg23}bng24lS=gg=1lr4fFN1K&9(HP4R( zEy!0 zA|LgYifUixlogRKUDyxLHUH^wmrSZZd^qZC0)=jn(rXv9uc|J_?w z9e@r1Ci^1y?H%lm`EaJ#`+wi_XdfMQ;2Bl}@PCdfhWvjvZDlV!e?9-US|9m`jmxU& z@P78=akBLmI(>*}&POI7quO}l4UHWdxP@vkmLd^1qrw_0l2$S%#QW-y%Yt8(L%%;a zr2vWv;KN8Ss$ctCf}?GHi;xm7h+i=?hOn+-6PU5)ir0|<$_x}a2-}1@-Q)oy>P&N^ zd~{Lx@4RfiYiiGTwn?_(vj1zD$flgAENsKG!A~G|Rf^YP^+fw; zP$UrEyw!CRV(ASipprj=MZ6$2hM!j5uALFQi84Khf-Ht;C6?0q zRPVGbq;wYZsTyX27vJo@Lpv^XHGl_hNV*w!g16R%a97Yib?ql99s5OWPUWnT-cr%tvu)nvhd<}wU6_sHOK8ARS+c-`C0ZrS5`5WY7q5y3KxfFm z*EYo?;KgAllk=AYPtsw}`&)Pm`-Kws#_+?%fvdt)+IzL{5pdO;fr#CN#-JtU1zT+3 zCxKh!k15#s>xr3&0#Le*x?Xd7zz}x4mPale%6D=~&1bbh@3aFQ!NBkBO4l<5 zW+iGT*lR>8!o@>{GBpzRM$nJz`G;L7ENImUXOZa5xae~~6m$=0muh9Rn35~ZE+S2A z#2dsjYUQVotP6>*MAiA}Oq^_2psU0xaxvQvWe&%o(@$uzBN$AM>^+9q{^iDbJ(7y#&KmfejKKbiMwd8h#>0 z^9|e28usnw*Xnr~ifFd;+2&O(?Gw?~^RMSyrgz>T4k&~=;z}oM>hQF)|GrRk{Sl&T z%MF%sqDR_A_7Y+!DkjY9h@6MaZwJ^sl6uH~TOb-dy}9_?G@AbHNR#gB0(i2Obi*3y zTg=SsF`zVBv`BR|9GR2~prv{j7P9}lu)c7-!v?3gj8O`>rol_mx?g0LXM*vWDM#bM zXsPf|s+D*k`5oJZ1~j1b!wjGo?=A$gg^~iCMk@jqNG-#{_qJ&Iuk)7O3fr;Gw3t)q zJfk2(mB05KQ97z{Z-Gb-C22`Rw8Mnf&oGI??LZ8XhbNx*45ZRW>&Wjan|m>JWP>*I>X+CM_uC&=T0 zl(G>69*$C^Iy~p0rLRhw3Vm;2g<-N8 z9qBDLd07b+Ub?@gK4fY+=xK>MXMIW+&~67%_{@g>JUQCX7?+taA=Ph_H|35h6P<$^ za*&TdR0&ti zrt>F`Z_*=3C!j;^?pG}b+qmNjR^5X$lmPfsYWCQ&aRv@}iC%Wo+cyP%j3_ygiSc=W z14^1N3H(24?XB{(TKbFXbIquKeL34it9oBUK*$v%Lr3NEHG3+znc@_e^tj0YLZBz4 zg#P(WLKff5fj$NX|Cw{CY8z^7_BNU6TMmK65Eb0Q73)MC|45aVBX^VNVUBlcvpA~+ z&D$mllPS5r==vZbF18Y7Du|jU<=~08aCg4#9qT@4f9S)JaUsggZOAbJW~TsmKpm<6 z^7f$AhdR@@fz`+{9Uk0%CS;@%$hYELua5n6kB&D#4_sLB(xe|xz;8ErnLGg6pi$Y| zjt??$VNdwvk-AxYFcYj8{Mn=5_wm-T@jSGF8s(YQohjwlIegTc`=SC;{NvWu`{J)6@D4si+rma}v?eE(wDs{H=}fUsYy?BKqu;Zu^4iuD^%! z-N5eA_a?9ct^${VePD%k;0eQp#Nh$34_w3m_cvs)9pHN4M&QVjC`U<^08XwhZR5&t zxck5xIsmM%;N$)m{*T4I{Uo5Lp?u??ys>=tmA41}^ZHx==3{q1{siKDI74D6GZ8Z^ zH#VK6WM8uf>y(4`;Dt;eebCi2LC8#s%nmaQ(QgF$8f{I5*on+}9wlx@h{zV%XZ3E} zxY@fQ+e-87)dXb(9m7PDPGHdaXZB8`HX8s$0IeHG_aHOThc_fL8+#kQ0zoe&a~MP- zvL_`C5)p{z7RWWxlpRnK$~k*8qZFcOBj}CjL^6#Ly$!e~ql?MnLwZKd#H{QhfMhoG zS=l!m1>CJT(4nALdLfC-?15q^%vejEn;9*AxQ=Qj1xh_K(l?WH40E4Nm@Q6&8<3$4 zH=sBekYe4u4E+SHSVqs3XoPJ_cq@o-1IUOTo2gZ(&C%uo1x6?`kBSg-Q22Rt34x6T z9=V}=Za%5h(NnW2zok%`Cm4fy1|K$g%+>~fOKmnt=v3dxi%OyU_>E?k3OCD$>-#=rckYn=DnW#j0zS8`d7a@wGSKbo~}OL}B5YCby}h zq}8NC$?CKspFr;|+o~_CEhlsA+qz`~VgW1~%lq!fuf5?4F0=t8?%uKedDk2RcA(QA zc+a9(@oOaC&|1E-)YYJLXZNFm_q+$g^Rb;_HBKz_D*x z-1wr!*)z5~`En=Wkr}#*@-XWa4jZc2$JKMV`cdTFz~i4yC$>Z<9zK6~|9jh`zY6>T zct5ZPZmNq@r7SWvH?#mvixM?dx)3hyWJP$Fslz(iWX9Z?P5{>cKLwm7z6dxA0n-Zj z0Pq{YhX4S#0@nij=lAx0^L48ObX(3sg5f?WZ~=uGsEqYYg<3@KG@83_ZMhYwk_*@( z5P?~cqZJ$`4uHph^e5i>AojL#`f0b{X7kSeMHKXDXXbQ1{je?O^+I<1vCAi~tR}QF zn>B`%P$JFdSUxq!-hTZpfAkBl1;!^I!r{-L-4C5;{S4N-%4n;ibc7JFL`^J?eg28t z|1XrUKQhimxz*ld`MI(^I0l)vj`pe4?y%X=f_YBa0!*BhHYh%-p14zW`ZU4c(`3L&PKK{73E3U$X55k^F z+1Xo0zzc`tX;~%g}X2*PpXyeJJ(@fb`q`Xkk zu^C&+jG(eN^&I9ofZ1T3XHN}sXGYA5^{}BdOLL_Hbi!lKvCW0iZTJpsjAWo5Ow*V# z7a!_EWfDg-j2_JHMi|{l(yY=TB74XS%b=ObNJWp{#-0Lq(u`Kg!p&e5(Pt>37!*$R zHPHdls|^Q{=*m=fnH1T3$5fP3YbMxKDdbpyQYOF!i%hK>P3}}Q^@a>7%#Fo{4ok3T ziImq8t2MJzp?OtG6&#{l(Qw!=MVT2hT0<%$Sqhvwdf8UWQMRL$^x|HoMV*#5ZX%l? zAEBKR6hjOMNhMQbG9$^xXLInDAc@Y*(RquMO$Kzfkn%ekbs`|g7V6j zoY-1KtPf&#Ro0BTv)YWwqGxv!85za4y4JKLVF(+7-pOGErVIPio8N6e{3B1i>(?Ix z=JBZCxYL%)6|nWTH-6yDzVWSnGuj0P-(}+tbO;dm&;RYsFZ|*wH$L*%LnBEZg?=23 z3iP>s05N^l$vgh+$>Ta)_x+e75q%5u2LY9atSf9iEN$9s1=vjaR$AMMD`qzGKe$7W$FT86V*s`=R0D@PtsxuR2hT+lWC1M3N zc$Il5EVpO|xWN-?V8_ZZA6~!@{-e(TC!cZM3wHg+y+^m(;S;-CeQW1R(JBtM=XPq^ z*`2jou9qicnp+B|rHeVlZHTt<)B}KPt~>E-|Mff1ee{#R{s+IZIcckR;_54rUx4k7 z4y2;&XB6XpWSA=Fnwqq{Y5TUnaq!?Zn1A#sS8YZC`qO}C0M`Ngz!ktz3(6@hZpZP? zv&T!lqs6mva14*_;rvelKMJlP072yAA3FT)%ZJ}~`tFO%?LYRKFMa*by-z&y!4SDKk+RO9=z>G<`cIC=p-m*$cR+X$CC|2hZmt|bigBn z5im~&3ngq^LXjI(7N*o@x0FKJtX3tgR;x98FN=!I?CDd18AoT(gT-xZbBaL5kxiQv zv^r&Wv|;N25M#5zu$YY2v!|ERTaaee`?}d6k4rRgY-TYV3q&$vtQ(Om0rfDifF+$} zQagl&tSAC5P)13Or~tFKY~9RBSwcvf6R8xXR19v&Ai-zv65&RW#Q+&HsXW3=ASt^~ zRT&#@zL(5|tSpL<$lMH90-Opd^$r#ZR*ad%5Gl%>%0NoANMl(BW(gY38=x!zWx9D$ zh6ExlmGj+|`8%rSv-_(SW-btJ269UxCvQ2j| zl^sk-({?|8%_zaT*afA$w?m+7!?B51eATI&ZmP;?Z9lzCWr}nWvQQFJtwf1+EtBC& zV>b>i7)C64u-UU1Yd#B&7zzXH4lcqaN=-~#};@RavEl&%M#K7aL1Z_MZ4HCZ7-20BI$ zYyhnkM2y{V=Acuvx|$Uw(pZG;gb^%Q34KOX;CFxW-1&7B+v1;75z6wLB)=PAGg~wsRK|dO>f61$EI=u#>=Dz!~TvY%c#Hu9jc?;d{RMhj&k5>&O1y^ZWZ=__KF^ zdXR?iy8asAaloz3`PrLo91VEcw_$_%>8fTa1PF(Nj?i+UOjnSrKED^&al<%6>~eaLe zuaxyUGEtTji+N<^N`n>*0X@ziR%C)N$e3gD;> zH1usu0%rIsayj=MqUTo0cJ~} zFIaxT%NlSD*jJmMQZDc*A7B27pI*K8+fSrA0yZLNvFdJKkLus{$$UcwALu@ujveb+u;l-mjaO^h=FAim?Q)U=x#iOl} z>BSXDq!*9%8ZOd$YvyL|O2ya$0;5&)G6vH}hHhqsFlHu{V1*aDL!C(V7TJNZr)6jp zh8br_oK5V+-q1f%mbb90Gc@ zcJ<+U?!o!DKD_$L-`fA+TOY^6`%kI1d_(_7xq7DS>V;Q4$3AuL1@HU4E3f-+pLxss z53k(2k9{1G)_V>|&&?zHWb(lO6#Ae1xF~QN?Ugreina@J`^9z|R1$1fGYyg4ly!Mt>jhwMQXo2^<24ANere_j{|GZ(BqG z;e-hxiL8oHcHanI*5>l504a5`vB*K97#hG8>fUnKYr%UjeY3? zxE8o__{q;~WObi&6rk5L7Y_RIE!I(R9}PYXwBhkWcS%SCD@nP`OZJsf31RHRv5oT$ zgQA-`dfybrG+K4~@as<`L7E{obo|(u#ITeSZAOOILN8)UkW30D=oY;Z=nWDk)> zs|6-0H;;mOMu)=86)6LqgQ9N5Bq>s&nM=x)S&8f>S~VCMCZ)juZB`xlaF$4`Rge{@ zWwxNZ*O~$t<}L!5GQF4&XgMV-MLC?-A_G?KN#c{ygciN|x_CXdhS%98A-M1S>;sY{h}d9!i;e;gn-bcs4O)&6fGJ+fI%+ zE49c2+IElN24v@rFW$QO+T8-I=k+S%u(h2NX118I&o(cY1~fwzY``*Yh4Y`($KQSM z({I*We)sUc`z`^kqCfvO`-;z7+<4QmzJ(8-JN$3Iy}EE^2ByQ^gK65?Ew*#h!L6@3 z{#CEp{`8}(_kQC1@7{Omo_qTF1MWRm&)4bAY3X;%b8q zT}4u6srCV3I4SWPx1DC)} z9s|w;PX}%X&H_8YV^g)pD+r2XgFw zAY^C_<+p!f|1bZmmN<#6XCq%cADpn$S^9;x^ZWaUFF3a7;mKmACv>P)E>>LBVx^i^ z2W?%K6>EWo({l0T-sXJdsnH(*(1G%1;4kCK_aa}3Q)l3S3glQdld%< zxqi=_Z#cm3OCLjA`a=w(HYx}ELklDPs5z_~HNa;tVgOfgxbwHZeZMKb``h1hBW|m> z9yksxfC4Oj_NRN_=%SzcLw8^L#Rq@sub-$T5C(b(fQJHdW*_aoXlACE84blKrW)O& z&0{w#OJ$lMWWdIlbOkATH+or4G5lI2!9bXo>>Y#k=*3DI%$CelCTpQvZUE%~(u^Y@ zXJo>?R628RHkAR~-lgCl^kL=PJPx0O*> zz=|S4(G8n5&|~soR$WYWv1kZ%$678Sg~--uo(cmq$J)3;_lz`=K<_gmZLtF=TljK| znHvg>88XemV#-dr&?T~WPLq1liV)@o!%(wkf@7Dbf~YiPHnrKj2!eyMjdiwi48VV zNgXZH2x@-%?c3K}%L|X?tiuUwWrgKYK-Wv2f8xaP-qE_cmw934<^_kD^Ry^^39X%V%ELY4st?67u-vEtI_g`wMdgI&FK;fx?sSfb7uGGG`f6u!;$UmB zzkhbwmI1*^Ok4B*UG?B%wC&hIsxPO#MXr3kC`I8;Rj=0r&j#NAKb^fJ9EiZ~JAj9A z>GjYTVYi?hfGhYu+>2CgM&aRXID8lv-!bc_=fxY)^@l5RJ>}2*L%%7WGIhwOV20du zr0BrT-~W?Wf9sRGfB(;4c>cBfr*Q*^r}w4y{`X)^+Mm({RDgfx8%})joo4dhVO+z9 zN2H~?TV_kQf}X?COGAR71TBUHD!VPVl$4p-v~de)DbolvUVIP&2Wfr8g8>$c@=_#b z52J6eVgphk5s<@ZgTig8XmhFFLtaWMZJOXfx9lB)xd~7K7ShB-#Nb#Bb}1rcRGUc`x=l;XYozEFM{B?UCyxs5$nkQJ z68mu7F}DPeV~J^J21Lc0#WYqVyVD#R_TL4_GSL)0hV?cwMp2OF9)nC}178~mzetpg zEyPfQa6m;zkBa~yTe?J}nP+5zHchB9jh!x(8>fm4chBB!jEp0hpo>Cg%N_=f-40fa zN)QoZb*2GG%{i{0!-r(K%s1bB{Q0+?dh=sXNa~u2!x-8U&`;D;C#EUAx0p)$vhH75 z0jrAEZB1C=B-C8ny&vnp@SiUK%U?cx{L_a(f6fd2dw$^fmwe%L>s?$PTP~4xR4nMk z9H)58m+;kJa^oSeh4T|UaY&p$h~C#II63X?Y-0(OfB{+}&!PuB7u!1K^$zeW=K={b zWW)9ZWO$3+E9dgyCgz_ zrI#X$=#4h;&kB{<@z_3o;CnB=>s$wRZ$A5s)3;n(gFD++ozqmy>eM{1%6u&x(!419 z#n0{KPPa1)9=7epT&6&Cl6_grRQ*=qMZm{_)#nUdo;=!wi!-JNu=qCYzZUqG>BO$t zF&&$GE=r?W4>ezZMyn5}UI%;-vp)C7@Q4zsjYx3w=lUoc*byYi&rK9h{VDs%)G@mId=;5j#(JX|m82M_A%Y5(cZ-tyxgd)J%ax|xvx3G^FZQ0j6u>%?S- zw1kRzrCY3;WacnC7O zaiGuvuVXe#ddr^ zY$KqNZfYAxATFkCGX0gT8&%D0V9AxS=ITz+(a3L9E3Hxp#aQiH*X-ojz16GX*KI!b{##!9v5f_h&g zGtG)QGBShNZ6E?>kj4hfXu(o3v~=tWnGa^JQ)<1t_iIl17eDvZo8R>Wu%74rDP0&4 zke0>Io?Vos#mwzvHKDBvLtmp2%RsiwhwjZ^{2y2U*?-u3{Jj^jGk@c^p8nqN+IjBF ze0kcAA3xmTF8 zo&jua-1Enk#1dE%Q?=}~Q!;is(_|vtN~n$2U)9iz-swUpSd&}JvOIa+>e4Qjz~S!z z=YcO4?f~8k2l~5#j{`RVdr#god$Ib|-R%`$H4R6Sh;F`U*_}=s22;%5nHdq}#teK^ zS@gJy-Jky#kN)0!hFao=>u-GaNuDVOtL37iI(Js3&zVp3etQi;n6O|gtNniLqzY!R z#p2lNV1I2!a?9H862SGqN#Kz&Q~fM|X>)cv;AnyR2>hSoam<(g98R9_b~$~X`yukN zJa`=Y@5kY90`G^%=hpsP*viEXdE+hDTz|vv?u`d$Cp+s0ez~7Jn9n_mPktKbADeKY z99_A3G!SZ^!yE&E74Qh|S)TjXr~cEwHee6-NZqX;d)wmX=U)E0D|fu~u6yr(2uISB z`Ga@wzUq(c_)zn}Gdx<9?a9j|BvqqzLlP#IVOk&Rgn21FqIkuy$nOmih?GXsK^iYbMJ|Lw5voLzFBmwnQ3g+39=Hl1{ zGGta76)Vi>#!@6PArdMiGP*Kh1)wk}qY}ajZEWnw!0396jLg=OS?v+5 zQ_i!STeVmRbC?(f2?H>%*@DFtU~!S^M;daNGP5^Dm=(IA8iC%M(&#XwqV@Ic(;_0( zQ;{0nP-6!2h&ZAEn8Ra;N7krD0xCx4NX)Dc&DMZ&pu?Rl0^`NiD;M$Ke*5bG{ln)!`g`*(*024#Q{VoVumAj) z?4CFt)40)*06UzhgUmPjMxX;Lpd6V~P958hiC8=O@VOVFVFh%@nm~YUgYRbrb5Ly| zq5{hqlR!sQG=P8VUtRz2{_DXQGW%A^*3{$wt31R}nK{gJWH55e%@X_MVFbj9b)gv0 zL>{3KlVO^S4m7R-qt#l&u+hN$zjXb1+~rqQ<&Uqm_c@$Li zbI#uT_s99%N~P_-FJ5`Qs8p(+JDp+ewcd*&^f|N-n$sxEY>jNa$2@D|o-1+wD^Nd% zyoK_6z>fe=L;pD}Z(+U(Yy#`RX<)kedCRf;cY*c91Vpozqp+<3CLD}wZNS=kC(vT& zUa5O6H6(rC(T$cSOp#eR*l%Bfx;!1&`Syw}FM+=SwSgVE<#cN7x;$9eMLV}&kUp788liZtkw)qvju6S_HQZIRqf#7F!#t(z)kq0c1^}n3hexdlXC9+D zv^|=D%b{q5qJ&#WP9PM~Sfyd+ zEiEJnhCrAEjtGMXDR2)1vP3mdL?S$t3ilRk8oc=yY%RX60<-qfFc)1C84(gu&=OM3 zdXFZ0K-#Rp`hkALM#v;Z!@_GI30im|iJLdqWu4Cmk=(V{D2>(1+>3z%3CY?BI;~z& zyBtwef+FEUBBJ=TP*svdbyATCg~Xynnjt9>K@qDp+^ETlY3_t-RwzSJr}aGp+O2{v zfQyJ^H+M4+#^V7)}{*wrQl*WXz}27K5(hU#L;qq5w`H> z8e1Xfr~^fyq7v;#Z-heki1x}G7;crJn#F6Ol|eoe2_+mBo+P;&t!DAZKWX3NuUotQ zt_>hcRFyQ;W~PZnr;Hp$F`uyAyXny#y*vK&jrJdZecGSdde(E+zx&@D{PM5tSGrh6 zNSiaaT7==+?m!MyU=rvF8>&2pvs;&-KqHB&APEeZ$I$=PE&-Y_ZnCd{6%LdDi3zZp zkqK)a(}MmjZ=Nsbv{Pn~Sn#Q^Pz?TGt|0>9*s8vrd^M;Hhi)eo*dgzi%vOL^_%0Mc zO}Q0?im3v|@KA+_7oa9hSz`vEpKCW`PO@hVT#d4hmGdaC1HK>l8sNj| zKM0%$jsXOYEd&+e)z*%KmAiXJ0}VF z1nXBH`4^onLsW#}fag)&Gx0-P@nKHSG40G@;Cdf7u-;?4v%F+WqwPrDw5uyKOe)51 zYm!#FdaiGr@KY=YQg^LswK~73v^gGL*9qj?z}wI-!4Cig&MsOi|M_F`13&Zho4;i5 z5^BYGJR`=(wQ)ny0V}{|2|N3`jeWQ7KH*mTt{;(I^d~=8j(xOz=)GHS_^{q}ube$i z>z6KC{kiZT6X^6xtpix1yW~-a{_wWPzw%|DeDgo_K%Drzz37L|zU#GzAGhCuQR`2u z#YB^NL@i{hA}J*pVU1V@dJBI#JYqJ7o8(adfl3ibfI^jFdA-OWw~I(Yh5uGwVeFRUcYsgWA?0fs!6=1qv@=6-nF50+*n`*)AQ3wjz<@ zsFmR@H=DZbUKs|odO`J|WQ_>e05o3U-T-Dst9=bLM6(A~93JLEjRvc*ib01U+Vs+0 zx&#N4M#TbVAryLF1&XAEMGYa`JZeZ5ctBeVdTW^sX0`?_sD@dyGUph28iq-Xn>QS3=?y|nsX?iQ3<#Ja3Pr&LRMOgqT87C6fMIDL##Ip#?RG@~ zsnx#>0}~GPHZ<)ghEf+vL4pF!!YW?-r~wf=&`=eK(5y(*1RA{rstbgalxtt$P#vbS zA|zQ`#d9sBFe$u%$%2~3N<+*-!?Atv#+9#m_NBMqwGEhIE`}0ikOa;8gwBX z-edg!585xi`t&>Awt=19z?~oe`0Oq3p1qFMvHZ*$4ZL6J6iAACT@U{jzUbT^YD?n=8mSU9$9hfB)EDd-bP&`RBHPeD?2VuXyFL z*ZhaeA9EypG>YmWGUXHim8>pZ7o|`Dsb)@BIG8h;%!3|uXS6x4N#hmFJwmNiQK94rMmURm zFx*8{x)k&D1VAe-9W)+cADghm(Hl6SohRM>3pp^q!D9jnmqhMHZWVn}<&@GLg_pD2P^Yx!Q zb*cij4C}b32;H(Il@vf7C`j*q=jQkS=;i|--MRkO(NF*E+OwXohr5!I5)z<+N+{3) z0;~rtK!G{t1Px(l?flvF(1UpYIr;FpC|etQsy}LPe`rNVOB9;yrc~;TQASo%H%es- zIB_1^ch}F{TR(p+wvW}Vv;DcPnC=7$7k0qB$OhMiCqx!2eqae#?6=b!G2JBoPxtpl z;~5xY9$qOqN#~Zxxe_^#nfLc)b@8@M1r_Mq(O@L1DNHb+IwiS@BRL61fsc?i8I?pr z@1u;h@#sXir}pb`U|cYL9q5PRlGtinZ1G(xtfa z5U#pZ_8eNdY=2oB9Xy1!6(q%EX*9w0`LWmM$3At*FfQCrSa(LL3l~s4`siy-5w)gKw%Us@ z%%l?#4krU4UR}C8XaTaYir3;^HFs|AFn6a)>T<)vNSE8GQ4-wSnN-6ntVFYrm@|oF z4l;6U^5`UjL(!wdtsPr|hCE=RxYs${H75X3YdgdTTU&1hTvNU<`Ew6R$$=&v5B>r# zs67W1Mo<(Y8m!eZ;MqWLtq0~9giv=!K)VDFGtZ+ThD9dn#$KHvVRfKBv{9&A2sHy? zR0hP|8kO6dH$S&Ir-V5PK-`QflEfE>@Bkeqji}mUGag8UCSaiMQwT~lKcxejnlRPw z3Srf2gR?4ybV!%2^dTd-2c4Q)w?fFE=?5OpcC`hC!dUbHkZ3hv!>Uh&$6y9+URSdL zEN8_C(XKUnv_IYgE}CFYCRg=3^V*t}VSSOLnp$~+6GQ{4=A?cROZK4Ev=J$u{xr}y85`ya5K9t((&Ihkyrw8K8)?P*Dh2s=K9BjsQRyC2AOv#JrMy`xJ(^ z9tO{Ts+?yNt5{KU>^%Qt2?25dn9zd}X_JXQ9fu9KHW-30D_ z{Oqm&apT7~c7Nf=mae%<`_VWX>pX-R?xNYfwlWqG5kW|XL@lPO z?ToCNg<{sz$=rn@Y84TNS}Q+U#0d}#b4j4Y5ZOryY%_oexXtIH>H(%CIk$zWffzs# zju2|=GIxO5r3iO3Am}BU44@i_s4hYZf=V~kM$Z>_N;iScJ*qUd%0lTL0U-rmD^o&P zlwq)e*6%gA4FU~PQERJR1Q=%2Bsqsf%&U$v#86s`k%UJBz9-5REg@{#9xmZ~_rSNm!tv;us!a zP@svT5J!-$*hg}rM4SD#sIf>l+^qtdax@~i3R4HT2UNwZB0`&S2+)RmHE+m&WfCc2 z^A^9Zr6h4xTiZ8&(Klar+a3K!KR8`DA~Jz48DmnhQ_9i@{^8vB{M%!*Q{_8<;+pUO z-qH2f?5qvqOuMgEzz75Sf?0s)Px}LR;{zY^H{8*`^MliJyy6rV>c3s2#_*#5`NGjr z0bLY7>Eb`}i{_t zuat=+Tx1igZ~G(u`mbIGECXA>X<%t>ynj6Qs8byup5c6#O3GN4vQ^Jd)aZ}(yfvFf zSN4y_JEQKzyim&7>Fyer_H3aXExT8D`+Vh|^Ye3?v$ON*0|4NlTq>z^NuFFI1D97U z0}1%dKigvY@c-pS`@%(A!?Ry{^PU^KpzYS}bF-Z{{!jexH;hs6$gtic+b97*Y$qSP zJ0H7y{NBGJ0Hlgb&aU57pZS#XtuI`D+AVc$JYGeo7y(Owv=51(b1*Oq^a5YUo)>@P zbvItS_VSnC@xUi`|LQl#XY%$R|J2Hr2Lc)*f>e-LW|bMyPOqXAAdhNalnL;`_~vvE z4knXIHnS+16%G<^xRCy3Yi;+4aB00@(F`QcaLGy`DMNeCfH z5G|B0Bs6)LXmZ*B+Jt(_6b++@ha>`F=Cu-)NNvHiS|FlbfQSko3hx9S5g`JKl3}&N zLvk0?utEqVm^928Zl#C{Q!=ZmLEOM5egrk5HrTynWn$Q{Z$)Exx7m0E08OGoGkC2? z(m1$K4M&?MBPbLSvKRup1zYiZ+Y%z${G7t{@Rxu?aaaogvl)onA)r~T9F0B*c+@$B z;Q`G9WWx|JT8(zp4~nD+AUs+xL}MIjVnZ@j_u-CX2&HPfAhfH37c%D%bMJ-uX zL$<(^_xasN%isL%{O&t<@BCDh`^sV?%oi#N*I+9-_O1J5C3cEz?8wxU&XLh?>o{h! z-Y{S6slaN=du!PR&I3COeJKHZ7JuLwU>jHhE?ZF5wlA1KHa3c|UU!|2v83yx%YJh0 z-cR5E@jGJCj(cHM0?@%GVM1n=>=KLvqH_fu30PZ1%%pgepr#(Ho zF^DASfN0-svkI*WHS~&3nN8eq=r4bJ{-fV_Y75r@hk-e;3tYW-^_D0r+rArELa0my zovNtDd_GsM>|yV|d$R5sjkIUkGlJ}vO)Iff>vEL&@y(sRXV>@Sx^ZfA^Zx30w4YV= zGRQti1`QJ8iMT8<2aXQKlNUdl@!`ViPYeR#@R;0uaQP;8d#ZOp!+xu_*p>Mk5AKo^9_phIR_0sIsuejuj%cLwPnMHPJX3AY( zjG9pj9F(GTMhw<86|>T&k8G8E62e&UkUbER#A|`o&@7@}i-e1$;Zu*c4mLE94nZPO zuZ5xlv0B|+Md5S{Nz_i5#7k2hAj*hh#RerpR1?MFF$gd2MiG)|v~ZFcE3NV}Nu}la~TYK%yA41lpw7;O>2agyiJmIvTkb zp?C|=HjFiZaB5<-4LZy!LL`xZq^7?Ita>#h1%ydR<-@W?Q*;>S?U$(nbA+ddKcej$ zaA6d@_%#x2O+x}1YlKE`Zbq=V6TJdhbndvrgKdwh)&hJaBHW!I&0CWxtVIokq=3?@ z=-?tufh2hxQPDi8h`elH`uu}Gboc2W`-ROK2}n80;ltxzar`4^e)8YmckXC?{!1?T zzVBJS=|H~>B}NJh%y-bAs5pAIeBsmnp^wDJ-cvvQ5j+1tLG^`1?fC&3n*kFb4U`AKp!URDj^wYzB7+@ z+6ptFxez%qD^p4H-j>Isl=s(i1MqezV0S?O7Pir-`j@ZGe&h#n(=)L3x$aBu)|k|1 ze9f{FwUxucqXE9OG?Q;e*Y~U`64vhi!0ONbfNx<9ydH5G@F8GxRgWA#a7n-VK)`fnV+m&*3mW7*+b)V-DGK`I?tX>mZrNFGh0s9`^jU+?^xddRM*(u z`~sxFA-FP+jzCv57?_blwdJMN`Sh|9`~KMma8cBYfD15!rbUbZOL=wwflGTiFrVK) zx8;q}J>|=1XGZz>U3smHS7X+XW=ZGcnz>f6GFe_#S!Z6y!A|pXIxvAuB9GC9b~U!A zc<652c}KqUp0shApZjq6m5(p~m$&uL`J(jgUt^Db%+^)coSh8YMgqpbE-(W|W5lCY z#=rX)kN%byfARxw-TmYLjOmrr-~5-|-ceUW%kDH!(!B3s!bzf4v08f<(Fkuc!-B%o zGXD~TDPE%12&1Id?ktc9!lGdeqPFo>yD2cLM>R6SoFbIu7HliD8zPjX(rOU_m;hR_ zW+-WFeKtlk02fIb;o+4)xVu*ofiM8K3JT01ZI7t}c&UOmgfNOi=zs`CQ$(>^(WL$i zgog*B71>8Pyjn=xfgmaoVOGPPNrg@38gjzTwoXyFMG)p89`2Hpxgp@ih(MAUJdVvm zDhP`*W5er1!`!V7dXG5-qAAS61GOSd@?atls~(h;JSq{A6skjC8;q@bjdTl!hCs<$ zDz#x0(8m5Euxe$%at;sCMMK@N9WWLnfplSqxbXWI#~@yq3JpwQ z;>D%wFd9Ya5njto@)!!HWMvlaA_+3|(s->TsM-q3NP&o359^_wh`|d&S`#T!fZV$` zf6KRCdC$krz2?m`z;9YfNA@1rIJx=i-#GoT57fth)t(=H_3~pbjS0lSfNi3`cdLHp ztiItdrYApE@BXLVWA_&y>c@t`>`mkGzxv+gulf3Ymp`eKm60N4`dPZ9A3i8E{*^vfz!Z~^K~!2=H}C%ee*8>w*l$P zpYZ%&{MqYA`=0yZkA3pT|IKSomy^IYP`#T^(oQ#$Oe*a;Uw81vKRW-}PtO+0&jp3r zfr-ctB!r%l#!$~$sg%6W`y;Ri07ojCjDn;}D6GO#AV?R_DMC$(R0dLa8VzjEoRPa$OQ zm8+|zZtskHbX()ly(!?uu*7aSQ&5;7y!GY9aBFF*+CKC(HZDS)o_u2kWUU%mA z-#&fI?~LB^JLs+*fAe$3ullxAN1nJdUOkj>Nx`zh1T$b)uzKm*!D(+_;Zy>I>7 z`Rl*$*x}QYAN*HGF5i=pvct4kICS0@Z_7MeMX)O1-pb0!NV&7>gizGVJlsSz&=~*W z-h!DTs#fNVhH(*47&2(gfTRQ=Edp#%`Nnc^cUp)Fge2W6oT>`5aF1${J53BTE|#7k z84eGjQniT?RJd8InrWp_W(8nK!|@A~a&fx}k1z`(MI~tjDbi|6sf=35aPdZO)|9Q5 z7Pb=2)MTYZM6_lF5OiW-P)98Y0?M2l(~Jzjp)w%O5-5Zr+~F=snT6&Ayf~ClQ8+-= zY_-4{Zj{srL17W$nv>TOE*RWa!?GOh`FTTF3kc>UaI->4o4{M|k(DA4mDI)w-f&R> z+=Fe{JCwLIb3Q~C8^Fa!{$UJoAqUVDBO#3K=`oQ>*?c_K@cmVC77?#Q(T|MAph6T4 zN}m-FQE^9@i)gUz9YmX)v+cWy%5aPMH1q-n#I5$!wEwE{4}R}0cb~ZXy&paHl&7yO z9m%)-;r8qQa;H0}uYTpVPr7M)1qe)f^e5;2ZFgKKEvQ%!@9&;lS5@**D*Y z_yTb1;E~aCH`io>rdz+C^ z5p8mxNwA?bvL{#&x^z-f2_2v2L!$4lNA)d}yf5F$>@T{*s zzQhNX4^FD3rEcZcFI`?*S?_3p+#J|#*5j~*5fON_uNQdnez*pCL(LzcYS}hOWSMfXC64Qg?@YA-Vhb{ zBAR={63ci=aDH}b^WL@2frkJHZyK!}Va`?)B9eCDt{uc2JcHQ4|Mfw@$MCCxCji$1 zCxLUrUE%EJ{b%pplP??Z65}<;Je>de)A7be&`PW(?9Ir_K~%3`iA_{XH2iV zVdvoCu>iolVxBM_L9gjn{`^m`{?-@W^S}S0|F1ur9^}q%zhZ4YJNifnB!u@O>Z(G8 zljtBpH!w6On1@3o2WW1DFr}ylGGGyHtw#)LVM6FNq*DglYDAI_Akod;!Jsh0Bq>$c zdw5WDh(x>DryLf5!D_TzR;2)aK!U%B1`3=FJiwHNa5IERH1a{SxirbbNJ3kQ6QTws zQ8XNgHbkw2N#k3(wQMUI2;b2rz!DnXT9SkS6NEYhCO{@7%}Yd^i6V&Fjs;OILQ+yU zw4jz*ut7AFU@*;8gdw#}LmC`g5<>(AnnVK!A(-2AVbQ)NNmSvLfd~$=Qbg1Ut0EZ! zN+<+`kwJ-4*$}X#F(eDJT5qkxT@}G_U3{)vb|Z$8t|sv}St!LtXZ&HE!N8AemY@Vg z@vvx|qkyoPxfreZHzGu{rctv~u>li@jQ&7(3q6ax4fB!NmMr#gucksN9?sjk&w;Sxn% z3AO5_ge!d%Au3rze3WEa`_tVK^fv$>0XiU_^t?Ua`>X3uxN5sUeK7Sk&4f#xE=@w! zpo>wp8cIU0Fu;fua6#UM{_t1a|Bl--aCII%ujH@6^sj+`0%nl3x_22XmP~ZKvN10s zTke)aoYib;X?N^6e`2|}(ybmEPmax|=K`aZCD+YfN=)1*+1Dl$V71>kwzYf=I1gYn zxi)v}#*q-nf&ghEBcJc|cJ%)VT+$WzHNY1E*8o=zkR?8d0J_yz{{H>9eD$LrwccN5 zmoo|6DZ#-Mu$`e9Gnmcq+xh!YQ2Pd zF<2F%nHoKu!HCMFtmf_^K~hocPWN`*5R# zFb$-$Qlfb+9WW=e<`i%dv8eDOX^AR?!_8a6mU%$wY|zc-ifPsqX%VVMb8EzTM`KXH zg58Lvr-v6~*FhB&S|7EFDuq_OwQjgqFcOoC!;EZG*M_PIcNY<=g32u69owC||DV6{k+;9^^r1^vUjEYk2PS}b=ce^zM`yqP+nay& z+h_Z!Ev9h8>Y0(g>Wf!@_@^(u{@MEuErIA2^iYNaU@z`%F^oc%F6oo*+&C+1H9~umR|LXE6=`ay90K|OY@Bln=mcW#RvyTI8og#2`el^ z<|TyDCl&1bx$oThi@)!H!@!p#r-=L7)A<$3uK zbjj-^5LBl#bj7_)>jvZt{}<-O8-eG%o-ve^{U1$FKBj?_E+vLH|2u_X{n5il1_W9F#{&f1xNAv6dWbYH7 zR=@G($6oMN19glzd z_`6>i&woj|Y=4Zg0jv^n`3isL)hplhqLV(Yzx3~q-E`xv&-_y4o@I{I0fbu-2c?Qu z@y6kAT`uk=M2KopDoHSrEiTk#qad?~MX68;&GcxOOJ*4?YOTEsi%WcKnjMB~>IRZg zE4&}lv;k^n>ROh}tp@_S1j*3~Si;<0a-xN|Rze4wWRHM5$y!~|QXbmS3SK=FOvwYR z0fRZT8(~rR2%>qKq8h`%Fe{Q3kZKNw3>rx==+(@srcOi}Jt3+Clx`FxA_xyJQH`3z z0v?R&&gOg-O)Ym#)o9&F&Y@2R2)5RNuv(kTX0Wn0Wz4InhKMNINCu)25+17B-pvT4 zF1xu!kU@$UW9w+7Kmc0P&>GF@!h+xCz?8+Hw^?{%D1>R7z(q5F_EZOM3w_u?pq+?o zEyb%LDp7yn?H$M>>JLjhU$-8!c@fSAU{kP{A6r^UsR3P1O zc;zQwb?LXhba}L{09e(58ts!*8LZVcrC_3{Sx=jCoB~m!7wyn`pJu(io+u#)WgG@OE;;iMTM&53{HT8C>A?` zAgn#Fum}Yl?gBtv#2L(u#sp`WOKTUmP>-(T#&)kct?Zp_pWWNO&ENa|*FNW#jSdd% z2#SxhkH#(|AOn?PLUstGR?Gs`5zJX36D4C3ATs_j~7`@lT)l&0oLymRor6z*sTgI=TC?zx(_@ymjNfcb&NJXvXOkU_3q$ z|K=Ox8UG^Pcw}9C<=jSm{_b<{c*pMB-hck&Lvwidk@w|~yl?q;F6CFe;QWh!Z1(sY zR}Nqdbii_g06JOnYo5C2=WgY9zR=(Frp;geAGqV~oB#UlW&h8t|KN{qeErMD*IqMU zh9#^&{@F_}_~!hkKZ}R%-+1ZIeDaPrUUhI%lT8HTR>f;&*RTQ}WFU1*&Uq9_V$|xE z1fVo;aiRC#q;s^%W)(N&u35)PcV|0h2G9^RP5EoN-CB(nlG6nTxy=g@0)?o8lmux9 z&2WUMw9mXU%&XTbX@oY;94UadE_-dG&Sg+r2rTNG<;KkkMgRYd8< zC~caJ27;BOp@VvMLD-KA2YPo7((rJ$OpX1v*d{LaLU2(NurR_030g#$$zacIgJKa) z@PLKY3gO@#4ud2|NJyKmfTCI3JaT~#Hwcxv`QC%{n1@$4(|~#NDl;4@I#>0+*V2{H zJ3hO4`$x_Lc-9LJu63LOci&^b{vS`g^Nkm$s0eg>F?z+nzWh6WV*Sd?J9WoA!37bX zB-~PJ=u>n#7xN?cKK;wgyQo1_uEDp`e_8*%%G=3#5VL16#>o0gw->-so7FnRyx z(T&+QP6Nxp9Qeo_4?g(X>GhAkaY6eMAf3kKH-9XC<5`azub-Q&PSetEpf`*i5cGr) zkfn6wx;+?hLl-|fpcl+U!bRBPHf>sjk}|A63_NIc*BnGpL##-uAry%m8b(Gh(10gc zb^)TgWFlDIs~JYx4rKF;NGaD^0Pb$@pp3zA-;F%&G>c@xD9|m0s%9S>DYgWGib!b( zSNzR8_`|PgugT>Yy%4y{Pk$Epc;l>%^pZn|52|M(yvz_g8OUwHOqh57ux+CW-B}Y1n`dI+L6`F2}v|M8XA7)D`s9^OS z#HasR?w3cdz3g$%`-!*y5En_q@g_u=CoJM(9MaN;lj zal?Fi-|?m2{k_RM-p3bw$JR?1IUReI~tGE8} zBRI2p{%2p^zxHpIzUTYqFMLtCYLBn2`oH;!{U3kp$$QVpnSVUI~@lEOoix|L`+glZ6aM7XtL`ask=tm~wrIo3LJ4B`H!YZnPiPQm-7Ht&{ z_W~~>I!vb%g93q9ldgjsT$qN@Z9DWEN(7jd5QxBpLWhe}l0oM_~LggQeiPr z^8m)8{4%W6u$snMatYp*f!YBq!If<0(%Q!l%qI15?e zK0+x+#~=S-JNfQg!TFzh!N;C?;~h`1qgTD{_OrNc2k!ws0(=B`zvE+L-2Qb(-}jhd z9WO25^XGSO|IO=;j4(4TOC#^fuJ^MB@@_%B5&5VilShUCE<92&1+-mj8qq}snjpFY zTn@07O%DQ!P^gCv`J28*xHTcq!w?1<-GoKN#ibCn3OaV92}P?-tIdF2VEWLpjm_=w z${rSpk~CyEyR||-qQ*eYR|6rVjLSZIdimSG_1H-y-~jMkjGl=d03QJU9(VwXJxf=2 z%ZDL{WUk3vvM!BAE~n@Hu8jITA~0i$wNCbE+1Z^*?UqK%J3DD}R-{wHLS=VacDHum z>x&Qjbuw9Rx&aBzVBSJfM7FvKKk>-dQviJb4}ZmTp0>VcvU^c_W3mWjT?>3S@CxAR zzzR4A9z@LWA;UiiKGNaTv?aIo@Rh&#M^Ae9?N@&1_a1ue@{vn%_@FPXxOcKU&RgSd zce2MWe@yq>mtXm-Z+hZe-gxUbe$^5%1GewJ%l^wNS6}|T@vr^1eeP6mm;u{B50o)% zgyp=l_xcwc__eoO@%Gmr`IhG^pr5^c>U(j$~3wkS@xUQq$`rESiP>;ibl{_EEz^8>WG(P!0F6$|yo-VpDsf z7~BY;?GR0XwnDlHyoG^9h0-<~$yvLO6lT>VfHSFfDl|k7l&G~WZ5{xXngUI&X?64l z7)pg#SPicYq!l9Jk+OmSjAo2r7`@G_Q-s4j1{_J7sVlsO)vzK87B}~RcqHZ#m?dXX z0)=qx6mF~m3$G=thZ9sJktC^Ww8ZLGhgKgmw;JAh09A-uWhc{FAsJI11bg96g8a4Pfu}_gxJI z#y}730QVQv|MIHiXK}4hMt!i@oM~4u7eqiD1oV>qUDsW}3CQ9}RmfamnnZI_X(oUa z7OG5HTDG?Ich738QzBEMs*}|rDkfSZ8&bP=H8?aw6>vzMtGR$WSst5J^A2Ia3a~Ua zF-?(4RDlv5BDEVg5eX9Li7jF$V2b3jb_Wi<`0KyWp8&82xDoP9bb|g9z?2SAimTT7;O;~J3%C;)0f!e6$iT!f3RIvf&><#= z(wDqw`8WRPs=xVz{kJ?Sc7S)?=KucHn`iG>Uc&tAUY4Hx*Z^?)p82o+@z$wL#K@vH z?+a}1FaX)vg;!V+z-&k=c`a@h78LO|s0>6k6pQN3+U{Q1NI+~>Zn0trh@>!!TElCQ zsx1u#w(X&M1N{QgCJm&x*H#e-GoR1Hi-&|umzwdO<2uv6_9c2l@hFTcVIBi+8={P=tgtzJ#-Xo3Ac81L1A0X5d;82h(2ao2r+oQ+ zFa4npKkoW}oZ!yG)1!A{<2IbH=z-mq0_}kf;K(!Zl?Ts{&|#PaOo0=(pSkDWV@r|D zmrb-}nG?H#;wXUv*mybVn2R9Th3D1!uiNQ9k(sTpE+MHw6eS3@vlS4`ga%+?0yFeL0SZxo znL>aS!GRxr(Y>F$Z3+l*HSk@?YuKIw?*`t9>_9h?FB|I(JJV&%WG&Vd8?*VGb$zt7 zce{?ZcK7ym$wP~1O=&#Iqrmp=Y-PffeZIB5vpY{Cq{(P!b{5zKP7fbf-77K{@m8Mg zkpqSp2MX-WBmF-a!1sUaRgb$AcI-W|5?h0uc^)eG!NRLb@axDj`a=qjz-#%^DGParngW zm!+qZ4|?XP^6}$A9K$AH4a=_heuRb8c_H34Rh>EU(@M zdVhZzKJo3?c|ku%YV%TH2RIHqc;EYHfeGqdbJL`gAQ8!-fR2`>vDF^=5JWh#TMBP1 zY7rICgH<%7l{Ll(w>BOuvl?m?3tF&>I%pQd4&DT?T7a$)wTwj}={QT*_ zap1v4kh=gIz(c^Nm+-e^0C-ZH`7baJb3>h@?reEXclM&B*(!FIF&B#zk?CV#C2WPh zin?T23Lh8Oo^Z7~+R15paGbyB377x7SKs>DU%mCw*N=b#^bdTp{LH`J{e@pVdwk~{ zvEwKKH}r-r!*+*$4f(q3_Wj6DT>jQSzVxZr+pqnP>3iQEV~n5w?0r|SWdPXP`O81s zo^B;D#GK9XA_A)l6IH4JL^uISLTx5=rz4zjcxwU>fDs{(6i7{HhldBPrFxa3LNGwM zc=f0iLQ(Nr;jXF_6BX%FTM@~DVo5kNK#OpJqt*zQJffslA{lO8Td8D|h#OBc;FPRv z#RU;wE5ZgazBECDGRl&3+jS&~kYT;m67Aw(J)|yXry(Nktn35JASmh)qRDD6Dw5K` zQKmMj3qXW>+d~M+qDcaPLUJ>#f`Ft9utj+Rkwg++dx9RMDwAF~XnT7_McVnFgfwnG zG@PO%k#>8ll61%eOAbj9!K4G#)f{FBN4wHJ;!M2odB#PlFAPofZP_QlA((JsKL~jH z(S!}$FQeRwbiDM9L`Kc-U^HBWNY=1`g-90ZkP@mzZ_q>$(ZuE!mDWDtQ~|=>qPcPc zAieZn3#pI}(upK({gF;oJ@epner^t6IxnBTYxC`YenHr6yH>vCi_-V}t4l9AJjSdm zUR?sD%1D_b8g?A!Au2*w0B-InWGrb!88egtujU{;!__?n1kUGNDu4Yd{@4Gs=eb|D zbznTmE_%*Ch~0R&3ATwgdHr%+cO4#k3zks<0p`FI*hqNj{Pw8;ASIAGq=XJgi$4Kf zCnG-M&1-K~V40#pX~%iCC}wETU9w;eSi{VAPQ7R6+^JeClp=)g6nL-Ib9fY>h5bbo?IdybUJEQ&$7PV}ZR01*c$Zp}-veTmSR; z2aZnBokJ+Zf_;s7u$m_0fC>%>*m;cL9WeF)v8(C)B$dne?)mC(xZ!tx`)SXA!CGU6 z@1F7h@^kimKX~R7_nj4-Ba)#3?&peKU~>dpo1|O5aq{2)?C_QQ`MO^m@0`z1c>L}Y zZ%D10`1TL%+1OuO2tsZ#iqKZE{RHn1N49! z+yJKLByG}75MHVmW3T~^;1QIdSZPdT^D=KnO;HgQL?cjWTO}ZmxB?(r-7+X_@9c1> z97essg{^^D{4#i9k{nG*fLLXCYl(wU!YL_BN=++^8X^kK)G?VGk`-Cor>4<4+@lo> z33c!uk=o@%5mgeJG#Y!vj2HaNAz+8voj7m1(*j_3>hF8&gZJONwb-u!a4GW#UU})| zSLf(g4I>bwO6rhC)lxK04wae#NCf&GW(;-DVJTuIsBVCCY$)Xdhq`K>jIO+V{H0$r zzVh+YC2_=R#bgJ#Z^BPNd^q@zffZmKSUq$T&aGnQRwQ^gkVGA*30q=!D>ebrgU~<+ zbcD*l+Hf0qq8Gn~OCqBN#Bws2z!U&{4k)Q2BS4YR@BH5B<9F_E*AfB|Eoqp-`eUQdf>rw;%&g43-C2(n>=}}8pc2uNEonZqKJS?bK79D zgUkPMYw4$de8+JKumn6Ac=BR|aVPLk!2Rfe0@cSMU)Pr-y{Xk+=rLQ>y4PdhZXAnb zF_P+g&(03ad~7xzi7ZW+xV&|~rV_$Q-8pOXs@nBs=H>We_`jDrYCp5npveJZk4G1M zeFP5$4($1==iP`r#_oyTd#8(W%VFSBU_bCU;3>fRIUK(OTUP*w@HpV|CLFc$HNb$f zanJZw|9SJCvudL`JVVIrHFktWBy^l9iJlk`S90RW0hx#QQhVL?v@u@Ydh%mOzxq>; zd-*r)0Ros|Uf%qtqnEuRz3)@m%^V$(16DC}Yy?gyb~?x{Pg(lS|FG|~ch~>@7c-9R zakmb%+H+qhpSW`tQX6885|ZgdA80HT_g;Stg(aKtXNP{wAI{Fqma)xK$>hM8HT=J8H)eFO7a?u!wN! zMiFQgf#zP#sDPW-(r!9##rg_&2sMjjb*l`cs9S`GmlB}l?C#-&JUjweEa4aQpNH=O zGCZ+}#Z>;H0X+bO5V`Hrh%mQ#6;;WZEqXwtf$mwuEP_^=%@;sL^j>?%03(gzFZAKn zwKfWFCs8GndxR27v%-jg>G}>cxP>#& zO)$okn-C6kISiKo&W=19`+!4F#^qO>e&l;m@_`eM-9#i|R5zfa-GM4li&xAqtX3DU z0tHN>nJS`5q@%QqhDdvNQUI5t0<)b{5B$lw%-wGS-VEFi>;d)x+&Ve^W6kHYx61xETV;Pa57>|oM81D3|Rv#Q6uo|={_4rb4RxpT&y+VGT>6+`i$$=5x|K#{_1)h|G9m*ZtV%cr3e}5r~+UH z)K9){{+c(9n;cbp7I>AZLuS;D#c3gHU$fkz;|dcUY_#PfSte@!(3ob{g&=qzNh=cKbsvt zrlF?moD?ybWC72znp}(JYz|32=&2oQa@WnK!tfyCHnIeB=&9n28{21A;dl z5bhV8tE47q79{Hn8y&-{NV^<{mHq;t`0N*E3t@NIU%u)a_g{8o2{CpE1e&2rGE#Dc z(dz=OM0YZ&bfZ8-t>PX;pofZ(A&?{xYU;odETIUBum~{nnj^YEs#v;T_MbyHM_|x! z1ejoT^7yA<4D1=z9E=d;je?djIE%=+2G6*^oN5mEt!kBEt?3SC*r%?q&pcJ%qOC$5h! zFBLlGWLvo#>-y(g8FMJQBt_l9t7(fx2~$=j&r-V~3Zf=xNK(mD&nqPaNTj5!5V z(kMXKqS?3ELbHbWa8@Rv0xBRBWz(gtxe^QjRoqQdqA&*bWJEZ^VoS;VH?kd&?3zOnGywZKdDYK?Mgbq3V-nm`m>WX*yeV1x?jCR81bKn-XFQ#X>_ zF=RM815ojZ@EQ@}HKoR8HXuZGNO1ihD}Jj47+7<_U<2hvmZ^JZhzMlE&0dQwNHfhnty^)NVw!8xs*0#U!OR5C&;2x2Gh)lvJeATt#z0 zya_~JHB%)>CnH~cobK_khY7O(2D$Z7t9d+zb9lp)(jtN=VKuxDvF3LIBiQ_)6s37- zuB~C%Wgd}*DdrYEYL#jd4$;J<=JX1dE@MgSieYJ>r#6ob*zM~N9RPqVc=}88cYN(w zuoob(bm^7j>#i>eyRD=lU_SJSwIPn5JwBh$FMeLbTOzVbABQI(w=W4nVOCKUs5meN z5)A0Ed-AXDzw7l6ec|ZF=B&)-F4acvxt7VyCsXS@I?+jzkyzM9zkA=w<6pSveVD%i zxD(g`9tV6Qa1)?F|Eas?XV0g=Qp*hqEFlCUXtRNRpTvRJ{p?X-1(*WY0Z##*3O0r6 z?Z7_*o6TG^@>{d)&*{K~X(?uD_gvjMA9HrZ-Y!=1Qt8XCjYoOB)a_GACQPHzc(Sy% zcRY_gE8WWKIHjvLH#bh6IlVnS1`JKVRJJf7LfF#oo`K2Gvb|Wa1p=&m*|jTq`p|A`WMVM5SZFuR z!>hq8h|$VOMvHCg5y1w(>6XbgSM5QpMkvD>WC+aZP7lJVN>KqCmC)UzRt9QcNeLZV z=77ptT0Bcs5Kc*5*CiQAEP*4@j?CFQ!BXwk1Zx4dQyZ`eOs~GYKYU~YbbFC*UOVt_ ze*5Ns|KnHeJFwhcx%RT3SlWBZPy|S5U_x|6c1Qp{`umUXJQ4%fp6U^iWu~R@qzE|K zD!SQ$fHuQ*ec0&2?XB(KIdS|A$B%vN#O^20Y;Ml1hE!M=F+xPG{d_(@vvL03qYr%g zbD#a(XFg!N?*P7V;jhbw_F{aX9h~pG`}~6s7_kg23%Yiv2NW0uRsi|4-?5ZDKd zfK$+ux-tO)yc76);9j7%DamB@Q7%i8yQQVNGTKff?d$QKzPd_YQW-7P*>rO!Qp%me z5q+ObWL3s{mX@;S-T8cy`lXdbY;W)0Q}F4FUZM#BL|bk;AdyO#H%#N=cLf~CS6oZ* zWWn(}KaYwE%z*@)0qy}Fn&U%9_I`AGsI0kvjyrzU-gC_VaqX7RyyV|~{7?Vv0mU+~ zve*VHaPGH%_vFqQy)a8NIACHXVj-bPTM$xIlt>XEG>^fZ`#65XqD-9Iy&^s!EoD0NtEEt*ktykVMVxI2VpKdnC}RU?Adw zASrC^gAo!7R9e((wQsKZhEluuu;1)2Q7ycNmoSqgptwU*7fgfspiOB#*odLfptw~@ z0K%$yt=9Jqe+fwerQ`s@oe0no4eHry(F`K08r6N?voY)tnn^m`qOp=Rg&EAOR>}~+ zq@-c+3y|Bu6gS2OLjLE=Qz!(m05Jl!r3EtcdJ3`!2d-82E}5x9?r@cn zOC~!Bn9oT^D(qtafh8d?R9jq7{{g$=N?ooAH9O})_hxa9@Gx-+O&*o*VJ)g*Ni|#@ zfMk+ECz(`TpkCd2H$)ApilF5by*eU!^ty1%E?*BHSIm47AMF7?>Ly#&Wgvvp70=@X z{yo32{4M|b#@)ih*UZ--0VYHN6$*&K3{H$^HI5!Hk9_M0I%FgwF(CUAO(IlU#ZKfJ z#o^$5A@vav=;i#Wd#zl$bVAP`*xA4Ls*e54DlG4y)Ed*xy0vj;bNA%V_I;Rr68JnY zSY-lxM$3Dx+~l*v!1l)R^0B+lKJ`h51oMhaBu5W)#PSp??>Ra9Z$G~YTn3y3??POI z(Q~X{MSlW#7w~bgZ_ z(NAYHjc!Gj$6W2CpVhJlmSxsB;V7X|xsKR`op@koB|^vInHx%7R26bb!v9k{Q$K2HF7bIpctN}_y@}}@JGKR;1~`?qk0U z%d2A`&(t#dW!YTDWc>;ntb+tr4HWc>4hVq+T#ypR5EKP^FE$0X@bJC}U=o$H?Q_$eDR(}5{(;Aix=o9)65d;_ZdM)A+cwHMU<>FM z>azmJ#DUzZ&F%*Lw)dR=j+Y#mq)vwF^LFo8n_};4e|2l)fkVJ8z-JMsfGvK z0`CKkqn(L?(b^Nr?55SYWGSUg1$Ux5wXxexcbC`Z9C3Sn(w~`NYd+tZE$<(9DbKfO zJF{7=Omer3<&|{ytZz?C>Ly(dVB?~i0XDXP z&raJwsQ|mcS>QNOXNQli-hlq@cD!h%2;E=24L5%oZh0}J!&f{Rhi<$3m%i)T4}W47 zm;;70{HK%kIbKJNFN=i6L<4AnhG0^S%CJ5#LI|SLU3DCh!oy<@nrBJCf%T%Qf>3_)cC%^JK7 z(NeZbiVc(q4rZW11ZMkiH0XQFI=Oc02&N2oY4?C=|8z=1KqQBifj(wI5n=%&YcjoA zQbpr&`miiTV^pyKZFmbZyBor!Q!fx^M2*EaH_R6OvXq>okyfjDIDxQWRu_>>N_dT- z2iW262yabiZEqNw5#0lB29>7KgPEkz+=~VCFth+D2{DA3A+%aW23kY}0B->N02qY8 zhs2FZO&%2#=5}@jn=;?n5*?E=;nli7vMX9n`je!B7{_NtF7*LnA$XogNMxv zR48aRRy=HaTc99fxK3PH<_9j&Vry7v&9c}N+Tl3>3z)|c>}`L&uo*d3DT>;5<{Dn2 z&co(Wi&tMzB`5?W%$=&tDv5NrzPPi=f}pg)fFoLboSGpH%-nX}3Tpc)4eYPHZuPqB z_Tb?sGCWTu53MehlF_%j2O&zyp{Xf!!KU9?a|N_mlxT7?yuxibFGitPcMe`h5dtdN zheqq>jhhe|=xSxRH-7m)UHOCm@$zfFd>@`N9)Ep&+b>PN?O*I!)e+DMmJMRq0k$)0 zhE>=UwZIK@grTn}0S2-m?)~)ilb@b0-i`}v)_&mu%Ce&a5@ZxmbMcT+hMUM1cn)!~ z)g8ck>eeNV;Co~D;B;fYakgxp_UVS#Io(wxQT8BT1HZIs{fp_k0k_xLG^Yc=L0}1( ze)NtL4?frfoj_ZqNya#^`pJ{_`u7pI64(IV3G4@+fdJy8z+VF&1kNv-hamWp%E=@@ zxTeQ*cPdiS+`&&zw@=lwMapPN)>o4CJLfjHcbK|mT}ta^s$0`uy0o@72K4OabT%s( z!LW7Fla&EYObH4_0}_$o$*uWWyWuTd01vV8z zOcY~)bJ+b~DBC9hfVq7s^uQImvYODK2p-=hFgo9Q9;zO zViri*BYACv*>H1GYcZe$J8B#3MYHCFhp18_yoOh|!S1bzt!y`<3I17?lmI-udIU8| z%5Ad*TY?}(nMdi-nE#CqVXlLvGOSj>!m2kqgR11QP^k2@tTz_fwzSX-&{Vs4m;#Na?lpuF+MOr_m0{)#SancD0&uVDh=`^hwr2Whe*UBp z@V;kCBI52E8O>tr#+<2azwXU!fYf;60Rjc)5CsVxMJ>f@)^d2CebrMA-S)1t3;ky? z*%-;FYk~M0UJ*ekv^7jrg@;+dHRnL6F#^;s+*?htTa)oD%mx{Z34=4CZw1D|b~kA| zi82T2lZeM%$yfi>Rp0Y%^??&R`LJDgc^noOc!{~UHYT8=HjqgM62!rTR6&ImSVosH z-i3bXeY+2wkwi{d6Jh1noi&X2EKUuc#P0L@Ra-I3RfZcmPxA~d7&R&1jVL<>4B%s^HiVxvVJuHlnOW;x_J5+UWE0cH^Dnc-)?mU*mZPox%1H5-g5G#k3t$@ zw2Vg`K7aT>z={6h`u(utL=sM9>Wdo;spAcE(T_3r{Kx zM2ez}QrwtJ#>VrWb;)(uqrt=(CKBP$lmmlt-OMzPL2vqqNJokf_kKrHP7zeZ z0O1KzJZjV`%|jCi4-B0x2~dczmC=Pq#Nw+RQO(0;NNdX?mCyiwL7KaT8!MPq#H~6Y zp(94`*24{13Fn|4Nz1GT8KrN5V=vB}soL^RvjT%Uhq}2=%QF=8*i2!BP#ISJJoZPCW&M`FA#3Pfy7v%k6W8iRT0v3j$M@$VC z7c~!fdxGA)Q*54IcUKWnm6Wtg43ARXO!6q0D9pK2)o=?BO%h%JOG<>b89F72swR!v zGrZw7=#}*FKB9&rD5{+xg}H=FmjbhHvh`J8b?Jetx%ko!U)`*-wCY^*&>@QGUZeD4 zg-UOMKx(88p$MTQ4~QtjqSi$nHYgI30E#FrT63v;gaxS521->a6JktHQF_H}59Zfj z!DoEY%G0h~J0dF`mglbEI54hQGOQFxg#eAC$pSZc#k@xWOpypbabotCw{H(0!yz~Z z;804BmAsF-Own+fYeaHy1EMgP`v&T%3rNPr$BR}dLG%4wfUC$Su{S1<-tOxTEB zHGmO@A$AKbuL83&|D?I6bTx1U!2F!wcIT#}Vjw?{4J$`a`9J>g9>4!GU=3ITo`lKM zvAPTXE$|lL)Z#SJK62OO(b2vA=Tcg!nADkuxx{2m_Gl^7jg8&jVxprxlRe98R!?l7 zKDWD(y1cfs(q+ib%r@qmE0g6tYx|?zGw)BebkbtC)4)>52%rN2VH%lhkly zvHw*+cG**IP)S-vf{8XTQ79hP!we8jqsXd~BqHX;`hFk)Buiop_uc`eIygf(xIH*b{Rdt=?)sqpP)COUe5yzgyZ%mH9VKyJRCkG>&ImI5r)a0JW< zvH?1+daY3bS88t4T3C%RA)xdS3qtb{2~q~!Yjt-}k&~n(M7R;K#`f>B#1VM1-%CzL1ShThrchtG1(MWS5d@u_! zq=i5i8!;s@C9u6_1_a5LItH57bFp2r4YmOcA>a1q%EQB7@`5l#EOtafwJ}GVpdzVD zk_8A&36yXFM3_A&Ii+q4O{rVfZV6z70vVb-8n}t!?hSFL3Xl^`k%AfkJwy^I)DC0=5ds1)5!SLKk~M~n(8GfgR*O{$YJ|BJVy?EEZ8n0l0rJri zX@q5BSuhc-IF=0)!^F@z=wS2kXCxrcJ^ka`H{So@9Ux&ahPJov2JJ5GM$6O@LLyQF zH&%`UDW#E!TRo5d>?2@j_4=%bM8}X3wFAeh%fh6o4xi%&r}C-h4dfZHudSm%9sZnp zo7NNEO6xuo!2jt3=XXqij#v`xFTVPL+eaUIX9sk^M}Y@`n{<2)re{crcFA^!KM&o|V9z1jI{KjsHv}Zh8 z_muztjQw}CWm$ICiGFj=we~*eTo>M?x8<_DkyP?RQc2Yagl)v52hcRl0A9m;-84J_ zJ&+I#23Ep5;e{0xNJ0XYs)S6HN-C>zDwCC&Rauo8X~JB8&e?mdIluSE+9xuziXNl) z9}yXG@6CH-pMBPvYtHZceW%A-*T;K%Tic7fbPS@raF@cTsvix)*aY9vs0EM!<{P({ zxdj)~*S-1v>3(6-0x>Zxe?fGaxR4hkZU)01>6PZS>8%?2z zCTSgNQPIhbFHM}osqWO4o1&WfBqFW19wA~TV&U#3!a=gpKmiFfArm&yG>lqQwAoE3 zzWww=i>PbM7H~q^L{r)(_7XEqNi?%{1I)AuR|23yOj8d{3^Zmc0-93P8i5wx z+K6u?+@noWDPV+%s3u6J3tdFAP{N~)a3h9@BE1r18_hDH<~4v|I9u;)s(W?1dySIX zX4nly^a4eATK+{Q6vOQsviT%VJ)!nuY~-SoIEX;*3`yG(=>#Vx`&TF+T}3XB=8XVk{H4u(?N;fKxeH#trmjc5h!kccp3!W11b`{k$N zZ~pV+gX7q=wgfQX64Ha(--Uh`-CUBH9YEKP0v(vdA!R)E;TpLAk`_>RS#2BAlN!yx zl0wst+Dt4p@0b`RE$NDM8F&a-Y_d%P2Barf>!&^43p@nu0Qj|!EuVc_fF3vloLwDs z|Nfso_w*NzfTw{Qz#YJMcyXM53V0vz{4}9$b0>Y3&+9n<7cx63I$^Sv-shEy#Cb>+vl&H{Okw$BmXqMbnwD6bIHm#zis#8 zZpXn}4Wx+FD_TZNP;*D?02K|dBcrH=h_@gnl9pAIs)ShU?Rx;zm{t zs%V?5O$k? zG|)Ryc7`?GiYiUyB6F0QWr3qRQL8@-iAUaOgr|Ap`h~O-$`K+ zM4I-9>fy9x(t>rSrxp-p0MbxO8>pVUDo`CxDBuDm$Y8Z*r>aF#i>q~(A`pm~S(Fgz zgc%f-0_{R6P5CXS_ftm)BW*8+|5N+D^9Z~;|wn+!Lm9b!z@3xTMT6QDwY z(6pCu*ro%50Gt>VDrhBJu|{OY_A~qW$A0+fPrQ3*wf3eX(E<17*#oKHvos?pLCVFb z)B6!Z$2itoSU+=H!8z4|dPmAzqMe9!DJ2m`4~YiEnu?r9pT!BQ|c;%k0Z~vAHAANjtOR@TIKWmrYzz3hp zzxppvKJej~Hb4jsNs}Gi8c$knnbA+ZhmqJ!;*woQX5)ERKiR9 z&Z$qNc&VaF5T$|?Qv;(p{W|k-R@a;xqF6l4j0y<}h~*C2A}GlSf#Eh)%^;LoYZE1g zu*r>DzKuvCn@A)`ilqq3G@B%vF#sO5N@Jv>Ne?JyUaO`ANenV5NkNADWOo3g#`Hx= zC9AKCv?+ohiX$Nc5Sj>!i%xrtWr2v-iqHm=kXl5{a;_c{!CDx!oWiGm|4a6O$?L@z zVIbPx1Ym=M*yv99;@?{-~08D4#Ut%7&T{Q zDG`v=i>d&uMImBYEWrt-T8IQu+Sh;*URAPcvSci4!{I#-#vl3K2Y>8ef8BrjJ1_tH zf9c`B`TdW4&8yE@a)A>8MJUCHD3d!Qppub#QIqfnr6v{AbMJJAq{gTcu@(|HE$7f^ zydy-Q!g3hGM|ce&}?Xfw|Th!vI1L#7IjbBC+&x4fVMf2_k`fXV+iUG`AEfHNv1s zGMh>6pefPBB$*~7HJ(Hb;342D0H6YSLpA;M;qp?FhkKrz0+m)i$7n! z@P*@MRstRZ-U>L%$AI?&N9~l@HZsNAfe!h-X};bO%W^1dM75ZIzNVEVpYNoddVgB4 z#-nFXZk(31p7%U|d2x1UA?S`*M~630j&Ia{)}Py(ZRG`{(mh^c$0eemk^vfMT|m8M z3PMEZ6V?I*3XalqPwoI)bX>d--||g2fHklWJPTa!E*h+5jFF!ir(g2ah}?olX` zkxWw-6R0x6-Bqn+=rBS}B`S-n8l0qhp{QBkt7XP?jF6A5}9ffm?652%@1;{=%*7!g&iC?hi3FvF zSFt9;2vPA`$WeNUVbo57WqxM&q1SCc_}Z6^p%RgJ%BT?`!eBr<5n;eOP!v9OmRLq< z06alUG@WjZ>E^`)onq4V9+HY_^&qS%jS)>Z1%X8+oYG||z)DI$$x%Qih$Wx_EW9Z< zbn5b3fjqwK|L#9O`p19nrY}!6^Tu`pSis(pX7{JrZrI$WjZh&8v6qz8P_Eaj>%-}j z!2XL~?VR*As(aA6q%D&~L^EqAu`r-OER8Z+bW9hSK8Nvhz^?}$0zNkV0MlLnnJxWI zk+x8G0085MK6HJBM;5sF#N$uB`@cO!90KQnHYdoyqreA%&jKsl?jhoiu6x;fEGS>x z-GAfu6sVc$>oeKj61$JXA? z*47sL<*A5nj2E|8z=5oWU{#S+*<3^<6tV|g1?DZ@9f&VHA%KcuzK8GmU&jCZUk}!k ztbXf`H?FTdf-1-t@HKD4Cm(CavfFwi1y;ZI+3sl7?d~u_L;I*bqjT>iOp~!<)4z>m zWNS6#nMjlFgpd-MN^LHw)CEEbu$WmH2N5BX*AN$#djBIAzWGhN|KvazYH$X2=tf2~D?YJ8ahV_TUh=17W5i zFek7 zr(s4TuhvoEA;B2I5Ninx!3t=G_K+-=K|~EoBC?u^1hE!BLD{!@+LzPhCxJ57q48Nk zY83cdP}t6}Bc=rX@)&@kWRqG8f$vW-vi#lIE0N z(aGdPk8rlpt62|KRt7^M4mh0XiMeBbirMq4`Af({yjUb z^K)IfXIX~B!{yPDpSW+$&RjaXdv@pCOmAt1f`K>P%^@88lc9Nh#+Dim2pPYz1p&I81BfTe?HK z37ey-(aKa@Q>IIo6oLTv?vb~B*VWleT3+$eJxQ-z?tbqdI&;s}nXaA5QS$Jtd^wwoI*ReG}52R(gPU0>6SXOoa@q%4ABa?I^5M`> zhMSsn7G7B@vZ>_=Po}K&v4T`funZN6@LC`O>!KZ2!XrGYYfkX+pqQv7lJpQu8XB?% z1X-;Yp+pU#dZ?Ls6g2pCi~^)2G?5x~Q%NX;h(i-Y9BAHRj)mG%ibyYF9Yv##0*Hzv z351TW$uyP}ilhd-^tp2yJJJG)~Z=KVA2Qs4!%fo|mT8{HsX0a@3 zZq_4aw_$L=69c*BhS~{Rva14y$cF5<-Dntq{E45_r=GI=?gFrP@xtN%{Jl8;vhj)2 z^~=9=^=(&{Tj&I35B#P#;2XZR`^k6O#tqQkBo(!;XEVTqIlMz;VIN@vfQ3~i!AwBY ztWAGpdX_??RDFRVr{JelO(BLEvksHg?MR-QdQJj_1ADZ3Yqd9>TSWkK)n`_niJ`h zW?DD$1VOk{RJ5CtEId5g8g3#g2zr|UQ&T1hhd@Fw1^lvc*3pK~4P`8lDBgTTnoX0C zP)XAyAe=Edhot3*rNpVCl!y>Qdt(402(lq#T%$zOLDB;vqS~ft400R+m6TfE8Lah5 ztoes6tK~%J1pEOIl#~S8#D0vnQi0wer-*R+gvVEFcx(v-94bnu^-UNW1TA%58_I%2 zh!cP&4R@fKzGRx3*X9+F$$+c^F|mj`Mzqj^nB<(3ECye8sYx5j-~LdV-l@dY8fr@! zU$Sj@^~n|xjOwDQCZt0e6T=!f1B_S{|XjggLJQ?i>BK`B-CJrN~tQzBn9Q9_|xU& zQy8AOO}YmFY<2m8q*th0s?ueVFpV5mBwP$aL1IV}pSjRd*5%g&KM8yScm;4ba1E${ z!P`Rf{=n}{xCHD0*Wvj1$DaDCR~`M@V@>2!fH`mu2;d3e)4<83{Z}FZ<+Z>)z*AVf z7sOsapU;*&dA`$==!>LIcsiC;hehhfdU(8;pN+oL_14MhYFMss4&)wo7wJN`vpzj7 zH&@GY%!7_z5RFUxqQ^Y0#Td2Aia~wmp`e0UjHtViJHU&;)9rIV_O$%+&v$qJPiHfB zW*G0Y{D;5$?q!#Oqb-DB0h|J5Z-zho2lIR08HX=YqY9)(BxTe}QADP&VG~m)QO4~1uYBG75B}cs-~Z>! zCfeRM+9ds|x1>Mzzu*1szxm?X8Q|g-B|Iky8W{!=Z83_*fY+)5WK$2Sh>~@X0J5PX zqB3F=bVaZ=Fasf$JJQ=CEQ&w~T_iC?S|6x2zH>W7HpE2e)QS!fRYEQxVv&1@;*V4Fg$)& zBxO>L0u8>|+WhH7pYavCq0L{VtWZdR3^*hSCubC+>7v@|)jS}8sWmLb=IMdB6O{q& zGFlR+DT7f<3z8H;I4t*pHo>Tf&}1GilW*Axr&BD^fg(T^4H0DsEe8u_de#_ZEnN7t|X0$5J*Bz%l)7Ex1YnWRv_OvT?7gy7V+)tPUxGF-zeQx$@Az$ql9D# z5LGQw*Gc#|9xeAD#p$OuFtX`oMtVs5d!pMlQPrgEv#vc?(K)O-LJWx#A)%IY4%Ha0 zpnD$UzX$#ba4+!w+pj!OfsY2BR9po1+V^<(2cP(s@45Np^QRln@SVV2zz946d=?m| z?tjxv;#+_Vz(--g62?nVbLM#*jOA*lTT4Axh!d>0XB=0nH0bWUs?Aw=Jd|>DG+IPn zoaytKGkf8~t%H-*dJ$`ktKp?mX8=d==c3*z{dR~D(mKV}lgl=67w`(;*QWCgPXE<^ zSpB-U%`ab4fC}xpV}%A1kR98C5XctNSHJzrANv#gf95YckT$1{{P2CVGdn%d(Qd*v&3Uj0owm+sSDfmdTK(3)+U_gN?`Pf|uk3$r3c zU=d9tBcw@EP7qL??7NykM>rexy#)?Bg>3#K6Y-#+s2C>97eo|rcn}gQ+GVuipF5~^ z%9w9Z{-*qyy6PZATb`m@?z|KdQCvlx0riPFY8vh`!ILrl+NCzEj6#@lte{8|m^E@7 z5t=fCkQP^7TlYxXblX}CN9c5JnUDdjjmiTu)Hc{ODwI*HL>maInl;{!s*z9;X%N<6 z%9)LynbXvnH$|}4qDoB(2s$jAs6{2+0ccWHZ8};yfdnF#CxWd-XG!Re;?a^BQkJCcLnylg!UQLTlWyByd zq8x|K%{sPMscrJs&S)+%idwj$B|d;QrAVfqnQb;=?(h;Ge z6p*G}mO6x2Rij#XO(H=At5^?YMkPVIq)d-ss4_IBB-7v@|GEpm_~TlhtAX2THf^_6 z;1!Us#n#L6{4S)q_Pr%X05XyqI+GM2%W!;p{CS*w9P#;=n7@!^_MoP7!Ib+j6%`X% zWLKzGA6(pMS<}d7i*5X<8EgRFh3qH~Z~j+xGY@zk_-N6q66e}8^1=Uf{iEOX*y^|$ z)>;j|1AHF%H1ODqc+~AjyAQYpdEJGHT#dk%^w@E4qXkkchn1*WdeRF0b_FU;4{KL;)P= zzT<6Y_GA_%LJV#U6(}L#D5#N5SbbQD&L9dkR=0#GRRoffgQ6Mc;!SIg@FE^aN(pEV zGD=OU_d1HI^#JN!_sZ}5gImA-cRjd*z&!Vw=8_~5LRiCH!YRc>SO7J&SSy=JntAGM zIE`_HnTUaIIWY>H5igjhVcC+>M>afWga{iP1+8P==7kd$K8rzUQ<{?ibfDpJZj1Co zvq92Cs272@rnpT^=NgjK)Pfa4>ywv)sA6Vaj!MlsNhk$Ds;c%W#__hO%2JlB1RYOvsy+3#VsWP zy_B|UYf3G|XDa+j)t1dL^>kjc{_Ey%H_BKv)(wEBh-vHb?Y&?#Jf^n5DPRJ(AvQsm z)&#HtfT3Li!Ro}6hC_!KOr_xnC8dZk6_z!s(+nQcXhJmzhzY&W!&2Vl5O@s}&5$M& z?!&7{L@iABA}0G+@%QjQAA77tYZ*f5Dd$v08B_~>e8%mUy%s}^6r`QU;XV5{`R*# z^RIsL@!N_N0KfuxHSkuO-=F4pNZN^RZpbw(`I-`JU@o|iC(FYxl%r3eJih4$++P3h z@4EZd&Qlg<89q`(@=UFBp~w(WQ<2odP+wtyp)1KDrU=#23aN{(GOo`t}ZS0DKM@fzQ4~iW&g!0nPwNz-KTZ8rzT!mt ztvoJP>(!y1>5Rzhl|Q57)pN7hJ=5V>pD%~|C+iY&!RFiOy4;=FG52McJ(;4uwA1My zF2h@Neg@nLL~Bq`h!n_c)C-8M&8Loa-TkE>Tz~6tyyI$q){qtIP(=hnp+M)Lp(whm zTl|Cn*L`S|=N`xz>=f7pLM{_RqT{IxBC=*yKlW3Ig3_A#w)^Zw2feJHR)tsSFMe%0*v78VE zwOG*_)NJ7+3SkLa1&DE!+_!KiL=|s^abqMkSqLTu4j>?*;V#b5Nd*$E5!VVPk?E~1 zBBBgeAe=2mP!uv*rvzwIWfz57@-m94h}KdOOnn#OQ2~giL{>)FEJY=n(~1&o`XxbA z0JVW82|CeYNCIe0f0fqzhNJZWTJhhidMFuU3UB%26P>7u=A*_Woe_tJKtx57MTn+0 z*PMiv?X40Xbha&GIy9I9WUY))OEd+cmgoUh2n4L-Ks8OKNoy@AZGzF{r(M+2#8ix^ zUR1<#@{s1lHq)q8azb++Xfu4gG!k9~Xt$y1Kb4@q&;pWaWI6rmMg5;iFxsY|iKI0< z992XUs*?p&IB1;mLP^QWsI8C1aV;q|^9drNRJ3^xA%;dYow6ppL6=(J2Fa{Cr0Gu? zZT7*aq^la#6e6rZ6#~dDJpnbmM01m43M6o{HSR$`!daR$P#6@`Mj6~>S8MwjSY0ha zF?E?mOd=3bLQJDn2DI;>1`n_#O*Mil)^(+ZricWViC(u0rbFy8{<7c`O6;z zj({1k3k<-+zyp}Q+HiTceI9v_oi+Ac^0iBKBdhVf%BLgBY-E6rYJ z^E-2wk`AVf0_lWOWG=bnQfDEDj06Cx3{g=ghs<#LI^_4E{50_EfwP+pz&8)Vv$YK1 z3lfxfzVq{#7%67}0-p!=fiFV+g$Zzl$=!|~_yXk9sOWJvEyk+BzRX~jzc4QEp6&Gg z!hJQ4<9@e&cDu^aYF5qrS-!C7&*a^5cZwaaO1-YrMXW*Z#H=Ctdd z9GB1J*#+XP*qT8RBMs5Rh;%2$uK{kS2&^A_U-zef;ORg0XZBv6YhYK=0Ry3mM05$G z);i8s0Mp3R930-DIIADn(0s|6bob-s^@Pw5CF-F4>gB8jO>pH0w z35*)5B19)z;kAk;^e{_xD3X%S<_tjCJSgFVNDfjW#FAJJ5S)-cj<)=QO?X&65F*N! zgBVUaZf_N}g76nq6iq_YC~`rRaGDy)T70sZF%Yzz$cCheG)ts6LjdWj3PfwlGazcM zGJ~3^K*+H+vqD>NI2ND@RT?TrBpPMR6Iz(Z1MZh;6D5zEF}HKleyp{7ZDiq^LQ zTX&h>(!;{h&N^Z$6fv1lpfbhEvNl7wNmhl#Sen2@Q}%HTKvD*UkQhgnfI!U%N;~F2 z1uh!y4u<9&?qZ#)My)LoDya*v2qIaOBFzlqBR45+^w23uqDljlH|}S% zIYek`fWyT0_*f4wnhe#a-jP=kZH*)}kAW96MwL1Y+BZX>TbEczW6%#+3sR(Z`z77H z-v9Bx_{8DOTfhb2GVma9C(;F^i!wW-X-m2}(+uv~t6)`y&YU{4BsIqM$>I9oajZW9 zT>mmPh~%r?;(W#)d+@r>JlAZ#zr*=B1YHTYG+}oFpV0*meM8RC7i12)kQS- z7J()mg=J9_>B0-$5v0)6*x=Wbu$65p&dq^l+WbHQ5aTvsaD_8^gpyubJTzbia z0|lN1J_J0r`TNDoAC5P@xxC|j6Kah726f7K^XP*fT%Z z&3rEN7)}o3dMSGs=4I6F>#VgRh=SZ^|1+#!0lXPl10QXS<#M|IksmyVe)v=W zhdc->2v}+fcE}ZpKqeJV9QN#!yOmOf?yxSKWrQ$-5zs;nib%?lI;llxK-3ry5jl)- zN1J=*#9G1wrk0aOK|q2|6Dsq}LI{LM%H~NuJar3>YnUpbs7+*{)0cBc-?vOU@XH|y0BYqUTsO^KM)-l@w`TkB>GcarT$9ntv4&4CuC z28r<6k*kLO{)&RF5gkr7ghjjIeA$LPgae0Tq&FWVjC=EU<(M zQOhY$o%tjjgP@rC=w_KArHrDgW}v|%T9vO8SL1~@;$}H-N6n@OYWk`)$%BNOZZ7~K zpp)=Z6!4HuCrBVlC#-p|MKrbF4Jqm<0!q8fNpsTcvH&=@w(QebOhXHi{Ky`DMe6YT~g{y7T$Hh z`A_bz|IRO7{^x)Gdilr!0>F;#y*{0LBj-D!(Ao~aD~Zwu&!P*un#^+_FxRqNpY9I_ zpY_9!0FQln>mNY(P~Lu}^;cYWjOeOVaGFYe-3`{_I zw9lVf^9pMQ%4VGFz;nO|98LSd9{%DV>t6QNxceRDFa7zZs98e}r{}Cy5(@bJ73YC# zz%eR%ynbibe9h(QS>o1@59x7`_2e;2Gcx z0Dyhm7=HAxZtu?b|G@7)d)HQ)juniMLYT2r69?L;j8(f#O1P>dPz1^vstHsUXk?md3m!L!gnLm` zXhM_*FmB!Wx*p9;Oq?m!wA{x?(_GgPVy!|#9T_QHy^77UM6ikc4S;wpU}`2|2ochV z^9n*G=uokgWikncnncuzF(!c~HDT+oOl~+pycAUxn^cLD=f7FW%up$c7Ddb&P4M0l zDkUXhcrBU@%`ni`2Pc$try8OqDSA|wm}0*~8k5J6OwgtYP>D9lYtkKRJMm=H8iZ2W zl;3Q)qBgh=0W~M8dMVQ)VIoboKG_tScUs66QrYNd&@3Q120El!=VR5Bn;3CY%q3&g z@X~tQ!HO`XMxmMPsSR1LD&4#zWg0%G6kb!#EvZ;lyzNr*LQDT8*K|goYNoWQ^Q5_i z1#NG5;gleRW`n7QL=p*&QiB17Wur=vrouY3Ku1`j3t23g$3_T5zym5~DZGHeVH7h> zJz9>0m$u8AYS6_55>X00pit`wu}(!iVx+s6MG(-`Hl@uY(vt?k6 zVO39WjEA4_!(RbE3+#WzOS_x*UOijfula0*sV)1y0v$XMgw&K&9g^jA^4mx_zpHZTK3;Xn9?_|3nSvkTjQba(!)|F-_f`v8>b!J+^? zU?@#Ac>+8RRE*fco6qjR{CGIs%R39}@~rOU;dm{>sdUs?zs=>LFAsU}cBV%BPUu@2HKa{>y?CUZxdeVCF|Nt4(niFhSklL1N*hH5A<3fYqF5CU4T!AD#8 z&SYj2mZ+Erg>2MTWfZtijVX_Sg{WCVt9vRbRLhKrI)Y@%5J7cOs3g{aD5Muq4P{u0 zAynN|xB94q$*35#YMhkl=GH9^Z>4uWd+`T?7!4B0ALGSub=I{vfDmS?@DE- z%!!W5VH7DzpsDlIP+CoHX2~nHF;rYt&>4||Gr%e8d*)}pb$Qyo=#U{m#y#^lKe#)4 z`nj+Erq$bje}Cq@BIZ}`oPXaRitqlF155D z)U1{>u(19l*Y(Nqcxh)5T_59IPnYBNscg@;#_io@+$`($L3BCkqEnsqoiFp+V;J1D zv$W{9=II=;hZko<1~C6AjBl;uZ=TI-h?xgjBobXJ0=fWR2K**q2K+4W6tD!A)jX$9Me4R;zhbJPW7fo|vBgLlbrc4x~j?yL8p$$L5$$yF%#fzkdhlGfd z1~Z-TGv@9Sh@{ck;KC|yaEPjg0AkD#DjV-e2n``nHyn2&rQiSw)Ig{3qC$kgGLSbF zo&qz-U^s%TK}xxZGzU&0YUnI&g%`CTH_J4_g;7RyNetnhdUJYIS0`Ha9ZI?oQ9@M2 zNrhv=!N8PMNy>Iiw-&7`K~+QRnyMOo;8&T3(kS$U2HlLt)VrHQ=>*$KVy=mQ^S)r2~zyY@%vT zYFpE4NY3U`x}{W+@ewHkcGj01^=qqKGj9V>^m9+CF0P zF_^-$AY3i8I$b4;sJ2+12EPk;AYdCzlDz00ESuV&gf!Jpv=&f%9A8j>w*R<&eu!W) zKm{RQJX~`>6ZQ7b5DB`oRzXmxqVSM5kq=iP5RHpJeKaMSL@6x_HKeuPD%=}RPoz20 zgVlA`)7f;GVu%>U2dDv=ZklscR}Jw}gV5aCg{+k!n!9ExYtT0@qd=(IHX9XzsV4qKt(Jyt+F&pTq$Iz2~|{59Sek{*Fsj0m|wQ*V}@Y6WGg_D0Z9{&pRTi5-!q{XE)x13aTuu6|LhXY?eTaQ1( z(@z0k*fe2YdgXg<@70UlyZU}-SY;K>X_jmlDSS&1$ z>`m9lN4KKC=(G9R6!qw6by}8(Cu6_U-yuc8A$Q^t5_P=$Vz?c?filcnz=xYym$Hd=5AQnk9Stp}X#%_gSJ)D#C;_%L0U# z;-I=omsK;PiW0MopbDa_qKM{}8|fQJY~lZb>*b#D^@OP8hsKSD@G zgtTslBGgQS0e8~H(S`vcj1u&KP38a*#282_ohd<8C86M08yKqTG1-76;b;z10|d1K zP|Hep!c|hsFGh0=wC-S`NSov^B1Ah_vKCs#5kR^ zYKRHxlj45EGolczLT|?T23qn8HEm&ank~GxA6d|Ha-`{*!aahy@4Z%mkvFAClaP${il-xLRF@%k_w}xS_sN(4 z%Rh_H{9=RZWMBdGz5|no4_$}9XKFC%uqAdF9U7@*QP-Q1dsNiCZV- z1U1YOQYMoW!bMeSnPD-mHBnL$Yd)DZM4%c@>8z9jL~vA5kCIFP;d)fpT3iLzN-)o3 z^rxdeca(12iqmzy;o~rj$#HQ<&u?+QyM4~;h1n|Q-gX?bDxR@2sG+9gqx96%%U^i! z_@6#Fyyp}9<5L5U#*OXS0Rv{6RGImwL8Saw?(5$8#(Vz2cgz3y_WiSGPqp;DRUE1J zxh}_m$Sk9dp=$H3@UI*MD<#uhUFX;P^uc;L!f~cy5`1K8|oVrnYkE6bccGQXA^BH3At8au#rsfsJ>E z?SOdu3bd_GY~y|qOe&zM@3T22+*Sa!ueLN{E-?*@0g9^9$reVFa?s2`UqeLGgkvB* zYS61{bNvOw0jLO*q4nHF+y_CcxU*OU3Z0M;X?el`fiSdKpe_R;VEctpSwhspg%0a; z)FNgQ4GUYM6iE%?099dl>XO$2Xp~VQnv%AB3nh{nEV$7XMufXa7J>9RJYaozl_Zj7 zjG}7nL`jU%WkEhOaO?5wXa3<2@BFKO^vwEb2@q%)`g`-@Y8?-}e$sG57OxpjX26}m zqrfJAtPuDd@Oj{8FeQ*=Uw&C`T0*&&=t`sxl2Shm3L#9! zbqR21?x8a;N*xUf9YS-+NGp(WV;q+|?tA9zjFH zcRj90QX?8ms|MEU#}}@YzxUVgc<{dC|MtcGzw&)MyAPl4BLC2zyzBS;&(}Y=Uw|#( z!rs;+J3Cn=M9FH!qm;4lq%2&QGSmZin=1t=?FpB%e_Atr_mVC4c6P?JT<@<|egM00 zreDmqU3GP`WB?-b`C>78|3iYjYwN5|gm z+`Vzno&C!nnVoxZ_EitecJ)|KyJxZUqwhKTz|W4SA6;!CePWaD$;p&~07hVY6ZzSr zIv$gcJhuM_e{}25zV%Ii`unf`*0&vB#wVmdE^9+YDYe_~*C)~SKsGO?Dq@|NhG3zS zKxoQS!PUxYQK+??$cY!w(xS-J_jHP;h}y{Y&6#6K)ugowkgP?-t7z1S8fpSlhC@^> zsR~Rk5Go|XA%q7sX)?MuJHwz1rQ+FCS^fXL%>|$~5n|CS ze5#r?0-CK!3m6eJNgKX*do{Cysi9D{1(kY8W4Sq+P)r~(rBb+PqGb{KdT1zDl?;lQ zpbX(IYV^=f87^WB(bQ8cWG$x9z-mZqLj`Gde*WE~3dx>w!v|lFi{O?|K;I%uKUw{7mlk)kTM-dFudl${kMIm%iAve z&fop|$B#}8>wE6RT~~}26b&)cS*W=Le5Fa0x_d|WfBm_w|FYY_z|9ib)3dWfxs&1bNF$Cmp(ZegC`L)Ss}A`h!Fl+$Im*hv?* z^Nl4=$0e3#qUX-qPEIki0AE0$zgYWNW2U;3cW+_uMf6*?NEU2Ag_9o{#y1Y-4$OC2 z>5~GbIAe)&h<*677x(Q0kK?C5ARm0s$(O!RaAOTDffbN8 z5oYb(Y`_|acI)H3_3`eb|22U1-@^a^SOLeIyqXpovjxn61nh3Ud;x3&9dH6X2VCB) z5KCYUjL-b?Xa2YE`RqUbU6=pD_g(qU3z&5$SS@FP@!B$X30w10M$M_N2eI5BT@fWE zfQ%4H7VZeOiQr5$WSz-i|wNnZ?kW>YPQL7};tYCO)5*1GQ0h*QS zPEDfFT1v9Sc7JLRRT?mrg@HDWi0Wz%P8zOg=(8^?8>fZ{7_HCPmVG3W?SY)$IJ}(| z5Sx*JP+BsAN-~ioQBX^iwdB?!Z|-72%ZbDkq$!$I(I!YSj*?V!H@OYSiDu4_q;wU_ zZFZ*3vJp;-=5Cr+v|s=+LBIqQNfa<@MN1EEQ|XrbCE6H)qT-bp!;&>)B4Iv2(kyiv zji|@cUQ11>Nw+*gtPws%RG zfB)LE2f!9^1$Y(i`=+gPm&1<6gI_pVeIM`~Yla3RbxsP zeCw+Y?>T#vP5rFh+06}NBUIt0?9E&wz?wC0QA1JTEAe$d$K^J_fdiv#mA$SlJqpbF z`Q`1DMTVhUmVPVcz*yFvx^2@lDaLW-%iV65Qfu+Oi;LY;KYVVzzhb|;yL(oLn2*nn z!*FFzijKM$NV9UBB-#)NP|66hJjh-$c$LN6} zHNX+@A>fyQCx8LK*S~7zZmJ zC1RZ{*UB`@V1dSbmSZ&}aVZ8VKk@L}Kv_P2iZZ|}eTA1>bX{r7(VpWJ!d z{M|9Xr58^4)DG(in?n?eoYaM4W?`B&YB9*f6q1J0p|&L8WJ1%VW+|eyWk}%kkQ7j3 zr6%J9Uu&LGHC6X^ZXh*ST}(`r+PWr!U^{xCsopJ%Oj%J;6<|nFtyfM^8=g3SQJgiDlHn+Qko77fj~i} zvrioA?ZmNVv zgK#rAuEi2*;lA-Dnp#H|dPqC*S!xm1P;(!nR!zo2g+v*J3QL-Mi4oqSr~x2MysYwK z?(2gzOL?CBXr0&Mvs}xCU-YyYk<3jf3S7$>jtrzOSYUVnfgUk0!S%|Aj%2U zkg`%>qU?z9sP0vA4y3S!YQ#`O07(_z(g zQ%C$-%H(bh5nb&aJ*X?)EIN z%gt+b$Xlfxf9f*_KmMOSJe)obJPJGud;oX^_)P$y@b%0`jE&xHOT;;J3(T)#d?m`) zVf-S>JHbx@14jSwpIZOMA1UAWxBkrU`__-#fycU?pT>>rIQ#I(!4_v$D=1xisHN&* zx%Z(M7+wShYteJHsr5ymnu>?O+LGtBv?x6|BWNi_p?d{jNul(zu@h@UAy^2#c*_@% zEYsBTb|YIQ9H0_a0PT`wZDp)BN3s|_C?TqVOoxdiZP`^ZveGMHWQcYUBT|!Qd2vB< z4>bcpwf2p}1EMf`ta7s87 zoA~08rs(XFs7*_3Y1+sZlh9MvUW;fa$r?`(HK1`~$?%FsAhBMg{Yz`^asUk%+K?e_;|o?nJJc8esF4A>h)9yAFd;+H{3A(} ztd*r|GN_4|fZ^VLB2kT?L}>t6Hhvow4d@0$bxl1$2F*0QK_0C24WkT!(3~_Swn;W! z2x+ZB%|2EMLd8rW4FO7J5OA-NM6$S5H5DmRP7`*JwvJYpe&mDaf8cxl#%J3gaR;~; zv+wC2e8YVG@UyT62ApQA5Rpn@~gfvP0WTuP^)P zsP&ok@fTrMW{X*8IrZIaMlQVCxI&i~DW$TCvDRA0*=&Z~msON?ARH!ei7|Cums20d zBXo^$z~xH5d?kxzjOJ3JWnYAfr3i1{X-UcJsKt?z*Ukr8O5iHQ6QhPE(eY{hrC$>u z0|ZVav+LJ6lA5Xx98Ybh$0!l#HT8X3kM;OS)r67Or?R`NdwYKU+2#JNlbwamZML_~ zdV$YBy?=bL%!ss`7yW$bPKG*YN~v4O=^kGa57}bJ4W-3ue-wBUXm|T)(+8if*S&i7 z1Alqv8{QndDPipCsj4dBE|xl$;$ATZOV}($xKL0=CPP%`NE7CotV0Z{l2r{30eVH% zak+TzDSPi{R{!}ur|*2%v$sCA1QRd^?gH+^o5r5J97T+okw1M*H^vqq4&S* z$&bD3!;jXdfJ5L0@cV%05l4tU02p5hycswT>|$60J@gcO2(!yN`<^)c6#NO`KLEG* z>F)c#?ce>!-|!p%*MIQ8zy0dp$KF3W3v3;psL!)XP_tkxRaK${y~*n{wYBeEgj53{ zCQ$}JBpDd=prf_qgOPF~!)w*lQotx^z)8YOh_Qx1LPS+25UB~PPXbUAfKl737nV|u zqS>0Gs0|pVR9Ce1E$D>1iqKmYSmPT()F|5UN@$F*MpqSMGXrSDtTl{Bh%gYMa7L2` zwG=EeTKsL}^-o}%*0gBxnO?;ZbreYyl}_k^8X!fDKGLTyh>vU4R7X#J-z;@O7qX=j zs(>c+HG`rFP&Uu5w`qS9!QVD>HJ#6kmU@}2z>^Gg>h)s^@O)vpArQz(p%hR9QLAJ_ zGrv*9azsE7Q3c+{{X%27Dq-fs2up2((K>Np&_S8@7`Buax&R8QDLsUc#Bf3&$s~0# z76iqTpm;4Rog@o~PC~AboEz=UWO8{;G+M8mLLq=`454PB3M%Ug5e+g$hUP4Y;3!p^ zyjQv$q;w)(q(Hz~nMy!sr{m(WYY+UbpStpnzi@o8z5yHnTfnQa{dU~(a2!8%aP8+& z{|WFVU=5|7eNDgjx}*KodUYV{mDZ;yOU0pM2J|o>M({RDlV2hBf9c*JrN&3Fzb>nn z`Od5D(p}y5Ia6B>!??7ZVms&J;T)sZuFtve%b3SiVO^^n!)Mkffg3PWL#z<37mU3v z*hq{W0<`AeZl|x7`P7OaQ5A8CLck<#1ymCeBV`Z^jQtZofBMnq1DLlbZp2B^?KBq~ z#P%_kbtSuOS?D_K%vaR?>aN^bB|BZ|_Ev14vExHKJXl`e>h9d@h1j0;ab|w&#&EEI z>Ls5&H|x4?WEy;3DhUNLFl^+^?VkDO=9SI3s(PTq16MA-;=&!TyZ`(cg> z^Ia@!oa)wYo^Q$Ft>xkM;nww)`_Tih-kHtPxrKiB_uTjEzU`jpK0iM3=rf;s?3rht z`NY$!j{+yaHQ-6$=YUrN4+FcvO<)gkAMiP>?uu0fo&lD?tARD}8DRPG|NM{s=sQ3A z|NW2O@g2Xe|Bm_7nEiX?TXJ(R`mN&Y)b&u5VK9S83K6r^bScpiPDEl_E``m}Rzs~x zv#FNCYeZO=0D&f9g*6;MBiO7C6j4iJh9=^qGoYqmn-7XRMU`w^AQ8ZePa;J$icN?J zy~WcutAUWh2nnF;BB06O6pdE@hSy0b2#OdXtVGfX3R^$C6}O>gM8K>~+^2REL2Z88 zHu#)cDk|dPtQ7!JXbqxAwM4eS;Uvl!2Lx3_OeBN|Ox3IfT$4&=ctx#50)du2SEFSo zZ~R{`OaYqoAGa6wO$$hXgeh-jb6jX)%`aMRG-)9a2=}PBi4jw@rU+sfrAwkc5Sk5M z!BFeMi&r;GNGd9#!f;k6#QFq5lo3z_Bqv0JJV$dOi&{hbw=^|6)h2s(G`oB#DNu!o z6YcJ>7FDvkH$DVJO&F*{6;sV35#f|B2_oviC?c6IVrE^>s8OPQTbh}P80%`#4r;>D zl`6q%v(?ercYSi_`+iV9`L3rnP|q{K8*t$_VDAEsK3lH;82qPzPXhoF^7%CX`gPr_ z1LL?uJnvWnW_ou{RuQBl9fP+-h0#JnPJv-V-294*Kn>uNEMHibrxkDH`abIy>-Cn{ z&Q`CY9R^5p%Q~OiYVBi1aj1}LDJ^W))fI|Jq);1xTWtgAx~@6jDwP_bKuuvJ!yT$B z6eYc-TNs2Ysj#RhM@WXI4!8P$^5dr~>;Ma31svSG@%+v6S1vD@x|nx%TQ|;6NnUf!9ePipaIh4HK!Kc9 z5)~*_B5D+~pvG9%y;3^>RU%M}Nk~bjYkm58f8Vc-Kl;wo5B=Q1_0Iz^;0$oj43FIL z@ORw%!2S2$fBxcG-1G7j%j2g%wK~72SGLpXjn$a-^8Gujqqy;femrl>0+q?HQJNLf!+*=OrJ-q&!PkiL7 zKmDm^KK{%v180Hjz!Sg|8;3_rQ|N$;z#J&R0=NR)2RsBk0i1CB_}}@i^h0<2xa z*Z#JPJFn`0GF@EpXged78Y07_+m33v4_1~6xFl$r*ude94-qZC+}mu;aw9*&rf4Z^ z4FWbYB-&n*@;n-J!J`2|gMhRQ76<8ph~~+mc3I#8w(dIF63tXnf~W}9jAMz2rl4#{ zA0nBN?)0j;gOgq$+DH|eb7MlN2tDA42$}NUiK%yA1nqbn!WNnSix= zNHl#>3ziL$gf@L{e^m;ju`WBWMSSuqizrlEN7Ywrh*-|0cuLA?mju9|o8?wo%hUjC zi~3X%MQmC?8wABm17T#dxJ(hsZMml3CRhyT54beNkxyqmMioR< zr&m!EB^lnh=b*OahgwyFG13c)!;Imu4w^&AP)%7ZycS7Dk*K3BOtGdr*1|!fOV^L) z|Nh5z|IT0SKlkKeYpDV~@N(S$?Q%}|{JZh&F9N>^e0pj~DAB(q^=Dj5+`55y2atdn zaCLj{ymoNp^?2yx(5EY~xz}MFZ!wPHw@^=B#N_$!U2?+u{*%*>kE=UrJB;&|U*_YT z%XB`^=KXvpZJQtwM?QEGlaxfe*_KcX6IWv?tK)HX6S&#F%bBfSERa>&Xk9ZXaFVX3 z5EHLH0^ycTa|?utYzY|EM`ghJ>!0d=>O(f^pl}H6KmGidF6_Q4UER(xbTit(QWxui zC-bCzj#P)hywl3O3eHYVFWM}3dt17{7!LM*e}A~+(rnSk{(cG1$@GLL!}2C7SM|B; z$Iq|F8^8$60R`5;Y-j6E<7W?+Z1SFsIFf*&m&-5LZ+-jrcfNi1t*@G2+~&3@IU_no zLW&3#R5cBmR4b4Gi~vP+mV;wipF%rH%IbA=pie0e%X;&1{?}g}{_(H)`+wp9*Bd|e zGI0L`XW#Ph8{c&2{dewMy|leO+nXVHlC3`&#5^W z>hTRPK0mv6ZW;c?M{ivFl3cpFm9}vB9Mp0*^2&~Tw!FYFEN)&Op1oF~>w4qx!qxfR z_vbtByRdiJ?tbL%SA6D?&wldB$F6 zD3MIWNYY(Wf)@fQCHD%F?m^XLEmyUcs+QdgYFKIn9)(UW9U_E^26nbKfCf|;+S25q zFjc6An>OivTeYc@l8BHBDp{o^t(O7?Q>)si48Rm`S1HA#dChf%Es2!xsi zD{4DC0#30k$-*mI&KJRk@j;V@s+e#LNe~Nb#~0~Ip;Qi|5Mnct5TP0ZE@F~2yke}( z2{}cKY|#(_rAya2_6|<`Z~YDb2S2plkDI_6I0CK!--x?^*Y25aef{UhXa6nm;VBoT z6`k?z+ZVp-;-#zm*UND7LEsR$5Aw3^%voEA$jmE}S~pvF-EMflE;mxTSg~NuNW1VQ zaDu3a3Vwwbj6eksS3^T}3X1;H`sS-_{<6zgU%h?){(d%FjU0=b*K8rVrcTv-SP%7h zxjZ}=j&E@FCEzjO1dy(fK0=Bx`xwk3l0Aw*AgY$hFez}5RT~anN}%^KEC-A@PXF;8 z`%fINfjMvqSOWVozWZ}udhM*g`>r#-mszR1-Hbl2ZaL3(vu-9_NAiWLTHRl+PuBgV zokiWk&i4HHbbWNRzIaCVwzlh@l>HN?&=^inZXWyo>G;Jmv=&^`Obiu-4;ePHpr*KWV;UOT(zTjm%Vt}Uvs5)w2cC6mtUAkbRL z&P>%~l&FP1Lm$F!o&;35CQ0npL-)+*==8Jmk>E#nFWgMS;?DR{|%7ya_)|g#1nw%c! zja#Q%wVV#igC)~?^e-Hild%l-{8qkt=T6>YFSGL(vL)U)E~h6oAkW`eFHZ-rI@{^* zzNqKU^A+Fl#>YPT=AU`j-8YVY0{j?wym>^Yvp+C^1902DNTAgp1UejFdG?(j_(Sj9 z{@MT6xBczEf9?GImQ)&8#*#X74^t9M$sFWZwa=2K%&sUA45kc-nb2#?2WUP45vk!( zTp%!0OJ+*CwCM4M*c9;qsM;ApdPFp|vzXC);&M~-Qmmr@(ZrDsFPQ9Q5Y-5W z80)BQXb>cuYy|K^uR=s6Oq)R6M5kV8?jnXJL;*+@mH=tl+IZ6XjBt9RcMuWLWTc|O zUeE&dQJ5g`ynXi8+bN7R~T3Wg+u zd(_G-4csb8DI_Zk=-d!ul?>~WPzbfGK*Ug$fEk@=N~lnv(MwX(deH+>)r{_l)b>v} z>5ixXL!e0wiKRt&NTW>&h^SsisK6jyl9a(wQv#{gAT#33hi{$v4)~6x5@aA z0KXm&eRta4K6&N?@$An5p9XHc$hG^{**)KU=KSTlsz=ukfa8RR>inVEnU`;$o#!|? zzE#RF_IW#Z3zl^`Ev&tE(3sILM_pN0ayOKE>f;IO0WfY}p8uQHkgtFb`|087%@pZk zcdBJvu8xk(``Q~>ZSZg|4~F&rtuj6aJPkYz90LO&HN@Sapi;rg7OZRV&^EOZi#oPR zPJ@WhgUQXZaR#JopG<%2zucHs4eSD^zyb8& zwbZO zAqArosWq5Q@`7Fz0m}(C%7{)>vtTK{7E6W<28ta&gJPP1_FM4PMh)J;=r9z5G3a=_EZ9>onsy=axXju?Z zSEyAiNiujyGKi{XM4(~)EY)Etgyq}oI~yBcL|8_#td{5{JP-`0sx^2~1Cfdv)TUcK zwfJ8;1isw}5}ABoD&PxF;1{WY(0GH>S4O~VARJM>R6&-$1K85LBzKk@|3~PxmJwoT zDyQnTgqWpS2dNAooWTH9NvEm!ScAe^$%b>HdsUcbb4C=mYyhH`Hqni!sI+cDNdQSj zS`dVhr64LyVQpL)bP6;)n&%Kg>$*10fCe;gu&2@hd!iy)R8yrhNJMf<71-7a{f9n) zKm5JVeDVWjW2Zb1+yQ(iUh$pXMIRsg89e*XfOi2mHeu)h9!XnYv(;~NT<$;jOq@Ip z^tScJGZ!B^d+~~^t#3RP>zms$Xrf&a-bsV={!4pzjlqW{`D8P zx3_olUdZhHY%k{f&m5mtxhr)Slb!~~t$Z`a{iBnUJ9aP4(_$}e9bjD#Z>>#A9;MvU zlVkt<&E=;@e*!poQNgkR?%jB%o<)4&KmQwj<2PUZs&BgZhMA?Z_Uwv+HowzoHZNy^ z1em~?SXPei;l+VWC5(n(46Z7=R#<`&B^eb~m=2!DXMPnw@s6AS;YXkQ!qEuy!2Nga ze%nJ2eci*aedX25xN=p?&Ex&2PHLaKh1FHMabtDn+IsukIOzD)Q$y+cE@_(2x6Y+4 z<8oZr%roceLzf-rOIeTWbzP+XjunJGfv?Gck4nTRdk1|?RUJd{>4A?%;z6(uz_Z(yc>9Z_sFZ|?&a{|pTYGX2R?}Z zKU;quZCjR|^?~1Vo7XwpBU?>6VC?q7LRFmpZDl?UBL`FvQ;`Q&o+uwWoz4uyk&iZ4W`yx_< zGvbf?-aF^UY4%xbt~tN&_u&Y5y81tZ?uX0ejaIjuR|n1bHh36X&-Yee+PvK5PC6Yn zvqY`sO<#oB_;56zSzImFeQ#w`$7wddPvK@~y{k#mbT7>l)PVDzS6ZP*u8!$Rm3E-x zGxP8VZw+t=J4Exqn#>YlXsL69Eh$cc*}rQj>X3u&qCo-9S_c^CdcjkMRFh_zuaOWL zkr63r4KXSF&XN4w=M&HY`l0n)tg8117<4TDmv)Z#PLDs;Te%^vi;e40i;i158Hq)7 zxwq<=JLyp?&WA^{c?Z2gXw}_rGd+5=Kh`6ur}NXp;kW10*Bkjj9u09*$?4G1s? z9s$+8`*;68e|Pla`SYtU3(QLUcA7HDf<% zP9Ghl6k5-`vJz$y5A5N++0Ax)qu)F9Wt?KL;@4Mc^%`GpMIb!fkF%rMey35PM?3YK zx2MaiVPo18(bIX=nef_XxO$^AC@DEATzCJl8BZ&5aB;G^vsx&Vn0j`e*(bHE6eDIeC75XfI}V-%24-KVD0wnXVDg?6 zWa{ApED{Lb18~l>V`&5i5n)H3UOw)t(aM@9F}anr=;VliiHJ2P_oqH4*766AAK zSypLMa0?r*en&^=JDNN8{)RwU%mD1EJq-Fj1TNouA-Zxz!f=3ji^*6G<~)-#gBV1c zguH3y3QIv*k(;8z7(yN(r%dd;NwOqxj$L7z5E8|-INz}|1-xfdQn46KBN0i=FPK4| z9cyfeJ=ma;*pQ;81R~~q+Cyp@664^xV3Wkok&(v6MA!!taoL`&Dxw4vkTIFnj(}jE z5}d&K{e$-Z_ot>m`hVTsIhrrtAT+?of$!q0A6mW;_P_K+9REC!6W*Vmr*5MEOn-S} z`~1~L#D+Tvk5JyS?hCE$^U~6)n#Fl#ZRc9;W?D^SZPxc2wsgL&BR)AEg;1&MT+0w>aoL9#t&bryn1Tb~p!M0)$T}if{A@ULiqhFr?E`I~ zI*X^b#&P}h-yJjwLsdYe-^83}2h#aC&kjz11JhueE!p$0rZ#YEPgAZKM1i_i(>^yK27yuLC4M6|xzaIUMJ^F9{u3cGnKB?(UkW75C zqM=ZPmVr~Mm^j7S7Y<1hu_u>Ig6j~}*vgh?BtrD10;!JW!5#j&pBw-9KiK)wTPFYk z+vi)aKJ&t7U-{%~gXOkISVDaAWPiTbgmWrn^Qt)=Yv*BFrqC*ydJ>t!g{!Tp74u4* zccF|e5c;v~)U&a?elR>ap!F;L(@AXRa{RFMjWT(kcK7D~fecS=`(j51O&TUg{k5gp z&2yL~xhqt7UM>ft*8WpaxM*Ox`(< zeBB#)4^<(}zz}CpT_A5D)+SP56LG<-Dl@yl8B;+_9K1?0sB=!! z;yrO?Au$mH-ubdk4P)i53K$R z7BtQjLjFt;v~UMJ9S1KaDMSWq8pT<5>B2z3#_T{$28}g{EH|){fMKTO{lbbZ38cov z%qrq6N8}hB*gG)+#Q7GiwmOn`1~zgqN2aQYc;Ur0$!gCm?oqHO_6o<=sEDajCV)zA zI~p;u&nc1~3MOZ&Oc0ogILEMP#(=OVf)~J*P8pPvgTOg6zVo*J4?lJEPk!`tay&mv zL>a)ng7AkxH+0b7|K__meghZ+nS7bc>J5}1rPj*Y`K#oM(ZK_&Pa{4N2Aj*^Y4biUE?jm6=~DaB4}-EUv&G|`SmNA3P>^Fr5>8yy{{`JrkXxY=I59ExtNG|f+w zG=|kqf4K-@I@?nrm;<`doWYWSOn6pc0?a;e2{eljJJge>I;cegmI5~R>AGoo> z4q*?07O(~U0B{UE25tju|NNg%F1>pHFa00Ojo>Lo4&0C#C+EB(!9mo-W-cd*2k|iH zyqPg31VT#io-~1@4e7zd`WL^-KmKE*FaPEakbv{oRzCL8*FJppnOEDLp-(Zge=A3`b3? z2(IITS9dX&avA6lul`GdoBZ#=zz+S$HPOs3Vz&d^WkxhuWSR;w;;JWZxjv^bzz$?=rJoGU>|8XVZbB&o@{C?Kd>PPb4eS>tXJ z2_$09c~cVsh+MAoCFN>2N4vlg6PqdNS)6=k2`4jVO^F%2FbaFb1m^&PW5mdgnZ3o7 z5p|jxK*=0A6IBA|P{PcxQB{J0NK+y*;+z%iz-$CV#?>iQ!7gh{v&w~nvlLB)94$Ia z1Q3yT1ZYY*xJHRp#l%p0H4-siv>M2ioMVe3F*zTUDW%A4@NCIA1SBKp05gTu$@x6; zjqskBRg8mIHB%v2HX>M5HG=b*HuVSRz-Q{ur~RQ1s(>idpcn41Y?3p;V95e!;vK7r z8rTQ+25XSt4ff>CtC^-eBF<5fIrEwvB&sGMR&pUzPtAy3u`tJhEG1K=;E_KK5(ZMN zILAsTlc;kZls{&t5}BPzB32>+5_0kt!NkZB`v3r{mZBmLjl~22n1g}XwasGgf{_yy zBT{CDMMeUp@znj+yZU$kyS-of>2$W@^nvrhcT?*VHYIFLF{*L;JHQ*jTfmdEbMyxA zD$31s7q^yr#mUhF%pb(C34UdDxqp78v)XN%dOAEAcf2~;9_|ij)8+m~vGPpIQ@Q`{ zIQs7TcE_~bKbp?RCF*C2PIqbbf)D*>I+|7c6!!!z-@6(*Wtt3QH3MdhwW8Rlnj-)} z0bD*yo{4AA|12MB;Vm%W9Pl!@f!;a8VL}wMm@g7X?6~kooI^8UHDUv1uy?^FnFn~w zad}Xq;-CHcvaV-B1`(0+`B02Dj(A*lcKzcJQmeHvg%gIQ;!D zRX_u5m3ZN^FMjHk&wTf}D{B^8r}t*Z!)7v)lfzoCswtgLTnyA-X)SMHf2d_AEp4N_ z?h<>d>(SUI!x%?iV>;M7YIYk}t~+CHOCMNW3;lsZqQO#+8NC(muJB;F9Uj=>$$YY# zW}Z?dPwtHlcAAF|4z7Rb0=PHYA3mDyuMUbUS38G~_l6_py4cuguXE=KrO|$KvOg}5h4r%GIm5hph^;zoC8yE z&IDj`#7L10DXAkP7tBBqjiO906j{%aBRL?M{suE)b{YRpIiS%p)h1_?8L5JEpfQ`m zOf5Z~brK3%$U9R8|B%T->0k;|MaZebMxG&}lGtb9w_1)5&tYSlC}#(x3^>Z%Iwn(Q z2Tu^usv*y&3R2$+BBII2c`BWm!HG#CGv`TTGBsB?s2b%s;*37iJboa+n3>qvv7>wj zI&%hm;C5yxc)vYlM&GFddcW;|<^Wij$0TtEM{{6n67pFnsTqUGnAx0JWF(^`8l4M( zslvp_lE&x@GBM2(9fOgxOqX-cK(I(07K4V2b!r;-G%eG$EY*Ne#{QV*#2RLjR4-hE zN{h4>27x4*D?AZVYAhvkY-%}K6a>dXk-%oD0Z7f*GZzkVMi7YXJevRf7v;zP{^U!) zU7zijJzx{=(@WiJ!_ix4mAG^Z?><8HI`DPi_>AA#1+H-G{QBk1{&HtDJeVIJbK~mx z{L<>Vtqtym z=hvMM_77+E^lnOH4n=pc)Ly!jW;&Z@2INM+f3BG(U<|ARUEjH!ngZ#`*@PemeucA` zms}lO^{ox5k8FWP$P*c@G|S(*fM1vdL75&wp4fR&6^L^l5C<>}D0iOlzxwIM|f0C)djy}x*jTPQwr zUy1=YM)PyPvxt8ZOD|#g1HkLRo4|N{xb~y}ch}kI{PFLhi-BA+c#Rr~%u@8FcW|Py z2#!!2%KT062o2)+Sl@b+fAd@R^FKTN;;$Y+Yhb{5@q1tT%!gn7c=y~^tGk+_P7a&L zd((M>FN>3dw7%lIt?t&kE3950m|ZMJb8ESIouY$JB0Ep&$NDaN>rp2x-846hh0CnR`d?C-s!vTSh^%dO^y`vhr16R zoUX-oXbx++wWK`p00?X*6_mh~nrNaF*f9ejf{JA=kt87)K~0QaA6#l8 zl8|=>A`l#zsHVg&06C%{Wg?z|G+8EH+gV5FJ8tGGmW&pqu z2VOkFQZjXUg8;!yh@JOrnoN>v;defTJ8Smcz<}Z#OJ%) zAEvcS?bG|S$>_9Ls^G?_k0}nj;Qq$5%g?+h%hUGW{Wv>$G)Xnu=h{o{3zwIJ^9Q$& zBIZD6uzX&%)#xs;O(@sSt+d*kdynTay$29b0N2UCY8fF8g= ztWB#~g~fr2L^XRivMkyhgISp!VuA>?00U^y{`_yue)9_%buhvD%T;p`vo8Vriw%GQ zX&YVzZUb+E0BisiF#bSUKL@^aM#TIBw+p}(fPuUWDX<0zXta3qCAXvA0R9%@4a`2` z`rjktdq4qv4X6&@@qg>j(de)D|I;5Coo^K`wTVpFn6j9a0~Z81m_zLm=FvTV%(vfY z{le#`zx!|Ye)romU|0IJ~*A69u=)HIjkqUa^z@bt=zm^ ztgoeZiEgQbRwSgN>sMA2PwM@Lsh$-N9>r-)moHUn8k^|KaOpzdp@KAEX}6sBd{mwI z(=eOkV1HJRr>AXcPhxA(uj}G8RzYo9OE^Q&iz_&Hz3bYoN$p&}f3$qA=FV*H>#3d` zSv9ZQ@12AJw|h&Sb(_@EB)ju?uZmsQX5Vu!UR#?@U#Y+J$=%5exG(V5T#{618iGSv zt~!g`mp)O9UphQ_*YK9&pa#D5>*Kp$N`K-nUidHmOzVa9u~UayR9G}xB44l}Xlxj6 zK~pye=g1PWhCgK)B8g?!PSB_eV7;hmW4Y4+(k8)?g2;Q$3z;Mio*hge2_R3VU}n#p zDGsXS{K7z+S)WF51h%{?S<=i7fHBxuNfe0LR0MXOJtQ?QaL&o%;1)AdQDdMHqAV`Y zV+Z8@jF~}9h1aH*B(BJu1qzuc!yXV~%bS_wKtymvno*mXbEB#eFk%-Q0a!$G;*RqR z3$ODoM|UxET%hdL1!roeN=4w@{ii=T1E9PSkwM?zAiOR9i53B3PYeIEvyqWmUN1~l zl;Mc-JDVYI235owV&-rbQ|AE&sdI%UfeDkh5Wpc15hy3F5t-Bw$>Vd%TqhgiLMYFW7Nk=4H_({Ew+Zvn+~e;E6W2mcoM25R&{{qJoYU2lqp^XQ zE^b~~yL7cTJb}psm}bFJr~85rmnUPdSObn=5kkOKl^!qyN}$Z8IFDpMV#nQz& z{|JWpQoapLAHRnm{VNuz`Okh(&M!NV2SZS1a-;`<8mMt1dk@2Jy@Ahv!G87^W&h3; zP~Z~d@(b(FzVeBWTzYNu;?hzY>)!q8-Fwk5+oh{5u&}Q!wZ+ob&GN#zlQ5o*CpI0c z?zJa#8jYflDHx8&)8SlEYO9dez|CVa%*)a_N|RAldK=GZJgw^Cw3@Oh9~@QF@o}%G z&A9Gt)?Ru?!-`VsEU%Ou?2cxeg}aD$h%qGB?xd^RWfNQdK|#`Rv{9m&P2YZxTJ37J z6^a%g9n6cujfLO4KkJlqWqs-8TTAo#5B|m%hGYD^;Z5L@>Br}_#xxyt+XM-kwpW*1 z?!}|S{tVv+juYg`r21d}y6nFd|J>hL{@62$Irsp5FY^&Ee^tvo8MqK2a7385x+1f-F!Jlc*x> z2{B4mw-P(=pvFFc*Z_7;niK+eIRC!GNIfEwrk0luhf9UVa{p_VEw zn(OQq@Mku&?B<|6cU}mF{^hTq{L*h^H&#G+LFl?3zXN<5m@F=<0ElB+QSoR4^Q*uQ z0SCYv!0!R)fsX?Zfj59t;Jbhp)6c2B0ogq}9CU#jKnK_dYTyV^z@Leo889eA1o#5* zV|DybUH^iN{y1z1MBqK3I(dNq;je`0(Ej6pzq-23B^=OJSj5bR@o?8adRM>nMf}`v zPrvZRy;K=604{hucWe6-&)t0H>aD@K8-ww|@zK%PYJ0S^|K=lIo^-b_b~d)XH9FsS zg|AvgY3d&j>xcJ6$+l|DMGqd=PA6Bcx3|`rVl$K2X^DlP$8m2jO}cb4osLGM(RA5_ zhLe-w_+(zSiV$X#RoBoDKvGne>mH@KRW4!bLaYSshP>-)Fx8(h?Wv9ZR3^auTO`6;Ul#-&^Ea=>r|6Kl*gWl*yV zrAj1X6E!6Yh2!jJ78P3fh{F=PE#TkD1)4li3l01CYZ5v>^L{~IQV?L1o;Il5P4i}mLz8f zs1SQj0>FsW)F`2u;@^C3e})<;7aCdgQMC4Ue*)Mi+PBUB7~Pw=^V`5zfPG*NC?G%q zoLj#Bp_X4C?!>9Mts84~h0_x*+U520{^BJkq)(o>v}oSbXwYtENa9Rc?M z05c%Kdz;hlzKS?zCSn!I_*swv4&)Sx$zc&1A&T<&Ab##wrnB0B09?e{MjfM0OePv+$hem`Fe z?Q&T4PjvV=y|F+4nXlt_zKX*;c_>i;7Xw~?_UbDyf9TfLTNeVS`FuRwOLyKq3ZWbf zLS1VxC6r#d-zxovtB!FxbfbebhTGY5ZynQ0(Dn6pu+o{+N?gUO+eNFQcOEqRkF?Y0 zdg7m)%r;hA%_JQj$HpeD0DM4$zg94+Q<^0;N4_Xr={n0R1=Bn=%~D~mTg;j{nkukw zvz|=!?xQjE*we~|Yv)>yt9l-0Zn?{=t+L(mRS{;hVmvt=&zo{KFU$6DIvYM7wOpsy zE&J8zLRwi}=2vcAe0=|pygj`Q94Q{Q@El`0*TbmiJ6LOWwYNr{Zfk90sn@;nc+U&& zC`J*d-+r(8^M6Y2{^jnU{ZCpeD~Z{3GI#A@F0sPM8(3m=g;zBgQ7DOXO0I_k$P-9Z zI449oHZwDZs zW6Sz|a(NedYK>wS7Bpy)B#DrN3yhfA=Okpc%#n8)cta*arsT*O86YvTV>n0@4$RI& z0anT>0*gr`amyLO^2i#QL5UP2vr)F&NMz?!#4<#O49*io>xNtb$_eZRoKH<8DstK} z^0fVoi2VNT4EFE`hQnu?q=jnetRaN=&kw{9(M6(85<(Ds$XGvATMF|qH zLKV$iGflhI&Jbv`>>mb#Cqf>ugRuxl$YR=ALSoK z`V^i#!Tg(NVBsd8T!9O#7e3i?+oL@*v6ai)NSlXGj#ca424B4D*E(+ZG3`EXW}{JR z0+*eY^UE)OWbM*&{rVfHk9UgWlW{XMU=^+Q^^f*m`V2Z{7l zeyY2^nQq@bp6ni?RiA&hU&9^F52Re)ULRb2hFX0+8lUdne_V~<2A%*f^fqrcb$2>y ztop`+O-*^(?5WTP`d0)LkR+&q)^vuf$2+E2I- ze6hgG-maB6t#KbRh94t+1^B_t)CA50kANEJ0UN*wm@hsK0p>}YsS?K0`M8X=zPHCt)-8?`mtxPUJV<|+7Ehv zZ)blmDUKgMrsdV8<;~XC)m}rI&^A=6UW0hD!(DMjb9vQui`G_4Lm@>Mh4cLpPt*K# zGHp%#q_Xiu_7Cf=C7xB|lY?2C*>gj+$h`KY>$F4D?r}i7Wg=!4&@D?cH%+1B7RpMO z;L1A4V6~)B&L;D^nZf9|Ek#j}PfoQu>UCQe(&}KPPu_<%pS#=*SZZ~hl3S)Q9F3$- zRjPK6n?}dyE^Vz|X}$81kKFyO|DeH7I~)qe1|~ScsiKMKA0JJ$UM`lFTFXl}mtWp_ zuu{!$8{Vi<9PHcQ`Ag0CF8!JR%el*22Zk9NX{1<7*)@YxNm?g%4jc&1pg9V|doP+% zaVjZs;Y~q+_YhTrX047Y6K8UoGci~C42Xn5G_mE}SuZN2M4pL}b>~nrGJs8qoF^iU zN~9)2>^M&X02r89kw6Pavt;uDdxNoOc5F=fIYEUM3LFK zMkbH4Qx&KXF+>$vflBNMMC_gA{YI6**)1$mgB&z+S-kXo_|;zu**d#)vHK_g+duIS z{`5Zv#xS+m!RZ9@YrxyU{ux@5faPNSh3?Aw?t@88<%LUIgRSMg`_9JNUZ$;^*t%#s z#*-(_@!@znvzFiLFSlR#WcTtlfB)X>y}R|3qj9arfJ3o-;l;s=A8U2ma(YzVdElSi zX{df+VVOGX*PfG`=WMiNkH5({nO(as%RRmKUTvrA+ZWo;J-_7ov(b_4-<~v2?!tCa zZo$1+^q;q8-b_CS{t|EtxC%Lj6rc-+K9J7*vIRDy)+xgK^9swYldkpwz_;w zRL&%E_~9P?{7+Y-dkl1d74%*u-?x)*0q+8%h10MAnsc5$N}_}#t2?1{qv#Gqi&nWl zz$dM~N_4%~oz(r$j>ZxAw{yH1=tJ%HGdjN=@djK(dIAWr30woV0T0Z9IdBuW2#kOu zEKJTom;t|v$qgyach^=!>y^pl9|9uqbzlTEP~87Ut}x=6iEJHM0j}M;_S(7aYb=AU zi|ZG*dd?=zkPk|Ic;xOsQg+l#%FV6*#>KIxk~!@^oJW14I zn$EdmzzSVjoHlT`w+~t6)?|nrWrh z)Y1%NW$Y^As-Z4iuM^ruF+7!~9)!|Sn9t*6T%F9vIErq{w$X6A@7mygtF_cAiZ+tt z)GIn2KHV9Qj;F(;lXkl`iN(cBn^&(ceRStzzkB<)6P_@xba2tb5@LhB7Ff_bnjEza z?WP#4l$Wkv9G$H0?S=xJFgn5MkN;2eqy6Hq{?Fm+vY;|KQQs|vL}wMXgGn^zMMWLe z!4#lCL@;gC5?Rg;a7<*HC>aQ*jS0y4Z17YfbCiRLOrs=m%rKIul#l%j4GU#c@S>V@ zfP!4m6thnXYRKLKGE*Vv3`(?MG*}Yn$rxmY90n&jz$!O_I9Hq**khtb#0xB%u_FkX z8aoeSiHQl48UQXZgf%m)8D<3MnH`a7tQWjRcA6q7bPb0i}5*;s*?@*Zj+ zB~vCMcHUIYq8bPeMwURN$VbG~P|_S$EMoc0a5g-FIVR?8%ZB%sq8hOa0uf2RpL}*{bUggVyVHC7Z&z{x>jKa4 zmG#%Y3%4%&;iTF-l!FHmlRFk3!CvW{Te2n%9w2y>A1V4*OqUQ3KtBb%h~kr!9-4k0+<^(K2XufA+ys(-}F#c}fE#T{p{#bA60?Cb&<^cK#xDC7k z+yI^fUIxB&=5aIN8jvFm4uFTi6fviL{W4B&&bohW`CK9XyXN<&z$x&?87_j)fYn>T zCE%r%_LV_PZ+-ak`pVk)s6mqB<6)=;k#&tF^~aU8OD%eXUWZx!vozG38TyTuS^@1zPF3PfUF1E|Epkx-+ zjwiD&6A;!$ioa&0m0MCVEh~)zKjM+e7z&L~qPslP!GSgH8aAl!MOq7tr zScqI6&5A~aLW$XV_CaF;XGnu&prmCMTNGl3CWu-Vq~w8cRv{7@!I+?cDQCgqLUXy$ z)Dsc=JX8QXA`*+5Jw`BNCi0FY5kqQ)NIoTKUeFzBO1T2bHXH-U6_S#{m;;D2!=E{b zhyqY`r87;E8d9ew#4HxGw1?S)R8=LuwfF4Ra%-(~G<3K3s>2g-tf{@Sb))$7rw6O0eEH4h_Wfxy zB+MN20=CY7HMhQ9K7PWt@72&pOTEqdq_;b% z69!vXiov<*X>IR5s;dVj>eqo&#Lr;k7IkPkYEt|HTm?Mu2RH2S9f1I2xDL2PLmvnm zAfi4%CwqGMV2+O~v4bUA$Z{1>fiO5vgbX@A#xMTDnEJFfwE8#ye?XPf2A*uM>Z zgkp~7cYyB)E&wk8SAe?+f_NXe3cTRGId@Xm-&g=y9e{g~pG`ZLo7L;(Ii8<>2E)vc z%ZG_|;05r9*SD^3Zk{jwrBFe1$D-8rbb2^D8r8wGE2&+ySGsP{<16QtDrQ8YI6R?t z8xk?=cA+)1uHI(i$&TWbhaS*t1 z6dS7|B2i;FJ)ZVhyh}}-l|?yk;(ShFRFQ{TcQTbi(Jdv&aTSNB^=6?qnap}cbZsS4 zBJLODi1i3HaZ6>ZHQAfhvwF~LZ*6y5?Q_Gr9*@(*2Qzn}ES#P{ zfAjI3cY%H2q#HJfm!`GO@r3aR=q5y)6-)ii@opW5ch@(UHdmHUPu?(u673PjKl4vc z#&PMd{f)I}uhlvy%rulG*jtmtgF^vIpulV*W~4+!%+8>VP+--RS(v^I5~CRtIaAZ5 zuFNta%lRTM1WAfqIJ&bTr;w?TDHp*2OTx~pC}5^yrY4%(L@)tmCWJ$F7v)fa+_$id zUsHBIFNN$JflN$gVLc(^ygeB)jB^As$PB`PAPRChTyinOG^5g4QaKC!QiZ9g7-zF| z6cbWT%tqu$vzo?ds)H0-WA?S3hW)>3y zQCT1+LjKs)K&ooB!ux!{;i5E9P7Yw_5FK8Jr34~hloF$XOa*2xcxf6FcAhBk zLRFTPqncPGr$&$~DT{BTy3zwpQkA3}PJiGB!vF4%&AxKnzJc+FKfGO*y}CZgDi+`l zP@jd(0_YBwo`v+Pd0bk*c=J-f4|%jZ-#clf<9fGb^9C1GJUpE3?;Kg(Skdim^q&84 z@A^ge@QHlw{-k*_!E_x}K(D{~eD$f1w{NZ6@4sV@c8mLWLi2cn$u{sz>+;6+n-kIM z-u=2doS|AnfBooK#xw3MuU^^^lIqd@$^31_WPc&+^sWA8C)LOELxa45R>9#To~I3V za$OFz!5tuhp5{>clnQu`r?`E`e^+*mus5i}988hU!~l5@?>%}8Kl>YVzylHCCi<@_ ztzh&f@U1ib51l2{T`?oz02l%1z&)l&?!c84+DEA7!*sHtgQZTfx#fokuOhx4!_ar@ zR@iihmqoq>jles=8^DKv4+EbCoP{a?!rdO>>+BZ?7gI#OhIg#GfeVztOnBqi)Gczs%7MWRC zI6A*$0{s5)*KpPjfh}4DuA2#p~tfbH41y(O&2AonB+@_D1i*<#uniJUq}xkEZqb03_|f z@}(=QAO6t!y29)4)hCaSkWQfkU~6@?^|9yW!#CWcVfD^#eEm*)_&_lhpoJA&eQv(B zUEaP!cOM$25$#s(x>DD!yL922>n-cWNcnah`e*P);8 z_AkuqZz$e`&-zIZU0JN%3oF(Rbbx|u)BBH2VN7a9fG{lQtvh5u0)P~z@gXMDtnu=Q2<4_Zy@~(;0J(<2rnak8F(AMhJFhs@CT7z_3j*61I)+3 zmp~P;2mCVjWE?l)meAYA@H%i8XcmJ6AFFws9=q8AO%Kz2I6ZvStTv3cxlRHhq4d7n z@6~0yKG}2Qld`{NTtG|fth)Z7oK5ZEaH`Y#c+aNM9Ui$SN6qmGmRIG%mMtxZx=y|2 zM5#Cx?GMU9nRaDPTz5h-oL46aQ`85;{kFRGRwsCBmjP;Zt#za1IZ?~dz~;^s-qpZ6 zlE{TMMWfT0CT}s9$$epHT|epinjzBhwRM843uY~>D2ceusLJ7(4iCrB6j~k~(jb7A z?Q&pNkK*ZQ-e2o?o8TNT_m=M;jv|g~`Zg&WcU#l}-BdYfa9Y3%?j6jl9-foYJjE0W z+q|&(|s0uVU zwX@zPQz1B~@&ZOi8lyJRc@NVJDI_A5WXU+NkuZ^FOOucq90&3YW~Atda~^;TUR0UA zISC~UzCGRvY&U=cAcVjv0(-nJO?CF_X)hQnduI zSyE=sAu~Cp3k2juVu%lp92w;~gjvQWm?#+Rm`PPt8|U-7ug*b1BI3xDl$?W_>c4XY zYzy8GXV3#JoWP4R?K{@|r&a+1EqKZKT%ajg6jwNM9;TX%91{~P!V^B?<4~+^(Dk-#Ds%DZX zX8>fM2}Ss-W$hnynbrK1GLAObZlwTydtbkNsKbX9W(U9_{Q1ts`SY*z zSK#jKjIlSy((PWa59^L?`TXVfhKZg-7eHFUNoUvqzGx zzw|uZXMuq69pH7~(Ra8|aISFI5uM=_4oJ5M=TbFGGV^Gc*#Jth!eA9jgVH3>{LZ(Px z0RZele+5S^xF3OI@D}v5z%k%}`fz^_eztQjjw@@sd2gv#@Yol+vbEGX?@_l??aQ`r z^%@TBicl`|>MHkEQ_*peH94tSMw6x)H@Y`7TGC`Lh&mw}uM7~{#o=*MuE_j+Cfu$% zE<&o&FcHaYl1^n#Ah^=3CbL$_b;0xT5WdrDw_V{17}APw^}KHtftjB#+U=rKh_qbq zvX4@r3Aj3Mwo=uJ)x4P=YdgYAoH~=LRq)E{h2EgmYp-^WbzaRwh`rS|aUqTF9Uq3t zQV{^IlBKEC4gk}aL4%e**Yf9!G;QQKph+0c@Xb!@&E^+fq^0iC zrAx0pdAOHwTHyEq;g^3A_Lup;{7Y9}dw#cEo^vcqE@$(anb?spy{RB6BqFJ*uxBze zraY}POR&Vgt;ygVX|mJ+>H?XG#l+rQE_&727hr~oYRX?#a?D2N2xOWXB*|L?!BiSD zf_J2{XoxsZOfDsuSrh`OC>EV+$sv(hkitljjU);{mMyW!9s^+?4CD%zng+}qD7(ls zX1^PVa%31WK#rtI3$JpPt}@`AiJ6!rb-|Nk;)QsdJXwk+4HrHOaEMuw7}zbCaXG(+ zDJOP)po#zVMrU8h1-<$y3kdJu|13A`?5`=OCIZA@1_xHj@1lYjj+x1X&OoE!5Gar- zAW#T#7R*ATz|4x40G!pJM!sDVu{y6Bnf(ILn9Ml`W-^8upqV4c!NGxz6zYOgIF+~< zHb{me0U1QgBo+Z7?+A{H0;HsDtocY`8R*JH6bwdIkPF(xBy}+eASrYVK3Jc(zGHWM z|HqPwD`Dx%v?|&I>aB83dbGd3x0}FN9{6Y0`<=2pJdk(yCX=H%YDKSHJ3n~tnbpIp z`Mq~1dk;ovx@ZbW;RnU$P2RZXcgN|QC-LDE!O;xW6j(=R``XLZ^{Y7Ci91iGpxfxR zdrQq|IxJR~F1{%JzP`EBobEkAc!1c27AS{Q-srD&=25EABk*nL`F8)J^QV{{E;{}M zbOK0F)j$_IT)aG0Bm&%>JN0~Abyo7(F9W5CkO2|Y#ocYgNq*B=9D0jsdjpuGke zVf-HOt?%TI0(drbLNl2G??ORX0%4+~x$TrrU3-w)eVyJLPsg3fT3Hk{@M-CKefm|o z-)vpj0$pKjNp4=1_fh{U@L}+EDn4V)SAZ|Tj^HPdZ^O1R3&0P8R)L4WJ>UooU?27m zksQ)3Z~&goRRyq)uAAayHk%mp#q%rMYwfBDMF$%f`z!sP%!`wQPP+{4e#@1`$~HuK zeO0?959@gFB%Rk9B@6YwbP^Xo8D1?p~JJDmKB9m`@O@aFgrM`PnzlZ)n=w~ z@1UB;GJ9Ez;CgEvs}UW}bKjftYI7bo+f@ z79mcWxm98`uV%Aqp7hI|-pxUO)%8kv-|2N&wJ5CTOLbv7sUJQ%Haj_YuHEUje9=36 zIDB;P@%F{7PN%)iAKKNoP*zf(7}{*9Nuv;`)#`V2xr#faRO@go!$ON9ZVhF&x>Rm% zY#kqrW{7Rb7}YQQ)T}ve|JVP|trwp=)>`Cn?glL`%_@^-LHlumrLLX#>|6$!xuTR< z!@$m|iJ8#?^|%lQ!IYWdDU0i!_prS9M`9v&W<>0>!X0X4Mvl&;Fd$XShuS<}R03xL zv6w3IJb9ra$_p#Pk2GX$OoHt{+852CR zD99jcJ_j3{y5Pt=B38>iS6+-w*>PTLnHD-3=Q8>;3n0xD>|yi=SO1)_lYl9 zR7BK#yA4xm5*N;gfCSU%oP!}h5@zIFey3EFivR#D92{b_B*aXPkyQZ-6J;VI7So)r z3CB6UMm3rl6R~r~45_n(7sRAdMTk7O2;B~-MjbWP)EnKp*@a(58ZOq&#e3QYuC8DF zn3kIWch*|1R(m?u!&3#o175#YY@hE^<#rD0!@UvW1VLJZ^x_M>jRC*@R=WM@0P&DQ zvdIM89}M)ybG?BNUw=4!c#p6n7##r-yxcwCd*wp|-{RXlHOB8i*1hXSiNMzSv&Fe< zJvnUN-eH^&{4>xM;0{`h-o;k0H+r(0<_}Q-%{J+cX8s5`OR@}rY@*cz+y@Se5j+N_ zfW5Pi!-MJCO2>!^(VzwFy<$mjAsBYT4wZDJ99C+~^gbR%=Q~mR^@%Ko%=J=xMedric z0Y3-4hU$l{d=AZb0Xx7LDPObS0QP_u>_rzgC0+$4Kz-KZ`YqrH+5s*AW%t76tt(sS zR;eiH(WBvXmM&c0zILfKmznx{W23XW9%N#^6pc;Uv$Acyt{sKusA* v;r-li2Uf zPG@yhPgd4KC$xN_MN6zG!rZE1dN4s9>G;^fyzaDZJejuYME&3iv&xsVrq|~l_als{ zX{edZ$hp9+p638pAcP1}^J-MZWD{~0h&xH7nl~w##+s?!xD-ksdOk2wL#-0+{!*vk z7j5bAd2*|gToaQtG_UG0SXI*$<9w!__EOmzxK?tb9gyGHUOPE{arg9_ zsNZeypu`EG>$H)2UNuEoY!qR@Y3OM*my_Ban9ZrWc&f$9TCs8E=IQSCsQ&#WUyhRe z*5~MN((upycjsSzVV|k-YSw6qD4m!OQq>ALcIJYrkP!o#5{W6uh#-l`5ig)SCXs!h zYy@*bC9?CGCjl&w@KDWOMPytkF`OfIAcLgbBv}yFh)EQAd}}F_CD}P-iKUsDf^x3? zLj9bhA~}St5mJ=}a*PQkFtU`RD8(FE5^~Nh9KX&$6x;zbTH6O7q=a-@>7coc-ER6bQ@h8bC`EeFD} zGf5U}@?LZi8Yw9;v84v=$Yq{ivJ3)L)=Z9aS((l%HO!oMFjEuG`?K?E%9KlnoEOBj zSn>inmxGv11w>GW!N^II7>!Yt>XVxDbR8#XP_Re2O1&Ij);*6 z;PDVU55~_v(*;-&0m;5!LJR0A)_(n0cE9npIpDz!^rNVL24b$v6(#$@y`R#ffEo%R?V)!&$ocKy;7-@4Vz zz732Kfa0r|eID_LQCy z_T}@JIr&^+v*l!>bK%w1*6Lb2c2YH;O^=#tt{gEO%g%nR#clM) zkDd%CL%FaeNdwtm%43V23qO37W~7u5m(Ed zkZPU5W@((Jr_w4reIE)=W@@QPl_JHMVyZQ1oe;>#L~O!5GIKypw4xeY9Z$(M&SE1z zw2PwC?i9|48E?UNR4^VjRXrIFC)My#2N$U=gH~O%==|lSdd7u!MCf|)TZL|3YjxVb zD9YX@PCEd^9XNRyaMR!o%h4vWZg;#9cf6ao{R-mUxx1_Jkv5+Q)8!yxZR;`)j*sR? zJzSjP!LR-DNbTgW{yq2nrP@`c&b7VNN|G!^BQ-GuCcqSE)E8`ODn`ygYy@`9&L^#j zh#Z@!!5m0MvMk1k$+M}Eau(Yd3DjYcCYjqj3S{J$!3TIp8AIfJ&IT|^i*_hMCBivS z&N!o7kmhid+ygevdBtJ`a-7Rta*K6S8?mGrzYHewo)ViF*c)guPGEP|jt9idOj3lI zD_J#B#@#z-IgBIcRszrj?_o;Di|0>J$+5sNQIiE_pUyzO??ZhufQ<-!2v810k({K%{lUtm{rq4(xU(=fmsbE;KCW@b054TGc`4W z=j=Q&(Z81+5i8mw#lCb$It)Y@Pp;4xKq;qM~>d|foeYJ5h0062gP@`Ygl zw9lp*14tj%0%n-m?fcX3g#!X1RqI_fUkW= z|Azp3)w>&(lWP1C8We7oMXl;#GOy)s99%#tvNeR?3y_)|jhKKePi)yv^%0oz+@UoVnvu+P&W#jr80yAMB(D52`9j z=YlV&=r2)wP^JupWP?lNs@fmAevfoKpN~ev!Zv-`?u4@2>Gr8zQzQOV9s98>B>|Jl z>WP>aSTqMJ%SZvjQ75q(639@iBxx$KIZ2tIK%*D}iQogehN-~ESR}Uu=S&5&aoKCN zsZ+FxtlLD?F*>PK*#{q5+bQztXo}>zgR;NUcO+@voF0#t2gT-gwIIv zUsG}p3u~4@G)r_$#LRi`&w$TR6(R!@vm?%EXi%nXTFyhtKr-W^FoJ1X)bhk+O3qud zoD^@Oxu|u)nI@PKpkiPm5txzp#2JJQ&2hdN2+Cv{AqHnePEAym%!nPpT>9KI%1mkU zjuf^4rZIbxM)U5-o@s$+&TQ;p%rHPrQ*K&4MPu3-<>&os|LM9sx(000GW_3{fp{L1%#_TZ>I+OLXMTIq-JDUbGsak`Jz zU}dFz?wNMirF)NY_ua~lBIXW*-sNWpAA5PpNqYO;<8dk2_K;cmiu zWQUY6xa_vCAMfw)#mNlr7}^4V$k>}qKQNfxgbfT`rc$j3V37;2U1X7v+Qawe1|sAZ z+#*DR&;q*O_|4Pb`h13A)bNDX0JM+!yTBX3?)z8L0`&h;>ugG_fFqDVUJAYM3TvBD zM><@G`=_yf!CCNn+`%{I_(navg1FHt8nib7AM0C7bo3J#C0bnFW@%w20KI;D$ zIt5zah3W4D55T9$tSg>Ce*-8@UjbeM?!!iBUva=Gzxpx;Ltq+O=;tPRf%Vdved@VKuuV^P#KeqEZ*7EiZ+W5r=@JVKR;h^FiBBCi92; zdgW@rY^8SB7ac8H){7k4v|5H^Z=+Fbe>m;gC~0DHM`Iox)ZG8h zV)Fz#V``F4U~|QoAcpL@Yk&$Uffd7bMaN;Osf)50n7T&qA0CUcbbG5dVG*K&miyc- z+TC7%?&q_~WIQ}!ZME7C$<60BI^0Rt^L@V+RvpSDu4x$5bjXI5+rM`h&%vKlUY|8< zV$*_urQvHWy`Hq~LfQ4_H8mB#bD{@4|0GFh9n<#KI(80EBek$P!okn{gG1r+um0uk zmF-4B7L`3ytKej+>e#~zm=Kkj2q1Q(wrJx3rXa`0&N*j*h%z%drX1g*YN>Hd#%!!i z5H$|ovh*^Wcva2JIcLyCdX+hd8qSc%&Pfs?HsMFI0MsUt_hgY(Hwh?IgiiN*vI6*9tEs5uca7#RpE>F zl%N2&Le~MY+}i~ru#I!i{NeBUk(<{)IXsoy4=QQetE5@#y~jYQAqs zyRZt*crf|UN7};jwa4}G@BwU$(iN>qEPVg`>bc7;sr8Nfbv1l|-X3ItNo6{+{-y4A zw?Z>K?V_Hd1auIV2Nq^X6TmMNO|}KE-p|D{_3Y_w0AylleRns`BegRP+stA;N*O^zOh&{|%;SRXtQ5b8s41NrS zhhT5Q_JIZhNE`k=q+bTE0IR?`VDEh{>7to;issjj?{7bR(^rT6!{O{`&-SJ^-AfOi z%#V%^msiYptSndN$Ho5fq?%8Qb|-L$3N2#8MTwH8bv-?bDcbJdv_0|5H%r%deuU7m z4lVWOuI#6>&67$t@6~3qWznFawR%NE&$T)PZYq=E2}qoS zh#FB6t#wVgp3UZ`!?}~@bUGDnnMf;yVFM@{e^ex6ZAB=!Fwvyn#X6belo4FLR2DpF z-|(}I3MYzhPnv@;xzyv{#`ZFHuAj>9uY{#Zoc^1?-|NKD|KZPfZd{GvqrS0zR^-iAst@q-Kx=_T-oxL!FtJ$%0a>YGP_xdLGnLhMFlcJIXW~VgRfu0w8vp zMd*?YfJt6@&5YPG*ArxHrdH>8GUGy1vmn2K$nio5qq=Cp7$BzX$bs|R*(|qJ*yZ0x zMr>l_9W0qZ#7GS=DoB$$?-wXKCQXUdh+V9OgEugnBk#=;Lt|=S>YUF{haKBl-hGmk zEe*tuo;Lj#dsBumf8ZQ&wg)_wfj-?77UlohpGg(Q3`e9HtIYrbyzm7OG$oj-33-Nd z*Q_ipuMuOMHwLfPzTIygj4XfIvA*81r4=UkviNA>>Qah#mODR-8x zTsimZtLGhsuRc6HyuSz3a4p0h;J zh<_MZ0&-CMyTJ4;cyeI?M(ZZ1rS&ne0|9WWw+>#bv>CMgCmTGlR*98pb+>u+QD9=l z*tP5KD!M1d$;r!t*{quNyRIzSt=7i0+5;LG5Z*=nN#MH?pF#T-%)TFX2e<zKOt9t!DveZ2`~Q?^^3o^DcSJ{|R1^FhJgVeQQzGM!PZ=hDnh zCc{ZQ=@#(CYN%m)OikVIK}lwFOIkPc{n+dhjt%>u8kYBLS(IY$52BvlBCrGO5oS#j z%$C^1&}KYiv=<>vkhX6Xt17J&6B=r&IR{(rcDkLe=YrV=gEDxXH8h#%lX|8)tYljHl``zQi`p@yFq7(W~gvn9u6TiqW_h!p z_O8aLYsIBWbNm1IV_~ZLSN|XWQg6ylFHI^ALPe0&5GhF52Wz64!JwARB*&N#n8>Lm zs4-`uD8W=Ufjk+^(jrY<1Oj8{y=IDy<@GApzY9(#GnKT+ECz!m zo4TBHYA}N4;1T9*=v7fDvd_yDD!N#u3MTJz;5)LJKy*Pd2-zT+_5KRZDV6{;L;;vZ z=K)saa$YjsLZC+M)XX%2iG67*?3^ibe}$Oy-9D(pU?y9zpcixAMcEJYXZN%Bw}lTn z!p!t6C(OVcJcKMpL=hEsPEDWgHq3!sP>Yt*;)D__O$|9RI0Jd-Oq3)Upeh`KIRc0o zuwD{@B98g{zLn#8&BSpx9?1E@9HeZ z?XAk`%JISQ^mGbdFSdHmedOG^mEyf8qx-jKCr5{9PSINJZY<>mx4-z++4$iUX$1BNYmLy- zR&o8>D(ZCi$)ujV4PPT%hKvz@1BqLM>ua6j@nnKgT7Z;o#dq4^d5!4@R*(rCJc>x+ z1B#s<&;}JS1LC*t;o+m{xpQm?4ql)J7lD8IlRNhwod66BfoFgZ0Xx9&1HS+~djDEl z^nWgv<))xUJO;l7L*Xv;mka8RbV*~Mr_OaR&ChKW!(wodo}cgY(pJ%13%yS0ucz|f zD|P$=m2VMkl-;sBzg$&^f_+$oMBt0SPow@TSUHdQeTeS>r?6vKfttV#@C85t{?1bl z01tG526$_Kx5n-@U=0Y5XN_;sWHQm1eBkA>43%rO!_rbhDvP4*EQeL$+<4?TXktBtn9rNfwh z`X7zfu1^2#pW$;WwapxpwfG<<;f#;6453do#>V zA)i9)Ii!75JHWHctIL7w>8WA*81xVgFep3g*J? z%?|PQ*JmI9m;ohF5RA~e|E=a{|IOhUE`J6*3tRhYG511 zI;4xjTAM~;Pur6HT?RQC;N9Y!kPd9-G({vHeAQtK)Afqv^~s5gDQtAxUG}lv)DAF_WU6qE6lu=MIl7YN4Vlpu$ zsKV42K_$UuJTLL_p{ovM&nTU?dQAC zeQ4`&RR8`R89p@B5vc?^Si=k7)7`wPkM7BnM?+L6(11{&7-B1JUtccBf9+s?d@rII zqql`PL$eR}7)v)geM#0C&z@j*05~iGcn1C=xm{TNKnYwx`;sEyA;nvp&z{nt)&6LEaD)B&Xx@v{R@uSw zcE6t6EKOIht@XOC@iC5$X6=FYHj8ez>yWjUmmp<~!=Jxq+*=jR8N>H(3qfd6z*WVid<}V+A?sJFxccwrIQ{W+V zuGkjRl$PqUWy&IA^@CWx;6mYi+fvdLtNFYtQ=oz=%xkG;CW(5TqSy*ez2QO!%%YXb zm_duJvj#ZM?X7^iz-5w~?3Y>KSWH@i4PdX*5at_!wFm=^R|rRf$5V;Zxm)VDme<{M zvgu|A8kUFgP~XcWr#(HRFg?zzjBm zn5k(3k#`=<1eeFJ84`2W`2nDgJu(tbB^Q+(yqN;v;BqHNRg8$;S$lv@MW71DFg8u3 z26lO<3^5l0wR%Q zFfcPoEt*m?_5~4>BO^L1#UndMR0wj|B3aI;2i^y|otefKvtBh?j0qNrdLL~1oNXCr zLjXf|{{U)CfF~6-=cw?;OfC@Ah@l{o++kzy^B4w>Eva)v zh2SI!RM`ixgQ@d5|B?VQ!I|oGVQ2$^NWskPGQ^dL7c(3cLm&=74%ca*QDZiSAxce- zy$>q3xU?zf_y`j_A1E0xczAd6Pk*jm^7A)uUO%Y(>67`}@0F(y=h3EvZC8)l^E-Di z`fcD^v9yPLA50CA12yL~NH_l(*dhx|U+sU^MrjPHP;Pez$pbNN#*tqo82k5|K^8j%`j=xgt z>gJjr`ulG-m>#q{Mbo<^O&4;A`8s+pcQ>KT(}O;A2%6w@8>=repD)t!Ecy4VVE2&A zw@SA$HNs*80B{Oai*o<~*c)G~s!`J!v;haC;Yfb*SC1nqEP{I1flI&;cm%w+NNu#U zEae2?R#{$9D=~4v0~mnKqBTP^Eqv2zhq6<9ZzbGPD`=P6?GB+!wPUlQ<@&wQ>iST2 z`flP%8b@na^V0W9f2mFrAixwM!hZqtzm4?YqIC}O-v{0XJ_mUW7r}t-EoLA2HS*13 z<+b%o&vm=KQSG$ublYjL-Z|Kx9F2#o8>_3!-jh|)+MU>HyG}Rsx-Ef@C$&WZsBBTE z7l2r{wA0bLvC%A6r}pIjY;<_AvT@kVV~l%bt);e*xngjUO` z*H~3ewQG2yxWhD5%V=x#diFg(H25Pwy#9wiy>{V3r(XmXujWV;M(ni{+_~$W=PoRL z-?JCK@8jbi|7YL&?O!>`hi~AaX;d9GaY?3|Ew)nU9&I1k0f^kxJRiln9!kNTQW@iF zJ~^F=r@`{lT6eJF>Pb`EeA>+Bs5RFLXRCt3fChJ^eYf4roP5k&;bqCt0medKF{=ob zD0v;1-cwqNXy$n5$+&B{8l|#gjmzhX_^^X;ihFpo#n5KC;3BW28x4<=9~ z)8N?oj9OuKs#(bI;7CnX$+5GjCJ|XP?>r2PW;l~20kIhw#Dq-M6#?XE(VzLi!u}Kn zXU4oJ_lZ8}1jYxxC-}|>z8^5Q$eSm2c?3@?3r&;vCXI=hD0xSrINMqpVwg1$GShs# z(k2l(f>KfgGCPSVfRufylHt#+nw;a@l!K|6k}DQ3$`skWY>ROUOjR}iKuO4vu}~t> zlrx*zxoqEXt}u1XPBm$Y#*w{ebHqm36lVU*KVNCgan= z<&JPMdeY$d2w2D3b620c{OqM|OZ3kD>Emzj#o=wF5jy9Vx0gQj;ms>6t>fL<>))8q z?wz1Mg`7f{&?zoI(|z^ks{H@S`txAj((J4ceAZg;-us)+e9k@Rj(PLu&9SnwRD&d{ zG=PwdFoO|TSZZSd24S#-ho%|AcAMw`yWMR%z&M)dCfZ@#*wF+82HK_pgCt8r2vtcn zs-g{J)m+zuE_u=YrlwTgtV3(j*v#nRN zVX2pd<`DQQWC9+d7-+X4nqC!%^h-7H!ng)EK$T8+;QVS+nq;r|##28$Sl%6_eQ$XB zt&5-e<#WKV-eC;JcR?eU3r+CRlRK^?Yf30 zW=%yblyxL@M~;y;6IIK4S+C#kb(fSC)U#anbh1|4H;2L2i;dH`*?@tF<^pQq{~zX` zM*b(zzmNI92F!q;gP+12mIKYlOpq&ezSr5@UEdj83qiDq)na8MSJ=|$!(q0)78Z-V zGtY{`LZ=9U^N?GIGbyKaQ$~a5wMDNmcAre*Y}za)^>T7~aB@(g8C0uln=8di7gS{y zy4+aQYJT1UCCn8cnIR+O$41e5g18PR-Me3a`B$e&Q!@{O}L%-MZ85hc20D z!wHZq$=%5cQK!0-XSZJH{;uuOwc9-0e(xXt_fN0J8fO;g(YmTcyefgRUe}rH7-JJB z7t`tVkv6jsS0bb!g7>>2=RBt@fJc(S=BLx?VOfTyMZJ0$uHG0hU1CmOVVaY@4!R`> zLRH|6nvOiq;US`zYwYAhiJ99_aeO#^#^{H|Yg^mvydct>&9Z*ZojdXyMsS&0t4_H4uJnn^-rMCt0-YIz%7k++}YeCpd!Iy1Z!H#NG1+=)3kD- z6t4`msGMaEBV=YKK|F12hyk)Da+ZNuqY@E`XtXOko41Qv;q*&`JKCb<UpZKO z}hP;9IXiq2?q_-KTq5wMMzBVWb9tK4dveVaiy zT$+Y?wdP)YB-&}2KN-+Vy};pPd-k}z`|=1Np#1u;o*teouhg9Y-GrY5zYcr}xP${J zKl(@ju-oZ-xlExtr$7e0UV87c9``3b)_%QEA9t410E@_cQDk#n*X4Y6g84Nf7O`He z`!R5TbGMe2%cIA$Mbj_38@6-0j1lK;Q(7FL{C{BiX@t+B_zqMvU;+Cg=nP!LJ|=xb zEbGO1T=j;%{#G%PeA(5aFTIs+e>v)BMR!1hwSITfbOKSv6o?BJ%Cn+q=1m=y#Sy4k zP<>8k$Mf;obTFI;%m%$|=$+AazCIdFs;En@=aW1h^V3qc|Mo-}z?0`LP!+ z9*qCRzZe4m8b?id&m%m)iLk<9#SM#b8Jn`6KVUi!#cIeyE}_Uwiq4=*6bf>Q(MTP} zN=CU*19!O+52os1SB0UOgl~4jey;aazcaIS*G=&Q%D$;_BY37>kV%lWj&&OxFMB^* zEv~O%B`&<%UDX*@_}0V@|GWR;^0)j>{*fOHIZIqt(#zD8NH`~GKvOZCI8$@xETMZ% zHPsb3JX%{BOjEw>6?ecBP|~&W^!`cdNt9e>P6j74K%KZP#IDgz5tukn&v_e)*C;qe z#H6({lDmMNQt5GNE3df|Q;d=5idqyH1ZMIWNu7eYCSw)BnVcMI)<8AMI!O>!y>S*s z;v%G-MB93kxtVIBsSycrN>Bhq(k=nw)GB>`LnTjMx+I`&h5p}m0JP87)l4W&hRw`c zy#cW>C?Ga)b&W9MEZ3;sI2A-eC^7P!z#>esX+Z26Axt79nVSNTJhzzCJOVh_NE{R` zf>;m$HJDnu^9q9noThk`a^alV)CkEk&TdLz4&uZ}+XRh{|@lsb$4`aw_h!@_YbO*4-E@J6u6*YY`wN}V{P+v50#i-zX@5e}Mw3K#;b z00XMC=KV*@@4*D<>2&r>zj$$#!=3><@LRwk@DP{*UDy(6KGs7FgQSEX7XBdAt-|t^&Swyb~L+27% zFyr7MiKEc4=a(Hmw(79wiqEnBy)Fjbs){@iHTT=-AYYy?XfWqDY>O>S%{q| zsRScSu&Cq!ld3Wp(LsT80gM<9g_@d^1dvOSSxo$~R12@p6k@Z~dOHb|Kx2dxgjj?e zt_?Xk*kd$s!a;KoB5EKrO(yQ_EZY}~uK zf+jpZUmQKT#N`yt0#;zqy>WB!U2k5ycfETtYaX38)8i#34eAmFcCQaV`N`1>w>ou2 zM^ji73g~!iQN1(_1^MCQRF(7~dIj{|s zzK75YDZ`%`nfySi>RtK)mXSHTemMlMp9IGW7w4!cFeUS+43bDB5c++3*Rk(Ljq zr=ML+!G&`UE=spEuCCwO?k_L54yU`b`VzX5ch>XfqK@Z4iKsw@-ao?f4Dn^)v%qf! zj(}tM({Gp0zl((~56>>^`&z!4_0}kBR@Qks?M}va+=~@eC-dgwtRAwTPZoK`vo&iL zVSZenKRqiKd8a7m=hNxQA<^1=HfPRzgY}iwUhT{I^lU!Km$g56{N8#`GVW&CN~d2y z`T>FFle%71^+{QM=r{z9nU*Q%`o^yOzMsDFhkxSs{q0_eJ+H{(f^rukutJk&kz;L< zji5$I;va=7BC~I-%jZ9T?RWmGm;dko=Lc7g0d**>G^?UpKm-dk7a4T>qyDgu!a3jzYN>#O1M<+6>!dOk~ZG!aesI_Svb_lwuQr-KgYG&U7cW!g9uov`cC9)ErLU;Wo7fAufz46{h+a6oJ#jGc)H zECM%nH*KJiDIwp?Rly|El08X;jG+xlU=dR%a)4MQZFbv=ZD!`|W?oa8i4bwfknE^T z?g~p7e06egQnHx4!WH5anA}`7NescxLQYO1B!S4?72bmMB@3~s(x12*1#&<#xoWB5 z0Oy&RGpEQfwnjM@axk+-1%yLzW->Q5fQj36N3v_FHXe-wrva3c!;~Ct{8#!d+0~(C zjuy-5M1>cC{R^QsWfB)rAt&Otc=v<$Ecs6@*j_D<;3TtaCn``%9+PyU#JUo~^ zd$?R2jZt30N@Uq+ZSc~IyPtV==h}eZIh-8qpD)fXP)=YCdh56DUVroDt$tn{JguHR zI>+Gz5m3gc*torN@5Mn8!`mNBa5}?U2gB9HjD4Cl%Na6u-Y!-)mS>G30_VUv9B8%! zM%@~v$+sNmUfd@c&)y9_i zwl@O3M)}>cIB&WGQodt>H7*Eb`Y;eJAim;Ms3z zX5a_qVrETM&!(1b1NmfqeO9h4s~U^CcTr!K)%;Jf3WoVKHckd@sGaLJUDEw>}g3Q!f0$k$3p*Wf$wmC0Zih3KpjtjZmqi# zR06@wwGUj>^^(2drbo1DGOu*==l=fm7k_m51HWZbRC`uC2au4eae#Y;$Y8OiX@%$- z0Rcg>%(O|}KL`$UC^5H0XW zSh#5v=A30jLXy@P&}b|qSpeKMYP68$M8t(Kaih`QB+I=0mfY#1m*dq?=L-4BiM)Mv z0DNrt?^nk9!fx0Cc5#!dTSfkd^=Q6b$-~ecEap;R_BM9eSqQ&gYUlf z+VHKxUF*#n{p#`j;o~J14VnUZ-QUCY*Yee! zeE&&&|J^xCr{N2o?LiaDc{8`=3{3&+qt55^ZdIjU`zq`L@jmKLYke)$Lty>eDq$mL z0n}?npX~uKy<#~q0KiUXu|({F5681=@%%|?fH6SaaVzVVBlH^%fZi*b<>mMUcm&MT zTDaHmck@N=rHNTEz(B|Kcrrb|Mjay&?RHextv*w`S!AI%vi>?9&lV^3(Y1JIxG`AU z+@6m27WA-F&AZu+(eU{E{G?SWI?#z|{wnkZ@E4Hv(X0ab$F3$_U8vUTj_rhYJme&`{=k2KidBsgVDdViE_M<-qPJjcqS(?bL?c(44-(UX&zkhFM zV?a%Ant>g`IL$ms*djuQxZ`AOWyYLXSIR;rphiuE^9Xc{=B@7-{Qe)_{6Bqj3K$@U z%5CO8Ael-bKp{bxNmJ>GS}tOWw|}Nw8edfoOJmeDw~T)(#4ND0m|WX>RqkpsD@S!8xnLP$y)2a6@;K8uHrTbbfwT#Z7O zzA{pEGo)S+WU9=`XJ8~^Lt{P%8h$jaxi#Ls@%wh(U5eG+F z9FxcBNS}gD-J*K5P-KaEKp|&Jz&dw01S|sKB+oZ;Gow7Xd5n!a+A9T^oJ^zHRYz~y zwgn+;6JUsvg8>FN1!dHVB)@G0bmjP>Ha*!voDP7ip?`8&_;Va|`u1Dnbef+NQAmL> zrb-TSbu~DdyRf(mh)BfADShqfqGRgjW)2CI1yXZ2A_2@jB1T975~~|#NAh|z5yWD{ z?2bTzVA^gk(sCcB9uXTUa)Tv06Nxa0paOQ7Yx+KgC1_07z~qH9IGZbnKul)f2;>6l zKigky<1zaeQNdAZlNVVI*R*8b$Om)(!gu1 z4cBjUUw>(9SY!vs<%f?i#%HIfX7D9E$Dsehi+i8EwU-$mJo69VTQ>U@rT`p+V)y3Y z-fR8se(zfc<0lWR`Xq%V8HU;V%lUVFW_=X0Z$4X04=3=dzp}o%6{pj3x@>?$#7SH> zi)Wqjp~cw&un(NV0e&iY9K3IO4m|nxR`{XQ0@MTgAL|p20SAU?Z~9tSl~#_TL>g7L zwj%+oH;TXc)8We}zW)uwZ+zPr4pv|jD<1$~1D5IFkh~ynLUtrJY?j+nR{d%+UevSW zyt|$S4?XEFJovIfNjW-4q_`6ST>#{~sKSY=#9UDDDrITW39e2**-As2UQmafrt zhS8wN2GZ+reJk`k`S3*(m!Q9iVw7Ro&a9n2PvYAgVm+?Yq zs(wnC5MP?NKg_`{|GEG4#=rHWH+EK5&~y|Ek zh^Wr$1{D|7>%07ezw7#6{|C~h_fG(1Km$08VOCq|`pbfX za9dD_Z7B|zF3i_8_5}+-9R;9@T0ljhxoJE)sgn~eu)&nIRSm5fhA&btz zU{H7UluO7dS&}^Y(O?c1iwzU05y3+cYFWe14At6IDa*k?G;LkSWagCR1cRw3G@LmL znW>ot&Kzt6tCd3Lsbgl6AWTBUu4d+G@B?8|GgVb(VrB+0iCb)336iztT0E(-pF6x- zR~S({{E;NAf4&5MJ}Ub7MZljI1*lsRQxmhR6C7!=F3c(O21bFkjwGDIj)}=t%^?g^ zbBoN$9hV;dv>6X(4J=ZcPMLEcLYpFtsK!8wOd~-`B&jPBAr2sSQ+9U=rV6MtK^PEM zoXt=dgj2~WRY}0H`fApK3ve_{c65H$N3p%4S3Yu9o~Co>%}|6X~kcDQoa9R?5ATamVlvC zY~LB(e`951uQ-~;fBtm#!IKFlOV||PY_PKPQhx1LF=@(QKbU;$!%2BI#bN>-^2Ykz zSJ&Qpq3{M@KbqkD64D#&tqs;`I_Y>tz}JC`vRND*hJy#q^zazC00BOPZ@_D^L$aga zn9^lSsDPiV{sAn3F_OHpoeNQ&_cf;m%k`c3@@>5Hs5`u|Ha#%t^s`^kAO9ix*UR4D z_@Anu{lx_kKGti$;qv+Ucmx~*2Y^BWj6&>-uB8Gs*Xi5R3wpun;RG$$ebX7Tws-Z)83_-++v94WbjCm z!6Qt~t3ty4H`ag0=db_u_dWz1h|w#utWi{@2UJ#_TG;o=bwMUfF>=r@Xcw{(@|8~R zBxQuCnp$bTP)vlH#wEZrp&~E(-F)~8{_US0-MO>%pZ=9cZ@*gu*_FbWpx(%%s6X%c zVZk-RMgT)Jx|1usB&yw`LLDVAh~TW~d+78#bv=9XxBjd75B!$3Yl9k9SA?12f#KxB zFi(X!8sLx+9Kwlvqa`>8h$OhN1T}5gJrO-A%N(SM^B=M#P~?y~kts1bpl0eYk^lw; za#!f{*43@?q&M{#0e2CIq*O7^I62JPo-`NJ2F6a#c`&Vs#mvRr&B+y6vX7~7a3>bB z7_ZRH3AyN;1@Zu*7KmY%Hb7uXf+H|O+5k0;gcKE{XqgVy?oh8p|7{VcmIahPiQCnN zz!4n3@%H}FU-9&XTQb8u?qw612BIC=003c{e++I=|z@QBDY!dsLONxJV5kqfhH zW7_gO025}H%vB{La&XZDHr_e9{!foLv+im=qv@l|<>SiF-f=e|f;VyPrR~>-_g)-q z_p>K+dwirP2h;g<2782Tior`;H*eg#f3wrizxH_k^>;7lM~9ftQ4v(Iy18|0=Y{*L z-Hg9+ID7Z)+2!LJGXuJy{%Cvn!tHAt{m$vRe)EI!_`wqA5sjkL?{2Ms$E(+G^!i_Z zR6crdidn>9xU#-I%ClpccoTpUSgDqN^yuvH{hz_?A@BeWU`Nv19l#WqEx5^zqsHXs{BCg1gzZ#q8JSryovt@ArEhUb*cjpVRn2s}ob{Y~1ZNCyUD( zNfl}aEP<~9{;~F7fP2z?Yq<64yw}yqnZ?Vj)8Rt6Kbb9NPQBsQ3OARR)3Up^I_!q& zaWO^6bC*1mjJ$|kRL%6^a++niTakktou-p_wW%B9vUCut#d1DxmXl`;s6RDacl1as zP``GLhaTVGM7%s2&P1} zTLSa4dtfIw1*_X)b-nvT-*@wG{;em=Wdz)PqVYIlwKUEm8s4{NNj&MvCUc&LP9TRw zNWsAs6*Cbswc26@ZkTg71zaHzVVNIEi~SVn$+NN`MeMpwZ2pL(6YdPo`5uVbL2gVUtL?Chbs?07<4*v`1Er2_?exj+xjuEi`DO1xz~B| z#lhxQZ?5{}NS{49*UKqi)HbUj8^!k8OK+^-yk3l(=D~;4)Avtssi-SxjUvjX-Mq7Q zeJ{UQR^NQDeEi`B&MPb%z%c5s-|5`DUr6B(_sa(dbDY#z8oY~Mas3nW`d!3X{lyQb zhmW4Xr@i6Y#%jOmG*#uWMBm(K+>U4O+u|RzqI&{-6Y;Lr`Eof`y#RW^`Nzur1Jp~9 z0nZT;IpF;_z#gZ+p59Hiw(<-_p!LoEZ~Ku^!)u*beE%o?GGBS)lfJtyQNqR^{rUfF z>!rUu{+mBrPP=C7;i5TR9RDhC`cVXpBg8%h~2!huhv+>t`#gIE%B{`}6tdMx)+vd-e4AE-v><`tp47FdMzu z-*~m0pIUQvWl(TX3Bnb^7r+L(ck|(mtXL5l6d7~T%SVKsBMZ(MMb9!w*3B1eRYQ^o z;({R&%{(jFVyqhGN_qn00-bKpc#lI7(Tl3p#1`X=8g-m~V_7|M^dziW964ghO0$XT z0q7i<19i57pZZhVfBcW!-dh=AnVG_%5Q7+^Iul7|$k-yAnpJ3dwT(Mq9U?NX2oyrs z-OLD4I-ngn+Gk>buXA}Cm1hODNz$B zMt4aOtHeYmfGWsXy@-+AydD`=Qqi zm$&%}_rdCu!gvOKoLI_AvD(xscO{XaV-8@pO zge8ES1f0WbXljwuBmvsgoM)hvO6DL+3tLVyBv&()5DaN~Y95UOkPx6m%Wm?%%lcD!+WK*SCCs);u~c zr~4N&J;QX0YJr`t>#uFS`o<0JVE?gw`0xnFr&wgDOQ3|?>Q47F-?iN-!Us>AZ#`a| z?2j=o;YYwGHoCXo7~S3*PU`Yor{(d%6q7S}4O-x4@#1Ui>zjOWh_CO@;(QEPu~NzA zMXVT2iRv8a0(ZH$nq^etE#L!S0k42dm;r~Tr_uL;@wZ(7~ z6D#}A|Kr}<2V)?-vXd1MI1M|Yw+Hcxc(%8f&Fi(iQw4FrI_%vy!XN!}gCF=qqwXL- znuNdhi-&*jZ~jx@5;%nbnghr-K9}WNvCOLKM#P|?Y*-AJomc9~DYJ4OiY%(qximRkCl-AEO>STpyUCw&B z_Ka8hITxMGBx_)?(m0>lvM85l)%2GF-Eci^u$ReorN;BqpmU-*{6Os(C;_Db{mK7m z`#=1{*Y{S3SY~duAvV@98>^9-aWFA*Bd^SAA|?rmiOX6;+)@;+LIi*j0)gQwaMuQ* z-niZQ%v-C!`qh+?X+Y@|o!z7#tPo@(Sr7r(jU2%&m`rhpQxdX9$w0!Uk>Hl%yI9E0J-UO)l4wXmmd53#>Z<9wK+FV(xO)RL=b)xS z;ugI{ta+kPP#QBk+O>hY8%fp$E30wfSVyxMT-=-j211DC_N0r@Ly(?O{v!i{7|E&+;`P$(5_=tg|?R3P( z$e4)RGy|dbB=$&vX>5bLB#@BDD)QL|}uF#>mtjSt2Z#By4{AG}$#`tD17xckH#a`< z*3QmOesF;=J-9r5u#edVDnru%ic$XNckR4Cu zy^efqKYsneqB=N7xc~^=jm=xDFTXfs4iA^U|6YY7f^cuk`YX%jnZ)q|%_Xo3jJh|g zYqv-B*=MT@2EN)>J;_klv*}i{-+fzM)FTxC2r@+7&PhJ=n*Zm2di3&df=u(T{CxNA zzmWss)t4Y}vz$T@z@kgnn6+24n;=t-k;Rc=bjM$L9R<^ykp41$WVD~_m;C?R2($3t-N?^(ErYPeuV06;PTtcf6AR>l*d)};q1(_;TCl| z?$!%=-u0RbDu>Im1g`-!by1vkiUIfGIR*CasN3!3#98BjRcvJw;k7px*?ivU<<~f) z*nF$Dea;H-tq#_}5ts=rqK}(;pDDEw&9LJ?_NVUru>h$3^(V5p6Qc&{(t^#fb~Va)%+fAQ#R zzt(*G45+9y{8RGp&FH#V51j*Vy5<>B5h7uclp5);WSJ1MyjU4e^S}K!#-IP*J?T!# zLMn^G5~E5G7I$-xHJDpVZ8{ZF?PlUEgAqcOdO_l(Xk?^lElNce?zKllRwUr3HxV2n z+SGH67V?Z>#O4MEaVU@+GY(gGX9_BknQBt;K)4-d2wW9rK}4f6l#`Ihl!d`=T0>Pb zF?X;tyT#-#X3jD^|Aniks_Ui_#7s?%LRyTZON_c2wGhmNFJ%Nt--M@~!qo(bh0HxM zlF?3MC?O}F2f{qB|Lp=H?F|65SRrtVv?pT3#u^2TgSaab%uLltgd~R8@NYZA`L0FDXo93Ws~ zvo7?dErvu5>+U*r1iW1iaLpv2JyJlXVL%?6*?-rKu# zYiDn@57bW%mq!nlasNTkSyg=qb>4by<2$ z?{TlQxiWYdx*C`BlX8ApjaF9ISFy3S@pODtR!^GgMrXLOy-L&3)^hS&y!waD#gTV= z{k0pt@h2A5EX_SWf+V8@p8+%AUtoG#l?ToAo(}JIBBM)XH&mH5D^^XH7W%nx=tO47 zst9E{7daaS3&d0gT)X(6@ zz`l6}lp)if{L`C%=#TEav_7P|+c-I?xu*KyYGwur48Sz8&E0~Numtu9RWo&s2tDS^ z2t*2VQZq17a2H~6vu+13-yMur!epGbK4P}-v|>#`VT;+p0x~r+6#}UkBLpAxfA6iIg!E5qk`SZIRrSlMN{Jh>nCO*SLK`}Al5a+C?}6Gg|3jZ6bYAY z#O>T1+N9f73!nf|2xck*03M?|+5<<`qk&l62w(}GqT)&2u0rAk#!iiL&fYYp1_{Z* zn?^O(D9k0x5u@axHAQ8)Gswv`f(T~dt9+Z-sDg?-ajxM`=Iln#?RwtM_LByQoZ5Rp z%5ZPFa917w)qj4p2Hkxw#n$d)kbL%rsqG63!t4#>~i=LIB)T zU=0gV+HSyE;4ESuje~fj9t{kD+ikR^PeIf!L6l-*dLW%~hl|mO7z4N5=^)JqvWAz5h;|s+7mW;+le|uy1#qPD;PR`gr)khyL zK74yjmD6H@d4*v?+OWg{PkhnMlahl}O@0p>aC8gT+B);2!7oaIMuH_nd9LZW*6Al z=&bgtWxklzI7`!;>sYzHd3$ZR*3G*^P;oWYAy5VV<$C&k)G9ku_0Q0)F{rrnn2XE) z4vpW>?!UGC#19tvU||L>ihG|P{L%lz?(47bj8+9u2ZS7%F$(7l3=w4nV#-OJ0+2U! zX*LBI&*)$NJYRZ>pA;a=MxSlY#~xo~?b~u4mt-;K+2wLn=~g{GnfL3Ak#&1gtmd1W z{n7gB#qsgtd{QkoA-q27>|EP@`fNXrr{_nf*H?POyzFc-o$P42J@p5}`Pa90Z{@c) zzcpJ$c?6U|eid!jNn;S;5pYWJ*WGTH)ekiF2I6*iwm}6#oaa?3%gavDm283#I}VR^ zUNtPboO_HhE@*asvAjGc`?YF0KvimeL>Lpg4Xz7+Iv)UHs^eInN1dr%m_Gt8fCbQy z*dPAswLkjDuD`I8QJtBF6t&7CglI@U(k`5UC~R&9rW8SyUa>|FX5xZ~ylFU37x~PZ znkaL1GeUyi=d`gs*xu?+#%T)FG`0*rCcdG_)H91o3SUQMXl7oqotx}OUYM^7a<~}^ zpdo-Mv;a%tz+lQ+BZYy;G#XK}vMS&AL#sja=0AS#i|^D|`v3!w=?|S}HW7oZO z3uVBRU=DNZF{06eECW>Fj2@$Vc)IxK|LghPe{*0;ZY44S9MLUtp1}}lwSAQGy(9D0 z1&CXcKA2g8rEN zTrF)>Oe54O4=}f=5CRKx1~@^~)lHo<4&;fHM9hKF0^e#=P2ON~Hmw{2&OE5cl0d}8 zxbFV^JH^wt7dBZ~GspP_a0t|3$jZjnox3-0Twm#QXS2oOF7C=-*x&h)uD4#u(3l2~fz5 z_07G|9l8_&yo4^>gTc4pCF0kzY$d9s_5efwgFiC(?k{Lu-_9&=mYwp!#T(zb_{58O zron^4tMyg+gMV;$IP42%5rB((&ej-_dmwmJQsd0IF=FmUh{j$g)Ho@>^$Yd?`S07L zg+>5juNZzZR$u9K%dDi>Va18n3(4oXH{5j>EvHB0@i^XC$wzr_V=!7@zc^kKs$)5; zON{#2+V1vn_pRxN=a)xe_G+`WYHQ8lV&l&2*-fk7AD^A>-PyTz^X~b0di?$qpaLqO zkFWw=gLi>BFb2Bn3VjIuWj$Ld%iB8H3}MB+B3+1dXekAj8q7}fdeJnCi^kLn5~_7! z%jJ`%d;&bq%GX4?LGF3zYPCzfUdbG|Y!(ZxkAVqr;eHI9C2fr4{>Oi6=coR?8~1lc z6muw4Yat?uVdr2t7^^MI4W^6A9^gcpq?v z8I}UBT{T)qwx;^{pZqT${^;+0Bg1c-xr_`@E*6yowenCFB6CS_9!n_#?kSUv+>rujh}awi zZY4l!!~tpqqae-!My-$*3Qp=yN;v_hkvWks$SqO}`%60sYnuo#xwvG+0(357@#|0Z z=x8aX^RoqT2F!sjg`&ESR@qhelXJ1(s&*Ka`{qN>*H(xuW zY|CnE?6qaNF`4a3gWj4BRw3D-DW@Ds=Msp9oqTh1?NJzMJzq}BjA?7s$@W$^pX&6( zxGbyFlWgav?^x&baj(Qn5x-i-%aenrue|W7yDz_aeEu%Ze;KHOIpjKg1=xjN084;? z8L$t018|=|(O6I+jWbhpe$lAXK(z)7`%QVK(}&SFlw&AzuBL7i0vtP%Z%`PL^j%g( zgtAKONx3|7jlhvmqyCsMb<{w!F`^&)W7q!pPhG#e*QdJhCNne$F$e=jN%=zrFsIj> zDY=6MAUF}3HziBQAONvn*<_+J90?W1;>cVZV!+g@*zbj#*E&}(Y=u|OGqv+z(KIie z%u7%S3hbF-#MBcnL;ysvn34-zjX`iif=mW5898@k7NGO2%+9qsuP6SlC{w6ao^gJ2HctDM1`c$YA{<^O+w1(l0+dej0DzFRW=m zIWaM@BgH+!qB0Y_F^e#VwE7k#!77}XO&dySi-ar3oKVuLCv}QI)jTQ(HaC_)!bX4* z z$;ayoaPXw9)Tm7jB4UT75usc36!uPJEWuP=iKK8!_aSyScPC+0v&P`YZEK&9&dCJ^ ze;(p%DG%V|!=5YI<;QiPU}_97b_a`42o}xZB+SfKHy%|85HYAXN=^vuP96>B$*K&n zJG&WqLUM{bSv2OBC+BdGI~fcl!4v$J;jR=xlC{^+z@F4u(AHCyxZ1)+-G zarKl`hNuphfP@6(TB%l$C|OS-N6g5_1F91TjSZY^YQfJ5X%do0ah^_t>0T8u7~9@KYBK~ z+&@G;L&t{0ZaJ5er#e5K08fA#>zk`LR#!UtveY`J@sR+EYy|3~RN$Q^-YakqI0mAx z(cTNAVP_raf))i=){Sl*O#(4hCMWR>=3crH9OPmtZ=1m479+7x2t)+sl($CN=y=in z>woL~Z~v+R$zE^{xZ@LbJq$%JWOIZWp6LaqW6OdwP2^`&SygH#>ND ze*E&zi`TAS|J<|l1K_K`67^G17qkiKKoPiaRvPXC43rJ>Sk1~RHng$f+5;_^)ygBSPsq=iGqVrPD`0F;px(P}|Ng&o z?f3rp?%f+bRC$a9ip~aCY8VV7b_!qyGZ84N#|8wjxF(vh5@iMk3%PM}pMtchnS|Wk zBQaToSrlS-W1u_8Zd@Nde*pt-z9{QUfF(O~-X>PTI@`KPUqmt~03j?)MZpSZpaJ{U zHO^s@rp zkroLJwO5TADZOFW(QEk0KPd0K8YAA(Fc84*QCR{wji{KI z-JH!_BN8JUWUw~4(b9s!T_dur{SrL^9@NvhM~qmf$O4iK1gJWJNYdioV)S4_ZuP=# zZ5BJtI7*aeVz2{X0%XALy%%1&duP;Lx07Y_?uX6O{ZryeXt+5)1g1d7H`iXcw=r1Z z^I7xoWOn-W65}Px66gbYc6;Ns*LSyedqIcW<_n?Q zwbSF}a#8^$Pyij|1#-na0B67h#q|Wn8PD02p@tBFrJEbMvA_#<0t{~8;O<}+n7VVw zLE_c`5$;ST0w;2B80NKSQb3FMes1=6{>L*k0(1dSgRGDV`8?qoi|(uwBIm>i^3}cG@|;d*7n8|l)AU!0?Ap3q-|K!jIVexVczR>& z+F)yoE^cm5-hK_3oitw>z5D*^_3ys^^2>(@pV8BIfhGJ9ZooEV1)XijCLy9+Fq#0% zLe0Z*X$vez8jmGESJ^0+LuAq&3`kd-c@BTyZI}(N3FWpJRWZv4eJ+?9S6%4xGGOWP z0623zVHaTRi0K>u)c4At{C98suHU}1*6E-Q(Cqn1iU?oK3?n2cF&QXR_dwNlpMS>>Zts7o{=fY{{-ax*D11c4%L9nn+?AkRWBM47lLB|rla z;DMy68Wt8|)w;#OacFfo00)7?w1L4)DXNILD>17%86X6Lc}gy0a&n98aLSUb%K;Xn zkdZUYUDZvAh(qRX@GA_y@YU6X(DK^w9R3UdMr|GdIh;~qcXMJ2?yY5v+IL91jpzM8 zNMH;Qh{?=}3}k641#3rL!Z6ju`APUT5+Sx$Fe)q|Bz(6;P5f03fJW2Ci8%<;eb!r{ z6%kA$Vp0M-Gl(-wd+j7ta!Xe4_P%B2uGScZ5E~OAv}+k*hpB=+1a>#I6j_{c2593z zB{D7fd={En2bWV|3It#?+kEThOK)D=9(ZF9p2iQ~pHbO#a$7zP?RYrUNDvk!dybdK>Eut3|uC31cFLL*h#r62Al$Opi)m?6JK5@r%opt_#!(YV z{Q+ohN1_U@!a-~uhVQGuOS%5YoAa4TM z=AGf zsh~8FX*U7@$ghIf6Mci9+wQDgg%gtLL9)V0AR?Kt6Ex94Qx1%$VIl?QtetPdK$g08 zcY~^V8|nyyLNx&iIAa7ccYvKTmz*dtOOTAfoSsOHFiTzxVGtYA7wYW+!CZg>GjoCt zL0nDMorR!9SeQ;xE>Mnv6CeOPw_m%neYaOJeYnrhzCNY#L4PnV4<@)c1kQj!H`eZc zVtaF=m@etj`SSGW0vB^EmT*RAeed4RTc5sm=SHWgcz>+tNA>cu!g2~b1QysG?!7d4 z;qEX5IhfDRpH9p14D|$<0TpDhvA4CkfwKv|br3Jl$0)}@jb0W;K96LlQ{V(B5&ElJ zva-tax_&&J;_?s}12wRV!4R1OIRM}>P#5R{z|0>%IEO2Y%$XQ0&UD2IadwC*Yox|l zNnC;|G?IfrMgUQOWX?Hdy^s~4u4C<&zS8{S&rASX+k0W_?)P7Dfj-~uZs!>pt$UM` z3?#p9HcIoi+=h$)w>%6`yz#5=+^XT~TLtWU7&AX%RH?JtCOW-l^Rrohhy=QT5H#(ioVeeMKJ6UHqTpbNodm&rlFwmyclv%7D*2KkmGe5ND z1LzarvCtvmnE3*z0L{Dc6Tiv+%zwH2=l+w|Kl7>ezV@-`n|IWiBxX4QQN$h2WaLq} zVN#%WEmIbi6T{m_m#iW3HUn21Hx*%WWdt&`fwXYWau5S7K|HFfi|hJEXJe;8dyxlV zMhX!L9wZj6t|Sxc5)a@5^}c%FP%!6-?$y2!+kZT;GFz%3OawR^d96@b1E*X~%*D() z0r%e+{u_Vj&R{+J*nBw}F3skKg=6kmT5D5qZ#zr_l#peV1M>7~wHO;`OdQP3Ji05Q zdW`N$=Bdh&0j6#du_CRZ(JeX@Y!FI%6Su22m_aZOLc%0WWCUxS!OSoa#LcWx*GMoH zSkt%}k!jU<%AZT9xkRA=xe0q&yFYcq(L)Fl51SscAi z+)X0dZvS)rwY5%fFrkqB^vC5}Tv4KA6nBoEp{h-1Y^hzHF?F-1%m#tSVij z#@e);RMSO0n^<`PJ4XEw@om>{0N(`OSAXi5m@R?&&b{Uj|HR}?S+c^3$&JV?U5<_1nG<&y1j<}8cVemuwOQ$^ z34p;Boid%n#`p9TVnFqf1$L@B2W1iCuY(uG1oaBa2! zi90RAZmyO3s;Hz*}76&p|y;;m(-I;zZOIF6avi92Q{kto>z4Hnm zJn)le`vp&$b15HPrd|eErOjJ+Uw&a@t2ms~yHDfecV~EZiHij=N73JYasA%wE4$b7 zrP}^U_1=fG)BP#NQ&bUIiEAqxcRP1q7<4-N^eG)2&zo6^im^=b>!YnVR$qCwBkU&= zy*!_xnF9mBHrK=YsC*P>&@nItBp)?9ANc%d;+?k0}-llM&Ruc>^U=|Lr$jKPPVyc9NTg?`u=0U>SADsT< zUpWI5*c;sV#L>Io1U>{H*MhCj>Wi4kJ8^cS>Ex&f^UK@hM^*Lu8t3ei7c0Z{d*g3D zI6IAXDbb2e}|1Jodx+`H?Pm#fD)}_}=!~#`U%1x1SxqfBR&;^TMWFTi0tZ z^d|FHFgc#oOL?-~xE8K&-kNW|`r-6F*E67YEP(}h0UUzffxdxdp-{{Wp|`X}u!Cr4 zwVpzz==Z8+mMs?AoMT=>56n+UmxNQovE$Tr+5$qZU_-07@mqh8fBSFS`pw_7xwF>q zAb1@dVoXd7QW6H6Ya}PYB@<6nMpG7Q=MU~_9^$b9Ng7hSX`RjoseWYdhWGXBw9UfjJUo%mq2%42q1JOzn!K;-+a-U|?@8b!;X` zcp1McBt$Ia4mODq2*J&x3kjV4+FtmvKk(u&|NOHreQlfyNkgUhfl=RlAP4{iWvgxi z8B{Fqk`1y18j|j|e1Sx72+K2dE}^r-G!Neh|0vM@tS{ zacz>#**~g^5ek67%*1KoO~}mP?jcA*{aD((h7@t7B#gB9G_}|`5woa93Bp26tsLM6 zBuxvM!%R)G;4sq!K`>$=31lE^;4q|n42vW)6HHwsv)H6^M#5xdP6Re>JzW$8?jGBl zfduF9+}#BSk_%ZMe7d%i6Xpml-a`IHFhPLKve4x%i;GixG~rc^Hu0+4CrYEop{ z#6+Yf4#e%o)}nEiIVmiHf~9mubICI^Ba+a`Ox1}v2ojn#fCF1-~|M*W`FAZdV> zIRN!E4N7A`Feh-Gxw^sJ(<4hPOo(JK&$0{#CkO{e6RW83!C?NceP4Y1<@(@lSyb!8 zTU&QuTIpr<^zr26>3FH{4w22DU0|}&QuSqf@6DZiudh*^@1OY5{un3cn4ZJVfQaGh zt-E`7uU#uBOi$_Ls9qc{{JcatN1UTuh27Eh`#0|Ht#~D;)5+vwT3#%17J&+wV)KQ~ zFKn;h%$rL(IGSIc9$|J4%+Ouyjk0-$rrSrcg2gJJ8bauIg{7J`cCx_Y5>Q}>e6LvV zFRRIO+B1>H{tGBKfRiu3AD=zC7~R~BP85k$-IxUc$eckAa|Ka@00%>0W~N4@K&3!d z7`!4O4xNj6_wW9K9(*eTLliI0vQJ$c{&xV7=NPW|+Mr&Xbjw3)j=b9=jy2A0_7y8X zE54c)&|cPE-GF~^`SkqkaJs!+bh@2959_1R2gMG?`4m zEo@Gcm0~OJt@w=_{nPW}d~zFj=koOI=!0(m&ffOUo5#m*&n9PAuK))WsNe^nF?_^J zHF_WD0}|;Rz634NDB^|1uiBz^og*4>4$KHk!x^vumi|#-4zIq@eDCMw_x^D2dp^0h zeRHMX%dO5E6NWfx6P?I~fGjtQNc1p591XosPn3`5*CDjX(iE5XU)gHm& z)LsG{z*XCtXlYIaVgWOn+M}8{BY5M+EUq3Z4s`F+y`TQ+7k}d4`wA8S%$*t__>w7# z3!{$c5F$YhSpp2FVYEYL%W5`r^2`Zvx5fx?HJ0FkKtfFoC`oW;sDV9^vH_#iA@UUj zt;M=INg8I8#fHqlAmQXdGHcwG5S-HBNF8wX79M;hkF;nYks$7FF{bGb!99BVi7+P- zuZW1MGbI3<1J9>PBB^A>^t)>(>ZE3-rb?N>0|;4OaB8-M14En2-6>=Qr{r8?VTM{n z(>UjF@+;|4RBh9P(bn*`q%)E&*RPhTfe7%A4vN&F_|^O$AR@OkscTh2DT+bUEYQ>m zN@`%Yrg2rtB{mKu)0{h{`;;*Y$W6`NSi}q#Bc;Pz9T3T2(b^S1lSNBUleIa(^_8o^ znHjF8PC|^#)JOsdV7FAi6fMDyoEZ>~mH^S@umt(DCK9Wgah4Aye)k(X`jg>nzYxE* zkbEVC4S)E!e)8aAdORzb&QJGok>=_9z@6@`jaNUjy}O&u#`Ne(JbgIF@f76@xCHup zcQ#&lWo2V8%o=`oynJ#vIX|3ZdWpq3tVDmf^WwEPUtU@7;rw*Df3!F`nlHyoEM~wN z0N&eq>y_1&ymL60v!_cOFX1zQ(J5kgndkZHN^y~I0vo_Ytue&9*7Nh_@?vonGG3tD z%QuETzbMfMIzXivv~v$(5AkI36kqqto-emuG8TP<=jscCoy-thRbR^t#kv$+6zYcsACmWKrt$a$g^HZ{6N__u<9m ze)+*u9rQYT8;g~m@2%2&v{OyKoSC-~8^`H_zbjwsLqRs8|H%KxtUQ zPt%nP9sq`406;9^?|an{W&$=ejuXbxFr%vm7@(b7`nk{X5B|{R_kYjY?dyY4-t$=4 zQVgQ%931SDE1QEH7AZC$hA>G$6RCY!vb9`C_ojh65D=IlAc6ssSyX_NiQm)gg@rh{ z*Gx*8xFflQh`B{tYAmvBd#^Vd@nm9G$3ShEHC`*UiM2&?=jah}23uM~V(0Fw1_N~f zrDT@@(hgB0h~3qMl5i5_N!6_$+NXrH2Blb%2rRl>eE;vh{p0`mtXjn8l-lEZv}p4M-mc=``XXL@*;fp8_SVX*)Xtkmg24nMlY;V9|+1 zYeg~-ySb~Iu}})c4Ot)-VrC&vWCU`f+AaAa0AlHM$yw9j9vq{3(*V$>kv#J@!|eIw=XoB014t^M^ker_2GHt=t_}r9V1gv7SIQDIAWf`< z0IStBO5)3fVD6NpZC1Op8%dD#xs%3>7^Vs2om4{xwX0i)wUIo=a8DN{03HodDHnj# zoz5W?oCKs%*vz6)N(3N{iENt@h%y(zT;V_gN61E7>xPFU!M=2^Mo;3M`R9a@oGsyBHG&6^=?^jAglK?BKjUKAhv?9GJ8= zg1n!vR5XeuEODLzv+NagUc&6F0RE?6v>*Se3QVp>Fw>f;h)xu8cr;~mKqREOnwc;; z0>}`8$I`74C^*b!oqzgsXTSc%Ge8hF^Q{-BrwxrhtQOt>N6YelcdaL#ycqVenl-22c=+t4-8c5t4F-Fm6{uJ7*r(D$x? z=UbcC?+ypuE?g{Fg2FULBir1$;jPZ z4eG?gVD(7pPRpP+(1MWit&Okfm~N^Rq|@QO>#H}e^}jipUcHoEeNo4Y(h9`6M^+Q} z8a{K6@GNScmVvMa2;P?dB)p-jR!@E-cPCHuUytO@?bLvsCD+7uVKGs{VzjmPM}PXQ zfAVt|r>Ap(fU2=M;W)x_M29f)bk9gy^fW00NTX_50xO_2lMzbkeg-mwMsGzyAU8_X z2Uqt<2;iL3g-_E@R>--%Nti-YupnQ7ioM;0CW&Vf326kFg<2Dpr7?z(1Y(e|MYqP> zEr^&yiY&EHOhm%&#zM~S=33W8Bw6lIS5IjKt_?|=N~v9mdEic2Ad)skt7+1Q(&$it z0$^#I=^$beVQnIToe1V|mps=P(U?YabAKL&9HP8^Tk}eY6zh z0&m6r01O@*FhY?V+@o>PH8o-;7*bxEs(YHFNxPOLayT)&Cm$g&D2BA7F|%d ztD6(5PB6}tH)Vaj!o}o&{-vYC_jk%uhSym3P<9cI0R>(jytw3ODIPw)JUg0TvP9hgHF&VGH@yE+f7p?SC;E+N<@xcP zYC=iC9B>RqFTb|3-RmtU;r)}@;^YGLB~U_Ybba@3e{*g1SzdL!VVT_a%XoR#JUU#Q zK0e3gB`^gP7$D@CW$Y2mundTx$)E=mtK|#;{@E|#AqwO2#@4O9M06ogD=XsIk$a6Q! zi!58|4fCO{-nu?J+gmQCv2j$xT;?m%$-CY9^6}-#{&@Q8yv$a5*|0Yp=0m7p`E393 z^=r4Tjjkc@7uFf{*Vnl_ZcdILAMEw^`qy`Tv!7X>omaitBSzdmJ6mMeSGTX-xW4?& zPv*15_c3o9{k90AQF#Juh{Yn@gw4 zuyg{bBJVQ#%)vZouR%gCsT^~=hxPe9wSXxO*H}V~#@;sC0Gl;LiBIOOED$k6{i#oE z{^;-8`@jD;@20T1h%w_NAU9+{mw>C(HUcDhhScDt8jfhrshfp6T#b{q z(v>X*z8hd}jVmY-a1vC&TjZ0*hFm?i8)`QO zob#N_T-BMaX$XPbkp!xEo=C&)#Ki8*&uz(9mH;;-5Ju8`5)iHm?bWoX9rm}qe>yqj z>JZTw5m`b8a%fEcV$OoQnt6(xcDIzpK+;KgLRa&qAxVo`OY3iv05>EEL=p?RlL!dy z_F5P)M+7NzFpJ3p3`?o!0dQ-gn~{Sgq%`29^GT0}ngNy+L`+1QQt6F^Jk}ohDjWtt z<;?DIstD)R*`sg#i{|*z1mzaA3pKUcUc{m+#%Zq3lnd#t$Ey~OL?yufS>On@;qcDG*Hx^p|1IzB!rpB*h0Q?=Srr(3){{9!Y7=-ANh)Ib8)lT97F_TB74547x zNT$wiPC=B=5W9PK*^K`2d;BY3tN{krvHLxtShw@XKm)84ojW00$#s}zlQJtp$1%*a z!Uj9nP;8JtqEP1j(B=O6ifwM+-ao!OJAAhP`0@7Yj_zdB+9T%(f_gfB`tHHu#@g;? zKJYmeHtc1iPIWw9oE)DYt*&l%N7w5W&#&FseE;wW6=C^wavIiF?v3{D^iO{4Vs^^@ zPt9g+pOd;Mq+a?tNw5aQkpY>*fdB}=qdmL%0)6_^o$r2Q?Ne`#?%i4$j8f8_XcUid zYnV;7PUaX-EC)@EB~#94)Ya1((w#Yp)<_ua33BK_Gy_O7Si>2UL1RtGoIpY% z3^;R2wKg|c6Nz#TxvHj^EM#f0s;is%OLvCA(bbC2;i`I6V^he;dr8PaGGHGv)`%pN z!hH$jw4{irsYQBVK8t1|2`4}>I1xkAmKf#{O`}X63Slz$VCJX^%g);LNB_Xx|Ih#T z!TE^;Vt`TUJ~tk*IUy%RCNeidVmm}6{*h&XfEf^wGB~LYg~3^-YN>^1ad_?O2$?wx z2Pb!TH;_ncb4s&JO;I31Y-!*LcW^RNndueqnV2M`vZ!@LYuO`M`n8ca5pE((FnD`J zx+{yM5lON!F|oA-9z~mAoD5f%yvFURlhy$3TE!jF>U1_Zwb*{FUFHI?ap&I|Hhe z2s~+FaAng?uqF~Q1A`N<1aKyJ)3_Roz?}rn1TZ%WDGZM-udu@FMkoJ zHh~`MfM`GkG{Dy0t2bWxjZ-@=3M4D63~@XeRB~$xY}kM-)$}2OdHTfKnWGQQW$^ z6;^-eA6@?Fk8M-N7L9{}^19TV1rl5evr0Ink(hue1l5L%E}?XdF1gWQ(e%IkFE3|L z4d`KTck||FxSZhP2w+Ap%Lnj4b<8{v3S$;@&AmHXtYrhP-=7{Y=L0WR&@3DG46fzD z*PlGQwY7JLi_N;OnHr25EWUx+JI6<(YvWhe%Z*UbXe66=_}S4{FrA$q-M)EiduXBC zx5;XGuo>sij!-{ao@=waJ=)vZdFjpBc+#9s3VL_xXFz#X{q3qLO53IM%tXM^qv9Ih zf3fq{Cp({cqxT*6ySHz4S4X{^LM8$WRuVW*1)BhniLkj*qK!wDz!bzhQRN}hwDM|Z zkxZke7r#5Ph{c)`XE!P_ambt))&?TA{!9`O!&1B*UBMn(-M3p!NNFDq39ixIy1o4F z3&UO)i{(eMKEoL>Gug_m!@ep=fUFh42!Yr$MPaDXo|82r00ijxqDBN20YB zI>?}!^ePN7RhT$Hxw};&&AnGwzwrIH|H0q>Ao;>f%wnzHFw9V=;}9T4Og*1@WJDo@ zISfQ35}*b*34*KQND@5$|H=CAAltI+ybt`=TKk-9GxMf5&zo}HU2WhEfd&mY#E=vT zAqEPFR8S*PGcgkrq0neT8W9p?CPo^GA&rI+R0JhqI1EuD84?Wy3Ir{Tn&<}5)xNsw zd7m$R=JofSz1Ldv$3FSGN#2U6sCq8*U9-)%zVG)%c!X&q3rk@+A?oZ+D+-e|lXv8} zsEZR3n&v_P zHEex%vxtmP3t4@M7L~Z9rfA@AMS<cr8(lj>iG^8M;U;WbL z-b;D+wh#!(jFSW=YQe=c<@2bi!U^o`=3WVupe$`h+tGXRaQZu6d;!z|WBYcm>`o6p z2A%*%h6T$c>3KC0jZ?*_n)W91$=uqbF-2NQqqF0eXZ_B&Rk^0AX$5Tq-#UKy*7^0% zZEma-WwE*4*}b*#`s_2Pzfd2%^x2IvSkZ3LT7PkCefIPd=i_}$IzA2MtlbLbwQU|= zTl)6twYd0AnjW9N?yd~pTHm@ped`C0$4^qFt@dUW_n{*oSE13R79?0MdV98VTW;Pi z-g~?Eeb;-RzS+ON*IgNuZ4ROixGiAHFm_AK5uU)wQcccpE}$MWIfH=$>=IxaQBA1T zAqq|mVNMDrb9Jys&4C$!Ndj1!esIamcP9yCOrh`$6`9EMi+nr918NlFt)|ocJGh={yYE6|M*gofKqL$XbXBy3I3h5 zTAn|E+@UQ(x8+P``5y0pIusrNNA5>#0!DCxI0;J|u8s&I)2N0bh+Bg~ZqRHX5+TdY zkw$@YS{2l^t^r^oHz&!3wM;~o5=dBryIWK!G)rwxxEwtivnS6`15cV2DpLSCG0@Cd z9UuxQ1DV2-TLP1&1oH+%?IsekDN+K1@+leaZZQ!vNodwKRmxO2vwV8Cq*4^@dHN0E z%QOAu41fr#87K`nsDXV`W`s7bpJtc9n;`(vrT@2K1(^eynHZ*;8|x(l@S;-41qkj6 z2+Y-DEh4Vwa4E>$;mXWrN(#8;$^=U(_bkvUQqeNaBl(=+Fo(UmwL8XvOhN6&1Mx?}Cv@TNlo4++a|F{MQz&7pNSzvU2 z`ZeGg0AM99Y*R%pRyy|og{s~FXG z{LA;AyuWp8YkO~HTYJN|w}+D(vwKIAdNQkEvEK{QT9J5V{rsKX^P};^>S3iO?cJSj zf4Q95`pNnD)q`cLo=(nRFSLJUuzus6y~X%PUw_;Vc-m`kOs8MV^}K)sslD9&7yj7b zlRwnEbA7yYrMI=x9_+L?+MR-n0CQ7Bau?5%xaFxE8yk`3yi4}U5h;PV430of%uME< zA{-Q2#05dzGtCp$e3%rVY!`6_B)~aCK(mHP8OXzdys_px9I)KcM2-8!i6KGE*__?; zw}e7y_e$@bx0b*D(d;`1I;z~yNQld#-RhS@aIz#CHJN%c^Tw=^J@bSPp>)h&9i=!m z>!X>j0d9#PkN^)%3>Y|gtU)ZHG{B;UAPQro&wO_Iv!7^v@a+ms6{WjZ%F1pTec%R% zD560PE^R88S}x*B zGl$3}X^u>lJee9v;cA(-3%HaeOgW2AP8yY@AZ9aV4it!qw64vPv4pId=ZedOhPu!B z2VCD2!f38AaAI7xq|qhg_01dOQuS%V0N?qEyaxlw2sQ&lir|*=?Uai^lqc{;!W4*7 zMsz3{K~0KMRhbHDk);YoTxQQXHTNPlX26U@940o4y-^|U>%?Z z%z?Oh`^qPNcNReydFpProP(LSmp z;2f9(gO%MYS8r~$(K$GaC(kSQxYjMt9#7->2$-R@y#4OZ&8wR}r;{Tc9Yz}|YC@a> zp&ayfc2|YNXf!`No2Jnem;nXay}|XZ;&uNNFMtwYK*6Y0$4*l(;RVnF7?|kjYjr!H z>GB{T{`J3G|BHVjP(cKUq{5Pjz#vAR_S(=}oz+b|FvoD^UeD3<4+p8Ph zP2Ra!+&TO5kHSta&Q45pbGz7HD-+d|*|mEwpW^WB`Bxv`Tw5LV*H^pnt={gH)q6di zAM8K=c=7IDy?68G_3dTv6z5}}96lRfgm`j3diuIv-rVfj>AJk`?xe|ie>JplT21#e zyaB*sQHSmDBY!|{-{`l?)ov`9nNwj-Cay}PIi$*FMwUNI$_8j8QsZ3mMkU32Ac=-}8R|Z~R@P>hj~PhnL#0;gbTSF z6P%M;6QLEk_+B zg5|+r39J@N;nojcdHZwSz>`<|qema_FP=WZ=^?5Ka0CeCO6Sh@wcG2RvUf0*=db36 zAI)(78fgktzzD^yYwxb_TrX?j;D}Bp({|U+U(UzF2R45WL=2X%++FYV?dSy0kER#r z7dD@wo`Uwp5=!-NooWPyhvDt6K14YC2cw z0x%!~Qycx(^&4*;Ob3&39t_F{Uz#6G*LHhDt`;d)LXb>X&t!BdKrnV;HcRZL43QN> zyF&lbJ^k>5BVYn-VC8e%ZO4ZXP(1(uFyyCJZhqhPJ6pB(C)05{9|P?hpSarJ8Vq;) zAI)zrj`o1EvtBQ6lsmgCp)a#~e13S>pDlbcNH<|6yP8A`&g4kkx3 z1qA_<=h+^+XLT+IinFytlS5dfVc)uUd*SW(2G_5(A3t2Y`FtD3mEN1pd#Ns%S`76F z_bJmw@+HD76DugsVGbf0YmRYbOmbYUx+<#oskeJ!snmIPy&58e+Quxcc@tbfMIkWoZ$V3QWizzb} zsJJ}W0IHrR&oE=jsb^U{8?gig0kg%($kA;j zGnOK=Y5}v%_h%+%X38Bsp7kq(WndCfc3L!1Jmw5D$YnL2uPC0lWTK2m=8OIMFaPop zV(-!;cn-9H?d$JtedY%?H@b9kwD|DJ`Kyl(@!|;6b0E8SZe#cD?RQqMUR@y%$HVmC z)mWcjU~vXq0H;8SwcVX}Hda=JYmPH2Y78&Z=pfbS6|@Fg?Y-SQ?+lpuaA?n8$I)rj zSwfZIg8tfIb9ZyCx2S3Vq&hjQFv&N767;-BY?827Zr!-?&aEp~ z)=t)T#wUjl&z_*Sy1rTN>~yYQ=?_+mWb^ZryDvuMz` zyPl@Q;raPueMMR;{TrVse^3kU4Gup3+P#loblU@sy|v}mJMZnK+4ugI*wg!8oSi&* z`ruBt-`~C7{p9=0zxkv!pDon4c5d9iDsT?i>u=kC|BI8QPWe+mTv1DwS}o6& zd}a`KgNc%}c> zlA>8~CSis_0Anq?`p$c6{q@e|H1~uf!NkqHjxGf=G1WR_Qb%p5cDJy!OkmHmUrkA} z(Vw*0-k4niA?1i#b2wL1b9c}8rqC)J?ncOrAY;?$0FgiwM7RhLB2#j+Wbi!FXH)g$ zRB)q67iEUDxmt!IO9m2$%grmaB!#%`_zfNTd`?`zOIbewMd#Ym_x!%%`rYDuT7T=+@bSZQdpW|mf)zjk zEQ2=tSFc>ZyT07-ji&PGczW0HaXM1zAtZP4-=+SwaE|S&2q6Q0=S{vI-(g}y-wErrmlN=2@2g;(=UupHW*Ltg) zYryg){;bBVjFT2(zSg#~=|$S(&%QPNQ-Ab2kQFoaIQ!s>r$7r{kY$<8J=G3#Cx_&< z%{4L!b6{nUJVWb+rmuhHVm!_4`(2cqa&dr*r@2a@z{>Vkaec47)+t*Q3IlL!b-6oO z?raX)d)xi>8#l`Bo1Jc7B(_UgTW{}d_4lr9Z`{7gySEU_=ZEJnkL$B3s-&dEC7bKv z%hw-&^!&-g@!>%{J&)%{)!D^-crqJ5K79JS-~8I|9N&L9J)5B@dTYC@gN=1?f%+RK z&%SwfbS98by*>D$AG?lL@8ER8wtVB-k9K?C3#z1s9;ENCSvzw9uujeiQPLfXGOr9N+R+^ZUpu0!;qpyEW$bNLk%P`DKQfX zO8^-oBl(h>f*WZkA1s;KOt5_Yzif8+hKM=Zc3ZJksLS%aP>Y2?v6s09eoo=mMh3Prgy7m}T3*A`-*{QD6$Wv9@8vyG98v z!~`KJ%{*0g$-1-Ked}5;V`A0KtTwF)%B1Espv;IqHHtvmc)Q!_7s#E+Od$vXlm}64 zc(anh^5G}o=F+He z4={4o#uh=8#c@lT#}PRK1_zu?;SeTietqMdQcHDa)tM2Zup zft{)86&A^)>|EClCKdt6l9{_FB^WVDXe_c^2*_FT{U&#|} z;0|IlvxFRz&QDYRapC|1XPyJVA>_yeu{YE?$%U1dJ)#OXZ`!OKntenW>6hHW$-*cm z%;s;@VW7rR?=wHLeeL^}rY-;SdHt%9{ZR^VWyS-(ej`eUfKbubG z)9AA)bb><5_3rh%TSDRd!jDfXoaQ~F23R`Y?S=KN_Qus!4EBIEpqEQ=3!8vzNXEG^ z5R)X@eg6GFGj9)aVM_q!-}u&HoRw$=5>W>SBXL2@;44Saln`r&g9=YB+)4;v{QC53 zUp#8~3V0`^f{s51J_Hnq6pjS*!o?Oai}ATSaJhSGwJ;g35Yk7vsff zRn_qMJ;^z_y7u_XJpSN**wl` zi|7C�O8l{*`Zk?dijhMn}Ubx=Y))ZmwT_2l!;Fjt?I{dGTT~b>7@t8(i73+1b(l z3)3q*SN_0K|FggjAgJSS{+-3I{#y0$m5&xxtfOgdF`B{En<@(ca3xPUn2x+=E_ zVlGMw1ykU_AYvvKaLC=|RrBU^ClVr-T)E?sG!i>8OdSA+;LH#rAr4t|s>zdka*fS8 zq79H9V3t6XJ8L66xh_Z}xn`1^OX{!Uvp=x>{XfwEr|$U)DZ&W-K%Z@;-`|Np)~Y`f zu*z5wtTH-+mY^VX*w+|cz`pp^S#@qi!BQX;n%q8&C6ZCSuO7{~JsY=W{Wd346XL5H6iV z&82}DOb*g$rcF$Xr~sIRsR#^)lO;zG&c#OVJo&!$*+cg=T!>}e(S2sg^r*kI0D8xahyxr&T5?sg9)&;n||o`USRVK8;*8~a_|GcXX|@@kXJU#gCRZqI6Qk0u|L5WmzzW%<>va` zt5@Fbtgp+A@$AH2J)PkAHS7e)$Nv)7w{L%PYik8s*~L&VPDhK2X`EePegq7GrPj4O zx9+Sf_~pzFPOAA~h4}*WDe4g@ZeAJOyx9Z%Xt5Zd4pEJO8mQ5#2W4Do#huOa%9R0a ztOM&n8z592B}FKn7Q4CpKmyauJfi zL70sINLfN!W0QaMw~t33<$+!w-7TA*)ED0bj`F*zrfN2yPbPdZswR{1e6~m!k7pN$ z=d+8sT}&{YrI^ZkW~WD!`}c=m{@U=v`{RQb_57UeoN;<|{?Ru+{?g-b{?6HxZ%>b( zET)Hx#mOAFANT+3um1Yq{@Rzn`TXgt;n65nlOjz31HOg$tB*ha(zE9W=jQ;JKxe;^ zC=3Rx+gI;!c?X!he*N*Qd*{PvR!DDeZx@L3>AlJE1L2L8>z^;$KL~6CK0LbkTfcPl z4?dV2&t_I#kWQGLbOBE8H7Ge5xv?i8Qp4x5jODW2IAzQs5Cu3B2}793VuCxMlzRko z{2*h?f{=(vc4I3jw<0llaATsvjWRu$nas^xVV1jjn204Wh#A^LKq6KWb4%7>khLZ0 z#*O9Q^J6=qh3_Q7000p~z@1k^=(a)#(hAfP4vfIaT`WP+5o~s80PvT;JU)05orOJ^ z8lcRav8KcY!I_xLf>|tkgxtYS!Wv^yd#A;>uJkUy0dsP&Ipq%A3apCCysEY8l(=$d zNrG5qo)jQeGh~-kW;bW&rn*`auxbjwa-Fh(*pud?j~kl45HhP5xzfTKuydw9IEh#? z2r~vRzp{$7M#ciBQ2Qv(*Snxk8LdTyy#_vnGfe!?IBkT+O1nCvwpo%9W4_81C*V zWs9w=hEBV&UKIkMnV*0`@RVFr)4^uo5X|y(Z60%rW+rDtlaf1!(g@_njGUf#OF80a zW@es=PM6hZ*+rI`EO8)oI1Eqzj6dwB7b zhmY&{YJu|+d<hbv^R%gJ)^z_+BAHOhLU7V+9_g+n3JwyF?aUb(p`Rdu}V5JncgQMZ} z`4ix`G26fQg`%2{R@MipnoLe!`)msIfWzweZ-4k(%R=odH#as`JD>dYRuMn<>YG#G z%cJ9Ozj$?XuoJGX?QGxdSLyD2ID7G}lT_b-{^H)C&#O1Kmey9<+gppnubvG5vG?BU z?tHF)xT$@}Wxv^FL_~-Y2;~$*;`fr}$O-&;J%oWdzu*1cG3~Zt{ zbfdiH5m=xJo=@3shmIs^mbv0hwpbY^r(1w+x*#1sb^|cN2S3cMU~w(|owien@kZoYZY_{vHY;=BClzU6Z<# zvk{mn0OYDHg*)eEPNTYUuIl=Zne&aRpWO&%mjyToL~!%$g7W5~kmnY-w8pzJfgBmB ztbUnzPjFBkU#L;W$Hd4?#FQt)Bq9ZyJCbI{RVH4Lv#SG~w`(`$AOx5?5fKxp$T3NC zI13DbI-Eja7AL@xvmme=8X9`j)B_Shf|Nm3-Hd|}XZLTOW|*6k6d9%MPzk}I?v(`T z5pQp`fA7yO{piK^uPk-H@Ri_Lo~PyK&)d(wU7b9*z{?s_0V?1S09N)^-&)^%yVu>4 z5&Yh8e(>xJ2ggVZErBCohTg5~Z(rYA@5O~3pX!U})p$7enyL%OJeajR(r&L#umdPC zgHcu2^~?}+LqH3_tfG&Ot-cuTegF2K`M+KNKmECvsOz0~7OQLOY$OiL7(PzM4r44x zB{{iy5-#CDNDKM(|MmFw*Uqy?5Of6+aPbXIPrjou=zMy1e$+Xm)?{{ArHjYF?^wNf z^7VV^s8dbH$M=30^#{OLFglywtER6uj+d4?onl@`Ob!76$4I}u|9mOxwf<6PWvytJ zR}P;4@Zz`&yqwHlRWx0@a(ggnZSD2jONra*#WxnH_-uT#2-EH|udZ~8a%(bv@AULw z^m@2B*?)Py+TYz6taY!x_vwdc6U4*ebkPs%t6NtBO;10b87g4>_1`@ErR9|kY5)Eo zD%KcUu*WKJNk&L!4rWR9T!aYh1UF^R#{Fy}S0v>in%>0XoroZ<3|BGBWVsAJ&q6Xt zvakSI<){9@ z^)LPI`C|T0sK9l282o*u!izQ*lEsJ)tug-u+fFgRSuIY&)}XnVI?6dYp%;=g3h7z8m@Ds@5v^v)gG+-*@) zQ>z4NI!#QofrLrG84v`^ptPpiDfkU3v&HiATY7Hk}){{g{TQw0R{*YGF8pFY-vhBl2A}i;x(6}Tu2{? z%s}1%-4vE-ppw!3c|Xb_1%Np)k-}33c|$@%pw98jKHv1)Qva1(9QJSyP4^(skF zRq|ZBn%@pY0jy$brpe3f5|}L|Uui9;Y5&0o;hX21pJ*>#yy`x_M~4rR?Vn?O1RMiH zK!A5}_0HhVm5trO6188Bgw{N_?-EVPy<}c6c!_$jueC}zC z#RY5xi0tg_TwkGBo}BCOxQg?6!Bwoss78QyHdZ%pFSXI04bP`95{@VE2mqKsHCC}6 z)#@>{Ae|1d+LQoO5@^5zG`uW{jL`7pqshr|u{T)%nLoV~?%>tEv!DJGJMI1q>fjck zbPEJ>Br*`Q!OW6{AVnsAv`&xhAO7wTX#x~LjqoYd9mFR<{hha5n$AbxKBp~i)uRiB z?E?T7{_4Rnbu=z8Jpl?}7wCeWQH$tcFxcq#r(4_mAD0;K0BeJ-!QPFXrNMHmT?C;k z@7{Rv@b2?RUqydSRzlJD-cHfmUefN~jBFv*@vAfLw4$b}sM;&7?RNj}V*7OX-dBIO z!f0IET-vm~x#X>@_4qT-KluApKhpT_^4?~D?S0td`2HAp3{1cL4~84P&iZdcS^a+oI_z|%w%Q`XNac+ z2~hQvYam(5mZ^HuZ253ca0d$!W%DyJ0}0kR772+&m~!6+xhjg10U)id7C-TmTfgrg zul~y4{UO-nhe-^B?qFi(LOfOGMoc6DLKZ6`m%wK5l%yxUR_@DrF#djcO#JY{R1`Ct?w@s7)0L!BTQlDS`uPP-~`2 zXg1sCe4lTOe)%KeQVeQt2-!@FhA`4x2ri3{NJ69TiIBOQJG)Q_WD1XLZVpQZbq*~s zTmFLrxkeFjxToYoaB#>e41#HfK<6*v4)a7#aB&bP7#V>K3{uIL6B4ix+%z*lOx?-U z0dn=m1IxsDu;ApJVkF`$yk=`LoU*p)A_&Am;I+quf`P@~{BIup@^5^K{x?^iS?A>o zdVMd%hrr1>(h2YixDT|j^iJ=s-NB9JZm$(c!C&Bhk%sHOi^uI zTvp7=Hak37nGr8U!H~EyV3#4Z9pEyHX99E{Jx=$&I!1OiV~L78o@T&f{F9GVPsepC z+Z)_djCO#Vz+2m&ynEy3O{)Cy5+C0O>`Hs%`u3IU7Rs{My>?@7b!&aGh~4GE!w))$ z^WOT#+V1N5V0~%OTJDsyYNJ2sPUG}^bW$y5rm5euUMsYC$c#l_`STB_(;FLDx^``St^Yk=iLXab6nHRN z%>Lo8jkezF^j7)(rEbrfHd3dW3I-7Zduq;6Igtt=d&AY8avd$R$C~}}#_hG4gPlcS zO);!zpO#QVg=DB&Qz)Ai(R@Rt!cvvLSe6i|v57SK%nU9jclVk|7^cay8AemhOeM?h zyS<dZp=Y)Ng32hjQEXMorpPKdk8RQX!g>Ot3p67W{HW-a(y9X6Q`>a2T0+nAT(1H zGLLSqLY~wK)<^{ikV|_^ZfJC8=4|tF)7<;WA-Jn$AdZCGo6SL7O;eIQP;j>d5}_hk zYLL{S5X~_`b8{fpToeu`k^BUrIa+I~RRWX4V+0WeaTs$!ltK95JkfJAGi1lGlj(O} z<%Xr2#|Hk!Lxn($OME9TF;8ze*#MxHeQ5^sl#*+ZRvV<0lgA8#Ih0J@^997r5i(9M zbFou0kZO}}=D?;-%$8DC{wU<8s8t|)iLS}0$H zyMv8Edpr%tC-bADiJeanCrD$Y7l5PKS--s}JxX($UBt!Nq8gje0^%5$0_*MN)lSJ5 zN7c)xW9**-uYlLURbUBIi*qoshXhDb2tpgF1x(?jsxcDGfeFxJ?wgHYKlS?$;!iBb zEa-&-#wl7trLN+}4p0JOK3|z9@|rjT!eAgQz`y(3i{l5=OMu!&$sNRRRJkbaJC8NA z?zY!&cQ>dU(HMo~9`-XlW1z{gvf@XSLni z*}ZnSe^eGhD_O*1W3_X0wYRj~ZS_{#-SYW^C)HxoDrs+ZtH0FI@%fi8d~x*Qd~Kt5 z<43mMy*{iy|ILY~<2ms9^eFz%e-oYMPD!)(ueqQLG3N|%AaG%3ECs|onZe10ixT9N zA~7*V(}o6|%agnbX^ENTdRw=I6wNX{g{cT&CTqg_`TCXN!3=<*meZR6a!-#6$cO<@ z2uLxvdRVH-2@Ln_VP}}C&R15#kNy6uKmEb@zx{9SHHq zvbORjdn9V=;$Svcv#1_{`CISuC*JOt#BL5@xWaOVN8BRJL4u-$5hsPJrRWx5xh+eP z;Hs7!xicX!g$$`wZ|w7p2*XTpXiAh3o>DlO6mDuv&P7nTz&)x{hVBJWZW}ZX;sAwg zCQqIc6$P>`l&OD2np8remr%Lv|7tRpAZB(F)0*IUMnIt;%HORyyC;)S0Hi53*450F z3&czoVW~DXK!_O>h#Uo)=v6~O_^wan8{ZFIj?mqa3t{pgsZnVf7EtDv!T}h0%FCz` zzzkOf6PO*u2J_}s;X+I^p)((_34m6WCFQb&xeK@`+>FpDHpGELO)wIrrpb&IT1E`H~6FX&*1C zxN`4c`QP|?J3swg|8wuBdF%WU`?C=aUSReu;1TcyxB%9%dSmU{%C(JRsYBC6dO4my zeKN+Q3ydbf0#Kj_T-&;S?Z(|cgwI}Me}6tcm|!|3Q?Jip=fEj;SGIQtrO}DT!=X)Q zGnixHSd4)o`s=H^tL>H6c+Q#vS|uhWaOaZxFb!;IClYXBN(2+21{TNx%`^jD01H5b z#1Mz0`1ELbJf@{y2_P=q6I}BY3b0hqsapzi5vor2XTSB83ut|5EnSD- zulyfgvL)U;<|r{3bO+ld*A$0qZdV4|OFMfjH?FM|3ySk}d^V404OTaAT)z(1v+?Ot zPp)kBJFT(^TutiH;!J2kmXfiI~_W9KCmUJYK{_F}j$?skFJhz9bv1?kcss z3d7^c>EX$va@gxH_sj0pm9X0F-nzE=?Apzf?_BSdT_%VJu(7KV0th69 zYfS`#IEY-C#o?L^rqpyYQ8xZ$#Q_FmC(D9^2PyK^6<~9s5QuZTxRMB59BN4cBPVl~ zz$9!MnaG@=j{JE8nJ3}`fmz)_;6R~toi#Q}P1m-2Kl{gSfB6e9zxL7O&7~gz47Gen zTGe=~z$Sz94H6JSBv3$^&|$vbvC#zM|Lo5``TP%WUVFcEBSdmx4w8})iv)5MOblYv zw%{$V?OhBn$GHu#`h`u%wn!Zi*-3Jim3fW_~5yNIR||cd}gH zLW&$drCg5|3UVeVjZUF-O(Fz$)l6t~Cz4XgBYPrOcY~U#y9rSs3K^Y}%>=}OIk$w> z?#-wnC1o;jF{{>p@qeTbKfH?N?-9B(dAL$Pt#N#S(bo{a3OoZYfR6L~?W?!fudi(n zmX~Wjo7XRo&&Lm+;P@f%#{JpG`qjNpU0YjTuEwnwCwBCDIvXAXW7dE;hbFYHuYL07 z=Jhp4IX*8hj?-d1xA`2^2qZU+>QPMUv1iiWVa=V!NPDPnK6ZgZ1Th zyUoOfaJwvBZFD}GPG(Ndt)ks6JA%o{*}=2@vxAGXvue6Pl{_+)op!6eJUqO3`SHtV z4~}0v8(o|ybql5RSNl@R`O)~*M=$PwWB<|p$;)Fso!U?x-LCTL@#EuffAI9-Qo{>iepJbAtU@dv+s|K7);;Onacw1>XZOs_Mx%M}P7Eefk&vC;#1#W{ z^>r|~lW`zs35{nZ8y=Bs4&Aj@R{|BF%qdf0A|#5Hs}V^d1geT+{QmcZpZ&Qj(&K;T z6+^^p!&K1&tvZ$%EkYzXL4leODq9xZCR};AFaP;}{V?||A{Cq@Es|&=7O$O(ZUR|K zmQ6F;)DzE))TzB@PXHE|LGlamo#m`rOo z^HAn)LXzzFPb8d+%5zi;Pm4(6QGHkH6&k|4w&xD*W4eB5^mP60uv z$mks>GJLAIltt@&cQiPFw8Y3S1<>_MFKV35+!$=^+0+VW26CBi z_M3{Q=;{ciBLK-wsR+n7O^xI^MqsYQMF2vBMAt+T+;S@b{7nOl88o|uC1;sk6DW}x zQ!DeeA?^L=-Cz6VBg_lzwx$cD^9n~J4EM442K+JjDa?UScUEr=ZVlFM^4c<7^!T8B zaZmB&H719^6fmF<>~6pN*44LH+wCwM`N@7dJ08`Om+(rfF{&X@qrJ0wYkOk@TKi;H z&!=;pR){k!CcrUJcJ@}cwpSRTU|wGhS8gp|XlH)Wqv;%r3DA;3XL+@V(Py>mNQy-?Dhkrh+)ImC%;p!zCubL<`EuE+xe8@enonor^YN4e zPLC&x#dxXPzH+6wsPz0IjxOet)8`M%(ihgEwr8;oDx|M2{)H)cegEzDo%!!qlTtgyI4ZOr|w~AY^8Q(oH$9 z1)M*m26qnPs?;R(;pQ-B4n`p3Y$$XmGZ-NttqkP%{^ZV2e(B;@f92?(w1mPiO*mk@ zn<$hHhd7upb@UlTpmrG4NtSRi#l>Iwi?g5kW9L8i6D#CJs;ik&QC)sRYuX7at&S(0c`Q&ODN?*9SkpM+$Ce2aRK}F$Ea)?7kh{%oH zl{qw^O%cE^RPonfE|$mrh)x&@OWuOLh{dEk|LNooO1n? zr$jKzm3bm&&BU>(IPr!DYRU2_I@fU#35k%2xdO(-nw%K9NtXgqqD=O8fCF1n4gzC! zurR^QluQY^`!;1}5r+aI2J>XNM1kgdfbV`-#$5a5EciQ}z?V#=49^E~V-C%IrGbc< zKpeP{_^h^=AX!aI4LY*9E3s>iB8#QOWk51jCl-LV_n${uNy#CF z7+LOQb|81=fsHgjlRz{ICEQ)3H!dR~W>s(*$jwYyByZOy&7P(ya*o$aU{R9VoeD)rn|I#o?`AgAjUtNX+ z1PEBay8X$ujTbAxgm<=l$N1oPH)p2nK zj37&^TfNP-UTK9Gt(Kk9(qJs>)FP`H3q#rMtVnF(U=)we7mHDLD767@^?OA-EYb`( z$YlmB!O|hHIIH<=T*F&HiveSE6_=3T8Y}>L(X-#U7XSl7 z^5cf52D)5Lyje^Z!;4w_G<9N}j;m>$O^2_i&z~KxukWreFCSja&ZpDqXmpDD#la@C zynJ?ieDE?({l($eW`~Q4 zd{QsYE_`!ybv93rpPW8_@H*~42R?Z9k3UmQ^?X$CT;B$KKAb=ucs`r{`q#cNoeqC^ z_ts`zFFFMTpHO`B=t05d>e|*PCA5~dKX?B6*bsrI4jvxp|MEY~Xxw5$$@zQ4Ht z@Qo03xo`8cVE1bK5dsG!AW@EX0|HMe1oRDi!0^If{>T5p^FRNW-@kJsT7)<`sis)8 z%T!gwxv!;#WJxuzvj$_fvXsjkfU7w~0d|g2=LPKd{(-fdJ8h0^7D22o-~bXzGjfB7 z3!8zPlrKXgg#uuxW*YkK}vWXJpZsd^7?HS(UIa>{&!Fl;V(dm-+TPFIB`S#KX6!7K; zkOK&p_k+t9$>0G-~2&r=kgZhqe$Vg zx{S6P3%kWEisss7xPjRS1hbT!iOQA}!4kQ7PW>8)*j?dHY8=X3pk^@<7jU*b53xKN zHxA-S%|J~@J%Et^D3=VQ;N!>Vi{pr3NQ8-DJjLWC@DLaRGq55!mT&cTt`4@A`fZv` z`PqR!yuZN1A?EW8-2`U9&EDP3wRgK%va_*2Kb~EjOm#Fatc4`8J_inf+gn$!?QM3+ z?R-QpU)y9{Q|!m-v>7AI?Ukz=%S)xhiM-chuQ=7QC_S~!#sjp=vNNx%`ICtqygb)~ zBj5xWAhdhSqTYtL00C+u5HArrjyQZ>P0l*5Od&YM?4f|MAuz*D9qQsj!MQLq32f{R z6Q-+I27m77Kld*^{o*(Nk)bC){Ntuo|Nckk7bk?;0Lj7>04(a+bT*#!=Tn|tB)>SA z)$N0)qeuPm$ts;6PhLNtRj)>e7xS`zToknb_+atk{x=TKPLCJee*fh4p`APgejT&L zqc0uKPXFL+dZXQ2UySYa_{HM*DewsR@cf(Oj~2({(dgRs>!B*}kI9&faJw7s)(<*hwVpL+3prs@7@|115X+v{w^zDzp1 z)qD&@;1%2A{Q2;g|7xe~43?M5Prcn~0Y;@1(G#pvVo^61f|A2P1qFZ!2KHnQZcb+@ zgAMWs&drE(^fF1oLZa$K8I)4zd%P35Lqcg5;p*93lzE3uA4misftkc%S!>OGA@0N! zGH%|CA)Hd>z*0N>@DJ_%=|463_y6qI=ObKBgY&Xn)vYf`wI{g6XbFO123RhQ;;cGi zbqUu-IQimN5C1=Z;n9Ek^LM*#OHoLOx#dD6u&6AeYFSSq5hgK2OR28kGyoS-Q@gZO z&67u9w*9Vu{s%gP<$_CY+!{&-2N^5@N=b<#nI@%1LLjKCkQg~)Eg4lOOh&54nFp4E zLf(+Syg6@*XWM89L>a`UX0x* z4&i1FBFP5GH$YDyAL$)LWcCK~0BTC%EzbZbqe_YCG712Im_ep61URrj)8rk0y)PkC~nc(4ZhZ2+T?+msE zt<)I~)8ed-!*g4lhs6Z*fSCh|-rM~GkoI07N>EtIy+K-y$|eTwm5%w^(haQ*H+FB zP7gnPg!)UU%h!*&+bB9;2Xfxi=zkqwW4*U?6=z( zwE5QBvkz|~C15^1KAdeIVRvJ5dueOX-dt@x+g^Y6(bdUtw!F2yySIDg>c;kJx2~(f z+HwfJCtv?F7`|vNt#r5h@4S00y6mrS^*$&bKN{G4v=~2L-&$K*9(4NeAMfuC4@*H& z;`!JwE>0%D^#6@K5C4}x$#<@|iWXZ%ZXSx{5Lfpg6qF#@gu}Tr%bi(rO)M7#z}(=l zN{QSRL`BXjT2k_?9%!bVJB%P%M}QeP5SNae49>jB8c9h4)Q!36oDA&A%w0r~5;(z# zE(-%3%BWVi{SW`_&eMbQ|LV^_2EygGox?n8_;rC6xS{BknX-mjP!@25RcHllcd<9c z`Cs^R`hA}}`q@9;3gxmUCXml7Q)dPwcx?vb!Zpe%|3iOx z^>d$Wmj$41-dL^zCzvNPV%FrG3$R$YfW>S+AxjDag*M2Db4oRl2!$NhBM`iH0>Fao zZ^)ySEPW?9nS+^`gefTmIjan1S0iFoB_~M8H9VA(lM|H4iL`NrYHsGDPzuOXQZCrl zvqRT3g2kW=CcVve!|hP&F1|$?S~=D8`b~cjpWjfw>`vyOFbmLY*6}kOJIEfK)LD2%`C9^qZg9naKE$v(G-VIVb6gI7y}F7Dz3e={? z?7W_jFrL9*0Tp(xtzX-evVA<`(P^rWYprHFtuc+TL%?KpYin!Jl9tcYVxiMTHJi;r z+FxFp>loZ__m|D&$-T3~$CHzL_kH{jI0F!RyDQs19y*FXstypOvqZgR@++vG&yW4} zX;Q5uq$ViWq+Du-p=9@Dq(Di;mU-u{Qn+~xfz0ggCtCln|L1iw-Dr*Gw0g5!e&6TA zm0kI_PNz@ry#gdp1#GdXCSIM6fv3P%0HoJTC$zp8E{}&3%wGXDuqv%qf3;`2F?qZT z)ZO)!t9SR>9o@LTwEtlD`TZ@_^X|sV-kt4hH@Ca3PF*dZo~(8U<^GH980*3I#?{+< zx8K^naeHH_Rm`TFhwtt_xVg7~bY67ID>pZ8-df*YDLv}hUa#HlaR;yNEql2@8J0E% zE4}W@pzE|an~hG6pN^-mdrQUL_im=@_QP)vAAEq**HiAU)9k+E*~#hTul@Dmt*iDg z{nXOt)lh`IO1Z@BK53xl7m9_mk-6mZM8 zSR#R6(upb0%YqZY@MtV-=70-ZQm4>THx4XBreL-Pkw!6>RZ$>Q6l}Mywg2V+!@Do` z$G`kHk1kt68%Gf2wd$`g@V^b{2p~v?1mfrrgf6$HCLLT$7%%Yr=l{*;pS*VUvp=S# zt{Au6tsqq)Mp8CS7KlSA03#+wv8cZz0TH2!^DHy3UB&1B(E7$|2j(eN*`JyR8z~PC zk*UvZQiGGL=R>8ZjEp9Sk>r)bo1AUFh!HjIAUS_3#pN!WK@Hje;v#HD=0riV3WfK$^=-n8=+A&ZCYzf(9TGAcSV_sU+EjC&Ua* zX6mM#JHnhvSk-dT7Zg%3oZZ~&nn+04lA5V8hy&$OCmQHYv;Grhx^FI6&Tm3AHqho* zHJ(p2O<|Yx2&Wu71lY;BDfW$~PNBI;F%yz>E_O%k{)+>Bf;Iz!A{+&N@@jogs0 z1q5fn;4A^;#7-$$Qio9>W=^Wi1WQC964i>_okI@PqX;g7q|7j{kuG5!=I%z6+c~mH zhyf6}x;itXI1b)JA4dWuvbO`!LI-vLg6<3c)Ww|mP!u)4jrw^ejH zcsbIK4;Og$64P%2uK)+yKmy+GzO%7+eW@q7IJNQFVtiWrbOMd2fOr8M0vny{yF0ss zUaRma=E>%>iqjmvP&))hK&QXCJy;5Dr&-jf)uPhjIC*IGmRHmC1n{y`n$febK0bSJ zgo}@W7eECR?e*Q>O21MbG)tCR#X}mZ;J$rd~<@%MCwO)J8 zN7Kd0!%;ot){0gm;9~T8@;CmDUEe8wqE&3I5lPF)IeWmPfq?Mf6$B1Kj8u3i?cH~K|N8&^Q^V=Ee)I3;V0Ho=5U55R8-5-5p$fNJXcJlT z8A~Tq)p|uSk1Kt?WmX@a9saBT`tYy*m790&q?Y$;4I~!a)hZAZ=ZKMth+0f@Js)0* zga}n!G^1eXKmR9pfApQfQrUv4yHgWG)?6Jpp*?_1~$Mbsi_0frQ7 zUQWOSIK})7DIt9scm)KIdAcg}`J(myV58Gr_jA(+!{m>LIC+G$59Dmr6fkVu_gdetIy2a!kcyTu)BFj*FMTyt#i+zq7R7?JtcM2^|L30hI0a zPJhMX)jDh<9X@=G@d&F|nOu--(=0zP1hAVzn1ypXhGFDIZhn9-fZEt3z~Bf~C@KQG zh379@C$Rv!Kmew|Xi>$_qNJsVdqFNQnUSJr#ITi3S6pZmn?r_UaJ z#cW}%WivZZ@Ihk&e_oegj-yl8va*c`oWj;DFP!Erqe)ubwjeU?4^3SPkR?W|MrI`|Mo9@a zw?UC|3WCU(L$&b9)Gj6H`tpbx?|f?MXaCUZ)$Kx1Iu`juYL-K)!k+)u`D_}|_}BxN zWyS!232G7wsA)=B&310ssu|@#8ER?l(0u*yT)=5|dD?Bt8li3}Cyg^z!of@#w_#1| zfhO~$Fz13z&6#uQ0FhX#jTq6mUBI9jjm$)W;c&Y&Be`eejId}-#6lV9mvt&`GzWlK zf+sgMPX=xx4N_)?CJ4?Uz??Im-@haMTrxlNkw5TU={A;9dLD$ea72Z|!i^UCKwKdop3nFwq%1qq zZquNT{&G3NRiNx|w3oL^=hf-(D$YKB_B8gLSJh>{3{Ge3las*x)>8C*DM z?lu7tN^)j#A&**xrtC1;R39Hyhesu_0_31T2fiWgRcViDaNRHN0-H;_H+QaY?d)zR zC7%c2c>C(|-p%&)tKB#)r)Sl(7p<7)8t1K6Z?M!Z+Qs4d)|35{)6?U_{e$6+?YOm6 zv}vUX%Nwo!>5`mG$CKH?{&;z*)oB%Rv&F%tbA5R@dHiB}dOGiRi_?qF)$Q)~cCXW> zMIwmo+*rSP=I0;WdvNcViuPyjUg;O*_LcQppZ>(Frw=C2Uw`EbzZ1Ia*SFU@JH_Dk zwGn2ZUeW)ti^H+vx4nvg?{6I6xmxx6<(-=ypP6)9&}=jSv3PX5q^Yp5YF?7q>MAS9 zAaQpQCt+3PA~PGzlW`$rAkHQavt$woLaxTy_Myp=GBb?aNm$&Kgh56GGet5;0Ow|B z%Mz87lBu~;Q8vdR|GmflD4ch9pT+NjxW15b?Yx#iz zA(Zm3{He`PzuzsWu;>Q2+>j&Wj(nzPB6vy~0V63H9E1TfQ!d=K30LP%G!F3EkW1JJ zMC48Hq8oA_RLDrBH-`6&y)$!y3&)c~8ltHv>D7fRqqIv(~%it14V5NBB%(Dura1I?PD|0Fr!y zkHicP5ON2ZiHIeKFf(ZtiHKZ?gIb1+hMf7%^AHBBlZ4WyZX-N=B8Az zvmqaz#L@T!^%xp4SJ()c0JqlPzOsJ3U34%T(Xgtf)et%cO;8VEBVdM&!OGQEry!l_ zbgUO=i_z!|({t~(=TgOb0cfok>}y+BKYP)-I6peUX#~#T9E4W~pG1UIczD+9mM9skE5*`s>+t3Lf+wF&yHS>rG@p4&aE4Rx9{$(F15}^i`R#vqSs37)wDVuUCb90C#|>d zthS1B@6NTow?2LUxBk)m@b&oOsJPQx-|bwv*q9GbNO^7Rd#BgK^Ka64@zHoX`|tm1 zdV6q;)0~xTz;Y5gafvsP;?! zeV^a`_kQ8~|E-_@;OO!6avpHG+VDrUnd=`cX;Y+NO=`7BP*s-DrZuEWVG;bRzqI&w zdXN5#Us&C_sT^BMAth&!6s5z!WHqKUtE#-g*qb!T_r1UV6F=G?^h%hxImEN+2mqBW zWZgI_tmXhsfjJP6_lj z+`v0?+*j3&^Q_h39#ak*5s9h7h=Vl8XmfZ%2<}<-NO|0xVNkAURyl{kz$8>;{G7B3 zO$v7=ft!<=<;bps-BL|bkQ2bJsTnmlYJNT@7$72Inz_zQnTErSpp_j&O@)9r?~uzN zSRMwvDOqb60LV7*yc38k%wX!t9LB;#mzJfn<$);XEje*8~-_FwtKMF{a5Uy;B2 ztDCQ$48kgPuFR`mIXvLS$ESFDAG5Cm7r+DvKm;~$G!F{Se}o($(Y8pCQ- zW7HF1AE>c$ed(R;&UVo*?99_7PA9VkW(!^%YgNO?Ko9FzyKC!Kl=VU;W17ybjupD- zE`^dyCI;q+Rce*DZ(Q5Fx^w^j;l+H6**(xPNzw0zqJ_1!)~ntMs&UckwEMlXQ=qs8 zv`wvrF=A-O9XL6Q6W`qEg!^O#$9`~R< z;3n`CsDRf(vyeE5l-`>1nFMykMXXNF&!^M+@ML~|a!}Rs=zhN}sVG{L@soQ;rw@*R+4Ghj-Q1ZTzqhrqJQ}BGPtRv57F{{IIMd-|aWJi3>Gb68&W)Bi zZ(h4|GWe=hudCCuR9)-zioqat5mTJ>!u935Kaq?deNZHP{nZourQcn=`>9F)?G{%p zD#_f~;3*Mjo{ONFJtlJ#1{K*-LT>7A=8YS}R6)cNJSHvzOjQ#xS;|F9!H^toDLH`| zEbQu1u(?8&0z;cnj%s2KZVIyezo3GpBxWZ-73xG{SyiT>Neix*SLT20kM2dK|KQ*M z#;ZpofWG4kGLLxRJY)Ne>AR94j#lM%cIMD-Z}~zAvBvQ){}0qI=Kt~kV`Y1XxMHZm zlC!1CT4l>cs<}@WZ)N}naIf9^BR{uweYeeZp@^CYp$rGztzP0C?Tm^H;44+&P z*ytLNl$?tK0x}~Yc}(uP?IfpOJ!MK*w!JWC&R9wgCTmn~4u!`EH#etHm?@kju;z2H zsU>wyER0-X5{L@{jMuY`4P;5l3>-W= zta0fUVDV&*#G&Z7)4%p}YoEJ&=gH9TeD2}zeP>h)ZndhT57X;&r!}ef(!%}ZMZ(j4 zTs(m*Py!1e087A~z1vs!u5{scH1)F+%r6#HC(MEA1bCgX%&qH#t?lKt4kyuh^uywsyd(8#nW}n zN~HZobxtx_A?daWTp$&~t!}SXw8*dow2|<^H|_OFSY8W6ZE$o`Pl-YSVNx#wshL@1 zkRgzC2o;fm7|s$3*NW5#>Y;5|`HiRajpthk+rVAm0$2bOQ%$ISKGSLeAE!k*IkVAu z?KV1jeR1$?IDYwJKJZr$);isGXSs8@Uysh}$&14W5vGGUmzCA-*(lA2RGn)zd450j zX7m2(fp@yC@o;o_Fg|&9G<$vz`r+&2>$Ld(*=VOf=%u+|ygr^Cp5XiyaICoh{QMoB zFNRld8N%6%i;MH~xsDg-$1SEJJs&-Pxfl*dpS{^0nAMPCP+zl zcZYE{D?^hAs~b7N65LsGhqwc-x$F_*a3*W0EP2w&&788C5OPMiI1yYcsFMgdS0!4~ zL_{2NK+o8jLR(GA1H;|L6NtHX=d|dy{HOouwoJb77yhFUUhWSswIB!JWU+kVv|m(- z?d`JYi&t(7u>xjPqutu#THWg@=6~@ojk>}9!+-bg`VJQ8 zQM0!f1TG4&pc%266Ig@;8!Q(O5Cbe`U~+;W&#HwjCCM{hRS5!iQ}-O1&Fk}JCA(!< zbap$rYm6)*PYYDdO(~~}&D}0NK$-iN`@Jp|AZmP{9vc0pnfzw?s8NEl9Hi<7MrJDq z1{GE%N}96+d|RMB|a@?9yr+>m>Da_OT*y8^2_K43 zF}<=8cK=YA%mv-&gCZ@kyiy#F$IDZ@-dbzVx}EX4pFcgu;nz`r1sDPZw1678hHLL{ zegDepGRFVzCdcTXZ8i(_7Jw2V#@Wku6RSum2 z3EeAed+Tfcew@q2$S+Q2pB%}apdIS@V9<<6GvO{cYs~sYXE>*O7-}xr22R?{fD4^_{HMl+35Isik-9Li}8~S z=t+IXXZ!Pm^=WrdoF3QH(Hzs0>7xgaVqfdU=GLGBPev7{2Z+Bme){C4YJEQK_ByGK z!}Iy{^bC3ed<~0(v)5Nw*9OZgy}?SmkgdV$(#6&7$#8u7^j4fr7DHVO>h@AOSnFw; z`srdZe^#L{bTqF{UVU_CdcJ*QZ#GrK@(gnP>d~WbZme%#J3Bc)K6th8Z>EnYt<`pK zZ*%3wk4#R#GOK@kex82uFQ4A*7C-hq7yacP0$DUJg2PDyF`*f8F%n5GH0#J^D z5;@GBMU!$a5vvl2LRo4|QU>H|S5E?QCXLE0S?Ly$d?%o6F(jgpWma{tCFdez7bHi< zJk>11aMhY1?w~@*i~}Lfp|kGt{HOkf9=h-U$N$MUAAU4MhDQN#!9o*M`HL-_X}Sg3 zE~qq03^G$hD~hc$R>{W+@xS}USv5KTPyh41)wP7W1=P{FFquZ0kK$;0dAC5gb!X}4 z{>6j6+j8KhO(U)ZO;MU)mlAOnzOv(ng~=V3a+eC_c}O!@&r&{T zwa2q%JkL~uc=P2LOdQBG=0uda!Ayi*vPaSom4wWhrN{^AP!^UlRl*w`g+Q5_tO;t; zYMZ+yqf$6r!WJx-Lc>yxj5{^Uy%8`c4wrc*Whom^K0Bl70%IwNjXgkg z6xcNpiKj@RBrfvU!8I|7nZXQ1t_IE_KERyHW_Xfgx?BeL*rXnah}rW8z>Lf&*WH?}li1u?@~ps{NreOMBu*@zapRVl6G55M>WV2Agzf_2 z{tJ3?5~x_={!*=R{1SNi3e#`Ho&zml(iH#V&eGj$H?H*D`Rt@PIH{_744tOQ6vGMd z3^)chv3j+0WoK!lXo*jfj!tcQu<+?VVh>g|wYt5P_F$FU#p#guPwL_6Xm)&-E{@UC zSv8Si%i6I9m5VBU^P6K#rfBo!JRCrs7R6$^ zh|_(GP{k%@ z%fc{o%C+6hOd&Jtv)h{UL|vT=wp39QSZ9KX1ao!GMXv-B4(x6Y=S)OTo)L`RRNZDs zSBCl$5F8eUeOVgyCblh5*yEEgO>ese{?X|`2Jt``LBHItLH%L@&zTp-G_<4 z>{e0oguMc7V+E8ksGir*A*22;O419(Uu};MqfEm!NhFtnmtpJlW*?1GmnUacuWrUsMIPO=a2xG z$X3e^FCh2Nft;BP$z#5QfruysGj%m80=xm3l8bA~qL`_Yl*Dajz(_5E#Z`q0%9utn zh6xl%eldOct#E!)qQ5E9oliI&3~~4zvm)~WH8=b`A z8S3$Z_2OiNURl)(U;>Rmf+7SDMWA+Y1ORDrF*+KydxL};MFou(7K!SGSB^zKeA$J4 z?csDd30td)piOOC0zwC&1#*hUfNIS2ZR+be z0K5lUwju>=D0YC4fgXk3rKR=t?WMys86g5kz|-pZQ>WchorDGJJ2?I!;6vc)^l1CE z=neL^m)4f58*j~?{XyWFl>JtJv%j&vyxMQKT3e|)+ue9v_D0X1p|#?jPC4i>469SN4`i<9h$&4}H*Izqta5{gt(q-7N{CF^-0J z=NAW2-B6TmS=!n?Kl%~i{^aP355BTS%ilXc-@^Z&sy`35EX&UOuy3uk_c?cbW4;_J zYwWHb)BqYF0D=HPP#{DKvPmjPf)+*EmPLnbMo11hDA{3okb_}5XoaMZWQ!IVrY(ts z9W?C_#GpxH;DCVyCp3Tt(CDtNt}*A#H{SW2z1Ld)W1X8-cu|p&S(UF|zMJRnVSV5C z`|wI!>3;mLbzk`0@_#z*-g^B6oB>94S7ix%Cz)1}=&K;|0KO9$;Oc7LWFqzoC)d6X zZ{GobUy0#G&A=%^5N^JJx4Tsli720`a^`_<8$z%fJO;xqN!)Af?f{!RQHlY&>!ZBsz+ZV2}>i5SdD?FYOT=-jU>$EAhl|0(8{TGQwvkfNC0xRpxwkWMUsYdb*-*d zxEZoFW?qex>=UnXSa%|DN?MHwUNzunZq=1c!AatN5Q~~*)?IN85tx|7%|hRfHT^gB z0brZ zu?Zqb5@vG(B|;g>0^*DA>D7@tC0E2@pUkx)0(=NKRRx2R3@%ZLYhM97)F?3s5tkz{ zC6J_{Ne*zhYH+%kJ#vHM>cmXkgOen3RjY=SD8a!5g7KsG>F@mN+12_sPN#L`{fpus zKf&UC_yQOKOJD~yh3e}E3?D)1b*J3qN~>*PRGcQGam?&V-?riT9Oi zDH#d0cXHz7rY?!2oH~({!g~jZ+72gQduQ1_tk6@e?*mVO5RS)b#_UVe9!LNIhce~E zyL@_kx>#mV2PfbPc((JmCkHa0k4rv1@88DFj{rUT9wRG=K2H?Vx6>t`<( znG(C8@naK^4G zG5$;dtG2>Ql-!-$Yyf#3@#1^FxB1Whqc8toUipnb|9^iJ?72^@L53nv#4dZ^H2#+0 zpvhyV>|PR$+R<$)wbPp`U;Wwt$N7WD&;Qr|!Dqko3!Lg!X2;+6+wcC7-~I4gi~5KD z;GIAGM{nPMrG+JT=E%}Iks6T>WnV5ZhLfq060xAD!zGbJ2H7vhDr&<>yY9#xU{xi~ z(lly1^fiMW5-fW1xG=F+qm+n6tHR8M$q1aSB2J2^l`@Hl1H!CoAV^}EB86R|IJ=O* z)HKfe0w6em4x%KH?ckKHC~*t|!8wQP9pUA1Wf7~zYV|lt1E%I$hzZUjGUR5fMH8A; zi{h}o2o0-B0!jjUd4wOXMuU(vEd1ENbQCnu7y^0d19AM{3kVpR>B0bO>c*Uf1l|`g zkb*n}a-#%5UDwb;Y3A;(Dh;Vw^yWa_pq#TSkqGK8!jE7gNLUWs%sei74jybNaF{7G zQO-lM!y^QNp)oGjePSnbuK+Qp;n4|o*c4#Njk_{r5MaDmEyUzdI6F)!?#DiCnSJ*w z59BLPPA>U$GMoF&c=O>?oWG0yJzxv0fECaHuVD1M-gxuv+mnNS*{`0Z-SwtyE^+-3 zH{U{y;ZFiiaq!0Y`0i{pmo8npKDz1_PcN{10$qV+U#t7}!M!);M-$!1)n>U{-qh6v zmJfj!DC5nl$wT$y6sA?xswpKT@g@T!puy^Tad~mLxLvDJQ=DwutuCK-%SQ{WpTiR{ z1=jCU+><#dw+It`^kInPYx$1qfXNtcfR!GgRcTRV0Znk?$7*JtJhx{ z|Mu_gC*zTmST%<_lJ&+co}6K1V2-skf<43{)+^`aq?~-PwJ03SnTMmIfms3oDMIc_ zRUIjsz+)2YYRuvw5+Ota7w$&PX6j}{Mi5Skgsm2M4UdYZ!}f3e z?cLY@;d}q?fAGeC_xDZj-|b)f-ul1!Gq09@eCLbv+oz3qYyB2NYK0^bWv{NKh9f@u zzCA)yF>6<+#BP}WzBfKcaEY0$CCofHEfnIk{8N2f`#O zf>|t<&S7(@A4Lw`{ClZTboE7CP!~!PQ5)&QQ;k@9rvH?O?6%3er zO(f!>oS1S>gZ-iI2G+Sc0alzc1LAH_g_{e*4N;^)AQ7vD!X4r4ETJ?`|gVymNg0Vv4y?+N_@dPoH4*5o|dW zZ($2efG?WU0*v*ye)aNyxgJQ^e-NuyMi1-M*zAf_!WT07X^1JU{0Z)N%fPM#j6Lkp0_nP??cJKB2?!GZ* z)z=TMm(Pxlk(+*gR+r~r09xEWy7fjqd!6qcG~*FkjLDCmeSA%#$Q9l*r^!^NC*$S8 z+gMy-`+T#U)q0lN)00C#n52X8e4+QcUu0=Wt8M!(xn~GfnIvuwQvYhcSxv5%)vSw} zphkQ;m&1ehX1nV9ZZgVehok9qRAx2Rqs{Klx2zi_%Ok&aa&R`A*4wv6(sWy_S64R| zH;2<^+#bl}OS;(t4}t!@f9!wm#}{whn|=24Mk*v0>MN&A%p|aiU{aE6gn>B=oG1y1 zn44Q`t@&oWxcO~(}8<~b-|kOoa)0`->meu zBtinwxNT1}rBrS@Y~NWd|Kz{@ji39u(I5Yxz4~2WY+rx-R@08#af5D##u?^PIkWXt z`br=$nBivTPAQR_T8*ARhY=C&Y0$*v8hx7zV&-^}U1Va?1G-l+nQ{YjpbkJc12pOc z<8WxwCRj8fu@QjkS^@V8LV~y!B`{@)tAW=7B9g=cuZ05G5MzsCU=G*;;9lL#iCw}x z8706$O@@Qa9j>7}yEKiP6Sd~OYZswGE5@AMVb$D-II)O%WTe=g;XWLMnR#$mf_UJq z0a43>2rGnqzUMxB8tnf(ER_B!+tJJ6k$Mb-h*P4Vrj;7eUk_OrV(Kts&LFrOiNFH5MTTQ|tuz4rA|U~i407Vcq{I$0HD^h2 z4+_JQ8%Tr_dtb?2)!bp~Q5X<;dE#v0trKz-5q2*QCuU{=VY~HTe9)9#J3h|3+1axl zE}x=1hi}5r2^8QCPQK^tJI?0!i#88aM0O^$F`z*X!rc>hft_y+FE~=ilz@Qu_<|>K}i# zK74Fn`a*DwT^Q~a8X0gV7LZ3b1WP6ciII0g1{4Q?=HiMz`nU(40I$Qt4fO(}RWm!t z;(fPp`xtaHJWac=Z(jTh{mGrFLRIHkplEe(>&*ZEvOwGTrWc)lnMt)asqLn%7>mo3(n~T|TpO*Kymf zcFmo$)MQpTTfeyIR#%&D*WEcgAa!Gv%-v#p^?Y%4zP@!bo=&OBGMzNH4h|pDXnlQg z`C@%`*58^RG?Qj_tDPQ z3^U4^xJ;$^ml&$@u^N{aFBt``oh%J%Irc7ktHkP3vbP#wMcGUE2k720IaH3 z;^dV%C4gD20_f?2YJ%>=F{1O+?S(z7s_LyRSNHv=(JBAA;pbFEdi3QLF(QE0D5k{clU z+?|*p0SjSh*o9IQO1RmucY#=Pv_op?o!Q}GLW=@q+t2%XutW{nJ2x9F20)72{b2YX zCLhDpC4LU~xS-I$F{fceXawdA2eFl&l6YKVa)x@SDNyqunoEPlQ1k7z5CqX;l)mlj-4HntN?7FWxstU7qirJXwNdH0RQH&(2G? z?I*}q{lT-v^NZqQ_nxHJUp+lLo8&F7mb(u=I)8CpUtP4{Epj}~<9WXG`pHL+Z!Rtt zAAIzzor!}dlGeMf-);NN`s&Gx>Sa71O{tkkyV+Us+AVH6JU2Uj?f8w8v)8)ayt}*t zHo(pEC#(PF?@oT;+h*VSIg55YIGI-#vZ4qQfCxPJXv}OeinLPUCQMcfKyJpwBn)?A z_F6$h394yaiye`IVYXU`V}_bMhMqS|b+^VlR~hWCh$1lc_V{ z&R&UAt4T~Nc-Q#ot?wB9sXzUN-}9rl|Fi$}>wo7Tz5ocw`-u>M>aiaEeY~^clpha>x)0{fA?=+yz|EnzVq|__q=KMUr+5>FKV`}%m6Zz1lE&9 zg6=Lk5e3dV1QIm`=N1k?9I+F^s&i^WwI#1s3#S$=9x{7z+#o~P++K)SA7e8Zf?wutT@j+ln*eU5ClH7^CAH8U6kdq3S#d1@ zktdPHIYAX{?Ju)N1c1cf!Kf2La06DpCVe7{KagUQ|Ze%!$o8 zw0GVEo(M7hXCji|;tse_Q*tKAASS>7Rj-s11O!DT&q>gxI#)f}-OP2HaK6Io9Jt=c z<;TD)`Rxd47#&?_={-;L#ou$G{23zh!px>Zm>3THdX2eMxu$ zbP5NwC%<;|XkR;i?-QUYgfJRpgX|8XS2Jnp1pZT^3h~=d?hDv^-@K+9XXQ` zRX{^XXxe;m*zyevC)Azes_M0j-X0yEjgF6szlDoqU|ApaKmXMizxxLckH=#;05&CO zk(5oVz(5qN-8eWJCu0yYfgO!u{H-Tlf4AF3KXd+>fA008gVCn; zo6Yvw!$qFXmv8J252T%q&)&Fm_sQn{cOO0b;93~Fr5{Y2o7LvQql>3cpKc#KT(6!> zQ%04}PEMEGt|ozupsVfX@vh!FJiXP~y-V!6%O&tDsGGn4U$_Q)_8n?)Aiqy0j}38)HT&O#os(MT{wl^smMxgmyG9SnV{FsCeG%eJayF1fKt z;e_`uL`bWyy$h4jKpKO(7ET$p7=pIzBFQ`>B@%(Dz)g41T|%3V2 z&;OtQ^@E@Lr6r03O&k(qx&c_l70}oEyum@yX~G0DN>pdr+;?MnKjnxe-gX@X8vAcvm=Oz+4q>kY?zoO}rNYjD;BL3WJhX z;szv8<4{3r0kLz6W<$zEOjb;o%+$@(D97*|a2C;G#N@=pmfGyD03?OE)0qHs3T8uB zscAqU%BdkQ#mz&8byK*T>9B5F4G1Z7iXgU|5*bnG`V?Q<%%a0awGsrxLrB;|p>b7( z8>bv5U^BC7ObH?{p$=y1pOk%mV(2F(w?K#w|0V_f;Zq|Y+Ovpk|H~-E8H5yxii6>- z5xyegl(ZOiklr4=kVu153G^jN4bOM`)03vskwKsoAP2ut5v;xUi85=u6`Z(0N4PVJ!tpU zeDvAb;fb^p>v*}@tuA)huHZXZhq@qKJ2)TRzx(R^Xd=Et=};9_IgTtC-I?9Gb$t8S zY&;szk>}VfHXDu5My+17!a|lPn$(`o&rAyd=t0?UMEtf zOYpA)i+$yY0ynjLZ@v1y<@7Ov8-AoJ>OwlSZsBlw>#(4OfGhUq}8%VT#=B$D82Pz)Cpx zD1k`eMx22NO(oZAW~prvP+d3+ClK6|G+xzfbyBiEwPa*K2c@Q@d#{fF_`h-Y_x|Xu zzxy*6|L?!{@MnJEX0x!NR^+8TfQ6yyuy&gfreae@mCRWV95*}fH_P4guUx_X@BhXU zuK)VKs*__j5o4#`oe2Qv7P^ZhDlx0pXmK$c7Ig$~PQ(ZQ5Sc5qcep!K;wY&!D}$uT zuu7j!kP(QO;gB|)s@G`Ol3FTUf#eFx4O}9;M8sArMLO4vgeh19P7-J|MP!MIlW7@B zc5Cbh&{~KUr1NhY8AA>MLFMoe*DjKV#n-OHF(5%J5(oWpWJ>Z>c zrVa)PQUezdp%x|pH3YChy^l;U!%GhyXc$y#NE|>VW;1XSGK;Evz=#s11|n|mwGN6# zXw)JgN-_Sc#*(5OEv!)x<|HJ82x7(DEydr8xmS~vh#O`Qk*k_lmXUazmXom-bMO?fm^liiXj+4S(}MPY!N* zJGNcn7x(&&5cq&nT&U{gXR3QyY(^r8ZdgL#hLTC6%UlHk|b`}s}iDY+q70vB&TK=Q4))=SA`HIajn)@aEgeJTzYc%9!$;M*V=#Oe|Y!z{QlE#{`%^tf8z50 z_ct%U_Ur39=1Yo_8hc}a&Ri!}LoY`EG#MItZO$#?I zB*D~8y(khf89^fd@1;joXI3+j7|pm#B96Rg4|k*n0Em->!>57;)!ZGzWKcDjbIu-v z5=I_pFA7P-WVM7uPiCl!ER-^7b*uXdTXIBdRS6cQlo$fF!bD)HrQbWXFxdYsvK&Ll zBG_RayH)K$PQfu{VrGvLw77*6v51!5v@)~R5 z+g0jUY5A<;`6H~pxsL}&%hCv#;OL9dMWwEEZk2?w}o@z^Gedd)c8| zC-#cNXqZWo$y19Y)5Fp67dFp+1^VIcWB-}2=s*9%{@GWevW*6s37C^ua1#UG#O~A! zI)?`%=={Ro`}#Uod|&~*0B+C#ePg=r`x~dHK)2t4VsUudcZ>Dr*7}CARNxWt6|6TG z`n|akV zq)|;1B@a3-NUgx*cJ4!Vk`ocJle#pCjmay!5WyUk1g@%77)69`-D(bhc>X=VbM`0x z7jM1)&duNW$wzViE zMktP4SrRzMv|ZIWXA&Yes|E?4Gn}1ZNyG`nBS$ZshtsOWf}7j|mf(Z{8z5{(iCJS) z5sF@cXk0NjSAfZi4l@#XKv&%Wudb@K52D`SnDw3@;UmxH?4qIT9?AlJ;9^(*BR(g9t_pW^#9}a3I>TZ9vm-72S)(H$VC8;Fh#KnBy+2f2GnEJ-hHc}e+*o~uK=MkB zW@&ns+9?PXBj>TzY>R$dHa5=V$>HQ^JUMKuvUgU_%fp-6dA+$Qgk6>%t1_9lU1zK1 zrmnVFJcE8%ZM;3|X`GI3AJ1+d<%6^Ls&5~>r-inge%qCCoANlP_2|={DTk5 zh}_zKyN0yT4AfuzM>jwF%bS1ste+xr5=S+yDUqsrG0rLF!O|CpQV_c;K&FvtauQ(? z0$3!1ER>=Ls+buf*CpaWP6Mcegx$JD90T$< zgklyMGKS>DhN=!B;&^L0462gJRT=DFGbNauoYwgdwqO4KH~*b~>$B%i%ZKkRzy7Vo zFMMP7;L&FBm~NJ(Y^-i535~||+Fkklo%YM$H~Nv^dh4xk%dfU|Ccz#a$WET|kI4qbY@xAvadGAaI+5 zQ%X)KO6o@7l!&~VOG@UUse2f8iNrx}$^><{-YJVwWtbBXT-z|XGC>lNN1+4EIAwrf zO2iSf1i7oj%(c2mWS*TvtQRJ(Rye+>8RrZnxHepW@H0pM$^2t%D&VtQGrluzXtsWy zxAuj6^qKbHh!44^q&qDaJuWV>`T+I>SODjH==m9@U!I?xO-?D9`IhUocQ*yyHOdZl z0Y3+pKxuE?o!y_MF_TAM1QhDF2DX^oA0LnBCk@CqeOJ1IvIY9?di(Ujrc%0iw%%Sx z+sp_kY75nRdjHn!WZsOXk9U{5#ja>k-!_dN9W>?Moo7$Jv^c*FEI)jA`}ck^{ov>6 za58i5S$ZP|c4QI0H+O+oVhRepBN2E5`TAqkXX`yodsNq#z#3>KN8_VcXQ#(UxtXkPCjF+|JlMc{U948;W-%N}1_GW9_ zHS{^~0rXz7t`VKh+dP&uO{>K#AFiHP?JjOsPo7`)yCZkGTBh}Ggx!PH!^a!C8n;J% z_X6AiV_HO{Win&SK0$_-}Y*1tw zU|@*V!&&yZpr}nJB8ZE)*0`lmf?I9f8ikM?o=ooCrZ0WR!H?EE|MNAv;&q2z&%09l zWmjFBhR26IO57f%EWKD^gOfnPDI6%u2?MPw@0${|vcSxo%Dz$y1ejI;%welaG!#^+ z4FdbV797L0T5m`qZR@3{z*~3^QVPj8>P`Wx6~rJKy1$x{yK#0#QV@|q)h);z0w$^oarfS8 zadHxNvslB)8Ir@vYGy=2OhbH`G%T)2Oav>#>?rPkL_9PW=)e$kkaH8aK{GP~@%FcW zA^jVFKz{8j+aLP=+i!f&L3?og^M8NzQ-ABlHqG8Gl@$~38N!`h!{Bu};38*xm9K13+`^^08&ZyudvvYNM-d@e; zCs&u7-SP(50FTYDcDp0R2D$`BG3EG$pT>{>_M11(`0PMf+-d<=7Kf3R;xT4t5Y&y# zl@qg3#3XruE~;?27-)E7tGPRJ_R_QLmp~y>GdEQ8l%i|Ut@03XsuA6ilpRh&=1SuG zqn(k%y||hAP^udR8^kGsmgH(`Ff%wI8z?0)auz_9!y7;*LEz!mtg?Yz1@0rHvG|c3 zCN@oEBhcVSvA%}U&$+eGLg3aL5p%=Npc;D%oQ%mFuBr})IuXGL?E48%{Msoc_k!Ac zt&&>{z9e1-S}FEj66V|tZ6dXp52r%{yjF!XF_N&5$FL!)Rljo10Z`TXzLaQWKU<30U|iAI=O@i}J|ODAF+X;XM+1@A{;d6Qq6PC}70S4O^+w z=HcY#WKxrKNDbAuX0h?$tQRN5CbTU9Xct091*CPE%J?Z&-}SI1dN z>d_JYY zXzF$->k4dv4h8+z;g&Old4K2V#s}%(v^~2sBc-dWHjT&dTDw(eJN4p($uu1vALOIA zy6tj&SlTV0P1czT$Qk7uX1o8+X0$G2#5HFiVk zHf4?6ool(qCIJ_~GgwA9)--mIYY%;fvPPb|l3Talkm_dB&Bo(tLf`GG8KZxUdSZpU zeq+l{eBoxbmbzNN!=$v{t{1Dt_WF8j=BpjLb;53f)y3-hv{tP0q@0rOylL_luL2i9 z=OD(+pfSe-6#eqA{Y3vSf8W8u_m(!XtGgA5I2%>v+_({oKuehNh}nbcAY`Uqj8o&L z7}~`XVvZ5`VxqzAqfSm%Etuyl92rh&*i{WRc#oXfU@!|l7@T1cNvb_*bufkhhsjDc zBWiL~LXif!qLM`Ck}wHeNUK>wQOXUB;abg{GKh_g1YRmLnVWMZqQK$+BrH~9UZdp6 zt&yB`C@QHj^fp%}MxvoXM50Hf0>j0KbK?P)PrRS!Fs0UDH&Gz(L$RU|1QMi5 zcc|}MwA_kQ8)c1TFsnm5fWnO36xApta58haAThzcR(CUpdYcZRJ$x(Ln?^o2!p%B)Z(=zRJFKHaN?LFF)04}0S2*KIBdinOhUpD4m35_O47#H zeHr*NM8_@was`Iq7lPv%0Wl03!2ZZT{P-#P0Q9ns(qeE)t{?%E)fzET+6Qe#1R{VC zf*eX@#m&tk4ac!pg20jjgOPF?^34RVaTl>5Y=D_X+$uSHTu5_Sf=@R^ysMBzcfB+$d#8a;?M!_KLcV)ZWk*(a_W02pEZJ$`cEXCv<9YAc)T+TC1W z`vmqO5CxDuz?gh?eCuF7P7P3tmeTjTYF$OGz&wp62M34a@pyghn?<+1UIR&@nC56*!bpa*nt2E|8iAuoW7 z{fqGOBSG6XkLI)X-mTHZ!E~6r*B|1b-;S3TqrPJ*W(g)HZ5|y?O&ctdFY9jC)XMO4 z;34n~Hb$S2W+s_v=lu@lG13I-1OT>+?qXuQ!+v_4l6Y~(nrfzUC1~7HZEbM3S`}J0 zzz(Ruld?Xzdiqo{tq#VUlCK`#)YTPmjoq2{E2pMvKcA26?wy5v`_0oaY%v+1PEU_Y zUEN$C>#hTy0=tL5u0QdM+t0o=ZckeT@XLvXg7xC=4i07~5xa%V2Garv$U)?$l3C4S zL2@->rm#P1Wy-^GN7w;r8VvJouYE@l7nZh(6oIKZJCQ|nmx!$PZlR?mCmK9MfHX{r zTnmA;#G3-h#NZ)527~Tgo$?s_x;RLdL{_SZlf?%|QxywYXTfyS8U_@%qRiw>W@HZT zHRO<5OT_&FK+O^74~Mkm63QX~K;5fb;(=XO2MY;{!G(k*St$dL005j=s1(2$(O|A9 zl_&=t(#b52(ufIx6RBCH#1Oz^-sSAcyWWhPQfk^b7IT6HE_Z+w4S6Fkby!)@a-!Pr z;1rc)FG)?+ltcMYcY*}&K9*kxr-aaK-MmIxSsX|L*O-y1RRVEpNA6N;<-~9g2Mpn5 zC$L8&{4gtGxcX2!7BEXN?F&>|n^QY_0Vvr5!ARXPFoZUNEUh2nZ zhs#HEU;;=FXU}?VMlDy zoLM@w5syZ|OmFwHJe}}Db<;n3rUwsfJ}|{a^b6W4Dt`#^33J_c71@s7= zLq=|fDujn#N3cq14su^F`+iZk%cf}sS!>Ny9o74;D##O)x{<28MpQck9m@IDi%DNf z&ZEAJy47Ruzit>!j`QK&!&b(laXLJn93D+>PQVS_JbQL{@A&TPcZ+uR=;-?6n}}`q zSN4;C>-rD<@ch>85rYEf4u@9bRN=|0!XpA^u!sh@RSo~2TMtLz;sCN5k!)BEI)1!U z<8n;^0x}v$LK0>cGXe>N2bL~*KqbiCt2#l1Ox?8-(lE|X4UxMV6Kd^wpj7T%H(;=` zBqyRqD10*>#paNVWIIxHdC2}T*C+$9$Aj){=S`8 zl9XufO${-b_i&9?4@f3Byuykjs?*5{T1|_m#9(qn2CKpy%%)1FP}|cd)uA!qUxR&Ru(ZdP8>Hts{|l@3SdW376HHpziGTUS*$8iLW)i} zbu}enNe&~g@Q{k!5(_2M;?6ECB5ph86yGn8jR1* zs52CW%yXU}v{UcW^XI!4FSfW^0XM+7ogYok=7-1ggQIRdYnROky#hO`J%NbJD5dF` z4i4JMXuQ0xy58+}n@)Gs`t%@A4^KvCpWCfJ0355;fAdqjANq3hhhEzvu^Cf^J5tJO z4s!;RnTausbaOIEf9g*h{JZb0@TA{k!V+M>8BKtzcY$vK+fQu(1}q?(zNV{w{J4Xt zmF$?d&1kt@yo;;HkKX^m*>pO--6p2lgho6XrK}a}8%N%t(9oBF44m%exkSj|#x(;^ zVLh;e2>I4^ZM(iJ6Q-6t#k|(~g_8o=IHn@H7cc^Eu*CL!Z4MhlfdGj>cE5TdLbE%s zz52N?p1pPl825_NxH&u=pWdIgXMk)_D40cqQq?Gsm*TH5e&ZK#UTQ?m6)bdXoX-V3eY@QM9oBqDAma2 z09I9C;1S5(iuNVm%MO#Ay>?EJ9F=}yEeeZ~2WJi({YmNutID|{A~lV7ox2XD#x&Hc zxE8kxPn5F*U?Vdtg$N*ZwUkMh}g9nEVR>T7B^-IOpw1M?ViZT9lL+sm-n$ZN~1!tAYg#Mg|E0A$F~9 z1xR7m6h?R#i4gutP6Dr1l#)<92MNq%YPIiOmlzq;6m?5LWouzCzlk9u)#p&R%`fMd0({*7k9F{Wdd_1$?icecP6g227=HvV6+56 zH0(GTNZcx_nmRW;kfMcI@JWML)xpslZyk3ci^4LHTQOJ})U4Q+iAWk)aWf(~ixUGD zMPs4j#Qhuw;zZoQGrXF61yS1wlR;ntPHVJ(^H=rR^$hdZoLd*Nj>@&w7c1O6L-z={ z+;g&G12{$dh0*aOwNeZEHEdO}TVuOGe}U2g*T5F2z^s`aP7hL&3R88fUW-}j2!){} zl4jGUbb9lmES_(%T>=-t+j%mcjz{yhndUrhN01qC3+S};eOI={j$5ZhGD&$l0n%o* zUEb{0WmnJ>F_C~K$j2xzfW^aKt$+3B{d>QiUb&ZtAFEfeDweQmF@G7c=g^4J!(G8vn#!L7kD%nLqGX&)F-R!`mIN8w_P{eEq5E; zY(}J8USRkB;^`M3A0Hg+`1F{j2i#0XNa z;{D|Sb3FeNv~2*KK;#tsa%WJqq$=%+E-Yjil8;uDGLf(=C=qc$?>!u)aF|v}t%KtN z&8X6dSGB4LTc;7p&@g8FlD`=cx)|t-FsoH)ku2`2y&{1l3?M_}3X`}wih5O-m$-}8 zY6tBh4KWDf2D1tS=M-NK6|QQk?8Yo%;|}z*Fk?8j6%b+w9=f+AvFadZCDT4IV$2EP zASfUwCRf#l#LPiPL?Ur`2KKct=FY^H!z2`SfvMEW#HNMVt?xJoj|kFaXAp^d4N?|? zht9Hi30-2*iEk>@8ZuQQN+P+@(g`P1;|PCXAQHL3+&GItJv9k3?eYawlP>{259Zefo>S7DAZeu zB6n$%RdaQ4)UGp2BC2lc0rKQHR=8;&|NDq0QyB3CO4>P9 zBDcCj(-66-g0hGK)-BgR{c|&4AK~y-vjbPzR;o8!ES_NfA^hn+^-6m;&V8JG_F#56 zshd&K^0oHD`itkDQoBh__%GFgTtoZ*v<2G ze|`a60b3xYwn>Rw#yID3Gs5Hq+dIHR-ECIa%k8Gav?X>=;_Va=?>nWw^txKtBs)1?)1owlDd-_+#n1V52T5?Qs0P-8~v^ysGs@vTR--6 z@%Ta>e0ccFAJIR3xB2C7yue5A1K0Z}kY1YAP~O4Cf4h9=gAYel`rSOQ*cKz-%-Ypz zL%4o?{^3c#IktOzv3+!MGbH11B+ zlke0FXx%fofh7Qh;vrv0LHU5ttiS@*K`~6DG?~s$4^Qr$-n(^FwtoF|b$wNqsmr&m znea5H7Z;1?4Mz7TW(gPpM*;t^W&P!EUjKoM$*p_i!C|S;O5_!lz+x87Er6-JQx>=q z5SBr}xvDu#jfhipn|KsHSwP3U79t;tvQ@P&(THRYX-3RsU}!HyATcvDNKRn4+C|BT z6$PA$t(qxuP9ow=`$JzLQ-n9MHyLHXt?!vrY-VJGH6w8R1bB6#V%1>5Z5OscC#aXo z0>C-eI0nqbfs`Zd=KHf71nvq-oFxPjw+P1tJ(<8+y}*f66Biy9G3((ambD~erMiN` z8x!({4<3I`8Lk9N4O?G@K|~fMC1$8<ABv;nV-Yhg(GWsKOEC1}#d?OyVz_8k8Ii zc5f22fWRqxb%0$B?n%V7x*AMb#7m*nx>x5RAxthHA{H$rCYaH}MvS4((VYQLj1;Lm z0ywIiqv(-?>0f*I>Z(LcDT9+~4~?sqL$uGec^KgRaa9{U_;{{&2te_OhH-{<2c=WeB1`@R-z zSLi-Kc?QHf-T?|ana_^qO`8Z_t@gI5yIr@b+XeI~=+41mnvT=eW%uIo6>gsIM=LTO zTg%q8G#=4(Dx>+q?&28umUg>s-)*{G^$Ed1&ME8xrsjRG%PV^JM9&|t?P>*$3HTW3 zuOHig@mF?Vx|4tB@7xlPT%rfEy0a5iX9765W1@^cxt$)24i1{Paj^V>vwv|r{l*97 zPyLr4{gYo<0JNWm?N@&ou*L2l;o&7saDMKjPG=-XuGJl&3?ihA7-Luk z=0FBUAcxC-3e*E@_yp*XgpzVgqt-?!)oi(1zW>qU^77_hH=Z=8sEf;mHs$E(1pO@0 z7Ko;V9Z>$s&!1oX=;Zc&QnN53G7o_#L@+q&E6m{zMW9^_;D%gHgA>34B6CLE1~|E5 z7=Kj_JCH+7D-(#xj5sB5c2i3xR2n-1_kp$?%LLebTfJvd|3V@gc_P4(7PCqy`q|L!aa?q1EqVZsbffI%Hq0hktcC5oejnien^M8d>waino0 z7c(NJq2D|%H%#uz?y4mWVoaiD1SZMmPLj-eN+it24s-y2<693Fj}xR~x)kbdO}^}K zbAi>zs2>B{JtY*t7I+OO-#)r?R42@Rt#zTgv+WA&r|6ynFMxAk15_YmbTFCBM>MuA zEw*&A*2`7DS}D36c#FxTJ)AN7)${fB^Cu`*fB_TanIJ*kwFn1Lb`IPD7^QA@-PL-# zsan)kjmW_jzBIbtc8810%d02-^`md1duNX=s=x&1zy1~bi$C3e?(OlNSGQ!7h>^IO zd30m2QX}kYT1iPgF=gZon?ikzSH6_){!#uveT)A7KWaK!zIMmH@L4P>e(4`KmoEy? z1CN0xunt&Tsk?G#obTrJO3HmL@1eR~Zmw#--OSVcu1VV7Y;gHL^c%oAVdA(AI^_1y zFh((G3(UYRMl<9&*wO8PDJjF%eeQe&X5T{+tHezDm$i?m$VXBW%o??1mZTKAJzKXX(awQe@o>x-+CvhHh$l=W7ET~xEtQ72jSmqW0*Fn6g~_HBwGsyT&5g90M5PFkBr&bto5%Ru z0R|`bFbhcn6RbcO!S4GfwD47Fp5iH`IKm;~sXY*2eH5aGw z;gPGswHghSFpijicr``BVr!9tBOa6Y&_NzI2Nk7Q`@kej431-K?On}s108HGNZ}Bv zoP^xfl!&>>P(xHPx)azfK0O8s5`RHnHr^LglaXj&%t3CPlM^@1r0RyMa5DipX(w5n zU{zDjVAsC7IeEO!6Icggr~+aAQWpjo7EYS1T58oKtmZHy76(KUbFLIyDDT&8yu1SJ zXFe~N^l0^R>}}e6&(F)>yx&p~*nB1sd0275+V{*LAqX)NiNM|aoijkm<5U7OEr5d^ zP(V0kumqXJLnSw(lpGqbE>YsWUun=BOar1A-XyL{If1HKHFFknQz!5sxdVy8(IDpW z90yoMGOSkZm88*H+)O0H%xVXBVopM;b#O}r5ESecL}nbbv5|ZJ$~O{jNE6hg89NxkD{_JbXsZuj&6;pB1+CUk{>#6vKlJ_0A3kW?c_LG! z00C5TVVS!2aCl!$GD8djR;q?8LLty+zsLXde|Yr%FK(Y)>*2wwZSekA@c7r#)r)`+ z#V#~Vn;Xpen-0%eS+&@*t0 z@s`t?xvA!Gg`TK8(7|XK0IHoeS1Ua&$i|KQPKMRTW1IJF;r2yvc9~0GRJnKn+sqCL@|zcOaH~Mlz;K} z*VCiMtzj=#T;p&BJ2Q5!tm`@ zb4bdycaiK)k~5%=q`eagSKX$j_5MMP`o zE|QXIPfkY0BG&ihC0tUfMm(0B0V6|70uX8?5sr2HkFH zrJ;6y*aZS67}+`6fBpc1b0>H}hd3q9af23z6S0-T%p~m2NJ0cF1*k-9=FC~zhB$@% zB`j7u0K`GeNUlash}gNRySb_NU?Iv(PEZRC0%}$(07_zBp-xTmcy^=J2SgB%P-d$g zh$N?%k#X~mOr>qL^o)d*cu3n5C{tnvS*nGlW z^yc)|=UvWtGtzt;cmqBM?xMTG_7ZvpdJH&l7o)p0zR%+^rJ1#3uNA!@&ADyb*?ino z^kvWz)=6N+c~&rk?-)87jV4TP@z_=pE47rqlb!B7ccWZ`ghfNM2QF_d>E(o#i|yK7%w&UJ}dGJ7o+yq>0YS1*Nf zGE?T{THQS?69YS58a49jX~eD`2U#*W$5x@Lm7E-$n*=~WNXb!1qbN5>#mYp|WHtgR zG!EhnBVqz4;y^HlY+Hu5T@Wm^JqC%J6Lb%8i6w!Zh!SzmX2ra)FbJF&677&>zzSr_ zoVBkxWk66=7#jkepOewIq{B5J%F;$(TtMfRhlk7zNwaiSuB?GUJrs z9n=BsOP9DY14|}hKm#i0FzsSQmf>V(aAQu)Y&E(Rv-@wJ_3UH4gLysxMg&AB@JqLk zzuX*##WWNE3=xdDQw(jA6yP0K1`~-;N|eY{2xO(eK~2LBD>d>DaggVf%oUO(E+LAr zN)g4m-v)_1A`~$!QzuH0JlOV$A;H)aY7+@eBe_UgDls@^GZ*GiOMpb-@->4x2v&CF zj7St)^;+X}KnS(iV9w00Js3<*WPtVC)y>rksK6Se*gAU0Zi(Gf-~n(sI9`}x9q<`C z{%)Dw?!7I_!iEa0cC^0n?kW6o$ng#kg>jxAre?C;HP@T&$$5SLXuErIfyE=>0cvg2 z(czf&X1(2Pax>Ax)-G?s6?S9ppc;UOJd$=oGF9DWXjd<`+vR$(*j`-hE-%*Gn;qcr zi`~t9>63gsZCak5eRsdDW%c18equIx^9Nd5UcU1;KKR+?fBaW2Zy%*E-)V(Ll; zypZpddv!>*$jO+y2g!`gv2|2MN|f4`2y#(pzxqq7AOBfgEM*Udt9yJ90ic5>9ULY; zn)TyNxj)MH-KX2_t@7e2v;gnIZ-CEW+|tqA@%%oI=8`8RwSDdDuE(<4W~8I(^f1p( zXxsC8=j&~;vKeKYjoPrp^)}gPQ+7ADT_a^?apKgb#Ngyv4MladF72pWQg_no<2Vpv1;8-xoN{YY2K#RUNA&K(!dL0B+T!VK`Z-!wBA>MZqzt>zx2$kccEl z=y2p}u0&)^95Yz73^=6>b-2)wo-eRMVMB6u7a#?6dVgaE=R{GXN&-sc3ah3C&MuU4 zV^*v$Wa8CHlB=Vd33D_Cn?Q#lGlg^#uIx3WMrO4i-oTz9T+4kBldeucqMu2HR=#oQ6}3J5J{Wiq)>H8leAjgI84Dz)+;p`F5sjN zRP)k-(B`ZVNh7z4K;ChxwFpQ!8Nq7h0A@IRZx&$Y@Mwa5)6i$w188sZ4C$8;8h{gX zKvF@WDf6d3d$>-xI}1UQ_ti@AS}12`NRx){N;6n>s!Z-VIn3NxC;}tM8DxQZpp+=H zS@mkJmD=neEj=@9CC&{CNP)!G7pPGtvf`xV?3BEAB#9$d=YtOK{-WVadVFTtHArf zYTx}*0HAq0AHK$^?ah&ll)OM!)fU&N&w#~H5(x(qa5_3V$ZhU6esitYk9La(H@JF& z?GxY{vTY6~qby}tg!8RCCs$0%MT;_nHC!V&qMWH|QfiuJGTC070y`<{TitH@o5lL( z`PFuLHEcP%#g@aj;2P=R@cy@tPTo}8+`RkaKlhi`f9~$( zzx@YiUwrLol$l7ysrt?bK5>dggN%X_PEbZs6bAvBz(9WYtL^{(FKxg2F#$ERz#4#n z^!-j|)CDeAJ1l_{$Q_#97d|05ODSs?D)a&H92o79_qu=g$l}Jn@vY5z(;QFdWFFoO zB8Q08Dml5Ea550AYAFQcl)xN4=Wv4!)k#b+b(X}L%Wf-)U7^(jCjkaPBw?Qnh(odJ z)C6$Uh6Yv|z&{l20uj7&hilN(9f>lr#z~h{O{BW2)f!DwA{nI*bY*l&nJJ~fQi^GT zR*ph~z{V*+iHS+zTEG%RTdx`;dB7+J+KHJlU|`5xjdNpMSQt*F_8?2iB|C!Cpdw~y z8}tB^8NsR~fC9*n3Yh>RkuR<=gNS-zW|r3L4z-6Q76yh4GdTGANgeJkDR7y>46ACz z7{Y{F9WY4ZByL4g;*`67E9lb5Irr$9jnE1qSuJWgHSA-8vv)nEq@~8H_0kax0clk? z6C@eKEXyeD?534d3t~=L`wogIou`y2Idj}zB74mY*{1h-smhK8NrZt2!kb zc1iZo(@O^lxzio)N|ZB2fW!eWrj^?USYrd|6ZA*eZLs-e;GY67fMudu*N@yI7wA&mogMs`u{APTJr1%bWA%qo4STe||HWPX5Fn)X$A4jgZ>bz$`rl z1_aqbOf8AQD@9W?8lrfiQ@_-|{?E!+zs7(dw}&V9&MyQtH0Lt-lC_sSo=tA8=c7`a z&8DxLVwdOW-UpUw4=@{HJVl;BCOaEx88?DatJG$mW|_A0ndRN0FT3+g^Mq#1)9I)c z-e_K}UAL55Z^t%n*}8+$PPUz+lsxK@u<6Tkp;%l)doWr~jCr1Ut#j=PYJyeZX%s2| z3Y?ARug=e2lXRroch3l`+prZtzzv{40V)vY1lrc_tMB0E+>Y)T0yFFYk&{zmFp;sT z0c5pjW>6EA9Yjo$p*0!+nAofm7(`l>MLdxANjR|~gi1DbNn$WJ9qKy_=7Cg>wi&=+ z;X*NI2FSfDEXL$&pxiJegAzmCncYpj^yKWEn5mYY-6{O0TD=yqz+x6`rUq4nTT;S9 z0tZ};guJRr6eE%opvGzNVG|NSuI_HCg&-6oZBH77muf6k5~1JLjcs}pJDkjg_yEUa zFCb>?FHtMy#tV#`IP~ygy&+d+o|eJ5oW8b&ffOwyBbH5ckN{trH?Q zsl`$rIkNi}Lry}SNws%#NfJXUcO^=u)r>fcYgMg5WAi}D{bm_p|MNI{5nhVGk+OdlJR~W8fqVa}sGXr)&;r@meXRp(BZHXtWS9 zb!H;*+N%%~$YNNg&Wu26xVnR+6*5Pbm_`MKDE32^WUd4N=2f9el8BO1?`B@BJ0LQ= zXP69qJm7FLRT3s@F%&ibRxY{Y*`wqc>+oDvgZ(tW#Kf>;pfRBMqp84yy zZLR&&r!C|*PQNY94yu@oRWQ7u7AzO&!u(VBM@0t4n15z+a?7dR?0mN?bxY{R=-XkR z$n)_ewJkBvjt`n;t1LZu6tP=jfn|W}-x+`Y zt%)QjR5Gt>LKftt)DnTorK&TM2`F-qNbBY97k}M`Vvxz5<-LCa`UvMYdsip`pu1kK zSF_o!r*^q;eQ}MekAM$>2F+=6XFfij_DtOdwprmOm!|3@Q58NRw6oky&qg?+-R1TA zgNOaiiz}ILZ~64-7%(n7U)}UZm>yzsz)bCUI;Ygko7Ksr<0)VDFz?oz9X4Bl`*Ay+ zo{mO$fmOHNmc>Xn+3XZp09)V!T0OP-m`Bszl!T|MZ)~p)wVMIo03PhcZ2_7v1$_OT z`mOiv)i3VY8fS8t^-ReLVv4Bnb8-O#68&`pA^Gn136gWw|C^(kd)vzIFH za7L0yxNB4u>U*{fAyLpjMOaliC9~>gV7BTk$yu$hl$oIvPE8PTsHTiGVi2HK3$bx- z0C!dLD0v;ef@*KI4uATbqqvtd!v;@>hpU_k=I%z4oQ#Mm4aaOX^P*AN1PX$3IAh(J zs#!LJTdDHs=~+pu{YK>P}4RUcDAb1~+a7H)0}Al9OvSr$`rD zQ8-hkAqh-_p!@0N|K-vD(^ms}sR2X;EI2~3(0@uAW)MRNU{|$L$w{)n1)PB*5`#0u z0eonnHmHN!5gb-4BBh)KLZs{fn4lm|9%TSpt=15=!yyVMsCutR%w!7UoQ%LCaP_`8 z-~zxnr#O7Xn9EFI8rzy`A*gB3A}}^0f{-MuMl5axJm?%Ojk_@myar7=*xN`9z>Cd+ zAN(!jzx>L1eSC@TJ*c9*2mdDU^yF>%T|YMe^6l9#{fz$gj}pee6-TdOLPb(=u*?d& z1?oBMUEpe8kQ*Pf(c!)Ec&5tzhIVW2F+yrU244ePUG0_|>U*F9y_LG|Yj2*%JeuF3U0-|Cz5*WrYcv%jH1j+bx%=AD_2$lI zbHZ)z%$@ngB~Mr<K)*#KnMD5?XBB) z@12h4blvgRy{MPYO230P6te6(Fc1pKyYdTkNB!kxqdO;_w4)JcL78*D5vzr@+swRHAlOZ--R5e2 zIr1*&qw(oondPJNR<1s}0%o5Q0HO?w0e|$sf9aR>2Y#qdW(hL%TZtr%B%?Ya_XQbz zcIptOD3W)FfXrEvR&{kw$=wN-+YDk?5Q!J1l!%!~OnWz@c#G{D;3+^uQC=wQWMoFs z%M{Q8XHa4=6prd<#6rmo;GCj~irI}o%&tlx7XxG6IrUSSJ zL=a|ksvvSBjv+c{cMSse;AMCBzA2WQ4@~1#@6%YgMWR%pf=$ z+`*z+XwS_sMw(2hblS_Vn?88w^}qc0j^FK?<8=Oi{GY7u%%6!JTe0!sM7<|BN&tEI z;|UA6aq*RxSOdPkTQ|R zuH$B@8PMvV+Sy2JjdZ{;G$lu^F2>>G)!so4V*{vAsU-dH{O;r5^GEz||L5=H`WMjt zDpt>cU;5$SZGY^4VBhimyXzMxKmC_p08>m~Z|0*g&Ws#H)|H*^*4SLYFM#cS_=A`- zxARw<+@hdv$%>(R(2j<6Q%>4((~M*`Y3D~WJ(@P79x?_dzyVFXwzMt0sAZ$J*=}lg z2`qpm`bF_w$w=dT=l-ZxZ&nkz ze|+ck^)G$jgQuIz-#9N%zx8MTZ&wG$&F}ji{QBuAWg)6BAuZY$Nn=1jZAuI>Lp+Gw zSE<)=n@peiZEw$B|I$VG(%CJEc4Ubv)QDTJlRUQ+49Ykip}DEJzw0pe(kker)Tq0)-juXiO`+p16dlUY7HlY^tv=a=*KMcr(>zB*Yo@4On5w9}J3IqbLS)??Hb zxWV;1%YLyLos93lI(mINI-R$@;d#Q=fZeB#U7T@Lu~^mekA9{5vFG;I#9iS4CsG5P znYng7JDkZZ5DC!>A6i_HxQGIfX#i6YZ-~hUBBB9sb29R9PD4l-!YI|@#O!KX3}(bx zt4W(!l6nU-Fmui}P$k(6Hf$b=QX&>+#W3=X@u*t`4ZvkKtpmFgOx4sNB0?Y$Gp8D~ zNCx}RH<^XaNX<|X=6VAq27>zU4k30TBW7m@jK#Pi>-%<+bXPdFtIqz)KVAR*pYnsF z^v#R(;2&K4Z}}TP`met7U;TUId$&@zK~t8VMgnNn#4X^+LKx}<%&Mv~fq9_FmtNh% z_+g+hRz^MBz>{$cb2zD1XXZpO^{S@eR+!97&(4Itc>nCzuK(!&(%*e>XLRceS5GJJ ze)Mbq=YL1O_}X*kBPv}?n482E6(r1TeQ~vv6Ol0y<>aPTP1Tu4BuvygiZo(fucf+? zR)ssIl$z|SfYf3Zu9r{3CBI3<{Y@XA9szy&H`4Ik8aUvE?jY0H8yrli4uDzQ)lFSN z&G7q};k9F886~p{bxyESL>PoxDkt_xnQ*eIUKBt|?6o%-i?FzApYnJRlS?6jlL8J& zoY>sFR7%-RDP>}DtI#MsN(>CR>A3xH8ngbY2$J9sxFDBym7Yr_y5T0!*724Yd`-rNQ1W?{wqI*fAh!qmCx98lDe-=e)Ss# zIK}aawv*nPWZuGLLuK9T>KfaNectL*ANg&W-$u^6if+fcBew>X;6oNEHIhd>PCO1E zNTALs%%%?Rsn%_=#nP6m?QXp(+r{t~+L$<-^3m~}-jvN~RPAQ9xzf_3LW_#fsG-Ao z>U4T?H60zC?4B;Juhy$|A*Yk+(QB`Cue|wf%MU(Rwhv!?b@S)`;^SHS`tSW6qkD6x zRM>*R#LS|#^hw%)2jRb747 zf9du9eQX2On`@=dbo%17d5E*G1NVRha2vdHbY*<|#@1+Ov}n2OR{ro}MaO*o#@^A* zgDX8Ajn)gg|62R#!78uY(=*!Ik2h{?AMWk0r?y<_EYqsv)}!wXw=UB(_-e|N{$`RteHFMoY_>qcD)*v*^;mQ-68h9+ev3FW}T z29!h+7wMdZh|P1EaurM*jNP0AyQ-!fVo_Gh;4;EM63S#A1~VmqL`+R$Adsp$7^O93 zldd;+GgXqnkOGc&a});!1BwDx7h;sjDuLBe1ooUrO=5)&wMJlYWH`auJQD|yxKT+z zmxDgB6tXCX)=4^`;NfCw~0wW53)m{SW3lzz8_|$bbLJ z|K4Byk-u{kW5BwJL9+uQh86~9HdivY)KVY`Y}vHSp^l~*&@#~^bq>7Qr2!(kRDcA| z1smrq90Zy{?p!>bxvm0f*H~V4^XG}y@Ff|EvSywG3gA*8`hOrrlgJsiFN?)<1%psa8kpQfzBZ{%E zv}=pV=A{Pbn>K(;J@C?dQ9c`}sY08Gc zLE=bc)8}8P{>gv)u9rUFBU|2jZhYrSA09j&R*kK9KX$L0b%*FbgW+w(pvzHuSz1Y5 zrr8|J2WVddCYKhG%O_`Wy*J!r6J2|^)UN3?uYm?ARg1OAsIEd4El_gLDX%(Rz#E_s zWb0H7tCdbJma~&-GdZ*MDX;{97+esmuzR#!%iz?wT3w}!DQ4GzGbMH?SKi;Mw#>&z zgVFYA@_5iLwQE-Ew2XCqIIeEoy!PiwO1l>O0-EBCsD*<>;0*B>>hZm#xrxA(cX3S66_AIJIGsFH;>Qt@wqQ2?PT1#uUBiWLc6;aZNM#Ivea(5=$2g? z+txuHc`Q}${AAT#JO=I}o!P^$T&$PPXuoYAqx%Z*@U6RhA6K6{_`NTmE~j|);eG$? z=Pus={@&JJrG_BU+78ZKK@-3XCJwc2AZ?|V$$&!TaWf+#^Kub45-EjsX71)Jp^#sg zsbq~!6*)QFH4{ayYM8>Pun;wC@mZ1-nI!?PT_%`FQ0U* zN?Bqp*nag3XP^G;IWRGw07KyWK_7zO`{{ph{I|Zd`#=4_O7BHoubBHzOwpa$qM>zj zWnprtxtmLzIgF3 ze`Cn??RfO|NjH?Oy_`PqKm6o_r~csA{@fp3jCeaGXEhEPA(~~bDk5_;&Ta)|9|Zu* zrlri)xr!*AK86_kM9%Ca5*TKM1Z(sCjoxz4dC*Vq3r)}B){A)#|4`` z#EGaB2EhpK9E1qYCL}PK19s%c{{Mh;b>vlUF9{!H^ z4M)Aekuxu&xRStCb7FS_F~l})kTU2;AgS5?)9F*UPgZUad2<2+00BtI0Q$f)z&n6_ z^mLl-^@egwA<)$uTUV|>UAvyI+wdvjL(Wp0h z+}{2A{Qk@B#mYMh7Ypliw{CON2y6rQfOBBcPEOKd+id~72AsWhw&6Iqw)0fIde=*< z)0`H+^6~W_{2kqMAIPN9;9N&?b~xOq0B;?xZ-$nNBDCp^QkPgtLUD8_3M}M?oDw{jc`Z>@ z_6BojmQ8b{ljTC4gXTnTRP_wSNZJ(X$_!*mrr^NEF6bG6yAqRo&RLns%pfMU06AMH z3=Y9Hlet3IN}qkLxtK2taSsTHS7qnJ+`X8lum9B_`sDY0=;)n0cWr$|f^c0^Ey(U* zxRQvQTilo~HLHoUh^o6&h~j`+B4SVh0kIcR%rc3nDR~+2Gt8VbGiz1}k%XOn?)0Po z?!;5<9~~yCQ<5moy_-6|^>_Z#ul#}M2jBAUW1C)ON$A&Rh6;c=6BN#@sga6H?Y6{d z$y^}>&pD?=OiW^GA_25PTwF#cq+~?gU9*-EJ$?%cqI|ps`Bpv`h&OOtyn%==!+_#{ zA~K?Eh417WLn%W-*hKP}!LZb9x{3@iB4!6bE)vQn<|KimxjC3ZLH3(bAaXFsoEh#3 z&`mp@gbj9;$ zGNK9rqq@AT^i#inymS5H(R>Ll_9wc0D0;vRK!9g}_X^*LBj>?IXR`|ejOwe;mTzH#=YPdto&9>F@0M$#L(Md&^#x-~ROW{TV*k8DqG5R+duBK@8JPcQ*h~5Lo8Y#0M4;Ba|;ESV~!{ zATgM=M9P!^8%*=;mF4A(-GLeOnhvh%)(*NySby!m`|F?mhkxTqsVl5d1@~o!5CvEO zF~f|7)s)o96~=|H7JEILeEA3e(icAQBS)hh&utYot0iW#t`$^SGn}NVoHAK?P7}-= zZ02eP7jvc%kQ3liNlu9zZd8^bDc&mPGN;+B)Ne)lY?k)T;s1@4Sny3ujJ!a1E^R_| zc?0l`=hLbDOBLj9g=$TJ86|_7<}6hp7H}jt%PujRt0#4HiSdn>wL2sR?b2rSY|hMp zxn|E9$2w|A3X7&wGh}ayZ$X<$1jaf7kn28|l3})3#h0`s6-=q^C@1mGHFfaCr9@sy=+%{QfVHlYvn2Db zFu8!LROzfcYuAl77qAoHA)r7XOtBa07$ZwZ>KtRQAL{|CG1{KxPFb_NIfBq2R^#o# zc-WtvFXxll>En5Fo;_YZeCfPBKl4=sR6rkC`f2;G|4q~1lMwsg{z4p3AmJ`8$s<=p zUOTdY4F+%+$oQzJJ^967yi45|&%d;V!mQuuU=cV3UF+3b;x`=EVzt{JqdppRv_79b zo;*yG;f`6aeQLBbs_)dH&p~H8yZ>M^S>C;O62CHdI#t6s47o=sFV0R*C)rS)KDZ*C z?Dcl89M)Hc)UG|PySp#h>yMRB^?b$G4tle*G(AtfiVv;~_6L4nbv0?u&a|p1wHS~4 z&pp4pHQjyfl}WPB#@3A|AMM`reE%Gu z{FHy-_siiyG*qAt1*bw%;*D@%LrHN7e(u-)SNc7FP~vjp9ca5}U0JZoJCDc>DWlwk zG;yflYe_Ejo0HJgH}nwY$FjF=Hfb@Lra#8k;q%n76lOChr6OeE!6;HqX$6etLonVh)v z)xlr_&RvE>LiF4T&U_9YwRb83$s9h-_MkMTpeQC{cO+kxN-QKrnM{vv=9l*Imk{933$NdkojMYgegjvKlL;5FujCdUpO;hW*zj zC;iEzW^(u8>inL0k(CCeH_`8|e*VX38@=(cea9WID^xDo;7N_0tI994=e<3B^6AU# z&iU*cKlgd$qYY^Da-pO+cB?3OExEA?>cQY(eDlexGSrjPw% zjY@ME9&X=y*9+SZ*A(mJgZTA%+8$5Fv47+Gjh(%nljG+6Y!1crWc~PVwYN9i>qD3- zAT8U+ulXYL`2#;cB6Q8;lg0Tl%}%qMzy8wdVzNFvT^t-Ok_tPnKN)xSd&iH#m2CHV z*KbME=6HBMi=)|T&~yRZ1ImH4oVN1i4Im4u(2eelp13VfhWx8*OP~G^_R3d%|AQPP zlDS&qNKn~yo2$Z|oXa(o$f$to8ORD#XD-21Y$}o1-CQ>~{DMmNGVdj}()H$djQ}Z1OlkRvK1c>*`_v22(EBN`Thno(@sf*ltdy&G3|&! z>~J+VSCdeul)%KoEQG8j-i&MnGAI#Sb`ti2;PDQW;l@(C!l{%6L_(Yexi9tQ5vm53 zz-Q3>fQC_)XCU8kp84s0mwP=Q}X}@?ZKJ zUw`3)`CTteumroHv)nq9N~kP5RTVibuc7M193lW!gkD{OK2&nyu9lpLAyK%poXL$i zkceA$10?txMxfvJap?iwB*VhS^?xZRU7k%Z|EKt9vO>wtBoH8`%7IJq3;@eYLEJ3o z9Q!@ZsSNhZci!~0l`Jt4vX=S+LnbDOlet+YD8~S}CY6ec1GsDeB{Lo|UE8+ZY?aonolVxub(2%di^bCMxax%<^T)IG*;zNce_31; znRel7m`z@>pZFK+CvN(c-{&{4R536GHZ)F9RJ7si$5HLiUt`q89G{WTf%MH?!Q0fk z;Z3hutT{{?X?>u*T{<|b$9sbtSNDz%R}aqC%UODKG5gF{?jD`(t4q7&Ygey4eLF;^ zNu!S^>0;JZJL%3%**iLL3ulj(rw^ARRXq?8sd2BC@s8iPZl@DHU0BsushVLQ$zrzV z(WB{lZjT=}lWCeS^W)={CKjo?)&BUZ<*p-liae}_vDc5zAuZSIL!I0K%9U#Zlhkz4`Tzuio{xaqlQ*&mo3f6ds3Z4#I9q63uc+rnnPH zaLwe-A|P_m#)A(4R!k!WbiCpCla#|5K}xHbmxH`1ODF`loHDVvskxCmNuVO+7!v~= ziP_CjN|z8N3d%6Jz=$lP^y?W}POi$tL|_(fBfU8|Lq?einA@(achtbj>M62+c3cet_AbJS&giiTr(59l@x`QJT?$Ou3E}% zjLp43`N>NMdF1GnBp|o+v5y}EKqc;5WsCGoaF7f*KG`3?^Yo>U{LO#x*?;`EKG^4| zt;>L@27A=3P$w0Tl5Gr9EJ4+zs+n0^r@+i)#lAvf*{n-a3*1yUI5jUTYuQGB`_fOi z#6evC5(uT5q1+l!LWG;Mzn8gyIR`{$jw7!NA_$8LLA(koy{SYm>UP6lrMWBhlI`Gx3t!F zPC+P^mIA;`RS`oFDGdZ5CKi@hkgsGJxg{cZ;t3T6kn(Mk-pNm9VPtLm81ULcKMHh_K^{s;B#nJi~w>y6`6gS{u7#@X5G{=Mn_Z%iJ1?TqSSJsjM+eRS>C z_TF|ly~y(~onBnb7DO7i_pfe^hW(qj#?#5VnW)sLC84V%U~j*A>KQ`S9#0cR9PWqh zirdwYa@)1~=p=!8aK5ew#1${6ST6kD>*xDx(e;AzYI%`fr^){ISlEZd*y|6Q$#vja z06_dEzLNo<1Wt(K!TvM*&)m3p>KxOvcJ)gi*Wdl2y?5=HR1PMFgVjk`7$G3*8ePC=YV zQ(_VlKtX_;nr-Hbgv*P9yJ?1&RftWM$f>-h$~B?zC)}ax!c2@%5fRi`0>LylPzMuA zwVAp*5m!#m5+#PNow5kWNR%|0iZiWa0;qKwP@tAW~|a-OAjFJUhoq-AV_xCgm6@2mx-yrDnCDek6FQ zQ7*al+;J2R?8WM8PQn0}noTbaYAzf?XvTe8)5G+g;6x@Mq z8abhN0bmv2TktWwB4zKgHZ6Bk?M{%3o^!dgmXCO+-ntfIl``p)wdr!(rnW&l116h^ zA`8V}pvgL&PuJ%s=gadMmTO=IDA0>iBgEQdwACMOZ>Py*9arZ2D2eeUz^M?X5d{mk~>QBYS84vrk)om+MSm&6QMKwge8aCZuXGABz; z%r2G_h$RF#nU(W5>EvzDk$Cq<}kTBqk9UWiZF8 zvZQ6TR#j~iDlV;;W#iAChN>!q{x0iV4)=6yC_k~-&O9e# zF*7nEp%5dOi2_{QGb|BB;^@}8CEL`=D~MbZNd+*N3FHvHFw7Is!4zptUG2H!^@Q80 z+8JziN&b0@|FQS(*uO~}kvz4oYtL==HX}`e5*TJkgb!Nf$;?jAn#Ea@W(%y#@gLwm zhuCATg7k*{!Du+EheQi-fB~7!P)cQUi*^BPOZq$mQ!MAJSx#$hS9x~6p59-~9!}P0 zkCD$U4<%H+;Z_yLOYX0Zhh~opyUmHK5w;Jmt@3+Lzj_Zg`{=)Dt_3>|A+nd+({8;ZVE9 z^5Olvvy18WV1M8?r<{6zmnjY^?k@DmspP!wdpPa7e{p|=A{Xy;-cQTfSf$5t1*|mb8x7uIzdog zcVcGlhHRJ3*zjzdFDCcGWfLKH7BM|FCY->+WCp0`OHDyoge@z$Kp%)mh}ld9FzpI)sDOZ2*u2Y@0m&u45LnsSItp2k zNt{CBz<|I&CZ^7@2ShFanm0Z+lG|61tPZnGvFq(1?Ev+U{BZuy|8)Pk+jCE#;I4p+ zXQdd`GMQ3Fc~3Kpz#f>)3BiCe@^&)7iKOfp4l_$k0%ne6ZYYa)5Jr9f{>l;nglb^y z6}sYVBzNJc>YZHc?|t9u{wII!-+%p|{rvjR|4_{cgvdx;vN#Z`Yvk6mJA(jrvXrbd zr$8)FCjr=#=BnBi1z0j+0N6Bgm5rp_0l}6N)Hn!SEg40D2!+Z~%7Bc(rK*J(p4FLI z*vvVwK}&}uvO3h2sICg<(}|fF?#QhZdD_rJf{3emHY-?4b&gV6hfvaSyy+TsQ!^va zL|T+JTJRV3~vq{fXh4SI8}}f-jNR?tzlBwceh1 zKK6=N4%^8tmPE=j`}?cmCMz(Leu@;~f0I-Wk37X|6_n zM-7M}6AWk%cI>;~9{#^u8FL4^OAJQfou{t7`}aBB&fQmlIk2^T{mG}^b>rqU`{a1^ z^6By$_b%?fGV5Q+7B@FMP=9o^bt}?xww=2*C_Ox#%vS5g3Qh9y&ff0+xL1u&PS=*( z$;sIwNe3QX?O!?QA8u2>qPD|g;k^4;^*!v`0$ ztG5pBTzk*W7k}+BUd&kj`pXx;^oja~7eaN1tWya3vwYSlvWOh04cN71U5p5!Yxrs zM2tqT1$ag>)HN)zvuTY`qsR3qy!k#V!%KUmh1HT#Rj9Wxe+n3!zTW=I$J^(AP(bFX zkzOBKfUF6c4aP(eBkl;n*`e4Zza*%ut8OgkZscs1OqJZ#oQ0uIOq$3H<&hP#8zy8V}`@PTIIm(uUNUny#Eqf~ddjg53%oR%W z8V85F!edpNrx=67wM`5Xj+@~$VC3bgEL~s!ivkdR)4d>IvxBp_7Crk7tLSEzNG|5( zfpPWJW??SgEecLB>)PTw#U;k!ne`xN1S1QxMPDbIY-EplJQR8AmXOib#=4 z3ng(C&624V^_l=vEu1LNSsBO%CXNgf^qVn#C9Ir2qX*X-tL=DI?f z!`E-w05<1e^lwQVs7qGQIce9TY0%DrGhhm=fgwUg9NUH#&{@MNjbQ~5u>=%BgoF&l z9+-uRs3$To-vWB@sF{*WHp%X7retc?d1(c(rFly2x?P86Ic=8{G-tqlU;zU4`f+Ex zJ383jYH|uqr+M}WI8A0vyRKrjf7qYidH3VRF}h#F`uN9x_&j0tU;g0m1MjNp;UIt= zeL@Gc($61!fA`_{HXr+C0CGuzrh0fZ+S@xhdE8B21*VWY!)vz>Z(q53<-j$smR|R^ z>+P-W!^8c<-JQeTK{ecMb8}^TwQ9R&Mk$*uF3uLS8Jw#tx3Av1eQwI6ZE=*2a6i-9fL% zq6?mkWRcO|mc8r!!&_U2xA*VAe7>Hq`rFOLsyTUSvR+NPl+_mi0|&qqNbn8{$H{~A z;NE<7RNs8=%JXl#`>o$-KRHEOWAXF9c>a4nwEbI*S3QB9j0C=6(|Qq} ziJe`Pz-(@oa;ar;ch8E#x(tFcpACV7Xx6eus%2M&R75bdP)SamWn&RAOOTD7S_$qF zf@MX9vyhZzuWzDcLPXG{t_~3nB_fJq`75vlCMuQ+C(4>V8?jL7;UWP!6WKw?IAMocHjnZ z|0jO(r9b&cZf)%+Z4#T9f+$+&92p$lT>^Q|4u_FbkU#}xPsARC+)Wd+AuvD) zrs`Qe7%>>m;C6-I_|jQfE{zT%X#g|Ta04kLMPk*M_&^4~SLct;UwQe*{^jfchrh5- zE@EbC+UBYzBXK4PHQ*@L782%QMxkO@x4E<##V8N~NJQMA?Z%|E0j3p>$8RwL(KoL^ zn+;&&{{#{F=7vXpIRY*_hPuGn4VINT6p@h-;O6SY#8oKh9&CD(!4ilW1}A1I{~CBw zhYPcn)?;jbV2Hqq56;RY1J0hanIQy6A&Y}A%R6DE6_QApsTdQoxl;@jSdWz0g9HvWC?jW6CUHn4D_2OhO#Rvr z6R<*iioEb{W*#-Kkmj)B*s-@f1BP&fdPl3eQE3~?P1dGEw?tY2i;cnqN9=>^RfeYE zc_2jU6M%sgQ1U3u!XRfMsY2E3G53L8Ai~H@+(<#Hq@A{_)HNM)X(E%HEaj9n8M5?% z;Ry46pn+JZF>@_I7!s-6Bs z!_jzL^_bcYVqq|>u3z1K`fWF#ec|fi(RP%keH#2-*$LPTOYTgMsvG8rIYkwB(X#J*ghP(yqHSIcVyh&)3a*86H1EyXwx* zmrUlwwa9p@UQG1jES;RrW|lfRIJz>tadk`Db}^TF4>XnY``)cCpf3T(s7LSvWQV<6 zHc|M=L;l7$(reH9(UVvA-+SZTpL_YKDNcaq#V;>@`QK09_JJ_m?&mBlNrcUnt4fmyf}^epw($jlyr4YG(cE$_#%mDFlqJAnxq}-^bO(zFla_2(6e4C4 zH)lZ0-OSyyk&!b|5GuY4f@NhQh`1}k5Qu}=rd`~KoS0RO%p5MnnlhkF*hni(o|AE) z*h^hQnkhyicVs84f^wQ^SG~BZf9l7lUzq-$Z~bH6``SzX7pq@+*Y{=gho03rl%;F0 zSHJl_D*vGeh+pma+dvtC5UwI`1HbtnKh=Hd*AGAVhoeh!4O|haSjl4Mj35Zn;OH_O z6v)h74Gsh;gGr`fnmE>FB;!uPY^LtY65NxMJGfiuOZUoqwx9hcO)~o_BrypZ>!K-~Zvgn@=;k!~>F@%GU-b4t?ja>GA}LNOA8Yt7=H*$wT%|U}6$HSPkZH3QaOq705xbhHG6yaN zp+VfUb)9nnIkCVMMWgqU!9(G%X`40=cR}um6SKjrV6KE+wT$55R!UG&&KM4^D$@)& zb0B7O)0{24!&ry|xe#TCa3SjfZiTQ8_H6F#1STu{8#&yK%}L-EOpQniXjNTJjVQyk zw2XO99K^U{uHhX#k!c~sGBx{mh;C>9%@vmSu;@VAQGzzeQ`r2Q0dNG2P~GBckF2L1 za)NfI%>?TPSX`p#0SpnwPNSS^^~!k%uFzh2{gw?NgeW->*mH5xIRyoG&?P*(l|v+_ zgw*7Awd__?bmyBy0y{;gNcE^c+TYJ@*QCxH2DR=j2OVwo`jBS2dN`g=AB^EUFm}r@ z-QD8h&BI9VBlyXS4F3#Pk3aEat1tY=M<4p#^r7#*c+cDGx82T%SK2^3c@U4jW%SHb ztKaa?SFc~adTal1uNDtg zrL%Qju2-|k`PO!Sbg)0(iQ6+AKW?Yz(>nU$(f(j-JQzxjIZUyfx2q=cFoufzfzD3a z(?`wpEH9_seBHUz&MpzU)uNeRw2QO$;$q>HCX3ne$!KS5u%0z{UwiQI;Tc}V-B-`= zJbk^_>rF2vP1B9~)H!DcluNtWV0hE&TdC{o83B)A2?%HU@~d(&PuU`8!cp0%aEmps7F+-~g4h7nA{0b+uBxXX*tCe;Lf>FFb8rZkaMhzNwrgC2^BoSY&l6k^RFj=`|rm7F5ewJ zckk}EeC_U+e&u(p&<8n@%pEN-h+J=mmmA-009sv;>qEu|IO-y ze|U`Ga2H6kUR8B4VmBs2*3LaSSqLK0O<}4MDq>b+=AiBbfk&1q>q5-3C3oh~FMTeA zM2O8Y+&d}GW_H_UfKf52n-Z83rzOvYP3koR0`yQl%l+Dja-x)SZaeQB?F5(r=a)8lClO&*BZCN! z0?#^H0L#rE2%F0eImn=DmRE$!3x~0)o1;}-EOkCji|H&aFQ6Adf@=_mpo+3R?sa=3 ztaqo&`6|^Qbwh>xBXl*sTVm zOx?xVdaZQ&aDMNl$>MZY9Yym1^_1amIpvEhVqRtRD1x!=1I> zUN)1o?3e1}v%wc0b}!Fo&*!btlluoxAADf{{wE*ewFdgxd$XVZIep>@dE#wDPvAgK z40RH+l)1bSC=lE%yBf!^DMezC2mm(|5w$Ww4n%>t0u^+Dh_D;V^XLW=BQL0FA`wry zbmut$u;pwi5tyU6rVUKAtOdF`yKo>kE1CIX0F+Qv;zA$*OyS@lwz*2!rRSW$Od&dy z$Y2(NSeHRemosJMV5xiUrRM+fPaZEOyY2Gi>Q{9=ec}@zAAjNBJ^q$ItkbLwJbi!LN& zi5x5-aW|)ICdsooGqXCcp=RC*iIEWCY8-{h0BYBMc2-U{OXu;1w?UVWgTa{$2Fomi z*nc{QcOrl8|NW0He&GAs_rKGT#hNU&m;kAB%On(gu~fQo@mQHMb6IdKbsS4!4l$8i z@gyY)AJIPiwa=eG`l-?$iD&VM%EAaWKI2mA&P>ug;Dl^K%*#DT%=+2G_1 zxU;*enkpb*DODAg&2xeqm>e!qTr(gJn3|Whj@ZHQlv9VzwGr-2!tP!aM-PUaEhiEJ zdC8tQk!K<=1LpF=GBetAArm>2L)e`A)nJ)opNYM6EUB|F3A2!ynPv(V2$U7#%w(RK z$jyo2*1!^2;6_HuM%`+>-TnDLGWc^Jdw`P%nBB$T3e3@-B2NJWy56vAtj4;mcLx|< zrMl;koU?cErbWAiu7Q)wW+9G9U9=o0;}KTNl+i+9-S44ph{FqLqY}g;82Ic zS1X;IuV)t*Y4Hf{1E5T+j8#hbd1q^2`(0Xg?Zv@rK1Q0i>(u47a_$X%d%rrk(my}m zKh~vJnM0(S>VfQS4|cXI;y%Yw#I;AS?4;?>0r%j|;_mtzcf&V6N*@97*6YKAb-Sp$ zlhx%-=*HDs-?4x2%<;X~Y;^$;hNF7O)8lzFe^t-I>AmCW=_AVPfTQX8`g{s!&q}Yp zl)m=Gi^a4%y19FB?eOZAy#aF^cH1w7e(VCJ#cc85e($Va9pCR>eX*Gyx7CRHTitkE z_hm4ude@HXifni6jVA6(e?)sbVSAwGlm2+8lG-0XrmWp~+`n@D;9w`*xPEwWc=r1J z$4zTnd)3xn4W`+0K0TgS<90OeAKlrS($!`KigSv`fd}>04eOrK^bmLmyLXR2bv}Iu z4fbzd3Gdo_;$!#Udx76*FkPbkN zec&oE2Bu$s$$tK$>mU5z^|-FITT7+xt&?+~1z;pojZ!;0qAFD40J*`)%)HofBeEw; zZh%w~4k6LhfyvE6BmnDKd$9%(fb3xaauOi}D6^N7s=EgX=pYt%!|45a@~bwv_uv1+ z2Y=_U-`pK$$(cu$d(xE2E24-Zg$FWZ%jT*SmK`vs)zw*08^mLPM2@m z0*EdRKyPS3gy1FA%y7FbqS#DjH`8KG@Yc!za#J@@5Wqbdg;)eDbK8trh`n&ta{@6~;I640mulmRy(6eoFm+HloDr-m zF-U{EW{DNxEEuzY_Orgr5VmcfK3H^ZN$>`acX`{e>2& zL5JucTC6k&UAwItv}-iyz^lOV<-h;{Jk$sT7f<3Hc_;AoWk?u^ON3S^8?!MuI9HXq zzzv8HXL1JGHqEDt*~MAAx{q}J1}s{{n9=Kr6Sb?}VAzvEO;UTl+cwixTC8jqs=@Y7 zxO!u2Hakq-EY{0X7iuw~m(4lEZm$=2cds?4-@RO%uGE1C!0J-PBAa*fIluWcBXE4~ z$}{gq)jK=RI$Z5ay_Bym0OJ-Tb|&E#y|v^v_x-hpiI=B+_J8ekZxSB0&f&BioO zZk5E^cXnvEuIo{VJ$A7$vh_OcZ}(n!est?b-&=a=?y&wsTuhtM;V=%XZfWg8r;nS^ zte@E49^Hr)u0Fc2%gO0-a?#%!1m6kq1xw<1h&8^xc;$<|>C+dpr*2()-_uv#_vLqe zU2g-Q1J}vaS{mL#;+9M^2PSinTFS&6D=sES5$00$j#7(VYN$%Mp{)Lu!`50EDa>s{loNEWh~iX(_WqyXMsbD~HEl z_{7=cuRVF?g)u;mHDEhCv?;>?ZAxvsj4%@hxFXFC2Cf3dF1q}&pE&tbKX^L~5-}T+ zumjM-edi%-=fdm)uAmiBF)0Ye9%nTXZ#u4okl_X+Vlo&r>n1_PKv-NX6aWNJM{rI? z8D0#x>YK)0gF_(Z5&au^atHYGPyY1!zxYqCeegTbBhBklN%8+Ohd0K zTDY4s3qa~ckaNwMr6OT-Gc&TX?f%v)K=JX@TPFZsDj|!Fh&IFEjf%2Sh1^V&q2Nl0 z7@N5?+%ijaHB&QHk?7=x&4d;VL74+*;Q;1MYMg`R(xRZ2U8(>u2QtmRd5xPgnG%#- zs!-de3=c-3&%%})Xa)!EGEpdeM3%@=!0@D{7S%!6^wQFoiH!@I&AqK##TQLh!aEC}BFo~2xv!mPgU;S^dpQHK6PcG2Dh}9!3 z??GR_vOoKWfA#9lJ9}UIy1a@A?4WuQy{nMQj7%FOM%STR0QcSk6#&o|su+ZvVV!15 zIl=N}qyWGO2*yzJ?AGSw){?JbOJEL86ao>a2JNzGXLDT~LnoWca_&*6nSuyQ#dV*# zAJD74?xT^kY?|3}ydvN!(Ssm|Q9c#C@o-faZ*~7#8tNSm`y4-DT*HF%l_d^^HW53ez zn6KQB!)tV9ui6`jiltXcU^7i=k-JPxv^q~=%cNJ;L*Cx^^&-qsyD_tNl@@@zKlHT+F=bhC3tf-=UQ{J`MBb?6p_% zwR`f!^~J%ptt;R0F`+#3sx88K(g|4L}NURGe}|&h{zpz20?@YGP5#&Et)yOH6@UQD!Q||m6$~-hxlzC zpmL+wZ0>KmfXZIs8&j=s?kn&&_@ETPWToZPGAt<-9)^*TZ@5=c;BXKHhPt&aF&msI zW79W;(qm_)8{Qn8D=C^g%7G`8kZpo15d+{D0nJG%2$5L1P^vlLo;egqbph!y$UQlz zzzB`l2;vU1VyM!MW!Q;?$xA3q8AKsiW+E4uLCGM*uw|6hKH&L*#a`ezP#=aF38 zdu(T~Lu}{zm1|e8?Oizqy<@M4Q+0GaF z__R%H3q97Z8;z>H>%vZq0AM-IdAYtfuBh4?*74#*7n5!=YlDSB#ryk_o*$n+r2V1p z9n^9?Xxu4?OPHk3_ELaNwly+rVq!dtb@__Qms?&m3QS+nvEX-u~1FCV%|i z>HWtz1{Tw{`RKo1{ElyJ-}XI`voOOs696_cEp&w+a4JiiHlY@Vq(8YMY3en88|lldMZ+~ z_V=3a|I=-M7lt7WwV+?gs!3(R1%TF2Uzo$Kg%hX(^zsIf=d<*)|G%^Eet#mY8GZE} z2@M)OukSsY|JoN;KmKpRCqAE+5Br#n0LJiq>)P?Rf2jF$KQw#ybKml$jN(?`G{fO3 zxn-)Lt#a&<5I_c+&hkc5VRj#YM1dmI6$UGjs~ecr)L1|Rs-8i3JMwS*>`x#6S3k7> z{`UtV(QYLyLgJng0vp+SO(B5Tp{h#m6r&U1N9x^X>?PE6>2nb0N7pGHc}OB zmUXk_1S((?Cr2b#^=vRh3{nOI$d(fMM%HID&q=d!tO;(UL?*&cWdIE#B_UV_vm3*- zU|=Owxl0s-Wh1BZn?&TcNy?B2k!zRWm!t;}fgx0etefskQ!e;Y@=~y8=0?sOn4I8I z@EvdK|E>Rx{>6t6KK~0-VEy0xr})qQI0jXI@EQ5~=hi?4)adP^>KQ?u3(FI*|?HO94_rhterwjRX_&-7AZ$J%1T{EySDXWt?R|6nM7d1MMgtzDV2f&Dnw7J z1|l4*5F%pWey^%~yf%jm+D#f8(sHePG5x`1KkFaL%YN6ZwtM*ou58Bf8|R)eYF}6x5qc? z!NJbn&efgX-p=;H)xCbCyJ0_`+8z*=lBk z)6<88+6Q}whu8M5Ump%fftr-E^{TMDAFmwp!9Mnfq0h1udU(>k{vf~dV)O9fxu@Q6 zOFXyrC{7#ikHT!4&QIHiubp+x>SDHfaJP7j+gnd& zi}m!yS8cI1zBo^|x`3{L7WmC(@q$-RL$*S`n(-K^c{zOM^NZ)-_2B6zcD8RnJ^20j z!1Py+e`)&a1NLu6f zmOUpHfT>i5u@sHw(%Iou=5Q34BU#DNkUP0&cM>;sxCkRuRyLrVK}yVEadm7Ebmpp5 z(!iVG04R#(4E0S{iW*T#lL^OQaF$3huqM~m5kO?-$O#;XJOrLUPXFPP7n?N{fE<7g zBVce7-R+OR`1;3x<@EP`U*+h5WiX=sk*sEZd9Wzx@rly~aSQH&0Q7+Cz}L!-@<0Cc z`Y-*py%A1W>n8UeubQ9xjQ!LPPd@&O2@lGyvjbcKZUQ?{pI@wg;mZ$x;U7J`^6g*$ z3x9F^pZ=bkw-0(uF}Zrd0f+&npa3S=MQIukaE9dM2-dra z{`)Y0b+uUi%)dE#_q(pdDiD+OIk$$?30S*a^gqptAQB?ni4j;dX+heUS$S2I)!Nhm zbLZbS0tPM}Lb#j-;Ib2VV}dWYDsoF?lwFyKEIX3t zjzDmeAg;!dOK%P_Neo53^sFT&4lB$P*G>sWXjS9_z*WsN70$ggh*ecWm2$^Q2uvJYP2EWIrtnTPk%O7Q3^q|{sXe`1=yT>O zdg(3IG7~U(fex{R+O#uviXJ4t=R5G<{e}4V_U+xb;t%}U{@@^*?|${uzE~?z0|WH- zAr&EbCbW#4kk-IMV0wA>CxAgCij@+pfmE$yc)F|#=mTrO8Dnr?HMmmqw{Gpk(QwxTuUelh+HL~mlZ|ajMzO!!HIw7}59SZP zV!nuRTn$iHX*|GqNDS&%!=t^y*0wum%=7t0^8WeO_0i7Z`0Di=J@ii=9KZIB`^PUo zXuGv|zc;S-uU@}-=gRe)+q=6xGHqcFmkL`040}GRXdqTIYeZe6Q$0PIKDxIcZTI%2 zS0Q!XYRProPbr-qx2MPR#q4aE*2~4B*Q?fZJ$rc4bc)e6KK`nT^~QliqPh5d zLaEL3lFkj$44}txz^t6K_JCWUcU4#4HSFC9(H#p->*Z?Ro&DzHPk#FU{%5}a^WXo< z-~1~teB0Y@N8#4VkwXZk9XvR>yIfqfWr5v@LIn6_RNJ|nHi@9F&Q#p+2c`y(z=iJ zZUOH|AZDd(p0k=|O_@5233UQxcowF={Th)me+mN%7LPaJ50g#2{QTZ_l5vsX`==>@#WSXej7s|)V7yQOza zWvTiB!nDpdpEnO4t)|W5>Yd$ZpS^kG+Eq$*Rrk)%+t**dr|ap~m4jH0 z-L1i}5*UeA?s+g^f#nvt32UM(I_rFuy;pf1DWs|jv^xkpqqtZ#$B!pdpG&B+tv%+d zFQb9=E03Hr=MX)z_WEsISFx(pjBL>^=Zm%rRt>IS+de$dy2q8DpL+S!dH6f zR)d$Y#w+sbFWW~B9^L-%quaNy;2k%2pZ~_UeeUd+67H>#zWj3c;9>bc;{P_eunL#}4BP>Je;9uM_Fj~} zROUt*KI-Z;V6Vo9%gIxI@~gl4?WQ8BDD<5Wsm}h!(BI^ z1$NSu-Bjwzj6#T>b1A*nlz`5&ajXi4h*$_j=CDiCl~UQ8oRupfHT8|PwRFOe0jA^v z21#(wu1dw%AnYKw%o0#0=ftpt4dRkXJHUw|3v22~#X=2B=81v{5jod;CIo~7#dxtE zfBDtNo6t(Njo61c49JRgMp{8nfEmzUR*M+Wa#e>ILBUfg` zX`74rGIE%l`T1lrpIxNo1y-x<-c`L`y}y0qiRFANFCJjs00Us1XughTp^E+fK%&I3 zE6YwVX2{1t0zIX^d-0%c9vvgS29Alk#p2@PWOV*;+zv+56^4Vs&Q`@L(^dEK%ae!q zA67A4ySe-HvwQp7qh=QFKZwd=G1a}^;q9ZNTL(LbJH39S99X4SqaW)!kP+6Ce8QnK z48}&rr!&0v*e=d1_ff29tMco6JQ@dolyiH&&eiU=?2Oo+8s;@$JsMoUHV9IkUnGgz zYS=#LUAw-0bU0o&+BK^-we$I6yc2KT-X0FOF6KLDyWQ#}Jh-Q`#kr+b;t^p0?7`0w z@QJ~{JxK3;>hU{oZr!}Khv%+6wSRW=5k3Q?2M1KeUtha6yjGatNA%~N@ z)H`wTj@0}j?EK$-dZnEDIw-k${RoSl0i`k?^KG0C2iY2@s%3-8}T8lR}*Uu)}g0u@;VBUJ!3?;^* zNm7g)#Im|8IZ>!U267;KIlX7gd82Q+J49H5q4RRbmSDNvJRTB?OVte^0WonfQ`L^t z5CV|^eJ3+_qG$kdO(eiTZCR{$)~(5<^sG6EAd6Z3+Wj&BhzNTKHJm|)Y)Fi54m-b8 z|NT;Y8+o*ZyeycDctEcLD-dZ?Xu zfpRz^cw{h`O=;cfe3e$~Msox0;0kF-%^O`!yZf`rQ&OM zr}N3q!@DQyHkr`&zN*$VOvh)l*S_>Pv*qmM>{XZM@Xn2+ zTf6)F`+>Pxc9ZO8gRL#Af;ffMIxi+IUo^w>-e`x&`DCIG@7dV{n@vm+>YkExYNc-_ z3?q$3+}r8*l4l)W-S6GH)!!QS&L_@-`KsDI?A^YzckAXZJPdpN80!ZQPq%t@cx(I0 z!NK7yO%9f`J@-6Yy>c(FUduorf$sy3=Av!8mxp&>Jvn)9eDnGpJm2fz#Njc>fYU`j zIcrn03dBqXHBD4fI83k%1xz_cr~(j<7MRSmYv3j!sH&H4*_#94?D9(p0Qi30f3>9m-A8WFDX@MOC^$a1X*W7y&cnWy=R|0~DJ`7?%X?Y6O#vypBa<*Ot0^d3>8NpGuyfJ2957h04zAHcAod_ul8*C*UCbPaKo7JF zssP&XlG}h(qRy!VNiHAxzQ|z+BT%%=nsQ1Vx)z2@UrhxJTz%bj>m_ybHmy7F<{O(o z)YLXE46wu)s*0*Dmjoq1T*aNqBxhQ$e6{G-lP*m%mI`HXk4;D=FYetdjBKYf(v zCrGEj3F6LRI6S(sf3&}|T&+;sa`r$^0bC#-BaCh5#_(`7?hisEi$!e5=UDaNJsQ`F zv|i1DAqMY0yt%iv)zm#=?ky(E>1=Xwc5-%luw2~ARXaI8nLe7te$BomQd#nO)`w^7 z*Iv4N^5C`6-r&yL?mYSS+qKutq+KlL%V{u8;=wCv+c3Xqrx%Nk)99ccUkz0ys~N2p zPRzS|F;dg7QkQK#(dkm*){hugHi}iOLfc_53R|Q8&Q@O_)4j&LshRsx4#vIlppF@- z)3#G@Ck(FwS0bZW*IWB1TT7N*;5A_FZo<22YtRMy`Wg9|x1W8_Q{(3kZ}e`}{j2De z?wD+8)#cn83Ar#qL;|uw0;v{aNipm=1Yp}x3$4WTLA3FS6N>iko5sUUF4v1Q+dyIC zTyzJ=%Cnid5KIlu8_mGfQN{)&EF~w&5(*T^Oo;>%oD40lZb?{ zp-~7?As8sZoU00CmJK25O76Xyz6qDBN6?Tmf&z{aK5&5_Tc7$5|H#Yl{cBeP#&5s5 z^_E4f+=i)5N2mp{L~uJG6iNi%s)PVQ1^VvYgFiXgf7;PxGFMU*YiheeY65U!kSIIX zqwza(dwqTJ+T=g--~Hj&{`OzK89BmRpfl8+<79Dpec^#qEVC2eV3xC!5t}f~Et|Rt z2ck9ymK=6@c-xlY?!)!xKDT)KU429`1F{)GLeFw$A_gTjBH=19SliYN5<_`iu!tpx zkh{4t3IESIfHo!oYe1C0pN$3d@){7{Sm}K;!6;{bdgF^qi8`2oGWa2AnckNHak&7p zro`k@SE}kMb6_p^%_x_{D8PvVIFK1svzwC$1$I*yn3)2>tdvxMqQZ;+HKz^+9t>d0 zM$YiAE15T-gw!re1qvIzTu@jTD3wbr?8c==N6iWDC9uxeFrrIh#kBYwKm-Gkute2l z9GKV&Ucxh%8hcFzF2SbeYht6aXBeCdu)QlpUTthWZ-5R+pdN?`jLe=DX$dWM$>m!* zBOMrp`U=Z7=}6U(Guk=q0+?TxPdOyJQoHV&wWp>*n~?p@w#D4JD$H3Bqr_eaF?153 z46I>8d%K>tuq(1u%t0HxocwTOZG6_l{T7dssdKPJsntHQ4JN+}gQ$ zbhKD37VYBk-GQDC0YE!!j}EUL+_`amzc-pT^Oc;<&QGyCLgL-s>*!VRhv0T}aP{cM z&h8bdquMe|Pv^RrFHT<7i*B`Svb9|^VI`66X4RZOoZhXt)A-6)FJAn@LtWFgcR%^I zZ+ZKT>$|iH_vQ~5^F)dEchHYgd7NFOvq$am$=rKuulD-8+#l3Cy8>k7#Zz?RdO+3w}zPw1wX7y@M6HV-r%TBgQi_$b!PR0Pc=XF-08LF^7k(Dh04TL%bToe+*P6G z$tj9cbj};9Hj!y&5-&J&Dd-k*aspfGr~m=kHf-lIi6uDsB_g-j`B*|IU@j6^?k-RL z48UP1r}c96a1#&+rcR+o!RA7V++E!a4hjNy%jQlLDk6h8hiJLmP##N$005VJM$tmt zOhwo{7<-_8YU@`Xwcor%XT)=NG24!PRKxdOEI$Bz;Ya`Ri+|<^jz0L#oohFCO6%*J zi@V&9gU_ex3FJQF3RrC})8cRG;2_`-;Rg>7KU|M)!*fPMr81Tc)R700&8UN1SV-0| z8F>H7aQ6?aFJ1>8|L8xT{@Fiy_`c`Mqsk0V39HrR?iEHQzwMU?Xfh_w?uP6{LEMcp z!I@p%od>AihUJmt(XV{^^!NYK8>9V5FcXA8szwmcs%7XJf}7^ldR7-kVd?`pWwJ7= z5jXpv;{cUKnIsYbk@CW{oLK?@ zGANwX$-yPhO-?Zq!BQrvObH_bH<4Raj>~3Xo8=>Pk=|j`qC_4uC%wgx5c4O zOqv6=ZfT9Q0w$N6LnDe15)a+SUGHy?YHiKh39d?t6-F-NJbbsEjLyjStY@f8tRetzjIy+zAdwp_#(O#T1 zi@7ZqyuUMouj)a+nOyZ|xypE`f~_q=w~7LQhX{)UKAPX0tr z0!zs`5l|FfurX~4!N4RHS(n|NL}0lb!cDcn?zxJNa%A)(iiQxfIuumYdjkb7hn~{5 z4T32+5EE%uF8%CoEY;H2LVGL>LvY&pS=5R|IL+*9N-SmtuGgse~k=?FI_cM4yNK3yj+gll}g)B zsT3oU5UZ;#ZUYZL`J0o)qbuV>xI$udH_uAKPDG3{{4Krk?h1o;nVB{vSepggiMfFL ze)|?cZ+Ji78U%Y|so&^3Zyg-C!(nQ&fdi3S;bmgeVjQ?wh>DA*qy!|eW@8R4VlWie zguxY1r68^b5(#3aQ1^{8$xtKX+^N(N?y;)$GJb4jgEAr#L=d$2el~foqy*9~F)@Up z3T7rYg*!I43K5RPfz61Ji`|Hry%YgRAdnZ(E=LZPn{#lOnHmRiCa0q6w@5Sh9tCj+ zhe)L>$FeIB#0!VZeKT!00ZT80KGPBzoIoAK$juYbtkJZ{(=vCxoB%tZ==G`I(IA{9 zubRACS+jso-%xlqGXP56TD1erg*=5C-3S-}D|l;Zl~WE-3KV)hjysS9^no#$lqfrz zP8ZA7OiLo=T=eleZpi+fl%TJ^i8*PY*oB@Ca~Ke)BMGpeigT9+$bFV-`}#oqO; z!>dQzH}r z<3@8m;K6{mNaD=aiDz@ZnA>C#=Zj2tn?~QaU+Hs)WIxO z@RXdG;1Z*2CNd7Jn%$krEgKl%Kq4UCRCszZZb&(nP_?P;EqyL#>P{r(itNnJD0c#= zl&N!x%b3JS!f>NEMs(Rg0u+}~RL#V^DS~HmZ2lyP6eDEWN(zOHL-80&WMmbgr|`| z`}J4Xub=oeGxBUXxG9{?S*ie2awGB7wbnIUn2aU&Tk3%&7!?%LTQJbSH4FUaR`AC5 z5Z>~;W$k(MbJ(!H;pGlRE`i~$ZK91N$uLHwjd4Y&sFQ^eXRc7yQV=IhL}0O8l8xp2 zQO=o}Sp?>;=HwiRgown8&x$B#XC{dPb0s5=mNHaB5Kjpuo(PBtZ8SOTo^ z7;B=OO_LE*sAH&O?s#*DSWUZi)3sey)y$}3Rab*Glc55VAs3Wu({=MznlIMP{2{!Q z*Bc_mD)xH4SjYcAUwVU=I zlRoo#Q&$9U_D2VeUBlQ-TR9q)4pYEJ85s|q!`A#5_T zN~oQN$e7=ZA78ak=CjRJb`3|P`s8qM=cpb|I1cz`UfnKeJ6|pr3TZbRc5j4M)d#^$buLxrY!Q0tdje559)4{pRw=e|8{P1FBnFZpxVhG#HR1l0k9AG8+*)5h-cU z^n*JI;6@Tc>Xc;|>f@X-zs8eqryu>pnWMn~Ds41}TL}g7oC%<6C>+bKQ&T3XN`Jop z#2s4f2j8>!_gj2=@otBHrT8>Ia@Pmyzu&10V~L6Z!Bt6^0+V@J?YYEH_wk8@LjNxp zmu7&tj^#6QD%*|#p@Qg<$RLIgvcer;jum+i>RU?Lon6@xw7EQSXkdZK# zu}N0Msswscs31g^kg^Cn6Nt%-pqBeWFC@+i7!|M*NkPIfIk*gPm;;yA5C=B35+r2I zWH|&tThB(3oGFA*@JwVzB(O|?F&ypwadUEnC&<7G%{jKMaYjzaTj&;8eph7tF{%d^ z4mwOEhpuZ1wyK&v zCF3Tg)D{@gd7o@9f*8V3>OmccgK99@R!6>dpaHglnUdQhOW<=Q*IH4~dCZhm$o^%HEClLZ~O(jSQ;THMY23j>dWa zi0|J$NSox)tETA|XW5rkJ*lP-+T}jd9N7NK;#c1v9Gu~%UjQnWLB*(%i3kcKg1Psd z)&w^v34pp2oD9kwB*M+ei#rqMJ$u*GT^+(yIG%9t1rb2m+GG=nCFQ&ylet+of{-wC z0K2P^z}-O1WjyTaYJfONG0q!-1O&J2#VF7R5wi#n)Qvqk?-VJX$>C~7L{yox7ZZZU z#ZB65byuGl5Oi&&iI6=k-D;S`{e(<_-s`JauHAeO@M#~7y~~) ztnbI_em#w$zJaf|lnnvMlHsyp8v*1Nb{&NZRH$dgVhv*Pq%4|Rm<@mj7`%<<_pru) z{d0N7RDZmjJvQa9DCNn7h#avST~oUKiOW=l$DAcb#%24FZbQ3x^|hT*WT z2g9nGwy8y)0~>eUZrjwgOh!Zl;kpWg5v|4!tQVIT@Bj8A>gwlDPWAM+fUg4y;Wczs z%a@KknDKDBVcKjPySSd8KmR0m%ab=g|IWL2e(=jj503}#;rWd{db~QnPTQ2Ks+!%o zAFG)hsyL6v`)x?%-kQAm=IE7UpH?{C(mg}kof$x*m-9Pb?uZWpP!veb5ImC{Ob1>Gu|*4o_8SM7Eg>Z3S{ zF`5wV9Sx?FK_&$Fw$YpCL6nB0`oaB!=wz;^%l27XLh@j+4?0P!hvr*Id#T@8b`wQu zd~-eay?Y!+6(}$#Qzt1|)#XxjkQ9r&!@EL~1(2YwW)#_T zxn>Mz9Hekn3Xj)SQK&3^O)$5eg3d`;%+0my?Y+W;z~rV%BF^R2xtn|0-vjQhFt_Yv z<&(=I}r{sj5io{w#0<{6B%S@2G5`9n(O5 z9q}$#KN{)tBA>5g$Dz&f*1R*SiJY8`IPHIX}c{&a}a1oQZ~#&B|6Ok7=g^i9Y%>wi~Q2ElN2J( zq-@&0{c+oD#`Q?a2_=ig45}2}++DS#fT?CvVg^Wvxp0a&imAE!%Wa+SS_F3Ei5&r` zL_&UMv7p^7vi!BfA%$`$93v@vQqRdvNd(sGFDVq;HxoHb(Tl#Edp#6!3?P_hm?KDu z3?(AZrUpptM;De+s8O1^4wkZmIZ(+OU?No`av~vzyTajC_;AE5OaPOY-k5dd=H;8U zeEZIQ;AXUX8ZJ`UKWnxFdtNoXv?M#UaNb$-wgn0MKZ&>2mH8wdUJwjj1Dn73PpOqsd(&bygL)aWE^O zhzJvhh{$MAjfVALFsR}|;%u0MwwBN|ZD*DYaI{LBgp>f!*sNCR8;`G_=C!5mDR2YS zi0@)}G^hi?JB+BFn&jnbvs`bVee`^O`D`$p?cF=N`|#+&y~*K-x-LJuUOhRzdHVb; zAWTk12a|EWLx&5?+gt_Dx0~B;(JnjVs^z@h*l^4Wu4Fhp@I$c&uZ-?KoSht2lL3O8 zD>uo{H+Xu1^K;wWY799WGU_^d+v;NL9eE;8)NPw3t(u@&F+JGUu-t7|;x~v379H1q zIF))JDspmfdjG+AI1yo9E}NT^$;Fck4z7WYX5p^wzj}MTSUlOzZ&-6xhd9`4xBIX& zAh)*J-Deg@J{^F`ibB)fU5mO~z``P$i=`-=8o`K4cU1aojit!S;9jP5Ood#T-3Ss; z7($g0xran%YMD`ZlBI)#2n2HoC3i; zn-Dm{jGQbRl$@9XGckfJ$|xn2^@iMK|LQMq4&(*`iI;G|?;;%AE-gbcsEqnqmF;ksUj}0hsS?pO$ zYsLaXnbQ=-JyVzhLjaGScB?gJ2k=agep*W*fQi(IKouu70!tm-%yP#PU7aKpCZKyU zp!KTZ?=1a0^=Bbe0~GMGHw-8Wu$OUh?uDCLjNxoWN1UwBd?;A}WsuuXo{Ut@0YaG> zxS6vQC4Il`ASO6zaYiS2k;^ln?nRRmka7>CbGT}#gIV_Mg%<>ft0J3eVj-e{D8%e) z-WkULGE*gocOA-67!0sGGY9vcNI{Xv#muM=JP`8ilr3czLF!y$$vNgAy_e2SLQJV8 zatc++OM|QD64j(cLKMqV0;lY#Tz}*Tra$r1@t1yK15fCF58?ZuHS!ry5?Y#<7Jv$) z!#EsJBtq+^WR2MpUb12~I~H^@cg+lE7eKn1FML?WK&Zkf82)LXTrDR(Wjfh)L$ zZ#}IwcL5^7L(LY0+)d zVY@-QLA%(lp2ACV*&*KMQh)`lfcV6dwQw71E02l2%mi>eYzg>5Lh^Q28>{ulO-^N zB{;*uWe355S)`{vXN4(AqySfQbq>N39Pr$shZ901XwKRu7UIAL5WB0pJ98++C2BM zoPF!@R~@T4>;^bQcLm%4x1V16VBi>oW2v1uDH}Yel(ZN4>kh0BfGo3`OD1=-j2^@a zF1rZ;+Fj>%opMfXm)p)$gS>`s;ew<&B{Sm+)u0N4L0j)(y8wnj3pG+OlsSoHl7jv% zGwmrnZ8q)Y<@)3Cf|~mD@#5;ym0jPUy9F+Q4DWyyAi(PwygMA51o&+XQLU ztwziFb@yb8cAj~#I=wo7dh@&+3BzT+K10SIFDg4n~v_^J(}&+8*c}ME%R1V z>gsmeZLYVTbsdz(L){-*JFaID1Jsd3BrBSZHxa~kv*m9-Z@>25_VG7ld66uwxn5tM z(ROhVLzO$Ml&^0$saeBsf?VYR-EMFEn)YTQ!+J2AJQxp$`$J;7_h9=Xb6NkPT~OpxMB1%%v-9z2^ec?MOy zhv8d!`)h#xonN~C*YU93@aYHZ-2(7HWY0iM>Tekpp7iVSw5N3k4$p9{(R~9$(oJj;AVv=uOJ zpRomeI){HT1O{AQm|fkZ<)Gg zL?Cl#5|U6d1CXfrEQ?V|E3@ zb9vo)g7A}nVDxYPYp?yU{_@q+-&vqN1%~L(fpcI30N`HSDX&s>f_l#^)OlcC@~(ky zfYq*3)SJZ&megTTWm9JpC*!D=B0xZw+jZA$y2iTB+HFRgkV`UGg|zT?V=2WU4+f#C z>y3wbyiIAlUTr1U!yq;4aj5D5r$+7aI!na^@$Ft^q)(sguYaZa z+HYK4eXz+*8jRZELE5yuO*yB^b;x69x(e0m_<;|nd)r%XSCqSU*`>+`gILW*v^T0z z(ed5!o%;h%-LmbjujU^-%4YkkZFv02&FSOr{4`yhZ?^OG_1We9w_w@Zwg#ra?`1my zPJkhB3_RU^jtuay+L0G}uHyNBcm?{%P z3g3z(1~nk72P)K>Y&p~dXD62+W(0E2Ml8sPgMd-Q=A|)!UZu3L$j;7`9qzm^n~)h$ zLCK&Xm?<%5@?uss5ONJ7?3NdDaj(c3d5@$qufYz_L<$5r6J-bOV%Lm72IFD`pwbIL z!NRyF_s%&WoB%bj{oP+VT{J(^bo5VtcL@N9Ja`*4fk#sZDVO}7UUhE-FsN6w3%kP9 zIk3BuGcW+qEc5l1Ywt}$R%I6o!OWOk`T?XPwV;SyN(>Rhtk?s0h5FMH|5EWUCj{&k z+D}zLFDpNbYTzX^m{ZpB`avQnh*}}bYMO|p7y^mR;g+?$3Lb|SC~70@@alpd^vV6G5mXV001i3CzuS06Ca(jXFb>MX?e0tfEErA5A;iLJ-k3Wp#?e%86Z9n?GPpoZ5ciyarbsYyO zh1IIrtRUb{)rc%O*hvzFG#K&G{mH8j_Fla+*&9r+7TYIRo7L+2$+Pa}{QkY;Jtund z;r6$F>GEq|`6OL0AKV!noE+YHb-H&@H_9J=oGxzWv*Yy2!}iTL_D9owZ}Q?wPd{3m zUF8(Qazi|z*{Iq(q*!4#VkTR(&DBlw;rmyQAKhG>XSd<=XK8t3^M!6(YMaaU>8)kV zj`leKI0WwRl0FAO{Sxy7fXv>agF9oY$DT#llXVh`vmfq&W!uG^x*7?=9b5vi8N`5k zDl@r2&Q9uC%jm7w@4<-4vT9Ne#1g!;VTs(ec*8(!n!E?MPzeBlFdKnbbCD7Wmr!D6 zDy>~N)y%@4%`*TiNg4=3YC^~cr(D%_+jJrk6tinVk`ZdaL3uJ69?as+=0zpS@aISu zIlUSpGc{$a3ECQELIckzXrW#y)lp=373v&`yasK6NS25R#uUh%LBc@U;{#zAecQJ~ zN=X%os#|ZHqCm&DZ+$**>?+fAU-91R#UqJF0smLNZWQfy0Vv zDS-u~U?$ICgOv;eE7BSVmH3+N#ul5T7Gnu}D5pRqa@FFdP~|E@3|`c|kW56Rse_dM zPbf2u@9}ui?Qx*b`$BlB`0rK;_)DvY1KuZJI-3zPG03v@1O;LM6?GD)CPTfvqS z%1*)Daz{eMp$KEBBDYL|jhqzyP^l>EnOIn}!HTazxT+l>>Sw>MimYXinSv8BmlNM^wX^J|1U3?P<`7BMR4Fiu@QH|nSax`3G8Fe4 zN?4=;Ua+VP0T)#jn2aEtbXdIo$)X^pDEa!Gd`OhzZTn^-HuBO?{GcyrIrmE-qI_IjHdjG|cfrp;Yumk`H+_Uh@q{a3$m{MOrhuN_Qy!{;qu+-#qGd&<~K-UT{f1Q0L-1jsMM7AIzVl>(I`n6(6>qLgt1QNO(~A`nM$cM=1fNt_(H z0l8}~=VDlfI1za$tQa>lCNXu_B!QjGb2bhV1PmnYZ}OZS##}bOR#bEhGN5GeaS%7# z!7O3rOf2LMloVc9he{>6%?v^asZAWB8*<7FBg?8;ct|YPY$*!Ep%_p3!Nbwb=`H%o z<4{66PdSUQ5;J9UCT9!fhAj>UA-2+~1QL;hBAgj8pRt+I5Xc~=(#Syzc)yX{$stjq z4_`Q-%=_n;96?~GyaFK+GMiDn3rv7Z0FT}ekS~By0v3t5;QyHj%!cA_B{Fp*=IBtj3>FAO-BgLfXQsL@ z)e8q+EDq&@*_{A(FQdqVUS2=UOtoy)!Ayw3y9`w@Bvj5q5I1#G7J(E`V6Xcrqi*Y3 z7A}-cE+$8En0a>YM=|7KCSo)7oJpb+K|~y`>ZUv6jJX2Ds!XmZf>(xcX{K2bQe3jV`CuK&w!^A}DppZ%l#KlZaf^5_3V^;94I_5bAk z-#tAC0^)>Z2q#afWSUmUTljj{DSGLlu9_@o%~W!a&C83IeiW3ib6Tamab}MKnSf`o zJzxL?wZ@Q{GzL^d=1LH1WODD|!5c@ff8XBcU!B|=)~h*v{d6izX~yB*qm0q%w>zX$AcF^tW3waR*^B$~!czrfW)2~vBD9{2ETH#bMKdP~r7v%4 zOl8trq{)iXgDu^fKyY;?k>IL;5S4^G5ckr1h)WQMQC5Hq!bV__u~}kB&kJ(%T=tZq z&)n+;;RIKhl^#DObpbJZ&gRPQu`>6>FkvFfPHg5Z?CQZ8uATyORqj7H&8GARKEL;S zUwQu0=B7bfm~RwyiExK?P8nDm1feG10>O0cM+^m z#LnjG?nda1A1^;%Q0@w))cHO7u^w|c)zS%%;nd2Rge(}l3;2mf8W!H2yRf_;kSs$l^kwNaHNv63NR?32n@JD z@tlYWm8q4CRsxlAlVvj`OGb5cMnG4Rx_kmH2fBPSo z&cHpyedR$0MRCiWrLDHN(Diq0|A7EE_e4eYRYV%@Ovy;$6#&?6x4F`0g*X1n=Y-}X64WjT*M?0LPB8~LfK5zgTXC#n!DU3?|_ETIvgnar3n6gVfczj4PBwl zz#6E5eHtCay|Ki~a!#AMu0H|F^0117EhJNIaTv$5NeGj}*}>h{UaR6HH4Bd2_;|c` zINsZvspa|eo72tN^8A~l+4u7+2lbG$-sa?1Veel3@N?6*-kQDpx!LQpYLI2S!KS0- z^=k3x6Le3PC&%N1y$7$J98d7Z!+3P$PoFgh_v`(8e6lacQ}Ki^9>@7Z`sl;1+0Hp1 zj9mAE&1UiSd)4bt>B-afX3;LM>&vJceVt%>UtaH0r0I5NHef`W^ixT2wkA{13 ze>6t*%Jo_8hPH~;baa5~`eM;tt-($_=6v691KhlzKYcvM2kY>;y$q({F(qb!2T++W z6@G&YNG;{kl{RxQ7tALCEZig6O_9|lln`L90s&@<@*H

    a&=b3#WlY^sLP61Y$9D z3T1wLgtx@jSS{7xtf_lg&EZ# z|HKcS{QH0Py&_26SskBQ=T?(T%Gd@Fpsp25b~H|9ZEK0ep%9o=LMQa(fd2+3a1Xh7ArhtUngM**ca&GIaD}Vp?3pA+lHNZ8SL-rNDKK%7 zthrQ?0vk*ucy7ye>87yE639K70}u-!aCEpqgxFyS5?wRQIf&&<^~ee1T{y`NGZQgLEk|HWj0bo zbKW-!`~5MO>!{c;3gLv9-L)%1Gp9fnqA0X6%2mrJ6ZtcLs{W^bI!-?S=rCxrw|IkY zehF)!fpioSaTY}6l-m{Qt?T?HxA5-41SmYiz=h{qHaE<$f`n_Wxy{?#ibJRwQbYET zr$7Wc+ith5suPQF6)9GbF??8t%;x0Envt@#+OG7v$(Ls5pfmUa$Y4P3qJF2Y@2jX9RKsc*Lp|U@j+0T45cWso*`N*qA;!tU@kD0R zx|(3K+Ac5F7thZ1;vcU^R8`+M9@j=&^1=Ad-r=3e{a2@NzIFV@$#|c5z0%8Nd-nYN z=Hdf%S3Eg*{p~lu@b0}Yer|L$;%y4k2{GRerar9lfZG9?L_T4=pY+Ma>hjs@6I|Yp zmAtxFv4`xV3bk9>w5!#I8b-b|uI%<^@%&;bL8?K0bTYl_rbtLhHPl_8qoeU;I=%P$ z-tE=#{Q5j=w`tlz6^4_lTU4kps7^xn>UKTKwgf&d9H6UD(%<~ApMLRk>z}z_^Zor8 zvYHc_yAhaK)U1SRu>j1ToW%>b-Nj1?jGKd?*}2%<2?$({+Mp8M0ioGA7)#%Aql-I5IA!M3&mxFm`( zu>$69?2N$WB+pg)$v-fC=biZe`?{0EG4fN$vy9i6Y9=M$61jO~WJiQoM1^lx5tK-Y zT8F>~&g51Qpk+^}1a~Uwuto)=TY$&Aoq0(VXLOFbhawk+XgLkI5rf?rs-8eH9(?Y$ zIRvhMbS7e0y7=4jt=t{td!LR^0C_2p06-tJifpRacET<}V?#*b0hGcD{u3n%> z%v=s7L?B{!lt_6F!9`$dW*noJ9jcoba5wexrSGWa?u9F>*4qK3)@A- z5EBP+heK#bog*fW#d_*a%$2|xrAE6GpgEV`Jca10W+p@w2d0qHsA)IQQoY!jJp*u0 zi40CGAv(bn!UPr=dEjy&B_krX>@X`@d=R4?5KLi4B0G~h%ne$`wjj9WL`EJ0xf?M| z%MHL10g$+ZRh@~w%mz4^XJR3+s{;wl$W#UbrV4L&tmy(d>Dbl5Okz&L!HaK4I|frX(tv#F;IJbjN<+6|UT6DxZ*SM!{NJ+tnf+@hh~#ki>tKy1lCy~+wk(P4y*J=@{l1pZCb0Y^CoI%VbYYS4M5Q#X#-Ap9} zCznX%T&!E=^Dk~&LfQVCM6s0I2|-G)!&2fXs)^i4LJ>N<88cI0fLxsl?jMSh%t~SB z;Y`FJHiAYGm}aZ5ZifHhS66@g*CS2i+wb}xe@H*_z^hS1GDV^SCUIk;082_P$Zxzp z_|t#z@ZWm>tfzazz#oIo+>V_FrNLw*ff^?*5FuuRvctgHU4W|4X<%ho*picxIH-i> zf(%UV0_S4Q1(zbpC4IyZU$AUSMj@GzGpJ02L1pTqsE4m&egs_asz1~0`@-M^P)8?X z{b<<-s4yCYB^! z*W4k5QiKtTJoB^Fyw?TwL0{QXbv21DCRc~4ksZhFeq{}B^D>B6^)va0Ro3hAh=UOvbee` zh3IN5gY58BOL8u8YUz3XBAJC zSTti;YMR_^kr%t@U4QAb1DTO3Yhq_tg|+a`z1>Nw0RT;t+qLJGgTz>Ob%pf|*awzq zuGh;&v)DEn4w!Wt7g4y+ill%jpYUM4fGb+00LAP>aLNCQ^s5dhZe1ox;n9%vc(dAcE55pDl`Vugom6-B zhpmo)_Ilo3JXHYvp=?7eH#W~LiLXg!yjYpF_#gUkiumH4`t$8n0Ez!?_ff|b#_Z2 zFm-P85?&8@PFm&|ea0=|Ia{&B5ji-iS5-7Kgy7lS$utvJ92pKv1~s^RXD^>V^GEky zp1R8e*sTw~JA)Pa8&F^&g-%y`&Q`{qu5MWg!Xdi5DZ(HCaC0dxlH8R|3rq|B2SO66 zGBt(f9&u;6d>2t+4SAoMAks^5(VJ?`+||KSj4kGBrYr=q(n2DXb5KVF^GwFQtuIE9 zK@E|Ma{(mGWu6Wua!uwOh6Cgbf>h$>Zb}?_2vRnJQd#iIff6Ovpo}t%xlGi{t6-o7 z3^5V~5-`ZkKmjT+V+mrNdm|!*VDQ06U!UdP;u|uFvuK2No-E&zFC5G7$~F==s1d8X zc4Z|J5u>ul=_ygrD{XEyt%=4YfG|RZJO(0s+ib2E%SA20jm*JfDhk~L*67x&`RaDG z*{pMFT67Kk0=U`9S0)&a;-ngmC#-vGblZYU>K|+G=FRP>X_vZq1Uv;+z?i4+zV_z# zKX`Dz+t#ONtMez<>Gnx=a4oqCwp+ivXg~RA(`9D$#~-&}`SoYt{`%?W>Kfy{{pr2K!=uB4!E|61YthB1*X!+Y zex*zCWyjkNP2$#=Xc8y)Q1j{hBmdy(R!&~k$!Ij)%BY^j(NUs{wJ(O7dA{A}*=$(X znTMeo#*@3_{o$zVbbXUVZl7H*SBqvbuTCcQco6pYCI^S3;cT(Iy0u&(Hr=+l?l#t* zZI>SbXD^F->kj{~pALWd7ya-4pD+LVm;8V5=Z=U*IppJux$YM88L8_IA8-2wBQAq zOR@k_B;sv1_^bcPFfy6A zWCP_d|KRY?{Zo5?`9GZl01|Kwd=Tln!qknK#%2KkNdlEP5p#Az1{59v1~Mpt)V#=4 z38cNolXq{lOHnx%vHGXBN-EP}E;&$6C<)BHgrDHlhu&w^uBzhxKb=#RwqLEPFNOLC zi0?Vqt`Wh2#wj?dQA=JE927uKNK9}pOO+720h&6~R`V@ThRMiomI+2qM9d&Iv!bmj zpHZv_Ze=lcW`Q#zk+YRgKd|+?|4)f;pDqDZIys*%2`^ee{vH3n>yZ<|MM{|@0A7M< zvU)c3!)7-Hhfw?@9D`*mrrG||6>@h334ttSm_wMDOglocUK7U(WK3%6y|*P0v6H*2 zX;v0?SE7JE3d7vI9D8Aq()rR1=H2bVAR-a!or>l#az^p#sg^LN0!(*TkusoxRH2BY zNqfMeT7s4P55#n&)e!8P~$!Pzr`w!j}j*rh*AHVkv{owC{pWEOMSw3l3Xu#rL2Vp{| zdDEuFX3=)dU^;y8%KeA0Js2JAudkDDuw1omqo-#p7ku#edACYeXPftb=k)esEyK}d zIIZg`S7UI{>^V~=G#wkodNev1?@tD?>G*m>M(7&9%*f->$-_JA^Ve^i@N_z%+DK5z-a+-+aYfm$hug)~=GnPkUMllqSXFmU#uSEw zz5UT_y}VxC-d?8VJcZk>aoQ;CJ>cWr2MQoAA~pBgH#NZ9f9G%HKmE_p-oBEN8(B7R zAgZ95+%!43B;1+pyq-mI#{wrW#sFA}17naevw0r~V?BU9^iADD`8RS0xid#_p|3d9 z0Cy%LaZ}SmS5#(Ju&DjsqwDijnAk#Xm2Y|ss#0Fyq$jQnj57+F)Qo+o`uKl^8Yz|T<~#8hEL;ak#MQz0W#2~uVv z2zcPd*o6kpA_Zx)xE$wYHy#cRqL=zwb&Emv2!%L54% zp^yw|pxtimX`$L_YP${6UXv5DymV`wl2Tzw^rBCuXFlfNCy3U_GZZl2p9=m3Gb`h=@ zzFybY?Qz;%rc0swd2ucpS!;uHJ(h!$xR?^pXmmJ@5|^E3HXhJ;TE*nsrOCM7Fivk$ z=iB{JT~Vz}q!p~Tt#?BV`Fmnj86{tHCm0TzB*sSdGs`RoI$dD=Gn{oKYn(W)po__t` z`TF1bJ5PS>k3IUipZWIN4_-Swyth{ks@y^d+_ru+c`*5rFEo$Nz6EqZto%+r7zWam zBM9&smH>4kp=>T@gB{q1hyuB}M{v=r_SL_1g@D2XE_*yL^8PaW_2T|A2N^-i@uJ6- zf!qrc&-=6#b~bj3Vl_)3AAvd;J3ukQ68iw&QB-(jC$r!f5tT%B0pL&}0&Sd3vzeu) zz0&UKi{oI7M#AtunBB7yvmq2JH?g>O)-)u+V$KX~eIygp&E z^YiB8PqwGGnpyxdzr5BD0#`T5m$L_h2d_`we0TQnp&Atz-DR0Wbg;ROoB(j>{`>^VD8hDo7*39?jeE~O;{Et(43qcl3& zIMHzC?f!57*7dLb^2NXXzkl@l!|N~q)cGI&5F!6Sc(IDG?2g$c>3QkU9X5Meh$7N>Bk9vh^}2a0QVU*Cugk|CcU* znFf2Ggk0KN4ma8X>y5KfUuz`1m#2}Zr8!ib(*T?WjyQ_l6<0@1P5h2lJBm{FdN8v26xhuyAhPkr{afDfJJE|j*F^dyB z(f0rWm4eGSqBdiOlX;&dP~P`IQWYPvCpBXi0SQF+_UyIaKYH&s=g4Do?o6ml#XbhV2DabH zfj}&)ZkhPHCl(_$v+lD?|59~jwuN0s&NRPYi z$)Fku#YlDM)l2`ZqP+wL>ul~B+iTdxOXbYJ>(v5*^EO>P-(FuW{o-rDH-HT=@su@n z+s(#Q*ULNzF%0tc&FTEvhuiD3FxrQAA<|?bvk4Eqx|$8ELD#juxVc$hzwfcZXmanB zH(!72;hn=toAufA#inV_pItu=oY!=L$*Hu1eK_ zr(=zIxwt%ix?OD+b*P3H^X2^F674B4@1YmihaA>}yNNr?b8Mf#@b{%APb*qN(CBjA zsLcdrx8CpZogkH%mY!)a2b;m1V`Y|$!P1hF5Qm^Civ*B3_1-4yAwukCY6dFVd;}$c z+=wNjN4qK1IP69R#&9aoXU~a>rU(kl6e1DKGI1nJJjT(<1ULf-SVAwb-MS~_eaJ*+ z!vP)f_JCHCCr>Uv`D+J%>#seNH-7tzZ+AcbxvhKsmA`-Wtw#sI4-Bg>P450A50AS% z)Wig*pbmu%NIDn^W#jA~90gdEOD`Fo3WFJdd)=pFmiwW=c*=_D?0s{?`m2@L%)q-z z2dv-C^#u$LH|}$T(dz)&+{uIi<1sut#7T&kikW~Ek&%fqAdXTS8OmS}9LZbFP1js^ z>ko>rxD?>wIFi+HaU&R**acuvHs;wk(UB2MM%Kq8tMZBN`jIb zoDj+vl)&zlc}qyHMoumn)Q+a{r@lD+FL8x@!};9XBW;?zy+vAq)}NJuQeR=M7?(?d z$jC-+5=5O}S_7PPqq-*B0t_|~gDcnwh(L?xDs69NI1NrLLklzD77z?p=9}kfx__LrJb7~c?8(h)c?;)wxEJaXPvY6tve|5J7hAP0 zkK*jkexTX@i0Vk|RbJe-kt!z|&FVWR<7zq@p0*cfUE73J8u@m6`MlL`RS#-4UtTBM zdRor)^x0WFzq#zH!Liwb^2);$`AuLSm;lqk_|9Y+x9HZ}YosM|zW`K&FdOUghR{;I zZ8H&@ls$Zr-4F#egE^dBmE0Zb5OF#G$TEv2rs_%2G7Y?oddv3OJi- zxlkR>5hc^T4oC!i?P&k=WTTpH!4f%vPlWtuvwfP9?+b<@- zfZx40kScgzqPbw8yeL7F8kKn6!cS{^H#3-ojRO%Qn`MI$({~yHN(-p;{mPOC`c5bC z?w0k>{AaJGH7aCIA_6-}X~!7c%#{#Kb3w(Krvfix7M3Cnvhu?{fD7X@wIw+kM8&=3 z#O~f(AKbVKuF6dP9Dob+&LQY^`4o|po1usHy#Py?!>N!wrC&B21ZQHmoXgL()N_Zt zs2!{bwTzfd9bjT-mg1vlVKB-On%qR-%-y?a9OA>|GGx#9}`a$vx2M+cN}$HK9LGb}MN!ARKk z(@B@v)^w|uos@{c5mW=k4X{MFPTi`CTV|`+TM5n)CIFyk-FDGb8xE5wF<_c7-3gWf ztl=Fxg%h+`z+T>Te3xq>&(r*yn`P53OCS6-#8;#~815Yt4e};zm+Q^-^?JY*()#Mm z)=N0Kc1^S1Y`V6^w(;fKE^ijgi>v0*x8P4v9}bQl+<)uMH{X5m%EP^B2p72<1krU` zUfkqotBc8MdfX(%qet`k<+dKA<5v#%?@g!E7)QRkq>Jly!|mQ-jJ5BbgoEkyWRC?t zKi@uimYR0EUUAOjq3ngDfu*p%(aUSUyoz~!%bRw7ZdGj*X}#6Wxps>T`xx!>u3hWs zoxMXE&nCCk>)javN?1B>;6ywy&Zvfn^$RGRk>9S%(w-2r6i#z*cZ6q0)^ZLfD#J^1 zheW7ncSaaGiq$5;V5T7F7~L`o?i1wH>oN!+j;5twV`LyHDcs(l_qp&J#NFJCf`B49 zoRV2)F4Ho07jjZK5Zzs3e(Tj~S?vJ;r^sK)&F{BC8G;VPGg0suS+beBtUa!xH!%i< z!3R{$27{4#)n+89bEc}Xtn87g@sLf20(B>%27U5i@k~d5ku~DlOE{g09j-uhSmD`~ z&7L`&1Tcd1gbYVNL-!7-+`Z2)E49;0Z)4*W;baITO0F(}k=zT50&X=Sx&vYWmG_g~ zf!f79oAOLdlbh$wdigYMKLRdakO5`v#|IKaBw+?yc6WBml#NU&5~)fZkkqJ{o3fL* zyXUJ5s>HTRS%6i|mAU!ymj=J@NBAp$Z=ITR z89bMi$>yLU5Pkv6<O}(y1HBpo}PTc^;FSU0RdA%D>d{@usJ0EJ@#g<2a0!KLf z{Ahe13S=dSI{KmdU_lVUl|=7)su;> zjzVJF<~*GZ*Seh?jUT)+d*z@WL_eL(x2ZjQe7U_^Up!tPPX_fURDpzjd3CdSezCcn z=V3b@Pr_hGLx$7x<_hZ@K!IzZiE*%hG9B(sdBA5k1L20!FO4P4heXn zoLc8q@mLrgP$2F>41F(}ogE}(#_sT}aOMy|Ob`%x)^a4p&I%xPELa!>?wcZ6$sI9} zJ1mt*c+f8M8%}{eD>11iIC&4y6sJ-k&EZ}=M^q3Hf?Oc&YE>tp{qmQmf~b9PMTh(z zZoXyps2=W-3^*5aa$s_nu~W^m2ee$m=MfQthHSY3XF{SP@|O+gN^R(-U?J|@0TYPB z1!Tnn>flghg}c~#HW18+!0Ls($3{R8c!zmO?;=Mjmjw46(ox_^oCVl8q7)vtk4cq6 z3BY4xB{#>|mBB4Jm^SdbSIw#tyIAlNnMq5hafk`3oYqbAM4PW8|0XbhQGV~;#VZdc zF-8Im4042klsqSQr@{a?&z)1vQdOqL96;;}hq-2n(pNwJt{H%T`aiu7*!xW2m%sF) zdGM()w7)=#R?0}T6|0j|a?d2aUzu65c4Rrk2xlUp0@G7-cHeC%`cqS=Ov|TIhA>=4 zGw%J`Mgg&^`*R0}vOb#{6QSr1++bFy4{&pXsZtd3k~`)lF}S$Qs9+>iDG;&~IY%x* z7;v~bGdnr;dI%KVbgBQnsD?6?v;&f|=Pt-SE9xmL9(NF-wEjV4#aBf{l*^Nt;DH_F zeOOY-l-}vB3zI?8mZ&FixcY%BblpuS43-Jg ziD3cEU)mrjQ1XQNGp)nVJc=yUQoaJ;1s!4Z+R^>DX0v;<>5L%jO*LQKwCF%bJwlQ-_|zj82|)$Z11zg@St zSKHNc)pSjq49EBPk6t^dYJ{m=oGpe&)#P5B-IJq3Il425I<0ECS+!NHE>=7o(`+Co z(|R;Ow;7ISqio^yZ1vIm*HXok<2tXy`lel;EmqIYyUXVd7B|D83c zyb26~Sv`&i2M4p08HmotH`>%>E%3y?~K0weqmp4fe*0##pd<^`~w34i9n-! z=cviaOqj?iWr$frfz4aw+8l%xk(e_$r#vEbEVo7za#9a)0c-CEpzIclp{GELjNzVO z$%^V<$Vn-Nq5&efs`gp7{h>kGrPzZ=988LuJen|Bb{ewJ4Uv@z0C(AjPD18o%SY4@ zyCcBJJus`g!^I(R2aB5%J7Ewab)H3&Hj8HYJh#6EJl&}(2*A5PespkWObF(LvRh?m zmeMM43D8cPhT_mk5CpmDC)(5#&s@!5aDfA#m4Uv1!4c@io%+3oz@L6snHi9}!L%F( zQ9@^+?(PZ>HAzXrQfFm1Fo9uhjLViF?^Um*VE;R-kWDIC4Sl zL#+>V?+ipRG6po0#4^+8DBcHXLt=oss)|IgyCqTwMdIKN(xMk*h=T$|Ea%eODXS&J zEoo_um20Uq`-p-&s7K$jk)Z?|m_i*wBvs#U)Ur)5H$q?$v62E>qAaCy59I8gz1WBu zs>TjPQtJlX{E0sjo7t z=Wf+Cvr!d_=PItVFRr&Ae{^o1=f`8};`!6X{QRoBdJOz7@JzQu-M-T4-7tRb;AlEK z7~Kr_ZXZ2|hd7Wps;dzXrxqe|mk`ECZ$iFK&VzceMhka%e(959ARG zFGzYzMgT|lN<1ZIaf-0yn)`OH!_<%sET+y0;m4(t#DNf66UJL9LR z0o*47)X||JmJnQ3Rfz!ea>ljXf6vezp$m2xz@H-aj)0 zrkC#NPfcSziwNbM1cy5@lM|K8!dy8QfGVs@RMeSD!eXYbnL^+gOba&(B;xMmaCOrJ z3B|q$aug&z$*0q5chf9PX4%cniK9@@zb#&AHdUAxH@um~u#lQj;DQn=yE9F>#2A#YGr+)HFpB+Kxa<4C-95l7a)m3{ z8RUqdXr>HD$#<1rFRNyzT@~`ZSNLD}m+pQ4PaOUIZ;b!5zq9)AKc9a}fe!SS{^v(O z_viPPtCQdQNBOJ2d=4#Rc5?^AbJjpYG=N7yJ{=Xfx*2In^>kS2-@TYBo3$$q38WrN zg2M>32Oj|~aOG)}eI&#|BG)rXN9uE6y}MY7^PWCC0FcjSo?u6(m>~}K4)4X`cr+Xb z4qdXY+iW(QPH)37^XzbP|7idCU>e8c5W1AN;G6CB>iU^IJxA`)D)KEb!R*ex2X`Ob zJ$P{M@Sv_%%l5;^%a5PmUOsz%`t(Wm&Gi29gU{c2_ltKQzP?XNVJNGd&Q5Q)Sz|>< zhw;vY#zK0hBGc<7UEjvb^OSD7A-a4Rwky|;+co+5`m9-p485@^GC!YhZ|3k*;3MEY zU!JU*&kd;7tts;=+czGv0qdfEDD-GxDBk5Ug}UJv77nA3^r2~)$(hVq5q-h8%m zra(QEAcwU?Do`w#dq$bJ5li3X01?$r0Yxlg1~NCeWpXDb>lp?Fb1+efrL{u!foZ?F zb2F0Q1*`+Onq@5j7-tTVy}y9jT+I@M04^F+QfDqYJ@MQc6Ih4i_NRXO!T;s2zMu1p z*vk*0i#)%#PBS~$3nqaov*75IB3pn}UgE{AP`r%b?t%L2stmdrHX<<7#!X@QFDrdN4UZ(; zC#hW+KBXMZ?=qZxM93C0X+_>RnH0OPkH`Ws!`yueWSEOEJgJdL)3vuv^LVrVZKU^J z8mAF}*Sed|&A zO#Wy8+QWbOFY@>}EFV`t`1!$Ce>ovHWQ}7VD1$mS&EKmBV{UG)Y#m%YZGi+zpO);j zwcJW*!6P7$i1Qe_2iyP&?Z(>HDp#7)S_SnB{!U0Sv0AKiGHxoPt&qm(q=Zqm&a){oMZ5(f)WM6+d};vsiU)vt6%l$A{B67)%exKLpsI zmO&7BfK%TNE${{g*j)j2Vm3H=_MFX$P=P?q0Fjz05CVq)7T;xOSz&oaam@s01Tcrd zZcwvw3A!2+89)q{(rQuyS>FI~>Vakexs$qe0K=JBBmky?7k}UUhZr7m_~+vI4Ii9H9VswLawVW8-jLTU3vn|<_r@r?IhPg`!HbcbqN`J6mS}dJ zyT|SNcYXV{9UcAC1>m3l>AgSrPFvPl?R5K z=j;gVyhHfEbZya#ANFZhz<0HPUj9=V9F-A^J3wyUmzZ+CaKK=e$a10npzH=IqWH6m zRHiU=3Ul1dQg-hhzt&|5(yNookh0g^=DxPW!D3JjfehLuF3D%q``!D~3bUuo45$?& zh%<2vzBBZpn9SVCi2@fjX&DO_8S8FgEF%gBxR9dD0#lT4!m!jb7(u|bA(3VfF;xb3 z&oBkl%iIL+-oXK!Gu z?Z&sOw7i<*{1kYKYJYk-y!XoZwY%YP?6;sv%{6nK`9Ne^f!*6SXT@rnw;NrqyW7R; z;_S4UFFoICa~OrUHw)G)#T=0BW_*2VgwU<7QzWdzVSYsj^zm2af3kP$D8@T{50|y~9GNz)6?vX+n$Hc9Q znhwf(;8p=^P~~i{wUH3bmBr!ix#)0MgHaN02u37iTPHOcMu}v#Zk{ie@1@KC8u$hv zzySDtz?%qfB0Rw82)qZWK|{z83giTD(an*cAzdM#0q+A(fNujgz%910@Re5H9Oyr* z=|^4O^lFdLk_9lERmK7%_`rE>D&$hUaZcjqU=ysBhk&NswA-uo?KgGxJHWG-nm+_! zDB-7m>i+)TKKZ~(CNq@!y}y$%BLnUX(;TW;2oUPzYD8XA(Fvd+=B2^>k_f02g&qY_ zs()YK!%MsW?-2j@fA&&9sceJ`AjydV%i!2&iaI3LZd&HWeLjq!aPQ2`bD|iF#<*Nt zW$Ea-)n=tS0pQ3aAR)@R0I|Ik{IY*1CkY_8>|C}Z%&w~0k&Ozz8>Lqk%KnLj-5jo9 zkbyz~8CjMPO^r~_2gM-nrb_TaI3jnTkQbqKfn6sEW%$!}biPUDX@-Tml%{uR&_~WF{&(?ta3qSwPU;20N-W@l* zVJEK#`GJV2-9~ ztg6!L_T%REBCpRhT>^x9KhUtIiZLP!U1PT^zc^c6KRMNlC%^*OuTH)+7#=k1CUuf? zSkIg5)79hgqBg%cZ`X^4ySd>K=&0uL{@&r?WL%4|0T75=jcw&yX_j_#n@rtXn_o3I ztL}E)Hrq|Ry>8A<&)REF5B3jds(H3IzFLffu1M#Ln+-x>>Ud;>*jWa5_31GCmcrYre3F2W1CHW-swlME8yn8K{Q1`I62DWnW2a~ z-Mx5vh~UNrRjKYp4eCTeNB~U^w=O$zFUqjqu4rB|1wwC0EOk`4&xbLG8w%mSDCzxwOH`s%;`pMCg}JS+iUg>I<% zFze4ZxD%ubF$G>oxK>2-se^$b5DX0fqNQU(&W?^skdapgfY`uH(KJIwgF1#lIWKOn z{$X?ep8^Y@0^SAw0LDLv!*?(};MqP^EW_Geq(UeLxRT4O=sHNww(ZiU!}=P_3#>oF z_Cw&efsc_t!u&~tUjWT%{D>aYYdx7+q7{9DX-RS^DJw<9YFePT1(H@URW2cvoKlwHy${$- z$(dMokk=q^13SH-pBMg{k-C@ci_%u}Y%daIC=Q400A?mwER4^=V864Pi5z9FT zw_+t}%`!{0ti|UIP0Z52`eH61aUsIM(E=?MdqxkW3+l!cjXN`!$Z(BJ+3Ih$`e*;Y zkIyb1y|vfA`{%Cy*I#=5Pyd;>tH~92ZVq;@s{DQL?ETmeAAI~#<7rFM5=9OJ&gNu5 zgv)1Spa|~bBo3H1j7F^m@~6+yRxL$CQ7%Ub2$i)Fh=2k&o^MqvCm|vVRj4PO?!#|i zs$!pZ90}tey7PmxJp1jdQS%*V5l)KR?dm3T)!saAm*3t6W8Ed9iUyGex$(xjRlB-5 z@1B41bo=Oc(4GMU%wD_m)))832e;SD+v~-q>26Lh9#ibLZAf-|t*eVOPGwI$sOkX) zfg&ew4V$&C7M2&BW8$#TA3UfqB_$;iDz;K4w~)4|d4=T?EO6-4&cEFs)3*w$cuxqh~&S924N_&QO?=5>6Xpvs#*R9R{t3O?ax+!0Ki!PTX)p25Js7=8{&UPwafC5>DDV$6l4lbu0FiGWRz1TP>Fl#d6!Yt)7$sjHIC`ErTFEj1z zmYgGTA7!KDuvGTo90Q+6q>iIz-raV~?e*2ovy1ilBedTJI!x~Gzw+jT*I(b?J02h0IzQh&|73f4b+KBl z&K_Gwx@`djUU%aWP)!f_2K87|TrT+5{PBf7`EYyjXtg+Btp}W0o2I_qtMa0dC*(=A>gL*WM&Lg>6H}yqcuStgR zkP~eabxP&}CG9r1mxI;CVt&3{o_!2F1>Of9zjXG;_Y%(fgI7tWy@rawWgP3wa6n5u zOi|>c9}$=AFeiwVoNdcq93cf}L#2fTvywH!;_BvP1+`M_>mbYSIfKL!*g+M;3?lB? z4IJ6r3YFU32?{fqS#W}cKyEI?V3=(oPrvjBr+?|+{NaE3fB4IfJ}xQ-1uC?P7LZ?r z!~I7)e;7Q5U;$glKET>eBrAF!Jtgo|x7tek%UHpH5 zXTVS5;7`dLKRmtr<>4`Sj5I)70R#q=P#B>JAcF%GAr8)90Y$*T6$A(wDO0|G&zgJf z#gF6iNAct<$p0>um%we>{EbA%(tRP;2Vtm|E2bN=CHxMdGatsdG#PMkBPDCv_N-Zd zv$_2ZtltBkeAX=wAOP`S{O^tb?W%zFbW|>)%QBILfIw6*61yO1M^VXnIpYcyPA*W!9Yr5% zg&e`sL&alsGvY`d2$`w#oDl{kM~sNvTjY-VP@zCDD;dO8!uA5W7)l>0xzxTN>wSOC zD7mpAZ@UKe|D){B!!60K@=o|&Ywd_Q^PO|7%&f|q2UV3+l1lS{00{&Fi~$1@v}qfI zhXy>mO*h8aZ5v~^0XN{!&D7Awj7C`ILqZZl0tre}Nh+0U&a9kn-n{b}<3#MW*7wJb zla(dO{XHGeQ~6|O-Fx%ib0YTMYpwVFyG97t4* zTu2Od!@5kM4k≤6kW{$TS@=uiqdMaSE#7kzp*snMHzn2VMez&P-!eXLF{&nXq+D zmr<8rvH=vYxcSX5zvU%Y;*~y*?clK&_c{nVtjFga5x4^E0{{fH)>%K&U0GpnkEXVL zWq*9-dF(t1zXt3BeGHEFj~-b$acs3eAj01En4lPLP4~;`mZF-2JFT@-d9T~bjzq3P zf2lNV@5Mk?&-A%-)l;9|z3{~4>R_+6+>=f%l26BBI+~7mC)IqySthV{zf&JSJw9mH z9QF=Ji1X3*rq`DNm!;#qs=5ai#_wxC46vxBa zY*x<3^WpBq%AHtV1TFyMG%)z0<^IKgL}>ZiP5nG?p_#NglG!Lta+Br<$%XDf3Sl)8 zF>5?CmXZgh!L253#$PErl6+)V0r|0WJ;@?zGQ_(DaY4#ue{gh?*`J%F8$0KbCz z(`fx;%kB&H-=c6|)+z#)Ep~lwQd9stIZ05`SXJ}s)@=MK9eo`27l7f5SO4Vb%pU&M z)o=Qi?#A(D#KK~2RECVb0&%7WLdAe_01KIsD>VUA=8l9aN2jc z(#c5~o|+0E`KiGIOX&n42?&5iW^<1gYewGeD~aCeDF%gvQdN%E%D!Q{qK>EvK1VUdRKCg~hqF`1dV z*3OQQLpp8|aE-Nl)rgnO2&UUDP0pe9Fq-^0AbeU#whM6g=ie#R^+Al2441%dL*i;Sd)OG5^ zJHQZ#uyH-Fz!{0T5vawXgRlmR(5sCX3;<}*e%aUG`qq2bkG8kVvz-&?ro|1^`*b5l z#}&YC;GguVxT(8#f{Wg8ZhOPgc>6N;&%>{e5SFsRYQA!$y)tO$8JH@cSv|r08n6Q# z00r#k&<(|4-KtXKEUF9-s;gJVd}?KdVjRHw7b1G+S~Q%5cU-CByhWPC-l|^$BwU`SUMd`f|w~0yP0zmvoT%ggr$6U1eU_AB6p8&BH)bNNNZwK8n$3x^DS%tx%cYtc-O}d zcWWR31_Z=8^l|VnV)g~lSJd5GMS2C3_!!wFI;Fjam6@R+5)$r6Xft;xBPE-UHz)g_ zu6BMFI0u|S@dL%n-g)|-6ZJBzg{(j(XfZ59O&~*vm@_7_Sb!b#^eQ?iN2oxKT2a?9 zM^>fj1~^0BgV$)U(&+fhXV1L^&)tjZ@1cCJUmcCZ|0UyZm%*!xej#k3m`gS%>l6}e zKd8%t^5CiI;Uhl(7;yMvk#xE;AbaSWdVlZxSKjopZpIz0VTf?|=;TnXNGo8bM1Z&{ zF}az?%2i1U7iY=6s+^1|SXu_vO|3};{$d&EA`i0J0SNx0A@E`kXjl-}KP~B65?skG zDlsz{M9Ff1 zrYDq|R}1|<7Og7^0iW*07E zZ31#*GZP_G6J|BQg&H-I5u(GF2J^3cCEok)&C8p8Z{JMZBaSZ7X$A~mG<_ujR9%7K zu8Eknc)Ob&!cCE+BOY9hsS~hNp}Y8)Pr8W={fF4i-E5I%J%9+++ts*|yFAuL=#lbn)ArOE7v_P5UMb^qi zxMobN>ToiRUu9L+mR<&br%nYs1Ke6wt-&J z#mZW-veMqG<9IaI-DiQ1*7TLS(Jp#2=q|Mf-PzpBy?xjrFa@SSROZg|((3W`6Gv8$ zuMKkcNrh<<_od}kR_z}ihLL(P+@)%!I~RttokP?^U<>#ha1l5QoI*H)m;+lt`GUOz z00cO`9FCl5#aFJ4H;%Gfr6?p5kAQO{vt>#|24aRMR!;yial+dqGMTfWsq;+<FB|#IS)i6r%~+@=s)7We zN~9ygEXrb0C$sY4@Zg;7z7P5_U=sj}ceNh=zOxSwyoWh(*hfdv6NDT^3(6peM`R9R zu%lMEVU{pv3NmB{2c`~X1cim>ES!KUtpHj@*2m#;F<$v!PpEL0qzq`Ddi57?01LrnQUNXgTl}ooKc-nSXt5ih zVWXzsn==!^5zVv)5r-TgQ{s$Lu?i+Yi8Bznnwhh3U~w}y1v9aGbACtTD@)eks0@&h ztAi7ekDVz=6c`C)#O{U|2}DWmNz7RwGzqDTpWfY_I5TyoWEFM_0J&Qv%8-5vYo_6@ z81f-z_BPXc&%rs5bpilyZRsoRLkr*su zs?3FhOqGPm%@I@ylxgiu8DMVY$?fh=?CF4?UOqKNYk2>|^vX9*|I2Uf#d!>YOk0Rk zuPb17!}>z7nJGwXi)mPqG-EG5fpUzlq>-Sm3K#VN%HbJM17qmibna4UN`X$ui@XhM zp{^F^*^Rrq_nfpo4Y5q!JNjpi>>R!3*Iv8<0Eoak&;h!@t*!ODmQOsCbyi2SYHw?Z zs~0evAQ$8(F`dC?$TMnBIUg38PY!4Eoh{%15MF5y*0aHSyR+P#%{}iWBHjeEo$>U@j8>L<%iX-aa;%hq8A}w8ch6hj6H$QNsf2MuzSnm@{-OG`tq-}TxVowxaGt$(z zNrvoc88FhwUiP{kbYQPK`K#U2)(r8AJR}e!*m=es;2Z{`> z9JQeCVlKDh@xP91OQ?SW_5M8k`+B~`%lBHop6fhTJC&UqO`pN&GpN3_&P(bH>b#u) z#`kXg<*z+*+X>B7ZKjbltxg=opd{+CR&@vq2eL#cVqaK-6Ph5-%Mc0*!8LgW)SW2H z0cx`0u0MB+bw2GS4KK7ke{H)RHz32npbXUPrf3Jw`KxJPp5 zO|()8 zN#mL}nCm+klH$>fLtqw7NBwl)!kL&v)SSS+$Ouig7o_xyM2l_uSWaY3=%cf9ZCWR2 zG>aG%WM;|eARdYoZV8L7lqg>AM8w3R=0w4n97gGdQMej&14d1tRHxLaGxrK^W*MA` zjn$8?_W#mXAOGmb%B{vyc4yoZ)f))gOKJH+NW%$|UBq_>`R2k1@9(E&2l^Wk{!aCopUUW^WgaXf^N zfq=nHtz)N7-T8{sXYN>9+1T8iT)41_acS{jP9b)BOKVH{Qr-*wdRP!*XKB!0ZsqMf zWJRlE{gwV+e+8qXpmAk~b)41ptPo#bZda$)rac*6qk1<0Q)pC+A(%ib)6uBDd^KJ; zKi@pJhn@4lB^wVW(P$nOX2?@jMNDvbuP~~$W z%Ha<^T)g+!@A`W`^r=7m(=YV!0!YEQo*LEw@^P0 z{}k}}i$~~y{}ps^Ho`1|3$!W>+878{0{Vhkz=)Bx5g5!EXJ7%fQ7U?d$}sIfric+) zgtrir(|Hc5;e^%%o}mg5LP6+c=r3V-E4JwjW`7N%3iywRS4{s;mUp$gFEQPpmz$I6 z7eMEM!y5pO*Oz|JPRr}xw)8)I`}&(7E>5%pO-Z9GS1e){B_vLms47`aA#=CpT6kmxK~z ziLxZ=1gC(6Gy*n-TS77r8JR~lkRv8oKT%Q%q+ztQD1ELgpbSkXWj8hj5rsTcbAXd? z%aRA$6ZJ598c3un!2p0HpjJncvJhutF(xd8Srh+jn(QusnZ@YjOwy>B(@7_3?NV)+ zP>3*il@!#;M&lMeeXH(pA<2^36kexhs$>j}ASY=7v7XH&6d+i1hmvv1G9$_Xq7Yye zV2LEhLC9+(ax)bs13Wqbq!a>0gM%FD%Ph(4tKPWugWoa!$N%A+R0GmZtTus5z&;u# zVwwg|{d!Z7#3?$Z+{YWb^Xv!(aqvXk6Vj+au~@%S8_z%?WfEDkD6!y%W5%FZUd>yS zIRdga?mTtdS0B9P{Ns;bz^7l_kBsms(5BYS`Oy>kYPZDnV0U-4c^;Fefr$Rm{`%40 za?3Oh_qM0gy?Ai2ck%hl{ako(xV4MX6`(?ArG4`)CvLy@>^*m%T0dbHMzfe_KAG&H z8l%_lt(`c2_DpxV7i*sF4yOlWwP=LNv=p8atlyX3@grk@C1}o7K0TQ3#Jx^$rQOO; zo;o&PUmh+EcG@e4*Dip#oK@p-JQz*)$GCcR{`|9t7azY=Uw#yL8aM!Q5b~_u>aEO` z=ffm_Yyqc%eK3b!ztxrLB-Llt4X;PY$5C=;LI*-H- z31BC6ftW>)b>c-PJ%^i-q~jP<2*jK+17I+BGZhinbexi8)^P>1AWL}wSwN=0+DZvD z9VE$p-3d%)Dndq*LTX{|4B?DiP2uD$=?o23g_*gLvnp5uC*qpVj4DR!)>rVa{C{8f z+dq2cZ~U957HE*gx>FNsa?BK;20s0zI?4b3btfv66G#``44EV3@PJC-JqgJNOZ+F4om&;g^8%4d3D7kaT&@#d;p{g4oSe?fTS#nkBt~ zz`d~4`-`2xeqEIIf@Cy(RON zB7isryRKT%Iaxz;RdZo;t5BEl>qRcLC1hU4xy}_5aAM`i8*X{k=Qkg{u>Zu1Tiy=r z0{gX1$8-15a5mXHxN-r*CxH@_^I&sT-99)NZC*RH zQs7cS|g#}GdcYyzvmAnPynH`gGdPS`SXDU$VuuOH7N5~1z$OHf; z8Cnn&hykqv_viJo+pN_upXqd;x#mw_u)Xp0+N3+1=eJzKET90e1S>FKMLq@B@Gi8* zETEpFQpkdwywroVP%>t*gAe~z)QkIfB!7Sxurq=cs8^M}AU@E#YfGlx55*hs%tJL5UJ7!cF}^3KP!L zcf(F*s+<=Pz!YK}g4Z=TFu_z^L6X6p%qS#lf?BLOvC_a`_ew#+BE)1?yK2&Mm^<8= zS?k(OLzX4kG9@ObSsDTpF&e_;lII8% zghaqb8r^H-V43DEcb~JV1p;%>7Ll<9W#S4V660K=xkb{9QL+?76cxfm7R)1=rmRXh zJeqTGKs*{5yTT)g9YP+66{bezO*i4kzNdfx&Eyhh{O+x~PY3+c!`i+J%ck&cZ2gcmg1rb!iQYFy>TDb0kpoH=s(RmWfV$NTTQf-k)IPMZPGV7fHC)}0VX|T1G@wq00f*EoVu;kTV=MWqe3DE?XYx9 zkoI^Q%Y%S=bH2Sbw<|h42V8!kLB}9FhuLPFde-SGRzh`DCq0jQ!jzKVDKMO!!D`Uj z$p{JxV1_C|J!(?*_yXJRW?sXYDa!zGfLqeMHO0JJq^6}AT`i$$ot%S^z)al|URcp& z#YA$64VF@vn{yZwMRQV^so9)EU?znVi`A8<0NY9_F9}tSynb%?$Nu-{4l!?}P0gC~ z|MI%tv=D_{LVXRR6J_8@jwqPs2o>f-6a{9EUV+|G+Ex##dGhgp`C)wI5tLiN z1z;cOZekl)!qKn918>3VU&AU^meJk-8+Zu?p&#J@%>lxQL5j9xeFYa^1{`kSQ{N4{ z0{jVPFKFSC!Uu5NSHJB$df)#Ig9q-B4M;#MhoELyUB!sZ+{mI+mb(X7#n8l`H*@w# zA$LvvcJ^e_PJ`7LncTBB8NsWxz#=e&Ji4j6i6`-3^Zhit00BfP7_NCOZ=3;K4}!U2 z2yk6CL?9vqc~lPUwipOAk+3UBLhAN&2yO&U>IC-$0cAo;pOe68m`t2}t6nSI0dXc` z0gJ1p+sibHJJ7`5l8`4Rvy(d|S8z&qaF0wxAtdGrHU2R&5ZuVvVJW`Yq5&=;b2!u} z3&|DX6umYuH9*kxqq8J${X+c)g;5$sFgclCH~zA2mC%vtCzC z5iuYlaIgwcX`DezSP2;9CU8;BeKL-9q{^X=P-Atu^OBqHdFAC-{qEtp7sF2+xCZ?M zwmXs5;oHFHffib~qUc)?m%w?*@;tA4p*KL$#$*@O*5c78*r19!ozdaUw-2kJ@ygEO zwW~uMY{EzAEO9&3B*V%4V5qx$acgsD=h~+2ZKA${S?8c#tmtyPH&|U+LN&Nrw9DDv z_Ur(oS>2u2abCqpfz>03q@DAGYx4Ze$XtW*=yIKju5GXxJ zR;5`Sd90yoXmmc*z`q)ImL-8u+N+5u$l@HAY%bIk(?kmbuO`79h*TjNGg)%dBM4lf z&dgACbLR#&X9^KEH4q#oD=eL2+1D9{8 zeN(Sygsu1BeSZvm6ldSOzy9X^(`T>(9K)ao5Hfbt(N`>uD~bn=eY2I?Z^FU0`O%z`t(ky*$rv~wuPmB>942fI0W z68WS=F)}yAH2-%ulO+5%^@OyD5uO%VkfcIBA$%5FWwX_$?oLXDOJaa8ssO0@ycfOJ zObgtxr@RHII;n%;LMazM%@#Z+w-X%90baYg){%r*gdoOFt|@XTH64K$%ku6QzQ~90vTp*IV21#ZC z6k|XnlqNE4K~VFWnVi*DhQ%VjevkjmMe zgL^4NsK60gU#WQAn?+ugbh(2!YcsCT97j~xw5mnGo7~#s3RcA3*378mbYGg z>!&~ah3D~SUv#Sh*MJYhR{#RGfCo{mLyBr%mgAAu1I-h}g5f2w4_pQkp|1xFtHa^$ zmEEkpjag<9m!8|*yYf6H+mH~J`rKYBE5E$8Hyh3lb`K}lu9)tkGe_Bm)jpq=vvSTZ z?JUo&+sRr*VjmMzoQ!pQe-t%2!TBGg?vOa|+FQR4B z$=)u?13q%+v16-wz~Pj6ZpaCK74`GL6qwzx`ZR;!13WkLIw!R9tEa4YLX}AP43^0A|2G@IgHHaXj}6cw`lP47a{|_~18Uu#~mX5l|2F zV<1OG@C>m8Hh_nKYu|;vr+}XaA`sA;yy+kIzwz5!Z@**xCTz4&0aI9wDn@cwbqeeZ z4;~r9Zj6`|8VRK=$h7Dbz@WL(pij=wNpf)S%2cV`he^o7HKS2{hox#jELQ z5Rhc&4o^w~5YrdQK)>YWr<5OqW*qEJfvt{|rDBr-cuWIQw`lGLWA|iLOHe_uFr18x zh^;nC@?=23<_-#!;6>hKJc7j4JgO8~l9q9nrH)m)DG8ELa3CkE-7RGlxDldJ7E*i4 z9Vy~Yf_O6}V~2ZfNOcJaW@gC^04IQ%V6Ksc9gPG?y)rd-mcUv^;($=Nt8h@S#aYdW zh0(>lyL)ZpzkI&?haZ?9p35&zCgt>EHNUvb*uchkoDO>g*`WxnU0!&~k+e`IaT z`(v746-8Z5JOt02R16U$ERiTcuhUPRNC1IGb7P7CvloWofVqR+eNJ2xyTdZ4PP^A% z?@%lAGFsfDu;oTRpPC(lF12sp`JS&{U+Kl4|GnAf;{eocY;4YIY~tn&*B4G_#FhHQ ztagDz)k?Q9Y?eMC3{DZ99!);FGkkP9anDdYyg-)Y$g%bt?|#LnF1+SH9(-c))vi~j zX%E-|y1+Vcv*aCB!~Xub+b@qgb6w7~o|LE)e3StOxc*#@EK>-sb0)GZ za|egeSbJH_ETN;*I45cO0W>kQb#l40Fr^S(B0>-{H}&KacD3Y1Vge)uzZlGzGedMM z2@p=rS0TwPrI$e{BdwzoD1;C)cC$H!_7br1;ZJtH@2B=>SK8njb_hgZg>fhNtl0su z3v9wKF2+~?&sX+BnuUD=lPSiGtWvaR8Q@6gmiY*9eEtug$1nXP@JGNL%eVgA7ry50 z$I4~Y`zSA?y`=L%BVaA?XtT}^H*Nb|^)o;6nLq#IM_@fX{a!r%uWydoOz=Y*cbNS7wJH+|IgGLcPA2|K$NBpNK7|qWnkf?TY`a9#5Ec~Nt8)}5Ti$R zkQcgSFMyNuoTGwtR@^pT_q@@ zvr9eCKJ&TwxBk|jufl+>9?{9u{@vUD?y}V_k*8lc+2{1c27C_60HAZ)Vr!_hQQXEySGDWuR z&TezWve6M`#GS8im3PkZ!Kd+wE0gJM+~*F=Q382^6DQBS;r7@4*H8cM)%e_(Jj?_# zcpEr@up%`KrTaWiWHz*_w&6jn4-YZj2j)N<*Z`k^^?)g=F|Iv1j$6IYzXl9}5|{ym?s{wONPG2Y-W^1hy2NN!m&91GQ|T-=Qk{={o|gaJ;@ zfh1=lgAy^36C0@lNLo0JYG%TMki6)Q5GW;|t5XBiRR>%(2}7CLB21kV5n9-_W|8#F zC5Mf3P5@`Y)Zom*sAevy_msL4nt_Ncgbe6zeIfsjA06&LwhkP?6qo@eu$s4TjoLPA z!Ec6IPMPyu#W<`2E>SWKEz zP@|cVz@|n779k?9YdDz64IGk201^Voy*A z{%{jVp)sbu2#Y|~N!-Xiva-Pwli7(7T|!9g|7N~RL?kR35u741IWY?{!^n_Ai&+Q? zw=A&Q+%+;sRcB_(1wMx}CwCYka|wyCpjOu0+pB?ViFuL%%RmokC0qnB2ljyN`S9G6 zA1$8z^R-7mb=!~q_{z)g+Q?-Btzun!UO1&OY;=f&KxQ66k^pyUR_E>zN|Sg}L&%U~ zPBVgwlLn@xL455)%Wru7+Plwfqn`MD4_*U?!R|MG^U^o`B{_SfC}QU;UmJeu_qMNG zj1C5Rgk@l=G$tot-ke|H9y+dN6(>S{cZHU)dAfDlox5&2@}SOczdSmAe*U4o;iFc* zRXS$mroxPFU+%s2{?|SG&~NSCxB>VLf&&47c(t0&xx3_@RTG~~qfWwbduV%CV97ak zjEdX3%eT7alhHQH%a~op=JsUoSujuz!8^#7o$L9mQjBKfGLD9bCHbJ;Ypt)Zbh_o%&XdoI18#uMR27iLc{>LsRa>>3YY{oRZ=A)Q-?4UTU1KY5K20@ zChw1g&D1n*kWI}FmCBTSPqt)y|ge@22Qo)R(d+`ap-wmiPrVJp1TWRjHx;2`Asa# zwLh)1_W*|=02ShgF?=c73>$(RT)=Xqw2SfpvnLu@2&!YRF8kO6cB(xca{n!FKDD$F zfUA2ru*r6}-3Lwr`55EFXY;@FKfd~J{_R`-+ke~orT_ih^B*_|ydR&thJ*X{jo*3U zzN~u;RUha8mw+B{2XOcu2cw$y$LLqonk+7+`Ic0$erV0g1 zSY%0>HyNWz`Y9a57xFKQ#=>bh-QW&6i2`e5?(0fE+jiECV@UzyXjg+8~?IFMRO#pZWBoZ~c!SxcBXM zl{~*lHe*u+u5FekcM<~71Yc_ZnYhFb&F;Fl_cdQx|NJix*$%~O1A%k6xR=+>@XPBZ(RlyB zp#@P!G+S^$wa9Vb$*ML&jir?M) zNW|3_4kQcSEN}>X0l0wrH0RT z#{2-biP?n)HW>mWSga>IS3+wxpGVB5h%I+k4i!>REFl+jFDD~|A9M%i84S~M9ODQ+ zh8{p`lqKpK)gG|7kjyfWqR>QIE8Qcx^(&F@Bb03qbtPYBn%;w|a-tPA0 zE7*S;{_G-&Fkdt-ZhXE7j7}cV# z8`&Cc1=@x)_V*W{stl-><^VFx`uS4t!I$3jFMc5#6oW@T|B3fqy!x##UwZqSkDog2 zM4LbHt55#ck3Iq51G9I0>)Vff-P`YartbdY4}Io+|HmKV;^*)i@55u?IeF#Vu?`TB z?_jhJ1J>4X@r|e-1D^lDPyGCc-nXvjM;N9t1OM`0@&D~>`zuQ(HMqRDcCJ4 zrEyJOEb99-gJDQUEFL2fxv5%hu?|@QaB5sztzd!VjzF9sLI!hrk>)?O@O=>p=~!Sq z0~UYtf+)*hFwi2&hMK9eU;k^~) zA+43XAz7KKX%Zf1lvx@^aR?xRTJp9)wE;;Jv50}8=I$ioX}$u$kxHkO4@1eo=nA+) zh}^U^V{)e;aEhrSBQu{%fU&p*;^1>4bP1(}eV|~hI&~qY-lj~Qx(rr~1T%tx#s&2B zP5ga-?biSKT3YL)zBgTXjg~gC%=9*~DZs~n1h#78VHKTA(Wsow@S=ii&V#sIrymaY@{_bhM zx%`vQ)gdpx;_dw(`r0FRoSGM*R3{F{tgn+M4t6o!Mm#_)fi~(Humd7U8{CGsQ8REAm=I}y&^vW(X|31YZSiP- zCTcnyjzS2OkE-3t-cHga%W!X`?BC_jhZ7c5t%B1 zhy!z?2)mO@V0YuJK#VM8rshr@nTW_xNR}JsN_F%sLpQ@=>nDHe`9JwRfuHUy-*)i) zrxtr*x0`=ccd#1uFwf2w?M_)t>Y29&YlT!qbI^dzOsvD67onWjh~sHF=4{o_7v&ep zhUz`=e?<91uwy6;wg)J56;V(X!14mX=bwJx?5*EjA{3C7vnR8E_0ylnIYFR;nB}v`jc4t4V+!Z z(mFN@QEUxNNC9(Vn z%xn&l%!y)M0+2j|K~2dO9xR>b)ts~$ETo3bjZVAkziGyuNdoMC9R}yk0QiODiKjs3 zBtU7tm^<8RgOLPIG483wPr_s|#Zsp}MT#WQxk;lq0*fH9n}u{sHQW*doB}hms=EPd z6vVV<7B>S6ICFrAJ!*0syBY@pgIS_R0!b$BO(+)B-H~$23`QV;&COH$NP<~(k3eu{ zMi$v&HMJmOOxEb$IiNKF28JU9o#J&RZYvPP3n!hRBan!B0S&m)#fWeXbdl$ymF(&} zzx~v+&!74EA9)mTV52y)xstt&JL{e9R*?;+8>cs0S^30oAm2x|5BSdGqi??dzTbKB zr4RNz&p%GOLlwYm#H3MO*r18y=qWOr$zZN%;2dIFJIKjI*bN>*;!b9m^gHz{UzPo{ zn@>G=QTqA(_FM9kOWZP;3A{FT>d-46T>eLY?bh%6h3DgiXHaBeYO&fu+y%yOe|h}7 z?+UlwnoTBlV%>k_|DIJNg3h3gmH#!zUwzN9``as60(O?}zz!ZCfA-qpxx4h95Wpp( zV-5)6)UmT)ebYNW`pln3TzLV6@InW&4IE>?#bXgiGw2xOZPd>Kmw*zTwS4L3rK6|Y zD@XFdpq@MT1}IlCKZ5Bs*aT4U60$W4T{l8CM?C`+=|zYGi9!>llY+(|JAJL_G&$T_46+lCWnKGcUQ; zdLN@JT5a#_6!0xfw}35R4-n8Yqzz0EuO?AeQ*JMEG+Uk3R`9|AgAl6O+H7;xEHke$ zH_L&v?Ms%>Rn)Y2L0K>ZK&fvdoXTHQt=SsZJAu@cJgEfTVk#2|@YLIJCM0=w!(S0K zg*GxmCnO^f+}$DoVlnoV`7Z62&F9iWJ+F;8MwOZw4C%nu{>9Jh|N3J~(DiWBYp!01 z3y(TjzH{aHecAGId5{;~ZkwxVE1UDS%k7*ezp0jW9Y96F0ys~qDn!~~$-{g;(I*y! zHEIsC`ZV<8kgtMGpbQHs4Gl#f{vfIq;5>kT^h=NZ?eA{oS%98~Oup^Cul)7UDcXEfrgF=3IQD4z~pc>OQCj1o)VC2U7JIK0BisZW)V!t7)^w+ zL70R{;jYwRJ`tiRQ2@2)M+UUHOfKXPS&k#d37RHi$p zmd^gmAACKASAPEAor8Al}2e7w-Mf zzx&k>cC<{9x|K;QEA6QNH({yUex@ab91`_L(9CqFU#hIfYh-kSHMzifEd z#<(~<{OJ!&E*w@mG5`a}v7_I*v3@EnA!i&tG6)wQyj(we@!;8LxAdi55uiW-F_zc5 zue|H!FMIyMN9rrh>hITklLoYao>3R`8u1$9CgMflGB5?!kuT+gRcWoT6so3h2tX~M zXwE6ZO^OW90l4-c`MhLCfJHNDo0^H8e3i2WDnysY)B)V zLm&ro$befLMZTh1Mkkfc94K*?sT5msBR z#Nv6NB3MQgHD{w5F)GV)r8j->-S*FaYzvyn@jFBB=JL{S0bc-0AYVRptY{(2yLDmR zte?p^Z%w&AQ?v@xS<&fEXH^K2qt}w$X{z&;I)?6`P1(x+=ARj!0J0liMh64=yD|TZ z$nS=afH7dmTgV03eb{{|@EibqsQlTF?fk&2mtg_(qyPE%+JE@axBb%N7yp;fU7KCX zZmnAnpIpD?&E5OH`tW5NXErbkpmtIe72AN7^BS7ywh92#FW~CCkmVSBE80LGxDD9( zE)4%GFiyOg#k(9@H|xn0llhDSr36kQw$w)h0cy_fvEoGFkPywuBC%Lw26keA*^NAE zl3$vGlS7+?bFtKHm&6Bj=IhDtFVLNdsFD9(|ISi9&}f0KhXBA|r~ne6}*lL%W~xu!ZaxFHn5>qy+x4c3@T9En$_Dp{UzR!pHuDrX2Y$f3!6$Z)5S5p$X{ zanr|vH$Y~%YTAull}S|9R3&6cNE9OG;I2%}nLs1z2oQx}9GM9kIb<#_1<1`+nR2CG zJzaik_ok0tIQqWN-SO<_!p>8&v;9PM@W(jVMtK?a7$CraF%W>I_8EHfDWJR@g3j!KmMm*zyDQvQDuLe=OaNaoh(!VjAZNgH0ovqBJ~I(0|^P3W36NgDWXN8 z+?2>jb0t@X3V}%hXd(iq)xianMWT?`OGk@$eZ%oL+)aP*XXE#OdUR=f6x!pjeyIOd zU)5S#b|`~r?H>BxpP+C5ME=PS;UB--Kl6mHWp|!9c6Mn)vYr~r;3#h5Z#j=gpSkwj z!O)iiJi;An@B-}uXHRY1vwp`To4aZIDuqH!>SuE#?r>1v()km3LuA;p-4T02~702Ve8-*$Z#~`coCkCG?Ijz2?Xdy!zH3@F8lT z)q>3-4jBLfUji)wW8k@Q_PGySEPv=5-VIzQ*)ibQHFSR-`pr;jhJClct^3KZn&3S^ z4aNc#od4qcUoybe7<-=9WtJvsQO#i~If@f^18k-eQVyX85%U<;6BrH<&T}$YthH7$ zgTquMZ#!US5?BH^1A^=G+a#Q9zCIzH@Y4pc*csB2zgYWu(ft7u@)b=I9ZVDPBh?XN zN$6>Cp#<23lPf!A?lm`@2Tnm+Dc+KqRbx`#SY1PsU5gsjM8bzA7cY^U5(_{v#>N)u z>~N39ft$^Z#ME4qVOj}vJ+s)s%)!ja*w~50%?acpB5oFixGp1c?&z9ycP}r$?_<6H z&->_4{Z@)9o z2Xm@Rh=W^FXUIuobYY}OPB$|L+=ZCLqLSAVa+ncy9aDA&*Q#Wcq!dIh3{F)ANI3|Q z+`i6Pe)CKDyY656nya$6y+rxO`WkJl%sh;pOEzl>S8K~h-qwEmD^5*E!*6|Jw6^|W z|CTe^YF5mpUm;_3Iwvv5x#8#c4rV91opevB!6RaUcHUZTpTG+Zpd0sq8gvENMC`!h z;u-6K`p62@v)TTo`TpUwJ!q{Q$=YE)9ASI`^%Y01J#3UnT0_Ucw4v2wfY5FTj_m65+WJfY=g7Kovov)gyVI^%^vT6`;_c@2u531795{?X_t- zjFC0T?glf-S_UU(hqy(rYm(p^O(UiAzbj>l@lS*VGpFW3j%E&|R6Td7ku>uFPkK3T z9(yqu7cbG(;`Ax75|npqyS+ykET;RnTcV>0Gvr{Cw5{|)ikj&RktW1cUMw(v!(@z z*uXV~i79nmIL~}R4r2PEm&o0aWDO5EYL^umXk{rLF;G}F|Ce`Q~SyEM$T9D)ot-8VQP_jRp5g;LR zZIbRCAjwmrHBtjK%e+A$vPXqSS8@^$4pTD)dGfB1E0`!S!K|7I6QdyR?ryFB>wiD_ znSb;AOc|(v9pLI>kL&#b}eQV_Za8_Yg;>qKz8=nL#xNT{ai6ds9=V|D**fa z=LfTcSgwT}ZXkk1c!5Eudt&tz&L4wa`7#@!r31_LD4PPb(ptHl^3`fI)`P2tr^|yS z)qAMhuMYMxODG;j)<-xBYa<5K5w6YfjmkwdLIqxdGvW|s4az_YoxsM36Oe&oV`)xa zGh$=~I7f`AOPd{3HE}4^OK=8sfKAMvwF?K6;u%x{m;yOECzyMrwU#^Z%fJ>eS09$+ z{c5%aJ6QCEUUYR=j~rb+UND)00y+T_Fy0H3Yv`X1Av13_Y;$Y$?&KlyNJ_oFsZ(S5fN1YRx)YVmVg%c>mMD^>~RF$4$oo80tR&zYgs+Aj0RM zHdN5M3rl|)hnv8&07J9yd&i%B-_bw&3*UC~Enj!ymRrx>a3$s{^8bBUwHfr zA9yc)@Q-c#yyNPPKz{+UZ23;l%F3QVH3JwE1OEi-*J1WLC~y|T&YSR?e-{Vep9U2X zvyBtJf?bSZH4$sdlQm0{+Jtu?mRwaKmU#GSKeiaHswiZpDnuNDQzU{_b&3OGD%{O2 z!oh)wL7s|5zj0Mx%yt*TpoQl11{F}V{5OOszy3k#!xp7La|aj`JA@m_yc-90ck|#Z zN%RR#StdYo0$T$(11Ibh;9z%zB+yhRL)r%2nxIhyK^!oxNS%dUBO*J2m_rEeaHOBv z1)))q27x=nT*%ca5D-09Kw33Zs2O>jg9UI^Wy!%|YWaH~tNz_DTvP?H26TW^Knpm9 za1u*Li&k!~I-lTh%i=}gS%82`z|+8P(g8gFt4}_T_OIaMpe6VkFa!<=bIW=3I9>XO9_&r}Zc+YPRv6kI(uip0Z>FZy2;Wld7heSJv8u*~ytXss^N3*>qoUii%~^3IL+8 z39CEYgowaho7cf9`q)vj#@U};`-9(j?kLW_^3Jv8l`P1#U5m|H^#rqWAHaBe&Zc`* z-^v+GUD!Jx|G>5FFWmsHkAtt@j|DpG(m&ZM*6M16$s`3p*0Vn9WsG-F zZvz#wmK1A7D_-YN0}g>Pa1=-_ivTas9BMMaQ5~e+22D0u2|tAA059Ad1w4nffE-#u zE7*bNQ9~OVU;=8x0c^pqqI@2>8N7`CdVlRiEA(wTKiDpGUMIXkoLq(}aP7q*oiAKB zFW-N>bE@G#=BOQL=LeJJ(Q~~cFWZNx3rVX$tW)k6GkfZh!p)QwDe5~$|5rbJ`49i-8gLxAIlK8mr&hf1C~yf-L~NXV<~5&bvfvDXT$7ZXR|tZ?1tCSUR+8l;3(dY_zuvwAU}igwlmjH7vsC%M{3wt{K~2-HBk zDE~41docNK90BeI{_4Bv7vJwY{{-Cngy5n`g-52?y&1h(58D5ZrC9x4Q87^ zEgnNp!wgHw1Zi?CBn=tDymnP`A_FpFCXjnwSp%#h0h77ACAL2?Q<5$xw3)Ei%7N3g zJ8gx;f!!@Bf1n-}XmZ_%MDpNzqVbYLe1?`l-)d)txP1ZBeJ60PX|s94t$#-}j|Rl<|zpY&PEh)2P3{h_$*C*aOO$~$2mB781?t0d$7;FuKnhYgzG%dP%EID72=wcc`3mDDa&kmo20Os}=~pP_o1 z7lS!ffS5T!GGc-$(6l)vV|a|woIs4!tAVT5nkc=A`QqxFXGBSKr%17IaI4j#6SJvj zk~Q@|ftaW=2f0NEGu+g)_K<}}IVhp7C+$|QT2oDdyH$JnxpQkj{*SKy#;;!h7}&t_ z%c=9y*`+6eM}W@*K#rxgGg&Llrk)j%3x*LyT=GeQwRR-ZN`YWRqBNDPQtDKZx~=wn z!qf3H@N_0ix55!-+PZS2p``!Jrq1J!rq7J$&d6DvRX zBbWdAj?Uf-=;#X1EAv7nYA&Q&i*rS$VD<`3&dkK>Y8Kfl7#!?Irl!PXD#FCFfUExhL&-~7hokTHmg;u5B`dVKxxV>~96z&h{#?~w7Ht}T&LejmUBCI3 zc45Qa%b$Gm!=If__lEUEn@-da5FF(3fIs|sd>Hk=@07(uqu0HjzwP1K%TF$yI+?BZ zh~da`imedXBY9wtPQ);A34ocBlYseht0Tc%Vs-qRricB+T3&fb`$Z{Or zSb5pTOKuJ~ebVMD)wPzwl?j4?Io@0VMEb(IOyAjCG)e=&%VuKna^d=dcs`3;2Hb-c!?C;1wtny* zJoPW$4=A3e4}adi_5pwkQzOb886$(MD`GUJ43Z%#16oDSG7@&HLtuAy7LZU7H)03^ zS=5woA|Xp@vBU&72rmx!jAjVD_&L(54r=nn8ZQ7E_~qgw$lNK3#+p4K`9_ik(Ew+1 za>s(U#vu>~i^>d(HNiRLPLL41HX;~wFuikcIsx>&v1|1$0(;0MBPDuhOho!9R#m;_JXqoLqp6e|SA33CI@2VZ_Unu6o z^UuJ?SMR;^*h^o%I*G46@xc98&QErB+M7G&{1D|9V!3D(>;pZx06C<9bs#MWU>O|nIY=NGg`7l88S@$J03bksfVc;Y zKshLfCz7RsJ6Kv?K6-R*?P!*_4|ijASj}gXIu3yY_ym|QItka$Q@C-TyZ`7zcdg#p zZ}sGmB?mI(hIT;k*4{RkS#50<1Ba*cL#yj9#f~)+=)V> zgaQo~)V)?>CP5nK5)n%#!lp_o-_6ZyO`QOi;HI&T9D*q*7r;p<1O_0KQ7Ej{`uyeP zANZ%)qrXx`1fT$JX`lL9)bQs&3B3U9rgva%{f&rKx$8C?6}_HhVnTWFXwEr_v~tQa zJB;%RN?eaobjk_3Ct9;AGl}4R==NgT2$Od8T6AYP``R~T4}Zhw|NQp=|A&8nc-Q}V>hzg8VlOkY2K8y?$Xc0I zj#!hMxpK%{O`{1wIeTR+k|dN+H@K+_heYECB2s=XQhd5fkkns-!(UtixFtQXGd1#S z2f}qeP}(TSDGibRh6=!v7L34wh}r5Ctqvk#4rWBm#Nc|-Co)14yN*Re(V^+=Z%Iw+ zfJYPIM!X->tbrv6oXAtwZ_2gIQ&<><%xa@7AfzZ7AZjAzQPJ}_Lxb`spaMmM8I&YQ zp3Ub|7LtOrs<~j#YPYFS>9xAd*<+jIZMU_4=zG?zKK}=QTp2h!%4(D8;ibv&%FLdN zFGQN0x#`ZYebrZfT9hH1C##DjmlK^Evn!noH-F&XtzBFf^ zcMlaoHu}gmdcB)w&p$gpc{KZ~yO$3pvUzcO@p5?Lj_#))+4{9#+53}E%E|Sr5zWU(u?&0ROOIIEPHi3)4HZV=GO1>5T>^JdezggkL<(Iu&zTs`F zufJDsK9a33w_BZ3S{`E8xp0XNB_}h4Ow1D;7BG-l6SE-fYIU3k&VWpqf<~^3a>gI~ zjn6iUN@8lcA%4MI%}btAYOrwKsmSrVQ3pzhjhUNX(6Hg z7d=}Et&vmS zmO51Eczvi7t%m@PZNy$H#Bm*3cvG)_&lg8pB}Bx>Q9S{F6KDjV0|6S50XPb7q5W;( z+cE!hUhTOdmpVXKK+IF(~tk^_~-tvi)Zi_d8~tgO~A&L8rFG>#(r@qyf2zb zpvDPCAZKX|CSM28o&-`VUH=!&_RGIOQS56JTq5vP)1~C)i6zNh}9LQa|a=i5L;c9Gvh#^1)a}1 zM2jROq!q)p5)U~MxZUb65AOd9OFz7}6i3@1{8UccXST{G8v(-$W#%n+yz+l)jk_B+ zpSb5$?dkL{ZeBaQ@bs1GcxQU$6TnsAIbf^Nx?G8$`aS#9?;Rp9Pn@mZ_~zcrUcU1B zd+nAJ`%CS9(SvwKB+My1+MBx0sHxEjZYoUTnK59|h>-`S?$s-;fBBP-O|EVMnbLRdngPiHcjg1yv=J5JcuYcW%`%mT_RSp@E!8166 z8Q|V*)Sm1y*oiX6VLiO&ZowDg;x4*zi@k>FvnbvUX@Rc76}f>8rpN*5p!ZVv&6q1} zirEbF2n>;CqEa9?@DhbfIbHVb0;&Oop@+a2YCu2=+wvljvYLNgTfkM|pJQ`af9QKJ zx1q;y*NJ<7?q}ZlJzxJ%0RQ#X35dO6*D4(5n$(eXbart9Suk2GE^%KlB4{`!+Wex7R9~suyd!v9b76Dx>~jY%y?-gx%b)t(Uf-|X z|3Lfpdsok%TEFv5=lN^LuWqi*4)(D>kB66bC!aAq1?&J3s8Gc#Px!ArG5PoL^^`yR1#fX|(upWFR4-~*tBdbxp{JFS*WS1vum1LlW7DwbAT&>O_j*uWU(fY8z_haP0N6S zX@eU`oM2B+pE_mini{nZGR|17CTP(Qu9di<&On_#9Q~ztSMUD!y9?kNfV*+_rhb3C z^XLbGPXh;_%jx}Ww_g&RW|OM&Pqy-VvV20pFq=)oQk1;RSL%7Gl^21sR{wA~_pBSM zjIuG=gtTfR?7$h|g;7>XC%pQNE4|;@9XE&D>vxU=bHv|6^$x_7@GfYMEW!mGV2aQJ zSH!Cn0;^f>sH%1tMHORlADNYgJ&)(+^C3{e#?TrK@h68SS-}KmDXTAKZl|?0!{=-K z6s}C3`;#9!cM7jNedLbU+3`ST_Lv5d`iM$!k7fo6W|c~2 zfH;F(w5o_R3c*c72R zlROrxMaUt+nKQJs&dYH%y~58Owl_DcC$8*$_L1S^k6qf`3s*KpkvlpI^H(~!9Yglo zJ74y#ulkBtZY*asJ=hser-yvuN}1274RkxzrSs#9&yMG8cbv&z{y;Yl@zjN#(c_qH z$weN#;-z@){bB#G{_tmLds|=sP`KyL*1^2|)6Y$}rnvY1{Fa+@h%Dcmf5n;bnv1QE z-`D=slRFo8KYwC2SzqZdb!`9nt&e=5dj9d=%U*HItq%;2EUzBk)qUd8tGgDCKk)L_ z>eufKpS}9n)ye)-hX;=V+rS=B!pg}b{=P@*_hCCbzWu5Pp)5+NG z=7mZj4Q$n5;xKVW?Jh=aVTq8>(D~0#?(Oc4f%eU~`;M2qt#`{2Y2)w^=XUU^^M5e+ zUjxo9ZljylRvu{eJ5(SMxGlh1pcTXb+3Voh3K*r=b)nC-X_sk}z0n zg-)BCBn06WPuoR@Vs`CdhEibU*^y3f9XwOto1^wzf@(FNLQ8mVu>_JhIsy|^PoYXv z0ReX4hrp~+CBE=;z0mmq06O-~$KUp{^;ay%RqVHG@*)r-%7~DotS}OqAWmyF4@n~e z22nE3r`EAUIK?O-Dx9?PCclLkMrNwf2w)}$QDAm=GIA#d1#(jco4czbB!IBNof8o{ znkOzqV29UMXGLL%Odt}3cIC(3|3UkOfARcG$AAIP058GXSM+Z_Gdp(?HzVa&4=)d!1D{#VA{M3z@hVnVNe&5dFe*ZYdG)}@S}M0H$U^o|Kz*h^uXHcg>QLR z_^E#t0L8`GcYp76S;Y#GAY?)=s-^@4CSi~2F~Z%Q zVNG_e*R|C~?V@pku`?mOAml_tlDPg*F<<|GVey!yUEzAqsA>AA_LjqvK8!`I0?asv z83@)`h=_^UqDfA$XwgX+q~tDHaP>xYo)kHjLgbZ0fE!V81E)}2Cz3!UWFTmYbwQJF z0L~ilp#*|6v82H=1#(t0M@|%sv=VU>w)u!$U76b?91wD^d3vq9@T7j~$;rnapM3t& z@>A!0bV=d!#az)E1tC@d0DHhPa8rBzYhL!s*WLT@y-WRKXS>p&j&;gKcE>3{98I44 zlzOPky51R9o0sGErLtJz4e35V>0H{|9aLdfANlmYzGPb6biBB-9UpmgxV_ohxK~fz z(Jfkhesi?_$?V+ac5BH3`#op+4?MVZ<_u4Me}3We_VV*`^Vz$<=_`AWJ=%KYQ`Ln{ z+5bq@KhnMDzV4E>KDRSDcy9EHS9MG2aG6jT&}+x=YHHjbOy30VmU|#0KgFUN@1r)jhBH+Mq0e(oXj%u;`-?*jGVvP{s_^X!R^7^~p zboBUX$vbsG2<%mYC4y>*qta`KdbKVlu92MK3U+|ZYG{?j8N`{JG7+-i7A3sU-E}oH z<3I$4IY}B8G^iH}(nveZVUft)YUhkah+ONM#U(%qECO}}rA&yG!ORS_qObj@C)+>z zqtEO;eF&7m6nH7{&eqyX{o3y2{O5tEfc-_{ZWmZWSf9>zCu;8ZX=p{BMI(m7Gf*D8 zS$jH*x*h9VGw~L6$9}*ZT~skQ4?;^d+Ccf-`SJ5ljqX|!e9nLFJ*6Wo-h~@>*z^SJ zuVC_0FE%I}f(2GLsC!>Hqd7A$D>)>h7wdLCI*$1^><~ByJO-RcqxHPLNYcX8$&0BH z7K5Ven|%ZhfsZ}?M}PYlUhy5@9=7*Jtwr`^jm_d}l5xhdHc~@K;{kAxbWXVb%~EpwH!D7QV&bC-7G_F< z(FF|@XvTpKPl3Jg<`tEYrqJY`th|y+3l<^~ugsG&nv8=G+`wRVf^dLGw@6qdsf)Nq zf`izdiL(X|?d}ebO&+z^?f{4=Yr)mv6#jpN{dcrw*;U>RKXa|MZz5eb--vkXG!CShTW<;*fmH-D59 zC6&oi=^8sq9qE|NvJZ0n424cdT)m(^{iWt-KezYf3p(28L)otf1V9;>AOsFk#!HL_ zuyP15d|RXO##`R<`de>VY|J>lj^5cEal1dvhQUxh5@2QF97EVn>FYITN3*Ot#?3=oG=EPM0rhnmD_p={KYLmlzZwqf(0;dp( zx%|Sg-J`vbRc+>D<+-`lPn7l`Q^TXvgE@7ckt}JqG0@DRuQWj28pbnJQFLs}PstMo$+a_}IZSWC36vvqvTx^|~iHPd0|tfPr?A#kkp9-)cX5I34{eF6%X~ zZ>$Cy@TXLHPWh9macq*YHKW-29)yreCpOVuIM=B9LAjx{?KRuIp@Qk||HIki}6)TGV^gHdy*6OH;d9s$s< zl#U3zzy^hWmVg2D4#vW84?xzWfgw11&F=r&tsjRSAwMWS_^w;tard!XCu$|5B(j4L zXzP>o0Ut@Co6-KRd(DIyDMOh646%g)D+3~u60m|`2}WC~B$FT^k(nIv!LY(p#B2?b zkWwgPHLL;4JlLCv*jTm@B2NV)=_uBzHB3qh$u?st8G@|IEM>}t0vjj^k?Pv#Kj-{E zKY4Zi%NsxhYy)S3x1;f(aI@jY7r=iFTm?mk+v6l`!ELD;g zy>2Q>70oit`tiudY!eQgwBXqOXha4=in!gi@-|=^@DU~d_Q#%k|98_L{3iYR3w*fY zO62@g2Vygh=tY6Opqi+?j9jF zmg$fnZkaP}?IEB|3V;Pk7P$x7kR@w##gR5C^7M8Hz-r<87O-rDU}5v57faSi*RfW^ z5D8(Km^DaRYncRuGMUw576lI^ts|k_cx*d2oF`vMKKj`BOP}f7+=&joTA@JIqTnDb zi$jVgJ_S3uE71UZUIQxL!{` z@>kuDJ=K{wB95IZKYUMpX4d`qlig3e)W5VMo5sBUggSY8@-II*S~|La?ylm*k>Z=J z*zJo!zZ^7F?4^7CczqNB`xh_M{40gtbM|Js1$6fJYiI90vh3RJ?ZWQ0&_Ji-`kiO* ze*KAa>pQE@-*`5**MTn32QuuW`yUs-{qezXPsX*mp?5mCMVFC|$IyMC3?zr!gaQAb2HO0Z-^c=P z`@SP@eakHm)n*zxlt#l^BZXpNl$2nMfR@d!4=(hu?bPcchq(zrl4TYWZ1Y)~utoz` z2sW7&N?BubZr4FvHdD??5kgt3VQmfw5=vTYZ9W_j2VpM+VYMY|iHtD>k|YcSj2;LV zf?`10NXx*)sDAS4=tsVPbNy21ATUk}m>HCpO3P{7yol}v;Ca9W=VyG$kq>5;)6^^A zF*p3@%AL`grO_tdi>cy}95YhSFWDobcsEX>EE(%G@f=6kP{#>bnGV+ir=MaL(188$ z6ZXT;5aOKIZ4Zyw?C^)p2lrRG2lZbtcw-hUNLMS_PgN!?G(u|>gajOL8Qd{ugiZka z9LApqo`BeRjcG66*?}3dh0InQXcpSF3^YA-1sqKhPB{x|#tZF4K{Te**tOvRqqa%- zrtiW|V?3$aG1@nsEHOZYQRj!gd+NzwsQu`Bd$%-3MJm738xk?czhlyL0S+*c1VK|SnwT3N2Dv*`R zv09TPYcz~Gz!f+S9pI)7k>J!23Cl)U0`iPA!^Xf2K1wt8^4lpZF0BWJ{6)M#@n@Brrang32B8dvjlfW~; zoT|O=-fw#I{Bn)sL~G85opjfBd%@zQH&ZX|55?Z5Kj9Zo981$UEol@~cH&4WOPt|m zw04nq2XS**J9oG;&9+xM7ar?0sw8YI~*m#9xWMW-k|?T)!M1d4MMBMUV2K<)~%iQG%0aPr1`4xA4xLt?Mu^c;Tw- zUQT!zVGInhA9eNzcwxMQ)?Y&{JgWcBKQ6rMbmzje8^89!R}R{sC64`~G)TI5`AYA~ zwLiwIdVUQ6^H{ul?&QMaq*oHsf(5Jv11#Y&M&s7C?WckD|NXZAzuEl(Oacq3o?z5V zrCBE^D4FSWCu?1a;|}B*b98y;)b#07W#M>NZ^pxG-BCL#PgQ1TXNzT}$K9?T*epwu zQff#F<@i!1dfbj)d3kqhWmAg6={rx(&x=sHQJU`U_Es)#?6fvQuYA|ti?d6G%hz@< zy?7;V4^y`Fx?7*9cE`nd$VfG^)KmEW@4m5m zeRy!yRT=ag@LqrRQ9Insc2|Lm2eAHwAHXR$Jf8JF6}xt*v$F&4OFS3 zWTay)jC4yvj7m1{_WA{nGbb!K%A~rV#RBPod;_`@`~dJpAb%KNb?x#uAoeVvFtYGp zM*ORW{{dA36~yx3>N?6;*(BB(lit;O9oYqp_Q0P5#y|v%!$T#!{X6}4zf(MTN35!b z#F&Pr)3%Wf+=3Pp@rc}pmy{=p(+GSx6VQrHjG85uumakqX*5Xt2CA()W8B>HUwjrH z{kVSdNx<%Z==~C-f>`8w!h;9Vf+3Y;!+CNs4u^sS7-I;6NlK-RjRXWKhm;2x63o_; z<4UD%mI)RyrP=nW=QN zmF%nwRnzlF(#2wWZBwoE24O|q?&0~}!IKx_y{%HJJWkAHk`UAI@hG8gI$NEXoGz}JZ2M-| zYPoCcrdpMv7y$y9)(EZ-0(YaXtemZjz=oUa5}jaq@zLeQ)4O_eXYYlbwZ}$$8R+Cg zt&LAP|K(G=zjvp}{ar)fpJL-!iRfLHl zEet>cd2?{1yZ8M5SH5A3q}TlVb-RBN;slDvQJzgy859)71Q%pl(yhTBvIw5z_}=tH zb$P0hdaBt^EmmPuErp}PLQptz%&FFtCMpzVH{o^<%2E__Z=7wc?%!N*PE4!Y7K(3q zxKZ<+SFUyUw$}Tdo*DEL~#QC4Suj z@S5(w@Bj-t`No+?-+bbclha3J8Dk0dUJzcoY-w708mEFCqFoa1$6E zs6R9ud9Oqbm=L`dymtt3l#M0pGrJ7OWk(6+q*^ENYcecN4##W5L0cmz7nI}pAd_ls zO#;z_6Ck}0*amL=?>7CfJ8|v7FU4QLprr?I?YoO`B$z=XXbaPY-U2-b^#$-6SiMH- ztpKrfm-<&f;oS33x2Ur5I@VrP=fC8B=_$2#)xpqh95c7wJ3e#UcDKe{2mjRk$|q`z|rHkzTwt;W>aB%sR_!yjt7#-tCkjL?ObUjyvTtX z?nJu^3$u~h&`-S_U(6DWoNnx&z6*DppxQv}-;mocnK5_I9xV#8CbCmAvOO}_uQac| zm^2#h*$1a zr5LKTzj7^-QCz9is5Lj#t3cErlxgbL<;k;!&V5=vFuwMCjF$ip(7*ubww~$bDNcX{ zV|(LHJ{Plj{(mExlda{8=&kL@6o0UJgb?M|Gi52 zM(+sGFou+J$k8l(vR(C|C6EeaDa3EUdCew0`zx1b>(z{V7AcY_+VJ#dZ92& z{Xy^Xi$*6tPzOq$S}b}CoSl^1bDVx^2Zl4FeM!60Ei)%NnugY{3Sm|oz3*Z)yQuSCX0oNC?s7ciN^Jk zgeZxGYo+weE&lF?9Bp=HyuP5MU{xn6m&u!3uDWvW#aG&`>zgmNnkU~-tR0ytKV^%1C)s&V^S75j^<-n^QhW8wyQ?pdPW^BG4*%X0G~P77@(J^czZ`$Z--{pp z8x53|Z*Jh`B}z`o-RRiEt4$xdr){N=w&*Y@pn+>Pxj z@D+fscdPEp&)@UN_+-_VagpfY_E zFMajWBmj$L)Xp3`RXtu((;y%4+0kS)L<~-G@%qibzW!H-zKYk%WAF_Ze;gqG-P!5- z%;Mt25Y?4^+PJyZ9$uQ8o;-Q)qAJz*I(lWJt$DoCZql~O65sUW<0q>pj^5Ypj;*Rx z>!qX1rRfQBfSuOpnd_sMF0?%-TArDx7X61GTpFFWBTFgx#cO??B;%o;nhI|_b*h(| z7cRG+e|GET3pW?%aPRF4b9bM)UfH~IWu@I}B8@6lN2!98fw2sXzBVP|>%JWZWh$J$ zKfL?4`7_no3Kx+0))bgo+62M^2GU}bV8`J6-iyz-o^~;~{Z_Y9Wx-x9$Fm?QC3BiD zR%=r-E=X9bVJQ!~$eaFbEb<^=q4)s9Xmj^JTLWus?jEotlmOYh+hK{N;~JBag<->N zNi#W$GqTEWZWrGDwm)xowhnvZ66ga9z^#}lA>PV{p9QW!?7{M(G#( zfl5PKZzy^zj(a5Iik4Li$pY5b1PmkX1*#BC^jp`5pqj0EVa4?-<2dH=l=Ra;?xom0 zbZmuy^u3d*cGz`YS=MRWWE$Lg&0Am&F0%%ZJ@AXb;mF`s?daD(cMd?0KB)fPZ+P?5 zyK+yjeg*&Y*YPW#Iw)li6`$r1@#GF;_1P!9&puIxSD0DM9$3a3@3C*bN6+7B%ac-7 zjD$EyC_Bg-$nv3a2*Hp}SsZ(i{?mhv@BP0gpZH?)2ma&!`N#BkJ+tz6{(kjeeNX-N zIU>hc!6r#bh50=oi&Ao=^c)yXR> z%0)u>Y9A>79}EU-nK%83B(b(^tx!-(frT-aq{>ZLIY*t1CMM}9=!8gtq)x4HL~deW zK1djV&cLuXr~GHu!toq!jC5U_#l)5l5{QIl1HqY2B|Fx!id-fOVWm_`d3sd5_(bya z|GxLXo*uN}0X3lFV=8n`vMgvDNqx}>hpl9{MX7Y$X~(GvQkj)fM6TNrb{u65gY5)G ziDrbCfZEcT2bGf7Uyizaa&pd*jxl3*eN&o3Lg2x^S?@YlGdOB((#0$KSi_&6C`M!4 zaf+LfG>C5Q>7fu|jTUO@=~JUls;@W0-J84naq{}c?BeXvUen*{?DV@AuRVKuxpw#2 z*Spu#^UbHWp8Du$(>mYsZO7hwZf@_{YhUiHN;`;GSP2_<~`}$iQSs2JpJrUe_Oa;ge5Y|BJ8PCF!6O{neKOiVzdPB&_Sv zqK{(L31txYBRg&m``xYb)I_mTt4vjklMtS`e7*JZQ#ZF?-a=u1qEWc*c;(1k!|1Ft zFqN`j3q`FUEsX7Qd#8Wp{8pOA-4p4(4=pVpt5hm7PR!No@uinKtJm5_`w!n+Sh&qU z;`rUMeg3H{c4vKUY>v#7@44r=a^#>tzS`b{>GpblsVc%!Wi)VYmS;S4zu^o!cuDCV zGv{uV_a7_HR()X|*hu7bTL$365HeuI*l9Jt(t4_yo1pghT~pGb4%JG&;-_j zZ2*Ku=*_vsk=0Z>|-#mQRTk+#C`qlF9CV{nE%tiQdnHtlRG-S zjK@BTKX_bOg!xBP(yKK%Xhh+BGSjdH9h-fuT^p@7{U~vEuJOmNsgFH|0_<#wPM=Kf zxJ}=GR-ZWI%$^GC(+YKUAXtI}D1sy50*-=QK4+HCEq&WN=RWn({cr!*Yk%+y`kALk zzwz&v?z`J@T);v|hGDCrq#@~=BoRuQ%vuBK2M~e{-{ZU5hMr1Il^VRHeKIrw>EaUV*Jr?TnIy7#eSH!A`{;j-?*YjLcQTmbF?0;>^ZTGqF6L0 zg|z<3BWa;SPk(v1bK~ahd_8dMJa(EJrHoGM)Bsn9n=d~7_;9*bOf(#4oMczJTNkc< zDqDK^mco&8Z#T_WH#Yua@1rvQ2j6ka>;6{t_J{lr|4#DM`tE1GgnGSNnF!we-sIBf z+vDrzaa#api<9b(+4}hSOt)Q2`;7!21wRi|02de@_4iOc==%KAlM`{XV2GYbwe<$!)`EM&d_i6NMsyb2H` zKnIC>f~|!{&U@DxD=8es3?UU;O`HdNF?7!A5?~lMAWKT+)p$+|6XY_CwGwGUOf1kJ zM4x&l&u>tN*#AH_2bHLllM8yn;Ckm{;Y3tHnW%iNgL$gBbD`K7^eW}RS~ zyo$q$ouU9KZM2@SCiuq4o&N)f`|DnLWut%O-xg*ThhCIL8ZYhO57tCa7XW9jVPAJl zPcLNdnX$8^%MHwyyeVm>C@5=#zSkd^jUD;II$v1T=QrK;uDG@qetgy7;~5lG8E1~@ zGbiYQTgClnlUr}0;#B4ytRnz{f&skBqI~~9nw^^u-u*pSuY7U*!~ggCZ~V7=Znz{3~W9U*-Kp~|=k zf>XXHsFk;x`@Ie(C)3u>upKRWpWyOg zy>qwSKXjjNU1{xnElk;=c>DfW@MC+MfYbu_4&$k~vbH;h}TY^vhX|($S zi3LVEMK^irqND$(jBOmZ%8hEUJQtRPqAcE8>kQkO>^d{E-uyXd(C|XHu(7-Fr5ENU z#t)nhW=?3!rM=y4EiS-(97qSz-1XI7#R>XUb*E~@xFJZq28u zN&l|9X2XK~%2V6dF08IR^~~f{?c|+rxZ~avi_^vDpIzy+TIav=#fi!3LRlU=x42!X z_xHQfHWMAE)^(jpHX^eHVE;8IoOpHLsfH)!8uu?P&lF~@DJD85-BcVxOv0Il1fniR z1}z<3-g~*Z_X2sWO=o3~}CfASsy$#)v%O#aIR)Mb13u%mBz)zfuSx)gcbd z5`zVSl+_8q#ISkcE)M#|c{Kq7Yh#6ACXkZC8fK%DfN<*>JbfO3|7zJM%a1yhV!ZY^ z@cY1Zh!EI2(EkX)3W)m@7qWEE;CZ0z`7_G5S#!v4=DGuxWW`W()HPnkaj76^XybH1 zVWBe7xY^kqB$1}XFDWHL7Db(P(_{tM$UnOq)U4ZJlv()@KC^{Ln4SMWJN(z5&UB!R z;e4v0{Dzr-y<4ek-GMG)SK@l#hc6#liXXl&J9X+OPiSlZDAhNP*O5)=HNI2__f9C6z1Z z+2}FYBCq!(a)IpOT=y{l_pry4>pk;IK;=rX{4ro_zvc%;`4h!(@)9Bk36YR8HyH@z zf1Ss-ST>oIRw|{9WzMAI5Rr5RGv`!#QebV2*05Sg$5<^Lmmv<6qh#4+V9QoBh!jIu zDLIPAZm6t9Hqyd}FTI$6In^o}taX*>k_!ZEBe=pyMXO$t`` zEH|Os%!$T^MQky4kU5YnY6`Pnu}tYQsU?fJ$Gb3?nmOTzPJfffZNn8O9*=LX#*=k% zVp#@-WK?o*vDDk6jh!?MozP;?$+S(5lncW#U0NB({W$c-O44xLZf>3$MLpnC<9MZ5 zTz1&W(kWmPa2Y$=x)OI77~onm`V203I{mhZnfIXgWNY`iwWrdXm*w5>S}wbu%8WKU zPyX@f{(B}Kx_j|WZ!PTZc~gt&{E|O+baKBvI&oYI63;(lO~)=jFuL_2nkf7C-YhPD zt`wHr_r9YrGv(_x4?1w2VB=b~nS{gs;K*A?XCAVq+j#2n43`!$Itjc0ym}Pg1E@kASCygeTn6@m8>7yz zzTElMmr(&`fCA70*1lmyzS^P;r8jM8njlY7VqrD(2+x1T^md2dtbgXDd&jY|UG{c& z?Ap!IFvIQ^DN5o*)jU=6y(5#2t*Q9Z(`((0q@T7IPw$_ZKPDEdL81QG$3C^Sy1KL9 zJ$h#P+{u~Q;@r;GR%>s#*O74=R0>lisxA5hs=+D1aZRQT z#Sx`;vA~5)*hJRTC@qX!ucS(W9t3ID=Pap~%TdvpAB|drF&7Gu!Z7*KD0xj7q))*N zL`8E66u^>TW)r}w|6kVfR~2Vp-Q66(fb(-&1FYP#p&0=`z$=l$sS3VXk1>mHx+k5! zO9%7tYpD2`015_i+uQ1RFKyE0akLX*dYnwx)5fHCq~O#&cd2GdCFjTj9eJSesFVO< zWct12`D^koFQgxTq4UWbtxtR?`}cpCyz%t#+x`~6``!NhWDcD0rR3LtYw_oPu<-YP zs{dynX+M1D>OcDXQ?8#{J@yK|C1Em1z2`n7f=uAqXlrjuJ6Rff3phOW8#6+Yy6$}}WbXbgyf+W9W2l(;t z-}-OAXJ9KXCTHt+x}`ffOKsFA9Sc`$jgUn6>{uFQ^<1gZ@2igA07EBDsi;B9_Ya~eoDBw*VZgJ&t4wX}ALX^hc1ZK-a7EB$F zQa9;(z)<7En^(?H^nWUtzKwQ2#dz9w*T3>VU;ogzzxC1YzT*?WVbHNpePVF@bUc5o z^q%jYtyR#dIs0)k>J(;5X=}sXd?D(mrdAFXPrCJTp*G=w=oY93l0LQvd!z2$iS0spD(X)~y-GBQ$|5aK z%{b#NSL$FQeDVCE?z{^)HMxB3$T`_>zO-_EknLRsJ_AI62LNaSgRi}S5u{XJK_?7D z;#AtQ6;*h3h-$_KWCr~%?+onK z=GyAY)4<^P9k}(DfP`W#a_o;aMi4~auFpp?L{O5omcr(vUEzAxSmin-4lJP78a6gR zF{GpN@Mq3#^hyzt%``-w|B}Hlgvi5crQ=zf8KVVRBaBeAcxv>ofBxim|Iqy({ZQw> z{*RUMU<$+E2QC6%1ZIJ^0bc}K2XC(c?6M4JI2jpx4Gw_YywFRDV|vN=k69CmG=(R4 zyp=>pY&GzTS)rW_v)z$hI9l?{VQJXh9*rXQbdrReW!6~(ZU6v0FFYok32S|}K3M^F znXP8#13LdVzQm#F0f)*Q0us&>p1$Whz4!m^g^A@MAVJ0VegDE=J+=D# ze{Fv0f9#(+Q+?ap4Uu9(rY&dWI+SI`@q}d}M~a*YDOUcI5FB7F#KF;#**tWB4>M(~B+4D+%xq0cu+~_XM8aW`BpsN{TFo|( zI)#u@38gs`OnFKL2~w_Nwrs2*w$?IONolP$WQ6DD0%fpv1=*oCuvDmR-E@EChj#zy zPhDWL5-vT6kWWyf+owkc&D#t6wB1*dK}^B~J5m5t*5Fmnq*W{1sWjD0^I^~;VacI>0A)J%8V>&lR$du;>;k3hN zqn_4?fb-3rp9t-H!-dJwMjO}#{^HV0h41*Wli$01?js*ux&FDmFWpzU=MMMCaxgom zO5`|uW=oq^tZ#N`XJb5E>#V&pxqQD1Hp6zhvl*+@P{jR#y7+S1YMF^CU9G2yMZfKw ze=@0VXEP<9D#){ETyy5QEyD;u-t69Z+JzFe1znK3)eo^XwZGSX`pNA8V?dn0N=3Gs z&9d)1OGit^TBmc1DlMHlH-G$ialcxGE_RZ^e(zo&0?yT@$O~IL%?%8n1YQBGP)9sJ z6s~XcxR_y9DV;4e7UN{Jz1QL4e$?9C-=A1qs4Y!7PTj6vjt9eRkK+|JB3rF)uy}N9HrSla7)>_r7|<=*T5F+ zDR&}u3PY#BT1qCTzwYdHu|3omFJI~GUI*}w2j{D0g-kLFYnjL%Bx5kkJc`uoIJcKH{j)2Qu&qqKo!C)q~kJ(8B$3LOL@)B1|&?Tl@l6hYZF#P0+OUO ziJOvFvh(*YN5#|s-(Ow6JF zQL(rcTd>7x*aCP9y>0RM3+``xvV?91=tt@k-}isjkG(rtI?9AlWpTGNzIk=@*vr|6 zzoai-PM&=+efGuifBsXdF2C}+v-0itWcS=rKejwEQ!Q2IiVsiDJpADN`das|KfnLq zK5*k_e<6ML+WrszSmD;=7I2(;?f?Gqg-<@dy0S6;rQd8laK~J|(X*LR5HfTP!|{9) zEHZ6#4t{EKTOjAgFMHtZdiBzk|0y@^5(x+khRXN;gBsz`{Dp%&00M&zOUoc4A=p|5 zNhfy?7_0NTLPAO@nIvEgNx{&}nzIZ-!4OF$h^#ev~aKFKrq_Ksw5T z8Af@MrB0(*1TKM0VpzLrHC(xjfA;NHzxaX#7G~ydtAs~W?ZsU-aW_jkEc%i>MGZS{ z6lF~bDTT=NG#TTN1{JJFkWwj)j4Zza)gn(VmRCtCs5fL_0|5SHQ?p754La;wD+;Dzy?5BU(vkD|W~ ztaV=QpMSD)+uhT*zUAoSzx&zG{(8J}dp3Jwe9MEyqf6N8q!%vqS1$LjUh4NQT>{oV z{i(Of>BWV!>E34c)L)E-TZ8h9=!~=Opsf&3G{PfixKJxh-O@0+T=BC?*_~eWjusk) zDL0%8L`i0QQ=h4+y_=(%c@)aSW@3An0IXcQ9HCId=tUr&Q+`nFb}-W1k0Z|dLDGr5 zL5sS9D`ccxtd{5ex;wF) zU3_`lYW(fwxjxvxI6rx2_Qd3glYXI8ySg*%Z^i2?J0ld!_2Svn z(=(G^X6#05w6fXSZAHc|jWYp>BWLUN2~(RakQHgdi6ITZvJz68c-ZNtpyE`~NL!n9 z7ngirh27;)T`69CdhOyfmt&f!&IR|}T|52$srAeKm!G?E>80z#t@c$(>L&H`YD62y4{z&Xv6NJwIvFl!<}3Mm~nM6Loc*@Fx|%Hsir zWS!-Hg99@#7_0%o0&Ez7&5Te2%#eBRqakYyS;tj2(>Ae!v}=06_^&^-mW=lDlue)u z_`qr4CE(_38Z5_DVOh$Q^#!9|LgsnF?Lsmqx`;+OEZQu|^rRCuG8?efV++@DDDX2G zMsc6H=oN|-Eo9+NqGzn`1Lr}{fd>FwQSpLC0x5+Hqog9Xu_eLCK%;Ny^1A@TQOFo5 z11``6Vi1FihtFE>B%5p&~8(%s>Y zKS>||O;uqFdV(Hx6x1XDSievklp7y-uld#Vi`_D%@XYprOzMvN-0BJ$ z+r?Aa$zy?E;)>@Kly`k~yw^5?)3}1t7A-+u3j~F zyh-nO?WGsY=1ZyF=>cP)JQ~G&t;FARRyLy5m)4PNG_f#ycKWU(g+{qn^j*(&0x!7x zK2K-1yVq;)jCD2+eP^K&6lWbTKq9^4=O)HUX?n^YIVsBvBI=#qK0jAEnoUeP*PpFn zBs+WKxdk7=9ERTcm%HmXlVrD(#%(XuKnBENQB_JbU!~zf?dJM&FTQ(eX6Ec|cb00^ zacs4S)>hHxm157WXS_U7D9(w}RQTkRy)-qwadRT|OIbO<1V+!Btlg{5-accFpDGl+ zK&is#uWqkzu1_49ICcEY?YA{1%kD5rQ`qOO@9*uj{36X9nL2h9l~WV_F1H45w~H)=w|0C2|^I z7cziTN!YPA6N3%6zl*Jy+Yxof>7X+PhEvtTZA+mOB&?Nigf_^D|4fF2$OSxXnAm_d z0nCC(u>p}Fq1dF%mURXpArvX+K=wh*OxBXf8M;RE0U^{f1WCanpBfT`LoiagR-~js znxtPOnZkS{em8M(HCC1khzvni1xdKQN=-^xH#DFwkvFr0Uhw}K{v-g3a1XZ#(G4M zD6n&`NzDqkqprL$ET0{>))E3e8^{=B94T$kf|(4 z2m+;6OC5-;>dnsh|Mb?z`@VJg&!1?1rHR#|BY{+ zdi!0=wQ@PUYwAD!WZ~E^J@?-pYyI>85dY#oOW*RSr;7T0e{1g7KRw>-4}SOeckaFa zmQg071gBnjPgBof;qyAjkU%0w9R2WdbA5Y$sMk#5Rwc zCPJPG3?b;SG5{>3Is7;TX4otbkrFw2Fb{SSlC8EmSqPA%1hgR`g+tbAYmJanDw$@P zbRD4_wg)L+Fn|=&^^CQ!$e)9V1V@ohTS$hWDsx+-FJP`&P5@3t4d_G_-*kN2A@H?${gL zdahI{)mL^qyIY?DWEVuZ38cWPvHl@Nwhzuhl6e$S1Z+`ShdLtsITKr;543>uKoQsl zZgj5Ko{|5^*aX-Fo`xx6`+ zVL-Q?#4XmZ4U3-$2dB>t@46eWoD81$Lb9+dkKY*-r^Yu{M#XYhCRuYRSPO42aiIOi=HSns9Ckmr|494SDv#MQZevxFM+D*$_FZ9-T zVpZ$=aBMsjjfRZ}Zh^|xtXdHOTg$t9t!{tkOsTPSL{3eqq9Zavg5>^wws~!D@yzu6 zOmOs=tycVaD6XuSW?K&iqn#b8joa-(Gme}nEi4pulsE;)4>ILMN)apuz0u0c+m~P7 z&ALhD7?qT}vpsq$+DhWkDHP5=eA`G)Y(8^y&nUPU9CpaAP=%fBC1e7(5uEBs{6go*Y`($U_4zDUZj4VJ{j>&tbP4k2m&O zdr{H`+OO{EB$h3zLb%q59CJ-p5J@J6)%cncK$Rf>&37jE|5NdIpYF)&KhU_P_6^Coe{$FFfH~{z4%hWYEDIq7gcMSc&5&^}Shi4( zcW|_@0i?pAOeu>Z5qMURAXkbEEGc8FL|>La@u%bO`=^_OL0F=>>G@OAncCkQ3ZeWE zS&|wan5=EGz8;f7O_Ft$u(s;CC8<1t3bO)fYpM=uMumy37{O@8T^BmxkUh_3(oqcb z0N-;biB-4LFZyx0jLzOpYa79la@w|uHA`oT73*H#8JRTO+Ya})<7T86W?j#XkqjfD zRZ)2^nM?v*pr}zHQG~4k+2Mb=X51WRkmk^Zm=G!98#@D}fO80&?138K7l2RqSJxp6 zz$UPSiK8-LGu&;zyotvA!*5e>d~;Z-m$t4S{md6?rLuEmuCP#d2NMFthN>5DJJq=B zWTjpycq~Re+uTk^vG(8>139d_j>PUxHt1)5SSpn&J}Z-0Ww5&)UG%d1ZZDsix$ zuHgkXySuCw9;_xwrk(N9M7?o$?XFw1#zfzPzVck{#Vh*QZN=GoxV zb{rN9I(DyJ-||ZHjxDOtt#}CQi=+KDV0(K|9*xLP3#GDMIxeG5ytd`^GH!U0Aam~Q zWIG9ELCZpyZLvG#tLsrO+w)4cFyVy-A%(SU5^V;l-S64)cra6wvs0L^c-4Rs7UL=U z%35dhdf!pftrjQh{?dY)ZcMmRj)!KiJL)QNPPfoXF4<85^4pc-RE6ct=nSESMk!2{suE zFoEe+XDf3qyw2;~0|6e0Es?O+T96P@v9@{M9!MB)o*V*etX2w*Z6Qow=; zQc4(WO$H`51ad$U+JjRZ?v+3I(Ol;v4haVexCwN>YJy_`v#LI=Y?MSdm@a`Kym>#Q zY)Hv?sKXdn$%=`Mg@DvT zC?(lg&#|z^@tnZ(W*ZClotyt#Z?w-`-u=X9w;y|AeQ(ojui^K$#FOW5eDgcE-~ZnE zJ5LAS^=)A_p8kRV+Wf))IR3TS(H+O-JKs|K?Z4a~jN;$>)82dDJT)=Ju*9sD8yL&P z8W2`%=}Kd*UfeGuYIyup}gt zwppeM4rdv(7H|`{{9C^<_~{>784PMAT3B4ZB}?m_J?lCypojf5qb6q~gOZDiCnuHX zIm%U1fMYn2G>jq^*2Fv@-OfY@mbK`mI)TUnRwNs)nT8%{OamFqZD{R@)XUl!_EE_^ zzh=|^_GZQ&2A!esbZO1L+gpFg9rD5d7+|NJSS^8;N}1N1t;=P!PK zmy@@gI(2luZrqdgmxgyXH`mbLZ|*IOdy1wCwMn-=t5#P!oweuE@*7UxHZ?WZFcRy- z;W$g$-QJ}e-sNkZ>O^gJZgysFLJ2pCO-6dq8x6XVPU2FfoS81Fv9oez zxVyG?Rd>(aI(6!ndXduDBpWw&Kf~iUKDx9}b&i~_E_X$LXJK{A^dUy$1X!rdJhFUj zraUQhn}*wd>m_+(6*PhR{aAW1EzS3ADz`S(C{u$$U#Cp~3scJV32;F&_x(yqtck5A zBGx9CRB*mTK|)DujImmXyb_S4Bpbt4!{lOZDU}N*l4Ok`DIld~OM=L1V>1gYKw2A8 z0$D~RLCP3QjuMU#EMX;t+`XWi8?Q=ea%WKsXn~UaKsvm3pOxMzlk{LNf!j!++$p1A zbziW}?0B~~?sZnRC2L&-fhhz6e9g;w=NsIUM~n;i(zDSg;3Wqbk_s>fOd-1o)PQ5aJwO>~ z0$YFrdcgAn(Y5P?o$LAX)Q^z-!GGnx{hxTjaf!_3#9>N_V62fA#KckFB#@iLh{zs{gb&YiA{cO*dxrtQGP7ke zxq6HRkv3Wi3F+oJk)#xB4I(9#PBS)E2!fC#q>#cIn@du25FFc_YsfZBtx-xEGX`rI zM`p70+rPR0FMnj<4k|@VFCAIdwl?f$jzc=_rOD0AcA?6yT6P`ZaeYTPByGw=9lM4c zq+132P>AHTYCWRAFEYymEi0y|cfk!2=z;5-BXxCUGSG6y?hCp|sohLytk zd$Onhl(!nS?vqu#h9x_kWMD>m7bgQ2?PekbWiYd6#8 zi#nv_+yhy4x?Y+Rsdf7)z4To7+C@sfb8B{erxQBP z-FKW^K318U@KbH}_TnV7n_Jo5#&}}NFCAY-z1+{ZKh*FMr8I1&gT7^|MkagfveTkYpZ5FNZgZ4xbB(%kTzSCoAuE+UFl0(Wup~Io)c`RV zLON`jbuP~)uw+OGg3gH8>Wq{}f`pXTq-^9to5m6e31cnWyjq9WA}=`D5-B1`C9RMI zV_?Bnq_$;a*y3Tw62LYvhKRp@?&_TrUOj2=!FGTOa1MSo3rk5?SHfjKER32_XS{Br z7YDnuwoo09TDGIwGf`Sdh-JOhaHy0GcAXT3!m(&@5!ilBV`quEY~gaw6(-3rLWG(# zYXw+-?Uy3&eY7FVT^MKeS@-He=c*1I10Df(fhY4Jb_q2LF+vJtKnaKeb}{H;5I~%n z#jSUlZ~IRD@HbV$T4poi6l4H4(h-upj7Ujq0by9FPz#l7-yPu?D?up>OM=+Ol4ABU z-}4uJ??`3g!Lu{(f8Etz`h!c4e>t<(`SMqI>!-8!e&;>kTKkS~57sY_KJaJhZNIbg zWACoraaVEW*=UgUKl{1PLvQk>2dVOaE@^EJ`zFqrAbISAL8jRr0zKLCfvn#g36tF6tfW$P7`wV8B{R7ws3$5UbB4}QP(z5k@Ebi+ZdK6xq{ zS4YFdVyw~;C$WN3g(FH$2+I;+?TpiY29=phP-SABdRK+1yQ1OSYUl{b%Th{`$_U3` z40efkb>gNOgKlPa#-Ix^gmEP~q*cMMIx6ryXL_>ONh6GdTE*{r$?lCYNkOq4B{Ua$ z6U+5Lmt3Z?_EM9LhU28w@7Q7(7Sd=t(`!*uf_(+p00zLTyFV6R@7;Qvs1=<4NUhwA zUb&#{Dh{;C2e7S8WFvqmW!4N)hCOf?W!T=lvU6#*;rr624dD9qFSMS%rO`QUlaW~4 z$u_QxO0{8U|YV+CWZeIV2*i9g;H#)U$N zi+7rKsMYQFEX~d}ie*6--DcWBG8~S#Rz|xwN44qdop-CnC2yiGmEbHfObnJmK$RkF zZ@7E?+IUp1PF0VbSX?OkP9b>WGu@Sb_vneaJMWmT6#T#Zq50ovH7{T4oH$)PaiVeNSeW)2Yx^BDs)dQCQ9F8UZX(n&>#34Fb5C({DXz}+gf^R3 z#LabYn7KhvXb-b%ThZ>`O`s_yszo7$WatA~hSdZj!60E$EgX-;s~8rr)ocM0LV`_R z91z$rgQWs9gd(MkJ%|vHO0u@hR**7m*?>p^f(XJ>&aFHyh^@_tEwi!d=;*Q1 z@8%Y6xIhIWL4q>}gnm0MI(iNVntg6EhMPZM-<37#<)22JQy#11{-% zP!`0@Qt_Shx844R$zT7StH1o4H^&{ZeogXOfr#9z{Y5cC{+m(VK<2`Fmc8#m@_yQ z&HQ36J=YCAe`E?p-!I$1Rg+l}Wiwl^@Jaivtu=0tO7djl^?BiA?K z#MIp6l!@f#_Nd=}3fKf*JP4Wq0IJl)zxe*8w|r}TZpMa0y-aq8$<{W%@_hQ2AMQT$ zrS4&sV1OOKgCUp<=o}6Y2Eh96&iN-kb`Ea1`r>8a`M7!cfBkCt1dD_J<=AkFQ*hPiNUSMKlK+M(V^v&_t5L_3p?@Bv*(j%pBlE~tk-fi ziz7$9cfNH->cRDEX`vF#P6oBIs8j>xIWs=pb@$wA^Zxd8W8)%I5tGZxMN!t4&9M}N zo$j@(c05*Wc{J`!)w=CMdFXBoovD#6jmM(3Wp^*VGT8fgqxhamMHCu-=w(SHhLL#T z`OfB6Q~Kr8w=_;2t)E!(9Z&Q|w7TA2S?RCe7`Ho-lI1hU+_R@kGgXH?k!9Q-n+zH$ zjXD~H+ElsQDh(pt>W$M83bTd9MXoQDZd^}WgYGFE9$zZld*}4Em#*G;b}urGcfDo# z;YW@OlWpzj3peB0Md#G4wBtfF&PJouMW=@1)Qs;>dWCZA&Ipkv+@l+piW@uGmNC`3 z)0hV|wbtDAo2_nZ9~im;e9saz14IldIn_*nVK^l6fEUApz$65*&2l*z8EpkK$U+;- zc_yXIMRyDww0oItrU^tOt`0XlUZ9lz!P zU;rUi8k0ab!DzofI=ou-fuq3a5aMkOnlUB{SP3x^!3Tyw8|Wr*fN;E)9+`K~EHW7n z-2zMBxUP^OB9hXOBsOHMP|9#(jR)aK$pj0AU26_sK0Sx?ni#<{Ke~Lr$xW|-;EvZ{qw(D`{nOi`g{L!>!TkYgv!f%23J@VEYC?ZPKJhqHl^#rV)? zh(rAH&2otMXQ96WTm@Fpym96a@8yBfyE>%z8QzP7pi zLTTyfWSpv{@@(M_wHn&nPFHU^QJPx_tQ7@6jiYlTqZq0_@0RCPz3fOXKl)}BjgqCK z<5EqYwYAkXHQXJRX2O{}odp$49x)T;{R>yKT7gtS&KxTrJL=4o!xx@w_s81zWGz%q zT?Iv14tSY^JMWzP%(c0+H@I-4>$~Op6v6^ErVDdDy0S6cyfkcWiTYGQmC}<-Q8c=3 zN77bn=!E@#zr1>*+wb0hatr=YW;*Fby^#8m8>ecomF~5NQ%j9v$uAd`k|YIt%94p& z?fsn&JXJh$Bs{uYsFqymG6@?Q8ja*`e>iR>z3ylcFPzk%BQ^Bm($XG6qIdqBN$y$y?Bgd4~X3muJ4g` zgfO{zD;H?wiP~TgtPsjtfP~HxG7x!>h++9azHKc?Isi%KSe=n&;Yg!XnB4A@Kj(r; zk^rohWS9(FCP8^BH**SOnTSZjSmx9c3Dy5c@1GQj{AWM<5>Q%PzW0az#UnrbpMEoI z4h}n+7XE^iW!<>}Tm;6zq~l6g3S|sy4juRo;!ygfdRVJW&id&%+aGYnQ4_OMozY%K zH5l~!gHdGTxRgabp!u46eaNB&l7fUKSCS`eN^n_AK>)j;;BY=c3tt3w1HevO&gi>KfhG?$w!T!5VBA!2DF7F z2v{LqSWRrK6@pj^2gY#;k+Be38%vhJU^0d*vv4#CW-YBDP6Vu#W6((0Qdlg%>{eq2#jx=P`3}m^VjJ3^3$&w<6?NOyX;Z`_{;d-8%vQ>^1hT}Ai zQw;TZ0Q3{I9gMU{q%A3@AhBpMC8dDW%s#GEwFv9Rn7YnP4R{!Q@MF=iR^azTmF=Pyf;HZ2#IX?;th@NxRU8U>ODiKm#jC z{t|cr*Z{5r0M-{z^-nH~ieJ7oW4Ak9#^~rH&T=q)UY*9(=F_vQGt>23Pm~ttg28hR*##34qBri@%T|%fbl{nB8xIr@>Y+sIdZ}S$8 zdbQ9@G?c&IS-GADFO+NbQl+38wL*Qy>|Sr}H3!@XCd+Hj40KnJ+~w?!=0gKi2hKwx~Am2_nr+Wr>b*vVIg!oop`sS3$Ah< zH_7aNJHGOKdl1>>6UAGP)udnB?+my0vYXpUy&ly9XR_`G_2P4%-F@+T^X;$Gx1TOQ z{Dz~(37-4PXl<=|-(BT9jy2>P>~DXz_u>nkP^sHzi!${3Ndu@4QNFYv?_Et6mdYBa zO=0>Jii@LCBP;lsu(Y~Tyz-S~ZM~zDJ)jF%&lRpCNC+ki64qKU1QA;%Yx6sq$uclO zGDrv|Nl@hGGufP2D2v3D5w5dD-_w>{lyXnQaMJ)`NnUFU^2E$#88r? zV>u(~z*uqsVpNm&{^Rn*{L+v8$=(Nk>+SEFC|y{;|AQY`dG+?_mnXG}(Z3Gle_6EB zBx%y=wH(8V0c%cDp%7Hde!1+7Wn7+^TbeCTHY&X5QX>h&Vx&1Uj$4_ITVtU4n#O4W zMG%tN6P95m!xKVStEFU+3vvNDr=L#y8Xx(v=fK$DL;vtXXC+Xmg!R+CmTR-P5E_&2$A(kx#@ae| z(JzD!BTExUaZnghwr!k%JOLJoPKHsIkzwHvwE^t^HZxwwcGN>&bIx z-S7XwqeqTbfA(ju^*0hger=3}IlRSO0$v6V2VbIc^th~+$tLOE^&Ya`vDcT*K3w!l z^-*Ew@|DN;zr5SMQx)zim?GQ`m^Ner{KS_;L=IKEp7D;SPiTfP1Lva1T?#Bax( z>Z~%ztS~qBu+wd>?e52et~1%aJ()0|YlH4~yS;j`-yMuR_@lckNi?5D4;gsPR$k@Q-a%YiZOd0P_)_5sI)#EOfFP(CkW!* z=APHSJnjvQ0hZ34npi5iMQ67ezkFeDVy(12o=L^{=!tT9rsO%wlW4ZHjcsc6xw{(= zhfbwbJab!Vd8u6TWk0g7Yz|(zHVl1lVO}|K2YWmiW=_~>OqQ087yLj>L>2Ewck4!S z?P61A{h;i5zHV;qVmQ3A=$<=UnqO`_TBvb)bN%wh%P;LO&eSKC3ui9tXP+HixZEs; zW%eA!1O&j+{9TQO+x^CpavE@?4uf&vCMtEhYu?4j^$X9XO__D5Jx)j9F(6`wQ3@mh zZSAWekM^*A3}%_9xe`f8CI;t&mMfC37bi^Ho|6yO3bFaomuruQFzx%BR=lxd$sh{lm-upMQJv zl}lsT^v@pCb9M9HH%$~P{X+&jw)gEwqsjz(a9OtuQVuzaO$KJxETnWCUpXq@$AuKH zHu(Xj11<sucEpR@oxD?&82264vhl2u9So%DakOP*&5*p&QCibSZhlpgk*qq z#vo`2A*E8*S}7sup#C7~2xLMiPIYEw5)>|WgYW&jSNm5*0kukP(V}cqQz*J|G>S(V zV@&YMPTBQbP{wf*dXDr0Vx6I4jiX1qan{Yu(4u1y3X~nLk}4@dBo*L+61I`C={Rdz z8yRi`L#Bw?Xb50@&FX+tSkuW+`F&99)PN^~Kt4kNd3!CxPOIy>+E3bRxwp&jZ zt#!>E(Y4bhbNTW0wdFy-JlQBvNM149NCua7#3-qheXrg2_f}-FMJ=3~>o~_wxkr}6 zb7!mT+qNHzI7>`A&Jte=o}HAByzWS~Au|MX3x$cg2uLU~294d~2n8T=(DI#1xyr&qpko@h(@S5z`BHBWv*!5S)uTt{nbV=?%e^gq<>l_n zm+b0JKT6_274JL;hf2awnp%^I_Q-6HI)j_(_1#iQ_#$y;k4!h_oZ}~h$!b8v(xg$t zH=}HOBYNUXJH=9nqMTkR?{4VPSPn97$kLHX{m`AYjg5^jfBGuPiTfWocK4Y|Z*#QK z9<6W5stjtOZlO`GhxeTGkKc|)odgKXVd~txslNEE_nBvPH;(VVYgC#lhBu4$x&;z| z;}Pu0zyf56a$ye>TY`mhpujp0V3j1Cyo_dMn`?MTFpHe@Vzrh+!fHMMM-W>}q=a;= zF{ET}003E7O+r|PkPeY0w$@sPK~8hAWVIkAIn$(57UVb*ph7rG`I4oDg@;O&rHS5p z2S^ALmD%F%jTeE{gQgJ8dXTnVrR z6ip++z#v8nJO+9M{QdxQCvo4KyXo^-`^^a;1Y#fs%wK+xzVzP3Z++_sYLFVDl$leo zv{pcX$glte2m+khl%;?n1|S5i)yxdGLRvP444`~wCNK#Fok43>#v+2pzH%P8cj`y} zzWd`pcWraOm&JN*3!nbVur})-jsVf`rEz441POvLR;OeIvt*@&AlBOQff`JTeCSQ~ zFc;@wb|Z*&9?za9f*q6q`OW=M{h7N&a(t{|m>d!zNGh9IvKCeYLO3ovQWzr$CN(4_ zNtF}-way4G1WBb15{s0~C8Q=bYD$|?GRW8_+Gw;O27nW|Y;;4p6(M{nG9h9{Z0so2 ziPp`;jP7kO!^*6u_#1CalzC{YCu5&!mVe?#-+!exblTt`;i2O zQ@50-D;3v~{jnCXbEoO%M*r$lPd;;O>EvC<+2ZE5zHw8(bbe4Q?3LWvv|HO+UtfRm zMZ_Q4czLlm@cpVY=pkS=w%H_Fb^=vFo51y3>o^u~Wg)vD(VbVHhAz#$;`0oDs(p)zQqP z-Cx~A>ZGwFym&nH#(S!_^=07Ma_ON;qwG&g3QdwA>vdbZuK)_sE(=$ctIGEZp{Y)3 zeX+aW>O@UO5<~%dZEUqi2^>e6c;t}rCrhCnW?R>yVW+t`SA6)Mqi604PE>rUx!F$k z+A#r(3%=m=YTLQ?%3$_r`R)f#udWP2&);e3M%DNNbWo9c>H5qDpYshvV8Bo zb#;D_jI&Y6^F8Ij4_#BL6vL|TN;BSd_O6SkpBa4UQqrR0y^Hd#4+T@x@r!%$&MO%7 zyFfD!){WKANYTK$*b=GHqN7Hwm_})_A~}&G-5#}~ zOp8H3BAX3b!_b%2f*hqZIXw|+J>K8IS0hsZN`+wQ7$#2$*ANUVwj`Ng95Oy^4G4fi z-tEa^Yd`{U0t7}K4%Haw0%mTknsGP=0M$kKvq=3gJ}L0NdA#neSUKMOoqspg&O(C> z7>-i)XTMM1@>Z}H5W|s?)t2SKjhLB*>uD>6&T`2kvtbgDARz?9vIELFJo#6om<*(p z!dfN+S1O^1O_n&4oQit$JD2|MdiHa_az&dMNMF9%t9A;n2HnJ&W&u!ci8si7+y|&A zLz09b%D#H*$5&0@ha0@HLP~2b0qRike?W)^gGAn&J`j--=iNmMz-WeLA*9JNVw(ee z$O^XBn2a2kgaczOjMYX+0n5^nAj4W4%aB4z&zKC9LV08~#}3FDqVjtm89nh=k-^fD zuu&{bcUoE@(Md9ndvH62!W8R~;FP$Mg2{7Oa1`~&ab&<2kp)~-C1#XVdQ(86C6gHRO^l`I2PK?>%U#0w@mz55@4 z4 z!WQr<@EfqV71MWi*Ls~5QJQD{_S(ks<4?BpB)@RlKHhQ9|CbWgQ7XyFmBAC22TN_5 zJwAW#mC0*2YtP(irR!baJJWjaJC;8@jg!fq6y44++g#0;`ffIl^ITq>jIZ1rZQs_- zvy}NHO?oF!Q@fg9LmVIOT)Wz3w{dX2x_);TxCM9~uEs%_aam2Xqpj-d>$j2gketWL z+AiCzgBh*bu=L|Xi*9@Aj4Lx&NIQYsuO^>(Ddg>WR!v*fTkg5@omL#!jnC}i&b4vw zsidA7|Ws@Al5@jT=WrS)S;3XLGEa z$kXNS{`U3fKE88d^TeeyE3W8Wy>)-KUuhr@lCs)8n%}x_*KX^pA3pfqS9#i|bgV4orK_!ve@b7zau~L6HCDH=z-a7E49^R#zpDZsWt(K?u+Op2)_o`S| zhjq7p-a7B8V;)AkZd!?38t;uJ`#jy-%~pD?R>G}fsW&*9*Q5KHOdpbW)~FU$Qzi#? zj!9J-AxwnKv=1FFJmQ;%#=Zu)1i5qU^Yplhs=y8~ezdzXo^|Fxh?NXcEtW=($Z4#J$e?7T zrY3C0L`uzp;GAh-B0!)KF@lJar13yEXF|b|+gRhT`O}-f^P$@xeYFBCSiQeb4`#J> zFjNflVCP89J0k}rG$USy0iIlzm`{$?dpt})jo?qy)v<*Sq(4R%EKK2>)8I`@_y&2f z;E<7XY{X!K65x!$Fhb)a!vrET)uySSQ%h5$xlr8v@WU^TNyP)KWQ&(2pTQTTacQFB+jci31J3w3^PKvO&tfz5)~+< zE@KtKQLv+04k8W=BcRFjAK=yOcthY#Gl?!8b{L&`;f(co&p{np&apEMq-JDlwW{;p<*Fr_ znHf8ndB?2v#7xxr!D{stUp+V&pZ>vrbmPre*lck%_z7?;*oJ8Z2(S;_Km|E?{P3=S z?f37PJJ{Ol?~f10qfeo}f#Qwr&-~QyY<-CBbfq0dg>r&ynsw7&XIRMcZ09kQUkh}W zH-?YBd(d0TCfjvg#dGKKM=!RzU4QOOuh;934(2yLB}aFslbt!AUmLEZE9>2SW8k0L zjRnnOWtpg=vlOT0s=d|0Ow*M>o>>8P&f^xCIqliL+K7kck}YUM&!1$yJ! z(fz%nmUmW3Iq$buk|$5)opy(2*m`At>r=1IM~5E1+dK2tCm&h6=u~@fbF_$N@%puS zZ)37QwOd=oM}Kd0xPQRUEVUnP%`s>%b)UVU-K={s(E#>Zy#D&`YoD60ZMq8pM?kp0 z=S~h+led5Fg;zfA##`<)pB}&Msr=-*d>s7sYjYJ7bdQd9KJvkr_y2G%d(PFpw>^IT z(f8#iHV*d7@F1 z45F$9Au;ET9ReaTvq=pQODtE1F35g&#hpPd2b~Z9%A}YG&_nA|YqY0s* zjM)K^lo&2!t1L!SHSd|&v>=j&Ag5FBYBQ*c_a0Olg>0yAefRJy|LmoYzWQR*(Nfi8 z?NZ?s=8myDO&E91Owg2u#-w1_G9x@JiU=IIaDxl=p zff&XHF@mW!J&V`WAr-e^rbmpA3J=Hqq#JNsKY8BC{8r4z(H6s#=%=bMx$3e{kq=-jR zrX}tM>{+9wgZPjsXk(J;jt>AF&sX)K*jiQca#}uG`!tmMM77sE%xq#VU2P52JMtZ; z%dNbfC7}xQ#Fz8Qot@omI*ZjLl(W$hoj7?aA#+s5<3Ci1Xk7zB9u6$Qh?LljmDETJ zRU&pODrBCZ4yG|9I=xO`|5q>E-=6%NAKP7c7%g72Ap$7P_JLObw;&s1Y!dFgzIw2g z1l3z`n?IK>cRB%j zcQ3yF(rD+(;oYsgF5Ax4W@&9G6?LpI*{LRzn>Xpnw{^~}cg$QYk#-6D{knejjWR6t zdZ*8iE4MN5gZ7ztK)iLGMpt$6+CCz;&!2zG;7)I_L7?%9P)I;smr>j2b=xP zi&;BqyVbn6V%1fT(N5IuBgt+ZbmvKTR$=30R(DR-adzuYGWnPdSLO$k>8{^F~L?Y5d#_wVi8-$PMlZ#lnm@!VR^cV2&G=To1$8zjE- z>3(O!_Yaf(oe^hMS>4{+y1DVp#XtF{H#)o?D}Q${e)Q$y^`r5Z1vnf}Hv)?fd(5y$Wj-OrCN+~0z>V3C2^LPxAQotZDsjS0B%-0#Xbj^lRjD{d)Q}`T zU5#JzWfy+xKVE<3jq*4^Eg~{`CSov|HCP`&8*(2tKu%7aMGA4@0kcr`X&U+j;->$% zs3#UYfCc}n5e8yf6bM-Se4|I$Bm<_=#5jfXY|3V4qU;$a8Wdz8M@_>q26hRVkYgs# zWPph%wb-Ci2@>zy!;k$!`Lq9S4_NQ_PB9JZvP`|0vEV38^0H94B+a-kw(BsC<%(F5 zI0xwvz`pG=kV&XVg&YODKgBJez#r}NxCL?X%}c2+ae3xbtq&!j(&N?&03f_rRqu*L zKZd=c9QXaIvBlYbanNx>hx@ZC=cJcX=G)!Y(x6|slSo^!Ms+k1-QS;IwOQI)R+n^R z)oofp)yy5uSQX5sX7EPjRDnjA+YF8yaz7G>s0<;g;6biFd&>Ro?|9^JOuzK+4uFOm zsmBLcg9thT^jKqVANUQcvU&9YJo^6j@crCwPY-rbJ`a2p*yx>p>e2UK%$A*zoLKFi z>9<_qyZ0t_QM~l~S0=l&`)}0GJd&L_(HiEi)6$mDTI|icwKY8U9*u6i zjB1AAJNlt(@#+q^xmgrdsYJmM6_0uERDgYW{lA5q2rU`q>~OFT|K!T z6UclLVv=-M%A`YiDXvx5p+1<5i#NuFm#kHfM#mG~CV4B(=0we~*Doxpm_Uw@D|&DS zG{f6DKu~w%s-1l-0oq^uF89Cv;t^mCCG#(T|H^y6?3L3`@87=HWK?uqAGH77zvz7a z7fl~~OX$s9J4ril8-LD^w*SudIbob$zV1V!mTOJy0CtX{l`z9ppfD0)BIiw`Nrb9e zAZOaN*u4joK<1fO6`eE!Ks z%)#K2ge(6MFEMHzop*4K0hl%%Vii%SLqck143~_z!w>zF>pt2r9dvuWFs&gP zU?CJ4t!QL$m8IQSXs9ZYnOc!R5|_I~HE}}I%4St@P{;do+yF{I@L7_8?pVGmwASgF zQ~tum9v)$-x<_uVArcd?Mws&I`B$Pl4 z7?j|glMo4TX=)9bLIhEmnY?$27c#Pt+3YQ6Ti^5FU%K_${4<}P9ak{T(#40y!gTzu zi#G}Sly^>l{v*$PUbmIsJ>1#8I-K1Au;jagi;t}>ueOU&Ew%Y%C(q6IJ9#m#-Z-er z*W=4qM{nB;PoEpKvZbBz;oaRb)Wpulb3G_PSz5>P`n4VZ;jI`}&s+>uS-<%FWcJ$j ztgJtDF?`|Yudi(6@BG5GkAEbqs;(wT^VVS4>kaeapq;ie@!emDck6l3x|@(UGX|x7 z?ya;Z+d1Kd-tba)<7jr2rxk04G*n4FOR9OLdVu`{w3(tu^fo^PImG(< z?eWnLC>%}aweJ)jX`W}xYfJOHVmA-3?H-7s`_|3j#-KZ#?YwdG;1BnGcIn;cI>S}x za!7eg?%ev|zu%;%o@NKgyQ*VuOBO5#40QtzLB&xBpppI88LI>V=2sRkyMD%E_pJk)redIcmhYLmhl%qISGrq&$(ocLR(56moc?E zEVWX0OTDDKl&qfgQ3Ufm)gARdZy_l&Cg>Oyr0R7J_=mfRW4r z0a24QvvU#ykyA7posAL#8(Xss3Z5irP+B6bG)>^uA2%uTC@)EPkS9;a!O zuCp2pU~baL#S!0_z6&%q7Viy-P#5EXV};O#E|h8621P2h zz$u70WpXT4gbFz(pR&PJ2m)qXRH&pu$U#KRt8WprPzB#l0}X!a-_AbzNy)Izr^0A_hyL>9X z=L_)e_oa_ti2aQ;Yqw7g(`+Lfpi|xM-g;s7$q!xm@W-|R1qMLb6oV3vTzb+at%L`u z&wER~qSLM=hN{rew;~+5!!kEE<|_7jL*MJRJ871+jhvN^h-cMaRWPs$^niWDcr+x=2aP#IZLmIR;DR$#=K@$M3!Hx4z@mdpE;FK6Vc# z8FXC4&}SWitUeeg#M-N_d-%rI(f-I`esQ=oo{{I6Gk04)$@q!4 zt-Whf|L)G6$@R(epT2kLvdbyGacgq*)uWDiCZQ4tDoZq@&d39!1qgkswJh52){=m>1KdvJ@+F6bA?eD8h9?D;E2t`|ve7 z7ci%-Pt9-3DD|4JcYTULEVH^+N0}LJV}9@EmFaMayMvXrQ-j@oAGdD3^zqKcjrHDA z*6S=Cl?zcntKTbm-|~E_Z4pgk`_Mm3kwwHfQH~t zLh6zP+T?!*5g4Hn^D?q1Dv`~|dj%W7X#xPE1TqMLpaP9e6TnOjfn7q(WI_yLR`SfL zX<;Jd*;GY|)66tlT`Ll%6eemg3Q@rfkTK%yjqqz9ZYt~)V6`QlQ&m*6QLMCe*z@F_ zS(dfhY1;BJWbICpB+DC1>9AY*G|XaJC-XX;#*uH0e15w2DdHM%=Xfj6P4~3%I&?zt z3>X0lW*0SwYk^NePXc>Q0{dIPfB5y&)&5d*YxW{tM1bIz;PsKruNF|)u~1}X^vl-%_3CtD{@Bv)>f527(( z8-pZq9>iv3%>>^$YPwBo#0Ezepa4H0a2>~edhlzAOq3Y@L8kxagPIm0J@}&*6=ID` zn3*-2QwqS8l!%m4-;9tASfu&X%$j2Zl!7ycB4fwG%!sVixw_r@$)CJ4#b6!F&U)pn zCY{3hPQKtTzt(}*xG(l_7QoeuFe&@Gu{D1%bm7n`)F*-_sKH+qiPtJ6z_%wiMuY20` zSx2G5X(w6k4b!7g7jxGe8e;7-R;{b*Nap*|oxstFwheq4T4~-M42hDCCUU=sGZCx; zw*Y)fA_oWJAdF6 z-Hpfdj0agi9S^sgNAul2@|D%4S=%3Ex_NqS>C|%n?4bQyAAEUtQonxt;PQ#3>AbGX z!sFvrSu(75AMFc^Tx++U4O|wa?-DF_FsEtXZOkt3z2<0@anwey?gh82AcMX zYp+|)?(!2C&Rp)SoIiDUf3UXNAGZ6KHrg92?Tf3!)%C;It{iOdkFVb}#b9l<hcFts za3t88#_2u4Bi-Q6z$~$1g0O>PA9bS6&pAQeLY=}>GU$dPqMTv-ipdV*A>tTGfIo-i z35*qC&u}wa9#-1IVG$2+!}f}y#`IL$U)`R~b%bev*s` zyS7z)UQAL)stOTu9tmp|9Ehx;K{fm^1&q15_0+^ngxQ-!LL_l$ctDB;t$@i?5QCYr zPhpLI0IRZNZz3R%#&|$0Sfn(CGplRUz&-(|4oXHQ(WD|rFmc920wku%D<7<{-Fslb z+jT6AeM;+Sho~=A6R%cC?W&H|svKF6IOD`8y^P!4OqYfOpH!BO-6KW4C4RkX=Te>o zo_i3PRFBl=pq7I-QUfswv5OJJnP;NxOemfJt^frfpZNH}?Kf86@~n#bZ~UhIBahRm z_pZO=(L0P;M1Jb&QMVT+ldJ)1H&q5O!=(NE^P3-dD&^T&1zPwBOWBdCPk^8n1)Ld# zL>LLY$HKOgh!V93_0D@0Blw0BWgvwSIfXF0Ms3qHFtH`gOvacKRia4h6&wLsIpNP= zT)J}O?n4znxilT)LLCmU7ocwQJx*i=%Ad-^(b|AutcGg)hZ(=OR{h#ASeG};Bj(0OWCGkM^u8rs2*5>){(n-De*ixQ8 z_0dmVyZ8F;ul9y^0i`I#>-_Hlj z(?B*YFh79J07K|O`v^yfBj6e^)NY@Au-RQyFM_sFpAS>S!p)8jaBu^yzMkD!d*pJZ zCyuV%!POfR+`s$QM=!tSY`VH~>*br*K6aH0*KVZ?NMd~z_x}Uhe@?P9$UP{i&Fk7x zj225!4Vr-gJ#Ivl@yd;&C@F0vWaPXzV^wWD0GxAJh_#an2u=;;*hr!3QYV!_1jg3z zH&sDQF0mM3iWm*XK2d-aE=f%RQqvkRfw{(gtO*s&MBaI3&qff5k%*K55@mR>V^w&V zK@Sh)|Niv?=l}%v(A8M6XS98L+`b3BZmLoiM@OAb*LRmnlUNr4g-TseWK&5kW?7mK zlBpj~W^upFW}^+k86bPJ5hVMnk;p&_RdQf9Q(*^%L*g`?0GXEg8qO%wfhRbiqpZE&<;LpV4CVMjtt^t4TW`?9iS;b18BYDpt)Sk?# z5+Z>E*qIU$0iMZ$Dpe(dsWj+XYLuBw7pyxbiIJTXQ8avRC1E3%veahKMs-K&xW`*A zt@j>1yYxY9KcF`wb!XSoG))%ReDcg*2_^y}Qzd6GB^VLhLixFw=^Aqb^fx9JZK$a9 z<^j+^|Lx7@|8Y}@p+t>?D99Qh5s^34CXtAZiJfD|79%m(J0i9P63Us@E=j>e6k;6` z=M-jXXZK3{#h=sEv}e)k3c`mi~YKxxIh>Ki&Gw=*Z9m);-QH zB`aw@EGKIYIZ=$3=2$KLZD;}gNFwhEbygPJ6Ppy}x*zsKF^|*Ibykxs&DmMD>{2Z? zCFL-i6_Zh@$J5a`O5Gkh=UtX3^XU-CfcgFF^XH!{-}$aqlBfz3D~OdMF;s*X1dS9# z3~x*zA(+6MFnO*ux~g6s`mg`$v$tM}Kl8I&#|+^&*APUo2bF;UA&$#iZ^(T6e!6xr zLw$z&X<8?3dgAiRjf1-%|MdR&{vi(bHkMoWFNBrlW%B9%9`4_2qe?J;?eH`A=l6C* z_Fy}}4loBTEpL>U9$9bq`n%^&KlhsnsyDXx?wqeqrupg9XDrXUqgm0(xem%6QX$qB z3cmB|^se0+?-rwjWaEU+4#WOo0USl#y!sixJIdyKba=FfJVP9&=4-TImr=H{i+IqT z%|^aXf}D)L<)}sw%y%*0X1%X219lQ?Q4FGoMn?(V2^I_oz!(@nTW|wvcU^zA%~>2z zWz>%Kkn>I}TawtSrh7KJ1zZE33SolTUCg%}o@1s^KT5@%!*w~jf$$3W2`bkuCY@~6 zt?8&ZjCD3D%I)3y;`xn@w>|k8Ik0QPJOmpX%31Ux|$ z)>)q})E=#~NWbZ?wmp0ucyw?U>M9BC8KIq^;#u~Etra-j;7Qf^J^tBUb);A>_$oVnslzZ!q( z8$0j#KxZXSI&g$c&DB-e8nl7c(T@DUx7_-X|FCCJV55achUq!SC(}fVI3gT*??sKw zCpcB&(@+RrF};+y)139fe5a}sj7qHz0`AnKrzx6iwdS={KFPS-U27#yM;Z?5?JC^A zf77?e9ha?uIu7R}P6J0$>97Az^%Y-UuANn~p2lEmoD!H_ldAz{%0Z2clgtnhqhpq6 zp5R=9x*)CBF17#0x1YbhGyBMI?i`;1Z{mXABnp6l0^#}Ue*12^oQ_sy-afoj2QI5} z+Ur}*mE5_DtJg4kX*=uBx3=2-B?_JCoTkMD(;L9^Kw0g+KV5n%IsKJkHbxoH@AX&L z&t5pOw32V0zTc4VbJma_(hDkghezJ~gBBc!1`1Gs9*pr9P_);s&+ct6ow%@A zM#mPb*hst?0V*IO_F$*6ZukKz(ulngqcM4JocrL|EV4^XqDcuji;*0&^MDy5AVh%k z>uLBOw!faH0-=_Gw-&2D`XuTc9Yc>-Mvqp=H{!06BzoFOR z+{NV7sWeRpPU%6&UJ$k$#XmBD8~ZJC$0x%A;MsV@JUB66St@fpyh`_`xu z!W2*Z6v@1tS2iCVjW{Wz zZMtj&)fwPAF#G+F9=!ZY>jNj5oH=opaO2Wx4yM%5@d1bgcD|8rf<;HJt^%jb5Ljr% z!n_2w zR6~1pla|+uNnRE^yu9Tvp2#Nca<7FWLwVEWIZJBxZ_$`ib=}cSEP#7#xwARz9?P_3 z5;}$Kl=YWdtra*VrbTJ00`FB_HPbk+XtIy_EbE-sc{-0pRUE}x!REFL_~~CQb&-gqKnC0c{cK%*wF_(Q9(%8&QK}*Ol-S#P zH>VNbivh*9+>f&rU)EaGTg7Dg+F{l`YR!h)JDc@}y}kBItj`16i-gZq-*Q>2MI4AuV-|^sT6#2DTdg=b!#}hfhE2zWF<1hDK9!k?dz^uc7sKzAgLRKe+YE zuh_9@BY@=OIYdb_mqHSPPh3Wpnn9zwCh>1_WD_Pb5dx9VRE<;!Ozcc65|D4fh={2< zroh~Yftot7`Bo#d02r}@k)jcFQjkFuLDx=aCr-By_nY{iKJ}K>_4Rx)0}?d@la~dg z$5{--Mqo3T(lM9U&^Q2tU})m-1JiepCfYX|aG&*{MUkNZ9LP7gR|soRYx+REm@Jtp zkz?;oqJv|X#=2rSaKccRP#r3lC_}B4%+UVDpV)czW(^E{(qbg-JO#~F)cgd2*w)h2 z*FhsF$=gO{9Y^zUZK^kcL&PS%O@Qh>pNqf#4NG7ARhy@WIRHaSh@qbAv_PKvR%?u< zU;TOcuD^co)_1-W&R7E7h6kz9C265ilYh70zuHNzP&JTY7 zJO9RafBfe2ljAdBQSkvdPG=gN=uKb@+0*F@6&jO`HpW9m4%EOQa0E<%DL}v`@EH1+ z{BSc0;r=KKhA`P7UA+;soIWY!w!c ztJpa(JD!~~K;bZ4*@;zUog8XJ#@75JX3rKQ8hJP{C5|;NoLxW`8>txqF*t2_g!9d%+#V|Z>DC%-aE$)VO3)!2ZItPhDe~7UnqY6 z4;y4!3cL$A5BvfOne6`j%HXf{hnt;tCX!HDiBRQIwRCBj2EF8H(o1_;yW33+yXkp# z<#>;eiv8Vdd*|J1n)Q9F8;?eB#v}p4)k>bq(Sh@z2(64-YD6?8=RDe)vy@A~p9G!* z?g0W+|K!IzANZ>2J1*pmfkBV);;Dx}-%bA6k6iesTU+;DY=(j!>+YFH>Ksh5W$Mim zBCk;)VCOUj=MuOC08~{X0ZIwLd_5OFS42PZsD$y(wJF`X@&KVguw$B7>qOs!#0iik6 zL8NND=pa13Cf>zJsbqt*F% zURC5Ng($dfT&OZT7KK6>oy2$RcvR4!F$z3;%MHzES*So9ztUDh2s>(witGHr#JYWZ?e(gW+{khNYe&A1b9Y`Z_=8076 z$jq?VfCt#8DwUZycHqQR6>zQ`)j$f|J3b!T#}&gapuh>VA745Dwlf#keOldoHQ#;i4yyghVQ95Go2Qmv zzoSP7@$UY7W7ui8U4Z#c+TYxq-Mc-xef877*V?^xVltcD{^&;$t^ygbnw>ehdg7@t zKYj1DTc}-j@$C7xo?boMo9~q2{@%E^g!+U_HB2c~ioF}q`<&jN)o4slE3YX$)Zup~;4{i=30;Lf2f&|18oQZKE$tm1@|pnw;2FCjSXtAzZx~s+n{$f*Qyk zs6ZJrIY;VXOwKiykPQZ$0E?n(41#w6Ox3|OM1vAHgjEuW+}LO_NTQi}m#B)Vn5ikT zbL`nvh(N^La7Wc(Pzms!oMWmIB9j`180CM z#}xn&KNYGkcC9wS08cO#wS^wBhY536k{tdF;$y&eQv@8m*7-kvbpF5mzij|^7#K1_ z)u86uXno%0-cSAeDWMAF+001Q zJQE32q0Y=eN`N*{8WCdO1W;>?7$J>9gQmBV@OF>NDLC8!1CcsooU@9(gD%OyF-;4%kcp&xm0O3!7*&lTT!!aWmpoT8o zU{M-6fr&~0J9eI7%}Aj6MZ}JYL}E?s3`)dc7*wSuM3*wm#QPH6pZnm!XRd;=>ZnW7 zO390iU{i(xCzx_@JCd0zIYS)|C*>QZ-UgcJ?*MG%^0&Tc_?_Rg+RhSS$s`de#MPCK z6B*asBjkHn|IJ^I-}QG6cIGwE8(?!Ke^Q0V#Z;@>T3px8z-;V|R8tW%SmrZRPTkTV zeX^ck7rc&Smx6dY1?xz`VpW)ph)mMNB^{r2jeFyfcy&a@ENGZ)RUkI)^b!fFMoN8` zyZtnM+jugKc>c!Sqkr+!cP~CVIJrTN9kB^3n82yl0yby_#8gd9ok8JzViuv1;T3RE z$Rk?O&cg@(Oz#KopZ)Idy@Bc>%FJ;K?>Ndd3m%WD15L-dK3@3Cz!{(f?f~1s3KSLU z!FpU?P19s!_m%souH1iRbNYE3t@a>GdH-Jh#+6Cplcjb&p3%<1d{h*m67$cDUwZ!K zYn!MeWCY}H^Wx^Y%bS-@Zk`x2+1BOzuV3Hmo@sSYxHfZ|bvD_J;A}NNHXpB`pZkcwN?kN zdwJAu6sIzexgK<7=vhNcb> z!h)agdHVAfNqNpYcN>VS-5aB!$asch@ z=zsd%2soevTter|(3xQNG$z-OWAFBVBz*1aqw87HZm(hB6KK*V8P8)7@>$wmYprbb zVx6B9itW|u9`B4Wo8F#pjdpY{+BB5XH;Mi7S}e9ge!`_}4QYynRH?B)amFqu)RwNn ze*wxv;JL;~^{0QtKl#4dxBrDD!?Gath=v-NIiL@`=gH2${LfGP=5N#|((38=gkerx zISmRiB5oStL_*$45TAG>BMOKLBJz&RH_|?6WII9x5%Hp@4vmfBTGOv5=U}?9O=%kR z8cfvSOdR_JQbL-T8GBv#?zi;*bvKDq`I{s29whn?odjqkH^_krVgQ_DVsDO6>mv1FXHa8rDkc%G5o;m> z*s&VB=HxN9_TWHzzw-09=EzpjNnJ}Rl~9?KhSWpJB?O2nQBbbSdS_N$FXF9ZRag&T zV_pBzkFI{{SDbEVZB#8m4yWd-#KBz7EV=6h44(V&_@DjNn>z;yuym46ubsJ2lwFz5 zyd&yLNK!?YocPEju9lgou!pmXTs!qCCu{xq%wc^GJc)S4+eMupM2uiF)jh_34C`h6 zc+Q(1zTFyh)0nqgS9Sa6B|0uOWM9(m&(C<=z$8Eno>{G2NSvM|$zxTJMqG!TYOMf2)Jr zyH~Eow?4)FwR-2){{6i=eZ!?J(>>e1cR1gCGQ7fxKdxVd?1 z{p{MtN(ST2bA#DR@2D)y=>OMlm}0yHx`j}~O5oE- zHla42+?yWlsqUb??uL)$-4*10qFmJ*GSjY8ZlfkD>++WICs1#J?}Fcf@&ldT$zk8S zHKetMI!HMW+D!-9Qnx!Udeh0g8k}q|w^mPeI?J89^05v+OP5-w@>aVpi&?UNpnFr_ zvS}OjlPDXRsjI-J00&${I1emg(uYgStW%&xlmMOohvguFHA2Vh$IB5PS{(=2^;`Ac z$j*WZUL*j-c?yB5E(U+1X#C$5>>Yu?2>?|i_5hpIh>FCsV+qlie43K?8kNXQBcSBS zL?DWWi9!x=Y@&HfQ{`^?H}K3MMz2kN3FSxgVAs*ZV^2Q6<2wa>I$ORc>w?9P&#oDS(} zOA>JmpCbB)0B^O0PfGnHaSmsM44N~PP=P9V)>^zvgKtBh21dX(ume=4`0j7mJ@?MD zUwWaFVU-bqi6B+fjA8)y&f)N}uf+^gANRCQs+w3-m63ob(*P!duuD=RCW~gq?9iBg zA(|Tb1V$+40_I#xCC0I#ms-~YqIzx=fu89LB*6pmiK4Vr5#Zbniiy7@q5Ob7nFX8Y>P%0H^&l$-L8q zQ}#|slDtoGXw?L?WA-uCCnEYFV%Jf(RF`w!y;&u9#m>O5NS2tVG~s?+Qtwqy*X6jR z+o(oVc3~0HMtZrU#iT9^x%tySzVpPRozMAzW(ip(NJUY3pR#8V7R_8TBA0j%V^b)Y zK~hI1N9M>o)7lxIKAC*~cRexPcmM9^n{GpVXcUZxdO;5fg20ZSu(VxfzI1!Y0s=J3Ht?o{?4|Mc0?32L$ zacUfpZJdAl{qKDD>9dzsH#YlggI1PMSxEHl?yH?Eug$ZlkFF)jQVSW-8*(zxqY5|x z8)LprWQ|V2byZw*xk04JV+HgX}`uD9R|N>eDX8Oe-Zz zB!ZoHX`&DnB2%cSMsf*rLMA4$0pY+*qXG^l3^FB3JvpZ;WKc2o-c%Ig;LOw-1!cGf zx}{Oo%nUAd%xW<>nLToz|A%kC5X$7-X-ZTg8bb&e;GI(yi_wVS5{tr)%}A6)AxaNg z`oMz2yV!=u|NGBo5@8`5K@SQ6n1WTvq+tdVLxUKU$+7d~7HZI@q0y&Rg{m-7l&CRU zio^k;M!rJpxBlRzSv7BCkhVKTpeUovgSg8Hz^WRfKoO%Jj>D^kUU}%wiK{E_2Y#sk zm0z`*qZ`Y%^IloWF@wzIKt)C%74X0Qhc8}#t@2n}_a|0YF0uB?(x4?%Pl!c4`(3R? zWiIY^tjW0xKFz&j@7nCFsN+##bGv8ifE-pt_W@(D9jw2<{4_0z+{YJTPRwIBNz*Ds%V^1`E;DzO*%45aLm zSPO$x1ACH%xtf5SPZP4HatDFLobzcgQ>ivjCV%f+FMZ;*{i`p=<7EFq)=3X7c(eWw zM{KYk&cp$ktI+z-!c*bqDF`Gs|ziG+1BBb4V5R-h6&^G}*tiZ&z>a&o*wK zV-g(gW4u3$(|tgJEof=jGHoKqAut7%0BU|A3FmxDu6w$loz1h;lnq#`x@cE1)k(oI znN}wgo@lF;rb9Q#x>i=)Nj>+{ee0A+lPV@!#t`GYa?0KXP!SKO#o?S&*Y4yw$2i^Q zoxNhRGXsi)R;w%p^*D|u&hzHxO1rx{o(9&@V9-vMe9=2Q*@MouiAt4MfJWAT2gr5) z&cd}2QeXfaJ#>rFLiUFgHUSB&A^LZZ`M?CY@i^SujiTy3h*<>mk~QaMU{QV%rH?i zgCH7t&+G|-omV7xZ;XEXLt}t|6nGl>dqjb0Qyx7)B{W;^!!rN%{agRn(d@6Su6>p3 z^omia=h^Np#299K6IajolfL8pV1)7LWNxE$J@$vE4m(dwMjru+<1+woZ%FwWw9b3y zNTV6CCCX~7Fi+kn2yvQt5}XwL3Bzl^4lo4*#`7Qe{9k(UpFj3B|NS%X1vXHmsDLrB z1i-*hN{wS+lK__`iHkuUu?bWJ8ess`MA$hsQxTXFdpaJ(kY^~Ed}EMh>`a7Np$zAY z$zpWgY19UpX~K&qGiY!P zw20{V#$Qzajn-!a^;~p({Bd-6Km~4`Vct}TP#`v0B&lN(F;jI(lY>yxLo^j|;SoOqDv*6o8& zw_74%?-QtR8fst**am9wJKWlP`-4+)Hl5r_>|pEu>(}o;e)8Oj)*y94VSgHL+@HL9 zWx9WT9|ya28E(89!b<1pF5kPlh2lBjHXy*REv)#C#~23SJcZRb6^SuKUuG0KwN;gJ zHII9!52p0{PEN%7YwJ!n7!3N|C7*kjx{$ccQ#!AA4&%X|#4tjP(I=etvQDR$COl`F zb6bUtb&jLC&ga!k#kaFgKhKkPtm=6+a^)UUo$kwYY@=xm(biTvt)!jw`>p&8iuK}f zGMgd@fa^d7d=!-e=YXw0n*J}&0ERK(9;osjC!xnZx(fTVqOMzck}f*?fJJ4;W{vr* zsTw&Vf<_@;;5|$P8rf$cB5v$s#I%7XdI=?&kV_2!FN4$OY{1-&N2qeJhm>=7W1Af;! zPiTHgT;c$;79n#WB8kB_nlYk@YdfS*#Oa>}?t`{q6_8<0KljbA{MXQ46%P|Ec1Q=SLa3&J8Q_MDv6bv*0*WhG{TpT_06( zZ(=u&`~D8Fl~eLP|Frj&U%rxIC`CI)b_q9=2smO$0>?-V*%b7n-+%RW$%oij9;}8m zBMXs&Q4-4~tN}fP~sCQs#pYQLs89!w0^k^Mkj~ zeA_?2jcM`F3I5>W9$e4k<3WLmPF|bMPlE2EJ_L3U;@-VMRi~28?@y{$&hx6=y+wNO z4vuEn`<((~;8VahP#gn_F5}d@S5LhFVnCh0qc>PDW|PU$0cO8=|D})qc7J0Idi2p1 zPvPE3UweJ}`g4=n_965rj_zFh*x`0InjMV7(R09OfNGI!K!EyK*e(z{K6$j$>p|v4 zaVxq{Kwpg2Il~9w6gWgJCWBb6qcdt}>9AGzvT80X#jKTd@^&^cgU-WfzrsY2wUf1^ zztq_nbOtG+)RJ&TsgQHII;N-JZVs3hm5xrp0a%cYr1667u%m z$j_{7Ip50GA`0iscm;9^AmD04K>`Zk;ExHlJ{ZI3L#Qo$wu&voXgq;L0vh(d5;<}N zi==8s2C#>T%Hp8+#15v!26GEsIFUp-Rt$5Z5v&9fQ*tQ*s>TGBD5_>ejsYT{n8byD zh#5iEjGZH*2t}iG2p^EXc-wyCm+Tn*`6%dXQs1ffwt&}wyNkD?09u{S=_j6f|Ixwt zie?mX`6T2AfuRe7+d@BE@ zuRQhscdtJ&%=(;ji(#3ZU1pzNA- zn^eKl6(rm91@;vw@)T@919@9yrxvo zD_xuy_sTnauN=8izkfnjtea_jn67n~Jtc!~+FQf&QnHr%0ShRtDNnnW=We@5@9k2Y z+vYkwan|()>3o)qYtOqW2g#@FAv&>)eW~-g?%kS&Y3%EK+zsMj%{NEZ8CHgqGXYT9Ro=?Nr+$+nL*0(rgE1UMN+0l zL(mrPuV|QJrl!%c1Di=SL{WhXaf@AI1W2?{8$0rzO-zERFgsW!5QQY%NdG6}vh`nn z>*y1IFgiZWox~|Ea)dM6bLoDoNLj#d(5y=2TeN z0x|oP8lCE3U_RmLPlwqZ!_NZ>vIP;Z;XIDgz26(`{a*5S|IbP9!qL0l+xq+8w)6#; zR}^XLO`|YdR5a9Dc-Ej`m@_7VDT!IEOxcD1ikPH6&n0;sK!`AaSXKg4j%)i2`aQszyZQpr#fTwg7z@Ow8UK_#U?a z%oN-N@r7`-UsTx-_57O_(D7a+MFamKfK^$Qz4vN?7~~w-JD+P^u~p<9H4{q-8lo|z zs(b=CaIZHT*~dS2px`#V<94vx@tj=;3NsU%!z0>w9A1nV9i!p^vTyna{qO$9jpbw| z6m2zuQ=fQ{8U#>E8e3y(a@*hd)jQ>E*1<`iED?8OU=$q7TI5xwdk!y0*G=LDAJ36L z#ffLxkMYi2Ls`elMiEy9ljG>$sH#=xm+8yCeDha-^WfT61r*S`b+Vn>vecHe&MjJx}3Ia-?|WvvNkSG@y4fLp8czzedF7D z7dI{_YPj6Ql;9|LC{$t%pK2r`mS~)0%{1OQChs&KGub_03s^Zm6alp1A4$%A>GD{-!ez!DX>4%`DB zJ;Ypj7=Vq>{umFHWeb3oi#4eLW((g{G{hT%ktegp{Et9RwFVht1;BK{)i(w+8`uzu zJ;<7rAKIYj#iTZi&XJNMFyIJ6B#k7QA*$3c!-9ZZ!+~6rKtzqLtsC^qzjh=eIo4gj zh@~K558*2C+CvC50Nq;YXjDx1ifTH)bars^^k6#A-F8^*x1M-UD;?6UQ!DM&_4TFn z+^MCFQ*-Sk+pm0SpR?BH(Rj?$oeRLwyK@oy(DC9TC7(d`pR3t7uwQe|IZ_g37Y!+S zV^JaxHa6!#jyGNS;-dZpaQ&edrpHOryup}EuDjp5-pN-F-v9S=cB%`qmk>NTzu;ac zu&7Wb@{6ee!@)#B-h;>_H0XFvG7ZWesxWh^kus*#*GRZs$BH6=UpNpn#QIaAV5RabZ;5}s@S5Eb>5Q(VnPIQZ@e8|dwvX9 zp0a64N{(~0I%*AMa2#w@>3&?4X=wi9+rOmqKYZiHa?*viLs5$l4f~xbnmIrfDFr zhTh^sxn}@w0C$0YV`X#P&1itwOW;jtY$hUTZT3!`Up{kYu-54%h@^SWZn%Pz@4&%* z%wNL6R#Ao0uUcuS?f`dyBVZr!z&o(<4qiUj>uy@e#(Q^gu!8v~fUAH5X23GFpXse# z%(JEGL7|~)b(i{Uy%@%As)kF+ndKyr7!U1ee>%>mvlEu)ow~2#G^I=DPIr6jgB9}a z`7|8Oi=|<{d9nMe}(j+oo6)?>x^=HglgApV^4V|DwBeAY_I5yQxcb24F5hBa}GoD**8 z@a=T)g%*DbCitvJbJ-s#OO|!rjl_8pjg82e5saav3TULH83`B+ricO$Z^X_M6NxH` zuxDlm10bd(QCyahF<8x%oMV?X;aSayQd3m|8=FQGStxpnnyQMx%q6Kph+(05uD}s7 zs~S6&TFgf^umiJKHC0n>h$o9KVpBZQg3#5RNpH4*nv|a&z9iI4ffPoFw#ZhPAdT=t z*Sf2xB0l@lA&`Pq>i&`>9#|17n(EH>X26WByjT>Y0&gH?9og7t>3r&fzR!)cAeks z{OAw8>%0HQ=RWfL`#=Eh*Yz%iY4oe=-sQNb)-tw~UvqBE(kJdF>9X@}bJLbe2%X5J z<&oK~()QJ2S?37;! +;4W;H(lzyiSf@fNVw!5UobzUz(l3ym)0ln)vlk2k1mG?ZfD2fD980HG zPrh~I@)PT;OL@}TKPX;)wLQHSarY+Tonwc~q0dhB);1GLM)&7tXt%R=PbZTks46P4 zR$aNB+w&W{xBbezI~#PnZZ?&!i)Su&p1Qm|?B@6O?B!R=Sv6VWRHavplC~x`aZctw zk+ER5mDwb@f6zNR%Fhh-kyE|-q}sX_s*#W{dcNW+nF|H>CpNN;j@_Aa(Q|A4_G7E* zY%-gTISwkdR;c39p=GJ&DXZ#KDir}HpDow=|9G|WP))F?t}ZNNbH$}8TVuQ}MhtSk zfoXu;qW+F*CK?+RVlyIk4&VmNVNKVT6M)RvBx(?L4h@Z;*cQGY9t2zXjJjxWJ~gP> zqIpPQ@+qMfM2CdXnI7dI`OUk<{^&SGcn=1TTVRYPz*S)Hp?C^lK%t)3<2=vK4wCg{ z=gkfe^PT%exi?vRJt9rEcl6fvQ98OaD$A4SH_IYcI}=LNmGkL1Z|_pO2rP6fZM_R< z0LK6TzmMvt!{l5{ACK)kb1LeHVHV+tVV)@l@4SIpLE66k7s7Z7{1&kL$Clv1qx|b% zde*lZG0&zsccJaa;}*mh!3$R%JRX9yKBgNfOj zH|J8ROV?`EN}qXkXRn9}vLIqUArsYE;yc9NG?>;(6QjxT`Rsu3O@HUamw!$V+KH8i zH%^(HcfNoaLfR2n@%pj>(f{D_pgyQbwY>T;WWD!+_%6sQf2C zbg;g;_SD;y;5dq@0@0^QjKQa=M1``daFS?avmBvtCQ(EQ9#tfRQ&uNVb!Cu!(U*1q z@1@~C_~9GB{HuG=a9r*3XLlj~$p3%*VZah_j??q4{6f-RLwOeZnR zluYN5j!c7ja?0%vmX|~v%GQu z#V#X;<0Hzs!TD@uHB4u-`pBp=@ZGeNaGj6mZWczPl6UWi*Kb@e=3A}7daV`<)bmmb z>a_mR+SZ@Fmwe(PW_ zeWM@Fo|L>@_>87AclCBXnoo!A#P>O=k}#>n7h+i*6?NoPGD7OQqiJ7IM0U=%^Y%(H z6|)^+|BqeUhf9HnnHg`^XHQ&~i)Y$CO^F#^84e&bZLGVj(ISh`x&}9@jzrEopBapu z0jw5?jMxz~%v7b}eh{09su{p8b!eQyNGwM7USaG!6QYP{G*%`ysL0GU`3Mq2e*NRq zkNnmxAOapZ2luDZ9wLkpUIpIxY&&iMV^yo>F6;7e*$vjJdamQ~Yz#ZV=vpb^M-~G-@f9lHyc{qv{ zOyN8v7)%;AFgbQ)Cb1dFGJB1YK%8YTs3@@`pFs^UN_-TdraP}h?2U-nH3&|H7!z{> z$JA648dQxqVIp;K&Wi>kW9Js^-l#;*rM`h|0w8t(m{U~%%grXz?>m zYv;|zq+e`E!lL{CKvDE~hcXb4{pvvET=T0Ov6?EeN8*UtK(N5h!Fe;7s0E4yCJ#+$ zZdb1CR;W8@36b|9*5b&4CCFSMN>ve$#2$D++u4imYrpD@L$5A9lugY!=c!TtYhDHu zt0E8r!vXl@#{=M&k#*hLtg6_BcHU#zBwH2^TF#^H1{=dAB7d4)g^_e~ zmq6Cv=KlHra^byi8@64G)W~M)i`3bLi-Ujs58uAG^?M(EehL^csp$y#P~t9;zCYR^ z$|(vb)!)_RiiSxo>n=M@E+ZIGO3sp2W~{M@K5vC`HDC=`0d9W$#od4M6XpN>edo`g z@L@(iB_wQ-T#}oL_jxP=80-Y_(%jmrF^EgO<22MI$Qe0>ke661Odo%{{~x~f{M_ar z{*}fZJ|4fphgE~d~4&0&9_{7`cIsH;_XW(HwL|ws}Qb3kJQf&1-nxe z#hWjHPWb+5O55{lM~l12p6d2m%gdb@WH$3s${lh<2GFMIq^_v|yX3#Tkk`EFO3 z{H2f$2CdBLy=~!&Zr@c@I5?ogdvSZan8^M-daM2Y*?2rJbNH;~SJzG*?(NmZSR#8j zNHVRw@)8)w3_w*)1)f7yLf(!trZnztcZ&nkNgaF6vQmBEM9a{{5135^5k`a+3mBwa(o4`&)CPwh!@Fv2) zDIRca4%`$6wt#{Dk&=`a{Imy|p)F*=n~zBqfCe>fSZBiCnQ5a$g$1FZsXJJsGJ~_u z-hF-XS{Xqt7by{o0bE&}E9J%>h_#Nz<`2oe$=~>!m!3W~AS7fJ$TjkG5{;a5oH(Ki zHBr;qaD=vv@QEu7q^)d#NC{h(I?t(asEV1`9{5mDvu`D`4Dw`Y&9i6{?1nBt=xDH# zy|egd-?#ad&kV_RqoizAAn&}GiL=SMCx`#XkH7!F`R_jZ%JUN-M=iiuWQ+J(maWA4 ztRgl zez7>_(?1m4KPwXb@hLHY6qK7ESnq@mHZ5JL>cQMfA%Q9Cz4`W@$Z+0oc@E`hDwBJm z8slILxdGfb21Ev+10JTW?qF?mW%I;RuMKlMqx#Nv{nC~2%10-~^Uq=DcY!S|RJs(c z&DLN^)R&_%v~=nE`da7A$(Dxta8x)J3sJ}qPAqL~^dEgk z_O1BZl{-F_;rZ2Ji`y=tJX!0x6Fs-u<0P?G=2yD?GiU8jTn?v~xsyT}P|XtSFDHXd zR<$5zs@+V4EbCZdBE}HC55WNm&-q%yMt-#C2AO({VYD@LASM)@JVXbhh`< zfc^i^qw%u~&pz(|;-B?@?oY3-4?COyAXtOq=7t0SB676oF9T3BG1u%ZF`xmVS7Z_F zGzN0suyCM)2*kjiJrQvu@kWjpI`L3KVvrbW0-DK$lKI>vU;{H!L;tl`8b6725A_=llJOWmtO?Wwb!g{@dzsrImkGK3Ik8L`{%Xj3OwR z6yzxh5{PGVp%^6M#CGY%XycOhaT(=EO{!b|I;lM0Tt&Qe|o;PSIzMn2h}7o^9W(84hTxb&U?$ zTIAXwF^XdIsN-O>2d1`9Jlp!xKYP;otf+F2nh+f)i#hdzsHSdl(rBYpI@;CkojE|% z%7hEHj)F?5qTZ&gCSzhYtU2j2`l&w*^`w$%je`QW-z1vDp<{pJn}>hq-OGfb6m5kV z2Se&SBtTRXEuVVp#=rjGzU1rv(l1@R*~oBOh=TL`Y$KB= z>zJqBC9W+ho)e@{nRb^p#|Q6Il)xAm|J$G3S?}QQed}hg2gKS%fvb(gq;hF$Vip3W zzOe#tJQfT@P?sd4L1SPh2} z&$95NLRlq>Pe2l(5RopCo+L>iyLWutpt?93F|rWL>2#9H{S6GR0#{(yF|slZ%bf#IiQzh>HKSd~ zbzmFV2j&3}*M&^rZ%wD$`vcrs_tMrx*~Xpn#!JIH&u&exzKGF>faif-Ubnh#335NY}47CI{Tehh=G7n{M|&qhez%9SlSzt3ozV zzr9rrin244<`(j5?7O|{)M?lAEB&7A4VT#sk`ngbzhvUhxT$*cytQ|!g1c&A6 z^n&OZ*!yq9eYy+nm|2Wp_|C@He%bsxKD)hoy3H;Z;d&-t6wY}gg@KsCFjHa=hKW&@ z*C(Xo!mg4T*ff^#o*mT8q%<=he9e|}#9%@+^Eo+!L?VTmT4gF^3WAXO;2kTeni;sM zG&4f~4}a^%r(QS&7$~9dfqM!*N41A|9k>Pz-aJ4YZ3Gw4y3e`Jq_{EN{Pjb+ACoyu zEBO1+J<&hm6SC>yNR`^H&g{|>%t?$>4%Az?d~vzmu`4M*7(Qy#{}cF-Z$3q%2TiZP zrOhCdq(3~|W74nU#sYaqlvR{fRdQ5#HPrrHqyRi6=L7q!(a6mnta22azY4qrXt$#) zjYKhUGUJLuP9Qi)EX3|ChRYb%?Y3g_Q)r|MndI0DpPuXUq{h|GzI8guY)MnXiUBBmgA&gb>0FcGJ! zw5SxAKuBhZZr$9yy*)L+oJcCzF|#wBsyR3()zoMT2(%XG>NkJG=|?UGN+5|ujsS}Q zE3*f|L}Du8pfwE%X29TJx;=>i6(T-P94b?h@RHM2uQNcC$-|kkfs4tsoTy7870Nf$ zNf_Y1?5q0U_m#^h=4Q0a6Pd!GPAGV=V@Mp6sq*OICue`^$KUr2-~FK*uarOru-YJ1 z6HmWp{HW^v*3L3?ES`s~N!pL`8P>&$dL}L7jwS^&V3mx+?78aTy=MEst3dV7e`MI7 zIq_G&t<`InF>#nyN@C74h{zc+X+e>V*m?}W|n)+ZVuLIu#&Qfat4KY|E1XnA6$IkQg6OR z4*bEWvv*skJ4L%S9l&`Gs&1}FmzL&M=5c#4?RA4H^*dp;5pS>UKmWpTRFy`>+SAK-Z}U9d*&}+nrk;alcwa1YSN;y;mEQT z02B&hCl+BwN6kVpgNYC;#0((sC^%xTT7kL#LW%KM+9%N3R8pW^OGY#%b{VWTl~nID za->#CQ8|}!Xece+xNZOGzpjmOOn<{8$W8(gjhz(}X^Fd8V^U-3QZjrqXNJ zX<~E|)JCJde0llOW7%ks?mS!V?5$14#f90Wg~fi}rdMcxuG4(@$$YsV)HSxZ9vj_x z8}Ka5&-CB7zyI;K)S417n3Ux|-y6T|!?(5OpKP=(Wa>Kwl4Z_oQuVo-KMH(~GMM>j zY|gcc{WdB9G_Jb)ezlWLyi8dm$Wl^v$rR*?YUD%6*r@h>?k zN^m}a0QT%Ns|qr207Ft0*%6#GW3!s2>8+NTW*I>(MNP`V5pzm~)qEiW)gxivv3DAy zb6%=SO_`k;h#aYE(z}@Od+!DDkq-e;T`9D?g6`u@p#J@M4&b;;#iR^kMXf+0HJCXz zRY_pD5R9A|xK=27qk8_0$rSJ`Roc9@GaOcorWzTk=U^5=NpwiAt30jZ_^7c1TRPkL zGhcdwL$jI~qefvei4d_7k+NzDN(ecT9=FS5H7a$KfKWy8h?)itMez4!K6lz6@?gZ2 zQreo9yUE>{Qqybzv;cpX!*%8o{oU_6b@EI%mTf2q!k&)CaFkTZxhxsfrbg+pC&N$u zFHe5+cYW-}dfg49n4*G2AM#_kO;bREC>I&nGmkx|C9`HcMD#>g8FUrc(zytS9|iV-tAPIf|M!*Cr{DGsU*FC|V_7+;oM&Yj13LsFB8?@;3y8oXiChlz29S|? zCi2Eac|&Caua+z{_<=|8x4vsp{pe?YdW^EZ@A?_l|GTkC-;xK|4HW+c(;J2sFa&Br z=d^~cL-&B2fZTKXTZDTwG%kl$-+_zi%{VDQ*Wg~2oqx4E;_=lBmbS~?XE1pdxOzPI zhhtL|BR7+Ev*fDjv{cz9Hh_i$O;g#s9VZ8qIBk1Jty%RAC*F-pDyFuxDF-_d6QObk zdAq%G_Q6L^zU^%*51enW_Tedx#ZbXANtE5$>0Eh(%Ps3<2TdLd zyRAdQ>y4raX}nMIaF5g0E(I=PSrL=CEYEzW=@#2w9rs$DW}|A3CgQNUGn`HBezWhX zk*dAidEY)CEsUp|&|7cLh2`{)2isrrV7~N#d+f3$UGwcBlVGUO&+O~`?3*e*MQ zst7@e8InvC%vR5eGqEF!sv-<^OezWNnd=Hqf+XXNh^+Q=4aazDGlN258ch<1zz#M1 z4ax*gVz9))bCx@JSZjdJ@BPuW*Iugc@(8#Ocmkn`SfE$~Zoi4^dGmSzNU)vR8TF1P zx6k%ZU!ZDsb8v`iXRg^if9V31dAUj3*Na$;{Jg*KiTU1A>mX7dx!sicuAe(ejiqdK z=N$0D;ow8F{Xa{1&^}#j1jMQ2zaZ{|wDrBx|5`tPu90^*v^mRyrNoY)M3t&U7o$|E z@LG+l{oAlwc__o{@uN4g*$4ApyYz92GLrKuO6YXpQnSi8Uyc%q$ASpkh@5XY7Kp5X?l3VM-zi3g^AV$d1@dVMa>M6T_mw zTy5|xDFT3lCNakZ0Xt@oid0Z<`*pwghz`VLsGCR(7~VnywWG?vz4cVc1Uj+_WEY$X zsVI}H*>c2Omm|sQ6ey8-kR!)xq^g04D&E>mQ&a(6)I%l~$;ffj%wigf73R}15ZC_P zH=MeBDnOlSLBx{aI5`qy79m1}SAsKQz=@8Ty}(ZhE^)_PU!|)c#UYrFT+e{-|DN+ty{(57k^okknn`e!m@QSpSuo=eAaUY}tdTwV zg`J=Jv3Gpa_dRp-jk+f$l58?6T;o~Jr>Qzi4RXyBs!d9{%65`#$58$gf_bu)yfGK2 zBTzq^d$`&g0VS{w48H9F_QT9mf?xgVcmM8|>t-tGQ4;=kDsKh6eh6Zr7)Ty%L4 z;lP0Mp0lk3-iGi{W9ETo?Z(?gVN82@oGxCOm|>Sf^Sv1o*W+MBxq zlw4+7#%V04RV=owa0lBvH(n>!#?I#L(eAcu%vj!?bD^E(y9aq1^#%vLzGmyUQ4FS# zgXVnq6)9fm85I8N2o?Z%5+-Ikv`d0OU{t6)XTX=!efyG!ERr{~%&@>Oqh zzr3}n`v-%Rtku++Rwk16_P5JXBukAZueF+G;RmB?I+`}SoPtelvOU@^b*HR$c6JJ$ z@l943TN<~!S)QFc2+h5N0$4i=TZwEIPkc%DiFb5Y7fWk3Gjl2C=}4m?AVN);R8@(j zs0%(&wYnMrh9~EOih#fbs7bPVse&CWnv_)63Att!5S-UkzrRM;Cle(fYEd~zz+M?z z#RRKMAfQ|mbJo7I=6>Z@w|4hNfCnnz6#PjzLfS!f3%L3jW6ut_4?2pnH?$Sxw=lnS z;=-xkY+pac`?p>w4kkW^g~iUf3%0SI%A)LaW>-%%yoGjWQtS?I?jLsNXVC2At(lC@ zRt70PqMfg5x1JhJo(FdB`CbHd7ywij{)dXu$7u8WT<5XS;zpLdugHQ>Np>jdu++U& z9HjBOrWa8>16)1&7be9wJ@j9{?t4#v-CtPz!iUprlc;cY-AJd=BD^Ocq!by%J`*v= zfqWpV)RHAJBImu?(Qp+zQdKgrk+}ehB%);k*IYJ74u;4~CW#m>c$JC(FsCXqu_iqt z`gzALB$*hg86&9=PO3yi%&bh#lOK4803uJ0Jra}@ z600Ogdu7@cKSszQ=Yl(J>IjpFTZ#kIaUJQNe4_UipTCrGBUX(1j8%7F1W+?L6$ZRS zkis}YIScN|_bvUKAAa{Yf6qsEuGS0#2u4!8>f@e;+@>A)2HXtmvZ)%zhB2@Qz6m{1 zrL8nN&va6!lZIQh?z`d;z(;{KVDJ0>a+Ut~`@i>FyH1Eh=_=Jci5L{VnUOe4k-&gw zIJE?gAvhsYMF=5DX;or4;-s zKqxTAr(d6@V{yRan0b4D=0b1gT-IGkWtfbV{0P_rP6I=z2R;R?zC|`8n2brXb*!e-QOHJI}Bmi z?&dSIj!Cz+wHn5rE2kA*AA|^+Kj~(chuwf;L{^1LbUHKcG;O6GzA>$j(|nsS2%~-nV6k{h#jdB z*w_)Mwx^}KfFN2^TTB&F6BfO)hbfCnQetl=#31jjHZuX>9C@!Xftfv%sFA@jJL8~I zMI)Dorda#qf3*Hbzkd7pWRL;(ftSI+WDKkW8*iQe0^t$ED#FiK?yGM0y*_!RQBL;qk!Ct*nwLT7u7b{hs(w5O7_Gq#DkX3LJ}yS;1yvAo3tKc4Qd=kO_Me z1*Jfmrqg6d1T~$QH8}Hz+HJzcw69!|9sP8l`z5naKHh{glv+En5r{xy=7^2Fk&v0G zz}O({>e(1p%N=uF1u@5FMC`>Xkv-9ZT;9}0rdh*`P%z$Q6|qc@gr^GV`~Tdjv&$LC z8A<~w$T>1KW2kp*P=iJSnBly0R!Po@^76Ca-~H8}diQsK_X|%yyL;^OH#J!|{jm8* zQnl!O%khceJra_VpaGo#5qeFrt+*dpDMtvc`(oouQ3T*4z#YTnfB37nyR%Px)0YJ2 zcdQ8?MWY&%1B<6p;@Py&WTLmY9ptkg=SRO zX^35I-%IQ*8P`TG1UZuNxEk^cB698sF>mVF83QR1BSis|noN5n(tVz|By9+eD8Mr#h-s;x-mSugM145FftDtA+7^29$SjOd69do;HBD|YT|`EGZ2 zuWgtBJ@8;!{$iH@z0i0^EM5afZ`}jxW`{>nKh+c11lW1&&-Eu>0a!S$LuR>yH_T4-dJD$``BhmqCg9)OC#IZZ-H zoH-(wMA_wF2dhjXg^bvV3X5t=AR|W{d_ApAb@_(b)Igq{0?w4I_9Re3E&WrdB*z&M ziLjb`^CVv@eu&timTH>8%$Sd1aL1EjwS4o~51{S~8$2nI0;u(8QYNn1Az-ko35-;f zoih#Kj38`m5FCk?YgbcKh#)$bfvM(bi^VDx3FY0o(|f*n<iM z5>ZkqA#9C6rU2I#8x8NXjDeU^B_y7Ms=*qp%+zw;dCHtM3`kZ~Jk^+z)#qOZ#07iL z1C7kHB_fLqN9H6Q%}@jv6l_K5$iufBGE-qrN+hv>A3yQV@N+-?$oKq(PyX5`%G#b+ zFeSTXDH1;>GEdnORi}KTomZ*UJEl=XO7^7I+bsaBg;f4`;+Ox zrj6E6>_NxJnM6%|s~d?6Xx<+h51I8-xsFtuxI#iFv^z$bga-U)qc!VR9&GnpY+McJ zCwu$wsdsw*#L3l0Ki@gDy}e1XcMH>J0D?PdS=*=@Y;GTHx>!w258AEf>iOj}i@0zy zE%#h!5)O9s^|j7xJ2Ugs!TIilGPA@^92qi;UEXH9I-M-+ZO_i-nd`>ju`ttI?DM(R zcC$lwmRh56HGO5@dB+*e&u3?rXIADrjUF8ihV6D^9OcF>-re6F4|mi4pxx=ubbF)f zzBImiTyv1CZ&bhkO!@im%vR5O7&8S5%E~5nOO1#bY-CDSt9dF@RVL^Wy@Py41Q8(^ z*qJei$P$hu)yhy2fhzf6DRGt=sU{(Inj&iDcrx-1KrAB&rozsHIWQ*z$1H{J?|+j{m@A(+j{hvW)#Xm164>4>0ohUM@pvZyj(#_G zWTY?!Ohur?&chKo2LxDY)tG$dLNE{!o0+9#3J|kr)G14Tv;nX)gCs;IZ%|VqUwh~P z(B%ih7d+ARnbS#Gk1UWH#5jPwGf655BJi0xN3H>Z#S)&JL!(6m0m>8yN|jLwu;~=Y zgU`*GaS|P>W>Kju8_})_hIhl<>dA2NR0El&N|Y3d%$V3HIMj7lm~%)lMiOB)3t$d` z;?Rb%XvNuw_$U7JBR}wiul>89IH(ti0b&D^t4yO*dUo?xEjAmEWRsqTD=|(Ldyu*o zf8AL@X{y@b*4sUOQ>@0o9|Kd9oj?EO&-~M$e(!gFMb=n4nB3a!M745^R*o_zHaJgp za|bMHmZFmiJ}^0xWGR}N%Nu5*;+;mSAX?1L(C2?ycWM6ge>lDKUw(c2a4Q{|dA%j9 z>pf#)xaZeT%NUPU<21zN4c$DwKXA;OmP#A%qr8oH1-J(69?t{U|40*9aovZyGmlYg zc{(mqS_6haglmM}YGa{qRd$#I{Z3e2U3uV4Z?Ow;2U~M~V~sLdy>#OIg_TaHlWj~! z!;SF`!?eZSxw(~7ttJ(Nw0HXrk!#c9Qkdg>uGd}2=2xUYn}SQ_G?wF}18wgZTV9A8 zX03LA*sLm;YmSQrDcXDa=8jA^inLjEXGeq5d*ATAZmZXvTWnaP^S~&ZmOF>Tfp@uZ z$mTlBbG>0ElX5cKZ;oT4eq*>-t`B*t+vDM0Z+3Bhc4;SGmTLD%$u9DT&s86KP5;bE zYj}eiRhnSrU^t30$qJ;Vi}J_WEsko-= zAG^N}`y*fr&$qt+^Y^P?=zjC(rdjW#q$aqUsEB4Q4>%R&JY%n>07xXVL6SM=kCsI& zxb}h31cSund|)=Sc%gSt5E9r?$jFF9Rg}n^ zb1smSLadIMiSI^oqPp{Y^uMM`>}s{oJtd%{Q2~4FawjM}IS^n*qM{5X_MSL51;N2L z$p@wuh)pUoQ4smutTF-l0L!xA0Vq^anNr4V8jUo`H0ktM|D#X6bN>AD3?z#>H4}y- zB9}V@kdj$q_6S}Lj$BM7VC;ivbk2h3Mw0#Xf<{YYe_+W(V(^|slC z7k}uV?H(VQ$A)W8)(j2RsNrN4m-BW{MlHpm;ubIfc7S1|Lud(@Pt3^P8rl1PyYbG?Zmpc?T)MCE<3D%j%1Z@Ooe|zm1@3Bu>g!&6nR~Ch&Ey1o2BSMT zJfqe+KJ3@QZuc|3s)77$W8tCp{HZcF(*6|F!Er|4AkG5ViH$8v$d(po&zzd+&vi*@ zi;QHF_4wrF84vr1Jvhh+8YG=SMblcb708;V zrd(1s9pZ4a3SnGS5oiKMOpV!vZgFaLbe)m!g?O#1;Zf81d zI1krxnvzz@JQ=}!kWwLP(Oht9MBYnP5D}aMdv;z^X(~Q=sKIKPjrsX}@5Df*GC}gI9 z12uWl=>Bz7{IAnyolgGVA!?!%t7$N{=1ZGQWA_{?l$g4Rf5GOW} zYdWJOQ$h%NAQ+V%gifpYfq!uE%*p2e;|K0c%Q|9K$&$nK-kp!8C7oc*=KWb3HrR$q zb44&rpmnEIQ*|(r#qNm*OZ-JSB;faf0?7YA-}~wtFI@hc-_(BmDJc>)iV7rRk{OHw z9Fau`nS*m)V_9p%)j&*05p3$1$#G~f$T>!|%)84Eb^glI*~^zYKkbsT6>|BOOW|9IXC{d!)4eo#2J)#R_e4&Ceb*^CvMRFX zOt0VTbozO&f?W>mf^W4O{cgM8Xpw8SeWTxKtt>9io_Of-%dR_n>-rvDi;!hBT>sR} ziHi%XXJ=+-oJUnnoj3KKdp+OmSk|(tw4JH1im%!;xPRCgZuqcTdF_Ec}K}8%pct_4_ zy@p|Rw+j$`6V2;Y1!f>mL}oLpLHNA(+&i47!JQ`X2F5Sytp{hG`Wy1X za@_tU;5s0G;~UFUA3gO&kFJM1F|cVws*I z$a|~3dVL0Ofa99J!*2?_Aj#)JqN*yh2UwC49M|8~sP=0k0yNdAIDoj8>8AwefZA)m zF8bWFdhN~P?vY9Sksm;<{5h5j)z)A~>%2zWK>;PIg+oLzQ#DI~7&{d;RcHYw0vUM_ zYgMT;3bmq%W_p0xjzEO^ zOr*6MqSmoE5;R(&yO;wtr($HT3sOdAO5gx`K!v~DC=jX?M`DMHVZO@25JMt}&{JDKLT`fwmDRNj@?iYb$$1T3<4m+y-8+O;&&I zN7LZoBRF?-N|@s(7(HM{##4x?%V!5PGnTV4$JXoRZeWQ zhS76xVuY>Xjaf`piBr}^)+NAFVO4?QepMb0eJf0-C`$D#Wf_TWZfWN1xw(}yC-y5p zEJud}g|qxbZ}sxbnFnVVSMp{nRi;j@3*@jSiFb&GadKNm2ZDXc4q{&IV9w4txoGJG6&@9S%Cx z_L|F@zD0Ql#r#Zjrn!2l-D~Epj;7diCAFKa3nyDM8H&TSd21vUAFj8yH%a52UXJek z$%DZ=1RqlTN={!oH*??4_Cr7dZhb}p^Z)j;0GtOFfSEj;SzYL~X4+frZ2dI_Zk2~0 zoZQ%0`qH=E`K^7dC*V4Yop1f>o&WfYPk#QXO&*S%?;AWq5JK>oh!A;~Wim|;#Lkgp zsgn0(5@BYdN9|RpYj}|ab_A#@gH*&M0?N$HY%r)YGkGR6Vq!B%$x<>iV*)b~RFf%# ziI`!vh>VXsdW}GD4uTzVjTA@H&?9A^;mtv?d$oUeM*@ysu~ZY-RL#Kbw5kk|y(8~X zGij4jp0i`q8k;9j<&21x%|O!YWI3pWD5a#45(nQ*sZfe`j46KCXE!cg=)y!b)u1bb zF{#4Wt!rk6IZ?6%qCn&w6+|S-ki}*Xr{@~=y%nv5!8O3dI%?juFd4--Q5y+-h8dx{t`J7S`kC4)|=6{=| z&}>MIY$T*4Ddd!jiDPPY_^~Ilg~i2(9ta=!)ve$8!-?LsdultMwyx-&U+;b8?%aU> zN$={iy?dCyy2f<8o(xV7ohTzISqd;lcLG=|-;^$(W@IMBV}`CB;Z+HEK|0xI6ZvLB>0?js0p&x33*;ZR|H&vzc^?;b{MG zTXo>ED`VZ=8BWLhg+|^Eqw(a_^73+fe)Zf50o}UU9mZFIsRE7sgvotn#lTe{#lykx z{jPuLYLY@^f;G!Rgf}~kwsG>QIJnbYa9p>NsP`puv3G}g2cp*$U94k z062!K#z;)cM9w*?BZeL+1+^ko6|;vLp{V?`&y@e=18c+a;LZC>fUE)qunF7- zZUN&rkN*UiV_Z@M;3}{Vtoi03>y*<{tFpl1uWYUVxw%V=q21zvB%e2CyYq9If%bRe z%+ypV07m54G#L?jB0wc+rPjznOx|;1(He>R zmeU(Cj*Z`I&K+>q5)yZ_gHN9W06-9{%@v$u5d*<_Z$@OEl9_>mHzueN9N4Lt%Yw0( zs2Sk2JwtiVVUWZsQ)>7Cs}!-4G11Wx<&k$TF3)AqipZE1%$mf+7^PV>OC+jwGbCh$ zpdhwd562J+4LNnX2>>X>cEy&R1ST>q#SWwz1G`WGW-`n;=g5nsf-qO-k9%9ybTsAF z%q%Cz4iXG8F&NIsm`KT_BB&afMxO_%PqD0&NX!|5sF_sQ!HYFKzT(d<{EWZ<+rInC zcvy3oD+MQg5eQyvYBObYz4n~19*}C?kr%rL48apqOX#NZQ{7?S&K{4`f#AO$8;QBx5!-b81`9m%4mWWD*#L?v$gUov=6KN!KrtF9ni2%-XiIJSMSU6QNp$IdI5yq@0 zTv;B%rE|U6`R2v*jrTmX{Y$@j_}sIl4(f67KXDuQv_*DriokFE-%l$U;i$wEcach{ z2MS-sL0LVyfNLsvzF&^ za?o3EKv2rCB#E z%LCoGH7N$Aj;irwtgLekB~v33STYl4KC(8XdSZ-xaCUUSL~RnHnn-JmV{Pu6*po3) zEgNRG6b)JSLSt-2DK{fi_U1|6c>Pf#I7QfC04X z^VO<|zz$$QhkXxzs?(Iw9{Yo4I+$-ebuNyHEd@!PUMrR8wzFz%mdH|Q&xP)6-}92^ z^-inN=yQ=O3t@g`UMJmZ=Zl7TZ9Muzt=_(T>f!6xuLIHJfrJDMj|~YN%mE%)0(W3J z&;dFCfx4ZUGocwY#=}uJP4~CA#}_3%^w8o+r!RkKjIuQB3|@Ga@`cr}`|_Lr;Sd&q z{rxwp@BYT?KlT%kKYD7dJE+oOuogK_7U0R0sx+yX8Q!O)ls5^Lq>@a@K%9}W!Bk^C z-0icL0-7o^am1>%GcW-jbpg=SV5U;TJ6)g}$X{cS!9-N&_ClF6N19Zt1fO{i)Zewf zCt52%0kxx%;G_TSGco|XD+9HmjOg< zun3abnZ|6hu{{`xB=!NEG!U=9gwT#7wmkjN+OWU;D}%(6;U!mJ5Im)Yi7>OKJhKz z^756v`gofJM0i1D;9Vcwn@mTXt%Sx|g45V3AjJa$Fr|#~w_1lG03wNF{mlYD`&! z5mA&z<}xhyTK&hHm(TP+`-$;yd}!yFKD7VZ>m~N@4cwom|IvH?3V+gjK2uh7{JJIB z;qmMDyhogj#>L)PMhC^_25{?eeeCk*m~)X?t@eR~X`HURSnMn~H1@ZO;nvMYkD86v z!2xaENb%M+xYU_B)#&w|%Jh(@m2jeoYfbxp+@hxARECYi;`$(7XiqLbFn;7*yEl`C zOi}3hRa;xD-q=XZO}13=+Tq^bt;kcvVunu&w>b67$#gm@xu3cVz1Cc-)d<0oOs4(C z)t8>TRibJw^!q1f7cb4NwDL}`owyoS`?7hfnKc`|oZ|9eSjFm@qph(lKmO6f4?gT3 zUex8YZ3^t1CNiki_DwKnlAyxDk+B+s37U=z31-Ud9FFM!N5XG*OrY8?tmXia^O~Y5 zthNwQA|f(M5UP87mh#NA^P)JsgAe`s%`rxRI}Y)5OcK0xOavKx`T(%KH`)bY0_*`f z&?Uf^<}9_F%~W3OwmXY+)wFDudqIZdVzMjb66NMoIVlb|i)&l5)Lk7T9CDcIG;fAR zKg$nwJl!qg#a1T|jZ-M*fu|1-Us$>D-q!G;$?j{4W+OadS-YC71H3|;2H95Fqll|$fJ9`Tc%s=qx%J$CQ&eL^==Gnuit-bJN zv)}kF`yV&}o(9HOK90Ziy~R)b^cdE$-B&jPBiTl6lJFh&ywtFlOWx)-WCC#sCI%U&Nvw1ey`H1Z%yFzotErfyTGmv6Z zPMiLH8GWVNe!@PmS9ePP+Mgd>_|TbmJym6r#c76m1Ti^w-kdt~Fo7j*7g84Ow`a>1OdDq#{wZfUXoIiKCSbYJJ)@9h2OkL>=@M@H9PEo}f8AIJB5 z9R=*IdBA_GNpSDBarXh!x4!Oy9;|I>l(CVj{8&_2Nz5hG-@O1fG2NNGJ}x#-W?3l4 z6-HN!qP<2jzj0!)cZlh2o?mIs<|r}QiWP`7kWudaXpD`FTqaU#Rl1eN=GMABHB4-W_96&o$lHznm-?A_s4!q8>wt3^jjKwp_+ORjx#-)UFn&gL`C&}|2s^(Rg=XJ>lFZbMU54jkoq=K2wx<8fB4wuZm)$L{_2 zWnX-<>vC3O=M}Y!lMy(vBNb-`Rgez`bp~TL6#yI@u{YDY=uh4q?*j%+Y9J^PnMGKF zL_;v!Fi~r%6v0ZO;QQLzx-nL;)@5z9UTEGAOI~O0Xx7Ra0raw+VWx0WlJsK zI6}-{oh%k$5zjre`D`HwNc^awEu)&7b*a=TEio*l5bGS(R1R zY6C{8_GR%>7N~?tT?hb-*`#9UBncG25f_?+H#G=>GGZ}DhQKH#Re%Gtv9D1;5Yu{S z0LDaMSCiQQn23Rx7;td4FFb>fJGsY8vc^Buy9?dx2XMTI?WkE$k1yOkj|n&#!9d22 z)mY`YfaSfCclCIg!8AFpxoH}lS0*UHWU%f`Yk4lKe;QE%CBPdC$&uLffrlF_3k{IM z1gc7jpv*2gBA-iD5&@Ffd1BKTohOmVP!iH)YlYkGxbbU3?BO8)_?wmi+|y}sy}?Dww)10FpQ}p*a6{sF^w)e=iFkl zNv3B@n8kfyMA&oqqjKD1ECqbIVyyUe&;&LtCi?lGv-V5B|G*bKILMkZ9av{3i{r6U z2*GJGbqw|#8d{Y^W}2X8Atz!@m5Hh*FJw?L3hWtPWD3Vg)H8y|*^`Zhg;S3`JomzT zM!)%qgWvnu;I-GL)s`U2XD}r0JzD&Um7-63+dVbMxBS{f{v?`j&-<54T7r&&0%&38 zso67^TD_jdY;WyGapyVc1g(?3`E#94zCS3&a2Q{mUi;%I&BK6vp*1s?=Uk2B;npOO zBkvtysuDvQ8}+-s+Ziu*^??<4|AnwP=bQt})l?(R`)3`gbOXgVHF)4|OO zrV?8I6!{j=JKo_4sNQ&P_`6T{o_exe$OJARny3(&39`m(1R3HC6 zP}hGlU<6En_!&a4zQcVY4!B;w$MJ#4=GOX>x@Ih9g1@5b4mB&aUvh}mWUw(@U#qf4 zGl4jbipj0r^@lQ!(`kz1L7Y~DnXKL9G@7+|WlPt3=VqHra~ORNs+WOR_x4^s`S9bj zn-A=-y@Ba#RdN2ziH91eirbr4ZYC|q*C)lPQJl*<{XB4UtmWP%+gl%DJetq?Gp$~m zCyQxk|I~PU_{s}6Ph4I&_qMaQUL9XMNQfIih4GCWzx}cM{@mk(FZ?r;-x>ff0QB6? z+F#f|{K@}#>SX&?tMo3K89@*ysoCWuP$CyH=QSmxlxp6NG5M^amH<1lF$9AF6Ov@4 zbyY)6;2gLHG$jH^M3N}6cNtPyJ91G>rfODGT}d@+N*tV#854+(o51yhagXOCzp3%` zZ=LC}qq(r7QytZ<;#9BIBhNGM*cl0X2H24Uj3BC7y9w1rN0>kq3N^r4yG7?t=k+-v zp%%7PDoJZA9N7Jrnw=Q}Ou6H*rRbcp`r?>X6p6Y#8AIi>Wf~2K5 zMlRtU?_kI7Xzxvy? z;Yl=@+0Y?#xE8T7t{i0#=4dIddJGdLhM{3EWt*r(P-S$fjXyQEJ++U)O(A1U-8X;b zr+(q*&VAl{V<KSPid(+?l z)bMMs=kq56xnL>;BZr#5YYIXDlvt1XpyWIQRL@`%!N@Vg*ux?Lni5k@_#{&@Q+5Fi za>S`7(JOmLKpjTFPOIpcz>>=J>R~wyF$pa}#*bLM1c|IXl^gFhetnSl2Sza6p# zYy%M-O$Rc)KG~&-tX2mFs$yC-HeXw^ZgXcd6x-45Tu=T?cey&;kJH0Rl;^Yk^KoUw zO=SHtkyFZ+S2`%>Zf`c4oorz_WPUc<>8;luhkbZs?fJP2k6nKF{-+Q3({yWl@8-Hh12&J+PZyfTozZicBX!2DO;GESstZ>&TtP^v9-P1=qzQc-OQF}N5fOamD}sr zr_a5x`R@0u-uL!Pn`@)V)v|6U6nA!C|M1O~cR#!_`0B~W08D`K$A4q;J>Pryf&XKr z*;>o?^XZVdO^x}yN|hCAIZ3KDnr1{=6h6xpj_NbGDx8Cnriz1uBhko2rZp)NoMlil zz>%7fL;=CUtSUfM8$#5PlZlBPaZo5R0j6?f3V%Fcdvww|j_Ah=@W>C~Zf8#KzU^*{ zpgvM4D~`yY&H&P+?5t)}5K@gfHGng3a0G8=sFG;{6PTE_)5Cq|nuOZeOH>3#sCHn0ft)#Q%~oIZ-o=0W6W3rW zvZvTFYZF}V8a~Siq!v_QX{_X(Bi4#(F2hRV6QxeCUrE3Bs{Dl~Ju^u(KshkH(~&rc zByk}pHgYOe(iC0Bh8i2^K?X~t(8%P1nG)yDJ7}V$V56!y`!@bJKk@KC`GK21`XBbI zqo@}I>xLdM1U_Q1is2Mz=R8fhlnP|nMihkW6n|rEx0?9k(Nb9j6CMC7XF{{=m z2R4Q=Nh*kPpWCVB#_Ce%eNUd;-ICX@3_kMQ_U}Hw{mjeLy|n_P+J^MrgS_7JNd1Xv z!M*1WJq{ubgvG3RB5yS(G2!qw;xj-4olCQ4&n;e9nd!R0A$YUHgXMg-yL|uYGZz*Y z`i;S%j2D`(*#KJMprm%*?#+Q3(^$ecbKeo?MYNnqF;01>>h^iLn_paz2T!ImGqLF~ z8Hhw26tpod*0)B*Q2SY!rL?+|EiX1^Pq@b#exYxtmxiyrbnx+N|CKB2d%Hu#hqfAF zbp%!yymOvM-jhySL`w^uz2WxltNS-5`~A@A_vQwJ{o(L-T``ZiUQHh>Xr8cSXaeKA zDbcI1RG)nA@csu|Gbb9R#LgR(n5gapYE;#u_8xgKA9weR7^*_5W+0Z@2e|GJ5VM+^ zDqP@t(3BJ~GlKK%oGHkZh*DJ=l-bxKGXLm1{0IM26T9W{ZFK;?;%iSoeyQ;zKeoQV zTSFJzy?2m#-u%>L7uW|1C=~nS!!Ejp++Cax>Gct-%q-YKD<7rP2OAGnhtHsRb@TOC zmfrc)>5KPYdu|hx_1jy|X8ng|Pb{6fm`q1^u3OxHey~2fu<*Xc^8v9xsZPq_#^L(@ z{^I`9iJ4`}Cgb^Qo3}7LcB+ZWYW;6NusS<)-5)M`Hmwq(ibykWNh~?IYBcdKxMpSsVzv~CEJjQWX5E4#Gxfe9`$&a zsReIm&U9M28}peMZyF&0$|t%swt+$F>bS0R;wEZ|D#FwZnh^Z@`c`0?`wR+&ccnW(-&Voc>0Zl=WkBd z?iBmmX*x6%gjlzg-W*21r%>=|`@y|`2;iPtuc}-*8e(`8xB;AO^!vS~ywN}c57iE$ zXv4J^S~IK7g_F(sM$>$14LVt8zH0O_Q)F{&#g(!<>mJCv^Rr>DMU;)k zDQuUp!Tw%#Vt?FP8fUI_PR*OdO0=Bh9cyJ8$7Q*`F-5yvD6{M!YxrvVF5nJO5DmJG zxg-nYvUTt0aJWq{QA-S!-yp5j#@?2s4>@a#a`D4nHYAx!uBVBL!#JDx^JQKA`0dcZm@^K!&oOgS! zE!N#170AkcVsR}my_h(<#whDiZ@y6;aCK;nIPSM_`oY-&XB$^<48}Y^*Uva>HcwQC z3&0z@8z0+0eEZVH2d=Mg*x@tN;@O)UvyFahzT22Pb8=V|hig}Mwr@6e2B#K!I6Jd7 zD#ydIj>@f_t>yjB>|ASMvA@4^^5Dh*x56j?c;nnx_TTx)%KrN0YagCMBe0HPI`|l^ z+*dvFXD>hhGd)}#10Moz{PI6|InPG_^!v}Pb`u>GK5rOt)(BP9U_Obtya`KSk1CNF zNHs<884Ohcu_>rFhmokYtET`k=SU@rikY$}XguzX2&z?5K2Ador7nv6v28WS;_RCTe@flZS^ zP^ns=kTC<44B|S)xr=;aA-j5K0#o)-(PKA9Tb$*k*}wo)j1s{^p_V{q9%E`!Rf2)j zN#K(WbPB6}>(}-_`SGpyygz4inn;cOR7GHpT-H!90+UFce-S{;`*{XcjjU#1`Y2RF2s01og5LNZ{B@Y_@#XnVour>l~jl!6Lz z2pC~xcwuu`oT$F|9q;*qkN@E>0X2Yn`21`3_x=(6^MBi$n<;sU;JB<*iwO`?G6%sX>^Xnt-2A)W zH#0g+J6pxZ#`wni`1+mcm7U`DM%>;g*EZtbLBg&%mv)64kgGg1ScyL$_cSoqy=aMx!%LJ&3q{Vn#4TnH#UtC=|eXiT?7iD)mQ7g(~ zG+~#9rK3i>w}9>(udamUQ#3ml${;W99DL%6zp{OPe%_zC3~pdLYz-U_N26z7&IeCd z?|yaT3-2%9cA>ej4cRo9@wA7zJHQIgPaD7d9tI?ivo)EhzSAjeClvAdke8D~cLU#6{ve9e+ zj#-i<)ci^3h)@@Q*aw9=uxc_G8Pyv(>MovhwTO;XO-YT2y-7XnsRrZBgN+D)iWCrG zCL&kQy~naJpD&#pef6JjeA&v$fA=HR-~085)caFkxPI}eUG&>u^EHiM`*`-22>>*J zj=2cD2HXZFzzi?|KBphvHoN?GaC-~$mF)ZKX70|+o(j^)#oji&J=0vuXD@oAZh`Lb zW@IiYA+)s9b&XDlgUK7$*3X|_K`Gl;_YZIFrt-eSX(qk_It64<7xCmuDa5{euDao&XMk z;y?Y}uz8z){GZLQG;eq~ts*jVE{u1F&Av0vG$|SxFr_Mj2wBr0CW$j=W_5F>#_E^} zImZTqshO&nD0vSvCURL2tqg)B92iQ>tSJ#4mG#MynVAT)I`>vXFazP(5QdJd+X;2K z2K=U5{N4B7dvZHU59%6_qgs1R05hmok|}{TRV0bn5qaZaAdLx>DCDGASZ-W6-?@5c z2xKWKgH3B0D|$=Xo5_hyNy&&oT5ChufxMY_>=JUP$#G_8rb0S0OVB!pF||aJj3{LE zRbPJJkNw9xsFI?X$PS>%n%>O&L@v()Tk6ItsjXEChA0Nmyv0u@yFM)k|MCMbzwOb> z{rR?3mbF}z671l;8P`NqG8lUTymJaeRFHFdMofgnfkniXMRcAyHwmT*;)EHFKx|WM z%vOK(yBAM28{hx`yuLpf9#>0h7RqMAGg4gS{DRQ^pa`1)Q(%gt#$WZ^8ykP?i@qg| zAARQ8H-HM5RFMDj8~acE=+gi6_gf?(?GN+5k3^|bA3U)GGb9m#e5T|aTT0cD0YyAg z`)ZZQQeg`wb&$i;~ zvd#6orG^)`iVyxq`SPoi_TsoR)3*#%!Utdb}v zx-MjsgShs3*xvTYU6F!m3&?>SwZ}RD$nD$3hhGSv`^9Cm)u`!;Fyoqx&VisrAY#)R z>LLbV?@SEjV5*`Vvbw=bOlD%JwFwR&_Rd7uv8s_OV5Xuf1cq~}Nkjo>i5w?a`9?$Y z&%yULR_Wr-zkPaq?){261LFJMpJUNsn~tXibD-7j=L>J!xpw7KnARhW0^C2lc>lur z`PDNGVr0$fHhJt^YIJz^1{;W{_g2`=ZzTOINZ+Lt%dfkwP?a7_S3m;fG`IQeJZnD1d6!s$UTfp?g|N7RqPUJ`b#eEmMll&l6 zQ<4~4{a^tUOY$b=#5us~K<`1GLNF+4GzFZ4NG;(7=cJ;s0unoxq&1|&h(M0&o~v^N zV${>XytWH5!9sUA5M zc&|08LB#t&kXRXePhO#9WH6P)%-(r662f$5we`f?W`FAsHUX(sp0%VDu!Y5}(+(z} zT4*W)r{sb`DG9SEv6(1{U1lmAGSR7NBqOM)8b~SB$@28Q@0$OnFIoP;FK+@28k=?1 z#>Tk??Tq1syb;7)YI&a!}LC zDhH>4kz<&sROEs(n4PMKI8UtVOiA*lqaeblbs7Xy7d)$qISFNvb;CD(*TUtM(|`SM ze)1D{Hh@suD;hj-on&Oy9_T#zWwsqnmEpiJhFXo$|HNKGQ_cjT}zzvkIK^6hPF{A@fRN3E~93JZ42Cu&|#O^N7CatRJDDCYRGSZuG z4EJ8WgM(4)^6cEoa&KYDrmmbupQbiA9Pe%iYWL?t*U&N!LJiIKQ})JI{KJoL{@O2J zC-R?j_S{0FuVZYC_4+;svZZ!9GlS2WZ@>8B#XEP3JI}oQv1hKl?;>9~>F3%figKnm zqbFw%;$(la^&7YL{doIr%cn1lqwQ{>)5<%&d}eWu7JWA~w>EYc7JO&9-*6#tb+8ay zqaDfCq&nkWrwsFD%#P(Wbq*kZ{35PjD;F0NaZsumE6$7vnqqQ}2{llx2L5Cq2P6>4 zj69nq5C~FZWQg7IkS9SEYDez!&R4~hnHa2m93nU{k#7ehAr_P=5*qJt-}lJk*WO7p zT{dN+$?5yDANtPr-};9K$H`m+z`ytxOPAiU`@=uF{_{UltD9y4>7D2=o$f82&Se@V zhoNj`h4%BAscZYWj?$cyX7IFC6`|Mm?Gze^11Uc>XoOB1R&$@GP{4u1MS-}hweRY!^I zD3_?3l#N!y*nG34RfVXGsAA*^DQXfUW>4$@7@1g_XcDj^m#M021Okq>{FLg%fH@eM zsvwo*ngE$8v#(2l1gFMFCUEzhuWJ1$9f>^2V4&lP&3ZdHs`5Y8B+e#2nsc;YSFlwBp(7FO@Ww+xGeLI9XnPKH9QB6>N9UOl-`^g zvtzX+NXC+6s)$L(F^y9^tcpFPp-C-(phSckp=*@h^b2OL_X z$-&;vE5prC9d3W}x?Xz;MXKPrjai_#^QTeq*CNJUIFA?8PU-{3418Uf<#u*Jx)<2W)V3 zy07oMoIQByp{)Pd%eUr#=J#*?{O{fR?Pu)S+l>S9ofBbxDReshX}o&<_9tJzaczG% z5IyX4vA8sIVyU~l&|h7dnO|rcVKA`WeO=qa+MRrB*X`XJOb>P~<(?LRg|~hz>7}dH z3s=gjNOjOYIsj_2s&c`Ra|SW1{rSucCPd@_s4<*_nWFjI|YbkgB*FRsl`H=5&(X0bk7 z+?n5dk*b(lwSE7kh1nAq zeYgx5aBJtzbFxoMvu7IJi*TJdDM!28_V_SSc*31)ik^y19oi6w+KM*fX!doR7ddH#ZZ;TQDhFD?M{K!6!=Mc1z1{_U3* z=k`uLGLN@^A@DvxfZ@jP-u$Z1{jJ}-x{6jW_r#)JEuZNMDJM!rl6V9-&{&y902~~% zF&QyQJ!TqXJ=`Zr>N1H60c=_;f0W52mPiQz*w-=LBuSJbR{#o zg$jDS+M9w@EViv`!Xj=J3 z_1L4W$1XJiF(a{9JH`O$%(ohzR1(!KW%gumJRd90njxaQMIe z(62uAj`;V!Z?&$I00l7msh`<-<3^P{xZ!Gk6JjLC$1Qx2b7tnU3|vnL6G5~n$$4@C z6v#Vvd~{B*1dEy`BvVVVPC`wXvIe=pP)ij=p+-gwRuQO}s#K*(OmQmJM5{qH-Fx|s zz3tr^)l%>J4WRWWIgU+Xw;*efb?6#g0u8G>FYUef$%7Z4scwG^)w76uhEbXvjy86; zU)#L%?5*(&uVC~^jCW-mi%}em(*9I;2i4C0_W0mcU>xQ`b2iUro80z?MR@7@U@mCv}toFk_Yg7?lmrcUV8nH&fomq^EZC?!vFXkfGY^Rc%Tg=pa2Tsy3)b)V7hU0 zvUb~cchYFEw{N%iMjyL#<<7>H&E1__`-j(e57xGC4MzJZfU;H}t&1UVhAebuTXPEw zoleiCYC1XWbaj5Fo#%O;kMl-sWqGqb3nau&d zX$U}GM^$IZd1fXDb_{mjxf~#k0#nuGQ=IF%@A)fFxHjsD6LnAG9gTY_?kP=u$b8lc zS@2m!t}q>oRhoPvPc+vL_W`|s^Y8cn{m)!et%741kr8`CgV-}UkoQKUMyf}Cm>~1a z&Shk|b2&sw1(HH=4scFfV2es(G8N`V4TqA_s%moivErvc@Z{Hh;UZ8sOY5R48Kz?E zlk&Q_1LNhR4FC?_fb{go@4Wn5FMsQI^uF~g>c7eW8<*wlSN4RbNlPGxoXIl>Hm;la zN^D1M|HwpHEhBNk6QIKE9J!ooga9!>DwT7NpsE#AAxcK9{;0MUm9qwMP+=IfGJ*%3 z2?#{Y1f!r;Dz2~ZSuBoExLH2)c^4n}y1aegn>fOwtAK7nUV%IVTt&kJ3DZx;{a>s` z9|hh3w%`l)qEd_x54UgM+{B|`rb{Q6FI~QfWSci%+`RSlz>gcJ7girWwfgv}lW)I#=FtZh&zw;2Cz5ssaeZBP zw`_mMcDB>brfl6FZ(JX*-Pk?ce;W9C;2B^KxT9{&t|pZA?)eZ1lCIp4;ciJRb^Vqd z!Lc#w*&kyzz`%9u&OlI5?J)}@W*89#6C;zlY7CG1RY=mK(J*yPD)m&7nUN7QI~A$N zi(n4wSQ&{lv6%8K0iF-NA-blu-9L|)4Ow{ z*tjkSn-Yul3WH*}Hh7K8+fCAT=*(Gbj(yeWmM7+Q`2;uTdZCeP3>GO?)v%)d;m-PX z!o;^4t-$SabYt`8uox+!46QD(3ZxRx?X7*#()P;5rt8m%8(7(e%kozSV?|Jm&a z9$x@vfgW&($rQefN2U1CIE{cO(7LKJk{xu$sAl_aCaK39KGScMO-4b85`qn~F@w zDynjnfv6f$UWZKe+FqP~^;e#H_(Bh`c=DYy-}{Z{0016VijGt_fq`LSt|X_LY2-q!6in2L zm<}vX%4zO!qQ~bA{U7{6`{1u=rOCmYIYc8-V`YYtz&VhxC9}ldllR1MOsbVip;n1j zb$89k!yL3>a4DK0Q_Vc*4#8*aQ^I7raw-11pMC8A_1Dfg)c7g~)N?vXv74%^9^1!5 zLmAYA>@eED``Lr}CHtTM*~!23bxlSS@IVb;-)b?^VuZ+ORNeLcddPtO4`1a<*JKA-hY00!&uG+RfLC?*ptFqv8Km*0Nk(idDp zCr5m-o%R>!dM8fyR?jS*d+_ANht8h4e`R(lFUry8wX3gv>W$Z5xqa>G#?7_8o#7~w z>-HCymM$#LeqP{j0KT5^)j1x>eJjtpOmlS&{rF-ay?#r!Hp?2$Oav1lM_{6w%IgB0 zBM3p66cWwqu_H&$!-$>JS`2Ec2__(8fXF!__91}k&QN8NR6$lt`3x#xXXHU1)KGIw zP9#D_R7}~_YxK;ygCmmQiW*4?l)yo?d-#9;&NRUTbz@^x>c)67**{F9Nzj-PFEwyE zm&ZG;nc2Cylc#1^&Mo(69?A2L6K=FLZ!iJ-<7#JXJUA#dR+*p1xL6LuRD728p>uod z`Hj~OZ`~TjDLBkH_Xw~I42B1Hwr_9uW@i=`&qFW9XzRe2_gpO_&&;QQ;ORpU+T#BFlx!vCV zeSm=pa2xRu*wo3h2hToNT)&;Q@5ej;Ch(=eSzru|zwb-m_}_oEcYCBFL4&dh5sXzO zAys5VOyoT04P#GW4~LY@4BoTP%}6U#1sR(fJI~~an8`T@keEhxj>!?R3t25IvY4z^ zb2%u?z1i9YKt~PWTJ%Fl6bZgZ@KeKr>@C9sb-zHZ*1MZ36N#t+V5)71O+eloK&l)( z!AOOXUvrA6vV7#iL^8mAemOC z6|)0`EQ!LvW@o)N5hWXL$?4tN-yw`1=9*3!BD z%IUm+0$Ix(qt!vU2>1Euy`$Nkiv{*}4h}Z9u>CBc`F!`}SwA!D8?B?NTbhcmsh$cPoOHduCL#^vA=sT9LH38(pH#X?cDe1 z%;kp{mrkwbn9l)+NR|lXsSkAT`4AM)%`IEIUByZPsBvxSZ6K}bj8I~R0Z?cKsmRRK z%u;>qGBS%L)oP#GIZ8zV69sz_g_w##l)WQ%pg>?vl2TGtGgD*Yj3}rO856;0nR9`` z4Ch^o{r^SQpT=pHWoLcpv)0<@oOgyuDM_a3xou=Cg_&vR<&B{xx41d$~iJJV}8eT&faUS`(eLP zmDR+T%F4>B%6#LTz1Q$O|ECKsA(fNzVwhaL_;GynQw6XBtmau?0C)PQoh9w9=+c@k zt#-PDt);c)!P>-2i7 z!~SDWtY3Wcd~f&xDt0`qbh@j<_06jLIPe6}0H2xOzaHA|)tz&_<;&oi$K7@|X~wD7 zjE76rV7NJ}CkOW*o=oc1VfWqdzTDZ~272xM!QIynN8@%dr01XBIDdW#oh8KOy*up- z{{V?VcE3Sy9^3YFo%ep#W~V;@dO!dsKo_{_(~nJGzRCCZmdY!5-yZ9zO zyFdQZ|Bgqev223XYLnVsL!Zf%+|1zSsz3Fu9;NU7 zq&A6~htk^I4g@lDWiYdddooi`$r-|dSeOg=oYbs|UI;;zIF!MKDSv-hBpFfiCWXQ5 zhyK#VxWs?y$L;}GD6AJ_xzVJ3ak;aObfHOm@C5Mj4FC8a?0)b=S2s4|-~RDy@BQHZ zuYKw6)9(^0UBITE0XJ^ZRY9P@fI*|Sk%%Y+3c+KN02nMKRTp9kh1M#im^)z10nF|W za}MIL4C-@&se*Duc_JbQIWbXyN7qb9C9t8xk3T+q>tReGwK}caapO*%FEcALPy$OB z^r+V}>45^U46I`LDcafYR%z*6ue-fjtNU!^oszaM^*YO)&c^ccpt~}RQjFU$Kdm** zQLSuWUhXc3rfwhX9UPA2U^Ht_BBQaL!IRHkymDoAts<-asNwrl-#^hV4p&QB=9M0+ zGosa#nd}|*$I;g=w5!Y5-stx>-m_FKzxatae)E@Z+`o5v`Prv7Hj0&ARdvc`my1tH zJ8?{={nhoA)#Wfv^GR0|m+R%mxvIC+KRKb}-IH1RCBlxi9~4nVE~l zDWVZb90G}$f|+2+wKY`^LJShux`nmU4el8`R9aLD3{4uCQT_9upY6tF;39Ah_)TEV z^&-noRdpj*7Apcvn+iGZ4CbM0Qd%Df&Efd;{{30%Z`JiQxi==vC3Bbi%iWD;b(*9M zZEpoTWoSqJ`NREDvo{^Za($)jqO&}lP1b=GV1Ks%vD5n>?r-*!U0fho_G++5!IYWX|HJBwjX$l@=@*$UvTHNe8@1o)ZR956LE zFlV2qa|n4c0CRK8{5c8%!i!N+=)%d&DQDTF2(;IpTKQA|#ZyOrqj~wwDM00tY^-+> zX9f=?JK)R3m= zd>=r>OzdW1YtnYDU^XLWc46vJU^2<3T~qD#R;H6`h5Xd*`m6hY;xBymr+@O=#zwDg zP!E{!}$aHUj&s@9g8$a@wU!BY+S&w-eERwDz@c z>gpO3kW84(G>1;m0vpdlfWtx+G=ZgXCuWd{X-fnqClXf;ArOO-nyF>-Jb^iHqw>s= zGt-=d5D{lh6bCK>C{xOmC72r&MJS$rvcIui9Xx0NefZ$+=Wo0+I|*NWZGU_``H!#= z4Z;`}8*5E##M}>^@0=S9uk_1`%B2nmN%JGGC%u)jyS=iudS!XAywV?%REN{~@%^Z$ zBh>dp_c2H~Ij#>+?~KNNJkxH!FUrEP>=i{n#0JMFew^giJ$&X%xcTbjWdGn{U#`C~ zNXFjamAjpLw{dtc1a57)@wIZWTyFHGdiv_@p}+jA|Ka+V?lwM{KfV?>yezw^ElTSx z_t%q_1uu1qC8|=d(s3<^59X_bUUM4iDW!A=IC6~Ux>@?=WCLIY=m726d+Iu|8+Ys3 zXg(Yklm#FF=V7cFlKW!Q;>7GOxxh0wPs(Kg*xUf(5L|P|&TcLe%+=j;cmT|uoypvl zgn__P>TsV3>w%_{H2oO|P(5wM>(VI!c|*q}#*tDnGVU_H8N7;^=5zA2oid zlCHKX>io@_HAS#)KZQ<oU z_X4e6?p!>#`Rq48f8$nd<2%5t#F}9{VhMPm9`Ev-=k4@4bhg9R52c64z^`W@_D}t& z745tK%n$RhL2BKbi5Dy#Hcjj#EC_DVAuK}X;G!UA01l=64ikvY%_)?CXTH!vr2#jM zJMgm(fZi4jz11}=Mn_CWXSz`)Vb&&5wj(>3 z;5oW42nVs0h}_kU!9_);Fj!KJ5v)?O)pc(${nl?=>hTBu#^1mGkx%b#T`UJH7Cf4` z8C(+=A|z(XJa7;T9crgQlVx&F!2wVtS92ID10#S_RC7zg1r!{vjQYvvmwx=mKXBvT zCvV;u18Cu_HxvRfNX51;T#_hY24|?cdyEdQs#5Jz-%B?7$j{(!esK0*|3BBNrRYke zNE*2if^$j4PAX;z23I9EFc^6(9^H|*;y?)nf(w z%kRGO*bn~bM_+w-lD8cIfH_b$&3&N9sCvWxWK`dMW%_^ryIcR+53J6Q?+^O?^raYU zPo089KxC0Z!C(pqmK#oHWGalXYr`xMvKRq?nL)%09WKFu^IHm9?qz8{+e=Rv=>T1s@Q$jnG5hxP3{b<@N6L_hnf(PuxiJGy%xI(oxe zCAoiZl#0$PFL!tEpq-}G<#x0p$EzgW!rf})P%Z~X+JEidmoBHKY*lkbm zxAp0MD@M(ZFy@E*rw`wl%_YsQkT(Yp-)u1h))`L@mY*z^SI4~4j_R|N6<@rshMNy@ za?);JFt9HwApp9NYm*dC#$?E*o1!EZ*CbVeEZpF1_i<$8d|=n4nvg+q#1wMWhdInF z*8;iJGk5bG^-AVy#3V%phnZ0*h|M*Nyj2Q@2dBW`2QN;)@MZ)$8`mx!yfHRo)7)1yEKr27$*VRZVS;TQCJ9t-k$sTqs|;4SA}%u zBxZNwz?8AM0#|jlg}5;paiMCIT9iHV07^g&0+#_WE)qdq(x9Kd`g?|d>&a*S@1JwJ zrmNdP0Y<)R7=}bn1QBv~jt!9;F`x_Vi5p;)TH^wwL_#Q>0d)!$1$S4?5t-b4{a0`N zr9b}eKm6mLuow+Ix1*xGMQ&7Vx~)JP38qnIS9NBDk}M@t3Cxt%R(jv~p>vB10Cn2^!b7|cBw&Is|5ErI=}S0a zggZzDWMg&x!p2&!*W;Lq!-LbKyLZ~-JH3^qes8$8wlrL=I#OV+le*d4pU-w5VEii3 zS|>J?dS!9p;>!BkMyKe`O^zQl2Ya!ZH~V)_U+*03S-5|D@>{=t4+jshI_z!@meyq2 zjIO_OII6?FR|v<4=sz=M*?TaMC5BtK2q)7tnYcyz+7+BlWyPl zqZ3s%5hg))eG&m+a4;fv1_igofhn*h%L&?U4k$eHwhRX6kl6yT$V?QNxM1X{;B4=7 z_ZFHr&ZY*p#0vwd3MsTzYsthtH_yUS7&#+mWl4+lu}>V-lL(w|@f`5Wz=^caIBg}b zf=aZeRRo@U(Tt`YjI|ocU>Ot;2EwrnCAwYomb;vEd}y=LfKjnr`NnorME@DpGH@JRbY2M`eZ!)=GE=BW+U9`Z`6KE^+9YeGjmZ` zcXg+Du+>bP-8=iki=)S$=s)(<#^KG!-~7xW(*EA-hqt!QuMNwcjqVfAo~JC$f7@*1Z`}dRWbWk1A`r%xQ&{ z9UzC!+LKPPjMkJoupZ{b<#G`lb!CbKVRDZ%Wg#v))kKRfLrg?s z>9`J~YrnJmZ-4eZf8Y;&@i$(a<`V(Xg>(u<(wdWj^dA%TVA&Vek!k})$2X;dPD6eIv4A1oX|=B^P;#74wU z23Kd!i~$(AC1yax$)Jf#CV^X14&pcdj-3ntM{)0s2oTVo83Nuq^1|5-2f*QD;1yU2 zdYZc1#b7DA%%*8_)ZBmNHg;cv&SKFwMRNCKF{XMlKiF&bZy#d!W#ATYr5J1t*0wHO zTYmcSjkVPk1sxn~Yh%8}b~4?)^F}i{_EEEY;}#wQ>pPdK~H z4i8`l(p~QKR?_Kg|3)GVs$n%AjiVh>cjglYKI)^}`{UnHu541Vl%@%o0qekF-8>ki z<-zin+IwKSHoUsD)-S7BgNHuem2Oj1&ZM9Ql;B^Mv4g`?J2;+eo1`?)J*u!P<<6T4 zZpl=0&{`t#GrQuDcH zenLa(_3Ns`a~VRHfnBrD&Q4$54BxQ4(H)#SZwI$R{YHKGY_q%~!7Z#(_wxMVYj*4Y z-i5ujttIOB&pmtY;mz*ksEtQ=?!2_Nb>+(CZ7g5zEp4B#M+Y$-Oz+;i^+I#u!ll9X zVC(U7NB4FLe39zIs`__lU(3+~@BO&p~n@I2I7|wvR4j2bGv9^)ReAeaTKg$*!s+JO%Ns2s#aU>4z z)>=&P2qA6FN;Qj8j;ZC~)agN!xeJjHi-X}xfDy4dyj{3$nJh)701{AvB0v?CdD~8w zav8#Irp{0bqA3vrX2YfKkN%nWU4LWtuYZ0I2oW=n_u$MlU}znBqVqBcr^+lkHRi-Z zg%oN{Q49xxc^2w1{osFk>;Lx)SHI;wb=9rn1XWd}6bTLn1-1Yr1_K&d#JO}!fR!a1 zh+M$Ju4K_&C8xSFC9ZG}75`ePsL{M^2c62NEkfZ$WR$l^mTH16TwvJ~=x{Z2=dv^cGr48UFmVvhc0mve zS#)q9M}D?A6lyKhBveLfZfGM5JF%-$QCKFCdrm9zAf8~F63Ce6&po^H`@i?vU;C-o z&JH*|`?C~%^p?2Vv+>za=Hg=n3UGMPsh|4sN&6s-??1rqXAnON4BF}T>HaKq4W0_K zqlbF?wVB;~3C*tp1FUQew^p~$tv&Jh#`90F4m#aYLxMO)6L_(emuB??#jmF!|u}R@-gPqdgDT`-(O->2PZn6?8ouARkf;} zP6$5DPL4+$VSaQZ%aHjY41{RluD%5GN2J zIgx5oh>#Gm!b}pZg2|ldfv$ z<{g#!wsh*MqXieCD9euYmxbD5PE{(jyKHOA79I0`HLsEj=B7(QoJd2Nq-{eg`nuMq z$-FvVD}8*Ja1_E|b(tRy%QPOQ#;LEX8{NIwI}NSqg~YGG#;1obPfx#gur%1bx`T3K zIzBnrz0u!#c6BWbH^c0BB|Z@2+b0jU_V2CiJcaEGVg2!q$>den(b4JcJ9pPsRyWJ- zYUAqQ=yoSI_hUNRyBA*l%=!nvp?CRPcV4^xY`phI#O-o6M)&JO=Q~m@z;)n@fTI1b z`Dk^p)QhxkzDLW&@AdX(6i+{v-P^t!pi9UL?%3b?tc24T*Etp&vw zmN$ZKFf86)CNLwgx6#a8#4Ha=-nj!{TA0H8?OPx`TK@anKX|7Yba8AzlK~_};n}_{ zl%ofTgQe)2Kwx&_Jf$HPad-D*1`4G+q}wrVq(h9>lR*MSr|e+oQWHR)6(<675l`lt z$cfwl2A59a4t4?-;n&WlF)=ZyASx&jRIPP#a3v-xcC>SD<*)xQ-~8b8-+kiO4gpS> zw%QGNEtD4xtIYkFLeL%;P@6kBqyQ&&z^st&Qg?IKNILEPk>7UbPyT~*|M@p}ilQMA zN(M7kz%`VT+{gn-$RlyUITSEsWdwG#rqRtZird?Um`S?MnUN;ug-}UkR63J}7&Y3~ z`{*D4^Kbg5zwzdu`J10=7Ag@t^H1fQV0Qn|4tLKlUlc0EjX5wN`Nt3fu&?aI!nTKNKoMf@#>jJvqI39g|-LYVcEowR6MuwYBw)bDQhyOP#=W(CA^~ zd#6o3jfgd<&#TMlu01yFmqn-l_|uz@KRw)8mrmh_97kz>YzMf~x%%9t%TJsSw6_1^ z;q~3l(eX*KuA7^y%bP2q8jf!6O!o%BQE%+*btTTmosG`& zYS&~yrE8Vy)Qo2B;o*2Py$!r^+D0I6fM-AgIzW2s3Y^aAbYv-|1)R$)d*=ykZNj1v zXIk*sVXFDq$mcZ?IoLoMUG6F7Q^0fa7DB#F=~mn%Hx$ zfG!Nc$?5b{2lu~kXZ5kc+WLI-p61|Z%zx$Z;7M7jsMqhWUu%YY(^)fpFxkC%x_a@# zV555MeeXFL$?2c3 zkmyk#=9lU5-tGW0W0pZ+VYhssh(j$VQX>|P38o|rA~%Dn=Mx8PN<;;*Na&ijFmeUR zy#PW$QED?65r(^gMJ%>XU=Gk0S+NFYAtNGN*pk^D?98mLpli{ZAm_|fFeNEGO%+6JQm|V?ri{)~ zxjw4(XkPr-e|GEm&o2L||7v@+KT9pcgTolM$mu4{*=XcOAOpy9J|8r;Oq$;{3gk^~ zUNI@SBsWMmI0FSV0Re1YB$9bsJFoeF@mJ43{|(>rpZ@44AKn@PbCk5SU3}9wZfu{g zKK)zA-|}rbJQt;fPFU0Qy;cgaU~&rcPzvzjA968HeR(w;VG_c1yK?g0B4y@GVJJ>qeJ3QgVe>HS@d zJ_g(eE@5r0yIgcS914c{e4>-szJBP}Z_MuBJjU?>=2Hw;o_OEmAAH}H0m*o-Yg@F^ z7xFZl>cgYin|JqMrxJd5t>yLgeyY3oMBbQO!Q>Q0 z+Z|M!JDVG;OR@2yb8>V%IlOykGFCA(M?9MW>ejRm_f99{>%eD$Hvk6KfyWolkHw9C zR-`2zO_7oknKKi)=gGcEelJa(0|0V$h`TnK{K_oZtq*`frkY(|3-zv>Ig@0@5a2K@ z+CX?B3c111WH6&3!mNv+Nj6t91GzJt^7J7wm2Ip)@vE~52pBB&o@{2?U>^X@<`%~q ziHQr-(zLSHqUnTZW2ZPJ^ekXDn$(k7)Oy|t^R-xn$Y?mu+7ut&S?eo}M>30@CTbadHpI+?~4`b|TSp-?Y*08-n2VKn~Yx%uTzr_=463;xy9=A=GMaeHNL zbt=P7+<3a#yHU^L=;8GErmjERxv*0lTzPtOW2E&f^E*cmZ=c_|T5g_OdHMraj!(5d zdKgE?$JgikFRpIy6kqfF+Tn9wHF@b};ANy=9t^+D@ZQ<{W#Dr_1N9>yev&>(5WWxWB5fJ5KV6g)@`xgnIyc*6@p^Oc5Xo8xvFbPSH zmp4-<2ZbC{(;_9$plgBYEEFNN3MCMnf)k8QN`gjHhQU2%wslftI0z(?H;e2GR*AVn z9bij^}9LjsN}cf8+Q6p^w~oaRP{U1_Z-yxx^$zY99QIM;)4tAj1>*{n(tomR6hta{o^e29*yHcLAlpIUp;GQfp zC8MICP(tGwJt>&Q#p%xg6BmWYNF+frPc6FEfD;S2Ftr@uCotluKC?J$Z2IBf*?;ku zf7@?;?8bgOd;avVfq6lS%;$&O z*&>G-q76U?LR3qkD)| zZ~l9J-=*L9+`+&2KX=cZq6Vaiw_0wzw`ZT8-n)bNHXL6A>=^AWG$mRE?g3+92y8(v zKvs2Lx1+sdur`GqTt~YH>|p6ycXJ(L*_^_4(wK>bqB}$uo>36 z7cOsHyEx>UXzzsU*c{L1f`gg9{PN_^^%^!ff9>Md`R%1{XRe9+TrHR7th3y!hQqMB z&eRUlJRRQKIG)J#@aECc)8}VbbS*ifO+K5%+3x6#!^7e7Nu14+o>ohxN1BYLz!A^^ zc7O|zZO|rC-iIFn_1mM^MB^F92zLYIOpMJSMqsy=8O-9=8pxA#QJ9%zg@z`8NC+@; zHv>xnGKXWqZc(_pK}{$K;0(|4^W;!Nk7zL65@x(Md&tZ7ZBlW~mo@r;|vJ(Ck3CF?ICD)O^JTyWW6;^nnL zJJn`@%cDfODjC+cgJg6eDEG0{lfhC;Ngv}bC-(FN_Xq2^?TPZo?IX4Xm|AH z%IVdoR-RAG*Sc$OT-`mYVUy|c$?nUWn@^{wu1=r(@aAtm_--6Vq&Fs`y}<86`2%Qo zfR6(wz;*YfhX>u_spa(x>oTuU*G`p@Ar!)t3}@N0=1L@RIFXyRWak5=izkfU(F@QbUEcE+!BY+q zHFI-!m^urGoHJ!aBq1P62|bI8$yT4-n|NB3E-5>g+ z|KZka6F^$blO0>TCsl!liq0xq8<;al-5lo8-35}=rPEvLUTK=+#+Lrs|296IpZ?^3 zvwrQdnI$lDtStnf$k&^>I-9!+0)qpy<}?Nl;vNW21p#n!xP~CfQYK`Rsm0824`yyL zQWY5x@cL8ytxv5Pc1Y{M&Fo|@iC9zwrs6DAup8j)nYbMjIp>WNTwPn|z!c0~KorCr zERtE{mZ346nGeD8Wgy7weeKmPF(AOJ1U&e4u+>HPBA)6-jbaQes->Yx_QDWLEfFv*bNYUP>?E=4Pn zQ`FW*x6{}#ejOO0+U~CRLuuoa(0He8e z=k=Str3>?B$KCGV9UbnTVEzTnUpYNF2U$UHHPA}YtAh8_@fMm(K+zdo8E#%maryLc zlIFdfx%lY&TDPuw6ti%K65wu5Y;fdP(A|g_%-jtxmSJn&-ULnn zIF?%(O{^~(YD-PaG;5nkGuBzz8&uPFS<5aLHEbrXfjh&Z*Iion>A0WD`6ShJ5Qf#% zB)T+h@OfR|-<#H(axf~;Bs6bE3!x&ULo}}`jer8Ef$7LzJv})cEUk1p+*=7cZ;R>c zqleF~UEV1BP3K&%d+ISPi@T(?=<6wqvJRB?_4@}X|TK# z)-HE;UtB_J#9lsqxOVrA>gt9+_Uz#0H!qDpei8N}iWgj-fV>|xKyw282jCE>>$dw( z{_gmXe*4p#OO3b3R*6xtR#B*XP)o4HdETDPEic~HTp8lRxrj6c5$EBDsb%B7C8a!% zvBkm7%&w7;@dTO|MUS5Q?w-xV3zL@TOyIZPwJ(DO6krtMizL2`ROSAfc!LB2OSADUF{6|0b z(rXU^A~daf(Y(xZiPMN>De6E-lxs%Upc$Sf!rG>St6sGwI?%TB!aqO$k-hle{hce% zT{|4 zGj>Beb!7^HDaCm$H0O|`T}w+%=u~iJ7dL~Nr$i!L1P574(5wp}Ba)(U&DH%vA)smm zvgnY!K8&8z*n~3S$dkGmih@f5JLl6UCkeRcm?7q%?ygGiS(^q91X9z2nH=WxuG;hO z9{i=Be9w>li7$QrbH_jlv~!${bg(se?7evHxA5jErjI;=2~@)zh=2eWdHvayi_aCy zn^9#pnYGQR86Dx|KI|CO39IW%!WEa!>D3%a9fS~o0 z)AsiLdVb)qy*WCZoK!A4uMQvReE%-WS&s+xXnyDRghb-Feeh7`6N)GGDA3`a6b1FM zHJ^K<8R2)w?!NFUE$=-%DvIuGG)6N4&H)i z&8^wEoK8K>J7?4XxAwr65?M}8C1MsMz=;WF3R987EMwkK%Lzq6kI zMi{?*di;TEtGB!onw^dI=wh6`IorSg@aDypbN$W|E?r(7-+A`ImnM30dUSn$_?TaK zN*;f{|KPQ){a2rIeJvi2?|pIb>b9QS(f7P}h!;ok+bfW`ftV1HV8!4~KISt`sUOW=k4Ec4+`C=@i!O2Y{AxKe?yQ#SmmmR=8 z!ay#b+FCMb+9fA}h*J^}6$OjVQV5g_Lkh$q&SFtn$Tf+OGcTB5DZ(sA{SdQdmxn70 zDCF@yQ4wCW|-Z}x{36eFe0EXzCAMRXO+d0p@jaK0@ zn;rp^5mEyTFgU-o@i>Qbv(W_8eef>gQr$isQ^fcX*afbj+CX=JG=t-4FWzo+GMe3g z{rG5q50hieat18*&aGO+gZty=zVf)Fwwj&x^n_85r@MzYMUM{C<}%U@ZPNgKpa#BZ zceanwE}uWQx>XHV&mG+#%4C$5Qi`Ii zs#1Dg1WPrwbxICvrAeV}>2$R`=~vD+W1DF`tJ`@vu3Vr^Q^O)r0vh3IS%yv_GcUYp z)2yR}?tqGZCyp)`^rBF|;MJN7*aM)SKe|{Sjz`1MVRz79=`7oLHl24mRlHk|o}|q| zzc0;p937q?-Jx;)puB%LK3-j0FSfS%@Z#|B_IjMZIyty|bTGX3Ty^mruD*-+@378H z{gd;fiwD=&&acI*+j{a{7LW?(C@gg{b61m-+u9*0s8=HTMjKHZB5-yS5HeH7Sa0WpY<{&u%T` zZ4)ufk%xw+dDQ3$o*Zzm0>f2JC^Ba)lzB>!fRszfJd+X@kOWr(Gu+&hIAGDebyu(u z3JE3h>6fAuU59FFM39nks2n95!DgOjB#mqP^fwIu;XnDNzwqDu=Fj}hoB5+?71oT3 zCQ9Lj51m+eNw{<*K+OrMWmAWeJC!8fPuhL`i}+*TJNn~)a`=@Wrk%^^t~BZeStKqU zfEz9PG@?Q{h^GWKE(9nDN&%oiAWMmf4W5PA#GLmnjzSGiK;*JyYZJ_3QUV)-x9$WD z1YY3U49-DF$g;YM+;iW@Oj&kdZsug*A`mU6if%;E+&==wIjkOwQIEz5H!cc*;0iSe zGqY!XA;=fsKFRTH#DVkg-`!GjAy3X_!R+caOWj{S{HE_1{>bOf{da$-0ZPDT)Q{au zo#l7$9A9`5x8ABg7TYE=ID>|=bgs9&8v4DWQ(0??`WCxr0>J33(E8Qo%^hn8ETv%w z63|#PpMXz+2fzq2>~3D|E)AyhhYiN3hxhhsujjL-ImL8_$wOct81QhbH|#Qs!#DSj z4`w(T1D&#aEyXeLI_!9M>y6p1YJc^)rIqzWz~C87j)8rUh6)?oYnPwc=#|yULG${{ zgOk0x>%(yF{MydN6(Nerj*AZJd1|Kh$r$a)=&;dQHkaz6R6F}BWg+DtILL{>LU|hG zLg0`mc4h{3i$(+pEGa~!?6@gNVT%h?M4$#+NJ`+jOi!i;bt=S@S`Gjg22-vQkdhjR zLZ*_LCxZ(kh%$hgfA*95#v8W4n8#A@4NaY9D7uq`P%nhHi<~m1_QUcXxkw_?yT3w>HnMt*mudwtRZjIXU=n z{opqy2P?;WJLj+TdV|jSODlJmcMhlLnuAvkUae*yx^(qw_u2>guUy|6f9^WPyMFZA z!JT)VJhuA8)1yo0eRTO-@0`2>djX@5p>wV4Tkm`ScV2$i{>Ojr1=J4#{DXgX{1^Yq zg{@&$O~6551p+afC2}k@j>JstlyltxHFHQ=8IZHWOaTfk@Z@HiG2!M3W|^DgnnGEU zGZtXCcYM*Kyoa;Qm;d;hIP-tK^&C1vSX2wHrfm*%#6s=k$dd(gb&VVx;$R{MS+b~> zAH8HA4UT*oIvELB=35jM+!uJfEXO>lTtDPNg{8N)Z2&%XTm_F*C4!nzxbiQaO-Qo=jFft*Y6*GdJ;zC;I+p& zQO&`fj6)y}Oa;^dLMRa`Fp-Fa4&|!_kw`@xxslgam_0S#Buat3es%FXZ%>f`2omCT&OA$;H zG|?gsZXsvRH$OSKMoWzYL`)$-1jJ?ulqvLVrYU8l1hpeh0mERm+#K-ol2u#{mb+WehQYf~ zZGu|p7-)dUI%`+XU%0%z^VrhLDw^5p@n{_D-rDlkwTs=W7qGI4&JMONu3fpbefjEe z;~Z#!{Tib;G5Sb*{8B*&XIh;GIMsNc1}7UAI?I=~5iSGE;D%(@AK2yd!zUjfUU_0^ z`^su>y`rwvl4gyK=6o_Oj~-S{v!C$Nc>l)Xy?gcPE#MB2Z4mZo2T%zUWWjv_Ek-Zy z4x?PIIk^+DB;f6#Z0rmND;E&Xx6Omm z-PAPYQolOC+26XfMLbOAqvHoB2i~p1Q%?@w`^heEWBP>koVr&;@4m!`ZKW^Z_W4SDq5AMKp2(Q79zqxR_Ym z)>K)7JEbPN8HpIkjTeqRH(vZTuUBDil>0U_5g{T~UF1hTssegz@{@_*kCgcDbOJwe zMfh7wIEDgn1~NKOTw{hHa|k)F0B|T#=ujY0xT~qQ#&DA~o(FG(V;+hOen9L%~Vab_Df~7=}D3qQO zNr#9@U4phYmfE+smjBd${p@f1wkv<}CqD6u|Ms>+6WFbuq{!j8K%cpWFM&!;fr=pF zN=9&{phOyNPRFh8wX@lSnf#Ui`N6Hj_5c3Q%X+0Er5jt*hJxLdSv<8M5VHaTB7v*B zC4xpvQi$h_94B`XX17Fc6qtjUY6#{Q&$>7^P`2hRdUsd%M1iwUlZae$5|As{)yW`C zkU)V&%{99yjB@N_lS~~Bi_V2)T@W}I;6^OwhP-zqFtMw`*x+0QKrI>ENt~Do6he_K zIx-=O39e?^wA3kx89Ik2iQ^|8>wnExocqYXc?dk!>tE)j<^KAG?T62-OqWj3JW>c} zCzQkHKAnsX#u`Wc4c4M;8%KQ%zXJ*=mdpN1s!E;4YPlojU_KR3BlSaI3iLpm-Cnn# zIBy<|P7iT<59Q9%#^B=Bt@$C>iRLzzu)fsm43~#XJ1a#9Ny6lyi8qb`gOvTHWhtJR zoi=cUVKKP0vVLyZ>qt@Zlh3@oZ@DKRsoKx$cpm^Itu z!Iblp2p*G}vk0@8=BGd#Tu8Vt)-uUzT4HLEB3yp>N5mNy40opu&GGis8H zgrZt%rA$;QwKZ)dAr!J~7>~wnp?-QC=d%MF?8npBQ1^iZjL&vO3Y%g! z)cT@_6OEUay2a-CYY%ttOb=c^7+l;q_(118RyVs_=g*DqZcZjI-oNqYjn|i?UsRiN z<$Y@hr(d`K(l4IwfBv&CT<)z`m#%c5{)(-=-`c)?{SxUb(}(q&pI$Ck2HO{w!uhar z?x}S9_fOLc!2Yc}pZoRS*!;#P&wtAge8uGM$6xrB5#ayom*(I5ZGA#xAuuD85@6~n zLd0ot!2-}Wf>}bz><%U(L$ajiAZF791q%c0V5y2s;#zS2g8-Ci-tXAx=JkO4JM}$) zzheZH{Yl6r-Xjm8i}+%ulj%05V2}iGfeejeBR6p6YOrKxT(BDx7hocDF3YSN%4kWL z=gxpkwNWm^V#^hRrNk_53U$}GaIRMZ4h9k;i_t6*^CIdx=b|NZ5a%3ug6E4XqlJhm zREEA_0xQfol!XOnt-+(zm~;PwACQ0Ye|+7~{)_8>?r(kJ;H7zj!Wga87za8is1g}4 zmc)AsAs9sAo?11nTbs2$0$L3EANpO}|M`zxUfMb-dTmN>mWqy;yDI@sZmxtP4|yUp zXLp^YRzg5hz`+hKKxC$5O6+cck{c{VxN=dVC=3D;M*_rB#)~TxD9?h40ELok&VBY| zDnTGZEcw#`V7BPgToncqft$cN5IiRyGxAD7l>$2y=HP%p@Vvbc*Ob-d%(5_{KrAbV zScruwxXl3y1-m6P<`B@#-5L+mt?eGr33zgQc)lExq~Xr+(#7f8$zl!g=mVSJdzjpg z(NAK9f;@E7agEahfZmSqRi30352ST3L(B=TOVq_WIhn-lXPPQ48DJT5o-GZ8%sCVzHxD zXJbyw@I#y)?C%}ixicD1;>jT$Kb$v5M;J}_=RAAJZ7QbY6P&&bbb)uHWS~K#KnLi& zvm?<X*?hJ^tk;xrWRB}x9F78xe~fX)%9+n9MB12DiswxiE=pZQtH-qrR@Y7(^zKAb@JGB>w2en zSRk#ZxO)0vjL942ur7-3q3#ez^bghE4zF{+Hf!(mOlFH|LWDx z-G~!Ax5N_Ik_yy71|qjdrrgAqA~=V1k}EsNQ)8*+P#}jdW)%>#CwFqrw?b;oOF%p& zkdTB0uhk!I0emq>WP0?yTF^k>`eo#2s-L(1MW&ofLQG~bH4@2y03egbvKx(IITBXg z&DDtnaLU1E0@uW4kicZgl7jNknYa*eUU!(g3NIqfTqB4$6mI0q1QTM{1XqWhJ)a>j zQ3%N>Kb#H{Fp~&VLKf5ng^dwsW{rowsdAPoLXi>`t7k=LlZ+zXie*Mq>%$>jc zPj21%%pC53C)eby*a>0G#;lwp6C9S{4(*oq)Va=gf6w-R`JGoDe>TKk%}gn~7V^|A zCYF+l01((Xh+8BMM6A|&iY!H5sD`REcM3p?u8NSCuH+h#BA~(Kn|5+y#|JpwMfxIe1Prip zWqAI%olBQH-QM_c0vRD5W1RMHOwtJZd(+dYu3cKL25TDUC#U1dJa$ON<1kAJo6D=c z-uVl|!BVe10;aC@yl$s;UCL3(Rho>so-4ct9%3>d@1DEW?H(+zPfq#=caQM!2GT)0 zxzp}1!5S3H2o8CFSyr;7b=>pg2Z$}eXFRyG*N?s5Cy}hd$S)fKly`kBVj5G{dM()B zxzuA~Hj8F1W#u_lkm2qW1m?LXFaW9xj~IviUj=1Rx@CnZwDo*fXiJj8ksgZDTZMY^ z^40xqc7CM2<4JcmUqyWv@{;-`jps2}w6C^JkLfA!GVB0o z&h{wqa7^wYmMPwjX{p(~+P%_=bl+Ty?*Za#`}tsn+Gp#?Oj?A7pu@#L?e9s%IQlxD*cO3 z&DXX&`xh=xXLr$@XI!`D#`Q10QB0P<@tNXh|KYPYeyINo`*+$nr>ZbYTx3{^6FYJS zumno(YR-W}0f%}%Gox#gsO6~ecw99A60*z zJ!JIG5zt$Zh_l;b@s3lFtma&F8fIV;s1hajl#Qm$;;v5W$O2UdIkTH3Ab~P~Fqk>1 zWo`*Mg96AcwG5bA5H@zoHAz{J5=h*V8(83))gYd6h0c|Wz&)=HK(v^Bh^Q(%GZkhL zV1_#q1u_$+eC(UMb09aRqBT#fq0-J1=lI9}*p(mro(uo}Bl|!9E4!ch?DXF4xz5^! zG3m^o1ONqAF5;`ccKBUiyYbt<>cZB=YA}eJreq5=A{FEbU=L-0!(k92Ta3`1U>eCR zf4@ypl%+c_wyb0vK!I~BPUIru&Xn6JSgz3Bol6E_jS4X{JDZyk)YV`BZ$Oa0E~TWF z%v>rVCR1P7L);}4W=?QVF%trr#ZuB3r6?@BPMRifkKG7dGCLeZWNPljW$BPimo#-t z?g4Pef{Ev9QII!UMobW5Dgp|oNT5)64nN&~;ot88&tL97zO@#_5}OV}wNWmk##@qw zcgmCZ!87QZ9i`T5%=du%zzVnnz+%)1`DBFSJ2<_G^a^kS-Yj;m?L7UiD~~_EJ=~s7 z!u?Z%3B1An?p`f>9Y+n`x=?m6hXT_{I=X*irzbGLSI{Yk8*7)&+xbfaAv)23dl9GO z(X4J~O|O>%+hj~WzYFXG6X2om4<62Eva+PJEj+l3^f}-qUPgW| z(*%crPk=elK05seP<5<7C_*UmL@sCWENGy_YVJvyz{HlzFwcqNA-DTd=C}?f0yML^ zh#;N^x@w+UcOnW1WMJXN!wFuveZkBbSjL5$rIdt(G)Im@Elub4(%}TC0ma*#lDBb2 zK;=x+X4vX-ild}qJbCEy(Av95*R^hD$L~pTr-?D0-sAZ}2oLmRV}>cHA5Ugs_F^N` zW?Fk~G(Vu(<4&&zdQsE63)`C$gFg*_ztR?hqCExn-~Ra0kht=an^mn}2fl@JYLPq3ojDkKK!F^9RdOZ=Bxh9l!eI zPPNi6%1h@5hZ{Tb-WMz$jCa>*^(uzGI@Im+%LjWG(bR@h;04pe{geLT{mo8y=PSRX zc^CEL@w5ekEj~R5kuf-%XVn!5!r61HATFE|)ZoyV)fr}*-^<_`%>ZI@4*|mLLES;b z*$MQ{*T&6rq$?JBzcaJfJ7l1FN`XiIF&4Rz77fYF)YY;e$xU+}6iY!O;y1`q3#M$a0rn}AR<^Bxe(J< zI2ecv&OU-p*iN4E>on2U6v>KndpLwwMyt^YAk-+&gX+cxLnQXI2N|$=SkkclmthO1G7{ z>DeK|XLm0F1*|~4hd6;xfeBCmYqGqxw7FIehtsB>jvCbWkzN7zfeII|Ex+e0FFo^~ ztDEPGIvkEiv-tzGH_-0E#;8w#h}CnUd%5Ta<8nBGjA=Wmk<$k#`D+b;q zG*)9i!sI5jsYkuKJOu-Fjdl+>0LDNM^EukF&Pue0NDqJ$UmQpb)FEZA3t7ljHN`9xc4b0A#N-Szf)%js)#CfVwg2D# zhf_3*^6}g`eE&D=V-;S#jsNo#;c%9szS-YL$ZF~Lj;ED0kCub)wjqcq& zxxBu5xwn3~xE8M>{_dlf{{H;rQ@gLde|5dTd1dMHll|%aXWu+Img)bc>0|TVtGBA> z$`5pQo*&#ldhgNUkbKYKz-SiRX}eaW2%@Uvoi%AAYb-q`W+D<(lTwHcZcfCZGHsD{ z9m3kitnY+~IKw#$c;QLPuDhqyawddl1*W-K6e@^e=4x-3O~h|cc^2n-Mhf~nQ4lyA z5BnqKmjhq|I|G)(jhTp`mWY^G+z237byb#vS%@+Q->^WDIFQ9_2>=PQg^`%7tx1Z^ zHFadnQF0POfJGwJWWwZ`JmW?js3?hoYb1@?)kMNMI?X*FTuy=AY;m8(OsFO{a_WG| zDTLBMLJ27`m>|$p6N?LbnnRMrf<$&Ui=Ca~T_4^sUt6fMK$>I8^2Mcd1-!MQU?$O= zk4{2`kV4P!(2%oF)nLioh>8M4lnhYf!ZXy=k|V*zg+YZSl^`&4Pa2Jx5ZwZk!_~MH zIA98QI4y1-Az^YQ5QB&T3Y7EN-OPuYL2z{>i=9aC{eb00eM_{swPcSlwRg_I1{JY#Jm*Z)s^`wYR+z zmW4Tv>J-LWPyF~WVy4gp?4li_&FA$g@DMl!60nNS#d70nRjoIp(C%lv-No+uv+GYk zvv&0&`oq~Aqx(8O_4;5Jr`hIaXAlT}s}C5i`f!C=Br_5S;tQ6GxfzG74iZPp%p@fs z%rMQ>Jn}@?EC&b^{4K7Rlci9W86d+X%teMfoq3690Sj?w=CddeSrE6F4Pwv`!s=G| zkss*4tE&EAf9G)bwGx~6|M$PW{M?gcCA9ak^K<1-{Jpxqe^bs~;Np1+=7nlQ$pu=0 zHxNr#B(K%QoPkbMX6mtq#354AVh7&SupBB%sSDqvP&qf$6_NoOF)<58ohBZSp+|2O z|3C*Er7FsDr9Vis{d@Jvp`GglN!`H;b;gs?M~{!b=F-kmwN$Ju_tw@o_PZaL9Q@*F z@9<==SlyOEA*+MV%KF74{>parE8{mGKD_wU#wIog#q`HW)?1_ zYdgb>?bcJh)7=ZUy9D%s(R4O{;Zyd9eZA_c#{?UT6Biw`K$3w4P%}!|_ay3KUXYt> zB86MaL@osv9gpfMIyn~%Ws9}LSPF9rf!)ngq_SitH$?~;lkaZ{LEqAQp0R+==Gc#n zfZm=1fzBF&h0Y9FK~6-0$i>>^u9V5~%sCh~+q?3P${o%i5#*>?GUmcPc}zJ}jEG&y z)F2g0@IuHMZ<7;qQ6lq-H6cYv2SV;JSEfRW!dc)>?B*?@WDb_oOqg=D$saLVEHa@<$jPB(dEAy8d|^+@!my-m1d)_ww&ze$kS8k0 zw1xAT=+mrjrBj(D0-GBX5xGSrVHg%dtPtRCnlkYrXSp$lYy=BM$hZ&6kq8UClmLzt z-3=T#1T|aO4K(FE5h*G#!PsG$QIDKIoF%_z$Pm(2sS2HS9W zr>Fr(Y-axtuM94*~p08Fe3^&(%)p9fA@u->HJHhxE zQgqg~S2je`xe6%dv)!?yEZRe>kOA0!~8fN-A(D?F^+GX0gf7=ek2l-0K2e`;WFjPn`do99?^(U zQXy@l*zLXfY^y0#35i|{>c9qKJ$*KnY$_&1}7_6 z1UYWRT#);@C}e~6>9_v?o_~Jrul;ZH_k4Kx_1~!-<=9qsiN8N}e&Qbi^V2ltSagCc zTT>uzA_bu_(->6)TIX^|CPbyiEy#en6?J>&Wm`Dn6@)S@54x2$UN>=2^!l|nsdB(n zPMwY{I(UY36L=jM1IUP3^e&>#G$E3w&*`de*U>-M$3v$A&ZT@N3;FulJ!xiVbd ztU|Y3*<2Z}U6`F*Oeg#GgVT6Y6q`2eV{K<;f9=}AjkV^^-ILG1{&4ts`7Da{YVgdJ z(eCBZ$#L)_KmOw3-9c}&x3p?2S9fM7@1Dk6cT!Hb9N?j23%8$A_a%8@gh3X)F@Og%!|}sGcz?^ zECUuGh&=qj+kSwoNPncbT0CTDbE3uGfEa4-e&)}0b24T)u{$$Cgv`m^OpTawFc@=A zJjkMHa!b&Ze+QJO$Pg|9QE)Y=QK*Ppk^s*!gAI9d&gM6!P>^SWW!66>w@3&sMZPVF z%*jE8QvnvFHU}mkYtqf#RS4?IGtsBn9Q| z15ts6=t;g*@$XgPTV6 z00$(nt9h38x~Upv!GI|k+3Dph00|Q^K|1RK6nSz5fP_7Fs=xwQkTmB<5_2fHD1$YL zynp>Ve)i{&fjQyaQ`_6?m6e&e0WEqPODj)5as2$RP4Av%q@0bFiI9Q?ht)s?D$o$s z(EFVfY&xHfPp0YcCDbnh`wL@gYH%kr3qHb>D^z-UZV7>}Xu*$i0 zm==MASxO3(gutCCNhfq6C6$!SLjy+<`+Z(1K^muRgR-h;^Ei!;hiUS_+j}IY%@Ob> zuz%J+ty6KipbJ%RwbLyUx*mph@abmy&C4skJnXFucOFDNJ-OY)tHk|6tn6^n9aw5k zMz5@lzG^b*4OXQncw-%V7cPwso~lO=9_+uebZ2ep(h4nU_hKhreV4sPA-xv)6Nk54 zs;@712A$Q-c=`F}wb#sE0}d4P|KV@E@bzE${+%U4(JN7!DJ4^Oi_T2W3=&TYGBAun z2*H{e5=ewZz(9&DMN(r3pdth!i!BuuaS7L)%xY$fE|2n>;SqVyJHQT$CoC&H-`)W@ z-q{Mg^&>|qSuO}oW|m`%jV$F_-z}+H=Dz_jb1D`KhdhVKXc{x85L}aMf*}VY5L^PA zMI>Fcr>3gLAQH*lP;Oh8XmMO>wn!A&%)+ElwOCWA2x8hY3*5m0rVHF2)Bz_0*i&+3 zG9r62z&z#USYYltCC?FeQJs~mfMjIw>|k;@v9~EZW{EAE^O)JmLMfUeJ6HfBRbtB9 za)ZI0Aq7H!8VhONa1aMP8CMnZcFq$ahiYY`MW)^%XRZ;EyJh;0F+dC{)RVW#nTbIp z6hI75nyK9&CNNW$%o-7^rMz$j^n~U!go$&n0t4lO!!+jHHz&$^ zV6Xs^q4W9h=bSEUn&ny)0(l~i-Vzs;&%-A_vj4>|-2zrG4L|tU#>$dPnS>f{LA}s> ztXhBH()#wS`(XMO6euT{N3$uCpJn5eK!m|s%*Ue`PxR<@)Sm?I0t^g*0b0V|OE{gP z+C~bPOrdvxT>zjyr~^YiKUIq9H0nu%!`D#n0u1ZVCoy7XvBl{zCVSut1jq`o1hl{u zI0a6C3D5!p^cEloYU-v=8fMMR;}lR=txw~jPp6Z~;oUcJ`bFRkU;><;IlsPa156M+ zeXbY|N+LF5Q1)>%ucFy~kqaYT20N$Yu1!W3|XaC{i+~r)?dxS5LU&KykN>VIfo@!1c z1v!YKGLr+stPU3Tvw#`}h)CO(B|sz8D2SnCE-cnCBU2KAde)=Cj1Y)&oQ^rETZDsB zav^4TQlk)rCcGwh_hxMco9kiu!P`{0vpZk`%)!})szFo7<9VF4Xb(_-9=Hnt zvL@JH*$apSCVZryp$by5`}!L=f^6*K^!d37zIiKF$IMQhswDiG%7&HzWqCv z{@(xR=^y=@uePtfgycX05KIzSc!`oraTU4&-iS$(muNcL)T%@*)+X2l#FO#ioNKiQ z&|_dk&3&^1Jj&`LjdNfhXwN>qPAK0cVMk=M>QY&@a7*2#+3aao4Mn*$AY1MAmo^Uf zzO;Mm=Ek|zYPeLfEUomrOIz*ntIfP_+WzT;ltu%Tt1CKM+rhz;@#O#7zf;-LN`LLS z<>jzFWUTMR$)$MmrFna2cKXYMz2U~vO3~@ot5?$Oy|bg6z!+2hiJv_EPd>DDZ7b-A zgVdp76S6uV#ZD{$yE_Y~W+os=p^b5ok26O`MQemcHDzHCk+5lmGf5{`^W=sgM6PCL z3%~c`_wqOS5 zEkLBGD1rkd3`>${tPaoVTk51RcVxUDEE{M|^J`^H=B6x#X-mYG^4;myCRd|^&m?@D zCvR|fTkxLVPJj~TBA90ohJs<52)yXoqh^>FEajEF6aqDP$~jUC-LG)A?-2w7SC9~e zoEFG=h~%bB>@hhAIg~k530VMT&KVc(u7D65G&!7#0AF|zS%PrcTD5n({rD?6^`(4l z?aH#HYE0S`O+rgRYgOt_H4SJTxQ{RYva`iNZuU=+cA*XG2s;Gs0}S5A+H+O)nE7&? zB}^V5je!PK!voM;R6mrEj)4e0huA?pg&r*a`(*GFG*jpp4WLtCdN$&J2%P{4I02?- z80L~+x#>39B~{&Vks->-e) z@b-hrE4P|2eROv8+5`|a2Lk4ALT(f~6ro*017Q48-ZfTc@Lo+urH* zu)0<5T-}=OuLvDlJ#ELucs8%)VTU`L=b_V$x_SS6{KDks?Y-q6yZFJ)vNKpd7iKu` z{$UyYvo!hSR7fuFtVQr#e}a$Im^u{@@VCIbimkk7>RPX231@UAO`XXn}1EuJl%~E-gRS#+A`&QeDFQ z7X1DqcYdLvc36Z>Km?z_9XbYP3mAhZq!}zB&H({Nz$o8X0D$S4WYd8XP+$pI0ahR@ z2&<3*V6a1A512yNfC$WhA#jcRPe?IH?Sa=v@Ht>WJcEFqm1^LN=Zl@~^!p%*M3sFz*CX#j0i}g-U2w>q%YF*G?na;d^3!V&-AkX^Y%(-6D#eUa7ToAJ< zGP{@IAaf=V1nx){-Q6LAM4r?D37iaYPD)geYh7@6wTd5j*Wmg0T%OEvTGO2$j$i!J z(a-(DjTe6T6sG`sP>b^;#vI%s8yICri4vSKb_Bx~T)=bC5xfBAi|K_kQhevdxwgFe z6`kd)lg5hfrEb6I6jHhsRj9`^ijj#z;DCVc3UCQkGm(*;3L_9f3UYIc#7sh(oJ>6w$adMcl%Uz&yBO)eW6&SoI_L?R^|DZi zzSU@Z)&>y4nS(%rwdxsfnR7rank&qm8A$;)WvU7Svie2MKn(Q^dF_MjK%&^gyxT9^JZH6p!bMQ|E&^iV}R{q;ND>Q%nTD88~WfTT;Fq9Ssmm*gMLO@D2Ju3gdk zw@u&B&rFHLEU_Cx$nOymJSNW((Al$3UI5KEnpT~5K}1V|IgQd|H_tUS$^2s zdwNizTMio@k{-^&BK>VlA_ydaEr2#HFGPnkcXb+OEprboV>r$=DG@^sMle$Xn^#CJX^1f~ZP3McB z7XiGsfnFIx)2@(W0+v2-M5r|lzq)>;`bv=i*Lo~VAQE9=wXz;BkRwSgsh^NTnii@> zSCx>#t}Yeks_BSh6xd>PbuwoW3ccfoDS!j zpa)_UID;Ef@4SOJ(L)n<-y$58GE@M_$V(s~6;W31E}Uoe@*I-TQFrEOG|HJIBVmmd zMdK_tEs4{5u7Gg5QAgt-79*G)Tr;AH05=fG+!SggSzQdE$|2*BsT!cn!BV`hQj#oP zzT8y;J7B63LV7!xoGgM;3!_2Zm57BzR4WoDkci+)129#XbDq^cLr!HfbX6LjG(q#2 zVhzS1dp$Yegl%#+w>lVXKqNSa;N~PO5~7<|AYmqQ%1gakwabU&>cWZ@F%*u1m(4hA z#mfm=2i3H&!^!G&?N;?a{~xdY-v8t)QwyKeD!^rWR}3}ihq#Qrwah7SQj_~=D=mb zJ3DgDdLEj~Dl4ba$4}uO0ndT6zjUpsk0t$UxN##dnobfOp3d@IGyYWfgPO4ORjdOP`l_upOLx&6(*`R{#fPhu@Y zAa%}|V_tiCe_=fS7c}eF|Nl;RcjT{P#` zKlt#I`SASg(PzD0V|{C@(F@JB-R9_*hm(Ea0RGA1<@M9%Ub`PUy}{ep^WXc8;hz_c zzy3RvHw+90IRv>RA;evwPC{-@Spf;;P6n-oI|tM?a+aG~>d|s$EhBR$ozxkXIZ+4(5+ijsxWJ)G63vJ# z{cY8(gexS2NG*!Q5+KO}h&U^t3e%7mo}jz#WME=9OTsB<1wd9sCIG5c6oj;(rE&%i zfi=R-qdM2hIl-8b`c#<-c}RKsbV?&PDAcs(?pj28phP&!;Ort^Ri22aKT85*!3rtxPJXNi@>7U{2~TsXvfNz$6ZdIiz>RiqXY! z^~tRF>nkNXi^}H1R?gY7%<^%?m(Syi*-2QvWAFav=70a!hyTgHto{|}zSp|B0|9Y? z@d%3v4XdwSm|aW<=@Hmo&ul*TY|ysFBl)WaOrl>PtG{{&Wy~ zOt!ET!vwRymTbvIs&Hct?r;vU=;|VpY6eU#g$x)BC$q>x3T8H@1(YT5um7#<|F2>8 z-~P9Mgvzc=v9ISM_?qDJuUh@Pz;53E)x8J5zOr?5zAPP*wbwfBR=Y!u+)aRt%d)yS zn&*v>leT->YK8u4@BDCMcxGp3yx!&c(q~J|=F`llw#=Fm@@CdvTUmg{XJ5_cOU~OH zyNqQhk3V?%3=-I`r~4$Lt7Czt!bdpNqh`z`t1zq9uC zgTsGgySLVAG?|>)2voDN1kp(VvRYdg7tqSgr$LEcNn@D;lV$fOtItwt5hdE}ibEG;JMDRL`7~n~_3D86ReL zH;qOhW-$j;Jw<@hd&uG-g4Mo5ru2m->4`%C!5k8V)Yze9={KPeNSqvIQLC7+B_II| z26Kgi1q^}|X$)yrX^cchk~uhuA8tme<;n@JrsnFDu-fhDZgJOy@)YeIW)6@|Z1Ym^Bb(u0$l<0JZdPOFtz{&Bi zRV0A~R!a#xH?t7fQWvJP$F%Z#{lYQiSOS-~PS5fApshk7Kx!eP17K=xS+5 z|IFdf5znCk(t;(E&`U_oRK4ew5nQzt?$&)i6{gH!J?a)mXhVJG0p!|vAi=e zvBl&JW+8U-RP8{-B*BSDoh0*A7zU44F)M*!m0NT-cL62c)lmzQ%vlDeL@#p%30#7z z5wUtIjmc7C%_S11Ey&;bH#h(NFYf+N|JP3deC^c#3kt@+V)b7K-Y@$1ckh00=gwW} z`RsV=UggJDL9v%NXo7MVy%eJ@e}A}uV#g- z3J4@sSrLc>fr(NP5EGcqAVtGVWgsq>9s&{4ASY$-!LRL~zwmLhbOV3`2=sb9Ks5>O z7kr`Q#L4E5D?3Yq)+h-Rr{Fj_xyMMEr1o(0S%Uml7!CBlKi50MrmBJ)t!k|iknWhbZh>4lfyq(FSx;qnGqp7D~Qe(oMG|f(kYxa~Wr*23H z9MDLBxpC?Va1e(pKzU+D%D40X##=tvU{4q66zo(3 zM;59turLn+=2n*JlSaa(mULW}Jh8Ko_t3Oo3@bU+b&z9F$8`?zHbzhL@Y+1V)ynQ;}{rvf(Z_mSyEweTK8-H`<|Ndu(ql@e> z>B3*%30{BP9bR2+6%6D+i@V)McZGO0T922xnjp_mDH?68HjxLEj9J8NjxvH;Xt%M_ zMxLRux3PZf`c8YLZ?7(^^5rBB$2!wizLWQFcUK1z`bOu~>~h(ckdcrCF3N>3%N43R zIzRXF61b=tHE06@O#fo^7XZ+|X@BjP`5SMAUMr-iq?wsJG1tBxA~gey0XI#TTFNAG zUQ(%)!-X=lrA6Zu^(IEfFi$WjVs;|b6#@z{2+l%T;Ckdo0FfY85vh-ZiPRwCro;is z4q>u<%yv2*D{wyY>*&Pu6i zGY=dSCc)j( zswG7~)JOYzAE+&&R~4jGf21g_Mr<103=Wb&3{!VAz+g-vxW}3mL{4d1kzmL$FcXBC zJ(dy@*<3t=K<-Lx(8@IpkcIPH3CVU!232!nW;Tx^!66>C)~H0>;97-DOe-R{GS(Sm zW6m;TLWHS7BL@btYl>G1K7Y%VWUJH)?paNNbX*Pp!5lnA+sFY=6Lc6z$kKt1#a)>x1qUby%*gA~A~RzV z5=m0eaN^1&6!@P1MDSd6bc;kcq{y#ni81ome&Oe{&_au+p zVHXO9t)^VtUfX!FyZ=as`}6B-8bf&No2|d~z2ZOp{rHQmDPNxhe|<~%`i}zWqS0xz z+IiM@3=BmeP)<==&>Tfm+RYFG1g>6IOLW&-ySKJ)}O%>`+@JfS-lDkG`z?Hy2<)rCk z!HDTzXr>^50#Gu{Gydi~9pDupfPm6=_ZRla0@$JOR)6(_cJo$|uQnRlqO8D0t7u3j zdfqC}GoQ_)7L<_+7RxX@U&hG+aLDq_ZZ8|GOVP|nrO&I1>=p8&$fGnk0Gt~^&{&i_ zkCBz!8de0(5|L9Lv-@el>TBb8(4PnZxtY`YJ24^F3;$-Pck!+ImZW_#7LOo7}d6vPI zSxlWoh{dWXAu|I}a3jex_|F@Fn6HjRboGuBIQ=W7Sa98)_6yI-FTkTI8F5lAtJPnz z)~yujR>z#EK5&a_QNSF6y9<-6x-*3!!X8!Y5E!#63#*o@?rsvq)H!gP84D}JJ!6X% zfk@Jc!I|mG8RZr&O%+qutwIr_CRe8<1G z#LS?m)RK=vK|y|gN#gXPuzU2Xa*zR}o;8YS6@!zxoL^#m!hs05~vgNbd) zL9~jVeqT-ssj~#Ll*fr_hp?#0V@{NQLvk{&6aW!JSVYX+(-i_BI0rD9)n%fbTDpiC z2;`0sysX?){i~2LhkzIXCnKa>vBSx(azq5;6f$u2G#`X2+*ybKRRtLnTXZ9&zietb z0?agCVPCa9$baqEcK-Q4z5pB%ul7Hj%)W=d1|bzhhE>SdH<91oe~9zv)_g1Xtk}5| z{(HZz|LGsU!Z`I$ef<*f^EKT-}gni*MU%b?&03T#EQ>8-}RY-xyIX*FFy3ClJ& zHaEB5{KmI8-+9kBH$%6T<=!YK{OX|kqaU50znI`O={bAeX~!arbf$BiE}~MSlT{&a zMzX~+Rx!ZY=L@PT3PqN+KvFJUbqwTJ?$WRS6&&#CviaqtcrWrzr;Hd3AxRQ@O|(k& zFe$XdMlf zIdY&B0Py%V)0Y4%z?*sV{?^{RD=Qn4txiT-Ii}UQA@=&c_CQs=j96Sus&Z)(5KO6@ z&M=x>QuP#&?%>U>>)o}@R-T6#m$Oq{E@P{8d!^6qoIN7T15t@(H(*xD5?NMseQ>)w zdip)8hH7KTKw7cU%=+tjb7w;ie@8F>0^H;a;?~GjMh?Zw5ltZzyz~ZW4f&@U#jPn9oxFSfR;HgF0VQ#5F zfh?-H7CFE1<{t2~WP`al{L}r>zcty7Jq;=L&^NR?dW8FD`}D0JZGP)l*Smwf)rx=h z{o-%lI{k+qmtULxe*Nh3U#S$QJ$nS#xa3l~3R4K@jYg~0rMxX!D3`VN)HkK}-5{rQCTgx9YH!%Oe>VnfHy*Df+7=5jGQ+-8XPWJvWJ3{QYR>!LSP|y zsvU{|F$WNNWgabYT_xn^29qm$Imf7MN!2wZW(kKFE0L=%SW7042sn|z4U`dOPz}Z; z1z99&F(qGc?yYWzyA#X-eC?I#1NWM}4|cD8b8Gufuh(5F9lqrAvy)85!jtaC`sSXr z2Q(d;ms43hhM;JPWHDAgt>R?4FmF))jos_F_O5jYy}Yb2I}elnc{Z9fJAWl_PzI1% zM(%k8mew#;_Y6hbSGNbRR^QS2X*C}5d@UBj6f+hYG^w+R3&Z@gi{mHx%5JyC8FxGD z*T#o$0-q)K!IM8Z`TKud{xAPKRXgj%3zK%`fC+P6xH>^u*wbYQ4oiwIr+Rm|dZk2y z0Ed`XNi$G0vS<*NfP5@=^TrP{uZ#&+F2M}SNOFgIESU%_U?=y)_a}D=0f2h+=**$!kpUoxu&3A* zBdH%oB5;ptm4ckeC1ehRd1{?>^2E+IbqR$fRh$9~yBbS6RHa)adsUIJr4~k(I$Mxt z?!pXGHB}>1cTmWaSC%}c^n|C=G00*hVW?Bc49*OKsm4@T4+Cc*nSV?jL@dF{D6p2s z87ELPF*})(Syge!SOQThZ?_cHXJK>o1YDC0Ow44eR0niH1h4DH3`+H(%v~#YPzv#< zzgm*&Q2WX2Fh&cpG=zj&Xm{o{QMdC8KGr>%PkcgX6f(gVDQ8~-f9_Hq1nryP} zs9|u9M0T~*3r0+onO95z&q%Vj@3p!c#rUKGV3UV0j-HO*-rf!h5oUA^H@eizAB@W1 z`uqQ<<@?`m{^qZ)G=0(7(7*S+!9V=?_~)PKUtB%^72g^_3&y%EqaCB_qS>mn?bHrI zuv8-SS8v)NpUvj++_8-3mxueut%IR7R`NWDvtL$vG@f2em!X}nzjf#Rw;FeEw3|(S ze(FE_(fHZ^!cV_&ggG_K4mXOGWuxI%YNJ}lhUq&{EG>4LSy8N%b6d>e9)JsA_!q(r zHi=*T!R)I)4FAPONc^5Qc=OFz#2pzn8}$091|9+}v5&YPA|X&77CZeBq(F*6TC`R4po-kvKQJMMY*(Uk=l#;D8G@#R;i!{H3Tbr-HrQipMLx& z@%XG9-JT%;f8M|HAwa=4bt^{Ywaedu?ug!)6bGr@&*J#{ckt zb@_WA_^)0EH3}jX&&Vl87s+6jKDo^9<`$Qpl;V0^OHhS~E5L??c1@^#CFd;VnKX4w z1#ts}SeQg0+1C@lUW1~Mzz(%@!acaXevp!hEb-!~wh*}oW^qpHZer7$LjrlqA7uhj zIO?panb#wJA)>lG(mWN&5UAz^1Wq$hkI8bLzCyKBXQ7odNSxuO(Nyc>2^_94CrQQe zsk*%M$_TJT!)Y{J6Y8WQN&YG)BC|;K=N`_Ke5**aHGoL0s$7$BZ?*RVqNW5%`C9-X z%gl_$ytddXrP_2bOR!Xymb059A*P8a%MxC~P1CN30ab(fTS%uF<`pB(Y|}X z_2EgH_rv9 zn$LgD9?$}IU~T4ga2MPL+CYfBSeDTpnsqm}w{PFRv9rCgTrMAddHLw8S7&F#AN=GX z`sRX!Znc|DnroO;OJB^pIo`N2_}%ZW+}g_l-#J*!Uo1zB{z3Civ^?~~c?FaemU#{o z%?hoxi&+y%kHhk>K@+O z)qA@aTRV-dW^=6*Hkz@MBj*%6F9Z3x+@Ua z5IAA`@VYZLfnh5`a0RkpRT?6KBp6iyT+E;lPLH*@CWrvwV76F+h$T&v6_q1}=3$&p z21tv)*KA^29Zd)S@TdL%+5i4?M|HJl-z+-cUBC8M*4E$Xbhpasba-+>VWf@o5>-Y= z?L2RFZm;cju3hV|_H_XrEwb@^t{PjJ1P;|Q2I4$qD~;eAMU>_TkZbha%{nZ zNtVTk764QqPKMvk``>DGRSIeJZ_H-bu26;%UzF$1Te{;#!A{W9$c5nUk;L7~nyB@< zwwqIYPhjqrhW4pn1P*}|DCclWzDF_#v1CDsC@@m>6GKS8Hb6-$TkZZyF|Xv_2qc7L zV_^rStZ-V->l;AAiV_ilG@6-9BPVibWFpsSm68MrY_NohznU>8DM*qrvA$&_H-c*t z1_(n zZ_$A;^Km5tj|K>kB`XBwf%lq5UpLfUYT*pY?eWvLVIwX3>za zO06}LR)y9g=B_-R4@HY+Z*%9?<~#4)y?47Kg!^~qpRRX5`sC#BN%`l?v#cocEbMMJ zmQ@(fi_vhr+N5``uio8mZ*(ncHE+=MmBIKeyxZDYy_S>Nk3Ktm{P9n9a?x&g2b;ZC zdzBU|$EO!@I<+_}7fX)@&57FVW|#vxs7cary@aQcWE zor=hf((`heO{?-^!u!Mc=;`vKkLG{+M`s`Z;VBkRuO_|kcCP)Mool}|*t{WVO=k1q z*+X5t*xGq#rE_bk^GoS_R`gfax3&jcD|zOZXQS%ud^tQC&1OGogl|`uQ>u#AdY%_q zxeUWzzX)ZkC*U}q(#ctQ^6Clj3hn#ryR9PgSI47QPogY*b9W`=>ljH;-Q&eDc{zzrzKec5k*qo_G3PUVm$P`ZrPiV;%oQC*O@>JrC#%+OvaQppoL@ z>;2;To0%~AlBHpg3<6U#X9)r9oPvj@sZu-LrEg*E7K{^{pz$>{{*k^229DGnmWNO1-yjVO(SY^ zNaoPQk!2w;dsOo15r9F+okb|==}ey5YbYuJR|CBUd!fcbr>((>^9+b?PLfaxO6G7* zPIc7H$L{XL>`n}JE4?P#gD8O5k<3x`R!NC2%JtGgL{Lk#OEN+bK+?f7d05g*=&I>% z;4CD;%}C+K&g=wsN|iArLPB*!>$S3GMnoFx<(Ndws-)hg4t0$sxq^eiB~cw~oHgLd zQ|tcvlx7L{!S3qO021cpXJr;sBWH(EGLLI2>E%>ULn%Hc#KLY7@T>M{B8SwoZmP9r zGg5%q)yU!Ob@8uz?ffAa)ZH9PNZ?h1Ihf!HR|uxWF*BCTtu%6`s@Yh)bGvtSez)=Y zXU|{y@wN@TgDBpI*Ur^1|77s!CDyf3y^O{p50nIJI^jp&d*M&&%YW=MmKj| zLVSK&N?Y&mv~FI{9Jsjj$+`dJnSF6mT;FZ|`mbT@M)C4kPZsgv$AW1!&C7X~iL-m& z?yPYTo9k?{sOB@k!9B3RN+5=;%`&iX8W*Y2FaSij*6UvHZ>&*cZE2U6$NTf)DW(zA za&{DF7$4vgSOQBl7Tn64eJ#3Kzct%f#aiE12GZMTZLGJht#(#Bve{U6JJRX2Is@zF zF?R~V5h~)0rKnrAVMGSc5^ezIl8Q^CQAUgm<^)b@L^neeQJAx98lxGIs4ni6y73ZL zfuj4Rh09s%VAeXm;7`u;!-M&YmwNQ@^2uiv9-UkTBhqN33tSuQ{;j?Hzt-+=vNWb+ zADzq>!;5xvZ+pAd+Od-(1$)t)udbIXYjDKji60%6&!7A7@De(i&KHKV(Q9?rLNpn> zQC^j^<#bwIUg~T_$1g^U*(+dU?e?$Vc(0vz`1$kYqnEQg+xffS-QglfXay_SqycFL z521i&7=HixN9(=KyMt}Y;;oQ3THUs9UZ0+B1C{eXm|p%3&)()XaVvzCoAF{Zk^W96 zaXKnwn@|QsCN@j`rVuk1X;@XVRSsto*ZLr+Rb&T+08fuFlECd69hADZG**%o4rq)3 zz+jOyRfPK2AC7dAtnpxJQ6nNsNnoNn^_%{sUbyOCA2LFQWK&IYN}OD+*jX5i!{S5FPGVDT!t!4b$63#qxO5zLK1U{XZ4m>8vC%FN38jv~pLU2&GVMPj)5YZy_Q@o->WEI>{nKsaez z$zlg{02~6K8ja*CDuyHl8LA3^a9WrdEW}bHf1T3Q+RVVr!t4OUq9J|;8*-0m_yazdTietCzQ%-d;?b^BGz%E1O-O0{d4judg2cm%jgloZGyZy(R$r)jwD6QxZrD ztcY_Dv5VNQs;sQmdinLdalMj8<+HYp+cvgXE|;R?`Qmb6^JQ5s%zQqHv$CQL*WT!4 zO=&b6PoKtT56@NNgn4^6UcaAj?LfVJ`Dpy3Kfm~ApN!8(>wn`{dFxu%9iTYXN{gNQ zZ}9coy=FF=O!l8Xo0Zc}e`{l{+vNQGtT@T@Xc1Lu^E8Z$TA4`R$hwO~7BL1Qu#w@f zT)Xkkz4x|PHhW;(e|C0ya!^Glj-{97q8gv?pFDd6e2T@fEtb>sFhx8Ep8T9_kprE8 zgHE^ES+mXU_UestbEE%YySX`_?KL0t(P(Y-SDLMsILBBmSQkzOakE*(z{IQ)jB_Uw zGDWOn6)J+UTBX%Ys(Cq|%Cd@!SW#70OJ0=OywcgUx}5UyWaV_BM`yf$M8`+-(ZOhP zx}42Q;1Edg?H14iI=~HJ3%JdJT7#91o8N48n-og*VHT{_La}mhts|{&BU(9KEN7!} zw+OA4D3^x^^YgRww4yQ%0H#))j!4Oh* zZ+z?BZ@qW_t^Q)MoR#rnG|wJ{x4*Spgna*CK{C&)48avoGeGn?>4&MoK<8Y z7{n~U;O9&S?DS~X8c(8a z_|+ryb9h{>2Bl2}A%QiKgsL=INK3ezDJui+F5nDaE8N7+OlHam9u>qXy+TeJor9!F zg)t=LN!bUnJ1EIMX%Au|a#UWU)>t@jA~3rqw@^CP2Chq5QcEhQVsl5u1WOM6w9hHb zk`czB4pXfngdrek4bnq6f!rLN@Du4G94sko8a>7zb_zHb9ZLpjJQUD1?)8ut-OlCIpC8Vu zMkr_4e-clh%$p5;@b>E7jjoHF9+zK!d2#q6F5B3>)oQJEH&z2Poex`&E)EV46~%nk z>O7yxN`+58T4rPZ)eo+{d9NpAfA}w6{PQ1w0zVon*0*-uB*|&HftcjCD~Adacf2wYO@GW;PkkKmO_X2j@SV zjZc6};DO}V)iT5}Z~@F;GczKl!*LvrXD^>#;QJ+DpbSOU*=w$D4^}s9uh;I0E%Rli z%g7g+KHwr02BgcYuUe4AQQD>1xRW+UXY_>d_wU(1u>7pD}(@{Pj zV>+uQQ(F$hVmWn(V-8G`FaFBynkv;+fj!{Cp!@c{Z+`3AwcDeM>eb`VW{VR<6`eH- zYPGV6Fl#hoK5qMPdKt$TIC;68T|Vk;y=hhqkM;2AOc&G6dU31W>8VZ*-&x%(R<_XT zGE-JAv+-~_JQ~f<4vvqnh4x^292eu`{zkET@5Vdd*}Ab?Jbz}(ant4(gI;m>UQtjs zA5V{Gelf9Dp3N4;cs>IxRYX(;Sg5oKPf zk*8`~NLFKkqEhn8Cm`3A4Jd^;62BmgTphK-U*`a>PL{aRf$B{non-aue^Ou=rvq>_HsV@|DD}WnOC_u_k7FJi)l9)x<%{d6*j!5v@XQ@dy4|SeL&8z}g0;eWOIJrTJ ztj;I_?p1PXCj6+I*28QfB4${+&#EaA)qWxnTq%&VyTYT98HrHF7OiGnkWpX?DUpY| zyDZCyHT{R164VnHDOueWM3mBF?(Q))X#_|*!n+eZMrKa376(a0EmM^sZV?Ph9cbot zVmXkf%bKZ~rJ+S#zfgzBSj!StLj*Z1lD(Ihh&hdFQxuv5dsNgE?*s@;e^}%+pcWxB z_h?a_xQ1o}$z94>W-$^63F4++MHWez4HjsXjs%{11UwD)ll6!xc?y|@gk7N)CCl9F z-D_jOUt7V)M@K*S{!ec`KlARM&x_9RxmRNYz6;EN9{@kBD_PWm25P6^*EawlYoXbv z(p(+V7g<*xz*_K58Jmk(=DHx6$xJ8vACL3J`n6xWb7y0))^qCY?=K!cKR$YXIXfJ! zbXGq2_V&B)tgUUe)U?wK^Mm1jIW9fZYQvC;WUEbo>&@nG{EgeRI?J@Nwt<%~W8-UZg$ z?X{aXS1(8N#}DTf#=x-j(|L6<({5g2dRQKOIj2Gg1MF_K2QA(=nw7)F{4wwf=pg*o zo%erzuv5h4?Be)*bbdY?mDQYci3rQZ^3%yFey* zySeh+>v!(G`CjAB8_iG^pMG>Wy_}zqUaWUIMc&+8FN$7gWHep!^x$}O@+r<9XpZx< zmt}Psy_`-aAcd>=FQzVzH#l1d;LyMucFT8Gicdt7L9Jv)T|^wyr`DYwSksp9*xlMV*C#94CSZ3 zP@i{$Gv`(mE6w)y5^p&kWBEw+aM4-mG_=#;S!Ynpug&HUfvVq}8+E9HJ19f4SDFH9 z1g1>1a`wvHT}a5iGL4ZXbA>~)kYXC{V9J`5Oonc3(HW*5ilz}+a%B?%(QABc(t7G= zgec7ejOwFYeYLrgx$FD;)eex3`h+0KqX;vnG^@zKAv1GfQmxOg9+NX9P5+UUbTf6U zScI4nm@J(LDQQj`HDP8DB*Cp~UR?+brYu-onko}f5O;M2F{?*cPzW&8aWhL@y7l3d z0JBQVQbG>m5CC^qrx21E%Av_d1Q7?5n=?C$Fq_q&3oYw53Nx)ffO>af2gik3v)IA+3 z<3`Lm19iaIYs72v=BH%BRVgvj7I-z+O%xDGJ>%>KsG1sxBnv5ROdt+imo6h9jfiSG zUW#$*XaQW?fYRURZB19ad+@%cHhr9t!gZ+eP?pyDv-1!&k?nKlu>PKOOb& zj4N9w9?WAYdF$3&Z%lXBS_5C&{Kc0C)1%9LIC-aiYjtCNKIhT!0c@ z8`sLgZ3p#05Vv&Ww;PG>+N&HJ6L2YKkkCE09=X<05ObCmEI z@EkY+UIBAp4QN9%%*jEq_9-3NK9HqW3?L^P070D zES^1G9zOYht51P<+Ra~Swjb^9*{^FybiPE(P0D>>q5zb8VC1#y|esgX2&YgZ^P0lZ5(v@kuT@;cxGS@I0 zV|X|py}ZO?-tXV;tc4jaM$_1A<~Q%I+`ijeT@BTOr%N7RDyotj1Z0a+PLJv7mT9#5pyPm$s}iL&$7=?l znv)d8YjyyO`PVK0Af!bn5rwawo2yF5y6iChJ1QPQm?^kY3;}Zu_cVYnQ;io z8f@yGJnRhDh!D&TQAsi+V=0kAnZ%%+iG%8;C%Fn!#hep|@Y+;rY8)g{HcgZ9)4YmA z;s(hISB1LdVyemEX{IoBwU9MbjmRZuT}F^x)oU22CjXEF8WUJuLS`CW&FcE0q;@z6 ziMZ*p?!rmiDxx_Il9RA-Js%^M#Edho5RF3yaZ^=Qc1p%oSR`Reou5exG9w{?iNn=a zY@WImB{*FFDE}4m!AnOVW+1>t4G)G zgtp|~8jQZv)>(Uc`RdCr$Ia|)bV2(sE?3ukzx17*Yj>JQ`=ft)x_Ef>ad~?9>BsY1 zx2|Wc?#Auixa^Imlj-RE$Dcl1-FjZNXP5}$eRTFpE{~6o&Ys)i@etJvl{|UXqE$M+ zl$Xz{XHWkO_#D_+zxmy_-@EqKgN?kMT@0(LDWTuo*esewo;h94FJ}i6)oL-RfC;eX z;dfSc-@AFE+bEhss&mpIke#F_o-o5^y)n9EFww#z zckYg9Bci%k%+4=9A0A#je)9SL>9bFOBVbc~L0rc1czC&d_-y>eC&Qv>z4_MdyAO8G zrsdemrQUB3)>bwKyE`j88@-iH)378UD#uDRTC~MvTueuFak4l+ofU(dZ@ho+#?IP! zxSaa1)66&4*VosYtq_LF(luE|t zF}e_&sX1{L5F--Y46IRIStN6EGtHZMj0$!_0;@vH1v{I&6dgqKG!d*joe6-NtExx+ zxu)+(hLSpS#Wmk0NkFOe(eb*1Hst`4d69rL;ALSk`WP7aWd8QR7ia(98A>|EFtY7 zVAU$tUp9~;2%L#l(KHd?YBvoWBpJ+++QHo2NvmZYS|SH?8YdvewEnuL^lvZ{7KSjn zKojdT5W!+aiMK;YnXELHL7lw_9E2s9R;fqPV&&>A6w4?@Acj^ThlrR)vj}F?S2j2( zg&|BMU@2;=ksSyjc%8lEt3mzMq$Z(?5>t<;ZXqLsyScKms#8WtvYC@Y1^BPPODrjTNizA(KlXw(n2-f-0WY!(aRdG{m$x(;wwM<2=N?6 zmm9sct=otjhjBg}onmqvCo#myW~U*I-qC3N5a|9X3UcjLEy)mK1&^ym2a!|A8bCgnNKj}C9_ba!_*-*|iL#@5E+v*nAI z)pGo#Jd0n>9#b>lTVGl0?^MS}le2MI{iDMt+rS2gbsv1|`Uh{n|E8hTQAW{f*vcZ=ls$D5q47 zt7^J5C0NYEB~eyRQ7+G_X)dwCJb1U+pg|t;Y?0gCpgA!dMWfehw0AXzUcbMx)m>fh z<{?avE)QSM4<26}pS+rnm!Z+i+rNS8&5)O^tT8@4|Md7`GR5)C`de$)*H+*A)s<`O z*^~WvbR^|P)?06E?sj%>G&+qCqtBN*nuf{5mJ2H9xHzmT9WNJQJYIrv{ra)Z#A2pMkb1CX`>6PF2}*gnCAVqRSa1o zz$qjrBnt}xX+p^W5X;B}N1~BIvS420#fYF~1)&L~o|xtUgz;M7PXcQbCwaAixY`fm4uw&fYsQ5x-4EaMgmDu zm>Y#0uI_3vl4q%a9%gi9CN_`cmH;*aW;ct*fryou5F=*{;Kgwjadol9t+n^R`|ZEk z>FzBzKlKlP|DZZOpn#LeUtBJ#V)*ID=VyN-7FL$d8gZHaU(xDh7{}7csalLs%UO-Uc@M)i}}I%$-#@s zvMM%j-MDsbV|Symh~enfS1-Q&vy=U!`NB7M);8{}Z?;#-x?7#>#-6XV?A6)AbzzH1 z#?o#S?LrtnpV@pVi;0*PvCM|A#!uRpJF%a)BsBAl-Hn?!dbb~}Ag^9JTCjL4enML%!!w|nEkb(~$t{Q2VITvv8u zbCNMPI+5BN5IBEKpo^V2p6p+|JZYhdj>A0ye`P3EBhzU*#56qT~l}un_7mX!L zU0+o@1u3;Hilu^q)F`9MB# zwjUv);Hn4#AWNlyAtY)PNIga{5ix~OvwI0pgTcrs1oMRKsV|hN6U@m)7*4R1x?(`x zltapO5-}l#!PAi3z##(%G6p$JIXG#wg}Vpg0uU^!pZ;tDFknE2#?JL?yxz`ejLvL= zOMCV5#e!+?-rD+&mDRF!x#E)boAT{_2z))9JhO;U_3xE{D&Sr?cj2 zv9{7{-tR5r*6GXT!NqadpS-)n*9YNnZ{u0D98Z_eUR*Zzu5GLrZ41Yj^Cu6-`_k<7 zi zdwlBUr;~PPVVAPCTWnvyad5o;v*O8<4~M6RqaS^A;hn5#H)a>*{d-$CZmoUzljlGD zgI6ezusnPG@VK}4?TxLw6E5e&L*M{7*7C@CRs?BC78z})?uy;IR&1>3GE_q?e3BmG z9dE`fXWMyxURiq6(b*55!De0r&;Xa4f}a(wX;xC5+p_trPAF=sfr7+2$k z&a1XruSva5hn8XD%Y_jmSA+`t7mInQwA0MmolY}rwzHyJWO<{=8xt!gr{jFIY!s)P z^TiErUAyQ!nNDI zt&R1KjpoXF&Wb0G;_2md|KMl9?t}N=|JHBq>|R^*&^S2>e#*X#Cv)F_9`=teN5i3) zA!wF!01->1V#&>%WO+Fn4)_0bO@5_+y*22eXcyaS%{#YSo2zniYLihIp3REZvWkn! z^Ti??kITt;g4ub0HHd|i7t61H_#F5F@C9YmXh_j&bh-rz_g0Fmw_Tmxfd1ih_+&a? ztE?oNwVDm;tx&Ot_yBkWJh9pFY=l{Ma_`$~fBS#9-Fsu26@AjejJ>p!$4U@PHvlHW z37YJALFytA07R0SVj$PZsh(OR45>Jl7_Q0^%qmwxNG&D?RYUgm6adw533781x)NRq zKuCeFt3kl)&ERTEKrn+xr`PIts-@!um0=)Sj1-vpih~~`OgSWjDTR!^TqJ0KWSsUU z3PM@%sIgo!3yHA6V+5%r7m5>1If!fJb?2ZHGi3siVCry61$I%9gzD6DZIMYWCCt@` z#I=?&9FztRN$BE0v5IM0nmnS+a96KVM{WT#7Jw;Mkt7HRa`kc;z=_FAEbdMYq2xqO zg(|`c<^yucvm~-xtUyjeBz5fGy>1pDa4JBCDF=dZ>ir`aIOQrVx%pL%(?!7zmAbhn zMK1_>Y9LNBnG-vC8V4JkEE#^70Jh4^H3acky17NCJZBbDa7J2|;B?Orf)m4|yD9}1 z391z=Izk#du&}G92(hWAP7I^K(>R0ziIq{YKBNeDdYf(SBT>Iu@bT-r2p;-`Ht&`b8C&$Hy0^2Ok6fAMjf% zckf=m+wZIvi^|LKVj0SQhi?p8y)G_GUz}y}Qs#KBcnC!B-rn`rgLk_3-&kqyg-(%Y z667+QE~iVGE_r(SQn?`V39OyBR%S9eJbQe8DuV{yelW;#zLzvrvsDi-Y6QaR2j8|5m9nmNXJOnOD<`G4ueTxtPul_Q#Ju`RBm*fz3{Tb7ggP zy_CA~p~yTBjX_|bgyOEd{qs0Wi)M(tHh*MWWD6{cU7!@;!kaA%P9-@Ucc zoL95H`%)7ZUKMK0qGb#jgE&^oQr7^wD~o_6^_URBHF~TNa*Ik?Mgrz!^e0m@tvp6h z#vDNAsT>aVtn+I#03annU*7`&B+pjLhSg!ItE~cGzZ#@GY~tP+;QYF6j2X^C%tXOc z-AeibQ~{y1vpG=;SRv`j29TA}RYS-VzZ!04Ue^N%QwT^_Ms*5A;JT#66B?IHBN6Jj zmM8DO!{Hi@$xSUP5hG+S2_TJhy7g!Xk|^Z_0)t72bGVwt#AYH&&Pad}%M^Aek4}k( zqmft`TuW)@?o^j7yMvvR$E)^KxoIt~QR+kxhC4Z{MhCo})pIhc5|P7*Gcq+z%saEP zOzM_ux;coM6U41zCJrg(%j8tMctc>a8VAGzt5WZ4ddCv)J&3rf*U4n2R5}VW5QVzI zgE+xl74FRGL#c^2nv9+dxRtI(l9C2#{=%ux6Bg4~1ScTpP{7$GCvJWAIDYh`y!wo7 zaIwcs)3INkHNk%SUhC=M+`DpduH(s~O>}lSd->}8#ph$p7Ncrcdfm01*3C^F3tFqJ_2}To^C}#VwU{=0lK0x&ST7gT<G@5bhv zw|h74Hg|hm&a;iI`Y%3w^y>4A#^&PQH`dBlZw2l9cUJoCV!4P*D_$+HFYH+tXduiabDb#XcZ&d**RKYMXa%Er$=n}2aI zZ0#V9`v>E2`lTQL_zU0&;pV+xdH0>~yff%`FNgO0@%+Wp#r%wf!r5XxKN-)D8_SET zJbi)qBVe_2{o3^hdz*Xftwy7)r0O`WQQN5*^>Vs6p3?DUJifS?&i@D)1HZ9->+T2N zZNC3Oe{%;!HagKKPv?g($03{LI~t@hJS;AcFPG;-pju2`e*S6p;`!sXwf^lJo2`9% z{P^OQ*n|Q=Y?dRNpFnN6O-uwN=8j6OaSi{U4ovhneQl3uiVpN?~HknqV(JaO#u(!I} z?{~7bPVT~GMtMtT3qPF9Umc&rpE%v;oEPk~rM)^|o*$h6XVLErM~f$qkE-b-pb30u z`+EPzHEZ-s7H%>%8=8083tR($>d|~QZO+dz!4S)m@G;^D0P%k zuJhE7OT-WnRggqyhOvSzI&to9WRX-|;Y{%8iexm0DN6tWW~NbCw5t97a06IGz?qs| znFdn>k$|1WNH~@erX--i$#_LI>n(-73?Or@gUmHpljh ztlsESgQl$zvA(7^HnXk$;_<=o?0NXAMXT%6SFftG(>bz$&RWsTmS|VRja9$iY;Np! zcdq}+k3U*Hd-mb}%NKLozO~zLw!-b*_VfK))92%J{9iBQ;H~Z3ckcEZ?Tz7RdG_qd z@!`n`^MH-5>vvaIH&?n@&akTV(njWo%h|A8=3Q)W_M6ROGA0`YIh}58HsAl=o^U)mT16HnheOkH zGS|U??{2N$-fSIQZ~W*_@{@;u=;e6-#o@+ovuK2pZ@SH^)03b5M`{sLZUR!B57Bf41WASpoTnrakXmRc{^{+1ElRrPN zo_qe`yVb*oXG@}+J6xqKE1q{ zO{i#urcUGR)#>Ey(EjNk9=v#TerK)y;O<_&LC7y&9&QgWXVDjD7o*9vIy<4U&b3cP z6?(m5=k9yebhR}g%7HAXQ|VY#m`>&5LPkdlELR4ry-w~X<5PO^a5Q}MCGbM>_hn%~ zM5m9*8_o7NZr*sLI7aPX+frp?LvXXcf;Mo`l|ke6xcOUu5wQ>7eo3glJA zl7RpYPG$1;xv3?1O3n?#(> zx03%wNJbEruYE(M>HPxGTK~iclxbC zqwtI7X!z54jGJ2JG#xb=VGEEkwx(j@R~hRFo^C@!(NI_Ndp#e7PKkEhSR{}{{f1Krgd zD|^=)EE`9YH!gnK>E7sfSIyZcmvk@*c}4L&UBMdwVCNVf#l>cY&V1onQDh6S+HQ855_10VK^Sh`V_-Ay&6^y-4e>YeGYih`^)0 zUX7E4RaOLcBa)0Hzzr6`U}m@I<_N(muZ6qX-Ib;Zl(|zst9)^;Up=0m9i6oXd9@&WrD)syR&!-5 zzkfdr)*5lzn2vQaDjz-zmj~q+FHcq~?qu_qXTzi62s(lXRKsOi&P`Yrc~@oSeVzS? z8AvpWTK$a=`geAV z*`-~a%on3-JZkf5@6BuNYY)12-dI@~6y*XZFK1sqK0kbQR)novAGF@O*AU}!(R=#I zaCCx)KbU8;gRCeoFLAuTm|j*lZ}!?vfAr*Z3=ksN&uvU&v3v#_7f@Q?; zr1$tm{QPord~|*H&G+8^&fdK@+dbw+SoWm&cYeFEx1-#QhokDlPlpemO*$K_?`%%? za}4Kb#J7Lr=3o8Sci(%bA!YdTF+F~-lga7qKxTV8?Tzc5-QBKqo3m*iXWkxU98QB+MkvcTIe$L}D=kBwK*g}B< zXrNjEU(#~NDyg&sQEmj|72q1s0V-e!;PW5OCd<6tVp7SBDsB8?T37=g^FPH73e?pk0qg1b66 zvs6%}$}H-}oEnKiS?19Li&^y44D2woAdUq7WDvuaT4&}YH9sa9&XbAAy+WNrPWLV+ zcGZfh7Q#r#qDvNPKD3dmgRS1J$&jMF&LY9%+%?rNlSL=u^w%ND;E~ke1QSXWZU-b) z_@)dPgNOsWnMJL2n=}nJV__zWmDlZNX$T}#cP$W1WBnO2Wnxo>P~B7mxI2r0++vwR z8y1y>IrUb$6F6lT*tv!fdg>vGL=0QbCQ?oouPeRsMx)Vc^JU}JNAc{3KLUoc@w=h9 zK&a4~?X=2`rf+s-vx_iLEA`~U&f@s<&&y9fT6SC7>*+EqtLYrwH{hLEOpnix=CaAC zB#gSd+ttOtNq99{&Y$m-rWrf_RpxhO7A`Bz5DiHYrESCayc$PJDL6Q51wBf9$njuD-X6~ z*<2~|_up8*xgoQ&l_&eNho7B%_1V#UG(iwSlm@ijJUu<#|LXCple161Jjzzvm2`nH zzc_#S{Brl^&Cc5U=f{6|dj4$r>3!&0ceRsaEoV+3m}b-7dz0UPr`X$UwKCErCJVi| zoKKdt+6~+!5z#74Cw%(sXm|kpI?_{x;=hc8)S=q>|YRoSK zW|QUPFl(;1-v0LLJMT4aZ4_IDms?WZ0H5IbPw>MhhYt@Atbq^icGp%qnsa&YqU;}4ah z7LDsWy}J)K_V)Ta8|}Q{(~&*dZyX+-&7aRH;MT3~{Wo{6Ut4Jw4dLm*!SvD7>g;S0 z(2kwmCWnGs!Zo#C4JU z{%THSh!I4lk%<6xv(ym5PDZe@6b`719GMxZp%6$M?%)n)(Ud2xr=gZK`(ON)G5~dr zbh;pfdg5EBMEy#Srz`P@T$4IN#B3Hlna9Q5wWj@2y4ZMq8m_U+b(c+29!wKEhuz?& zs?H!HgOL-bo-=kws<>12s}=%4I54GN+LR_`ftXvY!wzNyK)`{`6fq|FnX@pNSE^Ad zV@ifaA}8iRAYnF2r(*^&6GhburcS}56SL%nRVCCI$xrjO1RYbF&Zhu^Kz+YaK$5eF z#MMN^+$dzOs+F@86c{lQUtO$TO%qQ7VNuQ}@b| z5p(?)A=hYtriv#b;y?t_QsK%J98SVkIZR#o>Q-VPHdi9moQwSDG`H#K;`FO&toWxt zcnX}Lajkc=e{HZ_jK?QcGt)4e$vg&7Xy!!0W*S3Yo}C|Ee*EPnQ0#5L{mZxSzHx1S zdHdOmlgaa+4qqJ%=d0a*zOqJJTW|aD{mbJ|b*!g894^Mg^HF*HDau!E4WlYQp2m{2 zjCOR)FVEu3gM(OhcD8SCujkA%n=dDq%frK?N3Tv}$*p!H4;^745?2ajt#-Duwk@&f z_1DW$@$B*JtiRaYTzTugl>*&c`%Ye*9S$!H%|U1sQkp;h^3~{M43rqY7!Hr|vW39F zCUo@0Pk;P)|J2a}X2AaV;`?8INR9sB+S?mjt2wM(R+X0{XsJ;zXLDWncw8R58b5wK zn=G+=E4zQY)yVSwqvD63Ek6ACd~q^dyI1B!G4iacmhP$xRm;rtOu9n-PAFPFYPgIn zE^IcA{p*cuH}ghY=Q=+-v6EN&=+WrapP&56Bb%?pZ@%66_OEQ*zTapT;dDr4qhX7+ z$w-&8(X*eN|KR1p|MyQmdv#oX>w7!D{p)Kx_xhUyDT8L&k|%|QJC9~+(^s>L^7`Ga z+wX5Yc(8io*4pM)tJ@9ZSn9q$KDWt&%Ehxm{`T%2dE=c{rx{L;XQSby*^=GOe7OuR ze(?OHGw5vZ^sn6*Y;QMveVJ9ZTv9YEW0+5?<@n^`M`uOjd^8^R)^9{@&#J}c%X8oY zc`t-=ayEJT{MGQ~=fL3Fy?5`vy}Py9?DT|~SJ#Tcj#r~_v_EgOtGVl}BJvzWA&cBJ zo3Eoh1wFOJCF!0iS94>wtlfxM2iEH|D9z^=$Nz`_;N$PUySK6uIQ4KYO7|?}x!Tgz zQnnKUkOvX1BH)~5=3u}og_C4CAw#X=lEyNGyowcDmLjDvKoUU$S2W&4i1>xo-~CFP z{W<;zSNyf~8xi1s)eZ3aYCuVUPmKZ=Jy~xPEZ9_;-Azr65=@BXwJ*gPX-?=-DX=NX zp)ir)a3XfqWO*e4qI#@>Vn}H>0P1iU7@E{})~X^nv6#h#4h3;)p-Jv_AxUjnuI{m7 zs+}lcF{C;$aTiy!=n$eHX6cp?LF^hso}0VIiilvf4i44C$>A(ZwYNky_}E|u6A%%b z8FQ{0$&Dq{cSc1C((W{aHCyCKQmVw|g^`Hr2gnNQ( znk&rQj6whmklHF$Q%{qP6Am_wut+QWMBMZ#;PS_N}Z}K+AYJS-hItaz(bUDXNmhU%t8+sc#Rl*5Z7rSE(EKHdvE9 zj};j&8mu8_U)|8nIZ;cVP2|hZv!8sloR7wx^t_)y3)uCUQ`$!Wrxq@XWt*szWM@qxSYMyEgB)0 z^UG>lRyS@mZtS(^k*PJ`KfVa8oepnrHutt0D{G;VV?MU1G@sCXl#h>mF?xjs8Y_*w zwYGjOuf(UrczHSldMlgnZtt-zm&eC5pxN4f@9w+TuU+qVS19DhMGRd?o}FImXus^N zc(yLfMoA_)zidi59AfA|&hvz`gtYYFJ}PfT;bnnQVICAqps)W0DM!3|0BHs=rsNR${drz{W) zATW2z;N)Z)Eqy_%E`b7zxrt=%>hKh9O3h*phA>39uBTvgPXz;R#>}eD!miQMR%Xtr z9+KT+MGoQ+OXWOQRjri3BrG8~;8uAeK#-Cvvq2mJ5WA^aBp1q3x`_bynD9r0AjG7p zIZxnLy*Ao9kWSt#p5RChid99qq&iF{h8xHblm17kk0oU$AY6;(Frgl}@IVCqa)(GMj8JpJizRpd-kJ*!&;CFpb@7MPhk z)KZ0m#pnsOT62QLwN#A+NtKZGX(L@sp($!0A#-An=3w&Fd|*V%!Qqjp0+zj%_-hXa zKmNm4SD(O3oSzi`f42TR%Camw?*qTR&$;(L8!x<1?<=#s>8>_tQ(zNBgCGc6U`T1i z5l7@m6eTV#&5V{t6e$gd(onM`at%4u5D>Kl4h_&C&|n*&eRWrL`Kt8ZhPN-CfA^kq z_MSh^i|Qt&_@h=`$C=FV&-f*z0m0QE4%kLyLWHd6oX=m$`f|tXuUi!*gw7h z*4k$ z&2`zhvxC-qz?THkQ1));!{VaPnff3(qqT9R%axp-SvB0%^Q~oSAMj4_xf%4Vc#d0 zo;m)hSC=n7ZBL&ZmdB8Ldazq;ue(Z(Y7=G6l5V%#ZEaV|!xQJnFTFhb)cMJ|iIPpU zGYqX=tln|&es|~Lo38_32gasrlZz8GCCzg1@fCHPQ|3%%U&Tq(D#_}E{_8bXB5jrvuh7ZM06h$BgH;>DzfqF|zC8e;+5*;x@%oGjx;#C|m#rXk|N1SCtK|~3`$0p%O#R)`~3`Yht8-v640%!p9 zsO2XJ)2P;lnN>v8QSh-IhsiPmd;w+=&?sa}5EUkqB;pE)A3fWJN1CyLil?}VjuPR4 zR1THF$mSPS3z2{!Swq%Hi0z}$a9FlHx_nW*e36Z2WCsl+21YzUgb*SCh=^cBl-Pht zG*AdIMiiPDn?OY&!6X5;h^YEwlhxRJH4-1KKem)UeYzaV=%}BnV>Z=tn$3;*_D=uS zoo>4~G%JINvMblhl!jW_zx+b-V0ql+J!{U4!S{E%!`1y_(2-uh z-3d)!wqz*_{kh7``fM^RkJsyD(qZB4UNc!=IoNvq7Tl`MPB`OR?VboiQQ0YMZrtex zE>30LP}&^~)1_LiI@oWvwjQ+5>QQO-nP;mDr^fs;(y^kx+{mwVH@CXCR{QOoSGL_- zmv=f(R%hlHrz`37WLlo3*<_~Q+JEoeC!r%3J~5q5PwyU?yO!8T*V_nr!z43HwaFuM z{e$kk!S?>nJDr33&9!INCdN0{iVniLS5Ke%^ikEZgN>f>)Kio7g;_dsy1ckBJ~!Ur zf-gTYI}Y8A0?@{(r_R27er$5y^(Xc=1_y1CYGro5cJ4TipW@j`6O6sSfwhnN`Sm-% z;S1(_OyOvHQ)5mb+h#8*% ztl#hI${OyzKm6f$c5c3Z4Oj=xa{0{Zle0792{~2g6CxM%pk>z9{rbj%8?-8+69(OW zYqP$8}`Pl+%f@T>VS zpcgV3B+=YxRG|qH__nR|b12ZSFNnY}2Z=fiMre6rWtNB#R#7UYh_O)dOhypp-wg3E zd^n@!1R^3%EP+i~)Ws#5*~I=@knku&cBuZ0^a_o6FFLgKDAfM1SAC+NM1n^`(8%UT zgi*sQSmFQ{k;)K)su*S{X`EcAMimsthQSkC_7160iN;D6C!E??A*|7nX$%D=Vola3|bGH`QfX}#8_Ho%+yQeydqv~mM|L!HN%SQ zRq)_ZaId#fHRT04dnUX1vOj(%DAF^_i?^p;Vy#Gbc0VGyAt5?LFGO zCi&!87s)iKsZ=Y&y+wD>D(J>U<1>@Tm#a&)tdtxC-`p8&-Mxi_J2-Q!v3UGoV{m(A z6NAF#wY@Njn#!>jhT0ms)pmO1*y1ZM3x>lx@2r3DjYn>C^+D?9mY+RxB&#R2rRC+; zus=TT_nQ6nO?UPE=Gu?$p!e4L_-CG+Y}?67sYbS><8|&edmEhh$Q>CYp5^Jq`r1mR zz1Quvx5oC4+QrG4>CiheyT4OYck}+`DY8``N@tg+E?$~Gd8Td#<^5D;wmLf=mgjk9 zs$3~?0^aV(f%jXx2N>>SeEzxDUVP!@)6-Mc3|zDay+PnQCdZSxsdTDpDhaPUebmbj zb{_zb=FTqt(LeLjg{RL=P1fs_S)WkfZg2YCz5e86x-|^jkGJ1^XZ@|W9}gZswzCtb z7Z)y^oJ2ZXpP2jPOW7;0(Db-JI4It~U;K-2@9eDaefbZaJ#~`zcZTnLt@-BH9&|eQ z0IiPCjg=Z~Y}e^#vv~4g@WDF=?|pOc!JSrVvOa(2lccUzZA{ON4TrS5RkS*TPMd>E zD5X31{lQ*=Vbb5+*yQY9b#8U7Zzt2Er)t3%DXi-c2hG-Di`@BY{lfIZ_(a{PEwmDn z>C)0d^MW3Eer=^zyZ+GV&DdYB%?eOek867a8Pmm=RZxKpQl}$eetuE%&3ClnaOfu6*_7Q z@c^JsM2tZiC=k>b4!H|K$QqHr!7vzXLKuZ?NJCgW|>p<1tcK$`U;76%&M^Bg|h_2kN^^Et!l&^F%ihJsDcwjz^8guHEA0C z{;`2sM0t7g4A)2I>QaMppl>9)PwnEt2OI9D(-2F`yx6w-mN`oUhIXQl2xk`+g zN@(ua-g=^|zb#XX#i?U@@`x;)s@Ie8w^z%(8^5u&`=h~$*Jc(oJ2owH%;!mG_iAOL zIWsmsJ5f$kJIIUP{zPkK9s6&kb8_j6&n%p~5C(GZ>ekM+N4-YBC zSs9nk=+fNL`q8nudd+PfT>0Mj`%k`g{lReI>p#)4uQKD#c{UmtC*jLBH2Regomo z{q-ZI+jE6bcQNf3esi~jZrhEOhAtNk@NUp;b`E+HT)Vf?zI=-{Qg#Z?hGrJ-nrcV-dAq*KX{A@dG-&TfBF;4$H%9wH^G+@D$gwxd6%zlgm*+zOJLsajXRkE#m9>_q_ObH~Pvs;@+WW#qskLSY?os>ke$d+F?BtP) zOIa$K*hbxCRiTW~I|Vc*X1{Rs#F6=hdX~sA2y>`U`=#UA^dyxeF)-0u3USfPNX8Hw@&PIul#JCNBLgHf_z;`3O#EpzqHqXo$fRBbp2?)K;&246 zkq{GKF=5MOG`0tLfmekWVq=mK>W72?iFPV@1P?Nn2?P=^5G9ad2#Y#UG_4AcY7Yt( z;Utv+l}Ko1ibz-h!E<6I1O(+I0U2?D;_l-e8HP9oAOV~xF_DmE1t1baAU4FY6h4l` zSphOB6UV!miX+2pNu$bSCR-4Td>VfFki(g#fT&V^meWhYE-(J|Td39~HSI zvm!yAQo;&VBSgWD3JAfrgQVrH=r=RQ$ zW#@qJ-0apUm=m0&EY!~tT{3{re~*W7Oih&r!LfI&*-Do;X6M#=-=>ISpGwQ_NmW&p?q|7HL;wr$q>xUrdglr=KG(Vm`yIec(((VCV+>y~L~L9zIo1efFCzef&UoA3TBkF>o6K_zwG?hN`k>t`*WtZPTU|UCUj zQt_S*D-0+x)&}Q51`s9{aJ;O?2_jS!qvluVT|Ab5%=Y=I`R$?5FHxh3Oi5A1Quv=- z6Gl!T8qGmRe{J;liBu81L=Lnl6ahgs0G8vlRYqHf01OriLY6dy=t~79WG!HD=&gY< zEFvVacG4K@b5F#?hG>NJu?&TfNuZ>M+JpoFM7(gq8Vk>DstO7!QF9=}hKV`W42XI* zi70vT8U%(+68BcoAYcYFAUZ0wG2(@c1tm(wp^t~W4-g?6nXZ93lPK6(5>XhU5ELrn z*^mS;0ZAzdok%$1UE2040tbAhLk9qyY%vi0zB@306fYD41efJdwht6d#k3$2Y<=5+JDeP@*JJ z?^O*BO#*C~jSYoYWovEF0#R5B41)1K?lRmyS_VCfY{jIw&z48S;^~n><%az1U6p8ecPQOi@CY`43^b%**EiHk$jbW~C*L*I?837P3kzcxo=fJZD=N%(#|&5$#b4t-jkIC}QEu`|ytP0vD)(8u0}qoldr-`1!ZPqBE*vuW+o7a!c)o!8pJ_7 zC1oB3xQrl(6W9c7m>6&xr@QgotP(%1K&(Y%Vlrmr@{vNsGbdmp-V+I@2Jk9z{9TZT zK$rm$MFhYpr>T-Br%7s51@M$4B#;oG$~ILH!IBYBEMbY?I!3{4>~-fPWuvNMvkVC0 zT+A=17ZG8bf;obpM&UeW0!aV}@QT!o3}J@BERqvqZzYp}Etoini+hhr($Ua@BLLb1 zfye|G2UH~95epFe&SGt+h!YSSlZf-diz-Z-h7i~?h+&MdF-G9S-N*hP{bmbranIP< z$)CPJ&mSp$_%JrYchJALztMcuo3>&6{$qXnf4+|GZvu=`?dZ=gpFBTt;knZMT$=Uy z!w22l_j~!~aI7)AH#Cs)@pF@p_S)F%t=w;xkSv_7PE69JXXh*SXV&hoHcDhn5vT}5 zLNNf)-z)Fz=dRk%TgBSlhn?+z09*!M9_;)5jXguP9#{AF^1{}}Pn?)~X0AGy42IrR zOLk%!o2AaqW9+u~=e99*ygo5osZ&;+Ni1Wli(zvx7z{$Ozq3=$2SI#bE>*{+ax$Q* zs@h#2cJB|{9iRe_Vk>=kc@NDzcO^>0+X~KMB18}$`T_1 zG7Q=$5OqCv+wx$|eel70|L*G4iN(`rPfeAkoKN@i&aKtf{m0D`O+5X=@~OqFWc+$B zzjxmqJbnz{-hWWsc)!epthF#mBs*y3Gt+5#!BWHS^}^P@-oqQ4_aClR=OZl~~p1aaL{Z2u7Hf-9qPRXiIX2vz#14LlLVJXjfyEz z4HAmzI5oy9LhuD~gfg)xGytq@QjwrOu#J!6Et%Y{i4;})K0f4)m{q={}?``cA!Ogbz zg!+X`l6z}yI&l4d*nFb>eTQ@$V}0~HXg`EB^ZvX`tHBsWAp?UjfC~DAUTfg)f-;nq z$}<|$00SeS0dN4^24_GC2eT_5_71i(m8^g{d3Jmmx9wiIb35$cu{hYc^;YlJ zqs_(nsrj*~s?H?7oN%sLx*^!y=hK5e?!EuLZ|lJozz_G9Kf2K~6FZYr=Hz^G;&{1UVx(B>SAhp+>* z0e$J^>653dVT2%*5+#XvWhM<4U{VuLmrP2Us|1P$P%q*Ob%B^k)ut7Z(Rxh;5>S#F z5mf^XtfXY2B|w!NF`I-S2;MWZM32nJLtP%3fIvT?fkt&Fvcuv9K@X4Jh$@hdXb?(4 zAOJ{$M)D;mHj)G4ESXe^5WOFesPBLsB6NFYv1fJBPLXlfw=1WrcTVDSPd z#}jTO!o}W7WlECKID*MoBf)#;lFUL$qoFV{9O2A>Pym7 zkRJmn@XFa=diAO2$7kw=m0q*m-EZctoK_zMyuG{MEt<#6z2~~8O4VbheSLBqlwJF1 zcL0`T(o`HL#>^Ssw9VCF=S~w{-`raBt@qHlXse%BcEet1?`^u`F)$B)I;&5+e%8Et zt6jPw$*j^W+s2kJw|BQS3_HD^>p6gtikUvDA;(}>r5O%}POU1TDBycA3Y`a)zywq& zacP27I~;bMOcRx~a^6TUsm=!r=e9A}M{9o=tm86<&HIBh-KiObaxyj*wr+0Tecy0t zX6{s)OrSoG*7f}-S2s3a**ab+r&XW&PD!_t4(bOOPM&(@)U%(MZB+5#K}#Ph<`+=+ zSUJGT&2{iPrhuh%Vs>)5TAwMeYB9L8i?z3bcfmsbVy`o79dxK$Y43$OJ9c!jF+R@S zPIz#4_`~mC`_cD*AN|*XUEnm5P-lK!oQzuI2o+^(|nqf!R_wt83#q?xSpFx(`=^gGCervb$&Xot@!Mnf} zppAU@$>TJcy+EC*Zl2jntu#~151#k=bE=O=)=B4zyi^RldLoksRpl%(b>|yMtSPbb zfntcT4de#Z&-@WHJz0V?oRD{cyig!jhBd@SG$4qzCZ4!eSwX=CR#p<`lo*zb#w&M{ zNGQZdJ0k(mP%tytKqW%z#W_#{SQSsqqC%=H&~P{c&_e*+VV(KM%D){g_J>1&7&t&I zCm3A|z)>O(P*DwFOCXC7RDvoDaR@=fsK-hrkg-Y}dGruOFQAG7k=C@QjmfY6ZP>pRV9dsB4X3Lu+7Mls28V(jd(y*jYiG^z=u)};*BQ$`-2E2CIsO) z9uZL$3M%4Qpp=qL#TW6a5WHiJ;AW%7g00FB>ck5Zjk;C9N z8HqBiC2J(s08k)O)gl^#5$&um7blCVy|n zxjg`Y2kv6AgR5w^Ey! z@lSC!b26Krsb&-Y`qlRO!RB~-vai`nFIzkC&At0*{s4mmxLII-V&RjOrDe)$gLY3- zA4-bs(%AGdQ>yh3Lf+g7`>Vhvl36Lu^_%s+TZg*~T17IB+BuYthhQubTcx~*qL&9n zND&;|W8eWW4O{@mfy9_RQKx?3LMgZsya5}NPT10EpybLA5cZLJwy^}d=31L;d0wqG z%HxySpfT*+TYH!__ggSIasdhq-@JMKtgqA_E!R@YH}=!>mK&@16jGY_r`Z_Ji7aJ;5NX(Su~zGap~M^uN{B&nTh4uq?8qH@9%HOJKx{^ z&hM;jU%Nj!mt8o%*uJ~}!QH-_C{CQ7d}?l)9dGWs%h%c;e$d~!xl`etsZyi8?_0aW z9jBY?gWvi_v$^9w@ys|^dF?UX`)K$62XBcScza=Di4&&0Bkk5;cbmqhDyL3mvoqE4 zvh9Uo>t?^xsbrJAfp*x)gWKKexPR%@naQI%{o=>{xZOo^WEvw z2|lL~M1nC^Lhu?m_NEhlSc zAB@rf1i%of5QIb&L?*G~g?u3+z&&g1;5F7*6C@a$#PVAaA8!~W0V*I%#>D&-BZ$UX zr*h=Ti;v%#Y{~>>lENja4Y}7CMiaJK1)+#gJF-T-j83Fp$tG;fVS7o`dMI)vBnUXd zi6}S+1=$o5RF#!P#oAOA3>Fars}CYVWMf!1dVbUw694_A1Rgo%NywH|3KkWcn8bjM z5fi+p;D`(?BPiQM#3N?ZSdFz&;6nfriG&DMP$A%u^9%w-Lx4a6StSW-n4lmp&J!6} zK%k=H1*43cNKmqdm|~xSQV78tP9p1#qKXuiJ!?maZxKXt6amUa46q>)3Wgv)kMsFM zXP1&88gb%cXdsApB+OX~wiF6*U~APmVrh5%?|pZFdwT$6Kp9v9nn3e|_qOX#4gcaV zE&To8+{fre+64x{IOx-rlb@eom=8HN+OFU1?LHc=-D?k;dzh?Xno-}!-W>E1R*!e~ zsyl+EN-3?HGtZfoChkA!I7@xAu)9_4uY2rO(RDx%m`<}JBD3C37Jc-4`+4UvOevjQ zrqYzNN~uS=2h_kBxB?u&Z^7?FhtM(tAq+9h!Jf6N?ttjPShhCvNDwN}v&fGi?*k>E z3J$*L^@lmPH$B~lP61_bTGW<;?x&`bnYMB(VYc1#PQ%4Hojjr@U`{v#L;~N{dZ{KblJ$mxe zne*o+jn8%1q2Llzs+F^9rIMzmVC5}+cU*d$K*oVmdu4NfV!LHQ6|>zA8->fS?cTop z;lsDS0XzT-pbVU^FFtkV=?kxX^4RlF&rDadUJ>qW=eHgV-+O)Qqd&Np@2{5A{&WL7 z58hw-=>468O8vR><+*fWuHWut57q|{AEx`OCF7f_8ylf4xYq0>ZEtHvvp@S< zjZ6JI*YcZh?ce?IEy(wPix)0TEzg!~CPRQ4ROZ4fr?QD^xn0yAJ>K71ySsgJeQ>b2 zd}%Q~=}oo9wZ@nJNcGgIIS$3jBmKea`!_y(dt#v;=*+=D+0*9c;QIB0E8qK(+x`Zy z2{@o$pZe7F%&$;>y17#h@$#k_sH~WP0;O%yPRIv7DFN1V!D5^(5mzXgf*&Jsl)s)8 z6Tvy3-v{;^i#XXx;f%(ku1O&#mR|)4;Dn70o&iF1VH+~mh<5^EW4)7TK$j5MFhhbk zYgxsCjbX#VgAsg?FgnnK!B8+@j5@DSOU4jM#3e_rP#gxtleZw&EE1EA!JtUHiJmu=*g*lls_sL&i{Ih>ePe235;83F_cnBx15n z5JZD#3Q)kS5>uACJlHfHjY>GA))qsd5KO}ALvUbYO_He$SPNB!NjTP;M7c;g2-~FO z3&$oE^>C~f%7&DgDFlw8ZK#SkupyiJphO}*z!+9xA}NMsts((2GbF^sfd!>ZfKdvh zG$KSx2xNG4PJl`XoS4YZkit=#vNdrB@wq3CQEI4DHbxL4E=j#m0x;ASS_DqWFuZ`6 z*jf!5`y)d!Br=FCG#YKP%rW(?DnejJOui6<0Vz~+R-+PM80hY~uUtI<48TAQSOf+@ zaeHg%wmbjXFVFn_-!uS#aCi^cg3$tv-JWz;`pqYK=l*VIdb8R;>7x! z6X0qO%+CZ;jm;>{L@kL>}2O(&I zd>^GoHocT2Y0)?0yhx6;gwisCAQxbWT23@+&5Y)~koUD{Lmolfg)boMT)rPL1(YDu z;7OFnO0_u~RD$(X3p7PK?)%%)OQ1WzF3^JlL$7V`$w+TA_&soi+o!1H;TZi*@ExGn z^HY!nrW$k`GFO|L5PxiM_Y~wla7DM1z<+9C`N(r8>dW)BUa;-~z42aa>(Ph0^*Ye9 z^yg|OogFh%St(^oEK*7`ldvS+Le`t1{Ur46cOV_00?eezL`v#C1kc%<=zu_`Fi`o`}ZGT|ER!r6^+SyXs$PR zI(LCp;4{z8pFA-;Z%cfThjzcdzhQcto89(Z;C64&8eB1caOC+Hr_NlMJ9czZXn5mt z<-<1)?!5mV@D31`jxHTLHZe1uG^&ZfPBrppo(pLy-P;YDm*wUUw7s*^-TJ;QeLj@x zMOrJH^xRx}V!oEyu(j#l{b1+Dci#ejXITHEoq~5d+UxhP+-bi1*5&@a?*sRNF3_k< zo}ZZg6wK^F+qf!B31Nt$TUJ-KC^-NgB?v@{AYzR5!85TjHYn6|M_rVj2y6``#JGd1j;7WI5E1V|1n1c%LJU^J#FnF0M??}F zMbonPF%3t=Fjh5+i=-Mc5Uj$gL`p#e8>2v8gmNi?wcD$M%hwB_2Bg3oFcT|8)+K%W z!OCYoHSx1gm%e?~0|Gd}0B!gm`|b0a4=(xsUjF0;I&T1Xfl1(Hl#WkUj#S3B_2v4; zM;3#r_GYntx0~1$Vu!S#?CE;q<9Y1M>1*I$$V1|UEM*p^~Vv;s4M%9yFm zr`5@%R4H*!23mMqhzY)8ct&fB0#5Ux3GE;q0ZZQ1!Fs?Gpjq^%+@MIxn~BsM`Vhuo z4WWl319p(??+w$TUrw#bCg=0r6TmwBX8&MicYl7P!@WAUJLUDe*m?h+9;^W?Kz4Bd zVDomfe=J#8vb7SIZ5qSg{UYDq!~0k0hu_%1)f+&8>Z!4%^V5rsLiB@cH`cCi!RNpL zXaUoxKYi@vQzuTJK6z^L=&}0rbh%P;-Ok|7t^F%+ZNB^7^_@p|fiAF@VYV?=>b5tV zt_9S~c2Hq!qg>2c|ta%_CH#Ym%-UV&|TfkVkwrD3` zbd^gI5>c)gyGK36_8c|_@LQudYsS+zi7UyUL5Lf0=MYw46KoZD~uKpj7e@79rLoG<7 z9sDOO2r&7=+tg?*e*!ClYETs#H33lY!qz}3+CkZ-5gua`DorXrr9FeJpPED%EoJ}7}$kyx@&Wf-UpHnH%;MbN^tO(4P~V5P(;2NDY4 zAi{>VD6A2HyaN&oGDM;ZW0{mCK*+E)qryLCTfWqgvltg`U0ZFHlj34Vq;Z+lByR|PM{PGJrO-^VyRs41hC;y zgy=Mlq#y+wO9-)*R3(V|f>NV!!E0JB2NDk1)mtUx@eEQ1CSySvV1UY--@g8tKYZ*j z{i*41Up+XqBP-AYuA%wQdsn;2_o2TBTn7xW409Zlb(p?Mvg%TX=6P(d?hS@_u2!1s z9Fnn}c7OlDV;uZ0@NE>INAd3|Wv1i9ENPUonbp=86R(Sc)|_j?00Fd(1`bW|S{eG7~ctYQ@a+!4??u!FFNgV2-pUV0vw z0$qakfGz3%!S%b{CS9<1o*C@=!IQh8^$zeT#w?1xw|?~YFll_Y`1H*21v?pxg7X}! zTX_FH^R2J1Y+QK*SOwSWPn~<}?8P)q?%iKszkDCq1Ij2ZmQOu<>B7?Ki%ZAmC+4PV zlMPcZCuGe2PX6AlgRlP6YX|q=1RetlOr^X$J~?}^+v>vsOZEAeKL6TFU;OzaGbeN} z*LSX@AN+3f=6Amhd=>Z*r~?@33Vg9z*ZDflS1Z#~rfThQ zpYL3uAAjf0aOeBL9iT-rtfphlW^&`&*8O*`K`#S6KzMu>b5kyTzOAQ;YiWw0@ICkd zi$DY<4z7Zv2i;K_kVY$KV9AV%$Uvn9v{7|m{`|s;qg>_zEth}g&&-yKRdpo70*&B) zVpa-d86u?MB%_b3RRm-b_=41sHL%sd9_pD)l=?vwp)rve>^%sq#;9TOj$lAGcqgK! zWF#-h7!Zs#%=Rz`rV-i}eLfm%eKjIIVdG&xI*mqKLF|-`$_VM9*)QOb5o1dU8&$7R ziH-FNwMi(!3VWgNIkJvNa@1s^W4sDZ+p)NHa-|Lm}MD z409+U2wVXTM8=dX3JH4;lySiKvHcx5rfpah64dNZEs7)9F ziLqhBszOYN+hp)$)Fw%A0Ul6dYczmh$Qptr2oejjL||5RPT62|*f)~rFb1NOB*Bjc z_{2=a0wpjTt071T;yrW5CWTS>kR$~1Yz+GLgPRVBypRl-0%idV41v49`{wpvPS*a! zuRi-Tf2aC-I{@xb3nJhKhCQGJ>;P5Z6p~M%egWlLtL1X`eN~ha=s30>Z|~gNMgwBu zciG?^FE)1c%TRLfF^LDD1bU}0Cm6+$bc#kkeA_e6eVaml2?F- z*siV*x8VYM8SoCUj;w2A?xpk3E~-T{tF7lIp%C)`N)I_qgySu%+4ZFDX^oy^)cIh*pSX^AT>$!XXYWGK9 zU3vW7Zvx)}_JAee?6DIsfAQyD{@j=6s&#Yo{_YPyT7T=qNA3FuKn{!n1~7%Ilhv#w zn|u8mcjb-uRu76@(!ry9O}D=*xC2}T3~+3IapKgG%9;7ea--Dj4{kqMfB(lfwx9en z-~(VAfE!K}rN)CN!;jv&7WzK|?g0}f{bZJXnPgV@1*IutIQIil&k750)@^ zK_;Lzg%zblG7)wzK)v_^$mdQrKK0a0wL4(b0=Md>V@&WN6B33X#6_HyiHs#TR1r0a z0vd?osZLa!f|bdL8^TBLr&WQ75-}oVS5*aUP22=*LgGEV`XVqHV-heKD*zDL$%st% z=v5iHnMRE!G#X~&uoNDLl8?p>2Sgv=07M|}a7WO?8-+x`=a89*$XGktE^tUL1x(7K z62r%lr!OLr(7?nZ%1NTJ=1`Q3q0|O12+FFIn9=SB^|?2tlnDxm&kdlFdq-^2R3#vI zW{~76B3?k2n1VP$fK9+qz_8II6W6i{e5b{wnO>3YbZZaS%W1cL>Gb&c0xJ*U`fO6l z5_K97*ct$wBrG{n%j8fDY?7g0C{;V@#LcZK+bzGi*fSFaBUdD$K&fhjIPy%!sfvn> z0HfYhC@_L+Y7pVns0;xXSQrvtkOtTc5Gne^#5Pfr8Iy>*SP=siDFQ>lB+44RFvA!D zn-HHNRp&q>5}(A3mckH&Oyn$4OznY{E!41OafOE1A0X-j;>Cy57#0B;6S37I8cTaX zG4~gs!U-u8F$EG5uR;jK*191cZ43{GNE5&WFb-6J4Pf`?8s7Ov@!Bs>{JlSS@l${Q zqaG5VIII^Q0K33Ea0(cQc?J{bP_7`9_c{p=*tu!!_0e`1ZUA2ent%f)foYiI2**KJ zF!q~8>sO2342l+d9|AX!oJ3fH0@lMT3Lx~++lBNI@-W=y{#DLbh1jMkBTI(X<&S_B zBpGl)%{iE37@sRml&Inc({oel8Uf6rj z7T?o!H@MFtOn}Q&KQcQrQK`9uPOrJQi-RVxad-{N0S0!VI{=UeU>Bp77z0=!his!` z5Z(YBPy${=eijMCd0-s4kKGS0f9vfh+n+n}>??C)bHhEk^Womw)jPnuK-1XCg^BT* zN~u&(Ki5+ewUa-4ZgJAgFP3H|tMxQx>r~wS(D(Mkew*6Oe7n81dS`p0F}3{Zxyh-@ z>{5Abs+6L!{-m|~(Y>+bm_B#rQ?H(R`Gx7JIdhQfN4NDyU)_29o$mwh00dl|J$m}& zGZ#Mj%E_l+ULfVS-);TDo7+1Zt?^|uJ9lDudv532a3CdMtXs4~$!~TBSFi4U^BcQb z8eIHbRb<%QNmlQy0hfU`aHc$dZ0}g-`I8vW^ z*4xJYj~;Km{SL4WC~&b-{h74#ypA;rOn5WiYlj4bB=e5EVNR`csbL*Mm;-hYb~PxA z5~+8&F=a0vA&&&K=RS9QYSsp~?|t7S9Wp~ojRYmK1c4zoHUy&J<4hK$6uc-YK$NO- z5U&JlMzc3);KT$e#ED@;X+k1V0x($;LTrR*RnL)TObNvior40*96=5uBUL|^nv7O> ziSE9`9Pp?SY$W)MSO9S+(2u7FtVl>nLCS`hY;YbTqTVEF6o*8DigIe99uh0f?1-|U zU_)dQ6{kS~;v_+YtU(zf1Y%Yp32~VU5b{9`N9me4u>b|WLFn6x3BcOwx z$qb4Fp(w8Di9G;p@iTS5+npR2~;EmC@3vO>n$Xx#4Uw&M1%^) zCLt7}3RW@}5d;*+{=_O!b%26|LGi^V8jOuLTox*K^7@mO9?Curr~~6b1Ly*Gn|=KH z@8Z*cs`boYZhZEi+i&j4;UpkIB*Y;DW`SdH*D_>w>D+-VZODwxzlY^tvGu0=+C_N?DBGB zVj5&k&lFp0y@Q>WPS2h^bLN>>PCs+LvNUbBd*OpS?eG4JhfluyUEo7NOLLz%`{L(5 z`Psz_Pfs?cjc*S>cw_HtKiuznd*+2XGg0h6Fzvy{K<)qp%r_RN0_E?%vH8v$JM&A8 zKk^rzD^28gFRv9FE5LPN6<7vdI{(7yr=B@>e6gXVtGoTHZ#}&A2j2nS0~DAAP5_^o zIsV*m%dWi9guew8z?p3NSF*7a+2V2!)-e}DQb(y_AJ}ub$gS5hiHFI67P2A4vxf#E zn=10W7yuq-fG`C7+@ws84-9sP{WcjVA+RABVBXcictU& z5Ii(Q+Rx!e6O*LGv3G@t4NDM{usAiuvA>XF4%#^~Rzff)QHXkgjjEC{>Rs>-L~Igc zRaJs7jAb!UA|eNuLs`YBDk0Uv+fwF+Vr?DTpr{T*WaG~)xTZ$4_rU({&=(WtLr=e@h><3%D>%4ceyAi zDHCPzgTCbwnX(iGq#!1V<7f~WsNoRNPp%+VGR82o$f!*q&5(O2`CgYwWn~UNM2M`6 zAgn^1l1)Rr6{#l;9LLV!xL#9YW1IiF$*JuESfCmzw0vrJ>Jih;ReDs5x zpM2)*-}n!o{{6px?a-~}0R=k19xw)GB;E%HmxFgv07Ze}KIjhkN5CBbz%gI}i!anq z9J8gFPCxkK47MJ_z6s8O3E-%vXOSkr0dz=1r^7Dt72_WTugC}B6<7kzz>IM!VpNhe z$r_ccj*!4-V(VG0Vv|Z{YauswFrZ;@%?TP#S4xY?!kPMD z?LF7;Yp}%StV-1}N~Zgzac@|pZ9BXD?)vU<^Cs{Rn8$@z&z+zD;wzK&u~MtZH#@zp z)#lBc_cvB@%NRwB_vHlYITrgM+)j3A_!QFP(ht__N15-DLH_@Mm5-{)hg; za#}XG?$E8NJ5K@Na$@<^$c3i%=_dF7x!z?7Isf@mm=B^`k^NrR|Lgc*=2Yv?m` zgc^?qsfKJyAS2?)S`7dRA+SjzT7iNl7EDlL=h+9fED$j&Y*T>(LKKW4wy=qTq0w?5 z>%-{~40vSnQT=#77$KuY6-3b)E&}nvSPK&n0+FcC#f1^^jaWk^}C2Z?ww zCPmDvMGL7)5YLn-AVnZmo$Do4xa-|C_(N_ka7t ziObmJqHZWkNdoVLt=dGrA5ti6g@Uk}+Q!xF%l}c{?j|%@3g!8NdxLHHn}2<8Y4MGp z|J*9Kj{CfTVMZX|WA;vv_vGc$!-~dv`U=pE#9zeHH3{dO< zEf|lP0oz#}zO3m|(ipESj#bAhs>L7#pD}C-p8(O;GD}obbm2G9_o@nafd1t`B~G7~ z(rHu}rUF+rlv{Pm9wwt~sy=s9Y zl1x`rB<#t7cwaSR)2AjUr%g6psnxm4hEo@K;3VXZ_wVEn?>^eOvjfcm1;*y;<@w1| zn{L={-zcG!rpvC>*P#RUfi{o>#prZ4vdo6VB5wu8fLAg9(#*-m^a7=0Y1!1$3<-|v zV379?wjcCY?_M9E3y>W}L zJoVJ8&z(G(rKOdoT)E%5bN$i7Yqz&I{>4`o#;WP9_mZs-n+G3#9k>RZS@`Ui zFFbQ$tfC?4Q%@g#^$RmRK6rRHzxn#w&9D3`;3_Z$Jagv!7hn7GnHQg(X-v}QLHpfz zAOEZW<+srM7EnU^GG@L2oi5ERjUS)t_Gta#1IXI|A^XM3(wCCC(jZRhMi~?n6 zt0wo{34?~QfpZM}KJ+e92L*Z0Jb)WY!I}jC@Ey2SpjkP_FP$!><=BnKzURSJc19!AQ+DZ#4-v9f1CybK_WIn zBbSJbrQmfGWRf5PvS0%d)!>*dS!QEE8lo?S833yiM+YIPIFeWo0`UT3CL^K{5OMGh zP_h=v07HUF>?oZqY8b=>Ylw&feDF+h-{V+>qFz8TG8{}|gCk~QOOT*mlTsEs&V*$9 z&g~o5&-VujH~}gMjqiNr_P_go8DBU`A!Nk+naMb;0kaWxCqPw7lG@*+VB0yec~VN{?-3H{Hte$Tq5goOKw>7H~nz4hxQ7>_Mr*d z0)%q62LL8xRMiS%&J7lUlQbJo6ooK}U+Ngnp58VJfCqNwa4T0Jr~bJUlPk0rJ`u7%AWKPm3Ey3*}R(2&yPEGB3A^W&AIPEwRQy}Uc@YSJF7 z+wxewu^c9P$wXzYF4ayKy`Ic9XyH`aXzG>g#c=NtFjlKi2rc!84mtpOhyRwtclGGk z0E6TeE`Mp}`0}aq#fg)eO__<5v%PqkSd%dea-01lBspl7- z|Lj67E8TgEZ@jU!aqXMHO`vrC=l;;kpM0^LWo0f(W7*LY6%+E?R|h}%_T~@&@wee0 z1GAJo{ql>S`ph3bdHzDRo`#jx{zq4y{NDfc6*S)h8d&&3T7RK5eoUlPn=46D+FltP zJoyONK>e&)`c!gca^SUXGLZ1NmtKY*5-Q5P-r-43%YK+su>;r9!a))Q2ObKFFzmwC zMV#jQ7=D1kEueM!NVYsrZ1O-tDW&B!I1SDjSmi8uHHifR6r5NPs|az*L?T`p@wTnG zQzkV=Lr@rH@j_4z%0`W-B9MV$V#$NXwK*m_1A}cK)!-%fT*}z8XoxFblE$3{kSH@n z6`x`NAm+mi#Tx()%V45}6f30;!@~^NSh^B#2ShMnqa$dKf{axO5;U&$WQ>X*m1>bj zS9|PZQ6=%7$&gVP1M#W^CXv9*AQcS~;(QqtJF|qK1`>NFL+rC5GEng`UuJD|!D!GJ z+pyNKVf8`!!KN%?BE!JgOx07ln)lN;uTHIO_5&&q2Q>1cdS!d!|M}m2__zLt7m`wy zeOp4mD8!Tvj0lFTYQ}5o&0aF`7yt8j-njXN^4QT*c^odaJ*R0!iy(vJ``wGb{2#yj zqpzm*TA8H==e$=-1!a|xdt+6d0}I5*9VtE^!4FMB0R<%x3B;_vNYe@oi?Xex>I&~+ zn2A#H9tp95Fp&g=TmWNj)Z1d@Y?PshZ0Zo0je_8W5~Co5ktQgrqyk}tKoJfB5m#_p zA%S{u!U{*`C%F;C5Ib85p2WpzfryYzL6%qvfuKZ+BImM9OjHk#s{`O3a0_@LCQE@= zfNyq(^Z(V~DK7lU!E1jk{QN(u{Z2OkF1AgKZVq${=s;?~0N4bQ(L^*XayDI=T9}?$ zPMi+%V!tI7y&J%z!@Xn(Y(fMf>gH`=aA-PO$Qsj0W1>g|uJ7|b8Qz9_ zh(cg5NU_k|+Co?b){&opE+ZSWmC43@WA@0{#B>6iaqjZo{^Qm4?bZ9(t3Xa;YOFp- z^&<4P!p8QX>-1oM=b+WQjLiXa* zU;1NT_#>CHY4g$T`yc-3-kmppjNL21HqZe)^3u+Osg>GnJ<})M8}EJNeN<;Z@n=8z z+Aqw{CXIG~@ZjFwz013gKX~%^#=~Hjo_Y0?&z_mCv3c;J|LFCNwQD~Fz7IUHlh0{y zY4y=?X2w}dlT+nEFWzg_GIrvwc(P#@AIHC^GB-JAi&S zpH-f%YuGRPd&yt}y*q?8z=43U;k`4NQ-F({2CGH)8p4CIs{W;a|EZHlrX(*SRnr#= z5tF16R4En;#)2z=4HGFy)oTcdEHPCTfCB+0fqF^PRHd7yR>d1m$fy{@;28LV7-b@M zL0ALB2a_h=2SG&nDkvH{jRJ;7F#y%WKo}9R#+6xPtswmr4Rl0eAjW79h_?X>A9n&n z#VbW|1d8AYU~7nsKsimVHKA~E@C!1;QGSYrErviMO4f2zq6h%l)C2*Ugc%ZohF}w; zPIYuUV6urIK!sr?-bcK$RU%eq111H*1Q4YqxPD?(M4>rB*qC@$^{k-~cn|iJrA1*^ zA8Q*20e#>Ja16+rNPgot_y42+!^5M`Jg>?`t)$)nR1ge6whFDa?96ZcUh%bGdjWDf zo0;+yLdYoy2NNWzmB#y>3wM8f^Z)(pcmKw}yC^(~;UK9cfi1ivD-t|71aX!j5?t_U zV#PaBuW6Oi#5j?Gqkv$^RLX#1&A>oUP1OJthD>P&1CV3yB}k+%#WHuYNl<}TvQ|_f z1yne8@&?DoXav%#fFW=oA655Q0UW}RAw($!4(` zQVUK9NeE6gCywmUaqS-{R1!;gTQGL?ZPLZ7|28l_tTJ?omZMIUT#0c9mO6lBW zWm3mFB7>qeY?;iL8g6=6pBY;^v3N3@nWhxIz16*qo9@Y88`4Lr$TEb9L0;|cXB86Z z^bgP}4qDsm=x*bk@%xqm zeILVr+J5}UZkEpbQmIXOE#=lWKe{}&{@$bBgYN?00}d)D&n;azX=m!8lCk1Qm8Oq2 zCPk~t{la#K#YT@ep5#27+r=GV61Y^FdgY~G{JFEAIeIY2uYLXT-M8QA+<6=M6<{C8 zfoNle?|r!SXmMvJ+kJ8$wdpVYsaJmHPoB-3K3r*jbZhs{4<7H_y5ol*0oA4X=gwZ5 zD%I%0?cN9P>^{2s9`FaiL!jr|4wa_FZ5KbDteM_W~y8b(kcjOsa`OI=h_j-i5z{ z>0hqQAH#By+Y&lVHCTb$0XD8B>%W#%cBt|1B*CUE1J^40V$=n{diWwK6BSCHLQnF2 z^zXo}qBi&|e|728FIUod_64aSVuBP9VPdi@-b?UMQDusJ&R8uX4oHX$b7Cw+JgG1c zf(wqBDxqggp(ZC7%L75xeC*m0M?KC<73I_;wIPUMBDP4Zk^~n3VPzGekJTI+jps%u zIA#e-F?Xb~6FA!X@RMqo!*tl86Es@6iP$hSLP3LgAx7|ONWn?eUkpdS9kDggpiYRO z=3`_%LsdhdI3)4Gq|xC{K|GuTStyAJD~Xax8LXs;$QzCt8ppaA=Ey|=L^X)FC>di_ z11MGs7i2OGLB$BEF$pUNE)3F|?={y$A8i_0?p^^Jz`{;@=5K#(`|m#kN=xc911``f zP*Ap10gb(LxAUL=)pc~vrHhM}8|q6$FeYdqGS*Q;$DTp&=HL8pzx$;x)2Gh1Ff3F9 z3!D$uraligwb2$FLXoDa5^Q3SV(5oP#aJc-A1L+b-nnt=oA$(!M(r1R!uwHHJ(kF0y(A5{L~a21J6xdsT?%$CRuEld6*t)T<_` zF#;Ol!qt26A^J%p=Z;iV1Hr*qRZnD8WBNQ08xX_^ms3%M;5cJv z5vT)C1D^(Z!1eEb>-PV-y#BfB&(9@(%iaBn1T=bedcco92NPKt78#&8i?xmt3Q^L3Lb4NQG%;@tUg{^`NYY$Y9* zR&P$;CpV8uWlE;!pk$ld{pPNkz!P>r6B#Tv)AGiapeTS|`(gJk(qH)8?CHhDx9wK* z?vCs3dYvl#99#faf%TC?6W9Sg zGgW<>+*GrxQWR89C#%V1QkqDSsrq41)x0@qZ*T5C`EB4jFkU+H>CgSqKfZKvVs(Az z+K=B}fA`1OxdN;JU0?`==-CI#K)%261Zb3JE`I9gKk+j^cZB=dM_1M_U%q+!!|U$R zE#Nwk17AM<(y{4drM<28-H&!wul*SME#N+|4GiI3v43y1I|DR z+z^fDUwU!!{0noZF4gPPrMr8>58mH+=X-YsSAPfC0ban7m&Trctz4W58Ybt%rF0b!_~)ldHM^xePXV-)Wc8Eu(WY^zI#| zmXyL!w9DSIwnP4*^xg-yKmUuBf9qE!m*+F%ogX^RqIG_h{O2@9a1?=KX(9rM>Y?|V z(-g4kHDVG-3ot{}*vu8&>t(mrYI6Z4 zCWb2rL_tXmY&FZKo8ybv!Qc45ul?RXoXbqv=fcUru+@|eN>GVSHJp;DvqnWcaWFm@ zHG?Af8rAp4{)_+dlmG42*TSUuoj1yVp1%C5FDJejI8#kHAq}LyAQFH@VAurJh#Ao! zBm%ZX(Q-x<6l8^%K_npxf?yn~e@2~y3Je=gNP?&sG9d_vVudoBND~U27*Yoxzz|jV zV3Gu}=~IGmfPhUoNGuHI09{;2f%H(ju&`I*zXSYfWI&jO`^@1>&HdA_K6rci;mq>S z>_1v}+8+trhpYa-vETuKJVE=qyNCVFJ(xa4o32uP?6@=o@NF)E+ zS279gAo!tT2j(m$PR&lvAD^sDSBL%faBH>O^Hi?bdO4k`=2&h!%YJM=89&0~+A&?(FlJUO{U}k*$ z$ij)I&p*9<>GShW+|A2-Z~frzldJEdc?Gxy+yc%`om@WgVgt5=KWw}D%S zQWAhYU=5+SFjJPKc<``&8XqefC4S|N8VP}0UfABi|4J4l_Ely*>_%cwy9Y7vF)<^#Y2mctj z4+A&8AIhbHFJzdb*nsp2V+vptjb-QoX`#b?>0W_8KK&g2lmFAxC(hJqn0NsvYBTaK zE~$nRt4tJ>NtB3`m{_FXB#ljtqy{j?m>@%vLRBRQF@Z>6H%jJfz2Qyo&L45F9_27e z$yhpLHFyCaNR~ummNm8iGj;5s4C63y}A*At#2jiHMlI6oRB8aq3J=lyDR% zNQjCP$ExF%$hyVD3+y7l2;E7YTaSBx3{ypxgItI)v@|iqfuR`*DIxltu(S_ z>?ifoctS4M{VnO{oNvmBMtWf`n?D+A4b#nwjUBiiJ$SNhEBj-o#wMQ1vT;6nu1e0@ zk`>vUn)I#V{{6@Io;=w0`96@LD5k2ZotxR~p3a8?w|a=N42RnQMh`3$v=99u!VeJ2 zKnZZ*7UWgnm;~Bee~1l1lAv@vuN-OC#vZ3l*0o+|b+EIG_HE!A@DLC*KKx17%_d3u7hKD;){3ro4z{}^)f9a)HKAA2|Rwv*%+`YW{?vJlNdG9Us zZvwZ0UBCb@FP?sJa&GG3qsMoz{dlnU&BM4>ROC|N2rxgtFuSxkra^WNaO~oI>A9)d z8cv^|n_jGTwYYhC|D!ijlXo_6PL=#fD2EY0XZZ%5>cd_rV2}>WJdOM5`_knCE`7etd#;HFJ7E7 z8;TXJM!iSS_7S#!^-NJdK4I*5T5*x{SfD~fNewlo4F37G(b1vHKie)7Ej#0Cl=8ul%SA)|gNihKqUQJBPlRec~R zCCmf?k~9fECW}Y~s!EgqkyWi=1G11fh73?u4J52_N^W^HzqDX7Dyr&50*FM#1eM^3 zjWU5o6`D|Qj3o`eC~poH|JvWXb^W6>St?!s<<@`wOU3e2DF$5_<=O*X_gx40 zIAjD`iju?eN~w+Tga7Ft-1xJ9{OI(O0Ul+z0Mz<2^V{#(zx99J$8g#-&f1Cj5OpyP z%qBj{AT=bawvsLPlS^=K{O!N@=rb>z7pvr)Et3YvmNX0{1j`9jkP^U5%+9OAXTv5M zAN_&?20;?BQ5;}B(flL)v3fo$@**{p_Mr*HSMaE|q#!kMFr2Rmg zlvdSEh*YP?`S^TodfL{&-M-x4H=XpX|Q(_SM$=KSF*P*aQ6GzSO-g2}O94al5)2aLDFPcPv=ZOhECcKI zyzijDUMly0_0Jvu^e-(}$%==uKuQvbKx9}HfQ9!;2t;JlAj)K-xkg3Bdt+Edl!JH~ zeSc-nGC=`ITFyNDSS^8L5W~uF=#ngW7t$<6VhgA;rBaH<$RMiF#880Pge3?mLqT9` zQXNJ1!InZ8{omnxi6R^HPy$l@_(B;AR6foPsOm^M5D_0Z-WZ_Z!`2lVMNW-PB?K~1 zQYMw?;E$#xvLGV$2&76BL`ewhy%G_papj6-SQ?xkp$C94Dwrf6yU{Fat5rz=I%K0vw3J0HbwJPit9PS85U3-QP2_`@E`8(!;~U%%0g#_>xic zAv24+vML3z}kILTjsy~?D8(l7jOf(Uqf~P?jxuH-l1~} z@&iB{_&V_1sJp{s66`lD8ygyphbLaZX*5tm~{f{P#v&r0C+DhH9ur;x8HC(&ey|lW%vYG9_ z=yXVzFVe=Ky)cdUJ~?}9bNJeeTkDtm>u8=|YCZl)YiZtJbG&(dw7l7S&rcjad8XOz zE`0g3^Dn%3bG?7DZ(I8s5A0i-PB~dw-2v9_YQoSrwzl4i(GDcQb=Wc>K$V7PfE9>< zdWai9AK1C8uHQFv-*+EBaesHP{pyR)@4Wo`D4yBPH#AP4r~}6-ee%?aCm(<8)X696 zl-9oTrOnM0vqSghvlni>@+GW)c~_jSdYcX$Id-@{$uB?i^75Dd5O@Jt-=#6n0!Ne9 z1BcI?ee}JLKJnOMqk*l}&b1fgo6lqB^b$`^U%ILnU*Ed;;w$;fRfp>K?!I9f{xBCj zESs=YBys)8QCIs{zpU3j3Va>_bULZekOFHdwn}s^qx)yTOLz8yiF+iGlf|&aa2s|T zv;y8{8R`)huWv4K58x>MjOXGCO7qYCak< zb5t@RB4g)ODt0N63aeE^qp{W}jUgjdR;au^JSyFXU60^hknuS9kF$XqOsmGOi2-9Q zY4!S`P!S@h(EvxNR2h_r5rK>=1R)VLMl*5VOQ>XaA`x+#nkYN3YUJ2rsGQEpNMl~P zTsdDe7<-eDlXFm2L=#bn^NA^-0Xf~g8UE?-+yWGsM|wYYZv67Uxc!}nH^2Mav!rIF ztPog%#zY5YHm;QtAiU`?1(t1lcp^KtoqzUU{nFYG{?)13CV+{NO#jKRt@NKUV0vO{ zznf|nJIw?{7=R5>gTNHbCdzQe^)%g+!=oR6^;fSw^*^5QE)BW38j&$zoRCJLBr=I( zmI2I%ev&p~{X;+2>g{|-3 zj8GvZBPC~q-K}n=K;)c?7`z8Nv-do@hmvy^Mt}hc@__6jh95`z6l$kX2ME}H2zmr~ zKjHI=Pcoio_NsReZ13cNJKxYrFjr#Vm235Qr9arZfz9VoUIFsE9_Z0HJhSh< zw7s;sIz(?)4u^Yaib~ zv9D2I?ooN$F1~Ta`;9YnruNY61g9-$8KGo=;?{au48ZjTrJCju(NeFAbMDbck|Sql zknerwPu9Qig|$vH@xY_CC!b7@>~9=BJoWM4zftDq>$?9?ZFBpH zrPnX4y#6)xUj^28e_I3Ez#`MZ{d?bi|NUoA-nTG!z^{wF^vw3L;=P-N;*Z>N^0gJ#x(|b=JJ$vHplPAtT)RJWTg-hX? zKjYWlu=%5{J;&SEJ9PQ$@!IRRaQ+LxSMG}b02X;7B^QV6q~|QR!E!%dc}1@N4)E#S zqn@W`TT72TU~>nZEAZDLRDJRRaQy@<3q8VUfTDzUT{e+{;51v^OZV-|h5*jWwXmfmhL;y`gS?FZ6g~{Z=HWn|e zjehgjZvEWfoSML)=P&2~{1@H;CV=Dh$;Y|yX2#0!LaY#GazpzEo_+OWM4;qIQh%pxIqbV7JchS@g3e()(w`gxbIF&kSY+XG^91Tj>AGf@zcCnF&fGc}C_0dqCuF*Wk3u_q#e zz^vLd7_`#=Gu3fSAv2~*Q4XqBj^&}4oWY1e1Sl$hPt`~ua*hS0>WmC*CTxTIAD?>a zshO{Su>#czEJN;q=dklp#J`D&X%Nshj2z;E>ARhk!G@-t-OBy$&~JA|e7qI<-+C*% zVf)LS&TYsl!WGz6pnGpvbd;THwoepgt6aSWT=(g__uqHl>8IxRwz49W*VgOnTfM~f z_RkcPQ#GH&ZY-{Cbk~;Gx!+4^;LsTi!i`Je#*0z&hhSQgYY`VWbEpv=7%8IR^~E8Po%% z86odX&Euc^!UGSUob@?L5U?1T2B6|CB`F+8&CJ+WMuHfNarxjGb2TF5BXKG*bd8BkBcf;W35#)1(=xClUr(S8 z&I>VsT`MW8M$pw*z?g`@yM6$6r#ZAs_NsKK0T?q`)Jp6V#0FQH4ik}?kSVcA6ef1; zrOaup86@z`Olr|Ia#HD+5kbijv6D)k-m!_As4-V_V*|{T83tqWDjw4*t?FZYmeRLBP9Vk}8dR z0>;3$px3N_uCITkOinQNDqi~+|9JD;{>BIPy1C!@-#(jf-UPlSY2R;+W-Nn~5x z>wmWP%l~12W9p>eH$4)v(rA0+Q1{dTwE#Nz!hqkq1tVI?JI?2SEvh&*5>RrN>J#Y!edMiqIYniC1rIF6fC*3F4$$7AD$DC9hB zY#&FI7amrzrjkl365#qzTG^>8LGV z%mB@ZuT+Y@@3iht19wk`*HL^Ccoi4`y|+fbZ>=+~^+2EZ_q$u@eFb=~*81LsJ&ipx z>3k|%UD7-)wg*M==4R(;eYwWX;f)(~`QlD7xIr-ltFLUk+dcQv>uW}%Q;#3I|J2mU zqmB7J%nqXggluy}=IG%wI=LvJQ!^K)mxk@xdNS=Na?DI4tC1*AO!@;yvr#XbtocR& z?O3^5PK(ciyL6$v@Mz{wUJpWbT7T|$J(6pP~ z*P7bD@8GFD2lmd+O@~;2qi@?=acw#6SUFLrn&z7qd)@2j5ncsWcaN&tTkM^fI=*~m z>%t4q><(<^fu;1|69*5TI`YVglMn1^&NQy{;u~L=m;N;AU8`YU<_{C5q z^(x}mfs6N2;eh%vt55ZF2l!F97T0ge%}-$TiMz7?l0Wz^H(3w;6unIpO`ixSGiBZw z9~~Vi<$x4yu?q>1oZ^OaTeMh)ptR)-3OG#5-~I28zW;r5zHl0yv4R7$BB{9YsHEPY zW93V-7}Y>>_`-j*i6S>DH!{{_$oK-vc9Ub zR@LX@!pg>$06;YqXK=#o3|j4Yl)ZDz1d?j*TulUn`ZO^SGq6v<4i!3u3DwsS$#+5QuRgFC-X-zd+DBz5kvov#Bpk7;fgLe`@Dj zzcc)wAAKE|U_Rknr!`C<4#^oYH0(=A!6OBjf;l!#m<%H3YMh<`4gfp<$8X>GnZI&y z!WYgGLLi7^1&k|nZo)Op{lRbC_<#M=e%gA%AATV60t)Y0G??cY#lRUr7p``5IW(z} zRJ16~MW_)w6NUHWq+;h9F`1YYrqRf8bqDtBQ#G$3h5?a`RK&)FTZS2d0Wfz9F7fJQR8P@kxghMj(XeYto2VsGu{CPMp-)U9?$Nj=@{NjY$7eQ&cNX)<^F zI$yuAaqDK-f9TMoPc1z1XzkFRP_LJv2!lTD?4;Yl8`I)_Yl3;_2 zS4W16gItdue`s?0(8X&*j0)h=+fK_}9ie2gKL4JXJ&(7i>g8~2b@{d7`nfphLGybb zRp$fW@!cQ!sb*S#=}TYC-~8OJ9QPcO`{tIG=8sL!E$v&_GsRi4IS4E3TbpZr>kNy$ ziHTZ!wvJABxbcScUIcF3Q=|jH9z)~io0qKrA}|8>0go-5eEQTAr}jQDec<#=r2PEt z!MRs&zww33dTR=;lQ@y_{)wVrU%%MH_7%vpz*l!?7<|%pXd8Ec+eE257@j#^86QRRNk&)HRlf0v%$wLdfT*+}u;cvLDZVx*{;T zpZw98zy5toGqqGlB9V-R#YEJ3uTf0Jn2#T6&*{g$Fm-YoYemGQvBeD8f`8d2~uJa6)6jLb#G%c zU-D#8iWtX)L4q++Rk&B9oLz05N)Eaz=K+kt`nxB`U<4hDhS|73ppm=-nOU?DY}XnP zFy~mQYJM?+HR?FcuvanGs#G;%)ygtVOiaB`#z{!b6fSXQ#^lw;)2$H8#CyP;XCl%l zBGF>xEVaT^q9Ze87p|7Q7=Qrukt8X>Gw11J8b0@>+t)t(sg)1kmqjE%V8d9WtkPDL z0@CFAx}+VeO+?xU+X3+F|LXe7GpphH7I3CM`9SJg2w)}hB^exq4Q8sAs`9vJVoESl zkXry|fE%yB7_MK?`%e*hGXzESAcMpJSwN=0$mXF~{NkVGfBnC>+=>r2?mrW=Jz-Q& z8^MB-sw#5~Nh=BcaO?I!qk}g%kfAbz1A9iGv1^Zm_e_K^P^)B9osl;-2B|q!aNHC>hCona z1rf!;;e(Su|JRQFga7-RK(adxHbCK5fL}+riP4XOKL9?743I_mDNB}6+fVs|+9(N((W`b>-{8v5D!{%>Hb4ftr&X@?__RzqIC^p*4?G{H=}2 zKmClm^de3k)x9UA*~ZRV`o`A=t?8mT&W)tJby+Sw?=IX<8+ExnxmApsmtN`6Xn5wq zrH3A^FYLu|P(JgO#!Fx8UE6r=zCFHuXy(YV`lVN<1-FXfts_e(2K}SUH?O}_z`e6d z(5*ZlbcY-bd9T;sxvHb(w?%)TdEz^M?5F0I_CNQTtCwE61hnDahl%OdPc81*lj(>>RbA;)HZccpDwS^+r5IWi$2%d$vem&+v~hBCxT8-|Efu`Ba#z^?A6Dm(IbHq+xl z?XE7+_#7IDP`O&tc$RDy#Z+J*=PGV608=qC5SWRWO#~7Q40gnolWb5?N<4_2GbM#d zlGSY7)~WP*hzNJ2CnS#`uuIsdMgjskGl{A~Y$~SgRU*=?DAQ-pcXy9^2=g&knud>K z@cthD;6MG==siE_+B0-Uh55C>o3)0mLxp!I&xg z*^mCjh3&!K`hAbP$%pfunG9eJaTHzVM1>KXt=7)+Xyr!ibsCGa1cPHQ77ZTe%~Vv# zpeAsvLSzK;)p*5Vj-9Ch!j1`Mq!I&+C`n8m;E7T;5f!a!15w8Wa!P6{7C>AHE_oxz zW7kL_7>p$dIb}{M$smSUNQ}6Ez2Ju{$MJL$MFI1}pMw==3OmyTbrJ>lT3x?qAs2qv?g8Nso#8|w|xEj%FYS~x3T94 zHDws{t&teV!3LiF4BrTY_kMt<4-!iw<@E7KvW2<&OeTYT`SNRq&0+uA&GpMswohh0kquy63;Tq92(4!AIVG zrjezWU%R-yv$21sairbI`_tPywQrsPfO1tg{;<1sx$7O|D#^R_$9AN!u4edvit zw>RjuwLWG~y7`A%?R2h{?ORMIr_&_u=7Yi3`mnd%-RQ_>w-JXaI;$8O<|b#;$==3j z_4aw>F9El92?}@8^P=;Ihn)yC(fqd7sgv(|^4NW64seUR{r;8b!}VKh>(@4SF0W&K z0}`-r5l0X9=8Dd0iYpF-4U}&HH}CD{5nxCj@M)c6BMchl&QMpbVdu?zh9cR6Y3u%? zXTx4Mt`8B0K*LlO1K?s+8Iuo&5duS&5zf`=^$&hv?+^XR#G$?QVm|!Lx27Mv$p7;% z9D4MzHj1bULqK%K4p1eIvGfe`&ZUaSq)l3y^Yd0W#(`F*|q<8#vb3BgHjX)d3)tjc4DD{I=ko;%oboE19={M zJHit(kOSD%*f}!=gTMwI7u?u|f!>*~!9e3waOa~_5f>B&Q!*Gi(x_x=05MfN16Wj1 zazskx7|bRSQX;9bt3q|uC~(+?78;1jIa90ZS76*_Qq{__R99=1m;gS7VZyWqEf~~W#^@o5A&?9!T@AA z#AZJ~HtX0_LNpgaMrvkp*X~mZsaUAY6-?AXF7YbCOxPzTYA7L*h`|gaGA8m+GXx+K znZZ+%DI7Uw5(ujan29{Z;1sTslZ&PiBIFV?Ps+|QIGR^g2+TPcTZ|)05)Ol8#M9HQ zU;nq?wsGT6Klj`S@IbsPf|sB*)c*kaE70%9@L}LVNDDO)H_P<~`B^D%Aa23B6b!t{rM6hOwNvuy{o=-xYpT{=l`?j!;S5= zYu9h_eOpJ{joN`DdyYJ@bmhyJ0IfIt!w04h_){M*`pZ{VFJHSnJAI;+P51mvjNN-* z^4&{;OVCSyPL6P`2ag~Az$j1GS39$l6AKU3TfSa*G+E0vEn*Q@Hby(!ok4eJRQAeI zJq`ui*D<&bzbBhX(k$G%wO(#t0IuvZuJ0@l>_@gB)J_iWJN@L|2j4xnFqanCK6hAuS_l`!I_Y33$a19`hebO~U6WRyheO;)lap1xYuQ&D_*!sYa?pd0S zQIR*2ANxB?ABweiJw01vizR^tQ1Wm-jWH^elT>2qji`c7FcATXlgfhxRKXf0iemsO zYJfu&EtL}{ml9bB(Wz4xeUeg=mZ8t2R#@2!o~3g|IyVQOVtM>KB2oY~&f*(4;NLxo zScIVkO>0^1yatV_PgIpa#FVgiRWpZZZ1k=bwv%?zd<0WJZlDq>s+a*4oaL>Z0YNL@ zFD7DdS|Lv`1|6DO5c1>_4>l45pcQDzrA(wTkRz1HFfw>GC)IRRU{!lV zy_)(;y^<)HF;T(P0&3s|AOpfzzuviiyLt5Jq(cIX99e<1i{x)V{rs2Cw}2z<=m(C5Yq zr3`XYi2g2(qjzFR{CSJKU%YiiJH7MWK^$}@Q`d-S7S`GE!$BU)ayT6Bj6z4_b}<~- z&IY<$$ghCsFnM%tYN6QN8E(9a;ss#)ZQHUr&{;ombm7>kLr3?YI6Fmkf8px#1@FIq5u&cl-d;|6GMB`m#14Y;XpQdl#^Of^kY6iG5{tJ1}KBUfDGsZ``Oj0TrG=rDOYB(`S?@*kz=7*_9gGN zv^e{C8ekHD~o;+Cy8cGmAOza#PflZ@H zpd^bSnoB5QcE%RGCqkfWul25zdizV(%J zJ3B-C)ag83g7+{hi5YQh!VcLjeXO#4H>wOmY>f7yu`2(akIXIv=x)6!Gb0+yP(#%! zxnJkW1SX`BJcHQ)R^Ou7FDt0F`;AnKQ6rEId$E zvLItN(}EKxQktque5GawM;6SHGxgf9ZQZVR00Q(u0|+#L2^`VFgMIin^YwS1 zY=UQ6?zP?5%s>-JP%I!@go7~NiXGWZv;A-p2uV(qu?^umRaeX^)T9uxiV+(ChJh?) zai-?1Ss9=Y)?wS{Rdwq#lGg@GroQ_@3x$R%#>pV3IipM zGzL@gfGY>+$HYvD7~p6D> zOCo|Yd8bC8M0NMHsH#R)kdhfJ^?+FnfDjXs6kN5NU}0n+xQ4+oE0L;qWYLl15EU6U zGQs5b_VTa(Nh7vTV)^yAN&QsuOF<=)TX46ae+1o+!BfD~$`hy)IDs=rd6yQ=-K%;Y z{wB8@6euTry02d*gAEI#6^BvYt8H9KOv)=)H#e_rhk!I2j)wV6EAHRx_Z4Vsg-fG)loF2C+`(D|8J=QTz zXCGVNbCwrc*?cWqpBS9)ZU?H{An`?`8PKeG_t1fi>Q`U8Wj$KCSo*Z6WzFLYbMdh= zZ(O>qiEa0MFQ$dnLyXWjH+E{iIRk0{ZD41&p!xqR`U7M|e*KLXo^NDcbrePifjO5X z2`@()mN6wMAl*P)kPYLRc6KSg@M&(Fg16ZA7u4S$=xT^`)ip7RmiJ}9yecyX( zf8nPm7Y`Lokx)=7oDjrBq3oQ`)J8t7nJ_2B7LAa&s!}3_nMM-kG*MAi=ESkGT5xG% zrVzj}d#5o%G)XhZE)*k9gwlGN)+(S21mI*iEZ4SWGEdzEwMSOl(QDS&?A0fydHYC8_l(Nk!nCQ)3GVQOJ$oVsHiYpfM#($I|^aRs*%& zx$yYp-Sye2{%OSsHWf7?qKb2@B1+X$5gb@GnpJ&#s$MD)Roau}n3*Ih5qoBp%3_es z%p|&mwSvyx`M5@fS~OBZk|tyZb|!%nPtK_ZHZo?HF@?aK3?nUfs~M&OjBEf0wFvWR z3u&=8#(mgc`R(60_wIju0L=zzwrjC1W728s9K0ZbhR&T%Vsq{%JTHvI6I_B|5Q+`s zU|f(j03|gu?;rpiEW!u{Sqe><>p&eC0{I{O+2!y3izg>|ifJ^&;M0G+{?GpL5LiO` zP<{GcHkww+QgKF+#f$()rYb6xD+|Dguz`mQ6j{|cAyYDS0121@Q>h3j#-U0|FkzR1 zJ&^+uDS_1>Obo|SA|yDUnK^hzWY9uYQBg_6Sp<1s2_1nF5Q7Aeu@#K5^WG$CjO@Ib zb6n#D8bSdQfS5`H@z6yB``1 zhUm;>&Be)y>DEL(+wQj8?N%!zV0%T*zZ{m|*c^1a>BNzp(ahGZRf|cS2i0m*OVbY= z^=D5eCl=jILsBTBl|+g-P>v%PC42OgUwXK+u+&=E-)J;r7^IIMtG_%GH*b}1y!7?G zhtJmi!rT#^Jv4cy?i!k%`+D~)|9N}nm5q~U4;|d!oZ8!%+^O$$wlCfE!=Y|=1Ka@G z0j||7B-wPQTu{ybT0L;8>%l-Ge* z;ikY3Hs>DAW)7@x+#D`nL_7y{b{#A4Y^>){du;yDlS{|XP&Re*MselbjrCVQg_Yj} zo(DFnA?*16-jKFyi<~Ysc6JE2uVMQZhSz~rVDPpCFoVWv<~c126kQAp#5G{`tpvdJ zr146 z_x$#txZEwCz0o`3@vez{t1tbc*&R&v2ED8i<1i_;`SNxD@@u2>!S#Ck8Yf8X2C|N^ zlAv;HGBR%=~(T-1NZm=kFN>ZO$e1L9FIvtL`IG)pLv5;dOSo- zJ^>jC!BuTAGtp{dtWm3wAu*bO9H|;aL2QVqWQ3W?2+_znA~P|GW4x+k#@KKMMxH8x z46|6~#EQgQLJA!YZP?M>qYsE4&_X~CNHA)iNjp!J_}$<5Kd=1P|9E;an_CZV91|*g zRgRFoNb87-ja|G!{lm@a?;b=S)HxENNJa($MIDPJnUMjcOin8h6B)s{Ffup>CMz`h z@Bh)czjt}xV<+Z@n0@0a{+l0p184##YI~lPbhgYrB#o@Bz*wuv43*2Ks0ffCpfd<0 z1QB9_RrWf8nc&nc8Uth|N@E{QFcRY$RI9;s#rCsMl20m4Do*RBP&m(CC6ERPs3P|T zVJ2hmDt%cvvj`C)HWen2nZ`IS6}V!RL^Dw-)oYRom(fO`W)n1d`^D)W{fEgjpZlr$ zBk#@YJ?o$0)n9HjZuW;O_XehMxpCJm{kt?F>HrAA-l6=b-N)Wd5Tkp3WpJ&-Wx=6y z8S-)9;{Zn6|Nipe1IUh`Jy)BVJ+#!En;zc2UcghYaCXC4h_|lB^RK-&+B{F*)$)^r z;wm=ZxG5)wa7zcKk1os{S#tADPC1N**6q4nIA;=Q2%bmHc0K*Rrw22WwJb|xW}*~` z!~W#m?@9mQcWM#mzVO9$gdYYtUDPzR4DQnE4)U+z`t;VS$a@w;NJgDxef!qcl!%f} z*WivJTm&X(lDT?oPBriJ)`8(WmH+QJ6uEcF5O@}70t_UGZNwZX4H?h`CIJFUpaX0G z0570_;r-}Ro} z(dN4kGjqHz4YfhISzzZH!ez(}pmXo|*8w%u-h=70nk-<@L%xdM4a9Ar2lz4fEqT(l z4n_7w-b20xTp&80IW9*9LZzcu1CV$r;t(hst>#BQyzl)VN+#JXCs8HNC{cBu$%Dv| znTbXtR)dR00N~Wy*dB?cAN{z8%JTV|K5}3tI#5)$pTB+nX4+t~IAkZ3+ z?DUEoYyEy_XMY~Dx*tHUQGg3kqm6iode?ltUaaP$Jna0f$9oSBYg^fTY}`~N5|AW- zF*`3KmNM)PXu%9+(rA?vlvVX~l(8wi-Sfd22bXXBR2mTg$1v8Y?0`xb&cM!_Xr(7= za1aI5$Y~IAL`=k_LD&&_XR1t2gp|O}yM#?aU=xL+QhOGQFfwvX;G|M3V)k$f(;ylZ zMm`~@YNTugbh|R>R&4|Z6uJ%TLFyrb73^jb_v59!w0-5)fBqEx^$+5;LG^+?;DH1> zkDWzGfp`V^7XTnV+MfGJ7%fGP-UdEV=OZ)%W*i(MgOrra8yQf7KyZW-1jo_H2|1t* ztN`U;jehI5)*t(Y<5!B&kAC>Y>-i8kjHxI6#Mv-vI1TKOP&6`vnvwx(LgZj#8h`+W zi^0I;04Pj>%IY#!tSch65XpOTWD0f(kpjjRw4x+BCU|0oV~BzY=0WP2&BP#3F?OUP zrr??oIZjM+Vs=bW)ewaMV^jcG5oRW?}-Obt~HaUuQ{L?+FBul9Jg-PS3A7{h4vnqoA7fyrMg(Ue06(sv}JBs zpIB(LCKe7nxPEP-QSLMyPb5c*L^`;-8-?G#?&Ly!TPcmZZn={`cJ2!0cixd|FIxvr z0e@kl{iv|@HZNfN%fO4k#_mJzG!15W^3l12XKUHq%FXinxi1$Ne+#`o18%(&X6Xp@ z@uW4MPGrNK9ILl5d;`6&LoNfudyiRw{g`?R^)|4EqK90dJCMtO>+%bfCt9ysL>jb;=WqcW_RvOurV$9g$#Z)v399uQQ zHaiQ8gM7v#LO-nh5{^nM&0`B2G*d2$0C0iCDxi z)-t1EFXZvgRSP65aD^Jdynro5;!hwYjPNi1-nH6)x9{Tm9Tlyr3t1xXBEJRx1K=g# zz~uCQS5FS-5suh+NM;s2j0sBS6_Eh2uWTR`DNJchTqp@mMoE+cHDCl%nERdIyZN)f zF!%F+`%kXCunH_7JKz`Y(~yz^4rC>wXTVKA{XEggGP5gCv#*$PC*iqbdSX83OH(CD&DLWYW7v@(>Wf<1J_wzIm7b?ThZs9CzRUu3L0T-4UO*TJ;m1{%PPSknDYU&zVOK zEFNfjm+TCZ-VU$d;^pOaltZm|rfcombbEH%bvBNcoiw3I)<#@kEr-+C|M>jzx%vI| zsTpY`5DnYCczd<+%8Tyel`@b0Q;)ankEZjDSgU(2rC?2%q=-bOp{#jZ*i(D@`}W=H ze#iQ=b=bM*Ub#FRedO4KGws&!Jx{kW$~M;ey`AlASGPCUbKnA!?C`02YpRyEq-Kp7 zfAsttm(Oo?=8-x~Wp1jF<#$Q|ch1Z=J9TeAy>EA7uw4r71HgBrb028T)_Xha`RX~y zE5Q10$$uxZJGfKX{L_Bo@WzHLU%no%{W1EV_(t8<@k)V{Se&cRPRHRy*jUHPD!QA{ z{B7kwfC;3JqIDmV3}qKXMYoIL8gK*1D{phaaWWkx8HN%)fhs3C(}tpu@DCyT-=#7u|?5juw5$50-S)IL}BMd)uJ-9XO2u%QnYM)BP}|RDNLrkvohR%v-9X)T4=UFH8?=IHq|&s@6dmNx5cio%X522E0CV|9+qq5>e$81k>EdJGtA z$T*PVt{K2v@41boI1SYf;*K|%Myas=m6jqe#UzASi>xNQpRQ2>Zl|MX0f}%18hTf@7CK3y_d8mBy*-<%J=>bwL;E zxt~BI=Y|@}$(YVKT@>KLE4TmVhyP5+0$~OOAO!??75JCX*HF(I^?%rGJ|Wt7W=J~3 zL_D-O4G3sR@RdIsnOb$hDWC>t3|32k2w!K{23i2a6p+;yI=}gEp8vC7c@;>2qm4b^ z73B!jJ7P!CoRW$mm^vGqMvxh)s)|%I(yEyV7O*EyEmV^HjLH>=Juy{o%rGP8RG=Cm zfqiD|DmhhEC5tBJoF_7cR5cEB26%%q#sYD042c-KG(ZFu42)b_!3qqKohKrNgfg%i zGA43X2D5tFZU>qBrGKNJ|I&O~U)r;8kDHj?-pUguwSGNohIlNNFP*#A`S1_S_g3Sd zJ+nP7NA5B0`euvn4NthY;q#97+>6GZ*6c(*Inn7y=;iv1>^qT7E*ho7?H*mam0!3O z%3gt12X&fyq+R?h6tKdXDDvppSwH4=PM2nU$?XsPz>~kbIT%R@`f~5wmsfzBz$M5-CmxnmG7Iood3(pE8Q zexp*t?itv%_IStBc;~C#d+NTSAOwos(q-4*BY_da|drasV| zJ2SFk=lYF!{gdc_>K&L|<9B8jwFjGf4>YIz=4fQgLu?uH9M%PjwImVpKkfDy1jRu4l!A_TDDm}A_~(Xxaaz_ncfaS9~g^}+dH`X@(EABq?m zV5&jcIReCXQIlexIY~eaQ8FPljCFK`iO8Si5~5Ft!5}!t1d5|Ofj|KurY22to|LGf=hoSE-Y57& zV9~@c<3v6n??Di&JS@i>bTcJmGJ}Z`lqpK}(rSL} zt!U23nPWs#fWc&nF-5B!gOa3rxUtI&ObV`?c}!uI3beCOLWPLoY8H)PR9XKzhcSCY z0VQvu3eigc+aQQxEaO*!1ETmWQ4M6q1gJO8G){ivV>@5?!$WEP(A56D+2VoG7R5oY z*0LgPj`DIUaXUozVyk3pZ~?H>o*I)@5ToGCTuU<+spojs{if)L*r*~ zKz4Zkz~tO)8iz&6IeM$LeN)Y;QGdA686<1nOApaeebbsZjYO2ht$;6 zBKdwWsFU2Y)1o(;oT5g;^R?{c!Q@-N_xNZ2-IFr9W*Dw)Zk_e}7TXR?H9uSSN4Hm` z`+N@UAmO?B`k_6ONr~&jJhm%e#wp-Rz4m~*{hiS*VDlY!PL&dTH2{3uZ|SZRWp7KX zcYd6w`UfZWeqeUbnV3&(-oAj<*CEyHHwS9F_jJHCvPUMC9!~0wot5G6<}2tu16+Aq zD6e#C8^EJjdZ@lQACQ!*BXn+{JO^C{)-m>TzH zLgi28**g`-YHU$LX~Zy9aHahy8p)^TJaGz;gPK*H5oc*a<{<3A5ekFzHPez{hzPm5 zdIq6O=QqFn(#nqtC3N zpyBIVz4bwBXV9lWE_ESTl6b%w046buG!C|^1|nuuQqa2ypvn|}cLuQA=h@YQ*sZIm zY9pD!NY%`Yyk`$+G>OCpurWcSi9iiR#*Q5WFg54BnTd#Z4ppm6mEcsBTr$=qCe^B? zWH7)bo&h*FW`I?DsVde1-X%<`GP26kJn;tC4R^PU0lHmFZad716^^2jP$CFVl*Nw# zUk9%2?g4i{7&eQ+`;k0YYkW_`MT$%)$%8AzB#f+Xs)md>x61s4gaA}wyXuUaRPO2^ zK{esT1SG4hA49YXnZS-9#G)|(jzFqlQdI$%yoUor zC^0fKDGgLvpMspiDpd(^LV!<5LsTDp+C2Y!_n-bsb0?o}FYL|IDHO>2{jA<~6va)W zIoaz1NFIG~bm-VrYhU^uKRxkB@1Fj(-@Nh5f4GB-5qZTG;Cs^m-xZktFI)fg)%?3;Dr)M6pq zqp&_qFWhKu-Che4+EdNuR`215CR>Z38V)V`iKkop?dd=K=)}hAYrT#2{>^V6F13+@ zHQTdy_KBw__DxT}^tB}OrX!6ZIG4D3W6xr9}6NBj&}N&2jz{o31;k` z3VZt*dplg}o2AYqXA(MLt}6 z4Le@|UVJC|arGA`(0H)6cru%46+^-H1_sNBH-U{^FM&IKyghIqz{2CTX1yPC6kF(C zMfoyt3D{zqsW)0>A!QWO9fUq?2x+1mz}B5!)#1w)y3W=G10ZCz_?Q0rk-zrSOOHO} zsVEH)X9i)dRCSp>SJt}5o?K>Dkd|hJD$Lc>#8*t#2xTJpw9*2gvQQOKBTk7^a*4*$ zB*3DJ6Kj+j{N%`hR#qb_x}rX<||mN6qREmDw(7h5G?eNh(+8oQyzP z(ZL9J3}NoMRPNFPGMH7gU%SKLwaPW#U?NeJhzym$9L$uQcb*9*rGTBWH&J%1rqEzy zT;W~S5rNrh2yjx#)B((%K`JHSm6@0mSR{fQXNR$71k`Z?VXsDxd|9|%NSOl!p;Ym3 zW||o%;F6fr`2)$sKPp%IA)JeL)vyVK6q7D#5Z~u&$NfZ1Jwh@RGqKE}aMTw|d}V{l zaZGc!D(;I}rCbrKMmd22RVWOkUMVK&q=a-g(~L)vjrI@vY_2E+JBPHW1e_UA%d5(t z;Y17u@1d%&0uVU3mJxwG6W~bHK)%MrtfHc7N?NsONJE7{W8&1PBw}NaifrMSz}1X} zTnaKGCM}?m$wZaN8B~o?sf2S1D61Gq0q32nvG=BCU}A@{_dGZO5Ty{EVC}pA_#f-9 zzj=7_*nZ#OeB@;(BE~#KA}@q&HZ67-lkR7K{`lgNq!!sE9zEp$!QVUlGd~!={QA!4 zzqbB~FLd)8h8_XQ7_2phdGKy+_~);C!kJRo?Cq5Hd)@WxzyUXrx7rDe%Plw4o|>9z zWyeQm{=~tcQLo*0RLHRF`&wJSFu8r9(_Q_NuKzapeUnrBW+$6-jwh8}^n+2YvpRbA z)BP*YUd|S+KDTFj4$Ul2NTu+djxJveFP^jKE`~OwX*|`4V_D)C^=F;ropnUzE5`Yo3!tK4&j0AU0Zt=FPP^~>wKeKe`>_lT~ z?b`a_=9?H*elIzYfvQWZD)3uqKG2#w6D;ekEo1F<$ZNpXH-C>#yQ%xz^9!L!w^s+) z+Qi@%unKI9Cv)S2alkRmpLUJ*U})%eu(O8z4d7MaJdlxPOnu{MP~&sRkAMZiL02Ky z@_26U*!KQ|{_v7Y;xrE*`j)*v^20}`r8PkCZ6txUPy~QD zsS%|Tt5eGCGC~4%Y=IQ9`s5I_EIDzo08*7$IUzc*N+6IZOw@U(XyI#MuMu`j-1ATe;KRBdZk?;*&T#RV2+YabNAoA&sTp+%C2OZ6)40X9dBN zK|&;RM#wxWiw;vDA=QdwRk^YgF+&8fw}!xXu8FZraJ9(5wo528CIS&0h)h*gm7OQ= z9kWU>0wrmM6BSWFiHIZ+tU~Uidi6#*N2K*dy4)m16Q zjNzd$i4aAS5PLOaP$>1D>)4hlGP603OhnZ86p5UhNE-DyqDik0I}{cb>dZxE5w{(r zD4?p$Zj?|-Rt@s=Dov{IQ=A|sHZx_g2LTmer`i)30aWR27!?GU)E4r=;;x-u1VHug zY_y+}n0O*2r2{D|TdWLyhyuYu1?0%QMPiUz1PF|USq4=K3aT+OIRnE~qZka%gPc|- zkqMI;TOP$Kza7$`QJE7|_MaxCIKQj#R<-Wfk!2}gYxR7_{YDt z_UifVV~?M>@6qf!Qa%ZSKtbS|`s=CiB_Br1e31l25U=FZOCpSj88aDVE>&s_M*=a;X%IXv{x%#q`h&AMh2wfRE_&UY?sjjkmt zOCao;++Zh)oz(;$nVWxPvT>llG3wsBitg8di@P)q-Q8PMk3BIt z_mFdQ-OYYneFNpo!16t*`mHXM0ZZ^tPS2i5{p98*%Sw*zb;vEC>i^_-J!U_$rxKh9 zgGmf-qkjqI>%iB6WgrLYQ}eBvlj)6X1%`D<4)+4EhR~p7{ow4*5B+fbp6^^bbkI*_ zt{^jYb4O;I4Yr|#Amp4O5+p_?ml!*fNY*zK0z)I2i54d0e4QvYR9eUpB1}%z%xMCP zvD9cr2?50BJef+=im92H7E+c9CYQL>Tvi#b7WJC@@WHgPDI3N1NV89z8#bkU&wHn` z#?)+@=91Pf197V_4HtTpMIhsP1`!+i9@W45(9R5}(Nrme8<{B_8(9omqA=Ud`IRgu z5u8C#wOnAd%L6djJvrdcr84dfRovJrF=$Yic!N?k5&$!K6#639%fZ&EiaS&e)WV`Q!{sU{jt*g{q*Z8GcF{z^RvjEPEF0a631DY_D= zk0aKvB1YDM~8DJvj*hMB-AQpqNON>1`uc3sHc@Gnj+{|g^rL0zgnW1D>@tDbC ztl(i{o)ZsJ5>L*-3|czx%!mPz$YY1d$O#!7qEOXwVs8)!R)%w#j!J8$rSKsmH^ zcT*54}S7fmp=PPZ$A5(R|-9nO+7GGpHIsAechDef#%PJ83j0^R5A3Sy@|N`|`;~dU#=Su(p%Caw?z!tcK#( zfcbCU!(kXe@!sHn_XPOux8LayJix6-XZIZrWx9Ut_F(08;7wrtUc`|D6g21CPbTfd zd0}B=9fK>t3NYF|s>+>O$6l3~0L~^er+IpMSi0e6f$c5GRp16tZ2~eN0RT*cpN4xR z6b)?epm-7Z0-QglY(v@A!p);E!QdT4H9I+v>B<2{D&0Bcx-0((To?4i?)azxC4E0k-d}lei zd`>P;M zv1%lOnV5>Hxim2%_JAo!iAA6nGrcUb{2z6D#hx%u4dX4 z>%k^rC1XU!KmZw3$uX*(o>^5w5*0)+Du|p}BqTs2V&Xu)YvmNU%4`V{S0~BY(!2NDN`gO2d)(Shy-w;Xwfk_ z1+j@(0YpwP={ykC#3czFSfa&XW}IeFXpAOeY@84~L}(B~j7U5bM`q)tMt0;_zWT`?JxlRv?e!kt=wC!HM=x(h=cK}UNOTBA$IUDS_D{m~1F1!XD24=xW(44NjiO~P* zFduASXEH7oE3tEPuzY@~z0H%4_+t<5*>kwvZepUYVHA2Jy}cU0^a;KE%HZLL=N@_Q z!pVncr{>a$rq=vuBH<4;PBvrmN1u4(wa>jaQM4D2wwLB6k~+WVsY7QDFWk7*J$L^6 zl?zwTJ+m^skj~sUm5=IE#}DjW{8pgQfm^;}qgHnDO}K2c+1fYAzXiAoDA0MEX#RLD zrV~q(^iqF_Tz30ucPjV0$LV*zulj5)xF_oikBXb@Y^?6Az65 Mn%ifXF}2Lzx7 zca~ab%EIS^RqR{>t^#*NwX$86Pz4MWV1(p&tRK#Y?csp1xr5kHU~l}M$S1`iQnez0WY9Lqr!|qx zkE*FJM$DB!^jHn_j#M;IiT}Jc2Q~ne161|iIo2rTs?5O5iCI)tB5>7Th7z+y(-_DA zPgFS(5}{&Dn?fQp!6%@Uh?%3s=)6ZIF5|f30~2%Qt45B&aO0>$M&4rXGFB5N1!6t1 zyRKkEp)6fk97-Hs( zcDcqdvH)=EIMy=tL&q_KK@JHM3>rZxIWq~UOzMNiq9mVkl9svnOqdfBfp;)fF^bCG z8xb*#Sxa#gh*`~)6rpci16LS-VKyjNv@+Uuo#=_kCz?VUA3Uy{N?`OBGIDI zJ5ai^p7hr|@JhaurjvPnK`^<#v9mqgXeg+*QOl*Lt5<-p0crc#p8EWZuV-0)y0bjm z7+kw`{q)Y}C@gPwU;a0+hYp^7@S&&YPMxSXTc)O?Zn3hdH{R@i_3Pa$uaEZc`t9KQb|YU#+z_ zZYo{Bw6*=w_4}Tl+B+|&Pfc&MeRr$3vsrErb#0}--B|%{?mIHoXdUft94fnA!w|Us zPHX^oEZhG-KYHe4H*fs+Z+;!h_jb?tu6*zfD4;eb_6xUHH~PKx>ll3nsO%o^WDeOK zyv?9_T7-H#tLSb5mw{!V*mZu#U0=u6qVO#XvAem6(E!^QAzuMr1+MO*KOK+&4Ag-D zy$pO2cm-GkMo9FL?`{9^hi2aQ5Fb5=*0iMvv`3F0-t$*~aw79?{=mf41Unm<9Xh#2E}~iRV}d5xi%p7)({63Ug!i-oWG zr;oSYRBc;3&Iz6oTS6+2L`=HeKb*)*8!f^oCF!Ii&U^rL8!6lVzE0`Ra zfr(TMm7@osYDRjm6hs9A8VCG47lP6F9t6im1Oan0mKvuvSRYQgeL}Flojo47N$P)saI-)>t zB~2!ls(RqvUXVFrm~PrmQf}#KcD8xnAJ>uYA>YTaVSJ zo?dzWVy!mO-rHh>>rQQ4-R#$mNo90%-fjQIpFCM3w#ZTQ5Wz_%W?*5MsX>ft9%d1i zpi~uMb7&OHz5nv}kAA%Wnpl`t%K2@0)GJfVA?*=XzNg$h(_)L1;We{#~M4ad2CZD04&xnAelul;HF z!N(rkdvH|4x4F5R?W``2y6HRef#dALV@Kcr z*kd+D{hvQ~37SLiaCfs^45-}owOX?%l6*7Ciyj7V0#|k$FZJC9QNH`wBRrZ?9YHox zTnE;Gox9Yb-7en5c41u^!T^KY=nXKsj`#-f(ypQ$0KeNQQeX(Y0&D}zzz$$b4<|qS zBa1)teX~ao*0U_I6%y6e3#iuH$->#xG*uRhWgPpTlxk%)AR$WB$`}K|Tao}?wP02l z3&2p~h$!Yf8%2$k#)0!$)gN*RlSCs&%Gq~yfP9H#7RgaDs_l%z0$8JVc}o~q^t zs=~X3n1irSnd&oHJ-j)boGbSp^ikan=cc2rc2-_|gJxYU3l&XKbA4i90%$<$>)rfc zK8G)2=I=ka>K6=Y;zwZ=BNEi#Xc#Q?Ul8r2d7 zkXm(0P$}dXk*cMP02crUVuKJA6oJIxh)N}fd1KOD7iEPJhw;YA#7Ke`HfgPzBWbEy1F>>Nff<_@Gg}-=nHt#%Gw)TyZQ9c^Y&(*X{(F^(dt(m3i z*e~N~z{T>>}7;wP%Vv-yC_cp1ue&s=~rxSer~;ODJ<=kc~;LR4;|@8l$|TU z*RQVKe(r^LaryynwtJDwvH|pfuR*hO=Ni-dpO|YhCeyiwESIkWF9ElK_1^Y_iJRZE zHzc5P&>nSL@1P2o6xSxYuMhp1V-Nkk?^)X{KKhH-FCZ#3+22YUr>5;loq3YW02VNmDsk1nC zir1***{5D5st5>hj#;^Kh%uGG#Ki0@3Ybk5#Bk0Tk#nli#NaAlVkN*OPGYGBjU{`> zb zq6#jg&>{yDyVT676iKUAO7YdNEqBWIZu-=f`P3|Fna5rl*EXdyRb#0&7Gr-kVJLGI&AaE#?xCLUtW0g&bqv3N$iTaR+w4#K+M%L^4X*=7fL86)$zx{^ z%pGVst-U(Yi9>46x`_tIyv&PHK7h9yapMN8*LeKQ^x{D_iX(U7Tz`9~rZ%{Fg_h6t z78V=#y=UKK>sY?Ck>A?tZ0Yjlf<60eYE(nm+bB+brlN}~C#`QwkQ-&{c6DY`G;xOS|xC}}M6W#UbsRbgQ}JIk9}i><6) zx>Q{YuK5nwD8Xv?_V2#5aVDFG|L*_ceeuLc|HEG@w}A97Kh^lTUw9ISrZ-pDzkY7x z6Q8{Fu}`ka?Q*va?*g9z7Jzl&8DInG0uz8I&uYSmtW7gk%3+sbw}DkqXSbOYfN=0Z zeB?XQ)2H0!s}ujr?+$ODD**-qZ~^5tzyT#NOsDdvo=CpygUz#NS}E0j{ZD$o`P+SL z6ytfrq&@U)&7b|@_76VVZZFtW(>wSeLge58iBc%R3kacvsj-*^whGW_k{3QrL773F zPe_!B7*a_$d!JRbNw9+oI8h~LGO4-{WFi17IY1>!h2JmD4$! zsTsM%lPZ~rfQ?*|!W5$@w}!v+`<+W)99{fzdT^~_wRCZ&c3`o$bfUgCn&@xUy6b6- zilXdqQeH@{mtoDl_AK3cE?+}!rF4gD6no$V>4Y;@mnQ67l#ma!2u3QE3bZO2DGcmL z#~$|8F;*y`yPJP@2M|QN|J`L6Z=_KeY=Eke0}+d$lJp_(D}^)_F;x>G0{e;%2}pz* z63^@{ROm5rX;vxLF|$$SLt_MRk`O0E2`Z^Ii`5qU5P8IXES;Zh27|N66?pZ|@+8Ezdqb?cvfz&`LT^*VXU1J%K)*9cZX z#YC8$k{NpygNShgfTL7H7pr=vfI%Uk#3?Fqp$ZJ9sz#p4R6~KveF9GU`3qm2s7t%X z5`zmn+d6qw?PSt!)Uu?nnvtfm>5{F7zyCz0raB@(OJU>aoF{=XrJevdWAgA|u#2A2 zfKC4oA8UWC{Lp>VPt@Q?d05>n!%hgJAkkTfg@&Lbt~&`EJ3CjPcZrTUM^qZW=@$Aj z_%3WM05aW7ryG0PlWA+Rd9^IOa}Ry{{E5@8=0r0exz&8SvtDvmk4ZA@XZ>&DUoqT6OPY(%VWf)Yq;R z>o;o}L!Cn%F_~*}Bd%@Y%{Ou6K|Ot}l^4e*mX==r{SDZEIRC=`2hiHYk3ao^`)jjp zO%H8dT6z72ia1XWzT^+Q&cr&oO#tCH}2;YyQyU;e&MMaeV&=YyZ{Ho%m0Gvi)!W zG?|=IA#N#LY;#_RDkw|i6Zu;uZ)>nS_ zHYn_ULVxH7Cx7lc_a8qXlT^g$Sez0wv5~oi)kYGH60Q&xs*ynC3GB$2SgMgHAj|+U zRl6LCRdH^_CUG1EDJ63Z(HKotLCz7Yjs3q(iIv!a%p?-;l5Cx0G4c+orXW-Jln5Hh zdxn`x0Fg%FgczoUS|@(ya`*g|0oL71H2vtHK6xvxm9*+;^?YpbgyxfLE6unKY~aSr z^2tAH#68o0vN8F!Pp)4*pAH&)=~nCTsU1^MsBXU z?mMP?`~Y@?zJX{=1*_UV)%OH4RBR(tQC8q21s088)NMNK9j){`WOIDSbz~sR`YC$ljYUJo72DVTkE)DQ$f*4K9h56#xq1uZZ zmCP&yiqX2O56S9gbpp&qHUor!UDY;%37N+j&?z8qVB(;Z5Na?61y})ig1|CVupg2N z8%su&&!<&vVUk^fyOMc8Dp(nmi4`hLb+Kf3$H-!yXhhZmh|I_mh8jgCZ&0>q@TBU5 z1*$RYXN@)rl1YO_)C?SukgEX+b+NJD|69L$;}3szFd&&51!#BHyCCH!)c}^w=zE9z)LXp^WU=C?xf) z2!c{v<~b3GMJT1l3DqJ{zj$%ypTGFX!TSAmi9204@H?ZMn=%-MX46I`u|*x#XQ$P; zv$egm@!Gv5u#s7NLd`$g9X^C+hX$+6EsvU6qv?}&d$U&07xuNL_SWhQq}ohu$k5#N z*WAX1Y;a+9uzC}q_PdVndt(2-lk-y(4aZK~wYBTr?lU_;;!f>5{r;tW``SM7sVB!g zJ2Tnu=jXp#eCbo0gVk%mD~k(@_r3SN#gmg-r?~^QL#O5!j;i)koop}P{0r;P=D=5g zOG>lJ+`h$AlWA*W;owB+n=gH8HLToTA1xd|JGtk?^xW~Owdvlq*RRROjnQUzRCe;B zS8U(@CY)QKlNY%B*=t)r^Td5rJB>$v@@F>Mzw+$IKl|$S|NRfY_Fo-40Y*L9Oy>IY zQxi`-aPUVzaOm%T?D?<$)+#ouCrp3_kWJrDr;fWBm%VYbd*#J|GO9Sp2o%P0ehnOY zDE;nlU--dC_dR%YZhCJ>8zZ2A6Y=iHeu(csF#8A3cV6vSP5IO;ojl?nK09;b=w#+4 zae=sm5)4O=CcpIKdp^3~HD}!W9-DdM{`$;>c_~Q=(V|82UJO2A5s^qRh(R?%6&fg_ za>7s(h`nzg zW6z;vy;H92&}P!x86@$|O-SeYSKQzK*LL9abh@|SirpRb?c&ClZ}|6g>Mo6%8XS2d zDGL&>3Qvh~T48yJz*LczcguV=fRxCA-tq(P6Z}Lo=g}9vly%bJGR(r$NNsDFFtn{)kShqA|_|P+VfO{Tdsu5&4C33SOwpzbOeQ5 z31db;Wk*24Py# z8U&DM7E_FOXH{2Ajg5qeoFfD=aoz>xjDCpK&} z+L_nE;PT;zWM}7#G+O;AK#lz;_Z>fUWN~&XO;buF60%`7lfVc_AADqf z&;I6Q%QL`Y6wD$hN!`T6V7m`|3Hbl=_21F9W!HHp_RTrh+WVxN!^^pHMgfHaL4X9n zAVxu=D3T%-*;31v)l#=DclWS+SQ={e@Q~C^$#z?Ax70zASz;7OfB+E+xeA4fcokkw z_r9A?-g~b(r~g>zzA8{?pHbtDsyA+hb84RzzWIH>@AI2?kM%Z=uRYvbUGJ@~@!Ba6 z#R{X9l1`pKzIE|q7+eGhG;Gb${9>!q?d+QMR=w<9srIhpKvA7u>dh}MwnKx-guMYHhSi7DF%?L#S1L;MwwhPb}9_iqZ<6P@~D1$$9mOm5KAe9U}@^A!fdIAWb3z)DM(y|h?vPe!IbmO zcy^E`kirrXx#n<{Fteq^A|RTX%Y`V*BrwjuB#{PMqE4 zW@hB%?%7`mH4vCQ=T3vb}tg_Hz{K;DKQ7fgEJch+MbaA^_dNfA_b)@XQAW)wPXRFHW9+x%2j$^BAlE3&7*R z0#2N5Ek4qnJ2EbNlLJS21eL$^wf&uKJ=!xWfE@Sbkjs2Xi0cNfYR=4VN>VtJCzl{Z zc`Q%vji<&l4A&f_?v1+=1tNhkk)+C{7pM+j|K_bp`GH$IlP;~TEq^FRt#)sNsTx%T z8K+HYcQM_1`n%>z93V|oGc^xI5fmV6tT8v$P*^hwr7$Z45Nj&>SHIW(#2e4F7awS3 zQ9$#hRUC?yR+_e^L#_F8-Ct}iEH$Z@?p*6{e*SPByw^P3Tj+K>WwEn4!tg4r0yf9f z-v0i$Kx``SZ|;r8x2}G5ubLiDf%k8YHZD&4gQ9<{#?Dpj{yy-Vz+YTF`|z0)$CkS- zG1HM7Oe<}s6?BOC&iVT~ol*kj5MF938;o^-=#$ED+;O!7oCMnYcdBMuteue#=7e-- zs~+t-Y_v3AoO}Awt6%sow|-sqD>NLCXu3b};a;Vqy=?Oz++3NASEUy#NRxD0cham2 zcLJ;er-4h~eyDR4z#se3Bjf*M{H@1dsPS|Mvb2cR#lQ5i|HCIf*?Z~wCw}u+HvY!_ zr&=Xb)gTyTH?&44ju!u?zcT+Pzwfbc-I%)4v2$zZ&a{>mwur{wX_n{Y@BFP3fALS8 zyu8&|OvjIOPOWwqmZ{Trg}FCg*NvHYawl^lFdIx8FTz|)y3Cld32S#XYuHV#Mig?_ zltL(qqArA6>_+ZTqePUNHa z2TAm%&bq&)sW(QU0Ax4YF7*0Xm==W*#Gp0d#Aeg@gF+(3%_&q{wMJ(e`~Vdli&MnGhu!3;qusW zQ(x-+=f7d!(Du*&?EJAa6Ch~qKk}#I8y~jz+NAUZ3#Ngbt$+xV7!yc1!9DP78G{pH zRvu0nZIBDu_YsBw?>4_6hT5Ued0Z> z_dMHr;S0mVp?1wtT@rb=?YQU8UNTU|*CcozDi8ptNNzsErsgq+XFrUgL~gs8^>s-u zR?DLlcmyJOV;nr!;(*9wvXY4$C1oD~gAs`Qu;{qSzvtE=7a%|*iTdnE6<#|*VnV4H z0ghk!$6xyuECO9%6_^Lk0cW{)p`2fDw|d-}r`EiaQ8VF`tZo2o-fnK+9vy!qASy&i zM5mTj9GHQiDRC&ke5m^sOqx9n4so3V4ICnHPo{}PSQyUUB(L4brHmAuNUZkjw__U1 z^729`+C`Z6X+7Gw(^^=H3-dzdv>H^Y&o=zPGwWVW%m5Lnm}B z6VSS`KlvA5e{{P4%<}4zOVo+ilSvC?(iv$z@ZBn=7@4~Qo(?vitE;ab+Ry#a6tG_K z^7vq`-nk2G18rag?Coz&i_}yj#o(smYj1zCyR*>^MX1KNM*DYQN0F{#|25##z%4AF zI(GKh+H$MZIN7tQQsSz=&o{3VFm0_b^yZ6Zim95_J{sG>fo=?{yBmD>dOCV$Jb&N$ zdUAC8%E6#MxU;i+re1gFy%AozrgxvO+T1Liu?NqD6Ycjs_XpoXwQ=Lp{(SGWhTa=* z+_`#jC)E|u0Nb~3Tv@(#qFik6Y^0r=b;9Lb&b!9{pGE`}5y5 z{O;*PxNEo(v9yBH@#qI1diI4Mcy8yF=RbXO|7VM1kF?yUCP`)Nlt`vj#?w!WPKgaBibeEBzrN{n!GH`2`7cNWgjdkN8@$Sc*o ziK-dAaRyA07?DWHom;W}sZIYc{@$&ZK3V_Czr6G_-_O7Bi@G`L=-N_e{^0#j*X6nw zD>N^OTIKsMb!60DEd^-`ZgU+wt2jA7j_j^t0+N|~J zZ8S_w6auM&Uyb>|tn zjq+6rLJes!V$1|IB1(=V)MBa?01}*t3-XFRstGumwi#{;P;dmmjFTJFy_Ny$fH+Cu z){k~NC5<>13slTg(WCa9#RZZcxXUqxR$#LV($ofkl#l{a4d`TyNk6(Uau*R9MIo>^ zwKhrshY}(%X9_^=>g?ncRGmD*nIsZtC6Kr%2@ZqL?z$|@o{UfcoQ8JoQcD|MSZxif zffp;)&LC2&9uBPTl)X7KRUNj9bpAq{X{b$$kSz)`mmWuAGbt>GaEwe4Ct7^s51JP? z9$sjj5IDxoq&Yxck5lVlKa47$>mFaQ<0xwB7WLLvQ(Xu8f~Y7Dc`^w&7^SW0=oawX zz$3sD!25x3rrlT5WD%0G{k*BZcK7uuw@z8P+*&$Goug??&{YhMp>=HK-1*MYt|1Nf zcy!?72K9ul+#Of1-v+A1#n2=h4eBJAjCg-g+_=uyFWL3mT!zU*54Mk=@5CaE#(Mp= zySLujcw>=|p6zblF2D7St>ITcjk&!u%Rg}XiSFWs;=bwkz5Urwz5dzX8sAu{+B+M& z+kP-W=Oo4*;ETIk-?;VW@$M?_yovGF+rX;{JB(B9g$3}*iYFL6|3@}}#rc&Fv>rKs zs<#g;7)BF}4j@Mn*75WQpL*`M&t19vnQOOqk3G2pkLn~;JB)=;SF8-8;BH3dMAYPt zab|;6sK!oB0BKHdcug>|1fKw6&P*jd0j9~FL4h;bP*d$j*&y$vt`k=!jzEBsF|(N_ z<;dRWPaEG3SGJKzmla(74s7XpL1yK^i| zl>oSaOjF__0>_}zyE{1mp)Yk)17ke?74o~i~YCa=f7GWeTt*h-9pfwpm7xC(Uo*!m_!p? zQ75EER9iMxf{9RIz&K<|o4BhbAXze{N?~v~`61qoXQGUmW%VPtzoQWzDu%P#n0v3h z*#U5cHO4U(o&Z34b+ej35;eAOdXFF+WOt^l~a$FH@;B=5%K;&b14;UfaEZs zk~^D$h?p!7n+SO(a=3hFCUrg$=Ya?t%AB7t2szEXJ>q29{n;Wbh>{bC*Z|`a)Xx4Z z_ZG}d6dK_LXv#7&>cZ7%N+=Bha6$uT_LQ5J%?0Fw%BhvYv3Tq+khPdI<1-gh7z+R} znPaD_Qs9dJ_?n#p)zH*<52 z5#|n^A+jTp6mYoJ9^gPjdbbuTJNs#Db*;MtKbV><)T5iNg(t0=#3D|cG&h&lR$GqB zJp`diY6JwtWDs*{6;2+6y)g=r(A|GU|JUC?c6@k$=()4FkW^l)RHM+0?9{PN*&e4R zOh>5GAocG=Y(DV)y^ntQ$glp>?Two=$2!p6JGhPd1~3B3Fc;Hg3HlboZ)5JKmQO8I z`q=1lK>q+DaXyyEx{JqKXcdEPp8EV`(1|NgEZooa+<3d9=`QszV{e=HclvwV*CDrY za@=X-?k!Cd<&Y*5+urZJ{u1`S_9;}~72X?Hj-+Ep=A~PTVR=4$@;9!1<@Yv@KX_`? zgyHp@z-0_>SGPYD--lvNPCjws?awwC{_@qAwSE4F)>hifr&mKbvb{as_~rr9@7=ok zYG*U--WdUxfC{K7wB{BTL$OfVJO&Zp{wkJQ-L>e;sVFIMQ})x|wB<$61+3h^EI595 z-*3F#|8ANSCbtML+>*JtIyop+B9ROXb7HeXsBjPFfk^YpNJi}D29OE6s&FWYgF0MI ztcJRy4UeYk3b>FbrT_?wA-RV@K}=_$K{rQIDuM$fLF;K?A{MCULpq2(FnMOxt3>f+ zs4Enam_ZDOL~+XLAtkGGmj)r%mVjb3q7Z^Lli6lq3=$;G(R`4DG(%RH$jyk{k=(!( z-HAA7j|#4G&T zmC5wHw;PTLUO5``0(%o0-KeXb)IQ$8NYzO}QJD0eHz!}CgG6^HaYrIl9FTFpv$dQF z>R^V0iCo;>0)6}PKNExAodkOq7YJF~N$=E7(Y;a}HD%{OZU%J-Be1x!CD-K6YQkYw zN~tNaL=tOKO>Ao57+^`F6Khfx4k7|ZYK);AqZ4x^Pi6*=0;FV(Z~$D%IV9uJu~mNZ zg53B9fDW}E0`>Cwg;3`%&cnS;4(ZJ`p>|UDmLtgwiJ0PD;0erALIX3G1aEN;!C7)IDU+88#Ew`nF&R0P zD1w9B+@YYEnk8)T0Be}oOv#zWQawPk0bB*@#?fjq1w*dIAz?@Ex&w&Ft*$8$fo4-2 zBMy;*WE;{<+#?_`pt<@@Ib@;=ky%m}W@c5c1_PQvRCX_I%^z70o%Jd2mve2$8UiK< zQ{vjZT3o0)y%tgciIIVlNOV`BWZDp^Ljy&V%>KYH{L9wu%g-#HSpX}kiA?KhJswlP zzqNFj} zy!fr@t=rSkMmhnk0*k<9Z{G@?4;Hb*+_nDzlwHAxwE-=W{r8u&E6z1iyjI$2Svb{8mPGoiRXrDBSmtsfC7_& z*e!AqV9ZDyLuwjkAlOXq_xR6*5u#&XgHKj_#LnJ6c+{fvW@OL_<>UbhO0Yq2yW_Pn$c-)H4+;~0)w3b ziXuAkYywQ=l$Y<>Vs2T9CkpRaKo3vBvp#@#jfKf`L7I~gn59 zh)qb$Nek2Lk7s~M0^Hm*3rhqS0<#(mY095CC6*YiA!nin#03kqt~i?4?#vtlM>4Yz z3PM)QgTzu(Ep1L^_Ce3Jy2l9Q$`osN2MZyA8d#gi0VNVe0W~KVcd%rmljp949M{dh zA+_xKgaKp@XQP>am00q&8pz#{w>-*!Be{^eFxXvz=;rLf9j=ngj)4Z$fz^%#Du`=y zIB||qgW%RCG72GgDr^2EvjPJ*m5lcW%neLbRaG?|VET5ZgLS&-E)okNFqx19N(#>7 z79msiygAgwMjjA?J0Yv49NaYT7lA}A!7U%oh&iiQ918c!k_z*1(CqKipsAg-ncN)i zn{DkBos+7u+3%+&1rr@l){mel8YIuR%@87GH#HH7gjQMgcR6;rAVRotb^Q6)A1V2v z0y4$4R!*ZdY3fmRV{z%>Rxj*rH@CK`UhIjm6P@njLR=gY0}mbRT;1y}eF+;O5I?8;ysz7v>gQqj4MEGdNfUt}HC-(UWs$ zPcN4Y^?G6T+=iTizJRoXcpSC{9RZgN<9Z_1bk4@|A2uZ%j3!^a?jLDMn=qX##-(rF z#nfGOjdQG#HQwMp2-O2uI`CLV5pk0FtfOu z8*vB}f;VodW@cjYlmMP}WfNsQm;)S32*GMs113fUG74nmscynV242*IV;TT_^Y>rB zwRq|5ds{s;2klNQWYU=?Xe(G-P@?pw))`a#?CtWQG3Hvy9a_6{MvX$qOCr2+yG`x$quh` z$xRaq2w`-a06^*1*llh$v?P%_z81RwbSDY?|3LC8aV@-+hiO5swKa zBRK(xfytaH)dmqt=0=T?M~lvKC_zHW*u`L`i3|;~)Rnt6KHb9j`3zz_cAUE{aw9a9 z_kSqh<^~bKRn^TAVlZtiXG3y`gUB?QrWwJ>)wB0m3dub%>a{xDV+hVnLR5!w5^9Bo z`8iFk_QDEk zjlCy($4)oiq>0vbz{t?Z{NfYyov03L6>DqdWUN)~eVvwky}huzgsSfGi6R_6*ZGf8 z&<=;S`OXP4Yet*EHh4F-1RTc$>|MQq>9v~9+A4)E`B>7Z9Ne+`_ElgXve=r_p0#x- zlUo=2gU@s8*>Yi}BHkQSTN@4Z67V9rkDYw#{*(7Fu5`=JeaipfIb( z)dV^KI4-WOo;<=-+_|JS9)sShbubw8F}MfdeAnyN_6uLW>~rViv>f+vyGPrK;~TiW zk59jeZCn9xX}5E?zjSu>z>!l=&LO0xCRGAE89bS*o4Eyv(N*22E{v22wR=Q@J6sb% zAOW#MRFjU)6EQO}NIj)ok3}v3<$z|YjF}J^DUq1#$Q>-=Ad=uVg;}=Nd9D+3!aVF*{RLPw} zbWLzjQCLbah%g6Eslm+to+JiK3Rib=P3-I}43{X7DXS4T+Hk9-2eNy2ItJqTllrBL zJFkYtNX@t2s6YRc>sK$!U-mgU)6Vo60XQ@5lPfJC1A zCIw~`3DHy8AW+TO_LAQmfita!4i|dh-Hl-W?a$2NaM%eD=EE6)x#kfI!5QvuN<;|3 zLjh}$8lKhVnpp!gCUS=}=L9Y?HYnuWt#eU0NUb*-*!CdY+UYo*i~RQ7{9t8av|5Zp zXH|v~t(IyZWKQZ(Vs|tYL9VD8ZA=jA{o?X#)n~ui0IMjTl+aa63{z@^2&kQncxs63 z3XU_w6SDb<$rBO5*}+-;Cs*>qjfDVe0D-9I_Fht^@lH0Fj8q zgG-d`krRyAk#VsM%HwfnG0J7pAU4gHJa$!b zBX%NY4o)OsbA=}k(bPZ$VRLszO{N~wB=x!tXrj%iu0s+moH;eQv#s7V^)T{?yiEY| z36LnM1z}@o)ik7`Y>5QrAp6tb`{w=S>KW^{`@vE<;mw35b-PW7qv25Nrs%ZFg0!g{ z*PH*|Xb1k5Mh_xZWl5=~$<1B-n?P+}p7{W)XDh7Avwy)pB&X4$P@aJlT=y?OX5{f%ekc(WQlMi(9vD*LU9j4DcFvK9I_4_kbpM<;Jy5U<2{K z6CXW&>hbQ8qpj7lh{4*cy_>t(+nDU^imVcA*gN1mZ;Y?KbQ{pMM@~QRU~z1v)ikPA z{q{xQ-5#}XPHBnPSLO%v4|zY`xHvj?#-$*xN8h?s-@0=LxCu;`*W;=CibC4vXYX8^ z&dHHZajfcf>fr*01u*%xFLS;1g>SsEG5>Vp#bMFzFTsIMjq3wkzB&Zn0I;_|9q%_- zOAv4*tI1tOoRl2!q~ys>iG|Au2-HYxS8`!UnL+6Sw}N3#!9Y{6BIEVF@njqrVi}+a zt321oX3g3S1|laYY2y-eH@JI6Xo$(Ogphn@&Vc1s!z_gyu2)J#9K>1R&deUf>uP3y zgu8*Fm@}9eWGR^{3xgafmtzxLGQvSZ#32CGlT&_zl3~^c4i=&!s5TVDn#LQI5Z&34 zr=iY)JPC7KZ7gO;>efJ~LY+>B|M)W-^ZV6(EBw(9&b6EA@BP}f=H~p(*D<;j-r8RJ zW$OL(`xfxc{kuE%sg1GTEC+K`Frn9y3LHpPtxh0TgRpRn9Mn<+gIjVdtbsJ1Sw4ZG zW_fpmJ94JSeAWs4jtKP5E#NQ*<{1Pw^GcG42YZMm$*}r>nS_^O=mOsE&m@)wY%v7_(J;1u;Ob7(^ z8Qz*;#xTnV3Q{6LjzZ9ki!o~gAO{@MHm}*r%1E2iYSPB685`}GZ$c~ZRYKor-=&h~ zLE^cdo?EXus^1V?bMG898Kd8kp0+2J1Dg*cL` z1CH9cB@95Dq=e+n$R{sj@~J}?y#3(!9+?kJL=uCklM#go0ynia$(^Z)`wh}zSM45RXsEx}zmoP}cf1YE zqn_Nndad8P*xz~u7-H@5x%K79VK9{HE*)Io#P*kgP2hBxTPKqKc5~~^mw+z=r(5eC zisR{^+wWI;PAryx!&4OTi2iOS4-s)n${zVEyuXI`}r6D@bTL>21Xlq?o92*U0?|q#JX8eay~9_2BxSpOf}=Yfb6=ctf^Tf zOF9%7=4591xJ3*iONl&3X>$hMW^t43D{(V*mV!ix12iEu-prI50*JDrqe9}O?utVa zy(PF;yE93&oU~$Q z7B@F{vzpy4ndY~gNRt)ff9=Q9U;Rh`FNIcp{Z$)R499~V{rIu;__4`a ze(BQwC#;7dJ-y6lk2+d4jFBo4Vy=udNa3?^GdnR{0oKHZKr;ZV<*F-p&;2DZ2eTui zAP%*D!addJ@J2xQZU!?KJaX8{$+PrO6z0qbuF76}YLM4W0zDYqe|_}3|HEd}Il1s?l(^KDV{d=s=#ja#`yP7xy&t7V&yCKmjpsWh zPdXxPg~QZpPYmTAIz7bhC%-)Ur@th?DHKn3JLgg(tU?5`7I{gW;0@&=Ff!^n90L8b z%}L>wO9vbT)+~-A`-RBdnm|ZZFs;&fr26&LYSBfF*P0w@=A8zdV?3FSSYm9655^&rZIMzBN7n`c(#7W5JS`CmN8-x z(~60Z%wjuX{%fB)IqE;Kc6`ZGWy47)wao#lCZj3^YV|rz-?ul1NPFumW&dFD#!a$u z=h|!X($^2p|H$%@UbhR`N0U`dpbv~wy@*KxeGS+HO5j!8ywP7dh4M6=eee9z$+*Cy zgvplgy>@VL@e9BwfIdpq%Jy!igN>ch#_NEG`6rf+cOX0+wnsNd*t-RsUO0MsVXZSC zkd*ojQ%yVl-rc*C(Y32Luj|gGGl`qwov&hN6Kp8vl27~nY1=y!(>HD`-n_AxZofI& zzMt+sST2lg>cBSed*hquuI!zP>!V(;SKK#0y!HSFHwUA;{he0X$;Xk}wyT}p!Kfy$ zZvD{^0DuB>r{emF$_7dYraG;wTa{i!^)m1Za0|d_P!A8>)tMzF%wXxJlw%(VfS5b8 z5Q{rNBkg1zyygq?F7l#PX7FzW>^HeiuUrB=dVWk!2GkhK+GGYM` zlX#PinTgHKQ{#r&ew58ac~%Yf!@rkBToareq^TluSK|=iZn@iH=C5atMQTPS%p777 z%Sb6o<8fz-acA<>llJwuw2q41rkRW1_(bc)e}D5I{8;l-XJZ-S3-`0k6S6y&M4 zSh`CYn36kl(k5j?J3-(M5(is8wUdy6iJahSB(v&9CIA%frF{MH(ErZr@As|;vqXTK zl8dQ2YmRInWXiT_qa;j3Afep7m2+q;ZZ$l?j6)=5wFY1*j8cF}-E>~KsK55BHx9-J z7>_4+SIX{c6}ltL-`+m|#;eyq`^oE%K6B~2KYacDAJ{v4qMDCHSa9?NA)xJ{Etvnz zZ}k7_pT3239QaUg>3dNhK?^L2ybi3+6S6jO&NL@v+m?Gqon}l_jzu`-NeR0n!W#!* z?2T)c(x__slj%05{|odgngq0f1>iB@Jg@@H$FQWuyzwH0K@FM)^(LBK;4W~f+PPTa z6Tl}h_knWw!_@xX(ArD!h`2C<*+?uYr@(u4bIxfb@j#meq671Jb};Q4TG}kY=YST6 zK0zBVj3-UKW0N<%{~YlA;q^cK%wJr1-(#&9gA##fMexk#B%pk^H}dSz26KiR<}(pf z;N0MxYywI|Y_q7KG8Zl^F3Bh*lbCZ9-kC3Zy?AYNcm0gF=gt_hp|W}^5@FMJt5b8` zlFqaWgvwdb0D-}1QX*1{%=x>fa74lO?_D`r@w!vByEXJQvLM>9QEP5x{&brLdvftk zW9`YwljFr+YjZ5S*EgXy9UcGj7e_z-Bh!TwWvg3aG&y{r6Ph9F8}JUW1sE^^E~EMw z*>^1+TU_7E@63PbSbcj$#*ELR^r8<%9fF`Xo&{&YNnWT5Hn?~;V^Y6b2TiHNNN(L#zEvT_7HxA~~ufSk+V0NL!3gAz$_g4Y&GvXt_E0CHxs#$XH<$(nx@WW#An z?#R`rZYcy-bBGY!tf8zi8A#pK;KVUfZZKpPhFjxF9pa`U1pqU~%(wv}Az~KtWC8+{ zH4T{>0FNP-hJvI(AzUY@17Rib;>o!m`5^x3?}h&5>eoIqe*R|o%3BAxwEy3tbKiwx zO8uXH|KdlUnxAY_n-kKms9OYi=`LhK0W9KfM3x)H14Be-QxAXw=g}TABHFTH$C(iD zF0DVa5$K)}G<(s#eIb)LT)`rF@{lis4&po~$lh=eLd=_wd4d}YI|V>yL=A(wz}Yp7 z8@&3~_Qs97Kmx9NwH3;qd8;-OjpK4{*pIh=tMk$qI-h*_`p5s$x4!3x4%V^O!xFFr zEKWBL{@Jfx`G_n@Ao)kY@>z;0nsbY|gh9 zf@Mk4s4;dke=B>APUw9Gqmw?Y<@Rh3dl_1~CgC9m*q|lzq5%-jQ$O%*Jz!Haw)Vv8C zDosR2sw;qzAW%cB096*$s=C^>!5bL-0q`;~oc*5)-5>h#qjTMsHPK0s+e&A8G)kbL>;&CSih++4Z79uHe#?C_Vn zz&ua^0XP790C(HEyguok)WNoIU)IU3ZNKzM`18O7y(c&A}I! zZH|qN*^&yA8)x~zpkN{ngoKn!y2%fdGVUf!&J1^=D9n~!{E~Hdb4xi~0wp(N7Ld3l z3V|qq@-fT+g2=2pSR0n?RWouEuo4k7%pjC4?QUiS7M8$Zf-?)b6Ek^IH|NM^1j(a@ zkc|*T$VFA|&LnDX?z7>gQ9d0Kn`i1wWKRwWFeVOp#0NI0Wu;3k?`v#o~W3B@O|h0&inPjXN#|r|BFAc zt!wjt>95Q!mb+iM5muU`_o0ccAs2;Fff`)G)mWmjk=Y@ux5=g}0C38tedbKl0SVhI z`}EEbm}a~;d|N+ER)>*m(&6r|NlAnPNE^826oNO21VrRon=wlu&a60)!a0HkZscmN z1U0izkcqgF9W*BOz`PrkkO z!0pj3dg+DY(l;8^1U!h&_bng)LGX&J5mf}E(4i)R6#$7lDU6+FXcBTyu0(k_nzL>M za?KZ74(8BmI2m0}2VX+-)merB=Yj79e@u=(vvOi-`Bb}o9Gz8km*7h_>5h#ii{8we zos_V=!0U5!3uUV`*&aOj!b=}}?sxy>t7vbGfM?juj;q85l2wSOKLIQbnoStA}@d{54EJ4ZQKLuf6=_&oBMRBQ2?- zf{g$Pc_igpdrHKTCuopJZluY{-PqiTm__oopEMCOII=TwaIXx`LI6}1A#fxP+gy-%RE-o}-C%V5UjF8~Yg0!0jgebmtYa(`3yZf{MlyzRGM2EGnZtNU(#^X8oUB+L-v z%Ot}f!n41ifE1gjM>xEV1q2TP4-*IbAWIE+*?RoF4(=TIn|^LRFS zYMdAx>>Z>dX;LR*nw4rp-NEKY?zx+rV{qhzz5&kc4u^WiMuPxPNpl`vK;)LO{w^Va z*fnt;m1=SX;s`T1EE$XBnmjWH2aYXbHZ-J-dqYxaqm~*XadjARXgQZ8MpmgQVqmDV zfyucBm13&?4^ z!wsjegSV`B)PuSOGPcwqx5!6~xhlk_b5~wD@#c%yfn$f|(TiwbXfHqBTY4B+tn0*V zCPT911`f$w*>d1HC*qVqP=T7TxF*lzBZyhDkW5rvG`SA1j|X4H_z!?Pz#{NC@V&h7 z{?%houO2zNbOeh>QFdV^yp0Oj8uK*uI)bxh_1+WH$JTVEW4+QAq)8|aES_9zcTYX~ ztw;aUH$HQA_r-q?JcqQA(kD~-$xeNr=>IXbpY;;v3)AKV`8c2v0MsBvL8D<^h?P{` zrjxPu?^^$5j9&r13T(Xl3xED2Wg&MmVtElVDxW3J$mnZ^u7*#ZI=G?LwEcF z(3>@n6W~M8-Dw*3?}%&;M;ovC&L@E_pbm2ncUPZ^OUEZwk#sfLH!ye$xC(hTw$=ta z)BUXhHeLs=&p`R<#^%*(`{u3=CTKs*$BOx0x7#7F+~zyu-uuh)GPksU(3(zda9f8r z?*I`P!@q^@xfbnA+apYN%occfO4>)M2CxRKwtHueKelq>bZfaR214_T%X9PRv~IeO z-RI%l;QDrTYk}KwVP(zf$Y^&#`}>C1-Yo>_@ZiqdFPp4lY?zLq2e8qM-TzLB9^W0L znwm1-g%jKxQZ=ZA;KZ)E?ShOMYAj;vFryeOivb*50l-sAsuT-yGIGj-i7Ih)5onzk z9}rp7aEO4JHsFGp-8ECYGP8!^uIg??a7!>yC>^k-VTlg2q{Iw|Cbg81Ne~2L@w~CA znh^_`t0z0W{~H)?%1q2mfpfcvo5E)k4kCf8sX4)uN@REQIx#UIITFeeoXFL|OeCO0 zPOgcpk-#%YY$%8#bD=h1X~9ja%AF`O5r=}{ibS#!f9OM<|M`iat;P~@LJJXsPGMW*ZrO`4@TWWb~*2RIb784=Q~b}@uZR?S96 zxHuOaf~Tn~5F8BkccLpk{))%Py<9~QRs|KL?p{%`9Ai6$)v~=_Hs^&0285y)X^o2| zZ>Ll>PE$rAPE57RH2A#h4A4NG|I$$j)osLG;?(-P`K5z%< z0v`uH#>>wx9)EQGNPBe!ogP{}P!~;w%^C+&qzcr*LJz0s@PU=`BM+z3GIbRB+AvNj z!sh1a!iCT|wzU5Kk3aWYPwxEo@1Xy?z>C;x#&{e2|0w4EMD+KdeTIuRs4GPsy%9F1 z1aro)N~sy`P7gM1a1qmQ!e0eO-yZzowbT6n{Lhv@@Nf+^S4J=i$;>3d5s274If#gv z0c$KJ7lx_Cz(Gu%pggN@GazIG9W_Sz5alzmlNq4ksR5isrK=B~YJYN?_U}%3ZmH9X z)T>b)w3bdx`{QaFI`b=`Wz*5s-}&9wKK4DUrx&V}5WvLRxCKteE?P;eh~xH`p6|Ar zs`6nlACE8{r~chr81xNTI(^^rxs~?(obBxoF6-`%tJA#=qyzB*Faai*&~N>6`YS&d zvG8ss#1B`xtsIho12_s&8(-ZYB&`mh-vn-ePw~P^xpcwXYg6_yO;f5cx&zz*&T{#H zS=7m}87Qy{jDQ6o!GJ2DSVLUog(sKRmwF3SP}Av@HXn46I3DcozL_R*XW+Y6UIQZ5 z|2%q&7&s1=q*qX#90MP`wZCzpsCwzZfDy3IO_~nM{yvR@_VlJ~1ZtTk6Y(NJGjZX+|b5rEw za7rMu7>NS0fnZ3W?E3?V@{$cRj*-aVZkl|?ekX@Ai&+NuDv=|3UgC2|H=n%J3`ER1 z`8XTc!YxSfMjcGCL{es( zdG;B5?>KZ8X568fCzSzsW-^-*v}PIyZ-5M1&Ou(!svR-sqC)V!MzD9$9}cI&v%G*i z)Mh>*4h$o$6_TqJ^KDFA4IsBf1j_{NoIry(4B7xfmRt&W0T$N@z-BJ6%V`t(@NC{SXy)$V~EH;{wu{Lz z47+0*Zl?Oq#&EMSA7OeGX{g!DBm!PgQ~ZP!_wl93B9DK!H<04_E`c4c~%) z8Mp|{Q#jjN{~$%RVtE+qx^6HjU_IazumLQEUW)>`h0a>9Dn$2&zyLUn-qQatx5*#4Oe{ z#4|h$1a9gu1j+qEBxG*ZB!Kdi(whX#Vm3gSc@vq4B9UZ!sT-iqB3`STv2aos3gAdY z?#bQ2uvCY#gsCQVfI~n^p47-8?8xG@X2%O8WYdn;4GWXIslu67iuYw7>p$A zO=29#YjP*ah3f`Q1b0tB%X6=Yvq1AC&J6(fP$z zyQ!iRY11%)gA>?Nvcjo|?hTuht7VU!L}JN&Czp_r4d96-X1_)dN>v3WW(G5{%u+Q; z!HF2m1Ze1nCmuSn5I2^Nlyqvfzg?NwbhqEB7Pxyv8*dVmw>cb@`k{aJul623W%r-F z*-9%4j;%yBMGgq_lWO5tuU@#`+&9@wnCC7nMHw%xKC!$OPaLhMz5QDoqrErkdh<#k zBZ>uk-Cjn200?jdxC=0l{>^XQxPPsB*GEJE1G|6&D~u1dT8nCXRdWUYO<*5r5l*fh z|3F=~_Q$uO4qC=S8%rJT6n5)z?B2%W$ z#l_Yn#UzlHJ3;I5bmw4j`}wr#!9=Zsu58RD1e0-t_{?D>K00ED~8VZ78qYZ#$!WhL9J0ZGQxI2=qQ!cLwVM=+1(;`Z%_dY%=a;E?lt zF9?<=Vt((3X_k_OJ2Dq?=vzwdoV&MmH; zz}z~@7DgpngoOg5+qk2^1ml49MNIlAD|%zF^1!M653Qy35Yh6lPliAHi!EGS$1<%x zfu|nkm4})KmeUDh0otB=#q{{e_Cw3z^Y{Kl=WqVy`5$_L-sD?)9;tfWUMD3~`>o;>;@k@xr~mD151vT9bf(jG32Co= zq%&R|?8$il#$@Y_9lbL(-fOL`t}GR)swcN5Xm(+{0%Hn|w?KWkzx~`+@59T0;M-c# zE5LwOEElB+%}C+fzzv`q<-)?s(=?6!gX?IIv3#nvzFxLFUeDFTX|0zHgre12F4~KQ zHQqm<{`M4l2LOtt_9Dtos6mz5v{sso)Ba?eZ(?!-7yw6sWnddfz>#?5*utsxYCqVv4JT#O zFUHjYCO3es@ARBBU_k444ZzdkbY$lG7*};eKu*V04TRx<5zH)K6fzz;SJshxQxXWxn+hLh(n$d=M<`vGtKyrB2ZP+6hZ_fX(EHGQZ}qV5I|vOX@f8n6bd(kX)Z_6WI}?x!)1E2I@C$X8YLnpv*ekAZkCDv zaCJDbl&bC-fX1+V2`Iz?mIyL(cTbFv{c*V<5-tvcx{DDxb6zc@8qlc6K*F%bOL@=x zRxa)|<13xcDyR*u{NG+0{10E;AJW>-oGw?^yQ)rL5TnRqTCOf(s}s`z?3B*pIO4)RNaXrf&#%^n?qG_0#ELZ zE4wu_CLd+sPA&vckeQm7w6NZ}@BSs=>bF0yukfg;n$9#m+v$c@s}(4l4b)Luas!bi zAh|13pF9|dkx1dfu0&n}6}(`toeS5BSzHZ)0RdP&04+ogM)hzoxbm-oKLi#)A6k0w zXBQuNc5WTT0!DlLAzO=iq127Cf}_*M8x}|MRo)*kJMD zlhx0DSMzUPo?`RJ_FI?`aHQKlxf@(i7flkTIuzrzp8oL%dGY7(`?=}=?)JaF4*bEl znYjP|t^P4PUI3bZqWP`rd*% zKt~(br$ywt(Zf&E53O9a+TLhVnr;F^pb$PStw+bB{&@5X<{ye@AM6}ETXyC-wkC;u zbjJ@q4_rcc@6@+$Z6-FU_M-0G1g-%qDAo%pnsG51+GwbwagE8{@tx~>@C}$2_gz?8 zdt4{jyMA8pzJ@#3$B*3K(S=F!?Y$}XHc{TjWQ7+lVCT=6zXlw@8|VZW0QMe zoB;*s9azJQ$Im=|s_3oVO|*AYd3vWA-$uOwy!xHAK>`RVFZcD~rg%>u%YCSx)Kn9o z&dw#n7~+;;?80UV%*>P>GN#HBYzFZXQ_F2o8JmnOycDtI^c1W+KcnRW(GYC14{MkSI{sC;$34Hom`w_kFA^r_>)#59a8Z_ZIh^0CmLB zGO3BsxHBbh+(5apQkcz>CzTj-z>|W(H7R4&VwmVu8>MRoT>3lYIyFFqC%2AsFgR!epE{SY+DM>N z%k{M!03{bQ!pt$7oVrL{53h{w{yX3j@KC^a9e>Y{AAR`Aaf!hWw%^8JFN>uwpm|xF z&th~PRUV+xp{mdZ&S3IheChN*`OBm9hb#a4)%Eke6aVy2^SQz8|K@j=S1H;)wr}ah zbHHj{D5I}w8p>|7*qW}EetxO<(bdO)sr?b1eDyn|c>aSIgW4S`=ELc;^32oiAO8>@ z{{SCdv0@Yuf^y;@KI4YE!xQHaPFr;xw zVDm(p;6@UOTVQ6WrUouV;td%7Q$Kd*H-7iZ@b-=N!>4yI_FFxlTbUodb`2H|Hm9xb zay3C`;fR&((??qM=G>Mp-ThkkO{%8N(XTzfdi-qI+#c;+9j57!Pp8msEid+mY2M6N`8;+dl@WlEzzI0GO)opdrc?jbzAXUB>z@Rly3F~j%9&~$Uy?5`EyEhNG zo0^M20PX<006WWcd>ein@o0Jccz5YU(TygY#;EV~t1B-7SAmn|oHPtB998ss3cCpm zK_|J_CXVBSH0h7}2h)16f#F4rzXojL=tq0U?~e;>v1*rEjJ1co-MyPvLie6AqI0035mFwsd0?1<|>Qx0VkOYR3`VNZnYxa54qCeKCRBB^Ou z80wm48U;xnM^MJ}yTcL)u#{$}UqG8iB<9F56BCr2432#KiInAOcL3%->q94EcOxed zBu3Yo!0sd=fDGn$h#a9h)nbEvYQgjsDMPurY5SZ8)#84Lyn-HeM>EN|`_m_bUU}bskd+vYV4|dN# zhVt(1%WvL(^$T|MRbU6$0k!}Kwtxhz0|p3C0Yjh#jDXuf8?Vm)k86)kf91n}^GEv+ zwwC|ipS1^$-ue9(m#?9`cq1HqE?jyDr`D#!-MG0QhiPt&tHP?w-{Ma^x2+QamVqHC z!M`(G0xa>^-28ib4}Ra`_dPcH=p(#ZwvSE6WeieV?FG3dZwkvM!H)RM%ursOGyYeaGipNKn=nxsvWbV{L}8Y4JSu%>2?*^y0JBZFGSnK>Crp&$9a zb4ORMOh?n@`Fid`XL67_C#J3^CpQM=N{lg#Uf=EScbaMY=^uZvtfou0c>cpjmsaO) zzq)gMw>tVr?~&Ez&5PCgvB^$*vUgW?cW(6hCcDk|qxXuxZMw1x=Idj)>P_h7?oCQ-WW-rDI9slRgzZ|rQ1r=<*S8X@y2PoP>sRk3W7G_D807C?vd>P4PA z-dgB-tF+M`jrWair23(|m&0UuJKcE|69ERm82Bb|{X4Jzv-e&B<3mj>ylY2v0Mg+) zz#BN!GHflwED19i-bjLg2`M4-_nBBC;Q9OqMS_7jHR_EqIT)r4W{yNGMD8+E*h$z` zXEfLW@=BZEqXU5CxGUeQc{y|e&7Kf~#n2;a>5@K~D=fX%tE9U}WA|fk*NPt^%Fvr5wtTuw4I@51;zv zXYL+8sWt;pNQ3T|Fd^uV)cV1Cx=1Z8>coCPKC(c`TFlevN-*M)Tbqbfa|;C#3U()V zB7sdkk~gFT74ld$x?d0f5WCL-J3w4K{_xUM7dG^j>u>$CKldfr>%cw;t3QIL7BC#) zD=*Tc?>qhH{!;nSk97{vI}R!_x;je#;_uw~ga0-kyRx%e{>4u%&HwJw&wq6LJxjem z@l3dSrMh`3?(SEcJ9z7@P#$lBO(%WwNvJFA@6`w28tlG)8Mq2`fS50A{~^_V_7$#m z=Y`3a_G>=q-M=vZ@Ht*>)z!3gOI*SzL5PK1Fp&qNLxrAVz0Hqj+ z$(;=XHE@~d_6Fy&4FeH4M0mbyYv4$%*3`yMF}kWIHMb(h-jY4|bo+C^wNY+v)%B^p z+XqV1g>E-_8gFbYU1+tB#=+fPE!$UKuOI!;(f(`ume+2X+!^PT$673_Wi`bFRc z;50%58^8{}lWs`wd;+uMe{ooqd~Xr}AgnAEtzPhuDQX!XEF$8r+E`YA^Zb!PF5+fj zCb*k1J6H@VMbNt8)Hr48l)8xIm0jHlB&^!NR6;NVO8~N@&Q7p8V+2BG>v~df&h7$f zMlwiMBOx%LrbM8eTXY9V>qNrYNy_fIkCuXD_5(?P?Hx`DT8Not0z}UjgBTMHEDM9 zb5Ld$t3k2?glvlnGoud_sj1E0o$YJfg0mu0G7i#c=#}d|HG#){+GXh``2#0=Y0!JcNjXo z?wRiJ$$xm^uU@hIAu3zgynYZDb$oEAJzwu`Ou8peuAJyCEp^5>r#shf z-5&OflbzM$D<#w2*Y6CuT06PIwNLlc`l;iEgxx!roye^W^PRGHcC@#EF`@o4Fa~hA zv;L7Kk`MC%1K<+sy51X^o&-&r!A%Taa`YJ&%A+5Xcp+72`lGbn)SI_Zy$I}rV^dx8 z{?M9jU^TYRQQ4`hBhZ@wtWpg3rU(6mB1D&|PwNRL3f%`bFrL8sS`eB(#@iTQb-W22 z9MYT^D1h^2d7{-V#yU-Vcd_#&^XGs)G@nHC5-<;(1D--!0A2@Pf5%Pt&gr-?OgXRuCsmVJaE$I2 zScu5fh#3sGCaZ|>d`J2Fr z*+^6ya@W*=%uGU2Bvtmrk~`ar8ZphxJ)V(|1R%Exx`8B*azoAu o_`ndk+pJ9T zUPK@R{u*Nrp7{a7?lv3IgI)7-&t$o4O^I@iXL1pDmE0=F# z^aC%w^g^BPoqY3iDey{*D+vEDsed#zf81%ETV0{jxP(iU)&dWmD`vfMRpAl4CY`A5Z;55OQ zyo5>f5B}@=ZWaHtKO?8QF$5AzE`}m!Ffy5t%o3S78{kOEiJbx$VpZ-W+k+io<5G^LA(DekR|%_zJ?g(3+o&zjdX5ET%Mf{OIW5n>t?Owo_A}Yty}N z?51ve{l57V>+K%zZQdP!YYSWZM;|{I9;4eY-S8?b9506(_15kE<>eEtV&Uec*Qmw4 z#kNf*7`D;*5C^vLrzl_E-+A48*8T7}JOwsj2VUK2cFv*+@QXkNbc^}Nin)csc;MB@ zcXzA(KC0J%F9IF5HPkNc7B4;q%rWND1h4}j0$m_sa)7;lN|Zv4zF}BlbQjZ$pnc#d zCM|CU@Co!9a2dD`C@=sVXn;B3g3g_2v^5z_uyYgsBCrbp=mL+T`vAJD;&T{`b$avL z{Z9DyH|vL6U3k}5`ra@=V>dqeaIYw4h%D9I1DIp68P%NIRpDk5$ce}(7v&Ks9~}sV zqhcZAf>_Kr+y4QO#2h!9Q3+BbG3IrUSio?oHwZ zP#tC>BG(2pn?>}b&>05Kw3&q*@+T8ASxCr0aMxt!TuAQ3A_i35GZvj#n7tuZA|aOC z(n>iM5!iDVCSbKAcqUg$EIgS60U9QIHP!cL7yPjBPXl5dI(~RcBZ1Rg>=8TN% z&hXH8$w8P|znn1x<7cc}N|gPp6c7T0NtKDsoQOSV^^yXDP=JEF5l4<@$=nGdOaT&R zC`wL-6z1ZO{mj|VJ-_*jzjhPwcRk7u1dJT4icd-L64&4F=|kFG6($ZHqM|7F0XOXs z4Fol~aLk!?*vL788%I(v$O~@vw0Uj3`w3LvJd}nbz}=r-dhq*W9Be*1U;Y<=>cWY| zGtGEV-SE~~VKHE#QvB_I^!0#ILipylrU}OiY;{5!H(JJn2TmXP=ugc3;lItgtpay} zuiEX8y#1ReHs5U9kZM7tpayJ1^O}3pmKnFgD9$^2NQ@yv`xsmVZocctb^?Asa1Icl z4?GXt01~JTKQprf_UV89yVC9QU;C-{xdoyom;+#Quz5-qqy-Vp1V%;?ms{Pt*f_x7uomoJ<+asTOC7jFvYj~rR<@1?am_|}Ai^u8Yrqx|fDuqo z`vGqEs&Rih+(Um4gWIsXz-1s1R=9h)rSpptHy40P`@rq5+`GjP7>e2|WQ zpjbTzMBUw@5hlP?Nd!4xVn&kDA}XPk zJwl$#R+#}JcC8u~q7Y1tV_*hc-HeMO=L29wKn{XAQ-*X>kX$V2?#u-dah`Xo<%%jd zHuYJ&$uik;7E4C1uW=`kS%PLN1&9I#&O$oD^KF@#NCL=6&6~`$;Mtn$$u&6BNj(gO>WM@X2yZV+)R;(ND+ky#1Yz<&G?lL7hx(`S|QFA z)G2_91Ccu!-}Cx2lOtQ1DCC&)O!}FLXQbv#e$ON3P44P(9NvsvYhnV!XFI`6c5rs2 z21ZQ5m;okp2U+7BgCjv=_OZG{Q$lp%03>g!rB(k6fANv8ys&@e%E7x1DRzi*Byg?8 zP0+tY{TBMqXnh~bBUCOWJr0QxIiWal8#9Q#AXJ2utgcOr74@!8zA@?lD(ZWKvIvSl z^ta0Y`0s?4@85cX+S9oQT8r4;|Li|`#nzUd`m;xu=H>{k$(6m!pWg%sNFV;un6NjV zPI|3|;{jo@+vy)&i$HaF$TBP)tgPG~y>WB=#T)1p@o2@N6*)RP_t=fZYHHU~w%TR4 zKJcWw*#8o6nPnt=|PO0>;2P_<4w;`On(Dvyt0U{JpZ|&W z32!B3Z|cBBQyTy(6X){s5xh1wPu@YMl%GnM>l6=kd1a}c;fe;cS|L zT_haf3r9z%&LA2q1WmN$0Ej9jj>QwkoTSHpMiY%XBFXzI} zt=oR_>hT9p%afF3rB{%V@d0>_5NmfDUA0! z)EWEuU8_HGHOZmL-4Ab9`J~+A)@dmh&}pXQ+t}Ygbs2aYxCJm_mFF&ml?O1tUg<(T zJxB*zm~J8s0H;>rsf(#0jWD`~YKX*0+rSl|0)09P-qve1s_d1pp&7f>{6V9Fr?0&Uz3a3TQ+1`^VgWnyvyOf4w^%mL0Ef`bGyYx{z_ zD`}Dt9GTCXT_XX2H!d;c%1H^)Og))9gjiLxJYkJ82+Ue5g5<^mHxRQn2?mD?i#3fS z$I6If05fcMc&6O=4R%kS`}LS}1=8$3m@L0LvqL;GOE%u*g1lUajU1-&+^k!>HQ5lF z2Li-I%%)1_Fmg6#~+WC@;A`GHlPoxlNbiV>+H%MoJdhm$y1IdxYeGf%o-`X1WcMql+9e_(

    !ix z0-`qV0CAugJ^%ktwVJuHxmc5D0z$~sJ~eAh6>zr(sWv1Ma-C*RFgcsTba3AT@o)Ux zF||GKUyH__`PEK$;h>);)ufo4ulrm3*LQprNTYCFhxuz)-q_w5*Q~oY-g^6+FHFmm zt=7YXgWKG-H{W=H=ZoX#FYN6c>|QJbivLu5Z4*ZBd!W z?Ik{Ta-l^!xi%ONhP|TcEgqeA9#)(yW9tW=ybmb<=n|Rda_@45k zJ9S@s={SlNH1Y5d&A;G3@ia7q9rVpP=f-fTdmHasw<~g zuU`Dpz31$`=a2Kfrj%H7SFK)EwR*kpyLIn5`|SNoy1X;0M%!z7{Uin_kS_z<;7P2Q z>kfo~guIH$^To z{KDSO{EDNuwLaQB|EypADDXL8^o1KezOc@{z*?r=yVzx#)&67OyYS|h&du>&)LgF(zNMTyxU z=7N(+APJayu&}GT758SM;uxJ#>Jh=5l*K^_WFU2IU2`_~>>ze$SAg6JxozPNRdaAv zv9OzK(hx9HdtLMNWRo4c=`d7!mXd*tDGe0F?0JeA6jspg37nj%Fs%rrYGx%&N=Vp^ z!D0@mid3Lb$O8s(RpAH{NQ7nf7BFG~We9oO3e+{Iv%^ujB_*nQz4WGc-1tM!tpBgS ze)c>cFP)<$U;#iZP1=@jJhJ@U4IF^dlb(fB@&d`5*brTaUf!hRI+4<_K5-%FuAltqwOxb_z>($SuODq4oLmgB2snmww)KhezFr+fMw8LT zHHO^iDVpJywQx%J*hMk<1+$6xW^0XOMLLfH4H5tLJZ8>x!NUZtR@4Wl>{;$6}dG37A zW~$ENU^C8}YnQGr&MnnT$0pgs{R)uA7K(>D&bKJbxK4}IZ#h3lNO z6;#7vvPXk-x^r=1DceHTY1(>-@!9D?ySJY@^UggC&9@p%E}?x6xHcUnMR$v)2^^sj z813Ri0_lKekPWu(Xu(C8y$C1}b|+C?U=DEPd0>RJ4m<&@0SV}MoK5xY=4P{VX>)k> zBGw-S{&qLwhOfIXx^DOXvL!(Pr&<4@?^}7tcPuWg^xdPYx;cm7PM*hJ((#CioY;t2 zMAV6hiy*l81BwVSkO@`vwk<}1Wq&Eo5QTCMcMj3rr#A8cU{w5@!LD#7Xr9VasVc-! zhZP=>PQMIT0(^SPXDPgPCucKb+3hW?nE8;yOZE#{2|D2diS4GGgBV7;F?kS&z?F(- z6>Diw}%0aoXd{AWgUa$u+kxMYmP}g!Z!UTA7 zW-m#_PK7iDcqSnxGKRAg)N{$oQf3(*(k|M$z~9-kY_mHYRt||P%}4!A~{gG1R@bBXg-??h zxCG zfDbZvNM@b)p{o*2CucGE2<-Xme~>x=#n6BD|J1iVuzUy@*yPxu_`x5Yd+@u`Z~sAh z=s)%^ofr;2y7iaM^T4$|_s4hr;sbAg)8$z-5i{s41ML7ir?LF*|9s6RFR&>(3%9(y zKXc^dV`GdrQGW)DUFcot-H)BidAO4{FJkAj*trUv2bKT;Ltu64^Fx3ea0r;sX@D5S z`l=%W2h?n5m-oFbtbOD5@b7@9(B6mBzhuY$7i|9$))gBUf90RApFPL#`oaBoEf2&! zuu1Z4&JoRc$em7zObDutJ4;DD&AGg#D8t(j+>MN>F3Fum+v((@0L)n;acwyhf+J{Z z$q5|Dow#P0rkvG|9_;_?e|h*v{^zqkIG_7_MmycAZmb;*wl;b*bJFX}#s&2`G3nBi zmD$pAR|l8p_ue|wIdtjS&rjOr+g^U-Qx86L{J#6T$Cpk%@!XwvF85|k4@$6ctV{_~9_6dAJWjgZY}Slrl`(je(`sd>GG8?Cj!m;-tUPNF$og=Xjrsw)91j(r4mGtU#?EWofnqyz52#=siT1!jQ?+=aDB=YdsV z9oPhR%5*4O8VpwR=A&t#Xr2I`0=9N{{4d?;Y4?|3w{{BX-5$Cf|J^^Gf9Km5Z@ghP zh^UGYv9o7@K@#BR4wN7iqe7b}un|PWLgCsQoX!3|)P*@{VVQFPlNa`Spb}fi&N-PG z%8mvvSuUm4uoFoombHil)IAjbakc{LPIXL}`V~zno}>iVXNJSI^QX)W=0D&{duBMg+P&HR(ww#Ntv*aZQIoC84!MihfNYu4h9 zVGeQw63i&FX$t^hmehdc<`x1lwA2!_6|)I#-IGYv0?h{xRmXC2kV^2>5)E&;W&Y=W zJcB!%qXB0|0b) zi9Px6dmRVDt*|ASffwM5mS+G3D#e&EtV6YT@6Fq%?g2lB_!ye+u1^04zV*jNba?e6 zu+x9?3zyD3F?!d}9sZh|s6W$CYcbZ^XjS!`$R}=rJUdkk5J`=!X1R<(%$U65AcPDz zAu8Algfta%7y^nbfEb7oisGMxIGnlbmbi9ra!!}t`W^G{d%yg}-&~5@E5wV7^EY3) zatWCxbG_!;W868m_WV<*Vl{tc`N-WgzPhp9rn6gn4)0kyeEX$`o}*XZdHlYYo_zSx z1NYvxbZFu9snvU5c2jS0|H%{Q&pe$L_tkg2?8w@Q-lTF$0Li6Po1z&Mi7G&mS6o|PlR;p(Oe5jFL!9K~`j4ig+o;uzdj zvm=U|s}@UR_US;$sfrMRo0*a8E`?Ow2wHX$C$QTK&?kElC3w*@CxqY-hY|pa&dMaN zS_Hi$u|T_K1rAYDl{%U!tT?a}b0CHrsj0(R1ni!Tg4i@1ji+upso}a3Aybf=JDIU- z7Um%2Fmopfa0QCFsyh*J<*w$&fyp_U3!xMtK;e)WX6CD^9|6FPB3pJMnzDf4#S{jN zP)M260U4Z7+yPJwgW%5Wa6<;1T+IQB!~)Ms1T`biA=c(bfJ7<(D~cXW6T3PGE3+US zLtV%LW{{Bv5=$+Sa21K%skJ;xz)dfn{pEjm{|)ca_x{Owp!za7*I#^1QA#L)F>unk zhF!3+*m%54_$gO`+Li$Yo-SqJeLsChHy8iozrU-UZ=cEMmx2_A$^Cy2c{;qF02b7O+pq{($pA1fHUO9aQYY8)(^`3*>{u0K+cISj& z`!l2`i}%28CheDA2axYZoI@{y7&dgTnMSTd1p{kh=+52%+yuJ_z6NZx_>FMl=)qU~ zD#plk?EFBCXtexIyb5qSN#DmqvC(jm58QuC=lJ8FdTKIiJ@k&>bt`q|E}y@$es#39W717wc4o2D zm%Zc7XZ_JN-M`PPnReV>0Ghok3*M8Z!^_|H)o=aqsnbtS9^c&@{maw<12EJ)Lf!_h z8DJO$nL*q`q30OG21wf_>K4?4)u05qlS{G&xqCXCtG!fvXSAD|NBjQ|4pK z?ZRU+BROVcrgU;ecuwDzL`K z_Jog4&=!{3S%lXyLP`p8a%Tp^6;)zT(4Ys+Q!fu29FR+6P6T8XbwQb8{|18%DKA6$ z*-0j*q5;D3j%d>ncPbI-0e?git%@gvwPW=)jbs`_lk2Nm8*j8i_FtAs`)z!;3~`u#JmIezVGoz?r$01pEV< z`j?(a1tMBRdt*&6kPfz+sU3~5$$NjL=QA0=P571e%olxGCqAdqWagBYxDMWTbuXUtA|zpA+-D9BplZ2`)*m+cikFq-y0EC5dH?PAP_(S zzW^NYH}Bk>pu_O`v$e7N?a@WQK}-KF*9$VJb6ri=&@3>C{Gz)Z*DB2#eo3~$$`8aF zC-ox;wh{4S_X@e{$^V$Obv=v`bOH(oHX*ZlDF67)XC zqKYm+xqe`bwm(Tje?sMw6O<1;egYVsnw|)3vMN0)^$%QczTK)!=&76EzRC5+?sS&N zllMP*HOPv#!G%(OZUXRx&w?Opt(%rw*V?O#a?J8eDK(*bBn@xTDepZeH(vX9o$Aix zRk0ji#|}HGhZ#zO?)NL)>#paOwZ?MH?ABCG-WogK?^z!YX5H-#0^8%u@yiQ>)owq7 z+eZTz87-@Nx`oY0Xo}C(d>OkrM91&X=g$3s^{x99vx{q=`6@`MYC`x|TR&(bQ+}w+ zeoZ8Qrdu}agQ*+EFI;ob2iL+5pxQUss_}Y%Al4EHf#mTRDm#nHOdxf0-Se8U^Dzz1>0>@GMQfvT84jk7V|V z&F`MExc$x%!9<=xk_&?}$ui;H_jc1?8+>GTfWaLl-6-x_9O&MNgJUdq#{LH6(z%Pdc)+Bg2z$-c-bm#0xrmEL#;mLEwfKVZ%_+&dpb2|T&%`< zI&3!FydumbF$$4N0Q?48I%kiH-~jPjLmDGP=ikCoZ!9>Bo?U3hz<#^}gmh-j)YJjN zftySq7w`?v2$XhEQ}9)A=(xblEXfj#Gy};(CiOr@Y@;$^P?1bPE4n~dnsitP6@AGG zE=Nz1td+e=qQ9z}5(g7>f-s1NQ6{qqDAdptU!f%v?#86NG165YQbZ9jzX`B>0N9u& zQRzrQOP{Hu0DfZH$VwOp5}B$jvUV@TRk+3msnGChEVDD5A+c)$b)~pU60)T|5ePGj zFh_$#kTO}{8Pq6Ky4J<_%kw}fo>lWw zD!ziYR*%q$sm*4Qt=5N7|M2hcguIJ%S2xJ>r$#o1k!#&Gfc>pYHmLODzFWa-wHg18ns}M^w zgO33xvn!9C9pWvoGr%-q_q+c5icw5v%V*&`;^np)Z@uf=t(3)yOUfC+k=oI|b@ke8 zxtv|JYm@3#`j11RG+>Q8eWU;z$=KrQsKjY#O>6bu#m;@4a+?47w)pFW#`;t5$x&To zJ#e@O3oA|rj-}B0U%>l959d>^f5X)M4aS0)9mWPY2&*U?+JUiDiCs?j>B!iY?>UP_ z)kOts0{&yKx%XkI!^JhHy-}$9+(m&yPz_JFTNk^VIrAtBfy2p=J)^uI2Nz^R&p}(z z;A68q2mg@Q{c{JCZ~yv{t=Hnktgw^HBCG&`5*sClkGOL&+b%^x< zEfb8Kj-LoRl7x-$)YWR7U@Vt9bBTwQGIXeWMST1+f^@=u>4wjK&JMhOtB&m5*Z^bZ7-ZE3kz*C<6Q1z%`SUGgCSC;3kmNF=A5l+N2R*ktcr8O{!^*$t8_|O-75f7yu@-Y{N9C8bBlGs$KblfYkPBhLyLz8 zc&2hKE@qgz((W?zJF1ZoIC}&C#d}rf=ufw`zDk|=7Ho&0GrY>*S5y0#8C2eaO_ne@ zU4ra{D_V--08W2>XmwC}kaIIaud|RJ2yC2J*LmN(U!0g9to9}W-1c|&Z83k%!;~AI z`*8E7`*K_s-=O7C$sZ?%Xi8Z!m%+0#<1~%N44k%bs z_%f{W&J@4lv`d?i@p3S!LwB@2}(Uhzu9q zK4~Is5c^H=nA3lsudZF6NGfOp&8qlbR~Como>Q)iT&Hu>ay_zVhF-~~EU!xTqlax@ zlGQr)@2B}X@`~LEfj@<>QGlrI!9{B7*6*%)qJV)ZAA0S-9osJD28&mca!L!NY`Nk|}d- zuccU2z{D&h8P9)&*j(XEr?BcdN}>9p5um*1bTxg)_}zqLT%WicbJ+`G7@Op_kbsim zZAK+>FcM|M`BRcU>VRR9#I=O7V5FuchcGc><4q|swW3sT9M7Otx~R(%{i9+8U||~a zg{9GzmZNaj8=E`OJydAdnKrspsxkh8R3f2Jnxw9A$2LL3Ee<@7Z>Q#LFKvg0@A3BP)>51>Pi} zwx*^Xh!K!nl09iLcaRBFpD!M;J2;rM14kvfBSnr5X8_ph_>?xtJUJuYI`@iKwmH=&JwZhJIcl~aA&RXV5lfr*~mbf+D!_q~nO z=UPaoWiXyK2h@J$?v8QS)5hA+YBzzcpMKbIA&%c}SB0LlvRlC@zcb4QXvgi6S9h0} z{%mIEo&LNdcgE-bi(1V(g~6&hJe8g+3g zTwTaMX5Mr?Uwd>WR zw}T0%^PpYh?MZePv*to2CGv92=JIj8zf0rIge4#3m;}BRynaIO4z>zIufick%L>vV zHu*Th#mOlITu<=qd^dhMFO{3ed*3@(dcOuvxP*xvppg8bCWfaRwcD5!_;EYRN|SbI zCL-&d0C|>;d8VuC^vu?vhQV(<~Nuhw|ho5n27A$Isgf;n?tk zxa>}r__KIO5dX;0Aj-;6cWhC>6d_JT4p9E3rR3S$qDmyLu)6ldM&mIisdEw^Uw}jW zP=TQoR3t^S9W7db`jqCqIgmxr$$(XzA)@A#>ZGEI##G}=Ge?L;$d0B4k0Yce#3;ZR z;>$9r#KY-swf|O5kWkfWn~jHa1_q*PObPzO^|0V5q7H$>P@@Br`ek2f>45!j55Wc+ zD0Kpl7B8q2oq~S>9sBH{!cv|iVZm@jpBdmEK0w=AmU8NT${WSfIxyClD8V#tsUMt~ zCEZfyn9Ud^GJ)2Y9knxMja?LTD%lqP6)Ck0Us$ zT=!I2t-}+yZcNGNE>V@dVTQdG7Iyq*oY55E6kKml24G9l~~R z7hE_5+- zwj-#(BIq4?8h~Da{{-?}3#;2Pkj!OCvc%A$7Fc( z9e(HW70q-O$7>wrk=?f6PFE+hZbi19mfj`~!mwI)XCkfzMVs^bUUr68K5S4uIkpT0mh>;_Cz#<45VqO4{BD-|<0@f>w%vzX*w+Ua?NQ9F!fwpL zi!wRmXY9kx?ZhB)#6=-(PG){T(BZB@&kJKzgoJV6MeE{!SWWB{S}AV1PU>B!$tl}D z7dL@wCsUJM2lC$&$MzPF9Re+CE(N+ftAAS0PU1A&vEUqWEc5dK?11hW+-mlOBjSGa zdPvRm>&eA;vo;HorN5(Q0UG-IQkv4!tKaw6dhvhW*0-CS-@6D5mpK#idzy+M*!-!% zSYuRx>M`%BpxX~5lw2s-WYX)%VQblzc9wVG`0H!dRlTy_;}j0h>^R z2dnW~^dE94vqB>Dt6?aeJIS0oOeRLZnf4e*Qpe33~u!1zjyOu*l!0mBm)HGA|0?da6WWnX>_1p)n3H z6~j`&=<+rS7~lZy-hp(j_%*nJq&V(VG%EVtOQ6Ue=3KC&UqEAm`b9Rbjq+-otp4)o z6=hU3(mIpWNMS)O$+?qM$b-6l_@kPQLqWg@kdU+1^I;i=5h6r}^>{tjvO=n~iQ~xr zSm0#T^e8xCgX(0>(WMfLyGWZ_l>fK{!s?H#`xNVtQ}LTdEhU8pc^$c+BoA`cCi*}kOPe^1~nE-Q<6GqR+kGt|MhYOW!_t|ROxp_pr_vh}%6T*+F zW49FRZovE6a>uLIwZ|jwQHq(PQWk#(TXUk)vW^Pnx)HuE_CFBlHQRD+jZ zM0UcDo7U^^-p=kDKnK-%G6j=qNz?uXiZEqclRc~1m`%kw54KRdtzu^-c!TD{J>?^pR#gq0^0^?Q~1a zOg6L4{V8+e>8X-7$MbD2Ne%(?NY%~yJ-x9VfrHU1FYejNf#H*;(mehM_M zSlzs#4A>Xc>xhna!r^-IOk&4L$@shZ@wU(4`zXWEX7W1Ym=&5Z%~#*bH5+nPIZk?x zkR0>V>*A}gtrziNvp3ZTU1rIOnw^fwcwyMx^=PT_7q!3{>!X;GLvHHgp5{*F3yy*N zmbi*3E=K~{Uk$u$|8&vU-=9;{-{+)uzK2`7Da6WP{6`uvVdt7|`G=W9HWgM@6qdj! z!Rl>|?BT1MKnB%djPkBzHV}9m#T3Ovw6uS`NG&y5P@u0WGeE2@@%|y<*0m=vs-Y|H zbAm#t6t2mWk&N3Ut1BQO1w$3t4&@a{an`4iPtvuJx=^vjBvXix5cjRtg=Yvm$>Na= zL%F(U93>7ynW`EE6!OTl!b~LdG*TJa#j-+#44fPdTxoEQIG4i#Gsc!uKsP$?+yJFE z%9A3HdxU_cC$u}DMeL<(FOo-uVXn%Y+wWn8nUoFKFoQ#Cq(_l25ben_1_t-!fy5mz zZAOs*D^8}vZ`7Inh)-uajiW_AMDO6#Vc52XVM_fg<(bw-g~rV@MA*cl;B*??Ixs9& z(-&}!PnU@*S5`Tb1lzZUa37(t9u?L}!%lQk-P?hJ0AsTeo4G*afD%{E+LS0U4i6mI zJ)kZYp_MkiN>-`>sTE*twt?zH(cau#q*Io(HidUz@&`JlqwP4bvh|)Gw|!Yh)a7uw zEZbQUcJrO~vGX~u)xr$#OTu4k^?zh_qb*FnbGNGNY^&{D()KX5ddM3cS|VduUi6Nl z@tAYKeSVYLl(i?zavq+XB7^^sd zee|!j-ld&&qs2R(Yxdv)nLPmqY{7Zi$RjBQFwO?oy^5aS`&WE#Du~?#IGH_ox$F}2CeW%79~2%$Hc+xZuK+AfQC@iuy1py-Cl=fD;41cn zFW`E^_J!<*#~x(`q{(l;v-tao^JDS->f}+)B66g1`SQS;%Tnl~q%>GEAx(ybQqBnG zlY`x;vM39gstf?ewk9hx-bZZ$n_$WuNP)x}mwEbU?I zlSQgJvn=*=JHBlG@m#i_XZVW$zV*Xr5orHBy@353WVg$4w{4)7V#nW}-`;BV{Az`q zt{{*Jz2$SG zRSd(8y*?_&EzXywq3yXDVE4M!Z`WaWD}SO~Bt6+uH;lpkedyNIp2Nl7cJolu?B{wt zc8mL5ZC8=S%e312^t7myftg)mihz_{RjG#?P0z~r?~PT2rhXjY(c!VXSIWZy>U5Va zH;w)7@0x=4@Mn8@Ph3YhmI(FU+9Qh-3AW`iQ%EIqR6duRd25$T!aEkqvCIw!O&o%L6Xr)X-d4MaBNf}mub7l?@KxUZ8*z5nyx3S zEteA+MCEY@#xc^Ubek<~JF~I;Ce3wOi^tR19i?@x>BCv_oeq^GcZLTHOU+qJigiow zRZBWCjYMN!O*Ci26SFeB%`z@UH#O7ax6Q)!vem;vpL%V(k_rTtXf)jY%IGWwr>j@f z;{ux)#x()WZFm!#Dx;&>s^nqanuE``41~><>X4wxjn%%bFcn}leEr(IEHQ60cwd-0 zVU_KD$qI@@G3Hj`ePQZMJx$-1OC8)yUo>@4Hh;PuB6}LfwL-dIH@&pkv zZqGR_J;LZAckCJ{Z@d#A*qm?qk5j$U@BZnnd4%k+d@Htfb_8Vnd6B%M9#h6t<$*_O zoCMjSkFyspS4AWAu#^8xnMWlF~bU_s)_C?n^&ebks3+7VplCqUkN@80vx@Ma{ z;j(qD!5V2I<^}t1^W9#{U))#4e)m<=Adoi4plI~YN2(Ml>=2vW?V*1cHYQcJIGwHz zmX5yK5eQmj=y~ry?EBskC$^r>d{SgHHGLk8?XHQ3xbC-R*NSee7n^sJ4I$Vp;ge!E zt&A=D`s{C?rm}+8t4+O*@{jq|3R=bWR+V4>AoNsQ9ij2~^GT;R^zV=8TyIRI6IuAj zfD_CmN6l$Z@OwV2nb+_ENU;hXq_VJMW1DQ$QW7CJ5l-_}Qo(QP02`8E$JCY5Uf5VGYkzROr6A( z17|LoG-zQl9M~Aj!?N|SISL1OqhbkP)UD z;qXBxSd?%$V~*ZfQKNqi0Ag`}Ff}AGH8y+Vsfa@|m1s8F3D+jE5Zc_6tAKy4up*wo zg0og`^oIt3`CM+CJls*m6IHP30@hGNh^x%WNj&t{fMCa9Gl~FkgE7%9l(f|H1bJ50{)^-^;Kjg}_=PU{yxx@6?%lG%qO%B-TRv$~nP?2*-~fpB}= zQxeonKMkH^N7`9)fkJ>!80cwfJ5CPGn$_rYbUQy@Z#zHNvxiS1c=7R1AJ%5gacz4P zewtMVj>276S*RAddHf#VwPv>YYRD5{K#!Dvr@~XK?syC63N;}xZIyusJfLUkX(@Ep zMA_)%Puk#@z73*%AwM_HRYlh`CVST#o!)cLC03?PeJw-SXPd1UfgyW6QXqNg;{=eI z%mqOzOEZL_xp6AZG5!(KWRZI=x*Rsi@<8C1H=e3ZLWZ^*1+~MuifV@X5kx6+fX1Or zePgn#EPUJAXIIK~_ub<2$JcPRPXC4dencp+e9V-$Z-+yblAG84y+xD6{$-?G#nW+{ zl+@zU;4yvGG9VJRzP__OKdblf{wPVur>V-=>U<+$HE*KJa?34y%l+tt$Q1+8w!%iG zQCCyy@~G!*@~RS+q0Rlhu$Y~l$sF0*68ibKKjY<@c@fFKO+$H&GbAo7OG(V~RS!GL zf{D+rKUz*<`C5pLi)Rzju+#k8BfIJ@uVX_~MTbge>!W)7T3J2~kM$=@dA55KN#)!P zo=3s@oy_O=$g4psr!`jvMGBWs{TE}3zZWO;J5YbNr)>@6x-}t513-suI`6O6e%8hk z9GmhV4?=%1(2+Q(Gpvstmp~sE_A%X=knGnMhg>q&72)!i- z7wLS~)H{&}_pSKi_p`)PhB2`wrxe_k;E>oe|amzu5d z`)o*)$214lcu=B*EoDv0 zmuDixZvK%E-cFtmS3xHMj3Jy-1cq-O|8FsZot?}YS^NeEkei#k?cHfP#XSv4aK*d% z@SbfeO7h(g-Tl++6n^jFTtr!p==9|`aB}}V=ZYI==aLWfxtbML<;h0*vtDYuJjFF>@ktwG5|6^=F_Uq&xalEzrSXZVZ;p>g+M}-u{c!!O6#xGzrVAdh!Lc4LZyfvubnehotRu`0+#O8A_J7@n~rPRSa+tyN%&kV&EBq8 z!#7pr|F}O!hNLX&^5LBwMbLRJakvHzU?klwR)%sDz(ogq(3kDSibT7mOgCq*l&%+! zki6=%(!uYYn08wpwxpxiA*6!z3o-Sx-u0JCJ3)|T)?wYba7_3HzSKZDdmMFx8^B|& z!LbMeE|f<#=`jc28x}lwxz0Q9PEyY_nh2q6i8zLXv=!xMoQLUz4~jQDd7wH0)MMxFMlSu;35@BUgg6ahO_9N_ zmVlBnqx5N*VkRLKy>Qg*(U`|r<2F3bgMIVMEYDs%(7JZu@JwWD1CdHKM92PYstjw* zFXK9D%>1}%``7^T?5uX<<;eDY<|`kiRUqiqba-v>*}5L^;A4h>n|nTTj{7{~CjE24 z+ymi^Tx@E*733yeL4h*TBp#-dKbpfg5$S1a4Z<#|ptG@g%oaC!)N6S57LhwxO0*0?6xdpx1v!J-I-!kRQP_$Q zbrjRu?>E)3B<>uO_-#V!4bMZp;2W@uk-XvA7(t3+HS0^RjWBjGV+0BlmlD>93K3p4 z*oRc4v)2e|@c#zuWiE`1X~E~|RBxVwvvWy7zMqsfZ*uMpbbYdwsFQajZu2frdRs5* zUvey_7FDgEEM91`|Dqd8MQ7XQHv|Q;Z0?Fi0Q;xAgl=f-r5stQIe4FS>+$(eIT)Y( zlzoGvrgs_7f$?@;5CjA|kY(Zu#4JD3h zw%fR4iNH)9EoLnjW<_GAnyeO-XJNfl z#&ufz+h;ElG%{KSkBl8z^TGx4h}5d@ym7Pfw@qLh?#(R&w5gbqRSuCm77%zwMd@Kv zQ8JnToi6!puD_-yl`ge@6&<}1r~>jmTWQprlIzf;Xx2>hRJ@bTo?y$9sh2j~HW}>?r-s!C8 z6rDpzd0!QYx6;5uBpb?gOOpQo9GI@C2Dg~gcPn2#-0Yy?eh?PXroJC_SM}M6Uo2|( z8r_KR_2U(<=P~e{&wnFKLGgfli2Vq({<-#1+V`k(Tr`E4MQ7^~d_fXEX`T4zsbUppWE7^i=gzxdyVX2(Ba3HQIhezp2JwAp<=MhV!!@moo#-SU1` zOWCRUr4%_vZ@;)nlyq7W z-~b#!pBQEb+hX~?Q0)E?`GlW4dnvy94r46dS2^-zRPn=~^A}3xq1Z(6+yD*`mRxSO zv66p=W2eX}K6E8-e|8(ktQ3|M5DCa^5?FXds{M4eI#`2HsP0{>vtfW)m{8$1r;g?2YxSI`t$N4Ej5T7%h% z2r!3ye(csx-HzwQpv37AEPrGB8xX$`c0no1Rd@c?sKDfY2C&SX+E~R=_lw>)unKMqwrZT z>1!J~ldqUNfStI8Tv{-n~&7n{@2nalY)>bV^V*M&i?L zktF5|4IkN&TrB-?>zFh*$OL6+g^N8>Ovu`i`HMHFdZ;e1-RC$n|te_3dYPxd-mVI8hKEFG|v5QNd1 zA+*by-Z_sOxw))hu8}t9?rWCZ-$LLcom!l94i8!GN!=<%;7rj#3ha~TIpoUo_K^h! z2gjmef(kTVU|^k<&cJEiVSy90mrlqbD5&m`wS2y3HNy%?c`YpHZ(MiPzPaxka zVivsc83fu+h|U>GV-F@)?b{&w8Z5O#V`DbzVD%HrfFqirq09Vc6_wfoL|jWLK>9;C zv%^Kq{T&_39Z~5^0RUAhl{68DW`5biI@B4}aB`Z?12cjag6X+ zj)GbW6X-u#xLYb5@u-?Ytb!fn)fvAlLf{Aj|J^_ zZc(;rN&sEu%fghq08u}?+t8e4h{`Cy8b1G*m(R4yr)bL?%PNL|>;1Pa8y3Lu2Giu3(=KO!RZyM)JGp^kLMS8b1rAC`o1C~9=_bXD zDShuJj@KMN>L5WJ+&&NYuR^2bb?~V9tl8sEf0L2;A{0m$=80bhxsTm_)JO8spwQe@ zJT?LEaIu-54nPGNuCwDI9EDCfVsy!Yytx?WskWBpbtbB)jZnXcAu066pDfGDj2ACG z**d{;s43P*EkHSng3pIO9`)`?unT(h+8xsEASbvLYtk&?=0maa;^1>iA*l8&O!IK= zk~D6y8v^lA-9EXW%Zq|*52nnMx2Os<1G37f4SXDu@hG1yE{5037KsKbROeCfsbllh z!Swm|tjp-ujVC+{4+*M)g51~~a5H(Cv8R5BLg1BxynPbU$%FNafCn(XltqXcOaU)X zy>4E9b*t-{=$S{VU_7L^z*cN$bGo!i6AH2hFL~-RTMJ#u_CXHr4EJEZldF68&{X10 zGFkSh;bo7@Sizizcwuhn{4yCmS-fBkPFEC1>1>{~SD-|)YO;_a!bE;N#Rh{SiRq(O z+=nFZ@e}?eFpA$w)Js&@>?y3}%9=f`WH?m((J~4bsiQh)Y26BkCvddV;4~?}IvsitM%B%4kPHvH5hCpMS zmAVaDbSa0=nNbFpIK31fR#5;4X6RziyVFMa)hqXI`s@lNA7Y2@Jv6>mcNb8T&0RLd z-h}Rv)?rO~7IQ&@Yr@BFDs@ZP14ngM?}=V7HAIVP=6o9IC|ScjMDL=8aNdN-ySS|q zre>+3*o&X++uJ#>ehr}Ym>dypj{MgfPij6n>AL&F8FnDu(@rEh`mwy-(&{`A@N&V>P~QC~qJW5tq1k z_DDr}Nwo!cEVG}oLp40zPNsv(ow|QAlGPced7*Mx?E-CVu-N!(FmMFXRe8|(W}hsk zbPTLWaPJ3K{IVK)Dw|w`hS{njT%sy(>DQVcy$RIp`(-kwsVETJYbRr%hHu?|dG6;9 z-B-!u9il<`Hj@xyKt3 zy6Z|_SJMoSf}?llnX87N7gI-!HAWK26UAbDiVE|33F*E*>bit{Idn1x2w=hU=Q)V! zxC;fvNT!4r2Oaz84{y&8@0f)<1&Jz>yY-3(Nz84V3BGUpkLPH1{uLQZo#e7VxnwzE29SdalC|Z|B z*chFs=a73VRtINKn~QlH*?|dWU#CQcKp0uv(+!Om@sb5F1F*X{L)hqNh6WR+s#9cy z1GGA*rJ4&DNt!Ec%14U}o>W8=E7MYpLwG=->gU?D<{7?ye+iraf^YzEF6w`jRo)yNMM=A8Crm2!xEuL$*Yukn zTG_j@CC>+bU%zrYu8Emn)F^_$T>TE@iup(Ekmr%aBe=Ts4DFYaBfs z8aV^lNC4xWL7|t4>fo~OL0x}t?k|(Z0m=)g5N`Lq$%2U~wOk21_YJ<>{52oB$BPJn z;yWYVEN`dsKB-ri_hZ4reUxHX1OV$E!314Uo(h=aUl_uFPXs|#B&-v6W->gVcZKZ) z9YRBMUqt!zd8fwO9U=(IZSdCIY*~gq2e!_CSB#t?R%}6U5)>a8$QZ6IFYM7ePL*8N zV7O@{jytlHwJ)eHu4&vosU9xib^2&vc5P^?)%T>ypE#zg^NhH#F4(ludKXGANjBbz zM1a&b)X;T-xML>7r0Na!IcO~zY>ruCyhlr(q)YY5LR=hNmbO+?P#LqN%Iqj;+`M_w zsCTSCT_Yp&Y$JWDI+V?b*VC}w1T_}+d+f_|G6^h-<=I@dFXA_65iE?buYd$!UG<(D zl;BO6^6tHgbH6Mm6ro2@$cJxD4m z$DB_g9nl1YIsMNM8#p~BWrxOl1EGkNM;jIkLR6wmh-hK$EoV(vvy5!Y5tc$@dcLnF zPJqKFs5mEy0Z3+*kC)lB(9`AU{hea(Y^k-Vt$o_vE!O9-?Kl5QZLrW!R8zKf-A|^)0|Ck{=Iyn<@G6DYI<78%bHo$*(M0aXQ z+37SRZ=I{zuiCngVo$+AgF&Da%YrtPAbZU&%?K&bD>hddk1+3iz5Dia*X@rW!5?Rm zF}i0vb#Wt3DOH;PDn*x-Q7R`_Ag)NnV%NkDADkv{4Defwj|ylcx8WG(J;$$3W|8E# zYAn_~h9yKjR>SrC{w**b|~v)#cNOweFemqs0t9vh$tp>OYn?oE3WHi{$Upxh~-AnaN7O=&1rzr?SkNtaP%C8DDJqkp68*UBK5 zkY|tp)lX=wJCmW#nE&8%$B{)UgV-mDMhtqaGd<~i%L`?zP$^2ChOgOVbcm)QHgpEJ z&q~+r14$o&ksGfffaKv*Aztl5c_0AJpkyJaR-J`R9xLSV{nIx3+b5fL8fAsC+d&k& z&o441ip0xZz&gL^57~01!M*#D8%os!@E{jToiUL_LUVwqs_N0d1JZ;YMCf&DFu0CN zh8I+yj&GvRG|9oYOEw2VZyMWl1>nH0RE?8sJ zkN?=RbjgvZ=^M*nlz1UXDDcHjK+x0E(czY%bCY&*%?dt6u&Mf~xN8+F@T?+L3>Veu zmU6`eV}b}Ec@aGE9ym@MX7+Q3|8t=e<3V%AO0XLIe+OA7S>J)n352IN7nd>3_a6)l z)n5q++uGY7&Ocz7oYLb^e!?z(9^c*VU&r)+q%ijzc%KdFFn6k!?r)s-w289r`DST)n+E(i{=ef4kh`v?ZMr>QM5W#eK7uDU5hu=Q5RZYg30dnSc&sGDvwcdCRWsPyvM#`PZJyfwpqZWj!dU z8OGDRtHU_@)83;j1(+O=DiTp5c|31Jfh*#2E*=cF3XrgOPn}R*s8SVFwNwi9AEK-^ zUiJg@#27Ra)s$eqYOv?<;$iQ#g=HHlg`47_>tC5?3U{B5$JH=-x~M7b+*@I>zHY<_dv%z^`Jux0=Pc;5>p&GK2;K6g|T=4%6L}zdX?Z7%`K zA!N_Pv)RFAt)i2fXp$#!Dm;xKpwT+ok}v4Mg;O^c3ARd_;eO{?=%=s-YeP|#Nr=t? zsfUHz?24GIlZ-$^kr)hK7e{R7!vP7mXt{s~H$e)Kdo_opn^X_sFl%Y-?OZza$jx3v z_R$G3RU+(I(h%7=5pm_FWtnN74{{yQK%ET1j3l?=u;oKsvu1S7B#}sP|C9hIbQ3+gRNk*%$tQijeJ#ubt~M323s z6E&bdTa>6^87+z>;yw+zP;mSqQohPvG z;L;K*2dcf+XM+E`G~i^)*k_i@6Le_cRq1bieS<^dzej4GZ~CH3NH{tnwZG|$xyy9N zf!?_idJgkH7(0hxQKEH8pKb56ZQHhO+qP}nwr$(CZQC~c%=$&V8{IdeCTmoyYEoJG ze=GBaK^tRw4JQ;eV!e?f`z9om6n=8L%IYsLepqbNM_fcJTF2{WYUg?h$dw%eb$SSPqwf=cGOpBHz zeX1Ra7ZxRL;Yvd=*+CEp7zTjv+DM?-Bj!i-KF@C zdvlu@9Hac;;X@6lj4aPg`rSnH$%0>3gEmDtHPltEq2Ez^mZI-*8t-}P>L38kS9-lU zh96q!@lv>q?2Qz}fa5QqT!cfQ>v)}y81(c;Es)6mMxIbPDVLcQr@JbqnlnZa|JE-$ zijQGs1bFwo)qE`TJV4_wBv8~t zKHDIVy*F>%CRMx^y5Xc1--_BbvlqtuF{eqlvXBp351AcW^zC1hG^)_7zV4}!*Mg~& zzhee2h7`jdt~&( z&!&IH#nwYiBPU}o^&8}hum^H7@uiI-~SIhm-=AS{0*ToIADrwDcm}m3d zo=>dHC~(`~pD)v0)-ZkdVx^VCQr~r|EbCrdkl>|JYC8(zokUaQbE><%STq6(mYA=E8WdAY(3bDQ)L83Q)TRUs$=eDib z#i=5FMejxR+P4rNa!;x@^4Nyq12CQuM>;{4AX{C+F9DG*v{3b*!PoP!8;nX=Ehfw` zN+~Q9-&>P8ce4pMCg+!VeqU_y393!9$61wGouN`C@njK~ZCV@Yb{n!p6$tDNyG_g# zvleX$x~N|E0iLhQI^TJBs-~I2`>1^Z>C7RRO#ujr$0~Sh`a_|W_wuu9R!!K%Gy6{> zA!06YFVv4f=z==_Cielz>21%hHBS9lVz4IWclv4X);H8p|&v=ej%zi^_lV#0In~dB+Fj3A2fLKt;@hZuM zLTV9nr@J-tP$zp%j|ITEsmn3W0<6|I3nBWh5Ri? zGmRXfFDsmz2I?IqFO0zo$ta%Rg*L)uIV-luf?mp7;+sNu1g)##l$x@gs6E2W!JEn`c$y5T4IDtB zd0oTSci%#mX6E3U^44@Ilpj;AD8?ZR+l&-KVDgJ}{$4UCpbszEg@P0R^bvH;VZ3H= zVIXgV?uL~P0-0YMLSj}YByhIIhv}@V6sp0nF?*>UO!7%WiI&%DgF8bztOe%q&VwXf zq<;b53tR$V-=-4_p6!AQ!oj^rL)dT&d7&rKuzK;V$-pDY8t7mp%2%g{fT`R)NN_lH zn(e6~v2KS;U}Jxf&(Ad@#t5~f6n3vdxpMZfH0Gxl&8rYg5}M9#C98=5*C>wcUDE|c zY##wV$}*H6tS7sFKOw)XP6u&!;iMo+=YhOyW4S8fPp&wftK3hV_9ySVmEXj->~74{ z*9@-x@e-&9dS9>FH0PQzEly}?S~f{yyK@qF?Ig^8&tgkk#peo%6sbvA8=byY} zboN^z{URGbB9>Bb(lSgsW5w5cxlp>jQ*R+x4Mfhf)0#o}4~B!M7F!gbgj*BQAiaq+ zRxSB?G;uo}K}qg?=TT{}XG6%#X zF9US($|+cKhjPO0AHklIXDJ^*A5Q1o{@j{`g6hyoy=0#V3#P`dh zrh6Pka(8}YmW;Mt>gr%cBwc`-aCQj=RX9r!i;tLa4%p~5S3py|w$1H?^#JYn zfN_OcO03V{ms8x?x|YEm1HWVeDr1GXf;&$V;OjF7f%z5bmJEMLwrT*77ax`1=@`*Y zU^yF;)5v%_VgMcbXN@^Lg;CI^+yPT}jnZT>B%P669;x0LCyag~HfuMd2J_?b>O}*v zZbFEIr`jl%(4r`m>%ME*>pvDZyAsP5QlMU5!*G47Y)!?%)h1w&JPXG10g065SH6vx zLX<#de(AaZBnsQjo*A?V$LWATKjC;WlO*Bi9+B1q?4L$t1$)1=z7mZ^Sp56Sdm#o5 z+bO(+UbV;p48-AEnV!YGgYSVih64+vrPZ|y*=GfDsn5UwwgluFzg?7*jWnG|ncbHw zQh(1ge**u|ONQqzE`{MpjhL}AAVzpPJT@FU> znWaak1K!?kJ~v*QNN;C*k8R6#BlTGJPrwkGQ+;Lr)+opbh7A5ldCBx^I$dea-L4m@ zPG(yg1IP+0P1`h2Y0nPAa@mjl-lreQE=MrAw#C%(??!KwU1XH=>{V{E=x}MMvcU}oE6$JIE^}0`RmJR-O?T&te-6X*JU5d? zTNnW^N#A)mUs0-MED+liR%gSNXY(zbjUS&XDh}3&l`p6lDJ|;tlBDHQ`pu!5^PP`O zhgW1sHC2FgI2j5{vZsA`cSl_N3Z0o2mbYHs#@3UzDiM!NR-M;M0$X@(8h0$1<--`9 zuJ4>yo}*AH6VC&kI+{+91UEP!X-bN`PKg>X)Uvs3GvsWR?z=kV!PM$LWq}BYW%@fg z=BL3Fr9s>-9=*=m{sO`F{F?**FH)G9{l8VOO!V|@|4IF2V@}2pwO;e+%8O$1t3LVs z2?Qu9DTR4!8Q+1<#TsHaf?-2FeI$%15-MNfKKz4Yt14bV7Gc}4^m19!f}0alE9={B z-h0dqhPd_eoGaS_T_$ZSp6conNq$3atJ`bM%T0M4tw7)V_4Pd3FcZ4Wf%t7>kb#n+ zT71>1@Il5`rGTGos_nC@L$jg*c)d7DJffDPh3;s}Ry#!xVNwQI+6Qh6{&z$Vr_0qA znOyj^!;^TG9LxK@gWyKt^RdJ8jbg8sVC7AnP*bP8$w*B@fy(Sq1t4W!2%|~C z-yQ&}$@I93XX{`+yJx9xkD4ViJ)+t@Zak$nW!GcU@xM)!F_|OOz_@kgy^Oc;(-&0E zM0*}a*_9;cneZF!k9MNa8>E#K7NkqR?7V&!i6F zC66RSKim5Dmg$o&g2-1~3lR%scVuZyUkPC)^p_?6K;psCnY)rkb{v)UkNJZ?~mAuP8f! zqY)*J%!9kBoiK4$Gq>-|Sd7Mf-xQo;_e1Brad5AUd5y+5$Luo;Pcmf#KJw?T8Oc6g zRpPzzz2iB>7;>yKSGBGss53sugu*suxRB8@{G@}C8o$vIgPBN+YmR*8U&HbOOgFOGZ*<|FXpB>q->gGYwZ0)*DshaZar8=^0slTJ zTtnY!NLt?hi+~m9cnx|v*hycG#;_N9iT;6yyFB=3fOEhO3ucz|(}Tc<>V=8v=Q*XE z@(Af==3FpiBKUpaaCQByNRxIMNeC$uXys=#m8O1b_QNNaainUB~Ic=5uRSp?Ls(weXPe z6@Dxq4#hMTVnMy9niYYi5sfqXNQD_N3bY_c1kDpAf<6tmSwdO@ExTO)fHa!sS3J~w4fyIy9cq`c^u!^8QewifY_MM1=d zbG*=2VLBu%3_@ML>T}DE9hk-|PlKg1b;jlfIVPgvXM9AR&);@>D`t@J=_1c-oIx`K zYI_W}5w~5gfSDX*)`5lbr1Bf>NSsP|LfJw=LgLVSV@JAc3CIo2G}UFV?#X_1x6wv1 z$X&*F4pi2f_6hl3r9|jcMj7vcr#-4X!0Fd*IZpkH=tTmSWD|dFt380jM}{GTv*{rS zVQGZ*t-X`UW=1+J^p(0!HFCEnN8%Ejz2$$Qxfd400zlN{H3v1$jsO`v`WO=1*6@22w-^jw);k(BNGVAN)pb&Z)v4G6usEM;Hy*&fjAWtL+`rk4!8Y#>KYY zHBR%GRw@}{8vEv}=pNEmx?CF9n4W@E3ah2b9j3U@cJTwC1R!WjVj~8CWgI~(JWmcc zklC^2Z2sG_@>K|Ge=6qCn0T>#9Z?2>g(E5#!a>BgBZbA`;ApmK2Hv9h`_ir8z#&JY z{D;FuP5vrH1ThtZH-l+^iA12@F5G7m>=PRcu6;VQek!4C!`e9^#K)k=vRI(*m^vLi zY$hTeVof3%)7WL8MnuxJh@P%nAlYNW107=S)lC#u)$JU^9@FL-*tR+uCeNG0MpPOS zB&)bmuQolJxOUhRkB^;+gQwU6_5tt^l3$hUY%-a^c#26v8XWH&<8TWbnl`ic>5G85 zePNDVS=Xg68rN;>KRjilM7{hp&sVznbVk?AOihd(%{jkl`|OJWPJ;XU z66lBfXydT%|K4^bUkQ4NMJ1ctw$lT9?(TlQ7y$Sq$%~UygMBk8^84K~u8w+=9jTWC zRt%GA?e2~sjhkVvFXS%l(%EAFSc11nxZm2AwMFEcCCx8pKekNdqGKL!eLjN*`8Q^U zM#uR&8=HX-T9ZW4u9@)?n%;5|Uu|674ZqE&g)eLIm~I{?D_s|HE7&2J@Vn>p_O*$K z3cY+QnxgfldR=j$?Wpw@*Z9Gju2a>fwDu%lEo|K^-e*w1< za1j4KLrOz3cS9Ny5x<>eL}!sy>nA{eUR7s>kZpUuaVOT2mj$`oK13*e_vD;E>{}*$ z%8cw0%9lBwJivPDA987UgqO-#+VHSw5ioC8=Mk6NIU#(|6AHc+E+Fs5*JL;?BlCrq z^@%^CY2pS~OlBa$CrMq~k8I6xBrBp~&C#qS;3jA0(myFAr9VT}n2jaR4*5O33C4=~ zY9%Abp2?BoGA&&))NbWTMUyX6Ivne^bylztp`6)*s@@a{g zx260j7ig=)CB(E2DIF>6SP^=%HJN>2#|T&wyinjp^1!rC#ZV0h8V_(fPDMVG&w&P- zMqoQUvMx7YJEWyZ?+07jF^}=Uu?`y^Vq<3UwtiPxB0^0&e9qlL!@ekzoJ_aVp`XNy z10YgJ2E+j?@syQd8_trg(lHs~u&3r{pjWC;BjczQn3>bSmjRVbFXc=pfy>F7h`nk@ z1OZ4`dl`i_n!F&NS1=H9HtZZu9!ntWYBEi#0b#a6I&m|Sy_NiX5@kHCB~+< zo}(voPt?OczpcipOk*iB64lKBo~5`|h*03RX3i}M63{aNnh*l^Zc0_I3}TcHahg65 znNC~AMqM7n)1WoCboOlk01zu-lrNNX8c#kybIm@D$=Om1^NTv$46hQFrfzCYFF$dq zazC&;_QKWpVph&WS<$~KMCS`vKuYt|9`(N-;H+JT^d&%*5PAqSm~TA?ei3I~Pc&6of4ZMn8w*2kFdQt1%>`e`i4XotP)g7O6S0QkPgfXz5)HZ`Opdyb+(N z1VLNuXLXe4Hmx{Gq>M3UiPq5t>Qv}k$KB8E>U(ewiq+$RT+oDRA$^`w96emZ z2vV0F9iDmcU477x*AC*+)(*c{9lLA=GY&2$p0xOIKFsZCk`go<$nLS!QEH{6VO(U; zqAVx|$&3Bb;zqqV-D)xHNAhRbon)S4uyeSLln2OJV6ZX+Wd9b6y;<*Ujy0UM6Hu~o zuC%=uf?o0WmiA+>zMrQq?J<#r9mr%Oc*j7qZP&|Cb>!a$xO{27T;uRLvp@@`4{Fa! z&o;N~3P1GnkR35NC+<#0dlkfRZoMu|AH~#&cW5r$u*KfLsPQIe>A}t?9H5|UZB37n zx^(tEf8sgO(O==GIh-Bz70U+0lB^Rf*_R+Ty@wc@rF@K;GVI*utAd*3l4DJqR*(Xe zFIleCf4nP|61a+0aFlOomda#1KV;9BBXpBZOAkI(EYAu~9{{mVuGM{R#ePtDR6l$l z#5y+Q9cAg7n`b%I!tAp1PQKigm<&&)#a(Is)$M7TEnEw0nBA&~Ecv`{kcURiWKwm?rV)<=Lyj=h1gATp$8g}>{0^yXlOuSOqCi*#M z6rV@AnzXE2ecM}L*d@0J5jC?H7xiD4B%{|{sz64)qkLB4z~IHf`e=KG!Ke2OW7AK$ zI3w_OrP(g8-s+OFSLq^wHVVKW2hN)$TMGQj3Da1QY0`}=d~@_^R#s&Xm2y|M^bNOP zKKiEEAd9_&!l#c62mn`v!p9)Dm07I6Qo8ztrXDwh+%O!b8SRpFwoML&a2mG)hb>2# zIMMzMdT2e`6nB4^=jOTX-*~Y@54I z^TbU)UteBJY1gjguaap?s6L3$X)?7_S>x6v@UwUzp*;d`f09-P3+hlss3Wg*%C^;e zd}UAXHMwd=T1($CM^di472vn0;1g|k5hh;9R|@%DvjEzUH9!cEpuOehcI+=nWJ2qh zXnFD<&z!j5-W-L>TJq5LrPJOiqa0__?GLt9Mp7Q9!8MZ(FE;3Ry=dd+?$%``7$oPH z?&?28R>uFLhQxY*uC{kW2>9$mY5U@hs2e#~kCxy&COgmMbUC@!@;?oze2xz7Z;f@^ z+TH3&P2bv;rxZ1$dXRm>zgZ4bJsOF{15NUz2hy^xO3PbLp*4jJhnQa{Ia&G1eDgm( z3%6PlLT*(RtiQ%u@@wh zHenn0=P|3YihY~6smM|bsC?^E3mop0A|h&eW}ZjK-@|n@7UcX=M|}E4-9a?=s+-kSmF5;cz@T`aWquYZf-!_Sk=AWm& zHn~3y-X9vKN!7Ym;+#BsvVWTFBNsDX=6!!(K3Nc%O~iay+xCcq8%D3pQYd!JTALPY zs!f`lQg@;ki6-=RX=dh7jX1j=7f&aAhHsofwQeuh{vs}&zf&On;#-LTj3N+_v7jP( z=i$e`L&N`T^uTqU(xo6l<91pIGV9;a|nzbvi^cwwH@o_yM;XzWHPnbLgtp-Xqg;=2KXM_&Vya-L^d%cg5=19kku|`_~w6c>Cjv zVnXZ{#Q2Z=h)?;2ma@(gX9iGVDujs$YrqdT8REeWx52KSqeCY(z!xJASZnDO<;c-r zgQ!Mx*Rv`#!z;$9_?rdKea8D#zO1~U_bEsj>#{9W)Gt#2toM{T_s+Gb!%}6M%Ya5L z3?Pngs?^#8i}W3C+o$?X-d~^EXM^tT#7EHW3@A=eu%DO)-B`Foh6!Z$vng0&FS%{( zJp!@`A>TFAjUA8H8K^l`{dq&duSbpWUG;KG2E^Yle)?2#lOAmh^}q_p z9{nu2xJI61(+F1-gCXv?nK-++XWU5oDACacHPij{6LHsb>Uk`XLnNLpP$*o^7Uu%y zEWHI#W78Dt@c^LyOQQ`*$7X9>ZhHy@9k?Ze69YMUo%(AjebKQr>Y>=pmP&de4y7kr zS~OPY)SZEYTzCq?QP}N{dkCAlt_E(`Hg0++?)&+L@Fo89s(RXfGB)UuMnc7_DxTQ1 z*e=je41oOmkHYcrNakuoozc>9@k^TS-@Q2Zbnp3lky|`hlefr?=y7<+6^f8UTpW=7 zTzag=wYacdkig5o1hhyIl9avrv?u5f60Yam28Je&fop9S9+#qLTFq)I1C^?q~{`j6uS7#lbWZTKl{!4jrp{!q~SOMR>HhN-W{&%)8v8QmBubzGY$7 zEZ%F=qJEwP&Lt}x5==ekMLu~rSZ*@7JCIs^t$San*RE&Z-fbt|1n?dQ*Af*LcFTu> zMA+Lbp_izc#ML7<=s~C1?f(79{-(Z^#CD9;@jMnwe{a5|USGaY1U76&^D||k8^POk zyB?7cTv$NLGmaIIt8FNZ!+%DZdg2%I!~EK_CoSYu+f#tO6cCn-X5;}rI zTZ|3i;bDqL@v{RJR4e3VDcT_i7WDHuacx53TrKb6rm!Qakm4>H=;d$Wr21yG?wQH|y&0Cll z@;{hQor{=B7L#Y?9nBncd$U3R14qvgqqO0Wgs-{PJA{u9EJ{p^M2}43M3&i5O8|yQ zUF`5+MQh{~KmYc?dF&_YDW-H*&|vAJ3=l_39{?3)0f#G+M0vBrt!Mto(gd!XGO@C8P=zNUeKvt&k zt}TlIT3gg9qhpmsq@?1V`1S|!$0D-Bce2b1+$Dlm2s5cWThy`KQK4>d=R+VqZ^%hO z?F-X=>yJjlkon!6kAiExC>j%c$-6Dg8e3;nCDPK{CU2c&PeV27Lth(8#qdTy6xaAv zB4aq8fZ~nEO>GAtEzoI2m)Ml1?+AmYqv2m z88@+*4gDP}I};A$PIF0zswd}h1I*btV|Skl}WTujPUV_YB{U{{k^ zu5c}s^65FG3|;5jLMcT!8A_xf2hsc!?;O1Ka3+CzPYf_1(<9DPoza$+PF%*89J}nD z9D9A}FOgWyU{9A)H{xWQfMYJ1{AKYn{cvZU?Gi^4se=IoTsx@kFcR{vN$k803Dp`3 z#M&?WX!z|Xo9VnZ*F>V&*a)zKMWXR>D);LG<|&q}Kkn6se{I}{A4bPJqcCJt(b2aU zZ}z@%vNQ>y;4#qa1IIHvOb(eR{91QTfSo%Y5x-pV#zc@7)0BFlWWZ64N{re<@5s`V zXCBiEX%1DDkrOXg=v@|-1qDXw<*e>I4u;o*an=0OdctGVJb2?^Vd)5O zCvF!tVZtsB-lJ=O5o@;wEx*&?^~P{l*E7DO8Qo&bCD#E@s+4*Wi$c|_Lo*23*=rPP z;KLVNb3BX~00~x*&~*hrhzxJdZ^{)`?rSNJ8@4%D=`Cx;ncWO$l?Zp0qb~qwu4d-S zS->ktbL^*&c%cTQ+9Yb3;+kS$G>0wPat)y@3Hi2ptAF-Zz)#Sb9+rNT8@~WA2C5k| z)213}Xx>skT5d6Xu6LFFS-&diaZq!d8e~@TzmWjEA)X6T(?W3V?lZ!M5nUj&=4x** z&bCDVRFlec9dPWnCSji;Q&RHPvaQq}oV=VoklHe~jKsgrkEm!`llk){pJm8E_}A_G zDe-h{C%OG75@(&4wnEY99^QYc5FLcGs=Fa9O7|!ScbOM2DY0*sU!daTD3NrHT5rS) zM(U>ip@4-7GVA5XAsA+%sEh(us!;p~;!Hs;;t+)Vw+C z=P;v^ptcW3x7=YUL8?buH=3=P&J2i9lyr1q-A`lO6&cvGR?1w^TA}fJx>&}=OpVeF zR<~C|?ve~WVv?cX4x4$O*48{&_1Qqc^mY}bZpB`GXu`dg9EHCQ8+c^PHg{f9u~5GJ zvz&Jk`#sT6$_SAcSc^66}(VZgC7Jtc0@JebUs4qaHPQ?+@Rp`jcPr#wPqF;;1ocFMepwb3KG z?H;0{BUFMtg*;WpOwZ_1M)e?-h97ty-FW*vT;R83`HXloKJ_f zkzD+sdC43aVH+kLTz#ItPDbh!$$aNdtvAM@j;{CVV)>)L6uSA-Kb?HmtkmD+gga!s zrJq3h<%-6(CZFVuT$RmRRKoM`g|5QNV#TVWf2EawzHl~Xfpjw%(l#AwNLgNx*jN~M z^v*EaHB)7)?ONQ1pNmgaUN{-gB`K*0-*c?q zMs~Pyrmh)Xzhk=prD&M1RZ%OE4DlifFmgppUI!mcEZdkG}S`H z(b9z-$(~F*>-6kzqvS?wU5y7hyQ&~SI88S>i&t_R_Al4^3SQe>@A_Qu#Ub8@R25NY z%;*p`zs|3y$md(=bpij8b580v7>@eGAXlfT=};@b^oPe+axObcK=((49PM^5E&1~M zTp~0nmU4sj$`5)%LU-HS9pNE2y*}L2j?fj+;w|Vg^2<3jBMa9fjXrUL0Wvp?YTx8< z%r^LSh2=rVdPDubk{bui=9Z~(;uLRqohZlOS+KM*kbSr0W~NKMoJy!BB4q&i&MfVt z@SwamZX-{z45yBcC2owcrsH(wU>Ec2tf0P<vi`|3VL_)pHd8A%) z&`nNTGSz6bQ~>NAnEdM_ks*%iwQPIt6i(vuyl8}EeHzesm02=6M%@0antO4ve;Xl!KkoV%I#x!5%g)S39}Ra26p5D_p7Y6>~Z`f?)=kL z@_*mgl3YJ!#$@L%;V z_qa2$TAjrizzaLbAE3qk$NCTst!TE~_`4}Fi1C`A?%7_Fvie1WRLPLVi&Wn!wwRUi zr@TPHnnjL|SB>Ob5ap-DNUILzB`cwW+m|Z(p5Stt{AN9~nlrPGioiIklqB5(nN4xC zc_hs=8S4FSJ!av}dvD8p9P{==JmiJi`$W&T3zlZ!yk|p z8Z{T(h=w@-tjSWj$yp~D80&8-$d#p21-lz$61n6epX{OpF6@HnOfs8xi~QIlk^Owi z8?6wz`rUQrA$pw$p0o+{SZ!ZgSXJr^Fl(zy$FpL>0sofE=!{VavKNTb(6^SOZMNQ% z4VtXu4VoiH?@DjnlXaSmM6OIQoGfdySR1t9P=6}gA)hn5vPD%Yk3+}cc+Rb)X(Qx^ z$cN!UXTWjX5;c~L!}8IB2bR(8qJr5(5b+hm1`q9p!Nk2-&!<2V+A&6v9ZuB~oXciN zZ=$^vqFB)_4uFWOjM7c)7j2lTVOJ^!hIr zOLcLHc;HCg9}sTK6CZ6J_Mgrl&qGb|p~3ZMX?eXrU_a42m;Pp@_r2#6c0uO%zzgKq z!vzPrb)~$$J|BydCx^299FMbys$%4x|1HOE0g$BzjtMke`)khSA##1z^8*)-;I94E z+0vFrTD~=o?gd(-jh!$DJA_?Sm)NR*1)pj^>^p?Y-%BgYhD_~uvs4KcLp8a~{v6lD zXW^=TQB6zBS5=4qBF(jG6MwoOrQkBe{qtP8WS9={#{<$4mQ2(Uo>?kMiNx~Qd5w}gZE3sYR@|eed8ee`@<2*L81T@10SXoRQTwE{k(OfI6&-nZ<6`Iva$(-7z#qxQn?!qD$Z<^IKQ1SL0#viDr%H2XHn>-$Vp?fs>A zV}3*s-Y-SA6EhDNU$MWX_)GWLYFG(i-I?tz%2KAWWEGfzZ$~ zYt<+ItO+zT68HUP)^~m$0?-&f9mOOZWmQ(YE~m`0^r#8FoMGk23WIDqEUY^1)oos8 z7z-k}Jir`M5o`<1tZR*Caovr^sG@|R2S~|zVY3lc(BhqH#lQ<$w@H#WT=YEmUIO9w zlIXx#(@GMj;yVefP`Lt(pu3Au`XHq~t@x`ly_lWM)@;PL@(xj~&bLqjvDaA8m;J7) z*jZ=aZ6z*OP`WfW>T*KVNosdQ z-x%Hrx??aCbcAJpmpM}uNq(3BOp#2VsM-)G@TOqQ5<&4{W)U~!fAu`C2@k+9)n!p> z#8HW?#p#u5+t$4PUtq4)Me3WfH2!beLvlVt0X6%6=&g>ItZk641Wf3ec)JMQ@!w!Zn z`07S)WIj&A$XCB4AUr~3QnyzwYGiVytFHBJm4(?LGosSfASI2{t}y>rQJS=Fcf?eo zW6iD@oIx3Vqb4ze6!M7`iTRd`U5*l| zK@@(Rt&mXefEPuA?Xi&=_ZNt@3u_h0o3)lWM#oRhePZh|yFb^mjQl-bHPCZmTg+P5 z+Xhe-EBzSN`=l7Omj>w3f@#`~lz(ss#73cM$im-V4F$yHxj-*YPU=NJJ5*S{v+Ri7 zsclt<{5d#W9EzxMF0VaLu)QbnG$;9*VD0dM5rK`w!Y~+rq3%NX5vjGC%#Bw(h=7{% z=D9#Xe+1n`t82;53aZ!(>>4jqFPbO0lxk_rSw5NYf&F&{r_h0BGm*b25Uvs=jj-=H zZUZ)#z{8mCJ3D= z!HXiQJ?3xgJoTHOhkrIxfTlZY+wi@%AA0Y&Abp=QM2djgpnlOCjE6?_w~EwEtYinN z3%Stc%5+&5qglaWw%6QaxGk6^HF1K~Xn18a)kV!{P$yF`JB9V$PbQP{G~bGYvNC}J z;4!9v4U#gk!i`)p$AsyYHu*jzySQ4Gm9Y5yBN-kGJFq}Ytw6O|Iq=ege`Cm{{T`f> zbU#|f+0+X_6hITvX6nRctw5qkOoD`Bc&?S&IH-uI)ZrAP=v7kP@s(kuNsdlGurnur z?@2y7jk#I3Y}W-~Z%AewG0S;fhRq;!DATe&gU#|@z?5{a7GHirByMUT7hQum)=C{f zXaGZ`7PU2G?Wno|T}=MSI4HhWN`Rua_aFt-GMs6h)Ft|-ULj4Q-)g~jU|P}wHXZq! zbSyth0rg^D?^4d~$%2^Ua3q<;pHqx4NJt7Gq31Rwqs7%Aw1ki9Bo2QDvsC?@ObnTf zQco2)RZ))nglyd@O7DM>DE2y@c3Ouwbhikncba&VU6hFkZ7G=6wpF+64$I7YkSf+&E1cv#wg8|7g3NL~6Src@xKkx&Nvextw zmVZMVXK~l6=phNnawy-_kS0hlEzu}cnJtcMNy3)(lk^;Is1$=$B$E!W*DRMSGPE3^ zkfAPnDqGu!Ju+=CtV^cY8K}3>5mWWASV(9&<&2MmU_^0Hh}l@lo2=iAhaL%Fw?(LN z25r)&K`fc!qJ3016^c%#FxjlhGgODOZg;AG|5#7go7GOAiTW=9it2EwBpnaw% zW^x()IdeT;kXdRI$WpzG>dfOmv?N2n4^22ED?FSMev*1l^CxARFH!@!iatkf7bE+L z_>`+g{_u)_Zz56vON_4w&YzcYtl2p2VoQR+jQCghek>{@GMfT<)tnT$7js_i-AO^Iu={guV;BxRHRb>gHekvj-$IXVK9g{mYOf`wmNR;ibI6(Al- z$-}^cMXGwcdczcu_;r~FT`tmo)Wm;C!5TjJ>=Fyp9)u)hnFP?S#*EJsO&IwR$5?cR zQbb+8vEF}W(gK#~j7xOdA4A_YzTzt435?}~5UaojtIQ#YWGcoYs?+>MVcQz>`l+rH zmXzuVl?-Ce)UP7Qnur`sk$1}1*Bk2#oq7MhhQ3R!-Q)(KRr0zSwIb%c1?w8 zNI&CeCl})_=D85Rqg3$CL;{bU#gMBeZo)~=YN#B5(564LJ>jI1tEpYQ%8<5xwyfql zw5$-vRqusyiY1rEnK+))RjKu*<;TKRf^{ba;pWD48}Y79b>Mkcygg;HG@W+*a9eN| z5eMKXdgY~qTdO+0U1Y?hEXOI^RysEMW>ukoxSYq{EM|I@Q(BXAqkIDfimRyx>(21& z&{wfTpMy&o(lpwLp@^ir$8Eu;RvOgCwTOX*Ji|o|x9xCUd}|%56FEzmh=w^+tIr12 zY@M4*(zcS1u*fSqH5l+HDRKG8oiqsCQVupzQY$4ERabcd7+J%Ron4~2pT?zRl82xO z;dM}rB~~m~&p12cHSUG?pI{d~;k0Q7&ZuF-vbijK1ur!F8Uj0s6*?M{iayQ41 zLnPZpD13?dEV^0fCnyoHg0ub0->;WTU7vS!nHYaaZ&=VijQ;MQn2E4 zsY3cXht!S3Xx|(hA8u~1DMU}ZjXlCzWD2eyiSw=0TsJhVTO<+L{?9jGypnM)>Tk>6 zpJPW2K9esLTj`T({vD4G5c4l?Nu;nyfaF+|!mXpE$4ORHcFc#S<5!*dn{=1V+WjKZ zNEK&Z-P?O&uE9jtuvZyby!-HECP^=TrhkD<|K@FrLnC|FM_M3i9LR)`mvEk1qgFB; z&ys$IY05e~*C-DZS^R_KV2MndV1<0iwSe%nB-;zNmTgQSloA>H! zHzhmWL3?vrQxJmq9~zw#h+aVjq^kHv7XhT$f7-nZ7s9r)U4#zj6+7*Pl9>m} z6sEjUyNgC#N+1sgKSiI|5?Vwh!eLb**%K4od87Lc=K?YnJb+Z-jyz+Qh~l0$`nJT# zTa#{ANc`yhQ+35M`82bbu*#*AfWe#G3rTRd;5UGqOfN^^o!96M_-I1c!)iIPv^RP% zM79p|m`hmEI!!Bk2Kjsa5n=Tq6X>Q4W;naTiT4~65pCdav4Bj!UUh3lma>hFICrK`iaX0qA+_KbLSgp`v zL=h7#dEa$sJHS{HqP?-NZp=HV;@fR3QKQ>!zlmGfo!0e_n62*8yS=6E(^G)-Pkq3H zp>9mOSj>YiZ%w{ivCUWoe7>e~vNCL9q&(Nm7(@u~;pw#X0M{h)qzGJdb{V1!8ShRY zVFAr)rKB_REp^d)jQzNGh7_3lYB}dTV@G7-)bqbp1y6)G{>xgz=b~GQw|2$!vGS(~gHOPX z2mEcqdn68;ITZBL^xWvcYB+q-71lImjP~V(C9E$&A4fa-zmr_rawkw;N88AMZr^xg znOk1Btc$;Ii`&__^*1aJs(8PGQh)n=ce4-F0~c}Y=S`y+Xi_xHbboCB;$~LgJ7FA^ zv%@01j>tcOcIOtpj%2io>lF|}D&4LK%=8#UNS4mdj{F_{+Q1P~HY;1Gd|51&>3QoT z9e%!&YQxbLl62ibwN~vpd4FCmCuTT9{MQ+&COLZe_x%{XbAfnD%=at32l{;LaJP3O z3kJIpy5e@jOU@`=nclh1;z;>bU2MDOm#)W6Yv);KU-y$i45PeDGOtxPf9e+ZY%U8+ zb?_8~!aI56ZmV}z40WaBu-g%PW^3p0)7f_64H&|U>e1G+*n4PS>g*4u3E>*DgnxW1#*7-rZxTAP zmWCYu2oxd?*HEoQ4cB^2T-|L3;QG3A_;|a!&7bUn+XX9z#pU61c=yA7?S1cc@%`%% z`M$fK+&?8BY4T5#zMYL*(ZWa(cXt?B;_SJEHvR(1qwU&jbhyXuW&V0ki{l4UuSsj8 zq69Bo0@8MZL1#+*+7?{{J`GyU+$3#hRS2Vu3It~T{(@MjBTv53{C5L`^(f88?FWfD z7(z0PykYkG&(_g^u0|>2DCYxMvQD9mx`%iYD$(>vCyYkNsgHWxX_AQQsP-NNo!mT| z7R`Eanit`E5aN3PQRa9PCACqY)&PDJoOK9*!?HLduGSJ^=atzegQt3!nO09a~NalfP zqEHruB*5{HUhaLcTw>Hl1m+z9G!`uaj)WUK>+8aR zoNCrHnn}SR&|R5Q?9C^5?lDTHFcTYwV8DXJ=94(Knz&L?bS@*cBtwZx2rR%%&!LoR z{ASYH0~;x)ct`__^qd=*H4%wZfezgiSbqm3ax0mA^o`v6*IOT3i9Q7zx@-I_q%n6n zm1RGP zq-D>L%I+26T7(Qefu zD``K!hkYQC)gQiokW%`QbGxgyn5wF1yY`U-lv1y*;f` zmsP2hD52S2G&SuTc^}ybo=#vM}P`~ zx2n~}6!~blXBQSW8x{sXv<6wpz?Yq<6Y?FS?d3Ou>VSc{2>!=2*Eev1qkeex=~Z6; z07&9~)wxo#70Ws5rvNmJq`@e{2qD%QA1!ExzFHekXQ_(3&@)^i() zC@%ZFU(>^V32r7sp&2L-!p8Vt%Bb&?+SLQHdRg8^xG*N6DB=AMz{uGYNTh z1#nNo5e;RJt5Gg_nih$|Q`n!2QH#sb`8E7NuP@>+nI*K7IKfsHzsVg|q!N-hj`6^L z!Wvr}txv&rogGEZ3h&UH5yxklO}tz1V@o)tGOfrVUCV(d-7S;B6}NT2KX*`4TI`3e zB=QE3=@xz7Ab)hcM*yROLl+Qdyo6?LTrQ}&_xVxNG>@)pOO!J79OB77)ICrltrt&i zNmGu1R?KfKd?;bpEL->*@vlRSk&<7TGq7W&lr9Zxg82yY)X-jk6&ukbbvpTtAR{U$ zv&`D+3fjv2VO5mzsLRRHmAlE~&>(M$?wvO4)AmBNxN)6;+?(8(;WF7fBbS0&NQo8% zlHmebm*LR*Pa|JF#rN3jn=NAN3MoTT6zTnoLZ1rrWplIh;9SxI; zj%V(-^r)fiVQ-bSXRCbcWWp^U-e{jUFB+Zi@VO$NMo8a64^TEe?h3CDT%oZ*-%Grjh;%i z|4l1GKWG>K&>KC48GOs&!FoN|qU)iygY`hFJMlQ&mIjO03 zRk32Q2P$hrb*Cb?b$)!KO6>)7z6XN>&~wt`G5$lLfq)MbR#w)MUBj`|*M_Q&f^Bl- zdN(y?TBNcX*lMZq9qm|$my*>{Y|;p<&K%X8y;`sHQc~I+4QBn!l6r4I(`-SrRf>g| z?qb9+G9A5qhmsa#r8}k53|Zw*we1Q^UORZ>JSn72@zLMr0kwI1_6C!bm+{X}bihko zZ!0#N7KIS)+NdZFTsrcD!R#R@2^L(ge7}y&mhwbOH_5GUSbMJtntdB+*J;wrv8>By zQkxQQVK0XvD)B?x2#xgA%NUKcRly!-vkvMbC?e7kzAA9!$Wh*iRS7wBFZU>;Mqdt|=Kz8dtsSvUm zuF^&)F?=N9fn6St(6X@uU0zn!OQ@vi(8H{x=p+pYa-t=`M;oqoZ=|R@>O4%>be$x3KIr9kXE&OGM8OKzPuiTtUruU1 z?)0yAJQ=B2@w=X@EW}c6uDfb zq;}gbG`JBhO556UzaXSaDkOxAA57N2TCYdGp>B`rH8MRLN!j?w-z&i&G27v1QF|~l zV6y=hiih!U9*+x!^yXBUrO74-^uEelk}7&Q6urdd4^499!JvMSG*-R6RmUSQ$H|(NW|tM;c$IJvRBZsj+0@N3BEfMT4ZhsWNmPP*I$awI)H4Fn`17u?G5p_ zfRuy|76wH5ju#gEC1B)hB}lJed7^J6YL$vpM#Z|T)11McxS~+scSe3@*QX1Zi zh^QI3HPc}QG4nQzl5`2G>*#(IyQB_8K}B7Rr9xxdx}TOe5c>Y9b6DqtIPm*Oe>bha z_k2j0eY{T*=hWL*gR1R$(Ed6Lk59(!Fl{8IKPZR(i=fNol)_hN%%m80{ep|O>{%t_}Y`b*WNDvMQF3oR_B zlIW&zrsQ{ikSUQsRw7Plh}l;N2`SRRshT7A+~;c-9_A35T^a~0-!h7w1?`_j9g#}Y zo$Q9SDppE4aFA^B;22{}I7F+g8F5;lX6OUcEM$U{YMLlYz>s~xy*5h61Sa;DX$<>7 z3e!&HCsh|?)Z!pEqI^KoWRcfsK^)?UC@%wVQ}Pul=I+iu8pXsEz8Bcq0`ey0od2+pASd*Kv+@#>#ht4}7Z@zzCn_AzYn9*^{d}*U-yZfX;*in%Urt0v7g`nmZrsR zG1H6XHg)iHCq4?6)t^WG3qZ~EWAVR19V_$y6h`~MsUkD5{y$WaIoSUr=o{9u zvBPFZ`nl2XkGlpOCFLXug9!w3P-3@n;vl{ObVCOTF|spajZ`Baw^-2ko3*DLZKzHg zvIdu(-bPLPwCA9og~6nuE)0~N@U(1n%vQA*^PsL)C6u^SnOaDcBB@sA{M!pXp+yW| z&@eL^w5Opd1t`x@^aM>ujZIuGAhvFTLpR6i1tY7*NxWN_pA8%?0Edof2N?5shQX7& zcSEq(Nk_s12@?;7j#x`h?jzAoQ|nbbHr86882tC1grWeTjF0N!p~GAh5gCe)@}LjA z-&~aP(BcRvczBaCrjx$P9q3| zR!>$->hOjDNZG7~2s?#27?ZJs6|537 z!rqi|Rsv5Qgfvot&AKaG9c5lbg2>Y&h*8~OST)d9XuvV$K=5gS9@>loz6OLvEbL

    Uwn+-z;aWW-|S_6cpeGo&CSXf#gsakEsjGLwAKvQ=ez zd^pRr-H$Q1M}69mo!|Pj7N%;s$2OOppIu&Gb1Qwd!ec#`ZkhVMNzNZXXc5PdHp3ZB z192Ac(B)Bt@_i=4%J;(eQsq&`r?s#1(6*v_`N!*d5dMvw0?p1jFwhg*A9SutPGMeG zVZcX#u#i{<+g4Ef=5Ge?5YjDhR1B9ew+_q(O0`+efo=Ppj{&3JV8NaaY--tB4V!DL z&H}GNz~=nHe9m*`el1AWx-i{4UmZzQbHH@ND#$jhrn6hCP8BACj2xHb-m~JM-*K7b zfW!*fcC0a5COzvmFaUbg{aSXjJkns$i7bKKtazg-_v*^_XoE&+(!By=8)U>?tZU}X z?%W|?J_ZN-U($qTaTADwh|pe86b3j7@}k57GZ2m;J)U1OB|($r0h}=q3+jB56;40w za*;N+VB_2F*pe`_{%br0sb+k92szXlkcxu>0^vU=cEl*~y(213D*@x~bD*caG8D56 zdj8Z*7sXaT-+8|;i!gg3br5$Y=ffridaFAX9viY9@8f@*H!416?kynU8C7d~zwZwp zN|TN))~U4d%1+9%=%6!+2`lbcigyv$a7}C2$5<&AFVGE7>UY97LR8rk^&Q*$VKNUr z+&mW|MKTY~#SyGO9XukMq2Aq}YEah}O}TaH_I$lG5RMBv)AL%~MZUwQ`8OKx&+0zI z??pcLCgUsW^hKhg9T-<|f&k8;2FxKnA2kCd3+T6_KvsiYMYHv(W8!Tkj7i_=Q^aa# zq7o-n|JA16v$rI;)Hf_He9CO9Xjj>mTkusL+IpIsuS1?bDyPQ6MQYO#>q{_5_(L%X zi5lkli1nQ%7e~T5^jbd7-`&~T(|hozx8o79IIGN#B*%3Aa^5#K0>??4CF$ySwHML6 z&BET^QxMAu)2UJLv)F^)?(FMm)87L1$dA1@!a+#yfYZ9b1@^zoI@jpe-uM9@XheV> zO$W$onGl1CL>et9J+HwW-j&}29|(X|7%%|{dMs#UN@K(dYP5|C zYSc_~j6}_6xiVRTg9rl{CxJpJpxvj!*oV*1dEgG9(bx_DMp)~?v|{#n%Y==ompczQpzaG0S3@$KtH)QlthS%GT5_k&jNHYH#dDdeh(v5 zuhd}Sp;sdpg-3O~>jDuB*!$zu*NaE)7BpOCF+hjrBz>#n>6Gj`I|FESGg!CplLJ;g z?CCvsveBx5A>(*f=fqg_sD3P#4qC03rJ1*PnM(eSqy_;8IFh?YYLKENA5{Yii zs1imtpP&7mBj7YK#A=F>Ds!eprL@lMq4~si&>FLy@c4VGzMMa%bHzdoXL2&v27inS4G`%>kd#k8QfA$djo@9;^^tH@EF#VaUaTxp)%vqlRAD zLQ|4T(icypwpLF{a{I0NdOGv);vvBWvU&HCY%8U@B{yApdK%YTZK|C%E?YgB^GCp1ObJF!wT7bMLFkt5M4 z-tI8*>&l7Fb`S=W&5B8_wqGB)LmWrBlDg2IF(hPHwSh{X2O*x~cUfGwSeXG|{;Lzd zOG0kB=@+-!(X+^0{l-kz%{C?W zcP*#3c4L(DniB6MFk&g>q{%?=I3VE<``f#=HP6gcok+IBv|rj zE+R|#F&MYX+C^UlYox|;$N1@WJUC#q1voLYvp;L9I+%{iB1UCN4H8E~6A>&{pHjQ|&K$gVkzZ zZ$erfE)P~_24n|zx)ZK24_~inQOk0O)xqdCdC2B~8SUv^Wc{#l(}a&#wnnDelWtfi z>RY%QM^2>~U0D5b$X`6bt?gouM67vl{q-j(_qY+$Jx>m(0yL-3DbhCyp4xY*IDC{&o<+z;XLe-C!(;d)xm9*Xw^aB}pXZu>U{Dd=6uXyP%M$qoM?-o;~ig zrM|S;jXpQ%^`O@d5+VMmFqb*(qJ~Hi$rCV7g7cem{QTB#)XvVYlY(0m5toD6=kri@ zADFY8lH$)|61-k8htDV9_XlAyD5VR}*UL3Jj`{Wm$DNu#{Gh%2 z>l+LYw8sN8(Uztpd0>>WT`gPy$f~_Nc_PSFTgqPyqvbgsSg}m7TniE|auV4Uo8PF&YJthcXEH37N8d zf$P!(NI3j`F`oV3(ucxla;)|g4^vcuUusM>(r)@Eo33y?ja`vc@)AYijkSuuWPg-| zvo9Of#W7tdc}CEz7UoVSDyYW?K>oE@9z z!KxT`c!*}7Ii;v^tnBkj3NUHIXUIBtItl_u6x1xCzXgFU3F};mByoRk9g7DL4Hz{i z{D~`n0YZq6@sgMsOkJG*)^T)kXC$UgzU%p*(G&B3EA@14ahrb2V+m>s=DcS)a3Y0s zRRfO;6SkHzviVU!C})}1WDqZ&n<{WlPc^eWIsg+8w0WVl9tz2)do70H)adAa^PpRO z>Fo*983~C?MuA)EUXAr2-qz1wC)#A4LE6}AQ&{X@&$1{Qzd>Q|x4^c#FN^gI>cnD32Q*Kbc(o1Ux8CD3iU)bjzeQ%8}-k zcc^nd_a@JJS)&mBwszr{XCyJ_AO6$bkA6HB_M-Wcm}-_vGw--En}9irutY|+st@U* z>{7~_ytMXol`NdVG#ur-%y@N0-agusZ{Kr)A7v)VdGa$TVuza*{n$?2Nl}bJRt!ta z*?>}|1)calXv_zukB+I;5yT!ASDX7hZs!x{(cj2x6E|_KT_dcZ@V4l5AH;mB`QEGs zx=uefM7_}vg|1wp=B-uq9(ue_8SOI*l?(UoT=cb zUw!Yw1Sn%Ve)LaS5@s=73kPEGG7#vVl7%|CFrL(pvi%$_J4leEOlJa+N1ECL8=>H7 zdn@N|kcnGWVrWZwiA{l}Ko8|l3lL>3rVh3YO!b$tj=FYeo2CR>7df=}&G@23E@l=2 zocpM!dn?s-F>fK*G%HVC=jpEHL;1p-c)grrw&_{2!e9_(9nnem)WUE5a!j2M^q5J} zOvk!3=Ig0{C6vEVcwrGzrM<6FiCm>xpXee+w<-i6wRUD%!p>=r-YtrAz@!@4jR$p+ zPy&5<3~#mhs+rm)?xK>FF0$trHhFuu;z+5Fo}!wZRC}xs5Y~O^S-~;!T&m7;A!>C0Weu?OMvK7>lzX> zEF9=nrFF*Th5HvR1sR-1+SbV?n0_T;%xNPGH@ayt7H(vNx@Q>kG$ijU+@rCI4P0d- zH78eVoG$>{GZQL#;81|eVVSK8Ijl4Ov9U5$iHDtqdXuS!97LVm#-fvBw8pAt;FUov z?JrTqB9GqW&(Kg#%=|-a<>Qn=XuDqNvprPGq)0HDAgUd6jTrcB2`oc~w=V>qQ|R(p zLrbwZ=SEPM1eO!ytb`znCREI6sVDBFf@`X9vH50{8PY}%furjj$BPMWF>U;G7()?Q zxs}q=Mk%!fr1+(D;>1PT5mx!o-KjL5ViU?bc=8;;NV{hKTARQ#)p9<4w-kCYUK<5` zKY$3vC3F{+_6L1U}W(V#eth z9#Q4xhx?W|<4{_?a)_4B%}+t&!s6tD8t$XbR*m4P8``0-c>z=JCk8Pe|?E%-bC(4c6&7M-B|vyE%JC}JS|&V%p&Q?Bh~GdpuJEq2Aymb_OW@b z21>qE4f8BfoGndkkFV7!P!Vy9APy_8w0MBydfscjqVkb;MeQ}?Tw%V6rwCZ>3eI!t z<}G?twstyAq43?&M}@$=qzQms$L2^Q)jw&SIA}u82LHCzOLrkUs8KpZGPSp!tjGEI zEc^%pqyrvTx{ozL(_ZvxVXAxD7;-9tt(c92)CHK=ZPLAItHxHhQHPz=dL8kADI zO#c1 zHnSjUn%r~#*N<6QrK>*EcDKZ3W{pRYbH}_UA?(Cn(h{kfr)IaDM*Ze5{%5XLuOHvD zw7Eu|GfWpUl9hkHqtkcCR~3Hob-h7MUyh_$ybR!CXUPU(WmvnE?^d>bAd7Qp5^Zf! zAYj%-dQ=x4tmj_=gpAfDgEBeZJ(j|eW0hQ~tpajD+jd!a*KHF}>E3u5u;`pT&3D>x zuScd)RkrG}W9dPbx;uH*SS`)4PRwG9XsWcIoJqL^L|ytXf&hp4sdHJZQPcQ4r=&2~ z{xfU0l_RE}dpxu9t7vJiA z7TGu+`VH$QItVAqd<75f^tBdPAVi@_bVRAw<@1kq#n0QrQ-d9O9332V$Mz**CzGf| zZQmA&>PGOV=h}KA#H`prSO~1r-ykSr2gQlQePB2 zlR9ATVSfaWUP_f;9YcF`8rzxsIE_gS6~8}hzT+aI~; z57c~t;BhG)caovE8fjk8sMdVVn*mT_c{4W7Fa5v+IduPMGbt0%K*b-~cKbR6CG)f@ zFhUnvDtX)m<;Syxr*U@T$2Bf_H`i3 zl!Ep(ga|@~=+Bu_?Qir@i_~^ekCZWv6}LmM!|SD~V;<^ocVVHfgPRSLe@0Ls)fT-7 z50~t=QOqnqJ26aGuBO5&v?67sok{m6f=tzK zcCE8>uouW`i#oQSu8zh^&EWE$^N?mZ$2W7j`DLi}@%*U$z$L*E;`eOuXYZ0Uo20pwvEVAs$vzCQ2vEw+(P&J!8um#^rM>_a4_7^eu=M?qn?=a+Hk zX>mdtpm_wr+y}3h{a)~eAIv%t>Zp6IX|>?htY40VF$*aPcOF5C5pH_Gv6B8qJiZ&| z2$^&W3qI~*geOkEV7(49#5C_8m#cXJ(3Y!h3|g}@>8NbZ67W!oLt%{%Ny$!4Y9Fke z8vby~V1jq8?_Zt(Rv=CxOp*Q|w%izO5f`%RS|;e4ngXqU%KbyI9Noak^GfZthmVi_I=M~_0Pf;$PUT;0WSO= z(`OU|=^g=GkBc$`<6EnZ#KDdKK_Q$OH+OC$WFfRq_?719ObB+;wNk3&3`IQ8FN+K( zR1?{TAfWP(3A@_^?^A*Uz)wp>L44xngm1JV+)BzB$tKf~La+L##WM7gl$+GZW=Jrg zA#`+J_|FKXjzlm}EKY)i>u@xH3ek-G5P&5jBGBpq*Zc#v#Q=B559c3qdfRbHUFv49 zP*TP22n^R_8y3PCpgsnS32QHQG7WYi7&E%pUV=zQ$LNcJyGEDat6VHv)RIE{;Ve~# ziPA;?ktTIXnNU7XIN31t${={{@qxp6OuJiS!E2`_cdZLt_loAyfPm>7^!n3F_1X+m z6;h}pQ-P`QtyHrO)88{1IyKsuu5XtNW?KT?V+lsP8PLGdkju|LWUX}+m&rXDzzBz- zs;0Tw;@f;B6|7Q;J>;>i$8Zn;af%*A&f^0ZvX4}h`q;d30NKNEGsQ|xu)7rahOvg; zlL?||h{x7*55S0lcm#H)#RUEJ?yiln@d14Mk3WPNN{}bpb{*-QnW3^ggBD=ilGEQ; z`!?PYTpU|?2FYEe4cT+|4drZh4n1f!6uZP8LF}#`Fqf-aIMS<^qR#Tr??>g!{amKo zGd%EU8(+_9)ti)CMPDw3dSPF#hvvr1diS1=z6Mr#(l9oGZRwTdyjYgo8#>xLL>+H& zH%^1C1G;|iK!9N_UU5xTfv{+IXG2bxE&Cs!6XXM+$sKcKLH~j8aM3?^_k@9q@zCcy z_a;CrFq^Ho9(%MWqIhg}%-~}WkAo{3I0FXcpEhYKO9U}>eRpcKjK`oAoDE(&Sz6L# zh-hChm(P!@_e;wlV+w>CKA-mwqacsInF}V)YHeS??8W<O*J?pM7Wtn+N&WBfUp&2BTYzu9_CfB_QL%OQ%{@W8+6dOiQlz#$wI@R~q& z#iXNq1*LBD;@kn?h()XS(1^d`g_45N_^)s6_?du7+#eX?4Tdu-l~gW z-Ri23t_p%N0%45s3Vby1by8eOnvOr^SnY(oq*u&b_eyTkp7CRvNHwBmBR`JS+rGHH zeRC751eZ9@#kDwh09W5+Mg0p2->BxBMYRRP3Q z_v0VvqEF9xvV4F>`iS2F#StfX@ucs{039y@qt@zv*<4f4COyMn+6d*cFoi|o?I%Nb zEXU-IArNSbgHXr1uT(`-$frhj`zq7*eZ05_qWF~iSg^M z_Qt%zwZG^%AMp0@Y*+gqTA&f_96F0w)b87WeI`xW+5T)))-8b17ztN_gjM&8fra0q z(2=xho~zZ{IqbOSBcdyLnzb?bx*C?J!E*Clnw<^^F_|qgrZf@@R7I;iIOOw95w`J; z4>`_}9%9d)HO22`rA|IhU~V6;?X=x{8FLG3XXv+hZGUmkJVFs{*y3k?yF$^c$9=-! zeQjzf8)gR4e9jrQxooi;Y~6z-&0^DBL1i%|*zX@158iXQXf( zAtn04YQ{r3u^fvm$FJH}VoGb47BmblUiQ1c)}xW^l*Q5&w>(Q$MT`iES4FUrv6yz3 zP>vUKtNhKFRJDGmLJx9GaLo0w(>2f4m6GF*mQv;|p+iQbBsLaoS{_M((3j#{y-`o#R@c!HTHX7bb*^8H>`m)oEr1F8-TM(Yxwf@%NQU^{Q$ z&X<;>f6t-PQCdWy+HP*btyR?V+5_&xHsT^&Y@V{Jt7!{+w)vDYVJ? zoAh@aliSn#!u+VN>U+iY**+TM48f(ht!IHb2l*W5gOhlIqHu#-^R7H}-Kdc7MV$!^ z*^Z2|hZ+^TQi^X$q1mxb>X3X2AKQ?bXdXGbO7ww*rQbQ#6n12fY@~Tyjxo!|AKZ8m zIe^Y1+G&x3YD)F0DiISZ>AyE})gCB@7Q1|kAQ_sUOD*%bt4bcIgh-(qErJDhnYT<( z#8;ymchUK2!s)JRymy81&B1{w;gZ3W-x7Ip1y2jw!l#A)FE#y%uolof&msulDF{_7Gv1>Du zXM|Ws5uE-iYGc=bz^o9pDW}{hx!pNDOO}3s-QsYimkjk9z^$0j8>gp48biAw2{=ww zb8ylf7ee*>;p`7NMb&AAiXy{}9Sa);$_{&y#?qiOx}aBznm16vK9GBQnPeKMz}?M6 zH+JN~^Z>Q@REc2>2R}6CfL2`k(d0KV#%V#=hO#cz_UEHoOV6I0}&J>&^t zY>d3~sCY6@mXN5wZhssHOFH+Qsubt)lFq~v|2@ad4QodmIZcd;(3^zqUX?q#tByKnthO+v%;JpX;~h>$uYAR-a8^kgo5KS@tYH z26iuLHh!np^n=uw&D!7X9}o7CAjW>bug_Kf2R?kYPl69vqfEAeQpTH7#+R|MHgAcE zU7MfZ_xo+mQSr~Gd)|@sUc(<)zqyVsFeOdH2hR8CyPz5B-V~Q(&Yv<7%#+JF@}aEZ zX+wWhW#3&SvFQ|gkZb(iM~@S|voHIWx#>KNhh1X&#wXqrT8)+?dH0jqpdayf@41e; zQ+|VhZnP%pta?FLSAd2UIi=c&A|TZ5hSAa60nu_^$FEJ!sJ1PzR1sJOy0>U9Y3 z5aZOz+T*wMA+Tf$p?WIx@NcPTLc{vRcb-v_w5;Q#7q`%VX<_);hE*!le!<>whb1S0 zyhGd!;m>0OuEe?dX*(2MG}{XAw8k$zwT~IjYqv#MBLRz4qgh)k*~U*HI51at=~z`d zVR|*CSZXQ7nh~@lb-^}e|8m#1H0jS8sgoewRNDGHT@*Y`!F9cE^oR3UZ`UK$fn+_^ zTOiIjA&K6U7xEqWKjp(kcV|tmaGA~gn>`|zm7H20Sj3B^M~bNRX#ZMmKFs#r%LtU7 z+R=SFC|)S#N%m9{0)B=m1wE5XuSQC@ZP1*3-NDG!rkplY4 z7hy(&JA|ZDb5X3z5Sh2fk*z4WG11FcFm>>V3|E)0{<`ax5&m|p^IEVr?Y-<7oCrt38IM8BNNzMzBNFhWhBm6Bc@LyD{ z)sdB1FqgTm!KJOh(PggoI_E?CGSf|uUB(1I&5YE@bp(1rjpk}y4Wr#{_HhMfW#vH=FP}A z?HI9RS;7Q1W-s+Lh#(`}Tu6x6A>8Kahyyr>Y7b0?b@01}J$;}gJG`Suxi=q(p1zKs zs*8#gg5jZ$fV#NqoXhgKc1feTrYMo9VQs@|u2o8^Y^`bs0OtUk)}}gG?)s=~0yE;e zfT?WU)4vL@>9&RZ`Y4sp9IG-0rs?@?Z7-pOG99{Q_E3nI+E^~Bk?L~^vc#4V(i}s^oq5{iM0Dn~F0Vi9p%&DL;r5=4O z#E;RKl>ylAk3~nxen%;_S6>zM{wFT`Ew(=r`StwO>0nrmAQ^EIl z9V+)$VZ zO#zh_S03rZBg&QN4kTOeYbyRz3t;Q$Rgz*FasHBWwUXpL+bL7P%efvp8-^1n_Nmu* z5`v^zn9;=iIl^t+RL$eqcOcxC2Rl0Oi*L2i2JV75%%Tq~70;T=n=iQCB$@e@nQJyj z!>o>0*v6j#mI+prHvQadnntuRMCUv~56&rYtJy}0xT$XK{X&+<*#xIMIce(m^(Bjyb&#W_7P0FPX=PrT4c#lklGIsyg@YG zMY~G8qz;Ja8Z_(9=Cei}f^K`JI;>Opce}oxr%iHk^hn8bp|*Tx!0T-8IGGS2&IJ!1 zcGTk`L3fwm!ma*4ltiM8zaC|SLmv`|Csa3q^rB;18 zEOQ(iS@iQdB-ZO**yztWvkXj}UU<=SrD1FYir*i6XABjeFB)usJq!@zTHAB16keypGAD5&AJ5XVNw-ds)X8w1mfS;%AwjnS41%jsnMX`?Kr&vR}{mFi+dItw+GWVX;n zF_~ba|JubCW#q9^wFCh$CC9rDc%5T=3e8wUl35`3RDWEW)(khDIQb&Gghc-U9;Vpk zM`SrP&UnXv>boH^o-l!^Nu+m}AWL($OluZ3A3veg{$RSi7rJ4ZFhs_c)3`GD2exY+ zwh&O?Cy0*+nokDZ6?zJ40HPX!tVOHV8%ZRdHIqkkKhm#ei$2-%X=b#_%$^|lLEEK%^c@p zP+UnQdAAT|GO3J(VRIbfE@B+_!#0W4rJItL9^}H(W~Ev9T?rPa#@xTFUEVzSfj(+Hir;5ds zIo>86bh=;wYwKV)*!Zy$k?H#|XUMSe?0sBm;1hl%*b04~jY(?dpo%Z{G>OkAK6t;gS@0#}%YMj3Mc`-*CyNDGV0z(w{Q z8Fa(u1L6_-b1mjT3wHbu<+Gx*G;XD5+oLFRu;4A_&hlqg93$3IpqGyeG*$843mM%7xD-qJymC)pRC4A$bd)Cr-fcfv`l2N4sY0sVl4 zUySY9iJ+gnP;UhTK~B_)-_Z0(1_6?VU6-P=kSyR%Z!~mEQ_G_F1I)$nlIJCDg#%-= z$o>zXYM(t=KcuPF(up@Vtg}}WprrpR@Vv%({G&f-v1RN$&DXqFBm>9V z8ogByeXR_ArxTphxowzU0=I0^$!hC}`nl)zfFJyFy8dDQPQ@3c-JJw$$mEOnpjJgU z9v-pD!V+pB#qBhlUAtqSv#)!EKA+#u$BSQ-!9DN)h6n5n|E&iGBRk9gK?ncCDPA>> z7Y;}eBIJ`36dfS|(2R^xyR4IJWf4=my36l!>Ib8h0A%M7I&KdZq*cJ0f7L#lBmki! z3UWz(uLOZ194Xbvpyo_1-*?Y}sDVSoHiuqBu6n{ge0)R9!+qrwN=1e<;Tu>JIW@UY zgR#=Cj{~V#EYT8h#$Y|)XTe&%HRk@{(l^~}g+2PIK$;2{sz!<=i)>ho36BD~wdAI|RF)(|&_s;~8 zf2Q^o7i@Knyt<@{D544Y_=TyvXw6@5uAeV2gTkGr+U#~+x;@{AvZd%&^HHE0-ObYB zhB2ED*PjoMs+8u*4f?x&?=Pq9s+M1O42JWrpqDWubvBl{+JVwTi{Vmz7f()p;5ojp z+8>G$Wxl=1;3o-qTZ^Z#`dUf)sgNGS#A=qL5S5_ZRnGNXE6sZWB;DiktzEd4$v=TQ zM~Gx`VP9nFZpaJd7zOd8Ck_e}d*%iDV(+wZ6TRp3BHVUlagdP|#rKHp$(HNdg^1i( z2=>Y9B2jI2Tj}u0+8GzNj>05L-o?zknW`^Z@2$_wi!-yEdPO)7SyS@+eK>c?@a8-) zhicdwb`2a6Ia7Jh5xoSMEQH9-HB6}^7y_X{aiVOE7M5L=#%BoU?haiM67zyu#NTfu zj!A2-j5Y&rT@h=Qph`C2{-Y`@F&tDw9a^<{E@mrRAHgA-X4pqv_hfNR`ps1;D8)Cs zP4D)F?^9{}pNx0`q05*(@P##}jqLgzl`AU(nF2F9ypQyd$r&-@*1 ziW26@qyRb|=FgjQ`}d6H@V-IdNN_z^$f8{G#6?g!)BC1>>owM*ZKx$sF-V_nIS$5tUEXI@2|)`e2-_G2F!LjM4CCnSn=m@uDXST?)H z+(UZX=%6b5?T$Yq1?K9=>%2!uTo`x|YfQ}4GGZk%K^I(*QiXI&$vRss&HtuzJo0m` zv0Csd!B@0OlhirOnD0!L*|^N#mSvDZISHqLo}^U?BF0#Hw|1ru#~C*cgq06$RwxV; zrrD(k6^paY^JIz&ZH_g{I$e%gDl;AtEGC4-Y;6dptRD`l{C|v{Q;=stx8=*Wx~j{z zZJS-TZQHhO+cvvwSN+Sj?dd!7awF!8nfq|!JY+uRIkEQMxqeH`J9mYt{q>Q(WXLT0 zXu+Ub%m4IU<1BWaL<1I@BHx(5V%99IV4w~!U(4K5v^qicxC2vwAo#vDQ$kVP;x^(ez) zq_KKVzf^9@fK(^|qG4?**`nwDcnew|onuegj`XgRnsLyUdncfL_7ypRh&2KUb~a=% zLXe}YcVysq;LUSk)DWz)=gFwbtvg>|9sR{d=X+cmecm>LtT zK$3I|uk|y{W%pfS#*vnXpEx&eWsX?D(Sh4)hMu_~P;4^B*7~*T^wI$7+{xDpHiZF7 zGiTGMru1Z;pyoHz!_s{kvb?NrL1)t^;FEC@aiYfH;w7rm$@SVI$RZWHM0pynTE)9tmOR*I6}%rbTQR9BHOjMD=rdZxRiNCo(Y3|U z)z{++A?_~Ct(EvU^patN$=#gnKo!iPc;s0r-NG!UBmu6N<3I4tO&0xFIK31qvw_D6 zd-SI4u2q{5%h>*E1tA$(zXz_8ERUie)^mSvqOD+GaYy*PE49$?nn6O3qpj28Mlg@h zus9=}s7jK8rdH3}vtVJwgzYU}4~}$Xp8;z%X^x%?1Q<6k7c}j<6`bds)Tu^^zoZ3i z+k+7CNdH3fQ+#F|aSTR|4-Iy-c`~(0C9;6^bpKb?;3IPJMO=UR6H~B8&Y~l3C}`gsX?s}>H?~fHST0eCbT3RGwp=s= z7Mb0P)O6ILU|EwUdsn zUYd~x9C)!44XNEw!u9NdiOnvEm%+@@HffV1$O-_#P(YAxMoJy{mjNt7pMr4bkdeb5F0EiD<^GZQ6}L zcByE854HfIPJzqr(Pmb%afQ0F`W`?p_9Em6aOxrsS0)jRu}Og7E|6Ga>RZ4?o-yh_ zupo)bU8Pp+Zd#cU!8c%?8S7^Em~gj=YA9o|g!-gd3-FZWAg}Nig$Sh*HlgD=onUgu z9(VLyISqP6ilRE&jLub+siaeH8j2`VvCdwO4~`WrRRw&r(#sUkR8ZIkFU&dDoo8j7 z2I)>8YdoT?)z3c&Ped(Fn4k^!+zT8s$I@1bw*aJHQLAz(BZuznF(vf$H)_S@Uqo3; zMlMw5($Jy(TbDM67I;Xz!vgTIiE5Pw6<7i!9_fMlDLm2&1tw#eHnAZHAuZOI(3Pwt z5VX^qACnDh*5N{v2ElLGXNzQ`k^(3VTZ3`@ZZHSq--Nm9EJgXHQ}qv|N!3@XGQw@t z3EwRc+B5bfvP#RcRU;a@67E5&juS=`87^sP`LOP)nqzuw(9IKVob{j%*@I0GS9oZ; zA5rb08WRuD^r3m9#6_;{(fHbz1GllCFkn)~+un(Vc0rYm;j3w<;s<#Bb92bjiM8VD zG>=5&oj?~P+CCeU+18U<{^h1yDsU^94Gl6PU zQ5QxFIB=_1ptHF=sw9{{b(DEO!*|OxUH$LIcP|fig1GKcd0A^{cu7E@xn>DGvqZyW zE2Z?aUhUA&1ZR&)FU{5&tmo$`8JszBc3frzmZ-t_K%ImB#o{G^@0tGzm>~QG4r2>~ zen;uueA`3e;{n(w_GRi=qczZe+znABxHSdmjr*3?nvBIwcb!$IrgC1#)KVdIBHQJo za^4R2uXX_ysia&UdvPF!@n~gvZw2w8cyiF8=O#tHh4}@+52!hP$8NRtEh7N4UUNo5 zVEH?ZiS({(MxKU|tyv(NoK4d8hvk68mSQLOX$ff73m5o4x>D%XCT^cB=zVUOG0=*A z)>WoOpm^?mVJ#m9|0zS6%ov~<(Nz7mh$C+u4$ayI7OfcCt~u;4{ERUiv`tj4R_`r3 zfY6*0Zf<_Dh9!C>CQ8N8)fLMMV+1$g#P0P?la*-ej&*^@Jn6oKrK~HjOawy4;C-o8HEJWHSWzoN3MpD|VJRy7nqG6x$d? zHo@lKD;&Lj-2AxqX}oNqtH{q&Ba>1`X5u@P;&u+>&^n8^OgrML_cp_n;zL1a|F$_t zQg5myFy1>jnuA;?-f4vf)+hO@A|IUFd$Uw&O;?dR^pCCVZ%J{TG14&j!2t{^Qo8oU_i+jWgiP<*{qZcpY^vO=K64v8TL;{gC z@V5T*{p;%GNS2nLt_0;JReKU+>%NbaU+!n2nY9$Z@AIW?JgA-Q$6!IN#rwog(yH6_ zN(rvA@4K^GC$ufi;9hiUV#orsFAu((<^ABo!B_q}&*LQW*+FaDw{RMxKu2E%IaL~j zEo+8p(Z&8dq3`G2XMKE;_J}_RoUHG=1f7?j>o2RnEbQ`wyjAk|tw&32C?Ws^Uq@0U z_nm<-;itj|(QP#A!=mEnyJ_stFU1_`#hfHO*PemQ{iuY|eU9oHo75VZx#7cP3EKuZ zZIiPkp*IiEwYjc$!|LsqK2v)c3{YF0@qN$>z4f?=?jPoKyU*75HU00^$X>qpLw0ap z^L)3doM-eBMyXfboW(Z?RZ`j5gL)DR>NDc7(b&?gzNqTPP&%g$O7o4rg~ zXi}?_)rdbVC0= zqV}CbiXT`7p96>Evb@&EEo=+e1xyd`vLXlq<&;D!6Wr_8b|0)Eos=tANpr&|8kX=}COOrMUsU8_{O5 zFC!+ZM7N(XGSOzHI6bXn*49&YJ0nGUi~l%V8g%v)xnU(M85GU+uOKaPbg@4y=Kagt zUMXas1GL4$m|TInpGEOwK3T-{HZ3dT^M)TDxB4jF@V!>d0|;HW#a>Xv8Ku`n31h_j z3a-1>o5et|Iw`^CPkS2OGlgPUPbPb~o-nvC+=oFW?vrtniA>iT^kQzZud~(m!;)qr zmjuZgM%1Iv>%9-$Zo4m|BcSVYn~IU6Tle$V+w zpq*QNbE;i$3%yC&4>0c~Y;SP&Z1}E*vBa34K0N7g^UW_$@dw2)>H^{bfGX^1njAZo@aCxr>BAW;SBGl5+9Ly*!V- z*f3BMV~JH}62aN6KA;+}K$iqJM#XIKvkyr(&}e$@i0ff|+avQktJb<*&}h4?J>rVZ zQfT3aiXJPIPvw`|nY>Wp0U!K=xGn5!Ds6oCQ{^=J%HmFyo+CAqed1Eq`J1PXcankX zqCDK;D%*}UfksuEUA0jwya^mZ6@kSPL>fi0P4YkQ-jzyRdx%XNa0OdirgCX*o=?|^ zHMUphKqJc){o0Pd#sbQ59K!c6VGa4;Cp)+{Si#nEQ&Vv@g!{`%7$OX`zn#VI73S)i zRwaSPn!ajazsJU6^TtoV@g2Hy5dTBD%A-CZNQNZbtqk^;Mk<+LB|$DSp;tBV^^fk;n)*$ktFJ7X?f+ z+n?7owmrxk$K!n!7^E#{s;=-!TO?~`E={fyzif?i)<2>*Y7Oz||8#VgoSnR|0^wVV zY|ZSth%x|R*AVf?pb_$Fcs9>m=^JCpEVwG!w?im_C(E`sa?X+U7(r{w4J^vQxtjK) zYmO1#O27cUZC&v)#(`_uV_FS{rs7 zM)%mOJorpG{5O`?Ef_+Eq;3WD)zpDHIe_wJ$EE#Lg)Ph*Dh2u&S6EKdpjA)uSZW{W zBo7K-8-A;{rq}?3_K*!~ui2)gJb!RSK^A0&u=`IT0k(Glo2*5M6eqX_{LBi$JDOL( z@G&jM@8{Sns2hI@N6kvJE2%BuKlCO*SupLEYo4cRNwVhSrF-i4rz2>9eqAo&^2oKqtj-}yc(8_MOCM;{W=R)$vp8oVL^$Z!OB zp)!$@{>|_Oz9Ly3)~RL61Crk4Y5uIvSwpy)hEL-)(Tmi~AXSOnX`Xk>Z&kHUyAKD! zc617~Cm7AXzjb&SG-{5bcVMG}SUypFsdo*QmAiJ%UqscR_|QKLgo}?XbWYgTNSgFC zNlr63zFO@=B$EXjP1U@ptR5Zx+TUY?JGsjNM8mf^Y{D3u!3%J00;qSu0f#c&Cn}MYP7d zHbe8X?(b|mnK{#{0}x&8U@d^6=;x$Nj^!A^ZHZ|fIUdtz?mH?eTOB5sMSFErV@Sr( z&p4bFF!wV_B>RH>ziJ#dqyTv3qm?C0<@ab>hP1rDsRZoUBbK$48Hr&3rK=8JP@GjD z$JeMMAhitt1}OCdKlJ=-^nJCR^;KjF46qQg>aU z9~HmB7_Fx$!qM#yKh3&w>4g1>{d>>($XmV)T$kXqJ$WsBM|myN=6gbPqBYu7OXa?VZKL8dwT9j(G53IgK50m%bs4HS;>dP|bWR zy@3|_s#K0|{)>`=G8K(tf)B$ExvQTeo={a|KxwbpALJ5YZV|!@<5rT=mCx7eATS*a zhfWs@!aZ>|t%p%ozhHHY+h$=fd#cQKn14lCE#TOGkLq{7ZHUgxi<7A|@$bdZb>{6x z38$h9wQYpOLS9)GNlsA6%#(j#3Rr%Bele%lB<6Na3}#w@QwS@(mnQw(;2`q_dq&7> z>(lJqtJN9KoSwLPHJ<}2I^#V{epnA5y=?ci3CvF5KM(-jp!)+QC#d*gX=k>RO}UDh zaD&RC$WbfD0?Gx{g$FmcCo)|7GZAKLp#MZDrGQ(3Wf4+-7#c6pR?~B8i2@O!OMo|M z;dm7egF-OH2>WM^zz|dP?tY5V2l9K1b9$5{6RO@QaBO<&lRc{=*B?CGW>jKKTU9N) z-X!N(1Q=oMFPkx&r9P$p(y61~Eb6wQvfKmLAi@*9H>+!i6sOzLKDxOM;fQMU+T5o0 zIHl4}{#Ty(a>Dnpb})SCMs z-H5XT;l0WFnz-w}F4EDB-oF|w@HA~|=w5c|MBjLnz>g5*X>6xMtgSZGh<=e-TSQH3 z{kbpYYsd^u<(X+1uyu3@py*|P9p)q5T|RpoaJX66X@9)5!s&um6blm@LcqtdAI;*U z%xmQuds{bh3(lF(Ud||r;i8`R$b6cM z2aGz@Y4vG%8J!>BF=Z-tzk-b#9` zhWy>lX&Fw3+^1BsBEH43**)9mTjYwZDeMec)^@DTi)%vaz{51A>+`U5YaxDqA_-7* z)vKo0tl`W{h|diO2{fnj`n>F#bW-8&it^vhcI2}CS3csHBRp1(R++_VDY-DOGL${X zZwUO_X$^z!lndE9@Gw9e>G`vUigvJv0ZnsoTO-xDnpVOelMY{1BOcrtNH7sH0cynW z^T6V(BCF$Il1=<8u;qE__>GT5|Z14Zo!^RIJzf zhsP=gzlDunbBMeqXBj|lNzD87Fb*b;_I>|(Gs_R7S0w}oxVjT9D`ZWnd(*wxjrf6m zp!(!h&E0HN!>i#vK3ebh$XOJlXF4GQ6r6(DN>h0}x{8yY6baRw6>PrHR-kVEupEK=|Y*UcB&W^Yrz|l!?z;|pCGD_u*XF|cFL51+J&u-%9gt!RtU?lBK7cxqR6{`Y9auI zTo|}IlFVj?jq13&z(Zn zqU<_iYkWr9*tC-4{-)3?M%}<&MbD6p5{irGG*N6W=VoVjE3+t-o@@uf!dbmhCJk{Z z4`|4!oUgEVirE3g0)+{iBd%f#rBYAYM@v?#cX`f>rSE;}2FlmK+hCV<7KlewHJ zqb#=Be+TuMewQT;$!v;%>?AF{}0kUrPRUm`_b7; z43ys*(^HZvnP}Trg9H0NI%9h(hMRJOfH*^24nto*5~2bNLEhcRMVigA9%uHPQpFwi z@^wCgm}#OO;&g3}kWR$<6ynbUQm+xS_=72z;rk+i(vq#_;+njhOp!Rv^&8A$IoSfl zr`%%jtL!4zBJQG`&JE}RPYzX$N}pYEZz%=r!ooxmA@uk{9_H6` zpNw8`qKv#Cq^|{5rNnmUGfw#7#l^F;rkMQX;UYuSIJE}$4l$3*_r)!jpXtwq@iHkr zI6CJQFuRAs4<+~L&9i&a8EqCIwX*RK*Pk&}gaz+u9$15tc(be>fQR9o(lurDhIfJ% zsl)@T)!$$j?OZ0WmA*9}t7H0&McJL|)wMs58ke1n-uILH&Db?$CFEYVQ#$T4Go5!w zb=;u|4dhio$eGN2&SgslB^@#ZEBq(%Z?r!;PV$YfOO19EU`$KQpZRb=V(8YN{L8>U z<)Cp~x8-Y?~0nr=nf;LOh{744mf}b^M3W8iRsmCuZA^D(~-( zWf+{XNEJ^+DhsQS?s6k*l_iSy4KGkSPjV}9KSmN_sYDe^r1PL2t@&RB}aXe zq(OZME{SZ*JQn(y@#v<^eTSzo0Y7mi(tKD-2B8Jte41q~F|Y(mymtSH=bSfeF$3A- zy813GQkvE3hJjjLh}=+*!uQ<=0!CO5jOmcXBtf4q{mcDPuG?Svr;oQlgT@tv`ZhT? zpp8y1JK1;j?-1`5v-Y+XShTxb6Lj*BLle7vM;HYM#bOiSBJHp&iH%xKY=tAB&tc;! znp4N0yt?$Ej-r~m$Essw8Kw3Y>J2h_cnaDb2mR6rDsA!j5tZ6r*vYg=2Ms|gkS-_! zeMTNP^bJ{e!Qrv{_sLU;CLm6pSg9TH`TPR3;!7+w6w~aX!=un^kB(u83~x@Jpd3Y& zvyP{XNEQ2fLv-z+Uj06*I^CJVB5fZ%;}V=&2^=@jJO?8jm1MnM@7ZQQUY<=^caF7y z^;a_OT`aHfvPIMW<*%1p4cv$JxYH%Q)F4T;$VIZCq-KIug$WU+) z8*ulcC9qyp@7ui+9%6LdD_!cmz>f3zl-Rr2W_eOnRXRABbRmsf+7e@!KoU@j!e9MH z@Wl{u?M1F4fXnIJH{wsBe6uip0>B;oHb=e{D`>S(i%4s1=kc_lTRmbdhTe`u1`uHy z!bIz8=qc9{FC*IP$VKu$ioqqAJDzZJQ6h=5OAV!01UTh_|YwB?q8Sr^+LkX5&i z&wwQx#l}8t2C8A$fu@ArH4ReFf&t78ou|LVUEx}Ld&L!YZ>(v&9C&~28i2vTYB9J* zmVFK2^ZQk~@5(;{*3>Zvqs-!k?FH^o_EL%(sdlF9+Iw&hs3dI*Z~yR_*ctD(3$*ps z&n|hn$Uw4*qfBGVZ^1Kplb312&Sh);|42ZMMr!T z-gh$c5n)}hGcEKOH{aS1#H^UV{y*r%|2gf5nS=R1U3AIO>WD4=XEr#Yq{^kumR1&%C&AtfZqrh_0M^IlEqCfzo^TF|Giw2ROs%jJiftid;eS}|6-T-{aSlT z8+qEFvC-D&r?^IFcaDM9dY1K%cI5u?{PlcMm3*E1z3uz)3_H_g%Z^z5OKKW*FDm)n zj1rwrpOp^fwrlWbXGgbr#l-@9TethA&ZN4HbxY?#rxt-anz5J zd!H)8TZ2;|kDRSsKjh)=I0pp-ErmcLlY5~sVzKcJhk6|28b{LLA8BOe!? zT%89lc=Zv{rED1xuO3>m@)%}CUiputf5xA~f*+E0eq8fQcVk1Z&+q+-{qha_`^zy& zXw?2g5AWlvR0b&@{`;qHLyzz4?R(kbao@Tns5|+m9iyqn3udxi%d|ivp9PX_b)+60Vo~K9BArm4$IZ zsuTpP$-=k93!j0U9g0{7Sq!VF-n{X6Df0tPEChL=a%QrcA6*Gdlbb8iy>^RN3Zac@ z?Qjaxt0{{Cnz1;keeRq#n1a7C+48dg{IFKxkRI<8m#ZWR->eG?>F{e=POoROs40~S z5!KC_8Ya!SN2u}GBk4=Ow?Qhj3aKT93dzQQ&1bC0fJCWDyB$jAE}m&#q~3_0bd6{} ziTJ5ifqs|HEofGKj=Xc#+$}mjWX+rzy*0OUCuZ33#q$wDZ?71Ut0r)DtR%&TMv5Nn z^Dr}VGFL~Pq0;XqqpPx4s2mazT#|{>2EsiQiwK+DWXYbVh-|n^G*(oUFtIO;)14`q z{}obyW=g>q694QWemv=ZL#0F|GVV$CzWv-2J|j`BpnhN6$4VwSPr{`^pi%Pc(1sWwmGm@zJOgO zvm^^ILF_kYr?6p*IHA>uYgsF|1%6y%lZO8MPLW*{h$|@u+toEc6~=)%H7B77H&M~n zagg|=+Db+Ad86+2%J1zg&CfLH5^&sL72ATA$?=jzLz4WU95Z@BVs^q&YR)&iL+BHx zg+^J+WEdgOZsKr>sM=)EfrB)4GvSD>(QlRPeY=q<1mRi$n_hjv@x!~BWAmPa8`ydIo-KgCTZ zTcu}+cuN@{r`BDdr`HAu)W2%{s0`DA+!^}R{)VpOv%_xJ|D}H54TCuHU0`2rB;SXD zeU!HAD=J)h&tExpF2SSt`rOH*qXjJhTnCJd z{~%I9g+b&Nd=WmPnQ>Qb@1aUu!(hsHUR=%{!Jaj&oq#_+0%>Z?*d}b|n+szm5*yNbmqSXJ zS#bf-=pehR)KG@N56|ewxj>dfb$PoXri~2cYp5|SNR0?z;L;ELMt&Nb+y|=*ilczj ztjNfr6jji`_HIf^10yb*61nNCi_wv>?{8$D#a~Ys zkhc4}K&sl8Jn*MEtVk;qkvgb`V)K?*YC&d;=!}BD@gO@FD{xIW_=Trq3{66v9HOy$fB9W#Mi*z;Gq(#*(D-uc@DhW(DtR1K0kUW*ZCTORgZttu+5a_JJLS%t0=pK!gd;lbsbYA7Ss{JA8q2{z#zh!2Y`w03~!xcfjzb~neR96&>gr< zuxH&H(|vpBDxWD8(>Kxh$}DL`&URi#W}4TX%$L;RyVC9x($86FKq2DB68LjrIKqX=|!0w*T+Aq5HjMh8=e{$E3fj zHiWS^f-UA*Fq~)glbRbZ^+ts^&oote6k}5gs zly0`)s|LLF3`fO*R6@3YQ=u|XM1QISiK&;oWbR=XTeTjsMz6HEZj}>0=b3*X z2UJjJQqq-LkEt;3Ain`0RU8RjkwEy|b!xlQ71BH#Qs8G!tbT&*D{N%zuPAMalzUjAwwFJ)vb(^olIsFo>R@_xDoRkOlzD}Bp$W} zJx+0Of)MMioGR#a4H0!~VPdHTNw3N7|I}p36PhIn;(Wb_b7FxzpnmwutJ8>Vt% z09U?$R=R6QT|lIF_te>Odxk&qhB>z+&4|H~e$b++!YRXCx>kt_v+jZXk?R%}hQ@on zC>7~uH(pvszF1)>$DnzN(1@l$qODt*SoFVpivol=ndC7;BeV}!G&OOy0;ADO5|c5W-_;o!%qlkT~?Nzrhz zCX;gb!3n-AiJT0TMNC_>M#zn&4z~5uOrGMzFcs!p2lt-WK-)af0CZ^sUTtJY*fb9C);rR4CQMm!IVe{Fw61Xsoi2^)0QH84%6Fdv`{Z%R#B_^ntgbi4r2uas2 zyM-)5H5$PII6JxWsusw+sv4trxxFY~Gwntk=ym>uTyZnEcm1{9r&B5>1wTu}NC!kX zd;DV>|3nr3$Yu3cf%EBymAzkh&fG9yYxZBDh*u%d4B!2rLFCkhFBN>lxq3kgYl)GW zrJxrz1i8MCK}p4mLnP$QBL9w5ZB}K-%$4gOMT0`zFdNO5xr!~kb*JA$?CZeM${oXF zK}+KoYIOTL;L;UptL?7U_=))8S&)B?GTbLX&wYD{y3})csG(J~rO8O$@d`T^VTSC; zTjeVz5kkoHQvukjynzE!UOu0^;LGuEc2v%rSa9eqKu06wIg;CHkii`$k_JxH4Jtct z>Ug>zAUTV(+}2r~mu-6F(+g-tfSL`unhSaBMt$1WZ3H@QzXQ9WcWKbfA64+?NX4vK z4$`pQCaTetl}dkPe`Q$r&eihDmb0E%_^*;+vzyQ6y_?TRf#rOK8aJqj*P&_}1z)_f zjZVt7m@a+x#vL)NapA2iBSoEagpeNID*Wvs%ZG%Q`p%xP<&Bs6u%J0mR@yX3ODj2R zzbUiJNj zrf_VROiL8HXcPzS2njK~o(I&|No3S$Kx13~H=7veAY^o2P7*Z7J{eSy)6 zcwXEw?|DNnb++_+sn%0{to#8s119Hs-*xZM!+P4+O~C~$Lj&?a|J-_11d-ne&hcns zBOpA_Ss`>>-bZ(%G`Q7l2FjtgoT3;)!&o5tao~skjP(HH1}X1Kl<`}IM3GBGOc2>^ zn3%BraS%|Jgo4m$dL@X1nfw@cWKr^vI;44IWT7tRaTawK*EubWrxy%R;b_h=SAzx( zmT*Rqk>bI&iHsw7Wi-%8XaRco@puMet89iqlS1;s;{{X=Vd$Cw6x?p_ip;ii=Hg5P zZ+w-9I=>&tqVq=L0ZZh=*Yi(p+$yy?yy6ittGJqtSU|$^+ss_02Qz1$OdK8LkZQ*p zIX;BWs@!PgaU8#%+f8hz;3}1tZu!4{`gQV@Gn56ysdE8$a3)tYzn_1-wriAL;XOeP zzd%`G-6k%?pR2c_Dz$V^E-btjT#PwycdznH`70N}ZF4xWJU1h2~ z{EhWPOD=1(VbBycKP!3hpggiwO!@6#9F~Z*dkm0)c1){C!TdXe?}3Xucg2yziG_ia z{g*>QWj(+FsV+>9Wo)fn=l$pE{HxpYCrd_d>*6d^39s!odmoD(U)1GPgFR>R5$7)# z4CZFZA*_Lc-|(c016Vl*J)_fBDk9#+nQlq)sO!u4fD2bHoM}zm=AS=@EktP(lRimB zQDIr*He-PPfb~K?d&O*ND^v?}T2=R^;>N<`r^z&v#N(%WY}t|NKM!$nePcU_W;$-1 zAJU87ST1I2rB< z1EQNni_}Z43PWBNcUv2Ox^`RE%<{x(z$JfX|K`40TmFn;Pyab{b>nr#s+ z)Vw4N#_`-|^1$xkpX);qxK5fy$fc^G_lCUchQpNP0K%m^(vUwaHjrh%t{TbsQe5oQ zkq9FQdHunpHJDwK6#e%X_&Di3b5kF?>oM>e3((JhI~6u-p>WFsAiGFeMTkuV|g&WH{|kR+ONgWQUs@<>o~08^DOZW(u;jLiBeSqEL%z6M+rje=aGsA=6t zJi`Ew#EL7(aO+U)F(vQzH;4-Jc3^sYofVofu)dpMskJqixQx6L#x!HnDHwN`I2`>RQVDRVnl75 zKx(G=`^oMSKqufG5DFLptTg6+nQY{MWUacZVcskbs zS#zai;#iQE2>vw!JweJ@z9VFdO}t_S7~AX-3poQc?yd!;ZJ2=E#4mSxqPu@=n9djs zs&w*D7_kBnZMiw>!OTwM1%#OhiI4{$2Ghm5DK5<=+YR?E}?UU^=6RMfgZ7?(7XKQyS-qB!$HAs|T zuqdFhYA+*~Vz78R!`waCG2!1?2nK_1$!EaV8ZeRcv4K~_^8v36x(9e~_6+Kj1gLD} zCJ`|bgv4OR^Y8GlE-R_VZ?jy(d@m5;e41@*yE@mph$3zc!tF7* z1TA`5_Z?|(3&ycAGjwv4E6f+fHo7oX5%6+>LRHJHNc{)IHWM)^P|iiP6qSU|_cx7} zFgVMVk7%7m<0FCAcU;Dbrcw7c{L`&2#R zn-aI;7i0(i#3$B_h0EAb3l&DjYl{li5)rB;#8>US{mTq(Vj`46JIaT`lSM$Kuw)|1 zzVN37Shv|h9N03U-^q%T`#|6T9S3Ja^ecGnIze8h9(~FPM7DXsa~LP3J}3ZrlI+{t z_Dd@xptLL{JYxjok|9X&P~)TA6tmEKzhb_GN#$c{&QvRbM29w!hmX!wVepml2BL^- z#=8CTCK&rW2=1^=EM^221tPwyF^T25K)9!&-?C0l%%JJO8;=^o2}%P$wq+pGwN7 z_&+=FJZ;D!4A$Y`P=SG~!o}sZhc>}sYF6QxT@k(7qAFqnGZa;e zX_=A*Cw~x4R3Dl`tnmV28tj|~Yyt0{w(JE28&^gwK*MQ8Cwq2w-t@hP<>BY&>&?^N z!DD--8R^my$DGsRdBSN)kqyP1ezj;<)A=tO-vP(%#cG|Ws{>PVQ2)HW>MZztPMr~P z)9jeA|3nk&l)pFUz!?F@*m43&)u3xuZ*CY3jZGJiamafD>i9>vPw)s?R~pQ9j@lka#)p69s9^yn?qWn9ag27Q-(&m|Fio|Kl|-?5&uZEpl{bNv2Bv$~@~ z<%<2ojTvVzyZQKQK7) zl_()!DHI|^jyXyC9c0PLuwL>jKvN%AJV6%;IUxGQ0z{%Mjv_SV{uq1$bHm%~4Y&7l zwvW?qgiIy3ZzR4e2!wBvs|ByQuyXZ8w7)3Ziee?!m`X;=ooFIJpqbpWlcai7```HU z2JcS(Z#l}&`9GzaGI6r7|EIaYl@@m#4m-*}2$8cnq;S&kJ}eT(oO=sM_PA=PQ*qEt zfQvu<-A*4>;xO4dFK^Sz8;C{VR<7x~%DsY7=u00r2S!VKMb}~#&^Mm=T$M^H;OCGWFJ|2M*IY%py*c7Q)7^o)Uhv*SPY@7B?T^L)jwS==PJv#i&8y z&4Oxa=CFY(?ujm@J8xCjs!CpTWLE>y5?+*-Z5eSk7Otp}8Q2qBtI;8w7Q)z2{E~5Q zc^;iQ&WB&)7aAaDD*!z1Sf$0A75x3Fjkm6FajS`g7#m82m(kM>4ZBgK>435P@B6aE zSq6l$5f8sRD8_^P)9AzxS3Hr`Tc+lV(JO8 zf-$aSaxBrJnhX zYjMqzi)?&ev?tq2)6M$q(Awd8sr_Ea#ytyUkE%z=H3OM`M`;W$CqyYVz|#>%*go*e zXNx>a)yMP;Jv>pA*%ZZ7G~cifnAv6dP}p?xG@9ByJ3%ej}SbuACIRW5ixa%9MV*JO_vT52nNtq1KS3nWN$gg)10Ll3nhZ-=LSR=; zhZMW9X+Y(P!}B8GT(P+FPU3UEm#dEL5=!J=UUcjKet~kXbA!dxwmkIn))zX;y;)l` zqSUTn=L{CHTvngTIpClj!}d1s(yX`B)x|)#kWi4~7FR2hY1(ls6xdhR*Vx%{<>P-0t~ooD5)pe~ zE`s-`xs;l*oYWx-|N7YGEK}DI!}Ha!VEIlGHO|J#{MuH=pO9ke%0*=i-a;_^f)D(- zwG>^#i+4}Z3yIv|=qNS^P-rTS7-S+>*}I>61Y66c^b5?XtlK}tA@c4=EBOrWVFNu)Q@vhaW& z`*pqy317Luv3FRdn6>fih zXQLo=8CH8iy&K2bGW7<+cgP3w;h|)jiH1!|hI*;NztB6|7T?$GHgGAoeo=2Zv<(?t zSQ8@fnea=mn~#!AI%ZX)z6|1_U)&zTph-250kh@_^GkCfCw@&yY~wUkv|7x>T*!%$ z5?|}^%_zP;Q^%yh&&!h#HCwZ+*gt%Or`G%%%i=u$R}Oi zA=M_NuL_A`4{3}A;@#NVVe9Jc=Y7+{D2ux!@#EM>Z885U#07TYdcLdP`}6a5R4CXk zP39}#f>5aU(`nCCSk8H7h1(WM{_c5!mRvzU-UCw<@m%lcPkRGQUucDv6xl#^h zo+(MYx%Fe?PKfreb@$D8f$VGU^5ru2S@>C(?G%-3Qf6*XSN?CE!ccl;_!^-!Tjd%Q zJrx_1&LV(C%7*~wjWWv}YznNPfjv8wT0|XH8`GAO?SC!IFn@#yo>6c!WNaj(?psZ` z$h;(L9c?RJi*SPhE&|BWr05lGeRGsBQ-0JM^-yEOJj+tbNP|^_&zr?#eBb0t>4O&1 zbN6Rn&t@ujc{*LM!p~>pCWkCMJu|uTI(22}jIZAC_AHM0`Ex(wF8#2Zxy;m%X6B!N zr+OAVE3w7y*xaR(?H&D{flw48htb$mu;Vw)4N;&tZ+WtN=`du;@`n|kL%^!cbL&F4M%p|kqM3D znOVRx%*Q9o6!+$xIb28=dX8hC+&_6vb*6U}CVG%yPxG03kPP|+mHvCNpl&$r2mPxN zpgNH^zyYgNb9@H~U~UBMpaZMWU}c#H>_UP)n+dzIU~VL@QVIIgcMxDYF*Ah=WPL?{ zMgrN_K|5%J!9hw&qa5CJ4$TkCQyfY?WlnqkND`~wi%l*|=XGP7Cn-S_tV_uVdoWRX z2zVVK5iqq7B0cCPZNXCr$R9$W3*>__k5D^f_)FLE5z$+}y6BN;Q@RpkAq$b<@ClreSeWu>A>P_RhPfJ7x|_^l_% z&EDek$~ZvLiC!6^%!3^H<`EO-O27j~fD$v09>f;&1qEexo4mp992~H0YsDj%?B#Wk zUv~TJ?pRP_jEG&NudW>RM4#mqZ+E;42vQU4pci;j^sS~eGwzWIOH~nCJ zueP2GnxV&lE%X4?b>tHX)fFc*So3n3&yH<9ocOcTa4zp}TuWDP!~XyVC_O=a>TQs6 z2tOe%Ui$_fi49=+Y`QfG7>)&e6p69Hs35B2h|(`YNqaZaElv@M*mldcih8TICS65a z7U*9B{NncL3(`+T=p;V}EgEhw4;#E&MkI_=HJxhbe_nc!a=EnY2P(G%;E6~X+xzAr zQq78yY?}iVcC3S9zjEPKpJKPcZxfzAy8J%^e|mR+G%nZMf%t7G>W>5{{V&GeDL52p>DG;H+gY(~+qRvo*tTukwr$(C zZ6|mA7j;k7*>!3^&RPA~b5>V(kMT`kFJ>Hi@*|Lca-%O)9WD8s*Ah*LpH%sm>vaT`v18$CX3n@}~3Pdr@ zn9~|=JyimhN-0!NXtD3TU_j_Nbk=|dA>RYjw6P>vY(x`4RH6%&D9;|# zSjKyO4kmYCEZve~yjsjE)E4R#o}}Z}vS#W0CvEmULmWALMkNLw1qTJoe>Hm>mWu(#{anNbFD2Ei_?nOb6a~>=xrWC-2-RX|`}RvDq9*T{jd3fBwg@aE+BdVFFFKLMv8EH(q9=hLom78i&W zAef2gbw@O`Ke@VJ>Z;hmMd94_{XV(NFw;?OPtq-4fh&H?a95ZF1yvPN;O7~93*TC} z(oxp3@A9dZI&k;)eDVqykQ+kcO&lE459bTFRTUJma^WxvD-x+XkboW=P-JiW(U2{3f8_2fa$;z*1f@ zk?~f$IS5r=e19wp1ps3jhSLww^-er~D#1`H6d`!{Aq#DrUBBo|sNBN~$7Zz1#Tqy| zOpaD-sPvn%$9`$sxp{B(+*{q%A!P-q41%yIPiu~^WVdA+x#)HV)5aFR7ZfFaU6H@V z`zKqYPBQ6|*{4Ge*fC2{N|igB?r{Zk;@YSo4AjcEJ!RhNvvIf7=7(`BtEu{0lhxQ0 zt5+6BZ@3t8BV2{5Q0*tHZSzbW^pYf{*P0#7OpF*MJ|p1W8BX%r(k2s7{(Clw@mI!o zbA!r+TXwmXKVYGm{GNt@fD8u@1snl~-wvRE6C|L1=?xEs{mS@`(TTqw5ELAxOM#r6 zr3V~z9-?;nf6h4acdGe${}Z)zb2JjZmxuOBi-BPPNbY-m*3=ax zuH3P-Jz6N@_37s1PQ3xqf@eDE8Y7bH#QX&`+B@rgWff4T$v4estuJ=vu2Ki9c@&2AFa#z^gXzn6gS7!|6?6ypNi;3PdWBKPApclId|AUe!&}D;Dpc0!{;a$XDLDP6>K0 zHB}=qjB~7RB{UW8Flk=iZshw%{oXBNAkxw-cEpO}KutO_F98IJ-q& zAJM!U2Q^SWgWLipQU0RnK4OtwL1LiL)P*J&o;+%NL+OMDw-*q!M`#04u$pe5w=Kv< z!Hn$^F`)ZJRYIsv6`ghe!vH)tf6;RN03j&i1BlidFLCNRW;dhN zDXTBP*dbRndzmF?7>@=?mI_eikB)2fwCG`*H2%;Jp};&rI&N>ZGO@fkNMKsC8{OEMse z&`j&&Ic%>p|LzTv5ZPV`jyxoQz;fq5e`|O*E$&{&z}T!@S;p|MSPrN1ZV zO40CUWjzwNDhs6{2e%bjPnB<~ch^OG3}a9dG(tOao3~>~bxo=%xFoPv>oN*3%*o~I z?XF1%q|oDuOKBaRuwNK*0{c2SB%ZRIzQ#xLa1ognii>GSNSe7JWqK5lk@2#(Ix?Fd zzPrG<1C$~?H6ln8lpHQh-W3Neyca(zT~%6A0=9Uy_$dI0Q+0p%`E;uQW5t?Wto7Ni z>m;)XdZ?YUw146pI=58J5+C;siw_tA%qn>_f>2wo4kBA}{F|2>WUZayR1&5gN9KG+ zFoxkT%6ajjK-v_K8jOWb;`RJuxFuLitaXY%HTdiIUtj{8d4-sx{^0h44t_yl(Y4SD z8W!|8Zc%Q_9O{($s-S(KBGRwXN?uuh5Xl#J64%N9P8dI18T#>bHTAH8iFELRHGcf+ z33du}OV)ZC$rpVZ(O35Vq{4>c^6s!q9A{uu?MOY|*{e26<-FE9%18gx;7)xtYBs31 z9^Ws!I!Hfz<1TxRnmPOf86eFZF~ufH7q|Zz@nSXUn!)3}kMdC1?(BL828M%Sr{9A$ z;1^1N)k%5>28Bamm*1nw@5`XM?Ob~Rhr%JZ%j?q;^k-4nc||<_WzXrycK@@uX4-f8c(ywh{*>7Eg3D0G{WXJua{q(D46K_Q zyNeh&v3wgPfOs1#z_ho_@rg@V=Jhj!@Gk&?85mCYSKy2Xq8q%nH+8i)&$bHT%F^Zb z_7v6W&bt*=TL`G`&({@+>Do6kKV^uYSIuhf;^WosDftYXr@df~VWp|HFp>VVbQA*&S{X{y zLZFZdc?&i+YXo`A_zzspV?dEh_-PfOcUr``&xYQ(ql=3Kd(N-xrF#$V`GA7ShOQ|v zT81g2obb9te6tkVT}DYNL{Z{_WbyI2>4Dx#8_DOfLY!-6)qb=u-6!7+Y!u{wD1aE4 z{+A*9|49|c%*OP;m?!@KL-cE08C$CM>mQ%s*z5iZac^J&zf|K!ep~C^>T3)CmQWl2 zmxW$E#RBF8)2sUtpEICzA;Z{^0`Z6c{>(%#&s^HDmw-JY+T?RO=`@xs5|+b&N;l znk%Z^Y8u`YUa&JbyIhY@Psd88NmqEF_X(cde=~7jOr?>$cb{QHrl&`}-tU|?;MU>n zdQpv7WY4$eJO{npSzZt-oXj+P3q;NDuYD~caMen2H!uF+jU1nk_sL#4khen$A>a9l zqBGfF9(yKo@fpnagOCVN2&slrCPM!x5R~os-k(o7zT6Q&$_OS-dBTjvbx%Vsh6L{M zKQ`g{g3$Dl`)t1R2tJcvE?+WsK~M18X~{RDtlM9MQ#h8O40oZ=Cq`ZVWNmxltw9r? zb%WZVwR7nIKPpQUGR!U6EuC7#lwgkToDIr-_LF zx(GbMs&F_NF30Dcs^P`xg=Q8$<^Ng;NApcFi>PH7M24SNen*#brF5s~H|`f+Hy#Xb zpjNM~0JG3P?=M@v!oRWpm8smQAQjOsWbb(|j)<}wHjH}&*)vs^TjLt3vd}SJ8gI0I z(851|zc-z4)IE+;0@|KyfmaDHp5@ZX!K@LUBlXkT$ggVKzp z_ooW97Fm#Z9hyx&qe~MvC98hd^kdaag5y$sSC2j(i85VmdvZPzKKM*4%4k>BQ;<)zj>KC-S#jNiSt6+2 z?Xm6V%64v4jzHa$TM%qw=fPLFCs``u-nWLd9L3066IuMXjBEokQ;_SO$5DCQ!^9zm zfT#FP;1Xg*_QF_VMfX18mopjf!!Sn%T= ziO@}FpZt?O3k*maX=hUU#8Q+*Z%qghOBBL+Gbpfrte8d?BvF4TgoOsbm;c)wFL1c<_O8H5}}Vc=>N#&WEUgA&hlbl z%Qj_j1RhaD%EvR)zN3H{r_JWgbs@3N`jfC>%zheOz-D7G}R^iQK z60OY*(RW}-u&8^|%W=@?tZ3$NECBWnj0_Oi*zupjfVPG(Gu4sDOOJ6JP{c_S-wBFb zrke#nl7yU@_XJj7C6Gv18%{ys%0Lkx6_R`D5-xBS=u8!I6nVz0?1FX1iTF2%_p2mp zqhxKN%20(jBb=GD!f53HmM}vzFJOsOS~LGm(A7v32O1mI&#HWq0TmER1KM(40u9IX ze3U@<-{Co9?4K5a&G$UblLGBLEs`?1Z3(0W>h_#53FsW!d3K~lz4F9$vZ&fcLQsvd z;XYvu&^!3`(1ysU!upQ)=R6o7rv0MEEVF#_6w`r80K<2#9Av}k*?-J(Ml9TYgpDaY z8f3w#*|&qu9brMq+2Z4(?;a?cQlLz%HM?9)JlC zKZkl=+>R9kcQya$=D%LtB5z%N1l@ECU+RRPfRiQSXA8Hel4jo=(r}_Gb|rK8?;P6% zWv(N4yskOw=6B!rA(iCyZE?H)OW7TW)`(T;ZO^OsJe=yF*E%yNW!5(A^~yQVD;YZ` zPr+9-Pj7GRgo5YYwnQ?Gd>Y*xDUXpxqt`1jiICqa+87YY9Xdi7(5nS38FiJqanYt0 ztPvzuMgF8M?Ezgo_&(TInC!Nq^U{Mhl@XvvCLk@65@d=`fa|s(TZ$76q0PN%^+~V? zC*C#v6HC^kLEE!K`6EyWN+L(0{oHwhP~n7vHqP4!uvZPjvWv8nX ziB(l`35<;*dWPF}?!QnPVQ1vLPYR?CWdtlXx;cRg^PIGv{~R$OmUu8RD!061rt3zU z8QJD4()~y}P&x?RSIlYMW0P+v)>?Gq5w}#*Sib@>g&(7n&!Kv>GI9V<;{?QaKM}zI zJ4;!&*}JOQb^2W^7n$}*;aq(}1p0c^+&%Vx{`Bg&chvLq^y?w@&sZ3cK=#+0aJNK_ zrra<7#f+T3HA$ofeZ3!J#{a)lOa4;a^~ul{{+p2S;IIdk2kIdT)b?p^~x>-W>6WRy>M zp2%C2rgToX_2?ENU9}*#@n}RZfUWjqbDdk!c1*6pSJ;wE{s(}%z0L5(V_#mi$71Hd z!$8ad;CDLVSk?v6F|3EgD_ds=75vjL25;@B`}G!5hhpd_9d?76?(uOCPTa>OUc6zGi=3^(pypjV`%mIqQ^rV4 zaOSwl7t9DivvPglP=Hd-8;#zHk)dU3%N9q1j3)u^vCMal??Yta^t55%((#wS@9lX#%h{ESAu2M!Qmjb_P2nk;4}lvSv%}|; zQjXr)1MQxctsEF~5kXJmwS{hld@{TB-9du7CITCU_s{Qt ztE+2E+-~>d_TPe$f(W~!*ZlM(;wQ*KMRhp^BH^dA0{sF%!4udt_Jz&x{OQkYpKm`Z zsn#+AGwbjEsU7im?^O>5-ZE?3+Q{weD6xK6Kr-bXAWHy_n{gtas3(y%6lXCo1yg6? zfHXp^RgoMQ^r9OTPU^(*b|+nHTRm6PC+OdA8Fi73!HnLCse^T?Q8u_Ac~D`d*WTfj z8uU}s+t|_Cvr0HLJPlpZ2_|q7LV`cl zCRFmfTBw~Svd&z@jBlD9NmDK- zRXWQO^3TLecn^`{Bvg3D@Q$bV;V3 zsLJy+OqYOnDWWb!F9n7mpB%rlHHjIxTsD`q+VuDX*583B*xi~1dFQ^huSGW%@VYiK z!CO|OI)d@D=_YNONlA?j*0BR#>6FL!Yy%!dmMDT9cK1dQ8`3EA#eWL9 zyo&Bb0FfdVoJm$q6BVkK#~VqC%@~fyU%E5=QC-CvU?~{6Fao@V{D+dj06za9NiH#Tumjma+xGx}T z=%gs!bPo7|b0^>~s)(7ptf!oFBEL=8fI4eh=K>M679A6emov|G|NzDGQ&%vu|&!TJ_raMlb%YM9I@12k67 zZ~Uw!%&|Y59SuKSwr?v&>>3@_pApX zw0|Z@A>G7G|AT4gCkp=Zt>B}Whbf- z1tG=UW>m2rpyRNWwTrXrYELfF^{Y5p4Z98$`Iw=sDd($2_p=!XM(h8``V4t*lp^Aw zPnpL+;3px5q`+SD`+yZyBi&S{d5-d%MhOk!^Jpdrv z&KQ+E6aInYSNal1#z)-9C_QTT?A;v_yK+rur?fH)f>&iiWJI5leuzbW2#O2NQq$J> zAO(J45LgTWu*2I2>~R`+!(F*dKjHc|mnMN+EB&N}71%fzg@rG{h5b#U_OadI;bUxB z5cQLi__VTpV%64(h>T9lm_5PWRmxvp;t`Tigjm5K4ekbIO%WT&f6^3l0%o6 z#ZD{g1S#1%h1hy|&$Yl#%(o1InC9%(Ah0y;(6%;-oXF02r`wzg@y+hNnV+{*k%nQz=xn-nAp>%^g{yqRDv zBHjF2ttL@;hpxVrof*+b)j}yhNug8;l=J?>Af@`MW;D{&+jxX5vtGqER5{(zJANcX zDeywV=~k}Fw3614o!X@>CBxFVrszh?0=7x1+f4t;XiCnsvG+QuicynPO`lqAdEQ!r z)TaKYZI`lUrNOwcra10_A*AkLq(@5pRtvzB!5IYzbjXD?R_aA{%;+`)wGLU$h41|) z>t2_#3blZvrB1RtID-U>QHdNlxb*;ysS%79kB}^Sly2&h{_yJgMhWdH^`s zOhaRqXqy>2^>`@cAu*CppTq&evx^8} z`I(s~Gq|dqh@^OJ8osq9qCwK8nS$}=4$T#s&BBNba4B!X2JLY|UN|BSVtGxgW8Zd4 zL78pS?&!~kze3XGzu7d#oLi1nM0eG`TrR7^IXP%1`fDCxH96vA{eLk(2g=Et>Nf$< z*9c>5jh;duH&`2F(-vE^;jNaBEL{A2^Q*P$KAXgx*l_sH^DmZ%4+$`d)B@S$OqPC# zK?5ztR?QeU{7c@I{l!ZSCNI1IGjT2wspq7ud^B8szbPU$9j(EOPNp-S@UDqpH=5uR zdIn71J+v$@w=rc~jYTeO$|xs3wC#B8QtXQ^%^(crS%cFdG@c)GDXb{Kwf&B3kFzwm zNXK&zamXNlH*#_W%J4fZ-Xo==3E-b8w=eEGmf>h`9&oGSzQ|YkeO+73cErB#t|xy1 zoQ9@9|3g2E@xOL?Vr69gPg{D+TC)yZ6mUJiIRkWYx(L6OiZv0}ZWS+W$(t+MX0nd! zuY6S?5au2KlyhpPaN*m`USaTrL2<+Tvw`eiFPBgEmwIXza0ZZQRlHtb_fiMY_Hp2J z_0qUmu95JevAuA=-lzjPce6OYzi(_UOfI#!5Ut|tY(Z>(_BKWxjzgbD9OO#S%c!8~KZ0&n~7 z?G6w?d=kX{KsAXu^?yms`ULexg>x%;Z53!)sQ0c*n6Acj%LWf4(SBH70EQBTFr#>T zhQL9&=}!EXu+Q~DZ>|scU-n4q1Sp#a<%EF8$v=q#mLf-1cqUk2cNsy+8%l1Wf*)(Y z5{}hYDfw86FCMm5#^fYW?mP>~^U;h3Luj%fuaN_Kgf(@Wpq@lk`^E7*tc0ozgmFNY zrN2a5j3~O3ok3p56!4(8MTy!7Y;fqFr9bi>%)A$)T35NR5l}Qskab4It0I8~Qj({H zq~#C<-m#}6Cmd10k=|gNoB=FoUIHLE4dLfkbkHUCip z(Xlp`}j|)A}Sm4?g5l$>s{lE_HUJ$8Zu1NiXkoLU5LlJMU%Tz5U-{~8Y1IN zEaUe*DY1r-oOVUcK;>z}3mXwwVV`mWBp@Q2Tg0Xo9psQ0X+%SNOf=w1i|}`oM?XdQ z;U^+QuSQu&jSJ1sDP|^EYG>3N7*Q=aj?M)|>N9rC)0G7xT^__u!WK7FfQLmmX%gF3 zDq>U%QNeRql(Nf`&6`LEee|^W>C~GorBuDwk>b!IA3mBRh9svB%4NM&ugv8e#G8zj z?VRhvEE>Qq`nu8Tbdb9*+MMUo4|l8p&gfn_{fDH5BxDv=PTYSi>9q1I8!YhWR( zBMXifmfXE&rHFX|m0b3n(`AebTUc!fxQ{$zBA+emWn1BJuDSo*^3&cu-h&n+thWOt z|F}`tFqKvBcsEcq;Hc73qHtt!i^5Y_M(kCSbt+pJAzwosYI5&(PmHWTC`?}Ks*Vqn>bqR>V=cmW9TuhUu(h$-mEA3#>RRc(1Q+jES18q3#Tr8(l+z*7| zv=k}4x6#@OdFN(%Oz+(@2)w%y3?Ji}8dx+#*u6%HSvieY@CRfr_yq`j5 z@s9m0NQPDr|A)}#oi<*s8@n^%sq2rWLP8n=r`=;LNVO!9fbKToSRO}+JheGDgdm#0 z>8vB|WsDVc1?~&cLN7Cy^?3Gry!jWbtkfzOEN=~xqR;B{NL_QQ3gn9_5A~KI^V3;^ zi|IXkMX<=e$A$c`1;9Mbm}RW_1CH?WU2Gw^CQT>KsIwTQk2eOcu(~uoHY{Q ztB)LflSy@C%Evxlk|zIncn5&nSkunc#ZAz#EvaS3j-8iJ1|UJ|^6wgL^NqI&z*HOH z+59MMpQ`RXs|~i3&*pkaQBdv3d}kXCljFg?Xzvhf;r^ zdQ%XSS+#n?X+3|uz7ZK6RIq1&vd=1W)TSCJl(W&~<9j(PE1sb5)VStrPeZ-S*2v4* zA*&13Eev*NC}+r&seLrJd3U5#lPIo3!-KnFH2b7iV<3y1?(tmJ)yx|8pvinY5QlCk3@!nR{WEsCG(AnK_j`yeAG6II-snVzH6y*BA0;?crfi zP%m?4L4}yx2jR6Pu~Avhi~H@sS*WQHU}Ol(1M)9vnFpK2aoVBm6mb(dg)64dt{E3CAyF-((jZkx5JT)$QO(5@{D33yLh| zD(Bni4`S^G_ocO<>Q#v&5%8K9=xGT|3QA6yQB*UFgpfDJ9ZyGG&1o4A@(Ij0?oU_O z70#>@&Tl;#w)y6+$ou%&whTDJ%Erb*97h6U0)tsrctRYfU9#Ix1cs}hFL&7%2pqcy z9mK=0w+x-SY%!r^Q1^Sfh-#!<*psF>g*k@cfWSUZ~9Ji(a@(lUAYKtKnHE>G0fDlzOQXhXyLlP?4?;V#@S=!D(7d#E0^s$(5)YD3w zF4!JJ{;)d$HWmgybTA)8Jz_f~x?VYjJK6F4;M@x7W+z39 z_PnR5pI@EaaMC)zwCSe+ruF%A0PR+|7l`#RSCH;xe?L|fn;3TF&_CJWT>ct)Lu?Ylkwp~keTmMLTj1h;1U1FrHoKkZ#yKwWD#hO7hy%@(WR>A(h1Iv} zn;Lf&KZX1J>CMLAzlT)vl@x(0+1UM9UNeLG-2NrBaP9tHUJ7Wp09~QRQ|4pbLCV;Q z%{&Kv+SJGO2+}$S^_KL1*p;D>->(!71eB@K~+?)9QK3x3;%rK0w_zyKH(|?Oj zV`O9gkLa{zEh$@)cG#XzHD#O5(3J?HXYxM!gO*X?Bi8<{0Gt3oQ^zq7cbtb;q3(KJ32UZ^zRe2Fis@F(I|P_1me(_yn|*wLe0a0FUbiB0n_g6{26JCztoC%_a%98a(tZp6nK`z!#qA30 zks<7s%N=aiFCTn$1};33_PnDon*KzILkf(Zq6RD8mh$<21INN$?VQEQ$1@qaop1=P zpOz**=1hd)l2YqLwY)2j)lD!oESSEbx7KL=yrn-wu-B18?@&Jj@K734X|2q^NyM5T zn6pxT)NzDO3m8;~9SGEeWdBM9sL@E&HFpM#Q`z|tbI8(TYx0fa6IKt*EU3~@TMNEw zg5tIFhpMII*@^}Cl`*@mct;J6mnl2_nMJy~J~KwS4p16X66nFi$zGse7s|y3nEa|n z^jsg{JcfbUiCdU?np^c3ghH|}r%OM$CiLv=-rf==4sAX!>zxyN9$6RfDqDR(w{bLuN%)r5Z6t64bM1{McF7 zgxJdx%33k0T-#B1jM!%yLYKZno{w_#LO<7jY@tJwbdrF$rSHszzA*pTzwgxZQ2nve zA29OaNT+7K&$H07;-_dm-#>QqQh@4@W`sEWy;Cl6yvT{VQJxd#hT+ zcz=u$Z4nL?+QJN`OfNuGM*~0nz^%B3;eXM0pxuKz*<97;h(tJ};IP{$(TDpPe^P&0XU6m7fOUFa=m-~w;%4+C?GgHQxV^NvG+#y58e-w5%_R-lhb8~d zc;l1bd8|$EFujYWq|eO+f^>rGl-TCljmcgowDJc7o#IKCXn10}BW;#gm2qOM{<3~X zD9Xx~wpdOtH5o^>*)}^DD`?StcJfuVoUYrICBNjgYy7rY+ksZ%-Fl&MMDnX>J#!)` zRTp~QlLMleh_Cba@+xgv0+tq6LQci%{$A0$=R`Yg*G-GOevt#ayu;G^*k5MGN^&KV zM~24IofaNVb`OGC>5tfJQiapXs_c7~E3$bZgoo@#2^mX+;a2gx1dpOKA4P(vsL9{9 zuPN_|Qb4I)!p6?`wdyKt$_qmfE+DdI3q8}3EO8^1Y&dl3cWjr7sFVuMWOqTg2T3)M zo|~k5e7dUOAQ=PXg626I1T`8i?DgoG)=P{w?LD15{-9MbVMU|0wP!(98;aW^9a}m+ z7?5Hf=ca&tm0^b?=phuTB~{u)rJCH$qF`?SFp9CbWUAN{*Y)+He>Ebk{z7oI(h1Td(FqzqX=6Fs zPdAPhzw@BwJJfZf)ulJWn`^haSw(YkIIw`*wXts+!BSQZVcDJD6^#3?o^?`ps5p(~{kC zO2z+O?vK#Wr5>@`!V26qO3a%xW6@;U^m6gDe;8E3k7hiB+vfXFHa69{kF^*4 zDrY=rjs0%5)f>01F8{UBYqVOlc}M(f31rq2Z}x3FDD4G^K8)Pu*PJR$mPT9HmN17+f+^YL&)V@ zJS>af(ejl&D=aW;PK@JSOP2xF{M67=>m+Y0`|lp4R?<IuV0>ULxikXm2jO$FwdL zh%J)1h4mW_Cg_|AfEg-}6XEbsR@+DU7k2U;X&dvbiLT6bB8ltO4Q~-m*Z7 z=;!%>!%WSR)d&%!HzQf_pgbY&%$YCbJ<}4H6w=;%GVEqEn>7#i5vU9TsPa*WDIYF zBl>SSOqXgW$GbSgqH8^jCI|^L7NNtT{pd$?r4Ji=F;0D0F@#N_*-LpGTF99e(&n< zz%)D#zR8|Ut50c0mrsGTA~C??$>;ezU=B5mlOi-JJQ*-SJ8i z)3~0+4^FU!IT+@Qx1K*-J3*`KlJ1aw;@JCPQb_IeNr0$!6zo76t=bwvb&2*{^IF|_9$Q-|&?R*}N}AbWtY~k@ak%_fT|TgW^dW=V z)+}{(Wo-vF|fSO{~~8+|_9!PjCDk(wFz>0@CdpQjrCl*5vLNsP)0|?mv{m z%>V7W;Xe`efAs9R#+i)4ZolW%o9Clv*6;!jiJPA?_wVMox2_Kj2DXK>M<5IR@~L>U zWbG_Y5uS(yV4zPK`coP4Tth_4`^|fQURrv1S_)5=Pd3{HSXeTvmkYwXmzb8-$H1Xs zmj1YSYP(2>&%q`(Q_TJK@ouJFI=#aA&-H$uHV9q&ZKjzYc39`v0 z)XeI7lzr7w`&HKQfRp$^`=dzr+yYNymQGH0;VU%^F(2Wb+kS5l@`}W+Ruj6j**DsA zhyoRud7*}|7cU2qd{hidZy7tm?+msZX&i6V+|n(CL?fE1d4Po?6f;qBq9k+-B5u^bMk-{a-zPkEl zI1W319BwreZ!OpS*4t1D*=AudA-cwxts&tw+|+(}LtA01rCO=St7a2BRQ4CZjS;L# zj=(Ma?72P8R1le>IAb+QAH%switxHYQz%KeA5FCI7s(5hR*NW4et$la5RD@tOCtMH z9+8WMaRkw}V57oC!3hL2(9Cv(KC@c!(kKMk)grp#ZUVqSsUIB$Oudc(io=l#!?Nb$ zpg3Bs{}=+2F`DaiT8auLQaR9fJOuEieh5WmWLZAAI`d(g?(TskR_JQ*mw^ZyH{E%-Z}6`+5rE~sa}37 z(qsLhAFNr6CXYR0O<=FKFgVFHG{)qnF$ z&eoq1kPjs_v?p*#EK`LnvFde^!I7Ig?d$Ywv#fC1$#RSV#mB3bUqg^<(qC*qO*Xp? zTLPfd`?E%mv*H4aWefmHi=Lssb9YxCy}a2naFeKc5`~<*l$ZIr2p7>I@$lG56~w* z#bVS1-6^eQJ_ye(hWh^eJj?0%Aj717XO@61l-S-^qfM#jZ#})9OHiUT&SA|&EqLL) zZ9Y9Ydwe7zaMej35{IJYpQ%7t;m5WC#t;|R80@s)^^%o@2c`U6yz2D~!;*~X9aPJ9 zEstr5)e<>xiaRbqj;N;~Vsj+-i!4SYa>RwT<)0h%qlqDww|A7rc9StQfm$ zG1{d4@|~|dumHy>y#ih4sbd*IK%kJ7P>4cxI<+V*DC8CEq%(*jMdUe9u+I*kcCgJOvS+tClf{V zrz#CL^#%;qRoRL0Lb**8y)G!tz zyLyeqM5PDd%sC1lYKEGYBI%uA2gE_cA{X1Us4S6|!U`d0*Sw})MI7ew`koT+@K4-| z0f=J#;QGSWJQ_}_&H(XJp^`#*^r;ZhGoT8uTR(I8VQ1+2P|+zv{u=l3T6VI&ypgEp zSWdDyC?k9w8g=HARz3++bg(1rZ9oiRt+7*`B@~4HK}!ahyRIEb(*>WKNU(X?fjQaP5EA9*qK5V^Z0d>yb(z7gSE6>* zxYp2T5ww#tF>QTEjUBT&`Zu@I`kF@+#Cn2lW>y$tUC%T{^D|lsVj3;#9uc;|>m`je zLkc_?Mnd3S!8@r_P>~Wl? zbE%w=&T)0{JJt9_`Ah20;l!s+eqVnc-KgKduZ3}mP(;6funz3**Uo& zpb*zk1K?(f(*sa_xp0d{7j#;bUv{*QIiF}!`MI=7Ad+}B$28Roxr+|M^z#@1E-DY; z8NukC5DoJf{Eo$|y|WlV&?msL0);GAD!ZSL$jrY(8N<^Ew+z zvvqwpw|j~`YbUuH;;_ybT^=Mb575nLy#l*GUOHrI-=SMKt{oUzkU>>y9u%g9>y+Um zPw@I*&gM)F$quYC!f#@GR_=aB_VMS~iw>n|w^gDCxnKLsk1?r@utH&g-!zq;D)0)$Vy?)ZE zmQ-fI4%zjb9h8%QPlfOAbD_~$khMH+%KG_BTOTYL(GL}lrN~^<+3HCD5w8SQbU${r zTB!X}?j>OK1wX0&0nGbg?gesrQSSLUFSy9*vsq~PGM&Ntf!&>2r{DYq;@t6a{SRe5 z3&Ve@B4T1;{f{#0WgV$ll2+KB+1fL{xdvg0BoG*|^qX{zzEMLUb^p3QL*sPt8LH*v5eHIBYS!(a)?}`^IdFP8K5unx&_o1z>)!7#MQ0&f;^UklwpEsvw6!!$h&rg6oJy+R|OBK7tPO6f5mEUoS3UtbJp4HEeAEq&0txb7y zv*seMD11sccZ*w=&tGg6TaROMJ#WHHI_Zi<1n)lihK9GPdOcs_jY=+7E*s_s2o>l3 zRzxOxdM{^L<4ml#@hMY+m9@8eSosni8Fil@-{-Hm&!0_^*||k?{hQmquJsz`Kel3O zh01$W>KP{wQN>z2<|c0yNsh7jZA7v(A~pm-)q)?XK_w4$Um8E(&z>3lXkQ%b8`N4- z4bNVnCf}$^O`_sUfCt7+$g*6$+ieu|LCH5@?J1?NlA8P3JJ;C` zMa3x=!m0buGl;h4*9&Emu4X*rI_Q;*p?@QmJTECogMrleigyy`Au-*je&a|gQ*wD} z$n)h%ZX%HC7Ku&`aCFAIqBYVVhu1NvaPCvfHAukkJq$!e&EcODU#B37=o|L)vk|?& ztQ!}Kuq}z)ri5$LZ~)%fRS?^(Y;qv@MaJrSpT{>dSD&^!nt!`Z5U_&;wP1qi{r*F6{-hin!303UF!e1BEo9wH|{;Su?fTxsFP8GzP07%DFQWb%7f%^QU!Ql zCQ!xQ3P&F%0Yn{C?Gs7@6zP|NQvtFQ%$mQ0DeN&JoO|)&>wr$(Crfu7{r#bDfZQHhO+qN-n-Z}T_ zM%@45yj0dhWkf|~#;#m@ueCP11@+%13q4f?9>fPY9F;Y#*o8wJxQOA(j039EfToZD z(l>E3f6n1(?qQ3S`oX7wIff=u*H;2^wic3`CItCaonKtf?b3510Rb6L0-@f`Wm^K8*A(9h@k2LDJE3~lav zXuJZmJ_&vsNmr$Ma?fAZna|`>=T}KE5gzg@ZH%m{tZUCqvSfyL5Gfjo zKC$aWU!uw*3tn5E-$r=b9W#%D_!F@7R;JLDK3{RJpe6U@N^YoowOp`^HwZ%Gw+p_( zj9b^2RPaX9L4-Dyl&qnK)0KxjvJcN&Uuu2i;TH#!oCjE|SCQiU@`j1b!p&J)+PlQ;Rn@1t*K(z8T?I#CzJz2gJyZ)|f*w^N_UD6|_hE5iIVt&q zGvEE3v=(0(DklpDE{T@XU7N$2XRX{ZV#ywEK^SSglTx|AM-s2IZ!s|j4sE2Kk{a~%aWMOE%_1>vl|~HT=(Q-C-D$N0 zqkbAIT|ESYq)v{BO%?9zKhABnADqQE z;?rFAVJ-8H%(U}HlJC?(IV_Z=C=>F7llndq@9C|kUsz`jQp4H9dSeLuEeqSROC^AF zXnT{N{kYt_+4iTxM=DpDOF3?g__fQf?!KkqGVVrSfRCkyiV=ciLC9x}IdI0!+{L+E zIyX`Bq%ZTSdiPboU}>PEC|EH$zqYQ4@mzmGjIXBR@?ZJ|<=1ftqWKkuSSm^`QZkzO zur-z_(ywXKzeS$T5GOux^K5^NqDvIvk1U*|Ve{{#2vKv_!FWqh(WBjg$CcIT1%EB~ zpOA@<_aTqqFe)mbLL@3E6D8x`LVc71?70XW*L!g4rJHYZm9<1<5a(w9MfrZ@U;N2x zlkMeHj9qNgQpEz79YN-33mMMjWX{;9d;M%W4|dkLgnS0~cMX*7V_@6lli`L2)7km(v#C4<`M3^Kda$War)@Mke5J&CNK}y`K zoUp*Ev^Yh=Ux)xNuqW-be0JKvUek9J9B=q(x+{AE(P=SzxQF0@ym-R_N@3>b0ah z3URlUEOt+EkZS{4J{wVWLMpIYc1EvVv2yJE`1c5r%Psw?D1zyn|Z9CnlBCB2YCLKnVKrAKytpiNDXQpw^#Cb|}v~T!FH_e0_1g%SBu~(|3%q z90l{)BdYxux4FJKi~1v9pY+#=JIsWM!0*_Ft3Lv0EX9co>M1q~^^-iDA=)TB)i%5) zz3R{>&N43L!Bqr$9973X;{2^-^gvcN`W(a_vvj>#*ieE^;P%fwP#qjQlPrK}uQLwR z{9iB_%R}?8ZTV$pjYt)V?8)YjDbUS+N=mr2PDb1TozR}G6`vPAL=PGEwqW`hZUc}^~zsC8UST#PdZvw~#A(bQ&J z9BbpOr?wi?g!XKJ-#}QVUH%KvRake^YRYqk{+h+LMC#fFf;fOHsEPP$E3)}#cBd)A zw-ElF=DMSL4I?pB*W5QQaVQQY+&T#mzHf=xKU~i~On{iKcayOiufl7aCEN-L~Yu@{|?-#gQE`N;doTWwuWy_rabu*9q% z8PGCaKQsc?hXs||NLjMLr>bzZcv03-&hbqMw0stNKy{YVG_q1^-2^TY0$=cBc>^M|0-^-C#rvRwY5?U^Z_XaP0Y2J0v2CdTO)DrB$?qzKDyHhFSE@k% zpV}FH$h6V9PAE9%3qQ@XYfoY`t%2qnVk+YuI{X<%GS{iN>P?*37Wg_)@HCIBdLH(1 zH%d0+-gwz15Pe}TWjrH9G};4Z&voErgy4SkHzlboKWW)=Zco_l`DhSn$PfLwdwmqS zKR>CQP5{J6unoW`9DB3XmK!vUN+gbWq=?#}WES@~)+{J^c1}Za(A|Bz83^8q+}f}$ zmmnr=fYCcg>*2xjgUP?VlRF(h)z)b*3FYX#=F_WuZjKE;F{|^KU@P2P=LXQLt06T! z)P}l7a3Waw>TdWGvZQ>(1+?dqm2fk zGUK4hXtla921mkLU(C*fx~*@rv=^ECpr}9RQ2bz^IoK6d?!q4|JyEA61uwF|I6EpP zQGa6M?mJZ_JU7+E!TAiXM{X7~C8Dy7ikTARz`^f@ACbM^`r+0J{{bF3nEtomk%O7} zzbO0N|2(+1+K~T&$2lh#tPC|@&=}#9eU7?Pu6w)2u)e@-QM~_)9o2lL$cAqSWN~mU z6*$G!dmmX1=;<%N|0a)a{V+R`(eU}DlM{s&dCmTOon9_Af4+e-F3UCHfFfKL zLm=U79l=Ea>uJ%@pG#t+1+nq(<3FOYE9|0}6(Pb-+n)vq=PlSEY*N!OR=vrC*qwp(f_lm8_FYyS2T$R%_XBRXMNVybobrWY^K!a54+O5*!&nA?n{rh;EHIaIxP$qM9@+Q=7l$W z*%t#W+}l%Y*I&lXc(VN)d$9DV7Ts*c*`j3TwL@Zp`pGIv$U9VPB^a8;@XJHl{aZd< zb}-Wgv^{)8QLdg#tlAF-f#Kdl&_^wC1jMm1>~%XPPn`988eyCXQNepQFE*vec49nJ z3L4P+ONuG5q`21&f0bRPd3%@y@Sm&Nu`GvCdh1pKgO&Z)pr)1SCv2y<2h5pkyBsveU{(g7RU*lw!(p^JcP)u^2&)mYkauHAnR_(dQr*bm$a1i5^n)HYva)%&6tO`mll(~*xQ&=aJM1EmKB#-G z0`qDDEmkD)cR-#!Uj%P{$$hV@1U*MP|2cK=*rmL9F^bIQE`U^y{P|U{MfE-EE&oa` zH@|=0$J*)ha$9Tg{rcuWWV!ac-6resk=_qn5;OXl>&vA>CBq9lI5ooyjQ!K3rb?@&}T>mH$o%GAOz(rk&P@oL>6JEo@{N#~35zzDE$F+fa}8r0}a@WHyljX;mJG4ppczJqy|$@1nIy-|dzGkxm6y;U%mq~U>f zn9V0=Z>(^xX_HZ_Eo-JR!;^N4fDd{|WgV7tfG`PeV^Zyy2P>I;1l?}Qr3@cL{!+Xv z1s}JhKIxc;LsVYfe360!r(8NBGtTd;J9pt1RQbZH|AmEo(_7M!SY%I=Qm{h>Dul!V z1U!i2hKP$e4dhrw0|!|BfpwIW&;5}h&OEqCNPo$m^ae!C>^XnMFYJ*x;3cq8BwjjLwIx2 z5I-OH`)NcbtH5!Q4=u%^P)`@0+iT;}ey`*KliOt#bwh8NRDrzBPerK~zpJoh6@`aK zR!tqOAt7hHX2Y=V>%xPGw$O^!kSKJJAU#18La=~xLuu{BM!ek$n8>ZmY)5IWfIg%< z7?!`7vl6J(+iuhjafiGQNzE;!t-w9Wf2J8#srWOf~%*ioyPl);mM%ZC!lb^z@DiXCLiwCd%`DYut+Rq_WiNI@7OMkCX8@N=LAMr&w;w>{ksRQQ!%%Fb~b!l z12IC6TQPn1$x_C>pN^8|jc&RrmDA-5)9fvWl*Q!uKc%%Mhfn3X%n=Pm+2 zTmI*SqaDJ--3vL)zSX6Y9EQO{?K+dpy!Ep z3wmhJ_v1Tb0fzp-tDzn&V<(hwR4ECcFE*oD+o|n`C-s z8aqBrDRn-BeP{`tSTN7jmeE zU{{mI=T^tOb(h9rsH4o(C?SOLX_^sVn5lne;J`2+*PUeJUBjB%=LkrcZnrLoZF|RB z-<%=eKC*?4^gr6i{m5b;jmeb#@AAK(5`t{GqztdYK5NOX`|7!r8jqF;gZ)oDsoMG& zx=6u>2Ui%SD8KkxB*;{%i~AY!J!MK$QK!X&Ed-O07TJF(+ZM7sviOD)(24}w)BCk> z!B>cLnLW{)M=jLI8@+5^K!Fl3VOd5iSqm{iq@_Pao9>m16~d@f@Gaz}%iKCg4Psz% zWF{EN@)PcSA9TyUYM1FDh_D8hb*CF$5m=v);H&rqNR(hQKFt@TaY4Qd(|KceCRz4kXTPGO@BAJTp`75#z%AvMth064!ND}z=#m}f5qM-=F#UWD z*>^VZ9x3FC#L*=1)xoy`?4NG$-i z#H38FGvYD>188+&p4D=Yw_KR3!ydqug2QX;1~mFpqsQS!7-6{kN>TH>-c1^iXC$PI z?^8Jj`6;o&)S5#EP!QylhehYzkY~H#(;P5xH)EwU|3cboBRe0swv6}rQk0S^mnK9( z$@db>bygHuMLpN`?`bfMW17+!4QzV6eHfL&o%D&7xmH#~T6wePk4LC5mJLqVg>^Bb zBqQ9=*MDa#rJ~+Ij(?0SE#)4csrBt37>YBXZ7uMhY|6w3!~vcv+#g^&MkjO&ku`8o zHI&fPx#8YbfDg&JCL?%OG z3nIm(-g38g`!huwXYGle97hCr?uOjHA=|rr5@bKGOIzh{;P88d*Lu+a|uO>^+_vwjIq z_O?=c>Pvmz887yzrT=*Nof$h({2ySGlkI;CHaWTe6KoFSbppuR>33_>91%w@$RfRg zqkvmH?BTfBI2yAz9*_3we?O?n_#`fPe*1nMWEHCaWhhoxE=W|~ z*6#-Jmt!ht#y`ICw~U_F8Z-eE_FMS|76^SOk(3?y0Y}L9sV$$fi=GxNSzIaRW@B@; z#KJCoo0q%(pAqg=Q`Vzp&2{02DTfb4@JZk{d_vS{`eB$BP&ix!$e6JXPQqB21eE@T zg5&f^^Wu|DkC3geA@7SG!H@h&x6ly$3XX6w&UY}#>o{0|;4REU4F1-NTWsaeD21$J zO5_%Q3n=6gcQcCIpXdn})v+cJJtf@V;%A+Pl)qx1dfJH*Bg6~r;7Ll$NqW1T55h>el#m20u`VZB@ z;LAf1LhDSyVkhzoV99?L;}4$YQ$+V*!fj5;V&e#cf4vuzPMJhRE2e=AmW3_Iqehr*7Niqv)5jy@CZrhQp`SQ|Pj{dY)mvU9HW?F# z^#`4ZWr{=ucB(JHQI+{@ms6`UJxX~N7UZ?k6@|K36QExUar`d9>g2m7{)J9sL?X&D zC-CzB}=#;GBAN7oJI^JuX%ctU)LbtwpWTTCL2(~<1AV<9>YMa^VYPQdJ* zmXm@yEvUyE_2A@?pp$Ob-NMt-$Jdb4{SrE)cA1B-8jq>jc7vvy7`an~(z2bED$^EA zq#{5{G=gwQ>`#Bl)Zrl)2iO%xGG+6w_X)oT#f!!8B61>oLZ~~lmlfBq0mC{^$9w9@ zyFVCNElWaLV~tN@1&YI9_QTtL7Aov4dp@82dYUdA)%J-vT~0QgsCW7ASJn7%T2e%9 z{d~b5@DP=$?mActTib~DGCB9(o}ot3>SVQ?KL=2U%~P`qabM(yQu+4a zUN%cCj6X1xm)9K=bg6;=#ZNOJ=I0-h+Z3tmUeZMZ(=KEFx=DZI@1aV4T?6Ib? z&<-bRUdNz^edU81(x=r70IOKWw3N0PxUK%POAH7|pRNIMAYV_wFizp?4;M7 zmprIOR~f=k$0#H7_grIr%+l1F%6p^nZ)_l`rk%3g4hVn`b!IlIj~t40WBd`(?1v%K zL(H|%m{M!(G@x6(ZF7enLYdp-pxW^9?JmR5DAra~Jmqoeom zMOfGp(JKos1lY7lWoY~gb03J-uXhB1W^@4p>MSt@sBsoX)56ofi@6_28q}R#(I-}% zvFt0_%rPlMqjBIv7ZUFm54lrLK139%zcp0*aBE3_tU9{jClwCWN$P$Y3rsli5jJW_ zbIFLcKc%ZviS>vpf}@zDga8dNM^o4awXG=C>211ORMa^!>wSx$3`J+BR#CuQs|ve){b>Y^L?$-8GS7Z2R8l}1{>aG9yQK2qjVavZY; z7IN)RE_j@CUCEDMa@Th!Vhml-_;RmS>Vm%j@6w-tNkWV9p;=UaN>+M~XXhn}1^-E5 z@|RWGfHDi~v+qYjP2d7_d&b!E|G;g6K$Wv4PW>!^bfh!|bPEkbn{BrRNd&ZLVQq29 zu0EWOI5e78&BrP(Zyq9L6Gx#+gj0t{VtLQ@s}3)?vwV-)=JCB{bIqFx`ubR66hggl znM9Z;Ac~r$G~`^Jx_3W(b6t>IjX@ip#1%A(^m}&|N_D-znueefI%e4&;F%OArE}?< zh3id5V)}$TO-IP40pf!t$lj<%HaISCv^TUsU>@u#n>I(8g+o-`2RePT;)upS)Qx_P zkLH8K1=p0g?Jx+rl3lV6+l!-OB>Mul8p1iHYtQV#3i8eT;{kiv=8nPcDFw`<0(u1z zm@W5@Sl^PL0QII{dlBBHkZTwCE8iM!2%CNWCA2(YL|TfZL%GE+f3)loMZwA=!kLig z1rV6U-|hcMZGBvK%$(=z&&S|M4Y;>mcZ3S|pF$F8KU^pM<`BS#!5kn1X71|Q6Zc{a z(oh&Fryx*sKbVJomXLLh_DefHvwD`Wk=+6>O?U?mx0L$5N$H%zk! z3#mpM=B30>4_d=S%A&;WyUHrf?5Sn`R5IrHYD(G~mv!Cw^`LZKHA5p!8M7!Q|m>v7^7iF-R z6o#zaYCS@jrBv1iz zaZCJ>b&k#6alGpAb#3g!yjl21vN*EoqvnaNUFx3?p!cJ8tPh`edn==-;IVS8XFg8B zcZFmnGbZa!1x2sHiT2>pIKLndj>QQVP>r~>e2H8Z@H=Wj5%9sXWzB1=ES+u--+KQw zDgvuy7eHX$?GG6x`Pns|Jg1uYImYdv&YIa!(mK~Pmz}f~2srT{F`n7EW>8Z)PHzNrO5diHt~mzDU##z_r*3n-r~NG=)d^nk?ht;O(J z3-D1NZrPq-BpYeR+3tqc&cxffSBh=eUuEZym7kManXDzwxrs-e%D#uGoAVpcupOJT zr@b;vy0~)BKqOHabyQ`yC62<(V9g@5=Z+piei2F zVGq=A5vNSG{>?Fi@@dGGkCDx0H7un9{Sy9jhdHIS(%KUA2sMO%%iPDoq5}(i>i1sW zu#RYEe>H7w8KDWo_NhcqWl3*MB)w%&Q1!KU{9Cyci=R#s$4+NkI+;W<$td`;wNV8N zR0sxjS|l4Ur5nXm^w;&-><{;e#MCPPV2Iv2bC5A^l7XvZf@{RwNze)NWy5fW>)Y@+ z6B^Bt6JfQ*>3D3^N@6lAYR2L?%`ao}B;(G9Y5U!Z+b#pVUj+F>$nGKiWotvVDP|>< zFI_93(Lm0isbu=A9HiVA!f#0;wpaYk(^%Pz?9AZy_or0(NA+RXh@YByf0L=Gl49X87FsViW&6K1YUoy<>f2(0=FE>Q!)jK zNj#l%i*G4;Q&gZhMwSP4;b9PEKgYjh>&iPOlX^j|Hf;8*3{)(q-!{UcEsCj6m|p7qyA)TI6)IyhhS%{mU?fF5k&w|3 zDkUpYKa9Fd{vt1pPjVeRb=)7C9)|?ErcI0ki)V^sbI+ScDoSl;rZ{+sH*(ObLI3iz z*XzcKk~%=Ogc*A!YYB9vk_uGCp{{Uuv*06EoA?Fx-t2>-~KBw#y!db_1 zb{h{-AYLlh5OnFF-mOPuZC?=6K^`M^Mr%jBo4=RH-vKl#(`9bcoputQC5)qH@M3Se zEK68?wako`qf`yZ-mlk31I;tdg#UoW-2dwuEH~SK+NK@jPXb6=|LOAbO`Ne9{t5Gf zh1DBrL3`{PI0yf436>)~QPf{h&DWJPir$J$nK=k+&U$H@0pn6{*jR_apL=Z3Lt(U5 zflz*epdcI}i`)0>O?n^ROEE0(E<@mTPdq%Vb{9dgOX^(U;PmzVpV;}H`|>#l^gLAg zQ@9WE$%1-WNv0B6s&5zON1$84rW%@U8@hIO=OdMGMaTDsHD-L4TWxfK@vnr(WwQUL z^Qj5;5A$reB9xyN)!jbW{=x(O4yZwD{@6Q7n`MjG2ahPqMV1#1_%QiUmMZgr+GRs)%le?5`kn;E9Y#-v&Pzni%kg zBOKdI8C+&@kdB2_%^n@BYGJ5wxrO3!yfB;?#We>~CN2CBQ4%o1e8q=T6H(A9&~hno zfd1N<4_ds@A1qHn)7p@ieA3g+FQj1c{>=7Q%lN}=JgrRhr7RlcNVGwu+r9wD{6t0~ z*cbK3krQlQy>_D%qR`|y6=;hD57BBGMB#uX*nD{p&}bOyTkgK9{`G)#%`yO6y}cY- zv&18MZgnD_EKLe>NefVHe!7llBiGLkQ({{ zlG38!4&x9@f!YNIg97MCcbf4rSXv!a7QPEMLI}iQzWZa>ptW(x7Y!#Uu@dPpjdbcexN}}?T%0R8Wf`bweX%Ore+>59x#QBDk4VWZ4 zxONwy=7rZ&$gOoj?g%aK7&6+X*0};~x?!lMl=wGjnLUt`!wPaC7HNhydpr*gF*Uw7 zd=Fv4f@Pag!Lv0w6LUJX84lkDD8CYF6GV~@JMt)sLwop$Vwl%G254JMtMXWEgF~!I zz54j{njC3;3IY}9H4=7JeXP`au3AXW9*JXmfHnIfah8Y(T@IVCwixjMYAUfn>NtWHBUvN0aC=GtwGS z$&nVh=?&FCR0FEOCVMRzdU-W=4C^y=n+CkW>4 zwG3>~9sm-m`Sr)`e)B7q6j`yK<1~pO1_RROe*zhtTM}eh^Yt;cq>GGFa}7f{qd2_E zh$`BMs0g|4T)`vL7M4wi z2{n|4kVD0tJ#Y~*Ys_phzIk82$Zv!k)6l5pE6H4hozwqD0f*DmuNL~ z)t8N!#FoQ^7&LNexOQGij@a5fFal&yYQfLVmelvO&1)pW)9U0KnP?r&1grSJxfQ=zwf0o~-XW(*q_CJnG(md?uH@ z8Oi==_HL)p4jP(dOSb4@FG1_nz#Y7%(1LOqO*V@uuW|95AcHRHz~Kc(dz*w~yrMR1oQl;ZnFj&6!bcSNql(Le4c37sz}G1w{cd?QcBFPPN$K*IZ1HBl!LM~Zdyf1zMc@v_R%?Aw`mH1S!LLW~0{Gje z`YzJu3wQ~2<(j#NFa9ykQKjFBS2FC|#c_pOnJFrF!W!%=wAAK5RPA06ASvCW(c8V% zsOT-WPSBbE)Z8i{yv$C*m=@ZbgPg7yU>orel6=nX&ue-IKv}n){t?D2S6W8PIpoqW ztN`bcm~FlH-soCh<-yVU3XW7|$Fa1?^kc~L)|W5N7g;WFo+$OpzX$55(1B&Ty!#9W zE{6Ow&4I$DF>ggI56DW5OPY56z3q!Eg5We7xCPYwr$~;E0?k%CoOIfH8LyDahL?7# z@>dkx#hic`vkUzY^6&F5p=j@LljCu1al3qgd*$*Hz{!fqtU_5ZMivO?srN7e&*5uh zf1!$k>T)ilEh3>gi3VFw5~n#y=w)^O$*${;J65Im>C!2y;`+&j-Ca7j#L0%5LHM~{=+YMpKc2NLS61OG+j9=yu3?4^i_ zQE%rwyp-@}(GHNxO9cxdl)hu2Kf40;{A|GgENh+yp+g5F&e++9?Wh2OibIwwLTD4! zMjmZblv9dmT=GF`1+AK#uoOvh$o{u2*DIT$bYWT#BGcXzpny$YANcRnJS>TwcR0$8 zw?z_)e+j>uOc&UCJp91b=4QOeJ^I_83YP(=P0(rF=~PgP4qiy5joBAKxozg6O-a(t zfR9dx+vC9c?kBzWY0R5M#_Sk51l*a|nuu-M&X3-POw*{3(L4^-xYb5<+#9+z^?By* z%e1*Yj`mK}@HM*_$K_mQj0Xtq5n>B2Z@uwgkdUde%lhTmj z7+CzxA&k%nMpfcRYz$@(BBvWua>TXltc#Z z3pc{DLQXdKdRNeI5|%2YS4>C8(k8y8r~@Mj{#J`*LbJ*8(ux@i)%$wzdsuH`gys6- zOFso5=aXKOwg7A5P;mLc=dZ}~FevyLF8C9ady5#cB4v&92w$uRtq>|Rbg7_VV9$ax z+Yc+(nk#LOR|3kV;QeH|AbFl;Co;;{2FNz)OI9tb1c>4@?a9phynuvp^#{gn2A>CxH{x9hC*>c}+abYs1^iQ>sJWfuj91Q>LE91ehmwvD@#ogRRj{)_05rix2HOF z6`x7M7!!)Cc&D$q`OccrIf2Dt%Avv)lz_E0_%e z1YgrXDZ0p)>+$*UTUErwxqt^;!>H_VA)x)w!TOkQ^K&A}U+xdl%(iR(c8C{ znG|kIAqD6S96UwlVIAYH(ha)`XU-IVrjnEFl`>V<>mNc@?bDwRIU=l7GW^?56Y*3c za9F0AJPpj7c_|s~4H80JSL)5#{fn`?XPW84=DSOu(nHZf$a_A1jjS>>94n=}u-Q~% zBkAn62u>mn8#H@mPUk^9qfD9~vxm3#Du;+>?f8k=nX)isXA#;klZy-WOM; zd}!osDF+-Ccch_Eu@zDDC7_VmTzg;RyzjMwucXO>zVD) zzp@0e`B-^P&A)2neOVbi+ZtO#_k-BKG+^`pV|Pw2mj9=ut?K1yM#QLKY^~yIN5m*k z#LUD*#3*6q?BYtq#m)LZx3;ck&i_VRBUdvqGZP2Xe~-(V*;}|;60xvya{U*-dRp7g z0k0kY`^JDc&)}xVl1#avjD(AbF?AA{UU7(ej)MuIrjZ-B*<P7b5(MB}cfTaEs3Wi0n> zC?a{ORK6~59Bv~dNvtz0-qKHV<0vf;%7ZOx-FHZyR#zapQqDl*x*!A)k@J+9k9SmM z!Waf3XJQ_flP5Lhl5izT#KMmjhn}E4k{TPK21IH?vMlGoEIaju-~^kH@GHv=Mtia4 zB_@1@{Z`a4anHhz8ad#uoQ8&lUSCAU*MU!;wq;i&0=LXd;|$dWBsqpD592#WR6-Bd zVbdzfFeC>#)m^BL->9Y*^3MQg+j@ZE+eU~GS_V2{u|S)vQ>3~Cz$Hx@Zw`R#gl)vcSsn%DE!OdHziiB&Up~WHWPR!?!}Agzm76JVQH6B&IVTfWzL@_!TKX z%vD#ann?=^+J7>TN4^GOyiPt~n=wxunhx%h8U(E~YMT}a)6dY7M$=+S?5d51^Lm9T zT6mp;g<%MlY@5gAW;-ecXsW}8A244tg-tf5Z7AKKyr!-iGh7L(%*d{5+Mv+{!>{KR zVowj!R4RruL32(9)&OUqg#$o`Yejd9vXV9MlR#F9jYkfI)@#szK+B&qI zTpRZ|d$xJmyoNMux3@Cc{CU2F6*W8VgdG;YVW>L-n|}i5V?X`?hV$IN!L-HQ+tve; zc`58yZQp?p_==bFz+78%{*et?)6UNIAE-!)YCK$@@DqEP)>-vU^V4ca{WLYV6!7iN zS)cfwn=XD*x$f(B2xok)d27KLwRyaLRYD&Bypn5?%OGz+-($$vnP~HT=OS7?s-L~4 zDGLYU>t@oGHH&$jR;+S18eGiRv$pHHOO$O@P}*s5n}?+7vTCuDi6_N2oKI`)y>tR} zx_?K$?%obwHjk%rv-N8kFkA=+W6dW6r*mo)jC1#>2If=8MjQmxUA!M8S_;t$_-R5c z_s6Md!fOqQ=9+6AStEuuh^&%Cx)fl+uaGEaCIsR_V=lmVj13RzA-rF_>NSme(o^}Z zgQ(8?#lwdM0-y@bbA=f5Jg7zv=@Q@HyZZAmo^)1UH+O&bD+V0s$RHi+4gGz*-llmu zi*0E2L>}OzViRXTtcEI`7U-^Gw0cNm9zpYn(?a|pdJ%_SCTcW+l*1&U+=QAzOPZ)C z?v*w^B>>Z##&|fTOvQiN#*^G|RJ7e!Ok}RH>ThC^Nr9J{95I*>mSVE{Lm*t9G1?{j zd2Sb{oq@@BE=9RPb~-Wz9_FU$w!6bBAq+x)qB7x&O=x45#&l#@<#|{?aB>$>-@QhF z4nPUd%}^D@-HyV_TAF-tDhmBYo3k;m1^}>^Ew0t>*WSz<)rVGPh~{(ps`CfXPJ*n> z`}E?IumLPXdO;wu1y@%f$j8f6Zbxz}+JkLpXdLeS8us;ax)5Y^a&mKvvisb)G5Yv`Xhf`(|UQ*-Ix0>yWPmH36=^F2IE0oeB z7sDa6SZ?eb>{U39*Pw$@M6 z+=&4`UO{#~H$N>NhX{JI9smsV+%17|nMfE?<^hs?@EUTTpk6R}lH0+N`>!fPEkA=r z#=yMZ0u8e_tzxx{I`KnR&Ne-#(2!NCuLV)}4DLTbTMtO0FwU}{3~Y!NPGAby0*VIx zglA1WADwOT`jk_N%`MmPZ&_tpM1{~C+2pPGc$EOQ6QIi{-w2(9SkQ|Rg)<`!1!o=- zc{f^fh+DA_I{>QZ*A+nb#6?k_=RFx{q6X`h=Ik;HgF~>`Tby*9Ag*}To}|XtvX?W_Bpu5)2*{WrY48pw@dFv(&o ze?^(lv=a8l?Wu%*z(jZgy7hmr;imcVd(G(1O^4fQclhna=84<;b&Q-}i8BPf9~QwWf+ePpeyQ;y03$u~KT^OC2LHSabv(zD%2dAy~$zQNXa= zUfx~^9Hrd2?4H|j-OAu^EW_LV#-eBVs_ZrHh*lVcB^y|!#U5C!=Em_z;dgFWa_l+k4rzZQHhO+qP}nwsqGzcW!1T^JQ{6o$BsNrMmy=RJ~Qt`}{U| zB`{=9e5tP_YZ$6ZWmy|Amcl-j6=HTIRM3{I={CKT3%5*!*S(|*+hYLj>Mlhuyp(Fi z?vO{uPpTnsM#PDyXiNk>AD-2S_c~E46A|KB4S8FhZ_IKcr}hhqBv%1Gh7o^P(piZs zY{wVXj}iZ7@GSyNhk3Gr5hX%(1N&uoKl5L^Ac$u@yLa&FR~%JiLoANeFi z#LQu`QPnl;D95e0^gS!{t-GW!pZeXc-giWc?fd|}9lP=Uf9G!ObpK;HBI9pU9v-~^ zef;0}Agg^tdJ!y7^BMP-W)5994V zniL5Fa_fAtvHi!L1h%i|Unk3jo$B?>&qHW5r}yU^nRuSi1THsT_8OUGHTUf9FYou2 z2)JW{K<7^`UJZ*fC7mEX^1yn5(TO#^Q}HgOCNut-m06tboE-Q86;~NTsIT4>VEpG{ zJEEAsHm0x8W}Qpm(rA*Z=nRicLZ-=eSwCM_xJ(9RDaMs>qy>v?N3?sSFi2^?T0{wE z_D9kRaEw(3e_4H9@XVaPk6DCJ*g$x~-Slr3e=!vQ?($pEPn7O5)^k)TDU#tT2hbF{7Mw4o#fr_B-JD0No96t86RTPt={`mR{#m@r z0?f!pI5*fg25*t4z#WkAM5oVxZ!B*WPfG3AV2_24T$Qy6p?yPA^+cfE6^2Um4|FM# zR&LwGHVRV$3mkAX)BKU(mIM>kXKOK{v7ar{*q}aFcp3g2ypVl-qZD)rksMLQ&ocTs zYAS!%a`N~uat4=CP#y?SrSWj6F7BW*^q91xHinY2C1E@mxDUT#?mKE!@smjBHJN{o z5S&;Ht16H-rqQOd5S%rE3b(+Vy(s!5ush4ies@95nHM6HcTA_8dR9KZ4roENR)F-H zrO{yeDrRi(TFUZ>Ku01`rCMw!OlhRPc+)J?Sk1tGQj1yB|-#A0npmpv&N(p@%}XG<>Jfc zk!OIpmudb*{^-<7smzj7P^+5#a$({g%=hYxPj9&^C2vymkphtB@LelKG06y4mjS9< zjcSPd`R=m_zQwE3e^XM+;_BAKk9|=Rw$~6ohsh8q;i>3YO03PK`Whzb2HVhb;5WAU z&GnbW&a)l<(8n31O5IwKqDksC=IQ=pQ+iy@Jh;wBHnUA)UwuO;69-sihTLe{liegt z{Zv}SBLh{U+?n*)&S1hA0~p@rS%>C#lWycffHc)URG0CQwb;3TV%_&2sA>YXwa=#m zuvF&GX_kxgy={C07bZ*kt52(kc&0*>ZxJR`>54=h2Ei;}SC{^js+CHW4(hOS-?YZb z&Z|all6vhch85|&DM*y`MmAV0fN^#LH$cJ7XLPJwswD}D?3+7fOcPLofEyBSd=Dd1 zI;DS$Us?z|U#gY8{bw$gMdHOYTV0s{>7TqFeEh9l=`_5|5rNE8NM1hQKKZ5jH#D4} zFU=HCQD9*~|2UW=xSTYGF$%>|J)>8yLXzPjhEJ2iRaq+M5@%*vZti9@+O@6M5O)mR z4Woj*7wU62_oDDh36NYV5L8;OGc~oMI3_yhfz7{Qt$HD;c$y(ITy3aTWElBG7d92C z&D1+p%^TZ*MSVS;1?A)$jZ8H1_6OKQPzlbwel6_op)hoHq|E>)G!xtG1Fdb*g2F? z_vZG`6|<8;Sz{b zhfoeN|MKTaQ2ou@0zQC+L&tSni;UER3w~o!E+xuqC}Prw)@RK#jYC{c(I#W~Gt!sexN7O$lvW`kx^Wu>qx=7_bDec0uArZ+aB7G+5R9dq%# z?2VF}`u=q}<1!;b9~dMLB#?G83auK0If7UCr+LG~x^+8phasHzc53^9i#hF{7scyq z`y-H|nzhwZ>N&a*3Nd>x$hM`bL|kE=guXb!iax?(X7c8YE2s+8gc4#~Urq6wa}en& zH%Zk8`f>To(vHB7)5;_e8q(u1+a`__iBd4-m*y;IQXod}!FB}uN*X3@>EzG--{k{g zRuJE1498T^JZAzX4IRK-PCyE%YI9JMl z9szWFsdQ=qk=eGao|;L-yM^TIn0c+ZNyN$!B;;4L(xy;~o4e%KVFO^5FUL|2_qx92 z|BBf&{$++tEeRwYk6g)brGVOoJL|9|n5m-cAfh5JcRU1i+_!ruaE%}DW#|VHkjVJd z?Z5nXW5KH&JQ}`Z&{a~4AJ@F^40AW#4_bw~D^mJ`Q3`QUxRdpDB^)J}GPtF&1@^#* z$_!cxOJR<+v^TaC|m@7&Jwt z;LV;&J`$$Nx$jGRg&im<#YXwaX~q=44d`pY-Y{~q48cw8mp)VUo>}PYp2##6g-DPI z+Bft`WzLw_pp~Y6d@wf^w&b`=$2e?2lC-dE&Xsk3ytc_?{tvJk%cNktoV)wfB&4W| zBejT}yd}_wQnJC95e0N#hhI3E2H8;J88(KNUWYs!L$9-3A)598qhKm>&XY1&^oed= zqTlrqq53M-{oe!66mL3xG>Pw%{h%eBL9e#}H}BglNjzb)YUA2?Gl@`ryzv^{eagT( zy2nbv=q5rF@t$gjIb2UOSc=`FzjtG&fR+O19;K{i{9ND~QAeWZH%r8;yQgym2ZSDW zIV%&5(t$`@eQ57ep}A{7&I_BuKR5B} zgqrv|4*Q`*N@_C<&om-Eb1zx*GuT4Z@Osp-f?SSs`Lp&(&qIV45Md8lLSnU=Ovw_dayS0&d6^At{?Hc*J2;O*fejWki$*oLcCPwmZF!0_ULpF^G#d`eUt z!%mJR=(n8{lSLVypHHeNulH;m9Y!>28RL7DtZNGv<9Sm97~zu$I~kv?K`8%Je3R6c zW7KPnwrnpMpEVIcq@xS(L0&Uw0aQgwVjN*VntihJa$hQfNmTymO|0D6)i(4=4Tkf( z{ZbB;Amgb*-NnTN43G4+mu_)J6%WU1ONDMglEwN0eNi8LoEFBf*qg$3p-K8B5XHtR zrMgm41dhUX2of2E)7b0MY80Xez0v6F;A&^I_@tMQ=6iL~V&>oVobd<*QX^x!8!E6X za$0(fDz5TQubYvMCD3oVmUWo0bJKhmW*OG9(!bhNdG57Q@~Z2 z^#%Ecoa<16;o-w+SFLL6_i1gX*A5NZ!$cc@9#V^~aaZ`%xBj4(YW+>&dl!FQ4|8!v zvST|^5lDRu5=1Kz?(V{IWb=;DiwtTP-}_4+6^JE6BTBy+5o5Zn8mUNatK*I>?>!*A<(v`DDGtT+uPhz&t~u(Nn`K06 z{A}oXM>vs4Y|X^g6FvXcc_sivuXDQeym}&i?{J+eB0+tfTQy6h0L*B?Lkn=Uy;OB) zgJ|mdS(&2{I@vmnXIney^TsGqe&9!8Y=fZm2cysonR0E)-lF-#2a9}Z0B4XH40<7j zWMy_hhhu9IEMyB`co6f!xKm+6zHMnh_-2Ra3wI97cl$p?P7ME3CwWFD_W!u5J%rU3 zP1#28qmyTgO_f5m-OJZ&%B0@Aw{H}zfa{0&U{p}WC zvg4!a{r!4Xd`TXD+MBj8ZfJcZ!yU~NXci6A}FaYKt{xL4#*Uyw2XEdQUBx9 zJEuzkS4o7yREP~ zs3ZbWB5J9W`>|d070d_4o?wF$3}6&gf7e783v@D|r#mPd7j^qe8OAdZlk9m@;7N#4 zZg21|^$4f+n9-f!IJUbG&A)813;=TMnR+IUPmT^g2h{SA$Lmh}C(8a9f}CDLUNyiN zGb~1+;2Vp060HJ#f#O9ODruL4ddI(Y#EK5Ki#W= z2G}e|*lTRxZ@V#VR8kI*olnX~GL-pPFzk(SkbuD-s^yVo!%+`EpIh9=UJksmN_0Lv z**HNtzPd3orU=ET>o%3tz4C=?kzLO-6P)^v5?)x|pl$d*aEcc`a{xke6)7vRrJ*nt zo282#HS!V`G!2j6-eaKygX(mwTCd$TTo#5gXr;fcY0()WD5ifGl(16)wkS+@4snXg z*!VD=EAVQ!xj8`azM+M!P<%+#F`7y2bmax2CYpa=hMaUnSw~)3o`oFPoY*WL!$DaO zlDAP&Mjl!+e}zB=AW)?hh&RA7=C4)|p1(4r^xCfZc10ZbU3XaBnxzF@p6lNf5@_|f z-08lda`wf4_TFqRTp3K*Cfm3A^H4`&L-*T-hedg{08?!40`#eO>7cNVkcOS*6#;z=spibGRI8&| z3RMpZ)#8fvNKnddL4Ns2K2kdor|%F1bxD+=!`B2J99Dq_*h@n3JhDV$$rI)Jw)Hc1XoGql^C#L5IrKlJk8o0Kc?xje>??+y#ty6@(HN zn~c{q!aaF7|M340$FPk- zdjQxqg43+%byv`?x=VDz6r*r38&_R|@#UU9mr1~~Glz^wQbItNwsmgRAz2dFvSrz+ zrbrMuNEU!z+^9yQ$XSsEUC>*{kfT+Mo1q>E<)ymf+6?}!8;pQaqnz&M+F=xp`M45+ zV6l@KK&&p0E&~w!EcG%kuXBXP3qkNjpnTJqqf>GVAbI!zEGg{Z5lYg>6Aa(D?A@t| za)dA1NZ|G~ij;t;&>i1vT4xgzuj*c=0OLrR5R`vmad9~a>I@km;@y!nJ**jy)p7HH z0Ri08gI&6hmPK%cjiNFCSy)g6p?L=>wzAaAMYQsdcZc2)tjR)>>F}po?*2izh0tKp-fkT2R#xW zM=vU*+<9Jv6l_aX9KWzoS^H;4H?{0>c^8AN0d-6Eb8rs!I>T5n-*Sv&uHf`YlX>wL z4U*7-IJ?zM5_C-EC9dJ#$1eXkd=za|&}Dn9w-#AJ?#ohR=2rt!S>~{YHqfqn9)<6r zlF(&WA(9*8q(S86)7iYfj5VE{AwufW048}R+^qdjzz9>5)_{Z_ta|j+rFt|qnTQJp z;HH{ED$=!Iq3ek(xZ!b@FGXfE8j0pVc>rePp73Do+n{my-f=ypw3u8W-~^7%+@$j? zpOmDGR`Fb-Tmjn96lg@0BD5U^5*)T-N{cnfxTtP*vxqex8oDT@SRDV-I?d;BUwc@? z^1;c59}YKwVM39x;4|`CML5fdRG!>u0b@Pj+8UH&Z25dqW2yemU>f2bq!|%BfN%B8 zh}bk+CxVlnd7LV*aV$)*i9KDoYto4_-VPS9)0l2?IxSzm;ZS5$zi}Zym*Ck-QIQ8H z0jV&VV`WvkFy5AuUBT)pPt~+*eUY0n@NN8S6S5bodIbfuRqthX= zqlj}nw;{4E4IVoc@6v8!V6`%KtW!Oy&{2P>zKybmR6f5zU}3PuCBFO8z91hkkn}Mf zT_C_hMnfg&a-9r>_kx5)CW?(z>Hv^Y)?tM?FCvc0%OcMr$A_6*4{Btx#2zKc89vG& zCWF-|kb3)W@0}5CHGZme(we9KZij5XMDA|tMvOo@t8<{&)EDs2ayN?)-te) zmYV8OuQpitw8+5_S~qBU0}=8oaWfHMGRZjDnF#25Id63DnolIIFKV_V>@8ET3?UrW zWYvzj>8(A+hrT-rp?Q+{%qR;zWWtUkP`yEeGq;nb{4A(VcS zBrozlH;#H`W_oB+ojKJ|VH;w*y(jE>RfTM>#nCvHH;#1?bw*NPOYu|)%5wXVGrZx zC>`Y;ltqi^QIn{sapuGCcDO*Eg)15ZdumDJQGgu<_yTk#*#l$Hz2GYmQh!q?Ia5TBAV@T zpR=_KQF+SK`nKmW0vd{l_s_isOrNh2L_SuRphDwn%DMV{lkqa07=fzd=#|cm+*!3B z%ic$$l)CDTP~c_z9c>8tsnfT^cp)T(xCe8-eTjBn`en~p899B>8o%gjo+5$+xqG_F z1D>8A(Ho`~FH@}s;;+lGcO$QsmAQNO)%?)us9`fvxm-knAn|D)0qAwdwzsNNt*^yh zW(RLwRol}=$7`f^G>qrHBC`6C4Jt(Ne zO)=`~)C51FN`LIR%P7l~`d}V7Yj?J-w8(QT$PvG2n$j>2z-wexh^dG2} zUqJ2vzw{3M@j8S3l05QM0%TuJ_r1mLIR!tS?pD4A29>!(0tk?6b>;HDt^znqFdrG5 z?A+#KsJTo|U7m%#2gX~SSzTR0e#%6Yl+?%UC@y;(ayB4my>Ocy!c};KM6v?~n@`*K zeD2O(4`DIa!pf1NPRwe64P-4_5#C5#qXU;Rq^#-coJlYGHBx@iKT5d z>^E}qI)Q(kWzF|R&Nk%MC(t5MMfzM8t`ckKKGPfxws5LELamErnDPdFDy3yZNU;^E z&0w162%3VH2A?LFEONyslaJH3YexR&vQ&j_9aU(Oz@~1!3;|K$GdpWCifCX_h~{f# z1$Q4di4??H*Lu>U2nF$RyIUXfI+Ph)tc)ef1J@Xb8k0w2;aPoqdtg_93~~@Et*iiW z@MWb(>3#>I;Zm3D28erUfj~%_t*K`SBHyk)K{kg8hxwr&h9vM&3ILr&h6IiFETD# zZF*n_IH_uTmUuQbkcHi#)U=%9VYVDNKW|tdAJrZDhXen6j(VZ8Tf07T0XvwfZPMuA zJM6K{CVOpIV7`ySevWiXpw&jTjJibBsXhoQ()`KZCmd`0VFc3ty1Qbajq02HdjAQM z<>B@De#KqQu_^fvvETm~sLROkpMknZn*Rr=`)GH(8!pt9;OA%7;^Eh2#Mm;FjbIpu z=OIS(_K}C9m{Mx*)=tFv*Z%f#Q4kk5pC~?GBGa2YYylSb#0Ivf1H%JCvR3!$Y(oc^ zhzE|;4MOj(FEi8S)#LqnZn(Di6B{Ftfxs$jlRAqcVssDM}Fmn~941uAMi-<{dG28p?nNWgi zDtS=7Y{+~{SmZfT23mLygE>~7Ry!zxF%-1AnJ=EA95|NT;4V7)JRAzofn~5m&gvX% zr>`XC(?U)ttb9IuonJA1#zjFRw;5iFy&X_#8~ly7S?=j;kiUC;AMR82jEsbM3h?}n0kEzMq6+H!a&NpRN)yPk>iqT2)%B@IqPuh zst1o!&enJcaQf~TF{Lyi`W=vYgT>16_PybnErk5!dZMs_3B*^SI4YX?$Z?kTTiCXP zQo(&Eq5|3_cP(#>opCM^B=_`VM0$Uh1HKlWv>Fy!Zw9{s+@Q|=s}@~Ll!fal4-#Ct|?rgOtwKv8AWj_ zKB#^OOFrLE7hzj(XCW$AnTdF{Ho{HwrK(T!2pUMuYL@&O&L{0o?1=i2M|c?(|q9(TD4C^rOcV+eOnOvOPK@x@EauaHD)MHFxsq6_j z*A9=^@&`Dp4^YGVM5KtVv_{;u0)^8OppC&rwpT?2_SwivhjNwZ7DwGPqx0)XnzhnO zNFx-X(&SK0f=%ab8SA8Yfh?}--1E({|s4}4{vhb$aSw#NDk)&gPBqX_}2 zv>!XOV+bi!dsA`Xo!*~*HCYh}epi;j{QNMmg25PIu9;U3HpIBEbRai#?c2*Y*r9y| zB*qsidyRWuCTja{Z2686^XF0;T|n?wO0Ci<^3odi;Td{e=AP6|3}L6hfo>7JQeMcoKV%LC4eX_kDY)o}_~6HI8b`F)kEuC^q*Vo=YtVQ^O7ryUm>`f`SiA-DKax z-Ig^V@<=M`hdxc;9BBjVr*47}q3f~5A`GvJHT}4yb%)f0>(GdWtPxI`TtgV_5aTpn zzqFtkv&$d1DK4@VzR2Gmu>Md??o#Gy+Ul)yt&RN#y29jDf1D@tLeADtBq zJUPvdHyPl5)^pp&Tot9wDe!jMD4|?xLiRM$RjSkY$i`Xp9bR|eNjq)Sy%2IHc3q7I zM~+IZ?m}idgorrk{ovz1g!pLIgE~rm#Rsa*06!FM2i zllu`D-0GpnVXfLx+m}E3Fru)rcdZQjx>Na);ETh zeHgU(aA!glB@(ZgWim|Fa7cuQ%3UL1 z@6G}Yo+5A9+(DmWN;GI0#o7bMjJA_)eAwy9&SAP38$dQ*+uM*Lh35DA6`qs$l*5hU ze|V=F(>L2mUC5lwcsvrd3QJ1EDo)|;`aDvk(`>9crpRMx-5+&YYb;=`+o(WaUVjMk z9d$$xt)PCZBrt=1AJU;t{A;!k_j~#I!-i*rDeBvwZyTlib0?HQkJe@VrLjmH38ag^prfxto7I+^3<$n z@ki;Sb(1`w*?c&gd?M5$qWP%9%{jI8QBOF4Dfj|$klbSwe|JwH?Y_o!&AS(~fHE%u zEHTL%cQ1cg9zQp0EP2;S(b%Y{7Xh|ol_xp-oEE&aoz6P>-R&q8SI|BkrR4b+I6EL+j)*8I_I_>PyUHn%Q6TB z>SMHucI1+dVlrb*zj$_IvRyvK#i%eQ0|b(wWfJ`toP=bDrN(~Abn1$|v0qFUmRB4V zc*1}tPZ|vy+UA+iC$+*zjDCC%dCG`!dsAw{7t#;*rsXM#e9#GZz>p-D!HMZ42-P&E zQ|hM=5@eTlGqMwDnJPl++O%ms^We6Y;O_aSX|bLBF#0_=-dH!ZjOXv@zi~}>?(Xv0 zKl+N34=0T=p&87PsJZF+EstQx8Hr3ukbNN$27q5fs@>zSR zbnKw>M23h^cU(N&4ukA0bNSKI@5EPwvZNlFjmQi$Fs77-`Pj2Uyi+hp>dB2+Mqv-X z(g{IDXV(UkY@D*;C`oSLQvFdIk{D8mXJC=ey=GvYkQGPJ)`sE?aA`Y9tKsx*g6@^{ z>C%6y3+VfS%vt!_pyr7an^SI^wYwiJP%LsI%NX{H8i(NDA>j>`-*i6(mYVeCg5RRk zj<)RCAp=6ut~k%89D{ZpWX_YZqCiIV&@s=KTOLMTfl+Z079cL$W4Olo8d@{x3Kx)Jf@FS3DZ2Lx@NVYg560EaRNz1m2)qi{6Pcep{my@|8p0c)Wl-H^Dlx1lN zGE!b&9!)`HkAi5y&L`xp|9Pf6$J-0TcS&kc@Zb)MI#9`!3+76?p;!%jR#_Fi^}kEx zJeWQE&mPe}G{&2a)7XBjFth)vu%wxrTSv zej4^G;zhnJs=*j9bsW;PL8t#Dqo?7+h-r=6vF$spN}7Zgl$ohB7pkJ3bgh)n$*0ws zH-=_GW2rKu?FT9q2xHx$k>i-bF9l9}Zx$$NaEsAfJY@65j@~71r z$|u(-cP9`i2dI$I{>qolhYEiX0E0-#Y2gtP1AA{ba1B$eni_`^09A!d9@;7I4p43J z*7!{#FT*kVtd^&wI|V8Gc|Wn8jbCV@z`&#K)Nw-|9B}wPevWe>m#EA=X=~rL1ANKc zx0dimCO$+I9{|8E`DV!EI>BHXh~N^$VlPlcd5a!tGg3A(Gghob(@x)+AH>F_aO3^^ zhZOSJs3Giw{OunEsl6v>5SBwUn=F><@5S}Mo*tq{>J-K8rqRzwi@~P;Q14$(J;~dT zmPT4uFPyp$l*2?;vsRvakGxPm_OR!fRsRfR9P1W^RV z=1OvI;cSVN`c`h7HtBuvSlLM9ak^H8WTu=aMzTJ>#dX8f#QG264-@PEBjMx!FQJ3+ z*T4Qhi3a}*qDh=|MjR(P9qCxpq5&hx|QnOftuPty>kl>{}f&vVCt-O1=yVH%tpH)P}g~bmH znP*|Ud=asd;H|OHaIdFT)R1hx(wIVQ@u5J2hls0D1vGE=mT%y{H^D67^~n($+wmq* z-U{4g!_GBfK3hAd0}0Xhl~p6|$EriQ4IpCgjX@Pd7BKx`m{$TPs1jpZT`L1fzQD%_ z7$|0i%c%)5g_h{I!t2(Co$JGD`FFrpUUK30PIoXXR$3cyw`*tH9QkWFM9+bh34gGz z3CqNeg-e-t{*uwJf8-p^lRfVx*&ah;?Nt|`Dea6$e;%6aM+T}zS1sWlSqi^i2o3ve zUgo>fAgNK-3lr+iQrlE{30@t7v5Dp1!REdLQ^!Grc`QT|1yEkG1Q3EXr6d{J;vBSO z2Trv{dC3Up%xcm5hf@V%h)970>>#4P;4k`lx#6MpvTQ@Bc%#e;tnL#WU_E7k zSORI-TF^*NA;3*0l{- z+|`ZqpNcQ=xq9s@HKE;pG^ow^Df?LZ(rj-G+Te>sg02AhDWTD3zw3Yl$_yKV#?&;S8O-vlW-Uij~#q=-^ysmFbhpZ zFbms52B{fHjQ;n_>!TN_P2E zQ^jb&(IB2LsB)=FBXQ2WmXfr{L+U6^CebDfCr^Nv=cLihH>8H}g>UYS4^T_Ec?OF0 zdclL|k^T|F!j1zpyl`SpwqaoJ)g}fwb{>nq*@W82(@3okUas!{>g&Kq-J{sxV9w~;I z-ns+z463-^bBQzxii{k2n9u!20xVGE!!jp(E##0ex`gW;=@i32apKBdyTxt&#wBSt zR^-K9&0klsINvH5IEZe_Mb(_vHpgF?!lSWSM{vN>#>uft9v6lh0&>5wlBo}h_*Gk` zO&pU#Jtpi(sUb z);`knUYIdRQF>4oV1M54G6z^NR=UjyD=Ka2txjRHavYPVs$4eSUg}JeB+B2^tkr_H z+26K{ngA4?VOsM_d8idL$h%gSX9k?4dDh!IXK(hjV`G|IOKbV#2^Jr(99m!o%~*%V z{07{(rF6Qz-){n;eX{K>)O`w1i+`lrTw%z`ret1K^6->RE*<}DvS|4GMR2JzAIkiE zOstqe_Xx20N;(LkI@;+KnQaz}_&#qj@8{?g%Yeywz-7T|(VA;# zG`-6W3;^mVPkdY4`c$^MPw$TukCXA0?c1FqxHWaI%^lCU9C=>xSYm^{ZxQIlk0|J6QPyfkLA2G;k(eKG5E?_=f{qVE}E z96+g)a`jn@_CC9ohr#Lb0_yThMF-t!V$~Jw*@bC+zJ|HJ-o1wDz8K=KyY1j??Fjhq z!leyJTVivoZwvdkaJhm(k;H8a;L{_z`#if>t)KTXa z=Pv~y%-&swBV$0p>k{~*V5X0T(`lsZa6zW{g(Mdo==%PV=;~OJR2lO*uqH4&&K#ve z+LB2Nt^|ZmR0!otpfgyW?UVW&bgq*85#r=8%#F!qj1$vfTI3Z8MfVgND-bu92Aq{2 zk!#cqP^RNdBysh;WTP=k_g{*|1dF5ZpbM~*JCGeTglB7hBBHN(Je=zzseB+qfyQqz z_hW#atV9O+%WRq=QoVhK-7eY1SVqEe#=geJ9<(#ocp=%NS)uc{Fn1N!;wbAWE#e`) zpCOXOKd}5fvT%gQ1>l+;&I-GyF%TWPW-&eoQDOl!BK-)31owfsP9>%~cv3Z-%>K>) zgM1|8F#X@Bh09sC#^GSfu)3MrKA=RS9Wq|;*ecOjZ#EwlOm!Vh6_8YB8c|+GOP5~@ zU@3R zobkGBu1e#ZH_|k5_ug-ze6kj1?biJGaH?eD9Lq6vfG~lmikkKpDneP1P@Gcv#$HgT z)exPc0OfsFc{hIJb6bRJISc_WXy}tX?J@q-X@vGjMof3E^a>?zy~s}pv#shWWDm8# z_{RA;?5hfD@GTna%kd~6sO+Yd{NsIj+Rv2yI>^>A=8D9=N$Vg=1{|1$7=5BwPjiu{ zJh+0JAdNd^4uJQY3g{!rA|t$9A*j%Rwcy& zX^QMl(2}&8I+g__ta5#GnYP)4%#Dx&r4~Afrt^VJA(Sy;0LH|(IysRY zf)3F$%ASs?&sE!z_RzZ51$4yF8jZ4df^e)d{byT^7L^m6f(-$6Q?js(lN~cgHi)Fz z_o*iP(o`jy8sLvb<|9JYl-`M<_bzVv{YnYKR=cz*-LAXV`@R?V5gn(#b zv)nt^%ImfIdB%OxdXXaLj|Hb z!q9xpv2g8M5;uhj0#`xIV`Tt{*lFh}iHgyk*z&~^)=Vf!Xk8{~pfM>o<`!Nw(S_3VAV!)Yk85kHxMDY0hO*X2LlR_6xA-+h5~4UbBnilB^b~9S#>7mX2K@3DwxHYDBDKM0v2r5o z!9b4V&4KxDR{{L$Inz{MNcW!fMGRe^08J>XPs;!u{9n{`y|pus*!t*xm%aTG_5dIC z#$o)sGAVPnBJDZiyBZm9kV@Q(%YG>RzVn9Uc+;^AH^M%&)b`(%K~?wXA}R4$Y7$!1l94C((;2f$qK#X=RgQ|n9C@j0&guUat_D)UP2{R>bG>b{Y+i>>5cmSYZEdu zi|J`)Jbt^~CDvMZxhVaoGw`G5gDtT;X$dDz!E|$oWsZd~2b=1u1<5Bb9CfJ{)DEGl zf1Z$}2s;$QUi%swz_!-sWeeWLej_P6m4qP!2gmrU-(F~vG{<-;)e{lx*14HisBkCs zyxf^%;DJw`Cb~MsIve$CMtAjxNYyM>lKCZ@vET?FYqC#cp@d$THY>e(SLaO9=!#oN zDksHC&z7_wxzgC-z)cb~im+a8Gnes?8WtN6mC`qrwQGG5MKWh|BBYfm=u3*`QA~=~ zKGU)fk(Y}^DDhV_ zKFwtjpe$;>tXyiKxs-z}*neik-ehwOEo@xEBmE1*OakLFGxls+4uYudp6Ml^+($MR zU5k<7W}v>aSqsFdx;u9Csoq*PT#x}ta>B*QuUrjc>BV}I;b^yEI|Gb))RLJxwrm*T z;a)UT?t*6dAg-GAMmSgG)2ndCT}P}0y%NF_`$IJK=PGRH?~NtHc};_brn$E+t4P%M zzDb0`>_#j;UP-h{*eDG?9NI18iaqa^7A#YX)a() zM}TTWQ2*JhVIY1aHj?;jvi+yBAV*1T!gueask@~T``nZwZ>rKAyL9Z@O&n|yrxy1o znc7b*T*0%)>-*8C0e&#|KLn@DZ2!~Xl=(krv|at8zzDd#Nk%YN@`2iM| z79bCsGrFzpF?1V3{`nrp_u$II@*1jibX=x`V}KTq(4-ZMg?|#&Steh9&z)VLgp8zw z%@{{biNf4iae(F6BQCaMh`SKA2h)#A*sUKEaS|Gb~yv7jnN z^E?4i+&x&af&IBoy*;6k<24PUmwnlxVW!0G3ce5fdD4_M1KJuR15$SN-G@A~@%(<$ zU_H`d&x|B2aypgP7CqvENHKJRlH^dim!OvTIkUm|%n{zJ^Z%WVd>L(8C3m7`)_mCu zbMmC3HJgVN`a-{pTtPgwI|FTiTuBFuj}dg$+VtyDNLSh z?dfsW>?qCYA;}ADEGZ=o5-bo__Nl(Q(H|_fqS$QBqhOY^F8&&1t2#TjmjcN#XIAl; zHZg2TQ~ObsjZrdoT!dkIa{gjjE$&(Nw!YDO_L1UwtaFVQ7{9aD>jGou7Xquzm04ew}P7FY=$U zZ9g3p=_bXrDbXm>7rWsTo1{nNPMBtor_+Wp5iLysLsDO2WBov&$X-HpUjuLM=s92} z3Zq#8Es?kyxpi9frgE}Gz#9`+)uflup~qim+u-Dlix1Cd&8(ntahsfFK1<#<7aMh@ zNY-i9GbY{)tEj;RJaHEG9@c<)+`G59OlWM&RKg?>;z}R%J(OLD&^Kh!)5VR8ZX~4z z{kd~8gXbZxmkNpWWlc>!N2!g8eB4>Ix$qGtnqsw_5{Et6yC`yINOi3&jFDB%;u2ct zP&U>{>u7auiJI@<$`_i5H$2gRFbCb+w60B7CJl&Aj+M45W-niNYaz1gd$vdaB;h-U zRW%mt(PW98FnDf1JsQLLfwj#d!ir+pP_3tpW1 z_!bLYuBncJq4vc>-2>r&AK2`BVFWx12ErEk$54had34>rGm#|~qK`4}G5_HgTqG`e z?&&5EV1d@WF}-lfFGZTPF*{axw4yf+Vn2QtId2Ps4&cS9Qlq4+z@qtd02L`As!o>tGX1FY_U+L26q+Z!myuc%m1Gn!#w7(-_(Iz%X)=MuRCbr&>bQ zp4PR-Fw3#)eB&bR_rg2+QIbV^)3VX!GwwutlViU%@Nu#pvz)-{aN-9dD!EzX{sCRL zsCvNDJ*KU{8FN2nb~13f$-@9M-`;a%+45mLU^f7TfVSg0vS#my$tE(y*_(W@T)Nm9 zWDLu1SFTk|wC(+1+*s&yy2s?_ZpBI3TdD`8S)rp19Zx(eR7z&-7o`Qf{1 zGUktE@2Z;iQaauE%~8mE@YH221{wm@7f(Hr_B{(q@maKejiuX{eD%y=y$-6oHl1O4 zd|M-}oA=apgh=(jzgb_q$a<38b zYnde-*b+~Orl#rM)Nuxx` zSF;}|hD!F2CUW9b1S9IAb8nDG;7)m9Ig$|1SbH#`LeZzR-mPiQcsOokp;0Cd*Sm-rHW|z3;PL z^TY46eB~=64P-n~9$vgN2VSX!s@)@hxzhJX)Jwgi?^5Tm1_yEkf{u6%fUFt z-Wax+iK_d#HMl6>JAGmFv%LQP!x#h<_Zy!JuJSNDmpMtES_8qgOSPfh#rVR}`&KyN z7)Y}k$W)6J@63)>?!wp1PyR=E&l`&e%#9AmQ}4+4P9T{5$^!)N;laV&?COLu_;_zw zIO^def|CFH+Upc3`czg!^85m{nI}J8i;U4>H9~UeVdbW?chM# zh7ZTpcDK(DjQ1IO6dfm#j~6FcjoJ|7TdjfRV_p z=>_n!--Tsk+uijIfQ1Glo>kfH1v#3mQ~U3lnE$KB1Eg~Qzk0#4y^Y(;1%8LX@^z*V z>OjT8(qaDZH~$=|L^02=`~iUWsO9{#_a_htj)w&=QA`I2_?|+5?f+F1*ozYhhJ*EA zA3QP~fOX2q_GjQd4w~i(Wv)21;tA@FXdO+Ex}J^T8Of6(e3Z{1R>1vc6pnQ!v$5U|^678dsuJ-r4_ z55FPSfPFle9kOJHmGDIJp+8Fj?Efeo@}z4r*!c)SvgFAmzXIpvE*Mq??kzF_x&(k| zKw@Z+D_%3;idiP#K-~#OYa>}E#sM8h58gL^)xOV?x2n`_V&o}zZiSR;LM({3pBPfv2EM7ZJST*iOq?Pi8-+*cJjowlZkEL z{HyMlTlK43Z`G;pU3Jh0U8j5ZUTZITCA!)YG`$9r2lCpGTSqtXQxzNntCVwEk&dXk zJc7QGN(XdRka#W^HL?^*8vIq|B6Qyv^!ReuqU`V7yE@9uiIfZNv(xmTeRKr5fgh2) z9CPvmXMH+Gbpml)bw5iy$`&AZe<_7Ag!merOuf^77>s)Y*NaP29rLj+8E9PCCTmk} z?d3=cEIk_@D3KLt6_sv?hj9X3-+rnb}j=y9wg}ZT{wF56Mw7YwWq9QzKmo@ z-WF>O%UuXo6!4^)>Q^coW&qqzOYFw|_ZC?*UVy2r8BbMc*1_^@?$yOT>QAcaL{$xM zsrjbDDYlL91hU@Zv{J3@@@q}tUTgYzRzT%bSJeu&Upal#`+MOHmI_pk>PXdYNmDlI zS^jZRoIgf)ao}MPsy}PdpY`u;L6AhWqe$MUs&9QGXrfHGLo=T? zip~q16VsCyn9Q6YELEE*y7gktw5R1fLt92NWo^dOo9alOm~AqbhxTjYa2NMz8dKxe zD|;3*ZTj)MHyG_JqPZ-nz4EU0Wch|whk%Zi<{D?@msH*~$t%)^#Vz@ADS&c}QgAbs z4W&I@<(kA548Cz*D6Z8u&6-Um)72W`wgjdpwGGF)rIQQ7xg}meT+_Nqu!#_gf~J~w zaku>d9J_2oxdO7DC?i&nIcIZ5sk*@wJuNLWyv5qhN z`1057?{PKs>1}eO){wBwzb9t)qcpM_eA6j^x0kQ3vRW87J{xE=u0_rU zZ%^-J)T)NKOmNpbJf1K;`7UY138?hIuQ6V2;cjGb$kTZwsL6`yjL|TpM^(?V>QoaIDqj~7GwYXt= z3k9qvJG^}U`^oUtEe-L*zPlRtyUmD@;BMZse#0+!l$OBDGiInMmvOrlsjD)d5 zVZ@$&C9vPuHu<|aoK$U|sukMJo`z?duvY5Hwix}!3HJPqci}22Kf8$zI114$c;qp2ZSF z8@2@>$A^$o283pM($$p`A*>WgJ%JkEUv@h%I%`npYIY_S=q`YG-a_^S_xOYt8h=LJKoLHJgNc>TY!$813ibw47P%r&d_Cc?9HRtH?* zrcHUXG6}-P=Rc;oF@PKc!IPag=y6l)j9gjPp+NfMNjmNJIc|f8>L7~LOF(&lE?=N) zAZ*zPts?eG#WjC{_3&QzS|N2To+}@DVF+EM^FS zq$F&NWgJ&maG?_DLm7xNS26?p88U3%yE}$EW0Uc!F86!F6ycLC4$+Xi-GTm@%$to` zQ5oh_kb-2s(6o*w#;t#QOBb@GWE1LT0K&8$D*CwcVh9(%zljG07SFd0tbPUDp}}^E z&jdjhB9f)40{t`$=TF?0U6o5~5hV;RkhM}hq%}csOQcK}Z^p)Wp@I|2?OW=?79iCO z>Q>3)e#(Emuq{^B7oR}p{gzSmg$rPn9I1KYGncM24?$Zd2>A&-t{mRT4h zOgflEIySR8L~2VSgVK3U^6|rohq#4Etxr{0 zuKm<*9d-nEWdV|sM+47A7#K!vV|yutkVJBdEZ9gq%r#f5_6dZU6<6eyR^v5$?q+a9 z(1z!A`uZD_vyGAi3eW9fp$^zY=0)29v>!zT z_XpVyz^DHeXAt}>y2B?6Io%7QZ=)you%!9(RK1=~uSF0@WkRG=ZO4)gB7?hFng5B1_UpRpoT;*Fr;b+`&=KGFVFOi5`u#B z_K8>ica0L=a-}{$5B9Sa8E#qP)#XWfrg>C3ZZ`qNYyM>UYBq@p)6h+$ScS~-Y$s%q zno9YRB$3IEvNrIQ8;={)jHG-h1E&+!E9dbpz;2V(kMReizY`jpA0NjYhMUQP zzM||Bs5=-ZUsJ=g?fWrX*@&Y2g27+JZ(k(_M_eUuil?gvl1^TzA$QcxOqU}*woV(x z-ZjXYc6GssS^it=a2`;R;g=pQf)txmTIrKZ`$abujo2Vq{YaPkF0IFMb#b5(mEYdS9OjJa3F?C7>Kk zA@V&-&>YnH@hx<#M*e}ubn&)ILnm5!)|_6LF<<0Xs@@=wiR&ock6LfaVe8qpWMMWk zap;LHSf_OE0tSJ$INZ4lkZ0m@RcyGu0(vbzZfXgMc@6d)(3G3RBe_cTZf+ zoYT#H`S3>;R-G^?1ao^|HRtY;mwR5H;(}4dUTBihQ+=)r5{Trl{;nKj*@kI3$cQiK z%=Bt`i~cdIRJN|3aMzI-OQx1=#>-lJA#L<~`fr4nOup9n^&)#3YCUD{kDJF37>1M1 zP_K`uyf_R8YcMfv7Fd8L!&~G9AGWzcc05(xZDv8*^($Ved#_y|Vgna@cT4s4&Gj>zv)YQ814& zXF2-kG|nho%f&l$v%#_Z+OfwipJ*TriI(w_mAt6TP{p))sB^qZzOF3{nTb|DdbSD> z77L+K@Mgg@CA&V~Sgx&|s%v+F%3N&jufWeKKdwkuQK_LCB_c@wE7BrCaC1kSvzJ?u zl5CZ#`C3p@f4)kd57g^9iwlAV&L()UeC262?-&HCcQ|?f9}|-YQf?dpY5Amv=C{AXa8J5fUuxw)JqHe)`5-$d zvokt9jPJ4%#}Wed5bxykh*_Dv3-u@|r>mxi4`3^^t#0jK&*lB4 z@)6|oH1c!D8dt5XZv9^E<^8LakpADJXu*@Ix~xoYIfSoSUQn+sDSIIPY-1)HaUWPv z){?oIzQ_)L5hPOuXJ+z?XgOz%sSV1>3to{x-KCBNSlsqtQPvv#SgYV-@xDM;G~gr^ z+GDx#0s|`TOM%MM=LHVipecbI@$k>mA%`6;T3B2|xaIXWo;2J%5g1I(dukeRJ}L@- zuzMfPTO3~M8L%pQ8X9Q+o8lb7bEYyl+PPrBuenoJ_YuhV6c#RD{|PUYQhJ zK&6gj;TpI2gb4PXg4a>OXsS;qHwpgr^GVZbg?&b!a|*UC^YT)UJzbEE`nB+fmny4* z;5xpyTG2sPxTIXkHD-(%RCI@3-Axumnev1arFz;Lrw6Tnv_y>@-9iU|bX)(k+koBQ}8biQX7(vG? z6>>GC9wZm9fV=CPe-Tzk5#&kBTS!Dg+tkk@NVd{4g9qU#;GM`sJqSYEGABgEZm3%U zgHLZ_Frcc710Q|Z;Q97}Zm?Ggs#!#Ol}j&Kk@-LAnL6jn-+BVx>BI{*G$EF-cWX*W z0`1;X04W?;7f>bDk(7viK^z3be7(8e;pyRlDMNt>5D+A<>V}+C0f?`LW-YRCP`S0K zcXpkBJc;^nSCFn7!`R`s5&M5{7}TFFe29$jy@S9K0tn)YZ(ZRl4Y|El5-5^D(iEt- zW+=OZ0karPlb$r#cBTwS$z%iugh!yq5hsf8_AW@#(>Z)RyX+ESp5}b4>0mX?oRL57 zVf-se*n4N>?-3Ko{9Q3-a&DCkQti$m{28eYz#N2Aw$~PqsYW%uDClk+FR=tpM&3eP z8-^bFpOy=ASOpTeu?Acf7#4po7&Yny#I=x0GzuR)K6yT13VBI~{laX;hV{6{WU`Mu zOxr$XP;~TRk%6e|zP>&BW|4l>__Z!~$KHvqipwEXC8XoB+&`giv(%Q@56|h6K)3N} zWy7T*r2WES8R<|cx8^A)C*=)eT>gl=5v{Dh_^W)@Ix>x&Axh=ky06R&cR|`*l3>QQ zxHfpN&{(7TAKd)m*B-rhRCEt<22`s(34Tas|q zALzSF0!H$14Uje{eZME%8lB6K9t9ql4a0?A~t_i{u+<2=irj+K%7#RAfp-$K~)o9$bNWa){0=+3>;}-t*|C#ILMJ`$-mPo0}NY&N$dzGGj zP#MUmiue{2`Q+$zzl!*#8|w#mU-XD6VnThHtm>4Yb=yG;Ad9=*4G0B%yr(PmP=mI9 zKr>C&BN_pvtj9EUtjE8w9b-8_s$5^g)H?~${P7$Gk-3N}_sc`vuhp8Ey>>fPNjkgC zOz~B59dU<4Q@#>lvML>KIKJLb;{{gL&w>fHkwmT<~2#Jwajo9l+9^4UT(mU<%_ zGuxuE@<@QeqDdPv~`z8;itHfLb2id#gdMlmoZzPLlr+cvShT53vgl( zjUY)IZb>KZ1f!eI3iO@5xKt@uS*X%g{qabNGYlUW;D#qG2Y259+2{B$4s;x>t$utA zQMR^(toQl5VHzr`R>h5~ddS$CRWMUC(^kngOAMasYz~uRtA@ArgHk~)l(Lm3K_7(NWb}s7}?|F zIitJ%SZA{mAl z{aa{B`$&>>xPu``$+k`H4i!~Yx8Tnc6=^jF2_)_*geDRxcxSD>$bfZiOD`{l1DU$F zaeY(Z^r&Mnk`AMp5X%)<9LC=^4a5LG$a4k+u^E8>Pe^%wHacTdgLXkl4GiXHA63wC z7_-QB+MOz}&-fqTDkRMGxio>zAwEgmkk@mh=^&JvFW&~}{|w)bKH9)24Jc6g9SgMH z>Wp}>4AV8Hz}0Jf$ZM#)53mfZDayc?oocWQY?|ucl1%%|?JIFK!92yQ*-Oxm(?or`z1sl!rPgd&V_mUhpvCr1^b? z$9bPDUqapOa9BY@C3-`}b1O1z^hPE634ckdY2!y`rxyT=L66(S1421r#Kinh_@jGv~WE_o|z_B4$SoknT+YxcPHejAHhj&%(_rl~=T z=w6xH0(7NhRaBZd+5&iaWL4X}jrogr{j1sn^|pU?1c83r}pT}g?_cQ-Ep>m3|TWn6eA99*}JDf{xu1j@%z~>#m{yoU@E|t zyTb5XzL*@1-1ZkqtIrd|Z#!Y9Q5m@oGLP!HTBcumN@yP?Mm{(}*8}{RbQyaouGq!rA3;IKf#ddPBxn%c7NK^q*vU{8D!^#D85_(sN?ntur;>eafEn@Vg;Iy|ov@fSVYmy%= z-28>b$A^SOMd?z#JFvuz`5>kmi?tNdSP6|d0aHP*t1mnhYE>xbi7@8SGZj{ibR;#m z!Zu`(pRpeTn!Z89qq)QX?zk5kH+jc~#jTwkQ*bZbGTV3!pp{?N&<6f3)hRevrD8^hdRHY47a5uIfKqPSZd^e{KNT2E;BD#u73kVl z*jE$?j3Tb%ZYd6Z?T-yl9XADJBF0P%-?7;hf*a(fWlm;}^Z09AR)gkZoGV_o(29ZZ zroV43_1MskERVoJVb|_eU(s0F$tepvJHdIT0T{2v3W6}5~!zhaU zNRv!d0;y`+0F!8)e(+-0?o&o*_mvQk;k}m%oqo<7k^lzh>el_J7{cJKB}QkK9x1LE zioa2(10OKb9$6WlLkh?!wN9rjR*qxxu?kMOir_o%Zd1*{n2 zXM!h)&P+ibyg6I)I*foH;qdyJpH!l<*GtE8Cw2j*@tc%pc1(u;8|5 zus-6^J!AbSdzV~IgVGfmwETR>f~`PZlhr9ZP(QBxu#6FmVE}ipo5qmAeQB<?5Xw66yK4^GGzY%5-_XlBmCtrtSgj50>~nw9#C0J$bR;@Ty>g{V zoW$T3z^TW9w$ncVKWJ;B^K9Z<QXJVn!eI3(>K&zx)s z{(%1_?Vmq;ryZzTYvR9?dDZl7vVR%e*i@B>P})euHqcd-{G>FIi1qnqyKEyJS5`&t z`s+yS9I9wkXK<=W#6H^5a?)oPuk|(%D+30N==i3i+B-Zi zfG~hYG!fEY@gDZERle$~JzPcy=?VSr{zb#QSQT9^IJZPgU`OEHmfY-bwmIcSAjn-Q zKwqi9o@cAtvuJ?3`p@1#@ugWiqb7e08mFwiqD8i}ZNsR1{?cyzCneoQyFv?LN~a;M z`qD)T-x_DKQ_j-i&SU&*RfX^~=HlmFzIvVLiL;ysUn36DuheO&so!yY`kX|A4||2M z<&R(B4W7BG|KXYZf7F-$|HydktQ=hbMaCO4;7cHHN1S@naQmr(JGqOF)0QaZgaV>%)-^7mQ(Oi9O= zcPbx+=hmq;)JY=aW91N_QmzaNeo$m%T zKQ)1RC8EJS9Pgi>uZz0yN}(=PUH)+_-Az_S5l`LeR%^Z@^Noj0o;02(z~^_LBRs*c znr0a4FuySTwxw?}QS}~;Pn#8~`+x)p3rG^Ep;p88&PYm+{>eYz4x-&kU%H-of}cA1 zL6>~rALCeD`PxtWMqSJa_Uhkb)AC^)VolSUKY!iOx0bA9!kiuCaOXVTY*WX>lut8S zm7&7mwv?&t0BFbj3^3PaQBu?<4MYduVDC->+zY&yVocTW=<|J_dF`Z))3dJTUOk381&cD1!)Scj{m$!>Yv( zusaOcZ4hH=Vdv&XkQkeJV6}=#`W@6|hS{X`Our(TV=2;cOQXZZ1Ax1b){WB()bkRAa$JCUHfQ473W*A7Po?tpijrT zvx2BqB897M#C>mQ@OypvYXYGGYRH)!T%~>`NHjKQ2nU2!> z;+nlWh3zD2Tx>gJsg-J@&r!1`#5Z@e=RG|0=^s_)`vv7ZAauLtQ02}7fF*}c)V=TIQO4N5bwlZe0NjE`y zOTj|D6jQLlWSN?;ZeFUWa-p!x(CS!k|EpkWZYrkAQ4-_hqsd;&hj*c@E0}ki)3WNU zv6ekx9;AJajO+f~%)mvVqi4U2eyqhZ*ICFGrdR0EazS=kmmbgG-f0cA1x=VtwMt)*v6 zd9tZzs#wR9;S4P`k~-U1tYa9KgeX3Dvv{AfJn4Oxp?WX$F4&$1M<)Uve6R#lt63 z6dM^F$s4(Rn-F?}8I#84)0R~R85|E%PzT%V#cMg{qS4ZHxzP~c>!vSVyI1M_?-DV> zu&X(Urle3j+-HK8((h%Rok2IBpZb3Oa9!+G|K{Y_OnAE_Ep`U&edIdv_tlQwp}1Lc z4V^?(VWtbXf+ZvKi?sB-HqD<$*2C8fR*NXF!{3E#n=`OkN!84nAv2l5Cx=Q@k&BX= zJ$z*FBDRNU8%EAzFHVI8OKCp9u&aYa%HB+M`h3Hd-M=3NpJohc#sZ&d+k6s(>GH$5 zN-?VjFere8Ol1HeWgl9R!_5cL9T_9s^&$;M zs2tx)v4hl$(hI#y%F)*FM6J`+%grqO)+U_^F|VEJ&1#!ugh1`GWYI@$1?@32iDv;X zSl?o^MO~|Dj)^=LD7>K2pm9eJ1Aag`IIbYQ-H(7bMu6?gimbaf=JlxFkNpj*P!b>aS`UcWl@L{rt^d0 zr1dszVe~ij^*V?*)hdP;PRL$b52e%HiblHc@^3@a&lN+{&JF@<^}Cwz!SIb-XG9G; z{Gr{k#Y)yoRq*pW8&bJErmf7IysI@Yl;<7>>WX@qsvV7tm&;rUSWhRH&A8Ku4tnVE z)iZWAsw-ODXpQxgMThqJ!nDShMg~)Ym52&b&A%N?aAg?frkmd1J0;AKvy{(jf{zGf z)Gw@NjDt1I^n=V8T%ad14H$(kmYN{raiDgqEuyT#MYzRs&a-B5F#w0R+=WxdrMH34 zUcn*X9MNa5yqpcxcx*zc!HMe`JCticLQx?y%e{Vh^qHmD6|(Xb*C&F;UJBi@SSZio zEf~pQV~ns9M@};(%^FBL>kz0i;iHo{Q@k&Cq2G}8akF%r^{Vx8yS%x~%gxrfG7GL* z`5Y@`7DB<_*fsfeb2g|c4J0$VHx~{2l260fU!4UZ&6JhNx57fuKSJ44+WwKJ0lQ<$ z?@}OlMim*o5N2c0Pw-XpV0OsJjgoV@{-wYfM;40nuHD!KD^|Qj`H|Ne6B4oXT!*%Y zn7lK4ibrRQUYUH3Dzn%KOpxH%im*Z79bf8$hRU-zr0!yEa2)HV=)`<2_X^GB!R^;x zywXp*NsM!xvV+p~(p=Z*q07^lly=xPx8VePioLOvTl)2E8u!dc&w7?>W3T(KrM6nG}U6GdT~&%^T1Tgc@|0F0JI(=Tls(NsWP}&nL;RSV=Cy-HOW> z)zH7mJ|&44y6_Q`DuOkBrCBoLoO&zG2dq(u}XvD*xXD1b59<{-q?R ztg@6zKI~ox2MNQEzH2Bo8oJz(;J9woF<$UeKcC)J4C3OAS4qY_Sx+eH@;jX`PF+YI&E0lls!y*v+6EF!6Uk!3t{F)}N=oIWMhwt2iCI9%Vnbav{jF444h$t354_`&u zUMv$V9D7hg4*y2s653U8$~lyW$)db%hv(W=wgOe^gOQre_5m2dpE?`O=Z5q`D{APl ziwX!E547&{Iluvpg~~44WK+E>wtB-P7lA*~38#+K)d#yUg%W2n`eht>yQdugO!+4V z=b1V-MES|p5N@AXUf;}%gn!fFHH_q!!`!1=$8xO}9}8u*Q-zN+01;mOvH@p-oW*n%5h#KGMrURX z5YyfBw<3D)OwC`eU8Amit;lp-_EF`6XdkXsl~)DdlFLr~ynW@M4iVO~me<{GQHB=?oY_I2O5`~Og#YShx{uC;o@ixA_ zXOI=tT3zbKE+A(Jf_0BS9;`CLSNWCJ`)U`DJy_u#PEBp0%K?u52WR`$jx!g2R^t67 zF~KK5N(Ph>hj~zj0y0G$`xqnjhcQx4C)D6RXVAOjn5V%H zOF$~+s_-cC*5KYR^m`{y9AM9HhM%SoEtN_dl?PWp+MG5PACXZ;RH`Vo9AS=p<84cp z6FTZIR|Z$9`r%{!yNA6Vvs+${LCEYwhn10o)49IFtM0movQf&Z8a(b>AoT#hnNZPO^_b!8zXGO%Z3G!)`;HTph50etA^$~GOY-cWCgm{E{&(B`v z)7{R8&VCJk_20fnA;YQ%T*abw6{Q)~|bVds_*dr3^|G?X&Nnj^3Nq z-hkZ?im85IH;3Cf+PMyswCK0k7rT$DMExl4i7!0RLfzqPsIl#}rw)({?3 zj|P9Jf%Al*DW-MUfD3K$6nTz3eS#aO*-jyS_QnB;0aI02=8gorQ(0oN`_tXRkuHXL zs^?La0`wNXp?VJo3|%p!rG$KUEyD z+OGZ&pB7Bh=GgHK%^haE2|A{7C#S?94$ph3W=+V$Bf<0?i7QpMml@b)AA4Q9)O>_Q z6W#m4uM&sO zcrFxFK9SXKptSyL$>aY_@nq%sPk?Wiz5?K&6Y+ll-+jjDw%0TSdNA{(N%;F`Q-DJ) zgU@lv*O#&^sY8s*UTj6C7%R?*zqAVZLu673<5ze2IMMc>o}Q0~&4_XS$vz0rmycQi z?&ojDSJr8@tPhG(nEdqZuderxGS%J66s7BzB%%C#(^w}Bqx}5p=IitrCxgDDD%HoZ zKe%d_GA~!ZPL;anPmcmVKk=*!KJuWZ)@Zm#)a%$HnGZ$6Y6_HmlRfkjt5@g3~fkcnIabET73fEBSA7Q;#oVK44mj@-_cK=n^r{ zuZ(VM(W)z)?!@Y6Z?H)4SZnAZoWL)@6qo}hk}_kBtVIxc8}$P!6phE^)9m8AxcW5Z z-gbe$RDzoTTIGd0$OZnmZUP_&7+rdDnUZRwT#5R!wfz zX;;$XczOFbbi5q*QR`9jU1@*d8AtFD(Tx(l?ARR-CZ7-8SG1^q2%|F010%m`eznBJ zczzLc6|$TTi2UhLYZRf^)y%C(`}I+ML94j+hryf2(f3UpiTt)}?;TJz-2!|%O_Hka zYbDPXzYI)N$xF>Nv01eRvrf!qB6%4*ZF;uRCi`AG#f9-cGI;bCLxt3u*a-KFLw<-g zkoEi(UaTfDj;cT_5)QnogKbs*8e30vudy zuQl3&rHzc%ej1=tHcy#Y_WL&GvZSZpXQVw&a4;+Zw#@AK5yaJQd8wi`xbQv>G?uxB z##w1s=&5sS+uqZIdejw3g1X!JHM{1x9FW6{K(IK{)6}5v7niJ@juB=RIajvK-Q9$# zIQ7!wp+ZPCiriq0@h~=mtIDk4O@H_~ihw)Y79LjmTZ$a@STpVSBJjG{_Z$e^9x#fk zm^H^_^_v@jziz&ROOGTdefUH5R(m63UBZ+2(**$PbTOy!#<) zr8U&3PSj)IXdu{k#%K#iY#jXKO{i_n@Z}C!nQFDmpE4n|PZPSQ`0yKu&I1Q$=UQWI zY=on;Xe43mS^~4-N$)Uc?zffcL0kl8CEH!)@ zGeMzHLV4el!8wYNl4s8>?6I_!)Pq0aEUwc$BQqR9EH-}2LG?Tu7(|>RSq;jrEPKSy z0QfzAZ*-)$PpH9^-hKCFwdK3W#@xcwb82ZyOnyUXSM1bQVo}P_Oj^LhOLq&eD8g!x zM-!!*kH8F3&Ek%L0YZh*5o&HQ&n|yMZC9|Ljnrc^v?Qvehr81+>i6EdmRSX1E~Ek6 zhU6@H|E(RTRsB^`N_d0KOw_0y8UnR{umlB`fiC~demcT?C)Jqw;_S0+<^ddgM+QgI zG68gTcE8{kpwcS?{{cP9wOlP3L7n0}?K<~jd6!7Ti%`!n^h&0a>4{1~DqW+%)-c)4 z>jzPrg{2_-k_c4J#wO$(l&kJ6p&S!a_9M-Y?AM3P$RRl2ywC4H-3a%Ai?zuh~~c#FY+Bsv}d>n`}-NFr`>1IkjeUABPcPG^?urw7An15ESh?-;M}Oo-USK8 z-qE_Qup3h3^q`pttw4}%7!Ma`!V^4(J%KhW7-pmw#iu)baVZT=TAae@AiIID6DbS6bs-k--a#(lFbLC>0Vts1mWYYKgNy=jOX$#jx(jxU$ms5VxF$?a8 z1;$LS)8Xy^I$cxhE92nkpVs?sCAgmZDzLHs(qgoO%;^d27WGS%508IS%__%>$T{QC z-_(74E0I;shsGBbHhYqhV3Kyel#?%+6IZ8cq)Tdi!Y*|to?K~-I^v=_yW&`~Xo&&G zT?~HnwIyAmm=XLF#-^9w2@5p&*g7lER<q>)7~pdYxD+NAeOzM2JS8nL*a-G@g!_?`Y4uWMhYLoiQGzS z5_!CIBZcMf8#(y#*rj!wb-c^tk zzVuA4wYX{xM*obU^W5IT_nf<$CVIjj=2*XYN8?*3dceesaaL{V8IbKcCVPz-1rVQ}NQDD)y{g&bPt>cPP;)MP4n@7?s%;_~dhcTyGT+Dc4#h z4RZ~F+0C56&motSu|>%x=4(SRg4^pPI%SEvrORM0CZ3@Qigl_HWXgGCEGP05qW`bJ zY9tNkE{OMQJc_bwkrMEHqns(q>*(qSUie|SLWOe&vc=vp?jdw82LEMsfyy(0a6kOj zTI1mXkyQ|zCMCjt$Z-xWDMIJm3xpKwlnUz9+-oO>)sf&b8TLx;fSp&lZO{$25#P2Q z8@IIpK!K+WLNyq~bLU}0TF3YvtlP>L7V{$wnkX9JNiL7nD~>&2%JVx3QHvEvCHeNL zv8181NM76x2<*uJDSr=Lh+CDc!^$kj6Z50fQyMg{lHj-{h~G%7C7mwtjA@fX-jE0n zBV*kCT-UcQ=YjdU!-?Cn{YT^Q-sFxWEa)&Ub<{k=qO{asylfxu-LH1G@b?Hf+~9uZ z;F_T(m_}8Z?{=#v&^bmqgq#=c<7>az{CT`Qop8*;rd>CGKHPp55pka~5Q{HWD+M<@ z+~lLKF-VqUO9wtjzU|Fl1D)8(r z(9_15;%oHrXftZ-^5~O2FK?#sT10O+fflOt^yar!_l5L=Vv6RmhG{rGuE8lSidg6V zwI~zthVxwK-y=y-knAY|Lf-yK=-$>@o!)dI@P)IlRDEltZ`#)e$E2a{|b5Y$@V1 zTw5cHUQist_I<9}?-)YM^XU4OrC3PedNB>$NTnHko%ObZ(05y`9RaK6t|qz@q^g$c zTx_mYu|<+@jF3;sQcgvG>%;WU4LZ$&NRX&0=zp9Lw<7FF(;ICil5f^9WW2fqqb?Hp zZKMjrAquTn)J#Xg+t9@PK=k$;RvITR{Gy70IOtMtrc;Bcht*MJ@yLXu+-v+UHNi6Y zz1i4%xnAhY--%xUM+yk;%mCA4a4+=MhmY@~)t*+iGfK}K0kEfuW2Cz0e_NM@#+A`o zK8OOnfMe}BsbZTrQ`%sVY&CvU9TmUCYYq4I{_wW`1zN1KGxi@I6A#b-6~4;K%JE-8 z;{P{e>(+P1Rsx7Wi*KL^xYkc*K_EQ#bFJiMpq##=5Z{6oAHUEv(#l;r3~2e%dEC}Z zlAh6M5`S2*e3+rlGa-*WMdWW6=kDR>x>)*rU5NCU2g?U{_F~K zu3e!@aBa9BqPmL($jNO7c;AVCpnXUsEb;0Sep_*Mbbu%@5 z@LJP?a&B23#cPeEyz&L0dFFx zdfrMS6+>+i`wODvmrRND7~pBK5cJje zg|9)!dv3yfBxnl*c^TI1ZJ0}{^@5Hmt@)O-&$Cw0?`W%Bs}LE_BfpAJ=g~KMqMMP!BHB?rb)6c@<1(wa0Y|q zMQ%*72dj$e=$L)rE$x_qFIf|Dxv9~fzvd9^0l1hI(WNrQs>33F^+)ib3|^P(g}j5S_9-r#ls=mOs@ROENcl@=N|EkDi^o z2mp-NFP}4PmvzpZf-gsp+XLR6D3rT>B*GUQ5$5fsHb5U6(`B<=maOellIcMzm6oq@ z-?V$)(zwSvquG*88BiS>jmrY~IM2x4>LwyFXazpr0{!^nfyf2I6$^&%a{Gv+R3h&A z0))DSDhu!|9c4JEU_sY|u$>cess)$`&eZb)J%=rAw(+tr^KW#6^zo|0q;{EKdIJ?V z7O}S_=n=)V;0FIK;Mi~n@QtBSTuoS=;0KuvxS*9w(kA)wVcNeC6cI7+wFBLKdeTI; zcKxdZX6;8w2tpmgNC+StRzV0hax~#uIqyK_CnFIS`;e6)R=BPY#loT_b<@YMC)(4g z7H7V??}z93kB$R5Z2MAH4^+@D=O`=Jj}=*_3Jb90>QL zR75wKVt*|karPP~ETf;JG^{1uSNSGG9jL3ZXeT z*k8vBcypDP`z87-_)<~Wcbu3XK^kgOqcg)?4KPHku|tm zb5rj~_6Jqz9g9k0Ql@}plap|RXEeJm`gCl>>+aG{f~o^YE8^}!9}L*-5`Oaujp~&y z;jYGET|MqXXC1@kg3~>{LE~b`qgrpsLV{~G2w^$O0rI{tZg+d+=|4gC^Q(i0DP$mR z>J8OMlbvZ5!&JXYZ%R1M(;h84tROVRf&SUy{Zi~fLb&zi8_XFH0kBWxgncaz%{q#A zGdj6}bPjCqi@xLdZ3Oa!2whiqcSiOWDu5?K;ya%Ih{=N3ExCIR6j+S9Q>6nT4>1UH zKZ6nEx{NU7sZzeb+jw%;w?h7URfrk5DcSt%TXVP%me+f7sCC!Np^cyP*{={Bv=fbu8l{)2GjXYkbz z>jyt(H;?(-dL`#tB))R`#> zLBg_c7Hi%E$thgP;}axMnhU;|Nb>+BUmUr}u1_+5M#EX)-n0D)g5+*p99$F#&n#$& z#Uk1VE_AN(4{%|Sv>`SBb%CR$z-s_(Nb8F~DL8|Qi^aao>l)9R8vD#sMHlYun4l9l zn4JTcfs}yzd~!^h)KkxpcSX2>vVClU>2GNENeAfI+Q~Hm1Qz0WrJj-(;dp3d)N;AA z-`ddO+1!2vjd}#|XJJUkxngIuSev4cuO%!}gsd{8&=%Zj21s@qBU0@&p$^5-DHEgE zL%>{Vm6!;Ma6j%4r|%xGj}e!F1U+)Chf{MJE3vF1r@wh-;B=lg9Zbtl3`a8xG^r3A zUIrnLd8wB9{5(Spw)XD=gtTK*&)tbs!Cv=4q2ylrx^=5g_ITzIRlpZ++w6s|++jp0 zvEc?|#p@k5c*Z-M&| z3@y=4Gefe=Fen)ImsYTiGaq+uS9!FL?jjZKnDT}`cq*MFzOgeVNcuX7Rpc0K6Iq%j z+Q~nPGiWmyCmdu``kUq_8JE=KXWBM2nMUE74-$W1R$I+c4n+2H2Eust@btCsr;4X^ z`Tt5CPA>NUCUsOi>`jOmn1~nw7LHENM4bOL(Z5$~XA{SNtF?i% ziKvN@o$}{#fDaoq%f+^tD2|rONP(p(DW01R zMc>SC7}iPMRBVr?{SJI|Qi-6iMT#R>t*)Marot_%W<_TGZ361S*3~dRo(&A2K^SLa z8U_$1#b#?D5&6p>1PHEgj;s!;CuajOGG&7b%$T#EG8YxwDKg;0QJ@wviJU165SKI^ zL9@Q&-Hb-}U>l=0orj!YE^|(%zu}yR#HmkGG)DKDhjim&F*SvgCxB;(G;zpia0FNn z1Goa2S-!Jri=bMX(y>biywj1C+m4PDg^QvCO-xpzJ9hxQ15&*Gee2lA1&}yu9#92B z6OhbNqeVy4imugx#AEJC{S%~cPz`4B!x-Z+)q$)ehVw`~TyYRBG)Bb411s2$#0J3Y zTx`aM=~PE>Mz7U{CfGM~5^bo_kz@n?g^DT&G%V36pg3ZS;o`u$NuWi`Dl=;{&_&G+!#!MNOa6d4>FuGd(sqLB-T z=&?8k-)e}@OpgQDhpQUWQr85c@;Sut$_Bvn$d2{=8w;tO0Hfmax#brn@BStxc*Aa$ z?;ir+(5M#7g|I?{zbrjm917%?7Ry?tPxGQ2`9w)d`-MXf(9t4~pSzFjrHIytHhmQ%8* z2T3LiN?_kvw`-4Qr+THt@}nsv%Uz_%c`V9*HM9Eb8@gRvdo`3eWvHu;s^@Ji{Fwat zOsmYT%UtYuBO1JteCqI2?tUdQnvSS8WiTbete+<+o3ZFeImsvWXZNgACUH^XQ#SdC zRegH6_>$5-8GX0fp2ED;OnMfG(1CoubZNgnHZOGga>UJv1((VG)yF6$1giqkwKZ@> zDZVOALtB~4=b@yl#Fy0?wcNm6`~7?q^Z8ZovYfkGWvWUjR` z=dF=Pp9+iJwnFkC(%7My>#O|@_GG6sz&9nS!K%L*r9tlAhYBXpCBHGuccQK5qq%A# z#8f{2Oq2vsglvI?7YLwJPS)V@ZB&VH5NF=XDF#_bM@c^>24RL94zQQ$ zH*etF1iBHJ86bmzQS6QgDCFV{VCDwSaV0%b;Kn>3`%UQYltcB-Lr@;r&r& zwSWA_paj@GLIjZ)QAEDG2nm@R^-*8wH_nIEMV*K6LVPsDez0nY7L5D8jP!fI=8lt9 zJdc)lkEJDFo=&Qu+29TphcID4CcO`gd!QjtkTSUDEb=M1x|t-YYMV~MTVc(UA4Zyg z2()U!nL|DK4`{Q{LSHBwi{c*F5yfVb0V)W5CUpf$J#-F#Wq3HsJX+3;}Sss>xc+FpLG z8qKcyl{ccPGkR<~x`?jER%3sdk#)${qmCSUd9&&Be`v2pup^HRP_Ga2wjrEJcXzYj z-u!lDb9#H+FVQ(jJYXXw9h~EAb*rycavIHEF2$+j%&YU zT!5NCtn`8kSMs0Pfo_0FyYHQ4-`Fn-@kEbKNs?M zDG*nN{GArjBEv)=W*id!l6@7i)GjATcaN|{u4c2M&C^S78o!xm@9E6rjsgliq~H=u zbS`D}s7UNcuu$XvXP64e+sQ|ZKT(XIb<}Lb5R1UPA$UjQb=_yU@+R7DbOMd_A7qu= zpcIATP)e5tXuH!n_Vmgz_q_tYBSvBj{wCQy*%CV2UFB_=_e@s|oGEfJ~L>;aBTa*cf|TKMz=jD+EHH146*(K1JBt%zTf~o& zWr8L+4^PntK^yJi&W_|g=tQ$}gF4)g-xm~~5+bd~^r3sWOXijJeQBv+td+C+Dox4s z(>wh!n17iMp&rEy3xItqaq`zkwqxPwm{|FNPbVXr>Qu~lr z)M|DMmwcm)n!8;j*v6@3?Jq z3p}kKdT?L77);2nP^JzSTxV${nA)fl!@|{EoY;oRl&w?2tyFMBSIH~9Y0-A<+Bvg$*D-> z0(m{D-;5crfd>C?n)ojf{GXS^|G^*l`HB9|1LNfEXkuUkd3RcjPtivo)C_s;!-TJaM!>6hc2GqzrL=Ml5d2haPQu^bZ*UV z`C2N&J~XUicB4mKBUZ(!pH4Sm;y;2Pw?qC)@-=t-j6UQkfSA0HF=@h@!J!I`4*lZ} zN=A8py?J=3Sx^^8Cb6o4otD+@-h8tfj4~?U_)vz#_RIZbDK($}$jvx5;sU>;8sXyh=gFnEq;TZ1%eT(z$jYRqG~s>4NF0 z%E8opla!<^j>4=^->yicNnX%%n~5t1jF#%1D{_5txY1=YI;tjhjV z@h%-%>)RQ8ymq-#+g7c|-@2n7C9`%9r&@n|IW+l>fCa-6<@!Z2t@9eiwrryoIaB6C z?3sX5;uS+Gl=AcRSf>~MJm+8j{rt-#@cSxR3ugb=<3NjRZnjRNaOuxZ87<%Tgx=%L z@~2J5<%VW^3%nRXsd|~a5vFOATqWQPkSC`DC}LJKo7{Cn6EQI(Mf2B;ezReh>K^uO zfQ*0CYn=S#`8h_7J-O+UX`enS)5`Mb=J)_s+}&WdZj>0zQa8eN5s0&?CJnMp{DkWO zz5u!pwdHW`EZB?-wq=#Qa(Xq50fIJq#fS$azNfqbwr3AnY&&ajA;;KdtU-Tm_=+x=5Ad$pnJzc3=_h|L?uB8qV5XHApfl z3hE@}k3v@ykFUGqoe zAv$O?@RwEA42V6NdKZ2PJ+yH;KI&r6mxyQMdtn$%G13vNH_foWuYFyC5Ai!eM3KL= z!3SQ!+FQx5T7tJz>j|sCgjheUW7s8-y9ow3i{b%)gH{c+uYEBN-NkE3B76}JyHF># zekIsqxec}v!X28MzF?I#q2tg2k~RHRuqcnIO^rn*oC$*X5f^(|E}N^6l`L-`pbYRV z=^+MYN`fHuJ7?UNi8E!?VafZ6Lk;UIQevddynk1z?4wJ88WV$n6f)xkNf{T!a5OhU zmq(@g(n9DLi95Z?#g@DP1p1o9Ho{|SLM==SOGtz*N;4JZ4fE}U)B=%$e=)FqS>oPW z<=89om~%76bh*{1J4h@(>*DZmRg3*7^pR<3dbKwTVxyyG<9OWOc53ihu-L_BCRZE3 zC`fDSsA{qUZ)53H=2|+SqzqgJCEq{`p!ACH2`a~J=L^1ebA2=rr~>c9FAS&1AC#|v z^1LSVvp1o{gjW+zx^x?B#Ip%ITfCkS|F1MdaBzb;6U^tBf;X&sIvh@BhTKZr`zoYa@oBpXnV zxGNIJpiaKpM+k2a8#gd}KV2EL>3?3J0cJc?!D+*$@@)LcoNex#y zs?f%HGqJTqiJznzGgRFW@Ai9POlEF1EWj+Ual%3lpZ7yfWw9SMh1m-fwzbxtx;7Q$_uV&@L#;u08Rcu{7>C zAkLbakz3LbHO8&{W3kYEq#;EOd`6K4De!qL_M#9U8$vx&IrB-TNdSJvYt(*F7~zmH z*^gcPn$-OH4xRxS18h?dvl{iim(MQcF6v^KE0Y_YAqRPa8dz#VrvO?^H<>q8Z!r#6 zvuzZ9#sIW@gr_LxL=x*l^2!qamQ6Bu$Barxr!JY9s@KcrmBWlRqrs;muLuax)d!9V zpLB3Rkv@Px;flDeH8TWqC^J&JHd3Q_>y+KaW{tih8$mpeqnXM~<-={>TJnFLhYErw zDWW2TpelVTVD-vfixb%hf)Rdy*w7P9m;pFOzI#Su*^B_0QTOcR#-9X5Z$t6v%Fol_ z70kps2foroA|M0s&&B)|yMEanh@H!XEQ`l_3?*w5oQtI+9YFp2lwKT;HUHkm|NzoL#9E~zS!JLxD~|+GV1S?G7AP6>j^_;KbIR2_(-&)}hKEa?B|Z$4@HV$ov4gC;SOi96ZOH zM{J2fw$e!ds!xZaaN>yYp2paQ)k$-@(qA`wic1)Zbj~ePCN(M!%g)`tCdZ3BW10e5KR{S?ufL*`L|0nlyK87k zmq=W;%ku+mbJXOeZxy5p-zv0ieeY|IXfSJ;9b}scq=k6w;)*Bi3JFZ8V^3M!7)UaYpmBCeHYMX>i5bgYm7T8IlD4jcEP|lVUdJt>i?nKsa!^B~Q!J3B{+I1@8+Z+;ky9&3$vk;q>t@q)+elL=SXC6r_ObE`-I!5E=`Gof2?uUG{kvw#XuCq?Davm%mc5xio?szuVHS7O*N1B$SMFjf zNY>?<--o`kRW|7b(Qukb#d5+WMmYj%OgGXOau0p|=me*fG|1 z6Hqr8lgVw8un$MF((*gnX?`sx7rvZBPtmIqjJpuK`2GO{G71xVaDHt0$=nQMQJc_R z)e+f|p<(9yK=z7zz;fkkS{*P@w1e|MZu7!E7r@1wn%d$a*_S9X; z{P#kFLeP0)-z!RV-MF;ncv%uvyz^v^w$8^*MsX%t2z!ZUBH6`ec4(CaYXG<6?tu7Ep)kvpXl44j27JMTEG^d8fdD1f5vMSPJ z9D0YU7;F1vP^xId)?P13n>LlKcAIN^oAgOeq}kGr^f1!vGg4E$+QoM^wcgSqlC3IT z1}JTH9W|<-gk06jshJKF&2AKOKqK()zxk~x;c{AEW0kS5JYJ8;b@%L~s)=aCp? zyfqS51X7++>R3Fd0(utPO(T+daNC)+$G<_$TOgoB(vSwRxFw!6F|+>6@yq8fNV{=M zhbMjWu7I%p7`mBr_`U3w%-9FSpcZ*MNqmk>m!!zJlY3Y&D&*--1|<5?C=4i`9>Jz9 z@ycA60CVadD8n?oGKNu?wl0fR_Gs}Y`elSMhWJJXgwY9&B2B=P^H>BVKy~uIBy`;4 zl})uxSHfn;A(JH*Q&yRSR~GvPw3NEYU8P!RFi zFD_8o8z(d#^jad~KERdib#KR4#&GIbWpJJ*?ZG|$;oRiiEu=m5@KWE_y)4-Qf5VHs z&zhP5+^(s0ygaTCx7*z{qAN|56ijBSCukn3q-qNWR1vj1(WO2cZP%U)Qa?lY?!Yk? z1g&3E+65^8LRwe*AJZGV{<|0N2Xaa!ne#u%BNo>GR!0B-mC0Gz*_r;6JX*$Uk0tG7 z-mQyo)W8x+8s5YJiw2N_BIxQ{oANv%cMbgzwne_oZ*yxR!a{Cn{K--s?x>Q8B>Z;S z3ls3;`FVW~tD1wH?E)@B5cqzR-2?SSf~2&UA*gPgdK-+>L-gZuWZ?6W`+2>`%r2W= z;N44wW|j*^%zhni=X9ziKONb33;5~H-6=_a4K1L&d9nVpS7n(@-wTMqG9R|j>E?N9S8%!Q3!5(k= zr&;mP9^@p>O5JCY?Ky|{lFRMvbj!FF7z^)Hu?6zqcqVL;ILFCrMV=aIO2srJfn_p< zy8O1#>d;~%!0!w7i>I$z?WJJU#0&d^aKH@gDs$LUEouqpc`W!?se-|~quz}IFDQM2 zLW51d6vlAtMCAkbve>BlxU^%~`b?butfx>%DTR2gT%aeZIkTdy>ij}!aC?MMz{k3U z2M7_++R|bfeghh#JRmA;8l>F?H?h#2La)g zsKnp^-5_yzB%8m-7QTlSxaB=1zwxvP38~d0^45PA-3|yetg;J|lp~Oo$->dnc{S-a zD5>xfq2gZgPUpOUGb139c>Ae9F0s}UNr=+jN&|16Dg_j6+!7ll{!hB=xjMTEonconxX>T27g4e^otTPA|rycySs~3Ji3u z?4TDel)fD76XWgI^0TE;=FWIz|A3Q{tQ*7#$06^cf_O>xFmh#aW_~#}6MH6l;1qkx zMM1@KOs3>lNRxMRM{zbPHI!sOLMuhr^R(Yx^)|*$zGnoQ6D4vccXx50iZxfx(Hx&G zlW2NMu`ny3hhf;HcE=B3QAggGH4=Bmjel|-kmJsDps28Lm10db*Cy5i6XJ=bD%Y=6 zgRYDsCX41T&nM#u>X_Y^q)ABI+n1gx!gaNw)r9CoIwc24F^BEEs*6DPPhd<_|6w0% zN_pD8SM{p4vP?8z^zO|l_n5`&C@{U*^ytJGNCEBHFrxLuBrk}SO(A`f{XS_`a+ZO{ zIGLCtj_Z5`aE5urVBKG)!=TvZ|u*a8>Wp9ZA9fHNg)FzUlPsOWk*$h(pB z4!mrF8`D%6^xoYUIa6!8crQCiWtZAhm%JMpoN<;%o|C>G%5HB5(p&xfc7?+z3P&=+ z|J^8rPOVi6w^fVGpWpvI)?c$kmn91uk%4==kKUm!(dP)#geys<6Lt2&z!kchSm8cy zMW04xu6kf)OaNP(JxFV=1oPY9rs~zp99$e#TKI{0vzp%H!wD5%v*w zgV>X&4@iwRa7eSWR^R~Y!!4);y}Yn;Jk(^M?pT0L#xp7*I5_8@!2vLu)U0!vo!BG0 zys#UW@^nDv8$)J**HJJ*!A0E{1dmgI-xZT)Sf)VTx5q8`g5ldQN!p|Gyg#myY9G9z zbGsSV(gJqSD!k_W53cjarF*rDKY61x3Cd$X5z4cpBo%P)P;KX<1pejlsAs#nr=-R6 z=GcsCMi%TM4lxQMz>jkX)Bs1*`AG)0h2{eh&sq7Z3HOY=IJsU-N(-nv1gZ@iqb`Pk;#ds$FvPrB+o_XiXk^dqsT! zZ|wncbH6c`!Z{?=%SFuK5N5M&dbhYh9}Dd#)V$#C2-N2vn_iZOrn=ryzLtgjm=Fh) zvB7sHK*cqNLpvH|2oD9k&Blhr8dZ;mgB5SB8yh1l&Y;_Hof$p}BfUW`8LjuFcYK+>pfhWhqI6o~O88C`H5)bFeq;5YTB)XA6aN=SS^cLb`xmco| zL=H&IG~Zd2><`3zIt|g5&_Nq!&N?+zeMAHj6_knrdTB!7OaZqI=5&cA@TaP$=(Bbz zyl1xwTH3?bcyBMlCsma2418@a!Ux5&1^B;Px%rs|l<-8hZtY^{-(2LwK%h{Vcoxi? zz3@U!-nz{)CaF2h@`*;!Vp{f!_+*?14HRqkMK!~)tqi66!Yjb3&&MfQ@aNPgJTT=pG4 zL;6&^lKkVQKYKLCF-s~X$M?I_m0&)5(nIu6P8a`{f5CS&Lp0w=eKM^bXm1|%5$F)R z|5yQ#g{9UX&i4{svreX?5B4Y*)2J?g3|Z-@&f#OFHb>xSg?Kf>@!(Oh1z9W3pM?vH zB;S-~YCqW-n?;}OeM_8IdRFQ@B^9|#LLa{>h7@2w(rQ1pcr-?|fc@(T#^I7&j$lVN54xUf{<3)GcAWxK!h zcjpNv`%SdtYQ$3q0AbKyPu*fm{$l+PNFgE;zJ*>FPPd$eNQLJ^m$Tw-7r=0hn!N55 zd6|KkV2e{dE;MUE++~R;kmoeION==Go9WC* zfK?yeNLp3AI&RTIGH7EZf47=u=h5H~7c}dv=2+xrWPd(xtI4*oJ;l(`m>^iKJu9k0 zpWFB5vDNYir)a|+r+Y~zkvt5c!@NB{ovPdn>MdA))Pi*tg|yTPLT3WC%v6QCV(90} z5<|~DCVg1vFRS{!@8cN6wH!S;{oq8BKCE4ma%a6mSrCM#9i2=GSXqHT3g&3Fl-o?3 z1Q*ThK8>VKK20ApN1}Yw+$i%SNlu__LEOE}V9WG-uFSJowRh z+j`>x#V+&K<}f?RT(cx$g#liiHx|Et)2Q9G&8vG9LHclQyxw2adgwUJq8nswnw*7a z)A#!uJ<5K~CH{8$gKy~@{PbPpMdz*{FWUZaDT~9K3EW^LPCIXwoW7{|>qC*$A_fFn z?eF!=X0Jnmq~z4IW}08P$O3;V$xvuTlg-CS>$;KZ>r)KmdXO4T3f`OYZSU!apyH}p zjE`H{S-4P!&;?q7Ejg}V%rf+WAbg*bKKwl&pJxi z&35QZ=D|?k30W^>ITl(Q0V^%H;D`Pgm^xv)HW9ZoO18e4rU;vjE+gG?-$!sBL#$R^;<-U|#)t44$73 zH-CVHa%lg<*cCGq>;Kesi;aclKXM4W@g`%fxE%a?Nv=9VHjL7Ck(!szx1xtYpxZh# zGy()Aw!p1leJ0}mKJa!pvCwrSWv?AOc2{X52z(t5$qV?ldw={Ll+8*q+woT{v-A5Q zxr6mZp}fs_csI@&UR`XxEz6t9&VoJNaA5Fp_wo6&a-jSc>KEwrl&kv$zk5jA)!idO z?GT*0e@@$Wms>V#aa0Ani<@Q|YzFB1{(FrWo;D}#PEDPmXemfXM5dEH_OMf`PJs-; z3KiDq?5P^k*3?dyBC{#VDi+(c{+)DsF#431luBTn^g@U={ zX(0q08{oPa8Su?tSB^S-_#r6GQ!O{SwA@MA=BY95coGjXX!(8#G!O15xhQy*>x{&{ zxJUW9{Kd%~i}r_9)B&FeCPLZ4WTr_5sgn|4bht~IRMf)Z^i~p((uu3Lhhkz{Sg{{= z1|!T;K|#}Zjr0Qy^v39F@qrzV@g^{Cm#ndB9wW2O%$`5I7rf@G& zQu$XL7tuyB)7M3uQhGqfZ5S5Jn8F;Yh|q3a8OoI7kDx7xqcRrz;cs+qny2gZ`zC_v zu#9sr?XO}3?KSaAJw!!9CgcScTK!;m(U*ANfi+}9IMSUYU$G?bKKi60LVLhMAm`o{ zpOUbQJ7M15UNe8Z@3h$Aug@rS5%i zLjQut{66J$t>U)>_PIJA3XI|&%hlm`JjkLS+jm@YN8;$zUkA}$rdjYut+*7}I|Tg7 zTux`Y`c$ZCC|2R)G*Be^jdhC`$N@HJ2q%#jeFjPAzxk9qgiszO3*{n+B_$_g4`B-^ z4_2oH6(S2%$wYjM%*(pLzv)oE?NPN<6^!t!>V;Dl3a^vm^+WBs*Z4s9*Ds@F*r&B= z*}JDTtE>ub3<>mq)1Va?j!P6DR2-kPGaQQjrcmKmJRkD%L|k3P9Dd>|AiL&_jju%- zNUF!*5XQ2g@g8e`Ey+OzZL`8BR71=wz(qe%g>#H=Rr{L^U{N5gaihs)42`mMxkFX3 z=%*yZ^?DqXy`U$+4FV}T9FR{t#e}~&|9DWN*7VnhX(nUgQIF_>q60$ z!cAG>D`jTDqpaVm%i-NUY+g#=Y4-={*b}OmVZ;B$E}0vi5cvjF6$&smppHMfyhxfb zX|e~&o`|4PWI%EiK3U!vJ_ za2hD9?}sa}#lF&KS%A9VnIS_~NuyC9V~I@uky>jC#2p`eKwtn{6ebOC^&p6$^>T|i zu)uRD9%j20&XNfUr=LO#Ae$gv_kcN;gwp~672sHD8#|kPL<`DumNU zHIy{7u-y{$##}R>b(y@6J3R~)9IGA#!v;AI7D&>HP-y%*n#{CJzi|C{WbHUPrN0Jv znCgdV*!BAPB9HLq3OF+N?)CxI>MRsWJwq(}|&Yk;Q9aL+oxuK+BHI)hZ zJ}0_4I}W-|P{7DW;M}NzRsjax)b`MGvw@b(Y``sPCS`F?YcfHuV=xOvRP|O#19LF= zY^s50T%Tr+^FvcC+%(fS*iL=2P(&ga1=mNl8orED$a106@)R(tSQJ&Ax_*S=tlms! zgWNT%B+&t!W({u_;s{GN;p>u&LYuCvD%Kfq&gCs-S*C)fDnydm>PEXCUttMxY!QL1 zv^RqLu7{c#fW)3(*{?a-D(H@*7bFs&A#Geu0$wLequ8G+CR6;Fj@SfCx(#zHi|K?C zLVJbMzRQi$qiQp&R&^{&^~N31fwa)-$-k(q_l|r#|%s{Wls$?O? z5`+PGz*w~=B}CarQ(DM&SsRA`&D2?OY$k$JnsO za4yfOf|~PPeXSXJhS4At&Ni!wiY*N%<$wr}XrU?X|A@wsyJoG_mPTn;8cf6_Wp6vg zxuD7JvCU!t1Wh`0a8*7FP0vhL--=@dNRdFRX9p&F4_X}BY;<6$IF0`@8!}5q>yOTZk9cMMJvEvnKX4N^#v!3@9ZORZgEUxIf zM4~x=k`ko#cOd?t?)BP1#j4qAyOz{1*22K*r+fA7-?e5e2V*60#netvP|?^Q=JfhC zZX?H$5`dvCdK(rPH5xbpX%4|h)$20@+# zr#d9oRe7onTzO_pk zw<$2VjbYGK2}8RU3GL~8Nvr9+E?7>|9D(uTxC$8Nky!C!Zce4<4XGvYP0Hc`G`y`% zpAaVM^28{bKr=d{Q;iGGgna`@pNiXNlO~K$RZ`wMxcQ_Elh7AK1Hg8otUtpvTSBQ> z*$Bi8`*g8^{L0#~p{2YL>)_qmcucv|M;`z3)jKgS1(3uJN|z&zvytev2}FzVYLAf_ zhpiv-9SC{&Yf6_n;B4@&b3jQ;n0qSF2Ksf7autgaTJ~Md+bd(yWc_AKg+&^Ah#lLN zuB*ZppC-fQu0aUT{yf_c>0j6MlA1s+KNBXh(B!MDdQ;*CrC1Ze;nc#&Wg9%GI8efV zeZ^>kK)4#9sM@!Y{#*SsQbNZ%bB_0kMv#pibUNXB(UtwQ>TTEYx{Bngtb?#Z>C<7i>vE526-rp`_ zxT$eo0E#DT;@Yq3GsO^xZ3H(st8!ItGeDsz>?riG4JkT~9McvKQ8i8lIxm~Jyfx)X z9})nXWUtl?F~@?m4H2hapE)MIwaKTPRME8L(kvx$eL}cA&TwP_4f_H{+LqZB7W=a> z7FUIwcC?M=gk#V`uMLmWNvEZMMd<+mgFwc3#TD;(llR{(}O>h{~XOy_Gw2>oB6bxd8s)5A(eUJh0?IS-X=I$#OK_(NWV`;#>=gsnQ?0L zH_dgo4-1Dd%{~^E`X=e!EzbAG;PDyS1#qKuVIKeTrNA3*?h#E~b8|l}J0Qhlf1DhZ zzOgApljv&X`44--*p$UippF-E-!d0th8Ht?a)@V^6Q-;aW$pn)h|WxR5;?vF`Jj6A z(xyz?jUK+ zMia29w@Ga-JkjZ!xdaw*L(7~Kwu+VkBB)=|afHy`is228ljCj&YmoMQGRk4=rhLiJ zY|Bw>F+QbDgROMH>xJy;Cm#2z97?NBLX5QU)$;31XQ>=Z`uUivT*m7SAA)(&)b7_V zy$nrB+qXpxZ^;u(^fq3|PHbupX406#&pZk0Un)1n_-X=AnNXZ!ykm5W%PG;{Co9wrD9)$b{v;+*vN(PzW*J3*G(@#NH9=B@~m4YW(zXm77 zZ!iw*CSh~IH9CvssZuZJOpCv+*_YhXdzhOg>Env3WhzSX%VuYOMS&3+ zy3`Jzo|{b#x4_o>QwXj(V2b1r9c~gXZFtR6cN?hnw;hQ)xff*o@yza4P*|fQ)jy#K z!71==X*1w_utW*4?>RS&D`u;!%?(Dho((Q4!=;>rRrOccWi~&Z{3EmT?tZ4-0sZ>? z76i9lHW%RYekvD)cu}lEO2IRXhCBl$(Op7lu!Fp4w;e{`cbGQFDRc&QHJ9CGV7Hlhd1hg}jK-NNV2J*3G?0C}p<`7?wFLKM)kN zJaDt>R^-$+R?eCy_N8*{77-1q(WK1Yd>{D?R+p#m?7p7nO+VjfYHI1&?Ds7#>tm{;oEiOAw(Qik zrh)3U($Dg@<^W6R;R9%QjBvClwy1M%4WP$vtYShjIQ>rclJuizWaPBn{1oW&?p=uF z-90^T)VopVe9xjfl7#HS6(EWId7c9L@;50PxUCCf{E8m~c@%$b|6D{MW#3U}H1qp< zKHg1&aT3gOd%t{P6!;39{R#E+gTmS0KJRrndT~#!!Q1=r%lZC$EPp=A0H4kFuoC*K zb|vg?4V$FPbSAwbV>Dd(m6%4<{*gBy$V_tT;pl)q-2FHhhWLmv*^)7@RDN;#59hyA zB5R?&=~q*}OXp2$>sW4} zPT<{*o5<2@>&xn~_>e*gZ>bwn)|2$&l9Nqar3n!5Tx~X)3k3aFY`C`c3a)w*lU#EeKG>6*w-hT*B9UF-(&nXVN^xdGRJA zo5>!V;@PpCkgu}=y9K^cqg3;l-+_0ZIla3oM*AfIEHYj6pW5JT|6|`bHV&5m)CRxC z8@HuvzrLv}KYS=akI@x;A0{<^?#)gy<{k85V0x02?YXzAt z33Z~OmfTPJ(c|Lw!{&Bg?1Y>U803tMUGFxvCov_vhnSJ4aNI!H`Sr(RDEKJQP6Sz|kaKz~8s08pnLzaD4+|da-!h_vf!00aV#fi^#^? z;<^6Kb3ar>+JeAlZh?EjP{V)Is*Av2RD(>(`Iv8IUmu$<6=8Zrc!Eh(H5mv{x@|yk zU|aLvK1j#6f?R1L6sL#nLSdGZF+Y z-{0{tDY%9cz}jkO-C;vNU+I;GP$xe=Gt^%mDSOhazkhAhk9c-$1c=V|tp?u9F$B$F zsJMu_ebTMr>pKr9|>O%LWU7kHSo;~QPPEv8w3IQS}kY!iR~2+;vtLTQAx6* z7g&EN$b8B?&LU##kYD^^`}!9^Gkkwt`fQ4$LA7!}Z`aL z8sg)G5-njH$Y&vKx{jeLDG^cD+NkKS5CnM{3Ku1or5`{>hd4{JGOT+fJ-0i%G=CIf z-9nxJP_nfAbK+`!dT~hV{w{iQnNC!ZroFRRMJ5C_kYvk2=JS>k?3ia2=xBqi5zaJ$ z7*)OWD7{^ma;P@p2$Wh3p9Bg*F&JXP1#(c+SxaYzZo&5^2Z=mg(V(5HYigHv92#Nd zm`kf@8mwT6)Cw(p#|rfZC(IudPlz47 zr@5bS_0EL*kH2~+jC;CSUH~WL9E|4qNqay)m>FlxukpVadxtPxl%@%=ZJxGm<89lv zZQDL=+qP}nw%vW&wlQ~BGmCHWuPSSqn|dlTA|tXYLJ<%yWivWujW~@EX0V!^c|gH{ z%^CxEGx>f!Rtvf!Gjp;@>Nzyy1{crs4stzxw54}vv_-F)Nx4Y^*-31SmqM`h6Pd10 zIE6P1w!LA1#0gjH8c}e^LX%oTLBcX{22Ti$y-h8V)pI)>3l5h4Q>!MCdgAkxVRg?| zvYr^Qn<(xo#$$59^!oJe87nNLCJx4kRHexbJMxPu6=SrTcfcpMHbaAX@g4@RjRht2 zZ^6YO-HH{2!xW~U$)eBFGAjjrVZdgb*6&C5?`w#9%P`I<5ZOl8FUGnkX~-hu4X{5s zPxF_lN|Kx_)NkpqGuv}=F|%j9G=C3`v;a`8=F~W?S8NiR#StSUF!FrRbv~+~qSTS( z9ns=cWqDFF@=-FPNiIqm?zDa7ST+|(uL_4G=SU#X|2Y?}X}3lXDt@p!c-7KD((xQi zkR)5AP4qF=s9n>9EGCoFTXd*UMHekQK+hy8mAA8ZN^nl0X+<>g6yXlN@QI*lE91yb z^QiIil)}fQf}8yZu2phWaV_a4v4vt0;Q^wc1s6NHDrm=5xM*=A4OC&Is@4Rrcvvtl zZomgA6D>u`5pW{!<8H-gAn2i0@MLn68mx-*kCC!OEeaY-Q&b8sW-m7(a(;{Hp5T2q zQsYb^Bj}?`!hBjO?aj=-Hx~pO!6mfT$(xlq6j(e5<(Aw1QgJ)((!*WJR2{+MC# zeq(Fl*d{>jbav@~6#-kK(OoOLqU$ne3grP9_KpdPZ9u2;-{Kss2Khq0uxc4Be` znMDXo(Dx(0IkV7DKv(ym#Ah2AHLiE$mZ==UFCbh%63Orr71@yxX+DrfMHc0A?ROaz zo=b;~#ByeTn8LlI`WM2?XrxrF_25*F5bnn!WGZ^7u}S>s!0BQy`6#yk07C?}iQTuZ z;oSigF8QZQ3(8<8lYUS@6Y((6Omco@9^eidBkqLaxBBLji{)-yb2`|B-w-2YeBH3I zK}UD!L`GO0?l)Yk2N|9!&4|jo;Fa3cpxe(1l}(7NA34 z#!r%(Hl-Ss(*{i<;@M#%Xq_0WwWFEjj@m@pxD>Z|uYOG#p9ch0^}sOyJu=@?>=9Sk zvNfSgBOi(-cm9he7i8>uiqZK1d>T0_u-e@J1YA4uhd4be*L8E-!eCm6BP%57redt! z;2aK8uq;@d8CE!ef0erkQ|74lyd8i^QXYkegQf2POB?n0@J%mnDW7#A9{yhq7fuF; zMe4}CQg`DU50aOr4_Q8n#>>hlcrB(Tlpu&iw=qX!e#99d58w9tg0L_Z2H<9pWC3XMGm|Ri^Ct-nNvgI>~aN>~Bu&J|9W=EBh_5rE{=@d!sjg#E4rz`u(I8s88{tVq2tA)&R9ij{sf zx7D=rDCyn?ldoiD#O~Q6+*cg>mWY1`Y0aP&AWouw@`9kpYDG^NV%LkK32x@$JL8$) zn2GA?MQYhe4aH3FnkVvrHKy8fO3JCVDh{JxAc~Pasug}>Cp^X+jE)ChGAUK}g5+;x z{1fKC?wWu0mSNGOeK9y&quM&4j+x1R0Q$YtucpVj7_pDXL+eBRj>KO}4BxDiOR;i#`djxjDy{+CDE!uK(y3UiW0H)#&)XWuuX zP2!PI-$o>DH_5AxI3-|jWOgZzb+25BxlurFI^ZXM@~rRF3esfl!XJ2v&`R|~78u#d z(u{*%OLSgy-=AE-FzrqKv=R!R9Vu)~`~()^TDf(!?~f`<7}~u%oDYZNYZktx!>9!0 zSAQU!+E^`hDOCJZX1EIe5Vq{QwX%4CEw0x$k~t9|gS+I`m=en8^^e$knEwMYiUbX0 zNnadRaWJ?0Zz6U0{n;9@sWeKIR<8QKal0Z!MtP@`z7vj!WbxAUHr+F#@vWS%BvNNi>MG zxx%b_Wf#DCml;%KB2|K#%7ti)5`LcVlvq$;yG~=ThCRg`yzG@6^q-Ql4;9JUk#+o9 zZu*O@jUOJfCyNwGX61pIyKq3s{VlsOdC+ZbGOhhDe!IQ) z=D+AgX;Zze)u|6PbJoYeR{PnNh1KY3zi17&%&o_4uQ-<;G_G|!QA!32udTQsZFBx_Td_0cG9T8{#nSveF1_t=vgn zjn@yC7r*yAS;PfLK928=n7b|3dHc zbMVovcHM+yU-SYUXGW9SvB1x6ny0#6twuqEz7uoY5!mpsy^nj9+);I8qr4{{Jz=Ss z4n?*0R60R)_%ineN$wH+&g6CR{pHrqFR(iozVQEocmU@AtJ0Z~k>!6uycX>#Cu4Sm zollzPW(+fl`28ZW66z@{cU89}kF^Qnj0zW7>YntCX`de;AKk=PBK@hJcrwK_FeqHy zKvG&neZ+^m_nR-T*CE(VVWfdTK-e1p4eB=`;ssLR9Wdf7w-Nc>=otX_N4cDdAaf3&wjiZxVjhda78n(HKK7yPy?s}q<4Y({sxh? z{2*XP6SPf3E$n16)iE`MqP`1WU_U&eDZkYPtTTYzEm zADC}B15DH4=k_IiG0yb!-C^;ezl>S!CTbQEl--Uxq#0Lbq zWf;LwSw{N7^Um2NF3t6@x#3lTDprDWs zA2SIvdd3Y|xv-IUS=fjl6kJPKe__=M4CG01*dfiz4~I4MRGQi^F_rL#^-Zf%EG#Jq zUpB6zL9Qq%3g4!Q3?x{1>S+a4Qa*yTHxJYT(M5(hI$XdW3lpcg25=YtDLSs3gI6p! zc*#Wm4*z8jZzPOw%4l7C2`r;yO5VC=D1*kXpVFU&d1}9^s}iZCq7|HlA`MZqkhqGO zHn7N9(~Cg~$K>FnWnz{f%JG(NrgCa;sJ(SsDUMu)vRz)kgpon@+;(oiPBOKWGfQ7) zll$)qbc1%3J@1=mn@q_Nvc!n;$d+6V6gXIO>1%_*3JFamv*a-A^0`Q7*G-zyd^AeN ziu_AXq`ipsjc*<3I*7S$DeEA@KY7zYF%NS#jZ2V1^lii-A2|;@Db_0Rz{C z7DKIR%*{6lq8P0ER47{vRa;ALA{9`EWnnu0ibu&K2iPXbPX3)@u#AiE6O>ck@>u3P z&o)WU8H>*!<@0=0e%#6C4w^-LPvl$^>4vkKY%RqiE*oIt4vEGZZmS^xbHcC~s71=*w#? z**HAKxe6RsHdG|{iw;H#ZscfMg4Edcm=wDb*Xku;(h@97Bf{^;xeHU%*fd4_bEt?X z?bt@*T_4(shY|$PBNvKXbvSn(COh#g-+0l2iB=O&ElND9ElGgOEJ6{VAP9EF)_h}p z4Cpo#8EjT%+0OU*4UbjldXvE8?1FK&M^81&%6yHJv#wp>Ao$)Pv69?k<8JGB_L_01 z0T@r<9+q)9t^HX8+@i0w{CVDVBG;6at%F^n9cHAi6Y72#jHG2~Oj4R=Vv|E?RI-&; zl477H0~HSi-<*_@I#0a5J&jmV%^@YU1V~_Cf8v#vru+HkWJ*sc@bCxAkoggXS7ViJ zw%Ew7a0DjfkOk32NXZ+KQ!o*v&-*V1k7qz!Fh`eTc8c_fBw$VJN^=t*ALgz*XDg38 z8w9r6OuSy&&;k$5y5xfI*Z2z@B4y7?H_O$Alb^Pb`{15f`a=7WJF=DFWds$_C163a z$}f3(_>4`^Aj_s@@e~CT&Alm7Pr5nwVpR>DJsf|Nm{r%Ff4Y#!r8qE8XMddU$bqX2 zV>s9Gz3K$i$6sA(rh}GfzEtjJwt%fJo+5Xpx{2IE@3L@XEbr7$r-{C6?RV$FHiJl& zn617cz~(_nLnr*kI#0YlkF#?#=73@dIS{nfALqZ%VbFxWZ^o}r{9coCFpFTXu>`>G>} z-Svh)Y~WxbF`R6d+qHIiC|UUcj?oqC!_B)J8^HL)U04-o)JpqK{R*WtCXJe zFW>dO7qKjtPN@bTu(*zeeWZ9Tc)K_l?#MZqX%9@79QG~D52iV&39Qh+|KUzro~t}N z$3T)EBk$6x3oN{r`6!5)ky<-&3@oW2f_NqwGAs#Nw;rt8G}`==%>vId@<|@6U!#BLjlW9dQ%J=x-}R(0(jHuk!NWB&uL5=EFgm1YfQ zMpvXKS?^@o$X6O?@kH#zHhGdA;1kF4LO!z)s^g4$BzbXNGC#nEjw;FfWZQ z@3ShLOJ{j_FE27l<_Y^mC5S`)UdK$xwJ9`H)7*%y!at&!B?O6(mDn*k#u;_gNabxw zrz*T?s6MJJl%&^46f-q^4KUk=@k$+>dt+5;J<+-~>O1>q)e zC45qe+m7WcQQQuU5~=T4RK&hTZQjsCUf*WUq7uHvBPx4$vA*i6q_|vZ!?!P%KI@dv zP(Z(GcXA|nbgAaB#sIEw)ZF&m8-AC!%IQyTjwXjffdCR#M$7nA>7?<`X4JJ{;mFbFL7 z403ed4+c4>qO529fO>9KD1c-19qRF<+^_zd7B-r?!ow=-1VFT%s9L7KOp}|Fl3q`J zc}MlD+NAReqJi{v{@dO{3~;5fj@3uJd6#qER>F9EWE)mX%4NH3gQK&Sb8l+@bt;jW z20IXV_WgOeE3fYP6{S{>j9eagSjYc-nuJBuAS}^Lhb1{qF=ERvf%EdTjmgkMHPMXc zKLZ+Ex2(HApZrNP&B##yB)O5VbN|J6%($=Y+LSn$E;g%>5|{p^%bRY)(xrM25pP zl2}6 zc8waRRYlsnKOGZWb$KS=J%4>Z9>D&BQe}g}w#D`FQ~40vU!WI3E$r&lgB17qetCcX zla+d-F7cD9=#{jLNv1yp?AQ7HUD-W^d42w_i`%2tCGojitUa@$abXo%qx|yjwtiN# z;EH%cTa;l3LUcj=>PZWOSRCpOK!|bm?3J4P6VS|11Be@}ht6opK(P!-sdW_6*(Y~q z_zkMfMpe8=Jgb&rzkm7qTc&LvqFj)t2R+46e-|1)4pIFG=bb9kOKJj9xHZL|4lYWt_IySvwSPe z?bYkwr0VnF@%&@MA)RDDY*Uoa)+i1rv-onRL>BR~3U$V&=(ilyPHOY=;%E#}B3?%q z7~$Tfdw)J6s@r_OfEWR8der3n*iC??#0YVBbf#Zq<6CmPC5lkE%FFpu%`z%~()UW8 zB||}-!@4D_J(z8u?W#81HG#;QN1kDMNJ%r*CB8+OFd z8{qGNkqYWl6pG5D!t9~F$@(_|j4@?7>*JRi*Qf5Cy0h9?PpFp2$35bblAHM1@gnkh zBKpju974T%bs;5mY5q4iw*xO1HqcE|y1x|Z_;Ld3D2k4f86L4Xt#?mi^ggJ*@mhz9 z-ve3JS*KA=40Jqpnw`p2Wd7a^N!-|mTw1QyyS>NA&-34njQjrVvKdSiPuYs^%FYak zwM57H?@=GbVZj(W3To#@d*Y*TM0MCgeZbakIrIdJG^*0MKum(Ii4II}vpagxqGNN~ zS8;Y&K}%x>3kU|_dhb*KD-pmc2OkMyr)mN6|egBTY>9!7nv{6u#H)N0lSxW&0P zM#z&_IlrD%GSgnMb}5sJj=#o1G$XypT2oeW+37h51E+bCw^T^US}*&gDyK6$$&#|< z8L?p7?_`)>Hl)^Q5436Z7qK!z`Z{;0og7CEYD7&aRf=mmV;VVPP>1Bqig35%Wb;5j zYQ(nTjmE0JH7aLNlY1Zi%2M8xLXio@z&+vAE%atdQ)S1NnzPp%d=v)E0?-PjxPI~P?l zU151VLi?rV-_#j5*w%p5QQlk`C05G<%NqJgESFa;Pc`Z}Z5NlF0um+0sw+1Qjz0xP zW|EcZ^LW{Uxd6PC=6KHtKK~(ZF-Abcx+)g$s?{e)P0WYsm?3u8qW*P zCD0734&bN_z2!|a2N#^Jrz~7ZPg_x5OD=ZTa(+@|LGpb+eynn;{qp$Yl(EFu_9~;O zU0y<>C_Xf#1kWl(_NU6c2t@dsz3G>q1Oed>#^G88BWDn5iE-^(lU`I=%7rrCg4!Y~ zH=hbg5!3=K8io<601dy zSG3r$ha?IE#T40#|04KvJVHhnHD(}lfyyEW{d-`t|5?>|r7MAhV1dL&;sZ@payPLY z(YcIMP30ab(O8^WJO8HFwS%VZK#UIhdsw3^v?f-5qrTvwcP)|imn$i_!+zBOlO^56 z`+Vbv&ypdX>v%1kn(3uLYrNQt0_GT_)Jw;-dMf|r?6gjMU&%bXsH_R$sVwh>up#XH zNuHlrf;gmz?4Q0=r>uDbB=f<8M=q+Ei>&~)qp`vlL`-Mw@_6yt=6?GYECq6 z;;)HO9bAn!bD3=BAMT7+VhN@6#flt-A=T7R#!8s1%tV~I*8g(=lD(OKT1TdmvdoJs zRu0!(OuvuM<2PRJpK3^+EDlY0&)nKWr(lNz_K z;5%w+$Q-`xb+#~vm)r%Ot2lXew2PeV{NzY8X5e_4U-m~Qw{h8`F8MSh3my(m!_cSA zjXSqNwa9~CQGv8hdW6nnD3hA$i!n|!9M^ktRn0iwVU=yWhIaE+)kg~fRlyx*0nzu&KR?2`>o0-g*|ZFa#G zQ2^5n#@e5hg50um=Z;nBV{P6~?R}hDc~iTY^5HfeJMZa!eDL zQvUE5D`oIT0Q4GI6gMUh@RboBzct9ye{m%=SX4ewxENmaLT$+`e_BsW?0*bI!FcC; z_Eqq~O1m<$l)N`ougQkumi4$jS$qkS`H76WbDII92Dis-R@#-)ZQL}sb=I%l`llF0 zUAy{jZ3W}A9bfS2_`A)ir@|Gvx3ppa>9zpEzyKO>msM#8fNI+?4jU!jS7igD-NL%I z`cf#Xj}ifHo9LbWKLtwju#pZs&szO|OcPFoj$)ovrwnbil0NI$2`?!qL~y%p+-6M& zlNf?*w7pOl`b9ZUD&r}yEb6{I%yQPRW#1Mxdl9jEn;s# zDZOODG?)bq(2UX~&jGK!6SGoQXbqeT>SK>f7lwR)568wB35pfS5uQ+{KmV!G8mt9q zs)lUkOCA5(>T?ji+CW z?y>n~qbkjIC%;2`TMKbLKZf32d2_U-9v)z9BwR8&_+hQeEtmfp(7Q^Cb(WoR(2KW7 zR=^JQwT1K{RN)&=fp`fxW(w}N;RAR)A@O;su7(v=-Bxi5oder7VWiP?MJeoO_w(e- zjFS=0m?q`#g~9Lf^L;~N=3CkPuWu;F|MeTn!oke>zeeyi|Lu;Ewq5t?Gj&`WG?+## zFWIrz^EMgxvr~9GM-xgQ={G_oN@x4{O7K>awp6NQ?hF}}R*BrpCZKu`57i+a9)z*C z$=mmOCVUJq{I@@bnD=upwg`JqNRVA@{$`M)oBj9g>HXj|3h6Ak{^w(=i~w3L3qPBJ zV;&yYhj2YkXgmuEJA|h+e;G91Bu`O|IS&5W>&dFD$l};*cIk(`KJtX0d&tDrqQ2$8Nr4iw9ztlG9iw3QML!z+DLTm>5bt<= z^k$79zgJAa))-lcPH-zAT!xTaqu3$J!3hSQzo`-;02n(S){8v^;>yTJ7z<%OU#nV0 z*#Z?>mQ_d@lr=Iq)LCfh2@ZSm2`GlBfQmb0G=3hN*35sTawMHIgR|jnb^Zznek4m0 z^v)_^6?B^koe%?vpNtvFZJ{^x4wUw3dYo#nc)rEM5PJ_5l*eRNPrd?TJiDL;ixUbY zA0TOqfVffWM)zMz1yB`6kh8~IdJy^?A)NnORGYGgLO)392unC9V z+sr*R)deTY>$|XPcWoJ!H|;VFGzl@e|M!v{gIWgm!w$(Q@=#OC@(J!PktrLb!~_xi z8U5mdr1gx^OjUg1n#F=RmlKB*SkZ@sbVz0r3?Mf{p+u<9Q*cc-i87{U?Kk63Ux1Wh zLh&LD%&e)Y(uXLv{t#Q}GKC6t1EDRKB+W6r*n8?~esYqU1o89kj^eg+>)l;fK%{?i zHQX#Ev_A|o=M*=k6p+ghckU931s5b&PNFBUi1hyxtZq~!v8;6aKx$ym+gtSAsJs$i>R z`1wayve+f^;u-pZGneDs>*+R(u#a*L$`Uv5EZiLmkjzCx#dVSMEG$`*7rG$sAyjBa z3ZA$Grz?G7g9|MB-0&0mw6suLc9qPRScoIcd#+~yZu;UYjA!5qXXvHjZcONzd_t*D z%#HI!d9YCSb*_S%ue=mwBb3V*2@={ZS)m8xi3ConI@>$?Le@%zjPa2{q_314r}uic zCr{u@|g$hPcL}vKH!Na*2V!cifMsa&SZPmOl*BM4g4DjQH z2hnl@W-k&{Ak~hI=Y_v1rri89Wu>HGK!&#jK+1+EiLI7#J!ajXC0Qv@-Y!sxdTQEs z{8-jHQ^}n^Pjo)*epi7zB*Akahe)`mG{uH;Di~2Nsot6=kxbj}W@W@`fr7o&T6{HC zoTAek#|rHTpyt%h-A`XOlBB~+eMP}wCf%|yLOmZ}9O$4j%Z8`$N=y4M-@0(+BecHZ zH?*-Op-Id3t6f07y&mJGeUtO|Jh{G;NvZ}?RSSbV0IUq%eTb~2tdBljqBkqyc@j6t>Q zxn^#|+3YE8sRdNC2kgBwf!6~33IL%+R>{wjG9u_YOA@?~qiT1&j(+>}e0RM(A6>PM(3^2YQR#d+sa zdRLNij|%t4{s%@Vg%>9HSMr|kT{LJU80{QP|3j3&={^-nCOPk~mz5MQT5 zdAnaKc0wtnOjVpKV?(@PSU~b(+qMPe5(!r^`t{<6$HVA!G)6oGR1-&l6&5We-KJS_ zY$8;7TBwCZOp7D|L`qyp_)OAyLj=sU2uwgr zP_g*>YD{qQ5ntk(_vGDf021ROsw2zaj=Q%JR#Nx^tq=a@g-p}qlVvG>;U7jb;@4&7 z@tjzXsy8}ANV$Sh!w#$PbS2&9{f<+O`~^L^rj*no-3r$~nTo!bS>cPO z`7@q%w-GQ2rJm~7+P)E}EW9Nx$#dyu?P%y2`OQW@f4mcFtlw}kA_X!?kOZT)9lq5pcr2o&+|AVE~Wm4TQ|~^m@Mn1ieV9v zbgNC^H~0t3rrssK!WVk!9UxRMRX1a<@1AI+y?w@a^aaZL6!RWOO?am>7g~1w2s)f- z<#bD)xrhLfDQy7jMo=OwJtDrH2^ris_L!;(ev%5Ap!d^3wj#HrUaW!#uoEZ5TuziS-I9g;GTmY1;6f6@$_6@y(T|XC z907;Y-1b6^HA&(=ZHbGy^9j-z9i2ktA?$jlttU`^QFdlrc#=wvXlS{A%ngS~698UQ ztBD84%2QR$Qrm1zbAvLmsnc#vf$+>ohKG?z4I1HrJAojsUYToK(NrS}PhK%L_m<<@ zgIY4{8}FC8mAIr=@j07(_N59mt;L(AZ`htPU42Jw1C$~i-r<{)ycWv6ZAx?Ui9FtB zNM^FDB+r~-oy>x?aK9aDjJwp&{1i1I6u25~@!j+~qKc%moU!1?yKMa94JA^D;dYg` zwx<$gU{Na%eEjWGC}+(vTsp3@{Do|X(|`Gn4+Zm%afNm(g7B#dfLqMyCQslkq(Q4b z-jwOV)%GxsxwOf8k3S5AI#d`vHusH!*V22DQcSKsgkkxjOW3y8aa$}1y38=DNb9up zDoN;k$eEX%iPzqxD#QL9!}1v4ie?TeAt{fSz^`_dx@#v-LApOQ5@&J#aZBO1$3Ch1 z^nFOJPHqiveF2I;9@thBfu5b_^K(VJN8V>etTJ)UmX~%^t-?_?}wb$CTAap^hKT9MwL7jcC=G7ZG+Zs2r?fu{&704*jt4zAorl} zN;!?*R&oRB9qGe*M@ZHt4VwY6N`_EupyA|L3s+H{bK*SX5*^@Mvi2&vwa(YYeV*LXeR7~L`ei_|CvO5kb zEf8pKP}zZqn(NOflWKlm>K21e?QZQns4vxe#$(O2RL544RDedh^jra10FExNHsrcs zK*CE7VDRmXh+xDrA5NjFywzkzP}NW<{Nh~w+~W3IM9*)pCD`^POE8u{8ehwhQfL1A zxpoBRBkEbF<#G>OmH3Mzh3_^kIfQ`D3@S-s9CG|2LCg+nQv4NvrZ&Ehl#%F%e1o7_ zwt0k%aUHp3Y@MZ_!LdXZE1qzEmP{&~b6fkDyEw*NT7WfO5^4V#DD8;BsKQ_RxcRb8 zc;Vg$dhSe(@HQ501SRYYGLh5CP%g{gDaa{EdWC04bmka4q#x!v%-Dpd7{Ps9s808j z*d^b_d%l;-%c+i1?=?l19kt+G?Mb+#=gHf%Llild#WE6yIQEmK(kJ`+&kEb9;>Gg= z=}?V3Z_Xz$ACEI!luLA$hNr2cL+h@Q=BD)kK7&@ndC!nEUaWGyR7XK+P;4ZG%~diE z$n{IVE=1EV-*u+I8%T&=V)~h( zIBss6qF>ujvi>02`>X2wFC6`Uj`?L}F8ZlCuh3Q2}xQN8ZH>@|!_+V5VU_xFb`b)xAmq|Jp}nqNQfhSf!7y0cSZ zs5ddFG0;{66pcnMKP@oP|nR zg1F=r7J=9x1rnFjU`mH4$$c8KJppu6#4w^uiUKG|xfJ=kdi{>(tlC5Te0@T~{Os65 zy&>r6Z_a*G*K~^?o-Na4A2_-<6m5&mS|i)Y4Por{5vg0D1jyP81|WQYdcyk-NR%I@ z2XXdZW{t;M-=X_%F*K-9!WL#Zs-t(0`s>T=^VG8nt9KPD6UM$1GXe}VdG58d?F=$# zYr--y>Ens|cG&`p(l)^0pUC_cAp{^xU))*UL(~ zfh^fjd$UfKE)#u$+9j_?Q!KI3G$sX3@aUIJ-yL(lj@W&>>XWq-wUo>49l2qQsc{mc z%dNLTz*Bn1W6+&Dkh9cU_1|uXA0ss<+u?Qk%H;KV`y`BW{k-&I&1T3Q^S^j)S072@AFn!o|7_uOgUj-dNeU5_B~x+6dpE)a*wv2Df8KG5l;Z>1^Z{s zn+d^B^>Tq+xg4f!L`mdtmYg_L;Z6Hqi3Dkj3?W4`cX$)l%>W1km6hDQJH_GR66Al# zq86y(b9AyK=LIWteN>YZRT9A09gB_8t}(VjYGGnkZ9Ua5s1lrBHD0OJ&r}?ugFVL3 zR6!Epc5%CP9dx%0WLAsFS}@@{M?=5eFp#*!Q&zjiVF+huuXIXV!2_3}VUa2W9n<}NGl;_J6?c+NLEPi|FsiRsL{ z;2$c+9LEGf+JUx-7@aX_LgQyCF!ZJ?P&7~uIi{G{bmd*zSC@c_V+?QZ?Zb$hD9&cH z>cnUZ#X1dE8Eg*H=TTw^lYwzxVedIPFX0#K(?ZPsB~1WisR8QMW(#gEtB_w%6w~~% zjcG+mL+q#Qzmb(%2g(6!?+IiL^03sHb39PdR6Il$O+vvT;IuGifxU~h2DV)fcJYUj zjR{rFYy4K^@Dbo=wgEQ~KMzy40g$PB8amb9;w~>PXb5S`3F<(lux4kh)P7$gSo?GQ zpLE~O1RX~q2>}x;xMWD)E(dqr*U8L+6USnELM(ai*Z|JtV7kBJj#{511R}f+R|s%V}hyBCH+;ZER6WW`DeDpi_N>6Q*(HP01TN)BF7l z8p<8^uM>qoViC1HXc1`Q?Rd@dmkMA6ZiMo}Be^?ei^4~hDl;ciDTA=n%L zlPid>za~gfrtnkRb<)T}ZKY)#;Ac|Ed%p5dV@V1SV`L7vC#2~CZY&&jt6Zsqc0hwc zRR6bLNwBmakA#xI=u;gi{iNRtKdZ4vf(lStG*095CaA8EUww zVvEeit&+;d@T!`BQRqDTFXvs{PRzn?GB}>WicjIL{J_M&^a5HMl_?6lv2!cjgxv6I5SFzSsNT9NhspQ zxYwI)k!SoF^%<#8QufG>=qb=n(Nj&vl9erHsVHbS2D)Rq8$5w|BL38JK^-+7#@lI( zg!g~E=W_im_J;O+Yfugq6uM##$D5vFq=2@oH`~#B#nq^#qr`t0`Ls-S)rn%#6((L4 zb?ZdmAj5YTmtNMYRMqWT?N6(TxVYC@IgUA z7KAQ3&ri3rcl_*j8)ZM!)@h7NP?&6Mlde-aU`a<*#1euk1CbEe0oJnNbYzqoZBc)tL7|^W+n{a+`I)v5m zGGyt>)gmv_|K)==?3$tB*FOswO*FYbsxSI&Qj0SX&iCP(37PjT2UH3U3Qm+@Yhp|n;K$gpTM>tQVzD5o2Ac6lxd6`MU26rH;BsAj!ME*Y zqG7ZA@ixl*Pz$}&&9(;hJ+AW~W<;e5MT#oYpB2zN=LAGj#ys;c*ur`iQSj`jK`fux ze2`2DNd#k+=y*uPzAS9w&&}YA$_7+AI_n*!$YUBxP2hBBB)J+nP=806wdF5Wtvt~B zQ$gMtfnwt=JZ@`N!}WwU3PA>RNHTYoxMUBHhx(n`Fd`uzOg;2m)Zu{O;(2>@PB$&v zbWyp;e0h-DUTt%MV0g6r%#%WgxtpS|l#T3^ZvlP&K1$o!$mQb2EOYm2GFgsCA04%l z&8K1a;u0vM%2>)25z8^Xkc4|E0rlDBmRu*Jd9VA4S~ikyws*i^>Rqo0pU;*mt7EYy zEORa@Mx9LcI-zjyv*YUB2-C6a(bw}J+~i22+JuV_H5kuZJ=c4O>`oiR{kT@tiV+H_C@?M)p0l=Ec8x3CC z#?z?S%zIzrAOL5kyOE>n3qfAGnj{%I+t#;vkBh8v5m=r#C!mluY8L%6bT&MQxqjR7 zSPKVoAS^K0bjJEJuBZ;njLX5H6&QWvFdFTudo&a>&0cE zYO*=q#S3a+U^A=Hs;O3gfs-0ooMWkfJdFOtGlp~ zBvdHle7mX%E?&4~J6sDdd|FSAs=briWkLz(L;nPutF(5PM{~)M@uXjJo&4kobZCU3 zku^U78EhwB$CwvzPTq#c zpBDU(%nQeNiXu#LSxDreq)qDe?!PwrP-a91@`Y0(^~Npiq1~y z>l3mt^1Y+=Uu&ZzM^>Vwc@Z?duM`<_z^7quYd=4*qLCe*Ocz}GK*<#iy}Qa2;ej+_ zIz3CTC(Epb*z|XTqC{O57YZY}uxu(xNfm4Pv5PsMKXL(5@Kuqm2Bah<~(8Cb6Nbi9w#ZHc?*+XoD_( z!!72PN!9TL>E-h5WAtoc^O8-R6@3tyB^1wE(q4hrOfa+$U6^q`r;xT5>S6gW}Y9x4JU`;MLHnA(9j+Dqoq z{QFBI`lNfy!)2e6AWt z9sN!TwG{|@4&%bcqe>kLOsnSraH#v**l21Rvp%1;`7bbM+U6(Ad_QWJ!rBV>d$(CN zi;dLXF^U$x>wFRL*9@+|`|oIJCu}0B3v*4zAyb)fxlK(|5?xCuD+bE-9T?g4%l9*B z5a9`qq$0J+BqD)n1b#nHaj+GQdpd!9pTn+AU^>692V+lhXKdp9Cl7N36o~EN^T58S zX?ar=+fYXrA6=HoKVJtA=cXQ?%t(E#D%(8lG`HsP`c}XHE)#lhf9ATK64o4hd_MRX z*c`4y(np5{wiBjVGO!=zKVK2~_1(Uf)9&(2LR$#_YRisAfiXW8Pg>Z+3u=rQ2iH;W zTh&LfBxIhhzFYLVhgR&o1o(IU_R=%d*3#a5N`Jh*N^f0|P0dP^@E9gOAoWYH%Qo^p z8tec8T_nAj>HBQ1CRAG2NjVRfs)lgR0h2kP_2uQq+(&vjJUGS$RlI5y$n_nENphCm zrP6`4&EHNizde}s(|>-fw&t-(fOfU-D5NW^fX7#sx7W=OnxVmx5zU2iQq! z(31J1ORIJU<4t`i0}FtnjS7X*@1{$`{^^rKMq9eD;ysrkhs&Okrf;fL^)p1B{=2f= zZQqVSz#DwQ^3WT1eDy}nQCM60>en?1X5(OKzHhg5nQ2@htpAec>|nTAiG4R++4~hB zO~rYLW8lN~JmY41x9AHh9T`g7_Ic-&MJ)>;Q|)xe&W5)mdi!+O+*KTs6HO3?!2JutT@Q3Z>nzvR zi6%>~0RW)X0E};WBH8wVp0Mf%n}p)tyuFV1gwX1z`snM^V+@MxngfOC;g(4};5jh? zT{!4opRV|m zf{JDB@YRnI*Hgt?+%VKcK|P)HM>kPA>#HD-@6guo9gco09G~aRUQNs0<> zm1Yopfh!c;UN|zZbBBDm=a`vtM_HsXp|TW%S{2ePy`;{OPU$pHw{*rFyQMekK8>YX zm77$C+RQoR*^e16Hf^qK{(If6nGmHj%M_NvZ){k)6}WKvT%N4KRZaRsvw-Yd2T){N z5ixA<>Y24XevejQ=gYWNo?M80v8Erj_qAZWOb&z65lIMX{%A-04)qlNi6k4OHPwaL zWJ&B>o!XA2Gmn4r=iqeBEdfX%^^+E1jCC7p{XdMoQ;;Z4u!TFe?U_BcZQHi?*tTuk zwr$(CZJT$Wr+Xg$d*eKHc64_{M@4s3Wo52!iInm4UN{0@odw$aDV8&Nz_hw7iKK7F ztZVZcIBU)Ia@JwwovH8Oth;`w5QbHUN9bgaHc$q{qTKJ8(i+mB!nS|P>n4H(zE)0YbbC9q( z)h_U)5RYUSjSgY|NmCZAaE9Go9j&&u$X=*Cr}dLGFN>sq?H3j+TOZ+C0{`ybm>4F7lQO=kB0 zwBDT7=18P!MVxt6qfZJ12aN8tu&hkkDy~S<@JX*4Ye`b~Pky`Y#C~PKfipE*hIWyd z0oaZnSw#oK@cFp@#|rMs>h1CJMg2HRXVYIgzpSMLvb{@W=kQ-W8t0tM;`9FgetM)j zU9h*AvF-KxM*K8yT$=sMHz&mBHrkV$70Gm}NeEj+1nSe<;|&O4Wl$IFVyg$^_EmhB z(=p_-28N@%h;vQ=>lprYhSywpc_HXDWO>ogq|#AZTd!9l!APE|1w#8)8b`>V0#zHn zMc71^lN+m0tUA)&E`B&YzN&E27wj~?=;Y-K>WLH~VXSXX+hjVEQMFXY_~G>#!0etd z6_+E=8Cb5C7fI(wfMsR73?xEN@JV zx1!AZp#7mk&$lXd7xk72g0Ah>`oLePMs~O*?tLd8E`^km=KxbJ(#?N5$J=Ty58SjjG z^}eOM%qeR`9~|o=Yvu=X2E$=3S<9l7v@{W0LY@~aEpNO4)>iEApExz$Ax&C2droi3Ox1V;QiWT zL#|rjEHmJ2u=gi+IXL8kP-i563#s9V{c|azgbqB`FMhs#L`##nySfqz82M1}xuXMK zuP_~mr2_h}A4@vQV8J#-Vz*-;=u4Dqu40x^3!ejnW}m~d3o@}aDKI~VgN93^$5Uq+ z20~v~`haY;VFD(wak)F=CJ(L15CFN6YcY?0GGuyjuC>Hmet}JQ=*|KHF=I{e7^gyd z*xjYES%tOUt@u@rh0H>RvW0k8A6uN@B+==z1a%V3a^xt*%cw-#v5>QX^-@}GVeH!U zLpeV8*tWVbqlwb_Z3@|ChBb4_`(b?^v6hR6ChcTyz6V(KA#tNk0cW|G%YJUW(YwiY z$e2g;FMY#K%u={6ws+vSMJqx#7j(A)-~>bX@pRu`j(f%dhC=9+X!Ws*WDl8nGA}Kt zZY52NCyS$!rYGqb>^$Hij_oLoN(zGQDMmRsq^8A~dhFCjeXE?*^pZh3H9qgGd zrN7m9`&bqWbo$GCh<_mX2Pr=mPrW!iVxr0`p4?icgp|BdD|K@@NZ`{r*HGXCW@VDe z*_D*eq}@ae>I4jmQJW4D#)}NB@8H|zsu9PJ{%&0qYA%xi7H#wgOcPETO_rDD5j2*~jo_`7>F%O#zk@qG zB=(Tyu7KY-!fi7_IyA@oWoOqcQOCe30fw?%%zynG*ctyWP8yU(o@)w@{pVbh09|e| zNxcE6GhmFEe*;MTLp1)>BgXrjsdjZ3Eq~UO(a+=$i6{|QdWhwdJCA7~?30zwlp+cH z=xw?vV+ZJLewUGAq)m2zbg*HQS8@LMQ<4p^-4|*~i?WVVVg3jg$G^2qMYG8?&4Yyk zo~Z6*Wl|#}CCGAc}1Njb<^W^yAyTtP(shWl1HOH zAx7!7h3=|Ztr2hyq~E<-E5MF|Hf5%C=09TVYeeH(g)-1e&kB&K_UGA3H0Qa)fIcr0 zt3@P=gV2}#@RbE)%2^f75A|m{H}D8kG1Ngn>FR>lg_Hw_5ol6U7^**tq~P)UK4b(_&3E@WKm`=5wN-Nq+gAcNF^Vo!q=f*sa{}L>#=ek19=5c z0B;_sahl5uoV~zcR#|PuU#&_Fa}_*Y(d0GsY!>)T;JbE)w{>3T6f+pS@Oj{w4>KZ~ z(>WznT>304znagqH*8wnR&|ehpeq4}_(br@mqNyDyI?5a%*|k`+iTSO`5hu!elTh<9~yY}AfPaq##jz;Ghce7u<0s~))f4Il@*=q8h!S}ice|vIk!Q^faBHy#64;X_BR2I{=JyrQHcFH8^D7%Xx!~C0Kx9x1BxLV zd7ITsQh7YTX>WN+y0qtqOh99zS)F6+qO8+n#0Bh=s^gEan&lm`r?So=4ObiZvPHMtbNrOm&1?ig*dl` z!Y1NHV_GVSk(MNGMG|g$k<2@90DtT|Ys2^7>AlVgN08kd%$SNsByjg%jyc0Kq)2^h z17^Xh*+V=t_j2#DtBh)heGTCqvZPj`AzWcf8(wm*um{nswrxIck@#j?pAf5z)8Qr) zj8^(2*oJ&-uMEXrw%FK>YsY0vaU5_ghMz-((vHrDMR>McAk*dmQz&iAuYHX&NlUR3 z(7VWdxmUhblXRndp)I1;VA{3rl+MiRZ~YI+A40m0}ma{ed}CQ2|tDqR$0 z$EH%5-u#j7U|1r<6_ra}DrSKJ+hUlnN4q+Ia=0h|I*IMdE zumbdY)D~xwSGIZ1dP(ZFFpMxU94C??4zUKyNF8O>q+PmiH&b^ zf^jlaF{jI!B&nFw#vC$|!=o2J4k;3p!TdQ7Tn_TJtoSg|mYWIdMfzun6__yOye@PW zhc+GzkPN?Ah(TD2o4fkeNv&foB0UsoG0q!H6ps}4-oxw1lUD4&FKUvhaLa;E#Mu79 zpui2_IYV|ky|eLI{M}@ZPTGSTCv0ft7uzBZ2ilNGK#*HNzH%9tct+oae1uJjX4M?$RPWT`%HgX($XwY5if( zpb!D^qbf~K6a@I&gG7yI=yB2Fq~IRzCeBygd6JM1-;|r6%y26K3mNHy0WRb-ggmc= zfsW(KpRvqi$eT~Thv8}s{F%{R8k0PwDVvx>sim*4+N}h zov5jRf}rWz0du|Y#8|lX*pr}|xJOGM)!5$oaDrwbHXtd=*w&GpYyty^;49tA$3DRE zyN_(G)7+EP52L^^PRBue*-f0&taj-W#<5<9J@5T2RFZ=(cfj!#Ci!FUKdrO;&15~> z5kkl*F8O8A@Z{Ex197dfXo-*(YP#btmn@=Mx??GVB0k1jrrggyhh{qqz*Doebicp^ zp$K*VmGCkAU%g=%+1UTnOmtXB%9e-&uIIJ(4*yKE8=s$ue={6>?U1mwU)xmHbN$y> zy&{5I>tE4KL=`BCYccsjETW(+cBycBKR1x$>;CZV=TPr74bHh@yx7j|_cJtDFD;N~ zi8C1szTN1}-R<{we^zg#Xm?~tkWbI&Bx~QC`Hlnoa3=~9jhF226{62cYVOXb-els7 zDkWX<_cmT?ZaMX?S+C_S@#n+pXRiPmw(U7eSFR$2GzA|Ov+ulqXGm@$coYTTl+o6{ z?_HDcLoOe`**$n)G;60;NLXInB=Hi-9L5F?kXi0VsT#nO)tJfqU$ixzbkGqusXS+6 zhkCp4o&Hfq3J}-$1s*^ODhoR$CLMUJT?~D5)%$a(I?n~blkpO63{opK22J|syh3l| zu$4hIonXEKz5lUS`|vg`?hlp0ytE1q(DxW3dR4Oq7*BV*#II}1-h9RZLIC$yb>sz#fis-pC1lh&CvXb3I zRLb%Si|E;7#J)k+^xSU~5N z+lM7PkKPC0hh^SGcSaG$S|W>w1?S(@LUA^ebjMB5w5!f)FM!YS#6tGc>U?ufGW~)e z9X~!0MuqcSGuuClz`$z#%4f> zq(kT5EC^tCg$6hy*Lp;IFUEGP7_HklXPpkR zs{I%?MX6I?byCx-=R^8;Q|ryhn`jUFT=Z)*=ZF1P{{_dYcaT~TCQ<^+ODT)11SW_; zoj1RUoL-Lj99WTRj3_lK7IGD)vX2ZJ!%reENM*{`=7M@g)s4*$b&n77Z(iJZT(1Sz zn88Fd+{^0g?ip#`_`ibdvj-}vEPMi!KmK10KXZZd{2oxHqV?|9h7m@C%K3o zDPuqpy}ky&0=gweP`)AdVBvA#YZ+FGk3d(ruN63+CLsl4!6Q16d2}x*{phkYXv-?t zxq6NY6e)(4m#_hQV@m*dDjXGM>S2scA}I3(EL2Zrb7f-AS$P&HM98a*kRQJA$TlIl z@Chqr7vr*oHp!vba|*c%nl$F&?8FP*F*TB9=?gdsXS)5$25#*=g9X$z29A5=3UVv-Pn}?wmWQ-#~#?%mCqV=w}h3}CZv{s48#2UF(+mqtX2hhu?T?+xEA3m}Vna|Cyo6CnyQU;YO z?zLl$3zAuk%M$+vFFu@9InTp~pRAg-bbcoYsYqH)>RalKDfc(3W{2d*2wRn;ey6D8 zmmMH?UEDwRwpnKrwI;f`FO$U#Sd8PjlV>71GWHP?s?@4`Pe}gyCdgn8R`nd}ms|Yi zH|QHFkbV*=Nr-hv{hNgATJ={!`e6x-Ks6~0!qwfV;=`C7X11W5dAf9e>P^EG2ci~l z3UfSsHjZg_%cJ7-n>Gs0I+aUTA3+J{JbL(tk#C@(%;C_;pT7FBAqO$0>Kq;Ni-hq-i*$b?+-?vhXSq=l}@Vs2=isNEFp-={ekIOKqr^1Y5?@_gZ zI(O2{g&|qu5!DFhg5Z%a;=+#ltT+Q*L;Br(sVp;QPX-eI2A9Tw`O%c z4L>KvDg(DWD&Uv%T)+`EqvtUwrvGulDDMv95v6RLV2fVTjr`|Rrrd@`)51^= z0(v#=c30mI9MnnQH64fVCd1>8e5Bd*3}aH!4)^0bi*Cl2633*gdZwKfA zfz7v@a_s|)kO&<}>^>A4_HS!y0x>uLLd=Vl|IdM=(AmGhAT(^Y`hf>A*L+^Y%RmL9 zl2SS#EtkeB;x$%YEi1gO<^d6#smS7js6}ksVCV&iS(KV-2#%;FwQe-bSoOUGanrJ2 ztSTthKy;W`{0+lIY0KcX{BYrgWJgY*%iFvzj67uCoa(0DRQoc13G0vlf z26Q~V5T&OQO%S8bC@C0b5yl=9Qh&O7}<2~nOhsv5hIhb_-)uzA#x6$++`N7GAX}>uZ^_)3ez8k@RxT3Vl*$Tl%`a9PiDbSlbmg#B!MQAmF?s+}?_@dp z^~*jW!I1Of^zDSs$S|Y_;2=Y0eIDK!Jr!E4;!ePa|Bjh8>mE3~V60Z(lA;|j^=elT zr1yAT%dHcD)DYOC>-?slg~DNb4_0zjh*)%Ex+~zoSUbC)ORz zIHTm)j24AnQt162e|saTQ9OH?M#qiI_Ip1s(<Fj49>8*2pq=Z9bz?_@l*J z?(5Ns0cQ@S`)AXt<+ECI$4tKaX$;s)Y>>TIZCVy7+nROS8%pSO_v>t@x%Aj~J-#P0 zXhRXs!koGV_VVT)GC`hn;UdyGJ(J3w2TDQbw9icmI7Q>ctAAlFHonnvlL{=(Fw;FF z5tDh{al;8Q+aBata_uY1M(~UxjLy^DaQyq6bN(Wsc*Oj%c+v)3*<F!1TP!3{}n{ zaED$GwlRCW&amh^ZT3Dp=vC!SvsT(beudVs)VQ(96E@_~m$IG8b`?Qkpc&ZxXg!|e z=;3H($C;yy}DtW9RIAt0A!o<)SOM!ogwA;Gz@^ zw@c7)E|Z^+=IqW@94f0(3HClS5vW9@&wAHdyZdD>t~Pfm>N6beVb(CK$2VHb1(PF!8Yhw)eD|@J=!37tEP69Tcm-hbob+ulT><>f(~N|FK-Ar)T+JR2F4- zJ7WSmIYSF2Cu;&aSpo)ndICC8a|cH!0uFYT{|T*}j2-?Rtqh!ug^mB(8vVOn+Sta_ z$&7%Jh53I$YW`nF&9vsG4K@do_pBPiT55Wzaie+{TmYcMx^`V-BEgIyoxcIO0~wlV zN`sb1cL_3G;-SlC|#o}6^b$JOqH1vM57~T2*PVr4JFODSVuI5u@7<@K`JmR8ioE; zR}Brr`4KGRbYr{Ar0273(64AfBK4*Knq4GK1?IpLR>{Uc!}8 zCy5W*qJcC#q2zz{A-63=AgT#CJ-Z%7Js{8MH0Wra8Zs36%s3)c&zRE=uo%kpBW?R? z`crg)tOhv@VAk+ekzfhS5faQ0x}hK|W9kK=jb&eU zhEGcD z>(aAo#^C1%?=W`3>#4k9Q-;4Nj@Tt9JmP>-hS=ro8~#N5`r25%6a9-tfy0HR;vO7_c17@(Gm>dwD6c zT>xjy>Xlu1e>W?Xz7aQ;?fl*sqYd+|GUjV2&1Mwq&w5O`K0Ej{W2{c1;w8KKR?d=DTF+&TSkh=#V`lFD|=|=VQWMz!{;Uk*^RxFBDaJGM}f+TlT-^9L#WC@Acu{ z6Lr@g`r)o_*^zoNAW;jucIeaL_p~}{_FQMB#5l`lvSlOR5z3MD*I*lL*VTJFZi`zJ zwKAHd+SX<(qSkI*U!06ALqfyB!>0)vAdZ_wz`ggGi5~D)=ae->kX3ka`0}Bzz8i3x zTWl{aGFe8wD@boMnE$d9;X4Ji{*f?~_{&PL<2T2vnGNt8IIQvhd*%LZ&X_p{pGvax z^JK*N-n|pmAw&ick{|CDy{zCSJeLp>&XTY?H_?mk|KZ>cO#!!zNtIQ9K#LvyRSB_n zk}VBn2{7~UTj6p^MGKUlB|lMCO`!Uq8Q`Pe?ORSqCuYf(4#+lx_E@?8zV6P0XNZK; z7_!>8ufg?YOdaz0)E(uUG$FqX6v%($1QZThzKZ8GP72r^sN7?gK{uIOVZr?yn=^%$ z82{5$HbXXP!tkyhU5gfwz1+Z&dvK3wq)Vj!%*P9R!if^!vj{sS-;lBO8k(-w8%w{g z;mFmi<(cR&rTwt;wS!nnh-bYL^tGhKt*&O*Q_8NiL~aUJ4BR<>ev?GUl4?6FId1Cx zNtA>=Z%tIMW8pVI|7i_l2q8Lo&uXskOKon~B!QK-a-M6wx!1BEL(n;-;D|r~iVOf> zFHbFqo_dcL!>;bs)n3IHJ0nXgws`&%chhe;gl3Xh*O;PtVFK5uhLX1GxF-5n*E?et z8%F)GluKi3zeAoMpfIamTsjC9O_HRO9tfNbo{hZqzs-16jXOyN)-|HgYg9O1r+<=r7@X3? zC6&ZZ{B)2t?($%n^uRwJ^t5GJ0+$#VOoq9ao?TFL|KzkgI7Okxpb7G&!k2L-ICrLbtSD!OTrXyHs1OSffeL8+-1r zOO&OrXI#9%O*JrsaFu&_eG$h5Q^ih~Smtcx`0=qEdf|C)^mx!1Juq07S)y?(3IstW z;LK2imbHI;`b|l+*VH{!NiE5#l5l#qs+;If+w)$jzc8@zFVc=*cxp^gg;vxORH8*JI}!MHKGmN;GfE5CgENv zePZzSa%90l{w)x(O<0r3`(acsD}HU`IMNWrG>uIH^lEN>-5cRNr;W)A-5AnBK-Bne zrFPDN6|;8kk(A)hI?%v7^ISZjJM!&8zqT1azExDotYrx43&W!uy$Ozxm+wqzGU4e&xR0E`U>>+q?2fW{t} z1|W=fTh+awn2tUt?-^~%{H~g?GLYIWSe!lS)9Zp9-R#xnCwuQe^Gk)({t2#1 z9XPhpW(6CA_CK+fyVNsejq^{d9NO(!i#_kpSH?V*=!y3(6aO3+if>A&b?#Y=*V{E( zWw2^0hYvp@fU^V7t0S{g)4?~e)?J(J*ap{}GaPQuiZ{iYgnx48H|yzeo#0kb^=#Ej z=1AgxK?&#C*8XFS$-wx3$R1=~%W8wkK>D+Ds|(G3LF_>!aiAsjvOv4lEO)7WI_X57&JALFpBS(RMWgZ@sYC1~#ydrpDzeM_G?mJC@IE8r!lYycba;_oy$-gksx)3yfbe-JtAc3(>|?~SCyX5=o}^sY%nB} z?(~tFW`v0Isf-9+sF33$K>bp~_JE=cE!EvXX^Y#6Hby;@(Kga#_lP-FOA~POVUZVN zxD7Lq-T`#5qmeiQavg%o;tz243t#OWTP^lkJVOc7R1WP9rATXjp^#F6Uy{m61kMM_ulOWlB&8LBFP7RPQ7T9l!rkUrjkyEx{Z9|cc za*z?a>jz{7wWgbs7DEb@YB^1;G550s+l68F)Z-danF91`p225y_@_JOS`f9 zT{+GljMXO8O4?%MOOHLPb2juDMCVH~C-y zh1wcR{NQ|&PFEnur!vjTu>IcR{dAbav{AwT6Rj``9C# z#~TlG&2oAY7@ERC1{V=Qkp!tgD%vj<3ph{PWEl@EKi6nDHc+SYr5k3DSp^4~NNzTF zM=eJ{7D}G*zlR23Ks>z*P1I)9DA3d>=6Jyz@#m|JQv#I>d$DNhh&vAwWOfr69z|` zZ86F!G&I-+HBm&_tSX^^S$h6sV)iFM)(6A?s2Q9X@ZO3lXJdHmMA#y{C3EBgYnkwF z963jca-Zw&F|BK&sD~qWawM=^tQ#3s@)G@L1ak?G9qhJ-g40CU*vGw^{4&_8JxN_D zp@tE)ka8TR5Yciib1w}_B$Q+sM@^8gHVDP%D`XO@?IL51^7CwAkY3xt#^!~n|JxZ4_ zCwUqiM4w>jxigK{qGLe2yH5mMTfurak$mZ3EiQNtRGVzYmg7``og+0ViX85WIb(`9 z`0N5U>7Qk+d8Htnb1Qaa_j!M~*Qvn(WaccnuxBwHYsR946r6qIIb(^NSOSAhzP)5EMR(;lWYtM(MKgz2*>Ypd&pxR@aEky zP%8@NqADURLvWEb5(|#}d+EvODk-^o2cdMB6AY8lML4*uVc63I8Bmw$l{KvlNx6F# z>Ecs6DJ9IgHve)Mv#iK#j*d4stFG7mwf6U`m|M<1LB&_Eh!?(%ZR#3uX!eWvdAMn# z@oWRyE}NC@N4Lx(&pr3gtWMLr5enB?ubDPi@U@)&oTH2!yjdiwdQW(Igl?S+>OYD zw`C|-tbiescHS6m#PrCP3m~F2d}H%*)t3@V+JcnZqXkq zUKo_eW7jV^f$*;xragz}HePT0swEEI`-IoRU?YTAJ8$qPu1D>H6aZrXgo??6YmfX< znLqX?qurPN;&p5ZrE>qQ;Ei>ub9;Bb>-k&ZrLH1ZP`WgJT8B(Z?(ngaz@ljwsuuu{ z+dqH!dVStEPko`l27e-T3XLXLpHQ0&l5~9ZZjwU2!{|k8S`75e-mKd{8@9ZOOLRG{ z_fl3R_fBS^0kJdGj5!fPQVxQs`QgHSfdfdwNPISKb9+hmA#Z7#Lqr=ZDnZ~k6wG|b!$%YNp5jhBHr!F{A z=21(T+QD&C`Y>l=y6O;=C{Y1gmR{4Wdh{gV6F8!*!=wO}ipqOOnT#D}NX0Yd!aAxz zaw_q`IX-&ttSq+W#pM#$6-k?vmo-jhxqjJ^nQWC!)I+jt{+^=w6JVrA$sa=tw74eK zR+oyP!$nyj#aQ{Q+yX0f0zG>Z{k*EC6ai8hHEy5YH0PF7wOfT0n}>$ zbUjC%mdjtya2L5{P02$#-3m#Rxt^{pJ8OxikmOU!8yF_C^D`>ls;thAoz_R3oAD=EriyGMzMz51*d4eR1wyXqGbb=JNK{ru87{Cz5& z-q1kL1=dsw?zkl1NTyH}?Ku-S8ws7&88YQGMmom%$EdB#soauo*N6DE+vOh~i_8FU zWAETQ@4;Q{;Mootj+XFd!G{^Eh!Nv+BF51GsK{R}#?iCN9&Sj(B~JGVJ<2N(ZmB)E zukzjd(z*etn{{PTjW-2cN5$upu?&`9e+8xecxg!O`MzPUe*bQWUZ zM!$Q$zHk0Y;FyBJI)|agK^)9SfNHH1&YH(2gdK)U(x1x_>iERK=%dUS>iL$fx9 zALRB@>miLNI#`&exqLtg=mh|g_6lbIp|wk(T4LL4t6GK8Ob$)eK=d4lYW>{@?osG! zNMw@spLA?fsRW$hTBmgnnt?BjeIMSk%ESh8b*U&eLZW^G71S%b)8XVOwMQg&6!m4o zvOQX_wg)^X6mDWt$bk!g|5F0-6yai#YR)9HdvM`f1wQqacDuJG-Mvsol*y{iHr)Pl zvtG?PUOu*C$4JJW9?79&{!AyoMWWg}OFOH{Q$+zs`Z%rboopJqJcu?i2mrV;+if8m zNa}bfrxo%?cg~fyz~bk)?F!4W11COm$~<*oHY4$Hit6(^O)1&b7r_~eRcYE+mi~th zEyJZjb9Nsh*C91RRpu`gs3ZAqjHLi_l+}UiwS%*hX=*93&n;}T^$8=mmQR^2M6+Z1 zz|+=g8&#if%~B-yfk!58?Jsya5H8AprBh7**A5pZdglMHbjtCF6|Uz~?Fk=)b~m=7 zyvAYkrhLM>v8UK!!p32pgE;l;8}uzsSp2#LbfOVlPEKkG907zMfnVxhzrpxoYv|DpFw?IFvyJBgQu=EXzq2KJ{?w)2#0%HJ&&$!{Pzpa4)1XaCtb(LGe0<3o-ES7(acuu!=@ z9-PDF_tn*0ebNc*=^-qlu4W@jQaK_%@=E3jVBc?h%HQ|*&B1@~lZy-|kAfs}&~-y2WGt}eu`&ML9`xtoN?xgP7mSJl4j2x*f+Wp7Xdn+TiSdnv1+jnL$ofOo>}#j^-wzZp^sT|Cpe1r82hbqs9H_1MFj>&< zKQQ?FOm7+($p&vu`HVT3*O-1`5ENq%a->^2<3ar_HVCSueFNr_8ljSy*|}s(SXa{3 zoez(#n7FMp)#M!oU$^L42@)6xS+02oOrJfF6;QNjwZKjbzB1r;2`B&`#c*p6MF)QM7_H`k0{)n#m$E<;S(t=wD;+_GFvR?=A z++jdxHZ`sK3BB;6H_zE$(sLaLC*s*zlzuhs7=l3V~TGfhc1B$t67V-RQEGk^*k z&4x)T0i_C{EA`MXaY4aXh_M@$H8IvL_&bDADE6?GUMM-#x=-r+X^{jJ5wiCI2pC7_ zv=+3C^UyL{+QUh@7Nyx}>cL_|f=6N@un7~4-2~&Z))Wo12?mUJ@wT0b*?f#>k)f*n^!pg1h-~V#ftZ z@o~ytw3FLY>*aec0fKV`xUKE?;B=EWeAgX?q?SB<_ZEJQ%dpz4v5_n!u zML-RRHV-J48BbRP`PBqvKF-jnn8+Xo-KPShmkLOGfHIt%k&1HqTmXR~{HTx2V|M zclHqYUhL$%o}m3(??gD1$Z#i6}62Cf&g=0ztgOY z+jdTCQwuFsK5jE#hQZ0t(}G#|fce*g)@wg!Wc9)lQTW)I4qM$}RIx-<37>DR8pKIN z4qyxTM^jtk(eH|OtxV^Vh=_n535~p@nVA&`=u~02E>xl-U_(bEk9G4&lbl7Yznm72 zXuG^1Y(eozrGm2H4@NKlRSh*_Ga}qo$b)9*=fi-(Yv#6GzDX%XaK*;(+#007KT&|6 z2m*(_TXe>G1yB8~HHbp0&v>^*WPKD2y(5_;%Bl%1xrLheNYcW-eIK7zZPNJ=-BG!sZw~BcM8Z0)VB9LKJ}mTFptgjkFJc zf!W?wX6P9r+x7dQ3UI{46eTlV{$#uP4Y6sZc`UoU3}oH${{(_EqjEjv6xlp?pJOuu zNJ}y*%{`#UtY}L&6QVnD4<7t58k4+-PKFU>qZ94vm|hnsq8S>o>;r#PnTYygY)yC$ zAegZE-c3xLUj9y1iQyWX1g!#3TcycLo3N_ROivY|ja0;&tPsI5GXZfEoLwM_rLDgl ziCvi-n(PMD;MptBiOA!#1=PT2Axjd@5Vv8U=4@#iH2YUqgQTOajr{hE2E{pYMCL86 z4A^tn#Z0!EL-^_xq1+yCmVDaSZ`)QKd@B8!{#KM7A<=4@r(aEW0w>V|za#Jw3O8=Q^JN$0PdBaV_(YzwcSnMCNcEraPRdy7?giH) zq2NPkQHTFHp=bpcrfDAWNZYEXK1t>iy%`~w7ZE$|Sy#1?UpV96_Z{}8t3`Rm-Er83 zdx5n+9S-h2Z{3k>?mbsqnZ5KneKSm(zr&oaAEp;PN{lc_x_C3h$iEx^ciK(o5)aF< z$<+xSB!7g`m*Gi>^iMaLtprn;(ZA_V3N9kgSITbAotCCkJKg3|dqSa%V1Dz#QZnM+ zf#rZ@+DFrOLs9V^`ZiAT6gD$EDQ^M(#UFn6H9)(l(B6BMDj3=6F;taik{>5`r7J3# z--2V@TsvdGfUBlAg`ffct*TH;<+Y73;Qv+M` z+|h$G81pGpE}?(BuzgSPinZj>n48hCs2jghf4Oz2yfHJdD)L!C;d+7|CGPzE{)|u0 zxDvmnpL}>IWi#l}cn`CyQv!25!A*-LQ5%U4Clek+x{aiNv0`>%nVYOjywMPyqvB1r zvDB}%*>HESZBkvW`9iDA@|yN1yX(=06@pP;*T|>X)2i}YT8y2kz1?@eyeYfcwR$hG z-4`~MbljLv`zPek&R}n%!*R?L&8%4Sm7Tx252Vt{_f}a6vZ` zL^p!Byi(KHrcR1}B^T0!W5{r9&2H7r_Co7O$rHx;qr+`dMq6BT_B-)}QQ{wrsyX%A zM9ri}sgtoa1=$PX#x+u+d$~?y7ssvFK#AiHja2??xR%`Z12FZWGIA{OkT&LWx=W2GzKq&f&>J!&1&e9X=?YJHA%kQuDCG#2NHceBHp0+a~rJ+%L zj7$JBVQvygsq!dUKV-0+Yyk2_HV5p-vl#3b1c~fJCzy9;S7WC4Sp*ZX@@*eOP4jDF z!satsl=914tSZ~85c89tk@GjpGj1$DubwXc z4>*?VDCB>o4b1HStJCNIuak#~jp0AR_rw3HFvP8}J+uF+FkSQ=ss%g!`UtaEQT|)3 zYg!3H`hA%~D|QJ&KR)8&6_oXOI*TgC*g4lWs3H-$;uiwtOUIWYIzC=*KM!~JGM!Qv z3E;MLdOkjLZ~Qt>Bo@?6sR%;oi^r3#lY02cj0zODIX^$gv+A?&?H-Vq{>aaJ;8mX$ zNj|C*m`DCzQ6smua%uqlP_ZbqygEF@U&i<8-V{#az=)Gsg1lpcy(m6UQD^B1C>O=k%+XaDZY+qRslM9>Ki0+&b~?9@G{fkpU7cK)AhHgd(Vb{SN7ru7lXg zygD*=MOZ73Aj~P6Ma{WsVn?#86H_e+S(ntBLv7)^-}^%4D9c{Bw;g6qTBo1zY#_mN z?I4cCaBGwj=iY>IeVy&~>Rle*ZO?-*D=-jP`u)d58k?=6zcUIGzH*#h4t#b?2k z<&7Is!`YP<`5pWgY5-Mql7AsVzHk{Ko|br1IPp~T0qS(-TzcY3XH*#=g3UcoJ9`bt zs(>KS=IiEG0#um$I%fKYV6twTeMxaO9QB&P0(Z%OU|a-Q1!II|ReF)*O8Sy9--c#h zNcSqa6PkG4Xwk%R0cNFhDOdMfgC$ct1+h4aW{6iULxaEu6UGh3N;hh86rH^lgHPE3 zRY*K6z-TW|%;!_RiGEYu3qAvLnlP#t-E2TxCVVRhUN!C39+yn?LSR#=;jznzS~plZ z#Uts8Z?7dqCt*|-<8eh62HX)Z`>_5MI4lnloY3Y|v#W(nt@+sL@=c~7SinIUEFtUj zCi|G@`nBTas;RBdIqG6~YTBEIA|ISagsD)YeCO}73uVDh+R@bDF?}S!P@6uQFmC3C zM&xn9CTS1u0RL7pp)m~p5z!wN^0ncRmA}F+JkDK_#t_??p%|YUHc|HdUReB$8|;al zGtZ{w^Y(mu1wHraGCBZ{GNM(5V9;U$2Z_q%Ki|><{l;0%}?nBg@$-*7`)7x}{f*K+D)LWI#7-Eh^3gJW6JVAsA_-XUh zG7LN>==aE0-9a|MKphFG-o5J60GYGu8xo2gTd;0+1>`~Q^H?s>O@{**FHor8iyR26 zNp-^(M7C!WOcWd#*rv@I1U+b8wjjbV8(KAPgdB+DF`ol?$!-%2i5tk45J7rJVTLe5 zUiYHli}Ty@-;X#$px5M1I`{E=AM%30fFH!4wvhM?hE;P`f0~Q2SzT|)>(B}T*%&i* z>jLTL6yl##gwz}sNhAOM!a=8_PoL`VE9a#Srw?@GVVL8!3|Q%9a$Xka$*`rpg5dwZ#M*&-5MG;SW15% z^9ZD7RqOc{1lZApRQ_h^ukC9jP;MFRJ0G-SLWc|gG;AGNkoH%QO?4w9sIGvj%$IQd zt$w)f`Wh62o-?p=na4ib_^nPDA9z<9 zryT^f2ma{b38QQkbBo31DpA!773s|S_N(zir*?2bmUpcnD_S$qQq>QFMEQ%`QUD+c z{?Jf9?Sf*hyTOmg^yrMJLJv`wIxv9R24%I5?ub$lVC;BSLOaG$RE(@Fpie~rUG;SHVl9RZ5>9I<`O zlxm^KYZWP6vXUnVD`Bh?+)2cO>nQASbL5j%@x5#k>+t~wV- zZ^DXEL?@N56>c+RAgm_Xe#k`Zx|Mn9vh-|hrgyBn#%)n^@I0YqrWXZi)7gn^sCovM zgDFrCFPPiNJx1*HjCyh*gGKRdDu^dXw@K4%vsb7%$j*INt_Owef^OXzgU1FDcBY)foaHsac{}%CVCF^iGLOp^j z7|ayN_`1N(%=NMhbAvc{q&;z;%xEuRlQ1tU!zsNoKjtZ$%>Gn^2tjGqU5{KpC-cb z2qbMEb(qH1yAA)r=uyUkNu*OGusJ1b$+Up?qh0$%VW2@IfqzJJH-6<;v-p$u_C?n_C;_Yc&=*!l7nZd zL)@!WfG(^6)m#(0%{|jP2ajvW-bskH5H$~fOsBK<+23k6iQMmAncuO!0jwnAN1+b< z>@rbyOP=+O0GcN>)OZT3$bQ3rb~ z?vqEW<^6819cqor=bSAIK(F1V)yw1nE!bx~Nu;@yMM==MusUl!iOHONui1S-%jCXg z{d_sNB4jh1G%>>O=r8CKNcGevqK)z^{qNAljcxS<)0SLE-mP|IG{ScuEWweF3DQEG zku=g{IopjI!|~w9_!EOTz+smOjH(7_V+|x{5#sAmpzS##V6bqfeH50oMwMdiybWJ{ z(w{lu7y%J1EJQHNvM&ERUtQT6xO9#1Itby@Xr+kNEGtU_OFR9~zBsyA!!MX1)UdlN z_a)%6Q!POi<}3NjnaDp7T&@|j%@1bJ&7x54Oik0mUg`>^sTO8dqvoL5OG@>?5Q4V9 z4JGNOw12bQ@ZL>NC)d6xmxbOJRyv;vOcKJt>`cX#X(D&z`iQ$+*w>p+8)6k)7-~6JMK@#d~kzq%| zMw`(i1fIWtWqNz|cw`4(OBlwP+sK&P>lDlO@VIKnr1gZ8uTv6-vneZR+|kw`uLpp6 zY(2IAKX0rhuZ5&=~68^h&BGc zs11{lrtD*(8TGa4<;I^`{&;R5vE+ZcPzW5JU5YDD0!~=Q*&S1w z&nX_5BJ_}lZX1z)&3|56znWtSnQW!am%c+9a097`?8M)}Sm@-|`PA#ItKxH^XJ z&7N~UI4@^eofcUa`7iQ<<<{D51c3T>N{mO6Fw{M+S7Rf(%sHpT&!2ikcWxFV`wtOB zNjU&_cN&V4#1>`(B5fsS>dz3De|_N49L_A?-eXvga(0ZV;3i3+2g#87tYH z05h!;5!&)`4q&&^1=OwO)%#_S`yuq5c&p6~6_dX+1AOvuJ!;VV^--4pC1erS`;{&^ z?zQW1NVD^SxD4{$$%}RIUXUBI%3L%Y9H39&Upt!OLbw2OB5iGZl%#d}S=FGH=*Tgt$L>CdR@%zUQ+LNk1P`=?lSleL~^?R!u<9DR*S~q~rYX6I6hEtG&qrs>}K*=j_eNm)H zcpz_cFarr(!0P^sjs|DH*aK2Kz0gL{s;E292hpu(o1I76s7ZD1j%{J9KWrw!C;-Uc;-h%_lq{QH< z(xlfCjppaMjLV;-{+eFrcYdc*j5paD&(l`FydG8eC%1~7)^0~kkex14Hkj?sDhcA* z7Ph6j-*e{#Xx&rB@_&`7S!RBTK8SejS0B0ZEV%kW)JwHJlY!}a5!=3wmmPqXLHlI* z430g*RfA5E|B@qLK^UFd1@g|$nPRxIyGvqA<@2_x^)zVmBDiq(%)L7iKQeWG4>(O< zJN<8!EgRSWw6bMq`maC4hVcOL`+u3X>wY(N7_MzDIv6tbNo!*}dag_yFNA|q#9zF7 zYY0S}Vp1t9KVN`1=_;9aZyolgkJ|9VoBewLHQy|J9X-QV;{u!tKK2n*OAoBczxFbY`0=~c7f^+`nOna57A zm9pqb6{tDm`Vi@x+q(M<_`cOBkzb`di(MMP9{f8G-SCfNY>XKHRQ!*iWWXIpP;eP8 zLr;fQCsr&J%FAMuKpd+zQM@cS=wBM=!#s6duW_=0i|Sp_uM+0S%&^#>_Pe~y*9tCCLV1wI zrQnnr$VdEv3P;B7jlyW@R8nX+1beC1Q~V|6*G1~ZocPqu*dI~>tUN$m5sI2i97+Xt zgaU5Tnn+&Ogn08S)kbcD;|=3s)Q3H=M3wXs?OluC3dpc z(5gQ~RfYq#^bZ1r=CVD|3;e+Z|+-4`{Nc`0W&O(O|q%C<^Rk~ zCxX*eZM$nN^20!eH+32~abAYPy!A(i=+#UCkX5W`Y;`x)s(Xie#rk_jvl@YIfX9gw zw-w`xZ7eBUe!LM~ajnTs=!V^ttl1~gL&d(bR67@gP3?b)1^(eu;w|`IC(l2OK1J9- zOQfVXP8~CBHMgpT{3D12ft&RQ4bgTi5M9ZN{$-78vx(|(7HAMZyHjG*)FcM5{naLu zJJ85m*@r9-gJ^^h3L_@k2K-d2OOQ09>5rnvx=nV-L~#g*Y!@8}Qc0yw*W;mQo%4^X{6n6{HW*KO+Z>^7(rqFH zmsv%eZEV-Mesp=1SI)nFk|;)vk~0~fPt?jHst-Rj)+|{>Np%pNLS+)AfR>s3=d~-()2yA~h(|lFV4P=7*;?R4oqu2MV z1fIf5<_9rr+c!col$N8u)w@p-c=wNR*u~ba&q|(J!2rfAr;C6Fwqoy7iBXF^&N++g z)pLZB_86leU@n?>1rJ@DfIeC%)ZT7+wkO7UV0lWqA}IcrIfjJLVSqy#^OmxmS| zg)P5&B1lsh8iE=54AFOp#X3uGsbf5_t;vK&1aK=i2X;eMk?dq;oye#%C@UD0Dz)+N z!~EEGu4H6~Y0Ol4dq_N%muRk|ukvAWLkruk^oUx{&pKFnBdhp4<5bkO z$zU0EQ|l&As&9_d?>6i7=_Xf=z#(IqAYK+YVy2Q!5D^!1D%P@kSQtE#jOE20v#3Nm zQ8zQBh7M7_VHIj$n4zNy6yv`6rMiQ>k8fq($7}>2=u!(x_Cuh1%Pf6m+?t7?<^I5-ixZ^K=Ue_157# zs282XH!QT-6-8_8V>P2aLe>Y6oDcS}qgh*ZCC$=t3@guTuFjW>iAb?1`Xh417dH~k zsE11^?Y`oL*0KM(cg1u0x}}_6yR3WF>2jhgvvlFwdr-(lFDTGP4SRd_t%e_B{luDT z_!7gucD97C%G=229f+-qQr8mSxHvLfTWg7XW$&2H2^-X%@m%U`LWztuZ}+(e>op7c%Ke0kIqeJ2c+Qk1lHI^u6 z&2sVMj}djn1h{hBR{Y)VjNgncj#Byz>0zXsA4g3zxsXgyK`}vsERj&u3k`+jGG`AV3)U!BS`1diA78Dqt!!fdw6m_W#EN3Jh&V)C5zRq&u zTDu3K1;Q1=?T}wVRb;C0T@%5{l}+`YF8#X2N3)O2=_k>PZBog)j&D+#L3l^UqLSEW z{N0WociLb$TE3yxJYV?s1o0lkshrmGjC*{a5=xkOxSvo|u4AG|Je6mqx4cgorw;CZ zDU;7kB+Y;;QSrSKouT4Xwerj8ngEFj4irKZZ?7E~IfU0xaERz@2pD;g*HUn(;7PU5 zEoYF(9X?Vzb?UM>K#+BczWnOg-=b4OUN=7di}7ykf{IzYPv;;epx4ED7 z*`ZOIz~a~-ZGd%o#Hn{>Dt4TomT9Hf=&Y8-%)Y4<%ZZZ`7@e+XM`M8k4sIa2^OxSY z0wL~#>XNb$!)*4Ob9aTnkG^UYIuu*St>vZAZIm-8i85qGKt4m+0Jftnv|wRb_yc<% zOqzx6Xv+zNEF8mn`kkB=(~j6Z7PWM!@3NSb35&MzK@bpF&h!w99v7|uaz*IJsQrGl z`@jwxvc~dN0M`HDf2x2qNNXjHBr9`#HJZ0iTfzT?SB{0-FaSl0{?og0udK-+U`bDs zF88uniJWQ+d(p~e7-TNEw7(!Zd7v7(;yUfw)cn$TPxbyxmJW2`F?XigV*1CVG-hwoaU~ z;`P8h%^8`pQhxNZR|_eVdVGY8Kb-rtfu)bL@t_%CTgsQStYn=6E%(AY24+>m`A^tm z?Yyd(yR#Ua%8ZPG`Pnph7Ag7-#Zm5Z*!YUMq|Q8(H!rd1R^-^MWN~* zZvvKZ9wjalr$;7Hosm~qLZ87c8-t30vr>nteXf2p(cXVxTwRbpy@4$zVzO&L$eqXb zT3gpHwDeQ!UOc*8*XSAQX&*je9K2{<$McLozIj-ClHr%v`|j~$F5&gaTiyM@ZkIF* z10UJpYc{WHMlX#X0&qnTBV@3Q}r>h65fUN3m7U9`l^}-|q|m7Q6$Z3(D9Q=Ub76vVnLW0d#k) z+Wq?C>u~(dQ2aJ*_lrURAmV2Oj_0jmQ)$hJZeNZxqHVi`88VxF`gy*! z2=b{d&4)l!NL(CcE|y0g?ELdmWDZ&uds1)G`u$M&&+wCZuRaye^)|1j^dDVnCymfG zgZS1!@H%#=&21oZF;Pt2eQDEqgc6aK($siyPziaN3FVW5Kjva#kmHVS`Y3J+K;Ayc z1Ze{VaJ{gRcRcO&-kRI4hG;v%jx^bxjFZ2_s2HE;WLHbNWm(?rvu5RlGnOFubIiw5 zc_&ZQvMQG8=3>8^S(Cr>mty?3wbitz<}2HIw1VTe1AJcv_NmEO|69Sy!Sp{YIDb6G zSpJ)!?Gl$SffP{FYq0BjjZ~c{>IWJFKJ~;UIA#b)Zc=3m~wiJDz zl!pdL9j%0;kJ;11E+h@jXl0vX`udC9R7Kb)3ySS~!QpbeticF!74fx9c=z5}^Q1&Tp$%aeEPP>e_8H{2@I8Br7r^%7QaEKO- zfo5OeExsb*n>JLg5=6OVoyVd#vB7WdX1Z+8fB3dOfUhNkIOkd3fzZ|&oml#?KbG%> znUtyuBvHaa`0k(eKX5Qhr$9@Vwj8M^6TD1uZ#wV#-NTA}gQ2-TMg!x)R*nP|;r~`h|FKMG4x;VJn|A)x-Zpf~M!(Scn{$T3?%*I*fc+v2 zsfl`sGGO3%z*MOAZw;vrxd~)7bRF6a3>J+2f{bt$>`j5u71j_Ggn{E^6?AI;M4HYP z9<3>ykC~z;2L>!-^vL%*L9;<71rf&3aS8Hfi4DwK02RZ9Lz3rne41&}@)>^no^bp| z*Q6jG&=fYx5xc*sLjv-NB4{K~RF8zINJ6>{bcn?YY~EIp!BXlQh(15=2DvuKP0jpV zGTS)d39NR!j-czIaD@!H2D&o42DnTgZ2@l$uJHu=V7=SJ80%bX@yCTzPpG4vtYVVg zi8=Kh$+S>O{oM<^2_Bl0r~~=>@>jzNYEU3Kl|-Tpd%Sdd@K1%~`;8(VQa19dVOtKg zCq4+3Gb-q$&MOf2heCA%3Qe)@EZE0Axvo)8nix%<%ImPtZZwtiYa|zJ=t@p_Ti_TI z>xnX}AmDDbSCTog2eX$BI8dU)CFqa8VgWWE0ljs# z0P9VxHe669eYi`nDyx!R#SDr$&dcV*?I~wKWIf|OPe63JS@!+oG(lZexhJah$(so* zH6L=7B4^&kBUHFFHQnktaL)k19m<`u911&OStV3GS%`YokH*T$ZryF?Q0rxT2gcxsE@?))*X?k$Dmi;m}c zE`U9-Q+);)yKxb~ogi^)=`neu-9{S6%EPC#lwj}g6<9K$U+}1t)6&& z6tox?+NH6}qM|}g2;5N13P+(n*Tqx*jqg1GY{ZTG)6ne{`g=`~a`Uk;fTbHA=#${f@ffLY3bH7j2F!VZDGclT&vO73tBeedw9HD#TK;mIgpT zC8MmdK3VhPi-`Fq6Z_84$Q<)ZsNB}r7$Kb`FL8L(~GhFD5UixLqMDVy%=zV(KCxEJ)5uu z-#v?oGaqu=!d^v* zdaC1}N#FZHau($95DA49N!B8kqMej0q{Z$>6Q>)ZD;v~LAk2R>eV`RP18@Oz9W@Lq zGpT-YdA76=`BzSscB@#!l(zwP>9i7S^igf@QhnR)C;9`Bep==J_zL0=DTzPS*L;mr z7eGx|1pqc13g|vRLp{A^!&RzkE7YdD&B6V&Upt?6yLGRC>D!HtcjmJCo-g6)HVmMI zVM5a0am^r~JL&rF;PalIf}${L?6!)$V_(Dup~BQX065X?iNYKV7;{Ih>y2CXY7Y6O zA>YfYlClOU%YIY~*u+jlCmkrsp2u>O2|+ zEM@)COY;C0%FZq=tvh(c4@iaCYfD~$gVm7ZRp`0g`Hbv#{PsvpNvD0>z(GIya^Sz}0mON%Qy0-eO-Or4TCZax#W-I+!+`<0JJz-%EJjwAhjncp{ zY6y!(n|TSO;cqYFWCR$e{%Ef+%O=Ja1|*o`*5ig;Rzr3fc;v~g+)4Te{%t^S6lG8} zlK{z!b2nC3V$yR3;6<3?pEGBh)fRO!DP$+Oz-yxNs1?EXU!7jN#y|6LtTn6@-JI-m z2IHXk5|~?j-RE^&q9J~^jFV9SReNtF!RbFg;(D{rHhf9Au^l6YYSShg|CRNuciAaw#wf+?hlZix_dn;i#Pe(EK~;?7TBS2lQzUb!U?bk z{9bM)?5%@Pt`S|i0|&nF1M$>j3hNq;L-95sFmnqJE8pLW3~`8##qdZVH-f-H?*?E) zr}JxOv*Rw4wuIldWayXS>!4smi4X|v(6aMx8)b;4sl{MJX9%u5L5P{6Hb%%Z5w=Bs zFUUw`my)a+fEy7xsAN7US)P@UnJt7TB>W>}dj+2pVtNE4QjY|%1!Nu~3(~(iDz(J> zXN6b0xTty6128xI0NX}YBk;0p4_|+O|91wqhda3cmNEZW?J^QM7+b^e^8SBp#MoK? zAH#<{E(h)Z!LY=#@E~E-jTE0rt7Rn~RpNEBH|4&OP&|K!*dW0p%$BgC;NpQdX(t-@ z-aIDvoy-$b_`Q9OzAh)^Ye1D%JJ8zkTiP{fgqnx4mWMs`$-a z8t}a?aE59qFLZcv^Rx$DC8Tw&z=R8qb4Hp*z?3c96BLO(QPw$veB`!CdjHcGcA<@QtQi(6< zGnZfOx+?pTg8y@g4xG8E7`yOG1r&hN`cK%~FNvoJIN5{5Xj-Jw#jL9=q<>;qW%T8D z^o3DM-xwkdW6LD)_&eYO)LB6iWs)dInv2?KE@s|vU z4yspfrc#lTwPhx{s%N+rH;kPy@`#o==1{?@G=4GCn(&)dx@quB$G}T>qahtCo>66K zEXa))E~uoon~zcBG&T12(KQIO7_}6=sR6mr_R8x2J9$=NMOfykH5D~I1@6x+h7!P( zCI&g%DlgYi=j=moQO9cNT}St!vTjaUhT~gAW)o4kJ>gDriV5aMSx+-v#y|$AjLF;r z>uvEKrgp4d%3w~}oCddZ=(jTwMeD*dS4F)5q&!F9S&-~`lihnh!&6Zu_wpn&Q&9sA zU5%GVH(5>k=`IPv>eH%xIbhoBRePfI;2%>uf)l2A7>#cw?EnRa9gZ=JD}teNf_mF` zl5HrGv+ncu{gUm=bGc<`1AkQ9zl#^^;!xSuedO%6>>1$HbUp@|`qbryW-KTrx3>YFiA!2ES5DG)^kTnl#cDB@liY_x7gJr`fDA>97AaI{ zM7?-5Hpi8{9jG?7*{EMjLs_m98-ry`SJq{%seB8DiGc>7*>oMC?!{O{of#WQB^kW7 z5X{9r7M!V#C!glxbCV)o+h{7IbmGFHxe)_IzSD^#cgyLJM%0Y1Bb!e?7Cq1x{tlUp z!0>5M%;a>{U>7%v4Iw0?*5>Kwgg?3Hxac5*a}t=M+P?3vL+t2aqu;yo%JDlMv+42! zEoiH5CPWL;zIUB&&3_ij#$RKv`M5EgwSsco=-MDZJbq=rU>JZ$Y5a{Pq(e&+d7hHy zouzYo2|HVs>W4o|8m#aHWoC~obz#L-VbCP_SkcFZ1jp^nlMu^GC;w2|9!WtmXv_0# zK4^#A9i3UlPkq*m#WYsyqREIA4jLN^%O^&7u;`%R#6s))X}8A5<$%jym?RhlD$%ujYC>6=t-HQe64@RU-|U=)g-+1NWI zTjL{Gv_(oWF)X&x95Xr?Ku#KyvTS`%2&z4c(4?{3D!c=4v4goptlJU8Zbqo`4!RwW z;k|XB=Q3PNdx;dM`|X^jxgcnj7OsNG=CK2+j;_c{E?%n0Bkcr=p^tb3dZCXS=kaX~ z*G`rtqnuLFb?Q@g|L7S`SE6BC$~@$A&O)MTaO>NpY1R=F%zFBy1WMa0bIJBO3p($h z^|s3PD``dy1;d|_Q~uc-hFhQ^{=JDE46-wbaoUguy&%YGq>pR%QMiQyupo>NJej4( zZ0U1aEfCjMGxLuHDzUFZrpU(5Z)REbTDw;Nj6f{NKHMtBeEwLgSR|K4u-hbw0mKYZX;EGUaFo*mX11EsJ)S3qO39G?rr8 z!!@2F&HFba9AyUg_Em~P#l*#s-)4YtJX840N3hu%jXiK5@+bfmAcF`rE|ll`d6()rhvfu=@d=Nvkz zsYdWZ&~pU!b1+x13w}Q7&)qzR8rg)O0)F5Qb4ok_;+AP5ZnON*X|uUqY~2He%h@w= zsUIvwr>(wZfZ0UQDU8%RIKqjYjQ>~oam6p~;c`>j{J1NLP@7|{L+rj2SRJ+-IEB%B z2}N|NV4@u9?8>M5ms0v1fm`)&x%*Ds9$$;@(V#>mhBVhvIlM~ zSFB5(J8gs$)EmzxGB|Q1L*wqT(Fz~k303|{O z=LB}d>OIL8J(v9ZDthMA9bYI7wpmcp6W`|G5oRzFzS)5@w-@fDX;<{KS=@bo2h(u| z?=Qu(K;Yq9DYq)D(#$C*HLq!3QD0kpEd{SWk87rAQey=gjTMxPMiU8F6q|S<*&|8@ z#tc2gYaBUhlba1YUasWRM`Os1z7A45bfcX0Wl<>{@~krEF%-u+84z)$IdYVZj@Y|v z$vtM6HBoBD_E-z2pnkKi$ZV6J%^;8h`gl;N9^wE`U1NH z8Zi9CX1RwkT5&5#dy7)|h}dFN9u~Xb=4fTc`@-|>O|*5bjN_*M>kKZiO?<;t(6h*{ zt`}tmlkIis8G2SB6tTO443$?km;UXoZ@K$!A0sR3EZehTpT6&p`wUjfAE5s&SLOPj zc6V8rel#`w{6zoz`M;L8i$6jc(hm3^f<*a7lF0JOClF4YEMOh>fW3bMg9{9H;^;T@ z9p}MyL{hnPl$u?eoOcr3j+0I;302abgfey2>9UlZ0AH7{-;3*l|CkE`dHd;k8zj6z zxs-y`U`DQSw9DB1^7Z_*f;4!Y>cn)w+Z$y2bVT<%^A97VW7=1JtcU84LCPJ*$*-5{ z-Ru4PVy05Xa2j84e>n0%3drpa5dcCh6ZA-63$q|89!~e2UPo;#K%}rZ{{~^PBJKL4 zVRP9E16%h(LzVu48PW(`7lojfBefy(!6HTa{OXAO?V+_I$m{D~9BzdTNOuvpR=dru|^w!z4MQ5f{ z;PZ{P`J%pC=?nEeY~}QIH2{~#<{Y!9qGAe!(54D}QjFcx?A6rdy97~fcrn>T(?Dgy zG=B2e6?&cQXS8)+7=VjC{8gR|N~O&n%>4`)#iu2W&R zcunuq$1!_sxYo3l!R@iu&&w;nKh_$d;7BX;G@p?>{-fc=kNPXQZ+{|BDJ4&iA3S+w z$O9V_hhB*AwmZuh%^bo8lwU!Z0v0p5X6J^7 zjkcL1yms>F$Rl2~j_Tq)Z$R|Dr|Nk50krHx!dr zn2u_iuF>5cJyRE%k)di1Ed`RnbDSriiKRG%=8fq@J5&p|%BB>7k5p!4_?Q@&aXf9# zxr8|(nPROWry@2Dr{L%?$ydk+^Z}lXVJWcJjCS-_9$|zH3Nj3O_oPBuPNmcbfFGy_ z!pM>`KP=_}9)ShK%I@Ms(1PhDgw>y+Xwk>B5Q-2Twex|u*Yf475^jt-bRx+u@DJs`Qv3l$%1p8G^MTQG@b5yahleqgxJ=~!*=nB=Ks`LZ3eZ^TXQV@}d*;;!F; zW(^io^>wJX2AT1)c1o3D`E_ETBa(KV<~-8bhvK!16-t;-sCe#i1|_J2J%uG+;HkK& zpJ{=@IhGW+!brx@{dcHAdLl}Sexfyvx4%Ki&u({y2|Upoh0%^XwDy81 zhj-%868=CW%rM}Jw!NE5qbvT!IJ0|It+HZt4Hfq1p4D&C>S=X(1Ar=ZFTrt9F8k60 z;ruX}xIxCojAN*~H@Rgb# zGu!KT2n8YKbMW7NX>Bq{#tUOZRnxRb`8L{155O0Y#)yNf>hmvKPhlu2JN=ephqO=VGfL#G z&5HGp=xkyyPQsvQ%XLWCl#8*HWJdc{GplzbzwO<*w5ce*&D@H>NOoFWv9PtQv-($; z_T?#v&^;}idjp>48Jr!_XzL47h?GA2K-9Bp5m-74A~Z2vD}uY$xC!I9W_1~)vm8=n zO&LX4ad(yw?aMyCIA&~CK3UAqw zh1;<8qhD~p?)@!{VDg*|@mfyoV5#pr(4U;*Yy|V$7bCyBqKg?eT3c9**v}5!;mibu z5@DDJ4A1$iY!>L1cNKrxdx`tPA_ddB&h^KDjto3C1lFGMPK}c#8_P(`{PR#sT*sV zt6_ZwDo~Vw*5OpMY;5f8E>QPLIjb9~XlgpTIV}-gJptaGq-a_#_Ar)6G&<=+?`kxs z5oyV+8Y-_m(qkPN3sPlXLfK+Hq>G{vH);0F3ss9FtOSG)B?jzTz}!d!C0tLixTlId zIbD$<8`_uiofK62>?S;WN61iQUm@n~FVti*rEob_Ew@$}8n=oqCMxp^Ek^1>t}&JP zR$81x`Y0!%C2>Y4#r2=?v$B)oQaE!&p0`a-3yn!E+N014C85AEN)ofES#=a5_d5_7 zmP`cY&p=VaM*Lxd3b}+Nlu=sQO*F7C9Syr)fWl_+S}}I4X5~;&JY}>0Gz24{#OPmK z%aL44wuqDN{}WQbsNC90@8%-gBV`uTKh0RFkFhjdxzCug11G*fj=50~IN#7I z6xNhf&NnaQ5w{mWF}k*+HNCw^&0hE0m(o^q@0R^>YV%`@t7uYAPGP+iO?klE2wwY0 zc|uM2%I?*-UNhK~&A+fF=9KU%qI1^<73Iy2B5o6lhPRc@6GS_{1ba8VR-VEoB@WU( z6w!}%0(MBvNC#&(Rz9w%RbRUI`2=V6j0`8ZdRMFNoXFqYgS#myDvc6aYpVb*N znbz55I6RvtgA$IFRYrv?zmVomts>_CnY%X#Q_?&!NellbC4um#-ot%o#7RvIaE%?) z9Lpc7rDN|rkRT037S04MS@BKwnC;;{Jy>Lzjd2?yBy{;LVe|CNA7 zb`wx?!Z9s!mrgW0V0qnEhwCC#2wr9PcKALhK;C{;R-v!UOH3i~=~Fq_ME8Bh5E0l~ zracRk6C{e5|Mhj=w*7r)!8d64O`Wd3T6%q{fO>=mzj9qSAL4enT-C*K9h-J;w8Jnz z*mk-L%PddcIY%TlWvyWY4L^Q=6$|ZzrM0w}6GOcFt(#JsXy;Y){dMS*4MhEwW6yWC z6k=~PKWLfH&nz}0?rs>)jE#G2IZnNTyRm31-a7s+Avb2^qhI%G-L2mwN-*xQ+I~8_ zGN)gqd*-meTwWv``0U16g_%xSsfHq{F+QD-BLWR04upn9L7@m-)JH0m<$eK{CWN4P zm!6zRnC(Z1$r4Zzf7|vJP$pKVaIN#7_X4~*!pp|Kg>X!ha0u(oDj+lG|1eqO1 zx=Y)GrFIKx(eBrO8uT&e8X5_gzeA;+!cBzWrNljGS}d^*9SA~Mk8&FW+r&!$^~(FV zXdEs1m#YyNTqsg?02K8Tz!O<0K>VWgV9;^6Ig|hQhOps&c=W%NC(J)gj{jLJorUAS z6FGhWcgdvxN5_9LI0Lp_ZClz{tkp5rCii6i{@ZzMia0wu`A5g!r%?s{6iZOxu199G zU=2b91VY${p+VnE=luG$`#L}9A#t8YS)?*WoA2)j^dU@NKSU|q9D_)(ovx6dPPi>~ zx+P;3lA>MqTqbet*O^u8+lR@^XI*m}o%+HpU2#(h?2BI#YT^5=@E^-%FKfUksxcD1 zt8DM+)gtQvCVY(bVRQLK{j0nzw3^Zu2z zx$Px^$&9|IVoFmOYxkY~&1UsDu^<$bLs6Cn)jnN?Yu6-$s_e(*+f6-PLy;AuX8+1E;F839#gZUn_%xgV_mn zO$^K;VpX%$oQaWxD++?ypu&qjxJ*8-%m9Lfpj^nBgTNoAGtVqj6m-4Xtsqp@uU2Sw zY?IEp6SK!h7ezA!?*8E8JC1mIT@$tBR3Ga(^&j=~6GxtHS;8MEl&_ncPA)V|7ff zU=^L~3O;b8ckx-oN9e>>bN4_O9aH=z^IBVhFsl{FgUHtdJ7%^$e4XPeO$t-r28J@>O95HumyP?e(*!pxRO1(wfl=&DT6O^Au#ZqY|k4IDyYj zy8K0^IA_n{aSEGlHV<0mmPGe$K0PELife%sU`a_braQxqTtVWl@WCO15F~BV1`V-# zR=L#Cwt`fU)G-=qHR>MvU}pzfBgzDM)o9^0j*d#k7b}`MEZ7*ivEOL>a~xYaOR@g; z!p%@QbWhGj=_Jm8VyMLBGnZE#E0Tez%}%(4xW03tUY60UCIvRF;6ZjX>xVYwWV^bq zL_oF_s&Z^qo%BMeuT))`1jQmig*c6-5+YGM%9B#Df@VgQDLnbc9y}yfy$4Z!tTLE( z8?EoU$EY`4%bRGW{SF1e3SL2<1`i2n~mB)-RrKVD~r*ywPbIV9^ zp&4f#MB1nvE#&n_se!xu6s!V4dqi?boew<>1pk{OdNY-7IGPH2*m&#Ad%BBc6)4Rp zWFlvPzzxxUq1%Fkuv{PU;%HD*#;Yq>Uecn*A$?ZDC^g$E6RCa)_rVi}s4ac1g^5`+ zlB^CQL46LDuYye+BG))HDYQ~fTpTQn)f(^z&{$(^CYz2=35?U)Z$1f5e>{*qez3;; z3y(Y;*fFpYAti)&OMbRYeURwBo~Txlg+$8iQ}FhaJeAQ^H;$5QiJij0gtFkt8fut$ zM0aZm6kQQGNEvL>v3l;akeR?Cy`kfb7dsAR1dfEjb1M@z>whtJ4$+x)VU!Lk<`>(x zS+Q-~wr$(CZQD*Nc2cozclGK?5B|pF4$fM4{=Vnz=h*`sqIX|CW#xymOjWBUhIZ+E))~4}o0EcgWtk@`vRu@4pK;285tQQo}r_eRCBLGkZggEps|bUt|d| zGA-V7_k-=lC}bhslt+o#ITTnycGJScr|nn0BgQM%_hRLIW zJV)<`H0b{pn~N@m3-2<6WQw>&2UBq8E}t^b1f9DcvmjXVP!sJ1^D{1TK!0hkNBHh+ z=q}>uV1{W7z{SqmP^nkl+Qh_Sz75EHtOzMzP|o?$3}R7EcgAZ*wX|rRVYT;o^ocIh z_HFq}|q!_~Lz{_Lii%jb~NcKD=g{@(>i_XyS+Wf~)b| za4)d}t66ow@FGxHl-ev`+5qeH1~~V{;322f^ZFje;1P|GQcvCjbMH;A^Ojqr&j#s% zAVy}pAP9)_ooDv>{8`{$J_#sW%shZv&d4%zSu`t*y(mRkW)x~uSEQ~I+iuLO%3;4~ z^r{4C(dnBLN?~xx8{>d&r|aDy zZ7-G4xMe9AKVwkgm!fctUiqvn8$X+3XFsKE^xA<3JvYy(;IT8pr5cj9Mg&A6w{k;{ zV3v}jVA3vQDS8GXKg-R^yh8)B+-8#+Y%vru5xn(oC>yzDS>2Jy^ST0~0Xw4^)Zy}n zZNg9@zH-S(hcx-;H#{P#ZmNEH>}SU}OAOs)Ru3LTCjr~7q$uQ1Hsl-K*H|*m9yVZe zO>dgPxfxGzBB#wqJ!l2OqQ2Z#wPkgrv`^07V6K~_h>VGdeM9@j#)W4=@p0#xWWQ*Ub2^Od%op1U-V|PKb?XfI z>)Mc?DoMd>8PuU^s6{OvmCg(b{{@S}aW0MLRz)LE$JXWiK*YibJ}q7@U~r@bIb=D~ zgXNoDAG`+|41-R34&v7k2=j7a4&)OPMazAz?I|Q|&bI96W|p%710i+(PLLbD-B}`0rnj*l;v!DkJae*M_m+_Z+u)A|b8x1B8za@=);B5-WxpAu9zG$;fO!QgYNY#q$*(FXLiI+CUBI$x1l~`%Z zgAHIwOcmVm0f|{Vcymd&)`RQ?1q&0|L&&lmqh#mn@v|#RJ&p1|@4iRB3QB8Tu@pE* zT5-#b&)2OzGQ-qjA@;`-lELP|ucw2jzuBf@4s??Hq9p7jA zYRmA%_C!gxix2q@M^F0b+qo-7eui=sj8pPl#5F^WKxy&8;mE__uGhF!&P5RBw>CgQ z$X>LB(pK)ifzd2Kz;KUGYeCVD%VYA@BUEO#wQksMp@wtl3RlFiPuhInK)Z6-JE}x!@u++SeCgw-JoNk4 z$0>Rn*fA+ap0WHvVAm=KmXdrza&`b)vu1S3^`%B3L4lCb?tM&VSGR;mn`+wqgiirw zv*M1M+zN|B$TRl`O@>X@@O}Hd{Rn*V={w9)x|H^b{Goko{BzdF!VY@s{#sidAyF81 z^Zm71=l6YNM_|9^w^*amdgS!RtPW_2@_jqG&xZrI5f3xC(UW;O2=Svq=%Yixr#|qn zl*$cZB~8Bs`}_5UiM;P_qQX+zsQwct88pe()9Uwg-yxk()fH8}}q;Pf02*mYN zJVNvv!rgH)ZFc=y`O>wE3HWQ=&T|;5$tCcR zr$nuvm+o@cjVv+t#nobi?>l<;6IYLqW_|I`{6bIOLu$JmFiy?=YFHfl$jf~k#yY!; zI;(G8;DW)Q`(&7^{ALiOd=ke#2EVa@R_4%uc|=~%=$=@`Y()va&9;N|>D!HnY175hOjhFK8moJlzBONgCOHGv-$ z@%x}P6QJ#Quat&o-nd%~7=L#;c?5J8rsPTu3T5vu@6*3&b| zm3HAkKsZN?t@rnV%Ic7mA-?Pdg76>Hon-9xV!UAjbHI}lFebC?Pis(#RcOmpQOMGg zRVk55wO4Z?)nA}x|M^I)oD4psMjV}-0OcYS$)PRzSa?y}|6f9<@C z|KANltZe@sAH$i7CGNQ5)!W-D1vu9T_awvyG<5aw!+Sv7{Fju^Ll?iqK4^*C33rm&CU>ZacGc7H-2qII&+?eWrW@w|}*eIN9vtTGt)&HgeH0^(83SfW{KG5rj0=~r z6ljDuWCt|JBrUXit zd4+ZevBd;3wf$Cjr3|8vv&GCHwvVV9(dQWVCkA27N{~mB5Vcg%Mk%*0(L@WF^TKG; z7;_V=l!jq&O}m+VpYU84GN}l+R+yI#m-c9ReXW@mrPyCER|ir9@yP4)8DW(ja0lOI z7OXJ0I85Oi@rkUC`fTOzqG2j}2g@eK3wfoN zQy@)YpGnpy!?h31jb8Ks@4mcK4SlWG6(#4PMS3BXj~G|yrNk_aJx_7UvKgmm-vENh za9xG@-80=3siRAzWym!^rl5`;U*(2#FudY1-XUN){Jy&7XXS^6kaYJi@p`zqm(@ z$jP-I0wkkm5lgHF^zIme07jxl=q#EGp(ko}!Fk=R5Vg7zA%v@jPcV589K!dEkj{>t zbdYQ65gu3+N9(xqK1JOlrr1SxL#16~1n>_%)|1?@_DAVaAm}oRhHCp$z+uvC%|o?@ zZJ{?w0E?=f_ZaUo_|#tFjk3?G2H zA)71>;U{1SrSqSGfq4=%$EZ;63gJMVdKhVii^hOY;PP|gk-U)LA(9k@`v-z?kAWT@ zSb!DGFVVGqbK#KSw<&3Jc{o2w;1Noel8?_MrPy}`RU1{Dc&3j~Tvr$UY$}mP(l+() zy*f~h?Y;6e-C~BDf!qIXifu|y>nsFeSuyo26cck3s0N!7F`JbP*%^YCf(IT@Bl=}-tGDrsa zq%hBGw0!_sd5C*3lqDgaL13rK?&#v?f$EG(sO|F25Lvm_qs#9e8^TyDRyK?=C{FC? zgJ7JbX#Kck@mBsY31i9{ywTCbG5k?cL|{+}r~DNl(YN$FymsaiCi|^f{d5FLyz+Jb zb+bz~&2l!6>>=tTu6Bt?k0Fv46m3N$8K3+HKFU;1Mbw|klTwp@DIc#jM5q_CG> z%OxL+L;jl!Id=O~awE^UTh;ccx0GC%DW9nFp5zsIvsnSBHe-%HDzlwqUkO_pCHCvG zLqJ1xHumyuM6qC+E6mDV~#DY8tSsP^Ov~Q zh2Gwu8^hEjLo~0^!t1&&l7S`)oSUKxH2$udWh}jI&Ma(g!Ifw^A=kAg*~4_JoZMAG z2c$T(bUEh*49HD3Z_002tV%?F^NFk14>D0IKr(ZNv`dC4?$)J8D5K-GXe)avy7;fc zTzK`Ev5_RDd{bYw^!^cj;m$6xH4@mKI@>fKz;F$e%Q7~o`cN~N;cSuaV~3kp$#OQ5%Pd3vJbC5;7x#~ll=;bFv*b5;-q=Us^B}}OD~ctIRe_;1 z$zo@ZQySxnpPAAQ=y>2{OX!knmAUH(oP93Aj9Fvdvb-z7Eogl_ox1nIzc;b$SOoS6 zuqZ=g)Yj_R)z>+Zf*GfX)b}}2BX|mGVx5yql&-(4QYHo^_mVvDAJaL8za2*q`y6+Q zd_+N7KN&7N>I{~H&m>sA7fCnhZDmx_{GB@9ZEWt+<(JE+^mn&13ldZEXu0B~REa)h z0F6T_t4H)?F(u6eG9L6-4bFC~Bn)~tu(0bUF`F}!9yohAi0edtsFMz3wq^A%*a~KK~YENGnm${yOKXgo=oYk=PsI9 zJr|jTK#_{~#M%pm(u&si7BwIl604eVW{1o>GF$N}_tRKI!vHkhMka?V-=9^6h_-23 zQX=wh9&NZUtp_=_i`7}-5RPVPm)g)bVO(R7XI3G0&6>92GQeVmvPeFja|w*xm%vU%^D0yt`9KAY42!93o}3p2ANdS;3bQHaLog`;CZ;CJBWI z230XWG*Q|PmJR|`EH(N~b>>LZm&2_{()U)eqzqKo+`uOb0pRa4ZFn0&7#bdQf z8*I-qO*fM1cnHargu1E0KRE)t3}+MX*E@fKPPn)w%4Gn z!Y*rJo^4J>Vh{@Od6lj}?A6cXXC`uvu!x8DL4tFdy&u(~Sx#OF8e959tm%7N);wyl z+~si^8$Q-@h<6lnvN#C z7`N>I7;tOquRFJ?JD0!5f8Ay{LiqG6-e)+{hpe{XcQbMaNd2}zl&n*m^g+E%Ne&+B zW*Pi(`s#H8C}}JeOz8zow=|7@&Zrj5|AH59Zx>%T<5ffX>M+!t zxkop%JU8{^(2faITWopt$$i4m1(jC(2>nSP2=eqG7)a#B=Tl+y_!=V9cl4IQHmS&$ zz1ZRji4vg}UMJ4SAK7QIuW*0U&ROz)SehP#fvyef&G@o5HZ=E-f#pe_Gc`0vE77QC zkp$<+p_Ul#9hcudswm+a2*Y<-VZuiWe~%}KBDOEclbVD5o**Wc#zE| z`~jo-`J9%fW^skvjdge^c-mopD1;R~Ej-ulY5&PTxbd~Kc&*SVu)C)n)L^|CnmZ~* z``435U}mIR+o81ayapvqmAdWdGuZc|lF&1!E&rCVwv6z7wxIO6!m640eE^F_om~Tp zc5wFvz!elg^%$!#Twk@raTLm`?)^|>obzESzRf{ z2!@#{jPvuDWTt_W6|QseViS^}PG$^>BdKooh@?_7cL5Z&*#9mmnPzf<;?_ui7^#A; zQcna3j16dQDfbHgxh8cI>Qy(yW7rn69|r$qn&zBzL*Y2sIly|535Yt(WrpaXc7uWS zOnaO8WEo@O(peqzp4(eA$Sv~DtIKGnpF5k%&c0JJmnXsr2Pne*j4VG-@})oKL)4EY zs==KxL0jjn>QWq09Yr%P8v1k*tW6`De3R2IX-mLpbalo<3$FjE8+J5CtqZ;>)v5{1 zQMIboZvk|YTKAk4Oc_BiGH5kt30T*%Am-RddWNg&#TF44%mjiyemjQay&Cy(hif(* z2j)@v$u*)i4r2wOUX4&wE#wc-o99y#fD?Who}eYVfeV-Pr;N-_xTOg#K{r~ZaYM)? zq}||AARr}EtN)fGK1yaCd@UKw1Kp-DKN@!v)7LtHdDp)zKzhT;(&?fZORd>%|r3bbcIWk$v9)Hl8)OMh_ zJ%MJJ$k7R{2KSw$b^8Ndv50gB09np`pDK|}3e#G#>N1h4x7DQ&tHpJ%N_{=9!aKpGT#nShSYYZpwzzlkT zIXiQQ0ML*6kWF~Liqc69f52165EJ)y{Y#*)mm;>Oj6b(wud6cn0cxx`gg)$7VuEq< z!i+kiZw~!{kQ{9~rh?(^U}z#(a<@b+nLs$1HY}VMzMntmA2}_kOani#9*a_+x8{yS zG5~;$U5O^O@QP-JKz+G)*DqygmrlY3Z)uG&tx7|Q$-UrvXZE*>q#%~K(Rsz{BL56w zpKaME5DNRc!0iNEyKAa17Xhr#r`30TRx}~{FC2NfCL5!^I=*SeB>(6U1hffO0eU`P z&sUrNe!EbX%!h&S;`f&T`lS4E>}eGbs@!=iwty|E`av$UFGFbIVMB zORhEUKlp64)hYP=OlQ~+c=COtY0~;+-j-tW!@@&b)$Be-XX3@xff>Z^b(YrBUnbc8 z(?rk~G|yl)F!c|v1Z{vI7N^9@c(X8+>{(O2G5iGV%|J*e1>$3XM`MBBmA-C+~F8ESuczN6nBojTn{#9KT(D^r+tMK(LEnOUEjM;KTQiim22GZdiv=U&2DZ_eN{g?UwjZx^lfA< zx^rJ0e{O5v-In{RzRgnJnlx`td*KOgOnrZRFa6ZMyY7GZa6Zs`bj|yS_mbzaq_C~{ z3G12i#kndVjG=R@@tctb%x^fE80LYvJoaP=xXb-L*iHj+`b8?dgSV1YM@j7!5k~{D zwPnp8Z>{hwMWUw{*X6N;R|h(5%hmLQ$(Zr6n&lntno1|}>R*ae*e8NT%>Y{D{_4B%a-tT)LK`VeYO)b}f}Bm?SJ z4wUwc5uj9&7iINHA!@|KpwooqlkJw%4^&#Y1P*=#_L0R=)@S3~6u=H938@hulXBDO zyp9bDhVIH-4k$`*B9K8b4TKD(So@IzKxpEj0eZ;o&{E z1Ti~R)4k8r(7x4FoPG?HfwiMWxxRbU+p3urF2n?u0JRx)_uTJ|h3^%1bCXi8S> zu+k^?%#Jzmn5eHP*{0lAKrVygIeFvx#Y@_)99cl|8VGf2sM@Xw4H^kv3UOO?S<4H- zRbQ;GS70qcC)MZ8RM%SC(^OpQy>3u9w1n;|K^bAz)29^EHSyYnvKVF9e2v^>muM~< zRVcz8r4aQ zBA_0a_Dro*Esbi9(@-BXHA``=mK0W3>10)t2Bik1hwKN|5UqDjmWw9?E3P{o712ZX z`LV!btsvbbpYKn(UY$pDxoi1arp)col2#ZmNuE-QJ-n~cC()9p{^~4{~ql69*+ zAdMptC1&ACzIy38&PiQ+Oyqe`?4f%|tX$+ML5WvAxgGUU|LDB&ksr-j_WbcN{wJZC zg2}!*LFv_1qy%YXrCg0a&CkJOakRiU!K!LNYc!0LM~9+7Lg!tIPUP_BceDWo_z9c~ zk|w~7qHqD>M^HJgaPour&JrQw1K;0?DX&NaP26cj-0}1;MpxWj8le5LCFz3Jc5F9B z5mUJ9HdY%WtIT}|(`O#i=Z}Rx$g(v%9=wQ%g#Jsy$8T#u+&yFG;j6+FcHr7bq~m!} z7i1{+h~A--2Y`DNdPUxdZidOxpEJo3b<~S@4Y1M@NEXGzU1_tB;0JJ(d8KMELKSu& z^aj-Qbb5^;y~2Hve=_#xgfL#MI}Ttk)bj*>nnx;jmAovQ785602QN8mC+*z(>dhjI zc0DNv$l)zP2Eb*vXWL_#U^eSsy(zK^Y*MfN=y-S2YqsLP_vYxK48teg&3V!D;XV^~P*z_PU5qIzCe?t-yLOK`KIvHjdYjWEEw7SY}-{N$T ztya7UdE;aZ96mV{PtIa2CWCS8WpX*`cG8YCpq^hhk58Phg2Q&jqw3d$SiJpvx43vr z$XHm4m}aeIdnKSi6qm){9SiMppAj^H0GJaP5&dPqRMcodJ}U&pD;Ccg#VraLyR`c| z>zW2ht<1uc{6q(!0w2FyipE$yhiodSoVX^%_x_Sl}w-b)v9EL{iqt z%rma;+-~^!W#giyoQnv%_T(CsG}yn0Ti+=iV@rLOY?xaehb95Ze0GRi+|)|70(Fqvm$(@&>>g{fUDN2Jh=Z-0rAma_e@i zf-z3%B3loNaTNutHfF2(YU;OO&6V?O9oq&?gY7@90V(QJl6v}qHFjLqrZB)DK||k> zjF>Ybf{`ZQS?-g@CMsIMJF34qs1X@9cX)zZeTB67kF_uyTymtK;%S^vdY0_+Sfl6D z-c4%a8A+zlmEy0u_M`UhwE+I0v z)>rTxnXT0UT2)>}ktp=V78cx_gs%(Ix+&}2;*q#fiv}sGbgyV_NerD=XV849aJXhn z)`}Iq2jTXsK3A6_(DSng(~ME;WL~NBwB#CTUuR9WI6{sNjdMfK5TwB%h_3B<%eqa} zNB+Ii^4s*+ejYv@*^_d2`Ofv< z>T0A(g|2(}+HhQHx#Qhj_;4ruqs82q^A)OZF^E<76QV1LW-JRiwMtR4IHfp|?#){b z6Wu!vlgnDI_2iXG)I_ThIu$p`5*Jh8qhxZHItK3@yYN1gUxcLMn?jwaWz)4DDH7F5+OdWBErY14f|EBc~#-NxCbF12Wo&slk57nKqX@~Vd;>*@4Wi`lpx zua#~RPtDw}7H{msD0}+V4K2ILL14S>N-eXiHsAKFXBG4D&$2%n%(aIRsp6jF)H8}s zhNfS}EGb*;xf6-z9PNA8j6=V>V**<>&g$G|?yO?ry6DRN@cR#DGIDRN=WSaE16Vp_ z2J~g`4}kqUqOT93;@Rkx2kwgnF;5*liUY~1ut_dGpeHMNst~_<})^W^HJ^IU4!7Z~k{UDiMxi_V3 z1WctT)KU`QV=j*?x3*Ft^i23_;3Kv@tE6SU@&hCw?~C>yTP`Eh{|+xId)S*0(90QG zDmmK_(904q{>u*2i&{83ITLWQv;IFs9L)bX$p3&Fw>53-u-TEmbM*$|uEOjm_NL-R z5D8@FYyzy1hbirC^f4N{V?vTzdY8}Rx9a-L%G2DfD0L)S7rPKzP2J2UGWNQE50$hS zCo8OM;nUvf z=MyqnE2k03m_Nvsx?cj6(u#3Ti5 zot$WSv3{eVfJv+F4l85`f%i(KHB(_=y>>WsqE~fen@Q|1$xDzMWzKLNNWzQ;1_pI` z&PWZ&h9mq4oK2mBWY;4Tpp!mxAUA~Ct>wIg=Ie9FF0+k0bM$E++}OV zoJ!`W&klyFa}#Epjm50_c2(QA(F=vuQgLt^jHX z3cXiZeOjpfBN2y??oNNK0UG*TzOi36%)B++;Tk>P*TO1x7YN&;h38jeS(?G_dQtXG zwYe@%69m*gJ4+9y^RX9iOjXHVe9LJ`^KCN_(G(Ljhxt(O8Qmc}7??#Z7~pp4DT?%_ zO{K6Gmy*@wH>nk}wUU*{`d>|@XwkHg5nw>I)UJ+<*)qSk^fhk5Z9l!g&pUnj76zYKlh3f7{N^Lnhx#IN zT*vJX6H^a+!!Ffy+?an#D@SMg9*tLIMc-dqJF};|Tpbl+&}(SKS#Rjd+P$H2*`J(C zrZc(xT$I|1YAsIOmNYv#B$r1=lIAfLlB4ILEP753H`i=ym}kAI|2%z%2-xIv2Fg6U=B!!40KlO~gQEgBdnCMKA#OVX~g?(8e_T2IZUDq9n&W`}^vSn`HK^^2Z`f>&C=3=^H!a(iD(VY5Z)#e6R`Z=$Z zBfO7F8nKAUfh};4;n9LibJTc@PvYg7xfGs9_=tzr$p|uKt^it-W;IW@lGvaok#V=C z5zTVqMiJPyCJ}YBsQOtn!s_sL50o2vzkC&8jX(gL)p`tnQYkVJ?`CzA{{}>ynxsS% z%Ly=qV?lJn$H18$g zt7+hx{tpSami9jf$C{miWv@ND(`4IYB}j7gh;~Y+E{ryGl^63k18U3o=dQmq4s4sG z#UIW~Yv|?B5ANujCNStP{P2s6fw?d_2Y_8tj{EW%9A(GSf8>&jt(z|c7=8Vtfw_Ts zdK#frh!@k895-_23J%_yuP@r9w+XL8#Jn!0IpH3yz;Yr@}7H3xb$0SBE-x0&K%SJN~BNzNLCf515!hPzty zU^#FrA^wopM{l0)#VqnJ{$%3?>z(0H3i^_<*a0RWZhPv){N{yV@FrFV80pfHQuX zH@^UnlC@@4_=H)aaJ_%>zy`uoE`oQVVbY>f*l9ybfYQRT>N`xoIR+B#Ec%_k{m(CG zLBY+aNoUpP9*X(eVY$k?IY4c9<6Dx7@Elh22_A&FyU!CZhC@JBZw)#rzs~9cDVScn7Gx{6O?zw^+~;YR`0dHxuPxkmtU^t$yd(vfs4g}VuLpoi?V6Mzh4{0 zBmPx3P~;V=5{*B3jUzZyJjQkC(8b4hI4o92@Di_K7Y5Wp>)H48uu>N2Z4c+_HlK#G z#@z~DCkt0?S+C<$@$cr)S0WV=Rx@0z(w%*e%(orf;fi*5}u(D7ngrO_YOAqy2J>h z(LlZyU-0`%d^e__9+nWC7ZG+8`d$Rb%?MeLaK!wi-oM_Re*uL`(>8l?VckBa6}p|1 zwidDdJ;f|Q<7b$b3Ld*@$K_L_hZW;3#Um0ra(iceo?^%VH*t#c58;g@05PsS&6uVY z^csEh#a6a8*-DCH$i?ApWr3iXmP#0&_dyW1#)WloMYMlK;Hk;`Ji<;4BBq3sm4b=E zNp6Oyk`UDw6F^*_EFok7RFdfv7$6w~exM+$$bk!1oFGdcgIs6@OAf>{`XXPeXnhF2 z*fJpB84T*+7%?w|rJsVsF%yzHK?I|8a%;m*Ely`^W5js$Vt~U91m9v!_ru-s`vi0m zbb#mUv`%^EUgCz%2R7i7sxA1;%(^kV3D}Bon^TJl5+bUR83Rhu1ev%vV1z+nb>E>U zzcz&~nc~z6vAUIL4Mi>go`sJ;sPrD{ss6S=&i&&B*u1lIiCmd*CwgRQ4Shus6Zc>+ zf1?~4w`(WwO||KWNp&a;ouDFSfdR`tfoGbdFihbjoz%vPk?V=DcF$=02Us&JA}mzS z&!%(Cw8$>DrpP{Yfb7N(IRY9#(JZ*@4BtKvahDi8E+OES-Yw`H0a2y+f9M zvTnqZw&xM%-xn?8yZ2NB3Ll2^5c-ZSZ4PypQqzaE&=6~~p85H;+u;-6Qv0}yODx^pjC)g2Q;Hg;2SuPM|3p-G({~0{-?f50Uz|ama&`M&!yFOk| z@bc*9PL70pG;RIIfIoA7LY)7}*w&X7rCW-yWV_5nBhKoyFoXiv1?(CjV&_}}Y(7y_ zfZW)HCx!$h0vCd044B)rJ|XD2GGsC#UA3OWQk`^@=~xddR&awb7Po|S3XoJ_GUt0P~MKC?3oUL>Yi#ELBqXw)bN z!mtWuERVDBbi{eI$z6QuDkCPRiKFa8C$!`-6i*`!Ykm|H54h;7{JW}yF$-S4QXH+H zJ7Il6p-HV zboEn-hLNM20JWZI_s9WWKovSDulV9~fDgg!7Z93GFB0i3ZWv`$#qo&MHY$~sBjkaz zTg*1f)kpzL@W{I7CaXs+VLB{vmOy0v*JT4StAj~EOjNqKDF0WI8O$e_vEpxu<3Lmh z_GaptQ7|Wx&whbe^etCOVuPNncvAXVg?qL-P+d}@@QC_!MSyidiQ19+%?}w#X|rb3 zx-QEuq|x@pMHsPX{;cM2n!;iVm9Ea4IXxbn62_N4nnIBRaLNW!)u}L(r^X<+T2%6r zJIUi{Y%#XFR6_X*MEGUU@E||U(%rxL!4+PSCi^ki@rBDx!*XPXnIH;sg`Fo6C|X$Q zD$dF{ipFDrr;G3vH1M(9eK%HMqp0F215aMD9B`5gQ~W5Z@EU8KQ+HjH#c6~Z(FG-c zJaTR8k#l^)lQ*0E^Ub-t2h9qKLPb*gNe_G377DcZN(23JL{9d`M6oqRC2N-sP~GeFdid)KuRXla!CEdH*1B5ZVZuk7KLcQ`c zCM@nj)4c`jfkgRQr?0z(P;~Y*tSM+j-Z%8BA(9+1KbuO}OQsdCErzPr|DAZ|Z=)$Iy}unyVtiG#ohR z?BHO|&uzp}G1di-l*ew8BX&Wu9XS|5D{7N1j6CM-v-#BW-0+k@;f4CAYLDKiWVofR zqk01@P%a`ZL@8;DG%|MNmkC(plIyg3v`}@QF_lGdm7CedGLEj_h{Br`rIEsO`obiq zEr?tBZz$#;9Wx)cSErhatgJTsgCkoIhT(0-2^_tuWvd+|HDS7ewMWZ#x(JkC@xO)( zKFGBs!DGqSY=TAPMxM5?=tSI-{0tsrG+ahTqzJCi^!zBf5+vus?G!Gmpw}8|3h7W# zB2BOkI>uj6;3$@&YA0TktD7vLNO(v-@NU|Mg73ALzuHRY)oGf^Ctm@iuur|vP!A?W z#ICPh=D_#iR=e-Pqf$-RfEAFnxHFYx&d<5pZiAlRL%V0He$x)i)$3-dDrv@UdFv<; z)2p}7wb!ocZ#C75V}>`~=MMm`C2;804fL!H)*2Fk5@5~aj-Cb6MnjRbgCu%)=Ljvt z9m*WJN=ultQpt1@JGTZ(+B1p?|;8NlgohIcbEh5Q&cdRqIxj zE@`;GqD-A+EVG8zdtPBZ$tGE58?({-mb}m}I@vPUw)Fi%0IUkt>Y2`&I)whgrfDks zvWI)b<;q4+#||%dqi0}8bfe#)+ON7emHx1_tH*^IK(cE%xO$R|GKT3!j_d_fS$>ajvTOdfObaraeF-FBWNjfZ1i;lA%H1w%O>rl<5@VlF9wBMV@`HI_T?eZVx< z7H4Y=iL_w0fDGLox$RyrZX*I?6OPitnUfGsOgoP546qLoUla1WNVAYA)ikN=8LE39 zpjtQV@=w~_f)|;tu4he+A3t?i-g_rP=4_F5mr3j-a-Wgt)S3{RgV{|=6oNUT+PkO^ zT<6!!h^IC>m|#LpH$qECVs*(-Tt$4QaDlUk+n2SLH`{m!qhKm*w4e~y&18ZPa^y})(R!?~#E-tm>8`b1al8mA+1Gd~cKEkj6%I6B zP(YSFo#Q~%2A*2zW}@xaY@?KHq2-S>l9Nv(k(BK3&%(K9UFyOBT*J)ahH=Zr8&Pct zt|fky`d9h4lD?BxwB}h-01A~_3QJZy;9i?7*Hg4Y|rI=**O-gOz^>V-Sn4c=DUO*y`|x^B+y_)Z_L2$MPB{ena7AcQj?FKrO|aKAlY_J}$K&v|dokav=g zZ_rgFFR=Z&qqEtA6nl&8!(yZwG^O_8vBf%&^Qx>Zwhjm-NHzAX!n=Nx#4lfp_AI*J zqA6B*ak=p;bJ5If%My3|_Q&%|>5jPjYsn&ahrM9MIuFC1EvVheFuCIh&$%FH-Vn zS@IRr&0rp-ZP-0%wABH7WIN_9Ok!twbd~2JWZ5(3V4~OSJZw`%{rSR2e*;(ccO>9i zJXf}c1~2Kakr#+%a34*cYy7Y{0_|XT4V(3k5A7I_tvxQi!auxE%$F`FwTfOhqqTf) zs%UsoJD&+!J!FKacvw_s@?(MQ!fcqBqw`MXM&Y*^+lLg1+K%(vyTMx|4h{=>6-dolUDFn%qO9XGxn86L+VEE?szIQsJQmg7Bw^ zi~ac%QH-MsV&PSMBCTj0{@@}_RMtMaF}i$+Rc8ru))at6Ync0pSz!A$oO-sU(5A%Kt+)EsWH2pdj>MH6l(O4fLLvzx=oHcBjmtb5+l6868Ig#1|MH8h( z*I#31Mv(lgX4l4yCEez7Hfcl1C&zUI9nOR5we~a4Nq)4_Sks)uNJaisCh2_GyGY zzYjA|W+?FSV<8=5s&YRYZnebDuk>+j52>)3*P^XhOik)kntm~o(0+tZZE3N|(7^0xP~)vk#7<&webjaW(6rm1Ksc}N5`No0RK~Y z-7;b>F=e$vtJq;k$tfP%xoRX`xT9K|%}=yyja$4g65P6&iSW1FftxB83tO4`9Im@B z?aFukgy{)fYQD6i!nG*5STw5{o71{J$2H6gaeqYSJDQu*tga)zMI}iAKwrHv?78H5 zTW+e}mp+is7<6v-U;+h8FE3E_X=SRD=(jzMST`6kVq-big_pb$E(sM5_yOOcp5!S} zSuOucCvrP>t`HSz2y#(dEsxx>LPe=~ofcU(s;Msr7mKYqzu%NJV05Uvya&sWKf6}b zF5H)@bDoN8;Yuc}v7zWD2$7vIS-%)$O5Qu-UM1AV#1?^!W&ZNCR?1L{Wk(o4hmQ9a zd3W9we(p9X%AFEXqdveTRp*aNBRI5DHl*6v{tmp~|A77*nW!AVwDLa~JBKLEwys&H zZQHhO+h(OzY5Psvwv9^Lwr#W0_O1W6Pvh&Y)*7p|_lP+op13`J`?oGnp+I-yx{^{` zBu715hB}=PIC{iaLt>bNC2KGSI6#?v?Ex}JWW4xaSG(;+T<}YiBc)=Rz_>*E5F-@ zdHnbXdHf^J{Reb*CnMv(W5~H?a2Nw2RYw9jaMyIXprIx*S7f# z(hi0@Wt+4J(pjcW)PD3LDpQ!dyc~BS4H8|pt&TFxNv+br_vscNMkt8i>-T;b<{BnW zr@-s{`hH0n!gwT%pDG?aOyG0->iPP9b^Fkme622nTg-Oz_;!EPJz940dJhKln#H~E z9C0`x3wWgPOn$7K3suoYE5p%A%`(RrpAt1Ug^De|R}QhDJ^nLm_?-l|oHOAjZf8 zoZ8#<+e@LH-S6zFlB7Vbx(;CYM&~MnVElTFAGd&5UT8bZ~LrB*A?l^mcxnNq@z60GgdGj#Raf^PTjv_Q-R^ zJe}ohPWLBQP~Pj*tQmNYr*^X~yvffXYZpm?;&5qDN=FPs!(u>EHp8>FE9NjFwH1z+ zX$x$Ycf`t9;EtF(@u(CE;;@*wKZs?LQ)^H%`HTwTI0Rapn8y%H|65zQINljtn>eBQ z{AGZoFK$e&r1y8(xNGtq?n#3c1x^ua#seVSY=mNDF^K&BKMRV-^*2%~LFZa{mVR9ZG&BU_3kwt|VcW{%$qyebgN@&hXi zJbi#nrm^UtBbijpYizOOK>k{VG)x!|8A~H+6dx%kekT^Gpr1EW=o{g8vYa8p!Mx9J zcCE&`aiu0t<*rlhXDc%6!sY9Lqsw1Ptwtof*8nV~;Uy^L?i9EuhH}|Hz26u~Gg+kq zO52Sfr7Y!8s5{)+-LNE7$*I2iO+a`uvT;aPUq0YlA)ee;OBs4cwdi>7TtyZ=rG!s@ zy_fUA?Ey1=0D#iNV?2pav}yd)LDTLrT$Rt#60?=Tdp8$+(mlrI^{QtGEskIk$%-K^a6c@*AUUGTCz1>i8G>Z^sPYGMz!0G?o|D zXN|JIISSH>1o7qy?H+OKV@H=0r7Nnjl~D@iY6t;(GzI#;G+a%tN({9ftMwwC1|%*L zbUJZ1$gs}r?8_jg@5Qc7?()mT=&WZIH`d5{6Z@RD%wvSP|*_rPS z-6~VoBkJBZN>!kmjjlD!qdc_&s<;Y78^%W+?>3}el^3%rg)MPb^=u}i#d;d8=Kw1jWxYxT5zwqrJtYu7b}BE8OO z`Gq2%arPLw{_U}L=-itZrg7{2Bf|}`sT5V*D;N^XQT0u;BG2Y7O6bN1B&)~mU77oi ze@)90)hn5OU6jA`;V63S=s#G}M~f_SKW0l>ak6H2QpW za(L=!W?QzEV%t=YJ}$K$H`?&zq$3;qT$%fS`?C5_Z`EQ((WCf2~<-yDJ2~PB{qAg;3Lt&BZ^}pjg;|sK)!aTqa`&GDPcO(xL6T7_i*y-BXpRFC9iQm&+S5 zlVTvA*}@~0xd{_-1lSO{DQbA>lEz;6;qli>DEtZIYId{_unbwAj5cA&xZbnSaxg5Q z@XK}Mtf#zqX>M`K@IUH{Wf2Uq6g)5GzOuvPQ@GyZ^61)Xc1-tghrS=Z#ux%ZCIHZG zpq7@P8ZIM*w`Cbnc+=2V;>T=*2dC`^=zv2}2OkG~Lp#`CE|Gat_DT-tq4-@4e%gc1 z0fuL;5yPT^FOH(^phUP$qmh=cdzK{D_|L z01_8(RFja-Mxt@{?xlm)-ZOPvO*rg#ufTS1jy#igp2hD?A4fCAkhJ6BG2Pa(OlpA} z{8mrwPiFm9wQpIpm8hV04xn#!BTyM}7s3q4Ss$8p3S2d%=&w*Eh5>$IQD+4<8)21S z*9Bqk;Zr27rjTRaEU<2?_;yJw=(Fj?pMD~Jc|5w zbLnIBHvHp{9DPnjU4Hm`9_|`$OrC^}+q9V#lZf@tq!yTYv8UdjxTyI*G`ID^A4)mm zH#jC;>A~j|@|EFNJ7tnOs0IGGxWqLt7W-Phd)&>5(k%8K7s1`(x)-*&imJcx#d-(w z>>d;u`_hF5U4H~IB@dvwEIy9?>#Bjiu+f3gZC2$e!B%2}?_@xq1;*G1>Y(0yGGmgE zD(k=&z?kNoj8jX|@QW|@+oZz`gb(yG{US@6bk*;^+cJXN5>(|`2Bun`REVrWaD2%0 z9#GG_fR3$hFDj)W{cF6@)OjWICskgSdCksn6_}AO-3ofP)o$tXnO=O$%#-cPQDC>I zvW)swVP)wPQT4&U+jvX&4SzKiMiR$+ZrgVKH*pJ_!DPwb_;YC)0@|dvSzWJk(3}{A7a=T~3q4&ih+6Q48p}(k*bL>8?{C|!& z3&ISEs5(0G*#`QOb+Uw%4xWx!;ZyjsB~L>m@8|D%Kt2MXp36FZ4|L|o*!%H_;+jkQ z-FaK-Qf=zN*jj7|L^}~|KaQ+GRWVTxyU zk!}ye5Vua+CbO*`NGsJEsA?gti;kD%ChRf;WAm(?4G~q%t{KIE*h|-8v?pXZ;-l)~ zImIxKeo>2xPr4nckVkH-??RVsJ8$ID)ONT<&hxmjp-W|tWi~OcW>_ecQQFx7e*c{)-xnFX7G$vU0e~-(a$bq-FLHEN1w`{HaN8N zCX}!0o-w6XCX}|X@DEr294J`~x_S71Uvdn(3LT3+MWR>hsl7LNZCu=y{W%*e0Bd~a zggw}2?E#^k%%g;<03_tDM8z*2Pvg_yZDA2OWZB%R1?+5VV{5E01LRL#A;MK(B*EWR zvDgexISgJ*k6ot24==A{C&Zp)I`1I(YEUNRlW99UyZJ*UgmL>2E-8ug;l3%F(1sG8=+w6910WgJ;f8X6T?tcQ+ zxjx(SR<350Rmrd7Kk)XBrFL;VKy8XumM`d#iHdPhLN`eqBEbO@mW_sj&}($raQtDP za09F<4pzliU6Xc4vXC_3VGNmI4zoVy6I7hlhjd6n0+I0}8;(g2UEgdIo)S3#8OwDy z#6*U^5p6mjC`FO4bLfH=R%y^8%BF*b=Bhx+GWdR_gbxK@8e|P)YV2f%|CgE4O42^fC+J)MQKceg{$sD~#_ zc2vcMM8^Mi0yYj(smPY@LOty7iUZF@dK3NE0Jw6o6{)@LM^4{it2@+iK0+Dcg9$Ib z$K?Yw@F{3EnHr5GWzzks+2?z-5XeNu^+;#r?p}`rDmzYtOnoUiA0gwd6Az9wJ)7A> zAie$NRJreY-Et3;;!2O_BN(pkV!<;@oEzg(?;{*)i5VO}`>D_Gpj@m>B~y(vbq%a@ zvD?YzuSG`xo)P{dJ_cz@q+2I^_FlL`qfSCF}(eEB&<;vxXKj zjip#=+43#Sq&U(l$lO@k?K+Qc5%-qxHLXi58-8#@&Vl@x;^6j zG2rLtQMbU!{yH%x<8X1k%vkUo_)-x30hYWW=)J;{W_>aN)=1UzR$S4A@I4U2;?oo> zTKOZfPsFQ0IkU|MV(cf3>BAAdpo0M>Q{L;T18+Ly^3|*78qI+s+SY;G zQBv#4H46)vkEpyAY!4zvhj-uR7#P`8)G{;;8D_gUELoU4sD?LAOlx2tJ3Y zORhAvQt$sbrhnZcH5?695`5GeBYHo_^gsx>10p$xi4gFFCwS2eHs>uvXNXxk3oilp z?2Xdv+BgPddQEIVRrvr^g4xy%v6@~T*Zj?yr~`6Vx}q+iAiQV%C302+!MpZ@H)0pA z&&T8QRZzE&=lJ&pw|gZA*j$ z#+hS@aSxFM4~Yb2>|g1{dufmUA;TYGJkc+`hi7@3G*!)q)vF6K`s{GO9R~VLBLL&0 zPAouwDR5s>hi90c>-pWuhm7$j0y7{^r;rjq{~=SScCUSS3Z+S9y{I!d$r(}$)fyyb zth0|@mZ)VU?rPBr3SZZ_NA;%uRm%~@i)&71QFofryo$*olpKePM|kd|EL4f#4wp3Mv`@Eu zbjS=U^_2eCa%uD^SK*b*<P7RVkK+ zHI%UC5=-X@u;!{59NzOJf=+7Wfg_1G<9F!Emn;Y7QtKYHQc}?D`Ma5f{^W9O+|hdt z(IoBgIW7PB+CE5LEsas)1fu%eBdrGaVH#j3X|dH7wmd?bxn2-G7|T*SAE>l(HRgV$ zbjAIJ{$_WZt@7TTT+xrJi?jXk$*&?hl2lRNYdj7-=&=axAiq@F(y6ZyNKOnY(C>o6 z6mH%2o*;}@-zXcHCyd9WBP5YL>nHres#9q(#Qe8$wvW2F_wX+MRCxxC0uq$+x6lU$ z=e=JdIMpXmeNqr`6**3D6D48QactyvQ14Nnm1Z!VRq%c$cql#e8bJK_Z8+1M@OIf_ zrs#HkUtuLns8Jccru;nlqXIPlFQ!x!QiU5{tZ4GbJHM{HmXpp~gG1namotwapL&Hu ziJ1XQ)9y@K(%lo0ZR*M^Ymh>7wk=Ng6h2y$5Rg&FVqUi9SnWZUft*V@S(SW^q@4tk zcp?&fP+7GgxAEboz!wm;GYXAFd}nU@r6%Fb(d^$;>1U*}`OoB#uc8;413#$Fr5DFq zs;tdn*KH}zGARkC)Zw$3xo}IRNZXiWs`K`_@UuAo+KU|R6Q~ySBRW>(W889XjAQ52 zkwr&jsVVfCPGqj4+QWOCNIFq2x@9P(g0Mm)j|(-7x?NWnB7}$hgBPG>X(c0WT1<_a z9aj$`h?`m`DM|SHGz>QK@k9L5-tJ*j;9X#iGN|J1%Zi-Uk>y^vS0+i(IzW;gv;r$I z_CyQRX}er#AFG2aYZav>lPym-FIgV47u35yPKNg2&l%4>-wkb+qN1Y@shHvlSE{vicbwFnv`kYlh4vmEYXpCtv2xJHjl9yx5E+;o% z+z3kvA~kb9)Z=$Ta-y3@%Z_89t3q(^5tc%%;iS?aRUxdoqFcnX(%3dEsn|#TQhd41 zA|Lvmk)1L{NY1%E=sHGy>ZGiLPhI%`>T`T4KR_KJnM5GYsPI&)(3}@&{t@H@t08# zFU#F@B0mu(tfY4pIwI(2ze>6rW$Sd-v$kUr26k#KTOBL@ba|HOIj*X;u}Mo)Co~;* zpy;a`-hFho3DaZQ!cy$}913(ID>HvmaBv#QQ;+3beluXkR-zT@_br_2WO7RyS(}=B zhIqxkEon*9qm%P!O(kMh?q>tgd|=gjf!jF%-~rZLHJ+V?2I5Zr#`9B_vI^LF&H z{A$?gu=zAcx+5g^6TMT4YZ1j|(YD!S_hJRO+*C30d4N(aQ02Lc+c$}27U3Z5GI5a> z#O4-;fpP)DK$!j60E2sQQ<1_O)PTYBO-jIEek`QJ>ybT#15qI04`ELQuEmxIc@bDM zEhyJs>%4jam8;^x7ld9B#?GbPzhwb?*@Z1C0$pu%_D<=sx}Usa4{VZ()_Dluwr}!% z6Gfwsf){(M?maz;|Ca`ACp>F6xHN>DB!!`2hGn5HuX#@htG>7NVXBf`H<+rbK?cS0 z&KtBQYm(F3xJgU&Fny%-77RYe={X7gJpOoZkdl)u&)- z7Wh^X5xCc8Ekk9Orl>njBvzjTf23wt?-Ts!2{TU7PyVf;B33C`30{n5D9hT%xLvPT zSEUaz;^ulx63Kr%3vldnY3@?CmaX#To^IKo%&oq0-Uc&XG<=S}==EY6pZW3V$Y`qj zG{`PjA7Gv+L=^zXQKkp|mBRK%@1k4LfKXtNYkKR2^Liggwk*>DTT(#K6>H=Z{k+Nx zo5em7=YiKU>RJ~%Bh@1+yOh8o(@%|c1Aj+%+gh!%*pQ3MHdmj+%pHH0uj>Cpu$+1j zoZsZILoZu95qe`#uS(-y00A$H{>R3ULo0WX+7K~kN8&}LDiUmobaKtHqNf5~>!c=^*JUQaN~8C)Br1NXQkd@`Gig5e z1KGu1&wSLR2#mik*qhAqcZ|IZQupfoj~|#NiG`M*8kuHMd!f5*=-&r$E03yPb5G&4 z{1*A5#5ZW)-J_j~c7NIs>)0Lpgr?4R*R=eY@Bw-52Lr7VKfyqbMOFr@0K56o5B6no zX=h6yYBrvTFP#!a{RDxem3*Wway4cN%$EwO06=#nz%qC}1Vj6WgXfEb ziWVk_Mlc%MzORqR!Uv#^@nJ|5gj4;VVXK2>_F=mOA$7ANSd77bC6|ly++j8MkN+I= zpCyKM`o9E!j)?gqG-Yqb9_4x+?CTUK1WPrXb9Ge>1I0DHFv$eveM6M~I5T<ltofA- z;fa7j>`TAD*sj% zgiMBUj@UeFT#+08xdQ)cab6_d(!6B5!kH#`B=z^=_if&vu-fC*xXWvaH)(ADx*bJ^ zGZLQS@A&V+_ui)Td2##`e`J%zdmD6IY+h}0NH~Gno{4m8NKBOOyNuatV!sVMuEetw z>ZqHsEXlIyY_bb`PM)_7VX%WT62Eu2daDXz9cFEArzJDt3ASQygxYjmX4933Q`Qnr zRY)SrqA4N$Sw=iv8kut4b&~oV znVN3lXbhcMx3sGnIMNM(holx< zM^-U>5_<>X062#<=3L6_Ne$ummTA(XSE8vIuUHFRn=gLFN^ICL-L@lLuCK<4f@4l$ zpX#!Ta|YZooYPQ?>F?Q=d-Funf8@{(>}qI!?0EZq-2BzjatGjjJPzTalVS0^$VCMd zm4Sz;#_FX?7Q!k5z7A_#`nCy-Halqytki!!L3)|vYsP>Ar;2y(uUG~BI%N$3aEuC9 zx2F!=15?){zPf0+C1ko7q0aD;!bs$u- z%#A>y5IpJbWcZ|3qO3!caEg+!?`(BhMxoxRZ1s?S_R6N((Gg@LwfRN6kOYFVZ8)vy z4PfOWrVD~XzFh?7GwC2gE=P;Sg1Pr7BRAfCpD(sCoEcP{iNRBQ#2Ve{8Dz8` z&ab<~942RQ+_9;adAF6(2yBI6dEcM!$A9vEs40D}dY9N^uWsqTmW-Vwh@O6U_<*je zrA(G&XrD$ycM%Z{5fFP#hYYxFEzJsr6KkGTcwWB4dH2>-uwo97@BK|Pr!3F^e1E;^ zk`S@_MYU2qtPt6cr(=`H^ahH}B{@%QNWry@2Ruy1L}kNc+qN5Umvqh<9MD!q-r4V6 z>Z%=4f#Wzph7~b~LxvFE75_%cU^1dNut81j#MMKxh9)O)Tz7ffln2Q)t^+mIQ5uy8 zOpp!LOgUK$zP_(85V;3mhJbA!Q*T z8HJITMGe@KE0Vmao2$jJ*FVF*gP#cyKU@~Y^lThDp(n}78MtyP=@MOJaj=p6)N<*= zS(5uA;F%NQ(6%!k+LiR@$dn8WNu?ORag~MF&uY8=n~%DfhR?YD7Yc{SN;~QbL8mlW zjA5LdVZOy^W41j*7UmSd;f2{2OdDL({LO5Z`EnadPPMtE)2h%6u^S6aW~{^?THMaL z8B8J!tK_aFf5;rV0J_u_c>L9V2EAo>Nev3IKLFq54oiH09P{ESFYUO;R3yGJD1ZxL zjpFAytwTn|DSdO7{WP_pg|2ZiLdQl~ zbYy?ldnMn=^tz8ObNOoJkLPF&;TmM+^1Li>A1yk(&Y`iUK8ezK7pcy{QsgZUWG$nHK)#ebPR#ekScPTj z5uA@DY`Y4C#3TRvUt}=lvK{bNhbu_=5s~k29O=G%%>3|K^b&%^NQr9P9W_@4BZ^E+ zHu9o9bCI^WkV(xQdw0DeNYsV2_3^4a?#%ApTz7?XcP!cQgb8K6wH&1zrf|QSV{(fM zY~w{0(WZY%VWTPDg$tIIJ~*G<#!{zbOU*+pT>9-s&-I4~vzL?OuX4?^6d$aL8~El8 zmX%hM(G&zrRvEo&*be@K#UxlGZB@7G6aJaft|GcB0CK=>kq_MbdB?ciala0Du<53L zUN)Z|Q;ut4z5L|JS}8Q#<&oK0E0-rAgtL(m=A5&4!tzFc>a@97}<#DX|@c@iz4NGE{nJ* zzJ{Y(P<5+ zuFNKX3)&^(HwBIIQ7?bmC8O6Fjq0Zux+?F}KX@LND5DL7A zUtM;WQ&>E))i+wawa)zkX)w=T?+omrBhRd-(RY|&`lL|oVij!kNifVPr+ zM6e)C%eL*NqW4nWq%38M7o=P5TCcNFymy!GSgN_~+l_Wy*;?_9S4-NA5)(p>7P}sH zoKnb<-JYL)f7iwOUr?-FL#M*ay=|++1n#MTMfpbYXi*njh+0Jvh>lQfdPR5Am$ zUJNwVBHexK(Dg2v$c(O>r+h+4RJMW-Rd6`vLqtWD-2l;T@Sno<21FPa!_0w~&I?0t zn#5942wPxBZ$%W}o=>KeAwLDLj*?Y%e5o3VxK5=OOp$aXdyO|zWIm7`$NpMw*Aq}x zs5@MjLiP%Xt|-m`2^|?tsIH8Ky_bG{L%ZGBH_f+=ZD?J|DdrAj{$etoH(@b;gO7fXvEM-wv?H+V4;K)Uou19&vQ&ho znyK80-{d;jn04ohUDzP}7QswoIKDo0F)C$X4U4rlA<`QB+Yv5UDTl6PIcU&dhZmd)mmyy zezRef33E0TaxMs(?^<5n#xVM*u~cyTbKzQ^omvfIO~^5A`{BVjzKMb8b{`3XR- zYT(AmfGj({wHQkaw2*TjUjmnb-&|$|-QCsxsEO$=y3991Bs~=ehsf)zF|JM`CoiC7 zq}|Zbb@+j*(R z4tNKpSAv**@SuJ-x=etg1#Z)RjRxkl08MSuqvt^qilfUhJYdgju``ZMp`j)}beHC# z(o|qQdmp>wnij8NtY~zo$2kx=CJa`28#T8{ozh8+`j*bP7TNTPdFIK0rxeA98A5ELXNh}~W^dAYCmit2D~z4xg&bPU}Uyx#rC zaoousqxZG*#zT^|Hj$9>L1GD0zqcxKPlo>bf}wxmw;)N?S1J-)?9V0~#f#pfs0564B*C zCj_ney-jGb3K@((ta#yxAyrh_y1~yW@Be&`7cqwtgrhAw-wn>uvf%0O4)Moql6vdqR0e$EDN=_#FI*oOk5dL z{$s9p7u%_=GrQZ8{2C`bz(l%pa9>XVAq>r(OrbY-=zMT-vaIZ;b|KdoGso%V@jQ(Z zn)6>TOkl9h`%%!12%qn})BAZ1(hN+&)5C0DPng@vbaT|4g7%6+caYmnNIav67Q7FL zPwMUWyN`wpu|tcC^Ete`JRkNdMa%J!KpU;dATw{0X3`9Os1{UIs$aIAhnzjN$;b3oBmG@B}Re|G73w#?9s1TXXHv12TY8xQ~=zc~52 zD{l>zUGZ0-hlztr=BRgFWs(<3W4$L+Nxum}Yk1nPggR0JHKZK$Md91pe^(`EY6 zS4O#0O@ThixANNttD~8H`3|XGYk2#IX!_+7aHmB@?U@Gw=R;xAWyYK}#gXw!SUW*9 z=TWrf#cwObDlfA6T|vm^l@0ytwTWo^5J`Z~0IZP|rY)F$%~#<|VThb_z| z^8mJr?bw~g8IXn2nJj5ax>$1Cgpet@Dq7a_;NS#`EiR`urlKEwSQ6+o$B0?3n>2e_ zd?0V5g+T>vp^Q44YnT^I9EvNH3Y*#vex1k5;eUTSe5P7Co4Rx(6?zn`M|igd*-iL;nwR7T$OM+{ z$=MgJ&Gj857sPZat4C9drNIF&LxJ>GpmZ@sIa+2K58jEL*$nr}AO)i5Cv%Qrkht!Y z%~0{h8~FTM96W7iIElz5z-D$9x@lxL1iCkZ_}B%!qyw?fkahq$-sT_Tq~MpF;MHd7 zgX=Gf5j1*Rt1LK5C|T4X^yy8p>N0){kPQxFekwU2gUHX|!b|2xpvJ-ptW<`djD~Zp zbDm#%8z=HED>kxQ46MLGYn>-caUVwwap0Eig7rd+7{AvePgyQcN(2teN9(Uye$&V; zFk%BrM0z4uyq8njGXUDAGc)cE>I6r5!MV|wC&S!vP?Z5iLE;N)A1C~(kcE|J?y>Fc zi=-xY+l$D|t=IcDBYNh;j#DwC!&@Dz{KgDHYY5C~Z>Fc|lk{^~&eS3-8Lkh7IgWf} zClFYSs&Z^2TZy!+wa}|q$cf^?q3JfnnGqGwVT9I>Ob$XhCHz*p&%OiOyr!+sEElne zS_R3|(kqLr6O@`>|4K7?AUkAsXa{FM6t}+W%pon(7f%@#dvgHSgVe~R4aRk4KRFA> z3WtI&e}Hdt7IN9kp-}jJUv3Qj-yTkTMQYvOpL(S-O?iFC?bZKQyOsIp<~GgegsJCb zc84}O?BA4?87e3eRxIXs^>@GiYGSiul=SldT^7x(cMiWbjI{8B97A3q`-$88^GOb? z2w~V*L7t^kM=ilvRSd7Y6tuMzXq(7_qap)eWc7SdtxoE?*=y%&Cfj=H7DKs+?H#9o zgN<{#*J-I>L8-kI^L5~vmU6ky@?7Y3)yHa zBQc$JU?wxP6!kdi?9C8T9fukD;o|zq?)Jal{$U0_F+Benh*}I=h@MCMo+-HEi?kiz z2U4|S;+dHaS{a{#N0_j%Y>X8U$RqAWc6sGE=J9yNm?CDhLQi^GBXVD4oVB>3X9=Ih zL7ewWG3-}zf!s8~9TKt%^Z8Xu3e%NXPV%I50-JHeEj}8m8HcNjPi%?+J1~UQ5nlnD zvNlIq2GPvaOpE`Vhgu>!u_~9tQQ-TX4L0jTLY*m4k>+V~9-upQn$R!xrsuTlwk+jT zlu(YTsLH5vX2V!T)luLwdrAgmAXE=23Qxn`aU-u`F$Gu&+yaGJ%$qZbJi0x|-~nyH znPqwT5>-qQM)99dS}z=GbG(U7>o+=KZ&magG>*oT6wW77f{QQ;1RBmdlvYA8(>ie*kRYG8$frB5a1`Qs(;$yMWIu8B^w2rl+ zD;l@p(@YPO@2IonW5Eg=3G@-htp2snbw)O~Iz zvQ;pGvppsk-Oy^@Gaapp!{5s}b;kDtllUoX8NmqK!e+T3A;o?Lt~B~8IyYUXyAYg3 z0@{03J&hW1yx6^wp|OfV6}SNn(_^w9@{0*|9nsfkTnt#VX8K3x^cK z0I3qA6bcZ-{5CB#nRq`BgY-CL+weq+u5fQ~Js67*3iXD7R&5Y^lLNDZC&v)xSz(gf zf%|3TRO(F45u;ETcbbb@%8L~#P(hSYdQ&MKQr>dm`QP78I+PEKQlPy%B8`@Ekv>w6fGG%0*q zo@mIAo8{QR=}9K_S6IL0+g7zx*hOMUy9ffoZiS-uq+xM-M73=@m zDg@_yFK0C%Fayz=y+G>-d-^MKA$%0VlOa@nDX27ijyQQ@(98{*4)E3<6&5lg!Qd1H zjJ1ja*nd$FU1<=zaTYi%A{-$diCUjuy^WwLOAMT51C zc$mP@{d>y!&uEvIEF*zIYIXkxi%ooCckVhCq2!2A$$e)ApD>M<;s>A2@A^f&$#4C3 zZex3sFx+{Ox z{iLi!m&JYJL;j|Wu@e^5`;aLvluT|tHduAPkFgUd7@IF4L||gZZ!q8lO`^7p3_3u* zss1HV{`dzI(qqLq2U4<}2`iLV(A&}x1e7I+ARHJu=QcFOdrA&o>RGipend9;^-G$C0eT$(hgqWDkbvf=?hsMOad}JP==0Sx! zG0eoxfqxYUIjEYL9{-Iy&>r%sj+XOZ&DX)$pN7D+TXBm(+)He^7&xp;RM<0Wgoy61 zgnq%dp-Xk^3iXk?(*P3>kphT}m?pr$uyQUakixr^?8nCD5j@(8t?$D)wS;UuosPd8 z4inU8g0#(JPUXsgj3C7|YK*4O|E`Sbj1fjuchR>(QcsB5aBG+)Abl&sZhWKG{DkJ1 z!Go%VS}MM7bvmIaY98AFOpbYre0WNpNt-7n_%LM^q#CvFw#;skd0x*Sok>1%$3FQ# zzd$z+6gb*o2W9u0_QeJUVHN) z-wr-45E3@CN~xdNP^IBj3&BH3aSt1C)P^PM2G%|9?s2(`EJ74Hdi#V_NQSj-FCj&| z8;!IB_+!w}!ifw5oj2DLi}jZI5GNem`i(ChHmJ~!3R!HrrMzO7Vof&2%}J7y+!b?``{iOFk}`Vomip}k zfX{g-y-275V8jLPEgGgyZsa-2HjT+i#vLmq;N_c^ zvAFpFp!2t46x6uA#1`fv@LP9_63=8Od6yVO38H$~G)~TV|A_(H6hNt*al?Y58S*o!s>x^O51GWe)}BiTn)0&5Mp+qD>2r>y&nJ3yYBb2a z>ntiN$0B)AdkYB|0f|-XaS&vr4uDOH0M|J|_pw&2h={forPz<<+E2A56mpxcH6j3qFhA&LnYg-H@8tk9_3LJJ9keHsNP5ScIjb_?yl>J*U0_7av?ZD~GWtvupJvT*G~Xg*c76 z=cMf+cq=TX1G7_ft(==fPX0J8uZ?^|v)Om-S3^&e;*;D;P9Q}J|K_}|nn$|s-hy6R zqVBIzp36sXB%kUlBo?-<`8$oVx<>$o*J9;Kys~?T*wzm67w^UdVz)!P?DF)a(u?0c`+{3jN=N9{4&$`?uzgIY zH`mETQ?!ZbiN*!PH7AKoj_!4hF9pT>dOCj25j~d`iJj<0P0+bqG%tc4{CTqqD$)K+ zOSQw^!s@WvoMgltbjj<#lfoe!?QHAe1%6Q^fm#NU??>P;R&^;2Xb+mEl&$PKG#yy5 z`v`fm8qJuJHO5f`&?Pw~nOrZIHcN%o*S|?|*X4YZUX8d5!V9i7gD-ImnLCXLi}%@{ zxiX61*)M6_bVlAFUX|7+;%_xkE_6=kL3^vMf_CIeR%_#4l~pq}Yn!V%5MN(LV3B{O zbkiY_HB(HWl0yu8+2yk11@v5n3MKIrA9aH#2L<5ZRL#Z`wp1^Cg{0rK!=M4n(hT>v zvhcI57r@evtpnngkFQFz)wQ3@mD5k#>LKhu9$Gt<^CXY!Wjc%p>l3X-i$olAfA#<> z=Lj2&nqj2-zu%6}7u;qB%$Pg%mSggHdE66s%7_x*4!8-luQNL2G&?9x&(bciz6p(^ zEKmMp&t6pf%Uss+AY52J=~56BdW z=>*b~9uWK$1;3r&ue6~)^q~byK+JsXg25$5oTgG&vc4$x!AS-*eqN6EhRgOzp- zbAe2IiWptMXV3Y)5O!KD4pD3Qgh?NhpBM=aKA?l1&SS#gRPuQOE*$d*DM#(r=fw&+28ReglvB?fB;wje7?-0 z;=Y~!VdLe3jN)7nj!}i_)>5Lhh$nIYuc}Kpgt#ocEg6Zga`@k)`e1)vE5V^17nMfbnO<3o&vUNugfk1~67 z1C(2t_XuMus`mt}Kx5>KCA8TL9?7F|Sdm2mCzR6W84gViw=NRKj7e@KEHEr9rZQHhOPusR_+qTVr zYua}Aw7YjU`(byJH=C`ba_hrQRdSQ6+~=ut&d+Lu_mswY6X|@u*tK-`5Q;OXMYw@z zr|{+MM=$}`D6&~gw+m2;g6fTOi^JXj{jrs-d~nI~HBtZDk0%P+5D1GcXHgVP^(ax> zPS(B{KKM!E{;r3gAhVT-#b^W{9>z(>Q1+9&509y?MGw{M^F6oU&nIb(_$Pb=E-S;> z;X4k+g_6ST_<+*0%{l7cD_7cUaw*}K`X6|$h;~wPln#2IXEMf9AJp9`;|+ByIaU6O zg|bw$M{PE{eS~TeN5{0(n}(< zTX-A>t;1^6Fy4}2%O3g5tVGH(!z;uTx7b@aeYuQ)S?5`CsH#G2M_GmjY z#Lj?B6v3V!!yWq+^S34AXu9}tr#;e9meLa$YnQ2+m=a83W~NA~h7r>s8s%QlCTog3nsWXr(-wk zj-n`>c*$T+NePv6lY42KWWR>XirH>$ zss*TLYu`m#LNe<`Rd-1x>FYB&?A}ri^kj=o!rplYsqn}?#~fYd><~}2)Msn>N2?=g zq{sGQUuia5ndjIJFm=Nm%TXVL3`o?(wX4}|C+G#j+Kc1lq8qE{nS2b4Yl9xlH{J7$d$Sk8GM=NX;>}my&HKoXWTG|- zX+e6bx;|TT<)wAGVHcRI={iXL{?cR3z~Vx%+pn+iz*3iAQ06}=xvDmUlAc;z1`pQa zb2@A^7$~A)oqB8{Y|7?(_g|DZvjdtj;fLSKQ6<6Fk$(od=peFds&OlhA zXB?I?WVPbSGJb0jKHMPd$f>LOh>K9}W@w;ZFb4Jq>6!X4kk2f_1`FZMNd^r3jE?(8 z;!0dAhpK~Y9umQ=W5-k26k*e2TrFB_qPDWGc7{OqgN$JP2Pe1ln~T<#N#j*Cf!rb6={b2)q~Ku*VH1+Fr)Jy z)RhBKiN^pN)w79`P=APj0{o)ah1nG#(R0OV^C_jpF|!P63D-zNZ!Uy|3i!F!>rQbR zjA2OI{PO21pA=DvzqK2T{-_SP-_&}iJWP|$C>j7HFXIe|B0s5B?En%f)yRLLe2GVu zqS#|kk{6T*UG<0FlFjQ+iHlOyj`Y#pL{c@2aYh06rtv~K30Kc!j7)C^CKTC&<0uzN zcUX;*3;F6T$tVNp)8!b~oN$eG!_;LMBv{A4l7BYUc)WaKOc1lHRzDI{{^CA**Nt)} zX&(22LpYg}DQK~@Vs?T31x0Ed0VBGa;+y7GKgnp7y(OZxJfL^g6xU6GjRxM5G6o_p z!yTN?Y@&<&TR!D3Cz5FknIvB248)?;CLK-I;r~rA?}hpu9I_E}buDB>5ADwL*2&EQN)w2ihE?W8)5~^fj!8b* z7jlH|-7f4Y_!mTjb?6IjvpoX>WT^|rq-EYC%f@+>QEnT9rW&6-7rHvn>Or4xy?ok7 zt^u=5N?jEhi~chI7X;gh*;Gb8CIr@4?|IaQ%U5vVK8i|MBP={QH;KsYG*~0nCKK^xZKA#f#!lW*?9F8>A%*yE zPw?7MKFJ^Dh2?=XRX8a>183bC^>OCT&LI21I50qu&hX@Ch+y_IMVys!!7LSO`kYxu zxOHBS4D;RFgZ>xtFzY6Rlh$wRf?2U}z=T+M?bG}zU3;Vi0hh-~hQD&65k0%nMm^Nu zbPunU_Ug)Q-OH}Nk@MPH!Ziz_N*;eN<;q<4_LnM00}c#pA)r4U6J;{ToffI5)^s`b z)blRA_o>4kvBKvYSPt9W+Ep=~CFCAU#@pCS0QUG1q>A+NC<%kCH03XL8_lZfKOYaf zAWhejfYjJDd*BD^_7In1Kdj*z=N($_I#7v=vL2CKHXiDLE8fQ-zd8q6k={B7W8fU@ zFxk9hf1$OCjWV z_=)vJdW?grZyw?sY4}NqaZg#9);h=R%{hKnaU~2hy$((+i3?*w*v{aF_g2NLjcsBl9=1mW!>qHENv^tj)$Xzr`kfhum4uxG7z z(_C#?jiB$lj4`dAENLGyx(WS0do%-kC$w$57rn~;{bZ-erx*=manl9H(A zTl&&cCo8fliB}y?^mZivf;&U08mddZuio)-KfFh*j zH6o~48d0qj*hU#fB!?%rJ^Ss!ti*JFuf?4O_5o9KEdW!ZSz<5hm z4n%c@Z%}i~b2G(Wb4sVPyKI}-jq~&HnDz*@PU*%Ua9k?HU8d8p{(ya-PT@l-_kd4n-uy4 z?#$8C^)@x7yu&&NHU21q@2Q%ah6;FQy=&UIj;mO$64q_^4AON7iKF!+2eQ@JUg_wn z(VjaLGf@PcP?#S*#k&ak&`+ROoA2}cV zskL%c$wBT0SJgV#&R^hd>J6KneQ3eeWxp%OxHVbns?n~vYsvY0ZM5{Uinpl#PI+@B zG^M^O#l|ivBNO9->#Vftsm-ty9lLexE8@YH+oQJ2y-?Ng-1RJkOU7tR{k}~vJ@pq| zqWz%D(Dv#eGUtle*B6 z2lF~E5d&k?Q2V)y*}@hsYE9$8!C9jjh|kSnt`xF|sR|Ag8n0l}6>RSN7F4z4$~tn7 zM_0Y}oPzi-4D(gvJ_u?3foe1UMb}0YJ+ZrdUM67}#MXke)jaNmXI~hvDfVp(7R*^> zC-xgFHdx||jJ-wC;&roVSQe6gSdMRp_PI3d>g9So{Rh-ozGm>hO2+>ShV=i6&}U)g z;QY^$QCG%+r1O6vf7wAiUi}SwA!s*Y5=R(nnb-3@#A%7 z>!Y5@wNki0ofO0Se>lHC@7tUIhVvd92Jw7;z97OAR0Q*r!p~n3m2sB(zP{}ZJJd^q zm#fY={Jg&*VxA6{I$@1rF^pw;lwOr9zgMKR2PFS-fd3Kb@5MAh!rHw%zb4Co`_1() zU+Kc7xhhGqab#<9xt6{|0Neh1p=i6&MtCMy5U1#diKA~^a}ybweH0V&p~?oZ|k z$JB@9<0HSSFHK3iD${O~Un(yKHKmN$g<>)Y(cI7HZG5oj!+d}7w$ML)5H~iFNBJR< z_d;YOt>=#y2QUN}dpT;WXbUMRWWOE|%-z<<`yn!4^b=PU@ZOhaPIN^%X7Z7+j3}cx zn^ydxo0x50&9A|xST^LvV>5b$neE(r2}LPvrs1gDlgX&4Mf)amnNdDk=;B8(U1?D_ zf852ANt*Wk`xtCr+|^7f(*FI&jX=!7w)Q68#4+Q1-NB&&X9;U+?}p7DE|FpB@fbqRu^~u0oX@d9_m{`GnI+PSOW-TJ(6f~kIVREL! z-%TPTDH5yJdpeU6;I|JT5k}fozJ42S5&zZH1EHd7-glC9ZkUn-lm#MZTo;P5UO0)G z2$dO4A0i<(BEWdla_Kz%iX7~a3MFUq%)~@}E6^c>5^1yJGJ2v2OG^fhECm0o8zHRd z82{CYj2eL#HwSzXW=SBaNmu0bm1-T`0WI!PLBJXujb=w)JJbWEVmjEU-R9GSx<)St zz>+eWH{b>OYj48FA~=ZN^em#ttPQRz>7<2er4pm0#8Y`T7i`}XWwA`dp; zjI=zM5@>jl@2PYoH@PqLiW0f3S-$A)p4x_FA&;wHGMFVF^`c+EYNH0uZ@E*VWAKv3cA za}?9;E6Hj{^cC$G)k8GbM1BJ(uXxM}oU8q_jW;Zrh@L9xkH)VndG}Otu@RV7b&;of z^ZCVEj@OA)bcdPY|LC-RM(90;N18|UGvyZ;3LbKQla`tT)yn{1^)45dA3U{=wdav9xQ6Lui*bG%e%z%Q4;6=vuj~L{`v4(B;xt5cmCQV z!&o(`C8YR;;NrWx94+5Q9;MDrd1lNd#{52lEEH|tZL&3NK?v{NzCqh}T=k{pBIT~3 zs*QBVfMbEjsvXJ0KVUhba4+}}fN6eXrTR(OKh!>t5i9mKDWrbl9W_A+#A8Nw-&U=7 zU5+Unyk?2K!gg$#>>y#b%>_R-WD$qjSucu0#4-xM?r%0k$!`-4V-v8i7!YMVPc^5w z+vNVe2T+4n=9qwj=i8ZEIiO< z=%$O-kSkRp9PM*iD3~Q(;-wrx>eJ{(Aq(J=0yCSu-=2kp9DWb=)FP^^GFo0@7jjA> z1s9PM^5xe;XUK9NOD;elr#e~Z-OMIveUrTC#(GrO5%#F0?l|W}DD<8Z(Qe+KyNQZB zgoIV?ExE8yCqh)J4z~)*c*8gLH6*LBLq~bZSzPZ$qN>p)$z6{pSbqbOS&21;aHn%L z2ublfUE;Q2%#V#pXCEXIx310X>8hRdK_Zbfsh$+{JsnRJN(T6slNWa66NiXX#j1QI zW^+#y(_W#0bIW-H)6n%+WjsZ*jr>-LT)SC+v3}csEd|eaFRKv(XR0BT=5o=+;8|2m zXIw?7$ZpE0EKNAJ4$gOsol;{W&Vp!Er`F9%-5c91GhRFuRC}v}^YLN2TtZg{%n+yE zm+IzKcfOQz2k(J#X;>JjMogPWNefgZymX@yM~L;N{B&3{F7~Gp?~QojMJnv*9`(yBXS0@YP9Dapk=3JO z+*+>19!se`5|_+gECZhZoqB`p_Mp*Oo&)H%81$=;bD>EQoFxeahFJfY+2GlaXXwI) z{^~NcIn8EyUiIZnh(6O$XR!=6-Y;=s!{4dA^~`vYh*QJs?jV%!?z->Vufr?#WOR-1mQ-EEwP#jGzTY5? zc&estipAog>zP^S$|-eL1k{V`N8g#y)?L!&F3IRX`(|JuQS?s%_0<}?8(u#OXWG?@ zeMRk|7oDJEzv(2Xk5|#vav9BsO8jkO0+L+_c$8k;7U**ZH*+kby^h!i^c19&lb$Z7 zJ^yV-BowUM@%{fuTlSd0hoJTZT8+YjC-@rXY zq&)(R(3txQ6^>;4?jMe1Z4rL=g+P?>f?M>%9#FtOM3j?fi@W$Cl#2+`VB!$3pb2Ii zPtah|8o}q3$R~5R(LNvT1F>dnzH3r)24_i{VoW;zOJTR^_)L>Lb& z$erA{babJ%iFiFc9Jg5krUv4{MmwJ-w4Zneez63S@RR`EaH7+&L8=XGDDZ`D-qSH~ zA4Ix$B-;(4JEIXuEyK7!tOiVWr! zzjr8C*R5riQ~AIa9jIM=tNAMeZ+(d>Hrtlsww_$iUVmtIG>?x2*1izDF;7$`mMiFE zFfvWrTxi5?JR7}%;!<&tmecnZ0U>DEDQ1k6-^!`-(Ui(BKb;7?9BDOLzdflPFw5(itL1&^WM?;N9yk0YsRUc^s(m zTKSDwnBWx*4JvrpY}T;ggeR%{SK1QBM-$^sCssLYW%uzN5+eB9T|-_~U3Zi1yRn9P zhVxWVO7!+;|8FAV0HUEF2e#L9fe#Iwf)rTkB%3a(8aE7Vg$tFNK&oCL*BjoKkqrQf zh=;QEp_*Np$m?sDBm!c0u8dvvR@qiHAFqB~%GZhHrr-IWjcWqjTQ;*sKFo&tqpVwA z<(21meu|OmCJn18LkAGE)!hM#RsVjGe?hY0zLD89c*YDu=g1Ec76x=Prt*;vA3FpC zA=VZG*_)}b4%m-D>9oR6!0Iz!MZ>!Y+wn-AoUJzFUmp0E!$+%gy<)nkSrumUEZGTM z*ZO0N=-s3_qEvgu-52MM)bsF|4*E*-K_0&GVK=KsfVzEEZ@pdGmj?d!c02U#GJz`I zK@ZqeljrrfwDio%D*(7B_=P81Dhhz;qn8W)itR$(LZSag zxiN!Iu21&3Nq!KQBA-1i5T2vXpQ6b&lZH7yjAvy9Tu);3U8=r_MfouUVCi0oC1HW; z;Bwvm4vw|p+-8g@ddp&;XD$c#jBjGxaV*w76Bbr`ldgBW#$IiI zP25?k<#RlzaWjkk>6}I>M#i^TwORfb**~&s8dDDY*l^?kwVi^&ivG>YYCLmTU7KRW zEljhO;ARbye8?8(6$d{`28Txc^Br!Jhkx^H2&A6?$ojyYoNPHEOa$u5&U&3YU|s3i zS%5B8T{XhV;j}9n%K;?~Ii^pN9LUNA4H|X$Ge)j%#9~AKx>6MOr7FkB|PC>Pb^VRhL zu_tv+kXOH|^M3r@0WNUpQRDsj_+b!fVix!Bg&nfyYpTiI*-$)DN;kMTb3O~p3#7rr zDw*@7je3PJ&-NBa23s(+Ey#{MrzM8Nn`J3WO$AZKj1*H!T4066#%CxvwkbMcRx=N! zD(86B_o{AFqLoF)CDil62bEg(m%A!Ux04LXIx$%G`K)G1^qd{p#UE(SeV5FAWJq>p zPDY5AoZeg_X&3j9P1HKl_q$R102D8tYg-VtuONpjjU2XEQ3M6s0hsS=VyI>4r_&%O zcf^}yPi(xB_o5!Y*XEqRf2-WAjQ6};f6;C$d5Zm+0i~;Q*Oa!}Ph|J$nEs%Uk`<`VDa3#c%{cFj@spL34rfAhoE`4`pYDjjTPTGejhr@-rERymSs z7PwLGR(Z58t3MxRF6UY7xpuK6cph2|91j|9YE-mgs%@L~&M}gZO5Oj<4np8<2sSnU zE-6)%K)8*Qy5A~^PTGO;BVyf%Ljn*CV z7)EamJ^x#B%&JqUoR3u1%hG`~LXcfqyO8-d|F^jnU%9%cZD|T}oR>rP*V|iC!oSkv zgFH#H(ni`a#MLMg8O*3e2Oq^dkQI?8g*76PgN-0bsfA&aOgKz+x>g~1wI#9!dLAOs z90`AB{D{|1r$clSG*XBzo{F+CSf>aTF48CgUw-_bgzr=XDi98&!~hSOQUP6%L5VoK zc$kovj{uoE(3_$M!|eK0;67ePU`y?QnC<75LE${V|K~V|Az0X_JAEL80d{142>@yn z>Qa3Imh%f80bWDQoB~X0l})ud+$ zWv7J>YjvcY1foy>_oys&TKpQ#j+5zyD0mr~v^I1jpgGhw>pf^O37U1fOg>V*mnGWx zSsSBT?V_XL1b;7*5y1&v1}P;JT_MP7lcf+1pfvPCbyKPsy;V&)%Q;H6Rn6~CkW}zv zo!d}n%>^Uis>w%61Qns}$zaUewU-;h_eC)k7efTF4pO^s(0Ug`e;ohQYEZ)8WFi2i zkTM-mgR!wyX98U0Lm0nqC}}++7cc{S(;t0E_Id$TX63^j?R4`OcakeG->jM@5;X- zS&B`0v@JSCM-x6pVvXG7^_HM&GATW=IIH%uj6&1o_Np`~l4@SX+PEnD`b{(bp~#dG zI4eaLz!e=rwTd7(92IquUBKzk_*TuL&?4If=x*^y#@hwzlvw|!U1Zc0!Na6cYCYsL z)?DCo;st}zr07Nn1+6kA2A&cQ!juX+$^z7OME=#lhJnb^B;vdFga&{gF3ARA$wl@n zN3~~66PEqp z?d}B}ySYMY&Yo-s6Uz=kRqJU|OEsNwyQc>E3|dc=GZTNtnHrjgu1*b;57Kb0>#Y6D zXFwqDWZt270a%O|+~x#OUY6cl)@;1 zzW0Uc#L`V#i|v1YI6nzC4@@D;zyNM@!7Xk>~7CuSv2 zQYY;dlE>s4SZB&)CBr>xZ(gN{!e&x8?JAb>Hqsrsb0!)a_eQtp2huZkJ3xmW)y~_5 zRU-OyP4YU|oR-5_I(!~qBmwK(KD6D#W>F`ux0Bc6=9ud^ zEwRm(nK<_`wv7CC`6S3CPH*-xgB72{mU1z8S7Fd?_9tVc$R;M-P1fgr77Vs_ z4rnStzJq0Rq#*!-nOq!4D)>{-13M&cTbi6h&rrxgSa-*ro(W;8@WLr6A!Z~&j?qy4S|D3CuY^O z<-RzT&cCwBj1a=$-8$UTzg-i1QQ6AOJQ+T|Cu=&nI{_SRhMM^R=P@eAW}rB?;Yb6a zIA$rEkSz%@@S^cpz46{(E}hrHc^ct7%ckpym#4qj#y8Osc4G%PSmqaJkEKqXSqAE?f#iuTy?jE@01$XZZ7pe zp@=-$6bM*cpKmVce{4wi)|hFvd(v6m@H&X?F%mAfQ08>$Whx8oQWuclv4^&I>L3*t zM)AkJDf*&Vn2YR)-~4T}cJ*69Hr4KdZ=I8B{SULM|A5)K{77owim+TQGa<};MPYgF zXYsTcTucCH44qG$t_p$XLZN-LM7ORE&m4P1qWC&+lBWd_={k%|4s(SyXJ4bOmXX%S zyOaHS*~GPZgKB1D5t`Y${A%eaCEg84)Pg46I2}K)a6dJLV5Cuj^1?GaLCF%X1g6$P z?stx9ie@E*^Fvk|xbuJ`sk)tF>x)jnpIUTt0K}TAE_cz&UK&x)xp305Lbqcm>RubO z1}*){O6e%K->5L zf17~prbbZ_Rjb#;0R1->{e< zP8tgTSDc*9)J%@8#Z7%zwoIUk$=pVK7=xn~72L?wKi*h)^SdQRaJ${*{BN4?0KbC} z5btFTU(CYEu>y*rH{XGO^p1>RU8qA35G!IuvbCuNqA!kV@c{VEZ|*G{mu=wd2#w|3 z%b^mw10LvZ3V>Ox))|0(!s}qjYP2u$GE@LO8rQXT>^fwU`QF-r2SJ@m`#tqy!Ag?M zI~;^k;ic3pUhABH+)k&8sgbvGTjIgNZ|_1z{-saf#u6x~EiKDCaOp3$x4y1u_Gz4i z8{Xj&>V$j_ZsC&DR)e+Frb<%6KAYCEaW@M2=16~bf|otQoW`)3ZyYZabNeAC01hu) zawB4VvB%)Ub8w-LUG}+^%cyv+JOzQ`lC}+L3Fgd8{+!L%u9R8w(UPtKw$x4!*382C zk8%!Vy>`OMeyf1_20m1aBA$fL(qH*moAsM6S=f*6QwE)>x?l*wgr zI%szn@cgSfi&S^X=v+91^umk~Ln#q)!!=_k_UjQN6&rG(sE>OFYesgs6gr6c9S-)5@lp({Uww{Dch$*A3^y|bA;P?Bthmr77?<3{U4?oH9x>Wxfq zAljQ9LOr*({*?fvB-3j;5Euh zXHHQGJ=wX?Ixy*E$Do;bn+&A=wp*V7L=gi|!^)TnLBAl#{v^Z7n(1n#VR@uN4a*u6 zQ%;0oiCG8bLBq=V3d9HBp{gquh8dQqFl98 z(4aLuZCk{pj?~~_Y>%tA8rfp-HI|e8^s8FD$+l(HG`m|Z36>wiG5H83HNsm zn8Rr4#>r(|{eH3~`kD;z{ID`Xj%!`CF+of6-aPU&z9jx^Viykm+~W#NNNccy7kVlY z$I5Hs0%`SNxvm#|n0j&mq^7g+Q{5^p&;Gq-1(!h>7L>aC0b_J@1t6WstO&5EWA7 zz5K^MGQ-|}WS_@m#?5dW!&LMhGxVQbHyim&5!&ZZxxm zb|a1Ot-K&Q_t)D*Y`@VIb*+1s>@}I~GOIkK1gs685{4fyW}M$|+f4LnG2~C>g)j2iS5P@Ei zhXmIi1*7e`xrZVh!KZ` zK1JF?b{*6P+9j}4leV|Gzx1K1qoDR8rO<9OuV4c$1xGK<<-)~WKc<)RN{Y2x*tMBv zc6;mv7^pI_$6+th2gH%Ji¨ANVS(f+nH92USS8yU^{_zOD!i#|z#ob`#_~r|2r)9PUr=4@okV^SU8bHjyA`pBWWALua_5i4ILYkNj))VpYVaj zs~cJ_T!j9&Fx^X9s^S`#65A+ZPq8CWs3{5bKr|j2Vbw&j%$ljO=s&6m4-t~bIidr0 zhr_>0fT+^b?gqTQl)fL;v7Z-UkMZ}dph#Z|X0&4NI%4{s5{S&sLB2RmN_rDgo8uP4 z5fh9PI5fEq9_&@=GnVv~qA#{6wcS2rX+rmb~U-t`RT=M0PI@_phpqHv6+STL2|F-BotKc@lp;t}Wz>Btf|=8K0#5y-yf{srAR8wG zp?ojaMD3YL?g_1Y4-SD6L{l3v@_>r+D=D!YQ+=Wq{EVbI26VQW&MA>um>h#o`ATP! z27!6>AwZ;&jHIPw10bf{Q5rS+7c@1wL0-{b$iJ)`CY0%H z&$NA7nYoIi1CszD`;U{McIO zr>of)c5X4S86I_2h|e8L1dS6(^dg8gW+n7Z=(G{IZsM1x5>?#YA1ei$7vqyx0;`V} z^U@Tnk4`L^^Ht3k>4*-;w>-7gCtZ0A+@+y zzjLXqUcSw{sP(Gu`Q_>E&{^~0?@SrC9Nrqu2Eq-ITFb(&p`D-YKg$9@;Dn*F8bR2x zTY5fPYQ}4s05;queC#$t8-nWNq()-gCSD$Y;hhzE3xqVYxM4&gW-t{uz3Da~DXV(7 zjOVlGAH9OVt$Um#_ZWj9ZK^X+8=hEB5DWv@s*_v0=T~K{R*WKXo`uxyjfv@?c9%6)?|r!q za(3dzT8sXcE-NjsL}xl*A6GNXUN)PrtW2fhRB>m{XB{k{9O(m36?p{Z{7LlQf;IIg z=%NTvpV~nwp$&Sw7Nf2#^MT}N{H;s4sI|;ScjnLyOB*b!w;bc|=@$4I*|Mf*_&_-Pm(e zDfjWN!t=4|lkqn=UDPZQBrQkDF9#+KORQSD1-McVtKgSMI~w#ze<>6)X9PsV~@ zu0X-Yx2!&s7E(Agd3RZfY5h({o-PEslR#l-i=m4u?P9qom$ryFQN5U#qsMc)ZYCfmnsI28;EnusbLu|NC{|%#0(q7brG` z({X=uV9J~wfE@t2EZ1+%)Fz2Ib*aW?oX-k*GDVE#3kuof(;4umn+wTQs)a97He#lp2%lj## zXdX2!5n!mAo@~;RT;Sh47qUxY)F?3I?k-@A=3Y$G z3u$Cb%a1d-5^HCCC+%KXwBB5F$9Lmiij$MqIZE+6TU)hc?mFXK?~bmX&*oB(7G$~- zwer5GhDYo?fA6|uGyn@J1 zKBDUm0$JrVWBB*C0I**Pl#awO{!A^=R(lXuW;j|VF7XYtxif+{qPa7=Hlu8uFk%B% zc$Vy6-)=daF^9iD9@*^bEIpFYBS`l`gEll2kB-jbnY^a3GkhD(iOFYpQ1S-7Jc~>K zG3+Y*lB{hwG@Ml?T^XkaZYgifs%x`!cDT0D=7ie8HctmuyIny*1%hG=>qdM?;uHqe zZ_u5K$BJF(b#?qz5@S*foPeurp-Dd8up|c9zu;sT>q3)t2#7~I5vfQ#`w0}P1z^Hh zn}my`RDFWgjSHJWL3W4QJ7qqAXp>q==>%s6a#cM|eDZWM8rugTPcQbqJ`v7~!#CqV zd5dRfulp%nY#KbmN#ZhI-SI0&_=kzch1IjXrQiY~t-c2kElDN*DiE*&%tQsUq-ljD zCw)Jxoo)F`SZ?rHpZ?tANl1R4hMvCnC~6`>W7pu-!Oh-BkySpPS*MCN+}g=gU(i)M zQT#VR8bz^Pd=9|ji_q}n#0Qbbrzakc-c#VJ%1%NU7guL9BRd#RKx!frLNFto zn1}p6tRP-8n1pa5OptVLvzp#k<%_`wys3~Lw`Sz^PkwF4xtwgfIrXfWTcC1!k*LD) zDkp0OZly?Vxlp(~N-83s_{rHX75_9IU!v~^vRBd^UuUx$408^qaC|ti8%F~d8e;J< zVoUpCQd4|Bfm?1%Q6*S71Wc!0uQit3)h}CI4t#_<)yq(~7qznMKjBpyWrVyD#BMYz zx@xxG*`1#fY-%etJR~*(c^R11@GHhJ`pDV+{#Q2}0*HWD6 zxTCiFJ_Dk?CQUdI^?PVph>gFV@UKXQ$-P|sToFcuHY5Ka!75@+lu1P^e9(Uyb&#W< z{gc+V7_xW!ewSbVb}-oexnkOWyKrnbKstkA)%q1#6#QJIQ^3Wk8+yN;Pb0b+R13oaYX6E=w>W&fYyK5W@XI;TgC^;1 z4H@i1uVG*NiX9^Zaa7uj01XrPl*_*B8_H}k#q?Dja7;iAQT@{b)Ja!)G`I!MKyM8` z3B$0)*vg==HgZZ`I28=(pRF0!jsZ1q(NuB^7vIAys0ZCdQXdX1?|zJzljv4M;}7ER z*zTVg(bco5)ZlqZ@XN^W7mr=i3lw3@{Y8xS3uS}@T&&1$NXl8l?oxjLVmB+wAn(=F zp+_#5W$$mg5yM2hYGZUhDtM--GcTisP;J_kAj&}wQ0m`kN}8ryZA>K?x6o$;(qm#8tt<_|a(m``!BMt5t={jmC$v*b&%HS3tmR(*5^ zmf>+Q@Aw9JzRr*+Ctv^E)1x$Mob?Hx-GPLwy>10!zKYG z3+w0Ety=DONl)E*(-=lXEWZ!idxF0@E@^*9c1Q3|ROwfv&6lS`&FAWmP-xbHQ$iNU z_oP6X)s7&?n9977IrFiMY&5c2IhKNgnTb3`l0BsOU=sE&b!=*jj*4qZpafOoKqQac958^64~7cm>Z4tBD9 zUcGP1GQpLKvZcg4B00+brHCA_Ke%f8jlledF=~ApqM-MRNtM3io|U#HC>GA*!H2BU z^(3jaIHI2);WsPVz(@*i%HW5llGf^SL+2niviSr_i;Ts!Zy1&O*HOA#mFQVY_h@a| z(dZH{r=%}Q*hA`QMWf@IcvUL2fTUBRc`fhlqP08@-1L?mfrs~xCQ^#j5gE7Q8y0~x zEvsr=R;DV(i!?wpbgdr76{moqBr#M$*oo9SsZoD@?IaN39f%B+LSgNl6D;}^#Ro)P zqXMWYkAJ5NZEaO5#ax#I`6eJ*)&i^}eh3t3rK3)c0t#$v|K3uqL4q4v@Ry)b^1?+D zZp>9=!&1CCpR=JR8&u;0PGb|lua?^H3 zHJ=wC^sv%YS*5NfBmX>oBmdGWS~mxK6BqoHK1a_b9(7ntJh$;Fu&ed7X^p}(A02Lz zEoc#QUqzeqE6o-2#VbV?qr!E!;>{h+E~yb9+?{2{WyMvPW#+#vqqJHHLIr8s@{<@% zeH!E<7BKbl-a0xHCAIlJOB8m@csoQMH1n1r+{7z=CS#g26P}pettE>IJnS{O!&`T^ z7q%IrPTKg04dOU$Yi#7^Fre-+RDRxRFdIy66KOLIM+`NHR>vFBfQ?H94p!kF@i%(( zv=&lFw^RfNcn9?~6w6=`GO$>N@7#0(nE~a;ft{)M3F2mDtr6W)ZB`uRKu7n4LZ?z_ zBXYeZWOp-T&gw#(>iTIzq+4w%LiF<{s8IP=i_Q^EbzP_0vM-4&`%kdkNqVWP%N=J9 z#6_M;x9akY{DG{x&E{1M7be40&OBh{H@+VL9{bSZ4nDl?RDItbnp@PiVA{5!5n1Ov z)(S2FT-sYE$2XaTt2Eg^CbiCM4PR$-HEg);$XbcbW(j*?38c<|W@3|OQ#0#ev(4Yi0dFQRQPG&~yS-02$nQaMHs%vYg$4CNC z!NKiP@hm9&K12#u$a(B*A`gy{)d*o0N~)xhS-FTL7RC^2YlCxBD;-wo3YY9RB?uFw z<`w#PKS@;~S6Ub%SqIxtJG9i&@WzODT1wCo)IrM>I6`!iT!^w^)A?mr)Rtj`8ltl4 zMgf$^9O-+NR&t&eN82N^rgib75R1YtjkBVHIZfUiC*wrH%O_E@Hd?%XOnV&qh2Pvl zw=nV5hB}s8v*hHrP#$d9PRX;Qz+6?mEjcSPtDlRr;Jw9ep2@lv}xMaddE@zeIxZG*>^j=aKmW664KFMtFaF&I*KD znHii3h{1mxM0%eFsU@$P$%)aORuOQ9SEX!|FodGc1B>-nhwN54Gh_(7sz7Th6q$=q_fXT8r~*rEOnc zjKPgJ_E1*aYUAG*y$DH^bT+>T$zy!4^PW-ey|yUFa(eo5lK1a&rbpgYBhk2veRlTS z5@%-Oy`8%;;+>9N*0OJlgxI@RMZ9ac-t#CERI7FIs`$3^IN5sTi-Bd4`}zlyXt2iF z5Xik$7?jtM8PRX>%wRpRvT-`7Uab7%SWvhMP4O#`MpA^{I*8fm3Qqx!P98pkqSYhPJ~rQAb;8ZHYhqQW#P8Dwic?;%()oaSLsD^O$}@f1-IQEUr*;+GTzM^y4_?(jpJ_jIIBh^gi8oe=Ze091 z9$taUu$twB@9bgr=fAtq6q_zoVM2Vh7o&(r!ks;6I3Jde$>N*7Ybd#=pS-(_MzPjufo8E6!vw!%Y$@);yY-2i94T zJ|={~6=}|{96wh8IFA2=v2zF#rHi(7-Lh@lwr$%sZrQeN+qP}n_AT4)dOhjMA02O! zkr5ejh8gGEYp=B&O~9}HYuX03c{=PS3!z?GE{L$R4YA+c_D%y3odJ9DrQaraoxFju zkNg*j>%8(HzTLYzHDnpJSNAVLvaxwzmz#0YZunVR<4mcV&)iF6R;DHRT)MF6Cs)%| zunZ8LXFkM@T_oG>+ns>goiYE7Z~%pq&7=liB+q<}n5}o*@NeJqs&qnX7W^f;7D(ml z#l<|wn4Y=4J9p87>dpwEDnDS_fgUB!E*K)QWaA)d--YW4=T>6LO7Zy&=l#t7_E~fI zk~wCh`^p$4O@XBE{&M`d=$s|-bzj4N10bt3C=e=kI)IGA1|HmB+Qow842REfkAhBe zkg4MsZmoJje8DoK#%aIT@Oj$s+uYGd`&xiBDjJQl2xr6lyBD>(GN>DLz4jV(pH`+R z8H!`GU2JQ=yJ?O$cPu^FT9Ljnv7Tk|&M{%5<}&M=EUG;Z?*5N!Va<}J$J;}hND;g+ zrhV0r4_|8%P~wGmL<4o*7l-#HFzt&}az6Q@!C^7y*_7D=?HKAu52A|T#)HF2vHTFP z>*>QD@Im#w*hI#`hi^u;)7eePLKUa2_diPL#Zx4_$ge2(QN~)c zcP%H6_#7&&@VL6I?T794a(jE(EhtvCc>z{|=Y9rvn93(h4cEITI!TNqS zwtieObpIY*?Vam_Z~gaYVQ6kTaF+QdviW*=!*7UevAOWZc9u-o%do~NIaiLNn5_LL z*y7QrPFg0*d}&eoXQS8DqONtUy*l1+c%{DY!nl z(h~F=*kO+W8rk9wZWqFI9e~OB?A?Q`t3_G6*01AR4@Jef)_JXcVMT8`I4ani%Vq2C zq@`mKP~%S1%!{DANpeYVpY2HnyYtq>`~btuy$jn`=oDu4Z4ac6=+VxF$8zwuCHsp* zlF8W9d&SnDS(3H#Y=9a20?$?IHm(CF{~F{o+y(YIoR37LAFk4AK)G93K(t>_H&yv- z`1j4#9ibvAL26r%HU=<$WUS=o%Cn%=pPT@Z^hnYEYVU@+4+%zBQ4@_AvmQ$7v9xptSz^kWONn6iv3}=U-MY6$<*x|gBn^7eUm@_$XLVo;;1EUlX z-t-ZemzL-aA_21ZGSQe`#OhI^vPKk?&Aw;Zmf^-QEVh_Mb#M~Np`0b0&N$AtZ5Q;{ z(-&UOy9~-J^YhQ9P~nNp`Re$c`@G=R2nB0v?`i#cPY=~*V4>)=6V%Fwf+~6ft}%ZL z&t1j-L3$txZ(bk%yAFH`85q&ti}fw#zn7o{VH1WtOB-}hWZmPQZXoSs9rxK_VzkpY zy!J2OToi^iV5Ee1EDvvss<1S#P-~_|K*8Fc>ZbxJ@Hwm=)u0tld&p8%4<2ddD2t5a zv?=-*?{+=q$s{mh4D&ueTJb0U`T!l+`Q;Bk0S;Ir}Gx>-64(f|5 zyf?LAB#b9e*-x9bd{3R8v_4^gdK(?)(Xvreie6PkvJ_GcigPwA^<+ciYITL2MJ8rV z_76pS`kU&szE3HgA+zpOsxtS1pt3U%LZ7UHvBI6rBoEY$vxiC9B1@-_Cd~g^9~8kjiem? zjfS$$L@n$hy!sV)#YYBfI8GpCrcx$ExpL{Bqd%vFHYq74>Q=V?5WvJDY zx?=59+enI8@k5PGQ6f;QdSZg+9CC9ugwAt`{LkjJ!|PcP-jDQ8-p^~d4s;?$0R(<*wC&v*AdnRwsnpZn;1nGPGlCv7Sp0qvh+Js33ow`zyiYHV$%>Tr9;@@}m@75&h%~lK*~`Le`;|0|wQR z_yrmQ{HB7DVV`uWByBfM7#_81a6g-KZ_XuDa=BvTz;-1*!hu9g*fTJmp!Xd$Au>(a z6n}`w#0!pwlr_OT+tf7F_Q1mq%XmL*Lq`(vFGl3AF}|>LJMR$Cc!Ng4CAo~(Wz-X| z!r$yNOn9(X4K>q&v7;v5OKS5vyIF;fXgj?TeaA&V%+=Q2hhniSnxITT9u)duAqiZl z&h_BB)PmWd+5>7ENDzG6!~`Fh$ii*mFgk45wx-l;Ec@Gm%wS2L!)*}&FjEwRUBmO2 z@Vrp@LSk0Iy&=kz+NtBVYsIsp{OIc)D8@f}AIX|bM7ZFHX#d<=-jJ_?nIT?dube)) znGYT-Bm^EkhnZ66)v$luesx@;!N6(m( zxr_!M_FMJ~mpO$QYd|o3hUN+kvxOkVI0lc$QS*~^}l1+@LICN{0O~f=O zIms^(sc@Mx@7sr~*x zSn_Y}E$8Ep+#y*&7OYMD%X3D{Zuja3g82!YIK9vq8~{H?h~eBo;1gc8!T49$_rYIY zjCaqV?}0c-H0oRMp90CSSwF5AxJa;r?$|^%=)KV}Dr?u#FM)mj&CQrjD6j#6{2|ZG zu2#09uYWjjV8~|Nve$92T7iYwS$IaeiWAfvyc0c502&UyY2FeJ>JEGhQIqxKH1|7w zI26-)T30((9~YQTU!V8RE+zh?NSJYu#i`7ncUObHpoE_$WlP%4Xy+f_Y`1kxNipRK zmTKJi+OomF0nudiv?{nW${H8DpC5R;AtXQXKyCvROtHewR;Hv}Hvm-4@K!=~ZX=p1 zxs@GRLQtQa)w{^($E94o6$wy0-FM-^e|KC{OJbA?%}5F4%{&E^ict?LnXmpiWw4@< z!erEtg@TsnhYyDL$X`GLS=bdg;W9OU6T2`5SDC!N-0r{7m}B=#)#aQLrMQtXBS&2r z`XwnAb_PYqQ9U{DIVGl?hM^`R2FQ*dfus8gN0!`XrlR12AxB4$!EqZfmmA~lfQ4Z; zh?@*hfGQ1SgCC0{L~aMSPU-@RmnEz3@{ccK1Y+yX-k$w)x($O(gtX-OoZ`9Tm<~Tr z2JSfmg~xm6h%{lh*AzEs%9HtVNQ)9`=pQ5Bz0jvkn7>!$ppT=)h?j?|H&j-2X)L<1 zLueO!eAg!Jcs+HFThf+g@hS81GE$vgPjDRT0i% zREi$s=V#!~(c3;|YmhxkNRhGGwanvPF1a71Pk12^W`Lz2oIIzPInAg2F29DXu&FNBxH*9M;>U zQDaS8XB7aXN)fgL9%XgCxKc-a%$CyXT>^)-K=kHUkd@FF^k*NHr$u8i4uXg=A<6p` zBe?2Z+$BW++5n*yPEp;Oz8 zOxQK1|0;sTS14q|fXgawcgqGsW|tk^tEDkwgpVptVQBBmMvvb#l&+5IN2fI)K9c0& z&C}aoKyYabJ54;28NT8a6;+}!^7AO`z8r$XwAyqeh9nXZ*CLu$QBWVZjTrbnonW~T zZg6wEm^Ian1D0#jpBvkWW}>41V7Z3msI^^{tsG4J@zh(YGiav0Na9v)*htKO+CJBw z7@ugJrdQZbhhO#Fgdf(bQDfmLFKo|SI0bjXHEoPs8zmvTw838kn*rN4{t}~x1)HRI z-0oe1N3>vc!tO}B0IVEGN;$4&z~SS@ld8Nk*DLFB>XDg?d7G#Bzzj9N=Q6aIdIvw` z8EXBVikj=^w?7$Y*j8kDch9r-=f!_`R`St|xa_84?F_7vmsgIj*>VYO$6=mLeT5G! z=Lg&DyJLKsZ`J)|6>zC)7`71VMwkFZAy51uf^Fr^Y9~_A$Dhu%Qu}pSxQHUDm=$Ex zhXIlZ1G5sIeZ(b} zDl00@N+zM&bd)H=3tkZ=6dc}G2~+iQW_EMGJ(_L82|4Xd-@a$bg7Jo9X#@qb~ zakT7YDUA?lqnCc)XDk04{gncS!%tbBPeJ{G_X!U0$(RkZM8_G0t!IpyP-oIC>}U26 z1qJ0%-|_u)4%9zEeKI-0Z@GK4+&BmrjvPs2Moa^BkP$}>8tv&k#f@wciuGj9bp;9A z3CZcmh;XWd_0e8YS4{+cLLGfNUIB+VZ;CoN&v#>qqu?`_0_%dHd_aW0{I%NovZN-P z_W(YZ5t#|Y3tE>(nR3`=(V}XesCwKJ?}~9Buk)&dMKhod&nGjSQOnbrMhc7gO{}ND z5e+xaAy6E5QY8z6l}5t25MHQj*<~sUn$2k#Db^8t58@+>oVlhb&eGXA}r<{TR>SGv#R=8pn^M%pW^{6uvj?+ z2-np!J>k{Nsl5wdMtm?u0?e)V(?v`p^-=N{;+7N(vC}Z54kK6zsV`jGYyN1IsWr{x z$&G}<`OXb)k)@EPoF{W1Y?(YsVEC&gD?cm#`tHN=IguR&CJJbrB9cezJBU?MGa>VF zAnltmyM4|WEllA8lzmK-?q{?A>0-t@z(2+Ba$=$y^TL$DG+&!4k5eD2%7>v!UsTU&Se2pMw8@S-X)+@P zf_B*IZ=C{0M_#b}jX2U@?lop3lz@tZF)S@;hkO)yTA_Hts!|$r5KG~C30+@HN;%Kl zYfDv%eV{3X8$-bO>IxGEx~KZ=@ii%+C#aI>!&TZ?LGNBzP%eA3w*ri>71C=HyK(OJ zZQsB`keDhxK5rOpzjW2o%c*BtX8SZ$&MG^EuD_J@Y(w9oiPnkF2~th};!r>!bXOY` zC!I|RqlAZKDU&Gl$DD^XxuE}j|6 zan^U1&`U@u?KKx>=);yY!D|gPpoA?}DW6#BHXq)viTD_`DnxPRCDcqOot`0}>hQVl z3VZPW5+$3!YSkR`CIBJ}{=*V$?8EZcNz-6n+MFpN|A#mv z^_J|dY>7j;bH?%Vpgx}wmIkDWzqLYIM<1z+_!bM$CMuH~)X1xpd?={pZK)RfJ9&O< z=JYQ)%8pjA;gAu(y1^;*JlXH3?PHp6SD|mP(2GxPI z8z{fIyku#21A%>DB{!3|uIH_wqNdCuV{J;;149pRv+0Gn1a&>I1>d`5$HQ!wqEDUi z0ZYsgJ3LJQeNxMey)^)O_8!98@EtU){xjIM7WKnLW`oQ7ElgHi`AgzGrgLw zlcA-bU3cUU?OVPB82W+A;Rv)14`rS> znJjUs`&A040j(Ho?h7`Ge^Ly*Ns}r(gSX+ao?ww*&8$b5PE$zt9lEXo6v}VlanYjqmjYU=%ODZ z0g~5$8GU-l)sq)|m~i>THp!9BlQYadAdH>=v__Oz>rJ5EG-}1AG{)Rx0=A7xOJQn0 zgGXqk4WyGnKN{VaWg%_^VN`TT!!xucCt0N=h0DN)rr;K&65`XCaqA%P{;(&SX~)Ce zZ_B6Guap*os6JeL%qPWHEkoA<=QnL@xbfLFNitOB)xJJ~hJgk#F!g~AM}%8e@w4#7 zl@akjxIf_Udk2ZYA*}LE-@+S24#dF6Dy~7uIczU~%8angKI=KAR%;yA#^!0i%_P|dobv~)FfG}ubLy^Jor zaMtf-agIxn?~Ks_bjU4Cu@9W2KuV-%t`%c@Q$jI3qTvCRehT_9xhMS#a@Yt^2D59s0Kk`Jn1k^ZwXzMj=)N= z#7ZYeiaNb#*S@f`NjjV|p4{!ql9qRLpu5B&U)Hv~`d#x&S|aLjlvA3paZ{bik0uJm zwhduPtI1-6Vc6`VEljoBF;kj>TX$;G;Fz`0^!6TPY!$y^fL?SFxyTr{slkDuCJi?xuL`RUSj96XIk_q8!VDC?7Q=$D%m$IJb6<_9PF2dcFJ5aqhf z&J)m0y-X*JQ;^TEjHpjcWs-BBzk1G#d4cwvUyB8C)1)4M&;<<5P&l{+MM`Rhb9UsKWR z`b7F9-&K+{0qk^eLW}Bn3Ic8*yL|`6F-b#OPbYEY^<-o;e=S(&Tbg{Vegt(JXCrsd zqhl45@-$%W`_^kOjMtT6MB9=VJM`t-;*LI4GgnouZwb}G*^nk7*$SGtGFVx&CV6sdD|6CbS(!qt^#uW`*>SD;%)zPV%O zZJW|^1+NSS_roRWd`Gc|iSZ0bh;^4{$#T{E!+aAX%b4ncqc9IH*xHv_eWjR^M|7xe zwr=Px%Fm06jyx1@=d50%MS#MM(=Y3gTARBw+AlVFqOO9rD;7firaFP`j`LEIu8sp6 zr;_`zc4N+b+I`w{iFl^>I(KUzC;0x_TQ=!&e-bvEDt2Y*)&RS+s)ORjG=GL#s-7ZF z?6UL`4vW+W4SU8%PL;A(sf$#_K8Hz9^p-{5#MRTZEWmQMbA?u03x8GguXf&27F};B zBUNavgOVx7T}vjdUXM50o-0gZa$^YAUxQrdJurF~KX#~BL1p+|;6`t~G4aTX2dTKB z=C<=wbEQj@!675RmidA3wd3{Lh_X@V68ZGfz79jO7%F8C5l*CknuERWELCkuULX-+ zRT%?Rk;;cFvt1J`6?tuYq5l^6Mr~bhGQG1Cq6I~nbIlReM@qJr$vjX8IIY%llkoKz z)K^&uG~`0LV8^nZ&-B-vcnYtuw#F94dt=hSJ2i3zI5J%*s;OkpB8*;aoyp`I))uU% zio632M9ANL8h2@2_T!3@@p5Ff&QM1cB;^nOoQfm|S$I5|70@W^s@(jE2O#+9Fawd< zK*eNjE5^mAv`fa5%9umUlL{Zi9@t^+V3e1hDk_@Nlhqr!A23Nr_tF2LH0EC)2|d28 zp(P|Y_y6BT!o<$T_Ft5Cg*_QV)PA+2x4%_VU#Cj=B+MBdwRs5Qkg0F8jvesF#c@sJ z$bRf5bg591L?!u(l8rSKx}+^ zf*(EI*f4P-`Z=;652u;#qnBJaX?I)VSW@vv)IsxXX^>+Gi$@R!nD|!68O-_qRWm~l?KlAcFX5a2Sn&r9;@7V={b4YFyofH+|FiH(kS^cT=oQ zC`03k5W-|(4XB2r$z0}6lI$m1Vdq^yhC5C)(I0OZZcyzpxwe@E38E0iD!uO*59aFF z=IElVT!~~X%Ec1bbN2kIvO^=@9qBeOLlBNCaMyY3@WjwKL$S-a+}5l^d(ajdVmGit z&^zFMF}jFlL06rB1o2(hZ)zPIr2mq@{0)im3n1PV==~cS#_w6(YT&{pJZ-OAtFcKE zEDAw`M?=vRA{Ym2zSio7CN8soeqg(+dJ0r-L3Upz&5*V&U73QsKE7jDDduT$(JkL^ z0~KBy!oMnb0Lq1>aO6b*&7c77=@Qxilhggj;kkn5sdQVnIeFx;03}Y-ZF9bhs09Ec ztQBY4^OHqGUXrBt-nnxD$nBufhQWBpG5x^iM>9p}DKC834@7 zSZT3{@=U`ur1KM}BL7!#O^PlejMf5qipg!HeH1FT(SKL+jzhZ*&vzZ=7LXtd!30%_ zrBl}Ft!pNxnOAdCA`J1i2&qazJn3W}4Y)W*Jm+QOjOOM9*Gbmn2V9(Hgh3y%C7NX( zCwIyltT1!salGCbBT9nRGzbDQm`OZdU(b)TK+zxj@L-Jtpc9Ngj(ekzsm{r(NJj17 z{%GR!Y`!U>wufR3Ryzq&G`$xF$3J>-a-+{*^&oatX7^DBNA!j+r}YC1FsJ&=;@>lW z<4j~q2NzEo?#KFxAc2@OoruXz^Ckk{O22WQ+DqoYn#HQknBGai~}{%lXOA zAc`#|qRc){6a&@m;_=y;tw?>QMw4yNS`{fS!}3G%WK>{tQO6xL#UE*$*n4rC8MV8> zDW3Sp?Cfx5ZwD}#{2%sLPgs^N6R|UF3>xsgc@}t!$YN#*W+)mWZ2fkFE*)q*N2EL^ z3zxJwDP)NbvJAXDM&$}%=xzxFC~lErBx#3oG2Y`ZYseI)Y29^`%;RtkN3ZH8w3r3l z@UHi1a*^DyG=;Sj8#I$MmPo1-S9$N9j?f=MejDa>4ijYn41i#**hx|VXDQ|1@@bE= z9LudqBw&(jVl`;tlbgAnAq2DBHFxolkCnnU5SN0CBC+u0-OQc1GM({jJsHgMy>G_k znVG11JImgXwaMXdhJ6N3_*o+ejf7|yF{)tOxtYogWewKLO^Kslk=YcG!x}9TZ>wHo zf)geat~$&48Lk zB?A#!bCoDf#F;)=g0AkAWK%K2BAjhTE#zw;n&r`e$_TOYgu@mVoO*^21%s8+ZH}+qu3AY1XvTOHkdUhH`Vs^s$@0jki#7jf;=`s*4s?$RX?d#@|wFKP! z2nhJ{11$br*App1Obly=d0vGn4$v=66@eYK@KaiAL)p`|X4fl9Ko$<2pYl*l+RvqP z4$;+Z-1%61!r0g-7a4QKCf`M6G+l#`Bv9AWzC!o^9A7V{C_uGk9C4lAoEk-zrW+=0 zT2&o$7yGxVCBn%6-TlLJ!z*inf6Y@g4w9OZZOg`PYuzSVx;yD^C80oNmV#u<@$;BJ z<4Ja)mDTzaoy}%hv#QBupVkP6ci!ci-~F$v89&&|?4-IHGE!%@sS$XMT-?26n#4`=zzE2&kdwhuI)rYX&Zy|N1kTjI~I5s)+h91F@d zV?t)81WK^dL^>$@16MHM#|B9g8P$59&yWjY;83(0kJ!|v;PESLjNS0sl)W)G=H_s6 z73q4}%I1l(?E=mjFewx3a2)H&KWjen3Fsx9gdzYU$p-%ns$_|z^|j6~&;<}pp;=G1 z#j;ZCaeyW{c``ZD=n{Ub(-iq7?#o6+Niyp!0{7k;Ak2NCQp$Q;%2vcnd8cbcn2F}O zP0klZP|aW*CX7?~*R6Q}cNecz9o2bnO3C$PD~5~)#+%Uw4e`*y5^Thi+2==(Bitlh9D#WRXv(hh?P1*HN7=|6E+rp2TjG1ZX8(cDtP zf0YAfpGFF*+%hVw?NclJ@9=ZP0i^lL)y4RYRq`R6)1ybayVY1gdCCDYc25h`BfFWy z`_a`(8(y!CGC&uvd)Aho7WlUp(K6|bS>Qvp6|W#oC0o}HPic7SZ-nXE;rN#Y^}2iQ zMrmM;!m(Nwe;ex9#{dYo#BRP^g*DH*txx!`-Mq2E;+UoLeaT>xu*h)0I?}Ai)s8l} z8uI2^MzMvEBK#+A$)vh=D)I<)nJo5n8H^{pxd>3jG%2O};LEWDWBTN7iyh3*c%o#h zVYQuH9Lkdmad~F4FL3w7GryGYq*$f7KnglpeD<_P+-R9AQ!U_+|4yHrLdX#X+fi0V za2uUpTG`obOl*ufD2;$>7|d7@9AYI&kloo@aj~~ga7B&b7N)$k zk%&CZ^G8WXCYFc`tL?=)AjNa$WP+VYoPn)@S2H$>&8V`+{!C>%26C{IImYRp*f75r zooF%|^zg+euuIiy)@13*v)uQDFDtnm(#3^w)a2plxE3T7ZWPv+U7U zuswVwD1=kJB;-zV+#@(0{et_z^87f_Zi;$bn+;yk0rl6oGksl%YUD z?f!5o>aTm5BJs5n1#+HEm!cP>+O|IsFheh@N^;$rKH+L`li^i$PS|pciI)@Aoc5gK z5dD6RQVp<;Ois0e#W`)og~O6u$%Jz+JZl(!QW1&Of`vvFafkdHSr`M}N=BHAQ3Aw!X_3L<%Qb~6*0VW4o+$XK4yZ{-cUTiMj#0&nG zFf?{15~-pUJvJ1{F`KeH|Dy>tinFe?)i_)UlHJ6rTVsizq(sSQJ}+*9^GIx2C@_O8 zmdz83GQi4>sWxjcgXqfs8u2>N7tU-HjioWpzL6rMaKdPlx<5y=J3^SMJ{;m~&y-ND z7wv_?rjDCU*!gNok+V2RQ>!KNM-(6=JzJ$L=t2o~CE1vNM_lA;iZ!z$!h_C8U z0Hv^ogd3_Qwm}|lQDfc8y!M`j)2-Zrz*<*xmci^546Y$fUlKl=xn^l=yufpi8)7I! z>xq?>j&qmRj{PHca({0gR*d^|DJ4lEQ%g~l$688#*S82BmP@4TU^Q;VpiuOdpr)PV zPE34veFeWG;g#sNRr(iX)BL+0=nD+e&p)KMMM|K;waGD-;*mrk8y zfd+NCW|QzD@*d%arCV$H!O_sglTf(Y6&U*{*encQU+=lcK+H$@L-Yb1uiHm#USB*P zPi4qLMb-*I8%j4p8g}eMLbqKxol+;^?aop^ucM=8S4qOFQUKX>%-(p zIx7me7kbws5h$P6+xP9PKdBG)!X?;n@5VkK5ZvNVlMVEv{a|lTH8ebZa7=II{>SHX z6f3()i5XAz=a-2a`(rPj2SBI?No|^`ER$*}E+us&1Qa?>LN5cB^7^8M+pDrmj=Edl z{DJ_EpL%h+zb5HJ>G#Lvi$T9OSCKEXW9|3*#VAIPsws2~y&KjDI?kauVGYDp#A(u- ziAVf>>4V@LE&glnzpvvfna&U9u^(T&bB$0!iBQQT#^ejhKQVS0Ib%htbOo|0PNvYR zp605UESeW+RJo@{4T|?lNW>TSqje4+pG&i&Qj$f5c+DfY9Yjd}MepFFf%SiJp)sJu ziNXzU86!u(q;Or&4`lu9)G^QPG>FN`80g&MHNoi<-ZXCm?B$XGapB<6>FbBO>D#3} z-qOQcGJ5Z@4P&FUl+aWDERdSOW-(HS9O4U!H~!~oL{rz^WZkRI=K;lMEI*B-J8V<%KG&gU4Np45`o-!5Ekb%D|a&i zS%O5z1?tBhU~&3!2FItjfslve9rcxRS~S66O37b_X!#bm*RTaui_MeFmbj)C1;8{O zH&KvVEI7lf{p^n_Dg>xG=(`DFc_C_L9#6&-zWT~9Ga^>Lb^|2t(!V|`cu_ScLUx-3 z8}EXFro+Nm*BV|pc(9X(s?(r2Z?SXN?k!EvQQkSnuW z@JITB*dq?c2G?1$&2i!&g#h2Q@TiJA_Z+7YeT*$}|DgOIP9|&22fg%zr4@vMiZipw zA7iB~GL!)c=Q$il_No|Fv`^xsG-(b`oein?U>QLNIstPDCi%!9KXH*X>o&B-iv$jv zfy6To!q7C@V0nB4MIOQUh0s+$tM6v;dIGk{MFzpCnq-hj9U3MoZ!0zR~oxM3!q`y(gie*?(%{4uf%wsHdmn+S^ZGeOKmDqUq3n;SGO)v`E4ecHlm z0)Is*!}8+LA$W$63xUJia_(P1fND#z;6>}8I-Vv$!;X{&04+xILK9C zBXVfdvon(cDfAcSjM^lFcI#mb-Q}UECCYP6@UWior2&~Z(~94kfy&+vAiJ=GwoHpa z%YfpoJi;7K+QNmwiE;8n!LjMjH}f&?2WRM9bZvkPn50G0NttEw==9WQeffd0n&>nYo1>|fjT9H5s#cETw+;{%Q zB@-&#A%&B;JYWrBjN6{#He7?)Ixd-Y6Uk)3`(@6qNZMs93Eu2XtcS@xRt)}zmUR!t zi7{b1jNq7lHF1Pp5}Z473=KHT9t_!W#7gVE^6@GaIvlyYUAO*;wsQkQSiEs>bIMFunzeQktmR>G5uD*)A3Jb_Mc0S+3?E}E zvRhq?)CP8+IU9dc??mqKvyn3@e&xmu4JUulM4ZNRVsnMuiN>2n{`J)q}^ z?C8XApSF-9}z~IEJX5VIsPzTQ{j22EPXJ=OZmmVsr1Gzr60t}_CLTZa7`4qUSWRqG z*+q8+GK9rhk^WRjO@`6zQ*)TD)z`@+z14EbKZG;wrVSEXn@~;gwJ{h{QM?H5S&jK{vf}4pbW(6w)QMAXmN`~MyL(7a??>3Xd%3;2~)auW; z83&%pDzGBJOem3|OWDz7!c$@2FnlL;#k`Qo*Nl2?QB32L z-sbreOEk=>xY4EZGI4cWHJVyFFf|8i>%xJe>xZ$}CEm$|)ixo~9H!c_t!n?^-Bfn?}GIclRdVZA2;Icj}Xih<^e#=2D|edAY2rP1$CCQ@~XdPgVjm6>o%F z>r3{s%ixuyft|Pr@$Pum^gKV6uU~()s9xi#)p{Eu?Omp@i8d5w8D8P0uwB!X++Hg**%9n5FLVmWH@1>rTWuRRCXo*NfJ>EIP`g&gxHD z^i=LWerUNyMioY-bUC}n7c}ugQO8jWFR#xucAc%qdu#{#a)H%5zyZ%>X>1#N8uSFH zsI@wbXWN7pU-3SMM{3o0%)WFC*V!9wQ?QEb`bv5y)h?)6Fj;UcXEj(4U+wq2V2Rnx z(V0uOQe+9mCNZqZ4qsBnYZu?tU+-EbC6q#m_DU|6QcmacCCsyku+_i4t1{Fa+*h*F z%y?_+N*Qe$@@aLZ(S!>x(QI*nheV9)AkVweUO93^#=-VM6&_3w{B{4pZ=G^MZYrqb zh@2D9vj*(Nt)P$AORd@ATVIIE%tYt%`?Q4dO)#Ll3HWOvD|_SaB+lwQepGmYkGVFN zaUlxU5!yyVkHoc@yZp>XC8=dIJ9{#1h>~{HR;b<#fK|_^G2Z$(9--bW{tRDb#`M6R(#XKS9~=v(JZ>Q2-*T*Wgz2j4WZsbZWCXNx`-N{%m&FB zmU$#q>fjD$pXg;Gw}!VSdyjJJQ}Yy1I-B{?@xoPn@37}ns(kSLB@2PCH~OKpu`j~! zo_ZLKq-jd=4ds4`sQq6!!uY?A++hCi`hhF#aT}ucr|a4>BM11<4?uL$jY!Zj>wq2^ z2XM^O93jpzhq0Rzp8NWUC-T(4@iX{+%$h06B0bTzWKs@qEn~-{oujj^d|Am_3F5k* zonGG_rF$XTONc1iOj2P2Lrq@aJ)d55#jT2%54WkazCrFYdKslK(oTPKzJVWfiEkvWMmYAZj$zEOH^4u~fk$^rb`HdzfE#3T? zwNtjH#gkeF#$hA9u>I14SW|?W-d(~-A@L5S!&o6rSVGJG=cW{3SDr|8j?)8un$^%M z1c$3S?p*ok#57b<%^DWu!7Zcp0-$B>oN)=;v=Xqb#Z_bE`B#!543rc+_v8Z5-jzhl zky&h|s!4vK_Id)1wPF7c-3l68g2v%k{}+RciyExf=Qb{ObHjl7cD0(-dP@=cvy0XI9%}V@owj;nCIc{7#I}TKZ$Yb& z9I8{D*0jH!S>F^v^y$-~OW1^;jT7Sz7c8V#k8s3aZ}JZ}E>*gI9p~roKd{4E`G>Xt z}|5*b(-0u%_$bIOCUD7;-?f!jj^;D{P`Sw4p!{Bn*LKhWLGs2}hY1 zkm!vtLFtE=<8*7TDjnG6x``fhXI7g4)dk|Y5Uea_$@DWBu;^`!$B$GbAC$B z7{z|AxvM|LuaD&(l21Tg*gBC9n!Mt6Dgc>OG4#bAd`6j~FHIjPzUS>oQ4DiHEv{lOX|SJctVp>a z#c$BkEpoO>{;}V%k0RocKL$oe3uG_iD2j{{t^A$H5Jne;YR7Ch{ZnzVm(Y<&rb6~eCcSDQx<#33X@?jIsB?b(^2 zG>J3(>xBp|0jKHNnAPh+0~Nm&Yj7sk0&AGIXi=5F?)DeS!%G@BG0m$2CmotZqmyJs z*m(M?mf{R}R#cGJU+_XYGySW*Q(;cm$;d?%m7aV>jZFbj6xbf zSR+XyhTe-SO_lW9JtU41CJO5>^FXpthDf+v3b)6{vP2UKzrh$o>2Z6mak3AKfqGIh{|B=i5 z;Xna%(&U+wTQ~dS`KhjZeN`{5zssDYP#@PQ z0|s@t$k(k`Z{+8_Mp8j<8-LN3^V6Pb^oP$x9#uFlTj8aZNYZ3(8dUS_>R!?_lE8vC zk3STu2-n2f_l!H<20)WnH;(z7sP&*Ex^ujBTSki7(v)X!nOZjMij0F73^v81BF45F zU@aL4;_9>dHhjznkZBsojLByU0}S9T(>q{t3=JLf6BfGbYRLYrpMdqu&Rwm`l03rfJy>-dlKWnB?;Q%nM9>(}4z(g!bMUmYP{8ti< zs9n;tBi$PuVLo+YYCdS$0;1|6EXs@OW} z_g28OFA&AgYX0|L>bSptpHI;sh{BY94gX?*aFnHen*ITZVfrcKUlGJ4GZph2GQ%co z7xQO`6QPJ}$IuOeEC^$k^LLPrzA#hZSdxd9ee!qJ=>z8{9`c`ILJvJJ&9lq*iO?K9 z75jjNLu_fEN6AN94_a>0Oz9t2khCe;i9w$SO(b_=y7%36G|Ag=iV#$e+wdmQiiA#8Gl&@N9t}ob>pb=`D$Ftetw4ou{Sf> zk8nER*xR3$_y3PHPEXu>S@3NXy;GSaL+c?hL0Zlxav|E5Hr{@{Z%@+B7ST#HZLhY8H!0`< z-4b84fW~BxVoe)h1u!*2v&x~4DHTtD9tlh_I46AcaZmdPp(kIe-q%N3Z2rkD=L z-;6mNsrUCbU)Kw5OZO$)mRq$)x9*C`MfJCE>RlFeKM>#BuC(AfiskEmbZzZRb_^Ml z7g3&#>E}nalBE5PzvFrNZVk}{gJy%$i>iV>ahnT@716a-_!{u>n102FOJy7~b0U?N ztq=mM-)bsmI@==DwOgE1jdU0iUA@c)W76hDltlCCOPwHAlh|xU4xxE^^u%^GadYSY zhp~5x5v>WgMccM*+qP}nw$0VHZQJ&0+gNSecHcg^xw-q{&(4{dNxjTuK2_x#qXwQa zdwN#S*6nApDXobemV0Fbj_A&&;mvXL!4Stebt>cxqgVe)0CjF_ zrm%7kwrG!Yh!@oyjDuc)FWjIZt-@@9A;azA##qIW3lhW_%k&QK?M1+&zsf`xb8(^l za!Pd~NJF@JxQ`U9#*kH2l#7}R&X;R+4936tCCNyTY z*Sq=gi~eW=HX6k);vF;-D0wOtXIV6En;;s19pA94Usw6n5KV&e?& z%Df^`(9Wb$BW|@v=~%XP`xdSFe|-l(I>$qZRSzI4-I+VX8pi2AcPNG(#j_#`9hMyPf>H92n^_rlff>XJFT1RK z=eH=tGwO$3inp;oxCs@SFuWS?s>Sa7hB?#$RS(W54El_)S}a@R`WTMH zu-pFfXsH96{%09u32PRk#tw#x*K;QSd>&ttNNQYLt_XWs zp;y9#=z^zJqqqdWSwn@~C5rX1`og(sD=0<~G%v)wrBf6;xbn^*^-A6DwJii=NYP$& z_P**g1m;YY{WjJpAos`|!8}!81(y+qITJ}Qn8gO%v$&RCwhe9{^vWwNdeUCX0dcmX zZ3PrYje?hSMWHTC5N9e(?Poe44hzI{^P>1UOyCE)E#r9dzfc^@|FxKtiJ9%c#GJ#r z)Aom*uze?Ww++0}mGxw;Qc#7Ii{^*+1}5d^5DVz=8`gwHIF!DD9PL9>UPTd{O8xF zwZdTVwQJ+bl94uJ97cQkM|pCyogK(6UUgbp9agblb(-1C+e=6NyT4H_I_t$3r!WI?6AuXdNVTOq)*-RX*&=x<^sc z{^?^0$7uOR(*SWD&0sf&Se=a?#M;u@3-h~M)BPQKv*-*6Nr_DL^-P@8q(K1mY{#v-rWfh} ze@To@77Q`EYDc@!<@MzuO}2bocPA3y|N z6%M1gfzX;d5!46Q3_?iau>W$Y(;+T z1M>R0ACNd=J!W>0{3X1Q0b)OG_llL*ar6jfsbZML=jOvqkjKi;K7U1=px9&;0lhcO z_@jspgUalEq`N)#pq6{quw#<2^$wwOP@4A)HZfZ^m3-{HbjR70gX>WZOUg#JqXo<~ zQgwMu2~xK2^Uz%TmbV`Vv!>j9bTgXt;GD4Ep{bI+>VDBi-I}*&H&@j)Y(83IJFXAy z=4EH`w2H~=-LPzKrP<4=MZeJ|f*ssQ=ZLAs`smSVUNS>o@#nyyF2_s;AIFZg!RQSz=6VJz}O~woS$P{puxc#xZM%f#O=GYPe)fDAV5Jk7}KM+S0 zvvS}<2I1&?Ultfetkv;LZxuxy`xJuES4h7svfmKuqIR^Q7UJ+Ej%l2-8>Wn)@Ro)s zK~EGh!_aR)&*UaVr^Fbusk?|)XGA9?ZiUs|DnQF`(AF!nTW>CyX4^X2=+qiFx>wFx zcYC6>_6-ZkR<+9kJ{K8m*l2jGd12v?j5lR@N0IL(VlS<>s8fvkNZpv!R^PdIz0|Jn zmqX4?QI?tm-$y`Bl-l-hjnuSN)oCtj_0O~iD5ajWjhC<=nYr5w6>ane>DkX;dEZ{& zx~J&*-_>WZ088{qcV6E<-zTcW@-HV{_M*N%S$OjAj|kxG75P;1)KuxHtN zT&w>XU_4GNew6X5p71K8p42EAJU6c(ct_BHMIfk;)VNjxZBC|_{%Zcxx)^&`LyUbN zZPA0spc{>WvNXLVx9UZFRP)h_L*RN_(NWB4oXA42FxziiraB;^SM9_`B20F(OXz(| zQ{uFpz4h|2^(@h^pxQu~Hmy6nkX2gQJ`cB}q^P5syh!}6iPyfEmhdpN*A2H1(*&w8 zqI}7Gh8+5oCNJy|(~}9c8%?~6N$Zq(G7Qnhz`m8xSQ2XbaL$rjfsnZ{wS0s_5%U?9 zfWLYg{EC3#m3Ss^wW1MEPUGj;pLE1y#M}+Pum#9KTYy(C$ceoJ8Nv?TCj=r*n+!cOwwy!zCaL?#5Vh;eK+KZjB7LzzLCS=Aoi zv!}SEDSf|C^j+U{z4O``+*^#JX$Q4U$^Y>LnV(4_hRO9rAdHTMCCVJiMUeRv{v?r| z%8fHqHpLo0c%~@c0fsZgzzS=ZZk}&3UnI3+VnOf{F4&7Tj6gaQ8XfsS5oMH2#;7|% zwHcLkrkInEMVaImtz5jQ&3#IoO#}zTTooVoA(F|%?6QYIY@ntjAqhXY+NXcajJ9MTEcV@#k*p!qLg}v7w^=P(#5rWrIzhogA0qy0S@l(iCXU7M{PBIUx)su71qeG7li~8 zbG0Xv%Q&@_1K1=2Y1G6a4932w4w+$iVnM)1pPRSjb-Bik&S7k%G+kC#lC|e(6&t|L~H2mcQr!WU3@Q2ShenyM_ za2+ki>JFS(v7Fh)4nER^4kdkwaos#;?m_DU1hJpAM)f?-I+#s_A`9Zk|nxq3mu42^W>GlM3zTf}6EhnpHw%td+RE-1-zNvDm z%V&Qq&-1mEu}zdQVS>Fb;W_@1H%-((Vs;rR@;TsGJqS?R=jJ88D?4q-K=VuC*F7#B zbZLK8<}*9|ZWjNv@t-*CxVbVUOAEQq$U}9eT+lAQ#1@ZQ@5?^eh*aY_c#5c9DzwMH z#Z|nHzR9d~iDaATn>t|Xou_JJmu*=!-&(KPu}aZ`eh=vzsNUAaEh!`$8vCeY97I-V zaSd4>lB%S~vOXy|J<@UHG;75{*x)=jO;jJD>mocStYpU9qnbJ$Md;fM(BW=ghM2a; zYxVN~_W_jII3E&os0)kx z_VWt|7hR;D(uc0~zb=Q8+Uao^e;N0*Cf1E~kjtPEk5h}CAeE2y8$|BO+RNRQSq7wg zuw}ya@`CShij_Ip2+v3qh>BHCLR6^UNfa3C>2NdVsNQK57$G>T31&p}Z3+GjA*dQt z02(i=CPkoJK(Jwy&_;k2sl*Ns$#A7IwuYaBAl@$nDWnDw>k=2JwgfFxs?>af9R}AXG}s4%TAQ#%WXDbisp-<1H%p~Zla+L0 zxp9_oL4Ql*xSFMtIIf(~&XYvAR=0|brW&nP)QlAzb<8BrRiaVZXebZs^#M_5UoiPMpaiq+ySK*2Vm{c=eU;(2*x zd~y$mcL$vk4~Is~`gEC1$9?vG3w<}$wrpuvPOSE;(?`b#s?KjGAImnj`ZIif*&W~F zH$L#DBs(kpOFmp zm;p(yOadeO$LAB-JA`_b9zib*0FKoh19yS##KRH8RHxCXtG9{s69CbBZ$&ABv4eH^ zky*#1N6SvGZoFL> z22qb)_0|b~v)8r>v|iP1L$%EFU9=sGdPi=$gD){_?5)b#{18zn((a3rL7{62B*R>$ zZizKc>&Z>72I^soKE0M#eflR3Qd}K15DVZI;Q6HM09rtu=BjZhHUNbDwWG65!}q@$ zd|#t%;en9vEKw}8CNgxKZ3qfuL zQH@w}n}^ZQ!Rg8t^s%-~_QI^>;CR@Hu6{wFR~(BxSFKGGd+5KHGcc*NH|F(lH6v#A zfv;#QAy4krEQC*9$MgGeUDqbn9xhh+KdO#5gx~_V6I%wOlzaB^BHfE#i!T|2_Ekdu z6o#-&^KwKTIrU(ckgRhjEx(IG2p0#glzwou=z77ooS>&rm=l@x+m^ZVRB^~fYj924 z8g*FoUtEd8;Lf2VC#>hFol!qJa^t>3-Anl;V4rjBP1fR3ztrA@GHIalp=z~_a>$y+ z_v-lNeH92t+#|SKU(T#qG8rI1L7m%2Ac1iO0u%-xkJVLFO?{nh0=Cj>`+lL8sbmZR zde}(yC2dt?+OO+syNN$mDxt+;vfG_rpFz#ZkXi+y0#m-syoJG-k2XN3(d(q0MlFXY zL6z{Pr@)glh|9UF96@d5HHr1Wz4fFv5|JH7_aMvL4;N3LRviw{HFYi9ecSI_PWI57 z`y=x!!u!3EQD%s1HpLv|>8WB-$i~4Y)h-m3Uaw@)A8M#BJcBS!D-2sOOrv(!m?p7; z*W(O?DPJu2yCm_8en?|?ha?IX?2r=r0EfK*W4?g#arfVhhA2s>OS>>km`udcL8@Z? zyAGM2rQ9r@*m8Uf9lF>Y0l1r?k_hj+116w&1CT9Jlsk01!vMEY%Qe-xH$?pQwy&z9 zrSkH4*5`n!Ola=@x6o7b32&MSJ{ioC8Qo$cd0^u=gci;j(s2U1jrja z?mY;WyU0H55j(tm2-=q-_r8H$mA&r<=LuF{eG6L|6q<+))9?^g`AJs4TGWE@om;98 zQvU%I9dQc8Jh;_h4X`f)8cN+a(%P zqz8882C&M{&;kCP1LfwF7%Cz0)54J#jsTN7H+$ibNeu^Ph|2Htpx73|PuO5{xa%P0 zCjR^iuk+fW9ehxC&7ZOq-!>b{-LZ{q#a^;?cg4`-EAbGe6zm>AfHZmNDJhL+S&=ef znZ=Px890?kcY4R)f?OPB>00acFTu)LnMywN`xORZy)Fi7f4Q?A_-)U0SS3604v23U z(R)Wm+j#>bEUGEi;C!v+C+`6`k`B1%4$!ox?`#6@^^_&WBTJ_>G8#2hy>uP>*f+raE46qMG1!(ep6 zU#h$`&#nX{eqppLPv3vYaiu0^F#!0AL2l<@&75*MI2p~bJ)jTu`^(8403ZnGPQ9Jm z~#?G8LOU`j+j^;2F{QB9=iigF=TOjjMcy4eo($E}1+%VF})y z9JtRhVjAmOk{`f9Q#n47#*u53JSKUe60y*J5)(P4Dg^_B8%_piJii)hkV~dJA+M~- zH>z^q{Uke%`S=kz3ADY1QB$?|< zBx$9}H8gPUb#q;kv=gyftk8;LdVYp;N~~ZSOuC%&8D(4PKZ|eC?$c9JQMrkap{U?4 zrY*2bTfN@R-((3)t$FtgMA^_g&4J+FoHP~auJEv@2TEai4TwtFPcI8lb+l{fhfcXF z2qc!p$texxX0wFaI~`BM7UNv^s?UOTUL)}qM|E22@V{96h1}+v85H%497vwqSc~tp z0N_wz#vx0K{0%MkZ^W3}0M;yMvF#Qi38)EVZi(yZMnChdnQ6rlxPU<8VlYfUX$bDL zkavj3`h}c;PiO`boCs8)z_mhB}#u*9jwBbH%%44Ia;x^}JUg0y)DhY^2#2Z!l zg&ZuWq&XCcuubF^6Eq%I6H;WrCt#;k1Q@dQ%@cE7sbHOAf>OxnELj(X=LFR(_Ch>) zz*sz?V$ilp@T;Fx1DK|DrMM`&TH2@e zzE*0Dy?9&}OEIA4B%mc$Fs$mf)j0%O<1$rPZ;x(_fF%NLhxNrTjj zL}i(I#}>pdxA(EQpnRn4r3H6W3ZL{8ZAi}yP7f+Rpw%9`Ax%P@&}HCy{iDioxGV%821{JZsQqw+a+Z4l=N02r ziH+%OO_T#l8)j<3vM0#^77Z6{BPzZmn*!EG7bvfiP_Nw+f%;J6Di|ZjD=iq^_BkKZ z^S+wI(T&wXSh8J_^&pnytdt;uXOi46m8j?8*L(N3Zo6t(%+cAEv^Wa*8HDuq`2?>a zT2q5%M0IOPeKn*RE1M+y#%ffm3vjo}d>_!n$H9C3=l6!#f)>-W zEXX>XrABgwxUFeEN+?4nILM zsl>#YLYLY&D!L45Gp*dD)msE7gyA=oRiN{-u8PY}fD|Ycft^M{up(5={Y)ctrP7@Y zv>OQ8N!98}iM`Y#ap~n&!(g_s(If zv8B+NHvk*LT#oPK?aNvEn%)8U{xZ!1Y3=!|b_nT$5*X-l2<}Rajkat8JC!Dv5n^}oAB_meWcifj&m|o%DRaXGM;4Qcu^}*}U2uFjZx_q$(+hH}^gxXh$H4^t< z&lpxFS7ha`urST*whAeT`ArAsp*iA_rse-qDnY8Tb1GCGueX6o~bwy&VZPSn8n3 z)~4;_pG}2ii`7IE?}@>MKdzb`UDlKnVh)}@3~k1|%f0Qw9R*g6HEf_M^H=K= zSRf`g{D^yc*J6f(cc zhN*bWcf5)Eudl%Q;2iH)^f-c<3v_S9y3LG%ok~lZ%0RKzbpb9CG@Pu04$8*z^Z9qZ zx&HOzm#JVLXDW>RVk?t6mn@s^Dk)WZLq{u;W7=67&|{CdE)7(_{+~``JQ-?{6rfgGFR) zE&U;8ltpcRwEX%0q?ONS_(rj}-K!DZUVuccLOs?rmq8@O2zIt)O3(2W;MKF$IkKU# zxOnLx+6sDR(LVqY(i>WpP8}o6f1GwpZRx9B6@8zhrl)GOy>FJ zmnIB%fw(K@-5;{X)Noa2l)i?yTQTP_-0#9d*u+2mm(Ro!zp|a56!gveJA9yHxw8h>Y68Pss@ z7Vg`q#!;WY1@!7CByHjGFM#KKM^wv*Z_g51^AEC~6jebr|Ex46ZE_>GR|TFyBO^{z zCohj`#-?9xCAddQStjPUUT!7Pkbyd zQ`gmqzkjYB+`+>j#O_>dF=C7PRm1wzoPnl`Mn6XU=K}31xL$h7WWY1IBW59&H6hzn zi|1&ijlnd3muR>ZDBfK=fl#z7Dizm#Cy$$Ur?dTbVLSi%!uxm6#8Jm`g(;}k=^UYy zVYVnzPoZs+)See(3{1FU3`(X`xk8z6K)UUwi=rm&Z$7cddr*YugG2;x^ zHBg=m2H`05p*oh$>-Uf#&?s>AQC_4Az=&}$6ube$-9@kcm>)Cs1{Qg0+#{tXgBzh; zLAU?pw_AS%KZq~$KBv?Ot5#V*94{{$PtI9hoxM{AMxG?}fOE;>Gah%4rJ9dFHeBMh#!pX3w_XM^uqemLt92*MV+?srmNFE-Sh35nx$@(E+oBXdtMXa(Puj}#TF;~IZ;c6 zPKU=Bt>Hpxf{eXiItB`vfH$M+}8QhOq%%XzW2 zo_>RP!;;Q;Jpd(QzrD|nT5oRKjC9!bMGkYPV+eA%5ens~a+M>}2HnxLUToG!s}u8S z_af8g{&A?{50-bSh4B8b9!{8&2vET{?BtGKl9pl8RIv(Uio!6)TeUW5F9}rkG91Fq z7s#AKK$$*OmqtY0w5T-b;Nb2XJDjecevIB5B1p2Bj=k1XdX}9823)vk#kq!^0oRHQ zqyIKDonoVya*i$Tnj(|u1l@g+)WiEa_*Xgmy5TX7pR!`Gq_I|>vs62U2s?c2D{0-} z%ji|^@w~ed9`}SwPFAz@(UU|sZcNu>zR%2kZq+|OIZ9qo7VRr8*kMwAI|rlmO25vI zmA9kayc#8X+6tng5&2u^5=uD2mQ%c<1y0l9M*azNz%uO<$hN0wm#k8EC?+Sv|h8-{)JC3Pfc=e45o&?Y{Tm@)`!=$~R6(L8LDKwckW z@}k`I0jit`C;b;3W&gj1qpbf8M~DAEI65!>!O&RV7BEbZdv*ruvteTYf8eMa+&=<2 zxVNu(uN1uHWq8#(^wTT66cHt#h{B=$upPM1+q<);heddDTew_L;%F|P?q## z@8fPh4fDH?+qa9o6ZmZD*$%f?#K*6Do0?&@VA^|J{@Z(+k|DI|JLi2JgDRlUZb!Jf zS6h9*w@>8#WG`59kI`uBc)u5QxaSWJiNOH|d(!7}Fi5)e-=+slvV?tx$TGtENO8&W zXr-@15?LCAF=YQxdoo0@-`W62$5;5)R$Bk>aEYAXP77GIYDN`e!M|q3Kpn+8`xt)7 zR*(W*kW6tupnqhg1@wOI}3BK*35c$;hkx0{#dP#GqD;c;W#g+Z<{&wEtS zQZ!H;<2_$L0-?rPDh@>JT!CIF_=-?MQi1avrxVM%3Zz)981@A_X+jKFx^O*d z5EJM21$k1nh}pr=+N^x&s(}=yBw0WN=xKB^XrRUjJV%T@AP5Z}Ng6TiFch^!Pl<89 zTgl|aQ_Jq?i;rl*WS2Rhq$nRjgxB{ATz z4{e`IcrfE=jttq8v;}f1p_ihL!z_AE8xSu@6poW1F=5WnC1QAW0;Gb>ha`gynkm+} zInq(0$oqpnhIES1-bJpL#~n4u@BT(Vs9tI+#>LrY>Rc95uO}*0pwHuLxKQyvXy~Ws zOdXbq8zGyerwlM3FDPyVtsg!u z0O4@eR(O1bD0#sqDjkSw_stC!l0Tv60;>gEO?weHmlGFrAzxZ^D)@P!apCV)^k!*| z8@O!E#1=%^OSAaIwA^*uUTp@JYb72xL-7al;P z#l}X!D}vvYc4_TjGbdt8J1)M5ROFQYjr{f=++bHA^j}%>OS-$KXV`lI<7O<|)FsT}OGcL?J9*hb45e{F_qUDYLlSXj_oCLb5B3}a1^?;T#3I&QZH^PypyDOa-&9<- zU=0I#e8L!W44K%(F8o5*sdrSoIuc?QNZcndLxDf*&Cwmw!9dN@IED9=h?_TVi~mI7 z-@X@vvO%v1&(CNqz!j&+MgT?mr+of028q@>I3}dEmHp!mPs(U-^k`Ec$C1{wa?k1j zh*)Ugwo;sVxSpJB?7l7)4cfPEuEI6XOiI z$Q!CjDqCegTOk=NMV<*a_2wGVngL z;vA~X)3K3j6lq)EJ9fBAxr(KhFFum?&4-wVkZ~|!rVowgKEmJZrUXv%{AK%YXt|d!Trt;I)y(Y)&wJ@LJaaFJ*;ax2*bQV)S z!8Z0OX3vDJL_VD-t0lnwN)vI$n43M zutEscResIhoTTcIu6M+P9QAhd4FjCA64@+Jj(q=IbM;!++*F3BwGv7WyS5>f**2Fp z&Ao3YL4NS>kza8pdllTuPH%zQFuSRcK6-kZiS=^6B-;wub=0~Z_pPPHka{P z;{JZyCv0Js_&wi^0N~$PX{C zB&otzGn}Dz9tZow!Sm(i@t%ypjRJxT#!V_1f&f$P%d-#1(Tc)YDEa=#&jgF4^}f{C z=M#f05xuitBiFq=wh>>1kiUhh+^nK_ngW$n;2^Elw%tCVnKzeuLoLb`@{FX9s{D@D zdptkeuXw}A;+G25mLNbNG;FCc-@({Pc{tUBnxFC>qtx0sQ(WTpha|89PY!O%J~|C` zxPX>~b7V5@_)q6>yS5Wmy)6Geu;GW|%M<_%@KQdYe=mUZ1`W>05yrBuq?kTo2Heaa z6E2AtiIKulMBI)5s8 z7cRg~Pp-bVDWa}}V7hb1(mGjT*Xtuco-HG3N|TN@Y`N?_l%2o5{>e4Pwh^1Vbce8b zPAUE_onf)=F4xruxR2mx9#N+7xP3v_mbf=2Z)}dO1d85bis#v=CW%4Y464x5-#?<MX21o@ibLB38CUj2Pq`{5eEBy@jS4Wt-3bkm?9ZqR*)+VmKl9<#7`Xt3f zb~WWLjA>wU>cujeJtEU$Dg|6_?b>dZB*70Z;erxM)Q`H#1BJ9F@s!s7cI$+9h#+A-O26%e1aC zW^zTm)qB;kvMCl z=MydB5{)Y;5653WSDh5PQD(rML{yJ)ylT_D|9Xh!X$|Uk59l!36_BDuf@%5bY@_T- zby(IehD<9dX;6~JsP+}BKw8q&jQIFwRZ}9l-tU9Lo|jm) zwzEcIRn8gLnaCcq`X#l5P-AQ_$@@>$w9*&F#LCeZQCjvs+Ct^&(j}+3ZnY-4#yI3t z?da5xR;uwYTxiq68%4`ob#an0M(l0DS_2{UcQ3T`WF7q7RXx`HE~va}nUitt_z~Lf zU9DqsJfO#L`_pA5_`6&9jqgmuJSxP`84=sfH!Sr=H092&F)yIO);8x1)=@Ob`|%D}5s9mUFOtgG+P6STw6 zoBSjK(<1Adg}_u`#PV5l>`8`8ErdUXFuFDuddWtV z=b`M892KJ1myZxH--Hz?7B)`4Ps6UM<&kN0^BMHM5^g_7F7A zegdHn5Bf4?(C}*7K*&kKp!??>srk@ctcqn*3D=-_f@os9kdgJln_yqLJqE=XrN5xw zMI9pOt&+!I>wlYkaHQ>td#-Zz8GEkW zZ&hx@5iumPpMZL76E;?J(JZ|G0bP~&_Z8z2M_`S{lG+D8jjTwJh$^D!W3_%78&0;B zt-h4;=XU6Qp2sj)dH#GLhk@JdMIFqMpZ<~|R|jU+$k6x(uCble?;Y^Lbuf0#)NU9hhwVmi%c=() z5~x)Y_%k3c-47)LJVx`4j=)9>Sg_&^!3nNjMpaV~|oLV$vy6x@7a~(W=X;Png~zXbXP%epySr0E`i6U=fIq z3u3DW1K{t3>L}`$D?p)E&Y6W8g=;(P=U03Ph@DPaguDPq1^{RSIkL_cylTX9yPfzg zV6GLQ(-r*#3Lnu#FjoKmBh{b0as9dg^d9%cve)~`&0C89R?A!!O`+k9>L@^wF~(AWU5O|T<^EioZ@G8v%_fTmM5zoivzSy6p}Fs3sIR?(C;rN- zRc>Ye4aTNniUSxDfAq5L3Wmg`ReLY7;b!`L;1w8v`oYJT)Iuz_>*b09=d%^e#+H7e z5S%Qy!!%%EM7+dyd%x*c+rYkgYWU1!POQM_McfdW1fwoC>{d7uLZllPK9Z2AhKR$5 zXvPs2kp?L^|F@D;kibb55kakwsPSab>w$${hR$2MOQ^bC z6Z9qdAw|$-n4eiKs6=VyBbhU8i^xV0Z-1v>J?|~k+aT%~KQUqyX8j&So3try>~KBs zp4p{1)+=BFKNC>Yqa_xG zDp)50Vk*1@c3M{dB-sU`Mf%}))w&n_JDnP(xr}nbF2aB8v~zDrfOH@(OIcPs9=J2P z`UGHE&fex0gZ_GD`k9E}_L0Ge=NBxi8x z2t0>KkAbg`*IyuDmVk{}6m3eFyP@e*#*lM!9bN!&w67&n{1X0wJ21I{mv0{k&>|J8 z7(YLJSdgg8^BjcOV)^nDp@`+2msL0VuU8t~Q?R^=#t;3lTaL!P5|EETk;;yhLUFG- zT4W;yHvzkQ@e%vVZJY6rq!{xlLV`!;pMF11CVMsoagp-(-4tnLn!%bJl+(a7jNsHq zzg@YyAOpM>YCH4%`Vs?8$}-qo=tz&0e8{z5iB(Yl8scp^=CMX9HkOiEwSekD! z!gnH2s1MXhqa?(UX~edG3+RO8BrAfO??X4`!&AApMlKfDvbWdEo3Iy^_XUrf*gNnG z(2b4^I#-JQ->Ad4?JXJChKV>wHx&KfuLeng%K6~LVE5)>Gl&4G?RSd{HeqcPNh0cx zq^qTrY*Ztr?LB*9JPqal^imB!wdEjbJrJR!bJomNS2sTe91iKpWHJJV8IaS(P~6m^ zm2M>Wb!&aVsML?-R^WpDD&f-iCsLJC`!~v03-Jab*12@k?={BaUP&S?Bsae!X=0ZhHzWm_ z`xH$Q9fob_?J*13DacTTGSXnLQ(;nONj1s!t!czY<;x#EG$!O6RhxuN(34AS5;OJm zq#4*qNtskH4(}5;uca^wDm=JgxhMW)&Ukh6il#&+D1=!lPjvXGZe;>lob%|&%G5{y zIahu{Eb-Q>r}qQ|83@nG4PpY>H(<%Y?g~nFt>%UGra(rg_FMod{N2+|1A&RjIv|$E8kax)P)^!SxTl7w2Q|EoGUZhgeizb0eXx5jSLQfqGQ%>N}%n6vlbJIHmI5t*?g zW8b;a4IT)YwJkT__?p-k4Hs{Hr+%V~|GFfhHQG&S!viN)FWWg0849Wb{Tycp! zV)aQ{@&U&52}Y5raO8=UYpC?cq~^~K)|ts;&*%=@{fnKAwjJRSV)S*zk9QS6B_^5i z6yS8)YfA|hy)y!5k0he8k9BPxJq8{ux`w>Rj2pkHx!OuDpjK1$k}|@FfWuGH@)*iz zlaD;n!nY?*U`j!{l46=J!V_9neNr#xn+ffqYq7ff5ZE35gIX9s>~xatvI@m*R= zF&+uk_CEAwnYV6f&4hy*qqW)IH`xHbv%P;v$G>~*g9%p?LVNRM>2c)#yR*($NvUFu zI7U z4TpFcgKUR*8+AX!h52xEgWJ1~rgJE2ojA^g3FcJnFX+$)5q9e;n-cX0MF5Wms^*U6 zuhhF$UG;aO7Y1r#^f)QMpS(UEo-X!bp1;~c<|?3gat!|JHemjQvVh!*lN8%KRD-&M z`!}DOe?Wz`Gi#iu|E%pkzTrY10w5&!-ESx%A0^pJA3Ko z^#L*=;PD13(HOLTRdX;Ul+V3a_WynFbeUOYG|oiII5lrAfiPF2zi~R4t3{gtL3#L2 zA{f7)kkTmFI*HqLzN0y$PbUd@hB)7!J~`THtMt`h>i4I0trt!z5+)VH?*UFe&h?n2 zjO6M)Cwm_d<4-@jJ&12sT0`e~Sr9hk=T@c9u5YAa2{&F~+!ZSm!RrG>X755c1;ZpP zNV&R;*{gnpsr7!@7#w6K>jxh__ZAj{j!`J3(6)=5$LPaa7)dF_B4%Ekj`_!N8BBKO z&8$b&rU){@8(nsByvVl0pN#Ljg}d*D zFQ+w==LtL}Yp?GXRPP`;qsM&iYLY8@{NiT&`3VNF;&a7PlqinxzdXG%p6kSZ=^wtUERN)*R^R`0dItMFQ&cjP1Ui7$s)OPJ-P7-&VuB&R_-N>DOI^9l0A zmj^!5Ekw!$EQWBKlmzjZO>K2>7@-)BGGbu?ks@LZcE zm_HL^UecPwLz}yO%o5o2(817rnIk%G3J=vl{wKs^rAO|lF=dp`5{8xkQy?mqnwCKZ zx@!H4M~AS{L}i3WS)yd!>NSJ|pval6)&*7F8;N;3v2e)ATtRfq@C_rroyf1~K znc(#tS4|Ge$WI85(8*5JvcI+5;F$bX0LqT1y3PjV?9;v_qy-A@1;rldIRI*mkWmU( zZ&`H1_KoN^j_5{>kpbMz*Pl5`}qzj|t4&xh0lTdq*#9cVS%fdEveeztzsZ6?vch z_XZTbor9c^Cmkc(N-R$K{%exhS}bLO8`9WHEY?#B(Dz7JWAc4SS7W=O&29yp-MLs= zEbefls`0ds!r}&#uh49TqBr%kM1po)aIm!iFRMGDVnLA!BT$s5mzv0>vGj7k7f<80- zSdDd}I=oy)O#J*F)!%U_acW2Y0mYm@9Ric|4+Iw;w@%0%FQ>$=o4<#4jy(rDx14U@ z?Jp0ib$L-JkRsR|r=fY|a_vUoep@AvV4R6tZ%`!DuH@ZB=|2WqdL zcJTGv{jyw@Br0$?bg@W02)|r6{qkJ^$wr{+$&;L9;m}@O-Z;Om!#IvO^nym|$1{Hr zS(3)*%6`93G&spYy+gS+$F|*># z?TK&>&2^K_0hbjgA9KDep#Fq}oi|Ad=acT-gc4ysEx+)P6-mE$@@@zuWhuhkk=jT~ zUd8jyJt-L_&XT{4+Fs&LPW*1t{foOvD^XDQ?quYaE)jXhNGjuw_imKh>~w;zIQ!`Z zR0|L{89ND}s-gqjNGJt}&Q(A9WEEr7Lnvvn61949EW0Wq#LX zKlE6~n4b5)pEVq1o?1m@5sXf9^RQsiQU}RYVnQ~}d+q_z=>M+cq zJmxn|Vujc!^hiTk5CpEemlb|Z4@1pz{f|o4A;427_f*m)Zz3dM=MLUYLqAcRUj+7PR=v^T&n1mesX^1&tpIb9SV1XbbYFo9G4Pm!U36tps(| zJ4WSOOoiqe(dWxd(R6;9uogPvE>y^AOkKrRAm#2mt)ENeRyt@W}V4t>98!zZWN>9r`Bf?DckGa-qD~bEJT_wnw@|0sp4LO1huYtzMLTBu-bG< z!^jscRC22b^}ec^gR&^Ea!1KRoaXk%$#S`=1ck|&pW5@(MzLZQJI#eWIxq&zIM8RhXAiw)z-%b#P24+U ztPw0lcSEm1>)`6INXoMTmfJK&gGLfS<@g2X;(sic`mrT(v7RDshPx>zt75xJ4qE{ih$*rABtgl7;aqI<- zOd;(M7{!Qdmg;2Y`lpg~qKT^$n;|L^DcBhB7k>aQE$CU~+aLXXcz$~Kfw?x0Q~_3J<{YdgA1$A86Hku-Q4h1RQ% za^iIx%J70Rw~A{*I5Q1qXn_~6AZ>i@Vz&H1{NWBLV?}Z9YKi_QGUi9C-vb!`QyH-m zoJhWeCbPU*3W55o{V%Z8jjzFfY#vz|SpVlKBaZ)`JlBzqC+>vnd#k^91Q^tc^d^cC zFTXwmciJ+v%fb)-YWAK0^~8DnH)f=w8ma2$UGr!bkY`t|LL#b!^by&__s44?JU>s5 zpa1*a>wB{P&*z8yd){yDyTDQO zUXR~=N8b4@Z1q~+C5T9VZ0~Q|(~DZtDa?LS^y3)E%=~{ve7BtIE7_HX)WYq%luOT! zLBqrJwcn$HaD{ivglsso4>u;BlWt@WMG^B;O3TM3ie6WLr$7Sj>Pfxu7T zXxK;#596aulxUbD(_JUN&8< zjDK;0DWL6;%E>yyr=Bf1=XB>QzfNVMl7G9gi!R8OCeT?$vILL0EBGfL;`+kBIX@S~ z%yMgC`3x|EN;=lMKfFa;Bq&lxR9oWRG@&%vR{Mj{bBsw%6XHNVu-!hHI{oRzHK*c~S#ygWa{Cg_5PPipQ+IFu+64AKo8h+fu5%FboSNfOw5eP2uj~+N#sk2K* zWwz(hRX4x_zQQm8RQw3eHYHL}iKaUiz{?xF{V(_ayf*<~e=XUsiy?PwVChXPkT{BbO`r@Wi8X}Kx5efE^+x`kH|z*zvqw4D$gia_e>i|5oR z0Dq6+sXG?BeM?zCeh^(Ya`R|+eV9AzsQBfnrxNd~$}2a0Id4k%BmU99nDnjeE&H6m zzKF$&1869$DaP=?kkX5$u4n2=U=&z(rpn>02FVl4*Ne+=y#!>XgXnv0`_e1fWf6->?P_D#n%~^h`dIw) ztUOVZ=}3No{ETUQKN@TUEEiJT!kOV}eo_V>f5S1JvyE6g2oKCK%u`Da0_{a?Od}5G znUi_u!o7m7Rma{WbE49M6v8mFSiQiNJge0n&FwHZHn=HkELs2Bmy}*>z)!IIIn4A6 zE%of-JP<;$y>zp10A(&v3?3BSf_}1b9>XOvCw@`kv0Xy!QSBXZ#zp*wvzJ9SC`AMQ zBDE~KX!GG)XIq2pm!}Oqy4ne*;K=atGz|Pu&W58Pk5$0hv&OnXVz45Uo_`rN+k<{v z7|8mtaAGCIgpK-E-iL+0$a>SPXOR)wxK~=F_&&;R=g4Z$6Dfk-%>E2vk?ShB&hTk{ zrHDw$ZdG5b};qjQ!P|;kaKWCKi8@wREGU` z?3J5z3WWp{BI%O~LAHbn8x5s9%?=$TRqZIQKn}z8qo;@iVLT%Mk*}7BcQi^IcElbC z?o_?1hu@ERviSIh(*gYc6_>-dobRhO2OBeqJiIYwz&cEW?rNA^$ML%d78bMti`F!#-5Q)St^r3-D9<73d$ItEtkOV@yA1@# zF;F^qcdmKBP{>Lh4QF$HQ*q9yW(6Y)Db=m(9+7vn2NPRx3*iPavoI{RmpD4A`EQWe z+Q6Wb>adZ3qpPh2^@=fUDxoWv*aDleM}nJc zt>p&_E=P>m;VyT{^PgF;$GgBt(3?dqDP?r9U`i7$$Q?_AF;JqOIbd@j z_mgiU-5AJ^9#m<4N0;^Z$K76wegztE$=u)>C z<89Og6GYQ8=E>r#o z&*vN+Jl9~Btju|G1n)c-K3r@n<5FJBSZMZQeVj8T;eLjAC$wrk6t|$opu#yl93P(* zz@6`-AU)%NS0yjxPH9%P?8%L0ww^yQij9D&eYCI@ZNiT1adx=#RkDclocAm`s?>SX z+e->W_S(94`B%;?dDI7-IWRyMb?RAYS|6blt`?>o*J33tF$z{s9?Q!Sy7K?kb2;Mg z$H|L3x=`%#(diN0)o#D|P#Zs%(dSFMdpq&JvVzgqjy+H@7gD7b7^Ps#&b9(Z|9p0h zKcqGP>8ODqF&R5Jax$rI7ecdcpMuk}KP1AZ$L_t_M?YIBlqIe#8h`4II3*WLHv#)mh=M(F`de$BS?rXrBDJ*0(0k9i0<)&u*^AC4cWRWAHQC=- zPRB_<1m`i^-K81jbu#@*8)7tZp>%ItEUE{yEd5eSm-cd7tCaZ?8#kd!>gXHNXgTo? z6+C?Lh7R81a=`^T(8DEa$aM&UqY6MkeRH?HrseoG#!oe?;U2!M!40m45sv6Oku>gp zazmzp>ZGCA5$HY=JI3{KMugNoflRC|ePQ$0jGEi1R$$kLs(`WEpPE05F~z;?mxqk) zy3?M4z`zDy&8f~Yo3@1Zme7{e9k@v*@|zI#;DwbaqOf1w9I=_j(^~}vmG@8RmmSFZ ztcTqKE9zq(nmt5U1-VfES0a%dJ6N(4`bF$?st=6FTb~5EIGYlMUNsfysFLGoYUAh% z4@!MF{gPzp#V(Ce(V&fUDXxX8abak`t@$1WML+(8H91z2wJ3SrByWS59bmB*x@%r1>_s6eR#!7UuX!LDFNMIngVK5Y-7wcoowj)hQmGycb|GEN+Lke3vnV1aD>0 z5>G!~05^U^T5|;Rb93pwxh`LeXWZ{lot6x_sAlY52)AB3Rbaj8w2^0o8D!c|^p^_` zoe&0I8|s}xXNRX4zyfUTycxDK$C9gQN1>h}cKH5Q_Q-jA z)}TfXd-BKIxEn6Nlw)|q1784J&z_2%k#41Xg17$hl)@|V>QXH)&}V?ReWu+vC|-Kw zrj@nbq-%|?WsMX;UHc@KI^`@4TV2nd>@`FFYv;FR7gejTWOR{SG_~m4)KfU|$b@?< z!C=whr!K8DASvreBzSXL*1h%IuP<&1+M&;@b*8I^g-es%74eOVI$x!Prvbov$ZV4^ zIi~}2lGT1%3b9bySqcT?)$C|Gja4iYgcndX65V^nS}UfYGi^n?`g*t5!3^&Z8;>im z6#W(8;?ip5r7z#2Y67CgP*$i zb7~f~o#5+2$?h97eMbu1{I9OIpgzEbWFF!dk%gsgg-Ppn^!hw@wawvbL%)=`QY-Rk zN60CgX9nu;G;Wz&{y?8^B96CW;dsBeBl)k#YPeBxc(I~B)CmYKOAQrq-JnN)Iy$y~ z4TH|?>umyGb#8Snoc?Wr*$ZCwdhzL`4%9q9)FuddOfnkhb(roMM4|5AKDHRn^=vU) zLBkZ>Te!ml&}W`*J5BU?JU5y z9-MYXx1;;zLkk1srml}V{4E1;?1pmW5&KRShH&7&H2Wm?nE*~l0T!C|oU{<48y7*2 zx8Vdu`E{)u)H1c^lFo%m)er=W6cch%wRfnsPb8r^FLtIKU4Ax57o zbJv&cm^9kaaeM_u3ax zz+q&kClng-wQqsB^w#|8(pujKdF8LSgpT{KPp%lPa*bwso!Vd zj6C=K0s%=gflJti@tK~s4Cv7z6L6Z`muK}x?9OVVQC$Ry5knL8Q`Plm&8B7iW{kY} zT7I~>phv$d;}9>;$=v(-AUT9#oTMD%6yg3jIP~@U;{5*3M&N=r1nE)n^5^roJFEyM z{zTP#{3vJ*BUT%@A_@sA78|-E3E>&)_Wv2*)(JEw>I$LluD64ATyp8=+``15}pX|BiiyGZ&2 z4|p}NRXDK`%&-euh5{c_BYJmaivX#4HR%`&okfU=&93pq*!r=%vMohRj3k1!rCk< z$7aR2VqlBVq75{t0qYE&_dywdIyMFo359A5sZS75H3t{5ZP^xpP1C8 z0@Td5|x;PeCVG9i#>|C%W9orIy%Iw3T1ACb?Oq*MHY)qh3Dv4Jp~o?dyaiIROoX;orny3-;2KE@ zUMo@%w6SyX61x`#&qENXStnMRr3ykf@D!27YI!Uu9Ue8Z8BCr-Mu1)AVS~*^s0&Mz zo6#Ll64lCAO@iJ_z!K4Z5_OTXwd@JbWA{9Z+Vh2GmZrwcC!9!0F4z=Th?PBNnN8uH z@?&nvs->x~(Z*E3Z{ui`odoS=CsR3P0lTnl>#gDALJrl6ZiI~a2f5Rr-Ng8_Kxvj> zB8)F*(w#1pw4aWVHW1_{uO#o%sMT5>kENguCrPM|MDvu*3C2`-_`GFAB6CE|G6aOs z*q;Sn%w-FfPma$Ogj#WIu0-kK!L|re!eFLv1jgE}8J8gKRj4eMUQ*gXSgRm^DaH@o z!vuhL9T?W>IMO`JjPaDPwjMR@o_7*57w)@=@xfAcT#1fWh0`qi6Kpbf;)tPx)x$|> zZ~k>y5@Ros3E}k|AdDCi_Q5F??7&huDMBRfgS3Y2tfKIo6W!!a#_}9bO5;rNJS&kQ z_}HB`zE{H;ogsggpPt{IbN#}G;FSw@G^r5_AWC*xg0whCfE@43xJ$IUG-%YyD&LEm zRZgr%J?v45^Xg3tRZV>+ap!xC7ac-A*-#7a3u zYj)ihH7_OqiYlvy@yI4U45m?w;Uy0$&O@*(BW+*9;`~tKzBXMaQepFlHoPrluAv?- zp;hjOZj_Q_bH`FT0kl$*y}l9V6<4uXb|dBP2!Zj@j7Q%1n3LN{CMgY=WZv)?F@K_c zgwY5yC)vHHKrX-W3akl^=}QHs77GotW3bzVJLcsd%(#dVRm`2G)*Q!CNruS>$7nz!dk+4GL*FFJg`grges;dZ_w?H zDh7ee_X1d`1VwnY-%Di7NFogKyJZ9ga#X=q41q|UQ6(!;aBQSicXU1>2e-FJNGZXk zUX+-Bu@{Xn@8T3S8)5|vA||Wy6m<=jwrmXv#yVUNHg!9hLr&9)5cE(AYE7s@{Ddw9 zflHV$gk(Sgk`NCQx)3k17-36Px)xzb%gB?(d;w*;m@~Ld18-KaLPsmk^q<@qRlwn*zC7-9Z-2qHeq-0os*;!Y1>(3-EB@>So|0_{@1i(c0xg7QQ)-Ia#K z(xas+sVS*h>?j}Gk<_$GW&tbi#d3>?xgNQiDiHxpN|u@`fw8!Rtxd9y+}k+%S-vhi zVf?B|yLp6q)F1y)YQWeAP~e4 zb)?`5V=g)Q{?$Z!BA)Zo9WDxlR2kru)01bdzu(6I7RdE8551wUmt(1N2+A2890dkO zRYI;s4Ys!g%gxaaOEKR5JiXxI=`XPb{a^3>y5s5L>tb))DnH-eTKTROX)YR>N@q^q z+z6)uWrP0&&^SwE#9F-gG3(N?FEv9>B>gp&`xX;ik14*8d#7MN6RlS%bNgJYg}KwL z<1uc${G)RzG`SVxOP&{=H_uWmIy667N|&C#YC@{%V#gVrZl+m1y5>`$gnw$|Lc3*W zo+ZCt$jR$`S{P3_0+pJfyyDhFmm&w46cQnF!E0hQL7#mrl4eVXnx(Y+JYF8e=oUaG z<7RGrbx2g=mn=G{Xw#nZH^;%I)G0Vv@#MEM$KKy-!=`3_v=$YV{ics~WyaPY)*ZCkSfKH>h*vdIohPuQ)`X!{cA*)E;V`bQb@ZShP97MM_C(^1UDZofsW?6>wY>am2>U`W2tMFN4j55=v$6#^^-)tomZY1svW8>*X>Shv}J=7fB? zh*s5li>$_7s398b&l*KeOJAsRg>+6e$(3;HJTB#S#|pzafr5?lg6%)&!u|X zLmvt{AfpvkJ7D*)kQDC4AEC`#>s!OFbd5HcPW$`g_%}@|>GYjK+Vd9%r04ml3Dt^f zmtHDU7k886IuJ40cJqlIPN9;S!}JV=kj<{|<}WKKQ~H*?o*n9eE##BV8Ty0XnO8$w zsoP1qn^l}^FHa%8cO^XF7@uzFH11g5K}P{PZ8xSfrh=EmScp;Yfi?xgH4B9z5id7# zz5K&Q@-F!ujLG3DOS+}2F`gdK<6Rd0Tk>nRBr6j#f$S%0;5RZuDV`d~ZV)n=!d1yl zJcsxQrQ65X5Sn@7TnQZXN1n@{BZ_t(FCk&QFQ1><>c~V2iwpG+4((G0ivD0a<>52x zWdZp_;@{5^p02uGzEAIbsi$b%LStVlTV1R|1?4H)N`(NFk_+7ADLdmzF_=N}-S!_a zOVjKom*<`(V&%`kEDZ!Bg8E*8h!F0D*=z3+-XY&vY6<6{J>BbhZ%yd{*2y~sp*f|o z`Wawe(Kwm~Vn0)E2Wy(=jo9aAXg!JGZz>p{x(G-!)h0GHGP7N%;owNfHf9#-#B&6y3=!glTU@?IRnO?ylJ;(bF z%2Xyg!K}UdcbtrA{=C7ZG~Vax-YNB`02SG#jieh-dGU!j?tt8Tm0K`od}`LH?W7&= z0vc*YY}+mAPf86U770yvdnJ@DdB^P{&1lUo6M z4>%u;N$~MXDk-5^xOk4n&7ZJF;gVbMr1q~Ljd6GS4Eu+P(b@k%x9c#%mQRJadS^{h^iL!pK*b#f+ zAJfXD0E@oIThby9*oze)Lr?cnH#0!tpg9f(#?h2ka_A(wi(8(|;Vg=hly@B7DurJ*V%hCgBzVB@=EN<+qR)o z)~~^)o&-GW`t~IRs_n9*k3^;!=0<)Iqe=j{l_C{?fT=9r4OGT`Wjqv zAsrg(z0Lka-#OOO=j)5FJ> zlhA}q07R`Q!K9;n@dZSq0(?rSH50=SeLTP6wh{hx0~MB4e>vM1*#8Qd zO#gGpWM}=)_UJ0kX53E4gKwXZXLBP4t!591IfA_WJn+|Rgm(v?voe3g{ZyDh@-@89$J_*2~39Q3T=N zr}=rg0DL7^;$7tW>_N9;5*$^IWqcwQTd0ssgJ~D==;n*LbPTgZjlHAJ4aNv|4&e2H z(<97`5n6(Rp#?WEL1VuO5YZyn1I{6Dq|tsu8$OG1RVYdri_@w`4{I3Vn`?iPKwgPR z0mN}Ee<65jLyAyH(8Uo+ct(IO*;72aC7dm!GD*D+S^qhyMm7G&AOj|(aS0VE%(LeB zi0hodh>FK2&L2>Bu?S1NE91`i0lXV_!8fzg>=z47#-N2VLu35J7C$BCTlDs7X~)zY zPsQ!YO?_rbphyNj<1k9%6Gp$|6X(P-48^XdOWL2r(($GiS zS4^A8tjvlfbP34{O!Zn#Ht{q-a}d%5_7pIOR{D)BowE>jra*ed%<>mS6d8b zm{d)agjQ>Au#^lDNcW9)7)WlLt>!^S9uHdA?Z zvi=e-b87r)d6_JFc>Vp5-Infm<3NBl8=z+wMv@wus3yWVn*FZMvh*UsvSc@FW(GsP zAP>VT>is^rum?Q}&f;$Ydj2`h6t&3@DlW`XBuGnLu3UED_JonKEm^BA66?VTXd+KC zv`!?y51mR7a*~)k#OOyoYorivIs$zR&p>5M0X_}9G||e`T(QVrtSyO@<71@FnFy5JL{z*}`oXT>Na106 z@!8*0Ndk2&6424}osaR!4)%H}Df&8w3gHdN>-wb7R4U?lgu*w57;uWI$MP1Wm~ zLlz5PspI0yK>d(aX;SGcq^9I&NbNjW&gDM3Qqurx?bGYoG1Q+NJ(UBvN9~|%pMaN% zw!3+-WX|>q{2i+>cyNV&L3}+7A zO?gH);Y6HB2<+#fluUf|S$`oi;A$H&?h4-cStSH-`K}T`v~WA+$yw4Z22&SkMN*f% zo$X=%TcW$@W;WWQkCy*SfO_+pb?%LM&= z5-E3Yi<`GIi5Kyc$4fYdcXC*4zbs?S{sc9z`_Z$6TT~&_8c}A;6MxS75i>MyN1Ys} zfrFG3(1la)JQs|;QZ9) z0_z46V$XpGOBU8_pDJ_(?me6n;7irl8I2FNh||JHr*?lALXrLZE8j{EI6naTvzLR- zl1xN%aqZQUXj@+jbE<%2N6w6!#qx`Dl1mM!`nCeTf6M zRL$ZRskOyUJ*|GgWp+aCF3g zHNlX=YhvSUV9v9!U*XcF%wiZR{)Rug5RiBJm?UYHOFzNZWTcYfy z8(gRnT?sFa-;Mt_XE}TOO=gl7fH6=iPE+VL)q6*rj>NSa+ivrlplQQ|Ewq&_t3k!f z5VEJ0GP_cojswAt!AZiUHsp1>Ps(j`X&13xA_dfD33ifZ(_~mx z9Z?6073=e~7vB?$kdc`slsEgRK_}96=fQ=9(l)pejiRJs&s==dmw``w&2dLfPGT>_ zCnSV3-lmcD)8Wq!U3puDxZl5HC5QSTd#}R-Z%IX<_F;eFd3dNk$K$U^&w6`kD!e5Y zhTs1Fxw*pc|Dzelal`LIoy_JF?O*g46j@>ThmVJ1XITyl1iRRUAO4T4$2%8~k5mLN zhpaqAkDAicV2I1@PXzV>htdfT_}#}}0ik3lTHnim?1gAplFt03TFE9>3T-w3L2Q4B zD8`_)%upnzi>6#5r#7xms*Qxj^joR)R`6?!&TxSOdVS&*EBDEw@p);ucq|mCBu1kH zJ`gs(A+6u~TAcmbUR;Ia8yl~IIJru6?f5Ij@Zl!*BK@gF4sMf)`+aG^*FXo_(bmOk zlxegyJMB}sdjHjxNsCwUZ^>uZN;Bgi1wl18p3x^(KtWD}A4;e{kZ|$dohKzIv5~h;o&KByFOK zOVg^~LK8YNf(jiJqZzeANMYI8e2`*4*;7hPH0cJXVF{I3z*f6cwOvI zn1BUc6`bJ&B(-wp`N+>{O<(>6&wt$Fw8Di|6wo8_7y9 zAU4*aE5wCjHfGD*g}*DTEY(Q!A=()w<04-$RCx?|OMZb{C&+U*?;g>ZJ;o|Rw#>|_ ze^7>&m6)wliB@}gEN#zV)l-$1CBnw4sMJ!yhFzFX6EvGGifX$W&hH>$Q^i(HHMBNX zBGN8bru-&iM!(vv@{j&_-Y6UGiYZlcXk|LA zB~-Xq=1Eg)ubPeO7vy=AH^->xhNk<~N*mZJh8!0KS#7I?8j`oiHxP$_h4jSx_Qun1 zASn%6#M%z(Du7b378vWxkT_Q#2HDm;&u(jAT>@#6ew69Ts4ft8gv!`n*Q}(iZnK(t zmG0B9A213ht`6zx-cEoQYW%UnH=UmUO2Ga*6khei>{+&vlp*_~oTOqW3#-Wgw2GQ5 zJc?hN<(ekLZvt5w>J%ZT~7W}3N`L(VmB(@O-k7MqSay( zQx>_7Ux%x`qH}W0DyJa<$>gF8W+K`W${eJ#VZ{8Tc zPSEreTnG$QyFYGc)0SgF;|4v15AKm7t+!;La)TU&iD2h%AUgevb?yJtSOtwzd#{j=rp#Uy50Cc4oiQ2WCC@{BLcbU)$+(=TK zg^W9~G)OPNgTpnZe!)Bb_~yAU5nOw`8|iVlOO43aX^wOnaNg7Rc4B*y3E<>Omdlbf1!3_ zQL&#f>E&s-yt>A=4i~89cuiN0JL!(s8i`AWIR*>LmciAva6~Ev{HPb$I{IuQ3+%fc zV(r;L$9i4pTGqfpuvXptqGt@zaLndKk`n-)J}fo9hDyj_#S2DUE8?{m8d41ogZb9t zVxhy@SdIr0hQ3zSo=~q&q2F2Vb3uVMllLfUyKK~Ggew^>Br)~H`hn%E>8oZcrGD8Q zMSWg1A4OXu@VY}DXGY9lyJDxxxM*_JzBO9fUhEKkpFP~UUfEslcZb#=eYK#Axo@z? z&q<_ACAj~0RSm9)8TGnC{4af9;#GrVh$SaT`kQ!qT@4hdzP zmTv@aMPj`?{<%uecia)0kJScZC|==k5Fnu9nLxhd%PZxD92LOi9OsBNH!aWc<|88H zX}H;>?jlX3NQXDVZBkfn(0jo8?HT8LF0=l;9Rd<=!`gU5`ZhxgzDSrpg?nj_%tLzY zOEIr3Jtm@YO8HvgRwU9(mbMrH_M`>F&2GXFBh6Y*<1xYHlJt+TMW1)65j+2^@qu%D zeK3<1!Q45-M664uJ{pLJs-8)qr-+evhhW@7p&r?pplAg;gTqvz3~k8COdyuSLQtp{ zi7Lm)_+>!Sh)_c`D4~_%k*3}`R7uJQ4{?`c^?NB<@aO|-@BW2#ipT=}A=gV1k(BI4 zd4+Oxm__C>;xW@)PuiJ*gl9>w5Y%fvlh10kcI_I=fnJV^KCKZ^on(K^*&u0S_ zL_)AGd0xUeug}m zYTIfhw>2{LhooYWK+1Nn0)|HxNUCMTKA4A5kMkY+ZbuIL76~O;$C!BT1^Uby4J!NM#A!-NkTi!nK5Ht zJL4(c*Jc(}x%9NE`H7Szf37snMG0H-Y|pWgrm20akP%C{o3!yu4$IZb=UX{LR;Y4C zqgbf_RZm7~Oxwkz%!E+hp$2ZMn$pT^f|DB&xsi0_eMemNu`oe-Qi|(fiFvSMhU3kT z{2qwb6I27ilsRSzN3>>K>hmaMeIs`?qlCr>->Qe9EG;$|i%~$SEYKalgX+&2)(5We z%n9(!8fI}zxjzj7VfclXOqedQCSMkT&K@Sx#o(_dj#|dECMyDIKgtdm@zGHiCz9)!9Hd)kQVbKl&h^2^KP%W>j9gp40lT_1lYFFq0C0D zjk-`8!oU-?oCwf26UeaMV8LjVmCW(gY~5y5$zHd+IcqHo+J5%3eYPQr7j2`=jqw5c zmI`!k(4l>vziPQ0srF5&aigNyyl|%Jv0`f=#R?8XPL)<$BYn+p>rpiYG8wVpXl=JP&F-F_ zZ6;orX_2w$xa1ddBwb8EAlfx>Kx8bK`8c7dRbI74Qhlq&nh(XzmA)M3w+ImmeG*4~ zLv<X5=^} zxW{TFYKs63K$>`F+7&d9LlF5O@i=B8tw%>Tk2tQwy92Vw&G^K?B-&C28~f=;wqd%< zFJ>dMAMCuzsaz1}cFLj=0CFWB1j84rR<&+Lj8sih?jOFNSQv>@>{)=mnE_Ri?%$Ps zz8Xr^H3K`%j%1c$l48lqFwIgGiI^Ti7la69EhIN=9oVGUR{)IL&GiAP~`sySiIqu-zauJn>Yu~L8o z8`PzfQBdJz%4qsc_%k>r3+83&>v2Ue!BccPMOi00y=uTbgu6 zowPn_ccr4@!H)S8WrJQW+89HiUd8CP+ySXDZKj%AiCW#tUvy>E^Z$pjZ;0+J{FaSv z+eXK>ZCjm=Z5tiiw*8B3bZpzUlb3tn8=P-+);eqNs@he`$yg``%pO3I z=uxNZQN@C7SY5(>;)N0f8}>}Q=~}f~I(=2a@n)+u&RP(?E-6CLtOHAviq2s9gt-w8 zI+&HhD#X>;Qg{&@hyP}>91p<0_U~@&tS@!GgcmXYB^?`s?WXOY<VO6P?;Bnho41_b%*qHr?IDm$pq1h%aeD<_{9 zD0KIwAYw5{`F7Z(f?z57a}VX&Aw5IdLAB=)NWuwW1B^1^~lN>9vif^BDI#V=Xv`-llta4bhF?V+8s2 zRg&+t=zxU$Fb$-GNQfd4!TPR4-Ay|)x73q7RjC76VhZL{OSFSmt0>oLud6w5SstrK zGGvazQAkqvU>gYNWR4;VFYm4_evvNPJGBZ=q=#~DHwbfWH#D}eX3bt;JO1r_vz^%l zz`U_)m*McH?hG7r)NU(W0s1oAiNn@hW@Js2;|IHkEBF#M$O-8{vJ4GwvJnYa z3CgFIGfwfntf8gB@-4V>*A7^ogTo3f3QWNVop{8d(Da#mBW+(xwUeT$? z<%hlbsU4h}H))3NUfe6ddpw*g@kcG22(JDw@(8Yj34c^)MFBkj2pEGEuVXY5C}KXY z0XLTun$M8CjN8Ej%h!m0cy-$fKSrPlD%TIYKUN+8{J$jSrJ)qe%9AN02>8Fg)>{Pp zK06FwR{YAW@-A=qzF1?l%oOjxT-*iyLM*FieWzQL{j6V(cX!u!cb$YUiqsBNvqAEO z+hjD~zrufl-juPTnF1BQ<1I+?iwi$LAHDDdjX!YgT=uHPx45}w@;6h6m5C&%x!^-( zAv8I*IVb+h2J~J%{z}N}Z*6a@lg163fDf83i`lL{Sa}*WQNL}sBLD8Nq4gRDi?Ur^ zXnyKyTvkcLC>ja`mt}CGOrFM?H~A2hg_)F+p}EOu=#%1glK1>N=MW|9H60~PX?g(k zq#G5b@&j>Err?%_d{RFn;~5Nr!Gd&Qn)rHWHDg^>`lv*;xOvM7g(suQBa}spEzMB~ zR{mD~hY)gbF40P5jy_WW(*#u!PgyCF(kwHI(^1P7Ubpt|vy8>2U9-&(KdaR7iY2&#yZbsBz9)p)4A(2za zywpG2tbI7*(H~#Bg_|aDZn5NBpLiq(gu8wa?DIVb_%`2j)Q8R^6y>nSTAH%SOJ#FB zXj&3$b`b2FYYo1WIMq|peB=G)Dw}*5*9Y)px4!`L&9Q+N7{ zje4ZD2@E_B2PMe^M5o!Y1YGrJpcoiB7D4y(F>(DlBE%WRSMi9A>sNa(YkXo|Si^wT zNr)i;KwFBdXuw{rcX-Go&?|JoO#!e?@887ttSO)xmofLXsM5Hc!#@Rd)sFtBUnN9R zcC@?hDQUhYBmS%j(!^zzdJ3AlRJXnELiMGN-0A@3PK-;yHy30L5v1u|d%;TIzD>Tc zupeBPTI!TZtOXTk|Lwg!%|WTaqfwQi&(lw{xrcj`aUgMpHKD;r39uLAarLKZudLYT zgU=zbnTFX8*`UW&SE(L^P<-?hmn8OMfQCN~&QOUK(N!a) zDI&mie~Bq>!1%b>DKc`S+?_Wszlu|^AnWx*4_QQO= z4WbdHP?xzW41we)nC>NpI{(!DFZz)d+X;s~oMjMPU0BPCdSAR@%VLW@0N7?)xKBfl zZvcYlcR>Cy3cd^=1YEn*bS;8Qd;Dv#_u-8%4~IQ%Xj)TJ1f0C>!z1wuly*{m>_aX0 zXdbNg(h1h9}>V(n+0 znanMp=(I1tiK2U*>43n1OiXrN>6q8t#Z-1(_FMrL1~y&#vx{-|)7Fr})v&Z@>ZVz> z3&4+YwQbb)GS#~9TA6arxtYsawfUOO>cZce0EhE;#BjBO^Dy&K@pIR20LSL=WB_#c zB;wxUnQbbN*B36HsfHdX;JYNy_e{V9_5I9Y)fqxX$_zCMf7e7n69fRkJfzMDHsq8RP=Oc6+ys2%u&!QNg_!Pb*at0Z9 z#ESBDEwaB~8&m-=ghsOMCjSW@U}OH@YOuMO{-e|9qMlT&ZVPhvbnVGT(ZI|GrXgea zpCYE6Oq5M)LJ&wtgm`4iu#Zpgq2l+hz4K&iP_8KP$)idVD-)YoQn#L~gRA$jR0hQD zF6tH;5|7KvtBGaE5QYQ!%Yy#2)etOE*$#$nR{?%03%F0-?~g-B-s6uYr?nlSk(_zL zn+;0p#mFQCM(;thknbKo0UQ%3$Ntin4=iE#ifz9Fu1haU3w9!-g*~Zv?Yz~xusj-T zHM8J5v`IMXTCF7;x1Nx`yO0rt;Dru96KB4=)a&|fD9i8@)tQM;ki>AI%Ro>j=ap+L zE5J$!tkpk|1rSNCudy_BQtU*h%rsRLV%Kmwq}R8?fEiTf55wyiepG7yIx$x3FtIA} zx^TX^JkgW-aZCs%l(r}XLEY#oBG28TeI)wJ{pz|I6qCzItKpiE27H-?5#Vrj(QTzZ z|0zqu>~WYv7m4-dbz)0U+YsO5IMlH`ZsTYNFcI{!%J?6Hh)_1pKS7dYiODAA(rG;Q z)7_iDFqfbzx#{FL5oRsQ{MI0%$sgRpy@kE(6r}{UB_)c;tDJw#)$Ke2_jV|=?8IR zh1f45$O~M|tK3&aJf6Rd>q7bEa$Zcj6uh1f0SWGk$|fSQqUa9$JPQ}Z0@dy&G08{) zH99Oh$+#p!@sQ0r;11b#f(}~Hsei{r$l(!BMi-zA;$;Waa4*$RysN#YIQ?oJW}?^P zxx`A~eA`AhrExFZ_^Fa^yFlxMnmexB6IP*r`jgUVHlZ*a)b>^!^{(o}vzQb9 z_?t1GPr+%a@~J(_)5HI0-jUv86D+m+RZ~ON!K9?bqff(a+d5(91*}{*{$^7_IsG|S zyxmRVL8j+@{vD?OTJYA;kUWJbA*d0SzaL*(p20AwwAsUqJPHJe`A7-Qh}34gqRWG` z*&TLXTIBOg!KfxaUO_6&-JTZ5PULqJgDxpF^#ZsU6Rlbfs>aF4$(w32wGBc-(cfdK z>Q-ID6gx645f#(97Pb>^25&m2>Z63DTmdnn%b=US+9%J@Om5A5V0uY<<@Tf!?hJ1# zLh`f6g9I-}^!_-1&?O6_W)iaI%|SQy*8v9{ z9WBg!eS$)Zm)AAtg>1Y+i|gI&XHAOXE98bKIcB(hqhvRf_G-#7HMp~XjKvVba07XX zTL}zsXW5C8^gFGDfTnvAPl0r8943C%Pfoz_P?it@tc7;Cy#O~ZzG17Zgqi$4^hoeu zl729H=4mgB1&-6JTa$iaZqSjH%dxj+_;AtTI-FI>v|U*YwOY%p{Iv@I9%O=qy-d?ApXkgwT&Xjb>f`Ajgyy6v2%En(>CK}1w`Bh?o-tB5C!(ye z?A#DD$aPGd2x%Z-1|d-h#{$1L^~IH`Z^En3PI^*Lmx(=??0W=vc`W5+yzL`8ZC8@5 zbki+0sFar=WrkGVp+<{m{vPz9g;&PIADhF^06t`+p&C}g)+dd|2As&g@+8C{M!Ims zQ`a92h?xro^|W&G)*v_<|= zVrLr?+Lks%*EM8_U( z!`8+4*7BAd4iE4i8*l;tvX@;(N6KpK$CH0m7Nk18PjIQ?8rvvUPCS44ohwaIiw^7f z)5f*jZbdcWEJ06{i z#p7cMY5y7SGR|bjR8?An8L&vDF3j-6)8FVpGyE=AWk%BSiW-)tN-gZmBN@H3;k=aH z>Mna7!LE{_^WpreGuoSl5u+tJxTa2l;njZe_FOd78STz5K`SF68+tZX2^GWI5&$6A zp|(e3hVt;f`IVJDi|9sX=%L_q5M3H!cpeAM1>V++1Tlp_b|ljaBhC*Bsi>|0Y(te> z_RMR*F=#ufPS4!sq%D&t;A0;1$`Cg!5!3tqaDCvK z=ij?;DrF*{r2XS}$HV|5P>D7uUR?*>Fw}WnLD==z;h*4~wy6KoZxG4~W`Bv}0DWf0;^fN=%5;`Pzx;YG zzQ7am%BbO73UOJU0q}id?dq>@76uf6b58ij8R-6ltb5q1CRt)mUkfUBGh67wxkCs| z292zq70n;XtFDSb9U+O{bE#rR9&xyaty|1aE}oR>7?p@WlLAwOp^ zk>}`7LHFUt$zhseEbeiWW$fn?0eRV<#`@;*^<6QI4(p%)XUAhgRD`x9#Pjub^IA~G zAal>YOk*r5;MnLC95B@_E)VaO(S>;BWZ_ep$=12=J8X6#i=L4+4y=$Yeyqpgwrnc&- zDR;&(e48J5tSF(sKe)B)>=53lzrT=w0u;p0bUE7;HSeK2v65ld#gJ9ECI3sjN_f73 zZE*KrY`@3S*iclC86FGM8N%I;RThM9kQJW-3u_jVW-yOMXbF{A2#;lG3(r^xUdQ)r=wikpck;ycXUUvPm)X~)UZ4_Tn)Al?YM{DxWiS-kL;{{mV zflj2x15GH?1g({N4AiDqXqpIt0%go+rb6dfGE>D_n4BXqW$XxzB#bjdn7+l=0U^2* zxit8?*tet+IP%0t;_vKWdeB&kr^>a&wLoEWCc&MdH)!g>xx0A()JiK-u+yoq#93>0 zki6wk{-*IURkvtfFVSSP(^Pm8@5tUT3@^0p0y4}-TBMZ!AW_U3m!}nk8A%Yg@iERw zC#Ek1d2}e97KEMsvbt%kA-Gd-Kfv<=X6wL^Jy*Q)(N?PkmvusEOm?#pWs}t^+O%i} z8c~=B!M;oy?G7FTZZEDv-Sw6&Mx)@g7>JoRDyvq+MN=9uX@bOsgxitp;z2XW-o_ZO zqiQEj;SgS!Y@UW?nRdd-Hqxryo;x7h@m|4t%2-AUIQe6^j6|tVodxh$+I9J`KXk_D z)n_OfQ3SPF8$)l8-P%(ou%(w-8%7`3Qo8Dc>aAel2C|$~nKV?ks+e9gK`EqcKar=_{t$6vdAIR2nZ%5K%c}y6@S$ksxnr%cb?!H&1g83KrvxAzlz(n;*WbsAfy>q&H0fjmqblLUdOqiQR=zh^ZF_52fW_Kf=wIIwaKp1tacT?>i5?A0t(C!Cet~dI3YkOxV=;vpos`G zMU(%~P1N+2h)PMFN7he6wTaUI3QsHMCh8vJ=7YYxL-@=8@`Vt*#ue>9j_3bt^*ZZ+ zHuqZmG55mz8PBhO=zEtmb}etvexeMmYM||di^*GJMWRDPYzN1iZ3T3~PpYTRj13^J zhbe^84$Y4WO~i&3;}`bu-TC>`$I}r^lQ2dISarl&gIuyNA_%Tv#y3NVV|-tP+U+od zE!g}(q+wVig$EB_&f~g8sSj|5%RBO$4!*#VZMZMH>6K7SZ`tQrN}tkio6Z=>Vze!K zg~O>i<9d#J=5OI=+Q{#Thiv{+0=8MI9z}))7H>&6MIML3=@A11zkUaqMmF2(1#`d= zsK(3A$V=Ynidt@Aa}X9f3J!qq>(j=NUcir}4tZ`C_tbE;984haHi%^uxpl5moGe-{ zm4YbFZ+}TQ3PeiQ&$zY{YchkKd=56ZMFs`?!CM~-@p8!KMou5y&R{hO}dM`dn)$V z%9c5ppk+4;j&`e3#*MmD?FwvCQCtlwN@AC$%H@tkFP8HqdXK+nKF&qv0EWixI_$nN z!_oq{7I6$y1>e`K$OnV69$=7ju%pre>O^TJ1byiI)x8cxvZg_If#mf0c)UgzrnYFI zP{XJW&7gpOjBgMr<^~dOzlvfb=M)zrwSGtu?#VG2%T`&mC^qaRgd!CF(CC9uxz&hR z!ebp66G{~rJS&<9Bvl3!G)sGjt(0o|uW=ELitGi7pGV$Pn|GnmoMsf=Hr!LR-U#LX zj93BV09b{;vNlrPim-W7j)~|Mv-UK!?r3-)EFU(hS(;yd$4=5q{*$@Ca^4U#SY&{s zpg?1j>NGZuixA|(i6U~U!q*K4@neS-kc`x)#TFs2!q`Atoj@_jba^ravJr+D(L8=j zSk`r?iEiFU>(O=C_V(r+HZC5a^6c^8+n|42&8)nUJzN%sMa@_c(-Zf5UxCPdvgSfZ zkSjr0AmLkc7TOvDgK9CR>t7Gm7b(kNZaq_wR4F)`at44&dt0)PkN4r5Ib#4z8oBrD z*Tabavk%VR#1mtmcB@3{ITG8RebPW*v@M__qDi zd)q#C7jIY{Szw2cXA_+qeo03)d3Z=s6g>f?=vLc(rgkv~n^^+7$=}_Z+RBVxq&JgG zMI|6uj0FkIG~|oEWEL8~Q|U@Yw{x!U{MF)nZgO;;u|!`EUTWdyS@2B6%2r*Wu)bp7dg6 zRL#+NMD!;1&;Yul;CkT(6CByGBxrPm>apBMtlZ2=uI;oB51H=nf{nBfqZ^~D&U^z7 z`YdKr&-=fncsP94hxYO~ljWE7PA3jkELqBSJjZ0*r@dYl^-ctv-JM{)zXH*8KuTAv zj~ES*&~xGc*rH$!@63e|DB`e64y&QzO4!ax^B1le9+Ba|mDBR`;IxlXGv&0vZN^ZC zaxwh~DtPyv@8NV@l&hl!m`yLKW>c!6aaPeJL_;)@t<&qpw4(+(%a;sKL-2#j>a3y3 z<}816>?*<`n>+)gU9`hQeIE03vw$um-Fl(eanuFx3%tQk+hT3d83U8E)sKp2Pb$bt z*BU5wtj{y{hJ_U)txSos*7az^0Atm|<`KX%Rvl~#8WeR9pn|Y}YJ~GV-ofw-Zn7*( zFB7qDS;nK0o&Uac$bo4iqw{ypiuw!UVz=+hDy9{BTJTJPt%0~Ub$?K>2pRo3EpB5% zwLRp8IPSrC%EwQW@lX()zTg_t^N9U>i*j7;wv`xIRtd$bDfCZtmjnks9>@mGp3;;S(59WwX|SXL0(z`^^9diEtu zN+={<=J{a%cs#w=%i%(&$*c?rjyKUva&*=gRywKbyVciTQf!j+Z28gszL?8;*@TEr z&_vuy(Q?L4PEa+Gk&8u}trswayyKG}u*GyQRmriLf3*O#nVIe@F|!|&lowtz>OTX0Xo zh6q(C+Og83{SlEoUTP|{+H1`oYQ4DEO?Q?omI^CpKXt15^Tzi@zrcQ#dp4NztiW-| z-8oQz#1Lw?3>z5Ti+%X;N65ayFU!gZ@zgwBcFLv(h^5gvF~D9k zR7fsVi5$oO7dtO^c&nNBk|kLpuTEZCMA=w=po6+qd}?zFD*On~Ni~{s z@Dt?UyQYQnIxmo|~g`sEi5er~Ln z(B0yXZ;|O8<=hd>ovR3#y%gkUY_NXy&>pHqjFJ@a3~-VY;-zaDwotr($KjkN ze7=tgosG;e%Pztof1Xn(N+KWeOq0_@aLvKI9`!#`8Ntg(@Z4iNYrQI`w2A=aG||gz zNB){t^=>(l&N$4n+g39GGHXp%W6(7q(KfzPIu_j4B;ft?*#M{IQN*j^XZ|$#38X$Z z1P_Z)Hx&t5V_}(u$!711iznx(JKkr0k+~9MoV~=S%da_$F@rIw^Snf)*sCbqibK3D zS4IwX%q!EqJfZB^`!2S2;uERT?2LvDSgnd}vTbqYGg)7`{T_f`ClWVnQmjO+&WzTZ zUS@aknm%2dac;-Z4M+Iyo(GJ#DoxP-Y@kWj`{c@75eqRHFq8p*NepBvJ#Q?Z_1W-HczYcKIMEs}d1S3D`ImDR?7Ojf!oszo&Mkuf->lYqLX4Uu>A;D1sL zIyOntc0oCL$UIWjsmMFYF00sU)Id*S()n<0c|DawM_-bYkfq-22(z2#O>JeJZi#dt zRs=aBq#N#qEK9RBddRSB0 zy}BJujqlPR?5$urP6~h=W*sC2hCaeV0;;kG}ku(gKo;~#Y4lPbdGL%!`zfM z9gs40WHG3iKsPuTt~kzwC1Ph*{U8ZJQ}~>E_JrZ$xkP9(wxoKVXoaBXYj<4HI-CB! zz3x%2Ut@p5Dqk%Id^B4Lj#~^8g^4+dZglF%&L?52Zn!vwnGo3RWawV%)${SER=v6y zq~2M>1JSgAaWUYn%^6Og+1~uI1qL2|T(twHO|#R5_3qOKIB@Y2M0B6UQ|;E_H9Gwp zT)*9`{Xa~6tgP(+gOFAAus0=QP%ySsake31kSAhdWF%q`w{UcFCgS>$2mc(colPBo zs)m-S3~*Wle3(oXv@t{~r_Kr1rY)x+IFvvj%G&0}G0*wNUDc{c=%ZO$y83fbuL?M(SNsNxl%F3zoU(!6dAt-C{$lMT6 z`p}hZV7S4LAEV&A%D;(W2zgE&K)-sSa!X;{k)n;fZnXbBccO}mvBRt2h#)(;Gek`|y%516$6gdN@>8TF zFwP#_CNWaq&F|Flk3UOl7OuSI5!XZNHi3xWx?=%N9J_#}G|*%9La=X$b!J*G-N%vC z!e2R!-{CO{?~%8f2hWEtr&QTTo77_+(@jSXanb=hk&)L`e4srWKPi$t@l3~e5}A6$ zpb>#L6JZOj?NC!wj%sg^!c+4^F#>TtQB%{8Lb?G#+lgKflQDF{ylxV8vcJMx|H_(H zM%gm=tw1m0C4hUzNR5Ld8&{~l(PVtbenx`jh1?E`cgNw>++hnm_l|mn4@_z(mI6z* zVS+(Pfsu;L!|w?g3p&ClLlw1;xF*H}#eRv{nG&4rAQOh_ln%O0IP$0mCidty1B6HL z$u9}+@rC7zE_5FM#wQymMJ=*MXJ^GpJvOAi9XC=WOC=ZWdiFp_Y4DN%i{-&E#ubk? z0>Msffgt4wMy;^RTf_@a!q28+2yVd^f-%PJ`iq1}iJf3I!P{^@UK@JL5PB7Zb2A)O zy8HrjNnMV}{){@CGyq;neLX0ZA%tp6b>7m~nFS}cpJZL&@7}VKUg~{1MlAD^v3qAMcB}&MP~lwNJ}ol)JO>N zyRM$ppPixeGYnFik9^TNqNT!l6dl+8!bv8$!fDIL+CPmni06yrRYBA6KzC{oy~#*A zKk-zSTbx=f?6DLPg@;<%wSMXUzL18_Eq(Q;1RC4J6XaAx28T8m zGP3uvfeS>D$Tfj5y%NblC&v0V9q%k7G#Ctys3SByp7zRKj!R=dt|6%--zut(5*?Lv z7nkSv&L&>Ho8rPaBFCCCs6DF4x4+jf_8u-IG&^SZHhoH~Q{Yx9w54Q$a5@llS;nMd zo3<`G53#@X+88BCs~>bWU%(0j<0-h07|QDsxka&o$i*$730AEa!Xhgwn2e|&`E7tt z$Km>g`bwa>?-LjbQ=nHj2Lzy){<>?noZ2AZYZuR6f4^}Us#73|AFKlXL_Ils=KjN7 za8XC(cd&h0Xig(jzV54bN?2_vf&Uc#v*Ik0I+@a#x;N5D zJ9eyry(g|3=xm{-gG{UevjpFUp$C0Q0rs8%GNJ{2=-b@!hboHz`b3cD_AEM&gUR*s7N=MwK&s-22X6y5LE$ z3%M8s%Z}BQ7dVrl;ybzUP(h>c6t-Atb$^Gs%vh&5522IZn;?ey7MK~Q+`f6$41u76 z0upi26M;PmYl)f(#Pd|??z*hB%GOxW<=|;NPl2n^8LMfa8lU|l?$3cpjhEzIAZ&&bmtk0Xw;{e9eNLoT=W{$rBGZo>B5*vi-)jk2_jjJG-=JzO_(?E1X3cFW zhi?NrIOY*};Ic(V<@Q_|QSutE_EiScl*g%upl{Z~JZstGJ29Rrp4N6r|f*=?)SANvkszBL! zUy&QIJ2Owy%1Zd>V|&i^c(Kn~n#4CgI|blTHt~VflCfz!`r;=VT1xz(nMRv%175!Z>cvTSol#;cO{Axlf)VPMUZ{Nd1&}O{Wn1*EjL-#P^4o#{8ZJJK zFXdFfC?6N^WMeANjdeed!M}R+rzjp%hu<*GMj3jAm8K^eS_$amti?QZrbZIMulje! ztXcI88_uPC-W*(+cHIvB2#KKl_Ez(oPb&N>hnkgeNAP0duFJ0yQ$Dz=OS$EN88@HQ zTcArHyVuw$u$`}y9o-mLwhD3WCFhRR=`Vv0hh(6@NbEc88;p{LlS@sY7tO3F2?<_&YwZji1=P=8> z%B>roC(xzA?z0tBi*Jxa!RgpQgP{xU-~3!(|3Y6_2KJ|Gp5tE|omIfGa1_C@_{F^# zE5vS2ykdlfCVft?hm}$fEnM{UW8^6@G4(=mHp~uGcr3&GlSxRbq~|Pv=Fbazg;Cl%?T_Vd$1?ZET`nt6sAJ)cH4%gb5ZY?)soIIj^WH23e8&# z$SyD;VjoYNz9iJXUF*wb-FVmrI?lGaPwW<4sXK~Gx&2I|rXJNwf#y{%DyR5pVQyc? zqb|EbE;rxg@7#KF+}>WYYmcRZcS6bi-em$F4-7ul&7Tjh-MgzVyqI+)y87(UsOH4q ztk?ouzCZGG6kTIjo^cnAf=aK~Lb>BZm;ZLpvlkE_5`Ra9`PB=K2Q}xcL z9iJfciE^De_`eD$tQ>Lvhfa}=gX4d6ivPb(kcI6h&zqm0=>I-2PR@>|Mm8|+Yd?;e zvAAvjE!```3@~qafq)Pe&xjA$!24&DC}P-~DS~(4F#2EIz~;qS3M-1vFbFDW-pd@vfQxISEm#?O6i|Shh{9Bck>(1xt!*`DMQeQjr z&FG|?iayFoCKVRnqC6NIwX2&~>h{J_x`{f>TH(T%{#~fx;9UWC7vIBa1N%$rX23(dSoB(C5+)V7fpY{YA7t@Zi7lpqiU{z7SPHnc)s7p%>*e(6Q3Mjf}xLcoc7>bD|XVyGd( zgw8QgZy3lU$}l?aL=~d=MGYb~p~oFoTkRvo;YGw@?q?RM zM@?Sk7L=;gx0R6ijV0DnA_w(~_ z^5?>=zLo&_jEsGwLE%tz2KFh`8cp-w|5OD<+S8SVLkj2+6^le39o5eMJ5|#pT8M7A zkx_;V2AwCU=sa0AG5<*fRP)=J3mG}b7{udbMjH%>p1QELZAlx9-~QLrOumVD97hJ~ zg_3q{h?q6jkWEs`v_>q5=I-n`CumycDdWf>CqO&}wy^hFV3s?I(@+4wKil$-| zG5X(dxW?t=p74YM!H4uU{38hDu6{|S8dwTx;He1jT6`l}#v0z*yg#Kj`Kog?H*MM}Vey7ls`0|nHu0h#4b%TfRFL{?L%Q+eaSl5vW0p((R^ zW}I@q$g(sF_R|eo= zmBQaDVTfwNiFIv8M>`U+Rz=9}QN%0w2)Pfk)g^g!kSM61#T3}~eqf;bA)M(VPCd>P zpepU10Ew(}F5=l|;4d^Mb1%8sj}|&LL@^%-xcpo0Tn}^Jw({vGrob^1j9oapkE@w` zU#rpq&=O_O^f^E`qSGqWAi}Gnsgjv0P_*H`J|X2uIerXZxSfK+cqx(ndn~UW5F;Ua zFpbwmiZBj)O)Mfp-5_`pi-0y>GZ}g^X`vuHry{*P)T8*{!lG zCDkI*;?DTPGoq|blVu{@L1)(^B_NHRg%6sgqJS4F6&{_V(pe3>5}zv`;LJd}e0`3k zo#}RM9p1m6ZDOxkMS0M}L-C;vH^BKT)VcAx8I3D*46JR8%~WDm>97UF!U2Kr7kX5k zBe9c<_2Mo0i{A6Nq3(l@#8jdPaEuFNvp%$fPbJsT0T@qNfp$)K=rTBN~FnNri-t_`D;BKI#dOlr5J@hoB5CcG|Meooh<$GCzPSdZ9GCp!R? zXM>%cMXdJqFr~N)EZAApB=xgxxnmkaukcn5Cqy-G%~(j59X@vYARG8G6a6gB2H?@0 zE}tg49Ts=L5}3Yw`G?M!o)2}^T^p*(cBG+-rFAczqm8444tcv6&#)8vMO?-{E2A_% z@u?5Hj0XxuGMwo9l^{m!V_IJ#HfjdoKK|>X$ z7BM$JV;l2sLqtyoQh`#q=S)?>f8z01y)*EAaFS&)mVZT9?T$3zb2bZ zE=m(IsIX-+WI+rzM({|xr$*sZ-u*jtGu-gm21IXtueGgN@+8g;s*-SZc|}vKCa8Bl;9{M`onaJc`t&>V+jeD5U%#j&;J@8gjGx@|EU06F@1H~fG z8HzkCdFs%z^8f^#g7{`{(r=E+-8oGW0*NJ`u8Mcnb5(Or9mm`+lH~8hITDreBCIXN z<#N_}fw9O)S>Vex7+S|v%NI@M6x2L0#|A!!Iq>`O$m!#=FLdp<675=;$JHsp`{=eA zl{{*Bg~2E2OMxle^3r%pG46xsMy;yh=Bnmt${Q$NF+kHO#;-N=^a^vfJle?2D05Gr z)ob%ckyAiXy@!_=@jbqa*qr8B+MmYwD;!Mm%NnY3jYIG-;RH zgdAZc{q$IK-61g}^|Ilasmcw;Il0Di8a*D5$v2CuOs#8la@o)q7v@5hQZn3{coAT3 zt%#L00H~d=g@xHrrK@djY+3%iO7!a@JK97H zQnB4x1%Z&PoA-iDHc!J6GQ~2m2Wb_-BntIl0kgLsiekiFloZWmwzM|CE&3WGu;kAI zIt>S|TD2cDf_)awg3G!@hHQ)S-;0yEWNofveJ?ph6eub_;Z2|LzYb?7bHHy3@O5!M z6m~*2G@$urO>~GD2jj#J*_0dmQ6t@g>HmR4b3Bi6o1dv5wD(SX_#iHtg2Uh@QZ38$eA5FTk&?%*sJFe;r^0U)8 zOW4f8o}>OgrBd5uQ1oT_*W3a8>1t%U8b8q*%Y&}ZF*b2lf;?W#39J#>Y7yUOQ8_Z~}Z!{NA~7UhYddFH8E{=LyByp)`6K`5}HgQCu; zz4GTeGApL9*t*7~!%kkF3v}B7kBhP}Yfr|B_rlkKmOvYN**furGfJm$v_5-l$3%_{^UWnjR`XM8HgB4#%k@v-2+p-YMHB`-NB<}(%m!^WpLb&KA zT5JhYXxok|$FEYcZNY+V(-WDkav)@3GRuIdsWdf#<#JF6{L2x}pJ~Wn&-C z-%pdCEN%O@9vTLiYTmRggIA0htbd;YFMV0_Y0c0PUe*)an1Wb110rNSZf&1tjl zR0WT1|E4j6e+b}kg_+5ZcwVE8tQYr;PF$X7gx;%AJ*Yvgg=F3 ztDQWcN4u{9|K;{=AuA`)T}8;1`1riXg)`#Vece#&?dA6-(AVklpMuEQxc=AMU>wYh z|7oNg!kdU8ZMp3>$ltIAD|n^AU4diFz^0GOjP4rZ!VY&@1sWso$)#y{sjvn786tpO zSxs5_U9VZi5t&fBt#J2nIDdFvnp-oKi&5`>d3ky+z)$T?tZ>#uNAl|m&Dj6=^t@$$ zn_tEPgIX_XPGJB36i?V+-6ejmn>Ra}>1I;ur9--WJ5OyF_Y7GY(YjBcpIVUXlw;-Z?{Pj|y*VEu8s$Sb&nSafy^*qw#Q_`Pdmmj6bh z0Wz%)P&=Eq+vfj#2WxtDlm>ev3(+#9{qpMn^8&dq8Z6-VHhql?uQZCp=AB$>_n3*k zM7x}$NBQ=$embAt#n;$(Y>Vc~uzB`g9ditk+jF!paq~TxJkby{aXLS3TL0J5jPy5a zX(PlLRZ)7u)XTEp*X6o}n1Y-1H#M2&_hTvpe0PHU=%F(L2G&*)bpit89~tg4w^Lot zM~|I*qxrBeppWC`=FX<}hFpb*YlG76)(c4lQ`AiQ@-2SMaJNlSx2o1$*>^-1dif2&%+iN`d+pu!pH=8` z9_eq?n{{C);w`Bdmt@wNwLBqFu*Cu|M=YYCmOlVf#yKFa&IKscU2K0?S|?x~bmQau zwZxpE7L1%`oSjkTG?#+AmsA?hRK5i;i1K@I0bfkOTNt;9iJ@fw$W9JZ^3Db7#SRJEd zJL%ZAZQHi(C$??dwr$(C(Wn2xnZ1K=QngmqutvM~zV{`KN8%mIe_e(x#m@ZcxEd;^dOm%m*r?h06zB`ECAjD&6bRFr8{!aR+f5)g!Ac8El4f zF27|1l8;md81vHzi6pJLoh@-5yzLX$fm2OyV9mFq^Tz3g0^6CneD0LERJ?Ta%knkKF5d`}-7 zBJ(exl^g*QrAK<@Q~!Ln@&Q=>AX}exXKbdY{NgaY-}_B^_e(wJUdFf(Qw3_3=}DYX zUXe#)*$450zCx1HiTbpo&?M@r%=gwK%LzNZxG-tRg+LGt(0Dek5om*hn|WD~C`}{p z*A9T4AhF((&&@++D8%zVT_!*{v`k^Jmj{lSzM$1X1Psam9i06x%qdk##;@hB3g)fYTc>d)ntqw<0hD{dC_X>_S^JaQ^496{+o?+zS2d1cp z#dDVXi3Z-5HUF~8V@D8L*|OwPTVo)CqKd`}4l;XY>t(uIy#{*YrW&0vpR$;i3V9sPXCFG1r#AY@x zyJnJgM8|h?0L}$HW_M`9TD-1KU;#Lc(=+({LheW(5q~S|xZzH!$}K9mz-X!}3@R1s zu3JgNlTv8@F3b^%HB3u0^E^q55a59}gT*@v%3b6i)}$*y6;UNFhM!$HFaU)=y}YgL zo=lGNQVarHCtPYUbcj2@G2Oi&IaH?lX>ZiJSMIZ|#I3!)f_fWge@p>J z=46q*%XIF`wI#Dnz_N}^re??T=TAF<3a8zA0T6BdvHTtX>_n27^E*GS1iYzZB1a3Q zfv%%<@p3OKd5~s@&KQlzVd|6lGDF8YofBnuJKEMp>lV}SnWuStD?<6zWDf0Er8sT) zl+U-;j1boLL-Moyo+Ei78}4c+RDnrG0dy0fn1*C@0$^gHaEUY0*-8r*)U>G51W4usqe8j*Y@ep)#aRFE}nksvNT=9uV z+CB#{ntMw3#wWDx0wYXq3TV3oHRxw|fe9};>3WB>LlOjWqp%Nwn8l?*=~n=kicb2V zYsEyjOZnC*;*CXa#Y<2qvyJMrakNetpD?R(d?A=4DcsEQ(6UWdoJA(v~OHCk!T zw0#uK99|#;8pjiH(Ex^lN-~p2dTIpH!BD?q^1ls9kwGwPfAzqE5r>>czrJ#GU*ef~ z^gsjNHFmIZLuDkD?lG$d?e{v~_&KrgC->|*@enb)PcZwT5SpwRJKoUw=)MN~w>&p> zDSoKgvGYhON>kG80%A>pu<5E(nWueWqM z+_t+`YeQ#mjQFh4h|O7Ysdd>NIrbd=%S|`pH{-AiVM@0$1ywO{IExSNLLm9o;@93rIEnB}1Hj=Qz~3Ot(WZ+(hIlPlrguZnCQsERRs6~rl*CJwEYMrFr;C3BhuHk9Q%V^wC z9cB>>XTj1BBR|~jS67Nx6@kJgnv5_Y;Jzm3d5VsP>a4N{nSmHm&=JPf6)3<|2cd^W zpkp=tz!-5ugI=}?Vuk7XW4d`g|7YsWRO7i($HGei`Wcz_ncy-cOF~wh$P~j_1pIcT zI2?1%-j2OBsj@n?hb2|OwG)lD)w<+flYQ54S_&n4r|is}lUPk!&DV&J4WHhR*r!`> z>sN$O?TJ{~#0@$gMAhgiXn9P{*4MLKeR~J^_jl!^^RD-P1RtG+SpUsW+8DCpu|w>2 z_lFZSl9h1j#4j`n?JHjk_Fx%SxO3BU$w52iYHBFsZN?bIhf$`rd;A~oQg0rZzdn@> z@T!ebm5iTn9MA^$ZHupWj#3Q_n*f_xkd1M!Su+V?`%jmLJcp{~ER@Ji0U{?cu~*&d z9$U$>K_TAe;yGIn%EE}vR3WJek1UY_OuAnV-Z(0cmiO0HQ4pLZyM1%+_e_lv(IV#LTX2Nhp~K#Nm+Ah{e1B@O(cHfg+z#~3r& zL-Of=1|6F`m|$n?bR0l`U^52ycTm`#Xf6*8uLA)=d<1%l#tU>j?a`6CEkB&7KM%S; zNn&SLNsHuapX05ZhC0qFgw|O#Q&MRR1;r~We)JFf=!T)~R>jUA&1uj|$Nb5(urHHc zSub~6-p@CH-GF3QXJhWZTr^G216+MFg*NHT_`;WR<&hY6-O|{o*o{}kLiPi-@1OJB z(KmYE0;3(4oyQ6^yzTQX&DIMVF8s=uKhG@rmny$+_*AVb0LM&zT{}}I{MN1{iT8^$ zJV6&Hl`9xS>-GW6Jdrum?4yiermd1{PFs*qW@&45b5Kw=uY_O2xF9Lfj*x zG@N$Bkc%RWIJ@-Kd>m@qwC!iUmCt_t4X-Kx;g+(}|F1o$Obm=H|0!*C#%-}BkpFep zUO*~me}Z5LY9$%#+v1(ErU?!D^MpAVr3`-k2%DOuq|ud!L=jl~rzlr>Vq$s;i^N;L z*OwhnPJcg6+sSRvc}(|%wQ~FQ&Oe1}J|!^YHcCl5$ar}Cw0~VED&8oR+xxw~p7zeU z@Md+)sCUc_x|}pBrqnFIN_t3Pg#WBOeJ*ZS|BE)(rT<8}wK9yzU4M@{%KGhAINIf;Vp}fK^7{&lxJ+$W7kbSKAWH=y%5f9B-n!nY;F=CX7y7)wbT~o^L#D^y@ z>J-DgH7wW#sjtWSt5(>BRbTznU^=bY1#x0v0sk^mi19*3OIA_PNY9|43{|@C>7oav z)QVj=9Er+{MRXT^1*;UTCG-yd0;TgYN4BOp3AWVy&mv4`_@QROXX}L?_1dPtcRZW#_<_zO%XQA$Ko-7HZEJ{X~Uj_$Rees(Nu?)5}W&8 zSyP@NktvJSmeKBUJt1SmjqR^Pqho|%N`|m*a=GYbq(!lP*9Y^xiq(DE?Lo#QSM;z! zEb2Y|QD--OY-vdM#v3j%^=HfK zL1h;?HokTDbKv5&|1R9tJVjHAA0_b|4XKGIFaGh3R4X61j?*I@LSg+je5w(Lgw*o{ zN89vFlIuR8)rM)b48Ut}n;Q`2HC&rC$Q%!7{yK+lw5o?{+gmRR!%t1TYvNOeu}~{= zPn2YDCN^&D{R8l|cNQB~;t(o;H-0Y-7btp+GGjlY4og#EX~`;VQsx)&Pk*<0dO$LT z?G$oW$8uCNsFO^fyQOFnp<@l4>tIfB2rU8h@piOVF{I*s3`0G=y=WYHSUa6o8c(smlPwRL>-DsD zK!?xNcJXT+Vic2bg|wL1TRXlIq%$SAwZ4i1%TO`x^P@XGx<`~`LSh{k6L_OVDbEfm zWnek*)dH7GTX(EzG&Ca}Cmg}OzuG>aGY^b)|Ml}owE!5191Z2Iq(F#Dvo7XA+$U%Y zjk#~Bs{ z@6|gem`|=TbF<==cb%S^i>y((i0>M&Gn+{1>rt1lCP2^2y3?ado!dImV^K>rQj?`k zWLDtC-~c<-a5MWna18#_q(>ReF<@D-X+$}42n<(0AjEddje`jnuw~q~th^3TNMTXj z6>Kp7v9q*Sh=43cOhtDi@^z*_7dsYd=7((yH!@}N5{mN=V1=^dCN30yH*Yf#oINfS zg89Zw68|w5vT6xOT!HijG^d2X3mP~Mf$JG#;iEQkqw=IQV>)GNOmqpA=sZ(QMHL$} zc$~HMW(3>m5ttp?r41$VX273at7qB8k}JB3L4)TF1MiKc(Z@@Be)O_IUe~hq36EhyQNd$&J>5>T=Qh=RxwvFq4LEm3|fpO^$VnZ2qqOF%_vP6i}4xtFoltjm2JZ}_!V zXNdLw$oKy&i$DS9Onr-#vfN#nK zT2-JDx(_j2s#4*$6REJ2&S8lR+rZ1qEE*PUri!1LLFRfw-|Xb<-6$jNz66*n;?^6R z&G}E*kTUDB7c_KPP3DLR*C#ZP()-`6xd|V$*LAKU#WTUqH+phlX%*r(>puQ6&%2M$ zeItx!B;}YJcOv?Zp}8P!^g(0}SzhNvxDwn=QKk{!fv|m*0@Bz^X=cihbor*OzQUfW zAz`3`UB3RFe=Iw{f`r%WF5fDmr&Z_twRsrg$&~eDZg9IY z7$gtBzWoKDrGEiLO67IjlV^W%ki;s!!wH(9{a7JnH7@dAALb>4m&o zg-Yo^Ti%v4ur$Eo&w+SGAf)CQzYUT)cHYd0+pcb7$}mU3 zrmmSsZtK{!7;E$EHyMMWru_kiSq~!ZQ(SLHmTI@L=pWm*6cui7N9O;XMhz@HLkuUQ zN}M+r4BVi6av0%?W}gJ1B>{&4#38+n{DdT@-v{RUCojL6ni=F5ONhUw!M+kMUSZjH zEWmJ9f+Z4nUgO`E4h;GBDjo+KS_?v4&{sB|T(rbQ#XxzDi6$AoI&a~_b_C)!WlTK* zq+&ibgw^YNS91ey%Hl7jz6>;WF4ok?xwp;19WpCbM#i?H}tLJpD+(YXNSI0;W5 z_+SqU6hIL=cEL*ZU6U3341|@12YjiY3>k>wI;IxfZKLDEGJ5UtjrQM5HcH3Mp!t z(aby57stQGYWT3Be+^h41>ISbRFN@bhkNbKiWXoPLkzplau@uX5+x$?V@39u$c@f2 zp1rv~tf}R~4u6WA6~)R{eS8?#g~$o232MJDsP4J|-Dm@=`tuGBxqUZ^hWfYDvqs!0 zQz#gXe=m0SZU2f>Ar9d2{_=RT`z!m^q?{amd2F2Suhzx>a*Ce_7lrb1v9D&)WJp2g z?$7h#zpsTK0v9dcuhuM03oT#UUaSH#4aFfpTDFvg`?7AfS{$0w#Q?uQY`dwMwKn_4 z1=NJJ9F;oRXv@YaYI+!b=VP`SRFUC%?CSdh^# z=fqk?0|8OgOVdf2pDn@3N|17ntgR-mx%g<5X6vo*8M7ys9Au7}6oZbF)iWi&B)_W_ zdlQ>GFwsE1xqoC=JR2zWDDqy;XPj^}PN<7#cvA*~mJ*j(@GHcrq

    M%I{`wcVpbxj}KXu6e+~~l{ z^qg&@TL*ANH^F z!Xz?@^Ma%wC0{>JSi(M)=Rd_fygXP&dvxUcE(wZ$p_NpAfo{Q`Vm%4B5BHQA58ubz zqsQ3qjcBuP12 zY)cwgD;WFLq*3*`OiB}bBo8l-s{yGiP~`{vo3UYjxO+WxVUCYMsAT)7H z?`)GL-*vb$;s1tW`+c0!?fU(_u9fUt{YkU~cX$6*_g&T<%4_EQ`o7cmSC*eSSF1Vs z+#lG5N7zL`;3M9L`f|EcXcArjs!@jeL?PR=FP0D^(Z7E{Nh^u7_Ovz?>M8{xX{2ZErEwH6Kk=xf`(w+J*5EShOW;7u|CwEb1TKeFedb6>5ZlW8~~tuge@l-W{Gd>x$N zJ3r-SaJ?jws9GlNdnn$dsPZ$zO%3BwY;5T`VRQM69mWp|o}48zd%&P!uE6Sa+c*?euQ7 zDV#$CCrgo@Q|f3&rbKvNerH7*Y$(g}l&Dac@zDotRQz}Fdr5(=1qhRn)#>t`^jrGU z4~b4HbXc?1-O1NI6TKYgw>HDm*DssW2{V6rs=mYDa=7)9i}%*ass*d`bac5{1M9)5 zQ8C2sHN@jfxwOlsBS4II$pokM8T=k~4|2IH?d6A_yNr)Ob_jhk?EWmB~my zCMMas5h}>DeG!DK@-{2wN9gjGJtD~Lv~65_T@N}~q!}DZr|~9w5E}H4dNM*A%M&4v zeHLU>dRPyl0E)bVQH3?;i^%0_e&B9x^52HR|W-d$sQ#Vqa}!r?U1)E^O2w2>TiwN+Um1|J>< z<14?w!h1+;JZ#Tkv$&~k!9AS#o)LOGs|cuS+l4s;L?EYD7AEzATCHBQS~FUBp99^p zpFOmyh6C+y9-z@GeLHkDC~CGex*j-FhD&5hE5}|;Bq<`@S~=bF&b@ha|8MlNp0irdG^vXc}pr*l;clFu=gcGWh2z>WhVyvYCzjZ<%MhHl5w z&BBNr9!PJ%$B-QK4@5MDck;g!b|75A#opb!@R4v7lPpiFqC>X~_l#HxhRbxS1JzmY z6e%GJ&{^puW^qd)H-oTj_D<6)`b?Tx+ntl!Lg#hP8LyxeK|TZAFbo!pu0CmMhTm}f zZdZM^{RmMZygCe~W_}^KFylUwKT!m*>Ea4Z`p?R9j+M14a20N%qEJd38(BxQa zBXCt~0gU@kiODgtIk9a-#vKUX8b*Qa#Qe55HWQ<@%oo&Zrnr|(Rzh(5{F8`|f-6$8 zW8%wj=8fz*%_GZ>t>M(;@vNsCu9kr~1zzei5=0Ckbz7qT)wh6Tq!J*dvkvMwz?72A zLttjpCEA_STS0d7MZf%*u%GLcgLlxs4=Givh+5Gqte# z8_d)qAi!JF;{pK#TT|2mF^=4Ss%q98u7fkJ{2;8Ir^ps3EtDZBra_VSFaZ!BlNNuE z3B;&6yC{QF73cdTZw59Tn@Ve!+EJogl2XxTpK*e#Tuvz<=a7}4CtGlI09)GBy+Ffm zZa@Qm^<^CWw=9yj+KS?4ELLW<#Ie;`(?xX1$idbiLtXQ!gF6+Mk;Q7C`h-WRIj7)p zGN7sf=tViSt5anH?AsjoVGg3Ke z$U|j@S*tlr+c7s0L*3ye)U13Nqhljm3PrekT{cL=Qp)*7+pkV)VB$WjzoqmCmU|!i z95>KG&c^4-MVF&Lavyni#rhF3)^@5Wn-=CYVGb+nPzYY0G zrDwOkLHa2)UY=jGI6EKk;OzHS>t)FZb-ARw-+L4MtjxZTFZY2m6h2d}B5gdC`%ah} z<&p5C`bm7q^8o4+J0?MKv7-_@CPPu7cc#DrEwbIq$tJth(6?b@p5i@BWGhZ};dxk- zvL*Oq>k1i;bOy*R8yz`DsX@`$UO9X*aakY=X-n*^gQ04051qb^@6@=fzQJW`jnU0V zQP3NF>Z&eeA+)-@bDdcC#Cl|E!Sl22aZTTCHM8ojx#RH;Vn;5?qttKPKQ%p>)&GUE(mbN(E2Z{93DXnLXbXjg+*G|uMv zYZ|kPCjjaV2fe^dE+TnBGn>bNOyoXe=qa1ROHpiLWVkPh>t~|@Dr;$NHptb{GZu2V zcHQi(uj;!jySP%ic4McL*J=-oy~p1eyliJftBeS*q)G~U>mGG0>68zGZ`>$i2W67; z%xk#3tgRv_0}{3JeTaDQPG{c9e)5C;PAKjpblEaG)01T-Dbzgro=ZoJ>~6ysWk*Rs z+cIW(o=2oO$i68asGE86#KcGZpW2OH6kAyPqH0bg5$srivx^6xXc2zNk7_(&C+O zUn52JWSVOcS!F%3MESVOgH*%y5DHue8_Op;x{U5e8nLJMXmzj9QNHAnIJTK`X?w$? zD+|vM)r+IHF^Q@aC!~NZgxUUn*@GV5!U_NY9mOcFt>@swN$Ff}(3cRybiX z145i$h>~%?4HmeQ>1IhLMp<-P1K8`)nyAd>0t)3L17F-9hScO41>N}6Dg%*gWGz*z z89_@Mwz1jow^0PL=6)^&wDN<=#&9fX7IOI(s2cIo*Gts5fqm=8X%&33_ zvdVyX81;ZXyEML&6jMZSBXV*fAH(-Ms_){8v-W8rRZdMpnWL8PWLCMN;PsVh?_YaiWc8D8h_`@1xL=eq*5c4m91x~G(_9uY$%MYwj zF$)jTv4thuUA~7dS*utEXcsE-17IT2?JUjnKo0XmyGE@=^Y7&g|NQz4+QTrQ%00s{ zo%LZAbpg#Y-|6zjIZr9Q&BH!JGD`_>hPtFo!>pb*@8fxhgW0NkR)cF3YkEYVsTfBR z%nFL?xO#^Jn86-iU*vbw>9i~JkS%wXdAD<|hfz8pMZpEwmdY1jL zPS2uXY!Ex5+f#`_Uy!7{lttC)36US4cGd0T$jTXru8EZ{f;tuS!1e9$BfSDXmVJ;~ zs9#if{l{QFMNiDK;Padcd>6Z|7ny#GT0-62rG-{C(~t*4Q!r^~sK-3NSlj;dV$Q8&{iz?j zobgkkUX>kre9VXL@qRh_xf1WV?H%-*x$Q26>pC0r`heRBa$D|9nh`%I{;JyBZC%YBNlT4_;TvAfB@9OY z@+m3axXqs0g&=Xa+?VmHHfQ|<1yhgaOT5(jz$SF8aZnc~XW;L%ZvZBEG5L4T;_nf@ zU%xxCxR7vZ;7*JhC0$gg9tUD5{3IZtBSc|MnZtgp@z-1VV`C0AaKgWtf*+N(vm8{~ ztj*&Au{}X0+AA6*5@oC{$zm@M<=;zXA&G-)M_d9?8mc39h@IrPhKPlARXp%%U3c?v zfSbF#<|n~)VWj0z2jSyjslhT#ltLCLqcj^26Cg6AKreQ4lRcH}JvuWg!&l=-^8_H} z2=hL{Y@u(q(f4Of;odAO;85&LD0ImfR9JAsR)jTNns#2lZgG zh#SUR)X{?9#N8`Xzh~Ni?Cynjz#D;B?H}M;N1($y@+ux~t;_GB#+OGz1GZ62Tj#W74-n;V%#Y<;FhNTgBOYk*lh-g2oZet#aopY@18;0ajzvcz zNub3u@nQ?(PrK7z{?(KQN8$by-V=Z642s0VFKWy8(5sbwBLFyQ z@i`zk4MOeo?mfbPN1>>o_U-gh+Lrb?Na^ust>ts^ULQDKy&ip76w9ua?jxd@(y_t{ zzG=NM)$7;P3!R^tYV)oW3~gpxNP_VqZeK8$WM#(_eF^!=mZz)8k~ja-49I)r0tcf{ zg&Zc%Q(b}&}`o8cN{WC#k;sgF)}9;8@X$-VD4!|F}N*~ z_gy~5CWdy^pY!A&8leyp`>pXhmXY3KD3$zxT^E4n0hdRnhZ3SYcmn(W0+4!?tjD61 zdLuYXq0=J*_RVJ?cwm9;oB~TPH=s!@{gPdwzYcL#qG=P$sx|=g2@FMomY%D_Q|P%Z z;*?8mI0d*UFjA@Nzend@$j?8>YdH$KyKpb13!)&LMW=j{oGd}_6t5JUp&zSvNt%(Il%M#)@l5wF#_4GT7fby`{=A# zu%oTq9@Yd(LT(<(>Yt;^<>8+rag+8WYQ7Iz!@dn4Mr?c4PkvW-wD=w8*tg6qps&2k zZHBw9c39gdDV7*+WPS!IDxC0G9}ROik};cF8hKt*e}?QA|NYZ@%{Q6-)424`L#lV@ zr6FKfNzl@k-s0o8oX^rfIJqHUr}IQK{z_9XT~>DX+1kJ)e}@Hi@0`-`G~L?J$QXeL z8O@)cq{`!Z*PGp0LaG|sB9wVj>_Zon5Wt?XAk0JW zk($Yr_}te!rW(3J2UxjN)cC>aO*Pxk*W4_Vn6!S^GB=@_lUB-9Lb);wc z#pOPyzS;!;B4&H`#u7c$o?aqijf-$EXo3k0Kn;`hox(lTGX3^kntA~~IoksK9!ibn zOCv`f(b8_g=_wjnTP_tWp_SNBm3)%eJs==29+1 zB7jR@V*{|A#(t9yODOMj(v$l=2Rs`~Mbk-;L}rYhv)6Uah*g^7ze=Cke zOO{PcRQ9zkkTfl}9j`||hozV#*vM~c8C?t{V0JxF{%sUE_6M$hSmgA2g140kHcPG3 z0G!_@OhZjMl01vb6^?$jCCWMOxg@OR8LVI;`I}%`=j)58+Zr(8Z84uoDpqe0u`1 zmm|Ntt}9~kkIg&-V^61MwZybgaktq4zZVYmI z!~TY)5@)52E6Pha25YPp5m>sCR#QRl9cOKu`6d))2*jD~!sc zoL%>k8GUPNr9IGR%E0Ewz8$^#N(al`y14~i2wB~^=@8wplc9z&@c5-BLH}-GTn<@l z>*zbqOFgZw)6b1i%yi#Et&G5hL6Id#QXVO|JNR-t;x&*%T>$~>{NRbL zA&T8U9LdWM=N6-q={Ci2&6Se}=++#2R~{w zIp2kd=ymW|cVx_6k(iLC2gSkPw-@nX_!=tW_@P5$B+d=2v=25pZsdGoWyVa+Jy-AZxa>1miDu;Fa!?>Gkyvrc-Ew zF9a`48CMKzuxKzn~{j{K?Y{DaasiiJT%5G9& z(`0wpaohDn=R@MKQpxSJ;s}m~W{Q(w%iM|Tz#Q9OwV{(dq002_p(<1=-M$j#_Qxux z2s8?+!c6}G1xgr;t0EK>3}NWADNqy&9Z3U23Lyy;7*V^MNVUlT=w62)(+dG;G;fWL z&HX}D&t}u!*$FbYeh|h4II~zn|AN zr3xSJKB53m<6XUyl!J&e?&yN!ZyG*DVYG5Wk1#Pi&3hUqPl<>rp?gZ&TKyowcC>l+ z_r-sz3C=`&e!h;y423ReSWyowld#_8gF$rEDH14nebUv{9G3@Zd%b-=Rs|n@)d!Bq z>kHgG-*1sa)sFmrbyHLF^aiQ=zO%`E-OcX$ehJ$PfiZ9Y6*K0I*{y6PvFh{@(Ff6*2<@8aD9Wr;Ry=|7Vg{#>e?Gv*(w zeZHsG#s`qR@vL8vXvs9Ve8DSrN~s5{#0Ns?&ei;`-o)8Vs+1F-{4B=yz4?0xZ0zhT!}{ zBjTyDl6z^(H+t<$`}xgbKE^k&3u|NKTi;@GB1$Wh9>f>`0aDq%OiqmT$RdTfC_K) z_jMPu>ktsxy>Pt@lOEXya;yc1KAYuHE%y51tjB?z?3&L2nOzGEV$7e_*tpv|rZ`(P z)qjcksLq<}>$v&2Vd+lTtZFFVUfc$<&zD5+)~rDm`RI}_!v=6l{F3DHg6LA`ag~5N zM!bYJ5yywDmG)6eW5za=G}2-Z#oe2VW(_!zG~f@OnOzLU2?@o1X%Xh#y@I7{j4n;I z4y2$rXD4~^fTqsGsM{nP)>$WKUEuh@UWivXlV6$%kJ;v`53cK2NXRJ)EpB7W3xI4I z!7bo;MFRR=`5JL7GB|Ge8j64;OFRlSl2eJ~X)uQ(h4d@7vaoO-Iw=c<8xr%Hu-vwXHelqe^KZXhl8O@z7CF}plxtk}(!2snCWx?1y01sJA)L$bkoUXp>STj;5jkc z({5vcN->QScULUJIK{0Tnr4t>maLxvK+b(B;~t#KRtVG+;5fdT62HPvvXHhaE-yM3 zOjN+oo14!g7LekYr!qZ5FPFF%D=1U+0i?ijO@8)BL-pPnC_}~z;le}^g9=O)>yeyP zg}IISxg|MM_1Bt21w!Lb$73b%`)%q2aT?2XG1SK=#M|jxr{UwHwmGaewVvTNe)lTEY)x`fQ z+2WF2t!HP7_nDwJ_qmNujh!kB{0jmSYow;MImg5Di1j?(MoCTB&B-jlTF(-wT{^j@ zy74x)kw7l>=X+l}6#7XDT=5TIoHuYxbef1sG=osYA>@gL3i-S;{qt0R@l@`9r%M)) zsL-^&1oYLe)Tx&T###-%o-*Uj$$aV`fa4bDLFZH$5rOsayrP=Q)R16_p*$-&a#D5G z39B>o@0difCT-iqB;RYa|15f#?s`^$)HUZ}Aj@ugtH%k1i_19Evgq!GuNfLQd@$>+ zO384DaUS7N`q>dKn~#7o*1DV56NX3>VlnM;%T$+5sdAS8x%S?gB3sE%ofIoF_1rf+oTR1n=c#IZWa83ttJrp)EEh_)Njp_6z<#2OdbfMWiF=FYkc zx|dKbW3Ih%T~fZ+B*Jy)Fo$x-ImqUGf?iFlQn6G=J7^{8GQ>ne2&amEDu|Gi3x`ps z3BDSTlj0BxXE)tBC23Ji^C0ywZ|r`j1hHAK6U3Kwd04?YAo}fUkwva1Is7bfQn(0g zq`5Ho<@8RA!M0XmX&q|@o)4z3a`~XSY3*g`I%||jSgkDTrk(q`wx=V`f~vTmO;zH= ztHs|&$pBz`v+`eoAR|P>rkGMOIJwUMsIZjJf?OXjCcpLI3Jgs%X3*5DCFIxDU3#V1YDkb^W!tJ!t~N(cnnv46C90)pwfl&&6}w6qKT$5I zlIjYPn7w5hW?`=tKS{x1t``X z2M=rLipEeeCq;5_4{a>S&V#$IMk z@h@f}EWLBkGebT80IG2X=-$7Y-MKc68^WUDf*?kGDN#=ixhNZ7yHSN=72 zK}J@QK)`fK*zIthGV>ncv>`{2#oY#SRS0>@wKcT&cge`{r==k>& zo*K+@p9&7NfJ^2LMl^j$vE(c4pSeuYM&41oDy{oPniy3=_!!pxwz-gzb=Z0M=*|`R zL;}lcUP+EDiB;kfrhdk+JCX8|^Ab)Wwc;Tg&uq9#Q~fS4*C-Z`p4vmg9x-pb&*bY`z($OyYg2dT zWws+Nha=r~aS?4~YYWi_D@4(X!wvg=jxwbAF6Z0mpSX((s{w5W*z3^p+IpI`1Hnxr zg0LJ*I9e(Fs+#(xcyLb)N*Y%_YE_%)q9e678w{^&x7fnlYpTn)FKLaoP1i)_7>TpD z6C(ImYDW7?L5$*M_7a_}2-RO4`^ul}EY%GtGX?3<+84e{-IHWnxbh}C&ugi|UQ6Um zV6|$QRPB!-i33#>A1ZXmVHo7ti$zJIWzefVc_d{j>^KgjevOd`(=anRM{uo~OOn;P z6Ba787jk zmZEr_`s;69SZ=VMmMitZNtgm3;@sai-!x@`U!Yn|`L&R@#Aoq6)G6iqi<%^1tA8m{M>L)h)m#Q7d>b{E~m z4}Bx7t&;ardZZi)T@HJgEOao77b>3E&eiL~-Y;AQU ze0;*oTuubV&(l^-+;y+*TRs__yWcoWl>;H&RllL6S-sM@i6Zw~JwFA(N6EH3e<#UR z<{GT@9-n;i`-LEW{7BNUA0q^}!avgJztmI~3rqeRF;}*)&CuD#hS}WCx=9T_wCFRc z_(kC^>sPJF&`JCqOGXsIpdT&0V-{U;HnhOjj~aWmt>y0Z%=3=xee7rz9ZiKhMti5u zAk0|1M+N^S>(ceacJrS$oc?CZ4o58ru;;baD=c%jb`VR;#(W%|L=Ue_lA7NRM^D1? z9A3cW&>IOVLgymGnGT{VUE#XSt@B(Rn*9Q{Sd{tV;5OMI(E!k2)Jq+e;y0@GCRCn@u)*V5Ijc6xYoW0^+;yY))sS>I|f6_5* zQf`<_N8IVR$$FcqSCeVbYTx|PAZQHhO+qP}nwsB+Q#UW?<6JdH za@7Qi#)}RS)vtOo?>svgwyGFcEFstLBeWClT8_vsP!9r%gt6vFd2ESl7711A%lUm_ zonO}DR_4}b-(xPx;;=O$yKE=`;2n9lygT+!53!Y6wL7?`vW-@AilnP*&q~xGBQK0Lfi;_bmprMnNjepA9m>DK>cKCHE6hexmx=|w=E4#*hieCMPm*A55cpOw-j z5NstRGW4AL%2GF0IVH>au#O|en-UdH{5{hwsGG?Vs?CEoWjAbSPZsGv^J8C+`^4b! zgF)3INNFCTY;re-a&a?n)5;j12V`)!>l*l0>Rk zBtA_sWV<&*u7aWV72>DorR8;mrtt>76y@Z9EHwynC%Wbp9>78w5A9z8%H0EpaF%Rm zFgU$G@DRp84PZzo7%is-KZe9*5wZh$`Q|Ph9A1CTpc+%wkxK7z#6mXe$syA$(Jv>p zgfHz2Ct$KNPXZbvNLIXNJ%v|hbqVS3=Y$~TVZR*q@ z4Qf!Coc83+%cX;eURbe1u*t1r$RJw3X5RoWk011dSCfXhPA$@6$bWTJsNZ|Y-Yiw!tX(v4}oSCc`6f%zHdi<$R3;yzXbq=ZU>vD2%mfim!+MtIq@#Wg1_ZP ze`L*i%iI}hYiIB^>K~{$fTJmO_~Y%5F=F5_oH#?`6nrw@BK87^?IY|?0%{QMsUO=e zGQ1f}RCt1npC>l5iL_*Tl!T2?5%A(ZFs&Sf>kwQ6^>U-?IE*-N6_RSgT9sQ|Sq#SW zPR*k4opXv8MX8VJKbcnn#bXHd_h@?QH8(iuqM*59B9=iQwjl9xO?w*MvY%!@6&To6 zfMfjy0*0Q*!B)@E)Lp2NtN~D2nYLoEc6iF(c2wStX9(B>C?jJz3gYF&bbSFD?useI z_SZ1=j8dr^zVGM!oU;yp>OAAYUcyjSdi9Q5>5+M(l83QFc4S6^$Etw*gyN=+Z3>Sr zr^L2VM21Z&l!J2Vxug+WZjH_Ho}ZY)#;&bzQ~*r>2H3J!#~#Ne%{uF02VIqA^oaxQ zwmXjkdRZ{D7H;HPbCf!Ja{yM&Q0~b!@9)+BI^!J*$h0H@wpld8svpXmE)fsN6aZ_A zWZchl4g+lZ;QctgOH^ux>JMus+EkD~&;J<8ge(o`z5m9YbOAU}R@7&ZWK^CcT`QJj z;|SxUICZHY79Et>h^z3=0XUaUj8VU|G$;eeMq`beFKkx+`ItlhS+;PBtqLuj5t=U- z$ND6bP2j*ba`weSn8YwAKCfIs(!E)>N#m4ZgEBVbdW zjpTV4Rcjq|WiV7Td^Z$c73N%cD&vG8tw|C`U%~aaO(dT??_Y=@+5x8}yD1(?kmJep z$LB8WU3%wn3}$Wg!WzA129~8X!uYC_VRVZkz9?pE3NQz5q0c#Zt zLC|0o;w;&}J=}Fl8)7Q?*mt1H3Imuw7mwWg4x7(fj=df-A9`+EyM3AB#!jn5iYZry zY*6@2X{NNaY2apB95k~=qP~zkZ!#-q)$1fc?^TDZdTEN~Qi_=|skRg$4Nv1G8Eh&) zVVvzocuzXzT=tUdma{rnQE_H$WT;|NJvRlbs7|Jr;3t!na*hmW=++yO1Dx&#Jl&)@ zP^nnNB&y!TL9@l2@Y7;z=djY1X=sc9IZe@FmKAH<@)?)3A@Zbf;H?-+Msnm~KzIn5 zk5b!y!@bV|U<7onX~RN#(GH5}0&Lf@%e&jT1#)oG)%o(BL)NEb6F!|UzvnB!OIhlp z8RRMIK&gS4Ua}hb4yh;*{*JJfA+}7YZ%?PT91!v?Zy0OEQe%xO@vzsKhqi+>uwsd1 zHpsg9aB4iKygP2^CFFJLxaeA**7WTFrQB7N$2r)~fv_C6!a+JLO|*39_P7?E$_HLo zKZh4gY=joPX|3KSidq*Pl-ASz5g`-v>bfJ*3iwm0DPZ8yfY?6&$B<$FU;pZ}xmCg# zj?$DAXY#qwz2waquvNQq-lPHb&+v&-g8L#x8V4w)6EO>^iRVA?)P=8yTwx<4`CA=x zb*+TLvrlcKrJ8sRt9$qlgg>?}#qIyX%x7DE=Hivbov&w@_AX_i%TlHQaw8P!0L&OrQn^tjfA^`VgtPXo>y3F_dM^ejsjLi>^-sNtt~Q1cJuWqhU+lq3-K<3 zaFwjr9L$^emQ))`Ld)o`C$7O{WMqOGO0FQzF(@x{EX8JZ?O=ljT*;p>I|qke%O=zA zh5h$EONJ`9uIi~7%A0n&@Q0z2iUF;5;aHZVH3gju#7f#6OX-WaA12hbda$F|S{T<- z^wWp%I!%l%b|#8OrztoSdfybq?*}4Wcs~n%*qRlI6=bQigDdevt*v)Gt&P1_Ub2Yp zi=7t|>Xld;OoV>LoM)78?ZF!m4OZh+9mI&lI{z+Z9w65J8)Pg+I`t*cI(_PFK84u6 z4s?~<*h|=}a3Av+QmLe;J(Ec*9A7?WadbiePE(hk|A=G_HPco{|8C4HYGhi9_2(w* z&mWn@Ijf=*Ekjytl<|31n)yO)(30cg>+dFdpB?Y)pjokZInK2Y&K||Dk<4P(;RTMj zSe}prp(7fLoR^31ASut&7kJcl(HJ9E8x$3hNEv(UUZM`g1@+8s^urlP^Cg?93g~Cv zR7b5a4$TiWC|r))z3_Ppa@rmqT3Cuw#vhMg2o}VVO!&}&PW2xrd;x6r}l?rrlOcUW2=n19tCO@4~x8m zQVN>m2gQrrDYk0DUL@=9npJpWcAgO}$XHxET4NNm--G>X!EkTS>3(oRZWc%S;k`{# zH3G-hUb(j&Xl)+S5d&ECFt=p8S3XjETJKmhshvV?<*YGS-~90{qQtk_H$@hlw$L+N zd9c3xpYH+YUJaCa);r*{8cFy_APD~uaW)Xs940?q3!GadRpvM z$}U`-$@cyFz?wrl2Ps1@L%13Tm&+^D`{DU|t3(kkvEH41hVtZ%2H9DQ)oGVi~tMGUfqL34MFY4}!U*`OwGe#}=M3=KeZ~;H@`+Dc1 z0lwU3gxNogM!cXO9?bYGtSnsfmKA3v6*DF+k^3o{cm36`AuRfn6$jnaIx=%L71xuVgLiIu{wM&pq_hInTrG zl1~xzfF*nE5D7ys(I7Rvdu8mBtlZ+6O$aP4f9a&n)UR0y*@B5%rn#3tU7Wq$516Ru zo6T;CG@R-Q4pNC_4Y?ls)P#ki)ci&M$7u-%MdHAhNc3qw?(L*JCxLQ#`veM5qSm+S zgST=$iFi=;$441fTG!@qV^4{B4<*|pakQB&DbAsJR1p6mYyeXTYS+J9!m8a_zPOx) zdlC~N0D*M@vQPm9W;j3>fhGhp9JmKx(H&<{oGyGuo}76Bx)46tlWpypq1f4sNoIlp z&^3v30xm958|`lvW;TiVe1?+723>hog5g9Id6G*4m=kFy@eu5+RR%dbi$x?8DAQL{ z|4wmq#%sTpL2T!7%Lj(uL<4h(uj6@E^bI}N%DRj~K|W9(GhmrT4z87ait5cy#I@Hr zf(~__$MMaX#DnIbMqL`&ZBpO3hM5oFyklgagt8A*$n;wY3aCFG--WV{c(6H!3**P( zBA1D9qTS!lN5_Bo#6a943&v6^(Y22A>L*C+CT6&qlgKN$m6V{$vUcuMy|c*>Ole@! z3R*L;-V|97Kkh0ikh)p>E7KmN5{;2;TPiIjK)^oM1&!ZY*K)J+H0f=uR4U86 zKJ^1gODWStJ)zuXBGybyQ$&$=>B1KFLkK$9FWe1qC2Oc=v5`1hvo1q;J(#n=Zhw&6 zD>o)W4^%1||4^37M*2((dU@EH&~_KX?gxkj_twG;(ZZ37uF|qfeSFIazQ+kYwu@(| z#RH9>2HdW9isx#%PTq_JzIHu!xpD6>XC}9}2fmz-M>$gwPXcXSKw(HLzIT0Yk75W! zHR{L#8w9#!r>dWg*r{Y(+YziU=&R4aetVM3^7BzJYn2|a(Exx_1%zh4#AgGf3$d5+ zz_lQMuC>Fz=wnfYKDckSR<+GF#nidUGB$N9q4l(KK18-C=Mtz3kL6Fersl0!-v;t#1z_p1tKaX9+7)%)$Kxy zT2rvjldtNqJx%aTlhvuL>H6?Geau}Vj>{$+_PhT(PvoRQnM zH68V*l+XBJvr11vY+3)+`PE19UyVVtx2dlG2|X06aZuz(g#!(iSVn*5 zZwIMbunVs8J>UihV!dpe;M6p3A-7B*YB}<3(UoC55N?<4Q9kHXDEhP8M_tUbd*!IUwdu2W?p4aOJZ>y zQx`nO=DY|COuMkKm7oV1gHxL>=xZ>IZ08@LGw`#JOL4|;i^%tVFL7aw`&i%4+>kVL zx8ao1;Zo)rPw36yQJgf0`XhZSE&};pqi@2aSikS4G8V|nX*TW@^0%iw-Q*2&W!(NA(Nq-EhkiVu(XLfxjdmf=~S7j#DgYPqocyCBs}j*?Mn6A z9%393E4J--LO3FNXCncyx=P5f{mrv^=yXwb*EX+ii zGOEP2a%YB)v^cQYV0>iAl1`KgKmVnERVN>YM6TwIfHwb z#y^Jbcm!k$H`Iqu!fkThbnUfz?ocevY-=diHtG}GA0~W)+o<{Z%`_~MwEKFtu$sTabA%8U08wM5y}sNB_+G7hFyag6i5UO5;M04A*{1EeiV4O2c}-D{@PxG zB@Cw95~?zwJ-l!8%qJ5X@znd4Z<4-QuC}EM&*iDUa)}cSpoE_pyB`CrRrxr?3J2U!$&3yRR*-Qe!OuP}l&(tFf%m zbF9|nt%xY#sl^=5DcE2nr7SFHOJ14mPwCD1Yg&ectNZ#yC)cF1oG2%9r+))9(U*rS z+O9yB10pEamd?S(3tk8%doEbiF`p=7lSlDCS2i?^NEkLY7n#|$BH~-FY4sr^c}N;G z=e!e-EdizEZ^$F=T7ple(k5jNm`7KUMlGW2NVwtKyg~WbH*OQvD|-|+AF!kh0}o6k z+_Z12Q!s@ikEaVmHTU-y)ODjSdfCX@&9{75^@S3O@9x@}&t=#sV3hzk!o2LZ&?Z2` zYMZ$9_&(^nBnG}tD*t+%xh2s&#dfJ~iXfqI0XP49YgOign%u-lb99jkSbN-o#3EA@ z7BkpE4XHHj31YOlN)Eb4pChlsjSmjMf-`cJEmCZ-BuYo=I(h9GYOybt@oIv!UGx$^ zR`Y@r(fq1yIC>1e=T($7yo*@&!Fd8PJ(|=EZYw$O9mO)=2YRK=W~C$G_b`#`#!(gU0&tOU~qq8*~1L; z&WT<&0BUSf;Kz6eTJN*q8p3nAKZcnu+(78%4VkBnO zSHdayLo=cPfuL-|2L>`ime2pU6&d`=a!?<8322@lyB-`n5}3D`vceT5#5_$EH#Z!Z zSCJDP{1TpgIocpx%~)?v@$yWrfzF)b`LXPr1n?I$ztITB26s<&aI6NG0iS4ag*&R$ z@#`i#eqFiY(~9H)KfOr!3^+BgywV%fyFH! z+u}n%1J!{=O&)u*3=}~5g^{tdTJ;ATTwBjS{(I2O`}`^7-Q4a`%h8u%FQLKmX*+P} zuddh#EXi%Yj98tJukYvkvtNk&7XN=0MQs1)qKJu};lJq{skj4nxZc&e+lCK>xNZ1+ zd43WV3w^tu@{O5n%(WaTx_YmFeSOKo>x@UmN(qeoYGe&2iG&pA$P^mVKbgaiS7)zx zj~g266f^U`GXFR~UWs-BQVvka)yKo2JfUn}U)djb)WL4(f~QG5Jinlm>J2Yh3-{j; zuq7&P@Y#tX1XbugpwHCXuTRH0O(AHUJvDa@_nW*s-+hv^-ai#A@_|)gxy)sP)2|_c z!s|#{ulLH9XGWpY=~qyNBX<|-GwoMb(N`M`Hn47Gbt`W`nJ z1i}v}{~kj@G}1rYwhlVZ?EfVXE#|nQjLf295wT}1`BRo|Jo6>~#c@r3;|eD^{BKm$ z)M%c&H?DI9zt6h7uW*|Vf-oU*Nwk(U3N-rK5QR}$xOg?_~-~0!`kc6nP-Tw zYh$TDOF%j`5Y!T#XN0N5?x~}Vlx2w+_j6TWXza}{TQK1R%yDMe| z{Mlc2I^67F)9n-J*_;o_q>d~Vja~^^!fakRe>1n1Z(4C+-j}aXxJ6y;7tB`$p|EHV zr@AGFxNq+qGqvC2H^mS+1{Z0ND$3%C!^~*D8M8<+{e0kzNv&R?(BBUz0GtuA$p8ts z5{TbVK{?OY{hLXp6o;*=1xNH7pt~QwH_}XRPR|an)QDXHh^c$P{M+=}LjTa59sma` zgCr00J&hOXm|zc;7?ReSrdC`zR|sDAud)AXBj)7sQNj}YJ`6o$R6~cOjezh>a|#iM zqACd|O8O5f$2C7u^-qp?=2UCRdivGsyQLtUw4idKo04i!cd9 ziqv@{ew~2$2TOs-Im9v<3a_gD5Vi0Q9OX2w-3PRYq28lWh@i@ca{VDUB-2kU zA^SdQi(fr!wB{Va4re}6NY&dU1AHVJOS#U~eam_S*UL}Fq@YH3>{zC`Tj)9!-jCwD zWZ}$!^M|aYv&K<+kHSL6rvk6HZX3rb_1p%fOAmk`=CQcTI{JWMJ;~rHf)7Kr3mZ zA3{Jgxu?*Q6%gDoGr*7iA>B1IfH(CZxZAMtK)7qJ+OAdS5c{2^?hyNv9MEC7F`mEy zW@*Cy=ad7=t#K~{fIHj;$Mg#3u`&;~yKP16FaYy_Ek`s^uJm=ovRCcJ3`G{HdTE3c zU$luPI=g|w9QOaL_()*-I-uWaQXk}YQxO}GI|B*KgZ`TI0Q2-wpZbugk_R`sOB445 z3i=lN82bO+O_CdFx&z!ArzUk}%<37h$uv9NQY|e?)xO6+97&k=5C`oU&bbis-dcbA zzGD!}x&Vz*-w5*=5pu7>-1i0!!;a)v-z2v5`D+yca@Vkb5jR0v>2Ua^Ew@YO)u~+o zPWX=rD4Qljmr!QpUO8*lIN)k9wPt&+0oc7zhZ0ER=7Ak`}n5^o~_ ze5I<>&`3*YEPzcHl04<7llV7Ki7dVd*+obH?6s6Xp$Zgw>oJ+HP_DeyHJ|1wx;v2^ zZSfdY!r}(+VkxcC$CVNFRw{fkE>G?!L!a6^>)u~nst;o5(NC!p<_F0U-hw4H)Xj@v zN}oN=H|p%<9r?I&H&}!B!u0WL?9qAm1wOmKz?YGyp;=q=l9fkUI};2RcJy$z7)-#2 zQ&w)L;zT0|TpfViT{EE4STTQi^sMgt``~1Wd^ObuuN~U>OCw}L$lhrQcetsZ8^{`l zdZHs+xh1b?RX?ATJoR`f6P36wi(JhEzzTk;uP%qmN2~MMXVC8__goeHu~6tpR4o=x z0@1(ZkZ`47$-M~%7>3N^D5uJ_z_!o=WdYrH_7BIAQw~ZV(#7ixBAy)9kwUroW}Oj5 z+UqA1>>|=BR9E+>+|Vto5WXtjq>e|ST?MbEQa--FiMF{48ca;vY?{bDn(#WbADF6} zZH6pUiMF|RWg2y1s^t}@L4soiTz4wNDx;aAUWucJYZjFCFq8vS3z$vW@^Xh<1v?i` z$LliT`~D`_1ps1JtP$u_ThqON&k018ZXY>N*V6hZf?NHXVi4h&G&c;F8X8pt_Db%x%V4y{OqYXEZ_qw?VQy+~mk| z{4h0^PO>=2!b!t@nZor_GX8THx<=M2b1-_Pxg?PFUXvNL6WNhVLf^~vpsb*p!(rh_ z!*q#4XG>X5{(Lz=N>&s7*lNn+*;s^9-JBDmA@ta>aT$&O2P{c0#COrI!YumweY&rt z(i48Da6X+>IITL_zFP#iO$;y)vLYR|&7v-+;N7FMzA=718jfBa@L=f!MS9*vs`;dy zvH+jd^aqeYw86}lM7yPAjWD`*KI+4w-B#|a-6WfIVqR0!e#yFj1RIc1IlAfb&VfIO z$$m>eNC_L1UGgYeL9eww?|nuCKi_1jD?yB-Wwaa)s3p4c(ys})ZIc{D5tW^?m`TJG z0!lz{O>qihNyRHg+b-W6{jm#3NpJ$Q`x(ntss(Lh_nSi0Wo}PI)TMt zs05fx_vGJQ=RzP(T~Jj+r{?;|MTI+eqFX`izFFC0DW0D1z6UqebK9T(^6lr($(vnH zy}J7bL)H5J4eqBC7hcrTVtp*p`->--J|NLeT4j4GPMT$h%0COsU*~%&R~8xf!w!9F zANLk1o+C#^L(#-|8ZJ-hQ!FKX3TUyalVv&}rz-AbH?6ge5AACPlmEI~+T3+_@@dmnJ9{fb!5F)1_bZqZF=MDkwFerd%kgi3 zn`~pYxyc$1Kl|9hmtA5%z~HYk+o_zcZcD;t)PU_xjG$^Ev-t&F3?vx|p$a_@esGwo zXgg(s=8Z~}0X8Dmgm_sWeR<{*--I7sC5X!v6Ypo(Sm=AOdL>8700ewluRT2n8E!>y zl;e*Ky!OltC!#6uC`JTp;X`g7tqiwYpM7XyD_c|bBIRQ*#=mYm(W^eYP`_S3?k~J< zxQy5TsGC?=S^gK9r0ijDf=?%BXsP6EgHI=m&p=O)PbX^O=;Vyg@f)4|JGFK;ar_;v z4V+DcO^ob}e{YvIu{Cox$7f_@{!dxlvc`t(rYMrniyCu$+9APouksGikUw1l4t@lz z6rk%W6?zdO0W2dXCARF!c9^%9EDOi;+`f4BB&j+-ChEAMn~TdThstk*6_Vt+87qO@ zI#J?DwNHdTdv{FW;N1`zL_y-cXagKNZE0!{#A+jgNc2l02>0q&CA7J4g-nvqwfMZd z)l5Gi%*T#pe>xxsB1FC5VLjnb;jE8fN8zz}ef3669}sdf+kSz6=&(dRii7GCJsRQ> zVhG~sxTL+XgRjG=!{pLaq(%U$7^(EOR%`ZY;_6jA@8WQYW>R+wg3V*(no}qVnRv!9(q|1&=Pe}!BWa&ZptWz+A7a;()j1*~4aWGj zEL|-DT6i^NVmayp6V=c|0*>dZK$K)5y!zzCW1tO0MWk)8~IaR)n6K}kfPetR+QfbBwfNp8X@-rG!)$2~(_#NMaWkNS9^*)B41 zi6gUme2r^hzFXLrD38FHODg80nv(_t8_$JJEYl5SImFPtoQdg%VWz`zs2iuD;A3vN zgs_;nPa00B;fu*3DL`Hm z2_eT%R64=GwEi&!Nbtb8a0x?GM%RLtJB2;TIKlOilw5yF#IfOUA5d&^9jhb7|M8{= z96M4$aN$yJVC zJfQ>aaC-njUs!r-vZ7nu9gjqi&rHBio55%MbklgCsFB3k&L>Bij_)o#y|rqqR(Wb3 zo7rTI$Q>P7-&eo;qhb^TiY^?Ut#bREY-+}s0xT6Y-JBUJ9GMcinDTh80{t9va-)n)ThS|VIk)T3%bCx<;d2l`CGkpS6VrDlBZ3+0OS6~`@-r@K_MOjN=8W%pl{(v zJTAGY_Jz%XH4CJ5F~?R%7P%C+GC>$hpNP90x+ccY;v{{)N4JfK@aSGR7{ndMcgIHw z4X+jPO?#v)basghPFu|0l`~{?Eu}BTE}bf#D-oqZU@f6vW?q#e?`IMnWD*&ziv}AN zPCIB5r8M(<2rgOBb#y|y!}W8Luh)_`MQ|_9p8q>i@v!!0l%34puuQTTZztzi=~rDJ z{kWsR7F^O>GZ-f-5EhjKERRK!Ad8s7JnInNXR;Q1E2u7OGNGv94mYT7^_QfTVAtTs zC%53IE}u09n8yaB&|6Jw8ZrKM3eg`$bH9D~NINR5He384b6#3dO1uEYiV;Rv_ou?B z6_FraAAi3n?a=X6Ls4rw_H-dATb5y{@%=zu&002G@wOKGRRZ%{#scb2RYmQaHV!Mk za-aKADXMU-o7^4MN3F6QEffFz-MLW|Ucd?wnhF{6L77+bt3SqAIEDdg`6upzhd@aX ztwII^$P=x45)OX6D)q10ExQC~)lic1@hWsrof?k!& zV!vu#7`uhu@g8gtT}Bw2^|Mj#^xM8n0ghu%uV-4UI^9=7ncGXWf#2#V;Ocu(JL_d2 zqR$g;G$MyYjH+9D0u4Sx`E@+N+FeZ+agapOa)A1Ldc%3}%GWLJbbRN?vf}#&LrI@s zQwQtEYkdR-mVU!a=e%Xcf^LQDMV5ui`c|dd0PT zgv~!HY~?mhLTH>SS;}K?v*Jz`ZPZxS&6fgQA6lq!8_yy8%J6_5&MxOEUyD^?93yLZkQuInKbOaqeb})=ECik}rlR zQklfSndbZiVj!#%pi)lQmpxANSx1)vKa-hn5{V_B1?)xgs78wWiuCB%wzKNPMM_e% z?V1hK1u`%3bs4L5^ZKs&UYvYc?M2jVbVWDZX1mc!B@mZRX4Ne)Wn7AA6*dBb+b{E{ zY~^S*HS-+NjaWhv&Zn2`qesU8-J=GcrZrtX>v25KkD{T9qkuZ*WLS$sV!f5w{-s+Y{nY94kczT6UkuB zwX~;EJ@MpE*dGbLML;%pYPO<-wi&NMM?|qNdmL9yT1_;jcZ#4zbGHU!b6Xss5G)HPmrwoYmX; zOk8y-UGoUU55Tn|ik!VUOH1+ck>M4`-R=5(yx<^w-`zula9fYHf!an{2Dw$kEX-yb z5*#^-{j2jGNqc_z($LtMLiGS{8@bNvYR6d`YX2g;l9Sf^kAEjt_Wv{H%+AjAUzqbW z&bTdg$JKS+Dc&jOl_FpOVp|%ZW7h6gAa)@5)FD0H|JcUE68}~rsn~QySrYZTuh*(3 zph!5RJT9HJC2@Xz+P^*DE@r`(d1MAbUO!%~g2U>SC-F`{B%At0QVgD)ZNx3=edj0V zq})gF;>|LMx>wT0nOV_%qHg21tQ;Z2xGPPZy?1$q(jmh(?adRvK2pYM=Jrzl*-P-K zxvABUq3|mSBwWTr+k^GTeLT?X`+_Vj_}XU9Zc(z2ogV5r&bu!ZRCUfv0!3E>pig2f z^BY=x9?$awD<01Us9l}Eyqf_QAVpG4dP}fhxjoR90+`DnsCw@UtoKkv@azkd&tk^N zV;>Eq03hAX1J~`yFd&|z8a;;8*QS4^2QA_N`x?X#WCYCf_SI7hpH89~Mj(x63p;JJ zH1YH~M))+Y?O~v%fF2Bm-TJ+V8Xp3OgNg^|G)NA;z=B=q$pxpdG2Xd0Po9*{;Ba5M z2a~=>f~=wly^XX0gTJW6IL(s?_*E!O6sNg!X_|2|JMp z300j$<=644=KF5m$Pryx%l-mnr){nb(9@bfxpGJro16Y#+f{vYdh)*2XsL%PeVZ2Z z=!=_n6(RLF+)DsjpqT}u!MC_ET3ZkO8T`68hJsDdXGIw;Y1S}l2P)aHrm#Hwv;hNY z8jJGSy@sVnaJ)0`dZWbxu1W(&3sT2R|7wugvS-)9IDb#twxB9wi=nn=;zF|JW$eVC zfSTI3L;?C3P|FB8ZH=3Ok=aKhO;b;)oHRBv@o0X^r3maKFxscWVt<4Yks+Ei7dg1w zW)P54fR-Y0YAFt561;DzPR?i-jJGqLcYUYL(_FjgU@AriEx9!Qa%di~$bd0=X1yC# zAP2$NOQ(ih`qyBIq$we6JEdMWDJw1Q-a8Tkb*nf705FRTFcR zVJ#|{dkdB=EJRas=J9DS{tz)_+fp`O81oR?neMzQYiBIc znf4njz(7iw2RI?bv&57RmS4m!%uFL97EQjdB9ho&KvS zT!UrkW`=kFEbxpmIUkzYf*{V3v}Sp_G;UQWe<7sC^zJ{StH4DH7h?T1XEv_{q5!h_ z=tDCQaZ;Eixg>0L^^NKGZ&?uPG)BEMA-4M>cf1D@xmv@VY7 z`6tb>6m#&$03F0&DyOG^X&8EY$F~;La}|A=WaUmk6wi%+KxbsJZfl>ZdUT>1hDW}6 zuWLt$@7>TB+Ym_L;-bx<9qPxlVEzm_azkqoI>0HI%93N+6-ahA8b3cb%h*1LTC5n} z^Ty8sCb6js8sD!$#dmO5^~)FA>OkHjR1ty5x!zvZEcY*N7yjMMap~Zh(@HtewCf4` zbRy;o0uFfrUS0$Xf7B_v-CUGeAFR@M90*>AYVc@G;v#<~EU`(eac7L;9Wn7>Af}BU z3wH0qx5&LbgoBab2eETWQV!eY&!`*8*NaP%maPg=M^C7{_k3`Nt7Hz$GY4ZlFoH40 z%sglwY>y{AfOl8=Oc~D>hxmQ?s+j)$(y4DAoRg0OV)R9EpzAXF4>j9Z^sHJC#U`Ku zJUDe!gCRCn5nEKw-hKQAMky0^;k4?=G5Shjjz#Vg1n0GFbht&N(=NKQD+?Vcat+M_ zr4H7Oz)=pCN3>_JoA*spNHC$df%h!^cKyblIwH_YTO4*3Ib+=~+2!DD92=TwgeZJ$ zPRteF*bWa%5=0p>)gbykKV=s;(E)c`4<72@SbmOZDc<1IxY&7wa8wc#E2=RLVRaZ} z5<3#!(5wmZ3ItNN$qNyvq%K5xKG4(_ABDLiA&GtAr7pI0dDQUD?^+0t+eSYQ{vhGT ztA2SzxQ0^y4+ZRB%nn1?vw_}=BkBVDG=r;BCxLX`S=7rz@z;cla~#P~I6IDG+FiXt zQ7q`t3dJ)GIG|-);Np!jR}Q_Kf&5h!x4b!lWMm);d2|ut2OdmeNB9Sx_sabN9I(YO zA;~JfieEFoV0*K6a7%vOC}^G>R@(B8Aa*>fp-%uHZaRY^e7r&XP-uzB3Hrv7W3w+K zZFI5`v_n3&R{u-9QPkd|P4cXkYZ1~gu+vzvKnkIxT06wB3`i~MK@sd6Zc}ch^WQ6W z+P`yf)P~04w%lKbe}uCQwpl;g%#u&zC5Dw0OgUcSXAx-1e5v_}mUD*R5;(>FuS&Ngf-@t*OIE!v)EXu3Q{=`CqfZiwqO>4##hv3-xX?M*{Fc4ou%7`AH zDte)pS+WWu7;#oxZZ`MBo+5C7Jw!jF0&f};y0B={##Bif#E&-Uoim&UE~^EJqCiBx z8ZV)@)?&JNeVK&$`hmYUlq z=kx|R8?{cI;chw&y2ndB_JaCyW--NTDR1_S*0iuu@+b^h;M(DLXIL}pAw)7tyQN3M zC9N84Fwh1VuQ%%~$oeQDV9r_EF`!YSE23`siuyb^M*sk$T9>5EvD%JSEgSBZ0&~9e z?5cu@Rueb&*N)>J)X9SWur{txy8^vxk6xg>;^Xx;QcuxOOb)t&=~nc+wXjEQR2MV; zC2X_k-*jn?rS{ZM$S}yqEGw&Qiz$qa_JxN6ElB1n3!@NU9UYt5{-vfK$y*9v< zZy%5)4WjMH0E=s33}5KUJPqyu(c`yUy0f9rN8@yEa$^GJ5Bqponm&w=yMf5piNX=q z@I&Fs@TP(48cJ7k$obREBv7TC&UbhMi-4>yD{jFaGdM%fpJimW0g_`-22<_F6rU!0 zK~X}lo|HYV+QURVEA(j^$Uku5^*W7u57GBe5Ifhl@aEJ18mp5m-PREo{xnw~IN8Zq zA1Ugi*7flqSAzOYniRMr6C8r_xGPvY9ftu%>Yr;CK?n;n}}4y^r@IT+;*_TT@$zrV&RjB4xd*h5b)^01D$PcoeX?9pLDdL1`WWA7#yzCwToNHc`*7lI1%wsdYB8EI6HQNA2d36@ zad)>Ro! zc6BqrAIZ~=jSq7>hsjE8OGGt?NNN~PR}W(aV>k=^No0j^^B%dJo%8+Ean1-M+U@d8 z6wbC3d*{s;b{eX^(LS^R$iq+zJUeC<_d7Oim==FF!-ds`YUA8vY;Vh-j0(pI$*8MC zH1=?~kA^z!nnJ&UAf~tX_-bmz328BL~Jhd5bk$Wgee5B_0n{F4jxQ{jFxe zDcQ@lD6%fmFJe>vc9~)vnOS!~c@{V-qkUsqaotb-8=Hgoq92bL6hL1D1Md?_C3`AUHBbXhwc0qgQ}1;^ zkkV?raF7tJbHt@8LyEH@)u5QK*7K04EEhC3vQd^09!cZ*8JzY~q_LS5VIyS=9>AIee(*d05*=a}w&;8keM+{{TTb8*^xc*9}_5ZnkqHQmb8O zhdbW$9`^lPwMZe>XI@DV*0B7fS{ndH`!BmArXrI(*)ZlkZYn<}{HOyBrqr+P<1-W? zLS+i2(gp2fx6bgHR^r&(9y=FjCtL>=M#2oxo!v7isdAb}rpajMyLRa74!CV<3tl^& zd}#K6Zj5|rYJg>*uI#_8;GP;Xy6bdzNx#8q`Y<~GtNP}k|6k0-{}(gC!1BLbF!)eT z&WuMgRi8ME)Sz$#(CvBnMne5%1>`rA{O#PVNSK~f3 zx4_po*p2?^NbR3n{T@1~YizrhviBB+G+mtCh(vdg^w1b@yUW9Q9jCvW8x5 z>Muqt=aCaq3P$;(k7A>PhA7-4UNzyAS1Y1^KYdPo85eWAEm0!B6u+h)km&hv+Q}Cp zSfukWN`Q=-+*GOTXc2x}mypdOE4`z{1?eTi_3$?25f81Etuf${kwIX?NG4MXVIXj1 zd0#&`>M~`7E1(zu_=)(6?B;1(8VwQ2Y?T_zUWC;|7X2t7b?hNamz-JqU5%Br z#44wx02&gOD>=i^kf6?qB%|c1v6w-_H?h{o<{E-6cl9CyRewO`a%26c8n7Z*?T=)A zT65>c**Lz$!W20wBLI>hu3oLtJMXW zZNe9G-}wK-*f|6V(uC`}ZQHhO+qR}{d)l^b+qP}nw(UN1c6af|jkBr9sBK17WPUFm zGy-vIf*p4dcOeO6lf1*(k~$=bFEOEh`Ifn|tCPnSSyLetS?n*EHpTet2fJbC%Ph-F_K*78JlMp3IvUVyr_ZC&jsLtfIL|2f7UmhiyqFVN6+yKy znB=wQ!|*}ykK(RsM8Rf>rFF*=>d0KmEJ4X*cP}eNUhzkwVYUXzEK}S&bpit98idLi zm5sHJ3MnJg1x|+Pe?&PB35SvEk@SGL3J%5n7)r}kyE`r6H7P)`QkHxyuYH&(NLMCuTzqsP{sk{_@rxuawzw|TQSEEAf4%V5>0<-%Wh$GN!=2@-JcF=~Hrc>2h^@3b z7i?*Qi0VbX(h+om>E;|*)#GuFtiZi`f{tz|cVVe!<@dTBX6EAD95OA~`4m_=va7o- z{KZRAdv3_TD}=e?a|xnuFCS-KB{x(jsmrP9jWJ|h;v-&0`g)ot+D4O9ZcRzN<^Co~ z>dU%1v~AWnsTJ5)c&iks1j+^+z==&yAU^~nYtlJf&P^Qqm+&2D-koHZo?Rppjf`Nae^nc#u@U2wtb zS_{~cW40d+Nc)e#>F|7yXJd4qYbn`l|!+`NhhnGs6% zD7|p{)b>`LFEz2&6L;NL{S^Ae#2^+E(8?^{j<4?}dowZ-bBhR9O|X$~&vElI1=XkN zFPZwCwGOpX`Img|-QlEMj_{w;mErbRq?GZ^bhjO?JGh|rRs1Q%^jIv5cUT-d-Ku+> z*$YR!_D+$wr^N@tH9H#Sa%`RB`%_9u0tL5eqd*nqt3`aFWd^|&!54|wC8}M2pzB?H z9$6XLUDzZzXUcN6>z(xs^D*OJ1r)lOPoO?ATe*YWeP)eQ517Id8CW!gHCoWTlg-?`SyZ=<}wL>u?piJ=`6BCH1-4|8H|4GgTFsJ`#yXdzslcdGt_D*J9u}w;zAz9SkwuJqp$Z^{ zH(abLI+O~I>3Q37zbQLY-`XA@#aP_2Q?yXy%YzOt=1C0m@Zc%hv> zfe4Y}HfiBwf1`YF&RKQ8IFqQKgw91qpaO{#ZuK2OsJLl)0MsS{UMnY)2Wc->z&9)_ zrP8n=VI?riPQZnwd-f0Z4RJM>nxNVV{@E_GTuZ)%Q2_ znD-(vz(+(jS3}ne&OM2bV>}ncyz4VoFiedmoIDvjk{OTx1|~&$ETzfpniRYTG9JHr z>S}v<>dRCj!7GSsl;MN%031UJ)8&vu!5g+a(iygAl+*O%Jf8$%`NGBp3g&m=wQ-Z2~2OY}s#vF1DgerTS5bbklNpR%Qm2%W5 zLV`t7$u9Y0QrF*ldqrUG@^mL?XXS2pd)?TVE-NK*3^~GL- zYe3CqWt=hbog|maQl9yC%}D%Qh#8GGQ?zxkTuND#5y@g>Zq=&Gk>Vl+L}td1qfI~oq= z8rUqao18`K*_xbx{TCrZy)su$1!@cTkSJ8%JQ`kkKXtNm_@9AKW*S11|1_?$@#ML` z{XtCv{Uh+vOaFvDf7583RXI7MhBN8?JrXQ~li~7{OqX}<=#Z~~JIh3N?9c1*=M9ML zR0dt{Se3`WiGcKD3$H5f%x%|>HMo3qR7l*B8j&lbI^Y&wirg;IQ?|WsY+4<^7dZ1P zsGq#XOz?b+`y^lk{&ZAXEdJ0KW$29b{HX`2Z|5_(%hZ_OqRlfQ{xk;PZy@F7>(o}# z^@HTblY{y=m|FK$m^e^Dd#NLvfHYeI#6JL5bMEu!Y3na=z%7r@f1N}b|E~vc76vAc z|B}6maV8VC+WyI2X@_k}g>eLLb0xg0H@I#Uj$`AkB&*wwEeXH;U<8moB#M@&dlwe0 zl00GT1eK|~f0icy@Nf6}emn|qrn+e2a(KP}Y?90Jm!W?nvG6j}^SzN)(eM5~KE!4! zp(Q<3D&742)ZY3QcCTDtFVE26ZPj7+P?_{l7T-F@07FrZeWhme1qwgtwe2t0}@afG*5{h5fd{hy31F-bMuFOhLE7znH=$bm^{xp`l8bpYLH<_ z4G|m9q)QZkZ8>uIN8v!(OFKp=Mipf7A+ay;wUs`*%NqwuiZEQnuQlg{4kQ4nuJz-X zItQaVig#_IYTyMme~G}dTcf}*r9p}LizpmMC6*wb$93n%eL)wXj zQkhS)>nYo5D8!>WJBU&&BC~|wzh_o6ArX3`0C9z--@Og-Z6Fu)&q2~bdjys2*eFFJ zas`1Tx?v_(5msqB2)0I4R#Y`=u$paQbB3ZZUoq4ckjuXnM4~kAwQWZN=$ySoPTOdN zQC&38HdN}E8iG-s zNu6U3kr`@ShNSb)B!GohorOR~1hy_E0z^P~+;|%~V3b91B;GSUtvi$*-$yY)*2MLv zN-zaH4!4U*67m;yRYX3CPqc5{G;A7KSWjJC`(>U&a)_;wN|!yT`;yI4mu7Dam23M# z`_g#9EJVlG2zhT$jmG3_*i;V-L9Y0eEPPVtYbqkL-ZgMGRAKT*Ij96Np*vE|a$c>K zjz-tjDkgCl=_zu{IFNpzUq1MKcmrj1B&W6p{Wk2KOUD79sNI5G+LdJN*o7)mU|?D$ z?0zD!PF{y>$1x}wRQ2Fr4(ze4ZE^++?>)Ou{7#B(a~BL0L+5Y4CeCfXvJ)YV2d$e0 zRtt2xhHkh-;{=j-?SgKNe63@Co!!~0_VU3FKRUP?j5zYL$TJ*0ud_4%TA^7pza%NkQR5^V`<*JMx%{`%yVZh#xK{yf+#D=-@-!)P!d zb|1nO++Nd&reHP+w9#L$EFC0wzlv1475;0(SmFFHKsdEjbbh2TUSFe zG|W!|GQEOYeJEv=og9j`PD768w4lh;rK4IIh|YkV`%^p21ZajgzszA^{<6o#ThXeMjkMBpC2^PGRIG{G4)mYBFyn_YAxE!&j zkgeH^K?*BF*#*+;zw_U3^Nv9Ub+A#VukDdZE3Wr5E~UkjgboX}>>qdj`0o1d!odNG+WhT;%h31AAN1jFT<#TZ&6AH9EP9@ zGt#MZjR&JVl7tQFxNL6yCxG>pq)j1*w6Tq_~ikN+cQp!dHr-Kg3g&+ zDh98vUIz0orAieks=@IrZ)+oPvPfQjEzn6I!m-0!&X#s)oqW^yO!88&ohK#A;5sXQ z#Cgbz<>LjQn}5E-&zFn|^p~*(JmAca-3{{2Qt0XoM*R~K!m;a7NQ1TRCM_IZI`{Th z-aaL90CseufEOk_O#dn!zBz7*Be(M(m5aQbZ_=n(e~T*0OFyVXuW!1`E#T&Jl>Fi+ zTSAg+NoP8ZY(tb_6sc?{m-Mk*P|lZNOauPRO#CLsXzmwN+TdzRIAR&Vs?!?xek25w z{7yxzUy;OvbF*vfL*#7sAq!5a^8HXB3Ft8`4H3K_b5x9pA*>1$x79`oP3o*hJ*eq(+Wesx(eCdJ4Xnjcre)!0P=_GgB)8EW{?G?xL$#$N!Q&K&a^}f9)?a%(}KD2x(`|KrA+NB>B$b~aqjyR|cQ`G>F9;*>rw0;K^y zEoW#aB@7yP4PvJICn4`=!F#j7aEp#gklugmPw1qtd;>V@p&xl0m@zra8SLsw18jr~ zWQXp;Px!X6#c$I}f6+;T9g!Y%>$eEssxw@DiPw};+LFOHxGoD-OOjadKshj}A~hu> z9&(-8j?8(?->T$rrd$MHm%4OZ4mdD-OqcUf6%r1wIfk%Pd}X0{mX!c($mp=rls^Zb zM(pH5y)D6+`7>Oq&`^@|AvZzLOm=aG2m={5Xuo9M0N5MW-Hy{z}_`?evdf z1L>lR3$~MzE(5`$pr16*Jfe<(oevpUn)$g~r)>y19j|&;X$7F}yBNVkV*CW)2IK}kWVvoT9%qD=V_eOr!$ik-X(f0E zGG^Rcg_OPJyL_PeedqHy!~0-SIaGD>lEBt?nmd1<-lxyiy%)&l>W5k4@a=DS>@Vc#rAhASp^j>zShf!>-JYB6Jn>=*wsN=S~8OgiU zl{@t>IfTYhuu7!FxU_uRf8R);EA8F3zy-~%%eOP3&+=|lt&WaXyD{g#nZ1PLyQWO&6a6g@Xo6qC|VaM$2nGES? zDQqf=G!6vF{lTY(Xsi!-X==0%pe8!|q(%4W_nCKHb4kF)(4Z*C0?a-Jb0F$Doz<*O zWMUWT1T2!*n&El78jVEwUEhcqSr0aNilAF`1T@Ixs#9NuYaLW4m3#{)tb#`L)mn#j ze`ERkZTqzIRo=SzzDRAP3r2|)TB?Mxq`uj1Q5=L{Z&Q}BzvgONoB`L)6ZG&QZ=olN z5QN25%$gX!^JJASy2_D$CVM(V=JA(nhq5aLDs7o=Wj$v66l(GrOH@&+bu!yI%(cbq zUFPWw*(^+e8^!iW-wkO2W4L`QjY!wr(o!@luc(aIKhx3F7H_G;9QLq=nY$=FX>U~b z10+Qcz0uY+JDrHB###hyCg}&fEzs6;dhyaqLh+{`7P(!$zyJ@)Bc)vcf7~Xz-H*!1zk2q-B@YO*`qCeqt~20Lc6RK)LmD6f)1H-W5Q^f)1d| zG9_KP9q<-SXF6wVs19MP+Iz54B4LAVYmr`fVM9U>QX-M1oa=^07?z={Zehwf3e2yw zo2!Ywdl>M}^D|`E!e!|1cD6H8L%r$7a&%v{?E3~sWOTX6uT9g<`rpcVLHZ{HZ@aO%( zXpD~8Ap}_22fxso$_^;sv^X44$LPndxT5DpMT(_`a#C`PlYU9n*9OG#p_RaLo^YMm zr5!73WS}MPOD=DJ>WcIavD*e~nEw^}U81doXC5Hx)Me_Loq);G3B!0qL8af*JEBrB=cUCurb0Qdne!&-vsqa+Q{n#q?V>yYM;@&v453xB9?5!?#8$s zTwNb&%q}uIC8)1Tix;Up-!#K)9fZnA?HJPEA%p$>l11vDLUrI6*x0z z=v3EX@GtBGh6&E@c&eFRRkPjffbKoIAUk$)EDIMU{f)FJv)e_a0iW8jweDvJ&+RJI zIqF}JtYt5Dg5N2gKIJgK2tD|-&2gWeGiJ3)>&+UndCaRYrZ!0^-^D|S=RU*-@lqVO zB@TLM?e=;grMyd-RJ?n;t-s#ixn{)a!9=_>qdBcLodJD)vxaFsA@=qxDKmKNe>;c9 z{m=s)vKbV~nhhNjF^bOOoESGv^HDR+*Ryn~e4{ITl!wxx6a&v2Vm4kWbxZ4_J(H+j zZTQ->>5|Z83Du;=4a5bV&cXihU6Qz!jO1>32{xnYt2Qk5?cSRGPi62b?D&?ovD2&| zG*p=Ul>yRS^>N3~&plr2Dksg|?eYD<@BK?v`d{M!CZ_+RFvZNm{GTq^W*up#?GD(T zPxZ1+V7&rmsmFE+(2sqi zjhGONGZU0tvQnG*((%OwIs$q3eA1Vmt5O67d6O+(v+BLq7l*Iksj)%eHwV5&it)3O zzi`(ji3*a+)YzEx1)<{$rYl}V(w~GQP59_;$<;Uz`XsyGr2nS+{rhENMk>+)cW|iH zL9mT~Wi(OP-rdQYAX#(y6^6PdCZ<&Z)hUP7HQ#;Q<(=c!sqVfmUo_h*If;prJ?UZGUaIoLd4U27RKHziM&nFjbTa*`M?gts z8nwrw)Zce1l5dOa$+kCO`!ga6l$=hNAMvs^)wEH~aXp}*)Bts ze{j@r*S@ox0XTvFM0Bl5LA-ME^fKfKLKDZ4v<|9jmNj+2Z(1$5F(F>$$bZA9X#^GS zVVw!yx{}gSwK)}6nBn7%Kk}!?r~UKG<8^o4r3eLS*$lVC5@L|wcjx)j?! zXq4fLe)?PT5jDjBe$Y3>ckA0bR8$tf02Ak(mFOPN+XldUckecfFMg+>BQB$d0z^WF z!Qt)sc7HS3(UhJjz;Ai9Cr!(}m~E&_W@itJ*gG+U-n)eB7Ki}=qHuXn2L-7)H}G&= zy@qLeMUA4WZ_WC!kr@9-zY#Lu7)3gHUIT;#H%-BHV)ec?S`PGH`t7aD^e5O7%jcSWVxQzE}YB?Lx)g z%2xqsU&^Q=x$xulF+;YzPV2e#yC`H_%;2Rq1!qYMF(}fD9Cz6;1!(4s8;cNMR`zHpL8IE|9wY~z@X!@^yoKm&T6sR zghOYCkOZ4f!nX%>0P4taq@1h2q6$PsvoijYHbOQ4I5}+rBQ3@CrRwK%N{ZInbIcqJ zWb=zKU@}eJ2^TUH7DfMB;=dkdi>Ss@Awg_v^D`w1owbBv)jc_`W>*zF>YJs`C?3k4 ztOZ=IssZ2u(rw*2VF;jO{>o4Z@;q7f4lZExDhcm4R$!IN+DQO+DEsG$OC~>-=Ym2I z{ov*rJ;y8nl$%uxVlS4;#;af_tQ?bm?VfyMhSV~FUZp|AG^2yCk$Y8f{hGTboAe-v z6R8cWKAg*HKT$$vR)0>AR4iKNw9~`Q8@#$72ePUcKU55|&~~6qo`V35vyZd;Ex^Zo zI4=v-doN1I*$&9a!@2 z8H%aWAoIz89|{I2;tF>Moq_CL0nR~ldyTx9Sv;V8JrLUa9)TmT81iu?X|C{;Y&SfF z*Rmi?1p=t)y~lEB;ELAJk~w{uL1#!jMrGgA-8F(zKohyDI4wt|SNBDp1`sI>9sy?I z;KQ(2K6uo?N(|E!u4#)GM)N!bdJS(>!}OqSI5MHWHnR>F(u#Y#1pa$gg z#4WfevkM~&`h6Lfc-WH8P~e4*Vt3tvldeMy0H$nP-e_g^av_L@itc&Uv-S0goESeJ zH{(C5>oKZYO??3u=WMa%%<|$fpB(Z*h)1e;wtdwP(dGqewmrzXA97+a&B#rXFWu>5&*U)98P(~$CTUOk|Ns0z6HvXdCb>nY&*3^!-JvQzidgBw@i_?s0E@=la(?XGKQ(w zrq&eUR51~0w``H5Xh0k8f0mNXjxmp0j2psmTNA1oi;Jx_JC!u>C|4#^8GX_xTLuAv zioobMtFUk7UgS|U+KjS?mxHij3DDI;ee$o3;}II)iqZ~% zywiBfJ?0{f#)837@0{}-Q2%^)O)lzFC7L!@q&da-d+&(FaCk(x-7E3HB&U3cy+zCQ zs_d{OVOyTml*fEf0Xc8GBi*#FAUO{8Wb`Zf$=6Lu(bw!T%W3dtRNx5W52<#X!Z8M zTOUyu6VjCP;N75Xch$0=)?qO?r4pQ&IZ8}=cqx#5=LXeOqDX>s91)HBB0XA?Fpe@G zgE=*{FlM#q4~!U_LPlW>3V03zA5Ya`y?+#QQ7tSIWC3#yO|~^JX)#0z$9tbBMALBQ z0VQiwD)8;lFiS*}X-*!?$J@~9y+2a1o2P|$mO@8qQTj;; zz8qT`Po`R3NbSb;nN)@1AjHzf-Q_{irElUD?TO z$#qctTc*OgYf4pQ6xb>V^ikCN6z|N!qQI7XCCgz)K%o9x+=;0H0W6gtENK^3q3}gn zS~sBak`!c}TU6uJD($~lSoxGuy2hxBeJR(J8JE}C&LWZySi;eA7KmUdJDlPuD&Hm( zTUJmXb@aq!6+~I&|Doj>7Mspr?e}{Z4z$f4KHTIwdOCwHS6{FXf+l?ao)sH=PFb2L z{Q9R+BTEEPFJB;v8LIkt7&OIa=zXQeAxP0$;5Pt2%8;6G zv07c{wo6%#(xcg#w}cA?G*Qngf;L%U-b!|!r`6L}wtiV@sjbC>)GXIAtmaZ!L$iW8 z$AVb&slKqLIay=AwyEK=mz|(Eztrrc6;~>8mpvDig`g&#E?)6LS5~odo!{fAGsA=V z<4B^s-1WgC467QQ<2gi`dB|_awDoAa`+{SCb`K#|oe5t}*NiA6M_7~5-I4%faT7{s zTArO;{-Oi>g&Ul65|0M&#U^k@d+!My5s^@pdhh!hWXc z)>$#!1nYYm-UD%P_IBURQd;Kb-(KsC$lI$pS-_4IU|yb=N5J)`-8NYT@CMco$qwh` zPcj}CXdUp*a?i)%aqs9`dvF#B^JC2(5Y|w%bO`pxWLVaE6!?J`?$qX_%@v;Lt3Hm$ zC|^0ZY7EF(A$l$au1}{NX-VZC7)yJ=!U7+wd_3}?cAKV78)%QOO&W}nFIsN!ZnL7R zCBJXhQd4_0bhCbXT8!hhI7@%l(+;5D9^4L?9Y7p^%&vg=*ioV9I|;uP`2 zKeFYh+vh0zTK0gPa`oUwJboHOG3p7blhE~PDxY+lzP!Ib-~1+Ql4JeX-HrMGdUs=C zW?=d+DR&unGKQq}n(vQd`}KgiX2DLMdt7$94RCvPBl~8ke&ROB9az27zYyb6VZ~6z zMQX)A*qpU|IcY)x1s_R+7~CH)POsm)ulxPY!UkcKd4J}?(OGz?-nc-lfB`n%w>{CY z!O_~m*jOd4xCL=a7q5@^!(96+7b~OW#eqPhz-zoky>4Hc-QH5ZXHTO?hz~H|iGik9{LyeR%BaRbH>tC|Q29UjKDc$eufi8!1i>-=aKD&kn7^Y2 zM0>H=KA#N>2tg?u^Nlz?ad*%Xal!kd!+2>|IpQW{f0qw35zZ3^MU-zN6kBW{dmcDj{O9IVNv4<)&bgiRkMI92>vJ{(4aZcqE8lDQi5g|rSE^ob`{{g ztDNR;C!z?wD+&wKR~hZI@+vA=50K+}?qllsa2EnYm}mf5`~2r#e^{AQd_oVq=o^ws zW?jk|2g)SNaiJoSe+AWqjQB2T zFX8-5yOEz3H;HALdK-=vB!^StiYm;_$nAOgI+GTlkj?!0!Ju=vue5 ztUKr`@MkhH(us4kpVJ?%4{VcN<1A1hdFGvPp9LK_W+CbxtY+&mQa+z@$9_CF{yPUTCX{WC;7GWZ)W+;~+@p zPqcAOF!2W!Ooi8tA4U)~G#C5UK_&wSebIKZX{@$>cI%OrB1)C*DdUV9MPnX&yRj)! z=Fv+RG2M1dxOIh|<4Lff3Q8hSbSM%d8?93qm^~|PXxY{^3sx){YzhmJN;9T*itK3< zgjhD8ZXftZYzxajMll%HcU0O8YR~s->a6eA6M95R?^h?}=s9qKJ;MCO4-=1hVX!*d z^R5T=^DpV}Q?3<3tQL3|AuLLiS_mJi*32idX`h)Hl=-=^#P3L?917E+{QU~rj@A+F zcoe9~AgS`wfToE|M%2rI)s|glbY)gF==Iy*^Msc?-s#n_l=(HQH;-vHP7vqzDSP{} z41!v{hw}uRxS92rDl!*Wz-@PAu}l)Xog$QRAO=6J_f6KSCJbyVxdKIYE3)D!h@y0@ zFx-rChI)ps0nckwLudxH z(?J=2as%FLK}=$upkIIRWul$QK+F7_eZgjg+kL@nai`}zt+3ZS2V)epZ?Bo`&2~Tv zG^FZrpDlnU20Yr|+df#B9U62wx@TBW;Si5-a7q`8T5r%CdFuBjq%<8C-X@d0e~Q0GaCg_?atGxXyNP@o%GZPWZTfIxmmpoT?B}8i#$aD`D`Uv)e8Dm-~_Zo>Rgxsmq;udH93h#I?~*Kdd-V!pV_t zqukATJ*3Yd&rv=qg4z9sHE_}pTi%yQZ!EvgAwJr0TsDs=@0UWvV88jx%gvA^954e7xgPMwl5#M{FzA1rjy9sPu4L}MY~UHd9CQg zrh(=dV9!_TqBM zYLc455_H%N$|2!6+f8vwr4E9!l$mF<(@S}lj8js`u;djNM6{)j-EEb1r<_dmOBkZ% zmIP&Sg19Ovt;_~SY`ZuUtL54eSy!b{8Az2$j8imH0irQ^jCLaYlh{z02q_Q6P7x3e zs?;Y?+C_XEXCEJw8z`F%-VM_6lpo9;ndE}G7+cBq$|T>I4Uz|m3DV@92q7V>LNkbz zKNY3ZZ0KMsvqtk|w0Y%a(#!(-DX1t7C^nb}xSngf#*C=8GSXBYYaG>7a7UAch56Ot zg3}6c9u`R>Gd=b4aMp~edP^ZuYt+IVrJyP;ZHG1Zw zt<((?h#S}?NfKi$MHbeQmufmX7jgD!%-LPj<@sA>p18;WF+{caMqn`a=3?F?sl2&Lsemrj7Gpk6t^omdvLtIH)-_;u+rLl{0OAwPkI$1(j_1J5 zNPZ4s3c_|0vN$whJPtg2mj{d!@TBT;lGr^-kn zs~VVwHuZl#b`3k03l=7^vd=OpO}m*w3CSlPQyS10G3-L*io&L^=W@l((`agixrm7> zOLd0<9+sGM05Jq=Ku2@Fb&o$)oR^$re8Oqia|P|rdp{y;7u$=1xXGc0^sDDghG2~8 zawbtVn6pb|>2)p@U<|`GOG$c>9CdR$vWgp91)YwVwC&9n;I-6W5~bv6GAZnnwKQIo zQ)yl>)R7r)nc9a(Z;UyRd;&MM*i172M|2G9(e@O-K=Zm3JEl6>ruZ=u-^$FfHO)^@~J=UlBtfc9)i z9<3kK`gshs-9egw_k9`skOFvhH-IWOJ>dbyV4=5Y<~dgw-M2SkGWTZ}q zg+&1OTg2pB#3F`87zZhM)=jcBKH!Y@-cPuXNPp`rDP3>ON!_nI#@^+@|gos!mk0Y-_{ zRGqY4B#H_sw8>G?*F%m=46$Ue`raGn@`<<+#pB(24)$o20HApQ=(7Trj~SS&GMn_c zsyd?ETot1zM%5s$<`1gMpjvDt)bln7y9AC$-#j;*L)PYT4B5K@qX(RY-78`>_8MqH zYK^rISHq@$U-W219!qFjC~&wT@^`>6FP*V2i`l{^mg@r{EN-AB+;foo&PBOWGuz;T z=T#J3IJm}KPa$_WU@rJD#F6Zj+CN%Cf-Pd|(@j^#UPJzY&foKj;XH0FxmW2` z#+w90Uh-MOg8m?E4bKrijbLe0x(4_crq4N{t9p3aBJOqY5M%Jqx*0#bf3LO{`I_Qh z>)^p$QW`xsL(wiE@2?u*X;ZqdfD6CjUh;?QLcR4X+Zw&wE-hnT{2ffdKl{#ZTH$H? zc&`SRt88``lcRyMt)zNCB_G!xjbU5DBX6DZrs|(^DVW2!aVVL?KC>yA`*5*(X)rCL z{;qr5K}86KaKSZ`&j%pYHXR^DXEr2OU7`bkd7r)wdl*Rk+UvQ!QPFkZT_JUFUslS;l{^?*UFVM0tSX4rnEJ07%CiM*4u`D4Lo+DmVjb{aLV_JB6>GdvW1uI{s{@OMI z=89YbgY!E5M%QJlq3!jgE1;=>^@d!=^@$Tx_oF|Q-hE*v8IM`q2Am7XQ>SkR;Qq?% zO1{+mnrR?2@{mLi?P;t_{vNHK_x2%78wbUXu6?>$=tzzR7#nzfw1T>m%_t?4qRLak0E+JdxyUa%;+DRVb{xCw0u&KQA2v1ipB zxG~OLtg<1dhos-C$30W|O$LLW48rl;rk7zK!mJOw{LTK@l@~KGPchp*cu^&XRsuqf z(}XaSGy`A@Ox`NFEr0?H=48Ee4u!FF{m%(_fliwZvC~v2r`~H$B^GDvFOhBBrG|%z z&v`hST1)PaDXp1htX&+j(8ii=j7nwtlJltbqc+4K!HITO-siFZv$iA;{43OAiX|5oD*16opWzQvTD`*p3d&m&u` zIKmLh`mGwkY^}f60zHVm;auH-_p8-kY)bx`(%9>vV7Y9md0J)tD5q)wbq!oh_U)r; z0CT9Os-Xq4>ktlXPKh?A*D*QCF@$TCN5teL=`@;dQ2kW zq^Y;;Cf;#wC#un!_qit8I-*+Stko0oS!A@bx_>=&N%a@cBJ|UE=|tVe35L7IG#Nc) zzxZ=G2Ik2KxtEs`2UQzXl{M|8G6! z|1V_9!ovBVsmp7e$r$4H>zzOQhb(9-QcK*MR(adJdIYVoCn-lweYRj@AQJyu@{}Z! zTtt<+P3IXe?04U$OB#+Mspuu?__`@~ByO4{ zfEoyRQv$&5+*i?zZ>h_nd5>RUpJ|C^1oXKgSoEd&xu8?uCKYcyd%DA@*rPr+r2*8?tX!i*JrI;-kCmF z27!qsKCRPlw|`vaKkvVNaP)Uyitw6EZ0gsXcLmZ})1nyx-m&8aAF^UPOaGC*!h<|% zX@<7(;#49a%A|}wntXpBY}kowwu^sJ6l=fVOLI%^lUay3g7$0>7`X!C(b9$Lpq0k2 z+c|3+S09Du-1_c)b52rA)y-ZXYrZ~5Yiyd$BsbU#lInF(G(h1DG7!f}Zpd|-DB9sJ z97{@@_F~@)cP=t(vOOkkaQT`oJu+0oQ^7CWP>)ic*v&)cVk~zq>2q@xxXGRHKVEL? z++xI*MlF_}QkJI61%^xPEj@(P+&U;)mTt4}rgzJrwAhyI@-52SNu(5pioFAn9=|E` zz!3VW;H53q!3~5|IZJu0s2@ku@M;83_WGE9Q}|wcC<#c!WToeQ)_~mqcd%Ohzj#{wNjcoB1fF~-t@tyi8_Kzim zqq#(E`WC42w$P#pO4JHMbg?GM^}mqcSCt4Rg7dvm1Ck> z!%Wp4oF%BnBm$7J^{WL(tJmHZp2H*G!>KR*ry9OOe4gtTB&>W?(o+X<(N5GXz_21x zWU!c$M9bg=Y%4<{|9Tg#^yH;|$}dj6(8QiXd02Qb_PU^Az0TU5TNrb{boaTySn*ll z9rO6B;~G^bhl#nc2(DsWJ?eG7orCsvbzM3LKtWUog~fL0^)jj-Iiep$)Dsg>ug*Ie^NsebuDS@o{WV{PiSyVAe1$C1%EfVQ zDvJ_JNOO@XL>tS6H^9nfn4#0}AgiQ+6T0Mxh(2xxolI0Z`>RYJ%3yL`yiEw&kK<7l zA?vw-$~OLLwZMKZ`#`gc{ma^%r=QNMX}-Q_@|$oVSd@6$b6WT%XI7;^%JuTekpnzL zI;-3{{#hhpFc8!;`D3j6!>z3zEKb2iG69w1(gyOesun%=QRt zK=gF%9o4A0OSly_lAh}1u|ubeb*$PhUd;##N9l0OIx?UAS7;O4>pms5W5iFw&8Im z^K|&;l8~x-nWuRk8fDy7upv4=Xxn6y7}L0-{*hCmZ`Rv2TBiOxKJvokQEMO9PT=8& zTThM~M&ab3KvHNdcc8bStx3M2?M?IsRSTRtDq_)aX!g_Kwn%F4O<3MIB-N)TBU zXRV&;^7LZ$h~#Bb+pSR75)LO#s!_oc4n#&QDbr*!sQnb}Q}{?DeS0oDsU;ET4_ELv z+1P~*rB>K?Pzo!8oT4CH8$$(7VTs#QCc^!Lf@G0kF;Var8KFwSxN-Sc1TBdme@JaY-PU@MB9Ev3?B+L+pOo7IfXk6UsL=vbG*J)kdUVj z3G=eKpWGHLjx0%hFevDJfUC(w{oT8_*5B=+l()!70@9t3JR{^G_PK?Pvv}$A@t_3~ zTumG+f}SX6!VR4f>bsT74WRZD+K<$7*nf_uM#)%eiX_w|#Tv!;AS~6PJFW{yEJqS~ z;m1ZH<7R-P4+dxxx-pm=b-CEaJS5>mNTXUfKn>Fc9IkZ6NL0~e-tHI8Bur6N|G8ma z10v~VU{*7elk%M9wHDZcP`nwF6Dsr|Kwd+3QdOAC@F(m4Kzk@zSWY}Y2I(nJXG$|-9 z_p7AgmTY@~jIPKOUZp;x7@q+5DHxs=Uj^Bdwr~k>Yt|IMhECpDyGB4Nz)7?Q8AzY_ zVq047DnKg4-n(p}i8t(z2Wc3waE)$mGm0>Ud=%o00`1B%h8WNOoDri+<#Z{XO5ug= zg>eY538&ejbT#V1IO#azKAZoZVnNZ%ro}-v zLys}{GXj}Afx}yQq9;i`6j=DNq%jeFHgs5>xe^3`plRt)`R=D7x+5A)Q+U&L0Byvn=A#+!xoubah;5n0o4fp2Y*^?SrdP5J@h}L-fnw2>tT@p;6d_u9?6of5? znm?Wn0fPWHz;gYecg4Q`hp}@C&Lrx>b!^+VZBK05$rszUZQHh;iEUdGClgP6a#ZJB z{1<;$S9R}J)$WV#z1Du$``n(&Rw9LJSS501Ok7NOCOr;Ux%c^1Dem6TF?`y zZp}(e;Q)Wo#-q+GUsFj^6$+d^WMZ9NAF#wP6R%EgIRhby7R+WjJw?*ybpVIh0O+o{e=g%_I#~`u z$<+r7dxN&;)GfVbvO7ou&>@*H<7xs)Gw1cnpPUVaUWCpFrrpOy0u(Op9UCmb7{&v` zE1!kRhui4R&&c$zq?(NP`R<3Ex0#X%#%nble4YDfVXdnGJSV&gA5)5kDZ6FEy;Vg9 z7r7U&E0v#%K_JPq`-tz8Xl<3KiLkB+x3*g7FBP7zco~l2bvQ)mFvt7L7ZmGwEjn%C z9YFDmjMrjltrT*g8Zo`Kn=nxYP(95D_bY`DUulY^OQe)U8{jPAu^t>T7-W$ z^qjoikhxJ@S!W_$vUHaCo=GELZe8<5{%D=>=13bJW#J014AC(hWA#h-xj= zKzX_)iXN5NVC3OTxlWyEb#MuF{D$8`8}}gy+xP9R)t4adpe1Kq3no&MOA_Yg;tN(G zA5zelC|U(C$I&$G=$LDwZQKr#ZrYY^rSC=0kP5F86SwRDn{-I&NT+d~sNd)r%MviS z%Qc?DS$(b#GqKb}rC9V@+wE(M5rX8E1**TWJ(Y|SQiVGZoh6gUVwbGg^&b*i_nO?> zW<^gH3Nn>0y-vzn(UD)Oj6zJ|I{q9&et_FX8t34>uWn_WBS9vc>8vbT)YB@mW<5dn z&u(6$g-Fo4m4K=uI-=Dd$H4iMUpHx~b7B+e59sO;D5LQGh0tgfn<1Awedf1& zJ@e=&t>T@hc};E3rn_{dyzrRU^`2G>(AAiApUk8f3I!=g&xYOYlhskXUJw^SgV_Y} z+Hd`<@A}V`(=V{YvlYsRH8X{gnl$tAEE3-tYD*n~GDCU$K& z8XHf7jOLXiy|OH@d4^OVN4PxVGWyyb(0tU&c^j&A9WpEsrQtwHzLrX#Et;%RrZWW< z7kvsLZ!l((QgB~@Q2wMvC3B$9nmrntYHd;#Z{gkO^WMYQTIa^&4dhJTS%FW6Nl_2A+8G7Lejm=rS#=}S~i9GRT z;rZ&yzbcU~@_Rt0-7baB^_4mK_%}z`reFp(JJcp!wJ@#aTBe)&;qrpl#UB;;8c)|uwyO8se@UwXlp2e?%EM=D?__# zvwT*a*!9@cN}}EPCABN{VVs>UpWr8Jcb!DI>{Bm;=(gi7$8V@J*F{>}qLvSiO z>36_t&H|$9f`wUy9@Jd1`T`T`BqTOCdNUnHZ@GcogcUukMO|WtLdAEgr17$>=BEDyj zE2#i7=TVa%8*e4TC&S_Md`ic+rSkUre7_D!XP93NhEM00f&x+>!a2tiGCpPUv)zN? zOKbM!{Q|H?LQt3?4S!B<4ZdS+V{@%(YjN;2SF!X%6%9fX>?I|Mk>mHszkEHpX-ogY zhbqMQbMv0&J=_|c<=%I5RDyp7`NMqX^(~c;-m3pOjT0~!Kuw*BPPxxq@ADuzoR+*{ z7l^G#KWNDrFET6ze^NIs)mzeR_=R+H4EF_5_n2j>RKbDUG`VbJLj7c@XQA!?y;r_$ znwJlTCEJigT#@d4l>~A{g|!HrC95}yDx*Lo1(?TpCjG3vL)|^p(NY$i;y4rLUXp%$ zSTa5hA`~(>&q<_I%~9E1mJ=F4B4fV`R;OV{j@A|G5dQf)yneW(t=2IoyUp*mO&_zc zBK=}=OWPnkA1aN%+d6$z0#kBRN4kbEm!lo8FO|x$H6AVyYM1*83pVT=8%2Qd&$_*< z*%_P^4zTh5m?{cC)WG`=^QMA#thJQoc|9z2RO>iC0GYt1hc`d#*_`!aXLsRYZ%Ej) z;OFhPbnu|nh=;)4^8}9KyHFlZymh4eTM%IegE0DK;nfHgB1aB=K?KVp0Iz%Yj{sWY zaGo&~rnT7o&4k;+124*SM4F(bS5;vOR1+S8&pwpksOIgfTMRN4>v$ex9fKX&g*T}l zUItJ1x0}cXU@Z}AyXI0=uC5rw9sj%ueL;UAXcprsNxD^`A4e+>gOx1QfD^$}jzzQx zNw2Y^LNcETr`;XQt4i04bJ0_Wtzr}jLRydgtf!7GjFFL7FA;71h}>@^ADu?WH7!u< z1=?v~P^aB9Ph97!SJGc+v51-@LOX76fRcYy$um=&zGgZBie{XcMk~FztHn*OV9cTX!U7N|q6GEC?kS-Kq^$!wd`n;ZSuwQa|-e!l)m; z9Vsq{CkeeFXemP+F3~`lgE$W>9?Uf+$dFmx_L#cl@D#Go(u6M@PpGg(E|?B+5^jPb zz^D!wE{oo3qpX2VkQ18S0|d(z70wc{jm1o8avU(dsopRx83s)HYfO@lI^i48Sl- z(a1jZ*RtFr%=lt3>2^Y>RcRSUTN$*B#z$7ZxLQ^Lz!Ev|Nw2_O z2KqMotg@J7Pb){&o9cnRMjNb8{FIhh1tmta22Z4^TIR&1{Q55pu)&ljvtrc@^mv<= z`5F*6rTukq4mVl*cUc56Ou6`nA30o!3wO#L&JSM5=_wO;xRBgxrxUYSpdcqNNSi$T z!yU7z*}6OtjaP1nJ0d}i8H_7?>Y9M@6YDq{$G)KGuPK@2x)rJJv6Qbt@$L>tV&a#e z%)v1~E83%2FNSt|v!n*i@7rl{BWfM|XT^=E9ZA&*9BWB02dS?TGEYMxWN+D4mbn@$ z1i(%LB07eHKXo0KdI)?7oYE0470bio47&BKD*?+8J7kPGS@x9fPz|0*4}~)O+bojP z`m`q~nAo<)9@xn#4(qR1!$V>IzSHuLWe$F!-IcyQ6+n^$^aqS?GYVTyA8ZO0?8Q4e zIiK*9RJsg}OeY?Qi+*n>?@SWx_vS>{b5|X?{4{fN;FpEhyp)@g<8t?Ks6p;!_F$R!CkAlUXeQ{k!eB)5WNEGdAl*IzLGfo(&=L{c zA^pxQ8<8#x7z$9AYG;COvAf=+Fbjr)(WQ1-#omY1lAU_eRKmeUH5Mt*-Cv0hIVLaU&3SHb4Knw zBY|m*V#?MPHR4+>s1NDVV$dE3=C(a3LRRFZZGQ}1<;qpg?vP}Lic)p{^&%}I7LmUt zPuJxg$U9l=V`j3PR>Hf(rk~B!sG{8VvAUDNf*nY0wq&&tOFnDZBKjLUlJZ*jPQSIw zqxEl`o8QPO^zA}dW+}TAqkZIGWup*8+vqu3*(<}?oncWG<1-G&1+0VM%~5bd?cP`! ztYr=gad_zg3JNZ+njJHA+21vrW*D%bvpCru`!z^8JENiM@9mawlqlrwnIptp-9-(w zpsPzD0=T|Yff4iWIXhdDDNEsm3}^KyCg>!noS6Lhuee(=G75!{jy5Y-bmbC&@^~~6Q>v3v{E_Vd>e4IVG6PbXihjA83q8i{ z=Jv%@8rEtarfcRj+1?AZX~5;^!F;BAyaas&-LwvO91DGl=yTuZbc`0=1vv~_yRwSD zPCY}pd)3a{BJ#!lsILtWoLlTMXAJ~3SX>03hyR%HA?EBE7Ei*yPpWe{s>I>Q_^Bf> z>FwqDap7IMac2t@%MIkDP3I(%g!%a)Rv7cL{2fOO&5Z3@<5l2Rn(*MseGooJXw)~)r4%x??@3gg(4)ZLbH$r zm?h^X8Cq~hR<4>>c@!*ON-<@^tm4$sWDuq>g+(?6#Vl%n8?4RcV=;EmGO9NgL!DPKXgaPFAA1(>&NLsj@p zXh?y@gh;E0k|JpdSOP}_9z9ocm!sf_kWhR2nmVzMfuXX6SjmgftqR0ZJ zuA5?s+==`jyWg8a$gKEFksT&|zXu3dZFenmq{ui|{VIr$_j^Bj3&m+iY!#2bB;!rs z?VhKxzgEU9mVvA~;|M);tNQUW%dwxXG&2adJ5L5wUEAd|{VgjHc0kN%wKjiwk4 z3A*R{@^6*OP65kqp;FcKNT^G7Hn?^cVjyK$XS+(xp9K8?7`jYzfcr66)5mbOSUl;eKVQ2bzbmDk6|V%%Sj4>rE%He5i&ih*JCxct6t7W59xY^*3M`igOps zV?N4a;$BBS9RFkDvbKhhm!iHYb@Z5jz6hXh!F?4vOn&a$AvR`P9j@u3%V|@28!#+{ zi(i)h;`?$yXg8Rffb|I?F%{TX6Cxqw+SdaKBNM;h)jXRRo+J%2j92$IylM1c_>}93bk4bqT!!K6D|tfqIJihUE-vP6mi=E)A7-qF?DUK`8{(pT zoVoStHo??SpVN*KEjdGVT>NmoOI;#aG7ezd8(k(Y%NEIFBsx!ugN`&L4wK*9WIAbM zZp*W33wzjiq9$BV3VQz~Tc%pY9dULQBg1BlP;RD^BrSbX;SORNu@8I=?}ag4pJX>N#0oO7tr?NC+~Ul!^;E7>lhaw%LAUd8g@}+EAEWzpC zq5PT3E8Aik9o$fsF*Siz&{c1K{Rn?z3N{RH$dEygj~g8?dc6!Vy{B(lAeAXh^HLRt zQW;DsGHO07b!r&2dyb_gZ*nMNQJ$%=lnOgsi<)KYhGspDc04)5%V&j|MlzS6G!|KV9z7~1ayktjVE({p-lh&J9;TWaQy^I zZE~IM+C~N4qAQqd$G5s3Chkj>0YSagE8F{r4nO*b#>9(qZ}R+jENB-G6U=2pIiLQt)eu6rh(2A+QXT?TU{?FJ=J zAnza7MlM%|C)=yd`0|gre)%Vz(<`yl$yf~OJsDYA(7|2xVV2*@0P^k_+I!q8UC!B~ zS-;5ki2IREzA|YU$qt#`(RpwcxsAI~i!z+*%cx2YF`J1~aqu2!)UQdsi%07~)mPkZ znOthNWSPFv+^)|}7ajd8kAu`um#Xw)TeV5+#hLZuM$MH}MY;+i-~E!RWK9itdVIAM z6ZoSD6H_?KrZxPK>md zqwJofALgQ-9&Y96bdBfg)B@ojK@9jcf9*lLRG7x2)t=l81ml?243CC3H3v_WWR=$p z@5O>6SE89C%`0{S=M1B>?)PX+3P>>phv%(H^9zWbZ1J7CT1OJti1EU~&!v8kgq6yg zr5R1=w77NFh;nxesP}cH7-Sp6+LJH#=j6Jd`!lkreY|6BnI5Iuq*Z93We>8R)M&?B z+!lkK(99v)qDON1r*2|oot~ddVN2iXF<-iBn=k-2Nk6z_e(}~h=Z@RyE?K@xr2Z;M z+7ymIRC@A!P`7of=xOxZcl>aHjA334WqxD^%uz4(piOpMbHil5YbB<>sR^U^a?>6#l&iWi*3vu^i z#ROy@Z})ADN{j(RcHd{Qyez!zguk!$_`QFvA4%A73ylH#_lEA(-jDEVa)vMAo+GaL zcrKC4zB9F*-Gj~68#-~<9;g?SPw`ITmavj0HQanVIEsh$Qg+53R)_odNKQHkIHhK> zZ#%j@R?uD>MvvZ-dS$#ox(?bQrDE<#Bw4zJQI6bzB#qGsp^~u5A%n<9&w&z#pX}U& zOJzjYD+k+utO^_X5j`Ds+zA*QY@0P$FlhO} zFyml#kHH>eP1|y=9jC~AeJ9W)kw=nm*kwQ73?30^RdGf?6+IpZLi+x@{?WFj8!!ss zQLuwU-TZynGl2UlK>WibMGihfT26csVBrxYyxOf|svg~c31ARPSsoo5dWcKaxG{>|+Tr+*6Ps9wx4 zJRu~(48k-JgrZUUte=Ftt|X{q~M`hSH*popkUWJ7t=xFC-JvwoHg zp-yfdv{Nwry@mBl5{gkJh0yz&h{&eJX0|knUSF>$0*>5ZHmlH#1ZjfqF$)@)wZOQV zK_3<{iPrbbAmezr;~PF+PRR+OvYho1Ro+?301_g%<;W1IYVjd-Y4J1<4yjX^`}HWE z*^mfVYhYhxnsHMpIi&~2k&Hx#WWxlm;|z$kZKAnoS+McIDO$le-_tA;=8^N!rdbVu zF{3?wctBcUaAEtIl_sv>vNg3dImp{a^aNeZdza7hCQxypijCb{Ae^(N=P4a>3w=Me zjDap~EM^X|3gb1zMax>FbDDzf_St@9!qvcM)I3S#33MDvf}IYP0srL;xQ3xGpxyqv z58@XA`OuRrwvdg)+4AKaMueb;tld`Sy08ty$i${|^&)z`*g-Tv!^6d8dbsHJrvE@MK} z1;GvUZkccgO6M#hy=Kt$6jD1~Od|riAmm?^M`SUsu(w1{3KLvF?I_P-Y07e(hXE>s z zvwTV85fZvhLSnNOC-`C+beewxIiLg z!YYVHF0U|z>obWB&2q!T7xJUx-TgDbc6Nr05w!BZ++ziP6fHbKz6E3&P4V^5)4mS{H7FZM9ERFmnj3 z4H;2}9Ty;PBB*xOO;Ib&%DpIOFUMsAjjLM16GgkzGZDt`Wq(^NNJP4#Qd6R2!_!90 zq~^k@3DLFgO%7Q~IOUHGoIpngvX-x-`-6(VsenNDlA53DY6#JF{*vgsTo9QNcb+qs zL*koUK|J0*lPZLT`UjxEs-Z%t19#b@R1e-A;f7w;?V3tZhI&~YLbcYMj~N9j;}uCi zydGz=0#*_65r_uLo#de4y49>^PfOp#Q5AC%7wawLw9l+VbQ;JVwP|%duk($f zQ|cX+bD+1#SuujCEaU2R5ObcBH5`{po2Iea1R5%4QB`<%ie+=9bJ1xgN-IEPkQoX>o`oI~Y#;KPwa%i{=c z*eOc)rqUV1jV3xfiNw0#&yOOt&pj87UV{cB5gh}dM4)+trbTFyuBFtcogC_OOQVrk z6$|{6HOO+;H^<5`MI~NdE10I=OXMPF3^7yw5jB`nb&YnTV+i(>L6u-Mpe&lBeCXxG zGD%n6ZSL=yKmjOUC?Q@zj$F;Vw3z2Y56PL3H0^m-A%FkXHcaLVy&2G7F0h7e z)gKUy!bRU3jJJJkxl(#CpmBfG2gZdFHzgqO{cW<*oc+na;rd-@7$9->w;`-4hS5X`+HC4QLx7h>gPC7MJgBxv5 zx0+`(!rpnupnLbKZLEp_S!8`!>dU4R1I|fN_h$OLz{^RGZ~GrAll9W~Q6**r;l$JT z2^^=Inl*kNng-UAn(<+=e{+wQIqhc+i&qs@PeKWU{OyF3jB1ci{vmlbrhub=(I!xY zmz2)4FO3)RgCb6&D(SRf`?Eo{u!ayE*U0N;gt9=T5|wX+W2f*}R$?btux1yFUBQii z(sH5DEQhG#GbNqJ_oEu+Rcj-Z18a>}BfWc-w`vOi=xJ;t zi}yoZ@stq1T)D81W#zX0(e&%Ji`$lTAu+F;(`)-$u4O&+BCOt6fj4fa&B;gos?^tu z9=S}`nsM8`3vnGnen}!76Kdq zlQ3ME;)`OU$_$P2Ep)Km)^x0vk;Ddtp{1>*t2C$H(~>^&q_6(uSFJy62Bk7<>M>PH zf2lhQdZJ(1eSY8}Eg__}?YZd-!xW zdnKmxJoC2TfqyE9+TE;OYYIv=r%6y>t-k@4svE~O$13qnRb)|DEF<1HrW%lf5Gj<0 zEbLE!1M=1jZ_WQXp0y$E_5Mx|V!Wnmk4=Dy#LFA9ZJ*f0=Wf1z#C7Ty&359OKfmO= zGasYb5^(W=mrsf1TGrIrME`!=VF*qARCR&+=kIIhAG1sqdt{s8zd(bnK4es1`Wkju z#ck50C9g~XgNKO%EwXD4q%pYsW=QM6U*`QSvkEX3oeYYn9eP)3Omb|Ui6C}BNefP6 zW#x|=C$xs{?epL-_+2pKTIpn=ece8rAXlvwJW`|^b-do&+*l7GwDtinIsFwQ-o#7E zEmb&6mndW>_gYsBUU5f7ZoS}`CPBCY13WfH11U~H)a!!o?T6tL$<~eZLbzQrjYB@b z`62j}Ltd(;IdGRfgY?-~xE4?yom^O_2(NI_Dd%yzgovFvDh#iGj`KD)bOaGInyF!3 zM6Df6Rhw5Z{t4~Oc$)+l3~m15Dl7F6l3oM4nn=5-oWwA+ZyL_Fr5$sA`PgP^JH_t? z?wCn=`yI4Nl&<bi#MUhd>z7Pq{WmiZ?)&^t;@9V&cfeALO2L zY@qWRe6T8GadL8L(Zb&!wEt$%iPe)pYk#-b{dL2soIf@FE7g3>g!e?6;Igv?71$_j zv84g?s@$!k{6mCvG@pwe7IiZ2xeLAC;CrC_R=!vfR#h^>`)IAAm$_*E;zT+fE16D? zqqpqIep?fvd*%R$#)GX9DRrsM_gGpG+dg-oHU0y{9cOZx4JGB%srx5L3mgB7#F~MJ z-8~n*W4m93s3g$5XQ8q8XVl1odIWB7SEOSoX{ZH1wR3I}T@~Y}jK|3v_RIQw#NVq@ zS;Rh_mC({v(nPxYpnh9T()ien|0eZzmwQpke}a2(#pK#mxpJVQJpBlblmE8Y&;8YZ zdE=TjW{E{HrM#%@Ip@_0W@qri>yURUW#1{Q(D!JN50l)A$MB9n4P6D1S<@YgT!07tgp*lae|e0 zFSW)~5Wu?wFkz!NG=`_ck${xc3L3hg$!KV3dQC^ZyG*RXrU5 zM2rf?Rw^#GM2zx8%s-M0MsZ6gXBQ&w9~%45u8j-8>1S(WJr^M4OWVB;sV6NU6RqTB_xhFDQe=CH108rq-} z{(JTv-EpgFIjv;4XTOYZZW8bi%==!$Qs5I)l{iGpbyNEF0iy=#sjm0L1&PNpER&9D z;;I4>va*w7MD~(m_N9X~e;(oB%ab1NN2^n$aDYK&UNY3=OEL3o61Z93l&O-*02@4j z;z7u<($Mc71(NVUA8Z4c7&=r_$~URKD|GDaQb_8iA`);hQ)U!gww~#%W|AKI(*& zHjZq`*cA`7ECOSQd^%PbMZ3s>tU4#PRpRU>Vi;(C0Xe!TV~abYAoSBo_zzKiPCE;v zQMgY6H&(HzmiTdrE(48@Wh%EJDdLtiq78W|3(NCj>PALmulSz<9v_Fw))vh7BJ_sS zy6M0^=2Y&O`w`UzZgd;1PIL6}XgmOVM+~Gt32djSwk13<6&?a3*EA5ypK{W*yIP&m?LZ zZx5QX5j282X#nK`)kG?R!<=dkK4}HoWZckiY7ZqeLS@G}EGB8_KrAL0VsM>iZX-;r<^QmC^!2QiUx~(ii6#|dyJAz`46OiM zjzuM}L5E>QR9~#zJ9TF1%9*zww#{u>E-hDw7Cqm!GtOK}vD#VzreM`_=`drHI_1eK zkh;Zgz;LOpZ3&gNe7?a6Y~LV71Aq+Q0|G?RToDh&2A>To0*uR-po796WfES;V z5_%SZ7mT)A`#l0nYtovfb_U2+whRor>GUV1QC>9V{QYQQmg(RWua zPoAvQ>vizxZ@={YvlRTb{01XfqUZEg=n!fG8_HQWVTPcb-1zkwFs9tr*DIf{e!-sJ zyL1&wCaSJ5POX%CJqd@km#<`Byj-9Y>|d7`Ey`k;BrinBjSOo$M3P)yf#E{W0T)+U zIej(`HmvOZiT+k)%ok)#R%JAw@#(CfSRuUiOZOMF&|}AZa$>JvTM>JBZQ{wFEjPzB z5Uee;{(Ou5Sh@d_IOBI|Y&kIIHhPT^Gid=k;E2bII3;1Y@MY#S4qV83SxQY#;`A5prkr!sRU$!U;B+?FVA0nVMH1382lMTP4|aMEC^R zhD{LVeIsPtHlgme>uUa%*B!it?V*3_tyiJ6cMlHO1PL!6k}#0N3jnc(w zugIuPb1D72zxUFs9mHl&mCODqROaTKQ zdcNDXzS1Ai_WnQ+h$A}dpu{Nc1k~_#RiK3IZIF>WzvBlR?6?BvMZUzLA($GVvv4iH zIf#L{U(Olq*Kv8S^q68P@Zs<|;0j0|g^=IHdBv!syTs3M?>r2HXk^XTu}`3kvDwom zHjP0QZ7hPL_6e9W$-I~UK4mCgpd(fVTTKF;6adKm!ka|L*WEJ3Vb_lF&OBOQZB*qdW&$<4|Q()8ih znrFa(Dc+AFyAhDit5%9P!5^|<6U9ozEXLh1xjFAX;w^ntn`Y8mUil7T$K}u#*p9&G z;~?G?J$J=G{orq>sT;9rR+@jHCdu~dEn|2E`U zAYLHBDIt9C-KQCX`vjQ&tu5@_iy+5ALFjN4*AW`)QgZ_syNC_Y%xy)p7S*y%&4XC|4sD7)Qcq&MX+MI1UMqS=WA ztqF1q_Yx}kwa#g0@V%{j8G+C-5IUp~RcK&$Ataf^gN~8o0HPbd=q-H4>>jx67$j)f zsoX#b0cGwvZkx5o#oj#d_yk02at<63a~T|ROc|OUsb<5tq7~nt<-1IzCSJ9JU<&re*K}8Svh^`WTrR{ZZG=V%Ar84 zQBaip;m}<69nY?rQtTujU8Jw$NNL@oTl*Z%6C~KHx01e=Z{_QxXK*vl=F88L1dce| z?cD3lGQ;608Y{!6og+EMr;UA@&@P8XFF&8Vr0JOEGs>o(qr2>K{A*gcY)j7yq3NhL zq~l%O;syWwM#Ljw>xS2ON3y~Dv{yjb{!i~N5ae-hgQpRVApTjCu0PP`hUs1v=b0(A zDFzg5cd~A25Zo)0%qp+hZUCuXO?-f?*3=vllpoy!@d+^99LK?3gr#RloA)+6IT#^U zRt_y-`R88t;9rNyii8?dHl5#Rq}F7lgc0sBc%>m5evrL#e3}L|{K`3`sUQ66+h(@Y z762&m8OKLuXf;)*yU2fE38RRL)&tv+=0v|)b~yO9e2G{}9=nAfu{h6}!@4EcXnlYd zUHiGt6Br)h1fT!!dJpU_&_0JfZV93G3@xjDLvb=2{x>H$?qx^L4_1K=9oTF7o$$`q z+!Rs?#6(9a&|<=ZfVk;Fz57eK-t55@-WP$#{>&N%@}4psOjH;*K}bS9SOD+4>7+t3 zdlR>~fi!|r?h)&Q!k zhm+%_fb*YPmWp4QLhzitTt3>w^aRtPZSY#kDhz8c6rm>Ci*vP2>GtRRq-1;X@`V+ZfUOfdwJeQ9& zWd4=r?0c&`mBThlEk`80HI*;4@r_v;l%X^wxPWm6?-4REt%JPEFquSTJ=ggFAjdRl zoZh%zq5sYPc|`Wl>>BT7=(0&OY+-AEJ6EkM&?F62Aj;pimZC z6tbY$+x!>;erny%cM83|&v*zidZBs(R$g=h!m<6oyKeW2zH1LIGLGZ@@Q#pWKLW4A z$&lMO4qKKj@T9SF26(*}Nwib0K&X7B=uF5XT`BAfe?ZEb1d*Z$wel%et7#T)L z&B!k|R9W9OUJp|A^R$HJTk`uE!hO8Wt%71ryxe9j+-hBCHJ&uHf}&Q@`e63#a-tuJ zJs@a;d$#p#Y9IW~>G2v!=Zj@0Jo7L8O@yoIEKGvgdh2VrwRcBbxb=Hn-Hd^Q?M4k^ zv!4Bi09Qyx642elSn)um-bMp5G}!o4in%uqbiEU13?h}uz`w;sanROKvcSds6idp zfaJi$mH|K>2c)?weIPib!9Z~$G!tkbAZEeD6t;;J-DqGoT2MWZgP_ZVNG$hzb%czQ z!IDCLDOsUHdjc&62xaXnvVjSsW7UFzX@sf*Bto%M>d0M??z&^b#N#s3EiVAEEfpt3 zF)qSOn24j5QW6KG+*9%wtgdQj_@o>#(QsMd7FJ1;_K;bPRb1GS1q+$r`n;J$L|F}@ zw8hqj&c)#f>XnjFvSxg+$y*pT0K@x4nViR%$#WA`z$BxN2=~2f#+;8Hw_G_Kjjzy( zs|61iwGWv*FE#xBsgm>y^f#Gb_%oNTfGcEqc`$PsUNkSK!>Lc$jEOs!Io-uD<>Mm- zKi3k7xxduxy8+o5qEC&2od%?mW{a7yg`zraipAC?VkxYa^CR2&6hnuPkmM&{?Qz-G(U9jLB(m=Bn?>aSJAHEw9(^}ihQB;2hX6O(Sx7$!hnrYo>o`lsT> z)kzj3a*Y2RggCu}scTDtoC7OigA4H&luG1XESX05+h>H588r8@16{Kr=``}OT$y4z zQg(pI9rUK=1P{llz#rMw3+**yWc#vJF?V!_6;vF29ISF@{P+UO#NZ6&>CJ?`xp0c- zV8`58umzae?p$y5`jf@l(S-Pw09#VUWK0f3xw#99Un*69M2R~Kia#PQ)*VM1rx)Ce z;V>y*vY(oo-}%*?9m0DK?Q}p!Zsfu8Ivdcp7C#IVjKwe5Fj0p8AG`c9aH0EBCPay7hZhY>@qAtuXMn6`LYT>pMFeG5u z^B)EqhqRjiM_(Zp+@IBhQ^`~t7qMncF?62NlO=(T&D5zWXJM9d`$Ky`NxPAbA8}1% zDYF`^tRba(CF=a+Y2w*=pJqlqV>RvXIl35{J9BKyr_~&{+IH|xZjB3S^=%-zXsX@i zwj4udne+UFb?v}(&V*2+N`AeSC@%lb6T_BlMKA)JhzRj{;>opRN5~TXI0RV*bnu@n{kxUD(U? z_5rNCqJ|5Jn=VX0Zwsndt)ZL0cy}(eIGs+1xT(X!s)7P#qm*N2ZD7EuK<%KkYJ@R> z_6NUvJB36DwFy-henW$?QM)o!m0i{=_10Cn57^UZRu1HpqBFJ11`FTWZeUHynQ#cW zZTW!3XF?mrP%39Trml>x6hKT$V47Hi_a5l`A7INx<8;B~JqjWVHP~Q3 zWQ1=}sul!Qbk&VYZm4JQ>iYxMv^-bF;IvlhT(5^_=fZ7gjHK9uw9XD!TeuigYGM3^ z$7KQf;5p{}GKa|{!Wu@V7_U+M4a1AcM`9ys+o#0ajUlNY=XsYPV)Tv3tz=rJ-n&dhC7H+YWlXygy(R%c z@2>;sVqxA%Go0jyr9^wGR~7vWSy1iYun?{{)LyLnYBEdmjlYDF2{KQS z12V_t^X6GoXl&C_$vKFNHpWqR92Awh-_-=CZ>rGcaramM)p#(T8ZOZ7p!t=+&M3wS=gB^jMwU&y{@z+jqb$m{c>r~>~ad08@N3dIzoAs|tQ(Q;@%Qw;*|1 zv!q(<*Vs@%&M(<9v*!mWBxDs$M+SvoS?Y1GHD|i{%^pkg6{A`~_^mZpwKt~_YIrSA6puPf%X8KQ3gD$_IV@M{TOxdQUo#k9BTm_|#>BG8Bi z6zQ3JF7t8h{lCi1xW`<5%QnoDfkT)+>t#b+Ss@sd+Y6p}0uIfKod=+t?=$jx+HSh} zVTfBcnpr!B5T>RDi^9T)oWPF&`=#kx$V(ev9&VUlyKdRp1;+)U~%6b%5aQ8 zzsRk9^TufREc%D_b{JpN*m+@69l!AZx|~OT6m~0_VF}Ew!NcthFq?C3!k2i-hsBG4 zl;Re6IQq^q?-+vguznj&}rnjU65R`5D7dsVhpVWcuhVhjdvfWKjtGmUUIE2!5ANI_1AIV7l3eA zfbKum0RI!tr6;g8uz=#`{{QPh%nU4S|C!_EZm%KcNbvC;X6lSOU?g$_VgXIMc*fS7 z7V+e|bTN!_dHIbF--{n7hA%E+GgRWCOg4(M*Ddn-eEi${{hhjb+xxW|>TD}75<1iM z{WD6}$9Kl&7AYTWw(E8G^?Lo3J2K;p^hB?^FKK6UWVer0v+8d+q@%jDh^J}X^w^sd(1v9~cg=XbWG#km% zTioAq)%kNg4##Hu&h|8Egx}?(z8?Mhm8d#g$=Z<1k88sz=XnV#Cb`Kz5SOhGF!*SY zq+$eGVIR`QlklMCzX z^6-xEjUf&=$L^@ExE|qNON~x82efX)tU-~vv|Ig|G9Q_w8Yho9VRh0SQ>;li>e=r< zb7%xZYdikuraO4OR)Rh?j8dy$5l@VkUPq+gu#;5B0x%MvJ2?cTLP0VIqAXcB)CkZr zx!xoI1)CA45Wh?Hs00&0shlw{ay1hOU~tSAik1*<_wi0(l9rW*$Jo zqRt8ldAIa6jWRK#AzzciPu^dR*iX@Ds^APd-^kkhWo;s9G^$Nm!g|a;prc1#gfOw0 z9^RTMmX*q4wfcOuw+97oB~!>Rsc{MZ9h|y_F4V7&I#M4e*a-&OpQW`O3ff(f=?}ZV zNM2ZpJlfH2st_b|*;rvPp2K$dED?CWHd{5K>=1fLr+4 zunZofFl3V;(8I$Q~b)*IR_uG@ZtYm7tDB==qA*3qnL$-uq zotiPr>TE=F>@TXV?NMoAL6+Yyad4aJl?>Md^w8(oorxgpcmslgX(4@laJ()n<8 zgpn*t!-PgHK?GFH_BsFT{f+MxM*tZ&ni{fgK852(as>Jwv(@dvI-Ic^uNo|{clKQ= zj@lE^;+%#%HddRV$k5Lwz34J&aR_bOx>skXr9Uuvg~^$)6ty6H+SE85yIHH>F{vns z#qPRW9*QeJn%x4OTtU1RnTltrQa%)+s>d$5A+OakbJi6+$$To>7gtM+F+p$uQY+RDMy%Ldq%Wd{@Sg>Dx!8+tgy z{}m)?3g?OrelF!Bb(#g>ha{r(!9vnYk21eR_rN-$gFD-&zD%8bCIC zDjKT#YBW{LDn?^cS|qYgfIkbN@}!BSAQgK52-QqN4ddmXc6|ShfJZgNopj^Q1gsYW zc4)g`7KkMFP|){9-HE3To5T2m8N8 zI3RcZ9}Dhmu2einvmCItN;fcf|F*aohU3A`r{W|R zjX=$fu&12gh^HL0(UDIIYikbmSQk(Bq8!xO9uYOA_rd=4F~i3lUF6@EHVsLGJT5#B z&B8tafO@9C7(xJV+3t_=n}M-kn)3M0L*~L6CLe@^!?6h)FA|6G;kzI)696a{;ybH- zi~|3NRO3$)ylE<3WF?%nw_XcHeZlh43wj=vU<`Q{YMT&Rz&AP|#S=VCzE^b@pLj*K z{&i0vF(`+?mUhw=41O*~Q3msukivYEpi^pH*&8zVl9hF}rvq{4n#%+H?!Yz8lLqf4Eag@6UnG3xN|F-o!?{ zi6oIFNn+nAoB+!<0sbl{JN)pXnV^zAiGt_sIl+tP@BT>=@q2+2&!u#w9X6Dw>^E#*R zFWKDXHwX-cDf!p%1dwH#L(J|P!_^W#;r+KO^xa#wnXbbG^loC4~3({9YzY>~Cf zrdvJizz3yI381vm@~+x?I0Uv&n6l7%6R}~K(c<150N#`Fk=6Io^i{VLN`RUPPdgSg>NOu)b8l!;erzyX^yKs zXym40t^wJLM79aSZcOTH$V$O#Ny-#aRSIA4#W$#0%bZrLal{d2jLdw}5%H^cH%(9a z^R58^z@1zRU9c0-m7B#5-9;=d&8^V&>Ku;!iK-x|>!y=>^fy#)<2CWlUuG%iNc!Qv zmBV0JM^tPb41ex%rLu5T7`Q~wevgd$2Z1d86;<=f3e}KxU26LUO;W=7uyoly7VE_9UsoJlAvAn0 z!6}a(y{l!9$U+bMLXR+6oCghNeLh2tN=rDs)WYNN-KWQ{mf-qP(_{A8xXhP312`EU z!z{aB54aL>ss)d5FqXE_P`KS|2l|kuGFJYq7bC50u+JMv!PlbWQim*uGzQQSr2^IS z^xt>(QAzj3O~in)_M!CfiQJ)X1dIku!pm54?qRPyuQYqes*4OE$9zFGT1B_0e@xp^ z#R$Hc;W0d}jr7RrLCf9lY!a{(&(CmAbrOZT5bD}?!BoNAVNZ%wZRxG=s9T^a>#4SY z>cjD8N1j-N%EGgp7k==wSsW_b`uV2ZQtJu&L+b6LgU%>RpBud!qHtiFT&}cE@!iWi z%^1>Hrk)+o8ZkeyD6atS&8qR=Xtb8lHz?@M**DC8C%e^Th*iU4z=?m5UXZ=Rj(p(^ zS&iR{b{UHIpyR3xtGyZ7x~yTtpRVpCBkFhwR|ciQc6P>ErZ|Th*-XfVOYPEOl-D@0 zqHDJIQ-_!(5@);2*Vf{dRxi$`tdBV1hRWV0F6R`Ny|om@2`>8#+fE`yU!4s`huv*4 z8i=Jq%5PL&N-jL_&0ubz^v<|NY(vLUr!XJWck6kho=cNz-|9|@)(b10e&S{e0y8Op z@>T$x6mWG!sm~pH>dLfQ+U-9sdPMKAYFZEsACqauPcgubPJtP4j}{i%U_6a^5i1kV z28me(red>;FWu2Z61%+<-;~6I9-AmhXp%*x(5c0?k(ml@Ua^PkZ- zY9?TfEk1W_oyt5BOZBRX$6sbK4#J-IjEpIc?FxC?+qJESV9fWPYe+HJ8YGR^Zq==o z%R8r3EMTo9%Tdz`T%bKki+77qH@$Ll8Km5rN%~-zJa{h9$900*N)XsOtsvFF=bw|$HjUhLIopDKkXw%W#bEBJ019!Z<`B65Q|i9~hl z7%hsKRg2vfrK&bWnm3rlVy@&Vk-!15foG?|s>MCdLI$xCy^7U3@os{mK*ie=s+})n zjy(+50-lBmg5UE9^{g?g74|+NF*7f?St9U)fZ>+;Z4U8T=$Af|9T|2kxzDvT^>QplKiz4wda*WrU{ z`XePYrbhr_P$7&L-590?jAKl;%c{KGdf?TAkav3xx5I{S8g-X8s#T zOPIu}#?NH@okzf9^g7=|OACC+(R4?AbdJ;njSioZXPkCF9s$jMJ`aCbHM^8Q0UACS z^`sS3y)r54^|O_-`0(1g>-&yw|GD|~pZkdaZHSVQ^&e#ZKe%GuIGqWH?6kSHc5T=& zu^_w3+SU&YH7SrNQ8% zcp>nVflQT$Cww0pL}zPh`<7S;D~(bTM6zfU{8^Ut+TvfVcSmJizfe8ufayXTvG zwxwpjVA_Eu5=B){7WWht$w7*}sv&fq7 ztN7teFF~2D6GDTSVL(kB?vYl&y6VKUFhYIcK`zuV(@+L#1QyXiayUd;(A06+zNs&u z4UmGEdvVLBK4B}+*gTK4Ho)BavxK202%nVPzkm z#x=nLp?w5!<2b^1IC?6x(CSo@6KVDW3<>d#c`riIXqfYmQpDXBeANWe5VTHI^aABg z$O?a*DQJXo6O$5}LX`7CxeGMmfjTjn2JBwNwIcZFE01ZpX zdhD%|ambDmLQr%4$kO}pr`#G94G)dK!B%3z{qOp9bBRlpk(R(+0$i7mEG}(~iWyW9|3`z$d*P zg`tS2FLM<&Yy*cwpbF+*ZlA+tgR1ggG-&lJr{<3|bsy33UN%2XW;~3$wKLr^%3BhE*RB-S7sloov5_5Fw$9@;f|-_7jNjbS zc3uc`gXSrDx?3cdFepkA?ag?s2kVb9^AfUo)UgsQhI%kDo}AJ+!UwfuY(@O8NSOz? z^}xhXEb@C|M`)gwG{nRzzQpK54AoQYOdZ6YJnAnN1*6Xk{6^#djdnPx+WPb8jN}|) z@TSVJ`Yg$y+Uw1(sDxXNet&{Ml0eJg?8t~uT>c?J9arP~LQ|_dIYHAPSxMULdRnT^ z;VIbZAehWpXN7vYYNSaeDoxHpZc2L8xt;_wuxWEi$wF)7L19z_IeRQfs6(rYZxV<$ zm+$XB-UjNU`b^H_T3079aVFV6!A;bxbvdj>`y8e-t z#Z`IY7(XI`qid!vrg!2BC)zHVA$ z1dD|Ai9#|lb19+l|1jR09 z#Tz(en9w8G_L=*cF{30vJ2dSPX{BO$yzYNae|{C2t`#zLU9edUMVUK^IuB1O%qx1nT6^b`Yh!e zl!{nsmZ8UR)-$F1Y&5o?vq`|l^svzf|wu$j8s!<$FDI(iBgB;dWr3Mu+?HE~3dymmj0FI%<5&#ai7L&-I znMkXmY|28N=JR78?^V`bph1F}CD+p6=oG^=mPM&it1RL}?vOI%+LQV=P&a^3O^`+p z-66e^n0I+%^(b$N-E@6U1G*LH(yI^S9j!3Xh=6B5$(czl$_n}^yL^{QvZs0!LbW%Cpy9-fKN66(xkUY?`PD7MpXk9Px-`a=@@JdzQp*NH#n zBJ2qy%Ep!eGf!sA=gbgCcbGQNw%I1ez;)Ecv4%`4NifY2y2@gr!S0EtTb>70tiDjS(j#_lyw_Y>OF@0C_|H6E^TWrxG| z3v_dr#M`qQf3yfETL~do6u9QAcV)hcesQQ&8ZI`gWL8X9VZ{U`!v)UgYQhUch<+4o zyz&HT{J+)B=-C+l>zz8SB^68D z4%_oudshz*ZTaj&k}W#o;_1J|nx>f`MBjI1k_ee_Md-^{L{dSb-2Nr!>;isPFI8MX z5kbV4K=rr{&(-sJbAESzzS&sc*%y$ka?9)Oj${{jJ46d|61dKByXW|Net9EHmqk6> ze*g5|;W{HwIh?}whFt4ejM6j~n-vMXh3H(lZ)bcCb*uh+anJR#EarA|t^DC-J#(Ky zA!+ru+n)Pt5w4uLc(vE-19(a}tvKE6JiWOhGa~*89sfj~s8P1W53Z3v!oK|zzNv-A z_X`f}g+JS!I7o@YB0nMJ@Fa->SUeWx^YRE95 zTi$(w^*ev4c|7;@$(+9gtTsOv?rz&i=6hQUNmYTOr0KF9sUZLD#hi@ICavD#_5E_O z*LCi;Q~N4P3aM-T+Z8=CeZaSkN+ZlKcj3$rhsXP~7Qg4~=TR3laMWj{Ccbrh^=Wyp z5U}Vub~|w)fg=<;3>YVYm?rP*Wx%J$GG$xw!)cdLzJJuZ|cmyPy( zu5R_H0;5-|=G7{`8$kP2=K4hj0_+4jM4|=rm7^7n_tHDZlPe8-%};ln7oCxQaB${d zwzCZK`cY8~@e8&L^9F|&X}F}gq>Ou!DIi`uU46w}@^o~)CC8uOQ~oW#@NE8qT2tOi z!y*EXnd~jcKq~|A-ea<8L3P*@d{{3HdPe6e;2eP z${+Vitq*rgg6u-rLGXlF<7HF~U<{@0Tx<<$Kx6PK>Mg9j&M){~`U_`h8e9wWZPG7Z z1_-gKgzQr)cLk9qwB+s_cLnRJ7vyY%vA&zkS=Mc?QnHR55I|qbX&wYBr~pX_ zrVweqq*z`QJVyET5`nA>Nk3gTio24(Y_AIlsyA2eoVS0$yT5o>jO26njSo@tO!pwL zgU|WFZx0|?a7;sh13;pX?|ct(bQvUWWAJ^ z6RE@}rdM*xblloKIo!_Cqc$Re1443u8y@HFDO# zhGub<;}DJFQFPWx>ztX`x$HFD1mDs5qZ(t}c6I^qMPG8W*eH28+0V@?<<4`vP`=1Y zH>JdZEHK2wU4eR>QhT2#OFiiWGKb^TbZ#LBnpDIx^~dbKT5I|a@pjL>N~PJfFTa2t zr=fnL>;D!G`Lj|`&IJC#atKsB@1J`}RjpzsOd~0wi1wt+e zN;8MO}?_e6h?InP2JyXvU^Ao;qm? zQN5xC`GLF~FRl30jbvI28cEO_$b}LCjTq;2OROZ?0qX&Bdz(pvJG*U~lky~U^Bjz! z1FN~DLdUUDWste0-NSZM;Y*tpyVgbkrzy1wg|rE_>&&%_@-*t2!c*^dSR%~9A6}J% z@CuiLa(VQrWiAi`FMCWvMn8(m9C&k$BgEAExUe*15T*nsbnd)aCa|nH7Zzkrc)V6; zd~uC!;GPm=8q*j`0Xq(8VmR7E!*IyiwnZMc#`hfo#Ja3_A5nXNP-;I+AF}#*rO*~> z;9KkmGXM@?;d6?NeiD!%f63V<#jMZ-Qn-U&%S&(B0%4)IViWEdQfC05Q4rzTQ-)hG zwxLF#x&44$IVdP6l)yPq%DYy3a}4_Ao!(St?f|RieH%Hv%K#?*CZM*kX}~`opj1>s zQ|SqwuQYd{-0fFFkGMm~^Qhx!pv9f#yT%aW-%u}5&Qec48Gd|kZvl5m(?KPSyj&zu zL7hlr6tX10l_}q~NYaHk)Dqmkm@pHe-HZ?K$AftEfUITkl{Q;>qvyxrak`%2TM-^U z)n4T8ND_6JmW}48V}hQ5;v-gF;)3HC8O}@K_a$=) z=G(})ewhOhYQ>ntm74qh)0_9)U~R&4c?~{fJFS2bgbEjw8~z=krYb?}Q{b!?aA2Ry z1;jWmRWgO3j$R|SPc|M=4WRJECzUKnWCGA_B{>H#Gh+63fxKOb>HHw(M=2Vm%;0&* zJN9DKmHI5E++thqx*++mAjY&$h{97ARFX)m7}~~Lw2BIzu$j;hMfO~(LfpSyP=obA zHAb^2CiwlS-ADAqOel*55saUROjL~+OH1D+YE|+RIn|WQ z-Xh^ZiDxDq49_2FcyW>tO!9jfAd+pR?18EbDO3x2sLLEoHXzEiZd$QKk`@v5yWvZL zV{-~J!?o_$0H5W9O@EXwDiZJI!yo4+>)kpuC3WI0s0!~xd}4%Uok4oag#B`ovS9|B zHRL%FeFS7X4}=+biG~I_q((+N8YJ5>95vQ-S5`lFJBlxKuL>R0gHp_~i1BI>6~|3H zN>Fm)oP8_KW1wiwJqdy8W6&yC+JJv8gYBnI5!5OBpO;V5uzm|`jgp_zp0i87t zR+TY<5*8dh1RSNE+diD+=Ly5x;m(m4>j5%it0%Mof%V@^EB+T_>1IWGz#3( zN@V0emF6p%@8xo4N172G+LmoS%xQ0?*1E50M$t>G0l-O0! zGeZk*)1ao;-)cXYjs@&|Sf4tSK;9Ur?X3_xrxm}4~)gH=(``^&F|EYz}lE97~Wgh&ht8haS z1V0v>P2azKlm`o{+ARHP;l-50y1WiP);;+v1(ER-)#?ly7s5n%louoQCnB?x48jCP zdi?=}uI>W3C(1!U^|3zVI5}h+|H~@jC}cZ1g3k}lc-m^~;tgcK&)jvWLLj;uZaiF! zKt0zsfkE}Ql9-Vv1m|8a(2`VV<%cgv1k3NJBW>J-Sf?M!giIN#(KD&of zEDol39Nlylm+T*lIP$iZKZaYHB>+hL5IMwx>AEqV>7YcdWv$fDM>kmQR9Rb)&G<@s zA$9-366@S+a-Z@T;#E2`V*Jf#ygLL&<>#l=`*!xWU25 zt8i@pf*DMJ$W>}VJa{6Df6IX;P?YziU;mX*S7!aAGLd+!(c(|~L-XuGO9ZSJgp_8>I=)a0l&*%k(CkI=eMh-4hOF*drb}>vLaWi!O6Td=N9*G zR(we2_v0TmI`$LSiZ2&ucRANEJ5M;6=(5Ve@F$nqPt>dPF#XZ#vCniU!@=~RXY;m* z9eEt8!qN}*UNG#XSqGZ#)Kh!ulJ>lvNvA?ZD7;y+NSb48dSuo^*SjpBZJ1%Kq25~eX|)2NTtTk(8cxb!o2xdj;eC@unPQRlsUJTx_e1W-{YaJ zYl82c9^nz#@vWCraiQ1n7r%IPA3z=Vn#0SX8}FINIms5{u*WrbJZgS~o>B|OJt=I@Js1Vf+to*I zH?VLcYaENYk<-xyiQ1GGKhT0e9o)tik3r3pulF&ITAP0)JxN}fWmr2L-oML8IN$Zq zKovBp*m)Dx%mN1-P?c;+hP>O&)i{ry^qcnSx`F3yT8x_asnsM2aqHDAG*WR*q!lCc zXDJPTLL`MS^rz@>a25n6V>07u1XJ=0+m`Jwy9&83M)x0Ac!sa7NcaDK(L}=Tn+Vki zWlqEtPG|g}={1(T>Zmnh8UmNC&v}9usW0vVnMw8s{4B2}rDW1rNs8GUW-ch?k~-pv zn>M3>yBOCiWP`*UjumD;gUuOoaVRKMWj?#`V=_U<%)0G7__31avTAa8;JbDvQ=3<% z9H@wghQ1a43!GOjIWz_w_k^Tx3-Jw{+ef^27v>y@ zV$*kq#C+&Ia1^?F5sFIN5`QVMG8}HjV0&Y=H1G^Zrvxqa6#C%&&l%R*fEL|__=(m2 zhbizE80V0V=D#)vO#fSji;0zkr-OfmR?tQW6D0twMfLIJ>-{Hk zK}Hj^X6bgn+8+PZK1p}mTIC41-c>TMdi|>?sLiH2%;Ei);-2_ar+gMQoAvi|~bT4hts|lI_C`+e{~VPq{@V#WWn2 zyhBDQo83`|=QULBS*+Ut z8@A7Paie){0%qV0C90I)`@5aXvm7@=tMZa(@ub;Wh@}V0ucaJqw4JLQO+!mnIVZy( z`b28eAgE3!2mL`wF?Df_{&mVN!I|gPJ0I%%-qRjQCHxPV()ZIH%@;yKwwQfCCzJ;q^D>EmQQQJVe`i6=(dyE))6K#FX-R=`0 zQ3^`|Y>y`_+#XJ$^qrAzm4!y5^m)rJnwrAzeiGxgE*yihSm+PrK5M@$>e>1R79{2M5TlJ`*db`N9c5}NFCw@bzuXOVVFovP}BT*(Yi zKRlcJ+_#XLkUG%7-yRyD&g4VFu}6XXTK_7w2^E?S(cW6N+eA-q3v?X3WmLx8t?!3f zj!E2Vzg|Upnr&aJ(c%)UR8YGNVJf)Q!Y``vS-2&kY+-VX|C~IcIp$3}ffqptygK^s ziiW21+gYBmBI@JmcVC)**Bgdp*QKrUjKfM=&!agv{&X4!;+hOv_={g}>PJ%T(ounn zx+7IJ4(u#;5 z^^;zDhuXlrR(WWS6Wv&rKSdxrj3%foN-3xy84w*b*m`_oN~JDj?AVPyoshd%tiQ!+ z#zYE5N0OT^(-(H|OcNH(sq&$G)bwSu`*GdOtAv?VKUltFiJGA(E>)2^L!8J)UJhx? zwCC|&`jAU)-CSqjl+HJWJyn+gv)JaMC*_yyk@Bb;0=dZkDY=q7|Q&TtbFPY5N0<($0aNn`MQ9lc> zSvJV3fuY#nOA3(pN@>SCDG?WyPfs`u=43>4&!naxJv{pK>*uel1{`O>^Ng+DVJSB% zR+DwzAd|o|x0)&uyA#M0GCNDRtgJ)@4W_;Wvjc;$#+Qx{wCk^>@z4<7p6}UPq9sFb zTU)pgw|#-;cC=jB(o{sr+>?25$+X7UNLyWq$cX51byTQifNre3>NISp`LG^#7vKc# zZ}b@NY5~6_6{TuY$cayc>O8&vqwbEFk35;3kpVarSFC@jR_movI=3hTzl;}cAI&x1 z(^!IcZoxDP>CXmBZbFk0vh!G?k7wR(H}ZR5LWmRzS#Y`X!Jo}#5M++lSVj}z*`jzF z)2^*wjoJ*~xQ#Y{Hbn2BHrJMjNa5sNw>Df;m->3?%{q}BseO{szSH(qj-q0v<{hHh zhs5N7ZBZsWSx{F&r#NJH-mRK@iI&@l%a{qbsG~jN7FFkuEH(;s6NJa|mccuYC$*1| z6KD5n2;P}ehibx8QP9^KKWtDtE4x%AFzbeokF7ZJOrVIW{~)TFpgjark8Mss zf-q-n|N)p+B)0>h?DjwTnxGSI|a+=?qvD`jLvcM#@9mFk5eo%6th!Vjf}8 zF6+r$3icCJ6%FkIGYpQ@R^V|UoCk1TJt-0tnfGRJuEG!i5iPRkgm0M5iv5fK9(7`! zkK;>Ei5tzwYb!UeN2HbC1J^|k=inYL!jOGMfZ?n%e(?}cAUrDy8c4}A$z(&YwINzI zh@J{6O3&jhQrnBj&!2)HTjnlR6qvoftXyfS*ca4|Z2@R>kJ&BBsYyW36z$Ug_>ij4 zA*@m!l#ESWu4wpD(3ER|p6kX1cc!u`)A`q~dA#G1a`lrn@2V-*poBkYGQ`3#~ z7AJlIZA2kpD-G9l$F^wVPhU_g-* zB`dU}24twbtkjPTEO-;DBv{WuGnUN7mGotH?Zx+bp9I$RMY6dOmF)IJn8#{6uV~r= zHFCps(V_RC{n>_9d^1C%RmN6jzWneS$22zLWQ@kP;M&=6JeHh>3@>jtF!GF~m`0*y z{{k27^O&aRK`|?ciQhYJZi@sutA{3*5Iy|d+NG9VQhT#Tj9F4hrG)Si*SXntH3wK~ zj(F`(TFK~olY=)6|5-5mS6)JnOIfhvGirr#%X?y#<_Gnyz}lt#y%VH9D@C3~Qp4af zMTh{L@F5&5?jJMWIe4YsVfr%r*m7_D}E)lb=R$x+j7+(5RE{9_b&%E>#gv5s7 zeUPKkaR4`FcAtLDX0&jgct$1bx|E$6bEzD9^uWdec-0BaglhJa@F4|#tDulHz+O1h z3Z6cHNyX>`4?l;zw9@V{R_?)BQ>tLN_wu&~a9APK9k?Y+Zv}gfH5de zQjP)j#(815zJaV`S=SkLjr|4U;Qxd4!Kwm=1n`tQ%e+8Tz znT35cOWfnZ9aMz@Gl&MDi1Htyo z8LayLP2rN|WxrO*bvPOm>gj$H8Q$l^B4DW_rzp-Rwp0jt(6ny6;6YQwh zWMxfHsy4^1AWSJDF%t|-Q{#WNfH@r){odet9_rM@k>|y4dj|kU4`aX?KpA@MCxA<- zfQq^2gf}Gn(annQt74!_wFYx3ZlLS+?<;X@s|nzzQ_gC{Zx!GK25nVNT61nkfW}V# z821h^;G{3bZUcGvq>DR6y9Mv#jN67hf+e0|Vq;G5_Cr+4=_ZxD{3Yu*-vH?*7;qM{ z^YD)p!}*U5z@J~wm!-eJf^MRo|24%j|8J*QW=59()W82tu{Jau_P)Ibb)Bk(Pi=TU z;RxmlQvwE~cCLL;ARS0dNLFv&6<02;*FNN!_3Rwyyw5zU0(QMwPifE<(xjT{*jCpP&B& z{1Q+DcD5jm(6fteEBrZ${Un5CB^C+7X*eTPyHk?|>J!RydsHFFqif8=Hce;-oE*I= z0D=*MiBwm+=U1-~(f*43NkywRiUWP9{Gp9h7MEOE{p#IWHHDaj@XqjRcaX2SId;v? z{9-p8!-tkF`}34mKZkkV&dn1$TbPBp&ntUZ6*KNgq4FSQK(MeV)KMOrs_%v$-Y8@6 z;8XXZD1{@p0A+XASyXHW-ej4C`Ze-ghl?1&r2VhbZK?aL5x<~-{otMv=}Sk-j<5tt z0sUq=(K$W*eFL+tGrrqAX{HcGo&<%*IBzB{><{1GWf5IgZq7tIF9W}>i@Ry?qcG3# z@W4_9hc`S4FgUp(cwp=A*!IheY{iKGicwV^n)w|!phERtJgi9O;%|wF9zqjnz_>5c z-pPzC*Gu5n9-!w~naN`G5MI3;Q~4^@+xe!e8j2kg+B9yzK>$_(e=uH!`;7^VB(K9i z-*>jh$QZEVnW+&X-U*^>=3l1A%zIH3|2|L@H}B7=qoIcbtkZp5w+3X3Hc)Tf9p1ub zqWn95YH(z5c@@M!0q(sb&5FtU>qICIm86=?=fGirDr_9uJctXh{p&^#L|X>r?J9MY z5tgnf%emXuN_?zvZi1f)rHr6EkmM?hCh@>2K=+lC83n5>4e5+$ZWXi!gv%cn%K>(J zI=`+iZ^3&$LRwQV?^YNWri{-`QzsjGAAyZv`5xMNF{iEr_9$V+o?OJ6TNe@hvGjS= zXD5_wmVI1KDIx)A4KmO1+eWakfnre59n0wmW^fCN z#lnHUc}`~6i)Ma=vMr(D*Um4S5mz%%qzIT=1u}U6sNfyAehB~w=q$dC9x+JJsZa$n zu=y-dV-hys%P1owG6^eB$u8|qNIA1hv`Qa$RX33{Fnqp*6k!5~PfJNm2}$gMS{h>% zd52o~V(Fx$QLmz;dU4FP;-qeEJT-$71lA(yOStW++ZpccRv{EkjW7X@6sqMiwxFX- z%u|d4R|LSFObK?egn`a+rVkFBKRcp>LnvHA;rXKp$SSYiHKY#rGIX+cZ$61I%m|-& zx%746{V$j;A zE(bV$d_%iGYLJtW*ejp6<1x=a&jk*X>d%I6!td;BiuWJgs*CIAmI#GZ$2`R0UHDEb zwFos<@kppM&^VpgDr+yX7--j9I((XgsO_PEUmB%Jw-BVN>5nEfHJq5Wd1hUoyOfk+ z49}T=FD9%?FWt}26`#AJX2U&l$`pGyke|5`Bo6~bI}G;-mT|lha{?kgtIx$|F?EaO zYKUf&vdaP_5KgHa(T1ewJ>4x*nglb2|7uacZ5UCW#`Pv_Fk2Fr7WByAkb!PWhD!Gf zltdVK4R)>9(J3CD1fV(!KB9>Tk&dz?FDUor&HDmbo|TIH*G=%6Q6%$8U6PP&4` zI~-z1S@cXUtcZr&^f@Fk=ytv4`YMieuuKq61j(D}8N=;yzig&zlW;5pc;L9>7)@Ug zP^(7|`y{b^=KYEEy;XU+o(z1uot6E(>rycmUsEQ8(a=26AyEnzu2EvwLpqM{ zwm@1K86aVNsn?3$gx1Q*o>KNH*&(+O4sN8lrimkgb)DBGp^$(w;HiRG`#+4mLv$$5 z*EJm5wsT|Kwr$(CZQHi(+}O5l+sS?NTi@gx{0GmdYtXB@Yn`goeX#ci_W8N4O>Srx zeQy@}*8m+O($D$LnQE%>Id^}Z*Hvw*;ETUUM5+$5tFaojLQ7EC|HN2AleL}>Tdlpkr!X=MwYSUk2KWSUQ=nRq>nPq!6EeCM zyJeP-=9%fpdrzgy57pog*x%g@I9>JuE{wc~_LS)G#5qT6-x&c~tXs%QGrN>4r7iMYf!A zNI4Gr%%>CYJS{l`#}KUCp}l`B((oclOzl9t&KO}aLQlZYB=1={E+%w=^fYim1G9!~ zRo`01D0K&EzC)c#JkCTrau4M3{1LgH6U@03OhzBdYr4QSQh~ZG(jjmN2+*`tGJ&4K z!H%k9Ku}7+@>>Gx6t`=C^XFI6W^a2MT@}?gBn5Rk&{pSZ5lG4hPa7$-Tsl_w&OLWr z#z9iUeSxjDI#^-Vg^+Y%*^<2T?j1sy07@CAgSngd0higPz^AELm7{FYEZCI760z;7 zAQ@hleD)A$19+pI!&ny}M3+Dr44lMp{eHcbl2h=(YNZEzo5>=x1BTxf?OB;hXJ8| z27nNa*zeoD7g4;B<8|`!B$W~Udc_11%0lych576r5Brp$zp{y&^WU2RCTLo;uGis# zmvHO$M`ymqf3c@i=S_770DG4P(~W+^VFsLMp1LsTwMF$LfxDTxnr(+|}C? zp25b`+GGn&DVAFku_Unk{jaCB-gx&Kz-`o*og{A zDz0kr!o;zZv>Muf7;J9Jkg?57Al3rx_B?%AFP^zl z(=9iII&M}j;T4h$qyS2*)leKCrCI82=#ubm zUDXuZ8kdhUJ=g|1@59WU6c(A|`J^se6?$oTSyg}1#NAXq(tYRqNHNnKI40OwdsD;G zIg`X{rClygc~|=^ABlm7Db1ox9zi1QO_bv}_tjEY*9QajRrt-CWQ`+(^4zjZt4FL! z)msFUTW^Mry;cqQjup}1r0$Pwg2sR2OXRrV?{cM5IjQ@^=Q75kw*BPu#YWvD&_wVO za95zd7vY@=V2~UP!Hp&}+Zl&o+exRYc=Ek^JipTD^6&OuZ0DJvH3EjjJ|@+`z?~p# zca;u_hJfFw`x&W2Pe%!0+oyIE2Sqd}7-CL{qcTd=2H$Bq|9cL-kfe6zSsxAw0di`b zws>G>IjY)01eN9j;1A2+u0rv~5q&c3+uT)ShO03{o_@r#nim{?uA|_uP{4d_ zmp&UYq!E4ivwD~t#hxBamp;2VA>+RQ&3ZfH1^Qy24ZZ#J6~!ScDKJPzpq&cw1Y^;o zN^pG^q37SEvLe&{gCep8`vTo>sImnLLb!B}l2Px79k?#?A7E*&@U84E1(_QGL(nt| z+tqM1*Ps>~W<@F=wxQRLoM}KTHr2vy{IfEj23eN3G3H~{FMQgnpO%45mU{3UbuZ85 zNtU}noK^qd0Fbld<+|J{x4pc_s6dkYI6{PV$V|^bd1(;OJwd^|87Wc?BP9RY+&MvE z1EZ{meY%{u=5=GIeYgy_BrGJh_@+_>ZZ&i$U5ZrYPvUL%`tq1uD$-i)B28 z6j4_s|9G(^qfmSJY1Wp3@`Hn1fhC!x5cGTA%QcLJhQ$R@q5JxbGIDkc({uczYbl<~ z!c4RO%tnUiQa^2%IKgl`fU~h#_uCRE?#z0|(zA(^oV&kLNDag~vx_mGcy=`2R-i8b z4Eg#$gUdVe@D*9W-RFE=iL(pH88heYaw!Vj2*}ubWm9d%PP}m+uqqOUw_H}8Gi6!- z+hsM$$-@ta8)d?AwQIav_~+$^GcQIF+Yp7W=@ATV;#w1}GY?+W*;;4N*`Bde-MM_z z;Ss!%<(nOZBs&|k0In95y6y&=SC7BWL7f?US?h3|00`Iqz6~&}Qs9Z-=+$b|uJaEY zEpRlN;5k@CaS8ian#U%{ofQ$mldQ4dHs0f>z%Sytw((W40T~vcA z9^D`fF3&%Okm#Sr+gH{5{**NoadKs@12|>8UvQ~-Iy!#1k&1lO*e#u1k4`1DdcnRc zm8Mz6_&vMdrD2{O{qN*GNaJAu*9bP9;qG(J0;02O?YaDyp+wPzxe{vEQ8qU1R$Puz zO9G4W!6)W|8?63wv1=Q&X(>#vZ+Z4QC|?AK%cM_FZ`7@4*PG~s`vm6?f!*x5IP2C^ zD@$8#(TKW#Qe(4uZotWkcnr}&A|$>-VS5N_F!A&IV>~3bse2V@SPbr1R{@Q0OiEkv zh%XZ)1?n-MZSWDyN5NWzdbw^)!D5C+O~JRb@SJUM zIh|fjIo{WL{VWWcKR|5!c4hR)T|p(TDNN52v{`VGVdXMok0vTo8iBW^aglSXan|4v z>E-}B`u|0r^KX+EQmvgQko37o?DWNIUtpb=Z?Yd*jCNQUrSFQh{uNpVx6b+exxXy) zqifbJzdCzq%j5fguXFr&`|uuw$Dac7^7ni^Z}GB%d4sjhZ~N!zJnntie`A?KSwgF? zrP0zrjtbq-rBb(ysJzkICrXX8Wuuavv9z<&{h`;&pb%l>r@OpDhjHWLNbf2(KND%a zwCoqnFcn-I4d+x{c^th}UM`pXXL{jXeuA7kw|`MM{m7h0zJU53KCnS$GQES(f)_wv^RD3shY8MjfkE$&G6wG<#2-f?ReAL|#ENN`)u=+WnW9YdP|?SVq+{S`}C+4KMRIP|61S zj=EZ|byl9Lir|7`Uj?dw(!j6-J ziyM_Uc3AVb@5nmpH~d~op5y<@cCh~6yZ!0^Creh(ue2vI+i%T&zek4HUZijbdyv1& z3`gHiV~QqA$=?{+80bp(GG_mjvNg{>)%M&5&Hjg$hueV3i z2|}q}|9StBP7cW~Jc!#pVs)wCgYDh^?d$mNPyzz@TrT8MF7ID}QH%~2RZS+&ngM3YYvjJcfX`)&mZiGYPLjrwB9yu5~ zz`&BSKe8$;ypy1rk+6+i(BWVpz16$iRQI03v5Vwd@9A=Huc=Ed*t zQhIM0A*>i6@d+ckH&U^0&XC492O7Y())gA4^CvH$>fRASJ5yTJ(beA@wb0kziPIpU z2HuZACUBBSG834a3y;^yVQiFyIaC1zWh)Tr zl99r@N-Nov0cgbkntY_>4N@fEJMrA*4>q(troT{IL1xnwa^A4kokJpZ8Bwg2nuSll!n ze!<%KuTdUVX1MA@S%yr)lzAbLrTnd@+GT#K>7NpNOYy7)1SU<*HN~e@&W|{3j?L23 z0KdlNp?U`DikYHtQT^l&TzBSJ`0HcNueRD#oT~&*DMrl#FL{yu}N_!Ir5S{{rl=Qt` z3Za(x2^V1eI}*YCKb?rU6iS)5*eMc}L2&CY%3mI%8Rz2^Jc;z>O8ShEh1v@b>^Z|E zR8p$hUnn$5j#TnkdbLe{%Jyuvgy^P$w`Co+%yS{KlAr6$bS&;x5}wgV$9Ke7;jFRy zXKFy6(t5vQZ3*JyTf)D%t{Pz!Kunp0>V`p#(|plIWMe&YEM`!kN1h$6HW&#j zLn@37tBZULTVPhZzY#pR%Dje7!Zr)KFp}yDL{cSQX zs+678;v+jDfrl!^st*|XpN3eQtx*l#N`lV*2z;jE5zW`sS$N^9*aA-j)>LQDQ}gv= z6G8BJz*K^TA6>KFq0R07ww>GQ?ZP7}N3XtSdGLpboLbjp1XgYeF0|eKfFk|*2m`#x zCCW#sEW=?C-zb{|tR%z~5eua^4&2bu&<_>ZBj1sBElkA?}nQje*Q*qm_7N6)iFcFWO|fo6G_G+8G;)yap@YxL~pLC4%=pLt1(~_N9XKFE-THoHCVwV#{o>jTH923WCeL7P z^o_EagWQVvsr?w^y_+Xq^(~(&l;$Q#nr5?`c%vOt-05lFDA~~|p5&XP#3l!26r{QW zg=$WA^hi@iyC55%c2#GC)^g=)wdn{bb<0-Lljzl1fib^57;#Wr8ASs8+Vf5eDdj~H z3AL@+amvhq%);s_&=`8FR}<07B=O%FlnU+8C@9Sib)C8Q9|V)sKInB?`fu0I@fzl{ zHq&(QpB;*O%&^XA!@fznPfq|dRE~swkW)M4SRIqsw&SrIBTsGHg zwkDCpLIR9}wd@!n76}n4b7-GzD#>$X+N*PQ_U@z^$E2b3s^M0t3^;CGW(f2)oICLp z+5J{gE1sFITG8pSl4Lk^Ix~$4@316ctjr^ceRbVQg$EkR%8C|;W#eK&q@?uNq!$~= z{dTiKgtm}4X^<98{e)j8%YqRFH%bo0Nr`EPajtfHdPiT@%48>7WBZtqX7ycPd zL-B)o+TH|W+8e6fF@!KtP`enI`O9+dLa3J-n0pMpKzz)`c&S;zB@+*&1r{>qj{3oI z3$!6#$V+y$$BkkT6Uy7NE|&2N+hUZ>OuFw_NPUE|(lz|G4-&3Q+73pf(>b){r4nT* z(d~sZE)fOml%#c@vBcT0r;bcF28*akaD=q`Q#!eS9Qkr@KM1(M9NqpSr+(m_(f`I) zJs#YS0#DGtis{+Qb`S1KewLE%(JBsSUl@LV9{11LclcrfVz0%q6mqHMsChlD>!Gx-#?FOgV7y-NTVHp%73f}ii+A8 zP+gcY$UK-2!iiWI1k@kk-W_~1Ne@aMUt&ODW{IEhFOC+rCYF5JkNo`bHp*f(B4cAP zYMwMC0)C(eO9O_KG2GoaQl?4-Q={c~*SL=i8Zm<5k5ctBAej!QNDvU|}H3Npu~asD~@O7{G#I0%*E zjXsTPThdpV3auR9P$}`Iix8TlyTKo)djj_pOP> zb!CEZwQjj21e*)QCzV+X=DJPI9>Y(rAEQ!vmKAuT;2}hDR&v_^c~N&pY+}jecn`9% zsB#i}aWEg9M*SM_iG^TpfZ20^n^YIYBTjCsvhk!V#BF&P9rwUj zpdd`2B&KApkj1(A+k7=@l`Y1Mp$?1;{BDjFrI_Q0w}mRshN_1qHMCQ(%0g8h+N*Lq zMu*PdF7=>5mY_zTk;BHZ4tXqpkYPJ~_$FZm%byaqtSW&lc)TF(to+@9XJ}ZA1*|Fx zxxJ;M&t6)H?yz53mr9DF*!Ya*WwY?>u)jJfP;dfTEUd zttcQo8g-*0UfbFRYcf#fbnBZ5ao9+kk_WtUq2FkKSa_;1L$W4=Bu60}TiG`&Gk`p< z%WqfZu%>izvDVpPa_uokDBy=+& zd#qzMJb_x7Y3t!!0ou|bOa90+-EZrYCJU7@M&72@hHQN^oDIgRhFuTnLX9RU!y^ox zkXz>4m(@Z^h{cKi&@!v+rB2jd4W^(b!Q8mcQ21bxcaTkZn|sBMzAMk{_mTc9^-jF) z?B*#OS0qZCzW*DP}~IW`LuQ(iyWGc?cD})A!`v<$Z#PIvjAaRSq$Fp z3v?u)ZzM<=QETLLh|+qHC<#u95#bBl5ILtoBdpu#lK1Np=zoc#K-^2q|tXT#9|t0n298L~ul7 z^f@f1$8S-Fov-Acm6rLN>S%Yr5lBaW`%+%6Mj4#1a*64`4va;&j+sDEw--a=FHeC2)b7{Nb z60O1q!=~0RcUtXTJ-2g7h-P~GPgHO6xE?$3Q-dq(Qj*Xl=D*A%-)yAgT}`EYKC95o zfl3c>OV>&}I{B6posVJK?*J#XmK*<-%5z}ww{uMrDG?0&#)O+}ijk_v(oFA}rAuvv z12iJH%2G;!NtXzi;}^^iuJ|q_AopH zd^gz+Bk5{yo7Ot!?wa&&OG42CYMa&#OVA;g-jzB==V`r5uRz6BiBiV*KRHMmzP=4` zu2M_$IR4k>H?kviF9`B2nqvrFSvJ?Rh?l454t|06PcUf+vy{P4psym&6T29hI>iF> z*edd<=E#>#+&-_HmcK!o^a=lKP_Kqq&?XvR^qWzOFz|?sY8Ix{Dm+1uN)oy&3SK0U zG)&dThA~p8*k#c3d3hh(PEJDZ#jbJ!tf2duGwmXM8RCz_sXp6HR4_K8Z_fl;Mtr^$ z9$dQ;$KS;wNyfx}ZN=My-a6y4 zUsE1!-zKS5vC!Px1&ZyrAB$T3)nOcZ=#H6oyj?Ir=rtZxx#kNdu8S1{5vKj`i2c&N zcxCCD-u&m7<8;&W6_YDWT8wj6jZf1XVZ|>7`TOzX*R|9rrC{NTHhbothl2o!tY~wM zLU{Q%=H?kKJF){IJQI>r8+ZqyjM4_z{6%Y&Kfrx8Rw;T$^oj52s!NXgjPms*#i_ta z-)Kovx4=U*`|5BGBN}!dOkz-Wu17|-B(Y7cGPt0ux#6G3EXeFN}u-G|p#DqfNVMX3t~cpxKS z_pNQ^gkegwsOLiA*IQX>W1e?{J8wXsYsNd*^CWIA%>-!`#$f(7pdO%5CXLQfOdF zqHW6hqto)mOu<9MhM_5~$jeH6Fa%Hq`Nu}U(*{P>f)3i|iRK-Sj)~pFRD|O|0rgZrw5JJi(TsSvWE=CFHvL z*gfoXW?;(IH_dBqBZdTB$*m~obd$+49Nu=LW{FO-g+Y;fx+&UXFa7@oY#-%X*8nh zT>=9H6`fv>LET3y$l!-**XAHthn{%T`41H<*(w%V&k2z<+McZ_S_*Bj8XcAa-!B2m zY$)4+G&1ueR$iNYr2(M4oe{Hq9+Rk><1Z=bkKnu<84Kh~#~a??TFTDMtTF*?s!mXb zb$>JWbBxwKg&R%KnH8nVlG}~vzSIYJJaAJBfklnh>wJjH|@E zedkVgdpq+89RH5Az5$@lev05a)pZu2-T4dJV6Uh?qtzD2zlycleLB{1H%a!RNa zo9?jYNto$CCtiwKt;^WPxgZve93DX6GHGwO^tSy`sn;tv`3axxMT*BIs5%{ zVevlEyy}$gO`Jt2#s=d7$Of9qDUeZ*?oEqE&px7Nv*ff@1iEb)YJ54XK~Mf3)2zB9 zA6enn$jWlWyavRFgdKTDAs0-PrDLG}7-P=cD^U>q*sy3v7k`KB@Eq2AAIHY`xU%yr zls<)FzuqI9w|*;2G4GDAz2QUvY2k@s;WGy&cEJ@G5}jo$GTxz)tU$yS0!j@JnrBpv zcMu*h-;oJqHa9~U9fuelGU7w=td1Ny7`wT8OUn@hHJ0L8_c&38^6Vck{EGV zv{tzA#W!~}2k(c#Sn;fY#*I=MA@n^?Ll)wifGUd1$?j2$xS{D(hWQwVh|i_(<5iE;YVWLQAwI{Rl)u2(aMqd7mrai0OYIq4>W9z11%WB&)~_(&5pxPF!AJcfbj#Lm9c`KJE$&zj zl029iPQEFD4Jrn)1Kn!Aq3__I1TY%x=wZvY$NDC(^zVRj-Wz7aOLqg2BgTA-85;`C z7eUpM1MW*FMp>YYVp-j8%M4aj3HaUmRX8K4;u?db8qGX&>lvruSQqY^3Ae}^QVd+{ zDJ;Ngw7JJ~D~?zk7{?n^M_Zo^#5AGZ19CM4nbxffu-2&;X`ApQJ|UK|x?e57s5#xW zz6XUG70+V%P~lMJtM(Ku0!&8B9t7md{P(!ij)H-C-@oYeCW4ky29{o{IIyT+xP$A) zV8|O)&(ie?(J`bx7&Ph@;^bZAH^=tXH-Kz6`?FyfbnteNOd_g-3ABARAMU33# zsdC$(DZ;Dv2X$1XgszewJXP|RJ+)wK$$g$(BhZ&d(cGS1!nFkq@pUFpE?RzL&YeL%}D0nlUDkF)$ok#WAe~L!n zFJ94F-@Xq=K@_4hC#5sy2UG!ZBLYkdrSnC&iZ-G4T3`eRm!cXjNi}kT7dydTu9-%B z5HnaSb#u5u2yU*)9S|jH%pQATFuFPLm;8rx1~H#go!<2dzreEfr#BmH3HzX946T@> za*@TvtZ{{H*6E9j{B8G{HtMLD%T$N0pxY z7fk`|TY;F8*w?1BVseG8b6u^#nZKt6D|S34g!POVvkvN6(I~FvMEFhAZ$ArM+vM&tD5fV z@{NTlMiHi6%m`-r%``!x0v2RlNUWrI0$Og+Mz!!(kwaerRd!_ zymtTe-YM0n&N=b0icI5{R;9fB*nXZghJra#eRU_lDy`AturFb)edVRU4*pTLrl*<) zz3UPP|2g9^zEaE1}_$T?(W6fd1(2fb~h(<=op8@Qi?giA#^8ioHAEDm6F z58y?LZ`0>gV!m}0K`QTGvuz%#^*vhElgQ5^4Nzp?>E?$c*WKQ4f^#h^)A^+OT_mv} zI*xgYOBz)pKkP^gvwZAmmKJnQu*+3Vkls*R#eP$JI#?rA4SN_T8~Z7hj=99+JJ|MV zh*1K0-nqberIXtG^O<11;DAw*xM=$|AR z&sf0TI;?m};5ahq55_B^S|YV~r2r-nrukPK_>c}W!7YG$rnXv_uS_WYpaY=ge*CBN+QkFRG5sR7MpQ9S!cnAR%^+z^%I4)C|^~<-m}3vj3-fW7S!CqE2r#$ z8mQURZo0JMgODk+m1Cp2v$F=HjA3d1?@mM6J3Tn|239tY=sR9RS# z+7ue;1{C0tA0j0PvJN=*Ljy%_rsx80Si$n6(2wtYlV95H*K~$m!Qu@wjEkIA1Be! zS+%^&40xli!8!K!HnRR4|Gs_{h~dFco`t0 z6!lrPUvL%FeN%_*2z8p0n)1V?a+UX`XWz_xxBlz2F^X-el4he86dh@Y(LQyqq4@a9 z>P5?=2Ng>@B$mEI-wg_Lo4z>IFp;mPD8RkB#4hIN`^=kzbBDA>+OJ3fxuOlC9NRxA!}MY+1e+DYgu-y;yz}Vw1n4CtH_$ylB2mm z<$)ZPrAh5v;N32#2_gR<;MrN%>Ho^2a4`K}vnU+D#ESoe)%#j!+;(RSvG&Nj@E1=4X;h37NRB)j300S=BV(`LcinZtCffgAQ)-UAs8?-+RrAD4u$GqwjJ^;5}w&a4*t~o&Pb6V zEs3xEft<)B#ONaEPeIjc;GC%FADfH)Fv2Vxyg;Z6Etlas!pCP_J^4mBcC>NzD$EBL zOJ%@+o@C`9gpmc|O+ek8jM5jBzb^N)kp)S@$u_h4+&-bMPwYQe<=FAt%oP!&NjYkI zlB{?|G9H()S;E39urn_rvnd>xN_3~x#=jsB9H zXT45idS3F2`#{}=SYyhNp;C772E?&bVNyEdJ#9|Cf>lu=d9agA z>#7~7%Z#;>CNut5)uUZ`Fc1&Y0m)OVXj+}jvV6u8CBvpNH5O1f1+&iW(P^MI0-G5_ zSul8{PtmxW4_ZEo1e7~@+X=?aPjxRSqG$C11y;*S63DRtIINdoQmE-ND} zgSgdv@xdG+ZUUT9&K6?$+99YSS%Bgbk&Y^}5RTbJDQVo}QpnCwr(-)F-C@e^h;6vE z+uT>^CPExJ$*V81uy!PO!v0Dlp~;bc_9mHVdrGfpO?LcV(z#$1!8Xezs9`qUvczsV z!S+x-lrWp&L`uSQdY?S6p`@PIccQYW&R|mpJwSrqYCIH0Nm@fBZAMsxL~XVIdVDz~ zi3xrwa~i)SdfS!f=kt2|UpNiZ-4q?)#SCfdJXMZM$NgH_BBEClB+ z|1<6P^S)X;%x4%sHqO#qd*gq$ZVtg+HTGLp0HSo zGEqVv!H#@eB!fM5Xk9uD@>fU;v~I3OVaoi_pT@>V$3y20%Vh%&Oj{x?O~RH}seeJv zeC0%tBV73MN*i=?Mq3f<&CqZj!2sMXLdKwefrJ%341j74?Y~(hto`^6ueE#KwbMb~ zG5+*Ritr^gNKzM8uU=4_QDyS1aPslD0Pu+?U%WP;tyjk7QVYThjPb0X-9c@S9CPqt z5}cZ8e6&BP1i6Jf5hf}zz34`ba>6JA&V_-9hw?<9X1-jl6`%WS!g6vVpL<37CEQ`+IkpIk%(dk z)Q$;llmpj}gn3_{KK<+E#SD9P*$VHf8}qyQS@>S7q2S@JamKB@jyHrLca%k_m?2MQ z@%c9J>~khz`qlJAwUvvMq%eUBb)dIhz>7m2@-MT&&Gd)1)}pF>1_WF|%tSP*Xy*le zV7BsMI@o-{0gC|5D_osO<8+Yt;x=bPaUh;4JQLISYNw^UMO-J0CD;|#_nZqQF{N3u zW_;5^8rwtl{1f;qn0uI7O<4IEaW$2d`Ihqtn&~KoDVbeh;;#aTw@hh1?e63ZzGXuz z@E85EO*|;UzKR~gi~68P+C%Y)?AXB*;c?4t8w1)sgxBzXhbX}Q*YPC5TiU0>t~YoH zlZ6SUPdlz%VCqPBL?L`gKv{*}l5`7Q!5qPfwCgGZmZDPB2Nf}buhVe-+Ulb|r^z82 zHDt`U@IjJGj6oP%#h!#>vVI|{KuL&&UEuo9#H zLgZTX+6&M`SO0-3*Qf$npZEb_?O0JBNF&xaA|4A6L4NjxA~aFr8E7I>o^q4!V^EUf z<6cmUh9&CET)ssS9->Ab0O66z56}o2#DpXG}N*_LaT(lr72hc6WD?cn8UjeEl zqB$xKlD1p1maImF{Up3VM)_~S5Elq@{fy3Eu=Igo0JGh;^90<*8WXD*+pPfPg2Ww~ zo?IK>tGThlDU2ELyy2N^rXW!540uOiaG%Rup2>KV&wL5Vxb_io^G5(Xm%#!$GD7dxy8pUwed@;=)D(C$fnp5lg zFuj8-s_YXo)k^k=Y409*g*h@lD(3TyQmcPAsW2qnl2$Ye+D@SBbqFDs+-tE&Wtp*m zAUS*NP9b}IGbn3E1VEl(?#9Rw^+L;*4)$9PdxZFh)U#D^O^;w?B?)_A$eO=Zwku6h zFkg&#tFd$ce*O%Lpjl0(di6>n+1LjwB9+juU`#oO{7U z;P|oIKo*9w&U~B_2pcZ;EZb<4{_K=_0&x&|(qSI1%1c_6fg-|1@hoGa_8y)UAl(Aw zPdwhOvnU7inPx$GKE>pWR(;jym=G0ZNQ-^N0}YK9j3B_hvfQ^Qar7Rz{Xc%F3$&Ku zJCk|`rNI3^^h``oP;{r<)&cHE6jr(hgg>8ZML|p^)7KNeD|K7$0qUYL{KQ<)aA3)K zEhap@Z!NE-37&B6M{$ed64Hi!WFD z`3Qf`0xl*Vb2Pln%vAO5k(Bw@oVSFL>2aD&Il*bTLc<+*(c% z*+_l6>vRgzkK^hwBF zAS3u*>lT&%z9Ml9)<)N2DQ@Fp`Ml#?0PMQOQamwY?5tzE!r}qGeORW>P(ddJ~8^XGy|NFA9}TlbR5L1$2pp#Xra_nns%iF2619H8&$ty*eYy3cFHHsvCq0S_{d! zy`pYtiuo~UREwpzvb!b!`H&d&n7&B!#pt!0E_o+3fiB#}ZMOouUw$a>)FK~r*_FcW zbd$L_L3NrZ!~=3zmNBs&->w&G8!`h+j?JGP%h>@r^s}bxbx7n>wS8f}hJ&`3E9_>o zYpPZ=Q2XK^yN?&4n`g8Cz6J~VCASC#)YI`fU^G)Hx;@sR-kWy7LN#mDVc5;lwJmTp zJ_=#1y`ogxu$ugFFld4WPGn}}|Jit^Z^XvM{4fCSnnz~TtFtp8Ry3f)fY;A#Gl93H zl&xoP4+m;*JGt|}O+>+xh$<4vir@Gsn=}^`Z#_06B@>uf*JqY-yyWD;MA_aAttZx6 zd-1cT*mlyG%8BF3xj}MmhxH2<(f|DciRq=o%Eb9_mDLT5wxu za2Xx!xM8o+A@``}(hXqiI%JBL*`u?%85O}lk4;N;;Jd`cKa0hVaJM*s?mFB*xN+xQ zGiu?QnE_txAK)$n#vX8w7l?Z>d#Ul^wKePB^e*K2WcKnk<_A-WJGOfFWRG}y4B|nO z=BP1zq4;^32ePRy|H^~c^zGr(Rq$Cf)qT*RJVv|D z;ahyScaC3th$d^77Bbe55%5EKbz%kKe5c7VFx!X#PwS*7`bQ_Twk3hQ!>%0J7|}<@ z{47nO0rz~*Z1KKr7FAS5lR9A_{k_gR<_LomAThn7gU(*l)xiWEFs2K>1nyn%@VJd} zt`e|UQJ)IjL#P+>aSS3F)%eFg`sCd=ntby7SU>b0W*N#r`weut5n^gLZr%K>R!5&# zpr=Gh4-LZZVx!pH+4E3*q3kmSZiEoQe;sP*5R#?TyeVIz>ytrIeO`(sm5ly_a3cgO zs_c^i3w~K1dN4ofHTN+f?;M8P=^xBaDcFrmY1tX9NlSbW(yP%gJ}FS6dLHfcM$Uns zIIh8=|IpbtcFVi%Ub?$-9_2hf%N?cCL>IlZvdNaLlUllDcp_2CGRJNi*+z!j?smE} zgWnbp?Q((3TKPGXKuqu6gj0Zl4n&9=Rvz=Dz@CJEX-vH1rhE%(s@m?E0{!p zKrWkV>kUg>Rr@4&+8Z<{tl@Y=+2h57C8NCP{3d)9X01cE^F*quniR%5b@oCaRV#@S zhe9`>4LYErw*649)3oM^8b3SP4P6+sPg_j%!LzfFR2b z;FB+2ltFh(v#K{m(I-$ZZkBt4^t@RwlhFIVKeHm|rx?DQsM+gB6}cV5?jx&evs2AC z=T9qWWgq8Ha5Q>{A@hU3IFB2_O>APYL3agiN-c4i&xzEj890D=7{*wg*e5YZ+keNA z(|-vK&TiewV;wXS7j_fKvtEvG)spR)NnbRso#92#gJIkCB^a*Zzc zPQ-UI7^2~h&{EsB3dvB1#-y+h?T`|0&oJM2tX^d{6=j}UCN zePoJ8x3!$pP++B9@ou0qUYkvxHsQ)K;O?jpIPH;YXQ1sUTf}}`RnT?Rncv#oZBMt{Cz$!TrabGXR4 zdA2|q8{KE*hGfvANHEEN()ia$uVJ}$Bk`b>1lsGDzn?Zy#dx_&t=M~F zhW${jxzc-*Eu^{EZX(p*$1K;za`}Y zV%_~gW4EBIT-^1IZlwHHd2Jc(SFkEHaI~<9j2zYbWn(alzc*Vr!rWP>3GzyUFA_3A zpZ~>LFtP=>02FwBfM9sl?M#8hstUu=QtbtfMxlg2ur?XFIgoHxVHZ)eq;e`0$YR&u zE!x)H0EIATFsk6p84e$obR|KEQQ3Q$64O=PxS0`+{ZCF2hH05k5EFH^Pmn%e_e4l| zswN~2yBe_&ztj_P1fm|SARVMK*`n$KTEQ@{J`|K_u!;#0F~e%zxOgllo^^uabberJ zdB;`#X05Nuw%a$97Lf`p0a6Do6Dva_`xM~62t}DeVFtx3R)!I6Fa7Rf+Qi|alxDgW zPSfWE>fqE5akMGbdRB&gy@<;4aEaQ?{%F-DfqXY27sTrn_H&eIw*i+(V@2soeqk!L zAuF<*E+80q-o}e7)V= zk;7$7(@(E~V-&q!K9*Z;wQgg0q;gz;zpPc%=j!N%oEBu$+oNfu&Ue{3n77`KKb3&i zzg;n0E*|Wau5v_|DLZ1rb_HU3RWXVWS-QX#rnj)}FS>G{hZPrVQxb9qESAF5jf-F4 zZgOYWo@oB`(63%z|9Sg39(~v@d9`Biu|6iGNzLVO$TY~z6)3yB(oN}6Z44&ObPFZX zsb$P4h;ihWH|FC#@A5J`6VJ&wn!Naw1ssQGu5UZc_%Ua$8LrO7b)*Kft?T6`{_17( z@uT9x{qXcNjDgpATrC3n>)EFAPoh4ksDG~>sesdgO`8h>*0#4|J43D7S|8x4L}{h3 z2LHG5==$1!@wb5H`mgS$#@8Z%RrjwimrdW-eQSRwlkGFY_wnV-(MQ`e{;y`c+O^6! zhczpnTwU#y59G0H+W?uRMhL-ruw&?6H=eU>vw+=RxEF`d`&+knE9Pv==}fjwo}$r1 z0;`6`e=HwP>Zrp&R_u}QGzfJKFl(fPy~I__Q3-oDwC4$+2+%&Dytu|Yd?0*a18PvX zc}qYv68ZZzJ7Fe&+KCF3rLKn)buDhBJp02hRJ7fb|Y#s>Al9D3F(ybM+T+huvgukeBS zDj*+pY{HuWsWAr1Ssk}*>BKv<)QN|hDcre;Q{nKB|A?KW5gd$C1hkKUd93evyC2~RlrPi(evrpsZP(NVxlJjn z_x?oE*49VvC~(PnqnOFu?_5dZI18|X~Ld2@{Yw|=4+EY3e9Uc`1>3E+C75hMT3jb%2kVt+;9Isz{ z5=8VlVEiZTcmV$~0qT1o^<>ukpSmPpD#$biH_p|}yeFp}(URayqPR@3ZvavZh6M1r z9{1AfJk1UqVgbakT(EOPy6bRMYw*I(h+ly7I_J|=#2_xxpJ$0GGd6(eFNAQ?5&nO{ zb*_m>F`AePBfVp<18;4IvhSCrtG0o!+UN7$ZliZawqxfWe6xkP$Mt)7XftD$PNnDg z!%?UOz4M+<^y)A%7|Wmx(jto@$Qy%-{P+Ntcu&>oVKD zvx!@9+o-9R@%2&Qpve(sn9>3`+%oO&An;@t;owdpk@(LH_45G$M!NQ>2XMCw+&PV< zpJ(I^XpF6 z_0=u8;~*XDL0($|tF7NTw_+qJ7H{wjYS}GYyK;Oy&1c)TA!JshzXLqQ5fsk&FQeOR zATJD%CS&iP)k-};AtC?UY3Vz~mbzH$<0LAn)u_k$S2Rj~tldX~!cKcSU;PPmVVDJo>N^HaW7cGWKgMRwc#+xk;HiQR2``Wv#eqT+{YYj5h} z>TG6Y_rEU(V`~^DuAcz<|Ie|`!uDfs{|~M8e+1=&HoEQF6GskB0^sh-Ar&@0mP?xO znn_>z%M+CE--ZE*kwr!7Hf39etrBRF976G6WDMVck@4*wz2AQC`{ozq5r(s8Xfv(m%I13c`k_`r#k;BVb_LNuQZYtMw!EeIqQ`*g-Uv?e=Cm4XM?vWkJifoL0K^7c=fUC#l0 zgj5KRs@~d67~ZOPaJ^c~lGA0UlnNvYF>7JBkJp*1D%2vt^>OlGuTFS^?K4|a2uV;{OllxiOQw}qfomV+u$lAqok4;SP^qcdVil_N!38izk~)PubFiuf`S*w+Jfn7 z8=0yb5zYLPUK+ss3;)UXb0b=XfH^mP_9a7qnE73nKgLS#VXEhY{;elIM=J+HGe>+f zQC>ff_?Z;fpiBqzo^lSK4MjTll&=Q1->fpyx_xMg?NnN%#+BK@Eqj&zsNnNpXM7=9 zs;X+{<%3D#WWj~x7rz{LW}axho`$TzQ@XFCWKRh>z94LE-yj6}hACFOo~DyY)vmWW z$rB4pGuq~Wme(b3Gch!@0xaZG4h}in8-johUzB{w@4qKNN%#ups1KXyKryIMOU)QJ z2imPzZ5FrX<2hy$#OJF#j3DDg$okf~E*do2%!?g``s-cHEYKgVG6j*-^fueY{I}ON zak0O9nDK`WBqkcAk874YmD!+7&sHkWP3*We5&MvR%x(vlSHr;ef* z5ur2jLRWxQHA6Ztm_vidImawe7Px}UwiWL_roDH@%$@5~hN@Sc)brI&OmpGuhVN{C z&`DC=`_-c2TB96Li59PpOBvEgA+&tin`}niV9B;%w1Rv(wS!i(8OkB*ZFM6c^Ua8Ua-lBMCBCh5=J^ z&QW;<>cjZBJL$UcP2zp@EnCRV<}8DJ*xK=fvtIE2@nC#9XV*K}G-kSSixAtw-@FFJ zVeM1YToJ;{z|Ii{3jklH@F5fMSr4^E^i+m92k08N|DZQxC+{GJFRbr?L`y?qW!eoO zi6G{R^wz{v-_s?Om1lW%wYR)j^pub;`ixsfYS&u|cCaQh8bfUZmK=NvmXZ^MRpQ^t zsuNO_JX-_&r)Y{nqIT3-#lNsSaQkE8c_62U3KXR|Hqy?CWY-sb`6@VKzZTcrB5G>T zUP|b4QPfnh5rS?gTe-odK~+VB#d+UQ3?$KsvSB?R0mK-l1Ix-S zC9REmbIS8E3KI6$tcY{+voVYx!mqgsSdK;C@h5F&zkoG>qsZ!Kmh#l(kS#4h_tlH7 z^qMVj)L`SU15{*rZK3IQkmtu#n!vH>XjPFveEjCQx?Ek2Bah#`t}bR|svY6NN`_Fi#B3!hY$ z9xPPib|SquNpYG;LPY^uK=?qGVmB+}FDpWkC3!5WkX+=W)8Su+q$6f6##h5!nq0$V z_%17V=F-d$dN>YY8h4UtOPW_^y?3)QvF#P$=d$5Li4=OrglS;4vWh}|f~CBd=O7a% zr%>o7YTUBOOTW5Pe2L_p3N(@qt||r zE}w(8j1V`4c%4ESY@8JCcb0f~KJ;5!^B*fbKkg57YTkV!6f{9xMmA&)dKW`W2#!Ih zr{-@T_fXD}U3GO2vKHX48-E(G?;56rVier8Br*qhgsReL@!6+#H`lm)aSRTp&PSKg zKOogZHQ~{&v1F5Ua$f=xt+h5uPwI9!&=GBKah92WiWL#1gUa-))1)$dE)mSwR=>;b zv4dx>Jj`!hu_#-8ao1oK?At^A!*s4r@jb@z2PoTOe8W~va9pPc6Wp1*V|eD~O`}=M z17sV5J&)!zbe$(#D!QYvUmrBoBMObtqC+ zD5RZ5?hmmtYem~$$by8*FyQRk_>0h#R9HT$l)ZEMo%08urq*=uZjYG}En}S#l)=Fm zHR$C-3{KaSylLL)`sM!3?2H)1feyM#I*g7S8JV@Gvuuh_%nNM84L^z|ttulK0)Xf_ zPq8=Q{#Is#XZ1y2smOd?i3_*q?*i^us$Mrc-)_Aq>C2?CLz~V8oeZ_oMXQc9+JQ71 z7Q2K%Trv_intZvwC(j3M)Wk3P%Zor|dHp9dF;{HfI$@1P^Ji0HTH ziBx(#WtUw`ekFw|iKHC_816 zqOZBHd(2x(Kqgn5?E@(+8ryWM9t;D`Sxf~?$HD(Tmeo4Y3(gA@Zw7^B&%_vG9Mshl zJZcgbgBB3P-CbDrIdRV3`LfEAqe~6Q=^MHHKxwJ3OYsQ`_OdOUdbuvi%;<7GZAUl? z@#$5ViyX?y?D++Ki@+Q?ckA-ab|UKW=9{}>evYe~Dc-jNu^7h0pE?5V`*EZ977U44bMXL4uOCMt(Fs|*^y3RG{Cc<_(X%igwpn=HskTY~wO zW7KtJC9Yr0tPyX$(#ip>oZs>H%=|sJ`AJEhe?w^;Z&iN5w&x};?hGE*)z$ZBj<#cDaK2 z%h_^y9`4*H{Nw%geEl1EQYAV3zvfA1#{c&`$^M@S=tVP2!+NtM=bntPv0ssS9KD^H0NCU4OlUyZipr`+fxr zvoxv#P>a-Q141b(X8DR2!G^+FD)I+|ZxQy?G4iGI6O?x2HHeK~Icj2Qe}7<; zqbjtAXf)MR73XGWd!ZO zVNVyM$X!*nj+XP;snx6wtbkst{kZP6dsCVnUx6)a*en~u_$5~bN9%(?Qw*hFO~rSt zn5r8E-=CsrF@D^hP8ZsFY%6$;Bz-nY;*9*^+dxQU$|%fTR)v~bYRvNRInN_5!i%?p zKF9&n>0Q}lFtQ&>@e@(x9iM2Y!W$Z4*e3jHCfb;m0ikdkFiiWVx6-nFi(@rL>yRh>IBb5$8X_!84sB)asHz#UJ>o2i4DW(YyKIXFcvwG zIY}M(GU$ED9o;_`Fq_z69xcVN8#{*}16*D+_Kc1Nzzl%4>5~jC zV0IXeB2SmFZREYC`Uyt-p1Cg1$6_)GZw|Yn3I?qi@K`{gqBPb$#g!kl;q&>oPK_09 zbxvAnDg?kUchd~)^kApC=wvcoe`ckT`^?eOb&Oc;3Rkk?HpyZ-8_Ax;Cx%hhU@__* ze#}M@6ml3ykEV6cUU4~}x!`LibZ0pDmt>kKmkjpcssW8?m;f??=C7JIy2Po}N$P9p zSbAsNBA(pSMcNFkPC@mgtWcNOZUd98DEze`Ao!Y&SQeTse~Vxbj52~vIp9&E1=FcX zGpWf@SWwV_R<>EkZGx{3@gALStzi+mBAw35giUShDpr1WPBUPj9qK(oewM#f)>BmR zM0jd2#MTeF#ontC)MxDA14LI9^{%H$p9;SC!(TnE1g|h`g4M0QS0J@@oLiVCi0=8V zMSyUB-ygj*b6tdw-XLrnM8Hi$8-N}gIntUB%H>3Xlko{2J1c(`KbQV#m-NHZIiqz{ZD9-l-`iw=Jl zIy6RuZ|_J{--r&q`EOi0L=7v=@JcZwJJ(;3-hJR8z9UNY*;*55n^^xg6X005lbPd( zjMk0;pD-q9rhcziDAsIBXL)mHY8B)w%&-E3wdpqKDYcIn<1k9whs~_B-9RS_&y-vh z_7Z@risDTsUW?nW+`wnqQsxX&zq40aOdPZmfkmj-d2C*HdlGG#;M&E3F{v0o55Vfk zGsY&RbP5S6u>gyT*bXydvm#u^%+=+eK{BKIaR%3}F-#O!_g{0d@MikN1d$xtqid4` z;< zx?LvTt{qjs^-t~U9o4ERt!k9`%(~~igzIZHPt-na|Cl%2gXC5wY26U$t+X-*1Z}i( z$rGTvR}#%)m^R)L>a$g3lRZGEqSsAMkR$K33dT_wxTT5lT4ga*LDo#*u@pgQ5t&)< z7@!0gFse9Oiv~WGns{zu{!vQ-e9*zxjG)2%Caagt36_D7mlJLdj9x%ja~dHrrVC&u zh+SJkQ}#uB;Oc zw`R6!-6_LiN5y?|g5p#G)hkfH1-Xl*HB#}qKt-!!1U#6huM~Gd`nmp7FF)b0O@ck( zR6fuuUc}aO(C30;B7yN}VG-^BTV_lXeIh4*LPPh)$#}Q>KFqh(JeGEa=>@qd7EZR3 zhT*InJ?37e12jn+yEsCi2QHD-+rFxv&`V%ptHo-ozFI5rAr|!RS-0lTITzj!ehAyB zZl`ABnqX3gA#7;7A|g)eaaf2J<(j8cWYSx|3@Kp6zp6V{^3m7-1V{umx}6OH#HQx1 zcsx~e7;oD2MTZuk9Scy^(jMTQaGcen8B1fy=hFzqU@szeZ|HzG1tD1LN$K>}{~>Z@ zd%Rj}fi$Wjlnbz1ADg7JWDB4hGG$9;^WROys-!&KpVVG0v8%gyvX;~F+c24Ec2gBSM#--{x4oF7aAU=e^|IkO zL`J{jJ}bDG4bF{BWBn}}Nf8`MaB?_MgYVo$2hy9FJiazRPLoAqU88%wYD+q!CRg!i zFAf`*kf+McBvAH-Qpr{|)ba%YJJHE%Z5hyqMNzdqQ1t=Q6&MzWC`6Hs0S8@{vbu!Q z+bLVI_rY-4x5+4G3=QRXQ*sKQVIh}wCPO=+8KNgA4$>>>l!{I)nI!~W%ju_j-3}hK zKBMnNJqzq)ZEJrXkV=)p{i@S$o!}2;1SoZAlbB7FN-BwN&&i_Vl`4S6OB91*nd;xxc!mV?QaLpQ;_WSf17@ z&9oIJ`{uq@29HA2&ZBa1X*=1PsVkdWV=o91g^Hd2;CCkZ6Qw@a|7l4%G98q>U`1R< z0W^|?nJ1NYEAh5QNUDx?R$JuwJgAXBdt|QBW=kib_a@+RsXlnoVsFS?ufIG~_l%sG zwBN7F0?G&j!9Cdu8S(QDawozd)!AxQf0r?`xw%J@3!L`DX?g2knw&$m62P0YbcwdN za9(=aI@qE^{LN-JR)4(NC{kL;T0LSKbM#!Dv|oDug|)LGPaDEdlicvhn-pO0@cIe~P4x+I$CkCBD;?4FwCHGt?*Sum^8 zyRi4N>HtD}D(dJIHuW`;{a)QS!sm~_5_}GGr45w(wkjl`KGg%^@C!)8I$5?1fn0v_ z(WZI(><*BD62`Y%=b0X&bPWnu1axP4SWj+cFl0iGrRBDPds|YVV-7cB6dI-i>zw`P zAyrik9nQP>npV3c6O!IifZaCQ@Q!A@;2Dx$jv36UOn;L2n&7P*WV7tqUt67K0?XkQ zEsc6Ilw%u`m0z#8uYo`U>9f3Q?fN7I9p-`PQ~8fRY~e+G>{e#iDzU`L7O{+bxd&+) zenZjHyl1d-0c`1*|J67LBAr|_FIO2oslOHW_RTkHA&)B^mrFDtqyk~A6UJ;(O5SOo z$hnh$HoYUdoZ+|QFa$;mMT0A~F_+o2ANn%$jwjdYXH|+}qhX(~lbIVjx{I}R&yK$K zd}6Mx9O45Nw6&$)u#OpOob-q0Uwzf{72p@pS7 zr1$$xa`d6!;r*ZvV)(ByMXP{Gk^F`j&(+(I&YnB2edufx_^A|2%PwY_CpC%t1!xK> z^C92ZOPRxpSRl~yLn4CPZ=z#dET;gKP|fa zOs_)N%H0Myq~yxpn0n;2|uxjV86*^i1cyoJh!0?@z3@qb(OXMpp~K zueCxQJ-=d|HxlgM|p;u#d7`ou}ka@`x6eXPC zA#bsv!HDq>WQqBjGl zw%*G2SD%0Rypi;-bl66Impv|*h9JIjC!hW596nmk*T{UFu&$<&|HOCV<}$jnZn=$?$7JH>B^-SF&md<9RK+>t?Ezl-=v>sts1C!lQ&nF z+uL9IPt7y~d7IV-BHOm{es(*2fRayptLYBHRMeJ-Z|1*8YaRv1`p2i@DT5E8{)J1u z7T!nuZ1soiT>SVM?2b3)0bd9snMI@%a zTa9Yw+{-7Zw`kZNK8Llf1{|e&swi)&RIFmRe##Gf=ZohVJZ|O5p^l6EPLg$M6tui3vbhD=IzII<^ zb(`<^+^o|- z?3C!@qL{VtnWMbY9+sO|K~Oh-*_T7YjTy47H8qaN%Gc#dxXnr4t>Y!SdeEQeiben6 z5ZX9kIiaIlE9xPSs~gg7kCU>+#I3 zA7jN|Gu1pXm|t)p{_Vf%Wj+Qg>C#Vz$c4CI<`J@^!Zbc)f~o&3%?=kRMev9vekhc) zXd4YAbZk$Tv&ajAwV*@ z)efcGjE9b*D~nqic;nK$kgE^T%O5j%xnVM`=Ii`B3C5|7x13O?Dg?;2{AfhF7v`hZm1I?(uz$q_8!TDi2j^2Ii$y`sk0cd6WL*-gJX={4 zL14a9Osy5?0;~4osl8;x$@LaI6Ff$4gFJ>(-LNNFsma@K=`A~U0Fe_owGG{|>GUTh zP=rK>2!z`t`l0A7^16dYxJtcCK+>2JLO{vxlVB0$E=n|$heqr>4~XLu^BZIXk;ftJoVG-sTi$;7@?0+KzLML zzE;ETK*CA?a3CX=8IV8G$pcG}C3eG`zDWaFxjo^hAWYkF8nQtm*i8hqy2z3ta%)fZ{Dc6CG0<+%bE(jo^=f=pZAV(F zAnFZtGYCYOQHTX+Z~zz_(E&07B&)UfMBbpEfZGpoIs;dEJALJ#r~>xfC1b%AyAI@DYbiq7 zL2X6L>Dok;4M(61B8O||n3q|@mMh<;E%sIqu4Wrx5Q%*qLqX?LJzZTLF6=Ql+p%Zq znUhWJ$>DTZ}l z6bCQ**l%^kG+F*%R9>TQxVhFr!@z?0pWfAYvq{ho2X-36;j9c#!d+RqSgb#T<vk%jCiWt!e3e44y6LisHA^ zOFs?p7A^~o364#=W4zv>ZG1^0(aRe0y?nT<`gfSfwl)iA=RiGiUB4E!4L@a3K|?tp zb!AcwtQz?qstu3fU7D!V3!cEOz`W}e9e^}{)3eY50)`S#{%AbYZQSHz)F|#BcZ7>+ zv1Df{VmtVuW~|$~79R_?F*FTz*}uyFjV?G}`>H8Z-6&*V!S+)(f8yJ&M;7rnm{r8a zX7QQa1&`~59n^s|Y9kW1NM>W9gdRV5$=OqUBi~)w#_}_*7l`O4Biu0DQrjzZEwWpV zaI4qjL_T3#s=ca*Q$ws#Yu)r4qg6^l3o{rlT0h^J-n>zis`@8_KG_dSu=Rvj)Ncs2 z-|w3Pf04DpF-o_+!k|Ul@p^|)jRao0yqz{$2Iqq|S@<^|H}AZpSRa5iOx_bU zvfrU%QV!CxpZM*|?*J)w=*CNATMi@QFUO6m27FxFhPGU);{W;qvn9Yi;e)Ocdy3e9 z-w#5?a;k^$F7pQcq4NC}`rALt{hVb*hzI2^PQ^`APKC0hC--j^xNLCa=ut_=WOWNQ zD;^mlH`b%#J6Sv|UMH7iK|t6Pu5Mh>OYL6`Hyg)?;9m`>KpIkTngPUo{OeyeW5;zcCscIn?OxGxgA;koL zcNA!lAdVyN#qA-|WJ#ZgM~-=@93qu`u!S|rDf!_jr}%CRNX_FyeR;MQytoW+bad`8 zV{`&zAYbyLkof8^F6TT0qVymWaW1G)oQ0CoV1GVD@c8l+EUz}-S1aiAKTf=ovJAmd_@|f?7_NTUKIX_S!7w9Jd*yU z?Uk(aX(6>D;!^xzH&PPtrbDT|&fz=sYSc|v|EM2W^%IQX-uVUn4WWU_U-6o$UMTOu3snBzeG9(CLB=n}b6kr?#KBq!`yV)VrflM8UT(#@ zJ%5(s#Y+g`9lmfv8#TPzQGN;}guqG7C@FEB&$PC#n)fPFjoUW)c~MALc~XHupp7 zuv!Le*!Wx_*Yxl`LV0kLZZ3_I*1T~__GPd0*-w!^?%H2mk&eRf>L{HbakVRKY(m>V zp6{JvZgqAB^4cJujim+SJgykCf_t&Z79K_0-qre?V_kefi+^`J`YvmN zn;if;hLJf&^kOP)&P+~kV~rLAN6dVDNTv!>K(ITH9fJPFZZ)`Y`S}A>om`7(5C z_Fx(!$o8v=@*fDV*b2$OAl-y#yNl*JXGH^0mMnpe~sV+tI$3Z&1 z+;7ewcOur#5$vI5J0IP=hVw+C?hzph?WOa-?35xQ=Jw!qzfy&$3Aa%a`})3I-5dN* z$a)^)^txODoGC$lN`hi{?no3CPxYy zLJzKR4e{opN;lyeKelxnC;8V3l1qZQxopq6L{Z`=1w%V2A`#&+UvVR?EAU~-$O`?0 z1uI7gb7q=cIad7<)1r+kD5;>mP70a|WY4cGR?}>}f$R|O4@il1(%;2{;J=Ju)V-UV zIWH+K`fR_`*-Zbijik+apsckD@9^)D+{F!aaV4hfbPnp$uxRaaJy-Gi3iCZBI8~a) zZTuzOVOQZWN)&fG+ly3!E20VcmtgE-Dm7a{T{Rf`lO1WJ<7#f#H%%8gO&Pg6^o~M4 z(j2d%HmprUy#iVsOR>)7p&A+$=b6!z{wr0PLSNmfFOE%Vv?q8@g^mPdeyCJSzOf9=uz-WDRYS#(k#^&EN8%U^=~k}vbZi{v?ad|@X-3sqpjlCW znpZ`Vn7^Bx;1iOFuO`$_seTtLyQelREYDw-z->=mlUNAXrZ)Ro;i=_Ply6B{m7l`GQ2}XB!D{fs+Uz+kv3TH3JCFs%t}4(8RHKzY z7B84IHYAC*fC_t|?V+dTU@Ow$$zBCQSHo#wh37DdVAuTolSrO6Z@PVM=P>bpRk5Jd zX$rkhnBW>|N_fIjIk___3Itr>PHjX%3dGMxP^xjT8XDPoU$R7SdD{V^WRWIlA?fs)m3$wQ4NQ^jKZsQ>(c$TLStm;P9nTCUm zpXzm=>64f~%|L#ShtYxoPgJNlvHqxys)RMepmCZ0@x#j@CbL&c1p70=BCrjI%!m_v$jOJ&NA!5sGx`wn^|;|j z3w>_y8`;`JT9qU^;!Z#a_?Fp;Wi3BqGQuGaR=5b{TF=gmN(Z z$#Qr5l^eATPLUc{l&%|chV|yU`SZWf*d%>JdBDj>4)bh?Gi|+HzZ5ow$wU;+o?v)% z+@{HDtJu6CskOIHzC**WaM9W)+T}7{Y+0Q%UA{9lb#eW>;DU@I|7wdy2fP%KZ7CuD z?w$(z^0v9z!6vVoks|F2W?ELsMKkb70lfrH2ELT&Z`JEO2e&oohDIMW1O8#n5i{?4 zEwfE#fK}d|VZ2h_OzCwAUR{YY{VLSdAyBil)Q)Y$tpU zxBj(PAZoHq+}$&9tf({_W|sN;mO5bqmn=<=sx&%uB9F{A5@yxxZRIC)CRx!QGz7>x zx&gOHp0cQWpIh3jKq1A_EnSEEK18m~Sz^pIm zxeKIih-DzFqrBn(R#y?tP2|4Odm&43kRj1QuOW!l;!h&tTH!J}e!3{kW4n1u8&K+3 z$4+r&ObI$hN}N&3buU?MXGlV3h*HR;kKDDG#SUd0zp5}TXc`U!Ln06k#2zlT5=m2;@bG z*_0#dLuM$VdY9qQx5VDdkKb}H zm)?|mNw+PG`;PJN$L|uRJ`yF=^KSB0XWvs(Af|5KJOXy?>f9S2CG0-D2G8ncCy$fX zcD;8t2xt}`cB!a%dWk;95(pWkvCgOOrr?M@TBj>-_sDtk+`ow!-dPK~pVyVIr`rpJU3A;?@bwgp?Sz-H z=@=#X`++5K&eTZeJFVyUH#tKdmA^u3%gK^(>j6&y1mg&{OvnelXC?;dy-&cPK4ZqtwLPae!(phmX-HF(f-9I=3bb`HE(6 zjG5Wi^j(HM7Ib~QIV(Ahr$t;_wK$~=429- z+@z&#`gG5K3e%tz?tc2Aac*xp+#9#^E1k$$uFC*zFuR9LEk~#m{+s1xYJM`xxOf&O>&L&IDO*J#&xb7V}qJW&^F(Q~GXE}p5hUUKKOhVdEESd7OpH;*=6IAMYeM?T~)Np^1H$7CYiX?f*^@Q z1U{AhD$+RBR$ghXPF35*XD!)={!>RvR|KZRF)Lg>CACu<|G;3ComXQAwIk<0X|RCiOEN1y3|aPGAIjce_(a6 zi3JLut->T(gS!JyQeL$wzs~i6Y>+&XogVWSzj+~v?I%Ovs`eBqqmGOdqd6|6{h%$~ppG#+#XHc1yUVJ@ z#E>arz-pM5^N{Vtt$p;Wwmm5$ZfSa_`0Ga8YTM(~fNj$=TI8O`#1oJCd$VDSj(|j> zP!S~Lv0+OS=u}LwEgc{~qMF_Y%h&{rLC6*sy(e&`Bm7%8>>Kp@DpTgaMnCrd@94+M z$@QOExJkb8ShDt*=dY*@9kyr~nFU;W%o(-S)6m^<@AsvgBo7P2i3ua$)olZ16jHJw zS{Bmr8)6SOB0-gGH=?#jIOEY}M7zOzh8cNS}DMFc;K%Z>|W zqa5^BIEO=8*@auqQFDes8JR-J-3JjG?!hHqMdWGn%coI;g*cqL3|VXqMb3G4ys7iQ z`DGPVc#!A~ZkK;Nk(Th52si!Pw-SZrizC-`K;O#PZL0f`e-D}G;#19!r@>*mQYbBT zb8g!kHuFc|W>10e*Hds35fX!&Uc8!$!8i3eWA32jg$0RiHEcf!;1KY5WAV|lz9Kc= zX@7sB8b_H&s$=+8hMSU*2Fd6ttMM;AML?2a5?9_Sh_C34LZxLCDpB-`MKYPRs~)vg zaMjau(6QAEK+}-O&Ao(0U5y#w=EuU+Lqw+3A*)+d#IJTT1qkcSTd~)204Hd%3SHDR zA-UnH)}a)5cjk%*5YzA#&TcD^hV=H@vOT`~M?g3ho1 zY?yERaPeMb@&*hS=gyuZ3c?|z@k>SA z#c!6CT-xC1f$ex4f&M?n&LK#!rd`5qThq2}+qP}nwr$(CZQHgvZFk?f`)~1YPQ{`wW|yhRy6;el#u=+@N`&{=RIugk?O6UbI{~l28eaS z=k2~@!3YFqJ!b!QP0*U2MWAOm9V`kB<$#0f!si*7<>E&YHuvc|ptxAC@PApxkYmv0H`8PREJcg#mSK{Ei9iUED_~>yN8%?#laG2n5B z^EN4yYXI{%+Q3Q)Q-Gh%i(4|8={Jsd*gpWVOm~brSl5+5$vvV*3oN&_w=9y|1#gIdb*;3p;eO zqhG>g=m=VnQ-oV_^d_wBqpe&VX4Fye;LvQS3rx6zZ=6ENM4^@$vB+{@XPwbt>-jo{ zSBiu;_cYKJ2r*OrnF3Q%uho1*biJzPzc@&2W$$a`{VaHypbYnqKP9fVC%-soVs`U> z5j)Gdz8l6E9x2K*sN3ThJJruEF}I7ev7B9zh72b_DWSOFzK$sv$K5jG?}Jq8;E+v)nLA> zeRmUdmd`uRLrURN*vc+o5mPT7d`$(fSf8Rbb0dQaFXb9!G@{g%Hrnsb-Ow7eV zwy|;DH1*M^l2`pyLQ1w$FR*G^IdE;LO);jCTF|)NES4_mv~0&?;~p+~gsE=0AaCvn z2UvzBg34DGppl}vn{VuA&EB3svZ+<-+3v2-*u1XY_%LfG3+&9Df9BGKHI(ZM?h1UP z=3+ft0q^Uhz>;ydnIP3T0^1hz^y*Z!oC}jNT#8HrPiT5)XdXU_(PW~8+-pSIbl5(9 z&nm408l`y|MY7rWLjya{=lO1{`Z;^Jpa^B^n1aT{1xXn$%Wa7gr4KBuZV+uU1rg-m zM}L?5SrbK`XN+Os_Qa4WGBw|d8N2}yTz5(24tcRw72K`#+(bTH`Pe6^M9R8nJGobBFZd(yW2u}RDh*pm4{>ahK5grh}N>$Zcu;G zO$^Ph%~o-@W4Bh!k^(`EyTARQlq}dcPM! zEYCPs$c(!&LlfuC&(qL%=jUrGemA=8)fV!>{@yOa$H(+*&(n20zB+ga%zpknAj~el zcWg&J3Se%8dqu!=q8%Uv&i>qYf&`inJ9mgXK=hw(v@qixjCd3j33M0$_O-B*%#5pvf4ht(Z#J@#QmsB? zqj9s)zxi|S3+evlA$jQ!oUjE{#0Di%&Q=(YGUhOkk~m2x%NNXqH*&_M%pXVvx6!7| z$z`(Np|i)YS6PriAS)3k8Aj2x5s^~Smh#c2wR}n9k&5BN2HvM@Lfr z71?qt8W+WePhIRo4c4_QV^^{NkfS2wnm^mFi?ifmIjQPcV&plwAt|N%R+^uHQI&~e z?(1D)$O@Lm#UXVBCf}PiDNBi4jiW3n)s$xmc}c+XK>xN*v^i0RDWY@3w3up{Xu@Ia zxqf+4fn6tYnwbOtZQW{>_*BlMN;|v4B2gt|i+Vn4w?<5pPC!h<;VvVym`(uJp!vxn zQF%6;K~GbrLD3>jg6M1BV?H54wo@99%r_w&dscQKu1j**0p`f5R-a0-P?Be<{q9 z86g129@%R0l?Xtv0fw)`h7L^J{0utC_xt)}B(!1|6P+8X0|Yyznal)(J66-&!WMuM}%Z+u;T4l&td~1a67^Iqu<;Xv@4^l%c+~KSfQk%`Kd+*)C>2xISq|wRg;sClU)Xp^!rZJ|3PJy2E%k6j#Z}m|^ z?~QqJxT6nB+2;~PIk9Bjj@f;BoVDMzcsATtyJTqLRyywmm6@17oi<(`c z7GLvx2mm&(fM2E4rgcYKBKJzhi92r7y+-!r)EDD#%CISu>yYlj;2Ab8I^)}n7Ra1vb5mR^bD1`B3&C~3&;Hsh3Y9^;U4n+Kl+J?1$;R{)` z|49GiS4eQp;|`@_a^!My-BuwB+moq`;vh_2FCoKJbmd+}l&vZHE$WFS4X|y|xwt&n zTDPmTOo#(iZ!!DQ#H#0h|J#~z*3bPr0Z{4EdDTVt=`{cg&w2%T3_R~OGlzxD-7(D0 zd0CGuZYsuc|P3q5w zciL!GomLCvzj0c0{Sk{8wI)=iu=@5M!lk;!^H6$E1YMGT%4rm;H?(P3;+^Z|$L7pL zKpzDe_>aCUToIFx4<$hqwmD7*{AlF;|=Y1DVl(QzjWb2N-D!+c$L$&{Ko1bbv zMT~XNK1MW#;wLBI5;ogZrg&x={A#q;Oxl$t9WI+AVb2J?r$w$3(vxP*bxp?MBmZHS za~Kt-^{)FXom_Ly(+N~wz`1T8x8%V((fFGij9JLWxK|1F%R)k)`7V3IsGPJ*ne5t; zOXutr*g2uPTTG?Z33!NtIG3@^z)H27#>N;q`*WZrBRkE(p4+C_Md3x*cK*I`e@g$` zkn9|VCP6e3XjS$WYoGaZ5JOuvqzfo9Fp|QS)a>o&a!YnlfT@TpH5^Ne702&)>lQx` zxvyx3W-F`5(7YtBm4f$^(`1|7A1oTrmh(H;<{vVtFg?e$=%SB5H7S_2xjFaCTnt$| z+J|o6geGg>g(P}nCE2-FmZULL%{RxM#xZyJ*X;zG@}?u=#VfEIylslRKI;Tq40Lc{ ze0c^xp8%4a)vABOQZ!gP98PR4yGtId=0wxVYMJC=>(sP?wu>*eE!e(s=s;qm8}T__ zs*$lO^4w+-!K2-j_ntC z|51Lc)-2y4aCVvmvEZVb2^;g7}D>(FBB0*#=&8XYFhow?4q^Z9DK5vdwTsD@7cVgeP)wJ@2X4m{t#%8r?P z7zwCZX_J$8J(IO9mTWecEZZPVIO!RC{jGe6)H+T|O00j^;cWOPK{+G`UIdhjz|LIw zEYHXz2lN5>8E-d>$l+Y1p@V-LIz|=;w$U5$PLq04aRy+_QS3~_m^ps5jK?=ImSU-xpt^|*+d|Em*CEfs!394N#%`J3Gck$Z7@cA$15d#fW;G(T){V| z{W#{iY*Mqu@0ygrz4UV(9cE5_~X9n^XR;UmcRL&agv7#27 zn|Z%Yv`Ar(`3{7@b?f;0Y$SO~hnoCUw-*7wbCbBRFw`y8oSB3>u{}SJ&U&2wGC_J@CF>frhpGvEnzIz^}BMGhk$}g_j<^AB5v@UV~ z*J~Ra6H!l1pI*U3*Wl;)S_-B^ZTy|KhkmH zz9k8bh2FuVMGFW&05L9zx$DPVM9$C0&DY~ro?5M(@4YCx%g6f_Rv6uSL>_jS*@JP8 zPB!27*WE=PANo=tgA*Lzzy7FqHuS2QRrR|+RInISyXZ-H(GKW!B>nb(GlqWa>gW_D z-G|KIj&=2_TmDLDc)xy7Vtc0=aMRsAFmv)VoLIQ)=>V*W`4-kuiH;1h0X|eg?`h=h zLDe(i&MewZErkQf^`@}F?sws*wgvNbgBFjO@k{N)2!ZV#*0M#Jy%@82lUWK`#yYc$qgJ<{gECp`4GdT?qY6S>%J7(!8XKH}V5EKW2npDf< z56#q4P@+T8t4>Vzb{J9EazcYz9^~Mp+-DA{WX}s76_1nR%Pg`MHjHV<7d?1suf9GU zfGCyQHjHGrPZ+{b2)=Ytb7$zG;BC3I>#8#me3||u9 ze#jO!=au&nG31nPQ_XnrN}!J$=~qT0mHiDWyGil`d3JP^;`g|RYGRL9N}U6RY!N3u zZ)}yYbBXV@g4FQO@{cI-BmC#G6Yp;gwLkbnpdvPa>N33_8Lf;^jq&e}=>en;jYfn< z!Abq~%`Oa`X@e8;Pfb=G$>)H1I2#XI{`sPp*FPFWEtB8y04UVVz97X@5d~G@fYT7y zugaMLguK%9gX+PH|&qk|So7E`?{cBh;^k*sg8cac(B*x{~d5Qpp<0ZTo~j<;nPcxXk~cxD$q(SJn5 z8Gdxw9ZYn3Y0`+oVi0(6$cD$YHk5k-Fq>-SmH7ztSoeI=(cl3@R82<7c`CtRLs%jv z3f5v)+Nq{HIxP)huSbQlmqyK-6ob`j$*4FOv7b32dQ-3OQwlGd^$!BzcVo)Cc95J` zLYHeWhe1kQ;DOV@SeF?dZix#32*yAFL`5#ID_YG0=(gxtsedL-7p-Q~6aaE)jTnFk zG!z(5;35cB3u7>bUYIdjzb8Ww`vQJSj($d{j123r=jYRe`QmJjvL_MfV+rB3@NqKw z10lzmIp*3scm=Stj?s(0RDZ?=<JdDt=m32j_d(3M`&^k5(9nO8e!afSRfcS&gE-4ol1ei%4^*P7#Rv{Q+QYM zlwY$)6o>6Gu}j2}FG8~EtpGJ{l;s(kDXhzGA+!Hf;8d$vaR5ZktjSySkZBSW>{ zm6kP&-0{m~Lw#$8ofrmo;l_~A&%?Kf=MVU2?-=~8|09Ata%iUP-z9BS>H4Mw^W8g8R+P5NKWITorxqkLqDlf}yCt zhYT6^Bl;T;U}^~yuqz4(6GAXj6OR*?#LF!o5P4Iai}!xMiB&ACcWh;#+fAj>6NM3q zLzcnZpDGX;(dt!yb8|~YbXSP$iy;ReCF$bPw*`sh=BjFm5IK1whTS)$bqkTyTMVVK z?79%CS}7cXXcRMXgF;hMCY;ND>sxY#0RTBj1i>z;F!!mOA4=UVkjGO^$91}4 zGml3>zzv+#j9qU@6$KDqc5ZwGu^_VbSeB){>D$7IywO|lV{wLVShEz|gV!U-qipcY zCqv6Yb@vwZHKTX*T6+QnaHLTVD<->;<7(Iv2W~4NeA)5M=_Kjd&3O&IPGy# zT}%6q;*54qh9qW%Wmb1?+tP9x5GmDZloq9^hwo}S9a(Tfb7)^A>xg}B8xAY!LF=`8 z^d=SpZrMIPy+P5ikVC=NSXX=cq@wQ+!kV7|m0p-R=Kj8vY+)A4&wE3*ebEOL>E%a7 z1iVRmCj|T+Q8_MB_QNuiI1;~|)G{iWH`vswG3E$0EakLwn;=Vc!%IyEy+BPE6v5_% zTwY~5U!rwb*^(1j;9C$?gmC}IIf}VL62!I$*jAoL0+fg;E4X}m%uY1js8;t~Wdj?; zv(_@W{XaFFo37naT20D=!|}PZj!YLt)ZN&lWoguMIxq}3^{cZ@U&N%yIH86dlG6!7 z2!-5d0V;JhV5kmEG2Wp+WM!YJ;Ew6z#1@u1$m8{KsT4XX)^rD? z1oh1b>PVrd-qx`WpR18w&^iHP=Iw>?NwKM5kd$inx#(I^PL-gy<3Ms3C9F6jmbZ;8 zEQ+h=UO5f~6qQ*BchxUns~)hIO|HhRs0SoaCOvs?yn9Yg4UkybGK0nIo%l#igQ>Wv zItE%nm7AFH#yx#-CGZ*!Z6uM2JJ7k@S}xb4n6U5oJ*u`nHI4~}Ql%GM_q(qb_;rzm zXR632l5W!;GS4W;@-+FS5#eeZ&KhKU>6^G{84n0g6>i3Z~KmBCbe!-@M*-_obMp8tlmiu0IBC@3nUdDyH*&^gT5 zXZDh(sz&HgC z%WlzJyXwxy#I-}BWM<_Ru{%^`5rmw+KG6}vo+~miU?1RCE>4^Lff$~#jV2>>qdvJk z&&KL7S`C;CzzYj+p++ght~DV*5R-gw2tC=Y&Z{t3xTj9N><5TRSIQV0(}onXz@9ok zp&svkM!|-*IuX7&&K}|Z|Ie_7(X3%%H*EEyZ`mDXOQ?*5{bKshPHC__qL;HdS4^CKk4>w979_<=2f|v{*W=ZU9M=AUiT*dHl zJt98BMmu7AnaUg%AZ5dq`XFjdKew(a5&s1?vnu5&Iaw`0#e3oUa>h~Xj)Xb;nztR9 z2k#oU!)m%!X;ZFUwX}Ks_swW!iQs#sDgXZJY3vxgdiaI`hIy{!Su4unmU$5nAiE_8 zJ<68ho$ypbjc$}koL>68gHiiUL6O5CDhx$GQM_1nHpBkKw%XbmaCZdKWNVJN`Mj;E z6}OFs1TBF&8nT(LHCM*_R}P0Te{UZO+1>P0J!<#O{s1U8nA^d}1Td-&h*3CdAb*nl z(Ahy04n*hx7H9o<7=X{XJ9i%g@@{rn1ee+VIrC!clcC~_Rqff(;iPTXslY0sKC(GV zCK=Zv-4rMQP1CGI~5un-g9rgI_k_vgLZcyeb&=Lz22 zo34^G?xA^tPeU1yKo0g!MW_9fE~ z`u;}J7ZHjx9;aSbw~*nuFDNu*wHy~h5B@;WCjyVJNB!_bz4H+S=vHK+Srig~0u5vr zLjZCt8FTsUOQf^UkB(vUreCMLv0+Bb5x{-0VaCb#S~W3Ty&gjnqN;EIRMUor0jfNk z)^1L#lxn>WKo?!X9lcdl_4X_v!OqsI((t_AM(Gz6&5e3el6?n_WEG^%qRWuscEukB zzfO@qW@WZ&Vd<F+zUlAD)^2|K{n`SZ@YOb3FrPR z(9r6NlXpyN?Ls@V{w9N)!$q*{r2>&XDXoW+R=nyOLdmrJ=(!>G!J531YU_F-F<|W} zmRohq{K8gjCn?r>_zC)=B^d9kP)L64O5(aSRFC#_X&FG-pf`xcObtBLHs^!GxX=-Z z({-RV?^W3-BmC0@QUWVE8N*9?F-60!BIBkK6RmR6Siv^u$3?umqDV`=(Um1;4@r>L zw=>(47+|9#1KF0;MVYZ@{%4ZNN83ON#VWu&!2P%R`|(f4bZx}Y%3+Oj z$aQ36N0EWeUi{$#AGG5>UF^T!9`-f_e2C|eS2}A0lqV>8c?niq%KQFnSuHl&d-)FY-jfzc&75aa~H*T=U>UPo{=WqNxA&l^Adb= zh8@HHi|o4+a`>|6#d%~I+9|STJpX=QgYIQNBD|$@o{%@f%@mzG?Dja*{rtYZUi{wC zr_29KQM3Q=ikgA#zoH8x+FWtO9k8>nYSQe$M#d4ITS0)XxHkRv&g<9S7drO#hrf8~ z%SDyLo-S?7SNd&Um0HEZzQy8^mhXSZg1q0x+S>5;emom)2_nz?Gs5ut{FL4Tyyf8; zA`xza;Bocve80{P*8WiBq%4AY`xLFMncea5vgk_I{C&pJ>pLoYgZ+O0sBRgRa|mCq z{W1CLq|}?GdvEtF%3Nyq_BE`lOVDi`sktJTGucgj?~(UD`1-Y5v9{;?g{)R`y;=za za*%C0)fk_4+*>x#C=MQh9XWbvw%=yb@fwiiGxf`SPxDLdL+X%007>&5 zve&u)@K-6Q2qhvKV(N*-pwTiQ=n8*-yO23Cgor2DKdFFh~Ps$`WR-MwG9CFMf z(AQ^{5=1+#(9Naf)aL!kyyb7e9*{eQoVaHiXKb$WdxExEWrDlN*Hz)2Vm>d9@p|A{01g{XaVM)}##fIX?bqC}H8)WTRu$v~c~T5Ywc;yzZli zGQIk8`U(cjC{EFu)q(W>7unP8^kxzEvFGX~`Xiu6$V&ADmF7il8+$zaZnNgUZpwI; za(_LYiK+(HDzYdKP{+mHm9mvi@rGc##&Bz!C)h{ExCz#j9ect%=ydb(?#1IiHS6k( zjdLlV%xFnfvcI0e&^R^v`koZ_;_~bvK?<_!SZ)XPZ6fS|qxQYcFja5|b_hRk>69l+ zEVGz9wLzoj5qi&RD9x2WY#z6LC=F+dvNblOHAnQ+zb$Li>tYH zC7pUOcN!&kDxmmxhWbcwY0R1d_AD) zvQQ_gnq7byoZ<&97A4-1(l{mk9o6%V!l$t$;`~aEY!6K5naMg<$;=ljO*hofQ4f2Y zCdDJ;R;)(1ID*?sgSgEKOz1u|7rKZQ_}xL!-mGisiD`opYY$uvBym6ZjReM0th|Hw z%tRq&xpI$Ccpy+^662Z=|KiJ#zA7Clq4RxQDKKb}dT}Vjg{_fgbgY+EF|_mitfrRX zNU96!gu^uLw$!@4ny-vE5@J;=qx+$Iv@dIALQ_KP=ofYhMXjpnrP0NrWMnM2^g`1h zBceaw7aAOFB0*f-K}eArGmMFwPE@M-;i`tJP8;{Huo5l>@ zl$-X=NAqj0Fi!#skqgrIARhpd?$bA^M6m;aDC7PXq6n<~at-}(RLxSzngx0xUiDz# zO{SZi0X*yeT@`&M2D6YsTm7ShvjXsdPR2It*mCsn=Lyk2cTf-dIYDk3uFnnpr zq~q7t)0_I;xSIrISWO9phMv1H0^d}qxN$CZ5P6v~Uq|a{?EUAE?e?iFFc6Uv+RgzMk04XS;8_BSdDk&CPR>e&9?wc% z_9D?a>i9AJ1dxBKA=NdyI#dALYM?J?N_mm4Rnom%%}1^mZ&ukW#;f2^+d78MfD6CY7dvU{{7BI7!W>;KHSth!-fNXLSxBGxGMiQ} zk|o5`F`>CE@?bTaXqt99jRh-@!niDXZ_RnzC$;GC@H)z8IceuY#atW0RO1a#)ctql z-xH_aIZC>$$Es!pD`^S6FJMY%%^|VR#=Jh|)=acQ^tiz3FVfMegkiUnZYfV73j0~i z!{c;KVonE(T>Mt{LA&y`$uer*?{^^4xcD6&^#@p$>G*tZG-X?>Gx)xj5mm8;4_lpu zTA-}KCBhrbG1d`+xyU9BJF{G>q7&SjF~#%9FaJ+ z!bfoJkI_z1kJ3vqO*o$QI^N=v^!jCkqLoXn%AjKU4XUN>Z(qB?K+uC~jEIob!itRg zY6qwuS9AEF@%F>TAn+2Uj5vj6lHSb15KKE*ZD>iDrHGc{k8k3oOMq;2XJ?1@;gx`PTu^twk!)`X2n4|8wM4qNCRVx2PB zdwdmAb*%m83?uvjH(c*SqN6_6|1zXbOKKGsFs__VjOI?1&yEy+HkBn_*-z%}>_$y> zFcCE<6R220IveFFXul6{9YKpWn5{i5*ByvjlA$lR>DGKiQSTbGo@r`9ljJ60_0|t{ z!a_LfYr&|E@-UZY!}OkTKUs`Ttn}hRr6zf3%}XWZwKtf zw{wX}L|^%nM<`rJc1_KWoU#+%(sHe_Fy6&>ynXcnRObgX@*!7a!Mu8#n6c|k?nEE? zJH9SpiUvP|8q%cYA`}oqL?4>hw=Rp7;IW_^EV|#(g6V|}cXiBLRIz%7^g57g%fc-^ zLp|lXU_6H}#WiWCz~^C8V|0Z%tcHSd*4HJ5@goYuTNM0YV) zIy0CMy7D*jpx&OWi(gkdmdfSL9!JDt?f=_iRmb{3ILLcpCR$)!X`_X&v z&cIU98yr#U`(|R}CXuAO6HYBFly4VCl|7Ufl^K1uy}$KhFQwTnzhriRhw%QZQMi0P z7jD#z$+f`KE1bPkN-H|TQSc~L+hyCjtPrR##Npo><*Ebh86CYLO`@gWbL@(+1@_vp zpNi+~4Gb#^Jaek%F*ewc1FbZto{P~-nUZ@~>3C@Fuy5UYmh@kqpZ#r*!@}lO{*>A^ zIIj6SUuj}FzI$<2GUc}DAZivfln%L-zo|eLGlU463D0puS>jE$i8`-nmdOB}BtDuo z#ew0gbf$DmIY%j~M~}gy_Q5J$*Kt9KYU?cB^Ki^qAoOn0Tm3|ZBuUE!6yQQ?hf$ya z)K+VD5HK{F%4%wk0}GZIT6RxbgevN#R$obkb9KtE^>@-fs_$#)F9sGL5!` zk@kYTr;3&mqfC3Y+xMv0r0cJhj!sYE^7vV#mNI5xe8aZh``WznaR~3*b{0s&hsehRZb&ioT=~M;wVo#0esHji$=o`>t@E7FyHYHqw|%fF zFk(DZhr($nzHIL0(*E@ry>&L&pOnJF zC|Xa#Os@42{Rc8#qI|+NJ+7RJ9aH-zNr)e;kqUUnxJf_pwumCC7d#5roz5O%vIVX@ z<$AD!r*_8f z`j`Fq$3a3j>!MdBQ?S#g?|*rE0))dx&w9_^WJj0%`VEliku>b-?6RC4u(qp`A|6S5 ziJFJA;(^#<8?PSeVJP~!`2x7X|LKI{Hu zV+-rwjzzEKTqSo_emkq=T$bDLvx3;Q&7e8Tw_yAp(D$j0Po%yYx9X`}-2+TunO`#* z&Y>5by07uq6G~$4Xgu0sG&M}BAdynAP%i`|-S5bP!?9f-;UC}!4Uj5sYKeY##EY~+ zQDJix&Eaqe5q|`eA2I?=Q6xgEGz0=>#O}lNX&O363`WCBd@|`F2t&*G6x4A~IE@(T zj}tIlJk$k36De$Y1@V%r>uORB#3eE)@HG4=XP66eUzaBg1>4=;Q$$#kr%1VlVe!2v zQadd`M~G;pEC54LI!wJuSl!>dy|42=idAxG81r5Cde~OxQMyf2AGV38RV8Nj9q?$_>h-m(jc$E+i4W zRG%^ie)s6d8s5)#QDDG|kYzAs^17t18fxBf4C|=oo(g09Vg~aRPxHM$p-{gzNnl1I z^p>JSpQXG(D}*3pW(oL=c3FNQ67P$cg5M)kY*)HmChe*%TF3hjnJunB#d(s9{qLG5GjG_I7(Qigi4_ z(Ismem!=O%Jy{G;k<3YPU8>L+E<8#dMF;2YMMuOhlQ}3|O1G#XOPc6d9Qe*){7@FRh-_#TDHO8mhL_@244-Ie*?$~4Bm%CQAKwT+)PV|-P&M^2l zmzgRn^DUL@qXW|*4c$T>(JzLXz|Es##twAz;hlSsbi-p862cD;iAjMJIO4;k6u=Sj zC^y483Pw+>b3Z@A09XjyGda$TEx`c%O9Rp)W7;5GdXyssr!WajOg$nfbnsUpi@-Ni zfO8ey1JKdryG5Bvg7b*mGsz^Hi!yS<51&WTRE ze#R$lCGTfGW@ig-_R|u8oLUfgt!KR9{dFssA7IiJ>(;r?BjR`Ax#mslXh87gE>Rx2 zh!H2BU1%HfjZ?sdZ|9DwW>-*O32QXL11Rqacby#@!gZcQ%N6s#4B2!dlcjeP>SBg z$;xM?=%kf==NSJO|92-fN)D3zQA5vGg(VeDvEG|CvB-+&BC=pCYTLX| zp^^aP)5F*qe~)F1KWIC9a8YPs6(MaBCNt3C-;3|~MI|81@O=z#g7LjTIIp4*h>8@3 z9y?csf^G*Q?R)jBOtG)LO}e9}zpI4k3@MLM3QUn92p0$j=g?sI7hu`kfsX;Zk{6eS zDZI&E4m2Bz8BbEh2pt1o6o%>A`s9Tl0hggSiV3qWEa>#{SO*$Ddo+l`9Wn=FnMv`l zBICZ|#}mpnzF}{Jk1bqpu)~6nHStj#*&NIjvjHZ^82GAXmtyt?9b;pD@+fP)BnT6ty4k1v#o1 zbpsXGF)GzbkOCM(021S;D${#@I*K)ajDBQK37c1g_`Nu)D~Nl2x{8odm`fs(*RiN# zFCcG2HEaT0$Q!A=3+{=Q{DhhhpAW7^M2==i6#P?oW2}^I!#N9~#f{w?z>}cxNw%Rz zY-!XLha@?vJ{pl-cy&va1AcE$Kvw7my_5 zZeo^S_R3REPvedw6(=M=I2?FzW|$$sL@R<&fo6lvHyc>XuYl=^BUi2=M)(Z4Yee+r zFbuQffS-KfA%-jFy!ma)Q#Zny66FTL$BF|jUV-|uh{#R~gb9n(pGo@0_yvcn0{=O* zR~>5dm<~|2oIq@R8u*YO17ipf;7p-x1FB4SeLAyQQ;=0zgag_HbMRsfNh(-9}6vYyM0}foLDyg( zwAoj1MP+)HcBDcVUQGJZ98KpkrqVoey1CCvdLgl#A8U|KT*-F+Io;DvVMD)=b4@$_ z;rHn{>rF(!G&GqMm?aB>6kc&K&4Q0F3D5*N_ioSl7FQ}^A3mSN)P-x!Q!mNCq4yuG z_h4yO;y6H=Dg?T#6pn}qBe47yvE!2ce#vAu)oKxMLNgs>FGcSxelXYhO&#e_p9(Md}TT7eE(qSVM&JSbj z4wH7_H(R8Hkv)YNX5YOOdd``Fg}I1vDO>K%sGQaN8X5?qO-0R_E9iaR89>2+qs@J` zbt9q&`n~BkETClyJTz;>ib_{5N=p+$E6|*r?5+Z2d!d9q3U?)BG-b$dC$-8qrffBp zV*?TgO7LA5N29Re3RY<_LK+5T(19uiGxizA&Vwczp3V(EY@M`v@M{VW8ZWM)KCUo@ zey)KmY$J|Mmd#Gv`$Qa^5sHhh_fI4B$?p|`_qt=a2{(yq7E?jF;xbZw_gEY|Kr_pe zYi+rVhW3TGjZOc~vS%V;@Kg))mD%BlX!W= zQ8J(3Cmev@$`72OJvhPLa4?>hY?CCVs0tkJ5izMhXQ+y7E&c=hRE0@ybv329aqnr> zN4FD-^Zv#V-o}$LdRga+@hycyV2)`yb-==ndRs^FM0BNw%H=&39L!;L`#Zp}<8qqN z7rSeSCvougmeSW#TIH*X0Ur? zOy?H8A&WlT+co;|Fi!r9Lu9ghcNIPsa+K_U*@6kG~$#ru}Z>R4tmOm70E}3Uo1iq)LBj$VtRh)5HCRK*h_G3A_5clG0 zymkevUD zlG}A`hl2Qk+V!Ug6{Kvn%eyS>P20P)WIBrl^^6r=@^>{f=qj>3B^Dx@EU^*Xd z%t!qo%cjo{^l?gV-%GrBU20{4+K9ishfxwQN$woOX3@7ldk0b)BVl`Z(ZdBHg`$nx zO8~g*>$OR`JTO}P!(>>is7RkCu&S!KlP0*aorB}lW{uSz z?JEjAr;zs*j&b=rIOW2kdrz=X)T7R8CDt+@7_uC zLd`2K!faiGN8kK(iNhy79olMVBY7ZdHOTI^wRz6m=0Y!fQMF`IaAAeB#I>al(00`ZuRzyn zu5VQ7{e4qnW-hi#>F#9F<=upbWj=TBy6MIFL<#8G#ruRr!ak$cclEng+w){nq5-#R4 zd&=(M*c{z2F!1n?)qhDw4)*_5GP1HU{g-6C!JdjF?zrF8Q|O&Bl%x_lhddfpTG4?X zMPHqsxeCHae>RM}Kic1OJ5R}ooUW{vG?_D856HcoO%yDE7~x8O_(2LUVPb}$#VS$p$er9!K)Y@TVg2M=mFdBLk{f%qGCIjtSSV(CSF0r>w_AVRGDYN z0WF>y{5t&CzEd-t$1K1(*x6GwVeMyW#MS4vjL4jT=2~J5&G13IFx26@%Z`9*g-(k` zI7r0n^EkjJ)E32pzlY2whQM})Jl@!vP%mRvClwqBitL;67XA%xAn8uuv_0(F0Hb9? zkN-scaX&jM%Pmen1iEP_$sxJ^ySac>Scxks`UVs1f}6Z+lK8}ebofF(eVN+=AW`Vn z3`@`bFGQ-_<`cVuw}`-5=&fyW@#UkS0f-bo&10j~l4q z0^*K5v!#t_!(wC|D__f2JTmuJ+jkqpGk}acOq=bf*uEVlx7RGR<1aD%cq#jYQ1!oA3 zK>WQ}A!WLq4!qbSI9>O9OAa0`cH;|YO1?dxr}kDM8ja!&iOn6g+Mlx>q@}C78!~Kj zmW17F_vEU+v5W~+<-Sy56ixWyR-yu>w^O#J=So9ivT>z-=-2a+Pn^e08LK~PTRh*G zrA+?4Txp{Kt=@j$>_$bzE`kh4Wpr}Cob&B>a2EF51Or(^e()C!{cm)*NHq`^A0S0S z!si!Tem`&TZFxV1ATpnF*qQQN-V=TQ$JjdsY0ic1!fl&R+qOMzo72;_J#E{zZQHhO z+dXY-_xJxNyK27&Un&QyQmINMtCHOJx>W4wlUwlkJb*ez$utXSyu@ zrHk>j>j-DkC03N6s4(62*$>Cbhjl9B&R6*DMVd}MF`RRDozr~?kJi7FUq#i(CbHqG z0Y`aoy+-^KkbV%`nnsC>mPW^~RcJ*yfspfD-)OqV)}9~x@crrNB_b3pg}sM|ADyga zmn*x#-L?!sk8VuL767)I>pz~hIb4!`1@vkDuVC|be30yzBE zI`pYKBe-L)nq-opzh71-9j2v1h~rX|6btdr^m?+#?Oen{kZN=FjWZxj6AFHaO7Ikk zw7HqD#DQO<5?38?r$V4+w4!1-*vFS-4kEhZ+B)di@lh_0Pu``JH{qN}s$*KGvAium;_qk{A5ydTb+h7dIts}TROFMnwR1T0K zeuPr3M3FP#Ia(2c^>v|EJUKq*jkRWMm>S!#gg|0vOkN2}KEe(_U7k8ze`y)V1{{p- zvFp}_7?_K?R;Cc^mtx*w#;jxj*!ga~ZjG=8@f?ug41Rm&ut31=`L$Ot_bmZd~&#m6=PEYQx`7biNS^>78>S-O07`>h<9|Dh=~B;DF$jnkAo zNxb4A3w-ymgXI%qXYePl-YHzD2`uV+vu4z8a!V;Vg&S$uN&4U8{ljbV`*k0tg4coVF!HqFx;M~R7=$8L#WU0>?Z(EYB1?^8 zyYAKN;R|)Dgjql@FGZhJa;ta6v~XRa#+mZ8(QRO2ERmu3)tnErLTWY6sQ8W!KXaUy0 z&)*n{1=pvgEThLoJUqjM{lC_JaOM*w6{o!4tq-mgr~#{S*JYS3oY4$hm{Cs$&xDn5 zBi+2_RQ!Q_L#u@O{i%Jv;Z9Kj!UTeb(*5k~57f{#mt(i2oYT z{!FG5FqY~tMgZ~Hpu5<9vTQLzBCu`AjP)pSo~Sq=sFQ8Lm6T0Kz^&Sd* zo)1UNs7w;85MR%)|2l8T z>6#{V?h+w2g?_1iK05(COxv(l1<}g+rTi0Gj%KC9bbeep?MUc$pPXP-tq|d`Ag$<<3J~he5C99GjSz)V#U68 z-ie-Pz(A*<`|+1LBO&4H5oZ7VNytao-YXz${_bnJkaGl~hUCq>W^-2GxeU*gqhpnt zJk-F7#NpA447rtl=wxy6cta!0S3Hdtkvf42mH9_%pkk>eiV$-EV8|fk@ zHFUB}brv3wh6ZW4Nk{Jln*7PO9daI2EY?!@Vw6?`#aB+N+&a`OQo>_JdB)vS9`~LJ zPJhMth0qp_oC+jlLP1(=1+htl%);iilC;I9=4nya|IoM?<3VTLdge80=FvM>?cNEk zTsy@FwkV%FH)?k0m5sV7UnTNy7PGc3;g2Z;QL%PFw95d=E`uLM&L2M=%{};Y%*<4p zgLgEG19NHX-!VJnT>FZMO{+u>vp>AOTaPgds?WlAEn9^Y5o(PjLlRXyY7$DY({`o@}?62en5IU^JXaLJ$dG z6Y5`fWUAjFirO7)ZT3Mz5p#STar zuG*ZYyvP3wfwBvk>F4h0Ie8fD@k(Myy};g3%)!Ab<3+>uCTSkh{qn~=F}t-tsbFen zNq3B z@zzSbRmUk}jDg*AhR8T@XBoI-CvJ5H+j66TCl2;76(Q|*5jZWCahN$WtX+wN+TpWV zLAsNgQ-hRqFI$35g^7~c;V^JXeNeL-*Vk3BwE9ZdDz|)2^3E5E4}%bI*G!>4ujFrR zS6%*JpNQ55l(qlSt8#Mv-|(i2o1HNsgS>%-vZFO2gB&3fBO@V$n7PAW$Nw4re`700 zV~3w(R{D;{BF2WcMnC7v7~7aSnh`Ry|HL!>`bGHvZ!muy9gOv@VO-azG^}lLI8eT_ zbp>;E*BP|B;X+7}&_+E1Ch#ITLv(Ne{=~M11@%S}%;{h69>En&O?5^!P4(BloatLx zWFZ4-raGN_)4|t&}d6FmZ`f!K(E_Kc24guB0{C zsM&tdHLF^!0&WCB_2UqjfezzhDS`dCYo>V;TpODKNYN7=f4FR`Wb_5VvA|QJ;rIp? zfT$Bob`K~?3|%oBB2D>{g_!Y;9RGlgvs2n?yN!?YnB?W(p=EYjCLspRa2>6QPww%S zlGbx7{d!~81VJ}8LZriDu#HtU65cZuorWf86pflx$54!eNkH}38?Zzp;is7>ximt9 zBY=yb%~q|w6Ju213Co?;x5GkYlD!c%RdBzN#79{j4>tb59FI00UoFiq^Yth@UFK1! z-%69H+v~?f>ma-~z<+AvjSBCBf`K_!KlY91OybH_lQWKvRc$mzK%j1ChCGajh7Iyi zIfkkvPUwUU5^!T?)+Qa0q z2@f%W(ZO<-=}?m0<5rw+eJp6H)-1*NWcqYzEV?syYh}%ta^J|GpXA(LBY~{#I{Ctj zUpJPfB{(ZYjEb*@=-d^8jvq7x2@%FbVUx=RH(|PI%_IMtm(K2_nz8(28!S1P%Y)jBJjvRxm&N;xgY;t#v4Bds;a*Lp>yvPP{q06vo}>cj6@ z%0NGCGf2{*oWy5DaVi6%P2*uFSMso0FMr%{WWlQ$rFI{ORB|wMc8W3+LOUb|azos3 zD@j2Lt&V~V?aI_dG1hUcJD{gp*C*I9lyfZ+=bvJ0KO2(1ml2n#1V@HCon&3Gn=um0od z=n47sp9kVUYoPAp0Ei_y+$#}vptc!r%hSt1O*5WC>pIN%H(Z+$*~x%?@|#-1^T{hh zi-ldnb~%uALh3X(R7|=i5i@9;uvQwQfBG|EJYp&)GwF(CvG?2sfkGc5$3D8VVNl%q z63o;Rb!oUArNBFA$l--(@V!E45E7A1Dh8TEX_++^U74BMeISUbm^_6T5{WqJ+(>P6j2=ONjv(QbXOzhd{Azo2Ak{=?oaDj%o}k z1sumW>gJ8eXiPc{zR+iZ1`6Jw&Q2Zn+9fP|>>BGIvHAHE-SpIYt8rSk&S;|Zmgi$~ zz&*WLC1rx#Kr4O|^VGx#EqfM_Bp&3Lx(kB(=+pZ$oyh}fm0o98 zTO=bj2Y-ze=e4+VS>--*Yyxjf?-MA8fbFi4jtNG_@Ri`sppM{+2ons&pJ~7`d=%xg z>b`vU#O@?xj(C!PT!s+mnRr)42UkV-#`$Z05KO8uGx{=j^Yj92XpVWlcGjJ1^n&V% z(re_vqP|m7A^}Cx<^$)kh9xuX%cqCj#*P7R+x4y>9s%!zR)&rg$|Pl5XR{&u%ZY!! zQkQpv1u7JSj{Tw(-cI{bn9U!xh25Iyn~m#F(IWcNO7a5gi{y|0vqMmY z3%}_RqX^^q?GfC-g1V3?BHm#V5L5u)IkA6PDj4d~u|t*!$0`t7XOsfkI5b@p>i8ou zbuW-F4cAq@z{L5f|<*UaDv%(4@ zSV3~YSUb8gCE*NA=EZGCpyMPP&N_hX>JK@{Jaf*+YO_=#6;;VVgCZ7Yj zA#Rj#=dEtRwiPtY_if2>n4o4O`gL@Iy9@~1bFg@YbZnXz2V&R=!?xrFZ7@RFfD)UV zCwW-cf+Kj_h|&bd_Rl8(&I!deCm6iY<86`rsgk&idqq7}QaKO(B#r2FeOz;^JzaKV z$Lc&`_v&cKHzS%WwOhz|8pr*4^L*)H!bnvyE|-XcLbm>Kn|G6l!@ml0S%h>+KCBXE zI_TP@7&7^HUxu#Ttqm+R2J@sY2{s^1J26^vG+qfcT=U>@K%Z}OVs2SyMwl@E{Kmrm zZsudRWFgq_;AKMY;SP{$-QNacN+&zcZ+r6Ieuts%ycW60;hY^2QLw9UZx7y`A;mMV zx9rRcd(cazfZOjRG_OJ;CX!t;5KYyw;|Y0)N4UE?X-) zU&8l`j44q)8=sgt<*ugijjoV?k=b___~%&4kQ-NKmWh8m}lLa zKPM~MvgT034W^F`O2@KPy(d|M*vR~#Up{VcHj%G!W&0&B4}5{XIaawI4D#IjrU^MA zuR5vO(<&dHY&*6yqZd_L_9-;tu&)_1uT;m^{y)9ndQgn=!Vb^^YFf5i_VvT)wTxCa z#n&r6npbCVz0nku2VnLzp==X&rEIsVsv3^Ein34*h zC3G}Blha4N#v@!mMDrecR5*-&=qg7AyCq|xIlAzF#rj9zRT;qvPM06YL|cnxVF595 z(z!Z-kW|P(%d_#k_Ij0cHcs*ps%XPj+Tw|SImtl6P*IaN?K#BjjqL4dA)OE44&;q~ ztCQ8-*Ttd5e7-@^4MjSc3*K0L`}uQtrs9?X_gklPz*X^|uv(f?EQ_nuC~DYG z%1-!B=P|LEbOd|?mWm;qWV4`@{3BDiUDFF7_;?<0BU(sc)aT+jjhT*NQ59_V& z+$H-`7W615Dw`6r_N)|r%yh6l#p{Zw8Y6vF8f&H)JS>mssq#iICm6xuv= zEn(@>h#93++)~}ggL$NepTqgqym!T=Jw$L zaAWOFVUJcfzO^NGX~(wsm``e)Hc%cMiqUj=wlFG9gz=-|0)PU_HEYT-OIby|j=y)~ zMwh-BXbg=m21iMMrv4nVjKVrCbo8bA*L4&$P3eS2wc9>Qd;!av_zsyAQt8K{%r4s2 zh;p&cj&d~%kHc!5D2nVWX#bJC0t`WW4Ck1Nt-a+F(3*>lFC`@{hAHA(vI>*u$iCA; zOml{0sP6Ui{F*2iky8GZ8M0NZiVM*~Cw&05WmSHOip!B)FJssKV8FwGQj78yBp(UI z1a#tPbRfxemrkO*U6ovR7?QY>EnJtCb%klYbl6?S`b@9yaOL#My3WSym6IN$S9v-9 zyXN4xGSB=6P$rE5^q4MlMB5Qni)fi8>$u7tOQV2yd#dVLL)d;m(u?l*W7JzGhV~lnuOK(;$HnhcCz z_6JKo*x%@BDf0`>-PN_MF|CZ8UDib3$&C>34Ai@e+FJ6#Je4{u`orHyBH_)+ysS!E z)tob_;o=Tg&VD}XN)~4e`HYOxnDr<|^{ghJrDj*y`&e{W|D!-l6 zYCiwyjhf)|Oh-W5C^ToKeDx{0Wm3E9O|=czZOo6azC_+b$PwE-h05;>6KW*Z37T|{O+VC>9zeR^>1 zmpL}uS4KimT0V*y5v|?T_qk62DuDpT@MO=y)%-B0`rn5C?m9=4z&&ynWrtm*o_}cz z;8;76{AS14MfQ|8UP1HF;IpP-L5Q!N%`mzpoYk|qx&ms zToF=M>k~WgE-{W5xTzM4POcbkj*4O4{$=2(*Z664gMURxPp+lu$NU2aTLGRFR z+Ri^?b93|s$78bS@Mffg0XUiL>z>{@aOp$IN;&dclf~#o$+{WcQQn6=d8+O}DpqWb zWz1z5`F>pSr+s6CV!5U@&mri`#b6WWvyVfh@-H(n+w5g0NkD>%V0EdJ0M(b6oty|2 z<<9wLDSZ9YV@zipWqcLwy9swFw-cn^tEVAcyZFkR;h61|ne+ZeLc$>#^*Tqfh{?qL z#}njRjJx#J?};%>C086DnbRn9*_Bj9XG%W|vnCwe4HD(LI=ejvGXN%FD5wSZBM-_- ztfBGon-OH9=%qI(M%ArQxlXZjWu{g7Rsm*`W0*DgvyK>zpnt8jNqng+HTGpyVuc^Z zL~OVfGC$1{m*2XWFM@zP^ptXKal*yYEXz)mo35`l^zDc|@COmu4-c$&`1JRzT1LCh zK7Zk@R$uRJ>vRB1ok=`I3&ClWs~;k{5j&;b9ATk;7E8U)coEnvHK7cNVl;tQ)1_;4 zR3gRhGyd(@r|Az!f&3$Q)@Hi7XYFGzofQ&kFmm3Uso9ZNXNf;o;#hRA|H)d&SIr4u zfz1sAPNUrwS;9ySu(l)D*b2?V2yhF6$IDAj*OT0xNV6Nma`x8%fC>^TGkI zrth{&%2XI>Bj zVyA(wZvGh&sP8dF$Ae<+LcqOb?ptk}-#QBlk!iJ?9LDo;b4R`HsXNQdyE!4`Sl(8Nt=d`XYL{Bshuw9v^ovnFz(6k{T zxT!J}zUci0HyHjmAGoK8*bCV~6FYh6^;fupoeT5^3y!Af0uKs;2nAxJ#+{<7(PV#U>-xu(J)3~JIlqn;7-Y*z-?`x zFAi`+&O68;u~a<&a%n?5Vj71ixF@- zm|4EgK(Tj|nV)16>Y#f3wM!|s4_L~mx%vFKqn!fw^vV_;)&KKA^qjFuZ`O;kfinj* zjC;sXyEmY?-(txej#8ok*H-Mxv1{dnhfqL&)6}rV1V5@fu_a$pB$<0qdRD}(HQe%v z^RF>$rfMr}$7jNrHv-Yf0V}C>%2&B@pFO~2k+?^jkw&a(q+$iyd>^~@J3Y7Mnc*99 zfEk$nzsi25|83dN!udnS`maT4+_reymLE}0>J68AI+*Q}dxi6pLehBHQOa1jm2?=o zdYI1+kZrw(yL<5GCA_m~x-1AG&^}?`UWu;!$HV8q>%{;8eKRo+dR)xFy`K73C=@9nj z4=IAKRnKvL-Tujh7CX~7jQDbect#_Virc|Pwm0v;*SPJM{;(OmpV9T{{R7>_P6Hl| zMG|6e9;(bt4R;*I;}(k)&UGfQMj}!hgvC0AC?a35_o^rfs;U%VyYB^OY-q`dP1VPut*b`jnx*T8|aQ_A6Eg7R)x&TQ83*HB&?0E0Ejd7c6mU$dkN;D?3q`ov;K(#AdXqvW?zY%55GTO|*@U%*f3lqbm+LVvILrp9h<19>8{Ub#Zg81s_j04&R8Z5E z#OrAE&`F%JBN8p;F9L?{zgh;XU?4H+8*twggO)B}Wh_iKeNQ`R)Nz#?>(_~FJlJ9C zDF0qKHbygBi>vC?OoU8M3vJw`!io)34}(Wmz{u)0PA{H3>nfl8IGVVAzujC9g(n85 zE$sMsyquX@eL;SG+U?7@yS&MtzHCTRk5%UCe{+96?lBCVGwl7|J=Fss&XOrh>|uC% zgQ)Q3s8QfbK&J|95|?Kz2&~?(9z=-v<1EKPFRa6JvCvT#)g`8(#*7SJ!^K;79v!Xaow4 zWOs^^Pg3iZ}m-jLq%{zEgVKGrm)O>JIF4 z*kT!qV<7jBV!DmqjeN&4QN-3tW*z~C%?d_R;==Qdw}d~bajN+GWbrpSfI%_l)x$m6 z#d6J?{c64*nr*efc$hhWgg+)()jxWcIf8_VXA}9!qR!D6bMv^|IHOVay`)Rpl6cA$k_D9{txQWq7n`ScUGb$GyD^Zmme#1=b^myeu`v8(+H|3@=Z1oCV>_ zK~KlYOrG(p>~q_D_-ei#dT6!4MTzNR7xhe=?DSOS6Jyqcl%=noFWxV8!W(}~#Xq_h zN-qt`m;_<80HASjd&7XMRd$S3FONJYw%Nh`EN_s4AOmF{gAkf(>5Y$9`g0-Be#X2D ztPCBSocP99x5j&GEe$$$Z=WipWxm0pxcz@qX*lZj(goxq-QoqUrqk!Pu9I_msock{ z0rPmC5~h-1o2&0~3H}BFe9$tRO&HEagF=Q%wn3UTb-P+`C*m+}EzuwLZmz{Zt!HY{ zL!QAE$bz-m)F8SVvh|f2;x}m)Bx!;5xS&9DxaJoMU~$v?2l_5H)-&5h#kR5Il)EI) zd1s=oZDcw98;;Zj;_oF67CA8!%0A{9s2_i;KnY9FuiWmDmh%|=| z34^V_IJnc@nKM-83=p$asgbaRJutdOY9Y&~87RZo%C#n@O9J!l`Gt!^-%X%;*;&+P zgfx$;9cTWdXz((jVRCso-3U%2>}t9h8o5KK69Nu)b)KaXR7otwPCl_ex@w~wlmdpJ zrz4kLs}Efd5LR6snGtpa0cdD$6{g3mhJzK_#)`$=mheMYxF@|MM;7qCv<_#kNQ4?6;sEKXAi$Lr_UFYDj~p zQ|T42;GR+xxm;FVV%Kk!$Q~)o?};rjlnDxENi@#$!qyh{HDh5IV5U_+0EuZ#?5?0E z?i3W&Y`_*On8T>@)_DYA29o2Y^8<*6(OamX{457Kd7=x=Pxgf*j059oLjp@Q1TZe) z4wo+>BYcgTF^$ac&P&#Y*qW|Dn+)aJqN@+3dZ8W2^tPOSgCL}m|Msr{FIzv58cmXF zh?TP=$e(8Ov9zwjv$9sua?7ZqbE;Ums?1*;+;A$}F)~dWJc4o#+Q?X{OjYG<>*WWO zS6)g~R(HG&^YNrT=@bPI|2nEyDKpkL%v4b?p&`O$g`3_FEp87bdWi1BwW2nT;DIXP zMUP0&bf%9WYu`YM&4zDG^*2Od#KzImxbr7k&mp*PWdE$NpCs;qOpbSx*7U>VBMIIg zjs~TPn!Rm?ATSE6c&{9)x~U_#I09eLY20N{_Z2^rHGx%`_4CROoox?SOkP$9(%#S8 zr2hK}QV1t@bP`!oSqsHu-7x+aR&yMzPh`ZP&<0n!bQc}=H*#)G`u7dFdW1wX>k^CWu-TbU*lGGEbrYh~!yX*xW zr*J%Gs^qy`BvIg09H+UCoP!L>Kr{BQx&V&$XN;V`y-5W}q44XJUsX@%=WQE|Q~hSd z2GZD;>rM-gQ>!G^UVtDTTB&j*t9^m1_?DDJkN z!Z9%%eTzONKAiVy;q+$p7~))k6NZrb%7GKk)ls*+YF8wY@-n}*J|q2xXSF4-i}a<= zHcG*a0d)0VD#u6xk>U43$3O z18lg0QtZ-qstE@fSLz2+7GibFHvJnO&LrA|TsEN1()<`E^W5^op!$qf%oMXaqN5cS zmb(4OJG~&y3EgmI-oP;&_;?$1xO2xR7lxZv5Z}gN^U+)@8p4d<%#V#mjB;LGpEUJ2 zE6hhQjvSDQe!?zg!f4=4X9o@sz$D&6WQv$oFoA74Cew1~m68X0mZ6Ug+(>8}6-=oQ zJ$M*orqT0DBH*AiR>XE51giNnE%`+KirQdMOb%CgzZYxL`@`}5k>G9$)p(4)p1$IT z_A^B*&PiNIHz@szzxUVRkkeu7%t?(RwwEpvl zz!$o#^x}Y5Co@5^@z2e9kxDnBDFqMlXmL3sgi+DYM~oYw-w~`>hT#9hpZimQ#{OGJ zsrn^7Q>TrybV{H=vMIU-)4%RB68+QwR~(aMb~nQv?k>AtIq5DiC4D9tX?FNpg{Gl< z3oqHNddv-Wi5+re)=|#)`ime8V>ofT0vz0_=Q=xyBvLS@Cl!-_CrjWc(9Rc7<%zP) zMR~Es>alL>ND_=yA<}ZkTPf)>ObtCoO72Kvt4ndo^m*gUsi3jeA2Xkxi+ulU_D$l9 zG>1t5_bJ%)t`U^X$h8&Bare@m&%VRwNpMtP-x=CrW!{>X^DQep=yGfg*OZg2nod9Y zVFwdgmlqEeV8D{Wjs2?${s{KP4CLc${&bddzUlN~Tj z#}p}5CRs;@?s2E`y4FUr_LMGf#F7bJ&gy!~+g> z>0Qck;li@}=0LXGBqVKvMUH`tK-s$kqDGH=X{T_`v6!#ne7Q_>#JH%hwlpjwSs7oi zr#)TZwKH)sDrI}zIuacLNmKqc9?0$^CYXsqZT9)f>rDkHCBiI7RsZypp9Q19BGr-< z^m-ya>A;HNXoww|{F+iE&ZN~k7BCrBin!)lrn+NqQN^F%j9wgUQq6ri^)u_wPKof33hNQEatG?plONkhm@mrbv2LN9=&Or$+y8nCUQCuxM_A`B zEDlsRlDK|bNK+jW4uLLIXRg8n{^`y-D*A1ZJly7f%tR@svw z9+8|^FpAgDQL3y2^&vw7ME#-x(T!nzy`Tq8xB-q(<8m(BN9nM^M6Rv zP)G4k3!@sd%>h(dOmSRVr)5^m&kFbjC5WvNOK0Hk@J}V~%ab+N1?qSVFHz-uhVysX ze`e;xuoi54v3vCN%b$;S@+o0k;WcN2@FEQNJ+n(4fW^2xCLvD=qF&c{|7=bUR%`Y} zK+e7*<>f?-7rn4!1Q*9&8`k$}F*5IF^3{(W=Z0{Hei|s+w`Ym>I8RmeJY-zWuO&r* z(md9cnR+ykr8FkLljn)IF<@p3iP{YkZCrq#or7qfIuuvE$QLNhwapkeeTo*{DIc9V zOHdZMye3<9*Cj}AUNA(JOq9e;I|?(TwilD~X|?ULr-S~cNnU~30Ef{LXsJrNxV$LJ z)F_6psX*_#)+P9YRcTRH{jX-6nd5&ecVcDyPr1_&?t~3V+wH%aSthQ~foD*4KpmNf z?~HILHv*p?{W#XA2w(`U7Q2Njl?;5#i&77L?Q2odu&Jz;>-?ycPF)r z1hL!I)!qgJB8<*x0JjME%p}nup#it&yZy_(yb?EEkx%k`>PV0GJIRBSca5zSF<|EH zoZ|GExXAx&8YmO02i?=hix=B4H^}9N<`=#&)XhZj`qPga#*1}rkH&iWJWk%r5mj>w zMen1K{N_dY9JOaaECES3Y_tZERsVs}D_r@5fa|fj`5Ev|nSmSiOC35KAAdj{p|KH} z-7^&&lB8>HLhRd(t!um2T}h3=5|kt6Tv_h3+92?dllrIya2<{GfgU5h6(pfiu-5kk z6o)*s(8&`LHF&^6^#BxUQ~MW@m?op<2V4-G8*6!^;?p@Y9SM|FAkr(;V)7`%4rf%S ztWbvI%h$o4E~MG>V=NBItFmLrH~yWW{tZF3uPQa(oso4vGN0$`Nlnkk-uq6Xug!N~ zv71#0!BIuLj;pN<@5kqjUL~?1R|x~(F#gSM%fJ9bNJtLNd1-*t4YfuAtv5A#ziFL8Zo{pWiObCA?W%jpHR7v3z#eu)~rw^=+P(wtk0sUe6Ns-FL6 zNynlr`t9B8UJ#zp2fOt`9}FVQ{Xt`wm`Zf6RRSL_a6srBadPEWgPHX8Uc(Yun|-Ys zr|0dfzqLM4-z{<}O90d%NVbq*T)Ds|uQ}l|78Z%t9oS4Ux4~}{ef!{=mKY7uJa^i= zG{MNyxhPvgo9srUCXD4_n@y+6HH$o1oIJMhPA z^Ili=IFPIDFJxXpAZ}5mQhz|*`rOUhAC-#e$#$m2=kBj+ zjNVrRWU;1h$d*ZnU*%~u3AlPUxWW|oD*`h8er0=!lj}B?H22R6R7bWcEEV9b`!0p? zPxgqQQ)5{dnGWjqJjq5ujm4S~8%2W>piJ=>lz*`kQ3#0i9v3!qV|eHeA*>-|kzatR zl!a)9eD}@nO9y-fqliZl7|)P#oh&#hE+RMD#QjqCUe^il6Y3pGP@EG2TA+r_#Xo-G zI_ugc`E7{=ws9!BI8*0P0~=+vQu8_t+-W;32@;EfEcA-sgiX8qBa=>vGb$5NAp%rF z_MH2cu>*mKtsoQ;7z>^A16tZumrCCZcv+67Vu4h;?}7h{7eko; z3HB@^7+WLOEO@Bgvp2lk{2L&Rj{1vv0DGQE#w{3Bj?UbVZZS@v&zHwmNgTPyK|v>I zwsIV7qpud3Uw)Ac1!TLFN2(0?s_^fx_xV-Z#G$OqqhQgV@7~7w_#G;$!h?9>H!jnx zuefgt^-ixso6660R_fPz!vsdJ0`gb^Y3W_T-J3!+x~O{|etf^b-qaN#EKlmx5-%!5 zRl8-}NhM+_@=;#??_~<6)|P)a#G^!gccH7*D8IYrl7YX!JU`bL{llC6{hT>?dO;9)1I7y`WYKj3Ga|5@rNe<~Y1}GV_;8fA?>WaMx%4pes|q=&raLcIiI_=df0Q$3&3L z{UPX3C|_jy2(1j|l5g9*?~+3$sGAhEIb$fnxQaKga#0cb+_Soz@ESo1_Z#A&ccT;% zLGdSg7hXA2?wAUslY`X--%U`uW_RwZJpjK?;09(CJ=wH@Z`3y2HzI4?ku)`pO6b6 zI2>&JJQ{|Gj}HEA9NB=RV4j&8Ud*t?#sUU?g#! zV5YiEz6Zx^{@gd~vKvE+AS@70h4H#;0Wl4#kqMh2*m6uVEL$PzqWgF+n;I?S|M(omDWIM7sI@Ij-$wFEnkPBj=XPJVj~dhi;2JH&M)-~ ztyP^$`e_rC|I)x6$Yh}6DbxwuVIvR$2BF1944amm$2*JO%qtzr>R3&8?XN^e& z&22NZ5uap`X75PQV%zF_^6=TU-f7<{j3V5wLUvNJkenpS;F6yJi}c1ZebaIvyR>;n z`>|Dy+6Y|pCgFe6K#4}tqdL$0qkaB)h!7$&gGHCj#pvox(Th_;@&?tfJ$!8G_U3Inb8u zU7_OcPuRu2;#>cOK=u(%bDk>Gkp}SAFBPmeXtU!t3tU&dvpuSTvu3sbLoO74Vo4du zV0<~}MZ{aYv8TqfH1>_THQqgirb7La2`f%7xv?7WI3o?=dFxV-_GuY17Up|Z@amYW(Kqs(pRKKhN zWrb(>L=&uL{r$ZS0=~=(4G%)dT@N`f4?W{+72b8^1-w&PO0z2P_Q*FE4i@nJ~wC% z&ksJvjXWOp=WkK+%n;4L7O$t6@&kfhSb!K87q*0S)4)EwivQLIDE{i%8*n`nE&+-j(}qFO^UxoJ^K-}B$WTLlhdV!vdQB8PG0bVGi5A3T>^fY% zn&n*hgFvvj>xl0-a*ojT&V+Xa#VPtvhk98Mwg{6g#)3eiU$o)% zScd0n{+0*GVfn&>6y*q|f!0WctynPBp#~@f`l;3CVU?-|FG_kMs`O}j z>1ko9pG4s)N)10C#8c>pmT#DfzNi`dsoWN@bcXA==wFh;N=z(4pE&NcnLV6!JGW<~ z3)+SYNdCHRi0tdAwK`OB7rxasKs_jkrCijMNW<2iZKAhA5QF_}sfbISLh%%ALaA#b zUr9#2B!~ioew`n=2QV@825qAWhhQr!Z?(syHvQS{p=uBdpg?}9eBd$N%JdO8DYzlB zFQv28$<$Xyr8w5S136*4eDt_=t!PcoxBGi0)L#%x&vQ5(*isWo$Kehmbm7ia&? zX70uR)t#~Y@69OKnf?#)^mNPs@nDan{;d#HK@baMPH+1@Xy9gS#r zWyoB?yrA{b>HdDctC>;4rYmy(cqQ}f_O4&PQ+4wC3=G}-`c$PtXRr_GNGzOpc^l`@ zHXrViU`-0;8RYm?esYUMH~o7T()K71}SV7&u)1 z(eKf23*T}Sb_cnT)Ztr}B7piu35Q_kRJNg_MR*MnVqY+FA-GGDOHzIMw)?25l;>r9c?#83c!0MKxg zfprmKxPJGTJ7HX~zVL5-r8sb`?i4kg@pw&j2}?zaV9xri${CZm;5z0FdwA7$wI#$8 zOS4RY?#1b|1AblRur|OR9rsq8IvpA~O1JrZz0XIB%1eD2tsD%b1sU(kn)4^xXkb5M zRjl1Bf$mk!2mXieKpB$+gKNE7yh8gMFy$Nl0)ZlbtzLGkY1-Eia0iWjulTZQkSb&J zOG2gXUTtl?-Kw@eLPc#7>iqm@Tsz-Z!9IRgVZ<$=@6q=IZq7-sTXH=%SLu8{uhMJv z4u#;MqHEj8Yd7Bx36*{kfk)zs%YzvhI1ZlcN4k({{P=yBW_N%17wT&hX{D~DuZ#}Y zx91H0pJtmS7BafU)T#?N^W1t6=-=}%*k9S#=t;A=KKYTz@E2DWOQ&C+F}Pb@+EwZC z*Qbj27HK(Vnx$BNyPi&)Jnl!X*J>K*PHbYDg&Gts z)L+zS?{?JDLh#cam;iLt9I4-Ku25Ys+gE^+Jajm(xJ-Rf)XI^L^r%Sn7_DLV)ledO z)K}!|A{wmqV5$@e*p=X@@J|@g|HIfh1$Wj&?LM}he{9><#I}=(ZQHhO+vdc!Z6`Ca zlP{;v&AE6_)pxUcjz}FgBIAskG034%H>&_v@0a-Vj*4eOQnMOMT1%QTYKBCx9761`NXxzB&ab(Ot-O zY^nWZiy(t(lP&n267{PyOj6TYU-!@0Z7F^MDolOSWG*o>3`;!N$lF^?!@0|O%}Rpd_VfiQjxr~`10ByS+OoHW zW(@Jyg$%V`L`hp+)M=RNc$UY z(?BmaAJAGZ){Ux4qJ*|gd7MFiv^u}A=1PXbb1P?}8RS_KDXFHg_>>;peKX(P7aBOy zU|KF0%EN}HCv3nJk5#a&80IereZXp_Q5~t19kXMN_C;A=NVWbLo7t~fqGJgW)m-S| z3j&#Rf!2NiM2IQkG>m8t-Q@YNI(7NI^)bvo7?`8z=v(AH?v9(4ytPY&dNo`UA%4;+9Abx;8&CV}=zX9Dsn%3OHIWqK>_X%NVCr|} zDANZj##KorqIs-cE=!M zOFoYWZMx==)Y@wI!Vv43l>{$B9IW`K!4*O*+*}F6kGQPZ+eml*m>s$;V~h@Vj=zl%Or#HNsq@&u zU6lxfU1%=`LJ@dk$;HxMI!Uib-UzM7D7asYzQ0^fQq;TFy_NRl@5y_~VHUVqygW71 zj3ywd%nr+KJ*wryL|Yl);YN1tK;d;)JPb(jQWC{aCE*NLUMe6ya2Ed=H2he@7pE$C zwES$Ain_gga^DMv&-G#7AtA5{8F6@B(X?F`s(7qOUfx*&YUJ+RDx``&A-2#rO4uZ$ z9x+_WVo^5ir~FN*Nw9`}g@VT;1P^)bXznvWuRU?-x~}-yX%tTyj(pZ{7_8oQ@ZDepH~Uao4sy*YUXc%y$3Cb<&`J3r znkbqNi~|U}mLzWAYvQ#?E-YcA{q0>YECBFgK;)W@0Lpf0R%JhQZZ4((kb|B(3tyap znga_LSM-lr+*zS#SuHg?5)yu@dF+|n5eqq-oL&Ur;*^F z1Ifm0!GgiznZjX)UZ;Yt>v0ac{djULZ%_ZMg}xodd+hSLWbth);EgvymE-IQoGOi3oSVNhCDO6nLLd0Y*?fS@28RK&|>@rq+asP3SkLmB>Ha ziZAzd{dcK>61e8aMSyM0+QqDXSR+?paC@ZmT+GKtngcJ&SX( zV=qCLgZ6T)bOS$$$tZCYdwE#F4v4p?v%G_9?w1P(37EJ*)zn$s4ki&Vq|fQe)ND&= zam=fXcq1N>M25R%FUjk*$$JI>&6I7`Y143@wPL7g)9_}gb&XNX`>i}#B8FeVsA%hD=XcypqhUNIg5<0h1ihGaD@@o}|mUMFZ81 zz!BQQ2j7$-0`z8Sqi8s#;1QZ}UI}0RfV)z8I3-}w4PBj^z89}D8ORGpto@XlEGQa5 zO^UnHC?(M$UpXc5+&wEL(SYvDGbIsKnfm8Yjz`SYMkXB*pt<`Noxqk%5nWxvtwx2d z;a#Z2T<=-0#4Ptuqr@2Z@+YJpc2SezLGB`?@C_un?W{SO#5pO^nZ(6jXsjF2Eufmj zu`GJDm)g*ogd93kAU$QHxUS(( zztYx}ahOaaw_n_%(YE}%2&$w5y*6BL&fUaJP&dCt3yZkb60jh-RTI)9jk>yl_O~K< zwe`-*V^c6g0}xU%e;)5RB#dQ)mcd!Y>loZvr3+(QP7_#o|BGqfn-VT=Ia^i0*vf4r zTe0t7IZ0;5o6VqrShFG?H{>mU+O&|d$}wIXp5S%j*Lc*iV%y%bveSAnZBP&#()?A(9L1iHhUL zL%pUex{RomB+1<(i5Pl3*{gZdA6dP&-Ycw}(C~L3L~-6BdnV`$Gi=sfK*^T_$1FYm z2_MsSw;wop&N@?28K;10TMM)wLtKumQK;Ilo*Z+Rq4>q8>dQ7edxzfQ;@>n#6GUNec!`oRStV6EJ2Ra681CbQ;_6$=oU3l7RJ1J3n<}o>c(mPng#Olk z$>E$!)|b-&3~DZ*gz%S1lc@uD&PFap4u2mo`)0SF3ogXx1sAs(_=nClXzwn8iyNQ~TQ!Wu7d3u%m|NM@Wcz6CwpRzIjZ&wdlSpR$V5N|S; zq~rR>EU{x6SEuS3)EvvaYZLW|U1*n`3qF3-0E9H{!&f4rl3LN%S^Ex5qpoX$I+2(v zk+=fD^y!1L*j6_9zGz2bQN}4=mYuQl{Y1JC$uv$S(OyPD@PT{q@a6ROsR>mTY|kM4 z(*Awwj6Z)li0Bl<@MC1&92Y-eiU`z~ogsvSYYMg_7^1CBfU{ zK}k)ECJ+ZcKgXX7%tjvCJMmiSFJ1@EGc73n?%#f!$?F4F2mR-Rpyuf!M~uN)`!S$K z*bgwqMe^U}M-41<{0F&Ju(lhH%Jw87(3`EgfK=oUx8`pYzi@7#^r?!hhwH#fLKCz5*Xi^R?~fJ$P(m?vh z^(y5fFlTN?f|C((xQ&#;=wxq@U!5G@6a!Bq3mLO8rBx9ypvXKk@CyN1T|>|1S!4yE zmV!$~RAh=NR$1DJV0^>R`%Y>ca)1EV@zWVD7;TZ55`-@BY5!-bvM4C7g<61U6}rH5 ziu9ABG`wduzPWQVFv0I@4;&$lo7G>}v~#zPjmU^#=$+aNcBzjtrS~-aj3ZCc9?J6kcMtDC()p4p^yK zq-s6|Fc>Uymu^;ycPS@fCx#Qkhy-D2*K_TCmKglstuf3&!JjNE2CgMMVP#ha8i9~e)m-RP& ziNMaEBi$o}Jk5ZoI4K$ghhQAa4P6n8urEF_cn6$QQld!WsV|KT2a|kQCj>Ri$s7c$ z13HZ!H4g4=RZT`pSsL+n8a)5Df`B!HqDbfpqS!n2;Vi~8%jyyI?b-(Cw`wvpBZc?F zE0d6=crP`MU`;W0C6!p$q$rj%eIl7eP&Y$D(Ye0?I`hQ-daSIM@7Il~z!-|w?e=}g z^Z6!wRGFFtU03UkRe0iMA-ZMeru6SN*xsht+k)C7L7iIAMKCcZYoXbIkLt++-9mX9N&nBduZ6Qnp}J}yU0u{+jF?+p#{Nc z!+?f;;}Wu^TR8Q|AA7Wx(`JY?T;XNrr|7%=$co@$Z1iJI7BJV5htMtvgNs+ z7zw!bX}k@yf$;3rQ>?c`D2Rq4zu@Q^7o@JqR-65F)E^(ALLS{g##n0v`}(DtBP?V6 z%p%4K&v4me&`vU}qXalAS~INJZE%s9m{gVUq+IhF`XA zG63Xsrh%uCVD#_7Aofr!t}2-e8e*NM z)Rc~JqrOE7BDi~*=uliQkZK#!J{bmp^MFW~Iwt4Nqv1vt1o(g0OIe?svB{N;qxM%f zYA0Jr+bKD>AG%j|@E(FDVT;`Lj(8;YBK!&z&3E~zo`mXBG2ud26@3aZ=Gi-`0OULu zv*XN4ZqV~7zO}7jzO9Zdtp1?SiAiX$S6znbQKAiTe$)+ex?>p_$$PCWPmB+HDQM8I16pLce^qO>#iDN0nQUB#C|7z>4 zWOQ#0nCbR=JyiE3ma~o3gVaXX`u(c;nTcTyYWOKfw0KR7<(22 zry`Zsz|*wc$#lRsRBQP2;pR=2sT|eq#$}Jw6gWLA+nH17s!G!=NYy33AQWp9mJ8Nu z;h?WI{|G-ti(zbb=n;v1$jzO1Y~ZKP4|6Tb7(49XWXV4*iWh#+E>BiMgm%$9sq##f zk4zRoxByp@9|;0l^)$l_JCxk*wZ!RM<$Oqg%|WnQIiYEntQnTYxa$dF{Ar6Vi7u|H zB1apjHm45O|MJ-O-QcwPx05{*teU_AeWzOVwF z_HXP*IJ$Ph_uTPn78!D`p`SVbxn&vLVS+1zelKEOhO?TV^`X=7=Kq9Nq z#NqL~LfRHwWp^Or+}8hL2jD=Pj&nf8Xf8{ykKFu@5=!3wESQLLZuC00@90y^(^DEEY&|7>+c6dH5y-x2 zdq1Zis3a<7H@r}nN-0ow3t|{#WR#-xSvhQ1nz7=Gr6~b$#G77F9so43`>V{vM*yQJ zm<}CwmpD&T`{}ddaA~YoK%rnAnt1iY#qw>yjcY}}#Q^z$19MOnT)HAJf8a_Y1UA9+ zAtn-wQeTys%kNbsnh-a!+5QqWJ%$M;I33Fe7zp|jY3b|O6yQx@xE%ub@Y*xS7)iV) zT2JEqY+OTs9Q0HGBBj_A^Eq67r<1MX5|VP{xYF^u-GW^0-|Ob&#r?GjX(XBF4A_~B zTOM2+Q={oac{t`@vWVl$ov{P=Jz6`Jm)2U6|G?2oQd^T%WVZDiR@`mX$_#+RGou;& zUfu%k;^1sCvI3L0(0ru$=%rR1@(U~9FjlBFC+_G~UzisZMWXnsm!APaZ)?1Ymv9(n z94fo%6s0gl=Hyaj;F()W)-oxCm9C}1Ki(^H(Ndks0Am@x9bn zyp5zNtH3DY^k&yiqCc#RDj<6meS#%T68&-?n$;VPd&t`(AugsI=s=`HS!(;uYjzOg zIKBD4_zi@?leGSy3hV#1_!G1E|2z1xGO_(9{k!K!VI8$!^ZzKU$KP|Yp#6m7w{2-+}<$ zBKQ6y3J!hn`;63oy8{R#Ps9cx<$I12P|BYv2N3S+7mu3FO!bkq!z|#OPd}u7B=nB9 zec#{fb8<0SB`q!>u28e{klarhH7%{;TIt8_$OKE zut_94gEx@My$)f%&3BUj7Q8@il=%J?yqpw1m(CXK&yq62z(_m`CZ{^ddL52VH7B4} zkI9PqbOCKh(7?syegrfKVFyPXiF-FS=PrR%Md1{#NB9{lvP86K6R!6`gy73an~Nd3 zj=jB{gpC1hso)uL{K-l|`XaKGy-<^i;)}29RisbA%#`%Bu9}iLnIl6%=(WwBJ4z*ccXAJu8I-fMV-%IC&^XYheguUt2OPuy&MEhc zmQD$AK<$a zk$3D>5oKF*F+l_coY8%ph`pVg|YZKAZLp0+){a1)F}`bC}#$w;}2Y_ zeRt>!6pQ&hBiA6)^mM*;8YdLMW!R7(RvZ{@m?6NmX~JOoL-N>{${CF`466p!L(=sw zJ#tv<<&M8ib(iBu2!Z(y89yW_lnkTnb(EB%@b<3jSf367CRn{9%u=qC#JiY=$rf4p({7c$hF5%u4zd}!pQiqhohF4y&QT~i*$))0?bG3oyRz0+Tc*>0s~+#TrI_;Vx>=-VOOE)NCvkBwx zPMz8>UEt37A|kX+dLzhxe`JQ`Kj8%`@2H5-{`mHZ#GkfGtq%3x90>%Y!nq*w^WEkSC7lmxfC{18Z#EuUY7ZyKvQ`;D0MU&G zwO08J5x)i=Lmo;#F6$^O zA2F=xJD6-0Zuds~Y9f>TWW{e)s+T(|+eC5(;B%$BNZH9i1u*MikDeNT6x~6OjA_Vy zcYA}3wtG<0(G(|gJx~$g7Mc6;pG>ctib*Ene zF}{G8#8ngrvYg35%6)F0->ZStL0nCR;&;LW<`{ucG@AhA^Q^e(WfW`04J2i+k$40bqa;>|Jr80R2n8ztF z5ulhX{>7)tEH9g;5Q~H}@+vm(N4Q8BzR|I*{^!hp%Ld5iicLjz7~WCoZpa`g#GSHK zzd)CN!^;M!-jNH$o<2~!S02wPQpYcSd~*7!5T=P+x?h*vDV|U7k8DL`ALXM>x7hIq z=p7>S%}@ghNUThs%?~68E=jHDH?6od(_`b9W$0!s<*1m#b>%Tm;CJFq4iuR)3B1%2 z7I*g+(8?|$J`JRZ>E+V#9Hf;lat(mDvpY|-&7EZ&-*Sa)9*(64dh(WHeC6O922HT| z@1IYS;;d*MHoP0_Nf_=QQ)buyOe7Js5%vX42i&!kl87|Nn?IU}?=Se54s6B_l*}7y zDO?UL7lSmTlvm1_p$le+RHVVwf38&`B%8tK*;}U=aQiHsxqoIE+}ImA8PW4iyFAHb zx26`guU|2RBXa-1hB-%9e9_u)xlXgs@hc9g3z--5>{*ix4wTRJapy)50sKvz{Y*QG zxEjBn#Ss9di@)HkCeb^us#(J6Lj1Ged&V{4_77d;An&XVyS%n1#a{)`_f4TWjyo6jQ9f4GXo~QmYzX z8s`8*L>iwcmTR@n(5*o!7A*qn66{aBYF2H&RofEmn4D_Xq)j=s&P`ja8rGz+pX{u- zsl0|o>xs%X>~uvh-#V|MI@K>_KK0T3)aR%Sj*JUy4R!bRKlQHLB3v2c{;u^aWZ>f& z|J=9vA^}l zmf>`k1)R6hBVru&*1yHf4$r3>Be0jAPbLJ?Am_c?%ksuj?^9{ISy!FSOZTsCur!>L z${nZ5@|MzqVm?=V;3%LT_S=W<0S@#Kr{J>cxmgG_aG+!3B5Kju;N@%P_}0%~Un)h31=dSDfFwJX`!x zEK}N0QZ1xa43f~YhYm_B&~qSB`%!xab86~NukeQvby>KAUeyjbszqNLV!zB5UXgx* z>F1R=$$#hTe_6c0Rs8CL>2H5oeX=o#l0pyZ0o=jE0Q#gVo62R`C{(ZP7Zz+sfQIEAG+c z&ol2k6Jt4j<5CSS>=RO1ie_cCAX*kxwGdi9>FM;j=CgOsDRfM%YW_8fGn4NIUrX4{ z5d8d@vQ16{<%gZ8!SliwS*T(^D*5MpcOrR`{8Oz|hyA>bxukU4&P3`W;!?(;w=wH- z9k>j=^Zwj@Os zI)Eh|DQN4%0-u=&gP8)UqY1&68kjKwoo7$)^vLEpo_g-)iXdd3-SfTEa9Qt=XfU{ zfsxIu@#%f3v%^>ijfA8J-7cl``XMdokEXUk4u+>Hd;hCY!ikz`eTU5z=aJagWRaab zY<+eXUPVd?(G%NWLw$C;Tw0qQOT*X2blc1|mRmm-Nq=JtAM-ord`2kt*PK){;F^YH z?>i>l(+3&Fk`R`MV&`xAaRDo{iMkWf`5&~$ys)U(u$Zo6sh=I|B?z3f6^dJOBm|fU z@NIYS08#n993&14CFcNL z)uQL{!Wla`r(ieNry`vWH@JQMO{f~FiXec2%|XgnZsWXdDpA}Czi(4ZC*|QY+mN&u zomTh@he6p)GWggv*w>_~EAlh&BYk!H-Fs_JGF62({5rig<;EmN15j;;>odR@9pcE?#pNtR4`=_`DS)%{11!<<}gn99481t<6q0)d(s&W zy`oJ%w2eO&X5*r=fpSVFyJFu?R<@eALiM0q7SADg&GSrAMgh_ zhzKvwSf92haWeBLkwhmC`D^((RY*+jd&u@l(1iTMaa%!Mq@i+Dq3gNOP3cR(eD_j| zo=OsXjV9aJ)l|eox7p7=h!K%mMV*WFcsoaRSxGzy;D9KJ#8WBDW70g>^Bwxl0$U+n zM?pBWpKWpz_(-6DfwDf-tw3QMOav+5Wv~=S$P$0+o`#EjEXpPSl@1ca{JDx1V^C@) ze;=!m6`Vl5v(!iSp1%Tp9|V`%ra1qVk6>s2->&#_{*;#fhj~*EZdW47{~@Z!H?4O9 zGQoCLFDo|Yqi2ryKvqrp%T7D{BfbR~`^DW*uM${gErUGDm%#*)fNqJ8&jlzv-X13} z;~4yUD7_+yx$RFL4&xYL`r;{EU|{mjlMwZS-QR9^7yEi8Erg_=@%;4kzdjEMI9ED* z8kk_}@Ni%`<@%&6^pIo4uz&?%Oxj%*Ur$&` z`Pu(VRKNLxiIG7;cqJvx{tA=dr1<_o?*PRACDu4Lm{cXpfuhgt7EKM(e~DyaB~p$r zXQTrMS%naq{Gc(g&LxdrxiMT)^AANJxl=yaf|m*k4NQ3voR#sl^(mN0{d=2nkgSTL zHjzmop;-c!Jk-G>7vaf+fE<6ny@c|bMoeGFGxY%mf*M?uVoXZntT0-@Ehx5TD;d8G zW6^4d(>mxtJ0EE-E8ewLfF}#&xPbD*&t{irS5VXsS=c7dOoxY^*Lk(0hm$5Go3|D5 zx;Ks*b}#NZ?D7zpg0}%yPXtX)8w5hv*yj@_Rgyez*TW05hD*HQG=Aj@#uG5sbZ@YBqD=p6Th-b6Jl zB5~C^Z4_wU#m#kK+`;8o5q;6-ST*nqpJIjHx6d%`NWA||mruPJVrPK1iB1D#pm+tXDx4Oslzxe-Sp7`B=xb<}u zuci2bQC9?~MktPx?8iXq!ppT)?OZ<%rG*vbt)``+A3DZ8bd5MKY^4RD;8n^B{U|}W zr64g>0BjJM84ddAT>m&bWg}30(OpH>E^9T%r7|MIHC{qhdshEvBIjC zSN#Vn)D^ss0{j&;zsUl`j&pCp5NG}13hK`S`em|g>H;i(p1 zy-(I7Y=PycYBH8_OT=1lcNX0!1SStlnWWeyVrCxx5I&UeJL07x)=_Qp3v(ndXX2_! zm5UT!kwuP)gokDOup4cpBQO1CA4?$T2HRB#8$3tE$&VcC;NN}12fqGOHvjc zGr3L#%dx%R^2la%Up)Wo< zDJE4UJKo6=0v_|?`{N}|C>QCQIb2}!rCEaj>Dv+R@Rs59)BR)8!kd7dSLWY{G8Y0x zpVosD4OFxB>%Bh;1grSm0XDK#9XOx~V+RgA8YYc)stDBwN1R_yY9B*B_3 zmP`&;Y^L?s%&ud~yVyx^3?rG3A_$4{09gk)r&41P+S!F$eRMvUv~1oHg}tT-1E5c~ zKH2lxqeA)}H@d`4|K5wH_N(Sn69LU}t11(FN6HE8$KE$gv8?iTHHKC^e!Rt@JyhYa z4o5TAKa}7)dq|=)u_bt}UVs>?XgyxPR(uADPi!W%?k}haFODDXgu`#t>Xr}>rTi2jyz><+V;Zm^*MZq$ zjN(!(z|ap~^MTe}#~ zrstya_-vshtN}YBwXUrKRLU4FWZSb416$Mp4$_?#`!{l`CeO>kw2mN8f7RCSUWkjg zmf*Vv{sMZai)_jsbVP(RU|B2kv2OHPs|P*%Kfu9DPqps+noP+OqV!tkhp&i*PO|fW z*!-S~rRTad{qcHirTNfZdtVK6TjG3@V!uMGNhVvmb4YL`Wx8s-rehOOQ#81jjux9d zq3r8Z41z=>4+4Z)>>+49D*7BoX5M}plXwdElI#_)9wl@nQY0P9yLsO89;Hx;4uiU6 zmLT3<=*W3twjl7=#Loi-aoq9j&jVPBuqOTN5pmAMj(TSK=qf92{bNf6Yy28E$S3!d zMS$DP+O6igL7RvCDMYrzC30roxDn*pmP-|TqS*sXPBEuqP>WkRI8Qe(LV_i^FL?wq z(J%tBQ}cX)lX`3lz$$n}nnjTRRkO;r#V&*QZ<-mmb84(>;Ve$$=|^FK=U|;pM09eN zl$Ck-#O6Z{!!W037L1c|YbwTU)u=u^w+T^y>quIsXv~&ta;dyDB$MhR{ewzMtdjHn zBu`5B5;vYSWF;-#;(3fLq-B7hkrH@05x+b&hq-NLwTn&`Gxku5mMTctP=8!zJxfpK zAUl`2-;B7)GI^n25oKB6?C-lv3wscCKs878I#TPkc+D1M50^t3eW&h>a9d~kdtj+| z=Ngu>9A+D^<_(0NWnJARX}LHj^r}+a^$TMnOH(8Rv3A^v z3UoL6ea>x|kB~LG8~Mee@^j$}NN){5vtxe!#ML?U3Tt=8mq4)2WoH2er5_~f(}M#D z5hi*trC)NXvEv99rweS8$;DTkk2#_&wD}dr6x?gJIva(7PDVsG%BsMv8u`}D;}6Og zjWplEfqU@#SVgnHd?vFQ8Y&9rot~ z?Xy=pH6yO`0KpIgwTi#Y2*1(?${f-vNW)|k|>hYl~(bkKasZfHz8ZK&lY)KcZ6gRmvn&LzZQ@dZ&7O5(_;;X-&F4`8n@az`zTBLE_ zYRPW`Z^VS>xk_|vRHVP$JDF>@th4`?iO-^#UJ>V`z{|6F9PUf|o;}Q}E;uls{l=MY zQeQn{aRFs!+fFPWjMlCuja>Hp#qO3;!v|5(){lrK5knq8@(O)zvy8#!4mo7aBnsc( z9CK#Ka<;VX!TI?I$@`23LvERMQ?U8U#xl>iITU{SG52r#^v&-X2+oh-)reBw&sAT)8d#m#TN;-_i9b2N}gj^Jx)gnP*lD zGMJ?)k?sfv8I zeA--njitPyX=-f7)hR8XG?pM@N?K(`HGLZ;gS z)DAYEo>AwqG?8%I<{>;1gG~aqI(5dPK$9Mi;faQ7lK;-gD_s-~8)$7EHJL;kdB((M za?uDPh49A9QhOp6xrp+#m|NiPBm}Rz<6E;nNl+>mii5hdXKmfP4!1Z7${Lcl$rm&d zd$ao-Iqyu6#1W=biPw26D$friSW_Qve*vPpm=i`0F64_FjA3l&Uoy5tWVX*x$#|8* z-1?YLWxotMVI|Z}Dq9{uZ`YMW?Maywp0h9xKnDTyqqiX(ql$$j0tDid3*fN=O3;x{&G(DkauC^p8 za_B}(UNhC7%WSpw+`JuHMV;vBsCbF|jf=UcnikX$tdZlEqsnt|VwikcDft@|*lcUy z#a|2Ne7ey@!}jJcj58XmP(UT94MbI9si}bRWJj?qoDdd-Or?9Z*~;TU*bW zyyM9|zHg7er!Wd<{!2x3u>LPqG%GU`*MF*LyskvjHoCq#EVHt`H;KU6%9@&uob3eZ zjO$5K(bnUBB|@?@?V zO`o@?Ns0*l@Fd<4#@F9+Gdv$ZS2oW_DTu0(2i!kCh5PdQI8Xmoc>8>T06lyjYf51g z?E6O{X_fXpV)s3mUM`ujpMiTb8OSpIBwe4D{?-3Eqf3`h_wRlFeci7WE^ zdIF`F%WN68IHs@)sF^8mW`0MZh?*)M{tJyXV~o5+x^#}{y&>@W{v5tW@-U8bt`emY z$q4MYOsF`4J`~9rqQh7#&P%imrC97oTzDh-%Xo^KSf_wF*GL%u84IQyTjUvxNhN%b zoB}QkoYbfRPh1)>Dzg4tXnnusiWN;OOdt14}oue91i z;mpOVHPim9^arSUdAW$BuJIRj?Luq3L=rJtCYrh9tC)}{3@eD1J+e@_+ILMznH~$q zTg`nNo{mTC14o{@4lWIG#d-1^G|!&`Ca@rW@imuLW%%PXZ>8!@#h4Ga0mrWet#A^D zzsP;P)_ELz6cuD)g)<&;7I4s#AD||OpPOa7m=sJCEvrutv%CDCFD$;d3?HunvAKKl z-%%odJOL2R^Q^b4i$C1S8m>;x(A_K&XtKn;Dn?CSrq;cvq)ZU}bnLg_#RCD&@zXe1 zxJc`d=zw0JnEv7!!ta;o^E8QD7b&({IoM~Y60aA3_L)$7(9Yrz`hGj+qh3WC>nvy# z7hP<>W39{C1VUJ=Tenk>{^BtzMHJvQON@E=CgEX{Gz2kb-WSjZl@St3d=U>BZvG7> z>Np{%7A^>ZW+UfUer!`ogk3MCP}v*j$bgBkGRd{U{H`G@L7MQ*FX^*exa6zzex$NF7auRx|_Sfmq-$w58WsBC)+aIvWO-BG=8lqoyJrbhjW|L^-5}R9A-9VR zj2XZXlv}`u63K4LpCbf`^$Q7{yj%GR$L#34FSZ7xVkG;_7lYwi#vh@EnXx6NB%)628v8{J^RClyK!m^ zeA?v0tD=Sl5&@n!{OSO3YTOe9I2HQetHY5(kxpC&#&Po^%oidMOUEWro4^Aook(Nk z2Amggs*S-T6NKW>mw4hvu}y#54L#v^pb@(RItn#PKzdLG79=n*^x15_a^~zDPZ< zg52>tw6Ac)(GtGl$W&pJVUxw)%cln8r%1aHQpNtc{}Q}u6=xm1Y2}6kyoXr$UPNBY z>26y16b7VmADIA}2PvTE)3*}=iAQ`l3k8X2KtwX|GLjhhi{Zj>+oNiWqD&do!AT;;mW=3zAtp1DSB@EBNYWh0&`%~*m+c;iYG z$=eXr!d-e3{KSI>Vape?IhMG0&Mn)0;cai0e}hO|I8=o8Dwie!$;Fh+i?+>Fv=$Rh zG8~LxKwIYp(V>cO_HZ`h?Ii7V9dC|uP^qF4%(2Te^*53E-NSZE^|;dBvIAIsTHzeC z0JZlZD+C$qZuKBos4e}>lBBYs=|XiQ@&RsC!Rz7Tq10p^=NRZwtPX+qGZhtr-c_!uyQfR zUWO4H5Y4X9d5RfJ<&BVHOgqSasw}E1=o@909!4S23UY;4SSGquVMB>{2RNU&%>qE= zsg*O*B(yf+=a@o`CY02$+BnZlRV@ag-IcaGr}Y`csvpqD7Q-!Kt>XGZ+`DdVgI-9?W_hhIJ;@Xu?Ox%<#erh3{yBZVj% z8?Q{peg8<~1&?!(B9>72OlAZg1_wIZEiP@G{kM%Vm@-nZ^Jw)di3R);w`I(`42Om? zf~8MZ*vK<3ZsN-~d9hzFO1OuO9dA^HVsHdF6(r8iT~@MYMqvE71*8=o7pF{1w5B1B zS=V4lIV^`Je!?{%3Z~eOtPnTKr+5tKily8!we8eDM&>Gcm!IN)wpm9qOl#7MX_Nn{ zejbW5vx@1@-&qr=NbU}_A?;9K5aU|{l^XxapcsxS{q;XZij(?v{BRQRklH*SHmAMF z!uODX#F^H?1vz5HuTx2HWOAgFega_3{mXECbZDHPoWxZ#O7UUU8F0H1TZV(hvGX&B zF2;#1`U$pUR|o*<&VczBcXZ6={y~0P3mw?@w%U3NOmd5dH$3)_&rDxX{FbE>9s1^y z{BE}~A*QhGxD8j*`HqH8inCOTirzg$~j93>g21v2zH{?ERv3Y}>Z2FSc#lw$n++wr$(C zosR9KV>`KhXLsGY2`%Fiu zG(E#9o(~j@D#ue>eHMjf?VBJ1f#M7?AedhV26raa5y3{t{l>Q(VoqYD^8$Add4i;f9~K;@iPbip?Bf zrYHsdV(z@7846N4HS$Ol!b|ANUOB=;jtdj+m_m!Txfp%lxNvm`6YL1d5K=cHDwZZj zDsuxec9-NHez+ZhhH!dB7vKibp7&}$)HQpCh$D<&CpZZI$aKhN4rlT|yyW7h>Ph?e z57_TNz=%OS>*cT$;;ufA{lSgHCgYc1t*aUQhXT6>eO&KlR>Od3=Isl4gg2B-Q z8VoV7Bh%mhDx1+ay8ga|>S-Px0?E|A`dz5pi|pLe!Rgdl%&&h+KEfvX*~*(Swz^%D zXPm=aVuDx2JX+?I#_3ohUrj>l5{5BzuW)toxEQ|dUoBd*uW(|jX`kw@U|ngidh5AB-+=O8jAhG1?1{_At_?G2qsA2m^UciA4{s#|xiz%t zf~?G_Y#fl`B@O*6cTcNMJZDPBa~(9;l-*S$g@ zE*St98R4GN!y5fwiYCEHsdo}A)>^YwpG>DO{?NiSWa}pDMw3-qfO4BQ3t5j2>l(sI zOe&m}sBIWU&P>@9|4Kj`asdlC z|FOAETQhaCc~^q>--{HIJ6+t9Q}ZABYHLUrEAm`GI`Ot*`HQ#l*Fg<4p1#wNQ_0;Z zsKGY8T`6s3`+%?8403Zw++S9b*C)Al^+ll%v_Us_ck&!xF(dUaPYUnl%AT;YUI!m1 z+UY8JKl2i+=!wkl2qXhZb>Vw=PST34NU;lY9+L*@L5we0GXQU!E6N-=xm`3)HIoN* ziACxi{DYoEK`y}7Hq$Rt2Z@*Hv8Ga_;=>~YKr8=62?H!|4 zQ*L$=tXG)AOV)m& z;VfU+$N2ji`P+L)kjqt{i=Uvsx}lVh^5izGiE0dYi#j#eTC_=@Z8fWTMb~{wNn@CA zN90e8O1eObV`tZ7#nX%ky}s=Gf%0?Ew(2s@b$3N2ep+UC@^fOjf<)5_EI9p+%MArO zh$e)UPJpPZkq*Ib{YK_aNGy#+o4M_L&vI|61C#_!ZxZ)rL#cx&nG8E+c2=@Da@n=Z zi}{Z=!$q05pBK6K4Njlfw*lA=%B<~!@}aw=$7N%*C&S4|k`#gEZt@N|Prq)}TdY^} zwp5fV$Sz0*X8kz$EbP^|)uy|ko?VsK&-3|@$=87Bf2kQ<|FfFG#>DZTYKESS!_mJM z@5(BxjA=j?<9zhUJfSb|=C%NZIz^gh61!i8A%i#U z({qPx`QY(ED!bRm^X>jNi_=Qp2r9Lj-|y{Q=m7D6OhNx3gNOSDf>7R|H~0Hq2}(qG zO+mQ)_H&gnK+wP>?LCx<%PgyR_=_Kw*g#MsFm}u%Vs|$;FIm~r2)_62l=2j>*D7tZ zmoI6|W8~|2O}%tSb|hAzqlf?Z>goM(w;q@EM1axcT<*__tkp;}EFtM)SyBb$l1koa zD#qt*##GsGo{rJk9rozpcsShcrHdkvReiq|lIwc_Z%y9kIUxUU;KyE!YjZORM0gTy zJ&ofEKce7aQeQwVB(tHHpkDEhSm|=o_@8w0QsqqGy%t^Qcopn<%*u6Ey3 zg^H{NwAQo*RRyNZgs!IF$fd^&1~;WxNBJcH?yJy#RynXuwM|x0Vu%}48KrJEv;t~P z>!B~RLQTF3s>}hfUFAQ-L)MGJ7o6W#?VhRRW|W7uxw0Kp0-6G+iPRE)Ms|xYF7*h7 ztRmu=fo^_(K!exj)SW5b0qQJRKHPYwUMI;LB$1#wI!Y|3+|3g zY_Hg$BKTnV#a`k{#_eQ0aKG`k@HW)eH%OtiS~Ej_`(b|DSI%z>S##sEj?ylFsg@9+ zEx;MTrI@xI3GW1#kdn8Rdft(~sI0(P+h|Wp{1ruR4HXHi2xO!bqaV>Pp@O({jFup_ zLE;kMmK@m2B)ub-Q{2mteWYQsEmAEg!8s&|?cVxIt^x0Lw(4$FJNO1tHpUr@1um9m z7K^42KaAd9YRBPCl`K8s%1UfC!`PriSWXJLjgg}kjv}Ex#k1?2P_^x=sq9b;ds2a! zpGqzK^yNe{c~w_oqL1e!{gWZH=(M6 zbg&qgl&6#n1BU}uHQ|^&>vq{ma>)z-Dg%#dH$hMrb}}!Q+;lL?Ownm(iZqKw75z-5 zn|_pPWU`mqZ}Jvqg2cWQh66LMwUWCk8mE(dnU=TS zKrWzUZ^Tw%T8Ke8dLfcqnZft{Epm+_pWdc&Yq`WQ3pZJjB<5)>8~I5fcHIa^$Yp3G z8$}owcUo9J3a*_l&Dg;Pk`05StIkcyrpJ&@R{clqkwlqa0*>XSWH$6UhpZo~PB5_SqOmT~Orh2IFxRxuOs%99u* zl{OSb!dAg-id4adG|?bV?ol!OLq^&no1NO%d-gO_JdU>Io};J)oM=MA$ZUmHK;TuY zR6&hXdXI+C&c%;NRI;fS@Y?4yg613nIpDN2+lwRpw+5qcAJu|^BNBbOvJz;G^S+D} zVy z+txz}6>5J7zI!-&Ms&V|lJjuIhd_Pl?ZXCiLkCmwE)FYjD!a}$pQ<;`U748%K> z?Yu^p%kBav8m6J@fE9905cNS86+ISSi^^yJ?KU&)uVrzBCFFxXK${BwJpLz#e{?3E zJqz9|W!A1`-OVN^D0z88=Fzl?=bRhdTkC~PC`@eTW??7(I)tH5=HKd{3o<%>3+tI9 zuGpzf(IOjZWaFLT3@`WZ5As;-qQT{GIcc!|N`j|0w^cf1R@xS(Ej97rqXcb!5LLsZ*aRUW2cz(iAmZ&x6H_FwvyA?&dFENScE^tJLv-Uc9g5i47$DKm8OmH5I*|G1~4P`}mVNxx)4 zn)PX2Rk#n_^pv;}bcx+KF?$Mw$~af8(%X6PnylZ9Oc2M2a1HQy!H4zZz=o6&Vn0kO zEKUok!S%p`*RTeo<%%&*{=bm^I7N1yal3tuvp;VT!w4C!Gj1bs z4U>(^0>0a4Bw--*{rF=gg8&gv_x=gAw6en9UFe0FO0^p6F)oJ|4|}{Fg{ug5f)8mV zKX&oOQ7biRqh67hEfmhsiQ-sSAW{tb_%@6i$h70_l#FYLlH+ej|4~amO|oZdRgVoc z+D1avqi3M;^QHs_;IlSsT#I=QwjO`_RlUUf2LC2R*PXKX(QDwG<}l&Ss(gbxzi?o% ztQ_r0xe3e(#upf<7QfA@35zrt){#kN7Rc<~*{fQ3&P#^uF@8N|O%01_0wqPVFhy6Z zCMqh1()bP%n5lAV1`(=Et>m`LH+=^3y5L#OOl`3VpQA>9OzC-rt09JDkg_)o_}Tm5 zmOVPFYj)j73~`LKpZjiWxyT!4$sKSzmThLRG_|x%Z-TTkz1f`D8`Q3;_bg-aSu7blZwpNA~=nmiXp5KcVL7SR6F=-tr7G_Q zXJRt~jY5iYuh)}ndYk<+TDK3*%0RKq+x| zS{|s7$gWkiBo!KLy2YJn>Y z=5Q7^_yyTl=R)j(XCfR(`FQ$EGE3kEqTTL;EvhVG;LH}yZl%}<@T-UH6jSh0P$U9c6fQwQ$fD^AZaVJm#8nEmG-B6jUw zoVLtCAPLfE#@5$VXe>5xHJncfoH1K(B!G~K&+so+ zDGPNOOSp6H?<(*dX2(?i?NVFfo3BM0v!$^J7xOS^_UlXd%qYr~{CBAV1Z|;2xS`lB zeytTdssBY6R9dx@TvPTtXI)Z$Xs4Vd>um|H@1_GX>Pnnymp`Nd2}2u{LeTumXqA%Pd`AMPiAoawM=FNY5% z+kf8sHTU71RiKnZxWPH`bw60eySrSbCeSbcK*Tit#hWuM+dh->3W9xX>qv<$_*pGc zkvGY*B!}S^%Wk*b6LMq-)E!WClDKTMQ0X`&y4h0fi%0itIkz-V+J$F8xQC7s3=S=i z#A!MbJcyNWx$44Gm9g9tlv*|QeV6CxMa*eM1Fc%NZZK?8w(?fM7qbDU!)eI}=|`q< z+&CtAB{e}oF1ZAkeRYTOO6(Km`^+`Qc3Vh7uQ)mu{7ppZa9|`L8)<%c*K#g z2Qg2D=$ya=b{Q-}LlF2?;S0;*m#qHGztdpXo?pt$f$Sqi27SpFq4a4c`mt;n|4b8n zTGG^=f6#nbnv9QZB2AlYtafQi8$CVjagw8-xJ>iuW@j|+1>MkmofmErQvk9CMM8dz zNH`jt*JyYL!_q0mrJlhbQEv2ID~99Acm- zvV4cxMXMs51WO!7LluD9iQfX-;DJUKLfr#9qe(&+}|_(TgK;tB=CObmVPh# z+U;U>-Y0J!4hYC23gi&<&PDTa&(I#T%j&qY`AU6nV{;DQnW7~Ud*=Nh&YPM~3H*c4 zer8h4>+Yd2SqMI3Y*7r^0dZ=O!b=@;PG?pHNFTistGiCV9fw63hE2PFZnaP9*{&8K zQ1-q#-28fM*FSq8BR_vmWzziuRy(?dr0@oQ*69Kk<(; zwa`XwAzC8=osfvtzA6^myFrtbpqy&*Y~LsP+)r$tKz3oUP=EXJs;Ap-1OBk}=iB~= z-0!F}`Z-?KS;<|qy)F(&ByP6p)#<-M%+;fad%b;<`zk0yWl9Krafu&SY<6Vw3O6-t z(*Jr9@u3sMIQ7eq^&NFvJK;EE(zSyZOFL!TnlK{aI^$JUZ?vw`W~GJ}EGVfx{*hk% zpDp#v=tls0PD$KqCoV(jY0Hj%{CFr%Bp)Dt5@E4D)%b>4PcpEjwPfSLKA;Gq%Hr_y z&4Un56sTe!Fa^|?wLGm}O?%;ZXZ+>FBKR3fA=)=K36xe$-vMg&>z}_03es3gcRU;Q zvcm2G{G}u48O;vP8QdoyIWQ{P<9n0Y{aR2nj?U5i(mPUSc4SqBpndD}256dMry*`e zidxHyDOs8dZ0uT)Dy3Mc%TXr0b~G;SmnpOV^!_ZHKV9?2bFXjn6=yfZKX*e3+K*M@ zVVR)S75%zy1N>4=!?wc&fBxk74K>E!M%=oaSrq#(QXu%U!yi3Rf47|CzqeY_zOkDj z<7P9VOHLXmuU?%TFY+2E&d_}szjS{jrt*^IewUmBWxqaKzsZz59lSA8mmbuNe9 zv(JX+ApKtVht4m;Zg#T;$WnN{eO}*}AoCd?ff1-H(zl3*1@pq{b`b(Ti(5RjyCn1S z-X6}eg!9$8`0!(xKfg9nfsQEt-j=q6+;{nvGMZe7D>mOP5rJ6hpF?WH{wx#iU7(6v z!`i>m53wtHC+C)6`ZMgR+z14G(KAEZM{!3fc{zZ2Ai!EsoD6irRKSDO(`33r#S$5( zn+{elNKOebvSk(<*ii5wio&A zAVvyzxIk<8v(`IJE~r{Q6xpnxCRRp0@o99p-j^(8guX|ZX`cwCK+>yr%rzsfSXxJe zuAhvOI6M&SGaP(|X51|y8?LS;sU<647UHeTfm!2vuPopFD3*nel}o|_{_JnGrsdV- zYaWx~Dw)PlM_%1|d0k@7#*4#)Ic#@X#XAQ#f4nVq?XVX>dSMa=_*A_*KFzRT zZ8>F}71A#n%5Gf3dh~7}-fles)n)-@sUWgL05%%(YFD2Aw5>@=H%l8w)BsdX)a#$( zeA`{C?ecoJ85V$FzKa;Pl_8cruKeROKGPhuB#_z&&Z7PZ@Ci$W z^GtZ1X$A15?V~6QYGr%82}2ykLGS10U7Gx=*slvi6u{^Atq3PwoD?(=v+2L5ye)jc z4hMI%&PXNLfKvX-3x+_a|Dg-`xzjPqhxtyl)k~=%T^IirC35SSHI}8xe~Hgv76L~- za6c?HRS^UD?QoTdSk_G}Ct@Dm#9#1HID=iO!ksuiHlL?sVJqAAnnBks$^ybc076IX0xHrn*~cZsl}kp1V|xiquL!@Zd?eR?`G@@}BBl-u-kJD92#2;hmVicHf8azE z5nF^g1n@j<9=dXTK}iV>XIWem#6S%GLis&pgo})1BnWevbg?F7M0s_e>spY++`)%q zBxq3)qAm&SrXL64%1MQ}2#^9LPG~a(bQ($GgdbUD$dAqnAS5)?C02Fy`C1wL!<^ z&9GOw3z>0##rFJ-?I~H`$AK-2hd4q=eH`*=Zj(F$mgsI00qz(flJ%(Mxt8uWI_%fJ zO1AhyUXzU}_bkoBOi0z4{&a~YUrl$2b)0>t-+8b0h(e;g`N^w-d&G-th!J24v*4q| z<@Te5UR!rFc4<^MUSFv8lpb&o+OjbcRaS5o<}6Mo|8u9b>9J9qnTRDJr001=5HF;FQaLab_Qa_8|SdrQQHcTFf=%Asj?p)!GgJXll?@#Vy2&+th4AXgCam9 zIq&qk=)$?s$W<13kX=cjT{~C7kSlwhAKf2t{AN_#Sp5G$-ze zYF(Z~-eEDc|Dyt_JWJ7zH95{;xV%qqK!oP6a2OO$;S8#R2rgqOnM6U4EP>cIo>7hX z*LCA99?h8eUQ(e{ubL+V4V-7)BiFI%klx}0F`;yA=;wVG=@kv35wRGT3(KTLhSc95 z)2_~QS1tR}r7am*%?)bHeh$>r*{$CP$?Zf%1U=b+NBb(&h>Z|xRiIq-63eW1^ z@KvcY7UJ2$kjd$3`oqQ_-gEHZ& zqJxAILpPPW<`XYURLb;p3rZlBQ=8SAY{*PMIVcP^j9fi6-by8HVmFmG;m*NcW6d8t zn;m``!$fkwECGWajVqT^bokc_#D$H8;`xMK?Nh3Y2ANvtiJO zT`z3}DAiiZqNLc3Fx!$x!XaX~$&}1Hs_m;WGsq-LPpO`zJGBtNAE=J1OoHk;O|;M9 zeatra)UrL)aAsz}8<|a9!X3 zQN~I;={U}qM&X`8xWLPeGA^HYEk}!5UP*$o0^nPklo|HIF58?OQN(TY6g9had0p1Y zkW%wyOsKE7JmLG?z!s(7w({3}uN?Y#JytUlO#ciNVW!vE&|1l5_b#gepYA>+`_}Gi z@MWRY7%`koIc}-cPMJA^%7b&K3uZ$bciBC<*L8BEC4S+z`Lme0iW_4&HZfyw6cz?^ zX)Z0`!BB6W8ig4P%-ZCe5g#AT`=CXr+Gv`L>(j!GiGf&WFcp57Ijuzv-GvqVRdpX; zudP_4M3272*pVl$Iz`kGyWbht+K3XwsUcLQs)4~AEs8-SL%7Bi#!AMM4L3kpEe3s= zYCVuA&IRl%*e&J<9_3<43AlrD;OkLo};^dYOY9j62VkG5>oF-x!-; zG@8sE*o(|Y*)25)8GW&KL|?Z8mWcSK16ib)YS$f0KP<8bkGlng?j0as zz*k&$s_GY4e24XQRqxMAS4ESsItUk z1b&xZw68Hson~DVyW(xKwp}o&%t%8w@r%b7>(2rg+K;efagda7$m*Eh*57|!zJrq! zp`*=;rnoc7j2+rNK42|}Lzp-QAD?&5EbY3IjKEQP1ql*Cs}$aw)5h|ReB$Zh6@s2l z2=O%a`7qO_*jSct6&J(j0|sFCWK+H_E$0TG=fSO?*ch^qjg`h<(y>>PRSjsx)>bTR zMIreZOftX|`+M49)-cNV#J-a7@Y)Y{m72n#Dn7fi(b)Bh3xjVNbd3bQ>k_-OMG8wG9O@NEr|2V=JJ!l% zhzflxO!jXRz!Zq+A8yMVu<|+#up;JlEA-59@Vi-DCE|Ue744``sHF&WFGc;DTVzN!U=aQ)Ijv{^RU<&2zu0z4Cq7uC-X^nZRL8JgI{Z3Y;}fro zUD)UnFXLBFhWhmqU1^Ga1ZND!YEQf`qXHQTmcQlceHQN#6omw=;hW7}yfpnfAW;JL zxwK3b=ku*F9TCP7pMUWn?Z%;1#&C00Nc&}_YkLvO%QzJ-GWLL9r^J`!Q^tqgd;s5W z#aAMVU)Vbtup$0tmq2Pv=DfvzZT+(H!Rt|2v{$R_pDnd}5LY@=${T@K!Z%82NBWsK zk8Ib`=Nr)tn;eMUu5hvXm9#WN&w zDc9+R>mzqu+epciyD&5Lxp0p*n12PXNU>w@)AHfAiHd(bsZ7;p>=TQpp=}WMdZ=-i z*ptz>@x>GH??dX8{X+!u?(JHTzoXqJt-DkDR=#Kg8jINaguTWH`#@0bnj!rwQK;LA z1{2h&Hz*GSvtO`y?@>(yh&12oL=$2r9H^BP2*CPxEJBoha8l?>+s~vvQXV3x;`Km7 zN|}qzRu{>95+QgX>&gDaix{UDvKOe+$`}v-KIBuzy`I!~;}gIT3LYMBLlZMl4X$Du z(HI346C|UBIl=k9HhwkkqS7C8+IK&q=0j!BnZ;bwl{6kIjD0mPW9;j-F*E9B*4Uo* zed+U7njxGDnR9=mI+dB?oW%KCF}RyPE5wm!K0mbp3;A~0qonUG>6QkPLAo&0z6hp_ zFjvs1#4|we)Uhw^)`j8IWvwmlZnpT<1@Z&RUH_&39~XUQrvH@-$HvUU^=Vse!WZCmq$PP;p4cd z_RssP_ruLO&Us7$uixT&{-59QXRuCzQJ|faj4SICZ&PtUy5CPE!Q#ZzxL-?kKi_u> z+Ep`)+BcN6GxZo&IiF}CwaszGe0X}GUw%G*smi^#wXVndc{MGrCAQwr&ylgUQtQPdu9UQhD%{15nkRY>T!oZSyqhd0%;3U@o$u^4wt!ny+=6K(g!#GW_MlRCk3 z3dn!=3HAq*kt6yAcIWj4<&?2?3u~WI$7KsV{e$)m@~mW#5gy;8bAK8SmV-%IkRU?u z9G>oI0x>^6i_I6;e9d_Ekdet!bM}@`b38Gh26pdjAA=tl@4UV#c50aJ-f6^M`3IXR z>gF?z7F7tH1iHn?yI~K9Uf?JSfQi#AK@2JCBB)>}ZaEZ>&!72f6QYD+EGY^k7mLdj z@Y6mi1WVPXh9M)sB;9_!!ciQyRUiq{J&0AN$eZ3j<+C8Akd0!nuu9p#AxznOuH2o{ zZj9^O4K7K&%lh*)Qt^){rXx51<=*PoDdt|v;@+Y!pdFcO4>woD#!kWV6Jz`W=hOne zMQBZ7k=U*3CMB&(Gh-%l7`$E^H`ZO9G!B+;JaZJoI7HRLNP*hI?jXJlmNv7egR*VL zZwsviilD0A4^N;HU)Uvl+eD`SUU?U7y%puwY&Tv&WMalA@NDVEuoojRaT%u-AlHvA zmm8h#{`2G+Rn|h|4{;8os1$2)oCCsc@8)MrLu;n@f)^2@#x^9b<&fs4*bwSU!x7IP#f;{Qjx zMw6iA{7>g^m6#MQ9u~`V$r#Is>}m~GlNMiVrl4Go!@$PiRZ#SZ*K+INkv4Z_WWI6( z5~)_19w0bp+&pt*JyK*)4p`?b&!irs2t+h5J|AXvc@QGP^KFD$myr8G+1Xcnw}Q{c zdf;(r`i1$y;(^D((h(B0da|_6uzTE&H~auF)VECgg}hBiMFrCY3&%YGw&%y=i=873 zWpGzNHOxfwdD^FFJyPDDkHWW^*L3$1mlj*xeXUkc8GD9DF&`Cdpx~9`mR!H7oyHd! zpxP0w^;rVY?+il$r_`v^G6XiE^iKey;Vnb-0BUSaf=cF=mnEe2rb3!&vMwC$Y%&ugirE z7-yOJ+Vujq5fbfjU`f@lcewLR_Ls(-MBu8MgU%&Xu8#ia8LS+>2_UNTuUPe>y>M5s zwj>my`WJVZy~=G^FF!T`hLD?8+eq!Erc^8h^&m%PTs34;Riy(}w^=@FW#_L$ynzX6hW2za<1iy)E($|13yS+oo*m@?%|g;%M%0cc4*7OZuu2Tw(r1GrEomfswxeZR^-%icVvucN>nhBaa!6^*K#Nb`1yJ% zNx7yfuTJO#BrN?)Q!f_hR|)q(pf}7r@@r@%`YUrlHO5^)Nb|wfrkf z7D?*${YPZ&6nj4BEWI~aFz7*B7)$uAsJK+WiqQr4)A`c5h#m1v-_-ySsLlwq`D1n( z%JI{DS&#P1t#0Bhp33dm`2bYPKZ%9YU6K{}-12SmQ)aHznlbpp`i^wLl~%MPR_v)Iyo(BgOvZ>zTxLBU}s6)1_1b3RYry9r}X z@&LcKrUkDn3DQm{e4;BklTXjb_2Z$q7Dk;FD<}VEcIwog+cyZL%9(Dm(FP#|Gz(pA zG1o~rmL!8Tkan+yCOT7kXStqVbi=;obATpZJtbg9{TnLH;EC>pL9PXjZ^Xbu zU}Py-kB6D19?1Un zV00*S@U&>;1FXf*G?$A8sHi)BuIbQAW;6abX9|+Y@KUII`Xdj!oZ~IwvA*O*#J!Yx z&&5^Vl}r_S9lVkpW$7o$6OvV(b;mL%f3!q#$R=H>Y*Ig-nfB1WMsClc#W7w^LF;<4 zpa_}p8Gevs0ZNtTS>ZeDwoixq6mcnVpf<>_r&awMbNxudQujGxE}8-$uqmzXdoTEe zO+Ree&3&A^U1~W;LJghR*uTG#y5zbPb7V{J$a|LX%t}k?>pZbm_~Gl5FC`dm9w zj&-FdPw`N>4tkVnLLk}DG1)4muZ%hXVzA2pWzyxzz;^e$AfeLI#WnSpuuwm;#Is|L z0H~WGKgs*29jFZ1g8MHF67($VXfUk`-yS>X4#FFYqaJj1vSt~oL_BH56P?`9g~M!_ ze<7o&83~n|Ehb;8&?tdtz;%gs%FfnE{8RC6TxEsc$uGTDchc2d z9Q>GYG$|@IQFn$w?`AC_JGJE*)+AMJ*WcLWo-^B792$T*J$-xzKJ%CB5*pv z4Ygx!5O1MferVz1u$16)IM)gY2+;)YY+|QkJ=P)SB>-<*_8;qg!_W>87yGAS^XNEz z{_48<3`Q9q_As^r=@v^Yf}wm2|1Nug5qR10{-LiD*WkjAxe6B!C%=T|TXyy2yoPJyT*I)KP+pHpJe1O2rtm?u{f`rY8-I zsF%GhJi3848$UDFk9&($z;^E{sbpV3WBl|Yjn!0Kbg+$MR}Zc~c8SZ17#b@CskDgsWQndIx#22~IV~ufRec>Xfbv{1 zg#P1ng>X66rn;El?fddi$-w=IAYI*&%Qj4CTX56dW0e57OY-~N z3*jZ3eeQ*EN|DLQ7%y426(_=B6Z_P8vMHtX);e0aAn4l?mb7yu@iPJpZXZZyj=|Pc zL6=1K6AIM;w}U9XHnWPsc`Xks@t~Ee`3ICH&jaK!iuy-j?AtNATx~xsdI)OWC}5qP zoarS3qgjoJG%r{lHvZZx)Wi8;WhRcVsU|ORvfhs@^It=pW^9kzT}@79^Y+O9y5dT@ zIWxMuOu#gId1K+DQ(np=v_3+aCdH!FrvI+w#*BbJ&yo3>KrEAKN+Br>F)myxRkmIFM z+VT^T_n}-_D7_5t$(^vtCdxU&SohKMYW?*u$9o&;!Tt8eW+bz(fl&9`s&3@Ejfu#s zRQofD3WA9Z=9ei(7U!a{wATsljI2)MvI-gEiV$vg42tEkH#hhT#yE#QiryXU9RlJ4 zs>S(z%!o!~1t5y5OMka?JMumnvuu(Ak@BW9s9q@h z7ra(9y9h|Dd{&XLyR&XOOHlhjPr)t|{@!cMd*`7puV`_}qx#enId0ft6`sb!vU8U6gfU!MbZ42YEeLvmnZV)=hoR;YS8nh`N77+b5j+7U6z6EQO}5iyEeIlH(L zadWf(-^c$ysDg!!<3CY=Gun0zcx}kv*9JoQgqglnX?3ioMqu?x;|K>pfyX5OQuyuT zIx^+Hl-csXmJD|P9q5Wur<(dklkMxVd0Nv^yzfcIe$-4xveImNzAgg@b)FWOIx!e> zB8;Ar`a&8>opB-wuBx+qaIrHHa`fc10+FU!&D8xQ^#xai=p@9yKA|Y4wA)0IIr1ol zoV11ej6Bt$=O$C6g7-itc@V<_e#6o8Q3+-^yp|u*Oj9$S+v-Yv5YNGSg^NQ1+OAE_?3 zdd@9ba)^w29Mg;pTC6Eu6j=agB^fWhN%|r%C ztQga;V>7^p zq`hj72)1;e^L&OJ!@<`=zsy1*ow%c&Uw+vKbNP~v$Nt9g4cS-r1MeqzEn*xfPQ;g< zw1ivMst61v@l?l){>=$wCjx&zpW^$1&(p1+gV&1tgmHifS?RUpzg13(HUY)%@ZD}{ zrnu9_qB$kkwWSO5^k~;>�ksk@VbHRCIrx_Po7*@b;I~8m-7A7AF}PNejLiPs+|l z6*RP9UPmeO9heYpkiO;f!QcmihTSlbum}~YshdZjuhllJlm4$@CmWkmR?yM`u*x#M z%@n6?MnuuST2emhq$*UFc>zO&UT)nSEp$1MUJqb0B8-eUS$FRETZy0leq@I!aa=LH zpnoR*YB|+>Ut^6>=f9hLs$ntpQ+e`c{Z*^imjZLC^w9WL@kW4Hej;hhpRnU?!A@F8 zB5Mgr@l0$*NY*WZZ+N5hAe+JsP@Rcd&Po9~⪻Mt76pnvBA^`5YWs1f#1)jXAPhg z(Sl!h?J9QBaVMrY5BEe;UL15}XyA|+&R&3c=vu0ss@gqfwC2*Gcbh-^2gwqTiHYrL z1tHcURU~pxN-cL_6_*IAliAq&T1Zmxqt&y?<@3|VvC2iq%^W%*tP4mC*tOiYmET-` zukNvx=OmoXS`yf)!AyG}i<)YBSYABS7>jy{S_(-W?Ca+F#-Ld3wQBQ4bti+?^SBi) z$&Kp#6>r(-9c~CjhV}9Ic?YG;?Sl?vZ9#~L)6%3-Tt9;^m|&_7crArd(`h&!0Na1% z5Q4*)C4#!44I1ZTY!9T~>PMS}54r&t2m{!^QZ2&EB|3TMBUOQuE${&A%Xb15QNB`1 zLIzwCL<~X1jXty};We9jy>LukEm6JNU|?Lt3@!@mR5M@OCFhNpn+{x!V<4|jNeA}d zkt0Hu4c491uYZiJAGDV>V{WRp&X~Nguetn5e0Y9_7^XVtN%z5gn{8-6asc6}q8EfD zL4O&}RGzv&W~RGd+gj*xo|Nv9`7ov+1M+X=xrdTAs^n3x!>L-X_{(zK==omhthl~Z zKk({BJXp3#Jh*g;gnZy0{tp8BqachI1&XS84Yq@PfiS1-E=FaUC~*`EOzefo6hJNT z&TanC&ByPMcEefb@p1CSY7o}Hm!KkX<0@U;4ZPBA8@z|v#FP7GoGZ|Ln)r9l*ra(b zQRP{8UwDN%Y)%-1k#WU>aD$=6w}Z6h(YNkTqwVsKF0Ham>d&X3@v=u^ zQ&#!We^!xIdEHHy_mXGPxaIK|KBjFtv03 zryITDXhTa#be3Qh$H^$7Nhc_cjYl98Hn~M-lOyL^PYl5QqaXjnCqc1f=O(L^7f0W{ z91xqy>|uZoy^O|^kYJ6n5jul)vjt_%sVL%{EoJW+bi6S0TW$k5>rrt{_cXU+l8^hT zgAx(YG;w(|JnH=$iSqO$bA2);qVZhX5UZn+x!3mVjcI1XvZup86n_QKKWsx=w#hWi zS_MTA(iOlDu)nHtzk;~u8IKScBB-VZU0F>SZBuW1QEQty|73f!S~!Jud>uC3k5x%Z zK;NDjIe2=%9r#Z5D2C*oe&Xz?YB+YV;<}dPh58Lyx&wM#EB-=}#eE?J2DVR>x_9$` z7(1unOoOgnCllM|#I|kQ6Wey)*mg3pZQHhO+jg>N*FO0FgRgdd&+&88UEN&^_qs3c z(m!jjLeBDc@y*uwfH17RTvS|Kc7r-l5u`rLmp6Duz3->jC0!bXIrBEAWBt0&NC@QE zsE-YEnjeB5q~Pa)qsy#e9M~g&Y&E&%L$&2Yji`w#>LA~?TIRFMk-(yUe8~n9wzfii zQ22Vj6lIr`(#w5cqzoF9tf2~lL&uN=206zSnPFs|*C*Jj~r%@3tX*?sI zM^4Fr9xaPZIUZFUkt*STr$tBRsPo>TzK5I6D7wT&^|ow!qQ$8tJaT%DHY@9fCG-Z=G-uc6yLx@j!CifrkJ0FzT|_3*QEr&jLVnr6_=cHIZ6J4%C;=cj z;WjF;K#JrFCEJ;{xjr4U9ml+9d>rwn_v??OABcnm6RrOc5i&CVw@oN!W=^L6)Px$s z<8?Z0ujy}O+mRWcbn&owAQMgh{2|JPv=>!q-l5Bt-qX^e{zcdg zEX3vXc3?=?Y&Fky0Q%J@0)l}fv zuY8)9X1_wM@ql~TE-6U8E!ds5o2L(4oPG_&U*%2xRBot^U_!r5iD$aMA5M1s2>9^t zh*KHXFrQ)HCa$QfB~n;u*JkRp45m;MgV8MRd&h0YZiWHcE|V|%3x}VRm;@-uX0hQ; z4@n6pk+_%Tmn_ziaL`*azjY=L4en5nCwzZeYpH#IsuUpVbB@g$Hi+v@)BOH9R3Oo@ zi}a3b3^uA1=1K4|7lIQu`mz;np$V+VfwBkp#)HP`K|*$Z66R9~Bpsk`^)s#!AUsqE zW)3t?5?=|pJwBNgczCCqntdG#A7gH6iXsYv8dPHwD1UX?TYhX4LiD6u%qYhVB&Eb# zsR20va~29#b*m?@lYEVR2W)?PMJ3{eF}9ollQE?4@@;OzwFGz9Q+PVd8^JEiJ!GPa zii8j_ad52wrJv9ay;1hNfGf@^S%Z?%_#4^xno7?)nfRg&J*1AFW4Rq(K3g!cS=D!h zmR_|Pr6=Ijy2plK&xU3BEtxtpB4pM%?mZzE<(WV!Qy65i@F#-AayqhNy3_h|7YgZWqnYepa}8@(7!j zZKxA>wmtU$r*MN@Cerj-_X=rDvhefyy>A0v{T6RkOaH*5V(0(;dUB>N8RC_l$Aj6* z_Aad_Q$#`isdi=RTeL3w-K$p&o9x)ijVF;c_4JhCLe{C`z3SS~lK=WnixtU^g3vq~ z?wg@C)ib4e?M$zsQFu)si6|~R&@tW;cQBjYx<+fbt=2t<767Gxn*p!fjls?O>t@Bq z$1bnu+-Kw5!0s`+&9*~1Mu(CMF@5V~l~KjWI;h4xx4DT~WfRl%Ei=IAPC8K}WT=xd z%*h}_o;z$S8GfJ1#ENq;Zjh2ZkiwxW)e&DpJwag&tN(3OS~6^O_cSC+JbG|RZjA<{ zs)EB|X@NvyO;DEk|6J?%0QbQK6~c}63R9KMo=&V>B@ky8|KQ)FW6IVeJ0W#3oN=_u+g?dXnc( zH`}KiMtXS0-5TH(Hdz?h!oO)p{JWyE&u=O&n;-%SaR$S)8*+1Gzr?zg50V&fO+38> z6e~=qbfAGAUU4^Z)aVhhDFAPn2!8AA9Q(}q-=gll0vgxg6kIOwAbh3|fg=a|9cH5z zvYr!3j+8f350sV~Y`FptFx7wu*P{-+e7fZx6x8WGb{ldP9)1TPNP$FGI8(^SN3Y@@ zW~kX)967NESM1JXiVU$tCWPV(rtI7TeeF@m$hfUpE7#Ck@t zf=>zsd8Mggxux2_OQ&T;c*(I&@ut#rk@-?Tm6A5LEyxP;`kdyb-X%4zEM_;=Q=C27A|WyC_Xl~C(~@jhSS z=w%;JA)F7G$vHP|g5XE0g=)_Cqp9o4#>sk<3IrS8`uGYWB2Agkml6;<@F4IcogUz+T4D94tdbFx$9y-@d}CSx!5z5H45PM9UHQr{WR)VDgC3 z-+EGgf2b8SZv2)<^DG@fN|-o9RK5Q8aT*Ll#W2~`nVTtynqfV4rYw}P`w2l!d%O!2 zHD~k93gDhRP+f;n&4-bXz~=jeg)%urbgW;0BF->gd-5{#ZT(%eLJCpMLpMN_FBj!N zA7Y3VOf%9rDqa^>fqdZmJCOR%D;!XYEFSrAm^uB0DO0ku-EwLa-f2o8cOBpFy}J%t*gT;`8cy zY4GtlQ|+MM%#x1f>R8XIiIYBQt6T$|uY};KFL?q0&pWMw@a$daNu{~)9>L1;Nai+c z(rk1yER|90*f3_Zyi8zlM$eh7K8)_3f9 z-_)BuU@uH~7g)G~`gyQBSeD_U>Z$02j9?v&3ANJu%rkP z{U+fFq~Ns3t4x->qNo7uqGq3Sk<}6UT$JI{TTn#bY=+_V!sZ*}My7MfY}?I9huk}o zrBT@JGho-;XKKqYbD;HGXwR6lweiSre@Ufy`Z+kYDPB5a8H1%v5N01ba-z3Qm>`PM zwZNx2VBZbh7ab<0690V#;N}jvPy1K61JvWitj8U^yTWlWH=Bd}ks!7?vJ@}ZQ9Z&B zz%z$OA~YbLZL4l{Wp|s4^>Lm8X#DY~yXW=BmbE+4ORlKCW7$kB!}+AIZ-n$s%AIoH zQkS?hN9>Sw^46=}XPhU>U9XG1{*yz*Qf6Zb z*h#zy(~^vE?%QuahC#f?Gn2JEpL|h8Jn_>{8uIQ9SObI-&KZ)->B;hPbxg(@B*O4X zw~vTu_^|4QNYuh~RT-NOcxO$olP5e~Hq&C!Ess7((^@VkCMWm$v-LR(zX!~J+UBD1 zLpj}r>wCiuR3|83X;OL@EkAN5pJNSZA;b$~Vfj_W`${T<*>z=78?OKD>jHggU=*83r z40rWzXTCPCB__(k*ZFTve1F9OR3yvQ`Nzjd{YDn55+ow>M`M#L4{v7#;raQp`1!xy z^6epsG-^#>KQ9vVAsiI~)fbB)PO@$dUO!!4-vW~$mDVvRn|!{H9^_fjujW?~gBF@` zV0f+zlFntES?2B@b>>bc9we<~d1>a^f4m&0=hzP%cP5zK->W@3u|LXL(#uxsl0P!k z_n+z-cTM)qQThL`3sVj!O;@VxULez#D^;{U;N9fXB7Dc{_&(v)i5{7^Ii98xD-De% zn5+m=8i0fxvQyS%^G~x_C@K#?$4?F{LSv8v^+{MPm81dc6 zvehIq8YCT-ntOlCW&|}9fsM|~kzPLK^bKv)Rm{~zoOvL1N(Hshl!%M3YxqU_oOy!F z4R0cc5?Wle4>S*HXXd1A=cWuRg?R*C@Amu54aq}Aj0r}?0{isda;>s4PR(A?VH|~B z|8H&rqO5ck2aHhQS&_mEwG<~QE{>qIVm3i;Dn?6D>g2gkx&P&Q2k{ZC1U1(J>1;V= zmRhtrg2%xF)%r)Yq80EV9AJZUc5^PFZ6nQ9_wB@|+!)7r2;v+UH=zm724|O&E$=Jl zeMt%iwzg2u#fwmZFsbn;P+*pc&R^fyJW(%lM{l8;!YAe{cg%+Yy6oR5{Rf>J1hhiP zC*ETMUYiqaoL*n{0F446OiBER8NpT~4JfpvE$$M9W2qW_zK;*?J2E`QU~bM?YX9W2cyNe(cu1W{j=$SFQ()pXrVN7 z)&uI~%nJoUp5!QlhiG+wo5}t&F@2) z<@@>hxFKVbsjh|D?dARch5@*Bdw&a`N}}11U46R9h0@?00{P+nd^%HZqT&sW;DOZC zB#Q0lXpq!}M`TS8R~8}I_ibzE^S;6|udoE)tcIEcHDMas`C^A9YYm`zmcX@0M`Jo!7L6Mm;oUMW(%{RI(GuOH8KX zHz>)cX%Xm0dt1l~Js}5ULSLyxOgLe5M7)VWj}@7Br3QU9I)^XQ);R=J8TV=y z*Fo@)waAh&k^y)UxtOf!R2l@~{DAE2{#07Qej#af4$mhG)b7~zsKer~-?%{nqR|tS zP4=-jb>vuWIc{-WOpQ3B2@o`J`9?OB>xyN#rHCPZ4aaEbI5#)iFCJj3oKK=MjVI!! zDOuB0;c6D2zD1o62!Rf9>5_8sE|u?St<%4Qzxi4`BZL&Bli#%GV zCqMXemTtc~1Ff)U$a>6S{)QfL0t#iXWB%$1DastDQ{HA99C0kvo4kGpR4GMJg z{ph1CCEUi*U%##X`nzomEX2~OiRC_Ms;a^y>-3*gbvXhaPvMcUg0N!+n!9PCeIZ-z z9~CZ!CPjo96(uRBLWh>%+pjkp>B9SD6w-*d2J6Wt18Jq!B$ZK#yF@0$wKm;@J}26h z+Xwh)YGG~u=U`>-P8wqT6m1iu=iXzt>8|2n2&2Hm0JcBWLJ&449%g=i*qE)+!WMg= z3N~jU^(xSo6~FSrny@%u?=RKdmTZm=bV89Q-`yn2nAtOprS^zIcTMbt<9D#Ino_5L z^V1XG$6t_jk9m31B)2<9I0%YfunpzPar26c(jr39XJYjjhmv%p6m*NHHh|GZx$UC) zYLt$bQM8~it2==O1s^!v7A8Z+p19&GWPB zR2Cebal1nc6+>V&*DQj0gBcn$sj@@XK@)kG@f>`};%xt}KVpB83i+5?tD&p;@E=K- z(yCg%c^wWqh0=c6--25aM=^YvH=^v9VfQaEFb{2rA{Nm8dmlI{|LZ)|)7oD}_la_+ zB6*>lj=)ky*}O@XWolnk6v^+G53P7o$#t+L(3P49N1}Ef{x<=-oyq}DZbJ0FD39mv zHh&rvAGrNDBXrgXo00?$t0{3X1sMwBP3V!a`1qWz;;1dbKfA%23tSE3WphgxlskP& z4|rxQV(jJ8nYf*vvX7y^wB^UwvnZWnZZgwlJvKT@g0@-;Tphgv)R6y3vu*#1682e@ zybZkls(jAk?ql3IbDin95SUw;#=L5E8)#Ljq9^jqbPP?J;!pb+zdw#QRo|wcBrx+@0Q3&00p#hi6;f zM2c&m=b$Fa2k&YlsSicCntGM7sdxoU;FRfk3S|_YbGZ=I8ES;(wKa9K>cX=6qhA~F z%NXUiP;`r-NH`WGuE|yN_Jqeq`xO}JGNuX4NgD8%wEjst#~_ySP%RUx5jzUQv;=

    RAxTm~ZPu8t#OsmffMi$fxK8Bt+JQXq4E60Z6@twZ}P?FIdlT zhR;oMx()P(CTU&XL+-o_ZvH@t|8YEI5i^T+rqr}+(g(xbC>9SFs0JoCG=k#TP!uGa zUOduX`8~8LWN)ujvgPL=zaFze!=hJWGG9PqGIzC6$f723=tJ3+K!tILccSBZt@HLM zy}^!7dzgQpjD)BXoK7BD8?LeQSFIuQAD+F3KlaTwu}y5+k)KkCDC>J$hT5}vBsQny zi!QiMqHiscd(Y~34_wmm567VP52Y?_-(IYL#u>p5;t~Ic!Q0=l&OR7ft-ziK-h?~q zJV(2?IPRb7j^r7=kP_ve&qWlDC1Q`kRj13k)h88)G?&!5)6~z%CBli!>4Ak3riapA z6chhLDS3f%rAmQh?g#m=w}};lVr`k4lamk8g_U#c^YD2TAJ*eS4*9%Y37YvFDWcMP zL=UHz`HtS+=WB5jARXWQZ;N#8^bL+CdExIDn^MoLdZa8e>h)J6IjMJd$Zp#@~XnN?7o z3BAR(=aCW$a&fUHi02WCQSiR1A#vAxup+|?v{c@m-3bJ1L7`zql3h;(PJ>g{v> z>|PRgZP^#dBub+0KV^|D|E-@dJM;fS{1QStIXjvd*g(6lC#&(sZZN=ZJy7#(!_6rs ziAW0Q?`96tM#QYGS6?mu^!!B~T9tFM;KGa;su>v}=VbWA)_-lxpzCPioKw&tE#%Pl zx#q#qzZI^kUSv5;@W7+%3AKX&k^(9N3L?5_o#A}2^*UkSH8YJQc=-*w{e%LPuX#Eu z&lvd{&I%Uubm?-;8Y^nenWi3B`4A>bB(QSHN`yb;^F&fb*zro2yeLgIf&X?las=ac zzR)E{j4qC9t0@bc#qo!yMgKIaYbq6jKqoBd*1lARE{}ey9hF8T1g{5xE`| zu*>dydW^!qG`UYhN9p(rJY-V;urqCvSmr$WbJfvUWyT$OV~N_zbWJq8^qdsUB=+{V z^0F}nJkOs*8^RKY*ksW1ls(x5TnUL9v3Va4OqZRN<~U`bWi_GZz4TD^$zpZ_12yjul!JsqIz+zW_A^MA{p(th?K^m;-qUkkgU^H zoh_*qc~Lg*^V(l+ZM_F-tym`~#PlVxIW|#>YQA+0`-3n8^pFO_YrnqF_58pfeCQ1x zyeqE%s{*I|0cTi`ujkp1E3U#zwMf>Fep(%BjIJO%8KV}loghJnV)Xa6A}sbjo|n7# zry>-*QkN=7HvY>%PJU*8bHN*9XI!RT@a(^2bx+iu^zbLh3>xAvA*-_nVa~x;JdFbs zmlS}U^%7q2Sv-3#R@-3x5*FU}({XBe{R8*?He@wo{}tZy9e4Pz6;MM zxiA)Uc;e#9)JOgm6y^#dQPH++5fQ~WRc`ehw1zi}mHGYVq{fC~gaTJt9F!A1Bf<;~ z$0@eN)-oE;i}2P?p~!*z)}3U@kKv{wy?5E73SZ8xA-cc||Ja+wO^BTb+06g6DQxWj z<)$!kGXAfZnl`wp8+GSXxMmtfyIjWJ#b+Ck7&}vL9r5p;^+h?`$cZ@U7nWxVA!AK&#g0HSp3mj_SDLqf4^_-cjH=K@vy-+ z-iaD7Mug6%`E7DMItvYo;GpAJr9lS0V^B*gqyn`fNKnYz-o>oOB#%EVPP7EC-+x>C z%4DQjR<+(Ip5z`@DM(~h=hbo0FKi}xR74ZK#4O}&@Z87;1zzwQx8z6>?une$%)6dR zFxIwubU$EJ6`%`PxJn}JEMD9+Qm3qAIR1?6BF6H&O$TE;51Eh87XnvH6T23T5%hdm zW3cA7=}9V1lv3;EaJF_{*WG1tv3u7{Rv2+c2;eM@e%+9)l(y3W+cl2>?Tr>g(onFL zi#TwyG>FlObwPdJ=j^DXrq8j71BrFL_B>h|{WFIW2Sf13M`x=l0IO?^0x5K<{y?UK z`I4_-QI!_JjSz~*_48X8SZ$#Y8+LK+Z$Y~bz^L@C=V+g84-)}dZOx)y=*#d7)&Gpu z0nHq=*kFDD&##p!q76X4lj=}_nefRAk-K7eZ+4%P;y`Ko|io>#k~G>D2dYHvulp@ z+easpzPaAC&V@r`1(`8D_76drrJ=mYw7;f>JX7%nsnYoPuPGBfQ~L!mw(_YJow>ZJ zpe5JvGDiXyx-^#YO;?1xEGL)7`p)0pdnL|zu2Y)!-pFA1VY-kt%?g4ZIFDdb{{9SD9 zdmM8}{cT|oJR~?zI4uy2tu?U?uoR1LJ%>`3M8*sX-#yApX3J{QR6m5f>MjTX>KQm> zaN;`p)Q%+2@Ib5o8GWbQiUW+Df)dMWyC}P`5u*aCWLILfq%?Q>a|;MLpB1)jydk^8 zQDeAp2t79S`iB6_?_}!_+|#15YcIN|YMc=p@9qs2Y}Y;{?llNsmE^Y3?yBl0*!ZQk z4oA+{CAJy!8FKmWzo1fDCeiUXqr{*`cab`V2OW53!B|rbRTc`aM`{nj=?^6S0^sZv z5#T@h#zL*sxXTc6$sfH7!bH|&OHO)5PL9>TWIzE2?n4dHU9QvP68EDk@lhro%!lGI zRud(Emk^#ED)4du@DAmE_Rde%W+j+$vA=Q?_1K_Z605p`iA-5ZE&OGX<%lnJj2A}` zbPjythlf4qaq$Jir)Gs?Vl9$zO|5_zRBMd8dmy6kd`}%f%~YCm!U4g}P(2SYbq9%~Gc5m>6~Y-LzjBTz%LZet@(iZ^NO_!6G+({ZUt0+n8b^dIRj6C?rr z+t@tI?!q(=J)Jfn*OV6O>r&+S%smwc`^lHQ3mVli3ZiozBeDeo9qe&{hb-VXB~;>Ngl>(LQ;2k+ zPFw@rWoDkMirrpE#G?<@N90G_J4xqUOI<0hjAt@;N-%}662UJX4Nf#EbE9^qu`KB` zCSH5lIe|*9N+B z&xz?OpOE&&N&O)qy;BAp^8QH5@HJ<#94J~W@`<}`pW)sYtrr#c##)Xc$Cmp6ro30Y zQcf$una6f zu5=dCLCjJ}rYWhkC-b>r$y`KPo6CZ5u z0%1c_%ae9(O-O(!R7Cs*L4~)!xYy1tt-7PVWk#cH?wjS3Lv_hYQoB=!2PDhpes`|Z zU}P$wMCq~kn~!xRdWARr{T$-#p{wFZM1axVQMD&k5#Q?&3SE3Z;pt&UCv`-O#p8Dt z=@+d{HVAouzJ^r-He){z3`v`Px{0)M|n7j1-q-WzRAz zvP8H8ufttZGynT`mBplm0Z(u+ZVAKTooj`3G8zQ{)pfgRBxfnWUlNI=kZOW0+J56R zA~+XM#pUtog02e7Pj*l?UpnU-+EUeiPcW_H8v7!C-TgP?kHc4oxg((F zAepE<9hshuU&L{N>wL=p(LN#8+>hQS;2!{BbUgNK-J9H3na*uTiP-`p%A^d`2ZpB(+>BOcG{#I07;{04`+iM=@Q=H#@-k06Jrg2<+3jZfp zBvh7a6CQo6LTOaoQe7aS5mHJ@5hI(HGeXRnamOVq0P;XmXesx`kHTShMFM$T`fAxO zgGhD{b-sfSg1i8>7%hRb4%k*@k{;~f&Ny@dHfrx?HB}xeT-MRSO0HM$Ico#$**V5o zxkm)Cu=dXS2P=5SVDu;8?Lv{;$TW)=z)>7aae9L{GM>{inE{gWkhWb#7 zd=NAEou9Yd+hCqjVTD&20PrS^k|n;qYww&kiRRYjTf^DsY_Ur?_)dp|QXv6@!6d$2w*GqKyApT&CSm5OJHBZuTQkXKdH(4gwnJ_+3( z8N(!}U)J0_L-8@kS}7PLFnZfY5kqdf9tP{gKqT{^?+xczzxZB8X%oNYIEv%_B1I}K z7LD-#7F+762i7>J2j#$%w+}j&CaPjH#>x^dQUAW!76ZVD6N%@9C$Ws7a)mPLad6;dh0uocLqQO%nH308{FiXhCzpoYr9G8v$`A zylw_Sv+o%edJ&4qBlX9)0TM-SBW=LN&w<98Ig)Fp9&R3g*V&!H=%`t}wb(UGAZ9F*u7BmC zdd_zC1&`qqdFC{!-Yyh_ax6U6KB;1NK_aG(i9z9&N4YPxr7Ji1TjMyHqb)8RYHE+< zh=3eS)hRX(9kU6SbCno?+i5NGb!3|U%2VFzL|<6Du;e{2JQsUN3?f9q5?>kPn_G$x zJSuZ~SO|^|vBb|1zv4^=DObHYB7|N5bFeyGlxPthDlizYs5CeWk-%Bq{6;3=3eK5$ zWniRV)WPNvK)%>k3>t6CUptbVX{)ayrD%qb39q~ld;-1|S_czc#@L34a8|xIj6i4# zQvmjWFdBCfo-yvvma*MzV!^KSZ)9H9g%@gB=mZuw6g`lJ!uF{04jLlTS(UVV;pkH$ zs)~CT_Trf5$Z-AcoW=o}aZ%SBOEOa^_EU^@A#T-S%Qr(Fo@9CH2LL(5YoW-K)u#c(ocqv{CA*p7skk#!ah#%y>y8 z*#r!bI9#BX+*xV$=z4y6Kgg@7GzUX|AY;CM_Lvep;`H6nGvLQ*r9soCj+)QpQ7cqK ze{Hn-t)r#nnmM_>-Omyts+%#?PdA(JzPZprqZYyvG9oalnc(;~S+a89u3=I1Qb6xq zCP&}aeeO%^Q;wcL#<($oueUDkE*sHhodWJHQ)SWA?ua@566gX)hy_-nOQb1utMF>l z^(#-Fu2&p`HkN``g#uKh!liL6{ljQ4vANS>*X!T@%pss|Y^#4+R|MJC)(6RT^chsO zKKuVx)IG&9^vj|hMN9k*B3%8a(TciyCjbTikqN9oUgnzv?LwOdSPUgAKswI$7KAKc zPmOuElN}P*+KkE@3VZvv>JXt&BeTSVl12@>>3Kr#h*a!i1p-p5Z4g@SU9?Zg=&u>> z1xtNE{CLY$P5xqAW7%it{?bZ*A06_Ekmna_t1$8x>o@VETD=|>69!~P2BVc` zj(~icwI(e`IyqAdFB45oME$R=)?d&rlY?n=@U*b%fzp>IFkNJS-SX@&4^UO11JHnA zpfAfPg61Q2)X#0XCxkA6i1X=D_MvcKs@igT1CY#vO=Wyrd&|QlGnioD zlLXi|R!P{d0sh9xn2a07L)%h$ zpX!ode%4*s_WWS8f~^e1Uk7l_QKK;2%-if*l`ahn?eaJ%YtOFn*l)m#&~Z+UDSwv` z>oZ&wOWa3Wu`J+gt0Br64?{i764|J{c@+*6wDo_zLqUfcLXG<*4@a*Kw{PNk%cAB^ zMP2>Ufk7ScNw411#b#Y-QVwgM<_3Lij9ik>Z%AfLifC1o3re2>YGekNGit*Fa}=6% zfuH;+E{EbRGXou2eu%Tmd9%qGZFbuIwh8o>wFxkVH{qgHkC|4If>*OqBYY@)iN&JA z$;BITh45(rH+(+WR`!|O2&R#Df@~m+Q&^Niwv3-BBd$mIaP@eo z7%CA-H$QUlGH&W(9Ok`7Q~f8b(L_#XMJ^%27S>Ig{~0sgnu!dBz>ES$Ebi6f!yN<7 zwH({^UWouN1&{kC(})Tc0OtyKMEc9`j~Ed1O!G6|MF^5|lyv4tYbVk+jr~(JY#PjY zr5nQRV%mK0)3eMq2-ja&+Qs`j)5={&I&tDgA@y=FDiPgt<$8C}+6&|M53 z|5`W9#RX?hZ~O*3E49-DO`|elQ-W4i#!fyWqp4cm#eMU2)i2i;eHJPM20sFY!`2jP z*uN7-FOkivsC+UMM_U6Iz&_VIA;`UsUk}M(#{JPk474`x^(`zp*yATncy`l!Dk9kZ zjj~i=k@xQcJRV-`a{%J3IL&1sGOnemp|Xy74dgh_xlySIKCrKG@`|&t!$?#Yp?9cq zF2h$#ldRgE((=B1o=E|_WmTyu^3t57^qIz;+#byXaQag@u+PrAa%cKv!;o$3kJjt} z^I6Aj7g@%9x^nKw=)b^Kb>5-VZsSDQ3_mbacS-pA2bu(8yu88PZwm-j+1}H6q448( z*3I%jW&8^=TeOeH6+(V%7qbGE)wY2xk=+Un@px;SmsM}wpd)=AooiQ+vIZr#p)kb6 zug^l1^Mn5|*r!DO5cA59a`1Yx8dqg#89Qh6>U^wNsaXA)>V5Vu{s=QD%KEMQ0z1{G zcEa@{iw=S#n~3GjmsnjJEm(^TZS%B$`*f#S0!6r*^w+$P`~j1Z~4HtqPF2Su3{&5E&Bn%ty$yAS}~WzBj>C2>QH23py!UrfSu|*`pk2%pKk}<+jX2 zQe+*gjoyg`Ut+V2;GkX|6AsY0y0suCRMT#N5!jiJ8q(TJNuaS;$W}m`wBz_!ZQ0o# zIeEdAMoO|#lc#1$MM)^j+(=pP@O$(){=#@c&;vLLdfTzmg zgp$AXeYaEPHRg}WRKzQ3H{$+7yde}G{-u?jSmxcu$_^H6(8`#Tks&A1O~#%Tzs=8{ z#o*;&%VjVlHnx+VAt!K?lrb&j+S$g$D%jZ34&ZHe{?P3+EQmy#+9uXTz+*=)+YZQP zJ^X7c#Io;NS8)G?k46hC&6p9DW6df?qG!xXR+yvDDh8`(!zy;kxe3Xx6^(S-RXI#z z>{g3SJUG*gy&$%;W?3m*qIQs)7zt$ zSUza~s)zp$qMY_PLFV`K^Rici;9I5HMZB~R-=$1(J4fuV zyamJTl35rGSCKLsZz8XwuHgH{FWS&;_mXQjutay7_t>Mr)cBng?lqN$a4)Nl{ZMX) zd|O{Z2uE3|?v>W(^aJ_ytM3&DH8Y`6bulT(?;+T(?b!*u2wm)oc1zX1+qR5)OjurQ zWeG6{Fb$hldQzR6xtD^|a>3f<+*#E-*@L8nG4feoeA2Ab7^JbFbL&#yvF!k$qt!zj zKPE$7os!+0R!&d&BtZUv-}+B^ zLYT2TBd=fgmze`Acx2uS1%msZ6U?&=QBz0F9)&B|DPmV<0$Pkd-h|y13k7Mv235=uaC5 zSPK@HPw@6?x;yGB%^)aY0%(i(P5EaX4{Oz;>*ZTuFPkzWUtPa`vew;O-Sj}=t9+l$~Co)`4-W2h3{p)2yttG z44cDb{*)UkZ3tKXzOdNkTH!rlZnZJ_1OeM;a;8*=Tdj{?Dc+3l=d}{|^R|Ov=UJl; z5>mx;>b#!rmcE3ZN_S0kbjib6O-+eh<%E(h?w2g{1&gy#0C*{A;70KpKOzbV{PBMKc4E?efeI_<) za7XVW1|yy#QaQGFID21zz>n00-u9n1QmUIHhBB9S2;|IHrdKw$L5Y zFa_%R_-taYIql~^=&evVtfQRTh#M}|$y*<9JTR7Q&jyvp2cUepJzr*30tzDLouapC<&krGZAnH?GeSeG@&N( z3db{(TAO6@-fH8G@cE48Q=)`~{VN(%Q8@SmPSFQ10s*x5wM7%gUj_Cx!Ud;GO>ar4 zY7zQwPP2Atoz>-z!9IdXw{n31%l#d{q2-p@Ro>+`3WwtF?gEOj(Fw8_pnQKc6v%1l zk3lbw1J_`t2LJW_A1S6T;*A%xNN@_snNH_9Ah5aBa0IeqOIU`F07ev6aE)pR1PoR- zB9y4 z_bEbUQv>2a-9~KKafSl1U{B>K)IxFDvvAXO!(;p$C!=^qOsYe)ZT_sj-|#vCj1EFh zkSyS|($Gym&7?j(JVyN}P)*%IENwK)WhY@;IFA>_Lr9$MT+%r}hH0hSSv>M?&1aWR zHvUu6U>@aFE@aDH)u$T&q=1*|V=N=@$I@9`u8%(Cn>xK>* zCEu#-)SI^Q4exjiHGbXCE8D+-!S>sKD)Mh*E+q8YT-w{rXoOyyP9@^>Di@Zh#JfM6 zX(|(Ep;j=UlRI4Ax$m*^P^x9OWKhvy7fz!2Ugy%xgbIv)O`2h7u)SYj{i&cWMz` z3P`^{UDlkuja(ivhlLS?RSWdOT42|QlQMdw_vr^|q+_tmckzFr*y!uw=;L>9RA-*k zO%{;Y8xVn`gerCV0D_|=WjxBL=yrh-l~Dk%wmkjXj%W_o_rdL=PXuL~+S{3`86qi# z@R3b>kFkRr{XdL-V{9gm*LH2&cDLQywr$(CZQHhO+cvh?_O7|L`!>(#U*7za$uOB@ z&U~12ow)!~n_cnF0qM+&f2-IOVXyjNACmk&XZ)Bwlf+*vLp47z6|xR((OJ#``uiDe z)1s5igk&0(pI9E(Q+h&#d)%`l^NtIY)B3^gXvhR0Q+bzokC2a=z+B1&otU=Hw_f7# z?nEt=nE3a?iF)erGomG}C1qSPqD4j*x3~)HIccH513Qg?-ja%U9*Ho3V;2-V+@{ zKP%+6RRFGLAE*DGa;$aK`hv#e7W=v!9j@q?E!PcI2JrKb*G``~NB*lq5g{z3a5^-H zkmHh8O5i*`nkT4gVWK*VjB#3nos`E&QLj!#V%&&&Uxs(o3~Qy8s3wF}tj&Tk+RHa;3>25xvoH6!63 zC5LaEkI2irswvSl7ld$`2NexvkKbw=f*qx&i_oSJ?G6QSqe~%aGkio6GTkYE@esK{ zshBius}8e*ls$9z&7i+|R)<@ko_go~b1LWZ5zkZ=OIsHWQ7;Os->XnTuTnG``F?$0 z?nm(0BSbhmu4v$}{n`_@(o^|Jf1;PfK48a^!JJrJF8BX>o4)b?s@Az}{2tLpwGY2} zEr*f7UwwNXMm-=+DPwHd!@3y@>&MUY3ZCE$yxrVC7G*dD|te&Lq{A-H+!5O z(7^Z|50YHE{IdD=_3CZb5A{jcnMI-=>=avPEr9c#2TVe-W^r%Huqcyy{~p`z1Yf%S z^r`3S)RjxOuKnjw6QupLBT<-jG- zo0we00?ZS}UC)^rv#Dz~sAz>WrJRP?F#``u70qo6q}Wga>bWM}>I8jW<+`;}l6-|2 zY4w!ey&@hl4%XXAs_9a8*cZXN;gCr>wR%hk(CD;QBGNw2ta7}8^X-UDF+`@kKIY|9 z;E_10@>O;T)wveW1vg+^ifx{ZfGM2ODFrmIZf0&aef}7C0&s0KGA6^X0;A}>gVNR? zo`Qg;ki)|=%zPd*leZnvRXNz%SK?Rw%C7G>H_f0}1se5yHVt`T8#}CMjpBmHAA1F= zC*FAvT8VKI53Cln$dL0GU*02E^un3RSW|MMBiEs!q$W4}yteaeY_7LuZb%&>up@VS9|7k=_lpl`@l-&XS*>yPbY$UvhQ!0cWT0%r;#IId8vj zf`U%o3Ekzj#@gSZ!bCe~B84pm-x~LJRDSmIh_Yq=*q0sx&=iI{M`s>WuQtVpZF4s7 zB5UQ{xSl-kOg9lqltcp_ZDzl7j8nI|GURP%R@~B_e;&>)Rz+x*<*~D8eA=4aC|mTo zsV$wf*D~_i>F)8s;O6NKn}mJN4wMijvvJl8VL5$S+HKtxjI`-$#^;rl?-9`dg2t$% zJ2p(7y@*yF2PpIB_Mb1IfMPW&98K(r(5PEYiQo)vj3#3659d+}P*D2zLi1w6^YT0z*TWzGhS@}bCzcog(%yh*owib;aSpvO&f!3H~ zt}p{Rt#|^y{1rBm?kqR|1qswK5gFcti735ia0o=%mLNU1mb$yigT5T^1uU5w?R*vFB z7nKGAUrz)=na%K(HJF8HndOJ6%SrT-0fL)n4`Qa{T}5;fI3LSx$`N@-utz_4E~IJ= z#iEsS_jb_Tl034On)*=k%fHS8Ey0yO*3K1TF)H;8V7nMgvPQoDB2!@VUM5qxKx3zS zS?8rx54!_mpa3<)|4uZhxp9Q;vm(|Q+=OFTdu9WTLH;5H8qzkP#8cS$v|_iH%8ZioImtiN>O3G7#RwHkr*eX;kdDt9A>u4Fu5LO+^M#^XpAwjsPzZ`_bQ`v|DayMGvH!( zEbKwKmesD;>@6#vuw?aBl^ITXWmoP+9@*6^k$Zq`Kxb+uZU>udQ(&S?Umup~=WQo5_fY`>U0IkK4=NK$MB%=>LIW znHc_8S|>9*8|Qx_SY7FO(jP(XbNwx$MeQ!4!Q#XQuO3l5{4oXq363FKm}25Ep`TER zJhi%_X@^addjg2Jty%?5RB1&#s_F4>dobU}ozutN-STFLup;@^DWZN~FIGn(;&B4J zj&pcQ^3>7o(fi+derx=iwYvSiZT-Fvs=Cxy}keoHfVRO)% zdHeb~P77pSpDFu#YVsEVpR8@~;QDTv9w%_?{Jru|+^0-`P`=Utn}qMHi-vA!nxhxr z2p7=~07NLVJp^SxPuAA}b^F#!ryt_|38v>Ff7|14Ehz95J|~Hq%`;Fm;tFI|62y&lpfI z??*=Zi8r24@Ov}G*vUFbM@#&@^6DoKY^&1SxY{KlD&|@WB5%8*9B*;0<#N+}iPcRDJHIMgsL@c~6?OL5CCmis&Xa-M-jo4Uj5y3aP>Ws=U^X%5#$&o>ozUlq5-w5!@r1e@ z$O%5kdCIIdXtzOif7OOti8CBWS!s6;wm){(^1N*2PmZOZhlhG@#UsNX5wEbmy!@w`T3u*rzen%b<~rOnZgXiCf!jY)ysXlApaN*;nm-Z=X8Jkf}P*tTUe_4P8=W4 z3cqQ?zZKqhGlJ^bUV`v?KOW}y`ab{uq=^QNe+A3Z{xnI;+ZF==9j=eh+XI7{$q<9~ z-$vFQx9!8zKTCb>woNi(2au<^k8T89M^0`xdCA`?o@ABD&M$ohgEH4B|LJG_e)&uG z!o4JG3nzG@^_cp#fah-h0i={b4wCi3fO#2&w2s;6Y$v+f?bpZPa}!r@?YbkwPCh1H zJ>s-qU$;22YP-gitRA%lBI8i?((9_*VnFO{x&{09U&SIw4W(ed?xAK-M1)x{3`JO| zrE?nFG2pTq&6xeWp#6$T`VPLP?EfeQd1Jfbg(B^gtq@Us#h+Bn&_d6*8dVz(5)h zp}Yj9iK7Lw3VsdP2`R!Y0Y$WkCg~%U&ieiKOWr|O%S->-gbJq64+7n|J*lI=zJp%F(rU>$RV>w0F%3w(mM&6sb>wnkAL&06x}|tzT!_1?lZA0D*;@P z&}!bZuq)3Hn}=5R>@kkoIIw5C{c4q6cNz}iVipYQ{L3n;Ce~w1u0+7!%>K28riuNp z?Vq?Ok1r7|!mW0y($iEFDc|kli7SoQdzFP=&gQ>wVKcmTa$`Be)Y#n~sw`}CSMT4< z*Qw!+H`&;T$U1fLgi^7>9(6qkPL+;A35ORgiWH(ki;P8x#y}eZFVOM33{+`d_;eG+ z;E0GB7XtgY0cA0*`!h59R5E5FMuJC5V6L{k>YRvc!->WYG~$Z7 z;(w5Cle!?NGHNU8m;>l@!FGygPiMwTkq%|Uz|qTx2Fe6p)j>hvSt3N6LiTI5TCIt% zKqhQPT9{J~Mp}e>x*{;kie9uI_XdBI@58-sHy%AJ{_R0WD^hv?dimSdMe*6y4!4%K ztr=d>)T(~xpOep~3!TNQ*+cT83p@(2_pK`3UZ8Kl4y{MEB;5hUKp$!4#5_9Z+ckx< zf?*HOKQ1f#vZ(3rUE^YSD&H+Uce&kI?GYtMC|DQYh+cWsxdQC#kx=N*r?<;)pO)+k3sB|PWX1NQV$-fo!!#koNe?um($-KXvJ1&7iTv~$@^*G@;!O=ST5OV z=Y4@)icX;Mu7V;(&%9byeyz;E+Hrn2xoV~?bgNC>Xt#P2-s)@-E^SfmOX;DV7gxP8 zx3Je}%~LEE!w~CpRwcB@(X4z`dezSi$>D0hJz^E-mZPGx)d*#VRxcL_n2)*B zR^2od5Om9WEx9f8{Bad&SF!y}39798$H zo=EP*vS*|ppjgqmoFI*sf(QvwFk#j0cDBpat>-YDm?zLRPC-!r^wVXmu+J^??+MG% zx-WN(;SBksrEvH9mMYh48NVnVL2e=5rTfV6c2N)=|4Rhq-y)b;r^M_4>`s$ES&$Wi zUWa(E7LbHg-!U=pKzk_Ef^(7aZb?B3HOYyd$AX~O5uQjVk>pC&Jx*?DXOYO;7~o}O zRLg!_!3uyWREl6%vy_v2v|jL?a7RFoGWB8wP+@367!gS*G#>})EZu8-gAcyU3651-y zb45K|xxi;&g4RI>NIlOSZ?&nM1!o+8_SfhTyStiXaB;AFxH=A0V*D%>R@2)VMvc?< zKY9plC}AXj@!Z?hCL7Ug2?sbc?vzuk$y@-)qR z*hi#9S8Pq%a0Z_zLgVvNhGi6?2qgw9Y;Uy(^WdJRFZ=4hL*Sa`V_~j%YCl8d-UOED z=2&I<|4O3J`6IFvcq6se3r%Dxlo($EEeK2|tC=Fal%kGJ)(hIdlRa^_ebUd<4_~X~ z%-iS;?Sxujyk`haQZ3ZHeb2vWZoxXKa^RB-DKt zh=w0hi%)v*o#{%7%ufoq6!{H)X^l5@jB0g#SI9x6?zSA2Q(7%XF47`Q2yZP>uEOyM zFTPrg*+8WCTbJyM$p|lbK+;E=OeaV0IGVf6!@pbvF0ZjIb7qT4*s10lr%R&wH2LK0 z0%obiWb>GUd&7qujwWB>HH5oM4D z7koV`G+n(dNz%G%2cb%ot1p<`&EbGsgK;_wRH~>^o@aVW6n)@NP}=Ga>mnNahcgWt zt&Qqj*;_C8yT&RWM3iPKsDuiGVYtpN+-&M0}W-Y~!=dRuNTMEhi31 z@gBJAR#IW%`(Q<~gCnZzlehT~T02Vt=O}*_rBdTZ+UTwhp}ELzDc|fGrF_XqIW+z8rlJO7XLgAXVHcb`n96v!$1ymE&R(G=&jfs+P5c|e2;D7L2@?80hbV{Aq6 z@A@4|6<&-XNX>Sf65t?O4NmwKFdG;b9^z@MaZ1|b_vhxa3YoceHIZN}@+&j&vdPDNFN=3I%`^dIc%UAfq~^R;%qs{Nk z9PWMuI`=`+?%(t~#;kwbTWUJ-x4?N(c*mtyLbCN``XE^g$?_q?Jw-_<^6YAnu= zN;EHp+d*Hsx2wYsuWc^C6rhgOKDQrWk*dEhOFqO;CPf8vHHlmW7r_aN$(VgrDLzH| z4LL>?@5IkQVIhg%k+7J*!R;MFQf^UlbvZfRoGw3c*7vjW68Hd-f&v43yzZ&gpJF@x ze10+H4DJk9@e_X$^6K$@5rFGU&;#F}7ElD~Ln`ulF=9Yy=q7x$xD9=v0MdtuBDoD! zKo9wi`*97VU!f)+V?Ucg!%r>B=Tpe!XD*B>qpv*%#k7v zEU?l<_H1+S_#!0kZ#0a_>G=c~*Tci@lbD^^yCNx5->JdRayCC>#lRO(3*L*68C?hla4HsEYwco@H7in;b8B53pNtEU%raz z{U04)AOGHWUZ*)?2zq)yKGqRq*;hpM#~dSyyF;*U-|z1E)BF2rk7||Z51v_l{d+=@ zZmZy57NvmqSG$$Cc6$9qf}exlJ(wvz=MP~B@9`tfZgBbjY1Wl~ms7_6Sh3FclgMt_ zE}9S{?Ba^02)CGx$j=~FPi_C$mSEO~FLL6yaX3c+r`t4z?d22NOEh}Ps}K`lh(5LIQqwh(Oda1%BOC{Xx|4c&h&3=gsc#=ZlfE9@Djpl&gjWO*@?tk}HzI z+vDG@xrYVZ>wnQA3#y}ZV&sDC5RTCF-!ZJn#u%jMqTLQpDW^2pIy4 zF1^iJylR_#B#00X;x#P6pX!j7PEP-W0RmO`J|%E4?vyH^k?kW%SS#3}M=$ZlxoM+` z<^j1Ho(`@H5QF9<6PF-)Gntk{PXkjGlGP;CJ1?gHi$phcRJCaun*`Bb`{}fN6`*(I zS%HC59eNz_EDE8_Hz=Q>(b2*XE^FsTovxL=kE=g?jAIvq0|)Z~q-;>zw2_{sCv7cF zJ_WxvI=M(GsDuN_+_|unZpBseT2MzGw1n^URr)Rm%~HGO&YTKk3_Q;;CxQko>+d_O zIId?7N$;L~^6UD%yOg`uO*R(wT8kIH39Ot!`WOAOE~~XmL@&-%c!X+%zm8>!J*4tz zA)`sQ#EQ8$cvn+$80Gf!Ep2M(vlWA#6aQiKJGvoxFx*YET4C6+j`K#bR{&hMS+e-1 z#yE!vD_aU47&b4?FEoxTNKHaCGnFH4o_9^c6hfjfR+3Uzo|&(JN<5qQ2m9|Gaf_M# zbtue98_dFHP^vHo{%s(7_+9&myIF{N5*fu;rXdjw!>OoPs9>qV4knRb!-bP>V+hCr zhx6!9wU;zX$IX+vA9cLA_7M1V!6i3-Osm5c`D$a3uI~WZZJz}8O^yu5sGO(f1Upn( zw{#yCst1s1BBIyU0;^}%UTWre_unaXUG4+d{5_5HDlQqvNFVbN-3$x2v^btNoSQu~^ zyzDP80wWa(e~m@{MJ+VhN`_RPEuL6-paj3!#!{Vvt9ymUBGC4wt~HPdja$);_4E6M z#q8cVb3w$z{Q*KL;cJsEV~4Efn#@_=?2qT!kH+M`U&xilSnIz$!N4PoWT^+RKr`9tDQST5p+bH>mXUOynI- ze~C~^X2o9(9`jaM{go0hp;B9{^#l;(^%=v0=wCI zRED9dIs~ItlXlRCjwO*6i_tVO7hQoPUeFp|5m|kVTLVR%WzGA_txt|Ja`lcQ`Fu7H zt?QxRltj#Xaudz<0b15uVyG`<(d_R`ED_5*v2Jj4H75+f8P+1|16!_c4P9?8)0)cz zYp}N(x{LTbt5|VsXX}?U>YZhU8vIYG7VkVGV=@b05iYYnYi3scFkB>W51f4C|ML(2i!aw&PhIeFnud zGd1w%j%Sj_v7}vj=?I=1of6K;7qzKZN=DSDe?ZyRQ{v$JN__ zGsl=Vm8XgId2?qNUMP?_zCAa^qTBaix5-@@(4%{Dd#G0jr8NlCu5K%xhL_s)#g~w{ zv&9td_B7>>GjJ)JktP*dIq%!-op!CdAK`7QUfa-(AdHff|NCQm7Tf*OR|!kM$AlLIU1$S>cuT+&#S<-i#@SH^bnnrP;bKks-WXRCGO zc+Y6s<>F(OwXpi;n>R{!TS_JC{@0f=j~`jr+@ZYNvq3FgafwUf^5T>SK7>GKBybEa z!KRPg75Ro>j;zcQuiMLs73>wLUUXYEkUtkuyQ7@iu$J)5DF<<5p~NBY zob5Ga#n#aR((GT;=A+N*hay-Wnuxe-jTRm+7H!)Zm{Ok0pNu0mQYN(Hq@#72+u4wg zmJkM}YRmCu%Tbnj-SCF#!HPt&BSTLe8nZ^Z=V}8K8}kc8#8%Is3chVE_F3|I5_+9A zsTs1Ao*Nhe zdeK-ojk)uHoQ6;qK36Y&PT(nqvb+2&Sx(9=QQh?mS=UMeY_rAe^QB%hq+B49bK&<(7%k>2T>039zq%!t|4(y%3J0TqR;MYZM4 zo&z%1j-iu^`9qTml#7pS1deIq;J&3Ojwb6m#BrhajGd zX&!ocPr{OX9%`RJdD_!cA1#cA?x{ zgecxC=NJvJT33H>$y7r+`j+|{CaoA1Q5RfLI&Xn6Q5Fa-P#;)F`?#5f-fo_e77cGx zXA1n+`c4}w)jzu%06m1>xfFbfzhLIfILQ4@Pg#a7&vX2Pin+C;OT(K#6?JOEu>Ngs zymYp2qpg+7y^ZngbPBNPR^q^F22Bl1dRWZJ#V%*;cKM1pj-Pp8j#x%)6?}*7V97Np z%UAGW@NixdiH)<=zMG1~32Th4Q6*|Wcevwp43llbt;Z!rSd3&BgEI=>^Y$P*#Oo3J zr}r&UwwGV>7bW4bxDwVo3GFG;q zCy%6b%-VccV|Nt0+b4@@iXb&m_^F90xa`gIazAi9Q!M2K8ZVmZIky(ZryazJU%%V; z;mMEg&;+&c^FI&X_US5>y_mIL6)wItpRTP;{;waT*cOKdi5njLs?vqAv0c5g>-^4XOR*(|LyCEM5nCMjZ=BOgq8Z#A_&~%GN)074=85)QRL@jm3DKUoY5h~}A0upUS zAmca{vSGi`oN49q4YX|_)E`F0LsX;*cm~va5tZ5K;#98*dUW7Mh&t-zh-u1{uuM{P z19URL$VkDDNlrutnKX^O;ErtVG-NRZy%B7N`Y|m<@Wh!BYa!G~a-S`fj9HkF+UPx( z8G`gzWTI+hVN&=blFmKH_{!N542Ot!{0Luukjgqk~$ zUQ-u9z&rya9O2gypauN&7aA1AFN1s7?>)L)p4fjo2X77kL8JHURY2ALLVl-psH#1m zf32vvS<9vU^jx$ZExrTguWYYP-Bz;KruU@NjjAtKKCeBWp%^kHpa4HwP#gZo9c@!f zrr1D}HkMcWR~Az(Gi@6|?}cu&4*Gfz&I1U3ZKK+*>gwOs_d1<#z`_g4e%94O&~ zdqDTUOw<#mBH}>LLOg-p=rk2#O5jPZU7B(JHQE}!n;Mqj;W!dX#BX_*C`Gn}IL%9< z2AwSyTRTRvtTt21Pm!!P2Q{2Gysc;JA3YCyuKVhIsi>OYUw@qU@>$YXCm-|2|MT~3 z&2Z1JzMn6@y8P#zaV6SY)74g2J-vy-rn8!V{$$cOqU*q;KSQ6kI>>nT{RLI&mNt{< z*6?gS355~z-QQr+05jP+0X|!oP6Y}lqBHd7o@~>{!^hEQLj>ukKCNBiBS19pBzbqX zF>pT&-24>bOV5eFzsLp|q>6@A-is=sv?N!BbeGjwk)e{JvOu~qdIOVm+{BlCWhPf) z_RTri^>vDhu$v3SH7;W?GK~NX#LP9+)`c zKANaa2&FqzqE0HBlCD4QRaoJf<`nBZq=E~97ur2(M}g@={N5!`S4W?>zn zOWMi-+e^H;-~9C1;8=I>07`LyuFq^dDcTJ~P4}xO<3*Z3UJufR{mISqB#Nf34rj1H z9W1&e;ow15FI!;Q<%Zs7Bocjj8q1mKIpoFJD7xuR4bOAJ;MOBMNKIkAeszhCtZ(B9QAij?f*~1 z$0DJqlb}H*C1t3SybZ?trW8rix3G?PmrKb^iRDS!XEfg4l&>&1Y|4|MeX{SSJ{X9i z`tSFN&U=0m98T8_UkTx3a8e}+?hg;b#^yWAh%!6d%keDvpS=e+5kBbt_&z9|l>lT3 zcx^5p+zDYLS?w&h>BZ7}Qb#%5u_1>$wJ^T%>r;p90$)D2BHKNHkFSo^I>eALXBaEk{#S^CkMbZD({dmPd61uv}IZy(e1oZY>z zl>$c&rC&QQF|DgR8u2+VY_gF_l>&n$nu36$|1a1QLoHJ{xOsbk%Ob&x10S;7_<&50SH{F56KLM z+C7ZF6H9?ADS^ILn&c2kT@K2_BiUkElul7Oc=fX3d(Z9>&(QLF{y_X=?HGt=TFs%Z zE}|mb19Mk7uw|g}6(PXLJkFtZgbt(@K5C)z9lkOwqjU`N30;VZaA6d%UEG9Ez@WN1 zlT3EXQbMfj)`(+)R&Yw!B6CvWCbjJurS{hp=PkGsnLP0@_`Iv?{VM`$6N`O%i24Z$ zJgw}9JEZa)myF@y8CX;!A&QqkXfYJHuygq&!y$k>0AjMd%Us74o`DtE_PQo8=vtJL zTE#>vimd*~9?E=;dAUw$6e*0Vub)iF)a$Q7AgTJ1o4BTk#th3))_ALerW{Am*p@Aq zvq!zvU}1MxnWKyFvFU)N!Y~#RPgOB#0wf0)(;MmUfPg6)bZ)La7)U)!r!*X`XQO2# zpwLb`;%9E_T68S8ad+FOr&mKgEnLX03O77yXde10YM^C;^h(qi>%WxBZX2H={rF$T z5A#aGaU{%_S@{A0vJ3Lt98;+6X4HusIU&hf=n+oGZn73_r467bQwXWrvW65?akrd; zuwjWPLDkZ@?H~OS-32JNIjbE9gTh(I++VN|;z2->RdM5F+FH^X$z1Bs&a-ki^0|${2i|+l;^%OB zb6fc1N;?&yK|B-UWpi|6C15wBsbNH^tXp=FN^B{ z?;L~?DDsLPD>>8e{YSxMwzZgt^1%#>}Yq8Vz{kR8y+r=*;H2`m(HAkl_8@@&xc2VB)1X z0O-{k!lf$ry&R%CnN_cixeLEvR{?2#x3p7^E^B{`f90BPMV?aT}wrbDQjm@S5&RNhKGJ{=cQ1@xM<#6nkfknZ- zL0g;FAt=;qI=o36YB0YaQ`9WF(V&qAqNtkM?pH|ni79OXn{oX3B`sm+iW)kLVCG`k`Qx66A3*HaRDNKpwNp)T37F?~#5z^d)#P zkok;j>h^fto zFHUS?R~5vT+?w`_qYS7r8f)|{Xs9VQC78qryhLgdfTCsZREXJ;kD}$xg}3keOt6%C zdC>2={(4X$^z|by-#n(4D1BCidj;DaOYa%?<#GwM68GL|(rnjXi$+`!-GuiYOYioN zb+U)k34nj(mNsf8_lG!n+7??z94nx5bGVVqPkKTaNik~5vqYIf64Vf9yw=-%M-#Wt*=v)V(2u`%?B zIj!B*QooAjZE%2@q-~t^rX~v|(*lar`lwY9+ap-*oA}rxj1H0ku&s_Eb_WAmi z(yzO}`eb@ln{8E1JyAHTreI+4G;kO1 z@Oa7nDO$;@M#=XTN=$D!i8eY~Wj6VxI!QKbuVuNKA94KGFOlf@-A5Fr#%Ogm2cLX0 zW|F>mhMu%ypp~)su{CY#McIa)pkBGR^`dQ4u8`~C8hYut)`yO^cm1%cu5`lc00X?9Mg<&ryTW0T7fNKL zh?-<5CpatMxCp_Jk#@syWCb^Z&1I59G5vHEl!!kW8fmIZT;%*ydF()QLA^~qhB;Yt z$Y~u=gL#^pDQNz`T{7W2&EDGO!)-Ru-Ena5I4Z@Zq@#g)b{bYIhkm=B7QE8}}8keXKB* zwNdgTa+Z^|ysP&=((g%D$UWN0xtyy`wX5m&W-a~F9pkLlqO^If_S_Y&&+0JR!O3yP zq0w|ewo;YqPFHo>rm(@5F;z7(k&TjXp^NCfSo-2x95YxpVXd1#=*|ya+0)O08w3}v^R~=`;|zug3Q+D6Htp+Y znGTi@cDLMnyD}B&cv*gJj+mQS^~lALL~bSSLf=6H4`4G>qOg-Kqb{9$m>pKzeI$dtBbk*7FN`+bO;oo*6IJuyxlb%!X zX7z-s3kjcmOYg)?O$Qm@8|tC4xIPyBY{}l zIc|XX%~!IWJodeC5S#KZ!3%buHK3rJ@aya1cmMmFIp?7D_mDWMWw`yTeB}L`5QOW? z#b3!_J}=8!E_d9$09^kcg`JbfTV(;l6mB#fXmP1zEhzM`50DiI!Szf}o)Og9H!?OQ z>_Ld@B|sjQG!re?ybP*S$`22XTl_jms(M<$fQMAp!F(#?m_OVOZ2|`_&*d}JA9r&3)m@!(1o)Uy6J~I z3S}{8I26!T#}rpB^NBJDkZB7UfXxX5vMH-Y!EW65eZLoUa45rIciHkboFR zVP%Qq5P;W8o$H}6rYi;=8XFPRIUThX1lPN$McoXD6|ji~#K2p1#;3LxU}hu)ppV3Z z9EH?jV3^mbX~*BKA&)|O#SS^+`|l8N3H+brzn@>er3v_pu!80SFo{4uFg61R-_B5C!Ibho)mu~ToYSqrbo zr!_T%Jz_EK3*KxHzrGIQunGh!4NbU5fl7(>g5FsC-0zPUum*&@d%uHwpL2}^T9eZV zV}R#mr*CXsZSx<6R9bCJB<}I+dmd%PF z4jE`|K%9<)8k3`{>5DMD$1?-Go&C z43>b0Q~(`(VR?vIAEsHVN}`|H+_D*~15U3xc->>y_>GIiw80vqi^z882+t;_Zm6YM!Uzeh5yn+pS(U;*)H+@ zO#_xTe13i5z?q%f0P)dJlPx`VfchK*{ZV2d0;z_|e=CFXnPyRn9H7IP)3T*2k03XN zO+5S?SW1iqlZd`ztOd5cIDvRBCo4A^moM%HWe0pN4;R2zt5h1ye)4gXVuRsi++tEzT9zbI*K)Q55wdli8ruG@Ig( zlo=}27DH=Ir6MOxBd6rz0uxsmCJDx>K$|-7vTI3Bxt&6vTjw4+)~tDy6li0XN)FkT zpeiKUrLTq^lAc%Q{yDp-dGu-VjjQ&!pCx!RG~OgtNQs%2j3CSxJeG#asFEY!+)-a$ zPkG2QIy8^hsCud1@7*tdEYScrfd?((Z8Xjf;wW$|LDb~mzzfMSHBHJr0G}d<;Gn{h zv;%`fg$HG~mYpZ&rlrq3?g&yfi(4g;Lr6VzSm||dczHbBdgWH~x}TV)md}`ff)^t8@}iZ(G}NdjG@yK7M_BCB$O_=>6A# zg!O+OkT5cF{O5o~SJK}2$B^Y+{S+}n7{h&l!AP?f!s(*GUJzjrh?%n__*eLkpM|4- z9!B*1Bpy?MHVUDp>aVrC#CX8%&wRx1<;~^e>tR_lJJ@_TKr#HLp9k7!0P$d-*IAFS zruoJ5EA6o2vqbSg=yc(a<{!001EEa&v`@>5hUK=1K64GJ9Fk#q~0inV_QFA7r_XjG?!H z0eYr8lJ=V;oC|Cq1qYhOBc}kPA|sN7A090*i{=edoI&AIs?I_WYp}$L6w(Q_wD@f@ zC}m6jYL1z9WF+w?c$bCJ@WH=P9?Lf4P&uC??AJ8`fv*54IPW8=*TbPoYJ}d7GI~+* z%hCI3P8jGi2m=4N$IplN!k0H>3h)dN{pJfXqB!Gs@+A)`mtUAl7Ln)w{9M=fd%n*H zA2$0gsuFA)j(<^=m|Pfq{97MRSxJ@^vF1>ia&A1Rk09TVm)A!=hETKgGC@s^<_lwZ zb;3*#VJxZ0B8Hj&C0ZIe!gg!Z_x(ZYW*`B_QvyM5f2K|8YrWE5ERVFcvuZo$$YBgw zYO1EyuG>**o4=7Z-yQB5ctxj6Yqp?!z5Xcv=UCHWHYYXQ95%|*JVIVX9u1{~c+D0` zYSsDbvWMq@(p63n%E+%+o|sS`4KVX3_RmNL71B>`LqfJe3k+I!5`8*y4i+>`{z9;v z5h@!eq72^uW9%GbH0h$X-L|J~8&BJ|J#8D)wrx$@wr$(Crfu7O`uzKTykByX%G#Bx zR8pzzT~+s5dtbMSw*_`xM|^Vlkc2FjlgtWZ(krs6kwk zbCJ{>0t!mp!{YG0{V)gt!{ezKP!Y*!+lRNt#91WDSX4DgarffO3&lPA2ujLU~O#Enqr*XzZ9|8CZQEBF}=Ks@uK*8V>*twF-+~9|ROCh9b!UyAnJ}lLa_6 zA2jL>j)=FiT;Oh{y0GYEHu{zHID(OLrdO7vF#xp7NdF?nh~8ohR6pJxUPaPh(g@(NBS7Ag+!H9r&lJDvHsJ+S@@ru$T#!~eJ{({+@0k(L3WT*#mYo#G%NI^lJ8Kl}H0x{y9 z%jb9Ac(qPoYRUbbnbm_^^C{ZVPdrF~DK&f9o%f%wxB-eX;D*QcI#?E>@I3Ea%4z9}aF9?P8eSzG7FYkp z*53)0H1?^#e{D(Fm$2vcgN)NqxUc-SjD(lK+upkZgrZ``Q%yaiVjRacR?HDe;FeY! z%dP{CJ{Rv7=3lggV0edAxtBOXGY7R97di*$lxexmEzavS^b#@47z&MtOks7P-*L^F zv0d;>;!|94D3LJpg0elj7p7q*r*V(@3qBd9ujeWn)15lFdRAZr7Y{yR@840L=Yz~C z^om4ngFZl)(9FO`IKO9j~Z+k5GW)WB1> zliANGyjxb%S+4|?j1^$QJ2ZsxDTGZ<$$^ON_94now+F>HMzuL#L6Lq6ho|RxKUjrH zML)thIpWxZ(Vw}*Xks1Sb`1;l07^nGR{=zJ`Gi$k4U*WpVaBqW)bwjoKB&N@2||JT zqHuc#*Zdm^qEdWnR|=xC?r!@TF>PJ!(?Q#W#)z+^KwxG{BNr)$5o|8KiAk&Etue1i zoH2*c+q;<4osTc#uR_I&8P&WH5=e{P2P3|>h%BC7j^MqQ532Mf72g;nnQFhgiYeg= z`gI-HbQ>u_d7=X6oGVIRbHNYN%HMDoZ#p`?^@p$m`e@$8N?CBp;W(=aSXgb1Y6|y^ zTNbT`sK)P~lmd(G?e-%hsn-_)YeJ7{?XOc6Fch`q88Xw7il8eKS^u!=NKosD)6{eW ze~y=Or@`stvMdmtNFZhANeKeYE>WORs8eu{qrFRom`X%15gAEA8EsbCC|{JzBHq#m z@;7C-(^%>!W~#x-HXJZJWp%!wD+_d4?mkws+QTwROGHp7i00BzY^>8}-*CjwHO!G5 zU2ldvW>nYTK|(z`2OzOdG|V$2sx)&)2-8N}J5}&f(SjeFUl9DB zRmAV&W(fl(LvRKBx>9nh9a7pYTCs{lTQ7<3Of}y8?FAOq>?C4x(c5Op`zDd=NjJYI zZ`z1UWfEAWy9_3(_I@jH0$+}EFGKz52DOc?N|Cza0A)f35u#2ziMk9xNF_CNOAn>X zz-ENEC&H}7nPO`klU!m8MAFH-@gkiF!xdg9-VGE0lq$iOnLEGTyVUqQu zdt?fdP(z6-XLsss-|N)vt1FQ8qJXqC;u>AI*QvH>b&(Gh8Xd3N=q?3iz1%Me0qJ;X zE2qCXGWkjOV=MYG$Fx(dM!0Q3osny6BRNn3`BexfZXlz+{pj>_W$z>n3kvy&ih*}qYZ^pV}seM zY}&sjAt$?b-^cI& zJUA=L$aeVKRma=#lC%Y>X2gQ>`KFO~mn(MaVA|qrJC0?MF}5X~-`G}VnIEUh^jPF1 z8QZ8&`f;3v-LJpg)f>Rk-8)O98{Yd6=!_v*9%9+Xe}>$QwA-kW@#tBnWl^?lWt|R$ zJ-HPLKTL;^Vhiv$Qdf#~lbkXPcUjxeAR(l9%}GX~c=hKCrTmDbG)!MI5)dpTshL5# z<9gDAkZYqK>C){w`?||DIxSy=;&jsW~o6DR5e>>)te$R(w@{T z4ihQaa&YX0@PT|YNbLhDec{W6=dla0-GZFLhVIe^!mY*V7nK+2E5 zRG-{&uO0P50S+_F7#(vx$og|}LWx0tRW3!26qH!7`RTlsZ;J2ngR=!^RJ&72UU^%Oj>FhOD`NG+TjT#e)p7B5CS+Lo++((<&|Q@K&NI4&&lR@UE6eU*$}qSPPEJ=9T|+(Xis= z^X6r1BkLZey4wd$0eps~nC(b|g7f2HDby+&gw9j*TfrYh=C;AWVhgH zSN~#lW(1u4a}`LM(1$3lTOmKjrk12$dm_wb2}|WVn|Kock%IfVo?gw5T>DIt6tnPE za8FOIpTfvtFhq+md%<0gEv_46IlZ2a8h9apzhqUPGA;TG)`E><*cHz_M@2v$iA8Un zN>%GJmDhUydfpL!z1wh%*f2fqW`*-7!LZldoI|Sl#4Xj$k*3|k3Ati?G%zR$R5j>% zq5Q6cF#MB_nS0*N|JZB?3=yOw`2HA(#B^DLOL=9^ujE)vS+^bM{%U9flnGVJg~}#6 z`g9ijJmWa*6nRTHBrEE(Q%ES=)QHD^oi@oZ5ourQMpCI)8-}b%^F9^ z&(^0?ifO`y(dj3-cVVnwZLlv_4i`25 zX73xi#FUFkh7_wT)9}}SF9w?Ip`5V;K+Pd$*QVwh!|HnBQ%m9x6PB~~# z*pPG}Z@tsJK`y3TLjnMX6U#trvO79)qJZ8_S|&mK$Pb?gW7P_ct$I2%XZAMG)p*XW z&>@dHiEJCzPp-1l^MU(~0S1c85}srIfQ)S)9`hGO)>A4A^9E%ZdpUQHch1k(NTqE` z6XuWAk)F;^Ka%hf8O2^E z_?oP;=yRN8|8Rn=pF5~ow*FR@ex-SHkQLPXciHi~m8tRFyA)KZ6oYl3chQ>nL&@Wf zz43|8_e~SxngTOtWv&tu(a4ocZZ6PJrmzp=ua0RJC2N-Nl3Y9biSb`b99CY7um7i9okOt+Or0T=A=I~*0) z4!*9mh2aan0IA54Vmu?AydX@|8n!*IFbr4AITcTP_GkUX4CPg>RAfR^yS3;^oB|#H z(t9|;MnSJ`yg79V6|D-vbjL#qBLVY|sHynFZ^FL<)k2>m8)Oo*%rA?revF)fR_EMr z5#Uu+Eq^ueY!UFs)99z$jFnN-7IDU(Hv&VMbYidc0JL4BQz;*d1y=YM=r*asUH@1H ztBd3)$F5{4S$^TLSJXP`3*9fAg*Lw$-p^EoI#`e|AlWkB#{8jmN8v_0a31gFZ6{1^ zl5TK0%I_?#JX4j=2bvuVlynnEp%~wRHhIz?M>>!KPsmy5@n?bq^Q+6qUbO!OR%5$a z0vfg9fA9VMdQ$^k{m!)%DcyQ-Q1UI;lxTicv&MR?#}aVWvU0Q&_;+KE)N)U>4@+SWXhv6fNgqC zsC@O$=92ZWP0Gwny2||JyT?=lsM)02$zwWzvsaU{;}nU>OQ=6o_w1~qSQib%tJ=}0 zi=!M&G)-5jyPZ?Q5eOa!fl{(rYDOW6Nu;7cKRqN0yn4jMtF3D^^i_Ie61fS3)|OUe zW*9)WLM7;LNQ6T@p*R7yarZbiIu$*7X#T;V#BS(Ug|dp_Lhk22=Mv#;Glmsi!Ke{m?Ka(`a9&gEEE`05H#s^?BEMe4| z8onIRC>I5KYtmWCPE*_xG9#4At1ZzAgvzB{NLZM?df2nc6G0rDoH~lW2+Rnirn=Oz zmUp1)x;8|phg7`9bDYQ}_Z?;D8rEFach9Z=-F%gwxu7OylDhg*)|p~yJh68C>RZHd z6`vfi4ow(@QDxkJD#xBK zPbEk@8!`RzoKKaWTVNrN;$d%7SrM_e@8KRnFWo_7ly+!Fk)0?#B;(=qAs) z_suacDw2xFv?h{H+xQQ z@Gw?q28oXwlZz{|brwF;xmFs*I0!z+~KuEG}g)`t_1ifUD zWk0o5ZGOo)7;kzuGVVU6>0(X+lW`Bs(Z92OK=u2)r3rqZDiY3GY5(q{Xq>Wnjnkq# zzbu-VX=YtFnxDw0pC;`&!!1nV?2rmT*{eM5!VgQYPJprm`jN~^k1=zp&hddq;Kn75 zUTY!A@Ew3I&!Gnd5KoY^GDioH$XrJ5QTfgUZKUL83u5m;idX#8kaYz89r`8YPk`{U zhE9pB;_x@Z%Lj+-x*!_i5-*me&rEV9q|XGwk?RtTpKHMZ@@Q>%G(?+63M)>6`F>NWEi!A9q$YJT9ju+;Y|TZnBN% zWGe1>ReT$^$5Pt1A(M>MzuKYdJ9vnpTX@ERez5u=HY{XPF6{8b!QTioby*o#2uvbkcC#DE8r;$ z86f6GLEz1T7zF(gdRh`nzqGy}XE1QPST16}w9FM7VBKFHK5V81SQd;yV0hJOz(mKN zxEG_G4UjCNS$9L=;&`YIyk{qIMkj$sllacP3x;rW5bi*+34cLS+sbN{dck2+?p3{1 z>M2SHFA5+sY{eKz{b`r_elIse#g|agUti7~3DOFdW1lEC*Ux{NKI~hz3+XVM;(XVq zPkZokC%G!xJ_B%2%?EtU>u{1+r+@3I^M0uF(nicEW-d9hxDztrOSac1Vf=Z%XhrAW zpH{e5_nd{B3}G~%z?rea0alN|R`n>P>1Z4M)CmD)l?Wl@YM75Ok7M-syrug+~=mAiT z%7n6j>dMGCGuN*=8L@6f#}G|M{Mlb|iow)`CVO=4VN$+JDW-&y^gB&O8LMu3p>M%J zmkskJwGb68U5nABfpsw6kS0S`)RX-un#O=;Np%J`yqRd@$m6~&?pg{ZA*~FQ3EJF0 zXXhfDY4Xh+3_Ifa&Q)SvGn5SohHDIF1XfFhJ~D;rL#%iX>(sANnk%?mPL@Frqy7y? z7oA=22}3u0FlZOuH0!AN;(&p*$j4T8yi`)Y0;4Vo zbyGL5NhGpLrcL7GFx^fm<1i2*v?&)jMTydUXNs0-MXy3un*()N4OJK+@43yDMZp~y zMMse_MaJL1;S_7V3S2F36s7U2{&*>cQ05`$;md~fbA@=$hSfTm@k&_7l7fYB_yzTv zJj}D>**76@r4ttv)th3~O@u5!f#MGK5kj8yk}db^4CBv^jmhxlI&mY7{gIJkXz}oC zQo14e@q>_J38#uBl8TC^ijDQ4jgHQXW#V0^@M>pPI3(qrf56+J6hb09!Pg#zB36E+ zMq&yWRq84f5<^OM=Pf0LsO|5FtUJ*+7*W3~=)^M`lfQF`Ivhgee8^Q2Qz*E`IyM+P zx)y}W*FW)Wg(WJj0(X;F5<=qoq1X5!iRg|z@FnKxbOI0yja}T7n2?t0@QUr227;YK zIW6;Z2bT?CkD-lgA6@2!U##$o4}ehgTIXXo5Z&`D30nS|ZP-i(49J)f{&nLsb>F)> z;EovBIN|L0d*K;Ec}TAi_A_V&w|@q$V+bGR&uUCbb>jPUBB@r`M2_JxiL$`gGW-Od z)XW;gn4#=U(17eQ_e5TIxNeJejSY^IJZ7neL|4U+UF#ca920JI?e^oWRbf#kVIS{&^l@GwjE4~SG6$Qvn zvGrpkyXl_V9n&YezYVA|66v_gWP+U#wj?>(B>$p5hR2&bzTF$k`F?PGf8EB;q{=y$ zj}_Uyef}dr_W@9NmOE3kW;=}CxW9d_oc`mFmh4Ma-?=aF?(QK|+qJB{snNN;nd$AB zdEVRD0{88}+~?o^m)T&q^cm2zQ!amAbD3~ugSy^iyzvVmyY~1n;$2j2y$k=87B}Tu zHsY~u7}(hUl|t!~snN_)+t^}e8g~cbc>VcVh{rVTP6+4Z>-d>pP>*eUUM6Mk=TH)Fh=G2%R5m7!b^XvIIT<3L#U<#1?RVI?LmHe00`R+y6vZVn43|XutnGXix1;E;?x~sNQVAs z1b3%HIGQ!5S>6#$EhD0io6h^+PFB9_Y)DqHZ~|xU#f;XHKfLw&TCZ+SN$O;x_1YK? z80!APfE?&DUzPG1%g%h0b4j#R!RW^_8sPVCqU+JKEMNtUM#8?ezUbsWv1(&%{h*Vl z2I$O#WQn9-tcDmarei`vXZF3l z1K?gjc-27_lobXNJRiwE#x~8$FJo2hXdo`9J_eOHN;^C(P!H2#9uBU z{}GA2fm{@OGW9Yi*0jsl;Tctw8RH^RcFR4{hsCii;3M3TDWI_)9;VU+Q9E>Kjq zIlT*OzW_EtQm%s;^r_55TxUHEdW+d`Y^nMmncJBI5&OZ*I;F|&Bo z$E5I#ERj1Zhk}u(FT?}vsEw)F!7m|pm{y<2L=Y6$GCnb4i69{Q`WY^|R8Z#I2W5$G z3O-~kXv90ygKd}n`1wroObXRrogUC_mx?S?ci4=M(e5aC}6Fmx#Z^ie@ zV5gYk&>n(*eU$irzb5{KIdQLLb|2}#=Zz?;B0b-$*tGPd=l=M=Q6${mQ{etUDC_ys8+*-}XfGCQ>V`35cgjndf zt0V{srypCzV*LI3I8Ml}46J>8TA`N%LR>y?fZ#B-1J>+)7L!2%ghA<019Py9JEONp z0d{dk>rkLEnIf1-p-SZ3E`w`zGjAMm_R7Qlu@{5{=BZz?uBMO){n~oFlRV>hQ1`%ZpF7Bz{-uWk@hV6{X@YX6$GnAHDH1Ciqm87 zf@6RQ2FtG%tWUv8PIUM%X06u6uaBwF5s^L2e)80IzcCH!O?e(!1D~(y9M|Bdo?U)7 z%b48maFY93=XuI)d_xy#_xoOYwsv>S59@z_vH7Oi0@-|he4!hDgtzD&50Q1En1Vc{ zbXAfTh%zCp3>^`i-|=Rcm{}O@R^PaVyB%Ll9H$L=i5snC@5wWO*kFZP4Il=VI$H>M z7SCnpgfjA#(DT`M(&t>p>|WEbG7!0G`(!!K#b&wOOa^a8}R+@wqIg+uNW z_gS=J_$wyvunfj$8lqlX>!Xq_&}lmuqjovf49066EVn^19@bav7FRkL2e)4S{p{&E zPt}qRt3(3EFAP@FZ#F^mUS0xeNGh!aUpL7!qZ@~~+Dpb%zSAWXpym_&c8yrh8`9z9 z!xXG$mSczeH3U$b13)>V!3X~A;2|H~*%Wm5LxSG&==RtI$J(P--O%CqV2W0Grv)*J zoz4F=Fqo=+ng;%yLeQQO^(0s`s)@B7H$b=@F$Ntl;pN{)LAI2WSOdo%WS53nh@zcl-V-8W~h9xkHF@`_;GDXBo zV$!1lBIXDA;9)1XF>aOof4U#Dlas;S64gwHc~Ybz29N~L+%ObOiH;N40U?<}tf5rc z-9tz@x(5M=2&~g$fE7{rN?uZvfStsYiKnGeA*F`@NC81qzJ9T|**?cm1MWkaJ1<=~ z)!E;84oiu;Yc1b7NtZ|@lNpTIk@}A!BVsHY?S#1*5aT=+|H7q2W(j? zqAoFIDT$dri|zjY)-UV+=1ZT~B&xi>1s|i>VX*wT&PpkYYFuR#Wn7#x3k4FtnB)|b zjfi{Mm6DP_b0rb){XrdMT0O(;>+k3SwOyv@0-@@~5MYk2+R$EK*Qd6P$Lv|Kj|eQF z+V;i*!`kX~KF|)v%qLf$!!ZuVKz>#)pHDw8iU%sdz;VBVkKAFF?7P;5B$ixUz%H0Z z?d#NhCK8YjJ3|aB8c@&_P)g;|EjY?CM*Px^$|t=HJSU9GXW0!lD{6J7$EGR=a^o&> zQizC9OerbF6f8nr5|qm2>rEt-S3I@MdtZ@Iz0@BF@NAvT*>iOBm=-;yGU?j0vEY4I zeiK(rN&T8j_$!5JXX~){fLLIDAe!^Q6ZUj%H-U>N?Ui~)6A2y#M-UKC2}uSj3@^ik zwCG1lA_y+RgruVGj{{9j*ULC?(u;h&8|sFNi&aL``}c1yIxeRe^ud=5G>n~yD(se- zc)6w>nA+t3-T+Hfwk~(?+!9Up_u@HN;-umtS#>Ja845dHu614)FT z{Oy{AFOE^@l-YK4qwH{0R=~_m9`w>y8rswH_CDe>1(ZDnmC~DW1trn}7(Y*cB#_2A zDqko@d}hHyI3^o%E(DhsvHy}eBBakjgyto!t`}v9oXudrEB+PB5LO#_R6G~c8frj)XyzdG1O1?RvxKe3CD5(3ZQKMu`F(DO7^M$K{rJ`c zFalBp9;s21A5u#61xhW34q~^0_@X*{+4Q11hJrXcI#1J_N~!@UU5@4M-q)Ejx)cOo zViEBRvxz%gVkInCs`p=fKf!06(;*6?bhb|S-O8*-Q_?KqJ187d2Q_pB{~Md!gEh|P_lKkrHOnEKMyoy^_pizPt*WK2Xr6mq?uYsY~wvE zXNcS7p|W>=0uj=gj*h@;Q~Gw+=t%_G=X4z|bJm%hdMj5#XqjcORj#%lXUUyBCtd&kr;D#uVQUo1QYGNxq9WCy(^mANit4!rlT>YGj17NZWafcWVmKiO z{M-rGJ4wf2)i83xkz`$}{<6Y{y#XyhkwXqzLsyKlbD%35I<>Rmu!m#zQNGo;MAh1A z_3TFaJXbqkOlXB}FeWE%Q~;hgvm!Xr17; zNgYt?T(N%t7O~n^uqONCNx_9L;|bfVP9B_3OtnA85hgcICy7Si@Zo$ImEW)7DW-T@ z$-8nW`aurDd;UN;QR#?GQTR|PY{e9{x49BO%z-tv7{xhkUwc5gBkxFiOkpGIgKx)l5%=X{eLB z5^i_1L-l%mKL|*0@|*rcAu|L1&*)B0R;K?_$U}JCjwD@GJ$iXglJ*&g8JTUjQBBP~ zX^Cm)Ocn{$vR}T)cF>g~7vs%f3RG9dHDo|w0(+9?e4pi2OY{b@P1-sKgoZ6K>|oXJBo2->cykr zdMPv5Oo4#AiL*EOuRTG?cPIt2H+*UOuf`$(K_o%LK=y2QQQh^w6kf*#;tFEXX!O}- ztNQ>j4m!D!YN$@~egW`C63Ubop>zBQjK$ED>w?;tB8DU2hR+AshUHvooFey693pX* z&QEMP1R-$qsZsx`e3Atolw&%Ue9J&x_3aQ^4Z0Woxd}bEhj3Ayd*4{x8xmG&{V<7d zSg%~3KR5<44W6%F-IkMnQ}sg2!aL>~3?Bk_^l7m7t)sC{tbv*ND=&f`&l~^wy{LNJ zXA_k5ghTJxW)L8&c&3L9a-5!|jaHc+?(mFagI&z&mo|#K?<2W{zuF!Vh1pKAB3=uv zPwrxMljJk)K@iT)$6mUXU{%`Ot9Zn@IG(g*+_N{c6C9+H!)qfnI>{KL-j-&BtH{GO z%E1V?*~PJc{WI_WsZ|4*b{B{1{)TNe3S4W>2>|m2j_jCv0DYYAkPO z0ZMK6C;aCbg88SLh|_t%xXIZ0xt5lYH~z-(K1Cr_t@MBkg7z&T!A&pZePmefzvVDe zw!1Sk8X_PF4re0EL-B4+t>_>rQze_5d7L{#9ZcS6%KZa&YMarP&qsu68_Mx^ySGam z!^gfo?){BN5JXPik}>U2i7ObuG4rs8j2?iT79*yKA~&It{3EZw20P+!URf>QE02;g zr(TLn*Wxfa1T^RY4u#;>WN;OGODo5qsn!Q%))HY$ImL~o>#>`s&%RfWb20}Mcni9j zPX5pMbQc6OMATObpy|KvV@$QYkxAqjE;;n@PC8x!i@)Wb|WJ$U$9bfbn;b{cpO;Pjs*3 zo{-3B$z1D0)qm|XGw`NsOOH8LP}C@NP>9o$1(qXe)F;u9LDm5#Sf%Z(XTV9(T zLV7|eC0pZn3GzQP{8bmerdrD_zD>24?}?p*Y#3r0p5<;BHU`*+VYJe5sluOx9Nzg7p&X%} z@dt#(6S9gbyz`pz#W6dcH{D6PkQ!!=)k^T#RthtP&9_2XA!hbOazvN4I5_DEQzyt9 z#39b)(o}%DXTn9s=n)Weuijy^; z{gkcT{|GNl_9>>vFD<~Nd>%-zon9*A3a9LD%~bLNqW(F+1#U7Ls~?g%Kq$uB_sKv6 zQr3jth|&QP^qZ%KZpO1Kg*hc` zwkx8BCbLhiry{ja<)Yma1BOssOpY1$7!6sSJfDRZ#PaEauLF0rghbp@Jz}B$;d;@W z%|&8;*_*widmt>q+x-z_uiV22i)0V(T!}ukFu2kdSiMa%u!+6ZGN|rE&NNbma`X&~ z?;|%3#EK3mM||>g2phMj$7;imBwa7yNU=E7SRIbGw?R}zIaSQu5MGRUpzL@H=Ht=l zN-G3Y71*3Yf|QXgfeAAqfUu7|dywXbOE?%OVZ&hz(*$SaA;5Hcd^4wUvb=Nx2z5MsP5@fcCZBU1Y&ghlU)lzl0-0kgvb7{g5VeVZ@8>(((afwY+i_ykk?o>b ztYhUJM_O*r2oi2dNj|C0WnMuD8xjrf9<~_9H=n4OHXf{Q= zw=?6sGqquoF9T0XhfsL?dRQ`n0J*wIM6 zo;pE@g&X03>)Np<mD zn?mu(Tvzt$^D$+zJp+ErPJZsiHAB8KF0&_Ha}ZK=8SH!nvMs4Yv9`&2c{KF#wymF` z{o}_bH`+SKwhdtynzL3k4)94X`rBCN@0?N%c$AID$r1`CKtUlF#DXG{D%loISx_o9W(aVR{?^- zCDJZcW!CToj?RdKl?v`dsxN5MaL=fJWyF6PT4|NU=4$kD2~1EiS^tI4U)4m|(MIZ@ z2~>pHg~6DXhL+C0jyRuJnk{;aqL9dlRfU!s2eB(Z_$Bkk!Rn)E7ltdT?HzQj+*~m# zjuTQBeN!op=h7qwV-6xe``-{6rb3{3wTT?+$a-)IiEsRkp{*xD_?6)CCKx_e^V|1( zZun8ahdH$7O<22pk7Zmu_u>KN%jC9h!nFqZIr;RGAcEq-31z~pLOOe*^$trsSNqH& zoGiu|`CqUx68MJSTiCFDdOW+4Mi<^L+(bsJUg*7t8|MD9r|C>4;WS_yZ+P(Oo{hDw z`}@&;LlS176uS_>iyq8O6GTPIeZs{R$X7}cZtz#Pxmfu;l{x*BqL53tt+8yHy%lx2 zZ!53AcLIDX0rc_KCgLdn5&Ri7IdQqjYt#rMge=Sq2oToLOS%Nh%jp=Vi4&fv7z=7F zWe08>@?GLS2s>L*HoV6SkpV)VE8a%}!tVW8th3HErH_-c2b#`jmO z(N4whR5z(U?7&K-%Cb`$=Vm(}pV0wou>wPXkPgk^E5>$;@{$gE|LZ;1OpP9#v+8S5 zM+oAJibbP--IRLoq`3{}9w=|4g`#JOcU#Q~NawTF$0e`9^BKMuG>NM?uk(r=9j>?U zkCGm*BhF7zkGdq_#KKTUiwVNt^1@16y%4a|Qi4rTIJB69cIckJ zxOF4Abmn4fNRpMid6SQ0dI^PO_BjO}dvn`v;UY-~#I#Zvg^)1)0xx%4H|>SajA`hx z3t%A>i3CS1cqZgI$x}tW$m>K`AXX6VX=_^kHZxnC$mN>{z{>cD>e^B$vh)#_H(51R zTZtm}(~RH92|FY(!R{(={{1b}r8nO1$fG&aI7ZGg+=$Xr7n~?ttx>B(bLQ8Q=^#UVx(gglm!6@O(Lj$D!Dk02=;6{9otnQutPcunG1(f$W zjePP{x>7^y#7D}xS%_}QXg71v(M`(!+;D%Cp;TT@*wCF%ge&ZG=`ZLhIs@_q$q7a zvxmAN(8^d<3U?7`G#Akl$XGoQ8_3qqQ~-2Go&JwcA$7{h-8%B+8^z=i&f_X+3*XHb zXo+4OFa*VPOw!d63F9=a1AztY*1;N}3O98jN|{!_VvnW7Ot-@X^SXIT++wPurz`Lm z<8V9^EsQd3TPvzfy&=*hA&m^JF;dcbf)SYnMoTLg#w`Zl=_!~h2BMSDJ~u7EYiR+N zE8X@aIG;o?^i&-$FCr~FMqx-M_ITCD7^Sq~u|QgE^?jyRa=vqwW$;w3Q!1?Nlmx*7 zVfarr-Eq_hP7UNjbRPP^U9j5S*ZasfP<*T2>3>OhrvI0XD`xTkXWue&{P)t`A#Le| z{Z{zynVK6$M{~M=vE`C#(OZ{QarWX3?|ke1y2Uh!2xgo8 ze6I2J>uT&VVL0B8b2Nsy7nmjgz$f^T8_z-rxo~B35%I6T-X92APoXqe9&?ywI zDEf$?C?kopbStd2mk=XS5{>R#=uWnO(ZjtoN9`;rRh2i)=~nIkhWi~0owiwWrwr@} z`P7Ui)XT&|6yUw+7C_o8w64;kU(0=YjO86r6Ceo&ShhZ_X)=L1NE90OsFwy`NYaNj zxjTG6X-?kW+b}T$wO>s#hgcv7UZj(3nZ2mlQ}y|?M-OrOL1jDZYUGX>rL#0G@~Pxw)3YWt4aLVS zit{Rio3$qO9J5&QSS1&b>=MMejsJ`uL}%-NO>ien3SIs!F?gI4mwx0!@Jy`d6{ zY#d~iRN|vd?jud@IC+tZSm8iau%zIaMKpwnT5-RzlnDhIO=RLkbHa;+Z!?e|hi2tM z)ZId-zP(wVXC1Gd(Eml1#^_rE_B}txEIo-iv_mh)Oq@NGj;dy^K3RmA0ta`Rrd|l0 zuH{TTzy!wF14I{Y;iD&o>RaEduohAr7%u#onG*&(n7?_ye{XIGCK~?83nKv3yUd33 zK4QF6D~M9!wdk(xOM1y5sWkG9rI zW7Mw43||WnLORq|v&*c_ z&%WI)CVi&kbuSSv#O5%I9u>YU!4`1M;#m3<)sdqmmpd>{@#s^b4o<{T`EeO&Y>EM? zjqPwo#jKBN`};S?s;{+7uJ}nQq$s1x$WUN``ouv)KIXoM0IC(ImkX-VTUI2ixJ_C0 zd0qdsy8oGxE*E;ylRQ_#eB6SRfI)3W066m-a9_aK7Lj^w-WiijKBEIr12Wx~qVqRy z+3gUCwaopzNcvHExDTNWOmPGxM;cy=p<1n6DF^Lt1L_Z%|2wdx*qTGlb&bEEF?cQ_ zGoR}^MX^M1D9I#qLmpYl$96s<|6ffLYv3&n!MrU9Cd63LcqTEq*!pD&jBfG3c=8!B zgbU4-C~{-P*ivP>0=tDL~xz~Cg}+8uN`S}>set7;kg(=x+Ct=EX@_!Bi6 zxTE^u5;TJ)O#dbHK0-&F75-ISL^;HWMV_I# zrsQWtX{Kf2L-OPD4C6;3P(Z&wm4w3qQGbJaq@$Nf*~D(Ni4x5o{{u}2ns}P7N`)en zrNah9pp@#MVN7Bo|dror6uQg!}Ns)9vZN61&p%vVVO$XktaPV2cwCFCRJz( zf~i99>FBO0L+nu44PLn0DQ4~&vVXHOf-b_-curVpe3}lTnzWUS70@Qwe@p4JvZ+^H zP^yE{+01Zu+-Xg5&GD_SFWN|;^9&vIm2s}s7Ge22CohT-KWK06;JU8Pm>h2^b&R;% zG?u!qh()f?Ki|aouGQseWfkMSXH+RIUMl-m-Hr5KmwbVFW;bayXG|)|ZJZJ`N{I5N zX0{&k^@zf7^abFn3BSyJS@+^@7mx%i06*T1e|~DD7#sy0DXaL;;P~k31u!+;>}ou^ z2`xih&kr4+e{xJ8`kD;n^LbbM(!8m%;|{~eoVI|-VRPmACr>oklLulMjUmOXPv?lS+6vxx}Rw zC0#IamRV1gO3f!~4jG^pSxAA?Y-VF<5NlL$ZWe=_=z|J`RzFojze){b^MSF!CI9+Cgy6_tcNp4EcC?r>?fYbI7KwFom zdy9{T7Srh5OkM|S@yiVnoS;i!9!*)dDG+h?7ZUjq#fK|G+H@Irx^!J)xwi}Dlxg-IQiHA zF!l~nqHMvoXxX-H+qP}nw(Z(w+tx1I+GX3e?N|S|ZsUyiZfA{XWFyDQY{ZP1kl4CU zp}T;%3UX<2-fC?-fe$(rQMgwA^bT^f35ko8!(!<8K3Ah66IC8yaEIw89z5C{lGV&E zOaqTeEp%|UhQgAW?&;KSvK?=eAb>TErxopgMze)?z-&buIq6)x@mys#^+;!1}w1x?B?Y>_-8Nc{oREBa z;Oz113|fl6;D)CSLSx2m#W%2#O*E9`SDFb39M(gVZoZWb!SXWgT__%E~@id5d*$NVQ>7TX6aP6XMXCz`9WOwX5s-23DzS>^-D zWWh0^F^Xg?*iJ54;rtjlZ zXtG@oq7{f@{IRYOy1cDSzSszy)oDBf_=-TA)s(&+C{?1EC;je>z-m; zigC)b^%URLb*9x>q|RJ29V9VAFNr`-5n=A)S3&Yhb{%_!(%r_Ls+erY4`88=s3s0A zY2E;yomDi5^(T0DQ-?N^Daa_zuP1w&1Oa!iGO4(Pf)Wf#!jNhFfDt!oKRL(aB-7eI zK^~3lAge8C&N0La@hJeY(t9_%0lk&9R_yfcJbj2(|tQeedOh!oJ`VYyH&M3T-1JNGOfGZvawh0t)CFcKH0A}G#1FA zy@&2Nj@Aw3bu)*J8x|Q>P>UNP<9@e2#i6M}B5XXZwufj=Zp(JdK|wbZ zektBB7j< zDCtu-d$t)Q&MQlO3$W*ak$ZVDWyYO~Sw>o&J<@voA-#;Iuk}z>z`b|}->H|&g^^lNU_q8ObTCW!&>^UGiNnvEmtuyY`?Hmc!Tf= ziGR}Ql-hk2k6p_*odgyItflTmbesbN_PG4-;r0*hyp}|nH)6()A?W7br<4@q=uCzk zk}}H@lFXB7K~`woR4Yg`d%P*ISD4J%#U%?VV;Sjd#pq;@{U;+*W};r4Y(a^KDaEkC z{hw+2B{&(g%ro5Dq;UiE-cu9J&K>rzzung4o^t_zUv8ye_?ghc`Y9pz4=P6IQ5R%G zu+MwbrdR%Ds*!#AmeNgNqjr=ykS&=vc=43U4M20oj(gwwtE{H(GE}z)!*e+dQuN|;O|Covfr)HVD?K;dWMJ?Dv zz>=8h?ciqyLBr81ut*C^97w|NYZ4@m`2j=}FO_CpE|57(JE|9Z_SlCz;_h5l4u|8b zFHvd zV27K}Rrtg`&wt){fV*fOTWMTydkdO-VTqDnrF-5$!!K2Lt0yCPnn?FKu1+X?i23Buy+ zh_4Y|ABWpNV2okl2Y}yS9e%d~KMkBgPU%wz9<+vrXk=y~=sn%ExWr0}6nI?eqD5ircJyKJ}GSmblp${B>i6IXUB#Y%9fxK3Q(~e z4$M{5WgBwaiSP^oG4ZrYa(A4|v7fi{TGl4Q*Eh;rQ57`cH`lz_s2s$X3NCT6Z2Rv6 zmm_36k}=F=RCk@dL8LD(G54T~{PRONFX1B5gyz)ysn1$SoQ zC@wGpMC$SvB$8TVh+?IkDYA1fA*%R>_k0fI$i;+V;UFdYRrmx~XV7XnlZuBv-mX84 zP{k^@VOV(1099rI8MpvJ4yhL0g%~Ru zbai$6Z#lR}YwwbFa}DOjhLnA<{;V1pvASRO#m9*=15ZC@+DkaveLME}!H1Q)-}X6aupcWJwz8A4TG+4TLmmsJfB76!~qcRur0)}ghP)S z08rrI76kDsOcRF?4vC%)4&HFj#mQ}RhH>HgDw=qq`=)oY*K_x4rAp8Iu3}{^=H$zR zPx%{n#AjuOEU(P`%cg(qY1{s5GJ1Q(#6DKRRe6Eet)Gb9s@GP8qZxi+) zr+rD4>@A8-J7)4uAo%t;KlZLlgRJ&H2V|VhGv1pN!et4=7&C~3F zv9-5TC~8~J6d|`};7*zldoujk(FyaIzBHjqDJ6i1mblG?CqEKDLg)zu>9 ztWcFg7jp#p-=Kkn-#$W&K?(S}Gi7pR-d+w0;AgpNdN;A1J3HNT{&6)|$0uJVUUM@Y z4{yC`TW>3I3v-h_U75N%awF3{*XE6Wp9Oh-4ey_jGTUiCeJ+qWAXcU{2D4cBo|O7C zR@Q!4iO2_WJHs&$tW}|M5^GRWDlD|A&1@+_9TIrsG0|s^LW`kl9E7^gmSMppH7%>~%9?i6F!m%M$y+M>SAU#tF5~a7F5~B? z*97;i+$4Ay{G);intD-oD>SZR=DG^$X1CEVs%@FHn0VdSFdEd0&Q2FxTwHr1G`<>< z-z*)=egUQ^`1ntJbuKT7i`t`dd0qdh7I7ICI-G6i%iOtSz_j2*J-BHmiF@VN%C2yK z^&9xzB1GJ2U&<=>UdYc@YLF*#*LDBBfarcbqy(`aqB z0_>9TaK8a9e*@mwRsX(xQS{tS@LC;PRwqRH<+X}ibwBzTH)^<3cGe!EOO7)$&aj_Y zHtPVf1Yu;;faa`C+C0pONuzZxRS}}YCXD(v^p*0`CZe!KXgJZSk`MEysWjcEy>!Ee z5)G$&mXY*!iqVsZf9S6(LQ7{T`mA4msnMd=ld{xuOGLa5&bqA^0Fky$l+v{dS#`g^ z$51OI>`|?zd!oTsDssQ916e!@>tMnV3ELpC)y$?%bZ#%#3XHh86*7C#lfxmL13Z%B z6f!BIO~5fJX|YMF*%bl*#YQ(CgbhwsS>+$MDyXlu@FZ^z*J1=aMl4Wwaj}KE-HShB zb}@6QS0Be>HW=T(P=z(N9@eItvFGDO%XPIU zL~ByI)4h|5v1xk5$>ZSoF6deEz1>!!@QwukK)+Z|HN4&0a(G5xXb&R#XPqMg)RR<8Z<2Oo_DP%6mer3ug-j@fNuUmO8Iu#3d`eP%5C`_=9H z?aE#qTmFHCJZ<3Yq_Le{q)b>aJq}%*Tcz+RS3`<6Gndoh52%E}F=`Rl~b=?j=P|5>iv5s<}= zvC3K7_I%2_dhAnfR1Y35yZYYr;^^oinn^r;U$RRaC8D2m2HNsi*bM$9aw+IK>?YE= zR=_y`42->itYz|y0HDJDo>d5UVEQvJfa%zru50$gZJKxg#`d|wJ7<_5bYOoU9k#!E ztzT}#S;O0v{>bk@Jm1(9z%$H%Jy`GE2rDDFdCZmTTebeMq z`R4&&J*g}sz9cZiq&zA=jqwf`mEF7*^)^Vjj(1zT1AcsH=XFtu5?CR?wjCisZvZV2nX7ocX@q7=JTiv*gzTmixZn72M*Kug!KvcbTsapCCo_OI5~WpC37lD3W09 z#ES&<808(e?^^LVr}<)~GCM?T$X3CcTptcjok4OSqI4X{WJpm>={UIM|4x%T_Je}2 zqoO`7iLz_*TRRhy{tZ@3n#K|Abfa!v8Aa^3;$*kBQVC>6~7P zZ+D;r!p0KVlyf{fRVYRwx6XN?nH^m03F9FU z#f@am7u}xBzF=>edBM0(I8J-vLPeTOakH$fTvyv=5XR7fF2z;ouAZb+@a;tG9${>y z2RC=Sof%})M@zdxr#L{Dt*<+^N;Vk?D-o{QV6nII$Ngmt?DFlI>D~;pHIi2hFL|+= zsswZD6*U7%1{v^WNY}1xcb(oY+uKZyR?P%zKa24RMoaccO?_bef!qcxvI?Ik zdxkrc^cvI51fy_>dGrsAFpAeP@jt_^E(jea7^g?I*z47~ful1dW?*erQTa36=>TGJ zDmC55dZX3Yj`jw4c_TolFC?z%iQ38&%Lj(qxEo*?s#ltzO%@Mp=LYVfU*bE{kj1cf z3Snl|Zz)p40M+<_FL}m%2f6yvP^5nTVf?31oP3xfTTT$?i05_QI|hFLRU{*gFnIaK z^^qo4k#9XCZ|qcS_C22x7viR0UUBmRh1-!Yh~7MkLw@q56II-(LyP57DQusO6quTGc_s(>1(KtE}Up zIrG>yu+O3uEwKAGA6cNeq15xHZ>AwCQ)~^MSGMRfJh${MU0?yu<1Ir(6r{mP<2~fk zVx(;e!dMoF-DLZZPd?&E&?HmH)t`WpB=apt)a~me6?v&7IEfBvLAC`QHxwJ~lH8R~ zlw-<6+%bF?{$bCC2RSR^DWlZd##AxQ^(P#}X0jJOp)vwH2KEM}Zwl(Cu0PT)2+iwt zG;Mwy##0?G$E%q9!ENb-W~vmwDe01EU=zYHiiy#EmtexlW`qSYBrgiyj<3b3oM+$w?qYQG_*nvMtWnDNiyg(SsU z)|9cpem$Q!QW?7rxH{bQe7?S?fX`d>DbDuZKXlcC0CcE89C7g%N?CxOS~6%vFp$sC#!PGn1vMi6ma9`s zjbxv>0z1Th?sdKc|O<@a_5yxsX48N}nprn<7&;FD;qg}v(XdV*=^4Euk~ z-k7DL5(m~B>Ga3`w6lQLA#Mww8VK(O2*z))I{Y=AKqOr=nzX(borudcG{tNnC<@Qf z!nqTMSE-lJH~(rAq2Grip;IhqCf)d_fNDdm-QM*eVDGMgmq0AmUb02R7taeYT(M!3 z!mEKU;`!u&!ZXp5fW5!^yc}IpoV9f^pSpdZ8Wqc4@bhj8i!l(F-Vyq0`n4bC)jZsJ zk}G!VuD~#3e9k4@#G}V2hqGDf)M9nMP-vAmn7lB;Y&+wUtg2cpy5=>RRtaE!Ph zFFNPN29xEFX_^=hWeY5v95QQx&0&PH0Txz%3$hewCwWQZM&Wd(GsFtkol=x{m;?;C zP9EwFqf5AH93i#0ozxZpsx}S!=3G9mb7~71Wn%O=HkQmEURkDasC(9s=%xzN2w@(j z_1F(s!=Yvnk$4)+#$Bd}=W9^i7awCFy|0Yx1yoqZg;7Yt7s6a&A`589{frC}a)pWW zM%5w;a|_K&eGjqdhC}+@E)Y6LNcO{7$#XZu${FD-=H(siB!=@VnfrmM2jc=qEEK~4 z<{K>+@RqOOgCXX#U$+CJH#uE-xB}8k>-Sqpyyv_V z`qDc8+{{d<5iA)VT8Q?g1@(EB+h(WBuZEiTaF}>tZC};t0xiuOuDVG`m)fGKU1?v| z2~!)DzE^fd)0fmA7pg4l98c*k`2r~b49;46Ec@x}6jfD6vmwzm+kTw0>8wt z^v?b`Ej;6PPc3)Kn#~dMDWOh0FAZ;1*6Bk{H2V5IRD*QOucev0FLA(!&z+Lqr(Z)? zq4R}QuWBp=XI>RkHxhY{o}ewNonbplG=kdtirqLx)fZ(2_C^zj(HbBZPHS^=+7DBL zm%0s15**uNrrhkK>ofX6QH`!jm5hqh^y1tpZuiG|D!RHB!V$Op#8_0#Ygew?3B6R} zdWvqMHi7!f!6-+Anhv8i^)I$5y!GO&pC4hcb%x#b@h}Ld9_ldA4snvQj`9{wD%J?W zwe?;G6H4QA433aZuaxzMEeomGf9}eQ=^Ki5H@#-$6_us8n24~<)eQhX@@+`^o|&%8 zWv6d#M50djeMv3zy?g8!u$rJdy2dHe+t;rHUBAURIZ%O*B+L$vReaER4m?v@2CY8+ zbo*nVf@7Cg;gI=9ufEq~hURjzV&PUFU~YipviE>d@5F11#6>>4jrT@(uJ{X%kDDdx z?c5=j9d1wr_nxrX&3ix%(r!?YD21%tj5VoP7}*hi$-=44ZP;MMJ8I>%u2Fy)G5Z-T zZTtIuKyQKryZsjiVrBW?V<49QoQmqo+8=Nrb-&cz;#iUI}$;Fj_B;i3C#U%I}q zq<#H_(@Lo}yp@w6t8-=qZ&hE?+D+zuznW*%q?lu=C!!Lxd~gWMA`R3JVO6;=|b`!NqyLvWXtY9yD#j&cajCV zKtA03>A0Bn<35p1d)`n5@+A&=eo;ontde^OlWqI?eu8gEn-PDO^2|*&1q(I>`cu`v zjL+S|9oS|0D3cfZwt5cIW^=>I<4ZoAjgew9MPKaTJ-1`Jw%xc>n{sOgEaG;r9II!- z9{s*7O#f@p`Ezpr$UCz9YvH1#q2s}aGP<)_`|oF*Na9hl5YO@_vQV20wlwn#$Icbn zE>|bATt~UTj9nX*hm{&`%1V~#P4>DpwRd(`*427oy~(uEqHWgvtkTDNdZS~RW2!lS zNMMz(r{)5wEdDl}WyUUi`kQY~eN*MMED5^o_fEdY`8OD zyuf%gV^XJLcU_Ou>bWZabB;@!|9W3yp+#N4*1sOro=-Lk{a##SXp{It?h8Blxbw+2 z%B-I%F6+c+o?M)ny^cXPq1lR)Jy=M4oW^*E&?EEq!VnHUS##pQ&Mx)ToE$MrM{ls~ z_ao2R-&9|a*F2`A)1TzeAL6o<*e!unLso#d>l5JJot?r5)G1x_2AQ;iI|oE9CIfL< z6tqGMidCG|f>3t#vuKH3F(Uj4kZmP^CM$3cn*#@sCiC7`c}8c=S!2&Js#;U+1jJ93 z0`{}$;FVsMahg|OAhB>9Osb#)A}npj(-lqDwg8R5Dn&5@7J*fzL(ziat=b>wLhZ$Q zNerU7I6Ur8rE1v(YAHD4>L~WHbQ8Xyl_;8(xqI50dqngrqGlPM1wzjOwO9CEkCfieKz^OUxz9)THA z57#CeC4w}870iu!*M#WrKK|5Lcl^x0iA5$L`AbCHp~>HLLUL{_$v~on__D;_+BRhg zXnqSqP3a`H7S?1m;*vso@5e+I%s(dJyoF@P$x>2r<#)JBVw??iJ*hw~JQpr0Mo~4j zI(T?CmC*;o6T!8L`toOpF`t`yz@FxhI|=rW5#EYBX3N*#YjQV-rKWh7HVJ`|t?UQE zTN`l?G6@@_?eh}U!MRc8#bQxnVEXp~NLluR7p|aV&gsuxbU;4zc3VsYdqbhEG@l0U zpQ+HwA($edDNW#8VIyTkSF)~2v%2lBG&r=JE zdmR+`E?vY}NPl@18BTDHFxhdAY6j%Kr#RQ(q}0G-d5pH31D zL~+)VZX$fp*~xOHNJ+A*vAy8e?F?)piWr!-=9p>`4G|aw#y`zFNCY(Y$FZq?T{dVO zOf*EOD3P^PrENa3G5xC zwmu2lV_&=;$G9(%>DQ!PiE5+5zay+Q#|3o7D8yGtvOE=-(OKNXJFnm<{>Oa*IM)i? zeLCQ43%6mb=Pi0wivtoLk$K%(HjC8M#hGmW9I2~GK{97H z+V&ujd2;62xdCW@&of@_xWFz{Iq_l`?z3%BKNT`U#iA}zyb>1EB?gP|eOM9w|Fe@iEd>qd&(7BU{ zx8wTbRghpc^We#QWLuf`In@-(xQdC7Nq`R#eWXCkr~zPy_)^C;#GLg zCPmMKRXt{96kv&9D^8C2C)phoTC-ATu(qZg8??Tm4D}pgGqkpkINQSY;S?3Ybz%Pr z5b<1fUY|^t9eUYHyVuc1ju35fal5&P{!{6 zfX%0AkA0Y;FTlRa7V%EjJPLw}%6&(&z`bwwBjk2s)iny%_%e;VX4=sYsgv{nQ$nXUq%y zyegmZ{??AKr7m$K#KFs?hH9O<_?UxGdGc0byYcxWrUi&+*x5~6w#F} zpOFw}VUF~IHW*Z|fYJ9>evqWIj>8Ei@yU8Ia3Ii!chE*T5o~rerC4wlSZeDc30*%jYb0S*|#( z`CDw%XN+IV|k`+>&WPRs?{%8t*KH}>GbMi`4=Wt~_H0)90QQ?{zNaG3fXl+wv6 zRIp!X>Cr2N*@cs|sCUleEg$QF33opy*Nj-P&gWZW+uuKBpM2*xUJy@erL>S5Ts(E~ z1Jl@q-l}2Q!wYCf?|&jRJ-ok5OK}iBq*h2MVmjUpe0xJjT%@QjG z=nbfs0OW&~0SHQ2eP17uREO_-cr1fo&x(T$?GRVCRM-v23V)nO;@fztrOCl~iz7ju z;(p0~z<7tdPZH#u&UB8`0)*qulL~abExECbT{(ewo+A;Asr!(sr^+(rO9A=|iB!Qv zK=y*GlL~AUG82$-OKm-%a_4wLeh8Smf(^Yv5nS99ht;g`qanNUR8fD2aY-EmbAdgj zDhl|x`!{qT}#;>;Z_wfIgK7)E#6kpl#6SSgF(*7gFFdz$;i9d?pfwwL|OSNeoPSgiG zt*5P!K#TUSCxPRK+rPb-IJ=lgi*5?%5Gl*%^!fTG+6&|OCmin}i|=zQ91&i}5AXji z3Q-j@3;4Z%q2Ke3IHJ|crY6SeK|f~j1P06>5>F0L9O?iWA99nnQuO~P%KL?`6usd2 zoweRqC!8VYjj2xqTp8n_Lg~=nNxdK0dXWj{#kE9N-4;_H)Jz~FrO>aWBW)ps@_RtP zB#%at0!@8f%vq!<^w9@Uq2$j}`O3S`hv>+--*E!J$QXrs@>VinpAx|dAbj%@QV1i( zKU$i$AEN*zpE!x?I&?vr`UoX`&m%89tfTv2&O?qKqB5SfOBtm*ys-p!Se(HZ-M^orqEvNnh>#z>~8HZ@W_?vgrNSefZ^ z3V~7(WvUxa!LA|+2BpFxN-RH>L^L%z-7qtw!URuOAciIfVkB9%WDjm@V+t>4NuP7` zoOHud4FF|FDfHQaQw&~TpPls(`nC(VSt4+qm|>37I{~XX?4Yp;Kc}ruwta(&Z>=hW z+BLJGZiV40!ql-?#s|?)hi5}?f-%6jw(bK)5Cjf!w4NVcRI}}K(%wi?I|yj4Y&5aF z5P-&llW4~+1dd*Kr#Yy^jNKsofY8e4TBpXHG}y0%ML4-qFb+tu`lpfwh*bbiJg_CY zel5;89q%@4_NQDKC-tBaMNCNJFyymD%tw-&ZaAaVfDjz2HT&WjK_VyzE;n&`a*HFo z78107e_ZMnSY}Bvj%|Fo-RLxUPskvI-%(**K_(GV!LUu(B8_!Xae)WJi!28Se|i3^ zKI3S_|JpOLBnqo8>no(lmHUk+ml4I3^QX~b5b1b6O3Pjwj*258S zMCZzik+u!U9yz-cu6^90fdT(d+X$T0aOZuNuu)1et4c&PwY4K`0e6Y?$&^-sD1hB6 zxke$Q+iJ=UR-wwSf_M92MAU)&LRiSwC)42)0Qn1uZx5(58Xv8Kn)0a1v7YExJ zQs_Gk7T^fR@=Cr9yD{_664$^a(&Mfyng~ICLT9YXeG=D%@c6}csd-6T(h?3i9aSKo zf5%Sy$8LYpw~*&w*SZ&+9ORy+Sx9$PQiaSt&>(y8k&LBk4bvbXM9c~)VI{g1r-nQu z$-YJf zN`9IqHM~W3FxC*ZU)XykmqLGd8|q-+FHPi?ZVdi_v^8N>rm8EPLLYv zSN2u@WsDF}HaeqdSRhm%1KW}=C1IpNx&;SNJv9Fbf;`kK%B%`yN%UNwfU}&h2 z1;WV6c#O6raxFo#xv02po>v=Cmo%G2m{F1Ho>N6-GN=2MgkW(a{E^fg@fs*umsPc) zEDO`$rwaOmT&|)oOJK$%42w>$N?;6&T;Duu-(u60FPLWC&mlG^5NK?lTG|W!H-JJe zMUj_!@@QY@()?X?{1a&SAAB`!n%g)K9N%{zKkCYXq#gO!k6VZVuJBNffj=s9l*03E;);A zpbob+9FK1)`?Ft}{-XBjEp`Ld4N(3!8dB1VE^pH6N=C%nS)n~iz8U4h3#Z1Q2&w6=L*19u!lJ$SWcojZt6h6H7s@CZrx#0< zLDMqnJA@$FvOBQ^P8NVGL1@o%D<~6lnFdqr+z(hN`qJ;@IWf#kt*;&$O`gA;BhS2c zd^*^l$I#VwCPhoIc!uypjzx0tSi?OEDh=C}%B@f;tzpbYB_1ZyFME=;Kmes_3hqbjJ!} zz}B~QZPC>8idT{45R84`r)B0XjYN{I9w(nVedQ5dt%@r;69fq^Z4%OI#NJNPq(OW| z;cW~4F{6AYGH`!NQ>G-q(2Rk?;-J8WyB6@CLQ`uWp2on6t-jpy;e!^oO)z9=F-Hn> zWrA8`AV9+<25?*$czE8hVhs?`pBlw0XVid*F`n4|W+E>FeTN+$lEC}xnL58+r+A)g zVe=QwePuNl`Jf2vPd8rJ^hH&Vj_jGGz;S+ss{JoeBxrR$&_a-Wx_ zX&oqt@+k9tp#0bM z&R(s{^(?KpDR0ee7qV%EA%yNw$&$Z^jqCJ~K(M&y%ja$7H|F~(9$)SpH<uW+4O`$;8?b%=d`*A+CZRqcyPLP`6r`7T<&h#nn;Ql8S^cermKSVSSp5t=-Ax?xM=?{vt zNA}tv4M{67MiLO**N_-U(4C*0UbKpxRS{kt_wx4aX=)mZBb>k@PKbaBNrFc}oKVvr zo6^fpq=;-OP%vC;>IrzBf9JQcDvR%dawJt%j^33mW`vVMBX&`wt1vT8M#?mSTvSN* zgD6=56jLx>{fiV^vl9r0ml320*u%d0w}GVrvu(olHDu>suhB7(zeiaHh5wATYS%r9$!7ZxvQ{Wr;EFzFnaOW%x!bIFR940A6J%Zc8w$AJ(dp-g-JZrg8+=7gJnhj>EGC?X* znr}EMqJBLYn?aE?3D)Bk6d|zXT-4mdf0Zl4--9biT07`1KC8o1P8-Lr@SKFqgS{2k z>%rE+?_ZDVjIUilyJ|WowN8gE2^DX7l&cY5fN?W|*tuc|A&Ps>0AeK09?A+IRj`0Z zhSg5`2v?V=q3imb3aiWMm*?4=VeC?Jkl*d2G#qYlp>kK?e7ZoyFUAmZ9IFSllwfdL zOp~rcQ@~s)SmcE4^&+7>?sTxdV%X(e9y_cy8YB6PAJ;ekKOA` zXc~Da8Hy6*5-v23G}s7D3G#8745?&*%FnE2wAbc9GfG2fRorZ6o%yaEcY{-zY4>LL z4K(<-@7fwiTX_i_s0d3&!SeziW3OGd18)o2{%ndM#dCknBPhX<4X>&m zq|kN2@zyChGhwFKJ*t((|F1LVxcf-|>-{t&(BG5x*Lip;gvVI)S)KUiuD^}xUl_qD z3)b15ew37~xBXpNoYA$Vz|_Gizq)62$|d7ncNwvb_GkWDGftBK0$v>dYv9Gf&ibFg z3wOefr2Xo;?)2cYzuAjFAP}*2lvmIWdy;nS7kRP&BCk=xUVJ5@DiYPFDv}M%z6HCK zsA7s9l7t41Pd9|{I`~n0c>cUnE5szuT@O%nfc{gF;EZTeOcNY>_gB@ zyLpi7xcskt+~c;T^agTtQ=8kucZ^~2VSX@b^Z0NcBL*tTxdXFY6#zpq z{IP++uZE8t)`1K>pR54xCv3UnC{7>H5#Ut$?|c<4m^Oiwr&zU)SnMJ(f5OJ{pahl> z*#SlxB&Oq1B7$~jsD>54XNA^eX}^s_?G>0=!id-p>7**OK`x^ww3ghaaKYWGf{40D-a{|+TSpyl7Dm?$sL#w|3%U7LK(8_nPF0yYp z{+l`~dDYh5O*ptM3x=chk{R}MXjm^Uo*ysIr;r3NMP#UWzlG(kveeBEnk6uXmRV>H zQH0+&emW^6>34Fk|4%|B`EO%bL7J` z!u2EZ!`u|}-6&-Dv_nd3f`Jb`(FQTGmaid^zLsG;ut$`i5&o6XisCp=O)_Sk&GZp7 zwa`GU*M{ZFt})zZhzXAvWzSfSqMT^qiNr3+D2lzoy%1Yx)y~p`VCdr%$~((7VhU&u zM-0k4*RJ*#PGib2ynzZhUc`pbN(W;6`_*$Q1*M&U{d0@Dlk^;vy?RrsbfoUENhK+X zT1E*jNpIc<+z6%5pZUX;Y)dJ^e4is!#2k8&6+>OP!s2p8x^=kqUv%lu-@4is@{op>`5bD$sP?1`t z9rMEYKg(Xke9@ncyDan-;5S^Dbo=hYw|3T;rZ(^GlDEb?B`6c064t)_1TYzEaAU2p zc(x{rr$L&u76M=`{dyh#JOf-n#Bw&fg;_0D$&zL6PI-h~=>Clki#nNHP}gzdyX!MW z?`UK0(pi`yRa!@G^@LiVe)COeLj!uBeIg#tBUmok9puaQ)-XYiGd_sogeJ)5Ml|Dj)U;mLc*ZWu1TeFb3}_0d zc2Gi6FDIT2xp0tPP`$9Lb4$TQFgyfSyW>F;(!R)5V?Gi9lenRWKg4$=7=9?Hhz+nL zjL0KOh3q9FVlc*34SZjk5>;+Z)HLgEFSSKKI99Y8|Gan6WT@wTcDxOLr`oCB0+6wPhj!ZrC>@ zTQJv$1`>Ba15|rheBT)5ckW@s|CYdm0%1|em1GefeSgBj_snNi^CuKAlZ5b6pVjvz zZHqfn=2e1dHbx8&uTCBZ^9qjiDkD0Yt5Ya5y>$?sLoikazrq)?fllOMqaYT;2KnyD zn9UDbK!MliqB9*}i%kJtZBHSkXu<&qQ*;k7ax1i~{NC(n>UHMs&EMrzP9A7YKmV2u z5Mutw!%(K@dFUgwVudrW0cGvN0Pj7Gh6(aFxDvzI=7h1jzr|)qEEBmzrCp^3CkF=Z z(}4mOOrV|9FE69iL^cC_W2 zg#g4?Jj0rxI(tI2xKe5F+1p1q4~8?(p3Xl5>ss8FN@ykpyH66sG3s zuaj==iVv~D2oUju0-o7d9~7R4#PN>8ZU*i#xa7Opu`DWmZ#HJx0gW3KuLWDlNZ58LXUP}63Z}vMT4FVd`I?a3lHWV%caKq>=CZQW{+Bnl4+^!ubrH0M(kxznCA5@e$CmS|Y z(5BD+%`GQ{1_opkS!LJ5T$Jb_@?<(>9m=(#BJaNnM~(S%VhG=5HDM$GvnRm&2)=cD z{6h3#7A~vZ?DBLrNhg`gB8H{s9%ObKV^!hpBWM4-)CrtD`{t0$Jh)rVe*`}~IL`KU zqR#r7b7nq2@vGypTVxF2ZwMyMnSdFQmR{`H+mLCD zb|h9K*-ca{;>&vpc4(R){DD)OD0i?6@S5 zMsBP0$PN~>LuZAr52r1#u~ImIv#m1h1%<)$7S$~u3(KIp$+{ogKG;z9U?6;BH#16` zw3B)A2^*xh4AV6$oF<)(v0;mW%A$cEtAKE76L8+X6P;&R6; zAE7eT=X~31t%9=1hEdfjHcOQl#e>#W_2fE$qQ4Y`UEu`gICU)Lkn@fVOmk!G1D^dK zE2^XqkfC}LF6uM*K+{J3z&ySdJ3?M3JPvk5cOXL!ug#tNrrXXXi4{!?f1vSj%(ZSP zY7DTF(EXeau;$|>T?l0uD!;dz77H6^p0PY5}7+ zvDtK!k+GER8cS~rI{y9gb`-#bP~(&9n+??bW)o&JB+;+(#?-ozA|)Fx}O$ z4*Jt8(H6Aj@%>AtjM!&2SgFTaSxhPE^W*d-Ez)QGac$36?MhRJTPG;Tik>q#@7*Y4 zDc43=T`;=|Y9v~XB<;Wa2t-jSuiB};GA4A_l6l#96ww#4we;gvUeMowdzCVv2%c9O z-px!T*Ios!Usr-M^mZF?#L-z25oF2}5F*~;Vhh~M6Vt-^fY@k;Jn8dZ7EYeVe%W>U z@!+#vdX&^8`cVX(aqE(K>Ad%svWX{h1Ri0QH3dd>LJQw|s6g>v#o&Bb&EWW+6jq3W z8o_^GGfM=Mnkz@j)mEa;f?J zU%5~)ICAcf44_NYcrJ)&sOw>pAsr-u_UId4gC)_Uw??eydH;v8cM1}viPmk~ zwr$%sSKGF++P3Z0wr$(CZQFLA-VyiVKK$pzj;M#KihRw8oO9+k23?FM7(9d%_hpp_ z{*6tUE#UD$z6qrfgtL97ODVA~&sy_kW%l1o4K#|QmvW%A#Q?a#yxc)j=FFVTh;u-N zM@=Xail1!zC6@C3f2BqWpz_PbBu#Q#W_wdXW6HNeacQz1%7yz)-geBcz+UaijjOfUvC2`#^Co93AM5Z-9ZuE zyEgd3HoO00l($lZ(+oU4kij)!X@c3U$j@$bs^WGm?ISRGp(UoB8WbPM`0;9iydmtk z9!U9XbeiG;UK8|!^bWQ5ylUn@I5drwIb1!>WsUmwUWiWr0)g{ z2q>PV z>+Q2X{q3mReoI=Kv4;3!h0HNKDnkRj1)c@X_NUP6f?p=DFtc(2Kht7f5wH`50^8D; z4r1w+J+5ZG`J+Kb6NY|kjSO~hyOD34ZEg2XAcg6#kFe)YQ+vz!FdV*?@b&uw3g<>) zQB$WDO3Sr%``=P_^aI_r?jD$iqe&@Ov>^`Ky@=_Fco*6|L9k7yoj-2!SK+EQh!br} zT;NJeoa#@@UWP@FuxhfFChHHEAl7X`k<&$IGn7Yo@iUD|JNNlDQAsIh#T-X2%$Hoe z`8YXhPe}<&GC9oE=i8M*w%nq|7XZ=$_rD;2w(Kdwy@7I*T`y+ivB9HxdI2NzzcfelH)X1ly zn7)#^9!Hs3jY*Q396PnO$Q+}!jQ!99#rIl5N+#3Vsl1NrUIFcjBhUwUKJN8^d%u3f zzUc9PyRhxmmXfZY!uNbX4D_PE>%*<}vbz4^EbGMa`Eq}Kk*f+^S~saOa{KyP;onnBBruBk`t|v~pBc!VAKG(&AtedY3!sRd}j=+svDP_irYt7aKJ*@9v$71!A+f%nz1f-4U@J79L=3Stmp@R12Zr zq;x%V;;Uo^9HWbgA&&Nj8<=H`^6vz(ASV6?V7uEFVg*3NAsVR1Z1$@Rb|^fkw@PDT zlCA^&x-C~_Wi@=MUz*j=B7P3@xS;zLxY+T61aqVkgZMzDhH?YfUz6r>t3oBE-un(( zXvU-aD$k~)YLtnjS7ft)rY%&LM{APqlq{!j4nbL#MQp)K*iC4 z^kf~Sar^HAHtgtudlP1s&$I-}=4m#v%}-Q`qFYL|s*Bhy8kNg`GsRqOluWwb*4$FU zhl(`#_rAF(?ek7PJ+sPFxWrj18uOt;*l0LBUnaGQUqzYC994%8ZQNcaH{%nR^g%O$ zSsC>h9c2SiXF~$j#d9Gmp#pnOC4fibn$i7ufEK~TBJ*i0#d71d>&O8n298R+wajcU zqL<}BJ&FY*_wcRZe*!DMl6+BTlD1f#NsksZ+cF2C7pZHkKDwm&|>;O^dKG7xPtO6`|w-= z->vT9Ofz1()7-6cAp=1T)!&#j*swPM%2SV97^f%6XJ|s2(%c6Ci zHAPT%)2tI^XeyPYo!b{;F>DR}7^G2KFpoyY9_cY)uD*MFZq50%=Mm8?;?&tM;OC> z$x{HtwfT_xc=C0s*-ds44DR@`Cl0xO%WHso26W=j4JGZubY@w=Z{W%xZJExH4xv1| zJbjAdz+8;E4%8_brwc36N6V>v;gmgnL*l3pxl-KfQWq*vJ|mq#^Nj5R!$+$+2i4eVi=x?x+M%!YZ-h)HnD$IL-o!HTPkT zGcp1obm#@9m~JVpYr!u+$IOtXC$vL+712m&JW?7;e9i;56n0)}UaQxVu%F;%_&cnW2Hq*bAxMbLX>1oaL11``f}2jy#!=X4JRS zl9GnnYnA1@a1-fa1>Ip76SRP}hA+SP=In(Orn{RIXiju$E2rMUXoaktb;UsB6A~#N zLJsgZ@XP3-9QQne@&vu!IC=#HsB47eH^a6AhHG%e^x*`l6R%$6%2v1HD z+7t}nClFFVf@NBdfPmLnHXP3Y|6B6Qr=klKM}z5*Ttt(*zT zD{U;bUX9K!=fHtO^Q`4H9zXNEEd*adaU(oL46Y4c?&VA`BG;qQ&wc z94*@Iy>|AWom5WCBSwju?f^YV8FFcRA7#2S))5 z-gIK=h~G0AVp=weyZ+;%>`iuF?py{=nHE7v*7Avr;-kL=N8dy1EqqEPJvjc~ZBTk<&Ygu@eG+w%rA;KFvTDIq&=5CBP4&@KE!dcpu{Llek!KL3qsg}KjE5{=Jk zQ=p6^wdwR!B!i=V?TKurBaI~?2WG0HT|)L4t6$wXW0f#-@(02LEDG4_O2mqCAT5^G zIp?xPRR^R2b1Uoy!~Al03}`cJo|zZ(p!LZZxHMxoNjHFS$IJlf57n}9y+;Hy_Q4~N zlu4Y1;=u4cPEIHdw@t*8X-rio3%mWHdb$xxOH2V??@$l9<+i2JjrsNqv?#k;g1#QN zVBxXLq6HNaY5;bT*gCmt1cvzAbz8&Hmym^LW8S*CBj>O0NeQ@cArT1vfNIUA z7YM$9<8AlVa?6v>R7ikp{EH;ENwd8+ zyZILpRf9AKuLOmZ#9cx%nxVApTmiu|9Vcy(zBI|(az=P2$rl;T8OEFv+-4cO3Ge+( zg{ern^~M!_`*Fwi!DB)Jok?xdLokD<4(a8$xiYXXX#1ajexpWTgT8*V_Mk0DUOsD- zS*Qi%3+SbgC$Ao)iX=BPiesOjBpTj>GE%=~r)6dYW!lnW1|e1@OX(d?GUWP~FS}tp zG_pGl)2G`a4Va5ITeO06@`bpA0W2X_zij=u(B6ecKwui|l=pKTcf%l;ctjMKv~j?w ze9p)NJ~4Z-0uZ-(QY=~b;}DeWq4Y3%8zFntxF*S}<<64xLlux}@C74CY(>WMR7c+I#y!6{h>LYJq-1c5ox<9Ee~cKn+onnLmwX9VS=0X zBDD+>oa&H<(q!?aNQ+v-tNavKp>5f;DH3fp?gr%Qzp@JzDVyC+k7OF?-5?_LI8r)M0>H79Crq|~BGCdJ5f9o5n_8!Gc46A)%YsP1{)`l%MGvXU7MRU@{8uc2+B$7BSM$=Z)45(h6LK9C;FQ z$@QY$VbD0zu|uYeZ_5xzY+*RDM8D#KbC6}6MyR22e=yvVg72KkkS#2DWz}i)9_E1R z%VS7JM12NSGB87F;zV|D-cU-ulvLE8BvWjrZu5xDKF725AjO_R_}4=kOWY54BCpPn z306Kr(`AFrpQPk^l)!|+nq}8jN3_-UmP4X1g)eU7p)o_FVet~wAQ&|VM=Sx5=6&p` z!8uZcvk;jICD7sBluN!dTslJn#Ju@b7-M|qT> z$d-~*@`6Fk^Q2bvi0PwQl&L!Y>6detNb^bizR=Nh^mF-gKb9bI1gqjJrn6(0a_{{$euR1AE&#V^|V2AA6)|M~1vOHBT{LO^Qo$Nr%yDvQ_e3%D*irQ#jH4XlyU>r+?S?!Y`j%CR zdBnJe5KcIYRv#mJ1l|;DiN`n%J-%L_S+A3`Fu=C77 z-Omv?l_dZKy3^;}lLd<)s)EaXFVR&WYenxZkE+-A=Fs${SZa6nsiCQ?Rau}r;{y_f zYb?5#A%?DBFu`cN6x)e?VNWaWF18R(5{pEx`EqZ$ zY>pzL*bJEpR_>vsn&xn)o0bsz%NocO{OKFLuwXVvJ&uYM2g{Qb^v~)W)qgXlUa}_S z>M=mfu6;S=$6WOJ4RTXz!92(ga0saU)qzqn+A9uX%}X8`#~SHLYlAsz;<+%a{|Bwr zw|(DUQmYl#6|^PvG^+dKZBSc4LlbEtYC42S>=))Q0bLi^w~SzPQM*5$IP6V71lw5i zHLq~Ms_(2fWLd9$HTK4w<|L;IL?X&1_c6}3*;S_(pWmlEGRjz2^y$Ki$j4=TBSq9u z%XPgbDb6hJ9O;pMMejnYhzjl-b<|4NUwK9N z9>)tWvEeC+UjXv93j6QuSkgYXo=9H(X=JdkK5tU@V$QKwy~n5L7v{j(mY7@ze}3}X za}|bN7r_k=hfze+r(>SN?$$~ajZUC~-jsG=j!QK6mQJ#>i(l2W;JaPRnE+6gifa4` z4U469FVg@y!kq@JxB$_J=I>mKM7JYc6r5W~E=emCy&ocN9^pN*09k0lk4V;eZJum;Tr~Epmmt zRIlFrjP+bE9L9LDR{qPRj0;O4!i5<3M@U$R(>*AS1Pk^z;HjBdv%AC0sG(7~(m#`J zG$}Ngb1GhseDTmaus}EA`gjO`0|b_@{(8(sW(leo;odop2_0_A3D2HnkIpa& z9bpfaUAG06` z)%|@rXj{u8+VR{+&$y2|QaTBR;DDLrmKJmL6b+9nRI2*N&6xyzZgaiW`N*)gjqY6c z6x|P?5}j1ba0hH`oKke;4ibjmvqc*zI@lbXYuggwewd=rP72s=f=PW0O1buFCBuA# z0@-v18eUbUn*I z1x@L>$pq3x!}2T!HzO>t@Z%t2@~PIbH0Rdg=M@&YeENxHEm5|v?DGT#-s#mnOLF() zfB)#Rs))%sGuaDV-E>Na82Kn9Qgmxc(0b{R2B;`SQ{I{nIR>-wKx4C*VB+uT&{{Ze zf{V=WtD;)a?d>~q8cQdJ2qcSD>IP>OxK?8|=P39n_}{$g2r;`3U-17}gznssky0Hv zQtAvH#man;@?AS-vgUCn#dH>pnpUaAGuNtj=*yFu=~K2FaLsyG;}o*C8tb`1BpW2+ z1Pm3R!|Vf|SaD3Wk z5T1VHneWDcq|f>G&XRIg`!psTyi;B21ZYB_>ErJ0aXn+RRXRHkEdTUQCNAJLqtwrF z!T8vt4?`p2hTQqfO25FF&z-Ir+iG6on%ZIvRzt#T)}jSc?3Dq#X@kuNmB8)UZ%dll zp0DBra=A1dc-_wJ-QYT#K*i&qjx!6^18U(lJL`Fke{;YV>h2{Qe`FA;?4PJ@r}Z<8 z-$+w}|6W~54g-ceH$)CKh!=@o9o%cg@0l^r&)?B36&WOugnl0*~a%ywS8` zHh%g@0!V!)1o5-~W0{iXhK4bsrW3MUk!892BI&P~jmW zY(^Af8DQ+B`n`%9V~|2Y@*IdcD2r~PaFxD5jX!z(c~iSK#=tl#1RU{XFb(*o&$eR! z=E8DBqopY|vD zc8^j$9qB>L<^JMW)XM?qvhK$@mZak^sJK=WyQ8SGRoV1e`NPM&=eYPQptNF)1>1dR^;0ikT;z%8u za1~nLHNf}VUtql2^9y!KMd7qMNtZkl($>(s9BBpirD9~QzguX!s4_+DViqr}LnQpA zyLxe9%+hkxXxOXirrqiG&Vl>U)X$aphKo}hvDd4>Mn%L{bGyUDczT^i@P_~NS;-wU zp{iSMH%XZ-SCQ*TA8tfUw@HwZq;86=YgcI)YQPfvnk)|x~aeHSIpkG6!4UYI;}YGNlpb@T7WSO|O`0tyqt@gpZlTimUz)1o0}N&|x9 z${JB^%L3Fg!U$$TeRp=>fURC?T+662OYE<-e78mp2y<0!g8v}rH@=}&4*i|lVY=pX zM|@Ubo1rL`>1AQym7_3s7Zu&0I^8)K(GKa%4o^1wIpkK z{eFMi8ho8Nqnl`y5_VtgEW^XlclXsmXEq1xx`15K z{4vG=(J?OfWeSTIV%#3=C6FvPUDZ5LL^i$Uuzjj*bTNk9DilpprmNyhiL@`3-PAll z2;RvI;r+?zP|J38TF@vTbI^o;J!Z)aA*D278gmjj+UK;Ok0mn68nk2#@uf;?u8xu$!`<}*{5 zeGK=6WKO%gIa;llal2&op&^Vtkz3loS8w9L*pOFxpz`24*1hu)1L-THRJb*qnn=AB z1Ip`b!TgTDdl5D}2$^+og}Qu-c9Id6Zb2HIEZ2ZAg7HGJ?d3q%E1^mqch^#@8rSKIgG}tvw!JQDAMA~`j^kV43_kl2hZA6 zz$yI4{$HJJQ9!yL2Bu?F>~P&F5>O^8?G)EVN>}Vxs463$5sGv4j3s>Nue4JlksfyL zvtFv)D56LD4()NO#uCZ50DfTES*$4JS2ACMt<15NvhG&_)y}U>mSn)fZU1M6Kyse+ zlGKj(%rW}R|J`o@F%ucxUi}9ZcA*)9JEf+zr4)FA9J?!s_8W;k;1U}34v9nd<%@g7 z=kxQ~mp3q(=D*79|2=b)jpe^5kiUUToQ^9#J%y2!fyISxfIzWLUS_xe?ay7UcwznC zX+pSqocoVFl5(_i59;y}fez1dNfJ?ebQQx_#<0DIg}aM|nwxnz`zTpX=HI|2$zBM? zAp(i^LLj^kjQ#7oYEhs^DgDG>6nFzJf_zGvf2$o&l}FR8fAC*3U{ zK|&r*)ZC22BXQ_gJ!)y!G5mD{F;hJSGq3aNkP9^<&{Wg!GAUv`Rb2f^C3kg!NR0{bN{S#dwt zs*6)OpanHy%8)kjOIJ3UlWvn4ZT+7PO$z!GUY?ha@cZ zek6HhULHtvp=-!l(}#OcnP}CrDJ&DN$@b%kju;VxX(lg{R;`^3g9ML>w%vuGC7Do1 zj#TuGhhbLl70FfTT$zT?+DI-fOl31i?E18gaVkDil7z*9ZI%`|Cxki9YXRG zlXMETpTNb7C(q{D$5cZ&D8lP2=9X!=Pg@FG7udc57d~V}-h+b1oc4zcp z?7)dl=1GP$Yc8^l-O-3!9*klD?j;-dO$%E}k{-lN{tK%-8WLd@0+9@5GhE*eq;A>+ zo0p`3QqF-CMpy@>>=Dx1ULRz>guw&qMz*>pTJKtbnrs+X^Fi1TM7_lTXvk43{gD?? zj_p|;6K}d$u8~z~GnV}N6{i9q!E^<6cgniE z5#SBd1xIvjuDKmh8L=fF2&~4#FJipgQR%+u29nIl#oq z>>9-yFPo|`pCvX|gS#MGiK1WDCfx*0b)A!T@7O28v=akb&@u9ky7oUNABNmMhx4Y{ zqF$*)xdGFVgA{?x`V0)EFn>U!h$_X=ynde*oj`w9vSEiptKTx8(7~%Ig>z-~5R4ee z4`qN=KtXtg#&pyahfwo!bbHJnvHgV`xQH;dIgdPg2^R_RwB{ca&KBjepQ zW#)_z%^&Anj15XsR3!^EK*q}IO0R-o>GrfhiASYnY&CZyA^-OFdWSf~eNExKV;Y+9 z2l7vygydR1-%Rj#lL5q`l?PUl=4_)vU+W_m=mV4|WDAy5ns*yTj-l(6lX-r4ut2!N zGk7O&EsQ1YvpAQYi2?Ii{Z=g2Eq_3jKtql?VqTzsd&&ht088*_odgU`kn(axh6x3* zp`ay?Ek@vLAVxD*1@+$1gjbrBW6k)9O41c5w6{AvaoCa;wZ&6Vj+^bvzwyPM%voUI z;O(ZCmd~djgB{0ycAKH08nMSp5B1Yn-A;{Ighg2Da%uDJn^Zr^ktqUUhzM3sWYJDa*z;J}t$O08=K9@4O2#kzvrGV@-a zCWpG67t2vn0mE90?nw36PtXn`a`lZX7mN6ho{ainr!;l*^z zvD7vx*0AKsQ0@$r7w^&<3&e6FeolHsX?7*ahrc8`UDA|B2q5G>VD&(&gfB`Ci|cI7 zo_!~ZvFCV9gR?Y80L%xw6?mHJT-0ps5|8!hm5ToC1(h3G&i;Vt8VO;nQ|(m zZ(@@&bTr=hb}55bI7%g}G_@~EQ5R%Ek-^F*=#^)GMy0aVPb|J{uhU_&C=X$<6+J%k zk)Ty<&C`dVh)QZilw&5oXOW2K&TP5s1a=xb5K!C~IMLfWS`iIEN1ylR_@d9!>R<`yQFNCFXN*H2OXvWro@>*_z*f zyo`HHo3q#h1Wgk}>`J1yoqfKLv?G1#w!xJTS2`~dVlowZl|QAZhG z@Q<1od|k-sluL!ojX3$TAVn5#7f9Zdbqj~It|2U=SrnFI`%AQJ&WEef$6br*aiS^B ztHo5yo!YCX=Zo^zzoN$9F6Fsw?}2KS>K40mmF;xw+aoKot1q9o>d$Kjcu~K1^x;>G zm}l*LHzOgu`O>@saKmF#n>KeMEDtVW3co9b*2tNBbN|A>C-a817#2Bk$u1pScirqo z?M$;yw_^1Xh;Kjr%vc1fE)LFgDH2I- zUZGNBPSc1U#qV@@OnXG(T*O{FBDmjvBj>)431EGTR3}D43 zMJrsWMZn1*ou+N&f3*g9ok&S7Cf?!Gs1p!2RHVH?ZBj&_Q29;#^!rELxFy-!{B~j2 zCUh3Y!r`cuqNblZBjwNQXN>(Z7wX?ynmU2Q;QPlsEoG$EUa z&Jx!|Dr)Hf&1E}f!Sx>Ot-W1VWLF=%DrJu2z9!$;Kz7mHAC~Ewk?}R#6b56fq@uQF zcMYo998Lnv7_w=pM6Dxcvk9YtVFJyucootdeEB{)Dd~L!74pAa&Ma0zXH&PwP z6%uPcVOL_bd#m_?7~c@a=tWtbY*1pX;M}bP{DWhbl3ZL{7u(UZ96FHf((RN=N4AWY zACR$~G)Ghwfts%G)A-uB{in+^4X?Lvn;vyE9;t9*a!(auBD_m)u?9Cx@}651!a`Ud z)&;xzwBVE{H_Bi#pJ(v?)+?K)VADjM<1h14I`tg@sZ!eRUEyZ-W;sEz>Z@L|E%qIPDvM7byf1ZV3xBtnHM&E1Z&_keKOBGw&C_&HQ!g6Skq!aaMz{zIKjLC2$V>6ft;oTlIB@)d z$zt{OOr6%Oiw#x4+F8{am>OpYtgipJp;mJKkG1_cD}c^Qr;z2vonLrso?!OF)|&dj z!C0vv*wO_Qt*-ytdyjfb4#eJm+L=2NAEYX;VLMgnTm*!uWLwo6$-tYUX&@6P!d+fXjoi7))^<_RHx<|A>y+|N!N zeJt0P6cvyvA>7-a(D3l`61|_NgO8h@FIcOM+k>97Iq99-hR-01A#8Bf8~lL;Fu;d- zP3L1v4?Mb0Z?|_o9&f?H-@x&u5`$*CHhWTBH$M&|AeOSakIVxP>6I6te~R!0$TeZng`5Hq?f zwC1IB%<-1k?a{2Lm(ed6oaSw4e{C7+b;4wyE zG2XsWJixi$f8Ly=B0Vl$glig$M1~!DAiYUeqU?(EZJ%;+J+W>QFMXL zV4XYY1n-y*MpN9B;?2!8h;UAe07Z0&3Vq!=J4?3u6B4!2jE3;3wH6`<$dJ2Ud8pD{L*BuQg%^B5jp9(9E65v-Zr8Gp}6th19dl z&*YDq`s15?XqNkTHjjym9ci(rE{OBmfR3~g$)t?ihrgLWp?V_Q!%AwOpbW(vC`%q$ha6vc_Lg5a9s6u4l5^zf4n>4J}ot5qzJG zosXu8<6fVPK zybv;u?8~Ew`jC)*>=xJ$gXh3R`b1Dx=ByzkAWh3p69}qca(F-}4vtPxov2pHmAA~2kyTXtpKmBbCk8bowFO)o9= zLHzNO|3cC=nr8>O8I~{FWh~~Re=S_6H5jj?kzWBpR|!m%At=!-0*Y|Pm1mM?ZHt5K z?xx05X5~u87s?XGP*&9;!BUrX{s$s?-iZ;dd*Ww6sI$}C6IXVMlghr5MKxWkv;-72 zb%AQ)HKI((gd@t@D?(H4gAQ|2`EJ5EcLqc_A)*=Ek4`a+9I$(u1!ve&V1^rXl&@ET zB)zx=Hk9k&jfxUljsj9ruI%61ZVf{{B%O~^mJ*CCAE#CtBcvPdoG9b)3QiRe;mqPs z<*Y1CR9%3ntgwI{W%$+}nOlCq(8)W5;~ZnCc<&sWC6TXrW>b=1J#!cxSEI~^q+J9> z5sf?ScM2r<5Am1^)3(-zG|C#}I)IZWaK6e|nna={e(x^ci5e4;V*jEOLq`i3FD|Pc z(8xb+Q8+DNtXmU8A+AEMLd`hqU<`TT%Xs_mD^mYQ)!Fyc%?|;B^{`9fskOh-v`tOT zRGa(zqk)T6#nKU5{Q$4EzfIL8-73XPVaD~)r$;wON1FB{S>=v9vqshX(B$jW!9;9@ znpwqIIs4zVV(zRNRk0JUU`nFrj{B_suyg$j@KsfBdklZ{e+7aiNZ8 z+h0Bl7Y_W7mLY59IaSFK4uL?nA4i`q_H*s?R+XCYWrSN1@94O*)!-VU;ACt!Y5lZTNl@$cmORY zY*XJ)2L&g?*+cYIB4`~hbSxYy*LEjzE*p0ZyjL!LA z;}kgB#d}_VW z`2j2xR_3%%c-)3FaOo~~zQ36=epz=S$K#ojdR4+66*PGKvXYwXUJKBK!C7?8qHyq+ z@Gon9>-bkkqUrR!Y)s@3t|c4jG{OEf&`}g9D6wATf8p3SINh8*@O(|B#}=D@ znkAQ#jKT)90n`sDWjEbG3E1rAJi*2V_en=!#U+w=^y-PUMF*R~;Up z0f{f9$xjQK$*v(G{h=^6TJ+RGnbqx%oJLi7%zi>#nxOlT*M~r``RVG_bz#}zw4?SE z;c_U_@Q`LGOfhwtLSbZYK)#pnxQ=Rc-fcF+@5pvgGFJ_mZ9~EDQF3;|=)iAp*(&$A zE{VFLsY~E@Q5>G`qAmX%bk|N^byS%+sIhc!J;ta936_!F^}o&NL}YU(wz>x!AwGsJ z#hR^`__OT3tkxgu`|Q9X=4tWeTh88%Yph?V%CarjT)(RC2w}NO+Y(+{e&~ zs$SSbFh^{#jE|?$g(*;C4fuD5W#tR7&WDEoKMpM{tp96r1~b!tA`6FbI^v1jXme`h zTd`qMZp4?8%f-_FRa9rLW?x37z_k}sDHcW z=kETPSlIhI+ZbEb(eIP2aJ}i_g>>t4HADw`=)25xwcF|XS^fIVa;)HF&vraI@cy~X z3@p*?eFBn0(Z;D>*sfSzKjl3fkBY1%#OmVj@8qzRd9_ z(rpDo!GdLp3`4|IPosxTQGToT?%t@CyUGlPn??Z>E&g*k^>72RJRTWHcWBucg_N`j zW%pAV9WB={iZV+jscsngr=90e)g9vFge3D-F~jL=l96#}&mpJ{WSPNvndx6cL1Ilm-%xl|CGl@)5sHfC4`Gc*VjovUx} z!c#(zIO&T%++<+H1Z~k?wgvTs9Z`K4OPV=}Kn)`EERWyhLr#$06A2-UDRdsdLgKJ1 zMr@c&9*tG^zDPdow%nTyj`k=I?waLnK7?m#th9V{p2HJJDUGtk9;R!$ViE7mMWt3lBNM!DaD*wAppZQh;ih?ELQ!6Sytzm+SKsV2n=X;(wQI|gzm-qDhI2z{%t5*tiVSIi+x39vfO@oD;M znJFBQTl9c{*F>*yTmZ)oy;zM#{ajG2Tq?}fk^P#p=`p5vF8q;M24W#GBPK#H7$9MU zx@y>(MrSx@w9f_l4wtW=alOYOlo`}<-Is;*p*xO6e=Up#O>E_%wAESPBMaolY-*hwx;M<%EJoM@EA~|TeNGB-Hs4jt(ScXX8{d;4twGCwGK z{r(u{AQazc=+S&A#j$|({#_Qr#r?Y?=N~a59zTV+rcv7O+u2l%y-hBK+wEhPm6!uO zoa*s_bXY&&%A#}_Ql`=^GN~4G^>%>ip*UEv=ncMc&ba$-$W`lI?dPaK7y=(LuO=}O z@S6)#%6RWE6)0WNzK!|)I|-6?$7?r$GOho?bX3HS`<+Ah3&5#7KUwTA%t@{L&7yxRz;=j$aOcS6z zP7jyQ4z(ZziKU8gJH_?UMN9BD<~qk+D|PKA`C51U21 zw>`gj0hxv(JgxqDu*2;$GT4V>ZXnq6y~57~T);dcPQ7S%mGyeo+VtPgK89L2>fY19 z8*{wW)bR*pe~x+<@Oji_s|RO}m*P$yxQTMMf|o*LnItu<=NG4?gb{EQG({bb#s zSRc?&eMB>4l2ZNs1cj4l4G^_Rqp&NBZ#R1jhw)8VS;I)ww};)kLpYG)k}xe`?S+oz z2j*B05v3>{n}FDBW^9##9)ctopHoV~E6A}ynSd0cR@03&T><2biqTf!{T+auLx>Pn zV~X-r(w60uFlOQ*_`#`DO%w?~Swzp~&T^6m#E)7i&Du8Qy;QeG(*wk>HhR6IA0A7F z`_-iHV$@Slr#quMXiTIFF^k!%xYCWkdJjz+ePEar6@_2(NAvyUXd@I5UfYI#O*W$SHji0pv9*bdDxb35OJ0O(XGi^E<{#8 z(}7zq_}oR1&#wj()kTdd#J`tU2BV(wDOz=}5#~P1P10qgv|+Ss9qJugYTk9zt~2-aw{4mO<~o+%o_GlM z?V^Cq&AiJk<%s$kO{DJ9&*z+K&Thy_>g1YIscPq%BCMPz$7MN*wp2x&aJdmjL-0BotXTT*th0_aCwJmjKSZy=)bAa_=!O9AIDCA| zroJW#gqi|@ha}U>6jKAx@hWD@3Q+vsLe@rI7$3rL7M*pzCRGdb<5&#Y*Yy8#X4txplW=!~`%skhMv>68DU;*ev)TlB9lW1s{!D*8xVrVq|0MXHm=IN zPTSQtw<|I)gW=qLtyby1xgGX$@*fU`m2n7&NRfh?O%Cb-(fkN}lbTIrLX4ft5qvmh zqx&q>zwDjv(QN?v^X%}pfOIy8jWkac(-2lK?S-lJl$)BFwy-l9a&CT-Z1JC;)`)1zI5Ev_osqRv+|4GFjV3vqThb^X-RibK6` zA@8Gr&->LfLoJhjp@n4ux@!+(_t9w);Cd7VpFMSFfBS<M8(*uS~;wOs{Kz4 zJ5A`m*ksaZX{J;9N>=QZt5Cb86>t|a0A$E)kJ}1;NkMj$}n|+W!S@6qSj9QsQMcSjd=nNgir30X> z#Uo!RM(yxs9lt<}P*Q`SyOo%g9}1tD*6r;h_Y#n~h>F^LItD>2klFo}`t?Cv1V)~f zG(U3OcP_^Co4%PSmvgS`~Y0p{#k5(eeN*uiImtq2f7z_*^9kJ?1~*kt;-+|B%q~g8fpi zh71H{@y|ODXvIKGSa@5^_G3)DmcCFF+RjD5s`73Y$TX=|j}0V13?t!DCPz+f)-|Uo z-z8#=EGbThx5n#=gN?g_^h*QDOjqAdLyQ5WnBFK#exxv;v?H}i)$}cgW+pE8EEB+* z$5U{NZaYp}7@h`9ajhZjziituUYskzThKl~Bo)YWN?^g7Qi#fGye~}L89{COw%kr+ zkq0>978ePZ67vy4swOJsgI;lvebZuaC*~k@1JFgH4hO*{;S%vR6_$bT-s{E#s7$_W zY$b)DF;E_l&Q5M`HuPkP$J*^Dt3_u%#81R`V_ReCKCv~|lX>UFVBBSQ*GzXnpI$En z43-iiSI3jfV#6$6N$D*$kQ-cQlT=nP*jUd_!wCtjwGO4=Bkg;%m5u%7z}Z}_C3DgY zY>($h*n%?)?O~58B;z7tZwKUne+MzeO(fw=XuiU%o)-29>!6@}NQQdpb+_0hyHi^%m3dI-0ybS6moir$6xc%u0fZ1lJKqnKpm< zSCQLB(z$bt4d0IVgfk6xf62YjzW5hX8^-kIcdrt$OYxoqpf=6u{#9`kZxYDA)}i1N zxOhJk2;XFZ9gVAqYWRqHS&psUK*TnPvnc${1ThH=iOaOP?}ibSJK7g+NQN~pQ&etI z_TWPt{yY+Ct;|jCsPPA~r^yhXK9`J^=EyRBqE)EUGCsG~A~gnnC4{~<#q=zdX8 z9N_+!&uBp?-h}!JQ$c&j9Ud-J0y2)Wwf|%DVT3a;>d3bLkfR5Pa1E{}os9TY*E`+J z@>GFu^^WF+Sc>rQrcK14%bg;vM#~lT#M$3-thZnDGAiCOIYcpUFv%va2;@NL?t%%D z=#nZ$r~WF@Eo7BT<<;PFLg+~$LC1;{H;s`asLesmQ}`AxF=BF63*$OZqq<8F2e#dD zrmUXe>n-WrriuR59Ijr z9l!fi8OrmL_rWaQ`YrDJoY|pnTGl5A&#n-%rZUJ?M&A;q8LbZP0ct!Lp)^#68$5=_ zH*rqq-{pY!K23dHZ5A)@N|Clz%{~?>5v==g%>G;4oGv>TIO@DqOekY9WO8evgUcP< zJUdRc<#sGyGscG$r>i`PYg)x`<8Tbu&Ok=b4;Jc(l$BalERR9=zr7*xB{P#Op=`_b zrf+-1E?zsexJ<9%;P=Mda&MulsCK6wicDdQ9G4^FP!dr10MWt^J0s7Tw*V5`2aj|g z%07V94GM1786a8lI=w}Zf{P(Mz>x*kt6!5!iVVFHdR*GYEbtH2>Ij>hMc+zG8OKc!1%5#~??0lq?S3 zyrg=y1hwSvE!vJ_5i|@XM2iV$r3;!VdX|03Iq41u#nz}0oFUZXzZlO3XRlQb|&icur`5!yM#Qb zcGsyTi<7JUcH)UrB7G>_>FNtw10|2MC1XeIk`;Px8qF|v;bl&_AK)mxA}`3JBN=E$ za#l8iN-99YcXM_8-QKYre7tlTWjDpR+;#ts*EJ{-#k&1koDyan7L^0&2fu#r9^ZfD z^6zpqFE)Y!+lD*Bz%2s1fNW;d#+_=?+2_#94!lGzgnGI;Ab-G&7xlPa+>LJ9c>BxC zZfR$spZ<6$j@?4+u+5Jxgp9DbXSm?quDY+yaAPQxNZr01=Xgr0mS}<*UJ%VL+7f;? zC1cMsCxFTG$jHoy2BpN|VKQ>P8B2SuXY-Do58*P%GJbeL0k;seo_1nuj3xg@Kc@QlW*Ap4o=P4-60$o7DOA#p{tdS=w#ev zr{6%*fE~wytgE|sq1FNUb|k+zNY>n}?TiLD0EG9{Y0Q#)OL5wJ^doCJU{*iD9VUSG z^2H>7XVa1CkxP=teLmZ?&4s1-Y^R|2!>}2%2L}fFQ3OhDuwo>lH{HRRpPlOgG95G* z#E+O~Q=h-*pZe)6%8|LVF}Z0DU&kKMy)a}FVbh|c0!)rO1qFUene8$q>W(!# zTEZ*fd6IlWIYx2{T`Toa3^mh*wx<;JtO}<+dq>0Bsu=gY=H_WGI!k_youm-gx>fDW z_R$@&%?YVb*~Wq0w3*Sec+kOcVxtOb{3tnPYPTpRTiUzj5CQu9C6&W@A^X3QSkcEgn|V5%jBst>&NyHOu8ujoWm>JB)uqqG)NP z5UZ_Hi9+n!P7E9HAsuJBN}DGSvGM@8fx>|2(^qcY2aUA9&~2Uf{k(kOhf)1`odi*e zIQRDdE?McZ8zOh1)uQ)5dwddia5f%s;yzlMvmWevpr%Z6yU8BaZ|gHXC+d*Ijx?0L z9s0MZZ;AO+a(cEHZ?)&=Jeq}MS$nR;7Skt*9Be?fAKq7=pxy8EPX=zF;zX3K`W1c2 zhA0b%^}d1YXG+c(bsy&ZXcAzGUtF}o#A2bJoXQgDSdPmb^jh$YeF-52ZZxh%ypR`Zl4-Z(2Sc10G*z48ktPi3n7`gbs(E;QgOmhJ^nY=x_WgOWY0FUI>G?hZQx z87>DN-+@K*E+1+A#CJYmh@R!OU>$Y3HgDIxUW%J=#?WEU8|#SpddZ@UoI9>YE08Sc z%CYTyIAhn|&Acl0e`!ptz3-A!ic31LD4S<2^Yd_<@1HcI7V1v4R+W^2!(HNZwbyPd}!Y8o^9K`bb7i!AK`C*X#@e`(dd4E zncQG|(Whi8kAES@tLE+>p7*5i@-zl-H#WOgP0?0$EpQllf`2UL@LE5#_OH$OczqV! zI#U#ven!_kj+=~lW{Kjp^q1Ti>GbVHFUwj&Z*zM2H#jdhH?;kLA&SWygcB$7r0~i% zo4P40CO8jN3N?e~blh;?2(BOHkiZ;TBt~IFPor8WWm)b}w9Yg5oRlvFR6&7I*NggH zNqu8n!Pc9#Vf-jZisZ@RZ0xIJk~FgGo?{w#cjuuJ2R3j z%4#9p7NijY?g6YG5WUwE@a+5Hkk%xyYx=PQq9Svhgx;`Iag=dNP7lr9XVpA2^Hbng zPvQw)EXRM(TvR+Z?QO!J+)K<%>-%v@rG35yze|~1EO8+ChpbG}dp=*x1zx^NSn7~G z9HA&gx%!17kwE$g>B-hT4>_-0{}fD7tO*bE%2V>{*b^8k-ErR$Me_BkeL&I3btZj> zw;L6%zSAw?cwLN04PBvVJ2wtjq~~1{6!_Jd$aySePvQzvoypFy$!P_x46M+M0)T+1h>g`3^4H-J6cum3NFG4rf`3mwxn zSWMm+9ibtyiAa*aT)o^A&y+kLDB>%QC;h(ouRqMC$Agj1sr9C{hS*!BX2~vYWfj{> zYq!3}(4eX6_n!oqlm$m^-%&)F*uJ3L%QGC< zo?(W|g`jkR#7Vuk6gioZ{Y9oufij9Cp0!d0Uz|by6(Bpq^ZVIm0k36D^(BMrCJ*2V ztFV8NTMOa9K>@-|?Xd!M+>OY%0!1Qq5-&(T*y=fe+E64xF-WKQdEeO2gr<-3AvI4i z8MB}<$F^ZbwC7f3#w9}3Y#(9aZf#(F4n7}p^Ke%pOYLp|mVtcc;JfnJ2VJp*4sBT~ zb3rIAu6T6hXF;`lVR<0ya_pL)&&EKLTjX?;V7J-oVQeT~7Rh|>W@21JmlT~bO9Unw zrJmn%wA*qFolTxi_QDMOZR_qrrYV&WIrDH4bvIozqVb^hL5%k%zPuWqy`*^tEc|uG zU5S?#TDNY#!le6HWz{4g`0$Dy_9&CVSV=qd8!(?KzppQ1ti$bbI#M~FW|h>KBj&?$ z$;|9vD;C_X%&J#}dR%7YJcOJF*OX!~!f~OCM3OVDB!R-e5AHHt?;(leMf2(OnbgILz5|;AY_CrG(|Kj9gnQ@8;qP2t*Ol*$a;$ulc){h2SgOs)egMZ+dwOS&V2=Vp?P1Pp*8xBb(w0cp1 zr{{o@Z$0;9u1^skMry(bLa=Ru)2~=ETHiY*gQ}?`_V1QR?~;_%pC}FEL%HsBvQR1_ z4-#iC9rv@>$knz4I%4uOb3>C-%o(V);_cV>so;NT0Di!&?dX4Dtdn|;%8lEqvw8zl zpVR@;JbnG%tUHyOx1g2t$)_Kws9LYg5XxTe(bolrU1-ECFTrWr~ADu3a16oh)ZXTcgv?`^<}E~&r3c*7X97O zXOKn<70n+cdLc3^l2PrB=QAVfy10tt6qP||25_U%{p~+~gRk&(2~hySxhMvne80T z)RwhH!%NE+cwJH^*6Sve*82};cDBt>YL%f`<;J>n41oFTgmKf-c5nX*=$m0)DiCv}u3d zRi$DBQr7?_(zx}?jSyfaOlAhT>V{>BcPKXliKgwhZN{s8;2FLAQ;Z;MVsrMn&`bSg zk7Swj!rtcVx3IY}Xb3;&+FB9xnX0~lAoQH zy~yHjhc7Nz_SIb#>0#C@LkV;=-<3%|FF7aqv=$z=b7T&B7IcK!9T+xdfXwX-*o(}W zy)%Jrc}8tqssHJ*2i887#*ut=t)V(h5{(H%zgB=+;`?k)Vxx^{Od2-x`T zf%d#a&~D0#t26w`Ls+>?k=j{a30l|rP~Z+Df_@ExFQekE%}Ix7oj!)( zUmNu&&|K&HM4U)c@Jw>fbzpN$S9ETpQwc?lHwT|^?2AS=Wa^Q)>NZSZ%k^~?y^#`7 zkA>>V{^I#6%iLJAv9-ie-}5fheUv1#2d=ozhe&aAm#r$*97R^YQ@Fp@F%kkjWy*kq zOEQHFl=|F|RQ)G5#l^YDkOQmbeS< z>RQ#xjogM%e%n{Sx1$>_mJnD+3+azohLZW+cSLMF8bGE_fXcQdRYF;YwUb9 z$LDdOjL)mf*W=}k>ZOdiI9@0B=i4)D6n<#}k8sq?B>7&x}W zTaB*IP}?;A6yPt7gkLJGtwdUm#3>^(gBbDNHkMCM_ZQvp4rG9=w&y33K+IXmQ;*6$>vct!H z@=LsSBUH)G4I?C#zvM}1<(-0e7|+-oF|p(X5oJ0k(8K#V0v$2ldo)ojea?%yXPJ-o z`OBcJIZhO*MIR#=UdL4NjQKv_nS4_C9($aylQ&qpZFNm-P8YgH5XwiGqVFPq1$p|Z zF0}Rx0$E13m=)JkH2TeiPetnDpdNtb&!?WIar8O@T%L)VQ0ylbEpGWeW%o+<7 zIgli0&4)}y<Ws(r_*)>B z)__5eO<6mI`SXOXBZ?T;{RG+C!d43Uk-&0rY`-X!lNzeZbNT@j+&tRz$wBa7skl|+ z4AbgNPJKH^4yX8qIhtvIBg%;lBoEhT&~d8i3)2t_UJK(YjlhPkN6eG1u&&Wex4)V& zVZv{?mAAp7DasKm8Zm|PfCg_p8AJ|h$A~`-vr#w4KQ{IpBkMg`ux!?DEN?D`viI;= zGTjtn;RtN|=cHT$Y86fPggb@FVTrUNxK5Tp?b_1(xg%r8Wrk`v&_k$oVs^8Ct1ePR z;(Z6Om1^*}c0SL(VXCC0&o|^I5*t{HpWXxYOsXY2F51`_Zkio z9%}W6hV9&0h^tD+o`aA^L^nV6^y#S3v(9a`?0E=pxx34Wdfze3l3W4vKTE77nGkT+ zCbDAB{iHIK=_uMji&(VM5Un{Pl#_&eyd)dK*scB(C0rJG6Z$7AUPxr$186Cz1%BBTll_*1k=-3V=WxK%x-gHTy-aw^cByB0BGyYbK?Asx^2xCVw z@0blDC|~GY;;Zr2`|E*BxYj}W*tR{A9wy$ve1uvVbu^WSOlmw7XsA#kPe|6#GO#vH z3EScRqtqhY;AK;!6Snal+PY7^)Kq+!`k-cUnZ0eR%c^>Kw3m4EHhsh)v*H8iGNj%H zvrFLf8IIp7da58D$Ca|FK2C3kU{nrZ=QT0bYhI1VKH|0@@CTqoat^7P096-Eur}vX zZ7RQs3YmCn>$JNz|EFR`zdOi-H6CXzwghA4+Mf?Qo#Q?M8XvSAqukgjGeOeo3=<(L zOc;%Zv{MQ2D@jCT*D`9n@gn_bPg1ji#1E-C5dB?`=y&1#FH8DniA~3~3uMPN z>c}labcbIqK#tsE{jU5a;SsX@bmZOWp98 z(VsvKXCx8?_HKc{sM+#ngexNRL3v+1EGiBJN6L05NV@no{Ld}>n#yl+L4k)4AGaA8 zUs2ZnfD|g%)8n8qPVZIgwJd(Jd0*dKMOQ z_Q*5BD%)`)u!G9&Ua9$ufYjmh)Gh0x@Hwktk>pd#7i_rUn8^VJbjYl1nI-OBU! zs5!J%5C9mifPD#;i@NlVG*N#^7`FUsHbBfM_nkK2uXLMh3GI9~?z z(C{kCnW^xzZYZgQ8Z5J4zbK2=;DR6=JHJQeUgD6E48IBx8p>ge#DMexLW0wy{eB$| z=UYs#0_0M@@1p2L(Ft0WcsQ^=sBh@RR&)R+SWmJk+s}O|B$G&0u$YaeWw@1{rvb|g zN(F*hV)mcy{Ir~zEiByh*Hod=Lf$NNe-^+^Q}3!8JPWs@ke zR2IEJnb~a2>XD_{4U^Wm8`M2{P#*tqH%oUx*0oCx8VXSM2HtGVnAGjI{nahU)9Zvq zJZ1CLu)l!Ig#JyET+dh06l~2b%(anh@q$7e70IclXj%4zd=lc_d`;%#98?g7s__IYlXmPlR1uvT;d9 z%*As|isIbDsfyV!zCEv&t;KSw}}`VmQJ~VZ5L6V8|JXI|i`N zHGct$xb&ZEe-Tk#^{#-!FK+zvv28dY!-=8;Q-NT`!inVDP!kpCQ+E9wT2Ax6rq2BE zOW)&M!ug%AH?4g|4dvL~^MUORManb&aKNUFL(uTdXO|b<3Bd`Ul?_O_<=27yf-=uo zFl-h7Tk^)s5)4Cw;hJ2q+Rnj5YEoWyxM}zHy8>a*-Nl=KE)$|(T)4?t3dpAC zyp9MhC>>@IRS>7?Cy$hr%_sukB_W8);9q#~jiJJcq+i`j|BxNQh%J|R%xKX{@+dC& z*L#jXaGh0!Dpc-G7lbMxDlPj3=F1^Az*$ODEWlby11|`Tg(_ezsbS+=_4?MYvqu&a zS4Jgdov2t!q?69<$O+nz%6e@eWrjj%p9x)N6p!>xwIW@FjDkm~)#)u<;X>PS1LBr& z1(o`a3%9hb;V)jY5_V>NMrT&>e4-VZY{G!NNL2dV%&MDDOVWoq)1E7$beT{clsu_@Rj2U}w0m9gWp$;P3%Hi4pZ7V-K@V$eUJlJ3Vd zb4Ms&vCKp%-Lc&lfJrU8E2t>@f zh`U5^pO_H;rp3cF zysoZLA0pi z*QA32ppL)%_eSlFgBtwzLLXJxD2-n^ag&wkNJyOUqFWNI3x55E#49j*#!I5T$X>*@ z+p+2(TNzHNmpJkosPN`J))N-oj%XU#oE(Abd-kUAaKEcmDM1@C&Fj6MU_%rFZr?dl^MIRnb%}x@-tMyXNW2?d-w6_64xK3vyl;23V_n z3%lCyJ}TB+yvA!5I}dQ^>#;t$Mg~Jr9+|OySqt;K<$_j4x!}%43ci&O)Vn*8sbF$M zR{Eci%ZS1F@1X-CBC`vH{(63Qsl5B&LC#lTh(L6hwR(xa0aw41fE}`!pyr4F8hI z(n)U_0pvmOhM!8vHp1D>!o=0Q1^Fby%pjh03=C|L`I#`3TGNKH&A;m?tHF5vHq#G*A>^ePSs95fL?T=^At%3Yfrx~vAVS4p{-!Jm2D4#{D?qpY zEy~9dD?I;8j2y~+ge%*x0Mg&PGv`b-DN=0>bIH3>8;k^1;IbZM{85;NPjJ2fG{+EU z=GHZhXiCH_^xJJEAT2TA*Q^jy`0pwGDt2C~ToD$j;YhJ3vM4}f2}~#qJ6HaSy8wzv zsGQVj-D)Vrimga)>`6$FQ26Ml%jf}eqOO=oR*PgY8zx+W%2kaMgJWbzW@HxCAQE9* z6`yTO79nQQ-}zAsuDp9H8p+}I%V9+)uU-QewU`W?6Qn%>QM_0o`#q4T8D}DZ#gW>@ z2s~$@Sk=C?xK(WryO5st?0O!doKPLnA}$)Rh^)?#>3IBuQU};^1LW0&DfK;C8_sRmgf-B4}qECIQN_ox)`exF+k8}>b%2eT%iP*W@?7?94ilnFVm zuA)2YY_?2J&=$C+Eqb|EIQ5Ge$5G6_< zD?RB~p?TnjU3B%|0HZ4mxESUe&_4k##(}ZFAz=~frBa!L=j9l=Z0}(IZsJUEJb6uy zdU^$6F)D(drYA<_^S7+%N7G#xN_Wb~7-6^nF)1EBxNsFq%OV=eAFRsd4C{?fyJ-}q zfMEY4F9<6h+HZG&gccn_rGkbYIO;eJ7w>oVskLPE@+jRrQ$&5?!k(Z|d`rVdW?Ni} zq?N7c2MDW|o)li)6ZzS=!Sv%AU!)%qrU~-^%ov@VoO4V$3VY0)qQj1_rD80Yri^N> zqrxbf85<*I@s7zr%PXS@KU*Q<=3zyAfMK<$5VOPU`cC|M`%J=hD-YRDIAYN8Ub-RK z=6_^y@36p5YLdjFTwED7&!Aqk%hPe`^+lVto9?k%lM-9o!Q?k~Sp@@`z4Y(tf@#br zQ}T-@eDate(xYi>LCG>yEx3nN;gI*dB6AP+8}UAZcHVOdPbWbye0!xj<$7*rZORrXs@`I% zqd}r+BSlZ{*ixeN5qYj|O4ZN4i{ed!D?_Sv&;Xv~}vdCZCpH)1DF; zwtx-|Y*JHA2zk4bOh1>cJhjG4NF%97!#BkDRb1Rkd6T(+<%hc@u8`^Te8?MoTF$3$ z8j_2IfSBRxXCZUig2fv-ZLV`Y@pu#Zx_fJk+QfDZ}>^h8G=AKMSiS@@_k9x-Bs;XT@f^|BKj|7Bg8`8I_%$ zwMVta;zyECljP#7L8k^8f%$@!a30Iw6QKSKIcu1yN#Pa2Oy42B{M^;u*7bf(;`zwP z&S~>Q8rbzQKYIqj%IrJ}`sV()KfJE`tEKl+a6YM^oVr5<@V}+-boONu&6SPQWO|5c zv|c;^1tPRyxPxE@iQ$$3dpGlq<1LA*TfB(qs+4Dy_ki?c1xDQhs!p2$d#Jc;wOtBd zq~I=hAUUa+d^4nkj~ZuxyQI{kxS)zZDPG+i zIFk@1m`$$4jTs*v5*J%e5#Nx&leRn0XjaiWT)MG8=vJW3-k!da?eRn${nBHGSa#40 z$(zUY!O1d&wPWsl>H%D<-hWfQyp(i%=nOZvX=xS@XyfvU;TP18wMK4Ll zLUNRn5gqwS^xdNVY|-RFI?G1HOkl@-EbFZ~=BNDvm=z0Zfo8Qdd#(yD*`hqSanxM# z%9SuybHC5CzJ#MyDP^W$Z!mz#KP-#pp59-m#8WU)G0qU)wYWAGe7qv6kt8Lz!1D~} zexN*xYf#!MXQKuzNl@iA3FB&fSCPv%k6dYq>Mwgr)`@SJ(JWgRe7uFh0yrQGDnqbw zQe=%D3Zrx@d0OtnsE|JEEW8j~6HjPy5?PGH*v+I!_Xs2DHSG2iC1N(zU}xKgx6l&K zPf<$_kj*wEh$m88<_8;YszOXSSyK|Fs4(+puS14ygXt_0A4$WCuO;O+7uVQLj;fH4 z-1haI85=ViZBBd1qBjy+d!20HH`(-!UtqXY)W(a}9}QJ(7xJbd^;`4q11nq{G9t0N zyDjtAuI>_%Kwfd+N5T$v?L1i=F59)cwVV0c-(6OL>}RMs+q7BuI?sz|L7YNT$7_Hi z*6bBSowPcJg4Y(VuvuG--e00J?7wsDQePdhSoPsLHfcx-siDwSX-Uoq$Ht0w@7A{SK!oo zH9mFvQ67EzD$-0__Zqpd>(7ckydzO~U%A>5WvvtV=TK1@PySv!cHxe*yw+=D8BF7% z=N$uhUUau|82lUcYW5ELtxchtnh>4l8H=N0L$_U{ak#X{SDKY&cHNEJium9XibPIB z-7Isy*)rURQJx^s0oShEb%f{>=srciI1y>`jNcYH|Ignup<~2!+!dZ4GjWvV{OYUI zJ@@r>E_vJ%Z0cFU)lrb*->a;rU45yj6cObNZIx4@o-cD{0O+n0%tL{rVK*n&;tXXI zF&lzX3Z*Z88{t=s==U>Ua#zxkJ z;Nn4fiGY}-yPal`jyZIU*w50&rjsk2^=z6zrF)P;Y?`C{^TThf@vX`KO560z|6|%_ zWMgLjue1%&mQ28Df$P4mIoY@vm?wUbQPNz^0+f!EQqE015gaCF3MP*4$9{YOS=EQY zJ#mf2Q7K2c4C#Xq1Nrwtu#lAKlCpPs{CmB*+0pF4k^}~>zNii)e+1zIx?JIqSIuq~O$VQfQccFzwF~DHG%E zOK1DU=JbA^`SCQ~ru2~c{jg-)37tPY(|rK)Cx5EazIeFJ3W8LZ`r}m2V&Hr-@OWep zt{L}%w$wf-FsfibmB!!S8BGT3ibCOpU*RCjM{SItETFk$kzFI z`B&}6P@CwGe-)0I(RM!Rci1b|(>G{)>y*#qHJ2P>kx~;&JUg@*C|b<;?4GDkvkXF%R1J{HECfR6J3obiSs^AF?h>+!8Yx}?q9+(R`GZJ z;qg>4+2PAfXeyG!VaSvkT{0uQrtihEdfecBIqdT0T;}cm;7;Z+qZVPpF-gYIkVJSQ^aberhZ|Dk9+CoppCmHqt0rrU%F(KoymuP1r zdg2Jpr+Cj^9>;%I&k#C$IGzLKXjM32mdk+qenD`?ZpD91Nc#0zODe=#tkgb}Rx3h;DD}`Vv9$k39&2|;$o@S!! zQ=ZmN&v_7LP>0s{uFt!_=(V59PkBP(mm_#IA<#zHBH^!aa=E8*L2CcfKzVP6I48T% z5i^KJQo`tatT6^#3<_hgVa!aT`?e9^)DxjW>%}%-c+*udvl_P{`D@e5xe)J=0 zR;6f{)F|tB|A-g??6Un**bY4Ah(MfoO(|O4yd3O--464<5r@^j5%}e5rJ5&7&(v)C zhUcJMA@*|22Murj4sB~t`xU6*z?{9jK=qTL655Gm49K0rHH?O$QbgPm^s_>{Y z^fP5E$1m&V)z$RLyRHzoO|%5U3YyP*3;Wf(kBqnTdZzJTlU3$G#-UA$qe6L7MD(M3 z>rRFu7D#F7%_wDt`Aoju*{kmvpszMnoJ{Mb5;>p)Xs*TPQ*)u_)k8(A7sv_kvvFl) zya~s)xmT(<5)GN?vSkPwSt?7{h4)Z!@t~H*9$ zD3V}&-v5VcSnXKaJ$bJny7=zxzNZ;Lpo*~Q!o`aUU!LDBOt6*JXfCHg21~Pwn8$|@ z+0-^I-PQ4#1FV=toK~H?I%JY{zuKYOia zl>!k#UQS0tMI&+i!eV+VXxNcx=Ma5Vs&5qc+o}H`C$FDD8NFYyBXa;XD=Jht!}@a^ zIllBN+1ev&x5CfarDK(iY5B_Fo!Mv&K5Cu~MFsQ9WPetxBjU2n3cJ8SD)?Hnvp*=) zzfW@B_#7Ce)tG#2`ReSi+n-IHtr3CUe>!C;~U7*el^uWN` z!%g{HmGbTd^|+beMa%;P zz?SO>jtaIeA&7Zprn*vV0ZVX-y)!IRw9Qc=$nou)&XGj^BPKTtAjiQSzC%W75`p~8P`R3(MMnxCnPJq)f zNvfj~ImtNmmCXu+kz;X>Pi9w$nc8bBGWY&`A8wfFR{Le7MYonZy72yqOo1MF86_X@ z4ycf~kfA@UTisC!NlDFvM@A*#3Ma&6fo{Ek)Oa=D^De|eYW=<8T`!El*jwPM285owucHGaQK+_Iin*j6$e*>X&k z#xVW2PWft^opU_{CRMxr1bNDyO7+4;1qBhH@L+-A8AM1n&AZG3Ki5--h7;(+^5i>P zt~(F$yFuVJvVdKCzwHvEYPhjz*9k3u8877W8hp;Md=EriFDSyc1s?2_6I1usLI^GF z!n-d)oiW553wB8VgSM3q3|*H9zA3$XD`+vR3e?S2HVms^TO`V;j2Je^OyV+g9-ph9 zpZpcS*nI|gqyYj;zQ5hHV>mY(%Rl}{QW1O9XzSU%EK8&IbAc5|BD_+P2=E|m%9c`| zO70yrFB!>YKP#t?63qS08x{8)LQo8|j?}r_-_ea=vwzHFF->7|vu3-~oDsBy>MEH* ztn>JcK$sKg8F+@L^MgllR?k$D4a2dV{){3p{iWuYYaAR}gGf7^f<7rcMs8Y@06k@^ zE^|;`bIIwLAdW1!Aj2@DZJ+4K1q*CbJ37i*T8PP^hT$nvyeM%H?6g?KN zX@g@!&jsos;w<|SCDQDqM=>8VTHK z8KWed$OXO%Qe)SdJ?;eC*$GWY2}ob=J@PCIhSoUjw(WtIzPdO20Zb?|Q%^Q(;sw>> zRvdxs5Qnl;$#*5UUlQZ)$~Z_m=ihTZ&?*|-H;`vZ2c1s6`uw$RNWfdkkvHYUS=Tq|V==Vy&aAb(6O`#gE#%in39GSrwu@@-sy1Iyz!a^AFpI} zj}pQ#Fit-=3B*LLojEr<;p0!EDo7Mgr@&9Fp#WcyB*h-O0XY$k3m07R0xhc@hzV6m zyL=_e=d&GE1*`YOL_B$g4=y?MPii}~yB2U}9Cc_%_P}iGcHBKElXDv6VKNj`bwA)V z`auQ}MfJX&$si?M|0QP~EkruB3^{sFlF{YWPr9LZ*b35Z^D5LzjhBh)rn%>G&O?eV zV6M&gJQ5(HJ|zQaAWj5{tnV++7v5J}eK`4muhf=t&TF<~89A#C=dU^~h<8ixJM%zE zKHC&J)_b_H{L{?gut2hVyrnmOze&=$*H*@MwVL&BP`D4lJ$To-L)vlz1H2`diCPcj z3J$?P6CA#(UAgwAXjy`OW7hEv+l$va`h9QJ3@wNwuSV`snUxr{lA49^5VYp5n6FRVQtgZ7Kq{+u9xe#+|6M}x@d(T8`D*4FFYO*8IHN5FDBgmas!!BsPjkU!=6 zoAv4aDp_%EN9qD551De`e#{Z_Rme0zAj?F6qz^~;>t8mE@!Y`GfnCtuUQ^sof_vq) z#WYn6L=j=0FXp4<$HYxBf`AlFA=exrcgdm)ZIV{RGNs8ZqS?oN0Q4WI7iNUjr z!Lp`bVbzZQy9oNd{Fq$@zmDUZq}B+GBHektKOJ5kl9rb(uacJcL{<)rqmk6%zrgb* z;+WmpQ>s?neJG!GdHA%fE*9o$bKOVe(+~7}zK|>!edEv}B|{9b81Zj|p!!SC20O0L z9@Kln;=7pWaC<)8UrvDY-W}8NeP_py4}X1g%1n&U`$2Yb88hkjcY42I@V%T7^!j`c zw(7?W#C>Mri{8FG6n$i7M@|d#ef+q~<*3fN|H4o^^U!&@*xP&G+e?e&0OpHmO>7#O zTS~{|$7ckMrH--7XKKv&k{x1Eo|~U}d$!{rhoCyx*{`YV`Zu~EqRznAZ5+i|fk|XZ zVKX9zW+U?+)tNnocIE9;CLwBGcehlrI|%PRTw>Av6|~rt!tay8$b)^Q8u@gK$yA;W zEz9W0Vp<~HcQIbSzA#6Q8e@|xDki;rMErHlw(J7S2vG<_VGDuB5){5E;PM-Gwp3uV zy81Vpr>+WLd&aiTW+FR?R!w6;P_;aq5!27!m*8gg<&`fi64*zx;A=Lg$ip}xwvr1W z#<5L6o2I6)GyZQZgt@{^-ZP-~GiUy8;HT3i`e)&2h~F`&N+Kabq6aXfgh-!uOna5_ zw*KjJ5hsfa5-@S7d>?q)=cXlWXOMM-MN(Mov#WnT zaj@*GHn3{uvcMjj^UG)$o7DH2)@dBbk)ItW?~ENHuZ+U0YeVor-NTb>4&fUg2EThh zw{&Kcx6AfRyMCOK%CoO9DH~*<#uI`L-jUm6V#Jekp92Lzu$FLt2a1pG6+XB9_G*-D zN7zl~5u6*7OgDRL=P!hiNs=^e(IByqAJWP4UPKeyjDIT5FO0?A&u@lo-YQbh1CP)j z5N5>o?{CVH>lKDDV4zVLZxE$GG8$P>XTU8?XxEsP%fRJS2>^h`umzqRIdJE7uW-Bi z3WwW#{eg8+2nUA?{{7E8rP%5eLl~R(J6?79y0V#uvx>n7A7*F@M(D#??x_aFkyma8 zs5zsSJ-A(ak)PFiMXpTI>RZWI&_ReSfT35XEim&;PLhhH8VYJ;y)8+N(` z`Y(=+H|(Na*Ebb8>{PaiVn0_(!A3-1VYcYjO)xp*Tk-8~M+mtAvwI&&)yADpRYi3S zwF}#gv6udt>7TbN$ff<`LXC<}-szB5{Zgf^oiab1`ka#!kkjK=H;yDM1zG|ATB=!P zR@-~lu`DQV(r3h5i9fti%^S@c*Z*S8$MxxGqnxYBsIiNF!7_gm6g5%&6 zwoBru_Hbn9#@3r@Gxas_wT3W?zWgW-iq?(z_JVd6r=Qis(CP0< z?cL#@o*9laGp&&jC~hDlQ{ITj-{J24@A-l_^1EgTe=ahI2Tit-$XzB|7M`z%H!|ZLySkCu_?k6?+4Bm zDbJkRfaGV;(9}!1wCB&$dp_a+y~tPbJztTLfJg5}T3gqQ2R;1_q;SPy-#s7bOYQv^ ztzd8RGZwmHw3r0ycMBqEgbJme{=p@@hYGD8bNJvJxZ=?&v>Y;z>}ruZGB5A}lqRY& zU52RQ*;i(=Z9sZTL`B)%0dfUc8zjGi3uB(bbj%_+4E8i(9xDaBLvX*R!f%i;irW=3 zOdbhs1jR&^*6}Cw!g^#piaRrwaV1Kg<*GwBch1t7BIZ(xoKyW!7Gj^$>~F`JtI)n9 zh6FJ*Q^c~xeU%v2%`FX0F!PkC(jskSGXc&WhXGh*rr^Ws14L3eMdRxz%Lzg$on%+@ zFFc%?Ky%YFSGXXG@$XsTwS>TeXr_|ID=p;ja?4b1MOd6d1Y^QnN67nm@)G4P%j?$c ztN@tDoc6dg3n51dyVHW5UyRzpsN(l5;-{`Gh>F2n3F;9+dD)vL4<1-_F;3qp~BF zv6RH+DpPvYmblq9dtZrg)}m$cSPCnwuWhu5=rVIt`Rw%u?9NC8*gAvw|0>vLzo6}L zJiwn-(!kfD0M_+U2sZSc`*I0Gh=*<);QO~sAGh;U&Vogc>oeZ zXPJtsM%L-^*)Yf*+-C#ckaE(=u(Q|I>}Q4ikrP#h>TbqX;Oq2sEoiKU8>Bs_`pCyk5_E%`#f)d6 z0cABhv@A9ob9}~CksB{9uMj-`9kw&GLV?s?*2o38HtYHn7xsA*4RraS7npcikk%Wz z)va2@wllfwPvO8QQ3fUT4`voA$v&n$+^Lu4a~Y|`r?If7HJz);PPOZ0Hc#5yq_wfs z0)G!o|G9jw9G+5N9>b$kn08*#8_CWESB{pQL(N=4CxY?N!$lkt=q&VYA$kkb`HiXQ zfOU2JU6=Xmtm(UJfc^cfVLEGG`5p%Tl4MlMrTSSpY-{rNK& z`yd9+Hze(rGs5xQ9xplwC^40O)yjf$3e<^^JPKul290N_U>(xHQ(ZM)p2q>`5Qvv*-Bky4j0Bzt*(vc z1j}nK_z&k{?i4~QqH;&l4Hq%krrzK2S-r%0qfcWIj{ve5GaW&20JIOQGA3^vR1tb zKr5p7zlWiKn>+cD?hv~1f0YiulIE>9Wu(a49rP3CZR&6i7w;TIYEO87ntB)KIK6Pm zotkCvI=7-6yEA#2YB1V%Qh8&OJftWd3KGX8IX67)9cm#LRP+H8g6+A2J+3ShPP|cJ zIX5ulP979DG`Mxv9RsR@Aav6=&0%hf5CE1}jf9-a9SwE^enuvze874rq`FJMuPjP=*mobj|I?|R; zwY0KIl6LsiCE;8o3a|HT5K5UfL(StvDmekeH`KZI3;gjkXqA1N3N@D^y23 zt>^hIk-BU0mG1#*ah3y`7b&o|%<^tp?NUBYD!t3W#+dA;-ly(9Owpii3ytd2Iq$IevMHy$;=PX-1Jl*}pKt3O>TnY*Dzgx9$Ls?mJ_Qm{ z|KO_dTkFuDTQRjZce+Y7%j)@>Lgq^^NcPVF;X9Rjii@%uwO z8TNEA^)NuX-n#TJNR`Jxd!5QiHsFkVNnwx#IwjBs|CI2f0QppdY`;XL zgA0f4feI3Obs8gPZ-cx*m=hlMrGNJsD~oShn=B0U<9desP|x*@IsGKyk+;t|bRDJ#-~$ zK%NE;nIu3D*IOgL&K6`|X9E@U3-Gs0>kmJCg__h!#5&ucdah0$>iF&k0=asIix$%* z6P!BJzyL0Gc>6*qPaTR?o0^rO~ zC2;b@BaMzEHN!(-6MBdeLwLqCqHTor$~V5OFb*hTVBf>+X#_VHxhjjGp1>+(d!&WO-fQ2yx@`gU9w=&F%I{4t9`ic57MeDA5Zm zQ%IFvXy>10-)FU&r81@1u*c{qZV;8?=lY`wVyEXDEn-x^Q@9?_%>-d&&q8%}5|&7W zST;Lz1thp9WesAZ%{KEh+umd5p%>YY!TrCK>;GZ+@qa@eFtf7%XC>w^?nEqc>m8r|9DhEW zrZ?yaVQMqe?gp6`vo{0oDyK;h2j}6lGD*}=cf2$+a)ljXp+QJwg&A?OORO(v0PGRrO}5t8L4%ytR4E9YajVJ z)?+{ZiJQcULriZ=Kw3S4aax^`m2Khf(+}a3s1P&ZG2Mlt8{+y1;Tnq&?jU82eoKq6 z5Jx~6KZVC@{YDE_E}$0)iIpb1j9y}%H#b*ZMiKNS}8eoV+%!#K` zbq20RSO1pcr3OM!#3LwE48?K_5>Ec%LkDImwy<;GJlKl+vh&D!-Epv4B@jCfBHeL_ zkS7rPHd&PcetRJgNolz2ZOoT<2?n}bF{WV>2#;3<@3%$3-e<8{yr7U^&yGzdo)E1goXQ>U40FNFxQ z{$SQ37)(OfqpJ%n`K94;xIkZFlW08}Nz%exq>LDVEQ5xfZ!!L|Xdo!)aN$M@h()7U zpR0sItGNIVYCuzH@a&yQk@uR3@m<=yf z%-rLj3so960Y7&p>kTV+rc}8Q&fvA`9_=Ga5vf(YUOg(z#*#Qj zl$e~Vy63q|n!JQy1em+~oy)ERM4A+mu*sXQ3xx0pPdPy9B)3eGubsX&Lhq~KixbYW z=0vR?c*yThKxFgOdk3(8ARD-_)@i7nLNti`qabyY7Gf*6@y9|rGDx^SQSuqaY`-mX zck~xLx29X_%gw<(bZL{vtDG7Q)=VfHbzL;SEJ{IQn)+rNC~M~wOIInQT+&1KeYK-& zG&QQ$4#s8BEJ7=YLsQFz=Ez%sq&2x!Wnz6wJg7t%;ds}a?ha^0RIjAN_-7(W%x)^U zBXC>a5=FLATdteq7QD{x1xXdXa+6bnB;{Ihm(>N-emFh?^{S_fg*%df!7b@FOVwb( zQjb`NCK8(os^%HY%mkY+Lxzr#@_Z?TlENbm>I{k%pEf`PTx3FdL!jUd#|9DT=$Ma@ zDIcazAbwl0QA=%Y0e7--{83q$X?=1R*3gi;XenW4u(DfDgfYdLKk*=F6~m&78;(7~ zU#+(@*j8ffB6%c(x2ubZJe28o2dSi@2$*e|@2vUT>V3b2B&~7x?EpgvTS%qH`>o#Z zmrwfMPbxF-%U%b|LYueDZxKrd^kLbTlgB~@vuqZK+USv2j@!7iqvx|D=HE}d&OAuZ zT9P^YkP&hxXW>}(xE0a4LCDpY8M?K*H~iEEp}E1=|YQUu?p6AYQKy z$R!ST8ZIf8q&QO0%Qr7kOLaPfIyVu5TYP(*vN~tCk6qFg>SH|oS0HcxI6py}Jj0zv zAqiQA$oQ(RLOEZlFPJn}G{Nr0jQZ;wL4=|jLPTp}CL^0}X+DE&fK%*wLhv8@z+9Mj!_&jWo<6uAAq!ep>yy%NsQ)`@77I<+VE9KZsWn|wwz zT?AvK=XksdjR|6btHHb$ME1gLJAE3^+D2v(9*AB^ET~9jNO^@}LFr*=_L-h6XUHpJ z1UO80W+;7#!ci_mOyz5mAZCa0(Q2ZVDkS--5PVR2HL%0)tf%V-D7lB*AcbZP z%spDjf=r$?99JN0BT`i-k&R<~uY=HTHEgGmS=^Nouam`@W1%mVy?=b`1&*^ER zZYdoOA}!Mmtzsq9`G=F!$^UL1Bs}B9RGl8j?y1k;coP=sX)RZlLDJiTpmDXXCn9oa z*)1Z(-^SPAX{S6i`u#3!z)ua1cNga=mRe{Ez!aL2sjmc`k73j9tupc)CAuxaBYCAf zB5QX{=602@Z6kSAJmkP?bux(M|E(FH#g31rl^xzM*07CfKscX5ttstnx9av#?kPaB zhKcEFw4N$pN}bV8+^jO|++SXzv)@Z;OY@f2pF?Xq<#AxDF}Y5@gISp6TMF9n95n{k zN=o#y4e1c|m9TNIH&9 z4v&RlfUR0qqx*M_wuN94rMeevIYh2~IUga>B=SWXhg|i6pB3KP^E(<_Gz9>p^Ws90 zHyaXp+(lM1>J5yY&{q<#@h1gB)>B-XL}uZXabs+L7rM;MMT+X+q=byJ9DY>sPvc6% z>H>8JJvs|Vfl8pRTi{k79_BxV!1CD$Y=WLUD^pCgbsDXVuM!wDH@@Ne$EO126|$hW zNj~QeOu%zB3viW^@NZCsTBG)Bj9UBYt);kHlj^diQQjW53iqSS5Jr`MT-DeMZlR;M zqft{3k-mC=^;a0Lc`e!={TEiWW3H;m7fZ0TakYNf|-{moobQ z>V+-l*w+gwRZ`B};jjScDz-(7+;Y(n55vFlkpG6gsxV$?S@q&e9b=5tF9Gb~n*U5f zYCxJN1TMDZi9fp*yH7RZRBn<=#3je`1*NV8ec+kl>)#NkwzP?TDM-5x$x}8Z_I%jT zddEWV?2A#~3ZV~UsMlCj<3kKubQ#Llh1xMaQ38cEtBsIhNWtnq5P?GW!t!{s*l^yW zLPj9-oXAId+9pP3RH!8icM8)aE^ZNNP{uhVZrrAvuUbOa*GhFJNUpa(W>>lEjDaa- zHy_)hV|XR$(TaAc^w*~>mht&8b3%l*=Qdv?Z6UXv8BaM}Z2k5$)EhH)dchpW%lh-n zcA`FD&A_=k$XC_4SIp}YtMT`3S;0ur618@%eHBmPWOoMFwp=L-M2I4aHdn1Vk)|Hv zlJ9n1gVg#X@^BTkpL}ev9)934gGL#*qV$PhoN_b_msRU9+t(LrNQVI&1oM~hwR{NY zQ%wt06@MtTdIf}dH)S2#3Q0XTAets9Xmd#=Nrb;VeLFXLilqC%zwrqTFb1YbsHP zIciPlFP2`~0iP6dhg(XaGhT>4m|kxe9{_ccgcv?%hWS#&OrzHw=qdx^h3 z1)MgFa1Cv>!%HNIm(a_{SJrIQw;yiNukeoRDKIzU?vCp>uY0;v*{SsAjTx>}6Z7*E z-RrCC3xsO878Rug=QodHAlD2=?DeGo1{kSB%NT|0FQFSqnl3g>(vAHI1eJE+J90$J z<)M8_KsFuN>3Yu3ovn_eK#9*pEDfkh9RROe0+}4Fgy(Wqq|^&zZ!^`(ttn~G_PNB>y@awD3azqO#=->s4SzxKxUHl)A=C*A z${YxCe`k&)`vlX%wXS(FF>WF^~NWn=`{y1v&uHf+qw2$|j+#X_%*Z7Y2~(YZJBT z{Wc^VdLo|%4tG`l4Am|Vn3EVx5jZ@6t<=bp<_{jWx|T&s$(&Dcf54KwSS!_ku}UeCohq4w&`H={_*COCG`qCsRoRqdaO_wLuy zq82plmUnuuulosBkQ35ia1NiJ&zsGF13?)}dSB$`x1Vwc4a+C7EOrPZ_)dSO1TydE z?Tvo#$JxV9a^J?6v~ZI3!pcV(XhFA=?c2#?F+7!sCahWQynEMAV0$+4_*n6Sj&?}7 z-7*)wW2ZR!Jiub!cQ@5j3m(?^5-+J3NY%UA$?H9aMjc-1JSv9Q3i(d$v6*WX^?~$+ zG#x}+fFRXT!4x(ROb#nf%3aa(9YOa|zveqj92~Fet z04ws!^Q@Jb5I(ZG2aHu@?O*qg5y^QBLDh1Vmo8P*F)Mh(jyHdf9&j92hpb!hF1EQ%<)EKnLdTZG^e8~M~Bvh(pFvv#b zBbGm9k;;ql%EbxE0|$kQ_rr^v$d~XS85fiJu-7F-@zOOy5i-*nkOM5(&YOpPiEOPqrfM?2Q9NZ)Ol^5l)M(rvlD zBcsk4O_nv%6ed}MiR~lUo%5#}tn1a@>Me*E)>d84ceM@U{Aaz)=x9ZF0O(w~rMYOj z#p&jDm{R(U6G1zxbZ)DMu(s4P96#*uII}`TjQiarHpHE`#NHvS~nTR3p%z@pMw>#%gTCv{!BE zn&4QF<~M0iVp_=#qw{9~?xMwUhxhU;pG2o2<4n-Da=v1A=~D_mE(YC)?`#S{3SZMT zbG(u?W-eA|gz*|Lv17beweBecJVFLVo9%M<1;hmNjkY^z&cg(s*KV~tWxoRTiPb{ncoz>-2S-%R@I=3c_+FV__e}|LE0(5&e}kgZuTW-~TJn ze?Tm$H~&S$WB5cgZLCyP5B`^FrG>~7)`y8H5}PcW4^e_eAxDjKS!jrDgDBKSk3Ys7 zdb_oYOA-~GHZvI!3^j#V0O6+?JtU0doW0a;)E}b-Ej~1PZr!6hZ1uiEfD_hM^+pPt zPXedM+=USw^g_OF$ho2^nmM=>%4WaOd5zngn@5d0AM*xOD)jbQ$=i(9;h)Uq4k@xG zk&*Sn=STz-U9t?1zd1ai*ZDVltLs}lY;3V=3L9W6gev%uro`mjhmG^FOXD-iqZ&2I zVkVVe?M5msYfOBK6nwkqOOfiO4OEUtFl3rkZ!NJ*j@p3KZH#v#XOzp)YUVfF4~kl+}D|!`UA?VS;Cv=B|{p$nHSp1ue=X%cbOIxg0u})vMDos zvomsZle#`EScZQ=Piin@*j8Vudb>5vS!WU{WU;pZIBJ!Y%aLkBk4WShCbRe2CZ%Vd zStI1y%Rq!;VlPk$30fH~LPwgw8ETQ|dLo%&p{(jMu?VySnwA#5sNPsmI^-y`&Q&#n z0y5@UvH-&}N$YrIu5M4N8*7)CP24J&Wk7XluUxn`)_|21h*;^&o>6v##5j+$7;n%i zbr1y2N7f$zWYs6^pcV8-C0tH)VW#7ZGSjQdpI+IBP6r&h3tb4UQC+1mYi(%u zePn8BsW7aBy!yns5t}7f2xV~pSpq&UP6g1ST%IZ>FYSPiRd(DJ58;2&JWTz|7yIxu z`n|mxB!$9dF#f4CZQSabgBY0K&rPSzOa_zk$65lK0TM>I=oS7u8YD_Mh8 zd9jz%ipX_uIJ6laRAk#3qh6${!MFk%&>cB*$2l(Tc~TTN4aqBWlMmi_;V(r>zG@Yf zM4BFF^uyjxV3ducZ2QakZlMb9nM`A%jm_LwZU(1IyGqlaR0l()w+-fz62!t{9k&P{ zjE{9<>}2sE+-xiN7&F|Qg~JF-xoXM-g!9c&<_C)&aRb8(njAbj+A->cheV{O&UVjQ zzB+)BqW4s6EBJ78)Mm2>l)x7ut`bRa!Bq7}DJ*T)TqS-ul2u!wF8X4FiMormi`jU6 z#0O2Td{-NvJ$D(BiZcgGc&EHZE}SP*95F-ZAl5ohc!GugI0p>KRg8%cYZiuS8dr#f z`3pDp)yvC~tGVfG;Y;j8?Z{PFOH~Mg+XmRq0>GYh?*>MX?K6347_z+99)8RA@PmKowP1VBL>x5 zT2y(PTftNl8_}RiaiPWYDS|WS)r1>%6GQ*4;aTB0%QXf2)NPqMmVKWW&x=Dn)ILWS zkM2SpSFb%~$!ZpKXt&GDh2Y@;JrZh>3}N% zMAgF>*+~Y(sl$vw3@vb``*TJD#7Tbq^L6p-ZBF^pfR0*#^J0?rz6LcYvDU@T~GJ1VOJ2B1LB~;MZNXdoYe|72m!z(E0&Y*KK@uv@t`}3 zH{Q*%fb6k^zVQ0?L4tUi?BcR3Lo`yZ z1hiis8kZzZl*fHkDv!yxcm4V>txSZy<_Nn7wJ|$kxFtpfj#BI_LbHs3LflV1xqO^Z z(c)f&u=eDCH?7PuDkuen7hW_M(|w&Eg#9l|C03gltpCzSER6rt9!$m`3OOGi;s1NU zI5|6-8rs0PuXp24*b=wj{Zxn^O!n*a5cnHjO5oGhry02VY+U|MAC^HJ5@h>dskUKp zx2DxZ(*zsPMiMqn)oM4i&f&5flsw-KZl0Y_d*nYbG#VEF9zU++`oQ@j#$Yj(lOAGU z8F+hTdU@?_NlupSYZni0X7~rSj9Zssj<8M=X;SkH_ROY-fq^K24);3!XUYIxC5xbe zA$DJP+ni}9pmerz*%!pqevcfmE7F7_+&cQp`!Y^})c%4|%^+s`G@X-77AkABA8L~- zQnU-v9;q?f#~Ds}c{p;EgUM+ND`}nlz#nPX_yT$~x^9w$h?k zr6C`7b*T&PbfHe3#AW;kCHAsR`rlvp2^U1fqU!#g)X`gjX56K@TQS+e-!30?qK@b{ zh@Kfzx>4DRaULf>Yy@Rx!(&~2_?Ad?&gvaorL#1RbOqFz{^MP>o?Yk$EpW6z5_&|& zXUTSm5?IkAl5>R!U#`ULSia>VC0;QP>~M!|0vEpRD~?BvbeDpF%r(*a0#+XzrH8!| z!Xy&}14~RCyZu{4_F>k9G~5+u{eI0iZE>mXov5M@?4Jn-)dvBY=)3uX@2HmsZm zWkfMt6xKGN93F*AA>6EaPc|MN3jP3R@8rxid^vExA~cV}YZlz*LHd|6#aU#h76rMw zc5e!6q8pkoSeRhI3cC?WjyecP`lGR}<^6Eu+U(?sv}4e3_!}HO=VpS5$?wjc(toFp z=p|%`LL;8{w8DPUQUB>kL`p6>*d);F1I!y0ARbW>eGoT4qwXNW4@@u8!xguVD9#K9 zI$!V2S{D%bfP()KU1Z4GF>7Qx|IR`_5SlF3ehF~D?Kyw=1bMg0-01R?T1~%WI=9Mu2k$C~zS{-Mb{uT9?-wQRyxv|z?S{4bY^yFMA zo8z2l4ht~={OKBUe5^n%o5Z!Ukpv4s_zgd!#>RE~K@E1{01cN`eXeW&T^ZRHmA78s z>oxvfJGi5|COA{ZhxlwpSDb*9#afi=lXM)9Racb++wX4Vq*Qsh{{Pp4~+-4N`M#V zh9G+D^Zbcw45x%4&^d6kKz@UBg~WR8l! zDnQyARSgJ7RJc;M(oE#hAdgbn-`d~@Cg}vaLWQvy3|x4J{cJT3&PX_#sk2DuquEIq zmL#=YWujNOb&MR_H121X9LmUH$`M)Hq0#2}1SGfjajJa`2qvZhTgnMwAU#vqXLY(GGy4m&{Q zCOZx$&;l5a1$jJgShG`SCE0U?roHBDbQp~Tnk5VyhhOB`%j+uN;8&;+sqa&Z41o~V z8@7}kqzDDI>>#kU!|)qY(0Ez$iuhOOA^=pjld}~A`-u<-I<6W&ABLf4Z=SJx=&Bjx zXwklZG9rH$Z1-Zlx0#;fK~5oj6wXA%1cK>kRnZzU+`OaTpo!22nF)q1vX5qf4*bA2 z5)pHyVDC?_d$CzyRl-(|_Jv=V!=b+dyTJ5^}oc)0nqG23y}9sSeo$ zubE4b9F(fC`SnA zJDwM&*9BC|m7E$7E17~WACyppoF=kalUH1tJ69t{sZ6sWCN!1Q)L{$%9ENC>Xt%~R zAVQ@UohK6AJz6qpR#n8R6Jt2*gu5S0Gm5F7s$mID0X8f#?T-{RQDkIG9DG)h;$wtG zWh4pGo?sCnpKPH*bA|JP3N0+~?V(8er9Ccip71+QX|ewK@}#Z@%(d|JeBMfdkl4|N za7e_Igjq*T;BhKBvW+L~AuXCu;gZmZLaSZ}j_L#j8z!jO56ax48jEwK!7>+-IMH2h zFWwPC%QyUEk#xitBeX>~r-+=vVQ?DE-?>}FbY)eSfI<|zk z1+Y4PhJfq$$7W{%)Mn8`EZ}`ZKjub*+)y0AcM~%a()LTUb1h^59|;uY1j2efriSzd z;YH>Xe^dHEN!??{j7qYTV%$t2ZpngzxTqW@Bwc@+aAZNF5!r{hWpnM$HLOa;BZEae z7b#`}#Nny^IlqK5J?z>A9Q?F8%HMv9G;ghG#&lVP0GkWCN)cA4?oP*|vzf@X2-J(U z)Yen$>c;0YwSOV{3>CW$92=RXXP@3HuqXU|DFarQ=w)SLK^QyWy3zHH!%vq}u@&Vb z6ua<$`zT;#|B^3{jOKSL!R2&?c7F1t-71PraSZam|6DgN>2a*X%~n7`JaTzZRJ!{? z9bON~wT4Q2#~1a_Ck0^8D+_m-L)h60DwV=bB0RKHnM&lLP4)yZ3~%aW&a;sOY#KMT z_ty6xD57ig!1pusK+@$HPP2M(TIGDUr?JSqxN(pWhmYKdyaGvYazEiija+#CI%{IU zgP<1>< zDf^+tP>F_}gLPyXoyEGja4wg8Z^gqoxfe9dzB#)S+@2W;>`)8A(cGC(Q#8Vm4=q86 zU=5=5u{zkHj)717QR=Sq9gg7BjFQPmxRW1MN!Pd{z144@VQn6#Gljz(#NSJt; zk6{#^OxtbD^2@JuT)U|VEG04CIWm-ZFel_T)!{jJI?$l&_&B4M08fI}EYL+@BIDZF zdm_UKbHkBr7P2`TdMJR_jH>%9^`UL+#8QVtLNZnSa$L9W;Zq-AtpNDVPbAh5!v!n* z42yW$9ahlpU&<2aJF*UX``FUK%)Yi<|oREoyf$6{G&6Jk59ZoBC{!l(XrFtPg7*1N*S7s1d&w1ON28Q}v-#zfFJ?Gsc;sBW6b{SIkML{wA3NOPsch-yQJ z?ZZ*QYKVfxLr!ZH5{B*y&?<*=#^4EidePz|+&eMIie zgpE<|1U7Q+XihkjQV*SSlzWzDX zkkQJFXkdD#e1ZLz2kC*se=Zy~R1DCk<{@tCv0|g41n)YrRb+T_pRCtuP(>B^lqE%= zrn_ODYMDieI%o)7DIwCt1GIyOZ0d>HKye5A=at#u%8De0GTrKLic#X=O301x-Jw+` zyKe~r5LdgAV}nL4sR5|yPu16+)fqNQ>HG`FeYnL-|A`Ts0=8Tqi%DnG2?q81< zxkc`L78ifiveCc2A0oedQX0+cD*x!IN9|X3=c3;q%U|Cme}w+AJUV|`R?U54n6l|^h8o%d{P3kFoBBh5oBtsUU_su zzvBf1J>(qy6hr;~n($(9>_#k)*i3zA2kWsKi2Mjlx#xLh>@fr2w} zix&lz4sFza0oflAa0O~I0m2-&jW#jIAGPgD0z<_bms6y|rhzLVSuz+Vw3n!{tI$OS zOf_fZZ6_y5r7v;UO|;Y;GZ(1G@q3%==eC$?_kXnuqLNQlqw%aj-@|}_E>Dk7=%?LK>%CUj{J9Er3Rrr-y%KH8map7go_ca}(M+Sy z{Dqlt*Vo_ATIkU{MCUkNG{p#)h_DrrENId&?yqKq*R5+R_>r8Hk2XiS=Z)jfb&80^ z?RtP@rR+08Jmgt{^b!=2xByl3_fUswl>}*S*yB#;P?j5Qc;dL)Q2NzX(Uc)kZv95X ztF!+0s}K_w?e~^;)W8dVeC-zP`2Btpi(F>+JzU=(7$^p)rfuo{KC5aGT#QvVccHFd zZ2Et%ruGR$?|N+OQZXFobuf~SpUGdk^`_6Cj1l67hnw3eYA3)qkD1-+(N(ocUjb}< zo$x0zNNR`ILnruNJTov`Q>hmcKH#CY)N5Qx8v@Vk_X$C-v1(sLvl zPY_JRIRobY2{JZ72J!k|8XEn2egauYXj z=(Mh}4oU@aq817ZQS5IxDZc1K4v3ig6VK@!pXBOV@!MR;++g?9d2Ra9BA^usvFJzt zY)}~QO&T*B55~{H(dRH}<3JPRr%~AySI%&c0c;8hzKOM{)NiZfrs3v}9y;+9>R4hX zAx)9oY4fYZ!vi@;{nB0#h8^AHC{Ly@IGHLipZ*F^OWEPI)qSGKrT<4o_RoSu| zU&Dx}9M75r3xo9~WBoE+tRlK*>p=2|yis z>X7*rgR(t>r@Krw+KZT*G7=s@$p`{xuj4}lVGTqWiEs+Lr-l6ApPJul7-s5ANqL#i z{|+S|E|Lz8pY6tfxj1!W9!PTXOAa{Pf&8^hZYaOZexA2_%bKv&0n-6z+s(H2o$op} z-h-6<NJ<6 z#*RWkg$8a2?@!y&>r2VMNpo(&yaDgvP3jgG-7?c714T+0jep3omaqY##8ecJ%mxc^>B+ef;T9sO4P=Qh{tdt{b{MU$5tBGE z_DXhkBN3sGT`EsH)K;oimKGLB{b&dXCPaj}g7SGkO4pIS$a2(@v!&Cn2}htnNl5ih zy9|KNra^9m;Jf;2RIq=L162>;8n(NI?iqN7mk@0Z`ZX+E+RxAaP#J|(m+AVU`oVRhz~#j$ z%J&N(1cz>fK*{k`UNdnv=IDC5FAIrk@sR<$nbRd*0Y1BPq3n}*XBi5 zZ1MY^T|(&&AdY`Ky5pTrA>0_J^?gfDACwqWhh)GGn;Fx1)NgNS4yjW-XK%<>NBqKM zIOzf=Lu62qTW1LB=bI`!P^1!jNYGHOuNkKJToLjrZO39Ayn^MZ3PXzG)qKe->a63|JD%c@ovkk8h&I2V6z7 zW6#h`7Z|T=51(R*$l~%ap3ip@dA~R3udlPTDwi^fLQpfgo$r5=d!QalWtgJjPlrK( zorUM`?5`(PshW~zU_awGpZEQ4dAFQovAtgDSC=#Re@~)TG4eG-e(IEa8&9cR2Xz4U zr49a`Z!8amr*KG6L5?zL6!cqR5!Ri1Kx4~M8ud#OlMoK1IDCTy&`!G6{S$abVhvWf z&GtmypqORfANQ>C($Kvq`>k!Iihij5U0Y^s$aUDmLWf?^uWs7@z@XvEz=v{b_ud8=mcu}wlwC%s0lGZI&{1HE| zX2**9eMK_;3_72-?b&hbaL=?LC6^r7?o{@W?DFjF;{Rdn9D+3Kx-grzZQC~AM5S%p zwr$(CZC2X0ZQE5{9nr%tI{w+Y(=)oyK6^cjpmPByMZ@Ny4y9T4PPXbVOso+a0y#BV z&Yx)aF1iL#FKs*pN{0nJtiE` zK`g25;aH77FPeFz3t@f8__st0a>LqZ=eGDspx8E(A82eSms62PnSKKglQ%vi`n zWY90OLNSB1V#v)hGl3}nc-ST4$$^r2bL|8v;_c^{Z3IB`*)p~AKPwb#(-ysogHv2j zQMuwMD%mo>wn7SFE*;G4>9Ln=0FT{t+WA4FBGCkNb{03c6PqOH=iM?X@l@Bf z@2}EbI9~Wkh`Fz zjGms+iIySVHr&jLqeyJ<#!%nvf z1Ypm>l60fH+9Wg?HxsX7Ttnz9WC|fe<{C8ImwX|)uF5&-4Y?8v&>~zj;G+nqI^@5Z z^M60uX_5sp3@*MdYl5c$Dfw2+cUBQ`eMNv}kRgGP2ueCCP0lm~hlSjXqzX;cR z$30HfPT6c{G&RjUp^OY*M}50tKKJ6~ESf~GyK%g2N~p!Td)JMu<(msL)~c-Kpx$V@ zf~xYpX;R_US2z!}OPcF=lR;EUPb_8=_^T$1IHnGnf1ZM26vXZG=nk#WKPcq&oC;_R z#_s=|(#2h)Mja~HkO(O}dnlO^mH8W$4scZi>L|5T3C9I^zJR<0x zO=RB~2)wn`|E1Zg@@F!qg~Xima_0HT*Jo>Ux~NzG&kOLcDxr(B`K`;nfG&M1g*F@WN-r2v7q$F*K>~&7*T!BOJ(3Gc?>R{5DPhKWDnd<9)mGY|3X;hqby_ z46ZI&Avf_AMyvZrWT(4J+QMDKbt*0OrjOG~@Ca`ji#W-Uxbda_#okzyO7mEnGy-k! z*|J2WjQkksXOMn%ecnTJ_#1*W%N~NzVO_s#cmD*&r6`hoG6A`dxsXz5$tW`Y+d3ih zzcR$!sB@_z_FnVFecBcwW5o<*!}}aoVN+O_gu3AKN4hJ+|0hM`f+&;eR-fh3I1!z% zvz}U`yP)#)9~du0Fo(vR_;tdK*o)gu*1ItY+ zCslrEEAxV@Yu)w53poTiNouvGm({Zo>PfQ%t1rD6fuu%b2?RE`wg5Dq#YrvpYtXRu z9dAMee`X!UfE(w@gYrZblsRtV6Ahm-^nw1jC=&8D0F@}BTP2j0iLwGuWS$6UheCL| zk4a_5U!~JW$1wzF3XKG(DVweRH%8EKh(ReeT)^k_D+K9&kmfS-z3OhkEH09xM4LA; zjJ5$V159O_S1@v;T7(7%6G`n!SW?~^5du%@lIcZjrPEjN_D?L ze@cl;{V$v}W<^EwlV3ufrt-q^0S<;AUmV@?qOjK=*n_3!jQN`789YCHAWpE4we9sP za)>|GDN8I*$O-@0-2JlcLA@ojfi;?Pa`veXI0|`XR9jX&$K?vFO&js&1y6Lio3&1; z&z=v96K07;Ggel!SY%MT8fAns1}f=xg?~#R#g@%$bDKE7XVGTl>jsb*ZkJ=ZlWRj@ ztf4Jp5lKl%X{~4{ph${$7ex>b92I*@M+iui|8y}1dt#nJu;3IQ?xZLLXLFF{nC+;EZ8d z5s0z>-@8S}QTqf7s+hBxlSSf=4z5Zkj;McxW*00+FZp~^BQO2HTKw6Ct)!^g`~%ctH>GrMQ>T(9IK|RVS`)y zmPIw)Mr-!Cinwg#*n(VA7*So_=*lKlu@2kqBSk*2Hz0!4nb(M+Q0Wt>D_rXHIHq^i zvNWm(mZF6PPe5^;mMu4ntGD=F)%(U&zc;Gyv73ErMk4kgpvg>^k;n7lS{!`Sea-5Fr=QNPv zu+Zjcb_Vm(#j|OteFh3G%(|VJWhV2{4!j<*F3oEzahFM<4sTL2h?nBpF6*JMU2{iG zz2LBC+S1JGoN&v}G!mq%>*ZP!4X!LrxG{a?EM4D1I=7S?c^#{ldaE5SJ?`|-+#(YAUp77H@99(D_ z5cDh%=6M{UP?}X;>+OGfP_qZ{b*Jf15!-2sthxNWj!g7$-sSA>d$%W2wCgXECA1w+ z6Tl)5gDcjqpjAxH`4Gx!`5Vp|_>#??-SqtmPXz2##kWDw6H70~+4j92JjL5(3WNke z|Ja0c+?|_zotb9MqhumF-ZJ{g3u?P@qgHEm*oX7k_-!tuQf1KUwjd6UNxm%|fN{Ek z(vSwlZCvKwmV?-sBQMKF-r4KdaF}e>N46tSvn?d(rku!W?JRNfo>r^G$p6g>-TpLC=`b`4JbWpYhPM_+1ZubH)WDLw8Xa*{k#h(0lC2L`t`&w z|8w=dJF(l?($C$LiK+n9?8Uj`DG>s8*XMX6W52riZE?NaJ3x25YJ|n#w$@zrJ8RE0 z+=6-UW`nsnB2@H}s4HRyC3InVUEmwKQKhSJYseS9#FCb>Pm$*b%ATX=rLwO@1ZE0y z4n5=dTEM8+nW*Q`I;r0VEbH_#&M($vvt7R)6Ke}h?d=XEwD)K1K-oNew@TW6-am)} zwx0*&;Sz={kxypbb^*Oh@|Nov5wXb5Z)lO)ydAp4GxPX0c)XrII?+&8arp)wG} zROcuH7xoy8;n+qS*OO92z`E5a5@6!hs!m;|sGo`_^0X0E&{pxds-;~19n=eKQqXoS zzeQ}z`}X_#bKyT>*HivqafJPUl>)J{a{lLv%m`k09BC)>UVTEdF4od7wFhWA2&|bL z1P7zv>-#`km5fe@e-U-aqHP4U=wsJ6VcpD^Nv=k`8mqj9FXEHAeqK+$kER$gE9Lzj zAYyoa-sdnS^&^t`xFzTAO>%W}1b^P|F7o$6=ZQiT0UCcl?+E>idpB)vQqM7n3%20w z0sHlUaaLde$nkk|$sS`pV}t~4LY~#zr%~<6i`IOXJMpr&#^1}qss_RcB-5ckJ)AYm zn4e)xRGDresfMYV>KD&wGZ=oPu&D(^wN%wICYlY$V9Xv`f4}w!%Wo$H{a_ClD3b!x zFsvRtI;kw>)soMDn>~yp0vH5hOU8B1#k|)<$WIBvs78Vcydz*Jh%Q6p{z%{m(`&&s zp`AfT_yMbc#+EQesR&mS1^!E6erv)jyMylW#w}qU^Q5C=#7PezgG8wYC{4jpEtbs4 z5M&iI$rYmr?aN%=P;Ai&;Lz)2R42*sR&8RoALdAU@?f3uajmBlarBa+MSxe8VbY*u zbQ1Q1h~*;?_B1s2-z?Tm9~oK|q&ty>u7=Q2bPM6kpqnGsoD#NI(*)`^OksHARINv< z3WFq}6HrCn5ET0S@-IzymW_m!Za5g6L>VhxHB9zGz1#mIcv`vx@IKWrrN5*C~~>x4*v4?Vi)bXYs5SP+bAouSvY zejjP=<5YUT0Y#;I#pC@95B>2U3k~ja%0v@=R_3PAG}Ak-!AUY>SlaB2lx9|MkwE3d zyScD*L?-E06Q3)?o>Aw9!`2+glxs#}+Wg(aPZtN_Mk#v1yFqADJ_*^#gh zc@Ou-2}2M7=x!0h;vD}<2Ucs-Ev=ZNJT#xp=XyJ ztYN~Dx>F}qp&%{?Mv9JdJmh!gGFw_-1x@ zHbOsn=0%3hlpqZ{_eKaY`p59p3@7%AA+ClJnbRPa;fO*{CFsa#wJ;!DO_LPmv|=e@ zpVG^Q>&vn@uqz;Giu0LdoGvFcaKnH zp0xu|2q~G%Y4Dd0lwPlfx*!1bvv5T*QehYR&ux$;VEAGA`TQggG>-c(9%se;4C3{( zznDK>JG$D4pOpBE&dNbuXpXb@Da%0dM}1ceUbx%ZM$@*Doqm@Vo69nLXW;+15Zy6N zmmKVm3s(`4oPPG?%0YX5%u>FOInE(#TDMc#<~bN7A;f@ag$wDGdDG$#i_n&(+`S7^ zv84RdR7HY99_lSKsCE@` z3(g1yC!%e~u+N5mdHdCSjD>K%U8=a=* z9X(KXWO4REY$U4N*isd9_IiBw!E5l$j9BA$g%*n|R$aGR)y)+W-F28C)H4n&JTXbw zr5=|_uSk0cS9d-kReu&1y6J7PbS5HYLphq-H2XL-6A5fsj;eSMwtI@f`nKE5ebcb$ zMr&|ZkxU4%idBeS8|#4Z*kwQ0zsdPz@xS5&{CheJgl{tkk+dwi&&iShJ zM(?&JlYo`8hGAvd=*2-yXUnPATOVi{BojFKq+@>jqI)Q>kYUh_J`pYHm2Gh??>gk* zN#0JQPlOw41(aG9sEJM)ZO9(-eEfh=!Q$i?ppCEKu?KfwZ3PxC0}~ooM~)rTv)_l4 zUB+I$kHHQK062 zFZ@Lk@J*fb>s{k4D-(Qc6DSI{%qtm~hFIw>+_ozm>-SG(TX zJW?<;^E*DJGmMs-GP&x3lfWoG+$7URp68yZIjgl#w$df3Hj_Vn_Fm$22DZOU6nMpP zx2e^j|KZg_I55P=yYe6r1rJQ)k*zd|1FKnlJrnXPV_vsXH7GHccV8>q)=&e?)~-qQ zcPG`?Ww8J(sEdrRFZgCPGQ>63^deg!>yzqWyvrmW8?ZJPlu+cj`B%4)T_}GEcd}S( z`Wya<>b%}4YEemGC8=^72?QYZN*dETu)jvVj$+3350O=6IXK-aZGzAa**wKmCn;rT zp}iexd-Z!pDKBq3MsD$`Y{Eg85A{w_yRsWJ&SX2C^%$lo#pn(!YT^~^zIBCk z!KruI=GN56tzt7Wt`yvPBPm;*+6&7oewfkuR_w)p%%+05UkyC!AwgL%Eej5g(!LZV zJd>_85i!gTXGr>xiPgs%;to~@J93AdcvLz``zkx#TpFX=6sOeC&SzSps(_4zRwa)EaO{@r|I|e=LWpB|LF1X0)`sGRUgqn7PyLK*RCoSkgQF}kg!!$ zMs+>-q2m1tE}PZX!ew_}-{6v_a0jJh=+?Oqwg{eRThY2qgN6~V%QxP}nxIBEnuTBr z!#aU|pW@>L*NUM()jUKCR0oPhd1)(>Uhg@fPOYjBtSe=Fxj)nyWqj15lZm<~TQA}& z#(}ptS$9EDbD>B{`c@-sTaf=L?`K|JNZfBwzPnl`q5{jypSZH0iJiF5;XvE{k*5fH z7m%hXt)Et`iRTPzn6k9GgiYvSMH3sZ)A7r#rRIM`H zTzK9(R>KfaiyIGk)v$A|7Yros)muc35vvdOfq4;5ILWn5hZguKD;J!5AtxMWxb z@I2*d;plx|5AYj!(}&Fvr$f@+QGX`p(*am<#WxxyaxB@qEb#ew2ty`BMrxIWt76hBrO^Wr9!^yRcUqE zxhhwr@-mU7XcPWed8vqZ(>H`IWNJk>mz|55>5v8Zkfv&EhXXGz?V@&^G$+2XQlD7f#PEt=rDzRa#F)%bPyBD| zoz9J0sm0d7UBILKy4+|E&9sBIO(90mrB$8I<#oNx(?7Si!NCY98T-GN!E&+Z<~DGdcbXv`00A_ykx zkTL}E2U#?NFP;Pnh<@>^XJs=j+w-{>2b^)rlQ@-p;S*mcQT6 zOW9A|WJzngxBtLkrTgIRN?j=uigsA$->z>TTeoY7N;ssY(GIa5zMcrgzbnQPLkFyQyPi}NH|RYSzy)+julF>Qq_LzM3d}VKN=5u~E6DV({p$l&$v#d|-}54X z3ZKR(cG@!-k>u^&5*kT}UnuRQKc)eD0xFj`OkqH(H5!kUVFkF|HbB1QjtD251mutA z`%W3jAzzpZcvkQmjkqDXX=wvCFbpOz4QUK~4oRmu5^2-&JN&R&Ng!4zT$)JBg&&S9 zlAODaa{ZeKn_fu;w`lYDf#3LSpj>5~+BQ6>5)2ax0l>bcAh9g@?}1&!B=tVf_#Q-} z!cRE66gOj!8Xk#eYB!M=;gqX;)tEbGIYtTP z-FiY6XiyrsGMTCs&(1@NCUbw%^rC1YSDd|NdXBdTzlardE7}r!G`Vtsv#O&@pyo{V zWq6=0_@jHEG5%(mBv>ieFywrn%>st9IfT7qFiyt-kDW|H)gnOBU!^LLLxqYs%@>!c z%ixfB*m#}ClIIzyL4Ds(m576M?728JBe>oQhW@6eJrF4}h#|~WD2e^tig>c!(bk&y za!8{?GZ#46YAknvPfyMKcZ(HUNHa+ZTXsG(AfbS#;ti68N6c`co=J9d4}L)c6lL)z zuZxgG=y6g$rBe~ut>i+@H^Ug7JcK|FzcsAuGgM%y7hDSs@G_ zSNH7HYeugYZiwB0%o2gMBs!y2GpjPgB0eyCV>1vC&#neIOfq|1l$>9&JAq+M1@`lT zT^)YmxblktCOxX8jfW^%n)?1DI!^|_7>WAUD+yfGvYQ>_4M2Q|k{Wvg>3j$~%1bcJ z+K0v-hV%r)jUZqeaf@<2hn|L z{>X$|59UhDU*Vlwn#n?)J}F-yXlmn9yoERvxamr*2Cg^9ml&HnCb#(V`8PI(*^BlW z=Kh5gmrtD&VP{olGoC!F-4aTr(#fW{3G*$QvQG(OQKs9&AF{9H=!p2H)w=`&vOE%^ zFov3YvG~BJb8d(5tX~;3Q_)fO_cJ2M&ee~eowQe7iiSHKGAQCw3VZmWBuN<8_Fi%3oa#)|!{>h@K9@ zvE=0l{ap7LiP8dKE8?Iv#@8T)@%l)5uA7vO@hD-WkerTj$eWj<30Sqn=?tl%A5LuO z(n5k*h=u(952Y5!4z1)Xs=Y!npk6-{QpJK6Byt13ev-=`u){`kx)Eqz#< zpI#~(_shLf&Xe{x)#&nZP&q2t#XK1oEW4QzPS<}t-@-`rC4cUVGi#_11(Vlx%|Ca@ z=AHy8MhT(pGaNwtBAm+&7paDS=UP+9mnAac!0TPYA?~$G{JG#`ffNVkz!6d7KEzxl z^+HSZD|VIMwEK68!#sZH`=R$Ckz<5h7;TEFGQ)$G@M+5(<^k=PX9_@;?Q_?U zXjhS&>_UqtB*jCt#0S$=yl_Xb#74*7%A;B!CBBXRWWqR63Qj}jLOD?ao4~#cBb9(~ zB%>&GV=R9VW~OFG!D_>1rWQ-k@d`gM1B_i^mlx(hgdYL=VQ(SfB(I|pug(YW0e;n9zg_nZ^sY2UxX5FQRE_%lJ>Q)da&$4hiDP>?0<0}?`^u?ME zdhxZSL$lLWna4>flP_Wz&N6Uk7qEtr<-t6qWx9$VgwG->^@bZ}#+k1;Oc!}$?3HJ) zu=BpgV2ZruDVu!Q|HRLUj}iVMN#)jFS12f0b<6NAen$0Cg zNg37LVW#Wj)2@BU){LxX=V+z^RIb&Iw5HXTUaOtiWyn4u-72+fpRPp77j((dOVzsO z8iSL=Qde_Czhe59E-KcUS&9cel!Z~XO}Bcr0!G6TTL88G$n~tU@ zVS)G7yBKXyKGbT`e*VR`rY6Pntt{|J=~m8}p%^IDOIU^`aETcS?Ik}7JypcMGp3F~ z*hMP#usJmwUqS5kq)ss=n6Rrxx)!edH|dj&Cw)&R>!I$|mOJ8$>hFDo$oc3;W_67JQ5Lg>y~ScF7IU;XUonxL0 zD@Ky_nZ-BE*W3xjorV=_tJ^#=Akv(atf20}S|c}>7Z>$6YjiN_w$RTM>XY*t900+WFWQ{}k88yCiL4sgaBnE+MIWSUGZ&ZBlW1&-SY zr+c<9FvBJS_N^)GSyKyUd9L8R?8hgoU~=W1LH?gMYF>{0xHZgPL(KXcYPC}>Casb5 zxbW3=7N#dRvLZ)t0)xIy<`rq_899S8y<+O(4p)ocIHnmmXhlDD*41IATbjoV>~=br zJqV}RpJ@Tc#;jA@TU#q?JcTuzEboBbfZG9Th9ugo6}8|^@0|jkz3R46=z6qYFAcK{ z1TQdN&byuOvcK|9<35K=F^8C9j@T4;ZJ|H zOeHI_X$*hwF(ASQ|5e~oqxRtpUYMmQIln0P|9O2u)c;ckw*9J~lV!Q(ORJv>GiVLZ zeI@87@9|7bb@p6o*aHgjr_cMd%lk7_;TJyLswi=}I>#Cdx(Uc0FgqwBDQvS?ROBDX zQEEU=qg|i>hgzD@wBVTjuW#4idlBljLMwHeB`CXtrz0Z1QKKE4isD-+9>d~%1 zH{^X<2ZoS(b8Fgd6U`t;*u)XuYVW^8I3mh>CSf`G$<7^i?7Xt-k}=GT=llq>^@Qmz zjE|RN`6N`=aM7tMyyt^eCOryW_BF)4oG^TfV(<>fClt*?W$+{8Ehngv48UlI8)Ug( zFCL%L;GEpApAgWYS=y29xwUcFW%C%*a#9m8$NKhEm@5ZQ5)*Lq2?x*1 zN7z0$X*VJ1=L?7FfJAs$TKClE*4#1U`eKvT^{2p}tiRtvt+X`O6idbB);*b^0!4fp zMlPq4a`yE53|B0u_flXMo|H&F$uU#^Wd5z6kDJz)a-I36?U@3Jm@J*k_OfKa&83&C zHXx2{-D~8UVVXtB*Cu48vGdv*CJ>02jyToYrk(l=+}inV@n5;>-%Aw}k-d=>3?JYB zABVmI z#ht|%75Xh}1G-2fb@VG?wM4?waD7OApDu5&-Y*9>zi}E!C_9fIC-Zw){tRMln`RLi z#ZtZ=Km0%6iq?o)km3IFi2lAmpaNGztIeYnrR)vi2a48TMXjCy07fL)x6S>}!@;gr zG(TP2=d%N$vCU8Ks2^nQPT;2?*`?SVD9j-V|6YD+-k*p)B1rQ~)a7Ka(8~1sS`M2B zM6(nWyk!F8dWEo>>{C6x&axoZ$*hB?wQhgJ^_wMy&s|GX=f|PHVT(0%Ke+cR*vS{@ zJyS#e4M*YrKc6RW`G3vO1YY$oqn01;tbMJCsPki@hXliTuWF)3y}4FoVKh8%wJZROBkZ^Ccb2m>G1;?*#p8MJ&1m%k}r3uN3x6?~HpSJ&jfwH)moW-aqYzqOkJUYzcB;cJ&LiZD?+81XJ=`zb}@? z4+w^MyAK39N}Ak6U61 zwpi@~Z36R~1^#~x1Xk-Sv@e2me+-d3(&6ThYuLybTK+-oju@hxCF_f2N;)mmR2<|T z5rs!Qy)3`$pmKC~693etZ<3j=>ReB~pe^9$O6QQgUr}onD-`AsA?$WsMe;nqB5_p0 zh`v~`YE7r9sLMG3k07Z?T`h1Dz7>vu)LG1Ox=W}#gWjk*(AKUqKh~AU#GSh6bvF0q zk%;EZ&cxNho?8H?_r@lmdf*h4mzr=?>fKoeEWy=H@Ot5Z)e_1iD zDbHju1@#B^WDF9Iw7jZ*yZ@+cl{w?82vxdkFM+W}D|3UUOPt?OP=L3v)Uc%sVNZx0EEQV*4KfWk6TqYeP0)X`oYeK8VYbJ084R`pWQnC;r)f|HE> zEw%(_rk``YFFA~I=ut)&v)+YHdMt!z3FA_-^Jxr3Akd$-wWB%tIl#|39G12Zoj~)d z@?%#tOn*`Qj@K0m1`TD0OV&)9?JfW+mo)>IoV`Iepy=nQw!o)~?B%=dNDStFCu3a+T#tR@uc{7Bxo4 zmX~7_DyuSL$?h?mf>nNq#jA%+_JV}unI+5+=PQ94wR{gZ;_HAx+-CW;? zHA~Zlo|Hf`q$DnvOOABloVrI`#1?mj0t@(;iljWS6%%A^$5T@Dr?95^r~T#qXGVVc zXGXq=C?P=Dl`juApVe{Poz*}FPfm3$KAnUTt6Za|RJ0qNiN=Oy>6oRRFGDkn|&o=MEV1)LH^sTuVcvIYvUEDyB5?G4h z=k@uq{X4O(2+xVzt~~)KPPJ~GPUK%>)UW-j;hW^jxM{=;b_$y%M;_!#idsup>M8b@ zpjxsUW!1}bGAe}4cC6AWNX=AAql)k=mv6fs>I3xbQ&#>I!CA?9NO2cl4rKi}gJR9DlJ8L?P3}>1rSQYdbfs!epIZwZ(#yLH1-kBMC zYSK~D!$?~tDK;@Z7I(pC4SrVN{J82885r6FqcyoPMl|MMzAvk{o+T@XWb|5qDIVX= z91iGeg#Z{4Pj%@NPigwpBW_#qY8?q(gV;k$7bnoJIptCr`DX00<#`Kf*-sV~=FloD z)C%-Xn`5WHF0-PajpuDICCx2^;d%ZSd~9BM0y^E24o=4mw0BF}DwJXW3cB(1%`oYg zUVnRCj!sZg%)aYZ*IoN83>Wmg<}~joY?H-H9fR$;O685qa7+*Dwa`7QX-~|?v8ul7N#5Y0M`iFofoeD??>R>D{aoypJ zQ3sWzxzQX9k5j|IS?4qXMZ_)QAPwcCt+#xz(W>a{0vN1P|X_ znC#S>gayyL#)81oRwXH`=>U{^3hl-sT_%LRNWukxU(*DD2MXjnQny2h(TOyQ#xB?D zNyQyLPtk??3MuGL)2VArPQ8IR#}QjqiFxw~SBI~CyrB5_ZLm8ZqFwIp-Llrbw<(Za z5*Jx`1wpZ%=3Q3I7B9dW3L?436l0mFYkK5wRD)tbb?~`FPC2X#TF5h!V>v~naCLxz zQSl+vckOmDsp(CBvW28@c}^@F?vU$yRyr8vv<6>)2}y1R(2B6!0VKQknU2`@NW!-M zEv{3Aaq-5N_J`w&?Ev%^ixQ*dm0Im?TTGNfD(xKC+5Ql4LsoiKT@vrwT4Hn-;(x(G?oZ zU@+1;IV~SA6%DpzK=(N5IA>-+L6T8{h*lL>tcZ5Z)lzbOVtwKA?38bIl5mKNrGU~1 zb*R$>D~2|#wWsWhYR(7G-aD{Dm+9fr?J*E(D36wo16;%EZnLC>(^cLEsIm{J)ElJO zhp5`_yUgBr8>%+$4h>TH{%W8}-cJja(e~yV!+c1MNW~CyM$14K{`i3rS4??V!`zjR zby;n60+T$fhVDIDGsYn192l0B_0vA4AS*6v*H+@vIB)%B`F6*=(T{J7i zQgPXHaMWViwzSnk>4m0izC+p}NSolg0h=;WaSt$cirt1tlSK7h4s-sR{XOl+8fdMm z!1NVkS*{=ZG#J4LUY%p>;K!>{AP8#=v(?qu8?I&Aznu@aZUD zEdR-X3#{1Z8d!pHp+UZ0^smW3-`X`sHSv5+cdaSx^xM{nCPZ4yTmO)kQmMer<&C6uxr(1ekfQ*+Yf9eJ;!Vv)EtbU)b>^0#noZtT z7iz#?oS-mCMV9cR$l6rcdv19Cp^Cf6xyl6k(cgSi1y~xBSnX<)1cE+F#EdabekeDm zV;yP_#Wgt=?*m)db-@-L6bQJHQGBCJ0}{-1jcUzUN0*2v8rkFF^M{tZj|g<&M;ebo zm|o~6ZS+d%DWP?CcxA!}Tr15F{*rz%(q=N&nIl}B40oBKhIdlkz=j_gX>wnqV)zag z)6_Luv!I>kLQmdsA&d2U&()atmHHUVUgc-oy=WpAt@=zq7mS9 zg?m3fY4Eun8R)p~uOKlK1#GL9^GWf4_(0pV4-xX-5mY5Ha1&<^Sf4ZD?u}(zw z^u1GXS(`(=di+X0xV+lf%VqMF<|MaXGRS|@lJa{4L_KKi<*+|h22oR>!z>F-+A+*F zY~>lKV?b<9>)Oy1j&7ROM1-y{8<}g1aYrmi5Y zxHFp1w1C#N4{5t4a&C=nw zD;l)fbfZ_&Y6;zKIDO0%(lg5(zt5u&i#NHzS=fQ`g`BGiUqWqE7;(dKq^T?uwJjC& zOHafK_2tjIW`Q|7A6G~T<5ZSz;PWic1BdF6z2gw&yzF!jd|KsM)$KS=Z!4BTE(XlE z3oUiw3p|cn3|)kDb3FBr8*p+_AiUrsv^P3pocUbGgndJ;pMS+;k3*3!O%Q8$!a9OI z?EfU6WlIw%Wxx@|t@aVMKjM914cwHI6LpuJPIZfFwWS*lzj7U;; zA77@8aq~Gwb?fg)oj`)B=^P)ll~6(Nd&veOZ*_doX_b8>L~7YP5)1pEJdI(-{Z%coz!HW1jcW^nIF2D!c50${l7 z&2fpvmrtc5INLsLlpgoX2{(K&Hg)4?rusz2|!q)KgG`_*)DST7mn1I zP{+X|&72$SNP>8N~>=EpypkpN~MiwTra4=|ndxrYJ#VSef0A1_P-;DoQnIPeLFx8iGh<^e}56 zFjt;iGYj3iov+5qNh0(fi6#gKh<;0va3Q~sTb{FZfr*$_s7kXO3EO8nIt6aV0zM}p zH;pcqWpR90?Wy>+3gQfP8cpyV4FRJHt#shzaB$!b<KJ_ z7_sdrqWwV?Le?grDwMzA9}N{wVArtF$^eF8AdOa z1aTAz6E;|TbAu8F1Kx3wjZO>!qr1Xm17h4>4K&NRDx=g_*30jdFaddKek{0BsKtM%Z1bd~|=+B#I$LSnijBWs7*z0<W?wrN)=7)4Ga_q6FkXoiZQQX}WJ&|9+Sp@zc?) zn@kPmnoS!o-J(g@?(4Y7t0NdBoCLrcttyECcC<&PyIH6LVZwQK;TA$8!%=4Znh#sV zA_jy-Iumc5v3i8f2OZfltw62tw2=|%VJQnD)5YAwa$Yi$1o=Zn#N@#e5?9`n>&2M* z3)_3yyb`poOm`WaOfj;aph6%RMExu@YRu`>mO~_?R#Y;IC38%z$8F?a+eN)1cG@iR z5WVHOdfb-DD7nEM4eDZ@1D~C&2T(!yNUT@++bk2|KcmLVzIr4_h3U00QHD8 z;3gJ@+y8x;`UiS_V{!x9|Lzw@wjD_SfpQiX&N>S7heH%1D9Kx`Vy%7WWBa!Cc=z;p z*Fb_ii5+<#wy;#nAt9dW;5CB4(<&%8vsZKr|(P47xbTiLmRl8SjE`TO0fOy zPHyV~8*RaiCIOx~kP3V=b%-?s^??-hHUqLcmP}L#x{t~Ai$a^jZf3Nq5$#go5SterENYyFCmNawsQYw6l z2bODF0FD;Zy1tRT;WA)I(SzxUMaRQ_TexjJ-}@|_AmGbkx^petQKo2+;o&6 zV9V}*DBh37j}#KTX_w^KK0esP7Nh56!MqwvkX8%xBr{C^m|;1%Ja}TtaY}oQyVbZh z(@CY+LdQ0=A9qx$4==kg2|9CzjTk#e(;vIsP+Tb&bJq>|r@-UM)*p z((v7crsCALeY6fR28%(S<&z>X#1BUVJ_PPZE}6oyF|?X*)*tzKj=X%p@5_(IkO`5` zl%+4zsi1xl=mErNEWU8MY;9GkOPgMN;)^VE#vZwNNJo5*w3))oPMR=G*o9wu!ScrJs+VVnZVW0{oXf|J5mQ%>(NeuMC$~pU zE7jZD0+<%J%;(*!xwYc5Np~9VW>{CyzI~@Y;hP}EB_cbS!q-~vvseCbBFa15>NHrx z1g_?gTEyz4J38*OTd8g@<({s|OW%t+BYpXD7W2@i>O2cd?hM({w-U{u{RXRE+r77N z6ol4jcb4l`F=YmP*7G<`aQ9VeVsVWF0gA%uPY#y*_DqRz!SqLm-E>pT=lE$SSi^Bs zPCn0h*-l^?UHqMt#@?j@I>rQzVI^v8{cYF{N*aBnJ0>I>=e;er{XKKT1+D@Nr?;=G zV4OTZai?wK9uu2dTQ;`VA^0)$M+N=0rcj?*n>Zej(%PWc78V=7Temj+YSMer+_9;e z8e%pDAYP?*dUyMpgsnO1-;f;}>tu$1Vyl&pdIrAuW2{3RmI`31WEmgbwp5Pe2bhLs z#X0Qp>wsU`noJpi|3w-Nbs)-Y4N!j?+WRwzKc7dU>_G%&H6ZIlQRzESGOT%9H%5%B z(zU2ze$TUR9Lz2fp~C-WqGxDaoj)$ov!D)1Tj{{bp$0DQHI0(+eKXE*@O|M3c)P#Y zD}vVK*~=m>{8+*iRn*>6m^Z?^FP_kzn7H5EpC$+FPx*g*Vjs30QFL_NS)l`eG>r_i24(+lu_&h4K}^Ob>z-n>#TMf2xN9 zZfDS7O_wbXjy%3L4eRC#(8z7wf}>+2!zA!Cdh|H@^VU4}5QML)Bl&UN7O{nxm?8lO z%bVaS3v+O9mu`2U_aFx+8Kt2w{oB-jSJ3@}2P01P*|^$+DNJ~Q*?V)v;#4=TI@cYZ z*cO@w`_3QQCq{)-4Ho`P2kwV)c##(~>SfMp5z3Iiq8(ca7?Xa!dP8Ye~-#*ChQ4ma@RGx~ZhPUGd)tp9}15Yv^WTV#5Y zBW%+-UuWV1XQaF#0e~}KWn0WVI~{Rmm^*vrD%*ofwMn)%`P&Wu8H=S_jy;SJD$s>c zzZbC}3;okkt^(6jtflePB$PWns+&~~KY}Pimpe9e+=p~#nq01D|Q9o4z4*utEol3~C zW1g(+oE8nOhXd6X&W3@blO$hro-VC2J+Su6gR$+LI~1KIR$Z4`iTa1P&g@(O>LN2) z(L1)|tK2&O;%st5oVQii@@RMdz=Q{fnoNE%XK|PAo-!?&4<|{J@)gtmm2=@%M1%ob zWtAX{nv7tR0xziA*jIN!Ud${gf`7iT6y`5-piFxAb5#_EOGMd`BJy~0?CKv%l}^(? z>y=bG6EUMA?DS`Cf~eS>Ozjvt8sL5+)}6y!hD_3#(V|Zw>pF57*jmj1aD}+@Dhzm3 z@(f&GIyO|>yS~}}?4;J9IH@o-Vr!C(?9{ey&AwjKI}xC!wE|(R9d}AXS@)G;w<@qU z_h8?OvO4nseu3ytAdXb)nJ=ki7C)Pf9Byh%$8c|nZjRY_i>#H-L@T#jCrwAo%V~;}wIc3Hl1}o5 zzNbv;JmzFNck}9~D{D)CUev$VJ~O!{4Y-=A$QSv&r%CHn`J;EhjSS9H&4<5xkw7^{ z27X^Cs4B!LAc_4>X~u#xcYb=wH>63`^N5~TW8{TUbtmETpgvKHXX1I@nPRANVK!`r z)k~lT?3~1ZZI5%o7^`oO+rKgvhm&o22oS;MZgsCGmf=!?Oh0J`JZ1+gnROjHdJmTj z>Xh8_!Dp=B0uR*B)A~Gu+ak+gA347<{(I(Vm$unobw04`_bmVhFtW z{806Ix8Kpw-zq86PBMTKU)l;oO|J$Bk8}5}`OwX%A&{73o(s}_Z1fSJ<29w!sm*iB z68C7RKIQ4(%o5}8oReHVe(BO7ImIE-*%)&htC8(07IY$=Wn1Y=)@`G;+kQI2Cuwf; zKa@59`9F-kLy#?P*M?cfDciPfSDmtL+qP}nwr$(Cty8wUz8>}9jgEhkk+a;fBO`LH z=f*|Nvi5Rn5*3$d&u#1|L}{k*_M{e(VNYwb;XPXeA|=vf$KqsNzPh8!Ee}+=>hd9* zvzH4=kq;(@B>9J=q?F$0Pa>@i9YA?87HpEwQbmwuJBc}2X?wo#I#;cEn1 zSFI&wlk+cx5R zh%rHh^W$%fjr<2@3jX%RjKLh2r?7UgdSNK>_kS^Isj_fCz}=$9i~qF>|LU3lH|dj+ zPhXgumgZY&{%eGA5oBm%WkYCM3Ij939{G+vNZKfja+fQg5qOoSvH;FF*d8^3LEHFp=d}+M4(K?g>uoa&SSzFmVBM$l$dvn6H_YjMyk%ZeSM7w-Xor7d8)psDXQxmwCf{i}P%{py}< zA+3V)>P!xexf2D?l=uLDSbpeuuW~;xRfDJq@+jSr^dT)`2Gq7Pj=`S*!GfEXA z1Q-ykSf$8aWH}?`^ZzCkI8w6}oQ#2PJusU7Wt^U4$i*V}IG%zAg<9s&_R3&9tMYng z@|w-02TM$LaX-PE{Q&e+ZX0wRLdMUB>uir&M*9Sl!pZwWV|e1r9bF1!bcr!9^Njw? z``2BE{{gI(pbF5bK}$da{T5&_H>)`Hi>+OsN2_uPv-ar!Za8Z-OKh(~uOtD=nbPN( zr%$$cF%o0}MVS+!t&s9}kLp==tVC;De7GBNi;8y{>F1`oi(>#8hMSSK7tl$JgN}3R zTk0fJyr88xcGI`E3T)i@Y3H49v0ZoZRsOKNY)ft)}?kV)YFpk$e1&D-#?>FvY__`G) zxWZezts%9d!L|=X)34J)?iv*eO!0NG*fp)|!xa_M(Effyl-=X{DZGL6_LLu{)-Abb z%}51wis6NjGh#~f$F~3+Nkk*kw4KKY(F)~IA8@AT7S+mtgORFS7#n?J%s?PhorLGc zfq%ppR^#s&L}i)sTNIaAMt{EH0~F&1aMg1G&me82iL6&2mA=SAaVfX-9nT=$xa(H_ z#ouC8@eI>I=IWym+SDmNROTG02ysMWS(Us}bzo|#L&$iZc=E394t(C79o}x9xk~5Y z3QH&4LnV|#P6Yb{Ha#*wP8k&xwH=0Yr*N>y%j8y(Otb`h#0)3%o}aqR-cZn)q>yp< zmcA<)_;yvYEE)%{a#e{hO2y787%rDSN@|>g9KIB56?CVvuGT4(?xg#+^K;8B?++vt zzNabQ9{wg>>I32YhFTp0)wDTG%#d$D!9LLh}tMA76UE_E;?oJkOLOWq!f|Os*76*u?c!qoo?rZB(%}NDUe#jw8F z2oJEyb6aSwaX3v%RC;vhyDMcpJb-{OKd>97@5-;t51|>8%)E>-qRO|p z|L!LEhw5*nXC6ZjBc-6H!6LWh%+s#Cha?c+Dx%#ENv-F-GEFJ5_pI?pH7Dt;a5PNa zN5&mj3f6$iW#RfeG>{FPv|Gqv65{x_3LxUD`EdRNSm`uJIF?hgD#j>2d zq$P_mKvMYwa9YS{Xq#MPRRyktOt2olqSFxAl$FV2^FaNUjz~pel$tgc5C62xz_QAI zk7{eHavUpUL$<oDT37jhKUrH##w(K4-b3@Ue= zi_USc3}v;LVuJ9a?OH#4H))oHomWLLR}n6%xs|N^u$DM}*Qq=?pI#75b??=owL?tU z1UchBC$&Bda3NA5JT0%c#~XeJ&Qt+{vp2($%@r0XwRY}ORq0J2S4mikRe~4D2a6A{a z8RbAnY3}rxefD3ci**JWKA5!rV4%Fd@6u(fMbhH_5ZwxKhEf4ao;=Bvpi4-##f7@S z`gDiL6WqZeOZI|Oo#>*mY2s?D?QfTMFVeMY`#|oFnD2!@bs1H*Tcc-b8acT3Q=PCX z6#Pls_v&Gk@7#f`=WmVMZk7>auZ~_>>EzNX)2OfBBa0e2<=oMLy7J!4K>AH$Ui7i zE#|s0aul7du5hb7RoT7J=$}kx(l#o(_K&ON>eoJ(0Hbsc&=MD&stCU{I%f$UPqX_h z@jcPAn23Rm^*n!BXjvA3=3S?8lcLBHa6>yP(sP_07SbT2O!vGJ$NqT@gFr6mY?)XA_H7#4Q4UV#P7J7JYZM-s!^ zeSrYlocURL(_Cjc#p#Wc^Dkhn#`$!pZC|rWNZ= zd#cVFxZ@)B6mQ!M>r*EU+n>#mn|7P0Ulz)r3a&SS&U(6d&Z`rM>Ta@QTjxL7wlkxx zdD4p$_H2|=3sa+mm^w5HZ(igqytc2MQ}3xcOr5_sQlYG_OjF;!t#mZW_iDfr*|=O( z8CId3_UBcv3|T0XE=Q3pEz9Q~=oZQ494klMJho^$8|@99FiJU2!}rl|Z;vV`0kltT zcwEM1Ly=ll!VVwU2$??0lz}LT0_Se4^)>#e@pw_9VdF3gysg!^f-F2zILTbF`EJN# zn8ndxe-Sn@ zSnYSe5wUg-@Odvj0HH7zLyWadq+M1|2yC~PI@pGBf?p$J!rt2!O( zrEtUX<0WzFtZZnl>`m;9tT=IPcXp4Dufi?AjD>{w&`}9Iu$Qc^uN0qe+yXjjY22${IVb}K!As2c!DQO-AT zwe_SfAMgRhoUjw+8B0AUzC>t*S}7rxD}K89JC>VkK8XkbnV)dV5956a36ZM}OnZZd z+GIRY1GhLk1KvI`V%-|*+4|`H6o-h|up42KIiR4)P+!YE&gOj|zDQER9aNa~Bv3&L z7)UwC-w!XgXblW~t3CMT$uIb3RQU>-orKo;|b0Udz*u&c0Yvl z0wBMrZy94-d<=XFJkAWhgeM59#|j8NW`$BnkHv zkmxv#ZCTS~pu)u+S+eqg7Qy#Kwb&Qnssby5fI%!&W2pI_s7g~PduIn5zYAnF|CnE@ z(X-r=)8G66BpEVTZCL6Bh>K%E(VIi>BdbNWOnK{Mh=$aehq`Db4f1nSL?Vu6`n(wt z_ON_(qh-pSb~70YssiyuSqU=;CNrlP$=KmzH78iQkL(x@1L-HoCJ<4X^}-6g$sq&Z zr>HLNC~oBiJ$LEAx9#2jKk|>~zo+0rPFH1dG|92zL3tD8?hJa%3xBNHL&eH--RFiZ z-6$RpZM~~x<1-glYbEe2TS|<>?G&#f8yNDRFGW41ZE%R5Q-izUnpNS7$5nR}{}9>r_z@vvLDhPTp~tTdU&8B7(=?#fBIBNZ29_1_K6*u$EEFyv ztC~6Rnu=CZ47pwGX(O-9azw%sk2y(Tn4JDdt%zHv3dZr6Dj6Z^{kaTV#-%!8_{gFD zTO4nw8U1Ke7m1j_m(0H8$cpPeo{*&6@M8E3>j3Raa{|*HDGx}WDU-m4sTPLN71Qk> zY%C95S!B!)HZ;_xrPVIW+Dy0B%3E6^nh8XZN%;z!6Lr%;YmwX+r6H3%0=@H(PD8OU z*dM{lh@~`mW<6`dz=Lu7+(>2mpG20%w{wEn$##Og+?kh3u>7|L*P$&YeP)LeIWtT$ z4L}n1g7&r=j-osL<%t5cV%I=_rZ*s@4O`{3V*C+)@R=*{aY|n)Rf<` z4`hRVNMS_50b?lVOi+OmijOgO=3r_hFLr7OOnp4itKDHGTxw+@zCnGN*Q9)^cN>Eq zSM}+^3{d5anJ~on_wA4b4faq{RI};;5*1I?A0;R%rLfgHumt#-=ZvE{E>x3yAilU# z?wX2x#yI~e$gT0}8RP!JagV%+>@Bv5!m8PJkZ=uK*$HmVVhl_~R<39D8cA@zS-|GF z&X?(fE~^6WusORKIduvi9?N_nkfHhe_{h0~FL`kKDMF6W*-rL;;a;7V;9daQtT&?-}A z{>g=@q*K*3@eB88hN2v_X#L{Ccl3A5{8rG2e0c6dY2-&BH5fpvxVu3Lb~^Zr41nq7 zWnkl~zXJWnmO%8eLKX0;;!r8Fs7xIVV%dQxHj52u?*8YJs7l7CmRMmoOTtWrRY;Hv z_##6C0XkAE^zRn)zy5nUKk zjGNfq?trq!K}I=c6#*dP?fI{+gySuRr+PyFX6@vWuVC?wr@gIB|Ec1C9(G|D^B>AG zhZ488#@RqvOxeoM-;1eytg+lEbpWbEi6{V;_ZLT&eAUo0{K z%$yi-Sx6aIfuUp!ynSRdl^w%&hcdw|;$~PXu9Oliv8v@WSFV7)GY)R5Nfk+KKpU@O z6+d#IbTz3sdPcKCHQe(mp7}mEOQFKchg&oC2!9-eY2!7hb0;s98BZ+?izogHf3=%- zMr-7yaF(-1;=skg_Ts6E*8i#M%N#kxK4ipYYsw)CX3JpBzr;0%aUZySlMopOJEg)H zQng-$K_`DcMz=6R9?4Vv8O~EIb5}vSzSX4(iAPEt=fB@MUjQQ`jRskcE?>o8r$HoCM;0Ledc512y?a0qn-hsksBVXE^=a5LoSWaCT#Tl2Ayt99OeH=8>lGMzc zaAQTHS%#}a%p7mW3>O_==bs@8+)zu6ET>1`EUtD|_a_st52WSWhO5^~+B>o-MP-RH zK?i#*(14P82!V=|0xNynAEpevt81LxcGNW7zrb>IYSmT}g$>lVDd_MxTSh>!m#^9& z%`jXOC4{OlauDZ@3AIpDC1LmSiIEJ!DzQ&~ka%6%@vIaaxaHZN8h8UK0O5u<98Gvi zhQfjhDKQ>i*&rS$sG!#+tE_?!RfG=Yg5KOj#ZT-nt=*>HFDF7NvE|G8PRrXprEnDi z<@deqrC|GCLP4?eT7*ZZzZ2E_TN_i+#`zPEJA9-{xvrLl(S zO%jL@##9rN1_22Kk?!R5v$)62MkVmlHacC>g4I=g{JAIvMG~x+(i1t`wh<5nz7^QH zRLmdA=U9{lma3?!v)SIhMBjnaQi@BIGL+}9_*e=O%V-r_-3*y7$ za_5dS;{XMl`Zj-yO6PW$QT&*re=~o?3efvtB%srPL|4Pra6@Tbg`JFO zhV~12DN5O}FV1!fP(|KhN_D76oc@*i*m?d991Ut7J?DnD(ii$%aO6$cH=u{t)fVwq z>Qm)FPopE_>ZS_uVAH&yTW|TH`q9m=e$4GQUi=AxnZpsL>J)BsXi)a%R~ulc-Cb6wP;BEvo?R;Aw30So#BMbvE`&IGFnHYdR3L8b@&jk))~08Om~+h0qfP+t1u z)jXr1_hb$&1)0k8Qv){{vaVkcMF!khUgcUmKegPCZZb7Z^9A6R3xn`pe z`FDd}A&)Kb26%GHePO=1s#yW=mO?#gcHR2hXwi?g5oNm;cShJy>`A|=mY>mTN(i%Q zMU>v5Q0v<>1M&WjL#dRin3v$1%)GwmSznf-F-j4F8HzGjA6W9QkUn@1#v`e!aJcGX zCg@9*u($#f2Sj)rx;7~>HYO>RlaZ5A$1QN%$y`fRnOUD4ckHe{;#ly_mk@0)p9$dP zF~F8FxZZTBc*NQ>QVi71Q*%t8x6T2aee#2LE8)B+JSl-b@y3hL&i-R-VWt1S zst`;J^c?@KLQE$7Yk}FGReiiSVPJ&hRd%+luz8W{oXAv4SYOu}c42LgbW7ZY69ck9 zP+Sgon&s?$u41*9`!h6nD^2lGlEhnpA1FxpU48fRFxkie zc0=#BJe+z8543%QyyL1ck+bkc$FQB81I|1Y^2p7XdF^ES31?B)!5x1s<@z?MU8BX~ zBi*~2n5>t-#jt(+5Qjq0`pSWh{k4bS2PpbYrc+(}`6U`eMVKe##My_r1e+g3-ya;J zsbn+Ch%OrF;O`^Yp@PM-$DPNj++$2sLA4HXx)L=vl854<4+>;FTQr?0EMR7QhgQ9e zvczeAr_WzmjOvVxXc#c_nm%+fp=B^91Yxh=x@ki+1CAbt_;l$KPBbF~4TWWxt~|oh zUgr#Ii^XOMoFz^V6$OL*Vw=WOr(fscAH`{%diDw5{R3}leJhWCm&qh-;A~7g|Iy#) z@K_SX`%%AcWBa$_annxv@XsA_}+qeHB^W~wL#Q(yRn-)*#sGIFlz7DqONq?O%P zms}6L6jdW?<9da@pirGcKD$+NXlUOs3DJKL54=$Az{8UMAb1B3LFa7X`>G$})OSur zG8`fVs9U?DrA=&)az^x?olTO%S}kxj5X)M$3J{o2V;L*`46Lt?F#fIymBT0$L(qDE z1HI3=oQu$q8Zjd2_~j1ckijc>!?Z;*IIOT0svL%DWUov+32~W$srzI}RkC?5?j0a; zjhv)qZOpPNWvyX^J^c?gQtL|RgT6Ib?jI;jk-R=+Q*(yK5+7`}SfPT1W`nw5-lB-U z>%XCv(KJd-Zd$T73?V%(ftd4)Tbv3o2qr^eytH$1^Tq3p+zoAe-*7o3$g@0D6fF1cqZTRvYn7JN0?2uLZsD9ne7H|BfDMEc^oP)&NPdyeZU^KzTqq{V}(#fqXm8kq#W zK*drrWuXYAHT7o28$;Jie)uDJMg57UK#HXOl++5`<|nJ~15=#)Bs@>V)@iz<0pdN8 z*`7LNC?7MD5$E>+nw({7XLXWxeQ!;)@@uGQX*l}j#u)XZ?{o+2FP-E7Ud}_WXmT8w z(>|D0woef~aDNc7A*&9O;s4wgrYx9FzGZ0ZjS^JXz6(skrcN8&0t;mMgfeA{;Wzdd zW(}A-7|;UOz)Xd(JVZI7%UgW(d_IvbfN`Y1;D;8;9^sj?{$m_7lDo&k{1a4*h9@z* zhS*p1V4!cXt;AczVB+dcQm-h)(kdNG2akk#`iWFULCL7IxIG?bWk#)w#sNw9qcNWU zbGEpI+hdBsujLF({f8M<-9YO3sR885Xwy3M-oDP>Uq-?(CbG{-_s_^1T2#O7jqHzl zUSt#i*(UH39+U{TKH%Mp?j#v zNKDgNikoxaF^(u|j*8c}$ackKu7dxaM-9F<8;6ow!t3cxC|^VO>Q$2;GT|Cc2(Mp& z1N!Mc@IEJuBf%Fb_RDrN$dy5ChKTS5*_4SU69*>cjW$X)1G{0}%P)DQH*k>GvzQ|0 z&X;liAcZiAIy+Y;I9ptnpCIgU^Sv?gXt^|fi*c|mT&Y=*x({HUFJMJGXJrrir41AM z55}nv)OA6gbw7{I84tOflA=c#9z-wdvW=BU%$Pj=GQk_BlUA`Jd>Z+&6?~~6Az3E? zOLaipcxrXKxj46Ko4Gu_@qD4uWPlYa9*A;YDd_wdMu&`n6WLvf=F|*;%J_s*p4Zer zXuV^byL`W(3tAJ?I8V?=K0qIdWHhZ5!>_RQnYhg2M`zLluQ5>S+0LLTI{Z$RV8fXa z$=~x}W(8mkARXRx*2>7|rsF6rxE~2c-8PW7oKw#}DPC3{Fcu=iqKMUHYMR0m3~MKA z1=g4GqXl=9C9O$gm$bC|##9pi5)@=}i!ZM$WCE||47(fEsWEPQV#f-MO1G3O3*w)@g7P&XkCpFfp|9qQ0g!Ht_=Re;BLh6c!cY?x5O)J}GrYvl@Aw;So z!s+CRt#~y~ri>XjdwIRgDu^sGqn(DiC(j(3gT9?%941;w)pKZ?`tvRziDHl`Hl&5_V3_1*Q2)@-yW# zxXNAz488!{v5 zDm4+=w0+!~kDFO>6G`sCsHEM(ZRWLG9n~#?N93ZRGuim41~X}fg4-kk3czv-nmuxA z9)Zo0$poaO%Rj=X8#*_^Xz70-3+XN>H|(n^Zl!0u;DZY1!BFSKIJN~|XfB=sKOzyk z+9{-enc87Bh`np9z;}@S`^;x};X-QY-{HHQ%z~?Hx#;4_7ys_C;IpaHUw68sFs&)1 z2ut6oPEjA+xmXzk6>eP_$L%3pX6<8bE?r@{qZF@Ln-MV5G@ycAAv>3b=(rkw7?Po- z0V6g?rEDqo_Yc(EmfEG+4Z8uk8h)HmTDtJ=RS_FbLmzxwT{{;J14K-EcVnZbIR)|+ zJ!0tH`nfDMP4LL_%;04doPc8rJf`La%SJ~#N63kVoWxBa*s86=$g)XGU%uLbWu|UO zD&j|{H?P`Lxs9%+mb2$Dmb&*=&&t|@I)MW*v5%S*Z=S!luGyYreSW!8wpMS-PQEh% zu?u$;f$7bX7kuIFSvhI{5Odqv%UM%0j6ptsZljK6oOM0sK)7!trp&oldy_)T-7sddR8LEr2`DO! z2JPQJtuJOgW-)$gZhVp4AL5*5JO(i=ZtadZH>*qW;WX+Ii-&}ZpRY3VUr&2YO6{yP z9i=0lEc!OpCW;RQ^|hl{HR=XclcKL>E60&U*(GrR=+Tg;fZ$b`Hg^zTifG?F-)cVD z$Sn1NMevIW=V1mGZ1VvuUY{z|zw|A)>g7M29H{ma8g7ynL=x&y|6cb!4GuOs7q&xY z+^0DoT~|B1=3u{8#LjsZNv)|NVQ5$k$`4$Cf*vvfiWWQegvt8O9xx0(qz{q~I;076 z7uO(7O;QJTzSC*C`^~mZOIkDzzuK#9Swy}0^`#{T3PnQW)|d|M6%a8w+p+25H9RC| z4oMUw|0&EMlp{B~T5LMy2VR@=xknkk7@i-~H^uERDaz}Vqco|wNkP8=2B+o&6x(v? z5H6%uw}EY16O#Q|aV9OzYJgj5il(!^&Z&2L418ZgEB<{y6tzn)9zrlxYUNg(q}rQg zgNAZ4&5QjhP#z01j+J8LcJ`Ic3F;?xG|I1!jVFW{lI~dW0}Y znVXDQHS9hB1dY=`ifl1Ri(DxOpEHNXD?6nL9jCJGN|Gq-d%g%p|M%?$ZZ<}_`>(x& z;s08w$H>aW_FsEPx0a+W5eIC~OYQB>g4$mid0Tv}yzD0MwL`+z_3oLh6ULvPx}?AB zsFenzsFUEM_B_8}rLowgipT5O?47S?>z});(f&|v6%Ky8&RD)44DNhalhj6u^&5kT z*Y1y3%a@PHl@*Jt#FhTko7GcvB3u}^q3?lMckh;!l*_1yVAJDlO@WmRKlP6!i9})Fx-9!`vIn=H8I@zDsooo6^S9UQP^Q1;@eMY< zl!NP?P8cXoVFR?16~U%1yLX3fGhea3vfxtt&ho^ZWA_7@J`I6zAAgTYTsN9?Pa)h_I5R2Q3bh+_!hv&7lr zd;5W6T=VxUc^!bkC$zEx<3tQZqCsT5Nka>nOtGO0$>RpOuuoSy`9w5<%QVM-D<_m8 z?QxMqVrdriz`=;XA@%xE%%9vJDu7SdiZ2vSCBZ zS#Rn|^)V67z=@|`cN`|(>35;#WU`wFb}|fN09JFK`WKhrr69_%XVGQcBExa5Gco$t zrKBzHFp^%#LLr%*I}U#QEZT?s=~_7qh$Ca?A3xf*qY+Yh5L_b6McMvf}JTt&N2NR5i~0E zQy2?*=h?3$&oGB=vmKH&o3dxmY7JvCC)N5$n?Y5JrY^ljJaMQL?hweU_>ja!w zAs#+h?Gi_=@dZaV2|2syp^`PulQ!rRVo~q2tRb>AzFbDe*d?sRt;N+%*{tu^d}e(tf;{u zndF_#Jw_;ucuF4;Z_-uE$a84c2EE$nc2*Ffk{9ycee9qu%m+wV{lRFPsK7oEHrmFl z3eUvo$*A_Bnc6A)_F%v-F>jLrr&L@D32AhTcU#k8B0@bCWbiRok-ze{{C-pHIyxb7 z)?o2SOpqWe1FvaEs{`oZ{>}8iZv#!#<%@NPMG6+rF?1yQ&UqWcn$gl}KPeG;`T+!_ zeZ29rh+})Jy2HP1tPyLIufkb`6H>wRLeD1?l`BoCb`e%}p}M$a*I2Ln6#J^oS2Od9 z)4dA=;fRFTY32+AY*QfkC)Ju5eUC4{O<~zuJiBx{Y4Ate>byB13voD670z$1Q5#+a zhKT!`+F!PBehr_4(~vwOi9A$*eTINI&nW%+G2WChwuu~~^^+koiJU^NlvJ_HO9&#x;$((~|hgH!P(TC_W- zfY`xyY4F&Uh9k0tVGuorPV?U52{m?cE^5%{{q)5YVt-uVE#~!saPde|Q0>&*B}}|< z`2OHC2KrB+ZgA2{^E9EXoxIc|*s(Qk`{!kWmT~)x-hI0Oy(OXwfW3B|b8WpI0ujhH zE3dX|_5tfL_rKYwXq)SbRM*q8?`*mZoPI_i6W>WO$w*SPN^kEXSVcdkx-@({-V)9j z)Pc7yN-m*8b5n91h!*b-!UCJ4jW|d=^bCe8X`|Q4k;n;pz(&d-|J_C3W*D?5d3+|= z!WsO$t904-0?CYfkT#aA_*FmODPd*IEC6`uRmiTzG5qS?je$@f2q-D$2 zxJoxe3Z z^nU#qhasi6&!*mTALD~cNOEZ%_qlc=P36(KKBQstx#h1Aa!e5cD7v;*jIfcQ4OkY8 z8g>U7X^Yl354wpD&(CKr9aqi7hkH|B9mT`+HJW_gMETzh@Mg(Ig;#aq9R+C7{#@+{ue_^gvhC?Ic=`fg%8Y-By)w2)CxP6s%NLC-oLM!8Lt|~|>*e8W`F&17cyS|$W zTS<*LESRp60v27TwAFx^sLmh=h{4j4yqroq@}s8KrC8?gu4?joBb(0}vO|IQ%U)PJ z9XK#_KmyKr?oK+YrGe?zW~T{;si|&Gx%xn)ihw&0;E5 zLfo`VI;EH6Tq{X2cLRL@MGPgADCyL)ZhIkHBYkqJGHU4Kj2!MWw!q{pECY` ziSGY@#C9eQj{hutUdGmrJ!-k~_6>e$2{k|oe+OfY+_~NX8QW}rNjb_Fi*FLHHQNaN z{z`bSquDT=jq2(?@oQg?Cs8Q)9aP1~_frL6cXxPvJ3iiv{=o}7?M>aDpK=Am9p#1O z)k(wgx*;6go0xDSXV6wh(TJ>ca8ev6)DX^h!N%a^`d-x zdw9%g@FA*wqU7Lqy%hH*uiXesJP3Z}0zDPn`5`gnjI7o#E#}-p8qib5=H)C+N_Sh? zEZe~JDjrhz^ItPOJD86*$l2V{L}3-pi2>;k+}8dtxE^X7uI0iXp?0hT!Jmx5jDP$t~pp_Ons|yMO34*3HveY!iARPIiD<`s^c^c!0G*LEu zJ4q=qrvk1B zGz+jFz>|Q88nj?90I5n$i(KJE9)TY}zGo%@qQvFWZ!Y!Z_1aX2YlO`Dx?ei$+6%jO zvq|7Avc*ZL|HD*dl7EgTKb5zTXIn?Q5Ov-2eM-mo^IghE;Xn8-t-ZJvGW#ZL4T5u| z|N3E9Dj(9_fI8Ep;A{0dY4`GA_fn4!yB9qy+HZE`_Ng-Q(JDISXE-Tlh9E@#Lo}}> zAesBN%jZ1LrsoFt40Wt4{Vl+TG)MynfzvPNNM~VMfTBcE7mq^ zJ;w~S0@RjS<@{wVteJ&?*LKALLI^fw0XwwC&E%`IwPq=r*2=qQaXdv3w4sNaM&JHc zzt*ac)yVHJK*FU=6J(ockGgX@W2JqOwG&2K!8VQ(3h&UTOxrJ(bdGpLv8%dnY2j>O zdqo~xk(Pq%Gt;lsYmY=gd9~9$?sNXA&b;yKic9qTAZ-3b<=%u8rN~jq&&~#}NVsv! zi3R<*z1$U)lf-MHWd*c_oldEf)Y4~H+?*R->G?2ooNw7MjKSf|AXN}=34+y!0>>4} zTfoY{@$%BMYEnaAlncd0$=od`4LLZl`v zRBpE2R9;$|OzT6IQUrd_-0a@iW)k=mu!BW08@iY>pHGYW8ou6OK=P-7L7&ufrmETUAx_D`TjjuG5XY#jT!$!ytjrjSkx#KdE z6Jj@hg)Mm^WA)h()WVqdhba5?QUc$!h#^PY#lr|J`1SfROHdfGMFyg5aGW46kQ+a| zpS;o%MH7aOH3{JO#yOu%AC4FpId~J1Zi1I z=z(*C79;NT`|bhhFt(q!b)EL#u}nDbX{=xEma6mUr|ht)xN*zh1Idf+!=HpT#gxmN zH;FHc>gJ_fDvbs>MV0f^y?B2#`OV87A6aJkZm}aPgaCG%S&(HJK+3bf0GlU^um)IkH}y$nlnu&mHK>j4ggSzDafX8*H<$7ls<8f;}G>*s9`O zs>BclUZlhjW*et4T)xy*N_E{yy;P{xzS+3mw`m2%lyboy46MOvbk9IJOwnprUyIQkKCqLvM+xzec1H>D;P*!faI+8p>w7yPW|CR?W@efZ`wBPlnx9l^ z#OaR{|0Wn`s_A7W_Irc9;RLchv7eZTr_Ks#3B!JQMte zE^e*bp~h@cf3aO99*Np5f9IRaq7IweDw$!0fE~xQ4#bUb+yLq(H$n`&kxf7Te7@!- z-Xi*So-lePKb~TA^iMX$NV11s)q!#OyB4^f>C}u5J`$DwdR-F)A!2a?-YeY-mo*$$ zwJXRGeMo~e?ehT9U<~jl#!QbtMMH1nCHhXUbgO~wJ{quE5ALj$ZRYH^C921s>|i&* zHp-+fT%{hUta-%nvc_ZX`eSrNM|jnq+vjY0_0D8|0F(^@g;XnPOzGnp&n9UXwh!Vw(YnnK^A(}lu}DI5 z@DaIUE4A}KQ9FlhdD>D2`dYb+_F{u+7WsDg&^?p> z+3wQjEYqu~%!xq!0ZJUw?~RgQgdlm-v4AC3;Dzq!yt{L=TICAkac7K3TyX8c;a^o1 zPNmSLie@jIg(&|`-qW)FwX&p}WorGB{;a*(+@GM9Ejy zHDq%h12Y~jDAX>9Bk<^v7aTeTdMv>oO9rjh%RlfcqWQ7=KzK^KGp5I!D-I1p71r4n z1d8K34~f+cnw7Y!7FerBP*nhECm-?fq%)Pmsl?_(&B>d3F1Rxu-7&oh*>^^X_Z%q0 zNR)h~-O9qSdMPdnq&J2PT7r-f*t%!RXmkQ;^vl}GlIAlfYMg^GJ0-@Ab5vyT3{h{{ z)1a;P+J`Vl3UVRl`?^|+N%4qbuS>C0AJgm3&_c3;dgD!c@Ui3;7hxk*Osi4Z1IlNY2FcDf4y&1K5-GP9=!XbE7fCq;5c%0EO_#{6Kf)1I^!3IveVcd3d%pw0A^AYs zq3t!F3l?gd@H|8P>WTsL0ihXKS8NSgYiUVD#2>l(8qZFtvpO0sopCGxGM)%ZMWBqX`? zjYNo_8DO&29Hh#=G(v(8^F~0;b&OQ6jUC-QD3qP@A;Gzihat~w4mDp7wJcXRcyxM# zTb7T;r)#3m?4@6KL8GEp15UFYjgKvX*9x-WrWtAJ>Xa-XiUA}nIVlCMw;j{Oynl=} z8LxB;6AM)356PEg`*j?mVYQ_#aqRx8*hH!?4dj{5id>QN^Iw2BqBlEg#-AWoSKqbX7R<)LT*6GJU`kjPI07j!0E0X{8FU}w@)6n6vI)2>}zlY zDG~H!NjM!|*`;6Ibx*!FvNpI}%=7z4cw1Y9)=#Gmu{kE@H^<%>MQL^1!#{NchZ3a! zYu9J`KYQSqSpKtwd|Hd6k?0qoajH7DE_2%k;-(s{yDVngqzv1t)8b+wn)&Ys4qB(0 zbj<>%h#S`AamgY8KkN|LZEVmN_WpJ=_3$)RcXk9f00Om|*X#QOY7XumAQV0b?qsj4 zaCY!CH}>W_?w$H44BsC~i$sz-{35IJpL4boi{|{s56eKzq zwduBP+qP}nwr$(CZM#p~wr$&|jWazrGjs9P)PI>&Zc@9Fyld^O=c%ucn;xH0!voQ> z(Ek3uvJ(dc!IarLwr`ExSwu(eR`{FTEQJy4E~Ps~;W|<(hxHvc;8XpyYcWi;Lh(sL ze+$t<{L_HsoH1isE2p?%M82`RhMbyjLuvX$D%VV`%*Mr}I*vxS^g31jfPPZvUZk@c zQnBVSZErz?@@k8fOL}D!F14uUwpNzNLI|=5VjJrAgO^R#0d3nM5o`ao{z!?^iky}O z6&c=lZuxoqx>rFgzeL*|C{gErSP?4PVbDu_U2_!_UZUF^{U)4x%#AMXlw~Z zQ3)hyKK4v!J9gHXsV;`__(8NSWi=O9nabZU!Uk-R`iE@a-xyho}&^^d_xU13!fL=7M4F6PuA7dcP8}>LdN!S_;Qk zdG=at6J_oNN91If3yR6_V7S-26(Mexr}Iwa(HPS8#IogLT*>Rz_(sARS_R$ThORab z1RP>edhOmDoP$6meE*F?86N*Y!=klZe6EbZxS~cRq;hIKsyQ8c$|Pqnr-Z6b*chf|{yd)U;vPU%klu z3wzF*wd*f}utZcvZw37ux&vSPm_;Nrbpb&*c6{Hqp*#zA2*+!(2yzN&#JWr9n$DYx^4a4x-{MQt~yq_&xk zzK&z459IAdDz}=)60UpJ{0xtXZ4c9fPf@nJE8gZ0Pc}-BI;{W3E2jWvU|d$C)x*sd z_Iv$S96Ar-_&FXno3fX|-!?W(4T2|B-UK-d0J%#zacDgbT&y2^ZY>e0t0>ma6LUrg zC*@pGH8?oDwrzBId$nPygqTrq(<4HtxZ5dB@34BUpLfqfPijj zZ$0*hpncal>Sp0eLp#h}6drJ8$*w`lF?BQMC-;5wDra0%<>QS{8WRTS)UmsD%d;mG zda9cfFi?%}T~Wiu%pcuFV$DViwb_dPj{fE#BW>kV8&%Ra7Z0`!BJ2_!P2kGLD7k#ZPfE1&vnhm-K%ao@B+me%(m*M9uhJ@&QE0}PCLaEJ z^pJ2KMJA|U#|TRN+!ZL5;W!ZH$b=W*C=$t)cO|JPdkHdPB~hV{n6Cgi0h)Wkk$ae& z0>%qq7p9LMIRZt4^()Z^QUi(n@&h#R*C-Un1;m+qQG7wkYUum}&Qj-@FO!#i(zy$e zFXj5C79M>QKRsw;xl~HZ8x{-wyuhRDaV*#S)RG0KYh63KdUz6X zT>{~UF0n7rdbE8};rLmP8)95p%kU>#7CcdW6Uh*TJK`zeUcKUZ-iqfb+$z)s%$?!z zx3ZKKgF_T^OCbmv-R{y`i0F8P;bBNC2=kzC-b@ex#tNc{c6m=J2X;q_sL<|I$+?u9 z45lW#C-6cm!9Dte^alKT+#Vu}0p)8@-d?0d!LaS@lZJ;<$WgzW*(()`f)U%5Ef^L< zit4A_4>L~EP&=$qk+2nH)=>cSq$E!<2NENcp8<-wNDNkV28aC62&fn$_=A>f3VYc% zq-a$3dH-C221+F<2XYk0qR~doT~&;32Sf6tkcZE6C_m z8X*sWVswV(kHCjI;W8D@>Qu?5mg^PmbD%|UL}zKl*nzEk%%OyA`|`3L@zTg0gWs67 zRnA@}E34NbSKf(bO`dKb1{UBckf@w7Ys_VURu%D2)97- zX<#2K$%L-#T0xYyb+UIM2tVIEGmcWq)nz5Tra7eFn!IFm*g1M5&q~M4h zb2$CCCqQ>~C<}fDIL?j8!<&hVbd>vW5UXWuW_D57y>2KDXI(>pG?TcFyCiTs6 zsvs&nGDQv|s9^F0ryOFsvDgqQgxGshkKMjLO<%dJ%MtIGF4yeL`a@E(lbFNkqGcuE zp3yU4yt*&N5o&lLdNGG#ZHi(}yV~T5C)Vp7?a08SJE&96WpuaB1^~PME^BNK`CTVq zoV3}knItLX@*6|qUDlgpS9Umy)#T_+0={6k6HD>+s@n17vDLzIYxZ}l>=_H+>Yf8< zV~SV$GHJc`XCue9ebGe&8-&SsYR*VCtw{O2_LLJ_460-}0$M(#rMz?1x=| zi`b3EUZ>-2SA^llm(8=8zB``3k{D!6+2*6)*aX<6m(XppQev48NOKUUkHqV(7 zG7G7)Sr6A)Q?>OBA*bu~t&pL2|BI{kacWGt^Yz>;xi%dg`N-IUw6rHhIn8-#>03}L z>F>&nK#Dm^$z@LQ>hzW$IL!?&q&v+)i|NAwIp~2e7>)=$y~Fb5np~N1r=+ejakcG2 zYPwMR>^1F*Q;ZfYSgskINMUBy>3ZeLM-Zk93D}$0Q_vBKTEX*kV>r-p2pp}*SNzAkC@n^jQK6uc!8#*6H4o~9pv!JTI z=(VK+k7jJ^b_)%^F5zNNkkX%Nu}6P3WjDJJh20K{7ut1q9Y{e%%q%yz-IpMgW)>G7 z=~JrYk^-`I`T06d-;XAha3%KM=?ON__aCGr)^b@god>mu^_yLoP_5Fa>D=|XB;qJV zWQc=l2)CVXNCbcxuHu|${@QgDHMd0MV_$lhz@O>D^Cp^0?ha!o2q^QyAb7PfF(F&& zhi@7h^W95pCsz?%g27y!PoyrS;nimYjUL%)54!QyQ8r!BEjrq4e_Y$_jLdrCYPeF4 zuCtFYz*T5hG_z}|L5z5&93h4&;OtuHw(#F<25xaRn5P4}A%lMOvjn$}c+ut6lmU6W z8%DhFnZlE_86e|sifcm2#8l(%6b^mtGHE@m;u68qP59i1GO`?-NF2 z&8cOGw#Z~09qyd&T*S98^)$xQ$7$3J@TnuH49E{=z3|DN($$6QV#nqZUQtDr8O#6u zac$lLE{Fgjr1^8y5gS!BsfE1=yY*7n)sARc1=-xtxZSCI_t7(kDq1>cM;N%X-rPkH z`e5`B*X)f}GERU}NJ-Y^J)g2j$aQ2=I~r zqtflz0JkQ+goVLczkL8%*JkUreMun@40tB&_%-SBRwPwiny>VOcXd^hBpqhctd0-$ z{gzv2=}T?t`MasSB8a#g&TlVs=%MV#g1AA0)*t)9=!AH^zWiS=RHdMlt!ay6M|XRE z13jy?H>z9^l!3Nk`HoNOlq-;cgb3*OZG(4rWAs{AYe1V}N9cFHy7r`X+`nxe%WuXK zRZD&X!qM{Y7WUefI}dP13{|(1RLfLtwGAiLF4iwOR;mF3%>}g%9}`W^*Cp<^U?Dus z>MyK4nn%#|<>vHc+I+M)eT0hXF~PsPhwS+o&U{v>y;F~tj;YBlMBj^fexyh<*mb_t z`I*NWuU%AySBtDt7?lx|K5EB>Vwd;Rk#_kKLi6QObSCp2>d(i=`gDJGKv_dnPaKpo zFgR|9-FYljsXIECs1aLm-TXeVrGA_@N^d^ssJml)(iijV51|NBvfMPE-?6k+8;Hc1 zA6g%nqah-UBda63<~{hFRP|7twB||$=cl(2zo>U48Me2aQ2#zi|0J(SOBs=|g^V~H5XXmco`mCIguH+dOPTen^ojhm#}r<#uh$)8A(@v9X*;%;WT zvOX2PqaGu7vqF@OrPD0tZt@=b{(u&Kge)NrS{p_%pWqYNalrEh@@2D0kOv9lCMgoA zXVW{3#Ir8V9*!qLU+g_pu@zgh?!qv5+x8Zuk47NCl#@J>0Do^9H*5+=3=4}H;;tJ zHRW~W5|rdhLgQHaYksP+t`_W=k%9oBj^_-S%);_tI1eb@kY(54OsBZ4h|;&%x=FpH zPzYo(m0hbx`Q~_akCjPolv{GCHXGYL!OA^orQVu7fjkT%My_mRd=`t47ySi4>j41Z zic}xDMB)|Oyad;o#8P=qZ_@JAGvwk-9G>cJAyu+VXY3+pp@37&^Lr-Qup~-YC-oFqfiVy?0-r*b78oo`GK(qI zI!bWIE}Fu^)IWqaE+Scl>7Ud3*4j@FdPOPDQ5=%;0#q@~Si{HY=FZ+-9pdEsf|?6Hn--L>rkwlTg`q|{^XIA;2AEd}&C|SD#oJ?j+*ev9`=hu;&X-Sm zqJH6@sKWhierIY|cXn;YjF-@24mnf5%9 zI#aXN!!so`TFZT<+4c{5)GP#EWHBN{q3f5^NAkrFhLWTyM#@mRe9DI$Go~YVBpFg&M!t`rbFYRxH)Wwx|#Ndos##=V`9;avZm1WS$M`~bZ zTv%RC^*5H1uA*GXU!<-FbM;W4q^<7j`+N23yC`&&mgA!Hf7*H{CVxLkx=WEtF^tv2!#z~`!EzLmVa`dj;AL=&=RAVi%Cpt`vioDw(G~YxUD{9C5Kb; zqjM=bPVyBO(*}Vn&H?;GT|T!dbdUmpX zG3KlbF^vYoo=gqij3;3;N08WRMdvB6)9pqw%u&i^Al!W!>R9QVX_SOxv*K4iD?J5aKU=8Xi&`4*lDT8p>&Bg2@Qsftl27^^u;`pwayWLSUpfLtyKjVva$oBh)z!U9jW zP$JO^XK{%@i3V~y8wC;uN~HO?GdHKw>#e6}b^s9|n2(h%-#nQZJr0@C9=r8BgoCg= z2kff{K1V3`rm3wlb6Os|d!xHCVCEEr13b4#KDdQ)&LV2MN%EyZi7-MH0B)U&K(UZp zk(gmwSyuyH^sV{bjaH18l);H2lrY1^^*0K2#5fpp;+HeJLmqkh+d)zm?SNl!WT7^k zo-Bg3&$dx_YBRBcgl3u-o&{`8&NdgJp{+H&?LpnjAV)K~yLdzx9^{AZ+%yG8%zW~M z?L#6LMED9~Ipz|;`_q$xwFO3?-AdSpMiO)ko>{55yjL*&7zgiCck+D}K3?HeJxtMJ zJL(i$Ce;LtWBa0Th|2BU-`ixGfCmd4hjcBT+dWvcNhUawYS{${YF9(!{RDmjS`|FR z5qupB1}djIJ>kwBK8?j|o8cx>h zNXYC+k{Bo}A54vhuM4eh1ih$Y1B^D16{LnYL^qs=Do*O5 zhEi-rXEiX#bT<*q>7#32dn3ko#@VCSnP5-u$CfxiXDoLa9U;t_43AHqVT{E3OEUD^ z`mpgfr%|ZxXG2Be^(!ip+Xl;4o9^OW9uMkcvm=*_jnQxNJ75$v=?fr=$tHQsxsq(2U4 zQxc{pxb(!OS`vi?ULUuavyFp6d2*?YU0k|HmcunXq&<&OYlEStk14YP!VSIHLAo67 zuWz-gbMOq9l?<}M;GQ9ISjb2Hp38C&*3G&FjQ$~x+YB$w0!!JEHbK?+q|iQW^#Yy- zde_AIvp}Vxf%x}A5W>^Meqvsi`KNOJj{BM6mM~XkbqcQI*Ert2r>c16j4<3h@<&2@ zgu$T!+YHG5b6d`b*yaB1{?O;*G5FfEZ74T@tpzcmh8qdm%i%6Chj8+;9I>DAJ`6CA zzFmOKS^RaUr9UKN?Ztu0fq$~=0zju<$+A3wOZ@!4Umo%C;1?r`29fUW_VoQeaqYi= z|9vN^@P-ZjdtAJ$;FoX*`1%<;sHgX*^k*TT(TqOl&9cdNC*<`I1zr319?zzl|C0t_ zmvliJOQ^ZTl-5^*0F=LEv*a+aj6(iWKN!x1h5f-^K2Ft9a{4YfzTe6OM_$01Oj7=6R-wd9|`t~0nNXQiRf0R3{ zEX@B;xufFgU`jwQZ)BzHVoN|TN5IIy@V~XUPR=d_oE%L5e*-QP^Y6v~fq|aUvi)TP zApPX&3livW((5D%JBU%z-a1@3sok`Zvk8M-!pGlvRg}Ulm z9aTt*U*K>RT3*AWLz*m8452kg9!zeDiHd1Jp!%jTfYm91~dPyruy&W)nA2)3z%gBBbQe zZMLx#P;H5?--dX<&oa<9>joG!&li)BQT!%O5>@e6=O79k05_+w>2!UuN(-Byp4%0Ok$A z`Ef1SBb{jrYMA0|d3$0}_2RvM>S+j`VV~4%qF=ZZFe4WLb@_JvF4{92yhMS_ z=Sy{4axfdb?|uIk_-xt+D^9}SuyS|8!ok>C+{~lj6>C)&aGb>{uw^eqA#gF!%{-afOHW=me9x!6ISqNA~-Fa z7eao>nr6}P>SyrLi*35of(PtNRZMpWtr@dg0M#Jzwx;R?NcL0LrDi1ZilOknSds zy-gDbxU8|fUiqu6xV-c8YS)+{`*u~?nO&K&cGZ=^Q){ZV+S#3Y_<-V7xYp{^uRf1m zd47`@U^O5e@6>`v$Vp4d$GHd)iN)w2)9LS$^61;`?b+?>ujF@1TP-xl%KM|W%42GH zFVu%u2Wl=*A`!BA8zhPi1yw>vW3V?w@BpEWmj5fDr)r$chzI+fkDWF zX^0sfJ1r~G7cSFkkPUHZ@|FHIXJ===Xd-?ZU4BwDtQhN!rPj;mIKshI`=~rlz<6>Q zzo#?dhzXNv(jB*1ePk&~c*-ge9m88P8se}-8ZQZe<$+Yu+p9N!IvG57e+kHS4r~=Q+;Lg>nh=KLZNUTxpu-1?^>kW-;Ow+>`Sfr(-L()`P}Ig9x0*O$BRYc z6k%VA>ftwCM+ERVj5YYRt40ET6o?4*v%)U4EzY9K|o><=BjckNs)K7_@_8;RCUW_-p(q-u=3j zgqTs{JgL}71L86#f<~6E6X*Hi_I!vvS_PpCZGSpu8*H+_{@ICB4BLG%c~`w!lQ~=N z^mB?v^MNt3ZLGH=DnMlz6KnEzpX$iL4xHZJlcH+`Y5YOoWxGnmz6+#3Ih>3?~2L-5M>-Mpc&;b4s#5rDm90F%7 zFDy!{PKB@%fWcHxdyQetr|A2GTZavUKJ0ePq?m%b)aB8{&}Cu@@wleR!LG8WzZCuB zm1lOW40@aTOa?bf{1T_NYru{Mn*t6LF3ITzp#>pQwlI{BiemdtP?0yJm4Mx{@m@am zH{k8Mm+gPVEjCt;|0iz!f9H0Xf0NmN#i{>G;oSgVAc>YYV2CKi{KfFPpZ)0y?~h~; z=ZIhr|MIJPJ2y+Ftz1a~V`E4gCaaDbF>2Ja;rn8|KUf<2c|I6Y%pPF2FHs!2S_2P+ ze42hxp}80$xz%(@V}^s{BNT9D+qX28bnS8!;E;gM0;tN*YH7RaRiK`shqpAjf#868zqdTcj={ z$c-+lkf;^`H19y)Y&pnaP01i}fYAm!bLhz|GQbP0gIVbi9i3=mR4>V0rw3*Aw1sFz zq8kNvbd$kCXA^qRj%%d1&M9I7m0lE7B}tc13?VF1(VPal3Ozx?PMpctq;VBV$;(tp zqFf~yB=9~K$BI%xhE>rWJS4`TP*?cm=S0DYXEn%F#X}=#)bi>#3J9Xw9ePQ>gQ5%Nawade^flM7h=ScP=?MNaR>SIZ9CYEJ(5%Sz5Jciy*DLES5AFLqT#_l+G1{yR9%0`k_GmVyti*Zi;}vbO<9Rd-Y=E0pW(MROazvZZGaV2_719x%kQ7;!x; z`6@M;LXPLwxOE0E$?MO2X>315N=x={%LxChYtb}7|eAHSv6{W zYbz5O=wxLROPMuQ`64!_k^v}vFy;j{gYpQ$_~l_Pi(FjsoiaG#=ttR)K>YbBgE5(a zJfk6h^cM_COFTIZ+7WnwBG(a2MBl%poX(6G7?v>^IMN{{e;|-C^SooPv;OLsA|@$< z7PR!F2*wWfsBS@KgOck0_1%$!=rA&GQ=6HEiJ+NAj^v~np3npdQ&7%G*+d$Ngv>+9 zxk$sb2x=Au4T0sGW*QXKJDhGr(g?GASAu+p_b}8s#e*`*=ujcmZZaFi%7cQ{Wu?7@ z10w&JxnJs%?$F8+mX_4_=d`}z>XPu;dk;#Df@8+%3<0U6)LS%i~K%? z8Cx=mO;|&X`lDwE+)t9kcc@x0?vXUd7&f7TI9;+2S*M@pXn|g;`v+=E{=~h&44jzH zPO*L+d_Ss&mWTT4B!EnJX9&T1F)vT2Anhv^>OR1n4_(aI*^@lC!p?C8 zs`K1#a&nO?e|H~UA`tJj4&in-jJ_J@HIJaCQfqe39n$J(4dYH+A0!(x;xn7FJBBC7^0zlB zgeI0G^$sPJ(SWm1YZc#uq@Nx??t2buk}Isj==bpazHzty#rg9mUf$ci>7T#b0)S3K zVZGKLq=(OqY_34`qBByYfCI(5#RNUwzY{1b`Gn2#P>OufQ%+o%2MZRh(lX2gD?rFp zfIQCm!{`H#lv9fS%crz!Q}BYtk1>YQ?R%OBm2Cm^Pb0kYqHVAxiirP3!iv|WqIMqV zI2ixkjum&7EGjOcp<1X!u^GVK#H8!oPFp@p82x}@?7}xc<4^Wc8J2rql@_Fc3)LYe4`AzK=TFFy z0of6f1IYa)ndz332#7TEO$~aAvrSDnrljU3=;XfOEd>PlJuWp#%=)G-tIq<`yCa>s z?ieQ7ez0P$W0!b+H`OFv!Zm7>u2{4?xyw&E4bGcu>d9X~@tJ($23AA&%VXXfI_J&- z5m|^FO@bhnLY1U&f*w58Kb|7R_$o=g3@LV+mP<1gn#7J>l4mDVonjgWQYYc0geB}- zk42DM9VTDCD252YEgf_4S^lhZ#W$MgW@QW0e(;*VGQ4)g5HHw{wj`s)moG9k=1WFm zNVxX^)h82M=plWbovV%RA(|cQJIQ|^GbrcFlpji8U<=T%%a_{|Sm0OZG_%W4%|0?t zIZ3AUTm5BurbU`;n@LDpJEk+euQ-?3+R#xWiK#UT8WTbStWL^ZgydP)nQ6JC%avM0 zcs<}86ogn7L_P4ABni+g!U};N;1L+pK#Od5tZTQX90YE5L6sOtVdj`TsBoQdtjug~ z%DehbaxWl-Td>dQu4bUys<%(-uBN!CT#}#Y^0ITMQIQi3VIBQ+fJrd+;8|JciXs5? z)unpyBK}B)Q}?j4`NC6`Rapby>@#e132p4tz;dXks=HN4il9P5H4PT*b}9KB0X{f>#QZ>#4 zcR&9O_~wHxd=h3@Vcone%mn-{_M{A?!}OD?`WCFh`ulN6cWFK%?_ph`rfS>ui zN2OF&9#hah1UB<`$;pFkb#p5F%hO0$+49@{76arJ!@b(`@b+EzA#KkFk z<7bj3Y5A+}_wSMRw`uo-WAA!cE4It^ks{Q^sw|Q`YOPYpg4xLvIy&QYL}czO#O+t7 zyNK74{#KQ-sQ%!JgYV;p4xaDEDaaswakKEM*Ei)Blq?7_6gNpG7!Gi`f#7tV=e^gV zBuHs?-kxE6)jmPZ60(M_f-uG~R~WC?QWZFz!F~`YVlFSCYJ7ytE?$9?Fr5*_J#iPO zHd<7!aK5i4qENsm&uxU>Hf*ra=P~@%DE1*nt?WyEqExQ9;N+o@i{Yf@18FxDk%=COUGPe z&Q?}yX)Ifyb5FOjVQ+Ui9qnW{o4vhX!EjTJi%2lsR?A}LFIzG0aRpb5>#XaI1gSx} zwYU*PkC52GBA3-4mA1kbDSE9U4%BPs1O|RWt7*P}Q44jCm>eIa(NTAAGD;ANAr1x= zF7OA!sQ*m*p)Iq+H=ZbuGpYNWP2!3iCo8M?c+`9Q{i@*OU1|c_5L{A_(0eQRCLeZ7 zU^fMJJy}c*?pzMMF|9&Sd`MoD6Bx#%#i!?VaAYxqxna3Sj#%`2p#tziP?|COK4A}X zU`ZAqOch+0e%07-uI%zW!qUBFwhpH{v|DE{i2_m50ArFl&VO|?XG+!kIq-T=;k**H z;l8XeLgRN`!4|G2b>`gtA5BBMsYnvATwFO#V7}?Zj^@M<4~|e^@K2V^KgygMF03Ta zX`LfAZZikhB0C*A%lM`qJPywHb99|opf^du--9Kvb+6ZOv|+Xe?+-<-Sag34b+{9M z#ah*5N&Ckf#9hHR`Q^GEQ-Y{H=ex7z=IScWx%!f{9o$)Y3151akfw>h~GyTy_}{$_o;z5i8VvHy?BU7T$H*{~kb;cmw6 zg1!BwRyjq}OWyZBjWMH{=wzm3zD?R9Q_cGNM??U5P1opM;w)09JI+_s?%@X_m>})? zF(;Y(^X2sZezK+8rJR)nZZFUO?_2Z;{<1_~(Kwqk6r(Idj{l$c$62-#TndvIr9bDt z=cl{3nkVl$D`fIg0UnsWhXZ`63uvTC5hA~}x7Y8l6^th}$u5r{ETMuQIm5ncrI)PF zeB;~Hd~lTEu&-ZKuy-f-PY_N`o&0fLN4maO$EMX6o`1bL<$%x);%`l32O1=g)-Vb0{ z>lhv8wllO|rg<^=R~@WFFhtD~=Ho|n{hoHr0uav^wp&A%W*92prSp|)<@y-ynD%O@ z&!yG_a+D>k44E*E^wSBPNg?b`QDhT=DdwQUBzxr_JswA+qk*RLHNB>4SAc2xZH{K{ z)t#o@2X8ex%?GPc=KRO=CqAAcPyKnCC8_x+|B_%aLl82Nj?Ih92H33Y?#ePYPa5?@ zN#^&^OCf1L>^7!8vi>pI+w$A&IES$zgYmn84b3ij1Vj7wH3oCIX^Bb2mRK^%x~1oT z&aBe!MOmEG%WO2=L9C0mPEF#ECViTlZhWS%Ufn30g$m2}p(XF3ozZ69*Q2sV2d))_ zd=?F8bydatf+&eh_++U8EgtGLa zwCLfD$pONs!Lc{in5Vb{;ed0*QXck z$K+n!0rF-YMGCM3<@O;aBhg3*w)?~c`8D6PR37EF0zYO7!nH&M0cTSc40RON!-pyY6Ag+DIfle_ z>_do?MLZ=%)Wy?&BKs@lkqI^z#i=sgil=c^ktQ7>^;@Dxh}W{ zib%$=?vIX@Yb>>`&h_@=j7qL<70PT~bcU6uNnIqG7+`x=+RBNVUS0afPL{%o=WSZW zCZ~V)RCQ_SmAuNpI^{h5E{BcQ^NEt~HT-KW3$CkcKM3AG(1l^?))6CkGD%euL zfsKVf2m1;H?aP0CY630L)f})G6iTk);apQaR}`;bSF%QedcE-wlw4>b=bQ9A>sIYtl#pr2RIOL z(${j6usvlJ%sF@f*mknm2s?!R6=Za$Mrq3jRmF>~lQIJtRUC#*8(I1~3LEDs06nMM zm2MJbB(Ew#IxWV|cDsFb9L#dmzyOYQP#f5l3rA+V*zcG&M<{j&9|w$C~lB}n2osfr}q?ds}wuV-u^eW~k?Q&cqE}EMbc*~O@teVkSR`6WP zFoJP>dH$FfSg2;eBBG1!#_|yw2P}?=DhwK42UDLnwGJqv9;UwLwD@Q3 z*6EUChLb-)MTU#R(54bEk?{|XTXLy9ek)6-9%sK%xhe+%>h<^YGb*_>ZF*iVyIh)9 z6fb>Lqi1Q%4)&(A+OCq?_niaAiK7jUnxbiRi;kC)PL;1z2RIy(oJ8n!+if}y$OzuG zk`}cHPRc42BY0^m?Mhxt8dS>fE=pb)957a&Gy|N)7t;Vo!Goc&;DdAd4&VcRYO4Jz z{VUJ1{Qa|A=3^Rf#mWiHNlM$xOrp=qw0Et^;00ugl0lSj-{SkOF4jH~8A1~jTU|slViF82}UX5@s(Fr;e zo!-Az9fGE)h!Dnmw`S@MIYGda-DUS}{*<^s1jgscVJ!wu2cF+3W=V9Zl)-t5{ydBN z);R+Nl7jKxjKu1%yiot9(yxOaib=hjRs8wnyqpjTRp**=j@TD@8^cH)F&nQ=K)KPTfA=ciCg0?hom%x|dmWrD$J0KHskIuU*cB9O+bk z1^PX`sY(u{ybdee=+VwUZnc1CPN|%4p1#n5W>I}Yr8{zR!!F-8zysaU_x+z;>Jnr8O_F&#>>VWbkw&*pp9@=?5;u{!BSe zHtwQ*CHpsYN>GSX)Kr7XK##eS2Nu5Qhb?eknl*o0d&YG=D6p-$i<<#$@bihN1Szn# zNU5hFF}10zz{S!4Cy|76J>fJ#$UqzHqI|~JGJy!fOF8(JfmO|;*4SSFR&R9CoRA3< z!FObbgRVw&UHkN)pU<^i=v90&>Pb;kD69-O+tSfsey6bZBa-g9tFvLZWF(0@8Ak>P z*xyN$7jm#nUNAM%Rh*tM6;zj*w6o2HF4V{x-;COY6j`H&7H?~q3)eNxDyqT*d>oJb z|0KITY-Hawqyp(y+&5_c+gJ-lKa93y(;F}OBc!u=GxG+Hb9b_rou+mfSaT@=zf+Z2kw`T^uc3K3Gl%)0W&Ob;`rTV7XC%lU_fa)CNZfa zCZ_FypN_RE?FhN#9}Pi;MdJ0>Z?Sy3VXaN`kyb14HIJ9}06-D4Pk1E%cr6da;pS-@ z!&=8Ds@X(94n+jL#)K8@;c%!!4Op%F&>iKj+$W@gj_&%MK-gcZhiEPSp;XkFvmGn- zYFB%L+q7ixa42p#oCAFbgxtSxURWew@=6aL%h+n5YvYyT*Yx!EdI$QoiM)QxH5 zr;!sdn6_9hG_E~+%MumuoE_@;qA<)Q5K)4^N!Kbrtem74VHu}D=*l{gfRHb=qaJ8|J{nCylYBg4e4JN^YEjO zL?)pdhN|mN{~UUMi;?^Em{!{57FsU5Nb3P%N62c9f9|hip1D=f%N&_z3@y87aPY== zna%kbF1I<7G^DModqz&R(h{adOqy+?J+zBam~lvdz-?@=9MgO4Ev?(|$(7BZ?;fy zjw)!@_AE70yEl^)fI4ibjibQjK8$^pHer8Y+2MOMIWJ}!z+fSS&vUc#JS}kdddOdE z$2t-Pxu#VcQE!W_Qk*n>Y#SjNI!n)2wAI;fuZ&2lM> z9quo^xpafK1CbxY~qd4l*(TWA6|hO4mhe$F^I;U8(*u?s@i+hsJYgj`mX3Wvm zo77v}&aS<5`FxmGSO8%+-Gxo4Y|@ws4VghHN`V#uPNI}DwO};IChWvt!C?x~o~Qxwl(#%j|Lx`L?fHT| z9IkQtufHwl|B4!AWdHw>@Cl%PQ(}z`tfAc2t>gNj1_)sIZ+t|2@^t>PP@x#mUg?|K z8vcgU{PfZ-*96W7mW_EzpzOgyurs4MYK#hxQuS^CL(Y!Vre=l2PEh!GvuS zF>iKFmsfq;(?n4|^)x2s$YpIaVn@ zRm1HIKKa^^eidL|?UrFCS0#N??iA3Neg!{MRyRhkQflNzZOq`lw5QQ4S&I<-#~83P z{Lf8ARt~oRvTY1$awYy>1j~yW#U^YB*+19hs*1C@vkDwt>tja?G1<=_VBpLtI{@nraI2rHP83BBspOT4_`-hDkIt;k72Pz zexr8aFNK>XnPpx_3hR>7vblZ~Ts#wMR>Zgvlf~;Nk>pD~dLxYiOu3H~ON=jI?BF~P zJFzcF(lEpHVD!~)`q}eYwxV%=?N%oz9CFQfS}k@+NO7#N6&ubGF=>v2D@x~J&786B z)tH={5ib&Y#!9@Kct&|85`}GRmB>Ug_`T>60uhS}K2#?;?* z^8Kw=D1|9FeeYutj&Mjt+S*_9erX-%W~U$RBi^v82ZKT5>%s;;u@o@D4I=|1O5?Kz zMw$HrUy}RCoT7;dS7m{~$@^6xj9R&k?RAkHXuRj_CN#ZCrcYF$sh89lN10QLH}{)s z;I!F%uWD><{+4I{a1sMU=*x)sq2prNT1*EKvyRc#yV8@1e;jp7X~P@N+6vU&Wfx`3 zx6*`^Pq;G61e9wEOQt|7bN{Ay8-710FjRlbhhSZ_S~NwYP%MmQHw%n$b!Y- zIs*Zgv7Ti`jzIKkns32vR>eX!)s9ovgR1sFvayt8Rt`ckkKHTv><_qOm~Jb!kKhv$5L$OhI=)h3lfmCLBleDL;SU6oVbv5YG@0uuMye60AX zj_Gi!pKF?oGD#S$Q2?TrhF~V|`)y6rcAhF0olsMRw?;=`f=*Kxge(KtXK}WidMr_? zX%nb()aR#7h`ML~w26zCU`ukh#nl>=A6)MPec{mw5BotoG1Fx&ue zHUGOK!aJA2R2~(p%en4mPHu6P(kZl)l}o*}=DKY*{7mMX&D&PxasFvE1=GHdVm$F6 zoa)l~ST2xiuJ2mv)FVZ{v_30kiww>Vj2b6So5NaW=eQSK&E+0|?*B(DQ=j&mH-QiX zm0*^jI^YW>fpGpl%HotGTC?y0C1Yf|yTozVPAB&a>cze0Pmpo%%8BJ@78`Q<5H(XJ z5>?8>QiemrWQWVx4CLkWA6sM~8E+Q>+c1SUDRLUV2!WfeE-< zsSzKIR%}*SX`xgGH8#)Ik`+-8YT7TJ6RxAebeSKJ#po(}KFFucZ;^49;qN>jO{{Hc zr3;m&hus#VdhZSWxDzDmi#rkm$r73s17ncbc0o-l`cuTKoBAUhf%XK{n4h*Tv_A zUGl zB9*Yh;;WWgm#4YE>LagtsG^S*+13TW4Hx`63G|*B z_{P6t@41nOjP!42-jDN?4Wk_zW3GOa4Mcfwgyi z@L&{<#umw(`2HQV6N|F5Sx^~#XIxu@S{sBhR%&ERySWVM8l&ub^XpVLD#hq+uxoo5 zxvA_BgPsm+6w#nEXELT=k;OVU>I~VN)(j+uazGvlpQEHJ$V7rc1=AKHIx!;y&VH%slDlmM$EZ z(Sq?~fs|ggTL^F|-HKA(!S#}g1c4-9<8@yQ(k}+PUj;Z#A1Ai0nSP+&3hhmqcPXI8 zjiD#IERosuW^}d}Oae+I;Cht~YvGLZhlnTvP~+UrloZuze`AqOp40YDx;SEBK^!nD zD2W5whrVtJwLz{EI7!CfuhMBs^7I>9ZO ziYl8=ZiO~4FhQF+=cNt&UMwrQ{#)?xJsb(W9!4y*v+=aTh{*uyNM4R=ki84F)iu)=Cnv-l^6G{z0eYc}Jd9NGxh>2M9zj?AmDppbvaAjD z1ij6MLFfYZ`jbSq*K_Iik)z=oHdiX`1^DMVW}^erz$5zAbgROPEZ64hZEdw(qXzau0#$GV@3>SU!z0wQY*MpM7^{clp8H(4*0ypx(gfzq@HaL4#$+oKJn1z}y zckM~9x9A`c1p!``lfv#P{-@gjLeJ0F$hB@OHfVU382K9g`bn{B zjgtd+L7=p@qMnrcYz=;>gNZ%=6K*>O6bF7ol{83P!(iM@>4ofqEIQf*HSG@CH%<*9 z7o4omKky@QvF&$>{J0_Y9tYrU0$@k?mv@C0(#RuGcyh^v8w;NWpR$W2ZdSm*btol4 z4TU5b_}yxIgR0=wbJ@~iRor%yV4@37utn5u<`Y5L^qwyaHe-U<{GW0z_sP>BlLT39 zWk=OLl^nRY3D)roN!p;uK&pFRDH)GUntbD!<{q*d=*v239LPrwEyaMX>atx~YzWt( z&YO2YZwb;>kn&U;a>gv=gju6M@`41%aMJCf%%93(A>($6hsKU?qfbtZB=4Tpd9$9i zRV{+ah)pODeHzii@bn7>_$s7j{l$SWbHL-WRy-sCAwV#7I#wimhqzl0LOK#r?yh9i zpr(mhSw>6Q4 z?@lk0FohbExtt7S7Z;%89~e%V>{vD@@>g9nPfH!`4=0CqoFv-Q3eiQ@@kuJe0wF4o zH7iT`g>g(VibBoQzQxM(KvDpkAV7uxQWs-1V)rMiviEy?bLt!Tk>`i|B=Zlt`u{Dn z!JtG)-+GI!+3K^gqrcXULJEXGH3fFTT5T$7O$_CLsO~OD{(&MvsmnAuHusm#(;j-Ri`_aS362_|38Z`u z65G67jQ&ZgLZaX0McH%Ox#XT^&VHr4(&SwnfyLl-;|V zU12pd?hck9*Jo`x@Tn~Uxli*V@@|aFpeS>;_|{40L7#PC^zvt1dU)N>_;HIl{f2$Y z2%{n6C6n>JEn60$Gpql)-win^=WT@H*WSCXMjM@wnfs^ruQjiWrD4+)%H}q{ikrAh zZNF5ZO&}%DuE&jS^nfy$VJ|<4ji7vh^yWB?rtw$?^p|+m0sy zPT;<{crzc`?|l^ChwTGxxFLtL0FWego_qU61x;PSN>9^w+a zp-6SH&ej*Id%er+UtF2&oOp#gY<`j-0#oNf~?Y7 z6YOS32qS?yl^LxeLApgsIC2I%R}}5J$TWXC-gAk^D-|v>Qfb-b_25e{8m39|c{qahM za<35f9BIv$Te*vM&mNj#0`R7UANM3y%fzLVRsmi{PnnJ|oT@ymyDc#zUlY;$sNfxE zg)Zmq#FOgFvLwWun0!?!po>ewA#HI;a3>93!s^P$-|=~~b3dI|avtt1=UKm=dP}`bGi;FRoJoMC+LVWRc`!kv(5`18G1xx3 z9X7p=@SXstU=8{rb?%b2@&eGd>CJrnG|Xse((d9W&)H_*aisz8#AvEGapCV-Yvrr_ z4L$wTjZtKsZ9ga&*G^Ix>JK8nhEP)&PMK3m$hCliDFA3g6!Koy3Yj!9qzz#z-i;8F zhpSh27K$Tb>^+zSn+QfJe@SYqIXkt6vQ!lU+px{2Dq{3mSE+*2uE0@Hpy%iSQjU`4 z)BRse@@%+A45!e}TL6f^`8WbMvW*prLnx=kyz&*y{1vELAPN(ioa_>4o_YTeFOjUC z)xhoue2<*w(^R+MQ5)l3 zEkx978Pt0)RLkaTqv!lfe7MUFeJ1F#9{5dGLzE0)6Z)<2)!@Sa$eR!=PbUlW@UBTO zk`_#_mLsk3SsaPHmJ7={!{gFocnBpjyVvAKRdYIe$$7UlbxvrCZcWobA;g(B?z)S; zMJMCr^ue zLlsXD;wg8U1?q;=4Okx<`XV?fzMj%+ZhiTKz~t>{#pIJ@oX4LK<*IAlWIB6Lrp%5a z)s33Gx}LVJktD8-)ch5b3Jf>Q4+nSloJvSjhP!!gav=g~O{*SE;8HYol*{GHy;Mzu|P zzy;li63BTm9U3vClZR|>f__7|QDNAId@Jm7Eh+G{g^ctOuetXLt?XWox)N6!K#)rf z#SBp?{dk9IeST8Rm;In6=TttmS;6?dWDclwXg7e;G1<-vHY}NSJ{`)(XOWFS8?xna zT3r)azWv0=z%A0VS0E(L=F)FbHl8HFTeA?Sd5hB2U(E&L9OQ{6)Zqw&Zm-xni(NQ% zLH~py!eM^WmwzGgk!p?DjDM#yPZ!usJe@nA!;ftuu$_xdVQc5&@_P|1$LkW}acbW= zDi*N^gG*l`NQHZy*kY_>JKBuyGz8Oc<1!)8aloi?t=+<(@Ld05JXrmzzyI#uahtYN zYJ5_-$9$Z?IO_qSH>FU4`V@p2>(;tUBRqI*s9<)1C#loPi()o`$1GBWUR*fd^7{vY2}FD=^&E&@2a(CH+XmyyZwct<8{KW&(Deb4W>5<{p7Zd)jiB%6%C)+Xs?J z_NSw}&!y}H^tCH2-UUaZ)Nb3DAx~eA2{`+#_5pHW8>_|VyF1gDpU^|99b}Efagd2Gf00JBp7{E$j^(2}qVW2E>ErNbO-Q*Zuf|FS(Y0JeM&APKmOr zLEiF!ClZg8dnkn&+v6WDOBYX21QD!9zxITeo_v&$ zgNxkU-hAib*eb_3Wr&ot6F`4jpH*7?<>q8fjn6EoSB2ueTl$=NW&$ss?j;E+mUT_VA zWc`nj0@rnlsq_S~Pz{es42UsRW5og$BS^zQn0P{F92VH2bg1j&+<%RNmT(OSE={yL4w=9 z6DAt>tzo0siYeIN{w(|#?Xmes?gmg$AM`kkK;{BnOXIG$+=3o*y?4wLY`sul*Phn} zb)Twdt4SCD>pA~A$6at>L~?^f$^v2GX2vG5V_`mF9F_TL)qE>wz>$Eu$XH5Dgun8; zY)E0wt6Sp%9$86{+j*!lns?4r2*=7;ku@C*uBKq-{OQ^vVr;HPGOX6(Bru!8l>>wV zMQ6hltE2&4(!RtkLae%zkw#4QO zD(PRz^aLcyjfD6#{R<=VTjnz>Q?z-Ol8c06%8mxskNa80N(29_YdS^&t)Cr^#>=lX zD{i0^IXzm5Xk4p=Agy_?n?ns4 zC%)U5h~rA=(=O6c8#lvaDmJAYV=i`(P)jekHguqE9lsogRiK5k6qVd6D z{tN^d2wY9WfB-cwvDwR8pu1!@M*^!BuO$qFqt>VjnBSR5C0dUGYh}-7Ycw*!B?_7v zyMkbe*+&EaVgW{&B6g`MPU>0TzxI~B(&N|50XXb9OAAOb+u^)J>L)=UD@TRrT+`1Y z83gcmPo^SPv)e_R5TBqfFQ-^NK8vATPEJ%5CVcxHDtmnV@{MT?ZkvlDXdcO~ApZ!F zvvrGHc~?>kcF@T%p@hDqnQ>)uQbBqmM$TuW2c;0(4aaz(Z{)CFYg#kXxv*uPbnCH8L=2tycw^V;)Ru zl#>%QCgk!^1ICCm8F zasi38zqVy!Sf4fV%Q09>bKAD5WF)ME!^!8htsIKr7i)YNwh`W6i*a;Ix40%Skd7ZK z2wR1PixTWh3knbJ7dT)%3`P2N-*=SBsi%PskokBji}uyQGP}ABG`fzLZAmj~d(Io< z=*kCgb5(KwlTT%U0B%K(d<7O#;Oth<<;~BDqyAXm<~Bx%N$fDPs}!RQlrV-Y*cHg` z>SPAq6Y!o<4=YoGk47Zii${{p_Vf&9Dy300uxBCE)jUQ3+f!gO_<84v+=Q5QIfNXr zTle*1_c{F0LVi3T%3Pn;rm?!)F2wqdx-1x?b}?Z=0$ZE2j1=v6uzd6&!tx9;Xnz%E zf%~La8&g5Ns0$KsokXq=@(WvK&=~yln{n(y@fTQY5XlJ;QR*t2_%CH-Q&_czfI7&L zF=|~a2DjEfB(Rb$8m?r#euQND;Bxk$BT^952X7h}@Ae3FK_UWrT(Y!!^Ad_P%pzfl zSSmtE8@K)k5y*OtG7d19Xb|QJ#D0cy4l)|#h=Uw~3J$ziUqO3mD|D(DPv!9aRrTO| zx8Fw&k(d)#Cqo(G2~@V{zU_6hw?a;-Bb%muo$9cJPtE)6cI#!tS;lnrF+%ur9B*4gu^LXu7qJpU=eR z22;S<`4I957CU@@&Wk1riif=X=HCF3w2MY=Sb9*kl+!UFq#oqr22t@3ZiZ*u?h+Tz zqE(vGrdvh!5L~pJa6qjioikY63v{ag0m6dxBEyd zWNNys>|xp@|B~M+bwJphAM;ooc$|n{88R?V9`{X8w@h)vIEYFB6`=yH;a*LTC=($% z$Y7cd&Nv>uB1k~IEasD*Ub$JVFC$#AnVdk7bqck@*q>{V0i_~b#{(itF@Mu~qWRz??H(y`L>pcY40 z6OG%lFrs+;or1e+P##ILMAF|oNnF*Ze#{ecgm=O1!j=LsHG20YAy__Ag+2IduFZQgHN@U3@4wne-eUPmvM=SGgn{5K<%(0_((i*;S83Xa1oA zTWe$F-RJTbZpWbl$04Vjz0@-d@_V~P)rp4z;!xf{p})MfuMsm{R6lEz3mh%dR2N~a zj`?mzy+7doAbrF)`d4r6NL#bQ-&IEaVN65y7+-1Dx={$>JP&FZtwio8D3TTZPE{jc zbis5Mlm}f5mmrP2pEM(ZNi2x3lMWls5ikSwJ^aCTByDWm!xB6_#b&0 zzmksSKYQWYoer05FjqHfR_Q3IgnchjBh0!RndwQGt`h4-l8Ha`KoNOeL5H2X{t3_< zoe6Gm009L2ip!@&zXlC-^78n^GV;!T zt=vm@-Z;Bs#oty8q+GWbw66}%S?;S}B(bi{e?F2EeMwtSQkLOZ-|JwPCbuGDgBmy1 zRv(j9YHFn>fsV+82yVz9(Kdi9u~=fE%8V}+h`3jrUJevRm+;O@5`TYQ^!mzPj^Fg6 z#eYI-bcfe1hvN+eb3{5BfGiUwIG3I+2+!)ILnvw!kBV|4bNY)~KTaIH5WXlSyFxK&(s};N1I#tN%j7|6P$J}70V_Xw+4Q<>6-ZCTBnbH z_-n@GC9VsxM-z%aDHGL)g|86qmctMtaJe^&3SNYO5#5g6O@izG0gYfYSrBGs<{!2{ zM1#o%;a8QP^(#`=jMQnSx0toyMQO_mrH0xsFd_N@(yWVMoQi zphi6DmP9nn;V+oVu25OfRx-X(AZ_>GD3R9vzh?a7Viy4E+8OurXWvGlS32m?5sdaO zftd7WXP5s}{zURb5iVzGTpDyW3LLkRQBTIGDS+O=B6%cgtv}TuPe{roUVj|YrweT9gmNm?%Ut2i&$DzQCnsKdiFj|Bc_8x$%C=cDnTqpD|ORO zz2?tSA%&o{v#i^D{WUKKSMmMqMN63&RArGb_F2`+@Ma!t%sRNiKNpGl%;VvG_`rcs zT9MZLXaxh8^}@i({O)~K`S|r_(ci3mN`K5Z63Fj*6#Ag2Y7C@FjwfHscqr1uVq6e1 zk7q_&)Y+g|X)jD&y@Zk1R8$lc8|fZz3dysNf=MHTICD6Q;sYXTE=8g3!^}MfTpN{p zlF%S{NqI%ZM+dKUZ&~ROWuKn_Ed!lOCFEMHm0USc0)7ddcrKAB8Gb#~V%F-7FzA=q zrdLLUQPxD^I>E8=;VFx+5xQ`=zh4)VqcpzdWZqLbXEyC4kf%$YGFXXL=4m9L$pwCn zXMgV{4NE-g|Do0dKEv zo3tQx^_$=pD*(AW%3WcKa;V@GGGYkdh7eojcUA^vn1ZujKEaQ3>+BgLA;mv}U3%qX zrvqZp3i@EMY+h>K=KMU_vavmaRf^xQ&&bHeMtjM^YX&gA2IexU?)VSzm}AaOM!O}= zV)y`g89qz~g}e&Joxgt^!Bz85o<&mp8{-lM`?yG#@g%}kB?s^^6BLu=0mCb>m^Myb zCtsN(W;REev{jN>PE11H0TLDW6X2xt^`3l|X!tYC!vxBCZ1e%K(yJ89gN0%ds| z+G)aMNJ1@Z;AM;Aa=-Wtr8ZTj5M<-j^F!j48n^17v#qyB7sCZaju4Ldk5dR7(>9l0 znza5=jWiLE>ript5tYcxls{}@8hbd2e_EV9ZA$OrSKX5dE_44d72vV}ep>dU7sXr* zl8psA#nMRPnr}XZ1<-_38POH!n^*w1i=mK6R39HRNy=V}2D`J0IRyl!H@VLs3~i*a zx|&Al9U@;d{Fqa(9N?J6j1S?Qb~{Usxskrn2BNGC)xfKH}3GAnFw>4?MK3Y93)=DhmjHoCD?>;6P%fZ zvA25P@V$>2Z}&_|r4xfUZ2(d_YKKuwKA8!gD}d*aTbV+045T%JZej&I+2S)?=sc#8 zFqbYswR-L5JitG(x`dR`GjSGUNQ~#W{9HabyA9PXT)TNWkMMKkBLk4YjE& zbJRrXM**KhKtL6IMEof*O|c?Z#O(t(YIi6Xm%&S?c?lCUnUF?*qh7~Ru(65$*B8y= z8tYcno=$gJ$n2ECbokkW~+t&mW~A zDj#6{n+3zM=TG*Wz`w3_z%1C^>2A(&%3FSHU`0v~R3j^SWv8RmTchtaxl8)tx2<}}y|78PdM|J~E${eiy#a4-L#qV9j~ z(=ju#|EHU_8>iidr1RI{kY{`Qsm{HdFUL>y%in zucj#1c%6ATI?+pif1hew`|EW+8(5V>=qp%C)%$q|d-U)6M+&kR*v@ftdUCYlOYiHO zqWF_E??$N-##bvh&FNvmcM2&UE^gcQ+3C~COIf_1!S10p&*vf4D-KzESN&ezp!PWP zVypf0c2O&gnnqgj|56Q&Fa@iWN$6=)f;-<6{j3|zPMMvM8Gww4S@~K18u24L_4^68 z!9LDbilV?yv-bB%`Xg{Kfv#(*ziApM!@S)<5DL_zws=fYpO-?Kyp!;%#3;EO zNVI>-?z`>(ODk|`u5!5r>b5O<`NBt9jO`kaLkni#tz%6gV3|ghMgdsE_OjZqTF%dg zK(rAk_qAFh7pErST>PpCOK2NGq)^yM!k~?M&Ppg^P~@~> zhL?>Wz0|$#M$$Yd%?h3&@;6hTvq~V;x37(TH+KoJAX?I2>b6gQak#X5ESOsSrS_#94`c1RwL?mmG!Vx*|&s_Y=Zd0-;c!sgf{@ z7&jd;6POguz`1B8 z(lJygWu+9A?Kp0$ad_j|+QHp?Cle^3AfxbU_p}g0q5JoAh3-``il4EN);NhS8A)i9 z`P(B2VHMReRbj^H(VGYuRx!EchjM%!-&$o3$K^X7JgeHs08T*S82L;F>j&+z-YVpx zFbd56-KiuZQg;>s19*tvlWY_e@KwLfuwfyU!bi2WL)PjmB^5<$2)7bJ8%rF!kVRS} zgV7!c^_(LkgI$TtR_Hv9unD1X0#%5Fs5&%>y_1r9y>(ki~?V>V`tysh8N$cNim<39B z&++!IB)!aCJ$cH^0X1!%yr zo^#Uf5ptIN#eNPsbXh7SY}a|x7jIDp;G8l7ouCdQA4~acp{0~xv;y6lf40LZeXWSz z5F!4R-u1P!ZA8w64iXbZa2trr9DB-@dnZh|;tNe!jq~{Jy-L;xjg%bsR|pe3I+7yy z))g12q%D)+;{?i4OSJg#)9480xcZfRYBa(26}d}vOso*Z14!v8EmE^JOv_5W)odTu ztWspmpgpPnAq!hn#U_~^EXU9r;e5xShL3mx<^0Z1fesDEB=V&x3(E6yl(8es_ozXX z0+`tX%WpGZQGH7i@pp-mC4FV(10xv*3vmndG2WB`2&l?&3%*7hKZT`NiM>M_!D>>5 z1(IyR?v%E&@2a8%bnv`QQwxJE`?8;{K@doc1_^Jy!u$^;h;`hhKr)p5e`E#v@i0=L zu0x951=VeiaOJ7bemQx3aB~t+*Q12nQwwkcPs(k>_mRIh#PsC_<{Tp264v`+n%y1X zlbfJiN|xFj^`*B(7|t1{!o(B&+O5J(+%YUzh3x{mOqc>=4+^5~J>hPYiN(}Tu zt5u+F7@t-%>idVua^|)rOq+LU!<{bVun2`P%J{%$Qz$^(6J>mpbTR=wsuXP*rys?= zqoR`LJVp^R$z@O)1UoR{|DfQrxX;ku{R2HR1WZ`` zVpAGkoNj{rQYZ_i;DU)UdsNhumR}qzSI|W_tx;}bC}Y053}>f!jG7!uviEa`H)r{i z_J&r$wl&!b;F(UJ!F8aGtjB*Mg`B#?<1E5O2(je5t!vASL$Pw~Kk7MP>8Qox-prsj8#R-vL5pt9{K_fL@G{%Hre)==4XPs@%cmi$F7(wUmSA z70@ECLf=`_+H_t_nO+p~X$eQ64_;_k#2=|$1axQLJPNb?XFJ^pAkmUD;>Hk4FclYg zQVih*PQfx`QE1dZgJ-10LhSQ#<7tK_;5z9OWzql zxNx>!nq|OPxoEp(>%KG(OO%)oB|DTO4tgrJWj1vKfAAlLD^KJ-|KwUo(+>J)&!A*s zhD>X#aj}6lGqW!3vae{$i6{=B7B)9dm!ncP2DjR`L=v#1k_y=`zSFH4kvfC@HZIu`Zn$HfQdyp9gAombd#p@mFu56gtbZ4_WP13uB#T zH=nxssBZ&o1be)`(pjbVGLSg?5??9FFh^}=Rb6*ciG2q$S2^Hl8Jk8Kh^G>bqE zD1IZ&uAc(0viPBQ=UgR*>dcvmWb1ggkuT{9Y_acLY}u`$1Tp%%{5A-&#vXSeFe|z2 zlx=hMCE_x!k>%BAs_Dq}Xzz+^yw?>jTmEz0_0)8Fu|?XtVNJrig=;bMv`I&^`?8WTzy5-KHC2rEmcAJoo9mJ%qGSimnw+WL625RH)h>_ajH6F^ggcN1ERLvK z26*#&+iper`+-zVzoG`&yh^4Dx9y8(a zgub1puv>$Py&C7NptiwNu3)?x9&$PdD{{nHfULqGZSt=zyBcSRGw7m5AT>6B4yl8Vu8TDL|5g8F_arpI%bF2Pa-n^0Cig=hFlx%h`X@y><-Cpg&rF+D0>!niAZ%xws@hpC|z zqm#%JkCHJ=PvLW=KjZH2dvuBbcMjM2Ylzgz;-BFH2SBWQ9nI#K?4U8PUi-6#uJY9#&%Z_Z zvkq{Y=}#Fibid*DQc%A#*ga$lNcXF@KALZL^fm??q|Fy!$k|9^ZS8}ef0a>SQRsr* zf!r~{z-NbV3oX)yGzw3VFmt;HEWGI5y6-cBhJ-iv`+R>s zUHxdogQ5OcdBpO+Zn$J-VgFA?bhoyY?ZGHw&xhJ=nuFg+|6eTx_X+GW@U3{Mo2`&+iPUGokUmJlz z^n)a&1bZ1dUbl{63m>s(t>lDNNc~-qdj}6Y+dnWfnyoKYF!s-q@u5qR2v~S2-~jW2 zZ2-PfuU;NLi<*3>X4pCS-7j)aAFWRCKDHtq*m1iR{^V2jd6==6VLUEPY>g>eHa_pv z1Yg>@@rjv*D}8J;7>rt1dxY#4W)n&i#GQ(k$R^b=Dwqt_I(zJQ*G362q>>3ml@bw7 zY6)u{G|^>j??*+SBz;)RlD(#c&|Uv%lXd3^^M>v>Do(@*DCgDi=*Xda`fUkLchRzw zZmj>JT+ieEB#3<`-2{~SaT&m=%$<0XolSEdQf%BM@dM10jSlh?rRGIbG0otMV$&D$~4O@)96b0v2$l z7+iuJQtIH|#|0uyl@E15#ZcOlpeUp^+oY1kiw6v48_$jKh%8$MfZl^-t>4_QoKB@) zrr|#M=;lvP$cZz$-;r(!;%04zYD{!ckXLcuYqW#E{xtLAe?SrAu+&C1#Y7nrMI}dT zRF$hlHU|G=l%2y$ZAY89(KK2~^ykXBJ< zab|cPJds(_Go?tuBBp>G(`8G(V{I)vN{J;6xGaj`L`Em6igEIRcrA5^7XobhA)qj& zk7kJTk1Xys%Ae^B><$!l3Krih@;VXpR4@o|Aq<2MGe5gfV?RH8%8b(LRvyc@CUlFV zcO;t+|ENb?jFBpPoScc<=_unXQ&KJ`={YhRA=LUOEDAfZDj|iQ3;6*$y)Ci{hhoSn zuc6AN^D)6U^0C7>lV)E`GAc22$EgJTzlr!v5>XFD4OJaV2D;`>3ACLQPH495R#~jf zZX;}28%}~?LHn64;~72nWx$`y*5N%hG-#Vch2E(Awc*TP&$6S56KLG2$|z9?yADC# zN0R;-m4iiyLTOJ=%$ww-$KCHb6eVN1QoKoWkM$3f^JQy7$r8@z9a*UPnK<=6PKA;`n%xCaIOvHp{|1#nmO2BdU@>v&tlxglUUFy7M1QS-=a;I7*3zi=7_Jy{ zGBD0LZHGfbZ)5p(pURSoF3-y}1Mve%k5)$u2?tQ}x1MwqB59~Fav+pb_6HnthNh>KM{vvP~KHD@<^(_i=<*&z07l5$K5_K7Go8d5AaE`8G~H zBceW48ej!bY@@6WOsK!bt0{{6^gi)KV)TTJ@vZa9?p=KQ!pOp+CTp@ld>L?K%g2+w zdY{eHbRIwk$csSf7jTINY?A@$A9#qU#l$J73KLP14IIt$q?27@-vlO=7F7L_4~G0zwwr+=!TKip#Gp@LpWv>@yKiYIlVh6PaApXyCoZHe00} zlmw&=Ytc>DHeJ#+)+O*uWiyh3^q83capzD1M9jCV;~}DNGXg=6L`h~w{YNrO;A>Red&J-f!?8$viiJ{cS9q?s=1{Q*S2Y@1<=^V~EydG> zjbrL>lOl32ggp$Sq&(`U9?r$S`0j2|L^MZw_JH+}nZbqdVmT+ReZugxc-wX2tw|d# zDw2&9b71mKdgr-m{yag}!j*ZKieM7{+}1GbHhj>R~O?aV;Jt6Glh zOZMyXq0__dnOMyoqye+fUMR#oBxygtx|F-`>J5D-ohakvFL|on@-zAA>6EP%+=;j1g}iSHfrmz2s-!_K>^hbwYYz)#=B>7dE50e<#yJcF|5nmb`t$8 z*QeC@gaBQ}UAqtpiW)-i$N76JzxOA%y2IPowv*M7-J1d*)s5$6$#yA(O`k?_v*oj9 z2L|1Tk;e-guUEN9;2jwpVZXV>9dQ__T`#o)FsvFn=`7O7#e=W(L_)Ih+p5pkTOorU znvZO0%h^JJY+|iCsm)82n@0<}Q)2Kx{38$swhP^jMawGV)a_hW($EX{?ve2+hQ@ZG z+U1~8qZ{UfYQQDy0x_AwxELdJ#bSM7fZ6{ ztzp?`F+R>aQ*1|%6d^lE$RRCUeveAtL&6a|qW<|w3jsg->tU(lWZrg5Hq{*Ti$=6L zp5rxbJkkEp{bm9>Zo#t2+&Xc1iHxto{ZcSh3%9}YK?{t_sX>u2c@(8=b@xE6)hzWB zLWY1R((Sqo`7z$wBg<59mae)|+pXqyasoTDz2W(&P17QtyHGbKgN;suD+ zsBtVSGi#NQ7;N={^pAx9aED?LDT6d>k^a*yBRFw4se$^g89HaJ`Lvpcp4Ex3x_k*a z`uIncuM?&1Jbl7nft|bk<54=m&3^X~n>5vtBq?CmDveO{X@X+0(wIJ8VMs7WD|H9z zEsykNMzQT=Vvex|2GObi8uYSigzonZ>@-L2a0(FBXZ$7;gM6;@=@tB2)uhorF?#Cg z$SH~vHK=VI39}W5TkOypGG?5bRv(Z>^Wv#r)!MHJ5XbBMi}tNq`82ig{4|>alUhIQ zNQelmWK3&uE8g7&Ms98^J{#U$xA$=Z>C)_Y%#_h;7%HxJ6D*9O9->$_zo~m`sWWEu zlJBSa#tdp%L;Wi&$_=Ahlty7GiF?mO%Ihw#x}+dls^egC=h39QacM^9<)i{=A2M81 zB5m;#njw0hPz?xA6Ylf6*aE$VDKt*BN%I5Wm+-6)!J6EIIQJRwK1aixV{7@vYt|08zljwsw)o zfY~-><#}zPrmR?@IZkN*E#w+4@v zx)3D7M*Huvto$xjCQ$o>@QDsb2?_>TD^_6@&r*ut1U2TG}UY&>Emx@1Gm zj9{Cv>5KUf(J5KAca6FS#@CKiIvZMWzaDNq@0N%@8gg=$Om7=&t^-F;I@I-ia?T(;44mxCi}Ts8`RUH~zPv}_Oa0B>6n%bt zx~xMFt4;2O6<%X>{v+`8+r4&2`i`I$X++D`s#8XCGB#DaDT9K%o>7J|wYsV!e%q-q zNnOD}u=RM5_<;}ho$eI&gZnz*K z`#U0OdiX>VV3Mq-p}M*mra9mNYxP?c7RO<$Myt9x%%P~6r7BpKe@=6)e?g935FEU%;HpwgWf7O^;p->^lRojwRUD3oM&8EQc zJG_c)*o323JU4198xWzMPTv_?eS$GJoQu?wG2k}3t<+Xhg+Q<;YM7_h*KWTMJVCI^ zS@4kJLV+|Y1C8yiaMvJH0d2$PsA751qm@+dDO|l#GjmI7DT|YlQ^MzRLJV-#ozekm z&ryqGu>o%FsbXc?3&x!jmJ1fIQoU+Je!Y{qkMAGVoF|ai{jPIG8|NAoch6Qf)KAg( zi^xc^$J9&%b3JryjYBY+4m)3SvzdJR2*DZw{oIS%`)=_>ifb?{@bX1dJcp2qY(xz{ zs$}$^*~@>iJSI&~Cv3;u5l?6U72(m`h6RPU*I6QSP7_+#fgLGQIK-K$ICHKsStjpU zBxPpS`aHjtob)SkxlLKIdVgJLruYH%fapB=EnTHDaEu`#104jtKw{Oyfd0KiA9AEU=a1eV)ilYn}ozN+7dc-T7Z;N==(Dn}dKgcXtQPH3+t zj-PJlkZ*5czTqYr&>uVdRoei}edIuYi+Mk-bVIbW1OuaxQd?g--iZ*bLiD5daw8!e{e4YYsGKhd8A6lP~SzbsSS~z0gYYr1^ zNf+yINUK*Xi7C!zDBqw0;3bkp%&YD*Cy0oJ1u*>#&^cA9*D#U>mbEQDnyRuvQQM-|7?S`iJo zR3dTILGbYf$C$j5s6_(RN}m9@F+_bY#In#-Xk{#mlK=NOZi2BW%W7CpdIUFH3e1)b zo;2fN05ngc*BWllKb$*`_~H4`_UV(u!|4(kW{t|Aaj7s?tuNK1nImZb0|*9J&{Jf` z*3ZqtG#(g>@~Cedvf69zXSJ(f5#76x-+~Bye&Zx_A<>Hd+yaHcL4CIVTrOK{f$%#M z9s+b~A?ehNf5Wrekac=4*<#r0fE<)#No_RHtzV-#?E&O%2EF~&SL51NGQtRFq@6_u zSyH4V0Y7PNMRAR?B-v+%Lu0Zm#V6)dGrHS9d^fs0Yd=CniV9=vHiJR5#Lb_-x0+q# zJg76GigvVF-?}oUAlCtRWnB|;pWu|E4!q|D5ID&|&We>K!q~=W>$}{3kw_+h^kENt z_g5i`NQl-Mq)`lNypa_wvGRyuPWT0$;ISsYoeBH`b;cHX{-^k)s~-vF2%G3TJk7Qu zZ=TV7l}IVbktaQoaA=zFvtL$wQdJ!p-^|%1K3X%E_~(GBM){$8o_K@e`Mm(+VKIIm zh-gC##GzOj+qVv)n9oe`R{T}d*fxo-40*Mkrw5J|g3hFv3jb+;LLziA`)KF=#?d(1 z za6>=!$6Blo@OIG5w+()LpEW^LjtOl}+aig%V<;jh$22;|EFo;zx13L;;hvH@ce0hnr@BFy>-%(7x#p_06MwTx;&Rq8|>_dz-V8r>M{*{B?ZQTl2(yRf-)#x92B8Fh>HK1@-T%%O}DI|3OZC16_ zXDra8xd;(uY*o}g3%7h>X)V7Ioa8xcqv#V()s%bw9JWjA_x^d424?o4?j{f1Iq`wq zMiD2g&puGZMrd}eKu~*uIURFMq?WwnGge6Sh}J!E0$h@;wy`?B_h1 zE)9T(Hr#29mW3N#3SrAxuMnzHv9%7`%ECPB>T{-1&YvOtmX4Je)N3W~9iX*Iqjs0y zf~lb)ULM4|haZrUhx=p`!fYS!L>e^6%Ox?h8@GKis$X=|C4OsK`O@UOc3+U4HQQVA zthI(Mj%yyuA#}|L6lRnT^vL+LqUXiBIjA4|wKY6!!rbi~lJdSvHHn{$z}*~l`NwNd zmkn>40=WpB=DEewXrIR!-}mAJ1rL1uDTNbr_<4$+t6awZB!i(pu%D!pk4cx9KHOBz zsrcdbGq#SkL~P)_T+J+#OL!`6k0U_bF$$yx)bVkIwhw&xr7ZQ-F_zb^)tX>vB!KNM zA#p+S0Vl@#Al)4JGe0tyx9ylegHw|BKN5B}*8jUH^Z)6S&iVi2lg`TdpW4$!&2`%i zF=X#$HI}&4gZ}9rJ>WsV!WCIRP)Hiuy3P-tP3Yt`jPW!B^tX@)~-@G70o@?u*r(0 zo{1B=UQpto$f8S{vxX?du_?)_p;-n{mb9=n$g&k5ss<^l_ija`?H<(y%srL@)G;+@ z1L=#0!{_o;_~QLxs>AdQ*PuN_^Y}B+T`=9#-9}M}xI6}!Xu)VN@aCxy@lxhSN*;md zWpS(r0VUmX)G#H5#Nc%pBy&{#OogIviw4FLnEgf~KNz$q##2DBLJ`63=*z=en5Q6U z7w`a!e+z&=?PPvT@FLzAiM5f55o}m}akKGnaLMN`?-Ci32*reyAr-i3;X+e{sjRwp zK^_NraGn-82?!H4V_5hEQ>pZufI$hZV#cF1%8(4`T z8F-S}OFSspB-F&*WRg*T9G!k(e;gGL4Y5ET%RqOL_YcttpKBB{7MuwiArZEJuz-gR zQFJcYg=Tma;Z$Km%HugstBEa|CX((Jep)1z%?dTLzf|uQG^L+~vpsf>S;@Wt6yZZ2sd=2oW$cP)L(dl8C?-h|}oTv!|c5aLhW#G*H2dJ)j=*&58lRa5Vo1|3QnJ+9%RIeT_=!ACDy z(rNZJw%%fWB<(zpfN)vb$Yv)+HV>ELU3E-b=<1zxBWOF@z{In!}paHh7u`@qHCqmDb#W;w4B7lVAV_dSP`b5DA&jLT(sw2vrFTtbcXXZq8GOM z1Q44ubgFLBk#!fP9qn|P^be-)@t+Bw8QF%w=Us%hFl*!mr0joeNN8#j0&rdbfRpep z>+kLbnV3yhqEDLks@(gUTyOWt(2s9n*r?1lHeT4}`WAn0Z?{~2?v2uPmanZJqS2pq zR+W8!f-iR-c3JkCw(8YpeoUiTTdLAEv`|i7(CPK{HQeP}M_BrI?zCkbH;T4U*rqb{ zOd5V2n<&r|T^==fja^@vk$%r2#7(GEcV2UVhvA14V$&gF6)*7&fJQO!2qb-*;aq8$ zgfCydW5~U$K>~;6N#e-1Bc`X|NLI*q`K9U@Uu)d`@IJgNX04z}wlP$+?sEDG#+2Zb zcpWe<2nc}&$bS`N@B1UC{n>zilpL_Lo9rl8HTkCO?VKF0i0fS894bWR9=D}|5%M$X zWL$_DGa?489E(42C&FmktR!zx^;2SBiPvQ9BuRqx?wJ!zaIs^IVF3AL@&P)#P-39K5G+asQ*5skb%TGGiun=Dh#JC!# zYy&r4*kwTAs4|>~pe_6hK^v$rXlL*XUqR@?1GmL|F@FUDmDKMV#3 z&R-jr5WxWfiQW)OLcu=y^Qkwvk!cd@7iI~MhE{q9X+rvZptKV4Z{p^B;`h85eQ?TF0HdPuYbT* z;-|U0hb84#S3X_SW_F;-%eoOpgjG@Enq%`zRI;=faQ`TV6kw#3T{Iy*6V+Z7=xm8_ z&Iq9vI3TMv`(a6&^Xh_M0?gknRrRX#ZPsL3;9&!{V2onNJpXn9Vg4ZD6vzmhs5zkz zUMvaSK)J=lje=|eZLZurIl!l4?LcuuAVA~dD+(7Okb02&cvMJ3cdX&^jgR7CVmfQsdj{^bP zS&mZRw)iMf5r)mKc)%~eOHE=v;AWHte+_wp_!#688tTl7>IknCfoWHPk;f0yr^kj9 zJ2^;4V?Sr07zqTe(tEP-4cSsnAT^^W6mw`>r?*CcDo*0Jit4(E4eiF#l`I|2vX7Yq zm@ta240bA@Tvn3H%FFuDj-Pa8>kDi6_10j(^8Gtq^Q+v%>5pxk3opC4x09{BLlVxL z(8hB*P476HEt(i)9AIMYLlpkS!9!Mfplb<%67~(bTUaqSWdgpP)B-HU)+V8p& zvDs`nw@{(bhmg*P@PH%LRo;gcQ3Z>qQ`eaB)@SZkrOsccQr*<;U~*#D(zbt8)-EJ# z;yF&K!JG!EvBa7Pgf;FHrKu z4ze?qqLL=O9N7sh^l{d>wLx&Yl+P(y@}8MJyKSFtoR#V9%^dVW3a6>v$C-61s_7a@ z?zX>nXHl`)9Rf%8|Jk>HBUi>wa^X65tQ*mmLKe#(QgL`A9XQ3RlJTj()Yw$)we(D- zB3R*RzggSn3NR6WOO-YHuZg~yo~{>0n!&oBW8EJ78@D|XTl4OW_u0Arr+Rtj&* zj5jMk70{EjOEIArO`GJZXnKF#x$xMY%qI)7%^mxOv7XqH`;U~Ao$Y@tqhMwEPaBkO z9Vy2jD0$Cp?caY&l+SmcWgIow^>Hf%;m#JimS}YQ8V!d3*RqGxqF$ z<{n~oT&uWa{|pKRvTv5>w~Jqt@w!wwCoWpq>VAP1UBATe1yKSry`E!~5?hgUp%bTj zx>nPJWq`tDCvd+Y z)ZVGTU+~nW^ExQq@uqVWdF$-zBk&8#?{X#uor>u< zKCw_X^Qek@+Ngp4(_K z%>-(E4#v9Eo2Cl^_kvnTsJj2S&o0iJM zp4P#)j-8UtUTt z`mT#MU1&TT4}kDco&F>RrgA0{6*=H`gTEIUd|b*=6lZUal6ag@TGG0{Si_1|{(xE; z4@}D%I4zSh6<4BkcQT_V^a(Qm!FV_NkHNKg;Hvywk;o%${lSz#+`y`YFLOZ_k!25t zJz_3%hMXMik_h9X@-Zy{?UE3@zTCts$eUqppD1u_54e%LtDm=2MHv0#W$RuMwO4Lt zuD;S60S;SgGbtdO`Yn1&mIwrs0E`(IxXXqR@E)W66$B#6`Y>#kW9VWW?6h}?PyGnm|VhokrwheOt23Y?Ck4e#>= z4tKm4;CluRA6S@EU<{JVQl)Fk41Nj@Uq}){1(%?(RhMlq>|llJ?CK{heBi>hh=NF} zZcqH=2WS_4B*tuCF%(}%!E6-W0`lhJC?Ki9S4PD72kxHM5EaQ#4NLIkMMcB6f96l> zr(e2r@$y&h(o7^m074z(a|~55mV;RIFNtI~!6l@JvO>f!m-IY5zB~V~*bNmq!M$G= z-G*TRdrLnkgFJ{K5+7N?6JW;D)=;V&|APh(<#3cDxJia!ECPMeRZD9>oGARM#n^-7 z7JlnF@YknMPJ#ZiMv!bfn((a0nn52z&`^#(ev;>f-3cW*zRYn?eul>(#Pbw^R$71N zefUv(cm0K;NO-a+%nIXw{c&ypszUVaqrX`GKXZ+My0G4n-DcxE4h))=#?s zxGj?jqXyg3VjdLI+iMLxWOyA<{5_wlkCqH)uUHGPc$gPq&X^DLwnL~;>YDewnF1YqOaw8NrBojg8orL-@F>#GE){^65kZ%s%qKh13{E4^%R~jn#gGNTs_jQ?lW8C&t*IX?KKKQ(fBLWJU2yThvmYFcSq+RRX7gaTv^0rtX%H&KBu{_ zH>U=dxsg8-9qF}o)TvxC2-q4~%iwQPxu&P3!yWe7o0*cu6NW1KkpqS8T0Bd@--+%|t*ccj%K z?eopP-vaW<;p+FiiK*XhQ`r{GDp!%z!W+A^z>rV6q?x@upr%jWI)F02k~k*sJM7Dg zxn;LFzEVn)Z-Hq`cTc;JV!LH01rJKu?A*P*sRF2k8d6m{Tv%&~JlFFY^ZX(LZB!VnY=ynjrHRLvDE$H>6`W=dHHx)bV)i$1Q z`D9`|k$VyLo$?f`$i}jbL_otrkPZ5`BeOlBrsAQ3=Q)ZgXHA+Wv8~>6&*0xaL=dGY z3(17P9BzzfgAqWQj|yi^H1Frl7Alpa0KV(FfEAda)m4UAtA^9fLdp)z%4Pk-YZ8Rt z@{7>rI2ji*8@j)hQxyIhMI_Uz>#{}4WHI8Es2*0EauVM|9hYG#(h3gqW<}OdZ^3R( zzJGJ{?l;K*TB8OiY)TzG(f~d&#duCkJMndNtzKl0Ss8GopTmMhZDW#545ChFYg}Y`y~=Y8}!+%TaJvpAW3U@ z;RYVF1uPXpAJfpW1}+|tV|Z4JnbN*1ritf83O%Kl&gwMSz}xRY$lOzO|*L#JkT@0w!7|?c^V7oBQBflsvR6nM5TY5SF)SjNNH*p zcG!AV*ORr2mvoM*Ho>5?52~6Bzc0ADRzjr54lISm(#2;V*5A06#)sP!C78*|7Om*) z90hhGn;Oo++R97=RCeKxLKw_MOxXIRp_d-n5>cx=m22?p04^-)6?<=tUss_I|LqCpTR$ImuFa`sh25$dOEBFd1^ z=CRoMTdJzYQAQ>K9wqZYW)e^FD|qp7eMq!Ia?!C?Avg$bR(9!2yb{vEB%{wknCGY0 zv+=IhP;2PfumXWFUR*dkr8HUk?W#C958>nxq9_5ZIUH`*DC72^X375rf$}+ z{jxhyOktJ;Tj8b|br0KA4JT{|*&+Glm-DHt>3aurrF(JZDdBBjggtCCS%s~cL8MTx zvS_Kd->qSW-IdTgk5tve)nBkWdxm2ck70`ShR{*@RIjG`v2yfR?1yC_JOOIWFb>Uf zwez%Nd{H8A*Z%+~xwqT`&%6Z>+|fn8Bc*?3CBC!N+V|IY=O?oXgjL?NdF57|{L+7a zKCZrccdU)`5sL%KL(q-S8hy;~Mnfu4>Yw`G8d)uteqi2VHRbr7pbTG5wL^G0AXv#s z&jpFEr*1JMy!?#`7Y^^u8afI__6;=70@G*ul%nx_BM;ROm_8EWo&l!FoT1&pvN%*U z%~92xcJt9pSHS%nGmh9>hj)LZK6II;%|B~3+Qpbcx`|tZs%^DGR=I-ar_h_nsvf0~ zSU;+|XE%TMZ5_ycs#Im-FWx{+$TI|+bXU@9IWsq( zZR|-q)o@0ql!8xA?j{Ai%d?&IXShT{vX$F0Q`7V6BL|kOciQsfGF+&Vjq41|V$oy3 z83ISMI|)>=P|4GNCj6bWu;*Y)s&u1ZshdtFv%YP9szTRfRc$kCh0rV(kI!YRxg$+y z@ZP7bdalOdI%KD!yC0uStlJ4qWz5F{x+}P{UgAwKw8xt~KfBw|bhIPXwWYt@ z9ZpS`KgmnVBfakM>*@R(3rMbt+eD9eZ=d(;@pUiBw3kSuQwAmZl8Em&O35dw95Tja zfYKIAB99rFTbglt0NSXANdyB4kEVxdHSrW96XRHq7_s}&?QEtK22hX%H2{|Frd(%s zHl&kfvG$K~vh_ke@+wRQF| z@~t!=8@L0)pwydqyVG_aHR*fMZ2rUAz?XNBDHQ}9T z(uK0k)s`QQT$Dl zuO+_keteg_nt$n{Qp@N*xvf6mnZ^rj@R?1T2W4Os)E<6Pal$;UN2a=;%ReDTXl~V6 zjnBrRqhKDZ?Wg3BnU?EOhj+mh$4ik-HGFgEj1%!cAO7_R#G___Q;b|r=I_#+2$&%k zu-|f}(Ry^Ty_TE^#HVvfv^>3oM{=Y8bfU@|#`|R83`uQF5*M5YuR%4OBx{_gVrse+ z@HIp(H6JN#OQr9%%0#tML>O;?Uc?r1tz+2Aq@K(Ov2XZL3=|}k33^ote7D^pDbtYy z0us!37kacQ2HVt}jtW@*)u2kLsD=V*wr~)Ep(#NBeLK1Hu2;^j*P;?GbEzESm?W>d z9w5^9xf+@Tl<7dDR2!?G_da(vcoS-R*J?@(zO;8AD5uEYU_?2DCk7U7&9B*4* zVchSket6zMiY5i5R?kA>SKNUz-c%wGO!zDIUQz%P*sq#RdR($uO0rBirrz97YJIOP_mxe zMzG7FY?H24fdUzC6Y z6g7`}R+Xn2CZIE#?e=>F-QN>^@>3c>V+45Ci>{kiWY)Yb4 zjpQm+HUUZmUE01uW+|sb_-n|%dX_0&5cBIf>mMO!Cyb2Pdv*Kapk%o?CeodQQtk{! zMX!L~qb!TU@9nRSV#7IKny-%FiCWMCfU5s<1!89Wh`2o>$@0H)=4vWD=qA1>L5JC@ z6Z0if>^~qU5U@fp-eUC;f`oU>$FRRS7=Q+ZU9T=VL}2D9yn62_Q`;~r(9fz?=|&>{ zQjrmQa7cwEK3Xw)EBEdxe6+15)+wb3@ebxu0X_BcRCOch`-L@=dkb0jUx6@BtAIE7*QM&BrgnatoVHi{7Ce_h1-DF7DChhU#W(~Q7MSrFb znj+TTmW$78+UOtMv%m5ifQqZvhQbQ~-&)lF3-SieAQG?^RfVSH#({boS+CA>J9(9o zl+S@bdT7KR?4^s_dIHw}Cx(b7)C5?^P&CFtbiH5(Q6Eq?Eso+zbtF8Sd|zBA5)C?E zq(!Yj;_ory-+OW#cz5?JB+rkeXMb$n$;pK-R?5kR@8|S{8?69dq*I>Lt8-GPaWV!b zUx@ay00#U6*ikf{aK2Pd>f19b*FL_ZDOXuPlqgp@rc3(Ne5_z_Xd|Sx5#Sa;zYq6l z`q{HV%$U(uanja3Xv=5@BqboG8d59`@Trq3@02vB;IXuudX*1r^i-5DQ7yJ5upq@9 zs-t`qH(#yRn?@d18p;GbLjA0ED~)6tdbCEU)S9t5ud%dfnCne$BWOiftEfrA!i+dU z%%{AnIQLeZG?N@oPF08o?X5OC(lD`x9N|QAb_&b9 z4S!`Y(wPFuEot0j3YcN4>04OZ)UPQptI!3C-zbQ(|9bxB(hbSYlsiuyib|G=y4<{i4!C z%3pKYmPsb)*9I=5U=wtk356jq57Z!>M}v0*)2~R|-P26U%j@8eq_O>Lk?v}MvW#6>ylM$TUYHs8{{rWn`BwKzK z)NPTfx*Pvwu8f2ca{14d1xXm!$SSj}f-C=^wqu&oL`-EaL$2btSspd_*juJR{{y?= z)mDr{&R*D)3hB%c%~g{{$ z(HYIcYyyj{kaC{yfOh_m!=KhaSAyuTBvJ3U=h3~I%+QQGKl%RN&h`^ITkayV8DGrQ%x^ju^f z!ATx#Eq|YnAY2~@ozW#Qp!RFnRur{c9$q$96SR>R!!?$$b!>MoXGp)x3pawS{Dmu4 zpEm8T9us;i#w!=bjcz@i8*bl!#OyK)ep{DE%3OCkTF3EkByxt1wmaGVEgI`$sn^f2 zSP5|2C|AJ>F*WC<-NxS(J;tL5C&*jx1;7*xgNi&~cBy2kwvfGh>k9vlA}~Ba-o_Mj zuwZ|G_pyL|6ts%JCMD!xg3us5P57x|G zU`2m*PxPS&2U@cLQo=`it84g84iMeqPGK`5@H zrwN;ApF{PT?w_APPD4ScIIX}I>|x_CUrPDPy=X_nuX}-CSFUwC`$vR0dx7Pj$m5DP zO|C7Bb?4P_o^|(R(;?}xH{qD<)N~gvYYPJ}o|!Y#-qV&unj#i3tvt<3lN}wZ6SYTV zGWG}v*sVF?s{@6I803a!#8a$E*EX9!p&-p#Mo(V1_v17ZBa}T89ZyFpV}1l3h@MGZ#Z(-_ukhvDn|m~8yF z@tyQ5n<42&3)}8uT=&cxKz1o!@r%z^P5&xdjM`VEOEv2D?EIAj_1RVpFMb)+s9PCa znHFm|U_+E@7iDa;!UkAt_O^5}=J4fFnDfiV*gIzXM$n@YPv$yYu4w13%Ra%2e-?T~ z+*9(^zsXG*af{K55<~>r2#fHmbu*)@>Qy#m-OjWP5Kg!YCc;b|6V98=X>zCg11 z$td#h2xM5sI&$rsba2A~MJvEfYi`1PT-(Y2NRCUtT}<1ef|3vgHcD! ze^o*p%>PrW?2i}Q|7);D2>pL7jpOTW2N_^RTz$btO~WK3iYS0W{K>?DjhB{OY)Zer zH5*z2M{a(HA8>CrN1osy-n8+Y5dN4lGDo%c$P0jPpR?Mu5ahG65F9 z{;+yIW4UTn-eSyYxASq7H|XR*Bu2A1d+>hlWPD_wvc!cqZLR%gk5%nGoaRDW8dSokYT?_F2+EaDNJfVpYB1}S*~HZN3%}uIInHmyW1`Q zTMI=rp-e0yEn-UZYi{Qbu>Lp~s>igc<@KMD;`pCNii7$83f2FK)U@V!%}@0|Cxt6q<6OEzsTzyvN%|pd<|+R zs2Gnd2HrkKGEKsZkK(S-1>lP?>N$E#eRqQw-9U@X&K(yT~ zJu;^dtrM7nBhOmCP_@)(PVjS=0=m?nhR8V&3U-C z&2Ct5f6EdTj3O+3@_XK!S>aCQ9@UWbK*|FprIBjTq0tK@(tLX&3UX29&)dYFrx#sV zPUxYsqQ0Z1YA%`|l#np-l~K)|Do5j?M|RR7xjQEo_0jRQn|x47Lw(t7_e|I?*K3)P z=8I|}VUJ8jcAoj}s!01~?>7KJurZwq>{Lx}Hd2u3hPHZi1c(mG^t*y^Ua*r~Wl(zm zs+RW9v=KBpOO5)iLezYONta~K7sa;X@wYLT)l$f&Gud%&s+L!3-Fbz*UN0ZDhNLdi z)?1~U_ap?kSt4qo;UM%aqnF9URbhaK2aJqikxK4p3cC%Xgq=&o5Nv2zlEBRU5dxreDW@v!go!Aj->5&7jcLP;yPZLn%pIS&11r%(ED(lI=EFQ%U{F>)`|DJ5L zaON_R$-!~94{X>P^5ZX+P)#`DaF{JUGmRRr8bw38j(Dfps><2yrU>l9fI!R)vF8C}@JkF&(HpwdWeLn@u~c}`2q zZ``2z(Q#rd_ZNGo@j$`$Z`qKD$@Pa@SKjy{brYd2jZN-!q>4{Cnw~rA48Ldbxc3i) zq5-v)#j~uoh)07-t-?%rCn;PcD$mKdD`7Ux;O5h&T8K)z(IM70G zEzd)jI3tYCJ9XxO{Cn!?9eZ`*oRL3^TvypRmxS1-K`USs=>r5b52v6pp@rQf^(QS|HlH2oYCRHQ>)ypHJZu$GY*7alD?v?>*vNjmXpt-S zQkbW!uT@jvEHii)99<9&ERN=+RiqI+%hvNaki4H-?3P9cYEykj%OeoN_obRgyS=g*>)))GG>* zTprg%c3BE^SU3L*@JPwp-db;!LCI%F{}2b4;$jrO^5|EeXYZatoTF;(aM(5x){Ub3 zN6}`gCUkF|l68B?abKoF4O3tOTnCiq+&pm%yhziem!$w>^wBowxNH5MVOR-AZTRni z7Z5p2yO~%`5?{f)))W@B5B__-yn%u^jPP%U!aH0>@%X3r+>Q0!v$6pip2b4|A)2B6 zM*1-l4pujYlxY>+(xY580%4;|c>R41c}vHU=_P{ZL+z*dbkuKdLy?&ZmH-kJ!NQx-c_@((PXl%44z`l9q*&k)w#-g5tZxp+huHk4Y{x;`$Q zBS6D&Wj~{?k3us~(s-W1D*-cCWf;mcPf9-QsRgTb`p?CNn$XK>7YP9XqOL~{1ii{@{X_gZXV6f`B`K(1#6;WDHjn3s-8 z2d3hf!S4}xEC-U%?CM;c?y<*t@aS7ttE0Lm+!Og;Nf<`@U?kSac6nN!msWK#trLk& zzlt1dz>nLxIu#Of%&6QVh&wcT(FN-&vs?#)1+1F`Iq?~)1`*x;RJ7E=If*Cr)=QMrk>yYk;0Y`<-FqKP|-wz#zO#sP#`HL zj9aDvlSC|fb5=vcFOv7idaB4OMm@oLD#Li0JU=4~ys@}uB;Lbwts`A+SD#KR@KEdi zu*#v9HjBn*(UEto3Ec6Rr#VB_Bpm~z{2+bV!iVr0qLlSqmeQzmw+mLZ)vGUTkz?GN zuV0ko%39e~ebaqdrtAxuT>aw`G?X3mV77u6yiSL`_X67IlYNgf!xg$h-M~3|ExWsS z_L2842g`hqr$tZL(UcD6h>hmcpSPHNQ?!!)O1+CUmf=)^FbfuKxEHCa2Q}N*g*j9c zR7yNPJa&;U-?P0@tc1BU6J5Q1*Mf06fkb7<8>v?htl!zHNxM#+ebcc$cJX`KhTNh( zS^mwY4aePD%Nhq(nSADLu4|B>PDH6GHPuwBUAcTp9S1I;YnNRj6tk+RMO-u8GCOB^_)D2}r_>O1Z3)@>=vgSSTp35o{t5@Inm3{-j$x55XV zW`)l|axRhn$hCi`I8T5)Lt}sVo-vRd_kh-t3n4j#E(FGb9xHR-WocP7RzDa@z7vCf zl-xgWQ)Tlnq=XaV#Ct&7nEL->>>Q#rX`60cwr$(CZQHihW!rwrHoI(eq06>y+f}E} z=%2iUZ<4uIu6vN9%-9jJuZ`E*lsItfSo*;T$qI|i6S($fByo_5lM(Z0@<=MfNzY9n zERuP2UgbcQ0QTZYB`ec01>6$cU0)nsx)Gq33Tt*ZaeL?d%4ObtdM3T4$w<<^I5jX^h z;bnlC&Rnm_2*7MQzD&T!b05pQoyz?lBX-0~LMLEs(*QQ{Ji0?VyyW@gSU{+KmZIpq z{F9)ZVP6Y#eVvw}XqE8a6~=rpas6TL`NO9D9+Wot;p)HxRVlfZT-IuBh~~2nu%6#v zN$6#fz$57Y_UM=z5-j{*RW>)<|5#nf|W3@ zMFZtu#vE9Za9(;cD`eT7pzojOPpVL<30%qi=eIem2echk$D!2i6vO@Ua@c&wyx!T~ z;UzxIFO)u8tR8ANU(w!@wgvC#5lftbW6$}yq~JhXiI5iDJbCWw4HSkB@n&3{z4Bhw;#LI9>$b&&#_FOVS;#>c za?-J2ePkfuq99-t4Ww@nC{tRBRA{JHKKx@9gw4{tFvnf0(bPc)Tlh@NS+Nu-^yP)6I2z}nNXU^KR)k} zoBdzyZRnW7fo+Non*-3Pji+N3dR%NqFH?S)?uvas@C5y{yRf~=9to6S?p^~-N zHR|bJUnBqW`EqW7!;qzQq`!`E3kr7z2RR?deun2*RUS(SS7x>XVuN9@sJ^x(nA5p0 z7_f(BP=FvMGVw*nxCf_k2H5uuHAstiwJp}dS|Ag7I`Fe>d?4W}!MUS|dG+=GBxb#q zlZRuSF}wrG7~$~7d}lqf|8h_>(`Y|;tKe>0j>l%`pHLDL@7{;E;!Z(G-&V@mPvwMi zpe|3;>=q6ry2yy3lnf-k*v;qS2I=99r0qmGbY0ze_z~bvy;i{~VLX$erD)+@Tmm_z ztpc9C@Bx0;rMqTKR4?r|5 zn?q7&0d7occ}P%<8QM&W824{t!Te`8KYch^M=14#cJx+P7Wl$Sm4D-ZkFHbwE_T^u zeD~{l@eZ;Y?Wv1FIC>`FuZ_!;(W<)1C^`kiWu_q%_P?Wy^>_^m#>$;ycb}2Ljh0)X z6r0YOBwO&2lPejMs)Uwr%Wu!)j_sbZgLJM~Xf0uS8jJFIyQh->Jf+qRW?$7k`xYIL z54)q?51p~Rx&3)tU}p<&RpZ96yQS9dnLLqil1W*<$CBO(iL|`aIr{+r}nE z*(N0`2rHL~V(6>M4jbzE>B1z*F3gF>%k=cGR-HbjO3qHggu~Uu0wnJ>TP9d-x3|T| zqkD{{tfDUwh2gBS)F~fm`KrA7+@xv`#G2pX-)DV#96dGe8a>BOMNE9CGTt0bAqBmF z(TK9so@hCLFej%GbqFf~m#xSj*UarVmD(O1p|63+A265EnlCLQ;&u;Sy*h$jne^uC zAWUHG(eR;cm9MLG;L{w#t6}*n(i(@w6;J{d#}cjPkRBiqi;`xQD^h>Vzj9OCDjFVU?2U(kEpge*-xtCn8e) zt16v7Fbi6jJ=v@!f9LgQkVSH?z6|L>4Z|AS(r3xmPFRML3x&JR7LSHY>Kt(Sfg$n-QC&7cEw)4^1r% z^9ZfDkJNW)5y9J4gEZ~o9o4?0B+mH4tvV| zqAL=m!BUOs#(p|6+C@|ieo*k(vp-0C;ei)h0?Mz%&2m4o7r=!=dI7bNFAj!n_&eH_ z`!JJekUKX(IdK{TPF6h>e@7dI2f4s)G3d(nan$Jw$Mxp)*AWFALiYWrdY@T-pW3@r z*nCUOY>00)?bJEx^67m+kPRLx4DK4?>t+*OVRC{+F2sh6bD|jze><$gKxOt_u1yGi zeDcPN@1m`YpQx(64VLi9VxfR(1`s3UHJ3x8v@CE8h{Lx3HFl%u>je|hzB-JieX@L?tz*W`VIw4UocN@}y|H#iYj zy_MNK^(s9lE>}a2?>XqyjpMbl%s6f=r+hV^^0E-iIUQLA^eP4`NWPdi4@P^uSp%uo zREmc@YF7m*^nLj!n9WofM-Ei`13h7cyVy}$OZS%dSPG8|5>i4mWU9}L znZo4*X;zMPJh&lW!tD4ulo67$%DM=Kn?2B%+dyR$@mLThJ=Al9w|6AB9-3J5ZUl6dk}CjS zN6^k#qEv%9jocr8VnY#*7$MUBK$9)0F%9@TBd8_6O3z9rJkXAW1ZV`LLFoaCF-g=% z)z;3^EVWp}vkhkZzgtL4O7B+vp+jL5^IE+$Jtcylj$F zjw=s&taG!*v@e>yvm5U~7mGH&quyA&p#W$`YE&eQSbtRv9InU*xk!`&LoSCSDh9t} zZm-xAdBdh;Qx;W_D>Bv{o{_67i$L@rvZIcxZVc{2OmilsESv`WkU;c)K*OI2n12mF zEXrZm_dB?q6>K`qBXT8%e}(q82m7PB0gK6Y@I0s1Ci+*#)22{XKZFsan@yOz_l6Qm zv(ZnPoaSr}{W8T(Mg=VnPsVF60TKTmT_Q)P5*(uZ)ktp<&}2+K|FBu5xchlwqJ^1( zv8ux03w%)EEZV39rh+5Go$dH(Q>Q>ZP@cc)to;_uRtPyeOBWuI232M)wcNW~D>ken znr7*R3B#HEM8fbW56x{}3V5{tiYz3!_<$-WFP7SJ;pTLnAV(e0W3J05MOdA+?g47e z^X49wT!pZ50dI@5qC4h`Zm0J z=FE*mZ^CUJ>qTUPTcNc(%uS^m!Kn9qVCo-mz1qsI65p)P*XA`l)=rkVSD7gFbdqf7 z@{9y2?H!_0$1|ezBvU%t4nB@fyR|p}jGLn6X&x+cB#G+uJw?~> zdBpKm=!=|ipHfEUkVoa!7zi3Iebk$M#K2Oj^^v{z4~skkZpr+Nv+s&eJ9#m zwVJb=BHe6ToBQU;(Jc2Y*8!zzD?ZHnCz^5rC%VXtpFp3b#S8dd*U_FYA-gYG=OED? z(ajnYU3fwuk|ZCOOD~6|*B~tfDebqYtKnwMtKuzP_e8AwAQ7xKInf6ifV1`E{z;># zzwLt7Ct2Rk-+?BWM`ZCVC7tvc8oT7Zk$guB(YoA zj{G13S6?s#?6$vb=9%&joUpQ>N5;2!*H1^(g`frPBu}??CEhA^=jZ}J98+PB2$XQj zhckmDe+D(D#6_7Uac854+~LEtCM%Wk)V<5Ao+VfU{C}PXe}Eb$XU+dZj&U(_{;zV3 znUnLs1hZ5bxLlXT&y@wzK6-N2H z+eV|gc7kG~UvI$ck@XgR^l5+Q#!H`{(khYTIYu$m+_vxSYq#Ie$Q9!+ zYI>jQuVE#b=h)PgW6sM}TzjUP0F7=2dR%cbBw2Tu=EAu=LVO9sJoOF9ScL zqc7`Cts@TVFN(hGTbTq-_?Ll&kZ;Ji+A~6UvHe}8DmtX%(6D}xv5il;klVl3h8jqx zGc@ZSh|SAGwf>9S)=!B0cC<;8YG=@j=T|!uSS{ppv3z9O<>Y&t`O+tOY~m>0F)i6L zm#xMb%HHc$9T6Z5{E=l)8OMv}_Y_8-uPsn(<7tV&v9~A=2Htyi826HIQB-bPDpp}1 z`;gIuT!^UjFDOo^A^$pa7$DUS3S#vk_|VZKerE~;K3ifr$3wYtdqj8QOl5#9Pm z@Vv>3pcxxZor~eR$$E@JAwH@ei;$5F4&ZYY;clZ}o7o0R<|MXjM4&-@KevcutQrPn zJj2A{t+3~6we@_|O5tdD92x)vko;YXhY(F4O%3hpntFs@4b*P!c%B&)eddJh%}KK4 zHa4YmZl#q1%zf~6Y3nhzQ^ow_v0<2uJ4D418`vi+trXGX(b9`OkxhI&0-Xy=;~ z9>Sro-n{Fg#WhaMaPwcUGorc7r+%WLNnr8{#RGVbrOe5`%k62SugEdvB|NxdRK!mQ zjw3XrAwuBTQt$Qv|Lx{a@~A%XMgI@!U2ZazD<8~jr>5?MbXD+Fyd!O|4UaO7l}b@U zDcMxPCUf&mDk?83syJb>VQq!w`FHlm`7spf>iJstfG|m&Q~T@qpGM}BT>h!xt3I5|4o&?E>;xt(_9Gyj>{c;%_#-I z_E5Q)HLM63!kFTkAbR%DMKd%I@E3?DG@!w4$iBV!2#<{ zf0IVyn?5UhcFpyaJ$D(5toux~@?6=@`dTNhM^@O(pA?35Uv`*4D_Zl}N3SWDnQ*>E zUVS-wXR-Wx-!+OYSdwDVjv9`5j|IX|Nxjgj^C|O~rG?5}w9zv^;Tf-Ly;wa|$9nPD zG(TBCFcV@|jV(o^)!8&tAbh zhT>7`Z6QgtR6TGTsp-+anFP-BZL}oY2n9X+4lqM562i?kPb$7CQ0+-)<~VJxt^Bbo z0J2`TM;c$_#DshQ^wIU=0&UzASj0jIw7ZbsTMgHwk;BNJufX|op4)CN0xkv`DJn#n z0}?qt^Dya^i+W|lN4rcZMT&m%Nn_{yf~=RKS;&SSSKLMh+jPjfHRsosh@0bG)fGwrx$D7^2Qwbt+>|Fs+|Mn*z^FEE9o{` z8oSay$MbmOAg#}lu2EJ2d7pku) z%gqQT9<{MLlgh6U_Q<}xsjz%MkDi;S(hJ8=SH^lV*7pzJzEarCIr>=qsJa8N=U^4l zb_i;1_jbdK95Ai8(~U9392w`!`>+zaSg#X>gkmp*T6n zO33#7kj`1kfPUdl{k6JN&fNPd9P2H>2sj(x9D18X?W#nMLNUxqvbE~S_{Z--{N2sM zFxzZ^Bq2>syG&g+bPjVo4@eUxdaksB#i&~W=`vsqKiwRA!k!qif#W@CTwHxo1<6PP^D|_ZSkNR-=t!On#+`7 z=FuLhz`RJo@COO7+NFkGqmhC+u&kP1S)F2*eGE#-coJE`LpUE{8IMb+w_h>bRSKLs zGvj<;beG9>@mS0~)o)^DXE~PsJ`nh@2#2Ga43IyaYb_i5J?hzlO{`w9@pd3i7>x8K zP=vXK9*mP5HIhVS=4_%ETm0g`+`7c)U*^9PL_8FCh35{>H#v-@dGHtXekFW&AQkn6 zSEJ)#z|kz5=G%ze2614#>ZQZ9GQ}QmE3o#SG8u{R#v+glW5ndbnDxRaAGT4wpOEzt$GSQG$Wk))&$gyYJ*#CwcCtH8C@tk0QkJb+h!kB^2S&wFFNyhsA| zQYT6DM!#ht{ifJkC~_5}Z%5ya^mS@kpE+w1ZVI_IEMu5}g`rIt)0^IRA(!e9+K5qW zyJ6~FTgcr8KW{P?f?Q{gUlL2oF`X#(u|J^&9E$@R5CcNte()IbjqC0+IZz47tM^Pt zH;c~0G5+gV;!&L(EBC105;+OutgI6?Bq#Pck2S)_IJBK-&J%o~ZE;^ERhneKx!4Ly zX7eqED8pOhWOo3qsPYTWNU44hD#g13Y|T2JUrCNM7rLo7p*CLPNJ#j)9Jn*9h>?{C zPtUX700d0N9)`j+(vtMLSVxm8s5h~Z3WQ%5xR`PO)~dzZ=<46zV{OEpclZQgy(~@J zu$w<$WZfl+L5W^P_+?8~S0kM)i1Nj2qF>8HA2nE7UuEfN!&qBXQjA5y9!ruCG zM&PV4`oDj6T33zDGVlC4ML4BwxnkGq0k&#+vnojhZ)Cg19OUZnjcNTGPKEXi37N1* z>euR996d{^nSFZnJeb>zX(tz}3+#a`e}&y!W}ix>Rr{{X4%V@eb#+(>w#wxvP6!ck zR@c0}1Fr??&|0d3@Y;y8MRR%(LKo18XYv`&yfuG|of!|lcYQ1$tm6CTOZJ!{2($Li zu=&8~r?XgJ$!ueYu{nEj{u%Xoc+*>>UWt^kol=}~@}lWu*1{nlsFm(~3bq1draIfx z`UwF_oy02o7e;%nOb@-`fAdpUssk4p`*pY+td52>rR3aZ?U`g^)9OvwGpP(!__X{O z5;oU{)cMOrRoZ!eu4{)Xyi^O-Pm^?BY++NKA}?{?m3p&d;`9_xtW>cAJGM*GrrZKh zwbMFvbN93~RBzT86-T8r-O8#QkxCOo;OP;c5NEiUW}$yOxJz$Zb?A~P)@mYx$6X_W zPbpdQ$p%G5R8#*B@?-|5U|2o0$r3UwJn@Na0bLqbR!tx$&@M7W>zQ>C>f3PAcc_ym zX_}!xtLn|XYLOKPy+)|A@#Zf@c|tG_l*QHUmcxqWWx~1x{E=!{3;tl;vH2_&K7O_R zC4sfemJOQ17jYF&YtSz_lzhh0iwEc3S0dKTp`Wq(Z}oTJ6n|t0fYdcO-`4GD2_t)w zS<7JC)lErVl!>ReHC0IYMDok^3QkSjt!bSuKn&%FF+10iyRl0}k+6#i{v|!!ci$b~wmtYm7^_s9Vf|uK*k^PNJO{Zd#Fh@N?+8%ej z`E4F-;fC(#d9PQtVyYFqt6yzZeBG!^%kVZ7cv&CHb|SJ>c>M=>^ooDG`*0e7koRti z%-{dxdv6DfKP}`)bM2HNnIeS!rJl+ zfk(vB9Y{n%hH%djyf5G24}-wu{uFc4bQniSdcReqA0q`%{R2-isJVtDiy`RsrWxMv8#-G z0UJKWaLK@``mh=O!48$07A&dILce%AVdmSpw8ix%_pyxbo>{?WQcTM&^uezYlDL?s z4$4j3?97jIXs3L8BB%o4jxo?eEM@n!B9T3x2@_Bcg>hwQOCKZD6d4Jg z+9P|$<2pLXew^N3zBxsW1E*JWw4nO#!GzOj(bbf)(d+$i?!}T3O-Y>I)x!040Q5_B zlqv-I5w4O#n5Cr@@THPab)q_WlEV7Mv1I$kS>WBBJ!e-X>4ISth;!qpGzFuE*5cQ? zI;~jQ3o;N+`Oj&0mq(bO{!h-VKg45YV$HskAz3 zoEc5(B;|%FfB8gS$-n)_mEO#2t|d7b4cVl_Xl+*km_zto8#bAtvKy|RKkF6EO7on- ztx@B%t!_j%C8;dl#?0}-_ydEKZi(kw-^&r* zV8XN!etI$HGm`QQF!-cL?aT>2jOYmC8tW&J#meZtq*nmY+mr$-4~m~}byGXM!|Hf1 z_F-WFu?eF6IA0oZkl2~m;Ko8HNpZIKz{v0UkMIWbvxj;;-8S2SeM8SRt zH^rC_Z1#9=>{ipfc~@jt0$_OnLBIUE9YGZ=f095{fdF`5b>iS$`vc5&G)uy)T3wgXCl0F~anGy6ETQh@FW0bnSrO4qzx?c~ zJ9!pd+Zt?d*K~b}tGOjBS!iTR+PDHNNL>Gbfg#TgN#1+tf~9oa&9Dqbzun_$pqD$Y zAd9urGFB1!hp%zoT~>=<+uj-n1YEX*+CN!}y6zxXL!s`k~^#gr(=BW%=Ff z!;ImAbClD2i?%Ts(syMbaAP2#@mCo#M%SiUVl8K$Mk*$6Is++!GKDr0%tz}DT1GXE z{#*C^`vbrdSoLb#>8{>};1=_|&vu#G28V3HB>u0}{Evqn_?749snJx~m@D9ztAem` z;VsWgO7_{UU;olRO2Bb!_RFUp&rTMm!)%eE9&+C2RgXcegPAUL;Dh_xpU)@AO4e4y zQEaG|&Q3hk$@3*BsUMq3@dHen-qW!el)Oc{U@Q)RwybjSDI^^dfzB2WXvVQ-w-UHq ztZ|dSMLBn~P}Lp-MR<1hxb?fc{W{zyd?>nQ|FLVf`dAfUXzrst%vcF(e7eH)F*Jax zlOSUd*{xk-A^AfD^ORgziwH`Z6ik8?kM**u3NMHiBr@Cs<&K~NOC1$KU34!%?N%kl znzqCI+ZK{_6S)LhkhjczTLiE{Z>39_jnRBu0ivi#E>b48^C0gmf2SR;ipXE_8QxOE zyH@Shebm2fee_G;XBn@nsf^djV-?QmstE0htui6sL>((d=~yW=wZF>Yahgw|0jMao zz4ZQ_#IAOA%rmzKfQdy!WlkFtG?RHeu*bvuTFD#V zs5X?_!_#Kj5m*KmbFk5uY!Ny8{S2|*CzN$(T8R*()*@(&lus-01_tymM3gCQP1fxK zCpw#AJp}NO6aIaz%DP#YOjCJ4Md;OqKgcSq+?GFMKd;kT_9Ub~ZDM!**1!gIVU4`g z#RSRw$~(P3>5c-(iU;ZnT*0|ED6Q7cDRyEVezx15U(&K%4YJ9wquY|209}RJ9a155 z%wmY6iMdYObhz@0WwDKA@)Di8?kzMAwX$didugr|C@&a4q4#2kl{tT*lLIB+6<5ia zPFYbdO6KhM_yI4w-w~yEc=k#8Ye~>j3ftA@83o+dKvsbR^3h?A*0Tbfdil9@W& zQB5L}89H0qzx2EzU~qYIlA?3IM$)3%xt%~I&Acb-#Rr+)4$m=X#SbM z+x&7&!07*|2vG~5KFAB2wylYn6n!B8{!u_IF8(`M z^DNuUtWKJRzL#wkCU5EMAZDD$&O`VjSj&{avWt1F9K8bba4i&MGlw}uKqAfx0$!B} zUFgX%(IW|48XvEO51g%*7^2duml%TLW|w$?k+zMvVh{iMjTIC#E^$8F`#77Izy_K7k>g&ux!gI8q#Fl*u$tKOsl~a zMq+#E_kgoE8x2hHe1B>GDbTX1#5pnvKjl&x!A-okJdDWnjRzcE2Sw@)Z3oA0fPb)y zY?P(=9g_FttZoQpEiIJBTdP0GeMgO^K!n+zPD34({j7QM`d|+FIxQaneR!GPXp+5- zhW0Qky9TNMlPsqAxay8QT}!u8)dzMyhtV4W2|>C^Z4)tnM~~hyUZ%YwvdXz@;Hg={ z3b6VID{R=L8N5qyTd&@;&Z5DrT){&{KV#f;2B`V(iOf)Cc839W9J^S&Tc>$-JKJWC z(^zxS>);Bf4=$aR*Gk|1HCxIZed+93pB{{T%|Dbx?L@+i0G3yPJwI9OK+8h&*RPD~oKxW-y(cqx%ev|>%(LltU% z2vxhDl`xfu^dr7i@MA$DSd;;pw>K?q73m--F1X7WR=fm)^=061*o*;WvC_H)UrtQ*$SBU zO&=F&H~fw?zBFw0Uu#iWaN(-;`M>zTx^}%FJFjF0Y|BRh2F;m+ZLBwIa(4&#H*1eq zgkJR)NmBNGn#K5FjuyS^MaLOyOoyM#vVaX1n_L+OSu8_E2U;qn4XO!&P_j*KA9rps zVleDPXW9)4w5j%N!0GPW@NTF{YtASyS!D#@0Yw%5y^?l*6I`n(0gYh!WCa?7vMg^S zqSq--Ka^22y$|u+U67w$Gx@=lmkcd)IV{o-QO7?|M%*_-G=vA%mRAjLqihq8U!x6g ztR#?sNye@K(u>F6?>zk-_GvbGmR*4@H`ZU;Z!cnF0&DM{o{~G-iU- z3r0plLeUxYZAWy+;2HMOLq9B}JW=mzrhR=>JfvLO$mu(DQISmKT-qTIaiETZl9_Ui+xl^GuJ^2H|&BcR#vs zPVAC?we7=Bfa7&1$tdrYiU_!(_+gF=5c#GV)i7x_5atdT1)BCR@m+YgsubtV9x=CZ z#mkr|i1P*E@yH4Aq&xm<36k?>Yw;Ii-G*!;36|h~4WS(ZN|Q!%K?;j8Zl<8$a~(k} z`^d4WTSK$%pCn{_BV;p!p|y@33329Z)s&XZd(;gXqNNPBmFC&)@>tw}R{8oahI#Ut z-oh-Wy$p3f)<6}$#(FgpG<5f}4N4JhEkR@ zPR|xfL;3jX1LzVA9B{G)iwYiMbovFEEwBs2*ObXVJ?Iln$g@=)L|#4R=y0mH^PF%O zL}7eye1pLi(^eeQ!`OOmT2uSLDlC4(vcEez3!P;d?if7s2e~^AVOZFgap`ou=8|VR zAH?(VP}?v820}OYP>h|+=#C;f;aA0V9wzq%S7gwg)Y75mFo`x}BYA`&1h=mzm#??y zuV#lx5}u>U+p`JKUC@6pntu~91Od-a0s%jKf8XSJ8fw3x8=_K$otXp$abFNfYIFhj zKtf-e1Th~C;QUI=B7Q*{aK(>fVkh39S4N#3u*PKYS#+^D8BX?@NMV@8{XW z4AJk6z6$DrgA?0tW!uC39-MChKC9v|NZTcZv~|)w$H76s-kzy3UMeRBA$akhSxdPtoR*Fh2uE5nX`E))A~8{t1qbe=-sE=Q)iku;z%>OV1n+%X>Hyes+N{E;oX6H zT<~8#Ltj^T+Rz_5&o~}i!Ad$-BgDJ(H_XH-?MH%Yl*ONKgK$(Z_;7%*%aA{gGn`kB zxW!B&!zHbR0Rxl)!!wAYI@;~OE3P#4u88<_G_sQV_`;CskX z(y!khLJ6%BYw;)$l--YTNH`YUI(s5~qP59wH9|vZ1giS5JcvD9sW<~+>KbpVe zo{Ouq+6Zyen0B2pAjwdFZ(W2r(NX$1=kh?e6WRle~tRl!2T>cdI#u1@w$ z6CIW2@EdI`WyZkXYZ>Q@BYLU+qL2Mjw^l5q^N`5Sf2V*XV&(seEi3@!@bbHlYM;?T zw~(>fNJ5WBm zvdNVWiw|w&u*kP!t%#4PzMkrHhBI66pX&KkoSq(9rk}1JycHkrU06Bko!i1(FD!Fg z_XIEznnHO??G>Oy(j$+gHx}!xbx9Alt#z;BIuwyKI$htt187#V#$((0 zK=uV7(Utmm`Iltvs0u(UkaK!wRav*(TU2zO(DO5Q_?N4?H>y!1K6n$TFDYmsRlBv5 zUZQ=k$iz7}ff$%%7RU-WV+c$c(-c}DSF{xS3jjVUR;7ZMFs!8oTFUKM>N?e=S4DRATw(wKyBV-=T&4}Y;O_Ik2#kxZjYTMB4Nrx(Nf zdaQ%XxCz#wXObxyMJ!GJxNF8!+h4jkLX%-cS9rr%-?F(Z*=kbM6%*K)>q#2H4+()4B;Q~Od@!#=8wE^oxIR3yc$`<5$Odb~RbhQzd`S9Fy+upk;Wzlc^> zhX9ka2Rs(+LPPZDaSChtGq%N!d&W42Y^EDzQK^@NfeKbEq;f3$68>aKqQLJs(#hwK zv~;I+smIfX(|(9Bf8A=DfFt65T2cGe=V=fPV|2W74MS-Sw|RU8{`9QPquT;wE`TF; z+oTHDnEpZndZDa2Qo-1ax`&?XVsfILDm4#9T$_?M8`;%L0fQT|UH>rI%XtW}#{5{w zj?TUedo(gM!J!rOZ?|X&WoT1_9@a=qEq!7Q!DW`OopCV{3^=WlBaFdDrxfIC(c3U5?l|*j@~)fyNjzeyQuzh z#XSW+e*NJU^3<8suL()e3x!+H-j2SK64SKx1$LH(kok#z01n`60p{S=ThSM9f3NEjO@c8iEB5L9O0XLN) zqRP9tK8h6LTamdvln3*Fd|WyMSa%U-ZT{ zhJ8rdbLxIQ-sizR{kqMIEw=u5dal)HhTO#QrbA-qNkG$cT4n!W{q%@?j#x;mF#q9` z({qMA;wk8}QWZMxV*}!)&yz;@r9L&+;LUX*ORi=1<*QC2H5v6_b)yiVX@muUI1tdu zAm1M*&z*1#k9Wu%bJ(y473F(b4~sV7y10H?4-@gh63#yILHPIKuh(Z|`DWNoU#Wn< zGV((Ah*^DsaDd&AHE4sW;P9% zz~tJ;pTv5Nw3w_lbELA`MQA~50AQaNz~hH%18<9Cw}+Z)ML96`T=MFs@wR=5ewgn( z7!RE{-b{+i{aSx1f;*b4QkVnKFglhA@)S?B6m1w(Z1pXsCKO|x#I&BVH)WfG{ssTM ziX{KojV$aK`hz_47bt_mRLHjtt3T#67hw|JQRU+=kbP`l3>MJnF;|=0U)`ZzW+B)O zSMMbegVL1^6CiVtvM9`Opy=-^`B?t#T3W_TrXdCNL*;G0c7*Mw=q?~W_3QN)$CSUE zn@e10eSJRJH9O$faaH*mey}gChjupa2EiFexm&C)@3c8;l~SzNvj$1W2WJ;`wnu;o zzpk#jG{bnTEXQ8wA=m4y@AibpJBMqYT`v6FNw1Xk75z5mZ-&j5fhTmh4_@$pZ+G1p zb`=oO6&|^7((GHnR23&*S6a`hbCb@$A7dZvaSX#3AXt zoDvQ`ZA-`##r(d!?|ZsXZdhZ#SD&|w6Tvwx`{Tbd2au4yOx-X+JJ7_?krE)sr)?!S z005;}2>}j@=aoTTP0LJWelJvEMZULuzOmkCcj%q_CAl!H)}-#c{h^*BTV;gzM9)7M zn@V<45_gh083b7`glG*sh{8|da_`a1P6`p8GcOlC{Uo$~;K)aoD0Ll*uRv2OGIcC-@G8YHC8ZpIv508Nv@;Nx31-Qa1hfZK8qNeQGFK{ zv8KkAw^x1s zUq=as{>h;5AC9Lu*1Uf5hJWA-_?_Qp7C>oGiWhO}n!~>rZxa><8OtLGSxg``ti2D> zWY7gl$>e>xOdxV}stO=)^geeW3&&zPK3jJBeC6TH{xFVdSgzS5+yBOdPe$_sjbRE* zS(mhs`ogfbnBka~S+;C`deBI_7Ve_c3>Xl$OTI{_z86y-sa{Aa9Xnw*iE?J}mNAC& zYh~c^Xq8beaaj_L=_>E$Bs1OxBH!jeU=7O51iATg@C@rGFoFXnrduVrjTJpRCEojH zqIsdVeyOZ_iLgTI8~%Z%+ulhtuKB5$IULBtA;dtJxmKJfmH*>Naf+izoOquyU^GQf z1zM5Ms5sOH1;VfDZR9@dC#5Wcv%5eE9oE}dP-4jeCN0iCh#1NOW{*;UTuOe-Nt_>u z=S&O?m#@+N`;PfnA*B%iln;*eu8t!cqXB<;-Z_85`0rvIP_R+xbrTm$kpcqwz}KFP zR8(}XJx1sByi6hR$oP{XW3;phwl3vRQg!2!$+Ga)Z-QSA?B;Seun1KzqxIx1bhv zXuv8DnAF>sz$@zSp04*o{hTKXekGwmf*xc~db#nLXwwrnV*La7z>`E`R+wigB&LIxh&+rH}a z34&7P$Ug)%lNG8I61-}B7ve|6>&gm6HaV#RlG-l9RGckYW#jj>g_%0K<#({yINGl@ zlH%G-KGWQ>;$%@Mu?t){P%?92)j~b?*oqc%3ZdR47UWG=V{p#IvM(#Z8n%n2}shKUW)+4NxQ+`YojFIwK7ZmOm z`CCJ&3@OYq(b4@bon4!q+sV!2dR9)%$B`rdYAUP@DBYnKp!q|UsXd-N;o1N9uj)v$ zT$(ST6Iy0al2?TonX!h6dGVyz@$qtI9XZ-aEN=pIR8Fnix!vyz0sW0#zNb?@>vokH zazi@|3-%5|ckI$~C*op--!QROPf9wv6@R43q{wp_CP+$o{Hnvi#jd)O-Lwc(5dOaR ztW`AQm$ay%4M>2G)J~1+WLb!dg_WC&GJH9rF63Ziai20b(!(YmSBj2|jNT~;_1%R8 z9jzid2tm^Kx6CHk2!ZB=G8YB-0JkBHv9AkPcD95clM|pPL9Uo1695j^OZ{?JaWMVL zTBa#NyDc3u4Oakc=_Llnze^7KMM>zNkUUf;Fb;JshAH+tAFu^owan0Vfd2)dBE<9~ z21cv?W+}hs8DaJys^cod@5-Fd5{8{3HrSZnbUPM9mRBf2d4@H1;lSWnCdSK{72&o= zY@@$=gD*8(S3HHcOdh`~!n7i>VJ>~~v*7g^bZ8(WPE0{NytgXVZaVoGrlC@7bpe@+ zwIKMm;G5N7wF;{lg=e<&fl~mTn*rYD)8xo0I%ZW==v=RsMHh(URRZ9dY%k2eX+0b1 zv)FyOj{*4?FmRu>>jF{{ti2Aq50RV~P2~&`mdz9Fi)8IZh~OayNn+Yp;>w7-Y|pmsX3?rCS(0BsCxydByLXI3ltM^RbyF@OB9rgg1F2WK zMD3up;Tqd7{rUHWylBQbjzWDpLL}^^L@zX&fs2?+3dc5c<<&Wa+}SpULLU&NV3p@_ zMBYKkRW?bFvUN5{w@eY0?=(B^x6P17mFrYcB?R}(6RK11hVxS9vz94;k7;i2?fcN} z`}Q@dIV8ex4e?*Mjiw8ub!l?J?E};1K(9d7IJsyHusybtzA7P<90u{!@5Qd2Uwk`x zWQ33Vguv~?LmGGGe2vqs0?pYJ84_~A+MIGtH|CW0JH$8B)sMa}4K+@`L@+n1M_mg| zh(sOc?|Mvh5~h?zQhx?<1g0KK<=9->YX$=h?KIHzVjBrN)YU~q6V3v2z>bXg@G?`F zB4PbcPIF2|e8m({9%G)1U6TnWkh!H1og*^U)}E1G%#g?__t>syi0-q$_3|7)T$2yj z)Y4Zc8x39<8xR+irlh?i33r!;K)uWZ3VN20E{!>qSaSyLfNJohTu^bjZf2a~n}U+} zeB0rPw8meY)O&G>ND|p7a0c<&s$MN#lGtcO^T6Xv8qByNrpVdM1}&;G+m0OruF0gn z5d0H1D@U3|z2<>Bz}O4@Ama{EF4b^+Kz?agu-5HdD@5OqF{yyLGHI}MTbQru6Uf2H z%edgZL)PlZ<_-P6;^~%__*?2Kq>+L?X1&#xtHY9ga7J%A-ZtB{SHg2+5h#_(HR^Jghfv(P?iXIam*TdHLc4#q9=eO^8(L9(X?XTT z`J|WX8`>afM`B@WXX{e6>yn$jwXC;5I_}BKnXS0Ep*n|QoAvgHNwgYPWmZ-q^mHla zjdEEuC&So>O!t79BqMjT$^;14vU1prl6c_zk#s4J!-|Y_Q_7-0js;LO^eIM z=#vf@^jEAY#aC3wr$(CZQC~H%zT;;zs&rTrp?4 zVWFP3T;7y~%<6n?oEye9chp6CF{yq_eX-O_sb+1tJIR7%5}iF)Ocw`Z1kWUf;7_HP zHKYw_=}{(tppZIJ9tz6re8xgdErkPt_ysQZy*X$Yw)~n;sBSd}IJ3a2)5VY;l;M?U z8!8ccx0nLZa(J7lq(&0cv2}d@AMqfBc0uLCN0d~Ve1~8%?#T$Lh_`(YPQNq?T{Up~ zA`-okg(RCrxtwnI_+g%J9R90=l+O>_x0fAsNWnrAx>88O`wViF^E>#6$6Qt5HA(*0 z6I54GovO^$QTI-sVrB4*XPacCu!AK!XT0O{eoSA6fYL=(T!amMUi9HC!Aht}^|D zfSihq6C|JODcKbq;V8r`qjdZhc8J4mEv zbY&ipg*y7$AeW0?s*G3V9;s7UW5X2t`}2k&Q7Q(GBL1BuR~XtirFU&7B6_TfAyFb9 zRjDA?Ie$Qv%_>Bgy;W&cZ(}Ifr$Fb8FM*o_%}_02Nu_bwCfjh-H{3PxoF(2sOBsr# zWaI`Yj?*F_2Y0sR$#eJVP%DVD%HvOq^RPS|xX^C*j6>!rKyMhRQ|rL19@CIh=@b}0 zuu7Q}b&xE^FRCXsWxOXz<1p;_0k0?yR?lZxZpR)DuRun5ma&_u57_MYO4e)IR-D;v zA{|Lu9$%|6#}HpQN%q_a@y)4vnadP!ePfNF+b5-}B!`Jg{K41@7|zue?Th0!6ej zwa(qr{|U~uFJmiHCx)EU)^|O#g(|BcEm)nxm8=dIPmRY!xiLAfw{(G;&Cl8t>6lX7 zS8Fc=UwxudGG)^p3Q=ulldldcdwD0&!W{l6&uyzeR%Bp@f=AQa{@n znV|qlLuaeT=ypMqlD!qhS67sEW`8{uf{XAEr5v97z?m1{?oOERFfkj5KiW~~Fjbz; zrxnL*?O%A^Kcgw|ygMP6QF?SrAJW(EfjO_yQHF_wYAyPZ&iLh0!%k|1%hXs=^YVT3 zaSKoxN07*o?ZIrl?!PQcg>@(}*8|ftESSwPv2`l{aB8|Ln7SjkdAbUpJ;z&1%o8GQ z`QzzpwCt@$I+N9^BXf>SUZ~Yz&XXE)kC#t=fDh!Vp8i8PU}xq0zXsy|pYU6j{}253 zS6TQk)9I9^wJkO~()YEV;BI%LUMq>I1e`yC-^OuK?-O09cW;wFV(IkuP$=z@F{Z@N z7w^E*dPkjc4eb&v&`86Ch66{2CV5<)*pkft4LE^39C}#LA&|9Ll|kr z{tOhVxIfcL&Zgiy73IDBpn|hEo7Vs1;G8gvjZnqfRAV8d7E|D*y#1U369N zs2#vkgyAeZXFR+h*mld(9z|GIdqYMyOic`EHgw^F8W2^`IaeMlvj#;j>;<%R>ojr(y|YrB z*9k{Y;QH#flaw%pyv0xm+V?JB5B5g8(FgDa0d@Ts|8J}oO4SeB__-Y@c}%-# z;DuB4i%4I&G#U-q`iz3})vyu;`?K^9ieQ)p)MWn?bihn~Z1rB0h~il<&G}?5Lk@}# za4WO-MJyLZx$cY3~q zF{^rEk;7DM)Ah1)GLRoW-?lF2+%I+=kk|gvqiJH>XB>|Vy&1Ycy1T4no%6XfYgMfu zZ3bT74W%qq6f9XSrQ1j?bZSqkiKTdid5d#c9C?;iC%AtB$RO>Pc!pA0o~iY7JiVn)He-ayd5}l{J8UKWr(j&$_Rx+`&uL*? zv+|#-&h}DCx@!^#ri3y-JO~w1?OT!!a!e_0zk6FsiBe(B-r;U$|&meF&pMrv% za{|nPhgmGC7Wm8oL2~SMD@lYI6ZuqLnHUGtRK?Jp5bV#^*;;v1N(p|Ae&3CXCGpjt z6ww#PSWwALMUnZL-*(9)SD)AEkaShOdDOxE>4TJyUu%+9%l1G%ds-ZM=e3mMms8AX z%4*Es_87XQ_PkpkWdD3NZ#07Y&h8-aSnVsYA5%Y8Bt9*h{_;TfBNl$J+F+j7tI6Hw zvAuil?y82)?(j6*;h}-t=K6iY27GmY7(T?Rwx9 z=(`>49Sq#xD~K!^KLr&})DN`Q5h`Oh56NUMV0`gHfjnf@Q2LKh$86oN9|Q_Gw1LhB za?Zq)QOhTQrBhsTR~T(ukW!-r0^yCCFrTuZ8BuN&wQpY4zL`{(zg9MMxgZ^wU_DR- za?%1>fO0oaG%^cE+qV3=jMMA6vU(0j6)?TvSkKmXIp?O*S`~j|=)SVcim#e(IwQu{ zOMRN|s$y+uXmag9|LJNc`s-t9|I7Xr4=9FN70;N4BLr=)18Fm~t70vbIchd+Q^135 zWb9Ho(?oeS>@wXd;*}p>z)G&Rppd5@MnW!rqKm^QR{ut792nx^l!wNN8$QC<7!Pkv zq`%SQ?GW|$u00;MU5b09lBrw+=|w#TVHoc$Q30rNCGQWL88QS(A@0!eWwWgH_L>(q zsHBg4JVxD41__(ph=}S(f7s>el@-*-kh*K`civ5&jPzv2?L0+56R-~PO%0IuWzE1L z!#JH8!9%rz-fJ^?N^J%Ch5Jx%Lc~r9Ir$?x=zOlMFm9nf7y+2%b_gW~*!Copv5lvb z?Rr?N&*=0nbS)B#0p*;NkJ#s%1N~3CtwfwftE_QMKx`OG8g3O<2~Sd%QmuzRL(-Ob z##tEC_cH>H_$&jSxB@%WlY(9JzRxDh7RaN~fr3{zYK(_hlO<0uN2oaOLl zG;f@zkVpRG>VgcS>)sFUqcF*3|P`9By?@q)VQY;hmM&O?W#bya;(Fm25Jg{PdDG$sPV}dLVP}99+*ay#|k@I|s7>*-~B03&b2+h*xksS{41EJj?mslN1v|@>$XVt&z z)tf^~axAo1FNJ5K;8wn?x#tS@!2O%Q+&D>NJd&cw%gD{T%wo_@!a)^C zfc>O;I7DrUw@yvq(Y&g9w(&3IJ?-6F2+1WXOE8|sDG5b|_qQD+RwR(@@sS30){lm) z_*!yOOwrX{P4iaB;Ce9xZ5MNOO4MW_?ZUcc;v^Y^bO$R89yiR~p36=_ts%YiT_cf);i1xATA^$$hv))tt&+ z65!2vM=oEQvNKwh1ZHBtl%GS#q~ppiQAW|&H68^hW<0^>i7$DCmNq`-6+XCr7oof$ zJH*Poz0)zl6HXtqQh7twc4@&c#vX#5!EL-8aQ|l`Yk@tMg`{Vx0eqK3Bm+~229WY- z$eIfjO5`OyBb>|<&y-e@=(t`VltUB zGk*KF{PNI3cu}A#_&y5}C#6_pf|;Bf&ddR`aN5Skcj{sMdlRnvto(5mb_rP}HO7>r z^N?VdHjbw)I1Zl5Kr?Qz^bN|Tv~wbF})zFFL1eCN?+<>9=BX%yv%nT?yHRN5(V z9$SK)w7JbswI)wGU(<@Otl<=H2MsC837xfjZ9b0gw>xYHkZUyYn0W56#Up^;%r=n2romGKY)f&Hg|Myv&^ZYacwqH>`vnRDkauhPvnLARHWUAkF7f4*I*W(u=$QLEaDKf-A( zN)mx_2PJY10@@U0H8SJO1py9n6s_KsPH!M8Wmekfcq~3=+t!l%-FOI{T`j&?B@fZG zm*HFmt%YnZI5!vPt=dlWoPL~=D#>?WgqcB3{@sT0U~$SlClb$SNeHPn(2nAE{Nz9k z5(s>MUnshmcC9vHT_XOz%63inMA0&x3j^sw`jZNjJG07AWEHXK$W27#507IHHS%K zyR^rGm!***F``I8sby(Gk!4L1zhMLd^2k6u zTG3}E6I4BU&QsV7HrKe|{j(k|!I;wY!)IZcpO$&;wk>Q87$U7+gI;EB`IWui|Fqf0 z56-}>ln}hsbt7caRVt~qF4zQyJ135)VsLySkoyA+=dI*~qo7{ZS0EQWJ?;l4V0U^Y zi4<3#gk~>Ll@dz3tU2N4v9dg0N`N%AabJPhZ(nL+w z+*ozzTIb;OREsLc67$_fu9j>hWxM5hY|E-wAytx>d%rCMe$|x5YGR9~M$YjV-GSXE z%TiUgZBn3f3Yj4bHRCrcS=hOqJx5b4OKa43A-7xa1)k?GcdnaX0N=J`k zD*re{yl}G~FMBIVm<1|}hfJ_1*Nyt5gGK6?&wg86EmI8CGp(B80!3FROB^4gZIA^N zz@{&HDucd#z5t7#=V4f0yeTL#R}^!?1Q;*>&lcZfq-%-!fYI0x1)%&@9{I&jC z(lG844}w@&ukUWECRN-*}|JwJzVp4!ZFq9sS)PqA8#V~e0M(*MDRGD_OR z;aY{Nx6+krH(13_13?imm?{^DJ#|$9l!Mwv9h4&d|MqFWb9kPdN94-R)pbFH-CL$+FWqhux=hhTVB5 zTY64;!l?5kL{(9Ho@GLZ4*W3z4Iy-?t9#q*!e?8JKWik<$RjDBdAWne!pksJBUW(^ zO+`rDlk8bpaX1`*MKSnvcu6_hXnp}rfh*!YZ~;~W#YkTqwRSYNu13*+*&{^~vQ)rQ zPzqF284~q0ZB+>rgBpmc7Xfrw(E%p`sxfrl9o48e%2YLnz-F{+kVB`w;v-Y)P|X2G zK6nUYm2-s218UENQ`OR2L5;qox(bxi*;;{gvB}g>&e^0AqLf+~1*2}<{?GY3kyHh> zk%0c@I0ERRO5}p5j_aP2f*Pmngkk#(Kn_8!4Lx$Vw zeJ0PR&Nco?wabmFhKH{*ZN>>qWT;~tBDo_tE$lwF=Eoo^#T(@#*(`p}*dF;<`g7^- zt)3+5=PW#3fknrdPeo(CtLknTaZG zYyM_>jd5gfA5Z)ujR7O@AQHue>Qh~8?g@kT8yih05 z7Gz|r^JB*Rfg6JV*7G0Bc7^-1yw^kuy@(PgyFyEjl9#z_Hg`UzY4eE{2lmXDVy+mx zX)ZWPlUJ^bn8D2MqV!M?=VeZo%W8!a%z?r*fsjf_myH|j>Tb_BGl1Oh&{U$M3u7M> z=`Tc1-GTe``QsrpfFF<(nCMpxp@A}$x zA~>rQ4Rve8tB=-{=FoyG5u-9R=feU5cb(ASXz9JHc4scX4}q+fI$f6w^r%4fEFTzK zql0h8Y^K=}+Cv^&MCahr;0AjS`Vp-=Rj%)gcP%AB346tgmG2i_Bpza9G{=(OIM5wi z`MEgs*$BWXcG(pa&jE4ZYq@JwXM^OM_XA|aigQ5W;F|$SM)AOnhsvkdgM$fQrNwOY z|0)vM+5Rv2Pt4rP$;9DT=Cd+zG7&K`vNbj#p#NiHW9no^z|6wR_FqNfkoH(KaT{XS zidv!V0(c!}A1(z%w&tRrtfuR7*5 z(h@y#PH%UQxA(_4kiSqw>Wv=n?-R(g=nes6z)@vm?&Myn-98z=zM&%TxOq??{_m@c zoKsDsmugV#z>#OePX(zbI#LA0g3!>C8G)XhXz(JGDTdThY+oLZlk5c^$9TmBo-ZSh zlZ*Y2u$r72UQ&z6q3+@twCBH68Glb#c(@msnW8j8BN8wRUTSE`mazx{OLBU6zdZBZ z^@=&(B%x3{)4th<4Dw!gL~gJMZn?2=i+^SZXMWzFQux0=T@jqteBG(yN>*APsU>JT zq1R=9GP4s^`~4Z+Y*K4-{eAz)_56|JH(AEZVtY(lfnwj|tGd&TNsdEgGXW2a$qLnPrqMK8#-8-M%i)3Fl%%iXh6x=h!c zVh@{u6z{VgO$|GA_xZ2TR_y!Ja(Aty9 zks|&c9t~k6t)QsAVBCO3Mn2d_wSp@%pc7E0c^gLYH8Q%7fkY1M2&yMPyZIRNz#&VJ zc-TYw_Du-{fj~LzP#=Xk!gy=)M1i~z6T4=-VeKMB>?}m#>zpDEOgtk>n%BgU0s*Ba zauJcZ<%4dFfFx*M)s{R?B$5h*4e@hbcp8#f^fIvkla%@u8w&WpLsZj{|9!)H zDGc#EEhIH2KR^nNaAb_%YXu^l${tp2JW!_DV3$}%<((V$_5fxARq zd-oKvK&a#6GRY~$Ul6gSFn)g6;r|qbs98{_VbLGNa4=94T497B%c2C%v~2E+{t=B_ zH&BSWx7~5F;uyX~{(&d7FBMzH2_S@*WUKH*bdHB9D~t_vbvmm{ffriu2z&MD3vuQwPk5vfKh`kF5WFEqU0>B zKFn3!nfuw~cOt~*89IWR1bD_4`GeK%Mtpq~n77Z4qBNf@x8%Q3hU z@aVd`aH~aX^(9PLpzFbSzn^9VcSGYlvDC#DrO+oV@L?R&jf%a@k<-;dg8K)+d&26Z zaX=UW&_T2$q`sA|!-^ENDh`2Ss$y28Z#q|k1ICRMWZw_6qIhG6UCn9sMLPuk3VUA+ zv1UNsaV9aZN%8!K7S#=wzKIQCn2W~V>qj$CrhbvUn`t~v_z@>2lVEEr63zB9o)@-V zM}6iexF>GNgniFPF(9QA?WLuUr!+*^#-~_ovGTYr80QdtXNqcBZ|G@3MZjwn$*c-f z^XBY(ZQcRjYFz?lml7;atGPZqk93F>&vpnO@-6T6%^8SJQe6oa#7ls5`i)MMMu z{8*j*_r+DpH43E|sGM7hWf8ovBX}QpL5JGYw|yg*k!TCkA}G;Q!~y7B%}bbn*fpaP ziEF*p!$7X zj(dzvASY$*`9xN^zb$GqYs;mK$mQ^QEDZ}%ui-9nh0r}ggl%5i3|x3Tf~&*JDG$fy z;I-^fLMO>^hcn^#gZFq6RRzwX+I_h<67dm5se<6AiCT_1`yyHAV#EuZgbqE{Cf5;i zFj1fIl>9?h4MI#q-VcjP-oMoLM)Jq&e&2o@(0XHygm=9WvQ+ke<@% zIYZ!BzKAPUQu0bXThtb7qT(cKwmhvx1y|O!vfD<{DIUOrCCt}?(-BpJT8UXQUPCjF zbDwRN-5$g!(IAlu-K+fT-10Z+u`nd6YKHyady7k=kPzte@~lEJl}u6U+GrQ0LWd=< z^;+9sF!jm7DC$!O+jYBeEs55{+tD{tTkNqVm-$p|P}mo+(HU|l6mLuiDm@qZ{QO1Q z7lz|sM|tG^bqu&>nejUP$Ulc;&J{A2wcyA78K{Yt((x9Pz&N#PulmsjbGSU9O@dBb zRCdHTB=QmT?1Y&GU7iT(IiD^Cq?tj*VwDmRH$>yVfqcwFVBj}TQmv0+fnt277aYr{ z2ZTQI6UIu@Z`T`v@Iah}D*-xX8T>hm*HnmpV7cvS)#yj(%3gQ}iWCPs-nwS5U)owci(}@;&O3J`k z)!DQFm%~2ut<6Lb4}-C~brSQ`6P1P5jslx?DW^>mg0$YZSZvL2qOJDYJ~_xaIj}b_ zRUs@InubpfStGd$@M8j{Grppp`k_b`8~jJwn8GI0C3jGacF*rCsjjZ zde1voaa6-s9y$`nE{GpExYvAjSGC?JC#V{>c(k^SpCvK3M^^XMq@y;83N_exrld1_ zrhJl}GXBBioz!7a?u0XdjAX1gFCHOmokj8jU zhwc*vKAUXQ0+P(7rht1`7eBaK9#9ACS_xDU`AqGxaUQGaz&(YtgHukjPz*KVB~$2M zLw|)^D9WH7roSi6)^wt32CEXleRWuHC7jwo#D{AV+Hil=WBZ}PSy((ECGB*9yw$3B z58?Ca{23jGhNv1WHb%1<(R0NPYf$92Xet9-PkR5O{^G^9Y#XTGGwXoL9KJ-|IV81E zd4%N?Pdz&!x6~lKZ~#pB$w_o6fq|OxZG^Gc|G*`xM(6*e7_M;!x7tu)40Iz z)p0osRhqmZFbJ1rkalt2xGYV#)nC2jac~DEwOHwXKYC2$42a@56fqiyx*AUOPpCXq zkP{iG5p7-2`zQ%RpbAN9H56ZUzuKZz-6C0NYE*|X0CjoE@AFm-XfGefYal!a$+E78 zA49=?TrQA>LN^|#2^AKFhQq6UbQl0Lx4Nd?s>7_Pw^qk;v#$&$KE_!JJ!-4p>j$Hb zg_IL+5b8J?NNB1_*4%L(B8004`+S}nY)Cmi3p(EiH{5UxFiaN4wdDEzG@vL_I%q|E z`iQSlyT3`gOs#zX%No%)&EK7p)HJcaMzFb+3uIjVVL%ctTK5P@ZEYU3)=W0pss6he zs>?-(FXbY<)}=eRfJ1LU#<;zh3h&{s+u&j{l4rH^*Q9%puQu0TT9a^@;?R}Nz%J_5 z6VPk1sV5IbP3laemnN$336IcOyw7=sEDmfo<1K^j0)hq}v$KhX-jX7BI<~k7PmZ;v zW{7KWab%D-y8)*0ikRZnzsV0?ZT;lK`ocvlR1?zzQ1YT)dh~?B3va3;clueA%OOQw z;VWlJ!joti%gp81j8T`G1isj+>*J4K)uVgvf-C#)0f#2sldg#qB|ljjc=R-4$Jo%u zd-KODGK7;=?>O(q4O^`zLoe=@CVAc4ej$ia!aB*t8;RE)OUyL0j!)niV@zk??F%DlX~0|5O_?EJC;L zRtqJwhacRqg-mRSPL{Z1|5Z4;^Z!|r?H%eLbI(icCVMR6x&;<0fCFO9Ole>HTKB~I z?bU$`E$lgo!jJ4mC-P$*)CXZYQ)1!WRwix1+Yi7vAe2`bwl~k8BJ=901C~agfAbY= z9V3qqS{N(?aLKjCaVJ&#>sL1IZ%H5|tu=vkl;Fi0lko99C~4&FDKo}6Y_ z*>o}Z?%jc*U|3P+#`7L$7~wz8e-ud73SV&*^3bnM2sa<7EOI;FX0&Wt?J;4SrW?;*+j6nzH=TetfK|?Q2#&PsNQ|!H zL=SXylkwl+Pkr+JisE4Tua=I3>3`VLF>$i|XH3|Yww5h+2cpkQ%`Eb?(i=0~h{#jgc%-MiiM-RtFg z?M){=er5Zb&$kQsQ|L-RWgaDABM9Tx@#XE~y5=UyL9;COmYK@r{$!wQ1+vGVyokl; z0`Oi3BO-yEl>BRX1 z6twDX(Frc2C9q0F5oKQS$?{su`+D^+8>$04y zl!c25%NvMu$4$(*`vm}u`RIb=H(xG;D02~;0WnIFwZE>0wW!7PC#5+s~vA)c+$dS*ZzBs3l!vJWlHo4B2 z6%4tqOfLBBBYKVgl%>? z`Yz#4hah=Q3)9vm0b8cw(Mo`V{08z!xt#gEAOMz#xBkRZ@q}Q*sa7LK($L23ANE@o z(p{P90E~GeTvd|sG2sazi+81mSx60)@QZa)6_PRE&}S6$&A%jdVZ|4f2NM+8;S5wO zwSNb{E(J`t%3r(=Y?u*9(34`zJGRNb>W#g1K1jEq=K&*@SKq<96ujq7MzNf|}zQTuvUvlgmH7tf49W1eKR zU9fkZjnLLZ(u<33`)sRxK{+;H-Zc`MY$0@Pu`7W^W%SQNTA0lm(@>Pns0uOB6O5UC zsVIe7Rrxaa%7EXOed*LnH;Tv5)>@&8QUH8QhHimuJ3eM<5lJqDzNBe%BzMQfpFcii znY?$Bpg`P_G^Teki|polkAv$Hv4YE*Qb(VYdM47kYA+Ae&f+Vp2BeuyomdG@hL5*MPp3ri!l$_^Tm3sNkXnAI8~^hL6N7BH5$z^2Qm% zzspf~%@&gY2j;o>w+F4yK3`3}WLS3F(_M|lW{Fk?rXkFQrelrFn7hDP%{4O+W*rm; z)anYFon@{6V(f&}NUKN90m^@TemcI{j zb$qZ7o&RvwMLZt$HG&9rAaPP{0M=YiL|HM9X5x8T@gj2~x!P4V$bBgc$svs;RMd=g zZ=c^`87=znZ=JzL?+$XuY0ocF?c{kXoq zxV~L+|ZlD$|Yj~3bga=hrtp5D=0@<{7w%AOQrGd`T0Y?GXYe-J2SSdvc{E2 zyB4{yyU!{u!X3V=s0*V*%bZFr3zwZ}Rc?GTW2r(#=qXv9XtzA-92KF@e^iVydA$v0 z$i6^no2qD~ynS%8Uo_0LCB|%y4G(USp@ZLR2;qWrXDp!M_^kC-S%GE8-+I?3;&rwZ z%-3p{EI-?WtL&}kNfD7UgCcP3XE|Mhz!_zRfP&_>hDcj5Agk$-nQ+=umF4 zJGu|evWZ|q{^2-e=Rbp*B;!pUs+Cv^RdEAi|BF&pol)g1|6S3SIdE@9wBXTee7|#7 z@U%zn6xp71WzLKDx!3e_=(j^SmL;hBDoO7mzj&Y-bMHKD&4vmm3k6a?h( zWFBh8I#)hZ?96(OvUY__wM}&B)C9CU6kB4-Mn+$&kOcb1=?)nh9`OpZv$ZR&Nj;|X zk#2X(0kV_&I_CsbCp}Jhj|ac|hOL5Lvu433YbjgNAQol8qlr14&M1I-Vez*uKA4+$ z84`gk-I*tKo>ZVQ)t+b(ajmK3hk`PRd!2#4p=$QeFP+X-ZR>2M;Ne^Zb+dHK>UoUX zrF(H_J>g#Fh=^H18*rKNlCn|8-H#UyBSWy4wHatEz?Cm3qcPY>7`{W?Cwp^|J zZv4~F)L-@aiIYhtQGIr?nRu;V;|RZ~*Jjix=>Zt~uV1Mu*0;QBr6AN*G@O|P{{@TE zM)FPdcPIMj;=Sf+5_+i{NMS%1x2NEBlUn0L&+$XsLcpKT8trbw%gDu5CJpgJB#CR-m~Oh_W9Ou}Bl}D)c|I;HPHutj!1b(mKHC~KdL}I* z>14r^3<~?_47wK<(>wWAE@?IOck`0=ohtNg+?5&Sq7%zeMYF$8*2nb60L zw|T93uMM{E0}>gDRfG;Z>-oY6rCo8dDN@63s^me*hAIo~dE?NFgyXne+hubmx^H+I zzJ#p*tmpryoOWggw*MqZcHxXgAGF_X>*e9s1`lQR=H9JuT>&~|q_c9ah zG{mMNi;5X4kFJ=-H7Shl@w>HjJ*?PLK*VfDZ~G-!3b9a-oRJBxPFjehVu%1m3Lj<@ zpg{`1(G%KSlMD`55`sY#JfPGG8IOyIgd!YOviiun5@*F?aC(TxokDRqoI%*#LWqjV zBQf0`Pvf*U6d(o*f%jx-XTp{p0vU2|-QY*8B~a)?55(xn{ovVcwh+Qbha+}kezO;D z6omie+nAyFbV?Nn7oMI?^nAa*ZN%&t432zbhmfrY>%GaHiJJpiEb@nt7cHIkVz}?w z;KZT+4%lGmV~x`Eo+_zr?_Y?nDC7~S%H;pflh=0@eb?eP1UfQ9eY zj4h+AVI^8Gq7(PM&eT$fpY;U}MmiKInW0p$tC3X!` zgX2Ek+f5WIMovZ{icdgX-gmyDKppF!J$pqW~3 zx5GA25!eg>Ydj*JwHBC$-2@*-^!qEWZ3HoI&?}Whs713ms2kz1 z^^nTop~SLO$Ry=S-I0n|vzwct3fg)LG&j-VG`pQ$^aKkNbhiSFLUVqdk(+{21HucF zdKbtZu&~!BEFVu*JBtj}$oI@wJo>ia^b9rTNHUZLW!5y4!+VW)LzFcFG%3Ci2jM4> zbemj|VUV@dPMA<7r34di9n!*kV$dXS^`cU&daeaG9>+Le^P4lG43-`r&5ljBM<%2# zt@ve3qa+_ZH3pQ)v9I@~)+K{4Bi3WtV=JnXdJsgDxgtrD=5(?B7sQ@bz8LIYSTz>x^*?Z#2d=(D2;Y1(J z5Upl|(1JbRSBs*26%KJ_I2R3xK^#mZqAcS|vY^R~#!jg%GKvg8B{kppb}EZggau$R zZ>TfHYHoHsJjO?44YTU^tZ}4XA5H6u1NRH#8-V&aGJmZ*EOG-9GFtlJtP3cHHUUkO zw?g~rUYSX59mCt`DZOydc_IS^3I9m5zUYQj*E6Pvqv`crZ)9rkR9?|5?AqKPp4BTp zr4Pi$Orux`#O<t%4|1E9J#<`6T+w0I9V`*1ANRCq2;cOEB_+qHf0B^8}eAV_k}<7qe!51iG!?Gu)??FXo)? zrX)&j0GmLUanh^+^eWcZfH*K>NHQj4wMu!6iyuCfa=|+QmsyWXBs&;loz|lwU&0)M=-<0$lT(seeYXK zacJ3IQ$x(Meh96`ivp0S)DfXG)S6M}w6hr4mS0RMO>05PXn-O6@kEsyVkJxIkEQE| zglI!>!y+&nw9Ot6*a+3x0O3~?lFIZqenMWo@%5R2d6l;&MhqnDvr25VgN1eqbGjHo zAx@*gK-HK}6IS#F8)w-KvADyfLGoO$MeP;^``7rhO_&FFiC<8_fDOo1l=-+Eaf~(d z@HB7;kypA$*Qh`NS&mlusm-BUah_E|f)7JT>mLI`_2J67Utr$J`!TQN#jQ)=r8KN=``5| z1T_T2r*=`u5dQv5?PMJUVZ5sT8h5skN6{+!WfqEPZW97w$3_8p@=M&FHE9mNPn3v( zD(0qA*O5RBW%WN0pkr0!lFk=Lsy=9AsG%daTfl&Y$3{7osWo!=n~5 z$JOL3>PN8dk8CbxdNdfusRp9hY^*B9l36amcP&)gOdck!(tDE7sL&*6yR%+19jXuV zYyb$QaHpdM9p|W>8_XepD&XQ7QVmvwHZk62Crj%maDszh)h~tXht;4d9ImcsaCf5z@<#(9qFbSjdY5e zT;PO;Y3eI=Ed2L6si*cz+=x>^hTwSye7}Q@uN7SN7GjuGI!Es@`7%JjYcRhB<3~o9 zO-?Qf+R5kLG#eq7;Kt>!s62hB_wWjsy#Qi(snM}#iXtE@VOzz-jL;nk9Kuz%;rCS4A&0PZR7ip&0!n$D85^t;!4C=rOe4+nB|Y zk?Fah6PGp|LPegVLp-itYyu6~^eTQP5y3AL%cQJ87oi`ITVbhT8(|!GX}0q-pT^EL z|2~+`e|#;hd^($9+Bc>?$7g8>#DBHGP92vwjdWX9xlTXG(fL}WZ?%LgFwu$r~#pS!XRO$S1_Ii*hX5E*{jp;b|U$2*l?BbmA~>G~2Si zAj6i{)b_5DR%C#$uAdOkJ@N;d;m8BfS7S}G3dKv!CrjrJOwvmOnl}F-Ns%JblTjZ$ zag7Sre8=vhw9dL)_YY}~R-+H!>L6%1WJPu1aW4JF*ptU1;U-y17Zeg&+P^PXYRLTW zObK*P6ux>)=)Towob|5XzG#XrOXv(^Z;NF^cjV)WW;KIZuSnyx5K-J|Jt6nH_(ke~I!L=JEKqyA$xD_nlB zIXe-pUih85ua(j#Q#pbj0Z;jl@f#M7}HGx4zj+=OLfij8GheNzgD4)cJ%Io}~ zY(s?%;nyMv)068oEw0KSjuydjwH3$ZtCxIVWh1+CUvad^_8TjE z`k-y>mQ0%t_I%NF45*+rp{q@$YTR6~g(i#jB|sbMXrn+4BaEjpxP@giOS^gSiz?RP*wCpQ%K(Tr{6XNK!gq}wPI=K_*_3VvnUXFpAvMZ> z#aS2n+tm$7l~VX^e|;84M}-!?9qAfDc*8m$-!jPHdbl@wIi@yT&=~(|n#rH{hxW7v zLq9!jI^S;I*i7p!6U~RS7$G;%c~E1lc;E#Hn{s%fGnF?qS8&dIkG~s! zwilOEw}f`J(}b3X_7Z&jg(T-1D!dCz(?AVdRf=&)JIZlQnLgaKCHQ#LdU)ME7@oh5 zFO#RUi52iL^yCDdAObH2@)KO2--IOYuTOi8NKG{K+XZ@Pw|6g(MygrV-kyns`$uod zoacI)UlKC(w2zO6veZ1q)`z*q;oDfnYevm3giisZo2)AmNGQT&qnZ{h!o_ zPZ%x!l8;mNs0t=*n&|FARz#X?K?dq%22{V3v~iDHX%g28>s=4mdhvJVdkN=vl0#|54UZ6_xQGm10NO2GbqffuLI1* zz8X!qgeo=qZaU+YEe1FqYUK;O<hlOTxs_LsA}g&9U{0TEwyn zX&v0VevQBQPq1ja60U5mQ0&E%RaU)ja%-gukdWN@Qk5>Li`sqD7#pLSvgenD#V!&arl6Rpn#LL>jt30p5bZ=e51V>P$f5zUPa` z!`_s+FIk5DdHjf?vK%NvLi^Ja4ZDdEyX~H&0B{58q7ZypIuCsbj9TqczjXj0qrEb9 zN{U6q(^In2P?Ah8zt78hpZOe#|; z%CXy1lTq4n9w!*-iOYaft-NKMT5k)TWxFFi(=M+TR_FrDyi-A{@qbbFO+lXcK(}Mt zwr%dr?AW$#+p}Zawr$(CZF_z@#<%xA|8LcIUy@WM51mvh)u+32PO^PGik^M+m+sxc zx&U*v?6(Amenj1`z9_iM;?)K*Gd(N1#2iD2dD3vOxFflekhTGdU4|wO!yuV=I*^SS zJBSGxhahINa;bb8uyHd^lx@ylSK*r&Ot~xMLp&(tf=@4T!~o%(W?Vjx^3>n?l>*hdHSx+TyoI|qiB0dV zK0R6?mp(;9PghcvF-!_a>1UTX(&@M}920i-{HyFN_Dro|`AROtdEW7xbxNA*;1$G|Hi9sUj*JL=2~eX75?uKD8W+Qh<5Mnv zg2wW35-+B3E4sL0Z9+rKcM_Mt5&0=vHsW9kAoq*)(dCRB7l`S)ET_Kd`^<5*ivCA% zMgrHrn@1;aZ>#iUoukqz@2C1*1VfhOHe6&#=05!1{XMgy8rLl4{B;bT}qvhQC0 zjLaK2fQ-g{P@0z!dm&`R)}Rn`wb+10{Mrly@}2^NCmDBdfQEx2+abfm!wi0I9Z1c0iCIltl{#J<#kPz6>0v(Iag={NGoaC%sl7&_f-Q6M6aJ+L-d*bP>$CI zH2yOP1pR_xktD%{qxNur;3<P+a_mg1%V|b= z_%btpj@H=1xvedswZkgP9N@D$;Z#XZ5jL9Gnpy8WH1KxpAvznTJu=@;R_81gm!}~sQ`OK zaY8#GpOF46sEGXWz;cJswHQzM`QKzb;#1PctW^tovoX|}ldBt~g$!);Q+6|i&MjhZ zxRvAPkCPL(a4N^eOkO7mdjDVQNg^RxYvp86{mF-ZcuG=+CXAfiB4-6?5@$ecv0GaW zns9c_9YxbLVWe_9iU`TDR87w`G35I-R9ok)M1t31TH(7<`;<6K#yuV;&RrP&fuYl3 zo;BkQCvLL+5|F-`1I6+k)WG5VxKhu)s2~pI-B!a6!}AtllUHKlr%R4Oe7}Q1Ptk{5 zZtgm)(fp*QAj8!`QnQkc9tJ0w6p#E5jclSDuE8Fh`jZV$%PHQ)(2KCZpEy&Fuvtt^ zb^#~t2OWf>>-PX8N=N`gxZW6KAMN7+i{YT56p-0N4^^6v%ao@^?|E=9 zdI$l-44GG65|dbD$Z$xKarU?YGc~AQcw0K zJW|{+Lv<_Puy82Ri24#v+!({#u}$&W)PcphA0EwUMVLo_3EGhhCjzyMQlNSk-edw2 z-Wt$Jvjg$Aq8>MXZxLMmLbuSKd-gRrTPoAV7oXg-lM-LeUjj<+O)A6YZT^j^y*mRe zZmCOV0%jgO@|wE?ImvUNF9hl%pojhngtBN-a2r3PT=Xt^`&vAN?lUMt{Ca?UF;ZUf zKijaBIK)6_^h-U=J|=oF2#`SXcc&hyT4`Gs-X*v@QHk4;ziUiSqr{Y&~8d-ZK09Zu!hZVJCyQgtK|=0E_IhyTD1z6OJhxMwc1)BH{t$P z3xnTEwS>xvo8pn9xWmpX#owvLXgYO`l!tWfaT~%{Ph4>G5 zZS92Z^?5JL=~qZA@<53Wn1*qS?WqvqdYf-%7Knh=iqC{lJQ_I{+#BJDN(`SYOzviQ z$R5~sH)?uhN&H%!Qv$ACl>M@<)xgp0(*TxUh-i)MU{r|aQP^ZODv`AvA9v++taw?Kl^G^Uj zw^ZlcG=bS(2BT*g>(9qIlFN)#YP#N>pI5i^*UfO0my@QaZ0nK5 z?QJ~J;6AgfjMhAsZfFUUmejz#<=8enf)9LiQ58q=O$9r^$<3IB;WTmRKy?UK6`)jmtTtr{y8t@VAx`lz>>7^p=( z+vROeU_Fg9F^#n?rk9fl7z$=B!u-|msxNkM8q?fWv@Be-tWpNl-R8GRC{!~E-0yIF z`!(G9I|oyw%-ZV~2pM`1B5%Y*a8#8fRFj|a-p&S${LJ2XDo+Bj32lLU)qij8mgCA* zqWN0Xfulk!Q0;m|V;$`dfy|PrV9z~xyN-RQ+Ws?+nN7}MDcUygha!46x%F??R41)x z??s54VAjTeBH`TuMwugV?Z)ED+cy>gOR+q#*_4-7Aw@%=ZO9p|mgal)y@L0vmVx>g zqsCpfO`0*`wsUTG%X796TtP;ooq`jM#CN20Edsrp;OOxh zBDc&+=+%ql+?@-$_+MlnRu%_Sw%2Nt6Az7+c^8S-jF|b(WhSrF7J`C3c$S6U@AtmM zP+=IO2@;&GZQ&hXka4Ne%*O5nZ7`P+Id8OFe_?s!C=J_j8DH;WE{;-eFDgoKNL4qr zlL_R0H^)3j)aA_GzEhpjxjpewcs6z%YB4{@A5GfX4uFMVr(EUhUPXiCVJ$Keox$mb z8S~$hqKf;B>#ep!L}q$N-*b{U)P4H;;mUIh}A7?2g?n&7Zwr=9g_#W$;ro zm}+iV9bkR1nPYLA`8TW-MZ$w4Z&}N|@N&cgQIfTT+ILEzv2xLTsHU%GopRlFTf?=a z3Ux-XX3_9w7#d&r`8JTqB@clKy#KrRC#uCex5QEsMVy zmr@^T*K5Z&^7D6sKm5o$jYYcC(+iYLt*43ZrJ%{^tjM(DO#`3iISF^%Of1+0W&?&| zOzOeaY(P&;H2Dh6zbKtVIrd*AO_WTzRmPhTr37sa5XyN@_pZ;Fx@wMZ0xl+0D9k&wJSP6 zX?tHDL3z@Kr1A17)y!BxUk*WUE&;#!Fadk;>lwQQegu8a#}P7Ozhm(^X6P32Pn<{+ zHvL!2-k+~jj(F%kaqT2a>-bg^is;1AKGP@*wQ_>gXCb?Y%#F2CwF?}U#m6_b(A`)7 zjx6(+2chiL*K1g!;o*$HPoTh0vguw`x-8dwBcZp)0u>IEJS2yM6uY79hw9$BYn{l2WyJv zy8{_YrC3?KcvE1I*L209%;Dv;?sdBGy^(E40CaC{zi7cNEAKojA1|k~NO>v#>7$?L zC%fC4SVBYi14^2d!ulT}2yW*8ZG|E$GbhV`eL7qD7lOd;c=$gd2xbt+i9=jo-f^o@ zV*`6RpRFC?{g51Cn`6iEyRz3yil~}ZfH3H=e>Jk`YFDJHXyx0z>;6z!*Hc*+p+pRtsNvy<>7N`tsGoE9GFzAP0@_1aO2ATmwXZG$tI1amE z#ByTWi@bcF?%_i+p??BI$%7H^@>3AecE0ZC>h!-q-|Pbq8h?T-5?T+m-%;UEb)2|A zjoXu?SZJF=VT%m;5k7s}KUlVXr^E3zN*-v-iWLrYp{(uW(t*YjNH`64J6`{wWsX}6 zRegUvwGIEq_)N5MO|22z=)6Y|>RPKG&j8BtNJ!PR+__$_*6|hN>FrZ1*h*lST1HHK zaAmQdFPO5c8NNmp8vbn6*n%M%mKDel<3Y*n&O_r zWar7A9nWqy{|8wsnCQiH?t%m@l2*Rl-e z4rizi#*xq+_iy6&>KWQk%iJA?zWkOj8w6g6H|+qO#eCdWc*GU4vtHcr&d3D!s+7!G zIU!b?W(AA28~X*OX}F^bb!51c(4P7@jk8hqsDskJGwNf=ja@R@-XNVvQ%fE zduEPs%{a8FYvp*oNkWWZsYz)jH@b`TtT3`fb9xR^R%8&-li)Jq!gQ%^h;ou_Dqa=C zBJ2ubFsf3|uo7p|Jbp@nU4nSHd|c{C*=~K^MHfYXi3@)m2-&5qs^VULRwTV5A>PwH zgF3<^;DZwncV!JtT-T4DTq2aM6&)(bFL#OGps0;SoNU#FZa1+py9UFU_%&Pj81oGC zvkY4!ZsS-Fz@MsGFJY3z886@TO^FysvDG3_GfaVs;o@cFlZM%lk>nz?_2Q!{Ch|B& z36KktrvG}Tn8h3wsq*HO(3$VwqQxZ7kTf)BUm-Jwjo{RdxR=f7ph?v>hn9cX8%=Cq zIg4fOw!5TH&D=sHsPP(a>fXq!R+<=)$!eY_~p#kgwf?wu|aD4Q`FFct{hi?pDr z_6&|G9W?Jy*nzNYqvf?CF2-2>LdTMv4$wq@m6$r=Em(np9bAt-jzKXFdOk$(L_(mBvHEno=hsxA2}~O^hjAL zsvg_UhNb82vBW39;NxSU=y8XxHLAr*6I94S4i2-C`nj0{UH8Tn&=w>lyhJ&P52MEP zG=Eo=PE$JXo5`QfgRqsp1lOL2CnSi|6NDSMAXyJHQm7KoIR2Vd;IB&vIUF?4MqM3G zgIftxRE%lminJ(O@K@D>se0#^I(E#?n&y01$hxmigu4w{;x1|Sbov!Sr_G44UVMtG zAx|YqDyqN4d80w!HeLoxs~f870kzjJeT6mh6_^o(2!U^r;Hj2B_dD?h&NepgHq$jV zhkAmWx0SKGL-KSYF*^rdL}@HvD!8mlg;r_%g`Huev^gE!NJ@@KtSwAyc7!sL4?`1| zze?BEC_y!{%9$mGL}^N!Sf$h{kq4#-&uwl@g}C8)EPVT*Ld0VLn;BBMw}`1+@)y$6 zzsjSK!iVf%coT6&^ea|QrWyD&zRCy>q`}lCHWz#PnKF=eAaUk;ku@ zc?KRw|C+dmA8M8M3E*Jf`i49dgFr`h^F2fAdCB|oO#$`GWW6@tw~}3lT^*9t%seTB z=$5RhL8SuaaVuVtx^%~$R)AS}BJHxmUC~yQVZ;R6=`g-X7e2{9(H=#@>Q+oGI0}E*TwNp!En1+s1H!63u#D2$l*%4bO z`fG%(DJ?SHZB1aNJX7TGdPt*PcM(b{52zSR@$~ns^PR7Hmj)B)Td0R)yEn z5FS7(6U-ACeTpB6f$;o}TkfsaK7sT2HRG}-qPKaqFv+qys%}&5` zu{);tjE;IOe$J_??T+==!S+pjQ*aO(6^y#F-w$ruq3$<%09HIJZH^u0fgCkxS71bA zC7mE?j&@=F_F=8=;}Hu6`GWlNuT)QV|JbyO2m+N0B#Mrz3hx%OgLO>0ufc5>hQJY5 z#q$E_oP3VLUKa^}+yaMXiOr!?>1@fH!wI1-E;oXj%1--&5`hJKimt;Xe6ca;85&Lk z&}o54k9*4%-@30b*##ddt z){%vK)Z|UgL3!=-I9&$_&$XlXh6>6lWa*`OX)Y&WMtna#K2R#9F_8fr-5vJmncGF* z=)6kB-&2KCc+{ z8>NQZ4zrYcqWL+0;aoUx)*4@r)eE`EB{1)MbO)vsxx?=~<~?ST_`jZGJ0!qI-N* zwTUliwVLANLbGJI<@;DGmyFdH4=<*1iyW#swpC;&PH_^eD`~jWq4?PR6bwBa>C{U(f71`i7oY*%W(M3))OSq)-U`(>sQo1zXwrU?M zqgJ4;JMonnMvvJQYQKUXO|s!9bf=xY;mtbbF;MzPF6BI;L^}p=)J)@0PDB|8 zYX4d48o`L{hbqweeA(Nhe~jG>^LI2?J6OWfD6vV?888A%np8%qa}5=` z;%0%+NUKtJ4Xw5))4zZr=37j6gQjz~U$BawlIxiQ>BlnUM(%$h#FRxIM3<;CJYK^B69YOmyJp)`!xydy$->3)fO1_l>=fTvr{< zT2?)>Zh#G+fHH_s8t7hc+Q>=wKVI@RsaG9M;YA~#io9b=;=VnXGk89Uv9QF-;`MUQ z6q%#Pc|G(z4M4DN+;fpyUGz~r3B!L$k!d+G9h1j?ysOsY&#jt5bXaFJo|-9@Gn4&W z?7jx5u|b$S2r$m%<5Q~m)Ce^HIui!KzeF>w~YOQu1fFEcdi=yb+DVyr)BriT(YrXO!(A{`0z7g zoa=AMU+()cUeYmOObBR(yjh6z(mEnO(UctouM1Y^tCDYN_i~G)bcR$rlm?s z)7;n_WB{}PF}l_>@&Q$%+{_RFiCVl8j^$x?{ugXvVftTwtYT$nWB-4_7SgtVu%)2L zH=RS%2Qo-djI{{dXUoGr6mbCJ3a?Qt8!vHA9$jBntxZeG-8zOYe%E#dI~ zN)V6#7oGs$rvu9~QmDbe#NIPmaO$h)$S&ht98jW`<#iX*L&Z|qh-$)j`57U7#3y4GHbOenPrK_+oJ6pZzr&Q=2f~5JH*dWo>94xTd%Ac>RHBjrfDM%%TN{4$f zo^<6}H{pCr=!AN*o~#74e5GJPS$`{*Bx4Mc%s4?w+%|#;r=TRJ0TL{c5Ksu*G2y`V z7Lg4Pc1qlc_!3t<(0HB+1-gYeEZ6rM`iJrQA}wqI-KjvcV#M*hq3T)Hlkt?bQIIV97@k3DHf3i5h|dzB*bneACRoqldD$-iAezvD=XsE zr11~{6Idutz9NPQY5Y6Y+JMuU$fRM(xY*@qhF({6O;lV}ID0I9=1++4=Io5J?9ZQK zoLwJGn@_YBa^DE-M$gKR03f;^9z&<4{4t;tK9rQ2PgTE&xeE! zU60>>vDR*`^8L5BW~3Z!xZntb$R!uiv8xz;s%C<83DY4L6askuYbx+~f|JTQ$pAb~ zQMpb!;<}AX&U*#CLq8?Q^~3!_mBJm6iGK5NU1><>eA{*En2e9KzmEuh^Q=n=sU}U5 zFe}(B)Yo@#$O&kzJi|<);Z%TnohfCQ}3`~bMsiP)DrzYjl2EhGnMr+_GH6G8IkjQQf+S7E_Y(_I|& zbl~bt(CuOEvvH+%77!4VqAI)t6iZP~vkVD&y%pK{;{Cr1k?HQ0qDn3ESXx`qMXD91 z_>@nipk;ABy2VxN^@7-;t6SLTNvIWz-QgYQYyf`ore=^J!zm<_5=LZ-93e)sw|6=NvQxDE0aIR#y{R_U|YekU^<3} zvxD1`orYUA9NobG&O(7YsFV z@c7U`>|d3KHQ6^=O$bIgv6sn}A7Ecop1zkB6)7D#qLXoR!b>rlS-$SbLo3 zm0%V?*NF$P+2!GH%xV^!K4i1|{p`&$!jgf(!~=~wqi)%0<}2F6AT?2h-a)YH{`2LR zU<9|7d@KHW@j-rJ0rQ=cku+NvlrdI^4)JYZm!OeBBZV-zhD5{2Ep>IRa;X1U>}4HC zrZ}u(gO(-#u333bG2Wg-i(BLg+k#~ea+5CuwX5WVTi~zksfARCx6Y+R_0|c98dE2g z*bkbtA&k(1k@C?Bbe@YE&@-!O;tu_YzDhKlSGXx4qP_y^z{*aPKWe4~I80lO=Z)7> z@ufw?yjwvRoNv;y{W*X@wMm^i$Z>O0JK z&a+Fl!l==c6-9~igZ}kU!u^N+9BF2@cE&9oH3)@4n^?JB1%$E(??{u|Ljmt-{HWVx zKbcJHMuVN!^}TD|6#Xe$G{bZejUSVT+RaJ-3?zeHkOz*V_YRWL<_c{ZCXCVmr*={a|_*VSpI*}d=A z);d%FIrXFzvi`?;cVzcnTU4C^lwY8$WCIxy%ogXhX_`AEToqUCUIZMD?3i=-X?w2N za#%C!gpKD>JSRj)Xqs`5sy*Rj7rb28=6&mMq0c`Ks=6y;BcuJHTn?agG%fBH;5N@F zM{(S7?dX>_U~)&*MJu6?cg-rGAV*5~X5bLT$^gEz^x_hceW8#Jh<1MNiC8u=@k;rt z1T39bP;nBDR~%#J*|f9r+w2FovMu6`$Ivd1@!ZRo8-&KP`}VgHNkpWSII$?gJ_05= za7Kzo71trV9bUUAYi4u8VYf2hxd{cnO+7PJJ@Gq^uF0+Qu1LWEe4YD`4ZFWFJy?2o z4|Zb~LBi9VJ_|EUa+;m*CAu*N-r;{wSSy}~cYVS>Wi9)!Ai^qjhbp#t~s>})ij*{#YweF^F}q) z4qlkT<^C(Iy8x)OIP5E{Q*0AKeV>Sydg&{F1CF|$Ky z%DeH<9wMSX0wN)+QJh@BBzKRRlK2lr!c-TjS${)GCo-Iq@Hb%y1*_J3^PfN8nONh2 z`iV6YjqFs~kGc@W4{P<|y$CXgA**sHpEg_7I>KUFeRZnmUd3r9QUwdLEHy_D!rv?i z-*1?oZ=9c>9^p=6%*thT%t0#(A^% zwT+d(eTESp)4Mkfj`l^JvkZ|SM~JjltuC>)s*@RQ$D{j@{gVHP#dLrbQg?IY!jf4W zLv6!WM8P-Do7C$V+D8q4k=(U(T12K6|Lx(;v)^%b-3WipTp9TpsDkwZt5T`YQO~p8 zcJDscqas;umsyK-mfueKYK|zb zdkjMQQi_71Ck?*7>Wh+F>5<~+kWkTX6D zafi8Fo5O-Hldxl);4sxI@6#)L3eYZ%j+|DOE>gCnfs!4!aGhf`!L?N#%I}e7zr&uo z9sc@5oGKC*0IGx8JJWK5BWd^B>xT>FR}V=yPb?UB@B<#8#nD8-N*ZtCp)QIvfnmlP zn1N*hesfS5@*Dx(Y%v_I^ck%x%S42cdeB3!$+7JWyo7lZjNeH$J0>^^8oo73UD z8}1N66Qay9k1j~KhiA$HqwvENdku1%eafP+Cxou3TL+9Mo_JdJ#cTWfJI-)JDKGB{ z2I8R-Wo=6yn2ByQRua?KEVk69V(s`>k9}`a_|l(k9gxWz(=e2E9osp}9SzVd+FR^p zdi9*+cNK;JXLWlW0as~X@UYKLX;H8|Z~Lrbg-K;|OWV4hjbqMa=AmQ&JZEF_q1?28 zXlbO)M+jX>a2_y&;+`}rT~|h7`Bodcmk93-4dC|+VRQklFGgma1TgAq_4k2F7c$YV`#2R6Z(0rDQ zG52Wo_!~V8ng>$kPS!IN3pQxx(YD?M5hn|4*+~P-slwBFL-0}ITW9uJz_Ty~g{z2?ax7aP0sGWbrmBf!N}Pyr*rq|~B( zMvfQ)eF<=}1$ct2`D$7vwzR!jV$Aa^G|$=dT74}h0U!>=68J1_B84}BVO-b?_ub_Y z)U+%Q2?n@7TrdaU7XX~SYZBfMYJDD^-<;>>80T(bapDg3C--)3{xNxLnNwY5CFw=E1O|j*PTL(1PeZ^P(p&KwyMm z2@vdFo_R0hQr#4MYxDjUF#oG4mXPVVHF*Pn9_1s?%j9uCiIoQt3*+EIJG{2joiiL& zPt!bM)XrlC-HeWBX7?h~*FTB8RDq^&F{ALvStj9C9yqy@_WH<^JarsPoY@AjN4Cv@ zl-cvYeZMT05+PmftQCy2NqTO?SJvVje#_7d6U3{oc(#fHj(8kUp~10WWPt6pVh0vz z$l&khW4dy5AZbFIo+y_jX)j(Mq>Pppfgny6VUU|jrg1h%#4!-B;v{UfViSVYJv(lW4(CNzlvgWH2Em!MTReflS6LEuqhdYMisw*U% zFuvE*REi1+AE-dumKc_RDOC4aW;_{dZoGf4;0(;2Mk&2`Y76@#yL>Z7{bKr*S(x?B zdtzq#MkvjZxNsov06;>1z8@0!=QS*y>Bkg~eGlofMl7{GRxRiiycoWJ01PGy!H)2< zEl&RF)wW$6Oabm25b%hJto=kbp_=?MkZuJWAm!*``y!^8fATWSF6%v~i}nQm(4v<6 z{E2I;eOyJh-@xK!V$fp~tzjBPd$O@n7+AEc-|3v#Qi0UtXVg7rayii8CceK>qRWIkmdGbk>j;&kH#uCu;SquKY_Y$TUw^2ZHXFrMnGM-|$FM z1lU+Uz_Z75N+!T$PL`kiM0X_Wm};-PCP8RpU;FoF062dPX{Rw{d*%bWzrRV35~Roa zJXn-5T1OhZ-Fgr7c9G4_?eFrqNh{X)MI1$nvBc`ySh){NQI2Q$@v32*ot^t09JYsetc<*UqBGI`s-b-CH~JZ9BRO3ueE#@m z0)51BQ)@VmI|xUje`&5*LXYq`fms;WaBRGWr@LD~t)NVEUx@cSPC!TjXzDp-$JzjL zg$o%Ja2R2$u-hT8OHklW@UNY4S}%7e1g=FIRujSolUq+~JEX7&m($--4A2HdG>2!$ z7p#d3*hmBY5_;~C7OtH;LflT8u5l8ZF1#er3MRCh#4zg;=KJGr#iGgU-4YV*TIs|D zk_x-kYB~nuI%GCtA!+$vyo@)4ea?Fb+6Rx zk3={;=hZ+tK=H#%hrc;ehw$lT;4R?hos5c#7_~(fN=0m3H~?&&XIsdq3-*gJiv8j| z@jw2|(QELNKVq;=*Ge{X6fY0CTh`SWNAkQ?M>s4$o6#?m%F zb^C`-+-|pYyq`|EjR$*s9`*E72)`%YUlr=6^0K5|hSKhwaVAb>Swx<%J3De8h~yh) zaCpcK<6PTl-7zg_H3~(MXksp?s=t-a?v)<()Y{q!ycO-WcDn+~bU711w@?OTjEVON zdr)(_Us*cA)2Lsn!oKOWa^BxCVsx;4;S#u`}7Wx~*v!So2IV5=siW2ec$h=-S8DesFVNY|P$DJkZmxA%hdm|U6*Zb~re z0tzirVtxmXDE1_amET5N;A?gf57u3f35As)I0oN81!TA%Vr=y6#&XeGg<*+cR%LH5 z6T_IgEG%NIcy*-4X1#SoyCkyx<`_uaEd$Q|Cdr~NyigarjlnXiiOE%mz01VkR` zASOARy(4Sy72T#>Q}s@WcHv9bt1it?8{-tY z*6P%>U2M16u?p%$R#z4hm;*7!F0kBCDDwG0{;(lYD`G*n|lM4m0Cj}a{OyvVvQ_Lr8@@J;q&mfMUYF{`uQS&ItsnPawEJD@X5AZC8`1nfqRncbBsT?jUgklbLI zuQuKB^>wX(duYm)G&6r~Y5=bnVz?{%Sj@SOXi`g4FT8)3$~&yX-p&ZFX0hbPx9zQH zDm;8VQ#b-%U3yqU6Pbl5u1XJ&x@&%u%|rMr191lVU>WbNH=}C(U9wbIkl^Rlw9$D! zw_X5G>exwFJ5&43#dPQsEDbXCnYG0(M6L^;A5k$t9zN&K>-(5H>Fu#1MB01BKl09y z_P15TjQgt!F99}1%cf=DX>^y6=fQvsZJix;20kZU-I^|1zEk_tLot!Idnm^8o2)5x zlWr@_wG{q7e zB^8RBcKBK>%R2hvD+Y8iemgDar;h36vbm5{R!51GO0 zNlT;ZYzXDzLZH@DfJCjZE4><^crO>l(Evq*=}0|6U-kJ( zvU4O;*Ko-Ue^Se6#e_dgq%e=h7NaogHp#(x7q54G2xQ1?`rsevxbB5e>0wL`6#;dD zuANEmKu!zH2r7h5a2G)Pvkw53)RTn1mJCx(zTN`ORPnLQC(G2;_>CREjwLaKk~;I_ zH+JDLzbEgs$F7{rG${74ollr@WysyFxjfg){x+~M8I9C3&I?=5s1A>w*3pKX=_l$m zgdHp|4Lq0G7HdfVw^ftgoFUJbU8pozC334-Y0j>qE3fleG%w27mA0UW$&hh!#Hzo9 z%8OimtYt;35kr^s`~Jt^`J!Y6=hWV-C^>?aW1kmj?6@|gu%z&AT86wl7Y7fs z2{%rInrrG(s_rZ=(7e$CM=m`cqbi>pkCQJw+(0Fay46KYtZCFadCcwTG;!w+L4x2< z;U!RYw+Au4u5+gk`0;O_z4)VHND`S^)cLb&jPEi{K;w3k5W66OYT~%Z?)F|T?#%N} zQFlY^-?Kh;E%WRa#IKj|d+ydNlW_L~_|okB!^nL;b+y0ennQ+GMnj^SO>cSI^9!w{ z!x*3kaHW;vy+kD8cJHg89LQq&??^Oeyu#0NTFn?8dyp-kp8@asX8!`>H+HozsyGU| zH>7D--Bq?A4Jn?@|;BF4-+&-iBR#&R%{wcCUKUW?oQt4tBQK|CD+5f@&4P5!2QEG|tLQZI&ROk&{ z4~kHLkz6#V;y7EtI4jMC(6`Jb-N`zvqE3=xkcJz|nZa~e=|sCyyLM_yXOZq8nRSYn zq_6Z&PL=!57l8FrXM;XRyCxVhmU<^AX>lg(!7O9zcBo8M8#|`$<>cvU76wZ zCs|1B0KyOUs7b-ap1*pLN-?blYS3PURY zRG+{fS@iM9zEbThS8K(#fZBYUb!Aa%v~?BCn~*hrn^N0L_EVvpYvnyj_CMAFp?b7Hq?(KN_y7k7IeIAaYV# z$lU~TyZh~qsZvs*NMZ5uvj?usRMO9hym3-2L>Ms@12Q#ccVFg5;K!$sueo z-43s$!s>XAf4-9421nZy*Y?N$<$o#`)-XcUaZ~}0c1Oxq$4kqTgkydWFAqO~tqFf{ zELHss@z@#7Fer*URjH?1r&4d5nOvQhz^i`QyfIzV3l1F*k2@wP#!eJqv)uFw?y1zM zQm+Ag5j#bfEx0=0`;lJ$@e+iT3fN5W^6=!a8R-+Iaf>vMTB#0Nuku=nWUx7nD%tiH z7VdABZ!!YsuO@3-%kJFg&w2w7;GGE8pzRv`snA_@vr~hR@R)&)6BxHxtWc@G_^)b zvk=<~xas#23rq8F3hk~C8&#>0P&HU-%}XQ#@h0FuPtwgPi0z;=hL~{&l{W6pf$rzG zRTRF~4)SUqkgB4pZi4V^L=er=s>b6lWBBQSK`HkZ=G))OT;(~HfH3w{LIMI4|0l5W z_ehqwC`brZbDEW&TeI?sWt;k$2_=S&QyVz>unz*02Ma(tss`orGhZC0x3?PR7pFj# z^8nOuf~L8jtFB_)s4Myf+0tBM?TEi8g zJJ}~HYZrN6u^!cruT?kZc8)dBMqdj}M2(rhm`RO}zwPUCXiV#$4uA$K@?w=&y1fuG zSA7rOf|DpOe>K1377r`NR$TDz2e0u?8dk8T1FBRl@wd+Y+DyXVfscvGc*?(YrLVcR ztr7n=2?YVDNX(zb@XDzfz;JB-j!u#&I^a_8uH+lsvJxk6`B{sjeRCy7bQ z@4b}IzH0H5=OS+I+Z9dhV`8%V6nD0x-?L?#OOnosxOM=BMP*H1=(@KQ0n~)Sk-4NC)x`cHWK-U%Q#c@0aeR7pF7K~6 zAU9~(rrso0Y}1Y_ETsjea5!dtmpAZkXw{<-M?F1ZwjgK0fvT`AbR_#K8Vi>mZ4C$m zP}rTV3Q!Ww>M6SdJ9(PZpz=pVl1T=A&PzwBm4rv75MRw3UtBRMTohljR#s+Sn;DsE zC+-HN6d;*uD+w8^;rQv)px6B}*hb=JTBI)qrI6#98PvkJ{W4P;JfRsZ0EFq}sjXQV z>tTXv08x&a*`({{?7!8J|5iU6lL4lO26GKb~_;ZWWf`jwR+CiPMy>S%31S|ByP#rMXQ~9 z$r94;pFR7f=th`!lP;URR+GrKyqrD6N1)ruEw2A}^0>4b({;aeXY_qo*1q}eYdcxh zOMo-y-;r%ELmU7MdEYT&+T5we5)thv+)hemM|Mw3j|JjROL;U7rtR#cyz>onsXNfp zO`@Gkp7!24SX1PITy|F4EHvrU3Lynm0ZgU0k_xmUCJ!@UEfCj&3f9B9U@bzoLJA*K zIN3n9UXxnqa_*Xf0r!ip$>`@;LQvx4k=;F76pBHat=CLH->|Rq3{z9J_-3^+c z5*xuuX_S8MSo~}>yOyErCa?3A^FiV4MoTVZGzSf)SVl`3R@78*pu*RNvggbTSaz-R ze9sfgd3?W@u|(OrFR~!Y7Y0WP6e4yJ?I_FU=CcU4#b86+GN-oYm4gTn=>*ADTY zp~3EXq~n;*a5?ofPm zaLGgs?7;}tk-+lzmMkJLz?zNIZI@#~M_^yS2yCdslC6QY#3cEPbU+h}IgX2-Yx4lJ zv2#buAq`1WZG|(Il6GcVvG{ueiF<*EyQlXC>r~|VtJ;xPq39b>ccwPe$k|kc;M0rT z-zt$Rs!qw}3K!ZDI;tcBC;d9G%?o6qXcM#Y3D-*VbwEs#xr1&eAEoyunjDmv4W&-G z<9Axav%Do~11g-$flCHdR+&)}3p1@C%?raz7xmG*q9+UHFf4AnksdAh)K_kRI_m@= z^W~dy{V=hO!Q1fDAEEe~u3d=u8WngC{}dze?$Q?^z~&$vL=CTclvVgG5oyBjdjHGZ zyp5!|s}44un04iaQCJfjZSv{6g7F{_HG5PqvV4d&1ofAjc{)y`y8iKwvUyt5^bfxS zwfSi2Y`-<|hsf#P{mrb#aMr@;q-G1NZfZliBtw>s?8J^`BjC-qL#kg-IOY)>kK^CWq%j5rH>>q+e z>AEglv~1h9z01}v+qP}HYL{)>wr$(CZJhc#H*VuSC;m>ZjL2-R%$Q@%F`rT1N3AoC zk-*XgU8&|Yif2|%=w3D!ZhDc`r0A{b)@b>}8g7tnMmH8XM=1#pCG1-A;-md9!<}jT zOATbof|az%VVv@)>ajzLx7e$&@X;Fc)FB+23fehW%O&^<{Z2%2bj-;%ewMDwH~z)q zbeRLL4Evx6jp>LZZ64iXZ1Yu1Q&1e2&lR9$h|UZ+;@KAMyhbh3UUHw`s|apMJp`ju z8KeMe$sFy@5HoFbPegLMZXjgMXSFxbpAOt6kKg0nnFWw+LheY-pb~P9SI{|bbC>42 zXH`O4>%TM|3-kZcF3H5f%<*4#$tf+#gu~|lwZLZWz0J~Z#FST*noCNwk2c608@%n< znx+X8!V`qPeERf&zn;Ud3+yTiD6uPZmJz6gr&nT=M=HjC{U3Y z_^AcmK=JBk!w;t#lETisdO;B4l;w1Yo9E?xNy*}*kf zB1nX41kA80bgYORO&r%NuoroH?(IU?%`Ov1@JGhce6v4Q%Fh9+seN(?)p z1nGd|#;_~~Nl596vw2eqH%t~(>%8=*5b{1Dp~5@hvj0;Qh$$(MMp!1}#m5G-)~HPp zSqX~>pW}tP!Yv8%xHV0u507!!`+Q)TR@Pt{th`hPltdPDcrenWT}MtMh(HcyR5|`< z4}C$AiTzpC8b)g}isV>47fmD8P+B#WNwm(bNEH%1N1{<~nDc-VII>-AMsabgFw%l@ zr6y^r0P~z{pX71%mZ$ulMgX49JeP}^C)`+QMl;`kGuY;lnfZW>99cWe_Wo7aqv=44 zoL_rOZWDhV%Q+n#4yVO+D<8(a=BOY5!l6Qz=Ddubh^_-i?NjJ&`D71(@F<_bQy7Lm zusNo**{_~BGWS+VmQ)5E%!Zh zqUo|UHT3AeNs_N|CKg)tkhj!=NI*gqWCOxO7%A!}fAa+(sn9BU1OgUABH2hi;Vw)* zqSeMoNH9{tu*h9uT32z5PP=)=fb-650t{7bo;ZX@v$@m@NOFD!<2E{7739U;lev+x z#XeM0;&P(MWpP1jqV>kef8`{-!5s1}IubBA4op{1VEt1n4qWZAV4Ju0`+^scDsFyV z&FA_Mfa{&r#c3$)vU)5J$*q~P_vNk|+$dHtmJLUJ-sU`3R9SlF>cjj!jf}+f%p!M2 zK-$>1^+d8<9qOH#uqqdsI{=C{Y)wONu%&W$>NI~nN7h~O0EQgRuRP4V&_ydUoVv6B z2H4@ZsY)l`Je%19pH4i9F)1!*6ys-HXZINTm z=;PUw<*A}*!ADzKnqpb;Sh~P|@jM|am3GzL$?>_#-GSG>j+CSlSp2k2$q4TAE!BtC z2gzCQV*?`bc>mVz@%~s?(M|Hx|LLn%Z@$jr1*1i}MAUkTxgJyVlRV1oo)7=Z+q>CX zXt_R<)W>nIg=@)N{)Gr{}gFHY@6H@Y%9FkTp-V%iw|loZQSl z-4I(--(sY|J}uDSKH1(r7^XPGmJiF^WHHt{1AtMi=w^3sHl4#Ex>PiCxq*&ArM(?m zUPgY-d%8snNndMyTw`w~Ni|Mcm)Szx?7H=T^is-1htd(#SIes#S!tvr1Wd>>hKm+I zfy>lt$D8CUcKIx$wGRDDYR2KPCNi?2ytY3MT0M47S39lWj?lxtS~9w~835ewJ0!Om zn;Bx>D^sVgt?q`YwIk4Cf9$;_6&mB~uqTJy+8sn+1kOWaIlvj|G(Xsu>&U(mld}|t zI*WmAg3Dg6$jEJe_J&zxI_Ki2EocQ^Y({zU(;zG0vJTOx9=Vd6Fy4f>XbYypj%5_O ziaw{2n-J+lv=F0r(+?H235dku_ggn-S z??h_f4CC$Um7feD0)n6SliUZbU3*<*f*vG^ z++?N7JV=t|vg9avhZt_d0plhj)15Lrf$dVAx23DQ3es!z!7h(n*KcD>8;?G&F&sK` z&`cw8fpiHl#a^nPuP3-9+Axva9MV;;5M4Vncg;y~ z2wgjJ->QG~>IDLHuPWqCj8#-}Jv15pt)xmFGSh#}?m+-xhSCS`=vOS_NK)|k0iwy& z1SbDkl|E`Q&&(GkQMx#)l=L4nZyEMT0FWBUU4}&`5J`&6zspb_Gfvd(Nm%a$^N)16PztHdCqtTjZ*i^?VX} zoBVN7&u5BqWX>hUh`j|=^KzJ1uu*}_lV{TGDBWolqH+XSgNIbBIey+;K6xktv^xvA zs|cU+TJz+xyS8{w_*Jj<0mP4!wU-#+S=@n0v(#UYk00Z$jjF8hzAo{CxquD-PCf4D zoU~k`V_yIzxRKCT0jVhQF-|g`>!Hqsa4Fg2k#BvbTIO|spdoX<5gk1uudd(LX>O4p z_VbUdXad>jnx6B1Y0L_=AbNKzuV=PAV9h}`!O?7OE8+rLT0n?0k!nawFinDIU(Un* z`Xkc}MHzUxTL+#sqfM0YWvM8YCNqTVmz{H2CE*go;9d|;eyW~rC_6ibzfnHo#mpi; z0JRn-K?~CD!l!C7Ma`+0sj}*DWXMs8wfUyiRoKI%X{24eUqWU<*UMdFhey?Rv2@@S z#hk`BYL9B{$4(aSm>SNzW_%*3Uz9vv^L6I2=4@w-nfIk1^D_NDue3nso>5ijDY*Sz$Qjs3!CVx>9MmRtIJVo4I|i|P8=NCv?pz~Mfu?GK9|BmnbaFdTZ5xVMOUC!^w{P2)z)^kh2#N)qU-e^L0hnw znARUXb}$uaq(SD%ewvJW@5hw7u+l$VQC&LGOXKf$c*|_Q0>w2Z^oU0+!rG=tg$EZt<^x-V!pKQ)e^o%QCR#X-c^e>5?$F~F7E>PA0%KuG|>;%_K zc4nu9&v$=Qd|KPjcBbwA?&Dj}ILsBrYx-q=WQW^#gZV_G_XMN?{~BH)oEhP@c?J^?X6;+OXNhOjqqk{20fI2ieW*z7YpGjzdDcd|C#e@eN4qMw9` zcpO05hjc{s5Yov_lZpm)k|u5&;5ELY!ovLX{wWsQ#-PdcM}pym7O|bjqz^j{@3_^a z!nPOyt^pw2p5qH!bR#Z@57?lF%+ER~fz_Z7Sh02$EG)j7AUW=&b-Y?+($B(g^dTpx z6!ULb|0vYQCy? ze4RW~>D-(hWPr9CKQS>KCDXHsktJWtYVg_4Ob~vf^E`?n_Q?ASY+wG1kP;dRp(=v( z2pov*z<@=K(`gQ()aujq#Vj9mw+KuUv6}t0io>Do7biINU@&%><1f`>xee_DB8&Jl zlXfzjhP41_&Nm+hL?lYWcb3(83h&oMiH+8#};r&`N>_!MSq@O8V! zMhxK`CvI?uHQ$Xq`g{aOxCE2?JA3RgO{wfYi)lceZknww7CHEeL4$HSKt+i}62qHy zN^V_fl<;(+>J;jM5{GYpE4Bxh%q?Q|fk-&6|7OH1OE|hAVwF(;7h6G+Amm0fm3jM0 zvkIb92IYm4z@6eu?`qorkR+0ip8_+y=27i4dC1jWn-s=3^D3zGKznGi7%jG&q&SUHIha!9i3k(|z;GEh4S((G^3dBn^7+$+7`E0Z7vzxF}W0 zH@~nD6z@}l%79Oplt7LlrKldio^5ygDx&eZqGf54iYG!nk0^!CZQ3e8?#&?VL|$O`mXpUd@%d5~y*# z_C!y|fNwz6NX~8^ympRa@+Mi=pI3M(YsxO3Z(_fq#+5^!bzg+_5lxvUQEZSnk;)Kd6y@kK0xO$wLVZcBJm?$7=J|Y#Tey0M>s?Q=l>c0NVHVrmF zrUGHEEEgaL;iT5k=d4ZY+`Vysb<}o>?a*dD(5X0_*D#5An2oyQrhT*)vsHV7P zInOmB{H3{Ouj!o)x8)31>4W!0sm=Dyd%pE60QPvVv>Q`W8FmN@y%G)=}mS*3>FNV^T5xAPv z{g?KtlXlD_=@~=px7IfVJTU`}0``6!wj*?Miw~Vcwef3wv{%%RM?wp32uo?D(;Vf)iXT_+*?hIz2r|yM(<##k7K}h zLOR5XdvTi8catJ`d4x4^6CiLgQZ7P{f(u} zfoif;g8`8H7Mn#)Qxui0T5P=y_7E9ADdR^%NyS$@(X%9w571az=D8@{)xlR^A>Bx7 zy+C?~&q%Wn@fEq$6vM&vg92Q7H8YV&warW{4du8xc^-zVt)a?FZ{HYf(r zNqXpVx*cQz0$j3;mT*}!I*!wTbYT7ezCg=N5i~mV=Nn7d}5Mb6#4-fIyOU&{}{8iSat0o>#U8Zssx%=#Nj~BxJSfT zzjp1vtL^}Z4gYTS0h;DJuh~9Q`7j#bKAribjta5cG{k9ex~`1o<<@m622t{G|^ZtLjc(5<(Sv7eihuox@DKqLh^g8M3@WL}xPk zltOuGbo92!?#eX^bj(wr!Z<aBrVQh^7{&zNF^SBJM4jWB{+)t^ zLSOwt6D77PCYF}svkwdxGHZ)h|6Gu!n~;RJ@xZ1S!lfS0$MSiXcz3qhj)u~isFSL9 zE@`2ML=-pp_OQ{sugvH(-4zQ@%EjTsj4O*%KPiLR6!U?kcaSbE2YRK#H=JHT5k1eGq#(Lf1WS;@{N%o-5RrEom~O<;yn1^GSp3ZnO1{6I zJWT*VeWjbhj4k<_?@njM^*=4uK(s+865RfMNO1IUG*hnliJ#o8(4G1e(vK-I`Xor% z%0~t6hPam$3t1`85#^8lq?4Ufwk$UakWD8~Gc{!{MK3C2rutt3k73H`DrTEQ*$O*P zr7rpjL0obD?xH-DYuM7@!fE?IsT#FOciO8f@*QkV4>sv7+bPC3`1i+rlN~>j^C`Lu zJ3v;3-&X$VZ#8y7%mj}Bq2r(=Nv+r9O@`wf>!6->-@Lu5%@`BZQatUUVh|{485|NjPc4zBeZkwm%x3J_l+H~4Mfj+;jb8Fr`iyTsZ4H>u;Hl%lj0V_r6*V+1?7 z*r*|*fHD-5uV&2g#WZ$yFz|h}R}#pih|m`>bapfmm`{ILNLEuSEj!J%H}H7x{Qj1e z=t5rv*nR!|eXrWSvRdVt1lup<$=sQu;2W#Jh$t=0?XB|oqW@Cb`3yn&@fjAzI8NIQuX0qOSXrTUaa^L<^U(EGl9!jqmh|JbP# z$@2ZqitYwKub-Z+oCy@5$zTGLYqasPemZ)*GVyqgNAj?U@#{hI*-qPVOh{z$Dp zR_E8ARW1({ww`ov(^|#CI%59m#8NO~Bo@;^=pA1CqWP(9*7W7w*7y}%?9)HY$d9GG zq@b?qP#gnoi#0Wo5Qw@>0WSFfC6SxY5yw(7wMC=(!FdHw(9$ zSv&Xa_t#%yup)UpP94$g&#d?cqlaWrV^8Tdb)Rkaj=(DVu-?wxg3d56_9+)oM9WZj zh~;5`cdD2Sn)$+-0$!s94FZzB)+NMVmz{!jnePO2PC(C)l&|V*i(R|w zZcdRK#BSAH%`qp^4;zK+u>{m}6=lqNjYoKa)x<7Ss|CvP{uWcQ004)^3JKjG%@Gr+ z4~!qgUercEy`r*)6wN3@$6_8U`anxNS8!FO{_~6G#AQDQ0c{}F?t4T?Ueg&tzi;T;lBJt*IUZzUtfoh>7$n%IHycZ2CscGBrF-h9I&ivPR_-ei+Df z_DbVzS2+@7IZYy0LDo0%JTMKkQhuS4rP&;tlF<>zbvPw5Go9~@@yiIAUbzVTa+yFD zH)e&bWUBz4N6Xe+4j?H8PRJojJ3#3=GZ6U>x?H5Ap{t^jz)h^PMkVwwrtovs+ffJRYlHZVo`bohZ(-~1n2#ZCs3*Xz^@15+nS&7T zsR9%(jQH?mtQ3LTC>E$c{$BA}u>UM^pcW3~Qn}%$hii8mky2S(?0(n_8Q}R)-Ab>3 z;F)BMy{RMgsbt@#tt$Y_f(YSPw=tKPWCuOVo^Ki);QkU}MRBe!lc*($M6pc2!A zo?uWlY~$`NZEpjj#y0sbeC86@A<~|^HgOg^Nm+_aQ^Ci{Yf=cIztD&tBlHb|lEAAx5t6 zf$<{{&oGU7v2HcmZtsM2?9!YP&p=i8jtoaq2^_U!AaH`zLUh%N)Dp6v zX~#gRvOpGdFl&EptCmN-<{7^VV$mAk)e<(%0SH1^!ZIHh04WYF2%n5T+9ruvo%FK! zY+nb!)*SPI(XFPaqC*wwf_iu9rc0obqDrM zwRv)Hp>(qR_WX{gdc=>!E_$I6{~d@PpTd8$4Neb>UgZg|gB1V_r-K##@=HJR7Q1dt z>N+XK4R%>oxMW|aREa|$F*%cLj+QYt10pHYl;IgCAa#qO9m3NbKyaO@ipptTrC5ZeWidzzWwkwMS`vZvxw<^8z|Br)>9c2GUYJSd@^IRR!Aa6M^5j$#YUzXpfW8M%SZ=blB=ddRJlRdmh3o zOE%!QBQ(#c)VgQO{h`!HR9n;v zvbY7Lx&BI>9{rwZ(O_?;w=wj)vop;b`$I1FHLie$!n&!eS-0%1iA8+1DriNRnKn6U zty^Kjtgyp@1vf(W{Z^av+(verle+lYtxYSrI&n>bNV~12TS{&@KwA%_a)nz1cH-^k@&TZG6Ompz^@ZyI!B{J>dCU%TzsX+;H;PpVJLy z&~ks5e0$8`FY5ju!%8<}jgF78Ad%pKG*$FtLH8=Nl`wtv#!Sm%L&S=NqSU6u4walG_jbNy(Vd!0R6!3dV|f6ap~N@q5bO0-150w{2~^`6*pZBY z?`Sa;^G%SKDij_8Uyo*-u-az3mRvp_$!)tc$oDr)!zkLJ>IPSbP%TJB#Y?F7E;$I= zp$?F*yRt`>M?6^>>VX>a%8`VG*HW-_0C5s4HEA`~S$vSRZ+_%mn#MS{c@QmCstJ#V z?7Zqy{K%+}#Uz;>n(4V*bGXai;3{`dk|lnwIq_3Nm3Gz8>QUi@>!fDlqsB%L3{q^4 zB{m%RAmjCLyo=Utpd{*$KmPR>;71Z+fT>bo{t>R*n~({Xbi@p8#q2-{mf`=qaTAlW z5ytl$n+k&MJ=7;-Fmy0%2WD_jg`7IVVSbKny4rZ3D@zmG0k2*9l?4WH4PzZh@6 z&33|R+ZRcG^r*KO3Z*&A+PL1i?Jf&VQ-HxYQ0U^M0<5+U7#wCrkrtMDe`0yt^As!ULymT^m?l%m{n#-+<)@gEGr|=i{O4 z1O*5#(yMA?)F3QWb@lsK!{jD&V=A6Q*9A_n(;(hnlx(>J46yV;IR0>Xw1ht~@{PQ8 zzxqSjef9+P?__xb*nr-7R$bXcQMq%YzF1)izURkHrY&;;#)Fmi=!v|fa7y-EY|5%j zkjVUGkeY-|2fjBnetnX%>E7jE>a~<@O6pHZQsIcBhFmypasJzYt!Y!P*%ruS6vnw9 zSJ6O+=doOpkifUA&d1P5h*opWeUr!BdMj>bvAyP!gghPw11W{;8rs#}6}Fk}PI=*O zr+z!uGBpI4kSCj#{H5zNtjN=*`)6GLnZLuaU3(q{7m(AHFoREF7%%h5bhWoqPVSYPJ&9Aub&wXomPpI zB&IWF==3s%9~lJB76Ay^KWHEj5Y|vcujEe6!$jA$8qa7@TLgRwsl%E0*W)t?CqoFhV{PMiN>hzS4qiHr^pInWjRD!Vs0i zl-khk2u4UU#5_9RtWJQ#R6^IhZ9aS)l&Y#w3*~|t%+=u^US;RsqF~$xnuI=eCedM^aUauw%#@}vHB$WWsZ|;L2_B*&2cF$2l`UI2woat0yqrd z6n`UECT!GH5$GUbvAO=j0OGm+NEI55PACSs>pWC62l-$%(E*5DU%O&5rsRMXcygo$jeo7jFTb z<6XMvt_gE3Q^YLe6uh3aYEsh{zg4DLhCr0vTz~kv6Q_0fx><@zR;RXHi5BX4;_yb>TZ8MQc;-?2@akNKqS-;t12<*`Q;B3A84_{xvY# z=}W13Fi#)ltnzy6l=AmH_l45)rgwvHJ07u@zsyU^X7kUI>h04=w6Nc zXsf%s&U>;atk74Wv;-ZT?&&IN%FgfS%9sV5v}j5xOEu_xV>{>?s#nrmlVnew?dCT& z6&dh1CIxNZMQKYV2QTklY;6O%JABdC*R~gJXleBNPviG1#ytJ=zs~tDc(+b8Ea_o0 zfu+a2=jQ@?E5sR*P4@~!(D!g=5nMn2=vV$oXT2rBO`FIo!TAPx!~rrY6%3q!@W$wH zaY-d%JU^(rF=wUT4`Q`+=~)>;0PrY;;bqG)<>mkbZgWeX?zXJW7#p#J4_Dg#4+cFD zf1`hi?X`6=>-zUrYLax007d|)PnR|pc21f*9(Jwd&nH>wMqMz`AE@|`mA_NB2+jIEaSN~O^vp3TWN6cX@% ztkThdm($I}MTyMg1on)G>%SdL_9p5z`j{A81|vysQi@Kd8nORnM%%4s?*ob_8Wwi% zC&n>8qqz>7-!H0W=JDM9$S!G=ItRfTMCrK|@~`U8z>T>eRm)H{bLkMF-pLvO3OA(h zV%D?fED+F5yD-yFxY+5Comk=P`r%?9aK0_v#N!M1Cic1vr^fKGP#-f^;@xd4*!L);IRk)2dfl)9Sfc^ zP8xXleLzy^h_QcbtF~my(1|mM)EOCAKLn#Dq5<@BN1-AU^&$@1u^+J+&Er#WMJ+R( zyL*&UgXn7Fi~D_^N#p{D&GqT*_b?=70xen8MZZ4 zbI)rK1CmGG9sa7{z_dmyGfK{VG*hv9$$9Ay&&p(t#&mye?1o8obME-*HAOvyH;gtG*h$Fm?^&V z5o*a}b6sx#@S^(K<(Vq84j;kc-g zbB8kgvlh7*{TvR2duNOS5%AbOPnS3R(lrE`b&r@HHWeeVLGh}d9K2_cr~b`M1dETNVlyk5sgb2)NSFlHsD za^YT+x`L>S=XoVMh;|l>M$i8dPHYcJ_k`90a}VP^#3SVCYcG1XcRHk7;mY4s!So5D z1X0sx{iboW1_AAktX~nM0!BdN65W=(QlFy`5#|34}rj^9{y1_E0H3n*^x|L;nNnVEy(znt$)zxgIOZNCw# z@*|iaRj6fumNAVyh8y_dpxJL}GlcYdrwMib7jP1~SV5xf{8X?G-Ds&n8;7!E^q0EC zHX+l;o!!Uh^=xaEGE8so{On-`JQx2EL=mDNoSEb1l*9X*_v!j(uX_Dn06PM?T zOCTtWR49me%JH+zkr);8UD5-s)Z9BOEl;Gg=By*QDa{_eCT$%w$v)Kg85loCtun6Dolj1X0_V&w7T*k&tnH>`_U45NyisFMIeXI2lc3 zfqC{G>LA;PD0VJ9-U3V%OxnmeXQ(;uPrwKX*w7{Xxlq2azQ#oDE7w2+s$@(GArnbJ z4hYt~hx4SJQSf9U4)S6v^4fehhn;vk*p=v8hQkpyJ?&^_6$wf%?3#UXOg_ewE*ByW z8YBa|D7L$+lyAW=a8bH6EUsm|QhX-hZ<~^#btxjo&M| z>wuf0G@7VR&NHb}ZOn?yoaBw_{fOsmAU$W1w=Jtvg_qh4$NyPvGd2dUcyh-D3^BPp z5!E!;xTG^T?omd1nNnX`zZWtlZY+PRb7jV8lmr=Wt9<-vCWVos_k9Samva~w1`+)fH4_P_%ViAc0k^ECOQ|{X zCxdY}(eQH?JWerrqEDjvguq)Q@(MY2^{3PX7-jc_0^LE?$=XyI7{jL(te1lpqh5EE z4c*w~s|vmkD2up`5BYwCDI#uqJEaOg-Pl$p=gdYssDE3RNFNVcC4h&$oM(eCLp z?(3B!4X8}t@hrxk> zwZ5VIPoGc6pW~x6sgU!4jCR`DaLQe~1h~THR6!)%=Qe1C#ViQgQby5o#SEYM&$7o| zN-AAtbaAe(%0o2+Gp_tE=*A^=ROUoC z6Gz4x`pkXA6&z+?>>`%jpu^VjLRIjfQ-u>utvSRYixl{p4M(s0j2nbrgHoM1tKi@I zi^gI<9A#R1JIBHbm%WMfg@At%rgE{k`gp$7NH&n-PEnxsnHyBbn3itld?bGASeBh7 zhrKf%Ittpu1>V?$D;LYR`pGdCRji?xZFfq`=x~Ki=r3lG9mQe^K0@B3COU zR67aTMpWj8H*8Nt6X)kuMl#Tb65F7?<5|wjmNQwRThILQ(ouvKbNr>*EJvJCfz(3{ z=a)v$$)Jy?==K!f0w9L1d<~`iO+_r?=L=Wncoo_JP^479R>r@1g_J9*f@7df_oUAC z#o`e2e^`f{5ow!gXG9yOI=(dwqul~oGlP%MXkhi|CO zA{!j|E2Vj_R4SNkvV~6BUtcd2HS(9C+W-X1vd?0A5P4)Z!&uz$$fr2-7huI@&pE_h zVW7a+TuaNYo3LsGD@jF4K@Ge#n=H#s`)JDd`h7o=KW=VLDhOCzj#QCGwGLwKRQ`%R z_J538pD7}~zQ+HtJUoXo233Ckir-m<5jBgf)kBBaJM)|7 z`L@Td657kWM$hRxA%$)C8N<(hJz5~PB2LK0CC2=Rn)@lT2|~?sX4MkZ))oa(B$qhn zTG5?@hz-$LuIsQ?-AFnHOY-d{YNVhhvDQv{uaTxbAR3Q3=T3{wvvx5$#LNXPqlY03 zV{fXNN+3>!-d~6V0r4JBD{u>h`zSeW`#0Wou2|Pul$oLjj0(DgG{qc@1D<2IeX?*& z|CfwIQKOPD;jXcC$eC@zdZw2C(iSEAmlmfj{^FL>fmmgLl}QO9DCrywld33q?i!4c z%7z@HYgNkX>q9N?M zi_iA=1HUrAOh#wotLDr|+y=mUZa4&<29Y%|gFo{EEd6>Igjnue!uJw=^e#CK8yPOR zjk72VU}3i|%)*J`Bteo`4}CzcTt>OG2WTBBH7!EIVo2>5*OZEI-=UY;3I_Okf2qxX zO65b8L#-0^_yg9XDlwRO!ba6apxd@6V>3{sIQH1%qcLnkOXbaYfD&(7fN6M*2@q{g z%8Tw*KR^dlE|Ir*lgZNTHK+zE4Tynz7bFgkQpc`DHT;a!bj}fpN;m!rlST$0?&A^K z(>zRQ59sh<0TBJUaRFdeQPZ;0TH7Ghkkq-U#-4dUfK7rWUpj$u6Y=)&bLe??0`SKU z!?#tv&*$fn>)L2|0yu(WUX%e)h64_^=wWgJc(HJsP5{ew74P*5t4W+GokRUBWWl)P zAcF*wzlHPnGCIMfIqj~bq5JZwoGcm! zu&*gYkHE>jZgIX&*MM+U@e(F+)R?7?>3|Nx?*+6jyRDamyQD+7F8MMmV+b9(Mh9J4 zIs#MhiF|Snt2Ui`F@?d^J5~NUIH?l|z%ammoOlWKm1Vg}p_Dmxfhd9c$=I)z`^2{u z2R@_WnLF(T;rV>5vDN)~Ji1YelivBBP$V{AczGljc%hO5c|Uo~Wx-En0+Wrr_riJ| zdAxP@cuhp~bV^Srl<}n9bZNLlbYIdUXv8!V!$|u(RT} zis)1N6LX&(WByq$Y0U*vd z1ha7k)ikyT`Q+Rzz3V6y8?)t~3M;hS%jS1z;}R7SY}V&@C}9Id`k`&B0&Jax+bNda zoSLAE61*8LiL6|o8?0#0p)C^j=DINc+^r75LvZ5%W1w$>vBP98b^!nxsI5nVW$_>x z>2NZ^rtw)X(PF(-`Ot@)-zS#pUIlSbG(~@w}2!Jd) zDpXt_Ul+;wcl%=jhYya@561%J4aIQ!=57bb+Sn)R@amJ3()4dAnRGa!;Rh`K1m9$e zmA`JPfR{6y&Oyb9in8Mr?0i-JF;S6Jxdxnb3NrJP9Ig{O4`CxcWM0>Li8T*GtFtpw z72;^+^`Cgf2gQw;zx9Fk%8v9+u?tx#k;F%|WO$*D2?s~z>>b%Qe96?c2V>)2-wazb zHZ%AxtLd)A)TYU=Gy#=jcK$=9Q97ACl{fq?>`>`RD)0<5_K6ejMS6unG1|k#^>J7c z4|luYVbzRDR*KW}!=!KT>x4N!mNKWq|Bjj^GK)hshunW*)}zb?%XBs+x)*83hK_5j zljOU|WQNVQZ(x5VOvQ%Tp3eFt#4C$?ZiO6Ct_R!LBxYvm2!;(eMPEV(R~m;MEe+Ye zzXOJfqX|6s7zEjc=yn|K)@fDZSi0(`aJxNf*UyK0Sja6Gz7)}PYOA)AE#2iERCFC} zAA&p?y+S}m<3qFi&Hn)Rvv*COnjK}d0z(y+x+1-(7bxikJwS()P!mr`lKwNCd$#ht zYRJ4Wt9g9>!S{2(V7tg(!hcUXV(~ict~qBtCmz{&6MhG~+b>?K=JeoNpv&kE79&s%Yod2M^R;BF{Yc5J<5eQ(ZM^m=+Ri{IvQm3Y{K%bD#%X`Jg_hq+eBjI?zd-ZFvNf@SI zEG#L#OHUJoag42d#QXjkM6|}d3oIhFLDB7gh0D% z7=9T!$znX#4u*r&J$RrCx~<+miI!0BoawHqd274(nEb`@;!$hh4dI`g*34{~dvy)q zo!ay}mg_vUGn9ynW~{6cn1U|!+*a@3mu zp+L}_t(`M~9+(!%7M7G#iX|%rrSM%aUqXPG!jwzeip~TGVb|kdqh|(k*sLmef?+fy zM(P5(sB-o)bTkS$o%;ym&swlea(VMD^v%d{M3?Gbi$%hrHj*Mb8;XQPJ+oML=dfUj+X-3;)3aKt$k87w?EMUkL>zN+y8RbXmq$_*2 zaqSat$~OFKh_MfR&Hj{*o!cPE*Iyo|KOOl%WUU8`CdNV_DCQ7`3wsdq??q-A8OKN= zh|l*BP7GDpl)eay5gG;6vX#)!gF!p?>JZU&6`6ogfH=~m$2c9r)jgs`?WPI0FOG^Y0EimuIjLxB&K+RbA`XE0xVT^Nv zDB6Z*G4x75TE<%hQ|OxTmuItXaJ(LolR1G(12tXOBZozKms6su{W}v;y6b8A<{7Z= z!&sY{cMrX*8*r=URbbAy{$=22&ac}vTdod(h9;Ny`>V4S$eR!Lq>P4VMW+SdVh7BU zKi?BzdW>&55-#S7WT$7pq`vznS>5k)Q?JXNw`IZg$Et1-VBnNlt8Ydg%*;grE^zef z z+ZCe=@n$&VjH)63VdEoM8lZRkD+PTp^a4EwC=SoNN+V?0j?Ql7qImt9307$nl|N%o z$(Z#Kt$G{gCxXJ5LU=`s?cvn&+XolzG>SGZj8kmc`$Zimp7#`bdTvxpeA6Wg}UC!AoCOl;fE#P-f#d!Oz1;Om3#gRbhX zx~sctt#z+;U3nXTf1pgIqn1BqrI4eZ=4HCOsG+h?t z7gw(SLlUj5B`a(%+rxZ^f8YqPU*5^MYUvQpk;M?t-_h6PwuH`L-2{2=Hmu zsq@1>bo+UQX`|p{lE(Yjc=UbZI{U2Uo>KLd^-PpGN&LB_g~v<&h(JXh@JWSqNrSXgleu07Z2NuqLsR)Zoj)ySOgkZa zt4oI6#Ujde*5_-k{gzdPJE8Ml&^iGLrGdAFX{)tp)jk!L?kaztc_ktaZ7oRZ1wz;{gU&9d(newAMe*W!3J00a*MrJ-YUM?^RuH@o8 z3r0_-z0$(nOm=f#_?aqWRYj@#n%s_YV0?Z!*3!v?O*IAygXHt!vZB{5*U0Cu|`I+7%xsH zHz}r>Z-!NMr@?Fk+naD5)WsFNng26$Ug2o*#Xu%rpRl2kXA+F z2_#?hXsv}dCNu7*7}ea=XTp`?c{8BF|1GM`W3q8~qqpDQv00(I`;T)HtlOz8eBvS7Pkv7#gKa&#Lrg z$a4i^dJg858rz^kPk{?74A1B=PSX+lIh`fa74zU;C6Y!nTBd4laN%(WL#5VS9!Faw zMV`p3x5~9(6=x34+80O@Rrs=RLTeSHL2qWF!&-rSHWdS=fTWKHuDll ziJWSTX$K#98@4e0NMP?A83!jjRt0CU9G%d>Jfcj;(1Z2yp zss(`i*jDWuksGwSug&q~ZDEs&*(oIv_*PiT;*usUp=BB504b&(af&FQ%H-oo<067+ zg!WtDnrV2I?m@h1s`p-nMyf&=IWiK|#$9JC?5{b92x|@lU!>i5I7HP-<>U81(&Q3J z@g;U#*ZapIoxV#t;8rE`R0t}>(+7}kS3m67sRYG15?q}96xxzLv$dSZVku*%xes-R)N4q_P%j7u5$vem^HVREoHdd=-q_hI95YmUNMDi)Mf= zh~vXHwRSy-3wU-tPUu)8IJr1|l0(5It#UtYTW*K)M)8L3&RDA2oaF%Pk(u zv##~dGxa$h*yoHtDm9AalF+mst~Hwlf0vS3JF@7u6&o-_9_4!#>^-SsNj#3fIlB%o zHvs}JykQskazG>JZ`$!HRFrQMzZ4Kt;stk}-~c`mq;gGTSWk};No+4Ik57R~hS-20 zc5;=x5{5tQ=*J>N-;3EJ!9CDnxQ8ZL&0K09`ReJ-P(aaok3`c_V3U!|8Bf<@3x$HM z%e^-v3jfPjl>vdig?SJ(6f2CoVy0gi64VggTu`&f$fz)s-1;VsSuEvq2qZV`s6w+Y zhe+iWA3Wumb)g9o#axEBR);{R;eLL%q)mF~s1{H02wYWA7i&d22?CKU>(?fXnJ_hd zZX+(&ANig;`zH-V4J&t9Rz>H9h*VtSKFaG#|5*kI^*`s z{PgpU!}HU=`VpQY(0888^#DggBIgE>9^m!bVuz&PF<^pEL?!;$h}5004~J(Llkmef zb<0)paGP)-eCDOe&a@a!(98l`sfnZ9y|}YmmLaUs4lO-xRC}#7O)=-O+wObfYKiy@ z;dHa=3+iI+c-6{e`xW)p;z#-MVo&$oM9{4{cB;#=H}p+)vl69x-PVloBm;2tkQN&R zskpokHHP%;6x&6v8o?yqk;WqRujB=ZWp6)}ml~8tXc+(O`eW z2$0kK&E!_+=3P)8XQ%N*J;qX_1jnD6Zc95evXqbWvY}xyU+7wbveKe5U}CxmN?YZ7 z_&`;+fw|-ZOK%!+cF072dsw8h()QM0-cDhSZmv$--@wouqj)PNtx?VzzH{tQbi9rI zf|Mg9nfw2zDs0Tm|MT7vJ3Hrp?HzR!bS05@Fl^T=x9imv%3S+#o>=3y#_UW;;4k&F3&H+T%kfE zA-sb>L|dSV`TdFfKfRupyHc=9?oow8Ql`qL9m;|WzH|lY z7Fc^8C;+%umA)R(1Yw~ z|L!^L&@~K(b3I3bBx=LTFrI$Fg8KeGE$FzE4}ZkF7?az@I!OY#FAaps7k*j$C6S zv-nSrwZMvsQDw17(03F91fu#+W-^K7` z9I5Pak+E?TP>DWgs@s~p_M!+5x>-eOj+ZuStNdu#^O#r0^AQ0yYZ>v>#*!O(sD;mu zXWRI~cP}ntt9VG43uCd^z-$pYnO)F2CCbuTU;p2vm`O$Tr034U-wOtkcmjmdGd@z* zz@hYRAw3vA)H_B9dgm4ceH{cWi0HRlwbw>Wjs}VElNCU>13{|w`s5fmNYV_+Lbnt- zDM1posDtTd>td~J+f7;^b@NQ8@BDF(ye#+#872$H--X(~S=LVxe~a`Zj5Ka*y~Gp1 zVs@QD#R?x>)GBCr+i|c}LuK#S`KV4g&`;ZK&@{3259f5cJ2N`vNKCHt==kAOsId%W+gfvb(50AJ`#&o0FW536XV_&e;a#~7S85G!(5Xd?$1`)5T ztGyyT0V&^asy*UNafJ6Xuwb%B_-YEy&R*{W{Pte*8OOo;1QgFt9I>O6@`7k71@)S; zIRp#K>in8v)k&firwPV?nH3oxZ)OMQBf5hsC5H8ae^ol)%Fh!IS!&&vzcwxHx2reH zVEVQKF@t({1TrgAN@w76XflmeAUh39AUGQgNN2kV$f2-B1O`+j#w$q+C!ZpTtj{i{;|RG` zGN>_D3DObb814NZN_94)H#p0w2BV+xKJz^}TIp-?E^u!f83)(2ZUJ`?r7Cj%Qg^mJ zt70j`pb?bdexOe&T$dvPuZhk+KGfVf8|o{wl7CF2!wI{akAOd~%F|2WaNt_v4Kt!y zWBAO95%#c;in+XSr=&al4bqeC@0=grG1*oNoLX4G)XEm`K%uKGo$d^86Qw>il^)id zFc%1~7Q`4{J-T)~C<)zOKl{>+N3>jCXg?;UK=i0yJ?A^?;v7* zgeRoZy(vu$Aw38hxWwZ278i3OH#h17K?+4=|8ZU)wf9o`gI0rQ>NP?~b!J5&jl+U@ z3EF*t#_Zp4lS=>i2*}u7gUuDSnC=7%9CSZ!?O_JO=Cx`ZsIMRM9Z~a5J%WXRDAB}* z|DPJM7AfX)kW18wx(E~gjE9ss!;tUix#?v!GKOI?qlY+*ut1(O)i|d3G^~$ZIkjFQ()cw0Ucf5pn(^og_=fRc zPX&wtcuC1hVx^DABy+hB@1;7*wBb6MS0|p^ zmyPiK(9<{fZR5LsYg0K6=8PT+=M1Nv!*H+rwM*;tHpB%R#r4^LDnlP7wk>jRhkk5Y zJvHMc#ndiRE##HGl_}PKa5HgQJ6e_s)CQAXDK8TNjbKP;Ef~-|bu|vzM>CREOjIpC z-q&pDm>rYs%g^0vaZngnkoup5xW@HU6tHzWL4k9B$J{1uatcj_#6MOj;A8(bq4vHv z#X`CeLB^mr>nIiTTddDH-TZOq353(EsK74vyvMyPaN0qMX&SX` zq6E6(#J`~iyd<8H_1X-UbJk)p&wiuUN;f1k$0!8m)3(@YBe)OOIf{#llQDGeYh+`i z>gwQRB@%O__H4fac$&3mDD1(o(6Q)6<)WiU4$HQ5les;^&U)b)F((xBFBSN_-wgy( z+9awKQdbVEY?4HFL<7gd+UyVZFt~{C?P8Zd^ny|ZD4q(O%I2Sb4beU!jc+<%Np4bm z#GR0K)bDle*;9CgDQ%&ILmQK!zxr9mN zbM?*!z%?q|tPmhH4Dl?pDgUaJiIFjGy``Z@@&*|<;&1+Z8EYn%H6?;4D16&+)e9My z>)Y8P?ZmZ0=&VlC8qu4^y3GqbpS*Z`yn|g7E*9AmWYeY{80{2P*zdeZJ27~zCfO!Xy z8}qQ-A^fV!Vp2Nqt3>V^=Z>SLnmbU-Wu4+E8t{_X-p z;s(d>Y5-q$Ra7EIeX)3qSZ}On%y0#^0w(n&nHS4#>4}bQ4)AIG*i3&GpIp!7gkUlv3#(WZu%scdc|3Ixd_#*wEJ-E8EPE)fa^HX z_z?ywooT0FG9sT;G~iE1*2y>0IISswONSy+mjYtVm-FRf!!6h=S@<(hWMj9VD1^H~ zva;;~i#^HW!_ocEp%-2cpqczB1>TWqt*HXqeq<&TOY!QCQdpNRrLxWuD<>pwJ27Kd|ep&6gdGh_2&a_udPjyHxGybuv-_ z|5ty@!4lw)1m=XaEm2ErJ}_)>kTtpQs_*ODD^m;fF}@%d8ra?P=}q@@ox}4Y793%l zJv^qF`VoZk7A5Z@8)Jnw-G~smZDH`DA|dnXsVgWFjjh!cM|4Hb>q_ z(zD&N$2;FvP+MB?hmz}U%V?$y;~PYhqS7g{4O~W#_vb4`b(jaYMU1=%^LDCcj*LS~ zdiQBp^aG!9qOrK*mLa#7Ujy&Cibr{_Of~&grSjRoL@Wa_+2+F$BBN_{+ly zNG9ysIaFHonzYb%Ciezkm#VxyCYICeduqU2ROoLLG;3{0^ePQ6sWk_sJ<~^dP^Jr< ze2AWCI*96`hhhsTwT0*DV}<4zi!Kv_%E-ZDw2o1oWb?o0J! zHTgA6{w#axqb@qKN%}>(*NOK=ikW0iN}Wk^7{+m}^p;_*JfhZ)FR)7-)VAPGa5{?f z93)fBn(lW`<&rAF{QD|DbMtt*ML$##YuQIBGfS-&0SpFH>iO)FWzXFeBvEd8X-pa! zG;z{ZLhh+$-b`dZv7jT$tV>gL@Yq8fU^9x4*w`5EveC>Xka$1KAnR3wGD-|KsY@#Z zM-~@t_I1qkBg(Jb4Ffw$3iK63u!`vO1zj9`Jzun)4eFD$Yez(sZe2)s_j+XaQbPn~ ziTxQUIBSxO)I(zOTg|zv>Hk!ld8+@}t1kIf;acEEbFMKZSuT%rlg5fV>yfFwzeP*} zSwEN*i<~NW@z|aO5KMs>n-xk!cxuET5xM$Rm3Eq0m)i7m3nF#Mx%JKc)4qRHd%&?@ zaTR%+bJKL@$5irckM2KMx!OcoI^u@+b)xFMWnul|TjrC;CPLnsF`l0%OL1|!ObR!t z0zeqoMH5A~dK|R$LK9ouKd4%Pgqz>9?FJ4({De2H1!2=L4x5x zf)GY}+Nq&HK(gEi8wj%ACm{ZYKF(fwu!XX3RP~u-dCv7ojL#-S2y!N+Pa)*XV3Xym zA9*C}wbN9(9@LGKP1<^_IIap|r`5qXj$fCRMB?u>uyC)mVbs@J0&(o^aisa8;<9x<>TKjY)tzCZ9OkQga~hm13l74lXV{?G%u>$Mh{+sD;Y3Pt zY-+BAC^z6IUM9_!BauK-_>&NpW~znqn6)ZtJ4j zB|W*ow^p-ggUMDtZvL}QV#+l-jQgs40R`FHAmbn^%seT%4Jf17uFo~9A=uo>JYieW z@jkB{FNd>y9ylQ{T}J`z%~=Q>i7mzt)sMD?ivb9!mg^Ohc#!lUdB`wrL;ZP8bKHjN z`Dd?%2r#A+l1~YBU25uZ2_hE?F8nvh`flvBQIaH}cwsb|mgS!u{lT4^cnO}_nomn|V22bT+6fxr#gVw_260V!b&OfmFXgUUehVyipS`WB zPVV&SLQ2h!D#2bV6nYsX;)|5(c)V}q_)Cs3>cWJeZ<@4$cmGdy6yir&n`jZWxiuR6 zq;^KArZwh$sb7@MBjA(YM#w_;r|gBypVQibU)MzTan2Wu%Z|DCU61rMQ|*jrtI-Y^)#S*9Hz$Fzt5vZ|3jNs zKe82Iu>J%qmPSOKP1(;N^&djs2>qCE;T<+Fbnq9NO*3re5D9ZFDc+AMC~dZW2L;k8ndDXnavo?A4WZ0Fc^W+8) zN12Bj*qwIF;1JpU>^m28VRO*7S;23Bl4xY{GERU>Tg@5?V99D~u{R%3lw+A714dS>_rgp3)B-0cu~HE+f5nIVH$+e?vaJXmp{e|R60q z+Al_9iwWbm+pBgxS*XewvO>P=A{^&$M)o#2Qm{~7#*%EMG`GrahS}BKC}cF?USUQ+4O1qRtr}b2y*?5 zh+!Vg3gG#%;A)EC4?rN9g*N za^lEKgOIOzQjHw}+Gl@XCWRizKA*ZaVbAFs9}(Xf{3Xi_e3Pv^T-yd?f6n2FIz)$H zC+V;7K*`89y4@>q?kBQ8p(k6Dzeq0&p2n!|zX&rL?!%-&os$_;`WjuiKv}xvk z8&W7%HBs8JgASzZ}ZvlP^Yzv1NfMv*4>=hraRC_At2eU z_=?%_y^Fza&cW=shh>(nSOq0C^=2;?n=?Z;*ZUG>HoB-M5mhD?HJeUPobcBvXo$Br zUu1+C|2@UnFcQlTvJpF!|GQN^6R00w@vv^?s_Kbr(KIWu+ixeBhXa)2y3$Z8)^H%^ zfI_g`J*rS5k)+PyB#*5)z)0AxJ0T%|l@kKYj<2I?e3KYeqU&%k*L|8uM6b~)p%o){ zy!{@Kw>=`Fe)1}}xAKy6YPCiXaZDSSLQ$eUUK~NDWFj2MzPOizRRD|~)dV{F#zVW58VsRO$iREaiin6B)IXlqU zy!eAUamsw%VobcEY4$%tXtHmyu|=LeIS6IVA!ja>edS$BWg7UQ)>lAj2S)01gvae} zejv7Tm=6Ug%RZR}#7)NrvZz*9^E!bwHWiDQv9w|P-(nH6+($g}bcIxPHfzTq zz-C18%HqugDH^e`QWQ|OMws#oB?kIL9ruWtVX}hO8_5Pl524fe_5JHZD7Fwcz@*`8 z053A5*h(R6CrU(h6QKbmjVV6DhBboNLqIb*$ow8oyN_grM$pMXeu@ZF88I3G!?u(i z(Phz!%t0+MCP`!g)X$c0aptl`7~o(_9`63Na2-k8Kq<>oImLCsR51xd^AVro7mn#i zpg`jFAF`Z5s3w%&pinvT(q#t|8*R-WL1}=~Fg9Zu22lopi*ZX{{fH+*Np58o%^8q~ zo>?_T!mQ0iT@kS0E%`zuqicYEMdTGXFp9Ube!_}9?r(@Mlrn>GhZ`VrIVMtR>TmF< zk~;Xt1%Pe#aa;QvEvs{Nh=?lrma`}vVT5@|IuL0auY}~$6rOSD4nAc`^f4Rd^jbk$ zmdz_$Ta;k}LRFKCFW8C&hfbthLq`o_+~>^5q{-Fq1!$>fXc#cOQjrpOH9&qj3y=)J zU}**q%Wvo-%20#Bl<_5Q_=SvQia&Q{sg?wy}`=x2*|^!d$mT;i`|kbAFh%)yUG?r{a7b;PU2(6 zDUhDKdj_xwe^v4}T`o z5i5aYb1&*teL@81AK=MYNRq!A=Xb}Z&_l)=lA zaI6?z6R^igjXMv9MTBm;lSD)M!4|w@W}qzEDPc|<4Z}xJ6QG=71R`_10?ep!7x>ZS z1lSUXRHt1dYAn%Fqj#JZe&^uBOd`5ASujV*@_MgTTdHSkP~wZHC8b+75|YVj}j9D7ZLwx*l-*I>b{=}&S)53%KGv$_^!nX4Pt7ha7= zYE~>{({2gA+#{M^O(ukinfRG9+~~8a+}uPqY4V5(sD%BDv*J9gM7BFE;)ji* zn_uuJvQ+wdGzlv(g#LW0NnE}n<_&QVb1<}dw1RUF5X_K7Yfq5&Cul$kAVBPq? zkFZbfATWRl#SA?I@8MAKZmr!`AeN7~GfihI;78xmm1Ue$3#hWwKN~{+^4eYfa@t2Z+S@0*0 zy&>|6$CctqE2(-9#tq$gHh5pp9%YmeFNb7Z-pMFDjjJdKl?~+jD}2=h_%71Pn_Dl^ zB@d;W-X=56P61^fA=4P%TLt@n3(g}@TS>z)l)h;S(f^W8!yK@I#T3@guUa;vZa^9y;*Um}y4Fm5EuJdi^UL_ffJNA;)({~|wg_*vpglgqS z2UZbyKV&WU>=L3T)Yd~8)wrm8%wFr}B~$uLjWuSWO%8d7YO$z(A7YolV)Dx6;~E8Wb8FhTF|zUSe?GFUe&GFl&CMmq6c%o}BrU@JhLz`6FDy zlItInltP%s@=3mKT*-X{u*tXdIu7jCncdu-I8>dvH(K)C8?|Q~i$!QxBfGnNiA5L1ne8VN71E3XzZN z^WkE2Zp;fMSOLNVtG?0FD-#UKtJ6dk%NBvyleE_GvIj&vp*<VC~MO;U~cRf%qi3;qiyy=6Nw3!z;~mxLyW z$iY24oDy0YX$6j|lO)++K#3zMG#!C%&Ex@{-^ZlI0J!z%up#7L!rMqV=Ieomxr98I z5;?qwCWPA2OxoSpk8(Pn$E&A*LWPW45l#}#Y&Js`NGwW`UY2b7~&MCC)+Ca6`7aQMB2LFKli(x zF9)tp2DpeBzmBj)8=5vqe_=UF9qNku3s69m$Q>_TpsF%#k8Sc&hb+_n3B_SA28qA>S2X&8b9pZn6&9tqYmw?nTc&z$_%3v`6#>;3)=&c5}NUPCp zZbKfe)PWnFYo@G|H;$KA#y!FPZ6Sf5ib`!YDnJKZy&`5>Cj!G2^@1AK?!}K?!++nB zHr}^mt>;i;jb{M%a0wSA;VgGzkgUblRd!O4wm6-59hvcbB%y)GqH0TX=R1k8TC_P`_?F=ZLs^zBWJImEUg4Bv)<3q z{Dru3)~;Rj)}+X4=+_lmHl%&Zv=+yGi{T|rjp;gi#{BYPn@)hfQ$EX3KN5I^sD)k2 zid!5F1!^GX+P7VnS%S|oMAuuxw&w2Q+?{8+1{vIqXZg<@m+3N&!kU)?kEBm0{3VJj zixSVV8l6YnCS}iSqT-aFJLOrPJxlpR)2)wO**zMf;>=&y@_rq-ZM*Q6<(I_}BgaoF z(TT>MUKt!a9hBQG`ANt}K4vW)`5+~CU5_2q^-&9F>APj?`k(?5{Q5D~x&CUv>ZpA{ z@u2q<>)kgP+9|SlZ2(+y@kV8x=*jHnRCACNhbN;T3?Jo|pIC)^(kws5e>)d$b!L-E zY;Qj;r5OIXG&@AuU>#AwOsLarzAg1!!!p;4J6fuoNW$zkD5V)SM`B3%)wxqf&P<$@ zCq{c^;EdZ<@BQ#Rp}z{b2GwbOzf}E~z1%oHG;9=y!R*R$j69>dgN{lIYQEq?pZHs< zj_+WfIt_(x9wY1*VAX`y%7&2165DU7q+t`x`nP4uK-4tvm4hnR7GR32)hr{w2beZy z+u2VnbMt0=B(Jq@oFZvW9J@e(L>ltT2+&TY%Hw4rq%yrf3*lDoKAT_as}gTz4bGJr zILpB@%oz46N!RG^{^RT8rf|9VDKbk#ICl?o?K?ma!wmY`)#Q>F7Sb))Xr{?AG)R`B9I&cLn@C)ZKG~3=j|6%RM;FX2?`y7RU@|Xwsd~i3 zM)M*d2$dB6ND0;neBzBwn6JP1k)3&7_tZV&3E+Zq%_3U8b*)8m50z#*ikx~dS*d~P zSi|l9ReXNF9nPt1Hvo$DcQa>!^WocwfF=uOjGpbA8N0r#z?Io0FQhLwdD239a@v9Q z^e6qC0^99xS-qDr6MuKK<@`Ki2Z*L%fusT9lNi%@pPYiwFsn$kY&e)3;c5e4HA7=- zuMtls(XOa}#rn^eQ|Nz@NU6P-xQIq}9fA?jls?|{=Z>6LIk-z|-19;z_H`vw^)Ix% zDYaL=ll{?n5<@}EtP1Uq0>0Cp=}{8UxX|K%c?s}pu26ZdRAD6tnQv2jNy0dnX}Bt) z_X*Gx)N;Xvc;HP^hCsNllM5wW#UT{nCX-QWtC~=}2mPprc_CTFIc6sHX#Xt;b6G}W z>Q>xeBX!CS^9~kJ>C#?^6>=%xcfJnt0wj4dDs0iUb1;i<{7?6rO^r#5X9%EvMmd+U$Xt3$5kzF3-Irt#TOhxfJW}98V9Jcu^75|hthOC8Xh)ngCziWP8br*HH^ucZWzGO+o12Ywy$QkP z7r=R22FHVrNXhczpedLm&T-9*``;LW4Z05_eyr@hEvka`x7++SG6RVkt#@NI!tqvO z+xrzFrRr@p>6g+%F|l_`<0fx}WT_9pg>sgR^xO!yOM2v{#yqk3n*IF>&J)yp?PDY8 zN^kKc$wAvEu7_Z^m152i!G_k#!_J+wk|`3rT~h+Lv<@KXX5=Ew#%=e$U(jEWD$deaB5eowCSJok zC4`ggW(hv;l%pVT2k^b0XQN#H_@yBV_;|d!`U-SF|w`tWrw1Hia`-Zh?U467U=L^6a?+D%*2+q5_+~wpM<_Tc8i2t2D>`K=2u-3X{ zX4{JO)J(BaJo*EhqVmLJg>!shRFSM4F0^CqbC};7XapAH52xu3q*R9&Rr5!c$20nY zU`8cB-Ul%UX{Pcy4v|flSpd|7D1|smDaC-te1_1#LFtS=oX<(V-knE7qOF97p2XZS zDg=C(6_;ZiMv?>{g4l2hFu|L+n8%*HQ`D41P+^5Mw#HE2*iZeEm5!RV|LfsmE&-W9 zWyMRYd71VL4V7Yc)PUgW?gt`3&5eKPgMW-Wh~mon98?^WicWsGcssu01H7$6cC zL{>FD@d90O!rXy!dHWGq&+5(EP=Gf0uev|X+;0o1M2-0gQKA(AH^kg)dmIO%;BguR z*VqltpCmup(jN7Y=Vt8M_e2ghpKUuG%_i%mC*^wN`bk$wc07?E5AyYr-hj2X!W-kl zC~PxA?@>(|mBN@8F7Zl1SG+7&wz`Zx7bcrcNSNGKQ0OcbPZG`FVqsnNH{L_pAXx*) z0-7o0?~^mV!9Sq&F<5C;ad31y94LyAQ6sRPHZTgFF}`g9QhM>+R*2((@&L`gXvHjR z3*o+Ms>*%o++~!klN{7*UTC~CscBeGmS0r-NHCs|?VN6~xfW^kln^L1L^dKkbwmg> zopB0Ncv}1GSczS0%am3dBQ}$P*P}n9jVaZ1-F)MsWwFA! zZsatYG}*j#2U4xMh4pGpvJZ&h)Vpk14nC$Wb$~zJank}{>M^u|Tcdxn)g{5~K<*E? z4Vt-4MBVQ3KN`3eGy+FsX3g@iZDh9ZBN4r%P#@^6zv zBA56d_763@?j8c3DYVI9=4~QUmz6|2F>*tx2TFvYUu3+pwISByS}EPLqp;v4G4*KA zs4x*(QXU#hZ=ce&PJg~!pNiRZCqNnYNazmaB=%5#yp1yu0wUyh;WR{2$68CRujNne zO{#c$_%PKvaW=+cX5NX|iP6@09l5r$9%O4j)~iu@#g_A1pc~Y{Xm%iQuBvS3%IE*l z41kuH8naC{dK+d^pK@gmHBRL6s-abZ(c{y`vRg7um%ki2^=NFN87h|WEeusCD;rO8 znQXDs+qwL1Nm~`bXLV+6*x-dhOrcYHe~RO1AMHz0!bm1WVg6V15{8d*Os3ujQ}of= z&Zr`u+*3XQNidy8sEwl+bB;kRaG-Lm(>iVson`THG<)Jos`-#9@UusZC>odUoxScM z;Yd5S^L-qWI;20rP0J`pPG{8rE3Gm0#_%WHCZ8A zLr&m0<0gsq@Hd-^M~!l)B+f59^3}=*?qI;n4V;J>1s||e%8MW&%jj16kf)hE-wCe@ zQ_$Mj(mm86C+y4~R%8Kn)2;PYSK8>GOA1BoEyJn|9*{mv0y4trmv>n05R6U&0k;~5 zcJBgtt)WC9vdG~DDO8Vp%;jCnsrY*9td=8mc{bzn$(3#GPoC36}( zE`3BB8%)@y$!Ol0+)Xi~b<00Eti{jY>$2$;(boW$)~6FphUNr)+5P>R*0dp-?dh8{ zIeAw3WL=1z-g%1oYMWA#?B&v?0CzxyFKHeTz^gK9NAwu&AK$C=wDWPhK_42Imz&Pk za~B$fQ%n9}tcz&qKD85WQBs1$L=IGblOxK`BvShKs3+`M1W|sIkund#Dm>KUVq~|G z?de&wq5@Q)2CQCTMK+y+OCEBT*o=&dJIwx6ZeEe!24mnPjEuUAJ) zFR#brbTBvP@!9L6vd^QH_7$8LlTqz!>`ST%n-9*1L65L@R=7P0|P&jI&GUtuX zc0*lgM|OR0Tg5YqxAa6?wi|pXPlqur^GHfbgf`TR4bFz#GRH2_vH#yyi)`u+t>^`Ljdt+Qc4?~1JpPJSUdRnA31 zkhiJgky7u%gwVQ58-~IA66KNAOjk0`Q;CezltZYWaY@{9>p~A1mb)&i=!Fn z=%xU-X{1M`L*3Fc)gP(byn0h~aQz2V>h>`LHqe!h zS9iQNtM#xK^WD2l^S=_|Bv&S(JGQ+^#q(@eGLZ2fs6R~(NWS|V2ITARmlsvDUOYW< zo{-p3qh3utG&E%S{)kGTmL6ZqqYIPgk$J(B;yM~q5;xpz?WnNoPrC0oHL-Tu_0Kig zNJ3<~xFS4l!4~2A+T)EY{emlhYFxLt-t&jwx;=tnL&M0t(e21 z20Ai@${vgezDc0ISoWS&yx`Let&IL%%pA0d1lbm7N#SlT>I}zH32^k#u4In;M~EBz z1DAf!Nq3C=%N186#^~w>MSMvIxTi9_ij;OgT-kX^8LuYKaHh78OZ*EU;MLrYUh4#^ z?Ab{g2mjR|F89M-jI}Nf?6-c|%+J&6QAwEyYti-lHtR!;-?87_61rrY^iwv0viwjG zwsp3)E2!dn)xuX@hmG74WC<8Uciv-I(_$seTLgbDLwYhyYgymE=@5h?Bg&%tQboz@ zy15mfRP`vnEtNYjgxVgSCNl5CwU}-Je}q5KJKncsYCIX zmEzB{0ul$m32Ogos}0Wki_=%BicfEWlxOW)lB|_4{rEy>MG>_Uh7v`2!G*zu5&|cU z0B1!RBNqb49U;#XEalHz;h7XBIv*4Fyx*XYTx&D3lz~WW<_XuCYv<8!dmB>7Tzg`l z>O1F47|PslIznR0GoPe{5)}La^+j6p8o5eUI5N!%gq&Lv;##K=hce5Ca58F@fn;S| zFHyyDh(p1YF3iifLlcb$mRebrqqJ`8lw@<2RkXI1y7oLD^(?HYZMUh`F@ETbx2-)V zD?8V#w!4nFGVng=A6%VtRsP(%ay}ii;_dB3%BlWPKFsDne>Fg{1snTQ_}kU=rD1i5 ze4474(W2|yh{c7dn-JA0U`6hX@-=N;GxNU{nf1FUexJ}0oTH(32fdF z$NV&!(AGi~E|V2I0Qd#S`V6=G^^5LL0Z#ds?cRBV?1`aO z5j*B{Gyc6$%rS3o?ZbBa@dJsY6~T41-Gw9;RtL~pV`64oQ0N>8asnhzJDEyXRFx@w z;NURwKN{2QX3FBP8L+YT(tef@+5;@7zG^#IvSAcu!(S59Q`bNCK<2Aduq2K&mnw!V zH4l9vqbruewR+BN7COED)M3RouXKuuF{HhOvox4S6*Q4S#PE!aAo?gB<_WE$x}XpZ zcdvEyJe%cw0&h_W&uV!%drpcme6xD_uWUQo^F7k6D_h?W;*>v)zIMOkQy~Hc6v8hC zMF^+9ZN}o_qkI;!2=GsLT#=fGM_ZjrBY;h@kdOv}CHSHpdhF!8dg8=8sC~9|4A5wi z9ZH_l;H-O^US@Hnxpc(qLo`-EPu%C8E`QAq8IQVQxXM`{{nk|jQIM*=pC3Ad-vL+DZOSi zzj+bs!OL%mDBnlld$05S+ke|D_PO=y{kK9CoHf@qK%{ASWWf2D#U%wmc>Be`?(up1 zh&~23kwxEf-wcd`8Mtf~zPIt##>kA)*>!3DD`iPq{+;2DES1ulqx(y`3`l#$129)iFTW@JAkn?#)I@Tb90DEw4y zcX2X+#ZKLbj6Q;MR;iRNOsM)-p}PC}L)Luydxsy9Yzpre5^5`XaDJ#>;>4qh9FGqu z#w;sJYEJ2?tMtFNc->W=XM2kxPP`%C;rj~R;WU}44QZ}VCqY)@fd@aXd zithYyh2ns+HR&#WiIyB-nfStEDf|!UhB&gQeRm#p2C85f%OC{=R}+BO##9?}b4VPV zV>biz!U9-bLI-IOu z>&RA)TcvrSsq7?5(OS3n1$7Z=VB|(1@F$bJdC<_N<9Ife%)yQ3vHA%>laof#$o6X1 zp3OK0x?+ii=>LbYYYOhHd7H6q+qS*2ZElQ>ZQHhO+uqoA@{65pj4$8)d-1=Ts;Q}( zbE?iW_4MhUZu7&i544O17P^ULWzlS3;sC_+cuRCw2ys zkbqDfZow`?!c!YI8iDkL$U0z79$&FL4P9VCZc2Mj!@WBBnHJrx)a)U`=HQ82AFP6} z355z|(a@Vjgqo-u@?nLFmhfycy%^7Iqa#FbQz!*pKzzR0;MF1ZAig1)+&if za$wA+LW7oz-$WtRp%Kbym++TD!@tE(WpCC!e0idJ?0QvwKn% z#+BeKfT&M!aivU8cbs_QnO#tlqqL`bs(fOqXqAfzTZ$Fu1vp(CEi020GHsFO)Mz_z zaxPMJ{MS0sHFI=^TQNb`tnqxJ(NulUc~;5Q$GO|KRHB#A!l=G4+eeZ~7V4p^YRMeD zEY0XBfB_-O-gHPZo+w9xwi@jbjU~tI9qlMTJ&qcgjn}to@$yJ-e2Ry{3Q`M^sAx;Z zUX7$46{E_#p*Bv9yucmc0!~|r zrPn|no}J^kPUBp3yxJ{&956E%z$rsMUdA&!D*%^l`Bwlg+pUbb^XG7o2*qA%Ph3{} zvumjN{%SVv$XvNfKV#Td45zJeQ>UH&o^`}{=*<4gZyUj^0wt|-%0Sc=*0)5X`X*aEkiEG+CP(cNUbMVp_5ymt*aEjcjZ zw;eJe@l)y`X_dd)rKq%bLs6d+79TvCSJVqsLmS#xWTxuBGEvXVGsRPoW_)gZFr~DW z1AuBScUtOyRo^uR~ypU>Fp?W^d5545l%yI#|(weH?Q zwn(*)x7wyZ5x#*=zKy&ncOLk_m#~#tkC7g%XVpy}(|F484J>~F-`ZG_l|Z~S{-tW3 zhDvy8W)eB2)589u_iK3zD7{jMu(Y>#UR8sQ6d3y_U-B&O$6<)CB+D3s-ktT6yJQjz zb}z3Tja?`_Z{ZXv!}D!lu+QgxbJf6TbnFY$PVQ1}_d#&rFIMk<>FM*Cl%*;ilem5- zUS2=!cV=#{oPq(2Wt=qy4p1HXY4bbCi9jG*z!>c$jPNGv#4Z&VRWRyulb_#bZkS^5 zcdoZwLY?rd_@WURmfs{%O->3F7o`K+#I!uO-~M@}^Dp9V?;V~7zQI+KDizS1tHv6I z8=*adtqMy@;8nXoNybR&SA8SWbC0){ts470`q^16va!CVl{^*@@{mnqN$0HAp>jY% z*Nn8W4F+gvZWj8Gmy0Zf7&PVT%h{(A5D)#?sfvy`uq(t8ao}Tq5VRrFI7t2ySA_*G zXqCJ#8Kbk>8xDXPPHJ60#rGXe;*EX*RNC4QjA0@6#0x<7d3l?<)1#l7GO9*$mXx)E z8`@uZVsz*U$~n0wHTHKI+b&OA+(F{3YsNi_t^E<6S%-$KWYE(t=tYH$vhY#ZAksZ`5<*6Rg&A@u_JNIIl^OKoISt>zHhxGToD!xun#@F^Eihy^ zFle%j{yt2Z8=Vfl!)Y!MLV2=3bdwrCld;z8x^&=}=iij98Xz8tI1l_RQFs+~w_&V~ zXx&6h;0|d;T0mtdo-yyfei^2cy(^dYhyE4CQe3`mWW zw#XR){>eN)b`CD0ME+g%>D^am5o&P}F@_Yu0X(#a^URA6+)POQhLgD5%9tXuaGkVo zZ*NbJ5;v^uoPa-w4G-hAH17Spmmet+d4AM3f* zELC3(Em%yHHWL;MI;8M$40%P4JET}Rh@EOWS4VqpkfIC&*Dj24r}DE@Sq=r2gyU&w zq03CHhu=zSR4ASBDN5sML|n`ryb*^N>6I*2&>Ir%BFM$Aq`k=Z?TMu_(93nTq%%&i zIL#$0AAdxGhnTUoM>!e7?gl=G8ooKrwU(OLT1Gry@^M0l^ardMK_9Z@$4M<$x-BU@RNW(YxMSr?25PP;Q#-Tiivr0eqFj zSY3V57j34jv~FwJZBpOf#2FsPo?-?2FOl*TPG-mlzSPH_debB*T6adXAL{xDAPS8Y zdI&3@=~0xQr+ilNLXn)fnWn6G(X8?_hEnIuspbZ*cIfFxKQiNJ@W$>gay5Oro1GyO zR5|=J9XVu^m*VZ3ncmsJKXV$!^8Rd1|1Sy8Tc=B$Hw%(dfjud z|EFKc@{ia3QR|(6L4mP1R^|;P6PAe=0fe`Xxos=rD8vO`w|F*Q_J>d9OZ;%5_BP6L z(>O@a_7FwYc;)XN9q$*Hy&*TZvbHWegAi;G*dK7$?bC~T3r;w^2OeE9;4$WnwbKhH zC}3}^a0VDWoVD8>(l$<8fx%5rb8h(P@9^B$1p+DpiVy1p_xAPa){q{6BSmKGejoEX z+4_}fuFt*7q~Irc)6US_cktu)W*r!+d8zWY8CjAsQHuRW{e%DE6pYn}hwfyH(m172 ztI%1c5%PMsKAHQwZ$i0VV_DI=vA^&Rm{eZu{N3n9``s*^vA)1j`#w+V^1k2BFb53R z`y6Qe!&cKCl_V#Vq2&?#;N4*Cxs9UvIHPF|_Xvl!Pxh~k#ji>hA$sq%p<`}DxSk2h zq1~~lo0I6=^S&VmBci!}=lFa*lH(Jj`o;88EUp6i@b}6XeW-1l6la7>zhDH5^c$BeIEa-o*3Pn;BI%t$u!Pnl<&SB2 zmSK5MRY5z+bF5@Pnh6UrWCP9ey>8Y>b>*lZ6TH~+8Em*5r=rT}B5xZR9S4*3)2`m|+2S)fc|Nl|~Y<4Z=!q z=?!S7BhDh?9Ru=&^$--b_i0f?Bk|itWQN6n6t`q=z(ZhU1y=Peu+J#-{nR(+5$Rh+ zn&&|GLYpnXWEjDq0QoEIpa>(^J0VbxR9E0jx^$Xf2kACNZ|^8L45U5FhKEW7nRpXQ z69P0{ORXBA8yK$GcNs>y-`3Nqh$C@OT3bs^|i=enn$-~_XeGh`_m5r zfEN8if$&T7t{Z;Vg^y+Uf^>{+m@X<1J&D2qvvMDg^FvJA&_3dOCF?R*iB1+EgvWa9 z=Dtz)b?Q+wVNHcT+m}Fee(_Xc-f!jdYH^d zThnD>!=zZSe!?BnshCl13$MExr{Z!dkP>!1_BJ=Bsr1JGWneh}+S{G*sxnWt zEOKK$GM8e-0!AJHIzpE2B|wv}2|T({P1mB8OcKDZ*$&Q;tn@<0-_4t`Gp#zwU$Pl! zZC`^={1>XtTSYuac4Hl4m@oDo4D-Y|IAoVZmFN?WB$kTvcj&uSUXnD8wR3M5S12Wu zZ-U*bq_}z2=8YG*LIlx`W6vJjjAD3EAISo9=Z_quo;VbxdT7j%h;@Ne^%R;C zUy>NSeYqliyCo<)()BC!S4`~KRI%Le?KPP_HY{nPzy!%C>nn0m5JUFMn#&RmCN<3k zg%&=~@}5i4kMFr10ABsCkj@+{hg(Ij^`9qvQs(WZ)!2}M3ic?k#K7Y-wJtiD)|f8a z3k?ue#`43Wn`k*Zsx3*E&^wdq#tpuf4brtZHw&(3=cHbri4D*&WR!J8hHR z87cI03cxJ;&m@&IQYNabK33yDY2z}X!wdC>+@`nZ1?vcuDBcGK7fSsi%&y*9Hil#& zg%5coSmywpvO~`6%p56BgqKRo$#H45AWZ*9ui-y>4r1;+)w&AgYT1`OUIE;b#u?ii zXBl6GFpE)0L{FucrqzT5Zy8?L{sA+u$ed+Bjzcnz7#<2W+%Rqy_m}77B?Lw8ar7s$ zlxJZL!$#xR20{zzz|T3{6Au-J_UQ1k zd#POM-e+c!0X(MTXy%jXS9AI_$D#G$>aR;_Sj7|-;(Y03Ugk~pC0>DC(N3*EFP`9W zOBY$&3l+~2(qTIjc?aIt_~tC1+>+hHY&P7!IH^CM?gpllE!p=sFY76IzCP!0bmsHs zX3Y`nrvCmIcz7bggO&8)(CHFBQC85kc{-9s!t!xXwJeI+B55)ZFz&a9lU zGAY>z^i2m5Ofl3=9R4lmg(DqpvZG`Yv%fp1YmUcS5KzwhCRGg?^{8s|2Iku)nH^a$18765J>(^gTZy zz^HBLI_A2TLeeV8T$HGL$)@ZM(81#3aw2O3N=)AG$0a5%hemQ|``CqNPIFIDk-cc* z+gKROQr=_lFK1Rjt*ZYnrtK>f;#48y@02m3Os53ux@QN1+6shq-UgXtEii2w`XbmV zG_lrZV2`kk2Qe2enmZ)invNNWf<}utn+p=_S^?q>B(5lgl(cx?ST+dfCX`-9Aioll z2aw~~&d;ZMSR)n_i<(L=bnR@aoC~{h^FJZemjHuU5yz^KMSA6zbrhd-0HMLy$_?E$ z6gUeS+63<(a49Ko1S+SFMI;W6auQ&u=H#PCFORYWlMZX{x*W`pQP79mltdVn$v6D4 zg>iSP8O$y5C0tOtS$OZIH#ONHAJp}X4@kL_cUlpDj|c2_#B7Ntk$y#<%fRIlwKRA} zUYpSMr?5M;&7L`Ga))tU^-QUeURpOnB%6_)$3fEZd$>~XsL?PPUGnYZIQ1`vyV{J% zbYXovW~^9AS4Z!=XWkiMh#8ZRjJ2qEXB~vPdfQxd{i&v*!?@UGRVT-ifX@VPeDUP= zsCn4E;}w_$!%R3mO@M}At1JCUvo$4O&G+OFac{;{k@buzVaCQK!pM>*y8lFqQldoS zMVVFiN4IKUKEx5WKwR)mh~>=&BT=gR+}{MBxxD2ZCkRMZeq2Pc^G}j^lL!G}KO$g2 zhd~Oj90DxBfr!8;5h)qCmSKwbMG0+xdx3(_gWnbfylmVI;?F$K|0B`eV0@hj>=ns! z!`rO^M!=tTHTRb~mTc_;5;mokTnb6?Ejc31F&}+dx6?R8y`}TR)02p?^gg6*qx8wr z%X{IbfTnCK!--nY&F*HLUFphs2oi^B`g3#gffRia@x~rjUSxs488|NPiDE?j`Iaqo zDRp4p7yUDU{tSuV;!+=%a`T^A*K8aBZF3YsFV#mJXNo%~a3Txt=3l zTk>sw#9#nt;o24W7h$}6nl|fMtLaV~*@Vh*j^Wwg}LrjPU-G)sw>`9U#H@Obdl(?C}{t$n~ASr#!-XTv91YBO#?6w@KO2mhSw3 zvST^{LEU8B4LxN_3|ruT(?c(Ws^P66DM5IWQ9v ztn<5=72tw~XXKAF6|M8Po>*D1;YvHY=X9;su@yDS1lo}7Re{)xlkj}4>kCa?2IN@C z?^^ibj-o+2vzpT69?X?kO7*A;4*J`_(!r8~z&my;t~v~%ZP9r?T$3Hs5SU&WCs7j2 z9NtRNcM{1POESJ7?+u+&z;7t@r0e7jJmz*;Y_gh4hh${@O*$W1v@po)HJW{uI1Cc@ z&TUjSB?2+)gC9sKUbus6;DQw?3(wUld1u}3N+Evf&G(vJu_{N!&SUa7>Yl9OTJxSD z0j?H<{>#rFm}j{PMQg(G0{br?2UOfz1neRe%*hgKdm8}duKr!qacP6N(V1D?HW|=g zTY>sMBGZ$b+uuO%;~G-`2~D~FXK2dupCZ)dpBvI-ZT~MqJ^jI^S~rk}aNXNIfBM_x zo{nFTZ0ctQP>25#zrGUxE2mLfX5S`fcXjj6%~g^j6H`WeU5+C3<-HwJP#B9-*foge z2g9gte!IPUNb(2$AVMH!BAgoVfZPp>s|z#m-P@9!(et;P?O1;KyuZv2B0YE^;rE_& z%eEfsK(T)W@#`BhzV#WLoorHu@uY@5RH#6g(9AD$_|fPOV$hcUQ1k8oN=C}3evt_@ z_?4P4QVlIVB$7pT%b)qtR_6BkeqcKjPh~PRKTc_jB^$+^8JpluHOWtMB5kTx2N*BN zWr|S?b>Tq4#LpE{(2d`q&v)IUcUiN*USN;Qyo&1O8040;aDnGnken3+1 zCs-JSHSV9l`NS^1Yz0cdy#6N>LoHDaJBRG?f_CvCc#n>jz#xMsU8$VTr}`)$wC|9C_Jf`gn3pm=_tq` zv7s(pBwwiIYM0TCzO1{{8Qmn!z}dXqUIc#hYevm84lNPF~hx0F5%bl`=FyBErlp zi8L>X+9;I!EX7KCv=p!N#b2jbcjP?{^pNXzrbd#=2w~8ICcgK`#=!1o8Dat3^vvS0 z3Y;O>jKCESH$GUa*ja3)>cYK}y%LEfrmL~?p&N54>B5EzJz`7~%kgAHBr8Q5<+Pbe z##*bC{L3t1n~(YrWyu^2=;wZa2DlnC1LAk+N+)1elfb>jth-y*5Iu-+rlVl`uK&3C zG1&@{)Cw4D4TbCWk(Q-ao8*x8os!P7o*O{t6!R`cu>5tNVBSv~+m{+Nz+F860 z^aYiWB9}Ck*B0Fj7LH+n{6cbCatj0&Eyw}znx~gk`O;&1?1@;OxtkTpHLenpI=}1 zH2k9I7-))#C|T29OyT@SKEGrql263OktkK>sW8OYiC&?VmhvM(w3@%(eZKD>hh=@x5JO)P09gM;y4)|*QnW|`mj`t6)M`nJI-&F2DB8HMK zAme+!R75ExCbJ1%$dAUGN3qr=HJ7L~2Wgt%?9|z{+-de7Vv7r2sglO*SLR`{h?@y9 z1?kSQubV&5Dl^1ynyChRxOkXD3M0ekmOFZ?QI(Wjb0-Z#aMD(3H1#>7a%@6f)|FLQ z&&~-~B%qO$-T^ayJ;NeU_qEhA?CJLwmYZ?o} z_rAVl#VoL6R8iUS&w7vzi$h7)!e!>``xk>n^3CaaLPjojXbl(h&7*0)%fbLLh~U3 zuxbwQy*!R3G@2Snhqwm(^C)j|9NeCr6MUENo{G{yT9P68 z6mOG@VOjli&U%IGQvxbIPNaMr2SC9HQ+q?Y$^2!NmmV~e0>dKLd3SEatqXoMaaCV# z{jsyyx$gRVs7)-|TdYON;*x8#=H}yNcb<+daAl|y{NZFa8=dGajF5vWiou0k&j1W; zE^<}KVfy`n#rjO5`^f7gZPl{XgB5tR5L-Orb4tZL-pWOAgK6AZU~Si@%@B= zjcVvvB{MN6pf8DFJkalDQOH6+leg`?T_zWd%eakh+&A3XiNKG9if2$i_5t8_!i+b~ zwK%Lw!hcoJ2w{HzBtNwEM1(7tAO;}qn3l7 zYuze$@*RcW!5=8@rqpwtz>{Jn&uYY}u#y0XVdaPPCI%px?)$ziulQ?1E!{i6>&^o; zu3OBl9okZUO|xEs9*Q*&Zk>+Q^zu@39fdR$L{d#f;X(F_+ew8MSgT?8)XIS%MX{ha%@vqhxt6O}VL3#}-fv zm3M7G>c6YdsHkDtUF;rjbd3E4&|3c!O=_x<7dnJxA3e;14VP5503p>GU`qGE(3V4L zK(0%60bM3vW&#%l7u$GvBz*tc^g?jm4}?4V|$ax$Uu+toAG% zWW(--uFe{d8i&j6CH|lKDlv+ku@hgoMK-I2l&pe!+_OM0m}k;&W|B;Z5glq|*ND@Fc7ViR!& z3KSo~3(ALAH5Z?QsA46x0R5MN+^qBHAs8s0HqHh1CmRALkR$%L_#Dor8>t22+|Rnx z%P!>RKQ6u4IyImTTQF$%W;Qhv*Aw)PHsmaD{@iH2@&yH3PSEg6#5)<@N-e#ZX@05Lh&I0_x8NxA?=9` z_<({$GyB|mzXEFtd+d=E@O@z?DpvxEw$*%9n+RTPboUIC^Rpr3$#LoRW6jNus0|92 zWlIjR%hz|37d38e03ZIkB-m>Af9htC<$r+}-}t%2vb**0gx$`+27D-o0dP^_W*LE~ z>{$E9!pc@2JyTeI-vvTw?f9tVlI40Pmj#q*D5KH50v`cFK<8G|(n7LNuxEAe&h`PP zkJ3S}0E~{bq=%$2Q(s_cfiylPg*sA69{O2UM#c%n<*Ar;Z^`b_u&IerGajAcaO;4V zZ|-q{)Bi%A9RI5~7b`2%f0Cj-c>Hlkoi%+1%z&N)JRd)xH1HW-USMSb-Ly0gXe2VR zFF#~u68fkocUOrW+Uss(nGXuFiNa+-9;VCdWZLUVn&5VG-w`z=>K5Qcu-C#ppW!W$ zZL29Q{UG@saN@_{_g<@-{<=H4>-U9z{8rDY5ynSON|{9{z0O&}26T(zPxex?f3rEs zX-yw}D_)VlpQ+zFg4MU`@Ku@|?G&3Kr5q3}Zwd5`hbkBdS=k9@H!8-A{m!ert zMba{e8t4~HhzThaIyOi$LOOJ4Ua;<+W=cH7`~CDDp)2-YKy|*wxo#a7be&R9dV4g& z?u8_*0$gVQ&+g)}wQo)d{y7 zMjsP>cmvSG5jyX<3-b&aY<6)+c_;k)J#p~Uhd?EGjd7-scgrV zln_qS!h2ZIy2%zUx81(E0_MV{Ujed$AdGSw*iwWc)m%vW*8SIj@PebK?l0>8r?=TZ zXEZX{425kcLn#yW&d_+izB?7opxjWewkEd;L^(nb@)LU=?ikAAc{7KrSyG#Hm#D1v z|M;emghB@?HAZG1h?f*bj~2a?Ku;|jr?9>CZfi`*JMt!#Gx15PrDhmfTq{EslyQs_ z4h!j`vWqtSC)yFClg4OU>Q@CYsm85q8=izZ=*f?$f~i!+9-a@HAlyFFwN?5`#Fnw?B>VhF+I zm8}mvDR*VTKmpb$={=)m~ZWtns3!Ia1FAD!pWg}ku`7$>Y zCQ20{Ply4FZMYz&c7{_dk9fp?!bAJ4TkdF3m3-&5%4OS=ZXY&l<*kmid0+@ z^V%0s4wAVe#83KJ!wW?z?T@nZK%@=G&t9{S3pt|v`DNS>?l%Yq>XNjf zs#Ym6C#iL&oFwfC!6s*ZrJ|SQ8?5?E^Swbt8i+SRQVGgP zc*uW3vz=%|63C-D1~{5y#}thU>rUEJT$3W`i-XU#yG?s-u6C#-dSW|pvGwAdEnJHK zG!Yya5;S6EBhB#X&gG7A>DVI9=QhO1Jgxj%@${a*ChpYnx?1+m&~MugHNcVqz|Rq~ z&E0SyjTs2Z{FHlNYDVBl;Ld@5dg^Y>7Zv`hw z>IL(BS7sEhXgSWaHSKtpOZgVxW&7_0fkc@^8GKJ=n9y3Fh|gK`{1s%Z|E(iEQD3fO zxwsHMybKz@S3W5@S55^olAs5&ratPU<}zRJcPptad+rGA+0>zB_nx;sHRTBqW3CMn zJDmBr>fWeP5{9ODDici#_%N!zs67k~5#kz%or6sH5Ox3%muG!M>UZuLTyiN6WljEpQ;`ueGEVI1mc^6P=-!ZUNl zM!3rLg4wIiW=D>3HI<>XF~^;t=YvCBNZ|WlBCNYfPl{S>V}bil6ggnPG-=qGgw~m8 zMi}nFmV4X0U4<<7`99;{w(*;qU7jVZkYQS&&6v)RFeNqCa2+V>+m9beSt(Sn6_#H4?M6@AR~q z0^vNXtgTaKLxa=tR|vV+bWSKGshQ#IT`%f?Vr5IRUZ?Df2!13cA==$2h<`+(Gz^o? z&WgNZx`J8;0qm3Wc@FU|HQ{qhjsS*%lAC8?Nb9;43H<5`mwEzd+Ty=2kNQUcivGA) zQ0Qlo^>ys&;L;K{*M=os^%e~Az;YWyK419x@!If=#AJ07gU=dwWrq-}2NGDEl)J5* zs_ryO+xS#^$MIJmF)?qM-XMrjx!G`_5clYHZHmCm(?j&+sKM7p?)ShixIDh&6l1RC zW@WtE#uvoxWT(38*G`sSB|MDm5J9$DaW~H-jLqbbPN7!9Y`Pj{)*|KHGEMW0mI;Vr+Ze?5wz6n`_OO$;+n2MHf?&MN$(uNp4Ht5Itu61_ zXjXN6XuH)p;ktkuzqD7`=A0~T$`AC4obrt~lE~a6d=JI}u6-I!n#6jV*u<+griD+P z|5#A{rk{p~r7cwO{1*<$5+E#vF;F-;$(yBGnJ9aPM7aUN{J^W-A)ox69 zzWL_i18U3?a9`J=Te;T}g-NzQ72BeTis)rnskfDmB|e%%J}{SPFj~VBVTxWVv4t13 z8u;f5j<1890z4v$T`!`FAg_cl{Df`FV{Pg_@7+U6o~Obf)hoOjljes363t#= z8$k{|tBP1We}D#@6$0+9AC|*)WHz*?0@umSMieFLjaSM>TQxN>U{d2e6iiql`VjV8 z`3((wLWDW%Y?=-GSP<}(d)sd*EQ2m|b`?i~Lr_QSiPkQzv;`O(_2TFT%12+jm}`)R z8_FU>C|!V?P`-$Ws~-w2zoMYcU1s55v09gF|5$^I$z2C7x}+R2%Gl(ghJfl=$v7Hy z&iES2Fd*%tU3=+NLJtPeGmCxJsk!Rz_i^%4WD4H;q#fBjx5SxRA|I@93%6VxY4=-j zRXTA+B;%(ou~E!lo$8*;HYbejDo`Kj9XqnC-P@$CTTB|b?y#s=SMRkKr4J3W4>vkB z9=}}laXF}UsgTqTd`1g?yM~h;-W|>DI2T~THt}p2K)V6aN z%x=F9&YH#fe~xuMrS49}RQ^GpHV8i`mlkj+_Z|l;V#j|r`1UFP)yyJE8`5o(@{8|O ztz0Y8qt;E@Gv11pY!yxQ+RgiFl_MRO2yE(Gy(Pw?Z3X#qsohIVw6CjP4%Ur>QW{0^ zrmXaDO-y?SY^IxQ)LM5@Qfj^T{dug{pJClSy1YrG9q=>H8sqCWOg><{)f>volB|uB1=dYXD!lETM_+!1@nCD) zhBB-uI=B{WpF}``L{Pp!B?#ZVzj_C6Sbh8Ma6gu)yYIaL z#DapOAA;FdxStM73ANiLx{I3`3ihw^J|L97g)SX5&MbW&M%;XO-wzLYYXkeuc9-merDWeR|GZK(c?ip>(vJ#(@nwDqFp8ULut%2wMm#`tD;FjuF3ZR6bo5 zZ#;ZdJddr>?_=cNrfw1=iUI?tD}R}~|1MHUl=Ge3*AXUkAz13r^L4{0X`N4_Y1P=O zg{pmx%yVj!wH!j*msQq%@iAwunJRNcti%zr)iBkOPTZZ!6KQ!gp&r@7d{?LH#ZcBN zUici(ak5d!&8?)-CMf(ZXRe$`^Op7|UL-ZZ=0iyl^X)hFowk$I`ry9Ttfj5;o(s2- z$JdyiEbtNHw(9nkLeE$jBaeI~Z-?#gsB%jehoAY6!-OE2rOpM1FvLY=&;q2NOm;yv(u(| z6dO!0?GBZY(h5jU;=G|y zVGbNa<5QaYuGdsg(oDn@hx*S#jfh@MkDv`gm$yiS+Nb696CIW#pCIrE$fFH7PUWBf z6B7AyrG9eO!K{tX^&J2`aik>wFtH6S=h96UYo!AgRornlg9(okhJx@A#{d~GooE`l z2I{(A04NlTdZN}X39Jm6r*=zs(ZA-J4!Y5AG=viMxEE0t2DKEZv&bDgQfo84uHu^c zR79Sg!y{;DoXEwIhrm<&)?$R-OHSV>z%}dj)pBdIj@&|~hFt!mZ*xs~oABY9lL7A$ zCX&>FTdYS}d}koEK+GR>>hp+wLxI=@r#@Gl0X{4(@!nUaZ~!p8X8V-p{?2E+IQrW= z>!}|4VxFSA_=S4Se)ehMfXbESro!5k>0=H*EN=fQd+DKLGsrvC&@*H|q%*?sP30F; z6AM(Q7rT&52{c^22M8N0hPq-eV?YK24;pc8DX*#|lgZpo5AifyM@cAUA1aboElg(=*5 zWnKm^-7df94dwZa@UeXSBOvLJ2RXqLB_fpmPoyEpj{rr6IeX9B4~;d8tFGDO3HP~O zV;T6cii&&_nHV_ber9x^Bsz7@)gU)TR&P>|pC4_~K#k{$0{p}_q06s`?A;LuYUuOG z0g{+1R)~&(Iz)cg%MROtCg7&y5~|S<3rnpm1NbA*$dme^!}DW0;_+V$p|beqsf42t z=#J6pi9pM)mk3pNP?D&X;TTa&E5vLQ><)osO?F+d+NO-W4spt8z9Yic(A79#vH7A! z6CmQSKvPAn;S-AvHzJ;FK~K-EOMA9X6J?aS`s(;w-GB>TCPF`!aH`Z5&Qm^%|3rkB z(eGVej%j>WY9*SQA+sHC-_s`W9Vlf*u63-xJ$NYwFNm`Gy%}shJ6|M@Lg}rZmxqz- z3OZpSkeCb3j0xKy35O)SnF})YlP^?SMf@3qQcf#LlQfUGxc6GRq}4Uf*1mPG{>8vZ z+gcv99|N)^@SvPpDVhwh1&Q~YOHq+f6P25s9DolQ#wDJZ{2Z51%yDf1S<{k~^Q@mb z5ofO*sTQo!`9@a9)sjwWkg?e9x!^QneUzvUL2~@m{re0`&`ee+>n-`huQjrW2A+X& zqp+M~BKOUTfq0Yts6YQ*j>Gw_6Oo(A!U^FsB0musEhm}kWr3Lf`c_kORvD82`LAwk zWg#6z?+UyBZv;NLiqdu(8FsA;&0~&<`=w=^zGj!c!ID~T?td?>;d3K$ZD%=k78khm(N1bdCcJeR1m2~3s7M8x-wC>-GKAnG$U-6YL$;5hu!L@x z>{mcwBMDXtAfCkp3PUM8jjOzaEX;-aycy5IrsXsCeF=xvHA@dbV$BR!Pt6QT7w^B$ zP4KEionij8E&>Pu@jHbjF7jV9(}8!MAT>HEKD^xagh(qSGboFt+<2xYH6<~%CU-y- zY&O&g1$P=ra(nXyUA4>aa-wvM1Mz7IVpVB^c7r+_YbYJi;unvG;D=Ue_#cVIMue4! z#hO%ROsD!w**i}FlX;7rf_!bflv>`0^LB{9a~u~a2&+ELNFk&F;l+%&TGw$-N!PUe zNNHs7XFRntoxic~q{;(E#bBw4td6ozax;=1V@a$zv0+K9%A+%!yF3IIjS6sQt{IYk zdsi`4z?C=D9X=zyRt`Ay$_M+)r-bkq)ZdUkHqTUc4vTp_alo#+f8QOA{5scvT^)jP z`|7zlIM`lM3Q}}CCpxs)S-rt;bG^-nw}(3d+aU0F(^--hmP?8{!V(MLz9JU zKQ(LkOUzahlTtT=-pzOP+(AK6B)UQtfTDHF8F$J24EMG4?Y=(#xLMITVyF|&w#G`A z9A2HPfi3{A39ecF(uOK)yTDU}#*X-%Vx!c*ub|v!faiMSm*Dr zQT5f4d>BCn%9A0V&O9O9HHeXBlsLFpGMfya)Ox%~ZIb}`omm~HyrdAw*I(djyFD=L z9X#m2VYWV%Ojm8XIg^Y52TN$l_V=_!vNrS=gCt~AtTXcz2w(!b>-6nzVCto=LR|31TC;k z%1Z316Y{(Gu5t`pfUt45ot1;ibh}S^ zZ1^%PkBgelcI5XXZ)VsscTGo8>mLS|N24*VP*ymf!X1ay{czchQvH}&u9I5$P_fE@ z3~&|uX1KE-eMD^-u$dzS*;uX2iW8$vHJ-X#>ZAoYEjtc$Xt3Oa_|o2kk|Ea2I;_0c zC|2?^8s6Ta1HgW1VKN&)&tkqlJCxyC@y%KJ*foV+hp|39vOdA}T`l~6m94m|mAAz; zxDx#4**;QHO)oq5DCM%avWm>>BD|5D3YHrg-7(Ek}oE5QE9Jm_0~+ zGI@UJijI-4IO(12wqeJdb6%!OzD#-5v(<@)4V+@)HJXl<1NSH=Hoa7ek57BU+M6i& z=JRh;lXd#JKEv9b-g^o^|iBZQHhO z+qP}nwr$(S9?u@zw(Yt5e0k4F?*F|xU%ERhom8^Y$*QNT>iKE-mD1Ds`_;C=KAn(1 zd*S~V?QPisjpsj!7LNb5X!-xC_$=#4+mm#{_I;|m*fB%Yq)PAx1|~Xg_6pcxPt#5i zY8a3UFbU#?e|;w;U5KW3Z__>#SP#^-bw!m>NPS62mBQ=8f7~4oKcN%2NgTVDK#l*K1)D z?Il2ne(cVjE-n%iE#Shnz(v;GpEHKsRc@WiX=!)O`q8QT(do;7eSKY3Dj3uKX#BjI z-O4>3!+F=Zt9!|%v)MbHx-277j^`^U6yFlaW{%pNw z9G9cPEc)k35JR!`=|QoifxHdml;5>E z5}*YC)4KO=Jy5=d^|ke&bJI9`Z0Jk_l7Y!Qa+-dJKMyDPgY?*YAnk%%mX!$^O?f|iuBHb)E&u{Ae{4tR!uN)p( z8|~WCyhB!aFyzF9HdWLsmrMKFeDc@PIQCI>KEUc&lA?6~&faRf?JJO$ePOTqOeTQ0 zc}}pf)frs~vv@k^dGEr!7gZpUFCv)EpXpFm+U#lz&)7H#N|EU#a4tXEEZ~$2A}sMU z)NjOLQ3%EyjE%}z(5azB+MB9c@}>wChin}kE<24id@prT&WV9OsK|JK?*6e%VXLKv zf~>d(5}P00qu5mZ#9Nt&4QBvJ^=Vc%_X znFhqvw=1^@Jaq0!kKbJZChCKVk}mnsZE`+QFS`(*oqRw;2@HmX4nPG20PB#*Q*c)f zHCT#{jf&5;5*>#k_&o0;w#CZ=!@@>@3~+8-M(@fjYJv*?S^`@l5^dB>=*;*#mR(sa z_^5jy4jNX7pnGK0jiiO3q}iq^PmkTiBN0JcOKLo$&< z^cFmxHz9T*sDa<|6F0j+3OatU3r9dVz(|&I?dRApqYg1pr`OVDyM$zm6Ff*Rv*nL^ z1Kb$rQEu=>`iP@Up~KwbuQNe@Gw2OV`*7euIK57~mZB9CSG{z`a`-l1B$f~)JI$G##CJk>L^PajxWlVc1}(0W+ko`7Q8{Bss*pp zJj2P^BD?UiZ(NR;E1D-Yh$&yZIw;rBRBjLV&35~bSCGBDga^}YW0qfuBMsXC1{3w& zW$WX=J47_p$-}aQOgKU9$MCrpJh}r9dBHb_N3j7dd&FnHF~=tE`_Mc)QB>Dzn=|gz za!LK02c^mKYMYP1J7$o|xTNh2ht_*Z72nqw##57@*ft+glOE}mlJki@cljO`*rFORM8a zKgZ)jI2*xjE!URJ&~Q{yzNo6S#<3ZkEK0fXD;)W#u#McpM1ibgqJ*Zp^VKQGsa8o_ zR$b1ACzO=)38NSjM1?@+gs$h%zf^YH5p%HZoPCe9W%VTMRzxn4IrIa?ucTxbY$c=B zP_hdmaw%&jYuZ%44AAF}4|YcfyYT)=?ONJ?E^#adMzAc}EL$Dp%diLxLSUcUD|gxR zhz7s4OqrI*Ra@g-JD9j8SBfv$=>JpHHfg|o8hakL>z>dmwB=YlvW}GnN=&IWBt3Ke zm$Gs(@tCTf2aqQQD(RDMnX0@+cp@>{WttNGsh~rCM<5JWH2dPJEyfE$pjHJkYW?z) z{ZDU^m8ue#lFp{C9ukVT+Tw&a6ex^_taYTM0^WXMh^c#BS#o&N%4VVH0%S6jLo$M`AL^4`Ck%R%38P1w;s`E_EO^GzTGN* z(QptwVTN62c#~~*a*koks|EhrC2hLvydZb%L7Y8^&N0lv9v$e+(tS7hF4?Et`^N%f zObd18Q#Rf0Q0YEB2b(UF? zD_&+8?Hty8Lx`m1fx4CN{?K~oXDg)}IV7-$0wX5v+Hxzjm1{Y1ytJ(E=grmR)jArJ z7-)cMPWu&N zoZde0`&gsh-qiRW`bx*S-ahvMX{!u!g4wm+{jAhvicpLF&Timx~%Xsn`g& z@*4@{Xq%_hBGVLpvNbHrnvQp$PxJf#jVq4iFVUj0*)n^jMCk~|X@;uB;hzRmKPLyjs9xdl# z)}u%JFgvlL-|)J|D$>0HBhBvp4M;WuJL5(t8JQO!(aDR4O>Z`n+` zuD$Z^thPRpQS5ZTvbkY1jR~^ArmO#^+Eu!m+*a1G4=&+2a4`i@>mt~aNv4JZbe+yo zW!yjv1u$t22s1i8M-9Rfn9nQNV7`EJ`cRu(PjAX!k~~1d>fmKN+n6X=&uB-Q{#lW` zpRQuL=sc&8wl8!ni?H`%}1RqEo!jMTaik9onks4TYz=+`YC?^gJ6W(q6 z`ZFhY=J~sJ!G%O8;U5X*r&W|RhLpxL<2WJDne;CH!#$t$I(E+J`OEEuF5RGX@HnO# zkXM}ATnP(Q=m|gjI%O*n7aXn3YE0RoGi`OZPQNqYU0wr5W;%dKv0j4sq8)C=%7yuh z)r56)OTqTfe_C?Q7AI@@%*dOvT9EFGs&^-8c`p|HXks^c381gUp`KH_8S_1b7|wHB z`mY&86mPb7paXm@dC7Dwayz?Mf{r3K-9;f0!M+yX=tz(7$*Pf4V^=>>4Rhh&xC_so8n+u$_6*~QlL5;1jHR~ zeMy!ZLqwG?xjnfC)dgONZCMh9Mfa~kwKEDR#gGs>>waR=2ZrBwa zn;a-@ZjImm6r-6Kkb^z&Z9tdi)0e~&LV*+HS50(`u2itmw7%A|%=wy|d6*F|teGDO+9- z32+mmK_zRA!}+i0o)TZO1Hjr@~ zeO5|*A%qb9FC*a)o6Z0MZu$&M{(r?POFzjY_h(a2wm13rx{Rrvxr+q>6Dt$ze{zugt7U7y$$|8bSKxGAR?iI5-ZV30qOGwLtir&MTAZ%L70wNct5R#uz}=A zDa|LXXi?vk5(1Z48e*Spew~C|0{fcDQ-UxrE`&-%9-~Cjz}6T-*fBsw+Ve>D8cipR zCw0I-6OXrgWobOeg7BIBJpYaS4Xjs40Ckg_-Vj)M0g@v4gU#Lu{5rWpsPuYU zy1L@zo_1c#qW4u<>dzA+CR$L7evfVoET+9EOME|0%U@m#GFeJzUqUEj%T0(|tBgKF z1NBb5#xzOFj^6;EBMYtY4RH3W@C|Oji?;Y{sdu`c0LaaCw$~%jXNu~J$xVYEQSJQr z(FeYs%Udyz->cC{uHQNj7-_PdHfk^exhuDms;-*y|3Dqa@7uS>4I%9{RraL<_RYuX2WRh(TcVCE zwr0ys9F#xzH?Y6I`#qL)YW~zwv&|=84>EGqqKvgaZ;<`bQ^z&$S~>pTD)N3@!$7lB zs*Y^+Gf^WZq04lW)lGRb|Ik>9vuLiIv}V=(7h*rR;xV24r`rQuxgu&-9yu3gIip^d zm{vHWQ){>qWMI_k2IB`U97yXmaw7NE&wWPPKZab^Ql5FT(-QTu*tCsJI@+0PH${C9-6)5u0t__%Ld0wxm-b#zs>4%Bfc^4TZyJ!AJtgpM zJ0JE1+kd#s#v;bcTy$}XCETsl`Emh0Keq)Jvw9S$Z9?1|tjfD>J|oAveWS4H@`ueF z9&S7vUxbu|F&Mxf9#L*E$c?%|&pBd25wR(?Fs;vM90t_){Mf6qo;9SHfZ>|L^8kq^ zMN*hcKIhGvrtaOXyt}BffU8Z3HA;+L4Yw2Gbwez%>c;ufKS(_z->g-K=VJXmVSd zMpQY0a1UHIdj_chK?=~4I&p{>ru3pI3K!+oF%DxR%=N#L~Pur^6 znMa!K_g)1{ejcxXsj(aUSAmKDW8_6S#-NTVXAq_tvtL$^81)Lcg5^+UTklLP_c3lO zycFChemj82i|6gqGnm(7JS6Wqd}JUpW>v#06d?$rB0wM=v6-_=>_<#>L&oLWnX#l# z!na)PF~bGKJRwAtA9TbECZr~Gj&K9nPIEb8(wUN@Qn(8EyYzvV_@?&E*4aPI@4gf^ z5p0&>Tg|Ho%UjJHfs7O}Mu^xeW11oIwB?0C;`LmrAJ=c~7U5`cQRl940F zoDN;!I>}+wkmLuE5_jZVXcXDR*jH*vco~r0qoEPI+xF_DP@Av!o%JL#(bU2ZpGRHo zI-{Bc3&V!K1!EU57_vBEP>N5K#eq5>ncM>tKWjYzJ=J6A4 zxl_xz%1Z3MHI)=!?GwY~AMm0*dqir?J3UhN2aj`AKHe;v=n0(dW&P^o`zxzWI@^v_ zFp+w%ZgGIubRWb$$QKB&lNR&IIp!AOIj(+U#yhK)!uJMCiy4=*Ya8-6)_LdEA*}uG zz|-J2M1^=8?MG7}sib-fgnY(3R$ye)rYDLuPABML5PDBwU`FbIJp=*%qx8VOPJhEO z9E+U=Vd?~hK7@UWWW~RkSY>Xt>-v?Gwau!z?Hq#W5$-B2i%j~I^GWozF!;53U!0oX znbU-*gE$s_HX#;gDO2LwfNE%gRPL5ejGa04Rmb8&QJhxMkqk_!y>x%K>#Ko^OM z?{n_}C*N8A8~ymZ&Y@0?Tpf|v+3u${;(DEc6%*8uAZa6lROCLq&9*J z*UXPT^k;lIBlfohnm}q5z17$?kcu1aT%NS=S{uk)*_a!8L&AI3TDu)0&fe{p06yd$ z*9<7rXACIb-O##f8TLl5L0ZsWFsM>uS~3m+fC9wUiNnEV;8TTUcr)nwC!ehNr^gS@ z&U{?m<35l+u$&4+>4>n=xG)wvEW6bUm&NqxcT=mJwBn*X!<9?OgFAdy)^g@LaqwaB zmIwnXeeV?}ci%Zu_QiG{2s^cf@k?LxDVm3V!#Jxb_jI~;3&JJ6O1)E z31@=&?g70GmKX~ZKMMTrHUsc^RLtSW=edN;$7&Xt4{)|zt3}^E$6brR*$UtJ5&yo< z{@?i|GXv-UcKm{o<9`^A6F~icXmnMDZnz-^n5|FLA3&x40}`YQg#wA`bp&deuiq$X zERpbJ`O~R&xFKkSI$%53y5SB7pizU-#6mvs2RIVi_U5^M9WX z#iF2+i|7O<>qA95t%mR<8A;2Q?3Ssq7P?_3IXkUYGT@ zWOMaR+|pLHvoB$^^J;AW)H6H=dX$0?BilCat++FlK$fuKIrqjEfoHl?kzN14vS&ul|IVEW{>N@GD@dp_C^(!l4G01Q7*l}m|A#1y42=KVDD0e!{~hPQ z_q1ULK;D%Z0ODgXj{8HH`!9v?;=*G>+WKfTTUF^Nb3N9Pc^7 zS86;{dMqRNIb08V*G*#`x325>?xgA@`Q0L!a_V9-w?t*QP$7s-Qn0q@)Ip1WCduhS zl>*{D4WsdY*5aWh5x@-LV(!D$qY1qLZ8$$!KmNX5)y)--wA9FM_p%Z=H9=iZeym`Vz?UPN#&mq)+yAyOJ8R3_idWJT)~>qEutb3(#F zrnHp%$pNDlp2&Wp&WoE!Mv_3&4OZ_No(N{FsZXH0346>7r*IEkm7>r+d?$qI3c^LL z<>Y~UQ#Sm}+FrDA;sexyeFNE*B#do}o8YN?wJB2~DA67V+?Qc}JbPhRK7T?w+16NJ zY8bZhV?1ypLzz)sM7~+h^W)tph|(+7kLMgh1G+bi4d zr3x`1zS*(7#FOM38-g~h;oT?IACZX78D3B~foYryC=)L>p?Ujp*#?8;SW9Ay&D1?U4NtZqq$v;c(1kPBTR4=n z?fq$0+x*s3Kwb8(rz}lHrCMqf+zgfum>-t*mD1r1yt9rfJ>Mm85xz-pc8^Bhp3bq$-#92_0BP0uhd*>Jp;3Bs?b1QMbOx7oLRiZFEnRjz z9(%QD-D&O$!3aWISqD=vjLU_^gGB&gw@i4KSK_H585zAA5_KJ;%wQFEL>KlxY=Yl3 zfvmPkgQ4c{!W;!(s4@F%^>Xc}kSbDD=>?c|n9GW~oN$gHjN>c06tO!?`ltV9QPd^2 zsN=vUP=_3r&#T0?+)(3OkvYvrsaa&;^U#16HqR`rLM~aP^qd0ZLpXj>@}OZsx&(!# zh3^oL`jW96;p6ifmO|kZwruQ^)F~w^xB#0SayR5MP6P*p zZ-}DGEQ*L(6GK0#vO6?r;c0p=&zuxsjyc7vDRm=iZ$DD42uUt1Gh3d38>>oPo>sD0 z#11jOgbO`M@j+NeJZg6IQ+#}8oq6AL%hI%6`q&d71!65^0jHpU+rA1$$UdaZ3B+?; zqV~?G9|$(&MlIM!Pg)!yq8VrpGPFE3b9!Zr40S|X`=r?KSPR^psn;@-7%}>tQV*Ye zhC*}XU4KWPzJ%<==E_&;wvyGk>D{pinKc+*p6r9->6hT6WdB_RAJszjqKcaMYB@aU zQ*u_-DGI7lVqdtV{t1VaU&`y)GGu%0GXxF<#eyMQpjv;-i>T+p@xpGdt~75BxECmr zbS1Kkv5&C7qVc@H($U#VgR`xD?Mpy78SonDN4%5fkd1$1{N?2zoIqpDlG`-pazy=K zvvz_sR4;_W?*2xr&nVvK_4hGzeBfiW2f?2W9TczFKbf4!KQ*#4t^(TH|$ zJWe<4?YFv(<>CGl$pvjpM-C0$^6xH9+`uqUcFig z#lt^x3W?wQX{f&6ugmw(`D*tZ`fLwiG2QO(z2qMJ7ZIJDL3WRZdFEsK?QhrDajLU( ztiMv<_w^@!f?76W?OhsXDYub__>g@Lv`GOelhd2--tVnFy^_>bA>nstJGwP3Y(#(c ztBA9|^U_quRz8Ono;OIG{&0O^ddJB>fSbg3Us~c_Hj5>aQw6{X?;+fUq|eV|x`-iN zm?w3v9Yu(-&|36!kYye51U@jNJk+U-k-b?$fMdrOxb|im|Mx#A)kQ8RElmtfk)lR} zXm#F6D6^Cn>38TYi}~jYTpaTsMUO9Xn4Ol8!B#w2I)VKh8-6c5#bQttE3HerKhs{A zjh2ImQxI4g+OPxlxWeKaLf`Z-*=b>grW^I5eSSJ3z%oG>oKc$~;!|@f)Wuct&MiTj zmug;LT;0A(DMMO-Fkz47yBqvy*( z%9LDv`c7(6_&#+qa&(csjg{zh+Ic2Jo9kPN7pTJ6d>L_yXcvAhx_pS})jFyb=Hl6O z!ubOp?BG`4Roa?|Be_B95tXPj$-gR0+;GJi2j>sVjALP^QADO(tq-pq%_FgCjV+lg zqdFlc+uPAyC_ls^!=wC5R6?P`tZmr&{NVM}D9*B5p8ocZ@;%^vVvhTgK-t=fpmxS` zD$-jq@;Ddw70$9siSRJd-Y2bwW7|fG-F46{G5>t+hI89S;#myn!hH0Fws8Ks6Jb`X z0?}Ugty(9*AK-5Vv*Arf%|K+3u{7Pl)Zm7RH)FkhfDNLwTMQLl=_V&76p9HIy9v%= z1UERF+J2*%n=u(nw2^0X^9l)BkOEp52oO%3OwQ3)jVhjr_gu3=RVAS@d)0V4qx=9Q z77LOsh3VgZpS`0`e#;VLcNwKoPUwBZK^m{NZW!HC@JbS4OVa$&FTzvFF|>;G*GknV zDrYfc5HDcb-<*TcB3v?|%p!Fg+-gdi-D&Gpd)Qeuitai|qwu|8ZxPNxoWS#5{)ngT zJxu}wreAhYTLxhQ+ax?_*hGdDMt+p~0vh#3At?M1mBhVtm$(Eol)NuoKxI$>eWzyh z5fBoKfrbQZ3wtAtc9dFdeP&A?5_TZV8x}RoHn_XQ6<%n-sme^CMx5_#@zDL}PX)KD z7MvGqXx%-Iy_-kF_dqVd=_4O}(>g zn$c>ng>lC$3d=*OCJ=oC4~V|W6Q)NzOG z=Q7Z|Xmo&|^~MJ`B_~`(;t-6JfU_q>o~&i!^=-r2Ih)ew5k<=${TSzrGD18`JGH$O zr%p>?K}#15K9LbAFZs^avN0(|D1f(%`Oci;(rYiykQxBz_zb zuH8eIqTlC(0)tFuEAA92o7|33m0ohssICug_fYw|ViW`_cWnOXAYo~Mp&A6q{Paf& zibn@FAurNv*wGjx?@G}3%Q0xp_m_IzyK$_Qfz)}qS!gx_;kSnxHW8LVShpKWiY(6x zsGUGcva#+}MmLs)!A*n8bq02OXa|>7UFONy6A_FZ$vj+#E&C8o6Pq20W%zEw*VmX&T3*3UrYQg^Pqt#8(4{v=yeg7lm;|7nDow zB>b@iMQAr1Ox9&VlO>Yb(Mt2B^n)b@-}pn7^5|g43(V4Tj^~mERHm)FaRAGku@r(YM0U(izD;*%#&)hZ(zT^g z{g%T+iZ;TO+Nw+b^r?tYvpV-J!Ora~DPG@iSb;81vNHeUf$br*Rjo?y7#_CqUk%h& zn)jx0uaHH@c%Hl;5&KB9W{aEZTLyAM_OhJom{Q*FD7}BS<#dbWhHDK48l?kGB-|LL zj=Zgw`lt#M3=zFn$f8A|v}ffhSTfo8*nw)sX*P`X!Z{zKTY73wZo`d%DO2rETanv> zQ~7VE5}h#!Uiv_G@Eu15iAyi3NsM6{OP5Scs02cn5~sd}PJ}wo4)K1q|TS7-t2Iw?$AM!!TWYx5h(ElRj2uBN{m_4Z+|jl zR5+$#O_UD&l00J;mtWaBcAkiTJXT8=;6;tw}LLb7qFt;rh>H#dzl2!GBQF zy`rsvb#b(P7&ikM)Oe!PErIrQUrBu=7CHr-)sA}+U>ROlo zJi+U9m5g}Y?e)Avo*PF-5zo*XRXoIg7mli(=%$vdYrn{ z;N@kHRyDSiIBt4#6JNz5T@TsT50zK7(Q+;02hbGlOBZKCvv*0>T`!VVbFWRHC5bj4 z#DWs@QuWw_W14MV2q1$q#*CV#yf>LxdUZ~qAs2_0*MRVh^WF3wrU)#r5SXVvj*Yji z_)$$b4rZ_z4LYt8o|b>7(#~Hkg|jlP-x755?K3I*;?Oam7G}AL#}748t5e0;3%++a zik<5#k}MCk)LlSVoM(`+C%B5$jX&H34i@0c&N-gdDSBwn9a)~$A)H-q)Kk;EUd7Y; zk*%(LKOjL;{wibKis>5$EbP{pkMADOQjvV$dt_h8#fpr7D_isUrxT%URpz-2N`L)l_dWoRo|rrG4m)S}DE@pLPrO0G7kR}M?l9knQPN7$ zuCBAobWErikzR_-$<-Heg)!S_EO;lTa+S-{^%(0^AIa6NLPJEmEEg&y8rH(!t;LF8h}GTIqo6%5#2&YWw|q`Cj}5i0y(U`%j99>3{YK{J;KWGBa}i zM_Zl0I8#Ym|HT>^EcVgBu;{5)QP#YXs(O%}*s;M^k~+fap`7C6$j`Uyfe6B(Garam zS0$baFmNy4-3Ca9?}zbubHU1&+x1^EyPL*lu=4ouLh=ZPH@eH?tOviO(F-p>-5-0+ zv6jFe>%=_w>T6y(z$LyzKh@cGrW<*elZq@3a2~<9rTQB1?Gx^|s7v!`eUkA*tA~FJ z;pWaFAN63R<3o0s^L6}rKL;<-J7c{-iW*>@^E44!~ zr*oSMTs&}<8`4Uu%7(iK zgbZt?Eg_VnON0$8BPH2)Q=;!7Rdi*YUo(%RPDSj}S+7+k#BEsm{v#@C#nUX*qVdVZ zzEaGN;6){hvfRQFWt&qJxUpPGhV?;6Ygt}9*7qlC2#65xzM(-n3A zZkwJcA5cfOp>EIEt-_hl?X+JEqb!Dx;n$WRX)0e!u2<7q+AbW=G;D_Oi{H332RZQjoz0U&CPP# zfK|9k>nuo$391Bt%5VOk3B0I~vuCPj91d~)5{7zgH3)j%nog|<7Y~`kwbk+o6-k+| zUUsXhOcRuu*ryk5tKV~`unzJIicWhR6GglyYdu#r zB~wcxX%2gZJeS29`f#lA$~q`sUJ)DrZXjrrPPWnF;qyF3v>c&ow6QpsJ0lSGRLniC z2!=Dtj7snydlVtcwV=P};v`&U=!7MtZD9m3j3Hy|oH!@?@7T2ZC3rPXn7W>R(^uIJ z8h&8f6ou;?MXsnnz%?47?OJ)a!aWP(^9^8w}Q)f^{!N456uKZUv5+( z7bOGjA}L24XFdh8aQTMDPV6DSN|ub@Is@P}dr&@DX&U5Sg-8Rt zznng>OL}EW`;#c`tID3R;4Em@8ML;-=q=-*Z?a}r*{wrOkpy}xsdwmk%jPTNKpl)8 zwY&`JFboyc#2KN~)~S!V`+|dyxn9r|Ht_Q>5Qa=z2%K1aC*76L;%aD8FURgb364v$ zL$Y#zr-do4hTg0*TBYZ?{&{NG8L}1Q^bqQ1LtM>ds7Aym zPuk@BPm&KC0drJq)JkEJooJnFmwR2G&eAdt%4`~Sm`v_mKBD#clNybD9+1P-P z@K$UsN*#WK(XRE!=xWUomhoxcd-P)_IgR=O~& zye0QeU*i7LBz_@eC}_WvutXm8QA&4q)}6u^GzH4pvoTf4B z#p}k62b;Dt&K8f_h$4Ie zRiQYyv8<(BQ^SIWLB2p!a*Z-ghLch52!1)IAvtdI1ta?~I6ANlZ@C=Ma&}V?1v^mM ziJjDe7CQji9KInpX$5ZgvjWd(vI|rOdBtlST`PY7bX^D8A&8YS3vD3d`@1-rm!yEH zyv36PGh!nxqBV<>d7m@X#D9wPLa?30+<}pIV4-&OG?mWWRIB7 zuWJ4X*P>6ArRt^9&5O@oG)w?r>;!Q|bf(I20bo+u2@TX(tg}~Iv$(`Vgw*7^L1K4d z`@OJ=PWS5hf7vrQP@kIhw5X3l_F{tJep;<>;%nV3w zEHQ-YN$XK1={xYVACo6A>m&dvu1dtCTcwBx8@AfN#z4=FRQA7hK7&BdN|b;ttfrE( zkCXwj+yEIQsZ2?#?WG-NXS3!p{;$Y%w#<}@Lkza2)ODrKr`7VtFs>WZj#0KD8K7L2 z+9B86-eb8gLav%AOgyDCbnZTJ+}kN~#p)XIJnJbl-0E}3#;@l?P+4aj(YCCMX9X9j z>F&_>{1N$ZBg-sRH?Of&7P$3HNA9t0C5`^2@3jS9rCpyU?}F5_{{Dvrsb#OJ=1kXK z(xm7>Kap_hfvw%u?H>#A48iLrO$D% z3n-&f+d?sB@^Ntdxb)=`florvy{ELSmKg&fJ%MY;Hq7$LARqd~v^=@OHkLYE18FEK zVYA6xJEH$ajG^8+EAIM-e=#?1-nk#zfhagnx+j^zNw;NgLsTg!pUF!+U{8v7H6$i9 zqmLW81+58QN_;8>R|R-TuA?Khq^mFFRhU^W0XBiTG1yXDT!U%`rioH<}&X!Ca2!R6qT8|A2jr?+bECCSu z70nlZ(#w8b@bmlrT$bYt&NcmxRD$H?r9YuYk|58y{odfEs0{@&dYG}yln45|!smB~ z!(%pzi*rlnYX!#T|0(qL{R8WOMd>7r*mLSHjDls-a$ni+?D zDf=WjIs`YKP>!&m#oScJvW`h#0ZER5}-495VIjI70@opBOS)lnA`n$Q08W;!I1~S9ZhlpDOf)7TzMf$z@ zZ1on1`fC2uK45kF>HG-#u1ZOh92c26KQ6(Z%)O)flaacZ9F4XUFx+_t@f5dIa~DSm zXZg>48;+ZrFis1rk+bQ3vsyII)2}>rsSXiK1<|Mt) zv*u^XG-4GHOIsl(tja_W;RS04lFDtExy;(s0+rq>qU}9I`9NwqvA~C42 z!4~iJvojXj=CqcSl*iVECIX(3Y%>hiiHqdK)B2r}%Y}73d_WxRu`nOV=B9pAx zp)NN;F^oX>rb?OVs>i|gmMcB6;+>o$$O2$(-*o*5@cF1*vYsJ{nz>DzYy~hQe($=j z+M3V2u3E3y@9C!6xjeO=s+!g_bc^^p7Ga!7R3@ir9Y(VEvS+WLu(CwZ>3%ocsTpkQ z{I)uz%@6*Jcc0&+NrGxsU@r^6g2ZnI^lSu1pomf3Zvvpt6u>VE2JkdmCk>F`AlzXL z!~pgdE(wq{euMrie#aL2>&L85{UJ~MxkslNIH$-`nv5R0mN{pKlNolSd42g)IWmxM z56^v|k;deI#Mf8!w|Vv{1Sk2tn+wlvGE>Q_P*H^i=`}BX9)$q#fRPt#%H`WacVhV{f9JCa5 zCW|qxe)npwQ{1Du1goSfp|ezDw|Kh-1+bKSXT;0N-D4#3J_Sl3m(_kRuSUjsTkSW$ep4 zjRy53-NO)YOuCOeS$E4^B_#=YV7>|(yEae-SbXctG}9kg$lDqAm&{FepX!G;H+n#C zsvlO!id8Rk>dTw71>5R6=j8#)ZduJ0?ksnOQwgaCoTp~(5svh#!&W~jQm3DgtOCMQ_9M0dY3Pvh5 zbCWucSh0&>{7_Xcd`qrhFy5Rmll79Ns^u}*c8HFGb)tZ5N-&rfbuXZMTQ?}Xu&rlQ zfdx6HV3$`al~yj-ZU72W*1>iJcHQYcB7Nw4yfjslO#!}bI(bpb(tHPauWshve4c3L z-hQ51WRUVunKBwgyL8KYHTPu87oaFPCZ+Y}O~2R$a%L-n$wRY$*AwcL_RPe>zlzFO z?em$<5!?%z^=mEN&4Z+-#WtM&UE7rA$W{awg$)kb?*yw7S~JgP!8s0o=}(1$T-GP6 zB?w_PPD9_g4~ihNP9xk_Dl}{y?DJmlcEh!qOHtmSH3VLrc~wv&GdjQu{v+=Jh)Ui9)ESrXp8YBzF-TNLP@9Z)?2xqLcxevh5L^N*c) zMQsAl)L5NTnf_$-?jC=D8TfbpQ0mo{liOT%pq<>TIN1WUfd)B$FH4QryL$RA7}WZ# z56!kYB_dIJ{~yNAsY$eGThe9Qwr$(CZQHhO+qP}&vTfHc+tvGaKXiA*i5qvuiuo{q z!OHRF$aE~&461Y6MlSIP%7E&oTQv}-6AV+?Vl}7=D@_J>Q3Xz{?(Q2n#PssW=1LmA z?DLjV_;eJGw&^^JqJqe9n(Q^yyh}r~zKIMIY8)Pc=ShWfs^TkeZ+yav z-q{S*naTUhQ|g3FU7*L9{n=I_PPaqx*ETIAne*YS% zRsHRtO&3Qd07`k|tcV{*I~8I+SyK0?qQ{%knd?aK)sgeZ3o&dL`0;j*wKdWK|D{ws zN$V=bjTJjhOiGwnN)4ZS>Zo0GD|}UEH!q~%w;C|dRWyxVbky_nk`{KDH=u~oQuIQf zLdPbZ0vS8Gc0{ULcuE98aZVPIhfb^KL1I7#8a6*&5+dnyVTMX~lTzc^XO?xfr9ox`zE-;2iYWu z(n@KQ-Y*!KYaE>HZ8zzP?g7FnNNkkS%3yq5pZ)1_UsNYg(bnW>>xp`~<%^~i7tIyZ zg!^(%-c;~nh2)Fs=SCpeNYo;O33QHbBY%{Fb3xTz$$+*g+83FfS)MYfNRDxdqG!gj zV{tXCv(NDsky)W%NPv)$>a`sF9?o-Tjq{(q$6BQbn-$+NTidJM}!zrNAd4WaJ3d`2PNH z32?<|+z*4ZnEYHZMG>QTcWM@p$-}x|2TZg{05gzklLFBx47+RngPjhu+mt_@tb0y} zTVakMQ@j;dgsPo(Q}%Da=0!`C9J}pi&GLjS!jV>2LtYYK=>(MhcuB0%2{n4)lvxE? z4(j=QOeke`p~q$_*g0qc->vdu;U`^ZBDZEy)W6_nUj&8!NrABbPk{;xBisLD4*$Oj zWE5x0j->s*u0BKC%`k#2+Fk>(iC7cN2clv2A5n2zYjB>x^2B-gtURoiWb5|U+7UyW zj~g*-jC!sk@_svMhwk@rcmH;HeU4`PKNd55zh30G0R53s@6(<>4fFfQhl8n;aqwBz zl7CF4bMfq`w-qfPBhcS*c7=Pk)T1X|>5yVy$1zqO^=F{_E99rBQ|qvtGy^6&UmoHB z4|fK6?afjr1d`*t)8p%X_*J5Jp7?)5m8*YH1(q-rU>X_SAyF00!UxPP6Wme}9j#BC zi1UDm$T6!Z-+X%=wH>cLNI-4D952!tk91x+-Z}7eTz+_p1_x2zG3)>l>VZbXRD3rQ zNk&?6JrHFIU2FdyuVxG}GHIR!5Z%AU10<>Lnhi(|kz9o&grH?e@ioCRP6bJ#2u^TX zxF~;(f>s2Dg}!J;J|z+&5+Xg)BTlMZfE9b7+zb=E7Td!rvd&B|Q`o-{hKZQq55;ZR zTMdC!%2EOk|h*hIixj)XYdEhCa0##@n=$=KA_6qatbl6f-fW}z4~_;ldq z{n$!YDpbgtj5T*~f@WlL8Y&tpp~#qtS|7A?anoOGyu6THaj~{zu(lL4<^P+Ey`y6p4S3*QJNt9VeLtG(9vYse~LtBT#H_a`Z zOe-GXi>=D9Yb;v=k|Vhpi)08}8QBvJqlh?4c-mBY%n==!M>VdU01A`vS9D|E=G=&J zju=CW)NTh21Gku=_%m%Y#T(QC`H3DH0>%)>B+p|jP+~TZ(u}7j)Frff4&qKCSE;=g zM3Xwuogf=~(SICF5th^r`A^&oN#WJHEZS7xj>+J%LW3QcUXg`?0hl!zRj0^_I9@>@ zbfU|@+_8ufg&61lb7-_LqJO3B*Np&_i5p5WG6vJEl(fuUjDhv5ssdOhSbL_QNUfs} zxNY>M28$iMR$|zVYP9DY7}0JpZ*-<zMLX zah0h^s93YvoUkhcJs18MakmpTt0=W8{OyF*!cZ1^Ch8$D|iao}F{ffPTacCPP z1P-vUkH)oFE=e6|-0z(%6V#TedZr_p;FK5R9bt-7nBWYLGy!hHEfg9^pj{U00j)ut z&ww?n`?H+}Qh57>2DuN%Z@(GKl981OX5`H*#RS*{h}0fwHm=uXVYerpHeJ_iGN>Ye zof)i5fzH_+@H`FJ6NN^=&_LZm>AWwIg&bYhwht3Bic;DfIsqUEe+sulv+^<=Vwyz+9=q0K7Py4sI z6&TW<(9xW%@A0;F-iNdFpImdfF;8o7E$PV^s$Q4sV)Kg6BoY%?u3Wt3>*ICElf%*F zW+(V&4P7f%Eq0=mg6ZL7R3>1p=_Q?=_f!bkIYGH=1FcvU2KJ;g4r_P>^W&B1amUa$ zF#Q5?ROM;d_wlx^-2}R8D=tlwKt~We+Z00@0LKN41BFiYPZLWrFpdj%P>#S0a@99n zL#LH@$WXGd*6J|=cr+V%~*tLul6j=ayQ7x8qDeG zyNX_6lQO+h2Zuq_W1EoXZXVSXExQ#UW#D z1RA7iS@tm#!WM^ch_oD-DFAnwAZb^_9xh3BcBKoLRY_HxX=R9wS(RQeSpz0a>P=Eg)nlTg8V-T6KopUMn(2Qf3pEU#c;1t2pYwsoFM^M?0i_JK&=1 zarPA+*FJT>=5sU~*N#inWIp4f^O5=eHqNoRYp9>oCTaIYy+udYTLrtG3%+(?i-=VT zxC8xnIj+$QQP&4*wkn0}3kr{p#$CavXr^=ByyuTQVlE3+y29=#qpgkAm$4ghwDw(H zgvQ#8qwRgwgH+JDu&9|et9*5U?;GYVG~w}?SctHvwGE-bb2AX9*nv`=&qZyZUuL+- z=rJ?mXo<3*HM&s?LAv~*>^B)twqsN20C2;LM+>ayhhm}DH&iZ!yt!mfWL0}4vd37U zreoS-&jr;HTW>@AZmZNfjG1@LxBXS8bnxx1@U?3~%+6PDv?(pkOFec7A}y_RRL3V} zsQwu4wT@Jgf*%Qhbc8RUDQy&sc1mPOH1u?~tH-~5=ewz#o|4STABy3z#>eIdR9oFX z8J#3$Rvu21;%vIPCpusi!rp~j5;s~*^e;_+)Nl-~q(dJ~xO6&P8yRj}OgQu8@5N24 zR9152TF_oODi%4itY!T<55L^sFQtuh-bt4(fn;M3K#Fs!kyX#aFSB(y+XS9n3gwa_ zYVx|Wl33L}2vyF|sFR@S0io|bb~w;l&NRO92Jf4^s37@OJ$}+D$UeORpy*(diUUg%i#@=8pb$ ztc{ABY@wCCD>Wfo$5YG}$w8eH**k&{TKu9Ellgv5TjPfNLR`WEQ-Zxc8}IGx=Asa~ z!U9a_Z853bgLco1qqX5mhZ*e@go&H?f(^reM{o>ccuT14p!~&r5^42=#gT_(bQsga zR!dUP8u#@lY@wN@+=nSr+W^dckU{yEJ+6(IUm@=BIKq1)jA1}pIc|HPEQUDu<>E;x zs_g<PihX8GYX zFKpP<@Wu+cD1`~5j*{HFUWuaXPO7nYm_WauXy;7vJLv1=8QP40F|k5#PL)_Fxm5pN z_XHlk0p)qmFbm{KC`#`|hFc8;Q_tbAnhN+A1jn*Jd-45A1JN_fWpUJU@|%bWo^d&w z#_Q~crCz_0QU&scB@CA$Z}9>iLTOU8qzsd$9hb7ce1OJ^hr51M&*GQiObnny{=}2|HctNawZt&t_!nUB(d=%a#gY+c<-17zmlh3`k4pdFFH$>#d*9f0u6s3Ndr4Ckh-a$O8ul8Vo#ph24INZQQTmCZfT7r4&i$NH(Myk4{9}U9G|M1VF5xFNOMtPngHe9Z zz;IZ)l#A9MsPG&Xh<*RC^5Nfa=ME-mynf<)f$aH@^L%cs{IE##lVWdNp;&MJ%xT}2 z%ugeh+u+P^yq~#h*i-Z~)j9fPC7q6ZAYp}v=fB_s3(Z!nA2$taKJ)^~pQ6FwSzPnw7dw$%j`#bqt{lx{EmXD_?IsTI?_?}UeIITicg5DfSZj;J) zf}Q>ZsdBpaaK>oF3}O8!==vz;elO=Z`OTFSZI#51>aqU1vMC`@bRB_HyT|5!?LF}2yj znGBp2e*42I|F?7u;>N5ye<$1{^ta{7D3D8-T{*Z~`yPh-&+Z$KRx`VuI*)<)sC%Bc z@k{R6LWZw-_aUGxeP8p|^OB)Aecz*tE!EEji{uG$>LZD2&yHnMQC~P%FG*!AG6Idn zFE}`4vg?1EP5ghMQ2(vjlZ~0_KP{AB<4ndKb=~jk9~e6|;Jt!cU|@Ea<0l9QpidJD zBnUGM^x!ZFrV0D;tBxKLNwt|O^Om#hr^zOc8eOZRkizxjjU1e%Kc=VW@0Rk8P;#A2 zA568QL$Z$u;su4U`Q8o66XNyx@PEClLb!*`k@w{NJe<5Ttai0FGJQ;9Zo#TCDEOlZ z0U=ZaN(Ag7_4Vh+X<45eqWTYAocE4H9`wDB81KphdUqy#5{pnP!3TL1b}vikIoo&8 zckY!=gY>r?iJq$hVIYzts&q%}eO90^uoEZ357{Y`QItZsjagd!?TDm4Av`h z191Qn({3yCDNlP0Ae|o=jcxS~il;skt0o97L#e-2xZ@E!(QB&3e&6NQBXqR;OS{9) zq}4$>6=HlX_U!}uvc%5NZr*==xTqYo5|PnEDt={b?v#%j!1plcr-&4kYIn+ENw9Gi zY?3S=?9Fr8zY{NV1Z>LE3JY1mYE0lo^K>`LfCZ8S+zJ?5c5eXFVTd%$@>vINOxf%vlDIX~t|lYaBbd|D zju-&`;uVO{MZr~w`UtcGgvbb()50of+>y*AQQStduJXs$B^8X2y(Emj|J!3MCI8n! zqcii!Q3W8w1dX$o9}Xc@_LP+822hk=1PhHrKPSxM$E0MNR03YW#n9_0DD47QGLf%Q z1V({4AfoNAUW6BbF>^cwWX>xPiV@i6WWH&IShjzKG>2Vw33v`w;MH3kVi^F^<(jU{ zG@uZAgt}F!DGj~wZ*&U{HF4&uj}6|V?(X^vh*O(G;G(%-kw3oBC27@8Zk_{5+xs^) z&w=2N-2PW{Z#PUQ7wJq%>SaJ2g_oO{GmSV8_-7GkSpK-~0*)~EP2?#Ckg>^J#{GcY zfa%qZ_4(w?_A>R`+KgyJ?y3GYjMDc}rvYSL_X*z*WG^@+@`&TJ> zn{$K9{7C(t{*P;bA3uHt^8;g$)bFdnO!64N328@hgu1C9AV6_?{?Gg0_C4S4>Kuc0 z{|4#D(n{ILWoHVALM|DzTZW1 z@6Ri-7)BA!|3-);^U(Tj-s<<4gEAc0FRU`z($1rqj!{7(ZibOkB`{jD(t^o0fc@07 z)hV$(w48LMmJ%=RmRXxz+Liw$rgDNo_{YVDJ_EW3J)*n-H#h@f-2CvMFJDud&ge1cseAnOOtAI*;n1Z{!>RZlWhSSJY4w(v>v>=8VY7SC=Ixb0^5@$0FIjh{7}SF2EIXz z3V3%Y2yv0SDC>I;XFmV~)t)h&18MQDPpSWWYF;deCE*S08Byj>o)JHkiF{+pz)vd~ zxnYym{36ER^{znMLqArsz}Ch2xekpaM^99;5==8%Y1uYLIl)lRMwV+%<$u<=t3W=y zQ5WVo0T!%P1MdiFzVgkbz&=vGcG}1}zu2oxiH`SMY<-aY_N4_#$)ywcHj19#wwBG$ zTLW!yPNzG5hTJQ&?L0ZY{HI3Wb2Gdqc*>i<1aT(5lv3SNIR_>7{iA0R73jE(IFP&~ zSiqlMaCdvkI4B*^3fZ9?6Yy(#HTdY`iL^Bu8yV~WT07*7z&^!o0!+BKXFnA`@oQ|a zRo*l*zF2ZlXAF0@J{S;Xl;0X^;Ul(fK@MkLu~xO+cRnz3JZ@{_d9e7*f=aiGUw_+$ z{jS^~)`KPmtU67(M}(5BYc}n~_Q~Gn!qoOE0(XjZx*QB)u7mmiiDGzX0alTAAtj7?}em1T*us z6YNbCvKzUc?g-!rG9DqHOXqkXhdGAuvwa@v)j`0h$hm}=(sZyfuof`9yLgJ*9x_+r zHT&*%l-B$gkZ;yERvQ>AXl?=Ab+!udt4pB0>U{nli+J)}GM)EP!t>GUkS-k0Ge=Es zpU!3@uoxVi7K#$9@>r~SGVOT|X*i$HsyjEzKkOxMOIPYj8H??)sj5`x8_uL2oOKDH z9+Y($B%TMW$#b?q;>`{xeSeR86ewR-6Aj1Fn}5y{b41K_dF|4YRTYlTrB{5Hk?c;M zA-T(o9^8u(ugY}~9=~7GxQ^a~|4JDid}oCbobhQ4Kg^qBp{*<(mT4x@(Y+WR2b0Ro zd*QAJZHTkUs;L|Ya_^){B*j&p0=VR2)hB}#!}sep(WPZ)0VlYS3MU8%L25w-hE;I~ zSSw;WwiO+MP@DI`tlokD4OQu1rou-QI-Wnx886(2`e$L?`bl0|Bm*?NR=ixvox}x= zQXrr&y)d=JCq@oIp3bL-`tGYv-`%-@8rLy+|MH_!0N4(;3+>VSfT~48AYhIyF(9zk zIyS}Yfw4}o`q<=vOPvt9e(K05E3>ZF)6^-t1SYhgMAPGEdh>+?8&*L8y>u~9C_W{k zry_#|jbj<#i&eRZ-DV z8MYj0P#*_hM%6}83j=bwT4&)GiK;IF61ejPVRnR-jUiUy+H^XDv+W#i^Mv`~Ga6?y z*)yG4+CVFa?5nl}1yrTJ8Sv|5lR5$$jg08^GN*PWUSUw1ZQ=r~p?a>qP;m~DTvU|0 zxi-nn78P(wZb`K_xQvglU3}vqq&di?OD)e=OgS?BJ-Mi<`peva6S@(+v_MihZg_B6^@u zmN7M1vBcCY$gGskq!oQM&f#uQZAOm2*WlxVHu}|Do;6w?l<*pQe5BwhwqbVmGc+ugN{uu;MYC*E(T z6rJDPOCLkJEsURdy7J6mQYWiYE;H+IQ95MFi@Y<9mhd71j>QS#;;?h_VtuAe;CNQl zej6L2ts~PzIdOtOiFsX-rKATP9Xd>hF(pCd^kJqm${ZhVH@&{&zF9qogDr?ye^WPI z!PW$Fm*s*;=~{UQx8NEtCb^Tl?0dkM&-`rteqs+MjB1XQ|^9{1Gy{Pd_ z;yrT7dfL&ZYvozC!~T2 zjiW$EOWot}Ij{C1aZ&!YWTzU(W+(EHN>}lz)hn1mSj0^(ZT+Eom1vuK!*NGYMgh0J zmDSifj^yl_1Cn5roJ508F>9>$l5$2@PGGPsE(>usmU!}BX+kTqvPF*V`fW=^a(IDZ zc)JVES5M1W66ROL2xMPAeRhC>av3jb#v&XH9K!i%kgm zJ00QN@2MqQD&EyR*u%U$rdfliUn!}vS3W&j%UWor%_Kd^R8DwdD=fQE6b9WD8Q?^+ zvX+)Z9&Cdb3qOE4VAUVJrm`X7|t#Vqt>Zy2lWVqeHE1Q zP$nG&VXw95Uu+&C5c~2u7>oPwW1a3Hq&1gh5NatZA6lr$1*YIa|v$DgXsef&{j?!3yng{ip(tufby z=dqzm{j234CFu4FI0XV42AU z+iPa`jGq1%Sg_aO@jppWPKN(!0t+LAh!zYMf0Ne zw3+91@ry4dc^or>$=yg=4qngx5K$r#btqjd_sdtgr0<{m`}Hw3`mU^%1aAMYtmRqy z2>!A}o|2ZaQ#k^#|KE%A$9T08+&OaU!`avO3zE=)e$QBciqeZNW$~U~3?m2BTMgfu zKCRz=uK%R}iFxkeZNk}|&ezWX<~{A{*;A+Ar^Xoy&b#~f%N)PI@MSA^(XNnA4|~v; zOq2gyK9eRQy4zl~AV;*gLUhoQzhevj`=>slqsY0m3)cYR77h|Mx~;3vnpKSzN@t95JezQlh6WL$A6O4%55uvgpnTO zXbVU!DcN_VwHgrBCFa9|DMpvjwHQ`K0n8#ilGUkRA^(!?z4Kz_%q<(jeWlez? z&8IPTgziMNq7`WcOLE^&j@VUtG{);UY67cZWkS=uET~3oOTr>Mi~c3p;H+~#3;wb3 z3s?@M7oKm7^dwm6KURG5QoJKJnoYV>TC5Gk1Kpz<e=!<7qzBw35a$7N5b?x{tY3-yn7h;-4)uTL1pBCP4w@^bi!X!H zKhq$)Z+^r1p-uI*9r~Z6!qMo82_Si_3DK@a5_l|k_O=TW9!Nev-UA1R)Z$wEP6I%H!@-$x*!;@AW2{qbN`YHpDmvuS< zNhB8M#uazku-xa6iUy`9jKjHRBqE_DW z8IhbsmlKCN2lkdfvMlS(o={dmWTm;bz>(?OpN*B8D?yf5fdMpIk_?;^;i9}t$Cscubr5xh6$aVs$yPomo@ zkh?E-B1!R??O9jJ7-eYdB+iqsE4Fzpz3`I+=S1k=gnUBNJhn_z1Z%Zz{c6Fd+mPS` zi~iD3a-)?yz%a~^6{r=qe2GX~V}XK!gJ1j3reodA6qY_v7d}o2eOuHemF|;Z3`qn zzd(t*yvIJA1{y5qSmk@SW}Rg@aDQGHRYF5{-A+mG%-Wpo^MvAp&Dx+#QOZwcTIp4B z+E?y>B~qRq0>+QuQ^nzZZAM>A<#EhVHFRC8cR)QbpA z+EZ(ZXUmy0 zJWFDwVVGw^J~vB|1gE$L6|@P(Za}eImUU@{{zS(oZ48a**m5sf3L;aO>+3Eirs!%d zYw1mbqEd-Ag!wLlsWznyXt(&}w{uDP*h*v7Ogz`ih%1sP0Vtu_?R6uN?`a?43z>=r z={;%Rhp3iT;AO@%dDA^WE=_w9gZgN{;?_Q!S%#+=`&kAvJ8aHsd3ZOM~Xhm^#(;1hOcoGCfWtJjHrEo!5M7PhzL)TKv&|rYV00|mx z@}veHi^!5fObAOZWl1HpT#gee?b8!x9SrCT;6PSU%Iwv8aro^2C{Y&1-{%sl^Pk=m zvw-VQegEuYbUy4g;UGKTlg@!t*}4#eL+W-qv0t4?WATSCfjze5PK7zG$Tx&+(tEUg zhmc+|%0^VFNv{j@ZKLk3b*#8SRsgqAb8MSif;+nVnMdj5-SXad;Br#DZG<#tEo@;X zJa?QwM5}jV*zIOl{cy$)Sv!|;<5B7YY=r;l>hfWItHldQVlKiwX5VO-u+K&==Nnc1 z(dkzzzQ}Ai>_zmYoRUvX^^@5{Tpb5BIH@H3Ix&kN_41SNmnLjz!-RF?p^lGe&qR{P zuh^c{sU=5u;- ze<0KpP(dH;E@Xvh(w7nwHfqhUSR4aKLHY=zrKmnQIPyJm66MJiHBOO7W>zGInVyDm zBvN~JN>f?<*lTA^JG&4*V|u4BbK+$Nj@B*Qp}hzk&XJ{abi+Mz>o7z~O4wk*y}d&~ za055t4Fu{0eYzka85haYq|Fd7b}5>GP%5p{gE#R>gfwDzJh6a)h0112HQQg@uZkSg z(2X75-FWPk*Kh$SyWe%vX@GcY>w2kpd&gslOJ-=0;K#vtnP@i|d~_G#Pc3L?!EF$( zJDryRxsWiZF~B;Sv$3GSS^_jB;f;JE4l+_GW5eprjTO$^Xj21n45^q{;;N@YLMVUE zS5Q{z$u%I`s00qy>ltNCwkYWsQ}PHY#yD_zILGP2+XwlRGkHePLH_9sGzH=>C*-pY zZ|E=QbQu1Hz^6arl~+*3*55<+9Y9XRz-vrvFlDNu*{5)oAVZ%B9rMZprMb?9x@IT3 zt6it3XKek;m!ppqa(Vxe7I6OT!2eIF<@;mLA4ktlN)tIJf`TCtGHz)@K6RKqFd$X) zg0Y&3e~de`6^1>0JBRDXJG7Jh^+feJM)@bc7cR>0Sk||_+Wz8j7cj-5QG$YD^uH4l z+{pEDcMQ<^!Z)syHQNf)F{Bo$oX(%EM~=hU$GehP%EQ7wdd!#tRN^z}s3rI0AqX^N zq9xRWBDk{{Dl|7Pb9{1$bXgM+_QCJ5CTyaF-(o>T5Wf;uR1jG5uuSc}YEOopfZgO! zy=(TTGRFXYM)(#N=nD7@4T1u?w@32tLqf|u?%f1zA>->H0(grce|l)lfRyE5BkHCW zmm3iYS1Mu=&{mMonNV044zL{L64ki!9&^__0a&S7?b=mU=5xQ=dlT!an&gzL`ME7i zpLJ08>u0H>RBl@L&S-LvO*N-=O}&2r{5YBFc{7&Ge$S33e30nE9C)hhlPy1uE}3id zjsg6YPN&MLlg{-zr+vab2Ho|{ZG0}lf4a2hAz7fP1+qwMZ490WYt!v#X>Pv-MyltA z%4fHe%vf)|FAu*J!8m>TfGT@|n(8a<8&$))rRQ<_bQ0=uKWKI5=lNYA0& z_8XdC*F}GZ*W-RAQ8Gw}#iiTzLe=n6rP6A3-NsPA)l1)3n?!5X*?Sm&Gsx1ev(A#! zy)cZ;N?WIjTGz`)Lqi7AIaXZ{%dI9qaI}r#J5p&?Yix{ART`_l^7_KcgPvwE9k+X= z&C~zy*B)P**9q%Chz=%(|7mzNGy6Y8#>YqSf6o8)${%uP-6^!v`4eK$Y9vmM;qYohao{?Eg^xK8zq&Hv7Q z3?CJM?myEZK%hlT7@h;#!`FXNlFIq7*vItV)-;5}*Gpq9XCFtFsScie0xLXokcj$& zEe2_v2b(Xw63=>2WWOXbTOm2jf)4X-!S2X$e%?}4GxLo0#S6Po2N{U&W<7=(SDlCO zh7j^Fe~zFX$k7rehNHHZY0YF#wRb@q|BWLy4p{s|4=go~=_7C8d)3}v3Bj$GH$I=S zdtkdQD;(7kF+}lU>e&F|S~_N;m?ugGjeT;UO87|qEg)jr=FJmYip2duX_ZOi5hRDP z1rcr>s+~+J2y5QiraK@KB&M2Tcj{00J90=S8g#s;o9Qbgu^RImz9Y;^YGL)*e2by>xeLITsRWOK9N zg5X%|aH*NsRGA~F*TUV-@m&*&*C8fj>AA_48~gggQ&`?UWwa4h>T{9^P3IjXW(V0_ zQlO&JMsI0nr0bU9P*g|eMDb(h$JRmGaMT0vJTNY1rUVqGQ-aJMqJ-Tu^D35)<)LVxSU*Y<@ed|gtkCmto-D~ag`jVfI0*+( z1x*NTCL1Ae@C{5#mub|1`?TPab~2V8aCKvXK}mDMZP@%O)`)CBX_b)WXcdiqChksu7r)Xl_7S!<{& z_KDwg!R@gTprnmIom!6$f9U9fjnBT7YKF}1q^V{Fo~FHz<+bzVsAfXciTjBqZ#wz) zlD<3YR|8e`Br2Nl&Pc~*;ns~PfJAo+?oUbXHnPR>RF8C~ZG_O*Z@gF4n|tj7rf9ND zTLt9CT}snrVmcYKG!@&hj7DoN^vVke?T30+_6es{ay4n2cb&Qhw_OFrGWwr<-m{sX zO{WGcW(Ut#vAeyH7QX&^q$x5eLYM_v!YDfp_INJ0V@^xnW}rb!m@LE`Q`SY#%CGTG zi>OJP#p*;{8SZCWE&~(^OS^ISaWy&@!XTrh#-Ho8SZvF=F-Z!y4fz}LieBK3jK^oY z333eMFjuzNo5F94SEwH~CI^6C-PLwnG4t0cEuDqmxc%J{9f#$Va?~ zn4-iS%?||P?fI0dd6+w;H)vy_G$wD`iAKo~ij-=zhcXk6*>diNa$>77Ezq2(h=F{- zSaT=D8)?_vQ2^8@6Qiy`+2fK}hB@)}C7)5SRP{R&|8by)hg#V*Mm26k={gsVO_1hr zo^Ga#Qc}f^x4lN>F?ZXa#~k_-sM*i4BWA-UuM{*wA)x1!bWW2A$T*y#tG4azO8X7l z-kOwHh=H*JAYH}RkR8e7aoU0tYJo`(cM*()cl?;!=|lvt*FL&Hby~A)Ssxq>spBl4 zown{+CenYHUf#=adcRiA>+t^8UtS9V-(fTaL*d^YiNs-L*}s2un->8c;i-&NDxg!R zzbSDD6-ogw6y=zDx+P+S5!G|6{@o>;2UZrNL23`0IH+3ip-S#yN29Dq??!SrP~-a* zr?-u%?P3u=5NF)Gk#h!BK%L9V_1R6WE5eWUa+z;tv5-heh> z2?mVERMs^|wOC#H8MeXJkkW)A0Z>)c_JC6hDi|jAEbX^}hUE}3`Xnt!L8YZq{)uXC zRka#1{Vc7W&)EJE0LaL(K##n&C6r9gKy{nu;|>(73Cb<2Ey@`xk0OBj6-ZC#Xw#RSRiRP&OJdG7FRH4O%R~b z2`0v1OGFx1v)%si#Y|TR3DLv9Cd3u6o#qu` zO<&2R_oR0G7^hyqYy_At&8gx_=oHKzJ#ov?oapo@Vq9&R8MJ=_u7pC&SOMB84_AQ` zINA6!DJ-092l0XageY(ISb=J^j1&=pS?4c~B!ERaiAoFpoo6mjOnXPq7+-v5e-O2~ zqfaeoNRQN@s^sfdNq2GyJ=07m`;zoA4{}YZP)a*mU2$k;wFW3$a_9Byr=HqO>8QOF zX1e^<=6|bRPlc>~_HoV|=MG{SGyylAR)DV#mpp4K_S&{NrclHIfZFn|eEzT7ZZb8R z%hx`L3@z!nUC5Mf3LF*aK6PWBe@0Q(DHuG?6j&QPBWZOf0st=p`a6a3CSk>2` zkXXtjm(Mc@O;D5od2vf&Y5*d&Aw)*82;#`AQk~iQk>|qor}*7_>4H~TXgg6(QWdK+ zfsS#}qggd=jB%rb6f-%>r5lnR*ZUq#PV)ru$XmlSa=dYXh2i#d4qDIQQbnzseh=@b zb=Z^tYRJT>S^WF+mJWtl@;741wMcM+TNn; zfWdjk=jRRJ?b$R`t)Xek>CwQR8@#?dd_Iy9xSHhyZd4J|1L4r-t2ht9cp}m3GI`^!&NHN~C-0+# zy-@dzdW+(;g)^W&y<#FS*j5Fm_arYE!@<+g61<=*qrjLSXvLm3eQ;FF? z%iUtuA(>>=fN02iEDHki$+_SHRyuTyd?$jVZ^js_Ff9(@9#T1Es2H?ZMEi&(LGU{^ z!7jC2ahrS$p%~ousbuAfSkZVtv3{)RAOm#Yt_1nY0nc`_+*xMZ<*W-(InJ`~D2i{1 zsGHQKEwekKGR}fqhzC34=oFNg5OFVao1Q@PD#syR(fgHx?aUXMvhFN{s1;}9l=C7( z*3qc%$JK;wV7}H3Pp*Repf?9Vu-VG_iJpDHIp$a)uz+8%faYY6E>8GO93Nw_5)K)& zDJ4>}Knu5}%b$EJg@$;=!M+gCd?AAS_&fhF)>-#=(+vHi0E~~D>~;4e#)*_EpuczA zd&f;Wbgrp9Xzs>43HEDdo%ol+*Te*zy{LGs(9EBFkN2AFH=E|_LqJ-cNLHbL z+PVu0mbXHQd-e&!K;7F`Oj;#H5TW)2xmSQ>WOhBE9n!} zzt<1yO?#`gNoyrhT8np_K`^;iC-dT|^=bElkTC3wT;VJ40jh4sq3cJeH#>PGu9W2S zwmFD~p%_-FRC4P1>!!tFwhuT->!efB1CMM`(*qA=18-_jV;1ZtbdxLFTnDAzBE%?f z^}l??g`;7W8+uxtL%iL4RqP9$b1ixf&nm73e%%m2-wqh_$hMfh9y6MfacpbG0Txpo zrSY7yt8?5)m!mKpn~M2rFUv~&2GRsd|Dzmi!5KA-rj%J3TIJSx@@)&FWfuzU_ZO@> zkoD>=C_?rl5$`{w1p5{_*%_4WPTTcQ!E0iL%MljqlabuyymEhR4TDkdXE)q9Tjydo z76F!cF7dm|7I{hB6-LZQKm4e?&G=RQ92Vg?97OB&p69SQgGt0*$1sq)+VMbNzPWGVVHh8Hh_B7;>$%3&{JMipcui zk(6Mn=Adc(eM?^=U-(ai@>{r?gWIl?v}}Xn`bX~7{GASf_>?Ut3IK61eJ}qsp(Q-t zk*q-2vYtHoPrp#k{0B|Uz`^geJ>^LhlB~oe=rt_zIg~l42WeqMDbl3Ggmj%GZr^p*L`G^GlIen|;U#;~vyTq?YhliD|gl9Yqg zpd9H1#1Oc+sxqsTlI{~?bFdPiPH6>VrYf*11=@6{&y}6qRUgs#9vv zxQr{!Rci7dW2TzZP{9?^Dli%_soY~>rs+ZhIGSkVs-$Qy1=#LBw_@IsTk`k-L}NDO`h z2#k8p@ma14jeZkWvQ06H3)y)>D(<;>DgwCKMzC|5zl&ziT|MuCF6-3U({005{}*HL z6eLR11&fYt+qP}nwr$(9$F^M zcf(Bg>$Dp?-|4PjUprUHzShnq(^a~z7_^M*gPqo_7LbC_Iw$P_*tXB?Z_RqVmHNragAfaEqo19w_ih4lL=KedUR=3dNlBpe!J{azMUJ2 z#ZH+g%U0hFx_#>RKb7wd?-iag;Bnxp=VEDrPNtu5I5tagCpBi+4Wja$US^q-oA9_M zZ2sCbzuVnDKixBP-QDMCRi@7CU*FgAAFnYj{~D0GwCFcvAGKfeRh?7X5BCvQ1SEGp+!y1W%f}44{1;MoaRHa8JJv zZN7StIBE;dTq5!)%12Mw{%#bNzXo@bi|~f#l&cez$)k?iMzA1w5=^A7t^7owtp91N zxaZAbtPI;6PajJSn4D9$1!NMqY%AB9GJ!T2Qhi)dDbvk730v+;5u0GY_P4KN#f(=; zrSY$7#a+MiuvNH%l*4W&OjCULBD@&mToyz^5skv*l~82*fquQXr?DNtY$1ePS(OEh z%m(VpzUu=L%Ziszy0F>E;dK3&0PQ zSTmbCKFvlX@#N#*aCh{q}EYx8uJ`##oxzCR!AS9T!})8R`|)9#@?{ zX#@^O!>}XccI#FH9F=jKkPwh-TF2~E=CBTmZtLh;Z{&v+>)KbuyOxj7VZk6Bo9FCD zu8)-ubA9!0fBoiEfnOg8IQjptwVcNN2uM)H@g|tL0*Z}T zSEC5tj}_vK$Dw)pD0uI96#PHMZ;qF70Ry4uk}uvSAY(M(cS)Tjv#0J*q8_y$(Rb=7 z-zeUQ*aX{Y2D&i*TyvPH&x##+QMQqi?%1!2q4=yp`DMq!EFQFQqqgXKaht$JMc9Jb z0OI!w4o6Aea}W#Vh$0(mpBP|4@?57v84JvA+aCg&P{S7yK?h{K@}JPEKVhKkq|{zc z_(3IFzfn7h`9O$9CTO+Xr+ldi=!WKM2pNmqU-Z`>W(}6AS&-3~ z@Pp}!aGbwc2V@$_gFbEnf7b^@vvX**vfC2O=$WB3$(zbWw7Qe#n*xQo7uKm%kb z`um_6r$C)6d?(0o*RzTXHJRfSR<&quk{FC|81C!+4b3l^K1q95$dNmVm$Y`YVB>bR z^WbwHJ)Lw_VS{|-g`O(>4vilbGcjI17kxW@D|kE~YSzBIL(9U6uW2EcI(wYo%5UV~ zcrEWhJc`KTN$0)PiE^0d_tJE@W1J&#b3cnZ)}h=5x~+?{VyE~AyMrlvKY1Uf491*e zbMm(7DUQI4q%iEu=n}rNzGOL1R}@kD=QUPjN2jx!HsKe%ID(P!Kh82tj2!>hS?2$# zYhmQz_%D8c`TukM>$v`>Yr(gu5xIbbiEiFJ1a!(WuoHyq2Wa9n3F3i!|Bm-cR#EEs zD!(A<5{R=+i7b9A6{+F*@`?|mr!TXo@6(Cq1wo|I@O^tZ6rBh5R0u-|fj`;nE}9)| z%M0W8OI#56c~sh9|KaK7I(-`#l~Q?%c74ed0hRF~+B%cnL z{W@VG?p5{^%(dT%_5XPBF4WB+-C*@Fq;(tGR3^gm_0crLgUJJejI9TelHmAC5<4aK ze-jGl6-3{m0GF0w7C~tb!oaBsT=ln9o5;I)v-+pDx3C;C+aa3GO`JyL{pvJPQLmo7k5gXbl4Qd6DECl6m|9Rw$bad*g- z8x~IR7baV=GPqqAw;4Gw&&1WhtX?Z@Dm|BSg*gqgy9ILJ#zc0l_|3p4j?ro>gFnwK zl_-3o6R(k|{H_}!SrzD6z@FvahC$IbaDzQ#sxs_}|)9@F&cY>l&7~bV-R_V9}!td`=!;_Yeq7-x-2?FTA*+ZjSgee=2 zJ|K@cP9q%j7xf*z*Ppa8slE8~1LPku`{aZ-JZ5e|0}nZ5!`myK^9Z?rJVySMk$sTe zfb&dyEiZgT?1xU?B97lc`WrJ-cF$5r3BH`=k_DD5$caQZjpC9P0QOt7GCPP@%=KBe zz*V3lTp=m)SO-`VeA$p(Hwu`(xv|JvRv?M_B{_)cG}oi5@P`Rq0}Mmqp5lq>2WVPI z@~){!LRI5bp?Mk8KdF7LaK+u?A_zFSj%KcPG{TdzKJt@ny`Hn>!AG;Y3N@#d^c zrS5d`Dx0-T;_y(hq+F<`4In;+zl+(&6XEBa4ukK{vcyG|y<mymAJ=k*foSnkJyipR?BscOv!}yEknS%$BJM`Q;BYG(=ScvLp~u zG>c}*Bor|oQ_<~Cj=*^ZAhQ$;tSBY6%Un2!+(zKO##MQjCge+X z$tSc)>MClqjCP=;bD3-djPZ~SP3T-cBK<}}>5ru~1QKPM6P)e(hINH&ufGc6LYZ@e z(T#I4vtBZi>lf8ScvRKW>Yk*$gmHmxfnX0) zmEjyF>z@xGShST+M-Zd_SZEKRhmEpWuEe~1LpJ$m=U)LX{Jx6U-_X$3`lJv!p1R;Wqwb(;!S?8P-;UnB>aXpgabmjUp9nX;+(vr(j~ zsP}nJBel|eOCFo+REmLZHS)rIEl_~!A!R8+$1u&tXQ!>B1;f{7j~svno` z_~{3Qplt-Dp=ogbwoTxvGiNMrz~z_NXdh0X8GPG9pdu1K&gc>61}g}VC#vc}Me6as zoJ9rcInJFG$Pyu&mmaV=3*uQDB&fClmPKals2DqFz&@(5c})~^MXE>6Cm2^{iYTs4 z1`=Og%ZB&%i(~b(W-(c!HVyQ*4eK;O@6_H;dpWCiAoxVX3MsQGgCzEJaF?Z}GL`s@ z0oLf#Gj@s0Vkio`Zr=6!_%-Ik{+@w#K0TY>XL#_FuQD1?-U1P1DD1?oM($7Z|9-#+>Q!7dYUIOI=8<_5`x)~KF< z)wIdcvW)MXonuJ4Yj0B8)YwN`&}KjK7L!l99YciT<~#Bg&ATybQLn0MU!!Sg4)SWd zU$vmTXr$n_T`$GRY=Rn&{XY9l3+hsD9%-u0Odh5qyroy1WE@*=m{1mxn%DGk_?GuY z_tvpV+HW}q#47_`*D&mCdop>e4skBM&QS<9aUJFCmH3XYcLdpkPKWU|D#k`^E1G=s z^~MtA%vvhz`Q|^=(h6OO;mpNh01V@J}2<0zY9CzEkX0${ol!Lvfb0 zoHjC1WjixAC+}H_|9~&sxSP5mBwDw5ku2HJw{0psKDDh^VkqBOCINj_DmM}QmG5BR zFt(9ye6T1L3Yv9}rneQR;x%+vkNk4++OxlL_}8HA*|W@8R0-UYXZ;gr_v*u2R+#*% z@SsstFnv|!E4me9dLbyyvcBN=poRkDGILG;nR9gd_#8WctBnQ)t?^Spmcw?N`JQd@ zlF@M>hh=aVznNi1Ty-3YEGHPJxIWFxiYwyjmwu8NscmRkUN&!gGj~on1N#21eM{v* zkEej&`|I;Q8hGN%IW$h=1PAiVH)I(2g)gm3Jz;)^91SNkKS}TZ`#gHv`>P4*b*<0C zy5RPf(MtrmtNfSy>-kP-oeXjWqn&Bu(Q=PIEDb*_tq!vRysRU1+FC`&(nHj8Y?SyW zU~w#2G`=U~i=I)|wE1h*@Arq9mVntWrj6`z1;O6<7lY#PR+9({3Kj3bNaH*~sb{!f zbmmXA+ef#0vG&}~0X5Y5H?WWIkceIi%K$e|H<4*jIm)4APRqYejg}|QM;%KpQ60eP z-qAlNY@&34I`H?z8)q!$0RL#?9yn!`zo=`M@%**1>J&5?)?u1-Y;141mMjvQ!WaYtVBxV=501;X$M(Uh*pXqeLC~R| zZNS`=LrS3lxPM`{j@*om9mSz45DOca(;`c&kST!(uP~ zGZQ}u0X(G5O5tD}=!UNvJkrG$m~5u@L>qUb6>KN+rClx<=>ABNIDOGO+^=grCu?zA zAvhSenlCU>*T1D1Or#pS#_}|II-ScN4j~DycwZ9*yE?;^W2(v>@+e~tet++=!|)-+ z1OJ=kvE$K`;-RNQ(pGK2%QCjF)Ac=b>KrT_XIVxU*G;)8h%Ya)%7ydpm&5jw3n%WK z$%P|rzTr?aYV2-V&KosY;rl!x8oUf9N}wOYftjW}y3{!I-MrBz>wC(?)CF4__Nl*N z-wi0Z5-{e{qG0E>V0FuPRe|XdwQXDg zHm{@E`7b4km(Cma+0t)b^hwYo5y`w+%Vcqgcz z(mu5H8A|Ycr&;;X)7#E3OvQEM=4=m(XnMa;cahPyyrZuEM8cLtJ|)b|%q5aVe4zhDgW|C;yC%*_0sFs4U`JC2wWZst^-V+&S` zT+u$?&|nLX-k~2f3=&R5#|vB6>6f45LNH}0anerx8H5*4Jw+liE-qOljpy4nv5dc0 z*U#^BQ+8b$Wj>I(EbsTd^zIK&g|dQ&Y@W{@(a_@TZ|;vz+Jf%gE%(p*W1s&I?x+?! zc2yzzj0PKqL;eq8i4c(*aYDc@>d&v6-=fwbGTMbcN1x{{vT(P3?rxjBa z(vq_3j#WVkDVY#z&*RGnpcQnsnPXYL%c!5%F&TvEEy-RwX0Kkw`jW#U6L`r0)H3>T zR!||yRRURb^fINTp~Jt@S}Y!WIIGG|5>N{?LdOg`=el~DFonxFPT{3EIFRI47-jV_ z&&;6@qd#}PENQFMEKufV_{ygzaZS+uA168vIY(?OlI>FnjB92=t%;P-rB59`{C$KT z6P?}T0+DGwGy>N32Xp8;<;kWn8xuM+SW0^r4PKvRfH%?7A`w}Pxib1y9Z^-1D&)^fAVMT5uBa_lAz{MK5hzFn(PN^~xcNYc4@%}hEc(eNgi zLdoV@DXQBplk~D=Et4k!HJ7_YbsnegjASp@3Pq5bsV~ z_ELza?sLws;D``wY;C(48jo>}N-}4i$@$9W9pNstG+-&J{hh5v^hqIf20Tbq(OcSm z4ApkT?^IF+Gb{z5WkuUCD*;S8wN|~q_<}@#>FHEu^y_LXv9oOv$Uojn#4fSwvLKqD zdMy7~Y||5e)unensm<4Q>O`whJz^oij58weSKFerB1@Hjs~%Z&;cj({vkof|7; zJss(1iOINcSb&;;w&u2vv_B1zjunt3N0FSD)CMu>qoJ|NCNKC?Y*yy6`;7zrY8XW>6E5|2B0+te*7=`_HITUs<@XpUX7JPjp5clE5>zwSiX>OSS|MR6q7@ z&V{#vcH`94N~_wYP*bOe%VQl%*9lK|K9?XAQ$DF;QFmLOVE5iZ56OEy|KG=wjUqs& z=wyl=Hh0biPM~9%!Od^VrS;ylpq0D#Sm;oBEbL)!x{yOsMO%2IV@Zkk1v~|&!wiVO zjY^f(%?nXMj9;_NCQp;%JAo{7AkZ;oO#6pg@Q7{vcSRhr)3znUT{kt7)n(_vb{kr6 zGxVkqwfUktf7zSgLxNU5t$syJM+gIHy{d6JkC9P&UETUvDxo$=xl77J5+k#qZL5Gp zyS3Shgr-HWa>Ixcp|HZpT1*IR=~x)H4- zcXJNKkECU>J*>8r1l@l|4bVB`VSIWX^R=f1+R!F@G{h2Tl}x}n zZc)L-RbEO&%Te_Y}%-=T17Qq!Ta=Yfc9 zt&2EtFwGB7H#R7teC&+YhyKn{Y83=U9PZ5KzdE&?>=)Eb^@}_Yhd$_p} zFK{_x-I;SY{6sDfRY2eo0_?0}fibW$vy-eX#cSigj^0ueYo^St#~Hb=RKTf~NgR@3 z$jLsTY~E>=^xr%cOh2~(uN05+VxW%1uN#E@Bko`*dJiChPdTx9iJ~eZbzgwTzl%0% zy7h0MyosL&5GwGsxI{-O1roN!PJQJZpM$P~n+VO?F_LhZzQg73e3 z_@W+6e9Vg|bMKbUXPE%0Rt_*Y4slzt#g{4fZMP6QU36ZOfn;!ABFWfu!F&I*{)eZ} z$_&bqdz%1ylv}1-6Y^uAfM$A)8Zp|pfRi~0SB&3gX2?qbd&c34p2^J%$rPW(+|G5b z1Q_C2&F8Y<;)OG0ysy)Mc+;`ov+%Tr?^)(H9=IUoU`x+Nd9mU`Ak=3-K&wP8o*~c9 zeafj!Q8BpQtI~|iASli@!4}~miHMu}D$?|W)*R#GA`=#g{7;Zp9}RyVW}1U08&GzzxGPQoB4 zh&5}9vG={_>JyW0Gczymd?^@0sNU?sc+f|!3?xVW+mTAyG>uk~rBOPG)J0zLiJTb_97 zV(zh0W3Or)Q2?HRLwbiPd{0vSL}fpOM>m?AD6fCtW>{Bk3pcOVHvcU%!|DSWyf;a& zw%`ai*2rf}I^7&$nr$vz+UfMAiPDZ%E!=NV`xl84Jsqm^I?pC>O~tabV`^NOsY=tDsJmp$jVPIm9==9W(hyOJ1RZ4*RwODS9ma@36dnzN${OQ#L?0+x4i*e?~+rzQ*HljfYUy9^*B0f{|g>;1%>cm;EILq zf2|R*vHvHyy4I17BWZ)}ovkY`iZN(TEGK8eF!44U4S)w^ThBTa-upX4XgxGe=+9q_ zr%GChzgSZ#2B(?dR=P};SXds1qDjU1%`|@A6*ia_25-M2t0+>IlhOP2m464$SwSg= zSeWB;=aJLvljG-+xNz|Rsni+g;_LUcvq*2R6f{6hisk>Q@=~eloMw$LJFPScv+{1#-<2KK2hE?-viR4_!1cl=*#`fdFPF)$#XFG^V3X zh1VicVdmp+Ig9Grg8BEWy#6CVO-KY9Z73Lo zp2yw3$DyL_=zv>quXASDn%+VS;)q_+<*wR>ng!$g3BKP@o&VtMtMUSCWhR$z4nXo< zI5f#>9zI{v1FkD!RZ=9_tkzGn%xO`g8VLMi5qo=XHmMw@1%h0N3tU~*uvXXVj%iD# zMn2eT7vq~}k$jWW_=6-ElE?&&>SAM}6yQesOLi3RmfXBXfyo&~@4p8uLSyl}6vSjF ztsiNStW;J(a3QZ@%1XdUJ?J41IYcoEF2KetjCVKgVS`Y(9K2)003(s5z^D;t&|wUO zJ{$7GYpQo}y5GbJcK5UZvvh_$3q% zowY-se~i=+k8iH)MUp^X|GW}Q#s~&6-Nuke-{ugHr%p;RDEzw}NTjO~ji>HOB%1-> zIK!54AeC^&aht6w9$Cpit1NzZrb{m_h$Kp_=|!0lToG?B<%HKA1|GS!B0G-abt%UE zp;9td*pZ!)C=co{hRew&E`S0{N=w_v6mK$^Kon;lJm3^B`n|QdIknj0{fY)Di1Dk- zqwH~iVWv%^{gRP(1m<5v+8UT`Mrpfajy?#$ippEJ)2qxgB+fuK-VL*#S%32DM~2k3#4qRg&J%j1fu1tzfDmJh>m=5dRKlU7>aj*W zokpmhZHy~bcmTF0I*iw3N2(LjZf!k9euIWwhcI!HLYBZnh)jc}<((|_VuVx+RTY|t zoY80Cvi*FF_zb9CLM7dDMSO>b{>B+FFc~hx%Gn5OK!lbzj_?^vOYoH(R2i4t#o}~Q zb&e?fe1>c#K_v}4=N?HL_Si1L*7&3od0&m>gaQQ{E$lD>jEhs5LBW_EA6$tp0ASu^ zReLu{y7cQM(QPLvrJo110}OC01*sCIa%FYmWq#j~K%P2yyIQYt>f@Tn`Zk1gy45|HOIxN6Ygy3Z?wPDEHwj8$ zw#BpZqiEpE8qMq-bh#LKyXbM5Zuxr%g<i zxKFb!V}IC%HS^|3$;h>J3*EoFi46iV^R*P5bkDYg?-@)}kYy4sCw;Kb@yl}s_{VOh zs>wzy19os1eW%mnIx4-S3?l5jQR8dgnTGyYZ?XRO~;r8TTjPKqZq}ZJxW^>1| z8IzE0;HujbJ@XtkOe6_^7!=;vUm-dVKAumR25z=K%Whm zeN+&bu>fa61sO!ZVY$Z@H}3Yb$i~}_iR%$ml}I-Xa9v_B^+H@_w3s5(;dbu9(beW` z%)Avc(@2b0P`{TbY)9?$qSI{f)=w^?A|1 zFBcZE+S5QHtdVxWhQ_Rpf*6{7UWwHh9JV=2mNTO+)D_XZRRs~6ha9j}RVQZCA_0m^ z_GDKv^Hq>)?*iw^W4*Jf_M3ni+OVzyXMyPGZ0_p04$+gqocf|u8qP9AmJtWMB3Zgl zn!Tz>#cr4q?ge3>oF#VeI%E(3q&WHv^5{6tjV;KXG#nE+M`dlt<@6uj)luSa^ZQL|sRk-n)`r zaz*PFvqo?(5iW+3a}3K2@k8}hduC+y)5~UACv22{o?BZw+RIWXOYL2CG>Mlk)N7pg z_gsiDJ=q%lA1~igjR}{V*BxT2WzrOx#`Qm$e|3sY%V7&ZeqDsc`ztIK&7>nH%ER5(vbFJ}Ulb^2;eOT=L@x>sW|#9}YO z5S+YXT&Xh~;INfrI%K?7U^>vbLqtnY2RQEJoBbVa)Sou!TCZi8rMOXHZYOzNW(BT& zu(bx$*}CqB1%d!@4$A~QT;dP*EmR9|0Dv?p51{1ZO<6m%ODhm6Q!e${};C1l5m^Zc=>WY<^8;u|* zy=#XKCI*_SAkA3<<5XuaOQvA0f|ZvmNhP(_VoLaVFkTXXIFn^hZE6e_Eu%o~qMT*u z){jGocR%wORAsg_nWC#CU7!HBQ<3u&%XI>MV#|c0QDCh1x^jwnY&|+cDhzIwaz`0l zUj$Tzp%slj(GA1rV++GqqP>ZSXI&bY`J(aH$|+$>^eRqntzDl_Ojy0;lmSqJ#zqf* zOJA0S<|fpXx*(EHQ~GEjyUXk^YP9ms;lNU$La&f+vQUz)4W_Ah`vOO;dblN-Gb);V z579ETJZEn`+FIs80X zir0%ZJu|iFluZ$L%QU>X9PD(h4V$)n;8J7l`)XJrm%`Ubi`Prz3}O;Dt#K$T=B4%b zuO_oy;A%JhF4{$xh(y*07nzubuglSS>W4&E6)%bAj#|ZU8VAeruPKpk;+kdAcAZz& zfIS_eEXrq~XwX5>9V;1@Zz%}rrgt?pQ^@zEJk6&fI*J`d_arRTQjxqXp8bBoOD+(n z<2`$3BV5;ruj)6!=8||mxe%m(cOg0P(7q$y7gmt3a{TK=5>|^cd8X9U*#BV6n;~57 z(M4nB%YiSyM@Ri<4z?QJKpqUadB;%1DBBz)k8@9Q3UI5UeXn1gpMyO%>AM)Dj*FC<|z`9ZQz=^ zVA?;0jv2e0nCy4QrQmf8+nlUKx+Q?_gu+;WpP~U}$invSO=BFfda2#RZT{%Rh$gD4wAycUoQ=@`3KC=bpM%7h zINAPFfHC|Juwr*0{sXLMMKJ=lz4&87V-i@j@xlP$&JguoVWEKBVIB>VaPOa#iNiN$ zuF}j(j&3kx|1tpUa%s>smx=$_2V?m8aPaW^a7l9yG5)jbzWaI>9Dp~97mjz3h39)? z9NK^Xyjz49Y6tGd3!U@&oqW{a*Sl=JNtutE(Qs;#V&{V-1RSygfV$HiIDPahYx#qy zwoiTKzVj)9;Kv^4G3$xHK!JYo7GfcanSdDgzRDwocVY3Sd(eI;0@-UBCUhnXih(GO zxTF*g|N9p1-rgTGe`%1#ZGutq6ddQ&JdmpWlWLDxekZ*V3qZan2i-@>Zwcd4uz$R) z7fPa>Nbgu%i9z(xls^JCm7YK>iaN3Gxv zk`g{;AjLrB^SOxqrWOn?k&e_6Qqs-Oll5n-1 z*&>!AwMe1~WMIUB+z4yD_YaUNs-DJ5j-5D*rL&-G%AWhZ*Neu}?YJu(4XIksP)$;Z zO4(ZADkOukpbZ^OFd)F46F^mq^o_-V1oJ>j=HYf6yY+%U3h}Rx)xa9G)d={Cv$>=6 zRzrdyi*_%&kKf@)Lkg)x14bVFMmWCt0SGN2g;ptmH)@bV1zK6uF=u~d*znb)@<3D!78gtgTmrx>GD3~-<*@~^;LpskvaKjQSA?GoK4bDP4& z&IlXVI19iJlVbx6eZ*tmO$^{W#xdDG^M)s=k&sRy{DqVzuQbsL{$(`L4*e4jQZph5 z-dywz=me8BZ;rrBQ*IT9rrPz7NR_)kaxe)SmhW=fkV3qi);qzRsSm}^@pE-1#x{th z6k9}0tq@3s$XoJ=n8*@doFC0+N_gwY5@66PS{08!xIxiq*|RPvev#rs1zb}iC4x16 z)6~{s`OWx6y4Y2_aE6ft^zB!$Jl@cm_0&Ur+##KVt^;v1U2yN+N`}n?3L<7R8t!c% zDGAIgkKi6LdgE}AzRRS7CL~X)Y02W#8Yz=71mTslkuvWl1YD3Snv!%F4NyR=CJ`tN ziw9+efWJQLO6*gg7kPk01x>ih&sf@!PQNsxK@)>i%JTDUg}3|QIK#q>e>V9 zvOa^YEjCQrHkJ(ct5?|}0BtKCUZtb2YNL!8%s%fwcej8e-yBE%<93KZ$G?AkJeSV( znQ{`C;NFJ-g-{rt?#^HB^?x6Z)zeW2+kQ(6GFtY%-yssjH_Er}>h=YNxvok=b+=!Z zS@7t-oIT#ScznbL1U-|wxiDyDK0Kz~iUO#7 zv2JTE(b}LkE^3exHunmNgr^D)m~lb^1Fl<35U|tRS+NnVpMSTI9mn_7u6i`-*=G=T z0Ys%@x~*t9P^Xk18QH=C4RCI%;7uA>Z=a#}i*NDXDsv)*BMFRzh=VC&_@U`x+5pm% z?qdU%?1LwNda~WruDP;jygIvu?>_vZM#aLXjr18wX4vWtY}p~6HqO_ru+)U`BGUjY zU!zPYI3{SiVkSMD$<0YnC(2~)? z!MD~9U9+hI;HE&&>f--`86O_C_Ju)Wt6pek;ph2zKU9@k5Im5$d0%v8q8yBD>?u*2 zH~dG8XX%U+FS+ixa1ldL(~iZhqU6EtJN7HOgW|KN!%#w*3 zQ7TsXA(y##Kob8f3fFh+Gv4oKz!thjW?ulN`#+MpGnWbLo&rtKbf0EuF4Z zqROoQhyf3L!L8~OtNvU~Xdu0Ir5L$i)7cF(rPtvAi&AqHx?8HERymjKU=`SOCWMy} z{z@(l#ug%`NQFDgQ2A4gw`@ZZV-C5D>oj9--KG;8-UH7J0iNvzwc-y^XoRxU;2TO% z`!99lT3MCLKLDidsx?)eEfctWM_K)#0S9N>(LjV+N~J8iQ0gDwl!J9hmeU&k!h+sW zW3;+N;YF*!>;la!W+|G$+0p{R%u2gVOEjwA03ud1+|~!@xc+y!{|AK8`v)^l7I*Up zMR!WKFFTV|D>}bPDjI=$N~$kX|E++BNt(c;d?!KvUvu;nIh(875pop23mDEP-Kbs2 zcCTCOdCDLNyE)TINi-S$Jekytp;%M*Lu5+2f_#$LiB49|2*S}c)9ZB=j$lt`&=%e) z3Mh`bJB2ew?V|^^Q`v1 z`pG}7m*mv!x9)l_zo}j`5g4C%JS_y}***5>Yy~zC@?@O4#>rWHkfztqg=b$VVxcHV z%TOJ&UZu*6ighguWt`AYq= zbWv242WB_u!>HPMk{53nyma~@fjT;db$YZErwDyCdLiR-;&1J=B~uSdl2cz=3ZFxK z7IuJ1#>L3QVvicrMEdp1*ODgCW1R3qIEfB#Lw=3lL3FU(_h)6&SB$r1(mroRS#;!m zGTVMDY!fWLI8CBA`x&%G@T(*|Zg4`1-~hc>*6gP3 z`;<&H6^fWJpB*fb<+tKPPFmtaSdx12A1`G%lt!k~^=cCnj; zLJ^Ci0gEXFT8{iioOZf^1AXFdd_oG`EHE}$F}hv(U|fyX=(wb#SEWry82f5IjR$_5 zo(Xqk|9s^yc7N1uAXw!J^1=R~H4MJMB>@82ygwUK@%)~hz=n*P7?AQ(4=wR439#M` z?Of=NedAne=$L#6b}3lL(RAt-cO8$eNPU-5$`+r8ugP5gP9Vot_V_}J(JLn#bAd|}3U z1aA8U*KocD{jbs#+y7je;$&p`FZogrPFEsv2kma1LOZq$J!J27L#3G*wK}K6-o_YT zS??K=_-P;e8$gywn-(+CX{(i*k~=cMJ(xr*$F~#d z0jy(U83G#q)VOC@URhpW&d)PVNZ`Y1Xg&S?sPRT^M-_UH?JMwk>VY*h&l6Y z(LV!WuVlOjn79Em{{Et?DZQ9=WKR^nPfoml8+VX+2jMRyo@wS+m3Ri(?}g&YY%b4) z&U=!$AxNBTCjp1&~gs>Y%0U1MMplBHux>@R<*vwMi!C0}ulT}^LO#JsI zJnl{=LSlAGLHzLKg`#1LSV6cog7)En-6BpjBuVTooQ)dIWVX*O%sWEB^EU0+{3UQ7 zU4r9?qy|GlTb`Hu!aI1zTrRH<1143ed4p1`|+GHi4z9W~BlrUim*9P~F zfHt=NHOUHmy+h7JSP_eQcO=XEpv*~YaPU)_6Diui)9IW?M(!DjpC#tGAK0MsoRjGnp%1CEYYk!{^qI)yX^CX%<@s{Q>VT71P)l>3rX{6#h8>RrtCB*hWtCvSN7? zx8!xd;*?l~cTw#B;EL*>EwUi40*ShOu@Sieri81+ppK?Lc-1BH2{dHTbhucPl>hocE&P)fgp4GcWMNdY)W({ z<>}(2?kVT%5-Q|N8uKLgwo@efCTgetQoNLY1-24Q+_~hhr3q}oC9C50Ix%ZCFzx0JPYV z-4pI8Rf-1AiUmx;KlfgVh}M#Uaf6yz8$0Ay3q>uEMtT$+Jz6ZO2q_uK2WAtj_Y4y_ zB3;P~TxFOE^_9~iA(Q(Bj!rGcQgh{?<&P!^FZwHUg6}=nGOH~isrG#Eg;K%!wzH>V z+a;~CdgYFTRSgA5qzH2Hk#bU+4a=GP_Gp*}DmK%GHBw~Grzl1fs!>8lNc0|NJ~f%j zk4~e}3B^C^4};RZa?u4!0OZH0oVuhQXMtk~K`9tXISy{B(Y{pPCzV9pj;YyZX^VnY zQPdMy)CCAdLz$oR&UMxVHmDNbUPSjj9A6Nu!^j$_<=-XL$mIfr>BZ_9sSCGvr^K(o z8YEg}awF}cf4T==mhsJ#((?oFzTQ}&I$hrvqe_u?NR{8M{ z2a@HSbova6)582PqBR9P`DDtuGgvc|7Vr;1$qtdKoaOSmleCQ)?Y%{A-S?oJF~&3A zH`@+bwu+D2?8fwOiuc_TJgn0&*#|&C0Z`ExF4d6om{Mmz$;v1axxt-MEFc6~Ez7#% z6Nb6DFkyIwtEosOI{Ym%1+V`PW9JYg$`*C$vTfV8ZQHhQ*|u%lwrv}?Z0nX?)z#6H z9=z!ObC4LEK}MX&*lX`x-%=YBk*4qs*0IA<-%EHYj9f!KlxqlSrI2k~U+^Gg}I`ThQHr%$Xmev~Qd0A)|o3`I|LBkAM zMVXDJfkq*@%KT4TD5C{R_LP%lwqU>|omY}Q{B?E*f?{eUf7Q z+jt(w4=>cOK~@UfO=kvbt$9m&$|Um=j#G@rY`t_qN8A-}ewJAZz45rW{Vwz&bfwqu zsmQ+7gUYsk%%lAq1hO0DBh}pe{U@k%&14v&R;M-KM%5sP>=-_-ND-(Ft57gSama&? zUL${X&!2PGM*_DD+`ZRgh6xC^LZySO@0xF;1y^1;?(VjYusg$EEE&R8DpYeELY{Hj z#N5ngl1Q#s_HYuG&^9OX2@D+CG;P)j7((r8n(+v;Aa*v46s}WVFjV3gT^$6E_zgqZ z9huIGD&@gegmcQ@nJi#(wQIX)H&qeWimqMZB)=+Ba$$&Osp10|KAEI2iP#=BApP8q z1#a?>4@CY-oS527Ij-wXygjqo4(kMkwy86PFPx{hd1D1P4q$X2XbJD|G&D6FA7WFy z@{nvA+v_Y@@1vD@>n|yf&0dpOef(ixTSc~3oiEb}yM&jBv(L`P2*KA70w+epCANjX zUagcb$TKOve$%BUvsf6kjy+01_460C=JW8lF7KibOY~ivrKE*3!|=6J7Y*I2p1o4{ z)1WVP2`qiTgldt6T`;?S@kHgK83l_4mcY0@Q`hLTIOPn+uELnC8X4-ut5~JURbfSq zCwOKh+exfe7*~&FXP;MgVI(HZM?FJ@a{2pUG_jFYiOM)$iYaVttHO;rq32YcT2xOt z$vpnyF)ypM+!pDP$|5$f>GdWccZGs#2tLP(u5?cv;eGi(*m`S!K*qM)IeRobm>_ z-t8$jccU4O_PSZ(*rmyV$_E_lWdR{50IDR52@AKGsmR5cf_7WgwbPPvQHq6D zg^ha2>jDM7qWW#kyd}!YI7So`O2=}h5N!MCmhHN#mtK>*$#P}&b?)ML7?r%?8TQ9t z4{q$N%r34pFu`ym*$Mv)Da9!``#FFvfjKImpU@Tx7xRVp&`D!EEoXi^B?k^MsJv6i zJYQrMl;-q&6G6Y?w7CeGdG>c{$cy`D!uD53^a;;*u#?cS$Q(~hlqN#{q)e&-C$Te$ zAg7wtSdFrrTrv@^Q2N+rI&feBtsQ*h= z^KOxw+Gbrg+X2R-J#m8c^`G%3b^3MTYve}<`Uz6@)#e%V!({(v)iPTKU!43$j6hZ{ z9FyhNaBWrhSSyrcE?9!hJeT~KTff-@$JIuf0yxlD8-uDQ+g~Gg`;KjSiqM=5-#l{M(fi95(7S=f?l6FhVS3O;O?04=)J-Z zxOBL7e$&y_^*LkG_E*&5?p(IucN3n(p^SUl5zJ;gQAUwl%ChH9S$bjnoWnk-8Iz0G zB$#E%D>U-Raj8~ME#nuBAZ<&*D%y){%&g)EZ9J*dF#+e!L?iw%(PllxU3PjJjCR$- z97g-E34d1muNh-HEGK8aAczM-f_B%ikh^SKagJH^Mu!D@c$X;jw=XlV{+QS5)$xbY>?4;h1Q7pG9z;gZR*tq(~?diq}k>e_k+bcrhhgD9G z9GG@r3FW?%t5f4e$di+vFWh-f5U9?+D<{a;_>k2mYtgBARKuKCs_ym{M63c zLw!1nNBa#%;BG)(6i!e7gx!hvceMP`Xd4VEhgEwwb$I7Vxh)~WB@pdBXv_JTe4^NJ z=G~~|vlQuVI>9GAB&=-f&{g~~!`n0N`mH$W24~|2jUd8MH_(>T^WzKU%D|7W%=3Xq zW2+4_Z_({pFIl-HEHfBxQ(|wq*I3%bd3r#Lk0}=!#vrSyD>i4F)dgH~J0*Q?px5}t zasx?Y_JM5^Quqh0=GmLR$EONc-K7Hw(UraQ^Y!icN3E4f^uNS8`~S^J`+u@USULYw zoc{(E#U8c)vPBffwuQY&FJNJyGAeJh2*Locrws!L!VChoe?xQe!ajW|BARJ8o-C$V zxdr4^*O?^mNF$4@;reiw_s7zf($ethHgFf?dEC8T?=Pc9u`lxB6%SdRAQ)j7aeKXa zKaZ1?zKfG3r9zxPFVpxBnr7>GtCTUiT@DOiqv89gOAy1EA!rWlVs`1r)Qw?c?FIbq zUa^G6A?|v=Wae~Y8RPB~#>~UzRuDlCI<{zw9wWpLePj=3iOD`qd1MExnffbP${`*k zyFL_>8OtTQ@U61ZCco`VuFlB#*S=3C*qj_BhRkS%FF~&c~BJ+kK9z@d(s8E zTOpy#v;&q*9vuz;6flSngtEsWD}dVDz;ylzq772{g^)AbZ-!=Q$gnES6Hi_%aqjZf zj7cu6y@rOnWiSJjSy#%u)^_Kl@Ot*T>*vcIPVM)7M|C|-WFHhTKF$O`?GwMcA7^vr(Oa9^m{j-7F^@4qa^3rfDewj6u!VpD`T6 z<6IzDm0nE`wqYc`5OvO~ZYxWFMp!*fpBORpxII$oPUn-}5e?fcN<+}VSwYPB0GHwx z_&drYCF`(JcF&@59IU;(H7gfe7t9*DYT1EFz%8ESyIO~96upnZDHeDK0be(IU4?5L>Fp&_ zezo@+xnXi2IF3GP#;pWad1%ho1{dKMxg{MoIx^!{xm|#HGG;onCxtAauNR2Jju?*# zS%#X~>@c(sP+F}MTA}Xz0URfT0f5$3KfOk%5$_2p;j;;qxEU2kN%doq*a;pt=73W( zx%IC|&3}fJCx>}`3fwUlbwpW$u!%x-?Ak0tT?+Gu$!hJQFg-10@t6IeHJOB^ z6OC|SB)#-N!@x&{nMpY=yyXRQO{(^p5jkS*kSGuq&p1L0^4*nbT(uRrKw}YKoD;F> zdt6VA0k(A`O(j3CjDvW@?{|rYez>bEd zdIvRR1#7D>BGB?rJ-lIf815CuVC_WL*m^EUW49gu+wSjv~-|FQ+7d+PG)qoUXmY|#$) zs%-WDr9`U~V8hy)esl^oCG3hjVS%F^EE z2t7WhAQTe{0xcs1jj1hJl=r+KLKwE4L`IiEI9PrW8u^6ndbO5FTHFYfkUg=yuxIDY z!hwG(uoY5yPi}>w2YADt z&Mv>40FUxAKro~b85kPNG}y9^1zJuAEn{z7x-}VZ&aDf3akf>K0aG4eaxqFVgWYEK zXI`0#M0wH3ZVuqLV!51m1Y>t7kP>@TSIR2&zGn6Ah#I>L@l76$)oE|v8lIApNr`(3 zzF}R4G$#3XZ+POK3YtEwzEgPx^;daw8u+oR^)~;ChreU>kSTV0LpE_(a}l{3pXVq0 z^dCdtWiyVo20THnEV6yii`f7PgLoOgtgHxT68B0*Dq1E>khiEh1J-2eHqfjt-9X!y zJf>v5jQjHi9$AXMOjzA~x=b#^cM2Mz`E|T=ks!yIrm`|3A$B1t`B;w%&G?0d`!X?* z&gEt1e!J28F;tdMdOkDT%_WgUwbAqvd#SNaOVqM$naAWS1j!B~JB+ZgECxSEG_e7a zw$2)l@r=wvbc-X^v2X5RyL}pt?jK%k?M)_N`L-t&O&IZP0%$o^Sww@kYVXQjO+DtE z_R`971z~%F0P}r~xg76E?CVO3#$OCsUMZ$~ddu-lhzY(<1PnmvfMk4wX@LUH@(a-uyu`<1d+UC#quI%b1zpX(nZ6m&G!{&men{;<1o5Gw z7%vPE(pwT2>@_?8>~U>@sju2u^rwe02;-!E4(x?}jk?(E{WnEh?zs*Ny%3W!)E-A0 zxF8$LRox5hXEHNY5CBVp7;* z*oU2ijHV@YSB>5IHa+W;s~wTQ{vW1RinA#8QWT51<4bffYF0|PUu?}yD1ZAL`e4;x zK~Q;Vz1o{a@bRR{j^!<_j+vS z*+2H36^6D5r+=xw6(`<|>h?Oe4?6Ttc(!HP=*t>62JOe+{psoc7J(oR!Nxu;V%g z*pZ2N@IInCOD4qa%SW|{*WC6NnQKtr?#(m17N;?8Ez;E#re5_4AZJc<%wnwBmi$u7 znW+w5L<-yVc@-O#I;u-_)1?ivc8FEZ%I{4LM$ z_fv+Cd`SMIL!7uqNm5ZZW2Xu&+b@5eDFnR+%)cg&Jodh4z4M$%JU3SS)_jwEe=tat z9amSroOdDUNar2{9xbm-6cY=vSU3L;y^34LBnPTsF0eIn z)ki46ht2J-|0&P@QVMws0u{5aNsK)EWHi49ZN%3XR!#wGgorj8vZ7~`go6pEkqn*D z%xt2YoNGTD7h~OiWZ~4;EgV%0R>qEOvD*@T_}MD;huzlgKhl-OwkHE(x#LEbIu zn(NfJ0vieC=rlU?tU1Z!iW;Z?Qok?2PFK$wpkE>NvQ?W22U$A=Dgk5ldfM=NM_M?} z?_RYX+Q&)4cj4lxg@E=t^eeFZd7oS=X<7ihBH2_lkc2qh@H5hsZ@hkBQ3GzuXUBFS z9mQSv?(gAZ5?d1o+iuj6ugjtc+YY;MNn=i6;#a-J^YZpykRw@#6JcBarK^ ztYA3@h0$+0GQxUkvgh8x=p7cK`p0xYQ8}PO%}tw^g<1Oil=Szu2xwbpF`yP>d)dT~ zGJJPnlGFM=O^~g={#!FNT31W7`X4DmhMRgN2{^tVUe#>F_Msl$U0Mmj)T5p2;KPr! zv>)JSa#5835|^CJ|5H;U1Ji$+5`V#!wny!EH+A!joEp+-yZ(m5*Ld*pn;=fwM+h(s zO<_3%al*d*qKy&}q%Li=i(*UyaWqnu?3bcaM(>Of=MUTGm)rF8qjH9DXw|vBzI{pV zf-;U!hR*{sv)nv#`hIeKd=Q5IzIqU-2X}WnoMGyFkaNKZTzDx6&zOGhX{oP6eJe|c zJxUjZ`m6_tJm1&1TAsrFjwJLo3lz>u&a%5^hamWNX7sZ zZxj!4_?u(P`;s14!1xaV==1I^)rx?WK<17>2DF%ZCuwXAxF3I!h8bHrX_WD}aeKMW7R=_!nv<wKqClTw?Iv1PVaJx!!q$&P8Lz1;~dp(f`Z+taJJu1FYy>mVm6CF>ul z(LQ7jYuk(X9H^t@;*r}T7So-gC|JC8%=~A@u?R-xBML16F9b#vl{<4hPK$t2bQQOw zS!%WC3{cR|&pG<@=P!7`U%fH%2N7tl#m>i?@JZ*J>tQSaBjI*KjzKZ_*VCB_kM)oa zun7_in8OQ+kBgjhgn3-b+_EnZ2{p7L1{UIuu$1xW*&JDT5n##i426xs*EoQKcE=Hi z9l{0Yv|^ga62an@U?f61U4d)LNS1*uRs0_|V48E0h%tt<&h_2GTX$ytA-BdxEJ7JW zXfhgZR;Qh5!R|5Qv;KkUR*?D+QC@P2@+NeYH-vC-u_*V9l6qX+kT8U2&6D%;LEU)} zNU{)fp981W@W~M$!)K4?y5}K>J2p2^aU*uc!Eb5elGSh8U5A?RjbySjE6~s zutpI?$>BPoH=^TcudlV8cfM@4NkZ_=%vRd1;j3(HLR!m9)(PWI`ax4g;KCMZl=yon z(qWN`JM@W41PuLSY5GwE8ob)bVDxW{<%emX9Dxat^3QfK!j9|BE#uWW3L82qsQ~;G zv{Ws)MGpUHXj*W`78hO}0Av0-hV#bYS6*`r-^HRf;g+F0QB>6gy51;A8|-D;OXd=WY}xPp%1TUGiw2V=W-bd^kdMoJ0CQo_8Om)s8hmJB5g~P zXMe0#^ZOi2CLx~r<>d5!b$^@&zxd=X&Nu*p*p>eLhNG$7>1P9LO(Mh@AV4ZPzfAG_ zdjBl7^-W;nf4FtCF0g$~`x#xKr&EQUznsfih7_`BG~C9GemLy4o!@*ozl0!o*>km4 zcB?6swI({>d?7OLaVUYt__ECZP_Rf^9NK-owB=<0B7L&1VNaw>Q?CnHT;8=%T?=w+)!Jncy(k%k+$=lW6^q?g5a)Iaa&{`SM7OK7 zJ|Dih0=p+)97LXD>!=J`a}1-naOZ~}6x9+IK~u#h!lqwPfpYxWSbCL>C8bk3Ju z9&yIh8VKicuo~tys>7_kqAxRO0~y1brnxJm#}VR)!dt2{$`p0d zE>9ZHkFi&tSMFOERL~FZ`6$)emxF%)YM#s`Yc_RGep@1$*7rDFk;^OF{;D~?pDWX^q zF68TJB3nRO&JDC@`U}eBE-x&=RltW2I2;Q?|9e^)AUcPqhEv0%wM54eV|3PWr5B@) zTB)}GxGm-@9Dz{OlZfG*jbK`QNCdX})XrhJbUGn4_oOPF65}f^3i76b{3E0OP{XP# zV@|2cyTsfYz1pU1DwZ6}3EG>Agm!|0_eU1;kh-}`tM(XonC7rCx+s~6O(bz=hG=^=vr63)8!d5U;d_glO`LzU)yH5CcZoNT+S}iGH3eK&W=~XCB+zNX6=xigUIS{nNLUTVVsisEc zC2vphfXbM;*?b-N^U(1@L%Ra z>Z_ypk_0}9@EV7KtPrnP9JkBY4cI34cF)2jU^tbuzg1AH>19&k#Bzz-u)!U$+8E%u za1{j>BRX0lJRa&#JaBX5YMSU`@;}3aNV!NqBrV#4 z|B=Dd!ZLdW_)7-pkzG`A3zC5LB?!G&i^BSryir8PQM*x4?7PW}9oJeF(3_e>QTGIE z731cFxwEj&{NsijCJl%P3Ek#Pd$3!LbJG6OVK${PVswJhfn+CBUBFSh9Aszi8OFI- zK)juh4JmbU+pubnm-*&7O+?D!K=Wp-X-}{L&a%&`0XU*u7`tp5w$p)shJtl zY9txLZ=A)lc$$%_T-dUwj=O(pq{4tr??$YOhJmL7@B==+$LWy7%99W*vbLRbXTgeDlJQ2(PFHTW<8$ zT1uBcjEA5_?mPdLU=Mewpg2rkrXV-1n#Z6frN9Sa9g3brj7-;y?4R~s z%ZuJ`Rjv&nik^{<^{duueV_)`+Y8OQBa9=5#3>R}gggold+x_xAKX~Mw8~u@?Qq>o zJCjzOQs8Meaec6k7blHor)*(d^o~mCAq+}E{jE8#exDYEl5SgXYi;7IcEmg^*cXVj0i4XV%R!nH!to5z@IjIzt6oJo)AI! zbDPgT@6@nJbCY*A`yUh!G+-B0J(Vm~W(&gZ*PYkR zKD@6KV4=0=8HXh<9O3x{rF!QlpPOQ}J!`?}axl(H@#B7;dt1*#7`{YRc_$?o?sO)P zQj5s;zJYAHRtrTQF>Q$P6h!^*5o!W!h@ulYb7cKkdFJl`X+cE{F2zQEdVZnI;EWhj z_^5{-CW{-LWC;u0Jo`vO&9UsTM?Dl|ZDX>306*I-z+>%_=wIIn~u7(F!WBvZ!l z8SQuCZb!J7qjKX8m00?nC{fryK(^ZN#DY>9M470SEo@)uTn_p)rwIJR5^|ccx<$TJ z=?05)3+tkn{!V_OCXsQfIyAU3WoRs~m+cw^Yr)T15sWlHSv)>)<9;?$*Z%-EuPuIqC=o^2kJ{gAXpuU}z? zQ)*8eSlvw*7k0ScWsdA7dt$7|7ee*GbL`NL9*qZEYh!B+(^x?c`NzOx97kbPd>5EA zeYd5GDe2y6E1xktQa}FDBQ$*^tx_|BSYxk4gsuD`g4NFw%K{zI8Dzk-tDQz6f`Q`7EujPN0f-k%VvgUfW>qK|j}5V2C=!)DtLHh0N|2PoS@hx!x@6&McKn zmRdrwshTFAxfhKwx2`14k2(A&5DQa)Ka~<^H8x$`s%lDY1f5wQtEIu#5x}dcmbex< zU(9SuVOck|pM+U-ct5ZadFqy9_=>UB0<;NYj>iF|3}21NjC$?sWEM4C)85Fp8P@Ygk5|zu|{U7HW5(@WxPHcPoM~p)Ou&c5a3L6Uj+!CGv73cO1*l6mA zo%vO(+3h@_9WPf#uY~Rk;F*cT=QB#xW*sh3Kuk_EUXSTXO^&k`8$dqIfQ$Z8 zsk*d18UTfeETvSec7pdEgfsQY{FdeP1zGfVqR~t=Eh#?g{O_PlM!NJ0uZz7?FZtN) zVLD&n?^vUaVYcqY#&T0z}j|<56N0DpAW+N#t9>YRr{i-zBK&`xc;PGlF4|+Fqh4ECiMWKnv%lx zY=Q8vils5;wjkm@!fQh6T{u;1lya`P>rP!qgrk77(Y6G%DEE3Ym=ylP(fJkOGHKf*df-cHD1;sN@k%g6N+-UaU9T*?`cJ>Hh!mMlwCTf?6Qx`dL_h^MpR;HZZx6@Uy@moZ0&=sx|RyBIDCO#>Hqk{z< zP3F_7L@6p-YZ=&$f+HIITYPHJ;XB#IuR=cif1rCu8?YzNQC*mIt)HN=y7;^pFa(pL zPFbEq*MlM;IX}>OpPnbom4xi(v)0-9ywcYmqZ+%tR=)?Q@XnZ%prs3zKe@y_E{8^r zH!==+Q}+AlZ|y<4mVG$8lFyH^+Wx9EA6IF0XluEBz2?C-4X z+-OJ@b;K;xKR>d8JqE6Gj*N0#2hnMBuO!_JInt5YR588RK(`#XFVm{$MOS>_7OH=V zMG)oAPNBe&A*|7>?mRoyX}9YUt?$?|rLE&w;W}I5nGaKSpdx+!u9%(JAd&u|0 z-I~+|cNvM>s)4|m%RSWF`C(>+V^bYJUw(?)>o)I}%PLd@h&3eD2JFN(kOE`#P(nlL zdU9Q=6&Y@;;F}m`!Dif}F!{w0iZkGoz`VYlFV}uoejG>R``O@t+ubm4FQ9jExJUyE z-22jeS(f}Rx1ZOisaw7uP5Hmq`pYcv*Z*3)Me8dNS6+v9;oSVKU^Y0NPUu?3u>E+q zd^op!Ohy+#r0vwipflNMi&oo3dN_>*ac-yY{G=G~e@SCAHs^L>S0NI&c>~5@C>DQkgHIiO`^;WG9e(KgPtv{s_$cQ4ArVIDC*Bwi*ps{b+Ze^Kr=j zSoh;Ii~I2U?psW}HvWpguG7dsFQamJ^hK3uQrFdK2MlTnDH(rvXt8qYyanS+Ke$F8 zKs~t6CD;$XGVJwALD3m4!n3z(B%~wAL>8R#g5v`|-=DPZa81!MK_DG*zYtRhBr<&w zd)aI%>2#NIvkX!>KV)?WO|wTn(EjBe$x~XEX#3auxl!nyn|QQD>gIN~R6!;!OxsAyJW3pf? zbGnM$Mm;fp_z7f#f&A%ij?q@0PtI~0HrK!DucD7T+pFwLAq|=6Vm2|5K^|h)B2Im) zvkpJs`WvG7cvUg)+{V`6tJrWIfW=X=(}*u4CKl!)0|N80yI_Z&CsJ`*)z{*^XkT-B ztmb{UOTWNYYlYmNO_1%^M`6I$?s;JVSws&@3L*V6qexfFY6R_X)4~>>&Tu?4v*g7l z`)c#vf_C^Gz`q8We}v5VxGY_aG<+_y@?7$2E1DS6T}S4#*_5GqCo^5OsKxQ>)F zbI)VbPH9_0&|8+?3H>^ZXId*wZZ*nyf7{Sn;0oXkbvKKxUBiJRd*El6R*8eYe4sU} zG|NDUc-s}Z^(ykVS(g^BR3y=Z^4mB@;)exg``!XnHkCvsoKue7T8yfes?vs$ysona zmDkJf13yHMS3Z}W5i^u^#{%nGa?O0u*1ZRagB6sY9CwP%3b|cT$TI&nZBa)*kss%M>qL!AUeGQp&0(KJ<$ zrIEmEJaPUMX#*^(IQdAfffFNtrweudj^-e`F73yvkS>zIg$pBYh3}LIQDog9S<9Mw zd5Hgmv13z;nK{4L(3$pv<2KHaznCI#t(h~SF4ECDF2c$2>r19wTrSp6wXAq-I&A`A z?pgP6AS*ra&8KVEKUba8s5T${Bdu%p&Y_PM7?F`4GNIF@GF(M_VN$EAwWHGvrm7D5 z_Y6Ll&I;F_w|Gg~_5q;EhVN4K(KbIQ&$@OlW&mp(vm@Wg6}sKIK8dZ%eD_%5@TwAH zuFA7))#w z^^-bBCS7f+%1Ul4bV z9z&s+3<3gruha%g=a2Z}-vuVNzp=Dx(V4V?%<^)3TVPhU)8dAFEuF*NFUZ1-6InPO z1}~0X9_~PvOAjrlS0T*c)N#>3&GmRN!Lb8m#AVG#3E~%$Kc%7WMBT44v8z{)e zsfuY1b-o#lNl_Ue7wWAl5Up8&PrP+_<*WiTL2?R1I>tp5UC8%@SCq&Q1Ru(@RyLm~ zy+R%;HSZS0oQq@gAOqIO6^0(&xK_5{4)+d*c5Ixpb~$+24OoN(bpnAvR_9phFS3T{ z&cvgjq^guRXgIJ^rhriBDcLh2CyH^Av4ZA;Hgwnyo^Zr_5hlC<9$h#KomNl(4o1gWu7ppBF6EO3>!d4=GNkl{es|M68P4grLO!2Z#YYqB zR3Trquhc`mFl>1Y8L(Gnc1H$QDen*mZ3rhx7OBn&AueeZg@W85<+El;asezNI$eAj z@?(@*87E8Q(x${Fv{DAaS*}bQf#^<>4lEU7yh1K!q$b_q!DJ~WF;R?}MWg9F=ft2S zp`Ke%GW?FRaACD<3Q}L?8&G*Y}4SPQ=&FU9H%zp17k;qBJa z^?zmNETux1MJr1Pi=M83oLDL={rKj;^<3iBrU_keHox`5x_siVMeobFd9!y~+3j{1 z_u;zjz3#o#+Y5~5X5YU2c4V=Wp_nytMK1cA$Z`}33z11-#0%=Q!^mLnDS)i4K}@R^W-r92y+9FV!&=yu<@kQEvW^H_FvvzA zpfN5cI=S~JfSzMOeIFptCM!$rWR%ZD2?2u5po!IzL!@fL{rjkHWqHJTE|;$c*?Ep` z?9y-{$K}WSE9d)TaKrYq1>d&zWAkS1?xk&eWM!pga%)3<$f&*d{jTz7{UV9p@XY2) z8Wy4&;JJrwyYKr8xNsHCM8j2slgQ)l`&!%S8_}WiKtd%72PA`w3&I|r1_pOYgujid~9kqV+ zmr?i1dk4#hiywD)U&obQ*@5nD&qZA=eJ(tHz9Q@juWI|83>MdERrdl-mj`F0HJk!sSf) z(Rit9jk9{TSyAuTA9;^;b(qExG?9%@VG1!`Vk_@ZiI*(-^N$eGfV?PmFXt3u ztOk%6wBG%b&jalW$O8U2uEd3{C3`&4-2pYeEe>n}Fgo<>uHWbZYb-HWEC8Y+8!r$@hJyq%GO#auVV& z-xW(?+oVyqha{!xJyfukA&;kXLtl}^N*Mp54KEO(HtO)>4 z9nWTbx&Nxo+T`XpH?4ZZJj{LTIJxp*jbSyD_0}|QUp^^S7(1H^`Zw_5NNTZhXK`=F*92_e=y)WZo7d_df^vdvG= zG){fa2*l+AXwmqtDE&uqhk)DrG+Rj9HOS5bA|PVmCqrw5v}uH_IkE|4Dnoljcs{j9 zbwfFr_H%uK8@LGBFHv+`{*czdH!h_nIkX3vCnXFrcX0qR_rWT#>`hxI)9alC{9nU| zIqC+*N^7zeFshJHTeUg*2J4bI(&@;*F-CZ*#`}c8T3}}=v-}H^x`c#3@r`AeUD>b( zJ!h`G7wJ{zz8b!sN8gOcIaVK;uZ^w7FOT*uiabEHPav&|I+E|HaCS*7AD-_k6nFss zbZl98IGgENxQC=GhowJb-wvSL&tjFBoazac^RW^oee4>-mH*W7wG*h)NCi;c5KsY$ z&KGEfT` zFUB9Z6%zh#EFQ?eB(RG@+Oy|u;nIlMJuFechr%}K^0STBY+~}MrqKR22=D?LrqMA6 zdXVZ+GY31oHg){KAzH?=)b-8u@xd8pH2{+7F_mHZO&19zdSI+Wc~tY!5v~_UOzr^Lx`HvzZ;f3>pC|p2c&)7 z4#nMu@_%HhMt{&xOsRwXN5R6(#Qs0+Z?kZ+{#QY=ts`wm-37aor@zmSpc~-{Ea-21 z+9{AWvW~jlTGe&_qo3@lP*gA)`-hT406hYE21Yai1wW4?wd^PR=ogwj+voe~&~k$! z>by67zSieQ(M=$Kfl>sqkn8>L)#LqX?L6;RNvoV+PzrbHbS&!yudZMIQ(nq)u`KmB z3<>;}3Ci!E-PgmRto4^(t=1bL;Lo$W>S0{Z!FJ>g#oWB#g${+gH1Rp4@PqCJdF((Q z{?Gf9n@&QbI5iVOuu~@OM9!4b*4$@(b>iD0)P8ulk{AfC{LX>sKM~QcI2tf={%WZx z8JgS#!>rVd4Ao<(;u7Bj4J5*O+zX}JV*DT=*9LDhF88)7p}D~!MtE-9&9eFNa{KYB zc>8zy*cAuLRyW)pI?zb4L*K>ei3y zDfv9|2#-RXbCes9k*kp4k;*J}QHq?T&5+p#!(?i+kkRSCH)0BUk^af;W^_&)kR$f( zu8$z1#6}F%rkI8Qq+)nhVK1!W@1L0E{%8Qi(Gf;F=0cdlkpe-JE(XqWT_!4$^wr?l zg0wY+i*(QrIIEU=B?ME6xDkVklptaOW1Y*cnh>2&9kX1U*0zXG`5S_LaZMf7V2tGD z#K``u0=hADazt$W4u5}giL?MT7!p8i66Kf!0~AAf$pm4&Ho;V7zD2?medD}_19zCM z!lBH{SF6lc>;Q#+163wEp?WO2>s_#;AE%T(Fdq%hz@#a``1M5YYLK;d2pP~ZLp zRv~MH@(&Dou02s4pYf(MU@W2?8)$S}FcujuY%(jPD|jmi+T#g&8@MQ)XwY;x)zcRG3u^2J{iK%*y7eB<|F>eEcG6qA-UG;raa z?7|Dwg4eddj0FHpp+$ii3r9;{qZ~5^6j|eSag#?kg5xsyNt*;>h4dBDt}0|DQd#W+ z15XbenY(C#>EJdXV*RMIZn&U*bEZaa?aQWB5<;T@AO#zQ0~qkI6&{geB;#Gr()rF; z;T{Ae+9UKa=%g1IsPrmj#^eNeXZ!;Qq8&7qdzqZj;5fn0$2wFKB0c*!_nimisu_t6 zx0g1^A9I8fqTTE_%#E4A7&HY_G#xyp1BV(J${@7%W8gb9=1Gvj-U@14%FGyHQf*lj<(hxQ71TbwOGb;zeZE>U5RmqLN2g? zWQBKST`I+!=+s3mn{6XIwho!Rj02KI&B3wKj7^U*u<5xxJ9&_c*r<1(hD(|M^ zTW+`xZG37*Fk9Ls4?}&=f00XWV%C40kXs>*y}JYLI)i zYKyHIp+X4^^@!6nRAu{OySP=_dSRe4hCW4$RD0LLDm!?U6sn|#sYT9Hyr`mKvGNSb;#0g2o?%93JFE+Zs3~D6&pgSGO;78AB^mYO3-cCvU83vZ`bC zd67%$9QAzXxP;;`i2OjM)N*_G!G4o7O33xZXi1e+Z zeo*R8x*?+0WVw8P35B%`AWj*FQ+_C00azgOX<`d_M$@b3YE90-=K|f<@P?tPiGgz> za?e8gzjlsshXWm?CLU-{ou^1T$*es==-t1h6Xps_x{28bN;>l*2z2jRpiE{~N&=oZ zR9(MheV`0Q70>s-X^P2)oqxgBd@tA_SR!r4t(( zK~7LGsS?Yp_!X9FrPD$eG+ksJt{yUuXn%18dC-SUIr;F~R$MtJo06;jw~_repnu7c z0Eij8nulb7l_2qiyTZ{zJdSXbanF~p*-sy+PwmcNkGwnp`GOMiK#L{~jxq!$;A?iM z=g(;gok1(BiS6ln*@tWzdD2Fio>k8~fZ}$7h^TM5j8bCcO73q|1rL#i&5Vpl3!*OW z0nbz1^mmVMYmt~4V+2O<4s|oYU661~C0&G|<+3AIE|`$`YjF@{ zW|?k2`0gpjW|3%1YVf}pd#C7Jg05RQwryv}wr$(CZ6`a~v9V)2Pi)(^ZSB}NdB5>r zoQwBAl|j8{ zzmOWvf+zSr8%F>eNZgKW_HZ1bcaP%)i0t#74wS7A#SCl#k zBDZyjI}l*`fQ}$Xy-TAIw03Y^dc>MXq_dp^2X+MfZ~C!^yta(72+&1pS_@n8VSf8o~M0iij@C(BB*mWW-@%em@~F1#cXAFC;euHn)5#kx`q)V z7lbfD$vn^^&XX3>mM7QhO#KXk(<0PzzH1npCT>6f<99Nj*g;KW`$e3--&Qp*2uuH3 zF4{4<+Eyx!&FA-7iC=yx45v3WBI3+KtkE?-x6P0>*SGNGyEJtj9nNai$XM$&JY5;@ z!92MTe`!6}yB=Cy(QN=4#X#v;IkIFg8v6Pa;0IEnUZ5 z_jnho;Rg}I5)8nne-XLis_bQ9L&!d0R0`zo-^N|N)A)g2X+dp;4exnyDu-Lq?}k(p zwbFI_vzE}Ob{DB+dOXhUj5YS*^eWgRJ;7;G*P@+bUp?t9uMSh|U^OW; zftP207{tu-6VjXd(fhCP^u+%08@?;tWTyw~_(vC~A}hFq2sa)Y$E`ijVyA-(0NgN9 zZI<|y{T;gqS29C=h0>tKV@e&ULV&;>6|n!`t33R@q&G~@lVLeFm44e@PM|9vd{+&D zbo!&I^sg;jvTRB1E5b?f)h)oxo<)#e@ zVVb<>7GV9Y=U-itIGib+{FPj~h9u8cUPWfoxjI^zM+r6dYFfBwHvL;E64c&yxRi!+qjbBCzCzwGRH!e4s~=Pz#ZWui;UGtB5E zDdb>+WyN=zD1w|d$0O*5_c+?!R9Ggg;*^VqQ~XHCt^pWcGxi{!h+`{g(E_}k=dc~T z;((pXytT9Rk)dOCyA>1b{k;#J;f@iC33;H2A!L^Y#@Wo*ZOIgaEn~DJ(KPwwR~?j<+ttPy*WzE4 zB_`T@ijAmtbZ1%10p({F`V}m%Vm~#EEr@cib{Fvm*;-}z2cc>H#qL!z20a6m@{O}W zDz6iNu*KL!=8hO1_M9J47?)h%yi3z;jzyfh)h@uG|5pAwEJRUXuRmn)iXaQyIdB(sMA6Xph3Ky1aXJkn7W_iClHZ zc#V{d+{e)TcQq&OvdeZ{JGfq+0*lTS4o{kd+>X$G!^ctF(&XiwOfqexBy`_eq@;@-;H~Unc&>zJP4_Wc0y|{bO0=9$3EW66 z5^g+q4>p@uM-1|+2Hb@IMuzW&7ER|;c^JwD?a!vAic~2K+gYX;O`=qNhg%U$6U}-r z@jx?HIaGiCU7eb^dj++B$2ggNK$ zF*2L3#0m7ym{*C4zXOio;cJrc>hdoVj2FC$yp?8XJ(n$VValGFop^)9P0?+LiXion zc;Uq;hoxTgwn~U5>A5Bw*~GD>$96(JbFTiIYW}Gz_94Dz0Bg6wjCQwMkRG)W_(8;~ ztQuuQxZ9Mp5E9Pi*eelZq~(*RDy9RWT3X)i1AL%slIz4F3h2mfkxsQmQX**||*if)k>Cw{U!C}k<7M(C4TbEw)mv)1LvU$!HvK|Li z3ms!t62Uqw{}bahq}Z`lU6S(?Q{p6{=Sx30GQ}^6XnhyV)g}+$Dx1d1ll^2?*Ha>T zLmaODV>G-pA^JuC5{W5Ni)cF*pL;(tpEO4t$tjLz7TGga(kZZ}f$^7-Fc^ZPRFA7@ zd%Y&NlS)0tu{c^=DOLM~H2zH_-V4HEs1Z~I(G>*T!ssYV2m-WNk`UPa8`WQ;WMBj( zJ#5j3Rb|0JLUqjWh0*ag=4OhT8>Np<=o*I=n!V4&V!|2`Q8`d}2?FKXvW_Sg5(_Q5 zX@p;a(f#7@XX$*vN_*%KyMk>XKQ1MMpolOrzia1d%lNkqS6!<f{qKAo1HCI+;pqNtub)%9OJB6kkS{FHxkrEj!gC|4qL-`m1p;s1AqXyzU_d zv`jRChhB?_ZoRd)ZcU9vuHQ(vt7zetok8?&R=a8K;Dqfa$2QQVgGi1EOT;6?!V^q0XFqF>K zcXHi@Uc}}gTzxOh%Ig}Ha~A83U(Kz-ryhmjg|JL0Aw_BneDXWxyHMqmNAjpvUF;C+ zA)*(hSyWeSissKwRUcpMuY;XyX<5_I{VnY-jbt~pXv9+}0H$E1>gwJ{<1rFvCN-FT z7{Or*IAV>}UBFRDt@1zly3(0jcN`~&CeCTt3v^!x=9|i;>84ljQ!(nl1HHT2*?72k zk~ht7X2_jTee${=R{;hb7bd@;=ms@ zTLjpjOH|K=HFq|$m+>7>_24&jt;T3OC%d>+CZsyxo0b#H%dS5TI0oe2=5F$7%Obw) ztOW~KDTm6ay6C(#uJLy5ih2R)n=*xwXMn%38(B2BQj}c>%XxuSdfV`uA=%C4xr0GR zC;4Nb!q0uVjXhY=@>vnO=gTq&y4b9yq;=YQGe-Aa;??;FJ+CD)Qk%Uz5?h~A^2^;G zBAK2$3Prm`0D6Z08ca3nHWYYW%UjF!pf7*dv2fxs%y`@(u2kcN4X2|5<$@E*BO}$N zPL=_nMP73~#I}axj+Bn^*x5|$PPq4ak!amdzeg{+@(Pz4=7Da~TsdYCEK3}CM9WW` zVi3|QT|=#8m>dRv#_;1-6j?e_X1F1*eG3VP2#?pt+@-F6^2K;PJK8iaUY*s(Q%5Ee z3G>OAf>?t*F}bg$mE`hRq#XqxtZ=USVsmFPXGB2YjC z!iS;cb^;H3sm^_Nt?X6PUC;emBTJ+vk+$Z86Ie!N1wb=Ps0#G=F-1K+!hALPkAc;L zxbZ*cBAp^07xnA7KefC=ZTL-OD>Wjc?zs0~T^E^!=an?bDZOtc;$2Ps(y`wO`j&j% zQEEy}w>Au-4}it(Y1fIO3%_!!&qf$v%c$p;a^ZMz{rRYjG=-s zXFRE{<@A;t$a@3~`K{wYfZT;z5NAvkr`v4*)AdkRWlg%J2-nBP#nRjPq6Mvcz-O+A zYKIOAmuOc9d4f=K%V*Fqg|9Ea(8SDlV0@^O-&%IU_hpp&p#+%vYaMvMQ`f> z%$)-4loQIz7;HH1Zegw!7lB8;hl4BvIkvKy$EHO$O3RNa`I_cI)UnR4RAn%xP zc(GlIl1IYTJ&5@_*Pl=eARdmITRJ}u&v6IbIgB~$?;y%9!%VhyyefyY=Ug0*0NW%M zv^=_!EPl2-0(Gex@L&V2H83f@MsWF z=8!qC2LT4xz=*K*^wsYJK`(_yj8?elZz|JwF;@8gf@qdW83Nl>enQ`D-NN^~mvG{w z6$NXwaxt1}J0=zi2Zzr2nnQ$S4iE+*lc2(8h~Yep^Yq|5KDG;efak@D0+Qhv+CNHFStT z4DlB5^7U_T#sh%AtgyIV^zr?IA)H6^BGl8k%>K=x{m$Z7mInSd>v8Yo%QD=VRw+-& zH2*B90q?ho`53lbxVhlpS55@BqJ4+oJjb*0y%?4|($oDdM+)L$BZ^UYw_Qv8s)8LE zu`tyxZT@J0-LI6BmpnZ1UDo9AIzuSRiP9d40J4ozOj^Ro+AnF+T<0hd)B6NRxt|m7 z_R4~Msr@T>dW!^#RoOK`C5tTA;$NZiuliJf9fJ)T3NLrPQ9mpRCdAbjn%H)XeamAa zEwibNkOgzm#jv7q8qw8QC~<7uWo6@Vxm{S}m3dbf_Wc;%WjpSOo!9q9|KF z_o~d!1~KWVv+2*6^Y;3HX+(IV!w>gWG^Ei%{MxQDFZhR-d>Z%^gWuX>HORU`!v!Ld ztfM2c0d0jcJwxq3q z&Hwsf>JsTCZY*}GZC}pDj$vtHG`if<)?7#ALANqGSAli~v!-_DyZG;fr!*Ztv!}EO zTn8Pr{CE_(Gzl>EF`fdHDb$zRl!MlN5}vMrdv4(txhYR4o}s2$lXewOh4OuY-nxZ_ z#jGhP>C2a8P%sLFZYjWktdrUTe}INH%P72?Jd8NBuqk}U<1HAye@~#eR7f?>c5tZvRC zTv>qlun;IV*{ldP43^Xk8+8gHI+?tj`^Nrf^YBytuqwt*@fe3Q%sy{ZNBfVka2B@W z%%hf0Q~>a(O;VfO=_OWtPshZKnep+KU@13+931lm z{PCKm37?87PKf`W1A25k#N`!!6zm&|j3JDaDa&%<@%E42-&$RBMJV6V z@B@3TafUn8mAo@J!Wu;;f2~ObXiG_V(qI>CS`-zg-huYp+jV((qQn&u@bK_P2pGr9 z3)yypGFx?hOdIdGta?^iV~K)wyY)wP)|lviZmTf?WxL}eaN@6VDDM(J{z28c+4>Zyml2GOI=> z=QF%{F;}#h7GcAwlZU}$T8W3KT5E-UlUdU+jwx5o_=~M?4|dIjIy#t9g&0 z?o1L48_oavC#Fcr@?II6Gz z`eKOrwvldYp}L>K`0)q4XH?J%`y0xSK2@Nlc?zK^ZCw}Mw|1bDa@QZyg*L{~Cf~x5 z>vhgC@S9}L_kl3O@xM@uzD9I(E@-~@P*=o0_s)8=BL|S%Qd_)f8+a= zy{dn^MRK2*Fbz{wATeGquJ!6`Fjy=G>LnXyZcz-`dKC~r6qmEiTeVzA zgvDLiNuZ=`zooj}`nak}uz<;I=DGGL(?Zr=pL;6#xp{PJV5)6gBr$6#tS}GzWLYTSYGiHTY`X8-AekiIn<3NrA5|{E z{*r|+eqY{MQT#^Z??JKr%Gns#wtV&gep(+e5s)gj_`dK?Nlx8~PWk49w)-Wgy6hfD z(RU=h`z1ZX0g4rX=2|&xH2OEqF!-5Vh?yL{pgKJ$ah6i!cCnh)D!Ot`UJKffbb@(n z-b@Qiav~JZB8#`{7a4n3v6=q7!RLc}hjoe8-H&$e5ye_2653-A`A3X!3)lV8t80H+ zO(GR3FCCt?AI+a6J@w4v^=F?8A9-xLF*N1s+tOsbav3pi4|b3*tnnPqcCGXyEe|i_ z5{*j1w)x)%uGSX`;5jw2MiQNA$K@oUQn}rfMsLdnLQ2G| zf(abw8AuuIp(R!UCw5DW=$O99W+m8vjH>rkEm5|IcNB+M`*`#X`*#@Am7Seto2NST zZ{USB*oRA}4K=PZA%8oW@8`0+(czu9lvyQP+ww1-3X?2YHD+XFkN-_wlrti&Q?%@w z;;fYKV|uc%nw*`3!|`~s@QJxxfttuw>gJ*y<&1Yy_>6<{qTe|!+?{?$@uuXALMen2 zj~hshB9Z%xE!^|%&s2(j6ht|pSSfJwXEee4yT?(|I%4c(2e>H z5nvy>vFhfS#LYm&lkG!RSF3~H3!)srBa*FCPK2=XU=fJlKEo@(bMxFH$2t*l2qJyL z!d6rQ8;e3<5yet+2*No90(-NbpX@|TAQ4M62z~rQh_xQXwu&utxM>s0DRKtBl84Av z!Zn=5E;tp-8j@ij-1e*u;Cj4 zthkFBh8NVU7vTeeT9k&S5mu=@ec!*Yd;{-Qcuf7bFJ+GZH8+}xi~YZ45Uzgoc}d&; zKYiYn^G_fM@%F1TU}q>sAwm!^E-=u^<9O&h&ckOBY1NcSwdRS`%`sy5R=Wulsf2wI zG&SQFH>82I(v{~@gY6>xeXML}bIle9)KgIQ4_={BY1tJ_{Z{fK~NiEhCH(uHnCb zhdaq~h+V>!IS>ql1SgE~Y9QQdDFp@C5~d_aDy1C>XJ#d0Gig9e1T%2P^=Hq;1_xh~ z?JEGM{L82CHiw0la7!eh29zObs$+`P86V*QCneZs zsgclSSw5x?fzb;SmGUgIi1V9H1Igf@1puKCHb?}`;aP;W_9Nz8$^=;;DYcWZK&AHg z6ih)EVL@8q^Ik=jLm*Tn;2|=umUquhVA0a(C^L3msXw|e^rx8*bX8|rp+o8m&m1Kl zhX|Jr>0D{Q8e7drPgsl83=qJ$2yCf7s8B}8Qf6J@yaoC$qH|3qJj+eRs(CN{(Bi-X zK9N8|7}@Mo=(7&7yqNR1jwt?udL{ zA`{*|bg!k!hi4d4mx^2^p~>KwqE?<(M^C>OiL(X56j-aik2&&AY|Z%YUMwCX6k2bc z%* zQTvR8$zc13+}?dIDAn$A$glGr32Kj_F+t)58tXC~AUgXiMC9f?WqW7TC1>~D<}6~n z1BnSaakosti?;c%%300Bo>r&=IJSE~LO7BE6n)#y?^?Kd{>lvwf)cwuV{pj&2mbCC{pk98NX-Ym)YT4)N2MJAr(uAh)27C}usuHwOQKforiv5GL z_;naJXbHP)d2*W|S*KE7l-JJ7P?zAR19!m{f>EvmM=w7^q7g=Yn8WD8f1+~AcyVa# z?;PS{B8nQD$RVp-6*Sl3Mq1cMxJ1ILrG`z8;m;!xAt)f_V6d=DkLrjgqZNwRa9{)trH1Lj-Z z#fC^4xJys*G9U$=Oe29_;&<;3QlTHG37foaF#cS=;vAj6qCrC0w13K)IA{zSArwl- z6zDAGdXH3mT5&gs@0=3PDVxrlq#QI_q>4_4sB*{1#F#v(pJx`=lgxXf&QDjqO;*P` z1$ne0TU+?x(w0ntihfdNbr&tMpLLn$QrP-ONvRh14mfGO^?e4a+&I|iT#>1dXnbLq z|LK@i^Wd>;F`0{l{L1UwOG(Osd365^EIZk-n5f{OF#`hUAe`BlteZ{ZJWF%~ugei9 zZpvZ`ZvU9O{m4~Q2yZ0l`bLUwEX~H|B2_g)5}2;kfVI@+t-g)SP~FuWH`bfR?*7%P zXGk4od4-G|)PBvelO&|ca!qpBu{-0~bdrt55j4iNd%|jQ>MT1pF~5;Aq}5sRT`vM; zq-ar^c@3~5XW^vSt9)b(sa8q{2fDg1W(hkXWm^VS!i!!y*X&~=esGJtp$KX&y1_ME z>9N>uCE@o)%f@p@zQ1L(btR?W`k*$0(s1R;UXJLI8eF z<6L3das>-ul@RBPnb(gnryFHIuTzKzIXd;1nEU+u2&s8*z8SNU$?s9fZwb>3vc{JR zfq?e}3c=`}K^>XSre2)~2z4pkCt0N!60mS*CuSn|8lz8pc6(=bl=U;e8cCg5{bQTX z^qQ8kQJ28kLAaUTW2L?V5ZW_+g?h+Z+ROb!>1$g`iyRw~`aICTZ*CapE~zK?WXm;H#2<8@47Hx$j@91?EzA?#nJp*d z-Q-3F58T|=fj{Z03&z2YuIaBMjZTCCGC37ltxkjxYTXBQm~lYXinxtK&04T$+zQ;cUkz1AV@5}fn~6h>m%#crcul!V=rMl{ z^g>ybG9#Ko2**z6kWV`vU^(g$$Nk8 z@n5Mz-%vfWO;B+6qHH z{S19W@gvwz`+F`IYk_$W3GrFQ4lYUVSovMrE@5zP6v@kjv&VTHYE$*6C^U>4cSx8d z!RKM97y2@Dg{H~HhoG$@QF}2@vZ9ByUi%pi4HExcsQiX8be#F6N7~?7O{V9`NToM}IXQwPTx-|r-GTuQL zI78S_`dp6Q))7_T0Ri(N&SbRXN4+@dw6m zmSF4hHV(r)T1-`u*-PPA#?*c*&hX(v%>|{Xt{%*`n`xUrhnjRD;>xNsy?46bmiU9RuboVy zNlI_oQxIm(jyQVKc+}i#8;-fhl~u+3!-Ht1sou#*wOVnti&*JAxOBA=TlI%9`cUy* z1GShNlfb2&o?axP*;v}nJ^0H8wM<0syU?^o{8(X#_3&G2~ZP~M0c_`9~4D7<+XhSc8`n$dC zCS^Pp>vNPd?9~bUs6K$&nJ#%cn5uYBO0?crMx_#FqABB|@v|Bdc@!(~ZyT66O8wwL z(OSKJMyz$_{Q;t>c3b&fo9?$l78f#waTWDAi-l9wq1&-m-pTdj$@<%mdc4NdCmZoE z<7(JCBuiC3HI>I)scrLs{NjfSY(emQU8qy&W8pP$hv-+e{}4sUh9l#pP~0 zGoM;PcW&+R0=iw0ezX6VsBly5WYOeef>9V6Uu2SJHsLALGmUq0p6!!iYGpq!w9o|~PC8+M5`B0$U4#u|C-5a1TmJ$95u%wmB505M zl6r`Qb#siwaK}j|AfV>!nsk{ejN_|I4h1i34xVJEHdq1GSu#8_2 zj*!LW`}LN06U1945=|oNbJKTlvUlGykegf7sQ49}%sqQ@UlQ=zrZeZ>6cO5BqlI|H1vywj#%EZ7)Bk?|^J_s9Ao zE*-J7jD7B=!cSY~4BvXGd=lD^f=joIt*krc5tDC){ySYcji2V^VPoT@$N!7eT5XLF zpsgr8!C1DG&&a)BD#b8ioIO=KD=EQAMoxzJ6;tdtmdkH6AVe77tVZxOX_Y{A(_}>S zT5Du-^RL)J7fa(TGamOsTG?dznyo|-HtHugQ8nQ${WQ-*w=TMq$VlC?nqn9w1FN3T zYi>)dq~TC{o+SutUp9Psi#yJI*7cD_=|N6+WGD)U>wn~whb7sz&W6^J7;B8CZ|COg z%M&*TRX8B2lubb?p1-+#F_}pfylCmMdV2fd9w`lL_Yo#R2IJ7e5r~NaQs^eg^N<&F zXdWz4`1{9EXAS{Ptyd#x`_Ftpdtxfdlk^e0ezl{k65;lA=>W34-DiE;$H9qHmCNbO z+>iB(&&vvMr5|@uJ8R^yA>ub*k#YVRp&L`7YLP&8d zK`$k5jSo9Xr>%Os+wyr)PaHQFIAh_^EcUZfxGHfUtbS3713TH|mFE>DPX*h+6>uIi zmZ8AG5J*Jc@y?I}aVK~DrQ8x>f{_VoDCHz~>y6Fh;FXt*0gWQ3I60W(#Iwhzh~q@j zc6R2U$V>7WvBt&(d%~74=R+`KOQ1pQB^Jhi7ITsmgDNQG?Gvljf z(H_vFN*z@acTr)bEx7)tE)m?7mlKW&1p_N;maTsgsAuA%oDc9-)wB2UVW~?bi;xq< z&t@1wEIX4Wv$dL9Vj!u8%#KyA%3dteHDAxQtgLg}>Q@AF50|ywCKPYJc0MPSGK_X^ zbl7Ctvq*RYO>4tk{+*Ht=CS@(srAuaBp34v82V_o=x-NeAX_4#z-vgI9?|ZUp};=LWyIg3>|ey6Q~U!w?ZfqMtN+X^i{(v$<)D& zxQi@pv?(KYGno~iE3JDufr;Asf&;~k51anU)GeQ4XCaF2*T`@T9?~g%sh@5D!HmZ^ z3dFPD?nif>hv5A?gn6GYgIGKxikTo8%pHH(0VjMC;&7H|9&Gj0FgaZuI9Fs>U+zD_ zD7NYQE6OKYO*ox<0K!roFCSV_~*}roM-p%TQzWR?qgc9ZvMg>p1KC&-)m+flC(&C`xqrkt^dr}|9~R}sku{7wB5N3wqB)2LpOAn_nWofsHyn(;9m&Sirwk$%Cg){De; z+*9grpxWnbg6oX^Hi1>kZ>`&5TvNT5QcOz}!6g?>y#$tu*c*59drCb*l6qRN@ym7{ z`WBfhedc5M<(ewl)Te674vfoZ3tZCN8U%f#GAHJo9*tw+D4u%tgHR2;bM-n-y9)FJ zIpJgf$iMr?3GbCEq5Q5p2+>fm(I`%BpVk;j(v86)iDvq)&_A1LN}5NdRJ_+NjZBo; z6Q|JDv6c9%tId~yT}#5y$Z) z-|OQ6C8^3TQso3snT_{coT`3b)ssq)Ep7kY^d_D_3EJ;Xhy;PdoWC%H`2AkjxsULd z+Nn-w;v z?B-Hx+RQThTv7XA=xBc9%@p#gx)bJ&xh$zr-|-Z9+K6hCZ^KCC-_C;1JMV!3lFJD< zemvrXb8&ulGq2J<{VnpQuI7ZHSH12FO2bCmuv*?^`rRR`b2l@7jd~wUdk?owF z?oyUR4*OHMuzH!vHSLJhX~QLb3r3jtI5LhKPCxojiPy@mzCdIkC)Lf`e-<+`Oc##? z!+Hu{_h?u1QabU{rRDBFwZ~oLbp`ZiT@LKy0Njqr>~tCb!mu5jzY!sa;IInIaJWg# z7fs`jfwjLt=|UbRt}DwBt$4JTfd!Uuq8+5trI{7o$+{ZnTIB3B09zS$f3|FOo(~2> zO%I*>@2yJ+uvi|WwBnw+`GOO#`SXDs+!}I`XkED!Zi5tau{54d*$2kj__xT2)N61- z8%`&xn-mFK@(Uvu9d2y2bhZUnp3`($$tl$T!37mJ{xVhPh;6wAqCo zgk5sjTkQW%V^HyEZdrf0_1AA@ULUm?{E>#-cF82MV~nJsh3aNRzM${9 zJDZ@my!>)B*9EzduD&v$-GGIppFdJroc}XFbmE?~WEUht!=mw#4C^J{ed2+GfVSlI zCY&?ZZ+`BYtm0HSl1}3v-21mP#oPWF<;k12kl(p3ZUxvv0WF?9)AlhvS)O)-nR&mnY(s?UaZ+vwFfeZ}%^>~nl5cfOk7k>G1l zMgHrs^s}5|{78YPYMsh3%RLzJ=f|vV1ob1wt=AvO#an+zV1k~0Beh`<>{9P>Dd-Wa zp7RLj*Cm8X|Lq#@3Os)|&|HU`%06(-510bfiz$I<`z2I)>O3$y`70RZX~f?ad=pgp zQ}it(XYos@*>{zAb@sb=1TEuZhr7U~ZBfio8pHz?TUU$@pXcg)M`JRXoxyZ94JJE+ zj+~u$INb6r#erHg4mr)0k!~?|S`*P1cX14s-rQxlzFq4r^k;eGi%~kuZwcvJ8zDil zi83tA4FuRl=zq)}kIt1j&j*L$iyzT0i_Jt$ciNvGsvZZd=h}BwZCZ_pnR*&_bLyA1 zmeCLCsaLHXxWLyA%rIBRn$Te^CIPKK0#_1c7ZckM2jZ)%{@;z1no>UX9Fd)lSy)dP zTIYLLpG}b%p_gg2?(#m}FvJYId$@*sM}Xtr+Z4B3v!iSLWkDcFBD(7Zj zFsCFE$V7MABEjYXtA!XV&-T8-$u6Cw7Ao>&HzF4t%g(K6`k!FV`JdiTICptl zJslRL{kZ@ngMpa<7oSpIZg+l9R2*YsDm0olH4|1Ma^%d$7rU6A1Cv==&z|1&uuk`Y z=gu>uyDeVn+}VY=5HP{l?dx5ofq5sTSMxvfdZVKzZSC3CX_2mRSO;z(d_rLxU=Ro=4tXaBwYq{cBSz4=zT#9XGxrg? z_PHmhZK8Di2=`m}pdt4fGxt)uBp8_q7en{9)K$;Z4H3H4*(WBoo7^)ah7oGM>{K4p zKg+7KewKkz^CL`z-kZ#1BKr3k#+&1r6I+uFt{R<#2rFR>uFzY`W5usWEM{+kUPo zGeZnk7FAX_Y!7PlD}^^jHjLK?3-7Y-4Wb|b)gl)VDAJcu&OXtN(_@5_RoLPtm)@s{ zEE0{7*!j9Bap?KHd3ziX2mtnpqULrzetJYC3=Ej%Xa(Q3aJ}!VL~<|)=>9y3TE14Z ziTsG;|NOe>VFtL_G$M6556cg}@S%R?u{n~bw$}IV1bzQ#I?Idd_8Y%q@^5uL&l7#y zcQddW@Pktw3DYsKX=lq6;Ruu(s8D$VieEh_kN8_sUvS&{!2lqJuBzOIGlL`FFV%{z znJRNCwV>c&;JXg|!S(Cri2*WX?Lgh3?uX~BD%xN0eqyq3cH8`0Ou>#My#adxlnRRe z0Z9(pKBPU%r3m*bzEiB?NTIqoZR`+{GF~6QgB`2o&PN!En_IM90Lc89MT}K$1QD&z ztk3%AAv0}=M5CZ7+heFBq`TXx`r|wD0rlL^R4pwC812G3=?c}wBqb~o%d`O+ zu2?IB0b-O+AMG(s4=njF+UGu%S+^|NZ#)Y42U_B_Q`uIOcp7pg4zwX^xf$_1)C#vU z2Fv}jQh;jKK)6CbDm~b?N;jfZ0#%q-@$RK?*i0F~G9w%@`gB>u!|(a5g^v61Jryue z9Kvr04+0}NX$r4>FSNTC|BrhQ9}=OAWFZcdoWU){b4Rg?NZ|o5lrU`)()gj(WT*I( zZRlcuY%ys@dCd{ldYgSgc`M6#?MfMZDem%V(**kR@nkOB@#qAL@>|vQWFfuwwez#% zzB{s+8hz6@lrxP>9~Hy$p6B4y+=t1LpE3OS@}3R*v$UN|Y0GziC=))Y8{g zMaxvSM2B=yV;N$eLNQ~jkC}Ri(raKlI|~7fHL2>bC@NQ8Bm$(^FutB9!GTFp4+1BH zx`+~5M-9D=;iF0~!RwcSI1X}u^S%`zEzCYvID`HfbZ~&IaK>fQ#Pz>OVVdoL8rWs+ zh=(|CTHR!jSa)AOs@$J#{J4YXH&|J?@YAx!(f#8%5S<0QmJ0IfC$g+ri`geJjS_pP*Y0g==v#ji$m0!0?PH zmUXM1Ks;f+u%E=-lq392^H%S9l`$)UZAheWihi&pzp(ZtxL!KlRW<4&2H zKv%GLmjVAQ_p4=!@?cT`y+NTS`(G_EOD)5%RL3e{T<^?fGpe9h!m;*+@U8NmVUzc+ z5*SZpGb`jC_BFyyBz9qYccO))hA==|l=+-KAXX1`IqiomWuJB2mY8G1j$#K$kE%&$ z_tulmT8z(rX0#GCU^6`TWeY9&2p-(JVaT4&c{}fD63oGnE3bx!xq!Gx!&V0p)X3C) z=r5YB(tqsLs(B{8v<4F#5xd$7E38V=1`ef^MO;L~R? zzSyR|cayB(whH;t<)GQ%gh*nULd7NY?izJ%Nxn9f0}G_s=MFfMx;nd)(fcYQS3SL& zuAMc&wZlgr*sQuuFITME>P+Q%*ojKnN-3FaeY7(v09U`< zj-LAXg}c9FRe6!Mv06VX4t^kh9L>m`u(J1q_D!} zQjQKMErBPs=}%+Z)!4HP<23}zl=$+g4(F`Yz8Gl~5nPTw`#z;v8r-uC_nyhh5&}8p zsp#os+If^Ry%^198CDwHu#yqMZRdwbX4Hf2G(K3|J_~otn#A_C8h!HG=72(_J;cmC zo8lMk|1QB#ZfLZ{6*DMe2_J(Kv0p9j3}ScI%3nHIC5m2sR@-f|;-;zKr~K!UjKXa- zRJ{V>LQ4L;78an2znt{fh5J&NM(zKe>konfMK^y!)HVW0pn~IB`kkPK*#JECJLIZ% z`%WRJWZrDTZx@5SbWa77wJI$=0O?pM5h^Uxc&Ab&b!kP>fvSIvx(g_H+UfXSKfU^Q5Wb5?pOnNNzd zl!~EInaxbWxkx`+)Sth`pGNm>e47caw&!RUIM5R{d`K(4Sde5VOyV1;nQp$F zMioV=RV}A?1X5e>I$lJ*9&I*q>A3AmLTn%xVAYpWlAWgBhU@JO1RKY;&eibGZOp%| z?^VIpO_>Pc8rq0@!@xs`DUrJ@-ElBu)!o!Sf%`>2;xv@TTR4)R=A9^GZwB|v-WPV9 zwV6Q?rRNdYGtL(j)`R)u~vRe**2av^65obw*0;SxWVomg!7i?4B~d$wEXW7BLka|=luq$V!`I% z+=3%>gs6{opR@XM)+@-UsbEVB&Iq=z3gItXLzd`j>AfioqJXrY6Iau+*YGMy!qij# z3~<(Z6z)x_M70+$TBeOS;~q)$MGZC9C@-%cH+P}t6?Y(dUF}MEa^a#+$)|H{8S4U-+c?d{isRi>upzN)wrd6v&*J?#>M+1 z%y9`Y@^PjgC*lRZ+)$Wpo$Ks;7z&D zejN+YI>l&{H$g$L+Ui!Jbxpt?>u;Xjb9zEwn8xfSe)E7e_u46@#It%rKw-~Si5i3| z#NzAdm)ckrLzDkplwc^LI8y$gE0xBm8Y!GhG_w*t*1uU$8_qkYgAy%f$*k@11J{_( zNZU~HoxEF;FyjI3ckZri9*x!;KWtRcq_|FCcA-`~#anjh7arO0juqar)*6NIoAA0Vh{oRYgy|j|*1oHaS^V#l5m0|`=@Nbm(L~SBoh+W2 zAJql!$)>ye{wg^_kYWB5|F4}Lzn<9CRxA_0$@K@hn3gsAUK$QIw`N#*-Vhdt zGnkLUV{e+$C~=zW(8ZBcEUYwB%v)az4o*Hxxgy0VeZfI&QMwq5Ibba1VPve(MO~Jz z5bA-Cxd@)4TNaG=M^GAtrWJUzp#fe4#$|3n#nsJFAQy$=o!>-L+W3t#Po-#m!Qj8- zb|8bZ22)RR7AkTtdkli0dL7-+aIHOsp|b0XM1i1S`JnfQO(L zAm~!&(+Dr(q{lCLMHN^z5of-b7Z)h~V=e$y*BL-iw|T^H?F~REg2&GVEkWxCh+wpW z7K{(b2p=%TI-6GVKa(UvefzGfz>SVBmX@US0D*Il#F5!z;q75i`_(sP&ik_9bY5Tb z_CUj`ZDMR%a!B1#dw@Jgkqcwvp`7d7#fTfa4h%LRnGw^`Fok!u0${J|Ouq1M@qK!W zSr3>{qy`e21~;jk8#0PQ-NPD*Oy=>u-~V_!+6!h{P;B4}WY;;nH(8&}E*&W8-yixQzVXqiGV;|?j>=)~_0GvACA|au6J|I!B9G!E zpikjI{Q9`CjMy*CXm&6@8#D-^{x0}5*^`#zzwQ3;CLGChQDc_(eQM_;I>wYYJfq_PMc~ z{Fwa&XoVnQ@_f=?Q~WR~dz7+f;9-}rfOXcMhD9FTHy}XY(GudGCOq*Le;##8q-8ug zS6KTB2q(jIMy!9IB_b&g0{-)I^7!MK?!SH2yE47+-KO1@dt8Wnk)VKrsN@T zt;yr)5l|A;e%{Uvu{Rlrm&WCk5J!_6v8xV6{h|DmVBY(ib!@d7&O;kY%zmr{+-d_w7i0HAmDKK`h^@YmNKaF++d)qz1-Db@^?8) zBdndZl$8{v^aO<&t|+ldc(V)uV;OfdV}#D?^XJY1(VWbc8zw+I`~#4N2md<_FbPIb zwhxKmiTg4GYfQTVV}3_bLf zE2-Zl3&-h}yBR5%%!iTIehe8uaj|1>bA+$06K`1BX=7?2(Wz6-%TO%PXW z`5ey!jXkc|-$}z*W=nU%QcN2&MtbuU|1L~elkyt>cSE021=Q&S;;Mi7QR7nbg&^=K z(i=?z6C#jTxAkYa-35*F7N&KJ_*?pr^QuY<`c6@W8xdEuWx=R)*c@leJ3O4GzB~EM zL;rPjY$l%~|2k90#9U4`H>4`xW@bl9=lEN>0Ej2J{|?D|Gn=#|Cq=KdG8jj&5i7mM z%H)Ic1@#o&Moqq1zD4&+ggX?;@|`;-VnVEQaUEY2A>3$o41ShuE-+_)D8+cXbWsE@ zikxMZNm3mkW$NjEO6wTv?|NrCY5_btnG@-V(5H-1^kr+)4@z2J<*C=nSHEEN??UxN z>k<*w3xA!6KSY5eNPl&E!;I#gf30Uo0+xiHRI(<_#5WPW=rfi^w73lEmRbOVDIahu7<@$vPnz`O>vBm4 z@m-a8$)=-u|LZ2dFpKH>kergd>)KAYVxBIug65lN>0`;Md#Pu&I{C5MyKO`pu&k=J zc>GN1Bb`nfY(ckH`*Kp7d5!jV4$VNaqI^5K^p9{a)DK3rWzGO++a*!oYGLO>x|bbp z=e>Ez`F$nA_kBg?bsbSJuCztVD(rwmCxb3=;Ty<8HgqD+*b`qiHvD+~)(7fNsiTM-CcUwnBsBrK?_wvqkd3osMZsE>@x7{?vRwhqYHU_WsW5{--dKPSazm+0W%lNYP zC5Wzp!IN-z!Tvd(4N=kslssNnCp-?>HyAk4Apncl=UZpX*)AvtX(w_c0M zck44-fs$Qf-qwo*2ZA;G0a`~hU7fO$+v-$=$cQW|YYxB_E?oOgmHWyIGf0AJ8mu|| zSKHTEuOO;;6dy8s^NRY=-Z*5e`a9+_J6G&I7u?t9S?8C#fv0Jg_K{5ytR^aW@A`-sto$z&bfM3D}j>J#(UNv(Qbj4`j-A>RCfx?JsB%#JB75=z^VAoYfoWHPX8Z4K1?{lC=o&fN+Umn37DxaN_lsOjT^v|rL7#nZzDM9RyrV;H(1$bLr14zNif=`$4 zab+IX`5^NuSYv8%mRbAyb#`~q!6;VVT-y|xI&Thzm zje>tI(AxNQVtGLkX*7J_@7nC6^v068LJ52r$WL&;c)wm(&SvSAuqgQTq^$RMR?JUu zx)seS_lSQiMD2aQrA3r_d-;fo6#KJMUK1-0w7=w1&Y$S{za^X~nv#Tr(Um=6{n!T#$H8+Ulc90a$(=d{lpBsirM9o zZ%LX<-(t<6v@{MY50G%Xg1jjYR3d(K4>CUgjjP|j+3K;pFBSIZ*8_sR<$d3E!!TYD zs#!48y`9yWMkta~2MODU5voC*pupY<5g!w7`|_tufdNX@kTN@Q4ru~9X-(1ZNLIa~ z#I2xY3!IE5(uXG(zyLiJgONVi^y1LL&O;Di%~IgbLpylYxHR^LE+_^wJdSCihza8n z!M{|%F~+rO?6k;Rq$JcgWwewLV&*_|aLe91T7ths&LH8E{Bd(epl)JbJrt5b--6lV zp=#H33*y|j5T^pj#hV#6u3dX5Tp=Y(AdksS50-xH+Sh)P%%ym1IVl_Ov@CA=LN0nm z?)ao+40eV@O0A&OvJlpU{&L7=X^_gUWEg^-mBCF%c`|j$WDreuPGtK2=|SETkZ^a} z4WS_u4BpxLgF%5K29Hx=TrDSfrBocneWsEW^>e^0YjyLCz9{9S5M5a68qy`SoZ!~D z^D~fn+*K&ZNVZ(JXtp=%iCK1GYWb_NeANaU;?^KO6T=zZZuUH zXnw}Y{Og%*e1V;OzPd{K4ce5PzUgQ*M9Zhd1OCS4A*npE*?qorCio|XMVmK>JSWv^ zPoaPjXk9X|cMBpw&PK)fZtTZK0FnKO?gcv%8I4LXrklWu!797)a$ux?x}KE(Ehhdr zb5)$Vm-uG#k1|Ltv_z;>WAYTo7aRl&yBEOu~uw z{ZuK8&ppvYLo&wu;Ll^vjdq>Vz&_8~aC~a1_OpOH4kQFU<^}k78&M!QAX}6Og4h-+ z1khga6;Uf)HPvq#Z)=$0;s6|Ac3LwEH{Fp2!(6kMt$DxQUqV7n>EP?f!9=fAFu;7U z0Sl2&kQs2fEQ)<{ZH@+H7G{bOHA>ADTRt{Iww~>jU7pgvcFW8+;>mUR#@)uaRn77Re;UnA-u;Gc=My4+7XLZ4XOquKAW&Ita4MoxkY0KSbwS!mc7C_ zIRV@X7ROtSVZNAnSKO+BZQo!MvH@!Pmh2nYN`8DRU>9j*3|0NC|2j?aY-8cL5U#W( z2%k13dcb>3_{@|5=?0b=;@VJZ>^xSOtZxC$(w2zVS-I9vuxIBdYbF9(Rzw4m9;Wg& zz*<;(si^JPD&q8-im(~iWFHZs;t_P({vIEfYp_oL(==qJ-I~;6=-)H~C z;z-92^zqOhJ(`}|=oH?n2{E{8Jux!!jOMYO*_+&wc6A1+?Ru%mc!g%#qQgtsj-}JfRh~&_SA13v_llD>OTF zs#a7V&X{I`$N|*?sn6R3qpFCR$d=hp!!e=I%!5pPR(fU?gMwhtdx6E@%a<%mGKZD3 ze8lh`RjKXzo}iYa2fsU$$&DmcTBwo0X^T98m~=3lkF={*ai&3vXqAWA3`ln#CF1G29e&vsrOc7^yj~Ql8y9Wl?Tq zY*6iTxuG8lmcu#78D3fIv?0AgnxjB}+u{s_jRen`AhVTuHuT-+mr6tZI9?VNyD9tq(X-cSmRKXF+Ms@$7o;btNRH7R(5R{Qoi(pE5N1t+ zaH&~9e*T$lIa;!Aaa+8|F3r+vUGkS&6HM&ftkw6;58!k#*Q4isCAx~m+lc`DphB9_o|Ak*Kon8T)DS)EyV7^ z6)D3~zVX%u*-BfDf^pQg^VXJPBWfHM2~8E&jR`FGJrA2U&Xsr8oT0Y+3a%h^{Zf#Q zz-dywRT#*~c!`|^L51|T&hs?1J*#kcNWE-tjog$$UGZQo)FH`?ay)OdDteo&^WX#` zga(3CCadEabTRgq7j@V6sS{6N4qW8h*?Luck`K=WDQ3b|LfCaMrxknI z!=O~+Xc?GcKX1_niC+mNbQb$r+;lB1qiP5+<(+&tT$$%L1Rjw?gi{96Ch-jv36iRn zWlw7CZ3$^)4QZst0#lS%yJErqRO08t|h)}We!sR(PB}g!mlsdU~1(FcF+kF|HTj_BmwjE84a~ycV zAj84p#vNpeJiIw!vgJ`4q0PE~xVdbzg}^H&B0x+1%rw!dAiJ<9-e1VHL3?xN9uHmp zeLO4YqWAjDDS9e_+LA0asrkH-8{CC9<$pz!ein)r{+n*=&3VTMO``Z`ade1Qw9QY^ zbc*emrgCx~$xy*FVJXOPUp!ckjC?=?;&|*ut)e%Zmz*|qrNR>*_vKJ`Dpu5j@o4tM z2f~YNS_mN7WEfzzs!+?&2YzZLcX4^3t2V}+M=i;Phzc3r^a?RU5XSK}WRqu`e_)%A zu{LYS#j+8x222O>=R;rd9ap?7;?w0kxco)5H%C zH~`^zjfMLdUv_bxu+K7 zn9#XiboJGrMQu5DbvrWy?c45OO+$$M{m`n?*0Z*q<1&WlcCFLmr&OvUj$nC?enA}Z zcx*cpqDOFx-*LjM(fhM>XL!zbIJ@VaTNQ470gaM>fJ?iQ*JIQ9j(AySG>3D553&a- zF2kc}mQqT5@62A8gM|qOC*SMuzbwc9b@IVXdvun^ZonfNiC~7PgloAO0rtl`_RO zCh9=h?Q%NpId6DEo z#-014BqjokCrYzNv$<0@1PbSBkwZ$?zRx6L&X##aFC@&v$?gQsm-nk&Q1Zo{f#WdF zw)Y^}&#t3%5+rq!?n?XuhV~kmA*$LRbYUW-WEfJ)hMBS5qfHA-xvjr&yU9-^@HkBm7q?RzzEJ>W{u< zpEV%Mo|s-^@Mue)-8rqT-bd@{lVKQ@U#$Hgf^2{8@QpI@ha<-L$^9o}7^y}K z&eH)L+Fm9otMg{Yio8Q};-Xkf9t6;pgo z9o}6$plTLVRBH1U*#S2>$X8VuHRx4`tLSikxh5^ryQK$jB6eAu2uFh(DW!S9(uQA(O&fIMDC;!gJ2yXIC#F=yDx2`NB-@m8b|9!XyAD zDsuR`=fE}w*kkeEKfn>n2X)->JLaU1Pt5nJz73fl2TEk*JL<%g%AsPprVjJAqTWlt zn+oBi2B1z(P<)Z``Fuj2y-h}^%s5qJRzZ;pr6eKEb}^m6zegDd3UB_(ZN|MmQy^^} z1NQlQzvY*QXI@W=pW%!2k9jo=;t{$QuoTd!5#bb0@KuH2G>c$@25qnhSA&$G!3?69 zo5q+Wtsah;jG;q=Pmb4W!C=mmlBhr1gA#Z4Piza32Y;=pJo?%Ov5qLYiUYRIN1=h8 zg=~kl@7@5w0K1;099|-5{_lW zeRPGna==*4(G7V|om;3;5E`5?@pEClkU?5V9gm6cxgL`20S2tb_C(jA1;d}#c&k#I z=)X|}ljexr(Q_4gA#dqkmFk{is?uzYY{8BvnPpBn1#+L7Q}E0z%&COAo?uyMx>;h8 zew2@NU~L&PnD)&jM7^O(9XA+Fdrwal%*BB#GD~NQqv1^96gH)n+^pH?Y?!fj=a-Pb z1fN$m>r3HZDT_3Tsm1h^^h%b zD=7}stEatUUua;F0pRomuXl2>6=MJ5Ipk^1@ImU2@=&V=u2IwO3!}6a-yxznwV;O? z>pHRf^^=^O1vCRgjqL2~;N9+GULwj*;Z>B&b8$bh+eJ=nSA*!gKzq4f z8c!v?>AFGIFI#;@Q$dIPnWIY(9yVdvV-8z=$%S9^@Wi5GhKZW51fguTkmoKq1?UiM z#6rZ;*P6=99bI&A}(jo z5sPGTsz-H^E&Z`}<~y*?7(WOY{0F}t9Iu0CG0y`Kv$U;TajXk-dK;9sHN#($QxY!1 zyx&Cf4w`|iLyDg0phD`U&-t&_P znmO&#W`fE2pyX`%Vra$D;lkDqa1w@-GU2H ze{{Vs4$hUe5j|B3iIaxMi_?^{eJuV1t_+BdKq=gj)K%DP7;*!3z0TuQSW!}(#LaDT zlD85*yn3F?JKiU^sSfan^dVb7|Va~f_3kEEPzaIuHa`X2R)0P#uIH2hqZ`J&#AM2od z+93bs%#9g?L614OjUsk>*N+99!~sPP9CODGObtpTOBA9l>wgM^2Lis}1PxRAzNQT{ z_TGMn6gzZc65QREuBAFo`RuZcZlx@<9M!0|53jyP?gu!QZ(Y2k+izvTrs4}@R*6RW zy?-AJ@{<94GnraUv>-zj_{+2Cd@ohZ3@|*gU^B^1DHAQG@_#+O;4fmCi!vA+8p;Ad z1s`%8ENrc(!_UH zU%7s)dH~c{r43toY==@PTh%Vp!5P+1w%C>Yu63}X7IUCgd}Pc$wH zTBi`#9)w;%k9ksR6vnNp;+)e_=x8t_;p%qdeyfhJ{ZIb>R&63~Ig7t?J~MEVMX$?6 zdt~q)fPR9kO2Yy5PT>8%;M8_+Yo{%2%a*Ok%O;}UYSE6=2ZJY~0{0(C6KnEv+;E@} z38d{9u&yG7N`vQ-zWD>8N)S=)Rj+NR#c+PqI8aVgubW+59Vq{YQx19&v=qV3+ZmJj zuZ#p43*@tODM{qU1fZXsHB=%25^IY+E~b@&UfTRe)rM(Q-QLxgv$nGf7qO)wmj&ch z&Jmn{%^|`8OlDO`1DaZ&mAM4#gdIZOq{UsEF+fsIgZZ(L zy1TNY|ITj7URN-(r8Aa`-Vt4z`fq^fJZvgaiR{MQ3o%AFJR$xQi<8Zi6eB3bXSo$P zay4loDj)<%7_W2rF%V0rh0oM*MB;7iUU%feWKq_yj7mM}oHpImFkZ}B!=sppLdnyI zRRjGLYSYrk^Cn~;Y=U7vDToep7;Dx5IknEyuo?q&fd`qlo|p+k_5;JGUsc45P_Bn> zl7^_yxJphk8G9@j>)F^xt%iMU@Vyx}+SJ%#Ot6XdFxo5lWZmwXn-#3yo(3naw(~N8 z_HRfk!ZhtY<>~hyMh1^iK66-z2}%Tsu{fUKj96Bf2ry@Znd8uwbE24hHN$5u8*eU>P<@UpBIdsL}F<2mzR9N{Hyk zizrQ)2r>HpYTL^oI2i%mqna`osw`2ecq>G41lgFUM>@4as=)+Nu<+)7*=@qqA`=l# zi1dN4396)*_9_`}aC0Vi^rM;fvl~{*n09B~#NgOx3$2Jv3Pn+QJszEDC}IektuiY1`a7;+CwZ#HDfVbchho4zePYErPN7$qYs0%#X1;&;)rS`|uReC>KIO)IZKAyCcnDST z+4}{htTk+99#-CntQ0AOkan)+{dL-^ZrY0q*r45-XL8e)mhCrD zTov`GPT{ideWbHhqZEy{oG)I3wM^9E>d$gOy2z|MZGLCplx1?C>kHz%MYZ`ct=#bU zt+Fayf1*@mZ9~uF>zZ@)y&v@EfBtzjOO-8Zg8wVJX$xEIcCK&|=)-E8bCNK!X#VFA z+}PfmKXKQ$KjJbfvt>9vM~|zvNVLCx~6RbgWIs&XW>x=BUI%qzsUe#9dD=3G-Qe&5+dYLcZwtfJYvYa_S0Q8__GEq2C*^iZ z?_=C|D9lQ%;+n!4xO2{nIHwIaO|k!()uuu}O?WXkUMvHRo2~3|1M&su=9On`BN+s> zd(3`x1w{8YC_R}gI3ZDtrcR;?o4l3302dnhE6^M&u9UxW^V=QlC_t9K8&_3-X8h50 znyU1iPoHrsi1lJRI(OYM9a>lQ2Ry6)572+$KW0Xb|LfrIe@#4R{olnHOw4TmjSqhl z&#~E&eiP68%8CGU`kzB&`xS< zTPgL?7juw=A5JmPCOFNAn5H-{Q(fesNUZ7bIY#NE1gWQVp#*&<>Z{R_p~xuZ9x59R zm!v;XY5u@4X_D&yiD@i#A)PXult@W&El6QHW@Rc5&VFI4MAmJ5bWkAkNJG(AI1 zF&)hqFibHi2JcwA6p0i0A~`^OY$M@9L=$L;K}YeVj&`c1AW7>HQ>5wejt)&DHI|Z+ zObg^KxRjz68*gYfq7W|Z9t9vvQ)5|O8dEZ|q=lw=kXkaI=Mxw=5M2!D$%b$Sd5loe zYRJ&=0#QMZ#4&yyTA0vKOY3%z37c}#c@4foh7C$Fp#V3OH(klEb*J$j1}xFh(tO)B z4acZyI7O|U{mNH$xM8OWG98y}X6^o-FRU{xCuGJvC z4F3I2i7}?rPM;zc#lS@G+elMG(cm&wSxmqgSQi=ws~U`0M62%g6{Z^BkCaP@l@2En zgI>0cLKUV54(A&oh;|E7PmbXYFe;v1psFcK0ru<#{c1d@(9ZV!#y1w&D^MnEZo5#1 zV|aAvhgFURc1UJU3;`%3Up#TVCmJ2%Q_Ya*?{6VFggl=2Lo5BhA3D^Q=8fiED!Dq_ zPo=)f*7k!d8-rOqx^NeKNJHl-0QeC3&{njQe z8jeb4)T%dfWX`L403WhNJjrMVn2@*=5M!1zFa8T(JnShJm258S&@>xqzN`c;WeF^g z8&P#$oXLK*_GF?(-FEKGb=J|LOQEIO`?LDxuq@l5wRRs^smB^!d-+Y>zl@{qRA(Rn znATj`M?CztjC%L6868Rdg33Yi(F0_GCa^5n6)e)+Cfzq|o8M|s$T zE+FkAOvMm--fUZH-jbp2`hJgU)BL^ayWW;MoGa&7Wh#%R+kKh_w0ptYRg*p~%UzRR z#h}3Ft*k#oHaaaHLotHm)aO~xkqU;BJ!wH3mUy6Xp^jtJ9;Hg%k~?m>wgi_F&_Y-J z{O+@ndHsNgqS*d~hus~=aE_5AhXL83B0h!4X$8r2GHd7C_}9esabGmE`1el(tZKg0 zyZuekyJMm2s_wctb8hOo^usCmA4?61Z5juwq!w{Og1`kD+yX94|6p5D^0 z2?p;D-ufMjA}eSfLdpdB$Ltl4CDb!1c74F?hf7xdTc&GomP1wM4Z#I=$Qdyn0NvW6 znj<`)x3ghC5a6F-Ge=<<+6^A1o%25=TR2Ev;AX7dRe&%s0M>w7*iBESj=x>8badCT zbbPjj(2DR>we+v9{h>X5owsHpw`lrnFxxZ0W&*qjc|=A44U6*;piDG#+xT5&O|{GD zKYuO$z-I+|%c~-pjVur$>Vzf&1)%TF6$R5DhO=;XSePfjIU`^{d``cZ&+h&7CvfIl zEgQLqG(UCp^OI^t+JPN9wb_wRt9A#N*_E*o1H{6Vq7p?56M{$?0dgRy4MBv&^djCX zfgl8u12Z)e)CPY+3xWnR#{+Fw)pqLf)m2(Pgy+&a^t}6O>&~Rj9F1wAklW(BKPckATg;0bNQ!*`$I;CTr00^tN$ z6Adile|VQ@%=(|{Pel9qqtIc8R=OgNel#rOK^V-jXlDe}%}1lSS9zVWXyIVs&6=4G zv*mcSGKE}q--U{;QD!?PrxAJzcV>qR*W4K8ygM~wvgk&5r;V>+f^d=K>+#w#fm!K_V|I_7`dgiW`LFaw@~*1L{5DmQ?RTzu0;FFgiR-oQi-u+Y zIT3Ry=|~vK6%7L)d`??9!gD2GoyHdYV$;th$$q;bEFImeusQ&V1~dLwDL3pMBR?V^ zSU0{*ana?#S99VE-US&w=s)o&;P65W*tBwVmRz?-C&@u;rGPvF9JEwt0WwS#PK>0B|`0QwD`8A4R#_E3~t8 z`3%HvAjl$vjX+R^sIG#R?z4v&R0peY$oFu$?cs3@xH{J0s~*UbcjRQ=Y7>SBQJoAgj$c*Y?^u0&XsZKXVt)O zMk?VGfU^o4_UV#Z-PcCcA#OX7zhcLH!K-xD7`OS9NrwbF(H*>{wfn9xa(Q z*MNq6NMT2Y~V5p;)TEcB)X-HDkf~JxVQsGZ8b#|55=QWC>|E=$^G8%9lqah zA37V#`hrr`@_PLI5pF^GBb6bhz@448`#;Vu;uq`Wv#~SvbDgbkzux9K!FM8m^mFl3mFA>-9BQ|f>_64?^UFNGCs+6Z@dsjF=N6c)Q4NQH0FM$gUm0c} z)_lyNP8p#|Fw@KYg{^n)Pw4vs!WA>v2gVZ#s*MEC2Lgur9nrX^=P6!4aP@l3Bl>L& zKytsMf!%2x4UENrp=mRhs{(D2@;nHEQKKdWbfIBXAhr8bo>Lk^{dkSU*1~pb zOG;=^nE@DuG|xXs^GTq$6{0?U_~R!S$w^8qW?ml3aV^FbqnO8-&{$l`aiHHLap)sR zJY)@0z(Fz>A(*=(kU?oGPeU_mjs+b45TsDDs6t-yl~1)Me8UWZsB-b3h%j%3|=u!c>1;K2zotv_@r zgne-MpPF#MSvNemkaP0BJ%t`pbp+6f)anyLK*R`uz-F7CDdEC0FBTFoo^VeIgvvYs z$cdM(Z~~{?uwdAv$b7DOp<9}NAS67=BgzxvfT!UnIOYV*UJkW2uPm8_;A zE_Dxt%-KO<>(Xqk{sU7yJl>391l(D`@v{J(}xofmA3o zyETT2ZoVR^t2p87G@_F@Hr`Xvuk~Y zRV2Sr@*rMS_>38SSd>q*_m|B|`8{94yPYvh2$vp{q`--aISRe%kN~&$T>@)fuT64$ zVv=zxiYo;yj#W7@u`~4DzEXXk6I~FKo8_Z5Y;s*tFmvIv7d4PXX>`j5?rrK?7ot)W zB*)sLv&9t$+Q3k~D8CN9vHH795u;b{a6MxtWDg)z97^z!d{r%pST-TB?l!*9WC?1` zOwKQPK{1YiTLk5LVjQRFv5y=JI~J|OjQ3ev*Xp4;0C(pnT#M@fCJAr`1o zG`S2XnglsPR;FM}BK?bSngxPIcVC+%10j}=a z3b>C@4`fE&E$hPoE!JD7!(>@)WyJ3eWjYP6S^E&qBrmE@u6hc>mWsSnR? z4J@qreg5-|TfHa5M;R?nX|$(ya+X(}TMG#Gz=t6d=jc#WLCRGVQ>GfG6&1g*_CXdE=CnOX z2VJ%0NhxnO9HKz#uv1_pvks0Mwjd?ZAP=CEDXgVOXTPR#l|hxbAswpHGBihfW*kI4PO5=x>5yDwh>OGbx1-r>*3dtPiLO^RtkjSYZ z;it=l-3|_{7up%<3_B90?A+hF?w96HP^`xfK|hPVO>!I;zpw!w`sW2JR-yi5X$-g; zo*0ym50g{xUbRtAz~1zSXl1N}h_D#7@TyEv^``~a z5y#Wg-CAOu8?nBw_YGI~Ds*oo?Me0O3YkzWaTOswslh+bhT8sytDw=<^zx249;uN+ zkR-Wce03Tw1{e8~8fh=eD!*E*ma>FV(*BTTw0#uW8gS48*Qx0Hp~CWqW#K7}O(f#O zT2ZREe&>gL`^Td6!-|X}3M#-EHI|jjt(2Q$@m2yxBa*aoFYYn;mSkl7bLZvWP?yKD5kDTEYnb%qMEV0^oh81l_tJ7NLj`4r$e*uH02ULC9)UKT%e6 zK|3ovC6$s>VdIw`lJ7y?u>R$JE`^&mvaA?h9He%k(!!MdMMlw;2;jE7ImqE+J!A~} z)Pxi0c9Yx_Q7Okjg!_s+vYTk)P(`<(%1_rV1Ehnkgw>dj;@T~hdrfS|%Oo+*KVrl7 zy3Y|gXz026+Io}Qx@*S`ritiu?x{CMikHjEaHU+SKH*T4v=KZM~#!dB#nRV`P29`TgMjHUjdW3>8qT2 z2^GCk%d2TpO(Jph3Nw0H3UD-(d9f1+f%md~+jZ2~58`^*=i_~MxtvxYbCP7Rs1P39 z+^>36(m?Y?NPPS?yZ!}n;z0;{|1j3D0N6@DF*xc19)jm1sWc!fk9;b72s!LG1~u33 zTRG<|;WTqpn)+oDU}Pjd3zT@k_Nk$)BG*GgIe6qNIV9_^rk0dL2JO1|{N3o^t79gP=d+aqh<}=ZQ}xLD4OYc(Uuja-opXVB~Vms;2Q$W3rz%f`)~-{70p9 zZly-N=?_S!4_JhvFEz$CYF|mD7}iuD5_0phh@9(L3n@69+_IO%3mA#S=F;4fO{dHi zXF!)i4zg1^nd24Il)ig^MN?SxrgW7{kVn5w?(~@hEaKqO4?Xcu+m+Y8fF1up?eAwtt=10)5v<78TaCm z@5bCEg??>FDKe+Wyv*z{?#DXwQ@zP!CJQ;be%-M%e>@Tq9UaAR=A|;%*wv?N=4{!c zNNxHXO16|CLc~tek(Gq-fCN(S0h0b=TW*zEx&zfwN6?eD6CEgr61b5r=y;Gev9jEu z{ohD>__PwV-Ih7(7oBr?xqV?X3&Is@1JUBiqk_zyM^`f?4-ROtQ|N4;gMQz+lUUqC!SJ<>(MPLH<_zmC`6qxSx& zFnAyEZn0fCe#QL8Drf+x{`|ZKf*^OAHaJr3`}(J^BB~tB=RZ2hvu}TO>=_fq`(YpCa_|~}7y|SI92e^R3#xXPjb1nZ zMs4cu&(c^C=7s6IY@>zpM*KN-c&wYQ(S%+$4-(eMS%rW5Zu-GTC# zDP3+g{ffkBBK9WV{FRe?y@#j+jBX##u&MDtPscnO_6>{hh}4(ZM2LltK-#q03AGR4}dR#(`}ccBq)8t(0o6Ew8-&+SX^Vgq}dlomTQ^;#fk* z^QSMYvc*z|0g5uB)Nm)CuDLEY<@mU!OK8((Ex-n)K85~_V$Wl*cFt9t>3j0a2^hkK z6OSD3l-E&5p+E9!2_p_EO)^33Gkc0)w=Icx50-|2PPI61h@XBUe&3ud-=#zgR(;ns zZL`0)dUU!AImd9~n*VIxrTd#?vCutfwA<0i!(y}=kD+(1I8mdG>6@8?mtJTdKnto8 zF{K2bHleA;j{FDp*njG^5BR@;7c2As)g=F4t%X@x*#CQiYXLDo?)zxo`{%_js*$kwg?xC8d_tuU6zv zdH4@{c>L|+tzk;8qp9o3HgHJ&h@4GONK>zq;5?yC-?yHRhhzjh`VhFYuQz)AZwT9( z4J+!RyzGYJ2Cu*o{LlmdBh~1B1`Y7?a!uGNxokfdbi z?f+x!8-sHRx^83J$%$>-wr!l)w(aD^wx8IxabldI(->tg$&->%6njcfs)6=_A zHM{p-y%r?}jg949*@h_L;Q2dKjRcDnJQPNcN{`dkPTmS3OIB!BP;?V}%m=dJ!oR>Y z`Tu&8pnYnAKJE zD;9$VtCJ2lNm=t)$sWtW_a;cR_b4hshv|w8PA0K(Hew*jl$&F>7usm>Va{nfVhj8ev_w8 z)S8^I@^~IvG)fX?Zi}c~=c1@2izhZc8?x;sD|&OhLb-IoJYJL^_JL$(cqECGCb>?? z+QmavZF6}dZHX32&01n1F1Hpm8v6(O(86yr*0n+_Dgas|n@)4JFHi~iFK>=B5Llx8 zSw(ehcc%smbBbT2wkhOMafJn^sn|9lxk1+l?q(3bkPRU^AGPrU1_FOGTS)1q$50!{%EK(o95xw+iucbRb0-D_xl|^jc2x)i41dt8g0k*k;f>OU*F=vnhY;I{lU0*Pv}n?epvUTu(4A(9 z7}8mZ2K?1cnhHDaDiaqHL0BkR{gC=dS&0x#eVTHkmd-q}IJD4X8H5uWL6mH)YRF%p zwG1TeWbniI zrj*1Tf*f<@{ix7^#LO;&I8Y5nrq>o-i(Xqbz92Rc33$DTa6_D{7T#9@rAqIHNo`GX zSPl8?WHgJE6rhIFK`OhcL zx$D8K?BO8#7?VpP*7g7wO5e0H+lezaCM(gV4g=IXVBlcg7*Rsxlnijrq#0_4+VazY z1Q2WF_0V9W1J<@AzHaZH6X?A_x;KnjACm|@U>SI^1L`DqE?4Q(4``qLGZN$k2VYVi zsv9Y2z`uLnVxvTLWL^v^$oX=yahbR*Mr|uiDK&|GnnBP-LVFGem}!2pg4?=X5#8Rk z!OV-otYJI{X2z<_fMHIEDB9BlGl|_D;6NTG_k7;z^)}J%MofpPXk*cRi!Nw%4y|m> z9*$N9RcV|$0H8?RUUYY5^bt&r<+ozYIrQ%*UF>Bf5=Q`XnR8sLmh(yfdJV;3%fYXv z_y`HH^q@wHIWlYCg+A{;XZ83Eek_Fs=Y4xTQPX2VQ}^sAQ~|@gwbE?rWD(gXn8s>B zW08JzqEU0ttUV$RI=|H>?8P5oVPQ3212;0Nm7~Wd*bBu9S?xqm(u(#nZTm~$wmwDW zYrse#WcY||{=jFkMIdDLYPUqVJ1EVow>1i^iCI=Kwy9+4#SQuf6Uh1^!*EiWLjecD zex|>iEfG6SNvYL3`y6Ls4rqiafs>N(WOC_ns`t<1b#fX0(;)_{cZR6RM{X58DIWzp z25rU5GHPM`Kq!VqL{2xx+t?T6)4icPb%jrQX+P=Q*g^o&07Pv6%a%D8E&K z<1)b4^JojiWmYEMPZt_?ZP&ufyDT*4FODMf=VBoIuIACsLDg8^pBEp)4_ zZtupjM1LCI0X6$J+TzgJMfP8M`cL~PHq8G|P>;}1EgMRd-;~?Gu!2cpd4G}5` zH0?)V0uK!x$a* zc^$XBwGAHyWm+_A9b=mD766||VRXgXRs^AT<(xiptooeA?usHI+e`n(9EM#6Rk?$% zK#p%R8%r_cPmMsbeJ1F@$d-o(zOKx9dbm3rpW-Wc!GE2C?BCaCVn)v?Hu=1MOubG2wFMc3CK>*Y!G z$P23kW?J) z6|ZMVPLdLFs4)Y!AEhQFoVI}_#*k%n`A`?ZE22sItK$mH2g?WkAM=(CxB1a#&yVke zy>5!v3-lWDQNQ{HzOLyp6}UfTI;@Lj&3l>~$jO87`9JPk?fqZgG`NHszl#AGO`Fem z$Qw2{@Ps3u?^i-17RM#cXOflxL~#FgKA)d!Brf=l9B%;+KgWT zd2jQot~ibRw@j^jEW_pW%_27=6y-AgJGv_y%24N)_C#IkLB`DY zygf4(a0HK#c4;8f27k9l{6sohn!3dozrO4F&i-q@W!INg{>d^mwdf_>)JxX{KC96 zsyj`y(S2Si{$tC>_|1;Qe|%dj7m{q2_J#JPZ)UrSje}=T*{gH;V(uI~%d!|QkHn3^ zuBVS3nUytH+B-Qas&;q63tM+YKGD;8LtAjr&D6z75(NUiA!_fnp-b6C^TCz(kQPIoP> zMsRY72-4hid)c&sjJ7h&-pf*;=>j^=n|rz(oY&47H19cwBM3CESA$y9xUN>I;0}Wo z8EHGsDk}9BpAJLN9pvEm5lXlF)U?yE_op_0=98k2^iT6KKK1T|Oc7HbK60T8TFjS) zqMYJlCnW0>l#xV_^ry1x3tdtLW$zV+m2&SChHWj#d8lbu1|TK~TIH##G3d4nPOAE& zuR^yuYU8va(r4-y;GKDh^__7dA~aATh;caDXJ?@PZV6nvq^1y+XO+9eNkRN>nA_}| zA=6Wnj;-*hEw+C6364uPWUrTqB-KpCF-UcUttZu->8~O>7?!9P%DLEKApG^K>*yvu z#ktD@5+rn?kmv*}w96da}oK&*QL-y|oXNIz$xxQ8q0ra0+uxSG%u5Fw(NCxweM~BZmaFbtHAK6q=+PwkvVsKHyI+G$}{_Y&C-T4cA?>o6cI!IW3oL zS9m00TlFfMUe;?=g@4`*L>aJMaYpIzTW?Paz+(@`-;e$3O7%Cn?j${CGrxgV!e;OO+ivkE_x8Wz zuVrQ8`maJX!+J9Dq+G~9X}a?Lse)L%-Ll1|le1j?$o0Z@U`W<^dRjQ`9Uy@`C;{di zH}&N~Ef$(b^%NF7gwaW(_eKePKmM^nM8we<#9mL1CnV82!^how1;i-)v0(0yA3g=h zV?1Acet*7?TPbPK*BKd0Hh+Er?&BBe`R#WWk1zU#GT$_1nm6whl%HH3a)R_yy-zSE z_4g3jg7?{`GM`$n5vhv2f4OqTV+LTa)i_qb|BLTYETg%{;$}eGhTFJ8>maUcXo7jN z*axLvt{=+_!Y&c+ahthpibpY!{FX2hrX2lO`K&Qb-+tky$`p;Y=xmQI5>zO zhtDBkm8L&u>BfM;ZCFH>yeaUGx3syL_zF)+_==U((|JY?(Cdt*m>?VU;v6W1s4g=u zM=|08^rSv>!+Y13WYNQf12KRnR3|!S3yul0reJe z&H~cCG*XzGscBJ`*m@b*XwFhW5yaBeItxtNL`w&#bGi{->_pbgz6<=1gqFq0%<-$J zrKMJUX$rhf@CHn%zB`(&YNV-tOI~th7m?%AZAUHqImi~BJ>$x-E02=ugrKxmzAx*e zwu3@Og6{AM&YIXMl3sIh-|Si9B_Ypts}BqW1n>Yv|Lp^yewdX-69jz@IgD4^>ve6i zm=r_QU}OBq#CiEj3T*keeJFgIdfz(uWWpw+uzc{P9Nk*1Wv2C~bsJqhDEWO|(3Ffj@K4~BDu%YJ1SL3<3fDhvoqS#XLfYk2vZmc8P-;yN*! z-p@AMWogPq4W^^&o1N5{Pi4T%BVh!{+SPaDV#D|^X#m+S&X!_gcCg-^y3avKGYuMj z+wzD7lD3St2PNm9!(W(b*#FRdJ|jhg-}zVRRF@;affa!|Kip&) z_5ZMB$sFpkjmeduhAZM-Fc+Xgjfbyn&5WXC^N{rZ+!& z1jf2=w5Lw2=)Tgl(h0tO?(|+b6oJ)CzVra+2q!~-A3t6iXBQ72-x5bk+@w8+_17U1 zQ8in1pO${BzRLFELHV8Aibf`Jf+f|Rk1GBzz#LqFWq`CQCK;QW;q&E->YE$CXLJAjOtR^dWAO5q8!BvvK-e0t;uK^bL%}8syk<8 zMYP1p7HkA_=(xP|B=0AVW%eD%pX3FVE!XKdhBOY!C+Ef@b45)ICwmdl8<3LCxmh5g z^tk+n)<(&%PU3OAOSq;*qqp2lPmZ|`N;TBKG`;N@#e^SC{-zAfa~Doo4F-+055 zK;ELP=pnbW%Bn_&7eY}WE&Gn65#rOko-R5q4v;b`VQqI48ZIo&St-)~)pIdwDQ_vFK|MFIWS%@uyTu2TCOfF-xDL>O;7IPeTrYzH z!#6?oU)q=l=mY)LdtzaoC2Vr{ojFCcKTZM>f_jFt>f>R%%F@ho7S{1!Mz8(T-YR^~ zSA+xBV9@TZN;6mnp1E_z7d}HKhQlFVC8xws6@2!x;S5zGymITCMx?4jzAj_&m!S4f zr)#p!TXeZT$63L}rSa?;?<$l+-&12pKxMbPF_XM-=J3YfGmmW0>)ybn+n6aX{{#bl zj+Q^Mmlv13Em(cs)ip!hBJH6p-Xk4k!)-_1B30HeT_ROKV=<$-A~|-6dQPA3_4Dwc zN2O|g=1jUur@kZYR@0rMGVAx|X0=_EE9T1~e0@y;H=(mF_`fMh6;ClCvdS+6Bik#t4`rP4!W7+8OE0P)1bOV>B;Yau5OCR z7x^tyYa#~$2;NPk-W+xo-QrD{+9!3L!MD4V*1pp2@}|v4&P(@CEcdZ5>~Dke>Mnsx zuH|b5hQrT|Q7aLSEBoqTn4$vWj6}GgquJOEls6Mpv?5kd;wCUGYiMqhmtUYFFkn&4 zDP=+KQa}|!$`x}|r`2t%xr|!z4{ZCUSiX?h?Ej1(n1|*l0(1k5(V(*FcEtEZ)L}Nv zKoHjk-ecmV6wE0#ghxo}VZ+ZeghVCBETd83mRQ#*t6<}ZaG^vASI>_#=${W85G`Qgkv$JPS~Ys zKc|A7(Y%V}#aV@iT7L+}pW8EroQ$#(Qdvr*#N=~EEA52FqdK~fai)nR(-B8X#hKO+ z7MyS*D?^)GEQJ7FoU$jva>+4r>RL^kyRQ5 z$J5eRW7_BoWBV1B(=V{e)4Q4$%WXM}TGZ5Kl%#}O-=v0-?=LS(HKh?PQG#L4u;gU3 zA-?$wVTM!Fr4+fG(%gxQ6m_YIW_8AF_h8j`?WqG8lR-FQka?IKrsrjPBeh}5p;vn% z=^+LcOHvzxxjy!$e87SAfp93GKBWnY1cvS=2mnTfu=R(o-5|^(`v-hkUwg@Q^iAE& zZI@`twvKj-ihqFfYNe=TJ5I7tOCBo6=TxYg zN4@H;uh)epupCm23fQpi^y*}EcI~k#Np_%k>vVZ_!K;$ksA}f`kKw?iNm4RgPLM zqT@9{<42&HvI|`PwO7qveL@((h(%(AYjWziu(&W266Dfy&DQ+HD_z8vl|Gjuo{-(M zy1*VB5;IHCViRRJ@R8?|5}_mYchkSXCEHx2KaQ-bfiqd-%%!CYPey!oxe^nqEvPIf zyDC65UFXd8*#B&a8-a}3D=G`nh3lAu;uV^Zj^{}FI#``p7bV0wuE&+Qb+8>0nVneC z{z8c<+|EDfJ9(QVNxH%EtkFqJbNHUHu|V)@patR$LyA|A-M<2+X|~fr%02NkPfI^S zncr#-15@m9>Sb5bfID|S*~?UAkPl`(5MihoR+AKfC|+EoXeJY4cn@Fb;`h1yM3gFY zp1~C4fSQF0sHEO|Q2WB7&nW^xj}FI6co4)(QGpHsfD%q-S&U#kW!wz;QOK>&rqnW<9I`mX!*|PSxUS^Njs|XC0li&DSDyW3Zb=bY2>s37VBJR-lNaEaqw0aNDFVEz!6{%mWSkNUmn6 znd7y^psjEQg4UK$AP=UM7TOc9;qRe4K9p2>_2_qvwbBC=UQrt9<~j#!V?q&X)*>TSU1TAx|64;vZa7@g;d6Q$+EGi-Bl?U=t{KBY%^Zf8 z!LMkFuV-bWG?V@#^tC#AE)$cGjtC1mCZm<|P8H-V3(Z`&q^73ka(DD~PrVM?lzk8y z70LD-LB$Ui1!X-w2s@RP0R=5cG=}{7>t>uf9)Yw{W9vyo`GV`X(h_=c!N@1QX zD>jIi9z<7KJMoY2(W?E72ITfL^(3?(VU*2!!QJ0aH)Y^yK;`eLH_@C_-F`%yHAhC} zxhp_s(LDAhp!xqoXxGTaZL%5x`{Zo-(kx0x)?~A!oSh*dEo8ZJ=t%gEnRM{28~SoN zqZ3B;FT4BeXx@CQuk27L5)?`D9?tIa=fI4H?txU>OH0xMt9R$RfM13Vc-oZ9Hi;gc ziYlkq&0DgiEm|w%)=r<0`sZDmV-PTz$(#V}Dfk_g7~n%6>$4uLNowTns|+;oL#;%> zJM(CHmUMKdx;giQ>k2(J2wDa_?8*>$$=Z(O7h8k(0r-^IYIYf5-G6VchJf(T7npHl zI2nz~5mFqai#(c+e-*sT3gQ%0t~+=7j~Y5=nmA_kYM%^{MwTRxrY4T-8nxseeN2O& z{zqRk-C09JHW9rz_lT9~JBTVXwIC{YtgKmC4PNq8Bad_HmPAP_d*<$JqLH;d#mS8p z4>V*|%nDEj$B{=1+Yn{u>XcM5?PHg_b|XYNTb(?!1Euhtgd#4PY2U=UhE%)sSr??dn0+d2Tw_RO-kC`K}cRao%NvBF=7nH;3F3;E|(T19SrxYZ@K62Tw!dw2#?&pIG7C< z8x3D~?hf4i*r5hTz%ncadm5=C>Vbs$T$`B1csX6lh#d7}?62m5)3~|_jRj%NOGYD@ z1u}`X_l5bq#QVn4yz{>Norjo1Y8}j0bN&u3r6eC!fRdu8_)=`fR9%RnnO@-2%Su5Hkg)+k(|Po{HplY4=fta2&6<} zBAp`2+!>>L-_&cXnZ+gHUG}+W$~7A@Huo z0t^$-8jx{-hYfHXDJ+m~Vm{z39+Hd5DfeFBZ~9mj1|>adcxm&=G48IQ;{|6n#tL>s z$mw+$gDk=%S1eg`oe>*QTDQ-}lW1-jiFEcq1S}2;V5}jk2ZbPG}E9?ji+dd@!?ZQLh8_pqQ zqTE3xoO6yqHr)b?{LPykq})nWK!+*Ur0_F&Y=e)gQn1N*VisN1g8RTCW+~5b2k#SC zydbcWl6jGCbk=tMieZy`Yh6n0ubmd`%epxp{F}gvNzTz+8I$*BJFgZ#7qSH>jZ;J` z@?*HaWRc;_Zei(lq-8G3yrT9R0)I;bFq!qK5>CKWAu2t+a~o5}w63`@DVXZso7;yT zlucHBs}*p>8CjhlsD{T<8qG_T)(Y2ylyF|ZSglg(Pb@D%npscm7o88Y5kP(dzBF{m=tm@v8+l-q zBouTQFNeaO7R>8hm1K(xVekpUu%R)SFIzsTze~h=O*_CzTE#wm#Mu;6jR)FZ$Nqw) z$56oqq}1rp)^Mi4kJ_IGn3=@D3LdGnwsCH8VA4V$+;tJ5%Rf#B?j7wDoW9aRFwb_R zrcAkJFPuXd)H;9?tz6#ls==pMriW&~?=Kr)?`^1}evShfwKh`gN8t4iyIg7f8P%o7 zjTx3}Sbitq8#O+zG(U~x%>nIM{1Q4HmHQudTh#_{jWC@*cHJbVS?R{Sv*1+wk3;(#&O$kbmEP9)xlX^!?@VF65eVS6POlG*>;2VjLn+LMCvH@ z(^Y@$;rQSj^%{G6R(K7&BudiSix=(i`Rp*OoY(=>+l^~YJ=NvMTL8E2+z?T!3;FBd zJwIwwS5G*n-4{+$YviP%Csl+GBjIQah5vS5#jIzUM88fS8rzWJkO$z3Cl4J|f0FA> zjG1m3OAd}pIHp|O(Z(a+Gfp4ID})mT*{uRTWDgg~W(2#KYzt9ls91b$&!O!Oe%&?7 z;HJ1kaKtoTSzU9?>g{ZW^v2IsQ`8-yu6UT%*~SXco{-or&Z@~Zu1wRSF4-kcTy$1TT3IBSUtnK3^M*|@>pU8vLwX$YuRt${-*d|P8pL-v(rdo%d`?%EPC{;(FIjxOV@?KZqTh%?ROf5BP zbJ$p?(#fR~NR&yhXN=Y^U8q7Ou@)>}XeO7sl`)1ZskvwPFT&a_&88*jsV*xv39sk9 zjbxftydyiRStY9~#H?jj#u?K!Jp54Nq%PB!NK2(H(Pvb4QTmBEeA;5fccPzNCG4`B> zTLbuoN4Vixr6GE0&8Y1F;)1H3)#L@Fxfyz0W&AkgDIIL9%d4fV zlRtCs={g>wSVz&Jvh`&VB+u%RLz!!}l0lrVkHC1t6J-svkV)WWH-(;Zn z>3D$%dYljM2vPc0v0Qbxn>GyFln^GVDd_zH_G%_cDn&caKt~dxhPIV&oskbOFRg zNw)_oC18Y?2WOWc>h1xBi3T<>F`&P^B!4Gt?=d9sbI~qvz$I?D__NsHYm50x|H&A3 zM$9umyDI=yy8@eiSSx$om_gPPF|+ZObV&H*0WW^pkL+M08mtSt4q z&ZGSwG27K){#blLCaRueCpWTs{0h48JZ zr-L`2prVBMkaTd2^7|o`_nkwip01}`mn1YTNoIwf5w0QSjx001X`&MAlg<&eSUub7 z|8v#|ose*}M+en+y=Ug)J36RU?sYRAP%}mt0eu_A{%bwz?7Bzl0lrQ)8vD}A+hL7< z+Uva-L)}g}S3CHzEdtS<)|Q*czM?AH$Oj`w4M7GeWdRaCTi~4+k^#;hsGo$bFZQ=R zaOsspI$Rd~+c~Kdj1s>}iZq2*-KsNydzc~?)wK7Kzpk9Uw^`Z4s%_=&FIg|Skg;Yd zH*ocXoe|c;CG>K3sn!e3CQuVP*3o*WJW=Tm=6q^vfqvGexv%BX+M>|vxO97ZCxNo3 zt=0iXg{5|@2do3Rp=_qbW0TGX72FmtGVIVO>FJ)6D)PCm-mPRg)K@pNrR?Up z1I!AC%HMx^8eh`7$}?e=362_j&O!RN*P1$Y%U6bfCy;pW+8IydccQLlrF1*SDm>c= z(k!tDD^xp1@t3)Taa_lAwS`#cI(J%twJjv?Z~XP~&Ugzb-r$7cGm3(58Cop3>H7)G z*T|Q0nv^$slm5Ch%Yd)e(g@Lfw*?`RS-v#;T|Dnh$DD`(t9ZR?Qa)_QJ7=PkSBXD? zpnc0WlqfYl86A4Aqk#QEnvCC?Yw5hgO;JPbjFOz&a5ND+rkUY-+>-79+h7@E3COJ? zRqt<3$>k)gYe6`hdKY%?P8>vY0*aevu#LEe>uWcsfr zT-k#CEgHpW3#Y03Mdw4qPGerJL`>eUYWK_3UQN6;aZ-l<%IPtn!R_r?YH<$P65%mW z$|WKeuG7{4lf+nc2@!s1^9V; z`92(!yd0)1XF0okeUTo335IrX8|C3gaJ=xgdf*NC9cl>iQk`SJ9#7}6_5~7LbaVUO zo_TxDV2>$JJa%>cyu6Z?=e2ILxBDr$zgP3HYf&-fE{7gqhPw|vB#~z=ivln1^pG!*uyo3< zWSlzb9`%Yo!PPY%=8uGzpb3Hm;%I8782cJcrayCIbO`9U=2Bc&I z?fOK)@N=|*KFspxlk>SCt1kt&#NoQ*bD{D6(46s%x7BOGC)Uys9)zO(8kopU4lwf? zmM+zdrE;il=TTd{3dcZpt=C=o6In9vDXRL@Ix(zlgj4U~>)1s-s1@p*p6X)8a+nq< z#qW-vo>-EkQ%*wo4c(Gv%57E`xKXfLmPa3SgsIXlO&1k_oIt@_HcSl1qK|dMwTjsM zZi^1$9>kh#xM$P_a^1#UJi#I~@%!}cO-J^@-!T@q;L})(4tv^_-;?jG+rH|iwsm(- zlI}E7)u@OO+w)Y_26C-H%TV_7NDWL`;YQEl4(-(}gS2ekT$R(lL{ZVJMEX&vvuFn5 z7Opf*2mAPH@(Pe&$J;DkpeI^#rT*RTi=TrbsK;Fbh(g5{W~q35PJ2g;sk}t6pSMoS zKl3`QZxV>ths`J1qt@t;_8(oc&S~N4kSfy?2Arw3I~eb=GShh=L;xm;M4GnERWCKH zI%|Kh?T>7kU< z!0qd$-&0lro%Pt(qM2)N^w|0{3|=B-VOGsr&-Pl3%MGl_DSa@=ioM9}LhOzkV!}Db z_||{_Q^(a&7F%Akp)`Z(?Z$Hhp&@dg9tD6~1natHNlEYFg(cpb2+3TUj{am3w$9Xo zv@tB0WAH0F^B(D^DwFIK2-gg8;{+aFnR|du;s4k|j)C!?7SDFm&&ce?qs5usUvTZh z{|z}{g1d&P(b7y0Ish*YGcr>>24uqJbNXQXKU=XTqyDc&HW_!iP*(mgf8+76vM8_i z^5uWjbca1D=>xndOHZxmXfzoS!nZ&E0soJ+XSgC&)YF5GKVN0aamj_lhdC(XvV&Y5 za>RsojT5W-Y4N9QupU`fIY?wTeFyM_cVEpQSyPMIHz!aGc!Zad@HI<)4yNLo)1 zzeqM>Y~+j|i7qH%Z(Kj)l9NHd!p2CF&gQ>2%~KLw6YK7_Z{sMuwl%iCeAIIpYZhqX zYfKK*`v)nwctRolb~IRd6f%Pp9P3jWG87crQ>FZrT-EQJ+{4pLbm(Jp zrpg1m^*|GZELlg#Nb1TxLAmvLAWBF2RYT0s_u?IiqfL2F>J7>A1Iwn*9on2=&{9hM z;YA6TR_}wWC&)cWMgi!(%-`TX#e}};+59J}oz-brViZuiV?Qz^4{i&#(^ba1w{yF5 zdBeHue6^ex%gFmS8+KgTrO_Q8>`oL2m*;VEm-q^6PWZITrCpc!bFLZtMs_KGf=ve9 z=7AG0*#DZ~&qC5|@|V-~{J}SzsI}3?jKU5FPf{B4I@xcAugr(syOpWe6Rgx@??Ha1 zjPBzh{6i}dM>(u?f2u>7V;b1AMD204X>hE}UPkN3D}!qliQltR*p`^?e=A5VD?ODH5=pTiD1yiwYNCl^ffjbE1G?s8{X>%_un|Kd^fUu#~zG@K8*$?z9(0CiHq>4>09N*=2^p>4fgL0N;_H?b4J&<9v!)2b`S z(aq_sUZb-iwZs2Ris^hMGH(oYgr19k6}s45gwf0={wwy?J`{cN6Z`GbLp(`4#N5iO zlX~C?olIUMxgb#0M93i@y;^_oS{+~M%JQu`)0w#hx>X~cBAm-KF+C8IuWLoNlsU~z zKibStOxEHV>p?DbhKwh>0!T_R_z-;o4339sWsM5xS&IMiOMYvvlBumtq)L6g9sT~1 z1?>nKFVr2eBQv>oW=Z(2n8VF_EcC98#w|_!rK>uTp3q=};U}M@sQI^z>euC3AtoAU z0Y}?7#NVM9NLZARjj{0Yf10reza!1VWdqLUTM39pz>-A17voF*-O?>K`FQ9%`m4LL z<~ACAAX2!FvR)@!n@>Mj)C@C=H9(omwEi+FJvuHR^qT@N=#ZJB%qI_GMCT)}QhJafU#TT)3_OtNY0D zzXWA6vvd4c9=l;(o_Ly8gsYiahYYmJlTRQFh~+2805qx~IuNkd?g~5SZ+~RzLRJzh zo6%G=g?j6FTHiwc1T-q=G=eYwo59*``Mhnvb{JA?~$PZ=m5@HpHtMK zaxYTgKZ9%6c*+W^zH;@fV9ZULGtZ>oimq-3G^Pj9xO%1)^Ar5)NJmKsmxM^m$SozC z+h5}IN;cJ1^)ewE*mb&)J|M+K21*7o+k4g6%5$B}`9x-BtYA$MyhZ0i8IMNk^Tw`_ zIua_TT%c2Cr6Ux}L0_gzDQ>(&6?#YzpWO$qx3olpXIw?DFu-IIC38np(uFEiWK<2a zfTt#5r-Lsv(tc1Km817MGf35d`I~$}#n&50i4F?MkpNtQX4CmE8rV3awIvPnA)q(r zjIMEar`T*`VuW{g=A=2JtpHus*v9;PY7bh}kXKU(Io2CbiDvfq0!dIdL2VJvsH_88 z^FlKPQnhg%Ll#eKo^cY$wDIQYWB>s`UDD-uUrjW6B3@TdTshgxgggb>UAFwCr#f-} zk_@)l1Oe+c`V z*YLww%%CHLokcK0t&_;6dZ07gk0y%7yC#C-B7Ssm;+lP@x>O_~?$u z;y+?-e*A;x2<@ILY2ri-6=b#$w$14&4cBubmJqDB(F*Pa!?OFLa_$Vj@LM69Q zcK#WdBP1ILbMaRKzOzVB#+fl0srDu<$ysoL6~%K~RBHsunF?Bi819X=8j+4@;h$E! zuOQRFK|_-CoyjGGuIf(wlK5+)>qaI(FYdM~R6W^{LXklrhJDcs(q*)>IwIctt4kh5 zy}c?9UY^W%x$r~^g(E%50hPa*=T{_&v5x3m+DEn`CTWg0j-!vvUd!xcQYGrJo9n~? zw_h@Xo(aYVDO25JhrW6tp#ik8NozmZ!M0#wnMvv4J8#)-L|ykUMn085kVVVZziQyn z5+xVnt3FB8{8#c7;82$xbMku)zHClsd8z@Ap&bq5D-1S=8wbhLNhJc`Bq zF`Z{JfZ;1jiw{v{+kw+QSr-rBE9DO#Oi&Cv4>`V}={!#4-!EiFZ6wBACUZc*Z=^pr zFik?3XHMvv7OAsvlt+#&WOmqk7CKdtdQ2RWb9i(t1(6O=iz0J-oHD;nC&5-?#cUn_fKN2}HvM`uB)J z15y3qKgM=~jYg!YW#HhOkrut?VX_ve+t!JGQF~bov^=POK3T5jmDrp6xXN;UHPKbi zUi-KI0yf%tmZ4$2e@s zD*4Q%kcS3^_K@fY>s0(B5oO^>a{w7ukZsnY5ka=m>OMi=6b`f%Mea0=HEZR=m$I_| zi#Dd0A)0#EiVOG3gHFxE4Xm;INzk_Sz{sP zzPiNlo$7D**m3L1I&ivY!EqbQk^&vOYM5x}WTo=DD+9_Z_9@_;kS=VPU$}&m5U+s) zR#zGKaWKJL(()fHmA~v1vOKa%Fl$vrO0G$vP&6Kk8IU!6(WtxJjdq8qap?M8Jv_^z zjyeE^w=!gMR-HCWJ;@yycsE}1f1HwPgw66`u>OK4*}ZyE?mTFQsiDzsQ2s;nD{dL84IYLmC=KX9VM0I~Fujdi~0= zOZLV??)BeR?r?V1t5xgk3#=L##PbH3gE15CHGWrDqAV~}=Tb^bx!FnJHiH0A1_7zL zK^}qvbz+0l;Hr*5N42?=;g`o;r!wua-JB=HrN>g!qQ-&>gZ3d|H(Rb6u5;Cu4@144 zNj6fQd1~1p6V{xNJ21%T_QVuM5Lg`A$!-+VV(?PCdt*XcHoUlu6Q(3=?b+cSr`j$3FfF=s5kEs#ILBQYK05EC%HD=?;t$dCwURF0vqpk z`a18|A;a?>8N|X^nNi+Lh-RTPI^|(PqM{a-ldg+8R4Y|8UW}S}9+!?i-Yk2F^nSPu z=Fi(q9^lM;E*u7)QJsNxh&;5Z{P=OKrRv8~HH79st1>E*oR46B#x+Y)Zjb<=fgI1t zlk8kXU~kZwR0QNEef$5N?h8Z;falRNH-YMtEMq~9!`}am%QUz6t8a7Oyy?NLK?!!i zyPZKxsKDUY7*c7+8irCV#o|wAgyjx5P9-UO-0*4A^%aNA7Y|-xyb+Zcx;rtwx{Tl7!Z4mr092gHXbhLjrq)BK{a5%)WUNy7Y7`#05h=` zN2IMFr^ilkJYRS^A|wFak2fk0O)_vIR|b3 zVgD;PcCv{7AND_u$3>uaTgFx~gnp1tE|VZ$gx7bX$2z(RH9gx29>Lg3wI_-wVk&;p z=pXh!$G0b!udjzgt4%8TIVyAcZGYdyn_$jyl^B(Xr-R_|^V9eEg&786O*MWYDD#`Q zw~Ovk16H4!TIwD5gxV|Wkc69dsDl5)*f|A>&a_>7Y}?pl+qP}nwr$(CZF`Sx+qP%_ z^Pc?&&%sxfs!po9laq8MtM6Xx+SSc#S(&4pea`X>dZ}Au+$F1n%T2oEs^&lXnrCe5 zke4Uf$;o}YeB~QbFW$zAQZR6oO&VZ7Q!NW94iniQU%gERr|p!0a{4$PUF?&y-)&Rs ze3y{s1oQgXrC^c6`j@k3Ssd-IvNF8rxA&Ls-^cYT-}eI>$AHnl5iLMGUcLvlIx_rh z#xlR`+~xqj;+6|hs-54M7(SkFPtT7EXPjgoA5T}H(mfK7X*D2gffDTCt0|_-n?11f zY@L;z zs5xoZp@HWIBL8s7(i;nb+Y<*MPXykciQb`QQ;_h8a7(fVX3I1GO~BtOZY~Hf5)tYg z5016%@^ev;?8nOIl%*FQx{xRY1XUXuGUOQ~_PTQ;`W?hfpDSR3Datp;jCoFeV7@*F zWLkfSG{gts0hZUBClN{rL=rdX%B0b*Kd2t-e~Kc*mz4IgPDixdKxfboKv&24@@tv= zUlXianr24bj`;xLnUfowR&@Rhho<5O@(UPdGa~PiLRFvo9?UQ0LW*SZfx6GUSTns&h8PpXwkc= zkRv>~bou~Rx3{yW)Hk*wx5$&Ppi}GNFo!kp5APKC8QR3Zy_djd3z>7$q`?v3Rqwd7 z#PMqtGtk$G+Pn2OL?J*(0u1wy9t@S?A|#E`AWFN6ok%UW0F-(<#(G*gQrQQu+o&8l z%vyAwHKCq1geo5i)(8y< z7f<-(dXq6+-7;ti0`d&`E9?fj%v*E+6ka!`Y3~|@;2;Xd#+J#_Z-vowV1myiCSq-k z#R5w>V^Xz0K-xg7JY@UTtBZEY(Db7+-H5s7M>4`>*HqT`8(u!g8%Kf%JfJ8ri8mur zYl;z(9XKF?P|6FJyq880glbih3iUAC3%T%M_IkF27cE%>uE$G@>hIqa@(gGq1UCdFDLRGJrvbhj#?P2!ix%@ zW*u(cFN&-w-*!X<&B^x1Q0|a_P_#0pYB?ZW)8UTa%M`U0{^lJNW*id3XkK%az$^kQ|WQ1 z)@xvm2v4~*720qe(}h@qB|3=O`>3^U!|-@3*4QP2({o7c$^oA^UhR5uHKlk2_ zuCU;M7Hvmg$zYm@3Sqb|>n@jI!u6K5ZbtoKfk7_aryF@I6RRDZX;$f(_WDk-rFNw< zJut|Vu7%obtn^rCGTKnxx7SoYl)hWbVaxWaCuT!R*zA!nPK=cp5sL6zkywcKSYNb_y>e8FBwyQSi-8s5F+h{W+&6_|aFTm~{O7>`n3Y;yK)1rhVP6XBGFuVC~cU#M)7= zW0Va(Fj4?be)~Sw>uA5%u( z12nlMz_0A&rs1TrrBY3^-qOer&v@4V0+S^ETT!@M*x$|1j|6EJ-k2B{lBAXNKDap>`)U<|M6AJgz`%Xqg;(MN)PVocu zIq0Sps{YQY?<-EoOFOV1BBh=b1VDu}A^Wo9f*yN!iKMbt3N0{|3Z6?%AMrx6PJ*_i z*mxW*8;y52tav+@5Um)%it)@Sz=Ti8o+nIyU$UoC@A^(1423r?w8>KVBhpT3^c2>6 z(Ib+89HaBFdK;d5W`lbaD()n!rR>H&q)Z?0TQWg#*U)qqnI-catUpM5urJ$Xx@fUc z&Qrx>HI@@5b%hCHe5>Pm;{ypLU!8YLtOYjfTdnQ6ZaGIgozmWszF=mwG%?Y`$5rsu zruAMHWn~^)*i`6yX|Q_CBsgHLDiwukhKOV@dfiHI^RenztuxKt4sK!q1j??GkV#og z<}GdkWG8aGB1Z9n1)<@SR8J3;9ciPKh0=7N{xfP=wwZ^8Pt9nc_~eK7ild(wo`g;l z@B6D}U2R`6CmqjW%ZCl`J&EPNjBD8%g)@)RfU>RlWx-!}zuNuEyquz|xiQe?3<&Jv zwW=A;QDF;vWL$MbLefKS;o9BCT}*AZ)6 zHXLSzV?y?8@P~Xa1=UFS(3+Oa>SwJXU2W3r3d)fvyQOP&jdTZ{-Lkq#JbauFG_NBQ zrPN~JSIgEn7Y03SrmtFBF&o4I=Q>759e#-wU>{(%diTJ~#^N50hMmAs=y<7!wAj&l zcwU7}kMn2G69;G&IF4KK1R}0{vhb-#B$Yd$n-E8_>@@Ne&JCfhzSDy2{`_#G87bw^ zc6JLIF>CK>EoKP)G$G};VnmG?Wc@|QQP(Bd%wq5o*B7nAao!DY#T zL3~Q&vD9Gv@EP+UqrVQmO=?|mKe5sW9=o%s?DSXGvVv!ykc{W^NJeFP9i*cJaH%Uu z9j&i6EcDQj6t{H&bEKd+R*YCqC9Z#LBJT5JGl5T{2q|VR&>xCUO}tj@_Gz~9(B-}J z&b-pPc8da>k?vQK^q~Qx-g+yyPiFTVA+z2I(6z*O^H3Z9U0DB<@=g%gNr5sUGawwP zIKl2_Rr1vAw8nYuef7y!lcRi>{D$}`LEx-dU}C#2*LYvM@ei2lih=jP)FtEpb$bmH zJ^Oz~93KBqUA7|j&eokB-WZrSzJZ|uTfa_W+!698a;(vNOB(7mhP@^B9AW%pP-8fO?! zL3G*BAoEBAK=J+m`gnOHDH=jT zzZ~S^RyO7cchvMAnd;F2EHdx`6L@Du=KUSvH~`CpAZnJO{KK{8-M7|dy>$oH$rRX(<3hgwFQP?fYP;@BXX<)y#pahUehSfiFJ@p%GV4#W;vT}8 z%;NM~U!4Z%24e^h>}lN`1PCW2Z?|Jdrr|QzlEh7LhDTF;-RY3(VFz!sN`yF2*e6V4 zZlI<}FS_|=PI{0{yuVfc_5FN~$T2=-^OS;Qx0&_?J0^K(wo`dpCT8)R=B%Q?Jv(@khy;jcorP|EVJo>^4# zRH90xB7G9HSF_S*iXd^w)9)z<dpCV1~9#kMw% z4n~)RY4H+bWQIo^nsCHZfOsg3(D$fyafbMaac!a2f%nTr9SdfXfRU(n==ghyftABo zt&0PVFos%&`ovOUGwxC>P1HrB`{@&6noU}$1Kex9e9EkWull_8hwx-nx3dh4xf)=B z-5Tnu^R0y)=c!OBOYd+N62385o(Ybk_k#Ao^1m>(;_-=gMquW@T3fOitNL~9$poDi zTqfj{g%3}1SJfRzTwRO|4r(O~odiAG9ojRA$+Tt?nN;NCSJw3Oz%3YN;DxAD8^`K{ z>_-mDW%GDd`GzxLxBy_{YoP9%P3dpn4l>cBEg4_B-<2}B z&>7+uN7hxAc2r>6+MRo5D0{*myCv+9&wJFk%k7P@ehEF8dggQbtbTqb}wS`k`P3)`j zGA|eC72qI4*-rR?7lNUc&jG-ZuF%6g6ts+0#XOnQA)I0l*4p!FGA?Z zs4K)=te*u1)G|bS24>d|yQq<^l0ej(XI{e83|JjopomQ8>UFRscCkvaB)AnkGa9Yq z7;{jLxhTnGT~%b0Vb|-HCn8oxsmL^`fNES~8Na&yAgqL=hiI3vVBR^4%}P%twcL^P z&^W5Cih}KnCzUh|2}8ybGSZ|^}(_JuMYa?B7`x+VDWk5ieNM=0)=sFh9;o*kU%1zD83)^0(rR>=?v z$yJX7^P}9S%3SjJO6az!<1gZ-dTHAiTp|ogGz7~m)5;zYJXINK1wDWV`>N0yQN{lr zxqmz}7knEnO!qe$MW^=kRJW|L`r%A^^hovgPv*jJQ^v`9Vw`pvY*3Wytpa!P^^pWd zj}lSoH@fr^F=bP- zQ{{uJd;44uxsX=-2xoM2F$o;&O2ORjK64F4^GTeh*A(g`>3UJJDA;s8q7;MAD?Ieq z<8cT8peLQj;(ExgD3Gj8*>ny?XxKwkI%_PQNG4s0r@#hQN7k`;{5|{1Qe&!iulNc4 zgS&cZP{wI7fo0l*t079BX_?@K6h}cL44|f#!d0I5SfmW->l(08O^s?EQXd6ZJ9cE! z-Me7S%3z8X`GU}n2p8eFZO0uQoP(6*F~%kDB%4_XmoH4ahj_Fz<)EtwVM#}~kSLf! zAB#pJ{)Y!dlQ<;0Ks23cCb|?%09QN)&4d4=@5l?%k&ef)Bhb>2m`^bw;EDd8=ogYa zfH;zoHna^cfIF6e=Ao=ZV0I7b$tKtMNVb77mXz&A#$(Tuclg`Qerj{yH#i^eNIYsQ zAt(mBhL)2sD;*HLU1WkO#{-`?w=7gOGvRk$SvlMY>&31|*OI&(vi-|81OLjK^PUj*|0<$Q-{&9lJ)r-HLa~8iE zLpsI(%GI#0b;4kwb0Hs@`5hGGkIXD*F|{Z{{oDb28|VE`=+r9?)O0Fa?!c?JUYYxN z=PusA6r&VZoSYjfv+30IoE@q>7OPR-F%OHN+JWXZo?m_oM-!M`aM=I=;L;WFUlFNe z8Tt*O-6(GzS6dQ9x@|Kk$OC`P#bNBgZpB;puC}w;FYWD{1~tktgEE8RRj3@dw40!Z zV{b*Xtqy)5@7<1m`%=i{H7DA+>@uf-{W^sWN7j?<@46~Dd7Ip8>JGQ-zZLlRi6T|o69_>Fao=+~$nq9&v z2!qey^m=$zFJOLnd%Wx{BFFHZqC-6CoXEMQ zE|7nDq$v7%d#q?4mUE`q-64+h&5P%h&A_cz_=cu{aQrh*8P(P=k2Ebq^?QE+KN4AI z(S-ro&(2ME2vI&Pipz96_Jw+>}RR9Bf>1f&)Xr~^AIIP*= zP7$cBuVB|E1f%Hx%p@G-jGc;czFjHJ7enUN{5}eT_lOKiNkB>9ozDn5BrXPsK^E-_ zotwC1djbtghf}zM(QMj)&J?NERBzFpA0l!=8VzqO zF;32Wup%q2Vp7VZm8N|^!nHO}V5qKN^@0`kioR(=xyR!=<9nsIl(0RtZ7V6R4?~a4 zIsUzv7Ggq9lN}pYx10Cl(eIH5Z^390{`PZA2n#LqPh3K@LOf4jhBz|U_ZQ``>-+Cn zjl_Pv&%(0s`i{p>1<(bQ7VpQ^eL>Vny9td|)Pfi8>-p~K`tAvu2=0ss4Ii`!b!0X_ z`IQgv9t20MGGAee;TvDvJaYaQRP$Q5%LGjQ#DQ(4g}1yX#F6Qt}&KdA@mr zswz6mFE5i^TRpUX6IMrR3LH9Ra&;5XFgMbE-KjPpy!T9vXS=Zs`{jfA#Bn}7H^*)? z5*rLY4WxR8ZtiMV6I3=;FmGL9-QSVnG} zwdf}-fNljuBx;<={g zrn&2nk66!JQEM9vdGlHvXJ%QM)mOd*f$(8eseD=7sw;(&o0}tXb3mOLK00&y(FI`%gZxo)Q{uoHmpt+ShRLjSyUrC#Bq(i z0N1CwsOunEOqPt2_=#5fZ3qPq{=KsOtFm64J8%x)H;He#+8;?sPStG{`^^fvd{DAc z2&PgF*vYeuqbxDHhe`$m9#os2^UNICQuTNHRCpqeM`#lXT6p7eK#&%vynkcIUpwmR z9TKt-X~Yz2rQ!Y9jyThJ!uls)!k(lv7_Ig32_^U_s^touIfz(WFpI)bT`p7oPgv~@ zH6g3sYPTbSOy4u@z8p=c>_DuU8Uq~;#c$T^<+chxel=IDr=USgnU7YCkZ9Cdn9TOxRgkJ@@R`7Jk8XmRaMF_EV|5G zxI$_1tr5mbRa=TfcUj0fgKR__PQ|OO{VZ(IvW+g_%c4Ls(7dF-C?F;MIRLn#l7Kam zjjT~BU{|GaS#gIQq4xdw z&t9pp(qr)TWaF=ujVq94l<+;jt#*YYl9n+h)4@o!{z4tP{=;W?gH{u3+r@&1s0zE; ziLl#$vU;u7ao)xF&hZluTfbmQL+7E&#Kk(Jg)onK4luuY)yoha-|SeELc4nBc*z*k z1$$Nlt_Y#H2JV^WsmW)G521oRL5TA9!QWc?NTbK(1aWbhQld98@5QT^=MXRqbE_(& z?J^qtUSzz=Sk20#Hv`*w2PZ0t@`{G5u!{5 zdybGp%k448RoL$GS&El;%&UwV8~8dWbC^X z-ptPy%Fs#k<*qJdSj+oZIVZNHSrKBRSc!sGOm9g@w}>%eu|`EeS(Zc(!i|wD$d&;OG^*E@6v#QBNJS^lZ^ zpZZ+XKX&8Ddtfpqx+&S30<*Sda<&K5);2F|FpzAO?m8k}S2!Ib-q*@4@`@~5uL8V~ zIY4nj-|H0X#=NOWR7@F}YtN(PURJoYgeU4x-fPwjuf(~^rveG8iNzFq)PEylwrd46iH{;?7(J?CvUkVfFlAPCcvq*N-gcE(hCb8B69*cA z;17oOoQJbb6Le7O$2qv5sqgu|$@|nJ^UsX4qWSdUq)>BfE()MG6?GKL6NW`25_ake zqPPqOW)bQx3)tpxt`9N4g#aoU_f0*#+&&SGp=RWs%NF(5OvOt{3H_q-clvw+`Nrcq zNFy=@5 zb?H&(xz|cgE|-c7B^?#G=8NiQvI5cmtM zbIULbrcTg~7DD&b$*qCWLM%I$9VY~^(4BU9p{G+K88X5YSL0)j&1gi1GPm&q>GiSV z10=Oltq?RGR#?OedE4THAwS8s94>wB7fu*E>j02_2{Lk%AsPsL-|ZCIdqds4VWby!OYf@)<^5wvs$(cGs*GE$7c}IzM=ZDiQMqU{)_v}!Zzv`?yl>QkUS3x8Wr8Z15;Pg{Dt%zbrtCqVK( zmc)=;WpUY5YVGH;AmvM16zdGE0gtWDb+C(-kSJBa=S~746@4zZYOS5DI(TAZI*(}? z^_pF8ON%p1TN%dN0(!l2N_wRo@sd;h+f_mBL(!pIvr^euz$DeFElD-sgUyso(%t+E|F%aq2AuCQ75VrphsbS zxYa&%FL3M{Gq>TKcwD1~IRZ;q3I6*dlzOre1%rTo-uaX{yltvY>9esuLDQB8#cy6h zDvo~8w!ql(5*Kw5)4I|Gd)f!X9J2h=QnSI}p*w@Ot9SpExcS$l2g=zP>$7b<68eZ1 zU?i*X{<~0E(p||#XqPqB@73O$C%8v z8R!UB>lP1yA|%2?3yTunL>h z$lu5FgIWUM)-YwWp~x3VBFd8(#fCQ!I#~myNaGsti`0?_QmW_<(<`yFY93dgvQ=I> zUW1|rXAOvqa@q+qVa{^o+g3h0$|(`*2{NrdipQr#9j{QT;iRSJ+l*^twQgm3il>8X zjg8Ok>+A<2k>e1Rj_pA=#L7SoQqXFJ+9t{~9 z0#5J?I8uN){l=HKZ$LX|X?p?M1>myNB81mnicB}26M1A{`bqp?p29zxQ`Q5Q(gP9tjQ^k~;|E@yB5Y%Kpy*JD5BN7G--z$!jWwBAfsA2T1bn0YwkX(flv zY0d{gkpw4zi$oyp8bwr*B&&G$^nj9<-6~*Z%Jm`Mb>+v)$`Ybr2|h_=5!q$ zrf3U#T6yU=A5usv#8cVi}7?5C<3#ymwcHYoo|vjPBl3lj z(Fzc9vu-n}zqKrus(#S2y+YAbgvZ1;;yis}4d+Y*>0NHI-1_n8h>_s=;iXKL%=Uck8hJ!~&P`##f2FgN7y)_``=)ipL@2Id#os^PU5 zko+PJjk*&v8p74=ZXPh(&A9Ed>Gk|K;}@;T5V|hc^=*3bS1BGFJJq&J53eT3t>;a> z&8U&9=?fy_2Ptxa#c4A=Kp$BPtML7B-7-sJwk&PKqLnE4EbqXYOxbw$yusRH3|zzx zp=eG9c!VO{LaxR?>H+wt?xZfk9meL3RCbr0?*JatXEuUq>9Z>TNmmZgH@KN+)!$maM?qXOs`b7heVj z9`ob((&eP)SkHS-SJGw5_oO@Z+8PRH=ERTW^|foM>8L(_ELU+#JbKQYXEmMNmhs)) zvT3qyn{;W?ZDgG^e%`7ub+xO^PDQax6-voO` zfkK-8*cl{CZzlup>-bLb+vtRVos7bIKMS6pGcwYcDd3$CU8aj=FXU|oWE$a_w-?K! zP`bln@rc`Fz7!F-&O=z%x(izh{Dz%HLjc()oV9wFPHq_jk_|711kXz#V{!ro)t zo`o}XS9GP7C5Q_+yuy7oOE7;ZCY}7QPo5Yspcvh*Pi{34df6mkHuwgx&~%pz zDh^HitynSB0U2b#x!jb`9g;f3vIJGF`e2bzQ*!agu}LAeX7>hi=It^Gz=s+ec+Os; zoRLM-jtm8*h}~rF;9&ag%9%VC8@u%XjC@9dw*z)~lD(Lfg?(DZPf5x16)2!N?UFn3 zu94p^ZD5$>&VbMi7n-Xt>A!k~qNGeAr`Idv_g?Pe-j84BG8NY6`%aYl zT%d;Ls661Iy5_yG;k$x`Fsub4`Np<)I~(R@MZ>!<^DPnfi9w_i{<>YJdGa2ARuRAP z7#zNkOa^se)S;Cd81}-v6ZWxnsEGVyB4iVMP1%25?aX*7>izcU)*_r9I5AJ!M*%1S zI80$Gulw0CmM4j*gWCJ4j5SI7@B4E#Lg)P)e1Wl2kpzDJiTX&v9XTtN=3;=ux}Yv^ z$#y9q?iuT1EabgO+l$*8q+2k5WD0Kc5+==mE(-P88dcAVZeduHX*&#kHM*q1bdLpC ztXZ8uL~&;-Jc~-CV?0->7FKddv_mE$H=A;2D_Cg-gnvK!lts5r`U{t@#;=2es2l@1 z&7b1=5xtfuD@PKcv~Kt2hh^W1Px{zE(eE$7`>ir9mDIm6AUFcKk_Or&VYl6XFPC(` zP&+1a>KA;^<}p^EEWZ|3%JB7$bNs~|7gdqFo$O9&lDom(vM#;SE_|!yap5V^w{vRt zk74o{I|Y`YQK~5Ls%*t~zNCYERcXG<-9F!}Ecp~a*}mS3)goVHAFR9cO3^^Z%p5UEVs@>hgof&gmp2K%#5UZQUdqP1x5pGGn%FE}LYkTs_Z)L`mm- z&((@zZtNIU(&7@PYRusgj#8=YHust2MhzVB(L;Bq<8%$#<+yE3)>GVt$f1uSGoUkY zuypa|wK_aNHnkQ19de`JEibZSw|a0`+?oro{6Pdoq^K$6{E0;2k;z2_!fx5TvU|}dLS*!Qn#-I~$&OV7OpA<*I zjB)nlbAX^QIQOvWtof@ZS6}X0#uY=Y6kubKXit!vRn)#Fe8Nl z@~ebk$M$E8{rqT<_%d)dh&lB_&+K!50TG2#Fv$1lVU;k1l3l+DiNbcqD;SK-1u!t< zit5-w4bSFdj(ldw;kk@0*gfk0oVNy1&f8EHX@*jk_{p^G6p(&#MZ?JmLXMfWB8fYJ zz9hdbiogP8Lag0(!Bu*LC^989O&Ha=P$F*!sx!@_IqXVJt|>oG*w8FML@IDJ;w^>} zERs!$TNHaXi9UC#sn)S{N+Z84QT@V4EI3C4E^H2Qqu!b6kVk(scz4$S^rmNBaE`xd z=ONFSALj#LLL|uwierzMT;ocMUvh(2i440nLM6AQAL9q}lq+B!h|Q=9%s7l{kZa&@ZPbQWHGmO#Tgv$t`k)Jf|UgtkjyL9R9K-a&l%xcBe_Ce{>H)+DDt`gAzMY z)sPI7+r79aaB1fTgRsx- zwT2Ju1#axMmJs3EL{Q|~RKtuM;T+jZ7u%fJPw;|1$m5df-jihAq+Dm71Tn>Ma&o8& zx`|(DP*6t&k7%`o9|=m!U>pE=ju~SM%CyrQJvrw%Q*v*rgFc!KJvnCtV{%`piA&44 zfFaRi6Q6MmyJ^rBvPIyg z@ptPQH>8~fO8yO9OE{ksK&1lokb5czF^Y;1qeeIQ_>Jz3tl%oeKjo+-R>n#)r13)u zfu!kyT{1Z|!PNodpgZhLCW-Jcur8C$khGwO2`G|ek~4DDuP>XrP4FsI3veG+1!CZm zXl5vgqLknb7wuVsQ_1zdpqCB$4JPYuR@efYf48|OFKw=0-jR?Xy{vD>V3Lz3RM zNL+)(KTfDr1nP1fiZT8G_6Oz8?>{Lg}-oGOj)69uDI)$0BaxJqSc8uybTZLsKImhwGDU=&$H#kIK! zcW`BU?g$Aem@9!}vEI2Ky-^oRsTzMg{ifpuIB}euq#DzM`s|y>!+ZOJ-@uN7&tvxj z{K){}f7Jij$bY;oN7f!kAA?Vdns3z1EOI!q=)hB4vaMmDu$#+)vTPe72=jPWYmN1< z-d0NZyeq*spD%&0rWqBfRSD(q<_SS&PpO=1af;h2?)JSyavgO~P_ew)*&<%nGlqJW ze~c`u3xa@(IFh;86NkBMeZr`3>-E3XpM&^LAn}2He2B~gxS1k&zm&1}UE0Ehe4|Qt zQQp7Z%&hL6y;mSN*OurK>8ZC`$8Kj}Vf+gVjMw`{tT5;L z(-YLk@K$iATLVB3l6`J{Balzl8ilIHv+-7YL)KcHatj)4tGUvvI_88u+;Vwi*@KJG zN?%60>wBj=pih_G_T0J_<~E!TJNT}br0%hT9+BbL`9WZ?BjeQ7HhwRKw2o9V7KQKqRp zOA6}bJhK`+>*lEJn~RIkq#tzIOO`zpDKyCO&Ob1oZg(uVB0lBgPPW1@*R=0k%A}}I zj;JdTQJ(lGYx(RH6F!*=61W5Pji)&f$*mcaJ-A1?ZXlUCLYV^ywJwHs4&|*?KTmKs zNruF`fSI_p=SA&1PS@=xRHc$1^}U*$mCC5%aVSaFjFU42Vqa zX0gr#KBtHVdnKuzA3ajYneGi7v^=!n5JmmAKg}tGpSKu3=Nrf{5rM zYEKRBs}65z=A`^DJ3>Feb|u!4#!bB%Q-T$nnW=idmz`A<$F@}Jg#Nk;nXbGfps=P( zem%_>l2oN6x%zr$hJXW{Ryy!#fTiraOWXl%8iTAfJ z>Wu1Ujgl7rtRmb=ci}yB_K)&d=vG*pZkbuEdHfSQz&N8@W<07?;L}4lreiRUYA{b73gG>^wsuJ; zfrV>ZA(B;>g`8g(f`i>65c3+8X!Vc?>*d2>k*hp}zj0_@usm;p;Uu(dIRB z5xzx6Fk;DcKRcb09O*3$(FVKJ=q87nDCu|xVua42J|S5wIRrL26_9Hfd3=M*ftIj^ zX&WT+-`-=pc8eO4>l%#R@F5Y|h z)8Sswrid{=8<3heZ4{K5ft);$z0!vGWP(!X(>P4c>qm`=K${&FmZ>En!2X;99CCrH zT@?iztvfu2tCNg5rGz$r@`kNNK0Fk z`lQ#jNkYPMEH~}-&g`}J=j#vGDKMvJa4etykFj?M7Nv{2Y>#c9du-dbZQHhO+qP}n zwr$(Gr*6fI7gdcfD*i@hHg-2VbFHz*%tY5XM*+c(s(GNJ$<%kVc0;n!rE(Zm)8Rsv zr90i%aT_A0a~X_{_}p?kOA||o1KDp}^cFXOx#=k#yL}7I$!;yta5}SF?5D8HVv!GA zZAh6q<-gk4d@RWY+gx+4HS7dgS_rXh8Nk*XuRmSJ()tA!D`ZXmuUO9VKaJ)8igf?e zcrk)KWsCj4iNW+DA9=bxcwwqxA`LJgYk!^hRPcKGeb_+v1_`*0IXP5~YtpD49-;;l zXp9+{Fdb^Ns29?ai?k$mpLPzv?vLAvPNnQZrP*v=-`<4(TY2%eG)7m}w+(54+7pN{ zyZ`l5^M>oUaPQfv2FMrneVZFhkE9DPc<%PrrfFrKa`q_E6ZHDF&iIxj_s@CZ0#AkD z=xdR&rHx;XOA1{-z^lm91HOt&f-PeL;)6|UXM3dcqx$-4F@JUYg(Xv0R)Hi*C7arp9LlyivG!87IfMWLArLoCsi z_G@hA+5=?;L@D{OC`^#|UTC1uuFyn1>CT!HE{zs$j`Nj4HeFotMD?|*vaIv0-!^WZ zno$()8w#Av)08C{fnc2jyy%X*)$JlIHk3Dntq3%Y;=!tPx8Z`3pCzfp(p+33B-6FCElSGW;}*xpV z8>4(SMk-X0i#5@WH7$_@dyxe-Shd2C;8>h>cZV-2muB*!ZmF7CTa+by)?7>p;Pdc! zOUzxSJqRp4^UU(-2?rwFi)U2Yj|-P&uR2A&D@ZA}r?0ZRo8pz_K2(~vrn4*1zf_yT zm2QGsawm5rK;v7dmRCY1n^(-c(3(tq^O&VA9qH>N%9s4|TWmfqfFVNj*Q}8W1EU-x zO|M(-_SB3iQ%G2ANzuZmlEUG>7)7ML(JLHESjGh>)&nXjNQ>L z!5K5XTL{|)c!p~88}!$jzn=>fa3@`v5zW9D@FN5S=@7C~!3f12>a#F}k91>;5|Ypp zgp%Wc5q6B__w2DPV5JX&)8h6EM%zv~+f>$irZ z3M36k%bq6yNeHj=XH<%CjLqNj^F_d~PMXtXWjBL;kJE%e{zBl_U<}*t@qibC{td@2 z#Lag@z{lbaWABV4kky@po6ESWL>2O2!)HUm7%jxA*a~9oFM`SgUt$)p)?6(nDGJAo z?<1zcj5W~KY(0sA*PJ|}|G0FxKl z@ty|6stRE*j7$bUK=s6qQyQmsQcQ#$3(p^DpiBvLcGGX{lXesjre@vg>2s3^mRA~9Bu^XFlG+0}VhNJ&f zFz8-!=Q`om7p|#S{4IrM(w^n0R}9)g_zl%&Q_#BvwzxaPI~rZhP8*L>JDUDVNNfp_ zxh2gmQwFD;2g4#V?mNYKznkXM!-!U-7i+DS#<GS#IbdT)(^&t84 zaC1~&?w70NRN@Gawl0D3u&Z(Z8$gh4@8@;ujL-K|L-u~%ufa<2=9$D#SsziW=IBDN z49kXDepj<)A@Zl-0Iw`-t}F}BVjrN|d;x@BGt(GK{7%nL9}HX5lyitR`ofRDP~s1o z-piSs-Xlo(tygo4uoiT)2&73$^FbyB(BECoJklWT8Xt8#?Go!^gR?iQG-u;=DQA|X zh6hY%pINw$6rgJFI=MF1KuSp5u?Y|5WRyXUt>H5%H}F{xdMERSCj448W(xW^%YqR0 z_9qeqy)L*pKocSX0@AO#kax++()o_+$@UhF^J#ou@LyeBN9F(zU+wib)~CCh>3%-a z)L)h#x_Q;lxxnIEJ~u*4pDu`t;W{h}cF8aGGg8!L%}ucleoTOAwCRo2XQ>H-=bB{X z@d%3gB-N&MIQG$}1}ELOT}j8Kp7KO(VhxYh#6~t{=8}>`6h4dvZZVsJA!DeO>8rdbQMS-pkF|&dCc$&^H3oTgQ zjDVAE;kIHKDJT@Z^pweQ8rAizVO5(a~3Z)(K!6`O`> zLjsdxTS(_fVMTgJoY#t&;?WYrv?6%oOT(OJlwY)|$GWn`DkRVn(#zAW|EkUvN^x%+ zK2(uXRcq)?28c+`t1A`zGV95$wMsCczZ_jzEEjD&gc9jZO{xT|`nIM6ZyPbKjhEnF zPs4mt9}FCOhvLfknR3-+^E{WZ-zp1|laiWa<8;A$T=1TE(F#lzOUqao(}zE?onKf| zsK}A2T*oo0oOt2{A1Zw(L3G)Y^V2D}v{^F^FwYYcSPfEmn8TO;@v9JW$44oG5QYIR zCQ!Y-fav+5@25|_#SBQW!KV>@fmlDUiNZp4l^&OGeBC`MvppX!e%$IVL^^Ew-d$V_ z=%fKiWxkR(N9RAr*jVRbKMI7-E0IT}ll=R{bq=}wZPAEFb6vm`^YoQE?`*%@Bv_mm zvrQ>Gdc-CEi;;-?w>0JEe02+8o?zUFGr8YifAvYF85kFTdihA^$44(;6Yk!`9P-`e zqn6{Yul(r6NlOw|!KA5?qR>m@3={4O^>(C(wgo2;?tg z_5;!;jt-4J;9%m7idzi4sWlRnVAD!+#3%0`LG97KxnJ;8kX)E^YKso8;rLfRJa0Hu zDH|i{m6V}!=jBBo$-mfNMhi*b{@SnpumdVK-dbJJhAMezlf$1E0`UG(_r^X1AQR#7 zK#V<>@i+EV8E!O4Bdh?E7LU(plDir&LX#3<4o!+qTk$}DrifX%R+iE)({zm6gl8F5 zZn?E0h%f2H@iL+Z_Ck?saj(K8YC&QuVNk#h!d>FMSw zosE&K$802Wu@zZsMi4V*N9AS=C!&>G(2b@5vv)?jjd!~emyC7H1*MJ8t-7v=2NH9&x8 zZy0s(E}fS|i5dyV-bKdF0`^FkwRePy{TGM^0xre#OGo|F)qxBNMix)C zFcga+q>cj1v|vuP;#r}Xssl&CuC=*aQ|w=p9utiMubUnI*nZ6t-**O`#ZP-Dg>+d> z^}SBcKUQB==7Yx835L0AOlljr-BR9|FY^*=?O&s{mYAIlwtn06Mhxk-6HvUR!CN`V z+sNQZ>O}FBhMQ`Wo+&#q%~~EmvkXPj-=Z9?g;Of3cHq!M;x!4|Q9n#plUt(-I}_JS zA}r7Vj&*-1$v^mOQEOtuw+|PBy7%Lt(ex*X8!8yX3<2BKkNZ*E&o#Fx_h%uYQ-M3R)^7KiM25(p8Gydhb4^Ts zUulPYtK(DlXqSoQw9bTl4$wAS!pKQ-{bXM)I=-Dc&xo>OS_|BdU?kMC=eKyIlLU_4 zc!M)+?}6Q@CcT;TrnlG85*e?CKdM)I{#yW?^w!;qHlMpAv429ZQmj_Y=PO(CGR$!NxBI8x~A41r?j`Q zXd59%(~j5f=3fsr=CE|(+VWVy3qh%6QC3@^Y6@^X2dIXi2V0t?xbaSB)9_g`LETaP}B&hpvS!`lTqaC_GP6Z z@0Pca2TG2O)W#4VBTJs}-Za95Abecc^lHflqW;8-UCiycPGxCc0vBuaq8{rLf%rg!9@F<;B%} z5-GMFH>SBJxGapo-PSbJHD_&y0&~8p@bAkJJb|sdr|TIlXEyavO2|2Q?(3 zwuri8_H!o0%s8K_RYbA?S5i4vIiGazJeNRqzgk}R0@dvXU%mCwzId%c`QI{I<%*S8 zyXw~`|A&4EBhj8N3eK78^ z&ngG%!ek}z$QKJhI}p2Q{QErkUp-2u=Lz6;(8e8pQ&m~51S||>Pn#4)7dKF_^9`ra z$+cNdH&p_6)GKebr*wt=gk2>)reVP12;0GXsA@5iLp{}{IE`3 zEG->OEzyygl#v$#o0Zb-<)Zi!kgdSBQaF-!-?}HhW0R1-i?nirb(H<%~jfb;?Jyg zxd7+sg*8fl(+$=JVQO@Y%2A-eU604N8)Y^;DccfOd3-}pxzc_|(;_~YUf7o1;+w;n zr8Zmgi$xgYMM2O-CziMP5qD6_^ewt2QT}!35@ycFQ^bgI3FTN$FV#yJ3r+IEN&{`k zb%|crmKYTF=ND0Tw0EHv;6u%u7Prd}!=kt#&<2-8zjGSXU{8dmZ z^!Um0yzyuX-e7A1#RIrp1^pz%=byD_S`etjDDr)D#cz2V zX|z!dDmSOYPLnSH=ld%Iwfw6iZ!fVmBc5l_2wtO^Cj<_N&0pcN2M`Tc0v-?ph!PkC zBgb`$UgA1wtnWL0`Q+J^qgPiR1HM6JI3FCG!bJd&YefGeLSBT1#0vusq(A&A0)zb~ zAdt-I&eDPKu)|G=;5dmze(R4VDI%=`jpzr1tEA4vKQ!)>c1EIxOMWX{V-nFufBa?m z84ZG0hGP%6BgUi7wKBs~XoWf_c2>gKZG?ITx`;=zj%+@{G{$iwvk5!^7?-n!5G5;I zJwK~yFx1^C#J3dR5>4kq&1H1uE&;5lK$HT0P~ub=B)G+o(ZN}Ky(|A$$XCEN>fi5O z?c*-NbJ~YuQ}D2wO+i%O#_MqE7us*%vRYp`T0q^62qzBFP>iLQrF_ zNB2rd|0DEgMUkaq5H@@rlSaEq!qweG0os8Hp1TdF+#VEU)j8Ss^YbZnGo_I*7}N<^ zqrd|GN!~eGml@o0=!10Ayp3g(6-wk_b?LR+E0g@e>v(5bh61>how^H{L`@PVtK&8+ z)7lsf^U?Uw8f?|_MmFie6l0WC7V4~(bID}{_@*>e;Gxfs5|>`pMq3)vvt12%3!&QNJ?{j%`UrWjBf3QM#*x(o|9t$WxYRJAq6$fb+OAmV1>^;joVjeYV}qwI}o zFF0zj3jJdz@Kz2iyj)DHT7PRDKRr;l7R1S>_5mv{l!jgKgHLtxu+d^y?8(ndM*WPG z=W9^pQojcjDh8)Z=wV@Ymn2`tuFK8b24C@XM&DIpyE0iCET*l)XYx4X+Kr=Tvpz*n zSf&o|ENXIk>hySFkoC5wEkQu_MF@2T11kS@g`pCuxOXY;>2;>a86vhYcc7B<71#qhpe+kpx30~m~5sV z6m#Ap^X%aS70vyVYzp18aC$+|5AKPrWzg?49W*lLv&9*$tL$-Fogzjg&u#?in{u!a zTIGQ*!5cnz*ELu*3~`hk4CveAV+HwPJ5^v!lT>dtv?@$w>ot@}G{TTBY&tiSwUI#{ zq|}<4g~TMOuz;AeKA8CY8#f|ePN`w%1(&L)9f?$>!y#~gVCQWy2EynYk1Q1P;^oDmsX)!th&u3Indu>rwgeO zvbym`j=9q{2W*_^<>ee_+Fq93U{cX|(D~&z_gFHlMy$8LhE3J-L_;(gipTxHfeLkQ zHde=(j0I|)bbGtXCs}Q%Ry+@B`oJ?iACXK%q7*=4jRJ(F{tW?*8udnGiEd)6#Q>K! zs+SpC)>KCqm0U%Y(8TMJWi=BHcMxLrDuK3u;i#JN*kGS3b#7R8fYzvN!+;T5vZaRee6+O`djLdC=R@w9^&1m}A_tr2;q!_p3=V|^c8 zk{*TZV7bEoX*pFf`!ey9rg@UZkLiwwtEpFralGm-5`ourkcf6At(S{B-5|PY_>sbW zG};Wtl*(&sg)g>wd(4q*QNwMsqFPZl5rwQ1rdgqd3TFF^{MfMdef{^2`Phhh0zPt= zGKh~yNL+BJzuRt1eW|yHn`ckC3Feg11^T0N?@hyFgPFLcF%TqgS}~_#)f0zJo4Rbd zmwQ^tWQuI6Q`l!%ODWFF!2IZr)mB0UQVnlEE7)nEy|#$Hc$0XJxZS1Ds9Z~1 z4Oh&6&KcXiYNw0>VXgYHS%sU4HeR^!^z%)83S^Awi9QZAx{QO~1*G9<6-rp~_Qx3W zYlEQ&qbZo$WI5!=H*AD_kR8}2O9`@|e+qEedTRlqE-llcNp({uii()T-F6>Wg3cI5 zZf<=?aj|j45N)&d3~<;|k?nmqyUrF0>JHM1hxv|ec7`nUdTR%}IP&cq@73(clX=*`LzPl@-)@Z8O+ z(=4C2mY9~;7>?L@T(~Q>MR{Gx_?XWf_XB9P z#ABNuQHfVyIr=I7MZWgYABr<*!S1Z~BP3M!SY!YODN! zBj7S+0I*XbPL{1~=EHA-yH0CYUUtUntB#+%ROcX+AVof3%o*9Up^~_zwL7`r%=*2u z2(F}0qxvO3GF!CFzX_l)r-2c5;u+#dJU@?Lc6)#CU+g6J>wo3dQf)qSc`N-XFzhwn z<1QqysP`u|*_R}L8V>H3mf9{ZoJ_I%u_g}&%uU`ya|B`TZ==Bv*A;;kg(cPB`KV+} zTBn;nzF)jD`BlGDZEaR-M0UVD!8!Z9M^G4u+&SX~lLizoSx(PaMpb4;r(1jVtQL8! z+g|>V(G>QH)U^eVJN28?X5^|Y16^@D9O#W7)ThpF+@9$wo-MW!Kd)~$bDnxthy73q z*$+zbI962*9=~K$SsWVZi+}VZSnqdxt|jFpy`kVM-Dq}l1*ZG&2zp80b>3YvJVm3t zjbmJ}`KB_SuEp;4%lq2ATK6~(SDEE^3!7*A=C_zvjTr&@X1DZH z{*6g?t4}R5qjNQ=sSh&T*Jjl`cmBQZLDR>@l-pkrGio<4&`NEQbnlur;Ns57kI;5s zh_(7bn5i^@<03a?{?mhY#X8pMa3eGOAwL(pm&A`UIyXscZVLMBA_5D&f7SuOR|fU1 zEp=~3yZL+k3tiLTM?N(AS1tdogO-f^b6a15b~@_{^(01K-cH@h$qkhk{QAk$SKs;I zO-Fv?-^%;*t@gjdBRkXoltgF#Zw=?l|Iu(3Ibmenf!AXgdzx?B{P@=4(M@{|w3%Z<&+?d5s1A5(xMZy!9-$^D@% z58^%MF1dzh5P9eI{_FXE5u~^~Pey@??c2vahVc*?GIudT{H?WeXRkPE@!m~gqNkTz z(=uNf_nqbu@*4MV;_@xB3!}vq+)Jp;Uh0d$mO+=+)T`=Gd40dHzR*1N4CwYmOE5lk# zpzrH3jAtg@x)emF$5LB`qQPSqV%n0~Sq?G%?x@!s|4uizYIHd`X(^Pe;(D#T*vf_I?5 zK)HtvlXem#w85g_FKSjFm35Rs&^EuLO|CwJWfSgOQLY0Ng4xllip*;b(FF3LYR1fH zlxwVFp|l3dioz^3&DpIZqgUdnd??}7-P4o%z3x5fZ|Zyq$|{8LwhSb7MH`X;n{u1e ze}O2b4%~BlIl_TWxaHQ6S`_~D@8SA|?GzU!0gZ@pm=9J5UiPER32vNc`3s0(H1eEg zd!__cpHkS0grx3IOH;(3O?Ol@cZ$YXk4pv&VXde?ZhGBl_*A`~hC5m+_?(wFpO!6H z(HFK0r=JJz6GtL7F=c90XCu@GC@f-Z$*uWu!Tac@eU@yDO zI3J*W4wBtZ;8$7soz&Nn!nEcxY;H&bpB*;$Vo)+%SaFe3ShS^vl+7p!S*itP&uL1M zjZeuwmM&@{7eH0@&DV=#b}rd$VODOLT!)DwSO1<~q)cRN45phCuy7t+qf|?H3$AHT zf2bq&q4v2;kq-)%2nf~{(##+kP9d&EZ0XEvj8O_UCMJj1n%kF`Rr#gFcBbKywZVT@ z(seMlSN3`$r^3@v(is^yxygw_G=epD?^`_md1a85Q#e80+Yb}nyW6^!tJOAOm19nk zFe056V`aW}rO~=wMq~xfy(5$cQ9#&+v9VeBi#gJoV!pPB1nb#IEAjAjxWsEcY$YyU z@vfS`z0ukXTnuA5ZwN4r%Z^O$*LDyc*eGi@;SnJ(und|j!T)cAXtnVOR*q>fm{-B6 zyAm(^EuXr&KR{6@ssP-3FoY7FilU}*2o_0@{8E!|4)#bjErF{o|A;}+S84)z7S~*+ zpQ%!Un}unU?#M_r75d;!T>VZ;p1Q3+zlNl6t*IHgkIq@$1K(rgZ+VY!NF_Dvq-wjk zlR!vL=k#KEe8pny5}Z(jt>K3qCkMNm;e?)-s;XZ`kb6eG6?dQSc}~k0B#BJvJCQJY z^7fONeIziBDG@sgZI0u{_PZd1C>l=$D=%G}e6zMr{=&$yxz4GDy1l=H>ujl}-TvUx z>X_sz^{({j1dI%aPR(ONLpFKvIc20{r=#VE`ii;+4PQNAe??j&3gaTC(U+LRAWERP ze048PF1mO(#8i;au5EEXJmo8tyV_zst)p04*ztA5=>PK^D--Gze*ESDS53ei*Z_{# zUw4Q-)838E@R7nK8q9Cgq``T9@qz^M)ujxq2{PXZc`IwXUcrdkAwg*3d6()2M zi6+4C>q9=1G~#EDQpU1MxayvkkXLr+_w|y-=lcT@MC9@dAK zt1kcu8uE53P4yZU+J}?t%fana7=X-x~C_smBwvs7;~ zeR@ZySM^U+z_a7ISOdP3syS_*SBtnH&Dx0_MX%npncj-U#*$^R{_&-m6bs`eQRh1O zfY!5%gg>Wwu$#%l9kfse;zAd#6sO3rtO9YrLz23gGzNbOr70=?a_qaXHYmug2*16UwPAyR*?e~Tvg28Pn67| z5yBGpj7gzc;5AsB7?ziZB zZkhFSuBxE+7uD)B1EEGF?`*_8Bkhe!HLABEo2a9!Y`@9M=O*7b+L0KM0Nr1V-Yu=! z1@xZ$9n{@fGaevX%>LjHJHk1@a3nNt`Jpeyg;5XEJg}vO?1hjMEAA<7wB`i>MF3pM zl!yC;s6Q@gm0N74R2)ypJ7fFb`pz)5H#Nc76R`NhXGA^7z~8F{6?Jbj2`92sb2ln!&K822GJoV<6?|>GM{k$GGFPN~;0@ zHsOQ)+5PrHinE9OFf$e}6Fc+ABYi+7^sb7fY(?#@+v6RLyQZpt=t%9Y!@4(`tgrT> zTMXt9{0Hs8TOBz2TR6lr*0IT3Qf_p8IO+kV!^#7rItG2V_Bgw|)$a?z=fE$R<>=ct z*?Rxh=f0_djwDL&iWf6`S2iBHA#f?bso;2%k;7^Q2WTwo$>Pfm=|gi!VyufZKzO2p zh_U`$=sS!Ynre34sRPFOs!7Vft%1WVp`g@pnPaWLl+PE8VJ5+Im9XIX{sn~=!!XC~ ze->{KQ$cagCKL72zQj^uJ(vP<+vDE=bohAkwxq!czHiX;?H>F>ED^7wc>O$bM}t(O znyP@-ilI>w#u~S9z9bgIoJ|bOcNm%{mso(u-ct?E$~XV9&rPv(9`aCC#NJQPcMCj( zcm~r(aX2^AULG+ivveDAgYKu4h9mW2IP9mzqMN`)2k0jD(gx{g{6o&O*!6y|efeNB zjwju!q)auTW9>@8VH1NVrIkJq!v_BhdZoOP=bcSQkALpa0sUsCBndwa&D!s%{UxK< z?mTR#O}igu=Q3WWpBN+R;jrGj^Sy5LccI`H5AM?`+gtS48h(up3(s?&kNKLUCy+_# zz@tZZE$kf(h(N?a-ToB;&)d`S->tXNS?nLH@)Mb4HwQ$IB_%q8#r)fq_pXs65esT+ zuIa{rBguw$?91Ddy)@X=Vb*H%>BgOVh`@;?8Ck{6jg@xtv{;k50=-L}W<|fX@Dxu; zqA7zT1-rzS8Zlj43Sgvk+UoUZAulYG7$4BQHtsASnsbc7Y~WbHJ$<-_(#~^?A049D z1tp|dhX^lihmZ7O%6+7_!&<;wP?7^W^bR=}wX%(B{Ph73NNi#-qPuP}pdh)y8uxaU zUqn;1C7U*Lw;Yh493rIWt zXmrwjK0cq$$QCMkJMIqN{8KO)QVd~v?1~NpASrnr$w*&wFOq>oX?g6KRe8{(A*MvR z(7%+P&m=VPEYB}&JWoD-+MP=wp_FX@aKYtC8?+d<(?zW_IAWbvNhGiE0Tnw&>^v zIv{-bPYTIjo7Fs6=k$x(Uwjes{+NRl8MW?GDf*)fKq^a@aQ6A0_jr1M$}^x8aQnJg z4@gDeepkO&x84m>{H44@Wt{1f8=P)%xBI7|sz-!&+afRWY*`zIGHH$&Ucdw@@i4Rm zk4!cyy|JLuB^t3O_6?E$T}1PwiaTp-T!-juK1frt=pj7~(!+ACA|GLSkEoYTf&Ionkf$zGnt)Y*Av+M(8i;wrH&yxv`@a$&$NyN1%FMy~Us9D3Y@WE|&YC_whLaw{AL2_a zb(s1lFJyd?$o)tFfk{(cP{?+tpU#1Qdw`6cX2uqd{7~Psgvn zCvRM8=xywc|_1#N{mIWff2 zMOLhz&=o*S!TkQfoerK57Kb9XrD#<%4>t_L536eH#lwh353l{fYY}R^w|hd|3ot8H z=v}#?Wd9q<#dyTinuzzTvTf+~p`ibviko`~$w~}%BNbi`eUxec+6^~k{`P0U1LS)j z0uKBQ#9VxQ7YZ;^%osoa{OeD9U>YDG2o3)DVio`eBI;&HgTLmm!nuyVl)u7yKjk+_ z0+g#TC3zPH7*EZ(;fY2z=I9}lAaq{>FZPtjHvq}9`LD5(-mB(0sWotR9HN~onUJ}9 zaxzb-BwFoAwcNwvUxTt5adViF|bBQSJ#wLd=9$NfkNuc-Cx`FHOIg z#1Oeek`HLdsY(en*5^`INnO2v6&HHqipQcjJ673dL|wMTdm`eh@4;pIlI$+sh)@a1 z#C(_z3-LMx)rHI-0ZeGU3{YD8Y0VFL10V94ogWpngvwQ;05J>4`2q*ja~}IcG=cH* z<8(^|h2J92o=*t9p20+t&!#044Ld}+T8GUx^ls+7n3|Gc&}tgh-7rv@N>^Q;O=vO- zgFM|KUVlD&M5ofnr5r^q#hg zcOO&dWi|!rK_Ya3g^t;F+b4sGF}wAxTX<~$5JLQEOhBuVfVDY>prGC;&c`xVFp1|* z(*M`%VzN|~B7>K~fdhLL|20aB-xM7_c^eE$LKg+D@>^gQe-JLHkCt(+`|zjm+B(30 zG8)a?jq%#pSaS?tBmP`~;6$>Zs>M~T`LG=zmZ$u^D&JjkPg6*dj^4z8_Yl+qFzVFN zc!Gbj*ov5M@m3RicBL@m${>~+&YXSh&_2p&6BXx0@pgq`F)^*FAumz$B~o`6tUS{h zpORHv0K+WT#P2S3w5x`t=((s3QSN~VP8i$vSX$MQQ;|nMO11VxRT1Ruh4ZRe3J!Tn zFr|A?KSoGPytFRo$Xua0o}pBt2afzg*BV%mR^Qd;JYD}rfq6b3VVW}>(KQGL3qfkB-cXnZk2qKhJ zcpY_@XV}9)3=H#WDx_y*kckn>4#_-gH)9Un^A@eRcPxB|Gkmp4;~dKH$&~mWCnh8G z%pv8xQ+-9~6mL#Q8N)XM^(C()8{^r6O6`4)qO9L!)RHB!qA3|!M|4D0acVa&j6BG% zFLxrK;-ArJe#&6?3SK^o4OO`cJ;o_wH=O1mam{+MrXLzFWIHd_HulrdnlBtlt|>4` z_%suju!|2qAzFGYyav@}>0P?In3_HK%z>hA1}DuHIaKaY5|WBGN53@w7hkqS7ehHM zWx3&P1*+pjyv#Wp$+Mw)qkiMrPiXUSpH|Q^M`%A=z9JFzIdXB5#H#MgySO&zDc-5T zxtU5Ksa;{U_%SER3wAA$z=Ga-iN_|Dg4nhf^o*N$(uh;cIly+D@SImIWw^wRRlcnT z$-}7zw{~JsakCv^ej!84PV6M1>i(~V0g%v!0QwEOmn;q1fc%2xkE(~5eBI$(mSUCt zvhO_PSvdIbYW28#R$B|rFlJe}^-bmq9~WU!d(qMF*V8OThd#}4#tRo@sqpx!sZN^i zdoK_C3YpP-vYR|;mcO}zYeRzJoXX2MalOCMd4tpu`c?bwGJoutQa%ORHhHEOSLrdOpb(2Nd3 z&%hYbu*+=Zjqrccs+Hks^`mojX8pyEYFSYXVvK?&B1A_pc@%-5CX*$ zr!)OFwgFGb(W1}^8y;faA>^dfoHWZc!s%N%gko*Lp1CsPS770wXEaiSKAh&3fT2M! zWX32I>=*N>OW3x6va(vP-&*B)*|syUJyP zcvk_H@?J4i5Z6N58pPFB$qa%e$!ac{I3^XlIzv^b>cgG`;Y3w--83Mt0+P|mE*~dbp>?aJ*%5H;)sV-O=?H68gz@I4D{t)Z`wdfP?19W8XJ-1 zqAxF?ZyH(aKk?C3rY$#P-cU~qs(IS=@s_(b_+WUNNO!9YuS|)N4(l^4R8;ga=D?bp z%Zs>~A6s~zN^o;o${EPFnuL0b>WJGbrbsWuG1Ol)Q?`XF?uiG$tE`?3RO*sk`)->E zvtUF_HG|dhkont4e9AhFU|HarO?2$^uAILWMA6P)m4!I?lwb1~&hBDSh&%Bk?P()g zhYGKQ8Gcwa)TNV%R|pp!8o*sf;L=D+GI7TyBXLGyfIed%&Q(;P;-_xkruG&9St8@+ zA)YR^RV1+UT&W_CE&^i$Z}CB6SsyR@)pZXK)mt;eux79XY>Rs>fKvMW8qPBuFfB7EGt98!&o+kto<93^d{d~O7gnE$C$pW9_U{Y((RfBfgFViB-U zCLi>&v2W|;k5iY*t1AP(I9y6_M9G#@ToKFygOtlx1hOe|#8E4MxV;s5EF|e(-sM7l z&D|Ib)gL~FJr(KMlc;hsD#%d5I1JX9JOp_v^vzd;|89FO+QuVaN^pfUbrDglwGKWg z1!ubEcP^M-8YoScjQK6G%i4+LvSn?YyKJ}1m|b`^_-570@+4R?7U8TEd9M8o75Y2D zOW)<7t+aV-GHa_Zf~aSe#maRA9F2D<_1ll5QCUx(fG9>}b5F=kuxxg+7D?cPVE9Oi zhE5T-p2rqR=e5QT;d0p2FiC#E^deCui=@Ou$|GM z6)g>k_a$^C0El=o>g6ozY9k$ZvCCv*7A&UwL|Z0>*)BH-UhEVVqQ#`H!tUt(wt2zB zy{FH<@yii_UF!Wd`L!-;>KMIcV%g(esow$iE!>ag#j%qO1G}`9TMbQ7S0K*|wJ&SF?#ek=@-GSsgHPCmq4Mbd0 z!pS_QB{$E6b?A~Ib7B>Cv_b}lpCfU9OrlAWtiFk$T*54u8i5xy=wM|4_Ulz-a;e2; zFYPdTAk-!%v>~C4bps^0$%O_+kxt3tTp6QdK71m9N)lBkicP}Zx<=5mJzYMu=H#4M z$*A)-@LM#vKgiG!U#u8;Y<7Z;t;KR|WdqT<$uC!7(_o*}LfI)Pb#11qrp?XA0BRJ+ z;dQ*5+l`bfRtdty`51@4L7h2U&3~?kb*s1;7b6uX@>|qhJwU3_l_opm>`e|WU^6Mm zmhPR)f}PhiYTvBCvwhPh3T~=ukubmM-**vXXu*m6aat_^n1JU*5ujkcVyZ0oJ>M({ z*PpFRk)lQ_YnmS-iW+3dHC|ab8fslQoB3Fn?mqdkpqx^BBYm)>t6&f~F>Kt9ZXSE| z%p&6(s5xI;-Qfj)oD|%bGQ%SE`8oSL7;_8mNr0oJMl}GoOMpXOInCq6?k7sy%{kZR zcWFKJ=?o{ksOhTm(kr-)ynTYs22^nhs|b&cV|#7bthvC@tA4okM)wPjo)wn(AJLDM z{(l_(7+IM9EBf{5OxO}n!1i2GU7F*eAb$ZdgS1Ijg2BAghuVh1ivsiTw!_ka|Mp@c zMpwg_T2>HB0hdcjmf&I@6JdUx57~kHyt}@=JHAa(3=1icY@Wl@@!i6F3*t=|prlB# z7iaH3-9J9vr_pJGN9k!;on4*{`A9A1<$3TQDwJ8eJXGsVkD9T$e_iS$YYltxOcTIWKzD zhpi-{AJ4o}Ad=rUmf%6=mQdB4yH0_%Eg~B_;|L0yCN(4~)rh$$6tx%>mrduqysNW| zdJ-VP0kyd;1g8t7@dHd5)hGu%5geh%aq(=NrR`iEn;=uMY#gFrqB3e$cJ=vmlprx; zL)w0!1Wt^w2zp1wNpt@!6u@t7;W*1#dhw5+Xne&IE{97sQiY!0J-6^cG!G1ztY1*! z)4i)kP-zY&{0vkutF1*K1sy*#3A(Nm3;tGmj4i`x*%IQN8`RaTq*-`!=Q%8IWh&%& z$=>b5P?_PU_1;rL#}5VI-l?~o*!kn7o1hmp+^!!5Ol94!pIcW4F(1dYpeT%9{{m@5 zeNTy*zoielaoQa^+;b4b+nCh)A}L0d(F{pQY-9Ezk(IBD2Vo@42;5i&aC(iIq6Au~ zFl!b`t^nEy=2{BNSO$f1UY}lb^+Ck0K&NrkUuqFoNO~_O!BnYC;{P`!LU+D(YCRMm zN;NQ{ZNypkk+p%L2nhpPHGGS_{bG8Ukq}YJj8>)i(Uw`yKON_O15zx4Dt>$^6d4E= z2HQe^om_nY!Vt$5`vWyP|B-4PhFoR9R5=2Ql}J*RK9E{|p#16sReD)U3bcskOeI+1 z-{A$+YiwI>x&E+Lq7h~`DDqJd4d!SI7B4;JI#Pos6>_wEE-PfAuvR4HaEOVsoQrAn zwS#FcK9nOMQhQAmmLq4}0#5@&9yFr6mE?Ev?sU2efg)y!&2;5;YtW5AC0Wy6oGx*B z7VgXl(-eaU=)TmElU~Zxg{P59Sys7l)5Md#5S(AfQo!n=tV=i122I|A2ZHeD!_ zm@4{)`V^weP~VFWfY92!{v_ptQ}RZCRA>JfNs?(|Oh;1xIWSKGU^LsdSIG4DeAS+X z8IKL*O<@X(1Obe74VU=<&Uwr7`|x~Teaa@lv~A23C^>BqWtZ4+xd@)|cVt4BA1IiH zU^KYko_X~#z55^(us;$>U$9A>gx3`^BS7Kc@lS*o*SAjX*`*siO0h20rGUayQmqySaWBZ(D5ICN8 zHu_2O%8FC#&W8}${{g564YVj#uH9jPX+8z!D19K zl@^Qj;E5z}GRf22PfCjt4WHG7z+NK^XB+=JTbVq2>uyu}<#^Pc`2db+I#C^M#~9wC z(mE2Jk$XM;i*WH$Uj8wu%Trd~lsiYa{8?+Bf)CdB+x_(hxclX5PNz1u>SOxL)jT%2 z@>^-w14wXh5k#j_)TQ^oD0_z>(VA#&vux{>ZQC|Z*|u%lwr$(CZQJH4qwD@19nl@} z4Q`Ki#!d`!urlAwmGATYZ!?z9>nBtG&h)3cmUSDB@1u2ji3D(IA1{>a6laZxU-mwE z^dH?`|1P{MADnA%!5PeW%SrZC_C1Y$S`x1ivwtXAWPSdk?wu}umO#Js#l^=hpC|I% ztL-{lo;UDX>jSA8aQiJ$G;_t$Vt+MD@+$4IYR-*DYu?`R<6w+2q|a=N%z31hr$pHn z7LJn4joqze(AC`0Q{n-O_8I!VV>a!bvpCVj+ zk%07=n&OPdnL{RE$FRn`6C=L)aH&~6;3dmRBKRU%B1T+AsEL#A48!swysQq^S?AAu z-|OH2y6j-t?y33GEqdW247CG_vW2ZNK*4#}a=O2o#gzhodpJ#EU_-ljMHaNuQFVCk zy3!p9dGAH3Dy17MDntc6Dl4aBIX~cWd7Y`r=uG(16p)kOCoGAynYl@wK2S30po(FL zeqkW{BZ^W2JWrf)Gp%~RT=IsxA1vfl{0Yx%ylg0jat1sXrzbA~#04yReWB}~V!)b) zA9DT7&U9sK_-y!ZJu(+3I4{|6Jv%|=%N|I5GXPnDe0)*k)ag(Z<#aesHgYa9$Um^G zxMfef|I=BgQth+Ibl=fHH2GvGW+r|XGQa~^=ISi_EepQ|Z7+z1vfaJ;jVc$Jse+lz z#c9S%24M-yPEh5xAJV`QP$sQPA;V^nG1g0Fs%#-^ZT^2+{(r{jEVnv&D<}GY`qTd3 z{SCx!#dyiWs&m&JD?#Mn<@}{4Ozcng1E$q>_Gh(YL9qf}cPj2&mXj-qwC$rhLWI$i78=_+wYUmR`O*JCCn;CC;RDHk)zm2+dz?Eo+fs(z6n zpEPabf$O{Iz;*3u0-Tpf^z3d5vM> zN`$f2mFpHIxuSU7X@-D6k9*g7u~(t7FgSn6_I+PW=dX0toK&1SV+}h?b5K%e!lKNoNB>l(0Jyu*l1M1wb=9*e>@z zurn#vl(6e=s;F|)Rlk|+=xF(0~4Ck|Hs!hUx#a_=uD^tva*xxfMW>= zx67imIPulRlQ3OmV&(y3&it7GE?{h*ASbruWJZlQWc(hEX@sIXI95{vDHt-=zbklV za^dhMl_0u{XeRzoETZQ;|_*6 zRob4M8_U-am-bOuhS<->;ldRRt>1V_7(A+U{>^=j>nRup1&|_4KPc zH*xVp0gzu2@W%+y^+-df3|t+@ZcASih7vlgBP~q*uJX58NtQGJ=_ON#)&^qp?%?F! z@^Vu!fgn<=@o@XLD>@0lS=>de*xBts;)R^r4(|FSEa09S9-MyP&iWRZMr(VjfRa_Q zUg^8VA>kD(fehgT-aoY#?B?FUhl#tQljHgN+RcarIcf7HndaPhcTK)~_y&nD6>%XA zDRyMsD2#frX{#RhEQW=D3u>nIDFd2e1U=E49)$LOtL4-MqW0&rO(Rc07jNwaAcAH9%-VNxa1H`TTI!CHHzoDUi%V+9m~xRwzK-F73g{L)SzoZxS-62kV9DADU^W z-YT}^ib(8o>cGEs_;mPEITNuM;rsQK$B)8=g*4Ua(KX0ZlP1_&nW*DIQ_0u*Fe&hp z1>9p-_Fp43BWv_0#9kvrqwdfW8@5DZQmdQIK_6$g2suf{;j#-WpnJDu3bVK;n1^-# z=F&<^`0KF?yYIjuGGDul61bR&5iE$RIaId@Es3+XA9VzZO83YBhlZ(TMQ_8c1DT6E zj#UJDUV^mu28U>sD65{PVV^wX@V8VvAxVXj#b-Qs>zZ9R5yBRQ21(Q73t6iusNJ`r zsaWKRQ588v6HcQfIJfQ6#b7w_<``<#62*YV;G%-6Y=!gi8+Dk$DQ4GnT^#ffGh zUdKn=1l1|wuE!GQcY-qs98%xQT}Li**TpF=$@)dAZrv@gP`H(W!ve5;XhIRi+Cv$l zi6YUDAlRKNZV@~!+~65*G!Cz@^w}dxj6A!96VpGY+I_8xnH)VzuT2%5aWt1ISy=PZ z9y%To2CVR>Fv9W+49JxsHpsO~0%N3-#T>OQ15!tpppvqnTKl#T@K&w|$j!ke1G#Eu zd-P5Vh)A)rs3p!bz;^o}YQ>`SxQH}+uI+|7MPGg6cp9$dBL1IG0&wvn+#dIJW)C1q z=1L~dIjK0*U^I)4ln-sT>w`i@R+zeY_2CpO?6o5oQ{RdCQ+KjfI_fPYoMq z*$mpWa!X4x2V^RoO>GQ;I(D#s=%>^zofQh>^kouDJs~R@u%$z{Ny68?%PH=jVK z5gVSY?&WxGqB$+L4jANeX`tI&T%{S<_B=0KrKmW!joG53L-bv?xyDXpQBdxQN|eUK zid0&*GeWe*a{UQk7BOM=5Bn19RKVI#_#z$Wujbh8l;gRxiaKu}-~1j4#t~5CgmEss zCGC{tkL(#0x~Qi$XQHN;%WanNH5+lch4_yA;>JsEQeE5uk$MI4YjUa!U<(++f=*Lm zl8yVp?JU>Le)OpIpiL|ELfJnNPNZ=7j&Z6)8{*F2REUI&P;T#=(u$ zr>9;df>HE@HA>QgJ*A9lH`)8K2~tU*J)EPRHK7CN5x7VU^6-`eX_xy*lG^Bvkai1T zsXf5{?6~v7P+JU+Sn~u^#R{embEtI=S+|u)+-R^_rYHQphxS>gi@~+>0&=KHA_k9Y z`xof~KPzOdqyf1V ztt~cYAhs4Se;<&UaZ;mHxvbgE$l85(^UzkD34Sw*{ z*0mSbX?K)h8(W&ijp@@=d=e$I{z;fT2IkyMGE{tdJ5=}A_WkXVFDY;I8^>1q33m6P zHpwjj(&+F9^G2@FE@I*sy7JyfU2ZOB zw^rF4e&f;s78pu`PnT}B)haQtv_cIY+$qJ&c_2Z@RKiDA!!pB_>0uhZHz}8tlhxLn zau}$X4JMB;x1fcM9XdWZ|GQ2n+zLL z10ry->xJMqhXsefdlW(}-9QiBQ@g9_VK$;ux_^pY>ELBER5q{Si_bO2K!vcl1aI|tK$*Ij$7xfQO9Q_N*;@K92MduF0-ezSV-t_1hooO>3cK0C6K+#6T(fig z>@!FmR_m|fq?_3J9JBf`OBzg`$}IZbbc;=lEHb-*9)=99#5eD7aa(t> z<|1;RpGNfwQDk$y3h(%_ZKPI@x9j)kO{S?~Dt-WHW$J8im*NvYtp%jOs~*}ZjyGLy zFEt;JxOtveSJFF$4_{7};}b}7(sN?cU3?Dv`<$)Y#Nox?UOt{2gnNS7zEZ}D17wYI z++PL}&VIoZ8ZBm59U7StHDFx`FDFe(aEWbBKaC{x5?TucW^N|fXezRK-IV{oPr&v^jQ|*HY=?&S0 zF{b4+xybbdm(Vf}%WkYgc6pGIK+^L)Nb!kA3&vrnvmi4)IHP_;RD672+*1au;ur{N z5VX*KdcMnhhIJ)DP%zsBtO{<_pOK1mH0y>!iGhfP!rc&tdU?@3 z#XY~bOnHU8;M6)bsjZ=lo_SsmFSAoMaPQ%=r?j&H-0#(vQoXY70#bPS6_kqEVIdt( z64O61o09m+^e7Qe%-uh;p$$W{Dj;Gio>~Xuws!S!!3>;qZ`XtM75;V$Gg*-;!+981 z@QRq`1T{*FIbxn7MC&G0sp#-sYe~qnFaqdL6;ShXbAn2D?H$bbck9wurHg)&+h%5y z{wbQ=a{UOMpLO@1Z~Nlx`0@y?qa^TnW>PQTFR#asbiTn~emY|aCK-wHswJG+2E|Ct zmPFIC1r;eAo-1X~2GIB0%+v&MN z*N>8UI1D`l>JDUrmExg;{U~EFt(#V>-9pA%je7T&Ztcf+hT^a#uCJMKI zS;!!|Y48MI#e}ELt>g_WPNFaDUDe}8fY=rBF2%7d>4G}POOl{tpq4=twKGRHr_XP$ zQJ7#zlNr1gQ?oDF>h2x!9w%hj$|hkZ25A7Y!qhQdkyRhj<-B}nn2zL;~UgXU(psn~kAy$`0EEP47C3C8w$W5y0PCy&qkjsAN2^wZ1#i>7$IupfZ%DaS?K>IWmi7N$79AVPY=PW zM3A3~W1knZ!g$xikaU^+a6vdya_ej|z$AN*gYnSynzTEK<37};nIXknSz`c|u%=^~ z*kLCf8IGHgsqur!?_74j-^bo+eWKD+wIryi4Ia{hO&3`%Cgq=ER#Z5}! zk{4PgY#}!lK2;SHH{paBV9U>1BS4$GS4nisnNwB!<@R!x&^i zF_}grZc4eSQ}scfF8ORmH4#Paf>}IFJnA1 zus;fW+nkoZOg1+p{^4W8OB_D-ti`oyI*V=qpdp%I>*O8lzpB+fqO*K9+W?7|0{@BGuc-#U__Fp}W~uMn{!LPzc4)TcVv zzDM_xEUaeDOkJz7Ti3%j#PLe#z3$|G@v9@R2x0-IL+^Gq81X{$asX_`^^9(_3i4v} zTqt=b>IDa(yUrr`5$g;X3@VU{pE=k~l@Q2LS4pp`j^5Uxc4oK(wRo9GuDGN!iwnb+ zf~K&r4yrQ$`UCqcFS5;2#(jN^3gMkLdj>ixAOyhP8p zsF`K11)3NtIM94NHwKzG0t|4J1g{oFJV|b$HVB}4D~;1U**pFWT^aUeYzxb2i$%fa z;0Z30^}`C2Mnup?0FUS@(<3SgE^eVcU1yDYvS4}OE#)1C1hJ+@tK)-h#Yr;F*E#%` z=EG(j2=EZKm;x@U*BVVMFlDE(+(ZZ5`1IuNe9V9*gBr5n@xWR9Cd;AgB2?}6VN*)G z-LE1)6SZ~;XIAOj0sIEJn!%JrRlLhSUDM7xxg1Aj%d^rhlS7%Cdi}BfhF_&I>M7Vf z-Yxy%Oz~7>?S!(DASz3BnqxUaylj)r*JN#D1Co-QUZGKXbxA(6yMxWi>VqO-2@K4z zdeP$am!;-R7S$T>ozo~;WT6-JyIFC6AbAE#aCDZYI6P(0`Kx%-V(;T$*=7ws9@@M> zh0^P-oh6G?Z+AdJDn0cpw7jDivg~{Yd9TfUvZplv4V?bLx{M`9%0F*c{r28dxm$k6 zW1GpBQ}yoQaU#!KDLXpo3mQkwRV%G2W3xeUbalsKfoXobC!s&7U;d z9`;OlNFY~oZ{KizA1=Kxs4oOmk1WZRyNd*tHaFWY9gavkDgE}dTENR~(QoHsGw-E6 z71~|7T-T~p?-Nm1Dlz!$$L>U^B(yV(_qo2!5$HKNuZtEHhsLjv%={y0&^@S$Zz`c< zWujp=gN8zr)<18sUs7`A1kP)AGeDT{+t}a$ftT0rIlg-wY%@AV3SeE+?nVD%2t#Mk z)kVYgc55TE`Sg9tZ#90=3#$hIPWgUD<^(M&4yEbovnwTKEKOrm9fV>BvLRtg?Ies2 zg(^*<;jv^#J^-b$v-=LQJ{7>gR5b%G`VmU8Gt%jCn0=*-CFmNTe7*nC3)<^R7EXh5 zS4K8geR<}*XYX}GNjaj$=5dGPHvhUy%;m7!d2KuWFkp1?l-7w*nLcNLR&umSU8kq( z<5Up2S9{@V4I?T#*_Y0q{YRc~S$(1O=Vdb0SnGr5hvM==L_t3V86vs069c=J&p+i{ zJ6dsy*g7a)hkmCMCzI^7U3+GSNk2{KuIJV@@=V356@pPxO@xWX{-K#zp3sEiiX_1Z z#gqUOzD>gE2va zz(F0L1bA6W_rjQ*nJDkV{2<^5#ajpu zx4NmWd?n|lKAlg6n#rwXQ1j|QuZs_knBP>_-#Fgi0&SRu%1XYBB>bIntl$~MzhYlp zz`yEj)PYcOzkA$}&b{{`Of}mLV~_{6k8Uz{@&!5*dSWD75c+TW%D~vG%MAbe)S|vh z2@FM9D;P930vP!~%xj37KaYLGr#Gbwt#M^iTF+8EGW^#@$p~GDi-Fyj3Ed>!-&mG# zlj)&30beYH0lKmJ_d0R}{=oZW z+zIfkm~BLTij?}uLLRNpTC}l<41SJD=th18gG!@=T9-KT!`n|i4T~Q&#vk+WRVr@j z6I)i4TXIHKI0{xicTOJ-5)&MFO0oDNvgf!EIdljpipL%7s!8*^Tg}8?VldP4uaxhc zT_|3AKgSEgtRvayiwqg`KMSs%5{;SWN8)y4%oC_jPLa5LEeeuRPa01v+YZx>(@Ihf%ZvQ2@nOOg~lADQ@;lJ*F{)h2E+aU~OP~*!H+&r0Ofm5>=8fL_i{a}&-OZ=>lquNXNhPV+l=M^AKBBfNk45Kw5R3 z9QHRt?{h$=#NYd4c#Ki7d#%xPc9|6WJFez4MeN3*!mWo)B|2G1{}qg8ZlgF5>Sx@ z@7@$&HR{oD7RtnqB|?t$azs_{_ccO6r@IjCLz30|xJb3kNb%&l;nXdk7^IzJuNlQn znu_A|E~Io)lMAR13!p|*+KqgMIY_Vn;Bp*AkUkWJv-^f>B;<}2Ip6d7Z`n!NC?OQk zCi47C5@Z06g{a3jQ^Y3*3=OW6EqiS(uX0KNoW=TE>iwP-Iueo&Nml{u;45n)vjN*R z_D+>@Fm+S$-sgcLCV$g_|A6ct*Vvy)fYKJKZg~!soFULESaL`=!n@jRAPeohyMqey z@)x`};OTW&){`3vNJTsj#r;6O6Ce51sUdfaBRyOyM82$`pnW!fX6OuUHGXn^0K4Q8^4*vHZ1_tmtE zek(I^J|L4txBCoSFz>ZSO97K0WB+v*JE7;>^oVpAfXAXB)ki&RTla=yyw&B*ox8tW2>Z8WA7)7UO!8W@kz`2sq;63cr4D5|$CBIAOSI8td-^P`$W~KoU^L z;162UL?BoK> zAQnej2MGcjg`0OSt^3J)N0jS&=jt=V{8a=Gtvc^l`^~^nR$;X+lOk#i9*?0ahqJq|j!6_W~4))JWoj$h@3EXFLCDxA1 zCd|&zoXlz^@=?jA`qK??A0E;H?Fmj|=h2Ohd{+{i`Y0`wvNugjWJQ*trpX~IJN9Ql zBeK*5jh87|+LUbRMMRlf9>I?CIoAF_GuLXerzg|%Y--w3mfq- zchYo>_qG#NCaUNh=(Y54?eW)p6y8%kzIacK120%D+tu%alhePL=U zTg5bxWv}H9E6bn9=1fu+xLdBP7gLXX*F~73xu8>Dk{TE>bj=A)SUb%E1r&}|@;9_Y zSoX`JE`(hJ7NUF9hXo&DR{$0w1ki%tZL1cHAxF+;$Y#K>>xg0qcbHQ14ATIM{yNzV z-6kD*S(9BUc6t5GB~?*&+Ep-N$x@vuUpS8ic}*Bj@c=T-w}u6IT#@ed1G1_lRHuMj zVunp{yMiSRQt|kxv#IL9A4ETf(u+5BqT2B;vBx^f;oqI4X(+j20x{G&H}{Gc)y|v% zQ!B5G7VhlWp(n@Vh6GyEyPj!|0%Ep%9mm4+J06H#ELP|@w||+CYef?OmHpwJl1X4T zuwjftilFo%N>;l_okn6DOi|L zeG5n}5dJ0ot%ZxP2+jSzzkJ#C`DoOmzuK+0EU-X{_7XNxvtnPX`6m>*q!kW}S?@9J_$^5$u=642C2rxK*gT2mZUqO7 z?b0&e5l2e0cvQ!6u%r*_NAK+DPCEA~pNit0K!F(Qlis%dx|&FBR1D9*fqUm94K?fl znUIji{R)>JzxIZyllmuF)%QOAncSUg8%8n;lglhKk8hp(nIdcTMyz3|@v#QIHe5SF z0nt%Ymhxqtk#ZhreR(wq6W&1-%>wtu2i61=(hbil(>E-r5VzH6(N+bI1uwPi{95Be zOrGt!+_-e2ZfjSqcj?+*5t?=Vs&<~pwF#`sQ&#)UA8yKe8?0KkD>W~b77 zk-U28ZtB#HIO!}{hX@^3QGozHJGx8xXcQQIm&u*ff>zt^+n}iCDdE8~0IIJfq^+d(Uo+llBp^lTq&#RK=pjzuOhq|9toM|V#|%vx8rDk$ z=c^-*;m6j37CFCuK_(x%ZEL>3-@&PO9H1ou&qN~DWwaJu%_PxS@hB(7&k;-VJZv}i?g!R5_A&AvZccWin9k(5 zkf^24Saf$^wJ-x)uCxT89Iq{UBT8$@*!!vC&4&rNi`w| zy(!dWxV-=P7D1yy2iFVgbxa_dy_OCg9fY){ol z;_elk)O+(!crwXVW@7il0$1NaAA8uxWy6BWo}|k_Z~`@Hbk}QR7%NYHtP(MIyi>BS zU_+7oHq{u3Vg7Oee3URL!Y>s86>YogU%EF8FJuaCD2l5rP<^Q|Sm5txlwf$wB(fE_ za^r4*@%Xy_W8i_^d^i!c9P{lm<{cK)Wd7BEf$~<&%nX~1VoqIclZYhvPX)LGAe~Y# z-X8-8@V#bc_^~4>aGT<#Te)BfeE6~fVgzs{eWb82x!e0q<=sakbY?n{-FNT2Dh|e*rO8)Q$7+zw`)n`Rp3_nhbGZ< zG?=CQ#YVncg4DN?`OxxKA1}>x&D9P?wQ#BOLHA#PsSXz-1F+@7do0{ zR2?wcfsIdHq2F0wcVqCPXI4e)jf!UpCG^Uo;w6aJ=Psce8rAby$QyO5Q>R4Gl;)Ch zczeIx?cYqA8kYXgO=l^5?hOi0Tw;bG0&m*5yV&aa;N;VnssiR19$m4|=;}wHV@yt7 z!UC@(q;Ec146hUXtwN_q-pA+%FriPf$6n`F#VcgA(hHy0YlxYAiC82UUDa?1x)eZ_ zzTkmgx;tfH(!zjYS{6ar-b7j0LwFdVwChE^SL0C1$*fS1$1lex!4v&re-GCS6S;O~ z=VNS6krdY})(y2t?o5MoZ-0jztz42lTIU9uhP9|tf;krn(Tpa5jRp-joHmyENzJVg zTZt$dHSbzfCMXk3%DVBdlR`2_HRYWEzD=GwxkHTCv@3-AM4kArt#R&vrhP--0gmt?i`WUFo>3iq>- z1}Quz!E}{<>Z{>6sl-X;q-t7m=kNIdi4o&hII|K>d`OQ@vb=DRO*n)^F(O9zh~D>% zfh7oop?aJu&29~;=A2-mZQOV$Sf1%yyfZaGWeSuY!bA&UlxVpv7!(w!#VW9cjR_7w zP-+EWMUD-47=B+GQN-ocaAurZ197wb+Tk?-PIDaS4H?*C1+>b5uQDt4m#SqsjDuaf|n!yr5sEsam>*s`Fe5^jdWPPdVA3ow?VN&{wP%KR zFu#ur0uL8v?n37{2I^cxTXIAf4&m_qLOG8)2$j~_)cDGER3`?O8KDF<1i~T+Mdmh^ z8vBij9C|@bf17dmDJK0NUc)jCP6BIS2AR7Cby}N8g3%BCb$0kFtqI2o;oQ?>lYdFt z_LX?q?v9=3#lqpWqf!hkmcfvBST$xeBUCEPh9Rm=U>|T)8o>9-DowB{`>56aZG#aj z^H)?gW?YiQZUwtfG>&c}miaNYW*_!CDorjbSGOinXlUEE?FGx|FKY7^VZFx@E-|V1 zsMYhczr9M`$5&nPRDiP~to|h|iqd;~wSSxn6v?czPFy=bO!0WlniiY!J#044Hs!gb?~zT zP-+PMbD}>A5x0UN=@}jThECt=elp?kxj%=0i$(|!4+5e9R&jxV4-Xs(eGUD|{O|lNhG58%U$iOM@DS5?r_#dM_BaHp>W% z_0u^pQU-I5N-dccVF_jFaBIX&o|AInO#$%X`$EY4kzDJ|pWO{tF>GQ)rfXo<)F~5C zG%GxZ>L(wIL*4!hKJLI$er-6AikB=O%2?IMW7LONdRy|cxOALgT9Gn=!rN>*jlbm8 zf>h%{!aF{$F(;x!-Z$Cj$}feSNIYNRKrj*gkRSn%X@w7US|Vir!TmC`3iK%FS0nF} z#k@<)5AqwY#P2DeD3z6&uCS`f@y8$*aG4X85eBZx!k(B}_W zz8RP$)VqmFG89m@7`HW&b8D*wGPas~?4$E9ufUS$jWH#@RC)J(=)HVo;W>RXu4$kD z1q;4%CD*fCH)47INB3a21^rmAAYqV_I=rV-S2Vu~F>g>f;?Kqm#%19!Y<)usjg8;v zN8k$Q>Q)t$G+e#Uv2d{jU|NOP1CB#>KvXi7JvVRZMsymNPlPg#xiv=%c0Gti$_$NI z6UjqUE^7#i&M?8~QAi&onAI`bxL3q55t+mi!*_RxV6}Pg0Tt9fbMVq4Qe4PDRs}m6 zERhJOJi>Aww9Ay(c%Cw5_GX-Z=RS)7hcdB=nJD?tp|ZgwPsj&wD(Z0pLusQ!fqscJ z$iPI(`;uu_Mw(wS?i5*O6tW;{Bn<~)wvKf`WU^M|@&WKmh*qRi0PcnI#Sr@B@ARE= zD4hhs28S#}FoF2Y)J4;xnm~e2cS0~k2dfda=&{Qt;5Q_GMhKfY>gw-FuCfHFXa&V~5Ll0Z3(-g9+JLeRoIRLoV`Z^_S z;AidfZ@4uQIl0NOyNtI@o6cd%$jme&=+^qkWXg4KQD7i<$K^0me2`?vw>Y6VG^Yts ze{^xsC0ZI_mTfZ@T3#4X4+oZrU0N2&JMxy0VQ^`2w=ykdf!H2*duAvU=6|gUx==lT z>KuU8=d#R!J?8mah}8@<%VGIfD*&YXYTySwUpU1?+q~jQsV=ex*6NYBkVM?{e2&WI zet+JJ?f8E_(cMr^_5{bthuU%$Q z>EJ*3gFRcY3>7+is{ZwTNG)TF6Psw|U_c!R`S72R+(5*t)dNdl?K+ODfLIo67|{UMzDOxG5-^ajvdD4(4q?U` zmg1<|c*hK#4I#j7V9%9VncqP;jOzlIIgV+L>mp~j-%--0&~pI|4rK*Qzi3_YXGJkc z|79tLD00C<_S%hvovzdVpCRbQgj}95Lpn_ThF*0(Ae-ch4Rwp$vLokpGA}R|PJ-W) zc80xPVIa!R8SIjSjpWHy3{J%}1LjK!mzw~t1<|GJAgjNY|ACcADMm{;*u@O%e4#r0 zrZBX#Z|2!Nj}3Blm1`a3Eyy(*73X!E^pf05OE}!L$rdSQS*;%O$AY$1LHxfy26zcB zq$O=mF+!4v!fmQ_VMzOD7DL{1;1g7ufYoof0EWOlp{1Eu9@v1tQ_ewLPDLaB8|woT zCGA%Aqlcpn<~H~`4pC0O9#G?!QaJ`l2lS={9&|xmU#C`bwLdK56U9Je#;0(VPg+w- zzZj;15>t_dX@&}kP2DE9rEXDe#VjApW-!jp!lGAPio&`9w>s*k zE~d;?amCRk$9yZfvq<3q|4b6O_KM;%zi_J_)gITUchl@m+s6!Dn7gw(yy=0PsDkFJ z?oK5S%$x}N&|ax(DPhj2IH(@(n31qqL=4OgXie3=8AmXfM!ccsz&QV~F7EkGE%#^YcfLLH1HTbwW`uZ-VtpqJWAf~E z*csC;rc62)krqc})Hy@dxo=~$X7+O#6Om3Hf6;b|a~1nr@5-@Wh0y4>!Sr@lEO?!U znBEYjrXt(d*X*1=`-oZE0kC^UiT9>$>MtH#Q`8gttwv?|6k)TDj_0_w24!c^wui** zrw5EB6lR1m0dr6iw_fz@K_)nfI;GAq1l5M;8MsY`)0x_1{NVn6kAfqKyk@+o&Kldw ztv`*4js$o5f8n=VPPVp6ZYMA5PAH((&pmcrl$Ns0wf9e8+JT1CvvdrFPFh}qoiG;w zevTNd?akxs7~#0r*;^TSQl#Y-=GJU^sxp0Vo_qJu4aOaCRm^7;M-jZ8{Em=c-7 z(FuR-Mt4RLuG@(qc)o?XQ2-zAX+N4i4_*fBK6##Bt7~_F^0TfQw-?PP%rgc$c&8e_@5tZ$Kdh^9eG(MdLx&{`xXkU(iv!DWEsB? zQWH=Aa+p%#v^4mQ8qx`VgVSmp-TjAVXJP(-dxa>u+Zp52$r@NFI$7h>$>1~4)8o^L znmaf;;d8M6pQ4qMvBU2#D}5(pVPivEqu=I#jcrVw%<`1n6Z@@5uFDfuOGJ# zV%)ItjlnVqAN~y!fFVQnGExlCArsO9Z^+M5A|C-)>Bq`-4jUF;Aea&Dg0p8xIFksQ zPge>hOef|<=^hu32qzt_avh4B#Qml2?u73^$9drx3lW?%11J`G)bb}ld>z0*E}KFk zf#JIgm0KX1Nyu-9&1Gd<#9MV$iVBvO=9Lf!Bq=!t$oep0;w$4J4eoQ=M#Sk66Eoyo zc2NjaJPP{9I`0ILL^$j8mo2&P=gEpRqfBXb@n$MRU5Je&(UzY?;cY|-qK5P4U*43* z94tuT3@7!UcVW=#kuFy$UQ~n+@`OiFQ7$)A%EjUMJb|80gUNFU=dQ z?K^}2^V679X|NS^{CNO8+6i0C0N@v)1-D9;#UI3~PoFqQ)?+iZ?>zf>^U{7?1S z*pBFK6*rP*09o{1-#U~*9;(btM{H8&jgxz`R<`ymtw*Ex(Xv(djVkmZTk39)uCHrL zPPM1dzmRhs+CP?sirqsRVsjk_Iu=@l9;|=VcYW4%gpF@Qp-Vw_bo{_1%sls5o(8g6 zg%Or)#h6hJx0&P*&u#?uv6g3Z`k$8{4ytqwAv;v*bTV$Fe|)}97rNdKJ5+ys&X;e8 zJ9MjTnE`E+yKih$S}P;JO%jtXyK~!__a50xnj^Hli9~l!D_OzO-^T2Kc9#pzIAOzC z$EztgailZY1vA{p&Eo>uWVv;zQ(*GS@m%Lvp(|l8A-Kr_!F>J42`>ye6=9I{(66+Vz)Q5gx88(7ko)5K>7|L>;mGy05E#*NuIPrwrp#y=c3Ah-*j`Y3l&E zRHj(te-RQw@?1!Xlt3?6?RnU0cp%fL+x%5@?z>vIDV>HL7HJid4m9ut@aO_PoSV2e z7><^gKi@{e;-8~LpP(^AK|i(_`(SijL>2NhyeN_fBhXmEEZO~hvSwgLi6*g#1=SRA z9`u4iexL2cT6paKw7~vWwm3iSM{0x@AZnBuJKN%;VAq$4OCEzle9@~qrnT5#eRVO8 zuv@eAfQ42s__w|+d(g;vKeg%p3ud*Lr0%b(L*QnD#Xw9=7Pr7Cz$7NUa>N?$ip)F8ZVe30ITM4;(f4aK2 zNm0G}6{mo`p}m7q&471I2PO+mu1!CIb43l!Psh^jZ@}I`!bGx2)4aTsWZY@LdK^_j zUWaj9I5vTRs}i7bnK1_Ve?y(8;#ulE=B{rwhlmV~6MYw}E@( zpFiy;4i~Mh*qZl${99h0Pdir$xZFN$fBRj?%#1RkX1ouH^pa^qVMl{8(lpsCKFflLs`SdN~oj ze_LGA__g@eeD>$PTJsCz5uhW=Ql!S4_Ozy~@#ygK0wGtYjRT1by~4bdZwdNZ7g4h9 z!#5C+!^15OQ71lMtmkmDW@U>b`fvl!uLO%1;GV~P-m*JT70q4qK8AI_`pb{ab_rd4 z_naQApyK@Q(EM+f;a_J67U;S@py9OXgEOHn) zpKya@7Qx-~y-KlJC%J9uRNmy;JfuO+8TdGTx(UWAh!BXN} ziXN0;f}kM|ftQ_86rfTr(6JX|pnJzOGo7Uq*K1OlZJ zlxD{UwU(K~Db<~$+n9?Q?nt3;;z%@>2C z_gHwUk79j;kS+6HsLmK7_Sm;qOxO454o;>IyeoUKxRSJ=JB0+*b@Su_@^RsRZ;p=3 zZXZrSj4*6oxN1^0zaBVdAjgamG<=$=N#XZW4BH5-v$c$mSZ~=r75Hy}K{zlGb>XME zAzf{W@w%Nry$WtRdyje`W+z0ULTW|Ct7l^QYQBYJr>dGBC`V;b;M|Vw#a?j`PIwB+ z5?p=_6GiPmXcsZy!Gcbu9*t$xA)? zsqFsi84PgQ_qZ6l{qn&;dIU4NXDLzGLtJn_qoOT#APb|Sd}?vns42Y~qD7uh$p?>6 zTau6LkDS@$H?1Lx`MjRS3WsOm*?#wOQiWQYw@>IU74>UuxvDfmiObi_i)Rt9kE(lC3f+J{=yUX&XF;jkyg% z7KWpTFr|2`T;`w{Y(m0;^tI~g%uJiJp>DZk4qp-!zXoDloFDXR3^`mz$wN<)eKpN6MG6PWX4cE|53rK##NsgToBOOkzhJ>3ldP zTfA+6N#aHyFu;g3X1*$4PccK6R zT13h4AneG2)TAg3vCI%TN>UGvmm@8$jGVgKfV zg&b)Dem+v33;JuM(4FBF- zK!k@*gQYHLD*h1Wwv3`Wb!%ipr5q@c@8wH~Ln6@N5RNPy4`306(W_5DG*bklQ+Xbg zJ{xA^g^k3!%nw^B(oMurNeHgz<(s)oDc}kmkX{Di7@pie$i{swX~H|;L@+wY1Wz9sg6VTnK?H0# z1yAWL`m#GjVwM1$Y6A|NUM04|Yom)3GqL+QOcb8nBXu*yCn`RYE0W1-?azsSVTvLE zMacBjT2#t~ExdZM#$8)+$mU+j2TI?i@W@5Kn0N=k5|$Znk7Tm4uk8@h&2+S$=q8^EE)d{yZoqnE#KE;NCT-oExu;&fLl|32++$!npRuh^|t2olaGnao$qC< zdi!D)(%24=D0RJ*kiTp_R`_P*AfMtCWu#+|`FPfJ4ABTLEsyL= z?6Nd4KDI-IfS2U-i=ICUbGb+;^)H$dcqi21d(1n&{D1?eUOBk@$bcW+%nr=9V7E~Q zM&61{T49z$lUH6{e=XKbT2bw7i?QigODkqHfOh%T+p=YZKB=;;MUMz};Mz|nKkCm% zw;(BRj2k>WrsfXX!YYv!OpM8c9v!;LfzthIMZn3Dh2&(|mVv~|cU2AK{9BvD7@_SQ zqTyvICnjp2m6qZ6r{TnWga26pT%nCPht^wZ-nC7hure(;^?~aj&5=f>r{j+VxRQ zmN-ZKcL_^wbCjXtL+Qr8d5`S&JRG_+*<{d>@2TKr8uh-&EJ1H+@ρV8dSwInPT z-u#?9ube=$XmNQhF21ykm$(cX^`uuc*9Zluwp6cfWH& z^lCIHxo<27EmNt3J!=PXTp{=bYJ|j(g*;6_bPtl}we=mk^e&rP`-9f2-l=mQ0!b`5dQA>k24r@<$ev zz+FB$?rI2`Se4BB`R~wfLB!5iibgjIJenNKP#n2{0LxjZ543tAYD}DBQHq9Z$vKxE zecN+Xo~EDRJ@tlc4$fI7@H0R6lEQP{1k78lxT_(mG*p+QwwmcGOpbo$|5D4QT0;`o znne1Uqc^+%fh0#c3AY{cL9th8n@q|> z*g_}IU$0jgUx~{h7JAZEPEJCmH!7BKkeyk5FMH^-?rX`9p^U?uF zDMLV|ozDN>LW%R@OF_c?S+Hiw17ivcxO&NpXJpcwAY|NMqHJoHYPQh@hfaksoYGP$ zMmfs6P}g&A--tHqP?jc*@qH*oDQvNol*x>l@M-fl?Bt31P<86++AdxMDYQr;IlLDq3pYNfbJV%ZuqV>(Hlj;s0iKG6o3+}5U1R^pT;Joo%AYs- zeWWEFji(Zwx0|>q$jg~m-G@!~vF;RLLr#7!ssZ>LoYS`9E|?PY_RO3wYdNzE7tAyw z`dsUgtzu5r!(S{rSg?HGk|SLFdsm-Ei6rZ{@Fvj+^Lj^VyU>7kLEknHlFK0JH%>fy z2V*=N^aqnN(GGmfX2d?VrttjFdVeSFVa7>9j)M3~5bOF_2Cd$45S-P}5|wym(~87A zc)vR`h1jfV1;yLw61!voN3!p4DiyB5zcxM&I#KTXlE%}PBGhRV#u>62eOKD3-7bI2 z2rGCG&F1nR*g1+@oe>ms!rCWDe8)%r0I!TD?T#t)pzS_qQ8j8a++8lGiqs_d4xVMt z1tud$)o^|sJYtL2&=#ayI9+#*{Q=^TF@d`KvBB8ile1YdZe4e0Ww%qI$}^$(B&5{;tgA7rEyYK8(p|egBcUWfi+b(e1Rn!PIzu!RMwY=-yV)s z>+iAC?oV>*7UBmj2E9g&7(jCgwRDZYXc1E}%N|@ydKH2Ki0@^$D3`*Yqdjo!9enKF zy`PMSBUs>aJ3bb%J=kX_2^HO$RwAw?yV{#&!Ic^ObhI{|4aO8*N_G}=b^=H*D)aP^ ziUt?haF2P-ibb>6Zzf1)SgF#nv%5%UxMcupt<4a4>EKu!sAHHh&h$NtX2Tay&!h`k z3Q=RsN+y*g=@Un;@Ojh4U{=)*Jo+4G)RL1Q?=UDAh;j<{jG&cfV@8J60PG$&7??4H z{1UzD^k;`FIh9Ku>=Vy=j~BFW)oU}h{O;50)BdH~71{XNE*wKSrZuMlQHytvZJ&Cc zPJZ*Wn*!W9?{!t4V*vIKS3k4H;ZZWiYMYy$r?cAaARXWVV0k=mW(C`nW6|f%2Z!X z%3$B*;^}Z#^?GBfZlMqOPC|hU;)H}Jdgio`fO)_~MME?FGd1673A2dM{*jK#NzW!~ z`-}p1Hjd_wK;C!5h$}SgR%{mmVTFGGsu6x`M?X1HSS|cJh?S7a~CIm-!fqmsP+adLUkzXbwApg*ZQq|1<|9m`BrO;z>Vj?~4roroV)n|k~TKLxk$ zJ&(>MDce|_TMU5bE{0?Aw=N@Q%p=A0y8?ei-XD=Vo>cOSm5}~K-Qdi5+p?yLk24I$ z`8et*_-0&3`nhj{8>I4C>d-Yk@Tep+o8us++7-OdQD;!yWQ`v^t<oOl z%@BP%W*~;DDz^gTPPSvvAX4u%Kq+~>0+iH{ix{_J1h^p;oHUp920>A8_Ot}CFal%{ zwjBS%i$wYAWw~g=Dq${o_mz-5EllJ8Q{zLsl*v79(E#pT@Gi$fZpJl? zg8tYKYoIDE4f1JXw@HCY8++WlOhWzX_caphwzZ2KAymp9zBMpYMuYgV_mktztvVNm zqkE3p3*@-+eEcvIub1>%RsZ}PbKj|7aW-T)nAOpg#JaW_IUVwZ3Z~CEq0me83%o^u zjF86sU;d2WlDbc0uR_kpFd@m%IC)P4_=`T+dP4 ztyxfs6YWvM{S8Eo-=<90H#v>>&TAxN8ht*CxWsb;c^k(6&d60VqeXK=`SDU0?}kHH z_^!>kANe4Z87!*WSl$lum^z8QW;p!`HeyHXNiR>uN5>6$(iDiy4Y_=I82S?RyN&oY zJLn}!Luq86h;e+qlsT9sH9o7`F9Jzh_c(81XZ5&P!+5TT{A2EY>tS4wtxcdW)6)ZDNw?1EZQ>vY_A$FrI!dgXSe6wDhticmvSuB%#U zl7510?#a^%YN>HkYG` zR)nNG``V201%dP|kN(-_-FKGK+P=Bo@YT4^Si2_aIR+TyaDFa739w?(IUHb-_~#I1 zcb{AQoC?@SS|Ert+h3$G`X`x{!sAEcP}Zwlq~n}w9!Wn-`XEYzUS04QsRbh+Qi`9G za@}YGX9RC-KbZ4?U)XMv%{fYm(U>axC?K&%428ViZ}Bv$?}|BW{6vvSb~pf{prlSb z)-P|V@^P0mW&xPPje_K{tK~yrvU{NccCTq(4yF_3(LUT6FzRb=@^bjxAX}lVYb?X z@@VQDa8!4r#OP){{OoYPE+ll$>-N~d2&)*LWkHHXrqJPoqadV;U}H%Ii#RuPOXBOo z+QaUA$1+|&zi~q1`J;p=GffAAcJ5oF%y2L<%eB4kL3Qt$R^#7;&NZB|CaiKi2VXOj zsCdK{;={C++e~uCmF61gXGn{N-m~^=>hq`>sfHS|edQrjQm!GtIM-*@U6cFvf%GZsD{%Tm5e< zo>9Ba*|v`A5LiVChM?|b@|N=v*p5l>V#b9I1>vwW;W$1i@B=uq(h7J3(t4dv#375~ zz>_gdZlu{DZc9rP$Oup!xrSdkk~~5J)$uz#LXg_MaY+(fs-nfL#wd{Gy4CU{GG$@Q zX;l&^I)Prc(6W_FXoS=rcW#;DVy9gFzYvz7i;o#(^)*%~+b>%&z3_Sy#Zv z0uN&xED=ILCv%pA0EK{sGUX=O@t6%GkcL*Ei*hoOkO^|LAaBfu&%j@-6{g%ybqiqu zTwG}bhM=HH7htM6ouIN=a5nkO5-opM*=x%p!>@9h>9pP%(b;5?T zD?3(ol^;sSax_T4g#dI9DM#2Zi1LQ?5-EyCjnGvKIkF_*hH`GEvz!OCOV z8$k}{7M;}zPlVAU$2Z+qCtAfB>db@JZopS1YsMwzn`7;;t0;PXxAeje{pI5}5S|qF zV}`F441d{7zy6Lfr6Z7CyP?s6AuuEF(esmp_=L3 z|IJir9f5Do&bWXoIr!Tv3Ap6Uu2E>r4hQJ+u)-0K$45+R1u0NV?hcEMGk0_Nu>0hH z?|RA!&~%MgaW3PbnP%6eqo^*y6VnMtqgF<&3Z=1z(g5FQ$NJ)>dZl5YojfqT@bbe% z#zRQf;bAdFkw6^aw_;Yb(MiA!eaRROpWYggsm$qi&%#MWv`QqXBJb#ZbpkCQEr(W2 zDGH;HfDA6f*2Sd8MqvHL-EM?}9>5sO*GG%XJX$c^pCzY|1IiYT7NCmf8dv;i_MulQ zIcvLreAN)0TM8uYrloE;{AioX_<_ERJUV4r+JGBZ6E`yCBYu`q2mrd{@en7zJ;pya z@Y^gA{89C)n6~cm+v!4htr^`tq$Q!5KC3dMwOph3cE8c)5@$LHWt4%{@HrqC5X0VD zE>$`kfAV|!`B}qeB!G-vyN~y*3ReDc)?o9R^<(rm(*0y>vD0JnFXNPlBGD}VzAeF_ za$3q4afgA3Lx?Kv)pF>Up6HFxi*YGGoj<1p2DL@ea7(w>7A1(tuS=G3Tx`*ssnM04 zc}*50GgS|!K%6mThZ4nFTl}A^k(F`%D|OZlhMrSAy>tCV3u(Xq-pEZMM=i31JMm2w zn7G&8O6%M>Gu(Ya2h;G+l@r1%mUc~YDVlJM8>3WiEj7NqMsG#I(@q(tFINmNa64Gt z3?Xhh7h=s93((f>@mlv=r*=|S%s6KY<=ngKkL%}{BxYH&Ak5uQv6}Vg1${uIh%|MY zLKP?CQm^Q6v0NnHPn{j*I9WM_8mUGrlW@}eI>b7UIdp_QD|mK4#mEwmPjm|SG3}!x z0FyL4j00$0|MqPwfQkh@5zJ!)!_?km<&6mO3w*z>)^Q;<(b+$!|G*-ZEI34v3) z`fOL=H4vR-7E;`Q`FXKSn8m=}f~dDw@({q4*m3HzAoiSlAeglU%j8L(=?(lEWr_-55oJ!^S`Sf`dqAUL^LAipb6w zWthVzNAl2ZV)}Gcrb?q5VQ=i9`wdHy?E?DGo&Wpmet-fWF3W!v)BkJ|%p{H`HgNp> z|G&B7|Lv$?<@xVodQnf#k)R#5=Unr_`6o)6x*vELiX1s(9T4Q{48^Ds*cZqJ^s3MN zr_-nnQ~7pO`bx4X$SNX4`-X`vMGc!QO2t0hoaX_F9jFZL{5FWn#xRKQTHCQVmbV@RlKqjX|D&+C5>%lYHpzyjm%qZ;uX1H;i) zqv)XDb~s-=8#uNAkmDNwTU=gP00Ng`SY}+P`;f4!jFN5NU6LDuW4}&(X{rq$fOg~~ zz+_OwIIDeXE8vT_LOD8Ms;6dUIpHU{5UO66xC{c^ILQxN(;zsiA@u6ZC56!2hb}jh zb)4K*d%UWOYmwon2yvQV^Q0rYI>^bMZ2vLGO>;tHPL#?tQ) zxWuI3op@+#NIUTZ$~}Zkl_o#l$PBXd2{}tflgzpT$Z0zjxF2l z49#tn%VGSTCEIA`or#aUmDXF=d$Tf3Iv0OL_@dRY-xE>RshE=XetwwYug=to$J;f| zHM;NK2CZWRnBHEPpwJLHpJG7!ZbeKfwJS-!9?&VgdyOYYiM*HUp$rV6{VnM-u9!sw zrj%(iLKCax3#`3=nZHMOhT*gYEXSi&U8wm*FGaX6CPYcKeYO3c z1-JwzS8<$4PQx}8Ra`%-$tUkp>uKNA2b%23HWfyf(N-DjjaxmdK@=*NrbGijF%qze zACeQW;2l4EFQpnpVZu=m#Pkmip6R-0dhq&<~!d;MOv~;^r{Ty zPvIB?L4;%yT)3suq-GZ=v?0;|-h`?X*qE2qZ1fk9*h>E4!ME#3%x3be`_(&__-RT=^-f=) z^h)Bc!5N#us3SNT*ohj~lMOmID$dNig?~KGL<4_N4*-LtBcpPpao)sOvHq@sh-MKV zH_{-!tXx6Egw;@mY~w?o)0LeC@2d=az$l!FkAo}n>uhI|-kx~-1}lPA8m0=P1oSMf zU>7(VzpsIG&l{vC3`Bu+FGmoZ@%s7mSP1d=7B%8$dyZEgc;wxi?D%I%p!i6*88~&o z#ktJV-Nc-HBuazxG8MJUCgiEZbkBH;RD))3$5*oPGV$n{b4-i}b)scs2S1S;1xn=9Zkmd3N$s3Djx83RJERqJ-avkBO%S9)wJZk2V#K*zv0QXx*6{rAa) z&)G9_bfoBRyUxqq3wFTEOP6TPak_Gs$_g8tF&TY=9Hn7vbiF?~^46=)ehSQ7y2Mb; z*h4XQBXnpB+WlT^$fR|t?_k2sugTLBbIYS?G1*E)S7tq*izJiwnr1eMh}Ierb)F@g zI}nDfV~?k&mbPYSEmbSdqD!;15~WY5?5taYEc(IFG`(Mc!s__SekfeoUMp>u_vyge z!x*WbOPTA&QroviiJw1Qj=!J9XvG?6YV_l;^U1_7?GMVTmIoJ!D%3!|e2cDDLbn{$?%0{T82;EYwHzKdc z&1qfm*uvd>W%9W;!df407}g#u>LftG@*!N;25VPJO@kHBJ{<_|u7UI4BxSgHpRIF? z%9+*_clO6HI!G*F>Cys&a`_$oAJUU{{C5UCG z9!bi0nf3d5rx7TO=H;hr;!~Q&QT9)tp}+KcIYA4IN6zYdWpwBSnsoa9zcsjQDt2SC z?EnHa*Bt7Y0iNd^T}+<%J6^~IgBsmt+oqKUs(SW|X}aN{psLTJ=$F$n*8Qs-X`@h) z$z0Ubw46C|il@Qxjk`{SDwp{Wk6Y3^2KeypR!1&{p2l5!RX z&Q<~?oMECQ(iJnpvywV6G_*Y`r^?tdJ6kC6@uJNlezT%!%Si71((v6Pmnc$ZDra*) zr8olV+)NF6eNdv89)pGMqtr~3SgpNPqYmx%o&D~nmGAEdHyOQaa#C=!s(Iwfxl(0= zT<@|rOZS#GPK62gs{V-$UaJnvbj{GYLb@ZDSJ$l2Q{S#5ai$!D8#JxGlys&eh9jY3 z`H`+R{E3GXDG(aFu5qp$@*Eg*o<49%pd-XxF1vx8>USMY+*sif2L)8o=CF_ZK@{)o zGo@M#iSt_p3GKDP_p81wQwbuUv9?)tWzIIlON{8#xqpAoHfi|3S%ntqJ9E;*Xl&aj#O1QKd`IyjyD0Fw_JJnRJj4PQ>j~4fdvZj zYYR5k&Yi7SWVcm(rs9|+GLiSN3=NrNTpFus4!loz*!n)sJf(*&TTawhm}!Yw@BLoc z7J~cI`wbsgt#84%Z4tj`6e*xSQbN2vW8ug1XWkFXwzso~`P~44Ny)46&upay&BCWk zfB(VjbM&y)P$maUNHT=X-QLf-8XyabCyY?b$ zgcb8)E6UA7^0tKP#m`Upp2L0@9(Z{?dkZimg0;no$Tkj;>HkoA^{M$mvr}NMUq?2* zkxWxmxU)*1!x>o*)7(-n%A~_7yM&2c_il{`r{=fnDKURp$`hmopV;-KJH(JTpJ6db z1~2$sp9ZP0`D=6biwJzVu&Jf$JW|pyE&`sG^DZk3I^5xH>k%h6Z^E5a^qu`A z8QHt{mYt#4%6*j;QLdonRxeL+Fwv&e8e}54seaoFF9d@Tn^$%L1w(gPb2Y9g3wWfx znK;j}AE-J7g@BkyhJ3{>hM6d|>uq_q(cP=Z*7lE~X2meJhqV~CT38VgU{IIQy)4c6 z`XdF&(HoA2yG9)^V3*^-vrzUvRi)VJ=nctGB#+|aq|iGwRZaNU+aA{6%IAZ}l2wk< zZ?MqRlluQE*txm>$AX=W?O&r@P>|&RJaDdVF6PGea9(SZ{}&~-f7P!evw+SVE#JBc zeqqnq!}x?E&x}rzPLfHG`0-O(paKABUf-mugFb`_7U1| z|2BB~jir?A_M!O4pG_VK&>$cQ|fFIrDbhsNtMi4;NYCUgq7IFfh9^7 z{@TlaUIA&DZ3)WMHRp%r+eTP$E6TGi!oP(y%Ucw(hw>PBLlAsX4AY?7?PGz$biIeb zf`b}-su9O$9`5{k*;W9cvE=(lxZJykPb0&wn&G~>Z|yXszIb+)&31MO?^pcJQEdcy zld@%%m3UiP5+69Z0tWbf-T|irRKb9sQ5{qpC62F31$oU|@&TDweITq!&2RGbkE3C| z@}7nzol53=dENCdbU4akJt=ozpVSt8^~G}v`%oiyLTCyp)~EAdpRc+G!lWOzP0gV# zSl0L_y7c&4b>f!dH$%BiIB0+y<4)(KhI)CvfL>=gU`e;QCctLNKxCQs%|Ip!r_b%0 zOf=EjF%c2Aj6Bp0!lPKw)zdNh=4F!x@m`PJU$yH~+8hF6QmUeq!D>0YO7fA!m%yan z$VcTc>?=&NSWE+F35kY_8gOC(?ae0+pp=2ECe3K>=xQU+6Bj=!FPx2@nBVVq-6f@e z_`tv}boMCigT*HYdi_zvjiCwypF8RZEf0@2on9%uzX(Hu;ud_P@*v;6BbW!;-ay+UuhNv>~`KL^u!M+hDk1J<*QDZo%~Cg%G?TWO0}Y8mj~y!YanE z9|+3$5kL^Ee0bRrZA9EVJ?3=^f9wgT4;etBtU@gc1CQ?i<-cH57{2`Cw*hpSdA=TP zT!GrcgV|l2aMSEcSX7jMeJA0DtqQUZ{<1y)zUk`OHODT%WH+OUOeKq$pnSZCZ^qamZ=Ig$_;8Mtw&a&nGXeL#D-oq}4fAQB5 zt^yX3+h1Ps8?V|xemZUeo5(~jG?L)z2Vt}$vhE?|yPkRNy{sIdO2|I!YK$laYd~fx z0$t34yBVQKcV;P=Kup{M9`PE_u{TN>*Q;(CPkCCo&rW%4G4)L~)8eqauvC7^6--0; zB#-J|y{7bhOi_yF8^xY_GJ1uxZU1@kY6FE%Y+BrsAckt##}>c27WY|m=wc(kjV=E- zSL(r*O!vw89lLLq<%%S9{w>Hve(0r^29j$Vg*NY>wTi>iRW`vWPMknIdll}sE1#+S z>+@hT%U}zVItI`dvlhOESkTd}RWsK-HA@ z{SkP{7bu5K3o*9Zv~@%^xS}|P{Z#y8s9zs>ZIRJXHoky=Kh)z+)a)rm$R1O2-DZ`) z%AZQPDo_h4GF=1QtFFsE7hS74$3G)E%ay49`0&QIx+unADrhd~Lm~J4O2dR{o-x)S zo)C?CW0ROdFTiMym4PRqqtL;dOxhW30*zj;LLQLfxSp%0$t?g*=2wv{33JWz0tCL3 zPsK5Q7(4ye#nd@Z6+#|=->4W(yAc=_rW z4#KPxkJ8IW;~94#Ul9_nHi20QVewrbQjf419VXxA6URjK*(V5`azqjrazgA=|05ai zhd5J&xp^f*$4`zs{c8ziGREI4{!GD*n0qzfF*d8uif>1n?|=c5mlYu!qnWF0b&nYy zi*X(1ZSI*xJJ^dYHomF0v+0|&ID{r8P&X5#Mn_|GKWnY=r21DYW2QzfO?6Pw7dwi@ z{J?JqG#uXFQ@l=y?i6Jg7_yo>D9}Td7LPdMh~OyIb-W%ZgC;YH$9Zg(NM^4V`hym% z`x6$3&g^@jNQl*21>v&_7}N-5_{p6Ak~ZUqwlJuJ76vcxs!fII7be;B=tK&d5ea({ zh9p2dRo)!14}ba49K%;8_XS@&W@W;8UDV|$2qtGldgZ7f?11!JDw#kkC-~MnXnuqq zK?UMl*8BrVbBjnwHELh{(p7h32XZ^z5AYmV{vnOMah;t_)A)&~bl6FNuxDl0#k}O- zRAf}IwmHG&{pdq)6NKFoffc8#0(Dzb)u))z+tx%tF0eCg5_Mh1X=9&&-W=+{H1Mtx z@-&elpo%*j%NAZ}$x57%MgZj9qYnKwSHsJn3;cwGauy~JgjgW#SkJx{%XW^hQN3u} zwhi~ae8xK?dY`=6Fz#JOxpemHUA-cxja|Sqg*c0FFY*|F{pE^Zzx0qQq2xOK*v4aG zqdv}&a$_2kr)tIyBt4JMcrOE$mF4QU_Fo^;ILF`+*0qS2)5An+##Z9Jt#^dEx_f+u z628I?$PQVnY(=I(rF>)jn+OE;OrYC$xdsHD3v_0V01OoC%}ACrh!x9ea3`lCa>} z6iG_$g8~c02~jzWgV)K63?;k}o%^J6B|H$FDfYCK8g0XSjj1FG^JiNIjnuSi+W89O z1x#8q2QNSae{@$6t_F*21Pb5`5v~M_eEb{KtZxLhjgfmYM|X=BW1G?v$eeea)jqFD z(>c!inQ_MZlXp(jIqdO2cRxTg?E#I+AN^Phs9|niV6KGKan}hY&{CeWmPDbc_74iM zqjIeoE76;YH8g7UxYBhxUdKN$u($ZiiDZow8AaL?Hp~{o&tIj`Kq&RbNn(@l)cb#; z$4CaZ`lSXkhrmhe4w7=FD2ZX2A-bQi`qmR6>>(``8onCkTOrz9j_N;l4QU!Op`|7( z%R;{Hy26%@z5kB%$ykY#HL8d75jdPcoC{1sK2t4yBis}z%>WFoEwxgD3f8h8_D7MsOAy&0m6&Qj<}Mj6bD}v@s9}oW zuN=*u=6Db&0zg+_1RUq88#S&l|IkD*AxNv_7&2oV#5p*NswTbOjjGpQS8AQ|>&h{% z3#0e;5cr81EeBB;LiBv`Z+(HzPZEu32cdAv+i?=4ljT(@GXl4bQKgNY55foAh%i@~ z&F{LZn=T>r)r}8Zn&V1y7awbm=@cGSLfQi&-6Rm7>_a(oJcUg?#(fu`at}~*t!DVK zmE_W-CS=D(wJ| z9yBKhMLN9a6}MF0H&%D{GyCATcepdFyiN)Wh3xMhSweeZnnl#(M>@3_DbMLquT8qZ zDD&E6uo7MR&z23i|m8WqPPR^>@8DF?`BB8nZ`UOTUu+elUqrWDXYwN7(4 z+|pQDudN@+(n&lG0@oFOv?3|7LYdmj_MgG4e{tN-hEnf0Y?Sq{ik&lojN+9>6ltJB z1Z48cOdubBiRj-7>TW$<-vM2*;pYNbX}Y*+X5ExkjdYJgB{}tD9n)S*ea_d@`tlB+ zUNQ^8`G0of!{o`lXNPUuUeeMUgzY#bPgP%Fcy3QI0-)6^D+_)XuJ9 zNI3yZYz83~Y`gT5-qt5PrPR<09Egss4>%*bG7ozRR}ZxYbiBwphwHVJE#M)Rp@fZx zi&e96RPp%WP>wv~JN@ddo0SfjVq3i1)Du-V)baNdV-M+<5K^hpr~bM9pI_)KJCil*!tFB*8 zQ-6LiI8xe{L}&l!_YO@2oi1Q?^T)(h-srx|qEsXqZDN7!)mLXyr;z`JkpG9jszaLi z-P-!*Xn;S>i^$c&54tuB4^k-9`K$fu&0c?*)8`w@V)oO=ZQ_7n%WOkmjbf56_XFck zC}g5y0LUH!h{Q|H&UfiDwkg8KF8kN;avF*#6-@6sm*3F?-o3tH%R5^^(qn9p7fo+! z=R(gWVlREyb)9mM4&3F3m7w|EO-_WSpa6a~71kAOAWQQR8e@zv=yO>o&b3ug~ z{T6LUG2}H$sLq8#Bd%nP2iiHPl3Dsf@!G}~;$rYrms8j*?-9tkBAn)=b9hc`K&UM# zT?gpoXmw}6+qa`DiZN%UB5e*l#LYuzGsr5QFT>YhnBzo_!UAzbOrf>U?DFqSu-vmb z@LSaGh>BRwqBdi32&4y9h6dQg$WUkcI;*9J&Kkw-Hst$%wKCJ`7c$SPMyr8!;TBUM zXQCEj6W!Q>P?uqMU1~rh&0CDFg0Jm+9Fr7>i^PQY9j$u+Ah)#nA}5&5ixXiIz+$&t z`9R@q6BoflFP}>EP<|jL4bMC&yN>L^8utF zbw>J6$=@(Bzp;(>nYgcOs^krohAvyd&nTMe!O6thsNjg9iFkO|0Toha<;hUC#lP;F z2xn}W0q>_nb~7rhR_z6ao_Uhcv-5vf9Yj#mFaMV8MXBkMey(Qvuv2LdUUvafgs116 zT;CE)`qj0HX{9zKw#9aG!kh(7WWt!y8In{@81f}0Ve~ecrKJ3SiJJZ0K?T#C$uM46 zf84}D46Mwcl|qLI87w5wP8dWBLe*xKyyCZ-iDc+sD=%(zmDdsu0h3xp7}%dkk0Ip) z6=KRALWxq9U))>~s96U#>eAMXa_md7xg#iD%RMP_$45&L7L~=6gj0$=+i5B(^LSGp z^%y38deDvhVqYNH1~+AyLD_3lL91%k4i1#Ke$80%Trso?l2U+-OU=%IU-zJgVRimsYhp2YL;I~q>rHQ! zD;sD&iu3rl`ghBZ$7G(jt6&fZS~96^T`eV4Z_HhYas>j(9^NEF39nURUMin7?Mtxh;x7t@~!ipvVqn$6~;y?NT-yUhLjF%T3*9bI%W}` z^UnPkGPsX;7}MM=Z1p@dAG!^Fd=C$YYX@JScH?H?)bEQNIfoTs<9uKT?5n;Ik16cS zbJ87GMwcGUK&K$}^2v|bM>bFYLnU-W!@I=W$|ncN8@e;)O5@c*GbPg8&GYi*r zR~3rxw#qpaj|q@krlnW@;8Hm3Ezq}aUbb9j&#|5_f$ensVOI3Ii>{NGN&vNc56*$@ zs{ttCmPSY6-mrd(A;sx-r(^jBP`s(Umn*kI=@Ps4_AHbj$WWObNlYVBLbSno{)%q8 zce#^o^Uk)$_zF9HFWdWsilJ$~cm*!^eL_U?CatmFz}2zQSild;V*GP0xm7t{^e(8qyUz%hCT{q2fVHpq&Dhz** zm$_mMu3D9sX*4Gx? zy$sX%3R?hI0X3=FYAWKRNDZ0?oimbj zM*-U-M5KIXm zHmVm0wajG5&%vA$TC(tsWQ+D77;LQeP>A$vq)aTpbRr}nny9xG#A1;ISB=`)m_&P7 zSAF{d9jDH?chswwGYKnFuF%`+V$ZlL+U51{g1|P3AS=)NwE4Q~(PDGzrvET4&9GTp z1xlWJx(w_Ge2NEpf2nn^s&%hAjs^(^yb8T{N4b0}d1WPP!R%%QSf?;(6r?W0mLb-t z?W;h5BXnzKQzK1>RK`ox*!k&=fW~)u{OvMdNgaRv!v6H}qWw>gly9OU0vp3xx5j_W zHt%+sW4()zRJz-R&g`vhCE6_jOmdfyXKgZ4YWOl(XJMez;0bU<{;!twl!A}ezJh(Y zL4G16YtgJHiRqOa;;OyWh$@N5ROIw7wr|6dGU2l_A!zoDd`2A9s#R};i=gOwy@za@ zR(8;P=wh(J;_!P^9fY@P962}XuG`yH`APflqE>+u_5Dp|Oo6+q^08Y@=51$Hc)n{G zXmpCDk^<-)N@m!=ipcHiP66z!Lhi|^=WxBz1uV}2>SM3WkOi&kyK$Bph|^JKAH_eI zIo9c1Vwa&Tn(Wt-1kaM z2}I6eu@B*FZbecbNQ9)Sd+)sxQe)9XE9MX0ccUg5Et0}skA$zJIh14sPO5|q!TPxK z7s4I5+Di74B%AX4a1Ex{tSafXIWk(CWWQcGWQ-KV+&r$(pMg`fA zqEEe(r-`49ND2N@u1y_;PL?(+w0V1*(zxf(ce#6n-lvV6BO|4~+R{m;SZY|K0y z|D|aBvmnKhwL`jb~h*@jbCq!hbiEBbf-W{kb|I%Z1*QVpWlkc z8%fE)=Y!G(yRY9a=jj_(V1x8J*{pSuaB?iE@esXBJKsPKInI7Zt!Vd z@25bc|3;!{5&CMS7=|=RHJK3~AI)RB+N}^$%6p%mZ%!t)-`lWMegTwy|3NBJGjc$m zWOT_f;<8Lgp?Po&2_s`gtq7T(EhFH(5Z9X1LiNOJvAykC$-DE=^GgAsBXHLV)mY4w zh9ROBoWu*8iMy~C3tdbUzxBUrY-OlHLFV3z$%y*`6%%e9NBHRw4kV9gB9ulm#xGkL zv9`(A^r{wK=Qc5l93i1(@M{t?9H^ zi)E{L)#IP_`nTh46pqCPt@F2Iw@3>~V&8nR~>(J7LfwfT+u^T zlnLi_2Vb+DSwYOf1&QjUM9_=+QK$(>)D>gK@SbLM5y3zRL3Aj%TwZb35R^R=gXZpG zfQI%${f*AKamPi~SHsrZ13m1+9`492`QLV~OoxHjgFhYcuMxRk^2vv|E@e5ClxYm6 z$B9M0GfwO8d|rzU@T+s&Px6@Ib?4B%JK_zK*Pk^`(vF(J9R3s!0klKhVXnk&DwW-2 zMZZcf?v0RFh;BZyBANY}Sdd^5CM8tp_oN5!M-A^jOD7OYPa+6kZlW|IpfSeg zqSz*RI-cLD#iq}PBV!$*9H=V{OXY2Hb6I}k4GsQ8wMk6=nA!wY&{FZzwop7FhW~|} znO;GTqd%4C)JLnyKl_qVf#}A_*IYj>uTb2dw9)3BN-o*qjRl$F$W*)#9a*FTREIdd zikqWleHP?{S)htiyy;a6z!ahK*zxwM4x`nKi{WGH-E;=vHO#<#JW2!7MmZ@UQ4nj) zN88DP2e+6MBv=i{2#9N_W*Q+$k4B;UgsV|N3H1$G1|0m404a>-I28(k?8w5dZTdck zPMETec-dO`;M9yGp1X@Xc3)u$m`1l~=AR9G(h`f)Ri0OWpb>NMG$;lvRIqWlPQ%@% zT*}8bqV|+_>_6Pdx1x77lbO}cW5}lnWMlw^JAN&rV zow!yV-SY~!4D661dZwgxo|iAtu%ftJWEiH=dT}_e^UVTJ+G<+FJwwLai^Gvoo_#q) zv^7CvQ-6CG4;He^o{1hw{6#4%sZ(yr_dilX!1udQh(`^}P>8iO6V@EQ-1b+p*M5SK z#3TA*KzK8$)M_XnGGE|gHwqLuvV>_Y+vcmbjMz0`?Zp`jL3Of40{2eSaSF1m}%^4z-JHmfD`m9{vjUw7$27@&_$S!jV}(+VRfFan-g} zB+=iZv=B*;c7gZV1BbdBqbVmBMYQ}1|}KtNG=PD zl6VFsgnH`9M2tl_xtVq(cRC!0-m5LKftb0_d)`9lynz^+4QF31_59Azf?_PODq~B# zIUlut$svXxL$^6U{URH)oDy!@slCJif1XiYefvR+zGA;DFVkosaBs+}z z1;83=0hPz1H8tateM2kPjClL59i0J{h?1yvwMN_1hOPl;DML9`In6OvC+^g~t|;ob z@;R?CIi*N;L6 z5p|-Vfa*%&Oq4LSx~|RKxhiA^fMyu6l zJyjA$%~-VTwDl9hH7;MPagcvAaH%+D`N^y*ix?XSn{LKLgrDKk*W>>HkYVY<_Xiid zX4DKff5n%F$BGSW87;wwXP)8SF{oSsg=x)wS>&@8LNxnoM4opZ%q!qVhtX!(vJ+@k z9w9c6y7QB0{r3p&L>AS5pT5$|D`H27L#J!;kzrT34UDR{L6Ku>!3_rQ-$hj?F#jyDtXbDu)NXf?k_}>eJ|E~pouFLvw-GRHwO~&>~jeEa1 zT){#V>CwS-_UMIeL_{6Yb%S|I*4uAvek24C#e1}S=v_0&| zwCqYA-)!@Sw0cJ#^WC{K&e4KM?yuPqs@$7VOj|16#dDD#R&3J4@U+*!XnX%V=AK(>~vp0Kf} zdyKWR4&d1OJHNTvxeKf7*pwt?#Sg0yB?xZmmKpZUT~po7LyeiT-tB-Z>ey){W*%hQ z%nRX!6sE7i^cD$6De3tKq!PJXG*lQy`nraI`8Bj#&0rPXe7S zW`gcTNmA{jO-a!f^JNR@yg*cXwP#y%CU;%ixR)}zG@LxYT~4I(8T8b%Y1|3k_!WY4PCFaa&*zn}PNJ`8v^tftB{mW!_g*CrAePJga0y-gZrxZc9J?wYL`MW)msuXu5sWZQGLgItEPUfGc1$ptXp zLwCNl2u|TR>F@C9?#L}S_sH=>@LGZ}_ZADUzEgKN#2otyso(IbmJ2$?;pCw=#q861 zIFFt!cc2=Cp6L`{5@_C!XZ`1#BEh{z_N3yUZ=zvt^nSB{_DA-)80aE$`-Qlfx+0lr z>*4kQrPn%36*|?UcCKgdC6KFNJWzJs2tRWlrH{&AyDIVC4~Ix-cTgjD?~uevdqr$g zOg|d>4|qMj*NOk6G=5Lz|7*hz%p8nt|4C`|{3?yVt%$!+s(Hs(1{O_k;4DG0M}~c2 z0Pa5!1|JAE2B-0`hky4!KUMAtBj78_vNCDrx0aAJX;gix!8K9xd~@EOu6I7)Z?e=2 z$mhBNi%RGEwjsL*$Qd~U*8ZC0n9j=Q^~v%39&S&+DZVYh^ZR|neON7BQg@q*omVpR zIML~Ipi78IlN{c)_4n!H-;^Y;3km;g5Bp)-3;jua}Wqd*!iAEOZUT28%MSKNNy+#6TDkOL4maD-uIIpGihcS`rI$wu{NE#wv5sAE{IvS zB06VFTu{f~#$-CruB_Z2Guwe&N(dNvv9FCJ+YF%h7+d@hRaLfL$T^rrq*zO5LqQa| zXndI>$_=8`0D4Jw8_qZ&O>iyQ(7*^{uG(6|rz3~JV>q>v^5XqPlML6W>HtxeG;E8N z9znmhs%Ugt#~3c@zB4}$n?fpxV2i!p9=xnRP*cfM@*c*;%SD!CDX|fcfjXPHAhQf# z)yEAiAA{YYm6@U<_KZ&%#R95>Q}8v4M>>-H3~xS`ASbgC&jDbcLBTrLSK&3PsPe7( zD7Lbgf}wrzjLyfd%#L+d&8JkSX{w4eKASR*@IpX=BE)182ZmUd;Zve<0yt3}#FR_1I3w+jV-y@U_~7#q%XsV7eZ^ zw*0}9qt=sO(&W~YXpYkI>aH4TG2)dha4=&G6MJMeLGS1;)+uG1(Htum+-T?O0J~#!jyqkg83*aZC|meFTZo8(J`b^9YfP7AJ4_V@C58M+B0@-MER4JkS~VS@f9K$|K@(P zZ22<7>k#$eY&ZK!Qk`(&r~!3{nXio`27A2ENjqg!iEgjq6VPHUs+~Y;9CWuKLTDeq z?;7WPsiptc`AU>U-PbaCJ4#EMqFvLY$Z^mkzW87<3FUg_@nN~HA!pXBtcy{v&cCo` zEZuGAJ4>Ar{FMx8qn(gkf^%wA5A7NU94hd&=R3hs<1830-fw~T9ZM~T00N`cI8a7? zW^s4y#i>Am*rdPw3B+o{e|u1JW~HeZcad&*VITBVXR4g#=nqDkl;QM-goe82o~N^( zHI{=e&de%xNj70ZeNMA;zs*>46W&{NGqatBS~B(J!$SvJz~HhTHM`Hd*XvgBb#IQ4 zabm5w{LcppUD4^VABjPTJVQtg%5g+dm;LwiCB5J0gZe=ImS4H$zU@D(9~6`z4HDKb zRbkF~>+&z4m zjljWr(`fTcj^=a;wXVse{0W0lSmIq_#h7Q2qQHP;PQ@;Yx(Hj>ke&-pxm5ah&7FNV z4rmqF^#P%-0Z=e+#g;4%1tlRc$_CG0PY4xFxG^l(X=!j9(sz* zE?2=a6yCJqcIM8oT_gI%6b)gBX`x(SF@~t9#EXrHo4dk6L{)i8TsZUs8D1{J8w+8_ z(AfZ*Wrl-Dy3&NWaPSU-t*FS0k9gXcgQytcg@HI}{d7}numne3Sm?z>>9{Or!=_g4Q$031X$J9g`EX@0oyz_Sex3r@Eq z2a1T?xKQPcSp$j@o>)*|8B9focMiDF-|H>T?s)J7msRG*hB|D_1yp|H2cs46m`$DV z{O|am9I@e%7w_R5Y1h%=Qp-o-3e7_bwJ5wX#D&FPY(!iZDE8UvT}=*iRnFcHfv>H`A*idXJY)%$EpLJUCkKj(f8b{uJ)=|F9 z-}sj*x4O1#tom*&N3TCWW_-T~DBo0MNfP8+=!`WHtAdPVVlJ$5`yXBqEOcwn`ug`{VDE>GHXg)Z27?8QgX1id}7}*IK&P}Z1aTsvZgD%ri%E_@2%)n z>>Opxv~4q{x0I+bd?U(2%)`0Dw~viRyxl8uq5IG(<`l&%=&D;S)5SDRxc zc~gM?*(|rZx-yiV$CoY=9aS>jD9P#v#eH9L2v}8iP_BR9?LG0qvAE>CI>wVSW57sp z6&fA_9f8N=!w&=}32lmTk@&V%0FkcuTZB%k<2;6*hr2t_+OIO|MLZ$d%P~pc7*1_5QiM1kOmE=X8=cbf zP-R=xc(KNMoA*Ly+doiM0PlMzr7X+d40aXyTNAt=z~kQzY{K&!3fXw|RkUiGzIal2m$-bXSsebP^aOs3E zXRwml3;A!6F>4F@??liLeIk2N^{hF_TYjZX0nRzvo2yvHv{u~#jDnw~64m?@ z;h#X{b4ep01!ROMiA2-@k@sQRCCAh_T!tsxccyLzka z)<6Nt{1%scC`XuOBh!%5%7!M0T8yD;`cn@zgE zq;$7qggsUl^u76a1EAQ}ZsL?j`wspELZ+f8y2TePNngPVwn%MuY~9(#nGmUIT++@Vq_*U=&oM~9vxCQ?w(U)|V);%* zl_Y|yEvUCBC!UG=1d6S_l=C)SaGUKRQ#e~X+D}y%Rhmm(I)erDI)O zvd3sg(6-U1v|&_qXO;EX*fH2Pj)hC`v}oV@_jN@^oMr;i1YP>L9XXVBk|(hx+$*4O ze-itk@y0QHUu&O z^HziDp=TWN7vCB}E81IKI}13mCTN{Ir5EVK?;1Je{Xa=(X2$=jbpC(voUi{EC*b3k z6X0wSdJAp<5l>?o(8GCe+dvN5C1?OHK{qisr|$j4vcbz+MA$+N49J5A+ofTTR<%y@ z{F zGt0@N80h>F;p`bl4u}7lDqo??v;SJwrAhhBC|F*$O?3w871^cV`w5~Kym2HdJy)#? z%Zvt5T`GSy-6WG`Z}v5u0Z2uV@%^>6-28bgt^_1vx(h-6nrzUY>=MENZul*c*R|m! z$+S_8K5nd&Nck=6wOG{(WL!~35VLzq4sx$>w?OY@WMUbi0n>YntoAw4!mr3<7@h4? zsXCZUpeboUmjqRrS`JhftCCN1WTY72644DuZivo^CWuXDprUYe-e(f#Iu(E$jJPjk z-|jJK*IxcxsFRd1RY$2pQ_!LCm@Rh1hKjMLoz7)YqeT^)3EaD*F~FO!AEoLDB>OAC zSE3+u9`jd$Jnhh}dXbU%OM)+e(t|To-XpbMdrk=#1D1wFE4nin;?7zHZ`h8WXIn-S za-zB(*tIq|$i6&gmYw*+DA;xgQUi4xPh16*wSu%Z0q9v+Ndt;g+J=R5u~3!&^nI+% zBjeC07)o>C#11X-@{2)w2d^>2NyT!AhO3G_s%iBPS>RXDk`Yit zE0YLt3H55U+zAZ>UQB;Za&Z2>pLiCE6sQT~I?6(ycvvt#oZh6jnvWE1JfNcJ2)MKn zw*bfhO4<7q(sxq71=kbTs2W`v@RgX-y}{OF{gEBiYTQ-;ulAR zPP?#6{WgZeVMFM83fIEvV?Hr9%Uyn5KNG)hB!ES-Q+2!>^80ZaZWci;Rs3d^5${Ym zF!qAb6v`&FK=9Z%p3JI*KB1h$?c6Vrb3KK>NEd&rTr(m zCz;x{(?cvfK%1-#LK5SjERa9zeKkBRd4H@hTFa={fP>JGG6fhV2^QhjCN7p7##nJY z?Cly?nnNn4(~SDv8EKLPC^cSOjjK~qglUi!~rK~Y?5fMfDza6 z7-{|_qqtc)C$E^@zw8_$~*IK?vZ}H9%4JtzId+4cbiMKEk z|MW{F@smP(En{ZbccVf2_0-}N#}ox6t|Qh%s}X`pu52g^N#Gq+Mj z`oPng0qR_Zn{?h*gR+?2PU`6vBUTiQ&(N(>QOdF3Ru2?&{AoU7@t4?`{7&sYY?78r zt-*(G!6?@zs+$MfPKI=pYcV&7iJsAvdl)wX)q2b`SbLDNM9#H8r8WWRgH9X9A6yy9 zXqu*x%>c%d5!g{TTwiZc0}AQDNxvVc{DN-f5Vx2jtPg*v{FUV`6#(qsFcpBB+A&pt z8nu7a{$NM`PzFbqJE;8}w^XS8x$ZGF0AN~F>Hsw*e6HqeM>hJ6mte;7pz%$Yj;-|c zpre|le=mV)i#Va_Y&>w30Vzljd|dz)2yt_sSaDvspbHV?9!>+QAe`)uAIRA*veccc!$h1o}73^VC6&K|gPTl)|wut=$t7S;M zB>hwKynPGPUnRmjd-Kur-(Lr=n+M$2_q>4*aG1sWO&n}YZr6?=xM0VwziGe~Btx6^oYK~{D(fQiC6K(n8Zpu|2WtU~DHP|)R2%$HCcxVfN&)|{8uOQV;mMPHy#$}{ zs$ZXX)dt$q!A6(38SaHR?5kVlb(l0srG5e-QfF3in0} z5f;V%XLqTj3_Z_nM9A>kU}clp_BK^|z=zNl!t`k6-#`P*ZUOzKqya1xazI`Gx#FuU z@Qwx1p!NmPR2M`Sd2G6a+r?1#d!L_{&GG%Z1u!U;O*{olVcX^f0=wn}Qr_jzeA#(2 z845Pe*E*%KOcg=qyt^weBB{`PuLx5bbPLo}k2ZyFq5;KwE;@=kj9`LuVxs+oz>Dd4 zU%wo_Pu9RWYp46MN_C>S4AohngSjR8hIjk?Z)Cn7fVxo&!J{m0N~R~3q)>Jl7?Ck?6If?8UovSEvqsR z?pW06NEVvns@7GY-2!=#5wI#pZxQF72VRh`Qbm%Qnlhm`U_nF6WY!_o`H98p-aVo; zavmhiN}m5hh6RyubVz>qPd%Z?Af8UnO)WE|m)4Led{Awi1>4A8n7*`NLi~S0n4%cu znALe|iL=nkf<5?#7Xcw><}DCW7RlEXB~PHjD+cJ`Yu%W-j{|pH{GBH=cbRo~`a(!Z zJIsU0#l+?}n}}-t?qV2b#2s6rkSDBO1_sB67TlOE9$AcgVpZeIR zM}t!AdLRNpbIGvzv?ag@pO;())!Ou;F`zHpkhuQ!cp*s6i#u4{LfbGr)+*;hnNbbI z0qAF68yz8=B7wuN-bUWKabG+ORhIC36nmoY_-G%~KrJLnX2|4WM{4H@*xL9#fz}?~ zhlYLk%lI>Xd%!!dW=(JB&cd%H!%!X_-cxeRh{{UtV13 zb@tPo!aiD1p_rhQVq6{!>aN~F0li{yNfH%d#}G~`K?6ok#~X25`a6FzQh;%V);0qm z&>8>${q;0B-3v--<}p3|2-pO+LVyq79~J}7s8boYV+temJx{Jnv^a&$_pPN&VdT6E zwJpr&XmOT3URPm<9ZPWHSIgy8=dr>%v`{hsp;q=oICd(IxUJ-mZj}>7c^WSG-*xfn z{+72|GQ;cZ=7k}mi@eI84A{LijCV4MBnFLHHMr0h%D_rs0yk5<#{1W(g)E(}#1QS6 z_0=u3Wlad%GBu7(nGr0G{#vIARr=ogF@gZhTgcatRg33h2k|VbmC*my{vRLlBdm(; z!0;n$6d_zsN?$!%BM=ps@?e((ovc_U++J{GP-xvSPX_o=g%iZzeNb-Sc`=M+(%n@t z>9|y1=ks=gJm{B{gUykI{&OCpw6R51gh5#<6B66h59saVj1Q z>l&6st6%|C18>y{-W?)ACL)RD3q(cE05o>Fz2)tf$6GDVz}Qp>snE#_tS5tVjn4W` zwSXRLNYoktX+w0#34uhrM~>8bpg(g+Y%5^`PSQ=+Gj&{4FnRD21oVxwu1gv69xo4& z2Ru!BRBa?EIH(+r*zPv{SXW&dBMIA2y+#2Z5d1Hj#fAR2B&g=-{=BxM@Ml0>7Cv-w zHVAFcW~naZsFu}zAQYluuF+A#>jdh5;f9kg{TJ%2`!w40oMJ&=x*iZLF=Y>O=!_Uw z3YL2oMVX$gbwDJ;eldx9NG#!V9pjR#)@fjhtz24#8KAU$Qd!w2?W&+6m_>(P_}6SH zVoO!&JFCc{-5l*9eMYYJ)rK=wqSZqyf}2=!WrD20HEVTni*3-iULgop!Q`w+lR-@^ zYdfVxHN`l0m0Kz|XKX!tGH?Bh1A8VYJxW*O7gwg)LNrOME%F53N+Bt=eQYP@1Ojz8wK zda7=UjA+ForMyigGwNWjIC)BrY6nu4ehwfeIEuZJ_GnFnvAM%qs2e=4I>=@uA zDztN6%a&=9|LrEHtGZ}2|wUruX3|C6-*zfAxB ze+W8e7RLWfw7{K;CGNQ9(?2-6DxgMsrZF(czrN8U5O9JxsTYX1en}=6r_95bBAOyq zYw5C`Y;r!kZ^t7MRYK8EoH=+6;{5z~{PZ=Iw`;>Oy@W&fZ|K#}x4~lw=Za9f`vi`% zjB+mQ_J`~9D~s_y*l!o(H1_B1+uWOdxX1lEyYwu`12gx2MBSJM2oes^^waMC$9|0b z6o(Jd|NG&dvP1>p(C0_ywj0;klgiAuR{*AzSCKIHa_3(%@BNa;-lFpsghEaP43}4shM^kcDTgpTX*o9n6>I)Azq$g++@K1q(oqzgOa%-WO>gL56tb((E zHkZ;S&rV1)bjHg~1xPzs2q%vRQvmq#GHmLd6TiqZ^(C8_fT0|r2#c>{ex*=!dF9KH z;vN7asLBe1hALr^Bb*}%{VAsFim#NqeLCR&!lj_`A(7R+>3LjnRq4A0A^K+4?&{p5 zX~*;1`IOIIZq=*VNT6g>Sy{P}^Q$mun9^=E@`J~}g(pIu2+4yxS}ZD)r^+?Cfukfn zZqVV6(-Pq^NcAIF{M)vdS*~Ro3<}J!hM=ZLH72UD4bFbfj^h%ezj#N3^*PFtfQVls z-N&S}xLevquR<%B#tlXu)#A=*=+16~2KKEcf!>UEWyHz(iw91Yb1b_0lgcOBA7}x4 z0m{shZ&qK<^S|ijJPCo@X;32lV{>Chrtde9_bhMB-j=jLUA;_fL&(_YcekP_*k4X?G5?hpxG4`QVm}!rZxB;54DO<)KJ>`I#E*jxL+kP3~&M%`gc;~|7L(7)|p7iqc~@) z^J#Yv6SI;{xX`wIJag7PYEE2UL@>RAe*$2piO~btt$P3qgzdVFBjpb+h`erVBLJYj z1IHHpjei~_6jy~1Pe`A{K*q+Pu#J8NGy|Mh&r$nRIRx@oMhq}SeugJRK0O{4IAjDa z+a!o8g5$_2bk;y-#3(ci3BN74n)aN$p5n=-A%|B)HgfjJD{?B)zkPw}@=kTx!KA_( zp^JK}I1fMr{mVIO!AGs^l0+IcgH?svfkEk)4@3@NwFCsld2=1+)XD2Z2x>~vao4J4 zU^p$sEMv_H$RP(yp!Iijykinlfb*jJutHT9ES*Y5oPIQ;fISOsJDwy-ytV#nmvL=@kLo!WrJdqzmMaCs5E@sz*uoZ0A2VFHg>bYMk1kdmp}e5yxa? zz?Z5icUQ+A@mfZ&t7>-u*2poXD*&pfedswrG6wi4&k&!*RD{2a;qSs zmydRvMj~FR-$(@GuKhsPxudCM}@a;xaFEhq+r7 zWu4e({v|}fS>Qyi@mw<&k$9^<{GFS(GGQ&aAhzFj6Cw)DJF<_b+F|j>kQAxRIkbG5 zGXJ+$u3~_Q0DcvQiZEaaO@p+5RQZCGr2d)*8Gb=hJ~jgM!ogID>@PdT7h14&KK^mR z7!w{hviwKYJ=&JwqBTG ziy23?emy9csN{7Nu-gA0#9pM3T!3U!NYQ3Q@^6z=aO6TFv0e`C_I!mML_%ji|BIlM z`0YDfGP`Q%=wueP@X_Cyj(J=zRy;1xKBW`$=LLA|j9c6)ggTqVS2o$zlUWi#%$T*8 zbF*(AKGdnt8r&;&IJ)w!R?8sY2KHF?6MbISdK*g#2gf}l?kW3?3%=o_T zS^A(1u19?s!Urinb}CyQ-Mu^8DL0ys056hgr!p+x#oy(CSR*UKv=`hvt3TOl#O}}+ zTXV$_X0QID6o%j~N1vI#@6lc+E^S6$uQDM%-mB{q?>EPFH~$7eN?Sl7y>D+m`hIN0 z@iat)VWp2;5EK94s#y`#i4#zUnXmQ)i+V|mJ#bttOG%MPRhzBXb2Lye0362%>v%e* zI!$@%aE9=(bN1SG@{_EZ!b=*gCX<(QQFFc@NeOp%>K&JQ$tL4q>&-Y9xOi>Wy5P`R zpW>26y06TEm}sP8unRvVhzI1Fj?C+Bu>DEiP43=Aaq1<3Pc0ZeQm%%!iAla9m0DC` z*6Jpow^o8oMnXckzTCk%OrAg0D2Ck~U6@%B2Xs82lf2M74`^0m&Mi(siIKKwaY#qQE~pg zE3NG{n+~qnOXNr#s445@y^%Hv)cEWa=JT$UA;6J7(zD+exON8ODsvSfa*_mG{HmzF zLxy(gM4j8x(#Mp1i)QTkHy?D;AQ>*7Wz$dT=BlDT$K_XL+Gp@J=wBgL8P?|UcUqT% z7vwN;y@SdCjRVvUNL^Br|Vm9!^DkKH)Uw^XLOLIDvWo$(?(! z-`kI&DyG*#Ip&_g5!Ns?0d%14JlLQ-(<|;CFZ$ChRbOa`qQxff z`1<8q!1EgN&_a^&3c1FnaWYntxQ(DX+wQTHzID|5lLP8oq>!Z1PN%bSAU(o0h~-vS zaqm^43sj&_2NTNz%VqQiPF%@2i90A`uidK^_DuFP-?J1!0KHJR*Y}CvjgkTPpTrs~ z(|@rJ$il+*A060NaCGCgTkpSoL-1@-j5t5Zym$%B_dq4`vfpMVqI5|_t-&4j62CuY z@1%)FQrt)}LjdbuQ;EWc-Vb5SMfg6M?hdxP#@gKdd{)iwrm+o|?_N&1`@y~a2mYLN z<5f4k@pgZ)ba$QVL_IlXSCRko#i(g{69GCsK|MXh_BOf?>KjqE2^0VPx-d*u+8x7t zplku+9Z0ylTiUusK%eK;Np_gV*dQ=Q@K+3$z?fdj+yu1%p|HXH>-b{+xla|He;cNV zk>5f{r*%N@o`>fw@}P<%1b^N}xpN-jbYFBp7~ObmiIe0vF$SU7qbHP$kWXHa;uQ(8 zk@=~@Gh4skz}|w%{~WF{{{ZA>ISOfR$sBEkT8I2%S}PPf&siWmzSwqbnF-}sm1*c% zgXxtY4xMeqSxob&h62|SAsn2D!WQpF6zSBV`ilzKHqkR5Jv=&H%zQ)iv%Mz<)Gsg( zWG*tdp{yG5rHaWTmm>f$1TRYDdKok8#GjTUCPg=>hl zyuKv#^XuS>dW7jvg7^IKbj3=BA+uuZdz-qTu|UIkZNz){m{LUsj154jVMtg|zk0l2|Huf%&GZmp(6K+uNo#e4pkQlxr6#Ov$t_UP->Q3!O@ z113=X6O*WnvPFW89^!~(@cughXh}-fY{8m=K6R8%5TJP{TxS!lqQn-6O!DE%Cbc9X z%3;Zy_5vj~mw${0uQ=lcg+VZj;-G5PV;cDqm$_Z_Fbs;U06gMQ@&zcn!yWObl-!V8)=CE3b{AF#Q=NYTDt4T?EWl=<*`pW~`AmrA zl1Lu3H=;d2^I0^Q8K&EcupEk*Fln^}mwKEf@5$+3$`2LRb9=)VT1q5I6je*B$p|a6 zluKInI-u3iSECH|mXJoch2J-gBmqXg)!%bTxu=Wfe%_?007{@6XZf>&JgMQ+|tMg`~3w6ItJnZkfm76=Ts(z(xD_`Fc8{VYSX`LcWa zLFB7rsKMqy(+p5%3v}B;5fQO)A+qC!ELzORID(LZqai*Fu5&#>@BhXs*#kPqs@t9s zI(jt=A+#V&0?!_+j{B?84w~U?qV1#!Eo-DL0}-GAcQ;fHCAN zCz)&r7I+1qv;?7ao$dzs_|dJeJymX?E8s!TCU{1rh(2%HbB%KPr$8n~aB@s>1ayqb z0cQ9PQCB^jN1k**0xiSF0Ty=7Z*Eq}{Xm037mMjO3=@y6@O2>JrLRQNq#D7gI_(%8 z-*mXgSDmUxkKuk0vYpsga=hWV$+UA3VS#2=~TD0_A!;Jrc&m)Ycp3omnVq5A76|`<1R<5aZVDAFn?PTe(oXL<-)7K?WT1W#!m(mHKxFbS z2XD}Er)_{a5H~sI7;9Rn=XMYAg0h#^UtXhEf|zCRKbavfGWr)Kky7+@n0;^=fJDst zZB9s53LcJ1xd25CbPe&3!%-FIkd(|~^Rq!wV%iOuB$SQzBGGi&aRDC<{^pL`0aLsE z?GE6hRbPP7@#zg#@#_m`K34w2Cff)27}$)4?9BwPayfMhKoMjaNziAYU@_<}`G8wo z{+1a>&9l&UAnz>$-VmicS0v$L*2TI{y|mL;La$d;?sGj$8>sqMvbJMx_EP2O(?|aV z{%~zbh^3$aNEX+G(l+V2et1oDX}HuVK*C|TMQqV~W~pPnY=40b(UAtLNSUtB1RlWd zryf|A)L7DgaA16i1%89E8CqIRp;ymWsq?er(?N(T$}1K!jUF`V1kdS`aH@2`)qVP={a z1)qClgs+62vHPQ7X=|JD(dtAKIa7zO135{fVMh&nRK3iy#h69;5FvzMh{Jp@K?p+= za=uBUhyD6Of3}M6)8P@vHYkk@hDwS^2jbOOTC#Hz^*N5=-fxd7*>BqG@We_~xKd{_ z;c(4uCv?M>jQ%OF_l%Gt-Jj6)qX1 zo22cmT(~{yE?k9Up=s=*2i2L=K5sz}TJVCpL2K7cb14p)&@SG6wR7b2$^8rDxCtY? zDupG2E0+Fs&vKOV$X5tS7#*5Z{s^>*jBtJ78>}SFVC>GYghnn@n?hu*RDpC&P?#GzjbadF}bZYV~H>_hR2x@*gkUlD;j zaW&odgvY!Q!QlkYjK204@o{fYzYOI8Yh)1MKztN6MI)#0>cFj4@?e1?c-?Z=z=xm_ zbN$Fzb|7w@{QegrZ3k%PbT4DCG1Wx8Y0~>T_Q$lnz5i~zf*oMFL+vm~?XgV^#;m>z z{yF(>tl*8a|1%4JH0SmP^3P_qP-}l#Z?U06?Q3*(NBgBWo~3^u`Hu4a$;p1UpTZ18 zNlG~-TwR+pXqopFuJJ8Thrk4Eh(}DZ6HjPGhav?hBJbs)@2fR_=XdvaS(camW|q<3OtJ91$%#!!CF@ z?=%^7l@PNQg_d}hj5tZ-;?n}^XPFd9JVF8 zd0o)_TVoVHb$iFQjUC&zZQHhO=O5d4cI@n6$F^-d zJLZ??t@^6Y#dA)*cdKu@t5N)2azp*(N)J>Q&2lr@ez$fF0lU28u4BB%C$@u@Yfe z2MrAddzZmEXH{Cier-@UyO(^inSQMbx{A_UnIl!F!4x6%d4oEk#C*1U521Aq!kc<_ z;}!|lc<4Wz;vg^*m>A-5bp>EV(Z}eIDk{h8AyGAqe`cl#LW4G?Fb2?*8%K3SocE7Nb^Tw>?6AkDC$%W z?dLxgS0r#?d9xxRj;c54!(;n3!i;6u{0V@Nu#e$OR*K6>1fPaZ1;$&=CqfaNu{Lb zIL}!4#1K;!J^CQ0a|o1tWpI7PT#s^xS=Q@6s3l6B9#vHqKJ@>I#Jhh{I_GU;xDvRE z8M=~**eAzU!WZacVuOUYW(}B{1jy|k%V}%B-KUn3FNOpN4f_6MeYYlqdDsgmQZtkl z4da|6_x58AUj<`H=pGynb0EF`+oNjBna|Jwc2(nfL?8=w$4F{_VJEbme z*>B=jI8L@>*5cqs*Jx~gFw89B09e|!MReOS+5}?|1Z64@h&}df;a@AdJfnW%?Lby+ zqgG~;+62im8;^bfF8PTy0rdg-;EENBt+`@;sLzln;%ZNTY-o3S)!Z2w4N*6sIHEfs(hdLy10J2OSn;Mgtss?N)VW;yjA>b zkt>SvITecF(TsfF`JP2deivyybqI5s!D0s#n5^4`)sjYxZ%!2R8pfdOh z_ewsg(|+18v~BOP)5Q5+cS&*lpPZ7Y?J)VOffK3x`}RDp-P zYv|=OYB8i+@;h)`ssv!wtTj~i=gCuH{jU%7RGs->?!#z{aQ--XAcS&|+VYuxUgISY zfH!BF9bDrr(mZ6HtJ&%1fu0`oY`|&tUV^D1>XB~D)2s4(_Z)t{y}xErEg*&08Ovgm zSM67a&$4l9N60wkjP@?qDI-f7Dqc~a#xdiES-Cfp`48 z0#(d?yP&Jw@Ps_uwHkW`f)M-bAq;xhyU3ydK>tq)z6PTTn|m4(Sb&N|ojw zSNVfCp+z?xx50p>f2XuUR3+nP^SxuNn%cb4;*#S{FGJlO zkSZlc_Rb3yUS+GVpBpMVch?`g_7$yV_Z`zHZ`pQK~J~ zR+pHgF}n;@74qWuNq-pzpd3p+x_kgT5#k;?Ob&h!Y4prw&z2hAk|HPSv9M8MMztEZQDcTY54lJV~nLsuGxS z_z)7z;zgzx7XwSdTvP zW|~>p_+gpKzkC+{mp%?V+y5COq3Y#mM#P|CY^~yIN5mjc#Kg$>pD;LQ7gr)K&i`5d z-*e%Z*jfK8>vTy|&H;}DuKPsebXC6@MJyTx32Rg$8O<`NV7jno??(*`Qru^6SQqrL z^Q>e-!LzNUW5ba2&{&Plmx%T{TA0F&iK#oTi%;`K);|73sArmuoJ^Bq_qWzE8%3j-E`8s+^+-!EW?gVej5>UN z*I1fd$Vgc^xwby4a*8|#XgE?Y#nQ$|DrJ+^6w}4BX-LfOC$Lg8x^l?m_t*o*X!T1U zR5qNdT!itWE!7$_8>Xt$V1rZ;V#Xvcl2}r9*Eyv`vIeO5nj;(c{OmG{xG@d2YYI|f zaTY~KP1vFGhBhyRU=oCF)};ifXkwTIXiSL_hCtK?ZD`rNIdLGJIF2D_`Yk2fk#XD# z&{&aOO-JZtxf)~}MT;GJJ2Z))bwh%6ZqtFJ-Lkm!EOLlR^wM^aIBgmH zpkc$PjcQER6q-;Yc{~(J3px}@IyvI?VK9*im|ZLm%mDUgAc8UlF}n_oxUr28tQ3Y2 zD)l5g>@svZ`-Hq{26~Ki_LMwxi`M7_hJjoHBufE_TFjztxJjw#KiI#@jjt)m6S2rJ zJtvlzs?$Wi)--7Ud4{F@qB;@2@&>Z(1Rks_QNz6ALeRr z`^U>1{-2N#yW92M)q?a@#Q4L$Bzaf)eVJ$s)yBD(yk~<`J-WcIz6t6Xg}6za z(%{r#9p&fzD?goH9`O&Im)Ym@BP_c+GeF<(aWOkUV9KtI@c1}v$ht>UPt&dgU~3r^1la{Pz0@lAh+^ z21Pp)uWn_Rr1YbH6mu)aH_=Dj|H-sLlf6OXGW5E5kJ3WJ|{H_n)N^ZFj3V^4Z{rC`(J9y{Nky z`fkVR81foI1VXDzafv(P$0DbShptlOj6jtJxQkX^^~co1@B1~ZmNK7Hai_>FNvLjq zG(Jk=%OtZ1Vczf^waD^Wtz%XdU>YRA^S)I@RVrJhGCMTJHbN=+<1+f^a=EbDJ30t zZ-hV4n}tvDdmc+)RLuq4sLw^Hoxz-bve}`2H5sWt>>HDz1wS%j;G82>NblS5Z%YH?R3`gN#7; zs$Yf4kQ=mYV5zh6qWSDWZ>3weF|C%(RQgn>(6&AN39#+t$7|bc*v>wj%qF#1haBU& z`k@cs7VaKdM=LYrNb%VbFN5(`dMllW;i^>le><;_6)J)2T_|14p=DYckny&^jy7-m zI&R+7NCbJ8o{GrUTp*pUh}QVzUh;3}`?d4tzb_;!T%C(tn8W`1&(X9xMzS?aCu zxAd?E-4P~lHq`cPnqoI+am3!S9@Y3POh%Mk?&I~VhR zqkQ~WmE!T*kb7?GPK&{dsd@+_8zbFI(RYD>Z7-1i-Vv)CV+XB7riy(0`-h%=Y1QcC zZ62Xpb2WNv>Fzyh+)$-iSNV%@8`0O(#qHnI`D-qth+&^}bwt~a0km%)B$H>5g|*{0 z6JdDU^8g0}XB$Tj%}@vI%1+NGh)e8N7EQ2;dbV|=Z`4>F7bcJ~(4e<3#>@M)x2m*J zXyVyXox}+qUF6N<1nbH5`U2&}KhI#x7uH|GU9mgEO8eyT!_U8B|Kw`)Qi ztSoD(O@IfDSTqC)#UWXz0%(d@*0?bQeK_F_UxJRC36KZrQg9HpA0bwq3E z&jJX<>iK(N@b@nk{1h>^hq5ttU-KeSvLQ1TF{*74;s6x#(>CeoLiAZRug&BF^ClCp zKZh@$FPE(&K2i=sh_SrxxT{&lQCx;S@DP5+H3a+^rZfiLPb}@}XrF=lN40qBN46t@ zMG3`I%@cdn*U^Z#F374D5&rkE+AwH_i)&;;9QFhNH6UR4pwt@)qJKPhSt4(_)70bx z*$kzn0ZwjRlzWUe?mKgx6p^8MY^#<%5uuf8R5|-YcfuIHeV)v#+QzK01afXC6he!Z z$d(>C(?lmtQ#d27K1ZtX?`;WKnChgbm1-r##nHHt7A*CiP$3-~6cchEmXJ4%<>}6Q zg>1+j0tx6H_rM6GG7!p0Us{&qn{^(?aTLoflZZeSJfCaV!)*AmvK?hSpqZdUR- zBjQXk=K3w;APbEYx;NBMx{d=`33`FFf z;@4P6Dkt1m!UgTOj}?(#QT#O*%vEaC-842NlEFa^cjtTOsPnQc62JpO8Rf@#D$VF{ zW%jEAE(W{?LJXerEfnf_&+8!^s=qG$1_2&w+`BwJ(h$A^rLU{yuD(qR3S8H(vIKn2 z5YFvkidB>Z3{s`PB)t!T@QcgE7ejOEmmb-Ikgg=%&{)}A(2*lHCgie%RwgfRd|b&3 zu5krATUAiYl4Qk9hC(x^=fxa0V|ZK?2PeDkgpiCS5d8tM(`woYQs2=)K?eFd@wTaQ zS%d+_2nIqSJZXx46c7({uY$qvlP`DqDN}n0NeYehb30J;0U0d(uif*KZTX)Mg09;R zour=&7S0u?5k}Qouq8v52NzLCrV4F<4G)#4dLBren?xS_*m%_;av<`=7K$!S%V~Bt z!-dX;pvNQ=eRCM7M0%p@p3p{;4Y07xZu{>SPUX?wK9 zNN(VRCogv`$o$=9q^fkn*jrix8cYg! z?oLwxSN=($DK09cLA-{FI(PAK8+&t9;KtpZzGP+ywAnWDs09 z@~RvXN`<$B$v=+b?pxt*C+C6&lwPFjE#Z7)>@SQ37G8QEx92F;sE?493_^1BGw$>i zO&4V<)e6<(*;Y?zRBtyy%Q6*q)pgoIixkpSj%ukYO{tzkZE5+8wYGu@oe=agqo2d; zqq@1vBLbNm1xIub9)A~M6@@`JFgUN410op-hx4rZfvYv&Nn!)=RXLvhDUxiE7`ko%*sbR7m+`h<9D5OmGfK7EiyZhI z>PV`dAZ;ER5-6{AcmIYif|3x2mw^cDn{y;i!tU}i($tYFD?;92bR5l-0g)nl9Q9rP z^aov(tv4d+FlHTjN1SxhLv z>wc<&gB{tf-cc_5_dhdU&V^(fsMiuWzK&xfoWg_Fhm0O91#qu0{nJsVFvp!xwh>{C zI4byLOLoq1jS!5Jg5HqYKm+kk4~=z#88B|#0QQ>tS$J*qc`RG_dNDc35R*y`N_RzK zt*z7qAv=089uwm0`B%R}U(sQh3Ty+DIY-~Hc&j!X<6`BE4jtjEK~PFaN6lQ9_M$}g zC`4+nKV@s^6^y4uEoXshfj-ES$wHhmmV^L9GKiY})X>)8b%6G=i02aO#Wf5db*nc} zn`{un1_=quyRE;WPv!vaca7x^5lNE&EW8bOk3A!8@`}#Es$o@0Ft@=%L!XT*Ocw^e z7v1B-f`@?DB*E)2SGF=}x=8B-&xiLjeopjZ>`KDMLk8ReLo3afNP5&~j-n6!sO32S zdgh1L5E*(I;dJ;x2N5Vqy?(+2 zm9&yqO=#R)-rp_>gLaS}*<}?3t}h?`D*vK)0z0{)8eqFh#lMn9AJ{sJ;acT}JXS2@ zOy#@Y_WYYAwvrRmHx`Y}R%?Ep;lMB;5$C?0{D+}2+YJQ~N{|4>7e!Je1*W#Y*r5BT2BjOAvM?hGF4LQ%Db6APNA3gX659XD@5UslTq)E1L&Bp#eB8PjVl+Ibh zh%TJ5+H>t55q4*GNUW8*9XPXorWZH`l3Q1_vU^OgOiyT%J#Ygl- zapS}|VmWn{i-V~2=D&Yyo|aJjxqvC=?XN1?KBDvf!8k`03qG>sZA>#4Bc<=Q6kT0C zMu``Xp=-CxiCu|3Yz(hCZBUz5jJ)&K-~`+*maUrdf>Ee+glt)HhJ-RxAWH3v@qspk zZl~sNUrk&j#*G6i2LLd?DkP1lgXf zqR6>wz>R}Cghl?aa$T}#C>_gpIzL$m9F61k@PYf=a_z;>xUVEMc-G`NQ+}`Mi%K0M z#bCPd?-)R|a{fJ_EA#bimEbN!*0(fRknaJp3I1y!FMpYl;oc2s2xBke!iA&xD&jL!Caq+%UrQe$l_-{N3{thqGZon?J;zn3GxV10@Z z;V$$0G&0%vRwtUcfhB;adnW%X>HvSgjtJ2(`S_MovO6!p`_z|)!RGCU%NLtzLxPSj zO!Zg^+gS>`&fzXZV`2>Fp^xcG@EJ&NX;x5uIYxd8P9Tw0@L5iNDla!XZtO-fV;ekO z{G45Y$rx}XH(RKH>iUAuF7!T3e)=y(ia?(-`CnE+`uL$G;sdf;<7LoOzIQbCA z19;X0#^-~NKCCN2_X0=_EiXm2e6t`!8s9t!-5-v8_NTo0hF^$ZUE2%1Z>BeAAeRl> z3ko&mTiOb4CMT80Ku3$2x#eCD@+VZ_c*E7Gx#a+}c(=TBh1l}+>Vb}%2VS>~h?|Om zO%Ls=fnvXMiHE($8&!X6o~t!?Z+)bM2nR4=w+$*MZS@@fC3o#fuDYw{4Cm%6S023A zZz~?XLv{BJc_zGJ__R1^8hRTZwY{!Z6|;bDyK-iAq95$VxpERKtv|P(`|Mb(a7ehi zYAF_W5DwrY#KMyDUt)bD+in?kex+AK@M`I}1vO0_5r^9AU|bk{)e|j_)D$mUltZ>n z?K@MfFzOEjggSFs^EmnZ=Nb+s8~SuA%OrQgmsihyA=RYPp@D=9gjbW8AQMHJn0?`~h>V5lfOT)aW`We|Ffj4vI1B|1IlQOkf zoz%P1`NtUY^RVwA58*kwg~=tP+Gj-fk=aR#5;j>&W3{z<*r-%MPcZQ z|AGi`-2fjVnSZ>`gvi+Y6Ayv+nDVt7jalW+CqlPpn$H-FXS{2h2#0>DexrTY_}84Y zM$69mEa1m)8IhzA?@}x>R8IfQrRbzRdpzbHT;BQ(18bM%6HF6X)=kkq+^`ddfPN^y zwY^AzC%?sf|B^%3a5{@?Aavk$1$hvhewO2_{4*zd`UHjQsk^u&3T z|5m@ihL2uqIzk*{r>*?NFq}455TRF#8QpBN>f*bU5Z@hKw?dn!E2k+#@EgQvglv&Zs#@LBgq-t3#)=meC zn~RCPA_jbUN>7Ylz;@=^Xd^hqotY1KII!nYRaWf{p6&fMhItnmSocF^C-N|Dn0X5k zOQf$$u3rZ~JHJ=E_Ka0;!|1f;N>yMsb$kqu?(vh+oM_*etfA2#aM-m7sSxpyuNJzD zS{Ow{GLBCt`SjoG+lU?X24OqPNc1P7C}~{v=9tI9Zxp65oM>}3A@%nW4uQ0W$fR}D z;1cfv=n^A$_siKP_+W_1LvTdiyFRF6*3h<)+ z`nWp8sGhBVXxO2SK}}jgnhyu<9O#6YYQDE9bsdu4hf!X?WvX2%Z#Rin*YD`}bu5&NAq-r6(RDbHEX)zsAT*IW{mS;w2FoPl?JD?I(!NuWW;aHX8e=`X7T#BYPYT9?jFsDdzc3L z3E{Ol2@tZky3|bB9B>Sc{l(|bQv_;NGDzFpB4itv84qqRY};Yp(6DE#9k4 zl%0L6xhZiX8FEH18jKmO;{Zu^QD_35Cc#ezMI*>f`MoQ5nGqdC8i?3cubVr}F4U zJGXNNga_pESMTX$H&Cr}^ToSBiprP59qW!yi*7)yU_kzL{U@hhfq&#L-JvKE{%oD&g2<-jII9>f=cSPc zb~lFZ;?SMkB^_XYOS{06W$!=pVHoXF3n!WMsGp7%kWPJl^&(Q{B4fN1GIJ8hqVy*( zSno47t%D3pc2P=>p{Y%OKbk26GyMBb2n&F0kgA1}ENGZw3~{#k63Ii5nN47&UIQrW zpF0#!TyU7aRj;!q?7%&y|K^v+FGN^L91A*f%c_F97LQgQ2Em}2+etD*MwyTaUm?F~ z_!wO0^3?qnY)Pt?Z@ES3`zP#_v}JBAb>Uzz_YY?`iHwet%gn0<$bjBbzfRolkfBX?U037X{C8@fUS+HHnoS_` zo80wOBCMWA6zxY@W*nOkE~p9*TjACqEo_YYjOMKFUWs3Otv;EALV&m4B%_Fm9D{5s z85}O;8?{V_byFc8XR3F5CpMUp_1wxXcUFGX)3MneI0OD!;T0S(RTJ#R+?GXQg$Ev7 zFR$5f@>}IP=e;&&fw-DDBV?rn{@Q(i^;)Hm^*pnjmBB?i7#*)n`@O3#!L(tH>V|Zg z-JRz84ss0y9wa4PK<|l!Ra)r4Xhw(Qnx?QB2fsHSs-MG2z`V_$ft+Z<*V*f4qD6&#&^g!|gnD`xI;|t)>P-&&*6+#7-t)Zkz zt-huZ1{Qk+^fR>GXB0nL94eblw?diF-jMeUSy@kp;6^Sk0657OpHTJQfEgABJX@@%bwe ztb@M5a;%dIv#|cPZ&gE<3-wf_&G4Xp%4fnd|4+ek@N$t_m6;#aqEtr%g8pSn{cOUa zP%4@xVK&%uM17Gk-vBvq`2g-OFb&-0?Yp^0@M&en_1T^j&C(@DA-3rjHO}14#9gk} zTMb7EC)+~hrA@A4Q7De!Ryq%QSxYK1lc8xgR%*_GRc>n>1ptyf4vQuleByAgdT#tr z?sMBt$8>q=uZNYlLy;_qj_TzRLDoXC7zx#?13Z4Ulgq;M>yRvnmJ{AI5H#CIo+KPC z9uZ)~o!j;kPRe{Y#6wa33wti6_Grq#7Ki>a&ym!>n9ZLQ#W?p<*a(?8MzcwdZK@*Y zkzHgi7Ji~Th0r%48V;~>a?GgMo344G>BG$>q^thG-R6YW`T)tU#wEL&A zY(lK@4hj}-=)$M=iVmKItR4kl(^p_q1e}39EXJh-{Hz%QhN$>=CVPr8f;XjTE)Cac ztdQ|uo78WzA`ECfxm}Of1uw34TS_Qr8r8}Wm}}z5K10SrS>jjCNpqpBV^u-h$d0U7 z?18hrQ&%F%IN3FOQ($Hne%*E8!#;2ZiAF%AaPGRDs7f-Nj z$8Vx)95UBHG?0{Ow$4E)d0?usMe^yp)?V*Sa?4DzJ6W7ojixOVd9PVoD(EIwOO2fM zHRdiy=H4BlNL&`2*HQ>}BZ58(K|?}UcBAt#R%y4^sw2MT)sLb7Va6g~B8%7VEi$T# zI)%n+^f3T+7bhM{SS&D>9cnIlsAt*H0b)Zh6ZmV5^e4YSAu|WUEd?&eP})C!1^)2u zEGuxkphL0%1b>Jc)v#ge`A|(xsN9%tvPwz932+`TNakSf8QYTU*PIm@m(D`lRR!b& zXG34&K);6-D__F$0vBXJmOi>dq)j^t%yLBb7MLCv()9&Fgy_SxzxRpC% zU+OQ!>-|c^^%X;Q@wU69L?$?Kuo0rm{gXg@%2s@uzu+@Cx_^4qZG5o(J0p4ds={}( z%NgYlwvai%+BUA=wYA=z0_7s|5I}4zj#&5J-|_IH10n7Kmc;ID{V$9G!`I#lgTBdUf#C{0|GltDB|Xli}H?{l~cOf*PM zl>W4;9a?Kx-}iVLtf~XNZ#G((z)>yFE?A}FBRimGw5^7 zg%PweRom)B0WWkr&KWLP@Zfqu^3gf#T=2I+|J-MZp0yM4N-qnadeMuHF1$Ei&R(wr zpgE1}|68@k^}miJVB=!_Z`Ixu-dOF1`2AN;u*3;b*)zDOX9mR?l^_Br=bcd?QA7~S z6W%`27~cK6%F;Wz^e-|Jh&(d3KQ!ZIi`4vpxuC2cJ&Nfg}lXGi~rDX~E`IOoP z$+@v%Onm3XXNKhodt?RpP>Y^I9pmyD1Oi?NmZjOWWoq(L6Q+!xU;sN%g+QXekU)E> zdxQupOD5$Wq;bZ|Xm-DWJsiy>m$9{)8eVW;;J0VZYe@I9Z}YR>9V@ z!O6eo%opD|^AIp44*}EKloA&;DWa3ImaB&D&@A2*5p2F5_X!sb+OV2uTE86-57K4W zR9pilGHxd8h<3I5kR)349#gUu{f?rkC^CuM7Rf9{DW#8qj1X6|5)VPJr zq79NGgFOmXCxTQcHG#+}+L|kq%5j3%*v&-u^&+yQ(!7$RY3&bK;ZoV#OB(#1Edrjdv$n0%Y803YHVq< zQ~|6Ax7SeMu_S3Vgq=@3b>{BajfTaN;N{AiJaFFB*A4-@d~s`J$Y{^+ghFb3MIx^Y zitPsX50c=)HUv1jtY+A;PDMkc`=kEug4=_yM(CtH zvt!pUr&S+9>BM?8ezpT=0Am9pA?3`nr`S%$Tf=0v$R;be<aFO$XA{S=3 z&u3&Zg=ucufmtj^DmPX|y^qan-=cMB3#z}PR}1$425-MRg!~06vH^fi9K|tgT&t4m zfo!P{Dy*~wE9{-g?)mqpM`q(|n`+$Q`Wvb`*I|Do^R>-$;WzF!-ZhNRX^P3*nlyB{ zhJ^~jKOmIr^~iU0@`|PoI&qDLfDQc|C?{=DzmQ)_jJ3h;51pKLij|#}#~vbiFbIjo z{2ab^u5H8`__wX-jfO~D?#h1xQYgdn=GH{nr~!HH=uiH0Mv}}pG59jVV)UVRSXGJi z_({6cstu+^!jw^N{hC#nxc$t#7Z}xVT878YjUN3=8_|HXzyWV_Rr=nhR;6el{yT)j=loLDcC{ok9p3W$5~){ zV5=zYAG}9!NwBM=o43r$LIv8TM?fokiETp1K;_w?rzRqDKdh8@uCLBaOG8s?E?%1_ zF^!;)=nUIO=Hv4Y(PwE_@)2Fb5#1^nC->S$^^`p%3cmQf3;lHGy<<7j4FVy1J02Hk z4#t2+J1QQHKKwBqKb2~i_&f|a<=DR7(;uyO!))A~=Wd3qOGA?CDQ~f}$-{vz4=4+3 zQjs>dkbiN7vha`c8&aj=?MiL49PNyZpt}U36k#hfGMz-AB)}#%uM5;WmjL~Vdj%4**DJBV;r&pt{x>!p}};q8z>p3wOObS8DQk(O*N{m?;>;- z_5|mMHgEdx((p-t7Xmj{Kv9?2Vm1v09Y;fKBE;k&A)os>_ab=fzVTrGc@I zVT7)wuyJal@R_#GqChS88_Sc5|Q=kG;n*;~mit zHyaumLH%Zhl5OMwGFRu_1&oFpk~lMFwa|73YHq#3q}4wTBU$K=a( zn&?P{#;{09#4P#Xq-1sm8j@o}xDrK%iQopnq4FkD3&KJ!H&ItrRDtc9IL^=`(KvIz zD}6QM;6(p&pb|VOW$(0gnTEOb&*>t5(<%VtIluo7K0dMc{VJPmxB)!2%37>2lhy_mEQLU>(3iqqi%o>3aB>CwD$7W z+#GNgzP+$=hrA2ocE7LhXNtE`xFeP5b!{1nQchals*lC^@fSG@gPSAeh{SBrx$Z4| z>XTJKbVvAQ|h{Xo9ZBKXN>Ptl<2#6B_=Uo0gxE{n*ZPS#ZX;4WTPDGm+7+ zZu|{eLp5z9y4sCa9zCpmYI{`{T6-6moVK)nrT^kW?78?_^m{&$m(~JfCUB2tQb@(M zdrp_p=z@nc=}OY&h~hZ|CziyWbDW4yY@}JasxUi(Zt7xG`RZ&hK}|C_MS9{C*64~!mLMp*;M9n39?1B|__N`F_RnvnY1I`2{anor*?OHiSTwK)D)-Ay`Mvh> zT|G-s@ZSz<@4C1Oe8L^{{@r;__PKX^o0$4wex-19+NxWKSGWN{zG#DiyB=SkID>RF zngVvEJj+;tBH9g|zr(y$zt(>3MyEkJ=D-Gui3Pr#1e7VnZU1wHA-4ejs3UstreXxB zDf9QL?8U`bZV#kW1>wyO1;x^aJpi#R;jWIyLoO z&;zTwhOY`1wT8E;0(s2N=K*%czW95Cw9hU2*)r+K;fh?Ou~7=UtfIEB8qwvqhG~}_ zShyslHboS_`0v>UMpvMXkd&B#JIv_4Q~I>0>7EKN?iD5MCsRr>dYw3}MIMgpR-_dD zR}%6)?xwgpJzWr9a?6a5m7r4BR!-I!mUqHN3YoE7Cf);8{c#okFyWz0q-a>58~i;Q zu-3D5CXA>?23AWOe57Ql6K5%+dxX90L@C-klKyVW@WW+s*@BMhM(c>sA7}Man{aYD zC|nt7SG$u|D|&Q!cB2oWEy(eGQdW%>$AyK^JyYf3^Y9tcYU}@U%yr}Vj@~I5#km;D$zDKLs8Ui%eb|T}7R_-P1(T#hza=U{6B{QeQYzk_x z4N`6u>fm4r7bQN);HcMe75*Y57>GCiuf-+T|5gdh#LD#FipwEgo_Nv@_~~a2*LK_( zS|x{ezQ0eraGboh<~%IdzX%b&zJn?u)ljP6D$h3z%jT$~N?ztAs>~1f+Cq3gJ}1sb z(tCZiJtBW`J09O2tT4b3j)rg#QVKUi67u>J_>d3;lx-1=`E>KL>yOfm}v&MTx9980}FpW_1xXvgixjESI5SW$McxOL5!C%X(>cU|A(XtSDd!>Sx zH10z;SWcJe@q9d(J!=)GvlSGfA;6VKzA03v)f7E&6Lcm1TAwY^030TyKv)8h;>1uQ zisk1ez4MNI7@`rUl?nF-cMZ-R5xjfM}aDh3b znm(+a&8pSC4mhqG?rXKfPr3LE&aJ8}lC)SgzqV6IC-cb3G|8CqijHGZ+C~fFG#}&2 zHcP}S$T*Q}af7Dh%2SKK=GTlhc7^s@)=D~W*l!`kS#>X79&!C7iGd<$7>dRXBor?( zr`^07A41`MWe{M@P%%Ukooq=WZSg(VT{OM~^yF>KwT`Mr$T2cjE#}`%Q&u@b{OPHF zoq=b9ji7GMJvbP*+2|Xvk{wIQW769%;^D4em6n49HPqL4GIta+jevsa_6&7HD z6>tS~9&7J=8l&G+dP=Dpqci!(ZBUH!m)tri6mYv^iemb)jRA z%wO9Y8Ce?P63vy?*`+5tWN zYpCkwQIntkVwy-0&bySC;3vyL9p-e`^whZG%|*Ut4xi^Ys_eu;cU?J!i0`4-+3eE^ z!qx1&bAhHb^~5+Y`WH5_nKTFfbzZ-KqG0m33iasPeYa;j7u`$*+MJe$(%(qIM~au<&37SFF02x%Oi6|Dk@Tp&~7|~Z?c*XcP4Kp z)>}A2jL)wX2Zr$u3{{I4;uP_$oZL>l*L7mkXkD!{!$m#$8fyNDbuDB+EH8t#at`k?icj@&$yDsvPnn++Z%9@D>dA27{Wt8Axk8wV(54au{NmdGNw zNLu4TexbfcxA(y^{t)onCdQ)(;<0(?i9Li9T948q3yWiQsqVFB_o)>pVRpPtoz(Nu z(=Z5ZQHT(Y`~2V8@Tv;Cs141swDKMA)D)QdV?0r=8c-rJ$HwNC79n(2B zQ$#$E^X^sTHMl|TR+m=wYMnTc`3kR;lAJV@#ZLYzo15u+&au96a09JbB?;_22dSGp zR!eIiaD-RVx5Y>2h+@`2>6yOFvYhWY3TVr_-P+i*G#C}M_T~PP1kVZK z<&&QaWHc`YWfQ9B{wL{lr0t>D40F|-rnGYH4WA6?^MY(cQW~-@-RB^EYMhLfHt}b#SA7aN#y$5&zOU) zO2m<-9E;`qm0hF*o>>VN(fvYL1ahU%y{a8W^M>YG9qM?^L-$*m#;{{+V-Qd(b5*Mz z`H&QPVFvqXU-|o6_c{v|z*`H3l>H;?^)OH z^!VColG)()x>9>r+XHha%V?j2W5433CRKuD3Jt-|H~~gfN0lMvgrC6R@3M#H&k2vy z+!>==wX}wwRMm1p`D0HI6D8&BSwA^oE;>%pv9jN<0JfRKIQQ4#oo0eq93O|IaIQ%^ zH6^~TK(FB?F!U}>J;D2nQ~iO|ul*H!KS9nRazzZUR`GMARTd~2M?~_cn@r6P%_h8V zR7*rrIQOCdkFj@(&aCOWhGW~d?Od^K+w52!+qP|V)Uj>b=-9UN<@x{9``|sQvB$1m zyK1d5s%mM@K0XF#A+PM6XZfu%Er2ajk?Xbh`*kuyw8P-vR!KXV4E73Y z2L+mEy?5G9&ZW?##7}8Z0@!9l@NDoP>{i%_?Rjt@8ECIto|3i)5~g z{_X&Vy4oMm0ksd@@Y&A`K)}bxmV#wHS2wtK^1x=&VFY4sH*nc-#64o8T(Ua{FdTp( zy?}aGb*$58P=n|lRDYIZpaolFaYr1gv|)xaoYy{1pT|+I^k4RWwXrH)A3_s$Q1byl zeH6VVA`hTRhjQ`(Wp8y^e(e7Jfb`P`>tv=mK43}KaRs1x_mj09UygW!5>1233z$;e z2mChqfYUQA(jjanz1jk-p9cPPMrTQTm@@EJl$Yk~D%gqj-{(m6EB`LyF1#A9p)Ntf z09A%-hAk!fY6oq;I-YSZSvLu;K0P5q(VTyZ|1Q%l!193J0Fde3V-{!@h-Ou~3lrYi zXHVx;4No#|X&r2`=cimKo2Vt|_T~@A$nU;jw4%7sKMqc;xj0l9z{Kh4YmOtDaRHkmt4g$J?AlQ;l;}Y8;-0yvHNtKx zpnOd!HujLEr;M(2v50I70@Gv2aL#V3j~qtHZfWvl{wQ;+l&&OPVZUU@p|66ZpoRA& zF22wg;L4$)hTzItDXFS+NEjM&AxlVy&HpL&^V%y`&CdQs6RvARdE4hJj>{%4-j z%#jVi`UCM3T!cG|<@?E$pqa{XAB?`lf<^z*-stX|V zPaxuO8a*z1u}WO3wv)QhA~bK>vQkGs*Q>I+9S}hHxEUzBUs1?o6ei@ohlu9({(Pql zFt`Z<00N#5`nV^u1-w63b{Qq6r!t(WZ)ftpo*v^`)w4>P`gP2cDWY~^8N82miI8Fh zqX(=5zI(Fui<4i1LqCq?8JE}nk$N-??lLFFLdv3PXCT8f%P2_(S6*zrrL!j%Ub;qS zy5!Suq%%9A+eU$g`1TRj<#<0|xoVjp2Rc*a-DrbNgja+9$HcvmC@@6M%bLv^p}-mh zixoCt@7~gLzmEvDP5duop}#*-G+Ats$#H3~yPv>kmGDaTKp{&2RA8ur62vWX)%}eU zWo|1%)Ur!7I3A?}DLJy&r<#=`g9>JaMmI|~W;~BUW`NwPiF^^Ah35AbesPT=s4z3M zV8yNl$Q(FE(Jam2l{_SJNzI3i-;pDZ5R0lgj8Z2b0s_!`o>@z^T z(h<>f_;_W6n0pH7BUYFCh!}p~G8j7_MwW}xT=ob!gSl2ri%^_9LnQ9Epk8pIY=H~~ zQi2V_Vsyyh;i%|zqpV^F551~w##5?rO3oU;JnJ0+*`%efNG4anpP;FN5iu+hq01{e zC^WSFQY$WdUMaMzeN)&$SkKTtUfFs<$;=JxLB<#b-)wz2TAE-?U|9!N;2z#-pxD@1 z7#L-d#i{8PCP0ri_cT;-mW`ImEa5)shg_v zoR_CFD&m#HSUJ4#R3q?5B&HtRdz^|P98U3ShSrcx|5M}Yf{kZ5Yl8bsdv{lNftA)VCkgu-SIhple1@9yd==Gi1;91mXJ$=Bf&=vZ*4>e zvMkPWfqbam0GhHF3F+OD6yLT%3SM7)_z`ie(&+69btK)Q9lVfsiPceRz7U(xp!aCd zfj%Gc{gLHvu6&d#QVDV{P;#WOpkK>7TyA#v<1Kh5Il@d>fU(5>0-k3c7L`CT1!6Z< zU26IxFjjWdQ9KW9Ohj{KInOU1d@9cn?rJJ#P+k#1%UrOXaHQ6OU=>tLS)lidsUZXv=Px0Id&H^r^?hxnZ>3BL_6nNz2U{;D@_m#T`tsS%R z`GQZYJQ3?gfyrDLff;DY4=))zRft5769P>@01v~~nCZ|ru0c0^v@m8ut)O{&d^333 zot){Jjt9SyEjIisHw)-@RRt~O$#EkG6!phgXN@vx(AW)CW@D5*+ocNhbR%rJ>QavN zViFVufA*_BRC6{94e1!%xM#{9e@eJ8W6*Y~Y2W1v}j_IaIF!#W-T^bo7b!{|B%p3Gj_VSyp^ITz705Zz!xu;8R`y0>2_`Hmp2olHX`r$Qb=o4h5*B|F zV+1}eQk0SWLDX1J*~Ambg`+_h<;0ER4jnC{`#HoNi@GP=m1lJ(hPO=t*~>@mXe7{S zdr}j*{aYu|M8mb-E&Qyu2fD2ZolSvfgL_>qV%BMq)I6{MgoW?QsF|aPL0!%j`q*Z~ zDN(P{2+N%;sf$~9ITROd+H`+wLenUm!hm-xRsxf=^(3UPjklpd zrIxx=iI#Rkm_t1?72*vTQaGJQpczEU^O7V_Xhrb`O0UVOk}8;nZKgNk^yw25_)0_|uC%8=f$FT?GBB=qZ;0@Fph%BRm-sAEKGl95z&Ad?O#RSX6&}P5hzNbGBIdy{!_AJ8n69AD9nSR!A`g8=?G_%oFlB6xaK35mPK&UYgPw#+lES zBwm}e9x@Q|vi+*R5$u}d>MmQ_%10Hqoujahf7}cMQc%CX=FG5|j}f)Yy-ammQNa|g z!8Ru8CbOs54X?!i$Cxg0j}*0f$eqF_4P$;V89}Fn>!g(rgRZGNQSd}>s#{SDzkMQA z$J*9s*O=88s;!H($kW1Pq&q8tPh_C0q015^ACNQU=tnbW#2c!T zM_s3ot?)Cz|0;!l$mq7&45-*P<9=MPZ74~$cm%-8UiDT~)Hds2(#F9(LYZ-KEPoc5 z+KhC@y0&=g^0>5k`p*@WCl{9O{+X*wCis#x7_goULI=i*3oYR2Dh(|mw01G#eOgyK zgY-hA5)L?AYFP^qS;?pVemzgQTHm7QiB^~#ThDSQgn+{0-})^!Y4^?IQfwg3=4HxS z-C4Af-eDW;X|N%caK{G1#Lc-(ik&gnNP$pd|9AJRK;dUQE_WpeKTU8PH$X1sBBBeU z`#EJbNYg+X(&j8fh3D4N>Wt{Q@XvQ`?1s;dep69|56=3MKG_{e4FWbJ`sxt05Y zvxNT9uSmHO)+-vfB=y@AUe(mcAqn5-=#WO3l&$J1O-ZgPO_wmMW;Uw%0@a*+DoT$- zATB=x3hEtC{BB2oMayL@$Ft;rE@&mG>w%|sUa=fGFt47jgox$Fh~?*f2ThMmz|)6h zwWo8xaiPoTy7|`5%cT{?HWCjtW~|i}e(^GeBvN*k@2w(*%pJ&v3AmP$G7~_%;3mhm zI$I(LU+UmbMOY|V^|!jCQ88z8Tl`Y!_$wLZGH!lf0pFS1ye`1<7naqbbzvS*JVZ^cWh!fT^?9g7j@fY!5ZRbz$`=36-yXKLvR zb!}36<6IiFFaNq9YBu3*;_WKhq@4FN@p`4rGT~Np#YM(fdt{Gkl1GHA_Vw+xvO#vz zUD^EYpsf*Ts1UBxVj8l}Xbvni+;*+I)d zx9yRH>xh#zj5jARZF<{#+v*H-xM2&hu`2`0hj&=yT>}?|O%yZM+>)4@@(MeN71^WK zWK9Tt|0!sor{VpZLU8%GaAdE-BsuT6WN9HuVt;U+$+)okAseNWi9GGg?R;@P@I9FK z$-9JE$lOhOCRh=#Ov5Rzq;*4u!t$(6-|E5&xAT?iQ;a$%?s|81@@$M-NwmzsDp_tz zx`~N)p&693y<=2*IOY;iZzM!a>XQFP{!gGMKh49*wabwLk5!reR$%5nnP3V%NBSLq zwu0PD@Y<5x7NZ(|)6g~G7mOZNJPz?#*?KO!@JQhSoc1h2HM$(F+-Pno-*Clpv9rI2 zrCP1j$wVJ6s%bCNO5tWWZUHQH)go(6OlmNT0bshx#2AY+a$Hy_CazNEv>6m8SREjgrv zm+6HR;@CHnc5oko|DYemZ7EM~8VyW9$@W0UoZq3Qo86Y*WlJfjeyzXM4Wh*xz9N98 zvnaTl6t50>#)e0|ot@>#MJz0*K>Ky5Ix4Uxj6rU4WRSO+e-U^{7hq%6QO#73R=a02 zmqdEn>Fa4I-zSn-gzMkzy^1x=8X2zIo#Yo+R#>0v=ODTLD5F=P;dUymIWXV*WI6wqSqJj^f7tI8x>z_Sr>_->db)WG!&e%x$!11}zh z(|4ygsYqHMsiLU}U5tsPwyD*g@Sv;u-i?7$5!j^XH zQ-`5X6a@)Q>O*mJuOh11X6tZ}t0o;7@O)TJR69ME;F3+=xr|M1a-ON8WG)9iPzI2% zyo@?hPWEKj`)b;IPPBFRy&>D*9CH>xyQb8ow8Z@ONK-KTGd;lAfg1h6%L^_I3}U>!ToXWlKk}?_TFRG7$|I0diC&d_jE%x;QL2O+Xbv}cYwbAGr79) zq&ucLg>%&6A?{NV?}&%r6$+s4M|jKQm`N;Qj&*QzJ*X7U^C_?U#+*HCzB@I$yYKUU zca8(LCs^AyIfoLy83P+}@n(Xig+;gDl)nn$S3%w%cemf?gCD^^ zo$3FwzFGdSDW@!K?EeYvcB!jlkK2Ll`&_#!KopAS`5X&s=yuyky8$@1>pr*`H5Q|k?wz0oo z+rybptTLFxx8&v4Gg2Og(WrQ$3(eoIkv<4n{5^r8jJk%-ZVY;512vffu`Pff^6-~( z=1=1Q(uerKWl0+tHrFgFM!*8%6kC$rfV(Mfb!GeQU~g+B?3i*EnU0qhjYVaiZuMw`9u1# ztt@*I&6HO6z-7v7u{UC>8-|ZJHoaX-zkrOo9FNdi4-*I7|5w>EdZtpg4qHo|PYNyI z4#>==;wYU-={{V1>+v!9EIBPyMV)sZ3SQc1;Xa<4gA_W~vkP2-mV$DG=GU=Pb4;>2cSe*5%Nnh)BCCeb4 zC<#m^AjMJ}eP21{tHf}^s8=~YYEx)d$&^Q4>9=APS9yu$k>rU1LM&^UNFcirEtq&~ zk9kb0r-V6Z#aOd7ESx3^Lc?h%S!aY?AJvcNzqpf~({AJ(K7SQXd1OdzDvp<7I`39- zgqwC0pLMZrsI4Bbp7tQ{lP7ziGW<%?sgx@zQj7>5z(I;j9qJhVUT~)JT!UJ+-hOcE zVP-V`q`&v@I5HqW*?xVWY!^EXOHlTM_^f&I!uU2rg}%p`53N)fhWNu0c-d0hLn{>b z$+Mkln&o@&Elkvi4+a12<2f5@tW4YwTXgG-^Rn@9W9#{%jOFD(QRr^p$O64beQYTXDnT2utgr0DO%i!Z&WZ#x8kMrzY9 zNdelXnD^s|)y?nFaaL5C2#1!@U}`FTMp?%?g?|DCOikJLO6l4N)ZDfP!KvtcW!@El zf)N~qp2&sw$fR$z>@SHZRERx_OPwec-5M=Ct!(Ycvsu0LKjQl^s6~KMCVDu5a;8_} zkY5SljF=Q;mI1@x!Tp1PI6B$oc_+UT9U9qH%mTBeL23g!*_{xQ96$6@gUZtHy#8Wl zg32Gf*@8L{H7w0EtRdvz)U<4W>Da*_)k@aRICbcmiMP@5ofEh%2Ay3xHH*mxP1f2& zEKMYK{#FmH53aB<*D>F!K4~&v*JUoWl4wo?uvEC@E9YfaSp1!~aYg7t(x{JnT#E+X zvR_kGAcj9eF3)M;Fj$Mu`9W;3Yt7Fd&B3EobK1;3ON6+L%ZU2-|K?Zl5z<)>=M=A` z;+S`1Y-%N)_s`DW)$z<$0pF+T&~E zm6h=)^w>%fxh&_mZme(}QbzI}=5u_Sp6hA>p+3eIKG9Pm8Bn(yXsIj>^@=ro(!c8? z==sni<7qN{5i2S)e8Wb{155tlEzV`gC@t_&SRG0iqTO}fV&@e{Y3QaTWmz8iu8FD@ zN-p8CVB#WHAZ8@-tI0PLP@>}wLfLTzPR}GZ%7%^$@Z~jNxdl-Wg*(g0v$?b6%n({w z4?Is|L{=lX@!uYY2RU`kyAQ3_geEiI zLiy4Xs4T4ncMHNa$P&CSq9~Y)Ki1t*cAv=L7aB@x6fVwvtO-BHQpt5H|Ndh~MVvK| zmg|4EJ>u-%fi?ZdDz#1Z(gD{A4p6f2YuCotNdzT{q;2z{&|diYmak}gDLQ#2JDTLl zzLq7D&%c>Xw%W8)?p*G4S*qu*KnF~XcSyhlD(rNBg}br zB}&(Uy6olGZm)=23tU<5ou?n5MU`j6l{OTg&bq1gkpzr&?=itjMZB(7&#Rfb$f})( zXylhZPaFr^^$*+K15C_p< zJe@Z6eE*G#L6~#SKK&tqqLL9zlA4=+3~Qube&GQT!+wmQ81J+OE$*{F3{lk1I*Hy! z)_tdiYTbJib4}azc4%ADvGg@b%jjcUQz@!+xGI8O=k;jo=CAz(XZ)V~QNX6hd4ltZ z7&Mbd8A9CtGa*lL>s{g;|Q z8j@MV9SpiY+z5yd)<}xK>aiAL_*&72%jn8}t>Hu&J6QZYoqN#p5OAmbhTjLEaHpt2 zublGFR&*l{wIZ(Km*+?8*m)z&$HHWEP}*2=A^6Mri(=V9XK5qwQ59TVIcJO%2Di5i zw!y77{gJ!~6x-GxIVWH#0u;u|C^%D9nc@qCp@}s&JeTj&m#JZnxGsqD6|3_<%`(I# z=M!+8i||QvMhR4!%bl{#j(QQ^CA`DpW4t2h;xA+kNp{z^J=Ox z%>hmMrttt1MP+)y{L!qyFG4=0lfKlDgvW=RCi_#h6&i_4k1~#3u;VSL*iJuR&}Gof zMYn;mc&uLHGX)M4)07o@zP;X#8<meA$OVByEVmyLDc?eLU{A2f|No3_Lu>xmuuieP1GGbPc3&Q($83!{?%r@o(p^ zpOl_ti*~z*9MgVNyd0sj>|VnVrMIW=HOqdS68a5O&QsH~zoV2<+GtfxmFZrh$l=9( zR0|j@?)d5I@oOR3Ml;>SwvsA>h$xzJ1_0gG?%TiTo=>3OnC2>R_qzE{>|)-enIuiV z4(Ys{*FImpHAjDrzhq5frJP}5U$Suz?9p^#b9;bf#XWXY~Oywr1}0!p~x#3)jg?UU@lv7*#fdX;GB;*pnxE$ zSkr@oNE_Wn>C3Ue`?)f2ghSTkvjRmKz)&@3WeYJ!-Sc>Q<4s^0-o@WK`)Fk0VaeB| zkcQlAelbKfzxkNKCah29k4+z^IPioMvf$0cL$uTKEkrnp{99({&|BAItHBPx*Ao~S zB}U2w*MOQ^Z^0Vw37w}ZoVi@ff+&E}^_a=0187>bp!h?Q$}KMcsyc6N4%|+wY}%QO zJS@+L*I8-$((6r}O59l+YF+r=IrBceo|;1UQ^1V>P$k{e>B?5%R123o!+h{`r2sOP z&gzT)ej8j!;lIU|wmeUS&1)TsLlS2@xh4J!4gJco>jF-pO9|x*O{C8ebVxU9rtzU{ zL^f7K0_!+h?SpW6-!zsir@yX>)M0latFfJw2a7b%lE-HWgA{1t;0^J9?l_p9rs>Ak zB3fXrAuLB4Q|U(b^tuLweA2@6mZeY^SG4}upXZfp}c;KE6rBc!ZSjbs4uDj(u!9gc9SK9zg9k`%f zoIk5Dn5fDB!FVLD4X?0erO?hqO?r{plObY>A z@5Xn18?%*il{93W8YMl&**Bp2U#>)3;AA)ms#705bhEF4e%Ocwoui{2qeXzxG7vAA zScN+(k$ZBEs=5?!EF3rR*lw=+U%>%I6BX*!SynXZ$t%jLqOn^6rN+AS6PquJ9q;fpR&aFfD`In|{BQ{g$x5anM9J)>2Q|e$_?wz)l-=nSBHh|6qVOb6Y9s_ zIu~2BhO!Scax=ebb!^1<_c_iIL+I5N8>!MzMANq3Wa_8z`Z9(Q+rByj+ChGyT&%Um zLOAkUuB*1#gy5a-?^QupQ9Br#%h@lP@9tXNQ6JR@pR5@BYROzHY%j@$<=fwkpX4OV z*|xjUPH)UzKMD*}ZA%s4Jo_G4c#@cyx|b-lNCQ%@?8V+9|CKL^_(b`{S;5MwT|Xs{ zgvv1Xr#aSQUUX$_P`lw!A}A!x=H`+Sv62U9e^ zvbg7E5mK)7c5*|G!lV`&vtd6bbXhT9uz9E1*{$T%1p07zLhg3dck{Johj?d*#dh1r zx1~$Nhqmzcn7>A$XD#~92%6YQ^z655?Qep-9ElkrhO&2%>%11_GTO^xAz?QO{t#6^ z+oc#4a1CW8mh!cIycJB)1bXo1-^EYpQ4&w9+gR%LYZpat0r({owmgm-`r*z-97RM* z4Mal6_!7zXI@tNeH?bSb_z@#&@O5`%L*B^81KD93O~M_p*iT{aA&ZrIJ!TN9CZBh2 zc?YJCv2t7a5wZbb3?A!b3#NIXJ`#ta!@V;+W2O zx_JG@hq%t?XwSy4f@TMG0u6!rRP4FPjZ$L&LRH(xqEHBt>oZEqwc~9Sjb(nDEC@^^ zbcA0%Cc;DJ`ObQLgA1X{#0srVXpNdDf06SZ?^-d5{`HfUpzTq&YTdBg@kcgYQ4Qkj zg)*FO?NVeBbFU$fENx?3ZDoT#uypmR*A$Xb%`p=tT(Bjw&WB(#1Adaj!{-;FPajJ9 zbNLB(d6)`}Slwxtbwa7Q0+|8{FhSxPH~vtH>3bgT(opqBqd;fr#hZ1c8~*FqmzW0( zl^)n3wC3%jDlr2i@^qIns zL@a@YQdN+f>>RK`w8@yT>6du1L0ERRa!*Oo?X^xLb)o0U?6Qr=m9dKc5*MMtHnK*# zOrEoG>Y&y|yQL+u;fP=ztV$y$SVbyCrHte~sPj7DJwfl#tq zd})~qM!Z_U-BRQMMx0@rs1Ml@oXPg+DgJ@bwY(qjka_FiuU|RWdG;8+nka;;hSINA zdyH)yf6ks1s9U>&R^By)S7i>vMru_o7%d)x7Cz^ma(!k#xXluI#~VK9ft=@K7B2s0 zO!dYR`o?_+7xB4It<7g!r~>L;g7DDsL(64oEjDz$*QOU*?!KHW-$*kryK#W6v~aDB z*li=xFblB~L!UG##-M|mc2HevVBcF zjDsp#fj?z`_P8<;h)`d1!SBtp2iu$8>5KAm4r!_TM@C-h76@KM)#snx&+#~=zp1gu zW^wx!LQI1{=IF0qbr+G1{g8!la3fXHw2iH>3qT-Md}f=5+ioGNz02nguo_&{+UO=O z{^KZ!{QGFf-~Ww&C{JUbJ-54d#6W=`J0z}BtMYNN^Da9>ZXMn~>38!69**f2bwm)86Vb>3MUS{uagkF65TPZ4lL`c5i$( zn9{=;`<$QE2lJL0qUo{M7f8jYL98t8iXQ zDpvatnqvr>-L@>v1ZyvWn&WFYm;_Oi{fL)}V(l}ep-bUr@6WA#nwew#!+>BkwVH~6 z`QY^|A|HXI02U(TNf^#lrSD{TrkdQk*c7YepUlP>V`asYA(L%G>vyxh{B%wx(U8u7 z1*#cbK#az1ZUnKk*Dcm5SI%AQBvQ&Ai-b?gh#4C1js6YBLUisTjJ;Goa_@Psnr?B6T&K7 zV)ne*D*Q_h+V-sV)AQqV+&5@19k0@V87r*+XUIDi=KlmiSkjY<+iXSeey*J*v_yCY zXM#CByJBJDRPe@~BzD*vGvW@X4Ey-(9Fap)Q=`WaE3?UOmqvR`y{7jrCd-uXQE+*C zarpSSS&%v%LoRDeT{x~qgp;3*kefz6Uo@=>xIVq#csPfYMvo(usqh}U9w=gln1&Ls z@GVUi=)(pj1RT{CWdA&Np){;|i-H`=bj~MJK*DhuPgfMo z>&7EsKODW{`V@|$V(*A_aSz?a<_%=MLyKmZQzLs|*a!GuE99T~-NK_-#yOZ4n4U#+PpcHU2B@;r!W2vR%I_EUSg$_z> zN)K+hC)DTuFi$jz!#}e6UMJwV6X-O3sGJ;`0usIbpgmXqeI^c|j}ZoUFw zk1KohM5dQG+p?uU>0sB3Z%e;KV{2R60Z^r%u6Ydmfb_a*<23BnB?U~mk{@Q7$WJzSLy0kXT zotc7bZ@`2jQ9trn%fJ?_#K3G&$8(~MrA;Z8*OtTu&}lE2hy~} zg;CEjaJi(XO34>jLD#QrFo&Z?;RFM^l-hv`1z?#diD6eWbri;ceMcYG!>?22cCn62 zKAMUaLp6=O&VGQowe#?0s3^k=TqVj5rUTV9SPW@kXM0+%zbl=bBuoaBM1Y?A5vs$7sQ@65&9i2UgJ{ z9)hWkeG7IjXItTK_|9j*^G`Y!7Cs_x*@AGU5JFdR#>t0K)mWTV`Id>Q!Ec~8_sLLm zmZr^SJ50O+Ycgf>HUE=MEPv!Zt)jbtMaoe(92fZy>a zDPD;7im%8+SFrjKyVC}@GBL6;8a6dz;m_X?8LC~$xRH# zb@<8*twBf|uG>OdOPD>X%RAt;8w-5;&uLGRJq5`3D-U5b*T)fzISSF@fWr6J=ea@m zM+|c7g}~}k6lYgR-X`)CKI;PE0_cIujZ(==i24O0{C74%w>)AVi3zN;r*8gVWu{Y1 zR4mh;-Dujq*~B`C_qG>IL6Zb}-|>G2+kqg+&(^Dd!mB}S=4{a{#_g1pkg#TZH_PFM zdzhZQ_q9xa_>Fp6G8@A#y;}R}AYJ~&TFWH!vcRAkVnGt57*P@5L327Ymnm28c1%{( zb<}5DmN|2jaY_gvY-6OWqVW_7Okg*i_1GpH>MGl`B{WQPHl+i7m92fm^?k*y0rPvL zy{3IG zLv7rx=6=|j34E=6ACG(zLk9fWa0NjH9EF9$Bp75(lOb;1HG)h!b{!qO1NbE_s%K!4 zPYq#}b88hW;P|L6?bSsXamq;~K9%*aQ&I}j2uVy1aa&9D-E){upYW#wV*lsN== zM7Gaoh{a>#`9~mvAF&x@+Y-m#2Sy(4o+4qh(N@6+8T3_)PVes*299_W)a+b4u(v16 z4I<9ZvX1QAj9dV_I#wU&yhnw*A!(~pz|xmEQ)J~wfI?@#LMYAbGUiZ(p5JN3)8WRs zzf+nA_AMx(2#fngSATSl(BKE5u53lH_A@|2Kt||U-+=~8+{{#I_{@I)UGg97HH8qtMK&cdr3 zP~-3*39&H}7eAORU?kZf-|`oc_6~hRU(`V{AOb%ah-)}#0t$Y(I%q&=H!QLR<)~uP z&Cfxc(Q!O-n2TH?n^Lz)ZTvy7a#wMa`Kt?Qs#DAQcM8OIyzPp6H8e33R`3XBHjvGLfU0 zkO-uy4OZA!Ct7TXAP*fUj9K{NmGCZAkHqe3{w#(4&-5Vt41?Pe&SSvCy8l|HHj+P6 zDfUJfg%l-=B52M|swcz2EF?tX{=D6-(3{7=1Cz8qz(UXk_jwyW5F0y)fjcIbp!>!@i^ZHuY%V6; zbR2F~S|WAJJOQrE9E*Ixs5K?UfZO@9NMRwL1-d{yBw6fAK0uR zP#3V1_?;xNeZ{K7I}ae48l{wiLGVdfWB4Tk0=Bn#^D|&Pg}LVCXj9O-%K?l`Ux9V> z&+MTg%_5Zde62==^YN`DYOw3-HHqs}ia6OH>E3YP{mzK|e;_ahIXKmQY9Fxgwp+5Z*{BWZ+zYw!i-Ry~5A zuu-sekd9x|Fvf~KXLaCA{?i@G_D6ikAh$0xkMS&tGRBv!oaO*Xo6XUo)IgDcmTPps zP!W(I#W&}0SwnvGk=UApyn<CYhx?nr4g&9?}7g_4_Y}OnTc(JC&sgi~T1HY5MQ7V^?BB zbtJWmV}8&BwR^T3YT+AW32;BTRUG0+_Blgr<4r0d@RUN3iXIyH zGE;R%0HUz5oC~E+s|x)uy9(E3s5`Q@g;-c<*K65KwP`e}DGC|Yo1Si{<6iuF5fWR5 zRP)DjGw20=j1SHEJU4`loP}p@a$m>e1m{w=M5gZ52wGdv09h0jf2CO`9q4PlhJTF7 zoy}c%(L&##-`P4E|7GB?{hukRSXlu7Rfs>8!xMMVitK;?iH^SwF4OQr!GvYlZn54A z4q;>O(7Q{raXg6og7Tldk9EzMs+W!|C(s5YcTG zbEXqnT(A4{3ETm)r*{bWi-K`k>*(Wf<9UKnAv=rqSUGg&zV@GQzjKoo4`!#C`03i% z9=L+{KAvK@IPvf<$IkQny#_ToL4nv;>v8S!`Yh3v2IFh?djqTlwni)>3cG@YXhcgZ zCjt116Wdjo_hxl-u+IE}{HPiz)fKi|;q@S*z<2r#6XyR4UKFN*Mu0AcJPk9?UB>hF zsCjYms%;6hboTj;qJ}d06rWojIBj(Dy0gyjH7;-%OM9LGB6m?v~f+)xIR=4 zl;=tQ2)!5GN9j$F4K9L$2O^nmlMc^*!IQAVQESdQQZ!bymLC4r*N0jL0K#sKMQOqU zSv+|PshBh{Xd%^;hJji~o7`fF^|ir40Xo6E*W?=si(C%cT zC_tTde9B^kr2!3@{2U}Ks;D~XLY29hp*O$jm9y5=lg5bIsqKnqXV_KRQOLa!a!KU& zjrQXH4FG=Qs`y(NQB8w&+ll&3(LF~sY$wv}T{+#0+WMvtMe+GO$>kdicT%#F z*;?%4UG-lNy(NHS24$nF)kHXi*`HN_RiGg%XZ=2l)A4AJ?W-T9Be*(FIny{XQA{-A zcAt+{(U}R*ay=EnW36~@@>6RWs#-`-SZNBd>Kt^bL|6>F{i*PedU7&Gl#=&W{_;@p zii$PEQj?M5f(>}(U3*gvR7@|O-`=am>2=4=HbSegj@c%!uJX$e-De7VGSb!c9Wf~D z`5-UOCzkHvS&s&XP*zvG)*{YTv1GT!LMNL*&{2D}XxH(YgL})vwe7Tx!$gVanq4bQ?#exXLDx^8IyA=eY!@l>mY>!g3ouZ@8o zwL--$%BHtpDQ@CIT3n0+-7p_!vfm(gDv^4s&m zgf-yRe>>`<0tiBGU~B0iis1NRpuv1)g6h7>;l(>RIAF#AkA{Kk{Y1V@sGxl!EHtV& z8nOo0YmCkAOmR!~28Udysh{psuW{DCYNdGi=FKO+dBLRRSR#NcycOt;_L2k+y}xh* z7w%(IgfHQpbrUpT49=v9btlGkPh@C_oE>+hg^bnYb!w^eiu{r)YY_^t|yC|2;oZcIBJzFHFfggt(m8b63eSVQxrf;$X`aH za5qQtSP1LsTU%$Lk!{IDG_1w;0V^%QH2RZEZF!+7m9oKlKx6DRh!bJ<-fIGwZ5e^X z%NoCU(BTPlV$Kt02DvWITgnmYd!=O6a%@m)LHCJbY4M1vY_b?~1sb4DpZ4dBFv{i8 z?+?*BFmLP+pGY6t8>+Xc*3s=Pno3OT={ww%pv@e5 z@-h4^5#cB~uWLy)CGZc~Hb9{Ry&~%ci8YdT#8LmlP3Rv9WZn^M8!>)~MAL#O8nUT} zLOtRm1r(xFIwLB*a15&0hnn*MSs3}ttbxN;4_N;gb(VBD zc=~`XA?7i&8Ia$9&yIQd4xXxM{I2UCC2=|(UDSzAL+ksFHSC%m(Z31>4mQjb#)hl5 z`<+r(Is?gcgm+)4{~WcNjJG0dWKAmvi6_63ac~2ihJjc)5t~!)6{3F9%7&Yw8rBsq3l2zKRns>e$af@FA#mjPD`(Tdw>)?H6xd!uQ7mf1m zdPE|v0}OOw#-KWS5;sxO zKDGYQ^uc(6-m@q?C@jP^(IV*`L?QLiM%e@^8-o+NbckRTUHGyaS zj}&V@R`D8(QpK&`;z4vel|S_jK{rb_2EdB(sKL0E>|^}$-#n3uDixeQ!9t>pf9yp6$bZ0x0%ORVaL7B~cscNAs^ zf+8S7u)QbYX(*quaI?>+W@1JRa55(4-T}?RuBiI{W0%A-4b%a~Pq0IFHm;g_EGeJx;OJNyZU&vSx}ppE&$$)#fd_0Xnwgsa5~6hP?il>tAY( zH5XBiO9YNfq%4>F#8tdPizK<+R9^W3^974+IlBxNr@m6k`qR+;BiIDFo}j5Zk}x}c zlq``4n>uQ5Z5S@ttQ`IUn@9(HGJ~UZ4U#Oc@tia@4tr6KTAo!rZIE>%eV8nh2b=oS zdEv4D|NjwwjhXa8sON-DMG(qO!WndKsOR|+;<)sub24l^lQPE6;kj}gw%Wp6@L6(s zjvUp->lxr#$=Z_FEnE>fm!lNwq=EfE#@;DNlwgS#9UFUQk8RtwZQHhO+qP}nwr$&< zx9|OV=i|hU^OM!lQ56+gU0sn`nYq>p1V^S;Mbn4_23;o4p^-&@lsz;9cf3?-5|9uFPHqEq8(9Hj%+(jPJ8hgkRF@S{$!Fx*&y+UB;LlRr)^Ue#0ydHDQIxPs`p47lVxU1k zej*po7XMSijpO#a-Ra}i_a}=<=fAmB%>T1X#mw?wU8-ws$waJH*#FD&>xC9^E1GOU z$;qjq{7zzO+X5esNDe-UObPz`4dCVUIKOziu7Ff-;bO8z1OS8w;j;}qf1@bc>FRoV z+PNw#;Tpp>-F%h9yF=f`$GO5TTBVp>54O{JI=ekZs+z~p2~>v!wmZOI{S8e^7iZF!6yrn2k*io`eVqD@bxfzW0>cztN_`VxMUUQl#EkE zFw=&90aMB@;3I%P=@DIK{U_|@G2*Lm#jFR6$}CK-I(dRSL7u-2G&U*5&N@NT!NYeU zX^<4mW~PrlJt#H&_MA9`1!{+uX2-wORDrENi4Of_Mam?e@`_=lixxtd%v3j?76$10 z9+W0rfsI=dq}zPBS40nHqK@XWs_=Qj4DoAo3%p2h}TuL+g>ye%EMR6KI+zMz2cm9$UAiw2F|n zs7TS*0|)c(i}44O*5LdTJ#H{H#X@3yi|ybnjgIGleBJZHG*0&xQ6!f~>Lm4@nMfHz z>(($h+^5U^asth~phOBA@yeL=xB}kOv0@RMM2`QJ29``uD?xD6d>M1cc{GZdsqSbs zn_Zj5FuAxVWlgG6FiumTRO~r*q_M`oHEgz+1kpgswNK0rn-xor;NiJMQ#a@GT|=|~ zgrHCyN>L{|#h-XT3*E&%D09TkRX&SW^}0o%pvp2Wd8Ws}RV_0L7rdr_Cx}HHvUeOz zPPSibZeS7X;PS(_AH3cV9T(aOxSHC!s)8c5`?I@kmpaLIwQ;;6*&zYHfneB^^W+?N z>UX7#$&Ux7!(Pr4l2{h&mR6oo{l4vxj=Js{D|~WYO;vwI$q{P;gl&hjoH59x?TN$P zH!%sSZFHg?qNZmmOm*5CWeXhYeQ(`dWZ8m%SM%P&wAqPil^a*iS*%BEajyqEY6x3C z0)a=h3)fe7@JcF&DXb+F3KJ3enW#5TPm7Or@96dpmkI$7%|QWZ+PATcs0T&rmud76 z&D%f`D&?Q!;-A{{B)V=n=a_-z404q~cBlrPlq^daPjK6-{dJ#BcxCNHDWg38smRxB zPX=F0_bMe9T*(NLI_8e>&#$81CuX z>YVXeqOvdv*ZP>*9!JHf0Y8S0Wutr*F^yxaKvH_8nnOVn3(vPO%t4hg{6f5 z`Q)8ZACL5yc~~B_Dlg+eO`Q2nQA}OYWtqThQ{CZmerZdG89G z)13C{wVyn*6=T6(=RqPhl7_u5uYEW^|9jSg^ zdwf)Cc45l?mxB4r7zh*UwVr#~k0x!Aq0@3}Bcx4ZCzJ;TX3O+rK>59D-b<9=b!Jb} z0AW1Rs|mZW@kVD~Ii}A-195lRtmP;ObIS-PPm~$GZ#6MHOLXU`N=_5o?9p+!EN_nU zBqVfBs#MugQ3`ycXBZ(45(QsNC+bEMUfOcmtsw4;xVcX0arb3^CqW=p`$!F`&DMj> zK;?}O3Amqr{vp3vC18gg)x3!lpyps%VuK9-$`@BDq;?d{Q< z8*ih3(MUAeY9y(Tp*VC$&kB`9%!t7vhUl;F_ab5>8JK*m%40vDI%b{Lo}=N(v*}GkgSk`rUkU9q1Il$_q0p* z)Jk`HcRXXix+gj1?cy_Q)JDST7SaupqgZe{3|#B8HR}nu&3rbID~aW&Xte9=UmL)^ zSUW3{ga!fg4q6WQ_ove$7wc{tGakI60m&LdcF{%P5s2OZADjK*jM)^@ubyMIq^3?Zlz zX6#rv^<}9)Jc%U?nI$(Ns6}__i|;Dg4Swt*k=M)sul9$OxfgTCm`U0fZy_HNkN`Dh za3&loDEJ8o6CQpa`6s4NG2uVspx{`JrnzGHC|hB@V3F=zhjiDc)2%k#fDph zl<3CBuMZq!`q8nz&HTP*k<@3%hKxS!14-QKDPOUi${R{BGQu^0n5x(KcE4S7bDWeEJLvEu*&Kv z?V&s&WazWVPVJ%e^=D5WMA(Fdzd`LIA|9jdBQi8S&=7NBoIC3yB0l`pgr(h4D&vyG zE_woycX2D;Y{z$qCveZVPu(nl$R znDA=UI}8kOQ~4<=Y-qz&l(OIjC@Cty^N^W`zs-aR5B1H2t)~s=|4jsFHtfFw^-qjM zm<_{5AIO+UnTc@n4|Y z+%+Y2I~Xt%vSbChQ&?xSCh6hm&>m%BFF})I;hFk}Kxtv=8*Xh~zyTIy7B6ThJOYJy z3xPL^zf4ij$aG$^SH=w!i~;b^)Kg<6jAuqoEFgi$0@7>PNfc4~q7f;f8`5u)#U4X> z!*VwPJEIMx-s{k;N_O`a)Ec2aTq-i;mEBLo+%tnoitI66VIyYjF>+XjSONzlaV9K0 zz(S&2q3OfAVmj1y{=BO44J8W5DEh10M;SGR_C$n&$?0-8#v3fde&UN_%qAHH&S#|7 zC0~vg@ihk^!Tq)#RWIVZrdp8Yqi*%MT@;f7yot^VAcP7PS_rj1xi#@X`I7>Q3=r8Q+)w=oXR03yvfX6CiB@C!mDo5`5zMIvMb~EvBe}-?JjtH@=dtb~;}MCRP5a|sh^#}96T?fGcxU2ueFUesk`t+l%%it|iMq5J;O zo>B?LI!uebH=_^n0LWx7#fx99@c_xwYp6b*48N8vsowIU`XsD}Iq8D=U-h8La7pAD87y>EXlUM!I@b z&$5!e<;12tFqtxVE49SDcIH81UT!0ljy+Xc+eadoccSJ7(Hz7%Z$WJ}GXyDb=oylT zBd4T=mCJoPN!y-TQUsGjRJwr-wOyu{71rM#CCewfL~X#eEdA4tUtJYj$sSgAEuXZz znFsIx&4pz7Uu&co*jQNqYgA6N(}t=YVft28$_%_<`~Xu8VouBzhRv={POs0-LNxR0 z7o3JCBK87Dob%|}885mclZz_HqfzwXAvdz?>v{9}dsEkDLZ=`ME~~xk_cL<<{Got` zf1lg?zCZF0?LWKs=RGp%hNAeLrZ{%?*W(v+ruoLICPIhJaNWo)Ug6Lv7*B;ztQJx;V71_Bii zug9#-J%Zf$^*(NmXBfcRZmL|2oZP6OA!vgO%!eel$a9+$&~yh|bDC(z zGWf(b*0*#fmD>6lEK3Jg(A&7v_72?1(Lr-OzgXzktC*|#~Ob27IL;8m-#p@uYZ8K?QDFh#+W;NRe#iwAXEGvmo zBY2#OV*u__&eO(7<9VwB%D>nVvu^?PQMMA}j)?X~nT4iqf)f>JF?3-MU+4>o1#k=l z0h>|yy7L_-7>h}+mWO(I7*IYe@tjS82yCHdw1l1YCEfErSXR>IACDPXuHa)19U-)SBC|240XYD9%|3fix_hwThmRK4xmJ``Dozg-Cew|ENg?B5#i zXZraNe9-a5D7kHyLo@*Z#vHS!?RiJrvjncwGcE4&-G&Sn)5g|Yf5ta~Y`3d5m~21= z75#Aj2Gt^TruVmN^DhmI+O_NlURa|vRp3`EYP}0G3a$jF#vE#{YC)OitZEiPfeUQ1 z+^;k;zqj@4-hJewK~X~5A^{hg<)(*V8Cc%f7m<xVbTox?{l?^~ zkvmxhxirZb-nStwPxGN2(?#HwWL#;>Mkm@vw}tB|Q`mxej$UC2 z?gfzkod_oZom<7n*oDlIfdUUHEJEBh28t?JvH}ym9bd%4>V~N*0a@)Y%G2~nx3Xjc z)D{%fEL(+9*xr&8F@8bxDCeJbE)S$LsRH#RR1vo*}Q1J_ZmG_my8G(#T9W$hRLFqPde_bhW&mC@u9sbPWrb zSg7YVx3$zGnVjKCxsB0u74+vu?sq>@0!Zbon9aZAUsC-oXs(^r$hP?wWUTFMLF-Jm zR;kgZR<3OfPBNIG*U6H0{XXjQnad`L9CKBqjgcYF#;?*@`S?5H{6^7Hd8UE-z4Tm> zd}?2~ILs2zoOFDH))S%FkqFemc52Rti5+JKr_l8AT;+qiNUO{*B8UoJ`-FNuz?8~X z`2a;Re4zh@)^K6a%%4{$>^ZZ_im{wwT5TCY?u)+K${0H{-Mm5#jx$+xKmmI$;o6zX zTCkU7iwcsK)2U}BzIh&9u!!u;n7f>2E|tsr#K^d?RF}}!9^&4~n<-#*-f(6U32AFs zC+*5p)jR5@4PD9^9mmXnwii~Y`m2vRB$C;|S|PUaP;v`Qz**AAX(B<{Et0pGE?0{^ z=f#lbX_os8#s}HX{)Da|>yx~zFyGWX{SH%dy+z!Ntbl{ttW7^E7}$dpDQqgfW#Dbt zl+o}OUcPQ%gKMtCuJ8O+adJ9OjXx;9Tf*Mh6?cZgv)Gm+FvQ&?+u5I}5Yp9Kn;;pO zZ$P{hTh2HSY5Ij)ZdjXoUYO&_bY7TVp=M@ynega(wKQhQEwj zg7m4?U;Q=5a^}N#{DDNc&=KabL_;;5ahwf(+|k1W&a%)cl_P`ck#&#jtY&@Ylt3(t zV)YNNto|Y#kHf@=el)^@^Y|2)vHBxVQB{mOc<1ht8d?`3<+$lnowac^V@2+DZ4ZH4 zteFKbinPT~lE(+HmkY2>H6%H55m8I}Ok~<9n-? z9+y>mTu7+^Js2s<@drw1y6thGtk)-~0s!kakP->K%ZZf+WXO(Mw(WOk2(}eyOm1EN zZhE0&dkUd1V`u)Xo2alE=%g6JlO2lW&mVjBKw)nzVd3PlQ2xpo=O}?^2t!+VU=d=N zmNgi;$q$1Qd%a-l4zS61_=*q0F!{GWKvoUZcucMrLJPunM!g2=Y!2p5nVYCC|1I=8 z@VLurzq&;S(>|xFI4aiosPqqe4yusgz&1*dKm-+>qi;YMPU@x|^BzV$7G0^3I4QMS zMy|qJJvWi9bf3Cf6)-pk%8<6K!RDBOCPuQm=P$CC?IT%kR3T_+fSkXuuJ+?QVN+6i-GEJFq4%$Dg80iAaQN^~+ z46lb&l_cqp!H=nBQpL?sax-E$tJ)sZ5Fxc~i~8ApU~Jvp&O6b%lb=Br;_0N0()VU&(5&vS@}l{wa1l4l=DR@w^}>bAHu2Uy0ag; zm983G?&3FxHk0O7U^?Sn%w@BFlrCZ(*~CNDff{CGNDq*h#ZhJg{kO@8MF{=D-Ux7hMkSPlcFcf)Y%J2#505OJ-JT+N|#icW`!0Guby**cTgeI4$A#sVR>s! z;E)0Tu2!2ipxYN)+|&H_&hw9OkMcj;1v`FpB%7uJBBexRh{*Q~|QmpOaN zEnGgJUz*TZstzA(-BzFxT)E@+JNJ~T7xS3q3d^q!P+xRxHQPy7_Z}3?_z~)+#u~k- z^E!iN&4LP*&OJ<nm4)#?NNSYa?TqngWeqG8oviU_W$@_f z=rUR=y+tP_w@*YV4KGtEaJqSR z<7%13ialKsWtkwuU9b3apBXj5pCj&mD-=fYMkSztUk{-k|N5suKB>sDDI)tRM#dfn z9?uOqJDHU~9P$Z@LcJbKU7hg6P-EO4l*s*wTeN?lbWQF%p^J{OB9AwN--1uYa% z!4D~+i%_in$ zfLws}i4WMYBF^Y;!D8F%+$&whVYs1e=m5DSIa2kFRxO1-4^a!ncydij(?d^F&^^=| z3M=9W&-i}WJ+EIh9;m1tyy15kI28#!UEqPwuNllR&!0*hJ}+deYgw?sfL36lI2k#4 zTLLYi&Fuo12vGB(4r|f^z=23cKvr%9Kp6^+aPt7L$|!-k&!sWGSTYAMJ}Pq9Wb}X$ zZ<gnl) z5H{9U%}v*GLrikV1&-`&Y2#sS;iAsFd+utX{+a3D(j%*l- z5swHp6fe~7QXo-2!ymtJ!*~>UqBDj`lq%>=W9WW9off^s!37MLF$@47eN4AeJ!o!s zH5Z^nyEI-btiJd4r>8dDI*9E{Qd#BKmS2`HwXD|N-WP`c*lsB=hNr}R0Wxd-cWGbx z?yT$=RL2a;Tb*aq!}<9qOsWYOKb7kODls;CC zxNh@J3TMqFet!;oD`is#jH1;F8KDh5oal=^MC-q-m7ImZXhrhd#+Cej)f+<_1a~jt zr%(gPZIoQ909A6Dft>+&P;#~VJwUF=ln{q}=B#$3ZE!bYngN_8|60(!Q=&wu@hz|$ z3GW$kG5#mmv(3C|$Qx!#&N@SjWs<2i)=d&R+L>_?YgztDlh%sOGC`Y{VfRvLvEHy1 zOnxuuPu2XuN2W&)tZnqm^(sT|VsAa}HaI(`vg#ut;JL+hs9Zh+$6E7f97C zG|d&CL^Y?Lr5hP!s`IM*3JhIcMcVB%M!kep4;)n~J-1+$SuF)~65iulkiZ)%&wl`Q z8hXQME}m+riMIp=Ql~yb#)B_xFjuf;NEQwLVN8MVPT%@GDAo8t`=<O2g_Jdd-8z`YhRGDLr~eHnRum~%+=dg(s4&IvP^XEN5P z=w?wuVxeR%_g`f++A9CcE}s6I&@A~Y;+sb0B&XQh5tLGS?@Ti*Y+r9-KuRfJh zAlOKz)E-VwL7g%?l%85cT%|vQU;-l&RY1y+${rzA7w)VHyx@*=x9(9LU>yoCCucWA|C`EdU%R(oR-W>*>5oqX~M}X!mkn2VM`Zwm5G7kR7)P zWI1fT->QPMar*I91S#)pxGiuffF;YTV}x}O4vdUdJGR{ZdHZ*lnnfhkB%=v;!gS`8%K5}x%Oy6+;dz`q3y}TUuE@&;m9g5MVMbX~vxI6Dp-uSm@BjH` zS?MOkHfZb+%%KWyRdH^oNt>&RvEs6#iLg;}^#eH7RsKis@;)MIq%E&|9H%)Gd6Bt{ zGv?3wkFM48nR+AwD`lBgM`hPd-TTm6WjAa2ArzdxE=IxoFs~m4L2dk1!K+ioG^P2A z9I9BW=Tqa4m`K5>NX*8i_X|K;Jhnm;% zHFxsI<6~=*!gqDx>Sg2fvuSm6=r3nsv-dp50BM2y&*wF~+I&zUa`!Zah-gZbDL}{4 z@d~_Uk`^Uw?#1ud>!VQ3*L&d(#+KhiKT)Ud7+S59L@5#ud_gZmb#gne)Ss1Yk1R*Ef$|x4gKlD=u0? zKyJpFFaogKkJGD1J1#xg-51{Zd-OftjU=%k`v@k2cJWsieJ(fS+c?E7Ia}%zhH!Kl z)j}l2hB)NEMz4$xJwnifA5@c!AoB^TsQ7%Q_#b={gddSvxs1F}ZB(7B$~v8TgkT|! z06~2M1Iq_ebfHYX0nY|`(wW2lUz{@~%y~pxAuUO+GFxlvN36^{5j*k$OnG7mTcIR8 zE`zdQ-Q)2K21|(7_57a4OA&SUNY$NVaTyuVi@rz_Z-&2OwF2R`P{eT}UIsb4;<0DR z{4?@`#=PngiF_K{WG96v2I8dWY7OOl;)tMzI|5Yedqu}oa9v_dDH0)PSyV*vXH;FH z^AkQoPbvOs{T%584h>*Py2Rk(==6ZGep?jn#gholGeaxn8RbHvbAljfb_jh8m>+h> zV^1R#g@=6k$n5v9ECiSpkaviCbq=&&m{E|H+vhvXsqeP zRMHa^YFu3GL)o<0$pp%`?tO%?U}VDZPN8=V2rKqc-M}4GBHx|6-XB#j6=lzi`!0h>Zy~y3WZi2lLcfEF+rB9JB zUkzEHjRBymXLa?lwal6riwbLn$>>6P5mC`bnjE5JG{m{ER2ej^5gFUFidp}_c9j{m z9$%=FJ#5BOI$5sB0Xgq=EH4oYE-?D7bjbyP*VVfE3*(dv1Ara^vQ0;_&>t^HS9Lw3AbOrW$|WY(hL zVnd&K-OvzfA|Yu)RTMeCU_|+7bUAF|X+;I|k5YLc6LpVCIy)xeTBuz5`zZG2keHfI z7KXh0bBW<3dmdQ&s<65HJr@Xn@*dsRT;aomI*b;20%vE%M4RU{H)GFCw@$Yb{ zdaZ;3M+57(W6y(*ZN{c@XoKEy!?+R7NMer+w!jYKk_Yr@C0RF&gu_>xwF@?t%|Hoy zEO@u-fQ@x6@1KK^dhQs(v5NjiOq2jOu`yN{^*bY=WJMdM6|qCrj5dA~BA5s=CbWV1 zG+8*G!<}r6Gzo+jpPhoP!DK>RG=ykFQjUPKcTB3Mn%&5t%|tBzla^aIuRAdvorSZP zSP?)<390IgZ&9I9-eMtRrz@5KJcsHa=^>}nuLa0Zd=T|AqWm77owENVR zE`5kauQk--$V99GrW5pdPu!d+I3?*_l~x5~4zGgKNg!)i=dv3LkGV=`Aa z!feVebw93~gsnaC30$ksDxTbyKx!#NoEr}_>o;!o_)FoluiMd*R?j0J|KWW!%m-0l zaS6qNKK$X=!ZmfNytT_T59s>9>CGo814A{q;l>`q8I&A!*d4kFSz0X78vG z;@DgAaSu!UAAA}EcOwuKF+##Ty+~FdXlFMY0ta+J zNoIA@OMek661xMaUKai}jd4M7`f*D80}4|zt?8oOV+75h6%1vsw~Hd_B0UqUElK>c zs-$Qq27;R9Y<*dA2nx%ahUWw&nR4*3_`EP3)EAuDB0!zkl?XosWitI{xH~=*xNN2b z#OFGetKx=;#V~R`u~ScgURSXIe&jt0bTn7?L9zORtiKu7Y zseYk|!c&Wp+K#oHImoD5cs`zV6_ZCuei+mjR75$<`$^IOHv3Tf=RZc}hv1>6gs-Y_ zZ!vfs9k{)D#SEFZ5FSgoJPa=Go*%e*c`Jnf)wud!1E-AijQ)yWmar3{=Tr5G zp1llLeG5=9%s3Wo48ISA2L!?a0xWGD|F04I(d{WEO?RCphGr3oo7=447Gma?8WoBq zVdwCj^Pj=d(8bF^SyS^6IxtBU_*z{YBAYONIGqA1*qP4x(EaDlyHip8D{+W#|Ju>s zt{)uh=xs~NK+I|uWkU}{f&6-qFnNIcH|qOuFD|lTxk0&~x5Iw+QS5^rp9$+3(b?uI z+Gq6nFeO3)p3%>} ziJs1?cZIE$w2Sl*Se{*DjimkyYc@>Fgxw!ZZC@r+$uLmBSb;{T&;B z6~>jX4fKT@`}=q;|L#>70jd>{;)_7W+9_&jtG<}N)5bIaG-4^YN#Oe|;|j-_vxVqxhQ&&u=cYwt&_lH}Ncg*Sfzy zd3Q(ddNpo7m|v%&FdC;uAlBONO1tJv zd$81{x9UfXfNEM(w3f3m+-4vHPcQP6za4^~tabIKQF$J^{m!)6Ey&;%I{x4t(ei+M z@7rH-`MFS4^BW^|f$!-T8Vt?0IT-05Uv~&U(YbNfr90Ejv(5Ty0aP-ShMVpwjjy*| zPu(@vzozK;(R`7w_|aVQ3C!cqJDqPHyv5E`JtyqB(R>2Zh6j5~xP!BGatQi7)m*A| zInTRGm<<$(G+X_B=OnRwA1hYMhB;ey4b#3zk#pp-J&3JHp)8B7K!I!!nj{gtMp&G% zc>jFXoBEG?v*GMJL;jt)@BwhF-%1OXkqtSq&||a-0gTu_~JUIeA__{S}G@VkEK9#)8YHPF>aGk zbo|2MWe2mzET6wvmcm+-yd|6$T~zst^ev|gYa|DE+L@nnHA}|SGq20!+)W7*r=x0i zq*BEVdvqMQD@IPuB_~NQ6Vm}10`BJG7j9zNv(s*o*@$NEGlMGOPis_gNe3)mU=B%P zvQ%sO5R($uOi)t^IcT>N?kiqe3OIx!{3b4yi%(56}ntALLUelT_&exf;n5Sp;l(?CQarGLWQcl7#!#OjZralw@D8qk2s7tbC z#)__Hx%mi|2?MI$-XL4v!v!vT?HM6&YmwbxSTnnRJBGCuwO$z|YJ#$V7HbpMjKuV! zI+n|KMYgsMX(4e5P(7BUNpdn|2qN?RNvo(`fVxeYmSD38oZiE@Dn&fLluJK23BGF|k z0(dlrD5t@p>e%-1l*+h=(hv~r$zySpS{qk^A`3^ZoHeu>W(~lD{ZerwFNNrlFnK?8 z^IZ}Q0v!IG1gH}F=34)2YxvMxFM4!j~H}a2m z*+d?m(H9N;g)tqPbO%P0AO~xE|FH2*idQv2Wg@lh1O(02TXxhQl9=Ge7XAaJ*G0hc#=op$m#vaaLPQ!k3x*i@!1jB zma`r6$*0XGvlHI379xqIGxy1&gDTGwNMXY<%SF)E%iO8&VMNGn(r$s#v9~bEt2G<~v^7HDJh7!8cUam;!+%D?h6S9Ds&a)vM2kSqS!1&6JnwBmO zxYw>`oj_(NRdr6_5eUKAFb1&7K$!z?Td*9$yZ=g<*xGbP`^4h}?Q2-M*WF==Rd$7{ zUL6}PC(LwP3?8^oWANlS%%5-j4?l0*L~0Xj4ZAXr!!mrLE6@fLaGGYAj84{Qr-@hP zsRm^NbrkGIq%wRmrZYTzUczmJlWP{%=Vv(e1uq*4c=?suh&MXQx2QC$Ni7USNo#iW zQ$=C7s&x=b_S6+ZO{0%ywub1M{8B@aVD9Cmjyy6s7T&e!k#N1Y$@#{MX-EZ5DBeVJ zO~Yvscx|Z24ysA*3!Jblp0Wk9Um|3%9+IlcYc0>MTgRGc8uOP{b7%w!{{k2DM4$aP zcZ8kof4u8uV*d|5BRnWaCkJDFYbdvkWTp0)O+J|GZ{$bdN;@`IJ%~C2NM1j2F!+5V)hBjI7n^o&|Ti%u=?M#gktnDBBM9Fr4evJXecNLo$7Aeey(wv8&F%oOqa)7yiBc1iSa+9G2q$p*IZ zT`6dPHi0w#Hm?iEHN!SVSPizzF%=1)5%BofV?mdR>B;?W6dva^;U5YT_}c~i=f znLga%&pWUnqzuF6%!llDqBmKf4;NTJOK^n+FP$V|(?Uo;J{l_K{aID$VwvFy$%TUn z)r;8|HE%;RHn!gC6QLrP8(poYQbaXj6e){Cos8OJ8o6#n($;ktu^vEtu-FVk1k{$5 z7@CJCmO>ZSCpTt&h$`iWpBq#!HBWtbT-2dxNp*U6ed%I|36T_y`F`N>1M)GPJ1*02 z3=zMhVAdbr2r+kjfK36-D^imZh`;#HpB)*C>9J6~-!U0Jw`_d@hZgWT{>$cJr~A+J zga2osfbKt_NB?8zpKk4aATVwDXH?@Yrr06i{Mt^$?3ED+H!O200PoMFr6k+`DtS zu?+~kAW!pOm*;v^7{5b-8Q^6`a`(I?> zYdNq>-}MDghW@`0G~p{*9vCR(ctJM?K;Q9fG$1eu=-tS4s!o=3x^|q1>Nt#|58-3v zCDEZ;R4fzoZ?#*W&dOvd8e=X{226@{DpePm0i|C73g@NIJJi8cJ{`2tq|Ie;!jq#boHiVv6#WzqNIQ1?65J1{%0QOhv zF=qDT@7lo)p@;=v=*ucNESw#|z z$GU9@sZBl5(J@^J&Cn$$!VA!pLRrR5zWX%DfB(@YG4=Zd@5!^U9w*Y8cY(RxqY#P5 zHZB%U5@_o9tHw|&>6BkMUsjMYaXXC9p#R~HtaF|mt)?W?rf`x|SL*01Q2&_a z>@rFJHF_o%1Y*I+2`(5-oLg2&@0MF?TwG6i2Qf}RHD%Auhz`~M8#as?2F>TOYOTi( zP8LkV&b}KT?H3G&=ez?LJygnsF3v-TNM=7O_7EO_SK%rG#4IBML>wO97Zd;VZb8K5 z%Yx{G;oRCm`*;o9wfaOToUzq78eWFRwDV~sR8amBa1?`~srxqMSou_BBv zU>Fr|lUKRQ&z7eDf&u8w|5z0nPa*s&XW@1naVus`KZQoSo^-}grBr3IC}(z(7R5VR zO73Ub#l9yyBnitE@|czQ`xgCJh<2|yf(Z335i<>y{xazPzIB|QdTLuWrTTZ$0NC5b z6ol3JW!mH-`7%0dM4t+Pkbrg4XJksPQ*ccz;B|WEDT{doTe~q8UYWf-oYg z^1wn(tC*>Ju{_E2ocznqN9{Y&0Y5i_qXbu2?-MP1=m>%x#yFFG^X1l-pk1iG!`OIR z8yTAjTBI+Mrlw~N*e^ne+zxEM*I|$7UqOL9guk^g>A-HZt);AEtR7Vj?3w>c!sQJG z0p`^rv;Klwl*wy$fE6`7_{qQFMWw^2OCtSrOw{iU_}E9+CMo2XGOV z7_cHZ8qEQQ&md%liIQ4kM}nLNdAJQu^GR)RzT-ay>1jB$_~&HmsT#M;?wLvpJ68OE zjGa?^C``1ZW81cE+s=+{+qP}nwrwXnwr$(V>~l94-!pTry8pqdT3z+F%1Y?T%>|6G zN_1(fLOnCcJTli$`zVzATzTjelzCl&X@IkwOy4})OxHVz<;QlvXDaNg?V5&10f&wK zL}FQ7L?{W>fL)_UX_HjE`3gal4yv7jOi=Z4p_{&m7NL1+);Q)@BEjwpN=!1{6NeJ1 z|G8SFN^wkc#BG;L-LMM`6zLU5mkeR#mFML->BRj+ALUoRhKs-V5Be4Y3GeIiEOSPe z(Of9lvu}slGS-1lVNLQ(B;InCB3tsrcS0|D!UdP))rX7%aG7sVY8)l=Y`^lGtWG2eqG9m{#n86-4M#Dx<`;@Y*y{+jLhKx@Xek8THKGZ4apvW<9I+-6xDGyg5 zCBFxFsnE4uAf>-U#SHlyU3zIEKggo;0yo1pyWcKQT;f-2>$-Udi}YU~UH6god-{IM z8Uue7H=wE(Ia@Jzo*)&@h<;1Qcb?8?+Q{D<>(v|1~O+CMV)o!Eh@fS#4pGWX6XePX*x+A)W^fli)u1N704jaM1F zD}dhhr7Li}6-9m+^L`arunz1wK6fN2O{aDvdkBdEIHqiJTVMpYF0(fIePxpngHoJs zxK>h554xpCxE#-0k~}NS2ICvZVe{wtcg^W7$(^~@)MxeSc)4j?f%u+=^(ua) zoPn%$af(d2^McZ#Jk&7u?{GiXtbYaz#Z9uDje@~ZP8|b+{?&3-!6zdwyP{FIY(1Rq zcc_sB?tsAr^8(vzvC`x770XWLgbq%>BD{_ge()^+faa zB6KMrb51tl{G@%Ui#_6O_{d`haHIcx!4^pA1&XE8Ku~YGPU8Lf9^+APD%B-c^X#d$ zCEsN*B!21f__-h|%4y`D7T*m90a!koLv?;&8CGdAdXN0U?FrC#(W%&-#Er9QZ{B?H zI7wT|cr*z}CM_3&BYM8J(;l@Wn*#NNYJxyXly}jFJTCQ!^Ve5GD+yHo0K;is1 zL3FsJBLTb+O?GaZ_1-Ty;UA8Q_2r!o8C(~G1Ml4zXK;SH1`If4oy4y2JRyTGWtd=M zUR$%a<(UT9+^*0i+@2Sg7MW%efTY+U&?gW}1PgyYRVD)DkUrd|fG) z?mZ^FNKWlw0zj@a_Ve`87Ii84_G{lCeqdA%BxZ3(2yz!;T!`&&!&mjXv?|Sn z^LV8V0xjMGeTp{aiR7Wy(E=M1fO0l-0jX}tIr%6;0DcM zq|F{UNdhM7JR2^z*C^?mJfVt2oXsa{LnnryrDkpJlgtLJw)BrR@CChQw@reJ;mmtd`He&qOt&CpF*v900!^>X0SBvIiq4>vs8n zKq!)4BmPU&vatLwMJ+Sqe~a24P3}1AF4&vdx-}-j`c9;0Fc{$6?L&YHdGuo0%CBEG zB2g)v=__|T+xWrD=V%dyrLnfF&Ay$hO+7#BKHskw=lhz>OoEU$z2C3>4d~C4ok*+M zFD<(Dl5KHh?C+M{mvn6Wio!BiLT&eQ0>8(z-Wn?B7ge4CwGzqk(DbECYU zzi%__xky{PK9J+*O8gP*N3VD_g~x3_{JygZc;eP>aaD&1kdo3{x8b*WKL!g zS`=+Rc%0Lze!^vlG!8x4!sDf;2zUyu=S~?`-1I`=t0a_b#QZVa9Zh3jZwrFyLV3W> zv9E5LAg#UTdqI$SJ`P9%>j9RcTq291Fpz1n$|A+~fX~SQx4!)N3NeXAImr=71U!T$ z39J)A2w`?fVpmF|MY#}(jV4d=JSK8a-_4-&I-TK2BFn8~IKcp%C-VIDiU zPfR7>ZoMvf-?Gwvw%lc20~N*6kS%QS${I?uHi*TpKa{m!#J=Nb{P#R z%mIDy=Ze}DS@sH@81P)cUb-$_jddojUy1SPCjM#JJ*9q@>%h44Rk7o-)x4UInJkH< zXZiCah{>=8bs-dOuT}0R_ZXJ%D0^18oW}$RP6Px3dO+GKc1W??u!u;Lisbs?8!`um zeVD`@9>~hXGCJ-6=cH2hF>-+lV+7mQvwtC<`AE!8xx&6)^k~GYNs^Tqz>|-Rx2O>5 z7;1CN?YG7bRyH{Dp=Ava13Rd7G?iQ!RH5=}OobP0;gL!>S zpGPJLn~NbL)@V7>n+&FPyf%wu|0DbEh?9ft<#peK{PNw{RsB}y;P#}4BHSUyP3;L7 z=lqi<@6GRBg!e9pKeytFBD*$(82?MB3vD*7d4ib`)V!0q=kqs&I?Xx1jGvBkAkDZ0i=-Mc=vtv^s$dyEHz_ba{g+va7 zu5OQ*A|e`Pc9z%=%5Se7_f?W62OE4xRB`fF*|z_e7_5j4-X{&G5J_Vya6d(q;VIe% zgi=r?Qot;?`6e%%Y{lFVqb#I0O#~aGe9-SG=`IIwEa8izh5<8H=&%U8YFO$1e(YAc z$6QgjDHVOXH@Q z!Jy}wW^*=!#NGD&1AR}fNEv-0mH!;mQ)ewsp0sseMNa?UqdRq>7-EkNGpJ~NK z!?smCfTpGL0jsRunn1eNTLY&BQf$ZEck7G&B)a6G6t)0Td*H_!#+Vw9toqv1rJQ-d zeefyWR<9?R99_=-k9Pn@Hs4ms$Us))C6S8p3Emn(5P_|fK0CQc^K^%j$<4{grg)5$ zPxn5@Ehw)hkd&<=%`gc^vk?ZPuU&EBeRqsb^QJTEiy~cgh&Ps&(*2Dn82}qC*+CRl zbS=*6v52auL`MN~3P1i3EW0nCe4Nl;GwhY|plL^R-lzJ6`p5Rxd>dWp+kd!}d zNF{*ID~Vu2hv&fvY}hALJWF_as<1`n-j^Y|%o1Bc;a7NKJU_^(S0EGC=Q*G$UoS?+ z8YCE+DaK?4dTYZv5n!7s+%wMEP~lZnew%!+yXTVj(4D>_y42A8qQ8WF^6FG)y)?^w z@Tql$;(a#+Bu^6)eI{Hjz>KHn9S3bMq1XbmQF6CEt|B} zI>>OOWC+FSc=1BWLS~e~^JQ=-iFoRMGP7wAgQrSGs22^Zmdj8dZ(@v_Be`4bHpwa~ zeZlb>EGwzNd1#VYIl-#8H4)Sy3!!Tg>FqImF6?RZH1b{5JC_X7O{wi{KTde8Whvt)QANC}kd!aXS1x%K#JhYQDLnH$ zVcFED$1#rIr~5>VdU1>%Ew=fQb3vjIOFAQEYZWH_{OJFD_SY36=RQ+`O;CYB{!tr= zt-Jion7);LOceFY2gaG?Wb60Xf5s>FP7Ele*pg3E(so%W3xEu$nyPzd-b_Z~H#eWB z1GmuFyRsNET4WW!2hE5FfC42>9;_6JP*^#4)c?pfs-E}Rbm^RRI2TGb=hUM6dT+b= zs>E4fY3HLiWfQmFYFn}TS=)BoR%@G)kChRAIl-(B^@8Efy@alL8# z6tUJ)3B~jBiUQ=s&)vLcB3oH!rKfD=3Ga4&;U`-}{dxHYknO;R_x6j! zIinGmaumAv2>qs3b_8CLXznciS zDdr|_{+)fcgc(?fX!Z&*ZSfTFDRo?WgZXbjo%3y9lQ{!9#SrKHOBhawCe6fMWnYbI z*aI$SD7%93CwmC$Ya3AFoSq7wp$1V6^0LPwo>|N+e%)@|W?2qNmLC(T^)m0~VReu| z@P^?Gmv6yyIll>PqP8EwQ;A?-j?&3 zas?}YH@M&sHa~UERB3e{)~d|CLc7=ZNf#k4xuewiSSmpT-rLoU&Ugh;9lvy)h~qN`EMvCL3w8J=b#VLYhJLTSr4r+FMsk zL(eipLw|I~JLP3TXx(&oGyce)SaW01mt|d3bI->eWJ!oLJ-$z@M@rT?mNmQ`3cT%| zEJwCWv~qlU$z)q{Fxcp{kQUGB1^>-;i?~k*en@athcqkX8`vb5l>JrpU{gU>>=H3` zaovV$rTxLZN=tWa51I0Otr)q3IWF#Tg(}kP_w#X&Z;_;#@n1%U?SBm!Wn*Xi&+e%f zw;fH-^gknG{|*{}x?KW@2F7D$=f6}2-OE<-@Vgn#9#PbB_2E;65_NwSi6W|SB&^tK z_v_na=l9$4^Yh#$K4}-F(Kvg5{o3c-@e<_YWH)7ak+>s8d;R|M$#3`Dt#R4YGJoGR zw>zPU&A0hzP@}cU-27^1CH?XCyZdYYrNecA@59O&W)ZlBF>Lon&|t!O%n6-_Wu({X z+~UKh(I}GF$Wq$i(`StVMVyv>Pxv=m;OA?(d~mF*?oL$8-WGa#YRqeVUktgV^{f4% z3D)j$???dZwzq<$Iqug|d4x&D+OU&b9)P&}PNcwttk3t&k=S#O6bVMRKgbl(6XCPr z0A_}?;L~VpA3L5-Q+Z3ypdr1)T>;}kM*_LL>?M~9+rLg6Y|oORBsoLL)0<@M5j|C^ zeF(WkM{?n6u^Tzz393k8Oh%OZ={`3yizO|xFJa#FGeQ4&A^}8T(b?ep`_QKW(b%z> z=?x$*ao=wLqEBIS9GLY~VOG)L@ulU}o45_A~;BTgp^w#;R_+s&S?^wh4T20A$Q-X~?k8M|-(ZM{H!J>MZm?@Pa$=)?V2o{VrY~B8<}<_A1B= zoS14gs9c-8&0p&AV7g9JXr? zZ*YSV4USuV+YCK{SvWED(olNAD2c=jm;F~c1v*-aHS+_cQeqoOaPq~5PO z%z2dd01U}rqgp3(jE~DZj1VXxhP@8gTCufsYEa5wYepl#e6N+9C~n3s&m_?5 zRP%|kImO>&^|g0mWSNG_Uy-0D8Evgg=96dte7$cew`%v>fV#$=mEyq&Y}|mQdC&uc zlQbuC5kQ?qQy4gB7>JgEV+Es44nk>R#3V8V6Rze8;~INqs^;^(( za{NaTz%)p8G;E?XVqH#GA?#yZw+0XZK~4|FY(MfYjg zDMo=Z9`$*flM{M}wY`TEI^#OVHEX~R0xB$A-1DHWXPPX9W%hna4|+y@&CaZ`#vNY) zc9+`AWRxgC0$>z^Opy8EYP<>xG=hmKn~7Pj912UjD1dD;So1W5_x>S<;@$b^_)+I+ zEl_L9Q%E)|eZgK^dJ8M;g(T>$ukYuW2`VHM;G1a{QabG03r(_BIZpn1RwBVZktBwO z^U}G>2nG)qwNsx#TiRHe;N1Q-G$(J(PM-K7UVw+VxayfL@m#ZC3flU_=Tdm03DAxM zTf^|5+cFzZwH2R0u6;fODbdVIu|vc%%W`f1V?3-R;*2h70@;+#_<0VYq`&aAVKVPN zeo8S6Z@VX8Bo>wid2zl+d;=*Y{j8CXl}Q?7D^~*+8rb`Yv?}vBhz(MQ*iS+*`GP}T zYn-IR&WvkaRCToyw0qIuEeQ)GM%xBRQaqEtKj3;qHe6%08Ak;qQXteg+R_t$pPP0( z;+~zOp?Seci)Cou5nFJZFa=M8(GwDICCB46Ie*kF%!xFVMbz%BaCP_mE`rPA83fqF zO&O1%s{{%;Y*t<-uVQ{zM6-Cm=ejaQfw^&UV4H$bg+NTW(O0F6YvgnMAjIqt#w-?T z8U$AegPLLNEx8#4>~+)^>yqm|)m=10EJbt!8HI7?frHEZOgpA>KdZ0t6g89GiTL4S zeO#L;%8KfedY08>nI6i>qR3{U1pTz>sXuXqnhW56mUvG~nz8H%0T7Fdr9}|sIPO2>2}(eL6aU_E*QAS8WJj3a$tCR-1D>cQqwVSrP<<%rol7Ba zxa>vaArw`=51%6&z(3&L21zDCZW^DK&=oB}R#eXc##bCm0bd#d7&19u6%E@(1(Nec zXqA08H2N$BRJB-rgCd#!m}${CQk;OTmKpRI@S0m0GBUgD&gXp~G)VV?B&%p~rEtMw z&KaWYWCJBMYe{e|K}#wJ?Fm+~c>1>2;ePindH8qE1Ji_eHdW=Em(iJz@|M+$rNT8! z_-dL7Z|+Q3Z21W;CqvZj!Q%j#kXkHMCg1NVO&4| zN<5>~p0adpkV6GZV&L|2Pk()WRw2xEi;#}H{?r3q{4F4w6n+(T?Xho8G?EYJ+yaF~ z-asj+nJl?_3c1Lsk&+A6A6TGX`#BqA_4I~?G!$HtcSU!hJ(^_%6a9dOR3JhqMSYew zaF_$He=)3PhbExPSJXpI|10dcZQ$NmQJXzZ|OGg~5t=0k~6qB0GUGij@0JhQfOk35HxC;_j34W!{IFG z!!I0LFUq18e?8Sc-?j$IE`U7CzN?5S{jdm1f@^%0n$RSi7ii88D4>RYqEqAS(tYWK z&2{~0B&hjul|1DR?I$zRkzs_cPGzviA}aG#B>kzoj7#CVXkG%wXqrc;a&JT296lI) zCQqfGkPMN&;=3HiMGKl#tfFg7Rw*F}mq9u?w9RH2)qyVQBP>AK#Z)$?4 z340mAUSWYUEjP4m{Lhn?XEcXG;R)NWojTtI5A z%$yLmc17%9yqEEIqC$;B$8=ar_*JNQ$cl8?t%*jk;ad#|p2G4T(suc~(%w}z&;)lI zHL8sQs&~~RA(;N~X~XjuFH4^JwD_S9J5L)_eo@R2d2V#2l)5oRk&SX`C^By1ARmh_ zEVD2^)SnW%3#ph|yqHBUy%K^RVCM87Q*rb-sSA zh60_}Ch)pqx5@W|$zQtDZq^K}a zmApjDAmxxSAJolgiND0=G2_no!MErv1C!8y9!A85ixcr#i1LT=M|CFom&4~+zCQ|= zKvjD~>hHjnuE|*oN+QtA5bGGzXGb`?t{5=XMD>RnSe#?x$moECKc;i2+&uNk&vhqF zQ#(b)+IQ0EMN5i~mZeahswqgW?A{T$G-rUE~B|(`w53LKk-X7FB;Yb}4D79~W$mxDQc!mHsqyErdY(m(_c5Qv z_z8m=KX_Wb9(mQ}hy@2d63P99M~OH4)&_^(N}F`x8G{S2*)Q>kCJ+fXoL-P;mBZ`|T{|lwT_?0XhPna>@(h zjCa|~$y`;tP#GnclHPU;lx>R4B&-9J4*Lpq%}ee-;*Sz1O7 zHFHixCKVueuf@7MV#eh%f6rK7SF0`r%3Qjb1zIa|=)I*~udL>djGyTcCysOM^HD|+ zZn)MKPa2LT&^zX`6uq8Yx+$4DVKw>q`C9i2AFxjj^M9no6$@cy}RpY5XISjM*{Se6rY{B?v^I!@J z2epMklLIiwJZAQ42)e5P&Zs{}d&|Zh)Lsd~1^Ef;a!`X9R6d&d13|{b(Joui1EXl? z@kZISJ=Mw&@p**|JE^+Og(k@P0g`M`SuLhHxQh&8Cp*=W@h>IEAeee@(FB9Unj`HC zSsj%CjL4)JvzUGw4`=lVa$5-ewyy*9FSS zo4~QO@f;J>c&2D02Q6UWG!bIG^)-=ZG*(9P+4b$`8tp5ZWsr2SRq;|ilip#ILfROO zV61{)6OI#5`9_ImA@lCcYk>8j&P*B`0_W+sgZ`k51(^g zFnBOzfHd62r{-((ktotKS*9JjObO}WP75tqU=qBu?Sxg-7Opo*bTTSUHX)K;OHb<03 zFayztgIH;d^p<9VeBEP$>2^B zxsVU}j=c!bS?us)ncg0ohN;X}+FC)zk;GuMR1_)m zA8&$0ta*lb+?zzqeYW^*#nkX_>@6W)y_wYQeGg{a5S_k<#`DisEeK8ipKIaYZ-d>Z z8io*pr2)rzXuJ!5H7XPeZ}4u4r{j8X2ub7E5C4%Um2O{xSXaOI{wb_m9jH45`;k%T zJ;kD+MCnyt`8=T^TTVV}FN{iEUpIoK%NJq4YyVaJS*_NCYLiPepRO~tY{S)yDz$4% zkNFs_(vhioUvv4g>84|FiKW2R-n8K5gzWu24nqsv;d&IeijmN|q}~@7xx_`U1x+%y z&*5GD*$`gyVaXZpoGk1`2d6@|?{4JPlUbdtgVb7;&!~~c@SbR-=x@^=wFjkj>JEqI z0tFAz@}a1tUY=j0&Nq#6v#Fcr>z%v$6Nzt~o$vN7|>#(P63s&6e+y1;C zySyXYE&Y5GZrB<2mnCV7r_%IcI>s%QPyN-dK|VRlwwqdgii(>ne%i1;7yNWu_&5A? zjsIl)E)QSZt4jBXnlE`T)N4db*43r@Bc(K*gxmQBHt9HB;B>kcPJ0wm@W9$CbgR7e zcVdc2o|fcC!7{+%_@$+PgK-5IhEy%~sESm1@`h-Gq9uBXRE175b&0En4rR+!W*1c) zAUE$Z0V_j*o22E{(+nqOys!6MV!|=6>xblS-mgl9$D+J(6UX&N-jO?}8pu^X%RN5| zP|?KLVl8G4>!YjFZl7O3At|7cCpL+hbfc;#id%mwQYnvWOAR?DCw)4>b!Zc%B+z@V zW?lZvdUKw3HcHIuWF8B;O<80ow*vzMKpr>%q_nXmon*(8he+mzISJu@mqenxZ>5sX zAie7LxA6Y==WEgVy0$J&>8;q~I`@04QeSTKcBP$}W#47lA!ejTlF}FYk{6#vDTV2* z{O--*E}eY?ggQ>s5mzh5t2pBz5Su%RrkTIqf{Qozfu(mt#4O187o$}i3Z{c?K% ztWJ}F>n~_%c}}~I*F=~Oj5`h$)R=?qBk@u?1#mL9fljLTUlkwggnFl~m9e7b2W>g@ z?Pi0T)9Y+v(eHmDstGfjReCR0-Jb>LZ*v~NerxVSSJb-|GK+7lKnIH<37Rj1>Ux9( zVql|WC`#>VFq0^zG3z$l;{!wAjlai@+)9hRIaTO&uW_<7KX2&|4g9VvIF~x_dBk|n z9H8{Tn*}AZaq2ci^s)s0mgK}2vbKDk3G&WPdExPHjQJq!9q>Eg> zpaDAwq}Q@#IAR^lZdScDBhSby4B#*m&)t{}by|`-(62fMeA$P4v$zR>i&@gO#6biw zCU1gL=-|!T#70Ge*7wnI!7gujCVP3ZaTko7h1Y2<^^?Gx(opTdnu-+TH#&DgCVd@o z`W)5xWxxbTA__Hy83|C9+IJx)Br!>dyQl=QsGH zQj!f!-kW14ag)?f6A{Klv^3Up$4jy0OK&#}DRWURl3WB-Kr(i!VhqiAbSFf;2sam@ zSv6*~_yo?#7fnm7$BR&L9=B zcuRL4Q{n)IeEf;4hxvZZ*m79%y7X&_@mB#2tgd9i`Xcz3c<(sC^38{r4cU1$bo_F? z=46h;CqYqR`Yi)iFA-c)ts>e%yWh^Qt2@M8gEduI4|{bSK=YelBW z6XD)w5Y=*C5Ut=~Xx}~Mh|VVyr0+Q{KuAJzz{cA(o~CTk}+L~%b#?dC_GS^*1_6&++_PJeN2t6Ie=3)aF+4{M@z152k z+1z^#NceOAmY%{MxXnBA9S+evJ2qOY(&yrLFG*e#K}Y~27oZL4#v1F={iIw9$0-~K z8~c;!)5&Mk%Is+wf92$T$+6(&sc19U%~8@TfY&)$36!;d~P+8%hQDY%uFZ>nM7*Y3HA-u4#0s?T@T zo$;!2_D)8iHh)r)uQUby(Th_vT3$86rCwS!a)&r!2M8ZGN|2d=eWpS6YFvtNb%OC| z)c)yq_(?ayT2FBEM5%FbIC6Ce$7-Mmf*dTAI{6%{kCH#e>-k~xm|%whu5`z)?ZXR( zDVEbxu_^bhwTzNp{((-(Fd+XAsmjUuzwJFRGqL_Bd;eOC*N&zO_WHKYK7*j1NMQ+G zALH)E6S%ln=bzA<{Iw%iEH0j(nOVEt-=-Qds9*XR=4u8VcDv2N&C3Id^Eczum@Kit=KgSf_=s<-Z4lWwGwx?B7SWFrpOv? zK|Jm8Fb}%$GPe=Ix+>unclQf1-#x+GA)Lojpm*VdP;6X*djDPyDqFbc9ojU9xAMBt z?6ZP|2-(SBa(GUo5%p<|T@lBAE&3#h*)AUV2#A8Av=Z0!T*@m2vB7YOw^1UzwY7X1 zHPA$ds9R99Pzs&$vbS3#Dp@$~zowsxnMelN?k|0R7nnM?^kQ-Bjy}%*+#l&uIF~5l z+n|5safvuZ+-PgKsxfu$KKcq>sk8f65>HN9Z{sUB#aqb$h?!Va{oLX!!14lkU$W?L z`IgNmYKl(l99y(|TkjQ@ZVB$MTR!7PvwS537vGL^C;(OR(iI=|$~jWfa%k)ExknwW zy=@G7fy6&N93QMVNIwyt0?S@R+tZY=>giisGin-=Ip4Q-)5jRDZ7ESVsW2t!pyFD{K!>~LyhjnUKyNa+FCm_Jhmr_foe zCCe!1GY1At8IZ!+ykULV92s$EW6NB&KW?aU`4BK%kU9ODqrCKEwUrb`q!!$BeEmEe z+(%kzA)!9izra5nD^W#iKefOoFFloh!u@pRc&(+nrzWnJ$wplsnTdD>UXrsg15wKW z<+4dpHE%+sGB=``&57`5+|s;gpUWlK5oCYDz&3^)coQyT0>cNHT1 z##Te85ZhEdv|?*^H;E^AIbGs(qZiwnt_RS1y-%3JQO7N=ka2Tu%b~93s1^Meb=v%u z2J6DZBn)ch`k-mK_Z+f99=;T4)pAf4>yu4H)R`5bqPYColj6t>DL2|;si2~zj3Yw* z1aQz#Fag{1$qS=rRXA4sFv6x@h7?#1$_!?y!nK3_Gp=Ag%U3@QUR&j_!CI!!%g&E0 zx=N3)LXUSSo>B^R!2uD^lY=8vBdZbjU^ccdEWX?7OROKc09(hz@=GKlFQZC%wQN*y z$*ED^pxOuJjX_Cl1%YxZUDD8ZFx1{(aNP|Lj%N&!*>Zx@H}H!5b&s|qI|V>IMZw&1 z0CwfMi)+OJyf5Kex}dT3_Ex&mCxt;7P*T34z~n1tsy(u^rF?eC9dNMkPb&!vg_8?n zx9gn?dJ%y$D87ig&4J(itJQ^eYy6gT@>y-k(q;ubIs+jk*~ZI9T%t)K5yV4G#2BKS z@Olei$DSmLN)UGe_L>;Gg_y95dUfrx$FjNU9V#&fxG$_2&NAYXV)%j*$AhgUd?np3 z?gHX!EM7h%Vpt~}=K0bHaH0d?Cr-p~1=&E#S(JeuN>+-|wXD=24F;?cu|*WHAx;=J z#x18ci<}ue4>gH#G@7ZCnh3VP4IyS>J%-hYd-n#jjuxXBpatFfA$Ox9fHwd}HP|ER z8~tjGtvM_7L+Mjwww~8Dd;*tTpcQ;9>MlUERzQ0TQ;dz3Zg$pk;&WUv{IoXJYY%kz z`p~$<^pg&!sQr9ma2iY*OrZJYKn?Uvw?Hle$bv$1t(A2mTAiE&S`cJhJUo+wm^-aDUwX>?H#{Gc{>RG7cK#c=FW*+^xe=CWxwywM z*rom)w6S7_&IKqt&8!VabsvjcmyBmR>wrBU3y#A#)!A-j8o#`Lnl&#`KTjKDc}Md2 zgS-=Mx|j-i_+!4#071*8sq=aL+bSttqMv2eL}!{EY3isAvj$D7Y?&g@L6SsTzYlGF zcnb+tpJDCJ6IwxL!HpG2PRyn;yp4bh4QLr^d|}PX%qCIc9%2-X@FS!~(Aw;aq#lzl z|G-5oI*C^(*aLCMmVR zamwzlaPdx4FiM>PR*n7g#LJj3b6cX)f2N);hd4S|<5Q$Oo@NpCYo{1*FWaLc6%%i( z3R{P$U3Yip&aZo$i9aQL*q@narJfTP7H>S?v!{>be8WSf7uj@;J09;e)gw5%no82Y zjI)g#&SVk7Qo_6rLC+QI+bpLXl^SdOni*?u7x6yYpA(Z}1$)pVypTr9%n3r)&&4`2 z%kSp3HqcJg`t9?bQ>!Lsj4DVOrc!91cW*;Hw>22t&tv3JcMF?+p>1==N^P^I5kM4g z`D!UXQtax=+|+nUj(2!f zM99^Nf+mQ=7!r$;l%m6DE1|K3Zx z&3E!rTSz)2`o1bvo1`moOokjB|JdUD46C*))xEOKSRi z&S+(=^7(l02AhoR`ov^)h*9XtsbhiL9bqsP;l_r<(SuD6t!ZX6OKK{5O;%A1)9-@Q z*Z92)tqJEY@^qSuNG5fL>(hK%h-TW&IfeiE;zx^=mErP$S-kZ2e#WM%+5E?HR;TvN zlBKgnjiPezwB}cIl*T5hx=EwN?}wskLNZEI65UffQECk#nV3<+BUgH5C)>iqVh{0T zt_|Xz9EW81OuvrkM=0aA55XK{(;j}#!81Xvgy-aV(wcok-c<(;=bxDt1W>vf(sqR> zqflA<#B+)@Ow1l2*WkwTugKbDa(lo^9+0$R+_Z>IwY;!dt0HF}SXt+mev=$o608&c zaUGP$iSUl5a+yaWjz}VZKqeSHZ!?SFkDpKGp*bUSVIg0DO_K-oQ7$#}yR%H0kT=#- zR1!EC=YpwU3`AF2Y?jGHk_Q&&i{PqZzO{en%xO5~S>Cl%9D^4fJy+_QO6+c!bBh^= zDvVDZZ9F2`a}(75gED~JdYm8aO=V7*`elYisk+32o>UuN-ASJ#w_rFIoW3fE??en@ z$MBJXz256B@6LNNQu1>Z0+X@4_!7t=U!DI<6}odkb?4l?wtJT(xmlq$qC`^YL~Z;&@ozIWf~c(Gowp?hYkva-D(Bg={^$TsUFT*NIWw z$1uQUBCFpQEi7g-zMcWNBJw)N{)9Ov`?^^?J_&II%5BxB={4_r{Vg$rGgXEcll+ED zxmQzK>fd!+=6?y;Bw`b6|<)q%_O#8VbrHV}{pEN@0GhMVW+ zfIDQtPzT{5Cb`fh|L!7JAI2L$CQ7o}dinrK|4OCNlwA_lh2x`Eu%CbK^AC;4n}k2Z$4T(2a6beb1?K5#lkdlt@$F-cU%@yV85rhizwMf(WM zi_I9i&tA8U?QcW{MSKb`&VCr;@xoSm4BnFeBvQ{-D1-L~)uK+?fL9(tjWbSQr@p@3sB^3qiol%=w>Qs6~rA?y?*4pBMU{x(w7Vd_RMJ z%_^YcE}g{Z|5zbr`NTrwDQuFF!B!EtiT%GB%)+(rZ>wSNZ<}?`uXTNVh9Bk9vUDMF zyMAAdcZ1$*ahhq0hvIaYeEhz@pNIJ9M%m0{>hFKQc(IJWVEOPz*HHO*zkb-r#xD8& zesPaB-AVY{8;g(10FfXjQG+=ytc`O&IOXXA_0u-5p#DODtkI_rOa}hRufjH<8W!u~ zxHY2$^aNMW8*1tQ5Hg6E(BT)ZPP@i03TtKT#~#{EI-Ird>-3(-`-*V1$aPDJ$K@Ys4NNr(t_>WUs*lan{fw9AX>t2FmGZ8i zin74N*6|menrA(&>6MZmEZQ;A|KoXJ04asUGSBhEpMJa=L=30w5cwl3FMhGBdXIK zkzKad0!JU~sVmuh9^+??dM0?}V~GZK#OxhdRz$rt1hM*%zgc7psaeeG-7C70!W#I* zh_|<^kXW51d;C+duKqm-mP*PEHR8bfz@?4f-Av)>W8}mnXeQ6WKOw z%KTtGHXU4EG6Hr8e9Id9X8lhqh7^b25k^Jl2-@b!kw=yzP}q|>6~gVfF@kC&SI%PF zj0^iP;)G09FYa_wp1#O46LloeCC&Wq$Ht^d)C<>wm7DB3EnR6&7oYk>xF`7ymt=S$ zicYLyOr@HNY(ewKKtz4ZfxXqXX3WJtIjwUh;oCg+2#+tbKM*Y7iz20vk^TVL&HTO+ zZwq{7>wb2p zgvdJ=Amh7~Q>|T@vjV(9?%gl_!aMs<&f@xaT*D$u068;AU?h1uH+$2CfiI&aVYyE+cZLR#D|I75$z2&{m{%qcuugK~^hPGw5Zdmp|6Ujg~h z8=u@GMc`n;;NJVx9O{0*7wr=a%b>6;77lYO+!^OI z+v=on6~-XCJ4ML?3SY1~eF3FvzK+}s3Wtadv)4^v3_Zu-{STQf7@pe-8CK-|m!WWg zJrXkqX8hv^ys) zRL5BB^x_Pv6$g7*l?a6-XnJG1erA5nMsiT$Ynuqa8iu{Ggt6{)4HQA+b}S zji-$Kl5-TTEg9+LJSXvZ%->)ah)!~2bbmVrCh9MdtAwgIse*zpH)6~2Mp!3Jyfhp4 zN^34;3!>poWxQ>Os^OIeR%@7sE(Pf?mY#2qTp1x^h_^Fy)+zxcl_pa0E3ibNDnpE0 zTN~vG3FsP7)3(q~{v1F4-=pW@E=$*yJWrlaIjgTPV+ zm-MUe^u$WX9?G<9Q$iM~entki5%xxkp5$*Yr4m`cCE!z#z41X<0DS@Hs_}bt<1)Dl)I;^ zU=iDhH8EG2n_Kz%EUhn$u8vJW{?LdJ_Q07e(uA`?MHwIL-~n9N~hYEnR96g4&MNx)ch>ZP8I5Q3b+KjxA`c*i&nOupyr> zkswa`C<3Zk>2a2h*u~*~!Af>Z`+*VCbS}DYRz=(*u>eQKKu49J5J372{50 z>zLE*Q(m&&#<+|Qr1Fo$b%gRX!VBb5&8{+N@-pb@fHLm6Z_-6=IN#~B!E-47~ z>A}<-jBS!wCj6Jnn$#(RTuKc+Z#NBd(qRC!-vxRcpzN{%vG_;XQO%)fX5lTGlmi?V zv7GB<5_Q5BCv@Z(a^S?=J#Ipb_$T(%E(sXP{?Q38%`0+8+JuBkTPKZJcm1fDO2$3rH7+RX zUNPe|!!`jEFIw(sJdrlmWK}yNyc#E{F@kh%WyqclSeF}`H(ioJ6&}W$2f2tRnEpDW z7-B6?<+eA2YPI~>%U>QYgcd;(PM8nqmDFrpqK#9UQPAB82Gi!Ju{Zi{p-1{mFUeLH zJ1Fxi_)*)<#FQ&DyK&~VHvc1ZB7L*CP7IugBa7Ey51u`N388Xp67ETC8Sqqi4H{&7 z*Nt2Jg9j5y^8MQ!?ZtwBq7WP90Fg+MF1g@~=?VRXU~42vSo7Tf>X;_@;$htcs>Xh0 zy=a)}BEkU)DJHR4P#gH_mOYl)ww(eG0_D5-0yseq@BlToL{034wmu7sg@R&e!TJO1 zNL)f9iV7HqcM2*0grYZX-YH`Ha=uD1*u7gs0EqQyEXg%=W#eFh|B92D-wmo7IC(KV znfYy`H4mnt4b>-LX*kd_X$#!;uhnGjd7coW)pn6*)ZBr78zvm;F;I>doM73M`8z4; zX|j3iH`Rc@yCs9t>8GXOv$Ht<yn#DK0 z`!J%ETOgBXL1DVgI7GC@QO)^>w6i{TK={QQoy;+=9X)5#X?LwBHb^AEM zHikcl=Xj)*T_V#Amu0LrkffZDwOdb%AHbpwmBifCkg?Rma;j}C z-&>9v8f(3Nhd6-}E!<0DfjDU7Av)KG{ki}Xn^mv}9n5DC5-OYS`h)(b}k1=ww z$JO(cy$-Co3?v_7>2Ukq-AidFUKt>bHDzhKN%#i2X6`{Y@W`aYHwC}Mu6sKHtugUE zoWowXv?D(>><$>i?BniW(fX53{&W|gvot1UfWL1aUe?6EY_4p^Vdsw!JLJ=IwlEc&iF ze=eP_IE4;i`pzvjE#PL?b>u2-Pwtmzs=|j9+E-HH7^A_5=4zFmmK`;>u1+7F-cw^9 ziYJ_;W?XSe>U4SXjydw7b7(#k)yCIJ1@9bNqATR+ZK?5f$d&#H4NXm zWglT_eZd$qpM4Lj&m{IkukucMm7u?cqCuA80GM~Ldm3ps7lI0$eEOpNHI@M*J~6wD z)cWk*(D@ZCF226Ag}a!v`Db z?EO2|qRAs9B~-B9O9gsY=*JI}t*iDR^hICn{V8G^j)s1G>dl-UiRbj>3M0SGgGtBHYwL8G?|1v7UUW-9F@lB0Wiex0RqJs`3t>s{kd;+S zBT4;Nq2bnj7#tnm)2k%&HcE&X10AaXKVANbiq*DTCj!LX$1sz&NIbRSAKW>f0L+1z(iOnd__z| zD4-X+G#Z|InFP948Sp+*MVLRs6?gLyFV)DZ~87(?Z8gLFM5jm z5y%rcglPnmL3_F7dsIZl3w!`Rbk;+NQ93vtLH|EZO=^&$;+BcRLa2hG?hH7;#&h{q zoiIoT;{5vM=wwBV$;|M;(i4A;p>ce(G6V$nHr;VOs!j2qqY;~+Iw3@kF+vSGFpNLM z5g$EBP?66h$pIlG-6yF-AgwNjsIp8W!aX3E_MzE1-XDgOb+@lA=esR8Z{bCpX#2{) z=u(>X_$Yemc*$q&1D@In-IZ7Wx?^?{7dHqHh+}))6{d(3M9Uu3iDV_sckANCrL(*% zDfZUn^1LUik>{!iDYlGU8Pe7D?(_Ba<%Zta!i~&7?@pB7U@hvr{JDKR3-8@ABqKa3 z1Qyp3MX!&LSQe8Ne|JMRmiAn`DlfLF&{*D>XsWD^?5^gM0K5ncw8wR*YEGc4;5iNS zZ(5dUww$I!&(jy3_0+D0OQ5>f18p$Qa=qqBlF_`DN&;b&r5_6eKB0;Mh`JrfLpG5h zDGgLqsi)@{RXQ+xH3av5xz5%~J@Fn0vbpeCK~ZkQJny!OT)6Hq{fZ-H(@yQs?)tFc zMdtEk=7Ig-x1ps;jq8#oS}PGwT!NkyciqhUu3~4fA}8P+3)^v8CB(G5-fN06I#ZFQ z#UMMytFTer6o{zD&9Kn^y-`e_B%cx(B?dt=muXOTrLXLF&~R8}Y@!vHf`iT&7FsxC zkD3;sgXnQm_8|$7)5|0;2XC zi;sek8jOKn;^1+B#OEH=ZX@9{TLukuzi-i-nhHlxw?JexCk39N4wkV0PiY~)Q%=_5 z?NMGFdpa5egegDnpty|W%~wrj@~9(xI-&u;8F81^_#k|p%X(lq{_`*k7mZ2WocMGy z(XK&@3;ZELxZ|DXko||n$kr1}l-!j{T&jE%yIaMP} zmm62F!YX@PYDMT{9AgYvNAXb12Y7`L`!-~0C3#R8RW^y=O# zfS8z8+X7b2FAUsfcqKB$HatTeLx}n{5u)O?Y8Y!9wO}A!obcdM>{d}%IjTGOuQOop zL!=MxkK(uAH@0S<(jT|vat7Fu`sgnjgTlN60ELlDyyHSH!fRQM_2VI>Q$%8821z&} zmIkggJe5$rmY`QY9{2IJl&6zthKsvzfR>prH7==p@u zhF`E?J8JSh`I2ymBmnat!QwG!a@vCx+6ocKD}+JHxmj{9rZhOZ+4~@zpZnt2#TP_~ z?zI@ui_F;_?mW;Lnk0sYgr&NL)6U;=^pc8$an4@-Mmw7%QORw)@9jkHsS|~HaHG}3 zWGdvsi)&n8ty+}6MZl?npJU^c zK%lNjs$aPULR#w&9FG#>cCha`T$HaDDr$K%DanuWt|i5CER&Yc>qN|NGz+o>&(vBZ z-m7g;5WYMfB8NtC^Dd&kC5J|1^9UtsDW-&9z~>M@C$*enxSi6Xs}rP_r-fZ%M?_~x zhR^EK7?HLJ3Ql4&+fHYtlTDBe!(5$NINV`b_pO{zjie%%IeeA2KjrrxRw|t}iVi}X zrZ;(?#hYX*$h_n(3f)vMCavXLj{3_+#Vi7(nuIx$uuInSbL_%MMuP-R0r% zFyb=t7W_WB%TpGFp;YI>Y#m_+_Z(5Av0YD`=a|>L%!8vy&-X*yuV^^NoHa4`zpfkg z^xDYh);BZhwJqFF95W~5Qw5e}nxA+)TQ6)Be{Xn{K4im_S+FUPf0(pxFM`Xf9KBn# ztS{b1Kxwmh7#i6`Dbc0ex@=>Fo!j5_C%2##@G($iw_DcU--;~bqA1k(leli+^yzP% z1Z=vmbR97k<+=0}Fg7@-R8>l{RH3$+yJn&AYeKLSyQfu-MiU>$!^;N64d8mvzm~@^ z&U%_=Emh0G`c8gv+}gDY2B;o=ryzeL;ly9?K~4Z zEO2XsN$|mYYh|f>N559A1>MwtaP7~uvXdd#JpYSWYZ}3CNXQ=7tNKfJLABu#rIjPp zySGD=2;}|o$|xDipv3j6)67;eSL8)Jd$8=23+QQP-tj-jkSlR_sN zAm-ed*_7A~=Jr~3`AnGFgxd5Cb8p3wKQk*@kGWR`f1j-P&6qiN<7d*0`PJ|dtD?;l zA(O^Ee@Xa|I6l+^ka63o`hOn*nCO`PTX$$iCi;I&Ix5m+k3Fodn|@JsdWAML+6J3N z`@_s=-Fs&;EO|Bh!^?a@Aep3b9vr9>P4w5FSJ~Uye(Gw6)$!xw|C`KkTX!xMk)-zj zkNSV@xqtJrYV~U`r%R+DHSDC8~a0;Qp@%dw4CEsPG{I3U{4Q&MuOTS&S$qtVUO zmi>*GW!k_0=j(}<>Bvpma!bKG>$h}mWV4_uE9YrLr>;v>@x8iN$9fG(^01TL?aPVi z?VgOLAL(AlSh4)e)y?AJarZ`;ksHXgHQ^@QPjrEwND#vJf^n-xM&`K?>GCs+*PNDD zg&7bv8g|62-6XM3{=c5nR2|T z01Tus9`nt)m)ogP>lOW3_gChx7P{CU7VK~+?f4&Zn|&coC!ATZ8v5>LRHrheRwuk_Rf z)CWZ~c%0y>s-vd?SrQr$=UeJ#gfym8Xy4l-oL#aaf!)1u;a15EY*p^&^r6A?@T*_H zg2dqA^^PF@mjyR07Y!A};4!^ui8bf|j4^kc4RVZw%2VD>!V|3T>;JTiqRyviUf%lt z3Hw7rhieWv-@>gaIUa<&1>fZZrvi=!L@*n8JAw$Ge-}w|uoIIGVj$ZcFy)oqA3*6m z#ynY>dto49Y`>OsM(_vVQ^wgLAGn^sLB#jz4Z(8jjG%hAccixkrN$-rv6!kj$h}Lk z5Uwy%oAX06Bvvu6*}1Z+<0)fE?F7kIg6So>LYACiG9(v&mQq&CVYMcoe*TbER7RTaOH}r`QBhyx$e#@I9@SXl$)8w!DJS2d>e4LRK5j_yA z@=%dqbm#Kq%*J#0ceZ~V@`|f3f%y}IkSP6|Vioy@W&hg3sMf>ZpTgF5q78EhZ0#{O z`i>c2l!v#rp6`K*fRIjaS))zH98hK17Zy%aWu9W*lbg0t;0hxK4}ft|J; z(B9L%s?YbouEI~LAB=Y?*PEy))u6(>Okl_|EJ#)7D24NqZYnYL1~#K2CpV0b^)jYf zqg^@-|B}>vJ8*-tE(+Ds3Drtj(LV`^q3jC#Fp!a~*CzD;C6vde+ktVH@CBGb;j02IB~21hikLcX7O0`|jxinDjo*u`aH~ z5fhi}KL06xqpmFY<*59`+|t@RZNRa-M7RZEGnQ8pp`8kRhI1QYp%{CII}Ec$^o6R%hE=$%IAH~58^hgZLM~AeMU7FEmpJmG%DA#7{I>86Xx|gY zl(mk=AtSwG@bMkJPw87QwZGtR2va*N0-_l%Dn>I&lKzhf5oN^vZM|FUAL}u8y!7$A z6@=%OQ;#y2!AxDHwgIamJNRe40Y|Hm9AKsrg?Fyih|ZkLahnIq$&SYK-$%tjCl10O z126n3f3&~o$V&wJnMR#Ojn6iA7adD)cgqzw#|(edLIGqIh>hx(F<;3Y(mRYOf}|f` z2nkxLkLy4bBvGli6&VdldL!QoeN+^7+Xld?nC4Twml_ zoegHkGhq8-1$)|o4u&hC{pjncY?rYsY%U@u$Y1PJvx=daBhrcM?>|ISN#yg4D-1Qr zwkdT(4MejnwK1-=_J~f&K=EPmM&rOY%Nh=}PthCJ3{042n!_)wNj>BTbO84Wccj&i z@v`I%3e%5^n2D~XPs-Cnj(=<-uWD^A;sIgXuS&$RZ5?sBQ+pV+=>tfGhUS2BNE!wq z6|mi1>|Q6ghO3M+DOz@&HtX(KDkC=#CAtKNz+$@+BivD44VLT)z+T+-tr+Vm?0Q8^ zkb}K(^-csUHWU?gvrHA%C?q-SH7d7O-(lve27J5GRsF8!>PQ`@5z&JAo+iGOoTxb; z`~)RnrM<4qL_p_42pLy(A7uK0j8|kAH1epB&ddp_LHH0w!8KTb5e4W`FbbhaPwclU z4U_&0q!4le;|-)Jlahe6**PiEBs@JMiPDFI@{ElQ4wV(IxS)ANlbPJ{V9#te`wT$Q z65?s*Zy*zb=d>x!X-3a`B!v)9AtL8-YIEFN$r3u!vB$e(9&QZKM<<*%2>I^rr44j3 zd0YQv#J8u_rC>hrR94CRr-pDROXM7%Qo~uLuXf`3sW2`!TGl2&s#|V(KT2mJ=+mNH z*PZ^HA~WEYp6V)~C@m3un-(H%u?zNWUkH$>MxdNYFJI`E7Te0r)}QIfw3``d;hVuo z8|W8%r2iHR4ne>g*zK<^qvS(-R%pd!kAf)|jIV}QI|AoG=>y3cWk{bEK3t!9Cs4gD zqv^Jh!4Qj;w4opAM!5{Z~I<~7!nCQ^&v24q3 z>Zr>?Oh82((E7`~m%nLhJ{Wm!^ zRc=0J9iJ%i#S65C99m?>BS=Z1q49+V)qOc zmXlt9$;*yVetIUIDW6pdhMu1rQn>4ZTK1YgRhtwV)Vje~;81IaPmygj#pK;r!x%!G z-w(Lbo$^z_BrgMG(hS)LJP+PiKkJEB@MS+w@W3(7AO3U0Jl_bj+Ck2Yf=Ky4{G^ zgQk5q7W2|f!k~(FHDx8VihB%pIu>EMXpvjcwy9ZJ1V-61m1HDINj|7P1%co2W9F=C zev4A<5@w`3B5Pm+m$dWpTLtMD8@C_Z3Em-nW;~$jgJTxSK$mYas%wTSZz|W`oNAG0Q?M@I-4hY7K5=jvQ<_WvV~(Qae*MlkSJd>$w2{ZHFX7LHiizrw+(Le`+%Yx*1x62V3$;E7t3-y3obVn$FV(_R+e4pG z1|^D|f9!yUpQYE*SDjyP@nt7R&pp;AeZobezKLb_mt43F-#!(4GC@Wv4V?5qU-&Tt z%j>AOW_a?p1Pdw0H~ngI13X%|{sG@hnqZqu2_$w!?(*zXhqmr+TQv0Jn|tV%IuHDy z>$PbnGA=gNxyWmh`qZgc{Bj%zJaf#>(?Z}$S+e?iqPZuU90#wt49^@EYV~}UAW?uv23 zlOOY^hmRFsz$#_Xe>|rBl?c({*&0|ta&i6VK@2@3(?1H^qt!ZMC|RMeUMN3-bHtKL z!Sv8-S1zD7Jv#8L6^?#3ZrKSZ3~eL)E5XRm!?+5uV1Kas_f|%pJ`Q3zQv`KA{1f1I ze0_y7z(d_mz0I-Vnv^Zzc7AZaxq<=U1!9&}zM}DiobsM=1UeNmOMg%Vh8}cxdc=JP zxxdiY6(llP$O=ncY=qg;vbU#)@ySElHCDvfay0XI?h@aP@?Hjt@;oQ~>q+N$y<|XlXTvUZ2Y1a1RiMn{Tdsw|{wxFO1_9;ztmWn1 z@Py(lwDNlyJDI6j9%O3_I2Bmpia;uF9p*4{k_<>ps+KA0(g3(mNDJ=-9k8v%0{6<_ z$hh-r2jDQ+&VCI1J^Yv4{=uv%HG75hylJ$&ELF~Y)lL$VA=d+FL>RSjVCvGr&~ch> zv^Ko;baTS;ura4xvUaFZiOKS`;oQvEvadoYF@gosuaGxN9$5GAvd(=&`|nDSA0%8} z3j@|YfLS{(TuE9axEg<+TRWlAb5;_(x#g%QK3>$yVa^$=(}YdQB~QdYfvW>9Td0>Q zWK-%ydWq1Ak-J)7xtZ-paYQt+RIHyI# zTkU_#Z~!b$ae6cRf+*`zXKALXRVK4f*msiL@3qHvbyVqu;r6Ry=L=|=jWr#)m;c;-kIrm=U1RX9%@zha&K?bMKa7jWutI@e>Rc`sQ9~@9ct%f_lUxLk$-TXJ{k=8CP z&S=y}@#=-c-aQxHP}8GypL3T`poLt0gS&gV*HWzbA(-Nj87!f+H_Co`R2tI-N)lx{IsJ7&+Dq0JjE(UpiiI)X z811q6qyh&j7DZYB_&C`nt9|J>z$u|g402^fRA!B*AL z%Ks%&V)^Dc-#r2nx{zA^<8J=z%yY(n8}xD$YW-?h0{1wM`x( zL~Q(Qu0Z?M0N4YA+X5s3)SE?l^gDzHHwIE^q~3fr7?SF?0&ow+92OM%X9xJG9<5@S zhyyRIY8V?ut<J@t5E&G#j zQWg6TUy1%N5#zsX1n8Lmu@Pue?Wo^igTA^^CDT^W3UP}IGGWLGzix6RY3d-lvT6F+ zq3I138hdO~w91PgBDJ%#1Nb=09h3F#qFPC<`3=5sc^npBauP8>`!|=B$d;7pjs6`^91g)d%=?Ff2Qh&*f}E(e zicAeTF}8m83G0?8jU`f3lZ!;UIibAFyosFbzS6VM=V_dVaTfoFqfD!1qH zHM!wLkJv0OUb&dqex=SsN=*|rn^E$Kgqt|mmCO#3$*FC6>QRz6(H5u`L-7y+6WOI1 znU0^x;)b9kjDrmoJY_D#tCDkYOdb*yF72%v)2etF-Xt0q$hTKf=-?9G_XSH7q^ndh zW?wwifuWY==lnkHYJB{p)484B89#A&@Ch?!!2_Me4RP7Kn~vt4PoFcRKEJ`LQ?HlHfQwH^gi|9-m$FR z1`Lx^#^Z9dC+8$qoG9t@wJm-#%#oyWSjBJMABNa2A;Z9wC13GP5rx3wZ;rB= zfLefsSYtPDa@^$etowr0Shb!En7Lm2+FAkRRETvc?OR+C5!0A${0l5D=e#`WqW>;T z-XE0$clayBqY4JGrgnL{Q}z%i&09-Z*y~&~`f~|jG9yX!RN*e73H){4;bXOh#F1MU zmKv3*sQn<|cL|;iO{2$)S_toTAX)kSbjJhk6F-Ju;nh`Nq3JqeMuDV&HeUI))6kBV zf`(IAD(#W}aLe6794(_L1U^-=73Wb-DP`(#K2HKJqDw$#PeD-p2n6u6ZPNU8>)(a{ z6ED>%&AiirDdMkyR`}iFYj19ykROrQn}??(UYuEanSUxdjQ_2AhyCv`>7V}Qid3g! zF!7C_$ma+6% zz&L;vhG4jhbYxK;pL7Skb`CCp{;1fw44`%VI4wH*H3u2zS}(+Nb@_Di;Q2VT8cz$N zLw_)g9#h;7FDeo0+*cSw3ul*zA3R70G(0?a2Z?^S1diwEKcb#4%r!dVX@ii{){B(= zht0H9;h4Inx1icCX>a!CaHrCfe2!`z;6WzYuJisJJmVY&&A3Y46A5MJ?Lsz3U#@L5)JN1dc zlLR`vP}L6fB#4SizPC++SR#b#jIAJY)@juM)I@w@EFA?4Er~E^RddM4Ur_6J$F=55 zI_#FIQjE9bPtII}6St|FJ_O`5TTn_`BOXDn7zAsnx?CV-hj%NgQS)q;;i_U$D zra!Wi2>yka^WH{LPlZe^Xmge#^mQ*PFy@n2K*L~cH+Af-tNskboxXSdfw3@l?S+V5 z3F`(Y-6B{E94bV{0+G4M?7r$5eD$45TZhu&a#BwXpz^UVodovf&K%-rn`e#SN#gEMvo!kr5d)j5hcom(NdjSw|lOzoG)5h(Kakk zk)Mr-x~UKeK!Ai&@gQPwxx{C$3FC#14ieZ_F<+Se!2vc>fAPLAz1u>Px&RFbQ8wDj2v)DQvb1&5WMR-Ui0v-`BLPeE4 zeQ#VAUlluDajwc|_1!tMWuIz>>aTK%5q0)6TAqJ?M||;ZFBjJn@=dZirErxDy#8Qo zdgr;~L+=;tc&hH+#U(T$`Tb{bsZ%;!-t;Vw$<|}<6${%$&DP!{c5=X1d*kk#>kAal z8t5P5u9)Z;{=GH)54L-Md7{k!8J=KZXaBe6@n48yRpUT|tK& zCo{#Oyhn$biAWS4$lpj-)d6*w7o;FTKL{8PF9g$-rz)r-i1g`<`ZM?p@t&1$W|Sov zp&-UEP07L{p{p|4(fwyN)!wZSe^k>JfH1YYkSbp8xv+98dSbjCnLgBU{Ff~X(ytA( z+w=(p>fSH_V?!4|+a&22I!HZh32}`|t6zg;M#k)Y6N6D_X+~RfymdIZ>;@@3B9wXt zgn!V(N^ipgD|Lt0?$g1Peg{bd>b`1i?+f1sXt`x&Jpwj@an^?DC7GhadX~@;PP7zy z;n8}FzX|aj-KER+8ERL04bzRwXmofF(4Z4qLDuW(hJm20nx^-c>$%z{LiSQ!Fsjwp zis`%)t@gdc9}@e=;{%~-xMe2%0UjYxR|joHtCODx0`6-h?Wd`oANLvlV-N;}XMmJI z?k%oQYP3aPK}4I?mlQ63>i;pup>A!EtknmEFU8q5a7gYE$ey6O+Q|S*VAdKHNs;*X z#f+zmXe&B3iEtRv$f*_Bjq*~__b2+9tYoJ19{E*ZRHDV}MH8#!CXEv(Oaw~7704+^ z<4o+BARKEU)S~F*w@U)ZOwA+EkU%o%#MmIw@d$L)BF0A9?O=%J9{XYAkc}w}Ob!`u z`7_d@>Th$QPX(ZZfrwxf$n$??n5|RghKtpj;)~3RUdAPpm>i@%B%017S#+PNX#09_ z>o$%HJoKne?VJqEK3fiTjPQ12emikYhN{S)$xVs3;2`tZ$k641{b9HUnK$oC-U=** zL2L2swQ=*?;`Mv;d6`nx)oC-yvWmr z!<@_IUcA|mZn^q>Wl~~abW?LR4{Rn5)nbgtShV{!36H&@;4Eqy8e z>WrF>@BAy>(GsWS&$hSfw_k8^fsFcd0%?|tv$OGWi8LbNbPM$n| zW)G=H@5&FKYYhy-4_@?C9nOyHp9dc|hd;E{A$uMVjpjNup%qtcI!-m2!Y{e#KDxFm z6MNo_PAl+bsW&|!m^ZcuZjDCjnr6ac@}8w2jcNljL0HWEqPUn^YEm#)fmKc%5f<02 zP=RHHE?3~Kl+X*A7d~x&c^sfmf7wJ9wc54fcdlLuh8b(qpBAf-{t5;R9`+!=@ zw-x*;po)*DcMXQr+hlUfvoyE37k*VCkqgVX#I(P+6kNX~`7hb!9~3*TX*jNSaaN1L z{G%%wqZ(y(z#x!Z`u7=q9CC!3R|I>wc914A2icv0cRqY?-Al)ZvdeYnz^TF*ur;$t^{bgS207o(&`sNw z$@Q3B9sow{s(`IBrx{SU_2%TBPK9~L_`N+}X?AJ5cx*9e>U-8%eH43l4fpVM=D zKUvJK{+y}*JY~_n_DS~WOC{~a8Q-d2+LhXwjF5>wrmWxP@Crjk*C29gi_Tx%6&_JZ z%*Nqa$wJNIapzI75o!IfBg}iV!y0~nIe&QUbb1n5@$4OzcoikiL3mA++8C+eDt7A@ zi_V@er)CDF+CPgz566Jeo=b({r5kCOTN3U>GH=s?{cd)uQhyjhmzW!U4*P{pr z2>swRnS;m^-Tm(mSqNxDbputRNmB)VYQWyE1#8ndh*AaU;$mjROWmxW{>ssw!BL*X zF`P}2xwQ6J+Do^01LYwvaMcz;p2{$)P|)3|_+Hf7L7A#eP6(%f#9*QZj)j*IL82Cg zu=>dT>tVVMqHiq~*Up+->%>%LIkb<@$`39+bple(+&wlQ(vE8_)^DP^wm65NT$jP1 zJ|xyd?}RvYAfI-63KHIzujtoA1eF!WVdFn>@TNwr(i*%sp+`Un=hh}aPvLo3)DCy# zX}GoEhz$Vv0fQl@O~^*Ltj{37$%9|PPexk2M49l3*JTG`PcI&xpz}0aJb-WC^R1h| z+Si=*$X6g)#FHJ$lN5`xD2|lKOC;Ep z$IBF^lO3v)9E-9jkF>~7B-mBQ+Z3kHPWGF+l2wMJd^aB_7LRQx!jTch?UD+AW0^!! z0mh1<2Dt4Ww^0x{lxOfd^Ewfv=!#hZ>z?-@hrgyxyg8u_$^i->|GFV>j;6}TpdHf{ zavBS@bIU*kBY-nSpG#b*Bf_aXB0}q&brACm!?lsXVmDK*U&Dqasn{YzR=kD`{E)Fx zP(ohz=Vba7I-%$QoTqZ^APE@4FbWg4KPlMAfs-_kRvhF{N8YRY3ryA|k)W4<9feCj z=k+2lj*y7`7t#$NeAt7w0w6}F7LOmnh&W2Hvr`Kh9zNhN3y=t=GCd;jUKmK0ILT>3 zxwyJaX&bnR1PLzd!{!g)~KX)0`A{+v7Eptpdio z=-Bz4hMG*-#kuslNR|@8t-FAM^%ZyJ=}4Ni4GOLu1Yv_j?F}_XQW%7owtDq|3z#D? z?G<7TT%3C_(ZG503+Z|~$!!$0@dq($(YiO!MnOd#Iu>lp(!aQ3j7m0>cO~)$1dS`T z&LYG(kAyJ!*YI0X&KL)EaLj$%(pAQ1E8$^N-tPf*(q;e#_?gtI)2{XL0Oo?|zWjn@ zEV?98K+*ggC6#1`60+_;jR=ot{DA&(5`XU#sP)X7n3^FqCzM|s3w-q44AUCve;Tl7k>HGssrYw zCJ!LAVMk;QOmPS1HYYzaI-ypnM#pX%`950Hq4)L|t_wSP(9Ylt+6%@zMNTV=7^4VK%c+7?&rN zDHKbj|IeaL;aDP_(zyEnT(s#_7kQMVoGWXTtD2W>|0((!T5Bi^;Oz|;p&`UOO$f9n zrw#l1BdGst@++y_LjO-39f5B&pnHYrrRwzwLFS1dI-zVP?|_`}n`UT);B-W93<4WT zla`gf+Tkw?I${zNw8c|DN&-W+)BSjPX^g}Y1!aNlDENWClMh4#kUb=!Z#fG(=gPjh z?cF%Fz`Wa@sKDrSCtbW$hY&MCd#g+0QFtvoH~Mdn&(#X3j)dOr(#YNhur>ZW$5P25 z`6XkJ81o8DM1%+G7^?Gx;oUSA$#`B;vHMh!%7)K1RDGY<2s~ED$-LW0Yi7eAV34Qb zmwy5a*#3Kbl9m2nXu-cu0!?aTHk)+NT_=ABmGVRp8qgrXQKsax51SEx!GfP34FyEv zwUh;jIGm_(b8)XtoU;EPEuft^IJ&agWU5#T967tY7@7t93m0G{tdS4?+2`W^mg3!R zdN!>ZsBCH~$&I~fTzQ+*vC}vM&z$1RyppzTFuS6{Mm^h_-FaE4Xi8CG!z1^NE?I#G z5|8UX2!7taU)M9H&Q0hE8yrzgqU9siANA}M*K@8@_u09ICkY(S4~^f8fo>q%jqk-& zI9Yq=VEuE(ttYpaig!qVv@!gB8cvX?UVS?wIFXq;6dN9RqB67bK*v-&M*kt^%#+OWI3!4@22fmESTR zsEj{sngmAeQ*JYY`idbldaps^ZY=J|o~SB`Znb-#ZUep~ZxWPa>5#-gA(GxSD&EBO zkv7be^R)sK@Bj}ecg7A69_}%CsdnEz+}p0l930FrI;A6jfi_omDAs%a^|*W&y(>|<5sa)q)f?!b>2Sq~ z_BH^jG@Kc6K7Z=rbQy1rgKVZNOK%ysk6sRc!Wm$T*9I^GSfC+43psmMAn;}srLul7 z&Ar4B7J+)zM$eo6{E+xi+8dED>h66jaN|AS98h|wyUO2v&%W=8!->X-hbkc(D28>w zqO*2uz8#QdC3}n7`$=RwM@2*p?uw;*XQ2e{GNUu~z2z6b(7~kJau~M(+aP4R1-@qK zgPz}uj{G;HjGf7ub3$#HEnj82vU3g&-cXinN012B4b$>Po?Vp_qMfC@(mX5_DTgMK z>&Rm4MdPgFQ#VKpGaYJu9EoS9?!$_=RKY3dxP9Ht?K(Mcg2r1k#Y()g;{k$Kl!spl zM{s6407DSUa_Kq$I3t#c0 zY3|nT=|unFsx){NP1&i5vyFj=E)xRSv5`$Q@?MzaJE7}VIEVYjgf+YhMrW%1dCy6* zv+>ns)n+SL(6z#XdnuxVxv^Ul$0+rw)TB}evUro2cH{k%fas)veK}tlg92irNJS~k za-b<$7l)ylItBZLw>8GdLLcKeNmr6BGlS@4IV^5m*u+V&VR^P!RlJksQXdmHw_61N z5ihkQ`jJXuMckTe*wn;W>hi8g-5#BE>Xqk>UvcBRL;u6mv-1-a?>mY6A1V+7%fEva z|H*8Ko{fd=pDIw5`b5lOGwjxk>LQ#_yx2J?G=`b1t2W-nHmIv-!(X={L5X}EnzrH( z8C1|z;|LOR9$0hFj|&sqpEnmTuaB?m0qRUFyxFS*-yJO8T2|MIwZcnVdg1PEp6~9j zw=Io`Pse2-wTqkOcEM^|h&S~|+8+FIUawTnVh>y;ewQyfNFTKv@Zj45++>MYuo5NX zqfj|*$7NCigdG%dfpXrxkZQZnn-Sc~vIkCShy(~g+42xoA7vAg8{-CR)P;*1*DzMm zU*x^hRyj5FR4#@Pfa&xX*FKAu&{V#U`D|O_-Ehmn5=504d<%QiphQGxSi!xp{k3)!>!~X`_OMktN`%Ar95{s z-wzh=+uPQeRI`60SEVB4Zx$04bpj323$DyR_T(&(e>^Og5pL>*1(yc(S>pSt*R29B za%NXYBaIE&6I!mv<-9>3`peOYYi0AI$0a)H=Vxn20g{RP^{yJkFb9rNvjezj7AqF)I+)O~is9(?w;;R?MqpZ1WxD%-J z1-5M{ZkIanMP0EOEUkpwo_3AH(KAzUw>sCXYCWMf4i&pmC%cA}Zb-TyXBr*|7J8ZO zZ>t7R54bCzF0zy;F9mx&B=i$oW5d_$)AJ^WSwuKfQ{)w;F>&!$^IT)~0B=&anrWe3 zBWhse0A10CsK`(mOSwTUW2Sn*#%E_tI-Ov+ADQX4bgnMItUgAml1tE{qktJ@|G}5d}8Nc8g#8u6<^@Fte3j=ToYi~Et`1OF)p~ww5p%q zaj7|xX8#l_ZXIQMhUoW#*~BCe?K znhKWBHN!^aE}Cb0SCKl;P7)#@PjZT4q*^I>*f?9zc_mb zAj#UUTd-`q%Vw6%F1yRNZQDkdZQJg$(Pi7Vjj4NQCjNKgzVqL2Ce9O)87DIGMC93d zp1s#zdo4p7d1iSwzTdkc{ov>!7B&}j&id3*Lr0f9WJ9wfL~elB=Mwql(&{Ig!do$C z_#pXcGz;DaL^o8k>SL7VBaqSvP5|D3$aClu@{bG$M}3zwY4OfLD06CfSh>wLY*bxq z9Y0e($dK-3oPuyDOYCymq)=H1N(kHhC!zO^OIL`ollhNsYM>k9P#VzjSdDDWX^Dp#?^$x4#8qU41|!>Q0Z z1(%&41ke%aQ@ne_&*ZWuHT;&Z$_ZvLo#t6U1Eku_3xY{Kv>+wUllvRli1t=pEI7A=rN($A}_6(QFuS} zhL4P@_sYNQsj%2VK97i=tOjnC!=@`wiGQ%0M(f&F-4ROahP*T3-0*}TJDb&co*c%A zOn14ac^<2TDHXzm(1YE)a{CL!(9_1Vc+;DW3EGl6D%tbWYfkZrr< z5oKvZXlEbXKFaJ7I^D%h87q1btF<=OBm+JCM3Gpkm?<`oqXQSX%uh22eRnV!>3*LW zHA#RIb-On4kSXWBE|#2AIDkUj)&G%z)FX&vY}j-(QL3bbuIUH;tnt8WDo5we)LX6% z(W=G>q)bAh53rz9I1fcTFwqz$NaBf(Rc@D(|J!y&@)5BLBtmXOPg4rsoWkHzQQKA3 ze0<}Qd{7S?-$MokgCD3m-Q3*;*6t{DK5MMqqXS-&`B2DPvhM1g<0xTa+SYOYpv|Dv zg$1+QaVY`dh6;~9zPY7$+w8+hp$a^YrKWDPhPHe}lRJB+Q6^YM?CE1Cfl=`6?vSzX z(~c^E2=nOjcBNLIEtSW8;2Luw6a@==ZgOQCFZNMiigog(p`Vq10hF`5J(%jqYH#=` z$QQEEWzdVsNBX0nV*Fz_7+Hr41`um@=FTe>YK_44I3~})H(V1iMaQ?d%Ma@zZ|_4L zkSy+?w@b;94iSm-_bgoHxS%cl$$JUfzZy>KPo?yhZ zOS(0dnx%pG9cKJ*6v1g*a*mqgrPw-bc3pA^YjZnY*T!EBN3*Q#BK3~s|h-16*uK%( z>rgs`;KuVK5r&^N^21`;BUr-|Xo*n#Fu;6}+s8W2*c;o$C1JMQrJmA?Nm8!5YcQvlhVoMI^V zs}x4^OJO9^7$HY32wj)vz$SX?y|RFbPjpKUG}=R>7GRlpVi8ZnZ2~L%#Sp4en+0$N zI|&}RK|aAdca#-KxbCbLa4f?@ht}Xa8e}fJp>m`W&?NimB|No7n@TCsiyM5MlnMJO zH1tlVgRyh;{OrspHYm(?7wLkOKrr%8^H@vw(!A$_#*QEsB7 zvg(dkD)0CB697^wfvOnHJwFvfaYsYHw^F)TC2*nlh_%1iybpIVz&YdUVR}|e5hpL} zsk3OhFpk-!JBej0Vfs{St~gJfBv1uJJWik@51tO}k@0^11@~DzrERw=)MwKh;6m@X zpvTjBI|>f>$DVCf!`AW1)1PsI;)+#oh67UC;=WC+Gnld50KrOD=A@&SA&az6_IFU8 zN*6a%h^c3PBWD_t)3opu20KiZvkm$p<(}uAwwn1NwLTPcFzajtq{&~?2AouQ?qFwB z06tG}Bq?-*KX(q9KATsIeb@@AV;1SJm~BCcKC65;IXK1)r8K?NUzMxO-)|ckdl_(| zqRCSjGsypd5;E@JV;Qh1Gog-ymZXkvrz}s80_K3%jMz5XWld@ev=ov}x4cjhettdm zGvao&x3~Wc?yr#j;+k0U{dl~nQ+dSQYbxuYZe-2Cz)K$z+$;OqE!VwA-9h1>Fp^rdmz zE-UDRsfbS1t02Zu9;Fdk9>$0%`kt>|evB41m)E!FHY;q54=sdZ7q+9SQ-+uh>4pLf z5*Hjm#MC?RBBdLc#-f5VRU)79?~&Jl(JybyFWny3F~P(j!v^rW`=Nq57+rsPH=AASsD1&~(Cx zx1VH^a*Gn7lKN04zN@8y#fwY(DgbEccq|%1GTmkP_rtw(Ti{BE!v=V`_wn}X`&I{F z=bLATdK4_}GyX zpmW&e9MSNhk$UVXDEfHdRB_hR$GW%=Q^3Ir^}z2XcF%7=Kf}35U3gSvmt9gKR}72`YHIk>}AtJt$Gp$Y#x);Z80JGF7*=K4B9 ze8NM7alH3Y66!h}b0lfi_0+OQ-`(}``N>Y`ATQ5kz%4h?+b^%#Nwf;8rv{@-IT8Kh zMprh~nBB>jvf#y9ar!s+Irp{4Yuantn}IGc-7D66dt@Q5f<#rU`nMKd8<&H#k>me* z>>rLy#AT4Mi`o2M$8F@4I`t}imnN?q@Q)}Z(&)uxOQ>j?DVr2p z-}bGNKM}YevLSKk-+N6c+6)9gjfQ}+RwCq9%dOW+pCv4^oYx1tGf>4=n2^?>Ok6eb zS9_iH0x84eS;Y?c!6WPty$aqT*K$;aRzv%%I#s?;yvhl8N4z@rWU)+Z;`r{3)aj|e(q$QB5-1M04ym_R*?UgV*&I0l5HYJhh!5q! z8>EY7%B!R%x!D*so4hC}ekez+S`@%E`8z;QL!TSVAC_g}=t88iL2Ftb$NlZu8qF!7fZ30{{ySmv-NrY-r75 zN*1AnlVox5{r5`isFlu`3~;b9f8W)Q*hTWC5i!2bKZimn-8OdA9Wr3PKy#|>`y6JO zTO5VGaZ(JKFgL$0r9z+vS1zdyE~JWA4kxqL5Yws9C5&z0?O}4h|DlE|<(6F5#7h*z zx1fqq4sn%QkHgIdRYz;9Ijq2%sxu}D*x|3>QHMyPDZZwhXH)E*!HC4VN4XIHgVaQ6 zKv=S*KjM9Uvfnji4ZZ4we-&lEsLs$A>fpn4!%PCsqE>{hKD(A6c3n0gKxypfh_9%{s7Uce%G(a7g* zG+1zpLAzOHG%hC$@j%jW&sLqKVm;vZ5zkTFkQnQivIba;5hKIrTr2Ua>sb&X2 zNqD3U?21vRZe*JUkjhHl#S0in61!l=S?@QrUP7l($6?2ZH}-DkxjZ3mQuo8R?G;B|#L!|II@;(!t{R!-yaZaUOCIasl!% z@G$TaRBZBhCLSlZgUkN;$VyxTiRu45p^p162cG)>aoWPt8Y0N)(? zxjFK8a1w6fBK?0l9V_Li7p)hwnx*Xu^EiZKl^Di&fOc-_^T$kG1CXX*Cm^_KimBuN zZKg8VOeI`B(X`BK#f~lAyj>GBH{JL;Ci7**3eleCjR>z@xkQs6IG3wK|LbX*GLo6L zd9{XR*+bS-r2wETv~qHl^UaLOsyAg_w3z1#1}k8Rj+MBHd_smhf#BA`L2=exSFqrK zt!AkdvGj(7*Gzvm@W62?5EvF%UKKEW*dP;f*<(>Fz(N@Lj-#Y?tO5H|ZF4zMENjT< zu0>tOC(V|Sg;&C?U}3z=zx1VwYrcJwnvjzrxETn`e($?iB zR;z`Epb&t27G^5PWjB>rTBl8rbg2wdkD!6LE4COUxv}4$1j*@e?M>;-z6$_@zb8Le zNS;fc$v(9sdQkb=#v^sYAYi(|i&UoLjI~beyIBwB$0_LT&?4Z?nXSZ-S9Q4Cdzd?T zaqf;eZ8%IoM&9hsW#ia=fsz4fJ^oA9&cyMbQr%fu|AFfNgB+fv+-tM;KVkiQPILCvCxCi0B5e# zUnM)@!X+?SfQ-Dwe?-ReAH$niB3Kw1E)=3QvU$h_J9n7+d6Mn9HaX z=g2XGrpas_{&fNQ@Cd8>3I&BbSVD_1=@0=4Rb~tKa>1e_L)et5a8mn9B>Ghcb&GdR zpF1KVBPWev;7#4i>e5A`{vor6wUYh9RnkkZ*369-r3>Vv*-Vy7?0`fG>K>l))~2Yu z>K~Lk%HH8B-YOxcAL*Pj&JdH9*zCDj_+xGo)6Y(lIV&h5!wc%vw1?CexXP=Xk44r# zFHr>5NevXNLPZpsv#DUJE91o-tivt_t(80Y8kINjedoz_+JQDStVO~)nnkD2Upcd= za(>&6lXP`%R22bA6UY-b4GJ#{F7~TY50ZN9*Q?)5YLZWzoG!I5B#K!2RE-JVTdY3#_Ll05enW5h*=25f(8es0d@Z#%!%y5sg%?b<__jCt{Hl%jPKY{f^p z+gHk?Qx{J+V#MKzS8o?aa)Q)Fs_K{;^)00uIMk=QH1Co6pMf>%;*taj(pQzYZLDP?CBuDb0aHcql?025K~mf=6T(}3kpGtiVxEvUStM- z>+%Ch5Jeja!~kkO6o{gqPRyHPzH`8=+X}PBS)KJL0u62I)e7$DOIcRg4US01vZ=F* zXJh!f7{RX@mvlUvvl>u~5;r=0V`nBI-FhXDOG<#cr-ECUY7`e5udigV0DBbCSFU+1 z=UQ9ym%2@f^v-U^v{JovjWLq0Z>I(omA-jwc?n-d{sp5M-T(#GXu+iIN!j;@?Y3J;XiJ-p`PBh9+DEe7Qn8&|f>YvXvMP~yicROQ3dLap6QCl0Q|A9;}2>ovW2u_B79kHlVg;hdT z#m+{G2NtkkE?$Vr3ioc!2Z7j-4}q0=pfobLCHoD6zp>Z z5^-0PuLIZA6tTRJ`qR96+3aGS(yVf^nb&`EDZIMcu=aS)+3t8KeYpN&d->)2_2m7e zg|K@OZO4(B7AIdfgFH1Av)ZbjmYl1GhTW)6JvWLvpB-a)vU1u2Wa7sDHybIn&lwtwVj3=y9W6l7XB z(#XJ(DVln{3ho~}{bi7;J7|01S`H?C*K&m#iC@SR zl%%^OdN)IQ_KgZtzl+0;sL^+Y%^d=GBr2s*hQ(VVoUzL^NRrEvxRS^j)Nm6r^O4Vz zPL&wnDw4;Fps~w@D;32HE$Z0RsdX^h$wWI;%BCX<6kMdxvCB9p#Q}@rMY~2-D(Ltq z`3s`~NfzqjC^!Ysak3ERf;@Kti+q@PsAx?-59!CWmH|y^8usxDw8`R4&{Ph;u6@y7 z{_-~}WF-^olF5@xE=d)_SVt`S)h+>y_)r3Zh^1nUM-oP0jL1;@c_OX&*@!b@v5aWy zVI_p)v1kflcU!{mRxalDJaevIsK9-Kbg}QI{0uC7Apow;S|8%{9QSn69So;K*ye*reM?T7 z(-Y|dR#aH!6x$X~SoecZDB7d;&2I1ErOV>M%n=H?i2la-3To-p3_W-@#}Xw#kpNQ8`V zAkp}vkog6D_7YFDA?>}{yWE`GKS)@2Qqi2EyFaw8GywQ`d|;S8*RpT251E@3=ERQi z{Q1R16>X#D1$5P%KPI0ce)d77p7ZJM?A?{{n{WksqeFFy#$-9Hjxg7N6faBGQh=|e`q|C#7)>K9SY;at7(RbpsR92@b2MvKyRoN4ly)E#bRu<**Ol~T@$ zBbt(-q(G1zxTzl-CtGlfZd;cZ#W%r#(saIbG7gbRx?F5(ZeOHvX*eIp1`Nc56LLDM8ji_u%lHnUXaB*T!kNfx*#d zRz0SOW%oMVRiMunoVE>>*It`UzVn%s9yGo-R3-#d4f)my3ab*!{4&%_IG~egPJK3OnTmE@Eu4hvJDS7HaRLV3EN`q1mF*7YaC?Y6( z25xS5UUXq59xEL#&gci+_)I)fS}L)Z&*1Oa7v#Vi)ih5}4d{$^?2bU)K%UxEWBkan zP}jr&V|)kT%Pzl8S#Gt}&O!*hBGM>9TR#_T%$bU1`M3c36+Egba;Y6xFROD^uS~m- z0FN^Uv*9v*Jqt1_Cm{qZLVXsGqgl(N$(3eNROv}ua0rI0o?rc$8fwGA6Ltx9sb!HO zyg_+p1Z?zSzoGeXG#LY$dWhNTMo=v2B|Hn3&&C0=5Jwe}Y9fv6XKxbxJ58p3CrIHF z%Ys{IE@qkOIcf7dRwkb3FK70f8}XbZ%gAbvJ+f`TNhn=TT3{^+j85k5VNzE|fm&hY zt_fKk5Lq5gz&)+sr>}^f-1;2jJNH9Z>Mkk0vhVG^fz>@CW4xKw`wB}lz9^8sJR6Tb zJ#T&IZ#>(6e|$N>k2ua*KHx4|af!A$@vM^s_4Q~*A?|hSH4kHVXCc1WeP;)9{FS8` zzGFRnK4(Srxj7h25h$bim*aiJ-*E`r z{uUr=+XWu7-Pk>F5Xn-MHOqKpZI09+Bq4#h>NGuR;@j`_QXbYDP47?RSq)3KrV{?J4`8h zuetoSx+_;HH#JO5;cbJ=wfHm`s%#=>K?EcDh*2gSQLN=@XqYuDYH7i&R|>kw%>fCS ztM3PU#V^g#Q9{$59_w6Ay-08^Q4v<#NpE-fF6Hv$-(38&js$jJ58f8>Ty>of*SO<^&ZDV zENFp+m+Q~?RZXhp}c`;K^AW^uS)_XKNCd79<( z&Xh2>zoI_7#6U1lO!KaZJew}EpQ`lAe;z;r{`qq9my#hQew@dNB-Z(yXg1@`QKuK@ z50GbSg~*6# z@M6ILb%s2>{LmK1f|bANOlRDC^)6>)#{=!q7aX0IPtx5x zzJ!f2`P7rabd5~n%9vLo8}lpQ*YiOPgr4VG+(f11or_BQPLCvtxixO6wx@a?fJj&{g6M4Wh6~wGOc*}(XA>%eU z1yLLykY=tARZxEs@C9R7EwoNn~j=k`eN_hz}j=P{dI?%n|ZP zZysXKNtRofDFY}waLqL+4@HGJ%jM5dUIHRnk4Z@kfsjZYZNwy2Wja3OA0&u3PvDy2d*dddL+^$I5nbpOk>ZegAggm8xd$THsY%(&IAHT~-(Ynv+9h4@b#GPT zDrCDLe2a|x5|fZlU57z6y+`8Q1zs zAQOqm{c6z^cm`vXvG`^% zk$VcHm}7)H4e8Yj>IrZe|1F(Po1lkF;?V#2G>K^3G?{>L$b(uy&;!eTi!>_T zA@mtzX0m=K8ihd@zRUmX^d^<^(!k>}x~xfFPg>l$0t zgoCZ?_1@Ri>>AfIEG0Qn>A!^x<3H=Z|CS*3kM{Eav%~}f1qTA61S0y^um5L6{{JZ} z*}jM9{%wrbT0u${RUWNtPNr-u48}z$&yht?>0CMxDy|e+ycZ?A8A&{CiLmdMlC5y$qINX1KlnuDaLJLsn)cWS|-b zBix?F2@cG2=-Hn?Q}L1dZKG?F@yIkgO9ERdhddtWvlTx!4Cmb2yHcul&MR==?$U1l zlp8ffbncdlhPBoG?Mvf5Tlbl(&Duv$`(#lK%w!uN#4H!qok6^htYa?vI#Z>8_JX%I zvQmgMu!leO?kW%i@E}xyIE9Fz8VUXqM@lA{rs8h_;x+1vlC+B*VF=jUF+vkZ6Lf=8 zp#CNkQjxM2s!3fu4B*&LuPx<*~ zB}4t_^@mDkmBPl!~vW>8oZdU77m+fgIm2&*`sF- zm1X>nm=jeWlE2ZypENS&6UPBNa^o_?<+EMBC6IBOjvvANusO0d0kd3 zB*r`bS7hM-`DASf74)nfa?#HVo0dgtCYY~xiedZF4*ZMswAZ&=qLLO+FE}vzHu*eG zTF|1nOWXD*k3C0$!>|Z@Vp{WREWXD}Va*qeWU#Is4GM}j6<4}QKS6dht`=YOw9w}CQ5Bjs9 zHZ&O~k~CG3i6PC426}T{#4{qtwdcCDcr`(gT|)kdb=y6`x7uKSpN)64&+5W>XH^p73! zza`jwV{P>R-Sdx$ll>oi=6`LO3!0X;xGm@(m%6<%&@hhfFRi5hJ*5OU1$GMkG8!cT zd{%|g)JmJ^h0gk4Z`u7TD@h9OjrLT)!I|0!u7|hd2Rq(z;W`oaWj|W||J>9B!8mVajyksrP(IE-#{dHyZm059!hi1Qm`0~LBkV-ugl?|{cH%x|( zRhTt8Y%AK-gjnkU_e?#}lQB4FHb2x_ndZJ+$wxN7G6sj#A`X9&plVn$HLf8otKd9z zJK~Up_R{Oljde$Lmy^S}JTLtC1S z+2XIDN#a6~ zY4!9JoW|lUFTz2Raa3^aiBf-HAqxEn6K6UUzDs1PKZ6n4;YXUruw||kmSaLK4G;n2 z%!`~w6~2$ofuVr)2|~l+Rql;sFm4l6MS}yZBZ!2ULUP-R5ec-4S%iD(Tkhv5=z_HcCKIGjbCJf*TA;Xri{4g(dDK-m509U709w`1VL9b8Zn8XfQqB4L4IL{-@c zHZUmelTh+EV^K`?2m+sD5v!b#R$m{|9_hvZ3hUO$XZsH}BgA2?PTISX@o>}o_lUaQ zhKVGBb|(O&CLohFpa#L7U=e09oZTL3p(Hu-%8FM*Uub*Xy8$1t(DPSax$P&Gp0SBD z%8;VD6sJ#xYVUzG_FVNrG*VjSrCd))kxE)Sy2w(l8uEGVF-IT2(`tl%OW$!iPY7}H z;4&>7nBV3FGlh47fiSm%F)Ya+gQ6r2+rYS@20Z6RR1!D>{jDc~8D_%hkw_S+-y|?Y zf<))Q1&>Oi*Ms!~L0AQ~hk=0VMSTl{tO!mERaF9YxCd@5aVgZ&w1!Rwoeku21;I=cJJ!o(Hp&+RDZ-a9aVSF=nYG~RRLj%cd+uY!tQU^^(; z7zfcJ%o_Z3p11rKLM$y_ANRI2x$=DpEh`dn0Y7o@FFY7-V0LV6+ZfNTo>alSnmiJN zMGZ0C9A7#c9GrdLxqXv8!@OF&d*~BCV`w<4IQXOQK8YvY^5e9PC8MEjTT~bi3}o$m zV(|2MBjAeD^X{B8vFW*SGhn&&5`HtpE%|KF!F!aqn+3|Vy;aM*gF{0L;Vro8Ds=GX zpFHdZ6cSobc=C8AMg9S%Z^M4xD&WB!@suziMQPb#}eq^A3YCggR!;&2Sw291Q~ z;rdLt)mbeoFq@u{LZDsF1h~80SA<53Dtg>f=7ScC-LYH;qhq{%3)PeghW-$RkL%yc zV&D+D`6{~~J7KkIZeJ>H5na|)c94NdB}{EqB-)?^H&9OHjbjNF>k={I#Evw)=ra=D zg_D{w;6DT;fwRd333`AlVq3wf5{i;nT`4fKwXZ*G!=0e^x>Uc7GqNMj{zwq)`1M2v z8Rg-*6WXeSL?8?S&SMPitjR95H0_fiy)OHjwC_xo-n9^yRQ~$5H<$ZPH-R5jx3gtu zw(YKt9anv?)Bm~332+JsD!*4*0ZBp8eMU6vkJeO1$91*6lQd`quoEk0cR0()zzj*& zi$I|_d@O$<$S3q2ylruVypp~t)56$<;H*ubD9Bz>v}?mZkRh`RCH-7|hChmyw$pn1 z3b^lYfH$pXEkdg~7{HA}$d}{c=#vc%L*mP99JtHQ4%45)afC#X9cRX$kG~zH0rSJ7 z$HWi38p@i`N@UH^pul2in?nBdMIAqX_gcgh-+z%1asGU{m=bfWtCrwR$6+JjwdnrM zVL$aUI9hY47is%wb#paWFt~;(ivWpw4!eaX`h?V+HW9l#ZdM!y1h3Z88P4u@Y1S{$ zFd7dO^`#OJGGW+DL+|YQldt&~-)aC}f@?n^6i!i(r;X>|$GUPM|D=i8^u(U+1HVVT zyM)$1-fBU1s{&#=*Dpb8ffx0bZyRsg&Lo*NrjdUOBIoWNP7PW=?LUFL-wz(9e)75B zl`Q@2(DqKHAN=Xn&hg^LcEoFXhuYe@b4U^B={4f8CUmHWLX9YQONq+i>n{AYOlK;4 zbVQF?Lh+?VA_bM1zcc(ef4<=1Vf1d>!5JlwnF-pUJj+H`gG- zz1cP@k<;ZN`kG7fo9^lLO)gU*KO5QmMx$Z9X0TUR5Qr|V zuV#~R;E^o-5@yZ>drXXKH(eKNL-*{d9OzaQ_H%O22~E?Qrxtd57Rwoq?R)_Dy2YrFfT|Y%d z!ydg{`rk7mb+WW!@U|wqq}kREQS(kgb3SM0qCwpQr>G@P+E;EFsnfxe4BdBfKB>0w zsrc^nDc$Lpt2TiBurai2&%ykdxa$ih>K+?IL#x>w9-_-nUv*^f>m&>QN5_NEUM9F4 zFGFF88=7H$AE#gU+FwP4Y*u`0&*JB+QiL5s=WU)MMok|5B^k$iH^BmZqF56c`?6=` zH-t+J#T63+9|G{iZri@>A47Yx!b(P7x}RSZt1Q`4?>Q5m)a;JDWK6qu*F;5kXb_a` zR(ui)b?r@fQU}6b3rFG}W8CkEJGqy5|5n8@|FatSZ-+OmsqSg+nId9l<&ioQg$ndphKg?N?sYKPEsw9>8BFMMxO)(N4fI3{ zwj*QA-KfCqy|!TSY5))nzCS!!Z9}?=@3)D4$~mA{D35{fQ&ES)w*lKwI_qz% z%g@gQ)4BXOl8ino9SQJyC|A=WO)9$)R3Q5v0{LqL^e^&cMCZcQh&D-%ul+H2+bB_IPR8w*dUwVt<+SP?yKopxo^ zRE!s4S0M`{-l zn32P6#8?Hg4rvyWn5HvhCkU z!rmx%Zfh>0DaYc|4~5D60K{Bmw^)g^VgJ4CslB(On(_RwEUp>IVWFuDw}P<;)_l$i zpf^by>zgCBdOQK0KD?WSV};#cR^X)77fH3ei5NEa|0Ih+I;E z1mJ@1?2Kp0?M&xL=>NhOSo?;kGHK-tq_Xb5EszrjVvq=`m;5-?omW+&1)x=v@deX7 zS1Hjxrmd!_5K76=1NB^lg|``FmQhX{XEkfyWLr0a8m+`83cLpX z>0cJShIXW!_6l7D6R`Fx_ycLPwKp3f770#r<=oLCJt2&eRGPfg1Kp9YAZcn=+_B7J zi*wg9Tey0gpGcNo9^a`@m^<)GUks;%ue(IHq6#eSArK}Gt+$ON&$1!PY$km-j zMp*$qsB(byzPqog;*1BkK}VUn7gAl5qA0zJRuR1dY*LnqYD;$mr19P>my|Eay11Vf zPRHx4EwEd9>F%FXV&*?WIT>`KPOSL4V&0a2&8;A;LU7(6i`jOBRrou&B738UOv<|k z4enNEU^lZ*><3KQPg#?=3ecqV;&)DOB|CMVZR8w2WBRwz*nZCpK+v7KM@GqXbZf1#e%QqSb&33;mg28`S`m>G;f<}AC;xl^py=cpcrm+d*_D2XTr{n> zI{un`oC?FEh74MRD03u?F@#b0m6uAO(*&8&43*i0@SfE^?{%LPgS#Q;i$jbaW!#jX*J6GCzS zjGx^6ycAHW`=F!k3>R5@_oTZhCIL%nX<|bp9o}V!gtMSuVHuNL_ zeBzqJ%_rdw?iV$QQ3n-vm%o_Bn5JHEm+{zLB7}7@j+}-t9zH&k11d*W2Vc`w_FOp^gS-9*m2`*1vg1ya2a9~NDX+cGjW0FoYEuEtX8PdIjo*a|sv5pC&Ye$ui_?$eN(DLW3skyx21biYG>zo&qFoX; z7|?qqNhw^S)+tkYZ=Ht5!`T^+U1=-qK2WpW+p~OJT6U~8Wx`Sz@eroQ-sr2v&hamT z#953?b|B6hoBB;f6{!xtOu0R4O9Pg1)HR=Yw<* zX}PaNEY?nFfAP=FPfrTDhN0QNx1ss^=xvU_`z;tWY2aeK=~YBd{WLUh&^V>VsHp17 z?%pO?Eyw;>NSygUB`315{IhlRU&yIgdX!6J%r8OMybW_QnkKWP|+a)579-bB} z3;N+O8~6=@Cc=zf@b6@>+sJgext;)6lDI7D)u!Ff1}4*`M!bY}n~?Pixn@ot!Y1p_ z)*j*b5R3~cOZ^JY&JXWY*!c~+pCmbySO2mLJp)#BHFC|j!S){ht-@R(OiH@ITH2_G#$ey6i!kGuNAhJlsUB)^T0=_4n ze26zllEj6k$YxPaIH$D(8U@oK$9|x=NX(=$&MS~=(GO?ZtnjBY_oF+Ery)A4`#VCt zJ(Ap+e%bSPun%R)v=Z*Xz26rF#Bk4_E~*AoXm#D_Zku-!e*xVRK-K+gzWbjNlbQY* z3;)QhEtkK(zFsi5Qck~LyMckk?qU8-(1Q6}Zv8)${ATB5`7d?N|BAYcPG~nYlyfOpXLbpwmDpOcd?!NSzW5;0%79oWF4EX&0KbtcQNAEQ8u||bVLdxT zIYt06u}xq^RPG)nK`ChzGu$LcPf4oMrKgN@C~5BGNA`EZ?3i;@;_WD-oOQ5~qIeR< zAUNWuLKv{#22KS^*ZIEjWOpRwH<~?`pWb5Pr5%QJ85ny&pAG(St7%F%M2rR&bF(v> z&Y6Ts@Udhc6oA+t9eSw5lFasD`H}?{93@~D+dQtRgi=>ufSqUWe(h!VV?8#%Rk+m$ zsQN8Yd66FG1+Xp9>H}OIqpIW?;p7YR#w@sJdF*UFlaJk%xJ1mNPpI`*StMz*rW~TM zpLKhmva0N15$-~(0XL6&Ij1{{!55}R3`9_{{F)Ry>RU*BoH(aIVKM-z1k*X_+T-`P z?9Zgv{4+CTMc)`@4NC=>KB=oqgn%T{W@XvH)}*N0S=&_HE8-#;0ufj%2|m#cjqpo| zbWV@<_$4Z7-CIX1rdtD!jm5N$TRmKN^wh5H&C@gXXLy4n0$t$WU2;3f)|OVpR@t_% z-L5@4$1n2!QE{duw76g+PWM1-l`gqj!ij?kLDoZXx~-5tc6;g_cu#Fref1|(W( z3=`;IeSt$eL!Qx3I0OuQW?GhB>#YmVl{cJwbbEJ0phNvbG13<^T8(sElw2&U_*uB# zs*UU(^7p&P$}=@$-R2Fe@m8o-_?iV55^IXhrdIT;pL*PSp8b#67bI)yniUsU%@xf# z=e>_+p2^+;-VxsEA9QchZwhY}k9&`@7rLw6ExL6y^`!0lYVKi~bciVp2llrB_pT0^ zP2z5Hg2XL5JA_{3V<=}~j(j{BF#@qllHRy;ti9CZ)C0A>My|lD`ndyXhs_;;E8o7? z z+IqXa?qF8To9DXk@K2;K;rFdQ-^~(EL&B(<=-Rc|GpUB&j9_d0T&S><}ZL83F`+DfQ z>AE{P)qa8!Z(Ha(V!Vb}Hd#)r@9m%$ZFlz8G zYvX1z!m_GnOe;_8H|tRAtJP1lw}y+3i<;)Y%>)-C_$DbAhUe~l5)<_`wO1|OmS5vO zi=TlX=}|_g;?yEC38ACv(h95&ogF%xy(G+CBeZ~O|wnFO3)An}59RW#%12NA#$@E{UZcDz9G9%B#o1gdZmc-Y)LE-qG_ z;-`4zWzDS>H@|LT0t>5|B_@6$p#TWW#s)$Lh6c!_6=Y%)T~zn!j;dMP7Xu4@z$A7i zb4m-jx-WPZ-E$j?9DR?vCVx70t-mN7!Ddal@-4ks9X(E#aJM+wTzb{t)lI@@ReZa; zRh|Ma0O#XZ<0qNZoL!DuN6VA?StnWHS;aDCis!VLs-Kk|1szqmikp8h z>>m0nD5`zz9zH6rba*`;CMv|LyX+sX7XnogwXEA-ce``CTfYtAF$ua`Pj*8hE9f?T z?Nos`kQ|? zcW${)HkUWMTOU|Eu4-BTZVqeSZq8+s%BZ8wotQ4RoNLsv>0Dl2d=))At9sMa zwe&7>wmr*U)UM*z$g%eBc&J+p)l_Yvv$VFNwWYPBwWc+vwa8lFYHO-x?Pe`utytJN zZN0u}`RV0(yau|(cX!cj>(KS%Ya-Sb!YASO*ZIrvR1N3PeXsYIRL3vx%VRMyk0Q6|b*wgUmI-N9JNLf6uD$|%Azp=C z2VEbi6i9ZNbUW4{>dvjrBJ)0=wgEjBevUv}AUp`u5I~%un;<}E+m=Awz&>El(A!Ty z7f9Y0(|m|kLf~E~8Y48VaL2wN7vg?^W8DxJo*uB{FIbHcyjIZZFZTa~v2zH|wFkFw z+po55+qP}H-EDWr0;N=bptPeOGH>SQd251Q!kCyPkcX(JOp&rgE$%l=3OCi&{H&7AX799U_0c3{2xG53$Sbm|EO9TIFQ@D z(kzHT5cz3Go*n?G>A@I@8D7I50t;IMWD~|auK3Oe?N!(OPY#lUAijyEmm(NH!Fn_G zE!ZqSG|>ByNR62nvLVf*5We_s@tsz(!SIP{9xuzavj6=wBrj7y&0QYOFb1%o@2j%8 zKgaL@wL)|+0?8@sPVYUZ2?*X11_|m^d9TPbI$WDs6a0JLz?=~EZJmu1q#)&^|Ib`+ zsrjt+H<`JR&)nGT@3OyuuLHg-XF+`C^iKo%#RIQJ83Mk+%rPo^1L4GKm4OpfP~jY6 zeDL0VgVF6`eNbLuxXR$1mP~{BHLK}h38CH%YuQ&PzbfcLym z_BuG6(-fe0^A8fBTa{H{y2D%cTQrc{S#Z`3?R)wMcyo6T37f zamkRJV}ulMY?Km@vmmv9Z{e_Sd+u?l&3hquIMG;{W}&Igfixt51PLF1@g+W7f+uWW zd2kRw1o^;Uj-r)$z!|vmXsmg$G5o)u_;MPl&BFSnOe^^LP&bWHn}ZASh=akM)&We; z(;&Tf;{jg&fYT+QTwF`l*{A??bEg0+w!(Zkbs@l~6G)6aVgR^T)05-G60yU|)^_ zG2B8LOuslUazaO}n*OJC%80I-sg?GC};8Cm=ifAX&|XA{eJ_Fm4sW ztrs9W=OAz9LL5Zi;x*l~5L=F9zq1*ff%vo$KAQt;tSF;3)wM)U`@fb1V;+M1oEJ0! zUDb@J&VuOE*Lh;B7N9$=gVm3MF$u!FKG~P&1*gGm5F=vD2gHoPg8_9d3Ux+-ZAF3k zT=eQ2n*k<;Bm;CA&`-mIxeY)Juv}%qpqvEY_oZ=fB|v13;fKA-Wmh zy#hcx!vMaBFFUibqLlbXqP(+&{tJ?e)2MRvjMS^KzJ#F6eu#PaWpu$noI+ z;^Czv5#CIImFj7Z63Q^~rI^p}-a(Q0mY|h6_6%HDJ%Lq;b8kI&k3?Z!ikH_Dkg=@&s~{gwga}pLr6Hr1xaQllfoNjDOs_j zg?{z&*rCIPP?Qiy1-z_CM};7&VdVK^=Fk}tCHZHk^sIm>QP)B(bM}BwuxfERb2tx3 zYf*)~(z!-+o^^khf|FVLN6$yz^+0_=hJw^N8FPkrfCpGth`!i|5{w5Po_Odi&S}^y zeT5j=Xyo|N%N+3|Y=zK6?+cxvV>9+6(0bJy>e9a_Z9qmKx&^%X_DZMBV+Ml~n0CLO zP{*856SBKv@-Zp>qF1duK&_w{5ieq{%N)%E7h=!w&d*Jem%N(}A8AJv!YOo42a`CM zT$PtDCmvlAX6Qw+&`p(>-Y4u@0-^9@R{N3ALi}P5ya}E!gdI3Iwt()`^_1$-wkAl& z@7S?f7f&PhdJo+J4%dWqHMm^GLWlzB8K^0b+=h!gU}ZPZ&X&R=lqa{~W%opN8`#p; zp9T}`L3tMAGN=-aPJE(ms4RE_;ySq?*6mjGlw{Wm<<=RZ0=#n?*b2ZCcOV(&7h5WjWf$~^2pe&hKP=d7 z&~wzS!Y<|^E~Pdn3HU$VR~7Loc`wXT2QEJyB7HH_xVO$o1IccYsjR?BamP8SJy?t7 zR>elm2%NXI%f__oZQB3Bgf@kJ*tY?1{jP@+uWguJ1LmTqYV-!9NDh9(%9vfjUslgw zpJ5`0+=?CkDz}(EsH$jF=1hlu3V! z>Q{=b=0`o1wzvJn+lm`mY^e#TWH)F;ugI9zyS$<cQ5W( zxTG25no3~Bu3t!+cvdz@8Gqh|YBS;ULJjiyFpR1rboYaQ6T->4l&*$|zBr46i6d`K z3Z6_7xxQql^OD@!FtgB7Gxym1k3I<|k8{nl=>2 zk0w@j=bhHFOiNm5|9#mjN}l`m1%eN^XBC+4?k)lo<+J1BlD22nbHaxXf8HC{6!V(( zcShWC9m&yEZaI&Q0pQvB>I|?B_UZ1f@{ih3sHw?i(^eMe4{ao++pl)dOVD|F&8|D4 zP^gcO+3`+uvy=tAmikug2dz52T`X<5c+)sIAn-}a*i5SUXZyWq%!oZ(N%HbRwe&~K zi4o{CIhgSExwe0=zf7-3W%|=&SPW5}cx@DYcIo1tzzH)qC{yye#G^^U2@6uAN*1n0 z7W_=oHhjtjQtG%yk_6+fv3u)bQ>gm6k)jMcnW~ke;4x5ZOxD1Vx9}EUTc2MqpQT zI#30_Z)^jB=B7$T-uYAitpi)a#liRuw9bfS+@2x>6k}avgE_j8yx57$(z}=ZMR>1Z0Y9B=!#fDeu^O=LO8+$PVyvQ zQzHaHh_eEvful}uAhdZL4{ns^t}F<09Te1A5w=>mCQv1ke+NcPMHX1*0_4wZT99v= z$U+I1eFb<&m79)d=Y1`OK`#|Wa zbehuU8=V0hcV6fvAsC)xC}Q@MarlEMx>o0x*y4zVpw#m2w;_n(W{K;cY8Z{)L51I} z$uCK0X<$7$A}X(lIN}m><)+_oI4ZH+NC$iRR2hdiT_TOir9%rx=Qib=zlureEq!XtqcHB~*W^|EX+MYgFq{Yf)RTxcQO6!4;FZQ@W<)8Ye)D ziI8BEXqIr6C@y@jOLrqTl^-}!4B(7L5*gv0Wj>ULeYx}N69L!px)wVO2o%0uaTf_W zJch+f7^$wLq2+x!-3Ya$kmK&SyCT6uII5N!%h2Lwxas>YG@aa|M;M#HVP>VkFzYHe z;cI>Nx5S)v^S)YNTJh26F?$|(b@k*BQ02ZL`n!ztYfNa38)+htqlz`_0O1MHf ztNP>8R4cS~?AEpZX2Q(y=To}H6@CTsc@4a#)UV83=DUSG!h)ONhMTqm?CX?*zIw|o ztNTcy**i?+Wdf@WNm{fPVd6oU!KYU|X~lT&?W}HSMy4hUUobWeDFY~jLV_i3iQ)q& zp|KYPAPu4AUn$s<9SRzLD3e3fUJULix zBI2kI$bsNHkX$?EPwUm{<$nsjSq@3Kj%+&@x&6EyL*yoL2zcAwjei6s7wY{8* zb@O~MKo^R!*L`2r26u9g7ypE^B^O!f4*qq9B{Js8xWmxt=DDxA>QcHfb*{Q5vBM*N zE8}wxZ2(K{EFT8Pf7OTNoG`EPEE7i!OTjQ9Me)x`zs2TSFNDf4qJw`*<3z|Xzqi13 zKwKn6QkU<)MUl`Xs|;ZaUCv_ zmEqk~=l48snL-O49>lor`q)i2TR!6FkmqcaSTltFeC|!?k(-`yTosVUyKPBT=bh(B zSyE&1D`7sqc+cP1YM3^rz_*mFrZSAkUp+k2F?k`^6hk!>T(+A#mo?N{P>Sd|e*$`_ zyb1Vz9Dz+Y%qZ8aBgdLO^!URE`8l=AZx=dQmisc=@iM973ybq!B*1uGof~R`pV4zu z-8q@{a?NGWPSJ?D)BZ_B6%4zJds(3^U zQOmqSfoSF=HP(s3s`fz>SeKOLY?VNJW_(t}x7I<}I3^3mX9OUuM4=Z3&6oG{3<(1j z>=U)!?%XRLSF4Q%v~h|b&bL^V*T5qlY-x-e{UCvgo}cWgqY3R>j(VK&7voOfuXo!6 zYaWek3|_%*tmG~B(Hzb*o6se9U>g)jNdi_Ilk0s}1#n6Rm+ZCR558VKvM<(&7 zMa3{@3>AJggfsaE(1iDZ`dtV{6vUtI`Y*DCp9ijOp>5?DYTKTemYczia(daJ#y9bX z>^l}@i(=^bNAVtrGzdrmUSo*u-mqHwSfSPy_kRC(^KQH1S z3Dn#_sqMG*@cpPnzj>GxwpSY0+vS^I+}!~C?9AR25-r`hS&$dViiX{ZV)6<8BfvDoo!&7@Gc!Gs9 z5`=jl*OAia{IeyGfSvQ_>V0tBqEB|G6CZG`GCH8;lqc1+R}E$L2EB1gr<$EO@$-1D#OKtddiuoyctVc3Qiq!=dP6cUJV`P5J)yk9HhylYPDC;QE{l1`LfywCG#e z@AP?Tp2YV4wDtP(NfOU&VNgSMAtGZJ48-vTg@hDc@P>qsqEsOyI)#Da2oK%%D&is! zw@%*k$S`Q^9?(X1Fnw2X0;AAARB!-X_9p=+zqpnwx5{T6UWiP4!@X1HBfwElvdU_+ z_!6Pq_9Kqumv7FDG zXmx0h#QZr~b_ian`5*FS5j|IbYI~04QwMxK>dOgKFTc_Ra0!V$6PxNyC7oeB`zD4W z_ueu-yq$_??!fOD?A<~UuxrukJQ40*35eHIN`7tu{!c#bY6Oh<{enb~-TTb4)?Q;Z z9&S_FW9h?~QhaWqc+AF9W5{2*TI6ZQGDW{$2&LQ zVEbSL=O7B?`EsqTt`%(T<+58OpYEkZ*Sx*tyojxNw!=HKT-CgX6zbraiWqj5hXskr zzWAkzWTjnz3Vh&UTy@63aIX&NlDI z^d9GK=@~@@&Nk-R!fZe|papfQTj1_3kcqz2lwvjw+{-6m4DTLXe^#p3Kx)2NMs~eZ z0#wTq%QrrVjqvOs|NGpuS56E1fGUX-o;Q2*OmUkpbOG;b1ef!w^Pb-B`Q*s+`Ibhj zW?gD0AIH!D;IWhq^~StxuPBWqF9KxlGRRx5&q!#e3W+sO1}71hl2_~@1UO6N_uB_6 z#wxG}!T}MyHqbK+ctJCKv;)-GqKO0Z8|JYuWPQY;AEaNe62cvG{c!Qs3Sn291n+MQ zW`ZV~FQu^(twUzJlV|*M)+8cwJgbW|)S!Vc>sK%?ba*B_PReR_&OXhvD;en3Ys(=l zYHCRsy=@g3(GS-3}1BLk09>)8nlx!Y>hs9C-a407C1gm z$WDIRqVY7a_qCpXPpW4buOzRQ!4fFU`nV|yI*qqi`Dxe-G=}QlCfKo|&Ta;_&Vz1C7n_pB3})so|!rPXv+htDF@ z72Xca^J^?Ij)fY33rCM!sw(D+0KH@66%4Hw>gu$6G3u5`Q(5==t@zw< zyrFH=C?BLF_`yoZ=Z-y1h&(M=hRU`^_b5_-~x#! zl-q-%1XFkv21@fM>O~9?3Ct%5CJ7Ak0}^S69D~^lLl`p)NxAWXFY0mtdC9lP(0mr|;+bJDJoM zO)x1}RmI)@3VOQqU*b-V>b^{m*Ynk11Up--lW!rafoPowo@GcgefQ@lUk4R#dV!vr zlB~CNyV=^IJOlevG*=Hlf0pwp_71tq1J;B!o0ei3kId|mKAC{yQ1?kUsEip;qln4v zZuYU7*hNFse@qs%)7>2BJ^JrvD~A0ZBlv>`+JoVX)HItPLKfd?WXc|>lI z6jHnQr1ZGK2X-|K=aC-{Ov`C`X}f80`R0^4R@u0$Ty73wXq*1pO7j_`K9PW(8QH3QKe|c04-YqTcGha&*a8T+A)UknH*IhfX51k8wxlq$OhmEq z=XH@RMQH_dypCA;5F6@P3X?LkT9SuN;!btExntc|{px6LdR`pp!D@LKXVMs4*@iTQwUpHF!{w`DAxtM}U z@=@L>5&nkZ8f_T*O--xhBcY_?Q4WEZ5^nD@{sqttEL=ccgEt;N{CXNZ`yCnGFQ=##$GmlmFgwpO}nBzGA2EjL5 z7JWS8G%HBQo*SEE%8+p`MW|?DZrmO_Wqti4wDHo|i&;x<4kdz)B6j%jy$h|Sh?{?& z`o?t09;#z?ZBpl(017FxJktt+u)xW~2}edRuIWFXubyUEZ7T%qi1UZpC=eGkZXwF? zpM_yeTYa~A%$WKBycJaDxdM0wrbj5FPb`O`cU#D zkEbu)V{_6gZ+4Q+zmtR&W&j2vG=fID5*#N=>S4@3%lT|b z?In4uR7?n*nfn?L?j*bajAT`dsCxZakHa*H*V)1g$XSOL)l};T(vl7^YMLrXm>$t^ zVeYpQR`KmiR}>VptnF3p!4b|E1WJ4_^IEOVakhu8Nj6@sL#%;kf~{e8(Cg`#?I_m6 zT^)GFQGiOh>qN-7ot~r^X1_iK@B8a2@|^5JeVSf2ZQ$3UEI3mCV9*Pa!GIG z0@WbUh)ag~uQwVqUx7fQeIUR|uCHwD7*2odgs5}@jRc%qH-*1|ze=HrW*Gx)O^35t z)DS9?>k5NwGqHNS>?C>;16fN4wr=D5^ZMr&7N&;t)fg-`y_Ip}WB5?XbU@_+uP#9mFdQ z!NXhvu%+a$BD+v+9^vhwic-&xrT!7A^CdS_E!F0*=Cq`-)nF_avLEfyZ?M%J*Jb(s z_Mf}!6mN^g`t)WR5`sd-I*ZlmEgQn*w}_C1?&pdDU&z%^&VEqP*I8hx+{90l)mI2l zXrLE5h<^3f5sGA-5+pnbFp?gSQ~y9~n4-Bz(C#iFjnn&}9epGsDsB?K#auplY7JHY zg|@Xf1gNjeNJYUAgOg#&-)`^`^>7L6$}Mq+8A5+RA;yaJHuMBP18c-|@%gb~Kt2g=~j< zmpKa(j{8y>OBjluGdmU+Ra#Bf;BzW(1dVY9Fayj;)7ETrxg=IHmyAj(!t+1%R3^@T z9Q4@ZYFyOn#2I#4#u3IL@D9u$H2pBL>ZutV;WSx_ZU*5qM_7^>3&sh}>&Vf*ijakZ1jg});ZtU$%cxw`!vIdp z_km>Ar^v8ipt189;?UwBqeBCcM{}EfnJrxu8TGO9X?+`y!W_u4M>36exJkkJw056Z zTT0_prnqeRB)mhILu^5RsbVwRXWcN2MBGA>@Up|W{+}X{vj1&xa$&EBNz&tbxf?nl z>khui5PGAWwLX>!a&aq#29yQ`6_RsxjuilE>2#LKs^z4R3ky&HZzh5KYsvjlbc<%z z7%`PG>rNrdPybSMeyyAe*6nMlv(QqzuQ)gIAuq^Ir*W$AM>W#j){=5##|oBQ7lcRW zz9+VL7>QpUog*%TLB&0)&F;S2Y4y3Pp1F47|5>H!bAEkp23IDf@?fz4rTKZ+P(Az} zJhXf_!*oGBoDsJsHbn%>;eKJ8hO?IceDeP=c)(qdU12w=A1+Hy z@hYSXy%A#rNMX6Mg_d!sv`S-D{6pVQ+eH;bJ@7MJ72Mk4#g&QpllEs~cgIhkE6jD@ zqVC~rY@{sq%vwrWITDdJM{h85I+@eGpxnUyQmdUiqLV&;gTHgo1xbr2CLWs$fy5&I zbtzfQ@3WayyJXj|8L`j9sv5qP26K#g1v+n5ym7`?(+yYR~pJ@{?N zh_CR~@Mm1TGO>?o+0^r(2~}bUQUygC*`Z->JK_7GdSd6rF!_8tDHa_VC2j+L38jNIsZ*h4$%ZTTS3Iow)xf zxK9}CS!rZxB=Bp=>>DA=Td=WpQZ*56HH1M45D5?oj*Byd92f@bGs-h_^Y92+kqEON zZUrr6A>Tqmx7sB`-H@PIqm{cean5a?Ml6qIp=Bi(r4Zfus+}>}=&@CS>+6P0)xH2?nsMz4} zF#S8bW^mC#soXj+jhjecOJ)HVV5~JJYH<)3S-s7tnQ^8)QAeLb=pymnbH$r@TWbu3 zBRF{p?Ah5ajsh_S%5(HPOCoA!gp~neO}+>Wn{0>DXAPLulYNY%EkuN z7~`8H!2XgM9r~RnK>vcvReGu9quYk8Fua~j)8h4f7dZZs41@0FUI2x2vcjOe6H7U6 z(hYlCCyc*#IURm>KrAG0hrr$;TYv|We*zlBqEj^(WL|s*a~^bX#&YX5CnR@#N`7V0 zh*3*oX>4B=iSI6Y`UJ`>W$4B%7qJu=4AYZ-lIcPI&bn^yar`V|BmHeJ>kK1r5#D|f zoN)EwAQAm>o0HJ&o88KN_FulEw3dxl<9`PLC5!3Y_pyA_Bd?_ZPv{ZZOxA<_&!dS_ zg=~*}mpked2@nGGk5|Q$?g3KG$q*otIS6ReNUStLH_(=kc2VM^s3jsuw2(Rs)HOGTvPcA_GY=M9+P~FVHZXUHG< z=*w&wQX*Cg&spzH+i-5n6+QiWE3FNAv7^A~CFCqsLH#x7ex7X=?qxLENnWkK*rlMP z>%h+CSOZkm27{;ZU z;Lm$);gt*Oy0^ZI_m|V)$*#R;quFKjSAn z{!%b)NO%&X8M!U?OL#boFXfLslZv8(vIfWa13aKPIVs$E8FMO;iMZTQ3*rpGBTn#i ze>2OF+#&YZu$lDcZ_`!+E;%g%leDw}1wFN2`9H2I;6cwGeQuUDa*pSm5zR5ky)BfG zJ8#oyf0sEn1&<~U40hi>FJl_@>=IHg>gd}r81 zTL>HwRYu??_t$$iTQdjCJew&$UMcdHvBUJ8B!*w`SQ)kc3k?kpNdtl7)|N?E%q69X zz&7Fbek{AegZT>n3!e}3P()R~Ne`&#piH50Hm%k5VFsLSL+e2&H0;O*;9#Lsu z@Nw%G$FZTtY%5QZLf&eV0!Y~py<7jOjuf0<@}`uo%-LZTS^R9k8ogw>PwM zO=C@Uix?>tw2>G!-SCjcI(@)PeS~)3#B~yi|AaN2zr1n#Dn1K!mECWDI zM(5jm$WPzqt3L8k&i1L`E~`$=oFNl~-)*j*ahL40?3s!}GFw4Axq5?DsVWHGX;b1h`6No?8#WRP3f`rEdjs?SonnSYHd96$-F}pQlrJ;`c`~l9l`8LsDf-4 zj&RVwsgzZ%v@o9S%rowRH$h#As?0%U1w_U}p%o5EUUtGFWrdbKAe(p&F!2T>Jpz8X zIr0@p!F)vncez$MzOu1gezK=8D09F60~Rf}Yl53wk$Afta~8}ivfN=hb!h^l6CKio z=@NE=xMamc@b~COv|s{bd<9t&Qg1>nxQv<(%r@wyr^^an{uo`mXhh+cm?gsvKG~Oh z#r%c|<-~a*Vv47}huVqtP3j>ZguV!#FcPR2-z5Dn%wR6o)Xy~Z7~%@^%Ht~6Dg9P! z??X4WM4I8O`PRL6msOVSbMAJ;59{&)(o1{wYj| z;$s=|;zP(4d<%yboB`@vWwap4}MX52>3!ly!CCiEf?olgA)8^xMGO8yKrq(!fBJ zXw$^NAaZgO+<<^u|2nIdAa4T``QQR)PH;`^ha0Olu#&_IV|_$&xS@82h=l(33F&WWo`#`GKdlkSC#6>s>aVaZeH9}XTQ4L+6kUMYaa}y~hzQw2pTL)v)CA9&%dVzRU!(FdSypGp zri^+|AV^9yIDd%k_4fO7YIi}0^SB(I_m_v86sL==Q&XqfA_KvWBsq=bqU};eA5odg zNHt=tILYJrEoFc{KW_&T)- z)h;4COU)CjEVZ#UTvn;nCCOw~*~-t08_k*2f7CXRvGkW<2dLS5hRsyY;g{+xx)l14 zWNB2jdHLl(R;tW2ADbeHF^~RWD<9}=^?=}2@7Gu)q^1{D^iA7n@0%nPI?8D3jNIP$ zW)Ty3SHOD+($K6?KV63B3KY*)-k#a-(Bs-(3T`0`_263xEjhLyz~#*Hu-!IdyZkeB z+wLt1Qc|38s>aM&ZY=%g^KlOq&82e(Y6Sl;VmvWe7GgY2q3p%JBw_19KHm3h9bdcL zXrtFHZB>rD$zbg8EcFTQqdIUcyhl*N2qT+nl3~p1?-KrE^MtqV71ftP>G}*8+C~O_ zbj?k%GY6&i=&RBj!PRa{i1M*Yr5CD4$CYNk&paQpmJAmYhPd0R$9dYdhwk1(f)AAY z>NXkdfdfIw*(5iNcVmR%ki{{U&1hZ+LwlcpCLb`I_!GZn*#*rZE(*!-I^wd4rhRMY2GYU#j14-kR6*wHny`0i= z={Ne;90b~fO%h9bKloj5DleI=&M)?4e5_SrW2fqvpWNhpFBem(I(uoSiJoAY8s9Yf zUCSr_ov=OQ_!sXti_ZT_c5FN(kZNak+&v`?i3%%%rd+p)>A5>julWLFUL^F)IILBy z&Ae(kRVFXH+i_~(_&slBjDUIRdca0H&5;fqlV=JncMHYqiI26q^jO*_42IrT=t`p8 zJ<^+<`Ek2s3w^W>&|&Q z>{TGj`FkB6 zNf&CCWDL{{_r2n3Mov!&tE}N`)oBCcq|Yqp0J)BcWFFy2m_-HgB<^NBOEg-kZpD7r zR|=c*IN=Y84K*QN@2oacsIOT`2$-VmQWGo_9C%9q)Ty)U#O~*ga*BO$>AA(+|H7p@2yFzi~r4IM1A@zKxJQR5E>##Bn7WI918;|uBd>I?6 zv}V%#{_XtL&XQ5hm@gAc&h*ZVN#L*sPqNA~E;c@Mr$_S8A@!H^03%t4xbl`6ldQ0# zXdx5%$AYiek>=|5hB0FKKCz>9J-?Z=bvWBOE-;_mL;@z#Xru@9C0_C8?-j%d4 zUfPBDGUI5W9Co-PN3{%H_^wANnA#t9XC{8j%|+y$i~lU<9@|f;@kcw{6=x*{$@)hAYC?h_=A!5bbr{k zw(`A(Hp~)V{btei?J6g}!}HmVgyt&8m)zx{d5Z;j2`2WJ%<384VXyHtV=>vT^x!nJ zXM@)Espeo*d%2S9UDmBr9o=r$Lq@Bh;n>$+QzaTru%wqhCj7hGRa=z*T~&XncsXC~ zrv3}pjn%cH{4hbBLN~j0Zqqkq5UJQjGl-3Tv!sXK;M2vxlK;r|Iz0dJ@>mgJ>8YmH zLk19_>lymdCcnWpkW-uHlzkX8*=cXqds>6bQG_omHAwC%@)7wswK(HA%73C|>GpRI zSJ*$7!roF5Hb>=&DugI{jBCEIQ@hqVc^V(ujyMm#8@uJaG_Is;Q-;zEekEnog{g@vJ45a^GGbzvp%Vhc2AxY}Q}3l($w= z>uMoYqOS(q|AURF%QKQmxuP*4rWWlG-SQtixhlpApzlb{(GUZHP)=ew)!q9fLkwTR z`7a!7Dd2p<(AhAdr2-!F(uCH2c)*CvK}k=qxwI4V836BrP2HvTB=&@wJAV(oYj4m_ zoJokGn!3yYn!|H|Mc%xfv3{Na9-B(1q6{CDjKQ(!i3QI`P8yKJiv~xAnizca^mhsF z$xrrgn=J`CP-mVz&d>0YN6_*Tk_Z)? z)ugzJ3+eR|p!bxN?4Ljw3I&&lLj+TiRn=AkG0zt}RH@lGSOvYwSCY|ym4@^QR)F9X z?+fsq)HVF|7sr#AnzwZl=vFwE-DDyS3r*0Wz*whggYvN?v?e|=2u+dy-(Z3WPC*-ABVgy=c3A5L`@{6v-3VSl@ zfe7k$x>-x49bN%?4s}q}N^0z*d;AJ`(j||xAKb9$;%x45S!$e~a5tfwPHJG7N=un@ z6SGu0?z8Q0h=#;C+ZV2Kr+dskWr|eITGwg|Fkk0D{_uR*YKCq;+4mnI+st=&HJx6!l5V z)gd@NF_WE@ot{j^!vej#o=&MSMvt4wQ?3|-^oGS1yl}XwaOb|Z(5MW#>OB} znI||smD)&g7(Fu`;JL;{GNLd(IgLdZ>*vnZ7JUDD3AGknXa0vi^IV6Tr_zs}oruQw z5VLg>GoFvX!%n+^m%4*7w1x{BeJbvO`5vZGLLNIep5a7pd}e}fG=Poy&sx@HmeO0D z%yJMdAqYBldL{>*fahaczi65&BnQe-|7X->6%^Ln0Wwuco1jDYWC$rBr7k3kEnS`- zGm*)slb5)oE{{=w#ux-orj3Q0!WHCbt|;r5wsX0O>n@5Om%wD?l@fsy$L!!G{v0IA z#bPWxd|DNNlR5i`-@&FXP#!ZoIWakxiC>9+bOJkFj;D9z^0O*F*oyQPpOYykpNE;F zl+bdYv=#W^Q^!wm*rcA$&ky$1mUJL0J{NE}?+oqu0MntEo}d?(Olfv#hM|ZmesluT zuA0LbIL`_7Dixf1FpxSPw%wt{V~Co4MZ(BJW6VpdDLB{qkJemcnK-tkB|_MHSU{o4TN z#biHkRTZ;_y3QCa?x4PL3xmx{nhL)uL-iHP+f*?$#_AfFsT}YlgfO<|BgVgftljxI zQQFFYua{GH4q%3wyA_u*LE2?(KP|hQ*$~UeG2Cdd6aQGzMVrAU-dFtAxY7h?QQkT4 zPCW?KsV8+qGJdzeb??~YkKwI=FHJ^&!>&6J6|E!fpA-ABORFaE>nGlmk0;kMDwv6r z{tP zzpQmpex*^VU@t3D0;)ri;4H;a0<`-a;cY$XZKYBB;7&e2TprPFZRwcqw>mpjB8k|0 zTl{qL&NoJPM=;;RXwAJ*R)@i<9wZrf0%;_81By`PQK4X5OhN5{(TmJcpWse#&u(xz znG-5kil1}y`|)n%y<|BP1E{w^;pc8#s!O%eiTFdZ;7-oi&b+u2gm}Il1dL~0iXH@t z4vzTWpNtC8%oQYhj>>3^;r%6f!&kcDpAO-i^b(95DDsVzgzB@yf30rZ*`M-6IynhJ zbkOe7#F=RKMZ!60R_Hll#Id1qa?tKpDDJ96I2`d3_^^oVlqOxm88Uz%)8HzVQSD&f zs<_bIF%f8YM!%}`45F$wd3?sW5-KKP6)3H)^SC-~qRQ)Bsw!?#_3GW59tQDNU-Gt{ zsT~ZFYqimFITJ8h?V7m1v$QIs%E7c$M3FM1eB$$`*SgZ^R3`bt=#)i5L{HA*`9479 zED72$=?2E=$1h}TrpncE)WNFMMMnCqib}%AQ*2NV{bRZ)RH>5b!pA`U#lS_2Qz9O8 zZfMF0vb=TKW++tP^r#St1#6)}#KDs}Y$|EqVUzlOGwn3uX>5s;4iBz0CMCkAy-!gh zhc%eYc&4%l#0!rm)U%vyfwI6Za^XaYQzi+*&}hnWw&>8P3AW@YXbGipy1|EO5|CVA zCIQ0348#Y+^k~CWCYQR>@T+%^n;(F+CrVtn=fFwb1E9$;#7$Aq!hNK~T z)mpqyU)V|<8IKHV4j`E%TCnM5A{vK?B}N<|*&0V5WJ~-fpGi1PSh$%;*c=v0NwQ8j zKz0yXp&Gg#=nXwM?T^+2q|v%4$e#hhV9anS#*jpyU`*74(E4{dQROgr^*Jh09AVbZ z4uym~r7$3s;9u_0QT`etVw|_n;q*#QVf>dOr*7-#nbH*t*_L z{%ChOO{lGHs{KV1sA?IynI4hyeQ7gq*_-~s#n_8_eT>57zaLtWQ%cq#=2J)@{oMO+ zvUI7&)uv!h$A*bJ!zzNgcBenmxfZ!t`A}@Rd+wHHBl!M(VnSr$eXC$obSoTh z_o`XH=aK(sFuxSqze9)1x6oc2d8?A;lfjy$?eg}q^i(c_DoaWFl=+L;$+dUQo#_-_ zWB;GUEFr+|aPRQW;3^oOlfp~&pl7v~S+90XjVM}}1Sk@9^v??Qh575u{crUH6asWi zFSoZ>(uelq0JKgJvJ|QXCAf|-Qinf79<>wfWS-SAW{3abj8h(~zv*wdO(E0_VN2p< z0bD5(aLG|2IET29Uy9hpsd2&AO3%g5)bEP#=swgwaJ}gK!Fmz7f8}>euM@wg$&qlO z!vlu}ck}GyIL-0@Gb~yvQZ=46R`|b%Q}v1FY;(SqD6=s0|7TzdV~U!EOrg``XwJ!S z$SmI*o`|w+GVA>3n2#*RlEsw9oa}7w(vp=X*C zH)i@iO*)?6Il5+f=6Xl)LE;b09hm-~!`&lOw3fj-jMw0~E8r7-%D3#I>PnqVDB|K( zNx}Wqn~UDXo7TWnU0Ljxn1@H2xG%_(M`OT$t%CowarqyGQ~$FF{!`xRca(wl*WDMv z$Jdwdw_A)dbm@QH=YMOn!NkVI#`%AYVg5ti$qU|1dGXKC9XofDMFP#0;5U&tg}VkYLUNK zz>v0hO;b4`Yh!!MjFQ~k=IX2Ssq^XWa?)UO>*&0DS@){>F&#n(mc*qY{1++>_4s5j z{odi#KOml8u!=KA^tilRD2fm$^&NOE-L=~7I3TSib%tKWUZfsDNtCqPmQQIu zCVf=Cl4b8P_q+-)3SzYUAi;!%CRg#vieMxOlg0)WbdnBKz~c|ZmkMc8W6ocRFSPIj zB4nC&wHZZJvz@Ze_xo@{u}_3l!^nSxgo2F0jfEzRU{diU$A*C!%60m7`b%=xiuJQ8dwCbVlbE*U&RYBJCBv1-cr8YZwI`WvCMO4Pxx-fZZ$V7&)R#22it4F0pICI^%MBj zc2};a^JE2N6M{__yJThshJ|C(!J6g;`vu{J#Rb>J5dc{FoYkYet)IJo^n`e4^4#FX z^^I$edyjjszlVPs_Z}iYi@%mWTfK9<5#94&@E?B_e-V7;e)z(d`S17T`7!?Djl*c; zt|R&5y>r-??LPu$hYWALZ@Q6XFF*W&BM)(qM}dtn1v`b90)+*Y3aJ(73PFTSh}47r zZgM@aLll?`(L1`4(N24pI8lRQEOHsfreUuU*f_8ny=t?nW@a}bIev3kbhLjiy?V5X zwc)znv;K6k{j}Jg+F4XHspIN$arr8_oZIQ~fZ45eb#ZZWfss-e&v!4oCdgl^H)m^+ z#;QY;awr{Iq$g!3(VO`B^IpE-)y_bz5ijp+eI<6KcD2-@c!T^Z?rH4p;Ao%hmiG4S zc0EEGrz%PjlNMu)T}6f7`}L`uNcs`+bp8t_|LdiPd7FJ3>6jnm75R1K8UEe*Q|m)s=!@}X z`~C~`l?v36nEn@Q9MVT@@Fxdki_jN8LKhodoE$Ty@%iXVqCK%hpydqVM9`;n-j`@U z+_A6PHSF=1N&Z*N4nIq)@fPGqF4n7FcCj&qz?buC_3FjyGTg^ozVBTR$=mx|%f&kA zhcE2Me9c@ZQy6`?&}rb>YL(KV>kbqcg0g_xBNX|>rMS?pd0xC zu;S@^b-Cr~d3Cb6=qY}+w1wxn{J3dZKqi^?-b@chb9{w-kFS`fBZ+0#L~N?^*LgkPBTKTLmZ!B%> zyo;QY=l+^|Ihsn$?mc;TKBCQ*cLB_{w=~u`%9<557C5>eHB8a+FkaD}WX)?VXv}am zJ6azdPbp-#XOr;+e#>L|%juQ2&d;A*;;(TPIsP`&G_y2wFjF)WGV>~}oL{myDatM? zY~Ax3Q6nHA=sn|Hx>=9WbM0EZ5gS>GxpJ{SZ|f-RF03wWFDy5*5%(6i5!Vp6AIU=U z9hr$CAqeD|<4)koB6viS4t;TYI=L(5=lKAhB$j@i-D{O@^M1UZsL6lb-p|g5%JF-? znw9!`czm5e%lkgvA1kS4(QvUHEu1SQ%K13lGE(saR^1!+_D>Rhx!rg7ZxR`Ey#DP^ z%M)^cHwK~QwtR1M61Tq+y>>Ukq2%|eE?Q*X6w(I73$JXLy#wjk&(_P!qUQT1L`F`lv_mA>< zY_{)8Pt?{4DOw(G*b+)v_%Y**YJoS}AJl6d0q7m2zHYy1&?69JaKBI=NH>U?XsO}Q zM=EoLR7uF=FU$)k0g~6;e0rz}wm%YgpwqZ*MZ$hqptK;p5M6NUkOJLQ_V`vHz2NUy zc{qL@a<42qntiK3{p3!F6jluD21*KgF)p0Ii}dn!j6t>oRj`S>Lol0ht%Sdvo7BMB z3%=Ob@IW~7zZllE5aIwLo_ISx_xwU{WPMu4f#Q!=eXxFbAnCyI*~5ZhnFE@8*FqaG zR=l$V0zV>L&i!sb=viO<3!gsuS?JMeP-3!2$0l(Q@mc<;M+}f7*eB-W6cR?L7hs-N zh%WXp`a+o$?`vEnGj`v}E7h8UU+}R}P6IZ`w{NuOsIdS0K0?zv$c|3Plro0CP%lI^ zq+f?(4}SF~NIQZ}11R&Uv2z&cEm)H-xbb=EU$F(rV?BR%h`zQi%nQ`-sp`K-3*7hl zJk3KO?o?|oeQd|u!I34}~6 z65$cwnZ@GuIp_80`@R2I<3Nae$`6)P8I=k7;3>f+-m~6WL3obIXBk0+8kH}Eq({0Y z;SYSI1m6!dw__6sLFT*!*)Ta?^-uHdn1d|08s&mATd#of*!O)I zuhfC}9JwvkfkU4U-SEC%6&_gaOfyf>F|3rr_s|T8Z6<(5fYVPw+a9af7sxXEtw-}f z#zg?+Xlz$vGS^{ z6Ms6sYkmwf24t^^yNG|tgrl2xCI8TJw!wcOFK{-6Ddfx_2ihV}rR2!Z5Cvh@kAZ(F zkw_!&mO?j`odgL~4UT_6JKP0`GY&6Oo1^4*$K^&mA7mr$^r#17-pr4Cmw{dwf-8@% zcou`w7+>gEf;{0dzOQ$JdJnQQz7M~lf9DbwuLlah@*pGQ^DXIC#ZG^u+gb30^327- zldmw*&E%Ua$Zjj_ku0NOD;C$FG4otlNSeM-*DNQ*Oz4*t4piC?a5kj9+0d<~aF9Vz zG&=(x-1ku@Sk3E-eleN0YdRC#*^iu)H3!!P2V90<$ zrSJQhfTneXU;WeGJG01{%>AYxK&Uhld4BVIVOY~aXWu>$mi?1ZzL$TDrlTwTP#~Gi z11ayL(>^QlIFI|{RS$u7cic^3l0JhtEN(YsH7_K>cSh#OxcZ0Fx?p{(6JgFiD?MKX z_b<;xAfw}^qsw0$;1k%;)Z~8e1|iXqKg__gO!wzO&Ur!7GZf4qLcrqiCa!VtVZ(BuZ9uxz`#g8#zN2E0eLN5%%>68o zQgE)hfHWpLeLu){*!2X2l`=@5WF}A$Ue&=Xgi&5_?)tw(%=&6LVR)*~PEdxTP=>(| zj6o16WC7Q(XE;qeY+-KtklBL!!^BSd!P5{dpmk<=?_`|IAnWE$qvidI_xZUyLg3ab z{9)V_Z3y1a5H~!#5xjJNQFH}5<5Hx^&dCX&ycTiCX~<9B36NP%myRrE7MST!1qBAymwMG zCe}uH?@?G&hCV1FoOmn0i#KzW5%Ij3M*mB?XAMlR2`D0G6$>0-kJPwt)1)aMdx?<>wOz*ZHs`)oWz0Ix{ zv}Mm6W#EYXBtWCJix}eKlVJY5Wc+wzI_yFeU=27;ARTRcj;dx_wf0PxhG;Bnc71@itaws zn`2N~OmQY8sLsEOxCotOjB6Vi<_(`6$@O^lJKDII~lib98p z$Ym!@?hG1(lj>M}(oqfP9SwkwX03j)I zg7^N&K1xF_uau7vAysTV_&)5d(k-id1g|hsLT>yKkmT0!Hh?;kHU3w49PYeCL(Yag zE)aL{!`ZmGJ;j>BHIpjN)UnW=UPE+kg78kl5z{eExF|)N)?1K}ayovpC}JUVWX8d< zeO3N+6v}v5>XyKPtUZ!));MuwpAAxWKo)fV*KO6JxNZ@zw60Z#d4@5M1&_%XL#Up%q?k3N~2gbP-It-&y+GnzR{WW#AAYgTgga3+F2 zaayA^W1d$Y6COE%lIuFF8Fm*5(N4AI~3!>-!C*e1}L{;uk-mLXL0PdOms z!Wyay^CY9oX04LjyvCx?0khKnRQP7&h9$9L6yfjalJ<93wcy%+<{+|3kNz=wqUTuE zF}(@g_|w15Rt5qhsh17$uVe(Er7TbTJF8FAC0W>XhN@ufK!o^ETZ|(5CSi) zRuDt)fDtca7Rm5)33QUvJFTX@KxM^}t-~gIno}Yzvjur9{Nk%zyQVuxj~!{CuuGQg z0#=zud6IF0=lx2$!l3i{L_Ldp_)X8VlioK;O1U{{E%9XGT?)K8*v?##5wf6KXLJ@a ziyGt?mQ)W>*BROBo15MqEmZ&M{3uk+cO|7kx-_%+3R@!N2`7oDfn%YRE>kTsBu7Lz zRAF0nJJcvZ>YXUZ`}#(+mgieySAsXRhJ{jsuRb1jhBHTLK=25b-fs5%eFZ0eYSA|W zqt$4bt()o~cqR=Ig;pRmcrJ~?pnJNd62sZdYU&Pj*b!W?N3OnrhzHbhJ?dDs!u3jFpTjC6}Kn&nw?4k1L-k zYr#_II~H+S$MBBujxdjC8q%hYX|(g|rPoezkWi|RRU4>VsO#oe{Z>o+dss(dy(#N5 zzd2{yqP1nSWwUCtY2%s2D@PPhXb?LZn?_X6Yv{e(Hc1U2z5!rJyUp?KBm<-n#B^ZysagV zr&Mb7SWcbfdDzKVUYV>Ibc9kHipO0LD}@zuM~r^}0x-er-MRcFXuC z#uVFnXgq1tG^$0GKQz>6=dk%><@|)scjahjPLf9FvYFW-5l&WaEf_tK%A%7VbawXg z+;}bWXwX&EmsDMeXJMNfIww?nn!RKZj~S$rkx3hE{lv$zy=Fv4GIgM?9WIq)rLJXo zbacey$%*PsiXliuxvngEmOeT5!f9anS0FD{y*cDr<~f#Sae+v|SgUb&*wCwZMA0~s zvngZJ-Ra3cncaRp9Pnpz0m#af_A>iV)Ri&Q-i4*q7o|LL{Xl1Qa4Swa9z`0xB%@3u z;eZ^?n$4Hgb(}+y>QJM|SVGYD3NRVsM3Cxz4)`eYd8O@mL)bLh{}5&U+1iL4?wuDwia=J4UYNY{?hD5x7T}EJhV8=R zA`|9V@WY}j?gmf0vnF+qN=_ykZj~g64uHs|w7tT#S2E{caAd>eWgHs zf>K4qJCb=Y!_?6maOBr+Jq3DpAdSffZ=DYtIbGzSOO^Xwq5Vnv;*_Z`DznjBxbl6@ zKi8>g+ITal4$^NYD21{UCaP}Lxg|4w)Yc`I6_g$JPGEh~$;Nn|Rk zGrI!O?F_pn>B))*T)-iury?CCllrq*r%ts=wP18B zz~ew!>`K(_e9=)Y9?Q;9TejSNKd7eTYVEsE<WLSB=>Rm9cUF!c98fTDUmAFM0r)ZXZRf`mIG(G}^JvG9x^v6Gw?B*1Rl#cO}K34gzR%-CPzfVsg^=;nE|1x>UO zNolq6%L7kGe*MH|Amjwv4D+~~Z_~rBUuGcpk8PZm0hzY#fH1IV7PTarp>e+fbqMQ- zL@tsaG{`B}pG!VU?1wNQtN`>BZC`*G`jFpcgdp~0{n%JjzVw9gczZr}tkzZj!!M)k z7TR*rx2W}a^7SLjH!FRAysk7l3Z^&%Po-S}P77~Qb`V{E&`Kf8sZ6KL^tK#Oyl-+l zf!Do1-jQ10&Br07cdHwO4D={Rg%R_y*%&CKj7dAmUDlmV*+99Ko_BpB71@b$H~Iz1_mDjIg&;;U#+#}IR~zB*?i8qp zr-zHzw=y@~c*>mV1eXV8yfz}pODBJx9}#9n@uYuPGn6G=GQt;QoKm;FS@|=rZbg9@ zorESAub!-pp74`N+bAbSOwL)`3E>KM(4r82InDHE%d0c{l zikY`H@jt2M6h%VVc9Nbd$snUFO}G8f623{A!!^mnOGXMZq+`J36Xk7Ne|NAdpR)4M3zOF-QOm}=0h>hE$oXtNHX=F( zPe=1`Cym>!c_$0eR+L@HHbv|V*HpBdHGvs{4%gFu!Esv^*fCpg2tS~kOv6TKD+@|3x)BliZ6~D_r*OkinTh& zxV~(>Tl6q-Bi^Mb$S<9ytX8VZ7RXITb(Ns(wTzH#etH|S`rv5?4A3Vzn!5@jSTb)4 zwU#rROW(sH4~pYu3q1)~F`kXz+lGB%-J<_sEl za7&veltIfJp_%99&ihFw#@k=2+}+aQVe{RQopvn?W~Nb!{Dk!C68{pqe3$tO{d_UY zRp5z!lSw@m>rm0FwOi^ftS!|N9M~!&NVEStjZ{pUb5ob{1Kx7WO{6(rGUVUL-;A=+ zyQUQg%T;v<%5j_etf3Tl$j}_lA*UrVsCHI*3 z@lz;Ol=r3;5yXf@ZdLlCpiMZR<$B6~(a_W?4w3O*kmq@>aD zT#_+08?{6LQYkG!FkE_&iIWcn*|^fIv9o`fbERW-?#FW360$8Wp^OaafOg8i0Y$~` z8g!03WN{$EP!^clUsi_w?PvdoELzo>gS;p__728BR8+-oUy~7*-i$wkyvIJ|DTS+juc*wQprDwjb|?7HIpJQa4XIK!^ya;_i-2U8Tof})Ob$V#lgm_dKy?+$O(b=K$3pqX6Rx$R?xdX{ zpQt*ouS7m466m|kzx?%rOg&0?#?E28u`=3o&amiPotrNymXikK;cCF2ybwG`T|nm% z)+oj|Mmy_NF!M{eKRnT&RYZ~nv5F%Z{(-V!5wer{NhPzZ#|eh2sh}blHZm+(P85<_ zr4S0ZaJ8s*@-#Q$czbiFA*Oq@{Q@AnT?WrTiCP|324f?h5wlMEkvU}9m?3M52cQqj zi;z@Fc4{PLio`X=X3sPf*L8Hl&`Z*5 zOMUMXx-_Hnhv?cSIMs6(PoAsq6ae+g%b5d?!-w4oAloBsLVD0cA{Xe+y2_#I1MU15 znz2iN@YLkm-{A$fXwAvN=;v}lg5Z{Ns7`adO8IGpn_aWZ{EUjf&5dk1$C{-6&jL%$ zEQ+C&Jriolbeuo296#P}^R-BF&BOXuNdPWCCg7v-_keeY7Disxib@VjW2z0ww#~M3 zTUiaE=lPy=o>j;cd`VqY?($g#HcPUMzojQ2CdUx~%+O5kKrp&NZfn$>{#RRn*Lv$)U~u)m$1& zh|5-KeqMAp!17#M6qmizDJvT=iA=F4WZRiojMz|TSz6594s5rP7$;6hh|4uqQ-V5b zcXyk|6LI}V>Py|Xuwj?v$G|j19<9#S4?eU_nKh*fjg84i7qw;+Jbtv| z6`-5*xvvvtL;}06T(7k+1zZTS1(b>OV{)+1?~ael&Q``YqqV^*I&S~oza?nm#%H;) zz5D5*L_U_g}_lD$~LwR)`j$R8089MvGVmM9inj)(_a~0 zZYvnCiMuaWCFquevLx&&QlTeAhg&#Y4(Hu!Db~wZk>QcuKa;(k5A!3WxI;>2^I7f6 zFQee1M9wM@>z2tys&{|)<>03}u}E$aV(H1QX>8b72+0U1DuwZl#50qNPU4S6niw++ ztD9*Pn6-Pu4K#Jz`0`xZjI0CgkQGuMfp$)SaQVk@YqlI%u8e(m+SuxO9)$|ep63Y4 zNA=@P{xE!X7WpAygLg#EQ;W$pKat zifc}?L&6uE>Ri73?4MF@c1{Xyud;iAC(F8<;g;1?)+m~fPB~+O*+7i7F()+~A`$QC zWs5OHdhuGenBuJJ9y zgOF~n(Ax=@b5$&4Mv88;%Y}+`rui%XeXq{L!d!!RZI_GAk_~O_`-wbb)k?bPe6a;j zuFq+WjyzxWm-^Spb_hbTJ=bdWa?5nCc%y==)=3aW@j7ExtwS(^qmV_68$4;TCPDAy zRsfn59M1IK?20+gILibMnaT(rrulC=OOP7}$*Dztnk)|A@J|#(H`ki2ZZ(fuDy6k; zUGKAyoM=nMX>e(^Pt4narQ7OL)4@|tWoV#Fr901RzSMg4By-~|da$}IQVnYjo9*+v z^^u2k7A}g>P-V5-w)h-^<~sc>_XotooYM!myXey)8dcF-TG189?v;x-3hfZUzD#I1 zG(kP-9c#)Ee5NzQR=0 zv?92qjLVpgA3qluOL@&wS^&%YC9Pc4?)Bga@i! zhJ1^Q)n;yoTJDbAIl@uVtIs(qm*WV(E?F1tlXvz&Mq?d|<*5y0kS`FCNkTv919 zln%q4)Z_=^;CX|dnNtIHQqFyK*ZE_JJj?A}=$EsbkI!)F6;eemQ(?R}x7Bd%eIeg^ zQ7cChV^@h;()}YF{5Z#bRDxQQOs1#%gnXYTDG;6{T_Ke3^e0cxs)C%oIEuE;J~i-z zw|IXnlK0>=W4-2V^=GYH8czg@)sIBHI=k~Kt!$Z!?Dc024hoXc;uV%&pC#FtVlYbx zZ7kSl`=x4)-X7D3*9ShH2Yu0zdM!>EGM|> zy;q@jM9({3Hm3cH+|m}VjN=RIP&_UgJ>yEB^bO}z6@nPMwW~U za}zq1&1J{m%>ZqM@?L**AE~bg#a9iz5>zhqCLPj!=Az3|gkki31B2T#VwvqX!dd3&I9-TmmJHn`^bB zL022lPhH9VnTg*CWZ@cBU z@*P7oS~i5WGKqF_mhzP`rDdM`r%uY*1ALg7u3_QY+~h+{TS*D~L~qq2b3L_=P+s%b z`+tZiq=hwbXMg*cWU$buFUe??@Ubw=$7iQye#_uxCvdUOXP*G?O)Uq!2Lgc77F9vF zQtvS1y&Ro?f+jJB54MC8pLRUQmZxjj+VxWdfpgEQogiv z=A?(CvN;WW0McX6H!->IuAyNR5d$ zR5wncD5&niJ5qlTs(ws)0dR05xNRL+*>AZuM5In6I~2CHn|21Y|CUAfC5o z_ZQ=-S2C1u4bWv#0wQIu+BRxV3^PKl$dErpACKn(#rL4ef$*W)ca+Pv72$AA4JDUf!KQ7`0lDeL-81C5=3F&7?aXC0IOjz_<5a zt_%Y0@Y-ovWffjpwHsh_IX|S5B=w;at1xNr!8HV6FvEy9EfdPEDS6Ogy$WkH!db_v z4%ebt&c4oJza$fP0R5!ns=&YKL&o(heYN34cl4-cgQQK%HFo)~XK(!P0^9Oe^R=b$ zxjf{x$1iP1#6w}MT2k}5MRy`u?GVma4A%$bHu+$`<+5gomFR*v3FLO88b|W6j=~1w z2u@{V8#S~CLjulRLTy6FQOsI3mBl9HR=LJf&UO##ZgiOsL14cU*a-i$Nnt=w7Ifie zN*Q>D15T2q3ALY|S||=Qs9%NfEl2rJ(jMPz`2ocS4cdM|ue$e7O+_Z8Hgv9XpHw#) zLyXm4ZEl0N>gzhoA3eAJ?b==AaSZQ1spWF6j(C?f^S#P|=hv$U;8onI-Sbf0RL_=W zU*xg2aL$q4&z{Fd7_5KW7-&SR0xt13`v$iN7NT!u*!+T+3G5CStMF~{)?&`B8NDZe zUnaazdQ6O|mKgfGMkFXy?M5E3FQsQ|2Uk#yOTJQQOq zEZMv-@M`3XA+)!L7AK`v86NS{N6Gf9Z&_}02a9Q!sl}BgyOq0zFWA}Ad(1p0vjVIt zU)UN6JLx3bzE9wrESEIT6!7Y+n=a}J8avPL&X?DwN1`LG!aafi{!F;MPn|gE9(D~J zIOv?ccFznd21U`K3Jxaz&JTLl`uWI7Acp?g+DjhH{d(V=g&+P%Z9i)<+aqG!(R9`N zoN!_@+Y|L!Tj(9UQoLgKT28Kji+7PJ*`?6gCj^==#BFMUEm#DG#g{CM}ecL-DF4UQ~q1e5Yx)M18}xVepWMFl~vu`Mz$T7Qz;D}-rY$~3PP7aQ|$4qH`?STCU!siA0a zUoEIK9{`W36xGe@m;Ash)VUVPa8;0uow>DLg@(#z0b=dg!tLFym{sz{T2n^KVM>XF zs7{NjvR-l_#=??iv6pJ2Dy~HgYjtFhV-*W&B`s!)rOG14LnY~?rl^ugW%)9$7Oj<4 zMbjT)9Z^|6c5DfY^t{A*PAsQ|J2=valB$9pjm-7mu~hTdZJ0p`7KqLNd}9SW>vjya z*S=^F;Dg^YNt&TZ=Do}fSf@qd$z&(l5Fa#srjBpGIU;P(){XavGOzibG0A$vN0SYc z4M6A>jKWb`8}bPw%>6yWekEX*xuF7wFk*Jqq4BxY*Zo>xEn{K4Wd8~{_;CcV6?GIB z+bi1IVoNMHAF^^Zv8#xxva?o4>@SG_;%y{?WD1PHd0a+JkF_U@hB1oun}&i|mN8iR zvWiO1?0&#=WlvJ_*Y(Zly-ZU*-s$zd+5D2{?0mFys|lA-iL-1>V$lrv}p~{-<8$Aj897ngOtBDJI;L^~sq!1Dn-=8Yn@7ZuMn)yM?XV) zE&Nn)7h2$OOrPeFu9jiFhn>9peKYI1-}J8IH%H8B!lX0$te*q@J1J=v{nx%+YK#(C z%52UXk5eM6F2TfYgb1C#W|5fe)Ts?Ey^{tcdI<)06R+awH5tMe(-bJKaU5UQ?QK}4 zhFO&<9+BW9tO}CkP`5M)byPs35J{P}X9U00odm)3Vj*~;n?<_w-TOAuYFT}Z5RQB0 z(0J8E*i=@rT8&yvB?iLwF}4e)q2dFZ$}Z1D@LqCf*mLI@j&-ODKt{4z1QfShQpStA zV?Vk7d9(dZHA0D=-$IS{7)A?JWSIZMpZ(O@q5iqsiG6DcnF3eOFsz{dd+b4FTOPOa zSFEEFf%nn^V~8ru8Iv_f%gE5J#b+z;L#+KjP)t=4r+Zm+FCGf;r%rW-Z4o0E<*Q~x zoyk^_hZ1v$2$YneF5E^~u=@VDPW55~uX-OT$1 zp%Oi5H|5&l&uA0_g|9VTgv%c4kWf*vGAxfPM#it!CE8C=?)R%#YsaR9rGl)%E`~z| z4AR~q%ea!`2!Cw6VA0zCql&WOs4jDS7={}DPgjvD-$@md1#!&+cYBlEBGW{ndU@FN zP@W!n*vl~>Mj4g#kUC0^McI)QQ^OC}cli}lm~Qki6u>3cmK)?Nz7ebj@gE#csT-g@ z<1ku`7TVLhEz;pMI73fM9384BI+#{^ng-3E>7jYUrr=q3uOTO14L{GVT#5<>BmU1& zr-Q$)&)jm6f)-pkdMnPvDx!uX*d~tlYH;t3g@y02j}Z_6Ip3Bz^sDK!LPyi2IWQ8k znDo6Yq=<+i0^bgh3$F=Uv|G9#ym$*!XuK1HZT-^ud3`fMg0oIHBmR*?2%lzw2LW(B zO72dkEjw{{EW%Ysol_|Ch+|R(nhY4F{@5v5Wps$#ZSPo*7uuB1jKjsSpW{PBl;6#G z5MKnl2^UjX1jn~?bN`)Mfzf=C^Ix)2_S6pUm`{^*7p2K3Lb}>^tGhvJ#GL7irP+~O z;RbkR*>(*vD@ctHzQIC@LxwIm`|4pYqTccdo^+^Pa}&p-aC5mr|Zmoc9pr5KAm)ksIM*;I|N@32{Ba)9CuX7 z!?6T^O+_pAP#2VgxCaxIlL|pLw4rB@9!w{#YJ4+ny9kCj$ z5!!F2vEQ;diChO~as4{I5mH&}{hYYOvU*bk6GP9TI9$?Uz51&}2EgMw`EwtwJPr&ORmfQMp}LHXp57*IrA*bSo~bXEH}AM)n~`FB`BH5;^5LX{Z<2 zxO5y5X^-<@5?qG)Y&*G4JZU%n8!Pt*o@ft;iv`+8in+<(7pv&0gX!9yW91E}+49rv z6XN0V-bCNT8CRow85J_}i8El<&#jW4yH&{aKd{(#y{8OwuaIYZE0o^VNH!?RH;`ik z3ek9WbI&=dLZ%U^_U{K&zW!@ZyUKW5_~GWs@oOP16ZjYWZYmi@&ARGczvh(lanjy& zXEeoq&SDo|w|$cjmpn2(ad^DiVbEELW9P zSe980Isx*FaaTx+B)nN5&ap^u%)m6%E6r_f%PPwIeB$&~taOTciVK408yiY6nF*(u zA|N$22F6m@M>le*e_BMava!XmHs2JHRWz`+|muK*8xT-Dei$()s>e#k38F&rNhf8CN@fDb#gK_rsG6^ioi@%9# z{&}&=H)xJCDJ!hjF_3cps*?CIV+QenNdH^7@g~Wt_$B}n+ep*V88WRRN~9QyS$`h` z{MouJREO2V8BsRg&REOJ!Y-<+s!xmyN&#H_jAo7Nvm@lsKMXS!Pz+hFDRYhNe2Kwsv zNH8s8&}%x2viuS|g&u=k*QvX%Thb(oK|LqJR(ppE-7Z-@4AHz?6>`>Az|f?RCB9Bw z861wNV8f{F!}hB0$!GL=KMG;fr-h)8!!FkWhG*!MP12>S)g&iR(DfGNHT|ZgnLkWT zp`*)C;1s^YO8U2zTdkv@4Cpi#Y!AUHhP)fYvZ7#V4sefb<`TU#HMRmmZw^SyAwpImX)7;N*U_jXq6P zSzEb>Q!7(L84$ad1zQBU_8u^ITW|s&0Wa130xxxxnuGy1f{>T3#%gCu?LwWU1w-j) z?g4xsDi&=tO*J!8;371&Iw*!@fjh!XngSl8r}!Nx%E|yill$^981^H_O|j6itmY%e z#>b@L;SX=ywYeJ)lP3bd3Q+*cOq&v^kfWEE68F|ldPchVhZBaGc;PxSa@Rj znl5(*kM@}7##$|C)0;&FC^K|SbZ`S4sy!=51D)WrO44Zhjh4bGn;>x%sp#i)`l=-u zuwVZ)9{y;CPdiMS$4L>($p0A02g#r;8!@j2TU_+6`w z*G@(K9Uw{KSlmjVjWZCFpC^bcCbJ!QP31o+4 zXO*3qpuJKfPwXOCIY^Zjt0EU#j`VHOrp*EpGG3DrWt|n4f}bliDTfTrBU_}1kppi+ zN>sSseM8=^zA1OwiXApTZ3V87p|>{t8`~z7X{er~x5umBj_a073;RpN_%+iORkjn+ z!^T3Rf)+|;2awqW+=DqhgE@TDJ}xB8qH8t3I+kMr5*K(9xUG=dc%p)Z|+ zyBDG-T|8gLDB^d1vs&IywKne#q^N;p1-! zpI?D|d5uH|jorZWPrk;aH)ofx{w-Ib?%SMA$gvy^Ygf?Dt1YjC9=7u>FPGRUAGe%M z@0op3=s3=N4hJbutE%Hz=3&YRNGh>hmQn?Xhafb4;vG_hRvO zuG~#yv-K82#g-H6vy|eoC1L9`O80Ts`DA+O)s(pRO(&NIrtrhBKE2L<1KaoK7h0TA-Pl(ci_FD!%CIk-!IorIJQxZYzrzrHnoG z`8E7vNi!=)buuwLj=B(5RXtaU@?{O33&rBgAC>Fm%S%PH&C(h+61t5c)x(pg!c~+D znNt<@CEOFL`5G9ewDt2+$dPU8>Sik3l?xg}P%T1c$8B%a(a&S~ltOE~2 zH0q}gkIx$lL=GCVtA55$0;Wx~%~&|<{^Ep7{exmBi$at;&e091P{674U#D#D`9p!(@^$w2xUDJhrG`(xG7~j!Hmni-f3G^M~UU)hgEZQf7Zs+19y$?#S+H%VIw8LjN;vadv2^ zU<}#wtV7%iUMov&ou}Tm!pn%qo=cBjwdTC${V;jlHS}+e>xcLJL{I9aqx6^W;6daE zlUufr9-syq{*Bg?&zgA|pj?AHQK7>W_7=!!(s~E|*{Sx7xO;|3is0EStEGA=7ge*z z`KY(iX{dYQxyX*2^JnOqu8v-3HY;sN%kD=sszQ>xtJFW&o~P`GP>zw7#<%2k)o7!*bzs9vi9MzsRJ?yXThtu}5QA?}g%2OT9yX7ju zm%`{#eX5a-DC#ZDc^8efmRY+E^OJ31eJyED*v;IR4Cz?}|B{hhw@tXuz>B=Mqwbim zsVp|@L*Oo_Bozt0`Z zxo8K8#T-2_?wfk2V3|X-kn5o6FW*V}L&HgN3Fivi9H2QDR08||gS!8=Dx+AywbV0~ zn2$p@#$|?#^cU?n)K{p(R!66U!u)^2dy8WwK~rL-IGj;*<3kY_`HcAEwVCD;E8*pg z8pQ9vs0d;iHA)>z-@v`aH*nAT4cy~?1NYJ2!2K}eko;ciZt0Em&HQt5E1IoB8{0?l znO8J8@5Y_p6&Ets$&Ic4FdY+c-H%Td1&!P+xGI*8}@^R!2Sb94YJz{%kp2hWc!aTm7EQo-2a#m zGYU(Jh}qdXDSrpQgozpdCwiWPiS0kC>HnqLvo&G0(UyC1{D8kjluKs0jm!#$ngb%5 zovn1vB2+6$3;c+A{OibwAs~eQ!jhc7^*{&-Xs--)w`kfuw5X>p0Uiv?tJg#?aCkS~ zwj}FLyDxOMqCcS~v(jI#wx6;E1){J8VITsQvj~O{mUB(a|Lu2oGi(&bjWsU{cuk(Wc&LBvBVn@fCJ{q~} zv*CQ5MZ2rE3^SH!%97Acz<}Q1-f-LJVxva=P=^zPAO1=#hkdR61tbAZ;ToVPQZ9fcp&ryH<|tC|9_G8*0FU%-`3y_GpAu@W@ct;!_3J|!<>d08|I{8 zW@hFzc*D%h%ryNzjpn_PelvQS`Nx(l+uPEyz1KN=ueCnWV~v>qdV2kp^7>1q&GETt z$fl3QaC8577xyY-CX`^iIh8Q#a8>INVV}mpM&TXWWtN%a*Gi#-g+Q*7V+&DSqxH0y`ZR@ioWb*H6rLm}PZey;mQ$yFj3SxUc{1O=$ zM#bCLFs{(#Bg_Y#OrYu_wG=B!7tzlmkOrkpFzV8m#k^%~D4WsN;Hdl4mnB;q$O6MD^232-q2ZLf;T~k7y|6@ZLDPyeOiyg`a?S-e~Rs)h68_VEX5r~9>_>=86FX| z(#tQ60NuwU&Tx{Jv_^5H0{+EqoF|r!KR!s4xc7|!p17S6Q8se5Ar6j&Q;}K}cWxdw zX@m#jq#C&jnA;#4+U$Q3Y8q0j;R3CQ{qun28%UJj|2GoJj#>1z07gOmv5 zNN-K>VkeUZ+%#Iou)02Ahq5195Lo6S0ce5 zLqEp5np`&t6*j9T?0Fj>Thq#O+E`q!ke^brg|m7fkAT|NpGpbHF1>D9qA*?jHo3ou zZ7xe5??&>}5N&OU$<8R5yi82ApK&8BDBvMR<#}nD)cXu&BgSGv|j*5~2^85kEx@bz!?_IX$ro4{&L|#WNJhi^$P|TOA z+$v*~Sr@@%7r5;-CTFc6j@{}qWlCY!JS)F7<A?;nD|IxNPDy@Z9+ zB(h>mvs7mlr4;|p;H3NeV2H{)ryb)h*O5)LIC`DH!@UB0z2Ar8?yZm+eQ=94}r(sq|bP(w}*7Mg*R7cK<^Veg*<`ZX2)5k#uCH zc)8hUJSp4PtBk(0dRL6354rDC7OU2HK`ur&YRo+0O!`2t!p+GsMh7^Vcu)|XxNdnQ zJO>^ZEQ4Nqq&i)4x!S9UU3v3$<{2omiAVqp@!b%KOJ6v^cXNmOw4=}L8Jl%Irnr9v zh{Vr9l`H4MNInyWPe<;f7I9S<5B83OriW0{o9;l)tA4^P3=SoUaw_>QCZE7Tv^ltu8B!)KoF^O*;tjf(dT zXXH!a2O;wU;VmV~%SH8aUvAx~Hx+upjIdGw*HO%g4&onjS;nCIaGbbi;f$iwr!l<& zclK&8Yn_3%xPeI1jeF@f=?dND#SEnl$Kn!dZ)tK%!Q-frUTp}Qf0oj;5Flxkiw8Qv z2NwrM226QLpapQ=3&ajy(%+c_gx*U^wRxTAXOeKyX_1PMd%=h9-G=#&B8jKOw{)jSUD&Ag+{jP zWCaddv1odA>;)d6w&k27S0Q%uedwQ!75Vg=I){koKtEkQT72Dv>TJKUKqnzpzp^L3 zkB$+B@3&8YBz(0yg!dE{0Ma4h!AU$SMxDpu-pyfVA-YAzTN}C&lLOVLfk} zq-hW4kEKBQ0eqcfgw$AX-w)N2r*fDT{{xb);vw-@4x-=gKB+>Y9!7JN$RC?ur$ zxs$uge=8c`^68+nl>#$mbYVQ)(5Qsk=RQU_^Za8ydCAca7LjF$WbU8mf{+9E8Ix-? zF(;7H?g{9ib6Bh2pO1zBVV5s7tBA~H1OO2TA^l8q#ufP$&n}Tjul54N`^?+OmOG;& z^P^^ycX6ffN20vb+$?)r8bstWBwwSqp}vpyFGB0F&Al*oJ5giPSma21PRX_RpENi? z0vh66rS)C$9Xr-Wk0WfeHfQ%gJ=_Q_iB=)f39C3fkEe!_cd8ul$b|tA@NPY+72f;} zD@Cm$W0Y3O01zArYpA%s8Dd=OK9J41(Z;baZ?7ed{h|8JsqM!Wq9*eywNJ-H7Sd{q z=ILPNmczXXq;!_Te4*vuxU0JP>*99*aawPopmWW10EM(Hg~NH`o5SzALkGEG{O4LA z*!!-$vjH4-I8veqbv^jL1Z82#2zA|YR9;su5?Eiv)2aDp*h?J!wJXGCvpM6)tk3|B4YIIa~}i zNA)3rnn)}9if{Cm+a|f~wn|%PykqLgpTT`2TRHMp1l=?$G zQSv=`h!_q-Bj$J^=25uUlfmx#_8miIZUw(7;TuXdTkIQ}Rv?mbC`J@p1%s&i6$$pIH42;%^ zBJ=U$$bQB?mHoZbYk?lFJ-N;f4`jYe?LR_V-2^*L59P|WIr8mrA$)nRFwOD)(K!+? z$?De#!uy2h*2Bc?#d2Oo;tprdPkAWhR8HTX!@+ib9^et@X_H8IAH_)$&*;RrL2~m- zL7(imTZ-f6klmDO=}MNBUv@ah`CR3}L`sW#FfPd!an79TW&u9B5jR0$nba(nSfMxz zi2g7Dme0g0JFBu1r66ZYQ{qWa;;Kww`XVMV5}3b`eyP~NRv{xJN5jHaBiqg{&2t)g zIuKsW-1u>AY(5#d=Adxs&PZ4J&s3WT#Yi|ubAPfe;pDyJdf7lu1emIZ>G3PUAZ@!fCxnZH`T*6lpk9prNok|aQ6F5-QO~XdPyuXq2NNN zFP?xf<$xc>yO1hGpNs)df8|SpGx&OZDD@oGWL;z%CBM6vAN%sT<@~T4Go$X_RS98L zSqy40poso5#5nCC-HMeeK>Gc`a(u^WhCtIk!i6g#*YeGXJLvqY)ak`7o;KjwLMn{$ ztyDwnMwjzeoWk`bC(Umd_(@yvvZySWjmzGUF8pim{p4KunBl&fMxyAq><;KNPkF}o zv$K|rSD)MzlyIb#st_8euNuvLbq?*Spx**_K3bMr60_%8sDsobE|V6QoUS#9`4a)Y zkzfLsL$d@SY^vv&qf)Ojr#tY16tNEH!k{gZ6aMq~J9RVM1YPffP>f6@~27n&SYSb!}Q+B#*{?C_Zo|TY5!|Olc zYpyRlHU)QGTqese1op29#T|dob19L!3!k|eqCDEeb zM#g&!8D7}_O2A-1Dp4kaL7-XU0(2~{b!sPFJRB#@EtM2H0!i&z!@I`|FbvzN{qlr5T&`N{)BXL}?ZFuaT@U1{o!Ex~Yt4J?^QeyeEXB>2KSchtnLwkRWnA zJvPIwGvg(a*+CIi(SAkqMa`rxfvNrWA-cv3 z%XT0{jj%|bRYak`Loo!BTB!a0cton)yY^kz5sT(`6ifu|No7Gl^N(R0<%>Wy#8fA) z6E-&M=2nB7ft9s;@!*jOM63;uvQ?UsJ7a!Hh>~tKOTcQJCZf>a6+Lm1<(5!4NUv3I zt@4qQkKg$LFU7kS1&$>@V{p=$AG0P*XyYl%Rgac{TCR2&rAC+iOMr~fxqTzN;OXn7 zPGa${V87%RtQN@A^`(vun`o0c;;2#~j+fZOEn?c#ll@drnfJH=YUQ6gKb#;Lt0HPj z%NSV6KC@^bh(WMhc9?%U0K|GMM`t@yH(4leCG)l6w&->=n?COtuMM$G>jC2xGi#eV zT&&_*KSq<%cv>4Gf~YH!B4{hOG{*>futz*1fa@0po%4}w&4$CySYZB$*SFCo2kvAfk z81HRqaa5Y z`E^Q_;^Q#Uwe6(_Ysm7P@f|Bfb^+ITJ!axw&paYTZ9mpK#Phq90fOykY8ted za6F?)$UHS{;*`UFZLkt}^~OeSgZ~9-o-I$RV&AqoL2 zc|^G6cTi4kSM*4%fe~GMl7~%4+3Y*UN$%-# zMt$hJIB^GIW)u$x++G0Yf=Fi5llB;U-I0W`7q$DogYz2U>Qt-hKGDT^d+4jNf&)Bo z;o^vlPdycR21QxFZE+3fRC7w>6~JwYXvEtZPTT^yJ>0=B!ib-AyEZhVwf2?#O|k%Z z&P^F`g{8hE#vj_QR}E86P%WUCg(-!SoZw6HiL{7cAVyCi!ao-iJEk$Ut=Mgx^x;jb zjRa4}t}T}kzXlk?1!@w8ZZfh>asPHGKm?&lZ=RQ{ech<%miPuJZ)@G)p13(R&5w97 zw(9qb5&kjmog0WRd@szu=gn?7PsU{*X|b_DtA38O(I#&=GhaDabC~TTUJv|-I#*lyd?eMy zt&P4HW(aP$DXI>ua8aLCQ>}FqpQ90vK*^G;WzI4@7EzZ_gKpY#lPi<}`prOrh_&jf$+nROQZ?pz7$lFS3 z$RF~w5-8D@&tntsmilAx2mHCPey)7PxznFcaNpFb!_?0IPEaqp7p&GSfL7WM%*McN z0b8qa7m*Cx<~3xmkq_LY8|=iuk2A%~`# zlx0dWTQe|iJ;j0DTu!Ye+y$QxeS{0Ctc+4Wd<69hK}((tKI!KDQ5Fh9g;JqK=i#s) z#bDeq4T%(s%gcM97J=}^Gf5V+N6B>@uvShf-MwvF53WZ6WKl`8hidFRI1WFg`!D7Y z7)*C*eSPP>X4=o42G#U?*d7L;7t_$Uup|amJQKA3q|r@FOQ&TvmSb~{s_pA|v6i%b zXgaFx3*sFB!~0E)tl|%UZVWCSN_eSq5H<{QGB2kK$qHe!G0vI+C{pP!6;`u`j*P=m zu*PSLV3;8)hxV8K$&BuG(IQcpRv4cyJVOa!Q^nbEz%l(3K!sCtHYuNY;2b9v8}in` zu{=MkAOO=wUHby}6N?JSjv-%{_v>Z(_4{?y`splkL7tTBUjzrL*j=`jw8Dijr|=L2 zS4O1C=uo)Ol$3Uap9lrAblbx;Tqu^UddalPxfqyEzXZ-&z5fd4b;9n0^YK@-YS=bf zUunbv>&Jm#l&-JE80*Zya{}44i4o_rpWsr1i#DKPe}r7wh$U(>3X9Ykb0|qXMz5}~ zLquaqNR=YcU)r0UlW7SHUR5^&8vHPB#b>1fQGtQ%d+JA3-=O3HO0@morld&Vc-Zd~ zK_^3XZ^yw&g=%_%R|Ra15N@#FR;;vFTwM7}*{D`DXxFjq=yHGDno0gtfs(e`5pq!u zZ;oe9jG#?Zh)Y6OUE#e71P?+p%)=Hi)LU3~9LE&ijlx?3qU=QplKd zu)|Z6bVPIc=@}_DB^L*--D_ej$2vM%Xnp^)fLE?XkmUB4^dFiZzfzq*VE^W7P6(b~ zK2!|V0EZRag%_korg9!OJ~GkM%}eLK8p8$I$qT)-!r#AQomF$aJbk5L0v zaC&HImdq$=gWocnZyotH{>@0sON-Z70U{8QKy>rM_R6TtK@m&^^J6cDZEQ9|JTWO= z*2PK6%oV*NDF_EDS}GTohNSG|>58B`$qRPSn9K6VC%AauNB^5EU%*T(O9B01kb923 z6|4-$r-%t3k;w_htU4X)bgrWciRZKa*~{>7l1~%EwZdZ|#My3nWQKEW_WI0S^V=yz zb>?zAPEDvQBGn<2%ze%a(c={s1NmD00TBV+SAn@Wy+aMyG$smPK1nx4$j~!J#D>qa z?ODk1@O~Peo5#TR)t{m43yv^oxoOVvS;LO5G`c39j}3ojuAG75_3#02N3 zzyUREAXt_ci9FiZBf42z+i=l8<>a-|{;r>n`U*i$J=zsDWn8tzC9VTj1I&Cm!c1vj zQr=AO%a{J6wIq9IQ?Kjql?-m7H5DB&6)FHImaa>Nc2@{_^;Y+FzjjOn)y>Zr>xHkY zpvveTboNlo%HnP%)Isk(=C;bZi1K|+EOBiErJ`{C9!0*j({DzcvqryM3zcl&fla5s z|1@Z5@F_ZWQPJxr<}FxgN52Z6G#=Oe$J*lmRDqj|oAbZbGykiG=##8#zsrIevUNw_ zi6V1PN*RHHPZvDsI#kXLR{n~IJ|G27E!Pk6=|~ObBbv`Z$?5`z%UZLMy5a2$KRu$} zK7S(lMa5M$=`|uGRunZYq-g5sU?scu2D&f-iEkrJ?1)p=+>3r4fjk9UTYmr3!qPNZ zanm4EBWvkZ#dD7pKW$2KZc(%3wGY2@p{*Rj$LzzNBSUaaUOg*mVF28o&A5#(ZFaa| z>ArHgm&h+G6F6hgbGMV-(4i4286yrmHKxa@o>9iPAbk)W4c8YOt$Ap#M?T;@gIZYw z-V!AoB2>Qtcji%;WY;_V<>CIs6(SN+(2Bduj)jk6^N{8-1Yn?d%aE;G1ZJk(Pi>d{ znT_h~lH+}=ck*I%ax^STKJXdp`VI2&EFf_~4yH#Iv-uW;MFNJW$bzzdv=xKQ4`rW7 z*D>FOt7@m#u5DJLlDA-+p3cbee)ZyCqCAIXU>d! zy6?t@|B1fL3BsAD5=G=82?TdzQ5)D5N--DSY_|tPi;soV-npnJ2j^46lw4=(5b@44 z=I|{H6kE5*h$#MMTdAX{I}*G&*fwoovD&iwIhUR-Jk|BI?mYdG73&p?7!@;Y#-=Ui z`+3-pR8(_l&tPH;{WdmFHmqjK$wTh7vMX;wRs*(cqM%2HA(|xfSCWrUpPYD6Vwzau z2%CPzPv|>CAB(oVO>jQtnQR!UE(Jt9Bo23N^%Y3pwi&Goi z+5^kjwCJsx6PS$UPVizJof`lCUF2y^b#;+VPA@pqDhWxEqBb>0Brq+sK9?Gn?I_3b z{7BhF=L>7?aF?6BRM zV8%oTi&^yHs$EEL`L_^bZ)M`;g`Nd_zVc5xj$e;-H@3SWIV3~lXQ_4s%x_H?3OwJQ zQ`?mEZ+?Ie^|nr`AQ=XK=guQ290*%&VWV4?@=vh%=25z#dMd2={wQ@_v2u2hZsZ`O z@y6~mBU_upOWo47^*COgNVZEfUuFl0dYYuf{qduCajNv<5 zVJ4tZT13{-MIyFY*isC;aez}34t5j?{ENV%gj(gwhSoueZD|y$A;M}BaLTiFP-(xl zG!GA2f9DE83tcKLe<|kn-zW{X5=uMNfOT8IfA2$eRsGjH7jFpnacvk`lD&oBfrhzP z7(CI%-f}hbuLwuR`Yv0Xlq~!+5C891Xtuac;bK9sLXYtTz&c zBEnJ)jN2Xp-zo7IhLswU&(vE<*{_=YhfN97 zCIi2OT*yD39OA!_t?|Vy=l{?-Gi#ueaJq9FmitOYFgI(id z2g}p5H*D~x6wxvJ{g$tH+)jEGs4|s@e1rO29s5HJT* z8iLP^)^xsT4jL-k@$y@hxtYAgkAeZt4`kw2heQ1COabCUHW~qB`nvA+N~CS~4E|HX ziz+jDY3C85{Jd0QL?&8$fwFaJ>x}Tnx$20&D_oVmsT1rT|F806yNjEg`Pe}|9b80^hO2r zKEE)-;e=r>p$0V8R4Fiiv{pS0*1V3yTp)GBOcCesK0v(;>}OVNy+~?2Lc=$aWabwY z6%5FQpCw0;5$=tUm1)!Yyf2@{Q>ow@@{?4b1=&mofKiUp*PU{*c3R}sZZG!dj+~v` zdvpkFLd@Y!hHb`r6B(wCEL~j8ydQ5hAMEe`$8^Q^-_q6pTRRyC%YS!c`LDF(lc290 z#DW=m^+q3qEq@3F@mR!;5Mjqo+K$pPKW836wbIuKD@`pl&Xv%ABt>t3f z#;vaa1cM0O1>3B3GVFk8F>j{tZ*a+`)80zpQGcI@ zwNdwr%D$#qh#mZdY4>`EH89*-WaeOKX&;^ES>CPVHKz)B&a*J`yn zqxPc$Cfw^g=1f=!I=lYzHw}i)*5KNQEP2X_Av%IeN317N83V&n!C#`^R}MGY%Ijp* zt5;m$Nk6nTnt1t_S{U^31Ek8yU1~fiCaY=3F?57c>nOkicoh|KtLni?8^@KQ)Xjam zQwEf$KlRA&2}d?rmcT36_JC}z5?n>7`H;oaE|iGL&+4(>OQcUSfsd}U8qby%=K?`s zli~wD{qNhreXCuoV_@qwha<`9uXU22%tsd@Oh!dB+SMk^!n1`fLwNgazpj?wBVR_iwnMXs$~igIuca4O>_pd%4gwJyBiclMC5~dXG9&v_J|d99Gv@X-76!ZdrLC4 zvh+VgX=UbWo}3sv(-JT2Gk=E67ufK51)YB@YM#vEFhxgLCgL{4bK>Ae2e4b>Z#`J< z&NWF5_v5nRYT6sQR*sF9<2D#f;^C zry%JyTYPqgRust?AHm7>+A~9RxVl65qTt(PzTE?L%{Y2}C{imb;8_~YSIQPG;C_5P zMSo>UJBKnP+r?(^5BpYHJWy59hB?Th)@3b=2BXeMFyv8bkp+!nw(lOHEBDV4%Az@n zqS6B&!mpo|o~uDj;Q7A)6c{gtl(pIo;P^YGhab3SK#Ctc=@Xg-S&?uLRcS=12bju_ zhWOpmlT|%+a9%dZK35<~+b*d29EYTsqVdrbp1t8POtr=fkr*d-@hpZN{pCm;4-%#?^6%$-%sT^}F~k!pnJm*x4OnVO!HVtez| z?E&%n#p!Bu!dwILx23slOPWf;cxB^M?pv4qWcEpR3dw6O7p;In-JHE5=>+&?a=?(x zUA24vo!mbAi$0^G0c|N$HH{;wf06liBkN4P^k2$V9kSzo=5dn3TcbW^tM}x4%n4yb ztEL6DfSEpiORwZT+a8+Ngz9OYfnk+@ax;r)xvT`7#WdtXPD(h(pY;fgw(~}-D*^zN ze#oD9^A;2^`{8{jN)S|APVasRK=|d3;N(LwQ-CqgQ z8GqAB2MjhOhu}*Zp9f|!&39oy*%H>TMf)K3v{ccn)Qmj76o}9yp0tud6M_e?dwLhJ zp_s{O(qE99b8?CK-nx`7G=K9vJ&FUQe$Db}rR(Z|-$jY+!t7ep8h?n&RSxHQ&?6`h@+L^js$e?4(N(+MTSLt%$0!p0X&- zgXzvv(!^y|v@e4A8OVt=WGpWYQ}5UWH)^;&t-QLo)oZ8IoUCo``6cU)kn< zjLeoRKbRk?tR#r?-C8Q=ZN#G0XN0hMHwZ|*Qi@b7$?6ybQzh;cklP4_AcV+mY3sNN zz4f#_yt(6`C0SMb<~3KglyuFgbZpb&K|W&Y6h5tUX;y^4-Da23!(>a};zZ))w~alL zv`-k__zS!_b`}BI3VLD%GG612*{YGCV^jqK$v!$s zYiB9Y%Z}jg5=B%s|J?OXKA%__snv+MPiR_}{;j#a@xpTqPzRu(_(6qD1%T1Y5j?+b z!-{08{BA9WUe(#65U2tAam<||=Uu%YXiH2bEPv}OfS0KLqBgkyj2~2f6fTErml{4QUg zMKgk&QdsG!ITmG{==a9k1!4$Rjjw;|PSIK*L;{R_`9Bc&=V7Qzc3V01)5B5g<$QQ5 zZoBka0V!H|q+}?h#F$t5CIFq;olDq{JRN$Kmcnd3UINybopg#--krXBD? zM)Ty-{QzoMuxQYxw?WPW-4jyT3OjOgs%@J^fRLgxF#RZ zP3PM~MSl0IwQbpBLFfTrNc>6{Qy%E3rOtmK?8pBGVQBvwg!OmKct>%%V4tw5*I&l} zUm)zzBk5GyWGUbhxq;+O&)ZD<`nG*WvbwkrI(CwlThy$>tzIbp)sIx=o1I!;^oxk9 zY!wmdrSx|RW(_$87h`v=y6au^{>3LzI%6gcWBcd^4}jS1tJq}@HfFNzW_AT$lo}yN z<|IjBvblO@gY$;zP9_?#kWcI>RC?AXvtA(Y0Rl}P9n~XuCTWI`8C9&~Lrq0}@kp2V z{r-H4vcK2y9Lbrnmd-hbN>kd59iCLq=ux33I1jz&H2!LpSRf(S=XVX|XEHuNkf%`8 zr9(NbhZoPw^P1!Kejmu;%AxbJ8dPx8t9lM(yWLMttSgD277j^q<#^(d>6AYjvm4Ex zJ+~zjPv&e#_JG^s?A0IC*ydPbi6-{eOtJ*}48}5$L}U z_1PN=WY1Sn9~g8w#4t3BRA?XAGO7XucjwQ5K-PC2GFVu$-9b@FNnFJ5GtiPeuyo>xbe@Wn)>8>q3F20p zv%7ASl?qiLOnP>9`7A;nr@#6Gp58Y&nyPbC?} zz!qRx9VNfb$zPdUWJ}W=iYfpRjzWD0NXs^f;;w2kklZ-~_U`;|WK41V2OiVyM{u(0No<8^j4PiOw~l zj4^J-!kl?Qdo79jL101Km zl96%m^Ak*&cxFrf^vq7ANYf5YBum&C6Mv@Z4)^P=dd40eD`c}$pmO&A6~#N{J@FpY z)~{#!IaFLbuq?oplQqC(rdeOHQnG@wjIfSb?O(Cm>@e-b>|EolxZbh;w$9ucfU-yZ z&#%<{T}~8pK2YNtLkzNkMFfXg0ZT6Ar*U_!%yUDnf)=#^sQ|eEb0-Z4{1rma@edc2 zv(HN1YTYv3f{G>Exev*wO1sp{ns$hGZWro@3uA>ex(RLuk_iGV3@)1UO%~1N_1YI> z`2hn2ezRNF2QKprc!j27#bU z;ja3f+~TPVQQ5c1QZczYfM*>M zVY_Cv_HFISt?$wjrC#?!@Z$U9uScjy%18Cbk&BLt63=CF6LJknn`jTdT}qfE6<&fE z)))op7}LN#FzIO1pgl?Hg1zuP+mY0m8iFle-$*^87m0oMc-tp_g3kQF0)ztk z{3D6!C<7b}9Mc%M*oc*bp7GA{I_ryS*A6_lk6F*kXe-_IM~}7U=AI^ftFxqv1Glz@ zhJuDfofs(F5o$;F?ijz}3k4JloW#E0<_4CV7Mqqr#@+d^(sm!34R_1JL7z+Ye#XLP ze%r;4$?FB{$khS-qlAZ>J4y~E9)iRZPdn5%FYoZ8sA~GJE$~X9FEx-~)pcC0gvUPe z#~0w$5b@Pe>Y+!pMfQnf!7u32zJ1B{>Qor=Lq6BUsgT~f1o#W?oMJb{`cniHDCFK$u1O8>Nb9lMV{$vClOXM@RLJp6uGXZNAZ%FK4f z-edbY=sopb(6$iB;0f}pq+DSeO^|vpG%jlv__<=Ya<$l#x-gA5U-V_5_GMbNS4m$P z8~6z!@`bExs9Rn&-#pxmeeXBuHv7nXOuRzrl`A+;g#4-u`N3Sz4D(@M=LZ@fiXnTI z7Qm|$G>L`ahYVXpgL|EZ{y5^j75%4lWB~p_T<~h|wjQpBrH%61Bl{ps9vRCP_$gmt zoo`+6CGlVn@gd(K=CJQ>;!4SnVnlkcEQ-KM)PeqLnWtX`fM_D^z}mJt&Ix*C1`vx7dzcABwgOP0 z0c?B4BKQc5qe=AspIktCu=1q0HfgYC8lF}{z_i$xBoH595Gn+4M+KM-cEep5`%@hg z2R;%4`Z2tZ{OyqUhXUVuax)>iY8|3s^zWdLgY=$_0Afo>z&C(`ztHbJYA`_7A6%U{ z7?j(+T!TYR0N{$?SOFD~TYONTrw%5f|91nTN(0P}pwSoJp$!yD(;FSOSP6i+gEJ!U z2OKL0FTw$q+F=juC{vJ71z@JdE)|?$xfc0c0_Jlh0O_pv$pr?J9~97aZ1mCR1I^e5^Pc_&zQ}Bp z<9V%)Y{T*UyZ@3X!dVati2e$xss?<}uKyhjJQsyNnWZ+1#e{sHuadXlBo}3=e-{8v z`}mCua@*i|;FSi^MrZ=c=lYA~x~jGfq#Wkf4gQV;Or`4;w}FKahV?>vHL^GEmBv}- z5r!bec&`5o^J+w0EaJZj3iDE6sev25b;yCUnS%Tr8t^GL0n~mY+BXfvF$Pb+?d`CN z0v9-*hGgRk@P5ezbprtPd;GZ@5ZCDUc}i>nQwsjd{vuZ3+8MoHkXp{^y(0=&G@nM` zZJA1RLdLKBfI)~p1fB5j#p58DcEv4#H_QhKkW?f6-`R0RaJwaNK(u}|@H#T~8{)W3 zTn~-`S7Vk&)SO8YVX)oQUzmWKA#@1Kwg1vto-YO5zqXps9Z7J%9#sb!x* z>XvEDNgFALS0|!?O1h~9yL_^WtxblBN(!w5OCd^pZy^iq&qI=cWitZqOMx7W<r`RvPW?nu0=UNdm8QY~jOW z#n;5a&~}qK#lX5W3#%|J4vxd?UZ0Y~R`hXmM225MPCthHo?3blRm0`|?} z_O0Ixz~HJOXh)G>#KG|!#Q)S`WRT{p_Dx-osKT8hdeH#(q2autv7|>gF58{H2j@_`%JH!1%rg2}}6vONy+k1Sw04REGO&<$Yq2 z!VJQ~JO{thHTG6O>;~W+yNKAi_#@A6v&YB)YAunT!^l;^6u}$gR0(-OFdsZrG`RsU zgeoOGME*k0;Sjg=1<zY{Z4kv55=+V z6^|-TzLtw31a6@u3h}E&vl1NdI@JJm#7mU0L_1am^I047IStwc1L_wgytf>L84aYShQk^0M7co*D1D=ftgn%@J{Y-Bd^m7cHnh3-ro~eciL>(ja zI~z1+ML;JyM!~Z zn!%=RwS<-dVGj=?yf z6eYKHkI@kB_4?}G~s?EfUfM8}5R>#JTmJKz%pt$v4?1D zBh*J!`qX?rOgf$g7dyR(bo| zGs(SszT2~2pzq+%N5Vglg5jbxu?_tzd})d6+9S=mc#lZ;tb8%u{sst27CQ!7q&hdh zdYg9_8EnYC`QdZ!R;0L4G976>p~d&5?u@6L8sh>|{(?E8B}V*-aL?nX0;cmddgpr)Eh3H9S$mstZHMJS+G<0jm7($2 z&kYKgMm|tHB=oyg@7kYmWGKMtTVax08&ZX3=I2Pa?Z8o6YF~&a<9g7D!ob%IbXjdILVm zwupfI9zJov@&P$V?1K&2#myOa@1|qPaUu@4Sj{SPKg*+K0jA)b z#xRtPflzs`R)@EctqzYo_xrTEUnw6vB(|;iwyX0y4o-SRE`PaskdEd;=d8^Z1-*IR z<#XCceyG@Jml;|S*Z#P|1L3F=y{&tKA%_8?Nbty)#BFPaf${IK&fi=+0l54>C+mf_-&3Wz6$R1c=T3V8U#BJj~ z7R8Ld-mC9OX;lVQSe2`@NHWzwxL^--ziRLT?^48!(Yq`F&;bTV{7HMhcOF7+0bBtew-dq$G& z&toGwIsD&nACgNpK^fctl>N_7Z*V02!A$O$=C*69$+Le3QdU=e&Gb<@1LxEeJ=3|V z3><~xvEcdn(&pqd<@xOaJmSWE!$cTmacgH&bb)BEj^W0llQ0t1{LH6TJVazqO7E(~ zpv%(%P?vCS{Wq4qC=@S^c!=ZLb(O}waBxR;@H8(tOPXoQBR{N)T_Ic&`z$cx&jcw{ zhGE0NZ2Zgqtx`A8AD24F;s%mif?bfeu~=cYLq71n6*~Cc>S3wY)j>6*d%CP)KG9!) z;4eP0z-{f5V%190p}IhD{m8G$ci^B+L30RrD*_R|%>CNofuKJD@*uF|g$B>{pc*LE zsCC)026~h|iVfX|9h(VW%6$4=-9^nN+VwOCqdM(qBk0CwVz$3`C{GS-9KXywZpb~b zeIxqFvzoE&F5JbpVUdG8(>6dA#X(=^!8jSQWbKDD68b&Yg}Q|`mW;PsMiQ2vy=ly{ zpFN-I`)1=PcSRN6E#tIsYOX68D+`-I9}HHm@|<3^92@>hhyt#(etVOd84#96jXA8Y z@DugqYCrnC`yYeKU?$nMiW)#7Kz)BsOnxO)O{O<8HAtmg0R}bEP*4E&Yxh3)l-%Y~ ze-J6hrn6XoGdmqOd`@Jsc6&W@zKk|}a*$aMPfkv1GB>2+g++!}%V~Pvvf}cf-K2SP zc7oAOX2pYJcs|!i`W*K87Jo@xca7qK@}GjwotmDo1m-Y$LRxe;bpX-R+uT@?lT!m# z#JvRdgnz#9NdjXQ=1XcN`+3ZD#;OxW7}*%*dKOM$>)EYaY?6BB=V+j6RI2SK6jb^1 z3U^g!#V#&bz{htz5HX7Ne!bDxvNf}x?WhHrfN?4cf(t+%K0g&NTjzQMrH(?kVeUSW zXYb2$#VRBDU6W?Qp!7xzK@aAFTq5ALY$zD*_)0R`XGAQ}L&!n<_Iwo}fJqm@*Q5=u z-noi{Mdo7hmhAmmZVP1oqGPYsK_hsc-cd@8!fYd??KKkUeZTf`ldgR)5We(uRUJ9w z!-=FN5gA$d9`DrQGU9mh1PrwX7plcCX61zRU&t<2r-`)+Q!$nce#KWKMJa6fyTNMDp=YOtX%zZ_EOE8b z=LBK5rMtKORLEe1ULwgD=^G?zNM^}zlXR=w5r;$NNTcDBg52~WTG6+Tqq0Z z0waM})d%@S2042wIn5G}a?6Y0WypwoIKb_BK)M}g0CiGuIMqg}xvflgBRMR3e{90j z0uy^QO~A=@71RZ{l9T58An_Mk=QlmK;Keb|1EKmvHRQJ|htJ#sbyqe(%cNO`AylZ? zpgE6>r3taXBivPh=vRrM5)?DUG5kjf&n2e^hi{-ZJ)#|9HpBX=5W@+)FB5HuQA;<%+?Z)XjM*C4>sK#QUfkCtxdmP5E(k{nW!b>8 zaG2O^M8kuQEC(Icw7|sXHa~k>!XIn;Qig|0x9@PX*$`^*u2rrOjWZQdkK{H!yJ8C^ z_`W5-{zeG>*(R@ShrD%8E@JC*KI3XKuNmUx4;QWHNC`JJZr9*b3qvz5)=;hDQcDa_ zvWH3RFR`ccj))^Jk)WzTb%`LyF+KQ0uAN<-9#FDNHHrF&I>pumZ)e<6ztLv%!Dg7* zCc9p;Ua}2wF@tdzIT?8wxf%Hp*&n$dIUiYpu|#i$kT3l5%PEX^5N{t5I&@HYo@j~a zk!UJxhh&%+jXOBAUmmF>Ou2}Pn(6L_=-h$7hhX8y*JnV0V?2w4vQOm2i121vYJNL3 z>H9fiM)6G0=sZ=SYQ0>e)%^61!`}1#_2zP{HNRRf`Ps;nR(&6O@9@g|DvTTYzDJ7N zs+;qhK7}CVWdG=esOuMfX@_+%4-1HMsTh)+eoKz=`RfsJg}S8c-@yPg36F(EIWz)5 zHmZUG&t3Q)^q@vP0%DxoLH*61@6`>PJuB9`_zurTUKP%mZx`MJPQIecf=xevQzS&pD5YZ7}2P-e~*Qi)w?I|4z-=ta)$+q=}q5wAZxp>G0h z)*^GAPFHuqo&?ykq0YdiZLJ3$BsqGFM(^pi+wYRz#BcCr8R|`679#9xo_Wl|Lso>=`aPq=@JkgY$V&^;xjmNRKaU4n6;{eHE{hA7ML z>K$r;oADdPLgaQ%i_^_E1)H5-v&$AqB6g(pj?6dizuy{-2iYV1FLVVXcY{4RD?DA6 zCtdRuue@IPO&UG!E?>-2_`$4r>Ij}DgyRS<8TA+!!5Yiflt!#Zys>LX)K#h^iG$GF z>-bzgUfj^`EJwP;yoIG!JP1O3a`V_K{6(IHz~P+q;`{Q|J3arV?_x~7HQwDW$DV@B z53Ad5f5q$Kjn=SF;)OtP+hk#)>(FDXovpkrdoey*w6BoY{~gTuwTNbgGoL9dGA3&a z=s8SD-2_8@i35@-3i$Azvk4%%=Ni(vv53gP{DfbgzyM@8(OmQdzIN*Q_^j||{`JK< zbn&!%{eh1h5zwS0-uXOTuJ*9=;1=zLGy9i8DwtzT2|ijmb?beqBcupfw|jm^zsc^g zp+wv^gbPtVF@`4EFZiBSAlvwLO?YZi4;p5SVo4E7D!Ib85jPCK8)s~x39bF3vSvo? z#amH$dIsq6Q?!1EU9Gx3K)i15!{eayH+XY?kN>p~_13ec%A)#ys3piZsQPmPKL>8b>+Nm^Q#>g6_Xep21^WtN+Lm zq4Y11#?b15`YAZZj^C^(M&#=ak?|Q7o({ z=HvjRnb$M@!!xZ*mAv;Cj`e*@#({v1dinM#@qo?sAx;%XMya6wp}n3@ktMsBc_n!nddK;8S8ic`Caj> zRjgZC+Y0@dk7JYB?*oROX+xdJMjTf5ii|p=&MOK2=N4kAAyi~HwD`%KB`zZdl?xi3 zWR62+xIJ>E7SiRX5WmTXCdJ}i|GRH9_MY>#^8tQRES8#E&99>#4H9j7@ciQ2U-e$9 zT}O{xJ>B1oY{U_v0|LgulaYHCb`!yW#1J>ZB3vk7*M)2kdsDKtJKJfr^vEQ`6Bx1@ z5(rW=F__zjvQejO@b%Q% zeMGJ+@RSTu{^$ojX^Y>y>FU20LyG^KhHc2LdLsM=^w2>qpyZ0D(8nKZ-OpDvwojOB z#HsUcN5ubZj7VrEuTuBnh15vsm*~K8o!wO;!73I1EjB(}lMZC=d|-519Q>3U!cw1= z!eO(JyMq0%2}U>qd|X@>7Me734x&+<^vBAs6^jcWwhV%Lm=r<)8sdZ)>=ta;!}Bou z@*j%!J2+hzoWx`Ri-WFpa;^SCE*L#@n-AkOl{Lg4NH>YUy?Sw8!ea1&M-(&}`WCoZ z+#V8_3G-Fm3-}x=-nW}|koWV%G1(mcD>gYT#OCvTU3`h-^C7+Qo8Pw!Skl*-3@mQ; zRUd^iK13qEksFih{`3!`Xw!VWg`QxLbzIfdMfC4Re&?dqf9DQ{%77LkeF~8A^n~PT zkqf*P>(rx`SFnq(@DibEA zQ6xV1pYZKn3A~8!vZ0=(!WtqiW-n7wfz)ZnF$xJvwOO2w_lKCx>9jsAUJ|lO`M+My z>SG^P8*5bgLdA`Zdo{-#sQy8YY9GGe>F}IB$PRb7PoxYX+N}`-lyjIqM%cGs90qrj zs-qQlaO3n7PhQ_>VPOUd_Lg3dKKwV|&_+pdoxee*Vyzy6n9+iT?_f*trk#lWeog<& zqRvv42IA0}s!-$reN~2kRjwNGBJ{a8paI$9R=BITf*+OmDPk+VCzTH$)>C|4siqL* z+5X*txpM=jMq;M|2{~c}KTxkFM+P%b;to!-6?;8Wm5e^FwmglR8~nH`&3=2gV2a0X zmVJDMhuisXhN?$BL&4}x;n5265^wNmOq5OwwN$D4IDFKm_nEMk2hH>@0T=5`4&dW! ziiJs!a!}iEyS55Gj;d_Z@=r6jhcsJWfNph#-HFHKfBDRbmgjx`bc?0c>=ML}M%4TA z7)yBUJXCwd@Bnk_I@tVRjjc9_I3z-Y#i!YPeX9JObN|TS{5eRKFhWT844exq#5ld1 zmpZ5S?YVqmdZp*nZAH>awMwBE`3B|iH>gRQ3ZuY5=Y{tD$H$wj)uxZULg6&heGmRh zDfid#`Fa$0i(yYgd7-}RWC4YQgT&AVpKY zG*_WkE9Sf#{ID8%&E1Azt|*ongy_mynsyD(dw}*6?hUGPYgf2Dd=TOT=G^+1z+tVBeKX|06d1}x22>za!vXOv7yBrfQkn=~sA{Z|R@Lyc9Xjhr(E*kEt zh=np$3`nUcE-#lR(yfo{V{~;Dr)z8}OyFGP3ti+S!RDgtu>Lbjpo71wmX9w-z;1g@ z233RVpx+#zu~*2g^^Vrkb-*{gRDT5am!l$|WUM=;b2J)UH#lEV&RT)t-aPO^*lr<} zigdI{^wWDkSOg_r1x4^iEyFuREb@?lHtTPW#nJG#lTnMeq;0<(?o%JE@r`Ags^CG2nnaYc`QPtgi_Z+)ulzO8D zRuyD5_>K<9*2szpQqoWSs7)rC$U9^*8dch{je$pQ_Kxq0Sv0+%$Tr%mvwgH;x)1oJ z?ibl=R61mTg(ToY$>Ii?X(II$VNJx9`dY(Q2-HAe*P`+qihl=5;6f8&5#P)}N+5X$ zEyn&hjLpfVJSv3D@b!OBsh?p|!i(ZVM@c|%zE}`RMa4nXon1;87P-@N$IqbL4~Ean zxZ-oG!};Zbg7iaEQ=*Gf=W%{tx@V``>msbn6sb(|%-yNHV;`S0T)}NIG8r?Yt~;rsu?@?HbT;us{(Vx z!N-B9B5@={#}TW3+B0p)pV!WNMB0~WYM8xi7>0wY0ej6-5 zhe`%cJ7pmDgGMDuhpO-8h^I0!3uB$+QN*JJ`r8kcMJF@3;7~816cCG6&A5pm+ z)R_|iM`-8T`nV1?Ol79fZZvtUjqtlTH+?N`-=R2xmmV0jV>O)nwqrr=IeX-ELGcHr z9+&4XE8ukDxwN1G!GIH6WT4 z1x{_d-dK{i)g>|CRkt+~yZ-b3#LL%muozM-y>ip_GSptnouhpIiTx@*-soS$MLSx= z?jE|>=*uF5B@-ghy^I5nEePbFV<6gOl(*6KMot}O(jhp#0p``}gU%>$NrzG*2bW^| zC1O%la%=Y-Csv!#{_i8Fj|8^O=s~Zhg-p$+Hc5D4j zJiXO>!fkx0?dj~DTkY2T`))2|C0!D41>e`?4#tg+0G`P$kDnXT%MvS_eA9$Yl3Gk9 zG;^vX-zs`+(y%wx#|?ZL=XSyZL!F>!uCBaPvYIh8jFOmCb7e$bre)}n^kVs`GIdlK zwj=3M>bpWS8ipiu+D6|f71*JlqX;^GyJkN2>6 z=uz&5^z>vEmu6RazS&k4;!dC52?fhNw;Td))5G5YBQJy8SUui%)tl|y5=4E*UZWN= z$`*(B&hI^-?J=(&Zh=^07?*P}vRimR8g4%d`N~rWO?53G{}D%3#~Tz!RFl9=a}QGh zUNz(^e91d${4|i=au`Qd1>$DW$b{@RxiA3)lVACSGSS2@!xz8j_XKmMai>6$`{X}P zNP5P%Zzx)J(pN#@PSxA%&k5piHff6U3^X=C%xOLay4s$A**?KQ2#78ANE;jao)5M0 zK44G?1kRFK5X)GvfNOda4id&SeStj?m9D5xrV_L}g~0=LjWSO|@X^702a_|5ygySe z%$#SrIrDD+{qM1s!=GwcS#HAEcGOso{Z{dp#7xHyS$56aOO8?!wGK+YtO-P2 z_$H8V9*e+|`ht9Bq~o0ld2IHm?CuTPHJVdVcm>bY=lYpaeM?IA)KZ0+^`${pNYF2t zuX=(p>0uz=Lc& z7tGMIj>DT{l|iKal`Kg`+LSgLIRnJ|5O?G(5-N({PPG!>vm8{Kr1&9#2=l%4+%Yw! z{UoM~jaWAsDuBs6IlrWlM|?(U)nNqcDA{< z*o}zYFs3}*X@3%$7Gx7#JCIBs8y9{m(e_S!Uj(O7yf1t$Yu_K4F=Zy0Ahy2XLM%W- z8;6IV012TC{hmzECTW>>lT+6NwRa}AEE)!*#xLX@l*-3!8YuZuawb@uH=zVzJGtMA z6!znrg{voRXe=pUTuU^Nji4u8W&Hp6wo*I@9`@KEj%h!x^*pjaR`ovU!oG~Vq-qR3 z7gh;F9ZF5_O-A2Un+Tl3!hLo=O<;;fvTY-irAJ~^bBw|5SJKq-p@u`aRbL3X`t}5? zPR5SYcq=v;y`0;hkMaEePJboVP)Fqs2xcCw1QUC3=3H!Jv^f16>wrt<^b$0KZm|IE z7Hy(e(6MQ%`Dt9z-YT4Hqnd?EABiZNA^2`5V6c2cFTpb6S7sfl#oCw+6wL`v-yXSa^|c z=yD#`BNyWR_~lnCZoLEXi735#<;mM1dVkgYRuoWA;1CuoR+qLbmV7h2aD-dHhzcD{ z^3;9>hz9}N-QA53;A;`ar%HC*oEUUG%Mu8Sa)ePe;H1*~m>i9Zr_kNBVRjdvcH7lt zQEs9(0{Bth$4>OKc>f)pOm1fJX!QBe11JbGIc(uQrl1N71>`wK`Jjfl0-Gzl5H98_ z@&>*tH9xIXN!Cyqtl}AnG5;(#QshzKSh4$BEBBE|(s@55ayoW?fFq1-@@6*9uk3uc z2G;g6JcchGmQijJy!X%bsy}F#gZ8}LE(ZGxhv^)H;)xMT){X{?_x!DN>8UK1?GWn< zhTkDSa?u_GZ4`mXvVl8uF>;7&n7}T-hq0~XCc*n4gaiK95o+~T!*fAA!Lf=5K8J9u1S zAYM&#>u5PX=(Wp!;cEN79F~4=b{t9T&oU#*pzC?H0`9E|yG$+vn^&p64_0GNp8t@& z1!A57wZG=|5VGi!VmShN*Pz9#!9wy?4f?Z{2_mB~G2Vlf-8cOyY-h z=C~$q2~In75TekhU|grp?3bPBqkFS&F?Z+H@TTzUrZxjwjYj?*DQ3-GH5O*Y5LQzS z<{L#66bMlUPw*2&slozd%BDP^ewQZ7|VcPw}K zdM2x}9T^s6+kwNOFAq&4Q>&}Bd+gV~tZA{hM`SnnF7J-!H4rpCn-M+Yk}^h*NI;pc7Z9nla+_p_28Rm=%hRkzn6gS*%+7 zJT(Lgy9pCxZ^?QjbRA|@wV=rt*x68x&JKXEN!#K;nelbHtiHeaW>h~PJt$}Q+|8{1f)lrPGwj%>$p?2SL@`UOhc?Nc)1HR)T^_8$!K1&xv53*03mB#* zxgisVb`YRD+c@rm@pD%R@DCMVnYO9)_)Wb(J1K7%U!1SzPcqz7g5o7n)On_jz^a*k zW*hSKpD!VAkDO;ZYp;^bD;A0wsYJ0;oW|Y5h$$y-{5dm;(7$^Chte1HP?ORpoJfq_ z$D!x{4dBMw98c}mS!sDY9nr>sn$c4{^ho~5L65c@$pS3`DmH`h%aB9^Y8LjRtcN2Y z6hIoY2Uggl)}|MqMStFogn{k1PbvWq*N=Wql1{y*Ox-0|QKgB8qfg*s5;q_n%Y{A! zEfy)E|4~N%MU79j^MI;PKm}tYjYC8Z7!oL_xY+fI0A2HsD^46DwPeYplS3vCXI?|D z5urq~UTgQRR`?yVT~FfFjHLe|g&%$dd*6f>9botF?X8uw$rymup&5(f~8`ZSJ#$-!nbbfRLGk zXn?21MLNkPeJqIHJ-6r4t~J{OMk&ecY4yIyPd8wg@A?vY3*(_goSq1T9hLGZlZmH! zFoYRI>6+yIlF&Wt>>AcI^Yrdz{x^WmVQ|%dhAdW2e!F=>D=uNrs5V-Pn>P0*ZGh&> zeCcBX4>o;>UnMRjlgmY6Jd6$iuDN+uEAG3YPyboc`}T2-%7qz7RJXEJ;2?X zK~lq+v!X2*RS~<{tD3WuAcTKweRAsH^||`WfKu*yn-f>B^>~ipCTSK}`Z@t(8b{4_s+tyH8puln#E~iQ z&umPYVZ49!3Ts77n3bRa@?Z;jhccW zS$0Uh1r2^Bfi=T+Y;wYJN;jCjG{m$tz>r|{dNyIN@x8v8vHR=GcVuL9k^Y#b=}}>S zN3#wC_|zc}yEO570<5jo6hy{sVU|Iea4Y>zxboI;+AVo!uWt#$*2TThP|#a@U2}movG|XZ!c#T@R<* zXlf~T_$rg}GkVh_b~A3ih4<;zE78qytafm4li7CCqLa@3A|ShV<0?8l96S;I(a`z$ z5jNL%PRc_Uq#^aCv=8H*1JtDp%o^RKPrS&-O0v+XkK<8n>neF<=^`-W^moWL`=xCp z0HOryCXT>8?|3m-8NTRYH#Z@6(dEzgLenF+JcIJZ?Ju`(?0#PR&~H1X0}`$M_d+5l zg>Us7#5Olu9&L6JDBWVC!MRW7-}rhSy8^i<1m1g`AGpv!gP-Z^EqF6W7?9-M~-4b2>zn>ehug$-sFV90}+~p)_Wv89@sG+ba=(#53lUm-);J}3?!b)JG-u5x&B@9dn&%ckSVEga2z6*UUnkq_e<=TY0fwbI$r_cb95Z zDKN(^CLlrtH4lGJWd0V{i~*<5FKG0A`Wz@3J5j6<;;aHhphb9zIFu9GdAiL@rh_!D zBKT6cEm!pWgxy1gS`lTD&j^VQ$^1Y|@fYK4!ILuL?pp$2?;*fW*Np+bl)B!a;0jmXOvY%=2xx~Wi_ zuH@&-vQV;}mMb6bTIY+j6wA-(hjQ-H+-h^uKohum2oKRy;;wg`dHAzoNj+E%nsCr}H zGkGT^f62Nff%+L8G3XzgD`}SPO^NXY{!{6IEihu_5!-tEJr_}k?xp@&b zdB=L@B5c>3qU)Au=lH9wdOywiFRsR-0|(o6rz?HiKL!I-cqfP5mo8<2UU|gkMscmV zVo>Vf7oYtsT|?u-c}}6nhrjRXPlD#7otZ)CGHNeukRH^tHi*y& zdGVEa%Bj4sf&kg$hoDQ=GtJm&X&T(>$I2eSAdFh4mw{41Mk54*%o=Z5Zg09eMZ8AE!u*kLhsrQ4HH#=EZxZ`3gMa|PFlihfMbaccaXnL% zX~PMe>^}y4dm`@;<# zA^+OHBD~Bf51nx;tF-UUhx%fXI1O>5w^hg+Bx zXe~TvS`(uS#0cl^LMmu^DABKz?QMJi^d!C(ag|t~9Y5M?-XfneL&bIWC5Hy{T>rKU z_9F2k(9!hh?{=I&(~K&)Y|3g%wX~brn;HLiH=lX<+;TtK38VwF$ZoZ`a8}zj7fSDx zI(U^p=vY=7;b1YU?Q?f`tsv=35!khSGP1C>t92h?@b0m^?uvi25z3r1VEoiNdL9BX zb3?<7IIB;evCn%7!StJGe?qdm#C^Tx2rtbp38GKE{K74743MWm9UAXhYU5E#zw>gj zlX)yxXp|*>IAYHcx@{>s7KP8g`#vjoyY|@jOJ7jbg33x%J`ZiSGVqJKObcWGw>z)B zT+GGp(jJ2^S`G|Y(W-Ir94Zrd~6;>&Ki+{p>_G;kmeG8wGc7h^3d@p%| z`^2o@nQ(mltuo6oFL25VvtlkZO4~^`6o8#sqdo&7r#?2K_vYdpmG5ekWCuSmdW3Fnna2fp*J zP811!SGF(|D8IJ1QsbhbU7lGjfD#X`yBE*25$_65#v!D*E6jJ+19SXgcp^6TyIjcY%80V!%nEf>rvuhMwkZ~CO-zRht@4fQLY4m0A| z5B7B*&8h{E>!RwDEqTE0y8PuWYwPGR68Q6nh%j3hMOjr(S#y_~x;E=Ng33uXk>a|Q z@^&?BL=9k*d5B%ljnS-+p`pN;0cspx{Kan!7))5|7(5$pbDM__vY z#`v;+W#>t4E4IjA`Bx5~q*Oi~*wPU=8lZ*nRBykM)PSAXeQF zw@+1|uB+Qfg{@Xan=!8{M@3Wktls7$o}Q0er`E};BUCN4SKLQyi8yT~HFV`0k5~v( z7Oc`%@5K-|2Xhrc)?Ri&h5qNljEt><)6tH|rjk+@++MyXlYa;TwvSqxD#glkh$NTz zbjoqVVTKOdZc3mZI=>g&Td>}V>3}vpjv4J%6QOZYfy+)&S%R~yq=gN>Ms1-ohtn4j zV$n*E24u>L8cCeUxd;(qDO2VuU6Pb@F&z&HII>YISI`zV#oUtRF4C8JJezx@{jLt^ zEChtcp3?CdTk13@Oh)iiwn=X)b?d$ZCY!|_VVco&(RF=7m$vpT5R%2u09FvO?5J~T zTF1w;OE$woZ<5DhCA9H_aF~h$cT~n58+SBrNe>ofe$%=VRCEr?Tz;PBHSaaveHwBk z1GIR~v7)V{w-*uu33AOFI2E=y7k9}KJ5j(}H;oE8|F$wRmeE>yTS|UB5{IvVycx%g zKpNYv)cNH{{aH3FW$8280!6>wn08qufHQr(qz%Sr@#4Ew8NC-Vc7FFd-eVFo%+H!g z@RsxT);Z5>!K&>#^aS?i2jsg7^tutn>(`P{qI7h#2Z2T5Gyyt*fj-b{K0-NeJo zRJP{eQH)#71`9)|qpHMB>!+ArlgpjY37$z8#l?DuX68OOmfK;v<>Jjm=bYBT6J#v8 z*}zi5PFx!7RIwwSlb16%t`z!2Y5dZXi@4k8ZB0`?{cCU*3!4X{cmunW?k{q0B$lidlj2|3I&_bCjs*Fl`79XII~k9z z74v6N_~T4_+6cP@M?F$s!@68U;-|4C3B;dObX?+XRI`B;$q4O(EI~upC-$U z4^={%E!q>D&aAtCkq=Ueg&^alD76&UWrdIwZkA@VoFgup}8xT-WB@ z$Mva`h1s$VDZ9mrBo5Q(SeZ&Q)j||Kkh(<|(DbN}OiWT;uMYGOWJLylgF=J=}-}g z9(MMH<^(F)CFISY(C43m8W2A~Z@K?x!krn~WTS>7uW`_8@ zF>V{?t{A4R6DtSeIS$|HtNFY4lRljgp~_z4_R1VJ(%9elwaA_Ggtch1k8&>Rn?1Zv zZngM!s>NFuGpDxoEnZ}KB75=9f6nj@Y_nDO8xtCBt35ha?0b{jc`6T2xhwSLAM*!o zO>Gvt-)M_mI+S45TvW-Vz9?@hWR7PmYiui1q@-+K@h-ZlxoZ10qu*n=9jG2n`Kr-J z|ETs7P4SN_xYhgs#Cp`t(uLobuE&FJ)erEcr)N5iRdqZ@D$aM#`UWO?69HsPZoyu% zszPKk=VO@c+v7ElYqaUVpeZ}`i`^_fQy!82fcmP2sx6GapdSU>M*rrvG?8N!A~`j~ zU7I2GD$w=HPsvfGOEt}~R(s7F#hd^bJu{0{_qhB6Q#b7q{kz$GQgQtm%5U`u0JtqX zj!cpX6cl$b_0Fnh=yNV8={ZxNH+xo9HZ&DQT)Xt28mSk<9%tyK>#JQ+N421;g8Z|` zVbI~+LbEBSYduU|(xTQ$R<##?ZL%_GEBeDVsRSgF7{4?`_uOOVD=6q;2@XdAS`i7% z4K=2!1`g7q7{5vkteH>NTT#)KM@n!E3XQ&))G=Q1uM(P9l&n!;m={{iGtgAWL-7$e zuAMePN$ISjjE267%3hHrn5<7@tSQ3^qj;|cr$A5|ywM5u`B}uo zyO>x?KwBC70GfL)MG505>QMW710 zc&^iy#9!^*66u(yfkc)!0X05eDG0ARu33;Ap^cuW)2M=W0;;^AV_Oc4WpMb~dZ(!e z;i_m!MO*9qNxqSCz7C_V$R~qZ_{-&eY5qeiptq^3uBa>sQ|qhBih=hOX#S&LXuO@6 zYhV90SwMZN>O+c4F~73H#1o6m_^oO^VxQU(rGEAUL_kUO`gT^?mKrm8hn`_!U;v6T7`{DmpSxgv}q+?I!KAEeWX3T~3BmZqvNL8cqjeykR_qH+J5x^L*dbjmRv7UtXU z6=4YVL|r@LUnNjs<)v$TpK~is*Q}DV+9~;}tCvna74BEOS>?Dn(o9JONyK>TBry`$ z#}IQJaj${dm$Lz!cYRgYZ{Lp-_=}cuLJQ#V8corlGDXW2q&3a<6o)kuM~af;BF*^` z&EaDcc?p6XwoM~xJjflJxs>p;_QHmd6Dg+?*0kbWP{wf2;#haVS?Kt`slolBvVJdSvrX~_{B z4!FK@Xo-2ziCjcWl*G&wF^4$NyvoGtV%Fw^;Q_Of6OHl6Nz@d6Dg;Le=z7&d6%r?d zw3Zn*18`V~X>4{1#fb=`jJy;!8gzKj4Um#13XY+s z=F!rf<~&(`4mnf;M1}LGsC@#|A2?!Eg_q{QonZ2|u5z{*R45B0#iH6uPV*y3$YO^k zpzR{L_K8d}%WUaGH+225?0)~JIMADZ^ssu=05+({HfYAPvxv`*C0 z6+~$o_tv|AOviZKsB4@{E4Voc8#g5Z#g!ExOsZplR;t!9F|{S{v5Jd|s>-?=7N@w- z^aUS*7@EQCefTITui zem;n0?kS7E>v{F!jFpBM(>DS2SSoUOTPg5(S5Wbx;gJ#Hc}FzS&oc5{IX&=5&oDf| zxymJIYMODQ*IhAfkTsEIXk0Y!e%pLm#O+MclzU( z7`~S$IBPRs*CPP(Mu2|d-uLy0Z-?Kf36K|hPZnNZPW)OdztTT~iA!;-r>03?%EnSP z>=)(y?@DdQn}~|2eFo;4HFSm_FEm3GC}lY-D+r`1i{dy3GgO2LdxI9X8pjsO?|iK# zO3hVpG+InMGBv$U{mBxDsOyv^$kW0)HLu5p7gU!oj~Tn%&+DD-nY9nJ1Noy^p43nj zN6lB=SK1M>BlRPUqmx3xSIJk!SHV}kbf(9W0&k4neG^4G>O>S?CQTE^*$hf@lY&s_ z8EWzuwO4X^LsDA(-x!k)h8eXo)&Is*HG4+yJ;G*)y(_#6w)wrQyo2LT~5FU%j&TM~P6pcny-BjMjLf5rr}-gH+$ zlF!j4tADp<2z=8Xm>ow~O;<@*#U+-bNi5UhZNz;;!^YU?wXL2KM6U75bk?Pk>+$H) zeZjp@*h#W^vU!sKmml0J9I7|j_Kq6B?~BS>JP0r6vFSePzNn$QR=efoY$GM9$F_yc zL&$??$auVv3P1gLj~I~(ky_K#+OGPKs;6}Sy!Hg>_~*FKc#7;%1DS|?iWhzTTG*5# zTe30RTMnh$Z#OC&>k1R&2<~LtBZQ+T+*Ybqv3Ak5T_@8(N2mB2(hKf`hMx54mN4gG z%@zDqmvODaWwSGeib4smELQTmlJu4+5*ws-7~h%S%}kcsObF=#y@O><7zs_X9lM!K z$N!y?yNxed~vQBD*CE4T@J+(AWypbY0-Va_wGg;qvR6%DI z?NrUApKiW7t!y=^UtV6IRj#x@uA^*d3t2CvZiGc$XjtwX9#YQWfu=}&>?`6hc_K_;&yP_YE!;UPt_&;_+Dji&Q># zj{l1gWl3Ltg8?;k@7){b1|(e9Ioju=RHh8MN#(oZkp~z7tz_amxpHtW?P-w)1*c-GSx3V;h}<;$IEdAEVCRnEIGU2bX8f zttZ{)2rm~d?depT#_zOi1OgrO#Q%{OF2ItM7#S8>>Y8`8tosu8onY2A|W2e@?7lIp}WhUz~0q^_V*k zE|-~4irGCIh7}q=ji{v@&V}PfT&gbK5|E|lPTkugtoXYVT-9vvC(pTk8!??HHY()i zvW=?hBU`SzL%v&l!}~nEevTE>7-!~MgDqd?-6kuapp0m^--|~VT8~~^Cy9T!%4wo= zjt?b54kd*$;&9KR4ka;)1Ug7%C79>2Eaf@~b>rzIVdrTmbQ6wAWjlzm<^xDMB_)MO z!&ry~i;$p+@g!1$k47hb?}hbdlI`2LpOLGuO5-~OOPXLeD%A##Vz zZ#DnlAzswvm!?R-C^51KdOTr67+Ab8X&5fC;NdT5;!ufSoIgWE$RY^wgpU7fXb;E9 z+c;om55*fHcj)Bj{{J)J|D4@vdjFTgz{wrw&&>Z3fO7{hZaKaGOJM}#*2A0VeUeyx z+>}kCM_-w#h*^nGxsBB%g`d}?nu;RhP|`!c4bzkHjiywxhayT++==W2N8{UxKwc=l zGUVH@wPG)ZKy2wkpd7&`w?s0>+`|IypuqCrVsyiG!%*G#NYf*0Rk%YF6#%U3|IGHE z<{0OHF~^wyBWV8r(61Q$QkaGHbXK+A5X#LaLVzO$Cg+d_2GV5&FZ$1($nhVAFaJM8 za#kj$|B&wg8-_Wg>7j$NvYzwHOa@IceHfNE1*KZMa$oNm-t8iy6C?r|UGSHLh{)4r zA{_L4kAwntzQ(3a^}5y4`tq{2_Hzolwe{8Gc&QHs{@a!v@}*n#^ONuA%>)5xuan%g z$M(rq4s*OhPEL{t@m+4a?Q{jZ8JuPtC8e*m#^(KM9mmor(m+5`{P}8~$V!B$kbXYF z$r1fSeo!h|KyRpDaX|mVxA=RBJ3S)Pth8s}L?cNM?zQlZhtO#%m6T&!=*vUgGjh-U zImOpW>BIRA_USdNUxJ4M@_4RiuvO|PX*Zb=OL*!y`u?VXqu(8+LNi18>-TICx zG`fsd`(Npe==8a`c^mmkB17a<1IZP2XKO`%zP9JL;^?E~Hn5S|h^HiR~-!P?Mo!v(hH%RYORV01xFfQuF zxpY0|l_lj%UzsjD_UINnu2SA7YI+#%gKs-VoG#aCJ2t^}8@n$$q&wiRd}cr0;GJV_ zJ;+{3y5T-#Uf%t(UkZ+fUyrem*gfE{zag-?v)8kLSGa=WjKZ0#T9*Y&8Kf5;v7FP~ zxXe3-^d_W5%RQ_!z!DvCUy)Xv3lNYmaS>=y1e~!eI2^0>W*Y?%hWbpN!UCZ&$l|sIW&9HXk%FAIYD@ zi_np+CM=uw3l-!Cl|r7sHgo*k)7LgJ^IbSXIY|UsrL(CCWOdCLPm2p>64@sG#;F;H zEP>+lhK<~jyIg?=$B_}XobddQCLov;Vi#rpWhXHI9sI=iqv;qh7@rjJ;7yGWMxV*c zG#r$J5j29-kP=Ibo=>xi0TU4$FaSC1!)6$(sAK178%6kCJKZ^4j$NN6_# zprGxglm$0>UXh5UFu2nJMy)GZ!<%hr`Qxm*6)v+2M~yG7=TnWsmUfID>4LWvRiLto z^u!_fx2qa6Ie8sQ+HSy^t1ah{_(Ymm}j0wfol;n#mD z9opIfVndvSAwlMoU;D7X&uG4`zi!DN{8^50p^Y^E(r7c`gcdstjL-Nt=I%wAo>z~~ zt14$X06XLSCZbV)WRP_h#dGaD`I3oASw=}6-Xz0UL-rn-eTstDazfSNEga2sr@^ZBpK)H1 zHl^c@CnQ<-oR9vI+ImxzqV7DljRy}2hNZRziOGbNs@fR&(6btq(G!|T*kp#5C847> zQV@dvm-60a{a2I|Ls~MTW%Vn%sgaisi`QBTnnh$J;IXpY?^td`s)GJ79X}ve)srmo zPpLQoTpB>tsl@?!WMiTWV2pnuFV8J@tfWQP!PF*P$G8hb9r7dASx2T{V4Ak4U-A>T z2%XMQOgZ)pJh_XstS8PG4n(lE7jC;LU6JR`g zgzCR@s}-#x)r((9gL3eq#ta&wqKNbjlA$8O_?fT*hIo74N`3~3)ph3D+9B#2p=jQX z(Y65mouqYZo(-4Q|Il&djpN3Yu!W)ESB5g84nYbZ z!N`RtEpqZ<@go=SlVp>Tr=v;yB1f*%=T!1}J)+jXc72nYnhnh2_<&59ag19L82dJ@ zVQcD-Yvc+mNIv8zRQo&DiRikekR`)-QdweN!}fMa8AM9af31 zDteRej1%qLjmzJ!Ft1MAbg^c;Ij1Ko3Xun05(TAP+CT`!cccK%ChwKkptf*(&G?gd zinU#-gxQOEV4u~^AqmslelZZQyleqmNTn&p`R;dTn((KZZyF5o;bRWnYl+Z+%b+DQZqBA<#3xr1{t}RT%l9Ai zAGU|^pSFXgK|=84!IzIu&q%YIyjd>?JC56A&tENI?#O9I^&A=LC#`igZs^78Toi44 z8whxzoQs;|L&|T8WZsc&8y!pE=8Lh{g&}T{q3|7Z>dm$`N{xJuS7vV`h+U&r*re^pK?7rO0y%GrN!%V4L;n z3ihg9d=)V}bzp@>p|7@_g4izZYv3+QBrC|FTgsf^hRHZzFZ3n-$&@K}YwfpUy24mg zJpKe<(+rN#&R!p~{ND2#_2wd;wVDtvKIx*u+eO_eepP>rZ6$U^H|zO)zKOls(!ntI z-Mj&A;JyOR2e28>e>tO070XAhR2Eu2aL(5nWGb1IsJ%}8i+Xwe?h2P}J=B4bQ51?i z8)s~GDkZ(>;#E|XA2146*&!3HWY{>!>ZW^gFS{FdjRPitA7(zHd^<5(TJ3GkV&GXC zVuw$981?;5{;*5SK^w3`&pq#zcSP%CCGTWLXky%gaXpZQP#>;ZewlrEjbw_tl{`2? zwt%cl4vmm5eG<=TlvoKQ)*opEG9_3CaMEW6VLbpWeO%-KjLBrffhE+{6SzQ(5dl9q zCfz#Uy2l-fVs&MOGT<{RT7OB~mEacqEr@Xnm5O0fRBqM_`%95keCfa$3Du3rkr63) zr8Ez?jPLMlIwXU;xL={r5fx7{a*Vz*!R|YWD*)c(j1JMt;n9i5hone?KJ1NIT>n)$er2TZEUD+x zL1gnwV&a9oa|mtiwF)H$Av%j)Yk}(PFCacLO=YOQfz}%eP(J@tLNcl&+D|c0WX|e8 zpC(60Zpc|OJgsmRYweFDtA+0LIi`ie<4MrqF)}E~$Hvap$WC9_uC60ZK&My`O)y?I z`Ckrbb7zlgNNf&6_lV!=emEws2#Uk8rgtMWOaU*WP9_<#L1|6o+SdGm&{V%}e|}(i za0%(&ly=gVqa8!apsWvJYg#c-jpd*8?&24r>N!31T3~p*)d5^ZAaT=hH6Uq4vI(}6 zFtvc>&VW`Mk^XU6^hL(HQoO;)X9kfM+d&EzERTq2CqM_5O(-0F#@TWV1x9-%~ zKvBjtKGK9I((RHlJ_)sK^@tS;cAEvg?Un&tlf#S)!M{y?a+patA^PmM1)qDoDMz9D z4JlqkyNHN|YK5#NhQ>TLbt~*Gd5gySlOkBzRQ0hOdn&Y9D3c#?E0fjQpRw0g<;;iN z?bBA2NVTjZR?&#FQi>%c1p4+ac(lz5gRQOMRjy;oFxsks-Uy8#z*6tMZw%06L{KFE#WFQOKP%%{e5b2c_g6GXdQ)!xWDj$0d+ z!$v_2ntbHM21JO#p-G%D!|k24!_8f}#by4LVy*%eMhBOmf%7(0}556-Aj?Rl^ z3|Wkg4q*kIgbkkh6%Wb-#b0In%@5(hbk|kOeAy2dv!64-WUWQq1DqpWBCS+U3epc1 zwpcDZvF|z--O;P38-yI;Oa;!#WFr8@6ZJew`->=r+zrf*4h>Du%s$u0*g)vFeldBd zbej8`bj-Rt7uDpRVD8ycRnqNL|K96s0%y_*4$pqtUu(S_CByoPxSo1VzWoHC7V!I9(PCL99am1P{)kSbSi!B7&kY!fw#U{nuq6%k9#TQ z@?c(!rMGS{U{kUh@?!m~nSNc4LuCHFYr1+4wqXHK;>^UE&({lL3 zu7DtIGk8s{w0F~?ya*H5OP<#Ooz29EE^;SN8{b-jWn5-mQVe#2(OhPPMx%r=wo<@K z>jd#c^?OTAnen_Z1F;p*I!ohTpU7sR`;Vok){2#MMU1fIJY6*#(esK|9Kqes@n6Ap~TxDXWSbw~0mP06GoKbGl72?rfsYn~Jh3DJ_qA;F3$zGBJ zMso@%vMAgDoVS9xOZl<>VBBr<1vTefi9GlKx>#R;63opCTF@5Y(tYS%G0UHMmsQch zrtS9*iQ&kZ=iVBJ8q-uR+cx{Tku}*8ka;DT&x3&o76aBO8`=FipOiKzu)UIX~oHwPn5|7`W5NQ+s zTXIqZvfnESCzi<5M)`yv?i)#@&I8HM#mCl>v=$&%I*`CB; zC$3c^X07ktrkvvo?%CW+uHMc_ZkMTaEV_jdXw$^77|g_A8RXgHboX9g9hpY8;pe{( z9T3<(yZc3rv?ouFJFKgYUTs<@Y89eN(HdfgE@bE8C2u`o z)Wd9$Z7I%0nqZ`CXgq#56k!6AvcxZF#bj0g-YMI_J17e9Az zuP_NuqIkWEbK42nTk{}HgoEgvNI6Y-YuPcsqAeUB^-1}nNfzjez042 zud9Qzqs6(BF_Mw!L0NBq*3*4`^1@wcd( z*k4zyJ#gczyl|*9;+qspFO7U%^~p1#maA@5ulwha{3-bF_53>XC96teX|D>louOiU zGg{LbmlI)6E~_C*PMX){NsDFRXg$`VH1E;2<8o5@V0Rt%9>NRrw*~cCM=^nBC_O8f zDX7#czEbTXuIwkmQ3Y3CAeq4%Hjq-~hpx!xs9J@1Mwov2=#v1y2?R86N}&#<8n!$% zgl!B478H*H2(-)-WH@X%PkhMg1bNJ*{sMB0Do=VWzXwdCn;hXuXsSHqpOqddfefxD z=qBiAFgC&y&{I?%`UycBN?#*{2h}jblh+iczSgcwe+wT9QJHv)G+e+VBU{9t7mg6T z+>ipqo?cWAB2VNzbDi^>HSi|#r|2D5i^o}lIxhu@3-MK)0Q~@5_;>VFi*C*9W4oz= z55(UUjfj8havERG$BOq(xI>bX4um7?wEHS~H`cMo~aO zFy0k>@lP+;Ut#w-EaFpvl&3dgC6iUxjMhYLY*?EAKKJAEh)M{WdD^=SQF%?hE!`&%K2Q5%?5=hB1 zlMfdrAzBqbnikP=Atp3`b~3vd_*IbO*7hrw!ba8b&(4h~P74Kta{G98*@JDG^4$XR60v9VAP zao9`(9GY`|)0n6zSOg?}LO!nU?x7y~}`)#>7gT>$EAfTR|H^gor9XI}Mh^8f;bB?}GrqsANX|b$2pHr|X{!ZV+Z5%X?ZIUx=@$-Zb{iQLMhb<0KG%UAYa+`?H z5a3iqE|**~x}deddZxGFdS-iud!}QJ%#fYV*DiBUqGrw26re3aQ@&NSSwga)Y|hdY ztS(YjtSo0;(wxZNkSM2spGbTtXi?Znf$jc1?Q3G-O|nEqhD)!fi@dCFY9O<#7Xr2Z~_oxS-@e>S>g z22KJt084^7YY8_Z^?cbe~{xIv3V4D^e+!g6Wjz7h3#N;d)SLbsgKxQ&%ToU z)PI2wDGS*;$>LO_i@pW_tnTQD10V*qcT6g}H00K&iGJ)XTIeVeL74u;vY90eANoOH`;QsyqXEN)#%-0>Y!jtxdqx#LFAB+Qcm~Ke>mM zNIW#d9LrO*Ak9(4c7>|5!so!UzR0I{3ye|>C$~6ShNSS2}`pl<_N$&=> z{z&GgtE3QO<=Fvg%39~2p(I@LwtPg)(^DFU1U6lE&S~>nf-nvM5$hM=fEAwZSgKR` zvAaP1GT{SPc@IUmp}3KKN0LA8IIZ-%_`y@An%4re^>sXDjMdpo`Pz<_9&uR1oY1Sk z8qdMZeDnA!=0Vig;>jAcu|rvzpaMB^_uIVcD7LY+@aVkjpeB5Y~fU(VGN` zj3tnP3&iyuBGz637YnwxiyEmZS3>n>M0bDOjs@vx>avnIZwGzUx6mEUxYfXTe4@MK zX=zr@UnbnyO6il81gxrjJ>MSZF`A!#9>wO;s1s_-rM6vuHcuenLnle?S6p&Rb3PVI z>LQZG&x{K&aK=$B+V_zbZ(uH6_Nt3f%a;B6syT=PER)8!$M=5I*{4J+18-zd9u~)b z+OTMm%hec7{H7FtXQb4$)}(4RYkwL_2=+v)<3Q#_hAKL&9J{1Y>v|Ryd=kUk^?&blM1VnxQo^Y~qe|2Purn7SscOIAMw|Ni$U) z9Wp0YMxnR2!`3>g+Dnt_(t|6h2gUn3bV~!Uy#|id-htv1-Gd42({O;!nkLY=BIdtZ zy*fWXJw0E)a(%ONeAI_)&HOct;t4wy8Q91HH_hu+KbIFwZ$E4kL-ffiYf@YLynlU-wZ49^My8hy3i;@3w7gaJDqZ2|}df_*TrkVe%< zL8z;j&>p*XIaF-v^j%B^Pn3Zo`Vw=Z3imr+lex*Q=x( zcMZ_|1RqWb@;4E|X?-k>Pt_p019t0Wa8pbYd2NLUU=rNK0IGj5$1Dl2QZ`oE5t~>I zjK-us5DqN&C|_CikKYCM^6F~tUi9Y5P5SHsrET~P4H;p-)|wg0>&T^)AvNI({u?drG&3p+MT z`Rl+7Ws>2R%P?ycuQd~ItH~OV`jo-}f{1PU%>Dgh6Y7o$DissumWvKinHuLLHP z91slRR7Xkp?YJ!C#m}*El*G4JKujGjfnWx4m!C!%pCJE~FY2iZ(&@7Ts1&A5wGaC1 zwyfVTwZ>;TK))CyWyR9#+^&o^iOV?rJ6<*?n6j?=M08g52M&LBZ9)GCfpvQniqZw8#lJOWBXgt(wSMXsiV_&PsxN!4Y?D(A1@614(MeGMP_5(9oXaHV zn{b3&t-fo15eFWAv7v&{AA1v3T{_pQXD31KPu`5L7-+0u+JAHZvmW?AFoxA-LeSOea~Y@2Z`EudNn#pvd+ zdMU>;br=CLSMI1V_!45o{CD=Xy(Ij&{Ia>4_Yc5!8kzSu;Gr05Ib7=kx#wLD_k>?w ze=W~>PMKQua3h`9AY%u#?!_?tv-9kJ7pEf0-}XkJ3EQn8sdlCZ$uiy|*fI6L2HoKY z@j@{Azw$?g{}$SI!X9l4>V@2_DfPoVi(H}L9xc~TXCC~);)jnZho+0TugDra*snD0 zuqj_#K$!u5FK-p6I%s5T0=0w0N|j&__B^#x@V}gXRC_Jf)pYYSOaZ^uX@-e56lNpz z=DLl~Txt+kjBDm5k2RzT9E{0cT4`YDdOZ0<=;Z4~*<0Jh)Tm&aFS}Y&hB}4apKr|Q z>}-6@iUWs1zZ-=ncarAVpE#dfC_bOe?K(Fw%_GtIIqu!Ps>f~BzQ0xvovHu{?rj`R zAS&%vc^WuY(*mXNM5M^ad_9QF4X9isq-4bGH9{c2;t0d^7B`(|hxh{%q02n4>^Sbi zPqyj(#<W2mWe2 zRoMG-irmc!%7#VRz8VTPejOtXPDN~L-}WKep%D(##*=_D$jRIWM)x58wx!-s2>tgt zI^X1g;vg@IgM!${3Nw(cJ~IqoD-56MAT%m%^9KXhFc#5q(-SKjKt8Pc7tA!XwhvPa zaCiyG{};&~Wjbq^j_h;h)hQ^FjJOI$$z+cF0Que0W4Bh_SR}ik$F%+r!ybZ0EYT&a zP;jcYOhJ97d3^&_(e|{OabA#wXe)3xpU+K0+tO5(TTK^9r$cK2XVFfoA=*a}*yn@H z#02!u-)$ee3(V0q7g%@MUT?lP`Wn~mR%D>_=8UQZ5j?fQ+c+?)^PCD{Gkh(wF%~Vg z0;d&II;OV=s*X0G;?;*@%j!v z)_;(3B81e%!p(uhQ5u^z@+7AZ@1c0asB8+-zkK_K7XZFJ_6Fu)m)$v0N#*ON^S*`_ zD58miQAFfKO>aKsa;LH2&zis?xPAjr+5|F2`f}uW_*v292cXyXLD*=*lfYB*V5>&Q zdc_30q+auad2EDQK*ME|UrtBV zAj5>u!bnguh7Ox-S!f>#vmcqjM&4kk5~>c+cy%hClg#)tJ=JLp$+<~T7HxiUya z&q^)uVqn)g^J3~qGY`Hboi};@n{L%b&p*Qxc7;d%E{gJ0OpwDLKS7`DBi; z@r^V9r7dywr8TZVf_~~yYQZ~JdptOGO4jXN?PFXC$&hJEy{2^Wh0H2nVEw9IsMa~h z8%Q5;I`oBGw1mPXgidD28-$qEBxTnFPy`f~k-4OPM+Fh(z=X&BW>eL>DP5oI)fnsE z7!aMKqntea=Dby(oqk-$*qw^V_KM%v8&@3mzw6%F(I@1Cma73_E`T8O0e;89dq~`( zH5zKVKYPr@FQoV7|J%*R8A-hnqxyy%@vOCwPp6?J|C$3FW1?eiClAMc2Z0eGY!7pC zZ`K8C3rdOyricKI69qsI$9ykyymnhLv%_n!8d z_bqkp{_;RB7`gG5^4hSYlSdGPq&WC=r#1$vCB#dh00&h{?uPY~`Ut^;p|y(%dfOLu znT#tcz*8&i;I4Bi%a97@H#CLDV3Rq-a}+vHJL5IP@bvCl-v5`ITU zI81Vxbl}_pg&IU+uBZvs`mnuEkr1u)XH1Iw`S|qx21(|kV1JBxso#Z%nNh5=#-pLv z{d#V`QZjEC1qz>05zbr8H*)u+qqL_AuHm;T-hEFB7#=NG=r11k#Zoj7XG+5!uF`hx?dR%Dzn`A%n{-!r*B(GwuE&8tl} zpO#{pl|=OO1{$_72#*WYs0|zxj~@RG@mJ*FlQ=&Ojp-v4Ot7zx_V*Z!4?rLem{llW zMJ;C@I_KYT6Xir!$#V%Uw9!D=7G6J{dl69G+Zgf#zO|^x*wym|R7uc`t_ET7$rn43 zY_30no6MrMD&B<3wml`(k-aZs8cjBdU31qKs^#-u5Gljf*EfTHt(vhMcG#g#;1A=FyAt5cfFHC;8`XBeLHx7804 z(UB1csWfmNuJr?R90g1O4Ifk z?2g0pEAjMu_w-M;+gK{$`T7Q192z=>@jkVQA0eo)3;pdlf_Sh!%KTDjiZnpnuv^ZJ zM3vv!RRywU6>b{Xox|(T8^U#1_#sp3#;vKzVCWL8AHx%i*fh<`0zSwSRsx zLY!-~Ry%_o35wG%->!X8CiwrXXn$DHs((-ApREZDr<9b1gp^FMA%TXR!Ojj6d8<3T zBYFwVc}9;RGI)NbIC6%Hvq-g`)NT5`7jj!ZgS>Wwl#v_$; z={O*@t_you4Ig|(izLnBvOC@X$R;CtjfMc56F_z%>y(s7G_B$O#cq(SXEge$({S?w zjgmZmIa6=}!46s4=h2k`k)6o-nwr|;xmja84~f00lw^|Yg;*db0mELB1r&?7ZZK~L z3tvq$vuC0>4lT_1esS1=1>|Ioq-{B-qeDSKzb$;2)dEs8b-efR{($E0y<%h*jx6YI zKS1css=kur0o?c3q7I-ocxUTHdydvY6MH^|oJ4KRRtORvdmaqemh|A-cphMrjJ0l0 zH*+N&HM^K70vwgghiXA2Bfv0MdI60$;Ds?G;_LteOAF7|2|QX;MvDYAs(ii$0bGw^Jrr)PVIKtLPoHRgc57@RQ7iDU!J>b$;`+WUyH%BXBKGHoo6Sgy9hE|0=qaYKb^%s=A7ZmeV0VgYe^b!9L&e;AZDUw zvwO?_1^R~LL;l9?(srvJUzQ`<2smZ0T@%AC#4u}^l1$XdW1%QK?S=o(yc-rgnTH0D zmi}?;T)i2;xq4L8Vpam8#22Jhgfi;%%v{ zCo(It-(3nu;eTq|otxvU*cE+&*#-%F5O;sK1(_~Ft~hivVPNO{sz%BDWOg$p#Dx;_$2A~q24Lrf z#Q+#B%ep9;za{!Mt;H-&Wf-W9#-Je+KzKV~ikbCYMq)XJ8zg+*X^vp2fII>XZop=5`+vLmx+j6ZDKHd1f9Kbeve#5u#qMx?6^ z%^IM^oIGt|mi@(^*Sp|{L->vpPwCMi{pqO5Wl2|CrMz;ROF}$3z>cc@F5qi1dY=ku zgKaLjm(fCRayl5?Gbq7da5@QMg=C6&5s&pSFVeGd1Y;~p^tCeHIJI2zYBl0mMPm%x zgVTML#Zv?M3KYgXvaippdXljl-9EZtG26BhhK_&NR8uCIJ4_XxV9>v<5kdx;DVa+- zxT$Y>HY=NQp%SR>1Jd7;vl(JXnDvMSi?f@GILKcuiK?<$24!t2C>Q?OU}K6jn;OYD z;;?|3nPW5N<$}EuF0Pu{jo7#m;E_hhJd0w77xbFCNrjQ(B4=j@BAAj-0!gV9ksDxLLhx1m0^?71;0~}$v5SGwq>bJz zT)>ul`KUVoGhXynkM>p2YijMRJ06I3M4w%8L?Ez9NIAli8AE(j$TX8<2|P0(v+L_+}}ce@psS4aw}FG?zkJD4`&V zP~;@noRoQ9rYOOp$0QYp6pdnwZ{>PZ`H=uGSC3xi%3?BU!W;F+T3{l4F(nd?fS9zG z(;AgsJ8rQgzwE5I@BqqnfcoAje?#$3bB*}yIkOOi^{nIFD9obY48bX(_Aq`?-e<1c zHoW3QNQYR$%Ig}pg%e=(CE>-FFDm4S8F^glfT6^DR)3iurG3SsT12jBS9i9%QVn($ z4!hSAw*I7yoot&GN;UdD-in{54v!+-$Gr^wyf4(nm3w6u_{IBkmt?|4dB++(fx-Ih z5MYu+7B8tzQ8_N?!}IetTn>73gGI5M64ybj8E*u!g+3`e%8kG1YRlrSp-~uKd+H%t zI}Tg2MZwr!4@<$k2u}G6Ut(yz6LRM>^^3+;V=GmyUL&37>>I74YxGcd0XDF|V#9cNo22lu zzxIJjOB0?d*vsV;(o;9i>8;=P0+`S0vi>)vj`KhFZ~jkOH5>bXuKfIuBIli~V@bq_ z5^{U0W<(F-$;kSc+$0*rMFmlfnrytzoh{-jz&tqRw%@x;a+?knS(W!R{_Zg=$$|T& zZae7u2iGZ$$FXJJ+SwWk_ayg|3j@aFkA1hcPyLWrh!nBpWG5gTYX!>d_a?RnzMw20R%une#$fE7Qh} zzbx48BdHUblQ%DJK(Arj)hjeFID%G+l-nzxLhPQ73;k`uvFk*w3-q#20oT znxQ}Pn6D)Vvpx3V1?93s?pU%s$2lMrG5V2$kX9nMb)*DFh$3SNU4bS!SNWx!2TF55 z_IV@$w7~ft1VYb8pd@>g0!TR`^mj#VY6yP_mXSm%!X+^O5E$nr6^3GlIrRickSjt7 z-L|0Ka)Jsr69inKI7;SgBE-v8h;xNAY&*dXIDsO1NaT?QUN`{;SO|hFL)vf+I$8UX zKM{n_2}em9oe`EmDc}}*fMq8*EKuipq?v}S66eVv32OX*r*r@}(p^mmZVep{eckuAEf9rfX6 z^Q(>r=tW!7)>x^+URMj9Wx5I9Z>F1HQjQNz5MRI-{ha#$+VL#^%N;i+CIUV_g8%>f zpN{{hi0>ijsTe7wIr!-VQUgE%0IB@fi~e(A_5Vf$XJTMw`=1j2r+{WvPZeY}tXx76 zMPg0Xj+wJ5b?It&q{?lJ?Hg$*x`+c{8a_q=2_Sy~ydVT!NJv5%Bp?z(fdS^U2c!T& zgys&kkiol$qVDogmr@&vEk}VA>M>7JGC|5XDJBzN(tp~lsU)0Obx_$KhTvdDj!2?` z`dII(r@mcI{U--F>ORQa_&G!B^&`WKZm0mg+kthT15AV&_Z0Wc)}+U+t3FUU78Fdd z{y7IT(kIU|MjSBl0cgFO)!Lr)R`W&a`UbCPZ6YM<@aar8>vfLJUZJZ!#7+=QPNrre zaUqBYrf?k|1NhiAYGvj^qytb5ym&ek=pv0Enn($>5+tf%g&G18hjgmH^)cckk)%*U zw27w(Q_6HnP@quyWcd@5C=-yy>JnEnoM|#clMhKE1th|0r3grjj3D_4P>}UX>Al&r zY84_p>DoiH239Cu=ci&&KUZC8Z$;hXjNy>=_MY$~_er8sMABsBOu$@~KVNdW1kJt* zaC9iYMlQk{{hi!=!$#!qU7BMF+kN5Qu@D~#>d&5k`oQ4whwF{Mo457#zBdKDg0Qp8 zEo_bJWVl;s=U>m5n}6BT=7HKO0OgwnPbxvbB(fVJWxBrmQo%vYmTs@90t#B+2JaZ-7Hf) zMmH^vE}P-O0ln;3!gm4QGW?|)I3()6fl`X>#hM3ZYaGp*aV%9_5N|PKjIYtO5Lu!< z-icApA&dfiC9&`Yn=`1p^00Fl|J>V0SEQ~kr(hREvhferG#%??_^L8gTw{2L%wyeMTQ1gy1$wb>K2MF z0x{~B5AECVu!5YI3vcuJ6RAWMA8v%ZF|z~sOAuJvK7g+2h350d1`X1iz~^PG=>Nqp zg`dEZCdKfPj)|OEMMWhT1DDmsw8FM@(bpAtW64HB<@Ecwjic$ho2u}?Mc_;0WPmepDQW=b;O-;vZCX@!S!kXA@ z?Q*57bs2|mZGTZ5JQ9F~j3*7gUZS+19c-52H0}M;LTyuZc*s{brFq-Q#M4x;$v?Li z_~N!a$~v-j!Ne2a;@j1gV7U-!eFbV00YmbEbm`UMM6qPB?H zlt!07c}5#s&`%WyHzWW{RhJ5^{ecj@$m_HK|JNJ3s&f&PjR#8Z(#{E%rzL*hHkzWoUhfdP9%gmy0m=Tb&;0zndGO+EOn zcPgx8rDF%o3W}xvvbs=jpWG}vm&Sb5(fLn=gUGh_&c^oo{3M7ow(>y0t+pP(U2VYe zs``>Mt1v#1X4bxwYLlpYN) zdvxm8cV;m!n3Xnri6`#3vR7;fG~7z8WxYK&rw~zTk~8W^(}g!UeW@>mL5ScIM&r{v z{g9Xa1mk$Y4PWzAFZ7O^1HuNPZFwU}sZs^IVeP!>+Iz^;5DCk&)3|H<Raik32lM?1O?4|`Mkrd|^^ zLt?{+olOfZym8PiAOysZ;B%g-X?;7wVN>t)#EHi||r zYAvHl!ODr8q@$6@6scm=Ue-r;m-uCarvg0Bz)C#u*fK5Cl8?+#OSLu{IB94kR?l-S zk^HRFbZqRW?e)z~=*T~~Dpk-Fw6wU0Yc)ocxy-3YQ?JvR8MloZv}l&q#cX@_4jiU5 z)o7W+HuYT9E;9kX0Dgy~LjM(Vu>CKw4GS~#{~(M1*x&a~=(jmwKnS^Yk5~sr;w`cV z3bGC+vKEdn*cJjUJHWc~Zx*>4vxn>Y-oRUsqIMxBok;aHd6;z*+ud=!htH42kjKNc zs$cBh$4Iqx#*P+~p8f<&)**&M3Ebcv?40)sMH?}0u1acxr)yLCT7bqWxB>6p)2OIL z_{GP#y+^QJ360GSeOujBWpDO~pw{|J5}Pi+A?<13{~HZVKH!Zg6c5jmy>x-OAU=}z zc~>D)j=igkPRbq`2U8-i1nKw)DSpc(#f*@!i5*OCyOrhjaI>LdMdiFOZvZ&H5}wVv zy7x{f#U_>)e*ts&iKa7FW4j6M!QEF-0N_uqwmxmD!wwOC+l?fb{PGb?=v91GODlxN zLE5PeeYKHMSiX!|7>o@_tyk}$hM14!dmhygLoS5Q&{fhXc+hKk2whxEJ*1w4meT;K zDAq)j0hVDT!d$?qh-c=pm=o56oGd~wB3(c_Z<&V)&7y-?T!eUBG(9dY=bI)URyL8< zb#&yIg1%&VHXS>hdwWWFw}asdqz^fe^&M0^Fw1N1eAzgFi)OXvB%k@`37jMrc>BNf z01Lza_C?3a@*gemA3gB@PJFK4_5M8me*e1ueE$Ao14Gm?FfechXn+aKz<|MlL73_J z0fIu1f**22008XUz|8#DLjH3M`u_(1a!G2JfDR&3_qrny#TZU%z>LELee-$!p!Jr`>^ZZT`}>#`2+-It00Jb~yF7`*R%M6NZuNeV2e8_Ae<)V_ z@|5z{8InPcZU@{hn1?<1JlX~b6mvdQFEld)1$$1mwLM+oO}DX#uht{-1^|PM^1R2- z9sF`o{X4A_0Hfgq?TNea=O?E|KL^hxK>&VM zq0a6C#|$JTi(s>?y25zkaWi|K&X4v<9;?M z`uWz4!m8@svk;x5N}btb{lFc+*6zzq#!aOyTTP)XJJhu8lI^#S(bwQ%x-TMc4nWP< zGnRmTb{H?me}8kJknu;<@Vg!`4VMkV6CXPSc2rD{xL$G1%nF7L4Ler0kIW#kZhS3t z4aJIz4K_2zJ7{{q#L$t!(~6D_J~P%kinb5UAhM2hP00$g1xL%DQ;)j-&zi*)qE;ZM zzGc1hnuir}3*=^$^{_UB+7ztgC=Y}D6!c?%i+)cU{z)vTp1(Q*T2!!JzB&e4jAR`I z4N~MlK|KZyTI48FUG|#B70(Oh3z9HUeO|2}+7o&d(i;REgb&&mksIM#^Wy(Q+B*e{ z5^QUi%eHOXwynKv+qP}nwr$(CjlFF3{`;ZtiH`Gdqr09nqUs?tV`k;}#%z{*4DNn- zPlG=-Vgsh8Nn{Vu%JJsnMGl2z4uMq-sz$2LtjRshy6Y-*DI6O17Lv_w%{8$(zutQ{ zMjxwv(Xn&YTC&k<>)G*gO>_NS6;mDOvslk9W(j{Sq!jEgI}cX_+fXDDzBmi1B3P1ox@NJaccCNW%1|uM*_LHF7`<51NO6@ z*jTJDqv>XPaD&bmmVQnQB__rJ7;zh^lD^}OQ8XFOVbf(X%>(;^yKg2Fb!x22_~DZJ z@$QfCljkc3xeCAEVFnr!)V72*1go;eN{1zE7k+P;FacMn*pX$27+Dz*jv&L4yg4=> zaF_Wq_Gx&62uRJo%Xa7=iDyPJb?4vw-PRW@=RWTh0W$l9*I{yD+z6EdriwamJuqN) zWZL|Rt^|vRb%o}L+*bX^L;uF~${SJ>6%Pv+tz~PUXF?rXpY!A~kku&lx;OO(ntspO z)_E5#N+qsu#q*HW?=JXcrep2bC(AWp=l71lI*q3VM8*m{R=cc6v9^yPa?Q>CW|`4Z zWh%x&v?J6a5%{R5R$7}bI%5o9#(rq9hY7|ce0Ftf5-|$<3zQbJ^k?!H>_VZWMI{v| z*BOYj5IQSls00AGbtuTIBQyT*%9Ks~EjGW7@63SOjK@oIh9j~4SuLT!oN~#wRNnW~ z>D*4S(SwJK^`Iv;bh({{`hr5t$dcaK=A};JuCMj)F;~CNU$H+{9^bqzE?(sAN;12t zbh&(#G{KO)6&yCjwzsu4{Lo-PrH#Du-JTZ@%LJa5Z$(FXx7HlK$t!krFzZd-Eae6| zMQN<`CT}_*?DR_Z5kn!{K(-y~|45$?$jks=?s3gec>=+|IB!wxuU!WHusA$ zf8yf>@dZ-K<&s?d19(M`Tg0F7YfY#Xv)q3=ErKwYrJFS}RK^CW+7k(Ca+{+yhBxiU zia(ra@1pTMTh@Ecb+*A+ZH@tJK|Z1gIlmy0W}G*0aHsm`AXwBRKaulH%506d`j`=5 z&+hLAQ(^Vy>#yeG3es~b(Yz>efpRc^A>{SQGoKt^YOP_6j-~=yg9B|vC>5?E)01S$ z8>ugRUn3doro=Vwuir(R zqXmF}<9xAM2XpEfJtU(`7sLi8&b05~3M^Qn(a!>_K`7%%D=?mXBX?Lx^40R6xepNC zQEIn5;Gq7-2n$cHyTdA=%!>+W%?^?jVi-%FIL4QPa2I2S?TIimw3m!ubU%WTL)d?L3KpbS8=dIQY5B0W+Y-Fx05VH>2f>3XTy|j zTXLp437+W8by6AwLMls09=}vJ9^&TB+Gd7$#)x8EMtJgLg4GbJKzE%m@igs&!gvz4 zKMFyt*|QyH)=&2L*Vp&=Pu6E9l<;rE7>d5#=vI18P^J57t=TkJOvG<(==x z#~<#84hBwZ;}&HgHXB}t(ue2DJGW+xc<^Z;YX1Q7!?{)^)Yg`5i|d$rHY zs2yX@fj8sZcHn|EfEgb!v@hjqj!zQpc(*$aB3`S@8jQDSptnsoXc#CjdPXmOif`~* zJ)Oam)To}h?7j#gf7fdIWY=(VqP8jJ>6qdZJv>IK5vKmvERe=?YC4{O0pVQfM5Kr= zD3q9y2p>MEFzVBF6>EJ2gcCfnrZ7MWYbahe3n-hEuDQu=rIvxMSi_+*!*V&hW@8Lv z%54R=>`Ln}JEocrjG~AVdr4;ZaTee2^9xIrPyBs+zaz1_juEQKI z=A-8!wefS9IA<@c8Zb3Dl1%zroZ-melA0VjYXAI_HJsKEwvd2gU~8@yQT-h|z=!aX zA=BTHLydlY7c5CjPeV46j8=nET9GNpXEcb!Gw3sR)Shjhz}zNZzeb`C^h7=zuRwR) z^IHEW>B9tsB!7mFg2n`W$k#BLByfn?4%>Bc&I$2mAgffUac6mmz?@Ut7lR58x`Wm} zv|X@st|=sfDsD!nbL-=AR9IZAA`DqB2AgZgSEhNi!-Tm=+8Ty+SiKG^`&<$B z9^tp(M$MGZn@snnVPYUmkk{@|%XQoh?avuqi*|>n!wyerw+>BfUX$(SvB%k#+?wuJ zD7t7|#@kCdFd(%%WZIx_*FpMDU{dLVP!hQ}6$=}U6eIOwSGtbNT_KiG&_WT*3yN;&i%yr_to*&wg_6!&0jO#2#J=~A1?F4EPMb_ zV5=w6@s%P0UtVYxw{UzXJ+1y^lD&j!<8(@*Ft>F9c0?Qldl4B#`TKtwWP9RlXKpQe zf7KfJTd0DGW#R2}mA027_%%3V1jeCXuud@!=>Z}60Pn+VK z19HSyK5w9r*YRCmPV#n9m@YZ5$a-122EJVwZSnZklg7r*WlgM?w`)P)QX=9MQf?yw zz(o`p$K%m)QI-uzr@cg#-VE7=Nx=MZouNblDViua#07#90_ma|8M8>|n6bXnIILC? zvnEkptT@!y^S-WJNG0qa@T*`{>zLyPkJ6L zgw}To^8&3{K+#9+f*sOR>=6mVK&V<~TcgUu2I=mE&;CR-zHV}skO3CFIs$CazdwZY zo=rb3!#*|3Q94ot)FNcyw1U`Iw2+3vI~#iV(c;2W>3tLMExvMNVGHJ<9|*Dnwd1IA zLdXY~RqR!>*T$spT{|w$aN~5w2ik>{yhn){vd5}`YI(bAipqe3qJ|-~*>9x#dp#ja ziSdpL+YAm4hBe~Hsu@|-!bBE1RaL4&aT@jdtExR^gn_c*Q7_L0Uyr;o3DLsQc~RV~ zw-Z?Az+GS7$DTf43C~*@H&$u^sLtik3T2JH7l@;pRJh70X^euhGm%OkT~lfQGz@H^ zs`cF1SWHsp54@D)K$@t;DP@w#73p8Yh1-kOP+&9S=^W}O=;)IqrNQ7GOG*7pk(Mqt z1p%b=Qjd+)t+%DOfdvON*UP&q*DQWRcZATfI9q*H4t1%V#GSx3{l=}pJbCPcIk*GQ z6!gAne4`A8sTzvfqzm~AI!09gK-f6myJFrmfExHKJxO)%f8OsRh66kNcV762=4ZV- z4$rkT0mZrAT>!MfqVl_(xV!f-w^`phNBC=JOix|1I>#382Mu&6*K+l9iETi!U$9b+ z-8O4fUX!XIH=3$I{)lmLJK?-T_Sq<_f)vaL`ousV8f~#J?~~&ZXs)sqm`J}X%x$pU z0Jt(xE_I?{)_Fm1td#0QhZ%ldlii=!;5#{dBM3&}dnqB!9oW*z=^vO}pEyjkm#T2= zO|@(4V&-%NW;=HG-Ar3`_aosF&bzlZfdS|(JKvmLDJ+70PA!@_b3;x-!CWC%Q#87h z@wetmKVe;RT3x+5V6$^pc?Y4JpmptNIvUNQ^RYpu@)FkiB^Q{7t@IW@kdu> zR*)3XhGXxE*0&lO$m=?eZ7E^KpGrERIg4gl@_hH1>>O8Spf=qCHapS$t8 zD6I+n{53E}a?*JUX81M7Y0G-z>?Cq}S!nQgLKy>34MA3wf89AyP;fCD{~FI%(9h|4 z_s93h237w|CssVUO=Jyv5ORtZ-@@uE(tN?u1-@)-jKzA_{52y%A@n6kf6;|)-g-ka zYolW3$%vGdl9Du0pyrAkqW+Z+<%-)k&?9fhNIA-w;Dn4&_6HAVQ44!My_^qab~a8# zXlm#+|88ulNU=U@^sww9*-s~rl4wUzvsh$mQT|A2>e!eLA*RiAY+;pm)dzwo>`Aj) zzUSE}snoUrLdDE8C-Wj`9O$qQtoCc;g>J52!uIl&)8+}#!(KnckQE&nFPeT#N2{w) zq_lD;AM+rOi#{gnma4BG5YRoeRli#TUv$T-nl3Ag7Ae4`%Ovhnd%{Y3hOC1wHT!3-${aCGFP)fC#>a8|2%|U=pW;`^%7<-G&># zmHVr!3CLyjA&Vb8D`?|o1H^Lx^}u6-$^|9H^nEQHYD&3Ms8y&yRaEh&#E-Dukce2e zMk>vrXcPZgc3QEj@f;{#WzsP$+|quZa|tnfFA-VeaV_CJMxE|A%dp~|I(0^(^5Ebm z5*q9dA(s7`X}xuuz7O7Ompl*eXyB2SahdpV3DSy9jJu1$cJ`pwiDLO`>tOy;+iB_o zYBWv&^43lR^{99QbNYIwmXa+LRmu=Jkrxfu?Gr5W9c2gqqrnJ2vdk8nG2vjz_8QH8 zATP!iBn)10Y#`u4?9~3b_RG`LZ-?#7FtvH~;cGF?<^b^teVh+ymnF#DojGxA0Z-@; zBMxn=zR5A|A-O%r7Er;=e5PoU$eICk?W+0XBBhRFEQ@LafeORYf+SAO*Hy*c9w6rv zT1OEhN9H#-Tv(C_vm$h@5*5-(G7GteTJg-9MMm9$Bu?%B84C9lt88Dp-gqnp-Eo?# zlwwgi5Ixb#$DRfXKQa#*b6j;rYEFn1Lq^DsCmkbrv=7t{5*v(Mz|7n(5G^(DPiZ7h zbg88d@VFl@zx8+U^{fboxi%52-61v5QalTj_aoBawt!y2ZP^M0>5ft2>rrAI)Ajd) z5uUBgG^!^c$(Z_xW&^7|z;#2jmp>hL2YQxOL3ZE$MAy{sIpAUEX_pr%jjDALwECf# z<}KNZMfdo?;tpNNRtmoepHa8K%D7`mgmgZbSvpM~#J8DW(G^S?*JR6MyFdbG?k$7( zN2fk(*Jmv;ix%{(mdbs=T~kRhwEGs}CW8I^((g4-t}Ff$62fD>8(cLR^zu>hWU6#b$LIT4=-9 zB&`Bv1Gx9E>Gu8gmp%+NWQW{qqB$U z-*0(Bk5En^?i0ZSo2DhsOTtB9-sQ{NOB?xIezUg?fU>->D%j%%qtcO5frbsg#6_h) zCewqkQGsWR`1I^JIzwpUq9`8=O=t3gIf}1yWquyd%e>|)0B|BWCOvexa#s0$T!u1p z#w(SsWq#3PNyq|J`NbU*9UYm@I&4E0vP?Y8VRbd-t*(5B2-LT;zhy1yuK2xT0_&X~ zS48M%Ll<{N((fl@vFq@L9APg7cCrlK2hX3z;(#_6q_|#cDcX^%e0|pDi+O8KtYBM7 z@*Z9RUU{RJk`>FxX(Y3tTo#Q~q>>{X6WYMq=Q9P|^q~#L)L>mWpI|Sc#1;JSb<8*u zYeLe|&l#Mo)8&JK4SNg6G#5=u>$ecx2zv&M2#UvPEBYoA^1pl9M0Db;^4 z8#|$lDAM6?dVR;^4c3X*{g@_A7xb5@VmD98)8?=Kyr8cpud(8;b=5B3v+28=>=V=Y zv=>eZ)gslP_JKi_kp!P{czXqIg~XW~^O}QP26^&g0oCwZ?fxk;TNrGE$)TsWi~KGO zA~BHh4%E9d_52&@74NUZZ}oX-I#t~ArTVi!(gfkYKTryu_h5Qo|1~m-UWNbBoKVDQ zOY|D?*8IuJf@3g+PG>OwFE=~hD=d~4I zQo3(9k|B^r06I}YW!gJU&Xv5I?s(kg&URq>G!o-tCH2W$+3ow6>zNp7M@$&=X+rBh z6vi9b0joCMVG33H@yKO(A{az*8K`xosjEBSm&g**-tNVCoOpMJ+?f0PYNV~TNn%hI zg&ra+Hk45U;!y;ZK)%j|rGqs;x);9Y_#9X_^joj&6}^W3Z@eqc=rhvV$6EXJv+gm{ zT)*6@@oX=3#&3r(Qz$_guSLhJN-9`6OSBMb28Ix5%GiZ8j7N(p!GPK?KK6n25hrnW zua5o0AvyX%W0a5_oLYDuT`y}%v|vxn+k;TtQCY=YY+e@}|6)id$uF8xE*J4jSNf}mcx^pB%b!q> zKR{+?IGR({T(#}xmi4nLB>9_x_>5NX1d z7%q)*0g^)w^JqZICB=QY`R&iHMW zthTzLu2J;ad+r3y&Q}5^m8@DcHdP1pPnW#NSVnR}WnnLL&e;iBIWeh;+Pl@RJP7*y z2os{)TvCfUA~q_XrcG`rB+xq!!4lah&W3#PTuoPB5#)vbB{B{n+do3QiCTv*C)w}z z<6lpk!XcD1mp8^YTcn2id(8`P(cWnXm!~&L3B7#;rqay2ZUg2y|KmIF)0i{nLFcWS zeMgK$_oUfJnOH&MUUj=+U)(6#Dmypa0c`d=$>FmQn_b$Z1urMsgBUYR0g@tk^}g3| z3`y~I;I*EHTZd)`gl*W38Rk!Gaq!gW-xR{c_5skYA*561S)qkruJHqTP3(P0$abMd^1XRlk zg$2X#i8sym^w+NOY&EKAI!2ZvQV2;`)!tFi02fCxO&QRHPKyqF(LU1c)rPK5$pRJleIm1Gh3CspKCA|tHX%|VN>qu zmlg39jHxHqF!o1)xA+Fuz5rW3Ld?8!ZPdmT*!5;v#L7n1l3>a|7bq%~R1t}$0fwe^ z=c-482j#zk{WWw>k#leL&lY0ebd`kdGz`=9zE|zHXu^Qa9(Vg0C8!=Z3#{$?X?fAD zVSXN8(Cz}g$Jy>6*i=%`5<8hFW;uzS7!u~q5>JPmaASg}*Y{;8C^3Bz)(E!zu7O7e z`LwljR<)6}50Z*NDS;iz4&C=G-}-Y;7Bn6gMX=1PG-mTy$5GNH0+?bB!Qt6cY1&A{ zZoBUJMQUs}yG}=0ja5-VEwrf<&|(No10C#_CwjK#))<|!yx zZICj7XlbavcT@;jkTN=WDyiTh%al-<{_R)NTg36iWdkOl1h@*UW&Qz-NKm(+JVoIw z{5};Z?hntB+Mm)qRMf%=^5|AfP)zC=qdtG;)pZ^#I`QM+9f{i;zI?U2}^1Ui-l7&XiGZEl%9LGUmkV#zqy4f)-kjO)xrsN~(iK0Q^({b_&Mj zl}&mTlVuVNO&vtKurr5A_bZ)EOu<@?Sjrpg+vleXW8N(sFDo4PbH*_AAFmTqO6E%m#WB|H3EENb8RlWE*tnAA3;Af~o9)OuBRJ zs_g>?;5u5;D3KjEVlwFns4g2Puezbo3@yF&XZ?I==$5Cl!kWG9g28!<9IdK5k zF0B2n?lJqjMOXmjwg=MuH?=lL7fFtkGNnQZEMi`UBvh_lDJwNc?&KoswR|S=DZ?t& z7(cgB=}^SN5+Uz5jgUAqa`A5b&7W5IJoZKD2ojossI}avQo0<+#xpfGASfR_+h55( zMw?nqAtDh2J*6bf?b!u>&T$nYy452)Q`!E#J1BuVr;wHPfTl42J65L)PDS;ZnT-V< zkKy%iG9h5MG)VPIIkNkqWS66fs}K!pR&qR4{$54buPWDXB$bIK5i>}IJ4EH!Nyp@qb7duB@=p>y zJ`E_J_c6u-9fVFqT>=QLx>VBI;-H`;ij~aVD!QVIqUb?FVlcoN+U*c}rhHDN@xHe$ zn{UBocxN~{cwo-9ofw~8Rme7_x+x!>>7PQeq7#-(s>2UQ`gdkl>BUC#m6+NStV0Iqbkn?#%jRE?$b zCqVf=ofRcNOx-D!wTio8TOC3Z#O~m%r{zd1{O0Z#21P>tsx4>OB>8 zy7S9mOyGr^Ru0xid0*POJ|IK3`Q2 z_%DquY0R~I`K6~3XZ|6JCDY~YD}b}jV^TwL3)N3F?(U(T5Skvrpk1lH8Akb6nnhtL zjUBQ2FHCq_+t=pWX6K*^TTpN8adOqNyu+}3+_-AC&&g$sF#)ld15XsjJ#YpzNZkMxQl)S;a;7Md1e^&%Ae&$g zhYSDW4PmX~fTu2bXo>JwPl4z)^IKm_TcgdlvbP!%?i64p`&1=J!;hW;?dKCYJ7;bz zBq3>xwo)1jG$&dq3YvPJ4b~XANFgFuuta89=u3j(sDh&rnW#0{L}+6 zqNsN4-3xrkv@Z%|VWLWj-Rp@gp>>Wv9<{lC`G% z9b5b7U?naDCHCKb{3v*~)3S)!ri4UZzW!Ey>oF9I%dtxA&XP?TB?*ZuW40`t`b{y~w}*m9UcNH!~#u2;+y(kh&c-1ymk1C2Rv8jkKfbU@;m^ zBxN?$)^t1?EsV~P5$#V&Xifc;I1c(f3?XT}HMMPPC+Q^NlA}tQz+8rnp^FVI z%7@KON~xJD`q^qL;M&9bq)E+?Vqqiw?1%w!S`Ut=LLAoTzncIoVz);M9a7*&M!8xtnj~>HREpG|EreId3xwdf^3oBLt0k-3 z(^B*0YBuV4ebnUs-HGBi)&pff)vLPrMQ4=OkHK&WD!P~HP(~LQf2+2W*5nN8A)K(AEZh;U9Mq7@tQY_=QqsVb_ftdzb?Z=2l+ z!=f!qV)f%O<$tY<-SE;q`P=<)t9FL2a0grmH&axHAHeo7>Gz8fgcE{hU);`ANVLw+ zrHrJBr)xvQsLWt5n8zQpVgG~k2*f1{#kV%Z`2okNGNSAyK1x1e43kHo3_t zN1tu>z_s~eabdAo(WHnTCUwU9OuC{1qrG*;|C{J>Yo`mb-x!;-pt43sQhB`E$Q>G_e zqjA*Fx@|UJOU)>4O6S=!M&nuoE9OPJ%{J83rj+bY)rzTcsoT|$AE3%#ud4sbS~2}E z!9Na0_Wz*1{)edwNtv-cV)&<=^o5!!oTpn_VfvUAxg1f^7_6W#jC?XchTAy0TN` zR6-rs)TMR5%{H>=a>%4LjpnkV^F9*QseUW%ru}>?`sY<~<&4w^&*A;j7gqOgo-aQg z_$xg9jH$|$``sbm%asau_-FlErPk-kuLk8;^P8<^aEx!Ks~YQbP5hbz&S!v!j_FJ( zdq-3#3RS51#jT1?t1|Vj=S_l)hz2Syz2yFrpot0A-7(rJI!CmU*=eC9p8*N#OD{dC+OJU$u}0YFO8OOImb)4 z$Rp)gV3PnC3p5JGfJ6)yK+k&$U_u}4OqwxRAvS*uuNh)(35ar z$_P%_KqlcpCRU&l0&_(y%zahNYoNACLv$n@%D<4}ksBA|f#=~OE7Ni-`N_}0smXY@ z0#5>gVJI$=2Lti@grYTn+!;vRB@_ox@L(b;Gjb{=&xN_b3*bXR#3Lv7DFlC6aNY+5 z?2RStixsS3#rX&ja5Rv*0;w!Gq~hg=6a)FpIi&Jsh7wG{I2uWEX)FUQW0oxQHxu(U zhY|uTr4KcPTwv#rxNPz@54tfb#rTG90nbMEpVX0*sZISYMQIgk4p#HwQ-k@;P4kJ3 z+nhxTiO-vzMGWy3tfu(l_a%xR&|+yIedalW(0*tl^uRkU$iHIc_7Zb^u{d)axVhsT zjeYS3GID}hnZ)FqbcGl7L;`FX!1XXM8NpBH;|=z3-p>MxgQwmhSO#;!SYS#1D1brb zBz9Mk2}X&8nIOr9W)tbf>Ntk9!z2fq62M}`ILL-+Y4~&$nb_7-QOLP}9v5sv-iGpg zb_@TKJ;85Zz*4=~T;b>6L4}H!`sr3~=HN}*G~E;p+PNFV!TZX~dpx0o$b;Pc*ERUR zg>RYugKGSLsW$iZ=l@Tz=!jr`e-H!!S_FvnzrKn6KUVwy7qXIx=|B13|Jem*BusaeaOL z=h5Zs!-skQ5MqD9KQD&P4u*$}$utlzI;lGH3#qChP3%)2du^rRdaJ0}R& z1zJjnk8wH=>0Q?$CpX#m>VKcFUNPs)K|0k7PAG^yiG`?H5`D zYw$X$%uM15b>ncbLZ;X?6rpPvf|v38b!ECbX%Z4;p-cfuPJ9V6V<88T8et-JI7|l( zyLbavaQFlYb+~s1Pn3S0V}b~Ya`5Bt>>`MiX%I@Go?Fn{^)7NU4k|~j;oS3Z1e1V7iL{9b zmINh=R0<(q+q_>LX!)d)aH1s$eD>xdAKZ?LmN&lAW^H*)NuB)PWtSGS$g_X}F@ML>ze}H>MgkY# zZ5cw=q{@gdqjGcH-8izTEjVlbNM z5n0{J?Kfwkr{6DcC) zFH~J(qrJ}u{QA+ZaYOpNV5A1{W>H>45P$=J(ybbml{Ml`Q8i=?r?;7GDKq3H5mk^? z{;Y{4x~S76&D@MnGEnItG2 zEiCRz&t48-q5EdC10qrQ%ZhXjX%Ky-i^@O%>v+LW-}WkR@I>lanAjDyg*2yDvhXCui4(%ipZU?o0%C)!I5Xr z^)CB$p;kZWKM$pvUS&YqTQS}pY-E+slA)?Z(;sQ@!XYTzWa-#hls6TaVpp^sbdXYo zz)V*u9_4`Iy&@%@l!2}U?b3@z$Hy+#5`+e*>=u%TIMw7YnxFFw=n~23nQxd z;v{fLX;y_%|0u-ifRWjnJ+HIF&l^Z76R?*{Cpi!{g=m#>q*ms|R$(_suNvh6B*tL> zp8hy*?*>h4uMlcev*Ud-*8a$&DdBzOg8vZPFF5%}Jr)~N$tYCS(2Xqqi79MOmO`wY z%3DpZ8I{F#I+V_{HGOiXYEzWXTwiMa^h4qq!7iPQQSOLkIh2`SG7v_z7^j4$p`T%% zTo7WLRM4;<`;=FMgMq^YSFmEP;$&5+{wHCku&)ny1(;i^+9s-s;E8C}pb$reQ=M;{ z`NwF?RtiXKahr(RxK<*+<_(&r=kH}4%k+HyGBL*Ry-XGU@+kXJ5X1q(YywOd{DOUe z{%-oFxC8~KOq-hiJj}TQ@+160SOWoKGzDxBgeQvOM+h?`-{irz0_&ZDeo39F-%@P8 zCU|;nDvqk*O>GL1BVPf&J*D+|Z3A9%G$(jS>#JqOqM|F2!Gh_Q)!ECM{z<`P#I_N| zK&?rb^ee@Sd1B8oA708}9W_j(Ap~YM#uFu^N-aD}!Q%ewsMfjtJ<8YI84{9p5C|t& z`Vv(9cGgkCFS~lSprtNU=+7V43(||O&9T2rB}FAGH`=*UVFO7I_~x>I+^Q0@{e@EF z5+6eQHo&7~E^s{Ku>)L-w;E**2+g_%jP!T_u8$bD`z8b5L84JUqzZ|wEUsu1QDHR- z+6#d1(090T!@M}u_L%uQSYunqYm`&Fhoz{Y1erQey>EM1u{>w|ZKeyd^f--DI68u? zznTYNJN8w!j~N>ft8&nY?l}iL&$>gZ9&anElS@`Z(+jdS&<;bjNRR|-8F>=2VeZ{= zb{u?_djzF>)V#c*XPxXpn%HQ_a|OH6YEE)(d3qB|IJM!lE)Si1YQyMAtr=()@$pbjgucNW6wJ>(23v}A%WbPf__Qm?)zt%|qTk$yy z%YT^0|04zylB8%=#eg!l_l?p4AM$qq)28f-Lda?>%Dye7HM(c>xEb1`DUYmcPN zmO+f1;)mzg>0xfd;mNEE9$g!kFnjw?W02f)rl2~HnhgV14ayaE{3)nEFn-|<@`mNe zi~e{!g<1*9>1?F*#AWVK{)a|$a8tY)qa?9BWFnMY}R9y{rl} zno^nvLTM{zUsQxjJT}zfR8PR);6!IPc&iEMmG&K1L1!14LIZem!j9feGV!(u z0yzluY3&Jq4Wq5o#MiW0fj^T;P^V5vH`evcABQ`8pbJ%}|4fES_po`YZMR#kU}q8Y z1apvKNwjueFG{QeL~D_WTjdOCTD)L@;7W)P>Xm@MRvF+C3e zB)@27=`K8knge%OX2Rh<%A2T>&|2Y(EVHi2J@py*Cut=vS=gcJ%kc%*oIVI|(!e$zgEK?2ezI(MMworWX z5zm@i#1BP>bNw!Q5^ve1sx5R=d%iGXdqWFXWN+}zjtJZTZ9XvmZ%@dq4F7RJ{*U?a ze~a+n^nTudd;OUAzJGtC0YNk|^!xn-0zhXC%>5N)U|^sSQc<*}000WSp|$_(M=<~Y zEZjNS{x!_~f2;)mQ@HPVfx9D{wZ1?w4uTw#a1gnNPGf{&SrQbKEZ|u7H!B?NnoR8^ z(oS72N)+vGM{Uy@{d=r~C<&dB2$GE@1D0jkHfH)LKVu#|oNmWMVJBo?5^9=jq zH+&+V<}?&s%R|q_e=QkcP<9qe^~e{nvZ^7b(C67y4Y zGE$No|8#pmo4)taLuxRR8|ye%6X+z+jfPZbAwN81$H!a{y{sI^UtA2v{|oG& zF9*jz1;^Xma|=5*9W^xyBQ-5LF*lk`LvExdXX6q{%^?NX|C)}Jjf$I%jfEUT9UV3a zIVK(otJ>{#(jJ#M8_11^9{;m=xO$IYZx9l0+}{&Qa&lrypUuup$Yv+yrf{$ae9OFS zFCW00%stm-eJ_^AY?<1rcQIKXt=4mL9%jb}KUK%Kzh$2vFJE)^Z6ERf^fB^M({j0Z zXnV?hZMM4`$T`aK4gL%yL`YCPfH2`^1n@*miwA5$9hH3E2mX@t`Vp%F{R zmy9=!Lyt#|GZ}L>0%=543k}An#jlKG8RItMZTNRbTZ;@P%#5QMQ#ZnH#C8W>i@Xqc zB}kA!MTi;3bCBRk3M9rGlYk-;R7hYEi7Y0-kRVS8H74MYpic;kgkwyILm^Nq1+x&_ zjKf15-*HN2i^=hyY0bK2_r<7BnB+|TY=m4tba{{{O=b*w*bJ{C)@akU#eeQfcpuj$ ztSLsO^>;B*c`pC>XD=9uz4FF0pI$JQjji&vKMQ^cVw8J8ct||j4-!k`bMn~QA|O4@ z6yg1t{9}xz6Ttd>&@YpIV;E=D8hLq{!!F z_v!oYe8r(X!GeM7mi6ejrEO3jX20-`Ki5V z47gR8w@mAguOMiZ9KuexlkKQmmQCHr9+N7>X-Zinp;l4WQ-NF>*94p+LQjHn91nu; z({Q*L=&i?mhgrrtCv@%Ldfd2+%l5QIS6|cc2^-nBq|+<(bUS1Bs=0KU^h1lO;gQU( zzQQ^mg8JI$-?igo%IK66n*-Ve~RXp|_{jE3zxFP@OR`GX4$P%vC-F`;@7>%9%4j1%vJ z>~iXhy>j0?@!|0Fcb#bFNZE$2z031`g5U`Dhj~;qZ`d+-MYBCXnF|jv?Vh!oF--_y z@EcRb+s6Zo^}sRh9y2BE1N_=$#ac(o&mxl`tM&6Oo3nM8PggKjQG^T#ATFttPZO|* zGj>GL@mecUQ%Ff6FM&%g3s4#!Hi&|&=>ZcDnBS44i}i=?WBI1iP+61brYJcb#W(d} z-br}j+E7)&om>93z8dz@(E?e(w2!vu{S@FAa$19L>f~5UU(iMXZh9Mm(i94Q6c~VS znvd$1Dq1ikoKck~je+fX1fpLPh-x8G{>GTy)vL>A%!r~R-+kW@_v@@(_S;!d7zD4x zAH21`nGJb>1!wP7OYhwBHV4AX(qtWsQ}iVU8+ z4UVhUi>BAKM+(lZ0+;WB7K``mej4j_ySsgz^Uj=JhN6%;D6Fw$&<=TDI88Ub{{0Vr`-QKB+qa=2-IH$l$ zYA0=pamk$}R>ZwJ7>b7%K3KjeTl0m%``*7|dimgA+zWcT9RozMUj!sSXB+35dzG+U z1f{f~%t!%+wb}Kd9roIX|I(Cn;X*{o&8Cu=p+skG@zClK_SH@WZ}poqSaa$iD9h`U z-y{g1kwSv9L}gt$v5iWh@HSZc=xG3CLd)WcW~#bL*(baszz_!UmGJVxL1VDu+y9u% zaPhtyUhEU%1Ek-jmzcflH?2n{3DS0SAm`VHV5iL%v)<^T`q1!x;8h0zVfJt3z8Up- zQ|o@U73&`x@6Q7WsQ+5{$of(=ts)*ko-X+e9y3)B_Jn4}D!Pr+Ts^-3qk^6HjcVzz zjI~HDnKn#{Vw5acwuTTOmufic&i@oBsyoZM7p1)?CGfbzlxe8JCN3#p=(Nby4iFab zYW>Y*F2sMR(437S5$=+TZ5Zn(*Tc`}dgQvdz47&;X zwsJ;-4A?2l8-B&97mMQ;%l*JvgFa0$ki)mCQDs@e{Mx~Wa|O_k)B7^!YJKYpK6C(a ziA-LaM%E1#ku7Cm9vd4#&s~m(7)Z6(;~T;I7U?CTJX< z7%uJLUFaRHZNYG;6549995>V+w87e*xl(NrC5F=4vuw+prVUYyBSKF{Ju5YnNM^Qj zvhLL=5hA(XVDT2z=Z8R}|M^Cr>HW3ce9otRTsCW>Ht4jr*S8Yg4Q)wfL`qYL%AML= zJR*cmV{-hlKhn3q>zrnqVqVf2NvV$QJk%)gq=xFsURxttmHISpjtDrVj#TwTx)JSY z?vc*_u*-op^OarxQhFmfeUcCs>8ULJ0a?1a>{3VU8no$G;po742k6Y!AtR@kz*kDcmVNSlV2lT9U(R0%$*ucd`ee!*!&?dNkx1H<7F{NyzjvgiejCoN@UxWdRmfQIc}d(?9#To)XfKtelvZM4)^~ zkYlxhfO7-lXJHrR0IZ}G@%mg|2}7!?*Y?P8WlO$Tb=9ROH^&#*ARNFesEyUJCo1MT zDx`lku@?YK3&FC2S`TE=r6(u)ZykFCE=@|eCpzR52Hno9rHEKFkVHh&i|kbpubkPh zoWbjg2lXiktti3-BQMkgrO6%7u1+j2038&!jPKv7N$vdi|G4N6c=>2>wQ)^l=cfcKx+Nzc{T91y>tKS+3eP?9NFu+^y z1H(1hj*q7jZcR8U3*j!%%$P?G9!PLN$%Q4Mz0~zOG?#U?r%!8Z(iDS%pS4IbuQMh zRZP5LP|>lC;)Gd6{<}Y87vhD&_Av85b))$(L3%}&HEVkpP-AxiXlnxc{Y(6=QJUBjDx2*W_#I-mYRq(K`M6LDt0)f zk$bZ+UG1RsIi)!4BuI!K|GXFk217<5Eut;hX2>Y6)sJ z=QpfY{m?m+s=jMZ%1oSwvYb*krw2r&W7&XIDpq8R5=~#ef|5x8t^S^@{c|61ADehp zOQJP+65vE?eLZSRgSWgvpu2DaKivOC+BpP?60KXhY}>YN+qP|6r)=A{PuaF@+qSFE zn{{;D7jYwclC#`E(i+y5rk^f^)y@H_xrCK9X2*YV6z&OjPZbVRR;;R7lB#-) z((aB$)s5|_RkRBU6*o)9Mw2>$1obN=gLS_bgBX;B0RG{GY5MQF!NM)s0|vVb~& z8Op}gPi>TNwug#+|D1-`dIYHGmLrC9`Z)#!jE}m3G9v(~D&jqm0t4W*p6N4}$&_eu zI+c=b)w^vHe@J!M39S#&yF%T#aJv3=KbFw4JGw?Q29@o>mOua)JTKAP=PM|ie#W7{ zhkInn%7T_!reUrQ$kFA)uVyMB4o0b5unZN|=XT2fB|4D%wJG$&wS2HDaWH}@N?mO=tS!rkJ+s4Mo%d`;D9j zD<)5ooGqjf@<^uzl46b)3*s2q#-e#+(pnWY-1`IACIvnj%*j1RmA{M@lrlFI)pWIW z>gy47cTYJo%1*&-sH-3_EU(!e(XaE|(9BCh-HAHj(!R5WyHfJ2w~4USD15Key~N#0 z6afV5*^$;^<3o~oi`*if=}LcBsvtOw9C){eRPv9pf*9e$;=TsmUyz$3ODUxU2OxuD z7HlC!|L*kOzR55m!1xBBX~ldfZP^+|K_dk-m`~DYv#?_aO%IPiF)^5|@lVD3rNiH_ zztgWbO6rJwLH}_|W>aGUUrKq|@%YR$``s#yb?<#*NV?=S7*{oDA2S6@7xE>BH5<6U zW5fUv-hT@B;y{Y#axSmhl{S%^*g$D#C1AFnjZM3MGVyjs^jtH#X)r3OoR~WDF+8CD zgL&H1^}LhyJ+x||L(2D8tL8R{@lOfC5flVTFUQY%bKD)j&NfIrw~HqMJW{3b$rm#2VQaW<7SC^qn5A1;Ew{^3i(iAT9VEv24P=2?2IAeEskW zv+AI%5bEFZJ_{Nm=V>fsN;7887_s#_Y;2&^j#zg{mYwql-?2_7mc?C$ zKf};wu;TCk3^CE)a<6XgDneR-Jui=J_K;Jvp9Km-fQ?{n`EZr*EVhcB;n%lScKZE&LyJ=s`Cy77mKF0BW~5P? z#9>9L19N4XTmja~`z;7GTkQo-==G&N=FXIMjT$zudQUF^X_%u|2YG6_v-ku%Q;}Sx z!>n96p{1^Fpq@q%#)cSR;aWB$vljdx z^K)w=k-6*(g{Mb~VB2280*KhG!Y*qYb~~;1{L5TNP)?i}Z@AxrAKo9l8^8@az?VFS z{sp*W8$m?rgHz;RtuJ``fadgpkct_snTeqr8(^uN3*moX_5FVTblnPUoTzde2d|U( zIG|;wpl5UeN>|8myqVoSgIIX2er>^ z31nK=gjv-kNrJmKu*#qPNaO1c+Vyx~@(J}t?gHs5EYKUSn%?l-UDkC%Oep%_!QmxU zCo4&vt10!UlcO37Zcola&Fose?+8vAA-!R3XJ2nZ8gA5PFTbhab&l*DFs#e=lX+9? zhUmXB^Jc*cZlr+ob!(0kI*!oN5u4&2;A@}Cc~Uy6*9LRY#Z^hY(~~Bnc{dJ<=zy4( zudhMB;UBD!X=%xljZ+4=NsOy`Ny8%q5Vq^>c9FrYIYWvxIIh7Zf0?X$x2cLD z&ID!;{@^wbK2B7?EQoosn062^K#oG;s)+jfYhTRB4xRAw+x|3|e)iThvt@1v&xdxT zG>MhIns4JW;4N3dqJ&shb7gH?IB`O_I|^4-kr;T7h6ts~jsVj2^>OfLALp*_f;!W| z*3D%)BSm}XO!C0x9{4@^m_{c_w32dp)pcY_-?F(;9Bc&(lualYIB5&&iV8c*>rVwV zJGe|u;nM3Qvss1zR}#Qmr1)McsDUxRS@?U)HGB$ z6BKwZCYH6xXiCxr8$0g@GSCEtHh!yt3)+1ANi;|qf%@5*IxDa7XuHyRoaQ3{>o39M z>I`(5$Szd5S|;I8L>XP!W!P6^&U4NX%!|KO<3go^RV^n0ga2+rGA&6R(Z{9Kh0AK6 zl4J<;)re^DTpF<}%zI&)n*^l(WBe7yWBG+vmkGas8KYaNjCfHI?f{ zXt-(Js9@S`z=R1)7Z%V!$xj(}@6fhOORG%nGQ}&V*L*vaj4~w>w9SMg3Vl)S;mq-I z-k7|+=%?1TSz8c2F@#65GGbtHT1%Reno1Lo0AQr)Q}CJrEDI;b1@y0^?k_TQ|aSf(!r)6ida)Fs6e+l1|n~kXJq1Nj%K5y*K?whekhpDBx5J}a6*w~(z z0IGKN(s?V^WJUXbVvMj>I4Sf(2$8Jn@$_uZTjim{k5mLu=pd;G9Q_%JQhxE{+FcDn zmWOKDlk{WCqPq=I(xU!!WS{%BReLSDw+kt*sYZJjk9nD|^3TO!*4HWCVGpqJdRdpz ztG^LEN1u_qBs9h)pnTV`Dd}fnr)j5%_>jcmN_GF@Ar2bkxkR*c>48(pPChv}U)RcY z4Ge%Y-^Ufsp0UBwBYAGvVp?CgE0MO!?R1cVjd@8!_gF77TLJcSu&fznqTxWWB(^D( z_2Mu#0S<`Ut2s@ma;_c=Z+7@t_)P2$B0`Hqk5#%;lq^|mhJ};LjeWm%mI&yxiEj{l zD>Qh~M;{bBrbo{4{OHZv&36zp=)kFq7Cdvb7(#iCQyN&hdl(B8I*Vx~T zir%6yCT9npN~F1VD45vp<_~DJNF4^eXbTcPW3jL5$^hgWit~2!Njaws z+V=|4Q&*Os@!i5ArbblE1r8==8s~Sot8?W6!pHC(cltx%p_p_Q%s9!nkkL+?!a%WWqj?w|=N zX+~(rRPkXa@N0(n<4`VFHZ>CT^Cb`-4vLNOrF`1anA(N?R0vU$A*K6q$&+M4{Ba$Z zbAQPUQ=(ZIxI&{OMeSI0?U)ohB%krFru9o9g|goDp6J14 z{my^(Zec|T-u7lj4t>*Sz6~u7o3zD_OqA9GNgDU;>}TZEFg92!(q*ca#vm=QWyVa8 zC~O(D>!7rkMTz$fC}UDmu$TyAr3}*d?4_EYxdO9O)W@Atz=$H-v$~k=h}`ZA3myx(uXYio0e_ScJn8%PF?eM_NQ}C zgo_zi+Kq(W1o^zCTLpAyL(i!xM26yWf+Hr6bM0FVdfn+9Al(_KbMutrg8J}dAWS^7 z<#J2aW-SJgy^pA_Voh~*ZvMN4b1Iay zT!spL{)mS{K^S2sI+rgUnc6hlOr}f=})A z#<3~EcF*xi!}8GjyRAJpH8rUoiYxag42id+U89ZGv{geedwlzPY@p0GEbe&gIzW3I z9y<>AY#^)3$*9q^GX>IQhQ}p`D!kpWkAE@*5K zSDJqH@(YIa*3JGPg3%Z_VOYrb|fCTU~d?Q(#y%YSZ`)1env@@~@XUY!m`HHmz@m<}E*n&PmvKTW@x; zCKmihq^7|A?-WA$yx9k+=4+9V>s9I9FL&n6<4Q_0f`jDO!OYCveA1IukOtrxg!C7^v*!oHbv2u&WUYwV%uc(YcMgbs z*i^Wma4S}4Wmr#9so zwA{{zR}%4kqKIuuBIyMaG{jofc`#Z__oXFv)&R=A2*@&dT;I)zcT^ti5hmDr(h>>k z{zueWFh)%}>T=Y*$s)6;WVi03f1+ATBA&SOA8^i)59)lK=nrg&ou?xGDUbCkScw4Mhf#J6$3%?Iw0`zCwK?1lf-2AW zJH3E#t@@<)F4=cY``e$3EA;R|pG9W%zVDVm2e`9yAVX8yd*j*$7yq)kdwD_O)iIH= za?%LMo{Sem|D=BaDbLS7D)aUtp8Tbq4JQ9IR^<@Y;%p?eQaD&fmK86pPj?mj5M)qh zH3`Uh6PFr4921T3k1}#R3N7U(VRG1+6$y8eeHSua70E9jFQZ#R$IolNJB;*Ap=?lf zMS|m+&|Qf%^y)NoaO$QAZ1)4Agp#KC>Si_7Wq8`jv2oNZ9@6tJp9`1PuyTGKw=LH% zrZ=|%??EZeeyU@157gGChY4-KFrAws-M03C8G3T(CL_m{IpEwG@!DAjEh2bB)>(0JUk%f{$#QP7!PDn?_0#T zpTR`JXOS&MdFk8r#jC94Tu05;bVT#y)<7~sm`8bcP@#+{-*I!sPhx!`l!u2T7-E1O-YQeR+Tr7OfD9RqG?vOF<(ZC##Z&M7fE^# zpkOwn(>_*|Be-jlGt8q^c4knQ$AWNmpPs9rh8zE)lu;@8gIGN+9eFU>_(rfvRCvzD zj=~{R(&(;zvHKdHI#rgN*|fl!pIP{OuxW0ngLksV`C``^paSGJh`s+Tv-{i%d zo|hcVfw;#$p!qiE9`vA|_g||-28-&!(L?nN(-I?{+6Aj*5*;AmqiO~=h5mn}ZbSBT zSh5XMU~9g-y#}<+>0`iG8GJbKqdN$rIrCp#=5Rq|KCsib6r?nnN+n9oq_6=6m4Z9` z#Hwtm&UF#)Y!DAHo?tFpJ9E$%{yTrGmdIaSjW%YQ1M$J%PD?}qCdOZqo!kBNedLP# zsNX>1ihNJ~AbY>K*HGBO?}r=VuE)O~;qj>Xar&w%IfN*s(4r*=Bc&&$WgZM zMK4&qJ22Ww4Xd&J@V2Jb&MExVzF%uTZoD2ow&B!gbM-q$qt9}3F2Ax| z?nRfq_TJ7;d*eHJ82-WO>iPNj;Kldp^tNiP5*rCJ?cG>9CV0`LckOko`t4O{D}N)Q z63W1D*<7`Crap4T8NKN*tT4M?;ocG#u0$D3x^dlB!7Yhor{_tGD8FbR59vK#iJ2hh z$A9hKrpx-rogX!NI|}^l;Rah)pT8@pvQcNhJ$OKlv73H0Y~9rOD?T)DLPXW+RbpBUkY7TKO1qw1oOE-z5h$4P>d1NRaA}VpOb{Zv)i)Y8H6HAG7^AWfw|C>-ei6?-Z zf7fg}G7An}BplQ9vH)V?0myNORG2SJBzex4u_GURz8y$retyH|;de+m&Dcojr7_{q z=z4EZs+o9g1EVMbC80+mj`;LWnSqK_P8<}&1*b?V(K!-m{;(l^xd5d(oMOQO;Q{x` zbXkYX5bYWL_@CO}wzx^*)%HmaAB2IJ%iE2Pdi>pJ-OfkNeRdxkIeb2Oc+n^DiK$u9 z|M&*|w~k<@{~e6KXTYFhrjmX@Sl1U&00;m#0yOa-x8nT&^m#I|vT^(;pJ$Fb^#263 zb`jVEWi6vhjT_zEt*gpbf%vrk-iBGEw89tnP)qnrkT60@`U80O_Q(Q3LI$f7Kn17y z=M$9~;EK}9HJ|3xI<>C*M+_#UuHc}i6O{s8Yeuakna_Jg7! z#h+0G2Th6RiuH({k1a!*NX_gJ zRcI-akU2*_jwORI@dixASFTqXIYl(3PobioNIXbd@@0^2NTpJUIDu*sq@|9bNF$F` z3)KgzNFR%meA1#zif}?H;%O>nlP4xk2qCuHO`gy^=vvk%${^pOqEd^P`0z+li4Zj? zR3vw2rkB%DO2khs3&KWQ>jI!lt6gX2>8bF#E}qD$E%Lv$G84-YI>2NN{X`) zX^z2}z$Zq9Bf_S^QhHAbpNIx>L*F|v#IjvvP(Zu$zOK;Va)B>DxZU;S<)GpsZ(}tQ zjPRe$Ip)9^b4=Ng3n;9_eQT{DJ7S--lVlZP@9;3kIeI$#H409$t9dV6IdpmGD++DvH zGhoxg1;d^hx-~P}k?2e9W`aa_`PkRi7bbKxy~0oXr-J9l67H;Sq_EK%rrX{HTID5K zxg6HJwCID<>wQX02Ph^fxa3IRe#q@HdQG#14H^t3HSDI^4Yy2)k;&l%D|VYlJpLj7 zj5TB}>yHH>bWgTG5%SC`Sz%XT=F4P`?;m1voMN6z6h&wHg~I>6+63SZki{=X4#Ekq z3xMY%xO-mCsr3S)D<)U0965J`w3bzA2mZ|gtZ~4=DG};M2ay8|+A(71s(u3-@qbYn z8}!Db!@VsBWl}zo?v0OyW`%6YaG6{GAV>z^$EK0n37cDZjWU#A+dAXCIe)?>{O}Ch z2Lm`1djMzWnM8<6XN?+7vYTcg6PY6>$WRwVtUc&Y5#D{vtS^XHkr|R34q)IxeRnw7 z&eW2p1_9sKS~`B}&?pFC^5F_mHv_;*wLZi&Slaa8))Hh`dqU8%V8CXsTNsnYcR&Uf zp6TB=ej%)0f!Fd8Q;W>IQ#-Cx)wpkEJ$^{5U-e8g0N~ZREbwCB$a>xG|GqqGQOZiJQwQjj#qex{Ys=L2 zpy8P=t_1r#|H0sMFE74~vtD+0QKsXyxRew~>{+mNdOVe6gj{RHVX*L2Y)jja?#!#=ivuZb9YA&<;C)p*na|2=}P3`3+ z&BYtX1_??Ql}EtrPx>p6e+{-je1r6xau`QyK~il+-oJM_cx_9#5u4Gkeee3C{q4qO zBd5Ml{O_0}z?1BT9hDbB*8x8#NkbqyAuD)JURfc=pIi?}uZ+?(p%PdW>U}Y<9-Ft> zgB$*0?tMCDRHS;wFGV9r3YG|VJcSqEPG%GBCg8dRXDX`|ujtZIrZp+Fy8E$oXc3ct z54Jc5L#`bP{8M6wt$@t9Z|XFg*@T~7CK_b!e^ujOjgZ-83*3Ta%TUc;QFG6rL%D!G zobC4#r7^f!eOBGeJQB8KWcf_&7FtnFQ1{ZNxrMpwVm3)Pp~4Zfiv7?_dGdFQh*;iJ z&IK&0TUI|PsZ@gGS(;>?46pOsq>O0|tISxL1GT9A2dSzb)L2(py#n#RKxF>fRaw^9 zd0X|lgN;UkZ#yu;fXdCERmD#_kKqg-6!>bf)XY;wR>X&rj2x z1KRnz-mKzdvza-d? z2O5NCx^L~&IssjeVs)W`%@DMZ2%KM# z`Vc+9B6P#8!VxJ5mko=&M-&)gm#ISypQuPNz>zJ~YfRGWh&;$@=-( z+vf{(3QtF;Y60-BJgk`beA!w)y}CJXbe|OoA}Dg{E4AXHR8ckFzL_-w>^83TYadBBRpZ(pL`mTZD`QJg}lnc~=T2SpMm zd;?yMu4}GI4?Sq3mf@@+{qdrAeTL(f1Dd9COe@>pgqpk4S=C_efb+c>C%f;ugP;?u zBsVcz>n{U~)m{)x+s0$Y*%7Jk)%(14M9Mf=E(%*&J)n!rY2L&6ZwYaV%UO01LxMGj zT;X0Y$$-@>mJ1v6tM`Zd|11Y~h>vCzWa4p(e3cIfVE z#|zw8DdZmI(i#QhW3Sl)B_b6)M4Ev_CuEjt_0I3)#ZjyN-BqNKKv^(ne+B&e00K9G z!sUzSDIv4{FV{=AUSkw2P2*R<%9$X1n=_27L7(UR@|bvbP^r#(zlI-VA|qn&q*2T0 z-t=t^0(wz4O!Whm8kaDLn4?iw`|(Jg(KY3CRn7{wi}G)}@0Tr|_WNZrnu4 zYKJ}l3fdolv2vUD4|Aq{|AM7rN=o9(1gLsso)@6;(r*yn9>ubH_^fal_Zu#63VyF| zkGT9S_VyB$WYNS5`8e^3F1MvT-N&cEg^HJ8iD3pj!@ugUT(Z?@#@Btt2qE^K!Pp_; z6c)ToJ_*t(1*+}O0m(!q!ggE=9?wIu9Z0$|B;?=DGt?*#}ZB-Pq$Mv3oMTQz;?8`W>#?J zD&qJOY@o?=r|a5mf27|t7~N0cLTC*Aq)x>HKdVD@DX3Ni<0z8XaK^+wfLW+>+S!zc1X=T{H==*WNIE^apTPSyq%tQNwb643P zAl48WXQ05}j&IadOe!-#ve!tX_kSuBNg@P2e386D}a2 z<^(aeGlnEs7@l6fMzp*F=Z-6Xd1d@uKR7S-?0#STJL`>fcJtWv-J6FF6zn|9d)n%^ zd)tnvxU!NgLE@y*y!L0maM)Nk?XME3cd(3?@fVM3eA@d2ksu)lA-5cc2xO2b(5m!a zO)%h!M^DZ&D7UpT1shCaG@c1A8J>(H(Nf&k4eJH#zH=wx(e_-o+u#&1ROdd*b`+8# z9E$WGX-E^z2#Jq0?H)$MgCWXC)q?u{pB~?YNOm&0Y@V4f?+&9KkYS~`>wwDiZ~?y% z@$fXGbCBT&$Vhh;Mw2CdMk&<7yQh~&hzG@TAC#M&OH@U~oqa^8T?bVai=i_}D0lu} z2+?RN9tFXlP;YQgZxIh~%0i*8u0hlU-1HTrCXc4DRdA}Dna zPjRm|a8a4J?$F*Z_EqWQ^X{QZZjuFlrc@$*8rE-Mju+uuFFpS5S+>XkRW-tq#pnr$WLP0JjD@vs;D;Po=q{4OsFaz!h&F9xv}_@x8Kr5I zjuJ%^80m<)v4v|IB_gf2#7liE`ofu5I}+laMM9`~DRC|xS8xsv!BpdA9)%t}8LLki z&2_T;1hTks^a7bMqtf~8IH=O~T&nn5^e`)%?Ea`8f#IBVO)8U>iHba@nGq9KM+hSP znXiy;S~0eZrCuzYTz)u{(-U$l$M@1=pS4dLEjL>NrgW(q(4zX> ztjng`<7##J$oX+yjBlzPsU2=nOQbK-oRZ8V**$}UYZByr+ki-L9)GesPoHINeQXX- zv+^2R`RzNa4tYtO7s|*(8*a3 zj$j8iCLqExiY}DzlN@8wa3$@B)AY1DsVyccUUBl!VM?vZ8lub5xj(ns`Ad4o;_yIT zvbr(jz&^uE%`v{?--G8NNSs$aDK2UQyRiI#AheoaO<_0Vb3eWuWqsP(VuFulf6OHwL@bC$gKg=q85k`*+IlA6}f1Iyx4|ISrC<@c@=E1b>EnA z$JLeVt(FwpgcXxIJ0`J)O83gq)>vCv(sm73>bzo*7P1Dm=rPwi!+=DF3y`HFX9Xp| z07EvwFwcu&2FeYBy*}>`tfvPkn49~NPb~ff9_!RL_#tn6B*w#zwW4L0Z2?Nz+~C}A zzSSB6=JCGr-omPqY-aAPrMl5{4sENX#G1+C>7=M6cfaUOa9Yfspy(lEWRAfwK;V4U zG$4#Aa_Be*-|1L-&I`z_3v|N}IiwB{2W~pyaI1Uy#pbO2g$6ETbdRym7@e@yd(eBs zu)C+(jyQRgDgns~)k2~aJ>llvxb7qYt3mZO*)KsaFDULIn2&jA9|&S!LS59t+E(W= z7Cx>K5XSch87$YXY6*XTb$%*4ZAIpr8}Aa?M{^4w(76D%TYY;VkJEvzER@%a#w{y1 z&5pFffI%o@KDYc3ViA^MB%h7pZ^w#I%s}O3GAE%63e(T z%_*2EgW>>A$o)r&hS~%+31K`5+qcA%-%;@ul61PBl1|bFOcnN?ZTB}|;cU408RBC* zf+$dd3%XRyq8UlClk{M!h`rIh18tqThll>amqt?11(vd%jpZRMUR9KO;`J_0>~;OY zy9frfaa=FOX^vq&47s$6ICGo|>n4jTUL{)t{bT)hsEl6b8WoQPTJv^boSi0Q$Q~8& zJpabZ?di^@`^g>p!|BXu9R$1%gZEVC2kL4!2hC31plJ@y;;b4naCCz8D|S~ay` zhfw=@m#ekG;>&eFz-B8uXiEzlYqQhB`j8;(N!r*!{y3Nd2AIz}tCB;KX7zXe<_3~3 zu*94pnws^H7!LxL+~V%BZPw~_jb~?T%<)zMV5pRV(>BjmYj9d-YC?!UCZP~LkmD(E zT|JT+1pj#K2Ns&lklIc2`n=oY-PCYxAc8FO?}Kb>$1N%M+1b{=?Ee);pd`@>l^(a`FfxI@dvqjmlp$ zbz3T$-Kk3@CKpT_BB_n>L*pm7;vMb$Nt&@ksmRQ@KjVBthr5|^p$EQvwWRoOkHyX| zD6MLbGT_TNYPZNZ2%Vl2(-m`J#wgAP1Bc*qd1*+_5;U~CTON;sCZtQ;7^D72^^VaD zX|;=HVWU=awIXo*Y&8hf`wXcDi1o6A%1cvtK9MZXJQe;~rWld{{pLpJuf;!hOi(Xk z-by}(`0-q)V-UJ&2IS|3nGm2*CiPjd)kiGZv0|0i`#M503W?yIRx0Do$6c%U;c@+P zKV4rF_p!Y+BP5bPYMebDjZKFX_#Ssb;WRA}sLA*F#U&on$X)kmV#rrEO1Mq@4(7|y z>90hmaK^%rV20_{Y%Sx$=a{(I(~K`FHD&5QUTDrY_Vh4RcPwv@-0njk?-MDke5#H( zk0Q7U9Xw7cTi0Jk4k4JYJH7YI6QOrRwQh?{EE%x7p-hV&rglcsB|P+vO?Bze+@7Hx zm~D%B`j+sPax{C`6IP9ruK(hBnCFlWXNkCJ*nZ3i`?(0Gtg1;SBt$luKpZ|%!S%c{sTV@aW)>bWx*Subc-N67UM zCxBlvBAxqqlGbk++sLk1`-Z|)?_(~oJf7@Wf&@tX&|{d%=YzJKn_T3N_qXX_NHgQ_ zwN5wWHaBHZqiNC=dAa>^I-?rkutV@q#D3u4y}-cSJ@8;GIW!d?_zRtbVG)!JX4-z1YuvdrQqG~6V%ZSVhPiwa$j{`-C;xXXNQzDRv~n_IuK-5 zpa>+1?jVS?S4-qAzGVoyeHQ2ZK<w=>2DnF|ua zM|CbKdMz(jPHcXhM~)G9fO3G)QI+XEZ}`V#GAfaxhK(j?acIQCcwJ&)$Et_Hd_Xp8 zB*CQ|%vAJ_aD8LSs@;JrDU@qby537(PKi@HS6QJgENrA!??9&U3`zG7IoBB86-$~0 zB}Y>J-&JsoIE=yPZOYD?Pji529WT}{Zby92oPiZ$HhQS&!=7kum5ylKPP_L~3q9y= zk|{=>OZ6|;BZC0hK_5$D_&k&YqlR+*&68;v}V?da>wya5a!H&};3s`{&QI<3h+cLWE)9JPEWgn5?cS9p6XXF8Cs+R%#WEoFg3s8m&A6 zbl)WPB~^ZnA#}8$ib)?D@bm*Ck z4~XiBHGox^407@gBt0&Y3)TR8e=K-p0xMqg0(rx(p-dJL4EdR^{PSON0}rXQ+E*?P zQN><@P83u*dsoqGHc7}a#KxF%i4n-~hSY>$&cT8rn6X(X;7!E#}?b@UPO1S5o9Fu+O~Eg~rz zaV@BfAhiY7#CQPe5sYH99kAE4qB%!IXxVn~)I(g4uNGAP!Kvr`6X9Pr{9wnmDQx=p zCu2O3ZqaxSPc6qdwBmQb+EfgEKLWnnEwgRg-gprya3%By7`|UPuNyL!_S*9{mq_Lw zo^AM_>HmrrzBL%YZ9THFZy?;SCFlF#EtAnJcUSetRPsLv5PTW3rjp zxw9eD)5*ayCAaZ$?njQR>xWZg!Y;wspBBWG=0NGHv!t-Sm$|z+DGuqrZ}v%iBSqXW zaD0Tg%9%DTBKy_6KVNS@W?x>Y=s6)xDK@ARmHYiMwIc1EN=!|XNV9obt^Cc*51J|orCb}O90h{SdbQEM(Ax4NKE%;$)2bGVYB1O_Ohlen zVr#NemUd=lzJTf)>H0eA=8eaL+>j*bWO^R=foq3~m3T)n3~l#5MdimxL%Iz}V!-s= zn5A(Qdpz(Tr`42onrdx@cg0^{z$&0>oX~@=Iznc6hKOj6zorRnszHhFj^~&c$xSd> zOeylQ^w`m(1Xm0oAL6(Yhl>}_73((EPS$N7UftH~#;C3As#)!g;tCzw3b<68 zlh;)!pSXVbs&!@i%|sYu(vL+U!Umfn4Q9>n6k~J86oWm9C_G+qbP4dYD=1b_HasMN z7!j~Y1BbQA=o?2zyP~EvGzsw&r^yKDM`nkiwu$7n$@F&Op01?B?d>{_m{eS3VfUm4 z-{-J!BYi}UzJLqo$Hg%KE4}b7pR~5YO$b7qf-T);Ngfjdj3-<-$c-@F?KxFt{4*aW zzn|F!9p7V~Ee)K+U8%2fampbRe=do$Ud|`u{xp3b627tWSfkNtMmtcFI8KG_y&XX- z+@+5v#|SZp(Lww1)8|C37HPjbovk`vTq(0SlaMbbW`3bkR_h}$F|EL~xk1!6U<_>e zVNpi(ONwX@us!w!8(!His(Vx`0rhi1uqD0K52&|VV5G96zD}^K<1R2-5Ld_6{{o8O zft^_!;6b;{>96e9$Lb;BAT#BQ)ysf5Y`oVT{#14b<7j8(11 z<+R(Co{IYee+s`E`1jl3l5atKT?3X8|D)PC8`WiMSR`C+-`UqY^S-KnkLGP9@23A! zp430Pv|?h%4qaPwsCX8Vo$sCK+?4MlO&H=6r0wlJ(FWxDr2D0hXeX7&%$Hi*C^0KY zb@-UWZA|7Q`?F$oSW-I;s5~WB2W5E}`<@4gz0b#k$;V1&93mne?0?z7J_Vh#|9(f; zIo5?ZGt_NUZ~+7N!-8o*azT(tuo80(+o~tZPTXi(phxA977IKh1}$$(U+<3htKDO| z4IMB}j?}Q;RC3PgxDFtwpe9e}SX__Q8sXz+G5f7-yyr^cfgfTxDlsh#O}IlXTAb&I z6cIedM-Y-%chLQyxlDgh&pl(sgvDw^*xrA+#QTjwF8;`nkj<~%gEF3>Y52lhER2Kz z`VFa`Jn}(@lk95bDXXK*e?k1Fg$5mQ_Zv2zVPDcY{K5@cU4=ZjwYd~fo&GJF^m6iR%vE)qfJ zK=W)2D58-$CxnINe?}ZVI<=l$YXDM7nH3JXD{A8)@7&`;^flFNVi=)7qSL^Gw(wyc zOZpCrl~C5tNezrAi@B@YX#<$t%YS3hw3_*G>hT?e{GIklJAI{?P+(vpiUGzDN83mx8VbZY&qFdW=!cx`8+l z>LwoHOtPJFe-139{fssae)8Wuvyy3XnA4a-E9RGTNWR~vydd}-5y*$=Xcb#9L0AuX zJb;+gvnUM_CC;H~q(7$?8g^K@sTlZ)sT>a0F8Px}Y`loa<^N#$#)?ro_=>1FD2Ug+ z@9CrB?mNA{HuT^>fnjYVix=tx3ztT%jBRnGHc*vA*&ajFvNW4%?o^McwH!5-$e7&W{LGO+4;Rpl$cp9{{=&`qmaqJ-(q2G6v~MWOV}JX(4Ny;i#Eb)&o2%RXW$$x|8qeM=QKsy z?CU2xd0vAbn|_{&&=kslQjawJ4~;zfcG%-5+{q6^UwrA*+*ejlq=h~0N zbJIKdn+Ni(iEy`A^;Ezgm0*oH=yOmwNA_1*-kcdCM*bip%Ci7aV*21`Z5;dcM?V94 z7In*H2qLjef7y40@!MI>V$owHDY-EkMy^IKZkJSEG{M{5abW__=%M?VmEei~9nu2l zXC)n_C*=Pyc1|&#McuY9+eVjd+qP}nRb95bY}@FvZQHhO>wo*?=F2$`C%N}&X0G+J zlfARDvd5UeA>0ksjZ&o#tw^~Dh(i)|XE_MpGxSqzg7_5x0_iS{DewsxjLC5F$e2@b zVHNjCpL;zm3s$Kj6lo*wL~`_ccECqGId;m_0-n@x zXqMWsD|I;;4JH%V3J%Ny|vn@fe($iT5qEjH4IekV(t4Th(~86x67`0ss-qo1OlzGUWd+lAoRPe}};O zrsy~vFd~KSKGJj{NxX|a8QW~DpO((;f7xk32KN_I&rsNPxL2pB`!@L+<;khp{vHi` zTsAhFxaqgo&p7Z<@7Q(qUzGJvIcXVwHX5w{L9a1roxH8xk85>x-N@jCwpdmQO_*Fy z-JZYs-eos8xw4ObM-gycOil4Lx;H@+b2GA9>f&y1Z0`T_RIgO~riil~FWKUr7|dx@ zNy|+PXyw#O(tS8taQkRt4yVS7Teq|ewp-QhItVv>ny1`OK8b?ArEcP3KkeYRE(;Uu zHyudkUmIBYXYi70OyGHwUbkG=yWw%1T+_FnMww+A!bn-L>!$hL$YQ{ar2|?BjeGiH zfnr(o6Cp9SK@i|30;rY!RJ`|IZ4qwMokt!>j6r*ut2IHmlkp)4!!sd5o9d{woIifU7(GWAb%mj9kJ)y0oHFL6vEnCG3AhsV_iVn3vK(jn{xg(ig6Lf0|E*^; zPBb9fTsP|Z24S0MZ8}n5vz%&y81mnHT45YSdl{s}IcJ1Y6v*cx7*gC3V`Oi{1uVe~ zDD+aqUcq-N^5@O^236VL&Cb66VBk6>DaUrhy-A#Iexy(5G2f@W5yrO?ydrtO>U9ZE zXvnB;c=8k&xxR`WMMkD4E=6f(IXj#2+9Y z-r~Cd_51&yK4e)ldyC(eOoU9V|H2;_{%^-j$j-#X_Mh&*=(G&tR<^&*oc~o@qu*wt zW+o1%X8+kIX?e4}@(?YYZ0%fj-x&eAwIQspr87f5JL zL=D*yjUiq^5GB93$QS_)2nq`79vTV?rJ){sP_bsN_d3M3RI!)>4mj=00FI0lEkt-T zS%{KV2@)96(yJXLKo}^$oK#U(SrCYjl92G81354mj54^(2q^%8KoAu;+zX|FifHRQ zo>77VjeB-C4+w#g0*I1`XykDdFMkh0Y@m;jQxG!5IjEz6B}k|Shy)A^LhSvU1}wY@ z73P?JeD?P6a1he@@koRa&y33xh@UYTwGZh6TFgs?D8L{QxPy@6jKIn##1_beBK_1L z0C@oT7*tpo*fN*~4ldNYP_Jtbi4rAX27z&54&tm`WZyrb89;mo^z#b=Xbkd;VvFF` zAkgq`cZQG=YySix=(B$>76>w(1}(p=aytA$>>fzaag2d@Y#BB11=2Ivu!hi^b^mom z2uKYa6bP#NE{{bykeKm+%YuC|9n7LtXF7W+W@)hu9!g#sg<*GT}# zJLu>`=D!Q*)j(k69NJHV`;*4g3;pY4AADKyXHX~$3SiJP%TyzB4UcpOJa zFu?-`^s~cHoru@GmAy9>j_d$`i#f4;TpXCaHwAzW>>sFrd4WE_E!ErggTKv>fznUj zH(-}X`Ptd^JI3Wp>`lNi9(QW_77=uNPM`A0@r-be1O(tviTzX?u@We3sBaI5vCbDf zBT@?B>G*MpXH-y2XFw}N6ba1vxhU$r3_!Sr2^M)q&aE?WM+m^AB)l`g^1AAyKl2_& z)vMk`LgP~d$X9?sk`VTeC@6}e0SOZe`GuSv6lo9#01L529qdSVghOF zBlQ6Xl76YF;`#FQ=@lSQdZ!m1GQ2T}9w0t+h5-Zt69_NDh0x`@ctJZGyO+Bh zz-Sk+;HWclBz?*WGtUXv0@mm^A9wcA6F#P!jFTrv@aZCM9^a(HvwKyZ7(LOvDq~na zA}w{L15VTev%k^nHW&U7EPkxzUlZRgyd>pZ_*)LCFM z%v0_n@JGsTOR13JK~+@mP~{!ZzS{FEBDZig{}twZ?=?a%TqIG22!tP}d9Ox;Ky7|S zMGUqeA-R)9Y>!td6^c&qd33wOSFO4bXt}>T80%+fXY{M@LQm>|9m;Z41sT~!4OX9? z^aKI3;esZ{i#nBZDNTmty-%ifPTVO+5LH@UmD%gs_dYE6z=bw7ojeSpq7q-ACW@>K zWyK|}ZuAFTp>0Tdy1UCaw}(v1hY9n0@V@`IaLM>FFnX(VN`|o2?!<#B=pp~$M_;mE zO|2?Z7CdvBZjUKADuA3TuS*eLpva5tw?E0+ep#vGQO()-ggLtUUAbl3N~ByfzmDm0Lv3uJsz+ z{!PbAyb0hh+H;7)TV>OFO71%dwh(rVclof2An6VTPToLZhT8k++Fn)K70%M(=ea;9 zW#pHB=<>4@{ko?WS`v+E^dS%N%i5j7eg-a8m2KMZ?2Qk$Lw0)y9-po$WD;8s3a(6W~hwW6el%6pxgRoN{8*w z9X&Uu2hVg7q{+`cr`C$II|H}ovxQVXz6Y69gAnysgs@onw))a0t88$J<)5c@x^XKl z6k}j_G>ag9g>`WqNRq#Oq`d|Lml&36LJHiH8U73~sPdX~r1_ga19A9gk4~C1N z19}4HowD>ZqA?EBbwcZ*PFO7Xa9=nxcKO<@PjvKB&m^4r@62{h=ipD&CNMaxs3dcV zRsRKjl*8Vvv@aQGTZwNCWIC^&zN)iP&g+I6`%TmnxZgil~xlj<9xA ztO1Upez;C!TtS2T?2M~Up|SMxn=B?Xo_VP}Mk@i9KBOuWY?zO><*xDWvREWD+)BwB1$tZZn)uvw z?=OSSW<77YB!$iIhncYpdhb>rTE4nGFST;2fG0%>8z#1;m#YD{n`#`(`8FBgO?($h zKheGhSti5o;&?FT?)gB9a?ez)ZhCKEB$h7^8hh2h%Ct`C6yD@y&ns`Vc5zG@OPw3l z-PHCp`>MkZx>&Ew9rm73kTMbItoeYt`l6|$y6B!(zI5aXN?Zf(hJ~Fqfm%);pE3M+ zkBV8Vj~=Er#RLjSN<*tbL!SiJ5>iR`ur-109LB!$wGSTaL%>RHm0OdLlyghqIBO;lpjGT1ESHSY_>chA5>@A?J0 z`@tVO72lP4;~SKUCd5hfAvbd#~}Dyjw^{<2{DoTFl{oB0%ZPYEx@8KCqBLGwu& z45=s@sC^7&Q;?x^oTdB@$-Ge=74LT@XDe#fIOG2@m6^;(On=as8c`n3?=?*z{RchJ zrqg}(o9?y~1Ic@d4mzpcxTAKsGsCwK04>5_GpByup4FLLu2agLzNw|OV33aRVf}cP z)uJ1Lx~=a2j!<-;>O59S(0eOf;4tu8f;c2-pmcEOl0OEnP`5-%;{4h=*sUB?H^ZcL z<{7BJNf$V*`C)8P(Q#!*UdCQsCpj0?F_N!YY^;;e#+nhjC&miJyvllWy9Co6(X%f@ z@N2q}8-9rPhRgC?bfUw~>Q9N5kDNBMX$lQtVA=eWc-%>oMzB6W!a=Rp~^&pjOoyL0Q6m^ym%G!-jg% zO^5{jN6yDR4?I};;^rlKxI|8@K@XS(&I8R+%fJF#3$_>U4ZetZVd>9kr}*!JTb5m* zv1`9Q9NgvXtGA(3U-?6%k{X7LBzoH6xRCVn6{P0}-7s<%-too4`pX4(t4vy|xZ$QnQE!$&i!TUH6F0$zsT?e$W{lLKKHPK?)(eL=AT zjnZO!RcB2J2b3j&emiS^%jTD@T#JN$c-GNn6ooW)V(J7lYy%q>)rA#&Tx3m?QO+l! z*hq5VW8dNqwIdduNVKCX0u#eXlk5|NQ@z2J#~RfB8J;#{%mZ2 z_aFF04o+^MLmHNT$9h116WItAaR#E9K>pdB*XdloCmE;1nVb^crf7+gZ9ZE)v22t~ z+BKs`T3{1#pW8v;w{9+|^2ZK03eDG#UVO08#bIEpz~w3Q;XTY_2Psg9XqD`Et&V)W zNsW1D0qb?OImlC+hH^nOrYF4fg;YmVEr>eA3rBs<&B?2cDP3L108X#{I~#9lPNypX zLaLp1`%mF)M0kctkQeNWfZ{&%iHrf8X{it-KOa0IUWClNW*iQMXFIbnB?MBmI@CfVD4y7?*wyT{^3HO7}b265ta@rO78e*NeWgN!uSEd7y zDO#rJ0QF0UEa<6!Y-y61)9~^vKWX6({Z%Fro!<`w7B4no)?Lj`(Gj_eDyF}+l4`?C z7e4PzY#DqunV!?d)8BQ11R$fpm>l?+O0Ddy=In^uN)pv`dBsdGen?&2m;S-rZn^s} z9EHSX7q(rsQ_@Gqho~c#s4}@h1Dj37BMI?;h*O`q8$+2iKHUxyePAF(yzaM%oV*rA zxvWj_Y^YE-bK$S6;(PdrEpUf)lSxG8bx3#m!=Y;u`v~-|XTTKj79$3WAB?ts`619G zL&~R4U=3k~$JeD!sRxRreowO-*B$JPVNLOjf;{hG0x7Lhryw<7te{M%Yy zG68vI{ny#T;icj8*|Ho5<8u2kV?554&moh_tul9FP4kbEBcDvJxHy(BX!&;S2(lN&IHgwtJo^O4!ubu1a z=hG#h6nY|1oVdRleFL!zi<@>$mw9OJ+Ou@-)tz-{71%U|qS*s33Dfhf=W3C##1%w{ zRG&T*yF(_^{h9jhz>&pw3g8jvnnxdQPIMxtSImq#T*KWu#xgd`jdcSXuyboo+rdTPzXjS4J7gH2#=a+LumW6#pW4=zEw|gAv3<#i? z{ybrbcgtn`*7LGtXS>_-77m*p?gOca7#7ZrWYaC7o6u*3iyq}4p_@JsVOTbB=5 zOTo?bjZ@NO6hHPu7!_eDS+!a&UVHz0OD2f$-PrLlo6c=9O&tQIaulp1r(c0`v%Ul; z7c{nU^4qkK8umY9ixXx8&%!0x+q?~p(V9vuO(v`}j%XVyx5)a_IYtEG*4T+_DGVX) zN6x*KnuP{>#3b$rx^~Dqf>liwmlubgibExdHr%oM&Bsof-Ofz^Qu>H%e4aiqbdxJZ>0o4fyjwjV3P5Zc1aTYqvS6rdFhS60GROiisAu z$xIxr1B(iAe*7%CB0E|SVdLKq+7F|eF${td{7|6fp?#fs49nWPWKZ%EWDSL>VY3+`l)NHL z@$&qFWGLk^gLv)TBlk`$%(OWGQ%9E1S;nPO?Os23k6ZNY;V)6<#QA^bvK!r_0TC)+ zL){g25!V{$%lBDY?!%>2bP6f7Gk1&}i8#VKJD1N@$ubX&z0#e`1(C`fvuwAfB^WPZ z@G6{EG7KNZNhzH}w@#&$lj&6jL=5eum-+4NI%#6~u1XjA&cBKaBS)>FZyOpqxW${t zJj(J(X;+-qe*NNCUtK2B5{`?<`ZHdK!1IfXqH=gExs z&s&Ap;SPt^hgG7)7Ojy9$KQ8bjppNEYd_7GLwo&T6!gXyCbJYTfD`g8uR6a8uNh%R zf#8v`k6F&q@b@s`4HW6BTZ)#Kr2Y)H{h4xegzqYg4Q>jvgThyzK9?P)sIOFmzU%lA zo2?)l75xr}Nr(vV3_+WhJbc92H`PtBLSLHq=^TIZu@+s{N_9A6Lb-kfeo5agJ6xv0 zO1)($?6%U3?|pY%@2TR2W*mmURo&_-DK}bEm3Nq~^OK`bsdf|1P z+67o_rI&LZ`JLR6brta67Ys529ygO78`0!8c(a@bCAhWs1p=2@t);h=^6Lv72zz8Oy&Bv?>3G^vKuB^?N*motJVf*lAUdJeJ-C;+X388i z9LO1&XXxMPv<+SUYnJYFU^HbGB6IJ~VOfPIO|2!w7M{U-j%@2=!;ya^3PHFxM249-LOb4Dt<&Oui}L+cjHoxGohD|- z4aTZjPC+okh1$qHM?_t`$}Zd6@M9!4xW>6=XmiIdQLSb_CmGh)}+D z$H-MqV=dhegk4@v{Du#emY6{01dFZl;0yz_Sfh$w;7)2mcs5iJ`Glj znSyaFm(-?LQjJ(w)tgiPChXlp*9chSoAEcyL2iP}!z=XkkpN zD4erc!BHQDUN+d{3P-vAU?d3k?;_YdBS_Dr@Bh|#FF7q z8gL_gyF(s08{exM*|hTG@)#as(qEiMP^?*=_lUS{9UKf^8)d>dHsPz zQ<}gpPaIQ>7)jNo34?f*1d7Jj`QGA$nL1_cwF_2$O8*WGk<_e!*H!*8*VxD5dy~7d z?i1|!5(v28aylT)V(Z+~NTh#7bTQfZQr>J=Vp`c} zCDcRmNsJMsR-jTewpQ8J)*1hd8d3juzZU|_b2!!K9SFPOub}5Ou-c%D*US2jVlR^b z;TeH&8%--gW%S$`z(Wph;nIcE?jS!6a27!S(NllF-y8OE1`~S<#em09-KTdf*~8VF zOiCXK`O-{AIP1J*L=NM63wsr;ft0-!7V4<{ce3z_ZpEIT1T!uH1=HPbUp@}FcCOdA z1oEqJ@sk917Y&-1Vo66gOh0L>-KkiOp5aYb%&L|C9wVSSL}i!XJ=I84n#}zW-bHp} zsIia2V1O<$e6UY;kN>hXL^(^xi_}6vwO{R7dCzPXMm$P9hEY+sL4j7IV9E2CyM6ya z&Y9(@DI(AcwQ>ksExEa=@^)4wtG}R`aRtdn@}g|dkcM*nC_(E^k`EZbK@H`zx|%Ux3V*0 zv1|Cg5A0VUVBfE&s-f(2R}>zD`OV^5f{u=ZZ@gK8boTXOQ)*uto>LSW#cm{qO~U%{ zOH`|L%L7&vOvg9zcDwA8hA7erO3G%wlL*Y zo$XqbQ-S&`8!;I31Je+qiQl2EYSb6fZI0QwZv5l@{Bh4Q^f!i=8~SI7f#5saj&s6z zN0%{a)nT-z>jhAG}g*6`AwlpfswhM&{t zElGr{AtYy01jZxBc8C3so2jS)niV))^>bk1iaJ75^l!LqAR=sRXmJQ2 zP*4^;P*7A_?2N>UVDLKuXH91G{G9HJX7p173}H7xzHs-9y4=Ceg6L*+!G(E{zA-pM z(?ip*sqsD_Lu13ex4434JPJY0+3_VLLJ`RLrWTNm!9-}S&9;pUoGi|+$FEb8fPny% zzOnxMj1vO)fB>?&nI*wl7{a1cLy#sP3)ZBj&@%!UNgf{%xA zPtVZE8mOtk-`%N+8EgZ1XB{{aWdVo_H-EV|x&&Y*2>Ryk0u=o_8UX+5aJw5QTm8>7 z&B9pM(lp=b%+|~dft8^R1ngY6@Ed_1ffb04W^gym3*%+w_Qy-!s}#fQ;}!x?Tmy-O z9uIlet?_pIaRq-RYxnEw{7R0_Z&eb&Gv%EnRs|PYMMoE?j_^{~`-sZk42skBx}EZ~ zJIL1B;MU>{KxAfaW@i1+3o9ss?`}w`s3uVqe%ocgC0-L?HpvGKND2IAVd0?xvV;Zd zz)GJ3kSjVj1OF76e$n~W_AhRaY(N-3=|jvdEF@|%Ob>NPEd;O_ECJ)eukM!S#C)@L@TMl2H_S2BeaYBcGgx1Muznd|7#cp*ntjZ&?r_n{RtFeV zUCa3k@ZRdf!2u**{k$PgZsVf9Kc{|578?BpM8o|@K5;>J6|Vgsk?NW2*uQ*}WUFj} z_;`5uG}c~IJS3`s+(%vy*}yu!8XtkYxM^&{-7)*Tr*nZwY)(6er=iC`QKrq!EtjY0hb1w(w4YH>d!t(KFO-qOA$Lvww<_XiMcIFN7 zE9U8k+{~MU4wB835bkK77y{f8GrS z%O~SI*sJWpuzB!m{^R6XR`+%IkXu-CXyEJL+WNs@>c=p?fnxdfYPf@E`@{N?vwQNL zQuni{eew#$PVO&leDVefI45589%lDH_lIl(`~~m*wEV>Mxm`85{^U#Vtu*p+h#NGx z<0B~RZ8_q@OcNNoP0;-z{@A8p?cMVxw*U8ZhOGeGHNaL)U{TKYrxW1utcT#m|4zW5 zMlc_C4#>@EW+Q;6uZlhYxz{+JZ%%iN!?fBJ0c; zv8cR7E4(WI+IMB+E9G;>eSljdRYzNR9@IqmJH5Si6OrZq#@%Dc<&PX;d!sOtMXq&aN6Qrg#SOFW zk&onVGwkbLyaMb@+AML};q4zF+*94qrg;I@x}dG#UGy88^P^U8A)KQC+5xrziYXAa zl7__Bd#=v4b58hSJp;HDz*=3aZ4UE!kNV4k>FI-J)F0x4$HoZzASJNFh)q!bhH02g z!$>{(AN}-wXLUv*O%nl!ubgga_sWX5+2%+(pMRi2L8{e~jGOTo3yBI-=$QK+AQ+qs z&fL|99MoB_27&~6aiM&=yvn3_chPbtX399;n6JkVNjhc?dnynM)eP1(71@nsk0^Cc z5N)5O_>2tXY*`iR6oG}++gB0v%H596`mPhb=2qB5hIRE&9kD{uHaj1Kdr6uxUtWu1 zf+`lt>IfufmzJ%r=W^%urNo=oCiqPvhtpt=2%sLGF|{abEn+?q9*Bz@|oa7h8lqzCx$U85fM^ zm$R3lpvQW}o}a^;iL|FAH~+ca-&Kec}_mlw$V{8DgBQL zibZg@A_E>tjc}ml=M3^+}~wHEZ?VLJI4jj8cN>nniBybAPp`e zrIY5TQ0ps^R!%#(MzdM4XU9`(`p-jgc4e+?(dGs;-!U@$!fuQgtsEATev6NDb{rA3 zE3c(j&g!oM9CL&gj52NIYM}2|UJh_knZ`lYYgp+L2>aI&#*flGuBNPI@N?doi-Fg} z&4x}YTwUCC%558GeX9{*4;sE@Ag+&+k#eeRB{oM`1<@A@a+q++(b}yR_;Io9vjy|9 zb8#}Aj=1(=E5W!3rt`=lTl~VIf?A#zxZb9`Wx2Y-xjz9Oh1v#_tfnS8L|@5D7%(e0 z13adz3_ssW!HP0cM=g`Iaz=zxQMn(`_7;$bQ1PijP1gNAhovnj7AoF3Ik{Bw#m=n< zHfw@QdxK_UiD|W}f7-?-q#D1^Ld1;;(dC+%N5!t$V-ZR)ltK@}3=#ThOboa^c&S`(Ex+b+Jm zon9GdUP>W)A6D@eQ^xok{m#1+8y0GufR4$WM$vO#)%ajqFbBhKa?MoP$EW6VmBn9J zhvq3x9k1t8ZMyexSMQyfJdNsTQYlMrWHj_G-OFb09*4%2jYqKM4=?Erfwtr78@(JD zaP;N2`#8gnN4=_RElxe%75-X3U05M996XzEL^X3@4s785gQu%xq)j)EjvC4{*b_TW zt0doPx7Z6FQH9E{&DBWeIGE#3p2%O;RjE3*;N_cU6kWB&vTBaK=(xKL797d}M+PUo zsnvECL_q0p_f`*iB{{pK=&S4<+*_23xB;<~oB>plI+`&MPjH?ATW8ot5G`E{nf*C=Tm3?r3U$s1OtainsYG)_JHl#+o;(}?UI zprdEIkaPbtEhq-ki4z?oJSrdd#=k@~H#a)!|D1K@gp`yTSg~_LH@S>E%k@*PXZ<(n z(m5r9T`jF`$v7tbz>(D{d@DB83A$-o252ZHYIrvQE?I_tA(=HT_1@os~vtVjcIv3{+; zfhP-UzVs?vE=(#wT?JM|scDw&N{22kUlxndw8)=vV%Bw+4r~CJmlSh3A1Zv>8^Py~ zC*=X|U}O_0G>@E>&3tH@tqb&dBAIY5XQos3CHzta$0u!iYK*GgHcWOb_wcWL)Nf2)8xSNjLMFD@af z?R`0EEQcZ6^F`(ksOrt7w|5I78j!&_R3m~Z`LD-0VlY*!lAEjj4z|yl3H3yZ1JXa! z)GQCHkn{5{0nX0~(mwxCCayAsbk?s*`uS-f;Em}V#xC{SWBuVyq1CQ0RrjcvWdM1x zm$s@rOMHXpD*Z$2Yvy@Fb2Wi!Je6kRo5C;WXfIFtrHMjFnjOfKDh#~?ywVsd0?|*+Si`|a zgpyQ8UVLFy!ta^R$zZ>)v(Tj{}wZG=f5ig5!IZ1(;no4#0 zClyFPDy)KlkXg{7US&t-Xhx9zOEN{#&(o;XHPomOIr1w0ULV26l|Vq2gRlq<4ho{@ zO1Fxgl*pHGN!7OS#caHMtZJEWW0qxW;L`B;n|WZPFFTyK{{Ae#XhMLjpbB3`Z^~irS7Wpy!bL8*q|dw8p}j}?@GziTdF^O29zMmPt8q;MvYsS z8x3Rk5dNw4+Cco=DG3|r22~uw=F$5!fw8YZDF|9TsK65aq5F~^LY4R>Ugd0^cEX%0 zr$O8sqmU}TM)I4XMeM_YZ(+S!NFx|oH^MS`AtaE(4&b- zOq=ozULGfzpVmCDQ3~l0g0Yod;f5qEi;ZpMY-}Xoto9NX*FEPfVFg7&DY!qeTVK}6 zgGlpJILdZsWg~kz%~Ze5^LvR}OwkIvXQH=Mh49YGq36+N@;3zxD|`hA(ulLTCTJCL z1IxmQ&0FCEF&cuh9hv@K=(cj7-MzU0=vJLxYLo}XGAyh!b4~HKdG|Ftb~m(+WYt-b zLf4h3o2%+<2PCE-%tbVOg^J;~eW`(ld)an$5e1z^WnQbsF)?$c1iS8Z=wFEb z?&-G@&6|RvZ3g6Gc0+S?{v6-%nQer?rBX7R(iHH-UGoNkxZ#wq4_H1v*P!ecNo3w-5c>BWBx?v=p-u%kv>tV=y6S81-hfUG=^c6?wT5F zY;vuHW`r(G6kf>E$4~p5TdUYbcF(M@iMdC+0(5`~M%t0ZB0cj4M^P*NlpR}`!5RTP z?^%c17|&bc7jaBnuo#bMGIz}67q+jdDr+4yIja&okian2+bseKqxO&a9m)dwUPGb9 zh0(t3`HnEJSzK-pQwO}QGMOVvO#pAUc=^IhWft$582qy)u|T&2Ir!F1_=)qNLT`U- zH3fKnbB)TDc~lNjDg5sEo2;2y*nHI-7PqO~xo#u%P_^9LR0@}AE?_M{5P=9~xG;4J z;f0r(7!GCQS~|MLVfd&@*EnYQ;w^**amO{H1^2IH2ty0*`QP2T{&Sqcx_0AqxhKRx zSj8k`9`Ck30-_G2#G?D!lYP5s5@TX=mLo`?v!B2KpQRXS-R+?%JHJ@RLNpsWzjF`1 z5>q;G$Tn2b*4Rn~PE|ek307JsWTG*U61nAh6W-eM=A*S{^;?GDA2qB`t~BW7kd)8Q;22T)>C zJT%g-AJFk!cOYGi=t(NE&8GcMpj|#^!MiH7J`@=hE+es=v~$w;p_GVMCzy zhy|;6G`#X&^T7A(*KDVdlh}pjaO=7!a17AFy;{K&!mQ)A2BfWUN#1aDQKkw$gcBDs z0hlMJq(i>nGl5A$sR~=e@D49R`Wn#=()%D1$YeW0n81f@#mhnpme+PfH}juj+t~g9 zw5ofS8&)*&j&$|#3ZKT%I6SLLYMFAu%*J&N`uOj?tIB5nvW$A;SyLO&mx(m7Rz=F? zJCDg@KbNAVse^E|rHpTu4o&u39|$YZhV3tpqEW}e5}5(fkh0xg&SFIx`ALL)wAJ&7 zIcM_y*WZ~lO_6$1L5f&#xgTCje}PqU;COH?_TCOQs;c&EdVnz=e+Z<$6)El4%N-;X z10=FG(lUOf5Okx3+uI~bq~6F26n2>5l{ZNEm0%MFLY1vV?+x{zJ94GZR?U}M;MeaZ zp<{9g{z>J{E;An7t<7CI@Bu=NpDZnhYan2)Br4MMY`{j<$DlAL4wo!wh7L~Reyv1U z-t93bKX5{8PZW@q3@hctI63*SSKnq?dTZ;UtpDsYjSI_Lt@|NWwD?7eAwd0ijlg_v zl=X3o*&$pQv#I0TQ=L*;N0QNkg>G=5B`8SBrkO+y<4+cqYkc1w z9w4OFV{{01}I&2-{eg7vrQHiLeoLkO?(Uk4vzL~rG`^Yf$Kidx~vYgVZYLrJz1 zk~6&%+w@JL*w&>Kmr1*CqKgVaSC=cG5_b?s^!te`-|y}fCRO&AI}b!C;?P!%li`mq z^@k-55?z>jWOXg40@<2FAvG-EDEM5kYDnd9SY>MIA5ya`&MaiD2zKJ^>lu*@tt2dB z2ujEM_3h(rUKEb-g5kvP4$NR^>tq=EQyZsnCPO}Y#;T;>GUQ~Wb94g-YZB{GaG?1R z&-!}PSc#!`n?iD@J)zkxdsx1p!WvpWN^m z#6r|gLHIr-?7rV!6?ia?O)>0O;jFy$Uq0^#3_?t`idk{h8D8H+CH<&0<+jOC2<$SG zs>}^W?`ckWy(9;edi0`ff)0fXJr_u2xu_nYT~t2cC~|Dji+jQXH!BBITY) z+=oR1SWBrA@FmB#>^s7Oi|bA5<|g;NRXN<^O&`x1_Me0Tgon5Z^JD9?5RubQ@C2PN z1xU?JIs5~*XGUNO$oCF}Bq1?%US8ZxBtEJvEky8DWpJ$h8d)ZK;q?rXQEDg-Q6E^K zQDaQYG0yIjovRI+#o}QgZwc|H__YS(dC?A-_o>#_54jvYw&a0Ke&Essh=T4GC z;@Oh7HBHZ8j$zjI()?S6Mu{pzcD<&~u3G~(tI#eMK`A4sc}+dqmyMt;=nT}Hx2r5W zEm*Yx1gFX~tBi-GdkO~R`OKyOMyW3U?D+pB9Z<_Uy`tK7^xf+& znsbH*2t>scd8+^A$ZN+gp3&8aSyavp`e{(j&?%!#lb6|0XG384zO&{S5itl}6Plr{ zJfbRm{u{&P-mRGc7pGe~&c!PVz7vB?A?>7%}$JC94v}+DzMe*o!%|YRG ze#yvM1!88l9Ko%5B9Wgv%@}}Tx~R<=Tn|EKyEMX+;FX(GJtFCm&YN88?g}=MR4!%z z;HE|KZ$K^NKw5eEv1Cs0v8KJ4=$|ZNjPhCBEg9Imcl^^=!jv9qA$V?9XUSVzgWG(n zZsi0)b!(9=-8M;9OdO3d{L(91N_VdR^Am7&Z9aV=pxCDTvR(HJPHKqf$LdcP?z97N zLv7pMj!s8LY+QkTikq9al#&J%{?KhBog!5=P*J*0FVf7&NI{E}UFC+5l$tyTl*2_( zsQgUm64{Iy!Mny%w>GMq{Cgc!XEIji4ECTq@h;b;O)Ie)AS%H~WyVi(nf*fM&a~pz z4sX^)dT-{lfh0@&|?P;7mFSUvU$5$D_V{i?r#rvb1QpND-z;IIf zb2(c};yfapgKtVjhB9ES_({_y(d^pTQ4aSW?3+VR%L9&?V}+EQJxMy;lrOE5z!Ke= z(gU_)1mCDsS{@=@Q$%(HVMd3S^h^`4^Y?M@(eCuS(!~$8Tx!~_181>EScgf3#jx~O zjowu+#=oCVjrwMIL5S1T;w6(Dm4wtPL3Q)jkK8=QU3jjhi&jld2-e^)Fbgvqqkk+l z_2+(hQ!l$j7ZSl=ZkWQVP^_&BZcGE9c})LY$4fqYfV$D1D1mhsC=|YDU+11k30Fk1 zaz40DvH3E+(f$N`B*s`h?qo#PE*NkkwrV%MZCMw>+#o!tvxzftLLClL3?c(_>@ zz6g<8HtW#W67X_Fn%>`}yUk`^_(QkPbPv<_tXa}R4dbAqTF-EVOh0}E;z1@iD^7iTdi0`)Ujh5Z_34g*Z+RUBMW7t%hI|CVV8RO z%_5?r$|nkOgxh8fE}w+L9ovowyZb0uVWPmH%j@VM7tj`wL(E( zSndmn=MXp4HozB-mi%Y*e9OzzWWU8i>X}kW=G{wRwrG8Gmg2zV*E78MP>z}@)=o`e zd+8NIQ54Z}CD!JbJ_yk%g#!K=gBK1Ym4l-9<|4ALNOmliLD#`$@l+Jn4PrlesQg0B z`FKjWGXfQ@=0rEa`iUYv(O36DMG2+zpH+&?3fAiAT;IEMH8=qjSq$*pxw?)g8pQKP z?;pp&3eyG@=mIY!+HRnvUA$-U2jxCa$4-%8g6vcZ<%qFw>hfaX2oTuuRgbEBXeT3S z@%P4md1vfAp?@W49MUTb=NT66rbTI*pU>arO1@EX5f97cDXF%Uht-$_yn{DHf@O}K zTRf$@6t{M82j(-Vb*a&LUOzA-fd{AxmAv;8qry(hrvCI)f2$TX;}D)6^VME|5H`o= z;c{}9b`DrE4ep(GF`N+bxTuIJyUIKuK(G)HV&Y=cd7Rj*+Ynh3;i}qQCl5#Z7t*zG4McoIBeUj=}@OHsH-*ots zHT0-z{P)rn&@vJN5~!yU>8;d$%!R^&@?jRcg+cN!EQ&Rr;9zShUyoc5W9Q|I64z7p{Ayn?&fvwA}u0)K<{<=^M2RmUq`qApv4 z%j;j}!^W9uzO}WMWLILqV%T#6Sc}IAB&#)T;~m1_ZM2QsU5V28is9pu4SHfyBwn@m zFyg<(8_y?b>VEBw+gO;%2Nbz;GPFnX6V`#0CuP_`l7c>veR9AWCn6H9@0zOz;dttt z6}gkJC-Y7<{I+VZUDpU&ZrdKBKMH%<2XUEYro_KnjfBHm!@fT7FtDu+#{UIW!xVmU z8D-lUxZ{Vy+7?2ba#PkU;(Rf&Iz{9H#(e{3CcWqEqbI6h6~f8}vO5Uo+~2LeNnm!I z2)gGQQ9M8wv8Lx&iqqT zGqahh>0K{-bE^CFd7sBa2OpR_EqBMg)LQT_bZalFwCTB%-p1OTktv30{#vLp#asvM z$P-(PDRB{+G4Qz_|Hi8b1s41fvBzEd9LL||N0?|=>$X`R;ZyQ?!kQD_>|cVNLO#E& z>nr>u3nM~dUKFnW^)-B&SZ9i*2rqQGPZ!Y|9!dEgA{C>uHK5rw#bGH@z zEnwdJ-0le^VzsIiWt?Js+#)+%S(Ilyu zut%|Fc*Tycd!oO>=x!vzVt2B-h4y}{b0Tpw*+&DV8X6hshpcl?T+Z1o6_h?Vll>bRuEYD%lz`(->&G59^%ApX+z3Bo_#yWiB?`#NiS* z@XZIHxpg{%TBF6w!esxPaL^1mJTMPa$r(|T-aWkn8Z3m%{$Z3vC*;>fY)mbVqH;Z* zQSA*tJR(o|OV>)c?bXKSCjQYD6eanKXhQ1fT6*}k(#4Uxr3%$B7)96NNE`~<(@T5q zOA#%N{971s{PlR0msfBWBx&Nl03jj(^T=0BmzL7M!)o~Dh#T52(a7Akjyn{0!6Q-E zBsIxPvavq@NU3Id>AlR($o2aQ0RJl#tL}v8HEfLY%yC0pa<*MGciLbuwz>v=+CN+r z=jjVb`P}~ZL97B=OcaE568r%z5!7_Zux^x=#qa;nX%S1f6I-}cOV%NsH+Uyz*yhJ1 z7ξz2Th|-$unZBsBR)R7yrCLyIy=_4s>8a_><&J$1x}rgc+1p*+SbK`{ehwDp{) zQkiR7?`jK6W$s(4jZIP$c&9yi1KsuMEq4@yHSc)^k{Jn=anOm8QYW5Mns zb-go*XfHJP{a7|q6O&^NI36SqHTZ#B$Hx&tH4?s71avd+npDBDJiwnA!7hkwj)#kL z$2iHBfFn(U*;C)e>$0^*7Y{0Hui2&R8J)=vSx!F8Mb;=tx;iX3o{x$Jo!f?&;q&u< zNw}31hYJ^cjjE)PcU6GRYms3-&7DlF_QaREtj)(rYSm+vJ&9=Ri)$<_sQ$D9hd$U!1MybUcCcWEX*%s;Td^V!GRCmH8sjlsTbLeY%6&sk-Ndu&0b#ljWLx z6OVzUF9P9|Gwl&vYUOU-p!&so>Cz~OFK-B}pJ1`BMoyqRlkOSGfYMSLLxrDzQ~ile zigw?NU_0bHm7n$43BG8_OLh@WDucKhCZM;eVI_6HWCED)#Ispsu=A zXgj6wfy;=Xl1p1Re7TvuY2bL;o{NEBT_7$Sv`2yS>161FPE~!}8Qm#2`rwnQe^BRd zS~o!L$soB>aL)4h@BQLlU(g@}Q3;b@mpEm1)dCE;&E2SY+M$DV#zD@CCbihdK&Ik> zmG8$hY{Ktlq?3DR7e^9>oYjb%%|LBpi|$o4X6%0CDV~gnWk3&Ce7pi=>!+v9@4kAZ zsXmlhxLO`4zNr(#kTE_lR=#Ol^op4uZg-GE!Qy8+X#7)|O6vYY%O5GUIXvyw`e3%; zJAlu0d-_o7CBu_Al;~^g1iITb+ro9iZE>>HT6`9*vpm>(8H4>fO=x-aFZVIniWCr&X@q6i9prqY~SRKyZ-*fUg_0S#qvoEfvbVt!1H;a`%lQJkpC zRMO_jtXX9G@Ix)dVyJ@gownN~(tY)t3G3y`bp{w5AS^Jo?Oe{OX01hZJ<{1@BU~Z4 z@W&l33C(Y2#EToaOeA)yxC3ojW2fGd&RkFfhea%^^8o}j0FK-bjeYIZ5woTs%Fqg8 zJb~8nz7k;_YP~P)WyjQ@@W0OFH`6~2d8H$-A$Q^nBV!bxJ&j`zdd5`wK-f*trpsx` zo65rU`j`gZ%uvS4caSUb$SPG?LX)bge@lNhz9@9N$C=oBNzgUuEQ}EdC5;P=`PI0i zmi%Ia_e$^%wK^pY2p8EsZatq#QW^UGbHU(&m{}<1R1!gtare>>haF{It0GJhrv%m5F_gZ z5yiXAkqN}7?x1*1)>OY%`LSGnpwyx@)|6Od2b+I!+e)MajY@^P(FqBCs}jM>bmf0n zmtCu0g%K)a8a{*wgaaF}j-#yItqb0&maMX&L3dsPj~^bjr&02b8_oRf zqwwLQ3S8Pbv#<+Mf(s`;E{7^_UW0iwhdUrvK|iKZ^}hb=JGiEB`Q<`h6=i`fXuL=n z2+EQL&xldZO7~xkeml;yJ7zsr)}}+J+t@BW*jzPV`WSc%!glB>In-x>gWSh1R*3ft zcDn#%#0xyB!;4L$SU5vniYV31-d`~W{|a#-DYIh9fr#HV`X!8nYW2(*BNgB^A=wk% zPN8>+7c9S`6PCL!mj6$&0E?1#T^ZUJfY*13KDfVD@N=f<1pg$&;Q03H9Ql zC~_@+)qC)c+PS^j#m}~N$Goq_-E~|mY0$6?L2Q1b!MbAf%&LA2PXU1b?A#2EHaPhCq=1}BZrV?; zLDO*+Z7XU+#N@%1zmT&g!MPspEbtOMN~ZX_AoJK=Rx1b!yoRD-I+g#SY&y0p#x_D_ zYH&W%4NE#b86zHWqNEK36-7cBM6?^{3U4xO=S;Y|DxWu(@Brv$`M7+kSMow6`N!1U zbRNWDDtZaXxF*$DsNw>Q56qn=;xWNN!8T7H$e>cN8qs{%H`%tcd(*O^=y75T!;z{ z`}PTRg@)F%Oz)-(11~6E%E-Q5GlF~be4{neqQtFn;^B{PNXLZQtz|@HnnOt@A1H(3 zFLA|15zzG(8?CJsg5nhP`VpZ?!0C3gma7DYqH|)(a{=+@4o#r?>Hk$TKB^=yv>W}> z#%q7yc=!A>#KG|jYJ70MWJBm%sx|TUSDFQEN7mWSsgu#+C-7Tx)7a8h5 ztCaT(zl(*7PY`w=P{!5t3^uWtX)TxW1G(UlM|9f%dM;-Yb zRN@e|)LMV+W0dG1se)))1Z#sfNp93NeEIg_G|K=HB8uf6Q$3e^x41=0-&6?3ka6{x zOo(o&2(7@&x;);VZ|f&VnvTvQLeOs)GC6fMks2$z(+bLk*WxJ(K_sd&T~%iba&M@i zWxomoc=T`(sy7lO5Stfg!9CiXJ51s;u@=>6QO;K1Yh(skS2gHBGZCTw=aq!zSs?~?@Rb=yO6!3dR7$z5c^H$$1>WhC0A)?{#WhF?N z9Uw6fa__Bd`NtTf+j2eI(WF=ov-i~4?!~`5DmcGh>Ah*nvSvawl$|?+JreghZ@AU| z`PNyAv;4i8L)G-#OQf=Sx)M6gpveEndEMi)TEFq;xMH~dC&pTi%_!60@qu#MCEUrN z*n6AHxgG1EAYAQBvd-zAGt#M4xajjYEl}SK=^-XSl-Xx|osUC+Y;%GR#3@KR2-F3VE z>|KhC9o55JA<7~hE(+;boeNX0bu}F@; z(3kPFax~7CPG0L)vi>uX)gr2nHOa`XxSomXh1^b zqqszj)Hy}Wzr8BHhZ%Cbq8?$9mvl}utMBv*Ub7T6Ae|F*h>Ycj$Nj`3ZL~h8b*>-zb&Z4j_MTr0qENoB2dYHnOuA#Cp1?w4hd_mo&a;1jG|Us(BPP5 zyaO#Tsh!1CX8e@cz=&-vbG~$|fu%fi^fpDxI)$F+M+*hzDU2E=R{Hz(p|l1ekSh-p1WMgIv4vlwPg>Yrn}JFyBlejKYSKM@}uDX)+T7rH6EGFU9J z@cmdkn1N9nMVa95#jBW+MbUG|%fw6Xo#<0-l;S9*H+j zJYQb#$h!v{N=>XtS{ zHk@tPj}>_f6B+Z!;*eN2h)F?a+A-Q_LA^7<*pIO;k=xV+3Zj-ruapI#FDv*ULf5Lj zQHehi7neiaM`zG(T^c)ucM^0LVfrm6(qZ*bdbJ}so)sS8 zq5bSU&pP%S5Zrz>`lIkM6aUg8Hh_@rx{|TD(R+4i4ijJ(=sp)xRe9UAuR8?EX?_DV z>wBD;eh@kWjHj(0!txoH`@cnjW-Op^5xO?14Tag4TWJ=~ju*UQ=T`tydo>63xirtb zo&>_gT|eJ5&Msj-MRV`$<+jsjbvCAhO6O|)&`N+rj4Sz_InDmgp@9H^e`PX&CR;{@ z=*QDA2&Oo2vW#)p2KguZ$n~QUItX6Hb&-U2=rpoI!Q>i7+{f-(J};m2MQd?GUUbgP zbta*r4wd1ez`{*GAW(`k^xJ!G<3ZI`OWpc|lwwW`&NMhq6|U2Opf3{vJRcDFlvl%( zlptO%^vgzl`_ucG%9?$?6c-|VBi!>AVyHGkjLIc__8#qHnXT=Yeao^0f3R>s*{*l7 z-7JO*A{SY%si8cVMrf6T-u9U4_(#ACA5>iG%$je|C(6NaEPnv$YyZJ7ZC<&B&8BXm z=^;ux*_V@SsQ|BgoS0u6`YRE&z45*O&5#2tAt%S$YM7bKMuIIm_<-_ed`SF{?Y9{S z_to-$gcRy1317j}bq)XIhKxVBZpG^CBxLLdW~rE{0fPL@j1m&EzB#&iko9m_HJy=J zMbksG)SR&PA6~NJ;mEYU;_*~0)n@YitQxYi=8Arne6N5cG|%7@qg56rNhxiWqk+%* zX|=m^7x%}!W#d9T`62I!X?lo^@!@muQcBHX!m z^4+sLc^ikGVl=G6jQ6#{i;tJ9#nJT(Ju@$6;#U|I;j~-Bn<vT8&;u|^78vd~S&U9s$F zvW6=1oE2f_8iNMhdBboa8(FRWZ5bMYrjLVuPIx19MMBD?M~+`~G; z&D=~&Si)Do#lBjzq|^L4FgYGEu4&@=HA@PLQ7`wP8jE$DMIwF`xVHtgIyD@}4>$VI zYRdSgLot~eghIYm$uVb{X-!G9AGncK~!)coMtJh$K(oIIrj zq$n9#v6i>)gpDj=$T>1jS#s2tNFZ;Qn+lXUt1tR$H$iX~w-2n?4k3)+eLd>CQ2^99 zFgoYC9lnIF*HIuLW(U`Kv-~%<%RPy1>&TL?SajPs7^}VX+3ik6wqKKW8JgbE)0Dlc;rcZ_ciNIgwox(;7cP%>gvD6#5FT9uMn5`UO z35bu`(C6IGX!%2^O|sr%6AnoN_A=v$EVj<`B=sLHP$V8WNxTLNkg&r}iwQrjXEh&Z zS!5?-8kUQtUfUAW6WdCyFa_to5-AvjmAg`BP`#^hIEYP%aBP&+Ge6g5PN^i^$-zq8!O^PqqB?Ah{Uk#ncL6U0n}`FE6KP^5 zI6tFD+D&C|D1)i6$*)P-M-9Je0frBVf#bWW{F9x57E0|!-?#sH|0_d1L}^Z_vJ<69 zJ(CtBucVf39&EJBu)&m={PC=4h6M^&6E*0p6v1=nJE|#VT*xTRo+4*c^U1Da7S_*& ziRFBt1hJ}XwAtN~X9P|z$^n=fdHijESI&V(^}=oi z)#Agx9WT{{iw~YK2G0`)hbxI=#;-sR8$9N-3%uV3e}ooXm1TWz9yGkB`M#va7zUU% z8NV12?YqwBmtL_l0c9$l*A$ba!=I$A%v0revvy zds?hOnc-y?MOSjU2BeDp??bhr zNQgb3^{yZ-=~kQO#$YiIDc6`HOih<3zKie3H&jabckJYxv_=kl)Pg0l)ZlSra`ruw zETYgE$z&FDuxurEuw>g=;-mSGobu)DM=#(?yeE4qnvPav7g}3BiZaQD-~J=J60~|& z7zdpsh&!28?9ia;&HLB%D>4n3DCym_0TDU}y={9V@5e8>G8q{#+20}QJbh7fv&;R zUufU9Mr>1B^^!rBbvT^y<&&kWjmK@$_gB_McXvQ6rV2W#o!nUc`C>9I!@Bn-z{a=d zsNM~g$1cu3ZW+*N{rXv5F2UX_PQwcjlYul%!E|s zlow@ZW$pPiDbd^owi{dQ)6F_+!f z(N!d6FsQjX5+znzLv5_T^;7>y3DVtNfV+aZi5cq$)%_*Jc6{=s?EH^dzLcnf?t-Nr zkre98tX*qnA4(>9&tbUzJfe#EaB~(meirg{)RO~N$`ExAl^6@OwPvC>&wUt|naJ0* zrU74h+z}0(Z4}b;z#8j#_A0)+Sgl=v@cz=nf_FdH{IKQ`?4iZvQoKf%X~c@`21ni`U= zMwo46SfKrNCD1tegOxRMf44gs082FtNDkH-L&uj+)VvBKP9s%Oy8a0ys;Tjt%pCj#+{Pd_q%>G>x9L~Z%Xio<0i+c z!AA~6#3he6r{%>QfQ@-TD5t5coFkVpIa4n~a-DcR!uobKNHwosJzyT%*H>K|i3`F< zpVv3NVe!1i;BL|I;rXmMeaba>53I6Kd7iN=HYsI@?a%Ifdp$}oL~`o%Gyc2upb{l+ z9;hAvmC*giu3W(|J+RQ+^6Dh{te^4o(_2)EPgF6iK-j_8L5ZGDu(>e4ZgnKvVydWA zdf-G3nH^IZi8O&19tMgRu^F{Q6Q@pP6gMiL`BmLFP0kuI&vswo$zaupx~?4INx(5Q zI<`zljrR|Ou11)%C`(CR!a&5E(%%y=oO4@-?+-rn9=O6MQ99EA-33BT+iRNmSRD*g z#}y-9bLG;f52=)WN7WIOvsJ7uNB+^C4l`_lilHT(H9;~_HDb=2R-bIInZxa+W*G4V z-e!mTU{c51?7eY*$}9C`y#q_aV$+OOA+qv9T*E6r8m zsWjxmU8zQ8V^y02`Z$kyMkz`IpsbOX7fH7C3VrO^rQtC|qBT7jBDtC|xo%-_hbX5`|cbx;}0XUC@NT`LUY$2SZhy zcIlch)k!nJ$_|6R%64JWT$F2QgvucXF5#&Z+uHBb^e9J1`ZAw&e|MqzRHZrSzg}OhN>-Jf>SbYgz?#N-Q-(xies#A{z)3?i3V#vE-J4Dm>$Ur z>@PLQ28n8?i<90*VKzRjA9vx?>f&bE*tctH(Kl0F(65Y(AbVe>tlh(eTlVNiaUSX{YxvzAnOOzUQhUb6G?(U2PKTzBwkVReiCc*D#p&h$u&vlFbr8)NSzLo zCbQ{=g>qxNm~xntM5^Xtm(hGrqV<4+DSZp-C^Q}LmxWTK-{r(Rmgam++EA$CF~2ib z@d(U0QheHs!f5ZFW?hvW>`Spb)!1=k;(s9H|1NG%UOVDyN~fhU7uy+tmN5(|5jHPh z`@bLG`nhE%2!6z5S(I!<7$W(W=4tYZUFnNo6Xgg;Dn^|H=0luc#DLyf;RWZdk^wD} z3VwD2_8hd()pXtxqsvIQZ>)3LgmF_5lh^nh2S|-I{lL0UPf%1=ns{fe@7T3!#5Ut| zGtlK>P#UvO8~(ZesQ&&STx{1L8KP(Nj+zW7LB3C;T6vKPkEwxxBi-VC!#OkGs;tv^ zW|#<){Hm@^8Vc>uqZ5NM`Rh^heF!uBfSrG()54{KnZ^`fpO*k_C?1yg3@{R?9v z6vP0EN#kjaHNi^~s)4td4illPguA3${}Nfwkv~6NZbm1fq)i;-%Aro`#g?|MMV~tW zB${AU!q^%wx%NB1yu8fUn9N@pQ@et2151QGMBjazkYm+29?Ils!qNzKGCEeZSztVr zCyYr+ZHjGqg|oG{UrI5U&gWyDk}0!S$J%{3vYMnHM8@o9oSDiER6Uc|I2|MwcqEMn#^6jP4GR<>aZhjex>LRrfEsIhHQBJQj0KAd`JTfY z!6{qA5$c~Kdu)Z-EE*1m&nK6`<+38SXI;c`d!f&m#-w~zd%nCb)Bd^R#LYh%75Z|Hd#+vR_ZWwY-n)_;U-X-}E*Tp9g z##;4O_L#iXX=s>#@zxc+L~SC?EiBffP6LO00z&Xicr#j*E1OgOKJ|aSOv6+kWW^gI zgzzijW}FzG#^i66B#V;vgx|&;D=sJQo8-2vzjI@C#i|dj`xoZG%R=brf&aV~%>l5N zBqg?C;6p(bc|v#K^*hAeam%C(YMC8&fBBTQH)1R8)qAbI&nKF|hD{Q>LY+Q!PY9-b zW+RQI1Kg+>Sn|s^3?H<4)^hW1h3|RvaSV7}$|Sd6Vfi@)ipcN*{PN_3(mlz&nhOxB zct_TEa(n}5vUC;P?u=Z8zy~lW6xNnImx^*QrPjKk@ zh2)df9~NUPv#<(=rrn2>4@$@R>L6qBH=g zGRX%atZMd-2nZ!WWJ((dU-!KI)PI!aUa7?`B6?Gr4W1s%io{?plbRK_(XAR-gsPiE zdU(xz-#VeTdS4^_)&fk5eZBN!*H@(U>@f8FZL*|9r-`50!Rwz^fC0A+V+0oRrhdU4>)8 z-uoAv^F}Jw>g2x-8bfZ-EiKV|ke8F_FtBp|qG#vX^!&@yPPeW+L!V0ntA9INoj8vP z0()s#^))A{!fWrhmb{5svjpkUvH|?+clCJpxC(hzJZX||W#Bo^dj(c@ASh<(9bhLR z_d**qp4EwiN^#gQ?nd2tccDP1EfcS!au?*J5}EiNC|xJ&64IV}*B4m&;PQQ;G6Y{Z zB?MKxmmh6S)oF@B5JB+q4X?Pv?(#=dLoV7qK|i=S(gbB`4+S%o5$A_v```Q!(^#r~ zt+6U8B4H_7@v7{4v>&_$iNhDM5x&S}a8~9mn-M=gP#kawQZHnv(YC~=y^cm3_p)`m zSsQzgVWU=QAPq)({WtOXYK3LV=kIC(sd1D71EWTji%FeZD}ecEmWSq8l<9mRXh-~# z>YO%Ew&3h<+rtX(fwSI5#Tb_^AtF4&{TuZ!;jb{VW7JjP)?7m_<0?GdW&?az=ASFM zQ#Zw$+I4>VIusHu%$pn1^6IpEJVxbNC>NW(W51XGME0@zpOpkC=U3UJDV_;If;V!; zeau6TWj&*%&o8)B)i@Rm4+pD3Hd{}m;jb!w?{{RQ=R7ANi83afmu_t`P%X$uhZ4;-f{&4OscNw+nozq``idw9GXA zHz{PRz+{9W2x(P4z1afga15bZsDa!>pE&&B^V~EG95>No6}?~OHWwgjR-WFbW5BR( zNN$QUsA5?mb*$TSLK)|M%EzWo;586uDyROKU=b=!xN4_g3-oJ|6v>(FkUb|XNd&gv zCeYN-9%#tG!}Tl69Zt%{o9Yj@v>MfP2(sMU_NrCR;Kh17) z?#^vsu2Tck&(7xr&{U$ju%5Xh#?6DDJ)ty*%sZ!0FLU>#c61jp3flPD@Efe8JnJ;! z+rDD5K~VZ{FtnL5soVOBHE`hy^K@jdO1^e$jz!YWS2+Ag^&I{s&dJb}ItK_I>ECw(FJov#?Wh`?zG;a0MdeZ1(l@38H_!Gm(Bt|&9cNxaHFk;^ zXj9TFc-Ekn)S5EwY~7nvQ8D*{fRDFOTdI}1rz`V_>db-~oH+xmt@^W-f*epC6nLx2 zP=yj|XZE;1r`_PvkQuh=MTEgqNZbbbELP@KQh~g?n6&{*c>Qco_^v-MueFcqhh*|f zGh|To8S0{|!rV2RN>CVAbwI_2k>&k%jfwT|0R; z8g3RR6|XV~k61LhdA+j1MfsEdx6cc#7bT>15FSIxS;jc_uyOBOdNMTCiJb!swj$*g z2vquEEVlTd@H9GE$>`!~rCUeaPq})OA_`KL$X3=GjO^BX@NND(MWAkAyfR*?++c6RzA3vyz5Rf_5pj zo#hyRYp}J-1eYeSW^nqE6kSGk>8!lADDG6q`xik%8@5K5z zT>nqD*#CruIT%~R@bUd`eAs^iB6d#h|Gi@&;$q?aKcun$FItS7m4$^!K!E6ft^bP_ zi}e6kMYaFrkSr!5$0sf65(E3o3x3`J&tVM8f%8`e{BM_vh%{0H%3o0to)Q_HM5Ld` z^xxO-UYFk6tDNhO&yJhV&U}~A*=n19N<{H>p_KpBL-|O31#J5jX=zyrOhSr^AqI+y z840;NNMX()Up17b{t!-LgGi3&zyI!+(Ln%(Zc##Ln@X_2kmX(6ARz!Ck;6q1l*OPR zAR}Sniavbg+C?C-|J*ik^M{b-r29x@#Gfi5P3g4L2vH(y@1IcnU{1gxfB%ws{z5^H z^9t)45fR}PfCGey<GW_a$8;aPi=r zzzeEC;g;Eed1jH`@@KRBdG0`dtPzAF49@ah{l$Le!GeF0;lKisqEIk zfOsaezNi$?7=fT5f8D`&NRZDw3wV)Epqhnwznt8NgtYV#fdHgmu!JbbFfQW6?}Fr8i_R&*kiNd(PfY{Ov9N$Wo<7#TUhOKZ4_>yr$wNPG*j;5vS|!1x}ynl3#I| zoMV&Guu7u!x|m$C^%I*>`GB|FucHNdHzOR=j2$rzTPnxZkQC#_ErO$f`+4;>xSs3RdL&s8X zm-Ox>rMGH9iGh(BL`1lO$xvAMn?bkvoP(xmDXt<~+U3C95*G914`|&OxO8s`JS4IP zuV8BHJ74`83+?Ww`cCpDP!sk!A($rdy|QArK}z1;cojz}HpW<}YYaF^+mtsW+uBn6 zAnSaFSIT$Run(T3ZG!e#?f1TFJZ@_H_Tv&|7Kig_!Z!s@4?S z3JaxGuLc5?5=tQHdsCG0Q5JJWG zlVp2GW-{yEy4*@&3vV+2uyf;A<6xz0D@Av|=^jT@Uj7Jkx-2J|R6J!JZ!b+<_QF5) z&w)9^GWn^*fp)fU6t2B9@gyMc$-E%{LQ5GS3z|n`I!DG6V9swA=3KfRmzAnn9XO9w zFXe%o#YhfWW6m{_)DU5c@O{0yEo>#3$?+05ge;qig}hi%x1zLc@&&Zh6eXJ*C(bs8 zoMEs_1tafjxZrY^j;k-C(U1?x)l9|fUGQKrSMc5>>V$V@H$}Nd4(M5%!i7$dhG&Sw zvL*@MBr)GFxBBRaHN3*Y2z{=d^VXhRKSNS!>L-$k{0Y5yavP52%0G}hE0e8?gC@K^ zre#sxo!vZj=^4x`Xut5aFc_A}MyKj%-EG+M1)n}md7P?qk{$p-LyT{WinB*QAVf5A z-U65ehhHnwEN|r3%CB}|Twk%2+%bkwiieU$ipB_%t#etyKN?G!*K0h4dzL7J(ZvZ= zJmeXs&>E9oCop^Aw6PNYfh$;(p>bT{uvY`7s6kq=Ew?*pj74+oy*M+PfFq@?IP5I! zq0WqztYH~r7-41e^+9RtY>`g)UGdIcpJt8*TAS)rNSR3GFU?#{yZM^+ezQE!A^~ym zCg4L&u6%bXA=mTEqCN9(5|g)>yR*bBp;Cuj#g*Dbxu9Jv4RGXZ@N zG={&Xg_I1iD!JXdNbwsNP%+@dj7AI4uXUwY*SxF$9~RSayRnp9o2|}QiKP0X^NhjW7igI zC0*~JkyRTlUraYp=a2pEw(8d%N=BEJ(6c!L1XX7K zH%%8u+Bj}@k7|C^tGLAt#kFtK7FBVPRRfKH&0AJ*HgylO`Yge3?=@_PgTQmvRT=jc z{?QmVJ^B8zeo0RtDiNjAYssX6-V!LI@Aemq4jXYzziWFkd<8B#WGq>Q+HZ_706ku~ z4&5J#@B)G$lG`LiN>KYM+7_RA$s6lLJan>iv2!8%p{y@W(XcaT-D_u2*~7E=@<>f| ztZq?JqQY2A%;?R$e)(;9DS3s{FsFK|*G(JakOGjgm(Yt#3S-SgQ!XtSXzk`g>MeiD z^32Nf(mZqg*CmuQwcP3(Q|k|TtB7NS_A7m7!5Bp?iMIor8M?j9I(jYI$TiEU9G*a_ zohWQaHk=U;^2-wHV*__SYYTC_wYu~~x$+ltb(qbd^buyq?%!J#+nm07BAePi#TnR* zMQ+_}b&MTq69+zq!S9ZcSkUw(c{&#lhH zj_i&qe|Bih>?m`4ab3N}VgKfrlu;9sg~%{=M|u3`VV^-8%Nr>IvQN)b^G5wBvwvle zJ&vpS(zN;?yRsiD_$V@}_pTP?`byortVunimTw22bXax}1R<5sPsNiK>2cW0@bu&+l`s-ZdPmgUzbG6pQe5Ljk|k{s z`f6i)T-vFA0;kU(YI~#?Yf8h+XF@;Ew_W{?U?W6;7PaQ9{WJ2p&C$!tYhb zLOx^7!u$i92Z!No7nt$J{O6x+e_nE4Z-MS>R8DLmgkGwN z^^*8m|MAwa4Nn~_pa#G6$tZLYSkt@8cnpS;*e9@oL6b5()Y=MmyX)AUJ$Li4 ztAeVlX6YFE$>zOX_FbrJ54=r_@d0;7d>G$}|Jh&pz*8vc8?4&}NH@A-825AFm@_w@z z!uSvEsDK|1rA6^g^FYo<;l2oTZj@7Dj`}lkU>hx7VZ?L6W&uc!0esv0^zkX-?wU$U zJ_h&4ZJ)YL!tuN!(kh-yHyWP*dmm|Ex3}lh`OX1gyYVUkH5~LNBO6pJ!2;}wUQAsh3ulb(JuYjS6s^xU zhgA)s?ep&}m4?oF4l6`RauXi4MvGOM8M@C<3_Sq0RFIhGWszRV7wCz{fhc!QZPAAi z^5m~YsFcn3)ZZme-^BTNPF8X0<t3Mk{|!xLXfN7PO{30RB3{YP9SqyG70+Q2M^9 zKdI1nv`mq3KInO=q~Q4tbs+E!wNC6VwOPiuyQD&sy<wrFfA3ge@4Q{Vbnjq=o68$@i2e4& zwUi;`(gHSHOVRDElsR!R`gI`+E9lAbxdL%BFgJ73ThK2&QT8o19o7@1JG+`w+f9Eo zCJjGpO9j*TtmO?-{qz|I=?ZoS4|`5oZ}#hxgo_ZaZt08|BZDyi#;XnoV?T$bIq+># z#)OXDW(!bMhray{X2Fnoi0Y}Edv3XWm?&696VB*$b&4MJn7g$M!%WGu_CA|e@@eJ_ zDgAZjAecgEs3k{?hDmfKCw9IYYC2hB;CD;uA@Ej{e1)(`cBVLocjZvmt5@{Vq%7{V zL4r-*fg$C3dXxj{b>590arr!7cbgJLv8z0C6T&XOE*Yb7WfA5=4VP2JY&LK!Iq66W zl!5MvQ$7ttJ-iyn)g%)U)gHwVtFD|(V~y%^KP(>MV;D!t_kNX2`*e_G?bxQ8ixb#8 zF*ou4w%NT|?G`giZp}y7#OSMr~GK#In5VKGu*n-k{iHV<+(R%1Bk$0TeT4i`?NyZkpKwx5TSB zX>hK4`}$TXY9cKLGxqf`yo&>NW5_3F1q$JDgjh{py*N4y-HxYO5wRGcDPJgeXmz2` z)2UqG;QTN>BEo$JCLmGY%*9~b$y2m1&h`H3VD7mbYOv@$z{kYil5#@b+Xk&h`m%MG z;#!Y7ly)M|U?sno;;Q((4uFmq_;aVX_yklDR?Ls1|Ly0I6Xbn}#A3$2 zUw>Fb5j{axj5yo(OPmx}6qn|X+#T{g3{AiITW`#yTq6*=K6`?Hz2&E%^8u^8A({eo zjd(AS=qnzEmDnLK{)bgGN3%Gt&Dnt3YN(M!q)EVPMWF0*mhe)F49=)O>rDN#-N`)% z-Ar+!J=^ePj=JNbKXLKzxKEr9aMJ`70$fyw`WK>d@ya{6hKKkJvHj`^X5k5YeRve|B$P!M= zb94_0BrSaj;F@#~`q5@@^1s>>;&U^L^(YtmpXo>=)y5W6ZC*7E8SQ9*ppy{m;+5v@ z?av_9s@qSPUYN+nm_8?POx(iEZae^1mm4)js&D_C8$aUENi^ zuD))icCEiQ8)-ONZ8?fz&FX(o5dEV_j!_71lcW&&D{*qA%e60bO_ zkMpK+U{!CjCSN@MlW^boI zeQzdCtDejYwz75%iJW46jyj;waXT;`K?{TNHmw#GN_UUi@ z#%;Q{Tp9Ou4u@sa=EC(QI@dVH+DG2m(mHw`$F^IhBjaAARDP?m4jYdkK-aBgGABb} z+QuyA7s!lke_D?Oi(DOpmBa;3# z+;K(*sPQmi9!|QO*G|5guC)yvc~o|ID&^`ziZw>X~-q_n)QN#WpqR zKxAJ(@MV#6H*E*^>H#4Hs7Ixe*Sj7oab@nbbU3xp!jN$Ey*Jb?ce!7&qKZNmY)=&f z*t0ZU@%S+p;NvQ>WZH~wIJ@(?I=}Msnln(A2OAUw4MR~cLu?-BHc}E&x^>dtH{N|o zI`TV(_E9xCr0OkKQw0lu?1l~vNTiaJ!+2q@Yr=QKwmvJ&eiT~P*tjy0>x?@|e9kek z9kQZa8itdPE{qgB2=p@%2ji5Zh+I#bN|U)s5>xwb6Q*|u#)8UNyS8 zCceOVp(@yt$r?9*mP;|qoyPFG!m>?aW+9%16sx#FjNc%4xC1`W1HB%wfZ^vA)Y#y{ z^5b1c(oixP`6QB|d-!6Mnh~ zS{+Pa9--8Bv{q*K=5knytjaEs{uy9CJ~dsDbH;$JVsqq&~}+53?&=mmM~*H!1Ol#&2PL9oi9fQ@{FdEx4lj-=T}1OUo$Y(9lwk;tTUS zm2J*ne7u~0t#|f)kP(9W`I57>oc&13fbVXatD97`%}*ZUWx^J5i5=|-FSTYv60g1x zdk~{s80X3;5u{CI&T>5Bao@g`iw=Lpn|?O5iFF?PRg%(IYhWg1PkvErhQH4E?%nKU zTN>!dqkUI6c_azKPjdnK&Tv9bNB+p-e|iE-s-;<_)U&+fUN;xZ)X*~*2NP_qTBH4R z&0hB;3_vs@tUt^7)=r?;Cr54+Zr{5^q70M7-fu(mo-Po*8E2`1gnIir-wZ@8k5knUN zS;~)wH^GyfQ2w#ZX=9Z(2R#HO_tb&BVWOhz;kL6Lqmc?VjA1_+?Y5=XG7&QNdOyb9 z7gRE#zO-5ys5{#@#A{BGBI?<@_ZY<0#kU{~g^HnW;YkfJMfXh6AIz3(N74*baa|t?(A+K;9Tyskr^hQ+CFM?u$Ht0#O=bpXWlGu0%t1cdS@|>EFk=sn4%DU zeT?YmFLj`LSn4L6`92EfXNzRVup{oklUnLS-a?)BXa5?_0=oWY!*B4+LlGvzQIaO; zyvhGebb2TfiK;okr)#UhybYo9M&--meSgPT^5n2Lr1BmTLI&9Nq~#;PjI`{?5bkmxD z8Py>Wrs~e?EUN!n1}Mm ztL|*|zT5eSQFeFNwpT9mLl7kD(|3!lr`gK9#|${Tmy6ag{{F4wpm-%T1eHApOCwVl z?=vdikGn846a5;8{5d>daPgr@(pyV(I1&z^HoS_Ah!`WlU?Q14$84(|bs8TXh-m8R z-CcWCDhR3J)AA!}nZtY_=tzm8v_gf~7cq*eZJRZ?s6;Y)=JZ5YKczlC|LnOxTN=5h)t7^YpOM3OnO!MhRJ zy4`8NU^B7v9yGNo{XVNq3xSHR^#4w``Egy)j(cbSvYV4c`0kx1?Y&E|M*! zS_YMpILhz~?*kw`mFx`97;`PtpY6G44)jFRna3r2YC%w+}H zOt%*78N&l)rkx*tQ}G&amdB)S$%^jw2>Y_RIt7^A+3?IiE~hOgN{MpGJ0wq<4?$N> zVk{GZo~FeDp0v$+F%~MzQtIn%@f8@i-%0Q1P%wwqg)Ab#acJUcO>C0@W>Jmm5SKX7!{{ z%%N2lc5CYJXANQgK4SMxU6%9mzkzVoOO>+uxNgu_FCTyGTn5I^%JQ%4-JH#FEqIZ1 z@a_UjT@Sj49%mi4;uwU9BO?**;pqcqp{61yM~bR+@N}8X1+A=GiudTs*3{*FB3gu| zO51$t*WMhRymA5~PnU@k=DSy~2wHeg&9B@G$rxhJ{E-qXxuP%saIEpRz_Hy`cJqx# zW7~O_ZGHX19ST&N$6&uryr1fhoPCqkm)=-h7|6?-MI@;Ehfi`u&ma?TT-N+wkAcUF z=sp*f{e^vB*YdV$=ifNaJ>acx)Vz*oy7*Uxu4+)aX2*ok3Mq3e7xeL&A5#Fw-uVXG|i<4;(xfYJPm*0zvYq5wyMm~+-;zL(_Xf;$dUMU}6jlPY|7aQyW{h6KD$1*1$oqb zo1SHM2c6(P8T7VkZS9-R$>EyE6bwwYi3Kw$PIz%Tr;WlMqr_TE+xMa%KP!j#%%id1IeDo{abg${Ei={!WR`a5f^nHo;HtL1$1)^;(;;!n`1%$ zbO6b9n}C|uvv1mbEGrCxr0HD0^L!Ot{c_&U;4+*vleU!7W7H`2fMsfp5_RDW@QQ zdzo8k^QJf^b2Sbfce)?wsBbgV|H(LU{!hkMb^--0zIv(nutP;@r|6JUp=* zoHnyPpUaO|E-zjY@!EPZe}=%Uq0+FD5kK#-8^-I0)(JVLUt_x&#El0gz&O zVIYen+>wwXVT6S+ZXn%;i!!2wf_bFst1NG<0fJySvsoay!NI_q{v}Yf7ek9k-U-k` zuwbo_YXEh2$Q6jTq6-Yp$$J4>EZHhcW-$uN+0D%yQj>>K1fNb6Ya`e;DT_@Y)jH(W z6;vAtkPJZ)awFu&a4cR1`d?dk2heCOSbJz&bj}cD+Yp)+n!jU!U6+tyU=HLB0Ky1q z7MM-G4oEOO76#J<4S0bXn4Ej}=oD@azzpUA%0p%4h+h+mBITn%(+5(HAR#EGsF_E2 z4QPUrK*tyak?>>F2oN7Z1+NFq?1T0@Ac0N%wgeGz3=UXyVf6^-8PZ+XBXRGi0SibA z^3WO^6oa#NKz0x8H2m%=;26QRMRMq-zDtI6M}dZ)HlSe8B@E(2LZQ}Z z2!1LcbwocA=Avgo7?>spxBAUatcFgR`%BpmF|%k7_WgzDRkSCk5*%!OFT zHiixVG4$>Z+#UeQY^Gmd``nBFA(NAr4}=^cfMNmH5hY;xsYK!qVf-1m1MrIrfP@n` zUOR#D`1^hPvxQGjgIyS&zAL=lzJnc?9GPO2YJM96+ZB}2E2PM{l{?wtpYr^sRU zBZS|++o$$`KL`H-M@YdyFYfpNI659pG0@jV~|3H@7M>aGb6>kddVB<>yi@Flhgh6krIM!GlkY%nv>e4zFamB{gcOve z^FvzFZw@LvjC25^9?>P@-|MumML_U#7~+uE$q1}H04rE0W=e$jg*57q_=FDu$iD3P zOz>oiGy2<+V>1(j99CDNsvL#fXGL|#QXQmF#UC>4sQkdncaN+!#OWHQ+MHC zVFCSh1BS>AyeB|}WnG^2GOCW_rr*Icd3GkM5YIH%50uzjXVB=bnh7%_)hoYhYi1xz z(Kg=g<+adrxYT6Ir#<$}13c^3lvlhSa+{SV?RAv0M&|``$>k}%3=)@S_BqLp&Pt_~ z;V}7LNh(x+0oqM^8X7JZ{tiDHRh(zbI+q7%Q%u+6EdKrI?5(0v$%@of^!Vwfs+p`Y z@CkXPh82JD`0OZbwJeTQU2(;uOq$oojJipCqxTE>iho{6 zS`@HM>x${@Xx|94_c>4KojuBryw!S2WnwSYU9HI1t}nR3Rbl6M>$f2}m)x7zNSF1^ z%SY$Wq!CJ1d?p{XEMu4fY^fm6Ewo`H4bvf3l4yZPot?(Xw;on<=D z@-pWM3S!VL=w*Mr(2())w2>_oX6; zdkQV}T~?ps?ePb}+OgsIXU&ps&XIx}@)R%Jv#(vF9Rr6Pp<3ZwurIY)fG8=yZ(D_I zelD8|Lx)31_E}1?JDSoXCQ&9xZ0GG4lH`FmET5pZsRp@AEpv%_=KX=dcx#cOBP0!w zr~jKer9H6*j$3Kfi6_F=#YJkjZZ&N{N?xWCx|gI;aFEL<<_&H% zk%;)*aXBjAM4?CTr+mgTjbPELKsR-BMrLTd2+!#zk+WNAVcQVgc%z-7TMJaHIEc0N zydGNO99+tZ7q@O?n~%uU1c3m;$Q;8>HJ+FRx5vF?77bC~zy{7;58fw~ZUiy~DJOo@ z0CO}h*CxR@xmDVHL~{NR7JwEvO|YI6Kdb(-Hui`1(a;!AXUnPpzMwc@__4|Nvc>&e zM%g`unJVxxC}rPIp@me%1YRkPt(6eZY-MOZ){G5SAdmmP3gx&m>)i<*@V$y}uYeI{ zC!m|9xFo{M9WI5NMxG#L77o40r6LBMQ5)|J!pWzp%6j5WMW5PDccdyTE_03Z0e6m*E@Ov8d%Fr+;eH(vAs+xa?EA3EYeSZelDma_+n}UD>@@ghmRuY!a`#o`>j;Ju>u=R)`UEUTToz$i4lbj7etq zPch2sE7?m$=doO!rFwo)vbGZ%2lm?WlC}YC3)Y`QK&Tr;Q5tVI<%5s|=Tl zd*=k3k7%3zz2M)|kDs&J?I~MI;b{u8OzgyY{2|#f7R2i}3UzYm+R`C@Q0G-Lz7sIF zT}=;UneXSuV+4?P!#jEt2$U@b`qjxt@XQOZTPH38Ff2;8s+hAbHlz~Lr;o-osdH}1 zH!owh^az-#hsnxwDt5$S%7a5nJA`Y*q23&EDRr4u2&vmBz}z|Y3d4Xcg`{D~`3Nb( ze)mA~Y4v&Bis45ZW%Q;a$>oZ8Q}4g2bR=$9f7^zHw=CnHMpe;&Tqe-`nw6Ekm1 zvuW!5RJ;VvLM3H_pIh{XE~1BCw3OjFU)-(@bWPP(n{x$?myxG*4p-RWiScfAuy1tk z3PM9IFNTk6=4n*6c0EQ@1ATi_)JPgX3dm_8NnfAm(lJ6nP%cE*NVI|E?Sh81Kl3;* zA}y#xKwo?v{zgcCw3329@7@oHWi+7aJEAd8*ov8vNrY#|6}~d;ZX{ zOU~7H%>1iCAmz}f8y5wFqv~eaL~MGI&0M1nSyI9;!9cXX$oMmXZ_!UPns3%Jerlqt66JpoihXH*vr_xTnE>)N(SWK|(Lhjc z@$S3f(wWG2GoI7kR_$Wl1_c#@gt^4N-SeqWc6OnxdSV~fw6DJ~zJxejad#up(%ik6 zYc?qDT@EZE3^%QF6mU|9!Kqql9XPDktq;07o*mPdtfb?C)H)QrsR4$xOpc#@#lu(46RawiT43#C zW3OolAO~dhi=^A`*cgGjY1E(4<``18ae~}|WHCdOI3KP+LJOH$SNpi)+E|jg;*8rg z=+dh0z%fEozf1CPk|IX=$j>Yn_7G_vV1a77*SR{>_WTjtapGBnwp(+c6TvVOYq zZ_LV1%kN%L{&awE*rFiMp0!O-$ydvg3j8 z=DW$XRyzdnX8kot;)l>hr43mcCUYcMy{abh{wpr&Z+cv+6tP}c-S=qIKVYnqsE$UG zKnp0tj*EI*58LO1O$F%t^@`uqlbXitmZjcChgI9O_|h%~xDwt}v=FtLQ9QN0pX_aQ zXg>PFSmT6W_RO^?8FITYc?6E`vrib^B>dX0$$d6~rA@$0p^tFJ5)Vh^R;4-X&q8Pg zJpMhbXCT_fo*K_>p&$o??*{_Cj7{#CkLxr0-WH8_w)5HOT!R?qOb+ghLU z^u&)XpJPWdf&N9K!YQ@;=nYuPO+WZ-v2JWykJU>fY_Fa7M&c~7&2nPuZ~jK}XbSB^~3FVXZYb49;*b+>c3PR~Md zIQdWP&0tf!K3$30+xXlfhBdWeepO22_nuk&?vrQF^!y5cLi08K`B$b&8UlRS3t$`8 zD6s%g!lFmOSaM;4a;ENGoiiDh*L-Q&U@YcjpOAc%?ag^r6~`?oFKMuV{+sRvxX?X7>_b&M%{)1xzQlTrSft;K0zvwSQk=`q(7S;!8{`G^?y zB;^hHziQ$GAbT020@Odjt3xZrNifdyRs*&p)__VjsOn`0`M`@dde)BV%Db@-kkk?( zQ#1z!xo)wY3R#y7dC5yR>(|aRjVdc;LifEfFRR}KId(MuTKT+%8Tir}-VvR}ef)hO;M`WiB)hV_HdSI)O;w{VB z!aay!;OC)Ql=~c+yZ{|-V%|IbvV$$PpFA*;$NxfO4Z7%|6{Ti8dys`sLw)@h_@N#~ z!#fs{tA5}ymi=3cemtPI!J&r5C$E%K!R7?UirPQX_c*CCg<7@p1Ry?m>2<(}54_rz zFpt+de?8C94tpRpI1pOw%~C<+KksOSbk_RtlPa@l<#^=lDv+x|1+lwYkX#{*HD;)J z!BclHiSw;wPbcU^BezD%^~IEamj^6dV&q(AE6$%*UE^k zRTq|bH0U$_hHdOP(V1+!M#e%+U2zE+9olYY)Khczi)c^bZ!iBxZx#K%I*aq_Y!TeDmn(6^S2pKPLliEJ*g1m1Ti|B0`#yejN+RM}^`m;gg+3X_6L)^e7hnesu#I}

    6_3Ggm!B5`S#TRhPWJHxhl`GhbwLo$KVT*)lIte}tU> zASqMD2TY#2Dc3eRV3_e(e|`DvYF^-la7Dm2>L2A>g zcp}tm;W$EpWk3(8JYobCVztv-ZN2IrOm^f-*r$IMMB^t)xIC2jUE_KW6$W!#ctsWI zdt2bLOl?Jteijj#OaWEoxkrMI^Fo-ro6O&kM=K;U!k3h+946fjm;!KlS*AqVGYEE% zv^701Xp{B{(@8qSR9joH89reb>VN(PYJ~fYRneWLu_im5wgg1f23&V6fY8HvI*#t} z;-@s21GtQxl#5=H!O|);BK+rJ0(MB)Ow-R2U#WVb?&qlg`W6c;1ZsjcfpmaguXi3v zGnUhU>-X`ijo@$jmPz<}$B7sJ6Kb#g$7%3=7n&pJ;b$1?Ag^8XlUbAxq-ks~46>`b zT4Gt?Q*qkeu%bexCT3bQ8xQ=4GE3=SEQnsBNTfhy?M_SVwq8E-+na2AWbv?3aOl3X zkg`k2J^fJb9b{qZNv&wscG$gTE#0lgUstSMg`UU2d3^V;_bWyBO{h9tFMoFJUJzeY z;Zrpm&EHpyg&F9f3`JAn8xQjlCk-D_{Dx$!i-6MS=MEZLStk;J=q%wKX;9dIs9}aHCMn%qmGv!nkB9FDeWz9dJWJ z3Sl}H6Wz4&U&Dz_DfY+yt8sp~`lLCQ+rXqSM>%QoxtaOsY;KLwj!N@en9{u# z*6SWClAP`oOq@O}f+8naj9ELMj?~XaZVVJ-SqRKn_V;aD1-0|IuyV1;Lp0sx2bK6) zVRhz=B$oT4o@Gq2ahxV#lCL8?(W%NzPu85B5!w#(zhp$=WK908=urpDW)T+C?^yir zBSb3i_yB25CkC+Rw`BTr4gi-p0d4kon-fKstFOxn&Rht zV~H7{F?Rif;KTmqM0+V2ls)_Y2(i>_#i=?+V$>O0X)i2r83 z98Iy)-B}ldRAt}>K=^ICS&J$4O5mC1QUj*;keLKnD6Mvl*E5|HP!NR{#8td^NwLU@ z|FsizzM0;B=~m4sDT7ZGMQC6b;YN%SG;=t_%CtQo#f)k_zj4r<151ek#pTp$Dyn5y zx+toN-yr1*<1kxO=Jz%LB(L$$`q)E2M3Vit8iv_hhXoN|Cf~DobnfcA|803Dd?fW8 ziRHTaC&X*zS;rIm(G=x4G3r{mC`{IMLaZ$?0Fs3~#~5Lh`v>sIB_HUZ1^2XTBI8 z(y2n(0+EHfpQU6;Tlp|Fvy71CFUmEN1F?a$l1+h4NaT6Q{H&lELV4d3V))vIdTdWe z<<))D(eC)@x|R9W`U;f&b+uOX-s=N)uB{|O#3IuX-DB?jP4Ar0G(IxYm3XgSIlkL} zN=hGAX2S+yRn%yccR|S1AYt7vVtUBY_p2@}-sg%-meR@{CCE;#p{MLRSqhvn6><>n zs7l&N_8wDPIc7I~DQ=WWPRl)^RJ>+Ctf+S%GuS7BUCJ8qqV@5*a9>+s z+#b!}5d@q8gm{{5X%fJNYx5V~n6=^>XR>7ClF0>vcIFOY@~f}KzQ!)QPUW-er796e zN>X=j#kaS37Ue^;oVHwmeB+N)0&#@t=&$k)*SxOAggmFM6RlEYy0~8o(2u41h`h$* zdmeKj7;Cg&GkeqZQmFWAbm-IhoGs+)#b#1waSMIRG!?E$-brjGjMRYVf5!W zjjD=jMih!B!Aa%^%lBVqlCyZyUVv(u@zzlAl@D^HZ_^5W+rbZLFO5r5-Q2}Fa zJQL=9x_ZO59+oFj z^fVs7XNX~gu9G?I5g}8{(H#U<_TNddEGaS(e48oRNz!8#oUsFYOG;h3!)Iv_$gjAK z@Eb8N)K5C)c2eAonslR?Duml-y?j`#ZdZo+OWBs=iCRW|Mf`JrYA8zdm(8HAl1aku zI<(}nneC?Dl$iGa{uC#V{J2^bC_KTg`MP|v!c`hINX5Pi0BipM_kJv44e z{OdCe2)GK|KP!lCAsWVL)Wo66IX#SvTPh^>;Ns|dkw3{!dQ7^h^q>Z!Qqx=G&Pzi; zEnWp}NeiCa5Q=tw(WVy5HP^6H`Lb9Yg^W#H3#q}@l5UHF+{i=pf>~2uVNLga$s;}? zCT-IDlL>Y>S5|)(>;`ggzoxqn>ebW05sRBjJcqK|n+)*+n|yYo(0<_}d?mti?uV?% zGAUZ)e)uFYs%~0kM@B7?Bh#zSOwIlJKdihxYr;#HDk3@9HZ$w~Sa;sY2@S1pvhJ)J zLJfzN9J9#3n#Dz=P8#% z0w41Q>qtXARFSpEehV*MptK$@p{k`=+n4R?Smb?{GrrKedL3%Lunxj?<+^Cdw+U?M z053mmmJi@9{!Y}u?riy5Iy~cC8I+WTVHl}qkhWhIAZYZTqzz`p&Wmo^jeKU`$P}k} z<4@hzF$QX*#9G;ybpI|txGh}FBFunV_mK*{MYX&N*~KD{)3y%9C-OcRly&pV*grHZ z+|coV0O(cD{)#d%id2bGYVc?iCv#=Ntsl?ed8nq#FmFofyP0z5OZqaAuHhPly(4-$ z<9KWEHhlMS|5{iq+I^vJ&Ry+Dda2J_Rp6j78nap&oO5cAC6JZ`pTw?Bu1Do=l;W+b zc+-lgR@pHDrK}!DCsn3RASrXw5Wr2RSzt)nsq)hS7iHf*4muxmkpbH{v!G6dewse%Z38x^rap@^T}sFf~ga)Hx>)i3&93M#Gf= zWL=>e5#!=H`5q~WY;(#s)O+r2LmFPlJ4NCM&W5_S_F7BR?D$5NZpneub$e9+DGo$E zTNV>6GEHZnVC))H>#?J3|K9$~hnRf&$Mh*3b$`4vcW*got>cYsz0$^ej>pDrnk5~1 z!vfQ!Zy#0o2N}_=5aki=qzAv8Q?XiNhJUwQl(0%l#N_JAeF{2t$WutJZRvJv;_%D? z{zQX>c$6a@ef@eHU-%9U0OOlHju3MdTK1(Xdo7Y@yTn%407(L=+C6uPB3D_YUw#ze zDfHpprg7~|auUZL!XclTgJ#oL9n=6{md{MFqCFlWluTA2Z}Yd9b2M(>j;%NEFKGGQ z_O=;)hl!9F6xB{}U>1=)V?&`k(a>rV_(8|2o0|#w2sO=IbZms}fxAgs#(&x$siyho zn>)Xr0Y08o`L)@(DCMP5761N&PHONW zDhFZqGou$1Yvgzwk7${i9o_;(leC-JQHf+PiBH{xpF{uZy#&GLoE7l-yM2XDoZA$M zp6ZaH<51@PpRv~RY{6@LU77?Hqk3~VKF!|jG$g@^aVyMTWKrHX(C0wa3IJ%rupQhk zk+HyzM}R3m`woCUHZ)YA=)aO>(+bsHJ68pZUjG+=%U2~daG5!L+w4L(WcAr2a%|^g zRM{AvEGf-q{laz0KA=s>CL}bBQaXE7JCR}!Jj*Lk_)VwrIa!w=kH}w>kCIEGXO!6O zm7&Gn7Da_jhqPo^PkiZ(ppvUv)V(mqOQRX1rKy+e5Ah3u|@~xo%WM2UOsl(2bhVpU3u&Yp| zA?lK?XoOMZ_|M2;v*m5Me*tli)BD}2f`MFabp1<*ou}QrP)6UDPB*z|qu7_`Rb456mMTvU%=ya2D4ZIkmLIriKc@t9UDQKnrWNJ0N* zjal95Q5H6sAawkZvbQ9xTjUqm=7wUDXWq&^PkvDSM_vOKbhGOB(N{b070*d^YlK;C zSbn-UFq-jqNE~A3Xc*Dg4)uCxgRXKTNeE?G1WO7TU+DB@(V75dT>-fBw$NU)>}YiS z!Cnp1zwHqOWPLLq2F10_<7ygFUhJc$zJFLK58++}HAMAjJvovAv&=+6NPqG-QcO%@ zd1+jqf9)2{OkFnRSt4d#w)p37JlxBab)aS&d7b2Bsm>u2k$%X@aaLU9FiYcUo*Jhd zwuHD!zR%3$++()LeJ zlm;{GrH|XtNQro1L-HP<+_mOnelD1#-VO3+$=qnK;x|=wYUw;aqdp^NQ9NJCc;(Mf zw#~+mm(0L%2ESOhH1vc+J+K%gp(tQ6v;=~JTU`^OLzuBOIOP29YP=O~e%9F*ME|0= z+n$W8NT8@Wn=04+)Dd*INV8k^LrdZ5+Bl6BHNl#g^sYSoN>s}}Ho49rykFN`J3vbX zW44ma$ASb+Z?O7zO#A(KKQXu?rPfPPtU3XL^dJHOc(0POzKE}#&X2sj<-UrDlav>p zHpy7#l<&4R;Ct~-yOQc5%p#q#%wI24B7nwHo9qLzKj^fIJ*^6zZ z;6$ml`zD5#*o^w0KpFS{0?Ihp{tuvxi;aur{~0LbW@BUjpFo)_G{@HUXZy>_etBvg#lROHZLpd+Fr8~ubzmb`&{ zBj}*uXP}^bG!)x;!3v1S7a@}C{DyaC-$Gyzg~1@KT3WaO0{{pnHV+#r8mz=Y6t*A<0wDyf&dJp8V7{LGcaJkQ+xqNBbNUkApnT}_iUcyO=nePXjzeo z$&q3#@4zD90)~Siy5F66VK2o^>~Bw^e*gqO1e*CPI>gMd+A>a*<71#r^^enFHO=?J z#xN@g?LS7`C>>*v4t$UsL^qVLtlf!m%&_ucOb!7=T!a-wr$Z1-=3c?Q2haXhXAGG*?hZ;b@NOF&JkbC9+r>Mw z92+6b_2qs1Yt2{U_5xSvA2;ep+?z0$np!IN0J4F~FI_kY6!Z)X@QHn7(4V;nVqk#D zPiZf-DDWKdNkPo6gb

    LU&`z$@VJ4k!*EBuq~Z^X38Thmk++7&suj+zufVRQQ&# z{__e3gnRG5|F%f~!G8YfCT)mleq?U`Pagkc6y8CS>-WvGUwIWYSRY0N*H19<WP4GWR_qn=(F?l^N%rQZZo z`43KGLK47&zNf?Y_$tu9)ttr^uG(P_;tfP+>H*)WfH%rd4`MuN8n_o1{L#`9P!tZl z1Mwhg2>s-tNAUhOmX25EKJZ^b(il+0U;`#dAnQf{Foefr%M)ovHda6%RKBFZ!6L~5 zqJF9%o<)l9Yk_1ieR2KA1_>YpH;56+Gjc_R4@L3+ZOF#!Ro8odrAJ^g*_9LKM8zQV zH;@gx+QjNGQ{tIh%xrifrA^owiV-xLpkVh+=cw`3@~pcYyY`9|M(VPF4Yripy0P*Pz~8{{wl z9JSZB$;@p8??0Acimy)k777kA!7`J@6t*I5fL(tUk|D7pMfzQkDm|LX(LX3?oktd8 zIImR~>V3uK$mfJc&pw%feWQIVQ=+K%J-5%5ENjKuC3$2fx^-^}+Pm9?n3NxIH9EYpF>XMjGq$tlJSRYo@=_qxf7t;YM3BUUvTRzONf4YS+&Rx>3s zG4UBJerUI`UmohS|lY>vfkaEtSd` z{e@R|A@gU&C?+ZECX)X4fSQ;@YuUg)m(C0S!|Q$}Bq)da8A&ZNN!bW`@;0eqt#l<< z)a;$I+TKi3cguJ4CZ-mn9E)pPWMV$)wH((;Oh-cSmdLDgrtvK4;)P;A^l{xhsz!xJ_m}71^+B>FSIis=`vWSq@lS+eMXCCKMYTY~A)gcT_R_XunYw@|0SB%t zR6&PFdEI9*d{d%ij4(2+4R2MSR!>;nJxH)NNdC+Ge?6~ z8&KcnI>BlDc!d@L)UBe^rQanSWOpLRlKFFtI)ZMe#(w8fbr|vb2E{%+gTc7LEm&q7 z;fp6UXWA6qmH%2_8muO2`+KzQzVqRT&G@wE0ROS682O%7Mk7mwVWOI4{PhZx#j_I@zksj>UP_@%cxtU8ih(?fTlY^4>W+A z`VGC{5$qLX(aN!eQ|699Z%aD?v&RnDjiYq?44+XC-DT?v%p!3$okDR8i}>vM^WgJtG1&A((?_3UB4# z&=Q&%a>B`zHhxV%X_)+J_S&7*7DPvmQyQg}xj%B;imEEWKda>HHa?XEtKfdfC9+5r z8Syz`nr!K~TUab&uO!sDgfU z{AEX!d^t&`$s(ydYV^%~kXQKX&ys(?pw5_)o2Ia>(Bs}-mJ3ZVY z$xX}^=)H2O2tQMd;a@`3nDZH~kXcLSa)~unkByJh6zeX-;gE*^kFj$G6Gn-)Y}>YN z+qT{Pw{6?DZQHhO+qP}K8_i7cf=TPEq{37CthH;`ro?T1LUTe`Zg?K(7efABOV)lo z7&~m9Y_L^#n`KZyu|%n@$(>RsH67S%Tnk)9$XU^I!M!2r3I3pNE#bUW_YI$Q-PTT} zznarZc9(B-uI^X5Pi>u!V4rQH?pbPpbj{N4ixLHp9j(-@MY-GcX&s8TJTatut2X`F zjw89T%R221^yh`Vuml|Yo;YE`f7YnRnOCMoT<+Lr5$!HOS%-G*#c21^?ro*;t?owB zAp8fWWJVg%c;ZP`wV1CndIove$&8?3u%uwjD$9X|X5&lkMPMi|!i-?XGOVR4nfh9b zFRRk{wr{9PW}h-_9Wqnk?0Nge-8$Wzkd>Hf=hn7~{$glU zC1oonJi%c>Gw%(J5yxSB=9339E883NTD239+xqSko za1CPKDiz}Ah46D9Od?(vp4wTk)>LbJL)B3^8}a1H1uf*dySbj@t4Qo+=rH60Jf8+nPLB-z1on9m2#V2m?A4BId%^rr)0!L zj>T^+S93L802bV**o&(&s3PtYk3x0y`h2DQzTVQQL5|D&bq5MV`Bm7I!*s-KX>UqF zS&M}=KdFWDT7h$&gOmW!bSvQx`4GnwTK#=eR_Z3y)O6kR{6atAM(oQ&AG?QT>^cfg z(%!>MX=Sx@FY{!xpBpv3FFB5hXK8ZSc*W=(%}oXbsIsh56O zXsL`wZT>uh|0}}g049};;V{%ni#BDMnRk%p&uV%!#n0sG)2vjODrw?Xdx2eDPb5V) z4ilOI*+Wa9XCPtR7;rZVSqGaE3huR5QJ~R&Zcugn)=S|fB^qnKuH>4x9=|&6iPDdT zs6H#3TXmYYdx{%@<<*|KuYnCsS^pLzrXZfe;Fz*X=Ow=I9V6EUksYTE+n=E%e6cD8`U}LI;0jXRuObz zpB=L!EJh)3NyC<%f~z$=iKr`E1?84g8qem{8&2o^LcZIbL}lcmHjve+{&Zm2Sg>u+ z%v_1bqcL#Wcd67PEb_%vqkdkl1kKrc9>hl1e#?%qoS1`gzA--J_C9{8D)XRTmlyTcIXvt8Nuo?57 zqJDWu0nbp6m5>$7%4Bwqmxn2}UA^^0cjRd`K258rlBv6oMf@~C9OU&ngfsG*$c%@J z-VcMIU3tsq{g$?>0G^nqDpqrkwDl51pQO`z@5HYIiV&z*cso)aj-#&JF*);wx-+hR9rx893A>O6PMgL^T-#zUT>@HP6rsJ zP6k65@KH05B3%Dmpy;A0O;m_wYycT|+*7M65(SJ!)^R(1QtPo87))wb!yRMGqXlL9 zzUqhei41VDEID%f0)_=G@NcnKTb!mY0{tM~VVUu4X4dz<4l~)afxk*g)}7E&?^CBa zrg%#~qY1?Kuha`GFb*wn?WeKblmy>TEM+8Q0R>#~M%2{~PLIFI7$4=5k3UFG6h!Sc zW2GM3XeLG8;VS6`{!!)eg*(GtMJpAO+qTuEqib{VS*N)8xv9c$^ zi1d2&O(k*2lx*)kexWDG2H5(L#5aqiH01U($=Q$Q>!+1WhL>lEHS@52t?n*m>n2RE z8$PW`@Xszv;E^b{xw`j*Zl8L~_+kcq4cYK*WK)PY`754qPn;*kI;Gsw>#@jmbZ%4e z1CZXm3{&t%7%7a&vG4z57Qq+l^7M0Z0B>;iuzk;!VN7+r^8> zS*6fClzJ41=aylnNYi^9EMwQ_*b$aWToR1Ny&TAT3%)hN7s(Z<`Hxt7E@Q`1Iysc( z#eB|rcOl5Mgfg%bf=F4sL|{~r^6cq^?O+LPPSl(7KVn-N;=8Y0GO9CncjJ3?7sY{> zd!a-ut+jZp^fKNzi7Iej^1@;`Sn`dKi%ZZWS){=^t1%@rI7^InL6e?4=Kl5%T)R|# zgqvEE8E(Fvzm=Ta?7D1`T~+DcjXIT4@=r=5fWOFxs=2k6b|jHH2FS_BJ?+UkR!yIZ zimyVIl&8RshI9m7tJY0}JW|F34gV6mb2g?U?qGZ1^dt3U4``*YN?#Lu-)Ll3Vnr7R zb->$CkfK^_qh%9p3R4U!tno7ZA}+li$=P|dF}SVXLqta7yo%{awYOZ3&Da~wX6dz8 zoy^Z+gA_%*3n^IByYqNQo%sJ`xV7Hj!Pl$P_}c(z5G`7}S^fm42GDw|G1x}UXYlN@zL07opT_`-r@_<=``iLTl5Lgrbm&jR2ZmtbbQN%AbF>!e)$c zPUS|8Wuu0r6E1|6SI_1ge`s9GzNTW~4NW0v@|xf#DK9dV-Dlm3M|vb`Gcbvi0Ihs& z@$#9-P%0B!1Oz_t^!W@skIdGhlvp1V?X=ECJTAUa+D~bDM0qWH<(&IOCQVaD9>Nai z!?26U1ZTcr+l{#6hNu*@C7Y15F*3gi!Wxd>C9@E;407qVAM#yV!;yJ$s=LHkrnJFV z>lrIf(4hLfmdeqlM2)#~>#$4D{csPN{d6B zL0_xrF@40|es;v)zO!sOAw1WObJ3I%2#V8U3{`y6)EZ%B$}M?-`fjxTN?cM8DK{05 zJe68hX2pfJ#Q)2}Zfq$GvovaI6QU06IPZw3u3T}oF%w4}V1T&XK1M>|K zFJp&mAncS?#Ftu>G6Je!A}gxXC)qkKz>lPQgqg%M;kEei(tvbUXLBQ~)@4Ea)6`hF z&1>m4LcCwkD&HIGsp|48hF;u#I!6(P*$+a4w14`04B84{crhMnUr(*AjJ^6^rQB>d zEPRa!+wm9HB}Pf4Iwn35#H75AWs%&a`}If);^W#mTx`dg(~zDMtBF|qK-@@2r^r?t zhMjRxJ}Pgee7)B*BwWWkQPW->`jxV?-^;M9oog5H7(#KFY3IIvpVDut*k9!SQSk;= zm8w72BPtF|m9HE=OV1UUL~p>}`s|lr-IP>4Z}bX!D}?YAfw8@<$tqWVk*=;+S2*`e zmB^t#DW7J&QPW({BcEMf{C=x37huwY+qLim_bDbZrn`kBwrTilYIZ4DshU~Ob%ZWM z>U?DH7sw~y%z|Elzl^VFyu*UH1^KaFit_s{v47O0^fg*gZg3nQN7Em{TFY9eBz|ATJVw9Drk1vzkjM~%)ewY0atIouM^RUNd8`;Htl1&>8fe)BtQ3h zOv;_mG&s2>U-wcO4n6E92f|4HoZv%zGI}AWfXbjUtGU|(@AyGoT8JJ5xMB|_KuXvtc;D!Z^|-L8!s(lR2%0Lyk;LJzvS@xa(V!%(yBLPdHb>=S ztu2LyY)2~4*N;(Ca9HHzZ)?Tt0S^TF|lA$U>XBmaI%u3z*i8Hle)$30bv<| z?QZ9CYa$mr5pA`9no$}Hg4W~?${qK*V3UU{y%T;I-N_$k_PF;)ge#c6=BFhnu-T7a zTtf5pk@eI@-?XRwB?ZnMdst&B%NoH{!#T2>104#v=+b78!FUtaJq%1Fkc?)PwX=W8 zP6(yflP*D((4N_Y9ZeL48J!tOI0N0E;goj`x-ESmQ&Y&$gxl9)79)l@GRnR+)MZDEX}bYPCU9+mxR2wufbq$EzP zN&`<&25M>sx%{DUs!o8Vtb zr6j~xaeCkR2-LsHq@8NGFRLI*xw8;5G&PE(mo^dPw4tQHYjrehe`vD1#WFgktFLxd zTF>v0VZ%WpJ7$Vv*6a4~d|xz8_KnW>V=EEYUSHjwJRS;X+z;8o71#|^drsLI=LT0( zgyuBSj?EO+S)Yb#b5tmt?D{kAA&1I(_6ZmiTT@SS5$ZVRk>?Hg`V5e9Djy~pB>Fim z=g-ZgG@t%^6bq9~Syk%`caj=B05TRhen%)edOXVxx`G0QdxT0cLEkpRE-hu*oP|dw z1%WQqBvZGfPF8`0-Ieca?@K=b3VNvE|244W{NDmg4u<~|Q8E!QGBU9<{eLHxj7%(y z|JQ->|J3|EgDPZit%61#lC*a@+XrgdySc#*V4It7>jVnhr|sXOk+e(ycLs6my5Tsx zd*)Ynxm#HIG1|;JmT5#c2`^O%Gf2iJCIE?TB@TurW{T%u-rdbY?w^qnlaP^t8jz?2 zdkg{gYa^Dw46w=VZ(Z&2i%MV#&*JRe6oJXrJ2J7Q4s4v=4}iu7Fh!1sCWmKg3P8=w z{N@K_bL|0O7&=RU?9W3iFgl8L?k_-TX>?@@&&2HJ&3($B2Y_Xy2>{K`PX3d30boF# z&pW<8k40d2ZVuP%$-S_S0He^t2nL9|^IHZ2o7YiPL<^6c6cq(sRFDE(6w{LdK+D?? zdTb7-0LTS!lM_JZ&kq5N0#oDf$7m#y4^o~Hg!9{2wVBS<3GrY2w|4j#<^i442}9J5!u6LV2Fp{cpmuI}{>D~lE8t($gFHWV^q&Vq6oQ5Z06D&axF5nCtWoT} z>@y3~{1e?5yO(zy^*-Z6){6$hhl>*YjNmyB&yzs+y(FPlCoxI8*M7-&Z?`tJ%E zvB3e2hfPPy)@NUVCi3c0nW1HR7q0hfiOQ1hZ6OVkz@rlbn&k|hNy;b4$ z&1>017@F(o>1)3YK{zCWfB6we;|uHG^n^cVXm)1)f~x|g*x>W{^s`!M%ujz0JvKQF zCtFpA_iPP)+M#fE)aUPK_J95TZKPj&e8V*{HZs5KVrsGS0K#5g!tBB9g5890{@_zv zo0$MQf6Ltd5eu8654527qZ`ormPT>+W9j@30O`Sh3_l@!faxN?Q5+e2$8Ye5Kn#@M z=nhUm=`ep$yTfzF5Us3#V}n0vHqUW+FR*~Pe-2Le!0EfXNL79*?p7e?U#~dp>P_E9 z#=s02n7{JtTfEE}f6%=p0l%Po5bEF1y)G6X^zW-E?|Sz&kX3#T?nPEVdgHII%`vF+ z*Lx&;>g&J42Q}$8S(X320QDi&`0c;jRX=_ET6J)Lok?v^+JB&XxAQmh@BF}Qu8nPe z%Kdp>A8bE=`}}*l1oNoo(e(^gM$_2(ipcYh|43!d2kV(9!M!rQ%SI*{GRxj(8~%AK z`4OwJ68k8&iWnAzi3-gX>Ie?s-hN$fmyEg6TI67V!2(wd_hMEkK3`wK9y@1`(IRfp zSpL^_V_FCSDPQ12AB^O{p*iLyh}@*BDy1TSnR)xcflgIT1Syx%j~3DzTUqGLi9=)? zb0mv8Mpgvaf*VWCb2%+rRbHos*jXS6RbkxdZSw}vK$l{E^&<>Cb*u1K#%biU3k3Wod@X5Z;El{V_k_c4hzc~b zB58XW3TS?>-3L%BOGavQ7@`qwvPI0_osv9oeDp__xus{8X6=xhB5MA%B{C zm|NCJjf(8)2%C5&}B80KX zE8&VMM%VnC-YSE>ywtA$l(I0@f$)GiR)G!jTK|o3kH_zx$-c~vV4c`$r6i8xc6xb%$8Fz~)pS;ERgwcRlc@Ckz zRp&$vN0#C$67*q9szx3}b%5sTB7-Ta<<^r}z}_;GQqIb~t92gXtX%ED1Wr!z|6-hW ziFK&cTd9t=#*ihoqoQt!NhiKm-_Z-ih%!+eyF8Y;I! z3@7M>DVGM?3$FGFh}#*Gl)B58qa_xe+PJHJpc)>pUy~);9)dI;N&eo}|9KbC>O@O0 z^Y&j+ByfC@29vPw(pg;+9dCjkRE%VC8WitADjPx|g0aas1E>XFA3Y)di`$w%;Mp+D^L(B1>TLcE7R`NJ1<1>uQx8Ot zKflNgQtS4%dX$N3G7V)MD;sA!y?~(P$(-%G1WTLHow8K0piOKdPtk(wxmHGqaI6tLL1g&|w>z8r<*^X$#Msu^E+50{Lu9m^*+`6d1Q9v}KAIbi#;FiRWX@`}X$4ToNaHHw{%}*teS#jC^WroL!V*C%+y9vK~ zCAW4g%in{P)zNwYm0YDNVs3gM+N{1;oqJ zYtguY_uG&vcU8$mBNE&>m08M1QA2aUXaIj~Wb;zYMm{)nDIgYzGTb`QzmmlinC`b+ z?zm*8`5LMw-MDFJb z;$I^|(W#$QH?FWIrvB*sK*73;))^p0sxt{%O2`>t)m20MA+g_N4i{EQif1Dyn&98NJ0LPPzEzHFT0>O>;~G_2BZ7+^=VsX#+4%{6&BQ1Se(O- ziI((AzCW~{i6diJ9f`eQKEdt+aW_N@pt%~Jx2O?+rFWMW{azhkIiXxViasBCoS}`s zL!zQ2GEq^EEJB@jV#}pU_>w{UR4z!g1#1?$5YC`rD3Xwzqj}Iw7;Puz5c8sd3~}RH z{rMNP<--A;1^!>sQ)#2<8r;Y(6@;sYcu`6WO)M*_jNl8ZKi*C>~Fni9u%+lypawOoO6X2*kreTkOFsi9+9L)5&fI;;*AcEJ`rK;u% z$Mq$gGkM)(3x_oX`-UioMem@`XxzsHR4JY07miaRO1c+H`CObr4CwQSL%)y_-iP$3 z5O7>);c9TI`mDfak%QtQbDqIHU^HQZtZjBKnh8f#WbviHml?*@W0!8Q?G_{8_hGb& z@R;^e?igKra}g!nsYD&7lbg5$Kyj+#;-Y=N`YS**TDs0KM{3YxYLzV@0e7{Tet;JS zKsm&E(`yd$?-ZCXopGakqJP(jN&~`b+TbU&;H>g+Wc&tA+wZUz>^BLIS}6o{#nC-i zOjf=3)*_cd1urX19gU;5UgP7qS{$KeoK@?Jd@OI{KpE@`Rz4LU^hG7+9lOBL!IACh zZ2|JhuUCC>$?-%#UhV~6mgr`s<2;J3|BzbbLFU%dD@-X9fS_E|R>5vQ5Y26oQNyy& zm#e3`{phzuiIp_nm*>d(EI9mxa+_i8cz3(5o?0zrBtW)2O!e8FnP}%2o-`w+vkd}g z*lSIv?RSNs!I91bhQ0{?`9CRqlDzjy=kYHjS9B4tFMHwpj>LpJ@E&P0spDxj)MY>B z+{9eFk1!_mZ)pEQw1=W|6{Jv7v!0UFU8$csrXTHmyN}u~*V`GWV5icrLIlLH>G$FMe4oIWe5tm(LcTB`!TU@$J?Ae4LR!K1by4u!JRs*PdJOxRD!k58A z%M)3p361URFrx3zEJK0n{`)mE^#dVMJ**+3;Qf#NteM&(A3YZssmS8kRgh5!scnQ# zBHy{Ja!ktjRyW&g?*O!`f2zEfGpfzaJ11^8Ch+t<(C)p^%a}qHEPbZBOR{-;E8|Tr zhD*BPM%s2?l(_1Gy>H|~S7$J1 zl{>u0(^OMgI^nMCuIl6Q2TCW(ixyaS90BXMZo5X;7Y|%}DFxm8?R7k#RhWHqYIg%c zi{yJ)xrm2UVe8790PnC-0fg9ephwuo>A5nX&=R~}`01JPd=puj$O1`TRrY-*ylJun z5&4ctktP)jE}DI7d{-4)g^<;E@e0HOshGEk+@}9fTKU&rIfkV_3YLaZYH~a4omZ-Z z98%7}G5d1f>=MF|Rmbh&U_#02X7JA$=aOTeO2Dbm{D%ML9hy#hf^iP zF_D`JMrGp^Ur3Gs1SD4Z8GerSJML zDWbx30<98MlP}K&It7i%{_YcWZbUn!%I`XLLe#mvBNy!CWfqs7@+?k;Pq+nupQyr& zTTDfPUggYE)N43(BJio~Zl5ftcdlD_K)0tr^;$q=$*jYdhZpmcye+~mcB8&MmPrVO znxv4(_q@I_WmdTy=&nI>%*V$Agr}_rBxQMP#yr0G7lVYdmTT@TKk+K(r`W^*$mrV( zcaW|0Z^P}+@GIoDg3w~S-3C)#SdZVCMz=FnNQ(Ioy zT6r$9NUj>kRk((R<5H|lv#yGf%6%; z$ZWu%pi?!S=mEg!TVoEFy{UnF$*VBgh|Y`%lqE~Lgi(#9kpA2gAuP@C%}Erd6T7Qq zF=Qe49#`iEPbt{E;IXzG32D#nRRf@8cM=PIecE0+DWBvACK6@^jqKIAYBv$gYn#;I zb|NWycei80zEM%C*9NhWU)!w2g69$-9TQiVRdGKW@rj;)A89AESkbuK%{(=s#OV35 zcJOESXdPncG}tL0u$9|;2}$2muZnVzp;bbG^`YsBAx8C%J@%?7otr>w%?BD1m*?Ea zNQgWS8>RiYK1WdMDH6>rYG$C(eD%YYnOu}EN3B_BxA7bzx3H%`*ayfCEv><_se)_h zTHwJ9$MYbQsZ|5GZ={UJt@7~$9?B*`6Ju8oTnf0Ic&szxhA^#>LEZ_-GXVkAx|Bza zB6Yx%Dwh%-Tfo2^|8di@%-yygkR5Zp$O1rakR8VClkZhM5FJZiO;8~t(Rm;3ajW(2 z>kObZjqdEnVKyai|C&B;c+v?e5$57)F|>hcg}IJLTn0~@SHiqOP&=F258k^v zJ5(B?A}VKR*y)pl8zm>h46>H}ceL{?-_3wrZ|zWOnD^>Sb|YY!thzFm7GZ84a{W$a zX{2l`Gu<=A_MD2)_4xbr@)q2$aq;6HAVo1dZhC_K*42#FOMw*w4sav|Vii%ISc~Wb z?jRo;9ZD~RyItq3-dFMY;%t=L5#P+{(3V1$7KaBrHyNjN?Y?lIdFbV*TewogOgT$O zMA4h$3m7@U7$&|(QsxX{y1uo$d&L3Zken7X`VlM=Ji!`KP8#hq5~<%)E!O@*@Po^z?7%>_HF>)*|2+BzXjP8M<-8o` z9smTAPPF&8jU3BdgB#-Yp38+z;)XR{*S-Tw7`+S$AMN@m>#)}809n#NUUun>os)}7 z$;rO8PZc9W-(A)!yD-~yrTXV2^^{Aj$Q2HEwlL2i((o;1@WvZX)gcFX({4y~D62K< z0^UkR&chhyrZhS3(&D$H_zO0Z26BKmil~y4Am)aHa=`8=PutxF)D2hE%DN`pqx_{u z|3M~3Ma3q-zI~WA?ecIPA%4Bn)(Ud{+IE+FRlkXxli>)iKkIBDX`wfRj}Vl4HoX}s zLYbR|CggaNoHzSDgQM~Xs6Kx&wq$ORdan00g+u-()D|wPz%0Pv^kmCIACK+0M94N} zK8eBK6nNS5+OK9zn9Q`Yj~{(nKacBQm#xh;8@sl8Dn-m@+OlO@V0a!)aR^y7E+`F5 zYx@o{7o6mCCG`?I5Y;u?Nfk`utMVyL%VMYTy3o-P6uC))&k-|^Nc4wkRYL);$3~kC9{NL0B-@z(oL|{; z@g=96{LO|)=y}G)KGURNac(_GNVPR|~23?ecvu#f0RjRy~K7g>K)H3-LjI~H#kgqX$D zZ7OLf+|dEiNasg4AVjTsJ~XISu+~r$;R{5C^;(}s$T{l69zuwKxyu-&wxI-n_3jtdsFS|q=Sn!3_+#q(OP1;TQ4zq1 ze5r6_)zj!7e3k<3xz7}+d1~9&O z%Gp%Qc9;OQ4FBNFlTmx^HE`qv-%(6Hx73SJEF&))(4=m#FDunWuo3(< zA5mj1Q}o*E_68#FH<4Q~+#zVlRK;HC5}HcK~GuH;To~RDSR({x}QEogY*9Rr=`)CY})MoXK zGz*gw6}Y#E-8Reg$r7mKpBsu>-V`!p^C8c$Ivh^J9Eb^Zb{^o$5FS0J(@YXt)deLz z`1*ix&~-9ip*WsGnrRQIl)G%chAvEtwFi?AAB7kts7u80NBjO$Lws&-e6WdW2nr_` znLYAo>f^mbhfWsSDvr>MMdsAXaCq)%g7n;yMnvN}dUvy}9U+}vrh6lL&V<kYV|Jbac;MV!B9yW_{kvmkSB@CY0+3CWwBU(mhS zAL6zWX_4|jy;$iAMd-g`NhLJo(DQojJ&yQ626H|LLF#t)rP4(!!HiQ*Pg-JOw+RwV z2Gu*DCrAe=pn>tuy`j$Klla!H*uTA9XP2axq)jr6$SGN|Lg|@)B-B_@Q;|fNz(xsW z_^16&N5c{ClUmJ|A1?1Wjk2lqYOvcl8c|2=Ul`@MoG3oEe*v70>6~)UwPFR1He`_I z4HFct{Lu$0;nCxjFp&i9zKT33^vhdtzuYnoL!BR&ZUmMf^j8Qi>~m-6HISF-H( zTrzxP;Ck#x5gIRRT!4IQFU25D9t@T%S+*b%xu!O^=o?j1GgbPR%{kS4&EptUu$c}6 zw-fAW(jFQ~TVF23zdS_5#gpTpxfFJ6|FyUy9OlX{=r9g-9&1Y_LV9qZrjN*?5(Gmn z3i{%(p+w2?<}nf>no%S`g0v-iQt=GhmUP*W*qfMm6#tlRtv9ZB+cs_P(!2uLXc{RFwB|!@qe&Xl zNl^N=k^Paa2HiNOLMt+jP8y0lReA~|_p1L*M=R?!Ec*>o zv-WViA}J=%F#r-0Z}gkL@yWfOFID9JNKma-tv+sMg0*7W>10vdTMV<5Cc^9Tf#jNi zQV*Bd)3M?kWqxx@cjh&nlExuCd>Tv;aQqz0nV(e285bk0JmQC?xOMWpHJ!xBnI*jR zGC$BnYDo}&`nSH2WU#l}P7uw0VY#56CG}tQ&&#(i!W5SB+G0*TrRwMtWSHB~Hcr$G z%{(a< zq|aJycI1%avW`JzG?zNL=fILYztXM;imD1C2M_-s5Ye_zoh%sOj^g+;fL6Hwq$MMDgj81$B zH8hQN7-$edOIlL~+)${!lbv5n6l*rSM4Pl;22<_-0z_~BA^RpUF;jc&|tsT7XI8!+TmhpTMx^)RfJGeG2 zEz>$sk<|+2dKuES)DN~h;d8g|Q*ZC!u+gX$Igkddns(Q~RZp$8#wc-6ZeJTmjir_o z9E7@?H{!Fb_uXbwuo8=CkYXTV~L%_f293%TK@8KwmExmr8 z-k0*fuX3mY88>t+VXzLvPKs0WI9%5sy&V-^B2IT!Pua8N?pn7M6HFz$zgg^iJ3kDx z2P0Ptpxjlgs`z~ldFs3xAwMOCa98sQaprfe$A1n%yOUCiDMhi+gw^wB6JID>cJ779 z9V6Em?BWg305DNrD)`NGa3#ArwvbJMsCgDL`2f2fS0Jvk(N>x9Iqz-P<2 zix<2f$r-BvzYafFxA3wM}E3v=0E!DmeDrKQ~& ze$gJ9cIAQ)$6oAF^0a)3z?vo^Kq)H}t!R=ybUM{ye1Ubn=a?*=hng zL&E&MfzV`5>F{2PAHt)Xd2kC@?$M^mN=Z0icc_8J{nV*V24l<7Dx^%aa);^X5qvK>2X0q$E> zEGJw*7b!3$Y(!O>Ju{B7;qtK9OdQ*2cTKFf3);Bi*M0{jimEh?wm<-Q*e2_sB{?Y5z?coF z#O_WjlF16X7Yf?5{x#8Kb7eIzH)LogtD49O&OLf+@vrJo+b_o5KE+ zBDqO1<~W$~!oCuZ0D2TpVg)BbBf-tt>p5kDW>wb@j~Kh$Kb-Aaf4no`)fq9LrRMg2cY#jynv>28F z25Akmf@-|6s3{IuiAN9SKs=0ozlxs$CH0|Qj{HXj|e4}erQQ9(-1pRbk z&XOg3?G&A?lw9AzJwn9oMzwne@QiS2iDljSe2CLVcbW$S!r)%hRAWjasL4LWn7O$y zBNSa^>%nOC?D9^o2+!9c324IMW7lIcY_YrlT3VdinsU4cjW_gBX}r6sqdTH#k)gTs zyImg7p=w!j2=g55v#d4?an7{W|Kb~tyn#hnH#NP_Rw)j zp|oKhY7mmMK8D$S*9ZVwYd!T<$AicCL8+5kdA=fbBTK+Yh>75OaTUJjAuQB}16 zta!f$ym*q7I4{+(+PL+5QXI|uL1M334^WAyMxZfq<&>S3uQkQGV9PM7C3KAcf1jf( zPw^_~0;~qV8in*=NL^o|&jqx~XG3my1`BrG##=9V^TjCahvNOJe}i*+?x>N>Y<@US zHBN9kap&Zi^#*+LOUozQV>IsJ3EPzx-sBE`$3mGvJzt0QkO~Uzi)Q>(1CwzmyEc2p zLNK&2+66aaPm|=aTMPx0WLU%0%BBhYxm}Fkw}+mBRRaiV(VXx7(pm|Jf}p(}L|7em zg$0*6Ls{W=XF_G_gGuKcIO6=t!xA!@@GVg^U7HC9*++lHyu+P;K@||il$f6h2nRV_ z3p#?evbZc~G)4%jSKbqvA?iOfCiQ{)(4wD5hNpyZ;A_)> zTKiFoyD}7P*&AIh1=Wc*=-$uyh#oPGTgSvf`61C@DKq$OB^FfNM%}@t^boV>FavQV zd-sFhwi%8d5T(NMk!oiI_j-1rD6^B!bNX(-ozUMq~}<4_N2eE)gIh!~#== z*b;rSIQ0L}$%i3)qv%UG6OpXo4aMf-w^PbHZk3aGS;-|^IJfu`Be&{AR{pL{HSJ4y zkb+Wu4TOeG7Fzg0_4rvlxxF)XWuo4jLlQ+(dH>d{q6V0yAQ781zmKyss2BR@jT&(( zl{Si!Em=k*ExM5?EPkZgtXW-aF!lPYVE=*f>ZhHdG}g)gV;x0)R5|`IA@|bFZ~sbI zQIr7YzI`+j8tbX`D}@Lxde^qUA5PV+xCYV;B5Lua>IE1vJAVCD9Xz5_F`{>451lfG zO(%a8R5N~C($bJe-Id=~!qL9{tU=Z}mKH{;)l1Y=VnSD^KcQo$Q{`uw1pN`&PQKJ- z0iN-P#em`Wx;3=s#P3fBtj<)h1XFKjdLh!w}nWKkAzJqRg5f1TBheFyuJyensB~ z#xo$TC>^-Ul(gMq)_i!%)q?vEGFWwuhv)LbQICp4rL0%0cV6kr(h*Qr)(~WgJL4D< z$s-41rhZFZA9J6vg585nmmVQhN^w>&ba@=dyVd)^bLxq+CvPl_Z&_%AgmQUE7oYD} z5Gnddtb3p{8=(sZ5tNrfTm0abC(hrr*On^FAZODc3J2!K!B^6sl z8Ftv9TViB&nif}Z&!j8b8z)@ipq-p3ywEyRT+05r)LGC&i$A_W(7uNyC0@4OKT8A? zTP%^k{_GrU<4q_iC8%G5+(-~R9<$o{G3-#pT?+SC&(2aEU@B0i&~jTLfS%jdmq@~$ zbZEluhG(x1elPkMPHKYVHkV!tk^DFK7zp_DJBqhT`i|^%I;IKyMOpl5yf_`CLMh8T z>v{tm%bes~l{@hEG?ai$A?QsMiq!7CLq*{uG#3)_3ir{Mx4XjWpHhRs)|ZkBtNh>E zXu2wNbuUXHzJ-uy`#pnMukKL^C_4^LV+my{_>B&b z$&LyWFAglz&UC&R1mEWt*2MZ@b8db(fCHj5hG8vWDx%?fB8qD{!1I~p?fn9veXtWm zxQFKvg91GxKpFMSK$#Urneedx+gXvbB?h!11K|9rT5Gy|QeW*7BLQgC%zNge&117v!?UZdlYK>`R>pjc(yz zK^>BKGj0#i=VoR*gkBy`3nx8@##ZR7?VG@6V!UA4v z`DW}lO~cDUF`d8EVXBDi+QM69in~Y&uUTZ!yg+&-W%u2*vm<2e*$UttFAQ_~B*#Dm zoJyr$%#XLP%(0*Lld6`gNwh6Q#I$eTc&ia^A_U?PkMwp>d<)Mp6b1lO{anWsbx46A z%YZ`Ppm`Dp)QqWXv|$7vYsV1GjX-wEsJ#oR!(VF1fT&uRG=Xo*$vo7HLxnVc=YQEh zs*V2SmQhDl(OUDOY2%s7*BA>e$Kya_hbMxMoyBT%k0F9N&0uERRX{tRY&kzlC+wc-K{jCc`v3QFVBC%zrWI5bH?XAp!Xw?8{PnrdnXj5Bx_W z5$o|3$`g)JlJwb|-oG_oGl{0hiTt& zIlJKKD*IJh#n`i+6s}7!KhMj}XoK;@*4-i$o$3A*2i{>4>44?d9#u>7!}*7Gqso)) z^5E3BaKj0N+4j^(YYp^0H#fY?>Oc?lvH=zXaqAVGqaSGhH|;^H4+DMBHUFike5%B| zT7bcM3|7NW&%bt_#-ygs8r2ZnnmKu;uhc}OMoEPexKtKTEaF0X@dGXB2#qY{gbI<( zH|$_%WT4w=z3(uKq_aV{LyP_X5HD>93W8QfXvzU}zv)`YN@igkWcV$F4&JIxbr$b{ z9=_7>=BSLKTH)sM)|n(Q7G9;tQkOao>)&1oXz|nLZaql2YO%%t^y>$1=q3!`RI7xD z$9QMa@w`=FJALu_kJ$uR;8dS3xZk+wNu4j090lSvCrE)d2vSl#MaXvlj%}zxQ5Ywb zNi|XU@2@BvhTVXUK#CMxq@|KG>?L*bi3(j1>k%$jphr z@Eh%xi3k(+tSMk9skQJFGg+CTk=VX?AR6HyMIoLOLm|RNjUVkj^8~6DVu^eR#dP_i zB<3ZbpOh(y%EFqYHp4N`V5U#dDaAC+)eOew_=<(BrWlSea}+-jG)7)5C9mHkq4|Wo zj@FY(wLXuuimMdZd=5xhbYPO}!T7JSIrDY_XUZjn0{>k;YR)s4x8@m}!}cl_Tu__@ zctP3XX&$(HJK~9Njl@`A^}uavNSG3cLnv8Gie458Uc(*-n0U86(sZ-Mp?wXRU!PC|fZ3;uO^RA#@_6B;RB$1k z1m)1ysLtsL;eoY|kZ_Em+hbp_H8It}1)A5%3IwJAP1*pjoz>_g!h1jPXd(p5=~B#x zp@xt&_F@GrqihUWhoRaUw8KqKbYl}&C_Ab@hLc?+uQJWz}0DN0U^Ie*X_+=MbF<6Rz9Xwr$(&*zVZ2ZQHipvF)T|+jhR# zxP1rrt~2-tXH=6K)>^fy-e*7iP6`ZRs`t~YpwWUsqWoqf6xCtAAL;wY^=7griDR0l_NVlm%Lv1NN4H@GAfjm33%)5NbT1zMJlTc8B-hVO?* zKkg|!?8xNz-qx;Cz&`nWAs?C{CDuiMF3*&5K;5=jSgyN(75%TXHGro*^uhN#cHOS1 zd_6WsM>&P?FG7rz{Nq{~EMtj*zy8q-42z}j1XX)7WAz~<-iG1Kx<88n;KID80>J^N zYS-uP)i&=9hzC{y)P{68$eI)vj!p{3sH2r0CA@J^P3Mydw-D{*YWKX4hFWd3Su3pf z+jTWUS|inkiDETAT2uM=TjX!JgH6ev@OhaGh!N~aFt)#wU8ckb|23S z)|{7uL`I)CzK`BkrgOzM{MKJAYe5E8VXt9O?=OnNV2}h$5LSW^koT)x2^0IF@36Y8 zTgZ$oAh$h#aUrY!U5`%i8|gKhdr*7-S<-N?Z`Ow}}_Fx0(8ZK!@O% zTx2+<-8o?-X}9T#$rnIS7T`%Rzj~c}oo9aPTme}vW;^DqU5D!cra6lX2g&vRKSK9R z6}XUylx4)(F6Sjux`Nt-x$VBXTduA23V?(f^a4}!a{8lnRIj4 z^YZWz;8a~AKzu$x1j0%L#7cH{K#ZJifBWDJYm0z13n14Z3Pzz7!-Rz$;2^Lwn%ZdB zW_GUcvi$LZr&j2I2#}G9p9OD#s3{X@*KnY~D}cAJgyrKowLpo1@H5!4j!wSxi8Ds7 zx3_Y{I@oSa2gHMa>k@2jp#Rg6o`wVy_sJZ+(#Q2-I5pf0pwbdi#GyOAD zf&h7HZaRM<)LmY~y%!(7(fj@B-(AH%fvfkW135x$1?T@ZcpVHRAPUH?=KZ_-B8dJI z%jDq!#9?5~8G!y50dC}#^1T?#GmF!%LBX}n2(Qd3#f1`_{Tr|%^mbx?US&Q0_oG; zY3oN+HE3fHC|>Cs?QX5dAN}BtlQH9G2OFc`U%wE+n~W8z{}b^=t^>TihOp1$JD+ne ze)5O#&R^oK&+*3}HOW0(=({5G=j=z&ssI)1;HzzbG<|!U;N=(mb36Xr4?8>1SIeXo z5pI3g;*VA8RzUm*F?fsj5f>z)ASLIIz7vxU!4-JpJXn|J=Fdop|MbBf0u&a^Ldd{C zUw)1RqutHVJb!I&%i&=Yh=0zSJ`K^QBjols+zTfJzumh3DKTVA*!riQgdVW)Ke`0{ zEcQ+^LV^tF_Skbv8#iHIanm<=;OB z*8k(-0NPH}cljgn;}N;&U-D=H^u>8}2zMLhi)^!)gcZgL!ZE(-Qp7XFA@}J+Ir+@48b024wRj zpE@dwQwJ?17&zt9O3_K34`eoKV~4Ie{f)J!OQyY7=H({_GEWwilu20X@Rmw5o`V}@BIsW9|V%>)jr1MP>?zRpl7SMI^|MKdo zjS{yj%)afoc{yuHp>%>)vERzX&$Hbu@n5n&`m~{^ETTMC;A|UYSRyQ;y(C9$$QP1W`2wf;ozm)x6qFvQ02$dbK+}a9~%*jlh%-~J{j>?nH0V6L5&=Z z&;wUlHl{OW4^95semGc6G^MDA33|4+Qv;R>h*{oxbK$cWmeaAGPr`wea$B@*eXndi zq_V2B1PKymREQ-nqECg%q1|K;(7> z!h&wKhds#!)Rwk5m6gOhJj=MLPa2{2N1S$Xp3XRdzh=!88F!SBBNT@k^r=oZ6gywF zY$cWbhd5y-M6imT!E4CJ3(0j<7MtFM%(-`-TN&D&_I{m9lP{ePIk^?>CCY}^VJX3d z&T3I3-%8H-`-xT6bRB(YB;>6OF0Wg@=|KS4^XEDQLfptK9ABP}W6`CL=^A(>la-ZA z(baZ&)Ol4kR`fJVoPKVKn0D7swf)L2l+t|U3)Zj9ytK2Ep*!YhCxddc*CCpAj%fSW zO`At5dwP$%QDy`0k59f{(Bpz5&&pD3q4O+G)w;Vkk(&UYmDn9-c$K>J z#f6MTimX**0)(zZd13H?(zppSA^ke>6JysY&I6h!j_}v9$Z4DPF%{^Uz}FA;Bj`u^ z*C>}6Q^|U`9=fa6?nBn%wr(odMcYyF(NFYKm z#Og}dHieQ}-$a9^Ls-NvbufXJ)THYgL499$d3>?`?#dc&?uQ`{#7yIs6SPL2GWz>wVMu1cb19cBzo6&u)8Q9`V4H%tyz;(4j8mcK2prb-k2wPH@gr+|P&s?ppaaO=wo@ISlhe8wL+$ zuQ?4ztG8p=)BUShOp)0x5)N9zAz=x{3J7ouce7YfFvt1zP_d``R3oWzplgVohVZ8F0ES-5I5 zH_&0IWyjX>$;c^9wXiB0-qIIi>SbQZB>dfuIrs})GB#UpYbtPE2LJfu=Q6}EaQ`Cy z^s<>faVKlfqm5!zI ziyj@3W(@M|<1;*K=Y~o?xdi@+fefir)&Ts6L81d%-xxpwT?WE$(AEMkGt zaJe|+4!0o{hUC@{lK30Cd^4%koC-j7hjoByFiy(jB@J27(Tp~#VhDv}Fw zlBut=&ZOOZB-}c&Mvl}7@06}}nPKV1U5@OskrVbjC8;KPHV}|2@1CPDb*q=AzBdzs zv@2;ojN{a~r~2O|WWVc~j?|a{l8JT|;+{W@_XZ0msB}%&qP|bUm2%>xnap~&c}-p5 zQ|%+B#C;~J8%1OoO1YxtZ{l#i@$s@m_J~Znqp73z()t_Tq&^9R4}XcO1Sx+P?*@5 zlBOB9gi9m4Es)LqTtTy%0O&E%G*->_Gxk~OcAd$hkaxh>X^-Z$Aou`&0forn>9=4Gqa58d&s!|G z$O;{JwEG@+Z9iwgy+k?hHv6dyUnHxD9|1kki?Lo~9b=}g{>4HwURM>z~6e~<|e5&j8fe6K9LryKqDzoRamx%ql4r_xxf zsvyzdhj!kt&qO?lA7$lbjsd}P~L`+N?<6B&X+d?77u_b zr*ZjO)so-q8$TwHlp0t=zUR|%2z|j?p=%x3DKz(@$UtYCDRLuQ^S)X7F08}+lxxa` zsi^CT&z}pC6i$k7BK7MrV7PByX98l0i;YoS?@M8%X}aS5aGb|zoBRKMq^(G(56|xR zTv#l+o0BwYUyrR-OD5@oC8@wNQ@b7eDNG2-|{!Sfprth7EkqRhx~QnLJ80Iw=erx6>k zt0z%<>`-c!dad9nH8h;hObnlmf`^8;n+aX(uE;k2TsZn{PokZD1FyO^)R+iRwW)Va zQjs>mI48{9oU!r&e+J9>fg4C2%<_kJX1)oxry*xEqe%xz4xHD+Fgv9gyjZ~ANWGJM?`K)i?>;Tt*!Mk9haQ&b}z6| zR~o-$ksGMH-EVZ0(R$a&SbT{3nmc!8_+Q6lmhtN49;L9*i4R|_Xd($UR= z%z78UYAbu`KKQmCAyY%`WFD5ACKT|xC~rhUuWBsorRmvYms`>^XQ!=RPmdZI zCwjiU@?B6*Y5RBcZA&h^buoQ*4e|L~|7Lj$wUhpw4Qr1kK(sVeDCIZ_L$^^hs^)*+ z1H60G3hN!Ro$nr6*H$sr!^gc_2Gbn?Uo#YCtj4T5)OGL33Wpv1kWQhaI`E}|4uxmR z&&+}JYtN=5R;M2Xca{?4$`I{Im8GRA%0wI9o^fa+z9sgv)PLx9YXKs`Wp<$*cf8W_ zSiM%h5v=YrSy*Szh+)~}tCzRtj?2lY{!$Kr6yfa}!9(+CPaK&7W4t4$D;sV#IW3n@ z8XOYso;1GPf$7=8>kiS`ToSMNzWP-WuCHjj!P9o$tXxrHR~>ZtY1F4v7vZv~x14vA zPm$7PDVRwu^TD{^Jand_1vj7BdIoWdx6f^mTl11D(A1$$-vk7!tMYeUh#HWG>x^`i zePL9Q`TLC*ecl6nG&&w~V{X%}$Mnq~DDO^5!oO*t^onln$aP~F(;dFjff~81hZI{6 zzGL;+5NSYCs`6>^+g4C3ca+PiY3FN|lki^CpatX#&*o1;8QQitTPFy1$t-~FTybdBRdJkR5+)?h3L3A)vCU4(!|VgRVYpV5UKrzEQ!7eh%tnq?#q zb{)`}?9QE4>K=h(a7B>WqKlejuwu!qVSh<5J@Cw+dt)#-H~CC{|N0h)*;jMqPK>k+)DzC1D1@QrW>F4S8ZhHCAIwNp)TO|a397~u zGd-5mGoJF0^h0gA4soUnjDaT>>x2ZQ=c$c5!n2FE+32c1@Cvn&wD4@dZ(y<=`Ag41 zA6Q;U5ij8QtxsBEcSY+QByseen~BRu$R!SkEi8&D93l}?yVcPF&?udYeXT88uJfEt z^EaD?3$)^S@wJP52|N9d7W}5u5PsfJP_=a8b_tMpT}ZPd(rax2`UdnMzAFFuoTv z-9_J_7`4(+ukbGiosv*olv3*$;g@eURYJz5`d+WJgINx4FUtmxG-z5>@>~~6pasrf zYwh9+&soC7{!O|_#F zGZGL0>SfL);x>!ejp2zVy(H&DG0WNgUF(wI$ofr*2vK?-fr?oCjMSgque zI{aKg9ysagJLC3cMZaA7Vk1jFMz%98rwZY;D0sU!zm#W#Co!-SErqZKO;oD#-mYaB zoo%p9TJp;qwY)r((uTKedMc(NuTyHYQ~S~=>AR8iX+;os!AaAq?t_GgS*5Z}Hi&AU^~5eT$bw~6WQM4w(i!&@lV@*60PHzb*b{hHABzU7@FN_q95 z)Ti87VE!!Y4jL8eVMdPVK$=Dc)4*Mv`_INH{Z_Rw<7j|H)MJkRXl zJF)Hx<5c2-l-qe;6y)tbg~wg}?ISe>P33?xYj6!+aT*^M2K^J823+f$qul{Vq+mUfW1aR4x~$vhW;iOy9L~<$R*`; z3OF;L!#qoORt1i?ZTnQJ81_)Tz7e(W7_IT>0FmsW+ccd4m1kH9%D0Z0mN$YFa_#+S z?ap$k*-w_#rs8TTg6;SH20>OH$%L13>oyX77{5FQ5aI(+%84D~y=9>d<}zd!q>*!PMF4Ec zDr##v1g?v(=q#$+HUu7)FOi|Nby!k~oo3y;y7o#|66mrIj|3`;L?Dyvo7I#PL+@EE z4&x}rC3s9jR}M?vlVe1<4l>5y#dJPP)x}Qlp*4Bm#|yPj?X#h!Z;&14;eo095`5zz zh$3X`Whfz~`Ha`r=dGS)M`H)F&h(`_+(if%-7XeNTavm+ri-2wn{-yAWg11Bj6$+= zsKzp{qpE_!OD@AV+u$#AO0FXiM4FbJGt-2{ZNLBdY$MR zPYQv5#t6VJ>tzVgvz*-YaZc*!5U(R|MxJL zv{&>uBr31<|;4q^X zA0d2+y@JxE503vvaO$C}MNdZ^9}+ zy2M;xeMmH=89#?|yx3A&)ftX3uNbBTT70>P)l5y#JJ;ghd&iX}!S8z9c>6fE7nIfxYOt$iica6N z>{Al={Bb*9cWfIo5m&JB44dLeUR^a#3>Up2+Vr~jQE=&Xq`f`10+$~?4lV$-^~Q1k zxJ_v70QSf6PA!y;FXPnmt3K~=ka1P@Bu)pPa@lJgCf~7U5%r`XXKK|^kL0Km;6g&> z;@O4Z);?S9S!8LKveVS9`r<~TIlea;zok;Xzl;)~7#g1#1)(uzXXbH>8=Pd;?remU zUskm?XLAc#mCk_(bD3m=+*offxzlFQf;tw)8h^A4lZeHN5+B@sKrf6{T^R$G9`HWh z>vt5M#i84-^Hq90PYL=%EB^giW5DF>A8_JG_25-|(GYjNy+|SmhAmyN)Ov6W-Wz2A z;=}b|E`A*i%oH!})0_I2zk`8n2KxA%_7Z71VgcPwC*375VswD{NN5iy)cLH&vyMI%%?{$Y!y*q>Opy-~%9k@)$&z0Wak!Nu7{^;4$ zV;si+#OOjjsJDVLQiTHrFD(sTWhE|P=Jt_Ptz2=?exRKwYZ^`Ku$G>5;()!|-`3E3 zAqgvV>XorH!+o@@u~8*YyIuEbI+|uk=ChGAH${Q|JHI4DC0i>q9I*xg7;M5#p3B!O z6jTt+M@cSLRseayiW{=n0$Y9n!sQjywJH`iCgMPQJ(PuWyyelOqzRV;@s39f5fXOi zye)}J^IFtgIXMZ1EfsJlY)dwt1J&VV$FmrwEXIqd7a_GDD>a*!7J}KzVC^n>(f3Ds z6)y=zNiETxV6goJ3kMf2clVR8_W&lV{O`{KJ&-`A;%Fc$`?QYFNito~3tVr#fBo}; z8-8dR9r%@=fC^3jkJg>bJUTzefYz+rf*uWVwyHGO2v0}+)3 zy$ijqqOR;K`(ylMY?x9yKx=WVW2LB{j$p>mpF*NEvWfz*5!}wp_)j-(b6O_A;a@c;GP_)|xy6 z(?|4ExpC;3uHGnCF^W(-oUVbseMCXOj=_GSDlZ|~)bRQY?X7Qpx8Q<~Ck)-#FXeME z45_p`iqdEFoe<`|bC6L;Jo|kU35>~a#q{{h1e#b4wi}+fcJxkvPKOd!&fk+?FtAaR zq)QiJA%dlD{1+9RhIhU0F?U&ky?+CW`uUQU)B$$W)|i&^vmi9EfPCHVt^Ithi*1|q zh<_@~_iQPCZmnAVO;?&@1sXz&?f^XdJuEuWbH4xz2zgk2(SrP?d9V0orn@SkRkUWR z_XlZhMqxd`-sEu+BmSPsxGva2X$Po>lAig#YupzyCjo6P4cdKM7*qa%p6tEJ@u|(H zNo4py$yM|ytsr#jZ!!u*S9c;jy-G}C1=0Fwc}HQmiGbc*BOhkIJ5;L_f{HH)XI*G% zb+MRGoa${J%G*+4m1YD>Tyce+WpsQp zdg2T!nu2%B;>rfC99OnKi5#CQowwR4A2U}C(_SED487gy5t46Ii|jkT2QGqT4!L>wve{DhCsbyr>7-@=bhQDnsQ5;R4*hUQ6q0RBPX zerUd+T;ay7*cPuGZ53?w?WF#Q(#w>kvZqvHw3ELENduI9j32o;4b>(PTzTOK^I9Q0 z^FpSHd&81p1}Ij_`}=~ZjzW2mX)9#*9(KCF_Rt!V#9R-5T=81pm^Xr)KSE=@hP18J zy`BsVy*}dcC)3kQ6037Jn^ao!7_rJq?HEyzJD;2?cR3lEj0j2II(i|s3`dnxcGmY~ z77R^G#1H&von8`=Gscm7;)uBnyH9g?OzL(E4!L9dSkXr%om#Jqu%r<{tyfC@N7rAf z*^9|aEJ@k+i`O$3s1AN>e-N0LK7M)H3cc#JkvfwiK@~j>lU4|?F|1GN`pH>vm({-W zkbO_tlALU@a*H0>9_?G|W8M0q2I1*z>u$$9^cJJLmpZWLWXx7B>)nk7X;+r*+qlj< z#r(u$F7{g3;w@OUx8S-D=-4|%L+3~QtF}7QFTar(CMI4(hcw%5=vAK-H$bn&%J5S+ zs&#}Ti7C1J(lEkr)IYgB?pm1v879zfXr%K5`83oYl5~Igy@|w&Of;TAIzK%eKcw0% z>n+5Yr(~4~DnB69Xve3Y56p38MRj~_s33JDPY#|9lzWwE#ZqJi!Bxzm3htY@4wgyI zNVwt^1wyMi$Djf73xcQ@Le@rH4}$a9)p+o61ut*68U!CKJiGu{D<8GZB0GD2PBogN z+~imu1M{EXJusmb3gCdTYD7<~bzxX&)0(uD_q%*MB(a3~fM~D@pQNs2(}Cnr6Y>|<@p$kMB$l| zxzchKBTl$B;6Gc8;e%2WoR ztnJs5&=bTnzfw+OQILxW(E7=sS$hR2Q+qG#)s2^T$R~*{gH#ZYS*LEi6kD}(prS_1 zM3Z9-@UZli=IdeJb;cFs2?d=6ga#Jja6Kk5NjqX0PV2Bi?f%6cCwy@-`WKnruZL@h zN}8_OvUT0oEH*a$0}9u#+P}_LWfgm}wSG$$S)bU@ma4$VYt+^!StX5iy~8X@WvXNX z2d4Tp{MHzdE|%XtqPppG-qGZNrA~)720Ye;ex|&H01K*sY90sFbW~>%?%QC(c(51) zhjl%^@LHvZGbAp`dnpP24-OR7~| zrNu#SR`>`hBjvweaNvm6io=TK3cI`ym zkWoCmOSAD(&;FRij);FNx(TcDZ9z!!i$QtapL17@RfBq~oR0JgF%+GnsF#=@GkJ

    q`rb;Z0Ov{|s?NZR{!qe8`59X9e-ulTpq_30h=Yas|F`@8-`$Mj zmNqV?PXAULLl;v~Q)7D*)Bm@dh?AM~zcXzv;Hpd3tBmx-L{L{lJ4+HK|~98v0gLYy$?HGD?QdL@3T$bKY3r9h`dd; z0*VMx%>mS;$QDF`jFKP)1*N4F2ta{gp29@H%5H9;TpI|_=~*e;P$wZlq{t{glfnbg z5aPzJQ3h-)3b2tt6}+3kui(I+Bq*OnC`3p?Kwv08o5<&6z=~j9{e?jEdI3Brz#@r_ zv_$w@xqH7?ENn9S;(_F$Faz{;bW%>;xrAm2PQbzgkb&r#HgL@1YoLHPfgcl*xZtk8 z>(FwNRxFx>!3guKt7#e62u7k^8k0^AfZGS>R{|uM(5A-0A;3RD;N~DUhrWpp$xR`# zG=`M?AKxWqnrYXdA^K^q_K>hZLSr4og$(6^Y#al6vnYhdfWux7|GbR_Lf)=!1HF2_ z{UqPio#{vJMeGh3K!I5TfW+H}kbeWowBy4S6#p5Ib`yC3>W4aGl&HstiHwEp3fOlu zfc-NBm>B>v<>m*%g1u$*po&1<0**Zp8@TopKKe+7@Sc>0ssLHoAqW#Hmh^urhjI@R zu3x>Gc`OfB+;z2bF=jg%b8f`Xm&nYXH=o%sMrB=#TqN zpLqWOTHpYMV*uO~L@N0+9;Y@$_w#pcpLbvzsEmm2 zUjW`SSAyq#%OB}yjDj)V1=Irwd>B{=*bpgzkcPA8msC zqyA4p`tnafYHH5gwQDxB`}{Km*BZXr@pBw-+{lX4g{dWZ$ju3)E7=G-Ff|02 z;B&1fba2ZLm7sqtTBxXj7>Le{F@Ss_@^LleP1p!Xpi93~kR%PnCt~-YZ$c<1H>ckB z(+sjTyzh8d0SN8{A~-=lmXsI~)P@EGCvNfxOE<7OI4Ptna%>c&f8fe|_)NZ(@kECC z-Li5K2Yf;W|8rv2CadKbKYsC)($B+y2B6jfiw^>zuG8LbioogP8OD!&;xaPAF8?z$ z?uEzbuYS;@LK%0HJBLe8#-dm)@9QQ#`+9QeL@z$u=O4$x_!(eb2Ayl^jXd6Gb<*^7lTuIjTYzuei z7FVJ?uyE5BF^anpbzVs{uX`vV8Rd<}`qyiYa!iiZr1b6*ksTbV$?F$%7eM%fLb&`E zA8T!4Q)>)Hk@r+E7*nFC2du0g>o3{Zkh9q5wy&C&+K-mLw;>3 zs@}Hk@M^jIB`wF!ulJ2t&`;;^3j#CZ9bj6<>r?niYceU};sR1QlN*-SMiv4Z-m@JMt9FamkHLmM&i*;hAzJ zLTe+>V)%B@`jTly67LR}epqD7sW%WOF%f^tyVs`P>s67UNDR=c38r`7xzQ+7Hdj1| zZIqm-0M`JpH@SEMD)wmC($&zwPw7pU<765kT^WyyRLB&5Z4WXx7>+Kp-nGZ38G{cB$+LR?btTCz`IZR4T|w7n|k){3lk01auFA7oGp^*SJk8cccKu zE9~wgxYF_G?IyC)rg(ZNug1$i9=aJHIENNAiFS#7bCv{D_vWIi@2*vGFdas7f!try zzk=Y6;+fPI{j6;XIo$fM$tsx-ZRFkN9Xl>jbwl|CCB9tU*(9zSRS{F-n>$`-k^Oh2cM8kMzCM1?1_r>F}{A@@r-{5oxxHl+O-zw+Xma2!1iLc}BOx z@KYHzNxF_-t}1z>FdCxM;!Cz|`pMbTls*T4NM4S>504?C-}SDFS;vh2S%(xhOJuow z>6D2|UUtmbhwuB4p>K*cj9c;4@QTi@fWq;uKpDq|4uL($d+VvzR)ua;PaS*=B zCy~;fFgruyTiLS}Jkowc>bMIBORH^njdJ2E8+`@l;zR2Y@fumP{}KoUFo&I>FBjw0 z{blG*5zTf(hO=&;Z*PkHb|-&K*!13}24*p z)|x&g?aeR6j`_OMbtuOwq*Q(HuUyjfV7DhU_t+TjA;`d4-kM;zBCv3mn$p@fo#5LJ z`dz+)xP;GavG%yH^XD~hCTE(mtLmxptI`cKVRamXa0V!~%!B<@S{-__yu|NMwgfws zEnb2^L|!2o?QA|6cm^FM^I;Uu_Cf^K#We9_U z$81=qDa3{7uJlyLH%+BSX1fuPP?9oJt7n|4M>B`JGXzzlfw^n(HML- zecvLY+yIeu z9!o}tmYPr9laQPiVB#qb^`!n2h}WCZf@XD{?~Yw_O{nYw99n%k37c7))z^s)u6#+3 zuHV}><@phRzE-gx+qH1G7VR=D8SRa<0b0x<0L-#tWI9+*&+u5aB z+@GYS%~!YGc)h>f*2#1hUxWwtH2qLbgpUP+qxl(Z#1}ni@`!nn6J*p>CTs(zNKlUo zjE}C}j~>_JI??e;d(}2l;e$H<=#l&pRNr6&#+%o|QDtMy|I*QifZ@SiE=!lw*qQd_ z(f+_lkNdKFQlCW+|84Km5kmQn#V*=8;fC8RVQE4!S$6;R!&alTA&Wt!PMXc9%|ste zC074cVoa9GhnWPf?DMQBR>3JcZ__`tKXH}PQBQ*zk(HjX!te=OBS4)CBR|a2wynM? z71WGb;1np^39m3>-aypB=S=c_53$ft4{G*}>SmKSB|GNES$foC;3z4!2t4|I!80^nLsVFc*d5_Zp7q3$5A z!c)aF4soal@#4Tbv|9CsE|gYVeI1zGcS^GJg6J1O)+ft{6@>D%<~I!uwFJ!0dFWm@ zQjl&n%k)8IHm6&4i<2#bv6rVMogzEMZEie$q&$J7)H76txtM!1>*7tL$N}aN-c*we z*WO&Hf)5&e`vL+Xs-9U$AH$r=a^RY19UdNQnF3qdcXyfujtAMtepVSh>La1aW5>owN&p4A*d^ zUCnB8WBb0R&m_wZ46?J6j1TR}jON)X&t{Afk4O5Jn$<|z6C+mgXgips4~EyU&SRg4 zv|mX(Ew`YH?N|UYNqR4`KiZVI)(E376JPefQ%;E9d_!jH-;8`J;rvCD*=#NAbUXT$ zU?ScpI5JU>ml;_2NNejhTv&kl#vZoo5FN7(GJL|=_EX~T(S!r)*z2+7Vo%hU5W%RC zGZp_^O>DP(KVy+y(RtI3=dc_>t8=HT)bT$&;xlq{P~D3JTgh3a$qg$bQnG zg}W`Xg%ukLW%_(!!%nwL>i&h_6u73^F6iWq>J`l?E?nFEFX7nKPZM))`;+KUZRmndntAO?<8kC#cHQ>}9&dUcexUImiUDzZ!@h zw>Ia70Y$9C3x_FfJF>Q0KeprmUsW>UOCgMDAz}nZDMO$pvULPUgOX^J>#GlShW6NM zg}Tj|=e8K$w{aW^Fr*DE1n^4V@hHUBy{)<$x!8qWd#W=ZF#M zOiIlOSp|aab}jEoy@cy=27!F1OcgyTWqBr(1YEo1dL@GS(J8dPM`>o!v2q)s$TtBh3=I#j;kkv`*(rXE;%c|w2*Qz5Y0wBL)=9m_4Y{9idkJAT z96oRtha<>fY&?I6m5gq}Yur)Hz8$7>I6MoDLti6&BTdQc+DMMItps$HK6;o% zp46F2*3WJ%)IlicEX;VHQ7>)0maDykUAPkZNldM`DP}9u?vlH45hNtYV##gSJd8wd zSam*jchVp58Rey;=#*rTYSLULSazFuCyT7=iasvFC{(g82~9g#ki3L?Dc*l2%10x~ zSWm4peH(Gd25lvnqC{@zRn=i=!c7i6l#>H+EYV?Zph54hL2Sh;6r=|kLT0Tw;C=;6xE%)O!L zZ&F*;QapB{73!48I6G|I!(?MUp^*hb#s+*!1=O(% zv32Z?Z?hKp4>f-c*_M_Y^`HOp`H5`~tJ0L8i#iMWTp&a4#&)BAL-<(9RV(L#mcKY( z3({ydLoV_~HoMP9WBp>QBUmq|HihK3bz*DH^p831UFs7;O5$TSvMdZ>4Jo(%6lHM& zv3m^g1PsG=lhS;9?s=Q*`xPKD1$rLca-2H;YEZ%x&0 z5Tqk%NU2j5k&RtC8(I2#Q%)MZHh&E_*Ynb$;^9c|mOJfd%WWfVx-ox?@zEDHD{HuU ztFz3B*>VdfJpwDg1_U%HuIJ-DyVZqU*iB!Hb|S%jm8fs3rRIm?59 zcho&0+nCfU`4Y(8-T87wLl=PAYMy-KQ6?EM^}CxT9u4jkSlhuvIt^I-^yCqZ_1$-G zSaHtk^{VuH@kbiA$PzzuW0w91XJ2P&1+A7DujcGNnkB;ZTuY`kk)!sfFsxh^@JWcY zqbP|9%LN%S__I(+%Vqev%i{AzA>c(Mzg7OAFuWl+Zv|@a_7_#p;FFSh+aQ~IcwsWm zHr1`wQIhWp<~dt+BM=$1ng3~#uK|q#C)e%jl#?Q~vUZrXSzJFoOZv4TLBdQ{7yCO{ z_dEnkpuF|reKh7mPx>z9eQ%SILLw|9R^ionEEDnFV774x0ZJ>&r1MHMpMy2>rKbqz z4T)rqm5O}TpyH=2Rq=hpwHt#|2I`u=&Z+|iFRn@v42He+5n_>|^nz>GigO74xy-~i z8m9f)r{SGzPo!O^v)mo{t!NIX=fYj z86{&v#hEhU6F6+EaASLvT1RN5i*hK>hFx{YfD|j9Q~YnFxJ;r9nB$dr0rxt)D3|lI z=d1{3GMr+krH`>{=$WNN()dGeUFWO~JmLeO@8e%xBV$X(@4B{6gBp z3pnFDK^b}TDN{1_zl{_;K8!2v@0gR}n7*zSO&a3Sjgu+NFJ;ax7# zWh?6aF*?8UAlb9Sd9rXD;{^yXMAowNN2%%G{`E-w$W@Q0H^6&IJlfi<7Hg+0?^Skh z6k7Entpfax>X%Iw9e_(bjE&gW$1jK*FP_R8e`pu^@WrY#+pWjsSh|ryf3FHlzoteO z{V)Q7*artAy;?Mz*FAfiZXPjf=DCuaI5jtYdzM?D&@Z_6mY}#7#qMXeIT9#=Ocb4w z_aey&o!Wgr5GF#vY2hV_Qck~5Eub}K{6uvpgUK}l8`{=Dq4@)5d{8yH*bZSN+7fB6 zPlgdpUb}=Zl@(dLX8X4}v$xYq)+aw-Io^dX!5E@sNAbQCkoSXW!MMNMC>J1@UfZ8F z&?Lz{BacWNd=Te^hWhtj`IB7u18I1Sihg)3L}uV=vyB~`w>-r7q;|Jp}NceHH zVwc%Vd419%OhHy}u&Z7@?S4gx_HjXQ>Z_|zmeq&S7ti*k$3D0cc^c!w$$0ff)d@i_ zt#oa*s$L5AoRbI==`=Tt#WjKn{O*lPcJtjMo+UKa6kQzJBW0cPEE28E@1=7izxMQT zrGlc@`JO1=a`WdL_JJ>+?_OAK-+ll_q`k)9#$U;Y*_<|C7K+NtGA z2fB1HE0>9h97;xNjE_3hTPx@oY0regcpp<6+^Q-{oc7u5wyL1sF|O#2FF}4wv+`{Y zpDFahYzj?ph?rQh>Zv+OPI^E0!Pb=<*N?s1UZJ~NpyxXcuQ1p(^hs@wPlTtRWY&}; zHPOQ1vV#o=-dV{RjXsSdSHX`}5-aKJg-FxiFb^VS9J`|4BHL@Fm_JBU@v! z*uUmvG!9z*k^x2zd$+oO5EDU@44*dHaj70ODR@2%@nAMi)Inz7pbUO_;_8E+ffDUfJ z&UJX;mFZ_zG2y%(03Q_seX&t!KRfnjW?)|_PHF##vU6YN+xEno*tTt3 z6Wew&v2AN&Juy!1hkNe*@K&8VUDbb~tE=|jYpFPRHhEDIQbqRBlcDXAJXF4l7f1HY za_Y-zuSan?d6a>7?y3xZ0aDKNNsrM_Hob-v_n+jPrYoL-4c-Y3?WsDw)Jj^+{FWZE z|5P~t)s{m){nR10SF>MXuMWT*A+AUJ3ID?@d8Bw3wM2T0O)&HqoV;j`Nz66X*w;N3 z!vUfi1{yj+S*J+`F_&j8%}2NpjcO3=gxMP;F~!x7S9o%kzswImw`|xNbHoS4wsK-W{|%Ns+J#d*?Mi_{Qm|Xk!YGL0J9k~V z{ZOYdXvQE2ub3TarhU)YRr*WKx-#tTaTV9WN#?q)Uw-+3;9g4rO=U{6?6{~&sboED zvaC_6$t{wWp85&63%SV7>+{Ya5D=TpM(BoewktCDXA%l6AZUU*HaWii@ov zYxc7cVqX#F%(`YQOKy}HpVr5_ZY!ZCiKo<}`jrgxLdOSlzZYa6xYFaV;a_ z#zw!uNuWLJ49j0CXA*Z`?Y5bR8p#OXK)ta^X$8VTP@{fv@l@ww+l5~-VSDDq79lV$+?iCHVPKR<5)41{TDdzpZi>olkP8M9%xz#QE@d*X{c}nJC9>^`9ibQkfd=T2_=M)bf+*X; z-Q8gcpm2^7Gdoz_ufH{Wex8zDZSNb`rwu18i)NSg65GNRB5*3Ok(ucMa*zb|)%_C? z2gf_7pIgAnbjCf{U(jdh0s)%P6;6sqa&Lgpcuhof37rf&nD?<%h!hY-`2*sB-NQiI z$3WXZ0J(K=g#I2yK4$<)0QKVD09oP&qEUhx1I-o2I6uF*wzvWE?)*PqQ3_o1A8JHB z(I(+OkR@h9*B^K!5GBY#JRt@}&JCaeAieTfQmB)6Mi>faNUSOKkmSY9&1}%Kg8^XI zwsb>tP!HZgJRlw-#Dp%)F^t<^OhTY%AaAPJkUXG5vjg*oin^FqkPi@@!9a>YYx59b zcOFr4XhE~(2vS+zuC`7>7jJoUg|mGA-C!SD8+eMSDL+#+945F2Ykdb)u~ z29go{{WHjLAQm*`j{QD{Hb6wfPi>?~m%zSJkY2#}140*+;esrXAZW!c!2Ohg{^Jkz zj_xj@o(>*dLH@EwAMy`sW}Xo>bW4B1!2&%CzGoC?=J8D*)Z7ea1bHvu0=+~(zIoQT zMQpD8qU!-J$4lW{ot{A{$6rpKL37^&m%>ayf|!`;1x$=UM-V`-Yg`UrrK=CF;GafE zU+{v|P>=4RogkNaVgVrdS3-*4bD#VH`b0oe+o)(~-@9S{KMVT~;MO<}rk^U?4sy^J z;yWr_KyWjWcr`Z>qeybAH+B4y^;M-(Hbs1$<#rRv7w;VAX9Yl!(l0>pc`R;u|QW12|{pS_t>|+#;zZGs$v5*YEHIaC!5$^BKPd>1 z!d#yZSe}%yU7q6hC*t6{*mDX7*4e${8mj5(OS6VQD4!zG(vMM92&o_1lV)-kD4!_+ z^==g7NOlpgq6t1TP(I{g@hg#mdDu$epk zUBFSauRu8TtIoPO-@C~^K0=Yj2G^Xa>3z1V&2z{2Pce&TAH1GxUy1_$*|6S5%J0qu zor2zHL5oV!NGpXEyH|9F-Ugu}s^mTq|Jpn67*1C$7&`bK;vatos`0QfbRXqsx?X zx|cEmE>+C*!U}a1?RikdLyzcB`4x`?`_j)e+D8w*jq$T_IVoynhTHHFgO|z6 zl8S_>w{#3fz|1RKB)V$fkg=?R@#yi|;drgvQe-Hb%d!{zwEzCjge-UntH2HUnoKRd zHBqxm*)mzBT|*3c!16s$Fx7MK+BjXCK90*8cZn(;l%kIpn4A$dFCG}D+sk*Q^DhFd zOS8TxIs0A$3#_e6C^jF)by8`go9Sti8$+C?W~wCl%s4d!T)!1NC>4rfvtPF|=$)b< z5)rTAUkM%Lr#n;!2Q0`U=Rt%;Tqm=zFUW*i+WwVyX0|Z)7?-j31W#BL1$P#o?4OU# z5mSMhJLk4!s(!6Lqg5ZNU=p_T@da-c^-eR3Ei%Rk9V`Y`EyeI(9fZD*e|;vR^fsH+ zL7B}9dlfhbL-9r-Qs3z9Utn7-TMO{Izt(4pE(!=eG(do-VoT^xoaNd z(y${8R#D+*{Q=^XFM3_!=A}h0mrY4k)BhOQtUF2hu^DmF!@%%F`R_KT_n(q@?OUD9 zxFJRkJOKpDH^$1q4=2t}fAvh+2ULdZ7;u6-1zIijSqF@I|LVp4_ULMg5c<8&F=u#t z7^r*FQM=;`oV$yoyLvf%OEKMcC-3F&P_pjbdo2+_^?e}+=5PR;wLZO9{h;nxy2^~` z#vDugwzJ?0i`KHP+EcJR^hGR&&6C2R&ma<+C`vA*jD5I?-eRmVIGTB+TL#~USMlpS zMBN51k)IqaCmwncK@H|G1(u$^Zbb0HJHk-{0r5Iwdk7w-)t1|rc{IJ2brTLWkqfTk? z#=TbFrm}<$iF1R?)GSam6NvF~52~=+Z?0POD=CWW7?Y+;1Nj*Y2BN zUrhuI{gcsuu{wS>TzY%U%CZ>;W}zK-9%u$NhMO$pBU@ZzJQWepG4|P7OgTNMpSLD& z2gjpR4xB0-5pq{oyuRt~YkV}@Prz%6xJWTfB^;#$W%QMC6SoX6L-Q zwY>M7&oKX`PtA$Bl;cy`OM1TD5J`TjQ}W?ZTI=-ZYbK-0m}+3sz%Z4~Y~->N_IBzs zcT)(1o-y+UT|_2sC!~R9G>PWl7mza~Zsb8hr67~eikJj*8+>lmf_ow~uS6K@OyRA5>H_LdICGWohGz$-+r_Ol1R5@3RCve1I-ze7>gQe67ByEap z%EuBfa7E6F-KgIx=K4!1K(ZRJvd|ielq=zPlKXX}B~?k=p_SCb98<-+5_K!n3Rk-W zGzL;>wj=Rw-yh(@E4;UMvOAU~vrWrP$+lArINEdFIoPQ*97lJBJE%^7l$&zPH+&HI zJv#o{_P=%-Na$8Ron9fsYpR4h3M}1(eVv(KRx)N3cHLjR03|-ZP4L8XH+Ng3E17vR zR$Sh~k2*6Nj2vqLXNnc);o`b7Ok=cE?`rPRH2WHX3snTD<0w=@?62}a_$iP0F=?yj zR-L))(R3@)?965~|7CO8t@Jr9aQwx2*jEyX*#E=ePKd?+o8O%^W$8Yj3TkIEmvlOgS;&%LzLKhZxP?qh zDR4qbl|G%ypxZM69If%{Z#`;QWSz$<5=2ErIbSp~Xx1MJ`+6}YoP5jE36RQYrGr=e zK_Cc%RX_+WGt)tvQ!K*YX%JGOY}Wgon^D8+9y|t7L6KzUFW{zzCMB z3Ou~2%$wP5?3Gu|#!)|IY%yk&w5#!PyvO!xK#52UL8kBe6kMq#mV*$_V2_buO(=m~ z<1qCJ>n>awxR9Al3PNjp`WFQ&Zb|8GtrQ`xhAZuqrVcf%mWFW=Tsp^UiC9_k7@H!+ zN-ns6sq)t0$SPjk4bsxxK;W~Dr5(N13lW?U93}W{W?V{t9Lm2~(`wWUa-XA1y<45c zmZacE0x@|vjYHbeq}|u_a($eGxvmIUukJ}He;?lyHz&y0 z>L2ifg3fn*tn8mj+t7W`$RkW|u}ijU5Emk{su_jrB_coF3{MZQ7F(dN*r}t}0`6=4 z&B*+ip&}t!1Fx!hoG_{>X%5pYah@m27EAjwYj$^mUYk3lt-|y{1fcBOvC%kt327k6 zJhiw8(LL5iev8(BqVOsy)4;k%iDA^^j_3`$lMkW*Q# zH?+bWWxX}hP7OO{;+-(LGFR!ZTixqwcGAH|bi*s8;vs2!0YwiIK-b+Yw<2p0w(q+#hj0 zoAU4El=bkZBk`NT-s6_z{uT;vRjWIBC35xlmA<}(tj!+h0%JWNFFSTW|x`3e4=liGn&#LU0Z{>DWK-^#S^4hIo$Kh z%rX}Ff__|a`;r)nl1lQ{f)N>`N>i>sDYY$%=|z99euZOhTBtaeuSf}Q+3I2kYZMl? zh|zyhf_G+e)2oD>kJiTm<&+o?eAc2xTRPPBtk=+kv?x)F4qi3k+@<%3RtpL!BD9EX*@Tb!OQBz z{JjgnHF!kA!|nWlr9mHL zN9>msn53s4{D@LJAmgcZyE#R>{{3%y7hgEC6oNVZy1U6pg}CAA@19!17>R3P)vC-K zBv~n%peP*yW(XS9EVQ@L?QVM$?Xy$>PRds$44^8y3}a?}g*G?gGksW6!)iJ7q&&Kx zU`*`^ zmYsREF5)GY%MfHLpfr8mRm8gu4|LlyU;9ep?ZZd5XRv&gUU1??9bTd*`eU5*ANz7t z)Q8P?H^7*qauSL_ONvyCL+>akuN6z&>V{u2I4I7GzP%>EobI^F`s-eDxa)UjDyL!j z)YNm7DcgB79wSa|c25{qXo}L*@$%*&%d2{UrAzsCOB$j-zFzKG5y>(f zaV;}2echDe*Xu)9?u9Ek>&7@@>DcO)C26K4#|O^p;BhSqUl0vF%kwFKAO~ucIsYot zFYOh{vdL(OOssZ}aFOH+@sYl{18AK>iZwX4-m#5M{MuoDXh?cyc|4u)8 zRmve~2WA-Bz~}KV)(r{y$1$0z8+XSr!wK=!8VljiMZAX*G{NE%A~C|PMF)C+0+BQk z9_5B!iyhm+V)lf!<$5B^hJQ&?X|%%_X~@w}A<_Uw=SXig}0w$gq>!BtaC=GrX5?-5cc zO1jJDT)AaaAtY`^;XfRvEt}bvQ7s)@dr5=ic$7}E#tgg*lgs-WG4Y{KJ(@J;5u{dP zvlaAA|2wE0sH1_h_dtw-HoVr!`2{>eRia*-$tJJy;5qUS((mfu&efZClw3I?R@rNs zd5+f)r%IF+ye@{vtXq%gHBK(oXtq?VxAQLHT(h-(>La1?^}$fj^qLlE`_+^+5A-Ra z!mT(2!Ue|cX z6lyC{(a-n(uF1DBiNotRF4&m83T=q8eF2;jM#_dPnfP+hp}VCt&U_Q`=OTf)9B^{G zayGAH6Mr~ngCfzgd`aq2ZPOIj1i1ZKG}u-0o-!NmH;u(RQJRh*@~xI0)2LZ!z(}QiEofelO0DiWuD3RBJBB|F*P&j1-Ms*3d7su z0b96Ct)f9^`9>JpIFNi_^1G}5cXm&x7xnkjMFO)@I7_9B-OL)W>uu3QL>jMqI_!SA|Ux7gvX zoV>?6VJ8E`83|Ty{o@`YBe5@+SH~bI%@Mz8D2v{4}JJU@9Hr) zn;oNiN1iLwx=>JTUu6|Y=Fl@;M{BqA*8=nITbm(wbkD^;N33Ryi=>qSDkHt=4%%XCD`CWf?w|Dr+5H4ZTo zYGi{$d@SEK9BYJHz z&-gdOn!k2x=W7(&8!;hg8DFE&{$X`9nYw9v4ho7_zVQ$B^N0iLQIdDpqYZ1cp>i&_A ze#=JKS4>Dd((FYBv1)ZNnc!n*RL1EE`9r}u=Qi)%jXTW5Vafp$oU^PqcNaR>G@5cV zR7^menTg#0O_nlcE0rSY1A!R=zDd}HLuaXS;!cpw6G2Ej-%jfyb~RDU@m17!i#Zrs znF`ilS({S0NK>=t@p=&;*vlLvy+xVg1_)6=Ua{jyp*^lDFO1EO61*=W~?IcEEh&Go)FW z!mgXZ@115g&wNq}5#;BSUFh%fh4N6zMQtgkbdb=|cE+a)eNXYM?QB`nOmyY$-ywz1 ztU$2V$^+`X!pm6qmWj>hKEvaM*7kmZ}ffaB}cg{;BH z9;=XpEav3I-3N>7OLvX`NBM90BK>-IsGhXPKTSC!r3jrW3Qd%Ez0!+Ynlq_9eKnxQ z!PUA|*3aLJIW;@m*=XoJptTIhwxsw z-vImeG@&ZeU$aFI1C;pHepV59gRpJr%_xDJzBj5L3-VWKi+da+Ay| zjq0F|zedvz5ZuMFv$fK~wFAUPi6+;{JFMogdc}@zl~57xd;GW(&5;s+_~tX{K4#Bp z;Y?z<@X3^V3{IDhsqHU9u-{I(*XDRUxX5O zn;M8z7~aWhD4jGxMTUbEwq^lOT1!p2_nWo>Uua zi;Ced$cJ?3HxeZ#lVTY99FAPIMk!y~?{zn7Gq2n7FP|TK+ZgP%wbHSl3P>1Pd`$}> zyPqU#+jmSTqC9iEv5kbwg%9=D%`P?RH1J-7hWYi>HZ-)KI?#W+ND=XLp#tgm&tBrb z!2LcGIH{o_o&*EdkKg(w>UVW^w@W5vpEWPopKz(Cl=RkaqdR%<>0WH zj3U@3Gmz`UoQ=m^zq6R)R__e-5Tr;jR6XUH4IE_b?M)y=$os$U#7hC`TO*UAYfQL0 z8zaviWw^TgQ*8NS3DbSbD9~|)0s`<({Ld+a;sA-f_}q5iUrNx4X6uZ!RMcSVQJ)_* z01!#_%RTnv)#HZFNkaVY2&h{E$9R5XIJgXR?LMosYRAh-^mgiCbEP;LS1vZ69U!Z4 zwY91W#(h(eTXVVJX|2^k7o)|TGQP;cU`UpXJC@qNG>&8b4*Q)?7#YLk+_4;OC1vrS z^JAHF=ejY!v&HwO(?08mS?0!WWQ;34(u)uA&5APnt%jPDXS14_#NRUZTbA#m&Curb z%10ZXWYJthqQ76rIuFrt79HNax920oOtSb6SFZT_f&!!|NYwRh@v#$=yRChYV0aKH z5X>YV`7IWG0HU#1#6ZPXAtZu*!ETlHU zD_WwEheEySS2Tl-T6UvOy{s;TqKzem@_U1??Hhk zUfJA)EoD$$)lDP4#|5NHmqnx%XBV>m5qe&XTG%*5nxOhauCuvQli;+;^rZgpYDeb@B+1i&5T5~4 zV75x{39xQykLMDzfz|HF&aQ;4d9L2A3*l_fSlIP*l`+Yzei*$SV3b#`9}wZ(P}Ap7!=AWVXhxD^sd1Fo|x{}smUqjYG33^ zKXPdb$h1l$O(3}3S~&HduG6no`wfwS0=-}I4tH3q@I}#XFmzo}uE9s9tFGpNq0s1Y zDO=-oeC71FU!H4%YcW=4-Q|4)aqAP8l^t#5PC7 zC~{zvo-nmQl9qjL6&rOQjm#idb-e+Ix7N-6#;!2~<0T!QCMv>ja}ijd5TppzzkFI#Sba`yW*mC2GuAX-I!$=f!=xDG z&4x&Me4eWsH7tP>p@d?nQZlr22Q9yH{pC!s`PAin=ZHa{N@u(~f@G$A+FS?3mfOC3 z+EXg5vZlEX26=+uTKYOKjw>3Aq*fNHY&ZHOT2aO6Jn`??Jk}9Qmi|08>b5gVZnal} zQ=%o}wuo)DQ-hxuCWf1b-MfzYvsGF&+c{PV*%jNuExr}cR(E&QQP$jP$8V2DfT5D; ztbzc*-D=KC37zKJRbln_@4YiI*(HpH37Vg}ky~3Np(V^&c3lNkuc(0C(h#FnT>;)F z%hjiu;jQFNQBS`K3(nhvM^Ymg1`TT9OT5Nj+Mo`#D*~&iRG;A1+c=piVoIJm*U%G2m7VnnQZcfUt()m)g9E{t}I-WDaC zc8QOUi$Pm_p2>jp?n0W^yVQG1{rh6)Bz$u@9=Rk9+?<7Z^lbtvxhB+%S|&m_UnFQr z?m0lICpT3A;?@84p9@>xe!}=~P@N8$)b;F5keV2yc+_qCN+`iq|M5@KfM%%Z{6ncbr;{=DawsNp=0Y`2gp>%=|zJmm%`JyI9r~ zX7oU>rl_px?g~D?4!SQ*2S(^Je8XGMeSdlO9~1#L*3pj(km<{-=iPg6T|p{M)R%J< zXpc0Ho4Xr`7H?plw6h@6G&Uce5JGVj0nAFud>)5zobJB%DD(pBL+yr#&e_JF8N*PC z;IwQ#S1*VkIoBbb)S3rgfbS9IxzEppb2pQw;=uLyYbl<Mn7H2hJ?N73f6u*}CKV!y>$yi-ffboVo*L$DB0 z{K0vyXAc1azkxg;fa&p0{VXC@UN*n;hK1FpRuqFld%)0ezU-lKbjs2e%C80wC$>Dz=n&r3!U&F-s@ARSZZfvv;Pd)KaDi%`KVn%7kuGfZlO!AuJlR&CC7Y&ko zl9W8JXYONi?uP2flzSdgH|jv{RgbeVz%J3qQ_QYb;~(IjI(s3sQ(CT3s6vsujo-sz zLFHLV;72D*swD|S@4BWlu!a~w%{Slmb~f+_IL{xB?adY4jct+qQSLFNpxDUZMa&vG z=aG%m^?_%<7mSGhB?)C=G>IL}nI9{0$A*@X?kpz)@MSYT@k&{_)R?SmO{?l@6PnP) zDG2EEhHtWn@P1$xB32;6Un>qOfNJ}p<+BwSRzJ=^r+-St+lbDGxg}YqkG}Xk zKhh^}gVZ}dVXWgjvj0%BYhR9Cx@>?k9qL0-%Bg7C?o-kzR15>Jx8iA{gCjz%`#rJl z6)Z|Qw}Mw>UkYSvH`MeB#uG6SKYq8!Mcn6paxNOEu(XKZ=EtpRJQ8@c|1p?T2!Bk< zDA!63k8~z)UWfAB=6q{Dg-1A_vQ=sV_Dfw*ApsP1{qwV?53Q|gt*|a#2en-)Jvq zh=H`ATez0XzK3OR{!T)c{P70;YsE)!4$26#8Nbo!1B`Y`zKvWw#$X-d@sf@AO^U$K zGD&Z_Qe=aY2HkS&8OJ@zpM`kM09e{S!PP~XOJpTtG@Y_b$O~qB_<5$UiixwOPY_>@ zdI-xnL8-@%0z*EC`4EBer?K?t>X5leWqI}6(_qW(0ns>HQ}BbpP%cgN3N#OML1P5+ zJISPhbFPwCHQ&Qh3UKw*6C%{*3n2jK>SaqWP?Ld44-A5fo z^8@iz1x z)X`$lyN4!%v=cbExwNE1wCVbw4bVor!X{07b>tD`O>$sT6rV=A{lKB!KP8z7Rgy!C+c7T#ZO2~{@fZSU?bxXZ7g}*NNKkT9gcyc$ zt@p?oGwrL*rJLjSv6XG%f(O9ogVM-=Bw7ry>n;SP>{VxJHIptBjj#etKUT3)= zX2S+U0!Zi(HazcXm&nelAUOS((U_nXn&utlW)#FfdH8G)bBR#-VVm<3Fx?4pB4PE9 zHs`7*%w-CsnUBwKD7%z3B+Pa3hcvyZ*`h>P=U75fFhHb#D31}`m6}H#Ycd~~>8Dbe z6p*<5f)T{UB-1~6Qhf{TUGt-8#$(!}jiS!AOB8p!LkP3!p&eA~t9^z60bnOuM(%8D#Ub=}naKN`+4N?eBs}oQu<6tUy1ixw= znE#$DFQohPCDcB<2S2(2a?PJFrBH;HE15&$TJ#Uzv1t9lLYPO`|R_}%TP z2QeMl!nJ!s_b;V}ui`w_C7~qOy2)&Xc!we&7`_VNS#6vqcX1-Li3J)D{chBK$Y;FB z7~4KUVs^_}IKNmz!K7@=URYe*LCiO-WnUOU#^jYYp!5b%PzeDB-brK2^2*nRui)@R z&&UB~2+V=z1d(AKrH-J!88t-{W9|O8%_PPvCd;cVh6FluHMQcg)DfFz;JP7CyT|~?Pi^Ee!Zf#q=h$C{4y z=8qM41ipdE zV{ohUgTlVXYs&Mj*OxpZ+4fWJn03{Lp%$#fOiw*ho`U6>2}Co{)p0<1;(<%au})SC`d5oDeLU zrjGg?hdU9sz6MYiJD%MOcKNomgrnjpx$ZjQDDFyM>f^=EYtL>XHSJD)71m_X^e(G8 zKA{?tB+DugAK4d$!4ir;%f~_p>VJxYxUFVNz1+>x22;3At&XZ|{8oiZb+_YR#ojJg z;$AW+x$rSTa2N8u{9EaSB_NcNs6Vy6EP(oUtNP*80Nb~^&RBE!#I2%iftq~6a0?pj z{L(Yi)&bbW0OH_4zA*--a4ucZWQO0#p&b}WRi(h_D=25VtUop%3`#Gf1{;#P9bW3i zNipcZ!Xi)#lxb^SP(sI+kK-P1CO}@=xEs)0D>AYkCQ`~7ipde|jK%pwh;oCz51(O8 zFKP05;N9+TjNh`SO4~GxmCMV+`&uKh7VCB(%n@G*#(&LEZomhR!{AQ{n1~+gyqU?S z%e~ing=jM_5~pR-NfGeX)yrMfoG43?oi*@)|H@$(O&PjnxTd%rQ4^Lz@^(e!Qq(J zd5U`PCjK9Q^Ld0ZO!z6-^k_siyOKLy1Ywij#Jbhqm9&D5(7M3J*WeILmbgQ?T{*@< zpH*~bOC374WVT2}e+Y#+GW^}xmPJ#%ilKpT!E+DR$(zz8dZ!Mr48QDEGS#LZs>ktz zyeL1=W(TsMeJ%L!Rh7Z^dmgK3#bG`+o{OjOa~h={7(7H{fh#OMaanl{XoTE7p8bJ4 zg&#aPTLSwD7^Z_?kcRhV_^i2ln?)RsL|QvU?(@TJymxa#cz8BQhe=N4ylq0023rbP z5Hz{DIC);`0h1d!wL1!YJAC0MmSU0GmsYcc8M8~TiH{~RHPN^F@Z%^czy2M94~vxk z{^1yA`Xkz_33`Q-MC>mgmQwN?_Ud&`%IDr)c{nt7jyN$)Be7Hwx_k^tmF04cX4l>ui5NsyXDAJJ)L>p#_gMqW}P$y=7ky=XZpb zb2Lq3ToA~6?nrvhZ929aHy0I6y3kN;-2hZKiP;B@^(_Wt);D4m*2edLtdev7rz$xI zE9d_ORIw0o{cmtq+$>z&|54HC_M>RDS>%ukCnATBc45RPAtooR>x z3p>C>0g?elV+VwU01N%7sFA4T#%An*#JPpPLZH`UiKH~C@F+eB5u&7^ph8Ddgs7VH zDexea+?_$7B7s7NOG3$t1BC*Zkf;FZqz%VmNWN2_fz-+=)kP)mrq*zB_bK${-NGYp*A`atR1xiqs z!orA%h`K0`K8K|(M*;Cj*IfEVE_qBBMjLd^tTumF)x;SZm$#oHUy!UUv#3>XPu z8=@yAtbM`xd8Xm(cvi0$sdCDGyoi-NB%qgzhi69F=5CvPCdxYhE&o|fC3#h0b@|X| z#1a2Z0)Y^35T6%uG2o9uV-X-~Y3YCvETp~X8!G>Y@91}XHAt|}CXPKp;AKNMhkzwQ zw7H)5=&<+v%Dp#dlXl?mnF4T0S!|HKH_2BFA!Z`1Psy|I>hE36FaO4G^kaY3FMrJ9 zgOj7j%_+d<*LQ~Sj1py?ApV?;n`mL12x{C8{F;9kj_B8#seAwyZwIks;I*P`h*b^cL6yT%PeD?txu>rY@et}8> zff-qV_=6Uy013bN=gmhVpPfRTfHk~Rrk2m;Q{5Y&M-)8}=WOYILo-4kxrDa=$*<}| zR%Q#*|I;^nCPf8Fb|h#e_FK%e{~MYH8tE~N=o{#3S+yP)MGxe>?R*~o`{Lu>C|HP( z*l_R_o9o4IY_T&T?g0nf3-N2(9kFzcGj_4#)%PSZ*DjsRgL-RuU6^)EH8f?P(_NsJ z);V{Kk;&lovXx^mw2k~<>-X*FE19spaZ|3t_2+ir9cC8{;4=mc?gQffSFa{RuS8&+ zR!xT9`QnmujK##OX0&`nK z;&-eE4+;LyWVr&|xg@i=eMTCJd*qMrIHW3%?q3xLl_ES^hGFyfldHNpb9}N;ZY^G5r5aRa$WM}J$u5GSm4U_5`E^aV^&1!SW5jFDNf?(gT{Gl^9nq`@I zQOu#Nq}Bsr>{MyAI-$@d`f*7HWo-a`qWBM{vm?qt; zm(h1s@CM^Y4HfvFl+^`t99urF-d#1QU=ceXFH&IGec)r(2_M?#4nbWWJLO3?0dSoX z&+F2ae@_O^S&!G3uQwqQZbFuk;Wvw3neZ1m1v>Ssu=d-jJr%j{5ie6@Xyx{5!T&Hh zsXiOMJMdggVO`F$0e8>ojw7E$mkpd*>0a0p=vIszw{Wynt`>yBw&}m*O*ZJ@WEh8WzKACp{csj=LZTv@NMSFxkaVcg8W4 zuB_+6T|Kg{{Jj%BR=sI1!iD0#9>}Im%&+UkGxtxR1tuySwyU=HxxPa()F94 z;VW|1yOtkoZ?;>seLKgZ2jO}9q-E${z7E~;niRm>C{K^Q@WSic68o>D)7|Cs-67w^K*KSmx0R;|fVHvdP~a%!3eeT17q0PM?MB)pX@+?h;qcNd#u z$20n~vHs<2?z^~UxytDAk0jUior}77c=cq7%mG$7DLY4Iy^Z3UIU6V%K|+Ux(W5VB zlR;ZxOS&Ydo1Qbn!T{vnYD3dQo71ReUe_)b*PXIQ}?X4WZvQ(f*5_!@%Zo)U7|Em_gN(k9i*0siw9(RmAUi#;40ye za3!#1^Lop{RHXiC^{BhWld=&gPPDImADS~tU zEI3``)n}$=p}gm9KcE>B@?DMwkPdB%ggV`*xnRhgPIB}dz%2`-t| zL-k!n>U1n0vJAB)x~$T++lW%VOF&fx&{n4WkVK`n06N4jb6)(wJh2v9sxr}uycij@ ze0`e0owqYaoF*6A9bERO%~vnsOwPLfIF3sk?@IOl4birUwcIhgk@B?NO-#-D@tKq> zId(k1n)oF)Xzh(V(mKXrtB(s#AZpBf3yc9WC3Y=-Zo6x=zl>&%=ZwOty_LgYg*zU< z)Uyi;DWU-BaJe?ZgSQXK1vxy@@T0^_ z^IehcUbGK0E=7ll@FAdx4xK^*B1?f(bK|FL>>r363 z*HhKnpuc(~`yPD%p!5S(-^&!tU!^D@(R{afxsfgRjh8+Kx-lVpWFVr$rz&6{1jhB{ zyP^V4&>|7#*Ec@pz=msDdg2GwF7WHTHu}BT#rwD<1vXc!3GZ0M^p6a*kc)pG zvTHGQ?j4q~gFxU?i(ygjvu)y`o9-uNFM95@d~#RbLRDPP|MS*Zs$&3oyzVZzg?nZ< zX*j3!y()yuYN^Wo;Mjt5?H!LpMlZo^u2|@NosdpbACz$A+6+N|aIQu0+hur#0%md3cDM=HkgtDUT56y8`d;US*GUB6=uGF1(hg;+2h zYb>k{iu*Ly==Sq>#5|@$c!_um27=4g5*Bc?ep(T!rPHnDx zsR23?;V`^M3Tn4P!iZ9*kpn{#fot6vPElB9Q9seHY$IY_Mef#u7B%AUZY?{TLwm8F zlhaL-Rhj=_tS7TP??jl=)CAs|S@#g{#Bvd~>}{cm@M-w`gP5(@z!(uswZ--m@i!_H zZEGDvfs9J^f?8lzzB47Wh!lTvM0Q4P7K!Ki0F;~pHZpD(gcC7sOk;WP%i#FuQ{)-n zp|v3VVvyC2#3r^j?QP?{^Bu5LLE}15l>J#$QqWHu&?^f34$^{kwJ&P|H8`=SI9x^m zt?OhR2TJ-uH`H~4^_l9sy`wmH+bZQHhO+x@leY1_7K+uGU7?&aUu zYh5d%>Ww#_%*5!>$b|&vE_t_3aN!>ku!%rfc}pZeLZI_F$wcNZLdB5i(vs6R=3nLc z-BlZ^qJs@F2kVVX0D|FqnqftI3a&fkx9P4&`S@xeGsMYN`7VlQdhl{xbg>S`_K#5iW&J##yux_>R%)g^RnX?6k}|_d9iWL&tx2=S^3OI1KK-zG zk^3ScyN&z1O@{tSRRz33cYd+G39Tk@>jt8#Z3q=19%cb7<(0peN4L& zJZEx>-4WP0Tfoh1{A9KgG7WtRoT<3@;++=4bfbY<&%Co<-$(!JQH`AsWtf%TBhNmy z14=5tmumWz`(KYlh&54h!f2X7SAKRlemFCJ8V}@mHY|GS2KvTDU0HjY!c>D>SA;XV z5_`ER_hx#U{^Yi&fiXZ|ZIT{y|WcS{&=)ztgCxt^ut^&i9;9$y=B zr?P-zCZ*Nyk7^7S0jeRXn=1O)wcUV(v&rhPD5zm)LDFyN7gc@okRk}dnDnc{g1X?} zaKrdEBHtaF&?Z(0fU>J0{7Wn?kJuQ;J$G>S$1U1J>JOHsN7{VS@|#zSBfOciA?lc5 zQi>8WR~2J)7PorP;RV)%AYhgA?MMDB0kR3PmzxSLmI z1`Qv{oPT2$@Qd@N45W{Ygav{WLONa#k6pROEcGOc^fg17(iv}`OXTOX)pOMXjrqC= z9X4QV6gE6v#_qf&tZoeS<)`uRY0w0?O;x!J@!qRfQ-ORp^FC%2&$7Mp_`Y(pbHZ!) zr}bHZ^kWxa`6=unW&#(QZk-9AS7|A!D_F?2NM8Lz=p{b^rD&EL3# zU7kd6r$sN9>TaVj$9Jhr3K-_4qWrBj1E(nXrR1vAY?ocOigVELUOv5H*7 zUeW#%ev^2;4WV2mC0%BaN>z$4?i%!b{Ry&#EE`$)OTR>CZDu^A?$qxdEmlU+!%x7J z9A6ZTkl3g2ot6JH`Xj?g^7yoqytMxzQG`!JB(w!hhNeeqf^lO6VN3Hb?|j%h7Z8E+ zl85+9soup1kPlTW8Xv^2&X9cdDG;0o-P_}-&iErs$9Z>5ag_evQ6`36KFcUb1XMPo zYp5XfOj!ieoMFU?SE60kiy(;QKp6B8Zk|tk_w}U0{qN1nzdw)pqQD>bXnj0ZK73K+ zO4f;*0TKw+D(5sq>!2et43Uv$6Si^cZhuK7hMP&xfv*8HftHKX!p|?QN&cCx&iqah z0?NXeP>F_tPki`&h`y4|y?mV$TSm1>aPeDFyZ-amU`Sj?3+ljKJRS%VjB57mzZUF! z4??@w!-_krL!+(XMk62|_7d(?9_wB!LuU+^i>O4rE3E<-cBTa26c@B>TMjg+ zpppE9LO7tmwVUA3wzgj)=x57Xn6XQI34pMIam^I>6#}wuokTglU0wsXHFxN)=7px z$yTzrAwFsl=QHQzidGj(zZrrTcT&>s1}B%DQ~20t%&(&yj(|7vMrZh(T$`L2RFbu^ zu>g=z9X?v)KnCOlW+Ldk-2N)ai3lmbS=Aspib2o#Ys%8fyaG7d<12FF06fN+ONv;c`OE zGV5`mUtiiYUBiydFMrX$0KvpB+yPrSH4kSa;{}}RaF+gi>45+oAlUrbB~dbdN#H%bwRwhR!+OX1obrX7txk^4X$2pVxSe6528| zE3K5|YMJF_@;#@$;I*o#?5pU(OH^9vsuYw7E}sItEd?fSjx=<-fwfy%8MU$&tGl}Sgnspmd!1p3}z3A0Up#WB5sD57u|VLARm|`K`HyTxl%C& ztOyF2rWhu{3K$QwINl=uj6~N<%*7ZPRam3;;fELE$07$BPt=QxdmR8&P#pm9Z_B4G z)kQ^MH>6p0%g)7c#r}mAK)0>(OZ6ge`Q`Xu+r+O}sI}OBXpM#}T-ZKU7paXV&utWh z%TZ!C#kQHNJZf4p2hY$A-o^Tqa$Sa&%;=*mL!v7>`=7cqUNOLQqWlDjk_t_ko}1O_ zR5e6qk)kho^l_9Yu~iy$f2U?&OUDa;n^9Rf3S}N?<_%0ddS@2%!aTHMp_#VdL&jP_ zD0Ta2TE=I`u$e~v*a?WCHnvrovQk5*yFp)P;gv4Ip;URQgQMY&z~}AMW^!9G$y;!K zV#3Zlg@&`Fv15OqI*615RFBw8%%#PoMu-?%Fn#Tn$|OEUhktYL*`AHE z8*%~LRA0QG@b$BW5U#ZO0`PC>hg|jG)1xZzx_4$8DBIcnt-ZafpRlTfe*J*oU((v!M3x@#^V4OZ zQQc4z*SI(bDIlqW)klVdyl7=FIE-`jH3L+(P|N%xWmTv`oBq8Us=|^4i?~dQHnM(8 zT|r;@=D$b`vhEkmV;xBNmUScuN_Z6`};*n>Z!W>KGmfcC1)lGtxM^=+-jE9UdprEQf=Ua2^Yyme#t46L&4aD8hzPqE zNh9Wr3~`eIC`mb5l@dPZBDBo<{v&cB*Yxf2sgSXh?hrRw=AA)qVUc8`ZZ?1`>0)Yk z(?!E+gwMKe&SJCa1Ktsl^WV`iy

  • oH0Y*Ck*VSg225E!S@Zr)`isf;9zp)x-u(F${cU9C4}le$_Y#6^0(^ z^5E2nxQ3Xrl}U`98%cJR=+cgBu|5yc4d{Ipd@6hLZUZ7=oPOZ68ovqO+(Qu17n7Q* z_AQmYI!Fkf2BX4$gOpk}4m{#fIM8y~c-#CK#55z+c6ypG?VVG$LNCJ6ED~pPuO{lM z@lsBE1>m|h(SBI<%c5r0yB}D+zx=)LL=j~hG{r>QO$O{q#wa!T>o-Zi7 zk(tShovzsOS7EVjUFGgBh*nRcbaH%_#02uSi_+L+g*BYdG3>Hm-NH{+1~4g@kc(%z zh(h5$h6@b1VN7FkJE5@s8!oL0t4#r99Oe7T&T_;5>_*1=*IaGhAtL4LedBq>Zrq-- z2bGBuT~k7&A9M1YYp1|s1m*gMQEI~ya2V3g&v&Ywni{!O5}S^vx~o~RDcMU246wm1 zIB|9qJUXo>x{|b>y2Buq)HGs>U7r^*NIGL=tmSy#0$(hS&8F*UC%QJ;&CfUM4{%3$ zB!+Qy8_ghjk|Q(_e1w`C>pmG`;ok(Uim}74Ve;s&JkP5Bzl$ZiSMxcF zS(Yz0YNLwkJuk&I=r4SRd`H{)N*tVTOX|dTy>{kthT3a<_jEgXbQI0un3AYp2lXXi zWhb4LmIvm24>;#=U%C53#JJ$1dSHNXbk1o`DJ%NTAEz&esv z_%P==h|%go(&)%}Nhn5(?alD5O;&W=*|S^S%m$hY*OvNS3ireGSrfqPTnD$FA=&vq zY7<<{h`Dtsu@rl_AzGAtr^qihBmG&0Ps3i4%boM}R@RfN6KC8qD($+-o;n0;+eg>3 z?)7u4PqLxW@LEr3AiXba+HL+C*m4ukTN!izb;1x*ICYWR9OQ`6>AlK{5FgE9c<$9K6q6x5Dbf>D7^*H1MYBU&p%!uXOs=HTdM+I&P^JnjG9* z%;)s=#4&M%apoV$w(9g^4)Y#E@iJ2`7|ZmA0e=aWN+yrX2drwcpSHHrXIUA$$n3^JLT0N+tTf6)|MLxHWemQ6?ako5}8 z)6;1^`insG-Ah+VEgo+#478|YI{`r<6q00GpVq$B!ir{Dqq2=#<7=&JH$-5ubwO8U zufg2qF_Fi8v5CBUl8B5oSupNw22dGTZ>nvS&;UU^7skT<5!8M)91igEYPVzD5 z5C5(X_x%8ovXS6=G?+75s?#NL$y1yRgoxBi?dc+N`ZxNlhZY zGeL-$!MCGR-Fv{byXqqG&~-V56A%GPP050qC?k8a@)Gu1@*3lvU{l$rFfcMh=D*51 z`1Ms8$C$C{Y`{uIhxhc7HR2x1rl#U+c>m{4WXA-t0Y{<7Xymc=JRMG&6eMkS8N-!a zXGTSd_cF*hrKv^yW5Osk&kEk$+$XXLF7`n z#Jq;w5VS4K5o_>&iKjEbGUYYl%AY zZ7>WT#7GMDbO@D6<&qR;SJR z<69;VUt2l$Bm}cvz5NrtlaaRcrcBJzgVhK2hmfSjvl^SvOP|fH^^0Ub-9z{QYF<-{ zc8hOZ@T9Sv`TKqN_!b#CVxzQdBe^({#g=A>dsCzg>Cvf>k!=O+m&gQ9v;{QJ3(G=@ z9Yx6BMzr`V>bO@hF(X~kM23D|Nq0L@O#lZq$AtZku>Y95iGP3!Ln1LYMLkFveD}WA zl{qNcu!qsIh|hZQXJ6Qi^2J4@e*ChaLTW_|Sr^&xRR;4HZW@P6#@5I{voN9~f5yZ$ zQoqCVr3!`%JWGp=N!8eX0W-RHK~`UqxEAG*wxvfY~HPZ1f@l=IGlX$uk%FFMlusVreeX|&9uU>nl6u`vB z$TEJqVsed>*Cs1Al>=N6%@$ar#mXkcdG-eyfF|tUn}jgtMhJ4~UDDu|F0J=AE7&g2 z4xDTfBAw1xB$tlhGHKy3?=HA{OM6F)eejFxv8FgHG@|rqdmU+|1+CU)xG`gO1FACi z;}dsP>*2+8mKV18{T)Dkp3Bf4RtjTi47ZbWt7t(l)Zy>e(_DJ34X@2RK2pg|MWlZK zzJ#aG7Kb(s?ZC*3z2y6*Eo^jFaqi!~`h318;?-6G0%JvPO^X*~6uOj~Khfv89>R2~@pKm}~7gn|}Hub*a~!EuYqPm=geAjf=;^dAu> zuK$EEu`;s$FT%vm#PmP?eE)A4CI=%s$Nz;esc3D`&j-#UD@MUb$Vj-kwGNs#2Eg&0 z#$U7kP6mf6F6IFRkQR6Jig$w~5!-su?9n@p~(b>|c1g!oz#=C_CZrL${ z)qTX|kwZh3dGrGF1N+|;VCL0fLW14~{Vw$5DbyYU0;{8#M4vqbUX&Lv!@-Z@9bX$k zGrigMRXVzL_LtdrvW z+rblcckk)pap#X@%S)-|MFmga3v+x8boys2zb02+YZt@dH%zqux504G2nZ%;@8NaKAUOB0mqR?nVM&UN5YH`0=~_=D*Os zXpmsvcralD@)4)?0SK@b2&;X&^1rntf=0GBa$tZ+Z2Y(a_iW3u-0LVX!67y_IX}0# zFy#}MzLC0X*pX*fA%Nyu)h-i568<+89e6m%J%OciL%Hh zA>cwk%FXPp9ai2SMX(P&lmXz+jzIKt(Q$eIFM)ACP-Kulw!W|5Jx@P8hd<;WdK%w) z<3BfWR35#1JyVxGS3hA`(f)lt-;RG38p1xNl+6omO@F=Z)C|uGBvnB*hj{#}=Bqe| z@6LeN0Pub083ngd^>r4sa5K7v4-i0oZG~h#+G8SD1UUwMwOaw%@*|%1SaUppJG8gS zZQ6SN;RYTFhAmEBP zRZG=CFflo=_h!qcd?3u;J!{i`+tC!cg0p7cpY<)g&6nLurnMyEl@+@2`?zr@B`Qy$ z4n=gJ`o)sAR)<#@(%Dgbrjt9RtFk@v7@U}#!&xAWPkE$=7W>H85c7qS(=VHBgWM=E z5oseQ3q38#cqhyL^VK+-)ao@;m+l)l_vaZUfTP=V;!|#h0-qrn^R}Z|fk`PtVcrlo z2{yX!ecZ>VSd{5V>y|yWEVndI;6##cz>o*qPBSK8%aPEl7qFd z_~*eQUV#1j+o;&|&2n>fW_Yh;eETXf22uxGd0)&BACfy^ZOp5u5h@O^IpI^;FG(%+OtBtqwsq|r8>*dM`wWCl+AbfE&133%Xn*JvQ}S>8@;8^nIQKI2i#FrPXh#lmn{P3%1^>`#-yB)rq~S(2iRaA5e+BLm+Pw5!tci9!6Nn_T+@#eW>+}PQH#JPm0K;z{D6rj zk{kjR{OI9%>oxwts`hiexsUZ*JO&MT&xbX$4+dvC?u{zS*1gqt|J@s=#5fqbQz<5N z^4+kzxc0l+?auI*7=>%Tt0*ptT2BI)lEdp? zR*=|&?}W7{UM;WwZKVa@oZ8R2UNLerqK(^>iVN47bXNK{ZmSNoH-sVqIG{ z62d5$;c*p2xmNW??|Cc{qNC)8#kz61drAfzlcy@PzJt31KJe@_bn3t*>H4bP)cAm_ zlV#SX!B4v(7kadF(0O>{&rOy7`s=uPZ^u?bCrggxu}Rbx6nkGld0mtgW0km_?-i<` zx^kZld+=(a+FnwD>U?Vdhybg8V_De-9$43TUQRXAQWj}fqb1uCK8`>E?S^B6)NjnZ zk7J{S36NTEBc-6&q3hY^d>yyY8{Y#V_$~x{&Nk7S5)mjFT<_q>Uqm3ZcHwx6Ze>A85p|ijjAfrUS_WPXyCA z(!tkc)jT-{FmgVaC)2(kjc^BMF)ccoxME^rp;T67}#JuAH28Fwto;TqCZx#35+n|qg;Yjy-n zccM+EsU7n++gcH5SjTKO&+o%B7AQx_`?++X&|nGMsMRt|XlZB!vm zEw_g#hb$7wL|sHTo3t*e1W6g`qH5B}a%B?i7jVsRt(Blhanq9>v)z8`D=!V0#?qiB zIxZq}avL}e^84f*h@Fsg!QSOs>sXa{pMa;%*G5ccN`S>i^7poD*F`M9tljQ)F}&n# zRLk_<0wp4O^4#p#@%y?*!V#r6`((~UBFo(VPzi`y88Nlq;bqJ_twC|K5!J3#vQ#bJ z*k6MMG&M!3ZdSawBVC#5d!FTIcHoMKLAKWEoW{GmiN!|;H$5&m%-uDrkL9(&QDor5 zkqaeymJK*ucxN+2VckSeQ(X7do01=;cxqdb@FsZ-9lwgCKxffpVzmUkQ@b-YEYFRz z@UZvhjSv}WXHJxusCS}I6K`WUab_WY1Cf@GDh!SlB(WOhS}{P?9%nD={pR7lxwDkz zkRg=wzrc?Bu-E;=<8xg2#v$?zD~y)9RtQ zN8|=(JSc}TDeD4(uzX7NoiLtt*7F!vIISL8YE#_%)_iYSxokxAgPfI;8TNsjq-L=e zfg$XTi0q>sdpp-b==YkeT7kAkC7)jArczZRfp3Goj*1@9jYe~yhvj(!`15ipJv~&& z1}o?JYjWGvVe$miyTdd_MaZCrU5QxH0fm^N6!|3>`kQW7y1iZmC(*I(9ms#B=y_ps z;4kg;=18iXh1rZIMV2^Lil<`0XK@3_C!U0U4`6#u_12la4Jl%9OS-e4(`jM4ASB?m zYOrdrDH2R0ARk^TJ+oFFxLKjy*;F~L@FM~!6qphrJ92VJz7MmJdP?)@fhv6QYc~t1 zIBpBO(sMPan(ew^<2u2w&-~GSb66LBo?Bk{lcEuklgl6NTJ8(^u|<@8V+a*_!I6_V zut*!97ht8i4xJ}=$K(=BNIQzkd@g!`c>5FeW$!(U19M-Zw^3aRzFN}y>)tSp2ohJG^f{XD4f# z%kgP@aMVwd!;S%(OeT^ZuM|d+(^1@2sFCO7Nygiodpq__{~}nk;9;CN4=|l+HBM0B z-=Pq3JawOumid$CR!+QCw}~MBS;)Pip*9P298dyQKyVViq39)>J}UnORklbUF^#=9 zpYEy?p%tHG8vtTCB}S)tMdsh+ya{q+T%8LYIzB|(P+saU(%$ax7z2eIP1RLT8=?<# zip0JDOuM(BOfr{8%MEdMH01?!m;W(?(OnF2Zn82tRpg<=uoF!;-UIK$k(2fTu%yDg zn`yE|(T|n!wyl`bO(+-GiMEwHFa};E0*WhRu6YA6XtG#LVaKCbTER>)^fB6uY#LWi zW4np^q%hGcV$@kF`K=pq_-h3uLtrU|BP-Yq#`j{6vNIpXNAkE6&81ja00rV!DD?&epGDsXzc=0_jS}HHeY{%a#r04K~a4-lMVVbMV_eVC~5PJ&6}ncU2`R+ z$m;1&TTZr&<*1(b6or^mtrHxL%m>9j%%9$ z9A5kle*phDbIU0T-kV&ZPS`;R0v`BG;idjdu9UGeH=&y)ACX~pL$N;Wte2!5Nw`Xr z$@9Q7CNFXQ2;rE|7$_dOiR`TN^K7eQDaGOHh5a*A$yQP(vBeeD^CNM16v>3u!pt0_ zJSDfC)$QC%Z}T=Ap>E(WOGVvX63^*mU#mkJV(hH;24Mv}OO=ct&2G@w_#vI)SoBeH zj-J9D$l(KqLW4$7 zz52RE<)V?)6l5wY5lZ<@_~wKqH7%Ee*Oln$&!`%=ywdx-7TINh<^W zIrUN{YK4DCXZw!$jt6cl200%SKU;U;briNvf!0?9%`#(LxN#R>4(|7u(ZiMwxEama zq-%Jo1men7AJB;T>b})G2OqLs5xGPgrTGUPJnWZZEZ|U5D8ls-O{gnXko2T39j_Jx z&TZ{Czd+D3S{=XfK%PF2rkU1kB1*bD&f-2CYfeAI29upmmPDWI=*Ma^=^BKcNAXAD z&|M5(z)og2+|z783Miya_oDms<%%!8ef|5mnB!Sl>ygIuU~%ahjED{Fsj68(gtz>r=&U@^XkUD$OE9z#6>T#?9$YOd$}SMKMOS z{)E&DE3FmSCX}ffAf~!rB{BYVIa=?{^KvDc!FqSj%*;p|(FjIkqURbqc5EjjYOT9c zX(nlv!&kEWcr=;b0}#ZPx62nMYZ{IdsY2pk;ad^mN&!V@6otom%aUkP)z{fo?0FF% zb!JX1DrA@OV&hAiYs5PvIHkK9C*gg9U@_B~rrH(tltp-wxA&sua%}GsDqKgB`18~1~k%=)Ti^4_Jg%jw&X{6 z>LDHGud;b1wn0?gKy_|OUqbrm^z@4C)X`}q@hjP;|9<(l+^OAj&_x)cCV5| zw)*5?lgrje(_R@?8$~d@5KVIQ!kxB0TFs5zK`^T^4W--AR~!1qr6qaFLmXftPIr3%6OUZHJrqKe+Z+QD~07@@0O?KXqc?onmfkX zmlXfj6&JqrRn%=JN5BvHz)!~`vd_lvdzjbuOe?nG-Sys~xN|5R#3UA`Umff`%TiGb zqeCqefRw2W6&j+A2tVt&7*s_c;p1mXL*wkR zRG`kR6ksqkRP!Pp2;KWB7jjgKjqQ8C_cx+wUApF0&%y|CzrgYlKgHD1i9r1T{Yrf^ zg=Ol{(u}etLu5zCqs>!g7v60|qLJCDo)KnLbmI}-5{R)C7p{SquW4pKbKKQ({UxLMV+UZEKyq}_A;bOKNo&q8#VOi%i{w^WcP3((S zC8!PK`Qve5#buh5vw8xYr7rEB$qsloXy_=dmrN$+HG^@e@B*NhZJ+d0U*$*djaHiMOfs*q z!K>1_GenggSA*!?#?g>+YUv3TbG@wd>diQ)U;HJ2jKI8R7{^N#Q%=8+@FkqgeBHwm zKRpSf)UD$EVY<}!B5hQ6Cie6+1P_irz!^np6z!6wMvaOZ#ej?2sd$pnh)S^;UKYbt z^O1#aKs1c*a#VTDUJEyT?~`S@u#eB#wwMLyAXH>2w?UP$C{T%l7k?+B#BkZ2*Lo#f z8=+c>t#C_aF{U7FoDBK%vYp!zB_1xTlr;kUUB4bUvumm$$k3b8z=z$h^w$gOmmei| zQcOhZCU(yUA&D_D4ppJoMNW7eyz0kp+%G}X6BkJ+}hmG}aB(|s)HjbSi5 z_G5q$=Dl6l$mBKznoK>ZN7P`F8R-HSfiAf@^R>3YX=OsYyssE3b{a+L1Y?Z!$PX)w zUzHHKR&W$nLi3!Bf)-r3tN7BuqYhvTl93&&)`zCmwJk7*cW_Fj%xw?cP8fEGRd!ko$ODC?APRtl0Id42T*u=ahvm9#Migh zTOx2{_9ppjBV97%46fYVQ&i%w$ElU+dt|g_8M2Tw%+DjWWi-vlN^{0Tuhi}LxsyGG*X=FA*}Qho?MdkxT! zWPp7|R5rVX<{v00bi32c0S~GZ2d;Q7T_VZVh}9`CrbzpTVvnfReYyn8uC5mvAOYe#} z9&NwP4nhl!0ushkMf57+ErE|{VX6De&4}gNBL$4EoK^N4#V6;6p`e4r1c@DtUkw+n zYp49|@LFg;$Su#lqBNo3oRM`npO$F!83_ev%3;%#T2kj9$G>&l z$SszG-Q_*tb$lyGb#V9%ob*&Ks@0)2gb@}#&jbzjXf0J+auykTFS%H$9mV%mrW9h} zJ{0h(X0r=Wc-tKwry?X|y>L5othwh^1Xh1#5f#9W>O4FeLBlO!8tA0tOVY`0)0VjI zR9p4NAT*(6))~@GWl~$kf0Cx|`|M7eyjEkJ@_!)_cxSY(B8*C})pt2@%21e^-9Tq* zd1XHM%rY(elN__Sr`u7>Plz&-1a0FL{PC(_3oTQ7@bD1xt7K%*8TSRwrDW4=3ma;r zRrK8eYd{e5%V0Ml?~?wE*|qxPF~G%F$&N&9uL9=zH|k#=<;dg!sgp%yj@DZ&=M+h8 z2!P#*9HoplM>=|}hx%rh7KULHUiqj3@V6C{WArB5Ruzm*wPahd+K-NI%dawdHrJy6 z*hXqhTX&M}`SabU3mHownh8C2)TLx}m1E&Hre6)$G?LnGE@y%yJ)2LR$=FFWk#pSB z8}lGNdXAMJen^fXY3NctJsqHKn?gU5qXT*cYl9}Y7PT;3bbq~d_T93KAE`PT^ULur z``A+u?1ZkxxS|DA38cZ8nW0s9ENgf_8A_BzXj>o z0B-tiOQhUw#31$| zwEqaWIZZjpV$PpOYE2_Rc~5S9H8|y|L)2_8~hFT0n=ztib5E@84C^Q{!ltm)FB* z;I5x4L@Nv&x8xIls!Z}_WeLMOaNcV_jr(c{Y1~(Q{`$r(0fRgRzJ58h01H*w_@?Mz z?M)WL0C%|iCma7P`U{=@=(iBM0SO>NqM{;$_-g|Z+R^aT=uNwLXaDI5+3eAG{|5G* zmN)Z<>jaetS_KFF5qxoKyafgRrwaZC_WhxHeSyo#!qJCoafDD0wC+QE^y?fjh@T>G zdp*?Y+Xf;b%y!=d+O3`0p+Mnmttvni%kx|GLr9a-mC;objl6Q}^NRu$7i0dl5JC!oer`J`*R37k$2G# z{puEcBF`E32PoCg+z$2-LbLD3{wHtjXXEf^=U1!p*cM1PmLj6oNKY1|YZ8Q4P!(J6 zwW_Nh;%O~b?-oxW5g}X|&g%-xFaJ2WS3Ty}8V#=AJY{Wo0u25W;II@QJN|_JFd%X_cK&jhy3`DZ?1#_Au*1`58hq+! zut`aVT~7ZAc}M*Tnw`1xA^9{Y=tzT*Eu4Kf+Z-r+DXBJYV z1~`2tNRSJhZ7G{1di3lErgVedh}MH-zNlYX(BS^f?%>5r(XZx+f4`2)C5f`x)N@n> zGMGg50o6<7PhCXGY@07fQDM*OBC`J(y#Oj)w`ok!C1zjFEIN|rouTKX#IYv%Z73YK zavl?R90~V|e>3=W?o+eK%-NFc=9=NW(^EKF-pez=q4Uzbyh$++I;)6fIum-;Z)QXp z!>0c-_Lyo$N2~fvPxAY-BJ8dNvzqkh?)dTS>?*zV25S5j^D#6&jWf3h%Se zsZGY~DA2W=JrVf{BS?yuhuQ{skR^tvUll>ni{Tg0vVs}tozj=z!+bX30)@4a^l(^)vsxbW_P@#1PP zO7~`;^*A-hc#R2{-4KWCnF+09blH30&Yhm)2DYbH7tN=A5+)%T)M^J+ZtF!f%DB>P zK94BFdCOyu0XOEFR*xoDwSd0iv1LCG9VG?v=MA z{#;5w7_D&vOgokCnxDq&Tf5VHBFt9Wru^NCqP|X+_VXyJ82VipS(a`6Cx6chcj;5< zFw_P<%36s8Ofc77=@BLScZ6>{P3n_o8{g8leXYf+*K^fmzQ?R^uX8${Hu|{Ijys`k1hw4s zN{4^D>}~FK^0nw4@iUdi=rg^HArdj8-c z!xT;}b9+H8+}lN1 zCAqOTn3%71R0cKC=j1BKX3w5R5qb1;`(pF%21N!Gzaw!zna`;_<6*;~9Xl7B*q$sl)YA!J^YD_5Z zwnUL2wd{q-hbs>>^pp9rD(IF%4w)%*AXC5BLXg)1qC!%zNTDYYb|L2#*a@b`poJ}$ zr=LLSN`_F@H*^w-@UPeE2z;z6+OvAPS#a|?I_1p6d-dKmA-k34s%DhG<$Tw}@ACW+ zAN7xw&t(>_+qBMeq*c&rUHflxT475`Oe4;94RAyICBy7j+*wxZMcPu~1qAxBN?$amd3xK)S?Pzi^)5~>q==1| zKiS8x7Ju+2)+k_UlGxgUD&`+IS$nE{YkQD$IQReQ`Rw9YUVL(jn(aPuZ6Dg+y}U`u z138r>bKe=YNY!fHWJMZ4Mvlrp(X&uuhP||+3T#Nj}_}pqStY` zo~OEsTzY_l8Y(*=GV_25rRVsHC^N^WN|*|H_(Whcc03W>HK-HQ;n~z)-d5Qm5f9Sf z3BYn*k~=tr22d<%?hpqdCz$e)$=JD&yXM=(G!=ND_58h=!)3#P4GA?q7GjvDg5c}9 zy!V^}U)wc*13bl{BcPy|B3ZexP_ut0)j_Gyc1KOzpscew`b-Aa0QlDJE19|y%loJ+ zewEcgJy9=fxv0eR6)nv-Sf%Gd+3I*myfZ>q*rs1^=4Dp7ykhzESF?MA7wro7a4MFK ziND&@zi8W~`g#B8(g>2r_N$T0+%3!Jz3uFXIz0_od=sZ*qPURe;8~BfI+xeK4Le8} z_sO1U&4WRa^f^IQsWg_g)`@7bx2Sd5lM{O3M;9?n#n0=(a(%IHSomtd*q;zC59`6zPb@W z3R#X(y_GdaAOq3GKJu)hyO_i_0c_v+Tx@K#Rk&L zucZRqgCdmj=ij&e0Ey0+ZYURB%&IrXpk*7}Q$F(V9`lB{?;)h7@p^LFqe?MCpYjvZ%51*S=wi-Og8a6>Slh+=Qb|h`uC|q+86l02dfVNxVL?M_o`lW;?q!-i)kqS&DLtuS zainiiV<7h^)&!qw5B4vmtK=+ zOp<)lw~ItU8D*3V341enNNCg5YW;J-&G*ak~%;P5% zFR_UH8{~Pp&bzdEOWyrkDRI+dH)69%v(1QenYkqj$~Cci_aV$g+e6QCN?3SDOOXefGW%C|mji zE_9N{?*RKT){?|`<@eZE8w06tQ1PL`Ej<*POC%{$DY>SCPqxD)EFNxCz4E3e5lS-1 zL!EahMkSIsfSSr52_F9KNd>e|3#i)_6G@#b;=>ulF1%wSn;*nTiuL=*o~+O#ss+Ut z@fBCs9M7QWPn^s6U!fX~; zk?~{zN578L?`6wjIP@ORv6lh#+J0mP-_P-w(< z;=_&^S=7gwG96!L6$|6)u&`c$9O6-079}*qXuY?qB}EyC)9_!zyo+hy#l?z{d9+~Y zBo$=$z1b1vA+Vb`UA)?*{LDK#A0@{~Yw7J@KpQ4oLfF)?MS`Y|5W7yn1R8am6CuGD zHf6esi4znQ&I-b?bP&xFs&)0}JSfNJ_vfxufe0M zMvi^ZdnNi!dNhYRAz(R>Jop+U0^>_z>jznDpTb{3vqbW@ce#Z{vzz)yxt zkH@i;4MLh9L_d|q3Ns?&2Nk2EwKr<#ft_`kW#(Th6d$uv%w^pc(Bk5r`Z3=<-HnNp zCA;la>FCsJ-&v%gl$_?fCA4*`m^Xxnap=eSv95Pz4guA>8ppE;57|rLOp=6L=ylPQ zt}`jsOU1FkFCC5z^QDxN(e6|K zP{hni(KCP}%68)dN1COTwIFGH0VhHVPs{HduD+AP&c!#jRmY#GsyeoLn(quq_nE9+ zUjg1UmXzV!3R`HoXHBPf#gE8v$U3_UPa?U?OMMSp|Fg9Vi6*6bsmsT7cZu}VI!77x z%N5&FPwln_^397HjNWvYS%(cf@)TRKE zK31!Q@S(kGWxd8!K&h!vXO-y%4*}xNn{8gs>HGor+Ye~E z)kf&pJlE$ge^mxAzZIv>bDr+$L5iOv*r}i8w(Mrpu*zw1;QJMo%*q`LC+_Wk0Rr%Y zK*{eq9_D&to6?Dtg~eLPd_J3bfR9X|57H^7r?a;iJxLmY>JfQZRTZ9r zbP$BN;-ki#22cf8KCH@;73;OgNRUFWx_cei*6aMZ7BsHeLzI;zsT7)q0Hn0tTjE`= zlMFWo;oC>Fq^H%LD2qtZ=iqT_DxdxgIM;WGExOiK8*9{iyKbvHW4w-XT(M3U2Vp{Au>yxv^03tR> zw^wNN3TL>$=h<#=K--t><9%TtXE4xw^9=C5>@#ZtySwQq==~zJ)~DoUnRJ06N$INO zYwt5+v39*{+LH9Ua*g$?yxm1KOhcA7DanB{&N!_VLI%FXVSBD&N7G(DULqv5uwGa7 zi8J#)iNYEm8}S*#uj@uKb9s&Z8c~zslBtJ>ddcK6_HOT#a{MZC(3su1%L{cz9(}Bn z@`AvLE@{V`yNclZr1&a*w%X?yQm@{=?6EqiDG`WD;*Pe1U9V$zG!@mSZZntR=x?~Z zG6^@hBir%7GMHszf`NB1gR@Jx>K?IXSw89Zl;3%9D2f`T1dcA#0DV&3J3nU5B!L{a z{11F}r2E5wMzS7b@#Yxb5TAH>V~~OE8=0w6kibo|xQ3ip9-Pi?H*OCBsSwlXdSvFQ zN%s}1$cW{#EadN(fF}P4lNn_kaoBLpYBRMmtkc@SUrShAZYZ5;+teTrijg*R*XCcbo__oqo_0Q*-=| zW?maDeVljX`WkMOJgFOGyUIdU`!WxgF?lsZ1t+9r^7ay;N>X3Um z&*^w>UNa>6)N^6DQu-Bm2^J912zzp#qZO8F+Nq~@H5f}?Nw8!B)qMKoEfHDFJI(4B z(^g6l-O1g(V6s_Op4N$yp~nzKbgf1z%~riBTXFsU#zIwCSJ(&kzkWlrQJb5NXraug z#r%f^_ua}hc+<8+HNM-A&HAI%|4J^zFNqeh#bK{4Gz+eXdga)qvlgywO*}G2{3;_w z_-f}ebOv3=#NxK~@Ld~D*L@L3wIMm3S{!jTspQ~@3#&81|1D_Jn(C5uDk^2=chTA4 zKt1XI?dFKZH)9oPG1cpf>}?#TCZy$d93w*+DMqw96oY9Q!+Jh!$JW6l5b^Eh32_k9 z46&S9m0ekBFF;h2+7$33)%d^~jLT-BZ|lq7ol?0`6W(6X^YmXhE}m6zG7`o8TcR=V zs@sO$h%3k-0VuF&E@IShR^_1Q?uBo5_r_#Q{ubgq&KUdHD<qfYpE~;39#E5=XN@gTFMj|o6q9~kF!a`y$QuCMkSjGN1 z|8U&u)vTM9CO&Gv!vjy9Y#A+&`(Fg1OJ`QCBcuF+HP%2F@2n#P@A*-oh-fE1=SOe= zg^(t#PA!{A_DT)1!YJMHcmePge&qsS?2!2H&wxp6pDuQ+ZKXLG22TJs-qstI=}qE!6eEEGdO|H?kW_c@i1 zI7ItTt&&fb_($^7^tz_QbjYI|GyCUqG0@=~HVHMu#Ar#mKUt|S{^d}~J1ge@(3^>6 z8+a`y^C?9X=?F4eIS(KVu@ao_NY6uBJYTX`o*Ha|IY&DX zDci+unEpQ2DGqj}VIk+Y#;mzaJwW#!mWMQ#_C#ZrspF1s0)1@u^=bIy2VF|}?~4Hn ze=2BB36=|;{u=7rL@L!bfr}3Qe5p)HHAZ?>nSv7+HS#5|ifp`5*NWt>kvV2pDtk!& zTb3ge4ACKxm-u+Q4}#Rf)6v(vD*uGk)2ln`(=^>c9MhDghlt9yqmi+EXW>jvUfK)# zT8`Z z_1DL>82w%cdrm0AYU2B|{?f}6YzM{O8fVw4-#_-ok<8zNw;@4?M{~`G=QZM)aSbC0 z$|9b8Ss~%Lnnb~NLB%uG#2O2pb0$6#rROQ)lGaln;#v$V!<)tj<1bf@B9;V~DsPqN zq|HMs7`Gotn;wKw0OuQj-`|;tt2Q>|YrXQ79 zashGIs}<+1W$~p((2D%69!E3Rn=9r+d88XT@m-r|t)@*5a}sd+-}psk|6*JVP+qw9 z7WFFYR|V@vMDx{DoCvSn>3s0w?JIH}Y(#_G$%Jh40_VY+s7FRnZIZ0Jthc8Z)9Opw z>F27ei!&f#Rh2-0HWWOr()WV>7?YO~>GO4C&l!z31X8Chp!;DMy)5u(LZpx0j%Fdc z+|VOrcCWHn%!v|$R#o(b6H|quV?fkgVbzVkwrz{n&7UIPHE=!HS{5{&+sZ0l>Dhpu zjpSn>y69s%;?EX8#)J=!XPAdvZ*)@`t|jjvRdzUQ%j2ZiJ2_P$E+v8{r0WDQ{@WOx zYMu+#4_suKZ}Q8izyp$GjT0lVREaeZEw3O=lLC&ux)CXDbTHxS73S*&v~>kd=i2-- zmEO=@2RaH-3^a!Ykyteh_=Y(=`2`hH5}$jkO=k!zYEufOkxOS9T^fzp7svoA**YS| z1Qg{G6>EpqIH^^W*oa}-p-pJzUT9sEB-X5eqhY*#98c8VT@ZxSKqA}h;f8^?Lc*s> zB)uQ#rA<&+-?Mi~oAi;5tiTpVF#XILcLjQxFF>n5h z_d2W^XJp;4O3cv>JNO(NL=-DqI(+GHAE}{hPPWkEwJwzkJLd-fxl|RfInuIUjokj9(3=~wATxSCf%c;sgr>+@H)=l1ielHmU|sN8G!}CetrOM3 zn}r>?_M}AWFT?4<)u?99rqc{r!qG2ip+<_$=SWE}8RE3lXTQJi!22n+s3%rka& zm0*{IFoMY#3^E!NmzGFtB_t%sQCgngB(Mm8kf5NXyvh6KoqqG*zUKbhz&N#eU0%KI z^;`9w38)Dp1Dc3~0IvW8ibFy`0~rTUd5$3kAV{bnfFKb91IhZUU^mCF#ZhOLSO=5segw-JRpxi z02?seD+y2)5f6i8Y8^DR_Td$=A9f!QLRwn-;TH~^qDwfD;h!}=2VAUEaI+SLP>`kfWCzo1!7z9}qF+E*9U)Zg9=P9OR6ovuT^@uD z?+P}oBM`S9t`8d=m?b3^z<{Q=Z_ZOFfdM|HynuY_8eOPR-?Bcv2F_hYw7pAspF+M- z|GRP^K>^}rg;A()^a4u!t^fNcC)dD1yj&jvr-vtGYOg+APl2|jkEfoh@%JpJkRpHs z0wgIV2}}SVsK6p3damxM3~x%wO8%?_U6M3=mL<0ItD3li%?;RpH#9v9)nxLyG`b2x%U}e**bwell&Eb{s@I z_6h$@UpTdi=jxJ>X7(-np1%wg6$DGayZ{IY0saDQLZSMaa>RbNY( z!J2+g;7_t5^i2qW#BX3gPgkFz$L}!YP2Wl=_}wkk2Lw%gA;8V=+zuECT#!Lu$Zy~H ze+2T8_kRL8e)I3GA4~VvmY;Tqf95Yd^&0L;*!yIhX#+Y`7or!$m0thv<}%QSdE|3J z90UF9Z>v>d|Jt-d7en{@34Khl%^q)T-E{qV@=O!nj0|X#OG=RZ$wbziu(JznDl@q7%WUmJt z0 z+!j!|l=e3|{O2TI=U&@^yCu*QzNdr&7TQA2*Nb)j+1GTk81XS%OnVuL>*&;U5y;W3 zfh}IjEbtwU(;3D_gd&ieq?;XXUZshA*UaunPN%_w{5}!%YB&<@UDGyVD1Z9>k6K2Q zha004gBIh~0DlJ~*YJ6HV{VzR^T4g>JeL!TZ(OhMRjqea{U%%6ZCUR<<-=n7XHGvP zrkxlVp^sK=#@h2r*Z2)-&A5mWXE^o7r9~}$5-nWb7ua|`H8A@)S5Q=@(F!g2#^&eK ztNUtO8P*7>+Y%~;sI)?3)=+~}cB7p*Q=O!IG>nW=9eOwGKC6Nc?RFY_L+_It@pt=) z*o`I4TUxQU zQUxB_ipX4&TD!7#<+>DHTPsF8l*LBvMmIBNVda2@S^gOxcdx{Fl*E#G(#QUni~LXo zg}}+;<=;!~AAXh4KMxO1*kYM}GjOCGy4hX}*yUdBR7Sg~ICYn#T&+?q_fdMbISC=@ zR&uTdDmfj#RL+aeZc^+^G4rVd-*)e;vEh?ta)W9(o1@{Wi$9sv+S5eE7H#aRVDUX@ zbGYL(S(`#X?IKLxIUjcg!f@AwuEn*$Q}3fK3JukDO;DwH7=PfWiZBb+;SH*TCQq4V zfQMfp#7cmRcjMzZ1IBt&}kCn3x^s^^KTn@5u|XRRh+ z4Csl7du>&FCAuf^?-6M%{gcqzOwCE%MGkYEO_n_yxY^u_3u%C*n)9-;QCQNk9~fAb zC=&j;?=78oROhvX_~t)?xf6RS#!?}l-9dRO!8WjsC?^A9drm7wcet$goA&ZM;#y{mnw3oHz%qQSp zf{bn?ocG){eG4<4ht@g^GY%71A1jWXF&i7hP>n1tT!R9O7xymzUbB5}QB=J?1zk+_ zLZWRYUJ-hI6idb;*#mi^FPWZl*O94yVnSC9yoUA}4@s+Wcj#y_$eFa{Ev@cCNbzP> zAl6+3^;fWR4vFUof^(JGrN7~wLQ6?QwZ^E+-KO2ql<|krN@I~)WZjn8sPseEfyW(9 zY$EwJN;Suq(yjR;4RnQ~Q%Lqszr;|*lkCgVm{{L;&EhIJ^XW-Gg=XfP!s$4y!PPEX zW~gf#Y1)`fn*1_VrWEMQ=es7IL4HfVZhG_Oo4~bQ#F`Q-q-sXPtjoXIM{v&(Y%qSri<-&2SQpKko63BAC721O$EMz|uDe73Ze&gqpta#1g zR*Kktu-_{zyk+B7oHbF(X0;H(aFISh)lI z$7jfbJod*-v%K-VXRmjgw$AK&tk|U&j6?u5zvRBYPeUqhL0d{ajURdS)MJ3aCgny; z@>r>N*?aKU%~gRrewpCNAk?mqR*a8;@n1R1CErekJR$m$^-AQO9cw5!wbosGbjEb@ zv(3&?=%`U{8z0=b0hbsR>m4@3<@({Bq?cCL>`jxE67Y25m^`cSGaVxznx5PC?J0>@ z%{g}RG4}YuG`Nkub{cy$1<>XgmG-BbM^UItjIvhHSK-6I60H!^w|7Ojb~i)ySc2s1 z`hAxBl`{v${b9LR!lyK$jh2oWu;3j0B^OrRsaK8K-EbP(6U3p-d{|Fp4&Qrt59=@D zM3orYusn){@T{@uo2J(mS68^Ehbg%1jC8cdu7=r+GFO4rRT4eNDfCpEVG=d0PO6t! zLp{SkM8kizEsr4jYX9KIk?^OeFCPKm?8sQFIq6*dA+>?};wquBAweyo+3UkQCa}5H z*8BtjpG(MS)$y@2b?y;x0Ps}sqNTqZ3@|q*+msH^&2AmZn3|H2J1W3B>x{Nb8^@WI z3#|*;N&D(@$&zOKg9aRY-8|`c^_~0?c~|PBlg|lPk*K}qk@{u2_V-77d;Q9KfpDM8 z^UvUr&Ck1P`ogNdknSgPnwx6wQWJjU?_7OsUd%wrfbN%lJXg{d30W4(!41q&_t%=K zhH?qfx6(5dE)KPc}zOmW65ITmi(>EVBKN`}G2`zTLV2KAAJ3|M7QXOa&$~k%#6V7YCZtq!7 zhnNiAQald1(Hs(2G{p=k@AT}2q(*n28=YpE!px*3l0+g;PhAe(nG9RLxJgJoN`fR? zsAEg4HLpK5^S8eeDmPuEzfDUc%&g(i`BfDKkp_tlbE)q?6F~JVRaDVBKXA&!r7H$+ z0=<{;%a60*O00xZ|2EI2;P$cJS3tN~^re0KoIH;lvzia@vREA$R_V(a`9~w+0XMPb zEyw?rTYp{U8jUtu40hWjDu3vj7C)D)#FgoGHc!vm^h~vnBqyt9 zZ>rv`f4|rI)^NQg#EbbdaMd5|UV&eWAL%QVvv99v%3k$TTHR||-%)Q2M9H0zn%*zu z&ifHGz1f)c4mgOZULHpVAC8;YVR4FqXRG28x_|(sfynbs(=0zoFIR5Zs%&?erQaM| z3vMJFR!m7%Q3V|k&i8*xT|(U2QQq6V(-g8^2b3##&Qp|KvKLREvmBww2?`@3wot(? zjJ`q@=+C0mUObnZaKWH!^X0o;Pn`Q?tL5U)7iQE51I)NSRkhy=gq6J!gPxP$OQHV_ z_w87^&?a49jZ=FU6qgB}@@QMJD|GJDa$vN<;i5hyvvt_>cIV9jIhf~3ELW!@2gfk7 zxb~4E<4<(~`4m-e_HdClsgu9fRk}DpJuB61C%6gSTAEAK{{9NeSyyoRNU z-M?}1ZO*#Z_=EE}jmM`XO+82C#q&6`2RC4BUETklkdg$ykDG}XRj!YlMN)!{U+J^z zF)&+zNe{Wxw{9zE!r7Pf<&5r{T?Eemkgb=%E+QDR6Z9Qw0eW^wrxag|B;zGoD0+MI z?eZ`QADj!jN22FE6RSzFyRea(%8jbCbg9*NUgjjxJ%B` z_%RM%LMpo!d+^-FiO9Pe0)nwi+H%q|RMHm2W(b^0P!GI6Oe;LTKseO+XQ&<%Q3RPV(l-yN@%ZyV)MFr@ zkGxD@++SeFU{hJ^TOjM9nqh>a#IApsK4;`8Dv=+;F}kftgj?aJxn*OrtRMf_JQQ zspd5L%8j|8x=`kH-PAEC@9K7!9}a&awWw|VZi?}v0AUJ+TF&wkz2n^+hz;Pr*`|wgZ2_;fMcE-!Pg+O_7dfbNKow;fMou=>V zYqc>0M?iS-6!@r(fp;>m_Rcpf9X*|vd&(Rq5}F;q&Fw|cFJ{Mlt-4i}B(?SWUX9sS z<<8$5f3OX@0A5iofYY)i1jcgl7@s+}fS=ioL?~_=DkXJ?78yi+8 zQ>8OexxYc^@>Zc?wD_ttAp%+3HNy(=?D=ODH2RJ!yjHu1%`UaLbDR#Ld)pbDaDpip zU={bVW|Eavsg6eq(yjMc9%cc;=x@|_9-{{DH>{m`OnbKE)coN|z8@~|(2?5pA&rNE^{?KNrF9JGR2s|37|b4Ful$d?X5gLS9Tng{X=Yj`4TpM zi^GE0c2sn-Q`65`EFMoX$7M^AdT1rxC}-Yz0}qm#c&3Qo;`PqUtw+t}%Z9V9SO%?R zS5M5s|4s!*#M>wM(#!u&nFlIc8%>+kAJR#so1EQXJV)kt=Fkt5cqA2m79EYb(DVO& zMsar9)`$zvvAY_yVmQ}Mq-KCTeQGoN*bd5HxSW2)z<4Y@D3hfE}L?Bz4I7R7-yhKPGZqfHZXuS zps8KO>^|4-cxUxU7EhsKwAQb?#&(?Fo-iLe)82jMfv}jO)XyJk2)yhk9R|20w!(w0@@#d&Pt?k7BghNW3dEMx> zEsU=4=F}HC+kDm_4~++?6*a$+IuX{PcJ`@RmC8BgYaw8B(lfK%8OZa0`P0H#EqdF% zH`n@>;$C2|-|^&qApx|68O*`G@IB2<_Y6uw8f458_?L)3!|T6bs|lsbH_)cWC_)3?X5PQ{n7*Kr}vPdiA{bU_}0KE&}jI~H*? zWFmTFJ=CHI%0y;8*078XTJ3DR3q?W% zK*;1>??&YoLgQ@ev*J53tD;)-qQQ0b2?!tg*UoeM%i0VK><7^Y3HV{wsQ-BsCxpel zW9HLJHL@bqjzx!UgalD1nwS18@9~uWF3p}3;teHnx(G`%EjP9yy}pFy$aaTIuHQdM z=Q4>1Y~h1&h=B61b}bm0I8|&-+{6$GQdep#n!qXDSefNc`c=!;h>~~^HE54S;!WD; z2Yk>AWmoOO9R1?c`Za}{6%cY#T!X0W}4q6 zSd3Q33jzOUhOmNsimFBlXB`QEY)@X{qu`6C%$Et2*$_8}s+Lf+cyw$^Fl(i|+}ZHD zbY&c}2veIO;D|?gS0LBY)KLd7X)4YnCT%sou}hrUzZYS1EIo-!v^HzWj&w)aDIwrt z$!06%&?Hyv7t8ZNw@;84+Wfo@UGZ3D6^6r+wXlLHY%WAT@q$I4YgTW7nnWu%CH=kZ zf@Z+Q?LTBB_@kbaP~STf%(0)Z73|Rl3#8>ZynExU6jDDy_mRYnnJzL)9M$-M*FgZv(apUXyrAK;(V20ttnU>{+fW4sR_{7n$ z-cd0q#la*<#=+wNJ(7EchW)L#^K6LP-g%%<>I~Dx5`<~o|b<%9u=PCz?BdpiWy!`uhndy??EgIYY(zL z*I}FAGM$w9T!W8eg7GQ_I(-{A9$RtisJNC>XxE8Q+X#v(`GgEJju7#y8!}nD^O~d7Vwl&(Rt(KvyUjCpjXm^11uV zdH(a}63m;CV+tT>uLSjQVYcv<{yL#JxhH!ZSzaRy5F6w`w)S`f-Y&55R#TjBvfj

    _+zHaCD=(1O|%uxHXq&AJY`nX$`(uUKMRm#e%NrK3`~`<8n`{g(AFJ| zLAv<6mEXNTC9|ZL=Ktm|n=JX8XYdhT$YxT^bFL8!ALKp{v<;#4reXb2I^NB(%{I4A zD>>V7MWgDRp6u)ci0kqZ81ubs(Xd2~hIJwue(&NHx3+O{`0FE+j;NiWs+&Ot(ZH$!8^=s9U0OjBw8 zR1)d>wMhK}Blo1fpZn@`8--0ymg~Y<9d6TlAPdbvlB&D-%@fyi5OYpv3yosF zW#b<5O@zH`JCmfUbJ)C0%FjxfH%|;^A(0l| z`XbUN&gY;RKm#av25db!d~Q)S7L2SnnF;pt>7>JtS;G1%muUrLGn&@(d1iz4amK zgf4H3LldT5<7v?|#AL#ztO2p&c45zzN^cg;b-C_*d_DaqIty}Y!5))5=^>q3-<{=tsp1jw zfG7S(C!Hl!9BLSUS{9c62>h+vBXT+&&P76@p878VE=2x~)1 ze2VkDXLw(KS3i1Lt*5(hn_m6g`m8nZtS%g+*9mG0A0XPn*)zaNpb``p(SQO3e0T^D z=<%SV>81uDKfs5L=fgWY1`!I*0|Bv3$r z?t%n}eicR9BY{k6yA9X?Sn&dwfZ$w5jS~gi-#Q1bu6Pynew;z-1=j!#5D^Lg?4AHn znpa@M7=eOUXnL**=PKe6s>uQ1f`EWM-+iNlZX$cb!=oz_%x!LFk4~)Tg72G=&&+_{ zg?X+4Hy7S0u+vw-?x}YIxKf*+-41!&X#jM-Fud~D!~I!4PaY>2kw6i#Rn8N`Q24c zw+;9JkP)oz`T^$tBd9Yk*{l=n$@TtL{MykejBCgW>ZU)s|NW1kj>rc43q{ED&G8u$-`eS|AQ+C>9Id`SYTcKw#@Kd;Kvf49(G1^9a_ zh!>n-KpA|RU&#sr5kOo(fBo`&^~wJHn*E?p{+eF>vg3Kmlb7!*wdx=IGt?(APmVs* zaaf1*@G4>zgbQAPe)_7w=J@{^>i-BE*KeK5_#jjZrji49d0#Yyb9(r@fGvw59>OO- z@KZis!P!54TS4|0_vJDZ@IRROH?hzS_8`JbYD+QqgEpv0?R=N+cn=|Dx-Rz+6#+z} zqeJukpb#s*6A~c7V99Aiz}Ih<6<`cl+@nASpyCM#pcR6>TmM@G6Y#erB00iK#;`}%4T{J*I#BXmffB^auH?Vuq#*gq6{13G2XF9)M3O_oz z{Hy;ND1gAfy4Z_nb7*q;`e+*E-tc`aV{zdz~=~zPQf4)XMwZ z@x0xYl>OUY=leOI(}-pFT)}MI^%;e1VTzpl)vs<(c~iTU0fn!putk%!BFJC&CGs;= zFXp`IKr)TzvWAjMj0WD$3n$K7oNp+(+#LDUNz5KI<&g6p=tb`il_)mdQ(sT!omTDa zq0?Q7Ss7b--Z*Cm8_Pc=Wk*h}EJrX6#g8(B<(Vex;Bza|tPFvpCyM%M2px@Hhj>2z z-eJ-1cvKJEZ;>EJny}G{@BR4%R{ecZ3f(1ey4HHmQtnqd3HXS`cfBX9Ee3bBF4Sb^ za^a>9N(_{enYRQHncGy>gu}_3?{=7gZ??ceC|Bp50Y_r2K$JqhL=An-8rsEAU@{Th zdnRrA4MA-qHMks!M1V|gPTL{YI=R2pMo$l4OgeVlmBk9pCNKW9O;l3yF)|qK)tlG6 zq}cZyq%%0|)os&!mDgp9cvM^mG8+v^&{CKmoQMz}19=b0T$ETDED`c*9dcZG7ITct zQtXT|%0Zvwg~VQrT=S-n!EZ5R4VWi#xkEf6e~OVNQ6>HvLJXbUwI{r z$0zN!6m3Q`ilwC?uC|Vxf56QxQvTIRadKjz{bM*epObM73* zEb~68vA}n3KYQ7e(Yx~fqBN0^MllJlj3eZ^S$z`S388uWDQrK4!~R#!U5}oZ!qDLJ zhEk+SY6E^Ilq3?2s?| znykJdBfS~W^O-xFVm*7qveAw2`K7jr7WbMPzg1zgRl#_-N4)$y30=hWowQ0(efb^4 zS=}*W-ydBG*f)FsXgaJKfA1_#AWv}AbN>1o zn~mySq7WVjd+E4)!y1P2?xL98yMj6{B#K& z#qk}-C&HaNwQ@i#IfsCxoNM-2)>onK&BBDFTH~f^gpc%?x)YB_yQvTYQ_LOR!@-r# zo&f`W+?|rlo%dFuBYMW4%d+Mt5goqvLWMM8@KZB-XqKBCrLGM=Bk9sk(U&XUj2WpmQ^eGBLsY`X! za4&as#bN&&$MSK5>YXs!-JPA zWqeW7Ev(b0FQtvQWCWMn)kCehvcdVFn!tYm@3iI|UOh+aL) zT6}Ys-z&9o(%II>=DWw4vU1-9tk6kJF>pDdv#HCREasP5>^#~w&s?QBEX(QGKL_zX zd!yS~q$7Nd?xDN6#}4w<&?r@7xy*BQO+CmOEsuG|!SN2IN-9;HkZr-;!S0Kv@_Op8 zd$tyKD|4hMeh&yr>`e_>=RAET#$ru2^4H3@Xv&WL+&uAbWn7|Xw1`ayjOK&Pu>2`B|#`YB$=Y_1~S!z)RrTTr^be;5; zGQ-Jn&a(b0og9E9zyU2FWo`Iv->HQ0NLUgpjjwY^waNSJ9~+;<r-c9ZmQUr23=etUT3p?OiU%E{)ErsH-{>Z>^Wbh z%r%?8dEqN=B_tqK93jN>edY0sf>dqo9CMF4JpYy1PpoS$U{8^nNrva}rZXV8wvLlS zLNF%a;~cmwPdw_3)YSP}YT+s&2uowcMtE72wIp!ZV+M9^X#XU8N&j91s_81QA|6kQ zPWwR$oLsO?5-U;KoYZu2Y$V+6`j@&#G-h&*_9lc;>Nd((Z43=oe$cQuobp>me|*cMw=yw|@i4q3%E zG6+cCy$?2uS;EuxHB2w;0jD*s8O8}UdS*=tW_tPsA4_WWDjX`Lj};Jq(@nTXkm6g^ z0fy(o&=sLI@~Uh{&MiNoJG9|RD)$?!lSU>kw0Q6`XAG0b?o)%5i&Bm?4MiEvXImo9 z{T=j~X-7%)+QE$40hh+%iSDj8MU(9RB^@*>FRmurJb;1y_&%FVBY$^6N{R?eeCO=l zS?tb}-1D&*{g4y9<6{!dNqKp-5jG_ABrA&kP853M_q7XCjIqn4S%>6pTtU=CXtDnw zcws*`r-tL8!OS;wWF;y;;?0sjuY0#Jb2c*w4DazWDGX4E8{91UV~W-TKNeS!c97-A z71!94*ylPDTnFiFqQ8h)c(2RwuvQ4_cf6RGSL?x%^WeMo9eu~G^RLi-*x~OHiH6nU zmbzx)2_V$^Vo%zSrx6U!@DNT>UgE;h;S}i_@ zAK}JrF@$)fK_kSudZy7&M~8zMjNawv2QTLJzhCOddoH3l zsym;MF?KB1BML3hD(EDZM)Og)XTB&Yf}M7xr6i0Dq~9-(-%T*#IBOO!MAFg|qz&QxSp$vCAz(YO!QDcBGd``h|u{|g6|Ei|`F zU#Sjq;F!X*!Nz__>R+zjmxP!CS{59eRbz8Vi!YP!Yr9}`CcDAqs$N*3w)G;NIL>Yk z90ou6Weu~}%xAcHrf~@y98_<{jWP*?b<>Kh_|~ zsyR92nUJg{H3Myfc1dj95knFn#WQY%f$$kLy9Pu{G}$R>tNN58W}a?oI1S zJC(!$$kH`rzNn`|Y)S)Vsf=Xs#+1@7I>TDkqd))b5F}RW!aH%|3le11!)2_Shj52w(TyX z%eHOXw%ui`%eHMBU)i>6dnRHx_Ti71n8$p}$Bex9o>LTzHX&C)?fgqY6u`+o`OGa+ z(;mnQ)}gP+!_Xhpq3JO`JFBiC%EBY@#;~#&jEeu&TKZKqHWsZ%qsMTo6nIT)dL@EA zE78U&xQ;2aJolUk_S0V(06C#vps!BZhODWA?T14u-Z9Q%mQ^>-zk3v(LmL3o?CGl* zf{~`$I|Zsizyfh`my^0$@=_;4A5Hp9cp$lgGe(E-?GUriuB1aD8KZ2lqnhjO&y$f* zsK{6|@D`I0r|h@)2Qp9W=)v#%DyE;0dH!>i5n{w0I*E_iMT_iBU3r6XJbJ&yML)Rl zLLU@k7;(ErWQHZ_rO23IGX9ssABOJ{uSGe=_m|)dHYEMORK4CVijx~JZ*j<`HmW~Z>URcu{oYaW z{o5U4RRh(a43f3oK-ZGPf=%WmH^X(sc1&Up6q;qGRk49oUD8IsoHLW&ppkHxn+g(O5j=JN_Uf%+*B?p=$g^>Emj#Z~1&X zE~A*B%>YDfudFVm4WgAz_AB2JR*Zw4&Fb!f92vqh*lWDX?*@wxlY|^V zI-lB<&csgQ__t!`5#A09AVvMebLs%e1A)Y$vUd@a7-8u!n6F&bD2IS!WBN5G3+ z!7<`EA-bVX-oFiB%5`ih(zImr_L&mhInSK0)F-~+yMbxJ!I4zFmTmSPW_U3Uim_#IVjy+4{z+&YPL?Ksz*zSW!r%JO9L{V8u=4~7Y2@yQ1!oPKwJ`t74Kue$3cd*GNQQn%Xf;#jA9c8m5Q(=RCe+GQa1G5-n9g~e%`|By(;wp@#&q2 z8EH_>{LRRdDwO85uDk4zb|e=5yP%(q%th)Ms(mK6{QiWAQ)y#g)QPLKYk)+xOvk4c zcWPCtz?R~f0}U0Oe2qwJZRB(m^F1y*Apw-`L_ZqdNBks}Tzc@VPus#1AviXr3GEln zSI0cM81OVMS(#+bTZC&$oF(3r=8ba8M;E55A~E|@IxZ1u%T8?XjkH^d;rpDMlt?mB zkvLn(s;@y3vNR};B%Irr)8;xdUXi(J7P*UZcF!x=Kvsy({>v~x7X}YX%q>I>bI+`! z8wFojr3phMTLu3GNp!^_5o4>(o*ys;)P7a}>3eRH<8RfoIbM#Y{MWCwzCpI*(f;uI z8N%JD8}>;!T(5|Mo_Hn|F4j|4lTAlr z0y*lof9kDKrT*Lm8Zi}QEy@Y2spZwul0vUrAa=cx$o7_I;F#4)KDnFl9nIF^u~crz zKg-|3=)-25fVjqahwTe&7|K+@;?8Ye(Fu(MR=WI}T@%cV1sR(B^3 zkBP$2*=h}RH%ewoY@T}NZT%$|IWS@n*Y*^!qkr8Iu$T=h8%8|7P^f8>2^k{rNnG@6 z8$Ti1wQV%l-)0vAUA1uCV%k^=3{2NrreGLnFteU%Z)jEam&GAu6?Nw2?8U{@ zT9|`H;m-tgF$bbsugn_DAJGho#*t=p946<)Vo0@ud@Y;m?i8OcoWbBU`gGzb4}~V^ zym)b?_`V!Wj%RarBkukts{jwuI)xGY=b>fcKYVzS0Zu2@e>*9id_I_0>CsWoSmhtq z-)rPINi0n?VNhJN0iQ*}R_FB+Lpk`xvZPzrjgY?Zm-e?dd%Hq|uh ziUEaZ)BAmTaQk#`Sbi`WF3UHGhTR#Q6Ky{5yKhbF=2!=KI!0z)7GHEm?)y;LG#@!? zyJ2$byi(S)wKCSSqJ%_e(7?;jg((ls1hzq7x*8blS49^(#Vjo8BYehJ03`~y#k-vI znUOq4*ZQX{p~e%e2h|c=40dd>R;ljJ`|X;f>_r>^mLM#xf4PgaB$TGfYL7yjG05q< zJ<-%9?d?)H)*N-A_@ehE^iL)`^s26TTmVZt=eFVb-I&^DvQB&cZ%OT^ zEmPh?J_0Xk+>xF41aB2`bi3C|+~P*IYdiW+kR@iGtzTY;pkyf+{AZ_=t!X0nGNRJB z_>N=9O>2~1`cjWD+XeF6SR+X6G`|jD#cblzmW9&UV`l=fmJ3g;iSu_l<)p{bBWVYH zg0_%N44dcP=}eaaqPUP?b zou&eF!x0a&Lgl7n`m2g9*c4=RNn0 zekY6IaVm$x2xbPlAf&CiZ4E<>XKerD!ck8Pfzwxt74JRofb2P?WyGG4jr!BU6D;(2 z=qBIuI97>KMee#K04=jCGuyE_P+j_Usvcy~m69D)gd6yn) zxvV$pxb1*A!?3t=IkbfOABu0{mDyeSZ!~^ZeMrhaZ?Pte#R2hKdHbQnzmYZIp22a^ z^4h2}zbFL;W#9*1jBjUy$gkO}u+Y^uLsk}>bu)CZ)_2G1*xY=$0$dH9eWUV_=kN0@ z0nz*iQ@nEO9zvvDFGW%w#bs4JkGhj>Ago+VgF*1?YSksZ9&%@&G|C;L(hqf!)YmjG zIQ>qj@+d#_B7klprZKAKQekH0kZ0QXAb~vS%S`9l)U*24E1c;fAB(BwyD#@;dt+~-F^G5ZLn3w<&u0g9??tKf81^yS z1b!_3kM9R^@)KXbp3U7&o#R(Vo!CwCN|d@Y(&>E5E&mb>@s`raXs&jsrCWSSnRP+z z`8^uW$vNKlpP-j5E;JP$^MYqDrB)&p-3dO09mo%LIo)%euVaQAMgm(Hr(mm#Ysr;v zNvM12USo}S%#099>kRFY?rYw`05%s^N~9#*5M2UKnhuKfGt4M41_`sO<2}yG*>h6% zN~dFvzb&-jJguWyeFv93SezxjL_-Tg7Ns}Twl$g?P`se`s>yDMeYuPQ`xDe*HpOy( z$HEy}n<*Li|^x*e|U%nTIJhDkpW7h`>C za+`!k7H!XXTI=WRWo&C_oWLyjb5~skdsY3bbfmsZ2gLr|;XL4W0vY3H`D!B6j}FjU z(y?U2w^&t6cF+J^v?ylLyX`f%sKI|_jyY{IIQ7W5SXz+~D<-p|3&(P_@rat;yhg3P zH}-;UqC;oj5Ir97s+zp%&`Joqx&qWbtEWKWQ`^dmKypA|3Y3gWHta=&Hn!d4<6%_8 z;f9Wi+!{3Lhjp?lYhGBHG4FD^b6J~3;`Pey`J}W;6~)A>^5mROrryGO^ssB>rP+U4 z?ps(e@~n_NGVFd=?dPWMe*<;ua~NlWKkT>Xq_C@@hwcSS3a2q9V#rKlcQjjxM9bHa zyL{q9N_%-lWSkiV^GEn_Bqy)Lx}QyfT3y2lW`4$tek5BNEgf0UJ@{<;bKD1SFpy9r zzdKfVtf()$hvY*3M8F)>LG&7U2}`^iZxkJPDlPwlHPKxgV&=q<03e1xwq!P_g>&xx zNkhnaq(laolq7)lFz3>7CZXrG^?~^=@#QR16?C!?lMXHYfl@1O3r=bQm z(wlu*{dE+)^$9jo(#|`&Ld@QBadBnF951t-3o+j7)c}X}*K3*oZ=oD&OI+g_!bTn4 zdxB30DSYvw`J^_Tg}IoSEKM~T!e8)VvXTqY;B<(Y_hj%X>L&e4a&i70^RdQztDx{tER7I;e!)_L-EFZ@QX0w+Z?@+YEjK}E&VXO*d~^J`#}hB=_KhaNC$xxcI~p)W>WPZiCes++B(SB! zFanN_u~Y$B$9mC`E5J4cZV~{V&AN08(>C)6!q!XU7y5<1bxKNuqgBSFsX0-v8o8>d zzYnr$(!;00;v5tni#DRPGg$;e9IYyH4GEHmH8h$fCr{Ca#Mm&I8dC-Ju`kh6o)jI_ zeWO~bQdU4w%ic>vX7`B#l0zg**jMVR(-ETDEd#%knAM{W+_}2vdojUGPvUdJ`O-G! z--&hfj-WkV)VaiOIohcF@a-Yg`P z7=6rfu#JcQpNrSn7p3pxk@5_c7-#40=f*^P?=-c`8SL#{_>N?^-g`{8E>X46LMia)NuVRR>X=Lj!Pc&l8!^(hl z&P8LG6Pzo01&b>2K&c~Y5VL0Z{e{72K&Lg&X(sj?&aTXnJUp+2B~=hYw5&<}=f*gr zT;5R6Y1IgQczvABGb_xhr;O6~-5Bry7?n$tc?P<5mhEawc68V)bxaiAs2pRqYt~vy zw5pzd9Fd`IZWlOfwa}^3#`{|=DsFuK0IltaR{h6<4Cj9;$gpuR{ohK=zg0dP=l??L z&c@F59}6;S{|Yi%t)<1qxWL#7JmD!x*9eK?Mgf6_5Mc${#kit8U}tD;E>hC1E>KWV z5er}9-FMeNJ6bo@n%2kJ_M_Z@b-<4GAFL*q_Tp;8G$L>;w0`izV|4JbzZZPKxA*tX z5BK+bEX-$t$VhYcXz7xKVD7+!`Gr5z46u-zLV9+p* zj=*p4?xQ}Bpn{`84(Yb~R)AdX0$|`^occ|ZLb*K$`di$f4ypa=fvePPfbt_Em`-XP z0-8vn5Ly}nK$hr{+=wI&Bh@gF0vM)X;DkNCX~8So@Im&-CI%0#uV-xcP6yzFH~CEu zz}kY5-GJ~DV4<%6@%=xGVdv@`z`jUEVkg1o8bLch!(0tHpxj}(paQ^%3}}&-z_E8> znj!ju#~Oh#sQi|l}Sti8OAvULla`Ob`Lt$>^y(EJU3aO2$zZ|})szFjs;h%qb+k%E^ZGILT zT%8X+z`?k=fm2U@odt$C{Pf!hK?M*oGS=2XApto-1n^Z|diYVS{+mU9v3v(5zPvoS z1#tu0B%lfQ7~mq^L#}QP55R*7_UQ`s?EGxs-rzGJLDfNM69c6YX)~d{_$&?Z>Fl*=`>KFm5!eic zzr8_aGx&`k3{>?qwiBYBunO}A{^=k6qdxXi`j)5pjkx}E;)|w3oS?6^l6U-L*z5o% z!uQies(KkE=oZ2Qw~jgYjME?i&_2dt*1F)y(&tTXkJ1yiPm7|c_c{+56O^H7tHDYs+=FcTJ zzYuW%IG){JWHcS06D8Cw1WDE+&f%T(DiDDk6d~6R^F2+M&2ljo#7FX zFoFo~ko*CoP6A?|F{pFs4?GkReojIo=zC|j|HmDO2hw$&|5h%LN0;C&ps&}?>Igb=rJlr{C;{@GB>X9dXPutPQvo9Q4N73znp0#Ke z51h~P{bX!K#lroBS=eSS=^MYqL!DMSsrZ}mGb;m6oBAN~yVCa-V1QCE`4llmrCw!}w3 zRvtjcH+qU#-Ji#4^YSfAlX@t!=hAx7$rv7X$|&WwUzruifLN5M#NVcl6dsgH?kXtM z@oKw0JnWW9^}9J?5a;;S`5L6is%a#Q*u<$)#gq3dnTuCvjVncsWSF0~(8r)Gf7g@nSgN%7xB3QhB#XnL?cZX7)a4Hq5pUIW3APam75<$Pc6 zwGu#ZMVDUobjg3hfbBki`S7^5IzN(7h{X=JtP@DhLlukr3R&!|ChH#dGz=ZkTP9q3JzxQWr{+i&CyBZ>$&-f6^6Og!sYe|^PFRid331t_qEUiG}yr`aDO$` zIIuJ%i{ILEuR;rG5|-?|NTj&y7PK)lb5|2-h%MF~p4~PP@k9!NMJnRj_8oLDn&uk} za2hVD_KMR~*%r~Ev2EDL?F=qiLaAFVZ)>**G||f@@SRd1j#?_LDX!L;E{nx# zK!!-k)f-;2OGY*Su1H2Wx|+18N}+DS&K{ZwgmyQ4JyqcIsgB~_PDAW~fOUF_!SBfx zAKrMzCM06v>5Tgg5MV7zixK$bVzL{=oKIkX)qTBW`&0}V{bo(Ms!jEJm-S|Ic>P=b~+m7|(=hFGzPCbavo;83ndoLrQes6#BM9Sx%Mu*OYNGl4TV!}X7 zQBS+{6%pUsEFB!-B&(j0QobH=x%aP%QT!8zCe&p!iBQcw)X_3!cz6+94t{@YX! zUP%ZR3#PP7FiB3fybX>bGCjri{xhD_U~ik`RH*6o%WlcEpO%-yDmYN>v9)Q@xFAvfJm~$D|gKWx^PMMvDU`Iiqb?^H?DGIBDlQBOXz*;~MXbe6q0NpW32{`Bo(RvvL1w z3y(04%GO;8eqrTJ1006`l~$SpukZxTH!x;95rJB)&x9OAJRWTw($e(PC2@y;9J;v; zQk=GAf0FOcP&J`}RD*GT5mW7cdThbS+o)+(u_H@jmDSt=SV#AYTCA>pONHZWcp`V~ z3Ar_VBh7P^A7y0-G-R0RzrlX74MLaum8*{;+M3q#jeK>uV9jEyA(fMG6!3U# zD}VV3Lt0mx{!l(XY`lwTy4__G^LQQOjPk`R-stPSC;JWe7H{|dr=p??tKG{C@^6_= zJ3^8o0J5h+H`TMhdyn!~6SR zpqO^w?|rDjkA?`8W`W8dD);c`9m=we7`q=nzbIQR+6@{Hxf-tR=-$hlz(0-SN2&cU zo!128IQdZaD*$%T?rKt1%Al^HxeIs$O$AK6 zHki)5cR6h#)d=tF5s%HkJ3RTmg3aaWP@WjyGc*hy>|$nLjj$%3Ven5c!J5g9<9E{P zY{kgdSt`4HeFXJ?i{mk|kF{^K8q``#&3q!amF@Cz4DIwz_AnVFj1Zv0{-er%&o$3` z$Yx$%*@#9fj|VX6Ppc->d*v0uZZ)Kng6+=aX$vjD5mh2DH*bLeFGyd!pccRE#Nq;5X`4tpLf6_k!yZYA6j@=(lXpESorc}fjH0N z6(ng&U2mmtM3y*ZKRq`GTldD8Kas{I{WZ#8$juy9pNzL+4p`0FtFQzF%W-($2(%Xe zGjT8en_M-w1{w_`@T`NQ*pf^r4~xs}V-(5dMO-_1g{!JdZ{=4aO+emZ3)Ci9-=|$5 z>)Di|p7E6!Dne__@ZfHCd4cf}fNxMn$BA&uT~i-B%{<3AQ6$n*a%-?_V+wYZ+JeacAfu@4KWgHejF5`n3;JL(nJp!UkQ;CS^__TEhHxu;mro_Vm)A+oyB?XJ~Sa&aRx4;zh( zZi||lx+9ulG=8A3f{Zsj`04$~dUMVRss$#hDN+w9%YV_$T0H86Y+pNWso}d=GEdbW zRhhdT-x}XLsPr`76-O%@k3FckGBj-&d)*~kSHrUG6Q+fo_ZqjUs%4yTFH$8q%q4v8 z#S37kcfSbTn?Muue~>uqYz`o`&})6r(v+|X-Jff9A1KN;ja#D#B05PggZ5m2Hl;<- zHco>!o|t3J7C(j3@-=-49>yaas)pHkfGN7Z!rWc{V_892mE|j0z=SAUPD~xH@XJc# zjRl%nVzA5=D-LB=!2WS3;+Ncf7p35r#=oP1>ZQx4hF3V|n{kdW&m}R;(0Af!;he6; zzu1AJKI6qnZ~HrSt)c6${{?3l7eX5}StQu1cu9#{AdO%hJq*Bp->hg5xc=}0A`6N2 zdxc1RG+nwj$hH?h2BDCzgapd%cYkCZz{zVTp1@pd#NW78$_ zr_0tR?HnimizCpCoBQf_Wi&3|k0UbJ0v1utwa_%|5|tak!iTHz_#WRKI)4D~p)n4MDw{zmi8Mx|>YoImSVSDxNvl8SO{teZxBEok`>ZXA5Q$FlG| zW{S7LZ($}>qov#D*O3Sg3#ToPwGP;mj4`rV^Ssv4`PFliv= z+OFRcXy)jveD5uH9&-cOl@~BH=reK#FHu%Q-0KHLwA2DQC^Nq@**_7o&~@t#;u_O+ z3t=v6FUQ@t%Xk!ReHE41Pv41;cRsm*a!%L=pBA=-36OJ^K|H_=p>BOW(bT>CuP7>! z+0S{_zLhP0i(`oq!}9(fwM&j>%KRw6*G$xC!Y}pWuX<6=P&K97JGG1-C8zx&ZVRRv z`0@jN3ms7izVKS0{9Fw8f}~t?L=h{O6*dFQ*K(UHRL zoZ`xV&4cDDXCsulQ#rLtixGxbmBGUQAhaRy@B{^{Y!yZNeT`mq$H=-pdK=QL{)Kdg z=EthCZJ*=$8IuI!UK{wU$0&;se4OIU%28JLeeJXO&y4D-JfP2)mLceJ_4lP4Xo2 zl`Lr-rLQ%)%dCSUr>n5=pvRS!E<~L-ZmCmqlWGuYxflxQ5z;cBfGd{mQX}mUS8MK9 zFGIx2%n{#Bl5`MlxA?C0_=AQEtU9)72r&2CVHlneHLtRcRLFxOCH!`;U&V2A6qx)Y z9Wq$04+Tvj2cnj9BNH>4J(7E4p!RQ^WhYK>qB-d^B9Xej>a2}LGzdiqm&EiYwfd7^ z#LNb9xuI9M{Htwa2r;|qI+)Z10kCp-Y7|iyUf+gBZ#I2czKB)JE7nT|A5z9+z*#B6B_F3rtK!(Co;cMi;bmi^6&(o5xN!z5QzX0A>E#4 zdfS9WvQk4qW^`7Ovo5Z}PLuJZ*siVe)31f9+alYg48_AK>6FK0=X$Qc1VO1W-e%kw zcfqEwG-b-Wu}vuwV-Rr;g?B6Lw@e(2)5;D(c!)XpUq3D?tXbk&71v~LO#dnLTGMe? zQ(En$q4>9%-v0dX7Za*dyu@+%gvuKP++__ExljJZKC*JZzhvQ!8*YleesNB(;)48p z$<;VaxX$LywC%*Fqlk(&CVAhrVYw>QALoab>{EQPfP^~59Oi1HKd`j1*~{U~-nk9# zzB8p(F#%^2U+JeQwuap%bbA-$g?b@l$=FVEJ4`}RUn9Q&9SzPMTz7XCgX|2{8k6<+ zcS1lbz=1sa(^_h5#Ik>4Av6XmH{mKAs+@ti@#Z@rNUMVg@6@_3XPu6kbgHjO;n1aL*)&&ZbG=W~ zY%!y|3Z5PY_F{@00ZaYzY5Ob^#fY?`#ZOS@pB{e8^e5qBFUPM9obZBM_F4^_OI!lu zrR%YxviNMnixuY5j7)i6Ci1SfHK`k^i>k93SerZ%pM2motHot5fB@~#1g&gw)~k?) z#WfU#9yweRdyVf8M+5eW*OTU{CUbfI$;OXhy>KbK7U74GsxKAagI4l24Gp}DPqzyr ztpN+uw{?0?F}{q%+(YW2(qC;k_u%! z$2YZlz|OlOt2F$o712;op_AP#`JBYxYr>J4yuKc{7F?&4@@Ix($PsZWmnWj2?heoM zZWla|Pez$;u0|qVl25`v);C$hyQxWH08c$vR?d`+-5&UA*Ml)<)-`h5_j8&__sANZ zM3K7ivvl9jJ`O7OezE=R#AQq6&XQZUa7Bqu<1&R+>{DcZmA*GqNDEdZv#QsI>80Qd zKd#6%05NZgq{4Sc1o+Jct$0848_RMN->1X8V(p~&V~H-!T<<0o34dtwiy`@VtTu#j z<3Yd3d@F)+yUNlT$T!pZpjSiHD z^lAYY8kBh?Y$4-0N@{CTdW}BV=Vb`}CHhU&wxan?NEhx@mRxm5z0du)gh$z=zxQf3 zTVye=>bnGh(1$_3R^-mFf|jO_1{`E$3&bhc_q~ z0Xr)!dF~QaM3oAh>`pFRZITa%Le-p)TbXtRA(>M4aMDN>($nef`e|m0-;$#>CEfu@ zaeqq;mCT2Q0t=t0OZIZyzN~pWhHnFSb-`rzrLONUm0rOck#35~LQ79$j=xT#=Z|g0 z-)6dOF^oxTn8(725(ofjY@qEeK=IhkF#sOUdcx!z;|ZaNV%fH~G^>gTu9fMxLsNre z^`j)Rd8aVH+9Ec|urJ9T5dLjX&Aq2}1KGhIk`Ox-2hy;oQ+FzYR!Jc!Yzc@LP7d6y zn(HsWM*_SgyR0ieYGi-JCwb=>>|0m>XT~E7c~KPAt$EvE-O6EOzQu>`rFr_$`pg%8{joW!;ha(YIX@>BId~q^x55?{zLR zzKOfB++8}^W)I>h1ze;%1kSjuR%-!LO8~$J|IYP_HwKe#6}+lB#R0E5$<_${!Gf&3 z^GP$CZR?FtVxg7`4e_MgB&A-@<&GSP#T7kc$J<CGZ%>Fhb*%H%)^CutY<)}M}lqUs!8wyUDVA#a~kkt0V0E}JtX8%iL z(;v|f!x?Sr?c)>f(4DL++2J3>Uv2?tjw|QAM*%%U&1h=-7Xs|fGT5KHGk?pXlrmj% z=oc^A&m{HWF_~cxHe_g^Y%z0x`>CW8KQh+vubKJE~)-4~rgx6{Y_B5W3z^mNCpT_iozR z0VtI@r8V(_O_|b&?;xa?w0mPMML+hOzRFD^elDcB#++-!!?-4B63<{)G(@{l$~`+` zeYf@72T99@mwttg;=`#1Qje)a(3%ne3iH2#C`Lf&1}vm%pV)on9x0-kd6&T%G^CFsI}J_7R+oGp-ri%S(k;hI zV4*r?Tl_8)>59LVWM}Z<<=of7{h$Os#1uWK+gC^usUZVBW9AmY4T+f!9jw4o*qx&5 zs@Tfts_y!y4V|1AqU*+D?+LvvWThTUs-+H^SUHhl=$m5?jrc2wFm?bj3_MsXHy~pz zG6nZ2qWkek{D$$$nXuTgA=5i-BeU)AG}AY1bWpVHf6QjN|5G;0%FXfrWwT6d|L^oa z!V5T=n3(=!HtPb(wt4m8ex)dOwE`n$O!>Ui^t{6!L?n(PiBxH|L?AZ5VWqbG7elN< zacPHD9GzWTOd9>C=^r%x#ozD7d*&lI`(fJm>cUw+@8bA~g#}&BRftQd8Ob4rNdt@w zQel-d5j;R}pM)p@i=43*8}0!7tEl9#IiPTk2~6kOe|=d|0ScmaF~H!~?j4FtaC8+G z2m>;pqiQQlQf* zM4-tDDcCOr$Z{_cMJ977ynMv|Hj(Z-^c-S6AmtENxG3mXb(s7hUWninRP?8p7tBD9 zA~7T?PI5ou00FoI1g5~k0xE%W*#Bat0}tW;W2QrqGxkm4hkX}uh_xAg5>rtD)!qhi zi|kqW1Tb!aM}h4AW2QGh0fqgh`iyVfA%rCE(^m%tiVpaZd{KX_6=iz8F^Fhn9l(VS zgzVe315*EkiDpn<_FA@?W!0+pudws9{C@8=i{9iiz;vmM}ME3|E1MUy{Jz88E)&~+4 zGHePwV3b4zghj>xo-jfv{GD?|_~~!_Q_UXK_k9lkm>09*pbjSZj0pC*{RKaG!zc&z zqlM|$*Gr2`Qt3gg@~@fzr5LYc|`Cws{qFR;r#@~(1IQd(+Gwmr#+^clzXdJvo1QYsL#C$Fb!GK)P^UN?>myI- zAeExOk)`RvvqpwEGW@k=W>vA)qa* zS*7!5$+Of4Am2SI-w@Wh^hvHzq_t0LZ{V3~`LTX_y7$LPr{ivJuCt=@M%{1EXHZEh ztl(rPZ}88Ln?6T&7mKQN)tc$EolE&D3th@aDNl^5a4en_2g}~T zGRe~6kQN~xsbHeQNo5Q)%xxi+1E3kWbtCQ%XKl;pU+WhaCCF>|F<5kfdANkbuet*tm?GeIECNPM%#3s zpHZ*la(*1Lzk!|TxRU4omS!sQxuNUehE zgTnI5z4q<#&)sq7Mu!rr@<$L#sbkT1dOY#GmP8i2Ngt=X^M%HFui}FOXR|S>WK6ba=HfR8V`yd-^KY1a}05w>_-uQ0$s-f7+7 zCWnIw10OrRTE$?pjKKNx^EoQm_|Vw?jT;&OiDZspM0d`ujvJ>VA1l?}eH6&Z>H4UO zp&MIGMye$`ViElynIBY^p{`wc-<*xkTcf;naOPPORyw@=KoB>Sp`K`$h!{O`<4r|V zA80K?XyrZmz3ar+yhqE%*fn8cm1DdWAE2juQC;-M?n4y3L-j8hSLL)?+9vY4J|lrn*I3M+A3OXn9SU(>mXSKF!pf$ymo@92^WuL1!@zs2qN>d0}b z6GLn+^n%BWwRGZ#qbk;gH{x5f?TH94mBZfA?w7T-D%w9GmRy_l3-R<}5DqB%yLsdD zy^phlK4PIA_SD<#Ha)m~_eWZW?Dgx#t0G($ zQSb6)E%1%FFNDX0E<=nYTiLo32;0(#!fcH%2-<-)n^BTAdwr6~5OM`z4YLtK(9}i>g z8A+FyP?)~=`g8AX!l6f@nxjT(cS1?^SZBX7E@FMfi9P=hG%gV)!QlaeEm`DEJI3K1 z7irs9^j@B5>lxnKHMdsr;l#peX=roC4q;kpJ>_R2&r^2TYkSIWubk|_-O&D-MeS*m zwK3k$5RbQ@Vzaj9_E?|PsqXR-sl9dLya$d4fyXK}G}}bk54%MFdm?HbsIj7UTYJLX z^e@3T0{6lgD_e6kA*F#Vv2AA__waX|$w=_Lr~Wwb{G&yB4Gf_J*GL}}mxjUptS$4c z)Ix1vIpNA8SQ+%<$~=(9`5s_uQw;CmFMzs=^^oL z__9oY7X5K<2T_-Dq6^Nc0$@B>$8>y*{RoNEIH{N|WxK|p4OW>Dihn*-H!8cL z4Nq}7mabViq-R5?c*HeFPaq3=k_jJ^MKfePLPn};9vlJ^MWN?&f}^tqGt^}#SwU&k zug^cP(1brze-GhW3%FTm+h#w+3gqy6zHH48!p|QVU>cqW(cBoZXE6v8=vf#iWWr*u zY;}QEmA6i<@zMp-n4(dh=5TlHC6UysHGOKTP`Fc$SY1?{ZRR)Nw?goA_dO|4 z>uel#h4wjmxxLGt<5e=$bDzG(b%QC&B>L~eMFNY1S{osSrEN5AAAoe~Zj7uz7y7}4 zMG@i&>yKAMOM>LYL&Y9ZcN_hvy@U_jU6lE{u?Im*--+em0F)V0@N$o|aU+mKsnunR z9k_%RP=j(2=~9R>s%jB>x>R{{Z`gs?TL{`Vfvnr~TcG$yfa>J7cK$Hy-sQDxDbI=! zv3)p-kE(?U{JSdli}$*ac@N#)5O@!h6)St!Q`lYpQ$5{0e_8o5p~8DsN92KT=(5(< zJaeUd5 zs)Sa<(OC8l=7-Ao>~W5#nD3R%!^K`xL}c8@A0IXS9;Z-dTjSftV&1`5F2{a&>y7p+ z-NmCi?Zpsepr*64?F*boa@9g)J|1{j==be4yneeL^cEP*MsJc(>g)EKB)(|STIIdZ z&P*^^s_+Hs3e)k=T4{c94u1t01WqQ~{YDQj$I`i>0=YU;C9UreQtQeFa#}iYApBP5-J(HL!@gYP94?SA^wbTYk;fwcibtQk0Fmz*rJ_rmkjXE%%*MW7nA7B}P?> z_-Fc6N1!8v+ek8$ji$BM@>$TojIa%GW8KJS>E&Z9c|h8_O{fPKZGJfJ4 zRw=l+75Ryobp349!+Og~VSC@+LJ!vQe=Q4>6tCZvPc$ds0{N$VdW#IpcCbEYqtCAwU^rFPyzWGUNy7eeX1Q!qqd>Ra+s ziZ5`n!RpG*%M2*??+%|ZEGtX#8kNO}>d1wH2XYCpRF;fONmZK+@3}Cw!m_FjRjFSN z%P&_az)<`J;>MZu_&IEl{Cwu2QB!H#L`zls*JI)|r=QY*iv{z@3@(dHm&! z?N|IZ6sb_m`vH2Tdm>A6m z{huc9djTJ%Z=Pd&G=J~V6T9nr$_%!Uu9FteVGng{-_ZOekmU6hpi=emZv<1RI8K$=F_y{#+vJ4f;nV52Zs2i z@t0~|Ch@#O>ylV*b+Wtq_B6bo6AZBBQ;Ty_4b!X|Z%405kGno--6O@F2}trYu0b&) zsS`bC__V`swRAMlGnUZVsxRRTWs+1MRK77M8=A>8Jr#B=GOCoAp@(gte1h8z<;xU) zKMT4(OodgM5ZTvA%#%tUGT6V?IS4%0tns4V?yXCQ>PBMRT3ogjVAhnkFuswxkku>Z zN7@~oC%8O*9tMbxyWTOH2su7~j-N{YE2n&?+G zx025=WUVrhFV~%Kl8$FM6`fHL;*0)iRik8yHfNM$So&Zn zlLOV*9V|?TeD!sJQjjxzk7{gY7m8(*0jxf_Kky0At$t^0f)?g+o|1*zwIz$eP0BlZ z0a!=*j}ZN~y3PI%W9JYg3eaBBv2EM7ZQHhO+qP}nw&#uQd1KqiORAF9zew+T*^BP# zs_))&l%iZp5gJx6=x_ulDG~ba%d{2G4qzdZ2CiAH<|N4H=xzL_7`e={ z0t-l~!P%8>M45H6PqHIh1l4iI=RU+&Gt)O@GGA~^oh_J8^-zi-ClBih=;LxxyY|xO zD6C_`WN|iC^L?hZiZ!f_r@9m_J42Lu`ks=BT|J0)Y@*k z{fO%0*7m1e3{*M5^%D8ICfFwCyWg|iw*h@N&BR)iNJ*tp0+yq!zcx!-WIm7oEXuml zEa>tEoBcH2%%NS9Oh&`U>-n58fE;wlTSGO&8IRXj0^O9j^M4B=Z*CpuyYh8lI-pn# z(B`2fDp5c*{?yFQ${J#SE`P=LkJQGUpTX?UPf6`YXIiBZLkgjTPOBMd@Gj<&NIj4* z@0_M!P19^2$*XcI^a5~xIaP>6Wkq)t)MrqihM4%HMiiPc7$Ug5FVh|6>&-t77R_`Q z@V(nj2VR`LgZ$n&HoS}n=R1Qd^VbxVM6~*c1!AOc6aiWB#aCT9EX>2c_T3zpIQwo0%i@^Gc8CHhi6-2 z#fAmMEa{dNDBl8W>ee20*-Q_ELmu_{cuIckFm}mE*wakcn{OQeOX7YiYi!yw*f))z zAgJk0gnD0iI*nwc&dII>*t)T;j=7b?Rp{#|SC5p2+qT7lnO=*cjq!YFb2;j!s#kqN zj9B`Rm_5@9#q8$un3W#~R^1GK4 zr2W9%Yx>ZM>LdPsXFh5hafL6XbT zV}nkMZJF)N!hl^nNd|p9O`N&2ko!^Y&G~?MqQy$wElr>QheevxxGMns`Wxq( zULv-aUHGkchcfH@lKou2eMm1*ahe0jgNl&cKhAOYbbh^>`PufGK5WO{!=nhRAJksVOFftbeez>%41p_rqHYWF^Wqs6Vy|Gj`^shXRBRui zj1me1I)4Lou3f&P&tp?S8*F#j(6J!d8=UEtaF?%enORR$R_C6@X!=?IkMergbWQVl z)7fzLf(cHEswEVOC!8$ND7&UBK3O>V;BD*On^@y2ZR z#og9<>2X4l5Hd*10p`m4#S8YB&StHP>5R-6S|ul|KHhjO>H6|_iE|uscD9d!9JVSC zCBH~rTEd1{?Qu&zt7dKWa0c!NBL6yh1gT%1URjoJ3QVORUZ z^~WZSV^eF}tsFo!>PIKjw`m-p1D?0{)}Ta_&OL1sRr&=ie$az(FgBMRDhdC-*IB%v z72oRZHBVh>zYA}>TDGt)`RKJ6o^NQc;W>Xojc^uO0-tyFPf^`~cpOuXgc=&OD_JWu zCOni%J!zC*Esnw4ri+w`uER#m_1eCbh#iqe)%GM5%df=3k+a7(N)YZ3jqN_`X{JKn#II1qa*qxbuez!-3(bAm}G44vtP70O!wDovW z$XMqE7qk!AI?p+s)dQ(YRE3HvRMuMJt7`(4W&8x#Mx*vzc0~R6LMk!~goCEp@4?%o zG?dU2#j0y_#H^u0M{M9=2UxY2l{i>AceJsPA_KWD`Yvp#B;$LcB!Qh&{C_ydAQMHz zAf#EqWUAwsXp&AzVyk5Dw$+?iTKIShs*O-we?3`=c;AdB{){12B{H0^r->0Ed{WT^ zr@vL=hp*;8s`Hoc_4(vCK%SyFqJ6%-L6-8xE+!kdu(6Y$PqloQaC*+*^8>)*r-fvl z)2|-;X!N6oVN`gF;xL0HU z*Oann7|Us{JK0nl-JnsO*M0U#SH-uHHK7^Y=&q|9umHx*+b|aM(fKTNjQ<;E;AZ8C z7EEQ?tEN4TV*0MQlMPaLuC>nux+3>wrSRJMk6S-9o~q6olZ+S_tw-edb8KdFB|wVu_2>HdF80aD9BA6?u&}KuG*)B~ zw5c#t*rZz#%eMB&=@hO>n`)oCoWr9MfR65r&r^_(o!u6*Ef`5C4V?TUR2t@N2m|wC z0Y+*w3negLHnKh#=lIEDk9bL?|M{qu(K-+0n36hh2dX zBJ7SNF-EC|&YT=I;aHiR8rPI+66CBzTz*yjnf9i@^NL68A$s|mCUh`W2+#?(9aIo; z$~?GiDx17klt?ME>;W5@aKR`o8r- z@RLEKfBAUvSmvmIB4VqBlzkUf(%Swj?Tep3#OL)tP4w6p|HDL&iGlh50OU*roUF|M z|A`(W1IIsOG9Mqo|12nH7bjCgTPTms*pB~hTVm76xI;+{2c)>TyQdS7a>D$Z|3L`5 z6BFzZmAXW`NJ&W$!!GVrhPd;LEARc*yWSenW_c6ft}w6sSwH)sMCmXQZT1SZ>YtE z!8@&w2SD3b28fS{K={Nz0l*YbfX1*m2bpgO*$BirKnzSn7+|JAfC=*a{%0%dz=b)X znHoJlI2g1%KbwMdZA|r0OME#Z6 zMJk{u25tap{+69jJr8;X<9zG_D(vTY^l=QPX9h}c%~?@QJOOzU^-Rt0*#HdzQQwWe zc6-9bA;_EK^TV|fkXvKxx6t6`e6r{c)b9dZIq|z1D6H{o&_;kE5TGrhpb!8K-~|cb z33T1z2Ri@g1oln%1svvl_vjeL1#Gj=BH;J0ZuteD7GGV;4FTZn2>ky3rG2-Dj0O)s zfCUo*SR>G8KwjhDGi;bJn{V#%t2>YffNb~nb`Q|u|NZqniNa^Nsz4sG#(&}8k|8au zD7bgVxn)1)4{d5%miUkD}8r+^>eH^ zItd1a@SY6PU&_{)n))4z5?x!;e-Qh4VH2B`6a`HQ{{v@P&PpZ9x8`Zj#@YyaZ! z`Q9J*`)gKm1{U~5X#TEz@Jrn80wUbwXFYJb0SmSV3rpc6ob#i;0`PPyWF1g5XczZO zts1B~75+{yfw81zo~ck-)Ud)FygugE1=z61Kf76@+fa4&YFY79YQp^zo5?0KS8=bpm#%n z9#jRtl1aDhUwaNbciXl5v*6#rkiZ=Q2IvGJM=*}g-{BAe(^xS56N3K4cUsPa!Czfo zKZ7Cr8RQsp1CU^0@R#}>5ZjfoAW*LF@=8QR{R_V*BhdAk*Y#__M?hZZFZA?1cM%94 z*}u_I1Iobyw*Iu^_1Mq$8vFJbAM&32-zQEjE^eWMzhV1wxPx-PMNsqw#n>QVZej3q zdv13Gas*rad40d<06IXS{cyj^q8#An9<_z5ci;!;iT+4`!`Fs3K(F59Nj>)?peMk9 z9$Z|ToxanN-)fvXIRpK7$onCG&8q_K=;$17{dM^75`Qnh#;JjUJc9x>ob?L@8Wld_ z3v1a|m{Ra?vi0ZH)VB0Tv7g1D1~SZ?e6N-lm{ZC0rnEHF6JSd%=h8yr{hv!sc)Kv~ zeeNl#EjU#g9r1BeUmq5|krkzTaOx_$8}HzVQf(Tv`qb0kt^P+yvc$HW< zUbNa+!@j!Lx+HDJ_7@jVYx;Is`kH-OZ>R>N9EhBZ>{Yw23P=2$l0s-!z|=v=Gy|zS zlTtjq9)QLj%1lk53y-%ZzxvWb{P^0rv}HR9Y-oQEyxO%Y2Gk?3>W-PI9%I?P_BtIV zv5@sQ8r91gCz#YUiFIJh@YU}How^k9mH_6hw$S~oWQ3xl>SLD^PcDt;zlGms+QugA zX!Oj?xS#-lOu29Cdi19$xX-s6W^R>g^n(e4hqw00KF6fT! zJk?h2v=dLAf=pB`NV?$nF%Kl6>6;_aysd;kN$s1=C;hw{Ee4ZbXPEsFeapc^wr2E& zE%?Wb+cj(aPkSl7=`mpZU8ec4$lEG43s9zrkAeeHKKR66Jt+R6R-9_+lkba>NCR`_ z_*TF~rELG4e)}PW9Sl*8PvOb;qpEDH$coOeDCyQcY>!wSgc=H;%evY2x7cX~>AU81 zn3m#`34i~s<$cmpp9V2xtrEmvsRd6DV#7Yg?I(x6!nUEv58m4@PJ3iGQDsOK&Qb8_ z@MY(q91nx|&f=BW?RL;8Z|CP>f#ftTc4fl%nmdMKN;{! z>U1XUfTU7l`*6`Xc1qhnc{{%z6wv*%2Md4K)YuYiF;lT^nM)QoVd6VwiiE6F0Zr|} z(e_#OBTj93WS0fz2b%?bZBw&Sa<#`vQ#l! z9ZTMtQ-p_*^CIc5n#HO5vbP}Y=P}Igj^8Ej%JoYKUlh6NTd_`NK3i8LaPPuYjs&sA zSMPNp`6WGh&x!yxBlo4Kdu6u{vCSR;K+)$8MI?~bmKWkXPIrcqwUc4o4>1U*I_&;R zEI<2+yZG5PUm`P_iBZ_Mdl2>|-XYdFK zkluDKS$Qb#Y}{NK7qp!_dmK4*Q@YunLCEVJND4_XIZ5;staZ^b4x@ScciG9 zdW$O}*T zn`fzDzTi>GLETGyu9n?#tNQ< z!v^y%hna%OS5EutxTgDPk*y~=4_|%<@Cw08zSR;(E+59y$4r(v>)xGZT73TgbS{;m z?df6809Ym0NS z^(2LtSQeiT{QF7OK2+%JixPU@j30Z-^j(d3jFH%yuRdvxZOWFE&DT0eaLr0Q_3B9m z;U$^T@e!MF_7_+0&96yLJ z&6PhL$eqXQY3kEQyQ6-sy;xxJqr5j=@8q)Jrt38BTidewh(0>Z_84pu`44iOId?WQ zqG*qzHrq4NaT;)km%-00WbgSwg{Xqn>M%=U24DJuW$GDEg>ULl;U;Qgxvw5GIT`n6 zIyM`1-bFpWoMV^juE5bsylYJ2dr;kFD`!ptdab$b%%QQEEwu$f957xTc25RQVF893 zXdt=eDq{I$iojgRU#}G& z7n^iFZu7>648#LaXTR7eAMV9g{ovxCuhies(|mXKxQ-EoX+#}mu|r_F525I{G^9tV zTrdVzfYC7Le>!HGSpu#uYoeq8^m0Q99Hy0#^r`Z4ZIyp%x^Re4^;I4#&UZLd(_zII zX+YC=j1;-;-I7wN)aB|HdVSWBYwa|QvnwXAaJi&PKZ`6@ANj<+QE=t^!y8Ng@kplk zBh`Az#pKsz!UuVjvLNK#+-elf=_q>Zw56SR-4?Q1@tlyHhCSqeAIXT21~o-Ij3~V} zd+C>Uv#2INO||ki!HFR;)|CghDO!#i2(p zvs=!;kA|2R@8ubC;_AigtxI0DlOa2p_s|!_)E-rzi6x@u|2vj z#1^FlB-b~1VKBCrK zB;B}8EOYcE}P6KOh|<1hHp{8^PRUgj+4irQbZu)uU&k{PWrYh3<@oN*Vh1o>iZ;w}pV z)W1(n+^or+BNY@MH8q9#U@ z^yEBL!@Y0~tdA4b`({^Qt;h}$9Wd~yK6RBnbxH zRm>Z7GNH~4!HFr6S8unaIM7trgNuQKgCX<&S}ma<7r++l$zKJbb)*2JR5};-$Nqg+ zuat91$fe3D*`r@p1j6tH4Vn8uM{O@)R~s6MN>ydrj9yKHl0nI>Gb+kxo%NBs#=_^ z!QaO=Ei09J*ImXhgEs;}nR{9fGHI(htt|Mrl!27`6e3i6`z$N0z(mzy`OK~6Ks^Gj}zk{(x^n><>+ z#ksh%WA|-EB=Y=RwPN>5zhc>aqP8SFIkh#eLlw9rA|#`_V@Xb-fNfarg)t%Kmq^+8^-CF*$@no?S zRKX|SiGfZSEt#H?Tn-3%E`tzK?t;O2lY)rbLy%mtDh^RV9@-!GAv&PPwxTf zqk$pTSv_!U?`fwB?5c!)?SLTO_;cIpuUvFM%V;n@O)O;T?^GXsim?bKB^`XDC3pARYYW|!sV}gNCS~O`yX!r?^1g%#Y`lMM%xS* zfS-Jd`^M%f1=0mzGKPX=OUO#eEzdd9#@X zO7TKk@RQ1OM@T?|4~TU;DLtbrHy-Bld-aHsakgKe?xR#~Zt^bu% zu#Q}!=i)|a<3}M7@JRagv8^actIcUBDC{YEjMJj1QrlzYXnwGk%wKysF_1^<(vyqH z8OTkFzRu#)f)5;E5Y`dVf=RY_)zKA43G<&yQaT^2ad6wjv(rP(3i~{Pisq%Pp)m0U z4e;j5x^?k-8*>?HQ3tnN51^5;W(y=*M2u%X(X|mKkzH^hO zmIqy+(JRlur~Q#!hmH+sAE>7(YA)!&s;q9fb0zu<EMu?3Nmw43{?OS<(YvdF0E zbvzkhX*NymHO9xP4~@&(Z~vaZHn)8=+?=F$@Se*Iy88+d?Xc@lYqil<91WMu3 zAb9`-fg;8vC_)F5-9kE^V?)oNiqbAx+GQ}=d~Y%L)G8L>>+#a#6h{WSH`NkC5{v`m z$ANN`-a-hAsm2)Y!%;-%lM^bxNLr`=WGLn=sDW!`+rQ5hJT8tv7@2$@l61)8iZf=D zVI)g5R7RlUT+|sDmS~7ee6?ilh4y#-DUCV^r~5XApxcxztz;l;D3@mwf)Zzz;`t(Q z75GBNr7>GDy>PzxTTMa{N{VgMxIUJ?$xTi0_axai$!2*gBXO7Wx_BL$QIk2Bqc(}8 z?-sYFY2Bxl&`yqa0tS})pEA{(-+88WUH~3VS)=6~CYKs*&<}@*giD7PG#jh6V8Etw zL;f4s8+pYwf&~QJ4SS+YF;tBlH{-RN*4y;NyXWvPyS~!rx&j28fr@VF3R$rxYvNIr zCp@Xv;w>gCl1fmzyQ5*KYx9i-;lUC;MOH`6>Uj4YOCEI+j1%-1j-j){#t|z*VvFQ6 zwIu*T%+AxY{@oza#k3#W=|*}Oy4&X>y6<)uN7Qdr>Jq`*>5Msu&oa6#;Sm{V+U(zRjB&cg44X9}6x+wxDecreDO z9ONZmEcGZ=5Xobum7C*)PM)egE~MggS~$LJql)FuQp|Ma{t1403!kgZo51(l-UKe0 zM#pzpD&#tT-?K2Gq@#3)JugORlrKG;SM4$E&37u^WZ`{vmZiT22udiuN?ClN-uvm&q1k_gs(AVtp}lfyp|SiDh|dz# zix-5*e^Cq{!$#FMhnLIlJjWE$C-nk;{b1q`Uv;sVeK7f6oo0SmYuRs*RaKsQB5pV| zcKO+!vC{ov9Oq~ewRt7D>XcNq8shtf57qQ8%k?8|3ObIp| zkva+Ai3_c^q`j(N&69sF;A8lIO6O~7R^gu{c@bZeT9K#%=NUc6Sn~^{(nVx&%MBbf zP77&TI&H6d1ZFSk9z{$U6tzr@!x6E!{7}j4+yQf(;8O2ey{pSKViRRD34-SCR5urlx4f3)}Ek4 zF_-0qz3X#yqi|Uquu2w6x&>r%JAEk66K)388_d_Vd1ICZ!{yyOa$G;{(@wdh&nG=D zw;L8w1tNjiZFrqm>O{xPXHYOkSY<`i&-dDDiCp;4Wq7!!1ZrCrs3JAb&J-O5*hehZ}sdjZphJeGlTNMti$uCTH-slb4}$CgR-A)X~i?h2q9Q-bnvU zu?bOgY`i*qj@Qb$wCeOM8*x}z+uE(f2r6Yr=@JK@ftUs6JG^3L8opE+on&J5G4m%d0cHdd<1j!iAc4j_mT<9vFl@n;^w#zMtKhw%iH za?eDJC_Qg>CtcLs3Z2!a%wrU0R z^#5?Eg}H-ANwORn3NhO4oSe9<%W zF@RF``powN*0_mWe3pupS{UkMQC>SeHB= zcG8KPdNGT#r$`YCXG~RMf9Nuk!l|6#%QVbaI7A$!6!4`LAXB*UbK_#g5Qg?l155I2 z%jWDdU@L?s#Dhm%&!rRTMkuBvpAp>nd5Za=8kOMXo}MNl&_9?6Lzj5nK)%+fhh*21 zMJ;G&#;t-_9!F}$csw?jmdI7QI{an%@q=1lt!kIx_Ix67lejlt7Ew&7UK)sZZ>1@+ z$x)gIVy>@D+POt#%6T}7vOaGwyN&e3%ojh6sb+w2abQ-??jQ7uC1NSI3HXJXlzEm! zraTY%NhU*7r!tTV^qJU6b1HVE(B0SpcmHW+N)#CWbA6AsX~B9qm$WKu*shXY9%T&i z>=gTGxKWROVF+lm1cc|z%o|DsC{XsJJvdd4; zk=MDDu6BTwb}~H>+cMzTf1-aSP=L6R_Mq3qE0~^o@bPugt@kf1q=M+u{iP|<{MC@Z z{Q640=S1HiVy*`~v21o~?w#Pnw@1N|^{)Mbb{Ab;pzo_}=*zK#ZUA+1+-^#_Ah7zN z{@J-?PtBb6N(+JAsD8UUsyzb_0uf;fVd_8>S^R0q4ESf*b@6ry^LTe@V_h<3&?yNk z`XV<0i$YxV2J$OU`g3Kjjpr4KF|fz*foPo_bIjOwWi8@{R-?YkjOI*!0!O5YF-*X& zrD1rs_UyqgMvu%*7rXi@jRD#fLw=-0a<-`FF1IyWs)T$#YBG9#+m%t3|3sUCA+;2k zX@EC2KU5NbfC4|*!Q-v#gK%za0cgA*tkTN}pu6<#?^-Lm7&ZZYp5&2w&B>o6zlV@c zo{4;?D9%!v1mn`$yo5`c8@)bSLg z-|N(svIz0|)x-Jy5?dBW~h2A1Zu}gLGqG;IOOT|-c zqfOp3!2v=;AWFwYs29CI;5BKR@ad)*2=@^EG$8U+jparP5tP8%uW8TrE}SQW4%0Q-*I8-mR{XYg<2(PVnkuPGDml{*e%9Z#1K9 zNnYHUHh92KdGnbWPG4+M>fN5i*}g19K&6CV7^z)V2RC=?%tG5!-R)N2zd8oCgexjT zeDutIVca@?gHE_D9vM@mC_ft>IeW+Av}gPXbX_CmSZVcvPtpx8M`kaj9wVQ0{^VVv zsrY=Qbk#LVG7uSwjnfWMZ8k3!{g|jlH-tUg6n@+|pU%bgfLdw{y`<~rMm5Sn`fVhO zK-i%Ppobff3J1bO7w+JS%+dvcqnXNtfl);2JPQg&UMD-kp-^B4Js#U}`wVp} z_CwV8-62RZ=hM(sE{q87lK!x9hQJJ)eXY9J%=;P7iHka(@V_}k*?8G?T;jXuizaYj zd=PtP3&Fj-IKNg|w4Ma^4aeOYkhgt*?Qi8SmskjUUUPPyMzKW|O%z}7j+rUFsJmaN zZ{gRcn2Pae9-ho9R+din0Yh6&qrUcyM4rML-g(9PIsQu-u{>7lW0`aa%;S}vdifo4 zdnMIzIcD5V6!0EWNFoVJn9w^^erz?+HfcBR3J5XBafZG6o}|H9lB$+^^kI1YlO4FJ z+v;A@oOS8f!4j3CRbQol8k248gX||SXF;8(iuqHlCVH%VnAT+qpc#;IjvaAwTgu2@ zO+l0$5*Vi?Afb@dj!NY3nQtc=o3TQfJ(f) zNmTxR%D@u-L0NJ{>-z?;RF%h&%&N5Q4_Bj#jPSiP6R;cmO({-&>YNYee2VZ$>)LT+ z-<7;LIoh}Uq0k-_yzi^_V#M9(Z1Hkq-zf3o( z^Yq`&2+`?lUp0hjkK7feHlfq*`^+>8pmIX}P1KcPKgHlnh%jC(b7huA8H1!&|NPKgM_CQ}84hHTj4@6=nNl)A zAHL+uZt&6VMO$GB7G86iD{(;mD3g2rlXHB zl6qvagTU{G@%HZ`Xj_I#RhP4pWd=Txm6%O+1W z+UtLor)a-?ST-Pv;%VMPZ{W1Y7>N+kZqZGL9$-MIXx~U4_Khiw91NK-2+3Vy>1K zRjyu{d4Bd+rohjjM%yaCZ6ld*SX9hHV_u-*ZBB~C;GFN^SKx&tLXm(VF@%1i)9#5P zi9nh-owWE^bMMOKCp;|r!Jvvn`L2D>SK&PU>2jUS(%Mie(a~Uhs|2=vzky-v2aOjJ zkvNE1ViwHYDyy%(yvA3T!P^S?r&WlD?7DqkHe+e^3URSz$v zX8E)@epAvPD3~ge(Via&o6c87sC$O;cVkSK_4b}QstZrcM3XiEU43q4S}@Dp{7j&) zOE+drYM`_Yr*w_qcE?wO+WjvnFdN3>ZAO?UMl_)$=PlkKYcqCX_X^m&c#RZ87XVn& z)uT-?->>-&^IgJ3ik&?7I3dmB6m4*7#S>y$cirCOc>U3n*pxzgUGlL8Y26@471I8v zx8G8$w~5M$qibVKz&?p#)>U?OOWHzt?v124mMFZVZF`ny;!dW#_}1L@H^Vjp0cKx) z>gj4BVA0i4DcbdaLW>@yS`z%n2O=TjO|HMgdOGkayjk~qO7l38`< ze17jXCx?t7L#F`KKI)Lhu{S?eZ??V^4_!=SbW{eDyfRp7r@<`;A?b7m5FdAP)9!3* z=J=l_@5%#0E?94?f7rGvNX>mRiI%n9ZP2OZAqwR})iPnQyDdm(vz4`rWy)TH=WXCV zAZ+~~{(a;sq-xBQK9nhI;CM(3Xw%`y_!5Ox2T}&3gn1;doK$h#cZV88n4*r@VP)Wo zmWGhx$Wj>K+b^%tZ@?1?E|7RyW(+JG7XTeQmnVF%N-ySQ0^OGSG-h*a-=i>ST7&|c zl6Xh2z8ACB9oI_Bd0`npo6G`7^CA>_v6>MzHiKZYF4Q|!1%jI1Ii!r8B?&j#2d-v1 z-x@^+2puJ97NO~2iX}1P{uxycAyAD^NV7Xyva}CrsYgzuLMYX553qIfLE6+Lxw}WqklI!4oAq5s)A;9u<<6^nI}+A< zb|vTWp~YHR)gR@dE*>eV+1R7_{!$*LFo5OJ*^p~MROOB8dGRz_z+K{@op@4f7|Awj zwHf!cj>=#3rlQf%l@oXcqAV2O=s`a%IfjH zDhX54m!_A7=N@%??i3dTb>hH#^c3OAnetC|N?7&wXOPhGQ_b#Wb<>NclsgE6wM|1& zG+jB;Swgk(UyExyf24fQ0=(XlUY$32=1V^keWxIq2WxVSml`KtGDu(kNE2Q1M10nG z)sXCIAB>w;fXx2_6KS9q|HriIe-mZwjjW(}c>b3-!$`o$%*p(}J0=2FPNx5VT9u81 z<3ICf+`v_mw^nI^7OPnh699si695W}7rk#q2}uBnNC1(zAf)OSqg@abDwRsqOVQ7v zq?FGKB+x1Smz{6k=l;PLUd6^F`g&J&tgky?bM_$U(*qkLh;WSK6^08Oi3|uN&A!tD9>miX&gWjlR2Cc&!#)%j$Hhw`B+{6VO-!h<3!pF~z<^gEo(E&7Y z0Mb%Gr6+>~02mP@PV5QBbkPcco<)WLy95Hzz+wlK?x>7)e76(hNXP)(g{`p5jiW&rB zy8qGw8U~;voq{k386e)|L2&G&8wTK^guV^KNDM+VI0_m4j>Iy;anM(A0|mf$5Ew$R zpy?k3h7oTAz8wG<%i;#~Q3HL0*F1s~z`R}B02mOw@n8Q`{j5Ml{^-Jl4l+=vQ*44q zx`A*I=pq34vf>i_!6t_ZC_3m5P(Y^v(}#Z!A<`{)@ff(x6$Z453Im|X+t+_;U~n&? zhJzj<()CkB`Cb9@pQ^IxU;+yjDsa?@(*INz>>@UJGk!(Vgc#r=un&`BM@QGc^wt0PD~=T< z)b;iSIzYVv9PS=U2X+hl7W9;Lq)g&ti| z&5b0Fk6-qtZk-X{&Asd1j~bBw`TEg5i3nj25@TeB1)L1ssgJwpq*FR^LfXV5)6}qx zhH1Zn3pjY+JN@XqNa$O{cT;8pPT$X!VRrZ9xxU`QpS{2K7tucZPfhq^B~~W~(8|r6 z6gScPH~$M4F5=ojhIO2M=^_#TlD{;=Q9)}nSzBMG37;<()e32!R^!7{4Q#g+X)~k% zU=;j$hth^aV-%-tcF01S4ttsda2lJ7qxyF360Z!4>|P$C81dh@6fGkS|2LnuxM_@x z?91tkb2;Qa+Ic@+N=>}6fvL0V(NyM)_35dUgi_Ub(tYJ194dbK$Wt>~q0swTy(C z+$5seE?ZDVk36H|+Uz=WT{Yd9RG+p6GeT)>#?22Hq%8KDPLlekstvwt zvQ{eR4nJ>YFYRao^XQC+G@Ol1TRs2R7lZsu(k;xaAe{V&LE|yU#$(DqJ1m(U7vtFr zV|XgybDmaC`lmdQhyU{fza4<;|@oTa2{+tVQ@#FU%F$f^nwW`vO`XN$O}157vph=vA^U zts5-9y-FtA=tZkrgGe%mIjw)FhD>d)sd04au)A+63hQDIc6L(HGV{-Sj?E#(JUfHc zL_i;+Uq1Q*kx*65f)aUciPxr=IeoTPIXR zyNj#6D2a7)0uvz6__6D2y9y*u>&DjEG-ZX9f25vSd=Yy(*LnuzNp<~%*2X>PnmIUD zl~kF0k!1$;p6>$+tzGJ|nda9bG7+GWL_sQH9 z>aEO(VW5*x(=Lcf3M&xXpmLD=3E{7dN{c$&6K&qBHvXvHskHU9^&ZR^H_x2h=3s|` z?{*c4%l9q&P8VlSE)>?foELBLpY35mX8kR)L29+pu1(T+M~_&V2&YC{Q<{pDN4HB8 z%T&zoms>d!2<44cK7@L66G16T@Mv1ZytbsiFTo1c)k>tI)z<3gk(%Ht#5SV0gRY<$ zVv29{i6|-R){AZd)W;au*p~IqzV&noG~aRWV}+_07n!v0@&BesMv`>j89yxNywSTL z2VU_wBfb%$5ibK%go*J&eOc@TWq(U{UJ)?6{4}tF$HCB6<1dcvUhqy=`g~jcP+God zZ0Vg2pT4^MM8z*Aaiwn8cyD=>Z5+^$3hX!qOJc5ymn>V{hQfOlW`HnKi(O4>7`D6O zzAK>L;+~M45UyaW@B?$F`ZkOH+a*OCbGDEH<&UP>Wu4$KvHJI%AdQ_E7vEZQ=y8-Z z-bQbdU*j&C^RgTvOhr(_4ay$$10Jl|{gu3$*>Aa1LZ>Q0W#f*|)ej*03rx?n{ zE2UPQE39d}zj7ts%r^xsqC@KE>L2LRaEf=X-6N$45OI0SYGC1b)OIts zdQf%-b6RN>NFo)QAf$U)ZV}K)2o7mwGMOB*oki&G!*Um=)h$onEt8@!TyW^`w{j-Q z#YcHyMn_nhZS=km%Ec$h1?E73 zU?M66>^H9J?j|yjau8P6yA}O42&G;-Su<1WBc0wy4?bDp?#dVw3*6qX=~qBhxHA_Q_k519dE?l~Mn*dxm`j2P*39Wqe^c^$13h4!%6`#i<@{tuq52i@Nm+F&wRoTQe<%K7%h;~1lOZ6piYbz5|9e)H~{|NUxOt`{4-h-s*!o((6rfEF$n{Jn0 z#+Xi);@R|LrLBW5`Po-&YIUv2j_K{n6N9gI;^|?7h~rTBwEy^*|d$9wr$(CZQHhO+qP|IzO-%I?pK4Zs*d;vJvx&c zafT=EUi(|0h;GcQhj86qJ>|qn*dP}0YPe^WAYXm3=(RiE%{f4NTopYz;W>1&wF=->fzyOr z2ya4{&KZ7>{B&4((>SeI0NUAiyTjGmvG8gGS^K}Ga8`Xo(W}2P+25N4am6?*Zf#6x z6X;eiTS3@a7-fcNor*z3G*%sjSGpj$3FAeIncNT%gBg#0DBE6w)J%FZFb5WN-E!}y zs=uOR_?%-bdOfjtk8CzMyv{x?i~su#70_J1>9 z5i~3+gxK{dxZrRdpKG}bJ7RRA|Bd3YkIn1W!$LS9txW;2TPrZH(UoAByrCrxec=jN z=JW{3m8UgOGQx0Y5PbURugVkhoQ{keHNDGLThVH@~8QLYUwZYEZ1~q`eZcIH-Sf=(!jv9fR_MPU9+R24#-$j?h;v1I0#mZd-yIUkZ>2XO)wJj3^#BY;{ubFL08<`O+C)&D%J`_)|b8&zUea&^#??qEN zMte3(!XWajnEn#a0BAPK73>wKqtLHW39&AehbeM$a#h7E=Ad`juZ@#7WSt5+-aOIg zc*gjhJ|db&FGMzjcESpED97lm6%|yqbQq3z#47r`$3_`!OFQcYBqty-gE5RQ57c13fqghLX|C9qWhL?Mtg)GPatG(wK0l@R-RJQa1_L-ggb zvh8+k>k6u*D*;-|clp_%*7f4a@FJ)cjF%b)HG+y-CFizAL+<^o?0^1cz2Jcr;FFcW z@Pp{W(hK?-1ZKWOdg?}E$(a&i(U6hy+|qrH5+ZFmx4y0xU{2E#3IJC0gmOAjJ+7L+ zSREz0KV%xQ&%?t82Lo(WRJRfa7+lkH^-9avg5mtabRj8)T5l)c(ju3!B~Eis@_DpB z9I^G#bd*X?#F}V9D=~RDPHvdcxv<#zecb5(X;8KjFJ3Drp-dwO-FFhvw=@0{t5Fo! z%1y=f*KNT$WcbO@-bE1G$%N1chavy_9*}Ml`#0Ib7P!*7D4*>3gcOivfUbEVw0rAK zJ?{zPw9~S9z+=F>GX+a&;gEBk%L&KIH-H2A&+_cQOIY!)L}%E|;^QVBMa z%bafwI^;Ka7G79gTc3|oZ`m}${YPSEEVEf#>4Eg|Ui6{TjS6|fynoZKM=1Aocvf3z zVgr`uFAeO{e1}ukFevABkdWTRgFMO@1)ZWa`I#FF8F&teIh6aQz)UB-~NXJn^#--G1OlKCff)}@4su+RMqX7#m8|djyj(9}N z)*@lbcu#{DhB*Ts*XxE!sJHT?;t#Ow2J}+1lSC-cId|;qi;CcQlSQXj)6(Sgt+sFj zt03DB29ww6w2O2S6eHO@pjs*~=Wt1>KBQ+&thBbUDcr-ygDQKVA4K3@sUDlppq}x9 zs-3c^-(%dn_e>f*>h5-~Rhp;dB5v_^qx5k zaP3x$`w<1FmaG42dL&Wb*MM^~k9Y~;)aIQ7;zOw&;`QYf3vK6P5aFC@XRXSBV+~1l z)kPKV(Y7u|3AUCx#;5-2Ma9HIHGGs?GhrJ<3|m8_eS}`f>9E!@TFxKR3TeUKZ>nxS z(>^)03!Q{!DbkrenJt(Up>*Qg-e zv(EyZeKE$2j>vPm#F$t{z|l$#Mm4M&AO+A|J#R^ixKQ|BGp(K=WkEc~WAH+mQ(ttQ zIBKfILpE*S&Z+>|p!88jsaH5fXj|uvU_nVqiD6-8^mtUkQZC5y7qRG&2VwH{#kV;2%Pw}o4fn)JEenTR<2k+%`K*k)38enmU-5~Mx@p_tx+!$4Ofof3kTCO8(z-dU&kBX;`kXu`>-cFBU9STn zkDL)&HcU?JtI`G2`CYs9%2v0U*)=CgVy6JA^TBv`iWH5nqeVeF0s2jp^@wzqiS!a6 z8&@lmC!=`A*}4h*hH|~~WwqG^Ckje|8j5$@ zE^!>ZkFM{pQFg-Bf01p<1j)iw5q-xMB1CE;KnE_7?HY;un#0%pIpF!ixSh4VECL9uvJ+|WZ!Cn}#iZ+UMJW~`^7nuCv*v1_Ln~Dk1ue#4W}TIb}vg#$>v}{Kj{6{c}Y(Zpcd2s5(9%-g^|sMqAaLS;_aT8OY>Ox zAN}H^Nb=zvm;M>3Lr9;a*X?kXd|dM*O3`f1m%L4lSgIZM!lFh0aNykfQ4PF$z3pR; zO#Tsz*JPpP^=JuPyeCeu*eu`medqlOfxrGbBcNP)IW?+1X~{~^5Qt6+1V~DvsvhtM z=LG@`^P$;OG5OobD6GziBi@^!%;&d%;m!3f^98Z^U5fLli=OU4BI2U*g#)Ysc=J@PK^_ty?rjz+RA(CZ5+cz81j-E@)4 zXHz&CqYfTCcyKd_eHE`xZ5s|W$OO}MiRYPpUWLCc2(LSy)BO7Jru9|7XTpD1vwu9U zSr;9y_i@~fA|mP*UUp3TB0jrUS`#ov6=Hk4FGh;{CkxO%2H&|IcqGEq1PHN~r!*N^ z1Q70nM>Va>1FW1T3B#A!y2yVX*ZxWF?h9pe>1kQx--k|h;utTQY!sE>-V4}BN~VsL z)6ZA}D;+qqVBakF!{FYrL<@7YN{?KMYVuT>R>`lu+jw_fAJ5!hTGP4nLtX4^M_ZzM zbZqqVKOj%97r`n?*jA(gL!*5g{GMs@LhelX|fSlNPVsf#KebDOGLi_)(+BW~g` zwGFKM4Vv$j)DB~3+*wv~&|18FY^J1XjGRcgN|!g$6isL@T&Zd9w2RQL3@f9kIz&n9 zs=01Ikc%N=8K`%pJn5pYp*a)lEVdeE*5FZZ zpoLR-9Yvem9}Q+x_GOdA@kXPcQtr&d1om5Yc_+cBbbt9E(!w@Q;1GR30uw#V_O`fqTe7&g1O(8+cH+V|2_gAiT<7c0 z&v#DK3WwE-=c!LESKVpvO*3jZJ(xqhBA;TK^Tm4w+mq-Y*=uI0rw1 zJUs-MJTQR`K3sXEemoC9I9#Y;JnpaL0I6w^FlQuCfUT|V7CyL{E&HHm;5S1*Y-BT_ zxllF%gjzVse?c|QalnT#3^qV${#CGxFYwg>ErM-+2nYbsHK757bSBC{P*X?&0QnI> zPRU9DSTTsJxTXudurdF>8?gSVnNPXSzCu5ez(HT|pnm=KAR>qpzz_}K>iic3|Iltq zwgsGbbbvsOA4iaNt|5hcd^Ln6T;l-8w`~pxe7X`)fC7jgky(sre@?=jj+}y*K5`(x z5`pbT>}f@?n>~O4f*eTSXEJCJ{{C{SSAd_4Y8;pwu*Z)}eb5jM&2K`3^8<*bAb}ih ze91Ja2!I0+|Mnmo|GtGwPj*3HEDyf{axh-qSbH&l)JTwF za7$2uZ$x*FAZ-Ew;z7`Z!{{&lX%7N-Ve=RUO;|ZbnFNyzlZ~%e7U$qp;3H|c?{8;f3+#u5RU7_H7F|D<5w!V54Bmc%&89|s?l#meqEvM2(nBdI0 zG%1SAs-?dn{vK@n+To8pk(M}HOJ>6v+kZ81Ta?QHjGBn#5NGbFWjQyh?e3jwl3PI# zm13`X4!4&a#ynT({xh_VMygI4hXh;d8w%0(Xs2TRN4t&P4ufwUm>nRpH-VmHk-(_9 zQR{`iFgiV5E&f}yl(@kdB1sudhomRLDw^El&DIV7ZSKwe$6w zG#wKQ7PuN&a89_a`N10xXQNguI(gge<>$zdn$6Qso~z%-c8;nXJ*<>9vyYKFoZUTs zYN7@<8jU(}K2|OZ?`R4_$DakxvYKU;GBVRmjNeRf*Yh!KWy`9uuWt&%rzg6C$M+7F z>@tn_`@TZR*iIRX%zQ~ITr+#;3zY{WOZOTwoTm2}TPu*UNp4)Eh4?V*gZ&cL>vl11 zE`$X7H?KaM<&!n_?@KPl(NzO-1D(qV^VeI&=heF+e1r+Yo}Zxo7fVHQnVIULsX zVSBO^z=@E#T_amk^ELi}>ciA(4N>T{52mAE4|V2P=T8V{_Dd@@)SQaRl^rvTjwwsB zON6)p2ROYe=XTw0soCDm(rF~{DmHTgEo(hKX_+}J zd5CXDjC-?9?fO$khqbNR8>i|2{r&|}98VVbj&&&u2hSp$V&m`!sd12V;B>TT$k)Y5 zF9Q@Mi$&-0zCHF?X3e}+V2~#&P&M9oc_RJ2l9boU?UKg6d>w0fb|>oOZE#`lI}Whh zLn<4gkL^&B{Q3X49Ksy)Et-eALKbZLIk8G(Z7cX{m5@D`mh z0Oj@gu_R8o4cOccGBQX)YAw=GQ7<4j0KOUg)IcznmFawxSv5DeEHQ!d+c_AeiCJxW zUo_2S(q6xK(c%|h;MrZ9EZc_MtJ7Yvlol+l zLl2P^*=~m4pNaEDM(aS8pZCm(NmXtaAiGm9LtSD*4t`slP3w$Xfoczv@5}N5vQ4k#t!VtXdyn&(AiFonZy7p z9VtEx^S9n#XrD|KeKX@bF=t%k@2w#*-T7TQ@Mj)fY;kCfi|d^2v&<%M!s0gxYj8#j zwq3xuRG$Xbj?feFu~;bp$iMd2KLYEMbKoBf$5)vK)dLBc@pCBOqdLb&uw`Qc4W7rN zI0Mk67?XK?mKAe*VrEX|rQzLLuoW5OWger*N*P;H?}w(gJD96oZHm1YAvcqu+X_hU zQ^vhZ)%Ve*=jk`~hYw*1uizL>AFf+8ow^_xpxi@r*HfVbJ&j~!<(;bnXtjJW1r90% zuG1Pl#wqgJ)(%@@jCHEM`WBNo?7K6DBT4S<8MUnD3OVJeu@?>SjJ z8L#2jLO?bu?JvlLGKXxOQj+sViu=LpGLgw*R|dMcabqi0i?==TyhaBy z6K}4z`WG(@8^YCnH$bQ!9Zqm7$XM;jKB|ShXZsiM2%yQvonag|q!E}&Api$UFY!SJ zkrB710{JL1WHyHa7#&@)8x{$J{v`-?Mfx-9Aoj$?QDj7v|q60_^(9}-26<~rR!tfb_EFYhwzC0dL4OqUG#i!(3_ z9-M6z-dAW~y~k=Ld=`awFXd7uz|Ivscphx;I9@75gQI|H;`^tPUzBlxD?~jA3Shuc7XKhP4DuJrW*; z|1*NSGeIHwdI;QbyoY=KIKxtP2q`)4tMY9t!LyfGON$*yaxt~=xS+KsiYyMQkCHvsrW40iKf`HwM~k{yHN$YNJr!CSqhn$_s}E%k z-zJN=B9_=RL*aQhiDyI9FGWXh$Hf`%DMtEH%-uo_xO_P%ASb_VZ=91Z7+3n5b z(6GoUmR+}{KDxIMk1_A}7~n=?rb z1^zLA#ow2$XWbd!?>%iA#ImPEoCa%m+6E;sJk|$e>bYd}y_|3DUF5#3mn(cm$+bjl zGh->*R3m6&(BN@hLip^vQDzCE3G}q=p6-k%bH;_p63_B?LpObz7DL2gGaPYn&l5%z z58s{@cAN-O5G7m0D{Zwq{EYe5T;ZJqVsTF10#0xoE*+r=fR&yf#~+s{_vFlrwriET zbSG(cJ@>_T1ca>0l!WLs-nz&`*a9q|Xab4X3>9Ney%r@)F5sei!IrH8>STg$2%7Qe z#gA3Cta-^wDVe?@wagEK;u#xqUu=^?ZkI*sqca6fvTDC)3uVE2P26Sh)7gwVPXpHNz?jy_!LBGV+)o^ENQk{#6Y|KS9O zJcSKXO;29gr-jGCD}D8Lv_{_E>^zlJ4y6isEYZp<3jf2zai`~!VPruka)i~Ozf=kR zQWFY!Eth`VhN3}YkQzcDZI11N;?Z~I00$qtf63KH^?XZh-bKD!x&Y+r!H*q8I>bQ+ zFsgR|V&oounFibkMaQ+dkD^fMb*~C78!}6RkTJ$p=(2j^o_oM1zj>8A*LSW=MmZ}> ztcO8#Q=gSAp`%Z&)LT-wK|s8r+ES{ginq|Ny2)}}W%0LgK(ECVdk;nG?mSt$>6v!W zt247=-y^TLX5}hHM(x#7OIg$43*lE9xk4y3c=)P*_ zr=~r60XoY-&q1{~KhGMARJ~bPy0ezh?lLqu;)1Z|)wyRBvP-fjo$nFfE{myVadw6mlzq?3 z)C}oJC5(IoQvSSie+&8;dWm5M-NnP8fmy#>t&E0?rLwn*Z!AX2EA#kE%H>)QZ{1MT zH%Z;QO)Wi_tO#r((bZ&$RZv0U=D1RffC4CQB~hGt1XLL#>s83eAz3pJ``RIlwJXiq zf|*)^>9hUyy&ZT|5GnsIr6&eoFKFS#qRlk$A1?2f&U}-)HO{eojApN=0h7G%R**b_ zt&5^_5;}}bI!05LZmi0@TJUD#w&!44ukqR2+Xvh}5?)ns*~Od<6pRh9oAu3hl7)-P z<(ieYECoj6lIN`F>>N&hdK9NkMTXXS0RpDkt7qJ3dW_kp4Hpn8dxeO_{S(UP1S&g6 z3n>S4-YPRkix~D=F8$lQ+jPefPdJHbKR=(DtM?&p;uenMUFAgX#IyjpPdNqm&T_e=+6fNdRNn)ghyQ6)~H9* zFepVkP~i2b>Yu|EF|)FY=T0hphi|?X=fVuyCXHC@2CRbEyg0IrJJDd-&-tY{(PX)P z#aZ&8H7HD;z`&U^^F8R5MQO0K>xWl1e2R|nU6~qE(&6S2ri<*FhNICbP%O%S=C&Cp z-9P#xJvw371|DyBIP$!XQ>uHaJ6-juuKKDEPDmj0X= zUxH<4$vSZIo7u=WiPk3KkGcyvKHNWF*Xo*efCU+AmbMnx zm;TX^e+=z++3>QtBKK~QD(DZ4Yl=?FH79rtv?QIWUnAzL=~XLJ2uAkr(;1;B$f8T?cl@t2p3U7zZ1 zS%c-qPoTS7Db(u5Q5UwFqS}`VAhO~aWkqnX)1Rxp13g+>&InJ4#PA@bWy^j3@ZLY5 zAa?gn?Am-HQ{&T28JvSm(7{3mFU_Z#c+p_R9SK`kb$kv4nxQ?kMD5BmwN2mcU+WJ+ zJs!!@PNUsVYZ1WmMx}yS8*y)s!F+Zcs8AHo%F~fjL;0Z9^E=f z5_$%HB{v=^qm8;nF4AkJg6)33!GyaZuDH#DOTBsO<%aycD}wI1LzN(O7+WoLqlniz zrqhbaUefSl9%Kl3aTxWmJTwb&Vi{Bf%5z3$VZxzeYFZAJdTQRJOyY9*u6Y@9IOWJn zJkToiU`y2WV$a+Pl>!FmzJckG(c&4Vti^>h(Ia@64=GVKW~#!heK!9nXhSD4G>zJV zKX7p8okWEkF)j-YKED$giekcyxzaOhPj}zlA82H;c_&oOy(6O1o-W43qOtkKXxOCi zDias$XW(vnhOXfI(Wb)s3?S@kd3zzNE4ekgb;8V(ntZ?bSWaok+0CBD3{B#xjPWk; zTJG#z$a^6D6#)0GTVleD5ATC(`nv+PnyD+`1P(o*3zBTnb4{toB)&^Dk{%f748G|R z$vqIF>{UXuaQboPm>QD}i18X=+9uA(fo<9Q4Jxek_?L^ZJ^QXn2FGQ*dsW+Lq~jr{ z$+9*h^BXPVM&+ZCZ%UnEL6;pDalt7U@b8VYYR$rirF{i-s*YjNrP>5lbG3<&wB>dm zg>2-}ol?f{dM$ef1(>-AB=_Ze|Zz#$?Yop(vJW>PQQ?r_R-S zAdOs)pZj5ugj&HmoH=t^dA7|G9@(>$ym4p0P=Gl?GDMOFsQ{;YzW54Hzi~I;#IDs=+hByORFr`!NhUmL|f}n z0N*gmGA-=5K0q5wOJ*B3t?m`QIWWZ5$w_Y)CbG7IpACR&=c6!kpcKZEotFloxXo+a zAM-gP@7VXkY*gRdbep-@-y#q=^MzgxOs*7%-_LY+;e4nSu|SeNg5M_23WZxt7|_2W zI_Kp%)YmirRy7TMV=9m`CdL@B=Tc?wb3CK-=^h9_v6nqirl=1rkDcMr3v5V7ggj;$f-g~l zgZ#OWd)P~!;?<7(i#_eV3%4+VhLiy)$QWcQhF6Ij<%^`OS(se@luEi2B)!>Bljiix ze8Ak=s#Ta^8XAv&dex}?(X6`()zAIo9Z+|iZ$c-f*yKJ1h{TJT%`-d0La*3*zt!8> z)pFacO?<10j}w!4AZo3SVH77-;9mWhL8f~t@p#9-e&3P7hn@Xx&4Pd{Zt1P5rS%E= z(huD5XtC*u&e)Z>t82h|COFEJ<);W}$6jxiGU*-G-pYe&H$allL^Ykl1Q_#I^#N!EwOI(L)` zs~%NOE}xF~utX0kJ<#X*2Lt5$2*Lek=WqS)yDRj!670_ob>Gm0Sive9z;LUL?xFle zYSg6`q?ZbCo1mwROIbB+$Ot-GZ`~VP9h@Cb9__G)D-y->8p@yWTdEd{RRl%^>THYO zY3r#i=Hb$l>Y^gSsY?9_f|T3rg@0;b4N?CfHrh?9NP!+p9UPYn6$|H!Av|{}QU@1u z=jM75;kBAX$7&NNTRCO!MVBn~;dB$lttAXe!M-%pGrZstSX+201YLA z)>EmR6f#D4VXq$jvN2}YOvI-;sLI_%qmOqyQCuZoM2s@J5y-}enP=jKjAq=Pgw?+M z7lyg>IUy=P7FiixeB0lALXs2UF(8vF-UMAqR7_Qa5KX0AbB+1rhc^~TVZ$5KA4REX z$y&?>u15^r14>`Nm8zohTqfyhk}$%~E<#`2%|yP_V{F^{QAvF?5wdR&k;>sj;>1ly z$M@m$My@n6A_?;V2WM>$^Zk^Vt(&kLDfS*~6t{!Nc6?cC7fL+-$h{}I%#X!@Z3Cle z5AU#f6UOso^3K8A>;W0ZlC{ciIq3$8pc&p9A8NL<4M&UquwcKOg6(mJ(r`In;VUlC3 zmm-xDihKFaBmof9NkCldqK(C;F%8_0{+g|f!K5mkP(5 zLec98vYKwtHN1NG1?Xc;4*ZWOm+e2I+W)V93-Sbd;*G`kC=PDQ?ApUmK&X>m1#RZyKA$)*)BgTb@V3~ z4-|X|u5wDC*b~IP<1`S;bM(xpf87uv?(grQfYj8Y^v%#ubTIl10fY+lAleUp9OMKA z_{?BRU6FaRw*Jxc7LuzNp&JTZb2wt0C0?2=2+;4iz?ufrbL4-Zy8KwW>| z!gtJ13Iy0M4h&EbVy!KHJ3Pz{Kyz3Je?VvDMz^^gGaCX(*q0+nM?ONjdpsG$2~gt@ z`_~Q!M0sUCJct3rPe~XMk%6r_3LVtRLlog|9do*pYJgBOLT#-)J0|E`3!e!(64WSm z7yNGCU(O*!UHiU1XfJeZ!`~>7;h~sWbU3G1e@pUTmjQl%KO;DKX8B+}L1kriAP5(5 z!JdIw@4f}B_jUn4EKuJ8bTB|)TL`v%o=^~G08{vpFMuz3d^vK2m?wX*w{N>4zghqw zAbtp#Xs`_d9DV!#z9u96^6xyB(s%K6wz)*SA|62e-@4hp+-io0K>WRb0ZG^2Z9QJ5 zkTB6oOKm^&->K5_@H?=Ndx(2r4`N|qe;}X(LVgAYNd11l()U%sFQI=Z7d-HL8~eA9 z$+G_%kw1bDn?CFn9)7m3QU8~V5xf7l`VJvro)KmI$L?I~KI$%rK@aG67x@1{xv&+U z?d@NzO~0+bc&71G(<7&Kz@n45=F{qD`1C`7zjkU$XL$-M0fPFtwZAsY{6X}G1psdS z;@M*S>1ldz@NhyEgWUxPJm{ELZ(`!V%|J>+pkQGa1oHKIY;dHJdB1(u=@r0SMz*LZ zr3QU6^3(F)W;&?s=z#AmK7oXV{0K;p4}f<@!ldB}0eJwX(ggCiyB}Z=_k)P$(hvwk z3;^bF{6M}fD*k#X<7VK3KZ3tNf#?8`Ktlh*v1h-a(BC1y&d+$-@p$8>f$R87+rW$c ze)0wm_<2}Jp&Uzk<9^oYR{_F?qwj6C^wvKbzr9@f@^<9t^jskTQXw46!7O+ z@0`MS9vv*4^W9{UATylb3$qHJqM;k@T?a(s?>Pa?JsE00@LbsW@c0m%VTcXQXQ&T7Wgo8+cp3*9jXX>_olt0(D4KQZRPDAR zHCp1|j+$-uhBFxHY4do~HRA^q@u{;s(ah0ewGM^`_hpeY4$Y^$ zRH^spcz^!vm_5G~L*g7+xTr*?ipekRyeu1!V~AfAm3U^Btosids-SQvc%~$di))=> z4s?b?Uz}&QB%53B3I~}t*>bOYc@}TvPyPe`tBo$E+DYI@`fa;PP5EAn9O;7j9%Phg z+0G61WgQc`a(61YbCj63yL8n`2)o|x#MX9>w-wfTNE8GTv^h&<1ERO3aAZM$K*7b6 zx#5-cD~>LI9^T)k&%An}bjosfmd8MfRgw`K9KlTGi^3vh+`Jb zw4*{CiiKKp^YI=|8l>_-I@n@%!S>x$K0!F0DdkbxL>sA)jCq7Vc?T*yG`$t)rue{~ zzL8SPcFx&{2?b|6KYQ5Psp-M^h8Yy<#Z)!D)8Nar@7%wJxSrF(B!QRnK5fpej&BuxRA|>M#ix`a~6FKZj17K?RefC0UHi4T};A$9X^sy`YF_l|PXcnTOSx-UpV@ zZKvJ3#E;aE+)OLT)T zY;E&sp6JdV!+i#fQ;^k(-6Usz-O#Hm--ggLgbI>@+?rGV%CE>QbZREL2^(=2C%H}f z6d;*L19bTAfs^2t%`8lgNE<0Yr?{)M{|P7|Cz$KfC2Ly!aXOzY5@FNp2LArepO0L` z8e7ImSZ2?H(jGfe{sw!?v_beQB((Ml zDL~FGb*|-hbsr^STYNNcdD2?W6G3V-PNNDzequXz<~R(H<}m| z>SCb934%4n1sBQhQG=NVAlLG@;VBAMI6?T&BZIV>53p8m51Ocs7|cRKHt*6(BvXf7 zHy!w!)HE*hVJDMTGhEL6sec^AX{6Kz6jG|5$Br`mB*LC_|GBuZZ%?c?j1jcPXp046 z4kiN*x~){f8bJf2+qbPPzS`Mh@<2WqNiHm|}dB ztO(w$B112v4)$aWaobeqo$uj}zkT{Lu+VaRC2DoF=8uamDs7WG`{k@zAPcE6qYbAG zQjC1x8h@xs*>Ok41G@^Lzw)eXo9)*+-9;F+7W}rSSUfC+bv;Nu`6hFb?pno6e?(Y! zP;Vxo%m&lyhUwcJZBU8xH~DFemwDEaw;4Nsi8CN9+%K7j&f+PWEiwzQxHR)%=tu<1OElQO%*dudvMM^z4N~wmYLbCVu*xpt@j5kU~-fzs3wnfs>MWDk3R%%7O_Fzuh?}0}G8_Y1N?5yekpT?MR#k z!!QUB$1zgW{1uaHrNP56a;(*5&Pyc$FsblRF25B{2LPfL_(5BSQq(g=%ibUNmamsf z!kL4T^gkvezuRg*t07rfdRDX&MC=#m;<UCLU79-j_t4#gi{; z)%`^ZI~gXvoZh_*^bj2cj zWo_Lujx^_j;v$f31}Y_=x*Fm}r(uIB97D%0y$$M<9KZ1g;UdzOUi zYXg(qjZ!+wDRHkK6rVPj8=;=dZ6fT({w^f!t|ydfT%11i^nP|(*8J4k^;8-4a*~N& z3b8gK73ALC(hn`O;odqg;%o0))eH;Sl8M1I)Eh`by<76?r#w@%r#tD7(UcGR=v{HC zCEUzT(=?~kIVu7(ZWNu|n7av(O&5z)-v2^AZD=^4Euq}%1Gx>@Q&SD=A%=A#6y zC{fp8!zQB~b5P3x8bu=Z?|qzC_?t~y8Z@1%`K;ukSI-xY^Cpma>4S8+wGY=(Mdu3l z@&!lkA?YM+zJ2w|TA}S}6FmIeI|O!}n!0`lEF7Wr_Sae3S7ncQjm>E#u5c>Ze@(HG zemFm!K!oWwybo;*mO38%uj&=+{2+_LI59Kjt+o^7H5{9tl5lB&kS_+-@xw_Lyjk`NA2Ymtx4s`AB2yaBvMbM@>i9)fB(xt!?+GHwOilhehY(fksLR zJOsK4Q?E8QXi5s^#^cf%ScAfj!Eyn^EOYw@07Fk@Ige?3Rud1U-(Z{607A%P`|3A? zQiKM)TveE+>tT|^(eE{Z1kqA0yaBg>BN zdA(O6ep7%Axz+_Ma$%z)!lS=7`}v}A6Af}%iSkR@v(GcZd+>0Y`L#9~&4OhQ zfgW}P#!GN)-Jw`h&ql-Hlcbfhp-ZfK#I$ znM`|Wi;uh0@q3(tWcT6ugUTq{%rfWSU@OpEYdO=u>LyT@T4VkA|k&l4Z3SLj?LKwyfs2r~UbR zjPaRq9f8qaOH@pQ*bFp95gMm+r_Dp7wZMT#xjGgr)y`Ff8wD-@{ z3N%Vt%wk+HoLD>= z{FQQvRcD*C)i}?SJp424q%#JfKR;0QTlO6eUm7FkVxD&WkBXxApx!4C8rc01{SoSm zNu=Iw>Al{W#{_7tbAICmVlIX}^$Nym@2!QPz1YtwC%y(>ZwxQnvx_`DC1OjWk+#U2 z00a6UlVkkS!KxYFSL#w~Uxk4tVq=rFZVpB7N^(?gqC*(YLE!^Kk1UkSb;(FBl6ja~ z3|6))oA;4YHZ%}ay8&AY95(4Cy{ZDJROcD^hhnrppU-Vg;hM8U#*5IUvkBEtze;}Jy(Qqg422bIf`U#%_D_0d*y zPaTrXb&gR0gc)=3ZTYs%By^D8(nXmP8T=H64XQCN_g&*=$juN~>E2E1I7&4WhV6hH0bo~FT$wFZLm z)q>#;WS$iJOQn516 zc2+93r8=RU;U-z`lkg0)1;bt12HKg0sXI>c?ZVI;sza4OHs4RR2Z4{@o?A~%*t&yY zKI)RCgb2ffu|Fg&Gb=ybuOrQg*%|;JT~8SA~#)V$CsmdHA2}c zo<2lc1`itE9A;ObUPiis^?w+9ryx+e&vJ~Y%j{bhWtbQR;;+Sl;9gb1lgpuqTO~GRqc$^s9USC7^DFt&heCj zhE~m1w8J0ec$|bTY}Ms>>1=+>WIHJU#ch~wi|3(iGbfKGvi%x7B=^@P9*=U*^v}eW zPhcdxW8AZoC(hJ?7Hr)hjSlPLi<;fOX4Vy_c+GRYyg-`o5J$vv5|XP=a;bN$*#`6xu&spo*opKU~n}J>i8& zNmKLDv{;vw%!Kk8-133XjePuybAftWvx-ZcOHtn(Ea*n^)G-d=cGGE(?MR}s>g1%7 z@jyi2%GTTs&t-O;Ra`E!o&bJ5TZ;|?|4=eM3!aX%(s*L7vB}e*NP2=*Ru(kVM@}T+I;cy= zS2qs~RGj?K&i+LF%`|#|yQbRFqG)lllaHLkLNq=#JS08~hzF(UrJmUkNXm;!KoW)Z zr?A^R{`F2Guu89Gt)!L4{E<@~WgUJX%<{n4*6TN5wE-u{3U|M2A)qPMd|Glm!4S+gZf^VrR z7;#@+SAEfEo%&CiSqF;~jp4ykyMSqXk)!jiJFSH%fkfB#SHb0aB4a@T_d)AD77%N3 z@2892);a2gcikW7X^IA1FtW^b^*1pK-^r$)PcW%ja{BVNL0f+>7GI%x|G+1`gcSz6 zu%eNVv}PZjU=-~$^(78tK4sP5$DUWKb9Va6(-IdOe(xilJ1^k!P0i1`e;$`Q%&%fQ z_KcK7O+S5@S3|#vLMKrgchh;w#l-MdL%W_TZ}AE#O|N7Y1wwk?JxIjA+30!qYV-kf zo4?*UgPa@9B~Fd?rL%p1ciOspwiDGe>&hOIESc1YgzndIJ+lsh6H7!t6XB4-~_bc@SGOZJUm|CpLZ|2WT= zhus7xJD)}p+sB78VJ7!LzkDB}xhBp9=6%Eqw77Sh4fUTIRv2GwECHqlszEsy;nlt( zLlzfT4ZOND)p~If94q!5ss$qHFnrBrG zRKNUMmy{x%o2f_5y`n+c$X{qP@GExsrnLG9co7g=9(}mXP1_R5iu01Ja(7Mq{tJ#R zzaJkO0d&=t8|LC04>37*$E+XSzx0f?8G*)Fku>g5Bl}oUgYa(=jO3W8j=-*6ji4I^ zNioEf6d(%_KGj3t4#+lHF;F;^PIuoXnkKE0Huf?(4TlN&aFcAaX;xmF#*Ba(FjKD9 zwJWmu7ep57&D@x>v>MrbvOH13K-eXJaJ$P#PckeOhD|ddnm&v5Mo3q<%fT?M-HIxG z>n9bPl6b4vtlUg@XfwuVwM-8+h`1$yI}kcRW44u>rhPUwBFs**I`E6Ti1QL zL)`jT7>@Znsm0!qJz;)lhLZ9%D6X-zPtr$PDh#qdY63eNa z-e0uIN?zS$J*G~P+x`T}c`1=ZL_u?*C>vr=?9lGM{U3^KD2v}C!ed}*6k|W<4KjmA zMf?7XxGZ>B)hA}fEaGU5b)c+nUE)7}z$3>-We4BZQ(r{*HMMpk-8Z}*$nL!+l?4!+N0sBDny%zw z*elJLL8Nf>1rSUs3MYX^~=sgs{fazh0h<($QT zk$4WuLz}usUmd#TJ1dT4b0S0;jr&c!VG+8u(7&JzmA0(YzzD@T5A> z-HZ91bt;5D&tg_-;83tU496>Ak!b}S)=@S+d7+?Jg=EK27=9(AX3Jm~HSx$CA{(g6 zj+>-EXfY5Zd+EACcH@^70eIZ+XVMr1qxfDfW1KJsAHLS3H5zn2Be|I@{&J+Cf2a&B zAjd57fPJ9eS9gX)hQGn#>F^_?1W0$*udpX99-lb7CJq0+t@6ROZz->pGc|t69E`=8 zieprH9b)yR%+oqg!FV*vKoO5T-nM?vYO2*c60Ws|ME$J3Cig2c)mi|*tWo59K0)~H zxOES{+C@fZ32}|6)*s?u074jsWxzFo4M~E=g9d;^b28G%HSKj9SWWJU`NTrI2vD`j zkQQn3rn;GRA1MXKW@6k!u5Io1PFjI^shXkiZmk`npz2U=v%_L5lbez`vmdN*NoJoA z{*^n`eucHB5sJyToXEbghTaIoySh_vcQr=nw6lYGGXcuZAt-UOM4leV6j#U5zw_O? zKD_Z$$Evx7_=WG^0D|~W<(l(9lxuco&i^GvGZ8Q{Fthxxr~hB!nvs=_>AyV4-b$V< zNftOU$u{Jaq^S&g9nm_bA(*TbM=3Fs;u~~y&*|>b^oN<}nRZObT2hsBCrU(z2{)3? zf)&eXTJhS{h)ml}q>BkkT2`aQPFkI2v!APvUpcR@o<6C;WILBM+3f)YXLNlK(jBPN zaQ32Y1W|IpEEz}(XCxi4dj&W^AcA-i@nwZV@-!L%XDx?3>NH_F zH5M$IBpG)Rl8_?=;~^MEg%J+r*s5{n(@ZX?>T~v_CC`*<^UE7~FXSVdgn87Ndj;Ps4;3`Cya^4i0&z!q8tu(tv zxw-*P5-SI(Q8Mm7EPB4>;Mq1K8qiZXUFK7Lmtf3xTYQMCU3}@8RGCZArgo5SRs~4BmReD`Kqhi#T#^SP)hw!3u==GC-);3xSJ11An%w{*MM=rW6CudE1a`2pM z?~alOjxDjGqi>(bmngd|fpb}kb}Vp7rCU^4DQW6jF1S3G%a1!toM|``7-|{Vq}`-$ z{dQ$-wM<3_vzBtC-yz)^l(c2|7Q^NfDU?ipridBn!|ArrqRE@;Qg=;HCE&C9~(fgcYt17u&<3&AJ z@eED(L=FEa-;P4bE^#Bn45UVO)@@XsMx}EJcEZo*QrrVfJoQ-}yIZ;2J3CVOfBK0f|5PT1R35Pso#q#h8@2;yla^HB1Y-t&NqS3{M2}6% zv0K#=ZhR`-W>ALXn_Zk)zSq-em9qR>Ko$<`zjQzC&YK^WtkD%#eFeo^z@KK0UB?$D zFlXPcTcFJ2B1D`YJv(v%8QTC8LJ{sQ&sgcP8&z9c5|->18-(xWUt7N zE>f%ustdXv9)?582gi5bZvR9#kpJ*KL#JzwLQ#-b(^h8E9r1LI)SOOy+~`~!fg3Tb!Bei5wtdm1Ku+ZgR?MkmL=#-l8YW8OeE_$A`_R)7mW?KRi@ zA*zfnk3H5E|8sF{{}ZRKWAC(3qAW@kiaikx_ipV~)K<|hqKDEJJzL4<(>z|!&nhKAOvuU9|4~e-h`} z8ULdsF*36-{jVy-M8L$t_MU zH|vr6^!GRWk-K3*Z4}kzj)W$R4ACM&faT_--7 z6|_)0V%#7uNL)t71(emfUktc}zdZ(#K}>#o0Nxe01BTlk z2PC*Z%LqN`QIoC(OG8RRLTf8K&Y@s%A_bi|JQctW!Zd0fU^&4s^bl}m5+HOGc$*+B zTq3Ako6yp8p97NrNp!v+z~(;Oz5r2jwh;M&AXHxuE{Cl(m_~x&0oR%}ZXSR&3%I~Q zJpY8vpIWqlFspG4oR}lQfAawd^PmI*Hv|UZY=Mhj=1>43Vfz2VO3F!G`9`3D+l}k2 z`!*IC0klT3`sy%k?+Onn5Yokhl?h)}W27og)@=TfSDz*D@Cf3?f~$Mv@eBMoTz4_0 zum@d;6S~5Ec4>h`hLF`P_RjwlCyI%~#0IMKQNXWvX0C)i9!Oy5# zJO?1dFtwqH)O4)l0DX;-FbNne0ss>Ljr|0^D>CX42o%os1N8QS`!pL!kobk#vj9MM z2#BoBURbkBXtb_BmJ0Co-9of{#Q_*SzaAcqsbS=ZIGcS1)kbTK&*9k^S=00izKbiU zryc>nQC3s{MNm<+$R(>L0m{A*?yYk1bKPZsXRJa2+jQO7p+<*;Am#PQ1#EZUigd9h z5w_N|f&1&*)e+P`!vHz*ANykENA%V6kNtW=t|fC3%#BV2bKqboQEKGe^ppJ*Q{JcAOHRDW}R z^`wU5Sj46FmT!J5|{IGQ1zf6kINOiDNcmG3n`z+q>k6I9!|9NbM`17 zwuE#|Lvu)I0FL^l9TZC=t1x|5hPXH(1#V_Sv?KatTtBUR+iq+FK8(Us8mdnkjcIvH zZ%TL6;d8`$XMjZ4_k7?;Qri|1(g2_?(JrUNsm!ilTHQUM5yItkHLTKv;$h90|H3Kd zl2=2m?T>sRzsAW&C&892jm3|}uT@QEaj^x|G!CbV9Y(L82%SL<%}F0x%!bEr^w$6A zb9|O4_fc8g@|Y92Hq&HxAb9@xLKe`D)=3)^hNt>s?Zln8(7$Qp_9El_l9|el1+AZ@ zhB$V?=p6Ix;dERThDQl<^CAZSj*uDmmwld<`GU{G#Hn_`v6@F8h({@TmI^;+h0Q!k zh3%ZjslK<^Uo^&sITjhGj`5$jcwG-1Nhx(6*%4~|+ zbLx`Y3X90?48NbPR}PvG_h0WJrn$1p+eb<>TP(=~#!F|@2+vO9axBk>uJ#k1j*ZB1 zmD$pHu)At8{qWoYz^7dzo7uUAv9a z?TSEnm+!Dc=^d>*lg`0=wio)h%9PpW3klA+nH1cJ;xIgC1$W0vRixMbVsW+27pz^%YR*HQQJ4DWRZRwikrM>2fsHlx zM7GXF&X@IRo-I$n;<>DN)D#ARmU5)>o;#V(u7x%Y%>B@f`XQzIxcUrtmS&A2ov!FujLp11c&09a)Nrv#uK22*L;}Pq3@=9$ zHJ{R2J82Fom|B6bVoLfI$vM$pI45Og<i&y&05119xq0+QghnevV=_IH2t~{mF9&_-f&L_rf#LdWBKi`LK z+Sk!70=@Zm?C_bI-!D((u|kCW@gYc=%s0c@R%KY{!H~4!CXzjIVgKNI9LPKy%y*7A%LQzS^gD z#G|7(B;~~pwD6ZYi?aFDZPUI0xwX0FdW(xJut$}Csa<+fnB`v)9_kEdi|Ea8W(9=J zeI+m}qSx)e0pn1s>cec1f;Z}-CBu7TZ7Z62A4EUD-{aogSvO?GwG((%^*Q8iYApNg zTZ1M*cY<{3J!jstC8tyD9=iFDUnr)gMGc*RTW;x!?>dGSTC(?%bIpcE{$3{HvsPZp z+xt@QN4k2PX48=A6fkAVk38#0hsEJRX1dGCM9(^lMc#IvBoIrSgwc#y?C>D)*twu# zeU!YcoD1a8o)%YJJ3;-+eocp&Y`cqU!say%RN^tDI924#ThWVnO52r>C z%mUe&#k=8mbPrV)f!+NKdQHHmvuPbkC8wK^X2QB?wHFmxDa~|!NG)_%CJv6ub>YTr zQJ*a~YqY&K_atG0prOnANN~^GkaOU;@-Su9y>gxq-Tc;_K#%MmH&-ph8RRYA55#=0 z$S}@Yn6Q~`o3=H8yE!^4pbIa4kt6yJ33WMOIiEt{7V7eV@FqHa3&8!ctp7spRV*hU zN0jPrNg3%ZX#nXvlB*d@VbWe*a!&79`B?Y^AIr@xtOYV*%Xn>~At2@1;BDX~SJfpo z$f?)4x-vt-?Xsez{z$!mmrN=iv-;Z3tEyDMft1=cn5SH;v{`D%NgO@C@8>r|C> zu!7X6x&AcZx6X_cbht4|e?u~L@jg9}6c2BD5_{r3q|(F2b{Dwlsqc6?naSY=OJ^At zExp}xRiutocXU}o?{b%&&qY_+Atqnfo(H+Ba_6x2>u!2o9{@Ncm9Op)Uz|8K{lb}C zH>-3pAWeTE0zo8m{TGya(JFx_uJFxpYk@=lO*vM`_U(E!5ndYq(rv49aA!syYe60{ z!$eBrg?7dbnifNBcI8IBwfdj@rSfNe>>YwW3o=qh?%W}!&${B{I#7wZ7TGM(@U8p! zCTE(={QahMDE)~mbC=_KPGd`Oe1AIt+%`7zXX3&$b z!{_!fO$Ko1`D3m4ji+}P*eyPSEKrL-YD`vLK>?llr+L+LXj3*Pp%Psv)uC{KU8vMu z?)Q;KLVY0hPW!F?i-~>-)e^?5O>@%GLgm$0sy4H0xokGg@@Z!(>1O$H52Q=MmZbvX zg}1;QY5D4Tp0cK^vLGR}e2;(`i_6d`42DRgk)Pr zDs%On$4XbBtC(o76v9+>Wv%eX8d}WFP4Hh*U`S&0^TDc4ozFPM2VaQ!I7Y!%J2%aU zGZZ{5goE}a*J1rLF_hV;LYd7cwViOofk�-5%PUyU3Z zKTloGbYs7}$-`Bd$5+++4lJ&OZB%ly?FS`ZsZy=R6YGVATkZrXc8FvTmUJ;`pfal!|Uhulo<8yIaew(*G7H|b2OODI-T z6}v{B=?|{OG{4`6q7Z8+nd1s>NZoIeZXG^^EA_bNzr|@3{U7Wx4*^&I)#qdX?-(y8 z#{X|q#mLI>f8Xe1V)?fpfM9eT?2q~2V}CGSpr2800?>? zGedX-CYm$?O!EhHzaoq=jpDq;u400bstC5Dr{JEcGY3;AX(2!amWQ0Il zUnJBPBT7mfMNFCknV8U98|qsV$OjH^pGNP_fH@Uz-GCwEfWN{X=)M<67DqfVq#yr? zpn=YdD5SR)Ukr4$dDGaK1QiNhzR>}KHZUG zILTrg|HvRQAtMZgfSf<-b4VCGHCk}ku7LkB772q|w)gTf5q=3OyuK1>D`Xpo|F*6$FK zCY8hXq=K6SP!J^z*-J5@0OR?L2^rv~&d6lA22uKm0K^^MSVZ3e(h+i?m{1t<3D~s4 zAOT|$07r><(%y(grSl*#_KYZTu)kOPQn`@=0ox$J!L2z!1SNATkr}2kcaUT0#R~e^ zxb}I$@~C}s)wm%%9T-&zK4o$}^s%TZ82Y&Fx0?>+8NtD6phU1UGXRa5J17k@sBxsp z)#~+E-k1DiFG>~gA=2A%znvu6lR^O_Ef7Us`Jlqn?t_1(rZD{I|3yqfFb@j+Homql zPM_f%48HY}8&DnhV(Kd%`?~+$qC3VzfhZe(m%sT2<=cx8WRh`6gVw#>2GQOgapkU1X&fPYDyDDciJ(_vR;7oV&^m#Pim4Mq~G$1U%CmCl`7pd zR^0N*y07LhkMcb3m(~$5@milAre&c}J6fHyqT+QfQj|zenpVjlP@3>PmsMnZ!(UxWJeZfsD~mt9D;!k3g;XlrGZQIo3F#i;5y zQy7iks&!PSz-;XLq}QA-eA1P^z?ZD|Uf`i%O^f9m(YXKU2%j-}UA5b|&bm11#%{|B z$enlGRPp*~`0m~{2mSSKDeB)Hc}^}Xswgc{-C!b%MR#e?_Dx&baq}Qq(>)A$WwOI= zs1BFFYgu{f(bAsFnR^=WoQ}kzN(g8(C3ZKFBEF67fv1eZ4xcDI2JiJT#U=oF)CTjh zd}JOgW31qPEfrLAh>qy6@zOkrNpqh0<0f9SVd{SDKe~Wg>f9BQ(POjpLH5x4@mq`)IoLZ@W&-KL5|+iIFCScNBaq5r41rC<{Av}RwBr4lj3WzCmd3?b^~B)xY~_c=T`-S; zV9`PJXj>(!s=L1J)A6=;w`o-i&+HGW86~c!n)tn^(@=fS4Cjj%7ps-aDFE~brHx{h zXMed5=ayHGl;&b%{irRIy?k&RORjqf-=^3b43*Pg2jxd$dmQ(__cbv+BOA-lQo7(1 zFx;?kPjsT^=bC%sdl$2nPt0r{nt=ilw+K(=@zb1Xr zXqf>-4}}3;Dz%L#uxRL!^k{UjlIj-udRYc8>Yg0%(aKz{H(Ch#H96w%d`?CW;qLJ( zF-*5x`+p@1D(8RvJBlft%I<4Vp5CbK7%jGuwFBIo+3szJgDABVe!oP!i^i<$p2Fqj zZYC9%dxE1m3FHjykKcAoQFrc}XjsE5ER6wch_KH#mKj$?I9(u5!P41KoGPm|{>>{P ztKM^`>Dx@o&&@SuB_-24YgjfqRrO66?SBn>6cW!)as@;JyY`d^*>Xh5zRi6->o}*z z9#3jxU33X0jAR)>xw_HuT{v+*I4lxpuODi|otm=`qZ-65hu)?iQ}eRBs;ksawYiXE zHW%w@B3P=GWjicvwR+onI6|vLsMxBz91P)NPVbE9yU;F%Itw*fudHT(%SzU^HdCEO zKUci#?dac|7BQqA)?fRmU$inBh7Q2!uYqkS%VbREl8*9r*k|c>Dx=hg@uv4WKl|NV zbXvFNZyx$QoyS)PWE<$&6=Z0HK74H4P&u+Q9Z^N%u74WvSu76R_q!*J+9A8x@pRi? zKd?6@O9e!#ysW#xNN*X2qi-=qmFe?LQV8O>F(Dr=zr!>qu>0#U3@)$L|auQuRVbtae}wW9`ct2CtQ;itZvUYPq9Xi z+3H-!VeFWwckFn61s5J6t$0OXqMCV8PumVwg@x^~`J|_OTEFZ&$^Wz^c!&`bD?b1I zrS8~0!87%xJvaOGw8D37#cB}ojtOVSmbf{2?CF@r`C=&7RPimZ55~X696~7$I-TYs z>Xp`R9cJ17c~0OK#;yMrTjx4e#>?rvyZnUMEy_`x=72)dRyv%29IVQ~wfb~=#ZHm^ zM{IyQ%B#Ct0LvkB8xpZYJ`V*V@xPq0wszn2`xveLxD|6*%<1$ zxHy5fX{eaF9ze7}jC7J$L(#mJC0Rfcg2)V2Y9Svw5}Yh;U_=39mRG|I6uArqikjuw zz}S#cPQ@v>m=WXJ*|3~c%KV0B-le53=R!;tg_X;`-d;(O)&8cb$g=FRsu-_}s*4G4 zduRY#+_{^&3pqln=g!~#E+0Z_-duqpr3gm_F^d2#AVh_DmsvC^Lb@ePN(sInb)NHr z^)FHfkQJY3P1wEKCkXAqYA!6x79Fl_Ulpy--l1U;;Xa>Y@Y% zzQE$VKQ(@)3({0Vh{;hh=>I(2%1u6D0R^nqbpT0HQUUG?6GE9dVwEV(p++Joz;DE| zDrpS&SL|g!A@qFwpR^*)h=Abd^clA1I=s{HNhX7PwQdf?3a2}sC@8+A4X8w^N{OcF zK4+ZX8M9u6-(N9==iqjfcK6p=fjU^0xw(FOehLi6fw`6b7?R*EELzfm!jL`#r=cvSCH2m#s@NTA?4-rFG> zh`{P9BJv9m!qe(i*cWsGU?P<4-4tY~#4RDxzGVKYM4vr2`hFFjWqbAFp>$`Dzr73_ zd>otp_2zDuTn+uE=HcA%^n5sZrvC)LB~$-)_}k;Qi4WVGH&W)yNh?#)(aib|?VO8k z{^2CrCIKyq6y;0jk-118cyH5jW%F9A4;zxYYYQzPGG8cnPS|=udXRZIIiL3zPUix5 z7p`UoLLqV|bZZI#zI`!!-&|m=(xSTy__!N=6xajqDSh@o;gML(> z41MsP)T5`5BBXUUx0lL8`}>?=`PPUp`lBFLFmESmxQ6x>%1558^pFq&{;bB`o(6+` zdtBI~?Qun?zO@hNZ>~<56vl38+|JJ1Wl>(wE-YQ>;%4UUuzV(Z;$#2p+1`nfz3|qr zisLUc?B$0COIraaA_iMDj^+4A85>EZvdjJJ`;X2)I&oc{jBFq!GFsEf!Ez)%`|;tQ zM|zw-vhV#Wpyst)mA=cmUzV z{idlDkOH(JTNmLE?$qd&%v%Y4c`_ES_qDeq=L;YMazVe2B~b4o$7Yp8PQPdZJ|q~f zn+3F?qLYC@O7l_zc?WQ3&uK;&0z@Y&0plU){ByqUXV9}q$5sU=8nE_Z$ye?;5Dj}1 zEZZTN^J#WV;7uHrP)jFl1x2)#6+R*|{+Ji2g<)7gpw*NX{sH5E4r-gXy0e{3OE4#C z@W<+dQR7|cvI(Hy2GGFO=~5^b4kzwT%Ok!xJPETV3LX1|G_IHO2$KR{<*$ z(Na1{z?zdywPQLQLJRFy8s7?6CVCWYPn*J!)&xx`N0DnBYiG}Ydra?@&Pf@Zf&c6@ zt7X3=fSJ6qUFtoL@U5mk+)eswY`m}4CH$$LLpJnwyR))^=Bd_1|LfYo2hUlZ8=AGk z%k^=M=7o)4U2{KQQ3~Np`^lW3UNt%Fd@lSP*k(OwW^k zqlqrPT}b3D#8CWGTq>wK3^UShTJHP&oG|z5^LZsq3i^xiBv_2}r1@G{-mCRHM0Dk3 zGdf>A?QnJEUGp>jjHUaR=fy>;r`oq>AG@RU4mP`iA5UXv6T_Tr#jF)$V(F79H{+(D zI#gAxjLL4-c_`%9Q?pZCWbNiRXS@^z|Gn<|DfD%EC_Hu=ryl0V2N=_=0U@l~jIP+K z#5`s2QD48;yVq$6it88dT*FR_96^ zMyup}Rfz=4gGN>5cj=S}>QsYF1HCHK*kQbqnsFl2a4ywdunkYya5nHdNheC;gFTH? z$^}hpSu6i_R(JV8(IKLWRs?vVio9H^K$27`^;ytlROJbJyJbPQwDxGZhkq@ah-dVu zOZ7dt2!mZUIP1Uj-8}X>-=eLxP1xAslU!qKheFC3^T8|&ABuOzl7bXq`0UKirzCaKgKJP&?7KIt)5W&f@T!6Xp*!89U1r5=| z=3>C%i9F^suSh-()OSYhIf)WkaXElR3$E$#)g%zHN{TVhpcCQ@x!AS8QvR3b!pl60 zGVl6k6*D|KEFRWTr}FM&VU#AmsD-Q@O&R`j)CJJCe`IagnEMy3!3fg~+;bONmO_fe z@rkHOt(_$xjm{nQRp4AS867C44rvs8j7_zSypV#?FFKAJyt!5M1xl?#%-QM=AW^6{lXCB)xcygmE zJtClI9w9sXRHLqGquW|&qv=jgEg!aUqu<_eqvgh1RXN$%SPDEA#^|$ONVAqIA|xsd z7(|6FJR75cP;+NA`|GJ#Y${3M?=IN<75*p)TE^7Ylw(*t*T`&pDQ+~}JbuG_g zsASpM#;D;~5LWCdcXn9IRKr;yCxZ-sZn&%QKk5l#GLlH zA5SI9wH;JKv1K!s!Bk0798`3S_lfCatwC@B#$9t1Cd@1_7dz+qQ;Md>La3CUEVcu+ zG{}ulz&BgBr7qsI(!aX0^EY*+1edH7#GXElq!ghW7qK)#*?P5(mTiL9n#RnG+UCwf z?EcHeyUwFc>eFG3bz1(q?=+7*%_}~Cs!=UJe}Y;`#MA{*P@CA8AbN3LCM3#`{J8s+ zYtz*g-d3*sW8&ZY#Ib!KETTe9qHWZ~>7+lstFAK_st=T|C&RbR-uF4k;jPn$4Y@t8jcyQer?|(*^+)cWQC|d_w zXf?;X^84(9mOq)e>T*+e#p+=T$A|y0ERIA>LuN8j*{n@BZ5ve>X|3uI4wpB?C^xoR zS3ZVQdM4h`yMLSyuV1S7su`)nmv!X}u+CN1vsINnm@ij97{yPFwoKI09xjZ3^CYW3 zI?^Rk|9yHdm0RCccHdQSfBmDztndVa3ZFHyXrjeQE|&G&l_cCEM*?ai(p6Ma)@) zO&&#AZegv0xuN|jO)r!!t8xlcU6-@$E5~%A9P8 zG>OVca=~-=>BCWij4``qc>2MxSr8HkZbx7#nx>Kp@`Q%kbB41{=8|r+pX4ITaoJ@; zmDcy;WxFylwX+s0qK)GCLN^3pqFA!r4A;E7&%Xy8FgmGHbC0i5tz@FC*`(s%GS&I@ zy>B`vtvxYF~MIv*!*=Qi7-|J~qy_W*n?GP?{j1%-nx-VTf*GK-n3 z#5gtOfHtoHMc%OhR^mUy7{<&Y|_(}AL0D%RLx6L9|LQJ((%^>k5$WMeQN{C0F**8?kdMY8SNov-}Qf8wIv#G2c0Gt2>X4 z-aWp&htyho51pKuS9obB`~&oDMJ0RxEItox$P)DMtNHXZK!4*y@A2DDKf=ZBpjE@< zQ2Mz!nkjB^pt3qN?s$--y*k9X$?0Ix^Wt9e0J9`y2T@H~->bzmS2 zR}GN<>JUlU3#H7xS=;Igmrl8xze1|KP#a764uErAr#35`*-~JpBWbS$IKC_-n>M2w zlI-_&^>nsp5P6J-woZ+fg<>^$UuVzAa-2;1{ET;^w&#IQtaWFg7BI%HEq)slqe)UP zO;Rr+!BtU57M~^;A9X_u*NC)totUJF(pWSV5vKBdb=Ap#lBSa*n}h!V;}>> z8XxJd>di;R8h*@*v~6c|W8LF9;&>T!Rf{}2>M8g1&3lscc-cj7c*eRmobw@La9PTr z!>P`xqgzsEoeo=tjyYQ529Op(+CuP5&-9qcQqI@uKt0Q_6Dh*S%jLo6k#&5)#owF~ z8uQshO=K>+!Q39^MJuWrtRxrC6<$89o^D#T_?6-@<`bUzq?4Sp_P$hi%axRYXXmrc zeL{KnSjk*{UA~?SvRw{xIxU?fzl5ekLl1IR?rBMhC3zKn2X?y34MlJ$zK0Q>cVn;Ubpa%(Ss*CUL#DJ^kzRz-y_C zW>WbrX7K!0{aYL3*Qsg3r;ihtm4GR50~zy3?9{Dr-tQ}Ze>!!ZfHpI7KX(v%0_Nxo z;VXgAJk~B0rm=ARi0l#zl{x>a)0Bp6wV6haE>!=c@aL_7YLP|fxwf=bVXAUJ?W3y$ zdmFA+e7C-B|7-`2{E+8u{MkSUj>)~3#K2i3{$V=qS08 z$pBJJApu=H{MzNrgS~F{!m8N%6~zeelDhvnbb2r`Ti3K3xfZlu?o?+6?cMI{&4zySsWjQJ=1aJ+bnJrDUk=yc!mU1FD(C){WE(dyVbT-^Xaqma!2@ z=hkP-y}R{wvj2WXkeohk;Is+3)V!6lq6D$P35t1YC^S7?(6Ti1OJT(&1-ln%z}km{ zmy^fD*6Xw#hyjFMi!%pr-fM7oNZcN|v)!V;VGBCHp*?bb2eYl!Gd{NQ8pf`qb;*ga z9_#h<7!>T)=dZ)3ja0p~PWP|tNYA$KdoCCD_oV5sy~!mYNaqK@M*68Iu)-^tff*P9 z7O;k+**|z?b<=J4&onSlT=Y-1M)$AU&a>XHt;4Tl$glX*u2lTaC4W_)FNJ!aFW{z& zIop49dRf?6{@$0Dbk>inEfTs+h z9ia5FsYI(3dBk~F1VxrK>Hr1FBB5!hRw&dRG@T_u4F&dbyiR;Vvqu4;1PEyK?;HL$3$3<3+jYGSTP)8WV8jZ)JHx&4B5|z1`gcBpt z#0O(T3G&2=psG&S`&AhLj`OL-C0|KlnXE^>4M0mISqWy5&vhB6$cDxZDUUxYmT{lb zNQow#N`?O$jTHRVagcPSNKnX7IIE(QC&4J!gFH}42$p;y4tOJokf-$LAnrq~H5Peo=WPnU?)Q{DVPZ2!RfPgr$jjqs9udwb zm?z?<1w1w+tPIjImcolsjf0g?7-MeePq_G>7m}&r=b9rGVKqFud>ly)3471DP)iQa zGJkB#zQ8wFlUSr;By}VSB1A}#Dr%r5fLdyy_-5S*5joZ;%LWilKo`*f$EWMoo41o* z-<{6G$5~&V&cjQ3U*DUbD)fHbTpzEF+gq=;?hR`>{cIby)OO#G&(Bg{9=@;luXn{S z+O{rFdUia#+?-jT&o>IrqZr>Wb6<#v!(4nm-rpAzf7Ck9x6WHVgWv1(<>LU0q1OSJh=YKL+qU@e@*Hu*-3L18*ls2lpM#(G(ZG2D)LV zIy%KC$IH^w(pr7D73E2fe=ps{r&3e3`FFE+bFx(~>kWBsL~=yldb$@Ut9QG5-rtX8 zn`dY*+st`m3gs5QkEeb++W)#KSGR`6ator5Oi3SNRGr>AUaqFPk+*K|XmjGb1<*w~ z^+ct^gERbozlTnD_NrV~N5#6wzblL=x&b_9KH}Tn@`XKLcA5?}>O*~4boT=n{7i3N zZf@dpeOC7!Zud=oCcwQPpUBhs@@#%>q}z$&(Wi7;tevK6{~jN0Prr+rb)&j>A-i)B z>X!t>e*;H+UrtUgMrNw#=HT)F{tw390XnkiX&ekXwr$&(SQAccvtt{RiEZ1SU}D?W z#J0^zGD)`Q_nrOr+ui^E&z{p=UAV6<-hJ=Z>sPm`^74K2gkgV$1Y-w}hgdu*1a7>XfG3q-_&&F0~$K^%KMxNv9-{J$FwM|8mPp?lkKjP~l9Ude1 z*J&ZYgr4)*ZK3bp&VJSVE*><0gmwb0E5#L_E1`H_Kdz;H3nKX9B`N|o9Zo+#)&qFY zIQ6e<&kk40ILmVNreAfv-`w&q{Cqax9yJkm3wRT+Xeu_SMX_-j3NH-5Zdl zwby|ff5Z05ldQ{Vp1sdnH{PwAv6^&U+36xXEYGkP^^#k}okmAD&gpy;$9io8$pgHN z&O%VtXQSi!j5S^P**R#If$qC;1Cn07iHo@Q(Q2~xr01qQP+NP?>z3}^+KQu&K~jXGf( z=d(CnQ1~XWMi2$?YpoKa=cobAV2$Wu{XQ)DOW!2ikP1^}2Q48OIMrrkxpc=8awg+B zW8(|2Qlq)Xsng#Am)sDW=_N4Im&xEIV^YYXb)bt?7_`wYvAr-b6Xb=-X$$|PU^%lC zj*csvg_u(zn{rD)r!v)RD;ikdCq3YFU@ZZK>z8yI@eo%bGMg++?z|cBY`DWC^53LG zX`yt9B2TO->fxYnO6E?5d&?`>Q)70N zl&C0h89?Q$UjqLQkrPSko=%$9EmcKha=JeK21 z4Hf=M{>49cBp4pJJc(>@E`2j+5NK(LMz(&A>O)e9VG6dXB;o_z6xoG12L_uG|Jl<0 z&4ZI%8-{ZU(s4d5ZMX~TLb7?t)ai%Fw5oZn>1u z$79{McoBS*8rP=gN#)2$dNWP`G7{hADK_vT25j{u>%s>CFYzj=rc}M&5*bDW|I6k% zS<4$@r)E-h@vRE~qP7@ooyQTJbx+N0r$g!`|Iav z0}R5v1@F12cK&*g1!2Lh&vk8<%<9lf>!QN0HTcnvw@(2Nk|qx~?GH8m&T@utu1$`s zJ^??Yu-*E!(h9Rr`$f|X=YiLa>YA1(^Ht^To-@R5T#Xti9eZuRhOZl7Xng^+oA}_{ zH+q*l5^uDPNH-TF{D5p7xFlW#3$sh)=i|CfU1;`~4krV==L7eP7+b1Q&jk$oRSYw3@}3U+ z_?~%9dl@ynw-7Cztekq;TpMl7*(cURe`kNNT^V;6Zd$kUa_S*=3KL(5XC+J}ovnDHy(JzSm{0RxE zbi?_-vXXiK=SIW-t(6Sg4*$QilG#|f|A#m1|8R!Y*Nr3MaR#|Vq>reBt#=wmllJOl z#U$zf3Q_m}iVldPuwtC@<}Av_qpI`s)gl?Q$Bx>Zj#^M<+=_HFts6B}YgguxT+PC@ zcb(>0E4}OKVcSame2iKAkSy~wooG>b8V>O+GVQ*tNtW`%P@{``r9S%`!VF}?>NIjl zWbqW*Hq*WN-lzPN^GdFOeq}91B?mq|lkFj`q+9-F!uvJo10wfRjKF$4)vugaiGWYF z?2rXt|Jxyp`~bp&V&8;X(c~CynZ2xP>BA54r1`n6F}xfp}ks%fKPluqsv`eUSoaGn6#K9v{cXT?0kD$KQH%L`Quj1 zuZ=rDEiO-v!!Q*JsDCE5TrD>Nv*Az%)>vn@9?9vR%Vn%swpH=co3~5Wnpf!RF8*=lWSGQS zEpuJ$j;GOp^hOWx)5)q9)2kL+(Ih)*Xco{7d2D@BzqxH>YNj@BqW)os;jnDCxMruP zdYRMBoL5zD%($&xQf)~B)Sr{=D#CJm%WSoh_e`_r(rx(__}ik1Nf)X`2MUD8l-bp( zYsF4nRT^Dd>DtO)Sj%5@Q&az1w{FtR9JzSl`Y`*7W%IK^R(DQlyuC2STZ+N@iHq%b zChby*!PL@4W&XaET{FCS6TG(}l%3+bNo6fz+Los1p_^{?lQq^tH~g6yR%`H6VKZzd zlUSCcA%MrDm8IXTGDC8#vf?V$n|+~^zNklM){mzr>GAL~+QlHoqGccn&wPrNqO-oQ z11^`5)xmt>FT;I@?zXF#rn$Ffss~T!ZSe3U^sjF>_5u5F5&P16t)#d18Ut_<1OJ5@ zg3t^n{ne$-#!w7&j*fQr$`18M8cK6&H=wdd(AhGjD9TgGv!no|M` zeT-X+?)+H%no~D}OOx*0Sa^NrWN;1RiMIk8Vl@v{KJEE>FO8zsn1KuTqDSsC$KNF_ZfRv#PnXz+Smy0_)|E{iha*_4 z+%`Z#7@VV4tgF>u7cb_J8Zn#>rUfKCu>$$7M9*eqQhUTJBf|PZTSA+EN2VNpJpXx` zSe{8czmMvdb4%`dxf&T6ISv~+UjOwFMLw@AvKW=M!PpDSyrRSPM6w&YBOejtD0f4d z<-syq>jVDGGFp=S9*T3oWdRsx(& z%6#;gZ1k2^AP~pAOS40+uaj{k9lXR<_pKyd9^>L&o(R)Hl5eY=l;vTrFNKG2@@xpl-ISoE%`d>Xr zu5&G(wv<0rrA3+QEkn32z)Zv`nGvTnIF-P{)uX{e&;ZS*k#U|wz7v`OT*j8hdhr$`mPyoIU-mKiwy2(cw!HW&FL4|gssD|b%8l@5o4u%3|M zw!vrYLg6`|BP2CS(v(wyC=G0#6yhpyTGl*twd>&q(gED=5l%Y?(=?i?6EATeZbsB>*eL;`J>ZbJjRxug=I$Z^W!Z| zx8l_JOylqF)$jM?usmkXdR(FCAg`A{yH5qtn}I@ABO{;WW<35so-auZeea)ccSnBZ zv4Eb*{l0&^uAjeODzX?_WVV}Pf?sVD3mcL!KPwuhfq#F$v~x0WxbBfppiYZ*%44bC zyzZVMM&dY_7-(4@`Skj8cY6QWrCm{eb)8+PER(wQvZD#dNy>71p3 zSYh#MbkEyvTw^RnM7Pi1Keu-uPlg8X2niNuDZ-tyUmJZ1@pe&uVVn|jxj(;8ILO5Q zUO9XIr5*@~u6lVtd_TPB2Z|O>$`KP^UlZqzf2&+4Dea$G&RY)-B*5DV>pw<`)BJgu z9^L8v@@|9J%f7R@&+&LQ)$0DM`)#-77uj7AXJ@<6kIt@NdrHObw#PG{e;oW?cjJ0| za*USJMS4C2K`r@MZdrbA5%#-3+f}DCe(>~tu9H?s;8kCaZ*uYT@_0*%{K}76N+;kd z7brA+^LYPw_atuBwxGHF_v5hALAK|s8+Jn~Qu#H}z~|xJgIp<^!xqktUt4EKPZzd6 zJdFR;Jxf{#41HuIz?g7r=tsMNxY=+@`^I*+Z}-RFKQ|v&F9XLsoQ6I0AFeO1J|*)B zJlo%2j&5&hR0QoQw+U2&fRPa=d@9#dDYCBABTSsy2M|06@l_tAZVp0eR1DQe2?`Dc zZs)j8U_zL_tvzq9Z9Sdu4_9qxANeD9B-egFUR~dw%2bYIK89c3wLIT0_uuy)BV>n> zw}pke8D#ISc7KJu6Usa51w3=sISA=p^)M#={=_P$7`XR-irM z@au}d>%eqWE!rtD1`9mxJj~syg#1!M;h3@|PX4B|JKWcaRUjslxy3H>dM+z_T3?Q8 z)Rx#|gq=ZJUy2TsqDW&w@?+iK>&wT>O^lHB+Kmd`hB|+2{*15Sg|hB*n0Tq3%2u@b zIWAXO<#ql~GhdirNdqgdQjxR z#IB%LFq$!Tz~sro(CfIecCizyhm06wlpXkQ!4;;1ZVh^^_|2MZVXoqEyTyA97{Gb_ zSxk(@bV_v)Ue+e87Pk222x8U{+?@>%9KZTpt4_M*bsQNdw4mZ7pjyC z*TKG=W`I*{KoA26ua--_Jz8PDU-1+gVjK^Zj|;+@%i=1Ye7oP@e4Ej9rV-*|GMLm$ z%WeCnnxUJ92S57ih8N=VTQm#v;ZnzfxoFmbe-8`zRV9%R7a@eNeVIE=d0~KLp(x%_ z>p4uiT*ao4jQS_CWY9^uGYpp#;#}888>(m|aa$%r#F$TFI4vUY5G%qLGnJ;FG*nKK zk(PgrCgJeSyYj>5GJ_UNEvpSwBleoT5gsN(Bn*8-sG|1q8jb`b+0N3Je7%D!_eIGH z7p$hPi2F_HNjmrSgZm8o_XmL|0JjBZ+E@!5r$iINQBi{V=`cgx$k50_-5N06Y5z7I0WR81 zg`xkrdd0cOtv{n+<)2XgW`%WfO|Lb|T@bUxf#6+8fLI?lTH?Hh1f`VSop(2M(9MFr z4|jrwMqo{f>_bJk>|Zt-{B+7BSTO)Ok;@?!!E?vR)GaygrM4r?8}T~U6Qa;4#14=S z1S}6_sP4UsW&412^;w#?jX)3}DjN(~B-FK;B=>*8KLIfKw#TYcLVw>5ewLyb9$t4zPQchVXL8|x-cxwlUW-12_!ee2>abWO)^?o z^Eq?q9{lUQ{TU7nYi=LJ(A;0N26UXOaH&pN7`NeDtdbt22{Ldcc@5X;GQ*hJ_VGCN^Rbn$(f)r5{I2FoGbB zvdb#5ukl5R00B82CfZus_7a=Mp%xLB04oGPJs3Z`z@Z=wdSJ}ol#@dm8Mc#oIv-b@ z;Gm~s&^Z6=k((&O5fJyF)2dW6Mif!2p@|*#<1VF41nxTEJ9Xs?{dy)spAC6C-WS9^ zm!oikyOgS32HEaJu1Og70|xB@+ZZy#G5k{Tn4z{aPVCGKeJ9?)fxC zmqDcY1jhAY+ye@21%66O?U8ly?m~<6@MKDYI6@7_U4QSvDrwXD2*nEfIlKn)gfSqSOOIOL#XkBsQqN>iFK{v~F`#D&G%!GC$ZzjT9Fcs1T#AT?+Wh5D+YV3B91zE}(AvZ^is_aF__R30k!W8Gz#fA}b`W9>Tg+QL6 zH4JCA42S9LGe&>4_6*UT#a1^CE{@izNdi$E#xXw~bJT+9vfls)C`!x+M)9<6?{3Uz`*eMs6!T zVml*C3x^><{37ShuWVf#-pJpKeZaUnxg4EMm9=V}oWQ$;tDQR7x}4ac_N0^A$LXxi z9@KYlf@n0R?fi4>Ay72}3T6RPq3OU7tBkp}G(llNqc_p-ur&q5`C|8?gwcmS!m!{J z+9GA)%lOl1tj9U@1uXS1gT;z>;;wvj-q?kCX*44;I9}Vy-?$14_STFFLiU!7m+xk_ z9QV3o3+6{n=|7ZAvGu)esZm+?|jSOhO;9j z9AJgmaTMVgN&5D4iLpIIHIQlSXJ9y(06iwHi`zxqWW|#0w#rGe#NZ0^&PG@Ta(&?%yD05r>j0`#{Q&oanOGCB9?fZR zAUFuIyg9lMEo=n@j+eiMQYZxDHjScNGjp23Hkq1-To^eGjzmI5glUh$TTj=S0h*$& z{Ba`w^JGO?R6(@wU7wLTl8PQXuo{X>*PTmu9UN_bRFu%QkXzxxp0>szL~5fgVmbto z0mkV^3^^{1WfYy@WE!g78-32g$eDHinC1k>j{KAnI3wL}hB?#vfj;a;MohWpM!fn`OMk_eDdSp_p z44{arcv2Wo7KRtym`-THdO+O@dKnaf(Rws^;C093K?%!R zSY&lpPlZ4)9E2vc06~Bzkz>vp7=C}iQE%`RGXyP3%N8k#s&h%lzq}rocCM(4to!`n z!5a7@=iP&~&~&q9qYoC|?Y%t+4d-nAfhc-5-tdK#qUau8h5pGTc;z+H)ltslJk%P7 z0HFB?Gt(>t&XN{Op2J9vk;5vmzxu{Fu)hJ;E3m&UoCEXYYo0BLjdO zYm~|Fs&u1mB;MztX#q1pcScZ1gb1}=0)(Le4onC4yEF350lNlMEm)m-`Zr*6U=RvT zSW=_GD2yp!S)IA}1f(wN6Vs!AY2%v^w!&v0HJ^g6YO9zWl_i(36(+k^dl>PD$<8C* z8udVNN0SaaOApqA$p~gAaw8lxi{Zo0{s`&Ww(2Y^)XE9&pi@dU#ve#ELtcNvOG5B6 zVo``_>|I0`5rffl1GIMV!aGCZ%GZVVZAf(zCp|HsL&_( z7ANPkLej-(BSyKV;$q1(pM(cq7E(m2DiWzLTc(bm;ZK=p>lbM=SK4qQn7hSPWfpMJ za){Su$Z}wsYd0cP3QQHYOWyBkEL$1`g9=xot|427_6sRAgfCvoabOOQPb!tyvx+A~ z(yUddRieCf-LZ}coBugWnTpOhdwkX2z|h*7+%xcP)%GdzMi8A*+7P|rza`E@ZCWmr;Hj2HDXJ z27eWq9T3wS*1p>60273`K7Z{P-&bs!A+1iW6%(R#aY&kA>d zCe2T}^!Ha_jE4r#u_Xbx2D1G$$DZ1EEBmOwgM|Ul(NgTZYCHrYf;2^0;l-1M8{@}| zj)NtJ%O~%H<0WQekH%B}nBv6R52H(5kTAb>2jl4#4W%rNay4$aY;)%wjR)YxbKBOF z3af;9;5df`A!^4X(G6 z)fcru4uc~@NY){bCN?{h#nagp?eLq)t&>xsd36Vo74z< ze-N%o?OM8IOF;>Sw^O0wI$q_nxLaJODM<&mVo|}GtXPx3A|&3VYx9<1r~yoBIBWpKeK_(CFxF?f&fE%F|m%H*V7I7~+dP5X{iorN+@) z$Aw;sg||(O`{molEGv3Xw>fR9@^Tiwv%zC?XgZGGE@fY9v+0n$T!d=D?+*n8KRN|LoDCW_NGa`64eaaLDrjfWeNZBXdYt(S3 zy=3)5iV3}m#m7ff?LCSZi8DRJJV>m8hevs(I{I!QMEdnUQvs$uKToN^~ zLbK7`Z}#86vuS=wBFKKntN4;2=TO`e@ZFo@9qC{}_tatMFpktb_P`sDzXI-wT}3JB z0w|GBy{22S8gJ`RvMJWzmEw*d^QbW@xYp2t2 zd)Q5g_o8t%k&xnW_(5>`q;b`g0A=?dbP1kJeB3vH0360H_&9pOhoNOcx~IjtBU%Cl zV~Eu$lHOxtbg0F-#r7Q1QidCaozjDvlM+fb1*4$uajKCr3>u#L3+G1jJi0-g#bLaY zkWG&NzCwm$;VpVB+VJq6dvVgFjaV)mBa^^9VU6PC4^YCq+XkvcG`$qa`Vo;gu;{qwWGb z&H|nUo8#_|p9&XVj5Ru-EHAaq-O2Pjyc1Zu5a-q!fv66eEQe#}BBA*T2hf46>YxGE z+kQ|P*nuxg!-rnx?OI@cbbFy)2ZsVBwedJA$|k3!J;btatc_^y=4aV+Y8Ddu2fIaj zEX$~Y6YghNQmYDGN3>xPokUieI|vRkkC23##8jpOILIcd;XI88RskU_gvErtILQ50 zjW;1dwR70rwHy1ofBHpvGn%)aFawx%9lpa8*qv7^8W-7hz0e(&Zhc@*(c*~j}LuyE|8-=E+4oka1ZrITFuHp5*N=ljL zt#hKSbEB2XBhuLRuJPU^AaDoZ;R_GqN8sTzTV)z0<+cM!M(YhXQq}8;HqzD6Nm|TH zhyqy%hhDm?p9=>YcMzn;jBY}TC<(srwpzj{Cd%A~vJjSd9>4PA1PZhn;A8)udfclG zUT#@6dm|01b!q)ZOD-gx-SoP!CV?&cmNK9K!@~#9wYMWFMFRs?A1PQBL_iesybq#T zZbdbW6^S-ZXruE$%%DLS?IJ?qQTh!_&Fk*)qg_cUvH^u06dZKvI zKmEwvj+o7heK@h&$RuW?^}g|B6HiVNy08o?KdWcaKvHx91sFqKD>$jZB2;P+h8GdH zphI!%fjCE|~V60inl^Q2j$uf&j~=-iF*0IcH?HHw%F1IjJk2XG1wv zh~escRFf3^4^(K@1rp^fm_W?Gq?|a+%rK&MdIrcQ%b^I9^DRSEM^}}^;V}0@{a)F4 zJo!Pqy2DH-q>T{vViN-#l(gX-bb1k~G#0JcM1yQjRXsv9_~3JZ<=seER6U&Yt~IZf zx~*y~{iU}ijzcFPAM60?x!`&ROuQ~B`Oj8iqF~QGWH-!PWWA`=RD8{%qML0eLB2>- z${J~!-LECDj-@B)4i@l+h;&f0+<`cpLwlqJB4W4krCRJ8dDG;KspklZ_vEA*BGe3| zX(GhU$C)!e?$&r(xL@+55)uOQL!3pR1JT%wDM@jS+Y^uV2^eN8Uz zVWVOZ`}xrxj{d~ccktEq)GDg}j@ID%?AxR8dWq14n$z9>n zha91m`pH?&^5TYC7p76-h!p9>L&IC~PanQmmr8k?f> z*)^pN60^~NnyQ-PwL{I;x%Pk~&B$Ls;^`V&J)Au-n|s~Te(&^_V%FB>HLQk{@vfyB zIK-KQg2v%kM^Chpe6)kpy=Ou5-Ucp8Et1U_?Wnp6SW6*Xtu9L8Q)Lt9 z{q2x~C z*)Qi}h7vPA?uOg31wBd@>%+IY*w1wyz?Q_~()o@rZyzec6A^-Ru;*ZL&W6;wl5yat z8gby0bv#1tVht86)2JbA%8=1u$ z$vVDj1KZxK%o$y(CmAPdeUW}>hYDVZdA)J>w9fW+Pq8pZ*E!tlS{ZF0q2l~KS)ZVB zDuDC#`80d;rO?pmdJbv0$fBe!O9i(2;m_A2&IFWqG7ji3gj~YOZ`AWd)yqy3E&(5D z=>FCtnvQ{5*t-#ER*<-6iz2N6Y%Ogkq>;AMAoeNe+bkb4r)`dz&pjNOs7;!FQ47qX zW&W8f>sUp}K3vr?jKqn94NQ?RFNiihmdr{6KH6nAG7dl`g=mD^b+oF))?H$^Y%ArC z$6Gl3u19QpiUP)73jVy@)zHxJh-6L&;tki=ZdUY=qG4lmG)cbqW0owHKc9O)dLU^K zg+9GyIBAD+MD_P6&`2hf-*q`l!=-O4Q}{dG=u<*nYG#AF-G+3K;Z{i(U-fW=;@MP5%XFn8eFbv z=V)aqYg`YXMb`Krcj?Zfd@aAx z`YCxj++EZn=7yGA0HmF#TVOz&rwa&3_yq<423$h})CR=A&ZWpJS>VDtpHf6`XmM+S z3UMQc2=JsLg%u`MdN=RJn|MVzkTC1p&p5Agz7n992;uk$%t2o88h^N_tF^t6#IV$QcgQZskZqhtoMzXFiq9hA#Q>xrNhk& zrEl0%&0xP)>i(P!yU9SaV+f&%dj$4T|9gj|bXQ1Iz8au0{+$gX@jB&;q=?Sz8b-5z z+!>_Bm^;@`6oGPs9Xn(dpLDsq}oJ zl}LsjM_{>z7>FrILmLbjm!F;1UIv)Y-mIBlKf``ndGD2{82;uA4_|66<0Evm?@{^{ zhbEF_6pMxm%|*ksApa_g@P6rey~hRt-Ns#QkB~#M;@J{18iXPRo6;f1D=LCu({bL> zKJRo%_WHxKxaf<7CHQia%jMg&Y{w(@_VZ%%+}>eu_2Xbu;JH*LKucndovY4&UV*nN{aA*u5#{+QEU>H=g*E|AFO2hf8hkm#lihQwn~Y*xmr3n)6%i1S-IK*LBFbQCe}bxR}d!d3^aBH$-Wt@ z0kudytXwTgEkPl)oSlK@bS!c}FAoQ2GZ$JqQWhm=2QxQQpff4$H@AOfnb?@wIG9;M zlK-f%a$b_J5sO7O9>vU9Ssv+}TUvvYCq=zvPdJDB}{3)P&B9UXyYAXijlTNhC5 zE+w_ETFjDewzgu%_V)kkQ?s;kAq9Ov^-7C@YGx$W06M#XDkS}{CXmu<0!`S(NkR3p zu_#!1DylL&I9t%sfi`&k8yN=^Yj{pB4)*^s9{*3LSWtXeNvnS$!v3X%`rmoPvV$Us z{r9#p(*MgN)-GN?3W5zW^!g)`@Ns9MwE8zVnuNnuO%w^utx`5QR1R`8@zb^gzbQ6$ zmmrcuZgGOFW4gbZ7}zgYXgFRb4q6d?By$cU8%-GAQv5W!&Z&IZQUFx|b$PBo284n? zAkcqO+MJRj5pOKI>jiKzu&FoMfh4}awlu5+%Phqj-Tm}c{YF`K>iE--%#x(fP>=z% zZ>6wpj43@V^KaO^|?%lmqky@l_lgT>tU8KxI|_9cb?GkNh`z|B(`)vI6W9JfImR zDarbkor8l{LX4G7l1EbPD;K+%C=Vwu+ZUn#KSe-w{qIgJ8|xP~uKzx@|JRA7%J%Zi zvhgZ=_l&soRP3a5C%nF+zmClrir8NP!MdcC*nLkVL|0@NWW?Fs^aAqa`6YZTUV3pn zWf9iJMkt+}GgloqB`baobp*9#wfsUl*Pw#ZC`s2OOAGkL_X*+W$F53HroZ>D`Iat_ zla<%@%uFTn7SzO!!4Cri<=n%=#iPUHLmu~o<3#}isu>X>ubhLJct)_0Hi2!ryHFYI z0E~kiYKL$$Hd?Z40k0rRxjvb@2RwyDV19OI*a1>}6=sD>sgw7ZP#jhMQ0!x}-Ap%sOFnyg)cRDg>L4*fZp9?AO>@CkB5$1Q( zNeeg^6xYyRYe-1bU|uMr{8B2A{L)*_EDT z=aDn`GS)%rVTn0HbReTlM9FXw%I zm*TD_(IfDH+B16s!3NP)%Pt_>yF^}dl!3Ah$+>{(kvpMG+!^O0fk)avXw279BzNu1 zar)BNfN=(X>$64x{)ldrB5qzw$g9nqE9|G#Ox=c5YAM1PKk1mkkV3qs1aThPKEaUe z=sC4R9Ayz2zswf9*M(tpLUc+}i|7`zOd;w-$nk*&vDfz&T(oHQBu%+3j6?}x_ecTg z<9MeCV}&Y^2hSaG(qOxmpcmp3nJNCj$_n0HP118XW%CIBSjSi5+i<7i!RZ8#yiT`7 zLSWtf0oosN6TE%cm_w5v?BkR!f8r^nJgRa8ke|c_!kubI_{PNJ2i_>Zte7I-@j4jnOqz?wTgz%d|060N-j3Q!dYO1!_C@ z6zon>$BA?oNA7p{(xGws0JsIhL|AS6)!!g`;!(u`=~OzZFxoq2$q zEmz>k4n!;bv_BsGa}f9rAjk+7F$j$nez=!69So1q4eQv!T1=FSQ^^vo{v_(MkD2W zsm$93ju=Hb)VwG{y`JvOJQZYa?tXeA_@#s1L2FKE4x#5oZ`Lif87%UHrC(B<4%p^R zZZ$0}6ORA3LQr|DUD33xUhgRnL>D3)@eNeajr_wYIi(4Qx}s@cEqp^`9k4ItzC2>Q zBMu~?e+w@`$@Bel@jI8imgV>q1-X)G?%B8*MUeYN(5M+4N`@{TZibxWF*Jtza;<-k6_xAbwE*2>J_ zvvS@SWS~raw>%nP*w(jsKUrTySbBLdowDj98)-xN>RWyc5@7g03nAXyIWbo>6D;BX zv9ddD5u+)Bu^oerejF>1YNUm1T5>o25?2kO1RL24r-bPGQwNgXU;F&mXT46czltMz za?p22{DlBnoA>?%dKYJ1Z73bER@>@rnaXioTo?=^fF9tt(Y(&*ws6H3RlZ;= zL}@Q#I;3WG^`B?;>;GIbT#guwfj&lCYiA7VUT_-_lZYuEee7Cb&wY?Ls8s=WH@H<= zy2t#B6MQRRkq^}Hm|)B_YBhmGwFpnW;48-vfH@DkXx%05r^r_ySz=vgikHE)?pHUe zy1@`CW-~{!AOt+U(ZjvpdQeO5&&Bi<;Rs=RdT34{ejA8CzlbvFL{<=$-hmJHvsGy* zgq~T=sldMyYe9Q`|BG9k5c7kRak^YjB4RT_mY%+UddJOB2x$$sjn97cT45Z5uinYN z7za*j>+A>@qSDaUR(**zE+adKp3>&>y?!#BpRLs3$Zd{OZdjz@2q=0u)t6y;C`8)F2L4H-^fA;!uaEMz`$3PWe`BT;CERDd9Z;sXc4U_2;sQ`fgD2XKxKad$=ZsA8Upq+XiYJ3!VB_b2H1|m}WC%M5R47l#>pG z%m3V5WAIVOdsHb;6idOJQ*_gPYjaN7Q;&?G`TC&Bo7`W3iClt886r)Wb8F?H%o4&` z0cUedx7YHzi@nzh$}kVK-<}O7O)F6`1DxX> zE?JH%cL21|B|DU~VCw%CjmP}{we6Ol=8O5z*$`!-Oy!U%`EVy;Jd0rtIalkeO%&m`q|X~NGw;5dTMZXt~%Cz)rcxX=_k5RN);EI+jEr225v z!Ss+edq8nA35@2~K6Ml54WTuAIa}e)d)-(ON_*{CEiOOr)w#0%dv(!*@~9H*E*uA4 zDy=ZC1%(0CVMa(*K}h+3>;p&ihSg!-cDkEBSF;m!ci>i_`HfHn@P6E#`gwE z;He{53099%-jD{sM4k>5#396&$~B#T4^*H~cuk;rm;_-okoH3jhVpKca7 zeG;kAU<@M(2nuuwhB*tOq-zabfXsjBeK02UcIntJ5i+wgbE7LXtmFY`aM9AJr-NV5 zTiZ%MP$`{|jATHyXeFjY;--p(0@x|T9ZdT8xN#P-dC!+_j1y-{R)v}WLf7%c5tx)zs{5#B^VA$25iWR0sS!+>RWWAp|Wd>-nFuU*+(x09kNksBw`mjDWoY z9NGPaz#rgHPesz)+&>z0j8y&mkP*RPcuHWugOxzgV)Yh)DI+239M4j5iC2KhLMhSb z`+!`jME>EdZ2mdmw($9~Mr(X!p9Vxmsylol#l7m1@&m!*;FsV!fTODW=~5lWKq`Md z@B?^KO|UkI70lk!UV+zg)nEhx04%yz({%N*el<8F+>Sa}0z^1wZ%;3?r%4V=r+7*o zb1futDvSk@dD3xtQmV6)e z{(ipK@B03(-ygq!&OCFTbD#TuuIHR{zwXz4uJhDLg>w!F6W^(*?{Oj5C_{++^dK>A z3M~w`&qhtqm`dxu=mj`*2?MbOrK0z2r6IF!&GhxH(F;zlF(wDWL$s z%~<;fVQA4LZI*eO)oTR|*Z@BAr@NzhDKS zUK}aM_J&{0=0F#yMvnVWG|p{v?&1-AwVT8Tz~i_sw4WIguIgtzw}K_LLz!Bz^~Ck5 zC6&^fzb6~#4($UTBKYdiab?@g=WN^=R|R?{4x9rL(tU2Th!~PYwYHTF>#L88T(CK%}aQ`vf;LW~u#=~Z^1 z>Q2-pSG!*0Qb|P@Q$!r{RJREyPc?-?={tm!^~BbWu~vbEyng!rt>p8-ZL?n1eV|`o z;W!Jc_?|rD^eLe}k7S)Vz^1v{ij5y7weejT!*|=|@5RvySUkBtebyp5aqMhht}Q z4sFuXBm7LjNDYo6%C40RiR-Gr-J49HMiHY#ivJFvh#X^2ok9)IWORiD%o zAKoe$`jzd4cd(Wc&ObrK-sxOOG|sxg@nwhG1KeB3z)h$x`IfoF#aSBwEQqS>p>EMl z`!tx9n3fV}HFPFcP#n_3p;w{Y(#ax{?Z4EgUdp+~_AX0V7xMuvg2|=D^vMHXR>Ibv@a?~`0AO4MWb*5 z;BxQT(xJDxjah8ISuh3jzH(+4AW6SPvo2*^B)8HjE2gGX@2ix^xn(#$dxSG@pf?dn zRP!ar<{O{!Ujz<=CXJRT(aDIZ!8Q><*TJ#ET4yvC>Bd!$tF1{Uw)i!JGV^eVZ*2_Q z7v_v3F9g|yzNy?a626d>ln@%kbn54`NYG! zbs9swXH>o3(E61`W^eRet)fnElk|blfCIrN8p<_N3;m7DzbRcH8$NGnS;m?v3NB{G7Zqsu)~tIJ4NQ}gCQ`ATG%3EGtvg! z5@{+h<2rjXnLFePqh|d9VGKt)X3-1lb8B=s5hrk$Px3Q!FLRrB6tU{2$uK_HZDnid z00Qf_T$u=_Bpc&d^%Ce~+I%x^rH*slQuU`$3B;6kK-bXD4(Mc zx2W|3<@y)*YkT6%x)Cz8fZlkB<1vHI>9wzTKlHhy4o78&D@!+FlL{Rrp2t%jsg*W6@DBfT$FOq^8%70pa&v7yz) z^qXVO*Z&X71eHB?mufTVRWaq5&Cp6ZPVLkYD*thSAQiM2H>7-gr;@MKlgsB{2($)+ zw$V^&z_}^^`Z^4)E$r?1&baitycFJ$B*zUMB_ZpnZnaU@)7>gxjeaurlPUvhJMU@@ zQfe0>rC5#rdBOiOCu*ejDbeg|PwUs&Oif0!>J)b{XFUK6#D=1>K{I{xBHRb@G~wnr zd78BQ3~QTcmnwFHkK&M$Ae8sIBqVYqPQadG>t-aEa1-tdmt>Rcf(~6}?PSfIq4y07 zEXn0tv-U?DPu13Ixe$dNR%dBEHn}~H-X68N7{OK86gmFsrs|24-oV|j5uEn5r(tcIE1}wTJxRea(=UO zqx#lfs5*PGlS_u9LF0!EZ(fsY16pU1i%>ur3%8N?`edTMt=SHDfaTaD~T>Y#?7+@Ud(P z=kPnGWKH(=i$Vp{tNHf4=0G<;s^<6)hf1O^y3rfT2NlGI@>YJJPSMS&9mR!hdzQpY zy9FD_ClqWU2W(SrNg2rZ7HlCxD6d#owi*u%izP_AJ-*Dgqo7;xvV5;5$Bbh}-^qwK z`9r_7n}mUrL8gJAs&{j%O6mK?xxwXR-8hAVf)TLtR1E=S^~Gf8bpJZp3naY|p%k zmM@&4igLWnd*K%!3IZTNOV}k0mwr@;JyaaC9=p5c;o`L(j(VL(wM`>j$?NfXW}iT$ zrS@Z2%F|YP2pQ2_Kb)XLc0CdI()Ja9f1ca4KX!Xj=dr#XjahB~!Q2+XJ;K)1{!PrH z?&BvCd6Vp2F>5^QhslAZeBhWo9kUHB1*`ePPG58DVu z_7B!5abSpKo-2z^oU52LdhH*UWATxsL@0ZVkp5$m&KBY!#FRZI5B+#pH@a+NiGM;5 z_<{>%UOtE^FBKG$*TbySEWVH^r1f}B&l_ADQxP7te%POW@DFrT;33SEB325N$FCD7 zu8~+_Jzp7OEjbR7O z8M6sn2uV{6mnZUM!6b@JD?AWGrHAGRnAP@--Ak=6aDN!qC6Y?L^RdN4^UrbsJN7RSlDTti$Yu5m7yxl3 zPD?P|c&qO<^FKkMC8UqUS5LziE?MP%3^TZJpL)CvV8)W#M2FWAye|&XAHHoj0vP;! zi*eaWA+d29dPoAH3TY`rg&RDf&Az0b3($Q_O*Zz9h37dRLwEk~VbpP?%QYFlC@f~ZJwCk(i z4&vr?K*PA4h|Q%q{tN5``njue=>A5XAH1jD)SSEf(` zoIq8?mc?TW`uAuC@d1ut3(C(#-YkkbBIDR8!=6QXmh_mxwxRHK0+Hrl@LNt~s3nZH zfwPFCRO#78PyUhtfF~rz1x}J({^kzQ-XmLIZ3c)8WqYNqG(?Lpq7nAQf2hgRGcGa| z6=3`5(gwyKcsIE6ei?4zd3`1v!?+ewb@nx9+kaq>#<>ul=HQo=t&kh-PE{UIZ@Uk- z|7FnOB(>B0g6iDR=-ftxBpmw_5wJ<&0sTHLg=Rh@9SHA%aWC8;?|G8MDoV}vZX%~t zz|5U?w9D;aPNio%3euO&bgVadBxl@BDS>(~XoTW!w3gShUk)VlQ^HlR3#B0C=_V#(W~FrDG}Za%LpMr zrH7wWDtuvP2jnobzt|1kV}S4X1r|fezWGV;keRim7O2cfGd*<^{A8wRQI|tW<6h-- zTi}TaFe2dofK9r*K)1dF&A{^vT>28tdw$tZzOLR>XC9Tmw(+#4=W!>1)*iQKT@l2j z^y;UD_=ghhc1;ij3!WFr^t#R&a&nPk1jtiXf5qdc$b2+ah}>Fg`xE*W=S>6w$3xM} zyiYGXG?rPjcgH5(uR%2+r>#EfHb@ut z@^^;6+?f|VQ6dBcAVV~x@|V+3ZLgyry-KAdSD!4n^3>6PP_gv9SugQ2)ib#(N<4Wv z8kzmnl^v}4^p5?u7go0&N_kqG$#POaK`RBwnFDg|3G`mhKEi;#LH<9Es#VZw^y$tD zssa{K2BKQQ@|I6D;^?iNhlL27JPb6}&e@w$m5tLdrh#9t?Gamuw~;A;3I0a65*C^u zXuOhALnPIlu8pwt44Q42ps0V-*Yv z46-R)h-WYctcEF_C@VJtw6%g$KUF)^SrT30tU654>6Ej2FhqYnrATyWnneCI#_5)F zdS4_8F$BGt-PtH2gkU)rt8Wl&Aat#|kIK8X#GYJ3P%|JKd=-X)4n#&IV$}>fo}a01 zA22TFDG`wsi@gY_T{QQjB^sv)h)GY8;A$^8Gg7sSMGi!^kUX0Zfng)E6!=HW4DdJ?&6Coyt`xbOdA31GE& zLkxsGMapS4^*oGFo1vj<2bl4rNr?o!tPEpCIGy6YQjP^I6^I`wp0op*qAQA+ zQp#}rtfnMhOR#_j5H-}aWbG(5;TJf_m4f4bnb)Dcl*LP*aA}NNrvItmE3v0gdSd-5&bNQpvO;ew(qiPt6F3{3vvwoGksa{0c5@~`EF|0aA1_%-b zx&>WoCC#H3%Ise};Rnyp1rXI`vzC-kXMGz7XY|bEtA&+o<`-!mdakY4T}}s;pLC4c zC(@eGU@y#>-qM=K#eMw}UC6uX{y-~EAdBiVx|DKkYIuI7xOz@|0{-?Ysf^+HxRw_C z;%$3u#!?o;@msdf7ogcn{>#C=W#=my?t +71^P?O*wBeyDe%jt6l%``lg53^5u2 zvd|=1Ry`(CM~f3^jgFCEI!r@;yp1|duPfHmVc!k5yGtd8v`PQt)E)Jma8PRw@J11o z#4c7Zuq3BHlP#=sEoSo!OSZ7x;fK-B6r>p98QB!Q_~Yc?s;+DIJnK^qSIzZ!@8^XT zh-|4MAzk5n(n;?@EU0U>KRvKNlacG!7`1{spQzo$Bymp)Q~lK6kdoEZ!;z9ARBwtT zacAZGE6yBe;uf-&^>2?vt`)J>@9k>1VJO$BNAWdAQ0>G0N0Ey$91@9S(bk`s z!Kit%*YjWUH(0un9hN%WThzjQj-A5s*hp|3<{m|{aJ-535IU1V+Pj#moI_(qs8cde z$)4x5nIMWK@genAf=nZeq<>qBwu(oF4uzi${k=%jI2m^qT}e$7p?GuW$*4W`GMu(x z2Mxx#KZ?n|vdMRj;iiue4*l?5p3oDp*aa3NccC&3)`g;&e$ZGPb2oLi?xun!yO6eE zUSDveP=}9hj9w&Gn|qR4Bi1!YScq*TPdDCQ`+gfnFGkP#LzIKXi{tA(mRCgbIJhl& z5FH(YEal?W4CK{}0BxcB;ct<7t-TFP`I(2SAB~{Dh@j2I>Kf|J?XuKeY*ty-f&`_Q z29G$5gUD(Y;r^F{fdIBw4O0w8-16b84Zkr=HLU?# zqp%Av^v?oFsj7lUHB4jzxQ$k8P(y~|FCGi`xnxz<8w9?BKi78I$mqtXk3E$HWXU;J zZ1uu0=IzFQZ40cgU3npq28)$6@bJ-HbJQW@Df#z9;I?v zWt|f7U|?TIm08>lhzL^RDIth6YexvsQkV+FKs4B?^U%zc`2SaxCG4vP6qA9cP}3(7 z{y&R{K|i8D+o?eC+oVQ@lW#jB|5x>~L61I$;TwXMpc|$zSC+Bmi2rS%KAF&P1~<03Nb*CJ1;@_%10Ai6-s~7OCkza-z7X`)ElM9{Sy{qIDuvG`c6L z_@RB>#8*3n;?Xar&$MbM%_#WAt-Q<0E8K30e~R;-1!T_#WTC^50X$+_qW7c-{hM3yi6@d-@}mHw38O*wB3UtD{vqFcP=ueiP9{h4;o?^1MN zlW}2BK)mg{o`9KK!qMKnX?&rVqNUkOX*18}Px(GcIGUqtz|SA%pJ~}Dxy|#M zTA{UfuC%{b#9o>BY6m;0J0FCw*c_bj+b`}zc8xAQQ~Y{A+qQPZVQO?dC4nQ@$mWel z*(%#~qo-3}Sbq5>#h)EwbpaFIY6r5OlAk8SPTov6-gXMxMq$q@+6UR$lq#y-C@Mcx z4BaSu%{RGk3AMSZt=6XEay>=UL#FBJ+SrBr(>M>d zz65|nj#UcLu`%{oEcYHBe|@#-(Enny`qqy1`)hRMFDy#sHo2e0>$*vl&-TeDdGF=R zSxR&?>hRwwWoWSVzo&G3Xl$vhJNEB|vdrC?Qf;fI7`g#AJgYXES#6zRaemSLmqq&Z;OwEU + + + + +Goedel.PRrepresentable + + + + +

    + + + \ No newline at end of file diff --git a/theories/html/Goedel.codeSysPrf.html b/theories/html/Goedel.codeSysPrf.html new file mode 100644 index 00000000..832f6787 --- /dev/null +++ b/theories/html/Goedel.codeSysPrf.html @@ -0,0 +1,251 @@ + + + + + +Goedel.codeSysPrf + + + + +
    + + + +
    + +

    Library Goedel.codeSysPrf

    + +
    +
    + +
    +TO DO: Define abbreviations and re-indent !!! + +
    +
    + +
    +From Coq Require Import Ensembles.
    +From Coq Require Import List.
    +From hydras.Ackermann Require Import checkPrf.
    +From hydras.Ackermann Require Import code.
    +From hydras.Ackermann Require Import Languages.
    +From hydras.Ackermann Require Import folProp.
    +From hydras.Ackermann Require Import folProof.
    +From hydras.Ackermann Require Import folLogic3.
    +From hydras.Ackermann Require Import folReplace.
    +From Goedel Require Import PRrepresentable.
    +From hydras.Ackermann Require Import expressible.
    +From hydras.Ackermann Require Import primRec.
    +From Coq Require Import Arith Lia.
    +From hydras.Ackermann Require Import PA.
    +From hydras.Ackermann Require Import NNtheory.
    +From hydras.Ackermann Require Import codeList.
    +From hydras.Ackermann Require Import subProp.
    +From hydras.Ackermann Require Import ListExt.
    +From hydras.Ackermann Require Import cPair.
    +From hydras.Ackermann Require Import wellFormed.
    +From hydras.Ackermann Require Import prLogic.
    + +
    +From hydras Require Import Compat815.
    +Import NNnotations.
    + +
    + +
    +Section code_SysPrf.
    + +
    +Generalizable All Variables.
    +Variable L : Language.
    +Context `(cL: Lcode L cf cr).
    + +
    +Variable codeArityF : nat nat.
    +Variable codeArityR : nat nat.
    +Context (codeArityFIsPR : isPR 1 codeArityF).
    +Hypothesis
    +  codeArityFIsCorrect1 :
    +     f : Functions L, codeArityF (cf f) = S (arityF L f).
    +Hypothesis
    +  codeArityFIsCorrect2 :
    +     n : nat, codeArityF n 0 f : Functions L, cf f = n.
    +Context (codeArityRIsPR : isPR 1 codeArityR).
    +Hypothesis
    +  codeArityRIsCorrect1 :
    +     r : Relations L, codeArityR (cr r) = S (arityR L r).
    +Hypothesis
    +  codeArityRIsCorrect2 :
    +     n : nat, codeArityR n 0 r : Relations L, cr r = n.
    + +
    +Import LNN NN.
    +Import NNnotations.
    + +
    +Section LNN.
    + +
    +Variable T : System.
    +Hypothesis TextendsNN : Included _ NN T.
    + +
    +Variable U : fol.System L.
    +Variable fU : Formula. +
    +Variable v0 : nat.
    +Hypothesis freeVarfU : v : nat, In v (freeVarF fU) v = v0.
    +Hypothesis
    +  expressU1 :
    +     f : fol.Formula L,
    +    mem _ U f
    +    SysPrf T
    +      (substF fU v0 (natToTerm (codeFormula f))).
    +Hypothesis
    +  expressU2 :
    +     f : fol.Formula L,
    +    ¬ mem _ U f
    +    SysPrf T
    +      (notH (substF fU v0 (natToTerm (codeFormula f)))).
    + +
    +Definition codeSysPrf : Formula :=
    +  let nv := newVar (2 :: 1 :: 0 :: v0 :: nil) in
    +  existH nv
    +    (andH
    +       (substF
    +          (substF
    +             (primRecFormula 2
    +                (proj1_sig
    +                   (checkPrfIsPR L cL codeArityF codeArityR
    +                      codeArityFIsPR codeArityRIsPR))) 0
    +             (Succ (var nv))) 2 (var 0))
    +       (forallH (S nv)
    +          (impH (LT (var (S nv)) (var nv))
    +             (orH
    +                (substF
    +                   (substF
    +                      (substF
    +                         (primRecFormula 2 (proj1_sig codeInIsPR)) 2
    +                         (var (S nv))) 1 (var nv)) 0 Zero)
    +                (substF fU v0 (var (S nv))))))).
    + +
    +Lemma codeSysPrfCorrect1 :
    (f : fol.Formula L) (A : list (fol.Formula L)) (p : Prf L A f),
    ( g : fol.Formula L, In g A mem _ U g)
    SysPrf T
    +   (substF
    +      (substF codeSysPrf 0
    +         (natToTerm (codeFormula f))) 1
    +      (natToTerm (codePrf A f p))).
    + +
    +Lemma codeSysPrfCorrect2 :
    +   (f : fol.Formula L) (A : fol.Formulas L),
    +    ( g : fol.Formula L, In g A ¬ mem _ U g)
    +     p : Prf L A f,
    +      SysPrf T
    +        (notH
    +           (substF
    +              (substF codeSysPrf 0
    +                 (natToTerm (codeFormula f))) 1
    +              (natToTerm (codePrf A f p)))).
    + +
    +Lemma codeSysPrfCorrect3 :
    +   (f : fol.Formula L) (n : nat),
    +    ( (A : list (fol.Formula L)) (p : Prf L A f),
    +        n codePrf A f p)
    +    SysPrf T
    +      (notH
    +         (substF
    +            (substF codeSysPrf 0
    +               (natToTerm (codeFormula f))) 1
    +            (natToTerm n))).
    + +
    +Lemma freeVarCodeSysPrf :
    v : nat, In v (freeVarF codeSysPrf) v 1.
    + +
    +Definition codeSysPf : Formula := existH 1 codeSysPrf.
    + +
    +Lemma freeVarCodeSysPf :
    v : nat, In v (freeVarF codeSysPf) v = 0.
    + +
    +Lemma codeSysPfCorrect :
    f : fol.Formula L,
    folProof.SysPrf L U f
    SysPrf T
    +   (substF codeSysPf 0
    +      (natToTerm (codeFormula f))).
    + +
    +Definition codeSysPrfNot :=
    +  existH 2
    +    (andH (substF codeSysPrf 0 (var 2))
    +       (substF
    +          (substF (primRecFormula 1 (proj1_sig codeNotIsPR)) 0
    +             (var 2)) 1 (var 0))).
    + +
    +Lemma freeVarCodeSysPrfN :
    v : nat, In v (freeVarF codeSysPrfNot) v 1.
    + +
    +Lemma codeSysPrfNCorrect1 :
    +   (f : fol.Formula L) (A : fol.Formulas L) (p : Prf L A (notH f)),
    +    ( g : fol.Formula L, In g A mem _ U g)
    +    SysPrf T
    +      (substF
    +         (substF codeSysPrfNot 0
    +            (natToTerm (codeFormula f))) 1
    +         (natToTerm (codePrf A (notH f) p))).
    + +
    +Lemma codeSysPrfNCorrect2 :
    +   (f : fol.Formula L) (A : fol.Formulas L),
    +    ( g : fol.Formula L, In g A ¬ mem _ U g)
    +     p : Prf L A (notH f),
    +      SysPrf T
    +        (notH
    +           (substF
    +              (substF codeSysPrfNot 0
    +                 (natToTerm (codeFormula f))) 1
    +              (natToTerm (codePrf A (notH f) p)))).
    + +
    +Lemma codeSysPrfNCorrect3 :
    (f : fol.Formula L) (n : nat),
    ( (A : fol.Formulas L) (p : Prf L A (notH f)),
    +  n codePrf A (notH f) p)
    SysPrf T
    +   (notH
    +      (substF
    +         (substF codeSysPrfNot 0
    +            (natToTerm (codeFormula f))) 1
    +         (natToTerm n))).
    + +
    +End LNN.
    + +
    +End code_SysPrf.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/Goedel.fixPoint.html b/theories/html/Goedel.fixPoint.html new file mode 100644 index 00000000..7c4600d9 --- /dev/null +++ b/theories/html/Goedel.fixPoint.html @@ -0,0 +1,101 @@ + + + + + +Goedel.fixPoint + + + + +
    + + + +
    + +

    Library Goedel.fixPoint

    + +
    +From hydras.Ackermann Require Import primRec.
    +From hydras.Ackermann Require Import cPair.
    +From Coq Require Import Arith Lia.
    +From hydras.Ackermann Require Import code.
    +From hydras.Ackermann Require Import codeSubFormula.
    +From hydras.Ackermann Require Import folProp.
    +From hydras.Ackermann Require Import folProof.
    +From hydras.Ackermann Require Import Languages.
    +From hydras.Ackermann Require Import subAll.
    +From hydras.Ackermann Require Import subProp.
    +From hydras.Ackermann Require Import folLogic3.
    +From hydras.Ackermann Require Import folReplace.
    +From hydras.Ackermann Require Import LNN.
    +From hydras.Ackermann Require Import codeNatToTerm.
    +From Goedel Require Import PRrepresentable.
    +From hydras.Ackermann Require Import ListExt.
    +From Coq Require Import List.
    +From hydras.Ackermann Require Import NN.
    +From hydras.Ackermann Require Import expressible.
    +From hydras Require Import Compat815.
    +Import FolNotations.
    +Import NNnotations.
    + +
    +Definition subStar (a v n : nat) : nat := codeSubFormula a v (codeNatToTerm n).
    + +
    +#[export] Instance subStarIsPR : isPR 3 subStar.
    + +
    +Section LNN_FixPoint.
    + +
    +Let codeFormula := codeFormula (cl:=LcodeLNN).
    + +
    +Lemma FixPointLNN :
    (A : Formula) (v : nat),
    {B : Formula |
    +   SysPrf NN
    +     (B substF A v (natToTermLNN (codeFormula B)))%fol
    +   ( x : nat,
    +    In x (freeVarF B)
    +    In x (List.remove eq_nat_dec v (freeVarF A)))}.
    + +
    +End LNN_FixPoint.
    + +
    +From hydras.Ackermann Require Import PA.
    +From hydras.Ackermann Require Import NN2PA.
    + +
    +Section LNT_FixPoint.
    + +
    +Let codeFormula := codeFormula (cl:=LcodeLNT).
    + +
    +Lemma FixPointLNT (A : Formula) (v : nat):
    +  {B : Formula |
    +    SysPrf PA
    +      (iffH B (substF A v (natToTermLNT (codeFormula B))))
    +      ( x : nat,
    +          In x (freeVarF B)
    +            In x (List.remove eq_nat_dec v (freeVarF A)))}.
    + +
    +End LNT_FixPoint.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/Goedel.goedel1.html b/theories/html/Goedel.goedel1.html new file mode 100644 index 00000000..2727755b --- /dev/null +++ b/theories/html/Goedel.goedel1.html @@ -0,0 +1,139 @@ + + + + + +Goedel.goedel1 + + + + +
    + + + +
    + +

    Library Goedel.goedel1

    + +
    +From Coq Require Import Ensembles.
    +From Coq Require Import List.
    +From Coq Require Import Arith.
    +From hydras.Ackermann Require Import folProp.
    +From hydras.Ackermann Require Import folProof.
    +From hydras.Ackermann Require Import subProp.
    +From hydras.Ackermann Require Import ListExt.
    +From Goedel Require Import fixPoint codeSysPrf.
    +From hydras.Ackermann Require Import wConsistent.
    +From hydras.Ackermann Require Import NN.
    +From hydras.Ackermann Require Import code.
    +From hydras.Ackermann Require Import checkPrf.
    +From hydras Require Import Compat815.
    + +
    +From LibHyps Require Export LibHyps.
    +From hydras Require Export MoreLibHyps NewNotations.
    + +
    +Import NNnotations codeNatToTerm.
    + +
    +Definition codeFNN := codeFormula (cl:=LcodeLNN) .
    + +
    +Notation reflection f := (natToTerm (codeFNN f)).
    + +
    +Section Goedel's_1st_Incompleteness.
    + +
    +Variable T : System.
    + +
    +Hypothesis extendsNN : Included _ NN T.
    + +
    +Variable repT : Formula.
    +Variable v0 : nat.
    +Hypothesis
    +  freeVarRepT : v : nat, In v (freeVarF repT) v = v0.
    + +
    +Hypothesis
    +  expressT1 :
    +     f : Formula, mem _ T f
    +    SysPrf T (substF repT v0 (reflection f)).
    + +
    +Hypothesis
    +  expressT2 :
    +     f : Formula, ¬ mem _ T f
    +    SysPrf T (¬ (substF repT v0 (reflection f)))%fol.
    + +
    +Definition codeSysPrf :=
    +  codeSysPrf LNN LcodeLNN codeArityLNTF codeArityLNNR
    +    codeArityLNTFIsPR codeArityLNNRIsPR repT v0.
    + +
    +Definition codeSysPf :=
    +  codeSysPf LNN LcodeLNN codeArityLNTF codeArityLNNR
    +    codeArityLNTFIsPR codeArityLNNRIsPR repT v0.
    + +
    +Definition G := let (a,_) := FixPointLNN (notH codeSysPf) 0 in a.
    + +
    +Definition codeSysPfCorrect :=
    +  codeSysPfCorrect LNN LcodeLNN codeArityLNTF
    +    codeArityLNNR codeArityLNTFIsPR codeArityLNTFIsCorrect1 codeArityLNNRIsPR
    +    codeArityLNNRIsCorrect1 T extendsNN T repT v0 freeVarRepT expressT1.
    + +
    +Definition codeSysPrfCorrect2 :=
    +  codeSysPrfCorrect2 LNN LcodeLNN codeArityLNTF
    +    codeArityLNNR codeArityLNTFIsPR codeArityLNTFIsCorrect1 codeArityLNNRIsPR
    +    codeArityLNNRIsCorrect1 T extendsNN T repT v0 freeVarRepT expressT2.
    + +
    +Definition codeSysPrfCorrect3 :=
    +  codeSysPrfCorrect3 LNN LcodeLNN codeArityLNTF
    +    codeArityLNNR codeArityLNTFIsPR codeArityLNTFIsCorrect1
    +    codeArityLNTFIsCorrect2 codeArityLNNRIsPR codeArityLNNRIsCorrect1
    +    codeArityLNNRIsCorrect2 T extendsNN.
    + +
    +Lemma freeVarG : closed G.
    + +
    +Lemma FirstIncompletenessA : SysPrf T G Inconsistent LNN T.
    + +
    + +
    +Lemma FirstIncompletenessB :
    +  wConsistent T ¬ SysPrf T (notH G).
    + +
    +Theorem Goedel'sIncompleteness1st :
    wConsistent T
    f : Formula, independent T f closed f.
    + +
    +End Goedel's_1st_Incompleteness.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/Goedel.goedel2.html b/theories/html/Goedel.goedel2.html new file mode 100644 index 00000000..777add81 --- /dev/null +++ b/theories/html/Goedel.goedel2.html @@ -0,0 +1,159 @@ + + + + + +Goedel.goedel2 + + + + +
    + + + +
    + +

    Library Goedel.goedel2

    + +
    +From Coq Require Import Ensembles.
    +From Coq Require Import List.
    +From Coq Require Import Arith.
    +From hydras.Ackermann Require Import folProp.
    +From hydras.Ackermann Require Import folProof.
    +From hydras.Ackermann Require Import folReplace.
    +From hydras.Ackermann Require Import folLogic3.
    +From hydras.Ackermann Require Import subProp.
    +From hydras.Ackermann Require Import ListExt.
    + +
    +From Goedel Require Import fixPoint.
    +From hydras.Ackermann Require Import NN2PA.
    +From Goedel Require Import codeSysPrf.
    +From hydras.Ackermann Require Import PAtheory.
    +From hydras.Ackermann Require Import code.
    +From hydras.Ackermann Require Import checkPrf.
    +From hydras.Ackermann Require Import codeNatToTerm.
    +From Goedel Require Import rosserPA.
    + +
    +Section Goedel's_2nd_Incompleteness.
    + +
    +  Variable T : System.
    + +
    +  Hypothesis extendsPA : Included _ PA T.
    + +
    +  Variable repT : Formula.
    +  Variable v0 : nat.
    +  Hypothesis
    +    freeVarRepT : v : nat, In v (freeVarF repT) v = v0.
    +  Hypothesis
    +    expressT1 :
    +     f : Formula,
    +      mem _ T f
    +      SysPrf T (substF repT v0 (natToTerm (codeFormula f))).
    +  Hypothesis
    +    expressT2 :
    +     f : Formula,
    +      ¬ mem _ T f
    +      SysPrf T
    +        (notH (substF repT v0 (natToTerm (codeFormula f)))).
    + +
    +  Definition codeSysPf :=
    +    (codeSysPf LNT LcodeLNT codeArityLNTF codeArityLNTR
    +       codeArityLNTFIsPR codeArityLNTRIsPR (LNT2LNN_formula repT) v0).
    + +
    +  Section Goedel1PA.
    + +
    + +
    +    Definition T' := T' T.
    + +
    +    Definition extendsNN := extendsNN T.
    + +
    +    Definition Tprf2T'prf := Tprf2T'prf T.
    + +
    +    Definition expressT'1 := expressT'1 T repT v0 expressT1.
    + +
    +    Definition expressT'2 := expressT'2 T repT v0 expressT2.
    + +
    +    Definition freeVarRepT' := freeVarRepT' repT v0 freeVarRepT.
    + +
    +    Definition codeSysPfCorrect :=
    +      codeSysPfCorrect LNT LcodeLNT codeArityLNTF
    +        codeArityLNTR codeArityLNTFIsPR codeArityLNTFIsCorrect1
    +        codeArityLNTRIsPR
    +        codeArityLNTRIsCorrect1 T' extendsNN T (LNT2LNN_formula repT) v0
    +        freeVarRepT' expressT'1.
    + +
    +    Definition G := let (a,_) :=
    +                      FixPointLNT (notH (LNN2LNT_formula codeSysPf)) 0
    +                    in a.
    + +
    +    Definition box (f:Formula) :=
    +      (substF (LNN2LNT_formula codeSysPf) 0
    +         (natToTerm (codeFormula f))).
    + +
    +    Lemma GS : SysPrf T (iffH G (notH (box G))).
    + +
    +    Lemma HBL1 : f, SysPrf T f SysPrf T (box f).
    + +
    +    Lemma FirstIncompletenessA : SysPrf T G Inconsistent LNT T.
    + +
    +  End Goedel1PA.
    + +
    +  Definition F : Formula :=
    +    (notH (L:= LNT) (forallH 0 (equal (var 0) (var 0)))).
    + +
    +  Definition Con := notH (box F).
    + +
    +  Hypothesis HBL2 : f, SysPrf T (impH (box f) (box (box f))).
    +  Hypothesis HBL3 : f g, SysPrf T (impH (box (impH f g)) (impH (box f) (box g))).
    + +
    +  Theorem SecondIncompletness :
    +    SysPrf T Con Inconsistent LNT T.
    + +
    +End Goedel's_2nd_Incompleteness.
    + +
    + +
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/Goedel.rosser.html b/theories/html/Goedel.rosser.html new file mode 100644 index 00000000..bf41e2ef --- /dev/null +++ b/theories/html/Goedel.rosser.html @@ -0,0 +1,207 @@ + + + + + +Goedel.rosser + + + + +
    + + + +
    + +

    Library Goedel.rosser

    + +
    +From Coq Require Import Ensembles.
    +From Coq Require Import List.
    +From Coq Require Import Arith Lia.
    +From hydras.Ackermann Require Import folProp.
    +From hydras.Ackermann Require Import folProof.
    +From hydras.Ackermann Require Import folReplace.
    +From hydras.Ackermann Require Import folLogic3.
    +From hydras.Ackermann Require Import subProp.
    +From hydras.Ackermann Require Import ListExt.
    +From hydras.Ackermann Require Export Languages.
    +From Goedel Require Import fixPoint.
    +From Goedel Require Import codeSysPrf.
    +From hydras.Ackermann Require Import NNtheory.
    +From hydras.Ackermann Require Import code.
    +From Goedel Require Import PRrepresentable.
    +From hydras.Ackermann Require Import expressible.
    +From hydras.Ackermann Require Import checkPrf.
    +From hydras.Ackermann Require Import codeNatToTerm.
    +Import LNN NN NNnotations.
    +From hydras Require Import Compat815.
    + +
    +Section Rosser's_Incompleteness.
    + +
    +Definition codeFormula := codeFormula (cl:=LcodeLNN).
    + +
    +Variable T : System.
    + +
    +Hypothesis extendsNN : Included _ NN T.
    + +
    +Variable repT : Formula.
    +Variable v0 : nat.
    +Hypothesis
    +  freeVarRepT : v : nat, In v (freeVarF repT) v = v0.
    +Hypothesis
    +  expressT1 :
    +     f : Formula,
    +    mem _ T f
    +    SysPrf T (substF repT v0 (natToTerm (codeFormula f))).
    +Hypothesis
    +  expressT2 :
    +     f : Formula,
    +    ¬ mem _ T f
    +    SysPrf T
    +      (notH (substF repT v0 (natToTerm (codeFormula f)))).
    + +
    +Definition codeSysPrf :=
    +  codeSysPrf LNN LcodeLNN codeArityLNTF codeArityLNNR
    +    codeArityLNTFIsPR codeArityLNNRIsPR repT v0.
    + +
    +Definition codeSysPrfCorrect1 :=
    +  codeSysPrfCorrect1 LNN LcodeLNN codeArityLNTF
    +    codeArityLNNR codeArityLNTFIsPR codeArityLNTFIsCorrect1 codeArityLNNRIsPR
    +    codeArityLNNRIsCorrect1 T extendsNN T repT v0 freeVarRepT expressT1.
    + +
    +Definition codeSysPrfCorrect2 :=
    +  codeSysPrfCorrect2 LNN LcodeLNN codeArityLNTF
    +    codeArityLNNR codeArityLNTFIsPR codeArityLNTFIsCorrect1 codeArityLNNRIsPR
    +    codeArityLNNRIsCorrect1 T extendsNN T repT v0 freeVarRepT expressT2.
    + +
    +Definition codeSysPrfCorrect3 :=
    +  codeSysPrfCorrect3 LNN LcodeLNN codeArityLNTF
    +    codeArityLNNR codeArityLNTFIsPR codeArityLNTFIsCorrect1
    +    codeArityLNTFIsCorrect2 codeArityLNNRIsPR codeArityLNNRIsCorrect1
    +    codeArityLNNRIsCorrect2 T extendsNN.
    + +
    + +
    +Definition codePrf := codePrf (cl:=LcodeLNN).
    + +
    +Definition codeSysPrfNot :=
    +  codeSysPrfNot LNN LcodeLNN codeArityLNTF
    +    codeArityLNNR codeArityLNTFIsPR codeArityLNNRIsPR repT v0.
    + +
    +Definition freeVarCodeSysPrfN :=
    +  freeVarCodeSysPrfN LNN LcodeLNN codeArityLNTF
    +    codeArityLNNR codeArityLNTFIsPR codeArityLNNRIsPR repT v0 freeVarRepT.
    + +
    +Definition codeSysPrfNCorrect1 :=
    +  codeSysPrfNCorrect1 LNN LcodeLNN codeArityLNTF
    +    codeArityLNNR codeArityLNTFIsPR codeArityLNTFIsCorrect1 codeArityLNNRIsPR
    +    codeArityLNNRIsCorrect1 T extendsNN T repT v0 freeVarRepT expressT1.
    + +
    +Definition codeSysPrfNCorrect2 :=
    +  codeSysPrfNCorrect2 LNN LcodeLNN codeArityLNTF
    +    codeArityLNNR codeArityLNTFIsPR codeArityLNTFIsCorrect1 codeArityLNNRIsPR
    +    codeArityLNNRIsCorrect1 T extendsNN T repT v0 freeVarRepT expressT2.
    + +
    +Definition codeSysPrfNCorrect3 :=
    +  codeSysPrfNCorrect3 LNN LcodeLNN codeArityLNTF
    +    codeArityLNNR codeArityLNTFIsPR codeArityLNTFIsCorrect1
    +    codeArityLNTFIsCorrect2 codeArityLNNRIsPR codeArityLNNRIsCorrect1
    +    codeArityLNNRIsCorrect2 T extendsNN
    +    repT v0 freeVarRepT.
    + +
    +Lemma decideAxioms :
    +  ( x : Formula, mem _ T x ¬ mem _ T x)
    +   x : Formulas,
    +    ( g : Formula, In g x mem _ T g)
    +      ( g : Formula, In g x ¬ mem _ T g).
    + +
    +Lemma searchProof :
    +  ( x : Formula, mem _ T x ¬ mem _ T x)
    +   (a b : Formula) (A : Formulas) (p : Prf LNN A a),
    +    ( B : Formulas,
    +        ( q : Prf LNN B b,
    +            codePrf _ _ q < S (codePrf _ _ p)
    +              ( x : Formula, In x B mem _ T x)))
    +      ( (B : Formulas) (q : Prf LNN B b),
    +          codePrf _ _ q < S (codePrf _ _ p)
    +           g : Formula, In g B ¬ mem _ T g).
    + +
    +
    + +
    +To prove the strong contructive result we need the decidability of T +
    +
    + +
    +Theorem Rosser'sIncompleteness :
    ( x : Formula, mem _ T x ¬ mem _ T x)
    f : Formula,
    +   ( v : nat, ¬ In v (freeVarF f))
    +   (SysPrf T f SysPrf T (notH f) Inconsistent LNN T).
    + +
    +End Rosser's_Incompleteness.
    + +
    +Definition RepresentsInSelf (T:System) :=
    +   rep:Formula, v:nat,
    +    ( x : nat, In x (freeVarF rep) x = v)
    +      ( f : Formula,
    +          mem Formula T f
    +          SysPrf T (substF rep v (natToTerm (codeFormula f))))
    +      ( f : Formula,
    +          ¬ mem Formula T f
    +          SysPrf T
    +            (notH (substF rep v (natToTerm (codeFormula f))))).
    + +
    +Definition DecidableSet (A:_)(s:Ensemble A) :=
    +  ( x : A,
    +      mem A s x
    +        ¬ mem A s x).
    + +
    +Theorem Incompleteness :
    +   T : System,
    +    Included Formula NN T
    +    RepresentsInSelf T
    +    DecidableSet Formula T
    +     f : Formula,
    +      (Sentence f)
    +        (SysPrf T f SysPrf T (notH f) Inconsistent LNN T).
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/Goedel.rosserPA.html b/theories/html/Goedel.rosserPA.html new file mode 100644 index 00000000..d8b962b5 --- /dev/null +++ b/theories/html/Goedel.rosserPA.html @@ -0,0 +1,222 @@ + + + + + +Goedel.rosserPA + + + + +
    + + + +
    + +

    Library Goedel.rosserPA

    + +
    +From Coq Require Import Ensembles.
    +From Coq Require Import List.
    +From Coq Require Import Arith Lia.
    +From hydras.Ackermann Require Import folProp.
    +From hydras.Ackermann Require Import folProof.
    +From hydras.Ackermann Require Import folReplace.
    +From hydras.Ackermann Require Import folLogic3.
    +From hydras.Ackermann Require Import subProp.
    +From hydras.Ackermann Require Import ListExt.
    +From hydras.Ackermann Require Import NNtheory.
    +From hydras.Ackermann Require Import NN2PA.
    +From Goedel Require Import fixPoint.
    +From Goedel Require Import codeSysPrf.
    +From hydras.Ackermann Require Import PAtheory.
    +From hydras.Ackermann Require Import code.
    +From Goedel Require Import PRrepresentable.
    +From hydras.Ackermann Require Import expressible.
    +From hydras.Ackermann Require Import checkPrf.
    +From hydras.Ackermann Require Import codeNatToTerm.
    +From hydras Require Import Compat815.
    +Import NNnotations.
    + +
    +Section Rosser's_Incompleteness.
    + +
    +  Definition codeFormula := codeFormula (cl:=LcodeLNT).
    + +
    +  Variable T : System.
    +  Definition T' : fol.System LNN :=
    +    Union _ NN
    +      (fun x : fol.Formula LNNmem _ T (LNN2LNT_formula x)).
    + +
    +Lemma extendsNN : Included _ NN T'.
    + +
    +Hypothesis extendsPA : Included _ PA T.
    + +
    +Variable repT : Formula.
    +Variable v0 : nat.
    +Hypothesis
    +  freeVarRepT : v : nat, In v (freeVarF repT) v = v0.
    +Hypothesis
    +  expressT1 :
    +     f : Formula,
    +    mem _ T f
    +    SysPrf T (substF repT v0 (natToTerm (codeFormula f))).
    +Hypothesis
    +  expressT2 :
    +     f : Formula,
    +    ¬ mem _ T f
    +    SysPrf T
    +      (notH (substF repT v0 (natToTerm (codeFormula f)))).
    + +
    +Lemma freeVarRepT' :
    v : nat, In v (freeVarF (LNT2LNN_formula repT)) v = v0.
    + +
    +Lemma Tprf2T'prf :
    +   f : Formula, SysPrf T f folProof.SysPrf LNN T' (LNT2LNN_formula f).
    + +
    +Lemma expressT'1 :
    f : Formula,
    mem _ T f
    folProof.SysPrf LNN T'
    +   (substF (LNT2LNN_formula repT) v0
    +      (natToTermLNN (codeFormula f))).
    + +
    +Lemma expressT'2 :
    +   f : Formula,
    +    ¬ mem _ T f
    +    folProof.SysPrf LNN T'
    +      (notH
    +         (substF (LNT2LNN_formula repT) v0
    +            (natToTermLNN (codeFormula f)))).
    + +
    +Definition codeSysPrf :=
    +  codeSysPrf LNT LcodeLNT codeArityLNTF codeArityLNTR
    +    codeArityLNTFIsPR codeArityLNTRIsPR (LNT2LNN_formula repT) v0.
    + +
    +Definition codeSysPrfCorrect1 :=
    +  codeSysPrfCorrect1 LNT LcodeLNT codeArityLNTF
    +    codeArityLNTR codeArityLNTFIsPR codeArityLNTFIsCorrect1 codeArityLNTRIsPR
    +    codeArityLNTRIsCorrect1 T' extendsNN T (LNT2LNN_formula repT) v0
    +    freeVarRepT' expressT'1.
    + +
    +Definition codeSysPrfCorrect2 :=
    +  codeSysPrfCorrect2 LNT LcodeLNT codeArityLNTF
    +    codeArityLNTR codeArityLNTFIsPR codeArityLNTFIsCorrect1 codeArityLNTRIsPR
    +    codeArityLNTRIsCorrect1 T' extendsNN T (LNT2LNN_formula repT) v0
    +    freeVarRepT' expressT'2.
    + +
    +Definition codeSysPrfCorrect3 :=
    +  codeSysPrfCorrect3 LNT LcodeLNT codeArityLNTF
    +    codeArityLNTR codeArityLNTFIsPR codeArityLNTFIsCorrect1
    +    codeArityLNTFIsCorrect2 codeArityLNTRIsPR codeArityLNTRIsCorrect1
    +    codeArityLNTRIsCorrect2 T'
    +    extendsNN.
    + +
    +Definition codePrf := codePrf (cl:=LcodeLNT).
    + +
    +Definition codeSysPrfNot :=
    +  codeSysPrfNot LNT LcodeLNT codeArityLNTF
    +    codeArityLNTR codeArityLNTFIsPR codeArityLNTRIsPR
    +    (LNT2LNN_formula repT) v0.
    + +
    +Definition freeVarCodeSysPrfN :=
    +  freeVarCodeSysPrfN LNT LcodeLNT codeArityLNTF
    +    codeArityLNTR codeArityLNTFIsPR codeArityLNTRIsPR
    +    (LNT2LNN_formula repT) v0 freeVarRepT'.
    + +
    +Definition codeSysPrfNCorrect1 :=
    +  codeSysPrfNCorrect1 LNT LcodeLNT codeArityLNTF
    +    codeArityLNTR codeArityLNTFIsPR codeArityLNTFIsCorrect1 codeArityLNTRIsPR
    +    codeArityLNTRIsCorrect1 T' extendsNN T (LNT2LNN_formula repT) v0
    +    freeVarRepT' expressT'1.
    + +
    +Definition codeSysPrfNCorrect2 :=
    +  codeSysPrfNCorrect2 LNT LcodeLNT codeArityLNTF
    +    codeArityLNTR codeArityLNTFIsPR codeArityLNTFIsCorrect1 codeArityLNTRIsPR
    +    codeArityLNTRIsCorrect1 T' extendsNN T (LNT2LNN_formula repT) v0
    +    freeVarRepT' expressT'2.
    + +
    +Definition codeSysPrfNCorrect3 :=
    +  codeSysPrfNCorrect3 LNT LcodeLNT codeArityLNTF
    +    codeArityLNTR codeArityLNTFIsPR codeArityLNTFIsCorrect1
    +    codeArityLNTFIsCorrect2 codeArityLNTRIsPR codeArityLNTRIsCorrect1
    +    codeArityLNTRIsCorrect2 T'
    +    extendsNN (LNT2LNN_formula repT) v0 freeVarRepT'.
    + +
    +Lemma decideAxioms :
    +  ( x : Formula, mem _ T x ¬ mem _ T x)
    +   x : Formulas,
    +    ( g : Formula, In g x mem _ T g)
    +      ( g : Formula, In g x ¬ mem _ T g).
    + +
    +Lemma searchProof :
    +  ( x : Formula, mem _ T x ¬ mem _ T x)
    +   (a b : Formula) (A : Formulas) (p : Prf LNT A a),
    +    ( B : Formulas,
    +        ( q : Prf LNT B b,
    +            codePrf _ _ q < S (codePrf _ _ p)
    +              ( x : Formula, In x B mem _ T x)))
    +      ( (B : Formulas) (q : Prf LNT B b),
    +          codePrf _ _ q < S (codePrf _ _ p)
    +           g : Formula, In g B ¬ mem _ T g).
    + +
    +Lemma T'prf2Tprf :
    +   f : fol.Formula LNN,
    +    folProof.SysPrf LNN T' f SysPrf T (LNN2LNT_formula f).
    + +
    + +
    +Theorem Rosser'sIncompleteness :
    +  ( x : Formula, mem _ T x ¬ mem _ T x)
    +   f : Formula,
    +    ( v : nat, ¬ In v (freeVarF f))
    +      (SysPrf T f SysPrf T (notH f) Inconsistent LNT T).
    + +
    +End Rosser's_Incompleteness.
    + +
    +From hydras.Ackermann Require Import codePA.
    +From hydras.Ackermann Require Import PAconsistent.
    + +
    +Theorem PAIncomplete :
    f : Formula,
    +   (Sentence f) ~(SysPrf PA f SysPrf PA (notH f)).
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/additions.AM.html b/theories/html/additions.AM.html new file mode 100644 index 00000000..47010312 --- /dev/null +++ b/theories/html/additions.AM.html @@ -0,0 +1,528 @@ + + + + + +additions.AM + + + + +
    + + + +
    + +

    Library additions.AM

    + +
    +
    + +
    +Abstract machine for following an Euclidean addition chain adapted from the old contrib coq-additions +
    + + Work in progress + +
    + + +
    +
    +From Coq Require Import List PArith Relations Lia.
    +Import Morphisms.
    + +
    +From additions Require Import Monoid_def Monoid_instances Strategies.
    +Import Monoid_def.
    + +
    +From Coq Require Import Recdef Wf_nat.
    +From additions Require Import More_on_positive Pow Euclidean_Chains
    +  Dichotomy BinaryStrat.
    +Generalizable All Variables.
    + +
    +
    + +
    +basic instructions +
    +
    +Inductive instr : Set :=
    +| MUL : instr
    +| SQR : instr
    +| PUSH : instr
    +| SWAP : instr.
    + +
    +Definition code := list instr.
    + +
    + +
    +Definition mults_squares c :=
    +  let fix count (c: code) mults squares :=
    +    match c with
    +      nil(mults, squares)
    +    | PUSH :: c' | SWAP :: c'count c' mults squares
    +    | SQR :: c'count c' mults (S squares)
    +    | MUL :: c'count c' (S mults) squares
    +    end in count c 0%nat 0%nat.
    + +
    + +
    +Section Semantics.
    + +
    Variable A : Type.
    Variable mul : A A A.
    Variable one : A.
    + +
    Definition stack := list A.
    Definition config := (A × list A)%type.
    + +
    Fixpoint exec (c : code) (x:A) (s: stack) : option config :=
    +   match c, s with
    +     nil, _Some (x,s)
    +   | MUL::c, y::sexec c (mul x y) s
    +   | SQR::c, sexec c (mul x x) s
    +   | PUSH::c, sexec c x (x::s)
    +   | SWAP::c, y::z::sexec c x (z::y::s)
    +   | _,_None
    +   end.
    + +
    Lemma exec_app :
    +    (c c' : code) x s ,
    +     exec (c ++ c') x s =
    +     match exec c x s with
    +     | NoneNone
    +     | Some (y,s')exec c' y s'
    +     end.
    + +
    + +
    +
    + +
    +Main well-formed chains +
    +
    +Definition F1 : code := nil.
    + +
    +
    + +
    +raises x to its cube +
    +
    + +
    +Definition F3 := PUSH::SQR::MUL::nil.
    + +
    +
    + +
    +chain for raising x to its (2 ^ q)th power +
    +
    + +
    +Fixpoint F2q_of_nat q := match q with
    +                  | 0%natnil
    +                  | S pSQR:: F2q_of_nat p
    +                  end.
    + +
    +Definition F2q (p:positive) :=
    +  F2q_of_nat (Pos.to_nat p).
    + +
    +
    + +
    +for computing x^(pq+r) passing by x^p +
    +
    + +
    +Definition KFF (kpr mq:code) : code :=
    +  kpr++(mq++MUL::nil).
    + +
    +
    + +
    +for computing x^p and x^(pq) +
    +
    + +
    +Definition FFK (mp mq: code) := mp ++ PUSH :: mq.
    + +
    +
    + +
    +for computing x^p then x^(pq + r) +
    +
    + +
    +Definition KFK (kpr mq: code) :=
    +  kpr ++ PUSH::SWAP :: (mq ++ MUL :: nil).
    + +
    +Definition FK (fn: code) := PUSH::fn.
    + +
    +End Semantics.
    + +
    +Definition chain_apply c {A:Type}
    +           {op:AAA}{one:A}{equ: Equiv A}
    +           (M: EMonoid op one equ) x
    +  := exec _ op c x nil.
    + +
    +
    + +
    +Example code for 7 via 3 +
    + + +
    +Example code for 31 via 7 +
    +
    +Example C31_7 := KFF M7_3 (F2q 2).
    + +
    + +
    + +
    +From Coq Require Import NArith.
    + +
    + +
    +
    + +
    +24, 3 +
    + + For 99 and 24 +
    +
    +Example K99_24 := KFK (FFK F3 (F2q 3)) (F2q 2).
    + +
    + +
    +
    + +
    +Specification and generation of correct chains +
    + + We have to build equivalences between configurations +
    +
    + +
    +Inductive stack_equiv {A}`{M : @EMonoid A op one equ}:
    +  list A list A Prop
    +  :=
    +  stack_equiv0 : stack_equiv nil nil
    +  | stack_equivn: x y s s', x == y stack_equiv s s'
    +                                  stack_equiv (x::s) (y:: s').
    + +
    +Definition config_equiv {A}`{M : @EMonoid A op one equ}
    +           (c c' : config A): Prop :=
    +  fst c == fst c' stack_equiv (snd c) (snd c').
    + +
    +Inductive result_equiv`{M : @EMonoid A op one equ}: relation (option (config A)):=
    +  result_equiv_fail : result_equiv None None
    +| result_equiv_success : x s y s',
    +    config_equiv (x,s) (y, s')
    +    result_equiv (Some (x,s)) (Some (y,s')).
    + +
    +Definition Fchain_correct (p: positive) (c: code) :=
    +  ( A op one equ (M: @EMonoid A op one equ) (x:A) s,
    +        result_equiv (M:=M) (exec A op c x s)
    +                     (Some (Pow.Pos_bpow x p, s))) .
    + +
    +Definition Kchain_correct n p c :=
    +   ( A op one equ (M: @EMonoid A op one equ) (x:A) s,
    +        result_equiv (exec A op c x s)
    +                     (Some (Pow.Pos_bpow x n, Pow.Pos_bpow x p ::s))).
    + +
    +Definition correctness_statement (s: signature) : code Prop :=
    +match s with
    +  | gen_F pfun cFchain_correct p c
    +  | gen_K p dfun cKchain_correct (p + d) p c
    +end.
    + +
    +#[ global ] Instance Stack_equiv_refl {A}`{M : @EMonoid A op one equ} :
    +  Reflexive stack_equiv.
    + +
    +#[ global ] Instance Stack_equiv_equiv {A}`{M : @EMonoid A op one equ}:
    +  Equivalence stack_equiv.
    + +
    +#[ global ] Instance result_equiv_equiv `{M : @EMonoid A op one equ}:
    +  Equivalence result_equiv.
    + +
    +Lemma exec_equiv `{M : @EMonoid A op one equ} :
    +   c x s y s' , config_equiv (x, s) (y, s')
    +                      result_equiv (exec A op c x s) (exec A op c y s').
    + +
    +#[ global ] Instance exec_Proper `{M : @EMonoid A op one equ} :
    +  Proper (Logic.eq ==> equiv ==> stack_equiv ==> result_equiv) (@exec A op) .
    + +
    +Lemma F1_correct : Fchain_correct 1 F1.
    + +
    +
    + +
    +F3 is correct +
    +
    + +
    +Lemma F3_correct : Fchain_correct 3 F3.
    + +
    +Import Pow.
    + +
    +Lemma F2q_correct_0: `{M : @EMonoid A op one equ} (n:nat) x s,
    +    result_equiv (exec A op (F2q_of_nat n) x s)
    +                 (Some(Pow.power x (2 ^ n), s)).
    + +
    +Lemma F2q_correct_1 (n:nat) : Fchain_correct (Pos.of_nat (2 ^ n))
    +                                              (F2q_of_nat n).
    + +
    +Remark Pos_to_nat_diff_0 n : Pos.to_nat n 0%nat.
    + +
    +Lemma F2q_correct (n:positive) : Fchain_correct (2 ^ n) (F2q n).
    + +
    +Section CompositionProofs.
    + +
    +  Section FK.
    +    Variable n : positive.
    +    Variable cn : code.
    +    Hypothesis Hn : Fchain_correct n cn.
    + +
    +    Lemma FK_correct : Kchain_correct n 1 (FK cn).
    + +
    +    End FK.
    + +
    +  Section App.
    +    Variables n p: positive.
    +    Variables cn cp: code.
    +    Hypothesis Hn : Fchain_correct n cn .
    +    Hypothesis Hp : Fchain_correct p cp.
    + +
    +    Lemma correct_app : Fchain_correct (n × p) (cn ++ cp).
    + +
    +  End App.
    + +
    +  Section FFK.
    +    Variables p q: positive.
    +    Variables cp cq: code.
    +    Hypothesis Hp : Fchain_correct p cp.
    +    Hypothesis Hq : Fchain_correct q cq.
    + +
    +    Lemma FFK_correct : Kchain_correct (p × q) p (FFK cp cq).
    + +
    +  End FFK.
    + +
    +  Section KFK.
    +    Variables p q r : positive.
    +    Variables kpr mq : code.
    +    Hypothesis Hpr : Kchain_correct p r kpr.
    +    Hypothesis Hq : Fchain_correct q mq.
    + +
    +    Lemma KFK_correct : Kchain_correct (p × q + r) p (KFK kpr mq).
    + +
    +    Lemma KFF_correct: Fchain_correct (p × q + r) (KFF kpr mq).
    + +
    +  End KFK.
    + +
    +  End CompositionProofs.
    + +
    +
    + +
    +

    Euclidean chain generation

    + +
    +
    + +
    +Definition OK (s: signature)
    +  := fun c: codecorrectness_statement s c.
    + +
    +Section Gamma.
    + +
    +Variable gamma: positive positive.
    +Context (Hgamma : Strategy gamma).
    + +
    +Function chain_gen (s:signature) {measure signature_measure}
    +  : code :=
    +  match s with
    +    gen_F i
    +    if pos_eq_dec i 1 then F1 else
    +      if pos_eq_dec i 3
    +      then F3
    +      else
    +        match exact_log2 i with
    +          Some pF2q p
    +        | _
    +          match N.pos_div_eucl i (Npos (gamma i))
    +          with
    +          | (q, 0%N)
    +            (chain_gen (gen_F (gamma i))) ++
    +                                          (chain_gen (gen_F (N2pos q)))
    +          | (q,_r)KFF (chain_gen
    +                             (gen_K (N2pos _r)
    +                                    (gamma i - N2pos _r)))
    +                          (chain_gen (gen_F (N2pos q)))
    +                          
    +          end
    +        end
    +  | gen_K p d
    +    if pos_eq_dec p 1 then FK (chain_gen (gen_F (1 + d)))
    +    else
    +      match N.pos_div_eucl (p + d) (Npos p) with
    +      | (q, 0%N)FFK (chain_gen (gen_F p))
    +                          (chain_gen (gen_F (N2pos q)))
    +      | (q, _r)KFK (chain_gen (gen_K (N2pos _r)
    +                                        (p - N2pos _r)))
    +                      (chain_gen (gen_F (N2pos q)))
    +      end
    +  end.
    + +
    +Defined.
    + +
    +Definition make_chain (n:positive) : code :=
    + (chain_gen (gen_F n)).
    + +
    +
    + +
    +Proof of correctness +
    +
    + +
    +Lemma chain_gen_OK : s:signature, OK s (chain_gen s).
    + +
    +Section All_OK.
    +  Variables (n:positive).
    +  Let c := chain_gen (gen_F n).
    + +
    +  Lemma L0: Fchain_correct n c.
    + +
    +End All_OK.
    + +
    +Definition AM_power {A : Type}
    +           `(M: @EMonoid A E_op E_one E_eq) (x:A) (n:positive) :=
    +  exec A E_op (chain_gen (gen_F n)) x nil.
    + +
    +Lemma AM_power_Ok {A : Type}
    +            `(M: @EMonoid A E_op E_one E_eq) (x:A) (n:positive):
    +    result_equiv (AM_power M x n) (Some (Pos_bpow x n, nil)).
    + +
    +End Gamma.
    + +
    +Arguments chain_gen gamma {Hgamma} _.
    + +
    + +
    + +
    + +
    +Definition F197887 := chain_gen dicho (gen_F 197887).
    + +
    + +
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/additions.Addition_Chains.html b/theories/html/additions.Addition_Chains.html new file mode 100644 index 00000000..e2a878c8 --- /dev/null +++ b/theories/html/additions.Addition_Chains.html @@ -0,0 +1,1074 @@ + + + + + +additions.Addition_Chains + + + + +
    + + + +
    + +

    Library additions.Addition_Chains

    + +
    + +
    +
    + +
    +

    Addition Chains

    + +Pierre Casteran, LaBRI, University of Bordeaux + +
    + + +
    +
    + +
    +From additions Require Export Monoid_instances Pow.
    +From Coq Require Import Relations RelationClasses Lia List.
    +From Param Require Import Param.
    + +
    +From additions Require Import More_on_positive.
    +Generalizable Variables A op one Aeq.
    +Infix "==" := Monoid_def.equiv (at level 70) : type_scope.
    +Open Scope nat_scope.
    +Open Scope M_scope.
    + +
    +Generalizable All Variables.
    + +
    +
    + +
    +

    Computations composed of multiplications over type A

    + + (in Continuation Passing Style) +
    +
    + +
    +Inductive computation {A:Type} : Type :=
    +| Return (a : A)
    +| Mult (x y : A) (k : A computation).
    + +
    +
    + +
    +

    Monadic Notation for computations

    + + +
    +
    + +
    +Notation "z '<---' x 'times' y ';' e2 " :=
    +  (Mult x y (fun ze2))
    +    (right associativity, at level 60).
    + +
    +Example comp128 : computation :=
    +  x <--- 2 times 2;
    +  y <--- x times 2;
    +  z <--- y times y ;
    +  t <--- 2 times z ;
    +  Return t.
    + +
    +
    + +
    +

    Definition

    + + +
    + +An addition chain (in short a chain) is a function that maps + any type and any value of type into a computation on . + +
    +
    + +
    +Definition chain := A:Type, A @computation A.
    + +
    +
    + +
    +The chain associated with the empty computation + (raising to the first power) +
    +
    + +
    +Definition C1 : chain := (@Return).
    + +
    +Example C3 : chain :=
    +  fun (A:Type) (x:A) ⇒
    +     x2 <--- x times x;
    +     x3 <--- x2 times x;
    +     Return x3.
    + +
    +
    + +
    +Chain associated with the 7-th power +
    +
    + +
    +Example C7 : chain :=
    fun (A:Type) (x:A) ⇒
    x2 <--- x times x;
    x3 <--- x2 times x;
    x6 <--- x3 times x3 ;
    x7 <--- x6 times x;
    Return x7.
    + +
    +
    + +
    +

    Our Favorite example

    + + +
    + + The chain below is intented to compute 87-th power in any EMonoid. + +
    +
    + +
    +Example C87 : chain :=
    fun A (x : A)=>
    +  x2 <--- x times x ;
    +  x3 <--- x2 times x ;
    +  x6 <--- x3 times x3 ;
    +  x7 <--- x6 times x ;
    +  x10 <--- x7 times x3 ;
    +  x20 <--- x10 times x10 ;
    +  x40 <--- x20 times x20 ;
    +  x80 <--- x40 times x40 ;
    +  x87 <--- x80 times x7 ;
    +  Return x87.
    + +
    +
    + +
    +

    Chain length (number of mutiplications)

    + + +
    +
    + +
    +Fixpoint computation_length {A} (a:A) (m : @computation A) : nat :=
    +match m with
    +  | Mult _ _ kS (computation_length a (k a))
    +  | _ ⇒ 0%nat
    +end.
    + +
    +Definition chain_length (c:chain) := computation_length tt (c _ tt).
    + +
    + +
    +
    + +
    +

    Execution of chains

    + + +
    + +Chains are designed for effectively computing powers. + +
    + +First, we define recursively the evaluation of a computation, then +the execution of a chain. + +
    +
    + +
    +Fixpoint computation_execute {A:Type} (op: Mult_op A)
    +         (c : computation) :=
    +  match c with
    +    | Return xx
    +    | Mult x y kcomputation_execute op (k (x × y))
    +  end.
    + +
    +Definition computation_eval `{M:@EMonoid A E_op E_one E_eq}
    +           (c : computation) : A :=
    +  computation_execute E_op c.
    + +
    +Definition chain_execute (c:chain) {A} op (a:A) :=
    +  computation_execute op (c A a).
    + +
    +Definition chain_apply
    +           (c:chain) `{M:@EMonoid A E_op E_one E_eq} a : A :=
    +   computation_eval (c A a).
    + +
    +Lemma computation_eval_rw `{M:@EMonoid A E_op E_one E_eq} c :
    +         computation_eval c = computation_execute E_op c.
    + +
    + +
    + +
    +
    + +
    +

    Chain correctness

    + + +
    + +In this section, we define formally the correctness of a given chain + with respect to some given exponent, +and more generally the correctness of a chain generator, i.e. a function that, +given any positive integer , returns a chain that is correct with respect to . + +
    + + +
    +
    + +
    +Definition chain_correct_nat (n:nat) (c: chain) := n 0
    + `(M:@EMonoid A E_op E_one E_eq) (x:A),
    +   chain_apply c x == x ^ n.
    + +
    +Definition chain_correct (p:positive) (c: chain) :=
    +  chain_correct_nat (Pos.to_nat p) c.
    + +
    +Definition optimal (p:positive) (c : chain) :=
    +   c', chain_correct p c'
    +             (chain_length c chain_length c')%nat.
    + +
    +
    + +
    +A slow tactic for proving a chain's correctness +
    +
    + +
    +Ltac slow_chain_correct_tac :=
    +  match goal with
    +      [ |- chain_correct ?p ?c ] ⇒
    +      let A := fresh "A" in
    +      let op := fresh "op" in
    +      let one := fresh "one" in
    +      let eqv := fresh "eqv" in
    +      let M := fresh "M" in
    +      let x := fresh "x"
    +      in split;[discriminate |
    +                 unfold c, chain_apply, computation_eval; simpl;
    +                 intros A op one eq M x; monoid_simpl M; reflexivity]
    +  end.
    + +
    +Example C7_ok : chain_correct 7 C7.
    + +
    +
    + +
    +The following proof takes a very long time. Happily, C87's correctness +will be proved more efficiently, using reflection or parametricity. + +
    + + Remove the comment if you can wait ... +
    +
    + +
    + +
    +
    + +
    +

    Correctness Proof by Reflection

    + + See chap 16 of Coq'Art +
    +
    + +
    +
    + +
    +Binary trees of multiplications over A +
    +
    + +
    +Inductive Monoid_Exp (A:Type) : Type :=
    Mul_node (t t' : Monoid_Exp A) | One_node | A_node (a:A).
    + +
    +Arguments Mul_node {A} _ _.
    +Arguments One_node {A} .
    +Arguments A_node {A} _ .
    + +
    +
    + +
    +Linearization functions +
    +
    + +
    +Fixpoint flatten_aux {A:Type}(t fin : Monoid_Exp A)
    +  : Monoid_Exp A :=
    +  match t with
    +    Mul_node t t'flatten_aux t (flatten_aux t' fin)
    +  | One_nodefin
    +  | xMul_node x fin
    +  end.
    + +
    +Fixpoint flatten {A:Type} (t: Monoid_Exp A)
    +  : Monoid_Exp A :=
    +  match t with
    +  | Mul_node t t'flatten_aux t (flatten t')
    +  | One_nodeOne_node
    +  | XMul_node X One_node
    +  end.
    + +
    + +
    +
    + +
    +Interpretation function +
    +
    + +
    +Function eval {A:Type} {op one eqv}
    +         (M: @EMonoid A op one eqv)
    +         (t: Monoid_Exp A) : A :=
    +  match t with
    +    Mul_node t1 t2 ⇒ (eval M t1 × eval M t2)%M
    +  | One_nodeone
    +  | A_node aa
    +end.
    + +
    +Lemma flatten_aux_valid `(M: @EMonoid A op one eqv):
    + t t', (eval M t × eval M t')%M ==
    +             (eval M (flatten_aux t t')).
    + +
    +Lemma flatten_valid `(M: @EMonoid A op one eqv):
    +   t , eval M t == eval M (flatten t).
    + +
    +Lemma flatten_valid_2 `(M: @EMonoid A op one eqv):
    + t t' , eval M (flatten t) == eval M (flatten t')
    +              eval M t == eval M t'.
    + +
    +
    + +
    +"Quote" tactic +
    +
    + +
    +Ltac model A op one v :=
    +match v with
    +| (?x × ?y)%Mlet r1 := model A op one x
    +                  with r2 :=(model A op one y)
    +                  in constr:(@Mul_node A r1 r2)
    +| oneconstr:(@One_node A)
    +| ?xconstr:(@A_node A x)
    +end.
    + +
    +Ltac monoid_eq_A A op one E_eq M :=
    +match goal with
    +| [ |- E_eq ?X ?Y ] ⇒
    +  let tX := model A op one X with
    +      tY := model A op one Y in
    +      (change (E_eq (eval M tX) (eval M tY)))
    +end.
    + +
    +Ltac reflection_correct_tac :=
    +match goal with
    +[ |- chain_correct ?n ?c ] ⇒
    split; [try discriminate |
    +         let A := fresh "A"
    +         in let op := fresh "op"
    +         in let one := fresh "one"
    +         in let E_eq := fresh "eq"
    +         in let M := fresh "M"
    +         in let x := fresh "x"
    +         in (try unfold c); unfold chain_apply;
    +           simpl; red; intros A op one E_eq M x;
    +           unfold computation_eval;simpl;
    +           monoid_eq_A A op one E_eq M;
    +           apply flatten_valid_2;try reflexivity
    +        ]
    +end.
    + +
    +Example C87_ok : chain_correct 87 C87. +
    +Example C7_ok' : chain_correct 7 C7.
    + +
    +
    + +
    +

    Correctness and parametricity

    + + +
    + +In this section, we show some tools for proving automatically the +correctness of a given chain, and try to avoid spending time +while proceeding to a lot of setoid rewritings + +
    + +First, we notice that any chain is able to compute its associated exponent: + +
    +
    + +
    +Definition the_exponent_nat (c:chain) : nat :=
    chain_apply c (M:=Natplus) 1%nat.
    + +
    +Definition the_exponent (c:chain) : positive :=
    +  chain_execute c Pos.add 1%positive.
    + +
    + +
    +
    + +
    + +
    + +Roughly, if cA is a computation on A and cB a computation on B, +cA and cB are related through (computation_R A B R) if, during their execution, +the corresponding variables of type A and B are always bound to related +(w.r.t. R ) values. + +
    + + +
    +
    + +
    + +
    +Print computation_R.
    + +
    +
    + +
    +We say that a chain c is parametric if + c A a and c B b are equivalent with respect to any relation that + contains the pair (a,b). + +
    +
    + +
    +Definition parametric (c:chain) :=
    +   A B (R: A B Type) (a:A) (b:B),
    +   R a b computation_R A B R (c A a) (c B b).
    + +
    +
    + +
    + The following statement cannot be proven in Coq (AFAIK) +
    +
    + +
    +Definition any_chain_parametric : Type :=
    c:chain, parametric c.
    + +
    +Goal any_chain_parametric.
    + +
    +
    + +
    + +
    + + Nevertheless, if we don't want to assume any_chain_parametric, + we can use the following tactic for proving a given that a given chain c + is parametric. + +
    +
    + +
    +Ltac parametric_tac :=
    match goal with [ |- parametric ?c] ⇒
    +   red ; intros;
    +  repeat (right;[assumption | assumption | ]); left; assumption
    +end.
    + +
    +Example P87 : parametric C87. +
    +
    + +
    +

    computation of compared to computation of

    + + +
    + +The following section is dedicated to prove that, if a chain is parametric, +it computes powers of the form , where is obtained by applying the +function the_exponent_nat to . + +
    + +Basically, we proceed by an induction on the hypothesis +equiv gamma_A gamma_nat l where gamma is a computation on A, +gamma_nat a computation on nat (with respect to the additive monoid on nat), +and l is a list of pairs of the form . + +
    + + +
    +
    + +
    +Section Refinement_proof.
    Variable A: Type.
    Variable E_op : Mult_op A.
    Variable E_one : A.
    Variable E_eq : Equiv A.
    Context (M : EMonoid E_op E_one E_eq).
    + +
    +
    + +
    + Let us characterise the lists of pairs of the form , for a given + and . + +
    +
    + +
    +Definition power_R (a:A) :=
    +  fun (x:A)(n:nat) ⇒ n 0 x == a ^ n.
    + +
    +Remark power_R_Mult : a x y i j,
    +    power_R a x i power_R a y j
    +    power_R a (x × y) (i+j)%nat.
    + +
    +Remark power_R_1 : a, power_R a a 1%nat.
    + +
    +Lemma power_R_is_a_refinement (a:A) :
    +  (gamma : @computation A)
    +        (gamma_nat : @computation nat),
    +    computation_R _ _ (power_R a) gamma gamma_nat
    +     power_R a (computation_eval gamma)
    +             (computation_eval (M:= Natplus) gamma_nat).
    + +
    +Lemma param_correctness_aux :
    +   (c:chain)(a:A),
    +    computation_R A nat (power_R a ) (c A a) (c nat 1%nat)
    +     power_R a (computation_eval (c A a)) (the_exponent_nat c) .
    + +
    +End Refinement_proof.
    + +
    +
    + +
    +

    Correctness Theorem

    + + +
    + +From our study of the computation\_R predicate, we infer that any parametric chain +is correct with respect to the number the_exponent_nat c + +
    + + +
    +
    + +
    +Lemma exponent_nat_neq_0 : c: chain, parametric c
    +                                             the_exponent_nat c 0.
    +Lemma exponent_pos2nat : c: chain,
    +    parametric c
    +    the_exponent_nat c = Pos.to_nat (the_exponent c).
    + +
    +Lemma exponent_pos_of_nat :
    +   c: chain, parametric c
    +                    the_exponent c = Pos.of_nat (the_exponent_nat c).
    + +
    +Lemma param_correctness_nat (c: chain) :
    +  parametric c
    +  chain_correct_nat (the_exponent_nat c) c.
    + +
    +Lemma param_correctness :
    +   (p:positive) (c:chain),
    +    p = the_exponent c parametric c
    +    chain_correct p c.
    + +
    +
    + +
    +

    Remark

    + + +
    + +If we admit that any chain is parametric, we infer the correctness of every chain. + +
    + + + +
    +
    + +
    +Lemma param_correctness_for_free :
    +  any_chain_parametric
    +       p (c : chain) ,
    +p = the_exponent c chain_correct p c.
    + +
    +
    + +
    +

    Back to 87

    + + +
    + +We present two new-proofs of consistency of C87. +The first one uses the parametric_tac tactic, the other one +using the "free refinement" method + +
    + + +
    +
    + +
    +Ltac param_chain_correct :=
    +  match goal with
    +    [|- chain_correct ?p ?c ] ⇒
    +    let H := fresh "H" in
    +    assert (p = the_exponent c) by reflexivity;
    +    apply param_correctness;[trivial | parametric_tac]
    +  end.
    + +
    +Lemma C87_ok' : chain_correct 87 C87. +
    +Lemma L87'' : any_chain_parametric chain_correct 87 C87.
    + +
    +
    + +
    +

    Correct by construction chains

    + +
    +
    + +
    +Definition chain_generator := positive chain.
    + +
    +Definition correct_generator (gen : positive chain) :=
    p, chain_correct p (gen p).
    + +
    +
    + +
    +Computing using a chain generator +
    +
    + +
    +Definition cpower_pos (g : chain_generator) p
    +           `{M:@EMonoid A E_op E_one E_eq} a :=
    +  chain_apply (g p) (M:=M) a.
    + +
    +Definition cpower (g : chain_generator) n
    +           `{M:@EMonoid A E_op E_one E_eq} a :=
    +  match n with 0%NE_one
    +             | Npos pcpower_pos g p a
    +  end.
    + +
    +
    + +
    +

    Definition

    + +A chain generator is optimal if it returns chains whose length are less or +equal than the chains returned by any correct generator. + +
    +
    + +
    +Definition optimal_generator (g : positive chain ) :=
    p:positive, optimal p (g p).
    + +
    +
    + +
    +

    Some chain generators

    + + +
    + +We reinterpret the naïve and binary exponentiation algorithms in the framework +of addition chains. + +
    + +Instead of directly computing for some base and exponent , +we build chains that describe the computations associated with both methods. +Not surprisingly, this chain generation will be described in terms of recursive +functions, once the underlying monoid is fixed. + +
    + +

    Chains associated to the well-known binary exponentiation algorithm

    + +
    + +

    computation of

    + + +
    + +As for the "classical" binary exponentiation algorithm, +we define an auxiliary computation generator for computing the +product of an accumulator with an arbitrary power of some value + +
    + + +
    +
    + +
    +Fixpoint axp_scheme {A} p : A A @computation A :=
    +  match p with
    +  | xH ⇒ (fun a xy <--- a times x ; Return y)
    +  | xO q ⇒ (fun a xx2 <--- x times x ; axp_scheme q a x2)
    +  | xI q ⇒ (fun a xax <--- a times x ;
    +            x2 <--- x times x ;
    +            axp_scheme q ax x2)
    +  end.
    + +
    +Fixpoint bin_pow_scheme {A} (p:positive) : A @computation A:=
    +  match p with | xHfun xReturn x
    +             | xI qfun xx2 <--- x times x; axp_scheme q x x2
    +             | xO qfun xx2 <--- x times x ; bin_pow_scheme q x2
    +  end.
    + +
    +Definition binary_chain (p:positive) : chain :=
    +  fun Abin_pow_scheme p.
    + +
    + +
    +
    + +
    +

    Correctness of the binary method

    + +
    +
    + +
    +Section binary_power_proof.
    + +
    +Variables (A: Type)
    +         (E_op : Mult_op A)
    +         (E_one : A)
    +         (E_eq: Equiv A).
    + +
    +Context (M : EMonoid E_op E_one E_eq).
    + +
    +Existing Instance Eop_proper.
    + +
    +
    + +
    + +
    + + As for linear chains, we first establish the correctness of the auxiliary + function axp_scheme. + +
    +
    + +
    +Lemma axp_correct : p a x,
    +    computation_eval (axp_scheme p a x) ==
    +    a × x ^ (Pos.to_nat p).
    + +
    +Lemma binary_correct :
    +   p x,
    +    computation_eval (bin_pow_scheme p (A:=A) x) ==
    +    x ^ (Pos.to_nat p).
    + +
    +End binary_power_proof.
    + +
    +Lemma binary_generator_correct : correct_generator binary_chain.
    + +
    +
    + +
    +

    The binary method is not optimal

    + + +
    + + We use the function chain_length and proofs of correctness + for showing that binary_chain, although correct, is not an optimal + chain generator. + +
    + + Our proof is structured as a proof by contradiction, under the + hypothesis that binary_chain is optimal. + +
    +
    + +
    +Section non_optimality_proof.
    + +
    Hypothesis binary_opt : optimal_generator binary_chain.
    + +
    + +
    + +
    Lemma binary_generator_not_optimal : False. +
    +End non_optimality_proof.
    + +
    +Open Scope nat_scope.
    +Open Scope M_scope.
    + +
    +Section S1.
    Fixpoint clog2 (p:positive) : nat :=
    match p with xH ⇒ 1%nat
    +            | xO xH ⇒ 2%nat
    +            | xO pS (clog2 p)
    +            | xI pS (clog2 p)
    +  end.
    + +
    +Fixpoint exp2 (n:nat) : positive :=
    +  match n with O ⇒ 1
    +             | S p ⇒ 2 × exp2 p
    end.
    Lemma exp2_Plus : n p, exp2 (n + p) = (exp2 n × exp2 p)%positive.
    + +
    +Lemma axp_scheme_length1 :
    +   p, (computation_length tt (axp_scheme p tt tt ) 2 × clog2 p)%nat.
    + +
    +Lemma bin_pow_scheme_length1 :
    +   p, (computation_length tt (bin_pow_scheme p tt ) 2 × clog2 p)%nat.
    + +
    +Lemma binary_chain_length : p,
    +                              (chain_length (binary_chain p) 2 × clog2 p)%nat.
    + +
    +Lemma optimal_upper_bound: p c, optimal p c
    +   (chain_length c 2 × clog2 p)%nat.
    + +
    +End S1.
    + +
    +
    + +
    +

    How to prove chain correctness in general ?

    + + +
    + + In previous sections, we showed proofs of correctness of two chain generators. + By definition, every chain returned by these generators is correct w.r.t. + the given exponent. + +
    + + The problem with C87 is quite different. This chain + has been given by hand, and we had to prove its correctness. + +
    + + Although the proof script for lemma L87 is quite short, the resulting + proof is quite clumsy, consisting in a long chain of equivalences using + associativity of the multiplication. + +
    + + The reader can easily be convinced of this fact, just by the command +Print L87. + +
    + +In a similar way, it may happen that a correct chain generator is hard +to certify in . In this case, one may chose to prove the +correctness of various chains returned by the generator. + +
    + +In the rest of this section, we investigate some ways of proving +the correctness of given chains. + +
    + + +
    +
    + +
    +Section S2.
    +
    + +
    +Difficult and unfinished (conjecture) + +
    + + We would like to prove that for any parametric chain c for p, +c's length is greater or equal than log2(p). + +
    + + +
    +
    + +
    +Variables A B : Type.
    +Variables (a:A)(b:B).
    +Let R_true := fun (x:A)(y:B) ⇒ True.
    +Lemma L :
    +  (gammaA : @computation A)
    +        (gammaB : @computation B),
    +    computation_R _ _ R_true gammaA gammaB
    +     @computation_length A a gammaA = @computation_length B b gammaB.
    + +
    +Lemma L2 : c : chain, parametric c
    +    computation_length a (c A a) = computation_length b (c B b).
    + +
    +End S2.
    + +
    +Extraction Language Scheme.
    +Recursive Extraction chain_apply.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/additions.BinaryStrat.html b/theories/html/additions.BinaryStrat.html new file mode 100644 index 00000000..96137d96 --- /dev/null +++ b/theories/html/additions.BinaryStrat.html @@ -0,0 +1,69 @@ + + + + + +additions.BinaryStrat + + + + +
    + + + +
    + +

    Library additions.BinaryStrat

    + +
    +
    + +
    + +
    + + Binary strategy, according to Bergeron, Brlek et al. + +
    + + Let be a positive number. We associate to the half of . + +
    +
    + +
    +From Coq Require Import Arith NArith Lia.
    +From additions Require Import Pow Compatibility More_on_positive.
    +From additions Require Export Strategies.
    + +
    +Open Scope positive_scope.
    + +
    +Definition half (p:positive) :=
    +  match p with xHxH
    +          | xI q | xO qq
    +  end.
    + +
    +Definition two (p:positive) := 2%positive.
    + +
    +#[ global ] Instance Binary_strat : Strategy half.
    + +
    +#[ global ] Instance Two_strat : Strategy two.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/additions.Compatibility.html b/theories/html/additions.Compatibility.html new file mode 100644 index 00000000..6eb50f03 --- /dev/null +++ b/theories/html/additions.Compatibility.html @@ -0,0 +1,295 @@ + + + + + +additions.Compatibility + + + + +
    + + + +
    + +

    Library additions.Compatibility

    + +
    + +
    +
    + +
    +

    Compatibility with StdLib exponentiation functions

    + + +
    + +Function for computing powers already exist in 's standard library. We provide +equivalence theorems with functions defined in our module Pow. + +
    + + +
    +
    + +
    +From additions Require Import Monoid_def Monoid_instances
    +       Pow.
    +From Coq Require Import Lia ArithRing.
    + +
    +
    + +
    +

    really logarithmic versions of N.pow, Pos.pow and Z.pow

    + + +
    + +We propose three functions that are extensionnaly equivalent to functions +of the standard library. +These functions are defined in the module; we just rename them for readability's sake. + +
    + + +
    +
    + +
    +Definition N_pow (a n: N) :=Pow.N_bpow a n.
    + +
    +Definition Pos_pow (a n : positive) := Pow.Pos_bpow a n.
    + +
    +Definition Z_pow (x y : Z) :=
    match y with
    +| 0%Z ⇒ 1%Z
    +| Z.pos pPow.N_bpow x (Npos p)
    +| Z.neg _ ⇒ 0%Z
    +end.
    + +
    +
    + +
    +

    Equivalence between StdLib definitions and ours

    + +
    +
    + +
    +Section Equivalence.
    +Variable (A: Type)
    +         (op : Mult_op A)
    +         (one : A).
    + +
    +Context (M : Monoid op one).
    +Open Scope M_scope.
    + +
    +Check fun x y:Ax × y.
    + +
    +Ltac monoid_rw :=
    +    rewrite (@one_left A op one M) ||
    +    rewrite (@one_right A op one M)||
    +    rewrite (@op_assoc A op one M).
    + +
    +  Ltac monoid_simpl := repeat monoid_rw.
    + +
    Ltac power_simpl := repeat (monoid_rw || rewrite <- power_of_plus).
    + +
    Let pos_iter_M x := Pos.iter (op x).
    + +
    +
    + +
    + +
    + + During an execution of the binary exponentiation algorithm + through the function binary_power_mult, + the "accumulator" acc is always a power of . Thus, even if the + considered monoid is not abelian, the accumulator commutes with any + other power of . + +
    + + +
    +
    Let is_power_of (x acc:A) := i, acc = x ^ i.
    + +
    +Lemma Pos_iter_op_ok_0 :
    +   p x acc, is_power_of x acc
    +                  pos_iter_M x acc p = binary_power_mult x acc p .
    + +
    +Lemma Pos_iter_op_ok:
    +   p x,
    +    pos_iter_M x one p = binary_power_mult x one p .
    + +
    +Lemma Pos_iter_ok: p x, N_bpow x (Npos p) = pos_iter_M x one p.
    + +
    +End Equivalence.
    + +
    +Lemma Pos_pow_power : n a : positive ,
    +                        (a ^ n )%positive = power a (Pos.to_nat n).
    + +
    +Lemma Npos_power_compat : (n:nat)(a:positive),
    +                            Npos (power a n) = power (Npos a) n.
    + +
    +Lemma N_pow_power : n a , (a ^ n )%N = power a (N.to_nat n).
    + +
    +Lemma N_pow_compat : n (a:N), (a ^ n )%N = N_pow a n.
    + +
    +Lemma Pos_pow_compat : n (a:positive), (a ^ n )%positive = Pos_pow a n.
    + +
    +Lemma nat_power_ok : a b:nat, (a ^ b)%nat = (a ^ b)%M.
    + +
    +  Lemma Pos2Nat_morph : (n:nat)(a : positive),
    +     Pos.to_nat (a ^ n)%M = Pos.to_nat a ^ n.
    + +
    +Lemma Z_pow_compat_pos : (p:positive) (x:Z),
    +        Z.pow_pos x p = N_bpow x (Npos p).
    + +
    +Lemma Z_pow_compat : x y: Z, Z_pow x y = (x ^ y)%Z.
    + +
    +
    + +
    +

    Tests

    + + +
    + +Let us chose a big exponent, and a computation that does not create +big numbers. So, the following computation time will be proportional to + the number of recursive calls, hence to the number of multiplications + +
    + + +
    + + Time consuming ! +
    +Time Compute (1 ^ 56666667)%Z. +
    + +
    +
    +
    +
    + +
    + +
    + +
    +Finished transaction in 3.604 secs (3.587u,0.007s) +
    + +
    +
    +
    + +
    +
    + +
    + +
    + +
    +Finished transaction in 0. secs (0.u,0.s) (successful) +
    + +
    +
    + +

    Adapting lemmas from Standard Library

    + + +
    + +Standard library already contains many lemmas about +N.pow, Pos.pow and Z.pow. By using our extensional equivalence properties, one can + easily prove the same properties for our implementation of the same functions. + +
    + +We just give a simple example of this adaptation. + +
    + + +
    +
    +Section Adaptation.
    + +
    +Lemma N_size_gt : n : N, (n < N_pow 2 (N.size n))%N.
    + +
    +End Adaptation.
    + +
    +
    + +
    +Comments on Stdlib's exponentiation +
    +
    + +
    +Print Z.pow.
    + +
    +Print Z.pow_pos.
    + +
    + +
    +Eval simpl in fun (x:nat) ⇒ Pos.iter S x 12%positive.
    + +
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/additions.Demo.html b/theories/html/additions.Demo.html new file mode 100644 index 00000000..6f174284 --- /dev/null +++ b/theories/html/additions.Demo.html @@ -0,0 +1,47 @@ + + + + + +additions.Demo + + + + +
    + + + +
    + +

    Library additions.Demo

    + +
    +Module Alt.
    + +
    +  Definition double (n:nat) := 2 × n.
    + +
    +End Alt.
    + +
    +From Coq Require Import Arith Lia Even.
    + +
    +Lemma alt_double_ok n : Nat.double n = Alt.double n.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/additions.Demo_power.html b/theories/html/additions.Demo_power.html new file mode 100644 index 00000000..8e45eae2 --- /dev/null +++ b/theories/html/additions.Demo_power.html @@ -0,0 +1,47 @@ + + + + + +additions.Demo_power + + + + +
    + + + +
    + +

    Library additions.Demo_power

    + +
    +From additions Require Import Monoid_def Monoid_instances Pow.
    +Open Scope M_scope.
    + +
    + +
    +Import Uint63.
    +Search (Z int).
    +Coercion of_Z : Z >-> int.
    + +
    + +
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/additions.Dichotomy.html b/theories/html/additions.Dichotomy.html new file mode 100644 index 00000000..2eebf686 --- /dev/null +++ b/theories/html/additions.Dichotomy.html @@ -0,0 +1,154 @@ + + + + + +additions.Dichotomy + + + + +
    + + + +
    + +

    Library additions.Dichotomy

    + +
    +
    + +
    + +
    + + Dichotomic strategy, according to Bergeron, Brlek et al. + +
    + + Let be a positive number. We associate to the integer + . + For instance, if , the result is 10. + +
    + + +
    +
    + +
    +From Coq Require Import Arith NArith.
    +From additions Require Export Strategies Pow Compatibility
    +  More_on_positive.
    + +
    +Open Scope positive_scope.
    + +
    +
    + +
    +Computes +
    +
    + +
    +Function dicho_aux (p:positive) {struct p} : positive :=
    match p with
    +   | 1%positivexH
    +   | 2%positive | 3%positive ⇒ 2
    +   | xO (xO q) | xO (xI q) | xI (xO q) | xI (xI q) ⇒
    +                                         xO (dicho_aux q)
    end.
    + +
    +Definition dicho (p:positive) : positive :=
    +  N2pos (N.div (Npos p) (Npos (dicho_aux p))).
    + +
    + +
    + +
    + +
    + +
    +
    + +
    +rewriting lemmas +
    +
    + +
    +Lemma dicho_aux_xOxO : p: positive,
    +                          dicho_aux (xO (xO p)) = xO (dicho_aux p).
    + +
    +Lemma dicho_aux_xOxI : p: positive,
    +                          dicho_aux (xO (xI p)) = xO (dicho_aux p).
    + +
    +Lemma dicho_aux_xIxO : p: positive,
    +                          dicho_aux (xI (xO p)) = xO (dicho_aux p).
    + +
    +Lemma dicho_aux_xIxI : p: positive,
    +                          dicho_aux (xI (xI p)) = xO (dicho_aux p).
    + +
    +Lemma dicho_aux_le_xOXO :
    +   p:positive , xO (dicho_aux p) p
    +                       xO (dicho_aux (p~0~0)) p~0~0.
    + +
    +Lemma dicho_aux_le_xOXI :
    +   p:positive , xO (dicho_aux p) p
    +                      xO (dicho_aux (p~0~1)) p~0~1.
    + +
    +Lemma dicho_aux_le_xIXO :
    +   p:positive , xO (dicho_aux p) p
    +                      xO (dicho_aux (p~1~0)) p~1~0.
    + +
    +Lemma dicho_aux_le_xIXI :
    +   p:positive , xO (dicho_aux p) p
    +                      xO (dicho_aux (p~1~1)) p~1~1.
    + +
    +#[global] Hint Resolve dicho_aux_le_xOXO dicho_aux_le_xOXI
    +             dicho_aux_le_xIXO dicho_aux_le_xIXI : chains.
    + +
    +Lemma dicho_aux_lt : p, 3 < p
    +                               xO (dicho_aux p) p.
    + +
    +Lemma dicho_aux_gt : p, 3 < p 1 < dicho_aux p.
    + +
    +Lemma dicho_lt : p:positive, 3 < p dicho p < p.
    + +
    +Lemma dicho_gt : p:positive, 3 < p 1 < dicho p.
    + +
    +#[ global ] Instance Dicho_strat : Strategy dicho.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/additions.Euclidean_Chains.html b/theories/html/additions.Euclidean_Chains.html new file mode 100644 index 00000000..b6abcf62 --- /dev/null +++ b/theories/html/additions.Euclidean_Chains.html @@ -0,0 +1,1248 @@ + + + + + +additions.Euclidean_Chains + + + + +
    + + + +
    + +

    Library additions.Euclidean_Chains

    + +
    +
    + +
    +

    Euclidean chains

    + +
    + +

    Introduction

    + + +
    + + In this module, we study a way to build efficiently efficient chains. + Our approach is recursive (compositional?). Chains associated with big exponents are built by composition of smaller chains. Thus, the construction of a +small computation may be parameterized by the context in which it will be + used. In other terms, we shall use Continuation Passing Style + +
    + + Euclidean chains are introduced by +
    +
    + +
    +From Coq Require Import Inverse_Image Inclusion Wf_nat
    +  NArith Arith PArith Recdef Wf_nat Lexicographic_Product Lia.
    +From additions Require Import Addition_Chains Compatibility
    +  More_on_positive Wf_transparent Dichotomy BinaryStrat.
    +From Coq Require Import Lia.
    + +
    +Generalizable All Variables.
    +Import Morphisms.
    +Import Monoid_def.
    + +
    +Ltac add_op_proper M H :=
    let h := fresh H in
    +   generalize (@Eop_proper _ _ _ _ M); intro h.
    + +
    +
    + +
    +

    CPS chain construction

    + + +
    + + Type of chain continuations +
    +
    + +
    +Definition Fkont (A:Type) := A @computation A.
    + +
    +Definition Fchain := A, Fkont A A @computation A.
    + +
    +
    + +
    +F3 k x computes , then executes the computation associated + with k z +
    +
    + +
    +Definition F3 : Fchain :=
    fun A k (x:A) ⇒
    +  y <--- x times x ;
    +  z <--- y times x ;
    +  k z.
    + +
    +Definition F1 : Fchain :=
    fun A k (x:A) ⇒ k x.
    + +
    +Definition F2 : Fchain :=
    +fun A k (x:A) ⇒
    +  y <--- x times x ;
    +  k y.
    + +
    +
    + +
    +An Fchain f can be considered as a function that takes as + argument another chain c for continueing the computation. + +
    +
    + +
    +Definition Fapply (f : Fchain) (c: chain) : chain :=
    fun (A:Type) (x: A) ⇒ f A (c A) x.
    + +
    +Definition Fcompose (f1 f2: Fchain) : Fchain :=
    fun A k xf1 A (fun yf2 A k y) x.
    + +
    +
    + +
    +Any Fchain can be transformed into a plain chain +
    +
    + +
    +Definition F2C (f : Fchain) : chain :=
    fun (A:Type) ⇒ f A Return .
    + +
    + +
    +
    + +
    +Composition of Fchains + +
    + +Fchains are used for building correct exponentiation schemes by composition +of correct components. So, we have to define composition of Fchains. + +
    + + +
    +
    + +
    +Example F9 := Fcompose F3 F3.
    + +
    + +
    +
    + +
    +Fchains associated with powers of 2 +
    + + computes then send this value to +
    + + The neutral element for Fcompose +
    +
    + +
    +Lemma F1_neutral_l : f, Fcompose F1 f = f.
    + +
    +Lemma F1_neutral_r : f, Fcompose f F1 = f.
    + +
    +Fixpoint Fexp2_of_nat (n:nat) : Fchain :=
    match n with OF1
    +            | S pFcompose F2 (Fexp2_of_nat p)
    end.
    + +
    +Definition Fexp2 (p:positive) : Fchain :=
    +  Fexp2_of_nat (Pos.to_nat p).
    + +
    + +
    + +
    + +
    +Remark F9_correct :chain_correct 9 (F2C F9).
    + +
    + +
    +
    + +
    +A first attempt to define Fchain correctness +
    +
    + +
    +Module Bad.
    + +
    +Definition Fchain_correct (n:nat) (fc : Fchain) :=
    +   A `(M : @EMonoid A op E_one E_equiv) k (a:A),
    +    computation_execute op (fc A k a)==
    +    computation_execute op (k (a ^ n)).
    + +
    +Theorem F3_correct : Fchain_correct 3 F3. End Bad.
    + +
    + +
    +
    + +
    +Equivalence on computations +
    +
    + +
    +Definition computation_equiv {A:Type} (op: Mult_op A)
    +           (equiv : Equiv A)
    +           (c c': @computation A) :=
    +   computation_execute op c == computation_execute op c'.
    + +
    +#[ global ] Instance Comp_equiv {A:Type} (op: Mult_op A) (equiv : Equiv A):
    +  Equiv (@computation A) :=
    +  @computation_equiv A op equiv.
    + +
    +#[ global ] Instance comp_equiv_equivalence {A:Type} (op: Mult_op A)
    +           (equiv : Equiv A) : Equivalence equiv
    +                               Equivalence (computation_equiv op equiv).
    + +
    +
    + +
    +Fkonts that respect E_equiv +
    +
    + +
    +Class Fkont_proper
    +      `(M : @EMonoid A op E_one E_equiv) (k: Fkont A ) :=
    +  Fkont_proper_prf:
    +    Proper (equiv ==> computation_equiv op E_equiv) k.
    + +
    +#[ global ] Instance Return_proper `(M : @EMonoid A op E_one E_equiv) :
    +  Fkont_proper M (@Return A).
    + +
    +
    + +
    +Fchain correctness (for exponent of type nat +
    +
    + +
    +Definition Fchain_correct_nat (n:nat) (f : Fchain) :=
    A `(M : @EMonoid A op E_one E_equiv) k
    +        (Hk :Fkont_proper M k)
    +        (a : A) ,
    computation_execute op (f A k a) ==
    computation_execute op (k (a ^ n)).
    + +
    +Definition Fchain_correct (p:positive) (f : Fchain) :=
    Fchain_correct_nat (Pos.to_nat p) f.
    + +
    +Lemma F1_correct : Fchain_correct 1 F1.
    + +
    +Lemma F3_correct : Fchain_correct 3 F3. +
    +Lemma F2_correct : Fchain_correct 2 F2.
    + +
    +
    + +
    +F2C preserves correctness +
    +
    + +
    +Lemma F2C_correct (p:positive) (fc : Fchain) :
    +  Fchain_correct p fc chain_correct p (F2C fc).
    + +
    +Module Bad2.
    + +
    +Lemma Fcompose_correct :
    +   f1 f2 n1 n2,
    +    Fchain_correct n1 f1
    +    Fchain_correct n2 f2
    +    Fchain_correct (n1 × n2) (Fcompose f1 f2).
    + +
    +End Bad2.
    + +
    +
    + +
    +Fisrt attempt to define Fchain_proper +
    +
    + +
    +Module Bad3.
    + +
    +Class Fchain_proper (fc : Fchain) := Fchain_proper_bad_prf :
    `(M : @EMonoid A op E_one E_equiv) k ,
    +    Fkont_proper M k
    +     x y, x == y
    +               @computation_equiv _ op E_equiv
    +                                  (fc A k x)
    +                                  (fc A k y).
    + +
    + +
    +#[ global ] Instance Fcompose_proper (f1 f2 : Fchain)
    +         (_ : Fchain_proper f1)
    +         (_ : Fchain_proper f2) :
    +  Fchain_proper (Fcompose f1 f2).
    + +
    +End Bad3.
    + +
    +
    + +
    +Correct definition +
    +
    + +
    +Definition Fkont_equiv `(M : @EMonoid A op E_one E_equiv)
    + (k k': Fkont A ) :=
    x y : A, x == y
    +                 computation_equiv op E_equiv (k x) (k' y).
    + +
    +Class Fchain_proper (fc : Fchain) := Fchain_proper_prf :
    `(M : @EMonoid A op E_one E_equiv) k k' ,
    +    Fkont_proper M k Fkont_proper M k'
    +    Fkont_equiv M k k'
    +    x y, x == y
    +               @computation_equiv _ op E_equiv
    +                                  (fc A k x)
    +                                  (fc A k' y).
    + +
    +#[ global ] Instance F1_proper : Fchain_proper F1.
    + +
    +#[ global ] Instance F3_proper : Fchain_proper F3.
    + +
    +#[ global ] Instance F2_proper : Fchain_proper F2.
    + +
    +
    + +
    + Fcompose respects correctness and properness +
    +
    + +
    +Lemma Fcompose_correct_nat : fc1 fc2 n1 n2,
    +                           Fchain_correct_nat n1 fc1
    +                           Fchain_correct_nat n2 fc2
    +                           Fchain_proper fc2
    +                           Fchain_correct_nat (n1 × n2)%nat
    +                                              (Fcompose fc1 fc2).
    + +
    +Lemma Fcompose_correct :
    +   fc1 fc2 n1 n2,
    +    Fchain_correct n1 fc1
    +    Fchain_correct n2 fc2
    +    Fchain_proper fc2
    +    Fchain_correct (n1 × n2) (Fcompose fc1 fc2).
    + +
    +#[ global ] Instance Fcompose_proper (fc1 fc2: Fchain)
    +                         (_ : Fchain_proper fc1)
    +                         (_ : Fchain_proper fc2) :
    +  Fchain_proper (Fcompose fc1 fc2).
    + +
    +#[ global ] Instance Fexp2_nat_proper (n:nat) :
    +                           Fchain_proper (Fexp2_of_nat n).
    + +
    +Lemma Fexp2_nat_correct (n:nat) :
    +                           Fchain_correct_nat (2 ^ n)
    +                                              (Fexp2_of_nat n).
    + +
    +Lemma Fexp2_correct (p:positive) :
    +  Fchain_correct (2 ^ p) (Fexp2 p).
    + +
    +#[ global ] Instance Fexp2_proper (p:positive) : Fchain_proper (Fexp2 p).
    + +
    +
    + +
    +

    Remark

    + + +
    + +We are now able to build chains for any exponent of the form +, using Fcompose and previous lemmas. + +
    + +Let us look at a simple example +
    +
    + +
    +#[global] Hint Resolve F1_correct F1_proper
    +     F3_correct F3_proper Fcompose_correct Fcompose_proper
    +     Fexp2_correct Fexp2_proper : chains.
    + +
    +Example F144: {f : Fchain | Fchain_correct 144 f
    +                             Fchain_proper f}. +
    + +
    + +
    +
    + +
    +Bad solution +
    +
    + +
    +Module Bad4.
    + +
    +Definition Fplus (f1 f2 : Fchain) : Fchain :=
    +  fun A k xf1 A
    +                  (fun y
    +                     f2 A
    +                        (fun zt <--- z times y; k t) x) x.
    + +
    +Example F23 := Fplus F3 (Fplus (Fexp2 4) (Fexp2 2)).
    + +
    +Lemma F23_ok : chain_correct 23 (F2C F23).
    + +
    + +
    + +
    +End Bad4.
    + +
    +
    + +
    +Continuations with two arguments +
    +
    + +
    +Definition Kkont A:= A A @computation A.
    + +
    +
    + +
    +CPS chain builders for two exponents +
    +
    + +
    +Definition Kchain := A, Kkont A A @computation A.
    + +
    + +
    +
    + +
    +Kchain for and +
    +
    + +
    +Example k3_1 : Kchain := fun A (k:Kkont A) (x:A) ⇒
    +  x2 <--- x times x ;
    +  x3 <--- x2 times x ;
    +  k x3 x.
    + +
    + +
    +
    + +
    +Kchain for and +
    +
    + +
    +Example k7_3 : Kchain := fun A (k:Kkont A) (x:A) ⇒
    +  x2 <--- x times x;
    +  x3 <--- x2 times x ;
    +  x6 <--- x3 times x3 ;
    +  x7 <--- x6 times x ;
    +  k x7 x3.
    + +
    +
    + +
    +The Definition of correct chains and proper chains and + continuations are adapted to Kchains +
    +
    + +
    +Definition Kkont_proper `(M : @EMonoid A op E_one E_equiv)
    +           (k : Kkont A) :=
    Proper (equiv ==> equiv ==> computation_equiv op E_equiv) k .
    + +
    +Definition Kkont_equiv `(M : @EMonoid A op E_one E_equiv)
    +           (k k': Kkont A ) :=
    x y : A, x == y z t, z == t
    +         computation_equiv op E_equiv (k x z) (k' y t).
    + +
    +
    + +
    +A Kchain is correct with respect to two exponents and + if it computes and for every +
    +
    + +
    +About EMonoid.
    + +
    +Definition Kchain_correct_nat (n p : nat) (kc : Kchain) :=
    +   (A : Type) (op : Mult_op A) (E_one : A) (E_equiv : Equiv A)
    +          (M : EMonoid op E_one E_equiv)
    +          (k : Kkont A),
    +    Kkont_proper M k
    +     (a : A) ,
    +      computation_execute op (kc A k a) ==
    +      computation_execute op (k (a ^ n) (a ^ p)).
    + +
    +Definition Kchain_correct (n p : positive) (kc : Kchain) :=
    +  Kchain_correct_nat (Pos.to_nat n) (Pos.to_nat p) kc.
    + +
    +Class Kchain_proper (kc : Kchain) :=
    +Kchain_proper_prf :
    `(M : @EMonoid A op E_one E_equiv) k k' x y ,
    +   Kkont_proper M k
    +   Kkont_proper M k'
    +   Kkont_equiv M k k'
    +   E_equiv x y
    +   computation_equiv op E_equiv (kc A k x) (kc A k' y).
    + +
    +#[ global ] Instance k7_3_proper : Kchain_proper k7_3.
    + +
    +Lemma k7_3_correct : Kchain_correct 7 3 k7_3.
    + +
    +
    + +
    +conversion between several definitions of correctness +
    +
    + +
    +Lemma Kchain_correct_conv (kc : Kchain) (n p : nat) :
    +  0%nat n 0%nat p
    +  Kchain_correct_nat n p kc
    +  Kchain_correct (Pos.of_nat n) (Pos.of_nat p) kc.
    + +
    +
    + +
    +

    More chain combinators

    + + +
    + + Since we are working with two types of functional chains, we have to define + several ways of composing them. Each of these operators is certified to + preserve correctnes and properness +
    + + Conversion of Kchains into Fchains +
    +
    + +
    +Definition K2F (knp : Kchain) : Fchain :=
    +  fun A (k:Fkont A) ⇒ knp A (fun y _k y).
    + +
    +Lemma K2F_correct_nat :
    +   knp n p, Kchain_correct_nat n p knp
    +                 Fchain_correct_nat n (K2F knp).
    + +
    +Lemma K2F_correct :
    +   kc n p, Kchain_correct n p kc
    +                 Fchain_correct n (K2F kc).
    + +
    +#[ global ] Instance K2F_proper (kc : Kchain)(_ : Kchain_proper kc) :
    +  Fchain_proper (K2F kc).
    + +
    +
    + +
    + +
    + + Using kbr for computing and , then using Cq for + computing , then sending and to the continuation + +
    +
    + +
    +Definition KFK (kbr : Kchain) (fq : Fchain) : Kchain :=
    +  fun A k a
    +    kbr A (fun xb xr
    +              fq A (fun y
    +                      z <--- y times xr; k z xb) xb) a.
    + +
    +Definition KFF (kbr : Kchain) (fq : Fchain) : Fchain :=
    +  K2F (KFK kbr fq).
    + +
    +Definition FFK (fp fq : Fchain) : Kchain :=
    +  fun A k afp A (fun xbfq A (fun yk y xb) xb) a.
    + +
    +Definition FK (f : Fchain) : Kchain :=
    +  fun (A : Type) (k : Kkont A) (a : A) ⇒
    +    f A (fun yk y a) a.
    + +
    +Example k17_7 := KFK k7_3 (Fexp2 1).
    + +
    +
    + +
    +In the following section, we prove that the constructions KFK and KFF + respect properness and correctness +
    +
    + +
    +Section KFK_proof.
    Variables b q r: nat.
    Variable kbr : Kchain.
    Variable fq : Fchain.
    Hypothesis Hbr : Kchain_correct_nat b r kbr.
    Hypothesis Hq : Fchain_correct_nat q fq.
    Hypothesis Hbr_prop : Kchain_proper kbr.
    Hypothesis Hq_prop : Fchain_proper fq.
    + +
    Lemma KFK_correct_nat : Kchain_correct_nat (b × q + r)%nat b (KFK kbr fq).
    +
    + +
    +simplifying the hypotheses +
    +
    + +
    Lemma KFF_correct_nat : Fchain_correct_nat (b × q + r)%nat (KFF kbr fq).
    + +
    +Lemma KFK_proper : Kchain_proper (KFK kbr fq).
    + +
    +#[global] Instance KFF_proper : Fchain_proper (KFF kbr fq).
    + +
    +End KFK_proof.
    +Lemma KFK_correct :
    +   (b q r : positive) (kbr : Kchain) (fq : Fchain),
    +    Kchain_correct b r kbr
    +    Fchain_correct q fq
    +    Kchain_proper kbr
    +    Fchain_proper fq
    +    Kchain_correct (b × q + r) b (KFK kbr fq).
    + +
    +Check KFK_proper.
    + +
    +Check KFK_proper.
    + +
    +Lemma KFF_correct :
    +   (b q r : positive) (kbr : Kchain) (fq : Fchain),
    +    Kchain_correct b r kbr
    +    Fchain_correct q fq
    +    Kchain_proper kbr
    +    Fchain_proper fq
    +    Fchain_correct (b × q + r) (KFF kbr fq).
    + +
    +Lemma FFK_correct_nat :
    +   (p q : nat) (fp fq : Fchain),
    +    Fchain_correct_nat p fp
    +    Fchain_correct_nat q fq
    +    Fchain_proper fp
    +    Fchain_proper fq Kchain_correct_nat (p × q) p (FFK fp fq).
    +
    + +
    +simplifying the hypotheses +
    +
    + +
    +Lemma FFK_correct (p q : positive) (fp fq : Fchain):
    +    Fchain_correct p fp
    +    Fchain_correct q fq
    +    Fchain_proper fp
    +    Fchain_proper fq
    +    Kchain_correct (p × q ) p (FFK fp fq).
    + +
    +#[ global ] Instance FFK_proper
    +         (fp fq : Fchain)
    +         (_ : Fchain_proper fp)
    +         (_ : Fchain_proper fq)
    +  : Kchain_proper (FFK fp fq).
    + +
    +Lemma FK_correct : (p: positive) (Fp : Fchain),
    +                     Fchain_correct p Fp
    +                     Fchain_proper Fp
    +                     Kchain_correct p 1 (FK Fp).
    + +
    +#[ global ] Instance FK_proper (Fp : Fchain) (_ : Fchain_proper Fp):
    +  Kchain_proper (FK Fp).
    + +
    +#[global] Hint Resolve KFF_correct KFF_proper KFK_correct KFK_proper : chains.
    + +
    +Lemma k3_1_correct : Kchain_correct 3 1 k3_1.
    + +
    +Lemma k3_1_proper : Kchain_proper k3_1.
    + +
    +#[global] Hint Resolve k3_1_correct k3_1_proper : chains.
    + +
    +
    + +
    +an example of correct chain construction +
    +
    + +
    + +
    +Definition F87 :=
    let k7_3 := KFK k3_1 (Fexp2 1) in
    let k10_7 := KFK k7_3 F1 in
    KFF k10_7 (Fexp2 3).
    + +
    + +
    + +
    +Lemma OK87 : Fchain_correct 87 F87.
    + +
    +Ltac compute_chain ch :=
    +   let X := fresh "x" in
    +   let Y := fresh "y" in
    +   let X := constr:(ch) in
    +   let Y := (eval vm_compute in X)
    +   in exact Y.
    + +
    +Definition C87' := ltac:( compute_chain C87 ).
    + +
    +Print C87'.
    + +
    +Lemma PF87: parametric C87'.
    + +
    +
    + +
    +

    Automatic generation of correct euclidean chains

    + + +
    + +We want to define a function that builds a correct chain +for any positive exponent, using the previously defined +and certified composition operators : Fcompose, KFK, etc. + +
    + +Obviously, we have to define total mutually recursive functions: + +
    + +
      +
    • A function that builds an Fchain for any positive exponent p + +
    • +
    • A function that builds a Kchain for any pair of exponents + (n,p) where + +
    • +
    + +
    + + In Coq, various ways of building functions are available: +
      +
    • Structural mutual recursion with Fixpoint + +
    • +
    • Using Program Fixpoint + +
    • +
    • Using Function + +
    • +
    + +
    + + For simplicity's sake, we chosed to avoid dependent elimination + and used Function with a decreasing measure. + For this purpose, we define a single data-type for associated with + the generation of F- and K-chains. + +
    + +For specifying the computation of a Kchain for and +where , we use the pair of positive numbers , +thus avoiding to propagate the constraint in +our definitions. + +
    +
    + +
    + +
    +Inductive signature : Type :=
    +| gen_F (n:positive)
    + +
    +Fchain for the exponent n +
    +
    +| gen_K (p d: positive)
    + +
    +Kchain for the exponents p+d and p
    +
    +.
    + +
    +
    + +
    +Unifying statements about chain generation +
    +
    + +
    + +
    +Definition signature_exponent (s:signature) : positive :=
    match s with
    +| gen_F nn
    +| gen_K p dp + d
    +end.
    + +
    +Definition kont_type (s: signature)(A:Type) : Type :=
    +match s with
    +| gen_F _Fkont A
    +| gen_K _ _Kkont A
    +end.
    + +
    +Definition chain_type (s: signature) : Type :=
    match s with
    +| gen_F _Fchain
    +| gen_K _ _Kchain
    +end.
    + +
    +Definition correctness_statement (s: signature) :
    +chain_type s Prop :=
    +match s with
    +  | gen_F pfun chFchain_correct p ch
    +  | gen_K p dfun chKchain_correct (p + d) p ch
    +end.
    + +
    +Definition proper_statement (s: signature) :
    +chain_type s Prop :=
    +match s with
    +  | gen_F _fun chFchain_proper ch
    +  | gen_K _ _fun chKchain_proper ch
    +end.
    + +
    +
    + +
    +

    Full correctness

    + +
    +
    + +
    +Definition OK (s: signature)
    +  := fun c: chain_type scorrectness_statement s c
    +                            proper_statement s c.
    + +
    + +
    +#[global] Hint Resolve pos_gt_3 : chains.
    + +
    +Section Gamma.
    +Variable gamma: positive positive.
    +Context (Hgamma : Strategy gamma).
    + +
    +Definition signature_measure (s : signature) : nat :=
    +match s with
    +  | gen_F n ⇒ 2 × Pos.to_nat n
    +  | gen_K p d ⇒ 2 × Pos.to_nat (p + d) +1
    +end.
    + +
    + +
    Lemma PO1 : (s : signature) (i : positive),
    +  s = gen_F i
    +   anonymous : i 1,
    +  pos_eq_dec i 1 = right anonymous
    +   anonymous0 : i 3,
    +  pos_eq_dec i 3 = right anonymous0
    +  exact_log2 i = None
    +   q r : N,
    +  r = 0%N
    +  N.pos_div_eucl i (N.pos (gamma i)) = (q, 0%N)
    +  (signature_measure (gen_F (N2pos q)) < signature_measure (gen_F i))%nat.
    + +
    Lemma PO2 : (s : signature) (i : positive),
    +     s = gen_F i
    +      anonymous : i 1,
    +       pos_eq_dec i 1 = right anonymous
    +        anonymous0 : i 3,
    +         pos_eq_dec i 3 = right anonymous0
    +         exact_log2 i = None
    +          q r : N,
    +           r = 0%N
    +           N.pos_div_eucl i (N.pos (gamma i)) = (q, 0%N)
    +           (signature_measure (gen_F (gamma i)) < signature_measure (gen_F i))%nat.
    + +
    Lemma PO3 : (s : signature) (i : positive),
    +  s = gen_F i
    +   anonymous : i 1,
    +  pos_eq_dec i 1 = right anonymous
    +   anonymous0 : i 3,
    +  pos_eq_dec i 3 = right anonymous0
    +  exact_log2 i = None
    +   (q r : N) (p : positive),
    +  r = N.pos p
    +  N.pos_div_eucl i (N.pos (gamma i)) = (q, N.pos p)
    +  (signature_measure (gen_F (N2pos q)) < signature_measure (gen_F i))%nat.
    + +
    Lemma PO4 : (s : signature) (i : positive),
    +  s = gen_F i
    +   anonymous : i 1,
    +  pos_eq_dec i 1 = right anonymous
    +   anonymous0 : i 3,
    +  pos_eq_dec i 3 = right anonymous0
    +  exact_log2 i = None
    +   (q r : N) (p : positive),
    +  r = N.pos p
    +  N.pos_div_eucl i (N.pos (gamma i)) = (q, N.pos p)
    +  (signature_measure (gen_K (N2pos (N.pos p)) (gamma i - N2pos (N.pos p))) <
    +   signature_measure (gen_F i))%nat.
    + +
    Lemma PO6: (s : signature) (p d : positive),
    +  s = gen_K p d
    +   anonymous : p 1,
    +  pos_eq_dec p 1 = right anonymous
    +   q r : N,
    +  r = 0%N
    +  N.pos_div_eucl (p + d) (N.pos p) = (q, 0%N)
    +  (signature_measure (gen_F (N2pos q)) < signature_measure (gen_K p d))%nat.
    + +
    +Lemma PO8 : (s : signature) (p d : positive),
    +  s = gen_K p d
    +   anonymous : p 1,
    +  pos_eq_dec p 1 = right anonymous
    +   (q r : N) (p0 : positive),
    +  r = N.pos p0
    +  N.pos_div_eucl (p + d) (N.pos p) = (q, N.pos p0)
    +  (signature_measure (gen_F (N2pos q)) < signature_measure (gen_K p d))%nat.
    + +
    Lemma PO9 : (s : signature) (p d : positive),
    +  s = gen_K p d
    +   anonymous : p 1,
    +  pos_eq_dec p 1 = right anonymous
    +   (q r : N) (p0 : positive),
    +  r = N.pos p0
    +  N.pos_div_eucl (p + d) (N.pos p) = (q, N.pos p0)
    +  (signature_measure (gen_K (N2pos (N.pos p0)) (p - N2pos (N.pos p0))) <
    +   signature_measure (gen_K p d))%nat.
    +Function chain_gen (s:signature) {measure signature_measure}
    +: chain_type s :=
    +  match s return chain_type s with
    +    | gen_F i
    +      if pos_eq_dec i 1 then F1 else
    +        if pos_eq_dec i 3
    +        then F3
    +        else
    +          match exact_log2 i with
    +              Some pFexp2 p
    +            | _
    +              match N.pos_div_eucl i (Npos (gamma i))
    +              with
    +                | (q, 0%N)
    +                  Fcompose (chain_gen (gen_F (gamma i)))
    +                            (chain_gen (gen_F (N2pos q)))
    +                | (q,_r)KFF (chain_gen
    +                                   (gen_K (N2pos _r)
    +                                          (gamma i - N2pos _r)))
    +                                (chain_gen (gen_F (N2pos q)))
    +              end end
    +    | gen_K p d
    +      if pos_eq_dec p 1 then FK (chain_gen (gen_F (1 + d)))
    +      else
    +        match N.pos_div_eucl (p + d) (Npos p) with
    +          | (q, 0%N)FFK (chain_gen (gen_F p))
    +                              (chain_gen (gen_F (N2pos q)))
    +          | (q, _r)KFK (chain_gen (gen_K (N2pos _r)
    +                                            (p - N2pos _r)))
    +                          (chain_gen (gen_F (N2pos q)))
    +        end
    +  end.
    + +
    +Definition make_chain (n:positive) : chain :=
    F2C (chain_gen (gen_F n)).
    + +
    +Lemma chain_gen_OK : s:signature,
    +    OK s (chain_gen s).
    + +
    +Theorem make_chain_correct : p, chain_correct p (make_chain p).
    + +
    +End Gamma.
    +Arguments make_chain gamma {_} _ _ _ .
    + +
    + +
    +Require Import Int63.Uint63.
    +Require Import Monoid_instances.
    + +
    +Check cpower (make_chain dicho) 10.
    +Module Examples.
    +Search (int Z).
    +Search (positive int).
    + +
    +Definition fast_int63_power (x :positive)(n:N) : Z :=
    +  to_Z (cpower (make_chain dicho) n (of_pos x)).
    + +
    +Definition slow_int31_power (x :positive)(n:N) : Z :=
    +  to_Z (power (of_pos x) (N.to_nat n) ).
    + +
    +Definition binary_int31_power (x :positive)(n:N) : Z :=
    +  to_Z (N_bpow (of_pos x) n).
    + +
    +
    + +
    +long computations ... +
    +
    + +
    +Definition big_chain := ltac:(compute_chain (make_chain dicho 45319)).
    + +
    +Print big_chain.
    + +
    +Arguments big_chain _%type_scope.
    + +
    +Remark RM : (1 < 56789)%N.
    + +
    +Definition M := Nmod_Monoid 56789%N RM.
    + +
    +Definition exp56789 x := chain_apply big_chain (M:=M) x.
    + +
    + +
    +Eval cbv iota match delta [big_chain chain_apply computation_eval ] zeta beta in fun xchain_apply big_chain (M:=M) x.
    + +
    +Definition C87' := ltac:( compute_chain C87 ).
    + +
    + +
    +Goal parametric (make_chain dicho 45319).
    + +
    +Remark big_correct :chain_correct 45319 (make_chain dicho 45319).
    + +
    +Remark big_correct' : chain_correct 453 (make_chain dicho 453).
    + +
    + +
    +Remark big_correct''' : chain_correct 453 (make_chain dicho 453).
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    +End Examples.
    + +
    +Require Import Extraction.
    +Locate exp56789.
    +Extraction Language OCaml.
    +Extraction "bigmod" Examples.exp56789.
    + +
    +Recursive Extraction cpower.
    +Recursive Extraction make_chain.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/additions.Fib2.html b/theories/html/additions.Fib2.html new file mode 100644 index 00000000..3cd6ed10 --- /dev/null +++ b/theories/html/additions.Fib2.html @@ -0,0 +1,153 @@ + + + + + +additions.Fib2 + + + + +
    + + + +
    + +

    Library additions.Fib2

    + +
    + +
    +From Coq Require Import NArith Ring.
    + +
    +From additions Require Import Monoid_instances Euclidean_Chains Pow
    +        Strategies Dichotomy BinaryStrat.
    +Import Addition_Chains.
    +Open Scope N_scope.
    + +
    +Fixpoint fib (n:nat) : N :=
    +  match n with
    +    0%nat | 1%nat ⇒ 1
    +  | (S ((S p) as q)) ⇒ fib p + fib q
    +  end.
    + +
    + +
    +Lemma fib_ind (P:natProp) :
    +  P 0%nat P 1%nat ( n, P n P (S n) P(S (S n)))
    +   n, P n.
    + +
    +Lemma fib_SSn : (n:nat) , fib (S (S n)) = (fib n + fib (S n)).
    + +
    +
    + +
    +Yves' encoding +
    +
    + +
    +Definition mul2 (p q : N × N) :=
    +  match p, q with
    +    (a, b),(c,d)(a×c + a×d + b×c, a×c + b×d)
    +  end.
    + +
    +Lemma neutral_l p : mul2 (0,1) p = p.
    + +
    +Lemma neutral_r p : mul2 p (0,1) = p.
    + +
    +#[ global ] Instance Mul2 : Monoid mul2 (0,1).
    + +
    + +
    +Lemma next_fib (n:nat) : mul2 (1,0) (fib (S n), fib n) =
    +                         (fib (S (S n)), fib (S n)).
    + +
    +Definition fib_mul2 n := let (a,b) := power (M:=Mul2) (1,0) n
    +                         in (a+b).
    + +
    + +
    +Lemma fib_mul2_OK_0 (n:nat) :
    +  power (M:=Mul2) (1,0) (S (S n)) =
    +  (fib (S n), fib n).
    + +
    +Lemma fib_mul2_OK n : fib n = fib_mul2 n.
    + +
    + +
    +Definition fib_pos n :=
    +  let (a,b) := Pos_bpow (M:= Mul2) (1,0) n in
    +  (a+b).
    + +
    + +
    + +
    +Locate chain_apply.
    +About chain_apply.
    + +
    +Definition fib_eucl gamma `{Hgamma: Strategy gamma} n :=
    +  let c := make_chain gamma n
    +  in let r := chain_apply c (M:=Mul2) (1,0) in
    +       fst r + snd r.
    + +
    + +
    + +
    +From additions Require Import AM.
    + +
    +Definition fib_with_chain c :=
    +  match chain_apply c Mul2 (1,0) with
    +    Some ((a,b), nil)Some (a+b) | _None end.
    + +
    +Definition c153 := chain_gen dicho (gen_F 153%positive).
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/additions.FirstSteps.html b/theories/html/additions.FirstSteps.html new file mode 100644 index 00000000..51f1cc11 --- /dev/null +++ b/theories/html/additions.FirstSteps.html @@ -0,0 +1,270 @@ + + + + + +additions.FirstSteps + + + + +
    + + + +
    + +

    Library additions.FirstSteps

    + +
    +
    + +
    +Polymorphic versions of exponentiation functions +
    +
    + +
    +From Coq Require Import Arith ZArith String.
    + +
    +
    + +
    + +
    + + Polymorphic exponentiation functions + +
    +
    + +
    +Section Definitions.
    + +
    Variables (A : Type)
    +           (mult : A A A)
    +           (one : A).
    + +
    +#[local] Infix "*" := mult.
    +#[local] Notation "1" := one.
    + +
    +
    + +
    + Naive (linear) implementation +
    +
    + +
    +Fixpoint power (x:A)(n:nat) : A :=
    +  match n with
    +    | 0%nat ⇒ 1
    +    | S px × x ^ p
    +  end
    +where "x ^ n" := (power x n).
    + +
    +
    + +
    +Logarithmic implementation (with exponents in N) +
    +
    + +
    + +
    +Fixpoint binary_power_mult (x a:A)(p:positive) : A
    +  :=
    +  match p with
    +    | xHa × x
    +    | xO qbinary_power_mult (x × x) a q
    +    | xI qbinary_power_mult (x × x) (a × x) q
    +  end.
    + +
    +Fixpoint Pos_bpow (x:A)(p:positive) :=
    match p with
    +  | xHx
    +  | xO qPos_bpow (x × x) q
    +  | xI qbinary_power_mult (x × x) x q
    +end.
    + +
    +Definition N_bpow x (n:N) :=
    +  match n with
    +  | 0%N ⇒ 1
    +  | Npos pPos_bpow x p
    +  end.
    + +
    + +
    +End Definitions.
    + +
    +Arguments N_bpow {A}.
    +Arguments power {A}.
    + +
    +
    + +
    +

    Examples

    + +
    +
    + +
    + +
    + +
    +Open Scope string_scope.
    + +
    + +
    + +
    +
    + +
    +Exponentiation on 2x2 matrices +
    +
    + +
    + +
    +Module M2.
    +Section M2_Definitions.
    + +
    +  Variables (A: Type)
    +           (zero one : A)
    +           (plus mult : A A A).
    + +
    +  Variable rt : semi_ring_theory zero one plus mult (@eq A).
    +  Add Ring Aring : rt.
    + +
    +  Notation "0" := zero.
    +  Notation "1" := one.
    +  Notation "x + y" := (plus x y).
    +  Notation "x * y " := (mult x y).
    + +
    +  Structure t : Type := mat{c00 : A; c01 : A;
    +                            c10 : A; c11 : A}.
    + +
    +  Definition Id2 : t := mat 1 0 0 1.
    + +
    + +
    +  Definition M2_mult (M M':t) : t :=
    +    mat (c00 M × c00 M' + c01 M × c10 M')
    +        (c00 M × c01 M' + c01 M × c11 M')
    +        (c10 M × c00 M' + c11 M × c10 M')
    +        (c10 M × c01 M' + c11 M × c11 M').
    + +
    +End M2_Definitions.
    +End M2.
    + +
    +Import M2.
    + +
    +Arguments M2_mult {A} plus mult _ _.
    +Arguments mat {A} _ _ _ _.
    +Arguments Id2 {A} _ _.
    + +
    +Definition fibonacci (n:N) :=
    c00 N (N_bpow (M2_mult Nplus Nmult) (Id2 0%N 1%N)(mat 1 1 1 0)%N n).
    + +
    + +
    +Definition power_t := (A:Type)
    +                             (mult : A A A)
    +                             (one:A)
    +                             (x:A)
    +                             (n:N), A.
    + +
    +
    + +
    +

    A wrong definition of correctness

    + +
    +
    + +
    +Module Bad.
    + +
    +  Definition correct_expt_function (f : power_t) : Prop :=
    +     A (mult : A A A) (one:A)
    +           (x:A) (n:N), power mult one x (N.to_nat n) =
    +                        f A mult one x n.
    + +
    +  Section CounterExample.
    +    Let mul (n p : nat) := n + 2 × p.
    +    Let one := 0.
    + +
    +
    + +
    +With our fake definition, N_bpow is not correct! +
    +
    + +
    +    Remark mul_not_associative :
    +       n p q, mul n (mul p q) mul (mul n p) q.
    + +
    +    Remark one_not_neutral :
    +       n : nat, mul one n n.
    + +
    +    Lemma correct_exp_too_strong : ¬ correct_expt_function (@N_bpow).
    + +
    +  End CounterExample.
    + +
    +End Bad.
    + +
    +
    + +
    +Fibonacci matrices +
    +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/additions.Monoid_def.html b/theories/html/additions.Monoid_def.html new file mode 100644 index 00000000..b048ba05 --- /dev/null +++ b/theories/html/additions.Monoid_def.html @@ -0,0 +1,292 @@ + + + + + +additions.Monoid_def + + + + +
    + + + +
    + +

    Library additions.Monoid_def

    + +
    +From Coq Require Import RelationClasses Relations Morphisms String.
    + +
    +Set Implicit Arguments.
    + +
    +
    + +
    +

    The Monoid type class (with Operational Type Classes)

    + +
    +
    + +
    +Declare Scope M_scope.
    + +
    +Class Mult_op (A:Type) := mult_op : A A A.
    + +
    +Print Mult_op.
    + +
    +Print mult_op.
    + +
    + +
    +Goal A (op: Mult_op A), @mult_op A op = op.
    + +
    +Delimit Scope M_scope with M.
    +Infix "×" := mult_op : M_scope.
    +Open Scope M_scope.
    + +
    + +
    +Module Demo.
    + +
    +  #[local] Instance nat_mult_op : Mult_op nat := Nat.mul.
    + +
    +  Set Printing All.
    + +
    +  Check 3 × 4.
    + +
    +   Unset Printing All.
    + +
    + +
    +End Demo.
    + +
    + +
    +#[ global ] Instance string_op : Mult_op string := append.
    +Open Scope string_scope.
    + +
    +Example ex_string : "ab" × "cde" = "abcde".
    + +
    + +
    +#[ global ] Instance bool_and_binop : Mult_op bool := andb.
    + +
    +Example ex_bool : true × false = false.
    + +
    +
    + +
    +within M_scope, a term of the form (x * y) is an abbreviation of +(mult_op A op x y) where op : Mult_op A and x, y : A. + +
    +
    + +
    +Class Monoid {A:Type}(op : Mult_op A)(one : A) : Prop :=
    +{
    +    op_assoc : x y z, x × (y × z) = x × y × z;
    +    one_left : x, one × x = x;
    +    one_right : x, x × one = x
    +}.
    + +
    +
    + +
    +

    Exercice

    + + +
    + +Define a class for semi-groups, and re-define monoids as semi-groups with a neutral element + +
    + + +
    + +

    Monoids and Equivalence Relations

    + + +
    + +In some situations, the previous definition may be too restrictive. +For instance, consider the computation of where + and are positive integers, and . + +
    + +Although it could possible to compute with values of the dependent +type {n:N | n < m}, it looks simpler to compute with numbers of type +N, and consider the multiplication . + +
    + +It is easy to prove that this operation is associative, using library + . Unfortunately, it is not possible to prove the +following proposition, +required for building an instance of Monoid: + +
    + +
    + x:N, 1 × x mod m = x. +
    + +
    +
    + +Thus, we define a more general class, parameterized by an equivalence +relation Aeq on type A, compatible with the multiplication . +The laws of associativity and neutral element +are not expressed as Leibniz equalities but as equivalence statements: + +
    +
    + +
    +Class Equiv A := equiv : relation A.
    + +
    +Infix "==" := equiv (at level 70) : type_scope.
    + +
    + +
    +Class EMonoid (A:Type)(E_op : Mult_op A)(E_one : A)
    +      (E_eq: Equiv A): Prop :=
    +  {
    +    Eq_equiv :> Equivalence equiv;
    +    Eop_proper : Proper (equiv ==> equiv ==> equiv) E_op;
    +    Eop_assoc : x y z, x × (y × z) == x × y × z;
    +    Eone_left : x, E_one × x == x;
    +    Eone_right : x, x × E_one == x
    +  }.
    + +
    +#[ global ] Instance Equiv_Equiv (A:Type)(E_op : Mult_op A)(E_one : A)
    +      (E_eq: Equiv A)(M :EMonoid E_op E_one E_eq) :
    +   Equivalence E_eq.
    +Qed.
    + +
    +#[ global ] Instance Equiv_Refl (A:Type)(E_op : Mult_op A)(E_one : A)
    +      (E_eq: Equiv A)(M :EMonoid E_op E_one E_eq) :
    +   Reflexive E_eq.
    +Qed.
    + +
    +#[ global ] Instance Equiv_Sym (A:Type)(E_op : Mult_op A)(E_one : A)
    +      (E_eq: Equiv A)(M :EMonoid E_op E_one E_eq) :
    +   Symmetric E_eq.
    +Qed.
    + +
    +#[ global ] Instance Equiv_Trans (A:Type)(E_op : Mult_op A)(E_one : A)
    +      (E_eq: Equiv A)(M :EMonoid E_op E_one E_eq) :
    +   Transitive E_eq.
    +Qed.
    + +
    +Generalizable All Variables.
    + +
    +
    + +
    +

    Coercion from Monoid to EMonoid

    + + +
    + +Every instance of class Monoid can be transformed into an instance of +EMonoid, considering Leibniz' equality eq. + +
    +
    + +
    +#[global] Instance eq_equiv {A} : Equiv A := eq.
    + +
    +#[global] Instance Monoid_EMonoid `(M:@Monoid A op one) :
    +        EMonoid op one eq_equiv.
    + +
    +
    + +
    +We can now register Monoid_EMonoid as a coercion: + +
    +
    + +
    +Coercion Monoid_EMonoid : Monoid >-> EMonoid.
    + +
    +
    + +
    +

    Commutative Monoids

    + + +
    + +The following type class definitions allow to take advantage of + the possible commutativity of the operation + +
    + + +
    +
    + +
    +Class Abelian_EMonoid `(M:@EMonoid A op one Aeq ):= {
    +  Eop_comm : x y, op x y == op y x}.
    + +
    +Class Abelian_Monoid `(M:Monoid ):= {
    +  op_comm : x y, op x y = op y x}.
    + +
    +Ltac add_op_proper M H :=
    let h := fresh H in
    +   generalize (@Eop_proper _ _ _ _ M); intro h.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/additions.Monoid_instances.html b/theories/html/additions.Monoid_instances.html new file mode 100644 index 00000000..d2c24b63 --- /dev/null +++ b/theories/html/additions.Monoid_instances.html @@ -0,0 +1,372 @@ + + + + + +additions.Monoid_instances + + + + +
    + + + +
    + +

    Library additions.Monoid_instances

    + +
    +
    + +
    +

    Some useful instances of Monoid classes

    + + +
    + +File +
    +
    + +
    +Require Export Monoid_def.
    +Require Import RelationClasses Morphisms.
    + +
    +Require Import ZArith PArith.
    +Require Import Arith.
    +Require Import NArith.
    +Require Import Ring63.
    + +
    +Open Scope Z_scope.
    + +
    +
    + +
    +

    Multiplicative monoid on Z

    + +
    +
    + +
    +#[ global ] Instance Z_mult_op : Mult_op Z := Z.mul.
    + +
    +#[ global ] Instance ZMult : Monoid Z_mult_op 1. +
    +#[ global ] Instance ZMult_Abelian : Abelian_Monoid ZMult.
    + +
    +
    + +
    +

    Multiplicative monoid on nat

    + +
    +
    + +
    + +
    +#[ global ] Instance nat_mult_op : Mult_op nat | 5 := Nat.mul.
    + +
    +#[ global ] Instance Natmult : Monoid nat_mult_op 1%nat | 5.
    + +
    +
    + +
    +

    Additive monoid on nat

    + + +
    + +The following monoid is useful for proving the correctness of complex +exponentiation algorithms. In effect, the -th "power" of is +equal to . See Sect. +
    +
    + +
    +#[ global ] Instance nat_plus_op : Mult_op nat | 12 := Nat.add.
    + +
    +#[ global ] Instance Natplus : Monoid nat_plus_op 0%nat | 12.
    + +
    + +
    +Open Scope N_scope.
    + +
    +#[ global ] Instance N_mult_op : Mult_op N | 5 := N.mul.
    + +
    +#[ global ] Instance NMult : Monoid N_mult_op 1 | 5.
    + +
    +Check NMult : EMonoid N.mul 1%N eq.
    + +
    +#[ global ] Instance N_plus_op : Mult_op N | 12 := N.add.
    + +
    +#[ global ] Instance NPlus : Monoid N_plus_op 0 | 12.
    + +
    +
    + +
    +Multiplicative Monoid on positive + +
    +
    + +
    +#[ global ] Instance P_mult_op : Mult_op positive | 5 := Pos.mul .
    + +
    +#[ global ] Instance PMult : Monoid P_mult_op xH | 5.
    + +
    +Import Uint63.
    +Open Scope int63_scope.
    + +
    +
    + +
    +

    Multiplicative monoid on 63-bits integers

    + + +
    + +Cyclic numeric types are good candidates for testing exponentiations +with big exponents, since the size of data is bounded. + +
    + +The type int63 is defined in Standard Library in Module +Coq.Numbers.Cyclic.Int63.Uint63. + +
    +
    + +
    +#[ global ] Instance int63_mult_op : Mult_op int := mul.
    + +
    +#[ global ] Instance Int63mult : Monoid int63_mult_op 1.
    + +
    +Module Bad.
    + +
    +  Fixpoint int63_from_nat (n:nat) :int :=
    +    match n with
    +    | O ⇒ 1
    +    | S p ⇒ 1 + int63_from_nat p
    +    end.
    + +
    +  Coercion int63_from_nat : nat >-> int.
    + +
    +  Fixpoint fact (n:nat) : int := match n with
    +                             O ⇒ 1
    +                           | S pn × fact p
    +                           end.
    + +
    +End Bad.
    + +
    +Close Scope int63_scope.
    + +
    +
    + +
    +

    Monoid of 2x2 matrices

    + + +
    + +Let be some type, provided with a ring structure. We define the multiplication +of -matrices, the coefficients of which have type . + +
    + + +
    +
    + +
    + +
    +Section M2_def.
    +Variables (A:Type)
    +           (zero one : A)
    +           (plus mult : A A A).
    + +
    Notation "0" := zero.
    Notation "1" := one.
    Notation "x + y" := (plus x y).
    Notation "x * y " := (mult x y).
    + +
    Variable rt : semi_ring_theory zero one plus mult (@eq A).
    Add Ring Aring : rt.
    + +
    +Structure M2 : Type := {c00 : A; c01 : A;
    +                        c10 : A; c11 : A}.
    + +
    +Definition Id2 : M2 := Build_M2 1 0 0 1.
    + +
    +Definition M2_mult (m m':M2) : M2 :=
    Build_M2 (c00 m × c00 m' + c01 m × c10 m')
    +          (c00 m × c01 m' + c01 m × c11 m')
    +          (c10 m × c00 m' + c11 m × c10 m')
    +          (c10 m × c01 m' + c11 m × c11 m').
    + +
    + +
    +Lemma M2_eq_intros : a b c d a' b' c' d',
    +  a=a' b=b' c=c' d=d'
    +   Build_M2 a b c d = Build_M2 a' b' c' d'.
    + +
    + +
    +#[global] Instance M2_op : Mult_op M2 := M2_mult.
    + +
    +#[global] Instance M2_Monoid : Monoid M2_op Id2.
    + +
    +End M2_def.
    + +
    +Arguments M2_Monoid {A zero one plus mult} rt.
    +Arguments Build_M2 {A} _ _ _ _.
    + +
    +
    + +
    +Matrices over N +
    +
    +Definition M2N := M2_Monoid Nth.
    + +
    +
    + +
    +

    Integers modulo m

    + + +
    + +The following instance of EMonoid describes the set of integers modulo +, where is some integer greater or equal than . +For simplicity's sake, we represent such values using the type N, +and consider "equivalence modulo " instead of equality. + +
    +
    + +
    +Section Nmodulo.
    +  Variable m : N.
    +  Hypothesis m_gt_1 : 1 < m.
    + +
    +  Remark m_neq_0 : m 0.
    + +
    +  #[local] Hint Resolve m_neq_0 : chains.
    + +
    +  Definition mult_mod (x y : N) := (x × y) mod m.
    +  Definition mod_eq (x y: N) := x mod m = y mod m.
    + +
    +  Instance mod_equiv : Equiv N := mod_eq.
    + +
    +  Instance mod_op : Mult_op N := mult_mod.
    + +
    +  Instance mod_Equiv : Equivalence mod_equiv.
    + +
    +  #[global] Instance mult_mod_proper :
    +    Proper (mod_equiv ==> mod_equiv ==> mod_equiv) mod_op.
    + +
    +  #[local] Open Scope M_scope.
    + +
    +  Lemma mult_mod_associative : x y z,
    +      x × (y × z) = x × y × z.
    + +
    +  Lemma one_mod_neutral_l : x, 1 × x == x.
    +  Lemma one_mod_neutral_r : x, x × 1 == x.
    + +
    +  #[global] Instance Nmod_Monoid : EMonoid mod_op 1 mod_equiv.
    + +
    +End Nmodulo.
    + +
    +Section S256.
    + +
    +  Let mod256 := mod_op 256.
    + +
    +  #[local] Existing Instance mod256 | 1.
    + +
    + +
    + +
    + +
    +End S256.
    + +
    + +
    + +
    +Close Scope N_scope.
    +Close Scope positive_scope.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/additions.More_on_positive.html b/theories/html/additions.More_on_positive.html new file mode 100644 index 00000000..38555bc0 --- /dev/null +++ b/theories/html/additions.More_on_positive.html @@ -0,0 +1,287 @@ + + + + + +additions.More_on_positive + + + + +
    + + + +
    + +

    Library additions.More_on_positive

    + +
    + +
    +From Coq Require Import Arith NArith Lia Recdef.
    +From additions Require Import Pow Compatibility Wf_transparent.
    +Open Scope positive_scope.
    +Import Monoid_def.
    + +
    +
    + +
    +

    Basic lemmas about positive and N

    + +
    +
    + +
    +Definition pos_eq_dec : p p':positive, {p = p'}+{p p'}.
    + +
    +Lemma N_0_le_n: n:N, (0 n)%N.
    + +
    +Lemma Pos_to_nat_neq_0 : p, Pos.to_nat p 0%nat.
    + +
    +#[global] Hint Resolve Pos_to_nat_neq_0 : chains.
    + +
    +
    + +
    +

    Relationship with nat and N

    + + +
    +
    +Lemma Npos_diff_zero : p, N.pos p 0%N.
    + +
    +Lemma Npos_gt_0 : p, (0 < N.pos p)%N.
    + +
    +#[global] Hint Resolve Npos_diff_zero Npos_gt_0 : chains.
    + +
    +Lemma pos2N_inj_lt : n p, (n < p)%positive (N.pos n < N.pos p)%N.
    + +
    +Lemma pos2N_inj_add : n p, N.pos (n + p) = (N.pos n + N.pos p)%N.
    + +
    +Ltac pos2nat_inj_tac :=
    +  repeat (rewrite Pos2Nat.inj_add || rewrite Pos2Nat.inj_mul ||
    +          rewrite Pos2Nat.inj_lt || rewrite Pos2Nat.inj_le).
    + +
    +Lemma Pos2Nat_le_1_p : p, (1 Pos.to_nat p)%nat.
    + +
    +Lemma N_le_1_pos : p, (1 N.pos p)%N.
    + +
    +Lemma pos_le_mul : p q , (p p × q)%positive.
    + +
    +Lemma pos_lt_mul : p q , (1 < q p < p × q)%positive.
    + +
    +Lemma Pos2Nat_le_n_pn :
    +   p q,
    +    (Pos.to_nat p Pos.to_nat p × Pos.to_nat q)%nat.
    + +
    +#[global] Hint Resolve Pos2Nat_le_1_p : chains.
    + +
    +
    + +
    +

    Surjection from N into positive

    + + +
    +
    + +
    +Definition N2pos (n:N) : positive :=
    match n with 0%NxH | Npos pp end.
    + +
    +Lemma N2pos_pos :
    +   i, N2pos (Npos i) = i.
    + +
    +Lemma N_pos_N2pos : n, 0%N n n = Npos (N2pos n).
    + +
    +Lemma N2pos_lt_switch : n p, (0%N < n)%N
    +                                     ( (N.pos p < n)%N (p < N2pos n)%positive).
    + +
    +Ltac N2pos_simpl x := simpl (N2pos (N.pos x)) in ×.
    + +
    +Ltac N2pos_destruct t y :=
    destruct t as [| y] ; [try (discriminate || contradiction) | N2pos_simpl y].
    + +
    +Lemma N2pos_lt_switch2 : n p, (0%N < n)%N
    +                                      ((N2pos n < p)%positive
    +                                        (n < N.pos p)%N).
    + +
    +Lemma pos_lt_wf : well_founded Pos.lt.
    + +
    +
    + +
    +Partial exact log2 function +
    +
    + +
    +Fixpoint exact_log2(p:positive) : option positive :=
    +match p with
    +  | 1%positive | xI _None
    +  | 2%positiveSome xH
    +  | xO qmatch exact_log2 q with
    +              | Some lSome (l+1)%positive
    +              | _None
    +            end
    +end.
    + +
    +
    + +
    +Compute exact_log2 16. + = Some 4 + : option positive + +
    + +Compute exact_log2 10. += None + : option positive + +
    +
    + +
    +Lemma exact_log2xOx0 :
    +   p i, exact_log2 (xO p) = Some i
    +              exact_log2 (xO (xO p)) = Some (i+1)%positive.
    + +
    +Lemma exact_log2_spec :
    +   p i: positive, exact_log2 p = Some i p = (2 ^ i)%positive.
    + +
    +
    + +
    +Another induction principle for positive +
    +
    + +
    +Lemma positive_4step_ind : P : positive Prop,
    +   P 1%positive P 2%positive P 3%positive
    +  ( p, P p P (xO (xO p)) P (xI (xO p)) P (xO (xI p))
    +               P (xI (xI p)))
    +   p, P p.
    + +
    +Lemma pos_gt_3 : p:positive,
    +  p 1 p 3 exact_log2 p = None 3 < p.
    + +
    +#[global] Hint Resolve pos_gt_3 : chains.
    + +
    +
    + +
    +

    Lemmas on Euclidean division

    + + N.pos_div_eucl (a:positive) (b:N) : N * N + +
    +
    + +
    +Lemma pos_div_eucl_quotient_pos : a b q r,
    +                                    N.pos_div_eucl a b = (q, r)
    +                                    (b N.pos a)%N
    +                                    b 0%N
    +                                    (q 0%N).
    + +
    +Lemma pos_div_eucl_quotient_lt : a b q r,
    +                                   N.pos_div_eucl a b = (q, r)
    +                                   (1 < b)%N
    +                                   (q < N.pos a)%N.
    + +
    +Lemma N_pos_div_eucl_divides : i b q,
    +                                 N.pos_div_eucl i (N.pos b) = (q, 0%N)
    +                                 (b × N2pos q)%positive = i.
    + +
    Lemma N_pos_div_eucl_rest : i b q r,
    +                               N.pos_div_eucl i (N.pos b) = (q, r)
    +                               (0 < r)%N (0 < q)%N
    +                               (b × N2pos q + N2pos r)%positive = i.
    + +
    Lemma N_pos_div_eucl_q0 : i b r,
    +                             N.pos_div_eucl i (N.pos b) = (0%N, r)
    +                             i = N2pos r.
    + +
    +
    + +
    +An auxiliary lemma +
    +
    +Lemma lt_S_2i :
    + i j:nat, (i < j 2 × i + 1 < 2 × j)%nat.
    + +
    +Lemma N_le_mul_pos : q p, (q q × N.pos p)%N.
    + +
    +Ltac quotient_small div_equation H :=
    +  match type of div_equation with
    +    (N.pos_div_eucl ?a ?b = (?q,?r)) ⇒
    +    assert (H : (q < N.pos a)%N);
    +    [apply (pos_div_eucl_quotient_lt _ _ _ _ div_equation); auto|]
    +  end.
    + +
    +Ltac rest_small div_equation H :=
    +  match type of div_equation with
    +    (N.pos_div_eucl ?a ?b = (?q,?r)) ⇒
    +    let H0 := fresh "H" in
    +    assert (H : (r < b)%N);
    +    [generalize (N.pos_div_eucl_remainder a b); simpl; intro H0;
    +     rewrite div_equation in H0; apply H0 ; try discriminate| ]
    +  end.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/additions.Naive.html b/theories/html/additions.Naive.html new file mode 100644 index 00000000..be9685dc --- /dev/null +++ b/theories/html/additions.Naive.html @@ -0,0 +1,249 @@ + + + + + +additions.Naive + + + + +
    + + + +
    + +

    Library additions.Naive

    + +
    + +
    +
    + +
    +

    Naïve and Monomorphic Functions for Computing Powers.

    + +
    + +

    Exponentiation of integers

    + + +
    + +Let us define a function Z.power : Z nat Z by structural recursion +on the exponent n: + +
    +
    + +
    +Require Import ZArith.
    +Open Scope Z_scope.
    + +
    +Module Z.
    + +
    +Fixpoint power (x:Z)(n:nat) :=
    +match n with
    +| 0%nat ⇒ 1
    +| S px × power x p
    +end.
    + +
    +Compute power 2 10.
    +
    + +
    + + +
    + +

    Some basic properties of Z.power

    + + +
    + + +
    +
    + +
    +Lemma power_S : (x:Z)(n:nat), power x (S n) = x × power x n.
    + +
    +Lemma power_of_plus (x:Z) :
    +   n p, power x (n + p) = power x n × power x p.
    + +
    +End Z.
    + +
    +
    + +
    +

    Exponentiation modulo m

    + + +
    + + Let m be some natural number. We can compute for any number x +and exponent n the number . + +
    + + Since m and x can be arbitrary large numbers, we give them the type +N of binary natural number. Following our naïve approach, the exponent n +is still of type nat. + +
    + + +
    +
    + +
    +Module N_mod.
    +#[local] Open Scope N_scope.
    + +
    +Section m_fixed.
    + +
    +  Variable m: N.
    + +
    +  Definition mult_mod (x y : N) := (x × y) mod m.
    + +
    +  Fixpoint power (x: N) (n : nat) : N :=
    +    match n with
    +      | 0%nat ⇒ 1 mod m
    +      | S pmult_mod x (power x p)
    +    end.
    +End m_fixed.
    +End N_mod.
    + +
    +Compute N_mod.power 14555553%N 5689%N 27.
    + +
    +
    + +
    + +
    +   = 9086410
    +     : N +
    + +
    + +
    + +

    Exponentiation of matrices

    + + +
    + +Our last example is a definition of where is a matrix +over any scalar type , assuming one can provide with a semi-ring structure. + +
    + + +
    +
    +Module M2.
    +Section Definitions.
    + +
    +  Variables (A: Type)
    +           (zero one : A)
    +           (plus mult : A A A).
    + +
    +  Variable rt : semi_ring_theory zero one plus mult (@eq A).
    +  Add Ring Aring : rt.
    + +
    +  Notation "0" := zero.
    +  Notation "1" := one.
    +  Notation "x + y" := (plus x y).
    +  Notation "x * y " := (mult x y).
    + +
    +  Structure t : Type := mat{c00 : A; c01 : A;
    +                            c10 : A; c11 : A}.
    + +
    +  Definition Id2 : t := mat 1 0 0 1.
    + +
    +  Definition M2_mult (M M':t) : t :=
    +    mat (c00 M × c00 M' + c01 M × c10 M')
    +        (c00 M × c01 M' + c01 M × c11 M')
    +        (c10 M × c00 M' + c11 M × c10 M')
    +        (c10 M × c01 M' + c11 M × c11 M').
    + +
    +  Infix "**" := M2_mult (at level 40, left associativity).
    + +
    +  Fixpoint power (M : t) (n : nat) : t :=
    +    match n with
    +      | 0%natId2
    +      | S pM ** (power M p)
    +    end.
    + +
    + +
    +
    + +
    +

    + + The ring tactic, applied to inhabitants of type A, allows us to + prove associativity of matrix multiplication, then a law of + distributivity of power upon ** + +
    +
    + +
    +  Lemma Id2_neutral : M:t, Id2 ** M = M.
    + +
    +  Lemma M2_mult_assoc : M M' M'':t, M ** (M' ** M'') =
    +                                            (M ** M') ** M''.
    + +
    +  Lemma power_of_plus (M:t) :
    +   n p, power M (n + p) = power M n ** power M p.
    + +
    +End Definitions.
    +End M2.
    + +
    +Definition fibonacci (n:nat) :=
    +  M2.c00 N (M2.power N 0%N 1%N Nplus Nmult (M2.mat _ 1 1 1 0)%N n).
    + +
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/additions.Pow.html b/theories/html/additions.Pow.html new file mode 100644 index 00000000..16585b84 --- /dev/null +++ b/theories/html/additions.Pow.html @@ -0,0 +1,469 @@ + + + + + +additions.Pow + + + + +
    + + + +
    + +

    Library additions.Pow

    + +
    +
    + +
    +

    Exponentiation in a Monoid

    + + +
    + +In this section, we give two polymorphic functions for computing + : the naive ( linear) one and the aforementionned +binary method, that takes less than multiplications. + +
    + + Both functions require an instance of EMonoid. Their code use the + multiplication of the monoid, and sometimes its unity. + Correctness proofs require the "axioms" of monoid structure. + +
    +
    + +
    +Set Implicit Arguments.
    + +
    +Require Export ZArith Div2.
    +Require Export Recdef.
    +Require Import Relations Morphisms.
    + +
    +Require Import Monoid_def.
    +Require Import Arith Lia.
    + +
    +Open Scope M_scope.
    + +
    +
    + +
    +

    Two functions for computing powers

    + + +
    + + The module defines two functions for exponentiation on any Emonoid + on carrier . + +
    + +
      +
    • The function power has type A nat A; it is linear with respect to + the exponent. Its simplicity and the fact that the exponent has type nat + make it adequate for being the reference for any other definition, and for + easily proving laws like . + + +
      + + +
    • +
    • The function Pos_bpow has type A positive A and is logarithmic + with respect to its exponent. This function should be used for effective + computations. Its variant N_bpow allows the exponent to be . + +
    • +
    + +
    + + +
    + +

    The "naive" reference function

    + +
    +
    +Generalizable Variables A E_op E_one E_eq.
    + +
    +Fixpoint power `{M: @EMonoid A E_op E_one E_eq}
    +         (x:A)(n:nat) :=
    +  match n with 0%natE_one
    +             | S px × x ^ p
    +  end
    +where "x ^ n" := (power x n) : M_scope.
    + +
    + +
    +Lemma power_eq1 `{M: @EMonoid A E_op E_one E_eq}(x:A) :
    +  x ^ 0 = E_one.
    + +
    +Lemma power_eq2 `{M: @EMonoid A E_op E_one E_eq}(x:A) (n:nat) :
    x ^ (S n) = x × x ^ n.
    + +
    +Lemma power_eq3 `{M: @EMonoid A E_op E_one E_eq}(x:A) :
    x ^ 1 == x.
    + +
    +
    + +
    +

    The binary exponentiation function (exponents in positive)

    + +
    + +

    + + +
    + +The auxiliary function below computes , where +the "accumulator" acc is intented to be an already computed power of x: + +
    + + +
    +
    + +
    +Fixpoint binary_power_mult `{M: @EMonoid A E_op E_one E_eq}
    +         (x a:A)(p:positive) : A
    +  :=
    +  match p with
    +    | xHa × x
    +    | xO qbinary_power_mult (x × x) a q
    +    | xI qbinary_power_mult (x × x) (a × x) q
    +  end.
    + +
    +
    + +
    +

    + + +
    + +The following function decomposes the exponent p + into , then calls binary_power_mult + with and . + +
    + + +
    +
    + +
    +Fixpoint Pos_bpow `{M: @EMonoid A E_op E_one E_eq}
    +         (x:A)(p:positive) :=
    match p with
    +  | xHx
    +  | xO qPos_bpow (x × x) q
    +  | xI qbinary_power_mult (x × x) x q
    +end.
    + +
    +
    + +
    +*** + It is straightforward to adapt Pos_bpow + for accepting exponents of type N : + +
    +
    + +
    +Definition N_bpow `{M: @EMonoid A E_op E_one E_eq} x (n:N) :=
    +  match n with
    +  | 0%NE_one
    +  | Npos pPos_bpow x p
    +  end.
    + +
    +Infix "^b" := N_bpow (at level 30, right associativity) : M_scope.
    + +
    +
    + +
    +

    Properties of the power function

    + + +
    + + Taking power as a reference, it remains to prove two kinds of properties +
      +
    • Mathematical properties of exponentiation, i.e the function power, + +
      + + +
    • +
    • proving correctness of functions Pos_bpow and N_bpow + +
    • +
    + +
    + +First, let us consider some Emonoid and define some useful notations and tactics: + +
    +
    + +
    +Section M_given.
    + +
    +  Variables (A:Type) (E_one:A) .
    +  Context (E_op : Mult_op A) (E_eq : Equiv A)
    +          (M:EMonoid E_op E_one E_eq).
    + +
    +#[global] Instance Eop_proper : Proper (equiv ==> equiv ==> equiv) E_op.
    + +
    +Ltac monoid_rw :=
    +    rewrite Eone_left ||
    +    rewrite Eone_right ||
    +    rewrite Eop_assoc.
    + +
    +Ltac monoid_simpl := repeat monoid_rw.
    + +
    + +
    +#[global] Instance power_proper :
    +  Proper (equiv ==> eq ==> equiv) power.
    + +
    +Lemma power_of_plus :
    +   x n p, x ^ (n + p) == x ^ n × x ^ p.
    + +
    +Ltac power_simpl := repeat (monoid_rw || rewrite <- power_of_plus).
    + +
    +Lemma power_commute x n p:
    +  x ^ n × x ^ p == x ^ p × x ^ n.
    + +
    +Lemma power_commute_with_x x n:
    +  x × x ^ n == x ^ n × x.
    + +
    +Lemma power_of_power x n p:
    +  (x ^ n) ^ p == x ^ (p × n).
    + +
    +Lemma power_of_power_comm x n p : (x ^ n) ^ p == (x ^ p) ^ n.
    + +
    +Lemma sqr_eqn : x, x ^ 2 == x × x.
    + +
    +Ltac factorize := repeat (
    +                rewrite <- power_commute_with_x ||
    +                rewrite <- power_of_plus ||
    +                rewrite <- sqr_eqn ||
    +                rewrite <- power_eq2 ||
    +                rewrite power_of_power).
    + +
    +Lemma power_of_square x n : (x × x) ^ n == x ^ n × x ^ n.
    + +
    +
    + +
    +

    Correctness of the binary algorithm

    + + +
    + +Correctness of the "concrete" functions Pos_bpow and N_bpow +with respect to the more abstract function power is expressed +by extensional equalities, taking into account the conversion between +various representations of natural numbers. + +
    + + +
    +
    + +
    +Lemma binary_power_mult_ok :
    +   p a x, binary_power_mult x a p == a × x ^ Pos.to_nat p.
    + +
    +Lemma Pos_bpow_ok :
    +   p x, Pos_bpow x p == x ^ Pos.to_nat p.
    + +
    +#[global] Instance Pos_bpow_proper :
    +  Proper (equiv ==> eq ==> equiv) Pos_bpow.
    + +
    +Lemma N_bpow_ok :
    +   n x, x ^b n == x ^ N.to_nat n.
    + +
    +Lemma N_bpow_ok_R :
    +   n x, x ^b (N.of_nat n) == x ^ n.
    + +
    +Lemma Pos_bpow_ok_R :
    +   p x, p 0
    +              Pos_bpow x (Pos.of_nat p) == x ^ p.
    + +
    +Lemma N_bpow_commute : x n p,
    +                        x ^b n × x ^b p ==
    +                        x ^b p × x ^b n.
    + +
    +Lemma Pos_bpow_of_plus : x n p, Pos_bpow x (n + p)%positive ==
    +                                       Pos_bpow x n × Pos_bpow x p.
    + +
    +Lemma Pos_bpow_of_bpow : (x:A) n p,
    +    Pos_bpow (Pos_bpow x n) p == Pos_bpow x (p × n)%positive.
    + +
    +
    + +
    +

    Remark

    + + +
    + +If we normalize exponentiation functions with a given exponent, we notice +that the obtained functions do not execute the same computations, but it is +hard to visualize why the binary method is more efficient than the naive one. + +
    + + +
    +
    + +
    +Eval simpl in fun (x:A) ⇒ x ^b 17.
    + +
    +Eval simpl in fun xx ^ 17.
    + +
    + +
    +Definition pow_17 (x:A) :=
    +  let x2 := x × x in
    +  let x4 := x2 × x2 in
    +  let x8 := x4 × x4 in
    +  let x16 := x8 × x8 in
    +  x16 × x.
    + +
    + +
    +Eval cbv zeta beta delta [pow_17] in pow_17.
    + +
    +
    + +
    + = fun x : A => + x * x * (x * x) * (x * x * (x * x)) * + (x * x * (x * x) * (x * x * (x * x))) * x + : A -> A + +
    + + +
    + +In order to compare the real computations needed to raise some to its -th +power, we need to make more explicit how intermediate values are used during +some computation. +This is described in the module (see ). + +
    + + +
    + +

    Properties of Abelian Monoids

    + + +
    + + Some equalities hold in the restricted context of abelian (a.k.a. commutative) + monoids. + +
    +
    + +
    +Section Power_of_op.
    Context {AM:Abelian_EMonoid M}.
    + +
    +Theorem power_of_mult :
    +    n x y, (x × y) ^ n == x ^ n × y ^ n.
    + +
    +End Power_of_op.
    + +
    +End M_given.
    + +
    +Infix "^" := power : M_scope.
    + +
    + +
    +Ltac monoid_simpl M := generalize (Eop_proper M); intro;
    +  repeat ( rewrite (Eone_left ) ||
    +    rewrite (Eone_right ) ||
    +    rewrite (Eop_assoc )).
    + +
    +  Ltac power_simpl M := generalize (Eop_proper M); intro;
    +  repeat ( rewrite Eone_left || rewrite Eone_right || rewrite Eop_assoc
    +     || rewrite power_of_plus).
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/additions.Pow_variant.html b/theories/html/additions.Pow_variant.html new file mode 100644 index 00000000..02c0cc0b --- /dev/null +++ b/theories/html/additions.Pow_variant.html @@ -0,0 +1,477 @@ + + + + + +additions.Pow_variant + + + + +
    + + + +
    + +

    Library additions.Pow_variant

    + +
    +
    + +
    +

    Exponentiation in a Monoid

    + + +
    + +In this section, we give two polymorphic functions for computing + : the naive ( linear) one and the aforementionned +binary method, that takes less than multiplications. + +
    + + Both functions require an instance of EMonoid. Their code use the multiplication of the monoid, and sometimes its unity. Correctness proofs require +the "axioms" of monoid structure. + +
    +
    + +
    +Set Implicit Arguments.
    + +
    +Require Export ZArith Div2.
    +Require Export Recdef.
    +Require Import Relations Morphisms.
    + +
    +Require Import Monoid_def.
    +Require Import Arith Lia.
    + +
    +Generalizable Variables A op one Aeq.
    + +
    +Open Scope M_scope.
    + +
    +
    + +
    +

    Two functions for computing powers

    + + +
    + + The module defines two functions for exponentiation on any Emonoid + on carrier . + +
    + +
      +
    • The function power has type A nat A; it is linear with respect to + the exponent. Its simplicity and the fact that the exponent has type nat + make it adequate for being the reference for any other definition, and for + easily proving laws like . + + +
      + + +
    • +
    • The function Pos_bpow has type A positive A and is logarithmic + with respect to its exponent. This function should be used for effective + computations. Its variant N_bpow allows the exponent to be . + +
    • +
    + +
    + + +
    + +

    The "naive" reference function

    + +
    +
    +Generalizable Variables E_op E_one E_eq.
    + +
    +Fixpoint power `{M: @EMonoid A E_op E_one E_eq}(x:A)(n:nat) :=
    +  match n with 0%natE_one
    +             | S px × x ^ p
    +  end
    +where "x ^ n" := (power x n) : M_scope.
    + +
    +Lemma power_eq1 {A:Type} `{M: @EMonoid A E_op E_one E_eq}(x:A) :
    +  x ^ 0 = E_one.
    + +
    +Lemma power_eq2 {A:Type} `{M: @EMonoid A E_op E_one E_eq}(x:A) (n:nat) :
    x ^ (S n) = x × x ^ n.
    + +
    +Lemma power_eq3 {A:Type} `{M: @EMonoid A E_op E_one E_eq}(x:A) :
    x ^ 1 == x.
    + +
    +
    + +
    +

    The binary exponentiation function (exponents in positive)

    + +
    + +

    + + +
    + +The auxiliary function below computes , where +the "accumulator" acc is intented to be an already computed power of x: + +
    + + +
    +
    + +
    +Fixpoint binary_power_mult `{M: @EMonoid A E_op E_one E_eq}
    +         (x a:A)(p:positive) : A
    +  :=
    +  match p with
    +    | xHa × x
    +    | xO qbinary_power_mult (x × x) a q
    +    | xI qbinary_power_mult (x × x) (a × x) q
    +  end.
    + +
    +
    + +
    +

    + + +
    + +The following function decomposes the exponent p + into , then calls binary_power_mult + with and . + +
    + + +
    +
    + +
    +Fixpoint Pos_bpow `{M: @EMonoid A E_op E_one E_eq}
    +         (x:A)(p:positive) :=
    match p with
    +  | xHx
    +  | xO qPos_bpow (x × x) q
    +  | xI qbinary_power_mult (x × x) x q
    +end.
    + +
    +
    + +
    +*** + It is straightforward to adapt Pos_bpow + for accepting exponents of type N : + +
    +
    + +
    +Definition N_bpow `{M: @EMonoid A E_op E_one E_eq} x (n:N) :=
    +  match n with
    +  | 0%NE_one
    +  | Npos pPos_bpow x p
    +  end.
    + +
    +Infix "^b" := N_bpow (at level 30, right associativity) : M_scope.
    + +
    +
    + +
    +

    Properties of the power function

    + + +
    + + Taking power as a reference, it remains to prove two kinds of properties +
      +
    • Mathematical properties of exponentiation, i.e the function power, + +
      + + +
    • +
    • proving correctness of functions Pos_bpow and N_bpow + +
    • +
    + +
    + +First, let us consider some Emonoid and define some useful notations and tactics: + +
    +
    + +
    +Section M_given.
    + +
    Variables (A:Type) (E_op : Mult_op A)(E_one:A) (E_eq : Equiv A).
    Context (M:EMonoid E_op E_one E_eq).
    + +
    +#[global] Instance Eop_proper : Proper (equiv ==> equiv ==> equiv) E_op.
    +Qed.
    + +
    +Ltac monoid_rw :=
    +    rewrite Eone_left ||
    +    rewrite Eone_right ||
    +    rewrite Eop_assoc .
    + +
    +Ltac monoid_simpl := repeat monoid_rw.
    + +
    + +
    +Section About_power.
    + +
    +#[global] Instance power_proper : Proper (equiv ==> eq ==> equiv) power.
    + +
    +Lemma power_of_plus : x n p, x ^ (n + p) == x ^ n × x ^ p.
    + +
    +Ltac power_simpl := repeat (monoid_rw || rewrite <- power_of_plus).
    + +
    +Lemma power_commute : x n p,
    +                        x ^ n × x ^ p == x ^ p × x ^ n.
    + +
    +Lemma power_commute_with_x : x n, x × x ^ n == x ^ n × x.
    + +
    +Lemma power_of_power : x n p, (x ^ n) ^ p == x ^ (p × n).
    + +
    +Lemma sqr_eqn : x, x ^ 2 == x × x.
    + +
    +Ltac factorize := repeat (
    +                rewrite <- power_commute_with_x ||
    +                rewrite <- power_of_plus ||
    +                rewrite <- sqr_eqn ||
    +                rewrite <- power_eq2 ||
    +                rewrite power_of_power).
    + +
    +Lemma power_of_square : x n, (x × x) ^ n == x ^ n × x ^ n.
    + +
    +
    + +
    +

    Correctness of the binary algorithm

    + + +
    + +Correctness of the "concrete" functions Pos_bpow and N_bpow +with respect to the more abstract function power is expressed +by extensional equalities, taking into account the conversion between +various representations of natural numbers. + +
    + + +
    +
    + +
    +Lemma binary_power_mult_ok :
    +   p a x, binary_power_mult x a p == a × x ^ Pos.to_nat p.
    + +
    +Lemma Pos_bpow_ok :
    +   (p:positive)(x:A), Pos_bpow x p == x ^ Pos.to_nat p.
    + +
    +Lemma N_bpow_ok :
    + (x:A) (n:N), x ^b n == x ^ N.to_nat n.
    + +
    +Lemma N_bpow_ok_R :
    +   (x:A) (n:nat), x ^b (N.of_nat n) == x ^ n.
    + +
    +Lemma Pos_bpow_ok_R :
    +   (x:A) (n:nat), n 0
    +                      Pos_bpow x (Pos.of_nat n) == x ^ n.
    + +
    +End About_power.
    + +
    +Lemma N_bpow_commute : x n p,
    +                        x ^b n × x ^b p ==
    +                        x ^b p × x ^b n.
    + +
    +
    + +
    +

    Remark

    + + +
    + +Iw we normalize exponentiation functions with a given exponent, we notice +that the obtained functions do not execute the same computations, but it is +hard to visualize why the binary method is more efficient than the na\u00efve one. + +
    + + +
    +
    + +
    +Eval simpl in fun (x:A) ⇒ x ^b 17.
    +
    + +
    +[ + = fun x : A + x × + (x × x × (x × x) × (x × x × (x × x)) × + (x × x × (x × x) × (x × x × (x × x)))) + : A A +] + +
    +
    +Eval simpl in fun xx ^ 17.
    + +
    +
    + +
    +
    += fun x : A
    +       x × (x × (x × (x × (x × (x × (x × (x ×
    +           (x × (x × (x × (x × (x × (x × (x × (x × (x × one))))))))))))))))
    +     : AA +
    + +
    +
    +
    + +
    + +
    +Definition pow_17 (x:A) :=
    +  let x2 := x × x in
    +  let x4 := x2 × x2 in
    +  let x8 := x4 × x4 in
    +  let x16 := x8 × x8 in
    +  x16 × x.
    + +
    +Eval cbv zeta beta delta [pow_17] in pow_17.
    +
    + +
    + = fun x : A => + x * x * (x * x) * (x * x * (x * x)) * + (x * x * (x * x) * (x * x * (x * x))) * x + : A -> A + +
    + + +
    + +In order to compare the real computations needed to raise some to its -th +power, we need to make more explicit how intermediate values are used during +some computation. +This is described in the module (see ). + +
    + + +
    + +

    Properties of Abelian Monoids

    + + +
    + + Some equalities hold in the restricted context of abelian (a.k.a. commutative) + monoids. + +
    +
    + +
    +Section Power_of_op.
    Context {AM:Abelian_EMonoid M}.
    + +
    +Theorem power_of_mult :
    +    n x y, (x × y) ^ n == x ^ n × y ^ n.
    + +
    +End Power_of_op.
    + +
    +End M_given.
    + +
    +Infix "^" := power : M_scope.
    + +
    + +
    +Ltac monoid_simpl M := generalize (Eop_proper M); intro;
    +  repeat ( rewrite (Eone_left ) ||
    +    rewrite (Eone_right ) ||
    +    rewrite (Eop_assoc )).
    + +
    +  Ltac power_simpl M := generalize (Eop_proper M); intro;
    +  repeat ( rewrite Eone_left || rewrite Eone_right || rewrite Eop_assoc
    +     || rewrite power_of_plus).
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/additions.Strategies.html b/theories/html/additions.Strategies.html new file mode 100644 index 00000000..cb439291 --- /dev/null +++ b/theories/html/additions.Strategies.html @@ -0,0 +1,69 @@ + + + + + +additions.Strategies + + + + +
    + + + +
    + +

    Library additions.Strategies

    + +
    +
    + +
    +A strategy is any function of type positive positive +such that, if , then . + +
    + + +
    +
    + +
    +Require Import Arith NArith Pow Compatibility More_on_positive.
    +Open Scope positive_scope.
    + +
    +Open Scope positive_scope.
    +Class Strategy (gamma : positive positive):=
    +  {
    +  gamma_lt : p:positive, 3 < p gamma p < p;
    +  gamma_gt : p:positive, 3 < p 1 < gamma p
    +  }.
    + +
    +Ltac gamma_bounds gamma i H1 H2 :=
    +  assert (H1 : 1 < gamma i) by (apply gamma_gt;auto with chains);
    +  assert (H2 : gamma i < i) by (apply gamma_lt; auto with chains).
    + +
    +Lemma div_gamma_pos {gamma}{Hgamma : Strategy gamma}
    +: (p:positive) q r,
    +    N.pos_div_eucl p (N.pos (gamma p)) = (q, r)
    +    3 < p
    +    (0 < q)%N.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/additions.Trace_exercise.html b/theories/html/additions.Trace_exercise.html new file mode 100644 index 00000000..16228079 --- /dev/null +++ b/theories/html/additions.Trace_exercise.html @@ -0,0 +1,99 @@ + + + + + +additions.Trace_exercise + + + + +
    + + + +
    + +

    Library additions.Trace_exercise

    + +
    +
    + +
    +Solution to an exercise +
    +
    + +
    +From Coq Require Import List.
    +Import ListNotations.
    +Require Import Addition_Chains PArith.
    + +
    +Fixpoint fusion {A} (compare : A A comparison)(l1 l2 : list A) :=
    +      let fix aux l2 {struct l2}:=
    +          match l1,l2 with
    +            | nil,_l2
    +            | _,nill1
    +            | a1::l1',a2::l2'
    +              match compare a1 a2 with
    +                Lta2 :: aux l2'
    +              | Eqa1 :: fusion compare l1' l2'
    +              | Gta1 :: fusion compare l1' l2
    +              end
    +          end
    +      in aux l2.
    + +
    +Open Scope positive_scope.
    + +
    +
    + +
    +Traces with full information +
    +
    + +
    +Inductive info : Set :=
    +  Init
    +| Add (p q : positive).
    + +
    +Definition trace_compare (t t' : positive × info) :=
    +  match t, t' with
    +    (x,_),(y,_)Pos.compare x y end.
    + +
    +Definition trace_mult (l l' : list (positive × info)):=
    +    match l, l' with
    +    nil, _ | _,nill
    +  | ((x,_)::l1),((y,_)::l'1) ⇒ (x+y,Add x y):: fusion trace_compare l l'
    +  end.
    + +
    +Definition chain_trace c :=
    +  List.rev (chain_execute c trace_mult ((1,Init)::nil)).
    + +
    +Definition exponents c := List.map fst (chain_trace c).
    + +
    + +
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/additions.Wf_transparent.html b/theories/html/additions.Wf_transparent.html new file mode 100644 index 00000000..cf65c156 --- /dev/null +++ b/theories/html/additions.Wf_transparent.html @@ -0,0 +1,69 @@ + + + + + +additions.Wf_transparent + + + + +
    + + + +
    + +

    Library additions.Wf_transparent

    + +
    +
    + +
    +Transparent versions of wf_incl and wf_inverse_image + +
    +
    + +
    +From Coq Require Export Relation_Definitions.
    + +
    +Lemma wf_incl_transparent :
    + (A : Type) (R1 R2 : A A Prop),
    +Relation_Definitions.inclusion A R1 R2 well_founded R2 well_founded R1.
    + +
    +Section Inverse_Image_transp. +
    +  Variables A B : Type.
    +  Variable R : B B Prop.
    +  Variable f : A B.
    + +
    +  Let Rof (x y:A) : Prop := R (f x) (f y).
    + +
    +  Remark Acc_lemma : y:B, Acc R y x:A, y = f x Acc Rof x.
    + +
    +  Lemma Acc_inverse_image : x:A, Acc R (f x) Acc Rof x.
    + +
    +  Theorem wf_inverse_image_transparent : well_founded R well_founded Rof.
    + +
    +End Inverse_Image_transp.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/additions.fib.html b/theories/html/additions.fib.html new file mode 100644 index 00000000..ccfcf3b6 --- /dev/null +++ b/theories/html/additions.fib.html @@ -0,0 +1,333 @@ + + + + + +additions.fib + + + + +
    + + + +
    + +

    Library additions.fib

    + +
    +
    + +
    +author Yves Bertot, Inria +
    +
    + +
    +From Coq Require Import Extraction ZArith Lia.
    + +
    +From mathcomp Require Import all_ssreflect all_algebra.
    + +
    +Set Implicit Arguments.
    + +
    +Fixpoint fib (n : nat) :=
    +  if n is S (S p as p') then fib p + fib p' else 1.
    + +
    +Fixpoint fibt (n : nat) (acc1 acc2 : nat) : nat :=
    +  if n is S p then fibt p (acc2 + acc1) acc1 else acc1.
    + +
    +Fixpoint Zfibt (n : nat) (acc1 acc2 : Z) : Z :=
    +  if n is S p then Zfibt p (Z.add acc2 acc1) acc1 else acc1.
    + +
    +Lemma fibt_aux (n k: nat) : fibt n (fib k.+1) (fib k) = fib (n + k).+1.
    + +
    +Lemma fibtP (n : nat) : fibt n 1 0 = fib n.
    + +
    +Fixpoint bits p acc : list bool :=
    +  match p with
    +  | xHtrue :: acc
    +  | xI pbits p (true :: acc)
    +  | xO pbits p (false :: acc)
    +  end.
    + +
    +Lemma bits_cat p a : bits p a = bits p [::] ++ a.
    + +
    +Lemma bitsP p :
    +  Pos.to_nat p =
    +  \sum_(i < size (bits p [::])) nth false (bits p [::])
    +      (size (bits p [::]) - 1 - i) × 2 ^ i.
    + +
    +Section with_matrices.
    + +
    +Variable R : comUnitRingType.
    + +
    +Import GRing.Theory.
    +Open Scope ring_scope.
    + +
    +Definition ZtoR (x : Z) : R :=
    +  if (Z.ltb x 0) then
    +    -(Z.abs_nat (-x))%:R else (Z.abs_nat x)%:R.
    + +
    +Lemma ZtoRD (x y : Z) : ZtoR (x + y) = ZtoR x + ZtoR y.
    + +
    +Lemma ZtoRM x y : ZtoR (x × y) = ZtoR x × ZtoR y.
    + +
    +Lemma iter_mul (n : nat) (m v : 'M[R]_2) :
    +  iter n [eta *%R m] v = m ^+ n × v.
    + +
    +Definition fibm : 'M[R]_2 :=
    +  \matrix_(i, j) if (val i == 1%N) && (val j == 1%N) then 0%R else 1%R.
    + +
    +Lemma fibmP n : fibm ^+ n.+2 =
    +  \matrix_(i, j)
    +     if (val i == 0%N) && (val j == 0%N) then (fib n.+2)%:R else
    +     if ((val i + val j == 1)%N) then (fib n.+1)%:R else
    +      (fib n)%:R.
    + +
    + +
    +Definition m4lval (l : seq Z) (i j : nat) :=
    +  nth Z0 l (j + 2 × i).
    + +
    +Definition m4lmx (l : seq Z) : 'M[R]_2 :=
    +  \matrix_(i, j) (ZtoR (m4lval l i j)).
    + +
    +Definition m4lmul (l1 l2 : seq Z) :=
    +  (Z.add (m4lval l1 0 0 × m4lval l2 0 0) (m4lval l1 0 1 × m4lval l2 1 0)) ::
    +  (Z.add (m4lval l1 0 0 × m4lval l2 0 1) (m4lval l1 0 1 × m4lval l2 1 1)) ::
    +  (Z.add (m4lval l1 1 0 × m4lval l2 0 0) (m4lval l1 1 1 × m4lval l2 1 0)) ::
    +  (Z.add (m4lval l1 1 0 × m4lval l2 0 1) (m4lval l1 1 1 × m4lval l2 1 1)) :: nil.
    + +
    +Open Scope Z_scope.
    +Definition m4lfib :=
    +  [:: 1; 1;
    +      1; 0].
    + +
    +Close Scope Z_scope.
    + +
    + +
    +Definition m3lmx (l : seq Z) : 'M[R]_2 :=
    +  \matrix_(i, j)
    +   if (i == j) then
    +     ZtoR (nth Z0 l i)
    +   else
    +     ZtoR (nth Z0 l 2).
    + +
    +Definition m3lmul (l1 l2 : seq Z) :=
    +  (Z.add (nth Z0 l1 0 × nth Z0 l2 0) (nth Z0 l1 2 × nth Z0 l2 2)) ::
    +  (Z.add (nth Z0 l1 2 × nth Z0 l2 2) (nth Z0 l1 1 × nth Z0 l2 1)) ::
    +(Z.add (nth Z0 l1 0 × nth Z0 l2 2) (nth Z0 l1 2 × nth Z0 l2 1)) :: nil.
    + +
    +Definition m3lfib := [:: Z.pos xH ; Z0; Z.pos xH].
    + +
    +Fixpoint fastexp (m : list Z) (p : positive) : list Z :=
    +  match p with
    +  | xHm
    +  | xI p
    +    let r := fastexp m p in
    +    m3lmul (m3lmul r r) m
    +  | xO p
    +    let r := fastexp m p in
    +      m3lmul r r
    +  end.
    + +
    +Fixpoint fastexp2 (m : list Z) (p : positive) (acc : list Z) : list Z :=
    +  match p with
    +  | xHacc
    +  | xO pfastexp2 m p (m3lmul acc acc)
    +  | xI pfastexp2 m p (m3lmul m (m3lmul acc acc))
    +  end.
    + +
    +Definition fastexp3 {A : Type} (mul : A A A)
    +  (m : A) :=
    +  fix f (l : list bool) (acc : A) : A :=
    +  match l with
    +  | nilacc
    +  | true :: lf l (mul (mul acc acc) m)
    +  | false :: lf l (mul acc acc)
    +  end.
    + +
    +Definition my_pow {A : Type} (mul : A A A) (m : A)
    +  (p : positive)
    +  : A :=
    +  fastexp3 mul m (behead (bits p nil)) m.
    + +
    +Definition m3lid := [:: Z.pos xH; Z0; Z0; Z.pos xH].
    + +
    +Definition slowexp (m : list Z) p :=
    +  Pos.iter (m3lmul m) m3lid p.
    + +
    + +
    + +
    + +
    +Definition binary_power_mult (mul : list Z list Z list Z) :
    +  list Z list Z positive list Z :=
    +  fix f (x a : list Z) (p : positive) : list Z :=
    +  match p with
    +  | xHmul a x
    +  | xO qf (mul x x) a q
    +  | xI qf (mul x x) (mul a x) q
    +end.
    + +
    +Definition fastexp4 (mul : list Z list Z list Z)
    +  : list Z positive list Z :=
    +  fix f (x : list Z) (p : positive) :=
    +  match p with
    +  | xHx
    +  | xO qf (mul x x) q
    +  | xI qbinary_power_mult mul (mul x x) x q
    +  end.
    + +
    +Lemma m3lmulP l1 l2:
    +  GRing.comm (m3lmx l1) (m3lmx l2)
    +  m3lmx (m3lmul l1 l2) = m3lmx l1 × m3lmx l2.
    + +
    +Lemma m3lfibP : m3lmx m3lfib = fibm.
    + +
    +Lemma iter_comm {A : Type} (op : A A A) (e1 e2 : A)
    +  (assoc: associative op)(cm : op e1 e2 = op e2 e1) n :
    +  op e1 (iter n (op e1) e2) = op (iter n (op e1) e2) e1.
    + +
    +Lemma iter_combine {A : Type} (op : A A A) (e1 e2 : A)
    +  (assoc: associative op)(cm : op e1 e2 = op e2 e1) n m :
    +  op (iter n (op e1) e2) (iter m (op e1) e2) =
    +  (iter (n + m) (op e1) (op e2 e2)).
    + +
    +Lemma fastexp3P {A : Type} (op : A A A) (id e : A) (h l : nat)
    +  (v : list bool) (assoc : associative op) (cm : op id e = op e id)
    +  (idn : a, op id a = a):
    +  l = (\sum_(i < size v) nth false v (size v - 1 - i) × 2 ^ i)%N
    +  iter (h × 2 ^ size v + l) (op e) id =
    +  fastexp3 op e v (iter h (op e) id).
    + +
    +Lemma headbits p l : bits p l = true :: behead (bits p l).
    + +
    +Lemma my_powP m p :
    +  @my_pow 'M[R]_2 *%R m p = m ^ Pos.to_nat p.
    + +
    +Lemma my_pow_m3lmul m p :
    +  m3lmx (my_pow m3lmul m p) = my_pow *%R (m3lmx m) p.
    + +
    +Definition m2lmul : list Z list Z list Z :=
    fun l1 l2
    let a := nth Z0 l1 0 in
    let b := nth Z0 l1 1 in
    let c := nth Z0 l2 0 in
    let d := nth Z0 l2 1 in
    +   [:: Z.add (a × (c + d)) (b × c) ; Z.add (a × c) (b × d)].
    + +
    +Definition m2lmx (l : list Z) : 'M[R]_2 :=
    +  let a := nth Z0 l 0 in
    +  let b := nth Z0 l 1 in
    +  \matrix_(i, j)
    +      if ((val i == 0%N) && (val j == 0%N)) then
    +         ZtoR (a + b)
    +      else if (i == j) then
    +         ZtoR b
    +      else ZtoR a.
    + +
    +Definition m2lfib := [:: Zpos xH; Z0].
    + +
    +Lemma m2lfibP : m2lmx m2lfib = fibm.
    + +
    +Lemma m2lmulP m1 m2 :
    +  m2lmx (m2lmul m1 m2) = m2lmx m1 × m2lmx m2.
    + +
    +Lemma my_pow_m2lmul m p :
    +  m2lmx (my_pow m2lmul m p) = my_pow *%R (m2lmx m) p.
    + +
    +Lemma fibZ3P p :
    +  ZtoR (nth Z0 (my_pow m3lmul m3lfib p) 0) = (fib (Pos.to_nat p))%:R.
    + +
    +Lemma fibZ2P p :
    +  ZtoR (nth Z0 (my_pow m2lmul m2lfib p) 0 +
    +        nth Z0 (my_pow m2lmul m2lfib p) 1) = (fib (Pos.to_nat p))%:R.
    + +
    +Definition m3lpow (m : list Z) (n : positive) :=
    +  fastexp3 m3lmul m (behead (bits n nil)) m.
    + +
    +Definition m2lpow (m : list Z) (n : positive) :=
    +  fastexp3 m2lmul m (behead (bits n nil)) m.
    + +
    +End with_matrices.
    + +
    +Definition bigarg := 30000%positive.
    + +
    +Extraction "bigfib" Z.ltb Z.div_eucl Pos.iter Z.log2 fastexp4
    +  my_pow m4lmul m3lmul m2lmul m4lfib m3lfib m2lfib bigarg.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/coqdoc.css b/theories/html/coqdoc.css new file mode 100644 index 00000000..48096e55 --- /dev/null +++ b/theories/html/coqdoc.css @@ -0,0 +1,338 @@ +body { padding: 0px 0px; + margin: 0px 0px; + background-color: white } + +#page { display: block; + padding: 0px; + margin: 0px; + padding-bottom: 10px; } + +#header { display: block; + position: relative; + padding: 0; + margin: 0; + vertical-align: middle; + border-bottom-style: solid; + border-width: thin } + +#header h1 { padding: 0; + margin: 0;} + + +/* Contents */ + +#main{ display: block; + padding: 10px; + font-family: sans-serif; + font-size: 100%; + line-height: 100% } + +#main h1 { line-height: 95% } /* allow for multi-line headers */ + +#main a.idref:visited {color : #416DFF; text-decoration : none; } +#main a.idref:link {color : #416DFF; text-decoration : none; } +#main a.idref:hover {text-decoration : none; } +#main a.idref:active {text-decoration : none; } + +#main a.modref:visited {color : #416DFF; text-decoration : none; } +#main a.modref:link {color : #416DFF; text-decoration : none; } +#main a.modref:hover {text-decoration : none; } +#main a.modref:active {text-decoration : none; } + +#main .keyword { color : #cf1d1d } +#main { color: black } + +.section { background-color: rgb(60%,60%,100%); + padding-top: 13px; + padding-bottom: 13px; + padding-left: 3px; + margin-top: 5px; + margin-bottom: 5px; + font-size : 175% } + +h2.section { background-color: rgb(80%,80%,100%); + padding-left: 3px; + padding-top: 12px; + padding-bottom: 10px; + font-size : 130% } + +h3.section { background-color: rgb(90%,90%,100%); + padding-left: 3px; + padding-top: 7px; + padding-bottom: 7px; + font-size : 115% } + +h4.section { +/* + background-color: rgb(80%,80%,80%); + max-width: 20em; + padding-left: 5px; + padding-top: 5px; + padding-bottom: 5px; +*/ + background-color: white; + padding-left: 0px; + padding-top: 0px; + padding-bottom: 0px; + font-size : 100%; + font-weight : bold; + text-decoration : underline; + } + +#main .doc { margin: 0px; + font-family: sans-serif; + font-size: 100%; + line-height: 125%; + max-width: 40em; + color: black; + padding: 10px; + background-color: #90bdff } + +.inlinecode { + display: inline; +/* font-size: 125%; */ + color: #666666; + font-family: monospace } + +.doc .inlinecode { + display: inline; + font-size: 120%; + color: rgb(30%,30%,70%); + font-family: monospace } + +.doc .inlinecode .id { + color: rgb(30%,30%,70%); +} + +.inlinecodenm { + display: inline; + color: #444444; +} + +.doc .code { + display: inline; + font-size: 120%; + color: rgb(30%,30%,70%); + font-family: monospace } + +.comment { + display: inline; + font-family: monospace; + color: rgb(50%,50%,80%); +} + +.code { + display: block; +/* padding-left: 15px; */ + font-size: 110%; + font-family: monospace; + } + +table.infrule { + border: 0px; + margin-left: 50px; + margin-top: 10px; + margin-bottom: 10px; +} + +td.infrule { + font-family: monospace; + text-align: center; +/* color: rgb(35%,35%,70%); */ + padding: 0px; + line-height: 100%; +} + +tr.infrulemiddle hr { + margin: 1px 0 1px 0; +} + +.infrulenamecol { + color: rgb(60%,60%,60%); + font-size: 80%; + padding-left: 1em; + padding-bottom: 0.1em +} + +/* Pied de page */ + +#footer { font-size: 65%; + font-family: sans-serif; } + +/* Identifiers: ) */ + +.id { display: inline; } + +.id[title="constructor"] { + color: rgb(60%,0%,0%); +} + +.id[title="var"] { + color: rgb(40%,0%,40%); +} + +.id[title="variable"] { + color: rgb(40%,0%,40%); +} + +.id[title="definition"] { + color: rgb(0%,40%,0%); +} + +.id[title="abbreviation"] { + color: rgb(0%,40%,0%); +} + +.id[title="lemma"] { + color: rgb(0%,40%,0%); +} + +.id[title="instance"] { + color: rgb(0%,40%,0%); +} + +.id[title="projection"] { + color: rgb(0%,40%,0%); +} + +.id[title="method"] { + color: rgb(0%,40%,0%); +} + +.id[title="inductive"] { + color: rgb(0%,0%,80%); +} + +.id[title="record"] { + color: rgb(0%,0%,80%); +} + +.id[title="class"] { + color: rgb(0%,0%,80%); +} + +.id[title="keyword"] { + color : #cf1d1d; +/* color: black; */ +} + +/* Deprecated rules using the 'type' attribute of (not xhtml valid) */ + +.id[type="constructor"] { + color: rgb(60%,0%,0%); +} + +.id[type="var"] { + color: rgb(40%,0%,40%); +} + +.id[type="variable"] { + color: rgb(40%,0%,40%); +} + +.id[title="binder"] { + color: rgb(40%,0%,40%); +} + +.id[type="definition"] { + color: rgb(0%,40%,0%); +} + +.id[type="abbreviation"] { + color: rgb(0%,40%,0%); +} + +.id[type="lemma"] { + color: rgb(0%,40%,0%); +} + +.id[type="instance"] { + color: rgb(0%,40%,0%); +} + +.id[type="projection"] { + color: rgb(0%,40%,0%); +} + +.id[type="method"] { + color: rgb(0%,40%,0%); +} + +.id[type="inductive"] { + color: rgb(0%,0%,80%); +} + +.id[type="record"] { + color: rgb(0%,0%,80%); +} + +.id[type="class"] { + color: rgb(0%,0%,80%); +} + +.id[type="keyword"] { + color : #cf1d1d; +/* color: black; */ +} + +.inlinecode .id { + color: rgb(0%,0%,0%); +} + + +/* TOC */ + +#toc h2 { + padding: 10px; + background-color: rgb(60%,60%,100%); +} + +#toc li { + padding-bottom: 8px; +} + +/* Index */ + +#index { + margin: 0; + padding: 0; + width: 100%; +} + +#index #frontispiece { + margin: 1em auto; + padding: 1em; + width: 60%; +} + +.booktitle { font-size : 140% } +.authors { font-size : 90%; + line-height: 115%; } +.moreauthors { font-size : 60% } + +#index #entrance { + text-align: center; +} + +#index #entrance .spacer { + margin: 0 30px 0 30px; +} + +#index #footer { + position: absolute; + bottom: 0; +} + +.paragraph { + height: 0.75em; +} + +ul.doclist { + margin-top: 0em; + margin-bottom: 0em; +} + +.code :target { + border: 2px solid #D4D4D4; + background-color: #e5eecc; +} diff --git a/theories/html/gaia_hydras.GCanon.html b/theories/html/gaia_hydras.GCanon.html new file mode 100644 index 00000000..44ba1f7c --- /dev/null +++ b/theories/html/gaia_hydras.GCanon.html @@ -0,0 +1,204 @@ + + + + + +gaia_hydras.GCanon + + + + +
    + + + +
    + +

    Library gaia_hydras.GCanon

    + +
    +
    + +
    +Gaia-compatible canonical sequences + +
    + +(imported from hydras.Epsilon0.Canon) +
    +
    + +
    +From mathcomp Require Import all_ssreflect zify.
    +From hydras Require Import Canon.
    +Require Import T1Bridge.
    +From hydras Require Import T1.
    + +
    +From gaia Require Import ssete9.
    +Import CantorOrdinal.
    +Set Implicit Arguments.
    + +
    +
    + +
    +Importation of Ketonen-Solovay's machinery into gaia's world + (work in progress) + +
    + + Note that a lemma Foo may mask Canon.Foo + +
    +
    + +
    +#[global] Notation hcanon := Epsilon0.Canon.canon.
    + +
    +Definition canon (a: T1) (i:nat) : T1 := h2g (hcanon (g2h a) i).
    + +
    +Notation canonS a := (fun icanon a (S i)).
    + +
    +Example ex0: canon (phi0 T1omega) 6 == phi0 (\F 6).
    + +
    +Example ex1: canonS (phi0 T1omega) 6 == phi0 (\F 7).
    + +
    +
    + +
    +rewriting lemmas +
    +
    + +
    +Lemma gcanon_zero i: canon zero i = zero.
    + +
    +Lemma g2h_canon a i: g2h (canon a i) = hcanon (g2h a) i.
    + +
    +Lemma canon_succ i a (Ha: T1nf a):
    +  canon (T1succ a) i = a.
    + +
    +Lemma canonS_LE a n: T1nf a canon a n.+1 canon a n.+2.
    + +
    +Lemma canon0_phi0_succE a:
    +  T1nf a canon (phi0 (T1succ a)) 0 = zero.
    + +
    +Lemma canon0_lt a:
    +  T1nf a a zero T1lt (canon a 0) a.
    + +
    +Lemma canonS_lt (i : nat) [a : T1]:
    +  T1nf a a zero T1lt (canon a i.+1) a.
    + +
    +Lemma canon_lt (i : nat) [a : T1]: T1nf a a zero canon a i < a.
    + +
    +Lemma canonS_cons_not_zero (i : nat) (a : T1) (n : nat) (b : T1):
    +  a zero canon (cons a n b) i.+1 zero.
    + +
    +Lemma limit_canonS_not_zero i lambda:
    +  T1nf lambda T1limit lambda canon lambda i.+1 zero.
    + +
    +Lemma canonS_phi0_succE (i : nat) (gamma : T1):
    +  T1nf gamma canon (phi0 (T1succ gamma)) i.+1 = cons gamma i zero.
    + +
    +Lemma canon_SSn_zero (i : nat) (a : T1) (n : nat):
    +  T1nf a
    +  canon (cons a n.+1 zero) i = cons a n (canon (phi0 a) i).
    + +
    +Lemma canonS_zero_inv (a : T1) (i : nat):
    +  canon a i.+1 = zero a = zero a = one.
    + +
    +Lemma canon_lim1 i (lambda: T1) :
    +  T1nf lambda
    +  T1limit lambda canon (phi0 lambda) i = phi0 (canon lambda i).
    + +
    +Lemma canon_tail a (n : nat) b (i : nat):
    +  T1nf (cons a n b)
    +  b zero canon (cons a n b) i = cons a n (canon b i).
    + +
    +Lemma canonS_ocons_succE i n (gamma: T1)(Hnf : T1nf gamma) :
    +  canon (cons (T1succ gamma) n.+1 zero) i.+1 =
    +    cons (T1succ gamma) n (cons gamma i zero).
    + +
    +Lemma canon_lim2 i n (lambda : T1) (Hnf: T1nf lambda) (Hlim: T1limit lambda):
    +  canon (cons lambda n.+1 zero) i = cons lambda n (phi0 (canon lambda i)).
    + +
    +Lemma canon_lim3 i n a lambda (Ha: T1nf a)
    +      (Hlambda: T1nf lambda) (Hlim :T1limit lambda) :
    +  canon (cons a n lambda) i = cons a n (canon lambda i).
    + +
    +Lemma canon_limit_strong lambda :
    +  T1nf lambda T1limit lambda
    +   b, T1nf b
    +               T1lt b lambda {i : nat | b < canon lambda i}.
    + +
    +Lemma T1nf_canon a i : T1nf a T1nf (canon a i).
    + +
    +Lemma gcanon_limit_v2 (lambda: T1):
    +  T1nf lambda T1limit lambda limit_v2 (canon lambda) lambda.
    + +
    +Lemma canon_limit_mono lambda i j (Hnf : T1nf lambda)
    +        (Hlim : T1limit lambda) (Hij : (i < j)%N) :
    +  canon lambda i < canon lambda j.
    + +
    Lemma canon_limit_of lambda (Hnf : T1nf lambda) (Hlim : T1limit lambda) :
    +   limit_of (canon lambda) lambda.
    + +
    +
    + +
    +

    Adaptation of canon to type E0

    + +
    +
    + +
    +#[program] Definition E0Canon (a: E0) (i: nat): E0 :=
    +   @mkE0 (canon (cnf a) i) _.
    + +
    +Lemma E0_canon_lt (a: E0) i:
    +  cnf a zero E0lt (E0Canon a i) a.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/gaia_hydras.GF_alpha.html b/theories/html/gaia_hydras.GF_alpha.html new file mode 100644 index 00000000..1f7a3909 --- /dev/null +++ b/theories/html/gaia_hydras.GF_alpha.html @@ -0,0 +1,169 @@ + + + + + +gaia_hydras.GF_alpha + + + + +
    + + + +
    + +

    Library gaia_hydras.GF_alpha

    + +
    +
    + +
    +Gaia-compatible F_ alpha fast growing functions + +
    + +(imported from hydras.Epsilon0.F_alpha ) + +
    +
    + +
    +From mathcomp Require Import all_ssreflect zify.
    +From gaia Require Export ssete9.
    +From Coq Require Import Logic.Eqdep_dec Arith.
    +From hydras Require Import DecPreOrder.
    +From hydras Require Import T1 E0.
    +From hydras Require Paths.
    + +
    +From hydras Require Import primRec.
    +From hydras Require Import F_alpha F_omega.
    + +
    +From gaia_hydras Require Import T1Bridge GCanon GHprime.
    + +
    +Set Implicit Arguments.
    + +
    +
    + +
    +

    Rapidly growing functions

    + +
    +
    + +
    +Notation hF_ := F_alpha.F_.
    + +
    +Definition F_ (alpha : E0) := F_alpha.F_ (E0_g2h alpha).
    + +
    +#[program]
    Definition T1F_ (a : T1)(Hnf : T1nf a == true) (n:nat) : nat:=
    +  (F_ (@mkE0 a _) n).
    + +
    +
    + +
    +Please note that a lemma foo may mask F_alpha.Foo +
    +
    + +
    +Lemma F_alpha_gt (alpha : E0) (n : nat): (n < F_ alpha n)%N.
    + +
    +Lemma F_alpha_mono (alpha: E0): strict_mono (F_ alpha).
    + +
    +Lemma F_alpha_dom alpha:
    +  dominates_from 1 (F_ (E0_succ alpha)) (F_ alpha).
    + +
    + +
    +Lemma F_alpha_Succ_le alpha:
    fun_le (F_ alpha) (F_ (E0_succ alpha)).
    + +
    +Lemma F_alpha_positive (alpha : hE0) (n : nat): (0 < F_alpha.F_ alpha n)%N.
    + +
    +Lemma F_zeroE i: F_ E0zero i = i.+1.
    + +
    +Lemma F_mono_l alpha beta:
    +  E0lt beta alpha dominates (F_ alpha) (F_ beta).
    + +
    +Lemma F_alpha_0_eq (alpha : E0): F_ alpha 0 = 1.
    + +
    +Lemma F_succE alpha i :
    +  F_ (E0_succ alpha) i = Iterates.iterate (F_ alpha) i.+1 i.
    + +
    +Lemma F_limE alpha i:
    +  T1limit (cnf alpha) F_ alpha i = F_ (E0Canon alpha i) i.
    + +
    +
    + +
    + numerical examples +
    +
    + +
    +Lemma LF1 i: F_ (E0fin 1) i = ((2 × i) .+1)%N.
    + +
    +Lemma LF2 i: (Exp2.exp2 i × i < F_ (E0fin 2) i)%N.
    + +
    +Lemma LF2' i: (1 i)%N (Exp2.exp2 i < F_ (E0fin 2) i)%N.
    + +
    +Lemma LF3_2:
    +  Iterates.dominates_from 2 (F_ (E0fin 3))
    +    (fun n : natIterates.iterate Exp2.exp2 n.+1 n).
    + +
    +Definition Canon_plus n alpha beta :=
    +  Paths.Canon_plus n (E0_g2h alpha) (E0_g2h beta).
    + +
    +Lemma F_restricted_mono_l alpha beta n:
    +    Canon_plus n alpha beta (F_ beta n F_ alpha n)%N.
    + +
    +Lemma H'_F alpha n : (F_ alpha n.+1 H'_ (E0_phi0 alpha) n.+1)%N.
    + +
    +Lemma F_alpha_not_PR_E0 alpha:
    +  E0le E0_omega alpha isPR 1 (F_ alpha) False.
    + +
    +Lemma F_alpha_not_PR alpha (Hnf: T1nf alpha == true):
    +  LE T1omega alpha isPR 1 (@T1F_ alpha Hnf) False.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/gaia_hydras.GHessenberg.html b/theories/html/gaia_hydras.GHessenberg.html new file mode 100644 index 00000000..27ad388d --- /dev/null +++ b/theories/html/gaia_hydras.GHessenberg.html @@ -0,0 +1,150 @@ + + + + + +gaia_hydras.GHessenberg + + + + +
    + + + +
    + +

    Library gaia_hydras.GHessenberg

    + +
    +
    + +
    +Hessenberg (commutative) sum +
    +
    + +
    +From mathcomp Require Import all_ssreflect zify.
    +From Coq Require Import Logic.Eqdep_dec.
    +From hydras Require Import DecPreOrder ON_Generic.
    +From hydras Require Import T1 E0 Hessenberg.
    + +
    +From gaia Require Export ssete9.
    +From gaia_hydras Require Import T1Bridge.
    + +
    +Set Implicit Arguments.
    + +
    +Open Scope cantor_scope.
    + +
    +#[local] Notation hoplus := Epsilon0.Hessenberg.oplus.
    + +
    +Definition oplus alpha beta := h2g (hoplus (g2h alpha) (g2h beta)).
    + +
    +Infix "o+" := oplus: cantor_scope.
    + +
    +Fixpoint o_finite_mult n alpha :=
    +  if n is p.+1 then alpha o+ (o_finite_mult p alpha)
    +  else zero.
    + +
    + +
    + +
    +Module FixpointDef.
    +Fixpoint oplus (alpha beta : T1) : T1 :=
    +  let fix oplus_aux beta {struct beta} :=
    +      match alpha, beta with
    +        | zero, _beta
    +        | _, zeroalpha
    +        | cons a1 n1 b1, cons a2 n2 b2
    +          match compare a1 a2 with
    +            | Gtcons a1 n1 (oplus b1 beta)
    +            | Ltcons a2 n2 (oplus_aux b2)
    +            | Eqcons a1 (S (n1 + n2)%nat) (oplus b1 b2)
    +          end
    +      end
    +  in oplus_aux beta.
    +End FixpointDef.
    + +
    +Lemma oplusE (a b :T1) :
    +  a o+ b =
    +    match a, b with
    +    | zero, _b
    +    | _, zeroa
    +    | cons a1 n1 b1, cons a2 n2 b2
    +        match compare a1 a2 with
    +        | Gtcons a1 n1 (b1 o+ b)
    +        | Eqcons a1 (S (n1 + n2)) (b1 o+ b2)
    +        | Ltcons a2 n2 (a o+ b2)
    +        end
    +    end.
    + +
    +
    + +
    +Equations for oplus +
    +
    + +
    +Lemma oplus0b: left_id zero oplus.
    + +
    +Lemma oplusa0: right_id zero oplus.
    + +
    +Lemma oplus_nf (a b : T1) : T1nf a T1nf b T1nf (a o+ b).
    + +
    +Lemma oplusC (a b: T1): T1nf a T1nf b a o+ b = b o+ a.
    + +
    +Lemma oplusA (a b c: T1) :
    +  T1nf a T1nf b T1nf c a o+ (b o+ c) = a o+ b o+ c.
    + +
    +Lemma oplus_lt1 (a b:T1):
    +  T1nf a T1nf b zero < a b < b o+ a.
    + +
    + +
    +Lemma oplus_lt2 (a b: T1):
    +  T1nf a T1nf b zero < b a < b o+ a.
    + +
    +Lemma oplus_strict_mono_l (a b c: T1):
    +  T1nf a T1nf b T1nf c a < b a o+ c < b o+ c.
    + +
    +Lemma oplus_strict_mono_r (a b c: T1):
    +  T1nf a T1nf b T1nf c b < c a o+ b < a o+ c.
    + +
    +Lemma oplus_lt_phi0 (a b c: T1):
    +  T1nf a T1nf b T1nf c
    +  a < c b < c phi0 a o+ phi0 b < phi0 c.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/gaia_hydras.GHprime.html b/theories/html/gaia_hydras.GHprime.html new file mode 100644 index 00000000..5a133d32 --- /dev/null +++ b/theories/html/gaia_hydras.GHprime.html @@ -0,0 +1,121 @@ + + + + + +gaia_hydras.GHprime + + + + +
    + + + +
    + +

    Library gaia_hydras.GHprime

    + +
    + +
    +
    + +
    +Gaia-compatible H'_ alpha fast growing functions + +
    + +(imported from hydras.Epsilon0.Hprime ) + +
    +
    + +
    +From mathcomp Require Import all_ssreflect zify.
    +From gaia Require Export ssete9.
    +From Coq Require Import Logic.Eqdep_dec.
    +From hydras Require Import DecPreOrder T1 E0.
    +From hydras Require Paths.
    +From hydras Require Import Iterates Hprime L_alpha.
    +From gaia_hydras Require Import T1Bridge GCanon GPaths.
    + +
    +Set Implicit Arguments.
    + +
    +Definition H'_ alpha i := Hprime.H'_ (E0_g2h alpha) i.
    + +
    +
    + +
    +

    Equations for H'_

    + +
    +
    + +
    +Lemma H'_eq1 (i: nat) : H'_ E0zero i = i.
    + +
    +Lemma H'_eq2 alpha i :
    +  H'_ (E0_succ alpha) i = H'_ alpha (S i).
    + +
    +Lemma H'_eq3 alpha i :
    +  E0limit alpha H'_ alpha i = H'_ (E0Canon alpha (S i)) i.
    + +
    +
    + +
    +

    Examples

    + +
    +
    + +
    +Lemma H'_omega k : H'_ E0_omega k = (2 × k).+1 %nat.
    + +
    +Lemma H'_omega_double (k: nat) :
    +  H'_ (E0mul E0_omega (E0fin 2)) k = (4 × k + 3)%coq_nat.
    + +
    +
    + +
    +TODO + import more abstract properties of H' +
    +
    + +
    +Lemma H'_dom alpha beta :
    +  E0lt alpha beta dominates_strong (H'_ beta) (H'_ alpha).
    + +
    +Lemma H'_alpha_mono (alpha : E0) : strict_mono (H'_ alpha).
    + +
    +Theorem H'_alpha_gt alpha (Halpha: alpha E0zero) n :
    +  (n < H'_ alpha n)%N.
    + +
    +Lemma H'_omega_cube_min :
    + k : nat,
    +  0 k (hyper_exp2 k.+1 H'_ (E0_phi0 (E0fin 3)) k)%N.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/gaia_hydras.GHydra.html b/theories/html/gaia_hydras.GHydra.html new file mode 100644 index 00000000..eeac6608 --- /dev/null +++ b/theories/html/gaia_hydras.GHydra.html @@ -0,0 +1,115 @@ + + + + + +gaia_hydras.GHydra + + + + +
    + + + +
    + +

    Library gaia_hydras.GHydra

    + +
    +From mathcomp Require Import all_ssreflect zify.
    + +
    +From Coq Require Import Logic.Eqdep_dec.
    +From hydras Require Import DecPreOrder ON_Generic.
    +From hydras Require Import T1 E0 Hessenberg Hydra_Theorems Hydra_Definitions
    +     Hydra_Termination Battle_length Hydra_Examples
    +     Epsilon0_Needed_Free Epsilon0_Needed_Std.
    +From gaia Require Export ssete9.
    +Require Import T1Bridge GHessenberg GL_alpha GPrelude.
    +Set Implicit Arguments.
    + +
    +Import Hydra_Definitions.
    + +
    +Fixpoint m (h:Hydra) : T1 :=
    +  if h is node (hcons _ _ as hs) then ms hs else zero
    +with ms (s : Hydrae) : T1 :=
    +  if s is hcons h s' then phi0 (m h) o+ ms s' else zero.
    + +
    + +
    +Lemma m_ref h : g2h (m h) = (Hydra_Termination.m h).
    + +
    +Lemma m_nf h : T1nf (m h).
    + +
    +Lemma mVariant: Hvariant nf_Wf free m .
    + +
    +Theorem every_battle_terminates : Termination.
    + +
    +Definition l_std alpha k := (L_ alpha (S k) - k)%nat.
    + +
    +Lemma l_stdE alpha k : l_std alpha k = Battle_length.l_std (E0_g2h alpha) k.
    + +
    +Definition T1toH (a: T1) : Hydra := O2H.iota (g2h a).
    + +
    +Lemma l_std_ok : alpha : E0,
    +    alpha != E0zero
    +     k : nat,
    +      (1 k)%N battle_length standard k (T1toH (cnf alpha))
    +                                  (l_std alpha k).
    + +
    +Section ImpossibilityProof.
    +  Context (b: Battle).
    +  Variable mu:T1.
    +  Hypothesis nfMu: T1nf mu.
    +  Variable m : Hydra T1.
    +  Let mh (h:Hydra) := g2h (m h).
    + +
    +  Context (Var : Hvariant nf_Wf b m)
    +           (BVar: BoundedVariant Var mu).
    + +
    +  #[local] Instance hVar : Hvariant T1_wf b mh.
    + +
    +  #[local] Instance bVar : BoundedVariant hVar (g2h mu).
    + +
    +  End ImpossibilityProof.
    + +
    + +
    +Lemma Impossibility_free mu m (Var: Hvariant nf_Wf free m):
    +  ¬ BoundedVariant Var mu.
    + +
    +Lemma Impossibility_std mu m (Var: Hvariant nf_Wf standard m):
    +  ¬ BoundedVariant Var mu.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/gaia_hydras.GL_alpha.html b/theories/html/gaia_hydras.GL_alpha.html new file mode 100644 index 00000000..6eb024d6 --- /dev/null +++ b/theories/html/gaia_hydras.GL_alpha.html @@ -0,0 +1,116 @@ + + + + + +gaia_hydras.GL_alpha + + + + +
    + + + +
    + +

    Library gaia_hydras.GL_alpha

    + +
    + +
    +
    + +
    +Gaia-compatible L_ alpha fast growing functions + +
    + +(imported from hydras.Epsilon0.Hprime ) + +
    +
    + +
    +From mathcomp Require Import all_ssreflect zify.
    +From gaia Require Export ssete9.
    +From Coq Require Import Logic.Eqdep_dec.
    +From hydras Require Import DecPreOrder.
    +From hydras Require Import T1 E0.
    +From hydras Require Paths L_alpha.
    +From hydras Require Import L_alpha.
    +From gaia_hydras Require Import T1Bridge GCanon GPaths GHprime.
    + +
    +Set Implicit Arguments.
    + +
    +Definition L_ (alpha:E0) (i:nat): nat :=
    L_alpha.L_ (E0_g2h alpha) i.
    + +
    +Lemma L_zeroE i : L_ E0zero i = i.
    + +
    +Lemma L_eq2 alpha i :
    +  E0is_succ alpha L_ alpha i = L_ (E0_pred alpha) (S i).
    + +
    +Lemma L_succE alpha i : L_ (E0_succ alpha) i = L_ alpha i.+1.
    + +
    +Lemma L_limE alpha i :
    +  E0limit alpha L_ alpha i = L_ (E0Canon alpha i) (S i).
    + +
    +Lemma L_finite : i k :nat, L_ (E0fin i) k = (i+k)%nat.
    + +
    +Lemma L_omega : k, L_ E0_omega k = S (2 × k)%nat.
    + +
    +Lemma L_ge_id alpha : i, (i L_ alpha i)%N.
    + +
    +Lemma L_ge_S alpha i:
    +  alpha E0zero (i < L_ alpha i)%N.
    + +
    +Definition L_spec (alpha:T1) (f: nat nat):=
    +  Large_Sets.L_spec (g2h alpha) f.
    + +
    +Lemma L_spec0 (f:nat nat) : L_spec zero f k, f k.+1 = k.+1.
    + +
    +Lemma L_spec1 (a:T1) (f:nat nat) :
    +  a != zero
    +  L_spec a f
    +    ( k,
    +        Large_Sets.mlarge (g2h a)
    +                          ( MoreLists.interval (S k)
    +                                               (Nat.pred (f (S k))))) .
    + +
    +Lemma L_pos_inv a f :
    a != zero L_spec a f
    +                         k, (S k < f (S k))%N.
    + +
    +Theorem L_correct a : L_spec (cnf a) (L_ a).
    + +
    +Theorem H'_L_ a i: (H'_ a i L_ a i.+1)%N.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/gaia_hydras.GLarge_Sets.html b/theories/html/gaia_hydras.GLarge_Sets.html new file mode 100644 index 00000000..b228244a --- /dev/null +++ b/theories/html/gaia_hydras.GLarge_Sets.html @@ -0,0 +1,88 @@ + + + + + +gaia_hydras.GLarge_Sets + + + + +
    + + + +
    + +

    Library gaia_hydras.GLarge_Sets

    + +
    +
    + +
    +Gaia-compatible large sequences + +
    + +(imported from hydras.Epsilon0.Large_Sets ) + +
    +
    + +
    +From mathcomp Require Import all_ssreflect zify.
    +From hydras Require Import T1.
    +From hydras Require Import Canon Paths Large_Sets.
    +From gaia_hydras Require Import T1Bridge GCanon GPaths.
    + +
    +From gaia Require Import ssete9.
    +Import CantorOrdinal.
    + +
    +Notation hmlarge := mlarge.
    +Notation hmlargeS := mlargeS.
    +Definition mlarge a s := hmlarge (g2h a) s.
    +Definition mlargeS a s := hmlargeS (g2h a) s.
    + +
    +Notation hlarge := large.
    +Notation hlargeS := largeS.
    +Definition large a A := hlarge (g2h a) A.
    +Definition largeS a A := hlargeS (g2h a) A.
    + +
    +Notation hL_spec := L_spec.
    +Definition L_spec a f := L_spec (g2h a) f.
    + +
    +Lemma mlarge_unicity a k l l' :
    +  mlarge a (index_iota k.+1 l.+1)
    +  mlarge a (index_iota k.+1 l'.+1)
    +  l = l'.
    + +
    +Lemma L_fin_ok i : L_spec (\F i) (L_fin i).
    + +
    +Theorem Theorem_4_5 (a: T1)(Ha : T1nf a)
    +        (A B : seq nat)
    +        (HA : Sorted.Sorted Peano.lt A)
    +        (HB : Sorted.Sorted Peano.lt B)
    +        (HAB : List.incl A B) :
    +  largeS a A largeS a B.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/gaia_hydras.GPaths.html b/theories/html/gaia_hydras.GPaths.html new file mode 100644 index 00000000..b838a946 --- /dev/null +++ b/theories/html/gaia_hydras.GPaths.html @@ -0,0 +1,250 @@ + + + + + +gaia_hydras.GPaths + + + + +
    + + + +
    + +

    Library gaia_hydras.GPaths

    + +
    +
    + +
    +Gaia-compatible accessibility in epsilon0 + +
    + +(imported from hydras.Epsilon0.Paths) +
    +
    + +
    +From mathcomp Require Import all_ssreflect zify.
    +From hydras Require Import Canon Paths.
    +From gaia_hydras Require Import T1Bridge GCanon.
    + +
    +From hydras Require Import T1.
    +From gaia Require Import ssete9.
    +Import CantorOrdinal.
    + +
    +
    + +
    +Importation of Ketonen-Solovay's machinery into gaia's world + (work in progress) + +
    + + small transition step associated with canonical sequences +
    +
    + +
    +#[global] Notation htransition := Epsilon0.Paths.transition.
    +#[global] Notation hbounded_transitionS := Paths.bounded_transitionS.
    + +
    +Definition transition i (a b: T1) :=
    +  [/\ i != 0 , a!= zero & b == canon a i].
    + +
    +Definition bounded_transitionS n (a b: T1) :=
    +   i, (i n)%N transition (S i) a b.
    + +
    +Definition transitionb i (a b: T1) :=
    +  [&& i != 0 , a!= zero & b == canon a i].
    + +
    +Lemma transitionP i a b : reflect (transition i a b )
    +                                  (transitionb i a b).
    + +
    +
    + +
    +TODO : define path_to as a boolean function +
    +
    +#[global] Notation hpath_to := path_to.
    +#[global] Notation hpath := path.
    +#[global] Notation hpathS from s to := (path_toS to s from).
    +#[global] Notation hconst_pathS := const_pathS.
    +#[global] Notation hconst_path := const_path.
    +#[global] Notation hgnawS := gnawS.
    +#[global] Notation hgnaw := gnaw.
    +#[global] Notation hstandard_gnaw := standard_gnaw.
    + +
    +
    + +
    +path_to b s alpha : b is accessible from alpha with trace s +
    +
    + +
    +Definition path_to (to: T1)(s: seq nat) (from:T1) : Prop :=
    +  hpath_to (g2h to) s (g2h from).
    + +
    +Notation path from s to := (path_to to s from).
    + +
    +Definition acc_from a b := s, path a s b.
    + +
    + +
    +Definition const_path i a b := hconst_path i (g2h a) (g2h b).
    + +
    +Definition standard_path i a j b :=
    +   Paths.standard_path i (g2h a) j (g2h b).
    + +
    +Definition standard_gnaw i a l := h2g (hstandard_gnaw i (g2h a) l).
    + +
    +Definition gnaw a s := h2g (hgnaw (g2h a) s).
    +Definition gnawS a s := h2g (hgnawS (g2h a) s).
    + +
    +Definition pathS (from: T1)(s: seq nat) (to: T1) : Prop :=
    +  hpathS (g2h from) s (g2h to).
    + +
    +Fixpoint path_tob (b: T1) (s: seq nat) (a:T1): bool :=
    +  match s with
    +  | [::]false
    +  | [:: i](i != 0) && transitionb i a b
    +  | i :: s(i != 0) && path_tob b s (canon a i)
    +  end.
    + +
    +
    + +
    +SSreflect's iota was already defined in Prelude +
    + + To simplify +
    +
    + +
    +Lemma path_to_inv1 to i from : path_to to [:: i] from
    +                               i 0 transition i from to.
    + +
    +Lemma path_to_iff1 to i from :
    +  T1nf from i 0 from zero
    +  path_to to [:: i] from to = canon from i T1nf from.
    + +
    +Lemma iota_adapt i l: iota i l = MoreLists.iota_from i l.
    + +
    +Lemma standard_gnaw_iota_from i a l :
    +  i 0 standard_gnaw i a l = gnaw a (iota i l).
    + +
    +Lemma interval_def i j: MoreLists.interval i j = index_iota i (S j).
    + +
    +Lemma path_to_LT b s a:
    +  path_to b s a T1nf a T1nf b b < a.
    + +
    +Lemma LT_path_to (a b : T1) :
    +  T1nf a T1nf b b < a {s : list nat | path_to b s a}.
    + +
    +Theorem KS_thm_2_4 (lambda : T1) :
    +  T1nf lambda T1limit lambda
    +   i j, (i < j)%N
    +              const_path 1 (canon lambda (S j))
    +                         (canon lambda (S i)).
    + +
    +Lemma Cor12 (a: T1) : T1nf a
    +   b i n, T1nf b b < a (i < n)%N
    +                const_path i.+1 a b const_path n.+1 a b.
    + +
    +Lemma Lemma2_6_1 (a:T1) :
    +T1nf a b, T1nf b b < a {n:nat | const_path n.+1 a b}.
    + +
    +Lemma constant_to_standard_path (a b : T1) (i : nat):
    +  T1nf a const_path i.+1 a b zero < a
    +  {j:nat | standard_path i.+1 a j b}.
    + +
    +Theorem LT_to_standard_path (a b : T1) :
    +  T1nf a T1nf b b < a
    +  {n : nat & {j:nat | standard_path n.+1 a j b}}.
    + +
    +
    + +
    +

    Adaptation to E0

    + +
    +
    + +
    +Notation hCanon_plus := Canon_plus.
    +Definition Canon_plus i a b :=
    +  hCanon_plus i (E0_g2h a) (E0_g2h b).
    + +
    +
    + +
    +

    Examples

    + +
    +
    +Example ex_path1 : path (T1omega × (\F 2)) [:: 2; 2; 2] T1omega.
    + +
    +Example ex_path2: path (T1omega × \F 2) [:: 3; 4; 5; 6] T1omega.
    + +
    +Example ex_path3: path (T1omega × \F 2) (index_iota 3 15) zero.
    + +
    +Example ex_path4: path (T1omega × \F 2) (List.repeat 3 8) zero.
    + +
    + +
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/gaia_hydras.GPrelude.html b/theories/html/gaia_hydras.GPrelude.html new file mode 100644 index 00000000..27c58c88 --- /dev/null +++ b/theories/html/gaia_hydras.GPrelude.html @@ -0,0 +1,44 @@ + + + + + +gaia_hydras.GPrelude + + + + +
    + + + +
    + +

    Library gaia_hydras.GPrelude

    + +
    +
    + +
    +Learning ssreflect: +
    +
    + +
    +From mathcomp Require Import all_ssreflect zify.
    +Lemma diffP {T:eqType}(i j:T): reflect (i j) (i != j).
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/gaia_hydras.GaiaToHydra.html b/theories/html/gaia_hydras.GaiaToHydra.html new file mode 100644 index 00000000..346da598 --- /dev/null +++ b/theories/html/gaia_hydras.GaiaToHydra.html @@ -0,0 +1,60 @@ + + + + + +gaia_hydras.GaiaToHydra + + + + +
    + + + +
    + +

    Library gaia_hydras.GaiaToHydra

    + +
    + +
    +From mathcomp Require Import all_ssreflect zify.
    +From gaia_hydras Require Import T1Bridge .
    +From hydras Require Import T1.
    + +
    +From gaia Require Import ssete9.
    +Import Epsilon0.T1.
    + +
    +Locate T1.
    + +
    + +
    +Lemma hmultA : associative T1mul.
    + +
    +Example Ex1 (a: T1): T1omega × (a × T1omega) = T1omega × a × T1omega.
    + +
    +Lemma hmult_dist : right_distributive T1mul T1add.
    + +
    +Close Scope t1_scope.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/gaia_hydras.HydraGaia_Examples.html b/theories/html/gaia_hydras.HydraGaia_Examples.html new file mode 100644 index 00000000..9b4fcf68 --- /dev/null +++ b/theories/html/gaia_hydras.HydraGaia_Examples.html @@ -0,0 +1,99 @@ + + + + + +gaia_hydras.HydraGaia_Examples + + + + +
    + + + +
    + +

    Library gaia_hydras.HydraGaia_Examples

    + +
    +From mathcomp Require Import all_ssreflect zify.
    + +
    +From Coq Require Import Logic.Eqdep_dec.
    +From hydras Require Import DecPreOrder ON_Generic.
    +From hydras Require Import T1 E0 Hessenberg.
    +From gaia Require Export ssete9.
    + +
    +From gaia_hydras Require Import T1Bridge GCanon GHessenberg
    +  GLarge_Sets.
    +Set Implicit Arguments.
    + +
    +Check \F 42.
    + +
    + +
    + +
    +Example α : T1 :=
    T1omega + phi0 T1omega × \F 3 + phi0 (\F 5) × \F 4 + T1omega × T1omega.
    + +
    +Example β : T1 := phi0 (phi0 (\F 2)).
    + +
    + +
    + +
    + +
    + +
    + +
    +
    + +
    +Hessenberg's sum +
    +
    + +
    +Print oplus.
    + +
    + +
    + +
    +Check T1lt (\F 42) T1omega.
    + +
    +Check (\F 42 < T1omega)%ca.
    + +
    +Check \F 42 < T1omega. +
    + +
    +Check T1.lt (T1.T1nat 42) T1.T1omega.
    + +
    +Check T1.lt (\F 42)%t1 T1.T1omega.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/gaia_hydras.ON_gfinite.html b/theories/html/gaia_hydras.ON_gfinite.html new file mode 100644 index 00000000..3a4789e7 --- /dev/null +++ b/theories/html/gaia_hydras.ON_gfinite.html @@ -0,0 +1,86 @@ + + + + + +gaia_hydras.ON_gfinite + + + + +
    + + + +
    + +

    Library gaia_hydras.ON_gfinite

    + +
    +
    + +
    +ordinals a la mathcomp +
    +
    +From hydras Require Import DecPreOrder ON_Generic.
    +From mathcomp Require Import all_ssreflect zify.
    +From gaia Require Export ssete9.
    +From Coq Require Import Logic.Eqdep_dec.
    + +
    +Set Implicit Arguments.
    + +
    +Definition finord_lt (n:nat) (alpha beta: 'I_n): bool :=
    +  (alpha < beta)%N.
    + +
    +#[global] Instance finord_compare (n:nat) : Compare ('I_n) :=
    +  fun alpha betaNat.compare alpha beta.
    + +
    +Lemma finord_compare_correct (n:nat) (alpha beta : 'I_n) :
    +  CompSpec eq (@finord_lt n) alpha beta (compare alpha beta).
    + +
    +#[global] Instance finord_sto n : StrictOrder (@finord_lt n).
    + +
    +#[global] Instance finord_comp n :
    +  Comparable (@finord_lt n) (@finord_compare n).
    + +
    +Lemma finord_lt_wf n : well_founded (@finord_lt n).
    + +
    +#[global] Instance finord_ON n : ON (@finord_lt n) (@finord_compare n).
    + +
    +
    + +
    +Examples +
    +
    + +
    +#[program] Example o_33_of_42: 'I_42 := @Ordinal 42 33 _.
    + +
    +#[program] Example o_36_of_42: 'I_42 := @Ordinal 42 36 _.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/gaia_hydras.T1Bridge.html b/theories/html/gaia_hydras.T1Bridge.html new file mode 100644 index 00000000..1a567ca9 --- /dev/null +++ b/theories/html/gaia_hydras.T1Bridge.html @@ -0,0 +1,682 @@ + + + + + +gaia_hydras.T1Bridge + + + + +
    + + + +
    + +

    Library gaia_hydras.T1Bridge

    + +
    +
    + +
    +

    Bridge between Hydra-battle's and Gaia's T1 (Experimental)

    + + +
    + +This library introduces tools for making definitions and lemmas from + Hydra battles's ordinals compatible with + Gaia's ssete9 library. + +
    +
    + +
    +From mathcomp Require Import all_ssreflect zify.
    + +
    +From Coq Require Import Logic.Eqdep_dec.
    +From hydras Require Import DecPreOrder ON_Generic T1 E0.
    +From gaia Require Export ssete9.
    +Set Implicit Arguments.
    + +
    +
    + +
    +The name T1 denotes Gaia's data type. We use T1.T1 or hT1 for Hydra battles ordinal terms. + +
    +
    + +
    +#[global] Notation hT1 := T1.T1.
    +#[global] Notation T1 := ssete9.CantorOrdinal.T1.
    + +
    +
    + +
    +We rename Hydra battle's total order on hT1 +
    +
    + +
    + +
    +
    + +
    +Restrictions to terms in normal form +
    +
    + +
    +#[global] Notation LT := (restrict T1nf T1lt).
    +#[global] Notation LE := (restrict T1nf T1le).
    + +
    + +
    +
    + +
    +Translation functions +
    +
    + +
    +Fixpoint h2g (a : hT1) : T1 :=
    +  if a is T1.cons a n b then cons (h2g a) n (h2g b) else zero.
    + +
    +Fixpoint g2h (a : T1) : hT1 :=
    +  if a is cons a n b then T1.cons (g2h a) n (g2h b) else T1.zero.
    + +
    +Lemma h2g_g2hK : cancel g2h h2g.
    + +
    +Lemma g2h_h2gK : cancel h2g g2h.
    + +
    +Lemma g2h_eqE (a b: T1): g2h a = g2h b a = b.
    + +
    +Lemma h2g_eqE (a b :hT1): h2g a = h2g b a = b.
    + +
    +Lemma g2h_diffE (a b : T1) : g2h a g2h b a b.
    + +
    +Lemma h2g_diffE (a b : hT1) : h2g a h2g b a b.
    + +
    +
    + +
    +Pretty printing +
    +
    +Definition T1pp (a:T1) : ppT1 := pp (g2h a).
    + +
    +
    + +
    +

    refinement of constants, functions, etc.

    + +
    +
    + +
    + +
    +Definition refines0 (x:hT1)(y:T1) := y = h2g x.
    + +
    +Definition refines1 (f:hT1 hT1) (f': T1 T1) :=
    +   x: hT1, f' (h2g x) = h2g (f x).
    + +
    +Definition refines2 (f:hT1 hT1 hT1) (f': T1 T1 T1 ) :=
    +   x y : hT1, f' (h2g x) (h2g y) = h2g (f x y).
    + +
    +Definition refinesPred (hP: hT1 Prop) (gP: T1 Prop) :=
    +   x : hT1, hP x gP (h2g x).
    + +
    +Definition refinesRel (hR: hT1 hT1 Prop)
    +  (gR: T1 T1 Prop) :=
    +   x y : hT1, hR x y gR (h2g x) (h2g y).
    + +
    + +
    +Lemma refines1_R f f' :
    +  refines1 f f' y: T1, f (g2h y) = g2h (f' y).
    + +
    +Lemma refines2_R f f' :
    +  refines2 f f' y z: T1, f (g2h y) (g2h z) = g2h (f' y z).
    + +
    +
    + +
    +

    Refinements of usual constants

    + +
    +
    + +
    + +
    +Lemma zero_ref : refines0 T1.zero zero.
    + +
    +Lemma one_ref : refines0 T1.one one.
    + +
    +Lemma Finite_ref (n:nat) : refines0 (T1.T1nat n) (\F n).
    + +
    +Lemma omega_ref : refines0 T1.T1omega T1omega.
    + +
    +
    + +
    +

    unary functions and predicates

    + +
    +
    + +
    +Lemma succ_ref: refines1 T1.succ T1succ.
    +Lemma phi0_ref x: refines0 (T1.phi0 x) (phi0 (h2g x)). +
    +Lemma g2h_phi0 a : g2h (phi0 a) = T1.phi0 (g2h a).
    + +
    +Lemma ap_ref : refinesPred Epsilon0.T1.ap T1ap.
    + +
    +
    + +
    +

    Equality and comparison

    + +
    +
    + +
    +Lemma T1eq_refl (a: T1) : T1eq a a.
    + +
    +Lemma T1eqE a b: T1eq a b g2h a = g2h b.
    + +
    +Lemma T1eq_h2g (a b : hT1) : T1eq (h2g a) (h2g b) a = b.
    + +
    +Lemma compare_ref (x y: hT1) :
    +  match T1.compare_T1 x y with
    +  | Datatypes.LtT1lt (h2g x) (h2g y)
    +  | Datatypes.Eqh2g x = h2g y
    +  | Datatypes.GtT1lt (h2g y) (h2g x)
    +  end.
    + +
    +Lemma decide_hltE (a b : hT1):
    +  bool_decide (T1.lt a b) = (h2g a < h2g b).
    + +
    +Lemma lt_ref : refinesRel T1.lt T1lt.
    + +
    +Lemma le_ref : refinesRel T1.le T1le.
    + +
    +
    + +
    +

    Ordinal addition

    + +
    +
    + +
    +Lemma plus_ref : refines2 T1.T1add T1add.
    + +
    +
    + +
    +

    Ordinal multiplication

    + +
    +
    + +
    +Section Proof_of_mult_ref.
    + +
    +  Lemma T1mul_a0E (c : T1) : c × zero = zero.
    + +
    +  Lemma T1mul_cons_cons_E n b n' b' :
    +    cons zero n b × cons zero n' b' =
    +      cons zero (n × n' + n + n') b'.
    + +
    + +
    +  Lemma T1mulE4 a n b n' b' :
    +    a != zero (cons a n b) × (cons zero n' b') =
    +                   cons a (n × n' + n + n') b.
    + +
    +  Lemma multE4 a n b n' b' :
    +    a Epsilon0.T1.zero
    +    Epsilon0.T1.T1mul (T1.cons a n b)
    +      (T1.cons Epsilon0.T1.zero n' b') =
    +      T1.cons a (n × n' + n + n') b.
    + +
    +  Lemma T1mulE5 a n b a' n' b' :
    +    a' != zero
    +    (cons a n b) × (cons a' n' b') =
    +      cons (a + a') n' (T1mul (cons a n b) b').
    + +
    +  Lemma multE5 a n b a' n' b' :
    +    a' T1.zero
    +    Epsilon0.T1.T1mul (T1.cons a n b) (T1.cons a' n' b') =
    +      T1.cons (T1.T1add a a') n' (T1.T1mul (T1.cons a n b) b').
    + +
    +  Lemma h2g_cons a n b : h2g (T1.cons a n b)= cons (h2g a) n (h2g b).
    + +
    +  Lemma g2h_cons a n b : g2h (cons a n b) = T1.cons (g2h a) n (g2h b).
    + +
    +  Lemma h2g_zero : h2g T1.zero = zero.
    + +
    +  Lemma g2h_zero : g2h zero = T1.zero.
    + +
    +  Lemma mult_ref0 : refines2 T1.T1mul T1mul.
    + +
    +End Proof_of_mult_ref.
    + +
    +Lemma mult_ref : refines2 T1.T1mul T1mul.
    + +
    +Lemma g2h_multE (a b : T1) : g2h (a × b) = T1.T1mul (g2h a) (g2h b).
    + +
    + +
    +Lemma g2h_plusE (a b: T1) : g2h (a + b) = T1.T1add (g2h a) (g2h b).
    + +
    +
    + +
    +

    Ordinal terms in normal form

    + +
    +
    + +
    + +
    +Lemma nf_ref (a: hT1) : T1.nf_b a = T1nf (h2g a).
    + +
    +Lemma LT_ref : refinesRel T1.LT LT.
    + +
    +Lemma LE_ref : refinesRel T1.LE LE.
    + +
    +
    + +
    +Limits, successors, etc +
    +
    + +
    +Lemma T1limit_ref (a:Epsilon0.T1.T1) : T1.T1limit a = T1limit (h2g a).
    + +
    +Lemma T1is_succ_ref (a:Epsilon0.T1.T1): T1.T1is_succ a = T1is_succ (h2g a).
    + +
    + +
    +Lemma hnf_g2h a : T1.nf (g2h a) = T1nf a.
    + +
    +Lemma g2h_succ a : g2h (T1succ a) = T1.succ (g2h a).
    + +
    +Lemma hlt_iff a b: T1.lt a b h2g a < h2g b.
    + +
    + +
    +Lemma T1lt_iff a b: T1nf a T1nf b
    +                          a < b g2h a t1< g2h b.
    + +
    +Lemma T1le_iff (a b: T1):
    +  a b T1.le (g2h a) (g2h b).
    + +
    +
    + +
    +

    Well formed ordinals as a data type

    + +
    +
    +#[global] Notation hE0 := E0.E0.
    +#[global] Notation hcnf := E0.cnf.
    +#[global] Notation hE0lt := E0.E0lt.
    +#[global] Notation hE0le := E0.E0le.
    +#[global] Notation hE0zero := E0.E0zero.
    +#[global] Notation hE0omega := E0.E0_omega.
    +#[global] Notation hE0phi0 := E0.E0_phi0.
    +#[global] Notation hE0fin := E0.E0fin.
    +#[global] Notation hE0limit := E0.E0limit.
    +#[global] Notation hE0is_succ := E0.E0is_succ.
    + +
    +Record E0 := mkE0 { cnf : T1 ; _ : T1nf cnf == true}.
    +Coercion cnf: E0 >-> T1.
    + +
    +Canonical e0Sub := [subType for cnf].
    + +
    +Check fun (x:E0) ⇒ val x.
    + +
    +Remark omeganf : T1nf T1omega == true.
    + +
    +Check (Sub T1omega).
    + +
    +Check (Sub T1omega omeganf : e0Sub).
    + +
    +Check (Sub T1omega omeganf : E0).
    + +
    +Definition E0eqb (a b: E0):= cnf a == cnf b.
    + +
    +Lemma gE0_eq_intro a b : cnf a = cnf b a = b.
    + +
    +Definition E0_eq_mixin : Equality.mixin_of E0.
    + +
    +Definition E0_eqtype := Equality.Pack E0_eq_mixin.
    +Canonical Structure E0_eqtype.
    + +
    + +
    +Definition ppE0 (a: E0) := T1pp (cnf a).
    + +
    +Definition E0lt (a b: E0) := cnf a < cnf b.
    +Definition E0le (a b: E0) := cnf a cnf b.
    + +
    +#[global, program] Definition E0zero: E0 := @mkE0 zero _.
    + +
    +#[global, program]
    Definition E0_succ (a: E0): E0 := @mkE0 (T1succ (cnf a)) _.
    + +
    +#[global, program]
    Definition E0_pred (a:E0) : E0:= @mkE0 (T1pred (cnf a)) _.
    + +
    +Fixpoint E0fin (n:nat) : E0 :=
    +  if n is p.+1 then E0_succ (E0fin p) else E0zero.
    + +
    +#[program] Definition E0_omega: E0 := @mkE0 T1omega _.
    + +
    +#[program] Definition E0_phi0 (a: E0) : E0 := @mkE0 (phi0 (cnf a)) _.
    + +
    +#[program] Definition E0plus (a beta: E0) : E0 :=
    +  @mkE0 (T1add (cnf a) (cnf beta)) _.
    + +
    +#[program] Definition E0mul (a beta: E0) : E0 :=
    +  @mkE0 (T1mul (cnf a) (cnf beta)) _.
    + +
    +Lemma E0fin_cnf (n:nat) : cnf (E0fin n) = \F n.
    + +
    +#[program] Definition E0_h2g (a: hE0): E0:= @mkE0 (h2g (E0.cnf a)) _.
    + +
    +#[program] Definition E0_g2h (a: E0): hE0 := @E0.mkord (g2h (cnf a)) _.
    + +
    + +
    +Definition E0limit a := hE0limit (E0_g2h a).
    + +
    +Definition E0is_succ a := hE0is_succ (E0_g2h a).
    + +
    +Lemma E0_h2g_nf (a:hE0) : T1nf (cnf (E0_h2g a)).
    + +
    +Lemma gE0lt_iff a beta : E0lt a beta E0_g2h a o< E0_g2h beta.
    + +
    +Lemma gE0le_iff a beta : E0le a beta E0_g2h a o E0_g2h beta.
    + +
    +Lemma E0_h2g_g2hK : cancel E0_g2h E0_h2g.
    + +
    +Lemma E0_g2h_h2gK : cancel E0_h2g E0_g2h.
    + +
    +Lemma g2h_E0_succ a : E0_g2h (E0_succ a)= E0.E0_succ (E0_g2h a).
    + +
    +Lemma E0is_succ_succ a : E0is_succ (E0_succ a).
    + +
    + +
    +Lemma E0is_succE a: E0is_succ a {beta: E0 | a = E0_succ beta}.
    + +
    +Lemma E0_eqE (x y: E0) : x = y (E0_g2h x = E0_g2h y).
    + +
    +Lemma E0_diffE (x y: E0) : x y (E0_g2h x E0_g2h y).
    + +
    + +
    +Lemma E0_pred_succK x : E0_pred (E0_succ x) = x.
    + +
    +Lemma g2h_E0zero : E0_g2h E0zero = E0.E0zero.
    + +
    +Lemma E0g2h_Fin i: E0_g2h (E0fin i) = E0.E0fin i.
    + +
    +Lemma E0g2h_phi0 a : E0_g2h (E0_phi0 a) = E0.E0_phi0 (E0_g2h a).
    + +
    +Lemma E0g2h_mulE (a b: E0): E0_g2h (E0mul a b) = E0.E0mul (E0_g2h a) (E0_g2h b).
    + +
    +Lemma E0g2h_plusE (a b: E0): E0_g2h (E0plus a b)= E0.E0add (E0_g2h a) (E0_g2h b).
    + +
    +Lemma E0g2h_omegaE : E0_g2h E0_omega = hE0omega.
    + +
    +From Coq Require Import Relations Basics
    +     Wellfounded.Inverse_Image Wellfounded.Inclusion.
    + +
    +
    + +
    +TODO: simplify this proof !!! +
    +
    + +
    +Lemma gE0lt_wf : well_founded E0lt.
    + +
    +Lemma L1' (a: T1) : T1omega × (a × T1omega) = T1omega × a × T1omega.
    + +
    +
    + +
    +Sequences and limits +
    +
    + +
    +Definition g2h_seq (s: nat T1) n := g2h (s n).
    +Definition h2g_seq (s: nat hT1) n := h2g (s n).
    + +
    +Definition gstrict_lub (s : nat T1) (lambda : T1) :=
    +  ( i : nat, LT (s i) lambda)
    +    ( a : T1, ( i : nat, LE (s i) a) LE lambda a).
    + +
    +Lemma strict_lub_ref (s:nat hT1) (lambda: hT1) :
    +  strict_lub s lambda gstrict_lub (h2g_seq s) (h2g lambda).
    + +
    +Search ( _ × ?beta = ?beta)%ca.
    + +
    +Search ( _ × ?beta = ?beta)%t1.
    + +
    +#[global] Instance T1compare : Compare T1:=
    +  fun a betacompare (g2h a) (g2h beta).
    + +
    + +
    +Lemma compare_g2h (a beta : T1):
    +  compare (g2h a) (g2h beta) = compare a beta .
    + +
    Lemma compare_h2g (a beta: hT1) :
    +   compare (h2g a) (h2g beta) =compare a beta .
    + +
    +
    + +
    +

    Make E0 an ordinal notation

    + +
    +
    + +
    +Lemma T1compare_correct (a b: T1):
    +  CompSpec eq T1lt a b (compare a b).
    + +
    +#[global] Instance E0compare: Compare E0 :=
    +  fun (alpha beta: E0) ⇒ T1compare (cnf alpha) (cnf beta).
    + +
    +Lemma E0compare_correct (alpha beta : E0) :
    +  CompSpec eq E0lt alpha beta (compare alpha beta).
    + +
    +#[global] Instance E0_sto : StrictOrder E0lt.
    + +
    +#[global] Instance E0_comp : Comparable E0lt compare.
    + +
    + +
    +#[global] Instance Epsilon0 : ON E0lt compare.
    + +
    +Locate T1omega.
    + +
    +
    + +
    +

    Abstract properties of arithmetic functions (with SSreflect inequalities)

    + + +
    +
    + +
    +Definition strict_mono (f: nat nat) :=
    +   n p, (n< p)%N (f n < f p)%N.
    + +
    +Definition dominates_from (n : nat) (g f : nat nat) :=
    +   p : nat, (n p)%N (f p < g p)%N.
    + +
    +Definition dominates g f := n : nat, dominates_from n g f .
    + +
    +Definition dominates_strong g f := {n : nat | dominates_from n g f}.
    + +
    +Definition fun_le f g := n:nat, (f n g n)%N.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/gaia_hydras.T1Choice.html b/theories/html/gaia_hydras.T1Choice.html new file mode 100644 index 00000000..ee14084e --- /dev/null +++ b/theories/html/gaia_hydras.T1Choice.html @@ -0,0 +1,216 @@ + + + + + +gaia_hydras.T1Choice + + + + +
    + + + +
    + +

    Library gaia_hydras.T1Choice

    + +
    +
    + +
    +Experimental !!!! This file is a draft !!! +
    +
    + +
    + +
    +From mathcomp Require Import all_ssreflect zify.
    +From Coq Require Import Logic.Eqdep_dec.
    +From hydras Require Import DecPreOrder ON_Generic T1 E0.
    +From gaia Require Export ssete9.
    +From gaia_hydras Require Import T1Bridge.
    + +
    +Set Implicit Arguments.
    + +
    +
    + +
    + Type T1 vs generic trees +
    +
    + +
    +Fixpoint T12Tree (a: T1): GenTree.tree nat :=
    +  if a is cons b n c
    +  then GenTree.Node n [:: T12Tree b; T12Tree c]
    +  else GenTree.Leaf 0.
    + +
    +Fixpoint Tree2T1 (t: GenTree.tree nat): option T1 :=
    +  match t with
    +  | GenTree.Leaf 0 ⇒ Some zero
    +  | GenTree.Node n [:: t1; t2]
    +      match Tree2T1 t1, Tree2T1 t2 with
    +      | Some b, Some cSome (cons b n c)
    +      | _, _None
    +      end
    +  | _None
    +  end.
    + +
    +Lemma TreeT1K : pcancel T12Tree Tree2T1.
    + +
    +
    + +
    +to remove (useless) +
    +
    +Lemma T12Tree_inj: injective T12Tree.
    + +
    +Definition T1mixin :
    +  Countable.mixin_of T1 := PcanCountMixin TreeT1K.
    + +
    +Canonical T1Choice :=
    +  Eval hnf in ChoiceType T1 (CountChoiceMixin T1mixin).
    + +
    +Example ex_pos: alpha: T1, zero != alpha.
    + +
    +Example some_pos: T1 := xchoose ex_pos.
    + +
    +Example some_pos' : T1 := choose (fun p : T1zero != p)
    +                                 T1omega.
    + +
    +Goal (zero: T1Choice) != some_pos'.
    + +
    +
    + +
    + = EqType T1 (EqMixin (@T1eqP)) + : eqType +
    +
    + +
    + +
    +
    + +
    + = Choice.Pack + {| + Choice.base := EqMixin (@T1eqP); + Choice.mixin := PcanChoiceMixin (pcan_pickleK TreeT1K) + |} + : choiceType + +
    + + +
    +
    + +
    +Definition T1_le_Mixin := leOrderMixin T1Choice.
    + +
    +Definition T1min a b := if T1lt a b then a else b.
    +Definition T1max a b := if T1lt a b then b else a.
    + +
    +Lemma T1ltE x y : T1lt x y = (y != x) && T1le x y.
    + +
    +Lemma T1minE x y : T1min x y = (if T1lt x y then x else y).
    + +
    +Lemma T1maxE x y : T1max x y = (if T1lt x y then y else x).
    + +
    +Lemma T1le_asym: ssrbool.antisymmetric T1le.
    + +
    +Definition T1leOrderMixin : leOrderMixin T1Choice :=
    +  LeOrderMixin T1ltE T1minE T1maxE T1le_asym T1le_trans T1le_total.
    + +
    +Canonical T1orderType :=
    +  @OrderOfChoiceType tt T1Choice T1leOrderMixin.
    + +
    +Goal @Order.le tt T1orderType T1omega T1omega.
    + +
    +Check T1omega: T1orderType.
    + +
    +Goal ((T1omega:T1orderType) (T1omega:T1orderType))%O.
    + +
    +Notation "x <= y" := (@Order.le _ T1orderType x y).
    + +
    +Notation "x < y" := (@Order.lt _ T1orderType x y).
    + +
    +About Order.le.
    + +
    +Goal @Order.le tt T1orderType T1omega T1omega.
    +Import Order.POrderTheory.
    + +
    +Goal T1omega T1omega.
    +Set Printing All.
    + +
    +Goal T1omega < T1succ T1omega.
    + +
    + +
    +Goal ~~ (<%O (T1omega:T1orderType) (T1omega:T1orderType)).
    + +
    +Goal ~~(T1omega < T1omega).
    + +
    +Goal ~~ @Order.lt tt (T1orderType) T1omega T1omega.
    + +
    +Goal T1omega T1omega.
    + +
    + +
    +Print E0.
    + +
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/gaia_hydras.T2Bridge.html b/theories/html/gaia_hydras.T2Bridge.html new file mode 100644 index 00000000..4442c65b --- /dev/null +++ b/theories/html/gaia_hydras.T2Bridge.html @@ -0,0 +1,114 @@ + + + + + +gaia_hydras.T2Bridge + + + + +
    + + + +
    + +

    Library gaia_hydras.T2Bridge

    + +
    +
    + +
    +

    Bridge between Hydra-battle's and Gaia's T1 (Experimental)

    + + +
    +
    + +
    +From mathcomp Require Import all_ssreflect zify.
    +From Coq Require Import Logic.Eqdep_dec.
    +From hydras Require Import DecPreOrder ON_Generic T2 Gamma0.
    + +
    +From gaia Require Export ssete9.
    +Import Gamma0.
    + +
    +Set Implicit Arguments.
    + +
    + +
    +
    + +
    +Hydra-Battles' type for ordinal terms below Gamma00 +
    +
    +Check Gamma0.T2.T2.
    +Print Gamma0.T2.T2.
    +#[global] Notation hT2 := hydras.Gamma0.T2.T2.
    + +
    +
    + +
    +Gaia's type for ordinal terms below epsilon0 +
    +
    +#[global] Notation T2 := ssete9.Gamma0.T2.
    + +
    +#[global] Notation hcons := gcons.
    +#[global] Notation hzero := hydras.Gamma0.T2.zero.
    + +
    +Fixpoint h2g (alpha : hT2) : T2 :=
    +  match alpha with
    +    hzerozero
    +  | hcons a b n ccons (h2g a) (h2g b) n (h2g c)
    +  end.
    + +
    +Fixpoint g2h (alpha : T2) : hT2 :=
    +  match alpha with
    +    zerohzero
    +  | cons a b n chcons (g2h a)(g2h b) n (g2h c)
    +  end.
    + +
    +Lemma h2g_g2hK : cancel g2h h2g.
    + +
    +Lemma g2h_h2gK : cancel h2g g2h.
    + +
    +Lemma g2h_eqE (a b: T2) : g2h a = g2h b a = b.
    + +
    +Lemma h2g_eqE (a b :hT2) : h2g a = h2g b a = b.
    + +
    + +
    +Check (fun a b : hT2compare a b).
    + +
    +About T2lt.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/gaia_hydras.nfwfgaia.html b/theories/html/gaia_hydras.nfwfgaia.html new file mode 100644 index 00000000..99c626d2 --- /dev/null +++ b/theories/html/gaia_hydras.nfwfgaia.html @@ -0,0 +1,3901 @@ + + + + + +gaia_hydras.nfwfgaia + + + + +
    + + + +
    + +

    Library gaia_hydras.nfwfgaia

    + +
    +
    + +
    +Copy of gaia's ssete9.v (for experimenting Alectryon documentation) Changes from original proof script are signaled as additions/changes or inside Alectryon snippets + +
    + +

    Ordinals in Pure Coq

    + + Copyright INRIA (2013-2013) Marelle Team (José Grimm). + After a work of Castéran + +
    +
    + +
    +From mathcomp
    +  Require Import ssreflect ssrfun ssrbool eqtype ssrnat.
    +From mathcomp Require Import fintype bigop.
    + +
    +Set Implicit Arguments.
    + +
    +
    + +
    +

    prelude

    + +
    + + Useful lemmas missing in ssreflect +
    +
    + +
    +Lemma if_simpl (p: bool): (if p then true else false) = p.
    + +
    +Lemma ltn_simpl1 n n': ((n' + n).+1 < n) = false.
    + +
    +Lemma eqn_simpl1 n n': ((n' + n).+1 == n) = false.
    + +
    +Lemma ltn_simpl2 n n' n'':
    +  (n × n' + n + n' < n × n'' + n + n'') = (n' < n'').
    + +
    +Lemma eqn_simpl2 n n' n'':
    +   (n × n' + n + n' == n × n'' + n + n'') = (n' == n'').
    + +
    +Lemma ltn_add_le m1 m2 n1 n2: m1 < n1 m2 n2 m1 + m2 < n1 + n2.
    + +
    +Lemma ltn_add_el m1 m2 n1 n2: m1 n1 m2 < n2 m1 + m2 < n1 + n2.
    + +
    +Lemma ltn_add_ll m1 m2 n1 n2: m1 < n1 m2 < n2 m1 + m2 < n1 + n2.
    + +
    +
    + +
    +The ssreflect comparison on nat is WF +
    +
    + +
    +Lemma lt_wf: well_founded (fun (a b:nat) ⇒ a < b).
    + +
    +
    + +
    +

    Example 1

    + +
    + + An example of function defined by transfinite induction using Fix +
    +
    +Module Wf_ex.
    + +
    +Definition f_spec f n :=
    +   if n is m.+2 then (f (f m.+1).+1 ).+1 else 0.
    + +
    +Lemma f_spec_simp f n: ( n, f n = f_spec f n) f n = n.-1.
    + +
    +Lemma f0 n p: p n p.+2 n.+2.
    + +
    +Definition f1 :
    +   x, ( z, z < x {y:nat |y z.-1})
    +  {y:nat | y x.-1}.
    + +
    +Definition f2 := Fix lt_wf _ f1.
    +Definition f (x:nat): nat := sval (f2 x).
    + +
    +Lemma f_eqn x: f2 x = f1 (fun y _f2 y).
    + +
    +Lemma f_correct n: f n = f_spec f n.
    + +
    +End Wf_ex.
    + +
    +
    + +
    +

    Example 2

    + +
    + + Second example, + f(n) = 1 + \sum(i < n) f(i) +
    +
    + +
    +Module Wfsum.
    + +
    +Definition psum (f: nat nat) n := \sum_(i< n) (f i).
    +Definition f_spec f:= n, f n = (psum f n).+1.
    + +
    +Lemma f_spec_simp f n: f_spec f f n = 2 ^ n.
    + +
    +Lemma psum_exten n f g :
    +   ( k, k < n f k = g k) (psum f n).+1 = (psum g n).+1.
    + +
    +Lemma lt_dec n m: {n <m} + {~~ (n < m) }.
    + +
    +Definition extension (n : nat) (p : k : nat, k < n nat) k :=
    +  match lt_dec k n with
    +    | left xp k x
    +    | _ ⇒ 0 end.
    + +
    +Definition f1 (n : nat) (h : z : nat, z < n nat) :=
    +    (psum (extension h) n).+1.
    + +
    +Definition f2 := Fix lt_wf _ f1.
    + +
    +Lemma f_eqn x: f2 x = f1 (n:=x) (fun y _f2 y).
    + +
    +Definition f (x:nat): nat := f2 x.
    + +
    +Lemma f_correct: f_spec f.
    + +
    +End Wfsum.
    + +
    +
    + +
    +

    Example 3

    + +
    + + We consider here only even numbers, show that comparison is WF, define a + function by transfinite induction and show it is correct. +
    +
    + +
    +Module Wf_ex3.
    + +
    +Definition lte n m := [&& ~~ odd n, ~~ odd m & n < m].
    + +
    +Lemma lte_wf: well_founded lte.
    + +
    +Definition f_spec f n :=
    +   if n is m.+4 then (f (f (m.+2)).*2.+2 ).+1 else 0.
    + +
    +Lemma f_spec_simp f n: ~~ odd n ( n, ~~odd n f n = f_spec f n)
    +    f n = (n.-1)./2.
    + +
    +Lemma f_spec_simp1 f n: ( n, ~~odd n f n = f_spec f n)
    +    f (n.*2.+2) = n.
    + +
    +Lemma f_spec_simp2 f n: ( n, f n = f_spec f n) f(n.*2.+3) = n.
    + +
    +Lemma f0a y n: odd n = false odd n.+2 y (n.+2)./2.-1
    +   y n./2 lte (y.*2).+2 n.+4.
    + +
    +Lemma f0b a b: odd a.*2.+2 b (a.*2.+2)./2.-1 b a.
    + +
    +Lemma f0c n: odd n = false lte n.+2 n.+4.
    + +
    +Lemma odd_dec n : {odd n} + {odd n = false}.
    + +
    +Definition f1 :
    +   x, ( z, lte z x {y:nat | odd z y (z./2).-1})
    +  {y:nat | odd x y (x./2).-1}.
    + +
    +Definition f2 := Fix lte_wf _ f1.
    +Definition f (x:nat): nat := sval (f2 x).
    + +
    +Lemma f_eqn x: f2 x = f1 (fun y _f2 y).
    + +
    +Lemma f_correct n: ~~odd n f n = f_spec f n.
    + +
    +End Wf_ex3.
    + +
    +
    + +
    +

    More on accessiblity

    + +
    + + We show that there is no striclty decreasing function with domain nat +
    +
    +Section Sequences.
    + +
    +Variable A : Set.
    +Variable R : A A Prop.
    + +
    +Lemma acc_rec a b: R a b Acc R b Acc R a.
    + +
    +Hypothesis W : well_founded R.
    + +
    +Theorem not_decreasing :
    +  ¬ ( f : nat A, ( i:nat, R (f i.+1) (f i))).
    + +
    +End Sequences.
    + +
    +
    + +
    +We show here an induction principle; we could use it for ordinals in NF +form. +
    +
    + +
    +Section restricted_recursion.
    + +
    +Variables (A:Type)(P:AProp)(R:AAProp).
    + +
    +Definition restrict a b := [/\ P a, R a b & P b].
    + +
    +Definition well_founded_P := a, P a Acc restrict a.
    + +
    +Lemma P_well_founded_induction_type :
    +       well_founded_P
    +        Q : A Type,
    +       ( x : A, P x ( y : A, P y R y x Q y) Q x)
    +        a : A, P a Q a.
    +End restricted_recursion.
    +Module CantorOrdinal.
    + +
    + +
    +
    + +
    +

    The type T1

    + +
    + + This type represents all ordinals less that + ε 0 , + via the +Cantor Normal Form. More exactly cons a n b represents + ω A * (n.+1) + B + if a represents A and b represents B. +
    +
    + +
    + +
    +Inductive T1 : Set :=
    +  zero : T1
    +| cons : T1 nat T1 T1.
    + +
    + +
    +
    + +
    +

    Equality

    + +
    + + we define a boolean equality, the use the mechanism of canonical + structures provided by ssreflect +
    +
    + +
    +Fixpoint T1eq x y {struct x} :=
    +  match x, y with
    +  | zero, zerotrue
    +  | cons a n b, cons a' n' b'[&& T1eq a a', n== n' & T1eq b b' ]
    +  | _, _false
    +end.
    + +
    +Lemma T1eqP : Equality.axiom T1eq.
    + +
    +Canonical T1_eqMixin := EqMixin T1eqP.
    +Canonical T1_eqType := Eval hnf in EqType T1 T1_eqMixin.
    + +
    +Arguments T1eqP {x y}.
    + +
    +Lemma T1eqE a n b a' n' b':
    +  (cons a n b == cons a' n' b') = [&& a == a', n== n' & b == b' ].
    + +
    +Declare Scope cantor_scope.
    +Delimit Scope cantor_scope with ca.
    +Open Scope cantor_scope.
    + +
    +
    + +
    +Some definitions +
      +
    • φ0(x) is cons x 0 zero , + it represents ω x + +
    • +
    • one is φ0(0) + +
    • +
    • omega is φ0(1) + +
    • +
    • bad is an example of an ordinal not in normal form + +
    • +
    • fun n := \F n is the canonical injection of nat into T1 + +
    • +
    • the log of cons a n b is a + +
    • +
    • an ordinal is AP if it is in the image of φ0. + +
    • +
    + +
    +
    + +
    +Definition phi0 a := cons a 0 zero.
    +Definition one := cons zero 0 zero.
    +Definition T1omega := phi0 (phi0 zero).
    +Definition T1bad := cons zero 0 T1omega.
    +Definition T1nat (n:nat) : T1 :=
    +  if n is p.+1 then cons zero p zero else zero.
    +Definition T1log a := if a is cons a _ _ then a else zero.
    +Definition T1ap x := if x is cons a n b then ((n==0) && (b==zero)) else false.
    + +
    +Notation "\F n" := (T1nat n)(at level 29) : cantor_scope.
    + +
    +Lemma T1F_inj: injective T1nat.
    + +
    +Lemma T1phi0_zero : phi0 zero = \F 1.
    +Lemma T1phi0_zero' : phi0 zero = one.
    +Lemma T1log_phi0 x : T1log (phi0 x) = x.
    +Lemma T1ap_phi0 x: T1ap (phi0 x).
    + +
    +
    + +
    +

    Order on T1

    + +
    + + We give here a recursion definition of comparison. +Essentially, φ0(x) is strictly increasing, + +
    +
    + +
    +Fixpoint T1lt x y {struct x} :=
    +  if x is cons a n b then
    +    if y is cons a' n' b' then
    +      if a < a' then true
    +      else if a == a' then
    +         if (n < n')%N then true
    +         else if (n == n') then b < b' else false
    +         else false
    +      else false
    +  else if y is cons a' n' b' then true else false
    +where "x < y" := (T1lt x y) : cantor_scope.
    + +
    +Definition T1le (x y :T1) := (x == y) || (x < y).
    +Notation "x <= y" := (T1le x y) : cantor_scope.
    +Notation "x >= y" := (y x) (only parsing) : cantor_scope.
    +Notation "x > y" := (y < x) (only parsing) : cantor_scope.
    + +
    + +
    +Lemma T1lenn x: x x.
    + +
    +#[local] Hint Resolve T1lenn : core.
    + +
    +Lemma T1ltnn x: (x < x) = false.
    + +
    +Lemma T1lt_ne a b : a < b (a == b) = false.
    + +
    +Lemma T1lt_ne' a b : a < b (b == a) = false.
    + +
    +Lemma T1ltW a b : (a < b) (a b).
    + +
    +Lemma T1le_eqVlt a b : (a b) = (a == b) || (a < b).
    + +
    +Lemma T1lt_neAle a b : (a < b) = (a != b) && (a b).
    + +
    +Lemma T1ltn0 x: (x < zero) = false.
    +Lemma T1le0n x: zero x.
    +Lemma T1len0 x: (x zero) = (x == zero).
    +Lemma T1lt0n x: (zero < x) = (x != zero).
    + +
    +Lemma T1ge1 x: (one x) = (x != zero).
    + +
    +Lemma T1lt1 x: (x < one) = (x==zero).
    + +
    +Lemma T1nat_inc n p : (n < p)%N = (\F n < \F p).
    + +
    +
    + +
    +This is an alternative version of less-or-equal +
    +
    + +
    +Lemma T1le_consE a n b a' n' b':
    (cons a n b cons a' n' b') =
    +    if a < a' then true
    +      else if a == a' then
    +         if (n < n')%N then true
    +         else if (n == n') then b b' else false
    +         else false.
    + +
    +
    + +
    +We have exactly one of: a is less than, greater than, or equal to b +
    +
    + +
    +Lemma T1lt_trichotomy a b: [|| (a< b), (a==b) | (b < a)].
    + +
    +Lemma T1lt_anti b a: a < b (b < a) = false.
    + +
    +Lemma T1leNgt a b: (a b) = ~~ (b < a).
    + +
    +Lemma T1ltNge a b: (a < b) = ~~ (b a).
    + +
    +Lemma T1eq_le m n : (m == n) = ((m n) && (n m)).
    + +
    +Lemma T1le_total m n : (m n) || (n m).
    + +
    +
    + +
    +The next three definitions are similar to to those defined in ssrnat. +we shall use T1ltgtP a lot. + +
    +
    + +
    +CoInductive T1ltn_xor_geq m n : bool bool Set :=
    +  | T1LtnNotGeq of m < n : T1ltn_xor_geq m n false true
    +  | T1GeqNotLtn of n m : T1ltn_xor_geq m n true false.
    + +
    +CoInductive T1leq_xor_gtn m n : bool bool Set :=
    +  | T1GeqNotGtn of m n : T1leq_xor_gtn m n true false
    +  | T1GtnNotLeq of n < m : T1leq_xor_gtn m n false true.
    + +
    +CoInductive compare_T1 m n : bool bool bool Set :=
    +  | CompareT1Lt of m < n : compare_T1 m n true false false
    +  | CompareT1Gt of m > n : compare_T1 m n false true false
    +  | CompareT1Eq of m = n : compare_T1 m n false false true.
    + +
    +Lemma T1leP x y : T1leq_xor_gtn x y (x y) (y < x).
    + +
    +Lemma T1ltP m n : T1ltn_xor_geq m n (n m) (m < n).
    + +
    +Lemma T1ltgtP m n : compare_T1 m n (m < n) (n < m) (m == n).
    + +
    +
    + +
    +We show here transitivity of comparison, using T1ltgtP . +
    +
    + +
    +Lemma T1lt_trans b a c: a < b b < c a < c.
    + +
    +Lemma T1lt_le_trans b a c: a < b b c a < c.
    + +
    +Lemma T1le_lt_trans b a c: a b b < c a < c.
    + +
    +Lemma T1le_trans b a c: a b b c a c.
    + +
    +
    + +
    +The following lemma implies +x < ω x, so all ordinals are less than + ε 0 +
    +
    + +
    +Lemma head_lt_cons a n b: a < cons a n b.
    + +
    +Lemma T1lt_cons_le a n b a' n' b': (cons a n b < cons a' n' b') (a a').
    + +
    +Lemma T1le_cons_le a n b a' n' b': (cons a n b cons a' n' b') (a a').
    + +
    +Lemma phi0_lt a b: (phi0 a < phi0 b) = (a < b).
    + +
    +Lemma phi0_le a b: (phi0 a phi0 b) = (a b).
    + +
    +Lemma phi0_lt1 a n b a': (cons a n b < phi0 a') = (a < a').
    + +
    +
    + +
    +

    Normal form

    + +
    + + There exists a strictly infinite decreasing sequence of ordinals, +so the order is not well founded +
    +
    + +
    +Theorem lt_not_wf : ¬ (well_founded T1lt).
    + +
    +
    + +
    +We say that cons a n b is NF if +)b <φ0(a). +If b is cons a' n' b', this says that b is less than b'. +If a is zero, this says that b=0. + +
    +
    + +
    +Fixpoint T1nf x :=
    +  if x is cons a _ b then [&& T1nf a, T1nf b & b < phi0 a ]
    +  else true.
    + +
    +Lemma T1nf_cons0 a n: T1nf a T1nf (cons a n zero).
    + +
    +Lemma T1nf_cons_cons a n a' n' b' : T1nf (cons a n (cons a' n' b')) a' < a.
    + +
    +Lemma T1nf_consa a n b: T1nf (cons a n b) T1nf a.
    + +
    +Lemma T1nf_consb a n b: T1nf (cons a n b) T1nf b.
    + +
    +Lemma T1nf_finite1 n b: T1nf (cons zero n b) = (b == zero).
    + +
    +Lemma T1nf_finite n b: T1nf (cons zero n b) (b = zero).
    + +
    +Lemma T1nfCE: ~~(T1nf T1bad).
    + +
    +
    + +
    +We show here that the restriction of T1lt to NF ordinals is well-founded, + then prove two induction principles. Note that nf_Wf' says every + NF x is accessible by the relation: u<v, u and v NF. + If x is not NF it is trivially accessible. The proof is a bit tricky +
    +
    + +
    +Section AddLocalNotation.
    +  #[local] Notation LT :=
    +    (@restrict T1 (fun x : T1is_true (T1nf x))
    +               (fun x y : T1is_true (x < y))).
    + +
    +  Lemma nf_Wf : well_founded (restrict T1nf T1lt). +
    +  Lemma nf_Wf' : well_founded_P T1nf T1lt.
    + +
    +  Lemma T1transfinite_induction P:
    +    ( x, T1nf x ( y, T1nf y y < x P y) P x)
    +     a, T1nf a P a.
    + +
    +  Lemma T1transfinite_induction_Q (P: T1 Type) (Q: T1 Prop):
    +    ( x:T1, Q x T1nf x
    +                  ( y:T1, Q y T1nf y y < x P y) P x)
    +     a, T1nf a Q a P a.
    + +
    +  Lemma T1nf_rect (P : T1 Type):
    +    P zero
    +    ( n: nat, P (cons zero n zero))
    +    ( a n b n' b', T1nf (cons a n b)
    +                         P (cons a n b)
    +                         b' < phi0 (cons a n b)
    +                         T1nf b'
    +                         P b'
    +                         P (cons (cons a n b) n' b'))
    +     a, T1nf a P a.
    + +
    +End AddLocalNotation.
    + +
    +
    + +
    +

    Successor

    + +
    + + We say that cons a n b is +
      +
    • limit if a is non-zero, b is limit or zero + +
    • +
    • finite if a is zero + +
    • +
    • a successor if a is zero or b is a successor + +
    • +
    + and define its +
      +
    • successor as \F (n+2) or cons a n (succ b) + +
    • +
    • predecessor as \F n or cons a n (pred b) + +
    • +
    • split u,v as cons a n x, y if b split as x,y and a is non-zero; + and as 0,n+1 if a is zero + +
    • +
    +Note that if a=0, the quantity b is ignored; but when x is NF, +then b is zero. +
    +
    + +
    +Fixpoint T1limit x :=
    +  if x is cons a n b then
    +    if a==zero then false else (b== zero) || T1limit b
    +  else false.
    + +
    +Definition T1finite x := if x is cons a n b then a == zero else true.
    + +
    +Fixpoint T1is_succ x :=
    +  if x is cons a n b then (a==zero) || T1is_succ b else false.
    + +
    +Fixpoint T1succ (c:T1) : T1 :=
    +  if c is cons a n b
    +  then if a == zero then cons zero n.+1 zero else cons a n (T1succ b)
    +  else one.
    + +
    +Fixpoint T1pred (c:T1) : T1 :=
    +  if c is cons a n b then
    +    if (a==zero) then \F n else (cons a n (T1pred b))
    +  else zero.
    + +
    +Fixpoint T1split x:=
    +  if x is cons a n b then
    +    if a==zero then (zero, n.+1) else
    +      let: (x, y) := T1split b in (cons a n x,y)
    +  else (zero,0).
    + +
    +Lemma split_limit x: ((T1split x).2 == 0) = ((x==zero) || T1limit x).
    + +
    +Lemma split_is_succ x: ((T1split x).2 != 0) = (T1is_succ x).
    + +
    +Lemma split_finite x: ((T1split x).1 == zero) = T1finite x.
    + +
    +Lemma split_succ x: let:(y,n):= T1split x in T1split (T1succ x) = (y,n.+1).
    + +
    +Lemma split_pred x: let:(y,n):= T1split x in T1split (T1pred x) = (y,n.-1).
    + +
    +Lemma split_le x : (T1split x).1 x.
    + +
    +Lemma nf_split x : T1nf x T1nf (T1split x).1.
    + +
    +Lemma T1finite1 n: T1finite (\F n).
    + +
    +Lemma T1finite2 x: T1finite x T1nf x x = \F ((T1split x).2).
    + +
    +Lemma T1finite2CE: T1finite T1bad n, T1bad \F n.
    + +
    +Lemma T1finite_succ x: T1finite x T1finite (T1succ x).
    + +
    +Lemma T1succ_nat n: T1succ (\F n) = \F (n.+1).
    + +
    +Lemma nf_omega : T1nf T1omega.
    +Lemma nf_finite n: T1nf (\F n).
    +Lemma nf_phi0 a: T1nf (phi0 a) = T1nf a.
    +Lemma nf_log a: T1nf a T1nf (T1log a).
    + +
    +
    + +
    +An ordinal is zero, limit or a successor, exclusively. When we split x +the first component is zero or limit, the second is a natural number +
    +
    + +
    +Lemma limit_pr1 x: (x == zero) (+) (T1limit x (+) T1is_succ x).
    + +
    +Lemma split_limit1 x (y:= (T1split x).1): (y == zero) || (T1limit y).
    + +
    +
    + +
    +If x is limit, if y is less than x, so is the successor of y +
    +
    + +
    +Lemma limit_pr x y: T1limit x y < x T1succ y < x.
    + +
    +Lemma pred_le a: T1pred a a.
    + +
    +Lemma pred_lt a: T1is_succ a T1pred a < a.
    + +
    +Lemma succ_lt a: a < T1succ a.
    + +
    +Lemma nf_succ a: T1nf a T1nf (T1succ a).
    + +
    +Lemma nf_pred a: T1nf a T1nf (T1pred a).
    + +
    +Lemma succ_pred x: T1nf x T1is_succ x x = T1succ (T1pred x).
    + +
    +Lemma succ_predCE: T1is_succ T1bad y, T1bad T1succ y.
    + +
    +Lemma succ_p1 x: T1is_succ (T1succ x).
    + +
    +Lemma pred_succ x: T1nf x T1pred (T1succ x) = x.
    + +
    +Lemma pred_succ_CE: T1pred (T1succ T1bad) T1bad.
    + +
    +Lemma succ_inj x y: T1nf x T1nf y (T1succ x == T1succ y) = (x==y).
    + +
    +Lemma succ_injCE: one T1bad (T1succ one = T1succ T1bad).
    + +
    +Lemma lt_succ_succ x y: T1succ x < T1succ y x < y.
    + +
    +Lemma le_succ_succ x y: x y T1succ x T1succ y.
    + +
    +Lemma lt_succ2CE: one < T1bad T1bad < T1succ one.
    + +
    +Lemma lt_succ_succE x y:
    +  T1nf x T1nf y (T1succ x < T1succ y) = (x < y).
    + +
    +
    + +
    +Some properties of comparison and successor +
    +
    + +
    +Lemma le_succ_succE x y:
    +  T1nf x T1nf y (T1succ x T1succ y) = (x y).
    + +
    +Lemma lt_succ_le_1 a b : T1succ a b a < b.
    + +
    +Lemma lt_succ_le_2 a b: T1nf a a < T1succ b a b.
    + +
    +Lemma lt_succ_le_3 a b: T1nf a (a < T1succ b) = (a b).
    + +
    +Lemma lt_succ_le_4 a b: T1nf b (a < b) = (T1succ a b).
    + +
    +Lemma phi0_log a: a < phi0 (T1succ (T1log a)).
    + +
    +Lemma tail_lt_cons a n b: b < phi0 a b < cons a n b.
    + +
    +
    + +
    +

    Addition

    + +
    + + The definition of addition and subtraction given here are straightforward +given our interpretation of cons +
    +
    + +
    +Fixpoint T1add x y :=
    +  if x is cons a n b then
    +    if y is cons a' n' b' then
    +      if a < a' then cons a' n' b'
    +      else if a' < a then (cons a n (b + (cons a' n' b')))
    +           else (cons a (n+n').+1 b')
    +    else x
    +  else y
    +where "a + b" := (T1add a b) : cantor_scope.
    + +
    +Fixpoint T1sub x y :=
    +  if x is cons a n b then
    +    if y is cons a' n' b' then
    +      if x < y then zero
    +      else if a' < a then cons a n b
    +           else if (n < n')%N then zero
    +                else if (a==zero) then
    +                       if (n ==n') then zero else cons zero ((n-n').-1) zero
    +                     else if (n == n') then b - b' else cons a (n-n').-1 b
    +    else x
    +  else zero
    +where "x - y" := (T1sub x y):cantor_scope.
    + +
    +
    + +
    +Easy properties +
    +
    + +
    +Lemma succ_is_add_one a: T1succ a = a + one.
    + +
    +Lemma add1Nfin a: ~~ T1finite a one + a = a.
    + +
    +Lemma sub1Nfin a: ~~ T1finite a a - one = a.
    + +
    +Lemma sub1a x: x != zero T1nf x x = one + (x - one).
    + +
    +Lemma sub1b x: T1nf x x = (one + x) - one.
    + +
    +Lemma sub_1aCE (a:= cons zero 0 T1bad) : one + (a - one) != a.
    + +
    +Lemma sub_1bCE (a:= cons zero 0 T1bad) : (one + a - one) != a.
    + +
    +Lemma T1add0n : left_id zero T1add.
    +Lemma T1addn0: right_id zero T1add.
    + +
    +Lemma T1subn0 x: x - zero = x.
    + +
    +Lemma T1subnn x: x - x = zero.
    + +
    +Lemma add_int n m : \F n + \F m = \F (n +m)%N.
    + +
    +Lemma sub_int n m : \F n - \F m = \F (n -m)%N.
    + +
    +Lemma add_fin_omega n: \F n + T1omega = T1omega.
    + +
    +Lemma fooCE (x:= T1bad):
    +  ~~T1limit x /\( u v, T1limit u x u + \F v.+1).
    + +
    +Lemma split_add x: let: (y,n) :=T1split x in T1nf x
    +                                             (x == y + \F n) && ((y==zero) || T1limit y ).
    + +
    +Lemma add_to_cons a n b:
    +  b < phi0 a cons a n zero + b = cons a n b.
    + +
    +Lemma addC_CE (a := one) (b := T1omega):
    +  [/\ T1nf a, T1nf b & a + b b + a].
    + +
    +
    + +
    +We say that x is AP is the sum of two ordinals less than x is +less than x. This conditionq holds if x has the form +)φ0(a); the converse is true when x is non-zero. +We may also assume everything NF. + +
    +
    + +
    +Lemma ap_pr0 a (x := phi0 a) b c:
    +  b < x c < x b + c < x.
    + +
    +Lemma ap_pr1 c:
    +  ( a b, a < c b < c a + b < c)
    +  (c== zero) || T1ap c.
    + +
    +Lemma ap_pr2 c:
    +  T1nf c c zero
    +  ( a b, T1nf a T1nf b a < c b < c a + b < c)
    +  T1ap c.
    + +
    +Lemma ap_pr2CE (c := cons T1bad 1 zero):
    +  ( a b, T1nf a T1nf b a < c b < c a + b < c).
    + +
    +
    + +
    +Alternate definition of an AP: if a<x then a+x=x. + +
    +
    + +
    +Lemma add_simpl1 a n b n' b': a != zero
    +                              cons a n b + cons zero n' b' = cons a n (b + cons zero n' b').
    + +
    +Lemma add_simpl2 n b a' n' b': a' != zero
    +                                cons zero n b + cons a' n' b' = cons a' n' b'.
    + +
    +Lemma ap_pr3 a b (x := phi0 a): b < x b + x = x.
    + +
    +Lemma ap_pr4 x: ( b, b < x b + x = x) (x == zero) || T1ap x.
    + +
    +
    + +
    +It follows tthat the sum of two NF ordinals is NF +
    +
    + +
    +Lemma nf_add a b: T1nf a T1nf b T1nf (a + b).
    + +
    +
    + +
    +Results anbout addition subtraction comparison +
    +
    + +
    +Lemma T1add_eq0 m n: (m + n == zero) = (m == zero) && (n == zero).
    + +
    +Lemma add_le1 a b: a a + b.
    + +
    +Lemma add_le2 a b: b a + b.
    + +
    +Lemma minus_lt a b: a < b a - b = zero.
    + +
    +Lemma minus_le a b: a b a - b = zero.
    + +
    +Lemma T1sub0 a: a - zero = a.
    + +
    +Lemma nf_sub a b: T1nf a T1nf b T1nf (a - b).
    + +
    +Lemma sub_le1 a b : T1nf a (a - b) a.
    + +
    +Lemma sub_pr a b: T1nf b (a + b) - a = b.
    + +
    +Lemma add_inj a b c : T1nf b T1nf c a + b = a + c b = c.
    + +
    +Lemma sub_pr1 a b: T1nf b a b b = a + (b - a).
    + +
    +Lemma sub_pr1CE: (one T1bad) && (T1bad != one + (T1bad - one)).
    + +
    +Lemma sub_pr1r a b: T1nf a a - b = zero a b.
    + +
    +Lemma omega_minus_one : T1omega - one = T1omega.
    + +
    +Lemma sub_nz a b: T1nf b a < b (b - a) != zero.
    + +
    +Lemma sub_nzCE (a := one) (b := (cons zero 0 one)):
    +  (a < b) && (b-a == zero).
    + +
    +
    + +
    +Associativity of addition +
    +
    + +
    +Lemma T1addA c1 c2 c3: c1 + (c2 + c3) = (c1 + c2) + c3.
    + +
    +Lemma T1addS a b : (a + T1succ b) = T1succ (a+ b).
    + +
    +Lemma T1le_add2l p m n : (p + m p + n) = (m n).
    + +
    +Lemma T1lt_add2l p m n : (p + m < p + n) = (m < n).
    + +
    +Lemma T1lt_add2r p m n : (m + p < n + p ) (m < n).
    + +
    +Lemma T1le_add2r p m n : (m n) (m + p n + p).
    + +
    +Lemma T1eq_add2l p m n : (p + m == p + n) = (m == n).
    + +
    +Lemma add_le3 a b: a = a + b b = zero.
    + +
    +Lemma add_le4 a b: b != zero a < a + b.
    + +
    +Lemma sub_pr1rCE (a := T1bad) (b := one) : (a - b == zero) && (b < a).
    + +
    +
    + +
    +

    Limits

    + +
    + + A limit ordinal is the supremum of a sequence of ordinals. We first show + that some sequences are unbounded. We then show that, if the sequence is + bounded, there is a least upper bound, more preciselly, if a property is + satisfied for some NF ordinal, it is satisfied for a least NF aordinal. + This requires teh excluded middel principle. + +
    +
    + +
    +Fixpoint omega_tower (n:nat) : T1 :=
    +  if n is p.+1 then phi0 (omega_tower p) else one.
    + +
    +Lemma omega_tower_nf n: T1nf (omega_tower n).
    + +
    +Lemma omega_tower_unbounded x: ¬ ( n, (omega_tower n) < x).
    + +
    +Definition ex_middle:=
    +   (P: T1 Prop), let Q := x, (T1nf x P x) in Q ¬Q.
    + +
    +Lemma ex_middle_pick (P: T1 Prop): ex_middle
    +                                       ( x, (T1nf x P x)) ( x, T1nf x ¬ (P x)).
    + +
    +Lemma min_exists (P: T1 Prop) x: ex_middle
    +                                    T1nf x (P x)
    +                                     y, T1nf y P y z, T1nf z P z y z.
    + +
    +
    + +
    +

    Definition

    + +
    + + We say that x is the limit of f, or the supremum of the f(i) if +f(i)<x (we could use less-or-equal here as f will be strictly increasing) +and if moreover, every ordinal less than x is bounded by some f(i). +Note that x is then the least upper bound. The trouble is that each f(i) +may be NF and x is not. Thus , we give an alternate definition. +Trouble is: a function may have more then one limit (at most one of them +being NF). + +
    +
    + +
    +Notation Tf := (nat T1).
    + +
    +Definition limit_v1 (f: Tf) x :=
    +  ( n, f n < x) ( y, y < x ( n, y f n)).
    + +
    +Definition limit_v2 (f: Tf) x :=
    +  ( n, f n < x) ( y, T1nf y y < x ( n, y f n)).
    + +
    +Lemma limit_unique1 (f: Tf) x x' :limit_v1 f x limit_v1 f x'
    +                                  x = x'.
    + +
    +Lemma limit_unique2 (f: Tf) x x' : limit_v2 f x limit_v2 f x'
    +                                   T1nf x T1nf x' x = x'.
    + +
    +Definition omega_plus_n n := cons one 0 (cons zero n zero).
    + +
    +Lemma nf_omega_plus_n n : T1nf ( omega_plus_n n).
    + +
    +Lemma limit_CE1: limit_v1 omega_plus_n (cons one 0 T1omega).
    + +
    +Lemma limit_CE2: limit_v2 omega_plus_n (cons one 1 zero).
    + +
    +Lemma limit_CE3: limit_v2 omega_plus_n (cons one 0 T1omega).
    + +
    +
    + +
    +

    The normal form

    + To each ordinal, one can associate another ordinal that is NF. +However, this is in general incompatible with other operations +
    +
    + +
    +Fixpoint toNF x :=
    +  if x is cons a n b then (cons (toNF a) n zero) + toNF b else zero.
    + +
    +Lemma nf_toNF x: T1nf (toNF x).
    + +
    +Lemma toNF_nz x : toNF x = zero x = zero.
    + +
    +Lemma toNF_nf x: T1nf x toNF x = x.
    + +
    +Lemma toNF_mon x : x toNF x.
    + +
    +Lemma toNF_ex1 x: toNF (cons zero 0 x) = one + toNF x.
    + +
    +Lemma toNF_ex2: toNF (cons one 0 T1omega) = cons one 1 zero.
    + +
    +Lemma toNF_succ (x := cons zero 0 one): toNF (T1succ x) != T1succ (toNF x).
    + +
    +Lemma toNF_pred (x := cons zero 0 one): toNF (T1pred x) != T1pred (toNF x).
    + +
    +
    + +
    +

    Realizing the limit

    + This is a simplification of the code given for the type T3 below. +We define a function F(x); so that for any limit ordinal x, if f= F(x), +then f is stictly increasing (of type nat T1), and its limit is x. + +
    +
    + +
    +Lemma fincP (f: Tf) :
    +  ( n, f n < f n.+1)
    +  ( n m, (n < m)%N f n < f m).
    + +
    +Definition limit_of (f: Tf) x :=
    +  [/\ ( n m, (n < m)%N f n < f m), limit_v2 f x & T1nf x].
    + +
    +Lemma limit_unique f x y: limit_of f x limit_of f y x = y.
    + +
    +Lemma limit_lub f x y: limit_of f x ( n, f n y) T1nf y
    +                       x y.
    + +
    +Definition phi1 a (f:Tf) := fun na + f n.
    +Definition phi2 (f:Tf) := fun nphi0 (f n).
    +Definition phi3 a:= fun ncons a n zero.
    + +
    +Lemma limit1 a b f: T1nf a limit_of f b limit_of (phi1 a f) (a + b).
    + +
    +Lemma limit2 b f: limit_of f b limit_of (phi2 f) (phi0 b).
    + +
    +Lemma limit3 a: T1nf a limit_of (phi3 a) (phi0 (T1succ a)).
    + +
    +
    + +
    +

    Normal functions

    + We say that f:T2 T2 is a normal function if it is striclly increasing +and the suppremum of all f(y), for y<x is f(x) whenever x is limit. +Everything is assumed NF. +
    +
    + +
    +Fixpoint limit_fct x :=
    +  if x is cons a n b then
    +    if (b==zero) then
    +      if(a==zero) then phi3 a
    +      else if (T1is_succ a)
    +           then if (n==0) then phi3 (T1pred a) else
    +                  phi1 (cons a n.-1 zero) (phi3 (T1pred a))
    +           else if(n==0) then (phi2 (limit_fct a))
    +                else phi1 (cons a n.-1 zero) (phi2 (limit_fct a))
    +    else phi1 (cons a n zero) (limit_fct b)
    +  else phi3 zero.
    + +
    +Lemma limit_prop x: T1nf x T1limit x limit_of (limit_fct x) x.
    + +
    +Definition sup (f: T1 T1) x z :=
    +  [/\ T1nf z,
    +   ( y, T1nf y y < x f y z) &
    +   ( z', T1nf z' z' < z y,
    +                   [&& T1nf y, y < x & z' < f y])].
    + +
    +Definition normal f:=
    +  [/\ x, T1nf x T1nf (f x),
    +     ( x y, T1nf x T1nf y x < y f x < f y)&
    +     ( x, T1nf x T1limit x sup f x (f x)) ].
    + +
    +Lemma sup_unique f x z z': sup f x z sup f x z' z = z'.
    + +
    +Lemma sup_Oalpha_zero: sup id zero zero.
    + +
    +Lemma sup_Oalpha_succ x: T1nf x sup id (T1succ x) x.
    + +
    +Lemma sup_Oalpha_limit x: T1nf x T1limit x sup id x x.
    + +
    +
    + +
    + Identity is normal, composition of normal functions is normal, +addition is normal when the firtst argument is fixed. A normal function maps limit ordinals to limit ordinls +
    +
    + +
    +Lemma normal_id: normal id.
    + +
    +Lemma normal_limit f x: normal f T1nf x T1limit x T1limit (f x).
    + +
    +Lemma add_normal a: T1nf a normal (T1add a).
    + +
    +Lemma normal_compose f g:
    +  normal f normal g normal (f \o g).
    + +
    +
    + +
    +

    multiplication

    + +
    + + There is a unique way to define multiplication (for NF arguments) +compatible with our interpretation of cons. In the case where a and a' +are zero, we could use zero or b instead of b'. With the current +implementation, multiplication is associative, and there is a distributivity +law +
    +
    + +
    +Fixpoint T1mul (c1 c2 : T1) {struct c2}:T1 :=
    +  if c2 is cons a' n' b' then
    +    if c1 is cons a n b then
    +       if((a==zero) && (a' == zero)) then cons zero (n×n' + n + n')%N b'
    +       else if(a'==zero) then cons a (n×n' + n + n')%N b
    +       else cons (a + a') n' ((cons a n b) × b')
    +     else zero
    +  else zero
    +where "c1 * c2" := (T1mul c1 c2) : cantor_scope.
    + +
    +Lemma mul_na n b x: (cons zero n b) × x = (cons zero n zero) × x.
    + +
    +Lemma T1muln0 x: x × zero = zero.
    + +
    +Lemma T1mul0n x: zero × x = zero.
    + +
    +Lemma mul_int n m : \F n × \F m = \F (n ×m)%N.
    + +
    +Lemma mul_phi0 a b: phi0 (a + b) = phi0 a × phi0 b.
    + +
    +Lemma T1mul_eq0 x y: (x × y == zero) = (x== zero) || (y == zero).
    + +
    +Lemma T1mul_eq1 a b: T1nf a (a× b == one) = ((a == one) && (b == one)).
    + +
    +Lemma mul_distr: right_distributive T1mul T1add.
    + +
    +Lemma mulA: associative T1mul.
    + +
    +
    + +
    +Note that in some case the product of x and one is not x +
    +
    + +
    +Lemma T1muln1 x: T1nf x x × one = x.
    + +
    +Lemma T1mul1n x: one × x = x.
    + +
    +Lemma T1mul1nCE (x := T1bad): x × one x.
    + +
    +Lemma T1muln1_CE x:
    +  (x == x × one) =
    +    (if x is cons a n b then ((a != zero) || (b== zero)) else true).
    + +
    +Lemma mul_succ x y: T1nf x x × (T1succ y) = x × y + x.
    + +
    +Lemma T1lt_mul2l x y z: x != zero T1nf z ((x ×y < x ×z) = (y < z)).
    + +
    +Lemma mulnf0 a n b: a != zero b < phi0 a (cons zero n zero) × b < phi0 a.
    + +
    +Lemma nf_mul a b: T1nf a T1nf b T1nf (a × b).
    + +
    +Lemma T1lt_mul2r x y z: (y × x < z × x) (y < z).
    + +
    +Lemma T1le_mul2l x y z : x != zero T1nf y
    +    (x ×y x ×z) = (y z).
    + +
    +Lemma T1le_mul2r x y z: (y z) (y × x z × x).
    + +
    +Lemma T1eq_mul2l p m n : p != zero T1nf m T1nf n
    +   (p × m == p × n) = (m == n).
    + +
    +Lemma T1le_pmulr x a: T1nf a x != zero a a × x.
    + +
    +Lemma T1le_pmulrCE (x:= \F1 ) (a:=T1bad) : (a a × x) = false.
    + +
    +Lemma T1le_pmulrl x a: x != zero a x × a.
    + +
    +Lemma T1le_mulCE (m1:= one) (m2:= T1bad) (n1 := \F1) (n2 := one) :
    +   (m1 n1) && (m2 n2) && ( m1 × m2 n1 × n2) == false.
    + +
    +Lemma T1le_mul m1 m2 n1 n2 : T1nf m2 m1 n1 m2 n2
    +   m1 × m2 n1 × n2.
    + +
    +
    + +
    +

    Preparation of the exponention

    + +The prouct of an integer and omega is omega. This holds in fact for any limit +ordinals. We give here a formula for the product of omega and x, and show +that this is a limit ordinal. The converse holds. +
    +
    + +
    +Lemma mul_fin_omega n: (\F n.+1) × T1omega = T1omega.
    + +
    +Lemma mul_int_limit n y: T1limit y \F n.+1 × y = y.
    + +
    +Lemma T1mul_omega a n b:
    +   T1omega × (cons a n b) =
    +   if (a== zero) then cons one n zero else cons (one + a) n (T1omega × b).
    + +
    +Lemma mul_omega_limit x: x != zero T1limit (T1omega × x).
    + +
    +Fixpoint T1div_by_omega x :=
    +  if x is cons a n b then cons (a - one) n (T1div_by_omega b) else zero.
    + +
    +Lemma div_by_omega_pr x: T1nf x ((x==zero) || T1limit x)
    +   T1omega × (T1div_by_omega x) = x.
    + +
    +
    + +
    +We show here every ordinal x is the product of omega and y, +to which an integer is added. We study the behaviour +of this decomposition and multiplication +
    +
    + +
    +Lemma nf_div_by_omega x: T1limit x T1nf x T1nf (T1div_by_omega x).
    + +
    +Lemma nf_revCE u v: T1bad T1omega × u + \F v.
    + +
    +Lemma add_simpl3 x y: y != zero
    +  x + x × (T1omega × y) = x × (T1omega × y).
    + +
    +Lemma plus_int_Ox n x: x != zero \F n + T1omega × x = T1omega × x.
    + +
    +Lemma nf_rev x (u := (T1div_by_omega (T1split x).1)) (v:= (T1split x).2):
    T1nf x T1nf u x = T1omega × u + \F v.
    + +
    +Lemma nf_rev_unique u v (x:= T1omega ×u + \F v): T1nf u
    +    u = T1div_by_omega (T1split x).1 v = (T1split x).2.
    + +
    +Lemma nf_rev_sum x y
    +  (u := T1div_by_omega (T1split x).1) (n:= (T1split x).2)
    +  (v := T1div_by_omega (T1split y).1) (m:= (T1split y).2)
    +  (w := T1div_by_omega (T1split (x+y)).1) (p:= (T1split (x+y)).2):
    +  T1nf x T1nf y
    +  if (v==zero) then (w = u p = (n + m)%N) else (w = u+v p = m).
    + +
    +Lemma mul_sum_omega a n: a != zero
    +   (T1omega × a + \F n) × T1omega = (T1omega × a) × T1omega.
    + +
    +Lemma nf_rev_prod x y
    +  (u := T1div_by_omega (T1split x).1) (n:= (T1split x).2)
    +  (v := T1div_by_omega (T1split y).1) (m:= (T1split y).2)
    +  (w := T1div_by_omega (T1split (x×y)).1) (p:= (T1split (x×y)).2):
    +  T1nf x T1nf y
    +  if (u== zero)
    +     then if (n == 0) then (w = zero p = 0)
    +     else (w = v p = (n×m)%N)
    +  else if (m==0) then (w = u × T1omega ×v p = 0)
    +  else (w = u × T1omega ×v + u × \F m p = n).
    + +
    +
    + +
    +

    Normality of multiplication

    + +If a is a non-zero ordinal, the multiplication by a is normal. +This means, if b is limit, the supremum of all a ×c for c<b is a×b. +We show this for omega, and for some special cases. +This is equivalent to existence of ordinal division. + +
    +
    + +
    +Lemma mul_omega_pr1 a: a != zero T1nf a
    +  sup (T1mul a) T1omega (a × T1omega).
    + +
    +Lemma mul_omega2_pr1 a (u:= cons one 1 zero): a != zero T1nf a
    +  sup (T1mul a) u (a × u).
    + +
    +Lemma mul_omega_pr3 a b c: a != zero c != zero
    +   T1nf a T1nf b T1nf c
    +  sup (T1mul a) c (a × c)
    +  sup (T1mul a) (b+c) (a × (b + c)).
    + +
    + +
    + +
    +
    + +
    +

    Exponentiation

    + +
    + + In order to compute a ^b , we first write b as the sum of a limit +ordinal and an integer n. Computing a ^n is trivial. The limit ordinal +is omega times c; if a is at least one, then a ^omega = omega ^d +for some d, and the result is a ^ (omega × c) = omega ^(d×c)=phi0(d×c) . +This leads to the following definitions. + +
    +
    + +
    +Fixpoint exp_F a n :=
    +  if n is p.+1 then a × (exp_F a p) else one.
    + +
    +Definition exp_O a b :=
    +  if (a==zero) then if (b== zero) then one else a
    +  else if (a== one) then one
    +  else if (T1finite a) then (phi0 b)
    +  else phi0 ((T1log a) × T1omega × b).
    + +
    +Definition T1exp a b:=
    +  (exp_O a (T1div_by_omega (T1split b).1)) × (exp_F a ( (T1split b).2)).
    + +
    +Notation "a ^ b" := (T1exp a b) : cantor_scope.
    + +
    +
    + +
    +Properties of exp_O +
    +
    + +
    +Lemma expO_mul1 a b: (exp_O a b) × (one) = exp_O a b.
    + +
    +Lemma nf_expO a b: T1nf a T1nf b T1nf (exp_O a b).
    + +
    +Lemma expO_n0 x: exp_O x zero = one.
    + +
    +Lemma expO_1n n: exp_O (one) n = one.
    + +
    +Lemma expO_eq0 a b: (exp_O a b == zero) = ((a== zero) && (b != zero)).
    + +
    +Lemma expO_eq1 a b: (exp_O a b == one) = ((a== one) || (b == zero)).
    + +
    +Lemma expO_add z u v: exp_O z u × exp_O z v = exp_O z (u + v).
    + +
    +
    + +
    +Properties of exp_F +
    +
    +Lemma nf_expF a n: T1nf a T1nf (exp_F a n).
    + +
    +Lemma expF_add a n m: (exp_F a n) × (exp_F a m) = exp_F a (n + m).
    + +
    +Lemma expF_mul a n m: exp_F a (n × m) = exp_F (exp_F a n) m.
    + +
    +Lemma expF_1n n: exp_F (one) n = one.
    + +
    +Lemma expF_eq0 a n: (exp_F a n == zero) = ((a== zero) && (n != 0)).
    + +
    +Lemma expF_eq1 a n: T1nf a (exp_F a n == one) = ((a== one) || (n == 0)).
    + +
    +
    + +
    +Properties of exp +
    +
    + +
    +Lemma nf_exp a b: T1nf a T1nf b T1nf (a ^b).
    + +
    +Lemma exp00: zero ^zero = one.
    + +
    +Lemma expx0 x: x ^zero = one.
    + +
    +Lemma expx_pnat x n b: x ^ (cons zero n b) = exp_F x n.+1.
    + +
    +Lemma expx_nat x n: x ^ \F n = exp_F x n.
    + +
    +Lemma expx1 x: T1nf x x ^ one = x.
    + +
    +Lemma expx1CE: T1bad ^ one = one.
    + +
    +Lemma exp2omega n: (\F n.+2)^ T1omega = T1omega.
    + +
    +Lemma exp1x x: one ^ x = one.
    + +
    +Lemma exp_eq0 x y: x^y == zero = ((x==zero) && (y != zero)).
    + +
    +Lemma exp0nz x: x != zero zero ^ x = zero.
    + +
    +Lemma exp_eq1 x y: T1nf x T1nf y
    +  (x^y == one) = ((x== one) || (y == zero)).
    + +
    +Lemma exp_int a b: (\F a) ^ (\F b) = \F (a ^b%N).
    + +
    +Lemma exp_consCE1 (x := \F 2) (a := zero) (n := 0)(b := T1omega):
    +   x ^(cons a n b) != x ^(cons a n zero) × x ^b.
    + +
    +Lemma pow_omega x: T1nf x T1omega ^x = phi0 x.
    + +
    +
    + +
    +

    Existence and uniqueness of the Cantor Normal Form

    + +
    +
    + +
    +Lemma cantor_exists a n b: T1nf (cons a n b)
    +    cons a n b = (T1omega^a) × (\F n.+1) + b.
    + +
    +Lemma cantor_unique a n b a' n' b':
    +  T1nf (cons a n b) T1nf (cons a' n' b')
    +  (T1omega^a) × (\F n.+1) + b = (T1omega^a') × (\F n'.+1) + b'
    +  (a=a' n = n' b = b').
    + +
    +Lemma cantor_CE1 : T1omega ^ T1bad != phi0 T1bad.
    + +
    +Lemma cantorCE2: cons zero 0 T1omega != (T1omega^ zero) × (one) + T1omega.
    + +
    +Lemma cantorCE3: cons T1bad 0 zero != (T1omega^ T1bad) × (one) + zero.
    + +
    +Lemma T1log_prod a b: a != zero b != zero
    +    T1log(a × b) = T1log a + T1log b.
    + +
    +Lemma T1log_exp0 x n: T1nf x T1log (exp_F x n) = (T1log x) × (\F n).
    + +
    +Lemma T1log_exp1 z x: T1nf z T1nf x ~~ T1finite z
    +   T1log (z ^ x) = (T1log z) × x.
    + +
    +Lemma T1log_exp2 z u v: (z == zero) = false (z == one) = false
    +   T1finite z T1nf u T1log (z ^ (T1omega × u + \F v)) = u.
    + +
    +Lemma exp_FO z n v: v != zero exp_F z n × exp_O z v = exp_O z v.
    + +
    +Lemma exp_FO1 z v n m: T1nf z T1nf v v != zero n != 0
    +  exp_O z (v × \F n) × exp_F z m = exp_F (exp_O z v × exp_F z m) n.
    + +
    +Lemma exp_FO2 z m u: T1nf z m != 0 exp_O (exp_F z m) u = exp_O z u.
    + +
    +Lemma exp_FO3 z x u (w := T1div_by_omega (T1split x).1):
    +   T1nf z T1nf w (w == zero) = false (z == zero) = false
    +  exp_O (z ^ x) u = phi0( T1log (z ^x) × T1omega × u).
    + +
    +
    + +
    +

    Basic Properties

    + +
    +
    + +
    +Lemma exp_sum x y z: T1nf x T1nf y z ^(x+y) = z ^x × z ^y.
    + +
    +Lemma exp_prod x y z: T1nf z T1nf x T1nf y z ^(x ×y) = (z ^x) ^y.
    + +
    +Lemma pow_mon1 x y z: T1nf x T1nf y T1nf z x != zero
    +   y z x ^y x ^z.
    + +
    +Lemma pow_mon2 x y z: T1nf x T1nf y T1nf z x != zero x != one
    +   y < z x ^y < x ^z.
    + +
    +Lemma T1le_pmull x a: x != zero a x × a.
    + +
    +Lemma pow_mon3 x y z: T1nf x x y x ^z y ^z.
    + +
    +End CantorOrdinal.
    + +
    +Export CantorOrdinal.
    + +
    +
    + +
    +

    The type T2

    + +
    +
    + +
    +Module Gamma0.
    + +
    +
    + +
    +

    Definition and Equality

    + +
    + + This is like T1 with one more argument +
    +
    + +
    +Inductive T2 : Set :=
    +  zero : T2
    +| cons : T2 T2 nat T2 T2.
    + +
    +Declare Scope g0_scope.
    +Delimit Scope g0_scope with g0.
    +Open Scope g0_scope.
    + +
    +Fixpoint T2eq x y {struct x} :=
    +  match x, y with
    +  | zero, zerotrue
    +  | cons a b n c, cons a' b' n' c'
    +      [&& T2eq a a', T2eq b b', n== n' & T2eq c c' ]
    +  | _, _false
    +end.
    + +
    +Lemma T2eqP : Equality.axiom T2eq.
    + +
    +Canonical T2_eqMixin := EqMixin T2eqP.
    +Canonical T2_eqType := Eval hnf in EqType T2 T2_eqMixin.
    + +
    +Arguments T2eqP {x y}.
    + +
    +Lemma T2eqE a b n d a' b' n' d':
    +  (cons a b n d == cons a' b' n' d') =
    +      [&& a == a', b == b', n== n' & d == d' ].
    + +
    +
    + +
    + We write psi a b instead of cons a b 0 0; we introduce omega and +epsilon0. We consider also the size, this is really the depth of the object +
    +
    + +
    +Notation "[ x , y ]" := (cons x y 0 zero) (at level 0) :g0_scope.
    + +
    +Definition T2nat p := if p is n.+1 then cons zero zero n zero else zero.
    + +
    +Notation "\F n" := (T2nat n)(at level 29) : g0_scope.
    + +
    +Definition psi a b := [a, b].
    + +
    +Definition one := [zero, zero].
    + +
    +Definition omega := [zero, one].
    + +
    +Definition epsilon0 := [one,zero].
    + +
    +Fixpoint T1T2 (c: T1) : T2 :=
    +  if c is CantorOrdinal.cons a n b then cons zero (T1T2 a) n (T1T2 b)
    +  else zero.
    + +
    +Fixpoint size x :=
    +  if x is cons a b n c then
    +     (maxn (size a) (maxn (size b) (size c))).+1
    +  else 0.
    + +
    +Lemma size_prop1 a b n c (l:= size (cons a b n c)):
    +   [/\ size a < l, size b < l, size c < l & size [a, b] l]%N.
    + +
    +Lemma size_prop a b n c a' b' n' c'
    +   (l := (size (cons a b n c) + size (cons a' b' n' c'))%N) :
    +   (size c + size c' < l)%N (size [a, b] + size b' < l)%N
    +   (size a' + size a < l)%N (size b + size b' < l)%N
    +   (size b + size [a', b'] < l)%N (size a + size a' < l)%N.
    + +
    +
    + +
    +

    Order

    + Comparing ordinals is complicated. We are looking for the fixpoint of +some complicated expression F(a,b), in which the psi-parts of a and b +appear as arguments of F. Thus, a definition by induction is impossible. +However if l is the some of the size if the arguments of F, then all calls +of F have a smaller value. Thus, we use a definition by induction on l. +All proofs will be by induction on l as well. + +
    +
    + +
    +Definition lt_rec f x y :=
    if x is cons a b n c then
    +   if y is cons a' b' n' c' then
    +     if ( ((f a a') && (f b ([a', b'])))
    +         || ((a == a') && (f b b'))
    +         || ((f a' a) && (f ([a, b]) b'))
    +         || (((f a' a) && ([a, b] == b'))))
    +     then true
    +     else if ((a== a') && (b==b')) then
    +       if (n < n')%N then true
    +       else if (n == n') then (f c c') else false
    +       else false
    +   else false
    else if y is cons a' b' n' c' then true else false.
    + +
    +Fixpoint T2lta k:=
    if k is k.+1 then lt_rec (T2lta k) else fun x yfalse.
    + +
    +Definition T2lt a b := T2lta ((size a) + size b).+1 a b.
    +Definition T2le (x y :T2) := (x == y) || (T2lt x y).
    +Notation "x < y" := (T2lt x y) : g0_scope.
    +Notation "x <= y" := (T2le x y) : g0_scope.
    +Notation "x >= y" := (y x) (only parsing) : g0_scope.
    +Notation "x > y" := (y < x) (only parsing) : g0_scope.
    + +
    +
    + +
    +Main result: Our comparison is a fix-point +
    +
    + +
    +Lemma T2ltE x y : x < y = lt_rec T2lt x y.
    + +
    +
    + +
    +This is how we compare two psi-terms +
    +
    +Definition lt_psi a b a' b':=
    +      ((a < a') && (b < [a', b']))
    +   || ((a == a') && (b < b'))
    +   || ((a' < a) && ([a, b] < b'))
    +   || ((a' < a) && ([a, b] == b')).
    + +
    +Lemma T2lt_psi a b a' b': [a,b] < [a', b'] = lt_psi a b a' b'.
    + +
    +Lemma T2lt_consE a b n c a' b' n' c' :
    +   cons a b n c < cons a' b' n' c' =
    +     if (lt_psi a b a' b') then true
    +     else if ((a== a') && (b==b')) then
    +       if (n < n')%N then true
    +       else if (n == n') then (c < c') else false
    +       else false.
    + +
    +
    + +
    +Less-or-equal +
    +
    + +
    +Lemma T2le_consE a b n c a' b' n' c' :
    +   cons a b n c cons a' b' n' c' =
    +     if (lt_psi a b a' b') then true
    +     else if ((a== a') && (b==b')) then
    +       if (n < n')%N then true
    +       else if (n == n') then (c c') else false
    +       else false.
    + +
    +Lemma T2ltn0 x: (x < zero) = false.
    +Lemma T2lt0n x: (zero < x) = (x != zero).
    +Lemma T2le0n x: zero x.
    +Lemma T2len0 x: (x zero) = (x == zero).
    +Lemma omega_lt_epsilon0: omega < epsilon0.
    + +
    +Lemma T2ltnn x: (x < x) = false.
    + +
    +Lemma T2lt_ne a b : a < b (a == b) = false.
    + +
    +Lemma T2lt_ne' a b : a < b (b == a) = false.
    + +
    +Lemma T2ltW a b : (a < b) (a b).
    + +
    +Lemma T2le_eqVlt a b : (a b) = (a == b) || (a < b).
    + +
    +Lemma T2lt_neAle a b : (a < b) = (a != b) && (a b).
    + +
    +Lemma T2lenn x: x x.
    + +
    +#[local] Hint Resolve T2lenn : core.
    + +
    +Lemma T2ge1 x: (one x) = (x != zero).
    + +
    +Lemma T2lt1 x: (x < one) = (x==zero).
    + +
    +Lemma T2nat_inc n p : (n < p)%N = (\F n < \F p).
    + +
    +Lemma psi_lt1 a b c n a' b':
    +   cons a b n c < [a', b'] = ([a, b] < [a', b']).
    + +
    +Lemma psi_lt2 a b n c n' c': cons a b n' c' < cons a b n c =
    +   (if (n' < n)%N then true else if n' == n then c' < c else false).
    + +
    +Lemma T1T2_inj n p : (n == p) = (T1T2 n == T1T2 p).
    + +
    +Lemma T1T2_inc n p : (n < p)%ca = (T1T2 n < T1T2 p)%g0.
    + +
    +
    + +
    +First two non-trivial results +
    +
    + +
    +Lemma T2lt_anti b a: a < b (b < a) = false.
    + +
    +Lemma T2lt_trichotomy a b: [|| (a< b), (a==b) | (b < a)].
    + +
    +
    + +
    +what follows is the same as for T1 +
    +
    + +
    +Lemma T2leNgt a b: (a b) = ~~ (b < a).
    + +
    +Lemma T2ltNge a b: (a < b) = ~~ (b a).
    + +
    +Lemma T2eq_le m n : (m == n) = ((m n) && (n m)).
    + +
    +Lemma T2le_total m n : (m n) || (n m).
    + +
    +CoInductive T2ltn_xor_geq m n : bool bool Set :=
    +  | T2LtnNotGeq of m < n : T2ltn_xor_geq m n false true
    +  | T2GeqNotLtn of n m : T2ltn_xor_geq m n true false.
    + +
    +CoInductive T2leq_xor_gtn m n : bool bool Set :=
    +  | T2GeqNotGtn of m n : T2leq_xor_gtn m n true false
    +  | T2GtnNotLeq of n < m : T2leq_xor_gtn m n false true.
    + +
    +CoInductive compare_T2 m n : bool bool bool Set :=
    +  | CompareT2Lt of m < n : compare_T2 m n true false false
    +  | CompareT2Gt of m > n : compare_T2 m n false true false
    +  | CompareT2Eq of m = n : compare_T2 m n false false true.
    + +
    +Lemma T2leP x y : T2leq_xor_gtn x y (x y) (y < x).
    + +
    +Lemma T2ltP m n : T2ltn_xor_geq m n (n m) (m < n).
    + +
    +Lemma T2ltgtP m n : compare_T2 m n (m < n) (n < m) (m == n).
    + +
    +Lemma T2lt_psi_aux a b a' b': a < a' b < [a', b'] [a,b] < [a',b'].
    + +
    +Lemma T2gt1 x: (one < x) = ((x != zero) && (x != one)).
    + +
    +
    + +
    +Second non-trivial result +
    +
    + +
    +Theorem T2lt_trans b a c: a < b b < c a < c.
    + +
    +Lemma T2lt_le_trans b a c: a < b b c a < c.
    + +
    +Lemma T2le_lt_trans b a c: a b b < c a < c.
    + +
    +Lemma T2le_trans b a c: a b b c a c.
    + +
    +Lemma T2le_psi1 a b n c: [a, b] cons a b n c.
    + +
    +Lemma T2lt_psi_b a b: b < [a,b].
    + +
    +Lemma T2lt_psi_a a b: a < [a,b].
    + +
    +
    + +
    +

    Normal form

    + Same as in T1. +TODO:: show that compraison is well-founded for NF + +
    +
    + +
    +Fixpoint T2nf x :=
    +  if x is cons a b n c then [&& T2nf a, T2nf b, T2nf c & c < [a,b] ]
    +  else true.
    + +
    +Lemma T2nf_cons_cons a b n a' b' n' c':
    +  T2nf(cons a b n (cons a' b' n' c')) =
    +   [&& [a', b'] < [a, b], T2nf a, T2nf b & T2nf(cons a' b' n' c') ].
    + +
    +Lemma nf_psi a b n: T2nf (cons a b n zero) = T2nf a && T2nf b.
    + +
    +Lemma T2nf_consE a b n c:
    +    T2nf (cons a b n c) = [&& T2nf a, T2nf b, T2nf c & c < [a,b] ].
    + +
    +Lemma nf_omega : T2nf omega.
    +Lemma nf_one : T2nf one.
    +Lemma nf_finite n: T2nf (\F n).
    + +
    +
    + +
    +

    Successor and predecessor

    + Same as for T1 +
    +
    + +
    +Lemma lt_tail a b n c: T2nf (cons a b n c) c < cons a b n c.
    + +
    +Lemma T1T2range1 x: T1T2 x < epsilon0.
    + +
    +Lemma T1T2range2 x: T2nf x x < epsilon0 {y: T1 | x = T1T2 y}.
    + +
    +Definition T2finite x:=
    +  if x is cons a b n c then ([a,b]==one) else true.
    + +
    +Fixpoint T2limit x :=
    +  if x is cons a b n c then
    +    if ([a,b]==one) then false else (c== zero) || T2limit c
    +  else false.
    + +
    +Fixpoint T2split x:=
    if x is cons a b n c then
    +      if ([a,b]==one) then (zero, n.+1) else
    +     let: (x, y) := T2split c in (cons a b n x,y)
    +   else (zero,0).
    + +
    +Lemma T2nf_finite a b n c: [a,b]==one T2nf (cons a b n c) c = zero.
    + +
    +Lemma split_finite x: ((T2split x).1 == zero) = T2finite x.
    + +
    +Lemma T2finite2 x: T2finite x T2nf x x = \F ((T2split x).2).
    + +
    +Lemma omega_least_inf1 x: T2finite x x < omega.
    + +
    +Lemma omega_least_inf2 x: ~~ T2finite x omega x.
    + +
    +Lemma split_limit x: ((T2split x).2 == 0) = ((x==zero) || T2limit x).
    + +
    +Fixpoint T2is_succ x :=
    +  if x is cons a b n c then ([a,b]==one) || T2is_succ c else false.
    + +
    +Fixpoint T2succ x :=
    +  if x is cons a b n c
    +     then if ([a,b]==one) then \F n.+2 else cons a b n (T2succ c)
    +  else one.
    + +
    +Fixpoint T2pred x :=
    +  if x is cons a b n c then
    +     if ([a,b]==one) then \F n else (cons a b n (T2pred c))
    +  else zero.
    + +
    +Lemma split_is_succ x: ((T2split x).2 != 0) = (T2is_succ x).
    + +
    +Lemma split_succ x: let:(y,n):= T2split x in T2split (T2succ x) = (y,n.+1).
    + +
    +Lemma split_pred x: let:(y,n):= T2split x in T2split (T2pred x) = (y,n.-1).
    + +
    +Lemma split_le x : (T2split x).1 x.
    + +
    +Lemma nf_split x : T2nf x T2nf (T2split x).1.
    + +
    +Lemma T2finite_succ x: T2finite x T2finite (T2succ x).
    + +
    +Lemma T1succ_nat n: T2succ (\F n) = \F (n.+1).
    + +
    +Lemma limit_pr1 x: (x == zero) (+) (T2limit x (+) T2is_succ x).
    + +
    +Lemma limit_pr x y: T2limit x y < x T2succ y < x.
    + +
    +Lemma T2le_psi_b a b : T2succ b [a,b].
    + +
    +Lemma pred_le a: T2pred a a.
    + +
    +Lemma pred_lt a: T2is_succ a T2pred a < a.
    + +
    +Lemma succ_lt a: a < T2succ a.
    + +
    +Lemma nf_succ a: T2nf a T2nf (T2succ a).
    + +
    +Lemma nf_pred a: T2nf a T2nf (T2pred a).
    + +
    +Lemma succ_pred x: T2nf x T2is_succ x x = T2succ (T2pred x).
    + +
    +Lemma succ_p1 x: T2is_succ (T2succ x).
    + +
    +Lemma pred_succ x: T2nf x T2pred (T2succ x) = x.
    + +
    +Lemma succ_inj x y: T2nf x T2nf y (T2succ x == T2succ y) = (x==y).
    + +
    +Lemma lt_succ_succ x y: T2succ x < T2succ y x < y.
    + +
    +Lemma le_succ_succ x y: x y T2succ x T2succ y.
    + +
    +Lemma lt_succ_succE x y:
    +  T2nf x T2nf y (T2succ x < T2succ y) = (x < y).
    + +
    +Lemma le_succ_succE x y:
    +  T2nf x T2nf y (T2succ x T2succ y) = (x y).
    + +
    +Lemma lt_succ_le_1 a b : T2succ a b a < b.
    + +
    +Lemma lt_succ_le_2 a b: T2nf a a < T2succ b a b.
    + +
    +Lemma lt_succ_le_3 a b: T2nf a (a < T2succ b) = (a b).
    + +
    +Lemma lt_succ_le_4 a b: T2nf b (a < b) = (T2succ a b).
    + +
    +Lemma succ_nz x: T2succ x != zero.
    + +
    +Lemma succ_psi a b: [a, b] != one T2succ [a,b] = cons a b 0 one.
    + +
    +Lemma succ_psi_lt x a b : [a, b] != one x < [a,b] T2succ x < [a,b].
    + +
    +Lemma succ_psi_lt2 a b x: [a, b] != one ([a, b] T2succ x) = ([a, b] x).
    + +
    +
    + +
    +

    Addition

    + same as for T1 +
    +
    + +
    +Fixpoint T2add x y :=
    +  if x is cons a b n c then
    +    if y is cons a' b' n' c' then
    +       if [a,b] < [a',b'] then y
    +       else if [a',b'] < [a,b] then cons a b n (c + y)
    +       else cons a b (n+n').+1 c'
    +    else x
    +  else y
    where "x + y" := (T2add x y) : g0_scope.
    + +
    +Fixpoint T2sub x y :=
    +  if x is cons a b n c then
    +     if y is cons a' b' n' c' then
    +           if (x < y) then zero
    +           else if ([a',b'] < [a,b]) then x
    +           else if (n<n')%N then zero
    +           else if ([a,b]==one) then
    +             if (n==n')%N then zero else cons zero zero ((n-n').-1) zero
    +           else if(n==n') then c - c' else cons a b (n - n').-1 c
    +     else x
    +  else zero
    +where "a - b" := (T2sub a b) : g0_scope.
    + +
    +Lemma T2subn0 x: x - zero = x.
    + +
    +Lemma T2sub0n x: zero - x = zero.
    + +
    +Lemma minus_lt a b: a < b a - b = zero.
    + +
    +Lemma T2subnn x: x - x = zero.
    + +
    +Lemma minus_le a b: a b a - b = zero.
    + +
    +Lemma nf_sub a b: T2nf a T2nf b T2nf (a - b).
    + +
    +Lemma sub_int n m : \F n - \F m = \F (n -m)%N.
    + +
    +Lemma succ_is_add_one a: T2succ a = a + one.
    + +
    +Lemma add1Nfin a: ~~ T2finite a one + a = a.
    + +
    +Lemma sub1Nfin a: ~~ T2finite a a - one = a.
    + +
    +Lemma sub1a x: x != zero T2nf x x = one + (x - one).
    + +
    +Lemma sub1b x: T2nf x x = (one + x) - one.
    + +
    +Lemma T2add0n: left_id zero T2add.
    +Lemma T2addn0: right_id zero T2add.
    + +
    +Lemma add_int n m : \F n + \F m = \F (n +m)%N.
    + +
    +Lemma add_fin_omega n: \F n + omega = omega.
    + +
    +Lemma split_add x: let: (y,n) :=T2split x in T2nf x
    +   (x == y + \F n) && ((y==zero) || T2limit y ).
    + +
    +Lemma add_to_cons a b n c:
    +  c < [a,b] cons a b n zero + c = cons a b n c.
    + +
    +Lemma nf_add a b: T2nf a T2nf b T2nf (a + b).
    + +
    +Lemma T2add_eq0 m n: (m + n == zero) = (m == zero) && (n == zero).
    + +
    +Lemma add_le1 a b: a a + b.
    + +
    +Lemma add_le2 a b: b a + b.
    + +
    +Lemma sub_le1 a b : T2nf a (a - b) a.
    + +
    +Lemma sub_pr a b: T2nf b (a + b) - a = b.
    + +
    +Lemma add_inj a b c : T2nf b T2nf c a + b = a + c b = c.
    + +
    +Lemma sub_pr1 a b: T2nf b a b b = a + (b - a).
    + +
    +Lemma omega_minus_one : omega - one = omega.
    + +
    +Lemma sub_nz a b: T2nf b a < b (b - a) != zero.
    + +
    +Lemma T2addA c1 c2 c3: c1 + (c2 + c3) = (c1 + c2) + c3.
    + +
    +Lemma T2le_add2l p m n : (p + m p + n) = (m n).
    + +
    +Lemma T2lt_add2l p m n : (p + m < p + n) = (m < n).
    + +
    +Lemma T2lt_add2r p m n : (m + p < n + p ) (m < n).
    + +
    +Lemma T2le_add2r p m n : (m n) (m + p n + p).
    + +
    +Lemma T2eq_add2l p m n : (p + m == p + n) = (m == n).
    + +
    +Lemma add_le3 a b: a = a + b b = zero.
    + +
    +Lemma add_le4 a b: b != zero a < a + b.
    + +
    +Lemma sub_pr1r a b: T2nf a a - b = zero a b.
    + +
    +Definition T2ap x :=
    +  if x is cons a b n c then ((n==0) && (c==zero)) else false.
    + +
    +Lemma ap_pr0 a b (x := [a,b]) u v:
    +  u < x v < x u + v < x.
    + +
    +Lemma ap_limit x: T2ap x (x == one) || (T2limit x).
    + +
    +Lemma ap_pr1 c:
    +   ( a b, a < c b < c a + b < c)
    +   (c== zero) || T2ap c.
    + +
    +Lemma ap_pr2 c:
    +   T2nf c c zero
    +   ( a b, T2nf a T2nf b a < c b < c a + b < c)
    +   T2ap c.
    + +
    +Lemma ap_pr3 a b y (x := [a,b]): y < x y + x = x.
    + +
    +Lemma ap_pr4 x: ( b, b < x b + x = x) (x == zero) || T2ap x.
    + +
    +
    + +
    +

    The function phi

    + We consider he some funciton phi +
    +
    + +
    +Definition T2_pr1 x:= if x is cons a b n c then a else zero.
    +Definition T2_pr2 x:= if x is cons a b n c then b else zero.
    +Definition T2finite1 x:=
    +  if x is cons a b n c then [&& a == zero, b== zero & c == zero] else false.
    + +
    +Definition phi a b :=
    +   if b is cons u v n k then
    +     if ((n==0) && (k==zero)) then
    +        if (a < u) then b else [a,b]
    +     else if ((n==0) && (T2finite1 k) && (a <u))
    +       then [a, cons u v 0 (T2pred k) ]
    +     else [a,b]
    +   else [a,b].
    + +
    +Lemma phi_ap x y : (phi x y) = [T2_pr1 (phi x y), T2_pr2 (phi x y)].
    + +
    +Lemma phi_le1 a b: a T2_pr1 (phi a b).
    + +
    +Lemma phi_le2 a b: T2_pr2 (phi a b) b.
    + +
    +Lemma phi_le3 a b: a < T2_pr1 (phi a b) (phi a b) = b.
    + +
    +Lemma phi_fix1 a u v: a < u phi a [u,v] = [u, v].
    + +
    +Lemma phi_fix2 a b (u:= T2_pr1 b) (v:= T2_pr2 b):
    +  phi a b = b b = [u,v] a < u.
    + +
    +Lemma phi_succ a u v n: a < u
    +  phi a (cons u v 0 (\F n.+1)) = [a, cons u v 0 (\F n)].
    + +
    +
    + +
    +phi a b is either b, psi a b or psi a (b-1). +
    +
    + +
    +Lemma phi_cases a b:
    +    {phi a b = b} + {phi a b = [a, b]} +
    +    { phi a b = [a, T2pred b] b = T2succ (T2pred b) }.
    + +
    +Lemma nf_phi x y : T2nf x T2nf y T2nf (phi x y).
    + +
    +Lemma phi_principalR a b: { c:T2 | [a, b] = phi zero c}.
    + +
    +Theorem phi_spec1 a b c: c < a phi c (phi a b) = phi a b.
    + +
    +Lemma phi_spec2 a x:
    +    T2nf a T2nf x ( c, T2nf c c < a phi c x = x)
    +    a T2_pr1 x.
    + +
    +Lemma phi_spec3 a x:
    +  T2nf a T2nf x ( c, T2nf c c < a phi c x = x)
    +  a != zero {b : T2 | x = phi a b}.
    + +
    +Lemma phi_spec4a u v: u != zero phi zero [u,v] = [u, v].
    + +
    +Lemma phi_spec4b x: phi zero x = x
    +  x = [T2_pr1 x, T2_pr2 x] T2_pr1 x != zero.
    + +
    +Lemma phi_spec4c x: T2nf x phi zero x = x
    +  { b: T2 | x = phi one b }.
    + +
    +Lemma no_critical a: a < phi a zero.
    + +
    +Lemma phi_ab_le1 a b: b phi a b.
    + +
    +Lemma phi_ab_le2 a b:a < phi a b.
    + +
    +Lemma phi_inv1 a b: phi a (T2succ b) = [a,b]
    +   { n: nat | (b = cons (T2_pr1 b) (T2_pr2 b) 0 (\F n) a < T2_pr1 b) }.
    + +
    +
    + +
    +Monotonicity is non-trivial +
    +
    + +
    +Lemma phi_mono_a a b b': T2nf b b < b' phi a b < phi a b'.
    + +
    +Lemma phi_mono_b a b b': T2nf b b b' phi a b phi a b'.
    + +
    +Lemma phi_mono_c a b b': T2nf b T2nf b' (phi a b < phi a b') = (b < b').
    + +
    +Lemma phi_inj a b b': T2nf b T2nf b' phi a b = phi a b' b = b'.
    + +
    +Lemma phi_inj1 a b b': T2nf b T2nf b' (phi a b == phi a b') = (b == b').
    + +
    +
    + +
    +Two lemmas for equal or less-than +
    +
    + +
    +Lemma phi_eqE a b a' b': T2nf a T2nf a' T2nf b T2nf b'
    +   (phi a b == phi a' b') =
    +    (if a < a' then b == phi a' b'
    +     else if a' < a then phi a b == b' else b== b').
    + +
    +Lemma phi_ltE a b a' b': T2nf a T2nf a' T2nf b T2nf b'
    +   (phi a b < phi a' b') =
    +    (if a < a' then b < phi a' b'
    +     else if a' < a then phi a b < b' else b < b').
    + +
    +
    + +
    +Every x is uniquely a phi with some conditions +
    +
    + +
    +Lemma phi_inv0 a b a' b':
    +  phi a b = phi a' b' b < phi a b b' < phi a' b' a = a'.
    + +
    +Lemma phi_inv2 a b a' b':
    +  phi a b = phi a' b' b < phi a b b' < phi a' b' b = b'.
    + +
    +Lemma phi_inv3 x:
    T2ap x { a: T2 & { b: T2 |
    +    [/\ x = phi a b, b < x, (size a < size x)%N & (size b < size x)%N ] }}.
    + +
    +
    + +
    +Expression psi in terms of phi +
    +
    +Definition psi_phi_aux a b :=
    +  let (b', n) := T2split b in if phi a b' == b' then (T2succ b) else b.
    + +
    +Definition psi_phi a b := phi a (psi_phi_aux a b).
    + +
    +Lemma psi_phi1 a b (c:= psi_phi_aux a b): c < phi a c.
    + +
    +End Gamma0.
    + +
    +
    + +
    +

    Ackermann

    + +
    +
    + +
    + +
    +Module Ackermann.
    +Declare Scope ak_scope.
    +Delimit Scope ak_scope with ak.
    +Open Scope ak_scope.
    + +
    +Inductive T3 : Set :=
    +  zero : T3
    +| cons : T3 T3 T3 nat T3 T3.
    + +
    +Fixpoint T3eq x y {struct x} :=
    +  match x, y with
    +  | zero, zerotrue
    +  | cons a b c n d, cons a' b' c' n' d'
    +      [&& T3eq a a', T3eq b b', T3eq c c', n== n' & T3eq d d' ]
    +  | _, _false
    +end.
    + +
    +Lemma T3eqP : Equality.axiom T3eq.
    + +
    +Canonical T3_eqMixin := EqMixin T3eqP.
    +Canonical T3_eqType := Eval hnf in EqType T3 T3_eqMixin.
    + +
    +Arguments T3eqP {x y}.
    + +
    +Lemma T3eqE a b c n d a' b' c' n' d':
    +  (cons a b c n d == cons a' b' c' n' d') =
    +      [&& a == a', b == b', c == c', n== n' & d == d' ].
    + +
    +Notation "[ x , y , z ]" := (cons x y z 0 zero) (at level 0) :ak_scope.
    +Definition T3nat p := if p is n.+1 then cons zero zero zero n zero else zero.
    +Notation "\F n" := (T3nat n)(at level 29) : ak_scope.
    + +
    +Fixpoint size x :=
    +  if x is cons a b c n d then
    +     (maxn (size a) (maxn (size b) (maxn (size c) (size d)))).+1
    +  else 0.
    + +
    +Lemma size_a a b c n d: (size a < size (cons a b c n d))%N.
    + +
    +Lemma size_b a b c n d: (size b < size (cons a b c n d))%N.
    + +
    +Lemma size_c a b c n d: (size c < size (cons a b c n d))%N.
    + +
    +Lemma size_d a b c n d: (size d < size (cons a b c n d))%N.
    + +
    +Lemma size_psi a b c n d: (size [a, b, c] size (cons a b c n d))%N.
    + +
    +Lemma size_prop1 a b c n d (l:= size (cons a b c n d)):
    +   [&& size a < l, size b < l, size c < l, size d < l
    +   & size [a, b, c] l]%N.
    + +
    +Lemma size_prop a b c n d a' b' c' n' d'
    +   (l := ((size (cons a b c n d) + size (cons a' b' c' n' d')))%N) :
    +  [&& (size a' + size a < l), (size b + size b' < l),
    +   (size c + size c' < l), (size d + size d' < l),
    +   (size a + size a' < l), (size b' + size b < l),
    +   (size [a, b, c] + size b' < l),(size b + size [a', b', c'] < l),
    +   (size [a, b, c] + size c' < l) &(size c + size [a', b', c'] < l)]%N.
    + +
    +
    + +
    +

    Comparison

    + +
    +
    + +
    +Definition lt_psi_rec f a b c a' b' c' (x := [a,b,c])(x':= [a', b', c']):=
    +  [|| [&& a==a', b==b' & f c c'],
    +      [&& a==a', f b b' & f c x'],
    +      [&& a==a', f b' b & f x c'],
    +      [&& a==a', f b' b & x == c'],
    +      [&& f a a', f b x' & f c x'],
    +      ((f a' a) && f x b'),
    +      ((f a' a) && (x == b')),
    +      ((f a' a) && f x c') |
    +      ((f a' a) && (x == c'))].
    + +
    +Definition lt_rec f x y :=
    if x is cons a b c n d then
    +   if y is cons a' b' c' n' d' then
    +     if (lt_psi_rec f a b c a' b' c')
    +     then true
    +     else if ((a== a') && (b==b') && (c==c')) then
    +       if (n < n')%N then true
    +       else if (n == n') then (f d d') else false
    +       else false
    +   else false
    else if y is cons a' b' c' n' d' then true else false.
    + +
    +Fixpoint T3lta k {struct k}:=
    if k is k.+1 then lt_rec (T3lta k) else fun x yfalse.
    + +
    +Definition T3lt a b := T3lta ((size a) + size b).+1 a b.
    +Definition T3le (x y :T3) := (x == y) || (T3lt x y).
    +Notation "x < y" := (T3lt x y) : ak_scope.
    +Notation "x <= y" := (T3le x y) : ak_scope.
    +Notation "x >= y" := (y x) (only parsing) : ak_scope.
    +Notation "x > y" := (y < x) (only parsing) : ak_scope.
    + +
    +Lemma T3ltE x y : x < y = lt_rec T3lt x y.
    + +
    +Definition lt_psi (a b c a' b' c': T3):=
    [|| [&& a==a', b==b' & c < c'],
    +      [&& a==a', b < b' & c < [a',b',c']],
    +      [&& a==a', b' < b & [a,b,c] < c'],
    +      [&& a==a', b' < b & [a,b,c] == c'],
    +      [&& a < a', b < [a',b',c'] & c < [a',b',c']],
    +      ((a' < a) && ([a,b,c] < b')),
    +      ((a' < a) && ([a,b,c] == b')),
    +      ((a' < a) && ([a,b,c] < c')) |
    +      ((a' < a) && ([a,b,c] == c'))].
    + +
    +Lemma T3lt_psi a b c a' b' c': [a,b,c] < [a', b',c'] = lt_psi a b c a' b' c'.
    + +
    +Lemma T3lt_consE a b c n d a' b' c' n' d' :
    +   cons a b c n d < cons a' b' c' n' d' =
    +     if ([a, b, c] < [a', b', c']) then true
    +     else if ([a, b, c] == [a', b', c']) then
    +       if (n < n')%N then true
    +       else if (n == n') then (d < d') else false
    +       else false.
    + +
    +Lemma T3ltn0 x: (x < zero) = false.
    +Lemma T3lt0n x: (zero < x) = (x != zero).
    + +
    +Lemma T3ltnn x: (x < x) = false.
    + +
    +Lemma T3lt_ne a b : a < b (a == b) = false.
    + +
    +Lemma T3lt_ne' a b : a < b (b == a) = false.
    + +
    +Lemma T3ltW a b : (a < b) (a b).
    + +
    +Lemma T3le_eqVlt a b : (a b) = (a == b) || (a < b).
    + +
    +Lemma T3lt_neAle a b : (a < b) = (a != b) && (a b).
    + +
    +Definition one := [zero,zero,zero].
    +Definition omega := [zero,zero, one].
    +Definition epsilon0 := [zero, one, zero].
    +Definition T3bad := cons zero zero zero 0 one.
    + +
    +Lemma T3le0n x: zero x.
    +Lemma T3len0 x: (x zero) = (x == zero).
    + +
    +Lemma T3ge1 x: (one x) = (x != zero).
    + +
    +Lemma T3lt1 x: (x < one) = (x==zero).
    + +
    +Lemma T3lcp0_pr x y: x < y (y==zero) = false.
    + +
    +Lemma finite_ltP n p : (n < p)%N = (\F n < \F p).
    + +
    +Lemma T3lt_anti b a: a < b (b < a) = false.
    + +
    +Lemma T3lt_trichotomy a b: [|| (a< b), (a==b) | (b < a)].
    + +
    +Lemma T3lenn x: x x.
    + +
    +#[local] Hint Resolve T3lenn : core.
    + +
    +Lemma T3leNgt a b: (a b) = ~~ (b < a).
    + +
    +Lemma T3ltNge a b: (a < b) = ~~ (b a).
    + +
    +Lemma T3eq_le m n : (m == n) = ((m n) && (n m)).
    + +
    +CoInductive T3ltn_xor_geq m n : bool bool Set :=
    +  | T3LtnNotGeq of m < n : T3ltn_xor_geq m n false true
    +  | T3GeqNotLtn of n m : T3ltn_xor_geq m n true false.
    + +
    +CoInductive T3leq_xor_gtn m n : bool bool Set :=
    +  | T3GeqNotGtn of m n : T3leq_xor_gtn m n true false
    +  | T3GtnNotLeq of n < m : T3leq_xor_gtn m n false true.
    + +
    +CoInductive compare_T3 m n : bool bool bool Set :=
    +  | CompareT3Lt of m < n : compare_T3 m n true false false
    +  | CompareT3Gt of m > n : compare_T3 m n false true false
    +  | CompareT3Eq of m = n : compare_T3 m n false false true.
    + +
    +Lemma T3leP x y : T3leq_xor_gtn x y (x y) (y < x).
    + +
    +Lemma T3ltP m n : T3ltn_xor_geq m n (n m) (m < n).
    + +
    +Lemma T3ltgtP m n : compare_T3 m n (m < n) (n < m) (m == n).
    + +
    +Lemma T3le_consE a b c n d a' b' c' n' d' :
    +   cons a b c n d cons a' b' c' n' d' =
    +     if ([a, b, c] < [a', b', c']) then true
    +     else if ([a, b, c] == [a', b', c']) then
    +       if (n < n')%N then true
    +       else if (n == n') then (d d') else false
    +       else false.
    + +
    +Lemma T3lt_psi' a b c a' b' c': [a, b, c] < [a', b', c' ] =
    +  [|| [&& a==a', b==b' & c < c'],
    +      [&& a==a', b < b' & c < [a', b', c'] ],
    +      [&& a==a', b' <b & [a,b,c] c'],
    +      [&& a < a', b < [a', b', c'] & c < [a', b', c']],
    +      ((a' < a) && ([a,b,c] b')) |
    +      ((a' < a) && ([a,b,c] c'))].
    + +
    +Theorem T3lt_trans b a c: a < b b < c a < c.
    + +
    +Lemma T3lt_le_trans b a c: a < b b c a < c.
    + +
    +Lemma T3le_lt_trans b a c: a b b < c a < c.
    + +
    +Lemma T3le_trans b a c: a b b c a c.
    + +
    +Lemma T3le_anti : antisymmetric T3le.
    + +
    +Lemma T3le_total m n : (m n) || (n m).
    + +
    +Lemma T3le_psi a b c n d: [a,b,c] cons a b c n d.
    + +
    +Lemma T3lt_psi_bc a b c: ((b < [a,b,c]) && (c < [a, b, c])).
    + +
    +Lemma psi_lt1 a b c d n a' b' c':
    +   cons a b c n d < [a', b', c'] = ([a, b,c] < [a', b', c']).
    + +
    +Lemma psi_lt2 a b c n d n' d': cons a b c n' d' < cons a b c n d =
    +   (if (n' < n)%N then true else if n' == n then d' < d else false).
    + +
    +Lemma T3lt_psi_b a b c: b < [a,b,c].
    + +
    +Lemma T3lt_psi_c a b c: c < [a,b,c].
    + +
    +Lemma T3lt_psi_a a b c: a < [a,b,c].
    + +
    +
    + +
    +

    Normal form

    + +
    +
    + +
    +Fixpoint T3nf x :=
    +  if x is cons a b c _ d
    +  then [&& T3nf a, T3nf b, T3nf c, T3nf d & d < [a,b,c] ]
    +  else true.
    + +
    +Lemma nf_0: T3nf zero.
    + +
    +Lemma nf_psi a b c: T3nf [a, b, c] = [&& T3nf a, T3nf b & T3nf c].
    + +
    +Lemma nf_int n: T3nf (\F n).
    + +
    +Lemma nf_cons_cons a b c n a' b' c' n' d':
    +  T3nf (cons a b c n (cons a' b' c' n' d')) =
    +   [&& [a', b',c'] < [a, b,c], T3nf [a,b, c] &
    +    T3nf (cons a' b' c' n' d') ].
    + +
    +Lemma nf_consE a b c n d:
    +    T3nf (cons a b c n d) = [&& T3nf [a,b,c], T3nf d & d < [a,b,c] ].
    + +
    +Lemma nf_Wf : well_founded_P T3nf T3lt.
    + +
    +Theorem lt_not_wf : ¬ (well_founded T3lt).
    + +
    +
    + +
    +

    Successor Predecessor

    + +
    +
    + +
    +Fixpoint T1_T3 (c:CantorOrdinal.T1) : T3 :=
    +  if c is CantorOrdinal.cons a n b then cons zero zero (T1_T3 a) n (T1_T3 b)
    +  else zero.
    + +
    +Lemma lt_epsilon0 a b c n d :
    +  cons a b c n d < epsilon0 = [&& a==zero, b == zero & c < epsilon0 ].
    + +
    +Lemma T1T3_lt_epsilon0 x: T1_T3 x < epsilon0.
    + +
    +Delimit Scope cantor_scope with ca.
    +Notation "x < y" := (CantorOrdinal.T1lt x y) : cantor_scope.
    + +
    +Lemma T1T3_inc x y: (x <y)%ca (T1_T3 x) < (T1_T3 y).
    + +
    +Lemma TT1T3_inj: injective T1_T3.
    + +
    +Lemma T1T3_surj x: T3nf x x < epsilon0 y, x = T1_T3 y.
    + +
    +Definition all_zero a b c :=[&& a==zero, b==zero & c== zero].
    + +
    +Fixpoint T3limit x :=
    +  if x is cons a b c n d then
    +    if (all_zero a b c) then false else (d== zero) || T3limit d
    +  else false.
    + +
    +Definition T3finite x :=
    +   if x is cons a b c n d then all_zero a b c else true.
    + +
    +Fixpoint T3split x:=
    if x is cons a b c n d then
    +      if all_zero a b c then (zero, n.+1) else
    +     let: (x, y) := T3split d in (cons a b c n x,y)
    +   else (zero,0).
    + +
    +Lemma all_zeroE a b c: all_zero a b c = ([a,b,c] == one).
    + +
    +Lemma T3nf_finite a b c n d: all_zero a b c T3nf (cons a b c n d)
    +    d = zero.
    + +
    +Lemma split_finite x: ((T3split x).1 == zero) = T3finite x.
    + +
    +Lemma T3finite1 n: T3finite (\F n).
    + +
    +Lemma T3finite2 x: T3finite x T3nf x x = \F ((T3split x).2).
    + +
    +Lemma T3gt1 x: (one < x) = ((x != zero) && (x != one)).
    + +
    +Lemma omega_least_inf1 x: T3finite x x < omega.
    + +
    +Lemma omega_least_inf2 x: ~~ T3finite x omega x.
    + +
    +Lemma lt_omega1 c n d a' b' c' n' d' :
    +   cons zero zero c n d < cons a' b' c' n' d' =
    +     if ((a'== zero) && (b'==zero)) then
    +       ((c < c') || ((c==c') && ((n < n')%N || ((n==n') && (d < d')))))
    +    else (c < [a', b', c']).
    + +
    +Lemma lt_omega2 c a' b' c' :
    +   ([zero, zero, c] < [a', b', c']) =
    +     if ((a'== zero) && (b'==zero)) then c < c' else (c < [a', b', c']).
    + +
    +Lemma split_limit x: ((T3split x).2 == 0) = ((x==zero) || T3limit x).
    + +
    +Fixpoint T3is_succ x :=
    +  if x is cons a b c n d then (all_zero a b c) || T3is_succ d else false.
    + +
    +Fixpoint T3succ x :=
    +  if x is cons a b c n d
    +     then if all_zero a b c then \F n.+2 else cons a b c n (T3succ d)
    +  else one.
    + +
    +Fixpoint T3pred x :=
    +  if x is cons a b c n d then
    +     if all_zero a b c then \F n else (cons a b c n (T3pred d))
    +  else zero.
    + +
    +Lemma split_is_succ x: ((T3split x).2 != 0) = (T3is_succ x).
    + +
    +Lemma split_succ x: let:(y,n):= T3split x in T3split (T3succ x) = (y,n.+1).
    + +
    +Lemma split_pred x: let:(y,n):= T3split x in T3split (T3pred x) = (y,n.-1).
    + +
    +Lemma split_le x : (T3split x).1 x.
    + +
    +Lemma nf_split x : T3nf x T3nf (T3split x).1.
    + +
    +Lemma T3finite_succ x: T3finite x T3finite (T3succ x).
    + +
    +Lemma T1succ_nat n: T3succ (\F n) = \F (n.+1).
    + +
    +Lemma nf_omega : T3nf omega.
    +Lemma nf_finite n: T3nf (\F n).
    + +
    +Lemma limit_pr1 x: (x == zero) (+) (T3limit x (+) T3is_succ x).
    + +
    +Lemma limit_pr x y: T3limit x y < x T3succ y < x.
    + +
    +Lemma pred_le a: T3pred a a. +
    +Lemma pred_lt a: T3is_succ a T3pred a < a.
    + +
    +Lemma succ_lt a: a < T3succ a.
    + +
    +Lemma nf_succ a: T3nf a T3nf (T3succ a).
    + +
    +Lemma nf_pred a: T3nf a T3nf (T3pred a).
    + +
    +Lemma succ_pred x: T3nf x T3is_succ x x = T3succ (T3pred x).
    + +
    +Lemma succ_p1 x: T3is_succ (T3succ x).
    + +
    +Lemma pred_succ x: T3nf x T3pred (T3succ x) = x.
    + +
    +Lemma succ_inj x y: T3nf x T3nf y (T3succ x == T3succ y) = (x==y).
    + +
    +Lemma lt_succ_succ x y: T3succ x < T3succ y x < y.
    + +
    +Lemma le_succ_succ x y: x y T3succ x T3succ y.
    + +
    +Lemma lt_succ_succE x y:
    +  T3nf x T3nf y (T3succ x < T3succ y) = (x < y).
    + +
    +Lemma le_succ_succE x y:
    +  T3nf x T3nf y (T3succ x T3succ y) = (x y).
    + +
    +Lemma lt_succ_le_1 a b : T3succ a b a < b.
    + +
    +Lemma lt_succ_le_2 a b: T3nf a a < T3succ b a b. +
    +Lemma lt_succ_le_3 a b: T3nf a (a < T3succ b) = (a b).
    + +
    +Lemma lt_succ_le_4 a b: T3nf b (a < b) = (T3succ a b).
    + +
    +Lemma succ_nz x: T3succ x != zero.
    + +
    +Lemma succ_psi a b c: [a, b, c] != one T3succ [a,b,c] = cons a b c 0 one.
    + +
    +Lemma succ_psi_lt x a b c: [a, b, c] != one
    +   x < [a,b,c] T3succ x < [a,b,c].
    + +
    +Lemma succ_psi_lt2 a b c x: [a, b, c] != one
    +  ([a, b, c] T3succ x) = ([a, b, c] x).
    + +
    +
    + +
    +

    Addition

    + +
    +
    + +
    +Fixpoint T3add x y :=
    +  if x is cons a b c n d then
    +    if y is cons a' b' c' n' d' then
    +       if [a,b,c] < [a',b',c'] then y
    +       else if [a',b',c'] < [a,b,c] then cons a b c n (d + y)
    +       else cons a b c (n+n').+1 d'
    +    else x
    +  else y
    where "x + y" := (T3add x y) : ak_scope.
    + +
    +Fixpoint T3sub x y :=
    +  if x is cons a b c n d then
    +     if y is cons a' b' c' n' d' then
    +           if (x < y) then zero
    +           else if ([a',b',c'] < [a,b,c]) then x
    +           else if (n<n')%N then zero
    +           else if ([a,b,c] == one) then
    +             if (n==n')%N then zero else cons zero zero zero ((n-n').-1) zero
    +           else if(n==n') then d - d' else cons a b c (n - n').-1 d
    +     else x
    +  else zero
    +where "a - b" := (T3sub a b) : ak_scope.
    + +
    +Lemma T3subn0 x: x - zero = x.
    + +
    +Lemma T3sub0n x: zero - x = zero.
    + +
    +Lemma minus_lt a b: a < b a - b = zero.
    + +
    +Lemma T3subnn x: x - x = zero.
    + +
    +Lemma minus_le a b: a b a - b = zero.
    + +
    +Lemma nf_sub a b: T3nf a T3nf b T3nf (a - b).
    + +
    +Lemma sub_int n m : \F n - \F m = \F (n -m)%N.
    + +
    +Lemma succ_is_add_one a: T3succ a = a + one.
    + +
    +Lemma add1Nfin a: ~~ T3finite a one + a = a.
    + +
    +Lemma sub1Nfin a: ~~ T3finite a a - one = a.
    + +
    +Lemma sub1a x: x != zero T3nf x x = one + (x - one).
    + +
    +Lemma sub1b x: T3nf x x = (one + x) - one.
    + +
    +Lemma sub_1aCE (a:= T3bad) : one + (a - one) != a.
    + +
    +Lemma sub_1bCE (a:= T3bad) : (one + a - one) != a.
    + +
    +Lemma T3add0n : left_id zero T3add.
    +Lemma T3addn0: right_id zero T3add.
    + +
    +Lemma add_int n m : \F n + \F m = \F (n +m)%N.
    + +
    +Lemma add_fin_omega n: \F n + omega = omega.
    + +
    +Lemma fooCE (x:= T3bad):
    +   ~~T3limit x /\( u v, T3limit u x u + \F v.+1).
    + +
    +Lemma split_add x: let: (y,n) :=T3split x in T3nf x
    +   (x == y + \F n) && ((y==zero) || T3limit y ).
    + +
    +Lemma add_to_cons a b c n d:
    +  d < [ a,b,c] cons a b c n zero + d = cons a b c n d.
    + +
    +Lemma addC_CE (a := one) (b := omega):
    +  [&& T3nf a, T3nf b & a + b != b + a].
    + +
    +Lemma nf_add a b: T3nf a T3nf b T3nf (a + b).
    + +
    +Lemma T3add_eq0 m n: (m + n == zero) = (m == zero) && (n == zero).
    + +
    +Lemma add_le1 a b: a a + b.
    + +
    +Lemma add_le2 a b: b a + b.
    + +
    +Lemma sub_le1 a b : T3nf a (a - b) a.
    + +
    +Lemma sub_pr a b: T3nf b (a + b) - a = b.
    + +
    +Lemma add_inj a b c : T3nf b T3nf c a + b = a + c b = c.
    + +
    +Lemma sub_pr1 a b: T3nf b a b b = a + (b - a).
    + +
    +Lemma omega_minus_one : omega - one = omega.
    + +
    +Lemma sub_nz a b: T3nf b a < b (b - a) != zero.
    + +
    +Lemma T3addA c1 c2 c3: c1 + (c2 + c3) = (c1 + c2) + c3.
    + +
    +Lemma T3le_add2l p m n : (p + m p + n) = (m n).
    + +
    +Lemma T3lt_add2l p m n : (p + m < p + n) = (m < n).
    + +
    +Lemma T3lt_add2r p m n : (m + p < n + p ) (m < n).
    + +
    +Lemma T3le_add2r p m n : (m n) (m + p n + p).
    + +
    +Lemma T3eq_add2l p m n : (p + m == p + n) = (m == n).
    + +
    +Lemma add_le3 a b: a = a + b b = zero.
    + +
    +Lemma add_le4 a b: b != zero a < a + b.
    + +
    +Lemma sub_pr1r a b: T3nf a a - b = zero a b.
    + +
    +Lemma sub_pr1rCE (a := T3bad) (b := one) : (a - b == zero) && (b < a).
    + +
    +Lemma T3addS a b : (a + T3succ b) = T3succ (a+ b).
    + +
    +
    + +
    +

    limit

    + +
    +
    +Notation Tf := (nat T3).
    + +
    +Definition limit_of (f: Tf) x :=
    +  [/\ ( n m, (n < m)%N f n < f m),
    +      ( n, f n < x) &
    +      ( y, T3nf y y < x ( n, y f n))].
    + +
    +Lemma fincP (f: Tf) :
    +  ( n, f n < f n.+1)
    +  ( n m, (n < m)%N f n < f m).
    + +
    +Definition limit12_hyp a b c:=
    +   if c is cons a1 b1 c1 n1 d1 then
    +       (n1 == 0) && (d1 == zero) &&
    +       ( ((a == a1) && (b < b1)) || ((a < a1) && (b < c)))
    +   else false.
    + +
    +Definition phi0:= fun _ :natzero.
    +Definition phi1 a (f:Tf) := fun na + f n.
    +Definition phi5 (f:Tf) := fun n[f n, zero,zero].
    +Definition phi12a a b (f:Tf) := fun n[a,b,f n].
    + +
    +Lemma limit1 a b f:
    +   T3nf a (limit_of f b) (limit_of (phi1 a f) (a + b)).
    + +
    +Lemma limit5 f x: (limit_of f x) (limit_of (phi5 f) [x,zero,zero]).
    + +
    +Lemma limit12a f a b c: ~~ (limit12_hyp a b c)
    +   (limit_of f c) (limit_of (phi12a a b f)[a, b, c]).
    + +
    +Fixpoint phi3 x n := if n is n.+1 then phi3 x n + x else x.
    + +
    +Lemma phi3v a b c k: phi3 [a,b,c] k = cons a b c k zero.
    + +
    +Lemma limit3 x: limit_of (phi3 [zero,zero,x]) [zero, zero, T3succ x].
    + +
    +Lemma limit2: limit_of (phi3 one) omega.
    + +
    +Lemma limit12b1 x: (limit12_hyp zero zero x)
    +  limit_of (phi3 x) [zero, zero, x].
    + +
    +Fixpoint phi4 x n :=
    +   if n is n.+1 then [x, phi4 x n, phi4 x n] else [x,zero,zero].
    + +
    +Lemma limit4 x: limit_of (phi4 x) [T3succ x, zero, zero].
    + +
    +Fixpoint phi8 x y n :=
    +   if n is n.+1 then [x, phi8 x y n, phi8 x y n] else [T3succ x,zero,y].
    + +
    +Lemma limit8 x y: limit_of (phi8 x y) [T3succ x, zero, T3succ y].
    + +
    +Fixpoint phi12b2 x y n :=
    +   if n is n.+1 then [x, phi12b2 x y n, phi12b2 x y n] else y.
    + +
    +Lemma limit12b2 x y: (limit12_hyp (T3succ x) zero y)
    +    limit_of (phi12b2 x y) [T3succ x, zero, y].
    + +
    +Fixpoint phi6 x y n :=
    +   if n is n.+1 then [x, y, phi6 x y n] else [x,y,zero].
    + +
    +Fixpoint phi10 x y z n :=
    +   if n is n.+1 then [x, y, phi10 x y z n] else [x,T3succ y,z].
    + +
    +Fixpoint phi12b4 x y z n :=
    +   if n is n.+1 then [x, y, phi12b4 x y z n] else z.
    + +
    +Lemma limit6 x y:
    +    limit_of (phi6 x y) [x,T3succ y, zero].
    + +
    +Lemma limit10 x y z:
    +    limit_of (phi10 x y z) [x,T3succ y, T3succ z].
    + +
    +Lemma limit12b4 x y z: (limit12_hyp x (T3succ y) z)
    +    limit_of (phi12b4 x y z) [x,T3succ y,z].
    + +
    +Fixpoint phi7 x y f n :=
    +  if n is n.+1 then [x, f n, phi7 x y f n] else y.
    + +
    +Fixpoint phi9 x y f n :=
    +  if n is n.+1 then [f n, phi9 x y f n, phi9 x y f n] else [x, zero,y].
    + +
    +Fixpoint phi11 x y z f n :=
    +  if n is n.+1 then [x,f n, phi11 x y z f n ] else [x, y,z].
    + +
    +Fixpoint phi12b3 y f n :=
    +  if n is n.+1 then [f n, phi12b3 y f n , phi12b3 y f n] else y.
    + +
    +Fixpoint phi12b5 x z f n :=
    +  if n is n.+1 then [x,f n, phi12b5 x z f n ] else z.
    + +
    +Lemma limit7 x y f: (limit_of f y)
    +  (limit_of ( phi7 x y f) [x,y,zero]).
    + +
    +Lemma limit9 x y f: (limit_of f x)
    +  (limit_of (phi9 x y f) [x,zero, T3succ y]).
    + +
    +Lemma limit11 x y z f: (limit_of f y)
    +  (limit_of (phi11 x y z f) [x, y, T3succ z]).
    + +
    +Lemma limit12b3 x y f: (limit_of f x) (limit12_hyp x zero y)
    +  (limit_of (phi12b3 y f) [x, zero, y]).
    + +
    +Lemma limit12b5 x y z f: (limit_of f y) (limit12_hyp x y z)
    +  (limit_of (phi12b5 x z f) [x,y,z]).
    + +
    +Definition phi_rec_psi f a b c :=
    +  if (c==zero) then
    +    if(b==zero) then
    +       if(a==zero) then phi0
    +       else if(T3is_succ a) then phi4 (T3pred a)
    +       else phi5 (f a)
    +    else if(T3is_succ b) then phi6 a (T3pred b)
    +    else phi7 a b (f b)
    +  else if(T3is_succ c) then
    +    if(b==zero) then
    +      if(a==zero) then phi3 [zero,zero, T3pred c]
    +      else if (T3is_succ a) then phi8 (T3pred a) (T3pred c)
    +      else phi9 a (T3pred c) (f a)
    +    else if(T3is_succ b) then phi10 a (T3pred b) (T3pred c)
    +    else phi11 a b (T3pred c) (f b)
    +  else if (limit12_hyp a b c) then
    +    if(b==zero) then
    +      if(a==zero) then phi3 c
    +      else if(T3is_succ a) then phi12b2 (T3pred a) c
    +      else phi12b3 c (f a)
    +    else if (T3is_succ b) then phi12b4 a (T3pred b) c
    +    else phi12b5 a c (f b)
    +  else phi12a a b (f c).
    + +
    +Definition phi_rec f (x: T3) :=
    +  if x is cons a b c n d then
    +  if (d==zero) then
    +    if n is n.+1 then phi1 (cons a b c n zero) (phi_rec_psi f a b c)
    +     else phi_rec_psi f a b c
    +  else phi1 (cons a b c n zero) (f d)
    +  else phi0.
    + +
    +Fixpoint phia k := if k is k.+1 then phi_rec (phia k) else (fun xphi0).
    +Definition phi x := phia (size x).+1 x.
    + +
    +Lemma phiE x : phi x = phi_rec phi x.
    + +
    +Lemma phiE_1 a b c n:
    +  phi (cons a b c n.+1 zero) = phi1 (cons a b c n zero) (phi [a, b, c]).
    + +
    +Lemma phiE_2 a b c n d: d != zero
    +  phi (cons a b c n d) = phi1 (cons a b c n zero) (phi d).
    + +
    +Lemma phiE_3 a b c: phi ([a,b,c]) = phi_rec_psi phi a b c.
    + +
    +Lemma phiL x: T3nf x T3limit x limit_of (phi x) x.
    + +
    +Lemma conc1 (x:= [zero,zero, epsilon0]): limit_of (phi3 epsilon0) x.
    + +
    +
    + +
    +

    additive principal

    + +
    +
    + +
    +Definition T3ap x :=
    +  if x is cons a b c n d then ((n==0) && (d==zero)) else false.
    + +
    +Lemma ap_pr0 a b c (x := [a,b,c]) u v:
    +  u < x v < x u + v < x.
    + +
    +Lemma ap_limit x: T3ap x (x == one) || (T3limit x).
    + +
    +Lemma ap_pr1 c:
    +   ( a b, a < c b < c a + b < c)
    +   (c== zero) || T3ap c.
    + +
    +Lemma ap_pr2 c:
    +   T3nf c c zero
    +   ( a b, T3nf a T3nf b a < c b < c a + b < c)
    +   T3ap c.
    + +
    +Lemma ap_pr3 a b c y (x := [a,b,c]): y < x y + x = x.
    + +
    +Lemma ap_pr4 x: ( b, b < x b + x = x) (x == zero) || T3ap x.
    + +
    +Lemma ap_pr2CE (c := cons zero zero T3bad 1 zero):
    +   ( a b, T3nf a T3nf b a < c b < c a + b < c).
    + +
    +Definition psi_succ x :=
    +  if x is cons a b c _ _ then
    +   if ((a==zero) && (b==zero)) then [zero,zero, T3succ c] else [zero,zero, x]
    +  else zero.
    + +
    +Lemma psi_succ_pr1 a b c: [a,b,c] < psi_succ ([a,b,c]).
    + +
    +Lemma succ_psi1 a b c (x:= [a, b, c]): ((a != zero) || (b != zero))
    +    ( a' b' c', x < [a',b',c'] (psi_succ x) [a',b',c']).
    + +
    +Lemma succ_psi2 u (x := [zero,zero,u]) :
    +   ( a' b' c', T3nf c' x < [a',b',c'] (psi_succ x) [a',b',c']).
    + +
    +Lemma succ_prCE (u:= one) (v := T3bad): (u < v) && (v < T3succ u).
    + +
    +Lemma succ_psiCE (z := [zero,zero, T3bad]):
    +   (omega < z) && (z < (psi_succ omega)) && ~~(T3nf z).
    + +
    +Definition sup_of (f: T3 T3) x z :=
    +  [/\ T3nf z,
    +      ( y, T3nf y y < x f y z) &
    +      ( z', T3nf z' z' < z y,
    +          [&& T3nf y, y < x & z' < f y])].
    + +
    +Definition normal f:=
    +  [/\ x, T3nf x T3nf (f x),
    +      ( x y, T3nf x T3nf y x < y f x < f y)&
    +      ( x, T3nf x T3limit x sup_of f x (f x)) ].
    + +
    +Lemma sup_unique f x z z': sup_of f x z sup_of f x z' z = z'.
    + +
    +Lemma sup_Oalpha_zero: sup_of id zero zero.
    + +
    +Lemma sup_Oalpha_limit x: T3nf x T3limit x sup_of id x x.
    + +
    +Lemma sup_Oalpha_succ x: T3nf x sup_of id (T3succ x) x.
    + +
    +Lemma normal_id: normal id.
    + +
    +Lemma normal_limit f x: normal f T3nf x T3limit x T3limit (f x).
    + +
    +Lemma normal_compose f g:
    +   normal f normal g normal (f \o g).
    + +
    +Lemma add_normal a: T3nf a normal (T3add a).
    + +
    +End Ackermann.
    + +
    + +
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/gaia_hydras.onType.html b/theories/html/gaia_hydras.onType.html new file mode 100644 index 00000000..76b04484 --- /dev/null +++ b/theories/html/gaia_hydras.onType.html @@ -0,0 +1,289 @@ + + + + + +gaia_hydras.onType + + + + +
    + + + +
    + +

    Library gaia_hydras.onType

    + +
    +
    + +
    +Ordinal Notations (Experimental !!!!) Warning: This file is a draft !!! We try to adapt to Gaia the ON class of ordinal notations + (defined as a naïve (pre Stdpp) type class). + +
    + + An Ordinal Notation is just a well-founded ordered type, with + a trichotomic comparison + +
    + + Notions of ordinal arithmetics should be defined in substructures + +
    +
    + +
    +From mathcomp Require Import all_ssreflect zify.
    +From mathcomp Require Import fintype.
    +From Coq Require Import Logic.Eqdep_dec.
    +From Coq Require Import Wellfounded.Inclusion Wf_nat Inverse_Image.
    + +
    +Set Implicit Arguments.
    + +
    +
    + +
    +

    Preliminaries

    + restriction of a decidable relation +
    +
    + +
    +Definition restrict {A} (p: A bool) (r: A A bool):=
    +  fun x y[&& (p x), (p y) & r x y].
    + +
    +
    + +
    +

    Complements on orderType

    + +
    +
    + +
    +Section MoreOrderType.
    +  Variable disp: unit.
    +  Variable T: orderType disp.
    + +
    + +
    +  Definition limit_v2 (f: nat T)(x: T) :=
    +    ( (n:nat), (f n < x)%O)
    +      ( y : T, (y < x)%O n : nat, (y f n)%O).
    + +
    + +
    +  Definition limit_of (f: nat T) x :=
    +    ( n m : nat, (n < m)%nat (f n < f m)%O) limit_v2 f x.
    + +
    +  Definition is_successor_of (x y: T):=
    +    (x < y)%O z, (x < z)%O ~~ (z < y)%O.
    + +
    +  Section Succ_no_limit.
    +    Variables (x y: T) (s: nat T).
    +    Hypothesis Hsucc : is_successor_of x y.
    +    Hypothesis Hlim : limit_of s y.
    + +
    +    Remark R0: (n:nat), (x (s n))%O.
    + +
    +    Remark R1: z, (x < z < y)%O.
    + +
    +    Lemma F: False.
    + +
    +  End Succ_no_limit.
    + +
    +End MoreOrderType.
    + +
    +
    + +
    +Type for ordinal notations +
    +
    + +
    +Module ONDef.
    +  Record mixin_of disp (T: orderType disp) :=
    +    Mixin {
    +        _ : @well_founded T <%O;
    +      }.
    + +
    +  Section Packing.
    +    Variable disp: unit.
    +    Structure pack_type : Type :=
    +      Pack{ type: orderType disp; _ : mixin_of type}.
    + +
    + +
    +    Variable cT: pack_type.
    + +
    +    Definition on_struct: mixin_of cT :=
    +      let: Pack _ c := cT return mixin_of cT in c.
    + +
    +  End Packing.
    + +
    +  Module Exports.
    + +
    +    Notation on := (pack_type ).
    +    Notation ONMixin := Mixin.
    +    Notation ON T m := (@Pack T m).
    +    Coercion type : pack_type >-> orderType.
    + +
    +    Section Lemmas.
    +      Variable disp: unit.
    +      Variable U: @on disp.
    + +
    +      Definition tricho (a b: U) := if (a == b)%O then Eq
    +                                    else if (a < b)%O then Lt
    +                                         else Gt.
    + +
    +      Lemma trichoP (a b: U) :
    +        CompareSpec (a == b) (a < b)%O (b < a)%O (tricho a b).
    + +
    + +
    +      Lemma wf : @well_founded U <%O.
    + +
    +    End Lemmas.
    +  End Exports.
    +End ONDef.
    + +
    +Export ONDef.Exports.
    + +
    +
    + +
    +

    First instances of ON

    + +
    + +

    The Ordinal notation for 'I_i

    + +
    +
    + +
    +Lemma wf_ltn: well_founded (fun n[eta ltn n]).
    + +
    +Section onFiniteDef.
    +  Variable i: nat.
    + +
    + +
    +  Lemma I_i_wf: @well_founded 'I_i (<%O).
    + +
    +Definition onFiniteMixin := ONMixin I_i_wf.
    +Canonical onFiniteType := ON _ _ onFiniteMixin.
    + +
    +End onFiniteDef.
    + +
    +
    + +
    +Tests +Definition O12_33: onFiniteType 33. +by exists 12. +Defined. + +
    + +Compute tricho O12_33 O12_33. + +
    + +Goal (O12_33 <= O12_33) +
    + +

    An ordinal notation for omega

    + +
    +
    + +
    +Section onOmegaDef.
    + +
    Lemma omega_lt_wf : @well_founded Order.NatOrder.orderType <%O.
    + +
    + +
    +Definition onOmegaMixin := ONMixin omega_lt_wf.
    +Canonical onOmegaType := ON _ _ onOmegaMixin.
    + +
    +End onOmegaDef.
    + +
    +Example om12 : onOmegaType := 12.
    +Example om67 : onOmegaType := 67.
    + +
    + +
    +
    + +
    +To do : Notation for epsilon0 +
    +
    + +
    +From gaia_hydras Require Import T1Bridge.
    + +
    +Section ONEpsilon0Def.
    + +
    + +
    + +
    +End ONEpsilon0Def.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.Deduction.html b/theories/html/hydras.Ackermann.Deduction.html new file mode 100644 index 00000000..e4d5af87 --- /dev/null +++ b/theories/html/hydras.Ackermann.Deduction.html @@ -0,0 +1,82 @@ + + + + + +hydras.Ackermann.Deduction + + + + +
    + + + +
    + +

    Library hydras.Ackermann.Deduction

    + +
    +
    + +
    + FOL's deduction Lemma + +
    + + Original file by Russel O'Connor + +
    + + +
    +
    + +
    +From Coq Require Import Ensembles List.
    + +
    +From hydras.Ackermann Require Import folProof folProp.
    +Import FolNotations.
    + +
    +Section Deduction_Theorem.
    + +
    +Variable L : Language.
    +Let Formula := Formula L.
    +Let Formulas := Formulas L.
    +Let System := System L.
    +Let Term := Term L.
    +Let Terms := Terms L.
    +Let Prf := Prf L.
    +Let SysPrf := SysPrf L.
    + +
    +Let list_incl (X: Ensemble Formula) (l: list Formula) :=
    +     x, List.In x l mem _ X x.
    + +
    +Lemma SysPrf_rephrase X F : SysPrf X F s (_ : Prf s F), list_incl X s.
    + +
    +Theorem DeductionTheorem :
    +   (T : System) (f g : Formula)
    +         (prf : SysPrf (Ensembles.Add _ T g) f),
    +    SysPrf T (g f)%fol.
    + +
    +End Deduction_Theorem.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.LNN.html b/theories/html/hydras.Ackermann.LNN.html new file mode 100644 index 00000000..3f328da1 --- /dev/null +++ b/theories/html/hydras.Ackermann.LNN.html @@ -0,0 +1,395 @@ + + + + + +hydras.Ackermann.LNN + + + + +
    + + + +
    + +

    Library hydras.Ackermann.LNN

    + +
    +
    + +
    + LNN.v : Language of Natural Numbers (LNT+ <) + +
    + +Original version by Russel O'Connor + +
    + + +
    +
    + +
    +From Coq Require Import Arith Ensembles List.
    + +
    +From hydras.Ackermann Require Export Languages folProof
    +  folProp folLogic3.
    +From LibHyps Require Import LibHyps.
    +From hydras Require Import MoreLibHyps NewNotations.
    + +
    +
    + +
    +

    Instantiations of a few generic constructs

    + + +
    + + To do perhaps these redefinitions should be deprecated, because they cause some issues + in statements which mix LNN and LNT terms and formulas + +
    +
    + +
    +Definition Formula := Formula LNN.
    +Definition Formulas := Formulas LNN.
    +Definition System := System LNN.
    +Definition Sentence := Sentence LNN.
    +Definition Term := Term LNN.
    +Definition Terms := Terms LNN.
    +Definition SysPrf := SysPrf LNN.
    + +
    +#[local] Arguments apply _ _ _ : clear implicits.
    +#[local] Arguments atomic _ _ _ : clear implicits.
    + +
    + +
    +
    + +
    +

    Notations (Experimental and unstable)

    + +
    +
    + +
    Module NNnotations.
    Export FolNotations.
    + +
    +Definition Plus (x y : Term) : Term :=
    +  apply LNN Plus_ (Tcons x (Tcons y (Tnil))).
    + +
    +Definition Times (x y : Term) : Term :=
    +  apply LNN Times_ (Tcons x (Tcons y (Tnil))).
    + +
    +Definition Succ (x : Term) : Term :=
    +  apply LNN Succ_ (Tcons x (Tnil)).
    + +
    +Definition Zero : Term := apply LNN Zero_ (Tnil).
    + +
    +Definition LT (x y : Term) : Formula :=
    +  atomic LNN LT_ (Tcons x (Tcons y (Tnil))).
    + +
    + +
    +Notation S_ t := (apply LNN Succ_ (Tcons t (Tnil))).
    + +
    +Infix "+" := Plus: fol_scope.
    +Notation "n + p" := (Plus n p) (in custom fol at level 50, left associativity).
    + +
    +Check f[ 1, {var 1} + {var 1} = {var 1} ]f.
    +Infix "×" := Times: fol_scope.
    +Notation "n * p" := (Times n p) (in custom fol at level 40, left associativity).
    + +
    +Infix "<" := LT: fol_scope.
    +End NNnotations.
    + +
    +Import NNnotations.
    + +
    +Lemma LNN_eqdec : language_decidable LNN.
    + +
    +Section Free_Variables.
    + +
    +Lemma freeVarPlus (x y : Term) :
    freeVarT (Plus x y) = freeVarT x ++ freeVarT y.
    + +
    +Lemma freeVarTimes (x y : Term):
    freeVarT (Times x y) = freeVarT x ++ freeVarT y.
    + +
    +Lemma freeVarSucc (x : Term):
    +  freeVarT (Succ x) = freeVarT x.
    + +
    +Lemma freeVarZero : freeVarT Zero = nil.
    + +
    +Lemma freeVarLT (x y : Term) :
    freeVarF (LT x y) = freeVarT x ++ freeVarT y.
    + +
    +End Free_Variables.
    + +
    +
    + +
    +

    Basic and derived properties

    + +
    +
    +Section Logic.
    + +
    +Lemma Axm (T : System) (f : Formula): mem _ T f SysPrf T f.
    + +
    +Lemma sysExtend (T U : System) (f : Formula):
    Included _ T U SysPrf T f SysPrf U f.
    + +
    +Lemma sysWeaken (T : System) (f g : Formula):
    +  SysPrf T f SysPrf (Ensembles.Add _ T g) f.
    + +
    +Lemma impI (T : System) (f g : Formula):
    SysPrf (Ensembles.Add _ T g) f SysPrf T (g f)%fol.
    + +
    +Lemma impE (T : System) (f g : Formula):
    +  SysPrf T (g f)%fol SysPrf T g SysPrf T f.
    + +
    +Lemma contradiction (T : System) (f g : Formula):
    +  SysPrf T f SysPrf T (¬ f)%fol SysPrf T g.
    + +
    +Lemma nnE (T : System) (f : Formula):
    +  SysPrf T (~~ f)%fol SysPrf T f.
    + +
    +Lemma noMiddle (T : System) (f : Formula): SysPrf T (¬ f f)%fol.
    + +
    +Lemma nnI (T : System) (f : Formula):
    +  SysPrf T f SysPrf T (¬ ¬ f)%fol.
    + +
    +Lemma cp1 (T : System) (f g : Formula) :
    SysPrf T (¬ f ¬ g)%fol SysPrf T (impH g f).
    + +
    +Lemma cp2 (T : System) (f g : Formula):
    SysPrf T (g f)%fol SysPrf T (¬ f ¬ g)%fol.
    + +
    +Lemma orI1 (T : System) (f g : Formula):
    +  SysPrf T f SysPrf T (f g)%fol.
    + +
    +Lemma orI2 (T : System) (f g : Formula):
    +  SysPrf T g SysPrf T (f g)%fol.
    + +
    +Lemma orE (T : System) (f g h : Formula):
    +  SysPrf T (f g)%fol
    +  SysPrf T (f h)%fol SysPrf T (g h)%fol SysPrf T h.
    + +
    +Lemma orSys (T : System) (f g h : Formula) :
    SysPrf (Ensembles.Add _ T f) h SysPrf (Ensembles.Add _ T g) h
    SysPrf (Ensembles.Add _ T (f g)%fol) h.
    + +
    +Lemma andI (T : System) (f g : Formula):
    SysPrf T f SysPrf T g SysPrf T (f g)%fol.
    + +
    +Lemma andE1 (T : System) (f g : Formula):
    +  SysPrf T (f g)%fol SysPrf T f.
    + +
    +Lemma andE2 (T : System) (f g : Formula):
    +  SysPrf T (f g)%fol SysPrf T g.
    + +
    +Lemma iffI (T : System) (f g : Formula):
    SysPrf T (f g)%fol SysPrf T (g f)%fol
    SysPrf T (f g)%fol.
    + +
    +Lemma iffE1 (T : System) (f g : Formula):
    SysPrf T (f g)%fol SysPrf T (f g)%fol.
    + +
    +Lemma iffE2 (T : System) (f g : Formula):
    SysPrf T (f g)%fol SysPrf T (g f)%fol.
    + +
    +Lemma forallI (T : System) (f : Formula) (v : nat):
    ¬ In_freeVarSys LNN v T SysPrf T f SysPrf T (allH v, f)%fol.
    + +
    +Lemma forallE (T : System) (f : Formula) (v : nat) (t : Term):
    SysPrf T (allH v, f)%fol SysPrf T (substF f v t).
    + +
    +Lemma forallSimp (T : System) (f : Formula) (v : nat) :
    SysPrf T (allH v, f)%fol SysPrf T f.
    + +
    +Lemma existI (T : System) (f : Formula) (v : nat) (t : Term):
    SysPrf T (substF f v t) SysPrf T (exH v, f)%fol.
    + +
    +Lemma existE (T : System) (f g : Formula) (v : nat):
    +  ¬ In_freeVarSys LNN v T
    +  ¬ In v (freeVarF g)
    +  SysPrf T (exH v, f)%fol SysPrf T (f g)%fol
    +  SysPrf T g.
    + +
    +Lemma existSimp (T : System) (f : Formula) (v : nat):
    +  SysPrf T f SysPrf T (exH v, f)%fol.
    + +
    +Lemma existSys (T : System) (f g : Formula) (v : nat):
    +  ¬ In_freeVarSys LNN v T
    +  ¬ In v (freeVarF g)
    +  SysPrf (SetAdds T f) g
    +  SysPrf (SetAdds T (exH v, f)%fol) g.
    + +
    +Lemma absurd1 (T : System) (f : Formula):
    SysPrf T (f ¬ f)%fol SysPrf T (¬ f)%fol.
    + +
    +Lemma nImp (T : System) (f g : Formula):
    SysPrf T (f ¬ g)%fol SysPrf T (¬ (f g))%fol.
    + +
    +Lemma nOr (T : System) (f g : Formula):
    SysPrf T (¬ f ¬ g)%fol SysPrf T (¬ (f g))%fol.
    + +
    +Lemma nAnd (T : System) (f g : Formula):
    SysPrf T (¬ f ¬ g)%fol SysPrf T (¬ (f g))%fol.
    + +
    +Lemma nForall (T : System) (f : Formula) (v : nat):
    SysPrf T (exH v, ¬ f)%fol SysPrf T (¬ (allH v, f))%fol.
    + +
    +Lemma nExist (T : System) (f : Formula) (v : nat):
    SysPrf T (allH v, ¬ f)%fol SysPrf T (¬ (exH v, f))%fol.
    + +
    +Lemma impRefl (T : System) (f : Formula): SysPrf T (f f)%fol.
    + +
    +Lemma impTrans (T : System) (f g h : Formula):
    SysPrf T (f g)%fol SysPrf T (g h)%fol SysPrf T (f h)%fol.
    + +
    +Lemma orSym (T : System) (f g : Formula):
    +  SysPrf T (f g)%fol SysPrf T (g f)%fol.
    + +
    +Lemma andSym (T : System) (f g : Formula):
    +SysPrf T (f g)%fol SysPrf T (g f)%fol.
    + +
    +Lemma iffRefl (T : System) (f : Formula): SysPrf T (f f)%fol.
    + +
    +Lemma iffSym (T : System) (f g : Formula):
    +  SysPrf T (f g)%fol SysPrf T (g f)%fol.
    + +
    +Lemma iffTrans (T : System) (f g h : Formula):
    +  SysPrf T (f g)%fol SysPrf T (g h)%fol
    +  SysPrf T (f h)%fol.
    + +
    +Lemma eqRefl (T : System) (a : Term): SysPrf T (a = a)%fol.
    + +
    +Lemma eqSym (T : System) (a b : Term):
    SysPrf T (a = b)%fol SysPrf T (b = a)%fol.
    + +
    +Lemma eqTrans (T : System) (a b c : Term):
    +SysPrf T (a = b)%fol SysPrf T (b = c)%fol SysPrf T (a = c)%fol.
    + +
    +Lemma eqPlus (T : System) (a b c d : Term):
    +  SysPrf T (a = b)%fol SysPrf T (c = d)%fol
    +  SysPrf T (a + c = b + d)%fol.
    + +
    +Lemma eqTimes (T : System) (a b c d : Term):
    SysPrf T (a = b)%fol SysPrf T (c = d)%fol
    SysPrf T (a × c = b × d)%fol.
    + +
    +Lemma eqSucc (T : System) (a b : Term):
    +  SysPrf T (a = b)%fol SysPrf T (Succ a = Succ b)%fol.
    + +
    +Lemma eqLT (T : System) (a b c d : Term):
    SysPrf T (a = b)%fol SysPrf T (c = d)%fol
    SysPrf T (a < c b < d)%fol.
    + +
    +End Logic.
    + +
    +Fixpoint natToTerm (n : nat) : Term :=
    +  match n with
    +  | OZero
    +  | S mSucc (natToTerm m)
    +  end.
    + +
    +#[global] Notation n2t i := (natToTerm i).
    + +
    +Lemma closedNatToTerm :
    a v : nat, ¬ In v (freeVarT (natToTerm a)).
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.LNN2LNT.html b/theories/html/hydras.Ackermann.LNN2LNT.html new file mode 100644 index 00000000..fba54782 --- /dev/null +++ b/theories/html/hydras.Ackermann.LNN2LNT.html @@ -0,0 +1,318 @@ + + + + + +hydras.Ackermann.LNN2LNT + + + + +
    + + + +
    + +

    Library hydras.Ackermann.LNN2LNT

    + +
    +
    + +
    +LNN2LNT: + +
    + + Translation of LNN-formulas and proofs into LNT by replacement of + (t < t')%fol subformulas with ( v, t + Succ v = t')%nt. + +
    + + Original file by Russel O'Connor + +
    + + +
    +
    + +
    + +
    +
    + +
    +

    Translation of terms

    + +
    +
    + +
    +Fixpoint LNN2LNT_term (t : fol.Term LNN) : fol.Term LNT:=
    +  match t with
    +  | var vvar v
    +  | apply f tsapply LNT f (LNN2LNT_terms _ ts)
    +  end

    with LNN2LNT_terms (n : nat) (ts : fol.Terms LNN n) {struct ts} :
    Terms n :=
    +  match ts in (fol.Terms _ n0) return (Terms n0) with
    +  | Tnil ⇒ @Tnil LNT
    +  | Tcons m s ssTcons (LNN2LNT_term s) (LNN2LNT_terms m ss)
    +  end.
    + +
    + +
    +
    + +
    +

    Inverse translation

    + +
    +
    + +
    +Fixpoint LNT2LNN_term (t : Term) : fol.Term LNN :=
    +  match t with
    +  | var vvar v
    +  | apply f tsapply LNN f (LNT2LNN_terms _ ts)
    +  end

    with LNT2LNN_terms (n : nat) (ts : Terms n) {struct ts} :
    fol.Terms LNN n :=
    +  match ts in (fol.Terms _ n0) return (fol.Terms LNN n0) with
    +  | Tnil ⇒ @Tnil LNN
    +  | Tcons m s ssTcons (LNT2LNN_term s) (LNT2LNN_terms m ss)
    +  end.
    + +
    +Lemma LNT2LNN_natToTerm (n: nat) :
    +  LNT2LNN_term (natToTerm n) = natToTermLNN n.
    + +
    +Lemma LNT2LNT_term (t : Term): LNN2LNT_term (LNT2LNN_term t) = t.
    + +
    +
    + +
    +

    Translation of formulas

    + +
    + +

    Translation of (v#0 < v#1)%fol

    + +
    +
    + +
    +Definition LTFormula := (exH 2, v#0 + LNT.Succ v#2 = v#1)%nt.
    + +
    +
    + +
    +

    Translation of (t < t')%fol

    + +
    + + The function translateLT is defined by an interactive proof (omitted). + It is specified by the lemma translateLT1 + +
    +
    + +
    +Definition translateLT (ts : fol.Terms LNN (arityR LNN LT_)) : Formula.
    + +
    +Lemma translateLT1 :
    a a0 b0,
    translateLT (Tcons a (Tcons a0 b0)) =
    subAllFormula LNT LTFormula
    +   (fun H : nat
    +    nat_rec (fun _ : natfol.Term LNT) (LNN2LNT_term a)
    +      (fun (H0 : nat) (_ : fol.Term LNT) ⇒
    +       nat_rec (fun _ : natfol.Term LNT) (LNN2LNT_term a0)
    +         (fun (H1 : nat) (_ : fol.Term LNT) ⇒ var H1) H0) H).
    + +
    +
    + +
    +

    Translation of any LNN-formula

    + + +
    + + The translation of any LNN-formula is straigthforward, except for + the special case of t_1 < t_2 (handled by translateLT ) + +
    + + +
    +
    + +
    +Fixpoint LNN2LNT_formula (f : fol.Formula LNN) : Formula :=
    +  match f with
    +  | (t1 = t2)%fol ⇒ (LNN2LNT_term t1 = LNN2LNT_term t2)%nt
    +  | atomic r ts
    +      match
    +        r as l return (fol.Terms LNN (arityR LNN l) Formula)
    +      with
    +      | LT_fun ts : fol.Terms LNN (arityR LNN LT_) ⇒ translateLT ts
    +      end ts
    +  | (A B)%fol ⇒ (LNN2LNT_formula A LNN2LNT_formula B)%nt
    +  | (¬ A)%fol ⇒ (¬ LNN2LNT_formula A)%nt
    +  | (allH v, A)%fol ⇒ (allH v, LNN2LNT_formula A)%nt
    +  end.
    + +
    +
    + +
    +

    Helpful rewriting lemmas

    + +
    + + +
    +

    Inverse translation

    + +
    +
    + +
    +Fixpoint LNT2LNN_formula (f : Formula) : fol.Formula LNN :=
    +  match f with
    +  | (t1 = t2)%nt ⇒ (LNT2LNN_term t1 = LNT2LNN_term t2)%fol
    +  | atomic r tsmatch r with
    +                   end
    +  | (A B)%nt ⇒ (LNT2LNN_formula A LNT2LNN_formula B)%fol
    +  | (¬ A)%nt ⇒ (¬ LNT2LNN_formula A)%fol
    +  | (allH v, A)%nt ⇒ (allH v, LNT2LNN_formula A)%fol
    +  end.
    + +
    +
    + +
    +

    Commutation lemmas

    + +
    +
    + +
    +Lemma LNT2LNT_formula (f : Formula):
    LNN2LNT_formula (LNT2LNN_formula f) = f.
    + +
    +Lemma LNT2LNN_subTerm (t : Term) (v : nat) (s : Term):
    +  LNT2LNN_term (substT t v s) =
    +    substT (LNT2LNN_term t) v (LNT2LNN_term s).
    + +
    +Lemma LNT2LNN_freeVarT ( t : Term):
    +  freeVarT (LNT2LNN_term t) = freeVarT t.
    + +
    +Lemma LNT2LNN_freeVarF (f : Formula):
    +  freeVarF (LNT2LNN_formula f) = freeVarF f.
    + +
    +Lemma LNT2LNN_subFormula :
    +   (f : Formula) (v : nat) (s : Term),
    +    LNT2LNN_formula (substF f v s) =
    +      substF (LNT2LNN_formula f) v (LNT2LNN_term s).
    + +
    +
    + +
    +

    Proof translation

    + +
    +
    + +
    + +
    +
    + +
    + If the translation of every axiom of a LNN-system U is provable in a closed + LNT-system V, + then the translation of any LNN-formula in U is provable in V. + +
    +
    + +
    +Lemma translateProof (U : fol.System LNN) (V : System):
    +    ClosedSystem LNT V
    +    ( f : fol.Formula LNN,
    +        mem (fol.Formula LNN) U f SysPrf V (LNN2LNT_formula f))
    +     f : fol.Formula LNN,
    +      folProof.SysPrf LNN U f SysPrf V (LNN2LNT_formula f).
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.LNT.html b/theories/html/hydras.Ackermann.LNT.html new file mode 100644 index 00000000..c6d3acb8 --- /dev/null +++ b/theories/html/hydras.Ackermann.LNT.html @@ -0,0 +1,450 @@ + + + + + +hydras.Ackermann.LNT + + + + +
    + + + +
    + +

    Library hydras.Ackermann.LNT

    + +
    +
    + +
    + LNT.v : Language of Number Theory + +
    + +Original version by Russel O'Connor + +
    + + +
    +
    + +
    +From Coq Require Import Arith Ensembles List.
    + +
    +From hydras.Ackermann
    Require Import Languages folProof folProp folLogic3.
    + +
    +
    + +
    +

    Instantiations of a few generic constructs

    + + +
    + + To do perhaps these redefinitions should be deprecated, because they cause some issues + in statements which mix LNN and LNT terms and formulas + +
    +
    + +
    +Definition Formula := Formula LNT.
    +Definition Formulas := Formulas LNT.
    +Definition System := System LNT.
    +Definition Sentence := Sentence LNT.
    +Definition Term := Term LNT.
    +Definition Terms := Terms LNT.
    +Definition SysPrf := SysPrf LNT.
    +#[local] Arguments apply _ _ _ : clear implicits.
    + +
    +Module LNT.
    + +
    +Definition Plus (x y : Term) : Term :=
    +  apply LNT Plus_ (Tcons x (Tcons y (Tnil))).
    + +
    +Definition Times (x y : Term) : Term :=
    +  apply LNT Times_ (Tcons x (Tcons y (Tnil))).
    + +
    +Definition Succ (x : Term) : Term :=
    +  apply LNT Succ_ (Tcons x (Tnil)).
    + +
    +Definition Zero : Term := apply LNT Zero_ (Tnil).
    + +
    +End LNT.
    +Export LNT.
    + +
    +
    + +
    +

    Notations for LNT formulas: experimental and unstable

    + +
    +
    + +
    +Declare Scope nt_scope.
    +Delimit Scope nt_scope with nt.
    + +
    +Infix "=" := (equal _): nt_scope.
    +Infix "∨" := (orH): nt_scope.
    +Infix "∧" := (andH):nt_scope.
    +Infix "→" := (impH): nt_scope.
    +Notation "~ A" := (@notH _ A): nt_scope.
    +Notation "A <-> B" := (@iffH _ A B): nt_scope.
    + +
    +Notation "t = u" := (@equal _ t u): nt_scope.
    +Notation "t <> u" := (¬ t = u)%nt : nt_scope.
    +Notation "'v#' i" := (var i) (at level 3, format "'v#' i", i at level 0) : nt_scope.
    + +
    +Notation "'exH' x .. y , p" := (existH x .. (existH y p) ..)
    +  (x at level 0, y at level 0, at level 200, right associativity) : nt_scope.
    + +
    +Notation "'allH' x .. y , p" := (forallH x .. (forallH y p) ..)
    +  (x at level 0, y at level 0, at level 200, right associativity) : nt_scope.
    + +
    +Infix "+" := Plus :nt_scope.
    +Infix "×" := Times :nt_scope.
    +Notation S_ t := (apply LNT Succ_ (Tcons t (Tnil))).
    + +
    +
    + +
    +

    Notations for printing computed formulas/terms with derived connectives

    + +
    +
    + +
    +Reserved Notation "x '\/'' y" (at level 85, right associativity).
    +Reserved Notation "x '/\'' y" (at level 80, right associativity).
    +Reserved Notation "x '<->'' y" (at level 95, no associativity).
    +Reserved Notation "x '<->''' y" (at level 95, no associativity).
    + +
    +Notation "x \/' y" := (¬ x y)%nt : nt_scope.
    +Notation "x /\' y" := (¬ (~ x \/' ¬ y))%nt : nt_scope.
    +Notation "x <->'' y" := ((x y) (y x))%nt: nt_scope.
    +Notation "x <->' y" := (¬ (~ (x y) \/' ~(y x)))%nt : nt_scope.
    +Notation exH' v A := (¬ (forallH v (¬ A)))%nt.
    + +
    +
    + +
    +

    Examples

    + +
    +
    + +
    +Section Examples.
    +Variable f : Formula.
    +Check (allH 0 1 , (f v#0 = v#0 v#1 = v#1))%nt.
    + +
    +Check (exH 0 1 , (v#0 = v#0 v#1 = v#1))%nt.
    +End Examples.
    + +
    +
    + +
    +

    Basic properties

    + + +
    +
    + +
    +Lemma LNT_eqdec : language_decidable LNT.
    + +
    +
    + +
    +

    List of free variables of a formula

    + +
    +
    + +
    +Section Free_Variables.
    + +
    +Lemma freeVarPlus (x y: Term) :
    freeVarT (Plus x y) = freeVarT x ++ freeVarT y.
    + +
    +Lemma freeVarTimes (x y : Term) :
    freeVarT (Times x y) = freeVarT x ++ freeVarT y.
    + +
    +Lemma freeVarSucc (x : Term):
    +  freeVarT (S_ x)%nt = freeVarT x.
    + +
    +Lemma freeVarZero : freeVarT Zero = nil.
    + +
    +End Free_Variables.
    + +
    +
    + +
    +

    Basic and derived proof rules

    + +
    +
    + +
    +Section Logic.
    + +
    +Lemma Axm (T : System) (f : Formula) : mem _ T f SysPrf T f.
    + +
    +Lemma sysExtend (T U : System) (f : Formula):
    +  Included _ T U SysPrf T f SysPrf U f.
    + +
    +Lemma sysWeaken (T : System) (f g : Formula):
    +  SysPrf T f SysPrf (Ensembles.Add _ T g) f.
    + +
    +Lemma impI (T : System) (f g : Formula):
    +  SysPrf (Ensembles.Add _ T g) f SysPrf T (g f)%nt.
    + +
    +Lemma impE (T : System) (f g : Formula):
    SysPrf T (g f)%nt SysPrf T g SysPrf T f.
    + +
    +Lemma contradiction (T : System) (f g : Formula):
    SysPrf T f SysPrf T (¬ f)%nt SysPrf T g.
    + +
    +Lemma nnE (T : System) (f : Formula):
    +  SysPrf T (¬ ¬ f)%nt SysPrf T f.
    + +
    +Lemma noMiddle (T : System) (f : Formula): SysPrf T (¬ f f)%nt.
    + +
    +Lemma nnI (T : System) (f : Formula):
    +  SysPrf T f SysPrf T (¬ ¬ f)%nt.
    + +
    +Lemma cp1 (T : System) (f g : Formula):
    SysPrf T (¬ f ¬ g)%nt SysPrf T (g f)%nt.
    + +
    +Lemma cp2 (T : System) (f g : Formula):
    SysPrf T (g f)%nt SysPrf T (¬ f ¬ g)%nt.
    + +
    +Lemma orI1 (T : System) (f g : Formula):
    +  SysPrf T f SysPrf T (f g)%nt.
    + +
    +Lemma orI2 (T : System) (f g : Formula):
    +  SysPrf T g SysPrf T (f g)%nt.
    + +
    +Lemma orE (T : System) (f g h : Formula):
    +  SysPrf T (f g)%nt
    +  SysPrf T (f h)%nt SysPrf T (g h)%nt
    +  SysPrf T h.
    + +
    +Lemma orSys (T : System) (f g h : Formula):
    SysPrf (Ensembles.Add _ T f) h
    SysPrf (Ensembles.Add _ T g) h
    SysPrf (Ensembles.Add _ T (f g)%nt) h.
    + +
    +Lemma andI (T : System) (f g : Formula) :
    SysPrf T f SysPrf T g SysPrf T (f g)%nt.
    + +
    +Lemma andE1 (T : System) (f g : Formula) :
    +  SysPrf T (f g)%nt SysPrf T f.
    + +
    +Lemma andE2 (T : System) (f g : Formula) :
    +  SysPrf T (f g)%nt SysPrf T g.
    + +
    +Lemma iffI (T : System) (f g : Formula) :
    SysPrf T (f g)%nt SysPrf T (g f)%nt SysPrf T (f g)%nt.
    + +
    +Lemma iffE1 (T : System) (f g : Formula):
    SysPrf T (f g)%nt SysPrf T (f g)%nt.
    + +
    +Lemma iffE2 (T : System) (f g : Formula) :
    SysPrf T (f g)%nt SysPrf T (g f)%nt.
    + +
    +Lemma forallI (T : System) (f : Formula) (v : nat):
    ¬ In_freeVarSys LNT v T SysPrf T f SysPrf T (allH v, f)%nt.
    + +
    +Lemma forallE (T : System) (f : Formula) (v : nat) (t : Term) :
    SysPrf T (allH v, f)%nt SysPrf T (substF f v t).
    + +
    +Lemma forallSimp (T : System) (f : Formula) (v : nat):
    SysPrf T (allH v, f)%nt SysPrf T f.
    + +
    +Lemma existI (T : System) (f : Formula) (v : nat) (t : Term):
    SysPrf T (substF f v t) SysPrf T (exH v, f)%nt.
    + +
    +Lemma existE (T : System) (f g : Formula) (v : nat):
    +  ¬ In_freeVarSys LNT v T
    +  ¬ In v (freeVarF g)
    +  SysPrf T (exH v, f)%nt SysPrf T (f g)%nt SysPrf T g.
    + +
    +Lemma existSimp (T : System) (f : Formula) (v : nat):
    SysPrf T f SysPrf T (exH v, f)%nt.
    + +
    +Lemma existSys (T : System) (f g : Formula) (v : nat):
    +  ¬ In_freeVarSys LNT v T
    +  ¬ In v (freeVarF g)
    +  SysPrf (Ensembles.Add _ T f) g
    +  SysPrf (Ensembles.Add _ T (exH v, f)%nt) g.
    + +
    +Lemma absurd1 (T : System) (f : Formula):
    SysPrf T (f ¬ f)%nt SysPrf T (¬ f)%nt.
    + +
    +Lemma nImp (T : System) (f g : Formula):
    SysPrf T (f ¬g)%nt SysPrf T (¬ (f g))%nt.
    + +
    +Lemma nOr (T : System) (f g : Formula):
    SysPrf T (¬ f ¬g)%nt SysPrf T (¬ (f g))%nt.
    + +
    +Lemma nAnd (T : System) (f g : Formula):
    SysPrf T (¬ f ¬ g)%nt SysPrf T (¬ (f g))%nt.
    + +
    +Lemma nForall (T : System) (f : Formula) (v : nat) :
    SysPrf T (exH v, ¬ f)%nt SysPrf T (¬ (allH v, f))%nt.
    + +
    +Lemma nExist (T : System) (f : Formula) (v : nat):
    SysPrf T (allH v, ¬ f)%nt SysPrf T (¬ (exH v, f))%nt.
    + +
    +Lemma impRefl (T : System) (f : Formula): SysPrf T (f f)%nt.
    + +
    +Lemma impTrans (T : System) (f g h : Formula):
    SysPrf T (f g)%nt SysPrf T (g h)%nt SysPrf T (f h)%nt.
    + +
    +Lemma orSym (T : System) (f g : Formula):
    SysPrf T (f g)%nt SysPrf T (g f)%nt.
    + +
    +Lemma andSym (T : System) (f g : Formula) :
    SysPrf T (f g)%nt SysPrf T (g f)%nt.
    + +
    +Lemma iffRefl (T : System) (f : Formula) : SysPrf T (f f)%nt.
    + +
    +Lemma iffSym (T : System) (f g : Formula):
    +  SysPrf T (f g)%nt SysPrf T (g f)%nt.
    + +
    +Lemma iffTrans (T : System) (f g h : Formula):
    SysPrf T (f g)%nt SysPrf T (g h)%nt SysPrf T (f h)%nt.
    + +
    +Lemma eqRefl (T : System) (a : Term): SysPrf T (a = a)%nt.
    + +
    +Lemma eqSym (T : System) (a b : Term):
    SysPrf T (a = b)%nt SysPrf T (b = a)%nt.
    + +
    +Lemma eqTrans (T : System) (a b c : Term):
    +  SysPrf T (a = b)%nt SysPrf T (b = c)%nt SysPrf T (a = c)%nt.
    + +
    +Lemma eqPlus (T : System) (a b c d : Term):
    +  SysPrf T (a = b)%nt SysPrf T (c = d)%nt
    +  SysPrf T (a + c = b + d)%nt.
    + +
    +Lemma eqTimes (T : System) (a b c d : Term):
    +  SysPrf T (a = b)%nt SysPrf T (c = d)%nt
    +  SysPrf T (a × c = b × d)%nt.
    + +
    +Lemma eqSucc (T : System) (a b : Term):
    SysPrf T (a = b)%nt SysPrf T (Succ a = Succ b)%nt.
    + +
    +End Logic.
    + +
    +
    + +
    +Conversion from nat +
    +
    +Fixpoint natToTerm (n : nat) : Term :=
    +  match n with
    +  | OZero
    +  | S mS_ (natToTerm m)
    +  end.
    + +
    +Lemma closedNatToTerm :
    a v : nat, ¬ In v (freeVarT (natToTerm a)).
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.Languages.html b/theories/html/hydras.Ackermann.Languages.html new file mode 100644 index 00000000..8de98a06 --- /dev/null +++ b/theories/html/hydras.Ackermann.Languages.html @@ -0,0 +1,234 @@ + + + + + +hydras.Ackermann.Languages + + + + +
    + + + +
    + +

    Library hydras.Ackermann.Languages

    + +
    +
    + +
    +Languages : Definitions of LNT and LNN + +
    + + Original development by Russel O'Connor +
    + + TO do : reorganize Alectryon snippets +
    +
    + +
    +From Coq Require Import Arith List.
    +From hydras.Ackermann Require Import fol primRec code.
    + +
    +
    + +
    +

    Language of Number Theory: LNT

    + +
    +
    + +
    +Inductive LNTFunction : Set :=
    +  | Plus_ : LNTFunction
    +  | Times_ : LNTFunction
    +  | Succ_ : LNTFunction
    +  | Zero_ : LNTFunction.
    + +
    +Inductive LNTRelation : Set :=.
    + +
    +Definition LNTFunctionArity (x : LNTFunction) : nat :=
    +  match x with
    +  | Plus_ ⇒ 2
    +  | Times_ ⇒ 2
    +  | Succ_ ⇒ 1
    +  | Zero_ ⇒ 0
    +  end.
    + +
    + +
    +Definition LNTRelationR (x : LNTRelation) : nat :=
    +  match x with botLNTRelation_rec (fun _nat) bot end.
    + +
    +Definition LNT : Language := language LNTRelation LNTFunction LNTRelationR LNTFunctionArity.
    + +
    +
    + +
    +

    Language of Natural Numbers: LNN

    + + Its functions are also LNT's + +
    +
    + +
    + +
    +Inductive LNNRelation : Set :=
    +    LT_ : LNNRelation.
    + +
    +Definition LNNArityR (x : LNNRelation) : nat :=
    match x with LT_ ⇒ 2 end.
    + +
    +Definition LNNArityF (f : LNTFunction) :=
    +     LNTFunctionArity f.
    + +
    +Definition LNN : Language := language LNNRelation LNTFunction
    +                               LNNArityR LNNArityF.
    + +
    + +
    +
    + +
    +

    Goedel encoding for LNT

    + +
    + + This function is also used as encoding for LNN +
    +
    + +
    +Definition codeLNTFunction (f : LNTFunction) : nat :=
    +  match f with
    +  | Plus_ ⇒ 0
    +  | Times_ ⇒ 1
    +  | Succ_ ⇒ 2
    +  | Zero_ ⇒ 3
    +  end.
    + +
    +Definition codeLNTRelation (R : LNTRelation) : nat :=
    +  match R return nat with
    +  end.
    + +
    +Lemma codeLNTFunctionInj :
    f g : LNTFunction, codeLNTFunction f = codeLNTFunction g f = g.
    + +
    +Lemma codeLNTRelationInj :
    R S : LNTRelation, codeLNTRelation R = codeLNTRelation S R = S.
    + +
    + +
    +Definition codeArityLNTR (r : nat) := 0.
    + +
    +#[export]Instance codeArityLNTRIsPR : isPR 1 codeArityLNTR.
    + +
    +Lemma codeArityLNTRIsCorrect1 :
    r : Relations LNT,
    codeArityLNTR (codeLNTRelation r) = S (arityR LNT r).
    + +
    +Lemma codeArityLNTRIsCorrect2 :
    n : nat,
    codeArityLNTR n 0 r : Relations LNT, codeLNTRelation r = n.
    + +
    +Definition codeArityLNTF (f : nat) :=
    +  switchPR f
    +    (switchPR (pred f)
    +       (switchPR (pred (pred f)) (switchPR (pred (pred (pred f))) 0 1) 2) 3)
    +    3.
    + +
    +#[export]Instance codeArityLNTFIsPR : isPR 1 codeArityLNTF.
    + +
    +Lemma codeArityLNTFIsCorrect1 :
    f : Functions LNT,
    codeArityLNTF (codeLNTFunction f) = S (arityF LNT f).
    + +
    +Lemma codeArityLNNFIsCorrect1 :
    f : Functions LNN,
    codeArityLNTF (codeLNTFunction f) = S (arityF LNN f).
    + +
    +Lemma codeArityLNTFIsCorrect2 :
    n : nat,
    codeArityLNTF n 0
    f : Functions LNT, codeLNTFunction f = n.
    + +
    +
    + +
    +

    Goedel encoding for LNN

    + +
    +
    + +
    +Definition codeLNNRelation (R : LNNRelation) : nat := 0.
    + +
    +Lemma codeLNNRelationInj :
    R S : LNNRelation, codeLNNRelation R = codeLNNRelation S R = S.
    + +
    +Definition codeArityLNNR (r : nat) := switchPR r 0 3.
    + +
    +#[export]Instance codeArityLNNRIsPR : isPR 1 codeArityLNNR.
    + +
    +Lemma codeArityLNNRIsCorrect1 :
    +   r : Relations LNN,
    +    codeArityLNNR (codeLNNRelation r) = S (arityR LNN r).
    + +
    +Lemma codeArityLNNRIsCorrect2 :
    n : nat,
    codeArityLNNR n 0 r : Relations LNN, codeLNNRelation r = n.
    + +
    +Lemma codeArityLNNFIsCorrect2 :
    +   n : nat,
    +    codeArityLNTF n 0 f : Functions LNN, codeLNTFunction f = n.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.ListExt.html b/theories/html/hydras.Ackermann.ListExt.html new file mode 100644 index 00000000..31acf1a4 --- /dev/null +++ b/theories/html/hydras.Ackermann.ListExt.html @@ -0,0 +1,76 @@ + + + + + +hydras.Ackermann.ListExt + + + + +
    + + + +
    + +

    Library hydras.Ackermann.ListExt

    + +
    +
    + +
    + ListExt.v: + +
    + + The most part of the original contents by Russel have been + replaced by lemmas from Coq.List. + We decided to keep in_remove_neq (originally In_list_remove2 + since it appears in many composed tactics. + +
    +
    + +
    +From Coq Require Import Lists.List.
    + +
    +Section List_Remove.
    + +
    +Variable A : Set.
    +Hypothesis Aeq_dec : a b : A, {a = b} + {a b}.
    + +
    +Lemma in_remove_neq:
    (a b : A) (l : list A), In a (List.remove Aeq_dec b l)
    +                                a b.
    + +
    +End List_Remove.
    + +
    +
    + +
    +Old name in Russel's development +
    +
    + +
    +#[deprecated(note="use ListExt.in_remove_neq instead")]
    Notation In_list_remove2 := in_remove_neq (only parsing).
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.NN.html b/theories/html/hydras.Ackermann.NN.html new file mode 100644 index 00000000..91dfc198 --- /dev/null +++ b/theories/html/hydras.Ackermann.NN.html @@ -0,0 +1,153 @@ + + + + + +hydras.Ackermann.NN + + + + +
    + + + +
    + +

    Library hydras.Ackermann.NN

    + +
    + +
    +
    + +
    + NN.v : Natural Numbers: Axioms and basic properties + +
    + +Original version by Russel O'Connor + +
    + + +
    +
    + +
    +From Coq Require Import Arith Lia Ensembles List.
    + +
    +From hydras.Ackermann Require Import folProp subAll folLogic3 Languages.
    +From hydras.Ackermann Require Export LNN.
    +From hydras Require Import Compat815 NewNotations.
    +Import NNnotations.
    +
    + +
    +

    Axioms of NN

    + +
    +
    +Section NN.
    + +
    +Definition NN1 := (allH 0, S_ v#0 Zero)%fol.
    + +
    +Definition NN2 := (allH 1 0, S_ v#0 = S_ v#1 v#0 = v#1)%fol.
    + +
    +Definition NN3 := (allH 0, v#0 + Zero = v#0)%fol.
    + +
    +Definition NN4 := (allH 1 0, v#0 + S_ v#1 = S_ (v#0 + v#1))%fol.
    + +
    +Definition NN5 := (allH 0, v#0 × Zero = Zero)%fol.
    + +
    +Definition NN6 := (allH 1 0, v#0 × S_ v#1 = v#0 × v#1 + v#0)%fol.
    + +
    +Definition NN7 := (allH 0, ¬ v#0 < Zero)%fol.
    + +
    +Definition NN8 :=
    + (allH 1 0, v#0 < Succ(v#1) v#0 < v#1 v#0 = v#1)%fol.
    + +
    +Definition NN9 := (allH 1 0, v#0 < v#1 v#0 = v#1 v#1 < v#0)%fol.
    + +
    +Definition NN := SetEnum NN1 NN2 NN3 NN4 NN5 NN6 NN7 NN8 NN9.
    + +
    +
    + +
    +

    Properties of the system NN

    + +
    +
    + +
    +Lemma closedNN1 : ClosedSystem LNN NN.
    + +
    +Lemma closedNN : v : nat, ¬ In_freeVarSys LNN v NN.
    + +
    +
    + +
    +

    Generic instantiation of axioms

    + +
    +
    + +
    +Lemma nn1 (a : Term) : SysPrf NN (S_ a Zero)%fol.
    + +
    +Lemma nn2 (a b : Term): SysPrf NN (S_ a = S_ b a = b)%fol.
    + +
    +Lemma nn3 (a : Term): SysPrf NN (a + Zero = a)%fol.
    + +
    +Lemma nn4 (a b : Term) : SysPrf NN (a + S_ b = S_ (a + b))%fol.
    + +
    +Lemma nn5 ( a : Term) : SysPrf NN (a × Zero = Zero)%fol.
    + +
    +Lemma nn6 (a b : Term):
    +  SysPrf NN (a × Succ b = a × b + a)%fol.
    + +
    +Lemma nn7 (a : Term): SysPrf NN (¬ (a <Zero))%fol.
    + +
    +Lemma nn8 (a b : Term) : SysPrf NN (a < Succ b a < b a = b)%fol.
    + +
    +Lemma nn9 (a b : Term): SysPrf NN (a < b a = b b < a)%fol.
    + +
    +End NN.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.NN2PA.html b/theories/html/hydras.Ackermann.NN2PA.html new file mode 100644 index 00000000..9573a6e4 --- /dev/null +++ b/theories/html/hydras.Ackermann.NN2PA.html @@ -0,0 +1,83 @@ + + + + + +hydras.Ackermann.NN2PA + + + + +
    + + + +
    + +

    Library hydras.Ackermann.NN2PA

    + +
    +
    + +
    + NN2PA.v : + +
    + +Original version by Russel O'Connor + +
    + + +
    +
    + +
    +From Coq Require Import Ensembles List Arith.
    + +
    +From hydras.Ackermann
    +  Require Import folProp folProof subProp folLogic3 folReplace NN
    +  PAtheory.
    +From hydras.Ackermann Require Export LNN2LNT.
    +From hydras.Ackermann Require Import subAll ListExt.
    +Import NNnotations.
    + +
    +Lemma NN2PA (f : fol.Formula LNN):
    +  folProof.SysPrf LNN NN f SysPrf PA (LNN2LNT_formula f).
    + +
    +
    + +
    +If F[x\0], F[x\1] ... F[x\m-1] are provable in PA, + then v_x <' m F is also provable (where a <' b is the translation of a < b into PA). + +
    + + More precisely: + +
    + + +
    +
    +Lemma PAboundedLT :
    +   (m : nat) (F : LNT.Formula) (x : nat),
    +    ( n : nat,
    +        n < m SysPrf PA (substF F x (natToTerm n)))
    +    SysPrf PA (LNN2LNT_formula (v#x < LNN.natToTerm m)%fol F)%nt.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.NNtheory.html b/theories/html/hydras.Ackermann.NNtheory.html new file mode 100644 index 00000000..c38b25b1 --- /dev/null +++ b/theories/html/hydras.Ackermann.NNtheory.html @@ -0,0 +1,72 @@ + + + + + +hydras.Ackermann.NNtheory + + + + +
    + + + +
    + +

    Library hydras.Ackermann.NNtheory

    + +
    +From Coq Require Import Arith Lia.
    + +
    +From hydras.Ackermann Require Import folLogic3 folProp subProp.
    +From hydras.Ackermann Require Import folLogic3 folProp subProp.
    +From hydras.Ackermann Require Export NN.
    +From hydras Require Import Compat815.
    +Import NNnotations.
    + +
    +Lemma natNE (a b : nat) :
    +  a b SysPrf NN (natToTerm a natToTerm b)%fol.
    + +
    +Lemma natLE (a b : nat):
    b a SysPrf NN (¬ (natToTerm a < natToTerm b))%fol.
    + +
    +Lemma natLT (a b : nat):
    +  a < b SysPrf NN (natToTerm a < natToTerm b)%fol.
    + +
    +Lemma natPlus (a b : nat):
    SysPrf NN (natToTerm a + natToTerm b = natToTerm (a + b)%nat)%fol.
    + +
    +Lemma natTimes (a b : nat):
    SysPrf NN (natToTerm a ×natToTerm b = natToTerm (a × b)%nat)%fol.
    + +
    +Lemma boundedLT (m : nat) (a : Formula) (x : nat):
    +  ( n : nat,
    +      n < m SysPrf NN (substF a x (natToTerm n)))
    +  SysPrf NN (v#x < natToTerm m a)%fol.
    + +
    +Lemma nnPlusNotNeeded (n:nat) :
    SysPrf NN
    + (v#1 < natToTerm n v#1 = natToTerm n
    +  v#1 < S_ (natToTerm n))%fol.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.NewNotations.html b/theories/html/hydras.Ackermann.NewNotations.html new file mode 100644 index 00000000..5c13840d --- /dev/null +++ b/theories/html/hydras.Ackermann.NewNotations.html @@ -0,0 +1,44 @@ + + + + + +hydras.Ackermann.NewNotations + + + + +
    + + + +
    + +

    Library hydras.Ackermann.NewNotations

    + +
    +From Coq Require Import Ensembles.
    +From hydras.Ackermann Require Import folProp.
    + +
    +Notation "'SetAdds' E0 x1 .. xn" :=
    +  (Ensembles.Add _ (.. (Ensembles.Add _ E0 x1) .. ) xn)
    +    (at level 0, E0 at level 0, x1 at level 0, xn at level 0).
    + +
    +Notation "'SetEnum' x0 x1 .. xn" :=
    +  (Ensembles.Add _ (.. (Ensembles.Add _ (Singleton _ x0) x1) .. ) xn)
    +    (at level 0, x0 at level 0, x1 at level 0, xn at level 0).
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.PA.html b/theories/html/hydras.Ackermann.PA.html new file mode 100644 index 00000000..3d881dfb --- /dev/null +++ b/theories/html/hydras.Ackermann.PA.html @@ -0,0 +1,133 @@ + + + + + +hydras.Ackermann.PA + + + + +
    + + + +
    + +

    Library hydras.Ackermann.PA

    + +
    +
    + +
    + PA : Peano Arithmetic + +
    + + Original development by Russel O'Connor + Bullets and abbreviations by Pierre Casteran + +
    +
    + +
    +From Coq Require Import Arith Lia Ensembles Decidable.
    +From hydras.Ackermann Require Import folProp subAll folLogic3.
    +From hydras.Ackermann Require Export Languages LNT.
    +From hydras.Ackermann Require Import NewNotations.
    + +
    +Section PA.
    + +
    +Definition PA1 := (allH 0, Succ v#0 Zero)%nt.
    + +
    +Definition PA2 := (allH 1 0, Succ v#0 = Succ v#1 v#0 = v#1)%nt.
    + +
    +Definition PA3 := (allH 0, v#0 + Zero = v#0)%nt.
    + +
    +Definition PA4 := (allH 1 0, v#0 + Succ v#1 = Succ (v#0 + v#1))%nt.
    + +
    +Definition PA5 := (allH 0, v#0 × Zero = Zero)%nt.
    + +
    +Definition PA6 := (allH 1 0, v#0 × Succ v#1 = v#0 × v#1 + v#0)%nt.
    + +
    +Definition PA7 (f : Formula) (v : nat) : Formula :=
    +   let f_0 := substF f v Zero%nt in
    +   let f_Sv := substF f v (Succ v#v)%nt in
    +   close _ (f_0 (allH v, f f_Sv) allH v, f)%nt.
    + +
    +Definition InductionSchema (f : Formula) : Prop :=
    +   g : Formula, ( v : nat, f = PA7 g v).
    + +
    +Definition PA := SetAdds InductionSchema PA1 PA2 PA3 PA4 PA5 PA6.
    + +
    +Definition open :=
    +  Formula_rec LNT (fun _Formula) (fun t t0 : Term ⇒ (t = t0)%nt)
    +    (fun (r : Relations LNT)
    +         (ts : Terms (arityR LNT r)) ⇒ atomic r ts)
    +    (fun (f : Formula) _ (f0 : Formula) _ ⇒ (f f0)%nt)
    +    (fun (f : Formula) _ ⇒ (¬ f)%nt)
    +    (fun (n : nat) _ (recf : Formula) ⇒ recf).
    + +
    +Lemma PAdec : x : Formula, decidable (In _ PA x).
    + +
    +Lemma closedPA1 : ClosedSystem LNT PA.
    + +
    +Lemma closedPA : v : nat, ¬ In_freeVarSys LNT v PA.
    + +
    +Lemma pa1 (a : Term): SysPrf PA (Succ a Zero)%nt.
    + +
    +Lemma pa2 (a b : Term): SysPrf PA (Succ a = Succ b a = b)%nt.
    + +
    +Lemma pa3 (a : Term): SysPrf PA (a + Zero = a)%nt.
    + +
    +Lemma pa4 ( a b : Term) : SysPrf PA (a + Succ b = Succ (a + b))%nt.
    + +
    +Lemma pa5 (a : Term): SysPrf PA (a × Zero = Zero)%nt.
    + +
    +Lemma pa6 (a b : Term) : SysPrf PA (a × Succ b = a × b + a)%nt.
    + +
    +Lemma induct (f : Formula) (v : nat):
    +  let f_0 := substF f v Zero
    +  in let f_Sv := substF f v (Succ (v#v))%nt
    +     in SysPrf PA f_0
    +         SysPrf PA (allH v, f f_Sv)%nt
    +          SysPrf PA (allH v, f)%nt.
    + +
    +End PA.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.PAconsistent.html b/theories/html/hydras.Ackermann.PAconsistent.html new file mode 100644 index 00000000..387cd15a --- /dev/null +++ b/theories/html/hydras.Ackermann.PAconsistent.html @@ -0,0 +1,61 @@ + + + + + +hydras.Ackermann.PAconsistent + + + + +
    + + + +
    + +

    Library hydras.Ackermann.PAconsistent

    + +
    +
    + +
    +PAconsistent.v + +
    + + Original file by Russel O' Connor +
    +
    + +
    +From Coq Require Import Arith.
    +From hydras.Ackermann Require Import folProof folProp PA model.
    + +
    +Definition natModel : Model LNT :=
    +  model LNT nat
    +    (fun f : Functions LNT
    +     match f return (naryFunc nat (arityF LNT f)) with
    +     | Languages.Plus_fun x y : naty + x
    +     | Languages.Times_fun x y : naty × x
    +     | Languages.Succ_S
    +     | Languages.Zero_ ⇒ 0
    +     end)
    +    (fun r : Relations LNTmatch r with end).
    + +
    +Theorem PAconsistent : Consistent LNT PA.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.PAtheory.html b/theories/html/hydras.Ackermann.PAtheory.html new file mode 100644 index 00000000..8142abe8 --- /dev/null +++ b/theories/html/hydras.Ackermann.PAtheory.html @@ -0,0 +1,80 @@ + + + + + +hydras.Ackermann.PAtheory + + + + +
    + + + +
    + +

    Library hydras.Ackermann.PAtheory

    + +
    +
    + +
    + PAtheory.v (Peano Arithmetic) + +
    + + Original file by Russel O'Connor + +
    + + +
    +
    + +
    +From Coq Require Import Ensembles List Arith Lia.
    + +
    +From hydras.Ackermann Require Import subAll folReplace folProp folLogic3 NN LNN2LNT.
    +From hydras.Ackermann Require Export PA.
    +From hydras.Ackermann Require Import NewNotations.
    +Import NNnotations.
    + +
    +#[local] Arguments apply _ _ _ : clear implicits.
    + +
    +Lemma paZeroOrSucc (t : Term):
    let nv := newVar (0 :: freeVarT t) in
    SysPrf PA (t = LNT.Zero exH nv, t = LNT.Succ (v#nv))%nt.
    +           Opaque eq_nat_dec.
    +           Transparent eq_nat_dec.
    +          Opaque eq_nat_dec.
    +          Transparent eq_nat_dec.
    + +
    +Lemma paPlusSym : a b : Term,
    +    SysPrf PA (a + b = b + a)%nt.
    + +
    +Lemma NN72PA : SysPrf PA (LNN2LNT_formula NN7).
    + +
    +Lemma NN82PA : SysPrf PA (LNN2LNT_formula NN8).
    + +
    +Lemma NN92PA : SysPrf PA (LNN2LNT_formula NN9).
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.cPair.html b/theories/html/hydras.Ackermann.cPair.html new file mode 100644 index 00000000..c04c78c4 --- /dev/null +++ b/theories/html/hydras.Ackermann.cPair.html @@ -0,0 +1,396 @@ + + + + + +hydras.Ackermann.cPair + + + + +
    + + + +
    + +

    Library hydras.Ackermann.cPair

    + +
    +
    + +
    +Cantor's pairing function + (Originally Russel O'Connors goedel contrib +
    +
    + +
    +From Coq Require Import Arith Lists.List Lia.
    +From hydras Require Import extEqualNat primRec.
    +From hydras Require Export Compat815 ssrnat_extracts.
    +Import PRNotations.
    +Import Nat.
    + +
    +
    + +
    +

    Bijection from nat × nat to nat

    + +
    + +

    Preliminary definitions

    + +
    + + Sum of all natural numbers upto n +
    +
    + +
    +Fixpoint sumToN (n : nat): nat :=
    +  match n with
    +    0 ⇒ 0
    +  | S pS p + sumToN p
    +  end.
    + +
    +Lemma sumToN1 n : n sumToN n.
    + +
    +Lemma sumToN2 b a : a b sumToN a sumToN b.
    + +
    +#[export] Instance sumToNIsPR : isPR 1 sumToN.
    + +
    +
    + +
    +

    Definition and properties of cPair

    + +
    + + The cPair function defined below is slightly different + from the "usual" Cantor pairing function shown in a big part + of the litterature (and Coq's standard library). + Since both versions are equivalent upto a swap of the + arguments a and b, we still use Russel O'Connors notations +
    +
    + +
    +Definition cPair (a b : nat) := a + sumToN (a + b).
    + +
    + +
    +
    + +
    +Usual definition (e.g. wikipedia) +
    +
    + +
    Definition xPair a b := b + sumToN ( b + a).
    + +
    Lemma xPairDef a b : xPair a b = cPair b a.
    + +
    +#[export] Instance cPairIsPR : isPR 2 cPair.
    + +
    +Section CPair_Injectivity.
    + +
    +  Remark cPairInjHelp :
    +     a b c d : nat, cPair a b = cPair c d a + b = c + d.
    + +
    +  Lemma cPairInj1 a b c d: cPair a b = cPair c d a = c.
    + +
    +  Lemma cPairInj2 a b c d : cPair a b = cPair c d b = d.
    + +
    +End CPair_Injectivity.
    + +
    +Section CPair_projections.
    + +
    + +
    +  Let searchXY (a : nat) :=
    +        boundedSearch (fun a y : natltBool a (sumToN y.+1)) a.
    + +
    +  Definition cPairPi1 (a : nat) := a - sumToN (searchXY a).
    +  Definition cPairPi2 (a : nat) := searchXY a - cPairPi1 a.
    + +
    +Lemma cPairProjectionsHelp (a b: nat):
    +  b < sumToN a.+1 sumToN a b searchXY b = a.
    + +
    +Lemma cPairProjections a: cPair (cPairPi1 a) (cPairPi2 a) = a.
    + +
    +#[local] Instance searchXYIsPR : isPR 1 searchXY.
    + +
    +#[export] Instance cPairPi1IsPR : isPR 1 cPairPi1.
    + +
    +Lemma cPairProjections1 (a b : nat): cPairPi1 (cPair a b) = a.
    + +
    +Lemma cPairProjections2 (a b : nat): cPairPi2 (cPair a b) = b.
    + +
    +#[export] Instance cPairPi2IsPR : isPR 1 cPairPi2.
    + +
    +End CPair_projections.
    + +
    +Section CPair_Order.
    + +
    +  Lemma cPairLe1 (a b : nat) : a cPair a b.
    + +
    +  Lemma cPairLe1A (a : nat) : cPairPi1 a a.
    + +
    +  Lemma cPairLe2 (a b : nat) : b cPair a b.
    + +
    +  Lemma cPairLe2A (a: nat): cPairPi2 a a.
    + +
    +  Lemma cPairLe3 (a b c d : nat): a b c d cPair a c cPair b d.
    + +
    +  Lemma cPairLt1 (a b : nat): a < cPair a (S b).
    + +
    +  Lemma cPairLt2 (a b : nat): b < cPair (S a) b.
    + +
    +End CPair_Order.
    + +
    +Require Import Extraction.
    +Section code_nat_list.
    + +
    +Fixpoint codeList (l : list nat) : nat :=
    +  match l with
    +  | nil ⇒ 0
    +  | n :: l'S (cPair n (codeList l'))
    +  end.
    + +
    +Lemma codeListInj (l m : list nat): codeList l = codeList m l = m.
    + +
    +Definition codeNth (n m:nat) : nat :=
    +  let X := nat_rec (fun _ : natnat)
    +             m
    +             (fun _ Hrecn : natcPairPi2 (pred Hrecn)) n
    +  in cPairPi1 (pred X).
    + +
    +
    + +
    +drops n first elements from l +
    +
    +Let drop (n : nat) : (l : list nat), list nat.
    + +
    +Lemma codeNthCorrect :
    +   (n : nat) (l : list nat), codeNth n (codeList l) = nth n l 0.
    + +
    +#[export] Instance codeNthIsPR : isPR 2 codeNth.
    + +
    +End code_nat_list.
    + +
    +Extraction codeNth.
    +Print codeNth.
    + +
    +Section Strong_Recursion.
    +Definition evalStrongRecHelp (n : nat) (f : naryFunc n.+2) :
    +  naryFunc n.+1 :=
    +  evalPrimRecFunc n (evalComposeFunc n 0 (Vector.nil _) (codeList nil))
    +    (evalComposeFunc n.+2 2
    +       (Vector.cons _ f _
    +          (Vector.cons _ (evalProjFunc n.+2 n
    +                            (Nat.lt_lt_succ_r _ _
    +                               (Nat.lt_succ_diag_r _))) _
    +             (Vector.nil _)))
    +       (fun a b : natS (cPair a b))).
    + +
    +Definition evalStrongRec (n : nat) (f : naryFunc n.+2):
    +  naryFunc n.+1 :=
    +  evalComposeFunc n.+1 1
    +    (Vector.cons _
    +       (fun z : natevalStrongRecHelp n f z.+1) _ (Vector.nil _))
    +    (fun z : natcPairPi1 z.-1).
    + +
    +#[export] Instance
    evalStrongRecIsPR (n : nat) (f : naryFunc n.+2):
    +  isPR _ f isPR _ (evalStrongRec n f).
    + +
    +Lemma computeEvalStrongRecHelp :
    +   (n : nat) (f : naryFunc n.+2) (c : nat),
    +    evalStrongRecHelp n f c.+1 =
    +      compose2 n (evalStrongRecHelp n f c)
    +        (fun a0 : nat
    +           evalComposeFunc n 2
    +             (Vector.cons (naryFunc n) (f c a0) 1
    +                (Vector.cons (naryFunc n) (evalConstFunc n a0) 0
    +                   (Vector.nil (naryFunc n))))
    +             (fun a1 b0 : natS (cPair a1 b0))).
    + +
    +Fixpoint listValues (f : naryFunc 2) (n : nat) : list nat :=
    +  match n with
    +    0 ⇒ nil
    +  | S mevalStrongRec _ f m :: listValues f m
    +  end.
    + +
    +Lemma evalStrongRecHelp1 :
    (f : naryFunc 2) (n m : nat),
    +   m < n
    +   codeNth (n - m.+1) (evalStrongRecHelp _ f n) = evalStrongRec _ f m.
    + +
    +Lemma evalStrongRecHelpParam :
    +   (a n c : nat) (f : naryFunc a.+3),
    +    extEqual a (evalStrongRecHelp (S a) f n c)
    +      (evalStrongRecHelp a (fun x y : natf x y c) n).
    + +
    +Lemma evalStrongRecHelp2 :
    +   (a : nat) (f : naryFunc a.+2) (n m : nat),
    +    m < n
    +    extEqual _
    +      (evalComposeFunc _ 1
    +         (Vector.cons _ (evalStrongRecHelp _ f n) 0 (Vector.nil _))
    +         (fun b : natcodeNth (n - m.+1) b)) (evalStrongRec _ f m).
    + +
    +#[export] Instance callIsPR (g : nat nat) (H : isPR 1 g) :
    +   isPR 2 (fun a recs : natcodeNth (a - S (g a)) recs).
    + +
    +End Strong_Recursion.
    + +
    +#[export] Instance div2IsPR : isPR 1 div2.
    + +
    +Lemma cPairLemma1 :
    +   a b : nat, (a + b) × S (a + b) + 2 × a = 2 × cPair a b.
    + +
    +
    + +
    +abbreviations a la Lisp (to improve) +
    +
    + +
    +Module LispAbbreviations.
    +  #[global] Notation car := cPairPi1.
    +  #[global] Notation cdr := cPairPi2.
    +  #[global] Notation caar n := (cPairPi1 (cPairPi1 n)).
    +  #[global] Notation cadr n := (cPairPi1 (cPairPi2 n)).
    +  #[global] Notation caddr n := (cPairPi1 (cPairPi2 (cPairPi2 n))).
    + +
    +  #[global] Notation cddr n := (cPairPi2 (cPairPi2 n)).
    +  #[global] Notation cdddr n := (cPairPi2 (cPairPi2 (cPairPi2 n))).
    +  #[global] Notation cddddr n :=
    +    (cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 n)))).
    + +
    +End LispAbbreviations.
    + +
    +
    + +
    +

    Triples

    + + (moved from codeSubFormula.v) + +
    +
    + +
    +Definition cTriple (a b c : nat) : nat := cPair a (cPair b c).
    + +
    +Definition cTriplePi1 (n : nat) : nat := cPairPi1 n.
    + +
    +Definition cTriplePi2 (n : nat) : nat := cPairPi1 (cPairPi2 n).
    + +
    +Definition cTriplePi3 (n : nat) : nat := cPairPi2 (cPairPi2 n).
    + +
    +#[export] Instance cTripleIsPR : isPR 3 cTriple.
    + +
    +#[export] Instance cTriplePi1IsPR : isPR 1 cTriplePi1.
    + +
    +#[export] Instance cTriplePi2IsPR : isPR 1 cTriplePi2.
    + +
    +#[export] Instance cTriplePi3IsPR : isPR 1 cTriplePi3.
    + +
    +Lemma cTripleProj1 (a b c : nat) : cTriplePi1 (cTriple a b c) = a.
    + +
    +Lemma cTripleProj2 (a b c : nat) : cTriplePi2 (cTriple a b c) = b.
    + +
    +Lemma cTripleProj3 (a b c : nat) : cTriplePi3 (cTriple a b c) = c.
    + +
    +Lemma cTripleProj (a: nat) :
    cTriple (cTriplePi1 a) (cTriplePi2 a) (cTriplePi3 a) = a.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.checkPrf.html b/theories/html/hydras.Ackermann.checkPrf.html new file mode 100644 index 00000000..6fcf4f21 --- /dev/null +++ b/theories/html/hydras.Ackermann.checkPrf.html @@ -0,0 +1,472 @@ + + + + + +hydras.Ackermann.checkPrf + + + + +
    + + + +
    + +

    Library hydras.Ackermann.checkPrf

    + +
    +
    + +
    +checkPrf.v + +
    + + Original file by Russel O'Connor + +
    + + +
    +
    + +
    +From Coq Require Import Arith Lia.
    +From hydras.Ackermann Require Import primRec codeFreeVar
    +  codeSubFormula cPair code folProp extEqualNat wellFormed
    +  folProof prLogic.
    +From hydras Require Import Compat815.
    +From LibHyps Require Export LibHyps.
    +From hydras Require Export MoreLibHyps NewNotations.
    +Import LispAbbreviations.
    +Import FolNotations.
    + +
    +Section Check_Proof.
    + +
    +Generalizable All Variables.
    +Variable L : Language.
    +Context `(cL: Lcode L cf cr).
    + +
    +Variable codeArityF : nat nat.
    +Variable codeArityR : nat nat.
    + +
    + +
    + +
    +Context (codeArityFIsPR : isPR 1 codeArityF).
    + +
    +Hypothesis codeArityFIsCorrect1 :
    +   f : Functions L, codeArityF (cf f) = S (arityF L f).
    + +
    +Hypothesis codeArityFIsCorrect2 :
    +     n : nat, codeArityF n 0
    +                     f : Functions L, cf f = n.
    + +
    +Context (codeArityRIsPR : isPR 1 codeArityR).
    + +
    +Hypothesis
    +  codeArityRIsCorrect1 :
    +     r : Relations L, codeArityR (cr r) = S (arityR L r).
    + +
    +Hypothesis
    +  codeArityRIsCorrect2 :
    +     n : nat, codeArityR n 0
    +                     r : Relations L, cr r = n.
    + +
    +Hypothesis codeFInj : f g : Functions L,
    +    cf f = cf g f = g.
    + +
    +Hypothesis codeRInj :
    +   R S : Relations L, cr R = cr S R = S.
    + +
    + +
    +Let Term := Term L.
    +Let Terms := Terms L.
    +Let Formula := Formula L.
    +Let wellFormedTerm := wellFormedTerm codeArityF.
    +Let wellFormedFormula := wellFormedFormula codeArityF codeArityR.
    +Let Prf := Prf L.
    + +
    +
    + +
    +The wellFormedness requirement isn't really neccesary, +because any proof that used ``extra symbols'' could be +turned into a proof that only used symbols from the +axioms and the conclusion. + +
    + +However making this assumption makes the proof easier +
    + + p is (cPair (formula) (proof of the Formula)) +
    +
    + +
    +Definition checkPrfAXM (p recs : nat) :=
    +  switchPR (charFunction 2 Nat.eqb (cddr p) (car p))
    +    (S (S (cPair (car p) 0))) 0.
    + +
    +#[export] Instance checkPrfAXMIsPR : isPR 2 checkPrfAXM.
    + +
    +Definition checkPrfMP (p recs : nat) :=
    +  switchPR
    +    (wellFormedFormula (car (cdr (cdr (cdr p)))) ×
    +     (charFunction 2 Nat.eqb (car (car (cdr (cdr p))))
    +        (codeImp (car (cdr (cdr (cdr p)))) (car p)) ×
    +      (codeNth (p - S (caddr p)) recs ×
    +       codeNth (p - S (cdddr p)) recs)))
    +    (S
    +       (codeApp
    +          (pred (codeNth (p - S (caddr p)) recs))
    +          (pred (codeNth (p - S (cdr (cdr (cdr p)))) recs))))
    +    0.
    + +
    +#[export] Instance checkPrfMPIsPR : isPR 2 checkPrfMP.
    + +
    +Definition checkPrfGEN (p recs : nat) :=
    +  switchPR
    +    (charFunction 2 Nat.eqb
    +       (cPair 3
    +          (cPair (car (cdr (cdr p)))
    +             (car (cdr (cdr (cdr p))))))
    +       (car p) ×
    +     (codeNth (p - S (cdr (cdr (cdr p)))) recs ×
    +      (1 -
    +       codeIn (car (cdr (cdr p)))
    +         (codeFreeVarListFormula
    +            (pred (codeNth (p - S (cdr (cdr (cdr p)))) recs))))))
    +    (codeNth (p - S (cdr (cdr (cdr p)))) recs) 0.
    + +
    +#[export] Instance checkPrfGENIsPR : isPR 2 checkPrfGEN.
    + +
    +Definition checkPrfIMP1 (p recs : nat) :=
    +  let A := car (cdr (cdr p)) in
    +  let B := cdr (cdr (cdr p)) in
    +  charFunction 2 Nat.eqb (cPair 1 (cPair A (cPair 1 (cPair B A))))
    +    (car p).
    + +
    +#[export] Instance checkPrfIMP1IsPR : isPR 2 checkPrfIMP1.
    + +
    +Definition checkPrfIMP2 (p recs : nat) :=
    +  let A := car (cdr (cdr p)) in
    +  let B := car (cdr (cdr (cdr p))) in
    +  let C := cdr (cdr (cdr (cdr p))) in
    +  charFunction 2 Nat.eqb
    +    (cPair 1
    +       (cPair (cPair 1 (cPair A (cPair 1 (cPair B C))))
    +          (cPair 1 (cPair (cPair 1 (cPair A B)) (cPair 1 (cPair A C))))))
    +    (car p).
    + +
    +#[export] Instance checkPrfIMP2IsPR : isPR 2 checkPrfIMP2.
    + +
    +Definition checkPrfCP (p recs : nat) :=
    +  let A := car (cdr (cdr p)) in
    +  let B := cdr (cdr (cdr p)) in
    +  charFunction 2 Nat.eqb
    +    (cPair 1
    +       (cPair (cPair 1 (cPair (cPair 2 A) (cPair 2 B))) (cPair 1 (cPair B A))))
    +    (car p).
    + +
    +#[export] Instance checkPrfCPIsPR : isPR 2 checkPrfCP.
    + +
    +Definition checkPrfFA1 (p recs : nat) :=
    +  let A := car (cdr (cdr p)) in
    +  let v := car (cdr (cdr (cdr p))) in
    +  let t := cdr (cdr (cdr (cdr p))) in
    +  wellFormedTerm t ×
    +  charFunction 2 Nat.eqb
    +    (cPair 1 (cPair (cPair 3 (cPair v A)) (codeSubFormula A v t)))
    +    (car p).
    + +
    +#[export] Instance checkPrfFA1IsPR : isPR 2 checkPrfFA1.
    + +
    +Definition checkPrfFA2 (p recs : nat) :=
    +  let A := car (cdr (cdr p)) in
    +  let v := cdr (cdr (cdr p)) in
    +  (1 - codeIn v (codeFreeVarFormula A)) ×
    +  charFunction 2 Nat.eqb (cPair 1 (cPair A (cPair 3 (cPair v A))))
    +    (car p).
    + +
    +#[export] Instance checkPrfFA2IsPR : isPR 2 checkPrfFA2.
    + +
    +Definition checkPrfFA3 (p recs : nat) :=
    +  let A := car (cdr (cdr p)) in
    +  let B := car (cdr (cdr (cdr p))) in
    +  let v := cdr (cdr (cdr (cdr p))) in
    +  charFunction 2 Nat.eqb
    +    (cPair 1
    +       (cPair (cPair 3 (cPair v (cPair 1 (cPair A B))))
    +          (cPair 1 (cPair (cPair 3 (cPair v A)) (cPair 3 (cPair v B))))))
    +    (car p).
    + +
    +#[export] Instance checkPrfFA3IsPR : isPR 2 checkPrfFA3.
    + +
    +Definition checkPrfEQ1 (p recs : nat) :=
    +  charFunction 2 Nat.eqb (cdr (cdr p)) 0 ×
    +  charFunction 2 Nat.eqb
    +    (codeFormula (equal (var 0) (var 0)))
    +    (car p).
    + +
    +Lemma checkPrfEQnIsPR (n: nat):
    +  isPR 2
    +    (fun p recs : nat
    +       charFunction 2 Nat.eqb (cdr (cdr p)) 0 ×
    +         charFunction 2 Nat.eqb n (car p)).
    + +
    +#[export] Instance checkPrfEQ1IsPR : isPR 2 checkPrfEQ1.
    + +
    +Definition checkPrfEQ2 (p recs : nat) :=
    +  charFunction 2 Nat.eqb (cdr (cdr p)) 0 ×
    +    charFunction 2 Nat.eqb
    +      (codeFormula (v#0 = v#1 v#1 = v#0)%fol) (car p).
    + +
    +#[export] Instance checkPrfEQ2IsPR : isPR 2 checkPrfEQ2.
    + +
    +Definition checkPrfEQ3 (p recs : nat) :=
    +  charFunction 2 Nat.eqb (cdr (cdr p)) 0 ×
    +    charFunction 2 Nat.eqb
    +      (codeFormula
    +         (v#0 = v#1 v#1 = v#2 v#0 = v#2)%fol)
    +      (car p).
    + +
    +#[export] Instance checkPrfEQ3IsPR : isPR 2 checkPrfEQ3.
    + +
    +Definition codeAxmEqHelp (n f : nat) : nat :=
    +  nat_rec (fun _nat) f
    +    (fun m rec : nat
    +       cPair 1
    +         (cPair (cPair 0 (cPair (cPair 0 (m + m)) (cPair 0 (S (m + m))))) rec))
    +    n.
    + +
    +#[export] Instance codeAxmEqHelpIsPR : isPR 2 codeAxmEqHelp.
    + +
    +Definition codeNVars1 (n : nat) : nat :=
    +  nat_rec (fun _nat) 0
    +    (fun m rec : natS (cPair (cPair 0 (m + m)) rec)) n.
    + +
    +#[export] Instance codeNVars1IsPR : isPR 1 codeNVars1.
    + +
    +Definition codeNVars2 (n : nat) : nat :=
    +  nat_rec (fun _nat) 0
    +    (fun m rec : natS (cPair (cPair 0 (S (m + m))) rec)) n.
    + +
    +#[export] Instance codeNVars2IsPR : isPR 1 codeNVars2.
    + +
    +Lemma codeNVarsCorrect (n: nat) :
    codeNVars1 n = codeTerms (fst (nVars L n))
    codeNVars2 n = codeTerms (snd (nVars L n)).
    + +
    +Definition checkPrfEQ4 (p recs : nat) :=
    +  let r := cdr (cdr p) in
    +  let A := cPair (S (S (S (S r)))) (codeNVars1 (pred (codeArityR r))) in
    +  let B := cPair (S (S (S (S r)))) (codeNVars2 (pred (codeArityR r))) in
    +  notZero (codeArityR r) ×
    +    charFunction 2 Nat.eqb (codeAxmEqHelp (pred (codeArityR r)) (codeIff A B))
    +      (car p).
    + +
    +#[export] Instance codeOrIsPR : isPR 2 codeOr.
    + +
    +#[export] Instance codeAndIsPR : isPR 2 codeAnd.
    + +
    +#[export] Instance codeIffIsPR : isPR 2 codeIff.
    + +
    +#[export] Instance checkPrfEQ4IsPR : isPR 2 checkPrfEQ4.
    + +
    +Definition checkPrfEQ5 (p recs : nat) :=
    +  let f := cdr (cdr p) in
    +  notZero (codeArityF f) ×
    +    charFunction 2 Nat.eqb
    +      (codeAxmEqHelp (pred (codeArityF f))
    +         (cPair 0
    +            (cPair (cPair (S f) (codeNVars1 (pred (codeArityF f))))
    +               (cPair (S f) (codeNVars2 (pred (codeArityF f)))))))
    +      (car p).
    + +
    +#[export] Instance checkPrfEQ5IsPR : isPR 2 checkPrfEQ5.
    + +
    +Definition checkPrfHelp : nat nat :=
    +  evalStrongRec 0
    +    (fun p recs : nat
    +     let type := car (cdr p) in
    +     switchPR type
    +       (switchPR (pred type)
    +          (switchPR (pred (pred type))
    +             (switchPR (pred (pred (pred type)))
    +                (switchPR (pred (pred (pred (pred type))))
    +                   (switchPR (pred (pred (pred (pred (pred type)))))
    +                      (switchPR
    +                         (pred (pred (pred (pred (pred (pred type))))))
    +                         (switchPR
    +                            (pred
    +                               (pred (pred (pred (pred (pred (pred type)))))))
    +                            (switchPR
    +                               (pred
    +                                  (pred
    +                                     (pred
    +                                        (pred
    +                                           (pred (pred (pred (pred type))))))))
    +                               (switchPR
    +                                  (pred
    +                                     (pred
    +                                        (pred
    +                                           (pred
    +                                              (pred
    +                                                 (pred
    +                                                  (pred (pred (pred type)))))))))
    +                                  (switchPR
    +                                     (pred
    +                                        (pred
    +                                           (pred
    +                                              (pred
    +                                                 (pred
    +                                                  (pred
    +                                                  (pred
    +                                                  (pred
    +                                                     (pred (pred type))))))))))
    +                                     (switchPR
    +                                        (pred
    +                                           (pred
    +                                              (pred
    +                                                 (pred
    +                                                  (pred
    +                                                  (pred
    +                                                  (pred
    +                                                  (pred
    +                                                  (pred
    +                                                     (pred (pred type)))))))))))
    +                                        (switchPR
    +                                           (pred
    +                                              (pred
    +                                                 (pred
    +                                                  (pred
    +                                                  (pred
    +                                                  (pred
    +                                                  (pred
    +                                                  (pred
    +                                                  (pred
    +                                                  (pred (pred (pred type))))))))))))
    +                                           (switchPR
    +                                              (pred
    +                                                 (pred
    +                                                  (pred
    +                                                  (pred
    +                                                  (pred
    +                                                  (pred
    +                                                  (pred
    +                                                  (pred
    +                                                  (pred
    +                                                  (pred
    +                                                  (pred (pred (pred type)))))))))))))
    +                                              0 (checkPrfEQ5 p recs))
    +                                           (checkPrfEQ4 p recs))
    +                                        (checkPrfEQ3 p recs))
    +                                     (checkPrfEQ2 p recs))
    +                                  (checkPrfEQ1 p recs))
    +                               (checkPrfFA3 p recs))
    +                            (checkPrfFA2 p recs)) (checkPrfFA1 p recs))
    +                      (checkPrfCP p recs)) (checkPrfIMP2 p recs))
    +                (checkPrfIMP1 p recs)) (checkPrfGEN p recs))
    +          (checkPrfMP p recs)) (checkPrfAXM p recs)).
    + +
    +#[local] Instance checkPrfHelpIsPR : isPR 1 checkPrfHelp.
    + +
    +Definition checkPrf (f p : nat) : nat :=
    +  switchPR (wellFormedFormula f) (checkPrfHelp (cPair f p)) 0.
    + +
    +#[export] Instance checkPrfIsPR : isPR 2 checkPrf.
    + +
    +Lemma checkPrfCorrect1 (l : list Formula) (f : Formula) (p : Prf l f):
    checkPrf (codeFormula f) (codePrf l f p)
    = S (codeList (map codeFormula l)).
    + +
    +Lemma checkPrfCorrect2 (n m : nat):
    checkPrf n m 0
    f : Formula,
    +   codeFormula f = n
    +   ( l : list Formula,
    +      ( p : Prf l f, codePrf l f p = m)).
    + +
    +End Check_Proof.
    + +
    +Arguments codePrf {L cf cr cl} _.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.code.html b/theories/html/hydras.Ackermann.code.html new file mode 100644 index 00000000..d871655b --- /dev/null +++ b/theories/html/hydras.Ackermann.code.html @@ -0,0 +1,213 @@ + + + + + +hydras.Ackermann.code + + + + +
    + + + +
    + +

    Library hydras.Ackermann.code

    + +
    +
    + +
    +

    Encoding terms, formulas and proofs

    + + +
    + +Original script by Russel O'Connor + +
    + + +
    +
    + +
    +From Coq Require Import Arith.
    +From hydras.Ackermann Require Import fol folProof cPair.
    + +
    +Section Code_Term_Formula_Proof.
    + +
    +Variable L : Language.
    Section LcodeDef.
    +   Variable cF : Functions L nat.
    +   Variable cR : Relations L nat.
    +   Class Lcode : Prop :=
    +     { codeFInj :
    +        f g : Functions L, cF f = cF g f = g;
    +       codeRInj :
    +        R S : Relations L, cR R = cR S R = S
    +     }.
    +  End LcodeDef.
    + +
    Definition codeF {cf : Functions L nat} {cr : Relations L nat} (c: Lcode cf cr) := cf.
    + +
    Definition codeR {cf : Functions L nat} {cr : Relations L nat} (c: Lcode cf cr) := cr.
    + +
    +Let Formula := Formula L.
    +Let Formulas := Formulas L.
    +Let System := System L.
    +Let Term := Term L.
    +Let Terms := Terms L.
    +Let Prf := Prf L.
    +Let SysPrf := SysPrf L.
    + +
    +Generalizable All Variables.
    +Section codeTermFormDef.
    + +
    +  Context `(cl : Lcode cf cr).
    +Fixpoint codeTerm (t : Term) : nat :=
    +  match t with
    +  | var ncPair 0 n
    +  | apply f tscPair (S (codeF cl f)) (codeTerms _ ts)
    +  end

    with codeTerms (n : nat) (ts : Terms n) {struct ts} : nat :=
    +  match ts with
    +  | Tnil ⇒ 0
    +  | Tcons n t ssS (cPair (codeTerm t) (codeTerms n ss))
    +  end.
    + +
    +Lemma codeTermInj :
    +   t s : Term, codeTerm t = codeTerm s t = s.
    + +
    +Lemma codeTermsInj :
    (n : nat) (ts ss : Terms n),
    codeTerms n ts = codeTerms n ss ts = ss.
    + +
    +Fixpoint codeFormula (f : Formula) : nat :=
    +  match f with
    +  | equal t1 t2cPair 0 (cPair (codeTerm t1) (codeTerm t2))
    +  | impH f1 f2cPair 1 (cPair (codeFormula f1) (codeFormula f2))
    +  | notH f1cPair 2 (codeFormula f1)
    +  | forallH n f1cPair 3 (cPair n (codeFormula f1))
    +  | atomic R tscPair (4 + codeR cl R) (codeTerms _ ts)
    +  end.
    + +
    +Lemma codeFormulaInj :
    +   f g : Formula, codeFormula f = codeFormula g f = g.
    + +
    +Fixpoint codePrf (Z : Formulas) (f : Formula) (prf : Prf Z f) {struct prf} :
    nat :=
    +  match prf with
    +  | AXM AcPair 0 (codeFormula A)
    +  | MP Axm1 Axm2 A B rec1 rec2
    +      cPair 1
    +        (cPair
    +           (cPair (cPair 1 (cPair (codeFormula A) (codeFormula B)))
    +              (codePrf _ _ rec1)) (cPair (codeFormula A) (codePrf _ _ rec2)))
    +  | GEN Axm A v _ rec
    +      cPair 2 (cPair v (cPair (codeFormula A) (codePrf _ _ rec)))
    +  | IMP1 A BcPair 3 (cPair (codeFormula A) (codeFormula B))
    +  | IMP2 A B C
    +      cPair 4 (cPair (codeFormula A) (cPair (codeFormula B) (codeFormula C)))
    +  | CP A BcPair 5 (cPair (codeFormula A) (codeFormula B))
    +  | FA1 A v tcPair 6 (cPair (codeFormula A) (cPair v (codeTerm t)))
    +  | FA2 A v _cPair 7 (cPair (codeFormula A) v)
    +  | FA3 A B vcPair 8 (cPair (codeFormula A) (cPair (codeFormula B) v))
    +  | EQ1cPair 9 0
    +  | EQ2cPair 10 0
    +  | EQ3cPair 11 0
    +  | EQ4 rcPair 12 (codeR cl r)
    +  | EQ5 fcPair 13 (codeF cl f)
    +  end.
    + +
    +Lemma codePrfInjAxm :
    (a b : Formula) (A B : Formulas) (p : Prf A a) (q : Prf B b),
    codePrf A a p = codePrf B b q A = B.
    + +
    +Definition codeImp (a b : nat) := cPair 1 (cPair a b).
    + +
    +Lemma codeImpCorrect :
    a b : Formula,
    codeImp (codeFormula a) (codeFormula b) = codeFormula (impH a b).
    + +
    +Definition codeNot (a : nat) := cPair 2 a.
    + +
    +Lemma codeNotCorrect :
    a : Formula, codeNot (codeFormula a) = codeFormula (notH a).
    + +
    +Definition codeForall (n a : nat) := cPair 3 (cPair n a).
    + +
    +Lemma codeForallCorrect :
    (n : nat) (a : Formula),
    codeForall n (codeFormula a) = codeFormula (forallH n a).
    + +
    +Definition codeOr (a b : nat) := codeImp (codeNot a) b.
    + +
    +Lemma codeOrCorrect :
    a b : Formula,
    codeOr (codeFormula a) (codeFormula b) = codeFormula (orH a b).
    + +
    +Definition codeAnd (a b : nat) := codeNot (codeOr (codeNot a) (codeNot b)).
    + +
    +Lemma codeAndCorrect :
    a b : Formula,
    codeAnd (codeFormula a) (codeFormula b) = codeFormula (andH a b).
    + +
    +Definition codeIff (a b : nat) := codeAnd (codeImp a b) (codeImp b a).
    + +
    +Lemma codeIffCorrect :
    a b : Formula,
    codeIff (codeFormula a) (codeFormula b) = codeFormula (iffH a b).
    + +
    +End codeTermFormDef.
    + +
    +End Code_Term_Formula_Proof.
    + +
    +Arguments codeTerm {L} {cf cr cl} _.
    +Arguments codeTerms {L} {cf cr cl n} _.
    +Arguments codeFormula {L} {cf cr cl} _.
    +Arguments codePrf {L} {cf cr cl} _ _ _.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.codeFreeVar.html b/theories/html/hydras.Ackermann.codeFreeVar.html new file mode 100644 index 00000000..b1a3e070 --- /dev/null +++ b/theories/html/hydras.Ackermann.codeFreeVar.html @@ -0,0 +1,150 @@ + + + + + +hydras.Ackermann.codeFreeVar + + + + +
    + + + +
    + +

    Library hydras.Ackermann.codeFreeVar

    + +
    +
    + +
    + codeFreeVar.v + +
    + + Original content by Russel O'Connor +
    +
    + +
    +From hydras.Ackermann Require Import primRec cPair.
    +From Coq Require Import List Arith.
    +From hydras.Ackermann Require Import ListExt.
    +From hydras.Ackermann Require Export codeList.
    +From hydras Require Import folProp code Compat815.
    +Import LispAbbreviations.
    +Import PRNotations.
    + +
    +Section Code_Free_Vars.
    + +
    +Generalizable All Variables.
    +Variable L : Language.
    +Context `(cL: Lcode L cf cr).
    + +
    +Let Formula := Formula L.
    +Let Formulas := Formulas L.
    +Let System := System L.
    +Let Term := Term L.
    +Let Terms := Terms L.
    + +
    +Definition codeFreeVarTermTerms : nat nat :=
    +  evalStrongRec 0
    +    (fun t recs : nat
    +     cPair
    +       (switchPR (car t) (cdr (codeNth (t - S (cdr t)) recs))
    +          (S (cPair (cdr t) 0)))
    +       (switchPR t
    +          (codeApp (car (codeNth (t - S (car (pred t))) recs))
    +             (cdr (codeNth (t - S (cdr (pred t))) recs))) 0)).
    + +
    +Definition codeFreeVarTerm (t : nat) : nat :=
    +  car (codeFreeVarTermTerms t).
    + +
    +Definition codeFreeVarTerms (t : nat) : nat :=
    +  cdr (codeFreeVarTermTerms t).
    + +
    +Lemma codeFreeVarTermCorrect (t: Term) :
    codeFreeVarTerm (codeTerm t) = codeList (freeVarT t).
    + +
    +Lemma codeFreeVarTermsCorrect (n : nat) (ts : Terms n):
    codeFreeVarTerms (codeTerms ts) = codeList (freeVarTs ts).
    + +
    +#[export]
    +  Instance codeFreeVarTermTermsIsPR : isPR 1 codeFreeVarTermTerms.
    + +
    +Lemma codeFreeVarTermIsPR : isPR 1 codeFreeVarTerm.
    + +
    +#[export]
    +  Instance codeFreeVarTermsIsPR : isPR 1 codeFreeVarTerms.
    + +
    +Definition codeFreeVarFormula : nat nat :=
    +  evalStrongRec 0
    +    (fun f recs : nat
    +     switchPR (car f)
    +       (switchPR (pred (car f))
    +          (switchPR (pred (pred (car f)))
    +             (switchPR (pred (pred (pred (car f))))
    +                (codeFreeVarTerms (cdr f))
    +                (codeListRemove (cadr f)
    +                   (codeNth (f - S (cddr f)) recs)))
    +             (codeNth (f - S (cdr f)) recs))
    +          (codeApp (codeNth (f - S (cadr f)) recs)
    +             (codeNth (f - S (cddr f)) recs)))
    +       (codeApp (codeFreeVarTerm (cadr f))
    +          (codeFreeVarTerm (cddr f)))).
    + +
    +Lemma codeFreeVarFormulaCorrect (f : Formula) :
    +  codeFreeVarFormula (codeFormula f) =
    +    codeList (freeVarF f).
    + +
    +#[export]
    +  Instance codeFreeVarFormulaIsPR : isPR 1 codeFreeVarFormula.
    + +
    +Definition codeFreeVarListFormula : nat nat :=
    +  evalStrongRec 0
    +    (fun l recs : nat
    +     switchPR l
    +       (codeApp (codeFreeVarFormula (car (pred l)))
    +          (codeNth (l - S (cdr (pred l))) recs)) 0).
    + +
    +Lemma codeFreeVarListFormulaCorrect (l : list Formula):
    codeFreeVarListFormula (codeList (map (codeFormula) l)) =
    codeList (freeVarListFormula L l).
    + +
    +#[export]
    +  Instance codeFreeVarListFormulaIsPR : isPR 1 codeFreeVarListFormula.
    + +
    +End Code_Free_Vars.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.codeList.html b/theories/html/hydras.Ackermann.codeList.html new file mode 100644 index 00000000..bcf6c2ea --- /dev/null +++ b/theories/html/hydras.Ackermann.codeList.html @@ -0,0 +1,141 @@ + + + + + +hydras.Ackermann.codeList + + + + +
    + + + +
    + +

    Library hydras.Ackermann.codeList

    + +
    +
    + +
    + codeList.v + +
    + + Original script by Russel O'Connor + +
    +
    + +
    +From hydras.Ackermann Require Import primRec cPair.
    +From Coq Require Export Lists.List.
    +From hydras.Ackermann Require Import ListExt.
    +From Coq Require Import Arith.
    +From Coq Require Vector.
    +From hydras Require Import extEqualNat Compat815.
    + +
    +Definition codeLength : nat nat :=
    +  evalStrongRec 0
    +    (fun n Hrecs : nat
    +     switchPR n (S (codeNth (n - S (cPairPi2 (pred n))) Hrecs)) 0).
    + +
    +Lemma codeLengthCorrect :
    l : list nat, codeLength (codeList l) = length l.
    + +
    +#[export] Instance codeLengthIsPR : isPR 1 codeLength.
    + +
    +Definition codeApp : nat nat nat :=
    +  evalStrongRec 1
    +    (fun n Hrecs p1 : nat
    +       switchPR n
    +         (S
    +            (cPair (cPairPi1 (pred n))
    +               (codeNth (n - S (cPairPi2 (pred n))) Hrecs))) p1).
    + +
    +Lemma codeAppCorrect (l1 l2 : list nat):
    codeApp (codeList l1) (codeList l2) = codeList (l1 ++ l2).
    + +
    +#[export] Instance codeAppIsPR : isPR 2 codeApp.
    + +
    +Definition codeListRemove (a l : nat) : nat :=
    +  evalStrongRec 1
    +    (fun n Hrecs p1 : nat
    +     switchPR n
    +       (switchPR (charFunction 2 Nat.eqb (cPairPi1 (pred n)) p1)
    +          (codeNth (n - S (cPairPi2 (pred n))) Hrecs)
    +          (S
    +             (cPair (cPairPi1 (pred n))
    +                (codeNth (n - S (cPairPi2 (pred n))) Hrecs))))
    +       (codeList nil)) l a.
    + +
    +Lemma codeListRemoveCorrect (a : nat) (l : list nat):
    codeListRemove a (codeList l) =
    +   codeList (List.remove eq_nat_dec a l).
    + +
    +#[export] Instance codeListRemoveIsPR : isPR 2 codeListRemove.
    + +
    +Definition codeIn (a l : nat) : nat :=
    +  evalStrongRec 1
    +    (fun n Hrecs p1 : nat
    +     switchPR n
    +       (switchPR (charFunction 2 Nat.eqb (cPairPi1 (pred n)) p1) 1
    +          (codeNth (n - S (cPairPi2 (pred n))) Hrecs)) 0) l a.
    + +
    +Lemma codeInCorrect (a : nat) (l : list nat) :
    codeIn a (codeList l) =
    match In_dec eq_nat_dec a l with
    + | left _ ⇒ 1
    + | right _ ⇒ 0
    end.
    + +
    +#[export] Instance codeInIsPR : isPR 2 codeIn.
    + +
    +Definition codeNoDup : nat nat :=
    +  evalStrongRec 0
    +    (fun l recs : nat
    +       switchPR l
    +         (switchPR
    +            (codeIn (cPairPi1 (pred l))
    +               (codeNth (l - S (cPairPi2 (pred l))) recs))
    +            (codeNth (l - S (cPairPi2 (pred l))) recs)
    +            (S
    +               (cPair (cPairPi1 (pred l))
    +                  (codeNth (l - S (cPairPi2 (pred l))) recs)))) 0).
    + +
    +Lemma codeNoDupCorrect (l : list nat) :
    codeNoDup (codeList l) = codeList (List.nodup eq_nat_dec l).
    + +
    +#[export] Instance codeNoDupIsPR : isPR 1 codeNoDup.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.codeNatToTerm.html b/theories/html/hydras.Ackermann.codeNatToTerm.html new file mode 100644 index 00000000..34a69e40 --- /dev/null +++ b/theories/html/hydras.Ackermann.codeNatToTerm.html @@ -0,0 +1,66 @@ + + + + + +hydras.Ackermann.codeNatToTerm + + + + +
    + + + +
    + +

    Library hydras.Ackermann.codeNatToTerm

    + +
    +From hydras.Ackermann Require Import primRec cPair code folProp folProof
    +                      Languages.
    +From Coq Require Import Arith.
    +From hydras.Ackermann Require LNN LNT.
    + +
    +Definition natToTermLNN := LNN.natToTerm.
    + +
    +Definition natToTermLNT := LNT.natToTerm.
    + +
    +Fixpoint codeNatToTerm (n: nat) : nat :=
    +  match n with
    +    0 ⇒ cPair 4 0
    +  | S pcPair 3 (S (cPair (codeNatToTerm p) 0))
    +  end.
    + +
    +#[global] Instance LcodeLNN : Lcode LNN codeLNTFunction codeLNNRelation.
    + +
    +#[global] Instance LcodeLNT : Lcode LNT codeLNTFunction codeLNTRelation.
    + +
    +Lemma codeNatToTermCorrectLNN n :
    codeNatToTerm n = codeTerm (natToTermLNN n).
    + +
    +Lemma codeNatToTermCorrectLNT n :
    codeNatToTerm n = codeTerm (natToTermLNT n).
    + +
    +#[export] Instance codeNatToTermIsPR : isPR 1 codeNatToTerm.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.codePA.html b/theories/html/hydras.Ackermann.codePA.html new file mode 100644 index 00000000..495f27e9 --- /dev/null +++ b/theories/html/hydras.Ackermann.codePA.html @@ -0,0 +1,186 @@ + + + + + +hydras.Ackermann.codePA + + + + +
    + + + +
    + +

    Library hydras.Ackermann.codePA

    + +
    +
    + +
    + codePA.v + +
    + + Original script by Russel O'Connor + +
    +
    + +
    +From Coq Require Import Ensembles List Arith Lia.
    +From Coq Require Vector.
    +Import Bool.
    + +
    +From hydras
    +  Require Import primRec cPair folProp code codeList codeFreeVar
    +  extEqualNat prLogic codeNatToTerm Compat815.
    + +
    +Import LispAbbreviations.
    + +
    +Section close.
    +Generalizable All Variables.
    +Variable L : Language.
    +Context `(cL: Lcode L cf cr).
    + +
    + +
    +Let Formula := Formula L .
    +Let codeFormula := codeFormula (cl:=cL).
    + +
    +Definition codeCloseList : nat nat nat :=
    +  evalStrongRec 1
    +    (fun l recs f : nat
    +     switchPR l
    +       (cPair 3
    +          (cPair (car (pred l))
    +             (codeNth (l - S (cdr (pred l))) recs))) f).
    + +
    +Lemma codeCloseListCorrect (l : list nat) (f : Formula):
    codeCloseList (codeList l) (codeFormula f) =
    +   codeFormula (closeList L l f).
    + +
    +#[export] Instance codeCloseListIsPR : isPR 2 codeCloseList.
    + +
    +Definition codeClose (f : nat) : nat :=
    +  codeCloseList (codeNoDup (codeFreeVarFormula f)) f.
    + +
    +Lemma codeCloseCorrect (f : Formula) :
    +  codeClose (codeFormula f) = codeFormula (close L f).
    + +
    +#[export] Instance codeCloseIsPR : isPR 1 codeClose.
    + +
    +End close.
    + +
    +From hydras.Ackermann Require Import PA codeSubFormula.
    + +
    +Section Code_PA.
    + +
    +Let codeTerm := codeTerm (cl :=LcodeLNT).
    +Let codeFormula := codeFormula (cl:=LcodeLNT).
    +Let codeFormulaInj := codeFormulaInj LNT LcodeLNT.
    + +
    +Definition codeOpen : nat nat :=
    +  evalStrongRec 0
    +    (fun f recs : nat
    +     switchPR (car f)
    +       (switchPR (pred (car f))
    +          (switchPR (pred (pred (car f)))
    +             (switchPR (pred (pred (pred (car f)))) f
    +                (codeNth (f - S (cdr (cdr f))) recs)) f) f) f).
    + +
    +Lemma codeOpenCorrect (f : Formula):
    +  codeOpen (codeFormula f) = codeFormula (open f).
    + +
    +#[export] Instance codeOpenIsPR : isPR 1 codeOpen.
    + +
    +Definition codeInductionSchema (f : nat) : bool :=
    +  let n :=
    +    car (cdr (cddddr (codeOpen f))) in
    +  let g := cdr (cdr (cddddr (codeOpen f))) in
    +  Nat.eqb
    +    (codeClose
    +       (codeImp (codeSubFormula g n (codeTerm Zero))
    +          (codeImp
    +             (codeForall n
    +                (codeImp g (codeSubFormula g n
    +                              (codeTerm (Succ (var n))))))
    +             (codeForall n g)))) f.
    + +
    +Lemma codeInductionSchemaCorrect1 (f : Formula) :
    InductionSchema f codeInductionSchema (codeFormula f) = true.
    + +
    +Lemma codeInductionSchemaCorrect2 (f : Formula):
    codeInductionSchema (codeFormula f) = true InductionSchema f.
    +        Opaque cPairPi1.
    +        Opaque cPairPi2.
    + +
    +Lemma codeInductionSchemaCorrect3 (f : Formula):
    ¬ InductionSchema f codeInductionSchema (codeFormula f) = false.
    + +
    +#[local] Instance codeInductionSchemaIsPR : isPRrel 1 codeInductionSchema.
    + +
    +Definition codePA : nat bool :=
    +  orRel 1 (Nat.eqb (codeFormula PA6))
    +    (orRel 1 (Nat.eqb (codeFormula PA5))
    +       (orRel 1 (Nat.eqb (codeFormula PA4))
    +          (orRel 1 (Nat.eqb (codeFormula PA3))
    +             (orRel 1 (Nat.eqb (codeFormula PA2))
    +                (orRel 1 (Nat.eqb (codeFormula PA1))
    +                   codeInductionSchema))))).
    + +
    +Lemma codePAcorrect1 (f : Formula):
    codePA (codeFormula f) = true mem Formula PA f.
    + +
    +Lemma codePAcorrect2 (f : Formula):
    ¬ mem Formula PA f codePA (codeFormula f) = false.
    + +
    +Lemma codePAcorrect3 (f : Formula):
    +  mem Formula PA f codePA (codeFormula f) = true.
    + +
    +#[export] Instance codePAIsPR : isPRrel 1 codePA.
    + +
    +End Code_PA.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.codeSubFormula.html b/theories/html/hydras.Ackermann.codeSubFormula.html new file mode 100644 index 00000000..63023844 --- /dev/null +++ b/theories/html/hydras.Ackermann.codeSubFormula.html @@ -0,0 +1,535 @@ + + + + + +hydras.Ackermann.codeSubFormula + + + + +
    + + + +
    + +

    Library hydras.Ackermann.codeSubFormula

    + +
    +
    + +
    +codeSubFormula: + +
    + + Original file by Russel O'Connor + +
    + + +
    +
    + +
    +From Coq Require Import Arith Vector Lia.
    +From Coq Require Vector.
    + +
    +From hydras.Ackermann
    +  Require Import primRec cPair folProp code extEqualNat codeSubTerm
    +  codeFreeVar.
    + +
    +Import LispAbbreviations.
    +Import PRNotations.
    + +
    +From LibHyps Require Export LibHyps.
    +From hydras Require Export MoreLibHyps NewNotations Compat815.
    +Import Bool.
    + +
    +Section Code_Substitute_Formula.
    + +
    +Generalizable All Variables.
    +Variable L : Language.
    +Context `(cL : Lcode L cf cr).
    + +
    +Notation Formula := (Formula L) (only parsing).
    +Notation Formulas := (Formulas L) (only parsing).
    +Notation System := (System L) (only parsing).
    +Notation Term := (Term L) (only parsing).
    +Notation Terms := (Terms L) (only parsing).
    +Let codeFormula := codeFormula (cl := cL).
    +Let codeTerm := codeTerm (cl := cL).
    + +
    +Definition codeNewVar (l : nat) : nat :=
    +  evalStrongRec 0
    +    (fun n Hrecs : nat
    +     switchPR n
    +       (Nat.max (S (car (pred n)))
    +          (codeNth (n - S (cdr (pred n))) Hrecs)) 0) l.
    + +
    +Lemma codeNewVarCorrect (l : list nat) :
    +  codeNewVar (codeList l) = newVar l.
    + +
    +#[export] Instance codeNewVarIsPR : isPR 1 codeNewVar.
    + +
    + +
    +Definition checkSubFormulaTrace : nat nat :=
    +  evalStrongRec 0
    +    (fun trace recs : nat
    +     let v := cTriplePi1 (cTriplePi1 trace) in
    +     let s := cTriplePi2 (cTriplePi1 trace) in
    +     let input := cTriplePi3 (cTriplePi1 trace) in
    +     let output := cTriplePi2 trace in
    +     let rest := cTriplePi3 trace in
    +     let type := cPairPi1 input in
    +     switchPR type
    +       (switchPR (pred type)
    +          (switchPR (pred (pred type))
    +             (switchPR (pred (pred (pred type)))
    +                (charFunction 2 Nat.eqb output
    +                   (cPair type (codeSubTerms (cdr input) v s)))
    +                (switchPR
    +                   (charFunction 2 Nat.eqb v (car (cdr input)))
    +                   (charFunction 2 Nat.eqb input output)
    +                   (switchPR
    +                      (codeIn (car (cdr input)) (codeFreeVarTerm s))
    +                      (let nv :=
    +                         codeNewVar
    +                           (S
    +                              (cPair v
    +                                 (codeApp (codeFreeVarTerm s)
    +                                    (codeFreeVarFormula
    +                                       (cdr (cdr input)))))) in
    +                       charFunction 0
    +                         (Nat.eqb output
    +                            (cPair 3 (cPair nv (cTriplePi2 (cdr rest)))) &&
    +                          (Nat.eqb (cTriple v s (cTriplePi2 (car rest)))
    +                             (cTriplePi1 (cdr rest)) &&
    +                           Nat.eqb
    +                             (cTriple (car (cdr input))
    +                                (cPair 0 nv) (cdr (cdr input)))
    +                             (cTriplePi1 (car rest)))) ×
    +                       (codeNth (trace - S (car rest)) recs ×
    +                        codeNth (trace - S (cdr rest)) recs))
    +                      (charFunction 0
    +                         (Nat.eqb output
    +                            (cPair 3
    +                               (cPair (car (cdr input))
    +                                  (cTriplePi2 rest))) &&
    +                          Nat.eqb (cTriple v s (cdr (cdr input)))
    +                            (cTriplePi1 rest)) ×
    +                       codeNth (trace - S rest) recs))))
    +             (charFunction 0
    +                (Nat.eqb output (cPair 2 (cTriplePi2 rest)) &&
    +                 Nat.eqb (cTriple v s (cdr input)) (cTriplePi1 rest)) ×
    +              codeNth (trace - S rest) recs))
    +          (charFunction 0
    +             (Nat.eqb output
    +                (cPair 1
    +                   (cPair (cTriplePi2 (car rest))
    +                      (cTriplePi2 (cdr rest)))) &&
    +              (Nat.eqb (cTriple v s (car (cdr input)))
    +                 (cTriplePi1 (car rest)) &&
    +               Nat.eqb (cTriple v s (cdr (cdr input)))
    +                 (cTriplePi1 (cdr rest)))) ×
    +           (codeNth (trace - S (car rest)) recs ×
    +            codeNth (trace - S (cdr rest)) recs)))
    +       (charFunction 2 Nat.eqb output
    +          (cPair 0
    +             (cPair (codeSubTerm (car (cdr input)) v s)
    +                (codeSubTerm (cdr (cdr input)) v s))))).
    + +
    +Definition makeTraceImp (f1 : fol.Formula L)
    +  (f1rec : nat × fol.Term L nat) (f2 : fol.Formula L)
    +  (f2rec : nat × fol.Term L nat) (p : nat × fol.Term L) : nat :=
    +  let v := fst p in
    +  let s := snd p in
    +  cTriple (cTriple v (codeTerm s) (codeFormula (impH f1 f2)))
    +    (codeFormula (substF (impH f1 f2) v s))
    +    (cPair (f1rec p) (f2rec p)).
    + +
    +Definition makeTraceNot
    +  (f : fol.Formula L) (frec : nat × fol.Term L nat)
    +  (p : nat × fol.Term L) : nat :=
    +  let v := fst p in
    +  let s := snd p in
    +  cTriple (cTriple v (codeTerm s) (codeFormula (notH f)))
    +    (codeFormula (substF (notH f) v s))
    +    (frec p).
    + +
    +Definition makeTraceForall (n : nat) (f : fol.Formula L)
    +  (rec : b : fol.Formula L,
    +      lt_depth L b (forallH n f) nat × fol.Term L nat)
    +  (p : nat × fol.Term L) : nat.
    + +
    +Definition makeTrace : fol.Formula L nat × fol.Term L nat :=
    +  Formula_depth_rec2 L (fun _ : fol.Formula Lnat × fol.Term L nat)
    +    (fun (t t0 : fol.Term L) (p : nat × fol.Term L) ⇒
    +     let v := fst p in
    +     let s := snd p in
    +     cTriple (cTriple v (codeTerm s) (codeFormula (equal t t0)))
    +       (codeFormula (substF (equal t t0) v s)) 0)
    +    (fun (r : Relations L) t (p : nat × fol.Term L) ⇒
    +     let v := fst p in
    +     let s := snd p in
    +     cTriple (cTriple v (codeTerm s) (codeFormula (atomic r t)))
    +       (codeFormula (substF (atomic r t) v s)) 0)
    +    makeTraceImp
    +    makeTraceNot makeTraceForall.
    + +
    +Lemma makeTraceImpNice (f2 g : fol.Formula L)
    +  (z1 z2 : nat × fol.Term L nat):
    +  ( q : nat × fol.Term L, z1 q = z2 q)
    +   z3 z4 : nat × fol.Term L nat,
    +    ( q : nat × fol.Term L, z3 q = z4 q)
    +     q : nat × fol.Term L,
    +      makeTraceImp f2 z1 g z3 q = makeTraceImp f2 z2 g z4 q.
    + +
    +Lemma makeTraceNotNice (f2 : fol.Formula L)
    +  (z1 z2 : nat × fol.Term L nat) :
    ( q : nat × fol.Term L, z1 q = z2 q)
    q : nat × fol.Term L,
    +   makeTraceNot f2 z1 q = makeTraceNot f2 z2 q.
    + +
    +Lemma makeTraceForallNice
    +  (v0 : nat) (a : fol.Formula L)
    +  (z1 z2 : b : fol.Formula L,
    +      lt_depth L b (forallH v0 a) nat × fol.Term L nat):
    +  ( (b : fol.Formula L) (q : lt_depth L b (forallH v0 a))
    +          (r : nat × fol.Term L), z1 b q r = z2 b q r)
    +   q : nat × fol.Term L,
    +    makeTraceForall v0 a z1 q = makeTraceForall v0 a z2 q.
    + +
    +Remark makeTrace1 (f : fol.Formula L) (v : nat) (s : fol.Term L):
    cTriplePi1 (makeTrace f (v, s)) = cTriple v (codeTerm s) (codeFormula f).
    + +
    +Remark makeTrace2 (f : fol.Formula L) (v : nat) (s : fol.Term L):
    cTriplePi2 (makeTrace f (v, s)) = codeFormula (substF f v s).
    + +
    +Lemma makeTraceCorrect :
    (f : fol.Formula L) (v : nat) (s : fol.Term L),
    checkSubFormulaTrace (makeTrace f (v, s)) = 1.
    + +
    +Lemma checkTraceCorrect :
    (f : fol.Formula L) (v : nat) (s : fol.Term L) (n m : nat),
    checkSubFormulaTrace (cTriple (cTriple v (codeTerm s) (codeFormula f)) n m)
    + 0 codeFormula (substF f v s) = n.
    + +
    +Lemma switch5IsPR :
    (f1 f2 f3 f4 f5 : nat nat nat) (g : nat nat),
    isPR 2 f1
    isPR 2 f2
    isPR 2 f3
    isPR 2 f4
    isPR 2 f5
    isPR 1 g
    isPR 2
    +   (fun n recs : nat
    +    switchPR (g n)
    +      (switchPR (pred (g n))
    +         (switchPR (pred (pred (g n)))
    +            (switchPR (pred (pred (pred (g n)))) (f1 n recs) (f2 n recs))
    +            (f3 n recs)) (f4 n recs)) (f5 n recs)).
    + +
    +#[export] Instance checkTraceIsPR : isPR 1 checkSubFormulaTrace.
    + +
    +Definition ReplaceTermTermsTerm : nat nat nat :=
    +  evalStrongRec 1
    +    (fun t recs s : nat
    +     cPair
    +       (switchPR (car t)
    +          (cPair (car t) (cdr (codeNth (t - S (cdr t)) recs)))
    +          (cPair 0 s))
    +       (switchPR t
    +          (S
    +             (cPair (car (codeNth (t - S (car (pred t))) recs))
    +                (cdr (codeNth (t - S (cdr (pred t))) recs)))) 0)).
    + +
    +#[local] Instance ReplaceTermTermsTermIsPR : isPR 2 ReplaceTermTermsTerm.
    + +
    +Definition ReplaceTermTerm (t s : nat) : nat :=
    +  car (ReplaceTermTermsTerm t s).
    + +
    +Definition ReplaceTermsTerm (t s : nat) : nat :=
    +  cdr (ReplaceTermTermsTerm t s).
    + +
    +#[export] Instance ReplaceTermTermIsPR : isPR 2 ReplaceTermTerm.
    + +
    +#[export] Instance ReplaceTermsTermIsPR : isPR 2 ReplaceTermsTerm.
    + +
    +Remark ReplaceTermTermsTermMonotone :
    a s1 s2 : nat,
    s1 s2
    ReplaceTermTerm a s1 ReplaceTermTerm a s2
    ReplaceTermsTerm a s1 ReplaceTermsTerm a s2.
    + +
    +Lemma ReplaceTermTermMonotone :
    +   a s1 s2 : nat,
    +    s1 s2 ReplaceTermTerm a s1 ReplaceTermTerm a s2.
    + +
    +Lemma ReplaceTermsTermMonotone :
    a s1 s2 : nat,
    s1 s2 ReplaceTermsTerm a s1 ReplaceTermsTerm a s2.
    + +
    +Remark maxLemma :
    a b c d : nat, a b c d Nat.max a c Nat.max b d.
    + +
    +Remark maxLemma2 :
    +   a b : list nat,
    +    fold_right Nat.max 0 a fold_right Nat.max 0 (a ++ b).
    + +
    +Remark maxLemma3 :
    +   a b : list nat,
    +    fold_right Nat.max 0 b fold_right Nat.max 0 (a ++ b).
    + +
    +Remark maxApp :
    a b : list nat,
    {fold_right Nat.max 0 (a ++ b) = fold_right Nat.max 0 a} +
    {fold_right Nat.max 0 (a ++ b) = fold_right Nat.max 0 b}.
    + +
    +Lemma boundSubTerm :
    (t : fol.Term L) (v : nat) (s : fol.Term L),
    codeTerm (substT t v s)
    ReplaceTermTerm (codeTerm t)
    +   (fold_right Nat.max 0 (codeTerm s :: freeVarT t)).
    + +
    +Lemma boundSubTerms :
    +   (n : nat) (ts : fol.Terms L n) (v : nat) (s : fol.Term L),
    +    codeTerms (substTs ts v s)
    +      ReplaceTermsTerm (codeTerms ts)
    +        (fold_right Nat.max 0 (codeTerm s :: freeVarTs ts)).
    + +
    +Lemma ReplaceTermTermSub :
    (t : fol.Term L) (v w s2 : nat),
    ReplaceTermTerm (codeTerm (substT t v (var w))) s2 =
    ReplaceTermTerm (codeTerm t) s2.
    + +
    +Lemma ReplaceTermsTermSub :
    (n : nat) (ts : fol.Terms L n) (v w s2 : nat),
    ReplaceTermsTerm (codeTerms (substTs ts v (var w))) s2 =
    ReplaceTermsTerm (codeTerms ts) s2.
    + +
    +Definition ReplaceFormulaTerm : nat nat nat :=
    +  evalStrongRec 1
    +    (fun f recs s : nat
    +     switchPR (car f)
    +       (switchPR (pred (car f))
    +          (switchPR (pred (pred (car f)))
    +             (switchPR (pred (pred (pred (car f))))
    +                (cPair (car f) (ReplaceTermsTerm (cdr f) s))
    +                (cPair 3
    +                   (cPair s (codeNth (f - S (cdr (cdr f))) recs))))
    +             (cPair 2 (codeNth (f - S (cdr f)) recs)))
    +          (cPair 1
    +             (cPair (codeNth (f - S (car (cdr f))) recs)
    +                (codeNth (f - S (cdr (cdr f))) recs))))
    +       (cPair 0
    +          (cPair (ReplaceTermTerm (car (cdr f)) s)
    +             (ReplaceTermTerm (cdr (cdr f)) s)))).
    + +
    +#[export] Instance ReplaceFormulaTermIsPR : isPR 2 ReplaceFormulaTerm.
    + +
    +Lemma ReplaceFormulaTermMonotone :
    +   a s1 s2 : nat,
    +    s1 s2 ReplaceFormulaTerm a s1 ReplaceFormulaTerm a s2.
    + +
    +Fixpoint varFormula (f : fol.Formula L) : list nat :=
    +  match f with
    +  | equal t sfreeVarT t ++ freeVarT s
    +  | atomic r tsfreeVarTs ts
    +  | impH A BvarFormula A ++ varFormula B
    +  | notH AvarFormula A
    +  | forallH v Av :: varFormula A
    +  end.
    + +
    +Lemma ReplaceFormulaTermSub :
    +   (f : fol.Formula L) (v w s2 : nat),
    +    ReplaceFormulaTerm (codeFormula (substF f v (var w))) s2 =
    +      ReplaceFormulaTerm (codeFormula f) s2.
    + +
    +Remark codeTermFreeVar :
    s : fol.Term L, fold_right Nat.max 0 (freeVarT s) codeTerm s.
    + +
    +Remark maxVarFreeVar :
    f : fol.Formula L,
    +   fold_right Nat.max 0 (freeVarF f)
    +     fold_right Nat.max 0 (varFormula f).
    + +
    +Remark maxSubTerm (t : fol.Term L) (v : nat) (s : fol.Term L):
    +  fold_right Nat.max 0 (freeVarT (substT t v s))
    +    fold_right Nat.max 0 (freeVarT s ++ freeVarT t).
    + +
    +Remark maxSubTerms (n : nat) (ts : fol.Terms L n) (v : nat) (s : fol.Term L):
    +  fold_right Nat.max 0 (freeVarTs (substTs ts v s))
    +    fold_right Nat.max 0 (freeVarT s ++ freeVarTs ts).
    + +
    +
    + +
    +3 ^ n +
    +
    +Definition pow3 : nat nat :=
    +  nat_rec (fun _nat) 1 (fun _ rec : natrec + (rec + rec)).
    + +
    +#[export] Instance pow3IsPR : isPR 1 pow3.
    + +
    +Lemma pow3Monotone : a b : nat, a b pow3 a pow3 b.
    + +
    +Lemma pow3Min : a : nat, 1 pow3 a.
    + +
    +Remark mapListLemma :
    +   l : list nat,
    +    fold_right Nat.max 0 (map S l) S (fold_right Nat.max 0 l).
    + +
    +Remark boundSubFormulaHelp2 (a : fol.Formula L) (v0 : nat) (s : fol.Term L):
    +  newVar (v0 :: freeVarT s ++ freeVarF a)
    +    S
    +      (fold_right Nat.max 0
    +         (v0 :: fold_right Nat.max 0 (freeVarT s) :: varFormula a)).
    + +
    +Remark boundSubFormulaHelp1 :
    +   (b a : fol.Formula L) (v0 v : nat) (s : fol.Term L),
    +    fold_right Nat.max 0
    +      (varFormula
    +         (substF b v
    +            (var (newVar (v0 :: freeVarT s ++ freeVarF a)))))
    +      pow3 (depth L b) + pow3 (depth L b) +
    +        Nat.max v0
    +          (Nat.max (fold_right Nat.max 0 (freeVarT s))
    +             (Nat.max v
    +                (Nat.max (fold_right Nat.max 0 (varFormula b))
    +                   (fold_right Nat.max 0 (varFormula a))))).
    + +
    +Remark boundSubFormulaHelp :
    (f : fol.Formula L) (v : nat) (s : fol.Term L),
    codeFormula (substF f v s)
    ReplaceFormulaTerm (codeFormula f)
    +   (Nat.max (codeTerm s)
    +      (pow3 (depth L f) +
    +       fold_right Nat.max 0 (v :: freeVarT s ++ varFormula f))).
    + +
    +Definition boundComputation (d p1 p2 : nat) : nat :=
    +  nat_rec (fun _nat) (cTriple p1 p2 0)
    +    (fun _ rec : natcTriple p1 p2 (cPair rec rec)) d.
    + +
    +#[export] Instance boundComputationIsPR : isPR 3 boundComputation.
    + +
    +Lemma boundComputationMonotone :
    a1 a2 b1 b2 c1 c2 : nat,
    a1 a2
    b1 b2
    c1 c2 boundComputation a1 b1 c1 boundComputation a2 b2 c2.
    + +
    +Lemma boundMakeTrace :
    (f : fol.Formula L) (v : nat) (s : fol.Term L),
    let C :=
    +   Nat.max (codeTerm s)
    +     (cPair 0
    +        (pow3 (depth L f) +
    +         fold_right Nat.max 0 (v :: freeVarT s ++ varFormula f))) in
    makeTrace f (v, s)
    boundComputation (depth L f)
    +   (cTriple C C (ReplaceFormulaTerm (codeFormula f) C))
    +   (ReplaceFormulaTerm (codeFormula f) C).
    + +
    +Definition codeSubFormula (f v s : nat) : nat :=
    +  let C := cPair 0 (pow3 f + (v + (s + f))) in
    +  car
    +    (boundedSearch
    +       (fun p x : nat
    +        ltBool 0 (checkSubFormulaTrace (cPair (car p) x)))
    +       (cPair (cTriple v s f)
    +          (S
    +             (boundComputation f (cTriple C C (ReplaceFormulaTerm f C))
    +                (ReplaceFormulaTerm f C))))).
    + +
    +Lemma codeSubFormulaCorrect (f : Formula) (v : nat) (s : Term):
    codeSubFormula (codeFormula f) v (codeTerm s) =
    codeFormula (substF f v s).
    + +
    +#[export] Instance codeSubFormulaIsPR : isPR 3 codeSubFormula.
    + +
    +End Code_Substitute_Formula.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.codeSubTerm.html b/theories/html/hydras.Ackermann.codeSubTerm.html new file mode 100644 index 00000000..c0c48431 --- /dev/null +++ b/theories/html/hydras.Ackermann.codeSubTerm.html @@ -0,0 +1,100 @@ + + + + + +hydras.Ackermann.codeSubTerm + + + + +
    + + + +
    + +

    Library hydras.Ackermann.codeSubTerm

    + +
    +From hydras.Ackermann Require Import primRec cPair folProp code
    +                        extEqualNat.
    +From Coq Require Import Arith.
    +From Coq Require Vector.
    +From hydras Require Import Compat815.
    +Import LispAbbreviations.
    +Require Import NewNotations.
    +Import PRNotations.
    + +
    +Section Code_Substitute_Term.
    + +
    +Generalizable All Variables.
    +Variable L : Language.
    +Context `(cL : Lcode L cf cr).
    + +
    +Let Formula := Formula L.
    +Let Formulas := Formulas L.
    +Let System := System L.
    +Let Term := Term L.
    +Let Terms := Terms L.
    + +
    +Definition codeSubTermTerms : nat nat nat nat :=
    +  evalStrongRec 2
    +    (fun t recs v s : nat
    +       cPair
    +         (switchPR (car t)
    +            (cPair (car t) (cdr (codeNth (t - S (cdr t)) recs)))
    +            (switchPR (charFunction 2 Nat.eqb (cdr t) v) s t))
    +         (switchPR t
    +            (S
    +               (cPair (car (codeNth (t - S (car (pred t))) recs))
    +                  (cdr (codeNth (t - S (cdr (pred t))) recs)))) 0)).
    + +
    +Definition codeSubTerm (t s v : nat) : nat :=
    +  car (codeSubTermTerms t s v).
    + +
    +Definition codeSubTerms (t s v : nat) : nat :=
    +  cdr (codeSubTermTerms t s v).
    + +
    +Lemma codeSubTermCorrect :
    +   (t : Term) (v : nat) (s : Term),
    +    codeSubTerm (codeTerm t) v (codeTerm s) =
    +      codeTerm (substT t v s).
    + +
    +Lemma codeSubTermsCorrect :
    +   (n : nat) (ts : Terms n) (v : nat) (s : Term),
    +    codeSubTerms (codeTerms ts) v (codeTerm s) =
    +      codeTerms (substTs ts v s).
    + +
    +#[export] Instance codeSubTermTermsIsPR : isPR 3 codeSubTermTerms.
    + +
    +#[export] Instance codeSubTermIsPR : isPR 3 codeSubTerm.
    + +
    +Lemma codeSubTermsIsPR : isPR 3 codeSubTerms.
    + +
    +End Code_Substitute_Term.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.expressible.html b/theories/html/hydras.Ackermann.expressible.html new file mode 100644 index 00000000..8db9fd94 --- /dev/null +++ b/theories/html/hydras.Ackermann.expressible.html @@ -0,0 +1,181 @@ + + + + + +hydras.Ackermann.expressible + + + + +
    + + + +
    + +

    Library hydras.Ackermann.expressible

    + +
    +
    + +
    + expressible.v + +
    + + Original file by Russel O'Connor + +
    +
    + +
    +From Coq Require Import Arith List.
    +From hydras.Ackermann
    +  Require Import ListExt folProp subProp extEqualNat Languages LNN
    +  NewNotations.
    +Import NNnotations.
    + +
    +#[local] Arguments apply _ _ _ : clear implicits.
    + +
    +Section RepresentableExpressible.
    + +
    +Variable T : System.
    + +
    +Hypothesis closedT1: (ClosedSystem LNN T).
    + +
    +Remark closedT : v : nat, ¬ In_freeVarSys LNN v T.
    + +
    +Fixpoint RepresentableHalf1 (n : nat) :
    +  naryFunc n Formula Prop :=
    +  match n return (naryFunc n Formula Prop) with
    +  | O
    +      fun (f : naryFunc 0) (A : Formula) ⇒
    +      SysPrf T (A v#0 = natToTerm f)%fol
    +  | S m
    +      fun (f : naryFunc (S m)) (A : Formula) ⇒
    +       a : nat,
    +      RepresentableHalf1 m (f a)
    +        (substF A (S m) (natToTerm a))
    +  end.
    + +
    +Fixpoint RepresentableHalf2 (n : nat) : naryFunc n Formula Prop :=
    +  match n return (naryFunc n Formula Prop) with
    +  | O
    +      fun (f : naryFunc 0) (A : Formula) ⇒
    +      SysPrf T (v#0 = natToTerm f A)%fol
    +  | S m
    +      fun (f : naryFunc (S m)) (A : Formula) ⇒
    +       a : nat,
    +      RepresentableHalf2 m (f a)
    +        (substF A (S m) (natToTerm a))
    +  end.
    + +
    +Lemma RepresentableHalf1Alternate :
    (n : nat) (f : naryFunc n) (A B : Formula),
    SysPrf T (impH A B) RepresentableHalf1 n f B
    RepresentableHalf1 n f A.
    + +
    +Lemma RepresentableHalf2Alternate :
    (n : nat) (f : naryFunc n) (A B : Formula),
    +   SysPrf T (A B)%fol RepresentableHalf2 n f A
    +   RepresentableHalf2 n f B.
    + +
    +Fixpoint RepresentableHelp (n : nat) : naryFunc n Formula Prop :=
    +  match n return (naryFunc n Formula Prop) with
    +  | O
    +      fun (f : naryFunc 0) (A : Formula) ⇒
    +      SysPrf T (A v#0 = natToTerm f)%fol
    +  | S m
    +      fun (f : naryFunc (S m)) (A : Formula) ⇒
    +       a : nat,
    +      RepresentableHelp m (f a)
    +        (substF A (S m) (natToTerm a))
    +  end.
    + +
    +Lemma RepresentableHalfHelp :
    (n : nat) (f : naryFunc n) (A : Formula),
    RepresentableHalf1 n f A
    RepresentableHalf2 n f A RepresentableHelp n f A.
    + +
    +Definition Representable (n : nat) (f : naryFunc n)
    +  (A : Formula) : Prop :=
    +  ( v : nat, In v (freeVarF A) v n)
    +  RepresentableHelp n f A.
    + +
    +Lemma RepresentableAlternate :
    (n : nat) (f : naryFunc n) (A B : Formula),
    SysPrf T (iffH A B) RepresentableHelp n f A
    RepresentableHelp n f B.
    + +
    +Lemma Representable_ext :
    (n : nat) (f g : naryFunc n) (A : Formula),
    +   extEqual n f g RepresentableHelp n f A
    +   RepresentableHelp n g A.
    + +
    +Fixpoint ExpressibleHelp (n : nat) : naryRel n Formula Prop :=
    +  match n return (naryRel n Formula Prop) with
    +  | O
    +      fun (R : naryRel 0) (A : Formula) ⇒
    +      match R with
    +      | trueSysPrf T A
    +      | falseSysPrf T ( ¬ A)%fol
    +      end
    +  | S m
    +      fun (R : naryRel (S m)) (A : Formula) ⇒
    +       a : nat,
    +      ExpressibleHelp m (R a)
    +        (substF A (S m) (natToTerm a))
    +  end.
    + +
    +Definition Expressible (n : nat) (R : naryRel n) (A : Formula) : Prop :=
    +  ( v : nat, In v (freeVarF A)
    +                   v n v 0)
    +  ExpressibleHelp n R A.
    + +
    +Lemma expressibleAlternate :
    +   (n : nat) (R : naryRel n) (A B : Formula),
    +    SysPrf T (iffH A B) ExpressibleHelp n R A
    +    ExpressibleHelp n R B.
    + +
    +Hypothesis nn1: SysPrf T (natToTerm 1 natToTerm 0)%fol.
    + +
    +Lemma Representable2Expressible :
    (n : nat) (R : naryRel n) (A : Formula),
    Representable n (charFunction n R) A
    Expressible n R (substF A 0 (natToTerm 1)).
    + +
    +End RepresentableExpressible.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.extEqualNat.html b/theories/html/hydras.Ackermann.extEqualNat.html new file mode 100644 index 00000000..6f672028 --- /dev/null +++ b/theories/html/hydras.Ackermann.extEqualNat.html @@ -0,0 +1,99 @@ + + + + + +hydras.Ackermann.extEqualNat + + + + +
    + + + +
    + +

    Library hydras.Ackermann.extEqualNat

    + +
    +
    + +
    +extEqualNat: + +
    + + Original script by Russel O'Connor + +
    +
    + +
    +From Coq Require Import Arith.
    + +
    + +
    +Fixpoint naryFunc (n : nat) : Set :=
    +  match n with
    +  | Onat
    +  | S nnat naryFunc n
    +  end.
    + +
    + +
    +Fixpoint naryRel (n : nat) : Set :=
    +  match n with
    +  | Obool
    +  | S nnat naryRel n
    +  end.
    + +
    + +
    +Fixpoint extEqual (n : nat) : (a b : naryFunc n), Prop :=
    +  match n with
    +    0 ⇒ fun a ba = b
    +  | S pfun a b c, extEqual p (a c) (b c)
    +  end.
    + +
    + +
    +Fixpoint charFunction (n : nat) : naryRel n naryFunc n :=
    +  match n return (naryRel n naryFunc n) with
    +  | Ofun R : boolmatch R with
    +                         | true ⇒ 1
    +                         | false ⇒ 0
    +                         end
    +  | S mfun (R : naryRel (S m)) (a : nat) ⇒ charFunction m (R a)
    +  end.
    + +
    +Lemma extEqualRefl n a: extEqual n a a.
    + +
    +Lemma extEqualSym :
    +   (n : nat) (a b : naryFunc n), extEqual n a b extEqual n b a.
    + +
    +Lemma extEqualTrans :
    (n : nat) (a b c : naryFunc n),
    extEqual n a b extEqual n b c extEqual n a c.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.fol.html b/theories/html/hydras.Ackermann.fol.html new file mode 100644 index 00000000..2a9474bb --- /dev/null +++ b/theories/html/hydras.Ackermann.fol.html @@ -0,0 +1,457 @@ + + + + + +hydras.Ackermann.fol + + + + +
    + + + +
    + +

    Library hydras.Ackermann.fol

    + +
    +
    + +
    +First Order Logic + +
    + + Original author: Russell O'Connor + +
    + +This file is Public Domain + +
    + + +
    +
    + +
    + +
    +
    + +
    +

    First Order Formulas over a language

    + +
    +
    + +
    +Record Language : Type := language
    + { Relations : Set;
    +   Functions : Set;
    +   arityR : Relations nat;
    +   arityF : Functions nat}.
    + +
    + +
    +Section First_Order_Logic.
    + +
    +Variable L : Language.
    + +
    +Inductive Term : Set :=
    +  | var : nat Term
    +  | apply : f : Functions L, Terms (arityF L f) Term
    +with Terms : nat Set :=
    +  | Tnil : Terms 0
    +  | Tcons : n : nat, Term Terms n Terms (S n).
    + +
    +Scheme Term_Terms_ind := Induction for Term Sort Prop
    +  with Terms_Term_ind := Induction for Terms Sort Prop.
    + +
    +Scheme Term_Terms_rec := Minimality for Term Sort Set
    +  with Terms_Term_rec := Minimality for Terms Sort Set.
    +Scheme Term_Terms_rec_full := Induction for Term Sort Set
    +  with Terms_Term_rec_full := Induction for Terms Sort Set.
    +Inductive Formula : Set :=
    +  | equal : Term Term Formula
    +  | atomic : r : Relations L, Terms (arityR L r) Formula
    +  | impH : Formula Formula Formula
    +  | notH : Formula Formula
    +  | forallH : nat Formula Formula.
    + +
    +Definition Formulas := list Formula.
    +Definition System := Ensemble Formula.
    +Definition mem := Ensembles.In.
    + +
    +
    + +
    +

    Extensions of the basic language of formulas

    + +
    +
    + +
    +Definition orH (A B : Formula) := impH (notH A) B.
    +Definition andH (A B : Formula) := notH (orH (notH A) (notH B)).
    +Definition iffH (A B : Formula) := andH (impH A B) (impH B A).
    +Definition existH (x : nat) (A : Formula) := notH (forallH x (notH A)).
    + +
    + +
    +Definition ifThenElseH (A B C : Formula) :=
    +  andH (impH A B) (impH (notH A) C).
    + +
    +
    + +
    +

    Decidability of equality between terms, formulas, ...

    + +
    +
    + +
    +Section Formula_Decidability.
    + +
    +Definition language_decidable :=
    +  (( x y : Functions L, {x = y} + {x y}) ×
    +   ( x y : Relations L, {x = y} + {x y}))%type.
    + +
    +Hypothesis language_eqdec : language_decidable.
    + +
    + +
    +Lemma term_eqdec : x y : Term, {x = y} + {x y}.
    + +
    +Lemma terms_eqdec n (x y : Terms n): {x = y} + {x y}.
    + +
    + +
    +Lemma formula_eqdec : x y : Formula, {x = y} + {x y}.
    + +
    +End Formula_Decidability.
    + +
    +
    + +
    +

    Depth Induction

    + + +
    + + Many functions on term and formulas are not structurally recursive (e.g. because of substitution of variables with terms). + In which case, we may use some notion of depth as a measure. +
    +
    + +
    +Section Formula_Depth_Induction.
    + +
    +Fixpoint depth (A : Formula) : nat :=
    +  match A with
    +  | equal _ _ ⇒ 0
    +  | atomic _ _ ⇒ 0
    +  | impH A BS (Nat.max (depth A) (depth B))
    +  | notH AS (depth A)
    +  | forallH _ AS (depth A)
    +  end.
    + +
    +Definition lt_depth (A B : Formula) : Prop := depth A < depth B.
    + +
    + +
    +Definition Formula_depth_ind :
    +   P : Formula Prop,
    +  ( a : Formula, ( b : Formula, lt_depth b a P b) P a)
    +   a : Formula, P a.
    + +
    +Lemma Formula_depth_ind2 :
    P : Formula Prop,
    ( t t0 : Term, P (equal t t0))
    ( (r : Relations L)
    +         (t : Terms (arityR L r)),
    +     P (atomic r t))
    ( f : Formula, P f f0 : Formula, P f0 P (impH f f0))
    ( f : Formula, P f P (notH f))
    ( (v : nat) (a : Formula),
    +  ( b : Formula, lt_depth b (forallH v a) P b) P (forallH v a))
    f : Formula, P f.
    + +
    +End Formula_Depth_Induction.
    + +
    +End First_Order_Logic.
    + +
    +
    + +
    +

    Implicit arguments and notations

    + +
    +
    + +
    + +
    +
    + +
    + +
    + + In Russel O'Connor's work, the abstract syntax of first-order terms and formulas is available in three versions: + +
    + +
      +
    • A generic one (for any Language L) + +
    • +
    • An instantiation for the language of number theory LNT + +
    • +
    • An instantiation for the language of natural numbers LNN + +
    • +
    + +
    + +In the current version, we propose to use three notation scopes: fol_scope, nt_scope and nn_scope, in order to make clear the relationship between the three sets of formulas. + +
    + + fol_scope is defined in this file, lnt_scope in +LNT.v, and +lnn_scope in +LNN.v, + +
    + +

    Implicit arguments

    + +The original code of this library contains some redefinitions like + +
    + +
    +Definition Formula := Formula LNN.
    +
    + +
    + +We plan to use systematically implicit arguments and avoid such redefinitions, which make more complex formula and term displaying, e.g. in goals or results of computation. + +
    +
    + +
    +Arguments impH {L} _ _.
    +Arguments notH {L} _.
    +Arguments forallH {L} _ _.
    +Arguments orH {L} _ _.
    +Arguments andH {L} _ _.
    +Arguments iffH {L} _ _.
    +Arguments equal {L} _ _.
    +Arguments existH {L} _ _.
    +Arguments var {L} _.
    +Arguments atomic {L} _ _.
    +Arguments apply {L} _ _.
    +Arguments ifThenElseH {L} _ _ _.
    +Arguments Tnil {L}.
    +Arguments Tcons {L} {n} _ _.
    + +
    +Notation "'f[' A ']f'" := A (A custom fol at level 200).
    + +
    +Notation "x ∨ y" := (orH x y) (in custom fol at level 85, x custom fol, y custom fol, right associativity).
    + +
    +Notation "x ∧ y" := (andH x y) (in custom fol at level 80, x custom fol, y custom fol, right associativity).
    + +
    +Notation "x -> y" := (impH x y) (in custom fol at level 99, right associativity, y at level 200).
    + +
    +Notation "x <-> y" := (iffH x y) (in custom fol at level 99, right associativity, y at level 200).
    + +
    +Notation "~ x" := (notH x) (in custom fol at level 75, right associativity).
    + +
    +Notation "( x )" := x (in custom fol, x custom fol at level 200).
    + +
    +Notation "x = y" := (equal x y) (in custom fol at level 70, no associativity).
    + +
    +Notation "x <> y" := (notH (equal x y)) (in custom fol at level 70, no associativity).
    + +
    +Notation "{ x }" := x (in custom fol, x constr).
    + +
    +Notation "'∀' i ',' f" := (forallH i f) (in custom fol at level 200, i constr, f custom fol at level 200).
    + +
    +Notation "'∃' i , f" := (existH i f)
    +  (in custom fol at level 200, i constr, f custom fol at level 200).
    + +
    +Check f[ 3, 4, {equal (var 3) (var 4)} {var 3} = {var 4} ]f.
    + +
    +Check f[ ¬ { equal (var 3) (var 4) } ]f.
    + +
    +Check f[ {var 3} {var 4} ]f.
    + +
    +Check f[ ¬ ( {var 3} = {var 4} ) ]f.
    + +
    +
    + +
    +

    The fol_scope notation scope

    + +
    +
    + +
    +Module FolNotations.
    +Declare Scope fol_scope.
    +Delimit Scope fol_scope with fol.
    + +
    +Infix "=" := (equal _): fol_scope.
    +Infix "∨" := (orH): fol_scope.
    +Infix "∧" := (andH):fol_scope.
    +Infix "→" := (impH): fol_scope.
    +Notation "~ A" := (@notH _ A): fol_scope.
    +Notation "A <-> B" := (@iffH _ A B): fol_scope.
    + +
    +Notation "'v#' i" := (var i) (at level 3, format "'v#' i", i at level 0) : fol_scope.
    +Notation "'exH' x .. y , p" := (existH x .. (existH y p) ..)
    +  (x at level 0, y at level 0, at level 200, right associativity) : fol_scope.
    +Notation "'allH' x .. y , p" := (forallH x .. (forallH y p) ..)
    +  (x at level 0, y at level 0, at level 200, right associativity) : fol_scope.
    + +
    +Notation "t = u" := (@equal _ t u): fol_scope.
    +Notation "t <> u" := (¬ t = u)%fol : fol_scope.
    + +
    + +
    +
    + +
    +the following notations are used when some computation + expands a disjunction, conjuction, etc. + in terms of implication and negation +
    +
    + +
    +Reserved Notation "x '\/'' y" (at level 85, right associativity).
    +Reserved Notation "x '/\'' y" (at level 80, right associativity).
    +Reserved Notation "x '<->'' y" (at level 95, no associativity).
    +Reserved Notation "x '<->''' y" (at level 95, no associativity).
    + +
    +Notation "x \/' y" := (¬ x y)%fol : fol_scope.
    +Notation "x /\' y" := (¬ (~ x \/' ¬ y))%fol : fol_scope.
    +Notation "x <->'' y" := ((x y) (y x))%fol: fol_scope.
    +Notation "x <->' y" := (¬ (~ (x y) \/' ¬ (y x)))%fol : fol_scope.
    +Notation exH' v A := (¬ (forallH v (¬ A)))%fol.
    + +
    +End FolNotations.
    + +
    +Import FolNotations.
    +Check (v#5)%fol.
    + +
    +
    + +
    +

    Examples

    + +
    +
    + +
    +Section LExamples.
    +Variable L: Language.
    +Variables P Q : Formula L.
    + +
    +Let ex1 : Formula L := (P Q)%fol.
    + +
    +Let ex2 : Formula L := (¬ (~ ¬P ¬Q))%fol.
    + +
    +Let ex3 : Formula L:= (¬ (~P ¬Q))%fol.
    + +
    + +
    +End LExamples.
    + +
    +Section Correctness.
    Variable L: Language.
    Variables P Q R : Formula L.
    + +
    Goal (P Q)%fol = (P \/' Q)%fol.
    + +
    +Goal (P Q)%fol = (P /\' Q)%fol.
    + +
    +End Correctness.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.folLogic.html b/theories/html/hydras.Ackermann.folLogic.html new file mode 100644 index 00000000..ca232a6a --- /dev/null +++ b/theories/html/hydras.Ackermann.folLogic.html @@ -0,0 +1,255 @@ + + + + + +hydras.Ackermann.folLogic + + + + +
    + + + +
    + +

    Library hydras.Ackermann.folLogic

    + +
    +
    + +
    +folLogic.v: + +
    + + Original script by Russel O'Connor +
    +
    + +
    +From Coq Require Import Ensembles List.
    + +
    +From hydras.Ackermann Require Import ListExt folProof folProp Deduction.
    +Import FolNotations.
    + +
    +Section Logic_Rules.
    + +
    +Variable L : Language.
    +Let Formula := Formula L.
    +Let Formulas := Formulas L.
    +Let System := System L.
    +Let Term := Term L.
    +Let Terms := Terms L.
    +Let Prf := Prf L.
    +Let SysPrf := SysPrf L.
    +Arguments Ensembles.Add {U} _ _.
    + +
    +Lemma Axm T f: mem _ T f SysPrf T f.
    + +
    +Lemma sysExtend (T U : System) (f : Formula):
    Included _ T U SysPrf T f SysPrf U f.
    + +
    +Lemma sysWeaken (T : System) (f g : Formula):
    +  SysPrf T f SysPrf (Ensembles.Add T g) f.
    + +
    +Lemma impI (T : System) (f g : Formula):
    SysPrf (Ensembles.Add T g) f SysPrf T (g f)%fol.
    + +
    +Lemma impE (T : System) (f g : Formula):
    SysPrf T (g f)%fol SysPrf T g SysPrf T f.
    + +
    +Lemma contradiction (T : System) (f g : Formula):
    SysPrf T f SysPrf T (¬ f)%fol SysPrf T g.
    + +
    +Lemma nnE (T : System) (f : Formula): SysPrf T (¬ ¬ f)%fol SysPrf T f.
    + +
    +Lemma nnI (T : System) (f : Formula): SysPrf T f SysPrf T (¬ ¬ f)%fol.
    + +
    +
    + +
    + contraposition +
    +
    + +
    +Lemma cp1 (T : System) (f g : Formula) :
    SysPrf T (¬ f ¬ g)%fol SysPrf T (g f)%fol.
    + +
    +Lemma cp2 (T : System) (f g : Formula):
    SysPrf T (g f)%fol SysPrf T (¬f ¬g)%fol.
    + +
    +Lemma orI1 (T : System) (f g : Formula): SysPrf T f SysPrf T (f g)%fol.
    + +
    +Lemma orI2 (T : System) (f g : Formula): SysPrf T g SysPrf T (f g)%fol.
    + +
    +Lemma noMiddle (T : System) (f : Formula): SysPrf T (¬ f f)%fol.
    + +
    +Lemma orE (T : System) (f g h : Formula):
    SysPrf T (f g)%fol
    SysPrf T (f h)%fol SysPrf T (g h)%fol SysPrf T h.
    + +
    +Lemma orSys (T : System) (f g h : Formula):
    SysPrf (Ensembles.Add T f) h SysPrf (Ensembles.Add T g) h
    SysPrf (Ensembles.Add T (f g)%fol) h.
    + +
    +Lemma andI (T : System) (f g : Formula):
    SysPrf T f SysPrf T g SysPrf T (f g)%fol.
    + +
    +Lemma andE1 (T : System) (f g : Formula):
    +  SysPrf T (f g)%fol SysPrf T f.
    + +
    +Lemma andE2 (T : System) (f g : Formula):
    +  SysPrf T (f g)%fol SysPrf T g.
    + +
    +Lemma iffI (T : System) (f g : Formula) :
    SysPrf T (f g)%fol SysPrf T (g f)%fol SysPrf T (f g)%fol.
    + +
    +Lemma iffE1 (T : System) (f g : Formula):
    +  SysPrf T (f g)%fol SysPrf T (f g)%fol.
    + +
    +Lemma iffE2 (T : System) (f g : Formula):
    +  SysPrf T (f g)%fol SysPrf T (g f)%fol.
    + +
    +Lemma forallI (T : System) (f : Formula) (v : nat):
    ¬ In_freeVarSys L v T SysPrf T f SysPrf T (allH v, f)%fol.
    + +
    +Lemma forallE (T : System) (f : Formula) (v : nat) (t : Term):
    SysPrf T (allH v, f)%fol SysPrf T (substF f v t).
    + +
    +Lemma forallSimp (T : System) (f : Formula) (v : nat):
    +  SysPrf T (allH v, f)%fol SysPrf T f.
    + +
    +Lemma existI (T : System) (f : Formula) (v : nat) (t : Term):
    +  SysPrf T (substF f v t) SysPrf T (exH v, f)%fol.
    + +
    +Lemma existE (T : System) (f g : Formula) (v : nat):
    ¬ In_freeVarSys L v T
    ¬ In v (freeVarF g)
    SysPrf T (exH v, f)%fol SysPrf T (f g)%fol SysPrf T g.
    + +
    +Lemma existSimp (T : System) (f : Formula) (v : nat) :
    SysPrf T f SysPrf T (exH v, f)%fol.
    + +
    +Lemma existSys (T : System) (f g : Formula) (v : nat):
    ¬ In_freeVarSys L v T
    ¬ In v (freeVarF g)
    SysPrf (Ensembles.Add T f) g
    SysPrf (Ensembles.Add T (exH v, f)%fol) g.
    + +
    +Section Not_Rules.
    + +
    +Lemma absurd1 (T : System) (f : Formula) :
    SysPrf T (f ¬f)%fol SysPrf T (¬f)%fol.
    + +
    +Lemma nImp (T : System) (f g : Formula) :
    SysPrf T (f ¬g)%fol SysPrf T (¬ (f g))%fol.
    + +
    +Lemma nOr (T : System) (f g : Formula):
    SysPrf T (¬ f ¬ g)%fol SysPrf T (¬ (f g))%fol.
    + +
    +Lemma nAnd (T : System) (f g : Formula):
    SysPrf T (¬ f ¬ g)%fol SysPrf T (¬ (f g))%fol.
    + +
    +Lemma nForall (T : System) (f : Formula) (v : nat) :
    SysPrf T (exH v, ¬ f)%fol SysPrf T (¬ (allH v, f))%fol.
    + +
    +Lemma nExist (T : System) (f : Formula) (v : nat):
    SysPrf T (allH v, ¬f)%fol SysPrf T (¬ (exH v, f))%fol.
    + +
    +End Not_Rules.
    + +
    +Section Other_Rules.
    + +
    +Lemma impRefl (T : System) (f : Formula): SysPrf T (f f)%fol.
    + +
    +Lemma impTrans (T : System) (f g h : Formula):
    SysPrf T (f g)%fol SysPrf T (g h)%fol SysPrf T (f h)%fol.
    + +
    +Lemma orSym (T : System) (f g : Formula):
    SysPrf T (f g)%fol SysPrf T (g f)%fol.
    + +
    +Lemma andSym (T : System) (f g : Formula):
    +  SysPrf T (f g)%fol SysPrf T (g f)%fol.
    + +
    +Lemma iffRefl (T : System) (f : Formula) : SysPrf T (f f)%fol.
    + +
    +Lemma iffSym (T : System) (f g : Formula) :
    +  SysPrf T (f g)%fol SysPrf T (g f)%fol.
    + +
    +Lemma iffTrans (T : System) (f g h : Formula):
    SysPrf T (f g)%fol SysPrf T (g h)%fol SysPrf T (f h)%fol.
    + +
    +End Other_Rules.
    + +
    +Lemma openClosed (T : System) (f : Formula):
    SysPrf T (close L f) SysPrf T f.
    + +
    +End Logic_Rules.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.folLogic2.html b/theories/html/hydras.Ackermann.folLogic2.html new file mode 100644 index 00000000..b78ad5c3 --- /dev/null +++ b/theories/html/hydras.Ackermann.folLogic2.html @@ -0,0 +1,107 @@ + + + + + +hydras.Ackermann.folLogic2 + + + + +
    + + + +
    + +

    Library hydras.Ackermann.folLogic2

    + +
    +
    + +
    +folLogic2.v + +
    + + Original script by Russel O'Connor + +
    + + +
    +
    + +
    +From Coq Require Import Ensembles List Arith.
    + +
    +From hydras.Ackermann Require Import ListExt folProp folProof
    +  folLogic subProp folReplace.
    +Import FolNotations.
    + +
    +Section More_Logic_Rules.
    + +
    +Variable L : Language.
    +Let Formula := Formula L.
    +Let Formulas := Formulas L.
    +Let System := System L.
    +Let Term := Term L.
    +Let Terms := Terms L.
    +Let Prf := Prf L.
    +Let SysPrf := SysPrf L.
    + +
    +Lemma rebindForall (T : System) (a b : nat) (f : Formula):
    +  ¬ In b (freeVarF (forallH a f))
    +  SysPrf T ((allH a, f)
    +              (allH b, (substF f a v#b)))%fol.
    + +
    +Lemma rebindExist (T : System) (a b : nat) (f : Formula):
    +  ¬ In b (freeVarF (existH a f))
    +  SysPrf T (iffH (existH a f) (existH b (substF f a (var b)))).
    + +
    +Lemma subSubTerm (t : Term) (v1 v2 : nat) (s1 s2 : Term):
    +  v1 v2
    +  ¬ In v1 (freeVarT s2)
    +  substT (substT t v1 s1) v2 s2 =
    +    substT (substT t v2 s2) v1 (substT s1 v2 s2).
    + +
    +Lemma subSubTerms (n : nat) (ts : Terms n) (v1 v2 : nat) (s1 s2 : Term):
    +  v1 v2
    +  ¬ In v1 (freeVarT s2)
    +  substTs (substTs ts v1 s1) v2 s2 =
    +    substTs (substTs ts v2 s2) v1 (substT s1 v2 s2).
    + +
    +Lemma subSubFormula (f : Formula) (v1 v2 : nat) (s1 s2 : Term):
    v1 v2
    ¬ In v1 (freeVarT s2)
    T : System,
    SysPrf T
    +   (iffH (substF (substF f v1 s1) v2 s2)
    +      (substF (substF f v2 s2) v1
    +         (substT s1 v2 s2))).
    + +
    +End More_Logic_Rules.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.folLogic3.html b/theories/html/hydras.Ackermann.folLogic3.html new file mode 100644 index 00000000..c32b2a64 --- /dev/null +++ b/theories/html/hydras.Ackermann.folLogic3.html @@ -0,0 +1,163 @@ + + + + + +hydras.Ackermann.folLogic3 + + + + +
    + + + +
    + +

    Library hydras.Ackermann.folLogic3

    + +
    +
    + +
    +folLogic2.3 + +
    + + Original script by Russel O'Connor + +
    + + +
    +
    + +
    +From Coq Require Import Ensembles List Arith Lia.
    +From LibHyps Require Export LibHyps.
    + +
    +From hydras.Ackermann Require Import ListExt folProp folProof.
    +From hydras.Ackermann Require Export folLogic folLogic2.
    +From hydras.Ackermann Require Import subProp folReplace subAll misc.
    +From hydras Require Import Compat815.
    +From hydras Require Export MoreLibHyps.
    +Import FolNotations.
    + +
    +Section Equality_Logic_Rules.
    + +
    +Variable L : Language.
    +Notation Formula := (Formula L) (only parsing).
    +Notation Formulas := (Formulas L) (only parsing).
    +Notation System := (System L) (only parsing).
    +Notation Term := (Term L) (only parsing).
    +Notation Terms := (Terms L) (only parsing).
    + +
    +Let Prf := Prf L.
    +Let SysPrf := SysPrf L.
    + +
    +Lemma eqRefl (T : fol.System L) (a : fol.Term L):
    +  SysPrf T (a = a)%fol.
    + +
    +Lemma eqSym (T : fol.System L) (a b : fol.Term L):
    +  SysPrf T (a = b)%fol SysPrf T (b = a)%fol.
    + +
    +Lemma eqTrans (T : fol.System L) (a b c : fol.Term L):
    SysPrf T (a = b)%fol SysPrf T (b = c)%fol
    SysPrf T (a = c)%fol.
    + +
    +Fixpoint PairwiseEqual (T : fol.System L) (n : nat) {struct n} :
    fol.Terms L n fol.Terms L n Prop :=
    +  match n return (fol.Terms L n fol.Terms L n Prop) with
    +  | Ofun ts ss : fol.Terms L 0 ⇒ True
    +  | S x
    +      fun ts ss : fol.Terms L (S x) ⇒
    +      let (a, b) := proj1_sig (consTerms L x ts) in
    +      let (c, d) := proj1_sig (consTerms L x ss) in
    +      SysPrf T (a = c)%fol PairwiseEqual T x b d
    +  end.
    + +
    +
    + +
    +TODO : specify and document +
    +
    + +
    +Let termsMap (m : nat) (ts ss : fol.Terms L m) : nat fol.Term L.
    + +
    +Remark subAllnVars1 (a : nat) (ts ss : fol.Terms L a):
    ts = subAllTerms L _ (fst (nVars L a)) (termsMap a ts ss).
    + +
    +Remark subAllnVars2 (a : nat) (ts ss : fol.Terms L a):
    ss = subAllTerms L _ (snd (nVars L a)) (termsMap a ts ss).
    +    Opaque eq_nat_dec.
    +    Transparent eq_nat_dec.
    + +
    +Remark addPairwiseEquals (T : fol.System L) (n : nat) (ts ss : fol.Terms L n):
    +  PairwiseEqual T n ts ss
    +   m0 : nat fol.Term L,
    +    ( q : nat, q < n + n m0 q = termsMap n ts ss q)
    +     f0 : fol.Formula L,
    +      SysPrf T
    +        (subAllFormula L
    +           (nat_rec (fun _ : natfol.Formula L) f0
    +              (fun (n : nat) (Hrecn : fol.Formula L) ⇒
    +                 (v#(n + n) = v#(S (n + n)) Hrecn)%fol
    +                 )
    +              n) m0) SysPrf T (subAllFormula L f0 m0).
    + +
    +Lemma equalRelation (T : fol.System L) (r : Relations L) (ts ss : fol.Terms L _):
    PairwiseEqual T _ ts ss SysPrf T (atomic r ts atomic r ss)%fol.
    + +
    +Lemma equalFunction (T : fol.System L) (f : Functions L) (ts ss : fol.Terms L _):
    PairwiseEqual T _ ts ss SysPrf T (apply f ts = apply f ss)%fol.
    + +
    +Lemma subWithEqualsTerm (a b t : fol.Term L) (v : nat)
    +  (T : fol.System L):
    SysPrf T (a = b)%fol
    SysPrf T (substT t v a = substT t v b)%fol.
    + +
    +Lemma subWithEqualsTerms (a b : fol.Term L) (n : nat) (ts : fol.Terms L n)
    +  (v : nat) (T : fol.System L):
    +  SysPrf T (a = b)%fol
    +  PairwiseEqual T _ (substTs ts v a) (substTs ts v b).
    + +
    +Lemma subWithEquals :
    +   (f : fol.Formula L) (v : nat) (a b : fol.Term L) (T : fol.System L),
    +    SysPrf T (a = b)%fol
    +    SysPrf T
    +      (substF f v a substF f v b)%fol.
    + +
    +End Equality_Logic_Rules.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.folProof.html b/theories/html/hydras.Ackermann.folProof.html new file mode 100644 index 00000000..f9e2211b --- /dev/null +++ b/theories/html/hydras.Ackermann.folProof.html @@ -0,0 +1,155 @@ + + + + + +hydras.Ackermann.folProof + + + + +
    + + + +
    + +

    Library hydras.Ackermann.folProof

    + +
    +
    + +
    +folProof.v + +
    + + Original script by Russel O'Connor + +
    + + +
    +
    + +
    +From Coq Require Import Ensembles Lists.List Arith.
    +Import ListNotations.
    + +
    +From hydras.Ackermann Require Export fol.
    +From hydras.Ackermann Require Import folProp.
    +Import FolNotations.
    + +
    +Section ProofH.
    + +
    +Variable L : Language.
    + +
    +Let Formula := Formula L.
    +Let Formulas := Formulas L.
    +Let System := System L.
    +Let Term := Term L.
    +Let Terms := Terms L.
    + +
    +Fixpoint nVars (n: nat) : Terms n × Terms n:=
    +  match n with
    +    0 ⇒ (Tnil, Tnil)
    +  | S n0
    +      (let (a,b) := nVars n0 in
    +       (Tcons (var (n0 + n0)) a,
    +         Tcons (var (S (n0 + n0))) b))
    +  end.
    + +
    +Section Example.
    +End Example.
    + +
    +Definition AxmEq4 (R : Relations L) : Formula.
    + +
    +
    + +
    +TODO : An example in PA +
    +
    + +
    +Definition AxmEq5 (f : Functions L) : Formula.
    + +
    +Inductive Prf : Formulas Formula Set :=
    +| AXM : A : Formula, Prf [A] A
    +| MP :
    +   (Hyp1 Hyp2 : Formulas) (A B : Formula),
    +    Prf Hyp1 (A B)%fol Prf Hyp2 A Prf (Hyp1 ++ Hyp2) B
    +| GEN :
    +   (Hyp : Formulas) (A : Formula) (v : nat),
    +    ¬ In v (freeVarListFormula L Hyp) Prf Hyp A
    +    Prf Hyp (allH v, A)%fol
    +| IMP1 : A B : Formula, Prf [] (A B A)%fol
    +| IMP2 :
    +   A B C : Formula,
    +    Prf [] ((A B C) (A B) A C)%fol
    +| CP :
    +   A B : Formula,
    +    Prf [] ((¬ A ¬ B) B A)%fol
    +| FA1 :
    +   (A : Formula) (v : nat) (t : Term),
    +    Prf [] ((allH v, A) substF A v t)%fol
    +| FA2 :
    +   (A : Formula) (v : nat),
    +    ¬ In v (freeVarF A) Prf [] (A allH v, A)%fol
    +| FA3 :
    +   (A B : Formula) (v : nat),
    +    Prf []
    +      ((allH v, A B) (allH v, A) allH v, B)%fol
    +| EQ1 : Prf [] (v#0 = v#0)%fol
    +| EQ2 : Prf [] (v#0 = v#1 v#1 = v#0)%fol
    +| EQ3 : Prf [] (v#0 = v#1 v#1 = v#2 v#0 = v#2)%fol
    +| EQ4 : R : Relations L, Prf [] (AxmEq4 R)
    +| EQ5 : f : Functions L, Prf [] (AxmEq5 f).
    + +
    +Definition SysPrf (T : System) (f : Formula) :=
    +   Hyp : Formulas,
    +    ( prf : Prf Hyp f,
    +       ( g : Formula, In g Hyp mem _ T g)).
    + +
    +Definition Inconsistent (T : System) := f : Formula, SysPrf T f.
    + +
    +Definition Consistent (T : System) := f : Formula, ¬ SysPrf T f.
    + +
    +Definition independent T f := ¬ SysPrf T f ¬ SysPrf T (¬ f)%fol.
    + +
    +End ProofH.
    + +
    +Arguments independent {L} _ _.
    + +
    +Notation undecidable := (independent) (only parsing).
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.folProp.html b/theories/html/hydras.Ackermann.folProp.html new file mode 100644 index 00000000..70a78450 --- /dev/null +++ b/theories/html/hydras.Ackermann.folProp.html @@ -0,0 +1,574 @@ + + + + + +hydras.Ackermann.folProp + + + + +
    + + + +
    + +

    Library hydras.Ackermann.folProp

    + +
    +From Coq Require Import Wf_nat Arith Lists.List Peano_dec.
    + +
    +From hydras.Ackermann Require Import ListExt.
    +From hydras.Ackermann Require Export fol.
    +Import FolNotations.
    + +
    +Section Fol_Properties.
    + +
    +Variable L : Language.
    + +
    +Notation Formula := (Formula L) (only parsing).
    +Notation Formulas := (Formulas L) (only parsing).
    +Notation System := (System L) (only parsing).
    +Notation Term := (Term L) (only parsing).
    +Notation Terms := (Terms L) (only parsing).
    + +
    +Let lt_depth := lt_depth L.
    + +
    +Section Free_Variables.
    +Fixpoint freeVarT (s : fol.Term L) : list nat :=
    +  match s with
    +  | var vv :: nil
    +  | apply f tsfreeVarTs (arityF L f) ts
    +  end
    +with freeVarTs (n : nat) (ss : fol.Terms L n) {struct ss} : list nat :=
    +       match ss with
    +       | Tnilnil (A:=nat)
    +       | Tcons m t tsfreeVarT t ++ freeVarTs m ts
    +       end.
    + +
    +Lemma freeVarTApply :
    +   (f : Functions L) (ts : fol.Terms L _),
    +    freeVarT (apply f ts) = freeVarTs _ ts.
    + +
    +Fixpoint freeVarF (A : fol.Formula L) : list nat :=
    +  match A with
    +  | equal t sfreeVarT t ++ freeVarT s
    +  | atomic r tsfreeVarTs _ ts
    +  | impH A BfreeVarF A ++ freeVarF B
    +  | notH AfreeVarF A
    +  | forallH v Aremove eq_nat_dec v (freeVarF A)
    +  end.
    + +
    +Definition ClosedSystem (T : fol.System L) :=
    +   (v : nat) (f : fol.Formula L),
    +    mem _ T f ¬ In v (freeVarF f).
    + +
    +Definition closed (a : fol.Formula L):=
    +   v: nat, ¬ In v (freeVarF a).
    + +
    +Fixpoint closeList (l: list nat)(a : fol.Formula L) :=
    match l with
    +   nila
    +| cons v lf[ v, {closeList l a} ]f
    +end.
    + +
    +Definition close (x : fol.Formula L) : fol.Formula L :=
    +  closeList (nodup eq_nat_dec (freeVarF x)) x.
    + +
    +Lemma freeVarClosedList1 :
    +   (l : list nat) (v : nat) (x : fol.Formula L),
    +    In v l ¬ In v (freeVarF (closeList l x)).
    + +
    +Lemma freeVarClosedList2 :
    +   (l : list nat) (v : nat) (x : fol.Formula L),
    +    In v (freeVarF (closeList l x))
    +    In v (freeVarF x).
    + +
    +Lemma freeVarClosed :
    +   (x : fol.Formula L) (v : nat), ¬ In v (freeVarF (close x)).
    + +
    +Fixpoint freeVarListFormula (l : fol.Formulas L) : list nat :=
    +  match l with
    +  | nilnil (A:=nat)
    +  | f :: lfreeVarF f ++ freeVarListFormula l
    +  end.
    + +
    +Lemma freeVarListFormulaApp :
    +   a b : fol.Formulas L,
    +    freeVarListFormula (a ++ b) =
    +      freeVarListFormula a ++ freeVarListFormula b.
    + +
    +Lemma In_freeVarListFormula :
    +   (v : nat) (f : fol.Formula L) (F : fol.Formulas L),
    +    In v (freeVarF f) In f F In v (freeVarListFormula F).
    + +
    +Lemma In_freeVarListFormulaE :
    +   (v : nat) (F : fol.Formulas L),
    +    In v (freeVarListFormula F)
    +     f : fol.Formula L, In v (freeVarF f) In f F.
    + +
    +Definition In_freeVarSys (v : nat) (T : fol.System L) :=
    +   f : fol.Formula L, In v (freeVarF f) mem _ T f.
    + +
    +Lemma notInFreeVarSys :
    +   x, ¬ In_freeVarSys x (Ensembles.Empty_set (fol.Formula L)).
    + +
    +End Free_Variables.
    + +
    +Section Substitution.
    + +
    + +
    +Fixpoint substT (s : fol.Term L) (x : nat)
    +  (t : fol.Term L) {struct s} : fol.Term L :=
    +  match s with
    +  | var v
    +      match eq_nat_dec x v with
    +      | left _t
    +      | right _var v
    +      end
    +  | apply f tsapply f (substTs _ ts x t)
    +  end
    +with substTs (n : nat) (ss : fol.Terms L n)
    +       (x : nat) (t : fol.Term L) {struct ss} : fol.Terms L n :=
    +       match ss in (fol.Terms _ n0) return (fol.Terms L n0) with
    +       | TnilTnil
    +       | Tcons m s ts
    +           Tcons (substT s x t) (substTs m ts x t)
    +       end.
    + +
    +Lemma subTermVar1 :
    +   (v : nat) (s : fol.Term L), substT (var v) v s = s.
    + +
    +Lemma subTermVar2 :
    +   (v x : nat) (s : fol.Term L),
    +    v x substT (var x) v s = var x.
    + +
    +Lemma subTermApply :
    +   (f : Functions L) (ts : fol.Terms L (arityF L f))
    +         (v : nat) (s : fol.Term L),
    +    substT (apply f ts) v s = apply f (substTs _ ts v s).
    + +
    +Definition newVar (l : list nat) : nat :=
    +  fold_right Nat.max 0 (map S l).
    + +
    +Lemma newVar2 : (l : list nat) (n : nat), In n l n < newVar l.
    + +
    +Lemma newVar1 : l : list nat, ¬ In (newVar l) l.
    + +
    +Definition substituteFormulaImp (f : fol.Formula L)
    +  (frec : nat × fol.Term L {y : fol.Formula L | depth L y = depth L f})
    +  (g : fol.Formula L)
    +  (grec : nat × fol.Term L {y : fol.Formula L | depth L y = depth L g})
    +  (p : nat × fol.Term L) :
    +  {y : fol.Formula L | depth L y = depth L (impH f g)} :=
    +  match frec p with
    +  | exist f' prf1
    +      match grec p with
    +      | exist g' prf2
    +          exist
    +            (fun y : fol.Formula L
    +               depth L y = S (Nat.max (depth L f) (depth L g)))
    +            (impH f' g')
    +            (eq_ind_r
    +               (fun n : nat
    +                  S (Nat.max n (depth L g')) =
    +                    S (Nat.max (depth L f) (depth L g)))
    +               (eq_ind_r
    +                  (fun n : nat
    +                     S (Nat.max (depth L f) n) =
    +                       S (Nat.max (depth L f) (depth L g)))
    +                  (refl_equal (S (Nat.max (depth L f) (depth L g))))
    +                  prf2) prf1)
    +      end
    +  end.
    + +
    +Remark substituteFormulaImpNice :
    +   (f g : fol.Formula L)
    +         (z1 z2 : nat × fol.Term L
    +                  {y : fol.Formula L | depth L y = depth L f}),
    +    ( q : nat × fol.Term L, z1 q = z2 q)
    +    
    +      z3 z4 : nat × fol.Term L
    +              {y : fol.Formula L | depth L y = depth L g},
    +      ( q : nat × fol.Term L, z3 q = z4 q)
    +       q : nat × fol.Term L,
    +        substituteFormulaImp f z1 g z3 q =
    +          substituteFormulaImp f z2 g z4 q.
    + +
    +Definition substituteFormulaNot (f : fol.Formula L)
    +  (frec : nat × fol.Term L
    +          {y : fol.Formula L | depth L y = depth L f})
    +  (p : nat × fol.Term L) :
    +  {y : fol.Formula L | depth L y = depth L (notH f)} :=
    +  match frec p with
    +  | exist f' prf1
    +      exist (fun y : fol.Formula Ldepth L y = S (depth L f))
    +        (notH f')
    +        (eq_ind_r (fun n : natS n = S (depth L f))
    +           (refl_equal (S (depth L f))) prf1)
    +  end.
    + +
    +Remark substituteFormulaNotNice :
    +   (f : fol.Formula L)
    +         (z1 z2 : nat × fol.Term L
    +                  {y : fol.Formula L | depth L y = depth L f}),
    +    ( q : nat × fol.Term L, z1 q = z2 q)
    +     q : nat × fol.Term L,
    +      substituteFormulaNot f z1 q = substituteFormulaNot f z2 q.
    + +
    +Definition substituteFormulaForall (n : nat) (f : fol.Formula L)
    +  (frec : b : fol.Formula L,
    +      lt_depth b (forallH n f)
    +      nat × fol.Term L {y : fol.Formula L | depth L y = depth L b})
    +  (p : nat × fol.Term L) :
    +  {y : fol.Formula L | depth L y = depth L (forallH n f)} :=
    +  match p with
    +  | (v, s)
    +      match eq_nat_dec n v with
    +      | left _
    +          exist (fun y : fol.Formula Ldepth L y = S (depth L f))
    +            (forallH n f) (refl_equal (depth L (forallH n f)))
    +      | right _
    +          match In_dec eq_nat_dec n (freeVarT s) with
    +          | left _
    +              let nv := newVar (v :: freeVarT s ++ freeVarF f) in
    +              match frec f (depthForall L f n) (n, var nv) with
    +              | exist f' prf1
    +                  match
    +                    frec f'
    +                      (eqDepth L f' f (forallH n f)
    +                         (sym_eq prf1) (depthForall L f n)) p
    +                  with
    +                  | exist f'' prf2
    +                      exist
    +                        (fun y : fol.Formula Ldepth L y = S (depth L f))
    +                        (forallH nv f'')
    +                        (eq_ind_r (fun n : natS n = S (depth L f))
    +                           (refl_equal (S (depth L f)))
    +                           (trans_eq prf2 prf1))
    +                  end
    +              end
    +          | right _
    +              match frec f (depthForall L f n) p with
    +              | exist f' prf1
    +                  exist (fun y : fol.Formula Ldepth L y = S (depth L f))
    +                    (forallH n f')
    +                    (eq_ind_r (fun n : natS n = S (depth L f))
    +                       (refl_equal (S (depth L f))) prf1)
    +              end
    +          end
    +      end
    +  end.
    + +
    +Remark substituteFormulaForallNice :
    +   (v : nat) (a : fol.Formula L)
    +         (z1 z2 : b : fol.Formula L,
    +             lt_depth b (forallH v a)
    +             nat × fol.Term L {y : fol.Formula L | depth L y = depth L b}),
    +    ( (b : fol.Formula L) (q : lt_depth b (forallH v a))
    +            (r : nat × fol.Term L), z1 b q r = z2 b q r)
    +     q : nat × fol.Term L,
    +      substituteFormulaForall v a z1 q = substituteFormulaForall v a z2 q.
    +Definition substituteFormulaHelp (f : fol.Formula L)
    +  (v : nat) (s : fol.Term L) :
    +  {y : fol.Formula L | depth L y = depth L f}.
    + +
    +Definition substF (f : fol.Formula L) (v : nat) (s : fol.Term L) :
    +  fol.Formula L := proj1_sig (substituteFormulaHelp f v s).
    + +
    +Lemma subFormulaEqual :
    +   (t1 t2 : fol.Term L) (v : nat) (s : fol.Term L),
    +    substF (t1 = t2)%fol v s =
    +      (substT t1 v s = substT t2 v s)%fol.
    + +
    +Lemma subFormulaRelation :
    +   (r : Relations L) (ts : fol.Terms L (arityR L r))
    +         (v : nat) (s : fol.Term L),
    +    substF (atomic r ts) v s =
    +      atomic r (substTs (arityR L r) ts v s).
    + +
    +Lemma subFormulaImp :
    +   (f1 f2 : fol.Formula L) (v : nat) (s : fol.Term L),
    +    substF (f1 f2)%fol v s =
    +      (substF f1 v s substF f2 v s)%fol.
    + +
    +Lemma subFormulaNot :
    +   (f : fol.Formula L) (v : nat) (s : fol.Term L),
    +    substF (¬ f)%fol v s = (¬ substF f v s)%fol.
    + +
    +Lemma subFormulaForall :
    +   (f : fol.Formula L) (x v : nat) (s : fol.Term L),
    +    let nv := newVar (v :: freeVarT s ++ freeVarF f) in
    +    substF (allH x, f)%fol v s =
    +      match eq_nat_dec x v with
    +      | left _forallH x f
    +      | right _
    +          match In_dec eq_nat_dec x (freeVarT s) with
    +          | right _ ⇒ (allH x, substF f v s)%fol
    +          | left _ ⇒ (allH nv, substF (substF f x (v# nv) ) v s)%fol
    +
    +          end
    +      end.
    + +
    +Section Extensions.
    + +
    +Lemma subFormulaOr :
    +   (f1 f2 : fol.Formula L) (v : nat) (s : fol.Term L),
    +    substF (f1 f2)%fol v s =
    +      (substF f1 v s substF f2 v s)%fol.
    + +
    +Lemma subFormulaAnd :
    +   (f1 f2 : fol.Formula L) (v : nat) (s : fol.Term L),
    +    substF (f1 f2)%fol v s =
    +      (substF f1 v s substF f2 v s)%fol.
    + +
    +Lemma subFormulaExist :
    +   (f : fol.Formula L) (x v : nat) (s : fol.Term L),
    +    let nv := newVar (v :: freeVarT s ++ freeVarF f) in
    +    substF (existH x f) v s =
    +      match eq_nat_dec x v with
    +      | left _existH x f
    +      | right _
    +          match In_dec eq_nat_dec x (freeVarT s) with
    +          | right _existH x (substF f v s)
    +          | left _
    +              existH nv (substF
    +                           (substF f x (var nv)) v s)
    +          end
    +      end.
    + +
    +Lemma subFormulaIff :
    +   (f1 f2 : fol.Formula L) (v : nat) (s : fol.Term L),
    +    substF (iffH f1 f2) v s =
    +      iffH (substF f1 v s) (substF f2 v s).
    + +
    +Lemma subFormulaIfThenElse :
    +   (f1 f2 f3 : fol.Formula L) (v : nat) (s : fol.Term L),
    +    substF (ifThenElseH f1 f2 f3) v s =
    +      ifThenElseH (substF f1 v s) (substF f2 v s)
    +        (substF f3 v s).
    + +
    +End Extensions.
    + +
    +Lemma subFormulaDepth :
    +   (f : fol.Formula L) (v : nat) (s : fol.Term L),
    +    depth L (substF f v s) = depth L f.
    + +
    +Section Substitution_Properties.
    + +
    +Lemma subTermId :
    +   (t : fol.Term L) (v : nat), substT t v (var v) = t.
    + +
    +Lemma subTermsId :
    +   (n : nat) (ts : fol.Terms L n) (v : nat),
    +    substTs n ts v (var v) = ts.
    + +
    +Lemma subFormulaId :
    +   (f : fol.Formula L) (v : nat), substF f v (var v) = f.
    + +
    +Lemma subFormulaForall2 :
    +   (f : fol.Formula L) (x v : nat) (s : fol.Term L),
    +   nv : nat,
    +    ¬ In nv (freeVarT s)
    +      nv v
    +      ¬ In nv (remove eq_nat_dec x (freeVarF f))
    +      substF (forallH x f) v s =
    +        match eq_nat_dec x v with
    +        | left _forallH x f
    +        | right _
    +            forallH nv (substF (substF f x (var nv)) v s)
    +        end.
    + +
    +Lemma subFormulaExist2 :
    +   (f : fol.Formula L) (x v : nat) (s : fol.Term L),
    +   nv : nat,
    +    ¬ In nv (freeVarT s)
    +      nv v
    +      ¬ In nv (remove eq_nat_dec x (freeVarF f))
    +      substF (existH x f) v s =
    +        match eq_nat_dec x v with
    +        | left _existH x f
    +        | right _
    +            existH nv (substF (substF f x (var nv)) v s)
    +        end.
    + +
    +Lemma substExHC (A : Formula) (v x : nat)(t: Term):
    +    v x ¬ In v (freeVarT t)
    +       substF (existH v A) x t =
    +       existH v (substF A x t).
    + +
    +End Substitution_Properties.
    + +
    +End Substitution.
    + +
    +Definition Sentence (f:Formula) :=
    +   ( v : nat, ¬ In v (freeVarF f)).
    + +
    +End Fol_Properties.
    + +
    +Arguments closed {L} _.
    + +
    +#[global] Arguments substF {L} _ _.
    +#[global] Arguments substT {L} _ _.
    +#[global] Arguments substTs {L n} _ _ _ .
    +
    + +
    +compatibility with older names +
    +
    + +
    +#[deprecated(note="use substF")]
    Notation substituteFormula := substF (only parsing).
    + +
    +#[deprecated(note="use substT")]
    Notation substituteTerm := substT (only parsing).
    + +
    +#[deprecated(note="use substTs")]
    Notation substituteTerms := substTs (only parsing).
    + +
    +#[deprecated(note="use freeVarF")]
    Notation freeVarFormula := freeVarF (only parsing).
    + +
    +#[deprecated(note="use freeVarT")]
    Notation freeVarTerm := freeVarT (only parsing).
    + +
    +#[deprecated(note="use freeVarTs")]
    Notation freeVarTerms := freeVarTs (only parsing).
    + +
    +About substF.
    +Search substF.
    + +
    +
    + +
    +to replace with a single recursive custom notation ? +
    +
    + +
    +#[global] Notation substF2 e v1 t1 v2 t2 :=
    +  (substF (substF e v1 t1) v2 t2).
    + +
    +#[global] Notation substF3 e v1 t1 v2 t2 v3 t3 :=
    +  (substF (substF2 e v1 t1 v2 t2) v3 t3).
    + +
    +#[global] Notation substF4 e v1 t1 v2 t2 v3 t3 v4 t4 :=
    +  (substF (substF3 e v1 t1 v2 t2 v3 t3) v4 t4).
    + +
    +#[global] Notation substF5 e v1 t1 v2 t2 v3 t3 v4 t4 v5 t5 :=
    +  (substF (substF4 e v1 t1 v2 t2 v3 t3 v4 t4) v5 t5).
    + +
    +#[global] Notation substF6 e v1 t1 v2 t2 v3 t3 v4 t4 v5 t5 v6 t6 :=
    +  (substF (substF5 e v1 t1 v2 t2 v3 t3 v4 t4 v5 t5) v6 t6).
    + +
    +#[global] Notation substF7 e v1 t1 v2 t2 v3 t3 v4 t4 v5 t5 v6 t6 v7 t7:=
    +  (substF (substF6 e v1 t1 v2 t2 v3 t3 v4 t4 v5 t5 v6 t6) v7 t7).
    + +
    +#[global] Notation
    +  substF8 e v1 t1 v2 t2 v3 t3 v4 t4 v5 t5 v6 t6 v7 t7 v8 t8 :=
    +  (substF2 (substF6 e v1 t1 v2 t2 v3 t3 v4 t4 v5 t5 v6 t6)
    +     v7 t7 v8 t8).
    + +
    +#[global] Notation
    +  substF9 e v1 t1 v2 t2 v3 t3 v4 t4 v5 t5 v6 t6 v7 t7 v8 t8 v9 t9:=
    +  (substF3 (substF6 e v1 t1 v2 t2 v3 t3 v4 t4 v5 t5 v6 t6)
    +     v7 t7 v8 t8 v9 t9).
    + +
    +#[global] Arguments freeVarF {L} _.
    +#[global] Arguments freeVarT {L} _.
    +#[global] Arguments freeVarTs {L n} _.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.folReplace.html b/theories/html/hydras.Ackermann.folReplace.html new file mode 100644 index 00000000..f050472a --- /dev/null +++ b/theories/html/hydras.Ackermann.folReplace.html @@ -0,0 +1,117 @@ + + + + + +hydras.Ackermann.folReplace + + + + +
    + + + +
    + +

    Library hydras.Ackermann.folReplace

    + +
    +From Coq Require Import Ensembles Lists.List Peano_dec.
    + +
    +From hydras.Ackermann
    +  Require Import ListExt folProof folLogic folProp.
    + +
    +Section Replacement.
    + +
    +Variable L : Language.
    +Let Formula := Formula L.
    +Let Formulas := Formulas L.
    +Let System := System L.
    +Let Term := Term L.
    +Let Terms := Terms L.
    +Let SysPrf := SysPrf L.
    + +
    +Lemma reduceImp :
    +   (f1 f2 f3 f4 : Formula) (T : System),
    +    SysPrf T (iffH f1 f3)
    +    SysPrf T (iffH f2 f4)
    +    SysPrf T (iffH (impH f1 f2) (impH f3 f4)).
    + +
    +Lemma reduceNot (f1 f2 : Formula) (T : System):
    SysPrf T (iffH f1 f2) SysPrf T (iffH (notH f1) (notH f2)).
    + +
    +Lemma impForall (f1 f2 : Formula) (v : nat) (T : System):
    +  ¬ In_freeVarSys _ v T
    +  SysPrf T (impH f1 f2) SysPrf T (impH (forallH v f1) (forallH v f2)).
    + +
    +Lemma reduceForall (f1 f2 : Formula) (v : nat) (T : System):
    ¬ In_freeVarSys _ v T
    SysPrf T (iffH f1 f2) SysPrf T (iffH (forallH v f1) (forallH v f2)).
    + +
    +Lemma reduceOr (f1 f2 f3 f4 : Formula) (T : System):
    SysPrf T (iffH f1 f3)
    SysPrf T (iffH f2 f4) SysPrf T (iffH (orH f1 f2) (orH f3 f4)).
    + +
    +Lemma reduceAnd (f1 f2 f3 f4 : Formula) (T : System):
    +    SysPrf T (iffH f1 f3)
    +    SysPrf T (iffH f2 f4) SysPrf T (iffH (andH f1 f2) (andH f3 f4)).
    + +
    +Lemma iffExist (f1 f2 : Formula) (v : nat) (T : System):
    ¬ In_freeVarSys _ v T
    SysPrf T (impH f1 f2) SysPrf T (impH (existH v f1) (existH v f2)).
    + +
    +Lemma reduceExist (f1 f2 : Formula) (v : nat) (T : System):
    +  ¬ In_freeVarSys _ v T
    +  SysPrf T (iffH f1 f2) SysPrf T (iffH (existH v f1) (existH v f2)).
    + +
    +Lemma reduceIff (f1 f2 f3 f4 : Formula) (T : System):
    SysPrf T (iffH f1 f3)
    SysPrf T (iffH f2 f4) SysPrf T (iffH (iffH f1 f2) (iffH f3 f4)).
    + +
    +Lemma reduceIfThenElse (f1 f2 f3 f4 f5 f6 : Formula) (T : System):
    SysPrf T (iffH f1 f4)
    SysPrf T (iffH f2 f5)
    SysPrf T (iffH f3 f6)
    SysPrf T (iffH (ifThenElseH f1 f2 f3) (ifThenElseH f4 f5 f6)).
    + +
    +Lemma reduceSub (T : System) (v : nat) (s : Term) (f g : Formula):
    ¬ In_freeVarSys L v T
    SysPrf T (iffH f g)
    SysPrf T (iffH (substF f v s) (substF g v s)).
    + +
    +Lemma reduceCloseList (l : list nat) (f1 f2 : Formula) (T : System):
    ( v : nat, In v l ¬ In_freeVarSys _ v T)
    SysPrf T (iffH f1 f2)
    SysPrf T (iffH (closeList L l f1) (closeList L l f2)).
    + +
    +End Replacement.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.misc.html b/theories/html/hydras.Ackermann.misc.html new file mode 100644 index 00000000..7b3f2b23 --- /dev/null +++ b/theories/html/hydras.Ackermann.misc.html @@ -0,0 +1,38 @@ + + + + + +hydras.Ackermann.misc + + + + +
    + + + +
    + +

    Library hydras.Ackermann.misc

    + +
    +From Coq Require Export Eqdep_dec.
    + +
    +#[global] Set Asymmetric Patterns.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.model.html b/theories/html/hydras.Ackermann.model.html new file mode 100644 index 00000000..b46a5c7a --- /dev/null +++ b/theories/html/hydras.Ackermann.model.html @@ -0,0 +1,223 @@ + + + + + +hydras.Ackermann.model + + + + +
    + + + +
    + +

    Library hydras.Ackermann.model

    + +
    +
    + +
    +model.v : + +
    + + Original script by Russel O'Connor + +
    +
    + +
    +From Coq Require Import Ensembles List Vector Arith.
    + +
    +From hydras.Ackermann Require Import ListExt folProof folProp.
    +From Coq Require Import Peano_dec.
    +From hydras.Ackermann Require Import misc.
    +Import FolNotations.
    +From hydras.Ackermann Require Import NewNotations.
    + +
    +Section Model_Theory.
    + +
    +Variable L : Language.
    + +
    +Fixpoint naryFunc (A : Set) (n : nat) {struct n} : Set :=
    +  match n with
    +  | OA
    +  | S mA naryFunc A m
    +  end.
    + +
    +Fixpoint naryRel (A : Set) (n : nat) {struct n} : Type :=
    +  match n with
    +  | OProp
    +  | S mA naryRel A m
    +  end.
    + +
    +Record Model : Type := model
    +  {U : Set;
    +   func : f : Functions L, naryFunc U (arityF L f);
    +   rel : r : Relations L, naryRel U (arityR L r)}.
    + +
    +Variable M : Model.
    + +
    +Fixpoint interpTerm (value : nat U M) (t : Term L) {struct t} :
    U M :=
    +  match t with
    +  | var vvalue v
    +  | apply f tsinterpTerms _ (func M f) value ts
    +  end

    with interpTerms (m : nat) (f : naryFunc (U M) m)
    + (value : nat U M) (ts : Terms L m) {struct ts} :
    U M :=
    +  match ts in (Terms _ n) return (naryFunc (U M) n U M) with
    +  | Tnilfun ff
    +  | Tcons m t tsfun finterpTerms m (f (interpTerm value t)) value ts
    +  end f.
    + +
    +Fixpoint interpRels (m : nat) (r : naryRel (U M) m)
    + (value : nat U M) (ts : Terms L m) {struct ts} : Prop :=
    +  match ts in (Terms _ n) return (naryRel (U M) n Prop) with
    +  | Tnilfun rr
    +  | Tcons m t tsfun rinterpRels m (r (interpTerm value t)) value ts
    +  end r.
    + +
    +Definition updateValue (value : nat U M) (n : nat)
    +  (v : U M) (x : nat) : U M :=
    +  match eq_nat_dec n x with
    +  | left _v
    +  | right _value x
    +  end.
    + +
    +Fixpoint interpFormula (value : nat U M) (f : Formula L) {struct f} :
    Prop :=
    +  match f with
    +  | equal t sinterpTerm value t = interpTerm value s
    +  | atomic r tsinterpRels _ (rel M r) value ts
    +  | impH A BinterpFormula value A interpFormula value B
    +  | notH AinterpFormula value A False
    +  | forallH v A x : U M, interpFormula (updateValue value v x) A
    +  end.
    + +
    +Lemma freeVarInterpTerm (v1 v2 : nat U M) (t : Term L):
    ( x : nat, List.In x (freeVarT t) v1 x = v2 x)
    interpTerm v1 t = interpTerm v2 t.
    + +
    +Lemma freeVarInterpRel (v1 v2 : nat U M) (n : nat)
    +  (ts : Terms L n) (r : naryRel (U M) n):
    +  ( x : nat, List.In x (freeVarTs ts) v1 x = v2 x)
    +  interpRels n r v1 ts interpRels n r v2 ts.
    + +
    +Lemma freeVarInterpFormula (v1 v2 : nat U M) (g : Formula L):
    ( x : nat, List.In x (freeVarF g) v1 x = v2 x)
    interpFormula v1 g interpFormula v2 g.
    + +
    +Lemma subInterpTerm (value : nat U M) (t : Term L) (v : nat) (s : Term L):
    interpTerm (updateValue value v (interpTerm value s)) t =
    interpTerm value (substT t v s).
    + +
    +Lemma subInterpRel (value : nat U M) (n : nat) (ts : Terms L n)
    +  (v : nat) (s : Term L) (r : naryRel (U M) n):
    +  interpRels n r (updateValue value v (interpTerm value s)) ts
    +    interpRels n r value (substTs ts v s).
    + +
    +Lemma subInterpFormula :
    (value : nat U M) (f : Formula L) (v : nat) (s : Term L),
    interpFormula (updateValue value v (interpTerm value s)) f
    interpFormula value (substF f v s).
    + +
    +Lemma subInterpFormula1 (value : nat U M) (f : Formula L) (v : nat) (s : Term L):
    interpFormula (updateValue value v (interpTerm value s)) f
    interpFormula value (substF f v s).
    + +
    +Lemma subInterpFormula2 (value : nat U M) (f : Formula L) (v : nat) (s : Term L):
    +  interpFormula value (substF f v s)
    +  interpFormula (updateValue value v (interpTerm value s)) f.
    + +
    +Fixpoint nnHelp (f : Formula L) : Formula L :=
    +  match f with
    +  | equal t sequal t s
    +  | atomic r tsatomic r ts
    +  | impH A BimpH (nnHelp A) (nnHelp B)
    +  | notH AnotH (nnHelp A)
    +  | forallH v A ⇒ (allH v, ¬ ¬ nnHelp A)%fol
    +  end.
    + +
    +Definition nnTranslate (f : Formula L) : Formula L :=
    +  notH (notH (nnHelp f)).
    + +
    +Lemma freeVarNNHelp (f : Formula L): freeVarF f = freeVarF (nnHelp f).
    + +
    +Lemma subNNHelp :
    (f : Formula L) (v : nat) (s : Term L),
    substF (nnHelp f) v s = nnHelp (substF f v s).
    + +
    +Section Consistent_Theory.
    + +
    +  Variable T : System L.
    + +
    +  Fixpoint interpTermsVector (value : nat U M) (n : nat)
    +    (ts : Terms L n) {struct ts} : Vector.t (U M) n :=
    +    match ts in (Terms _ n) return (Vector.t (U M) n) with
    +    | TnilVector.nil (U M)
    +    | Tcons m t ts
    +        Vector.cons (U M) (interpTerm value t) m (interpTermsVector value m ts)
    +    end.
    + +
    +Lemma preserveValue (value : nat U M):
    ( f : Formula L,
    +  mem _ T f interpFormula value (nnTranslate f))
    g : Formula L, SysPrf L T g interpFormula value (nnTranslate g).
    + +
    +Lemma ModelConsistent (value : nat U M):
    +  ( f : Formula L,
    +      mem _ T f interpFormula value (nnTranslate f))
    +  Consistent L T.
    + +
    +End Consistent_Theory.
    + +
    +End Model_Theory.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.prLogic.html b/theories/html/hydras.Ackermann.prLogic.html new file mode 100644 index 00000000..363c0f05 --- /dev/null +++ b/theories/html/hydras.Ackermann.prLogic.html @@ -0,0 +1,60 @@ + + + + + +hydras.Ackermann.prLogic + + + + +
    + + + +
    + +

    Library hydras.Ackermann.prLogic

    + +
    +
    + +
    +prLogic.v + +
    + + Original script by Russel O'Connor + +
    + + Although this module doesn't depend on FOL, the following lemmas + are JUST helpers to prove that the encoding of basic FOL connectives are PR +
    +
    + +
    +From hydras.Ackermann Require Import primRec code cPair.
    +From Coq Require Import Arith.
    + +
    +Lemma codeForallIsPR : isPR 2 (fun a b : natcPair 3 (cPair a b)).
    + +
    +#[export] Instance codeNotIsPR : isPR 1 codeNot.
    + +
    +#[export] Instance codeImpIsPR : isPR 2 codeImp.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.primRec.html b/theories/html/hydras.Ackermann.primRec.html new file mode 100644 index 00000000..62b663ea --- /dev/null +++ b/theories/html/hydras.Ackermann.primRec.html @@ -0,0 +1,938 @@ + + + + + +hydras.Ackermann.primRec + + + + +
    + + + +
    + +

    Library hydras.Ackermann.primRec

    + +
    +
    + +
    +Primitive Recursive functions Russel O'Connor +
    +
    + +
    +From Coq Require Import Arith Peano_dec Compare_dec List Eqdep_dec Utf8.
    +From hydras Require Import extEqualNat misc Compat815.
    +From Coq Require Vector Bool EqNat.
    +From Coq Require Import Lia.
    + +
    +
    + +
    +

    Definitions

    + +
    + + PrimRec n : data type of primitive recursive functions of arity n + PrimRec n m : m-tuples of PrimRec n +
    +
    + +
    + +
    +Inductive PrimRec : nat Set :=
    +  | succFunc : PrimRec 1
    +  | zeroFunc : PrimRec 0
    +  | projFunc : n m : nat, m < n PrimRec n
    +  | composeFunc :
    +       (n m : nat) (g : PrimRecs n m) (h : PrimRec m),
    +        PrimRec n
    +  | primRecFunc :
    +       (n : nat) (g : PrimRec n) (h : PrimRec (S (S n))),
    +        PrimRec (S n)
    +with PrimRecs : nat nat Set :=
    +  | PRnil : n : nat, PrimRecs n 0
    +  | PRcons : n m : nat, PrimRec n PrimRecs n m
    +                               PrimRecs n (S m).
    + +
    + +
    +  Notation "f '=x=' g" := (extEqual _ f g) (at level 70, no associativity).
    + +
    + +
    +  Module PRNotations.
    +    Declare Scope pr_scope.
    +    Delimit Scope pr_scope with pr.
    +    Notation "h :: t" := (PRcons _ _ h t) (at level 60, right associativity)
    +        : pr_scope.
    +    Notation "[ x ]" := (PRcons _ _ x (PRnil _)) : pr_scope.
    + +
    +    Notation "[ x ; y ; .. ; z ]" :=
    +      (PRcons _ _ x (PRcons _ _ y .. (PRcons _ _ z (PRnil _)) ..)) : pr_scope.
    + +
    +    Notation PRcomp f v := (composeFunc _ _ v f).
    + +
    +    Notation PRrec f0 fS := (primRecFunc _ f0 fS).
    + +
    +
    + +
    +Popular projections +
    +
    +    Notation pi1_1 := (projFunc 1 0 (le_n 1)).
    + +
    +    Notation pi1_2 := (projFunc 2 1 (le_n 2)).
    +    Notation pi2_2 := (projFunc 2 0 (le_S 1 1 (le_n 1))).
    + +
    +    Notation pi1_3 := (projFunc 3 2 (le_n 3)).
    +    Notation pi2_3 := (projFunc 3 1 (le_S 2 2 (le_n 2))).
    +    Notation pi3_3 := (projFunc 3 0 (le_S 1 2 (le_S 1 1 (le_n 1)))).
    + +
    +  End PRNotations.
    + +
    + +
    +Import PRNotations.
    + +
    +Scheme PrimRec_PrimRecs_rec := Induction for PrimRec Sort Set
    +  with PrimRecs_PrimRec_rec := Induction for PrimRecs Sort Set.
    + +
    +Arguments PrimRec_PrimRecs_rec P P0 : rename.
    +Arguments PrimRecs_PrimRec_rec P P0 : rename.
    + +
    + +
    +Scheme PrimRec_PrimRecs_ind := Induction for PrimRec Sort Prop
    +    with PrimRecs_PrimRec_ind := Induction for PrimRecs Sort Prop.
    + +
    +Arguments PrimRec_PrimRecs_ind P P0 : rename.
    +Arguments PrimRecs_PrimRec_ind P P0 : rename.
    + +
    +Check PrimRec_PrimRecs_ind.
    + +
    +
    + +
    +

    Semantics

    + +
    + +

    Constants

    + +
    +
    + +
    +Fixpoint evalConstFunc (n m : nat) {struct n} : naryFunc n :=
    +  match n return (naryFunc n) with
    +  | Om
    +  | S n'fun _evalConstFunc n' m
    +  end.
    + +
    +
    + +
    +

    Projections

    + + The parameters are numbered in opposite order. + So proj(2,0)(a,b) = b. +
    +
    + +
    +Fixpoint evalProjFunc (n : nat) :
    +   m : nat, m < n naryFunc n :=
    +  match n return ( m : nat, m < n naryFunc n) with
    +  | Ofun (m : nat) (l : m < 0) ⇒ False_rec _ (Nat.nlt_0_r _ l)
    +  | S n'
    +      fun (m : nat) (l : m < S n') ⇒
    +      match eq_nat_dec m n' with
    +      | left _fun a : natevalConstFunc _ a
    +      | right l1
    +          fun _
    +          evalProjFunc n' m
    +            match Compat815.le_lt_or_eq _ _
    +                    (Compat815.lt_n_Sm_le _ _ l) with
    +            | or_introl l2l2
    +            | or_intror l2False_ind _ (l1 l2)
    +            end
    +      end
    +  end.
    + +
    +
    + +
    +Irrelevance of the proof that m < n +
    +
    + +
    +Lemma evalProjFuncInd :
    (n m : nat) (p1 p2 : m < n),
    evalProjFunc n m p1 = evalProjFunc n m p2.
    + +
    +
    + +
    + Applies an m-ary function to the vector l +
    +
    + +
    + +
    +Fixpoint evalList (m : nat) (l : Vector.t nat m) {struct l} :
    +  naryFunc m nat :=
    +  match l in (Vector.t _ m) return (naryFunc m nat) with
    +  | Vector.nilfun x : naryFunc 0 ⇒ x
    +  | Vector.cons a n l'
    +    fun x : naryFunc (S n) ⇒ evalList n l' (x a)
    +  end.
    + +
    + +
    +Fixpoint evalOneParamList (n m a : nat) (l : Vector.t (naryFunc (S n)) m)
    + {struct l} : Vector.t (naryFunc n) m :=
    +  match l in (Vector.t _ m) return (Vector.t (naryFunc n) m) with
    +  | Vector.nilVector.nil (naryFunc n)
    +  | Vector.cons f m' l'
    +      Vector.cons _ (f a) m' (evalOneParamList n m' a l')
    +  end.
    + +
    +
    + +
    +

    Function composition

    + +
    +
    + +
    +Fixpoint evalComposeFunc (n : nat) :
    +   m : nat,
    +    Vector.t (naryFunc n) m naryFunc m naryFunc n :=
    +  match
    +    n
    +    return
    +    ( m : nat,
    +        Vector.t (naryFunc n) m naryFunc m naryFunc n)
    +  with
    +  | OevalList
    +  | S n'
    +      fun (m : nat) (l : Vector.t (naryFunc (S n')) m)
    +          (f : naryFunc m) (a : nat) ⇒
    +        evalComposeFunc n' m (evalOneParamList _ _ a l) f
    +  end.
    + +
    +Fixpoint compose2 (n : nat) :
    +  naryFunc n naryFunc (S n) naryFunc n :=
    +  match n return (naryFunc n naryFunc (S n) naryFunc n) with
    +  | Ofun (a : nat) (g : nat nat) ⇒ g a
    +  | S n'
    +      fun (f : naryFunc (S n')) (g : naryFunc (S (S n'))) (a : nat) ⇒
    +        compose2 n' (f a) (fun x : natg x a)
    +  end.
    + +
    +
    + +
    +

    Primitive recursion

    + +
    +
    + +
    +Fixpoint evalPrimRecFunc (n : nat) (g : naryFunc n)
    + (h : naryFunc (S (S n))) (a : nat) {struct a} : naryFunc n :=
    +  match a with
    +  | Og
    +  | S a'compose2 _ (evalPrimRecFunc n g h a') (h a')
    +  end.
    + +
    +
    + +
    + The interpretation function +
    +
    + +
    + +
    +Fixpoint evalPrimRec (n : nat) (f : PrimRec n) {struct f} :
    naryFunc n :=
    +  match f in (PrimRec n) return (naryFunc n) with
    +  | succFuncS
    +  | zeroFunc ⇒ 0
    +  | projFunc n m pfevalProjFunc n m pf
    +  | composeFunc n m l f
    +      evalComposeFunc n m (evalPrimRecs _ _ l) (evalPrimRec _ f)
    +  | primRecFunc n g h
    +      evalPrimRecFunc n (evalPrimRec _ g) (evalPrimRec _ h)
    +  end

    with evalPrimRecs (n m : nat) (fs : PrimRecs n m) {struct fs} :
    Vector.t (naryFunc n) m :=
    +  match fs in (PrimRecs n m) return (Vector.t (naryFunc n) m) with
    +  | PRnil aVector.nil (naryFunc a)
    +  | PRcons a b g gs
    +    Vector.cons _ (evalPrimRec _ g) _ (evalPrimRecs _ _ gs)
    +  end.
    + +
    +Notation PReval f := (evalPrimRec _ f).
    +Notation PRevalN fs := (evalPrimRecs _ _ fs).
    + +
    + +
    +Definition extEqualVectorGeneral (n m : nat) (l : Vector.t (naryFunc n) m) :
    +   (m' : nat) (l' : Vector.t (naryFunc n) m'), Prop.
    +Defined.
    + +
    +
    + +
    +Every element of l is extensionally equal to the element of l' at the same position +
    +
    + +
    +Definition extEqualVector n:
    +   m (l l' : Vector.t (naryFunc n) m), Prop.
    + +
    +Lemma extEqualVectorRefl (n m: nat):
    +   (l : Vector.t (naryFunc n) m), extEqualVector n m l l.
    + +
    +Lemma extEqualOneParamList :
    +   (n m : nat) (l1 l2 : Vector.t (naryFunc (S n)) m) (c : nat),
    +    extEqualVector (S n) m l1 l2
    +    extEqualVector n m (evalOneParamList n m c l1)
    +      (evalOneParamList n m c l2).
    + +
    +Lemma extEqualCompose :
    +   (n m : nat) (l1 l2 : Vector.t (naryFunc n) m)
    +         (f1 f2 : naryFunc m),
    +    extEqualVector n m l1 l2
    +    f1 =x= f2
    +    evalComposeFunc n m l1 f1 =x= evalComposeFunc n m l2 f2.
    + +
    +Lemma extEqualCompose2 :
    +   (n : nat) (f1 f2 : naryFunc n),
    +     f1 =x= f2
    +     g1 g2 : naryFunc (S n),
    +       g1 =x= g2
    +       compose2 n f1 g1 =x= compose2 n f2 g2.
    + +
    +Lemma extEqualPrimRec :
    +   (n : nat) (g1 g2 : naryFunc n) (h1 h2 : naryFunc (S (S n))),
    +     g1 =x= g2 h1 =x= h2
    +       (evalPrimRecFunc n g1 h1: naryFunc (S n)) =x=
    +         evalPrimRecFunc n g2 h2.
    + +
    +
    + +
    +

    Predicates "to be primitive recursive"

    + +
    +
    + +
    +Class isPR (n : nat) (f : naryFunc n) : Set :=
    +  is_pr : {p : PrimRec n | extEqual n (PReval p) f}.
    + +
    +Definition fun2PR {n:nat}(f: naryFunc n)
    +  {p: isPR _ f}: PrimRec n := proj1_sig p.
    + +
    +Class isPRrel (n : nat) (R : naryRel n) : Set :=
    +  is_pr_rel: isPR n (charFunction n R).
    + +
    +#[export] Instance succIsPR : isPR 1 S.
    + +
    +#[export] Instance const0_NIsPR (n:nat): isPR 0 n.
    + +
    +#[export] Instance const1_NIsPR n: isPR 1 (fun _n).
    + +
    +
    + +
    +

    Usual projections (in curried form) are primitive recursive

    + +
    +
    + +
    +#[export] Instance idIsPR : isPR 1 (fun x : natx).
    + +
    +#[export] Instance pi1_2IsPR : isPR 2 (fun a b : nata).
    + +
    +#[export] Instance pi2_2IsPR : isPR 2 (fun a b : natb).
    + +
    +#[export] Instance pi1_3IsPR : isPR 3 (fun a b c : nata).
    + +
    +#[export] Instance pi2_3IsPR : isPR 3 (fun a b c : natb).
    + +
    +#[export] Instance pi3_3IsPR : isPR 3 (fun a b c : natc).
    + +
    +#[export] Instance pi1_4IsPR : isPR 4 (fun a b c d : nata).
    + +
    +#[export] Instance pi2_4IsPR : isPR 4 (fun a b c d : natb).
    + +
    +#[export] Instance pi3_4IsPR : isPR 4 (fun a b c d : natc).
    + +
    +#[export] Instance pi4_4IsPR : isPR 4 (fun a b c d : natd).
    + +
    +
    + +
    +

    Composition lemmas

    + +
    +
    + +
    +#[export] Instance filter01IsPR (g : nat nat) (H : isPR 1 g):
    +  isPR 2 (fun a b : natg b).
    + +
    +#[export] Instance filter10IsPR (g : nat nat) (H: isPR 1 g):
    +  isPR 2 (fun a b : natg a).
    + +
    +#[export] Instance filter100IsPR(g : nat nat)(H: isPR 1 g) :
    +  isPR 3 (fun a b c : natg a).
    + +
    +#[export] Instance filter010IsPR (g : nat nat)(H: isPR 1 g):
    +  isPR 3 (fun a b c : natg b).
    + +
    +#[export] Instance filter001IsPR (g:nat nat)(H: isPR 1 g) :
    isPR 3 (fun a b c : natg c).
    + +
    +#[export] Instance filter011IsPR (g: nat nat nat)(H: isPR 2 g):
    +   isPR 3 (fun a b c : natg b c).
    + +
    +#[export] Instance filter110IsPR(g : nat nat nat) :
    +  isPR 2 g isPR 3 (fun a b c : natg a b).
    + +
    +#[export] Instance filter101IsPR :
    +   g : nat nat nat, isPR 2 g
    +                                isPR 3 (fun a b c : natg a c).
    + +
    +#[export] Instance filter0011IsPR (g : nat nat nat) :
    +  isPR 2 g isPR 4 (fun a b c d : natg c d).
    + +
    +#[export] Instance filter1000IsPR (g : nat nat):
    +  isPR 1 g isPR 4 (fun a b c d : natg a).
    + +
    +#[export] Instance filter1011IsPR (g : nat nat nat nat) :
    isPR 3 g isPR 4 (fun a b c d : natg a c d).
    + +
    +#[export] Instance filter1100IsPR (g : nat nat nat) :
    +  isPR 2 g isPR 4 (fun a b c d : natg a b).
    + +
    +#[export] Instance compose1_1IsPR (f : nat nat):
    +  isPR 1 f
    +   g : nat nat, isPR 1 g isPR 1 (fun x : natg (f x)).
    + +
    +#[export] Instance compose1_2IsPR :
    +   f : nat nat,
    +    isPR 1 f
    +     f' : nat nat,
    +      isPR 1 f'
    +       g : nat nat nat,
    +        isPR 2 g isPR 1 (fun x : natg (f x) (f' x)).
    + +
    +#[export] Instance compose1_3IsPR :
    f1 : nat nat,
    isPR 1 f1
    f2 : nat nat,
    isPR 1 f2
    f3 : nat nat,
    isPR 1 f3
    g : nat nat nat nat,
    isPR 3 g isPR 1 (fun x : natg (f1 x) (f2 x) (f3 x)).
    + +
    +#[export] Instance compose2_1IsPR :
    +   f : nat nat nat,
    +    isPR 2 f
    +     g : nat nat, isPR 1 g
    +                           isPR 2 (fun x y : natg (f x y)).
    + +
    +#[export] Instance compose2_2IsPR :
    f : nat nat nat,
    isPR 2 f
    g : nat nat nat,
    isPR 2 g
    h : nat nat nat,
    isPR 2 h isPR 2 (fun x y : nath (f x y) (g x y)).
    + +
    +#[export] Instance compose2_3IsPR :
    +   f1 : nat nat nat,
    +    isPR 2 f1
    +     f2 : nat nat nat,
    +      isPR 2 f2
    +       f3 : nat nat nat,
    +        isPR 2 f3
    +         g : nat nat nat nat,
    +          isPR 3 g
    +          isPR 2 (fun x y : natg (f1 x y) (f2 x y) (f3 x y)).
    + +
    +#[export] Instance compose2_4IsPR :
    f1 : nat nat nat,
    isPR 2 f1
    f2 : nat nat nat,
    isPR 2 f2
    f3 : nat nat nat,
    isPR 2 f3
    f4 : nat nat nat,
    isPR 2 f4
    g : nat nat nat nat nat,
    isPR 4 g
    isPR 2 (fun x y : natg (f1 x y) (f2 x y) (f3 x y) (f4 x y)).
    + +
    +#[export] Instance compose3_1IsPR :
    +   f : nat nat nat nat,
    +    isPR 3 f
    +     g : nat nat, isPR 1 g
    +                           isPR 3 (fun x y z : natg (f x y z)).
    + +
    +#[export] Instance compose3_2IsPR :
    +   f1 : nat nat nat nat,
    +    isPR 3 f1
    +     f2 : nat nat nat nat,
    +      isPR 3 f2
    +       g : nat nat nat,
    +        isPR 2 g isPR 3 (fun x y z : natg (f1 x y z) (f2 x y z)).
    + +
    +#[export] Instance compose3_3IsPR :
    f1 : nat nat nat nat,
    isPR 3 f1
    f2 : nat nat nat nat,
    isPR 3 f2
    f3 : nat nat nat nat,
    isPR 3 f3
    g : nat nat nat nat,
    isPR 3 g isPR 3 (fun x y z : natg (f1 x y z) (f2 x y z) (f3 x y z)).
    + +
    +#[export] Instance compose4_2IsPR :
    f1 : nat nat nat nat nat,
    isPR 4 f1
    f2 : nat nat nat nat nat,
    isPR 4 f2
    g : nat nat nat,
    isPR 2 g isPR 4 (fun w x y z : natg (f1 w x y z) (f2 w x y z)).
    + +
    +#[export] Instance compose4_3IsPR :
    f1 : nat nat nat nat nat,
    isPR 4 f1
    f2 : nat nat nat nat nat,
    isPR 4 f2
    f3 : nat nat nat nat nat,
    isPR 4 f3
    g : nat nat nat nat,
    isPR 3 g
    isPR 4 (fun w x y z : natg (f1 w x y z) (f2 w x y z) (f3 w x y z)).
    + +
    +#[export] Instance swapIsPR :
    +   f : nat nat nat, isPR 2 f isPR 2 (fun x y : natf y x).
    + +
    +#[export] Instance indIsPR :
    +   f : nat nat nat,
    +    isPR 2 f
    +     g : nat,
    +      isPR 1
    +           (fun a : natnat_rec (fun _ : natnat) g
    +                             (fun x y : natf x y) a).
    + +
    +#[export] Instance ind1ParamIsPR :
    +   f : nat nat nat nat,
    +    isPR 3 f
    +     g : nat nat,
    +      isPR 1 g
    +      isPR 2
    +           (fun a b : nat
    +              nat_rec (fun n : natnat) (g b) (fun x y : natf x y b) a).
    + +
    +#[export] Instance ind2ParamIsPR :
    +   f : nat nat nat nat nat,
    +    isPR 4 f
    +     g : nat nat nat,
    +      isPR 2 g
    +      isPR 3
    +        (fun a b c : nat
    +           nat_rec (fun n : natnat) (g b c) (fun x y : natf x y b c) a).
    + +
    +#[export] Instance plusIndIsPR : isPR 3 (fun n fn b : natS fn).
    + +
    +#[export] Instance plusIsPR : isPR 2 plus.
    + +
    +#[export] Instance multIndIsPR : isPR 3 (fun n fn b : natfn + b).
    + +
    +#[export] Instance multIsPR : isPR 2 mult.
    + +
    +#[export] Instance predIsPR : isPR 1 pred.
    + +
    +#[export] Instance minusIndIsPR : isPR 3 (fun n fn b : natpred fn).
    + +
    +#[export] Instance minusIsPR : isPR 2 minus.
    + +
    +Definition notZero (a : nat) :=
    +  nat_rec (fun n : natnat) 0 (fun x y : nat ⇒ 1) a.
    + +
    +#[export] Instance notZeroIsPR : isPR 1 notZero.
    + +
    +Definition ltBool (a b : nat) : bool :=
    +  if le_lt_dec b a then false else true.
    + +
    +Lemma ltBoolTrue : a b : nat, ltBool a b = true a < b.
    + +
    +Lemma ltBoolFalse : a b : nat, ltBool a b = false ¬ a < b.
    + +
    +#[export] Instance ltIsPR : isPRrel 2 ltBool.
    + +
    +#[export] Instance maxIsPR : isPR 2 max.
    + +
    +#[export] Instance gtIsPR : isPRrel 2 (fun a b : natltBool b a).
    + +
    +Remark replaceCompose2 :
    (n : nat) (a b a' b' : naryFunc n) (c c' : naryFunc 2),
    extEqual n a a'
    extEqual n b b'
    extEqual 2 c c'
    extEqual
    +   n
    +   (evalComposeFunc _ _
    +                    (Vector.cons _ a _
    +                                 (Vector.cons _ b _
    +                                              (Vector.nil (naryFunc n)))) c)
    +   (evalComposeFunc _ _
    +                    (Vector.cons _ a' _
    +                                 (Vector.cons _ b' _
    +                                              (Vector.nil (naryFunc n)))) c').
    + +
    +Definition orRel (n : nat) (R S : naryRel n) : naryRel n.
    + +
    +Lemma orRelPR :
    +   (n : nat) (R R' : naryRel n),
    +    isPRrel n R isPRrel n R' isPRrel n (orRel n R R').
    + +
    +Definition andRel (n : nat) (R S : naryRel n) : naryRel n.
    + +
    +Lemma andRelPR :
    +   (n : nat) (R R' : naryRel n),
    +    isPRrel n R isPRrel n R' isPRrel n (andRel n R R').
    + +
    +Definition notRel (n : nat) (R : naryRel n) : naryRel n.
    + +
    +Lemma notRelPR (n : nat) (R : naryRel n):
    +  isPRrel n R isPRrel n (notRel n R).
    + +
    +Fixpoint bodd (n : nat) : bool :=
    +  match n with
    +  | Ofalse
    +  | S n'negb (bodd n')
    +  end.
    + +
    +#[export] Instance boddIsPR : isPRrel 1 bodd.
    + +
    +Lemma nat_eqb_false (a b: nat) : a b Nat.eqb a b = false.
    + +
    +#[local] Instance neqIsPR : isPRrel 2 (fun a b : natnegb (Nat.eqb a b)).
    + +
    +#[export] Instance eqIsPR : isPRrel 2 Nat.eqb.
    + +
    +Definition leBool (a b : nat) : bool :=
    +  if le_lt_dec a b then true else false.
    + +
    +#[export] Instance leIsPR : isPRrel 2 leBool.
    + +
    +Section Ignore_Params.
    + +
    +  Fixpoint ignoreParams (n m : nat) (f : naryFunc n) {struct m} :
    +    naryFunc (m + n) :=
    +    match m return (naryFunc (m + n)) with
    +    | Of
    +    | S xfun _ignoreParams n x f
    +    end.
    + +
    +  Definition projectionListPR (n m : nat) (p : m n) : PrimRecs n m.
    + +
    +  Definition projectionList (n m : nat) (p : m n) :
    +    Vector.t (naryFunc n) m := evalPrimRecs n m (projectionListPR n m p).
    + +
    +  Lemma projectionListInd :
    +     (n m : nat) (p1 p2 : m n),
    +      projectionList n m p1 = projectionList n m p2.
    + +
    +  Lemma projectionListApplyParam :
    +     (m n c : nat) (p1 : m n) (p2 : m S n),
    +      extEqualVector _ _ (projectionList n m p1)
    +                     (evalOneParamList n m c (projectionList (S n) m p2)).
    + +
    +  Lemma projectionListId :
    +     (n : nat) (f : naryFunc n) (p : n n),
    +      extEqual n f (evalComposeFunc n n (projectionList n n p) f).
    + +
    +  #[export] Instance ignoreParamsIsPR :
    +     (n m : nat) (f : naryFunc n),
    +      isPR _ f isPR _ (ignoreParams n m f).
    + +
    +End Ignore_Params.
    + +
    +Lemma reduce1stCompose :
    +   (c n m : nat) (v : Vector.t (naryFunc n) m) (g : naryFunc (S m)),
    +    extEqual n
    +      (evalComposeFunc n _ (Vector.cons (naryFunc n)
    +                              (evalConstFunc n c) _ v) g)
    +      (evalComposeFunc n _ v (g c)).
    + +
    +Lemma reduce2ndCompose :
    +   (c n m : nat) (v : Vector.t (naryFunc n) m) (n0 : naryFunc n)
    +         (g : naryFunc (S (S m))),
    +    extEqual n
    +      (evalComposeFunc n _
    +         (Vector.cons
    +            (naryFunc n) n0 _
    +            (Vector.cons (naryFunc n)
    +               (evalConstFunc n c) _ v))
    +         g)
    +      (evalComposeFunc n _ (Vector.cons (naryFunc n) n0 _ v)
    +         (fun x : natg x c)).
    + +
    +Lemma evalPrimRecParam :
    +   (n c d : nat) (g : naryFunc (S n)) (h : naryFunc (S (S (S n)))),
    +     evalPrimRecFunc n (g d) (fun x y : nath x y d) c =x=
    +      evalPrimRecFunc (S n) g h c d.
    + +
    +#[export] Instance compose2IsPR :
    +   (n : nat) (f : naryFunc n) (p : isPR n f) (g : naryFunc (S n))
    +         (q : isPR (S n) g), isPR n (compose2 n f g).
    + +
    +#[export] Instance compose1_NIsPR :
    +   (n : nat) (g : naryFunc (S n)),
    +    isPR (S n) g
    +     f : naryFunc 1, isPR 1 f
    +                           isPR (S n) (fun x : natg (f x)).
    + +
    +Definition switchPR : naryFunc 3 :=
    +  fun n x ymatch n with 0 ⇒ y | _x end.
    + +
    +#[export] Instance switchIsPR : isPR 3 switchPR.
    + +
    +Fixpoint boundedSearchHelp (P : naryRel 1) (b : nat) {struct b} : nat :=
    +  match b with
    +  | O ⇒ 0
    +  | S b'let q := boundedSearchHelp P b'
    +            in
    +      match eq_nat_dec q b' with
    +      | left _match P b' with
    +                  | trueb'
    +                  | falseS b'
    +                  end
    +      | right _q
    +      end
    +  end.
    + +
    +
    + +
    +If there exists some x b such that (P b x), returns x + Otherwise, returns b + +
    +
    + +
    +Definition boundedSearch (P : naryRel 2) (b : nat) : nat :=
    +  boundedSearchHelp (P b) b.
    + +
    +Module Examples.
    + +
    +  Definition sqrtHelp (n: nat) :=
    +    boundedSearch (fun _ xNat.eqb (x × x) n) (S (n / 2)).
    + +
    +  Definition exact_sqrt (n: nat) :=
    +    let q := sqrtHelp n
    +    in if Nat.eqb (q × q) n then Some q else None.
    + +
    + +
    +  End Examples.
    + +
    +  Lemma boundedSearch1 :
    +     (P : naryRel 2) (b x : nat), x < boundedSearch P b
    +                                        P b x = false.
    + +
    +Lemma boundedSearch2 :
    +   (P : naryRel 2) (b : nat),
    +    boundedSearch P b = b P b (boundedSearch P b) = true.
    + +
    +#[export] Instance boundSearchIsPR :
    +   P : naryRel 2,
    +    isPRrel 2 P isPR 1 (boundedSearch P).
    + +
    +Definition iterate (g : nat nat) :=
    +  nat_rec (fun _nat nat) (fun x : natx)
    +          (fun (_ : nat) (rec : nat nat) (x : nat) ⇒ g (rec x)).
    + +
    +#[export] Instance iterateIsPR :
    +   g : nat nat, isPR 1 g
    +                          n : nat, isPR 1 (iterate g n).
    + +
    +#[export] Instance isPRTrans (n:nat) (f g : naryFunc n):
    +  f =x= g isPR n f isPR n g.
    + +
    +#[export] Instance isPRextEqual (n:nat) (f g : naryFunc n):
    +  isPR n f f =x= g isPR n g.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.subAll.html b/theories/html/hydras.Ackermann.subAll.html new file mode 100644 index 00000000..00111639 --- /dev/null +++ b/theories/html/hydras.Ackermann.subAll.html @@ -0,0 +1,329 @@ + + + + + +hydras.Ackermann.subAll + + + + +
    + + + +
    + +

    Library hydras.Ackermann.subAll

    + +
    +
    + +
    + subAll.v + +
    + + Original script by Russel O'Connor + +
    +
    + +
    +From Coq Require Import Ensembles List Arith Peano_dec.
    + +
    +From hydras.Ackermann Require Import ListExt folProof folLogic
    +  folLogic2 folProp.
    +From hydras Require Import folReplace subProp Compat815.
    +From Coq Require Import Lia.
    +Import FolNotations.
    + +
    +From LibHyps Require Export LibHyps.
    +From hydras Require Export MoreLibHyps.
    + +
    +Section SubAllVars.
    + +
    +Variable L : Language.
    +Notation Formula := (Formula L) (only parsing).
    +Notation Formulas := (Formulas L) (only parsing).
    +Notation System := (System L) (only parsing).
    +Notation Term := (Term L) (only parsing).
    +Notation Terms := (Terms L) (only parsing).
    +Notation SysPrf := (SysPrf L) (only parsing).
    + +
    +Fixpoint subAllTerm (t : fol.Term L) : (nat fol.Term L) fol.Term L :=
    +  match t return ((nat fol.Term L) fol.Term L) with
    +  | var xfun mm x
    +  | apply f tsfun mapply f (subAllTerms _ ts m)
    +  end

    with subAllTerms (n : nat) (ts : fol.Terms L n) {struct ts} :
    (nat fol.Term L) fol.Terms L n :=
    +  match
    +    ts in (fol.Terms _ n) return ((nat fol.Term L) fol.Terms L n)
    +  with
    +  | Tnilfun _Tnil
    +  | Tcons n' t ss
    +      fun mTcons (subAllTerm t m) (subAllTerms _ ss m)
    +  end.
    + +
    +Lemma subAllTerm_ext (t : fol.Term L) :
    +   (m1 m2 : nat fol.Term L),
    +    ( m : nat, In m (freeVarT t) m1 m = m2 m)
    +    subAllTerm t m1 = subAllTerm t m2.
    + +
    +Lemma subAllTerms_ext (n : nat) (ts : fol.Terms L n) (m1 m2 : nat fol.Term L):
    ( m : nat, In m (freeVarTs ts) m1 m = m2 m)
    subAllTerms n ts m1 = subAllTerms n ts m2.
    + +
    +Fixpoint freeVarMap (l : list nat) : (nat fol.Term L) list nat :=
    +  match l with
    +  | nilfun _nil
    +  | a :: l'fun mfreeVarT (m a) ++ freeVarMap l' m
    +  end.
    + +
    +Lemma freeVarMap_ext (l : list nat) (f1 f2 : nat fol.Term L):
    ( m : nat, In m l f1 m = f2 m)
    freeVarMap l f1 = freeVarMap l f2.
    + +
    +Lemma freeVarMap1 (l : list nat) (m : nat fol.Term L) (v n : nat):
    In v (freeVarT (m n)) In n l In v (freeVarMap l m).
    + +
    +Fixpoint subAllFormula (f : Formula) (m : (nat Term)) {struct f} : Formula :=
    +  match f with
    +  | (t = s)%folequal (subAllTerm t m) (subAllTerm s m)
    +  | atomic r tsatomic r (subAllTerms _ ts m)
    +  | (f g)%fol
    +      (subAllFormula f m subAllFormula g m)%fol
    +  | (¬ f)%fol ⇒ (¬ subAllFormula f m)%fol
    +  | (allH n, f)%fol
    +      let nv :=
    +        newVar
    +          (freeVarF f ++
    +           freeVarMap (freeVarF (allH n, f)%fol) m) in
    +      (allH nv,
    +        (subAllFormula f
    +           (fun v : nat
    +            match eq_nat_dec v n with
    +            | left _var nv
    +            | right _m v
    +            end)))%fol
    +  end.
    + +
    +Lemma subAllFormula_ext :
    (f : fol.Formula L) (m1 m2 : nat fol.Term L),
    ( m : nat, In m (freeVarF f) m1 m = m2 m)
    subAllFormula f m1 = subAllFormula f m2.
    + +
    +Lemma freeVarSubAllTerm1 (t : fol.Term L) (m : nat fol.Term L) (v : nat):
    In v (freeVarT (subAllTerm t m))
    n : nat, In n (freeVarT t) In v (freeVarT (m n)).
    + +
    +Lemma freeVarSubAllTerms1 (n : nat) (ts : fol.Terms L n)
    +  (m : nat fol.Term L) (v : nat):
    In v (freeVarTs (subAllTerms n ts m))
    a : nat, In a (freeVarTs ts) In v (freeVarT (m a)).
    + +
    +Lemma freeVarSubAllTerm2 (t : fol.Term L) (m : nat fol.Term L) (v n : nat):
    In n (freeVarT t)
    In v (freeVarT (m n)) In v (freeVarT (subAllTerm t m)).
    + +
    +Lemma freeVarSubAllTerms2 (a : nat) (ts : fol.Terms L a)
    +  (m : nat fol.Term L)
    +  (v n : nat):
    +  In n (freeVarTs ts)
    +  In v (freeVarT (m n)) In v (freeVarTs (subAllTerms a ts m)).
    + +
    +Lemma freeVarSubAllFormula1 :
    (f : fol.Formula L) (m : nat fol.Term L) (v : nat),
    In v (freeVarF (subAllFormula f m))
    n : nat, In n (freeVarF f) In v (freeVarT (m n)).
    + +
    +Lemma freeVarSubAllFormula2 :
    (f : fol.Formula L) (m : nat fol.Term L) (v n : nat),
    In n (freeVarF f)
    In v (freeVarT (m n))
    In v (freeVarF (subAllFormula f m)).
    + +
    +Lemma subSubAllTerm (t : fol.Term L) (m : nat fol.Term L)
    +  (v : nat) (s : fol.Term L):
    substT (subAllTerm t m) v s =
    subAllTerm t (fun n : natsubstT (m n) v s).
    + +
    +Lemma subSubAllTerms (n : nat) (ts : fol.Terms L n) (m : nat fol.Term L)
    +  (v : nat) (s : fol.Term L) :
    +  substTs (subAllTerms n ts m) v s =
    +    subAllTerms n ts (fun n : natsubstT (m n) v s).
    + +
    +Lemma subSubAllFormula :
    +   (T : fol.System L) (f : fol.Formula L) (m : nat fol.Term L)
    +         (v : nat) (s : fol.Term L),
    +    folProof.SysPrf L T
    +      (iffH (substF (subAllFormula f m) v s)
    +         (subAllFormula f (fun n : natsubstT (m n) v s))).
    + +
    +Lemma subAllTermId (t : fol.Term L):
    +  subAllTerm t (fun x : natvar x) = t.
    + +
    +Lemma subAllTermsId (n : nat) (ts : fol.Terms L n):
    +  subAllTerms n ts (fun x : natvar x) = ts.
    + +
    +Lemma subAllFormulaId (T : fol.System L) (f : fol.Formula L):
    folProof.SysPrf L T
    +   (iffH (subAllFormula f (fun x : natvar x)) f).
    + +
    +Lemma subAllSubAllTerm (t : fol.Term L) :
    (m1 m2 : nat fol.Term L),
    subAllTerm (subAllTerm t m1) m2 =
    subAllTerm t (fun n : natsubAllTerm (m1 n) m2).
    + +
    +Lemma subAllSubAllTerms (n : nat) (ts : fol.Terms L n) (m1 m2 : nat fol.Term L):
    subAllTerms n (subAllTerms n ts m1) m2 =
    subAllTerms n ts (fun n : natsubAllTerm (m1 n) m2).
    + +
    +Lemma subAllSubAllFormula (T : fol.System L) (f : fol.Formula L):
    (m1 m2 : nat fol.Term L),
    folProof.SysPrf L T
    +   (iffH (subAllFormula (subAllFormula f m1) m2)
    +      (subAllFormula f (fun n : natsubAllTerm (m1 n) m2))).
    + +
    +Section subAllCloseFrom.
    + +
    +Fixpoint closeFrom (a n : nat) (f : fol.Formula L) {struct n} :
    fol.Formula L :=
    +  match n with
    +  | Of
    +  | S mforallH (a + m) (closeFrom a m f)
    +  end.
    + +
    +Opaque le_lt_dec.
    + +
    +Lemma liftCloseFrom (n : nat) :
    (f : fol.Formula L) (T : fol.System L) (m : nat),
    ( v : nat, In v (freeVarF f) v < m)
    n m
    folProof.SysPrf L T (closeFrom 0 n f)
    folProof.SysPrf L T
    +   (closeFrom m n
    +      (subAllFormula f
    +         (fun x : nat
    +          match le_lt_dec n x with
    +          | left _var x
    +          | right _var (m + x)
    +          end))).
    + +
    +Lemma subAllCloseFrom1 :
    +   (n m : nat) (map : nat fol.Term L) (f : fol.Formula L)
    +         (T : fol.System L),
    +    ( v : nat,
    +        v < n w : nat, In w (freeVarT (map (m + v))) w < m)
    +    folProof.SysPrf L T (closeFrom m n f)
    +    folProof.SysPrf L T
    +      (subAllFormula f
    +         (fun x : nat
    +            match le_lt_dec m x with
    +            | left _
    +                match le_lt_dec (m + n) x with
    +                | left _var x
    +                | right _map x
    +                end
    +            | right _var x
    +            end)).
    + +
    +Lemma subAllCloseFrom :
    +   (n : nat) (m : nat fol.Term L) (f : fol.Formula L)
    +         (T : fol.System L),
    +    folProof.SysPrf L T (closeFrom 0 n f)
    +    folProof.SysPrf L T
    +      (subAllFormula f
    +         (fun x : nat
    +            match le_lt_dec n x with
    +            | left _var x
    +            | right _m x
    +            end)).
    + +
    +Lemma reduceSubAll :
    +   (T : fol.System L) (map : nat fol.Term L) (A B : fol.Formula L),
    +    ( v : nat, ¬ In_freeVarSys L v T)
    +    folProof.SysPrf L T (iffH A B)
    +    folProof.SysPrf L T (iffH (subAllFormula A map) (subAllFormula B map)).
    + +
    +End subAllCloseFrom.
    + +
    +Lemma subToSubAll (T : fol.System L) (A : fol.Formula L) (v : nat)
    +  (s : fol.Term L):
    folProof.SysPrf L T
    +   (iffH (substF A v s)
    +      (subAllFormula A
    +         (fun x : nat
    +          match eq_nat_dec v x with
    +          | left _s
    +          | right _var x
    +          end))).
    + +
    +Lemma subAllSubFormula :
    +   (T : fol.System L) (A : fol.Formula L) (v : nat)
    +         (s : fol.Term L) (map : nat fol.Term L),
    +    folProof.SysPrf L T
    +      (iffH (subAllFormula (substF A v s) map)
    +         (subAllFormula A
    +            (fun x : nat
    +               match eq_nat_dec v x with
    +               | left _subAllTerm s map
    +               | right _map x
    +               end))).
    + +
    +End SubAllVars.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.subProp.html b/theories/html/hydras.Ackermann.subProp.html new file mode 100644 index 00000000..613f221f --- /dev/null +++ b/theories/html/hydras.Ackermann.subProp.html @@ -0,0 +1,218 @@ + + + + + +hydras.Ackermann.subProp + + + + +
    + + + +
    + +

    Library hydras.Ackermann.subProp

    + +
    +From Coq Require Import Ensembles List Peano_dec.
    +From hydras.Ackermann Require Import ListExt.
    +From Coq Require Import Arith.
    + +
    +From hydras.Ackermann
    +  Require Import folProof folLogic folProp folReplace.
    + +
    +From LibHyps Require Export LibHyps.
    +From hydras Require Export MoreLibHyps NewNotations.
    + +
    +Section Substitution_Properties.
    + +
    +Variable L : Language.
    +Let Formula := Formula L.
    +Let Formulas := Formulas L.
    +Let System := System L.
    +Let Term := Term L.
    +Let Terms := Terms L.
    +Let SysPrf := SysPrf L.
    + +
    +Lemma freeVarSubTerm1 (t : Term):
    +   (v : nat) (s : Term) (x : nat),
    +    In x (freeVarT t)
    +    v x In x (freeVarT (substT t v s)).
    + +
    +Lemma freeVarSubTerms1 (n : nat) (ts : Terms n) (v : nat) (s : Term) (x : nat):
    +  In x (freeVarTs ts)
    +  v x In x (freeVarTs (substTs ts v s)).
    + +
    +Lemma freeVarSubFormula1 (f : Formula):
    (v : nat) (s : Term) (x : nat),
    v x
    In x (freeVarF f)
    In x (freeVarF (substF f v s)).
    + +
    +Lemma freeVarSubTerm2 (t : Term) :
    +   (v : nat) (s : Term) (x : nat),
    +    In x (freeVarT s)
    +    In v (freeVarT t) In x (freeVarT (substT t v s)).
    + +
    +Lemma freeVarSubTerms2 (n : nat) (ts : Terms n) (v : nat) (s : Term) (x : nat):
    In x (freeVarT s)
    In v (freeVarTs ts)
    In x (freeVarTs (substTs ts v s)).
    + +
    +Lemma freeVarSubFormula2 (f : Formula):
    +   (v : nat) (s : Term) (x : nat),
    +    In x (freeVarT s)
    +    In v (freeVarF f)
    +    In x (freeVarF (substF f v s)).
    + +
    +Lemma freeVarSubTerm3 (t : Term):
    +   (v : nat) (s : Term) (x : nat),
    +    In x (freeVarT (substT t v s))
    +    In x (List.remove eq_nat_dec v (freeVarT t))
    +      In x (freeVarT s).
    + +
    +Lemma freeVarSubTerms3 (n : nat) (ts : fol.Terms L n) (v : nat)
    +  (s : Term) (x : nat):
    +  In x (freeVarTs (substTs ts v s))
    +  In x (List.remove eq_nat_dec v (freeVarTs ts))
    +    In x (freeVarT s).
    + +
    +Lemma freeVarSubFormula3 (f : Formula):
    (v : nat) (s : Term) (x : nat),
    In x (freeVarF (substF f v s))
    In x (List.remove eq_nat_dec v (freeVarF f))
    In x (freeVarT s).
    + +
    +Lemma freeVarSubTerm4 (t : Term) :
    (v : nat) (s : Term) (x : nat),
    In x (freeVarT (substT t v s))
    ¬ In v (freeVarT t) In x (freeVarT t).
    + +
    +Lemma freeVarSubTerms4 (n : nat) (ts : Terms n) (v : nat)
    +  (s : Term) (x : nat):
    +  In x (freeVarTs (substTs ts v s))
    +  ¬ In v (freeVarTs ts) In x (freeVarTs ts).
    + +
    +Lemma freeVarSubFormula4 (f : Formula) :
    (v : nat) (s : Term) (x : nat),
    In x (freeVarF (substF f v s))
    ¬ In v (freeVarF f) In x (freeVarF f).
    + +
    +Lemma subTermNil (t : Term) (v : nat) (s : Term):
    ¬ In v (freeVarT t) substT t v s = t.
    + +
    +Lemma subTermTrans (t : Term) (v1 v2 : nat) (s : Term):
    ¬ In v2 (List.remove eq_nat_dec v1 (freeVarT t))
    substT (substT t v1 (var v2)) v2 s = substT t v1 s.
    + +
    +Lemma subTermExch (t : Term) (v1 v2 : nat) (s1 s2 : Term):
    v1 v2
    ¬ In v2 (freeVarT s1)
    ¬ In v1 (freeVarT s2)
    substT (substT t v1 s1) v2 s2 =
    substT (substT t v2 s2) v1 s1.
    + +
    +Lemma subTermsNil (n : nat) (ts : Terms n) (v : nat) (s : Term):
    ¬ In v (freeVarTs ts) substTs ts v s = ts.
    + +
    +Lemma subTermsTrans (n : nat) (ts : Terms n) (v1 v2 : nat) (s : Term):
    ¬ In v2 (List.remove eq_nat_dec v1 (freeVarTs ts))
    substTs (substTs ts v1 (var v2)) v2 s =
    substTs ts v1 s.
    + +
    +Lemma subTermsExch (n : nat) (ts : Terms n) (v1 v2 : nat)
    +  (s1 s2 : Term):
    +  v1 v2
    +  ¬ In v2 (freeVarT s1)
    +  ¬ In v1 (freeVarT s2)
    +  substTs (substTs ts v1 s1) v2 s2 =
    +    substTs (substTs ts v2 s2) v1 s1.
    + +
    +Remark subFormulaNTEHelp (f g : Formula) (v : nat) (s : Term):
    SysPrf (Ensembles.Add _ (Empty_set Formula) f) g
    SysPrf (Ensembles.Add _ (Empty_set Formula) (substF f v s))
    +   (substF g v s).
    + +
    +Remark subFormulaNTE (f : Formula):
    +   (T : System),
    +    ( (v : nat) (s : Term),
    +        ¬ In v (freeVarF f)
    +        SysPrf T (iffH (substF f v s) f))
    +      ( (v1 v2 : nat) (s : Term),
    +          ¬ In v2 (List.remove eq_nat_dec v1 (freeVarF f))
    +          SysPrf T
    +            (iffH (substF (substF f v1 (var v2)) v2 s)
    +               (substF f v1 s)))
    +      ( (v1 v2 : nat) (s1 s2 : Term),
    +          v1 v2
    +          ¬ In v2 (freeVarT s1)
    +          ¬ In v1 (freeVarT s2)
    +          SysPrf T
    +            (iffH (substF (substF f v1 s1) v2 s2)
    +               (substF (substF f v2 s2) v1 s1))).
    + +
    +Lemma subFormulaNil :
    +   (f : Formula) (T : System) (v : nat) (s : Term),
    +    ¬ In v (freeVarF f) SysPrf T (iffH (substF f v s) f).
    + +
    +Lemma subFormulaTrans :
    +   (f : Formula) (T : System) (v1 v2 : nat) (s : Term),
    +    ¬ In v2 (List.remove eq_nat_dec v1 (freeVarF f))
    +    SysPrf T
    +      (iffH (substF (substF f v1 (var v2)) v2 s)
    +         (substF f v1 s)).
    + +
    +Lemma subFormulaExch :
    (f : Formula) (T : System) (v1 v2 : nat) (s1 s2 : Term),
    v1 v2
    ¬ In v2 (freeVarT s1)
    ¬ In v1 (freeVarT s2)
    SysPrf T
    +   (iffH (substF (substF f v1 s1) v2 s2)
    +      (substF (substF f v2 s2) v1 s1)).
    + +
    +End Substitution_Properties.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.wConsistent.html b/theories/html/hydras.Ackermann.wConsistent.html new file mode 100644 index 00000000..c250bb44 --- /dev/null +++ b/theories/html/hydras.Ackermann.wConsistent.html @@ -0,0 +1,59 @@ + + + + + +hydras.Ackermann.wConsistent + + + + +
    + + + +
    + +

    Library hydras.Ackermann.wConsistent

    + +
    +From hydras.Ackermann Require Import folProof folProp LNN.
    +From Coq Require Import Arith List.
    + +
    +Import NNnotations.
    + +
    +Definition wConsistent (T : System) :=
    +   (f : Formula) (v : nat),
    +  ( x : nat, In x (freeVarF f) v = x)
    +  SysPrf T (existH v (notH f))
    +   n : nat, ¬ SysPrf T (substF f v (natToTerm n)).
    + +
    +Lemma wCon2Con : T : System, wConsistent T Consistent LNN T.
    + +
    +Definition wInconsistent (T : System) :=
    +   f : Formula,
    +    ( v : nat,
    +       ( x : nat, In x (freeVarF f) v = x)
    +       SysPrf T (existH v (notH f))
    +       ( n : nat, SysPrf T (substF f v (natToTerm n)))).
    + +
    +Lemma notCon2wNotCon :
    T : System, Inconsistent LNN T wInconsistent T.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Ackermann.wellFormed.html b/theories/html/hydras.Ackermann.wellFormed.html new file mode 100644 index 00000000..cb29dba3 --- /dev/null +++ b/theories/html/hydras.Ackermann.wellFormed.html @@ -0,0 +1,182 @@ + + + + + +hydras.Ackermann.wellFormed + + + + +
    + + + +
    + +

    Library hydras.Ackermann.wellFormed

    + +
    + +
    +From hydras.Ackermann Require Import primRec cPair.
    +From Coq Require Import Arith Lia.
    +From hydras.Ackermann Require Import code folProp
    +  extEqualNat codeList.
    +From hydras Require Import Compat815.
    +Import LispAbbreviations.
    + +
    +Section Well_Formed_Term.
    + +
    +Variable L : Language.
    +Generalizable All Variables.
    +Context `(cL : Lcode L cf cr).
    + +
    +Variable codeArityF : nat nat.
    +Context (codeArityFIsPR : isPR 1 codeArityF).
    +Hypothesis
    +  codeArityFIsCorrect1 :
    +     f : Functions L, codeArityF (cf f) = S (arityF L f).
    +Hypothesis
    +  codeArityFIsCorrect2 :
    +     n : nat, codeArityF n 0 f : Functions L, cf f = n.
    + +
    +Let Term := Term L.
    +Let Terms := Terms L.
    + +
    +Definition wellFormedTermTerms : nat nat :=
    +  evalStrongRec 0
    +    (fun t recs : nat
    +     cPair
    +       (switchPR (cPairPi1 t)
    +          (charFunction 2 Nat.eqb (codeArityF (pred (cPairPi1 t)))
    +             (S (codeLength (cPairPi2 t))) ×
    +           cPairPi2 (codeNth (t - S (cPairPi2 t)) recs)) 1)
    +       (switchPR t
    +          (cPairPi1 (codeNth (t - S (cPairPi1 (pred t))) recs) ×
    +           cPairPi2 (codeNth (t - S (cPairPi2 (pred t))) recs)) 1)).
    + +
    +Definition wellFormedTerm (t : nat) : nat := cPairPi1 (wellFormedTermTerms t).
    + +
    +Definition wellFormedTerms (ts : nat) : nat :=
    +  cPairPi2 (wellFormedTermTerms ts).
    + +
    +Lemma lengthTerms :
    (n : nat) (ts : Terms n), codeLength (codeTerms ts) = n.
    + +
    +Lemma wellFormedTermCorrect1 :
    +   t : Term, wellFormedTerm (codeTerm t) = 1.
    + +
    +Lemma wellFormedTermsCorrect1 (n : nat) (ts : Terms n):
    +  wellFormedTerms (codeTerms ts) = 1.
    + +
    +Lemma multLemma1 : a b : nat, a × b 0 a 0.
    + +
    +Lemma multLemma2 : a b : nat, a × b 0 b 0.
    + +
    +Remark wellFormedTermTermsCorrect2 :
    n : nat,
    (wellFormedTerm n 0 t : Term, codeTerm t = n)
    (wellFormedTerms n 0
    +   m : nat, ( ts : Terms m, codeTerms ts = n)).
    + +
    +Lemma wellFormedTermCorrect2 :
    +   n : nat,
    +    wellFormedTerm n 0 t : Term, codeTerm t = n.
    + +
    +Lemma wellFormedTermsCorrect2 :
    +   n : nat,
    +    wellFormedTerms n 0
    +     m : nat, ( ts : Terms m, codeTerms ts = n).
    + +
    +#[local] Instance wellFormedTermTermsIsPR :
    +  isPR 1 wellFormedTermTerms.
    + +
    +#[export] Instance wellFormedTermIsPR : isPR 1 wellFormedTerm.
    + +
    +#[export] Instance wellFormedTermsIsPR : isPR 1 wellFormedTerms.
    + +
    +Section Well_Formed_Formula.
    + +
    +Variable codeArityR : nat nat.
    +Context (codeArityRIsPR : isPR 1 codeArityR).
    +Hypothesis
    +  codeArityRIsCorrect1 :
    +     r : Relations L, codeArityR (cr r) = S (arityR L r).
    +Hypothesis
    +  codeArityRIsCorrect2 :
    +     n : nat, codeArityR n 0 r : Relations L, cr r = n.
    + +
    +Let Formula := Formula L.
    + +
    +Definition wellFormedFormula : nat nat :=
    +  evalStrongRec 0
    +    (fun f recs : nat
    +     switchPR (cPairPi1 f)
    +       (switchPR (pred (cPairPi1 f))
    +          (switchPR (pred (pred (cPairPi1 f)))
    +             (switchPR (pred (pred (pred (cPairPi1 f))))
    +                (charFunction 2 Nat.eqb
    +                   (codeArityR (pred (pred (pred (pred (cPairPi1 f))))))
    +                   (S (codeLength (cPairPi2 f))) ×
    +                 wellFormedTerms (cPairPi2 f))
    +                (codeNth (f - S (cPairPi2 (cPairPi2 f))) recs))
    +             (codeNth (f - S (cPairPi2 f)) recs))
    +          (codeNth (f - S (cPairPi1 (cPairPi2 f))) recs ×
    +           codeNth (f - S (cPairPi2 (cPairPi2 f))) recs))
    +       (wellFormedTerm (cPairPi1 (cPairPi2 f)) ×
    +        wellFormedTerm (cPairPi2 (cPairPi2 f)))).
    + +
    +Lemma wellFormedFormulaCorrect1 :
    f : Formula, wellFormedFormula (codeFormula f) = 1.
    + +
    +Lemma wellFormedFormulaCorrect2 :
    +   n : nat,
    +    wellFormedFormula n 0
    +     f : Formula, codeFormula f = n.
    + +
    +#[export] Instance wellFormedFormulaIsPR : isPR 1 wellFormedFormula.
    + +
    +End Well_Formed_Formula.
    + +
    +End Well_Formed_Term.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Epsilon0.Canon.html b/theories/html/hydras.Epsilon0.Canon.html new file mode 100644 index 00000000..3a141e3c --- /dev/null +++ b/theories/html/hydras.Epsilon0.Canon.html @@ -0,0 +1,430 @@ + + + + + +hydras.Epsilon0.Canon + + + + +
    + + + +
    + +

    Library hydras.Epsilon0.Canon

    + +
    + +
    +
    + +
    + Canonical Sequences of ordinals below epsilon0 + +
    + +Pierre Casteran, + LaBRI and University of Bordeaux. + +
    + + After J. Ketonen and R. Solovay's paper + " Rapidly Growing Ramsey Functions" in + Annals of mathematics, Mar. 1981 + +
    + + +
    +
    + +
    +From Coq Require Export Arith Lia.
    +Import Relations Relation_Operators.
    + +
    +From hydras.Prelude Require Import DecPreOrder.
    +From hydras.Epsilon0 Require Export T1 E0.
    + +
    +Set Implicit Arguments.
    + +
    +Open Scope t1_scope.
    + +
    +
    + +
    +

    Definitions

    + +
    +
    + +
    +Fixpoint canon alpha (i:nat) : T1 :=
    +  match alpha with
    +  | zerozero
    +  | cons zero 0 zerozero
    +  | cons zero (S k) zeroFS k
    +  | cons gamma 0 zero ⇒ (match T1.pred gamma with
    +                            Some gamma'
    +                              match i with
    +                              | 0 ⇒ zero
    +                              | S jcons gamma' j zero
    +                              end
    +                          | Nonecons (canon gamma i) 0 zero
    +                          end)
    +  
    +  | cons gamma (S n) zero
    +     (match T1.pred gamma with
    +       Some gamma'
    +       (match i with
    +         0 ⇒ cons gamma n zero
    +       | S jcons gamma n (cons gamma' j zero)
    +       end)
    +      | Nonecons gamma n (cons (canon gamma i) 0 zero)
    +      end)
    +   | cons alpha n betacons alpha n (canon beta i)
    +end.
    + +
    +Section Canon_examples.
    + +
    +#[local] Open Scope ppT1_scope.
    + +
    + +
    +Close Scope ppT1_scope.
    + +
    + +
    + +
    + +
    +Goal canon (T1omega ^ T1omega) 10 = phi0 10. +
    +End Canon_examples.
    + +
    + +
    +
    + +
    +

    Properties of canonical sequences

    + +
    +
    + +
    +Lemma canon_zero i : canon zero i = zero.
    + +
    +Lemma canon_tail :
    +   alpha n beta i, nf (cons alpha n beta)
    +                          beta 0
    +                          canon (cons alpha n beta) i =
    +                          cons alpha n (canon beta i).
    + +
    +Lemma canonS_lim1 : i lambda,
    +    nf lambda T1limit lambda
    +     canon (cons lambda 0 zero) (S i) =
    +         T1.phi0 (canon lambda (S i)).
    + +
    +Lemma canon_lim1 : i lambda, nf lambda T1limit lambda
    +                                     canon (cons lambda 0 zero) i =
    +                                       T1.phi0 (canon lambda i).
    + +
    +
    + +
    +Here +
    +
    + +
    +Lemma canonS_lim2 i n lambda:
    +    nf lambda T1limit lambda
    +     canon (cons lambda (S n) zero) (S i) =
    +       cons lambda n (T1.phi0 (canon lambda (S i))).
    + +
    +Lemma canon0_lim2 n lambda:
    +    nf lambda T1limit lambda
    +     canon (cons lambda (S n) zero) 0 =
    +       cons lambda n (T1.phi0 (canon lambda 0)).
    + +
    +Lemma canon_lim2 i n lambda :
    +    nf lambda T1limit lambda
    +     canon (cons lambda (S n) zero) i =
    +       cons lambda n (T1.phi0 (canon lambda i)).
    + +
    +Lemma canon_lim3 i n alpha lambda :
    +  nf alpha nf lambda T1limit lambda
    +  canon (cons alpha n lambda) i = cons alpha n (canon lambda i).
    + +
    + +
    +Lemma canon_succ i alpha :
    +  nf alpha canon (succ alpha) i = alpha. Lemma canonS_succ i alpha : nf alpha
    +                            canon (succ alpha) (S i) = alpha.
    + +
    +Lemma canon0_succ alpha : nf alpha canon (succ alpha) 0 = alpha.
    + +
    +Lemma canonS_phi0_succ_eqn i gamma:
    +  nf gamma
    +  canon (T1.phi0 (succ gamma)) (S i) = cons gamma i zero.
    + +
    +Lemma canon0_phi0_succ_eqn gamma:
    +  nf gamma
    +  canon (T1.phi0 (succ gamma)) 0 = zero.
    + +
    +Lemma canonS_cons_succ_eqn2 i n gamma :
    +    nf gamma
    +    canon (cons (T1.succ gamma) (S n) zero) (S i) =
    +    cons (T1.succ gamma) n (cons gamma i zero).
    + +
    +Lemma canon0_cons_succ_eqn2 n gamma :
    +    nf gamma
    +    canon (cons (T1.succ gamma) (S n) zero) 0=
    +    cons (T1.succ gamma) n zero.
    + +
    +Lemma canon_SSn_zero (i:nat) :
    +   alpha n ,
    +    nf alpha
    +    canon (cons alpha (S n) zero) i =
    +    cons alpha n (canon (cons alpha 0 zero) i).
    + +
    + #[deprecated(note="use canon_SSn_zero")]
    +  Notation canonSSn := canon_SSn_zero (only parsing).
    + +
    + +
    +Lemma canonS_zero_inv (alpha:T1) (i:nat) :
    +  canon alpha (S i) = zero alpha = zero alpha = one.
    + +
    +
    + +
    +

    Canonical sequences and the order LT

    + +
    +
    + +
    +Lemma canonS_LT i alpha :
    +  nf alpha alpha zero
    +  canon alpha (S i) t1< alpha.
    + +
    +Lemma canon0_LT alpha :
    +  nf alpha alpha zero
    +  canon alpha 0 t1< alpha.
    + +
    +Lemma nf_canon i alpha: nf alpha nf (canon alpha i).
    +Lemma canon_LT i alpha : nf alpha alpha zero
    +                          canon alpha i t1< alpha.
    + +
    + +
    + +
    +Lemma canon_lt : i alpha, nf alpha alpha zero
    +                              T1.lt (canon alpha i) alpha.
    + +
    +Lemma canonS_cons_not_zero : i alpha n beta,
    +    alpha zero canon (cons alpha n beta) (S i) zero.
    + +
    +
    + +
    +

    Canonical sequences of limit ordinals

    + +
    + + +
    + +
    + +Let lambda be a limit ordinal. For any beta < lambda, we can +compute some item of the canonical sequence of lambda which is +greater than beta. + +
    + + It is a constructive way of expressing that lambda is the +limit of its own canonical sequence + +
    +
    + +
    + +
    +Lemma canonS_limit_strong lambda :
    +  nf lambda T1limit lambda
    +   beta, beta t1< lambda {i:nat | beta t1< canon lambda (S i)}.
    + +
    +Lemma canon_limit_strong lambda :
    +  nf lambda
    +  T1limit lambda
    +   beta, beta t1< lambda
    +                {i:nat | beta t1< canon lambda i}.
    + +
    + +
    +Lemma canonS_limit_lub (lambda : T1) :
    +  nf lambda T1limit lambda strict_lub (fun icanon lambda( S i)) lambda. +
    +Lemma canon_limit_mono alpha i j : nf alpha T1limit alpha
    +                                    i < j
    +                                    canon alpha i t1< canon alpha j.
    + +
    +Lemma canonS_limit_mono alpha i j : nf alpha T1limit alpha
    +                                    i < j
    +                                    canon alpha (S i) t1< canon alpha (S j).
    + +
    +Lemma canonS_LE alpha n :
    +    nf alpha canon alpha (S n) t1 canon alpha (S (S n)).
    + +
    + +
    + +
    +
    + +
    +exercise after Guillaume Melquiond +
    +
    + +
    From hydras Require Import Fuel.
    + +
    +Fixpoint approx alpha beta fuel i :=
    +  match fuel with
    +          FONone
    +        | Fuel.FS f
    +          let gamma := canon alpha (S i) in
    +          if decide (lt beta gamma)
    +          then Some (i,gamma)
    +          else approx alpha beta (f tt) (S i)
    +        end.
    + +
    +Lemma approx_ok alpha beta :
    +   fuel i j gamma, approx alpha beta fuel i = Some (j,gamma)
    +                         gamma = canon alpha (S j) lt beta gamma.
    + +
    + +
    +
    + +
    +

    Adaptation to E0 (well formed terms of type T1 )

    + +
    +
    + +
    +Open Scope E0_scope.
    + +
    +#[program] Definition Canon (alpha:E0)(i:nat): E0 :=
    +  @mkord (@canon (cnf alpha) i) _.
    + +
    +Lemma Canon_Succ beta n: Canon (E0_succ beta) (S n) = beta.
    + +
    +Lemma Canon_Omega k : Canon E0_omega k = E0fin k.
    + +
    +#[global] Hint Rewrite Canon_Omega : E0_rw.
    + +
    +Lemma CanonSSn (i:nat) :
    +   alpha n , alpha E0zero
    +                    Canon (Cons alpha (S n) E0zero) (S i) =
    +                    Cons alpha n (Canon (E0_phi0 alpha) (S i)).
    + +
    +Lemma CanonS_phi0_lim alpha k : E0limit alpha
    +                                Canon (E0_phi0 alpha) (S k) =
    +                                E0_phi0 (Canon alpha (S k)).
    + +
    +Lemma CanonS_lt : i alpha, alpha E0zero
    +                                  Canon alpha (S i) o< alpha.
    + +
    +Lemma Canon_lt : i alpha, alpha E0zero Canon alpha i o< alpha.
    + +
    +Lemma Canon_of_limit_not_null : i alpha, E0limit alpha
    +                                       Canon alpha (S i) E0zero.
    + +
    +#[global]
    +  Hint Resolve CanonS_lt Canon_lt Canon_of_limit_not_null : E0.
    + +
    +Lemma CanonS_phi0_Succ alpha i : Canon (E0_phi0 (E0_succ alpha)) (S i) =
    +                                 Omega_term alpha i.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Epsilon0.E0.html b/theories/html/hydras.Epsilon0.E0.html new file mode 100644 index 00000000..7d0c5346 --- /dev/null +++ b/theories/html/hydras.Epsilon0.E0.html @@ -0,0 +1,559 @@ + + + + + +hydras.Epsilon0.E0 + + + + +
    + + + +
    + +

    Library hydras.Epsilon0.E0

    + +
    +
    + +
    + +
    + + Class of ordinals less than epsilon0 + +
    + + E0 is a class type for ordinal terms proved to be in normal form. + +
    +
    + +
    +From Coq Require Import Arith Max Bool Lia Compare_dec Relations Ensembles
    +     ArithRing Wellfounded Operators_Properties Logic.Eqdep_dec.
    + +
    +From hydras Require Import Prelude.More_Arith Prelude.Restriction
    +           Prelude.DecPreOrder ON_Generic OrdNotations.
    + +
    +From hydras.Epsilon0 Require Export T1 Hessenberg.
    + +
    +Set Implicit Arguments.
    + +
    +Create HintDb E0.
    +Create HintDb E0_rw.
    + +
    + +
    +Declare Scope E0_scope.
    +Delimit Scope E0_scope with e0.
    +Open Scope E0_scope.
    + +
    + +
    +Declare Scope E0_scope.
    + +
    + +
    +Class E0 : Type := mkord {cnf : T1; cnf_ok : nf cnf}.
    + +
    +Arguments cnf : clear implicits.
    + +
    +#[export] Hint Resolve cnf_ok : E0.
    + +
    + +
    +
    + +
    +

    Lifting functions from T1 to E0

    + +
    +
    + +
    + +
    +Definition E0lt (alpha beta : E0) := T1.LT (@cnf alpha) (@cnf beta).
    +Definition E0le := leq E0lt.
    + +
    +Infix "o<" := E0lt : E0_scope.
    +Infix "o<=" := E0le : E0_scope.
    + +
    + +
    +#[export] Instance E0zero : E0 := @mkord zero refl_equal.
    + +
    +#[export] Instance E0_omega : E0 := @mkord T1omega refl_equal.
    + +
    + +
    +#[deprecated(note="use E0zero")]
    Notation Zero := E0zero (only parsing).
    + +
    +#[deprecated(note="use E0_omega")]
    Notation _Omega := E0_omega (only parsing).
    + +
    +#[global, program] Instance E0_succ (alpha : E0) : E0 :=
    +@mkord (T1.succ (@cnf alpha)) _.
    + +
    +#[deprecated(note="use E0_succ")]
    Notation Succ := E0_succ (only parsing).
    + +
    +Definition E0limit (alpha : E0) : bool := T1limit (@cnf alpha).
    + +
    +#[deprecated(note="use E0limit")]
    Notation Limitb := E0limit (only parsing).
    + +
    +Definition E0is_succ (alpha : E0) : bool :=
    +  T1is_succ (@cnf alpha).
    + +
    +#[deprecated(note="use E0is_succ")]
    Notation E0succb := E0is_succ (only parsing).
    + +
    +#[global, program] Instance E0one : E0:= @mkord (T1.succ zero) _.
    + +
    + +
    + +
    +#[global, program] Instance E0add (alpha beta : E0) : E0 :=
    +  @mkord (T1add (@cnf alpha) (@cnf beta))_ .
    + +
    +Infix "+" := E0add : E0_scope.
    + +
    + +
    +#[deprecated(note="use E0add")]
    Notation Plus := E0add (only parsing).
    + +
    + +
    +Check E0_omega + E0_omega.
    + +
    + +
    +#[global, program] Instance E0_phi0 (alpha: E0) : E0 :=
    + @mkord (T1.phi0 (cnf alpha)) _.
    + +
    +Notation "'E0_omega^'" := E0_phi0 (only parsing) : E0_scope.
    + +
    +#[global, program] Instance Omega_term (alpha: E0) (n: nat) : E0 :=
    +   @mkord (cons (cnf alpha) n zero) _.
    + +
    +#[global] Instance Cons (alpha : E0) (n: nat) (beta: E0) : E0
    +  := (Omega_term alpha n + beta)%e0.
    + +
    +#[global, program] Instance E0finS (i:nat) : E0:= @mkord (FS i)%t1 _.
    + +
    +#[global, program] Instance E0fin (i:nat) : E0:=
    +  match i with
    +    0 ⇒ E0zero
    +  | S iE0finS i
    +  end.
    + +
    +#[deprecated(note="use E0fin")]
    Notation Fin := E0fin (only parsing).
    + +
    +Coercion E0fin : nat >-> E0.
    + +
    +#[global, program] Instance E0mul (alpha beta : E0) : E0 :=
    +  @mkord (cnf alpha × cnf beta)%t1 _.
    + +
    +#[deprecated(note="use E0mul")]
    Notation Mult := E0mul (only parsing).
    + +
    +Infix "×" := E0mul : E0_scope.
    + +
    +#[global, program] Instance Mult_i (alpha: E0) (n: nat) : E0 :=
    +  @mkord (cnf alpha × n)%t1 _.
    + +
    +
    + +
    +

    Lemmas

    + +
    +
    + +
    + +
    +
    + +
    +

    On equality on type E0

    + +
    +
    + +
    + +
    +Lemma nf_proof_unicity :
    +   (alpha:T1) (H H': nf alpha), H = H'.
    + +
    +Lemma E0_eq_intro : alpha beta : E0,
    +    cnf alpha = cnf beta alpha = beta.
    + +
    + +
    +Corollary E0_eq_iff (alpha beta: E0) :
    +  alpha = beta cnf alpha = cnf beta.
    + +
    +Remark Le_iff : alpha beta,
    +    E0le alpha beta T1.LE (@cnf alpha) (@cnf beta).
    + +
    +Lemma Succb_Succ alpha : E0is_succ alpha {beta : E0 | alpha = E0_succ beta}.
    + +
    +#[export] Hint Resolve E0_eq_intro : E0.
    + +
    +Ltac orefl := (apply E0_eq_intro; try reflexivity).
    + +
    +Ltac ochange alpha beta := (replace alpha with beta; [| orefl]).
    + +
    +Lemma E0_eq_dec : alpha beta: E0,
    +    {alpha = beta}+{alpha beta}.
    + +
    +
    + +
    +

    Adaptation to E0 of lemmas about T1

    + +
    +
    + +
    +Lemma alpha_plus_zero alpha : alpha + E0zero = alpha.
    + +
    +#[export] Hint Rewrite alpha_plus_zero : E0_rw.
    + +
    +Lemma cnf_phi0 (alpha : E0) :
    +  cnf (E0_phi0 alpha) = T1.phi0 (cnf alpha).
    + +
    +Lemma cnf_Succ (alpha : E0) :
    +  cnf (E0_succ alpha) = succ (cnf alpha).
    + +
    +Lemma cnf_Omega_term (alpha: E0) (n: nat) :
    +  cnf (Omega_term alpha n) = omega_term (cnf alpha) n.
    + +
    +Lemma T1limit_Omega_term alpha i : alpha E0zero
    +                                  E0limit (Omega_term alpha i).
    + +
    +Lemma T1limit_phi0 alpha : alpha E0zero
    +                           E0limit (E0_phi0 alpha).
    + +
    +#[export] Hint Resolve T1limit_phi0 : E0.
    + +
    +Definition Zero_Limit_Succ_dec (alpha : E0) :
    +  {alpha = E0zero} + {E0limit alpha = true} +
    +  {beta : E0 | alpha = E0_succ beta}.
    +Defined.
    + +
    +Definition E0_pred (alpha: E0) : E0 :=
    +  match Zero_Limit_Succ_dec alpha with
    +      inl _alpha
    +    | inr (exist _ beta _) ⇒ beta
    +  end.
    + +
    +Tactic Notation "mko" constr(alpha) := refine (@mkord alpha eq_refl).
    + +
    +#[global] Instance Two : E0 := ltac:(mko (\F 2)).
    + +
    +#[global] Instance Omega_2 : E0 :=ltac:(mko (T1omega × T1omega)%t1).
    + +
    +#[global] Instance E0_sto : StrictOrder E0lt.
    + +
    +#[ global ] Instance compare_E0 : Compare E0 :=
    fun (alpha beta:E0) ⇒ compare (cnf alpha) (cnf beta).
    + +
    +Lemma compare_correct (alpha beta : E0) :
    +  CompSpec eq E0lt alpha beta (compare alpha beta).
    + +
    +Lemma E0lt_wf : well_founded E0lt.
    + +
    +#[export] Hint Resolve E0lt_wf : E0.
    + +
    +Lemma Lt_Succ_Le (alpha beta: E0): beta o< alpha E0_succ beta o alpha.
    + +
    +Lemma E0_pred_of_Succ (alpha:E0) : E0_pred (E0_succ alpha) = alpha.
    + +
    +#[export] Hint Rewrite E0_pred_of_Succ: E0_rw.
    + +
    +Lemma Succ_inj alpha beta : E0_succ alpha = E0_succ beta alpha = beta.
    + +
    +Lemma E0_pred_Lt (alpha : E0) : alpha E0zero E0limit alpha = false
    +                       E0_pred alpha o< alpha.
    + +
    +#[export] Hint Resolve E0_pred_Lt : E0.
    + +
    +Lemma Succ_Succb (alpha : E0) : E0is_succ (E0_succ alpha).
    + +
    +#[export] Hint Resolve Succ_Succb : E0.
    + +
    +Ltac ord_eq alpha beta := assert (alpha = beta);
    +      [apply E0_eq_intro ; try reflexivity|].
    + +
    +Lemma FinS_eq i : E0finS i = E0fin (S i).
    + +
    +Lemma mult_fin_rw alpha (i:nat) : alpha × i = Mult_i alpha i.
    + +
    +Lemma FinS_Succ_eq : i, E0finS i = E0_succ (E0fin i).
    + +
    +#[export] Hint Rewrite FinS_Succ_eq : E0_rw.
    + +
    +Lemma Limit_not_Zero alpha : E0limit alpha alpha E0zero.
    + +
    +Lemma Succ_not_Zero alpha: E0is_succ alpha alpha E0zero.
    + +
    +Lemma Lt_Succ : alpha, E0lt alpha (E0_succ alpha).
    + +
    +Lemma Succ_not_T1limit alpha : E0is_succ alpha ¬ E0limit alpha .
    + +
    +#[export]
    +  Hint Resolve Limit_not_Zero Succ_not_Zero Lt_Succ Succ_not_T1limit : E0.
    + +
    +Lemma lt_Succ_inv : alpha beta, beta o< alpha
    +                                       E0_succ beta o alpha.
    + +
    +Lemma lt_Succ_le_2 (alpha beta: E0):
    +    alpha o< E0_succ beta alpha o beta.
    + +
    +Lemma Succ_lt_T1limit alpha beta:
    +    E0limit alpha beta o< alpha E0_succ beta o< alpha.
    + +
    +Lemma le_lt_eq_dec : alpha beta, alpha o beta
    +                                        {alpha o< beta} + {alpha = beta}.
    + +
    + +
    + +
    +#[global] Instance E0_comp: Comparable E0lt compare.
    + +
    +#[global] Instance Epsilon0 : ON E0lt compare.
    + +
    + +
    +Definition Zero_limit_succ_dec : ZeroLimitSucc_dec .
    + +
    + +
    + +
    +Qed.
    + +
    +
    + +
    +

    Rewriting lemmas

    + +
    +
    + +
    +Lemma Succ_rw : alpha, cnf (E0_succ alpha) = T1.succ (cnf alpha).
    + +
    +Lemma Plus_rw : alpha beta, cnf (alpha + beta) =
    +                                   (cnf alpha + cnf beta)%t1.
    + +
    +Lemma Lt_trans alpha beta gamma :
    +  alpha o< beta beta o< gamma alpha o< gamma.
    + +
    +Lemma Le_trans alpha beta gamma :
    +  alpha o beta beta o gamma alpha o gamma.
    + +
    +Lemma Omega_term_plus alpha beta i :
    +  alpha E0zero (beta o< E0_phi0 alpha)%e0
    +  cnf (Omega_term alpha i + beta)%e0 = cons (cnf alpha) i (cnf beta).
    + +
    +Lemma cnf_Cons (alpha beta: E0) n : alpha E0zero beta o< E0_phi0 alpha
    +                                     cnf (Cons alpha n beta) =
    +                                     cons (cnf alpha) n (cnf beta).
    + +
    +Lemma T1limit_plus alpha beta i:
    +  (beta o< E0_phi0 alpha)%e0 E0limit beta
    +  E0limit (Omega_term alpha i + beta)%e0.
    + +
    +Lemma Succ_of_cons alpha gamma i : alpha E0zero gamma o< E0_phi0 alpha
    +                                cnf (E0_succ (Omega_term alpha i + gamma)%e0) =
    +                                cnf (Omega_term alpha i + E0_succ gamma)%e0.
    + +
    +#[global, program] Instance Oplus (alpha beta : E0) : E0 :=
    +@mkord (oplus (cnf alpha) (cnf beta)) _.
    + +
    +Infix "O+" := Oplus (at level 50, left associativity): E0_scope.
    + +
    +#[global] Instance Oplus_assoc : Assoc eq Oplus.
    + +
    +Lemma oPlus_rw (alpha beta : E0) :
    +  cnf (alpha O+ beta)%e0 = (cnf alpha o+ cnf beta)%t1.
    + +
    +Example L_3_plus_omega : 3 + E0_omega = E0_omega.
    + +
    + +
    +Lemma succ_correct alpha beta : cnf beta = succ (cnf alpha)
    +                                Successor beta alpha.
    + +
    +Lemma Le_refl alpha : alpha o alpha.
    + +
    +Lemma Lt_Le_incl alpha beta : alpha o< beta alpha o beta.
    + +
    +Lemma E0_Lt_irrefl (alpha : E0) : ¬ alpha o< alpha.
    + +
    +Lemma E0_Lt_Succ_inv (alpha beta: E0):
    +  alpha o< E0_succ beta alpha o< beta alpha = beta.
    + +
    +Lemma E0_not_Lt_zero alpha : ¬ alpha o< E0zero.
    + +
    +Lemma lt_omega_inv: alpha:E0, alpha o< E0_omega
    +                                       (i:nat), alpha = E0fin i.
    + +
    +Lemma E0_lt_eq_lt alpha beta : alpha o< beta alpha = beta beta o< alpha.
    + +
    +Lemma E0_lt_ge alpha beta : alpha o< beta beta o alpha.
    + +
    +Lemma Limit_gt_Zero (alpha: E0) : E0limit alpha E0zero o< alpha.
    + +
    +Lemma phi0_mono alpha beta : alpha o< beta E0_phi0 alpha o< E0_phi0 beta.
    + +
    +#[global] Instance plus_assoc : Assoc eq E0add .
    + +
    +Theorem mult_plus_distr_l (alpha beta gamma: E0) :
    +  alpha × (beta + gamma) = alpha × beta + alpha × gamma.
    + +
    +Example Ex42: E0_omega + 42 + E0_omega^2 = E0_omega^2.
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Epsilon0.Epsilon0.html b/theories/html/hydras.Epsilon0.Epsilon0.html new file mode 100644 index 00000000..982cfe24 --- /dev/null +++ b/theories/html/hydras.Epsilon0.Epsilon0.html @@ -0,0 +1,33 @@ + + + + + +hydras.Epsilon0.Epsilon0 + + + + +
    + + + +
    + +

    Library hydras.Epsilon0.Epsilon0

    + +
    +From hydras Require Export T1 Canon Paths Large_Sets.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Epsilon0.Epsilon0rpo.html b/theories/html/hydras.Epsilon0.Epsilon0rpo.html new file mode 100644 index 00000000..2143a731 --- /dev/null +++ b/theories/html/hydras.Epsilon0.Epsilon0rpo.html @@ -0,0 +1,336 @@ + + + + + +hydras.Epsilon0.Epsilon0rpo + + + + +
    + + + +
    + +

    Library hydras.Epsilon0.Epsilon0rpo

    + +
    +
    + +
    + Pierre Casteran + LaBRI, University of Bordeaux + +
    + + Evelyne Contejean + LRI. + +
    + + Cantor "pre" Normal form + After Manolios and Vroon work on ACL2 +
    +
    + +
    +From Coq Require Import Arith Lia Compare_dec Relations
    +  Wellfounded Wf_nat List Bool Eqdep_dec Ensembles ArithRing Logic.
    + +
    +From hydras Require Import More_Arith Restriction
    +     DecPreOrder rpo.term rpo.rpo Epsilon0.T1.
    + +
    +Set Implicit Arguments.
    + +
    +Create HintDb rpo.
    + +
    +Module Alt.
    + +
    +Module Eps0_sig <: Signature.
    + +
    +  Inductive symb0 : Set := nat_0 | nat_S | ord_zero | ord_cons.
    +  Definition symb := symb0.
    + +
    +  Lemma eq_symbol_dec : f1 f2 : symb, {f1 = f2} + {f1 f2}.
    + +
    +
    + +
    +The arity of a symbol contains also the information about built-in theories as in CiME +
    +
    + +
    +  Inductive arity_type : Set :=
    +  | AC : arity_type
    +  | C : arity_type
    +  | Free : nat arity_type.
    + +
    +  Definition arity : symb arity_type :=
    +    fun fmatch f with
    +             | nat_0Free 0
    +             | ord_zeroFree 0
    +             | nat_SFree 1
    +             | ord_consFree 3
    +             end.
    +End Eps0_sig.
    + +
    +
    + +
    +

    Module Type Variables.

    + + There are almost no assumptions, except a decidable equality. +
    +
    + +
    +Module Vars <: Variables.
    + +
    +  Inductive empty_set : Set := .
    +  Definition var := empty_set.
    + +
    +  Lemma eq_variable_dec : v1 v2 : var, {v1 = v2} + {v1 v2}.
    + +
    +End Vars.
    + +
    +Module Eps0_prec <: Precedence.
    + +
    +  Definition A : Set := Eps0_sig.symb.
    +  Import Eps0_sig.
    + +
    +  Definition prec : relation A :=
    +    fun f gmatch f, g with
    +               | nat_0, nat_STrue
    +               | nat_0, ord_zeroTrue
    +               | nat_0, ord_consTrue
    +               | ord_zero, nat_STrue
    +               | ord_zero, ord_consTrue
    +               | nat_S, ord_consTrue
    +               | _, _False
    +               end.
    + +
    +  Inductive status_type : Set :=
    +  | Lex : status_type
    +  | Mul : status_type.
    + +
    +  Definition status : A status_type := fun fLex.
    + +
    +  Lemma prec_dec : a1 a2 : A, {prec a1 a2} + {¬ prec a1 a2}.
    + +
    +  Lemma prec_antisym : s, prec s s False.
    + +
    +  Lemma prec_transitive : transitive A prec.
    + +
    +End Eps0_prec.
    + +
    +Module Eps0_alg <: Term := term.Make (Eps0_sig) (Vars).
    +Module Eps0_rpo <: RPO := rpo.Make (Eps0_alg) (Eps0_prec).
    + +
    +Import Eps0_alg Eps0_rpo Eps0_sig.
    + +
    +Fixpoint nat_2_term (n:nat) : term :=
    +  match n with 0 ⇒ (Term nat_0 nil)
    +             | S pTerm nat_S ((nat_2_term p)::nil)
    +  end.
    + +
    +
    + +
    +

    + +Every (representation of a) natural number is less than + any non zero ordinal +
    +
    + +
    +Lemma nat_lt_cons : (n:nat) a p b ,
    +    rpo (nat_2_term n) (Term ord_cons (a::p::b::nil)).
    + +
    +Theorem rpo_trans (t t1 t2: term): rpo t t1 rpo t1 t2 rpo t t2.
    + +
    +Fixpoint T1_2_term (a:T1) : term :=
    +match a with
    +| zeroTerm ord_zero nil
    +| cons a n b
    +    Term ord_cons (T1_2_term a :: nat_2_term n ::T1_2_term b::nil)
    +end.
    + +
    +Fixpoint T1_size (o:T1):nat :=
    match o with zero ⇒ 0
    +            | cons a n bS (T1_size a + n + T1_size b)%nat
    +         end.
    + +
    +Lemma T1_size1 a n b: T1_size zero < T1_size (cons a n b).
    + +
    +Lemma T1_size2 a n b: T1_size a < T1_size (cons a n b).
    + +
    +Lemma T1_size3 a n b: T1_size b < T1_size (cons a n b).
    + +
    +#[global] Hint Resolve T1_size2 T1_size3 : rpo.
    + +
    +
    + +
    +let us recall subterm properties on T1 +
    +
    + +
    +Lemma lt_subterm1 a a' n' b': lt a a' lt a (cons a' n' b').
    + +
    +Lemma lt_subterm2 a a' n n' b b':
    +  lt a a'
    +  nf (cons a n b)
    +  nf (cons a' n' b')
    +  lt b (cons a' n' b').
    + +
    +#[global] Hint Resolve nat_lt_cons : rpo.
    +#[global] Hint Resolve lt_subterm2 lt_subterm1 : rpo.
    +#[global] Hint Resolve T1_size3 T1_size2 T1_size1 : rpo.
    + +
    +Lemma nat_2_term_mono (n n': nat):
    +  n < n' rpo (nat_2_term n) (nat_2_term n').
    + +
    + +
    +Theorem lt_inc_rpo_0 : n,
    +     o' o, (T1_size o + T1_size o' n)%nat
    +                 lt o o' nf o nf o'
    +                 rpo (T1_2_term o) (T1_2_term o').
    + +
    +Remark R1 : Acc P.prec nat_0.
    + +
    +#[global] Hint Resolve R1 : rpo.
    + +
    +Remark R2 : Acc P.prec ord_zero.
    + +
    +#[global] Hint Resolve R2 : rpo.
    + +
    +Remark R3 : Acc P.prec nat_S.
    + +
    +#[global] Hint Resolve R3 : rpo.
    + +
    +Remark R4 : Acc P.prec ord_cons.
    + +
    +#[global] Hint Resolve R4 : rpo.
    + +
    +Theorem well_founded_rpo : well_founded rpo.
    + +
    +Section well_founded.
    + +
    +  Let R := restrict nf lt.
    + +
    +  #[local] Hint Unfold restrict R : rpo.
    + +
    +  Lemma R_inc_rpo (o o':T1) :
    +    R o o' rpo (T1_2_term o) (T1_2_term o').
    + +
    + +
    +  Lemma nf_Wf : well_founded_restriction _ nf lt.
    + +
    +
    + +
    +For compatibility with T1 +
    +
    +  Lemma nf_Acc : alpha, nf alpha Acc LT alpha.
    + +
    +End well_founded.
    + +
    +Definition transfinite_recursor_lt :
    +   (P:T1 Type),
    +    ( x:T1, nf x
    +                  ( y:T1, nf y lt y x P y) P x)
    +     a, nf a P a.
    + +
    +Definition transfinite_recursor :
    +   (P:T1 Type),
    +    ( x:T1, nf x
    +                  ( y:T1, y t1< x P y) P x)
    +     a, nf a P a.
    + +
    +Ltac transfinite_induction_lt a :=
    +  pattern a; apply transfinite_recursor_lt ;[ | try assumption].
    + +
    +Ltac transfinite_induction a :=
    +  pattern a; apply transfinite_recursor;[ | try assumption].
    + +
    +End Alt.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Epsilon0.F_alpha.html b/theories/html/hydras.Epsilon0.F_alpha.html new file mode 100644 index 00000000..9bb762c9 --- /dev/null +++ b/theories/html/hydras.Epsilon0.F_alpha.html @@ -0,0 +1,497 @@ + + + + + +hydras.Epsilon0.F_alpha + + + + +
    + + + +
    + +

    Library hydras.Epsilon0.F_alpha

    + +
    +
    + +
    +

    The Wainer hierarchy of rapidly growing functions (variant)

    + + +
    + + After Wainer, Ketonen, Solovay, etc . + +
    +
    + +
    +From hydras Require Import Iterates Simple_LexProd Exp2.
    +From hydras Require Import E0 Canon Paths primRec Hprime.
    +Import RelationClasses Relations.
    + +
    +From Coq Require Import ArithRing Lia.
    +Require Import Compat815.
    + +
    +From Equations Require Import Equations.
    + +
    +From hydras Require Import primRec.
    + +
    +
    + +
    +For masking primRec's iterate +
    +
    + +
    +Import Prelude.Iterates.
    + +
    +
    + +
    +

    Definition, using coq-equations

    + + +
    + +The following definition is not accepted by the equations plug-in. + +
    + + +
    +
    + +
    +#[global] Instance Olt : WellFounded E0lt := E0lt_wf.
    + +
    + +
    +
    + +
    + +
    + + Indeed, we define the -th iterate of F_ alpha by well-founded + recursion on the pair (alpha,n), then F_ alpha as the first iterate + of the defined function. + +
    +
    + +
    +Definition call_lt (c c' : E0 × nat) :=
    +  lexico E0lt (Peano.lt) c c'.
    + +
    +Lemma call_lt_wf : well_founded call_lt.
    + +
    +#[ global ] Instance WF : WellFounded call_lt := call_lt_wf.
    + +
    + +
    +Equations F_star (c: E0 × nat) (i:nat) : nat by wf c call_lt :=
    +  F_star (alpha, 0) i := i;
    +  F_star (alpha, 1) i
    +    with E0_eq_dec alpha E0zero :=
    +    { | left _zeroS i ;
    +      | right _nonzero
    +          with Utils.dec (E0limit alpha) :=
    +          { | left _limitF_star (Canon alpha i,1) i ;
    +            | right _notlimit
    +              F_star (E0_pred alpha, S i) i}};
    +  F_star (alpha,(S (S n))) i :=
    +    F_star (alpha, 1) (F_star (alpha, (S n)) i).
    + +
    + +
    + +
    + +
    + +
    +Definition F_ alpha i := F_star (alpha, 1) i.
    + +
    +
    + +
    +

    We get the "usual" equations for F_

    + +
    + +

    Relations between F_star and F_

    + +
    +
    + +
    +Lemma F_star_zero_eqn : alpha i, F_star (alpha, 0) i = i.
    + +
    +Lemma Fstar_S : alpha n i, F_star (alpha, S (S n)) i =
    +                                  F_ alpha (F_star (alpha, S n) i).
    + +
    +Lemma F_eq2 : alpha i,
    +    E0is_succ alpha
    +    F_ alpha i = F_star (E0_pred alpha, S i) i.
    + +
    +Lemma F_star_Succ: alpha n i,
    +    F_star (alpha, S n) i =
    +    F_ alpha (F_star (alpha, n) i).
    + +
    +Lemma F_star_iterate : alpha n i,
    +    F_star (alpha, n) i = iterate (F_ alpha) n i.
    + +
    +
    + +
    +

    Usual equations for F_

    + +
    +
    + +
    + +
    +Lemma F_zero_eqn : i, F_ E0zero i = S i. +
    +Lemma F_lim_eqn : alpha i,
    +    E0limit alpha
    +    F_ alpha i = F_ (Canon alpha i) i. +
    +Lemma F_succ_eqn : alpha i,
    +    F_ (E0_succ alpha) i = iterate (F_ alpha) (S i) i. +
    +
    + +
    +

    First steps of the hierarchy

    + +
    + + performs an induction only on the occ1-th and occ2_th occurrences of n +
    +
    + +
    +Tactic Notation "undiag2" constr(n) integer(occ1) integer(occ2) :=
    +  let n' := fresh "n" in
    +  generalize n at occ1 occ2; intro n'; induction n'.
    + +
    + +
    +Lemma LF1 : i, F_ 1 i = S (2 × i). +
    +Lemma LF2 : i, exp2 i × i < F_ 2 i. +
    +Corollary LF2' : i, 1 i exp2 i < F_ 2 i.
    + +
    +Lemma F_alpha_0_eq : alpha: E0, F_ alpha 0 = 1.
    +       Search (Canon ?a _ o< ?a).
    +Qed.
    + +
    +
    + +
    +Properties of F_ alpha +
    +
    + +
    + +
    +Theorem F_alpha_mono alpha : strict_mono (F_ alpha). +
    +Theorem F_alpha_gt alpha : n, n < F_ alpha n. +
    +Corollary F_alpha_positive alpha : n, 0 < F_ alpha n. +
    +Theorem F_alpha_Succ_le alpha : F_ alpha <<= F_ (E0_succ alpha).
    + +
    +Theorem F_alpha_dom alpha :
    +  dominates_from 1 (F_ (E0_succ alpha)) (F_ alpha). +
    +Theorem F_restricted_mono_l alpha :
    +   beta n, Canon_plus n alpha beta
    +                 F_ beta n F_ alpha n. +
    + #[deprecated(note="use F_alpha_gt")]
    +  Notation F_alpha_ge_S := StrictOrder_Transitive (only parsing).
    + +
    + +
    +Lemma LF2_0 : dominates_from 0 (F_ 2) (fun iexp2 i × i).
    + +
    +Lemma LF3_2 : dominates_from 2 (F_ 3) (fun niterate exp2 (S n) n).
    + +
    +
    + +
    +From Ketonen and Solovay, page 284, op. cit. +
    +
    + +
    + +
    +Section F_monotony_l.
    + +
    +  Variables alpha beta : E0.
    +  Hypothesis H'_beta_alpha : E0lt beta alpha.
    + +
    + +
    + +
    +  Lemma F_mono_l_0 : n,
    +      Canon_plus (S n) alpha beta
    +       i, (S n < i F_ beta i < F_ alpha i)%nat.
    + +
    + +
    +  Lemma F_mono_l: dominates (F_ alpha) (F_ beta). +
    +End F_monotony_l.
    + +
    +
    + +
    +

    Comparison with the Hardy hierarchy

    + + +
    + + (F_ alpha (S n) H'_ (Phi0 alpha) (S n)) + +
    +
    + +
    +Section H'_F.
    + +
    +  Let P (alpha: E0) :=
    +         n, (F_ alpha (S n) H'_ (E0_phi0 alpha) (S n))%nat.
    + +
    Variable alpha: E0.
    + +
    Hypothesis IHalpha : beta, beta o< alpha P beta.
    + +
    Lemma HF0 : P E0zero.
    + +
    Lemma HFsucc : E0is_succ alpha P alpha.
    + +
    +
    + +
    +The following proof is far from being trivial. + It uses some lemmas from the Ketonen-Solovay machinery +
    +
    + +
    +  Lemma HFLim : E0limit alpha P alpha.
    + +
    +End H'_F.
    + +
    + +
    +Lemma H'_F alpha : n, F_ alpha (S n) H'_ (E0_phi0 alpha) (S n).
    + +
    +
    + +
    +

    A variant (Lob-Wainer hierarchy)

    + + +
    +
    + +
    +Equations f_star (c: E0 × nat) (i:nat) : nat by wf c call_lt :=
    +  f_star (alpha, 0) i := i;
    +  f_star (alpha, 1) i
    +    with E0_eq_dec alpha E0zero :=
    +    { | left _zeroS i ;
    +      | right _nonzero
    +          with Utils.dec (E0limit alpha) :=
    +          { | left _limitf_star (Canon alpha i,1) i ;
    +            | right _successor
    +              f_star (E0_pred alpha, i) i}};
    +  f_star (alpha,(S (S n))) i :=
    +    f_star (alpha, 1) (f_star (alpha, (S n)) i).
    + +
    + +
    + +
    + +
    + +
    +
    + +
    + Finally, f_ alpha is defined as its first iterate ! +
    +
    + +
    +Definition f_ alpha i := f_star (alpha, 1) i.
    + +
    +
    + +
    +

    We get the "usual" equations for F_

    + +
    + +

    Relations between F_star and F_

    + +
    +
    + +
    +Lemma f_star_zero_eqn : alpha i, f_star (alpha, 0) i = i.
    + +
    +Lemma fstar_S : alpha n i, f_star (alpha, S (S n)) i =
    +                                  f_ alpha (f_star (alpha, S n) i).
    + +
    +Lemma f_eq2 : alpha i,
    +    E0is_succ alpha
    +    f_ alpha i = f_star (E0_pred alpha, i) i.
    + +
    +Lemma f_star_Succ: alpha n i,
    +    f_star (alpha, S n) i =
    +    f_ alpha (f_star (alpha, n) i).
    + +
    +Lemma f_star_iterate : alpha n i,
    +    f_star (alpha, n) i = iterate (f_ alpha) n i.
    + +
    +
    + +
    +

    Usual equations for f_

    + +
    +
    + +
    +Lemma f_zero_eqn : i, f_ E0zero i = S i.
    + +
    +Lemma f_lim_eqn : alpha i, E0limit alpha
    +                                   f_ alpha i = f_ (Canon alpha i) i.
    + +
    +Lemma f_succ_eqn : alpha i,
    +    f_ (E0_succ alpha) i = iterate (f_ alpha) i i.
    + +
    +Lemma id_le_f_alpha (alpha: E0) : i, i f_ alpha i.
    + +
    +Section Properties_of_f_alpha.
    + +
    +Record Q (alpha:E0) : Prop :=
    +    mkQ {
    +        QA : strict_mono (f_ alpha);
    +        QD : dominates_from 2 (f_ (E0_succ alpha)) (f_ alpha);
    +        QE : beta n, Canon_plus n alpha beta
    +                            f_ beta n f_ alpha n}.
    + +
    +Section The_induction.
    + +
    +  Lemma QA0 : strict_mono (f_ E0zero).
    + +
    +  Lemma QD0 : dominates_from 2 (f_ (E0_succ E0zero)) (f_ E0zero).
    + +
    + +
    +
    + +
    +TODO : Study the equality F alpha i = Nat.pred (f alpha (S i)) +
    +
    + +
    + +
    +End The_induction.
    + +
    +End Properties_of_f_alpha.
    + +
    +Print Assumptions F_zero_eqn.
    + +
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Epsilon0.F_omega.html b/theories/html/hydras.Epsilon0.F_omega.html new file mode 100644 index 00000000..1324d362 --- /dev/null +++ b/theories/html/hydras.Epsilon0.F_omega.html @@ -0,0 +1,217 @@ + + + + + +hydras.Epsilon0.F_omega + + + + +
    + + + +
    + +

    Library hydras.Epsilon0.F_omega

    + +
    +
    + +
    + About F_ omega +
    +
    + +
    +From hydras Require Import Iterates F_alpha E0 Ack AckNotPR.
    +From Coq Require Import ArithRing Lia Arith.
    +Import Exp2.
    +Open Scope nat_scope.
    + +
    +
    + +
    +

    Rewriting lemmas

    + +
    +
    + +
    +Lemma Ack_iterate_rw n p : Ack (S n) (S p) = iterate (Ack n) (S (S p)) 1.
    + +
    +Lemma F_iterate_rw n p : F_ (S n) (S p) = iterate (F_ n) (S (S p)) (S p).
    + +
    +
    + +
    +

    Comparison between Ack n and F_ n

    + +
    +
    + +
    +Lemma L02 p: 2 p 2 × p + 3 exp2 p × p.
    + +
    +Section inductive_step.
    +  Variable n: nat.
    +  Hypothesis Hn : p, 2 p Ack n p F_ n p.
    + +
    +  Lemma L: p, 2 p Ack (S n) p F_ (S n) p.
    + +
    +End inductive_step.
    + +
    +Lemma L2 : n, 2 n p, 2 p
    +                                         Ack n p F_ n p.
    + +
    +Lemma F_vs_Ack n : 2 n Ack n n F_ E0_omega n. +
    +
    + +
    +

    F_ omega is not primitive recursive

    + +
    +
    + +
    +Import primRec extEqualNat.
    + +
    +Section F_omega_notPR.
    + +
    +  Context (F_omega_PR : isPR 1 (F_ E0_omega)).
    + +
    +  Lemma F_omega_not_PR : False.
    + +
    +End F_omega_notPR.
    + +
    +
    + +
    +

    F_ alpha is not primitive recursive, for omega alpha

    + +
    +
    + +
    +Section F_alpha_notPR.
    + +
    +  Variable alpha: E0.
    +  Section case_lt.
    + +
    +    Hypothesis Halpha : E0_omega o< alpha.
    + +
    +    Remark R5: N, k, N k F_ E0_omega k < F_ alpha k.
    + +
    +    Context (H: isPR 1 (F_ alpha)).
    + +
    +    Remark R00 : F_ alpha >> fun nAck n n.
    + +
    +    Lemma FF : False.
    + +
    +  End case_lt.
    + +
    + +
    +  Hypothesis H : E0_omega o alpha.
    +  Context (H0: isPR 1 (F_ alpha)).
    + +
    +  Lemma F_alpha_not_PR: False.
    + +
    +End F_alpha_notPR.
    + +
    +
    + +
    +

    On the other hand, F_ n is PR for any n:nat

    + + +
    +
    + +
    +#[export] Instance F_0_isPR : isPR 1 (F_ 0).
    + +
    +Section step.
    +  Variable n: nat.
    +  Hypothesis Hn : isPR 1 (F_ n).
    + +
    +  Let F := fun a bnat_rec (fun _nat) a (fun x yF_ n y) b.
    + +
    +  Remark L00: i, F_ (E0_succ n) i = F i (S i) .
    + +
    +  #[local] Instance R01 : isPR 2 F.
    + +
    +  #[local] Instance R02 : isPR 1 (fun iF i (S i)).
    + +
    +  #[local] Instance R03 : isPR 1 (F_ (S n)).
    + +
    +End step.
    + +
    +#[export] Instance F_n_PR (n:nat) : isPR 1 (F_ n).
    + +
    +
    + +
    + Keep in mind that isPR is of sort Set, so not and iff + cannot be used +
    +
    + +
    +Lemma F_alpha_PR_inv: alpha, isPR 1 (F_ alpha) alpha o< E0_omega.
    + +
    +Lemma F_alpha_notPR_inv: alpha,
    +    (isPR 1 (F_ alpha) False) E0_omega o alpha.
    + +
    +Check F_alpha_not_PR.
    +Check F_alpha_PR_inv.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Epsilon0.Hessenberg.html b/theories/html/hydras.Epsilon0.Hessenberg.html new file mode 100644 index 00000000..2c51cb8f --- /dev/null +++ b/theories/html/hydras.Epsilon0.Hessenberg.html @@ -0,0 +1,333 @@ + + + + + +hydras.Epsilon0.Hessenberg + + + + +
    + + + +
    + +

    Library hydras.Epsilon0.Hessenberg

    + +
    +
    + +
    +

    Hessenberg sum of ordinals terms (commutative and strictly monotonous)

    + + +
    + +Pierre Castéran, Labri, University of Bordeaux +
    +
    + +
    +From Coq Require Import Arith ArithRing Lia.
    +From hydras Require Import Prelude.More_Arith Prelude.Merge_Sort
    +     Epsilon0.T1.
    + +
    +Set Implicit Arguments.
    + +
    + +
    +Fixpoint oplus (alpha beta : T1) : T1 :=
    +  let fix oplus_aux beta {struct beta} :=
    +      match alpha, beta with
    +        | zero, _beta
    +        | _, zeroalpha
    +        | cons a1 n1 b1, cons a2 n2 b2
    +          match compare a1 a2 with
    +            | Gtcons a1 n1 (oplus b1 beta)
    +            | Ltcons a2 n2 (oplus_aux b2)
    +            | Eqcons a1 (S (n1 + n2)%nat) (oplus b1 b2)
    +          end
    +      end
    +  in oplus_aux beta.
    + +
    +Infix "o+" := oplus (at level 50, left associativity).
    + +
    + +
    + +
    +Fixpoint o_finite_mult n alpha :=
    +match n with
    +    0 ⇒ T1.zero
    +  | S palpha o+ (o_finite_mult p alpha)
    +                 end.
    + +
    +Open Scope t1_scope.
    + +
    + +
    + +
    +Lemma oplus_0_r (alpha : T1) : alpha o+ zero = alpha.
    + +
    +Lemma oplus_0_l (beta : T1): zero o+ beta = beta.
    + +
    + +
    +Lemma oplus_compare_Lt:
    +   a n b a' n' b',
    +  compare a a' = Lt
    +  cons a n b o+ cons a' n' b' = cons a' n' (cons a n b o+ b').
    + +
    +Lemma oplus_lt_rw :
    +   a n b a' n' b', T1.lt a a'
    +                         cons a n b o+ cons a' n' b'=
    +                         cons a' n' (cons a n b o+ b').
    + +
    +Lemma oplus_eq_rw :
    +   a n b n' b',
    +    cons a n b o+ cons a n' b'=
    +    cons a (S (n+n')%nat) (b o+ b').
    + +
    +Lemma oplus_gt_rw :
    +   a n b a' n' b',
    +  T1.lt a' a
    +    cons a n b o+ cons a' n' b' = cons a n (b o+ cons a' n' b').
    + +
    +Lemma oplus_compare_Gt :
    +   a n b a' n' b', compare a a' = Gt
    +                         cons a n b o+ cons a' n' b' =
    +                         cons a n (b o+ cons a' n' b').
    + +
    + +
    +Lemma oplus_eqn :
    +   a b,
    +    a o+ b =
    +    match a, b with
    +        T1.zero, _b
    +      | _, T1.zeroa
    +      | cons a1 n1 b1, cons a2 n2 b2
    +        match compare a1 a2 with
    +            Gtcons a1 n1 (b1 o+ b)
    +          | Eqcons a1 (S (n1 + n2)) (b1 o+ b2)
    +          | Ltcons a2 n2 (a o+ b2)
    +        end
    +    end.
    + +
    +Lemma oplus_cons_cons :
    +   a n b a' n' b',
    +    (cons a n b) o+ (cons a' n' b') =
    +    match compare a a' with
    +          | Gtcons a n (b o+ (cons a' n' b') )
    +          | Eqcons a (S (n + n')%nat) (b o+ b')
    +          | Ltcons a' n' (cons a n b o+ b')
    +    end.
    + +
    +Lemma lt_a_phi0_b_oplus : gamma alpha beta,
    +                        alpha <_phi0 gamma
    +                        beta <_phi0 gamma
    +                        alpha o+ beta <_phi0 gamma.
    + +
    +Lemma oplus_bounded_phi0 alpha beta gamma :
    +  nf alpha nf beta nf gamma
    +  lt alpha (phi0 gamma)
    +  lt beta (phi0 gamma)
    +  lt (alpha o+ beta) (phi0 gamma).
    + +
    +Section Proof_of_plus_nf.
    + +
    +  Lemma oplus_nf_0 (gamma : T1):
    +    nf gamma alpha beta, nf alpha nf beta
    +                               T1.lt alpha gamma
    +                               T1.lt beta gamma
    +                               nf (alpha o+ beta).
    + +
    +  Lemma oplus_nf (alpha beta : T1) :
    +      nf alpha nf beta nf (alpha o+ beta).
    + +
    +End Proof_of_plus_nf.
    + +
    +Lemma o_finite_mult_nf : a n, nf a nf (o_finite_mult n a).
    + +
    +Section Proof_of_oplus_comm.
    +  Lemma oplus_comm_0 (gamma: T1):
    +    nf gamma
    +     alpha beta, nf alpha nf beta
    +                        T1.lt alpha gamma
    +                        T1.lt beta gamma
    +                        alpha o+ beta = beta o+ alpha.
    + +
    +  Lemma oplus_comm (alpha beta: T1):
    +   nf alpha nf beta alpha o+ beta = beta o+ alpha.
    + +
    +End Proof_of_oplus_comm.
    + +
    +Lemma oplus_lt_rw2 : a n b x, nf (cons a n b) nf x
    +                                     x <_phi0 a
    +                                     cons a n b o+ x =
    +                                     cons a n (b o+ x).
    + +
    +Section Proof_of_oplus_assoc.
    + +
    +  Ltac ass_rw Hrec alpha a b c :=
    +    match goal with |- context Gamma [oplus ?a (oplus ?b ?c)] ⇒
    +                    erewrite Hrec with alpha a b c end.
    + +
    +  Ltac ass_rw_rev Hrec alpha a b c :=
    +    match goal with |- context Gamma [oplus (oplus ?a ?b) ?c] ⇒
    +                          erewrite <- Hrec with alpha a b c end.
    +  Lemma oplus_assoc_0 (alpha: T1):
    +      nf alpha
    +       a b c, nf a nf b nf c
    +                      T1.lt a alpha
    +                      T1.lt b alpha T1.lt c alpha
    +                      a o+ (b o+ c) = (a o+ b) o+ c.
    + +
    +  Lemma oplus_assoc (alpha beta gamma:T1) :
    +    nf alpha nf beta nf gamma
    +    alpha o+ (beta o+ gamma) =
    +    alpha o+ beta o+ gamma.
    + +
    +End Proof_of_oplus_assoc.
    + +
    +Section Proof_of_oplus_lt1.
    +  Variables a1 a2: T1.
    +  Variable n : nat.
    +  Hypothesis H0 : nf (cons a1 n a2).
    + +
    +  Lemma oplus_lt_0 : b, nf b T1.lt b (b o+ (cons a1 n a2)).
    + +
    +End Proof_of_oplus_lt1.
    + +
    +Lemma oplus_lt1 : a b, nf a nf b T1.lt T1.zero a
    +                              T1.lt b (b o+ a).
    + +
    +Lemma oplus_lt2 : a b, nf a nf b T1.lt T1.zero b
    +                              T1.lt a (b o+ a).
    + +
    +Lemma oplus_le1 : a b, nf a nf b leq lt a (a o+ b).
    + +
    +Lemma oplus_le2 : a b, nf a nf b leq lt b (a o+ b).
    + +
    +Lemma oplus_strict_mono_0 :
    +   alpha, nf alpha
    +                 a (Ha:nf a) b (Hb: nf b) c (Hc : nf c),
    +                  lt a alpha lt c alpha lt b c
    +                  lt (a o+ b) (a o+ c).
    + +
    +Lemma oplus_strict_mono_r : a b c, nf a nf b nf c
    +                                          lt b c lt (a o+ b) (a o+ c).
    + +
    +Lemma oplus_strict_mono_l : a b c, nf a nf b nf c
    +                                          T1.lt a b
    +                                          T1.lt (a o+ c) (b o+ c).
    + +
    + +
    +Lemma oplus_strict_mono_LT_l (alpha beta gamma : T1) :
    +  nf gamma alpha t1< beta
    +  alpha o+ gamma t1< beta o+ gamma. +
    +Lemma oplus_strict_mono_LT_r (alpha beta gamma : T1) :
    +  nf alpha beta t1< gamma
    +  alpha o+ beta t1< alpha o+ gamma. +
    +Lemma oplus_strict_mono_bi : a b c d ,
    +    nf a nf b nf c nf d
    +    T1.lt a b T1.lt c d T1.lt (a o+ c) (b o+ d).
    + +
    +Lemma oplus_of_phi0_0 : a b,
    +                          phi0 a o+ phi0 b =
    +                          match compare (phi0 a) (phi0 b)
    +                          with Ltcons b 0 (cons a 0 T1.zero)
    +                            | Eqcons a 1 T1.zero
    +                            | Gtcons a 0 (cons b 0 T1.zero)
    +                          end.
    + +
    +Lemma oplus_of_phi0 : a b,
    +                        phi0 a o+ phi0 b =
    +                        match compare a b
    +                        with Ltcons b 0 (cons a 0 T1.zero)
    +                          | Eqcons a 1 T1.zero
    +                          | Gtcons a 0 (cons b 0 T1.zero)
    +                        end.
    + +
    +Lemma o_finite_mult_rw : a n, o_finite_mult (S n) (phi0 a) =
    +                                     cons a n T1.zero.
    + +
    +Lemma o_finite_mult_lt_phi0_1 : a b n,
    +                                  T1.lt a b
    +                                  T1.lt (o_finite_mult n (phi0 a)) (phi0 b).
    + +
    +Lemma o_finite_mult_mono : a b n, nf a nf b T1.lt a b
    +                                          T1.lt (o_finite_mult (S n) a)
    +                                             (o_finite_mult (S n) b).
    + +
    +Lemma oplus_lt_phi0 : a b c, nf a nf b nf c
    +                                     T1.lt a c T1.lt b c
    +                                     T1.lt (phi0 a o+ phi0 b) (phi0 c).
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Epsilon0.Hprime.html b/theories/html/hydras.Epsilon0.Hprime.html new file mode 100644 index 00000000..0d60e494 --- /dev/null +++ b/theories/html/hydras.Epsilon0.Hprime.html @@ -0,0 +1,577 @@ + + + + + +hydras.Epsilon0.Hprime + + + + +
    + + + +
    + +

    Library hydras.Epsilon0.Hprime

    + +
    +
    + +
    +

    A hierarchy of rapidly growing functions

    + + After Hardy, Wainer, Ketonen, Solovay, etc . + +
    + + Pierre Casteran, LaBRI, University of Bordeaux +
    + + Remark + +
    + +Some notations (mainly names of fast-growing functions) of our development + may differ slightly from the litterature. Although this fact does not affect +our proofs, we are preparing a future version where the names + F_ alpha, f_alpha, H _alpha, etc., are fully consistent with the + cited articles. + This change will be provisionally made in a branch called Hardy + (in reference to the Hardy hierarchy). + +
    + + +
    +
    + +
    +From Coq Require Import ArithRing Lia.
    +From hydras Require Import E0 Canon Paths.
    +From hydras Require Import Exp2 Iterates Simple_LexProd.
    +Import RelationClasses Relations.
    +From hydras Require Import Compat815.
    +From Equations Require Import Equations.
    + +
    Open Scope E0_scope.
    + +
    +
    + +
    +

    A variant of the Hardy Wainer hierarchy

    + +
    +
    + +
    +#[ global ] Instance Olt : WellFounded E0lt := E0lt_wf.
    + +
    + +
    +Equations H'_ (alpha: E0) (i:nat) : nat by wf alpha E0lt :=
    +  H'_ alpha i with E0_eq_dec alpha E0zero :=
    +    { | left _zeroi ;
    +      | right _nonzero
    +          with Utils.dec (E0limit alpha) :=
    +          { | left _limitH'_ (Canon alpha (S i)) i ;
    +            | right _successorH'_ (E0_pred alpha) (S i)}}.
    + +
    +Solve All Obligations with auto with E0.
    + +
    +
    + +
    +Paraphrases of the equations for H' +
    +
    + +
    +Lemma H'_eq1 : i, H'_ E0zero i = i.
    + +
    + +
    +Lemma H'_eq2_0 alpha i :
    +  E0is_succ alpha
    +  H'_ alpha i = H'_ (E0_pred alpha) (S i).
    + +
    +Lemma H'_eq3 alpha i :
    +  E0limit alpha H'_ alpha i = H'_ (Canon alpha (S i)) i.
    + +
    +Lemma H'_eq2 alpha i :
    +  H'_ (E0_succ alpha) i = H'_ alpha (S i).
    + +
    +#[local] Hint Rewrite H'_eq1 H'_eq2 : H'_rw.
    + +
    +Ltac lim_rw alpha := (assert (E0limit alpha) by auto with E0);
    +                     rewrite (H'_eq3 alpha); auto with E0.
    + +
    +
    + +
    +Examples : First steps of the hierarchy +
    +
    + +
    + +
    +Lemma H'_Fin : i k : nat, H'_ (E0fin i) k = (i+k)%nat.
    + +
    + +
    +Lemma H'_omega : k, H'_ E0_omega k = S (2 × k)%nat.
    + +
    + +
    +Lemma H'_Plus_Fin alpha : i k : nat,
    +    H'_ (alpha + i)%e0 k = H'_ alpha (i + k)%nat.
    + +
    +Lemma H'_omega_double k :
    +  H'_ (E0_omega × 2)%e0 k = (4 × k + 3)%nat.
    + +
    +Lemma H'_omega_3 k : H'_ (E0_omega × 3)%e0 k = (8 × k + 7)%nat.
    + +
    +Lemma H'_omega_4 k : H'_ (E0_omega × 4)%e0 k = (16 × k + 15)%nat.
    + +
    +Lemma H'_omega_i (i:nat) : k,
    +    H'_ (E0_omega × i)%e0 k = (exp2 i × k + Nat.pred (exp2 i))%nat.
    + +
    +
    + +
    +Let us note that the square of omega can be expressed through the + Phi0 function +
    +
    + +
    +Remark Phi0_def : E0_phi0 2 = ltac:(mko (T1omega × T1omega)%t1).
    + +
    + +
    +Lemma H'_omega_sqr : k,
    +    H'_ (E0_phi0 2)%e0 k = (exp2 (S k ) × (S k) - 1)%nat. +
    +
    + +
    +Composition lemma +
    +
    + +
    +Section H'_cons.
    +Variable alpha : E0.
    +Variable i : nat.
    + +
    +Lemma H'_cons : beta, (beta o< E0_phi0 alpha)%e0
    +                              k, H'_ (Cons alpha i beta) k=
    +                                        H'_ (Omega_term alpha i) (H'_ beta k).
    + +
    + +
    +Lemma H'_Omega_term_1 : alpha E0zero k,
    +    H'_ (Omega_term alpha (S i)) k =
    +    H'_ (Omega_term alpha i) (H'_ (E0_phi0 alpha) k). +
    +End H'_cons.
    + +
    +Lemma H'_Omega_term_0 (alpha : E0) :
    +alpha E0zero i k,
    +  H'_ (Omega_term alpha i) k = iterate (H'_ (E0_phi0 alpha)) (S i) k.
    + +
    +Lemma H'_Fin_iterate : i k,
    +    H'_ (E0fin (S i)) k = iterate (H'_ (E0fin 1)) (S i) k.
    + +
    + +
    +Lemma H'_Omega_term (alpha : E0) :
    +   i k,
    +    H'_ (Omega_term alpha i) k =
    +    iterate (H'_ (E0_phi0 alpha)) (S i) k.
    + +
    + +
    +Definition H'_succ_fun f k := iterate f (S k) k.
    + +
    +Lemma H'_Phi0_succ_1 alpha : alpha E0zero k,
    +      H'_ (E0_phi0 (E0_succ alpha)) k = H'_succ_fun (H'_ (E0_phi0 alpha)) k.
    + +
    +Lemma H'_Phi0_succ_0 : k,
    +    H'_ (E0_phi0 (E0_succ E0zero)) k = H'_succ_fun (H'_ (E0_phi0 E0zero)) k.
    + +
    +Lemma H'_Phi0_succ alpha : k,
    +    H'_ (E0_phi0 (E0_succ alpha)) k = H'_succ_fun (H'_ (E0_phi0 alpha)) k.
    + +
    + +
    +Lemma H'_Phi0_Si : i k,
    +    H'_ (E0_phi0 (S i)) k = iterate H'_succ_fun i (H'_ E0_omega) k.
    + +
    +Lemma H'_omega_cube : k,
    +    H'_ (E0_phi0 3)%e0 k = iterate (H'_ (E0_phi0 2)) (S k) k.
    + +
    +Section H'_omega_cube_3.
    + +
    + +
    +  Let f k := (exp2 (S k) × (S k) - 1)%nat.
    + +
    +  Remark R0 k : H'_ (E0_phi0 3)%e0 k = iterate f (S k) k.
    + +
    + +
    +   Fact F0 : H'_ (E0_phi0 3) 3 = f (f (f (f 3))).
    + +
    + +
    +
    + +
    +f (f 3)) +
    +
    + +
    +  Let N := (exp2 64 × 64 - 1)%nat.
    + +
    + +
    +  Remark N_simpl: N = exp2 70 - 1.
    + +
    + +
    +  Fact F1 : H'_ (E0_phi0 3) 3 = f (f N).
    + +
    +  Fact F1_simpl :
    +    H'_ (E0_phi0 3) 3 =
    +    (exp2 (exp2 (S N) × S N) × (exp2 (S N) × S N) - 1)%nat.
    +  Fact F2 : H'_ (E0_phi0 3 + 3) 0 = f (f N).
    + +
    +  Remark f_minoration n p : 0 < n n p exp2 n f p.
    + +
    +  Fact F3 : (exp2 (exp2 N) H'_ (E0_phi0 3 + 3) 0).
    + +
    +End H'_omega_cube_3.
    + +
    + +
    +Lemma H'_Phi0_omega :
    +   k, H'_ (E0_phi0 E0_omega) k =
    +            iterate H'_succ_fun k (H'_ E0_omega) k. +
    + +
    +Lemma H'_Phi0_omega_exact_formula k :
    +  H'_ (E0_phi0 E0_omega) k =
    +    let F f i := iterate f (S i) i
    +    in let g k := S (2 × k)%nat
    +       in iterate F k g k.
    + +
    +Lemma H'_omega_sqr_min : k, 0 k
    +                                    (exp2 (S k) H'_ (E0_phi0 2) k)%nat.
    + +
    +Lemma H'_omega_cube_min k :
    +  0 k (hyper_exp2 (1 + k) H'_ (E0_phi0 3) k)%nat.
    + +
    +Remark H'_non_mono1 :
    +  ¬ ( alpha beta k,
    +        (alpha o beta)%e0
    +        (H'_ alpha k H'_ beta k)%nat).
    + +
    + +
    +Section Proof_of_Abstract_Properties.
    + +
    +  Record P (alpha:E0) : Prop :=
    +    mkP {
    +        PA : strict_mono (H'_ alpha);
    +        PB : alpha E0zero n, (n < H'_ alpha n)%nat;
    +        PC : H'_ alpha <<= H'_ (E0_succ alpha);
    +        PD : dominates_from 1 (H'_ (E0_succ alpha)) (H'_ alpha);
    +        PE : beta n, Canon_plus n alpha beta
    +                            (H'_ beta n H'_ alpha n)%nat}.
    + +
    +  Section The_induction.
    + +
    + +
    +    Lemma PA_Zero : strict_mono (H'_ E0zero).
    + +
    +    Lemma PD_Zero : dominates_from 1 (H'_ (E0_succ E0zero)) (H'_ E0zero).
    + +
    +    #[local] Hint Resolve PD_Zero PA_Zero : E0.
    + +
    +    Lemma PC_Zero : H'_ E0zero <<= H'_ (E0_succ E0zero).
    + +
    +    #[local] Hint Resolve PC_Zero : core.
    + +
    +    Lemma PZero : P E0zero.
    + +
    +    Variable alpha : E0.
    +    Hypothesis Halpha : beta, E0lt beta alpha P beta.
    + +
    +    Section alpha_Succ.
    +      Variable beta: E0.
    +      Hypothesis alpha_def : alpha = E0_succ beta.
    + +
    +      Remark PA_Succ : strict_mono (H'_ alpha).
    + +
    +      Remark RB : alpha E0zero n, (n < H'_ alpha n)%nat.
    + +
    +      Remark RD : dominates_from 1 (H'_ (E0_succ alpha)) (H'_ alpha).
    + +
    +      Remark RE : beta n, Canon_plus n alpha beta
    +                                 (H'_ beta n H'_ alpha n)%nat.
    + +
    +      Remark RC : H'_ alpha <<= H'_ (E0_succ alpha).
    + +
    +      Remark RP : P alpha.
    + +
    +    End alpha_Succ.
    + +
    +    Section alpha_limit.
    +      Hypothesis Hlim : E0limit alpha.
    + +
    +      Remark RBlim : n, (n < H'_ alpha n)%nat.
    + +
    +      Remark RAlim : strict_mono (H'_ alpha).
    + +
    +      Remark RClim : H'_ alpha <<= H'_ (E0_succ alpha).
    + +
    +      Remark RDlim : dominates_from 1 (H'_ (E0_succ alpha)) (H'_ alpha).
    + +
    +      Remark RElim : beta n, Canon_plus n alpha beta
    +                                    (H'_ beta n H'_ alpha n)%nat.
    + +
    +    End alpha_limit.
    + +
    +    Lemma P_alpha_0 : P alpha.
    + +
    +  End The_induction.
    + +
    + +
    +  Theorem P_alpha : alpha, P alpha. +
    +End Proof_of_Abstract_Properties.
    + +
    + +
    +Section Abstract_Properties.
    + +
    +  Variable alpha : E0.
    + +
    +  Theorem H'_alpha_mono : strict_mono (H'_ alpha).
    + +
    +  Theorem H'_alpha_gt : alpha E0zero n, (n < H'_ alpha n)%nat.
    + +
    +  Theorem H'_alpha_Succ_le : H'_ alpha <<= H'_ (E0_succ alpha).
    + +
    +  Theorem H'_alpha_dom : dominates_from 1 (H'_ (E0_succ alpha)) (H'_ alpha).
    + +
    +
    + +
    +H'_ is not mononotonous in alpha in general. + Nevertheless, this lemma may help (from KS) +
    +
    + +
    +  Theorem H'_restricted_mono_l : beta n, Canon_plus n alpha beta
    +                                                H'_ beta n H'_ alpha n.
    + +
    +  Lemma H'_alpha_ge_id : id <<= H'_ alpha.
    + +
    +  Lemma H'_alpha_mono_weak : k l, k l
    +                                         H'_ alpha k H'_ alpha l.
    + +
    +End Abstract_Properties.
    + +
    +
    + +
    +

    Monotony of H' w.r.t. its first argument

    + + +
    + + Although Lemma H'_non_mono1 tells us that H' is not monotonous + with respect to its argument alpha, we prove that, if alpha<beta, then + H'_ alpha k < H'_ beta k for large enough k. + For that purpose, we apply a few lemmas from the Ketonen-Solovay article. + +
    + + +
    +
    + +
    +Lemma H'_mono_l_0 alpha beta :
    +  alpha o< beta
    +  {n : nat | p, n p H'_ alpha (S p) H'_ beta (S p)}.
    + +
    +Lemma H'_mono_l_1 alpha beta :
    +  alpha o beta
    +  {n : nat | p, n p H'_ alpha (S p) H'_ beta (S p)}.
    + +
    +Section Proof_of_H'_mono_l.
    + +
    +  Variables alpha beta: E0.
    +  Hypothesis H_alpha_beta: alpha o< beta.
    + +
    +  Section Succ_case.
    +    Variable gamma: E0.
    +    Hypothesis Hgamma : beta = E0_succ gamma.
    + +
    +    Remark R1 : alpha o gamma.
    + +
    +    Remark R2 : {n : nat | p, n p H'_ alpha (S p) H'_ gamma (S p)}.
    + +
    +    Remark R3 : {n: nat | p, n p
    +                                    H'_ alpha (S p) < H'_ beta (S p)}.
    + +
    +  End Succ_case.
    + +
    +  Section Limit_case.
    +    Hypothesis Hbeta: E0limit beta.
    + +
    +    Remark R4 : E0_succ alpha o< beta.
    + +
    +    Remark R5 : {n: nat | p, n p
    +                                     H'_ alpha (S p) < H'_ beta (S p)}.
    + +
    +  End Limit_case.
    + +
    +  Lemma H'_mono_l : {n: nat | p, n p
    +                                        H'_ alpha (S p) < H'_ beta (S p)}.
    + +
    + +
    +  Theorem H'_dom : dominates_strong (H'_ beta) (H'_ alpha). +
    +End Proof_of_H'_mono_l.
    + +
    +About H'_dom.
    + +
    + +
    +Goal
    +  (0 < H'_ (ltac:(mko (T1omega × T1omega × T1omega)%t1)) 12)%nat.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Epsilon0.L_alpha.html b/theories/html/hydras.Epsilon0.L_alpha.html new file mode 100644 index 00000000..face1bf3 --- /dev/null +++ b/theories/html/hydras.Epsilon0.L_alpha.html @@ -0,0 +1,197 @@ + + + + + +hydras.Epsilon0.L_alpha + + + + +
    + + + +
    + +

    Library hydras.Epsilon0.L_alpha

    + +
    +
    + +
    +

    Computing the length of paths from alpha to zero

    + + +
    + + After Wainer, Ketonen, Solovay, etc . + +
    + + Pierre Casteran, LaBRI, University of Bordeaux +
    +
    + +
    +From hydras Require Import Hprime E0 Canon Paths
    +     Large_Sets.
    +From hydras Require Import Simple_LexProd Iterates .
    +From Coq Require Import ArithRing Lia.
    + +
    +From Equations Require Import Equations.
    +Import RelationClasses Relations.
    + +
    +#[global] Instance Olt : WellFounded E0lt := E0lt_wf.
    +#[global] Hint Resolve Olt : E0.
    + +
    +
    + +
    +Using Coq-Equations for building a function which satisfies + Large_sets.L_spec +
    +
    + +
    +Equations L_ (alpha: E0) (i:nat) : nat by wf alpha E0lt :=
    +  L_ alpha i with E0_eq_dec alpha E0zero :=
    +    { | left _zeroi ;
    +      | right _nonzero
    +          with Utils.dec (E0limit alpha) :=
    +          { | left _limitL_ (Canon alpha i) (S i) ;
    +            | right _successorL_ (E0_pred alpha) (S i)}}.
    + +
    +Solve All Obligations with auto with E0.
    + +
    + +
    + +
    +About L__equation_1.
    + +
    +
    + +
    +Paraphrase of equations generated by coq-equations +
    +
    + +
    + +
    +Lemma L_zero_eqn : i, L_ E0zero i = i.
    + +
    +Lemma L_eq2 alpha i :
    +  E0is_succ alpha L_ alpha i = L_ (E0_pred alpha) (S i).
    + +
    +Lemma L_succ_eqn alpha i :
    +  L_ (E0_succ alpha) i = L_ alpha (S i).
    + +
    +#[export] Hint Rewrite L_zero_eqn L_succ_eqn : L_rw.
    + +
    +Lemma L_lim_eqn alpha i :
    +  E0limit alpha
    +  L_ alpha i = L_ (Canon alpha i) (S i).
    + +
    + +
    +Lemma L_finite : i k :nat, L_ i k = (i+k)%nat. +
    +Lemma L_omega : k, L_ E0_omega k = S (2 × k)%nat. +
    +Lemma L_ge_id alpha : i, i L_ alpha i.
    + +
    + +
    +Lemma L_ge_S alpha :
    +  alpha E0zero S <<= L_ alpha. +
    +Lemma L_succ_ok beta f :
    +  nf beta S <<= f L_spec beta f
    +  L_spec (succ beta) (fun kf (S k)).
    + +
    +
    + +
    +L_ is correct w.r.t. its specification +
    +
    + +
    +Section L_correct_proof.
    + +
    +  Let P alpha := L_spec (cnf alpha) (L_ alpha).
    + +
    +  Lemma L_ok0 : P E0zero.
    + +
    +  Lemma L_ok_succ beta : P beta P (E0_succ beta).
    + +
    +  Lemma L_ok_lim alpha :
    +    ( beta, (beta o< alpha)%e0 P beta)
    +    E0limit alpha P alpha.
    + +
    + +
    + +
    +  Lemma L_ok (alpha: E0) : P alpha.
    + +
    + +
    +End L_correct_proof.
    + +
    + +
    +Theorem L_correct alpha : L_spec (cnf alpha) (L_ alpha). +
    +
    + +
    +Comparison with Hardy's function H +
    +
    + +
    + +
    +Theorem H'_L_ alpha :
    +   i:nat, (H'_ alpha i L_ alpha (S i))%nat. +
    +From Coq Require Import Extraction.
    + +
    +Recursive Extraction L_.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Epsilon0.Large_Sets.html b/theories/html/hydras.Epsilon0.Large_Sets.html new file mode 100644 index 00000000..65977a45 --- /dev/null +++ b/theories/html/hydras.Epsilon0.Large_Sets.html @@ -0,0 +1,729 @@ + + + + + +hydras.Epsilon0.Large_Sets + + + + +
    + + + +
    + +

    Library hydras.Epsilon0.Large_Sets

    + +
    + +
    + +
    + +
    +From hydras Require Import E0 Canon Paths.
    +From hydras Require Import MoreLists Iterates Exp2.
    +From Coq Require Import Lia Compare_dec.
    + +
    +Import Relation_Operators Sorted Operators_Properties.
    +Open Scope t1_scope.
    + +
    +
    + +
    +

    minimal large sequences

    + +
    +
    + +
    +Definition mlarge alpha (s: list nat) := path_to zero s alpha.
    + +
    + +
    +Definition mlargeS alpha s := path_toS zero s alpha.
    + +
    +
    + +
    +

    Last step of a minimal path

    + +
    + + TODO : compare with K & S's H_alpha (p. 297) +
    +
    + +
    + +
    +Inductive L_spec : T1 (nat nat) Prop :=
    +  L_spec0 :
    +     f, ( k, f (S k) = S k) L_spec zero f
    +| L_spec1 : alpha f,
    +    alpha zero
    +    ( k,
    +        mlarge alpha (interval (S k) (Nat.pred (f (S k)))))
    +    L_spec alpha f.
    + +
    + +
    +
    + +
    +Test functions +
      +
    • If f is correct w.r.t. L_spec, "Compute L_test alpha f k" should return (one=one). + +
    • +
    • If f k is too small, returns (alpha = one) (with one < alpha) + +
    • +
    • If f k is too big, returns (zero = one) + +
    • +
    +
    +
    + +
    +Definition L_test (alpha:T1) f k :=
    +  gnaw alpha (interval k (f k - 2)%nat) = one.
    + +
    + +
    +
    + +
    +

    Paths starting with a finite ordinal (fin n)

    + +
    +
    + +
    +Lemma gnaw_finite_1_iota :
    +   n i, gnaw (S n) (iota_from (S i) n) = 1.
    + +
    +Lemma gnaw_finite_1 : n i, gnaw (S n) (interval (S i) (n + i)%nat) = 1.
    + +
    +Lemma gnaw_finite : n i, gnaw (S n) (iota_from (S i) (S n)) = 0.
    + +
    +Lemma gnaw_n_R : s n, ¬ In 0 s
    +                              (n < List.length s)%nat
    +                              gnaw (S n) s = zero.
    + +
    +
    + +
    +

    Properties of m-largeness and L-functions

    + +
    +
    + +
    + +
    +Lemma mlarge_unicity alpha k l l' :
    +  mlarge alpha (interval (S k) l)
    +  mlarge alpha (interval (S k) l')
    +  l = l'. +
    +Lemma mlargeS_iff alpha x s : s nil
    +                              mlargeS alpha (x::s)
    +                              gnawS alpha (but_last x s) = one.
    + +
    +Lemma mlarge_unshift alpha s :
    +   ¬In 0 s mlarge alpha s mlargeS alpha (unshift s).
    + +
    + +
    +Lemma mlarge_iff alpha x (s:list nat) :
    +  s nil ¬ In 0 (x::s)
    +  mlarge alpha (x::s) gnaw alpha (but_last x s) = one. +
    +
    + +
    +

    About the length of mlarge intervals

    + +
    +
    + +
    +Lemma L_spec_inv2 alpha f :
    +  L_spec alpha f alpha zero
    +  ( k, mlarge alpha (interval (S k) (Nat.pred (f (S k))))).
    + +
    +Lemma L_spec_compat alpha (f g : nat nat) :
    +  L_spec alpha f ( n, f n = g n) L_spec alpha g.
    + +
    +
    + +
    +

    Properties of L_spec

    + + +
    + + +
    +
    + +
    +Lemma L_zero_inv f : L_spec zero f k, f (S k) = S k. +
    +Lemma L_pos_inv alpha f : alpha zero L_spec alpha f
    +                         k, (S k < f (S k))%nat.
    + +
    + +
    +Lemma L_spec_unicity alpha f g :
    +  L_spec alpha f L_spec alpha g k, f (S k) = g (S k). +
    +
    + +
    +Composition lemmas for computing L_ alpha +
    +
    + +
    + +
    +Section succ.
    +   Variables (beta : T1) (f : nat nat).
    + +
    +   Hypotheses (Hbeta : nf beta)
    +              (f_mono : strict_mono f)
    +              (f_Sle : S <<= f)
    +              (f_ok : L_spec beta f).
    + +
    +   Definition L_succ := fun kf (S k).
    + +
    + +
    +   Lemma L_succ_mono : strict_mono L_succ. +
    +   Lemma L_succ_Sle : S <<= L_succ. +
    +   Lemma L_succ_ok : L_spec (succ beta) L_succ. End succ.
    + +
    + +
    + +
    +Section lim.
    +  Variables (lambda : T1)
    +            (Hnf : nf lambda)
    +            (Hlim : T1limit lambda)
    +            (f : nat nat nat)
    +            (H : k, L_spec (canon lambda (S k)) (f (S k))).
    + +
    +  Remark canon_not_null : k, canon lambda (S k) zero.
    + +
    +  Definition L_lim k := f k (S k).
    + +
    +  Lemma L_lim_ok : L_spec lambda L_lim. +
    +End lim.
    + +
    +
    + +
    +

    Finite ordinals

    + +
    +
    + +
    + +
    +Definition L_fin i := fun k ⇒ (i + k)%nat.
    + +
    +Lemma L_finS_S_le i : S <<= L_fin (S i).
    + +
    +Lemma L_fin_smono i: strict_mono (L_fin i).
    + +
    +Lemma L_S_succ_rw i : k, L_fin (S i) k = L_succ (L_fin i) k.
    + +
    +Lemma L_fin_ok i : L_spec (\F i) (L_fin i).
    + +
    +Lemma mlarge_FS :
    +   i k, mlarge (FS i) (interval (S k) (S (i+k)%nat)).
    + +
    + +
    +Definition L_omega k := S (2 × k)%nat.
    + +
    + +
    +Lemma L_omega_Sle : S <<= L_omega.
    + +
    +Lemma L_omega_smono : strict_mono L_omega.
    + +
    +Lemma mlarge_omega k : mlarge T1omega (interval (S k) (2 × (S k))%nat).
    + +
    +Lemma L_omega_ok : L_spec T1omega L_omega.
    + +
    + +
    +Lemma path_to_omega_mult (i k:nat) :
    +  path_to (T1omega × i)
    +          (interval (S k) (2 × (S k))%nat)
    +          (T1omega × (S i)). +
    + +
    +Lemma omega_mult_mlarge_0 i : k,
    +    mlarge (T1omega × (S i))
    +            (interval (S k)
    +                      (Nat.pred (iterate (fun pS (2 × p)%nat)
    +                                         (S i)
    +                                         (S k)))). +
    + +
    +Definition L_omega_mult i (x:nat) := iterate L_omega i x.
    + +
    + +
    + +
    +Example Ex : L_omega_mult 8 5 = 1535.
    + +
    +Lemma L_omega_mult_Sle i : S <<= L_omega_mult (S i).
    + +
    +Lemma L_omega_mult_ok (i: nat) :
    +  L_spec (T1omega × i) (L_omega_mult i). +
    + +
    + +
    +Lemma L_omega_mult_eqn (i : nat) :
    +   (k : nat),
    +    (0 < k)%nat L_omega_mult i k = (exp2 i × S k - 1)%nat. +
    +
    + +
    +

    omega × omega

    + +
    +
    + +
    + +
    +Definition L_omega_square k :=
    +  iterate (fun zS (2 × z)%nat) k (S k).
    + +
    + +
    +Remark L_omega_square_eqn1 k : L_omega_square k =
    +                                L_omega_mult k (S k).
    + +
    +
    + +
    +

    Closed formula

    + +
    +
    + +
    + +
    +Lemma L_omega_square_eqn k :
    +  (0 < k)%nat
    +  L_omega_square k = (exp2 k × (k + 2) - 1)%nat. +
    +Lemma L_omega_square_Sle : S <<= L_omega_square.
    + +
    +Lemma L_omega_square_smono : strict_mono L_omega_square.
    + +
    + +
    +Lemma L_omega_square_ok:
    +  L_spec (T1omega × T1omega) L_omega_square. +
    + +
    +Section phi0_mult.
    + +
    +  Variables (alpha : T1) (f : nat nat).
    + +
    +  Hypotheses (Halpha : nf alpha)
    +             (f_mono : strict_mono f)
    +             (f_Sle : S <<= f)
    +             (f_ok : L_spec (T1.phi0 alpha) f).
    + +
    +  Definition L_phi0_mult i := iterate f i.
    + +
    Remark f_ok_inv :
    +    k, mlarge (T1.phi0 alpha) (interval (S k) (Nat.pred (f (S k)))).
    + +
    +Lemma L_phi0_mult_ok i:
    +  L_spec (T1.cons alpha i zero) (L_phi0_mult (S i)).
    + +
    +Lemma L_phi0_mult_smono i: strict_mono (L_phi0_mult i).
    + +
    + +
    +Lemma L_phi0_mult_Sle i: S <<= L_phi0_mult (S i).
    + +
    +End phi0_mult.
    + +
    + +
    + +
    +Definition L_omega_square_times i := iterate L_omega_square i.
    + +
    +Lemma L_omega_square_times_ok i : L_spec (T1.cons 2 i zero)
    +                                         (L_omega_square_times (S i)).
    + +
    + +
    +Definition L_omega_cube := L_lim L_omega_square_times .
    + +
    +Lemma L_omega_cube_ok : L_spec (T1.phi0 3) L_omega_cube.
    + +
    +Lemma L_omega_cube_eqn i :
    +  L_omega_cube i = L_omega_square_times i (S i).
    + +
    +Lemma exp2_k_mult_pos k:
    +  (0 < k 4 exp2 k × (k + 2))%nat.
    + +
    +Example omega_square_thrice_eqn : k,
    +    (0 < k)%nat
    +    let M := (exp2 k × (k + 2) - 1)%nat in
    +    let N := exp2 M in
    +    let P := (N × (M + 2) - 1)%nat in
    +    L_omega_square_times 3 k =
    +    (exp2 P × (P + 2) - 1)%nat.
    + +
    + +
    + +
    +Lemma L_omega_cube_3_eq:
    +  let N := exp2 95 in
    +  let P := (N × 97 - 1)%nat in
    +  L_omega_cube 3 = (exp2 P × (P + 2) - 1)%nat. +
    + +
    +
    + +
    +

    Plain large sequences (not necessarily minimal)

    + + +
    + +Note : Some names of lemmas and theorem like Theorem_4_5 or +Lemma_4_5_2 refer to sections in Ketonen and Solovay's article. + +
    + + +
    + +

    large sequences (as in KS ) (may contain zeros)

    + +
    +
    + +
    + +
    +Definition largeb (alpha : T1) (s: list nat) :=
    +  match (gnaw alpha s)
    +          with zerotrue | _false end.
    + +
    +Definition large (alpha : T1) (s : list nat) : Prop :=
    +  largeb alpha s.
    + +
    + +
    +Definition largeSb (alpha : T1) (s: list nat) :=
    +  match gnawS alpha s with
    +    | T1.zerotrue
    +    | _false
    +  end.
    + +
    +Definition largeS (alpha : T1) (s : list nat) : Prop :=
    +  largeSb alpha s.
    + +
    +Definition Large alpha s := large (@cnf alpha) s.
    + +
    +Lemma large_iff (alpha : T1) (s : list nat) :
    +  large alpha s gnaw alpha s = 0.
    + +
    +Lemma largeSb_b (alpha : T1) (s: list nat) :
    +  largeSb alpha s = largeb alpha (shift s).
    + +
    +Lemma largeb_Sb alpha s :
    +  largeb alpha s = largeSb alpha (unshift s).
    + +
    +Lemma largeS_iff (alpha : T1) (s : list nat) :
    +  largeS alpha s gnawS alpha s = T1.zero.
    + +
    +Section Lemma_4_4_Proof.
    +  Variables alpha beta : T1.
    +  Hypothesis Halpha : nf alpha.
    +  Hypothesis Hbeta : nf beta.
    +  Variable n : nat.
    +  Variable s : list nat.
    + +
    +  Hypothesis Hs : sorted_ge n s.
    +  Hypothesis H : const_pathS_eps n alpha beta.
    +  Hypothesis H0 : largeS alpha s.
    + +
    +  Lemma Lemma4_4 : largeS beta s.
    + +
    +End Lemma_4_4_Proof.
    + +
    +Lemma Lemma_4_4_2 :
    +   (s : list nat) (n : nat) (alpha beta : T1),
    +    nf alpha nf beta sorted_ge n s
    +    const_pathS_eps n alpha beta gnawS beta s t1 gnawS alpha s.
    + +
    + +
    +Lemma Lemma_4_5_1 n alpha:
    +  nf alpha
    +   s t ,
    +    ptwise_le s t
    +    sorted_ge n s
    +    sorted_ge n t
    +    const_pathS_eps (simple_last n t)
    +                    (gnawS alpha t) (gnawS alpha s).
    + +
    +Section Proof_of_4_5_2.
    +  Variables (A B1 B2 : list nat).
    +  Variable alpha : T1.
    +  Hypothesis Halpha : nf alpha.
    +  Hypothesis HA : sorted_ge 0 A.
    +  Hypothesis HB : sorted_ge 0 (B1 ++ B2).
    +  Hypothesis HAB1 : ptwise_le B1 A.
    +  Hypothesis HlargeA : largeS alpha A .
    + +
    +  Remark R1 : gnawS alpha A = T1.zero.
    + +
    +  Remark R2 : gnawS alpha B1 = T1.zero.
    + +
    +  Lemma Lemma_4_5_2: gnawS alpha (B1 ++ B2) = zero.
    + +
    +End Proof_of_4_5_2.
    + +
    +Theorem Theorem_4_5 (alpha: T1)(Halpha : nf alpha)
    +        (A B : list nat)
    +        (HA : Sorted Peano.lt A)
    +        (HB : Sorted Peano.lt B)
    +        (HAB : incl A B) :
    +  largeS alpha A largeS alpha B.
    + +
    +Lemma gnaw_last_step alpha s i :
    +  gnaw alpha s = 1 gnaw alpha (s ++ S i :: nil) = 0.
    + +
    +
    + +
    + For alpha in class E0 +
    +
    + +
    +Definition LargeS (alpha : E0) s := largeS (@cnf alpha) s.
    + +
    +Definition Gnaw alpha s := gnaw (@cnf alpha) s.
    +Definition GnawS alpha s := gnawS (@cnf alpha) s.
    + +
    +Lemma Gnaw_GnawS s alpha :
    +  GnawS alpha s = Gnaw alpha (shift s).
    + +
    +Lemma GnawS_Gnaw (s:list nat) :
    +   alpha, Gnaw alpha s = GnawS alpha (unshift s).
    + +
    +Lemma GnawS_omega : i s, GnawS E0_omega (i::s) = GnawS (E0finS i) s.
    + +
    +Lemma Gnaw_omega i s : Gnaw E0_omega (S i::s) = Gnaw (E0finS i) s.
    + +
    +Definition Largeb (alpha: E0) (s: list nat) :=
    +  largeb (@cnf alpha) s.
    + +
    +Definition LargeSb (alpha: E0) (s: list nat) :=
    +  largeSb (@cnf alpha) s.
    + +
    +Lemma LargeSb_b (alpha : E0) (s: list nat) :
    +  LargeSb alpha s = Largeb alpha (List.map S s).
    + +
    +Lemma Largeb_Sb alpha s :
    +  Largeb alpha s = LargeSb alpha (unshift s).
    + +
    +Lemma largeb_finite :
    +   n i, largeb (S n) (iota_from (S i) (S n)) = true.
    + +
    +Lemma largeb_n (n:nat): s, ¬ In 0 s
    +                                    large n s
    +                                    (n List.length s)%nat.
    + +
    +Lemma largeb_n_R : s n, ¬ In 0 s
    +                                (n < List.length s)%nat
    +                                largeb (S n) s = true.
    + +
    +Lemma large_n_iff : s (n:nat) , ¬ In 0 s
    +                                large n s (n List.length s)%nat.
    + +
    +Example ex3 : ¬ large 156 (interval 100 254).
    + +
    +
    + +
    +Gnawing omega omega-large intervals +
    +
    + +
    +Lemma gnaw_omega_n_SSn :
    +   n, gnaw T1omega (iota_from (S n) (S (S n))) = zero.
    + +
    +Lemma gnaw_omega_1 (n:nat) :
    +  gnaw T1omega (interval (S n) (S n + n)%nat) = 1.
    + +
    +Example omega_ex1 : gnaw T1omega (interval 7 13) = 1.
    +Qed.
    + +
    +Example omega_ex2 : gnaw T1omega (interval 1000 1999) = 1.
    +Qed.
    + +
    +Lemma large_omega_1 : s n, ¬ In 0 (n::s)
    +                                     gnaw T1omega (n::s) = 0
    +                                     (n List.length s)%nat.
    + +
    +Lemma large_omega_2 : s n, ¬In 0 (n::s)
    +                                    (n List.length s)%nat
    +                                    gnaw T1omega (n::s) = zero.
    + +
    +Lemma large_omega_iff : s n, ¬ In 0 (n::s)
    +                                     large T1omega (n::s)
    +                                     (n List.length s)%nat.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Epsilon0.Large_Sets_Examples.html b/theories/html/hydras.Epsilon0.Large_Sets_Examples.html new file mode 100644 index 00000000..4dd71b7a --- /dev/null +++ b/theories/html/hydras.Epsilon0.Large_Sets_Examples.html @@ -0,0 +1,172 @@ + + + + + +hydras.Epsilon0.Large_Sets_Examples + + + + +
    + + + +
    + +

    Library hydras.Epsilon0.Large_Sets_Examples

    + +
    +From hydras Require Import E0 Canon Paths MoreLists Large_Sets.
    + +
    + +
    +Example ex_pathS1 : pathS T1omega (2::3::4::nil) 1.
    + +
    +Example ex_pathS2 : pathS T1omega (interval 3 6) 1.
    + +
    +Example omega_omega_1_4 : gnaw (T1omega ^ T1omega) (interval 1 4) = 0.
    + +
    +Example omega_omega_1_3 : gnaw (T1omega ^ T1omega) (interval 1 3) = 1.
    + +
    +Inductive answer : Set := Ok | Too_far | Remaining (rest : ppT1).
    + +
    +Definition large_set_check alpha i j :=
    +  let beta := gnaw alpha (interval i (Nat.pred j))
    +  in match beta with
    +     | oneOk
    +     | zeroToo_far
    +     | _Remaining (pp (canon beta j))
    +     end.
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    +#[global] Hint Resolve iota_from_lt_not_In: core.
    + +
    +Example Ex1 : mlarge (T1omega × T1omega) (interval 6 510).
    + +
    +Example Ex2 : large (T1omega × T1omega) (interval 6 700).
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Epsilon0.Paths.html b/theories/html/hydras.Epsilon0.Paths.html new file mode 100644 index 00000000..974c2a09 --- /dev/null +++ b/theories/html/hydras.Epsilon0.Paths.html @@ -0,0 +1,1382 @@ + + + + + +hydras.Epsilon0.Paths + + + + +
    + + + +
    + +

    Library hydras.Epsilon0.Paths

    + +
    +
    + +
    +* + +
    + + Transition systems associated with canonical sequences + +
    + + P. Casteran, University of Bordeaux and Labri + +
    + + After J. Ketonen and R. Solovay's paper + " Rapidly Growing Ramsey Functions" in + Annals of mathematics, Mar. 1981 + +
    + + +
    + + TODO: Check wether the predicates ...PathS... are still useful +
    +
    + +
    +From hydras Require Import DecPreOrder Canon MoreLists First_toggle OrdNotations.
    +Import Relations Relation_Operators.
    +From Coq Require Import Lia.
    + +
    +Set Implicit Arguments.
    +Open Scope t1_scope.
    + +
    +
    + +
    +

    relations associated with canonical sequences

    + +
    +
    + +
    + +
    +Definition transition_S i : relation T1 :=
    +  fun alpha betaalpha zero beta = canon alpha (S i).
    + +
    +Definition transition i : relation T1 :=
    +  match i with 0 ⇒ fun _ _False | S jtransition_S j end.
    + +
    + +
    +Definition bounded_transitionS (n:nat) alpha beta :=
    +   i:nat, (i n)%nat transition_S i alpha beta.
    + +
    +
    + +
    +

    Paths inside epsilon_0

    + + +
    + + In this module, we study paths; i.e. sequences generated by the relations +associated with the canonS i functions. In module O2H we show how pathes are + related to hydra battles. Thus, the various classes of battles are described by predicates on pathes. + +
    + + path_toS beta s alpha : + pathS alpha s beta : + +
    + + beta is reachable from alpha through the sequences s of indices + ( zeros are ignored) + +
    + + Note that only beta can be equal to zero + +
    +
    + +
    + +
    +Inductive path_to (beta: T1) : list nat T1 Prop :=
    +| path_to_1 : (i:nat) alpha ,
    +    i 0 transition i alpha beta path_to beta (i::nil) alpha
    +| path_to_cons : i alpha s gamma,
    +    i 0 transition i alpha gamma
    +    path_to beta s gamma path_to beta (i::s) alpha.
    + +
    +Definition path alpha s beta := path_to beta s alpha.
    + +
    + +
    +
    + +
    +tries to solve a goal of the form (path_to beta s alpha) +
    +
    + +
    +Ltac path_tac :=
    +  repeat (match goal with
    +          | [ |- path_to ?b (?x :: ?y :: ?s) ?a ] ⇒
    +            (eright; [discriminate
    +                    | split;[discriminate | reflexivity]
    +                    | cbn])
    +          | [ |- path_to ?b (?x :: nil) ?a ] ⇒
    +                   (eleft; [discriminate |
    +                            split;cbn ; [discriminate | reflexivity]])
    +                         
    +                 end).
    +Example ex_path1: path_to T1omega (2::2::2::nil) (T1omega × 2).
    + +
    +Example ex_path2: path_to T1omega (3::4::5::6::nil) (T1omega × 2).
    + +
    +Example ex_path3: path_to zero (interval 3 14) (T1omega × 2).
    + +
    +Example ex_path4: path_to zero (List.repeat 3 8) (T1omega × 2).
    + +
    +
    + +
    +path_toS beta s alpha : + pathS alpha s beta : + +
    + + beta is reachable from alpha through the sequence of indices + (shift s) + +
    + + Note that only beta can be equal to zero + +
    +
    + +
    +Lemma path_to_not_nil alpha s beta : path_to beta s alpha s nil.
    + +
    +Inductive path_toS (beta: T1) : list nat T1 Prop :=
    +| path_toS_1 : (i:nat) alpha, transition_S i alpha beta
    +                                      path_toS beta (i::nil) alpha
    +| path_toS_cons : i alpha s gamma,
    +    transition_S i alpha gamma
    +    path_toS beta s gamma
    +    path_toS beta (i::s) alpha.
    + +
    +Definition pathS alpha s beta := path_toS beta s alpha.
    + +
    +
    + +
    +

    Accessibility (without traces)

    + +
    +
    + +
    +Definition acc_from alpha beta := s, path_to beta s alpha.
    + +
    +
    + +
    +

    following a path

    + +
    + + useful helper ? +
    +
    +Fixpoint gnawS (alpha : T1) (s: list nat) :=
    +  match s with
    +    | nilalpha
    +    | (i::s') ⇒ gnawS (canon alpha (S i)) s'
    +  end.
    + +
    + +
    +Fixpoint gnaw (alpha : T1) (s: list nat) :=
    +  match s with
    +    | nilalpha
    +    | (0::s') ⇒ gnaw alpha s'
    +    | (S i :: s') ⇒ gnaw (canon alpha (S i)) s'
    +  end.
    + +
    + +
    + +
    +Fixpoint standard_gnaw (i:nat)(alpha : T1)(l:nat): T1 :=
    +  match l with
    +  | 0 ⇒ alpha
    +  | S mstandard_gnaw (S i) (canon alpha i) m
    +  end.
    + +
    + +
    +
    + +
    +alpha ---> beta in KP + n + +
    +
    + +
    +Definition KP_arrowS n := clos_trans_1n T1 (bounded_transitionS n).
    + +
    +
    + +
    +

    Paths with constant index

    + +
    +
    + +
    + +
    +Definition const_pathS i :=
    +  clos_trans_1n T1 (fun alpha betaalpha zero
    +                                      beta = canon alpha (S i)).
    + +
    +Definition const_path i alpha beta :=
    +  match i with
    +    0 ⇒ False
    +  | S jconst_pathS j alpha beta
    +  end.
    + +
    + +
    + +
    +Lemma const_pathSE i alpha beta: const_pathS i alpha beta
    +                                  const_path (S i) alpha beta.
    + +
    +Definition const_pathS_eps i := clos_refl _ (const_path (S i)).
    + +
    +
    + +
    +

    standard paths

    + +
    +
    + +
    + +
    +Inductive standard_path_toS (j:nat)( beta : T1): nat T1 Prop :=
    +  stdS_1 : i alpha,
    +    alpha zero
    +    beta = canon alpha (S i) j = i
    +    standard_path_toS j beta i alpha
    +| stdS_S : i alpha,
    +    standard_path_toS j beta (S i) (canon alpha (S i))
    +    standard_path_toS j beta i alpha.
    + +
    +Definition standard_pathS i alpha j beta :=
    +  standard_path_toS j beta i alpha.
    + +
    + +
    +Inductive standard_path_to (j:nat)(beta : T1): nat T1 Prop :=
    +| std_1 : i alpha,
    +    alpha zero
    +    beta = canon alpha i j = i i 0
    +    standard_path_to j beta i alpha
    +| std_S : i alpha,
    +    standard_path_to j beta (S i) (canon alpha i)
    +    standard_path_to j beta i alpha.
    + +
    +Definition standard_path i alpha j beta :=
    +  standard_path_to j beta i alpha.
    + +
    +Lemma path_to_interval_inv_le alpha beta i j :
    +  path_to beta (interval i j) alpha
    +  (i j)%nat.
    + +
    +
    + +
    +

    Bridge Lemmas

    + +
    +
    + +
    +Lemma gnawS_gnaw s alpha :
    +  gnawS alpha s = gnaw alpha (shift s).
    + +
    +Lemma gnaw_gnawS s alpha :
    +  gnaw alpha s = gnawS alpha (unshift s).
    + +
    +Lemma path_toS_path_to alpha s beta :
    +  path_toS beta s alpha
    +  path_to beta (shift s) alpha.
    + +
    +Lemma path_to_path_toS :
    +   alpha s beta, path_to beta s alpha
    +                        path_toS beta (unshift s) alpha.
    + +
    +Lemma path_to_path_toS_iff :
    +   alpha s beta, ¬ In 0 s path_to beta s alpha
    +                        path_toS beta (unshift s) alpha.
    + +
    +Lemma path_toS_nf beta s alpha: path_toS beta s alpha nf alpha nf beta.
    + +
    +Lemma path_acc_from alpha s beta:
    +    path alpha s beta acc_from alpha beta.
    + +
    +Lemma path_toS_gnawS : s alpha beta, path_toS beta s alpha
    +                                              beta = gnawS alpha s.
    + +
    +
    + +
    +

    Composition/decomposition of paths

    + +
    +
    + +
    +Lemma path_toS_app beta t gamma :
    +    path_toS gamma t beta alpha s, path_toS beta s alpha
    +                                             path_toS gamma (s++t)%list alpha.
    + +
    +Lemma path_to_app beta t gamma :
    +    path_to gamma t beta alpha s, path_to beta s alpha
    +                                             path_to gamma (s++t)%list alpha.
    + +
    +Lemma path_toS_decompose gamma s alpha :
    +   beta t u, s = t++u
    +                    path_toS beta t alpha path_toS gamma u beta
    +                    path_toS gamma s alpha.
    + +
    +Lemma path_to_decompose gamma alpha beta s t u :
    +  s = t++ u
    +  path_to beta t alpha path_to gamma u beta
    +  path_to gamma s alpha.
    + +
    +Ltac path_decompose x :=
    +  match goal with |- path_to ?a (interval ?from ?to) ?b
    +                  rewrite (interval_app from x to);
    +                  [eapply path_to_app | try lia | try lia]
    +  end.
    + +
    +Lemma path_toS_appR : u gamma alpha,
    +    path_toS gamma u alpha
    +     s t, s nil t nil u = s ++ t
    +                 beta,
    +                  path_toS beta s alpha path_toS gamma t beta.
    + +
    +Lemma path_to_appR : u gamma alpha,
    +    path_to gamma u alpha
    +     s t, s nil t nil u = s ++ t ¬ In 0 u
    +                 beta,
    +                  path_to beta s alpha path_to gamma t beta.
    + +
    +Lemma path_toS_zero_but_last : x u alpha,
    +    path_toS zero (x::u) alpha u nil
    +    path_toS one (but_last x u) alpha.
    + +
    +Lemma path_toS_zero_one : x alpha,
    +    path_toS zero (x::nil) alpha alpha = one.
    + +
    +Lemma path_toS_zero_inv x u alpha :
    +  path_toS zero (x::u) alpha {alpha = one u = nil} +
    +                                {u nil path_toS one
    +                                                      (but_last x u)
    +                                                      alpha}.
    + +
    +Lemma path_toS_zero alpha s : ¬ path_toS alpha s zero.
    + +
    +Lemma path_to_zero alpha s: ¬ path_to alpha s zero.
    + +
    +
    + +
    +todo : use this lemma to remove useless hypotheses +
    +
    + +
    +Lemma path_to_not_In_zero : alpha s beta,
    +    path_to beta s alpha ¬ In 0 s.
    + +
    +Lemma path_toS_tail alpha s beta :
    +    path_toS beta s alpha
    +     gamma n, nf (T1.cons gamma n alpha)
    +                    path_toS (T1.cons gamma n beta) s (T1.cons gamma n alpha).
    + +
    +Lemma path_to_tail alpha s beta :
    +  path_to beta s alpha
    +   gamma n, nf (T1.cons gamma n alpha)
    +                  path_to (T1.cons gamma n beta) s (T1.cons gamma n alpha).
    + +
    +Lemma path_toS_mult alpha s i : nf alpha
    +    path_toS zero s (T1.phi0 alpha)
    +    path_toS (T1.cons alpha i zero) s (T1.cons alpha (S i) zero).
    + +
    +Lemma path_to_mult alpha s i :
    +  nf alpha
    +  path_to zero s (T1.phi0 alpha)
    +  path_to (T1.cons alpha i zero) s (T1.cons alpha (S i) zero).
    + +
    +
    + +
    +

    Properties of gnaw

    + +
    +
    + +
    +Lemma gnaw_nf : s alpha, nf alpha nf (gnaw alpha s).
    + +
    +Lemma gnaw_zero : s, gnaw 0 s = 0.
    + +
    +Lemma gnawS_zero : s, gnawS zero s = zero.
    + +
    +Lemma gnawS_nf : s alpha, nf alpha nf (gnawS alpha s).
    + +
    +Lemma gnaw_succ: alpha i s, nf alpha
    +                                    gnaw (T1.succ alpha) (S i::s) =
    +                                    gnaw alpha s.
    + +
    +Lemma gnaw_rw i s alpha : gnaw alpha (S i::s) = gnaw (canon alpha (S i)) s.
    + +
    +Lemma gnawS_to_path_toS : s alpha beta,
    +    beta = gnawS alpha s beta zero s nil
    +    path_toS beta s alpha.
    + +
    +Lemma gnaw_to_path_to : s alpha beta,
    +    beta = gnaw alpha s ¬ In 0 s beta zero s nil
    +    path_to beta s alpha.
    + +
    +Lemma gnaw_app : s s' alpha,
    +                   gnaw alpha (s ++ s') = gnaw (gnaw alpha s) s'.
    + +
    +Lemma gnawS_app : s s' alpha,
    +                   gnawS alpha (s ++ s') = gnawS (gnawS alpha s) s'.
    + +
    +Lemma gnaws_rw i s alpha : gnawS alpha (i::s) = gnawS (canon alpha (S i)) s.
    + +
    +Lemma gnawS_lim1 (i:nat)(s: list nat) (lambda : T1) :
    +  nf lambda T1limit lambda
    +  gnawS (T1.cons lambda 0 T1.zero) (i::s) =
    +  gnawS (T1.cons (canon lambda (S i)) 0 T1.zero) s.
    + +
    +Lemma gnawS_lim2 (i n:nat)(s: list nat) (lambda : T1) :
    +  nf lambda T1limit lambda
    +  gnawS (T1.cons lambda (S n) T1.zero) (i::s) =
    +  gnawS (T1.cons lambda n (T1.cons (canon lambda (S i)) 0 T1.zero)) s.
    + +
    +Lemma gnawS_succ_eqn1 i s gamma :
    +  nf gamma gnawS (T1.cons (T1.succ gamma) 0 T1.zero) (i::s) =
    +              gnawS (T1.cons gamma i T1.zero) s.
    + +
    +Lemma gnawS_succ_eqn2 :
    +   i n s gamma, nf gamma
    +                      gnawS (T1.cons (T1.succ gamma) (S n) zero) (i::s) =
    +                      gnawS (T1.cons (T1.succ gamma) n
    +                                     (T1.cons gamma i T1.zero)) s.
    + +
    +Lemma gnawS_tail :
    +   i s alpha n beta,
    +                  nf (T1.cons alpha n beta)
    +                  beta T1.zero
    +                  gnawS (T1.cons alpha n beta) (i::s) =
    +                  gnawS (T1.cons alpha n (canon beta (S i))) s.
    + +
    +Lemma gnawS_SSn (i:nat) s :
    +   alpha n ,
    +    nf alpha
    +    gnawS (T1.cons alpha (S n) T1.zero) (i::s) =
    +    gnawS (T1.cons alpha n (canon (T1.cons alpha 0 zero) (S i))) s.
    + +
    +Lemma gnawS_cut1 : s alpha n beta,
    +                    nf (T1.cons alpha n beta)
    +                    gnawS (T1.cons alpha n beta) s = T1.zero
    +                     s1 s2, s = s1 ++ s2
    +                                  gnawS beta s1 = zero
    +                                  gnawS (T1.cons alpha n T1.zero) s2 = zero.
    + +
    +Lemma gnawS_cut2 : s alpha n ,
    +                   nf alpha
    +                   gnawS (T1.cons alpha (S n) T1.zero) s = zero
    +                    s1 s2, s = s1 ++ s2
    +                                 gnawS (T1.phi0 alpha) s1 = zero
    +                                 gnawS (T1.cons alpha n T1.zero) s2 = zero.
    + +
    +Lemma path_to_gnaw : s alpha beta,
    +    path_to beta s alpha
    +    beta = gnaw alpha s.
    + +
    +Lemma gnawS_path_toS : s alpha , s nil gnawS alpha s zero
    +                                        path_toS (gnawS alpha s) s alpha.
    + +
    +Lemma gnaw_path_to : s alpha , s nil ¬ In 0 s
    +                                      gnaw alpha s zero
    +                                      path_to (gnaw alpha s) s alpha.
    + +
    +
    + +
    +

    Properties of acc_from

    + +
    + + +
    +

    Paths with constant index: lemmas

    + +
    +
    + +
    +Lemma const_pathS_repeat i : alpha beta,
    +    const_path (S i) alpha beta
    +     n:nat, path_toS beta (repeat i (S n)) alpha.
    + +
    +Lemma const_pathS_repeatR i : n alpha beta,
    +    path_toS beta (repeat i (S n)) alpha
    +    const_path (S i) alpha beta.
    + +
    +Lemma const_pathS_nf : n alpha beta,
    +    const_pathS n alpha beta
    +    nf alpha nf beta.
    + +
    +Lemma const_pathS_zero n alpha : ¬ const_path (S n) zero alpha.
    + +
    +Lemma const_pathS_LT i alpha beta:
    +                                     nf alpha
    +                                     const_path (S i) alpha beta
    +                                     beta t1< alpha.
    + +
    +Lemma const_path_LT i :
    +   alpha beta,
    +      nf alpha const_path i alpha beta
    +    beta t1< alpha.
    + +
    +Lemma const_pathS_LE i : alpha beta,
    +    nf alpha const_path (S i) alpha beta beta t1 alpha.
    + +
    +Lemma const_pathS_inv : n alpha beta,
    +    const_path (S n) alpha beta
    +    beta = canon alpha (S n)
    +    const_path (S n) (canon alpha (S n)) beta.
    + +
    +Lemma const_pathS_inv_strong : n alpha beta,
    +    const_path (S n) alpha beta
    +    {beta = canon alpha (S n)} +
    +    {const_path (S n) (canon alpha (S n)) beta}.
    + +
    +Lemma const_pathS_trans : n alpha beta gamma,
    +    const_path (S n) alpha beta
    +    const_path (S n) beta gamma
    +    const_path (S n) alpha gamma.
    + +
    +Lemma const_pathS_eps_trans : i alpha beta gamma,
    +    const_pathS_eps i alpha beta
    +    const_pathS_eps i beta gamma
    +    const_pathS_eps i alpha gamma .
    + +
    +Lemma const_pathS_eps_LE_2 : n alpha beta,
    +    nf alpha nf beta
    +    const_pathS_eps n alpha beta
    +    beta t1 alpha.
    + +
    +Lemma Proposition_2_3a:
    +   n alpha , nf alpha alpha zero
    +                    beta gamma, LT gamma beta
    +                                        const_pathS n alpha gamma
    +                                        const_pathS n alpha beta
    +                                        const_pathS n beta gamma.
    + +
    +Lemma KS_thm_2_4_lemma1 : i alpha n beta beta',
    +    nf (T1.cons alpha n beta)
    +    beta zero
    +    const_pathS i beta beta'
    +    const_pathS i (T1.cons alpha n beta)
    +            (T1.cons alpha n beta').
    + +
    +Lemma const_pathS_first_step : i alpha beta,
    +    const_pathS i alpha beta
    +    {beta = canon alpha (S i) } +
    +    {const_pathS i (canon alpha (S i)) beta}.
    + +
    +Lemma KS_thm_2_4_lemma1' : i alpha n beta ,
    +    nf alpha alpha zero
    +    const_pathS i (T1.phi0 alpha) beta
    +    const_pathS i (T1.cons alpha (S n) zero)
    +                (T1.cons alpha n beta).
    + +
    +Lemma KS_thm_2_4_lemma2 (n:nat)(alpha:T1) :
    +  nf alpha alpha zero const_pathS n alpha zero.
    + +
    +Lemma KS_thm_2_4_lemma3_0 : i alpha n,
    +    nf alpha
    +    const_pathS i (T1.cons alpha (S n) zero)
    +            (T1.cons alpha n zero).
    + +
    + +
    +Lemma KS_thm_2_4_lemma3 : i n p alpha ,
    +    nf alpha n < p
    +    const_pathS i (T1.cons alpha p zero)
    +            (T1.cons alpha n zero).
    + +
    +Lemma KS_thm_2_4_lemma4 : i alpha,
    +    nf alpha
    +    const_pathS i (T1.phi0 (succ alpha)) (T1.phi0 alpha).
    + +
    +Lemma KS_thm_2_4_lemma5 : i alpha beta,
    +    const_pathS i alpha beta nf alpha
    +    alpha zero
    +    const_pathS i (T1.phi0 alpha) (T1.phi0 beta).
    + +
    + +
    +Theorem KS_thm_2_4 (lambda : T1) :
    +  nf lambda T1limit lambda
    +   i j, (i < j)%nat
    +              const_path 1 (canon lambda (S j)) (canon lambda (S i)).
    + +
    +
    + +
    + Corollary 12 of KS +
    +
    + +
    + +
    +Corollary Cor12 (alpha : T1) : nf alpha
    +                 beta i n, beta t1< alpha
    +                                 i < n
    +                                 const_path (S i) alpha beta
    +                                 const_path (S n) alpha beta.
    + +
    + +
    +Corollary Cor12_1 (alpha : T1) :
    +  nf alpha
    +   beta i n, beta t1< alpha
    +                   i n
    +                   const_path (S i) alpha beta
    +                   const_path (S n) alpha beta. +
    +Corollary Cor12_2 (alpha : T1) :
    +    nf alpha
    +     beta i n,
    +      i n
    +      const_pathS_eps i alpha beta
    +      const_pathS_eps n alpha beta.
    + +
    +Corollary Cor12_3 (alpha : T1) :
    +  nf alpha
    +   beta i n, beta t1< alpha
    +                   i n
    +                   const_path i alpha beta
    +                   const_path n alpha beta.
    + +
    +Lemma const_pathS_eps_zero n alpha :
    +   const_pathS_eps n zero alpha alpha = zero.
    + +
    + +
    + +
    +Lemma Lemma2_6_1 (alpha : T1) :
    +  nf alpha
    +   beta, beta t1< alpha
    +               {n:nat | const_path (S n) alpha beta}.
    + +
    +Lemma small_lemma (i:nat) (beta : T1) : alpha,
    +      const_pathS i alpha beta
    +      nf alpha
    +      beta t1 canon alpha (S i).
    + +
    +Lemma L2_6_2 (p: nat) :
    +   alpha, nf alpha
    +                 beta, const_pathS p alpha beta
    +                             T1.succ beta t1< alpha
    +                             const_pathS (S p) alpha (T1.succ beta).
    + +
    +Section Lemma_4_3_Proof.
    +  Variables alpha beta : T1.
    +  Hypothesis H00 : alpha zero.
    +  Hypothesis nf1 : nf alpha.
    +  Hypothesis nf2 : nf beta.
    +  Variables n0 n1 n2: nat.
    +  Hypothesis H0: (n0 n2)%nat.
    +  Hypothesis H1: (n1 n2)%nat.
    +  Hypothesis H4: const_pathS_eps n0 alpha beta.
    + +
    +  Remark R4_3_1: const_pathS_eps n2 alpha beta.
    + +
    +  Remark R4_3_2 : const_pathS_eps n2 beta (canon beta (S n1)).
    + +
    + +
    +  Remark R4_3_3: const_pathS_eps n2 alpha (canon beta (S n1)).
    + +
    +  Remark R4_3_4 : (canon beta (S n1) t1 canon alpha (S n2))%t1.
    + +
    +  Lemma Lemma_4_3_0 :
    +    const_pathS_eps n2 (canon alpha (S n2)) (canon beta (S n1)).
    + +
    + +
    +End Lemma_4_3_Proof.
    + +
    +Lemma Lemma_4_3 :
    +   alpha beta : T1,
    +    nf alpha
    +    nf beta
    +     n0 n1 n2 : nat,
    +      (n0 n2)%nat
    +      (n1 n2)%nat
    +      const_pathS_eps n0 alpha beta
    +      const_pathS_eps n2 (canon alpha (S n2)) (canon beta (S n1)).
    + +
    +Lemma const_pathS_LT' (i : nat) (alpha beta : T1) (H:nf alpha):
    +  const_pathS i alpha beta alpha = zero beta t1< alpha.
    + +
    +Lemma Lemma_4_4_1 : s n alpha beta (Ha : nf alpha)
    +                           (Hb : nf beta),
    +                      sorted_ge n s
    +                      const_pathS_eps n alpha beta
    +                      const_pathS_eps (simple_last n s)
    +                              (gnawS alpha s) (gnawS beta s).
    + +
    +Lemma KP_arrowS_zero n beta : KP_arrowS n zero beta beta = zero.
    + +
    + +
    +Lemma KP_5_iii n alpha beta: nf alpha nf beta
    +                              const_pathS n alpha beta
    +                              KP_arrowS n alpha beta.
    + +
    +Lemma Lemma_4_4_0 :
    +   n p alpha beta (Halpha : alpha T1.zero),
    +    nf alpha nf beta (n p)%nat
    +    const_pathS_eps n alpha beta
    +    const_pathS_eps p (canon alpha (S p)) (canon beta (S p)).
    + +
    +Lemma standard_path_shift i alpha j beta :
    +  standard_pathS i alpha j beta
    +  standard_path (S i) alpha (S j) beta.
    + +
    +Lemma standard_path_unshift_0 i alpha j beta :
    +   standard_path i alpha j beta k l,
    +      i = S k j = S l
    +  standard_pathS k alpha l beta.
    + +
    +Lemma standard_path_unshift i alpha j beta :
    +  standard_path (S i) alpha (S j) beta
    +  standard_pathS i alpha j beta.
    + +
    +Lemma standard_path_toS_le_inv : j beta i alpha,
    +    standard_path_toS j beta i alpha (i j)%nat.
    + +
    +Lemma standard_path_to_le_inv : j beta i alpha,
    +    standard_path_to j beta i alpha (i j)%nat.
    + +
    +Lemma standard_path_toS_zero : j beta i alpha,
    +    standard_path_toS j beta i alpha alpha zero.
    + +
    +Lemma standard_path_origin : j beta i alpha,
    +   standard_path_to j beta i alpha alpha zero.
    + +
    +Lemma standard_pathS_path_toS :
    +   i alpha j beta, standard_pathS i alpha j beta
    +                         (i j)%nat
    +                         path_toS beta (interval i j) alpha.
    + +
    +Lemma standard_path_path_to i alpha j beta :
    +  standard_path i alpha j beta i 0
    +  (i j)%nat
    +  path_to beta (interval i j) alpha.
    + +
    +Lemma standard_gnaw_zero l i : standard_gnaw i zero l = zero.
    + +
    +Lemma standard_gnaw_iota_from i alpha l :
    +  i 0
    +  standard_gnaw i alpha l = gnaw alpha (iota_from i l).
    + +
    +Lemma standard_gnaw_plus : (t1 t2 i:nat)(alpha : T1) ,
    +    standard_gnaw i alpha (t1 + t2)%nat =
    +    standard_gnaw (t1 +i)%nat (standard_gnaw i alpha t1) t2.
    + +
    +Lemma standard_path_LE : j beta i alpha,
    +    standard_path i alpha j beta (i j)%nat.
    + +
    +Lemma standard_path_to_nf : i alpha j beta,
    +    standard_path_to j beta i alpha nf alpha nf beta.
    + +
    +Lemma standard_path_zero : i j alpha beta,
    +    standard_path i alpha j beta
    +    alpha = zero
    +    beta = zero.
    + +
    +Lemma standard_path_lt2 : i alpha j beta,
    +    (0 < i)%nat zero t1< alpha
    +    standard_path_to j beta i alpha
    +    beta t1< alpha.
    + +
    +Lemma standard_path_compose j beta k gamma :
    +  standard_path (S j) beta k gamma
    +   i alpha, standard_path i alpha j beta
    +                   standard_path i alpha k gamma.
    + +
    +Lemma standard_gnaw_S_zero : i n alpha ,
    +      standard_gnaw n alpha i = zero standard_gnaw n alpha (S i)=zero.
    + +
    +Lemma standard_gnaw_to_path : t alpha i,
    +    alpha zero i 0
    +    standard_gnaw i alpha t zero
    +    standard_path i alpha (t + i)%nat
    +                  (standard_gnaw i alpha (S t)).
    + +
    +Lemma standard_gnaw_nf l : i alpha,
    +  nf alpha nf (standard_gnaw i alpha l).
    + +
    +Lemma standard_path_equiv_1 :
    +   i j alpha beta, standard_path i alpha j beta
    +                         beta = standard_gnaw i alpha (S j - i)%nat.
    + +
    +Lemma standard_path_equiv_2 :
    +   l i alpha, i 0
    +                    let beta := standard_gnaw i alpha (S l)
    +                    in beta zero
    +                       standard_path i alpha (l + i)%nat beta.
    + +
    +Lemma path_to_S_iota_from :
    +   l i alpha beta,
    +    path_toS beta (iota_from i (S l)) alpha
    +    standard_path_toS (l + i)%nat beta i alpha.
    + +
    +Lemma path_to_S_standard_pathS :
    +   i j alpha beta, (i j)%nat
    +    path_toS beta (interval i j) alpha
    +    standard_pathS i alpha j beta.
    + +
    +Lemma path_toS_standardS_equiv i j alpha beta :
    +  (i j)%nat path_toS beta (interval i j) alpha
    +    standard_pathS i alpha j beta.
    + +
    +Lemma path_to_standard_equiv i j alpha beta :
    +  i 0 (i j)%nat path_to beta (interval i j) alpha
    +    standard_path i alpha j beta.
    + +
    +Lemma standard_pathS_app i alpha j beta k gamma :
    +  (i j)%nat (j k)%nat
    +  standard_pathS i alpha j beta standard_pathS (S j) beta k gamma
    +  standard_pathS i alpha k gamma.
    + +
    +Lemma cons_standard_pathS : alpha n beta ,
    +    nf (T1.cons alpha n beta) gamma i j,
    +    standard_pathS i beta j gamma gamma 0
    +    standard_pathS i (T1.cons alpha n beta) j (T1.cons alpha n gamma).
    + +
    +Lemma cons_standard_path : alpha n beta ,
    +    nf (T1.cons alpha n beta) gamma i j,
    +    standard_path i beta j gamma gamma 0 i 0
    +    standard_path i (T1.cons alpha n beta) j (T1.cons alpha n gamma).
    + +
    +Lemma flatten : (i:nat) alpha (j:nat) beta,
    +     standard_path i alpha j beta
    +    nf alpha zero t1< alpha (0 < i)%nat
    +    const_path j alpha beta.
    + +
    +Lemma standard_gnaw_to_zero :
    +   alpha , nf alpha i,
    +      {p:nat | standard_gnaw i alpha p = zero}.
    + +
    + +
    +Lemma standard_path_to_zero:
    +   alpha i, nf alpha alpha zero
    +                   {j: nat | standard_path (S i) alpha j zero}. +
    +Lemma standard_gnaw_2_zero :
    +   alpha i, nf alpha
    +                   {t: nat | standard_gnaw i alpha t = zero }.
    + +
    +
    + +
    +This section is dedicated to the proof of Lemma p 300 of KS + We associate to any path from alpha to beta with a constant index + a path from alpha to beta with a sequence of indices n+1, n+2, n+3, ... +
    +
    + +
    + +
    +Section Constant_to_standard_Proof.
    +  Variables (alpha beta: T1) (n : nat).
    +  Hypotheses (Halpha: nf alpha) (Hpos : zero t1< beta)
    +             (Hpa : const_pathS n alpha beta).
    + +
    +  Remark Rem0 : beta t1< alpha.
    + +
    +  Remark Rem1 : {k:nat &
    +                   {gamma: T1 |
    +                    standard_path (S n) alpha k gamma
    +                    gamma t1< alpha}}.
    + +
    +  Remark Rem01 : zero t1< alpha.
    + +
    +  Remark Rem02 : alpha zero.
    + +
    +  Remark Rem2 : {t: nat | standard_gnaw (S n) alpha t t1< beta}.
    + +
    +  Let t := proj1_sig Rem2.
    + +
    + +
    + +
    +  Remark Rem03 : (standard_gnaw (S n) alpha t t1< beta)%t1.
    + +
    +  Let P (i:nat) := compare (standard_gnaw (S n) alpha i) beta Datatypes.Lt.
    + +
    +  Remark Rem04 : P 0.
    + +
    +  Remark Rem05 : ¬ P t.
    + +
    +  Remark Rem06 : (0 < t)%nat.
    + +
    +  Instance P_dec i : Decision (P i).
    + +
    +  Let l_def := first_toggle P P_dec 0 t Rem06 Rem04 Rem05.
    + +
    +  Let l := proj1_sig l_def.
    + +
    +  Let gamma := standard_gnaw (S n) alpha l.
    + +
    +  Remark Rem08 :
    +    (0 l)%nat
    +    (l < t)%nat
    +    ( i : nat,
    +        (0 i)%nat
    +        (i l)%nat P i) ¬ P (S l).
    + +
    +  Remark Rem09 : (l < t)%nat.
    + +
    +  Remark Rem10 : P l.
    + +
    +  Remark Rem11 : ¬ P (S l).
    + +
    +  Remark R12 : const_pathS (l+n) alpha beta.
    + +
    +  Remark R13 : (0 < l)%nat gamma zero
    +               standard_path (S n) alpha ((l + n)) gamma.
    + +
    +  Remark R14 : l = 0 gamma = alpha.
    + +
    +  Remark R15 : gamma zero
    +               (0 < l)%nat const_path (n + l) alpha gamma.
    + +
    +  Let m := Nat.pred (n + l).
    + +
    +  Lemma m_def : (0 < l)%nat (n + l = S m)%nat.
    + +
    +  Remark R16 : (0 < l)%nat const_path (n + l) alpha beta.
    + +
    +   Remark R17 : (0 < l)%nat const_pathS (n+l) alpha beta.
    + +
    +  Remark R18 : gamma zero (0 < l)%nat const_pathS (n+l) alpha gamma.
    + +
    +  Remark R19 : beta t1 gamma.
    + +
    +  Remark R20 : gamma zero (0 < l)%nat beta t1< gamma
    +               const_pathS (n+l) gamma beta.
    + +
    +  Remark R21 : gamma zero (0 < l)%nat
    +               gamma = beta const_pathS (n+l) gamma beta.
    + +
    +  Let delta := canon gamma (S (n + l))%nat.
    + +
    +  Remark R22 : delta = standard_gnaw (S n) alpha (S l).
    + +
    +  Remark R23 : const_pathS (n+l) gamma beta
    +               {beta = delta}+{const_pathS (n + l) delta beta}.
    + +
    +  Remark R24 : const_pathS (n+l) gamma beta beta t1 delta.
    + +
    +   Remark R25 : delta t1< beta.
    + +
    +   Remark R26 : ¬ const_pathS (n+l) gamma beta.
    + +
    +   Remark R27 : gamma zero (0 < l)%nat gamma = beta.
    + +
    +   Remark R28 : l = 0 (beta t1 delta)%t1.
    + +
    +  Remark R29 : l 0.
    + +
    +  Remark R30 : gamma zero gamma = beta.
    + +
    +  Remark R31_0 : gamma zero beta = standard_gnaw (S n) alpha l.
    + +
    + +
    +  Lemma gamma_positive : gamma zero.
    + +
    +  Remark R31 : beta = standard_gnaw (S n) alpha l.
    + +
    +  Lemma constant_to_standard_0 :
    +    {l : nat | standard_gnaw (S n) alpha l = beta}.
    + +
    +End Constant_to_standard_Proof.
    + +
    + +
    +Lemma constant_to_standard (alpha beta : T1) (n : nat):
    +    nf alpha const_pathS n alpha beta
    +    {l : nat | standard_gnaw (S n) alpha l = beta}. +
    + +
    +Lemma constant_to_standard_path
    +  (alpha beta : T1) (i : nat):
    +  nf alpha const_pathS i alpha beta zero t1< alpha
    +  {j:nat | standard_path (S i) alpha j beta}. +
    +Corollary LT_to_standard_path (alpha beta : T1) :
    +  beta t1< alpha
    +  {n : nat & {j:nat | standard_path (S n) alpha j beta}}.
    + +
    +
    + +
    +

    Adaptation to E0

    + +
    +
    + +
    +Definition Canon_plus (i:nat)( alpha beta:E0)
    +  := const_path i (cnf alpha) (cnf beta).
    + +
    +Lemma Canon_plus_inv n alpha beta :
    +  Canon_plus (S n) alpha beta
    +  beta = Canon alpha (S n)
    +  Canon_plus (S n) (Canon alpha (S n)) beta.
    + +
    +Theorem KS_thm_2_4_E0 :
    +   lambda,
    +    E0limit lambda
    +     i j, (i < j)%nat
    +                Canon_plus 1 (Canon lambda (S j))
    +                       (Canon lambda (S i)).
    + +
    +Corollary Cor12_E0 : alpha beta i n,
    +    E0lt beta alpha (i n)%nat
    +    Canon_plus (S i) alpha beta
    +    Canon_plus (S n) alpha beta.
    + +
    +Lemma Canon_mono1 alpha i j : E0limit alpha (i< j)% nat
    +                              (Canon alpha i o< Canon alpha j)%e0.
    + +
    +Lemma CanonS_plus_1 alpha beta k i :
    +  beta E0zero alpha E0zero
    +  (beta o< E0_phi0 alpha)%e0
    +  (Canon (Omega_term alpha i + beta)%e0 (S k) =
    +   (Omega_term alpha i + (Canon beta (S k)))%e0).
    + +
    +Lemma CanonS_Phi0_Succ_eqn i gamma:
    +  Canon (E0_phi0 (E0_succ gamma)) (S i) = Omega_term gamma i.
    + +
    +Lemma Lemma2_6_1_E0 (alpha beta: E0) :
    +    (beta o< alpha)%e0
    +    {n:nat | Canon_plus (S n) alpha beta}.
    + +
    +
    + +
    +Lemmas used by F_alpha +
    +
    + +
    +Lemma Canon_plus_first_step: i alpha beta,
    +    Canon_plus (S i) (E0_succ alpha) beta
    +    alpha = beta Canon_plus (S i) alpha beta.
    + +
    +Lemma Canon_plus_first_step_lim:
    +   i alpha beta, E0limit alpha
    +                       Canon_plus (S i) alpha beta
    +                       beta = Canon alpha (S i)
    +                       Canon_plus (S i) (Canon alpha (S i)) beta.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Epsilon0.T1.html b/theories/html/hydras.Epsilon0.T1.html new file mode 100644 index 00000000..f7b82b2a --- /dev/null +++ b/theories/html/hydras.Epsilon0.T1.html @@ -0,0 +1,2392 @@ + + + + + +hydras.Epsilon0.T1 + + + + +
    + + + +
    + +

    Library hydras.Epsilon0.T1

    + +
    +
    + +
    + +
    + + A type for ordinals terms in Cantor Normal Form + +
    + +After Manolios and Vroon's work on ACL2 + +
    + + +
    +
    + +
    +From Coq Require Import Arith Max Bool Lia Compare_dec Relations Ensembles
    +     Wellfounded Bool RelationClasses Operators_Properties ArithRing
    +     Logic.Eqdep_dec.
    + +
    +From Coq Require PArith.
    +From hydras Require Import More_Arith Restriction DecPreOrder.
    +From hydras Require Import OrdNotations.
    +From hydras Require Export Prelude.Comparable.
    +From hydras Require Export STDPP_compat.
    + +
    +Create HintDb T1.
    + +
    +Set Implicit Arguments.
    + +
    +Declare Scope t1_scope.
    +Delimit Scope t1_scope with t1.
    +Open Scope t1_scope.
    + +
    +Coercion is_true: bool >-> Sortclass.
    + +
    +
    + +
    +

    Definitions

    + + +
    + + +
    + +

    A type of terms (not necessarily in normal form)

    + + +
    + +cons a n b is intended to represent + the ordinal omega^a × (S n) + b + +
    + +Note that T1 contains terms which are not in Cantor normal form. +This issue is solved later which the help of the predicate nf + +
    + + +
    +
    + +
    + +
    +Inductive T1 : Set :=
    +| zero
    +| cons (alpha : T1) (n : nat) (beta : T1) .
    + +
    + +
    +
    + +
    +Basic functions and predicates on T1 + +
    +
    + +
    + +
    +
    + +
    +The (S n)-th ordinal +
    +
    +Notation FS n := (cons zero n zero).
    + +
    +Notation one := (FS 0).
    + +
    +
    + +
    +the n-th (finite) ordinal +
    +
    + +
    +Definition T1nat (n:nat) := match n with 0 ⇒ zero | S pFS p end.
    + +
    +Notation "\F n" := (T1nat n) (at level 29): t1_scope.
    + +
    +Coercion T1nat : nat >-> T1.
    + +
    +Example ten : T1 := 10.
    + +
    +#[deprecated(note="use T1nat" )]
    Notation fin := T1nat (only parsing).
    + +
    + +
    +Notation T1omega := (cons (cons zero 0 zero) 0 zero).
    + +
    + +
    +#[deprecated(note="use T1omega")]
    Notation omega := T1omega (only parsing).
    + +
    + +
    +
    + +
    +Successor and limits (syntactic definitions) +
    +
    + +
    + +
    +Fixpoint T1is_succ alpha :=
    +  match alpha with
    +    | zerofalse
    +    | cons zero _ _true
    +    | cons _alpha _n betaT1is_succ beta
    +  end.
    + +
    +Fixpoint T1limit alpha :=
    +  match alpha with
    +    | zerofalse
    +    | cons zero _ _false
    +    | cons _ _ zerotrue
    +    | cons _ _ betaT1limit beta
    +  end.
    + +
    + +
    + +
    + +
    + +
    +#[deprecated(note="use T1is_succ")]
    +  Notation succb := T1is_succ (only parsing).
    + +
    +#[deprecated(note="use T1limit")]
    +  Notation limitb := T1limit (only parsing).
    + +
    +
    + +
    +Exponential of base omega +
    +
    + +
    + +
    +Notation phi0 alpha := (cons alpha 0 zero).
    + +
    + +
    +
    + +
    +multiples of phi0 alpha +
    +
    + +
    +Definition omega_term (alpha:T1)(k:nat) :=
    +  cons alpha k zero.
    + +
    +
    + +
    + omega towers + +
    +
    + +
    +Fixpoint omega_tower (height:nat) : T1 :=
    +  match height with
    +  | 0 ⇒ one
    +  | S hphi0 (omega_tower h)
    +  end.
    + +
    + +
    +
    + +
    +Additive principal ordinals + +
    +
    + +
    +Inductive ap : T1 Prop :=
    +  ap_intro : a, ap (phi0 a).
    + +
    +
    + +
    +

    A linear strict order on T1

    + + +
    +
    + +
    +#[global] Instance compare_T1 : Compare T1 :=
    fix cmp (alpha beta:T1) :=
    +  match alpha, beta with
    +  | zero, zeroEq
    +  | zero, cons a' n' b'Lt
    +  | _ , zeroGt
    +  | (cons a n b),(cons a' n' b') ⇒
    +      (match cmp a a' with
    +       | LtLt
    +       | GtGt
    +       | Eq ⇒ (match n ?= n' with
    +                | Eqcmp b b'
    +                | compcomp
    +                end)
    +       end)
    +  end.
    + +
    +Definition lt (alpha beta : T1) : Prop :=
    +  compare alpha beta = Lt.
    + +
    +Notation le := (leq lt).
    + +
    +Example E1 : lt (cons T1omega 56 zero) (omega_tower 3).
    + +
    +Example E2 : ¬ lt (omega_tower 3) (cons T1omega 5 (omega_tower 3))%t1.
    + +
    +
    + +
    +

    Properties of compare

    + +
    +
    + +
    +Lemma compare_cons :
    a n b a' n' b',
    compare (cons a n b) (cons a' n' b') =
    match compare a a' with
    + | LtLt
    + | GtGt
    + | Eq ⇒ (match n ?= n' with
    +        | Eqcompare b b'
    +        | compcomp
    +        end)
    end.
    + +
    + +
    +Lemma compare_rev :
    +   (alpha beta : T1),
    +  compare beta alpha = CompOpp (compare alpha beta). +
    +Lemma compare_reflect :
    +   alpha beta,
    +    match compare alpha beta with
    +    | Ltlt alpha beta
    +    | Eqalpha = beta
    +    | Gtlt beta alpha
    +    end.
    + +
    +Lemma compare_correct (alpha beta: T1):
    +  CompSpec eq lt alpha beta (compare alpha beta).
    + +
    +
    + +
    +

    Properties of Eq

    + +
    +
    + +
    +Lemma compare_refl :
    +   alpha : T1, compare alpha alpha = Eq.
    + +
    +Lemma compare_eq_iff (a b : T1) :
    +  compare a b = Eq a = b.
    + +
    +
    + +
    +

    Properties of lt

    + +
    +
    + +
    +Theorem not_lt_zero alpha : ¬ lt alpha zero.
    + +
    +#[global] Hint Resolve not_lt_zero : T1.
    + +
    +Lemma compare_lt_impl a b :
    +  compare a b = Lt lt a b.
    + +
    +Lemma compare_lt_iff a b :
    +  compare a b = Lt lt a b.
    + +
    +
    + +
    +

    Properties of lt inv

    + +
    +
    +Inductive lt_cases (a b : T1) (n :nat) (a' b':T1) (n':nat) : Type :=
    +  | lt_left (H : lt a a')
    +  | lt_middle (H : a = a')(H1 : (n < n')%nat)
    +  | lt_right (H : a = a')(H1 : n = n')(H2 : lt b b').
    + +
    +Lemma lt_inv_strong :
    +   a n b a' n' b',
    +  lt (cons a n b) (cons a' n' b')
    +  lt_cases a b n a' b' n'.
    + +
    +Theorem lt_irrefl (alpha: T1):
    +  ¬ lt alpha alpha.
    + +
    +Theorem lt_inv :
    +   a n b a' n' b',
    +  lt (cons a n b) (cons a' n' b')
    +  lt a a'
    +  a = a' (n < n')%nat
    +  a = a' n = n' lt b b'.
    + +
    +Lemma lt_inv_coeff:
    +   a n n' b b',
    +  lt (cons a n b) (cons a n' b') n n'.
    + +
    +Lemma lt_inv_coeff_dec :
    +   a n n' b b',
    +  lt (cons a n b) (cons a n' b')
    +  {(n < n')%nat} + { n = n' lt b b'}.
    + +
    +Lemma lt_inv_tail :
    +   a n b b',
    +  lt (cons a n b) (cons a n b') lt b b'.
    + +
    +Lemma head_lt :
    +   alpha alpha' n n' beta beta',
    +       lt alpha alpha'
    +       lt (cons alpha n beta) (cons alpha' n' beta').
    + +
    +Lemma coeff_lt :
    +   alpha n n' beta beta',
    +  (n < n')%nat lt (cons alpha n beta) (cons alpha n' beta').
    + +
    +Lemma tail_lt :
    +   alpha n beta beta',
    +  lt beta beta'
    +  lt (cons alpha n beta) (cons alpha n beta').
    + +
    +Lemma compare_fin_rw (n n1: nat) :
    +  compare (T1nat n) (T1nat n1) = (n ?= n1).
    + +
    +Lemma lt_fin_iff (i j : nat): lt (T1nat i) (T1nat j) Nat.lt i j.
    + +
    +Theorem lt_trans:
    +   alpha beta gamma: T1,
    +  lt alpha beta lt beta gamma lt alpha gamma.
    + +
    + +
    +#[global] Instance t1_strorder: StrictOrder lt. +
    +#[global] Instance: Comparable lt compare. +
    + +
    +Lemma lt_inv_head :
    +   a n b a' n' b',
    +    lt (cons a n b) (cons a' n' b') leq lt a a'.
    + +
    +
    + +
    +

    The predicate "to be in normal form"

    + + +
    + +Cantor normal form needs the exponents of omega to be + in strict decreasing order +
    +
    + +
    +#[ global ] Instance lt_dec : RelDecision lt :=
    +fun alpha betadecide (compare alpha beta = Lt).
    + +
    +Fixpoint nf_b (alpha : T1) : bool :=
    +  match alpha with
    +  | zerotrue
    +  | cons a n zeronf_b a
    +  | cons a n ((cons a' n' b') as b) ⇒
    +      (nf_b a && nf_b b && (bool_decide (lt a' a)))%bool
    +  end.
    + +
    +Definition nf alpha :Prop := nf_b alpha.
    + +
    + +
    +Example bad_term: T1 := cons 1 1 (cons T1omega 2 zero).
    + +
    + +
    +
    + +
    +epsilon0 as a set +
    +
    + +
    +Definition epsilon_0 : Ensemble T1 := nf.
    + +
    +
    + +
    +

    Arithmetic functions

    + + +
    + +

    Successor

    + +
    +
    + +
    +Fixpoint succ (a: T1) : T1 :=
    +  match a with
    +  | zeroT1nat 1
    +  | cons zero n _cons zero (S n) zero
    +  | cons b n ccons b n (succ c)
    +  end.
    + +
    +
    + +
    +

    Predecessor (partial function

    + +
    +
    + +
    +Fixpoint pred (c:T1) : option T1 :=
    +  match c with zeroNone
    +  | cons zero 0 _Some zero
    +  | cons zero (S n) _Some (cons zero n zero)
    +  | cons a n b
    +      match (pred b) with
    +      | NoneNone
    +      | Some cSome (cons a n c)
    +      end
    +  end.
    + +
    +
    + +
    +

    Addition

    + +
    +
    + +
    + +
    +Fixpoint T1add (a b : T1) :T1 :=
    +  match a, b with
    +  | zero, yy
    +  | x, zerox
    +  | cons a n b, cons a' n' b'
    +      (match compare a a' with
    +       | Ltcons a' n' b'
    +       | Gt ⇒ (cons a n (T1add b (cons a' n' b')))
    +       | Eq ⇒ (cons a (S (n+n')) b')
    +       end)
    +  end
    +where "alpha + beta" := (T1add alpha beta) : t1_scope.
    + +
    +#[deprecated(note="use T1add")]
    +  Notation plus := T1add (only parsing).
    + +
    +
    + +
    +

    multiplication

    + +
    +
    + +
    + +
    +Fixpoint T1mul (a b : T1) :T1 :=
    +  match a, b with
    +  | zero, _zero
    +  | _, zerozero
    +  | cons zero n _, cons zero n' b'
    +      cons zero (Peano.pred((S n) × (S n'))) b'
    +  | cons a n b, cons zero n' _
    +      cons a (Peano.pred ((S n) × (S n'))) b
    +  | cons a n b, cons a' n' b'
    +      cons (a + a') n' ((cons a n b) × b')
    +  end
    +where "a * b" := (T1mul a b) : t1_scope.
    + +
    +#[deprecated(note="use T1mul")]
    +  Notation mult := T1mul (only parsing).
    + +
    +
    + +
    +

    Substraction (used as a helper for exponentiation)

    + +
    +
    + +
    +Fixpoint minus (alpha beta : T1) :T1 :=
    +  match alpha,beta with
    + | zero, yzero
    + | cons zero n _, cons zero n' _
    +     if (le_lt_dec n n')
    +     then zero
    +     else cons zero (Peano.pred (n-n')) zero
    + | cons zero n _, zerocons zero n zero
    + | cons zero _ _, _zero
    + | cons a n b, zerocons a n b
    + | cons a n b, cons a' n' b'
    +     (match compare a a' with
    +      | Ltzero
    +      | Gtcons a n b
    +      | Eq ⇒ (match Nat.compare n n' with
    +               | Ltzero
    +               | Gt ⇒ (cons a (Peano.pred (n - n')) b')
    +               | Eqb - b'
    +               end)
    +       end)
    end
    where "alpha - beta" := (minus alpha beta):t1_scope.
    + +
    +
    + +
    +

    exponentiation functions

    + + +
    +
    + +
    +Fixpoint exp_F (alpha : T1)(n : nat) :T1 :=
    match n with
    + | 0 ⇒ FS 0
    + | S palpha × (exp_F alpha p)
    end.
    + +
    +Fixpoint exp (alpha beta : T1) :T1 :=
    +  match alpha ,beta with
    + | _, zerocons zero 0 zero
    + | cons zero 0 _ , _cons zero 0 zero
    + | zero, _zero
    + | x , cons zero n' _exp_F x (S n')
    + | cons zero n _, cons (cons zero 0 zero) n' b'
    +        ((cons (cons zero n' zero) 0 zero) ×
    +                ((cons zero n zero) ^ b'))
    + | cons zero n _, cons a' n' b'
    +            (omega_term
    +                    (omega_term (a' - 1) n')
    +                    0) ×
    +                 ((cons zero n zero) ^ b')
    + | cons a n b, cons a' n' b'
    +    ((omega_term (a × (cons a' n' zero))
    +                            0) ×
    +            ((cons a n b) ^ b'))
    +end
    +where "alpha ^ beta " := (exp alpha beta) : t1_scope.
    + +
    +
    + +
    +

    Lemmas

    + +
    +
    + +
    +Lemma compare_of_phi0 alpha beta:
    +  compare (phi0 alpha) (phi0 beta) = compare alpha beta.
    + +
    +Lemma zero_lt : alpha n beta, lt zero (cons alpha n beta).
    + +
    +#[global] Hint Resolve zero_lt head_lt coeff_lt tail_lt : T1.
    + +
    +Open Scope t1_scope.
    + +
    +Lemma zero_nf : nf zero.
    + +
    +Lemma single_nf :
    +   a n, nf a nf (cons a n zero).
    + +
    +Lemma cons_nf :
    +   a n a' n' b,
    +  lt a' a
    +  nf a
    +  nf(cons a' n' b)
    +  nf(cons a n (cons a' n' b)).
    + +
    +#[global] Hint Resolve zero_nf single_nf cons_nf: T1.
    + +
    +Lemma nf_inv1 :
    +   a n b, nf (cons a n b) nf a.
    + +
    +Lemma nf_inv2 :
    +   a n b, nf (cons a n b) nf b.
    + +
    +Lemma nf_inv3 :
    +   a n a' n' b',
    +  nf (cons a n (cons a' n' b')) lt a' a.
    + +
    +Lemma nf_cons_inv a n b : nf (cons a n b) nf a nf b lt b (phi0 a).
    + +
    +Lemma nf_cons_iff a n b : nf (cons a n b) nf a nf b lt b (phi0 a).
    + +
    +
    + +
    +already in Stdlib ? +
    +
    + +
    +Lemma bool_eq_iff (b b':bool) : (b = b') (b b').
    + +
    +Lemma nf_b_cons_eq a n b : nf_b (cons a n b) =
    +                           nf_b a && nf_b b && bool_decide (lt b (phi0 a)).
    + +
    + +
    +Ltac nf_decomp H :=
    +  let nf0 := fresh "nf"
    +  in let nf1 := fresh "nf"
    +     in let Hlp := fresh "lt"
    +     in
    +     match type of H with
    +     | nf (cons ?t ?n zero) ⇒ assert (nf0:= nf_inv1 H)
    +     | nf (cons ?t1 ?n (cons ?t2 ?p ?t3))
    +       ⇒ assert (nf0 := nf_inv1 H); assert(nf1 := nf_inv2 H);
    +          assert (lt := nf_inv3 H)
    +     | nf (cons ?t1 ?n ?t2) ⇒ assert (nf0 := nf_inv1 H); assert(nf1 := nf_inv2 H)
    +     end.
    + +
    +
    + +
    + lt alpha (phi0 beta) +
    +
    +Inductive lt_a_phi0_b : T1 T1 Prop :=
    +| lt_a_phi0_b_z : alpha, lt_a_phi0_b zero alpha
    +| lt_a_phi0_b_c : alpha alpha' n' beta',
    +                  lt alpha' alpha
    +                  lt_a_phi0_b (cons alpha' n' beta') alpha.
    + +
    +#[global] Hint Constructors lt_a_phi0_b : T1.
    + +
    +Reserved Notation "x '<_phi0' y" (at level 70, no associativity).
    +Infix "<_phi0" := lt_a_phi0_b.
    + +
    + +
    +Definition get_decomposition : c:T1, lt zero c
    +                           {a:T1 & {n:nat & {b:T1 | c = cons a n b}}}.
    + +
    +Ltac decomp_exhib H a n b e:=
    let Ha := fresh in
    let Hn := fresh in
    let Hb := fresh in
    +  match type of H
    +  with lt zero ?c
    +    case (get_decomposition H);
    +     intros a Ha;
    +     case Ha;intros n Hn; case Hn; intros b e;
    +     clear Ha Hn
    +  end.
    + +
    +Lemma nf_FS : n:nat, nf (FS n).
    + +
    +Lemma nf_fin : n:nat, nf (T1nat n).
    + +
    +
    + +
    +

    Successors, limits and zero

    + +
    +
    + +
    +Lemma succ_not_zero : alpha, succ alpha zero.
    + +
    +Lemma succ_is_succ : alpha, T1is_succ (succ alpha).
    + +
    +
    + +
    +

    Second part on lt and le

    + +
    +
    + +
    +Lemma finite_lt :
    +   n p : nat, (n < p)%nat lt (FS n) (FS p).
    + +
    +Lemma finite_ltR :
    +   n p : nat,
    +  lt (FS n) (FS p) (n < p)%nat.
    + +
    +Lemma le_eq_lt_dec alpha beta:
    +  leq lt alpha beta
    +  {alpha = beta} + {lt alpha beta}.
    + +
    +Lemma lt_succ (alpha : T1) : lt alpha (succ alpha).
    + +
    +Lemma lt_a_phi0_a :
    +   a, lt a (phi0 a).
    + +
    +Lemma phi0_lt :
    +   a b, lt a b lt (phi0 a) (phi0 b).
    + +
    +Lemma phi0_ltR :
    +   a b, lt (phi0 a) (phi0 b) lt a b.
    + +
    +Lemma nf_of_finite :
    +   n b,
    +  nf (cons zero n b) b = zero.
    + +
    +Theorem zero_le :
    +   a, leq lt zero a.
    + +
    +Theorem le_inv :
    +   a n b a' n' b',
    +  leq lt (cons a n b) (cons a' n' b')
    +  lt a a'
    +  a = a' (n < n')%nat
    +  a = a' n = n' leq lt b b'.
    + +
    +Arguments le_inv [a n b a' n' b'] _.
    + +
    +Lemma lt_a_phi0_b_inv :
    +   a n b a', lt (cons a n b) (phi0 a') lt a a'.
    + +
    +Theorem le_zero_inv :
    +   a, leq lt a zero a = zero.
    + +
    +Theorem le_tail :
    +   a n b b',
    +  leq lt b b'
    +  leq lt (cons a n b) (cons a n b').
    + +
    +#[global] Hint Resolve zero_le le_tail : T1.
    + +
    +Theorem le_phi0 :
    +   a n b, leq lt (phi0 a) (cons a n b).
    + +
    +Lemma head_lt_cons :
    +   a n b, lt a (cons a n b).
    + +
    +#[export] Hint Resolve head_lt_cons: T1.
    + +
    +Definition T1_eq_dec (alpha beta : T1):
    +{alpha = beta} + {alpha beta}.
    + +
    +Definition lt_eq_lt_dec :
    +   alpha beta : T1,
    +  {lt alpha beta} + {alpha = beta} + {lt beta alpha}.
    + +
    +Definition lt_le_dec (alpha beta : T1) :
    +  {lt alpha beta} + {leq lt beta alpha}.
    + +
    +#[ global ] Instance epsilon0_pre_order : TotalPreOrder (leq lt).
    + +
    +#[ global ] Instance epsilon0_dec : RelDecision (leq lt).
    + +
    +Ltac auto_nf :=
    +  match goal with
    +    |- nf ?alpha
    +    ( repeat (apply cons_nf || apply single_nf || apply zero_nf))
    +    || (eapply nf_inv1 || eapply nf_inv2); eauto
    +  end.
    + +
    +Lemma nf_tail_lt_nf b b':
    +  lt b' b nf b'
    +   a n, nf (cons a n b) nf (cons a n b').
    + +
    +Lemma tail_lt_cons :
    +   b n a,
    +  nf (cons a n b) lt b (cons a n b).
    + +
    +Lemma lt_a_phi0_b_inv1 :
    +   a n b a', cons a n b <_phi0 a' lt a a'.
    + +
    +Lemma nf_intro :
    +   a n b, nf a nf b b <_phi0 a
    +                nf (cons a n b).
    + +
    +Lemma nf_intro' :
    +   a n b,
    +  nf a
    +  nf b
    +  lt b (cons a 0 zero)
    +  nf (cons a n b).
    + +
    +Lemma lt_a_phi0_b_intro :
    +   a n b, nf (cons a n b) b <_phi0 a.
    + +
    +Lemma nf_coeff_irrelevance :
    +   a b n p, nf (cons a n b) nf (cons a p b).
    + +
    +Lemma lt_a_phi0_b_phi0 :
    +   a b, b <_phi0 a lt b ( phi0 a).
    + +
    +Lemma lt_a_phi0_b_phi0R :
    +   a b, lt b (phi0 a) b <_phi0 a.
    + +
    +Lemma lt_a_phi0_b_def :
    +   a b, b <_phi0 a lt b (phi0 a).
    + +
    +Lemma lt_a_phi0_b_iff :
    +   a b, nf a nf b
    +              (b <_phi0 a n, nf (cons a n b)).
    + +
    +Lemma nf_omega_tower : n, nf (omega_tower n).
    + +
    +
    + +
    +A strong induction scheme for nf +
    +
    + +
    +Definition nf_rect : P : T1 Type,
    +    P zero
    +    ( n: nat, P (cons zero n zero))
    +    ( a n b n' b', nf (cons a n b)
    +                         P (cons a n b)
    +                         lt b' (phi0 (cons a n b))
    +                         nf b'
    +                         P b'
    +                         P (cons (cons a n b) n' b'))
    +     a: T1, nf a P a.
    + +
    +
    + +
    +

    Properties of compare: second part

    + +
    +
    + +
    +Theorem compare_reflectR ( alpha beta : T1) :
    +  (match lt_eq_lt_dec alpha beta with
    +   | inleft (left _) ⇒ Lt
    +   | inleft (right _) ⇒ Eq
    +   | inright _Gt
    +   end)
    +  = compare alpha beta.
    + +
    +
    + +
    +

    Properties of max

    + +
    +
    +Lemma max_nf (alpha beta : T1) :
    +  nf alpha nf beta nf (max alpha beta).
    + +
    +
    + +
    +

    Restriction of lt and le to terms in normal form

    + +
    +
    +Reserved Notation "x 't1<' y" (at level 70, no associativity).
    +Reserved Notation "x 't1<=' y" (at level 70, no associativity).
    +Reserved Notation "x 't1>=' y" (at level 70, no associativity).
    +Reserved Notation "x 't1>' y" (at level 70, no associativity).
    + +
    +Reserved Notation "x 't1<=' y 't1<=' z" (at level 70, y at next level).
    +Reserved Notation "x 't1<=' y 't1<' z" (at level 70, y at next level).
    +Reserved Notation "x 't1<' y 't1<' z" (at level 70, y at next level).
    +Reserved Notation "x 't1<' y 't1<=' z" (at level 70, y at next level).
    + +
    + +
    +Definition LT := restrict nf lt.
    +Infix "t1<" := LT : t1_scope.
    + +
    +Definition LE := restrict nf (leq lt).
    +Infix "t1<=" := LE : t1_scope.
    + +
    + +
    +Notation "alpha t1< beta t1< gamma" :=
    +  (LT alpha beta LT beta gamma) : t1_scope.
    + +
    +Definition Elements alpha : Ensemble T1 :=
    +  fun betabeta t1< alpha.
    + +
    +Coercion Elements : T1 >-> Ensemble.
    + +
    +Lemma LT_nf_l : alpha beta , alpha t1< beta nf alpha.
    + +
    +Lemma LT_nf_r : alpha beta , alpha t1< beta nf beta.
    + +
    +Lemma LT_lt alpha beta : alpha t1< beta lt alpha beta.
    + +
    +Lemma LE_nf_l : alpha beta , alpha t1 beta nf alpha.
    + +
    +Lemma LE_nf_r : alpha beta , alpha t1 beta nf beta.
    + +
    +Lemma LE_le alpha beta : alpha t1 beta leq lt alpha beta.
    + +
    +#[global] Hint Resolve LT_nf_r LT_nf_l LT_lt LE_nf_r LE_nf_l LE_le : T1.
    + +
    +Lemma not_zero_gt_0 (alpha:T1) : alpha zero lt zero alpha.
    + +
    +Lemma not_zero_lt (alpha: T1): nf alpha alpha zero
    +                               zero t1< alpha.
    + +
    +Lemma LE_zero : alpha, nf alpha zero t1 alpha.
    + +
    +Lemma LE_refl : alpha, nf alpha alpha t1 alpha.
    + +
    +Lemma LT_trans : a b c:T1, a t1< b b t1< c a t1< c.
    + +
    +Theorem LE_trans (alpha beta gamma: T1):
    +          alpha t1 beta beta t1 gamma alpha t1 gamma.
    + +
    +Lemma LE_antisym (alpha beta : T1): alpha t1 beta
    +                                     beta t1 alpha
    +                                     alpha = beta.
    + +
    +Lemma LT1 : alpha n beta, nf (cons alpha n beta)
    +                                 zero t1< cons alpha n beta.
    + +
    +Lemma LT2 : alpha alpha' n n' beta beta',
    +    nf (cons alpha n beta)
    +    nf (cons alpha' n' beta')
    +    alpha t1< alpha'
    +    cons alpha n beta t1< cons alpha' n' beta'.
    + +
    +Lemma LT3 : alpha n n' beta beta',
    +    nf (cons alpha n beta)
    +    nf (cons alpha n' beta')
    +    n < n'
    +    cons alpha n beta t1< cons alpha n' beta'.
    + +
    +Lemma LT4 : alpha n beta beta',
    +    nf (cons alpha n beta)
    +    nf (cons alpha n beta')
    +    beta t1< beta'
    +    cons alpha n beta t1< cons alpha n beta'.
    + +
    +#[global] Hint Resolve LT1 LT2 LT3 LT4: T1.
    + +
    +Lemma LT_irrefl (alpha : T1) :
    +  ¬ alpha t1< alpha.
    + +
    +Lemma LE_LT_trans :
    +   alpha beta gamma,
    +  alpha t1 beta beta t1< gamma alpha t1< gamma.
    + +
    +Lemma LT_LE_trans (alpha beta gamma : T1) : alpha t1< beta
    +                                            beta t1 gamma
    +                                            alpha t1< gamma.
    + +
    +Lemma not_LT_zero :
    +   alpha, ¬ alpha t1< zero.
    + +
    +#[ global ] Instance LT_St : StrictOrder LT.
    + +
    +Lemma nf_cons_LT :
    +   (a : T1) (n : nat) (a' : T1) (n' : nat) (b : T1),
    +  a' t1< a
    +  nf a nf (cons a' n' b) nf (cons a n (cons a' n' b)).
    + +
    +#[global] Hint Resolve nf_cons_LT: T1.
    + +
    +#[global] Hint Resolve nf_inv1 nf_inv2 nf_inv3 : T1.
    + +
    +Lemma head_LT_cons :
    +   alpha n beta,
    +  nf (cons alpha n beta)
    +  alpha t1< cons alpha n beta.
    + +
    +Lemma tail_LT_cons :
    +   alpha n beta,
    +  nf (cons alpha n beta)
    +  beta t1< cons alpha n beta.
    + +
    +Lemma LT_inv : a n b a' n' b',
    +    cons a n b t1< cons a' n' b'
    +    a t1< a'
    +    a = a' (n < n' n = n' b t1< b').
    + +
    +Inductive LT_cases (a b : T1) (n :nat) (a' b':T1) (n':nat) : Type :=
    +| LT_left (H : a t1< a')
    +| LT_middle (H : a = a')(H1 : n < n')
    +| LT_right (H : a = a')(H1 : n = n')(H2 : b t1< b').
    + +
    +Lemma LT_inv_strong :
    +   a b n a' b' n',
    +  cons a n b t1< cons a' n' b' LT_cases a b n a' b' n'.
    + +
    +Lemma remove_first_sumand :
    +   a n b b',
    +    cons a n b t1< cons a n b' b t1< b'.
    + +
    +Lemma LT_cons_0 :
    +   a n b a' b',
    +  cons a n b t1< cons a' 0 b' a t1< a' n = 0 a = a' b t1< b'.
    + +
    +Lemma LE_phi0 :
    +   a n b, nf (cons a n b) phi0 a t1 cons a n b.
    + +
    +Lemma nf_tail_lt alpha n beta gamma :
    +  nf (cons alpha n beta) gamma t1< beta
    +  nf (cons alpha n gamma).
    + +
    +
    + +
    +

    Well foundedness of LT

    + +
    +
    + +
    +Module Direct_proof.
    +  Section well_foundedness_proof.
    +    #[local] Hint Unfold restrict LT: T1.
    + +
    +    Lemma Acc_zero : Acc LT zero.
    + +
    + +
    + +
    +    Section First_attempt.
    + +
    +      Lemma wf_LT : alpha: T1, nf alpha Acc LT alpha.
    +    End First_attempt.
    + +
    +
    + +
    +

    Strong accessibility (inspired by Tait's proof)

    + +
    +
    + +
    +    Let Acc_strong (alpha:T1) :=
    +       n beta,
    +        nf (cons alpha n beta) Acc LT (cons alpha n beta).
    + +
    +    Remark acc_impl {A} {R: A A Prop} (a b:A) :
    +      R a b Acc R b Acc R a.
    + +
    + +
    +    Lemma Acc_strong_stronger : alpha,
    +        nf alpha Acc_strong alpha Acc LT alpha.
    + +
    + +
    + +
    +    Lemma Acc_implies_Acc_strong : alpha,
    +        Acc LT alpha Acc_strong alpha. +
    + +
    +
    + +
    +

    A (last) structural induction

    + +
    +
    + +
    + +
    +    Theorem nf_Acc (alpha : T1): nf alpha Acc LT alpha. +
    + +
    +  End well_foundedness_proof.
    +End Direct_proof.
    + +
    +Definition nf_Acc := Direct_proof.nf_Acc.
    + +
    +Corollary nf_Wf : well_founded_restriction _ nf lt.
    + +
    + +
    +Corollary T1_wf : well_founded LT. +
    +Definition transfinite_recursor_lt :
    +   (P:T1 Type),
    +    ( x:T1,
    +        ( y:T1, nf x nf y lt y x P y) P x)
    +     alpha: T1, P alpha.
    + +
    + +
    +Definition transfinite_recursor := well_founded_induction_type T1_wf.
    + +
    +Check transfinite_recursor.
    + +
    + +
    +Import Direct_proof.
    + +
    +Ltac transfinite_induction_lt alpha :=
    +  pattern alpha; apply transfinite_recursor_lt.
    + +
    + +
    +Ltac transfinite_induction alpha :=
    +  pattern alpha; apply transfinite_recursor.
    + +
    + +
    +
    + +
    +

    Properties of successor

    + +
    +
    + +
    + +
    +Lemma succ_nf : alpha : T1 , nf alpha nf (succ alpha).
    + +
    +
    + +
    +

    properties of addition

    + +
    +
    + +
    +Lemma plus_zero alpha: zero + alpha = alpha.
    + +
    +Lemma plus_zero_r alpha: alpha + zero = alpha.
    + +
    + +
    +Lemma succ_is_plus_one (a : T1) : succ a = a + 1.
    + +
    +Lemma succ_of_plus_finite :
    +   a (H: nf a) (i:nat) , succ (a + i) = a + S i.
    + +
    +
    + +
    +

    plus and LT

    + +
    +
    + +
    +Lemma plus_cons_cons_rw1 :
    +   a n b a' n' b',
    +  lt a a'
    +  cons a n b + cons a' n' b' = cons a' n' b'.
    + +
    +Lemma plus_cons_cons_rw2 :
    +   a n b n' b',
    +  nf (cons a n b)
    +  nf (cons a n' b')
    +  cons a n b + cons a n' b' = cons a (S (n + n')) b'.
    + +
    +Lemma plus_cons_cons_rw3 :
    +   a n b a' n' b',
    +  lt a' a
    +  nf (cons a n b)
    +  nf (cons a' n' b')
    +  cons a n b + cons a' n' b'=
    +  cons a n (b + (cons a' n' b')).
    + +
    +
    + +
    +

    On additive principal ordinals

    + +
    +
    + +
    +Lemma ap_plus : a,
    +    ap a
    +     b c,
    +      nf b nf c lt b a lt c a lt (b + c) a.
    + +
    +Lemma ap_plusR :
    +   c,
    +  nf c
    +  c zero
    +  ( a b, nf a nf b lt a c lt b c lt (a + b) c)
    +  ap c.
    + +
    +
    + +
    +Technical lemma for proving plus_nf +
    +
    + +
    +Lemma plus_nf0 :
    +   a, nf a
    +   b c,
    +    lt b (phi0 a)
    +    lt c (phi0 a)
    +    nf b nf c
    +    nf (b + c).
    + +
    + +
    +Lemma plus_nf:
    +   a, nf a b, nf b nf (a + b). +
    + +
    +Lemma omega_term_plus_rw:
    +   a n b,
    +    nf (cons a n b)
    +    omega_term a n + b = cons a n b.
    + +
    + +
    +Lemma plus_is_zero alpha beta :
    +  nf alpha nf beta
    +  alpha + beta = zero alpha = zero beta = zero. +
    + +
    +Lemma T1add_not_monotonous_l :
    +   a b c : T1, a t1< b a + c = b + c.
    + +
    +Lemma T1mul_not_monotonous :
    +   a b c : T1, c zero a t1< b a × c = b × c.
    + +
    +
    + +
    +

    monotonicity of succ

    + +
    +
    + +
    +Lemma succ_strict_mono :
    +   a b,
    +    lt a b nf a nf b
    +    lt (succ a) (succ b).
    + +
    +Lemma succ_strict_mono_LT :
    +   alpha beta,
    +  alpha t1< beta succ alpha t1< succ beta.
    + +
    +Lemma succ_mono :
    +   a b,
    +  nf a nf b
    +  leq lt a b leq lt (succ a) (succ b).
    + +
    +Lemma lt_succ_le_R :
    +   a, nf a b, nf b
    +  leq lt (succ a) b lt a b .
    + +
    +Lemma le_lt_LT alpha beta :
    +  nf alpha nf beta leq lt alpha beta leq LT alpha beta.
    + +
    +Lemma LT_succ_LE_R :
    +   alpha beta,
    +    nf alpha
    +    succ alpha t1 beta alpha t1< beta.
    + +
    +Lemma lt_succ_le_2 :
    +   a,
    +  nf a b, nf b
    +  lt a (succ b) leq lt a b.
    + +
    +
    + +
    +TODO: bulletize this proof ! +
    +
    + +
    +Lemma lt_succ_le :
    +   a,
    +    nf a b, nf b
    +                      lt a b leq lt (succ a) b.
    + +
    +Lemma LT_succ_LE :
    +   alpha beta ,
    +  alpha t1< beta succ alpha t1 beta.
    + +
    +Lemma LT_succ_LE_2:
    +   alpha beta : T1, nf beta
    +    alpha t1< succ beta alpha t1 beta.
    + +
    +Lemma succ_strict_monoR :
    +   alpha beta,
    +    nf alpha nf beta
    +      lt (succ alpha) (succ beta) lt alpha beta.
    + +
    +Lemma succ_monomorphism :
    +   alpha (H:nf alpha) beta (H' : nf beta),
    +    lt alpha beta lt (succ alpha) (succ beta).
    + +
    +Lemma succ_injective :
    +   alpha (H:nf alpha) beta (H' : nf beta),
    +    succ alpha = succ beta alpha = beta.
    + +
    +Lemma succ_compatS :
    +   n:nat, succ (FS n) = FS (S n).
    + +
    +Lemma succ_compat (n:nat) :
    +  succ (T1nat n) = FS n.
    + +
    +
    + +
    +

    monotonicity of phi0

    + +
    +
    + +
    +Lemma phi0_mono_strict :
    +   a b, lt a b lt (phi0 a) (phi0 b).
    + +
    +Lemma phi0_mono_strict_LT :
    +   alpha beta,
    +    alpha t1< beta phi0 alpha t1< phi0 beta.
    + +
    +Lemma phi0_mono :
    +   a b, leq lt a b leq lt (phi0 a) ( phi0 b).
    + +
    +Lemma plus_left_absorb :
    +   a n b c,
    +  lt c (phi0 a) c + cons a n b = cons a n b.
    + +
    +Lemma plus_compat:
    +   n p, FS n + FS p = FS (S n + p).
    + +
    +
    + +
    +

    Multiplication

    + +
    +
    + +
    +Lemma mult_fin_omega :
    +   n: nat,
    +    FS n × T1omega = T1omega.
    + +
    +Lemma phi0_plus_mult :
    +   a b, nf a nf b phi0 (a + b) = phi0 a × phi0 b.
    + +
    +Lemma mult_compat :
    +   n p, FS n × FS p = FS (n × p + n + p)%nat.
    + +
    +Lemma mult_a_0 :
    +   a, a × zero = zero.
    + +
    +Lemma mult_1_a :
    +   a, nf a 1 × a = a.
    + +
    +Lemma mult_a_1 :
    +   a, nf a a × 1 = a.
    + +
    +Lemma mult_nf_fin alpha n: nf alpha nf (alpha × T1nat n).
    + +
    +
    + +
    +

    About minus

    + +
    +
    + +
    +Lemma minus_lt :
    +   a b, lt a b a - b = zero.
    + +
    +Lemma minus_a_a : a, a - a = zero.
    + +
    +Lemma minus_le : a b, leq lt a b a - b = zero.
    + +
    +
    + +
    +

    Exponential

    + +
    +
    + +
    +Lemma exp_fin_omega : n, FS (S n) ^ T1omega = T1omega.
    + +
    +
    + +
    +

    Relations between cons, phi0 and +

    + + +
    + + The next three lemmas express the consistency between + the intuitive meaning given to the constructor cons and + its derivates : phi0, omega-term, and the arithmetic + operations on ordinals which belong to epsilon0 +
    +
    + +
    +Lemma phi0_eq_bad : alpha, T1omega ^ alpha = phi0 alpha.
    + +
    +Lemma phi0_eq : alpha, nf alpha T1omega ^ alpha = phi0 alpha.
    + +
    +Lemma omega_term_def :
    +   a n, nf a omega_term a n = T1omega ^ a × FS n.
    + +
    +Lemma cons_def :
    +   a n b,
    +  nf(cons a n b) cons a n b = T1omega ^ a × FS n + b.
    + +
    +Theorem unique_decomposition :
    +   a n b a' n' b',
    +    nf (cons a n b) nf (cons a' n' b')
    +    T1omega ^ a × FS n + b =
    +    T1omega ^ a' × FS n' + b'
    +    a = a' n = n' b = b'.
    + +
    +Theorem Cantor_normal_form :
    +   o, lt zero o nf o
    +            {a:T1 & {n: nat & {b : T1 |
    +                                o = T1omega ^ a × FS n + b
    +                                nf (cons a n b) }}}.
    + +
    + +
    +Lemma LT_one alpha :
    +  alpha t1< one alpha = zero. +
    +Lemma lt_omega_inv :
    +   alpha,
    +  alpha t1< T1omega alpha = zero n, alpha = FS n.
    + +
    +Ltac T1_inversion H :=
    +  match type of H with lt _ zerodestruct (not_lt_zero H)
    +                  | Nat.lt _ 0 ⇒ destruct (Nat.nlt_0_r _ H)
    +                  | Nat.lt ?x ?xdestruct (Nat.lt_irrefl _ H)
    +                  | lt ?x ?xdestruct (lt_irrefl H)
    +                  | lt (cons _ _ _) (cons _ _ _) ⇒
    +                    destruct (lt_inv H)
    +                  | nf (cons zero ?n ?y) ⇒ let e := fresh "e" in
    +                                             generalize (nf_of_finite H);
    +                                             intros e
    +  end.
    + +
    +Lemma LT_of_finite :
    +   alpha n, alpha t1< FS n alpha = zero
    +                                   p, p < n alpha = FS p.
    + +
    +Lemma nf_omega : nf T1omega.
    + +
    + +
    +Theorem nf_phi0 alpha : nf alpha nf (phi0 alpha).
    + +
    +#[global] Hint Resolve nf_phi0 : T1.
    + +
    +Definition omega_omega := phi0 T1omega.
    + +
    +Lemma nf_omega_omega : nf omega_omega.
    + +
    +Lemma mult_0_a : a, zero × a = zero.
    + +
    +Lemma mult_Sn_add (alpha : T1) n :
    +  nf alpha
    +  alpha × (FS (S n)) = alpha × FS n + alpha.
    + +
    +Lemma cases_for_mult (alpha : T1) :
    +  nf alpha
    +  alpha = zero
    +  ( n : nat, alpha = FS n)
    +  ( a n, a zero alpha = cons a n zero)
    +  ( a n b, a zero b zero alpha = cons a n b).
    + +
    +Lemma L03 alpha n beta p :
    +  alpha zero
    +  (cons alpha n beta × FS p) = cons alpha (p + n × S p) beta.
    + +
    +Lemma L05 a n b c p d :
    +  a zero c zero
    +  (cons a n b × cons c p d) =
    +  cons (a + c) p (cons a n b × d).
    + +
    +Lemma nf_LT_iff :
    +   alpha n beta, nf (cons alpha n beta)
    +                       nf alpha nf beta
    +                        beta t1< phi0 alpha.
    + +
    +Lemma lt_plus_l:
    +   {a b c : T1} {n:nat}, lt a (a + cons b n c).
    + +
    +Lemma lt_plus_r:
    +   {a b c : T1} {n:nat}, ¬ lt (a + cons b n c) a.
    + +
    +Lemma reduce_lt_plus:
    +   a b c: T1,
    +  lt (a+ b) (a + c) lt b c.
    + +
    +Lemma plus_smono_LT_r (alpha:T1) :
    +   beta gamma, nf alpha beta t1< gamma alpha + beta t1< alpha + gamma.
    + +
    +Lemma LT_add (alpha beta : T1): nf alpha nf beta beta zero
    +                                alpha t1< alpha + beta.
    + +
    +Section Proof_of_mult_nf.
    + +
    +  Variable alpha : T1.
    +  Hypothesis Halpha : nf alpha.
    + +
    +  Let P (beta : T1) :=
    +    nf beta nf (alpha × beta)
    +               (alpha zero
    +                 gamma, gamma t1< beta
    +                              alpha × gamma t1< alpha × beta).
    +  Section Induction.
    + +
    +    Variable beta : T1.
    +    Hypothesis Hbeta : nf beta.
    +    Hypothesis IHbeta : delta, delta t1< beta P delta.
    + +
    +    Lemma L1 : alpha = zero P beta.
    + +
    +    Lemma L2 : beta = zero P beta.
    + +
    +    Lemma L3 n p : alpha = FS n beta = FS p P beta.
    + +
    +    Lemma L4 : a n b p, a zero
    +                               alpha = cons a n b beta = FS p
    +                               P beta.
    + +
    +    Lemma L5 a n b c p : a zero c zero
    +                         (cons a n b) × (cons c p zero) =
    +                         cons (a + c) p zero.
    + +
    +    Lemma L6 n c p d : c zero FS n × cons c p d = cons c p (FS n × d).
    + +
    +    Lemma L7 n c p : c zero FS n × cons c p zero = cons c p zero.
    + +
    +    Lemma L8 n c p : alpha = FS n beta = cons c p zero c zero
    +                      P beta.
    + +
    +    Lemma L9 : n c, nf c c zero FS n × c zero.
    + +
    +    Lemma L10 : a n b c, nf c nf (cons a n b)
    +                                a zero c zero
    +                                cons a n b × c zero.
    + +
    +    Lemma L11 n c p d :
    +      alpha = FS n beta = cons c p d c zero
    +      d zero P beta.
    + +
    +    Lemma L12 : a n b c p d , a zero c zero
    +                                     alpha = cons a n b
    +                                     beta = cons c p d
    +                                     P beta.
    + +
    +    Lemma L13 : P beta.
    + +
    +  End Induction.
    + +
    +  Lemma L14 beta : nf beta P beta.
    + +
    +End Proof_of_mult_nf.
    + +
    +Theorem mult_nf alpha beta : nf alpha nf beta
    +                             nf (alpha × beta).
    + +
    +Theorem mult_mono alpha beta gamma : nf alpha alpha zero
    +                                     beta t1< gamma alpha × beta t1< alpha × gamma.
    + +
    +Lemma nf_exp_F alpha n : nf alpha nf (exp_F alpha n).
    + +
    +Lemma exp_F_eq alpha n : nf alpha (exp_F alpha n = alpha ^ n)%t1.
    + +
    +Lemma T1limit_cases : alpha n beta,
    +    nf (cons alpha n beta)
    +    T1limit (cons alpha n beta)
    +    { alpha zero beta = zero} +
    +    {alpha zero T1limit beta }.
    + +
    +Lemma pred_of_succ : beta, nf beta pred (succ beta) = Some beta.
    + +
    +Lemma pred_of_limit : alpha, nf alpha
    +                                    T1limit alpha
    +                                    pred alpha = None.
    + +
    +Definition zero_limit_succ_dec :
    +   alpha, nf alpha
    +                ({alpha = zero} + {T1limit alpha }) +
    +                {beta : T1 | nf beta alpha = succ beta} .
    + +
    +Lemma pred_of_limitR : alpha, nf alpha alpha zero
    +                                     pred alpha = None T1limit alpha.
    + +
    +Lemma pred_LT : alpha beta, nf alpha pred alpha = Some beta
    +                                   beta t1< alpha .
    + +
    +Lemma pred_nf : alpha beta, nf alpha pred alpha = Some beta
    +                                   nf beta.
    + +
    +Lemma T1limit_succ : alpha, nf alpha ¬ T1limit (succ alpha) .
    + +
    +Lemma LT_succ : alpha, nf alpha alpha t1< succ alpha.
    + +
    +Lemma T1limit_not_zero : alpha, nf alpha T1limit alpha
    +                                        alpha zero.
    + +
    +#[global] Hint Resolve T1limit_not_zero : T1.
    + +
    +Lemma T1limit_succ_tail :
    +   alpha n beta, nf beta ¬ T1limit (cons alpha n (succ beta)).
    + +
    +Lemma succ_not_limit : alpha:T1, T1is_succ alpha T1limit alpha = false.
    + +
    +Lemma T1is_succ_def alpha (Halpha : nf alpha) :
    +  T1is_succ alpha {beta | nf beta alpha = succ beta}.
    + +
    +Lemma T1is_succ_iff alpha (Halpha : nf alpha) :
    +  T1is_succ alpha beta : T1, nf beta alpha = succ beta.
    + +
    +Lemma LE_r : alpha beta, alpha t1< beta alpha t1 beta.
    + +
    +Lemma LE_LT_eq_dec :
    +   alpha beta, alpha t1 beta
    +  {alpha t1< beta} + {alpha = beta}.
    + +
    +Lemma LT_eq_LT_dec : alpha beta,
    +    nf alpha nf beta
    +    {alpha t1< beta} + {alpha = beta} + {beta t1< alpha}.
    + +
    +Lemma lt_cons_phi0_inv alpha n beta gamma :
    +  cons alpha n beta t1< phi0 gamma beta t1< phi0 alpha alpha t1< gamma.
    + +
    +Lemma nf_LT_right : alpha n beta beta',
    +    nf (cons alpha n beta)
    +    beta' t1< beta
    +    nf (cons alpha n beta').
    + +
    +Lemma eq_succ_LT : alpha beta, nf beta alpha = succ beta
    +                                      beta t1< alpha.
    + +
    +Lemma eq_succ_lt : alpha beta, nf beta alpha = succ beta
    +                                      lt beta alpha.
    + +
    +Definition strict_lub (s : nat T1) (lambda : T1) :=
    +  ( i, s i t1< lambda)
    +  ( alpha, ( i, s i t1 alpha) lambda t1 alpha).
    + +
    +Definition strict_lub_lub : s l alpha, strict_lub s l
    +                                               ( i, s i t1 alpha)
    +                                               l t1 alpha.
    + +
    +Definition strict_lub_maj : s l , strict_lub s l
    +                                           i, s i t1< l.
    + +
    +Lemma strict_lub_unique : s l l', strict_lub s l
    +                                         strict_lub s l'
    +                                         l = l'.
    + +
    +Lemma strict_lub_T1limit : (alpha :T1)(s : nat T1),
    +    nf alpha strict_lub s alpha T1limit alpha.
    + +
    +Lemma lt_one (alpha:T1) : lt alpha one alpha = zero.
    + +
    +Lemma omega_limit : strict_lub T1nat T1omega.
    + +
    +Lemma LT_succ_LT_eq_dec :
    +   alpha beta, nf alpha nf beta
    +                     alpha t1< succ beta {alpha t1< beta} + {alpha = beta}.
    + +
    +Lemma lt_succ_le_2':
    +   a : T1, nf a b : T1, nf b a t1< succ b
    +                                        a t1< b a = b.
    + +
    +Lemma succ_lt_limit alpha (Halpha : nf alpha)(H : T1limit alpha ):
    +   beta, beta t1< alpha succ beta t1< alpha.
    + +
    +Lemma succ_cons alpha n beta : beta zero nf (cons alpha n beta)
    +                                succ (cons alpha n beta) =
    +                                cons alpha n (succ beta).
    + +
    +Lemma succ_cons' alpha i beta : alpha zero nf (cons alpha i beta)
    +                               succ (cons alpha i beta) =
    +                               cons alpha i (succ beta).
    + +
    +Lemma succ_rw1 : alpha n beta, alpha zero
    +                                      succ (cons alpha n beta)=
    +                                      cons alpha n (succ beta).
    + +
    +Lemma plus_cons_cons_eqn a n b a' n' b':
    +  (cons a n b) + (cons a' n' b') =
    +  match compare a a' with
    +  | Eqcons a (S (n + n')) b'
    +  | Ltcons a' n' b'
    +  | Gtcons a n (T1add b (cons a' n' b'))
    +  end.
    + +
    +Lemma T1addA (x y z :T1) : x + (y + z) = (x + y) + z.
    + +
    +#[global] Instance T1addAssoc : Assoc eq T1add.
    + +
    +Section Proof_of_dist.
    + +
    +   Let P (b: T1) :=
    +      a c, nf a nf b nf c
    +    a × (b + c) = a × b + a × c.
    + +
    + +
    + #[local] Ltac rewrite_ind Hind b :=
    +    pose proof (Hind b) as ->; [ | try apply tail_LT_cons| | | ];
    +    eauto with T1.
    + +
    Lemma L0 : p, P p.
    + +
    +  Theorem mult_plus_distr_l (a b c: T1) :
    +    nf a nf b nf c
    +    a × (b + c) = a × b + a × c.
    + +
    +End Proof_of_dist.
    + +
    +
    + +
    +

    An abstract syntax for ordinals in Cantor normal form

    + +
    +
    + +
    +Declare Scope ppT1_scope.
    +Delimit Scope ppT1_scope with pT1.
    + +
    +Inductive ppT1 :=
    +| PP_fin (_ : nat)
    +| PP_add (_ _ : ppT1)
    +| PP_mult (_ : ppT1) (_ : nat)
    +| PP_exp (_ _ : ppT1)
    +| PP_omega.
    + +
    +Coercion PP_fin : nat >-> ppT1.
    + +
    +Notation "alpha + beta" := (PP_add alpha beta) : ppT1_scope.
    + +
    +Notation "alpha * n" := (PP_mult alpha n) : ppT1_scope.
    + +
    +Notation "alpha ^ beta" := (PP_exp alpha beta) : ppT1_scope.
    + +
    +Notation ω := PP_omega.
    + +
    +Check (ω ^ ω × 2 + 1)%pT1.
    + +
    + +
    +Fixpoint pp0 (alpha : T1) : ppT1 :=
    +  match alpha with
    +  | zeroPP_fin 0
    +  | cons zero n zeroPP_fin (S n)
    +  | cons one 0 zeroω
    +  | cons one 0 beta ⇒ (ω + pp0 beta)%pT1
    +  | cons one n zero ⇒ (ω × (S n))%pT1
    +  | cons one n beta ⇒ (ω × (S n) + pp0 beta)%pT1
    +  | cons alpha 0 zero ⇒ (ω ^ pp0 alpha)%pT1
    +  | cons alpha 0 beta ⇒ (ω ^ pp0 alpha + pp0 beta)%pT1
    +  | cons alpha n zero ⇒ (ω ^ pp0 alpha × (S n))%pT1
    +  | cons alpha n beta ⇒ (ω ^ pp0 alpha × (S n) + pp0 beta)%pT1
    +  end.
    + +
    +Fixpoint eval_pp (e : ppT1) : T1 :=
    +  match e with
    +    PP_fin 0 ⇒ zero
    +  | PP_fin nn
    +  | PP_add e f ⇒ ( (eval_pp e) + (eval_pp f))%t1
    +  | PP_mult e n ⇒ ( (eval_pp e) × (S n))%t1
    +  | PP_exp e f ⇒ ((eval_pp e) ^ (eval_pp f))%t1
    +  | ωT1omega
    +  end.
    + +
    + +
    + +
    + +
    +Fixpoint reassoc (exp : ppT1) (fuel :nat) : ppT1 :=
    +  match exp, fuel with
    +  | exp, 0 ⇒ exp
    +  | PP_add e (PP_add f g), S n
    +    reassoc (PP_add (PP_add (reassoc e n) (reassoc f n))
    +                   (reassoc g n)) n
    +  | PP_add e f , S nPP_add (reassoc e n) (reassoc f n)
    +  | PP_mult e i , S nPP_mult (reassoc e n) i
    +  | PP_exp e f , S nPP_exp (reassoc e n) (reassoc f n)
    +  | e, _e
    +  end.
    + +
    +Fixpoint pp_size (exp : ppT1) : nat :=
    +  match exp with
    +    PP_add e f | PP_exp e f ⇒ (S ((pp_size e) + (pp_size f)))%nat
    +  | PP_mult e _S (pp_size e)
    +  | _ ⇒ 1%nat
    +  end.
    + +
    +Definition pp (e: T1) : ppT1 := let t := pp0 e in reassoc t (pp_size t).
    + +
    + +
    + +
    + +
    +Eval simpl in fun n:nat
    +                 (pp (T1omega ^ (T1omega ^ T1omega × n + T1omega ^ n + T1omega + 1)))%t1 .
    + +
    +Ltac is_closed alpha :=
    +  match alpha with
    +    zeroidtac
    +  | 0 ⇒ idtac
    +  | S ?nis_closed n
    +  |cons ?a ?n ?bis_closed a ; is_closed n ; is_closed b
    +  | ?otherfail
    +  end.
    + +
    +Ltac pp0tac alpha :=
    +  match alpha with
    +  | zeroexact 0
    +  | cons zero ?n zeroexact (S n)
    +  | cons one 0 zeroexact T1omega
    +  | cons one 0 ?betaexact (T1omega + ltac :(pp0tac beta))%pT1
    +  | cons one ?n zeroexact (T1omega × (S n))%pT1
    +  | cons one ?n ?betaexact (T1omega × (S n) + ltac: (pp0tac beta))%pT1
    +  | cons ?alpha 0 zeroexact (T1omega ^ ltac: (pp0tac alpha))%pT1
    +  | cons ?alpha 0 ?beta
    +    exact (T1omega ^ ltac :(pp0tac alpha) + ltac: (pp0tac beta))%pT1
    +  | cons ?alpha ?n zero
    +    exact (T1omega ^ ltac: (pp0tac alpha) × (S n))%pT1
    +  | cons ?alpha ?n ?beta
    +    exact (T1omega ^ ltac: (pp0tac alpha) × (S n) +
    +                   ltac : (pp0tac beta)%pT1)
    +  end.
    + +
    +Ltac pptac term :=
    +  let t := eval cbn in term
    +    in tryif is_closed t then exact (pp t)
    +      else exact term.
    + +
    +Section essai.
    +  Variable n : nat.
    + +
    + +
    + +
    +End essai.
    + +
    +Check (phi0 (phi0 (FS 6))).
    + +
    + +
    + +
    + +
    +
    + +
    +

    Examples

    + +
    +
    + +
    + +
    + +
    +Example Ex1 : 42 + T1omega = T1omega.
    + +
    +Example Ex2 : T1omega t1< T1omega + 42.
    + +
    +Example Ex3 : 5 × T1omega = T1omega.
    + +
    +Example Ex4 : T1omega t1< T1omega × 5.
    + +
    + +
    +Example Ex5 : T1limit (T1omega ^ (T1omega + 5)).
    + +
    + +
    + +
    +Example alpha_0 : T1 :=
    +  cons (cons (cons zero 0 zero)
    +               0
    +               zero)
    +        0
    +        (cons (cons zero 2 zero)
    +               4
    +               (cons zero 1 zero)).
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    +Example alpha_0_eq : alpha_0 = phi0 T1omega +
    +                               phi0 3 × 5 + 2.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Gamma0.Gamma0.html b/theories/html/hydras.Gamma0.Gamma0.html new file mode 100644 index 00000000..652b0c1c --- /dev/null +++ b/theories/html/hydras.Gamma0.Gamma0.html @@ -0,0 +1,1661 @@ + + + + + +hydras.Gamma0.Gamma0 + + + + +
    + + + +
    + +

    Library hydras.Gamma0.Gamma0

    + +
    +
    + +
    +

    A notation system for ordinals less than Gamma0

    + +
    + + Pierre Casteran + LaBRI, Université Bordeaux 1, and LaBRI (CNRS, UMR 5800) + with a contribution by Evelyne Contejean + +
    +
    + +
    +From Coq Require Import Arith List Lia Compare_dec Relations
    +     Wellfounded RelationClasses.
    + +
    +From hydras Require Import Epsilon0.
    +From hydras Require Import More_Arith Restriction.
    +From hydras Require Import ON_Generic.
    +From hydras Require Import rpo.term rpo.rpo.
    +From hydras Require Import T2.
    +From hydras Require Import Compat815.
    +Import Datatypes.
    + +
    +Set Implicit Arguments.
    + +
    +Lemma nf_a : a b n c, nf (gcons a b n c) nf a.
    + +
    +Lemma nf_b : a b n c, nf (gcons a b n c) nf b.
    + +
    +Lemma nf_c : a b n c, nf (gcons a b n c) nf c.
    + +
    +#[global] Hint Resolve nf_a nf_b nf_c : T2.
    + +
    +Ltac nf_inv := ((eapply nf_a; eassumption)||
    +                (eapply nf_b; eassumption)||
    +                (eapply nf_c; eassumption)).
    + +
    +Lemma zero_lt_succ : alpha, zero t2< succ alpha.
    + +
    +Lemma not_lt_zero : alpha, ¬ alpha t2< zero.
    + +
    +Lemma lt_irr : alpha, ¬ alpha t2< alpha.
    + +
    +Ltac lt_clean :=
    +  try (match goal with
    +         [ineq : lt ?a zero |- _ ] ⇒ case (not_lt_zero ineq);auto
    +       |[ineq : Peano.lt ?a 0 |- _ ] ⇒ case (Nat.nlt_0_r a);auto
    +       |[ref : lt ?a ?a |- _] ⇒ case (lt_irr ref);auto
    +       |[ref : Peano.lt ?a ?a |- _] ⇒ case (lt_irr ref);auto
    +       end).
    + +
    +Lemma le_zero_alpha : alpha, zero t2 alpha.
    + +
    +Lemma psi_le_cons : alpha beta n gamma,
    +    [alpha, beta] t2 gcons alpha beta n gamma.
    + +
    +#[global] Hint Resolve psi_le_cons le_zero_alpha: T2.
    + +
    +Lemma le_psi_term_le alpha beta: alpha t2 beta
    +                                          psi_term alpha t2 psi_term beta.
    + +
    +Lemma le_inv_nc : a b n c n' c',
    +    gcons a b n c t2 gcons a b n' c' (n<n')%nat n=n' c t2 c'.
    + +
    +Lemma lt_than_psi : a b n c a' b',
    +    gcons a b n c t2< [a',b']
    +    [a,b]t2<[a',b'].
    + +
    +
    + +
    + in order to establish trichotomy, we first use a measure on pair of + terms +
    +
    + +
    +Section lemmas_on_length.
    +  Open Scope nat_scope.
    + +
    +  Lemma tricho_lt_2 : a1 a2 b1 b2 n1 n2 r1 r2,
    +      t2_length a1 + t2_length a2 <
    +      t2_length (gcons a1 b1 n1 r1) +
    +      t2_length (gcons a2 b2 n2 r2).
    + +
    +  Lemma tricho_lt_2' : a1 a2 b1 b2 n1 n2 r1 r2,
    +      t2_length b1 + t2_length (gcons a2 b2 0 zero) <
    +      t2_length (gcons a1 b1 n1 r1) +
    +      t2_length (gcons a2 b2 n2 r2).
    + +
    +  Lemma tricho_lt_3 : a1 a2 b1 b2 n1 n2 r1 r2,
    +      t2_length b1 + t2_length b2 <
    +      t2_length (gcons a1 b1 n1 r1) + t2_length (gcons a2 b2 n2 r2).
    + +
    +  Lemma tricho_lt_4 : a1 a2 b1 b2 n1 n2 r1 r2,
    +      t2_length a2 + t2_length a1 <
    +      t2_length (gcons a1 b1 n1 r1) +
    +      t2_length (gcons a2 b2 n2 r2).
    + +
    +  Lemma tricho_lt_4' : a1 a2 b1 b2 n1 n2 c1 c2,
    +      t2_length (gcons a1 b1 0 c1) + t2_length b2 <
    +      t2_length (gcons a1 b1 n1 c1) +
    +      t2_length (gcons a2 b2 n2 c2).
    + +
    +  Lemma tricho_lt_5 : a1 a2 b1 n1 n2 c1 c2,
    +      t2_length a2 + t2_length a1 <
    +      t2_length (gcons a1 b1 n1 c1) +
    +      t2_length (gcons a2 (gcons a1 b1 0 zero) n2 c2).
    + +
    +  Lemma tricho_lt_7 : a1 b1 n1 c1 c2,
    +      t2_length c1 + t2_length c2 <
    +      t2_length (gcons a1 b1 n1 c1) +
    +      t2_length (gcons a1 b1 n1 c2).
    + +
    +End lemmas_on_length.
    + +
    +#[global] Hint Resolve tricho_lt_7 tricho_lt_5 tricho_lt_4 tricho_lt_4' tricho_lt_3 tricho_lt_2 tricho_lt_2 : T2.
    + +
    +Open Scope T2_scope.
    + +
    + +
    +Lemma tricho_aux (l: nat) : t t': T2,
    +      t2_length t + t2_length t' < l
    +      {t t2< t'} + {t = t'} + {t' t2< t}. +
    +Definition lt_eq_lt_dec (t t': T2) : {t t2< t'}+{t = t'}+{t' t2< t}.
    + +
    + +
    +Definition lt_ge_dec : t t', {t t2< t'}+{t' t2 t}.
    +Defined.
    + +
    + +
    +#[ global ] Instance compare_T2 : Compare T2 :=
    +fun (t1 t2 : T2) ⇒
    +  match lt_eq_lt_dec t1 t2 with
    +  | inleft (left _) ⇒ Lt
    +  | inleft (right _) ⇒ Eq
    +  | inright _Gt
    +  end.
    + +
    + +
    + +
    +Fixpoint nfb (alpha : T2) : bool :=
    +  match alpha with
    +    zerotrue
    +  | gcons a b n zeroandb (nfb a) (nfb b)
    +  | gcons a b n ((gcons a' b' n' c') as c) ⇒
    +    match compare [a', b'] [a, b] with
    +           Ltandb (nfb a) (andb (nfb b) (nfb c))
    +           | _false
    +           end
    +end.
    + +
    + +
    + +
    + +
    + +
    +Ltac tricho t t' Hname := case (lt_eq_lt_dec t t');
    +                          [intros [Hname|Hname] | intro Hname].
    +Tactic Notation "tricho" constr(t) constr(t') ident(Hname) := tricho t t' Hname.
    + +
    +Section trans_proof.
    +  Variables a1 b1 c1 a2 b2 c2 a3 b3 c3:T2.
    +  Variables n1 n2 n3:nat.
    + +
    +  Hypothesis H12 : gcons a1 b1 n1 c1 t2< gcons a2 b2 n2 c2.
    +  Hypothesis H23 : gcons a2 b2 n2 c2 t2< gcons a3 b3 n3 c3.
    + +
    +  Hypothesis induc : t t' t'',
    +      (t2_length t + t2_length t' +
    +       t2_length t'' <
    +       t2_length (gcons a1 b1 n1 c1) +
    +       t2_length (gcons a2 b2 n2 c2) +
    +       t2_length (gcons a3 b3 n3 c3))%nat
    +      lt t t' lt t' t'' lt t t''.
    + +
    +  Lemma trans_aux : gcons a1 b1 n1 c1 t2< gcons a3 b3 n3 c3.
    + +
    +End trans_proof.
    + +
    +Lemma lt_trans0 : n,
    +     t1 t2 t3,
    +      (t2_length t1 + t2_length t2 + t2_length t3 < n)%nat
    +      lt t1 t2 lt t2 t3 lt t1 t3.
    + +
    +Theorem lt_trans :
    +   t1 t2 t3, t1 t2< t2 t2 t2< t3 t1 t2< t3.
    + +
    +Theorem le_lt_trans alpha beta gamma: alpha t2 beta
    +                                       beta t2< gamma
    +                                       alpha t2< gamma.
    + +
    +Theorem lt_le_trans alpha beta gamma :
    +  alpha t2< beta beta t2 gamma alpha t2< gamma.
    + +
    +Theorem le_trans : alpha beta gamma, alpha t2 beta
    +                                            beta t2 gamma
    +                                            alpha t2 gamma.
    + +
    +Lemma psi_lt_head : alpha beta n gamma alpha' beta' n' gamma',
    +    [alpha, beta] t2< [alpha', beta']
    +    gcons alpha beta n gamma t2< gcons alpha' beta' n' gamma'.
    + +
    +Lemma nf_inv_tail : a b n c , nf (gcons a b n c)
    +                                     c t2< [a,b].
    + +
    +Theorem lt_beta_psi : beta alpha, beta t2< [alpha, beta].
    + +
    +Lemma lt_beta_cons : alpha beta n gamma,
    +    beta t2< gcons alpha beta n gamma.
    + +
    +Theorem lt_alpha_psi : alpha beta, alpha t2< [alpha, beta].
    + +
    +Lemma lt_alpha_cons : alpha beta n gamma,
    +    alpha t2< gcons alpha beta n gamma.
    + +
    +#[global] Hint Resolve lt_beta_cons lt_alpha_cons : T2.
    + +
    +Lemma le_cons_tail alpha beta n gamma gamma':
    +  gamma t2 gamma'
    +  gcons alpha beta n gamma t2 gcons alpha beta n gamma'.
    + +
    +
    + +
    +

    terms in normal form

    + +
    +
    + +
    +Lemma nf_fin_inv : gamma n, nf (gcons zero zero n gamma)
    +                                      gamma = zero.
    + +
    +Lemma lt_tail0: c, nf c c zero gtail c t2< c.
    + +
    +Lemma lt_tail: a b n c, nf (gcons a b n c) c t2< gcons a b n c.
    + +
    +Lemma le_one_cons : a b n c, one t2 gcons a b n c.
    + +
    +#[global] Hint Resolve le_one_cons : T2.
    + +
    +Lemma fin_lt_omega : n, fin n t2< omega.
    + +
    +Lemma omega_lt_epsilon0 : omega t2< epsilon0.
    + +
    +Lemma omega_lt_epsilon : alpha, omega t2< epsilon alpha.
    + +
    +Lemma lt_one_inv : alpha, alpha t2< one alpha = zero.
    + +
    +Lemma lt_cons_omega_inv : alpha beta n gamma,
    +    gcons alpha beta n gamma t2< omega
    +    nf (gcons alpha beta n gamma)
    +    alpha = zero beta = zero gamma = zero.
    + +
    +Lemma lt_omega_inv alpha : nf alpha alpha t2< omega
    +                            {n:nat | alpha = fin n}.
    + +
    +Lemma lt_omega_is_fin alpha: nf alpha alpha t2< omega
    +                                         is_finite alpha.
    + +
    +Theorem lt_compat (n p : nat): fin n t2< fin p
    +                                (n < p)%nat.
    + +
    +Theorem lt_compatR (n p : nat): (n <p)%nat
    +                                 fin n t2< fin p.
    + +
    +Lemma finite_is_finite : n, is_finite (fin n).
    + +
    +Lemma is_finite_finite : alpha, is_finite alpha
    +                                       {n : nat | alpha = fin n}.
    + +
    +Lemma compare_reflect alpha beta : match compare alpha beta with
    +                                     | Ltalpha t2< beta
    +                                     | Eqalpha = beta
    +                                     | Gtbeta t2< alpha
    +                                     end.
    + +
    +Lemma compare_correct alpha beta :
    +  CompareSpec (alpha = beta) (lt alpha beta) (lt beta alpha)
    +              (compare alpha beta).
    + +
    +Lemma compare_Lt : alpha beta, compare alpha beta = Lt
    +                                         alpha t2< beta.
    + +
    +
    + +
    + Compare with the proof of T2.Ex6 +
    +
    + +
    +Example Ex6 : gcons 1 0 12 omega t2< [0,[2,1]].
    + +
    +Lemma compare_Eq : (alpha beta : T2), compare alpha beta = Eq
    +                                         alpha = beta.
    + +
    +Lemma compare_Gt : alpha beta, compare alpha beta = Gt
    +                                         beta t2< alpha.
    + +
    +Arguments compare_Gt [alpha beta].
    +Arguments compare_Lt [alpha beta].
    +Arguments compare_Eq [alpha beta].
    + +
    +#[global] Hint Resolve compare_Eq compare_Lt compare_Gt : T2.
    + +
    +Lemma compare_rw_lt alpha beta : alpha t2< beta
    +                                  compare alpha beta = Lt.
    + +
    +Lemma compare_rw_eq (alpha beta : T2): alpha = beta
    +                                  compare alpha beta = Eq.
    + +
    +Lemma compare_rw_gt alpha beta: beta t2< alpha
    +                                  compare alpha beta = Gt.
    + +
    +
    + +
    + plus is defined here, because it requires decidable comparison +
    +
    + +
    + +
    +Fixpoint plus (t1 t2 : T2) {struct t1} : T2 :=
    +  match t1,t2 with
    +  | zero, yy
    +  | x, zerox
    +  | gcons a b n c, gcons a' b' n' c'
    +     (match compare (gcons a b 0 zero)
    +                    (gcons a' b' 0 zero) with
    +      | Ltgcons a' b' n' c'
    +      | Gtgcons a b n (c + gcons a' b' n' c')
    +      | Eqgcons a b (S(n+n')) c'
    +      end)
    +  end
    +where "alpha + beta" := (plus alpha beta): T2_scope.
    + +
    +Example Ex7 : 3 + epsilon0 = epsilon0. +
    + +
    +Lemma plus_alpha_0 (alpha: T2): alpha + zero = alpha.
    + +
    +Lemma lt_succ (alpha: T2): alpha t2< succ alpha.
    + +
    +Theorem lt_succ_le alpha : beta, alpha t2< beta nf beta
    +                                  succ alpha t2 beta.
    + +
    +Lemma succ_lt_le : a b, nf a nf b a t2< succ b a t2 b.
    + +
    +Lemma succ_of_cons : a b n c, zero t2< a zero t2< b
    +                                     succ (gcons a b n c)= gcons a b n (succ c).
    + +
    +
    + +
    +

    Well-foundedness (with rpo) (Evelyne Contejean)

    + +
    +
    + +
    +Inductive subterm : T2 T2 Prop :=
    +| subterm_a : a b n c, subterm a (gcons a b n c)
    +| subterm_b : a b n c, subterm b (gcons a b n c)
    +| subterm_c : a b n c, subterm c (gcons a b n c)
    +| subterm_trans : t t1 t2, subterm t t1 subterm t1 t2
    +                                  subterm t t2.
    + +
    +Lemma nf_subterm alpha beta : subterm alpha beta
    +                              nf beta nf alpha.
    + +
    +Theorem subterm_lt alpha beta: subterm alpha beta nf beta
    +                                alpha t2< beta.
    + +
    +Ltac subtermtac :=
    +  match goal with
    +    [|- subterm ?t1 (gcons ?t1 ?t2 ?n ?t3)] ⇒
    +    constructor 1
    +  | [|- subterm ?t2 (gcons ?t1 ?t2 ?n ?t3)] ⇒
    +    constructor 2
    +  | [|- subterm ?t3 (gcons ?t1 ?t2 ?n ?t3)] ⇒
    +    constructor 3
    +  | [|- subterm ?t4 (gcons ?t1 ?t2 ?n ?t3)] ⇒
    +    ((constructor 4 with t1; subtermtac) ||
    +     (constructor 4 with t2; subtermtac) ||
    +     (constructor 4 with t3; subtermtac))
    +  end.
    + +
    +Module Gamma0_sig <: Signature.
    + +
    +  Inductive symb0 : Set := nat_0 | nat_S | ord_zero | ord_psi | ord_cons.
    + +
    +  Definition symb := symb0.
    + +
    +  Lemma eq_symbol_dec : f1 f2 : symb, {f1 = f2} + {f1 f2}.
    + +
    +
    + +
    +The arity of a symbol contains also the information about built-in theories as in CiME +
    +
    + +
    + +
    +  Inductive arity_type : Set :=
    +  | AC : arity_type
    +  | C : arity_type
    +  | Free : nat arity_type.
    + +
    +  Definition arity : symb arity_type :=
    +    fun fmatch f with
    +             | nat_0Free 0
    +             | ord_zeroFree 0
    +             | nat_SFree 1
    +             | ord_psiFree 2
    +             | ord_consFree 3
    +             end.
    + +
    +End Gamma0_sig.
    + +
    +
    + +
    +

    Module Type Variables.

    + + There are almost no assumptions, except a decidable equality. +
    +
    + +
    +Module Vars <: Variables.
    + +
    +  Inductive empty_set : Set := .
    +  Definition var := empty_set.
    + +
    +  Lemma eq_variable_dec : v1 v2 : var, {v1 = v2} + {v1 v2}.
    + +
    +End Vars.
    + +
    +Module Gamma0_prec <: Precedence.
    + +
    +  Definition A : Set := Gamma0_sig.symb.
    +  Import Gamma0_sig.
    + +
    +  Definition prec : relation A :=
    +    fun f gmatch f, g with
    +               | nat_0, nat_STrue
    +               | nat_0, ord_zeroTrue
    +               | nat_0, ord_consTrue
    +               | nat_0, ord_psiTrue
    +               | ord_zero, nat_STrue
    +               | ord_zero, ord_consTrue
    +               | ord_zero, ord_psiTrue
    +               | nat_S, ord_consTrue
    +               | nat_S, ord_psiTrue
    +               | ord_cons, ord_psiTrue
    +               | _, _False
    +               end.
    + +
    +  Inductive status_type : Set :=
    +  | Lex : status_type
    +  | Mul : status_type.
    + +
    +  Definition status : A status_type := fun fLex.
    + +
    +  Lemma prec_dec : a1 a2 : A, {prec a1 a2} + {¬ prec a1 a2}.
    + +
    +  Lemma prec_antisym : s, prec s s False.
    + +
    +  Lemma prec_transitive : transitive prec.
    + +
    +End Gamma0_prec.
    + +
    +Module Gamma0_alg <: Term := term.Make (Gamma0_sig) (Vars).
    +Module Gamma0_rpo <: RPO := rpo.Make (Gamma0_alg) (Gamma0_prec).
    + +
    +Import Gamma0_alg Gamma0_rpo Gamma0_sig.
    + +
    +Fixpoint nat_2_term (n:nat) : term :=
    +  match n with 0 ⇒ (Term nat_0 nil)
    +          | S pTerm nat_S ((nat_2_term p)::nil)
    +  end.
    + +
    +
    + +
    +

    Every (representation of a) natural number is less than

    + + a non zero ordinal +
    +
    + +
    +Lemma nat_lt_cons : (n:nat) t p c ,
    +    rpo (nat_2_term n)
    +        (Term ord_cons (t::p::c::nil)).
    + +
    +Lemma nat_lt_psi : (n:nat) a b, rpo (nat_2_term n)
    +                                           (Term ord_psi (a::b::nil)).
    + +
    +Theorem rpo_trans : t t1 t2, rpo t t1 rpo t1 t2 rpo t t2.
    + +
    +Fixpoint T2_2_term (a:T2) : term :=
    +  match a with
    +    zeroTerm ord_zero nil
    +  |gcons a b 0 zeroTerm ord_psi (T2_2_term a :: T2_2_term b ::nil)
    +  |gcons a b n c
    +   Term ord_cons (Term ord_psi
    +                       (T2_2_term a :: T2_2_term b ::nil) ::nat_2_term n ::
    +                       T2_2_term c::nil)
    +  end.
    + +
    +Fixpoint T2_size (o:T2):nat :=
    +  match o with zero ⇒ 0
    +          | gcons a b n cS (T2_size a + T2_size b + n + T2_size c)%nat
    +  end.
    + +
    +Lemma T2_size1 : a b n c, (T2_size zero < T2_size (gcons a b n c))%nat.
    + +
    +Lemma T2_size2 : a b n c , (T2_size a < T2_size (gcons a b n c))%nat.
    + +
    +Lemma T2_size3 : a b n c , (T2_size b < T2_size (gcons a b n c))%nat.
    + +
    +Lemma T2_size4 : a b n c , (T2_size c < T2_size (gcons a b n c))%nat.
    + +
    +#[global] Hint Resolve T2_size1 T2_size2 T2_size3 T2_size4 : T2.
    + +
    +
    + +
    +let us recall subterm properties on T2 +
    +
    + +
    +Lemma lt_subterm1 : a a' n' b' c', a t2< a'
    +                                            a t2< gcons a' b' n' c'.
    + +
    +#[global] Hint Resolve nat_lt_cons lt_subterm1 : T2.
    + +
    +Lemma nat_2_term_mono : n n', (n < n')%nat
    +                                     rpo (nat_2_term n) (nat_2_term n').
    + +
    +Lemma T2_size_psi : a b n c ,
    +    (T2_size [a,b] T2_size (gcons a b n c))%nat.
    + +
    + +
    +Lemma rpo_2_2 : ta1 ta2 tb1 tb2 ,
    +    rpo ta1 ta2
    +    rpo tb1 (Term ord_psi (ta2:: tb2::nil))
    +    rpo (Term ord_psi (ta1:: tb1 ::nil))
    +        (Term ord_psi (ta2:: tb2 ::nil)).
    + +
    +Lemma rpo_2_3 : ta1 ta2 tb1 tb2 n1 tc1,
    +    rpo ta1 ta2
    +    rpo tb1 (Term ord_psi (ta2:: tb2::nil))
    +    rpo tc1 (Term ord_psi (ta1:: tb1::nil))
    +    rpo (Term ord_cons ((Term ord_psi (ta1:: tb1 ::nil))
    +                          ::(nat_2_term n1)::tc1::nil))
    +        (Term ord_psi (ta2:: tb2 ::nil)).
    + +
    +Lemma rpo_2_1 : ta1 ta2 tb1 tb2 n1 n2 tc1 tc2,
    +    rpo ta1 ta2
    +    rpo tb1 (Term ord_psi (ta2:: tb2::nil))
    +    rpo tc1 (Term ord_psi (ta1:: tb1::nil))
    +    rpo (Term ord_cons
    +              ((Term ord_psi (ta1:: tb1 ::nil))::(nat_2_term n1) ::tc1::nil))
    +        (Term ord_cons ((Term ord_psi (ta2:: tb2 ::nil))
    +                          ::(nat_2_term n2) ::tc2::nil)).
    + +
    +Lemma rpo_2_4 : ta1 ta2 tb1 tb2 n2 tc2,
    +    rpo ta1 ta2
    +    rpo tb1 (Term ord_psi (ta2:: tb2::nil))
    +    rpo (Term ord_psi (ta1:: tb1 ::nil))
    +        (Term ord_cons
    +              ((Term ord_psi
    +                     (ta2:: tb2 ::nil)):: (nat_2_term n2) ::tc2::nil)).
    + +
    +Lemma rpo_3_2 : ta1 tb1 tb2 ,
    +    rpo tb1 tb2
    +    rpo (Term ord_psi (ta1:: tb1 ::nil))
    +        (Term ord_psi (ta1:: tb2 ::nil)).
    + +
    +Lemma rpo_3_3 : ta1 tb1 tb2 n1 tc1,
    +    rpo tb1 tb2
    +    rpo tc1 (Term ord_psi (ta1:: tb1 ::nil))
    +    rpo (Term ord_cons
    +              ((Term ord_psi (ta1:: tb1 ::nil))::(nat_2_term n1) ::tc1::nil))
    +        (Term ord_psi (ta1:: tb2 ::nil)).
    + +
    +Lemma rpo_3_1 : ta1 tb1 tb2 n1 n2 tc1 tc2,
    +    rpo tb1 tb2
    +    rpo tc1 (Term ord_psi (ta1:: tb1::nil))
    +    rpo (Term ord_cons
    +              ((Term ord_psi (ta1:: tb1 ::nil))::(nat_2_term n1) ::tc1::nil))
    +        (Term ord_cons
    +              ((Term ord_psi (ta1:: tb2 ::nil))::(nat_2_term n2) ::tc2::nil)).
    + +
    +Lemma rpo_3_4 : ta1 tb1 tb2 n2 tc2,
    +    rpo tb1 tb2
    +    rpo (Term ord_psi (ta1:: tb1 ::nil))
    +        (Term ord_cons
    +              ((Term ord_psi (ta1:: tb2 ::nil))::
    +                                               (nat_2_term n2) ::tc2::nil)).
    + +
    +Lemma rpo_4_2 : ta1 ta2 tb1 tb2 ,
    +    rpo (Term ord_psi (ta1:: tb1 ::nil)) tb2
    +    rpo (Term ord_psi (ta1:: tb1 ::nil))
    +        (Term ord_psi (ta2:: tb2 ::nil)).
    + +
    +Lemma rpo_4_3 : ta1 ta2 tb1 tb2 n1 tc1,
    +    rpo (Term ord_psi (ta1:: tb1 ::nil)) tb2
    +    rpo tc1 (Term ord_psi (ta1:: tb1 ::nil))
    +    rpo (Term ord_cons
    +              ((Term ord_psi (ta1:: tb1 ::nil))::
    +                                               (nat_2_term n1) ::tc1::nil))
    +        (Term ord_psi (ta2:: tb2 ::nil)).
    + +
    +Lemma rpo_4_1 : ta1 ta2 tb1 tb2 n1 n2 tc1 tc2,
    +    rpo (Term ord_psi (ta1:: tb1 ::nil)) tb2
    +    rpo tc1 (Term ord_psi (ta1:: tb1 ::nil))
    +    rpo
    +      (Term ord_cons
    +            ((Term ord_psi (ta1:: tb1 ::nil))::
    +                                             (nat_2_term n1) ::tc1::nil))
    +      (Term ord_cons
    +            ((Term ord_psi (ta2:: tb2 ::nil))::
    +                                             (nat_2_term n2) ::tc2::nil)).
    + +
    +Lemma rpo_4_4 : ta1 ta2 tb1 tb2 n2 tc2,
    +    rpo (Term ord_psi (ta1:: tb1 ::nil)) tb2
    +    rpo (Term ord_psi (ta1:: tb1 ::nil))
    +        (Term ord_cons
    +              ((Term ord_psi (ta2:: tb2 ::nil))::
    +                                               (nat_2_term n2) ::tc2::nil)).
    + +
    +Lemma rpo_5_2 :
    +   ta1 ta2 tb1 ,
    +    rpo (Term ord_psi (ta1:: tb1 ::nil))
    +        (Term ord_psi (ta2:: (Term ord_psi (ta1::tb1::nil)) ::nil)).
    + +
    +Lemma rpo_5_3 : ta1 ta2 tb1 n1 tc1,
    +    rpo tc1 (Term ord_psi (ta1:: tb1 ::nil))
    +    rpo
    +      (Term ord_cons
    +            ((Term ord_psi (ta1:: tb1 ::nil))::
    +                                             (nat_2_term n1) ::tc1::nil))
    +      (Term ord_psi (ta2:: (Term ord_psi (ta1:: tb1 ::nil)) ::nil)).
    + +
    +Lemma rpo_5_1 : ta1 ta2 tb1 n1 n2 tc1 tc2,
    +    rpo tc1 (Term ord_psi (ta1:: tb1 ::nil))
    +    rpo
    +      (Term ord_cons
    +            ((Term ord_psi (ta1:: tb1 ::nil))::
    +                                             (nat_2_term n1) ::tc1::nil))
    +      (Term ord_cons
    +            ((Term ord_psi (ta2::
    +                               (Term ord_psi (ta1:: tb1 ::nil))
    +                               ::nil))::
    +                                      (nat_2_term n2) ::tc2::nil)).
    + +
    +Lemma rpo_5_4 : ta1 ta2 tb1 n2 tc2,
    +    rpo (Term ord_psi (ta1:: tb1 ::nil))
    +        (Term ord_cons
    +              ((Term ord_psi (ta2::
    +                                 (Term ord_psi (ta1:: tb1 ::nil))
    +                                 ::nil))::
    +                                        (nat_2_term n2) ::tc2::nil)).
    + +
    +Lemma rpo_6_1 : ta1 tb1 n1 n2 tc1 tc2,
    +    rpo tc1 (Term ord_psi (ta1:: tb1 ::nil))
    +    (n1 < n2)%nat
    +    rpo
    +      (Term ord_cons
    +            ((Term ord_psi (ta1:: tb1 ::nil))::
    +                                             (nat_2_term n1) ::tc1::nil))
    +      (Term ord_cons
    +            ((Term ord_psi (ta1:: tb1 ::nil)):: (nat_2_term n2) ::tc2::nil)).
    + +
    +Lemma rpo_6_4 : ta1 tb1 n2 tc2,
    +    (0 < n2)%nat
    +    rpo (Term ord_psi (ta1:: tb1 ::nil))
    +        (Term ord_cons
    +              ((Term ord_psi (ta1:: tb1 ::nil))::
    +                                               (nat_2_term n2) ::tc2::nil)).
    + +
    +Lemma rpo_7_1 : ta1 tb1 n1 tc1 tc2,
    +    rpo tc1 (Term ord_psi (ta1:: tb1 ::nil))
    +    rpo tc1 tc2
    +    rpo (Term ord_cons
    +              ((Term ord_psi (ta1:: tb1 ::nil))::
    +                                               (nat_2_term n1) ::tc1::nil))
    +        (Term ord_cons
    +              ((Term ord_psi (ta1:: tb1 ::nil))::
    +                                               (nat_2_term n1) ::tc2::nil)).
    + +
    +
    + +
    +

    inclusion of the order lt in the rpo

    + +
    +
    + +
    +Section lt_incl_rpo.
    +  Variable s :nat.
    +  Variables (a1 b1 c1 a2 b2 c2:T2)(n1 n2:nat).
    + +
    +  Hypothesis Hsize :
    +    ((T2_size (gcons a1 b1 n1 c1) + T2_size (gcons a2 b2 n2 c2)) = S s)%nat.
    + +
    +  Hypothesis Hrec : o' o, (T2_size o + T2_size o' s)%nat
    +                                   o t2< o' nf o nf o'
    +                                   rpo (T2_2_term o) (T2_2_term o').
    + +
    +  Hypothesis nf1 : nf (gcons a1 b1 n1 c1).
    +  Hypothesis nf2 : nf (gcons a2 b2 n2 c2).
    + +
    +  Remark nf_a1 : nf a1.
    + +
    +  Remark nf_a2 : nf a2.
    + +
    +  Remark nf_b1 : nf b1.
    + +
    +  Remark nf_b2 : nf b2.
    + +
    +  #[local] Hint Resolve nf1 nf2 nf_a1 nf_a2 nf_b1 nf_b2 : T2.
    + +
    +  Remark nf_c1 : nf c1.
    + +
    +  Remark nf_c2 : nf c2.
    + +
    +  #[local] Hint Resolve nf_c1 nf_c2 : T2.
    + +
    +  Hypothesis H : gcons a1 b1 n1 c1 t2< gcons a2 b2 n2 c2.
    + +
    +  Lemma cons_rw : a b n c,
    +      (n=0 c=zero
    +       (T2_2_term (gcons a b n c)=
    +        (Term ord_psi
    +              ((T2_2_term a)::(T2_2_term b)::nil))))
    +      (T2_2_term (gcons a b n c)=
    +       Term ord_cons
    +            ((Term ord_psi ((T2_2_term a)::(T2_2_term b)::nil))
    +               ::(nat_2_term n)::(T2_2_term c)::nil)).
    + +
    + +
    +  Lemma lt_rpo_cons_cons : rpo (T2_2_term (gcons a1 b1 n1 c1))
    +                               (T2_2_term (gcons a2 b2 n2 c2)).
    + +
    +End lt_incl_rpo.
    + +
    +Lemma lt_inc_rpo_0 : n,
    +     o' o, (T2_size o + T2_size o' n)%nat
    +                 o t2< o' nf o nf o'
    +                 rpo (T2_2_term o) (T2_2_term o').
    + +
    +Remark R1 : Acc P.prec nat_0.
    + +
    +#[global] Hint Resolve R1 : T2.
    + +
    +Remark R2 : Acc P.prec ord_zero.
    + +
    +#[global] Hint Resolve R2 : T2.
    + +
    +Remark R3 : Acc P.prec nat_S.
    + +
    +#[global] Hint Resolve R3 : T2.
    + +
    +Remark R4 : Acc P.prec ord_cons.
    + +
    +#[global] Hint Resolve R4 : T2.
    + +
    +Remark R5 : Acc P.prec ord_psi.
    + +
    +#[global] Hint Resolve R5 : T2.
    + +
    +Theorem well_founded_rpo : well_founded rpo.
    + +
    +Section well_founded.
    + +
    +  Let R := restrict nf lt.
    + +
    +  #[local] Hint Unfold restrict R : T2.
    + +
    +  Lemma R_inc_rpo : o o', R o o' rpo (T2_2_term o) (T2_2_term o').
    + +
    + +
    +  Lemma nf_Wf : well_founded_restriction _ nf lt.
    + +
    +End well_founded.
    + +
    +Definition transfinite_induction :
    +   (P:T2 Type),
    +    ( x:T2, nf x
    +                  ( y:T2, nf y y t2< x P y) P x)
    +     a, nf a P a.
    + +
    +Definition transfinite_induction_Q :
    +   (P : T2 Type) (Q : T2 Prop),
    +    ( x:T2, Q x nf x
    +                  ( y:T2, Q y nf y y t2< x P y) P x)
    +     a, nf a Q a P a.
    + +
    +
    + +
    +

    the Veblen function phi

    + +
    + + See Schutte.Critical.phi +
    +
    + +
    + +
    +Definition phi (alpha beta : T2) : T2 :=
    +  match beta with
    +    zero[alpha, beta]
    +  | [b1, b2]
    +    (match compare alpha b1
    +     with Datatypes.Lt[b1, b2 ]
    +     | _[alpha,[b1, b2]]
    + end)
    +  | gcons b1 b2 0 (gcons zero zero n zero) ⇒
    +    (match compare alpha b1
    +     with Datatypes.Lt
    +           [alpha, (gcons b1 b2 0 (fin n))]
    +     | _[alpha, (gcons b1 b2 0 (fin (S n)))]
    +     end)
    +  | any_beta[alpha, any_beta]
    +  end.
    + +
    +Example Ex8: phi 1 (succ epsilon0) = [1, [1,0] + 1]. +
    + +
    +
    + +
    + All epsilons are fixpoints of phi 0 +
    +
    + +
    + +
    + +
    +Theorem epsilon_fxp : beta, phi zero (epsilon beta) =
    +                                   epsilon beta.
    + +
    +Theorem epsilon0_fxp : epsilon0 = phi zero epsilon0.
    + +
    + +
    + +
    + +
    +Theorem phi_of_psi : a b1 b2,
    +    phi a [b1, b2] =
    +    if (lt_ge_dec a b1)
    +    then [b1, b2]
    +    else [a ,[b1, b2]]. +
    +Lemma phi_to_psi : alpha beta,
    +    {alpha' : T2 & {beta' : T2 | phi alpha beta = [alpha', beta']}}.
    + +
    +Lemma phi_principal : alpha beta, ap (phi alpha beta).
    + +
    +Theorem phi_alpha_zero : alpha, phi alpha zero = [alpha, zero].
    + +
    +Theorem phi_of_psi_succ : a b1 b2 n,
    +    phi a (gcons b1 b2 0 (fin (S n))) =
    +    if lt_ge_dec a b1
    +    then [a, (gcons b1 b2 0 (fin n))]
    +    else [a ,(gcons b1 b2 0 (fin (S n)))].
    + +
    +  Lemma phi_cases_aux : P : T2 Type,
    +      P zero
    +      ( b1 b2, nf b1 nf b2 P [b1, b2])
    +      ( b1 b2 n, nf b1 nf b2
    +                       P (gcons b1 b2 0 (fin (S n))))
    +      ( b1 b2 n c, nf (gcons b1 b2 n c)
    +                         omega t2 c (0 < n)%nat
    +                         P (gcons b1 b2 n c))
    +       alpha, nf alpha P alpha.
    + +
    +Theorem phi_cases' :
    +   a b, nf b
    +              {b1 :T2 & {b2:T2 | b = [b1, b2]
    +                                 a t2< b1 phi a b = b}} +
    +              {phi a b = [a, b]} +
    +              {b1 :T2 & {b2:T2 &
    +                            {n: nat | b = gcons b1 b2 0 (fin (S n))
    +                                      a t2< b1
    +                                      phi a b =
    +                                      [a, (gcons b1 b2 0 (fin n))]}}}.
    + +
    +Theorem phi_cases : a b, nf b
    +                                {phi a b = b} +
    +                                {phi a b = [a, b]} +
    +                                {b': T2 | nf b' phi a b = [a, b']
    +                                           succ b' = b}.
    + +
    +Theorem phi_nf : alpha beta, nf alpha
    +                                    nf beta
    +                                    nf (phi alpha beta).
    + +
    +Lemma phi_of_any_cons : alpha beta1 beta2 n gamma,
    +     omega t2 gamma (0 < n)%nat
    +    phi alpha (gcons beta1 beta2 n gamma) =
    +    [alpha, (gcons beta1 beta2 n gamma)].
    + +
    +Lemma phi_fix alpha beta :
    +  phi alpha beta = beta
    +  {beta1 : T2 & {beta2 : T2 | beta = [beta1, beta2]
    +                               alpha t2< beta1}}.
    + +
    +Lemma phi_le : alpha beta alpha' beta',
    +    nf beta
    +    phi alpha beta = [alpha', beta'] alpha t2 alpha'.
    + +
    +Lemma phi_le_ge :
    +   alpha beta, nf alpha nf beta
    +                     {alpha':T2 &
    +                             {beta':T2
    +                             | phi alpha beta = [alpha' ,beta']
    +                               alpha t2 alpha'
    +                               beta' t2 beta}}.
    + +
    +
    + +
    + phi alpha beta is a common fixpoint of all the phi gamma, +for any gamma t2< alpha as specified by Schutte +
    +
    + +
    +Theorem phi_spec1 : alpha beta gamma,
    +    nf alpha nf beta nf gamma
    +    gamma t2< alpha
    +    phi gamma (phi alpha beta) = phi alpha beta.
    + +
    +Theorem phi_principalR alpha beta :
    +  nf alpha nf beta
    +  {gamma:T2 | [alpha, beta] = phi zero gamma}.
    + +
    +Lemma phi_alpha_zero_gt_alpha : alpha, alpha t2< phi alpha zero.
    + +
    +Theorem le_b_phi_ab : a b, nf a nf b b t2 phi a b.
    + +
    +Lemma phi_of_psi_plus_fin : a b1 b2 n,
    +    a t2< b1 phi a (gcons b1 b2 0 (fin n)) t2<
    +              [a ,gcons b1 b2 0 (fin n)].
    + +
    +Lemma phi_mono_r : a b c, nf a nf b nf c
    +                                 b t2< c phi a b t2< phi a c.
    + +
    +Lemma phi_mono_weak_r : a b c, nf a nf b nf c
    +                                      b t2 c phi a b t2 phi a c.
    + +
    +Lemma phi_inj_r : a b c, nf a nf b nf c
    +                                phi a b = phi a c b = c.
    + +
    +Lemma lt_a_phi_ab : a b, nf a nf b a t2< phi a b.
    + +
    + +
    +Lemma zero_not_lim : ¬ is_limit zero.
    + +
    +Lemma F_not_lim : n, ¬ is_limit (fin n).
    + +
    +Lemma succb_not_lim alpha: is_successor alpha ¬ is_limit alpha.
    + +
    +Lemma is_limit_not_succ alpha: is_limit alpha ¬ is_successor alpha.
    + +
    +
    + +
    + limit_plus_fin alpha n beta means : + beta = alpha + fin n and (alpha is limit or alpha = zero) + +
    +
    + +
    +Inductive limit_plus_fin : T2 nat T2 Prop :=
    +  limit_plus_F_0 : p, limit_plus_fin zero p (fin p)
    + |limit_plus_F_cons : beta1 beta2 n gamma0 gamma p,
    +     zero t2< beta1 zero t2< beta2
    +     limit_plus_fin gamma0 p gamma
    +     limit_plus_fin (gcons beta1 beta2 n gamma0)
    +                  p (gcons beta1 beta2 n gamma).
    + +
    +Lemma limit_plus_fin_plus : alpha alpha' p,
    +    limit_plus_fin alpha p alpha'
    +    nf alpha
    +    alpha' = alpha + fin p.
    + +
    +Lemma limit_plus_fin_lim : alpha alpha' p,
    +                      limit_plus_fin alpha p alpha'
    +                      nf alpha
    +                      is_limit alpha alpha=zero.
    + +
    +Lemma limit_plus_fin_inv0 alpha beta:
    +  limit_plus_fin alpha 0 beta
    +  nf alpha alpha = beta.
    + +
    +Lemma is_limit_cons_inv : b1 b2 n c, nf (gcons b1 b2 n c)
    +                          is_limit (gcons b1 b2 n c) is_limit c c = zero.
    + +
    + +
    +Lemma is_limit_intro : b1 b2 n , nf b1 nf b2
    +                       zero t2< b1 zero t2< b2
    +                       is_limit (gcons b1 b2 n zero).
    + +
    +Lemma lt_epsilon0_ok : alpha, nf alpha lt_epsilon0 alpha
    +                                     alpha t2< epsilon0.
    + +
    +Derive Inversion_clear lt_01 with ( (a b:T2),
    +                gcons a b 0 zero t2< epsilon0) Sort Prop.
    + +
    +Derive Inversion_clear lt_02 with ( (a b c:T2)(n:nat),
    +                gcons a b n c t2< epsilon0) Sort Prop.
    + +
    +Lemma psi_lt_epsilon0 : a b, [a, b] t2< epsilon0
    +                                    a = zero b t2< epsilon0.
    + +
    +Lemma cons_lt_epsilon0 : a b n c, gcons a b n c t2< epsilon0
    +                                         nf (gcons a b n c)
    +                                         a = zero b t2< epsilon0 c t2< epsilon0.
    + +
    +Lemma lt_epsilon0_okR: alpha, nf alpha alpha t2< epsilon0
    +                                     lt_epsilon0 alpha.
    + +
    +Lemma T1_to_T2_inj : alpha beta : T1,
    +    T1_to_T2 alpha = T1_to_T2 beta alpha = beta.
    + +
    + +
    +Lemma T1_to_T2_lt : c, lt_epsilon0 (T1_to_T2 c).
    + +
    +Definition T1_to_T2_R : a, lt_epsilon0 a {c:T1 | T1_to_T2 c = a}.
    + +
    +Lemma T1_to_T2_mono : alpha beta, T1.lt alpha beta
    +                                    T1_to_T2 alpha t2< T1_to_T2 beta.
    + +
    +Lemma T1_to_T2_monoR : c c', lt (T1_to_T2 c) (T1_to_T2 c') T1.lt c c'.
    + +
    +Lemma lt_epsilon0_trans : a, lt_epsilon0 a nf a
    +      b, lt b a nf b lt_epsilon0 b.
    + +
    +Lemma nf_coeff_irrelevance : a b n n' c, nf (gcons a b n c)
    +                                                nf (gcons a b n' c).
    + +
    +Lemma psi_principal : a b c d, nf c c t2< [a, b]
    +                                            d t2< [a, b]
    +                                          c + d t2< [a, b].
    + +
    +Lemma nf_intro : a b n c, nf a nf b
    +                                  c t2< [a,b ] nf c nf (gcons a b n c).
    + +
    +Lemma plus_nf : alpha, nf alpha beta, nf beta
    +                                                       nf (alpha + beta).
    + +
    +Lemma succ_as_plus : alpha, nf alpha alpha + one = succ alpha.
    + +
    +Lemma succ_nf : alpha, nf alpha nf (succ alpha).
    + +
    +Lemma lt_epsilon0_succ : a, lt_epsilon0 a lt_epsilon0 (succ a).
    + +
    +Check epsilon0.
    +Theorem epsilon0_as_lub : b, nf b
    +                                    ( a, lt_epsilon0 a lt a b)
    +                                    le epsilon0 b.
    +Locate epsilon0.
    + +
    +Definition lub (P: T2 Prop)(x:T2) :=
    +  nf x
    +  ( y, P y nf y y t2 x)
    +  ( y, ( x, P x nf x x t2 y) nf y
    +                                    x t2 y).
    + +
    +Theorem lub_unicity : P l l', lub P l lub P l' l = l'.
    + +
    +Theorem lub_mono : (P Q :T2 Prop) l l',
    +    ( o, nf o P o Q o)
    +    lub P l lub Q l' l t2 l'.
    + +
    +Lemma succ_limit_dec : a, nf a
    +         {a = zero} +{is_successor a}+{is_limit a}.
    + +
    + +
    +Lemma le_plus_r : alpha beta, nf alpha nf beta
    +                                     alpha t2 alpha + beta.
    + +
    +Lemma le_plus_l : alpha beta, nf alpha nf beta
    +                                     alpha t2 beta + alpha.
    + +
    +Lemma plus_mono_r : alpha , nf alpha beta gamma, nf beta
    +       nf gamma beta t2< gamma alpha + beta t2< alpha + gamma.
    + +
    +Lemma plus_mono_l_weak:
    +   o, nf o
    +     alpha, nf alpha alpha t2< o
    +                    beta,
    +                     nf beta beta t2< o
    +                      gamma , nf gamma
    +                                    alpha t2< beta
    +                                    alpha + gamma t2 beta + gamma.
    + +
    +Remark R_pred_Sn : n, pred (fin (S n)) = Some (fin n).
    + +
    +Lemma pred_of_cons : a b n c,
    +                       zero t2< a zero t2< b
    +                       pred (gcons a b n c) = match pred c with
    +                                             Some c'
    +                                               Some (gcons a b n c')
    +                                            | NoneNone
    +                                            end.
    + +
    +Lemma pred_of_cons' : a b n ,
    +                       zero t2< a zero t2< b
    +                       pred (gcons a b n zero) = None.
    + +
    +Lemma is_limit_ab : alpha beta n gamma,
    +    is_limit (gcons alpha beta n gamma)
    +     zero t2< alpha zero t2< beta.
    + +
    +Lemma pred_of_limit : alpha,
    +    is_limit alpha nf alpha pred alpha = None.
    + +
    +Lemma pred_of_succ : alpha, nf alpha
    +            pred (succ alpha) = Some alpha.
    + +
    +Lemma limit_plus_fin_ok : alpha, is_limit alpha
    +                            n, limit_plus_fin alpha n (alpha + fin n).
    + +
    +Section phi_to_psi.
    Variable alpha : T2.
    + +
    Lemma phi_to_psi_1 : beta1 beta2 n,
    +     alpha t2< beta1
    +     [alpha, (gcons beta1 beta2 0 (fin n))] =
    +     phi alpha (gcons beta1 beta2 0 (fin (S n))).
    + +
    Lemma phi_to_psi_2 : beta1 beta2 n,
    +     beta1 t2 alpha
    +     [alpha, (gcons beta1 beta2 0 (fin n))] =
    +     phi alpha (gcons beta1 beta2 0 (fin n)).
    + +
    Lemma phi_to_psi_3 : beta1 beta2 ,
    +                             beta1 t2 alpha
    +                             [alpha, [beta1, beta2]] =
    +                             phi alpha [beta1, beta2].
    + +
    +Lemma phi_to_psi_4 : [alpha, zero] = phi alpha zero.
    + +
    +Lemma phi_to_psi_5 :
    +    beta1 beta2 n gamma, omega t2 gamma (0 < n)%nat
    +           [alpha,gcons beta1 beta2 n gamma] =
    +           phi alpha (gcons beta1 beta2 n gamma).
    + +
    +Lemma phi_to_psi_6 : beta, nf beta
    +                                  phi alpha beta = beta
    +                                  [alpha, beta] = phi alpha (succ beta).
    + +
    + +
    + +
    +Lemma phi_psi : beta gamma n,
    +    nf gamma
    +    limit_plus_fin beta n gamma
    +    phi alpha beta = beta
    +    [alpha, gamma] = phi alpha (succ gamma). +
    +Theorem th_14_5 : alpha1 beta1 alpha2 beta2,
    +                   nf alpha1 nf beta1 nf alpha2 nf beta2
    +                   phi alpha1 beta1 = phi alpha2 beta2
    +                   {alpha1 t2< alpha2 beta1 = phi alpha2 beta2} +
    +                   {alpha1 = alpha2 beta1 = beta2} +
    +                   {alpha2 t2< alpha1 phi alpha1 beta1 = beta2}.
    + +
    +Lemma lt_not_gt : a b, a t2< b ¬ (b t2< a).
    + +
    +Lemma phi_mono_RR : a b c, nf a nf b nf c
    +              phi a b t2< phi a c b t2< c.
    + +
    +Theorem th_14_6 : alpha1 beta1 alpha2 beta2,
    +                   nf alpha1 nf beta1 nf alpha2 nf beta2
    +                   phi alpha1 beta1 t2< phi alpha2 beta2
    +                   {alpha1 t2< alpha2 beta1 t2< phi alpha2 beta2} +
    +                   {alpha1 = alpha2 beta1 t2< beta2} +
    +                   {alpha2 t2< alpha1 phi alpha1 beta1 t2< beta2}.
    + +
    +Definition moser_lepper (beta0 beta:T2)(n:nat) :=
    limit_plus_fin beta0 n beta phi alpha beta0 = beta0.
    + +
    +Lemma ml_psi : beta0 beta n,
    +    moser_lepper beta0 beta n
    +    {t1 : T2 & {t2: T2| beta0 =
    +                        [t1,t2] alpha t2< t1}}.
    + +
    +Lemma ml_1 : beta0 beta n, moser_lepper beta0 beta n
    +                                  nf beta nf beta0
    +                               [alpha, beta] = phi alpha (succ beta).
    + +
    +End phi_to_psi.
    + +
    + +
    + +
    +Example Ex9 : [zero, epsilon 2 + 4] = phi 0 (epsilon 2 + 5). +
    + +
    +Example Ex10 : phi omega [epsilon0, 5] = [epsilon0, 5]. +
    +Declare Scope g0_scope.
    + +
    + +
    +Module G0.
    + +
    +  Definition LT := restrict nf lt.
    + +
    + +
    +  Lemma Lt_wf : well_founded LT.
    + +
    +
    + +
    +

    Temporary compatibility nf/nfb

    + +
    +
    + +
    +  Lemma zero_nfb : nfb zero.
    + +
    +  Lemma nfb_a a b n c: nfb (gcons a b n c) nfb a.
    + +
    +  Lemma nfb_equiv gamma : nfb gamma = true nf gamma.
    + +
    +  Lemma nfb_proof_unicity :
    +     (alpha:T2) (H H': nfb alpha), H = H'.
    + +
    + +
    +  Class G0 := mkg0 {vnf : T2; vnf_ok : nfb vnf}.
    + +
    +  Definition lt (alpha beta : G0) := T2.lt (@vnf alpha) (@vnf beta).
    + +
    +  #[ global ] Instance compare_G0 : Compare G0 :=
    +    fun alpha betacompare (@vnf alpha) (@vnf beta).
    + +
    + +
    +  Lemma lt_LT_incl alpha beta : lt alpha beta LT (@vnf alpha) (@vnf beta).
    + +
    + +
    +  #[ global ] Instance lt_sto : StrictOrder lt. +
    + +
    +  Lemma lt_wf : well_founded lt. +
    +Lemma compare_correct alpha beta :
    +  CompareSpec (alpha = beta) (lt alpha beta) (lt beta alpha)
    +              (compare alpha beta).
    + +
    +  #[ global, program ] Instance zero : G0 := @mkg0 T2.zero _.
    + +
    +  #[ global, program] Instance Omega : G0 := @mkg0 omega _.
    + +
    +  Notation omega := Omega.
    + +
    +  Definition le := clos_refl G0 lt.
    + +
    + +
    +  #[ global ] Instance Gamma0_comp: Comparable lt compare. +
    +  #[ global ] Instance Gamma0: ON lt compare. +
    +  #[ global ] Instance Finite (n:nat) : G0.
    + +
    +  #[ global ] Instance Plus (alpha beta : G0) : G0.
    + +
    +  Infix "+" := Plus : g0_scope.
    + +
    +  #[ global ] Instance Phi (alpha beta : G0) : G0.
    + +
    +  Notation phi := Phi.
    +  Notation phi0 := (Phi zero).
    +  Notation "'omega^'" := phi0 (only parsing) : g0_scope.
    + +
    +  Coercion Finite : nat >-> G0.
    + +
    +  #[local] Open Scope g0_scope.
    + +
    +  Example Ex42 : omega + 42 + omega^ 2 = omega^ 2.
    + +
    +End G0.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Gamma0.T2.html b/theories/html/hydras.Gamma0.T2.html new file mode 100644 index 00000000..bc209574 --- /dev/null +++ b/theories/html/hydras.Gamma0.T2.html @@ -0,0 +1,438 @@ + + + + + +hydras.Gamma0.T2 + + + + +
    + + + +
    + +

    Library hydras.Gamma0.T2

    + +
    + +
    +
    + +
    +Data-type for Veblen normal form + (ordinals below Gamma0) +
    +
    + +
    +From Coq Require Import Arith Compare_dec Relations Wellfounded Lia.
    +From hydras Require Import More_Arith Restriction T1 OrdNotations Compat815.
    + +
    +Set Implicit Arguments.
    + +
    +
    + +
    +

    Definitions

    + +
    + + gcons alpha beta n gamma is : psi(alpha,beta)*(S n)+ gamma +
    +
    + +
    +Declare Scope T2_scope.
    +Delimit Scope T2_scope with t2.
    + +
    +Open Scope T2_scope.
    + +
    +Inductive T2 : Set :=
    +| zero : T2
    +| gcons : T2 T2 nat T2 T2.
    + +
    + +
    +Notation "[ alpha , beta ]" := (gcons alpha beta 0 zero)
    +                                 (at level 0): T2_scope.
    + +
    +Definition psi alpha beta := [alpha, beta].
    + +
    +Definition psi_term alpha :=
    +  match alpha with zerozero
    +                 | gcons a b n c[a, b]
    +  end.
    + +
    +Lemma psi_eq : a b, psi a b = [a,b].
    + +
    +Ltac fold_psi := rewrite <- psi_eq.
    +Ltac fold_psis := repeat fold_psi.
    + +
    + +
    +Notation one := [zero,zero].
    + +
    +Notation FS n := (gcons zero zero n zero).
    + +
    +Definition fin (n:nat) := match n with 0 ⇒ zero | S pFS p end.
    + +
    +Coercion fin : nat >-> T2.
    + +
    +Notation omega := [zero,one].
    + +
    +Notation epsilon0 := [one,zero].
    + +
    +Definition epsilon alpha := [one, alpha].
    + +
    + +
    +Inductive is_finite: T2 Set :=
    zero_finite : is_finite zero
    +|succ_finite : n, is_finite (gcons zero zero n zero).
    + +
    +#[global] Hint Constructors is_finite : T2.
    + +
    + +
    + +
    +Fixpoint T1_to_T2 (alpha :T1) : T2 :=
    +  match alpha with
    +  | T1.zerozero
    +  | T1.cons a n bgcons zero (T1_to_T2 a) n (T1_to_T2 b)
    +  end.
    + +
    + +
    +
    + +
    +additive principals +
    +
    + +
    +Inductive ap : T2 Prop :=
    +ap_intro : alpha beta, ap [alpha, beta].
    + +
    +
    + +
    +strict order on terms +
    +
    + +
    +Reserved Notation "x 't2<' y" (at level 70, no associativity).
    +Reserved Notation "x 't2<=' y" (at level 70, no associativity).
    +Reserved Notation "x 't2>=' y" (at level 70, no associativity).
    +Reserved Notation "x 't2>' y" (at level 70, no associativity).
    + +
    +Reserved Notation "x 't2<=' y 't2<=' z" (at level 70, y at next level).
    +Reserved Notation "x 't2<=' y 't2<' z" (at level 70, y at next level).
    +Reserved Notation "x 't2<' y 't2<' z" (at level 70, y at next level).
    +Reserved Notation "x 't2<' y 't2<=' z" (at level 70, y at next level).
    + +
    + +
    +Inductive lt : T2 T2 Prop :=
    +|
    lt_1 : alpha beta n gamma, zero t2< gcons alpha beta n gamma
    +|
    lt_2 : alpha1 alpha2 beta1 beta2 n1 n2 gamma1 gamma2,
    +    alpha1 t2< alpha2
    +    beta1 t2< gcons alpha2 beta2 0 zero
    +    gcons alpha1 beta1 n1 gamma1 t2<
    +    gcons alpha2 beta2 n2 gamma2
    +|
    lt_3 : alpha1 beta1 beta2 n1 n2 gamma1 gamma2,
    +    beta1 t2< beta2
    +    gcons alpha1 beta1 n1 gamma1 t2<
    +    gcons alpha1 beta2 n2 gamma2
    +          
    +|
    +lt_4 : alpha1 alpha2 beta1 beta2 n1 n2 gamma1 gamma2,
    +    alpha2 t2< alpha1
    +    [alpha1, beta1] t2< beta2
    +    gcons alpha1 beta1 n1 gamma1 t2<
    +    gcons alpha2 beta2 n2 gamma2
    +          
    +|
    +lt_5 : alpha1 alpha2 beta1 n1 n2 gamma1 gamma2,
    +    alpha2 t2< alpha1
    +    gcons alpha1 beta1 n1 gamma1 t2<
    +    gcons alpha2 [alpha1, beta1] n2 gamma2
    +          
    +|
    +lt_6 : alpha1 beta1 n1 n2 gamma1 gamma2,
    +    (n1 < n2)%nat
    +    gcons alpha1 beta1 n1 gamma1 t2<
    +    gcons alpha1 beta1 n2 gamma2
    +
    +|
    +lt_7 : alpha1 beta1 n1 gamma1 gamma2,
    +    gamma1 t2< gamma2
    +    gcons alpha1 beta1 n1 gamma1 t2<
    +    gcons alpha1 beta1 n1 gamma2
    +                                           
    +where "o1 t2< o2" := (lt o1 o2): T2_scope.
    + +
    + +
    +#[global] Hint Constructors lt : T2.
    + +
    +Definition le t t' := t = t' t t2< t'.
    + +
    +#[global] Hint Unfold le : T2.
    + +
    +Notation "o1 t2<= o2" := (le o1 o2): T2_scope.
    + +
    +
    + +
    +

    Examples

    + +
    +
    + +
    + +
    + +
    +Example Ex1: 0 t2< epsilon0.
    + +
    +Example Ex2: omega t2< epsilon0.
    + +
    +Example Ex3: gcons omega 8 12 56 t2< gcons omega 8 12 57.
    + +
    +Example Ex4: epsilon0 t2< [2,1].
    + +
    +Example Ex5 : [2,1] t2< [2,3].
    + +
    +Example Ex6 : gcons 1 0 12 omega t2< [0,[2,1]].
    + +
    +Example Ex7 : gcons 2 1 42 epsilon0 t2< [1, [2,1]].
    + +
    + +
    + +
    +Definition gtail c := match c with
    +                      | zerozero
    +                      | gcons a b n cc
    +                      end.
    + +
    + +
    + +
    +Inductive nf : T2 Prop :=
    +| zero_nf : nf zero
    +| single_nf : a b n,
    +    nf a
    +    nf b nf (gcons a b n zero)
    +| gcons_nf : a b n a' b' n' c',
    +    [a', b'] t2< [a, b]
    +    nf a nf b
    +    nf(gcons a' b' n' c')
    +    nf(gcons a b n (gcons a' b' n' c')).
    + +
    +#[global] Hint Constructors nf : T2.
    + +
    + +
    + +
    +Lemma nf_fin i : nf (fin i).
    + +
    +Lemma nf_omega : nf omega.
    + +
    +Lemma nf_epsilon0 : nf epsilon0.
    + +
    +Lemma nf_epsilon : alpha, nf alpha nf (epsilon alpha).
    + +
    +Example Ex8: nf (gcons 2 1 42 epsilon0).
    + +
    + +
    +Inductive is_successor : T2 Prop :=
    +  finite_succ : n , is_successor (gcons zero zero n zero)
    + |cons_succ : a b n c, nf (gcons a b n c) is_successor c
    +                              is_successor (gcons a b n c).
    + +
    +Inductive is_limit : T2 Prop :=
    +| is_limit_0 : alpha beta n, zero t2< alpha zero t2< beta
    +                                   nf alpha nf beta
    +                                   is_limit (gcons alpha beta n zero)
    +| is_limit_cons : alpha beta n gamma,
    +    is_limit gamma
    +    nf (gcons alpha beta n gamma)
    +    is_limit (gcons alpha beta n gamma).
    + +
    + +
    +Fixpoint succ (a:T2) : T2 :=
    match a with zeroone
    +             | gcons zero zero n cfin (S (S n))
    +             | gcons a b n cgcons a b n (succ c)
    end.
    + +
    +Fixpoint pred (a:T2) : option T2 :=
    match a with zeroNone
    +             | gcons zero zero 0 zeroSome zero
    +             | gcons zero zero (S n) zero
    +                  Some (gcons zero zero n zero)
    +             | gcons a b n c ⇒ (match (pred c) with
    +                                   Some c'Some (gcons a b n c')
    +                                  | NoneNone
    +                                  end)
    end.
    + +
    +Inductive lt_epsilon0 : T2 Prop :=
    +  zero_lt_e0 : lt_epsilon0 zero
    +| gcons_lt_e0 : b n c, lt_epsilon0 b
    +                                lt_epsilon0 c
    +                                lt_epsilon0 (gcons zero b n c).
    + +
    + +
    +
    + +
    +

    Length (as in Schutte)

    + +
    +
    + +
    +Section on_length.
    + +
    Open Scope nat_scope.
    + +
    + +
    + +
    +Fixpoint nbterms (t:T2) : nat :=
    +  match t with zero ⇒ 0
    +             | gcons a b n v(S n) + nbterms v
    +  end.
    + +
    +Fixpoint t2_length (t:T2) : nat :=
    +  match t with zero ⇒ 0
    +             | gcons a b n v
    +                 nbterms (gcons a b n v) +
    +                 2 × (Nat.max (t2_length a)
    +                              (Nat.max (t2_length b) (t2_length_aux v)))
    +  end
    +with t2_length_aux (t:T2) : nat :=
    match t with zero ⇒ 0
    +            | gcons a b n v
    +               Nat.max (t2_length a) (Nat.max (t2_length b) (t2_length_aux v))
    end.
    + +
    + +
    + +
    +Lemma length_a : a b n v, t2_length a <
    +                                 t2_length (gcons a b n v).
    + +
    +Lemma length_b : a b n v, t2_length b <
    +                                 t2_length (gcons a b n v).
    + +
    +Lemma length_c : a b n v, t2_length v <
    +                                 t2_length (gcons a b n v).
    + +
    +Lemma length_n : a b r n p, n < p
    +                        t2_length (gcons a b n r) <
    +                        t2_length (gcons a b p r).
    + +
    +Lemma length_psi : a b n c,
    +                      t2_length [a, b] t2_length (gcons a b n c).
    + +
    +Lemma length_ab : a b,
    +    t2_length a + t2_length b t2_length (gcons a b 0 zero).
    + +
    +Lemma length_abnc : a b n c,
    +   t2_length a + t2_length b t2_length (gcons a b n c).
    + +
    +End on_length.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Hydra.Battle_length.html b/theories/html/hydras.Hydra.Battle_length.html new file mode 100644 index 00000000..d1ab34bb --- /dev/null +++ b/theories/html/hydras.Hydra.Battle_length.html @@ -0,0 +1,119 @@ + + + + + +hydras.Hydra.Battle_length + + + + +
    + + + +
    + +

    Library hydras.Hydra.Battle_length

    + +
    +
    + +
    + +
    + + "Computing" standard battle length + +
    + +Pierre Castéran, LaBRI, University of Bordeaux + +
    + + +
    +
    + +
    +From hydras Require Import L_alpha.
    +From hydras Require Import Hydra_Lemmas Epsilon0_Needed_Free
    +     Epsilon0_Needed_Std Hydra_Termination O2H.
    +Import E0 Large_Sets Hprime Paths MoreLists.
    + +
    +Section Battle_length.
    + +
    +  Variable alpha : E0.
    +  Hypothesis Halpha : alpha E0zero.
    +  Variable k : nat.
    +  Hypothesis Hk : (1 k)%nat.
    +  Let l := L_ alpha (S k).
    + +
    +  Remark R0 : (S k < l)%nat.
    + +
    + +
    +  Remark R2 : mlarge (cnf alpha) (interval (S k) (Nat.pred l)).
    + +
    + +
    +  Remark R3 : path_toS zero
    +                       (unshift (interval (S k) (Nat.pred l)))
    +                       (cnf alpha).
    + +
    +  Remark R4 :
    +    trace_to (O2H.iota zero)
    +             (unshift (interval (S k) (Nat.pred l)))
    +             (O2H.iota (cnf alpha)).
    + +
    +  Lemma R5 : trace_to (O2H.iota zero)
    +                      (interval k (Nat.pred (Nat.pred l)))
    +                      (O2H.iota (cnf alpha)).
    + +
    +  Remark R6 : S (Nat.pred (Nat.pred l)) = (l-1)%nat.
    + +
    +  Lemma L06: rounds standard k (iota (cnf alpha)) (l-1)%nat
    +                     (iota zero).
    + +
    + +
    +  Lemma battle_length_std:
    +    battle_length standard k (iota (cnf alpha)) (l-k)%nat. +
    +End Battle_length.
    + +
    + +
    +Definition l_std alpha k := (L_ alpha (S k) - k)%nat.
    + +
    +Lemma l_std_ok : alpha : E0,
    +    alpha E0zero
    +     k : nat,
    +      1 k battle_length standard k (iota (cnf alpha))
    +                              (l_std alpha k). +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Hydra.BigBattle.html b/theories/html/hydras.Hydra.BigBattle.html new file mode 100644 index 00000000..a119f0cd --- /dev/null +++ b/theories/html/hydras.Hydra.BigBattle.html @@ -0,0 +1,501 @@ + + + + + +hydras.Hydra.BigBattle + + + + +
    + + + +
    + +

    Library hydras.Hydra.BigBattle

    + +
    +
    + +
    +

    A long hydra battle

    + + +
    + + Pierre Castéran, LaBRI, Univ Bordeaux + +
    + + +
    +
    + +
    +From Coq Require Import Arith Relations Lia.
    +From hydras Require Import Hydra_Definitions Hydra_Lemmas Iterates Exp2.
    + +
    +
    + +
    +Let us consider a small hydra hinit +
    +
    + +
    +#[local] Notation h3 := (hyd_mult head 3).
    +Definition hinit := hyd3 h3 head head.
    + +
    +
    + +
    + +
    + +the first steps of a standard battle (Hercules chops off the rightmost head) + +
    +
    + +
    +Lemma L_0_2 : rounds standard 0 hinit 2 (hyd1 h3).
    + +
    +
    + +
    +In the next round, there is a replication of h3 into 3 copies of h2 + +
    + +More generally, all the future hydras will be composed of several copies +of h2, then several copies of h1, then several heads +
    +
    + +
    + +
    +Notation h2 := (hyd_mult head 2).
    +Notation h1 := (hyd1 head).
    + +
    +Notation hyd a b c :=
    +  (node (hcons_mult h2 a
    +             (hcons_mult h1 b
    +                         (hcons_mult head c hnil)))).
    + +
    + +
    +Lemma L_2_3 : rounds standard 2 (hyd1 h3) 3 (hyd 3 0 0).
    + +
    +Lemma L_0_3 : rounds standard 0 hinit 3 (hyd 3 0 0).
    + +
    +
    + +
    +From now on, we abstract the configurations of the battle + as tuples (round number, n2, n1, nh) where n2 (resp. n1, nh) is the number of daughters of type h2 resp. h1, heads +
    +
    + +
    + +
    +Record state : Type :=
    +  mks {round : nat ; n2 : nat ; n1 : nat ; nh : nat}.
    + +
    + +
    + +
    +Definition (s : state) :=
    +  match s with
    +  | mks round a b (S c) ⇒ mks (S round) a b c
    +  | mks round a (S b) 0 ⇒ mks (S round) a b (S round)
    +  | mks round (S a) 0 0 ⇒ mks (S round) a (S round) 0
    +  | _s
    +  end.
    + +
    + +
    +
    + +
    +returns the state at the n-th round +
    +
    + +
    + +
    +Definition test n := iterate next (n-3) (mks 3 3 0 0).
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    +Definition doubleS (n : nat) := 2 × (S n).
    + +
    + +
    + +
    + +
    +
    + +
    +OK, instead of tests based on the function next, we consider now + relations (which allow us to consider accessibility predicates) +
    + + steps i a b c j a' b' c' has almost the same meaning as + iterate test (j - i) (mks t a b c) = (mks t' a' b' c') + +
    + + +
    +
    + +
    + +
    +Inductive one_step (i: nat) :
    +  nat nat nat nat nat nat Prop :=
    +| step1: a b c, one_step i a b (S c) a b c
    +| step2: a b , one_step i a (S b) 0 a b (S i)
    +| step3: a, one_step i (S a) 0 0 a (S i) 0.
    + +
    + +
    + +
    +Lemma step_rounds : i a b c a' b' c',
    +    one_step i a b c a' b' c'
    +    rounds standard i (hyd a b c) (S i) (hyd a' b' c'). +
    + +
    + +
    +Inductive steps : nat nat nat nat
    +                  nat nat nat nat Prop :=
    +| steps1 : i a b c a' b' c',
    +    one_step i a b c a' b' c' steps i a b c (S i) a' b' c'
    +| steps_S : i a b c j a' b' c' k a'' b'' c'',
    +    steps i a b c j a' b' c'
    +    steps j a' b' c' k a'' b'' c''
    +    steps i a b c k a'' b'' c''.
    + +
    +
    + +
    + reachability (for i > 0) +
    +
    + +
    +Definition reachable (i a b c : nat) : Prop :=
    +  steps 3 3 0 0 i a b c.
    + +
    + +
    + +
    +Lemma steps_rounds : i a b c j a' b' c',
    +    steps i a b c j a' b' c'
    +    rounds standard i (hyd a b c) j (hyd a' b' c'). +
    + +
    +
    + +
    + From now on, we play again the same tests as above, but instead of plain uses of Compute, we prove and register lemmas that we will be used later +
    +
    + +
    + +
    +Lemma L4 : reachable 4 2 4 0.
    + +
    +
    + +
    +Now we prove some laws we observed in our test phase +
    +
    + +
    + +
    +Lemma LS : c a b i, steps i a b (S c) (i + S c) a b 0.
    + +
    +
    + +
    + The law that relates two consecutive events with (nh = 0) +
    +
    + +
    +Lemma doubleS_law : a b i, steps i a (S b) 0 (doubleS i) a b 0.
    + +
    +Lemma reachable_S : i a b, reachable i a (S b) 0
    +                                   reachable (doubleS i) a b 0.
    + +
    + +
    + +
    + +
    +Lemma L10 : reachable 10 2 3 0.
    + +
    +Lemma L22 : reachable 22 2 2 0.
    + +
    +Lemma L46 : reachable 46 2 1 0.
    + +
    +Lemma L94 : reachable 94 2 0 0.
    + +
    +Lemma L95 : reachable 95 1 95 0.
    + +
    + +
    + +
    +Lemma L0_95 : rounds standard 3 (hyd 3 0 0) 95 (hyd 1 95 0).
    + +
    + +
    +
    + +
    +No more tests ! we are going to build bigger transitions +
    +
    + +
    + +
    + +
    +Lemma Bigstep : b i a , reachable i a b 0
    +                               reachable (iterate doubleS b i) a 0 0.
    + +
    + +
    + +
    + +
    +
    + +
    +From all the lemmas above, we now get a pretty big step +
    +
    + +
    + +
    +Definition M := iterate doubleS 95 95.
    + +
    +Lemma L2_95 : reachable M 1 0 0. +
    +
    + +
    +the next step creates (M+1) copies of h1 +
    +
    + +
    + +
    + +
    +Lemma L2_95_S : reachable (S M) 0 (S M) 0.
    + +
    + +
    + +
    +Definition N := iterate doubleS (S M) (S M).
    + +
    +Theorem SuperbigStep : reachable N 0 0 0. +
    + +
    +
    + +
    +We can ow apply our study based on abstract states to "real" hydras +
    + + transforming our relation one_step into standard battles +
    + + We get now statements about hydras and battles +
    +
    + +
    + +
    + +
    +Lemma Almost_done :
    +  rounds standard 3 (hyd 3 0 0) N (hyd 0 0 0).
    + +
    +Theorem Done :
    +  rounds standard 0 hinit N head.
    + +
    + +
    + +
    +
    + +
    +The natural number N is expressed in terms of the (iterate doubleS) + function. The rest of this file is dedicated to get an intuition of how it is huge . + Our idea is to get a minoration by exponentials of base 2 + +
    + + +
    +
    + +
    +Lemma minoration_0 : n, 2 × n doubleS n. +
    +Lemma minoration_1 : n x, exp2 n × x iterate doubleS n x. +
    +Lemma minoration_2 : exp2 95 × 95 M. +
    +Lemma minoration_3 : exp2 (S M) × S M N. +
    +Lemma exp2_mono1 : n p, n p exp2 n exp2 p .
    + +
    +Lemma minoration : exp2 (exp2 95 × 95) N. +
    +
    + +
    +Hence, the length of the battle is greater or equal than + exp2 (exp2 95 * 95), a number whose representation in base 10 has + at least 10 ^ 30 digits ! +
    + + from OCAML + +
    + +let exp2 x = 2.0 ** x;; + +
    + +let _ = exp2 95.0 *. 95.0;; + +
    + +float = 3.76333771942755604e+30 + +
    + +N >= 2 ** 3.7e+30 + +
    + +log10 N >= 3.7e+30 * log10 2 >= 1.0e+30 + +
    + +N >= 10 ** (10 ** 30) + +
    + + +
    +
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Hydra.Epsilon0_Needed_Free.html b/theories/html/hydras.Hydra.Epsilon0_Needed_Free.html new file mode 100644 index 00000000..727f7395 --- /dev/null +++ b/theories/html/hydras.Hydra.Epsilon0_Needed_Free.html @@ -0,0 +1,133 @@ + + + + + +hydras.Hydra.Epsilon0_Needed_Free + + + + +
    + + + +
    + +

    Library hydras.Hydra.Epsilon0_Needed_Free

    + +
    + +
    +
    + +
    + Pierre Castéran, LaBRI and University of Bordeaux +
    +
    + +
    +From hydras Require Import Epsilon0_Needed_Generic.
    +Import Hydra_Lemmas Epsilon0 Canon Paths Relation_Operators.
    +Import O2H.
    + +
    +
    + +
    +We generalize the results of libraries Omega_Small and Omega2_Small: + We prove that no ordinal strictly less than epsilon0 can be used as a variant + for proving the termination of all hydra battles. +We use the so-called "Ketonen-Solovay machinery" for building +a proof that shares the same structure as for the libraries above, but is much +longer + +
    + +

    Bounded variants

    + +
    +
    + +
    +Open Scope t1_scope.
    + +
    +Section Impossibility_Proof.
    + +
    +  Context (mu: T1)
    +          (Hmu: nf mu)
    +          (m : Hydra T1)
    +          (Var : Hvariant T1_wf free m)
    +          (Hy : BoundedVariant Var mu).
    + +
    +  Let big_h := big_h mu.
    +  Let small_h := small_h mu m.
    + +
    +  #[local] Hint Resolve nf_m : hydra.
    + +
    + +
    +  Lemma m_ge : m big_h t1 m small_h.
    + +
    + +
    +
    + +
    +

    Proof of the inequality m small_h t1< m big_h

    + + +
    +
    + +
    + +
    +  Lemma m_variant_LT : h h', h -+-> h' m h' t1< m h.
    + +
    + +
    +  Lemma big_to_small : big_h -+-> small_h.
    + +
    + +
    +  Lemma m_lt : m small_h t1< m big_h.
    + +
    + +
    + +
    +  Fact self_lt_free : m big_h t1< m big_h .
    + +
    +  Theorem Impossibility_free : False.
    + +
    +End Impossibility_Proof.
    + +
    + +
    +Check Impossibility_free.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Hydra.Epsilon0_Needed_Generic.html b/theories/html/hydras.Hydra.Epsilon0_Needed_Generic.html new file mode 100644 index 00000000..26d37db4 --- /dev/null +++ b/theories/html/hydras.Hydra.Epsilon0_Needed_Generic.html @@ -0,0 +1,98 @@ + + + + + +hydras.Hydra.Epsilon0_Needed_Generic + + + + +
    + + + +
    + +

    Library hydras.Hydra.Epsilon0_Needed_Generic

    + +
    + +
    +
    + +
    + Pierre Castéran, LaBRI and University of Bordeaux +
    + + Technical definitions and lemmas about variants bounded by some ordinal + les than epsilon0 + +
    +
    + +
    +From hydras Require Import Hydra_Lemmas Epsilon0 Canon Paths O2H.
    +From Coq Require Import Relation_Operators.
    + +
    +Open Scope t1_scope.
    + +
    +Section Bounded.
    + +
    +  Context (B: Battle)
    +          (mu: T1)
    +          (Hmu: nf mu)
    +          (m : Hydra T1)
    +          (Var : Hvariant T1_wf B m)
    +          (Hy : BoundedVariant Var mu).
    + +
    +  Hypothesis m_decrease : i h h', round_n i h h' m h' t1< m h.
    + +
    +  Lemma nf_m : h, nf (m h).
    + +
    +  #[local] Hint Resolve Rem0 : hydra.
    + +
    + +
    +  Lemma mu_positive : mu T1.zero.
    + +
    +  Lemma m_ge_0 alpha: nf alpha alpha t1 m (iota alpha).
    + +
    + +
    Definition big_h := iota mu.
    Definition beta_h := m big_h.
    Definition small_h := iota beta_h.
    + +
    Lemma mu_beta_h : acc_from mu beta_h.
    + +
    Corollary m_ge_generic : m big_h t1 m small_h.
    + +
    +End Bounded.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Hydra.Epsilon0_Needed_Std.html b/theories/html/hydras.Hydra.Epsilon0_Needed_Std.html new file mode 100644 index 00000000..d282a2ec --- /dev/null +++ b/theories/html/hydras.Hydra.Epsilon0_Needed_Std.html @@ -0,0 +1,157 @@ + + + + + +hydras.Hydra.Epsilon0_Needed_Std + + + + +
    + + + +
    + +

    Library hydras.Hydra.Epsilon0_Needed_Std

    + +
    +
    + +
    + Pierre Castéran, LaBRI and University of Bordeaux + +
    + + We prove that the impossibility result of Epsilon0_Needed_Free still holds for "standard" battles +
    +
    + +
    +From hydras Require Import Epsilon0_Needed_Generic.
    +Import Hydra_Lemmas Epsilon0 Canon Paths Relation_Operators O2H.
    +Import Hydra_Definitions.
    + +
    +Open Scope t1_scope.
    + +
    +Section Impossibility_Proof.
    + +
    +  Context (mu: T1)
    +          (m : Hydra T1)
    +          (Var : Hvariant T1_wf standard m)
    +          (Hy : BoundedVariant Var mu).
    + +
    +  Let big_h := big_h mu.
    +  Let small_h := small_h mu m.
    + +
    + +
    + +
    +  Lemma m_ge : m big_h t1 m small_h. +
    + +
    +
    + +
    +

    Proof of the inequality m small_h t1< m big_h

    + +
    + + The measure is strictly decreasing along any round +
    +
    + +
    +  Lemma Lvar : h h0 i,
    +      h head
    +      battle_rel standard i h h0 m h0 t1< m h.
    + +
    +
    + +
    +Application to standard battles +
    +
    + +
    +  Lemma m_decrease : j h0 i h,
    +      h head rounds standard i h j h0 m h0 t1< m h.
    + +
    +
    + +
    +Conversion of ordinal inequalities into standard battles +
    +
    + +
    + +
    + +
    + +
    +  Lemma LT_to_standard_battle :
    +     alpha beta,
    +      beta t1< alpha
    +       n i, rounds standard n (iota alpha) i (iota beta). +
    +  Remark Rem3 : beta_h mu m t1< mu.
    + +
    +  Remark Rem4 : n i,
    +      rounds standard n (iota mu) i (iota (beta_h mu m)).
    + +
    +  Remark Hmu : nf mu.
    + +
    + +
    +  Lemma m_lt : m small_h t1< m big_h. +
    +
    + +
    +End of the proof +
    +
    + +
    + +
    + +
    +  Fact self_lt_standard : m big_h t1< m big_h.
    + +
    +  Theorem Impossibility_std: False.
    + +
    +End Impossibility_Proof.
    +Check Impossibility_std.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Hydra.Hydra_Definitions.html b/theories/html/hydras.Hydra.Hydra_Definitions.html new file mode 100644 index 00000000..d39a5d47 --- /dev/null +++ b/theories/html/hydras.Hydra.Hydra_Definitions.html @@ -0,0 +1,858 @@ + + + + + +hydras.Hydra.Hydra_Definitions + + + + +
    + + + +
    + +

    Library hydras.Hydra.Hydra_Definitions

    + +
    +
    + +
    +Pierre Casteran, LaBRI, University of Bordeaux +
    + +

    Data types

    + + +
    + + An hydra is a finitely branched tree. We use the auxiliary type Hydrae for + representing finite sequences of hydras. + +
    +
    + +
    +From Coq Require Export Relations.
    +From hydras Require Import T1 Epsilon0.
    +From Coq Require Import List.
    +Import ListNotations.
    + +
    + +
    +Inductive Hydra : Set :=
    +| node : Hydrae Hydra
    +with Hydrae : Set :=
    +| hnil : Hydrae
    +| hcons : Hydra Hydrae Hydrae.
    + +
    + +
    +
    + +
    +Alternative representation (discarded) +
    +
    + +
    + +
    +Module Alt.
    +  Inductive Hydra : Set :=
    +  | hnode (daughters : list Hydra).
    +End Alt.
    + +
    + +
    +
    + +
    + Mutual induction scheme for types Hydra and Hydrae + +
    +
    + +
    +Scheme Hydra_rect2 := Induction for Hydra Sort Type
    +with Hydrae_rect2 := Induction for Hydrae Sort Type.
    + +
    +Arguments Hydra_rect2 P P0 : rename.
    +Arguments Hydrae_rect2 P P0 : rename.
    + +
    +
    + +
    +All elements of s satisfy P +
    +
    +Fixpoint h_forall (P: Hydra Prop) (s: Hydrae) :=
    +  match s with
    +  | hnilTrue
    +  | hcons h s'P h h_forall P s'
    +  end.
    + +
    +Lemma h_eq_dec : h h':Hydra, {h = h'}+{h h'}
    +with hs_eq_dec : l l':Hydrae, {l = l'}+{l l'}.
    + +
    +
    + +
    +For list usage +
    +
    + +
    +Fixpoint hs2l (s: Hydrae): list Hydra :=
    +match s with
    +  hnil[]
    +| hcons h s'h :: hs2l s'
    +end.
    + +
    +Fixpoint l2hs (l: list Hydra): Hydrae :=
    +match l with
    +  []hnil
    +| h :: l'hcons h (l2hs l')
    +end.
    + +
    +Lemma hs2lK (s: Hydrae) : l2hs (hs2l s) = s.
    + +
    +Lemma l2hsK (l: list Hydra) : hs2l (l2hs l) = l.
    + +
    +
    + +
    + Number of nodes (a.k.a. size) + +
    +
    + +
    +Fixpoint hsize (h:Hydra) : nat :=
    +  match h with
    +  | node lS (lhsize l)
    +  end
    +with lhsize l : nat :=
    +       match l with
    +       | hnil ⇒ 0
    +       | hcons h hshsize h + lhsize hs
    +       end.
    + +
    +
    + +
    +

    height (length of longest branch)

    + + +
    +
    + +
    +Fixpoint height (h:Hydra) : nat :=
    +  match h with
    +  | node llheight l
    +  end
    +with lheight l : nat :=
    +       match l with
    +       | hnil ⇒ 0
    +       | hcons h hsNat.max (S (height h)) (lheight hs)
    +       end.
    + +
    +
    + +
    +

    Abbreviations

    + + +
    + +

    Heads : A head is just a node without daughters

    + + +
    +
    + +
    +
    + +
    +

    Hydra with 0, 1, 2 or 3 daughters

    + +
    +
    + +
    +Notation head := (node hnil).
    +Notation hyd1 h := (node (hcons h hnil)).
    +Notation hyd2 h h' := (node (hcons h (hcons h' hnil))).
    +Notation hyd3 h h' h'' := (node (hcons h (hcons h' (hcons h'' hnil)))).
    + +
    +
    + +
    +

    Adds n copies of the same hydra h at the right of s

    + + +
    +
    + +
    +Fixpoint hcons_mult (h:Hydra)(n:nat)(s:Hydrae):Hydrae :=
    +  match n with
    +  | Os
    +  | S phcons h (hcons_mult h p s)
    +  end.
    + +
    +
    + +
    +

    Hydra with n equal daughters

    + +
    +
    + +
    +Definition hyd_mult h n := node (hcons_mult h n hnil).
    + +
    +
    + +
    +

    Managing sequences of hydras

    + + +
    + +

    Appending

    + + +
    +
    + +
    +Fixpoint hy_app (s1 s2: Hydrae) : Hydrae :=
    +  match s1 with
    +    hnils2
    +  | hcons h1 s1'hcons h1 (hy_app s1' s2)
    +  end.
    + +
    +
    + +
    +

    Adds a head to the right of s

    + + +
    +
    + +
    +Fixpoint add_head_r (s: Hydrae) :=
    +  match s with
    +    hnilhcons head hnil
    +  | hcons h s'hcons h (add_head_r s')
    +  end.
    + +
    +
    + +
    +

    Adds i heads to the right of s

    + + +
    +
    + +
    +Fixpoint add_head_r_plus (s:Hydrae) (i:nat) :=
    +  match i with
    +    0 ⇒ s
    +  | S jadd_head_r (add_head_r_plus s j)
    +  end.
    + +
    +
    + +
    +

    adds i heads to the root of h (to the right of its daughters)

    + + +
    +
    + +
    +Definition add_r h i :=
    +  match h with node snode (add_head_r_plus s i) end.
    + +
    +
    + +
    +

    Hydra Battles

    + + +
    + +

    Relation associated with a single round.

    + + +
    + + We represent the rules of Hydra Battles through a binary relation: + round_n n on the Hydra type. +The proposition round_n n h h' holds if h' is obtained from h by a single round of a battle, and n is the expected replication factor (irrelevant if the chopped head is at distance 1 from the foot). + +
    + +The proposition round_n n h h' holds + +
    + +
      +
    • if h' is obtained from h by chopping off one head of height 1. This situation is described by the proposition R1 h h'. + +
      + + +
    • +
    • Or h' is obtained from h through a beheading at distance from the foot, with creation of n copies of some dub-hydra. + +
    • +
    + +
    + + +
    + +Before giving the definition in Coq of round_n, we need to define several auxiliary relations. + +
    + +

    S0

    + + +
    + + The proposition S0 s s' holds if the sequence s' is obtained by removing one head from s + +
    +
    + +
    +Inductive S0 : relation Hydrae :=
    +| S0_first : s, S0 (hcons head s) s
    +| S0_rest : h s s', S0 s s' S0 (hcons h s) (hcons h s').
    + +
    +
    + +
    +

    R1

    + + +
    + + The proposition R1 h h' holds if h' is obtained by removing one head from h at distance 1 from the foot + +
    + + +
    +
    + +
    +Inductive R1 : relation Hydra :=
    +| R1_intro : s s', S0 s s' R1 (node s) (node s').
    + +
    +
    + +
    +

    S1

    + + +
    + + S1 n s s' holds if s' is obtained from s by replacing some member h of s by copies of h, where R1 h h' holds. + Thus, n is the number of new replicas of h'. + +
    + + +
    +
    + +
    + +
    +Inductive S1 (n:nat) : relation Hydrae :=
    +| S1_first : s h h' ,
    +              R1 h h'
    +              S1 n (hcons h s) (hcons_mult h' (S n) s)
    +| S1_next : h s s',
    +                 S1 n s s'
    +                 S1 n (hcons h s) (hcons h s').
    + +
    + +
    +
    + +
    +

    R2

    + + +
    + +The proposition R2 n h h' holds if some sub-hydra h0 of h has been replaced by h'0, + where R1 n h0 h'0. The S2 relation is just a helper for R2. + +
    + + +
    +
    + +
    +Inductive R2 (n:nat) : relation Hydra :=
    +| R2_intro : s s', S1 n s s' R2 n (node s) (node s')
    +| R2_intro_2 : s s', S2 n s s' R2 n (node s) (node s')
    +
    +with S2 (n:nat) : relation Hydrae :=
    +     | S2_first : h h' s ,
    +         R2 n h h' S2 n (hcons h s) (hcons h' s)
    +     | S2_next : h r r',
    +         S2 n r r' S2 n (hcons h r) (hcons h r').
    + +
    +
    + +
    +

    round_n

    + + +
    + + Let n be an expected replication number. The relation round_n n h h' + holds: +
      +
    • if h' is obtained from h by removing one head of height 1 (and the factor n is irrelevant) + +
    • +
    • or h' is obtained from h by removing one head of height greater or equal than 2, and this beheading was made with a relocation factor n. + +
    • +
    + +
    +
    + +
    +Definition round_n n h h' := R1 h h' R2 n h h'.
    + +
    +
    + +
    +Transition system associated with battles +
    + +

    Binary relation associated with a battle round

    + +
    +
    + +
    +Definition round h h' := n, round_n n h h'.
    +Infix "-1->" := round (at level 60).
    + +
    +
    + +
    +

    transitive closures of round

    + + +
    +
    + +
    +Definition round_plus := clos_trans_1n Hydra round.
    +Definition round_star h h' := h = h' round_plus h h'.
    + +
    +Infix "-+->" := round_plus (at level 60).
    +Infix "-*->" := round_star (at level 60).
    + +
    +
    + +
    +

    Experimental tactics for interactive battles

    + +
    + +

    removes the i-th daughter (should be a head)

    + +
    +
    + +
    +Ltac chop_off i :=
    +  match goal with |- S0 ?h ?h'
    +                  match i with
    +                    | Oeapply S0_first
    +                    | S ?jeapply S0_rest; chop_off j
    +                  end
    +                  | |- round ?h ?h'
    +                      0; left; split; chop_off i
    +                  | |- round_n ?n ?h ?h'
    +                     left ; split; chop_off i
    +  end.
    + +
    +
    + +
    + Calls the R2 relation +
    +
    + +
    +Ltac h_search_n n := match goal with
    +                       |- round ?h ?h' n; eright
    +                    end.
    + +
    +Ltac h_search := match goal with
    +                    | |- round_n ?p ?h ?h'eright
    +                    end.
    + +
    +Ltac s2_nth n :=
    +  match n with
    +    | 0 ⇒ eleft
    +    | S ?peright ; s2_nth p
    +    end.
    + +
    +
    + +
    +Moves to the i-th daugther +
    +
    + +
    +Ltac r2_up i := match goal with
    +                    |- R2 ?n ?h ?h'eright; s2_nth i
    +end.
    + +
    +Ltac S1_nth i :=
    +  match goal with
    +      |- S1 ?n ?h ?h'
    +      match i with
    +        | 0 ⇒ eleft
    +        | S ?jeright ; S1_nth j
    +      end
    +  end.
    + +
    +
    + +
    +chops off a head which is the j-th daughter of the + i-th dauchter + +
    +
    + +
    +Ltac r2_d2 i j :=
    match goal with
    +      |- R2 ?n ?h ?h'eleft; S1_nth i; split; chop_off j
    end.
    + +
    +
    + +
    +End of the battle +
    +
    + +
    +Ltac stop :=
    +  match goal with
    +      |- round_star ?h ?h'left; reflexivity
    +  end.
    + +
    +
    + +
    +Still fighting +
    +
    + +
    +Lemma round_star_intro h h'' : h',
    +    h -1-> h' h' -*-> h'' h -*-> h''.
    + +
    +Ltac forward :=
    +  match goal with
    +      |- round_star ?h ?h'eapply round_star_intro
    +  end.
    + +
    +
    + +
    +

    Traces

    + +
    +
    + +
    +Inductive trace_to dest : list nat Hydra Prop :=
    +  trace_to1 : n h, round_n n h dest trace_to dest (n:: nil) h
    +| trace_toS : n t h h', round_n n h h' trace_to dest t h'
    +                                 trace_to dest (n:: t) h.
    + +
    +Definition trace t h h' := trace_to h' t h.
    + +
    +
    + +
    + +
    + + Let be an hydra and and expected replication factor. The next step of + the current battle may be specified by the following type +
    +
    + +
    +Definition round_spec h n :=
    +  {h' : Hydra | round_n n h h'} + {h = head}.
    + +
    +
    + +
    +

    Classes of battles

    + + +
    + +In an hydra battle, the interaction between the two players may depend on the time (number of rounds) elapsed since the beginning of the fight. + +
    + +Let us formalize this dependence through a relation linking the number of the current round, and the hydra before and after the considered round. + +
    + + +
    +
    + +
    +Definition round_t := nat Hydra Hydra Prop.
    + +
    +Class Battle :=
    +  { battle_rel : round_t;
    +    battle_ok : i h h', battle_rel i h h' round h h'}.
    + +
    +Arguments battle_rel : clear implicits.
    + +
    +
    + +
    +In the current state of this development, we will consider two instances of class Battle: + +
    + +
      +
    • In free, we hydra may chose any replication factor at any time. + +
      + + +
    • +
    • In standard the replication factor at round number i is just i + +
    • +
    + +
    +
    + +
    +#[ global, refine ] Instance free : Battle
    +  := Build_Battle (fun _ h h'round h h') _.
    + +
    + +
    +#[ global, refine] Instance standard : Battle :=
    +  Build_Battle round_n _.
    + +
    +
    + +
    + The following relation allows us to consider sequences of rounds in a given class of battles + +
    + + The proposition rounds b i h j h' holds if there is a battle of class B that + starts with hydra h at round i and ends with hydra h' at round j + +
    +
    + +
    +Inductive rounds (B:Battle)
    +  : nat Hydra nat Hydra Prop :=
    +  rounds_1 : i h h',
    +    battle_rel B i h h' rounds B i h (S i) h'
    +| rounds_n : i h j h' h'',
    +    battle_rel B i h h''
    +    rounds B (S i) h'' j h'
    +    rounds B i h j h'.
    + +
    +
    + +
    +number of steps leading to the hydra's death +
    +
    + +
    +Definition battle_length B k h l :=
    +    rounds B k h (Nat.pred (k + l)%nat) head.
    + +
    +#[deprecated(note="use rounds")]
    +  Notation battle := rounds (only parsing).
    + +
    +
    + +
    +

    Uniform termination

    + +
    +
    + +
    + +
    +Definition Termination := well_founded (transp _ round).
    + +
    + +
    +Definition B_termination (B: Battle) :=
    +  well_founded (fun h' h i:nat, battle_rel B i h h' ).
    + +
    +
    + +
    +

    Variants for proving termination

    + + +
    +
    + +
    + +
    +Class Hvariant {A:Type}{Lt:relation A}
    +      (Wf: well_founded Lt)(B : Battle)
    +      (m: Hydra A): Prop :=
    +  {variant_decr: i h h',
    +      h head battle_rel B i h h' Lt (m h') (m h)}.
    + +
    + +
    +
    + +
    +Variant bounded by some ordinal alpha < epsilon0

    Strictly Bounded variants

    + +
    +
    + +
    + +
    +Class BoundedVariant {A:Type}{Lt:relation A}
    +      {Wf: well_founded Lt}{B : Battle}
    +      {m: Hydra A} (Var: Hvariant Wf B m)(mu:A):=
    +  { m_bounded: h, Lt (m h ) mu }.
    + +
    + +
    + +
    +
    + +
    +

    Liveness

    + + +
    + + For every reachable configuration (i,h), either h is a head, or + there exists a beheading leading to some configuration (S i, h'). + +
    +
    + +
    +Definition Alive (B : Battle) :=
    +   i h, h head {h' : Hydra | battle_rel B i h h'}.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Hydra.Hydra_Examples.html b/theories/html/hydras.Hydra.Hydra_Examples.html new file mode 100644 index 00000000..227baca5 --- /dev/null +++ b/theories/html/hydras.Hydra.Hydra_Examples.html @@ -0,0 +1,168 @@ + + + + + +hydras.Hydra.Hydra_Examples + + + + +
    + + + +
    + +

    Library hydras.Hydra.Hydra_Examples

    + +
    + +
    +From Coq Require Import Arith Lia.
    +From hydras Require Import Hydra_Lemmas More_Arith.
    +Open Scope nat_scope.
    + +
    +Check Hydra_rect2.
    + +
    +Module Examples.
    + +
    +  Example ex1 : h h', R1 (hyd3 h head h') (hyd2 h h').
    + +
    +  Example Hy := hyd3 head
    +                     (hyd2
    +                        (hyd1
    +                           (hyd2 head head))
    +                        head)
    +                     head.
    + +
    + +
    + +
    +  Example Hy' := hyd2 head
    +                      (hyd2
    +                         (hyd1
    +                            (hyd2 head head))
    +                         head).
    + +
    + +
    +  Example ex4: round Hy Hy'.
    + +
    +  Example Hy'' :=
    +    hyd2 head
    +         (hyd2
    +            (hyd_mult (hyd1 head) 5)
    +            head).
    + +
    +  Example Hy'H'' : round Hy' Hy''.
    + +
    +  Example R2_example: R2 4 Hy' Hy''.
    + +
    +move to 2nd sub-hydra (0-based indices)
    +
    +
    + +
    +move to first sub-hydra
    +
    +
    + +
    +we're at distance 2 from the to-be-chopped-off head + let's go to the first daughter, + then chop-off the leftmost head
    +
    + +
    +  Example Exx : {h' | round Hy' h'}.
    + +
    + +
    +  Example Ex5 : {h' | Hy -*-> h'}.
    + +
    +  Example Hy''' :=
    +    node (hcons head
    +                (hcons_mult (hyd1 (hyd_mult (hyd1 head) 5)) 3 hnil)).
    + +
    + +
    + +
    +  Example hsize_bigger : (hsize Hy'' < hsize Hy''')%nat.
    + +
    + +
    +  Example height_not_strictly_decreasing : height Hy'' = height Hy'''.
    + +
    + +
    +  Example Hy_1 : R1 Hy Hy'. +
    + +
    + +
    +  Example Hy_2 : R2 4 Hy' Hy''.
    + +
    +  Example ex_2 :{Hy'' | R2 4 Hy' Hy''}.
    + +
    + +
    +  Example Hy_3 : R2 2 Hy'' Hy'''.
    + +
    +  Example Hy''_Hy''' : Hy'' -1-> Hy'''.
    + +
    +  Example Hy_Hy''' : Hy -+-> Hy'''.
    + +
    +End Examples.
    + +
    + +
    +Check Hydra_ind.
    + +
    + +
    +Module Bad.
    +  Lemma height_lt_size (h:Hydra) : height h < hsize h. End Bad.
    + +
    + +
    + Lemma height_lt_size (h:Hydra) : height h < hsize h.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Hydra.Hydra_Extraction.html b/theories/html/hydras.Hydra.Hydra_Extraction.html new file mode 100644 index 00000000..23efd715 --- /dev/null +++ b/theories/html/hydras.Hydra.Hydra_Extraction.html @@ -0,0 +1,37 @@ + + + + + +hydras.Hydra.Hydra_Extraction + + + + +
    + + + +
    + +

    Library hydras.Hydra.Hydra_Extraction

    + +
    +From hydras Require Import Hydra_Lemmas.
    + +
    +Extraction Language OCaml.
    +Recursive Extraction classic_battle next_round.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Hydra.Hydra_Lemmas.html b/theories/html/hydras.Hydra.Hydra_Lemmas.html new file mode 100644 index 00000000..d3198a4e --- /dev/null +++ b/theories/html/hydras.Hydra.Hydra_Lemmas.html @@ -0,0 +1,331 @@ + + + + + +hydras.Hydra.Hydra_Lemmas + + + + +
    + + + +
    + +

    Library hydras.Hydra.Hydra_Lemmas

    + +
    +
    + +
    + Pierre Casteran + LaBRI, Université de Bordeaux + +
    +
    + +
    +From Coq Require Import Arith Lia List Relation_Operators
    +     Operators_Properties Peano_dec Wellfounded.Inverse_Image
    +     Wellfounded.Inclusion.
    + +
    +From hydras Require Import More_Arith Epsilon0 Hessenberg
    +     Simple_LexProd MoreLibHyps.
    + +
    +From hydras Require Export Hydra_Definitions.
    +Import Relations.
    +Open Scope nat_scope.
    + +
    +
    + +
    +

    Properties of the hydra data type

    + + +
    +
    + +
    +Lemma add_r_0 : h: Hydra, add_r h 0 = h.
    + +
    +Lemma hy_app_assoc :
    +   (s1 s2 s3 : Hydrae) ,
    +    hy_app s1 (hy_app s2 s3) = hy_app (hy_app s1 s2) s3.
    + +
    +Lemma hcons_mult_app : (h: Hydra) (n :nat) (s s': Hydrae),
    +    hcons_mult h n (hy_app s s') =
    +    hy_app (hcons_mult h n s) s'.
    + +
    +Lemma hcons_mult_comm :
    +   i h s,
    +    hcons_mult h i (hcons h s) = hcons h (hcons_mult h i s).
    + +
    + +
    +Lemma R1_iff s s' : R1 (node s) (node s') S0 s s'.
    + +
    +Lemma R2_iff i s s' : R2 i (node s) (node s')
    +                      S1 i s s' S2 i s s'.
    + +
    +Lemma S2_iff : n h h' s s',
    +    S2 n (hcons h s) (hcons h' s')
    +    R2 n h h' s = s'
    +                 h = h' S2 n s s'.
    + +
    +Lemma S0_app : s1 s2 s3, S0 s2 s3
    +                                S0 (hy_app s1 s2)
    +                                   (hy_app s1 s3).
    + +
    +Lemma R1_app : s1 s2 s3,
    +    R1 (node s2) (node s3)
    +    R1 (node (hy_app s1 s2)) (node (hy_app s1 s3)).
    + +
    +Lemma S1_app n : s1 s2 s3,
    +    S1 n s2 s3 S1 n (hy_app s1 s2) (hy_app s1 s3).
    + +
    + +
    +
    + +
    +Induction Schemes for R2 +
    +
    + +
    +Scheme R2_ind2 := Induction for R2 Sort Prop
    +                  with
    +                  S2_ind2 := Induction for S2 Sort Prop.
    +Arguments R2_ind2 n P P0 : rename.
    +Arguments S2_ind2 n P P0 : rename.
    + +
    +Lemma S2_app : n s1 s2 ,
    +    S2 n s1 s2
    +     l, S2 n (hy_app l s1) (hy_app l s2).
    + +
    +Lemma R2_app n : s1 s2 ,
    +    R2 n (node s1) (node s2)
    +     l, R2 n (node (hy_app l s1))
    +                  (node (hy_app l s2)).
    + +
    +Lemma hcons_mult_S0 : h i s s' ,
    +                             S0 s s'
    +                             S0 (hcons_mult h i s)
    +                                (hcons_mult h i s').
    + +
    +Lemma hcons_mult_S1 n : h i s s' , S1 n s s'
    +                                         S1 n (hcons_mult h i s)
    +                                              (hcons_mult h i s').
    + +
    +Lemma hcons_mult_S2 n : h i s s' , S2 n s s'
    +                                            S2 n (hcons_mult h i s)
    +                                               (hcons_mult h i s').
    + +
    +
    + +
    +

    Properties of single rounds

    + +
    +
    + +
    +Lemma head_no_round_n : i h, ¬ round_n i head h.
    + +
    +Lemma head_no_round : h, ¬ round head h.
    + +
    +
    + +
    +

    Properties of battle

    + +
    +
    + +
    +Lemma rounds_trans {B:Battle} :
    +   i h j h', rounds B i h j h'
    +                    k h0, rounds B k h0 i h
    +                                 rounds B k h0 j h'. +
    +
    + +
    +

    Properties of standard and free battle classes

    + +
    +
    + +
    +Lemma standard_incl_free : i h h',
    +     battle_rel standard i h h' battle_rel free i h h' .
    + +
    +Lemma standard_battle_head :
    +   i h j h',
    +    @rounds standard i h j h' h head.
    + +
    +
    + +
    +

    Generic properties of round_plus

    + +
    +
    + +
    +Lemma round_plus_trans : h h' h'', h -+-> h'
    +                                      h' -+-> h''
    +                                      h -+-> h''.
    + +
    +Lemma S0_remove_r : l , S0 (add_head_r l) l.
    + +
    +Lemma S0_remove_r_i : i l, S0 (add_head_r_plus l (S i))
    +                                     (add_head_r_plus l i).
    + +
    +Lemma R1_remove_r_i : i h,
    +                       R1 (add_r h (S i)) (add_r h i).
    + +
    +Lemma round_n_remove_h : i j h,
    +    round_n j (add_r h (S i)) (add_r h i).
    + +
    +Lemma remove_heads_r : i h j, rounds standard
    +                                       j
    +                                       (add_r h (S i))
    +                                       (S i+j)%nat
    +                                       h.
    + +
    +Lemma remove_heads_r_free: i h j, rounds free
    +                                       j
    +                                       (add_r h (S i))
    +                                       (S i+j)%nat
    +                                       h.
    + +
    +Lemma variant_mono_free {A:Type} {Lt: relation A}{Tr : Transitive Lt}
    +      {Wf: well_founded Lt} m {V: Hvariant Wf free m}:
    +   i h j h', rounds free i h j h' Lt (m h') (m h).
    + +
    +Lemma m_strict_mono {A:Type} {Lt: relation A}{St: StrictOrder Lt}
    +      {Wf: well_founded Lt} m (V: @Hvariant _ _ Wf free m){h h':Hydra}:
    +  h -+-> h' Lt (m h') (m h).
    + +
    + +
    +
    + +
    +companion lemmas for R1 and R2 +
    +
    + +
    +Lemma round_n_inv i h h' : round_n i h h' R1 h h' R2 i h h'.
    + +
    +Lemma rounds_free_equiv1 : i j h h',
    +    rounds free i h j h'
    +    h -+-> h'.
    + +
    +Lemma rounds_free_equiv2 : h h',
    +     h -+-> h'
    +     i, j, rounds free i h j h'.
    + +
    +Lemma Termination_strong (B:Battle) :
    +   Termination B_termination B.
    + +
    +Lemma Hvariant_Termination {A : Type} {lt : relation A}
    +      (Hwf : well_founded lt) (m : Hydra A) :
    +  @Hvariant _ _ Hwf free m Termination.
    + +
    + +
    +
    + +
    +If the hydra is not reduced to a head, there exists at + least one head that Hercules can chop off +
    +
    + +
    +Definition next_round_dec n (h: Hydra) :
    +  (h = head) + {h' : Hydra & {R1 h h'} + {R2 n h h'}}.
    + +
    +chose a lowest head +
    +
    + +
    + +
    +Definition next_round n :
    h , round_spec h n.
    + +
    +Definition next_step (f : n h, round_spec h n) n h :=
    +  match f n h with
    +      inright _head
    +    | inleft (exist _ h' _) ⇒ h'
    +  end.
    + +
    +Definition classic_battle f t h :=
    +  let fix go n t h :=
    +      match h, t with head, _h
    +                   | _, 0 ⇒ h
    +                | _, S t'go (S n) t' (next_step f n h)
    +      end
    +  in go 1 t h.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Hydra.Hydra_Termination.html b/theories/html/hydras.Hydra.Hydra_Termination.html new file mode 100644 index 00000000..bad611a9 --- /dev/null +++ b/theories/html/hydras.Hydra.Hydra_Termination.html @@ -0,0 +1,173 @@ + + + + + +hydras.Hydra.Hydra_Termination + + + + +
    + + + +
    + +

    Library hydras.Hydra.Hydra_Termination

    + +
    +
    + +
    +

    Proof of termination of all hydra battles

    + +
    + + Pierre Casteran, Univ. Bordeaux, LaBRI, UMR 5800 +
    +
    + +
    + +
    +From hydras Require Export Hydra_Lemmas.
    +From hydras Require Import E0 Hessenberg.
    +Import ON_Generic.
    + +
    +
    + +
    +

    Converting any hydra into an ordinal less than

    + + epsilon0 + +
    + + +
    +
    + +
    +Fixpoint m (h:Hydra) : T1 :=
    +  match h with headT1.zero
    +             | node hsms hs
    +end
    +with ms (s:Hydrae) : T1 :=
    +  match s with hnilT1.zero
    +              | hcons h s'T1.phi0 (m h) o+ ms s'
    end.
    + +
    + +
    +Lemma ms_eqn2 : h s, ms (hcons h s) = T1.phi0 (m h) o+ ms s.
    + +
    +Lemma o_finite_mult_S_rw :
    +   n a, o_finite_mult (S n) a = a o+ o_finite_mult n a.
    + +
    +
    + +
    + The functions m and ms return well formed ordinals (less than epsilon0) + +
    +
    + +
    +Lemma m_nf : h, nf (m h).
    + +
    +Lemma ms_nf : s, nf (ms s).
    + +
    +#[global] Hint Resolve m_nf nf_phi0 ms_nf : T1.
    + +
    +Lemma ms_eqn3 : h n s, ms (hcons_mult h n s) =
    +                                o_finite_mult n (T1.phi0 (m h)) o+ ms s.
    + +
    +
    + +
    +

    Monotonicity lemmas for S0, R1, etc .

    + +
    +
    + +
    +Open Scope t1_scope.
    + +
    +Lemma S0_decr_0 :
    +   s s', S0 s s' T1.lt (ms s') (ms s).
    + +
    +Lemma S0_decr:
    +   s s', S0 s s' ms s' t1< ms s.
    + +
    +Lemma R1_decr_0 : h h',
    +                  R1 h h' T1.lt (m h') (m h).
    + +
    + +
    +Lemma R1_decr :
    +   h h', R1 h h' m h' t1< m h. +
    +Lemma S1_decr_0 n:
    +   s s', S1 n s s' T1.lt (ms s') (ms s).
    + +
    + +
    +Lemma S1_decr n:
    +   s s', S1 n s s' ms s' t1< ms s. +
    + +
    +Lemma m_ms : s, m (node s) = ms s.
    + +
    +Lemma R2_decr_0 n : h h', R2 n h h' T1.lt (m h') (m h).
    + +
    + +
    +Lemma R2_decr n : h h', R2 n h h' m h' t1< m h. +
    + +
    +Lemma round_decr : h h', h -1-> h' m h' t1< m h.
    + +
    +#[ global, program ] Instance var (h:Hydra) : E0:= @mkord (m h) _.
    + +
    +#[global] Instance HVariant_0 : Hvariant T1_wf free m.
    + +
    + +
    +#[global] Instance HVariant : Hvariant Epsilon0 free var.
    + +
    +Theorem every_battle_terminates : Termination.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Hydra.Hydra_Theorems.html b/theories/html/hydras.Hydra.Hydra_Theorems.html new file mode 100644 index 00000000..9a241902 --- /dev/null +++ b/theories/html/hydras.Hydra.Hydra_Theorems.html @@ -0,0 +1,240 @@ + + + + + +hydras.Hydra.Hydra_Theorems + + + + +
    + + + +
    + +

    Library hydras.Hydra.Hydra_Theorems

    + +
    +
    + +
    +Pierre Castéran, Univ. Bordeaux and LaBRI +
    + + +
    +

    Liveness

    + + +
    + + If the hydra is not reduced to one head, then Hercules can chop off + some head + +
    +
    + +
    +Corollary Alive_free : Alive free. +
    +Corollary Alive_standard : Alive standard. +
    + +
    +
    + +
    +

    Termination of free battles

    + + +
    + + +
    +

    Impossibility theorems

    + + +
    + + Termination of free battles cannot be proven with a variant from hydras into a segment with + +
    + + +
    + + Impossiblity to define a variant bounded by some ordinal less than + epsilon0 +
    +
    + +
    +Check Impossibility_free.
    + +
    +About battle_length_std.
    + +
    +Open Scope nat_scope.
    + +
    + +
    +Theorem battle_length_std_Hardy (alpha : E0) :
    +  alpha E0zero
    +   k , 1 k
    +              l: nat,
    +               H'_ alpha k - k l
    +               battle_length standard k (iota (cnf alpha)) l.
    + +
    + +
    +
    + +
    +

    Battle length is not PR

    + +
    +
    + +
    +From hydras Require Import primRec F_alpha AckNotPR
    +  PrimRecExamples F_omega.
    +Import E0.
    + +
    + +
    +Section battle_length_notPR.
    + +
    +  Context (H: alpha, isPR 1 (l_std alpha)).
    + +
    + +
    +
    + +
    +A counter example +
    +
    + +
    + +
    +  Let alpha := E0_phi0 E0_omega.
    +  Let h := iota (cnf alpha).
    + +
    + +
    +
    + +
    +let us get rid of the substraction ... +
    +
    + +
    + +
    +  Let m k := L_ alpha (S k).
    + +
    +  Remark m_eqn : k, m k = (l_std alpha k + k)%nat. +
    + +
    +  #[local] Instance mIsPR : isPR 1 m. +
    + +
    + +
    +  Remark m_ge_F_omega k: F_ E0_omega (S k) m (S k). +
    +
    + +
    +We compare m with the Ackermann function +
    +
    + +
    +  Remark m_ge_Ack: n, 2 n Ack (S n) (S n) m (S n).
    + +
    +  Remark m_dominates_Ack_from_3 : n, 3 n Ack n n m n.
    + +
    + +
    +  Remark m_dominates_Ack :
    +    dominates (fun nS (m n)) (fun nAck.Ack n n). +
    + +
    Lemma SmNotPR : isPR 1 (fun nS (m n)) False. +
    + +
    + +
    +  Theorem LNotPR : False.
    + +
    +End battle_length_notPR.
    + +
    +Check l_std_ok.
    + +
    +Check LNotPR.
    + +
    +Search L_ F_.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Hydra.KP_example.html b/theories/html/hydras.Hydra.KP_example.html new file mode 100644 index 00000000..35136a27 --- /dev/null +++ b/theories/html/hydras.Hydra.KP_example.html @@ -0,0 +1,152 @@ + + + + + +hydras.Hydra.KP_example + + + + +
    + + + +
    + +

    Library hydras.Hydra.KP_example

    + +
    +
    + +
    +Pierre Casteran, Univ. Bordeaux and LaBRI +
    +
    + +
    From hydras Require Import Hydra_Definitions Hydra_Lemmas.
    + +
    +
    + +
    +The hydra from page 286 of KP +
    +
    + +
    +Section KP.
    +
    + +
    +initial state +
    +
    + +
    +Definition h0 : Hydra :=
    +  hyd2 (hyd2 (hyd_mult head 3)
    +             (hyd1 (hyd1 head)))
    +       (hyd2 head
    +             (hyd2 head head)).
    + +
    +Fact F1 : hsize h0 = 14.
    + +
    +Fact F2 : height h0 = 4.
    + +
    +
    + +
    + after stage 1 +
    +
    + +
    +Definition h1 :=
    +  hyd2 (hyd3 (hyd_mult head 2)
    +             (hyd_mult head 2)
    +             (hyd1 (hyd1 head)))
    +       (hyd2 head
    +             (hyd2 head head)).
    + +
    + +
    +
    + +
    +After stage 2 +
    +
    + +
    +Notation hyd4 h1 h2 h3 h4 :=
    +  (node (hcons h1 (hcons h2 (hcons h3 (hcons h4 hnil))))).
    + +
    +Let h' := hyd1 (hyd_mult head 2).
    + +
    +Definition h2 :=
    +                  hyd4 (hyd3 (hyd_mult head 2)
    +                             (hyd_mult head 2)
    +                             (hyd1 (hyd1 head)))
    +                       h' h' h'.
    + +
    +
    + +
    +After stage 3 +
    +
    + +
    +Definition h3 := hyd4
    +                   (node (hcons_mult (hyd1 head) 4
    +                                     (hcons (hyd2 head head)
    +                                            (hcons (hyd1 (hyd1 head))
    +                                                   hnil))))
    +                   h' h' h'.
    + +
    +Fact h0_h1 : round_n 1 h0 h1.
    + +
    +Fact h1_h2 : round_n 2 h1 h2.
    + +
    +Fact h2_h3 : round_n 3 h2 h3.
    + +
    +Lemma battle_example : rounds standard 1 h0 4 h3.
    + +
    +
    + +
    += 28 +
    +
    + +
    +End KP.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Hydra.O2H.html b/theories/html/hydras.Hydra.O2H.html new file mode 100644 index 00000000..507ce445 --- /dev/null +++ b/theories/html/hydras.Hydra.O2H.html @@ -0,0 +1,256 @@ + + + + + +hydras.Hydra.O2H + + + + +
    + + + +
    + +

    Library hydras.Hydra.O2H

    + +
    +
    + +
    +Injection from ordinals (less than epsilon0) in CNF into hydras. + +
    + + Pierre Castéran, LaBRI and Univ. Bordeaux + +
    + +We define a function iota : T1 Hydra such that if alpha < beta, then there exists a battle from iota beta to iota alpha. + +
    + +Note that iota is not a bijection, but is sufficient for proving +impossibility lemmas or minoration of battle lengths (see Hydra_Theorems). + +
    +
    + +
    +From Coq Require Import Relation_Operators.
    + +
    +From hydras Require Import Hydra_Lemmas Epsilon0 Canon Paths .
    +Import Hydra_Definitions.
    + +
    +
    + +
    +Let us transform any ordinal term into an hydra +
    +
    + +
    + +
    +Fixpoint iota (a : T1) : Hydra :=
    +  match a with
    +  | zerohead
    +  | cons c n bnode (hcons_mult (iota c) (S n) (iotas b))
    +  end
    +with iotas (a : T1) : Hydrae :=
    +       match a with
    +       | zerohnil
    +       | cons a0 n bhcons_mult (iota a0) (S n) (iotas b)
    +       end.
    + +
    +
    + +
    + We now prove a lot of technical lemmas that relate Hydras and +ordinals. +
    +
    + +
    +Lemma iota_iotas : alpha, nf alpha
    +                                 node (iotas alpha) = iota alpha .
    + +
    +Lemma iotas_succ : alpha, nf alpha
    +                                 iotas (T1.succ alpha) =
    +                                 hy_app (iotas alpha) (hcons head hnil).
    + +
    +Lemma hy_app_l_nil : l, hy_app l hnil = l.
    + +
    +Lemma iota_succ_R1 : o, nf o R1 (iota (T1.succ o)) (iota o).
    + +
    +Lemma iota_succ_round_n : i alpha,
    +    nf alpha round_n i (iota (T1.succ alpha)) (iota alpha).
    + +
    +Lemma iota_succ_round : o, nf o iota (T1.succ o) -1-> iota o.
    + +
    +Lemma iota_rw1 :
    +   i alpha, nf alpha T1limit alpha = true
    +                   iota (canon (cons alpha 0 zero) (S i)) =
    +                   hyd1 (iota (canon alpha (S i))).
    + +
    +Lemma iota_rw2 :
    +   i n alpha, nf alpha T1limit alpha = true
    +                     iota (canon (cons alpha (S n) zero) (S i)) =
    +                     node (hcons_mult (iota alpha) (S n)
    +                                      (hcons
    +                                         (iota (canon alpha (S i))) hnil)).
    + +
    +Lemma iota_rw3 :
    +   i alpha, nf alpha
    +                    iota (canon (cons (T1.succ alpha) 0 zero) (S i)) =
    +                    node (hcons_mult (iota alpha) (S i) hnil).
    + +
    +Lemma iota_rw4 :
    +   i n alpha , nf alpha
    +                       iota (canon (cons (T1.succ alpha) (S n) zero) (S i)) =
    +                       node (hcons_mult (iota (T1.succ alpha)) (S n)
    +                                        (hcons_mult (iota alpha) (S i) hnil)).
    + +
    +Lemma iota_tail :
    +   i alpha n beta,
    +    nf (cons alpha n beta)
    +    beta zero
    +    iota (canon (cons alpha n beta) (S i)) =
    +    node (hcons_mult (iota alpha) (S n) (iotas (canon beta (S i)))).
    + +
    +Lemma R1_hcons : h s1 s2, R1 (node s1) (node s2)
    +                                 R1 (node (hcons h s1)) (node (hcons h s2)).
    + +
    +Lemma R1_hcons_mult : n h s1 s2,
    +    R1 (node s1) (node s2)
    +    R1 (node (hcons_mult h n s1))
    +       (node (hcons_mult h n s2)).
    + +
    +Lemma R1_R2 : h h', R1 h h' R2 0 (hyd1 h) (hyd1 h').
    + +
    + +
    +Inductive mem_head : Hydrae Prop :=
    +  hh_1 : s, mem_head (hcons head s)
    +| hh_2 : h s, mem_head s mem_head (hcons h s).
    + +
    +Lemma S0_mem_head : s s', S0 s s' mem_head s.
    + +
    +Lemma mem_head_mult_inv : n h s, mem_head (hcons_mult h n s)
    +                                        h = head mem_head s.
    + +
    +Lemma R1_mem_head : l l', R1 (node l) (node l') mem_head l.
    + +
    +Lemma limit_no_head : alpha, nf alpha T1limit alpha = true
    +                                    ¬ mem_head (iotas alpha).
    + +
    +Lemma limit_no_R1 : alpha, nf alpha
    +                                  T1limit alpha = true
    +                                   h', ¬ R1 (iota alpha) h'.
    + +
    +Lemma iota_of_succ :
    +   beta, nf beta
    +               iota (T1.succ beta) =
    +               match (iota beta) with
    +                 node snode (hy_app s (hcons head hnil))
    +               end.
    + +
    + +
    +Lemma canonS_iota_i : i alpha , nf alpha alpha zero
    +                                round_n i (iota alpha) (iota (canon alpha (S i))).
    + +
    + +
    +Lemma canonS_iota i a :
    +  nf a a 0 iota a -1-> iota (canon a (S i)). +
    +  Lemma canonS_rel_rounds : n alpha beta,
    +      nf alpha nf beta
    +      alpha zero
    +      beta = canon alpha (S n)
    +      iota alpha -+-> iota beta.
    + +
    +Lemma trace_to_round_plus h' : t h, trace_to h' t h round_plus h h'.
    + +
    +Import MoreLists.
    + +
    +Lemma trace_to_std i h j h': (i j)%nat
    +                             trace_to h' (interval i j) h
    +                             rounds standard i h (S j) h'.
    + +
    +Lemma path_toS_trace alpha s beta :
    +  path_toS beta s alpha nf alpha trace_to (iota beta) s (iota alpha).
    + +
    +  Lemma path_toS_round_plus alpha s beta :
    +    path_toS beta s alpha nf alpha
    +    iota alpha -+-> iota beta.
    + +
    + +
    +  Lemma path_to_round_plus a s b :
    +    path_to b s a nf a iota a -+-> iota b. +
    + +
    +  Lemma acc_from_to_round_plus alpha beta :
    +    nf alpha nf beta alpha 0
    +    acc_from alpha beta iota alpha -+-> iota beta.
    + +
    +
    + +
    +Any strict inequality on T1 can be converted into a (free) battle +
    +
    + +
    + +
    +  Lemma LT_to_round_plus a b : b t1< a iota a -+-> iota b.
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Hydra.Omega2_Small.html b/theories/html/hydras.Hydra.Omega2_Small.html new file mode 100644 index 00000000..a2afad1f --- /dev/null +++ b/theories/html/hydras.Hydra.Omega2_Small.html @@ -0,0 +1,200 @@ + + + + + +hydras.Hydra.Omega2_Small + + + + +
    + + + +
    + +

    Library hydras.Hydra.Omega2_Small

    + +
    +
    + +
    +Pierre Castéran, University of Bordeaux and LaBRI +
    +
    + +
    +From Coq Require Import Arith Peano_dec Lia Relations Relation_Operators.
    +From hydras Require Import Hydra_Lemmas Simple_LexProd ON_Omega2.
    +Import ON_Generic.
    + +
    +
    + +
    +There is no measure into omega^2 for proving termination +of all hydra battles +
    +
    + +
    + +
    +Section Impossibility_Proof.
    + +
    +
    + +
    +Let us assume there is a variant from Hydra into omega^2 + for proving the termination of all hydra battles +
    +
    + +
    + +
    +  Variable m : Hydra rep Omega2.
    +  Context
    +    (Hvar: Hvariant Omega2 free m).
    + +
    + +
    + +
    +  Let big_h := hyd1 (hyd2 head head).
    + +
    + +
    +
    + +
    +To every pair of natural numbers we associate an hydra + with branches of length 2 and branches of length 1 +
    +
    + +
    + +
    +  Let iota (p: ON_Omega2.t) :=
    +    node (hcons_mult (hyd1 head) (fst p)
    +                     (hcons_mult head (snd p) hnil)).
    + +
    + +
    + +
    +  Let small_h := iota (m big_h).
    + +
    +
    + +
    +

    Proof of the inequality m small_h o< m big_h

    + + +
    +
    + +
    +  #[local] Hint Constructors R1 S1 S2 : hydra.
    + +
    +  Lemma m_big_h_not_null : m big_h zero.
    + +
    + +
    +  Lemma big_to_small : big_h -+-> small_h. +
    + +
    + +
    +  Corollary m_lt : m small_h o< m big_h.
    + +
    + +
    +
    + +
    +

    Proof of the inequality m big_h o m small_h

    + +
    + +

    Let us decompose any inequality p o< q into elementary steps

    + +
    +
    + +
    + +
    +  Inductive step : t t Prop :=
    +  | succ_step : i j, step (i, S j) (i, j)
    +  | limit_step : i j, step (S i, 0) (i, j).
    + +
    + +
    +  Lemma succ_rounds : i j, iota (i,S j) -+-> iota (i, j).
    + +
    +  Lemma limit_rounds_0 :
    +     i j, round_n j (iota (S i, 0)) (iota (i, S j)).
    + +
    +  Lemma limit_rounds : i j, iota (S i, 0) -+-> iota (i, j).
    + +
    +  #[local] Hint Constructors step clos_trans_1n : hydra.
    +  #[local] Hint Resolve lex_1 lex_2: hydra.
    +  #[local] Hint Unfold lt : hydra.
    + +
    + +
    +  Lemma step_to_battle : p q, step p q iota p -+-> iota q. +
    +  #[local] Hint Resolve step_to_battle : hydra.
    + +
    + +
    + +
    +  Lemma m_ge : m big_h o m small_h. +
    + +
    + +
    + +
    +  Theorem Impossible : False.
    + +
    +End Impossibility_Proof.
    + +
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Hydra.Omega_Small.html b/theories/html/hydras.Hydra.Omega_Small.html new file mode 100644 index 00000000..ff14d33a --- /dev/null +++ b/theories/html/hydras.Hydra.Omega_Small.html @@ -0,0 +1,147 @@ + + + + + +hydras.Hydra.Omega_Small + + + + +
    + + + +
    + +

    Library hydras.Hydra.Omega_Small

    + +
    +
    + +
    +Pierre Castéran, University of Bordeaux and LaBRI +
    +
    + +
    +From Coq Require Import Arith Lia.
    +From hydras Require Import Hydra_Lemmas ON_Generic ON_Omega.
    +Open Scope nat_scope.
    + +
    +#[global] Instance height_var : Hvariant Omega free height.
    +Abort.
    + +
    +Lemma height_bad : ¬ Hvariant Omega free height.
    + +
    +
    + +
    +There is no measure into omega for proving termination +of all hydra battles +
    +
    + +
    + +
    +Section Impossibility_Proof.
    + +
    +
    + +
    +Let us assume there exists a variant from Hydra into nat + for proving the termination of all hydra battles + Omega is an ordinal notation for the least infinite ordinal + omega, whose members are the natural numbers. + +
    +
    + +
    +  Variable m : Hydra nat.
    +  Context (Hvar : Hvariant Omega free m).
    + +
    + +
    + +
    +  Let iota (i: nat) := hyd_mult head (S i).
    + +
    + +
    + +
    +  Let big_h := hyd1 (hyd1 head).
    + +
    + +
    + +
    +  Let small_h := iota (m big_h).
    + +
    +  Fact big_to_small: i, battle_rel free i big_h small_h. +
    + +
    +  #[local] Hint Resolve big_to_small : hydra.
    + +
    + +
    + +
    +  Lemma m_lt : m small_h < m big_h.
    + +
    + +
    + +
    +
    + +
    + In order to find a contradiction, we prove the inequality + m big_h <= m small_h, i.e. m big_h <= m (iota (m h)) + +
    + + For that purpose, we prove the inequality i <= m (iota i) for any i + +
    +
    + +
    +  Lemma round_S: i n, battle_rel free n (iota (S i)) (iota i).
    + +
    +  Lemma m_ge : m big_h m small_h.
    + +
    +  Theorem Contradiction : False.
    + +
    +End Impossibility_Proof.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.MoreAck.Ack.html b/theories/html/hydras.MoreAck.Ack.html new file mode 100644 index 00000000..4c274707 --- /dev/null +++ b/theories/html/hydras.MoreAck.Ack.html @@ -0,0 +1,420 @@ + + + + + +hydras.MoreAck.Ack + + + + +
    + + + +
    + +

    Library hydras.MoreAck.Ack

    + +
    +From hydras Require Export Iterates Exp2.
    +From Coq Require Import Lia.
    +From Coq Require Import Program.Wf Arith.
    +From hydras Require Import ssrnat_extracts.
    + +
    +
    + +
    +The famous Ackermann function +
    + + The following definition fails, because Coq cannot guess a + decreasing argument. + +
    +
    + +
    + +
    +Fail
    +  Fixpoint Ack (m n : nat) : nat :=
    +  match m, n with
    +  | 0, nS n
    +  | m.+1, 0 ⇒ Ack m 1
    +  | m0.+1, p.+1Ack m0 (Ack m p)
    +  end.
    + +
    + +
    +
    + +
    +Definition (with inner fixpoint) +
    +
    + +
    +Module Alt.
    + +
    +  Fixpoint Ack (m n : nat) : nat :=
    +    match m with
    +    | On.+1
    +    | p.+1let fix Ackm (n : nat) :=
    +                 match n with
    +                 | OAck p 1
    +                 | S qAck p (Ackm q)
    +                 end
    +             in Ackm n
    +    end.
    + +
    + +
    +End Alt.
    + +
    +
    + +
    +Definition using the iterate functional: +
    +   iterate : forall {A : Type}, (A -> A) -> nat -> A -> A
    +
    + +
    + +Allows to infer monotony properties of Ack (S m) from Ack m. + +
    + + +
    +
    + +
    +Fixpoint Ack (m:nat) : nat nat :=
    +  match m with
    +  | 0 ⇒ S
    +  | n.+1fun kiterate (Ack n) k.+1 1
    +  end.
    + +
    + +
    + +
    +
    + +
    +Using the lexicographic ordering + (post by Anton Trunov in stackoverflow (May 2018)) +
    +
    + +
    +   Definition lex_nat (ab1 ab2 : nat × nat) : Prop :=
    +    match ab1, ab2 with
    +    | (a1, b1), (a2, b2)
    +      (a1 < a2) ((a1 = a2) (b1 < b2))
    +    end.
    + +
    + +
    +
    + +
    +this is defined in stdlib, but unfortunately it is opaque +
    +
    +  Lemma lt_wf_ind :
    +     n (P:nat Prop), ( n, ( m, m < n P m) P n) P n.
    + +
    +
    + +
    +this is defined in stdlib, but unfortunately it is opaque too +
    +
    +  Lemma lt_wf_double_ind :
    +     P:nat nat Prop,
    +      ( n m,
    +          ( p (q:nat), p < n P p q)
    +          ( p, p < m P n p) P n m) n m, P n m.
    + +
    + +
    +  Lemma lex_nat_wf : well_founded lex_nat.
    + +
    + +
    + +
    +Module Alt2.
    + +
    +  Program Fixpoint Ack (ab : nat × nat) {wf lex_nat ab} : nat :=
    +    match ab with
    +    | (0, b)b.+1
    +    | (a.+1, 0)Ack (a, 1)
    +    | (a.+1, b.+1)Ack (a, Ack (a.+1, b))
    +    end.
    +  Example test1 : Ack (1, 2) = 4 := refl_equal.
    + +
    +  Example test2 : Ack (3, 4) = 125 := refl_equal.
    + +
    +End Alt2.
    + +
    +
    + +
    +With the Equations plug-in +
    +
    + +
    +From Equations Require Import Equations.
    + +
    +#[ global ] Instance Lex_nat_wf : WellFounded lex_nat.
    +Defined.
    + +
    +Module Alt3.
    + +
    +  Equations ack (p : nat × nat) : nat by wf p lex_nat :=
    +    ack (0, n) := n.+1 ;
    +    ack (m.+1, 0) := ack (m, 1);
    +    ack (m.+1, n.+1) := ack (m, ack (m.+1, n)).
    + +
    +End Alt3.
    + +
    +
    + +
    +

    Exercise

    + + +
    + + Prove that the four definitions of the Ackermann function + Ack , Alt.Ack, Alt2.Ack, and Alt3.ack are extensionnally equal + +
    + +

    Usual equations

    + +
    +
    + +
    + +
    + +
    +Lemma Ack_0 : Ack 0 = S.
    + +
    +Lemma Ack_S_0 m : Ack m.+1 0 = Ack m 1.
    + +
    +Lemma Ack_S_S : m p,
    +    Ack m.+1 p.+1 = Ack m (Ack m.+1 p).
    + +
    + +
    +
    + +
    +

    First values

    + +
    +
    + +
    + +
    +Lemma Ack_1_n n : Ack 1 n = n.+2. +
    + +
    +Lemma Ack_2_n n: Ack 2 n = 2 × n + 3. +
    + +
    +Lemma Ack_3_n n: Ack 3 n = exp2 n.+3 - 3. +
    + +
    +Lemma Ack_4_n n : Ack 4 n = hyper_exp2 n.+3 - 3. +
    +
    + +
    +

    monotony properties

    + + +
    + + We prove simultaneously 3 properties of Ack n by induction on m: +
      +
    • Ack m is strictly monotonous, + +
    • +
    • Ack m n > n + +
    • +
    • Ack m n Ack (S m) n + +
    • +
    + +
    +
    + +
    +Section Ack_Properties.
    + +
    +  Let P (m:nat) := strict_mono (Ack m)
    +                   S <<= (Ack m)
    +                   ( n, Ack m n Ack m.+1 n).
    + +
    +  Remark P0 : P 0.
    + +
    +  Section Induc_step.
    +    Variable m:nat.
    +    Hypothesis Hm : P m.
    + +
    +    Remark Rem1 : strict_mono (Ack m.+1).
    + +
    +    Remark Rem2 : S <<= Ack m.+1.
    + +
    +    Remark Ack_m_mono_weak : n p, n p
    +                                         Ack m n Ack m p.
    + +
    +    Remark Rem3 : n, Ack m.+1 n Ack m.+2 n.
    + +
    +    Lemma L5: P m.+1.
    + +
    +  End Induc_step.
    + +
    +  Lemma Ack_properties : m, P m.
    + +
    +End Ack_Properties.
    + +
    +Lemma le_S_Ack m : fun_le S (Ack m).
    + +
    +Lemma Ack_strict_mono m : strict_mono (Ack m).
    + +
    +Lemma Ack_mono_l m n : m n p, Ack m p Ack n p.
    + +
    +Lemma Ack_mono_r m: n p, n p Ack m n Ack m p.
    + +
    +
    + +
    +

    Bounding nested calls of Ack

    + + +
    + + The following inequality is applied in the proof that Ack is not primitive + recursive, allowing to eliminate patterns of the form Ack (Ack _ _ _). + +
    + +
    + Lemma nested_Ack_bound : 
    +    forall k m n, Ack k (Ack m n) <= Ack (2 + max k m) n.
    +
    + +
    +
    + +
    +Section Proof_of_nested_Ack_bound.
    + +
    +  Remark R0 (m:nat): n, 2 + n Ack (2 + m) n.
    + +
    +  Remark R1 : m n, Ack m.+1 n.+1 Ack (2 + m) n.
    + +
    +  Remark R2 (m n:nat) : Ack m (Ack m n) Ack m.+1 n.+1.
    + +
    +  Remark R3 (m n:nat) : Ack m (Ack m n) Ack m.+2 n.
    + +
    + +
    +  Lemma nested_Ack_bound k m n :
    +    Ack k (Ack m n) Ack (2 + max k m) n. +
    +End Proof_of_nested_Ack_bound.
    + +
    +Lemma Ack_Sn_plus : n p, n.+1 + p < Ack n.+1 p.
    + +
    +
    + +
    +

    Ack is (partially) strictly monotonous in its first argument

    + +
    +
    + +
    +Remark R5 m n : Ack m n.+1 < Ack m.+1 n.+1.
    + +
    + +
    +Lemma Ack_strict_mono_l : n m p, n < m
    +                                        Ack n p.+1 < Ack m p.+1. +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.MoreAck.AckNotPR.html b/theories/html/hydras.MoreAck.AckNotPR.html new file mode 100644 index 00000000..7314f20e --- /dev/null +++ b/theories/html/hydras.MoreAck.AckNotPR.html @@ -0,0 +1,351 @@ + + + + + +hydras.MoreAck.AckNotPR + + + + +
    + + + +
    + +

    Library hydras.MoreAck.AckNotPR

    + +
    +
    + +
    +

    Proof that Ack is not primitive recursive

    + + +
    + + After +planetmath page +and + Bruno Salvy's lecture. + +
    +
    + +
    +From hydras Require Import primRec Ack MoreVectors.
    +From Coq Require Import Arith ArithRing List Lia Compare_dec.
    +Import extEqualNat VectorNotations Vector.
    + +
    +
    + +
    + Uncurried apply : + v_apply f (x1::x2:: ... ::xn::nil) is f x1 x2 ... xn + +
    + + +
    +
    + +
    + +
    +Notation "'v_apply' f v" := (evalList _ v f) (at level 10, f at level 9).
    + +
    +Check [4].
    +Example Ex2 : (f: naryFunc 2) x y,
    +    v_apply f [x;y] = f x y.
    + +
    +Example Ex4 : (f: naryFunc 4) x y z t,
    +    v_apply f [x;y;z;t] = f x y z t.
    + +
    + +
    + +
    +
    + +
    +

    Comparing an n-ary and a binary functions

    + +
    +
    + +
    +Definition majorized {n} (f: naryFunc n) (A: naryFunc 2) :=
    +   (q:nat),
    +     (v: t nat n), v_apply f v A q (max_v v).
    + +
    +Definition majorizedPR {n} (x: PrimRec n) A :=
    +  majorized (evalPrimRec n x) A.
    + +
    +
    + +
    +For vectors of functions +
    +
    + +
    +Definition majorizedS {n m} (fs : Vector.t (naryFunc n) m)
    +           (A : naryFunc 2):=
    +   N, (v: t nat n),
    +      max_v (Vector.map (fun fv_apply f v) fs) A N (max_v v).
    + +
    +Definition majorizedSPR {n m} (x : PrimRecs n m) :=
    +  majorizedS (evalPrimRecs _ _ x).
    + +
    + +
    +Section evalList.
    + +
    + +
    +  Lemma evalList_Const : n (v:t nat n) x,
    +    v_apply (evalConstFunc n x) v = x.
    + +
    +  Lemma proj_le_max : n, v : t nat n, k (H: k < n),
    +          v_apply (evalProjFunc n k H) v max_v v.
    + +
    +  Lemma evalListComp : n (v: t nat n) m (gs: t (naryFunc n) m)
    +                              (h: naryFunc m),
    +      v_apply (evalComposeFunc _ _ gs h) v =
    +      v_apply h (map (fun gv_apply g v) gs).
    +  Lemma evalListCompose2 : n (v: t nat n) (f: naryFunc n)
    +                                  (g : naryFunc (S n)),
    +      v_apply (compose2 n f g) v =
    +      v_apply g ((evalList n v f) :: v).
    + +
    +  Lemma evalListPrimrec_0 : n (v: t nat n) (f : naryFunc n)
    +                                   (g : naryFunc (S (S n))),
    +      v_apply (evalPrimRecFunc _ f g) (cons 0 v)
    +      = v_apply f v.
    + +
    +  Lemma evalListPrimrec_S : n (v: t nat n) (f : naryFunc n)
    +                                   (g : naryFunc (S (S n))) a,
    +      v_apply (evalPrimRecFunc _ f g) (cons (S a) v)
    +      = v_apply g
    +                (a :: v_apply (evalPrimRecFunc n f g) (a :: v) :: v).
    + +
    +End evalList.
    + +
    +
    + +
    +

    Every primitive recursive function is majorized by Ack

    + +
    + +

    Base cases

    + +
    +
    + +
    + +
    +Lemma majorSucc : majorizedPR succFunc Ack. +
    + +
    +Lemma majorZero : majorizedPR zeroFunc Ack. +
    + +
    +Lemma majorProjection (n m:nat)(H: m < n): majorizedPR (projFunc n m H) Ack. +
    +
    + +
    +

    The general case is proved by induction on x

    + +
    +
    + +
    + +
    + +
    +Lemma majorAnyPR: n (x: PrimRec n), majorizedPR x Ack. +
    +
    + +
    +Let us specialize Lemma majorAnyPR to unary and binary functions + +
    +
    + +
    + +
    +Lemma majorPR1 (f: naryFunc 1)(Hf : isPR 1 f)
    +  : (n:nat), x, f x Ack n x. +
    + +
    +Lemma majorPR2 (f: naryFunc 2)(Hf : isPR 2 f)
    +  : (n:nat), x y, f x y Ack n (max x y). +
    + +
    +Lemma majorPR2_strict (f: naryFunc 2)(Hf : isPR 2 f):
    +     n:nat,
    +       x y, 2 x 2 y f x y < Ack n (max x y). +
    +
    + +
    +

    Now, let us assume that Ack is PR

    + +
    +
    + +
    + +
    +Section Impossibility_Proof.
    + +
    +  Context (HAck : isPR 2 Ack).
    + +
    +  Lemma Ack_not_PR : False. +
    +End Impossibility_Proof.
    + +
    + +
    +
    + +
    +

    Any function which dominates (diagonalized) Ack fails to be PR

    + +
    +
    + +
    + +
    + +
    +Section dom_AckNotPR.
    + +
    +  Variable f : nat nat.
    +  Hypothesis Hf : dominates f (fun nAck n n).
    + +
    +  Lemma dom_AckNotPR: isPR 1 f False.
    + +
    +End dom_AckNotPR.
    + +
    + +
    + +
    +
    + +
    +

    Nevertheless, for any n, Ack n is primitive recursive.

    + +
    +
    + +
    +Lemma AckSn_as_iterate (n:nat) : extEqual 1 (Ack (S n))
    +                                          (fun kiterate (Ack n) (S k) 1).
    + +
    +Lemma AckSn_as_PRiterate (n:nat):
    +  extEqual 1 (Ack (S n)) (fun kprimRec.iterate (Ack n) (S k) 1).
    + +
    +Lemma iterate_nat_rec (g: natnat) (n:nat) x :
    +  iterate g n x = nat_rec (fun _nat) x (fun x yg y) n.
    + +
    +Section Proof_of_Ackn_PR.
    + +
    +  Section S_step.
    +    Variable n:nat.
    +    Context (IHn: isPR 1 (Ack n)).
    + +
    +    Remark R1 : extEqual 1 (Ack (S n))
    +                         (fun a : nat
    +                            nat_rec (fun _ : natnat) 1
    +                                    (fun _ y : natAck n y)
    +                                    (S a)).
    + +
    +    #[local] Instance R2 : isPR 1
    +                     (fun a : nat
    +                        nat_rec (fun _ : natnat) 1
    +                                (fun _ y : natAck n y)
    +                                (S a)).
    + +
    +    #[export] Instance iSPR_Ack_Sn : isPR 1 (Ack (S n)).
    + +
    +  End S_step.
    + +
    + +
    + +
    + +
    +  #[export] Instance Ackn_IsPR (n: nat) : isPR 1 (Ack n).
    +  Proof.
    +    induction n.
    + +
    + +
    +    - cbn; apply succIsPR.
    +    - apply iSPR_Ack_Sn; auto.
    +  Qed.
    + +
    +End Proof_of_Ackn_PR.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.MoreAck.BadSubst.html b/theories/html/hydras.MoreAck.BadSubst.html new file mode 100644 index 00000000..b713225d --- /dev/null +++ b/theories/html/hydras.MoreAck.BadSubst.html @@ -0,0 +1,98 @@ + + + + + +hydras.MoreAck.BadSubst + + + + +
    + + + +
    + +

    Library hydras.MoreAck.BadSubst

    + +
    +From hydras Require Import fol folProp folProof Languages folLogic primRec.
    +From Coq Require Import Arith.
    + +
    +Import FolNotations.
    + +
    +
    + +
    +

    Preliminary lemmas

    + +
    +
    + +
    +#[local] Arguments Ensembles.In {_} .
    +#[local] Arguments Ensembles.Add {_} .
    +#[local] Arguments atomic _ _ _ : clear implicits.
    +#[local] Arguments apply _ _ _ : clear implicits.
    + +
    +Module BadSubst.
    + +
    +  Fixpoint substF L (F : Formula L) v (t: Term L) :=
    +    match F with
    +  | equal t1 t2equal (substT t1 v t) (substT t2 v t)
    +  | atomic r satomic L r (substTs s v t)
    +  | impH G HimpH (substF L G v t) (substF L H v t)
    +  | notH GnotH (substF L G v t)
    +  | forallH w Gif Nat.eq_dec w v then F else forallH w (substF L G v t)
    +  end.
    + +
    +End BadSubst.
    + +
    +From Coq Require Import List.
    +Import ListNotations.
    + +
    +Module BadSubstF2.
    + +
    + +
    +End BadSubstF2.
    + +
    +From hydras Require Import FolExamples.
    +Import Toy.
    + +
    +Section BadExample.
    + +
    +  Let F := (allH 1, exH 2, v#1 f v#2)%fol.
    +  Let F1: Formula L := (exH 2, v#1 f v#2)%fol.
    + +
    + +
    +End BadExample.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.MoreAck.FolExamples.html b/theories/html/hydras.MoreAck.FolExamples.html new file mode 100644 index 00000000..a41361a8 --- /dev/null +++ b/theories/html/hydras.MoreAck.FolExamples.html @@ -0,0 +1,588 @@ + + + + + +hydras.MoreAck.FolExamples + + + + +
    + + + +
    + +

    Library hydras.MoreAck.FolExamples

    + +
    +
    + +
    + Use of FOL notations (Experimental) +
    +
    + +
    +From Coq Require Import Arith Lists.List.
    + +
    +From hydras.Ackermann
    +  Require Import fol folProp folProof Languages folLogic
    +  folLogic2 folLogic3 subAll Deduction primRec.
    +Import ListNotations.
    +Import FolNotations.
    + +
    +
    + +
    +

    Preliminary lemmas

    + +
    +
    + +
    +#[local] Arguments Ensembles.In {_} .
    +#[local] Arguments Ensembles.Add {_} .
    +#[local] Arguments atomic _ _ _ : clear implicits.
    +#[local] Arguments apply _ _ _ : clear implicits.
    + +
    +About Term_Terms_rec_full.
    +About Formula_rect.
    + +
    +About Formula_depth_rec.
    + +
    +
    + +
    +depth-order vs structural order +
    +
    + +
    +Section depth_rec_demo.
    +Variable L: Language.
    +Variable P: fol.Formula L Prop.
    +Variable a: fol.Formula L.
    +Goal P a.
    +Goal P a.
    + +
    +End depth_rec_demo.
    +Import Ensembles.
    + +
    +Lemma In_add1 {T:Type}(a:T)(S: Ensemble T):
    +  In (Add S a) a.
    + +
    +Lemma In_add2 {T:Type}(a b:T)(S : Ensemble T):
    +  In S a In (Add S b) a.
    + +
    +#[local] Hint Unfold mem: core.
    +#[local] Hint Resolve In_add1 In_add2 AXM: core.
    + +
    +
    + +
    +fol_scope allows us to read and write FOL terms and formulas + in a syntax close to Coq's +
    +
    + +
    +Remark R1 L (t: Term L): (equal t t) = (t = t)%fol.
    + +
    +
    + +
    +A small variation on MP (without appending contexts) +
    +
    + +
    +Lemma MPSys L (G: System L) (A B: Formula L) :
    +  SysPrf L G (A B)%fol SysPrf L G A SysPrf L G B.
    + +
    +
    + +
    +A small language +
    +
    + +
    +Module Toy.
    +  Inductive Rel: Set := A_ | B_ | C_ | P_ | Q_ | R_.
    +  Inductive Fun : Set := a_ | b_ | f_ | g_ | h_.
    + +
    +  Definition arityR (x : Rel): nat :=
    +    match x with
    +       P_ | Q_ ⇒ 1 | R_ ⇒ 2 | _ ⇒ 0
    +    end.
    + +
    Definition arityF (x : Fun): nat :=
    +    match x with f_ | g_ ⇒ 1 | h_ ⇒ 2 | _ ⇒ 0 end.
    + +
    Definition L := language Rel Fun arityR arityF.
    + +
    +Notation a := (apply L a_ Tnil).
    +Notation b := (apply L b_ Tnil).
    +Notation f t := (apply L f_ (Tcons t Tnil)).
    +Notation g t := (apply L g_ (Tcons t Tnil)).
    +Notation h t1 t2 := (apply L h_ (Tcons t1 (Tcons t2 Tnil))).
    + +
    +Example t0 : Term L := a.
    + +
    +Example t1 : Term L := f t0.
    + +
    +Example t2 : Term L := h t1 t0.
    + +
    +Example t3 : Term L := h (f (var 0)) (g (var 1)).
    + +
    + +
    +Goal t0 = a.
    +Goal t1 = f a.
    +Goal t2 = h (f a) a.
    + +
    + +
    +
    + +
    +Abreviations for the toy language L +
    +
    + +
    +  Notation A := (atomic L A_ Tnil).
    +  Notation B := (atomic L B_ Tnil).
    +  Notation C := (atomic L C_ Tnil).
    +  Notation P t := (atomic L P_ (Tcons t Tnil)).
    +  Notation Q t := (atomic L Q_ (Tcons t Tnil)).
    +  Notation R t1 t2 := (@atomic L R_ (Tcons t1 (Tcons t2 Tnil))).
    + +
    +Example F1 : Formula L := R a b.
    + +
    +Example F2 : Formula L :=
    +  forallH 0 (forallH 1
    +               (impH (R (var 0) (var 1)) (R (var 1) (var 0)))).
    + +
    +Example F3 : Formula L :=
    +  forallH 0 (orH (equal (var 0) a)
    +               (existH 1 (equal (var 0) (f (var 1))))).
    + +
    +Example F4: Formula L :=
    +  orH (forallH 1 (equal (var 0) (var 1)))
    +    (existH 0 (existH 1 (notH (equal (var 0) (var 1))))).
    + +
    +Example F5: Formula L := (v#0 = a v#0 = f v#1)%fol.
    + +
    +Example F6: Formula L:= (allH 0, exH 1, v#0 = f v#1 v#0 v#1)%fol.
    + +
    + +
    + +
    + +
    + +
    +Print F1.
    + +
    +Print F2.
    + +
    +Print F3.
    + +
    + +
    +
    + +
    +The following computation expands some derived connectives and + quantifiers. Within fol_scope, we print them with a + similar syntax (with primed symbols) +
    +
    + +
    +Section PrimedSymbols.
    + +
    + +
    +Goal (F3 F1)%fol = (~(~ ¬ F3 ¬ F1))%fol.
    + +
    +Print F6.
    + +
    + +
    +#[local] Unset Printing Notations.
    +Print F6.
    + +
    +End PrimedSymbols.
    + +
    +Goal forallH 1 (equal (var 1) a) forallH 0 (equal (var 0) a).
    + +
    +
    + +
    +a +
    +
    +Goal apply L a_ Tnil = a.
    + +
    +
    + +
    +f a +
    +
    +Goal apply L f_ (Tcons (apply L a_ Tnil) Tnil) = f a.
    + +
    +
    + +
    +f (f v1) +
    +
    +Goal apply L f_
    +         (Tcons (apply L f_
    +                       (Tcons (var 1) Tnil))
    +            Tnil ) = (f (f (var 1))).
    + +
    + +
    +Definition Ldec : language_decidable L.
    + +
    +
    + +
    +Formula_eqdec is opaque ! +
    +
    + +
    +Check (f a)%fol.
    + +
    +Goal lt_depth L (v#0 = v#1 exH 2, v#1 = f v#2)%fol
    +                (v#0 = v#1 exH 2, v#1 = f v#2)%fol. +
    +Goal lt_depth _ F1 F2.
    + +
    + +
    +Check subAllFormula.
    + +
    + +
    + +
    +Section OnSubstF.
    +  Let F : Formula L := (exH 2, v#1 f v#2)%fol.
    + +
    + +
    +End OnSubstF.
    + +
    +Example PrfEx1: Prf L [ (A B C)%fol] (A B C)%fol.
    + +
    +Lemma PrfEx2: Prf L [A B C; A; A B; A]%fol C.
    + +
    +Print PrfEx2.
    + +
    +Lemma MP' f g H1 H2 H: H = H1 ++ H2 Prf L H1 (f g)%fol
    +                        Prf L H2 f Prf L H g.
    + +
    +
    + +
    +Cuts the current list of hypotheses as (G++?H), then applies MP +
    +
    +Ltac cutMP G :=
    +  match goal with
    + |- Prf ?L ?H ?Feapply MP' with (H1 := G);
    +[simpl; reflexivity | try apply AXM | try apply AXM ] end.
    + +
    +Example PrfEx2': Prf L [A B C; A; A B; A]%fol C. Section ProofOfEx3.
    + +
    +#[local] Arguments MP {L Hyp1 Hyp2 A B} _ _.
    + +
    +Example PrfEx3 : Prf L [] (A A)%fol. +
    +Print PrfEx3.
    + +
    +End ProofOfEx3.
    + +
    +
    + +
    +Rule of contradiction +
    +
    + +
    +Example PrfEx4 (A B: Formula L): Prf L [] (¬B B A)%fol.
    + +
    + +
    +About PrfEx4.
    + +
    +
    + +
    +

    Universal quantifier

    + +
    +
    + +
    +Example PrfEx5 : Prf L [] ((allH 1 2, R v#1 v#2) allH 2, R a v#2)%fol.
    + +
    +Example PrfEx6 : Prf L [] (R v#1 v#1 allH 0, R v#1 v#1)%fol.
    + +
    +Example PrfContrex7 :
    +  Prf L [] (R v#1 v#1 allH 1, R v#1 v#1)%fol. +
    +Example PrfEx8 : Prf L [] ((allH 0, P v#0 Q v#0)
    +                 (allH 0, P v#0)
    +                 (allH 0, Q v#0))%fol.
    + +
    + +
    +Lemma eq_refl (t:Term L): Prf L nil (t = t)%fol.
    + +
    +About EQ4.
    +Check @EQ4 L (R_).
    + +
    + +
    +Example PrfEx9: Prf L [] (v#0 = v#1 P v#0 P v#1)%fol. +
    + +
    +Example PrfEx10:
    +  Prf L [] (v#2 = v#3 v#0 = v#1 R v#2 v#0 R v#3 v#1)%fol. +
    + +
    +Example PrfContrex9: Prf L [] (v#1 = v#0 P v#1 P v#0)%fol. +
    + +
    +Example PrfEx11:
    +  Prf L [] (v#2 = v#3 v#0 = v#1 h v#2 v#0 = h v#3 v#1)%fol. +
    + +
    + +
    +Lemma ded1: (A: Formula L), (SysPrf L (Empty_set _) A)
    +                             pf : Prf L (nil) A, True.
    + +
    +Lemma ded2: SysPrf L (Empty_set _) (A A)%fol.
    +Search SysPrf.
    +Search Add.
    +Qed.
    + +
    +Lemma ded3 : pf : Prf L (nil) (A A)%fol , True.
    + +
    +#[local] Arguments Ensembles.In {_} .
    +#[local] Arguments Ensembles.Add {_} .
    +Import Ensembles.
    + +
    +#[local] Hint Unfold mem: sets.
    + +
    +#[local] Hint Resolve In_add1 In_add2: sets.
    + +
    +Fixpoint Adds {A:Type}(X: Ensemble A)(l: list A) :=
    +  match l with
    +    nilX
    +  | x::lAdd (Adds X l) x
    +  end.
    + +
    +Example SysPrfEx2 : SysPrf L
    +                      (fun xList.In x [A; AB; A B C]%fol)
    +                      C. +
    + +
    +Search SysPrf (?A ?B)%fol notH.
    + +
    +Search (SysPrf ?L ?T (?A ?B)%fol SysPrf ?L ?T ?B).
    + +
    +Search (SysPrf _ _ (¬ ¬ _)%fol).
    + +
    +Search SysPrf (?a = ?b )%fol substF.
    + +
    +Search SysPrf (exH ?v, _)%fol (allH ?v, _)%fol.
    + +
    +Section PeirceProof.
    +Arguments Add {U}.
    +Arguments Empty_set {U}.
    + +
    +Definition Peirce : Formula L := (((A B) A) A)%fol.
    + +
    +Lemma peirce : SysPrf L Empty_set Peirce.
    +End PeirceProof.
    + +
    +Section Drinkers_theorem.
    + +
    Lemma D0 : i,
    +      SysPrf _ (Empty_set _)
    +        ( ¬ forallH i (P (v#i)) exH i, (¬ (P (v#i))))%fol.
    + +
    +  Lemma D01 T i : SysPrf _ T
    +                    (¬ forallH i (P (v#i))
    +                      exH i, (¬ (P (v#i))))%fol.
    + +
    +  Let f : Formula L :=
    +        (exH 0, (P (v#0) forallH 1 (P (v#1))))%fol.
    + +
    +  Theorem drinkers_thm : SysPrf L (Empty_set _) f.
    + +
    +End Drinkers_theorem.
    + +
    +End Toy.
    + +
    + +
    + +
    + +
    +
    + +
    +v1 + 0 +
    +
    +Example t1_0: Term LNN :=
    apply LNN Plus_
    +   (Tcons (var 1)
    +     (Tcons (apply LNN Zero_ Tnil) Tnil )).
    +Print t1_0.
    + +
    +
    + +
    +forall v0, v0 = 0 \/ exists v1, v0 = S v1 +
    +
    +Example f1 : Formula LNN :=
    +  forallH 0
    +    (orH (equal (var 0) (apply LNN Zero_ Tnil ))
    +       (existH 1 (equal (var 0)
    +                    (apply LNN Succ_
    +                       (Tcons (var 1) Tnil))))).
    + +
    +Example f2 : Formula LNN :=
    +  (existH 1 (equal (var 0)
    +               (apply LNN Succ_
    +                  (Tcons (var 1) Tnil )))).
    + +
    +Example f3 := (orH (equal (var 0) (apply LNN Zero_ Tnil))
    +                 (existH 1 (equal (var 0)
    +                              (apply LNN Succ_
    +                                 (Tcons (var 1) Tnil))))).
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.MoreAck.Iterate_compat.html b/theories/html/hydras.MoreAck.Iterate_compat.html new file mode 100644 index 00000000..dccaeffd --- /dev/null +++ b/theories/html/hydras.MoreAck.Iterate_compat.html @@ -0,0 +1,54 @@ + + + + + +hydras.MoreAck.Iterate_compat + + + + +
    + + + +
    + +

    Library hydras.MoreAck.Iterate_compat

    + +
    +
    + +
    +Compatibility between primRec.iterate and Iterates.iterate +
    +
    + +
    +From hydras Require primRec Iterates.
    +From hydras.Ackermann Require Import extEqualNat.
    + +
    + +
    +Lemma iterate_compat (f: nat nat) n x :
    +  Iterates.iterate f n x = primRec.iterate f n x.
    + +
    +Lemma iterate_extEqual (f: nat nat) n :
    +  extEqual 1 (Iterates.iterate f n) (primRec.iterate f n).
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.MoreAck.LNN_Examples.html b/theories/html/hydras.MoreAck.LNN_Examples.html new file mode 100644 index 00000000..3232e619 --- /dev/null +++ b/theories/html/hydras.MoreAck.LNN_Examples.html @@ -0,0 +1,170 @@ + + + + + +hydras.MoreAck.LNN_Examples + + + + +
    + + + +
    + +

    Library hydras.MoreAck.LNN_Examples

    + +
    +
    + +
    +Experimental +
    +
    + +
    +From Coq Require Import Arith Lists.List.
    +Require Import fol folProp Languages LNN folProof.
    +Import FolNotations.
    +Import NNnotations.
    + +
    +Section bare_syntax.
    + +
    +Definition f0 : Formula LNN :=
    +      forallH 0
    +        (orH
    +           (equal (var 0) Zero)
    +           (existH 1 (equal (var 0)
    +                          (apply
    +                             (Languages.Succ_ : Functions LNN)
    +                             (Tcons (var 1) (@Tnil _)))))).
    + +
    +Import LNN.
    +Print f0.
    +Check Zero.
    +Set Printing All.
    +Unset Printing All.
    + +
    +Print f0.
    +End bare_syntax.
    + +
    +Print f0.
    +Goal f0 = (allH 0, v#0 = Zero exH 1, v#0 = Succ v#1)%fol.
    + +
    +Locate Plus.
    +Locate "_ + _".
    Example t1_0 : Term _ := Plus (S_ (var 1))%fol Zero.
    +Print t1_0.
    +Check S_ Zero.
    + +
    +Print t1_0.
    + +
    +Section Examples.
    + +
    +Let t1: Term LNN := Plus (var 1) Zero.
    + +
    + +
    +
    + +
    +forall v0, v0 = 0 \/ exists v1, v0 = S v1 +
    +
    +Let f1 : Formula LNN :=
    +  (forallH 0
    +    (v#0 = Zero
    +          existH 1 (v#0 = Succ (v#1))))%fol.
    +Print f1.
    + +
    + +
    + +
    +Print Relations.
    + +
    +Let f2 : Formula LNN :=
    +   (existH 2 (LT Zero (v#2) natToTerm 4 = Plus (v#2) (v#2)))%fol.
    + +
    +Let f2' : Formula LNN :=
    +   (existH 2 (Zero < v#2 natToTerm 4 = Plus (v#2) (v#2)))%fol.
    + +
    +Let f3 := (v#0 = Zero existH 1 (v#0 = Succ (v#1)))%fol.
    + +
    +Let f4 := (v#0 = v#1 + v#1 v#0 = v#1 × (natToTerm 2))%fol.
    + +
    +Print f4.
    + +
    +Check (Plus Zero Zero)%fol.
    + +
    + +
    + +
    + +
    + +
    + +
    +Locate LT.
    + +
    +End Examples.
    + +
    + +
    + +
    + +
    + +
    +Check GEN LNN nil (v#0 = v#0)%fol 1.
    + +
    + +
    + +
    + +
    +Goal Prf LNN nil
    +         (forallH 0 (v#0 = v#0))%fol
    +       Prf LNN nil (Zero = Zero)%fol.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.MoreAck.PrimRecExamples.html b/theories/html/hydras.MoreAck.PrimRecExamples.html new file mode 100644 index 00000000..bf9edd1a --- /dev/null +++ b/theories/html/hydras.MoreAck.PrimRecExamples.html @@ -0,0 +1,481 @@ + + + + + +hydras.MoreAck.PrimRecExamples + + + + +
    + + + +
    + +

    Library hydras.MoreAck.PrimRecExamples

    + +
    +From Coq Require Import Arith ArithRing List Vector Utf8.
    +Import VectorNotations.
    + +
    +From hydras Require Import primRec cPair.
    +Import extEqualNat PRNotations.
    + +
    + +
    +Check leBool : naryRel 2.
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    +Check plus: naryFunc 2.
    + +
    +Check 42: naryFunc 0.
    + +
    +Check (fun n p q : natn × p + q): naryFunc 3.
    + +
    + +
    + +
    + +
    +Example extEqual_ex1: (Nat.mul: naryFunc 2) =x= fun x yy × x + x - x. +
    +
    + +
    +

    Examples of terms of type PrimRec n and their interpretation

    + +
    +
    + +
    + +
    +Example Ex1 : PReval zeroFunc = 0.
    + +
    +Example Ex2 a : PReval succFunc a = a.+1.
    + +
    +Example Ex3 a b c d e f: (H: 2 < 6),
    +    PReval (projFunc 6 2 H) a b c d e f = d.
    + +
    +Example Ex4 : extEqual 4 (fun a b c d: nat ⇒ 0)
    +                         (PReval (PRcomp zeroFunc (PRnil _))).
    + +
    +Section Composition.
    + +
    +  Variables (x y z : PrimRec 2) (t: PrimRec 3).
    +  Let u : PrimRec 2 := composeFunc 2 3 [x; y; z]%pr t.
    +  Let f := PReval x.
    +  Let g := PReval y.
    +  Let h := PReval z.
    +  Let k := PReval t.
    Goal n p, PReval u n p = k (f n p) (g n p) (h n p).
    + +
    +  Let v := (PRcomp t [ pi1_2 ; pi1_2; pi2_2 ])%pr.
    + +
    +  Eval simpl in PReval v.
    + +
    +End Composition.
    + +
    +Section Primitive_recursion.
    Variables (x: PrimRec 2)(y: PrimRec 4).
    Let z := (primRecFunc _ x y).
    Let g := PReval x.
    Let h := PReval y.
    Let f := PReval z.
    Goal a b, f 0 a b = g a b.
    + +
    Goal n a b, f n.+1 a b = h n (f n a b) a b.
    + +
    +End Primitive_recursion.
    + +
    + +
    +Section compose2Examples.
    +Variables (f: naryFunc 1) (g: naryFunc 2) (h: naryFunc 3)
    +  (f': naryFunc 4) (g': naryFunc 5).
    + +
    +Eval simpl in compose2 1 f g.
    + +
    +Eval simpl in compose2 2 g h.
    + +
    +Eval simpl in compose2 _ f' g'.
    +End compose2Examples.
    + +
    +Module MoreExamples.
    + +
    +
    + +
    +The unary constant function which returns 0 +
    +
    +Definition cst0 : PrimRec 1 := (PRcomp zeroFunc (PRnil _))%pr.
    + +
    +
    + +
    +The unary constant function which returns i +
    +
    +Fixpoint cst (i: nat) : PrimRec 1 :=
    +  match i with
    +    0 ⇒ cst0
    +  | S j ⇒ (PRcomp succFunc [cst j])%pr
    +end.
    + +
    + +
    +
    + +
    +Addition +
    +
    +Definition plus : PrimRec 2 :=
    +  (PRrec pi1_1 (PRcomp succFunc [pi2_3]))%pr.
    + +
    +
    + +
    +Multiplication +
    +
    +Definition mult : PrimRec 2 :=
    +  PRrec cst0
    +    (PRcomp plus [pi2_3; pi3_3]%pr).
    + +
    +
    + +
    +Factorial function +
    +
    +Definition fact : PrimRec 1 :=
    +  (PRrec
    +     (PRcomp succFunc [zeroFunc])
    +     (PRcomp mult [pi2_2; PRcomp succFunc [pi1_2]]))%pr.
    + +
    +End MoreExamples.
    + +
    +Import MoreExamples.
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    + +
    +Lemma cst0_correct : (PReval cst0) =x= (fun _ ⇒ 0).
    + +
    +Lemma cst_correct (k:nat) : PReval (cst k) =x= (fun _k).
    + +
    +Lemma plus_correct:
    +  PReval plus =x= Nat.add.
    + +
    +Remark mult_eqn1 n p:
    +    PReval mult (S n) p =
    +      PReval plus (PReval mult n p) p.
    + +
    +Lemma mult_correct: PReval mult =x= Nat.mul.
    + +
    +Lemma fact_correct : PReval fact =x= Coq.Arith.Factorial.fact.
    + +
    +
    + +
    +

    Understanding some constructions ...

    + + +
    + + These lemmas are trivial and theoretically useless, but they may help to + make the construction more concrete +
    +
    + +
    +Definition PRcompose1 (g f : PrimRec 1) : PrimRec 1 :=
    +  PRcomp g [f]%pr.
    + +
    +Goal f g x, evalPrimRec 1 (PRcompose1 g f) x =
    +                     evalPrimRec 1 g (evalPrimRec 1 f x).
    + +
    +Remark compose2_0 (a:nat) (g: nat nat) : compose2 0 a g = g a.
    + +
    +Remark compose2_1 (f: nat nat) (g : nat nat nat) x
    +  : compose2 1 f g x = g (f x) x.
    + +
    +Remark compose2_2 (f: naryFunc 2) (g : naryFunc 3) x y
    +  : compose2 2 f g x y = g (f x y) x y.
    + +
    +Remark compose2_3 (f: naryFunc 3) (g : naryFunc 4) x y z
    +  : compose2 3 f g x y z = g (f x y z) x y z.
    + +
    +Remark PrimRec_0_0 (a:nat)(g : nat nat nat) :
    +  evalPrimRecFunc 0 a g 0 = a.
    + +
    +Remark PrimRec_0_S (a : nat) (g : nat nat nat) (i:nat):
    +  let phi := evalPrimRecFunc 0 a g
    +  in phi (S i) = g i (phi i).
    + +
    +Remark PrimRec_1_0 (f : natnat)(g : nat nat nat nat) :
    +   x, evalPrimRecFunc 1 f g 0 x = f x.
    + +
    +Remark PrimRec_1_S (f: natnat)
    +       (g : nat nat nat nat) (i:nat):
    +  let phi := evalPrimRecFunc 1 f g
    +  in x, phi (S i) x = g i (phi i x) x.
    + +
    +Remark PrimRec_2_0 (f : naryFunc 2) (g : naryFunc 4) :
    +   x y, evalPrimRecFunc 2 f g 0 x y = f x y.
    + +
    +Remark PrimRec_2_S (f: naryFunc 2) (g : naryFunc 4) (i:nat) :
    +  let phi := evalPrimRecFunc 2 f g
    +  in x y, phi (S i) x y = g i (phi i x y) x y.
    + +
    +
    + +
    +

    First proofs of isPR statements

    + + +
    + + The module Alt presents proofs of lemmas already proven in primRec.v + We just hope that such a redundancy will help the reader to get familiar + with the various patterns allowed by that library. + +
    +
    + +
    +Module Alt.
    + +
    + +
    +#[export] Instance zeroIsPR : isPR 0 0. +
    + +
    + +
    + +
    +#[export] Instance succIsPR : isPR 1 S.
    + +
    +#[export] Instance addIsPR : isPR 2 Nat.add.
    + +
    + +
    + +
    + +
    + +
    +#[export] Instance pi2_5IsPR : isPR 5 (fun a b c d eb).
    + +
    + +
    + +
    +Check composeFunc 0 1.
    + +
    + +
    + +
    +Remark compose_01 (x:PrimRec 0) (t : PrimRec 1) :
    +    PReval (PRcomp t [x])%pr = PReval t (PReval x).
    + +
    + +
    + +
    +#[export] Instance const0_NIsPR n : isPR 0 n. +
    +Search (isPR 2 (fun _ _nat_rec _ _ _ _)).
    + +
    +Check isPRextEqual.
    + +
    + +
    + +
    +Check filter010IsPR.
    + +
    + +
    + +
    +Definition add' x y :=
    +  nat_rec (fun n : natnat)
    +    y
    +    (fun z tS t)
    +    x.
    + +
    +Lemma add'_ok:
    +  extEqual 2 add' Nat.add.
    + +
    + +
    +#[export] Instance addIsPR' : isPR 2 Nat.add. +
    + +
    +Definition xpred := primRecFunc 0 zeroFunc pi1_2.
    + +
    + +
    +#[export] Instance predIsPR : isPR 1 Nat.pred. +
    +End Alt.
    + +
    + +
    +Definition double (n:nat) := 2 × n.
    + +
    +#[export] Instance doubleIsPR : isPR 1 double. +
    +
    + +
    +using cPair +
    +
    + +
    + +
    +Section Exs.
    +Let f: naryFunc 2 := fun x yx + pred (cPairPi1 y).
    + +
    + +
    +  Let ffib : naryFunc 2 :=
    +        fun c A
    +          match c with
    +            0 | 1 ⇒ 1
    +          | _codeNth 0 A + codeNth 1 A
    +          end.
    +  Let fdiv2 : naryFunc 2 :=
    +        fun (n acc: nat) ⇒
    +          match n with
    +            0 | 1 ⇒ 0
    +          | _S (codeNth 1 acc)
    +          end.
    + +
    + +
    + +
    + +
    + +
    +End Exs.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.MoreAck.expressibleExamples.html b/theories/html/hydras.MoreAck.expressibleExamples.html new file mode 100644 index 00000000..4d3ad03c --- /dev/null +++ b/theories/html/hydras.MoreAck.expressibleExamples.html @@ -0,0 +1,89 @@ + + + + + +hydras.MoreAck.expressibleExamples + + + + +
    + + + +
    + +

    Library hydras.MoreAck.expressibleExamples

    + +
    +From hydras.Ackermann Require Import expressible.
    + +
    +From hydras.Ackermann Require Import NN NewNotations NNtheory.
    +Import NNnotations.
    +From Coq Require Import Lia.
    + +
    +Goal n, RepresentableHalf1 NN 0 n (v#0 = natToTerm n)%fol.
    + +
    +Lemma L1: RepresentableHalf1 NN 1 (fun nn + n)
    +  (v#0 = v#1 + v#1)%fol.
    + +
    +Lemma L2: RepresentableHalf2 NN 1 (fun nn + n)
    +  (v#0 = v#1 + v#1)%fol.
    + +
    +Lemma L3: Representable NN 1 (fun nn + n) (v#0 = v#1 + v#1)%fol.
    + +
    +Lemma L4 : Representable NN 1 (fun nn × 2) (v#0 = v#1 + v#1)%fol.
    + +
    +
    + +
    +Mind the order of variables v#1 ... v#n + f v#n ... v#1 = v#0 + +
    + + +
    + + v#2 is bound to n +
    +
    + +
    +Lemma L5: RepresentableHalf1 NN 2 (fun n pn) (v#0 = v#2)%fol.
    + Search substT .     Search (SysPrf _ (?A ?A)%fol).
    +   Search freeVarT (S_ _).
    + +
    +Qed.
    + +
    +
    + +
    +v#1 is bound to p +
    +
    +Lemma L6: RepresentableHalf1 NN 2 (fun n pp) (v#0 = v#1)%fol.
    + Search substT .
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.OrdinalNotations.Example_3PlusOmega.html b/theories/html/hydras.OrdinalNotations.Example_3PlusOmega.html new file mode 100644 index 00000000..693cd941 --- /dev/null +++ b/theories/html/hydras.OrdinalNotations.Example_3PlusOmega.html @@ -0,0 +1,70 @@ + + + + + +hydras.OrdinalNotations.Example_3PlusOmega + + + + +
    + + + +
    + +

    Library hydras.OrdinalNotations.Example_3PlusOmega

    + +
    +
    + +
    +A proof of isomorhism between ordinal notations for 3+omega and omega +
    + + Pierre Castéran, Univ. Bordeaux and LaBRI +
    +
    + +
    +From hydras Require Import ON_plus ON_Finite ON_Omega.
    +Import ON_Generic.
    +From Coq Require Import Compare_dec Lia Logic.Eqdep_dec.
    + +
    +Definition O3O := ON_plus (FinOrd 3) Omega.
    +#[ global ] Existing Instance O3O.
    + +
    +Arguments ON_t : clear implicits.
    +Arguments ON_t {A lt cmp} _.
    + +
    +Program Definition f (z: ON_t O3O) : ON_t Omega :=
    +  match z with inl ii | inr j ⇒ 3+j end.
    + +
    +Program Definition g (a : ON_t Omega) : ON_t O3O :=
    +  match (le_lt_dec 3 a) with
    +    left _inr (a - 3)
    +  | right _inl a
    +  end.
    + +
    +#[ global ] Instance L_3_plus_omega : ON_Iso _ _ f g.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.OrdinalNotations.ON_Finite.html b/theories/html/hydras.OrdinalNotations.ON_Finite.html new file mode 100644 index 00000000..fb6ee64d --- /dev/null +++ b/theories/html/hydras.OrdinalNotations.ON_Finite.html @@ -0,0 +1,185 @@ + + + + + +hydras.OrdinalNotations.ON_Finite + + + + +
    + + + +
    + +

    Library hydras.OrdinalNotations.ON_Finite

    + +
    +
    + +
    + A notation system for finite ordinals Pierre Castéran, Univ. Bordeaux and LaBRI +
    +
    + +
    +From Coq Require Import Arith Relations Lia Logic.Eqdep_dec Ensembles
    +        Wellfounded.Inverse_Image Wellfounded.Inclusion
    +        RelationClasses.
    +From hydras Require Import ON_Generic.
    + +
    +From Coq Require Wf_nat.
    + +
    +Coercion is_true: bool >-> Sortclass.
    + +
    + +
    +Definition t (n:nat) := {i:nat | Nat.ltb i n}.
    + +
    +Definition lt {n:nat} : relation (t n) :=
    +  fun alpha betaNat.ltb (proj1_sig alpha) (proj1_sig beta).
    + +
    + +
    +Open Scope ON_scope.
    + +
    + +
    +Lemma t0_empty (alpha: t 0): False.
    + +
    + +
    +Definition bad : t 10. Abort.
    + +
    + +
    +#[global] Instance compare_fin {n:nat} : Compare (t n) :=
    +  fun (alpha beta : t n) ⇒ Nat.compare (proj1_sig alpha) (proj1_sig beta).
    + +
    +Lemma compare_correct {n} (alpha beta : t n) :
    +  CompSpec eq lt alpha beta (compare alpha beta).
    + +
    +Lemma compare_reflect {n:nat} (alpha beta : t n) :
    +  match (compare alpha beta)
    +  with
    +    Ltlt alpha beta
    +  | Eqalpha = beta
    +  | Gtlt beta alpha
    +  end.
    + +
    + +
    +Lemma lt_wf (n:nat) : well_founded (@lt n). +
    + +
    +#[global] Instance sto n : StrictOrder (@lt n). +
    + +
    +#[global] Instance comp n: Comparable (@lt n) compare. +
    +#[global] Instance FinOrd n : ON (@lt n) compare. +
    + +
    +Definition Zero_limit_succ_dec (n:nat) : ZeroLimitSucc_dec (on := FinOrd n).
    + +
    +Lemma sig_eq_intro {n:nat} (x y : t n) :
    +  proj1_sig x = proj1_sig y x = y.
    + +
    + +
    +Section Inclusion_ij.
    + +
    +  Variables i j : nat.
    +  Hypothesis Hij : i < j.
    + +
    +  Remark Ltb_ij : Nat.ltb i j.
    + +
    + +
    +  #[program] Definition iota_ij (alpha: t i) : t j := alpha.
    + +
    + +
    +   Let b : t j := exist _ i Ltb_ij.
    + +
    +  #[global]
    +   Instance F_incl_ij: SubON (FinOrd i) (FinOrd j) b iota_ij.
    + +
    +  Lemma iota_compare_commute alpha beta:
    +    compare alpha beta =
    +    compare (iota_ij alpha) (iota_ij beta).
    + +
    +  Lemma iota_mono : alpha beta,
    +      lt alpha beta
    +      lt (iota_ij alpha) (iota_ij beta).
    + +
    +End Inclusion_ij.
    + +
    +Arguments iota_ij {i j}.
    + +
    + +
    +Program Example alpha1 : t 7 := 2.
    + +
    +Program Example beta1 : t 7 := 5.
    + +
    +Example i1 : lt alpha1 beta1. +
    + +
    + +
    +Program Example gamma1 : t 8 := 7.
    + +
    + +
    + +
    +Example i2 : lt (iota_ij (le_n 8) alpha1) gamma1.
    + +
    +Example Ex1 : In (bigO beta1) alpha1.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.OrdinalNotations.ON_Generic.html b/theories/html/hydras.OrdinalNotations.ON_Generic.html new file mode 100644 index 00000000..a6a5d501 --- /dev/null +++ b/theories/html/hydras.OrdinalNotations.ON_Generic.html @@ -0,0 +1,360 @@ + + + + + +hydras.OrdinalNotations.ON_Generic + + + + +
    + + + +
    + +

    Library hydras.OrdinalNotations.ON_Generic

    + +
    +
    + +
    +Pierre Castéran, Univ. Bordeaux and LaBRI +
    + + This module defines a type class of ordinal notations, i.e._, data types + with a well-founded strict order and a compare function +
    +
    + +
    +From Coq Require Import RelationClasses Relation_Operators Ensembles.
    +From hydras Require Import OrdNotations Schutte_basics.
    +From Coq Require Export Wellfounded.Inverse_Image Wellfounded.Inclusion.
    +Import Relation_Definitions.
    +From hydras Require Export MoreOrders.
    +From hydras Require Export Comparable.
    + +
    +Generalizable All Variables.
    +Declare Scope ON_scope.
    +Delimit Scope ON_scope with on.
    +#[local] Open Scope ON_scope.
    + +
    +
    + +
    + Ordinal notation system on type A : + +
    +
    + +
    +Class ON {A:Type} (lt: relation A) (cmp: Compare A) :=
    +  {
    +  ON_comp :> Comparable lt cmp;
    +  ON_wf : well_founded lt;
    +  }.
    + +
    +#[global] Existing Instance ON_comp.
    +Coercion ON_wf : ON >-> well_founded.
    + +
    +Definition rep {A:Type} {lt: relation A} {cmp: Compare A}
    +                (on : ON lt cmp) := A.
    + +
    +#[global] Coercion rep : ON >-> Sortclass.
    + +
    +Section Definitions.
    + +
    +  Context {A:Type} {lt : relation A} {cmp : Compare A} {on: ON lt cmp}.
    + +
    +  #[using="All"] Definition ON_t := A.
    + +
    +  #[using="All"] Definition ON_compare : A A comparison := compare.
    + +
    +  #[using="All"] Definition ON_lt := lt.
    + +
    +  #[using="All"] Definition ON_le: relation A := leq lt.
    + +
    +  #[using="All"]
    +    Definition measure_lt {B : Type} (m : B A) : relation B :=
    +    fun x yON_lt (m x) (m y).
    + +
    +  #[using="All"]
    +    Lemma wf_measure {B : Type} (m : B A) :
    +    well_founded (measure_lt m).
    + +
    + +
    +  #[using="All"]
    +   Definition ZeroLimitSucc_dec :=
    +     alpha,
    +      {Least alpha} +
    +      {Limit alpha} +
    +      {beta: A | Successor alpha beta}.
    + +
    +
    + +
    +The segment called O alpha in Schutte's book +
    +
    + +
    +  #[using="All"]
    +   Definition bigO (a: A) : Ensemble A := fun x: Alt x a.
    + +
    +End Definitions.
    + +
    +Infix "o<" := ON_lt : ON_scope.
    +Infix "o<=" := ON_le : ON_scope.
    +Infix "o?=" := ON_compare (at level 70) : ON_scope.
    + +
    + +
    +#[global] Hint Resolve wf_measure : core.
    + +
    +
    + +
    +The segment associated with nA is isomorphic to + the segment of ordinals strictly less than b +
    +
    + +
    + +
    +Class SubON
    +       `(OA: @ON A ltA compareA)
    +       `(OB: @ON B ltB compareB)
    +       (alpha: B) (iota: A B):=
    +  {
    +    SubON_compare: x y : A,
    +      compareB (iota x) (iota y) = compareA x y;
    +    SubON_incl : x, ltB (iota x) alpha;
    +    SubON_onto : y, ltB y alpha x:A, iota x = y}.
    + +
    + +
    +
    + +
    +OA and OB are order-isomporphic +
    +
    + +
    + +
    +Class ON_Iso
    +       `(OA : @ON A ltA compareA)
    +       `(OB : @ON B ltB compareB)
    +       (f : A B) (g : B A):=
    +  {
    +    iso_compare : x y : A,
    +      compareB (f x) (f y) = compareA x y;
    +  iso_inv1 : a, g (f a)= a;
    +  iso_inv2 : b, f (g b) = b
    +  }.
    + +
    + +
    +
    + +
    +OA is an ordinal notation for alpha (in Schutte's model) +
    +
    + +
    + +
    +Class ON_correct `(alpha : Ord)
    +     `(OA : @ON A ltA compareA)
    +      (iota : A Ord) :=
    +  { ON_correct_inj : a, lt (iota a) alpha;
    +    ON_correct_onto : beta, lt beta alpha
    +                                 b, iota b = beta;
    +    On_compare_spec : a b:A,
    +        match compareA a b with
    +        | Datatypes.Ltlt (iota a) (iota b)
    +        | Datatypes.Eqiota a = iota b
    +        | Datatypes.Gtlt (iota b) (iota a)
    +        end
    +  }.
    + +
    + +
    +
    + +
    +

    Relative correctness of a constant or a function

    + +
    +
    + +
    +Definition SubON_same_cst `{OA : @ON A ltA compareA}
    +       `{OB : @ON B ltB compareB}
    +       {iota : A B}
    +       {alpha: B}
    +       {_ : SubON OA OB alpha iota}
    +       (a : A)
    +       (b : B)
    +  := iota a = b.
    + +
    +Definition SubON_same_fun `{OA : @ON A ltA compareA}
    +       `{OB : @ON B ltB compareB}
    +       {iota : A B}
    +       {alpha: B}
    +       {_ : SubON OA OB alpha iota}
    +       (f : A A)
    +       (g : B B)
    +  := x, iota (f x) = g (iota x).
    + +
    + +
    +Definition SubON_same_op `{OA : @ON A ltA compareA}
    +       `{OB : @ON B ltB compareB}
    +       {iota : A B} {alpha: B}
    +       {_ : SubON OA OB alpha iota}
    +       (f : A A A)
    +       (g : B B B)
    +  := x y, iota (f x y) = g (iota x) (iota y).
    + +
    + +
    +
    + +
    +Correctness w.r.t. Schutte's model +
    +
    + +
    +Definition ON_cst_ok {alpha: Ord} `{OA : @ON A ltA compareA}
    +       `{OB : @ON B ltB compareB}
    +       {iota : A Ord}
    +       {_ : ON_correct alpha OA iota}
    +       (a: A)
    +       (b: Ord)
    +  := iota a = b.
    + +
    +Definition ON_fun_ok {alpha: Ord} `{OA : @ON A ltA compareA}
    +       `{OB : @ON B ltB compareB}
    +       {iota : A Ord}
    +       {_ : ON_correct alpha OA iota}
    +       (f : A A)
    +       (g : Ord Ord)
    +  :=
    +     x, iota (f x) = g (iota x).
    + +
    +Definition ON_op_ok {alpha: Ord} `{OA : @ON A ltA compareA}
    +       `{OB : @ON B ltB compareB}
    +       {iota : A Ord}
    +       {_ : ON_correct alpha OA iota}
    +       (f : A A A)
    +       (g : Ord Ord Ord)
    +  :=
    +     x y, iota (f x y) = g (iota x) (iota y).
    + +
    +Definition Iso_same_cst `{OA : @ON A ltA compareA}
    +       `{OB : @ON B ltB compareB}
    +       {f : A B} {g : B A}
    +       {_ : ON_Iso OA OB f g}
    +       (a : A)
    +       (b : B)
    +  := f a = b.
    + +
    +Definition Iso_same_fun `{OA : @ON A ltA compareA}
    +           `{OB : @ON B ltB compareB}
    +           {f : A B} {g : B A}
    +           {_ : ON_Iso OA OB f g}
    +           (fA : A A)
    +           (fB : B B)
    +  :=
    +     x, f (fA x) = fB (f x).
    + +
    +Definition Iso_same_op `{OA : @ON A ltA compareA}
    +           `{OB : @ON B ltB compareB}
    +           {f : A B} {g : B A}
    +           {_ : ON_Iso OA OB f g}
    +           (opA : A A A)
    +           (opB : B B B)
    +     
    +  :=
    +   x y, f (opA x y) = opB (f x) (f y).
    + +
    +Section SubON_properties.
    + +
    +  Context `{OA : @ON A ltA compareA}
    +          `{OB : @ON B ltB compareB}
    +          (f : A B)
    +          (alpha : B)
    +          (Su : SubON OA OB alpha f).
    + +
    +  Lemma SubON_mono a b : ltA a b ltB (f a) (f b).
    + +
    +  Lemma SubON_inj : a b, f a = f b a = b.
    + +
    +  Lemma SubON_successor : a b, Successor a b Successor (f a) (f b).
    + +
    +  Lemma SubON_limit : a , Limit a Limit (f a).
    + +
    +  Lemma SubON_least : a , Least a Least (f a).
    + +
    +End SubON_properties.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.OrdinalNotations.ON_O.html b/theories/html/hydras.OrdinalNotations.ON_O.html new file mode 100644 index 00000000..b6ba8809 --- /dev/null +++ b/theories/html/hydras.OrdinalNotations.ON_O.html @@ -0,0 +1,118 @@ + + + + + +hydras.OrdinalNotations.ON_O + + + + +
    + + + +
    + +

    Library hydras.OrdinalNotations.ON_O

    + +
    +
    + +
    +Ordinal Notation for a segment O alpha Pierre Castéran, Unviv. Bordeaux and LaBRI +
    +
    + +
    +From Coq Require Import Arith Relations Lia Logic.Eqdep_dec Ensembles
    +        Wellfounded.Inverse_Image Wellfounded.Inclusion
    +        RelationClasses.
    +From hydras Require Import ON_Generic.
    + +
    +Coercion is_true: bool >-> Sortclass.
    +Generalizable Variables A Lt comp.
    + +
    +Section OA_given.
    + +
    +  Context {A:Type}
    +          {Lt Le: relation A}
    +          {cmpA: Compare A}
    +          (OA : ON Lt cmpA).
    + +
    +
    + +
    +The type of ordinals less than a +
    +
    + +
    +Definition t (a:A) := {b:A | compare b a = Datatypes.Lt}.
    + +
    +Definition lt {a:A} : relation (t a) :=
    +  fun alpha betaON_lt (proj1_sig alpha) (proj1_sig beta).
    + +
    +Definition le {a:A} : relation (t a) :=
    +  clos_refl (t a) lt.
    + +
    +#[global]
    +Instance compare_O {a:A} : Compare (t a) :=
    +fun (alpha beta : t a) ⇒
    +  compare (proj1_sig alpha) (proj1_sig beta).
    + +
    +Lemma compare_correct {a} (alpha beta : t a) :
    +  CompSpec eq lt alpha beta (compare alpha beta).
    + +
    +Lemma compare_reflect {a:A} (alpha beta : t a) :
    +  match (compare alpha beta)
    +  with
    +    Datatypes.Ltlt alpha beta
    +  | Eqalpha = beta
    +  | Gtlt beta alpha
    +  end.
    + +
    +Lemma lt_wf (a:A) : well_founded (@lt a).
    + +
    +#[global] Instance sto a : StrictOrder (@lt a).
    + +
    +#[global] Instance ON_O_comp (a:A) : Comparable (@lt a) compare .
    + +
    +
    + +
    +We have now an ordinal notation +
    +
    + +
    +#[global] Instance ON_O (a:A) : ON (@lt a) compare .
    + +
    +End OA_given.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.OrdinalNotations.ON_Omega.html b/theories/html/hydras.OrdinalNotations.ON_Omega.html new file mode 100644 index 00000000..508dc02d --- /dev/null +++ b/theories/html/hydras.OrdinalNotations.ON_Omega.html @@ -0,0 +1,76 @@ + + + + + +hydras.OrdinalNotations.ON_Omega + + + + +
    + + + +
    + +

    Library hydras.OrdinalNotations.ON_Omega

    + +
    +
    + +
    + A notation system for the ordinal omega Pierre Castéran, Univ. Bordeaux and LaBRI +
    +
    + +
    +From Coq Require Import Arith Compare_dec Lia.
    +From hydras Require Import ON_Generic ON_Finite.
    +From hydras Require Import Schutte.
    + +
    +Import Relations RelationClasses.
    + +
    +#[global]
    +Instance compare_nat : Compare nat := Nat.compare.
    + +
    +#[global] Instance Omega_comp : Comparable Peano.lt compare_nat.
    + +
    +#[global] Instance Omega : ON Peano.lt compare_nat.
    + +
    + +
    +#[local] Open Scope ON_scope.
    + +
    + +
    +Definition Zero_limit_succ_dec : ZeroLimitSucc_dec.
    +Defined.
    + +
    +#[global] Instance FinOrd_Omega (i:nat) :
    +  SubON (FinOrd i) Omega i (fun alphaproj1_sig alpha).
    + +
    +#[ global ] Instance omega_ok : ON_correct Schutte_basics.omega Omega finite.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.OrdinalNotations.ON_Omega2.html b/theories/html/hydras.OrdinalNotations.ON_Omega2.html new file mode 100644 index 00000000..890557a8 --- /dev/null +++ b/theories/html/hydras.OrdinalNotations.ON_Omega2.html @@ -0,0 +1,383 @@ + + + + + +hydras.OrdinalNotations.ON_Omega2 + + + + +
    + + + +
    + +

    Library hydras.OrdinalNotations.ON_Omega2

    + +
    + +
    +
    + +
    + A notation system for the ordinal omega^2 +
    + + Pierre Castéran, Univ. Bordeaux and LaBRI +
    +
    + +
    +From Coq Require Import Arith Compare_dec Lia.
    +From hydras Require Import Simple_LexProd ON_Generic
    +        ON_mult ON_Omega Compat815.
    + +
    +Import Relations ON_Generic.
    + +
    +Open Scope ON_scope.
    + +
    + +
    +#[ global ] Instance compare_omega2 : Compare ON_mult.t :=
    compare_mult compare_nat compare_nat.
    + +
    +#[ global ] Instance Omega2: ON _ compare_omega2 := ON_mult Omega Omega.
    + +
    +Definition t := ON_t.
    + +
    +Open Scope ON_scope.
    + +
    + +
    +Notation omega := (1,0).
    +Definition zero: t := (0,0).
    + +
    +Definition fin (i:nat) : t := (0,i).
    +Coercion fin : nat >-> t.
    + +
    + +
    +Example ex1 : (5,8) o< (5,10).
    + +
    + +
    + +
    +Lemma omega_is_limit : Limit omega.
    + +
    + +
    +Definition succ (alpha : t) := (fst alpha, S (snd alpha)).
    + +
    + +
    +Lemma eq_dec (alpha beta: t) : {alpha = beta} + {alpha beta}.
    + +
    +Lemma le_intror :
    +   i j k:nat, (j k)%nat (i,j) o (i,k).
    + +
    +Lemma le_0 : p: t, (0,0) o p.
    + +
    + +
    +Lemma lt_succ_le alpha beta :
    +  alpha o< beta succ alpha o beta. +
    + +
    +Lemma lt_succ alpha : alpha o< succ alpha.
    + +
    + +
    + +
    +#[global] Hint Constructors clos_refl lexico : O2.
    +#[global] Hint Unfold lt le : O2.
    + +
    +Lemma compare_reflect alpha beta :
    +  match (ON_compare alpha beta)
    +  with
    +    Ltalpha o< beta
    +  | Eqalpha = beta
    +  | Gtbeta o< alpha
    +  end.
    + +
    +Lemma compare_correct alpha beta :
    +    CompSpec eq ON_lt alpha beta (ON_compare alpha beta).
    + +
    +Lemma zero_le alpha : zero o alpha.
    + +
    +Lemma Least_zero alpha : Least alpha alpha = zero.
    + +
    +Definition Zero_limit_succ_dec : ZeroLimitSucc_dec.
    +Defined.
    + +
    +Lemma lt_eq_lt_dec alpha beta :
    +  {alpha o< beta} + {alpha = beta} + {beta o< alpha}.
    + +
    +Lemma Successor_inv : i j k l : nat, Successor (k, l) (i, j)
    +                                            i = k l = S j.
    + +
    +Corollary Successor_not (i j k : nat) : ¬ Successor (k,0) (i,j).
    + +
    +Lemma Successor_succ : alpha, Successor (succ alpha) alpha.
    + +
    + +
    +Lemma succ_ok alpha beta :
    +  Successor beta alpha beta = succ alpha. +
    + +
    +Definition succb (alpha: t): bool
    +  := match alpha with
    +       (_, S _)true
    +     | _false
    +     end.
    + +
    +Definition limitb (alpha : t): bool :=
    +  match alpha with
    +    (S _, 0)true
    +  | _false
    +  end.
    + +
    +Lemma Omega_limit_limitb alpha s : Omega_limit s alpha
    +                                   limitb alpha.
    + +
    +
    + +
    +Canonical sequences +
    +
    + +
    +Definition canon alpha i :=
    +  match alpha with
    +    (0,0)(0,0)
    +  | (_, S p)(0,p)
    +  | (S n, 0)(n, i)
    +  end.
    + +
    +Lemma limitb_limit alpha :
    +  limitb alpha Omega_limit (canon alpha) alpha.
    + +
    Example Ex1 : limitb omega.
    + +
    + +
    +Lemma limit_is_lub_0 : i alpha, ( j, (i,j) o< alpha)
    +                                 (S i, 0) o alpha.
    + +
    +Lemma limit_is_lub beta :
    +  limitb beta alpha,
    +    ( i, canon beta i o< alpha) beta o alpha.
    + +
    Definition zero_limit_succ_dec :
    +   alpha,
    +                ({alpha = zero} + {limitb alpha }) +
    +                {beta : t | alpha = succ beta} .
    + +
    +Definition plus (alpha beta : t) : t :=
    +  match alpha,beta with
    +  | (0, b), (0, b')(0, b + b')
    +  | (0,0), yy
    +  | x, (0,0)x
    +  | (0, _b), (S n', b')(S n', b')
    +  | (S n, b), (S n', b')(S n + S n', b')
    +  | (S n, b), (0, b')(S n, b + b')
    +   end.
    + +
    +Infix "+" := plus : ON_scope.
    + +
    +Lemma plus_compat (n p: nat) :
    +  fin (n + p )%nat = fin n + fin p. +
    + +
    + +
    + +
    + +
    +Example non_commutativity_of_plus: omega + 3 3 + omega. +
    + +
    +
    + +
    +multiplication of an ordinal by a natural number +
    +
    + +
    +Definition mult_fin_r (alpha : t) (p : nat): t :=
    +  match alpha, p with
    +  | (0,0), _zero
    +  | _, 0 ⇒ zero
    +  | (0, n), p(0, n × p)
    +  | (n, b), n'( n × n', b)
    +  end.
    +Infix "×" := mult_fin_r : ON_scope.
    + +
    +
    + +
    +multiplication of a natural number by an ordinal +
    +
    + +
    +Definition mult_fin_l (n:nat)(alpha : t) : t :=
    +  match n, alpha with
    +  | 0, _zero
    +  | _, (0,0)zero
    +  | n , (0,n')(0, (n×n')%nat)
    +  | n, (n',p')(n', (n × p')%nat)
    +  end.
    + +
    + +
    + +
    +Example e1 : (omega × 7 + 15) × 3 = omega × 21 + 15.
    + +
    +Example e2 : mult_fin_l 3 (omega × 7 + 15) = omega × 7 + 45.
    + +
    + +
    +#[global] Instance plus_assoc: Assoc eq plus.
    + +
    +Lemma succ_is_plus_1 alpha : alpha + 1 = succ alpha.
    + +
    +Lemma lt_omega alpha : alpha o< omega n:nat, alpha = fin n.
    + +
    +Lemma decompose (i j : nat): (i,j) = omega × i + j.
    + +
    + +
    +Lemma unique_decomposition (alpha: t) :
    +  ! i j: nat, alpha = omega × i + j.
    + +
    +
    + +
    +

    Additive principal ordinals

    + +
    +
    + +
    +Definition ap (alpha : t) :=
    +  alpha zero
    +  ( beta gamma, beta o< alpha gamma o< alpha
    +                       beta + gamma o< alpha).
    + +
    +Lemma omega_ap : ap omega.
    + +
    +Lemma ap_cases alpha : ap alpha alpha = 1 alpha = omega.
    + +
    + +
    + +
    + +
    + +
    + +
    +Open Scope ON_scope.
    + +
    +Example L_3_plus_omega : 3 + omega = omega.
    + +
    + +
    +From Equations Require Import Equations.
    +Section A_def.
    + +
    +Let m (x : nat × nat): t := omega × fst x + snd x.
    + +
    +#[ local ] Instance WF : WellFounded (measure_lt m):=
    +  wf_measure m.
    + +
    +Equations A (p : nat × nat) : nat by wf p (measure_lt m):=
    +    A (0, j) := S j;
    +    A (S i, 0) := A(i, 1);
    +    A (S i, S j) := A(i, A(S i, j)).
    + +
    + +
    +End A_def.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.OrdinalNotations.ON_Omega_plus_omega.html b/theories/html/hydras.OrdinalNotations.ON_Omega_plus_omega.html new file mode 100644 index 00000000..fab6d8cf --- /dev/null +++ b/theories/html/hydras.OrdinalNotations.ON_Omega_plus_omega.html @@ -0,0 +1,221 @@ + + + + + +hydras.OrdinalNotations.ON_Omega_plus_omega + + + + +
    + + + +
    + +

    Library hydras.OrdinalNotations.ON_Omega_plus_omega

    + +
    +
    + +
    + A notation system for the ordinal omega + omega Pierre Castéran, Univ. Bordeaux and LaBRI +
    +
    + +
    +From Coq Require Import Arith Compare_dec Lia.
    +From hydras Require Import Comparable Simple_LexProd ON_Generic
    +        ON_plus ON_Omega Compat815.
    + +
    +Import Relations.
    +Declare Scope opo_scope.
    +Delimit Scope opo_scope with opo.
    +Open Scope ON_scope.
    +Open Scope opo_scope.
    + +
    + +
    +#[global] Instance compare_nat_nat : Compare t :=
    compare_plus compare_nat compare_nat.
    + +
    +#[global] Instance Omega_plus_Omega: ON _ compare_nat_nat :=
    ON_plus Omega Omega.
    + +
    +Definition t := ON_t.
    + +
    + +
    +Example ex1 : inl 7 o< inr 8.
    + +
    + +
    +Open Scope opo_scope.
    + +
    +Definition fin (i:nat) : t := inl i.
    +Coercion fin : nat >-> t.
    + +
    +Notation omega := (inr 0:ON_t).
    + +
    + +
    +Example ex2 : inl 7 o< omega.
    + +
    +Lemma omega_is_limit : Limit omega.
    + +
    +Lemma limit_is_omega alpha : Limit alpha alpha = omega.
    + +
    + +
    +Lemma limit_iff (alpha : t) : Limit alpha alpha = omega. +
    +Lemma Successor_inv1 : i j, Successor (inl j) (inl i) j = S i.
    + +
    +Lemma Successor_inv2 : i j, Successor (inr j) (inr i) j = S i.
    + +
    +Lemma Successor_inv3 : i j, ¬ Successor (inr j) (inl i).
    + +
    +Lemma Successor_inv4 : i j, ¬ Successor (inl j) (inr i).
    + +
    + +
    +Definition succ (alpha : t) :=
    +  match alpha with
    +    inl ninl (S n)
    +  | inr ninr (S n)
    +  end.
    + +
    + +
    +Lemma Successor_succ alpha : Successor (succ alpha) alpha.
    + +
    + +
    +Lemma succ_correct alpha beta :
    +  Successor beta alpha beta = succ alpha. +
    + +
    + +
    +Definition succb (alpha: t) : bool
    +  := match alpha with
    +     | inr (S _) | inl (S _) ⇒ true
    +     | _false
    +     end.
    + +
    +Lemma succb_correct (alpha: t) :
    +  succb alpha beta: t, alpha = succ beta. +
    + +
    +Lemma omega_not_succ : alpha, ¬ Successor omega alpha.
    + +
    +Lemma Least_is_0 (alpha:t) : Least alpha alpha = 0.
    + +
    +Lemma ZLS_dec (alpha : t) :
    +  {alpha = 0} +
    +  {Limit alpha} +
    +  {beta : t | Successor alpha beta}.
    + +
    + +
    +Definition Zero_limit_succ_dec : ON_Generic.ZeroLimitSucc_dec.
    + +
    +Definition limitb (alpha: t) := match ON_compare alpha omega
    +                                with Eqtrue | _false end.
    + +
    +Lemma eq_dec (alpha beta: t) : {alpha = beta} + {alpha beta}.
    + +
    +Lemma le_introl :
    +   i j :nat, (i j)%nat inl i o inl j.
    + +
    +Lemma le_intror :
    +   i j :nat, (i j)%nat inr i o inr j.
    + +
    +Lemma le_0 : p: t, fin 0 o p.
    + +
    +Lemma le_lt_trans : p q r, p o q q o< r p o< r.
    + +
    +Lemma lt_le_trans : p q r, p o< q q o r p o< r.
    + +
    +Lemma lt_succ_le alpha beta : alpha o< beta succ alpha o beta.
    + +
    +Lemma lt_succ alpha : alpha o< succ alpha.
    + +
    +Lemma lt_omega alpha :
    +  alpha o< omega n:nat, alpha = fin n.
    + +
    +Lemma Omega_as_lub :
    +    alpha,
    +     ( i, fin i o< alpha) omega o alpha.
    + +
    + +
    + #[global] Instance Incl : SubON Omega Omega_plus_Omega omega fin. +
    + +
    +Section NotIncl.
    +  Context (i : nat)
    +          (f : t nat)
    +          (Hyp : SubON Omega_plus_Omega Omega i f).
    + +
    +  Remark R1: n: nat, ¬ Limit n.
    + +
    +Lemma ExNotIncl: False.
    + +
    +End NotIncl.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.OrdinalNotations.ON_mult.html b/theories/html/hydras.OrdinalNotations.ON_mult.html new file mode 100644 index 00000000..feba0760 --- /dev/null +++ b/theories/html/hydras.OrdinalNotations.ON_mult.html @@ -0,0 +1,151 @@ + + + + + +hydras.OrdinalNotations.ON_mult + + + + +
    + + + +
    + +

    Library hydras.OrdinalNotations.ON_mult

    + +
    + +
    +
    + +
    +Product of ordinal notations +
    + + Pierre Castéran, Univ. Bordeaux and LaBRI +
    +
    + +
    + +
    +From Coq Require Import Arith Compare_dec Lia
    +     Relation_Operators RelationClasses.
    +From hydras Require Import Comparable Simple_LexProd ON_Generic.
    + +
    +Import Relations.
    +Generalizable All Variables.
    +Coercion is_true: bool >-> Sortclass.
    + +
    +
    + +
    +

    Definitions

    + +
    + + The product of two notation systems NA and NB is defined as the + lexicographic product of the order on NB by the order on NA + (in this order ! ) +
    +
    + +
    + +
    +Section Defs.
    + +
    +  Context `(ltA: relation A)
    +          (cmpA : Compare A)
    +          (NA: ON ltA cmpA)
    +          `(ltB : relation B)
    +          (cmpB : Compare B)
    +          (NB: ON ltB cmpB).
    + +
    +  Definition t := (B × A)%type.
    +  Definition lt : relation t := lexico ltB ltA.
    +  Definition le := clos_refl _ lt.
    + +
    +  #[global] Instance compare_mult : Compare t :=
    +    fun (alpha beta: t) ⇒
    +    match compare (fst alpha) (fst beta) with
    +    | Eqcompare (snd alpha) (snd beta)
    +    | cc
    +    end.
    + +
    +  #[local] Hint Constructors clos_refl lexico: core.
    +  #[local] Hint Unfold lt le : core.
    + +
    +
    + +
    +

    Properties

    + +
    +
    + +
    +  Instance lt_strorder : StrictOrder lt.
    + +
    +  Lemma lt_wf : well_founded lt.
    + +
    +  Lemma compare_reflect alpha beta :
    +    match (compare alpha beta)
    +    with
    +      Ltlt alpha beta
    +    | Eqalpha = beta
    +    | Gtlt beta alpha
    +    end.
    + +
    +  Lemma compare_correct alpha beta :
    +    CompSpec eq lt alpha beta (compare alpha beta).
    + +
    + +
    +  #[global] Instance mult_comp: Comparable lt compare_mult.
    + +
    +  #[global] Instance ON_mult: ON lt compare_mult.
    + +
    +  Lemma lt_eq_lt_dec alpha beta :
    +    {lt alpha beta} + {alpha = beta} + {lt beta alpha}.
    + +
    + +
    +End Defs.
    + +
    +Arguments lt_eq_lt_dec {A ltA cmpA} _ {B ltB cmpB} _.
    +Arguments ON_mult {A ltA cmpA} _ {B ltB cmpB}.
    +Arguments lt_strorder {A} {ltA} {cmpA} _ {B} {ltB} {cmpB} _.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.OrdinalNotations.ON_plus.html b/theories/html/hydras.OrdinalNotations.ON_plus.html new file mode 100644 index 00000000..2d6c1304 --- /dev/null +++ b/theories/html/hydras.OrdinalNotations.ON_plus.html @@ -0,0 +1,148 @@ + + + + + +hydras.OrdinalNotations.ON_plus + + + + +
    + + + +
    + +

    Library hydras.OrdinalNotations.ON_plus

    + +
    + +
    +
    + +
    +The sum of two ordinal notations +
    + + Pierre Castéran, Univ. Bordeaux and LaBRI +
    +
    + +
    + +
    +From Coq Require Import Arith Compare_dec Lia
    +     Relation_Operators RelationClasses Disjoint_Union.
    +From hydras Require Import ON_Generic MoreOrders.
    + +
    +Import Relations.
    +Generalizable All Variables.
    +Coercion is_true: bool >-> Sortclass.
    + +
    +Section Defs.
    + +
    +  Context `(ltA: relation A)
    +          (cmpA : Compare A)
    +          (NA: ON ltA cmpA).
    +  Context `(ltB: relation B)
    +          (cmpB : Compare B)
    +          (NB: ON ltB cmpB).
    + +
    +  Definition t := (A + B)%type.
    +  Arguments inl {A B} _.
    +  Arguments inr {A B} _.
    + +
    +  Definition lt : relation t := le_AsB _ _ ltA ltB.
    + +
    +#[global] Instance compare_plus : Compare t :=
    +fun (alpha beta: t) ⇒
    +   match alpha, beta with
    +     inl _, inr _Lt
    +   | inl a, inl a'compare a a'
    +   | inr b, inr b'compare b b'
    +   | inr _, inl _Gt
    +  end.
    + +
    +Definition le := clos_refl _ lt.
    + +
    +#[local] Hint Unfold lt le : core.
    +#[local] Hint Constructors le_AsB: core.
    + +
    +Instance lt_strorder : StrictOrder lt.
    + +
    +Lemma compare_reflect alpha beta :
    +  match (compare alpha beta)
    +  with
    +    Ltlt alpha beta
    +  | Eqalpha = beta
    +  | Gtlt beta alpha
    +  end.
    + +
    + +
    +Lemma compare_correct alpha beta :
    +    CompSpec eq lt alpha beta (compare alpha beta). +
    + +
    +#[global] Instance plus_comp : Comparable lt compare_plus.
    + +
    + +
    + +
    +Lemma lt_wf : well_founded lt.
    + +
    + +
    + +
    + +
    + +
    +#[global] Instance ON_plus : ON lt compare_plus.
    + +
    + +
    + +
    +Lemma lt_eq_lt_dec alpha beta :
    +  {lt alpha beta} + {alpha = beta} + {lt beta alpha}.
    + +
    +End Defs.
    + +
    +Arguments lt_eq_lt_dec {A ltA cmpA} _ {B ltB cmpB} _.
    +Arguments ON_plus {A ltA cmpA} _ {B ltB cmpB}.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.OrdinalNotations.OmegaOmega.html b/theories/html/hydras.OrdinalNotations.OmegaOmega.html new file mode 100644 index 00000000..20c3e7bc --- /dev/null +++ b/theories/html/hydras.OrdinalNotations.OmegaOmega.html @@ -0,0 +1,481 @@ + + + + + +hydras.OrdinalNotations.OmegaOmega + + + + +
    + + + +
    + +

    Library hydras.OrdinalNotations.OmegaOmega

    + +
    +
    + +
    +

    An implementation of ωω

    + +
    + + New implementation as a refinement of epsilon0 +
    +
    + +
    +From hydras Require Import T1 E0 Comparable.
    +From Coq Require Import Arith Logic.Eqdep_dec Peano_dec
    +  List Bool
    +  Recdef Lia Wellfounded.Inverse_Image
    +  Wellfounded.Inclusion RelationClasses .
    + +
    +
    + +
    +

    Representation by lists of pairs of integers

    + +
    +
    + +
    +Module LO.
    + +
    +  Definition t := list (nat×nat).
    + +
    +  Definition zero : t := nil.
    + +
    +
    + +
    +omega^ i * S n + alpha +
    +
    + +
    +  Notation cons i n alpha := ((i,n)::alpha).
    + +
    +
    + +
    +Finite ordinals +
    +
    + +
    +  Notation FS n := (cons 0 n zero: t).
    + +
    +  Definition fin (n:nat): t := match n with 0 ⇒ zero | S pFS p end.
    +  Coercion fin : nat >-> t.
    + +
    +
    + +
    +omega ^i +
    +
    + +
    +  Notation phi0 i := (cons i 0 nil).
    + +
    +  Notation omega := (phi0 1).
    + +
    + +
    +
    + +
    +data refinement +
    +
    + +
    +  Fixpoint refine (a : t) : T1.T1 :=
    +    match a with
    +      nilT1.zero
    +    | cons i n bT1.cons (\F i)%t1 n (refine b)
    +    end.
    + +
    +  Inductive ap : t Prop :=
    +    ap_intro : a, ap (phi0 a).
    + +
    +
    + +
    +Successor and limits (syntactic definitions) +
    +
    + +
    +  Fixpoint succb (a : t) :=
    +    match a with
    +      nilfalse
    +    | cons 0 _ _true
    +    | cons _ _ bsuccb b
    +    end.
    + +
    +  Fixpoint limitb (a : t) :=
    +    match a with
    +      nilfalse
    +    | cons 0 _ _false
    +    | cons _ _ niltrue
    +    | cons _ _ blimitb b
    +    end.
    + +
    +  Lemma succb_ref (a:t): succb a T1is_succ (refine a).
    + +
    +  Lemma limitb_ref (a:t): limitb a T1limit (refine a).
    + +
    +  #[ global ] Instance compare_oo : Compare t :=
    +  fix cmp (a b : t) :=
    +    match a, b with
    +    | nil, nilEq
    +    | nil, cons a' n' b'Datatypes.Lt
    +    | _ , nilGt
    +    | (cons a n b),(cons a' n' b') ⇒
    +      (match Nat.compare a a' with
    +       | Datatypes.LtDatatypes.Lt
    +       | GtGt
    +       | Eq ⇒ (match Nat.compare n n' with
    +                | Eqcmp b b'
    +                | compcomp
    +                end)
    +       end)
    +    end.
    + +
    +  Lemma compare_ref (a b : t) :
    +    compare a b = compare (refine a) (refine b).
    + +
    +  Definition lt (a b : t) : Prop :=
    +    compare a b = Datatypes.Lt.
    + +
    +  Lemma compare_rev :
    +     (a b : t),
    +      compare b a = CompOpp (compare a b).
    + +
    + +
    +  Lemma compare_reflect :
    +     a b,
    +      match compare a b with
    +      | Datatypes.Ltlt a b
    +      | Eqa = b
    +      | Gtlt b a
    +      end.
    + +
    +  Lemma compare_correct (a b: t):
    +    CompSpec eq lt a b (compare a b).
    + +
    +  Lemma lt_ref (a b : t) :
    +    lt a b T1.lt (refine a) (refine b).
    + +
    +  Lemma eq_ref (a b : t) : a = b refine a = refine b.
    + +
    +  Lemma lt_irrefl (a : t): ¬ lt a a.
    + +
    +  Lemma lt_trans (a b c : t): lt a b lt b c lt a c.
    + +
    +  #[global] Instance lo_strorder: StrictOrder lt.
    + +
    +  #[global] Instance lo_comparable : Comparable lt compare.
    + +
    +  Fixpoint nf_b (alpha : t) : bool :=
    +    match alpha with
    +    | niltrue
    +    | cons a n niltrue
    +    | cons a n ((cons a' n' b') as b) ⇒
    +      (nf_b b && Nat.ltb a' a)%bool
    +    end.
    + +
    +  Definition nf alpha :Prop := nf_b alpha.
    +
    + +
    +refinements of T1's lemmas +
    +
    + +
    +  Lemma zero_nf : nf zero.
    + +
    +  Lemma fin_nf (i:nat) : nf (fin i).
    + +
    +  Lemma single_nf :
    +     i n, nf (cons i n zero).
    + +
    +  Lemma cons_nf :
    +     i n j n' b,
    +      Nat.lt j i
    +      nf(cons j n' b)
    +      nf(cons i n (cons j n' b)).
    + +
    +  #[local] Hint Resolve zero_nf single_nf cons_nf : core.
    + +
    +  Lemma nf_inv2 :
    +     i n b, nf (cons i n b) nf b.
    + +
    +  Lemma nf_inv3 :
    +     i n j n' b',
    +      nf (cons i n (cons j n' b')) Nat.lt j i.
    + +
    +  Lemma nf_ref: a, T1.nf (refine a) nf a.
    + +
    +  Declare Scope lo_scope.
    +  Delimit Scope lo_scope with lo.
    +  Open Scope lo_scope.
    + +
    + +
    +  Fixpoint succ (a : t) : t :=
    +    match a with
    +    | nilfin 1
    +    | cons 0 n _cons 0 (S n) nil
    +    | cons a n bcons a n (succ b)
    +    end.
    + +
    +  Fixpoint plus (a b : t) :t :=
    +    match a, b with
    +    | nil, yy
    +    | x, nilx
    +    | cons a n b, cons a' n' b'
    +       (match Nat.compare a a' with
    +        | Datatypes.Ltcons a' n' b'
    +        | Gt ⇒ (cons a n (plus b (cons a' n' b')))
    +        | Eq ⇒ (cons a (S (n+n')) b')
    +        end)
    +    end
    +  where "a + b" := (plus a b) : lo_scope.
    + +
    +  Fixpoint mult (a b : t) : t :=
    +    match a, b with
    +    | nil, _zero
    +    | _, nilzero
    +    | cons 0 n _, cons 0 n' b'
    +       cons 0 (Peano.pred((S n) × (S n'))) b'
    +    | cons a n b, cons 0 n' _
    +       cons a (Peano.pred ((S n) × (S n'))) b
    +    | cons a n b, cons a' n' b'
    +       cons (a + a')%nat n' ((cons a n b) × b')
    +    end
    +  where "a * b" := (mult a b) : lo_scope.
    + +
    + +
    + +
    +  Lemma phi0_ref (i:nat) : refine (phi0 i) = T1.phi0 (\F i).
    + +
    + +
    +  Lemma phi0_nf (i:nat) : nf (phi0 i).
    + +
    +  Lemma succ_ref (alpha : t) :
    +    refine (succ alpha) = T1.succ (refine alpha).
    + +
    +  Lemma succ_nf alpha : nf alpha nf (succ alpha).
    + +
    +  Lemma plus_ref : alpha beta: t,
    +      refine (alpha + beta) = T1.T1add (refine alpha) (refine beta).
    + +
    +  Lemma plus_nf alpha beta : nf alpha nf beta nf (alpha + beta).
    + +
    +  Lemma mult_ref : alpha beta: t,
    +      refine (alpha × beta) =
    +      T1.T1mul (refine alpha) (refine beta).
    + +
    +  Lemma mult_nf alpha beta : nf alpha nf beta nf (alpha × beta).
    + +
    + +
    +  #[global] Instance plus_assoc: Assoc eq plus.
    + +
    +  Lemma mult_plus_distr_l (a b c: t) : nf a nf b nf c
    +                                       a × (b + c) = a × b + a × c.
    + +
    +End LO.
    + +
    +Declare Scope OO_scope.
    + +
    +Delimit Scope OO_scope with oo.
    +Open Scope OO_scope.
    +Import LO.
    + +
    +
    + +
    +

    well formed ordinal representation

    + +
    +
    + +
    +Module OO.
    +  Class OO : Type := mkord {data: LO.t ; data_ok : LO.nf data}.
    + +
    +  Arguments data : clear implicits.
    +  #[local] Hint Resolve data_ok : core.
    + +
    +  Definition lt (alpha beta: OO) := LO.lt (data alpha) (data beta).
    +  Definition le := leq lt.
    +  #[ global ] Instance compare_OO : Compare OO :=
    +    fun (alpha beta: OO) ⇒ LO.compare_oo (data alpha) (data beta).
    + +
    +  #[ global ] Instance Zero : OO := @mkord nil refl_equal.
    + +
    +  #[ global ] Instance _Omega : OO.
    + +
    +  #[ global ] Instance Fin (i:nat) : OO.
    + +
    +  Notation omega := _Omega.
    + +
    +  #[ global ] Instance Succ (alpha : OO) : OO.
    + +
    +  #[ global ] Instance plus (alpha beta : OO) : OO.
    + +
    +  Infix "+" := plus : OO_scope.
    + +
    +  #[ global ] Instance mult (alpha beta : OO) : OO.
    + +
    +  Infix "×" := mult : OO_scope.
    + +
    +  #[ global ] Instance phi0 (i : nat): OO.
    + +
    +  Notation "'omega^'" := phi0 (only parsing) : OO_scope.
    + +
    +  Infix "×" := mult : OO_scope.
    + +
    +  #[ global ] Instance embed (alpha: OO) : E0.E0.
    + +
    +  Lemma lt_embed (alpha beta : OO): lt alpha beta
    +                                    E0lt (embed alpha) (embed beta).
    + +
    +  #[ global ] Instance oo_str : StrictOrder lt.
    +  Qed.
    + +
    +  Lemma nf_proof_unicity :
    +     (alpha:t) (H H': nf alpha), H = H'.
    + +
    +  Lemma OO_eq_intro : alpha beta : OO,
    +      data alpha = data beta alpha = beta.
    + +
    +  #[ global ] Instance OO_comp : Comparable lt compare.
    + +
    +  Lemma lt_wf : well_founded lt.
    + +
    +  Import ON_Generic.
    + +
    +  #[ global ] Instance ON_OO : ON lt compare.
    + +
    +End OO.
    + +
    +Import OO.
    +#[local] Open Scope OO_scope.
    + +
    +Check phi0 7.
    + +
    +#[global] Coercion Fin : nat >-> OO.
    + +
    +Example Ex42: omega + 42 + omega^ 2 = omega^ 2. Qed.
    + +
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Prelude.Comparable.html b/theories/html/hydras.Prelude.Comparable.html new file mode 100644 index 00000000..2001ab81 --- /dev/null +++ b/theories/html/hydras.Prelude.Comparable.html @@ -0,0 +1,296 @@ + + + + + +hydras.Prelude.Comparable + + + + +
    + + + +
    + +

    Library hydras.Prelude.Comparable

    + +
    +From Coq Require Import Relations RelationClasses Setoid.
    +From hydras Require Export MoreOrders STDPP_compat.
    + +
    +Class Compare (A:Type) := compare : A A comparison.
    + +
    +Class Comparable {A:Type} (lt: relation A) (cmp : Compare A) :=
    +{
    +  comparable_sto :> StrictOrder lt;
    +  comparable_comp_spec : (a b : A), CompSpec eq lt a b (compare a b)
    +}.
    + +
    +#[export] Hint Mode Compare ! : typeclass_instances.
    +#[export] Hint Mode Comparable ! - - : typeclass_instances.
    + +
    +Section Comparable.
    + +
    +  Context {A: Type}
    +          {lt: relation A}
    +          {cmp: Compare A} `{!Comparable lt cmp}.
    +  #[local] Notation le := (leq lt).
    + +
    +  #[deprecated(note="use StrictOrder_Transitive")]
    +   Notation lt_trans := StrictOrder_Transitive (only parsing).
    + +
    +  #[deprecated(note="use StrictOrder_Irreflexive")]
    +   Notation lt_irrefl := StrictOrder_Irreflexive (only parsing).
    + +
    +  Lemma lt_not_gt (a b: A): lt a b ¬lt b a.
    + +
    +  Lemma lt_not_ge (a b: A): lt a b ¬ le b a.
    + +
    +  Lemma compare_lt_iff (a b: A):
    +    compare a b = Lt lt a b.
    + +
    +  Lemma compare_lt_trans (a b c: A):
    +    compare a b = Lt compare b c = Lt compare a c = Lt.
    + +
    +  Lemma compare_lt_irrefl (a: A): ¬compare a a = Lt.
    + +
    +  Lemma compare_eq_iff (a b: A): compare a b = Eq a = b.
    + +
    +  Lemma compare_refl (a: A):
    +    compare a a = Eq.
    + +
    +  Lemma compare_eq_trans (a b c: A):
    +    compare a b = Eq compare b c = Eq compare a c = Eq.
    + +
    +  Lemma compare_gt_iff (a b: A):
    +    compare a b = Gt lt b a.
    + +
    +  Lemma compare_gt_irrefl (a: A):
    +    ¬compare a a = Gt.
    + +
    +  Lemma compare_gt_trans (a b c: A):
    +    compare a b = Gt compare b c = Gt compare a c = Gt.
    + +
    +  Lemma compare_lt_not_gt (a b: A):
    +    compare a b = Lt ¬ compare a b = Gt.
    + +
    +  Lemma compare_gt_not_lt (a b: A):
    +    compare a b = Gt ¬ compare a b = Lt.
    + +
    +  Lemma le_refl (a: A): le a a.
    + +
    +  Lemma compare_le_iff_refl (a: A):
    +    le a a compare a a = Eq.
    + +
    +  Lemma compare_le_iff (a b: A):
    +    le a b compare a b = Lt compare a b = Eq.
    + +
    +  Lemma compare_ge_iff (a b: A):
    +    le b a compare a b = Gt compare a b = Eq.
    + +
    +  Lemma le_trans (a b c: A):
    +    le a b le b c le a c.
    + +
    +  Lemma le_lt_trans (a b c: A):
    +    le a b lt b c lt a c.
    + +
    +  Lemma lt_le_trans (a b c: A):
    +    lt a b le b c lt a c.
    + +
    +  Lemma lt_incl_le (a b: A):
    +    lt a b le a b.
    + +
    +  Lemma le_not_gt (a b: A):
    +    le a b ¬ lt b a.
    + +
    +  #[using="All"]
    +  Definition max (a b : A): A :=
    +  match compare a b with
    +  | Gta
    +  | _b
    +  end.
    + +
    +  Lemma max_dec (a b: A):
    +    max a b = a max a b = b.
    + +
    +  Lemma max_comm (a b: A):
    +    max a b = max b a.
    + +
    +  Lemma max_ge_a (a b: A):
    +    le b a max a b = a.
    + +
    +  Lemma max_ge_b (a b: A):
    +    le a b max a b = b.
    + +
    +  Lemma max_refl (a: A): max a a = a.
    + +
    +  Lemma le_max_a (a b: A): le a (max a b).
    + +
    +  Lemma le_max_b (a b: A): le b (max a b).
    + +
    +  #[global] Instance max_assoc : Assoc eq max.
    + +
    +  #[using="All"]
    +  Definition min (a b :A): A :=
    +  match compare a b with
    +  | Lta
    +  | _b
    +  end.
    + +
    +  Lemma min_max_iff (a b: A):
    +    min a b = a max a b = b.
    + +
    +  Lemma min_comm (a b: A):
    +    min a b = min b a.
    + +
    +  Lemma min_dec (a b: A):
    +    min a b = a min a b = b.
    + +
    +  Lemma min_le_ad (a b: A):
    +    le a b min a b = a.
    + +
    +  Lemma min_le_b (a b: A):
    +    le b a min a b = b.
    + +
    +  Lemma min_refl (a:A):
    +    min a a = a.
    + +
    + +
    +  Lemma le_min_a (a b: A):
    +    le (min a b) a.
    + +
    +  Lemma le_min_bd (a b: A):
    +    le (min a b) b.
    + +
    +  #[global] Instance min_assoc: Assoc eq min.
    + +
    + +
    +  Lemma compare_trans (a b c: A) (comp_res: comparison):
    +    compare a b = comp_res compare b c = comp_res compare a c = comp_res.
    + +
    +  Lemma compare_reflect (a b: A):
    +    match compare a b with
    +    | Ltlt a b
    +    | Eqa = b
    +    | Gtlt b a
    +    end.
    + +
    +  Lemma lt_eq_lt:
    +     alpha beta, lt alpha beta alpha = beta lt beta alpha.
    + +
    +  Definition lt_eq_lt_dec
    +             (alpha beta : A) :
    +    {lt alpha beta} + {alpha = beta} + {lt beta alpha}.
    +  Defined.
    + +
    +  Lemma LimitNotSucc
    +        (alpha: A) :
    +    Limit alpha beta, ¬ Successor alpha beta.
    + +
    +End Comparable.
    + +
    +#[local] Ltac compare_trans H1 H2 intropattern :=
    +  lazymatch type of (H1, H2) with
    +  | ((?compare ?a ?b = ?comp_res) × (?compare ?b ?c = ?comp_res))%type
    +    assert (compare a c = comp_res) as intropattern by
    +          (apply compare_trans with b;
    +           [ exact H1 | exact H2 ])
    +  | ((?compare ?a ?b = ?comp_res) × (?compare ?b ?c = Eq))%type
    +    assert (compare a c = comp_res) as intropattern by
    +          (assert (b = c) asby (apply compare_eq_iff; exact H2);
    +           exact H1)
    +  | ((?compare ?a ?b = Eq) × (?compare ?b ?c = ?comp_res))%type
    +    assert (compare a c = comp_res) as intropattern by
    +          (assert (a = b) asby (apply compare_eq_iff; exact H1);
    +           exact H2)
    +  | ((?compare _ _ = _) × (?compare _ _ = _))%typefail "Not a supported case."
    +  | _fail "Did not find hypotheses talking about compare: did you declare an instance of Comparable?"
    +  end.
    + +
    +Tactic Notation "compare" "trans" constr(H1) constr(H2) "as" simple_intropattern(intropattern) :=
    +  compare_trans H1 H2 intropattern.
    + +
    +Ltac compare_destruct_eqn a b H :=
    +  destruct (compare a b) eqn: H;
    +  [ apply compare_eq_iff in H as <-
    +  | apply compare_lt_iff in H
    +  | apply compare_gt_iff in H
    +  ].
    + +
    +Tactic Notation "compare" "destruct" constr(a) constr(b) "as" ident(H) :=
    +  compare_destruct_eqn a b H.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Prelude.Compat815.html b/theories/html/hydras.Prelude.Compat815.html new file mode 100644 index 00000000..fdd72fee --- /dev/null +++ b/theories/html/hydras.Prelude.Compat815.html @@ -0,0 +1,109 @@ + + + + + +hydras.Prelude.Compat815 + + + + +
    + + + +
    + +

    Library hydras.Prelude.Compat815

    + +
    +
    + +
    +provisionally fixes some compatibilty issues 8.15 -> 8.16 +
    +
    + +
    +From Coq Require Import Arith Lia.
    +Import Nat.
    + +
    +Module Compat815.
    + +
    +  Lemma le_n_0_eq : n : nat, n 0 0 = n.
    + +
    +  Lemma le_lt_or_eq :
    +     n m : nat, n m n < m n = m.
    + +
    +  Lemma lt_n_Sm_le:
    +       n m : nat, n < S m n m.
    + +
    +  Definition ind_0_1_SS (P : nat Prop) (H0 : P 0) (H1 : P 1)
    +  (H2 : n : nat, P n P (S (S n))) : n, P n :=
    +
    +fix ind_0_1_SS (n : nat) : P n :=
    +  match n as n0 return (P n0) with
    +  | 0 ⇒ H0
    +  | S n0
    +      (fun n1 : nat
    +       match n1 as n2 return (P (S n2)) with
    +       | 0 ⇒ H1
    +       | S n2 ⇒ (fun n3 : natH2 n3 (ind_0_1_SS n3)) n2
    +       end) n0
    +  end.
    + +
    +  Lemma lt_S_n (n m :nat) : S n < S m n < m.
    + +
    + +
    +  Lemma lt_n_S : n m : nat, n < m S n < S m.
    + +
    +  Lemma le_lt_n_Sm : n m : nat, n m n < S m.
    + +
    Lemma lt_not_le : n m : nat, n < m ¬ m n.
    + +
    Lemma le_plus_r : n m : nat, m n + m.
    + +
    +Lemma mult_O_le : n m : nat, m = 0 n m × n.
    + +
    +Lemma plus_Snm_nSm
    +     : n m : nat, S n + m = n + S m.
    + +
    +Lemma n_SSSn : n : nat, n S (S (S n)).
    + +
    +Lemma n_SSn : n : nat, n S (S n).
    + +
    +Lemma le_not_lt : n m : nat, n m ¬ m < n.
    + +
    +End Compat815.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Prelude.DecPreOrder.html b/theories/html/hydras.Prelude.DecPreOrder.html new file mode 100644 index 00000000..0af73f62 --- /dev/null +++ b/theories/html/hydras.Prelude.DecPreOrder.html @@ -0,0 +1,180 @@ + + + + + +hydras.Prelude.DecPreOrder + + + + +
    + + + +
    + +

    Library hydras.Prelude.DecPreOrder

    + +
    +
    + +
    + +
    + + Decidable, Total Pre-orders + +
    + + +
    +
    + +
    +From Coq Require Export Relations RelationClasses Setoid.
    + +
    +Class Total {A:Type}(R: relation A) :=
    +  totalness : a b:A, R a b R b a.
    + +
    +From hydras Require Export STDPP_compat.
    + +
    +#[ global ] Instance comparison_eq_dec : EqDecision comparison.
    + +
    +#[ global ] Instance Total_Reflexive{A:Type}{R: relation A}(rt : Total R):
    +  Reflexive R.
    + +
    +Module Semibundled.
    + +
    +Class TotalDec {A:Type}(R: relation A):=
    +  { total_dec :> Total R ;
    +    dec_dec :> RelDecision R}.
    + +
    +
    + +
    +A class of decidable total pre-orders +
    +
    + +
    +Class TotalDecPreOrder {A:Type}(le: relation A) :=
    +  {
    +    total_dec_pre_order :> PreOrder le;
    +    total_dec_total :> TotalDec le
    +  }.
    + +
    +End Semibundled.
    + +
    +
    + +
    +when applied to a pre-order relation le, returns the equivalence and + the strict order associated to le +
    +
    + +
    +Definition preorder_equiv {A:Type}{le:relation A}
    +           `{P:@PreOrder A le }(a b : A) :=
    +  le a b le b a.
    + +
    +Definition lt {A:Type}{le:relation A} `{P:@PreOrder A le }(a b : A) :=
    +  le a b ¬ le b a.
    + +
    +
    + +
    +A class of total pre-orders +
    +
    + +
    +Class TotalPreOrder {A} (R : relation A) : Prop := {
    +  total_pre_order_pre :> PreOrder R;
    +  total_pre_order_total :> Total R
    +}.
    + +
    +
    + +
    +Properties of decidable total pre-orders +
    +
    +Lemma lt_irreflexive {A:Type}{le:relation A}{P:PreOrder le}:
    +   a, ¬ lt a a.
    + +
    +Lemma lt_not_ge {A:Type}{le:relation A}{P:PreOrder le}:
    +   a b, lt a b ¬ le b a.
    + +
    +Lemma not_le_ge {A} {le:relation A} {P0 : TotalPreOrder le} :
    +   a b, ¬ le a b le b a.
    + +
    +Lemma le_not_gt {A:Type}{le:relation A}{P:PreOrder le}:
    +   a b, le a b ¬ lt b a.
    + +
    +Lemma lt_not_equiv {A:Type}{le:relation A}{P:PreOrder le}:
    +   a b, lt a b ¬ preorder_equiv a b.
    + +
    +Lemma equiv_not_lt {A:Type}{le:relation A}{P:PreOrder le}:
    +   a b, preorder_equiv a b ¬ lt a b.
    + +
    +Lemma lt_le_trans {A:Type}{le:relation A}{P:PreOrder le}:
    a b c, lt a b le b c lt a c.
    + +
    +Lemma le_lt_trans {A:Type}{le:relation A}{P:PreOrder le}:
    a b c, le a b lt b c lt a c.
    + +
    +Lemma le_lt_weak {A:Type}{le:relation A}{P:PreOrder le}:
    a b, lt a b le a b.
    + +
    +#[ global ] Instance lt_transitive {A:Type}{le:relation A}{P:PreOrder le}:
    +  Transitive lt.
    + +
    +#[ global ] Instance equiv_equiv {A:Type}{le:relation A} `{P:@PreOrder A le }: Equivalence preorder_equiv.
    + +
    +Lemma le_lt_equiv_dec {A:Type} {le : relation A}
    + {P0: TotalPreOrder le} {dec : RelDecision le} (a b:A) :
    le a b {lt a b}+{preorder_equiv a b}.
    + +
    +Lemma not_le_gt {A:Type}(le : relation A)
    +      (P0: TotalPreOrder le) (a b:A) : ¬ le a b lt b a.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Prelude.DecPreOrder_Instances.html b/theories/html/hydras.Prelude.DecPreOrder_Instances.html new file mode 100644 index 00000000..51333e3d --- /dev/null +++ b/theories/html/hydras.Prelude.DecPreOrder_Instances.html @@ -0,0 +1,191 @@ + + + + + +hydras.Prelude.DecPreOrder_Instances + + + + +
    + + + +
    + +

    Library hydras.Prelude.DecPreOrder_Instances

    + +
    +
    + +
    +Pierre Castéran, Univ. Bordeaux and LaBRI +
    +
    + +
    +From hydras Require Export DecPreOrder.
    +From Coq Require Import Arith ZArith List Sets.Finite_sets Sets.Ensembles.
    + +
    +#[ global ] Instance Nat_le_dec : RelDecision le := le_dec.
    + +
    +#[ global ] Instance Nat_le_TO : TotalPreOrder le.
    + +
    +#[ global ] Instance Z_le_dec : RelDecision Z.le := Z_le_dec.
    + +
    +#[ global ] Instance Z_le_TO : TotalPreOrder Z.le.
    +Qed.
    + +
    +Import DecPreOrder.
    + +
    +
    + +
    +Pre-order associated with an inverse function +
    +
    + +
    +#[ global ] Instance Inverse_fun {A B:Type}{f : A B}
    +         {leB: relation B}{PB: PreOrder leB}:
    +                     PreOrder (fun x yleB (f x) (f y)).
    + +
    +#[ global ] Instance Total_Inverse_fun {A B:Type}{f : A B}
    +         {leB: relation B}{TB: TotalPreOrder leB} :
    +                     TotalPreOrder (fun x yleB (f x) (f y)).
    + +
    +#[ global ] Instance RelDecision_Inverse_fun {A B:Type}{f : A B}
    + {leB: relation B} {RDB : RelDecision leB} :
    +  RelDecision (fun x yleB (f x) (f y)) :=
    +  fun x ydecide_rel leB (f x) (f y).
    + +
    +
    + +
    +Pre-order associated with inclusion +
    +
    + +
    +#[ global ] Instance PrO_Included {U:Type}: PreOrder (Included U).
    + +
    +Arguments Included {U} _ _.
    + +
    +Definition Included_s {U} (A B : Ensemble U) :=
    +  Included A B ¬ Included B A.
    + +
    +Infix "<:" := Included (at level 30).
    +Infix "'<s'" := Included_s (at level 30).
    + +
    +
    + +
    +Example + Lists (pre-ordered by their length) +
    +
    + +
    +#[ global ] Instance List_length {A:Type}:
    +   TotalPreOrder (fun l l' : list AList.length l List.length l')%nat.
    +Defined.
    + +
    +
    + +
    +Non dependent lexicographic product +
    +
    + +
    +Section lexprod.
    Variables (A B : Type)
    +           (leA : relation A)
    +           (leB : relation B).
    Context (TA : TotalPreOrder leA)
    +         (TB : TotalPreOrder leB)
    +         (DA : RelDecision leA)
    +         (DB : RelDecision leB).
    + +
    Definition PA := @total_pre_order_pre A leA TA.
    Definition PB := @total_pre_order_pre B leB TB.
    + +
    + +
    +Notation "x '<=A' y" := (leA x y) (at level 70, no associativity).
    +Notation "x '<A' y" := (@lt A leA PA x y) (at level 70, no associativity).
    +Notation "x '<=B' y" := (leB x y) (at level 70, no associativity).
    +Notation "x '<B' y" := (@lt B leB PB x y ) (at level 70, no associativity).
    +Notation "x =A= y" := (@preorder_equiv A leA PA x y) (at level 70, no associativity).
    +Notation "x =B= y" := (@preorder_equiv B leB PB x y) (at level 70, no associativity).
    + +
    +Inductive lex_prod (p p':A×B): Prop :=
    +| lex1 : (fst p) <A (fst p') lex_prod p p'
    +| lex2 : (fst p) =A= (fst p') (snd p) B (snd p') lex_prod p p'.
    + +
    +Notation "x '<=lex' y" := (lex_prod x y) (at level 70, no associativity).
    +Notation "x '<lex' y" := (@lt (A×B) lex_prod _ x y) (at level 70, no associativity).
    + +
    + #[global] Instance PO_lex_prod : PreOrder lex_prod.
    + +
    +Lemma lex_of_equiv (a a':A)(b b':B) :
    +     a =A= a' b =B= b' preorder_equiv (a,b) (a',b').
    + +
    +Lemma lex_inv_left (a a':A)(b b':B) :
    +  ((a,b) lex (a',b')) a A a'.
    + +
    +Lemma lex_inv_right (a a':A)(b b':B) :
    +  ((a,b) lex (a',b')) a =A= a' b B b'.
    + +
    +Lemma lex_strict_intro_right (a a':A)(b b':B) :
    +  a =A= a' b <B b' (a,b) <lex (a',b').
    + +
    +Lemma lex_strict_intro_left (a a':A)(b b':B) :
    +  a <A a' (a,b) <lex (a',b').
    + +
    +#[global] Instance To_lex_prod : TotalPreOrder lex_prod.
    +#[global] Instance lex_prod_dec : RelDecision lex_prod.
    + +
    +End lexprod.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Prelude.Exp2.html b/theories/html/hydras.Prelude.Exp2.html new file mode 100644 index 00000000..d6ba75c6 --- /dev/null +++ b/theories/html/hydras.Prelude.Exp2.html @@ -0,0 +1,56 @@ + + + + + +hydras.Prelude.Exp2 + + + + +
    + + + +
    + +

    Library hydras.Prelude.Exp2

    + +
    +From Coq Require Import Arith Lia.
    + +
    +Fixpoint exp2 (n:nat) : nat :=
    +  match n with
    +    0 ⇒ 1
    +  | S i ⇒ 2 × exp2 i
    +  end.
    + +
    +Lemma exp2_positive : i, 0 < exp2 i.
    + +
    +Lemma exp2_not_zero i : exp2 i 0.
    + +
    +Lemma exp2_gt_id : n, n < exp2 n.
    + +
    +Lemma exp2S : n, exp2 (S n) = 2 × exp2 n.
    + +
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Prelude.First_toggle.html b/theories/html/hydras.Prelude.First_toggle.html new file mode 100644 index 00000000..393b6265 --- /dev/null +++ b/theories/html/hydras.Prelude.First_toggle.html @@ -0,0 +1,75 @@ + + + + + +hydras.Prelude.First_toggle + + + + +
    + + + +
    + +

    Library hydras.Prelude.First_toggle

    + +
    +
    + +
    + +
    + + First_toggle + +
    + +Computes the first l between n and p (excluded) such that + P l = true and P (S l) = false. + +
    + + Pierre Castéran, Univ. Bordeaux and LaBRI +
    +
    + +
    +From Coq Require Import Arith Lia Inclusion Inverse_Image.
    +From hydras Require Import DecPreOrder.
    + +
    +Section Hypos.
    +  Context (P : nat Prop) `{Pdec: n, Decision (P n)} (n p : nat).
    + +
    +  Hypotheses (Hnp : n < p) (Hn : P n) (Hp : ¬ P p).
    + +
    +  Let spec := {l : nat | n l l < p
    +                          ( i: nat, n i i l P i)
    +               (¬ P (S l ))}.
    + +
    +  Definition first_toggle : spec.
    + +
    +End Hypos.
    + +
    +Arguments first_toggle : clear implicits.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Prelude.Fuel.html b/theories/html/hydras.Prelude.Fuel.html new file mode 100644 index 00000000..175d320c --- /dev/null +++ b/theories/html/hydras.Prelude.Fuel.html @@ -0,0 +1,117 @@ + + + + + +hydras.Prelude.Fuel + + + + +
    + + + +
    + +

    Library hydras.Prelude.Fuel

    + +
    + +
    + +
    +From Coq Require Import FunInd Recdef Wf_nat Lia.
    + +
    +Function zero (n:nat) {wf lt n} : nat :=
    +  match n with
    +    0 ⇒ 0
    +  | S n' as pzero (Nat.div2 p)
    +  end.
    + +
    + +
    +About lt_wf.
    + +
    +
    + +
    +Let's see whqat happens if lt_wf was opaque +
    +
    + +
    +Module OpaqueWf.
    + +
    Lemma lt_wf : well_founded lt.
    + +
    +  Function zero (n:nat) {wf lt n} : nat :=
    +    match n with
    +      0 ⇒ 0
    +    | _zero (Nat.div2 n)
    +    end.
    + +
    + +
    +
    + +
    +From Init.Wf +
    +
    + +
    + +
    + +
    +About Acc_intro_generator.
    + +
    + +
    +Function zero' (n:nat) {wf lt n} : nat :=
    +  match n with
    +    0 ⇒ 0
    +  | _zero' (Nat.div2 n)
    +  end.
    + +
    + +
    +End OpaqueWf.
    + +
    + +
    +Inductive fuel :=
    + | FO : fuel
    + | FS : (unit fuel) fuel.
    + +
    + +
    +Fixpoint foo (n:nat) x :=
    match n with
    + | S nFS (fun _foo n (foo n x))
    + | Ox
    end.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Prelude.Iterates.html b/theories/html/hydras.Prelude.Iterates.html new file mode 100644 index 00000000..b1c8f5df --- /dev/null +++ b/theories/html/hydras.Prelude.Iterates.html @@ -0,0 +1,390 @@ + + + + + +hydras.Prelude.Iterates + + + + +
    + + + +
    + +

    Library hydras.Prelude.Iterates

    + +
    +
    + +
    + Iteration of a function (similar to Nat.iter) + Abstract Properties + +
    + +Experimental use of LibHyps + +
    + + +
    +
    + +
    +Open Scope nat_scope.
    +From Coq Require Import RelationClasses Relations Arith Max Lia.
    +From hydras Require Import Exp2.
    + +
    +From LibHyps Require Import LibHyps.
    +From hydras Require Import MoreLibHyps.
    +Ltac rename_hyp n th ::= rename_short n th.
    + +
    + +
    +Fixpoint iterate {A:Type}(f : A A) (n: nat)(x:A) :=
    +  match n with
    +  | 0 ⇒ x
    +  | S pf (iterate f p x)
    +  end. +
    + +
    +Lemma iterate_comm {A: Type} f n (x:A)
    +  : iterate f n (f x) = f (iterate f n x).
    + +
    +
    + +
    +Compatibility with Ackermann Library's definition +
    +
    + +
    +Lemma iterate_compat {f : nat nat}(n:nat)(x:nat):
    +  iterate f n x = nat_rec
    +                    (fun _nat nat)
    +                    (fun x : natx)
    +                    (fun (_ : nat) (rec : nat nat) (x : nat) ⇒ f (rec x))
    +                    n x.
    + +
    +Lemma iterate_compat2 {A} (f : A A) n :
    +   x, iterate f n x = Nat.iter n f x.
    + +
    +
    + +
    +TODO : move to more generic libraries +
    +
    + +
    +Lemma iterate_compat3 f x n :
    +  iterate f n x = nat_rec (fun _ : natnat) x (fun _ y : natf y) n.
    + +
    +
    + +
    +

    Abstract properties of arithmetic functions

    + +
    +
    + +
    + +
    +Definition strict_mono f := n p, n < p f n < f p.
    + +
    +Definition dominates_from n g f := p, n p f p < g p.
    + +
    +Definition fun_le f g := n:nat, f n g n.
    +Infix "<<=" := fun_le (at level 60).
    + +
    +Definition dominates g f := n : nat, dominates_from n g f .
    +Infix ">>" := dominates (at level 60).
    + +
    +Definition dominates_strong g f := {n : nat | dominates_from n g f}.
    +Infix ">>s" := dominates_strong (at level 60).
    + +
    + +
    +Lemma S_pred_rw (f : nat nat) : S <<= f
    +                                    x, S (Nat.pred (f x)) = f x.
    + +
    +Lemma fun_le_trans f g h : f <<= g g <<= h f <<= h.
    + +
    +Lemma mono_le f (Hf : strict_mono f) : n, n f n.
    + +
    +Lemma mono_injective f (Hf : strict_mono f) :
    +   n p , f n = f p n = p.
    + +
    +Lemma mono_weak f (H: strict_mono f) :
    +   n p, n p f n f p.
    + +
    +Lemma dominates_from_trans :
    +   f g h i j, dominates_from i g f
    +                    dominates_from j h g
    +                    dominates_from (Nat.max i j) h f .
    + +
    +Lemma dominates_trans f g h :
    +  dominates g f dominates h g dominates h f.
    + +
    +Lemma dominates_trans_strong : f g h,
    +    dominates_strong g f
    +    dominates_strong h g
    +    dominates_strong h f.
    + +
    +
    + +
    +

    Abstract properties of iterate

    + +
    +
    + +
    +Lemma iterate_S_eqn {A:Type}(f : A A) (n: nat)(x:A):
    +  iterate f (S n) x = f (iterate f n x).
    + +
    +Lemma iterate_S_eqn2 {A:Type}(f : A A) (n: nat)(x:A):
    +  iterate f (S n) x = (iterate f n (f x)).
    + +
    +Lemma iterate_rw {A} {f : A A} n :
    +   x, iterate f (S n) x = iterate f n (f x).
    + +
    +Lemma iterate_ext {A:Type}(f g: A A) (H: x, f x = g x):
    +   n x, iterate f n x = iterate g n x.
    + +
    + +
    +Lemma iterate_le f (Hf : strict_mono f) :
    +   i j, i j z, iterate f i z iterate f j z.
    + +
    +Lemma iterate_lt f (Hf : strict_mono f)(Hf': fun_le S f):
    +   i j, i < j z, iterate f i z < iterate f j z.
    + +
    +Lemma iterate_lt_from f k:
    +   strict_mono f
    +    ( n, k n n < f n)
    +     i j : nat, i < j
    +                        z : nat, k z
    +                                       iterate f i z < iterate f j z.
    + +
    + +
    +Lemma iterate_le_n_Sn (f: nat nat):
    +  ( x, x f x)
    +   n x, iterate f n x iterate f (S n) x. +
    +Lemma iterate_le_np_le (f: nat nat):
    +  ( x, (x f x)%nat)
    +   n p x, (n p iterate f n x iterate f p x)%nat.
    + +
    +Lemma iterate_mono2 (f: nat nat):
    +  ( x y, x y f x f y)%nat
    +   n x y, (x y iterate f n x iterate f n y)%nat.
    + +
    +Lemma iterate_mono f (Hf : strict_mono f) (Hf' : S <<= f):
    +   n, strict_mono (iterate f n).
    + +
    +Lemma iterate_ge : f , S <<= f
    +                               j n, j iterate f n j.
    + +
    +Lemma iterate_Sge f j : S <<= f S <<= iterate f (S j).
    + +
    +Lemma iterate_ge' : f, id <<= f
    +                                n j, 0 < n j iterate f n j.
    + +
    +Lemma iterate_ge'' f : id <<= f strict_mono f i k,
    +      k Nat.pred (iterate (fun zS (f z)) (S i) k).
    + +
    +Lemma strict_mono_iterate_S f :
    +  strict_mono f id <<= f
    +   i, strict_mono
    +               (fun kNat.pred (iterate (fun zS (f z)) (S i) k)).
    + +
    +Lemma iterate_mono_1 (f g: nat nat) (k:nat) (Hf: strict_mono f)
    +      (Hf' : S <<= f)
    +      (H : n, k n f n g n) :
    +   i n, k n iterate f i n iterate g i n.
    + +
    +Lemma iterate_dom_prop :
    +   f g i (Hgt : S <<= f)
    +         (Hm : strict_mono f) (Hm': strict_mono g),
    +    dominates_from i g f
    +     k, 0 < k dominates_from i (iterate g k) (iterate f k).
    + +
    +Lemma dominates_from_le i j g f : i j
    +                                   dominates_from i g f
    +                                   dominates_from j g f .
    + +
    +Lemma smono_Sle f : f 0 0 strict_mono f S <<= f.
    + +
    +
    + +
    +

    Second-order iterate

    + +
    +
    + +
    +Lemma iterate_ext2 {A:Type} (f g : (A A) A A)
    +      (h i : AA) : ( x, h x = i x)
    +                     ( h' i', ( x, h' x = i' x)
    +                                      x, f h' x = g i' x)
    +                      n x, iterate f n h x = iterate g n i x.
    + +
    +Lemma iterate2_mono (f : (natnat)->(natnat)):
    +   ( g, strict_mono g S <<= g strict_mono (f g))->
    +   ( g, strict_mono g S <<= g S <<= (f g))->
    +    k g x y, strict_mono g S <<= g
    +                     (x < y)%nat
    +                     (iterate f k g x < iterate f k g y)%nat.
    + +
    +Lemma iterate2_mono_weak (f : (natnat)->(natnat)):
    +   ( g, strict_mono g S <<= g strict_mono (f g))->
    +   ( g, strict_mono g S <<= g S <<= (f g))->
    +    k g x y, strict_mono g S <<= g
    +                     (x y)%nat
    +                     (iterate f k g x iterate f k g y)%nat.
    + +
    +Lemma iterate2_mono3 (phi : (natnat)->(natnat)) :
    +  ( g, strict_mono g S <<= g
    +             strict_mono (phi g) S <<= phi g)->
    +  ( (f g : nat nat), strict_mono f S <<= f
    +                              strict_mono g S <<= g
    +                              (( x, f x g x)
    +                                x, phi f x phi g x))
    +   g h, strict_mono g S <<= g strict_mono h S <<= h
    +             ( x, g x h x)
    +   k x y, x y
    +                 iterate phi k g x iterate phi k h y.
    + +
    +Lemma iterate2_mono2 (phi psi : (natnat)->(natnat)):
    +  ( g, strict_mono g S <<= g strict_mono (phi g))->
    +  ( g, strict_mono g S <<= g S <<= (phi g))->
    +  ( g, strict_mono g S <<= g strict_mono (psi g))->
    +  ( g, strict_mono g S <<= g S <<= (psi g))->
    +  ( g x, strict_mono g fun_le S g phi g x psi g x)
    +  ( f g, strict_mono f strict_mono g S <<= f S <<= g
    +               ( x, f x g x) ( x, psi f x psi g x))
    +   k g x y, strict_mono g S <<= g
    +                    (x y)%nat
    +                    (iterate phi k g x iterate psi k g y)%nat.
    + +
    +
    + +
    +

    Exponential and hyper exponential of base 2

    + +
    +
    + +
    +Lemma exp2_ge_S : S <<= exp2.
    + +
    +Lemma exp2_mono : strict_mono exp2.
    + +
    +Lemma exp2_mono_weak : n p, n p exp2 n exp2 p.
    + +
    +Lemma exp2_as_iterate n : exp2 n = iterate (fun i ⇒ 2 × i)%nat n 1.
    + +
    +Definition hyper_exp2 k := iterate exp2 k 1.
    + +
    +Lemma hyper_exp2_S : n, hyper_exp2 (S n) = exp2 (hyper_exp2 n).
    + +
    +Lemma iterate_ge_from : f i, dominates_from i f id
    +                                j, i j
    +                                           n,
    +                                            j iterate f n j.
    + +
    +Lemma dominates_iterate :
    +   i f,
    +    dominates_from i f id
    +    strict_mono f
    +     n,
    +      {j:nat | i j dominates_from j (iterate f (S n)) id}.
    + +
    +Corollary iterate_gt_diag' :
    +   i f,
    +    dominates_from i f id
    +    strict_mono f
    +     n, 0 < n
    +              {j:nat | i j dominates_from j (iterate f n) id}.
    + +
    +Corollary iterate_ge_diag' :
    +   i f,
    +    dominates_from i f id
    +    strict_mono f
    +     n,
    +      {j:nat | i j k, j k k iterate f n k}.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Prelude.LibHyps_Experiments.html b/theories/html/hydras.Prelude.LibHyps_Experiments.html new file mode 100644 index 00000000..c7192956 --- /dev/null +++ b/theories/html/hydras.Prelude.LibHyps_Experiments.html @@ -0,0 +1,57 @@ + + + + + +hydras.Prelude.LibHyps_Experiments + + + + +
    + + + +
    + +

    Library hydras.Prelude.LibHyps_Experiments

    + +
    +From LibHyps Require Export LibHyps.
    +From hydras Require Export MoreLibHyps.
    + +
    + +
    +From Coq Require Import List.
    +Import ListNotations.
    +#[local] Open Scope autonaming_scope.
    + +
    +Ltac rename_hyp n th ::= rename_short n th.
    + +
    +Goal n p , n p q, p q n q.
    + +
    +Goal n p , n p q, p q n q.
    + +
    +From Coq Require Import Arith.
    +Parameters f g h : nat nat.
    +Parameter P : natnatnat Prop.
    +Goal x y , f (g (h x)) = h (g (f y)) x = y x < y
    +                   P x y x f y f x.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Prelude.Merge_Sort.html b/theories/html/hydras.Prelude.Merge_Sort.html new file mode 100644 index 00000000..7668b56b --- /dev/null +++ b/theories/html/hydras.Prelude.Merge_Sort.html @@ -0,0 +1,292 @@ + + + + + +hydras.Prelude.Merge_Sort + + + + +
    + + + +
    + +

    Library hydras.Prelude.Merge_Sort

    + +
    +
    + +
    +P. Casteran, S. Salvati +
    + + Maybe already done in StdLib ???? +
    +
    + +
    +From Coq Require Import List Wf_nat Recdef Compare_dec Arith Peano_dec
    +     Lia RelationClasses Sorting.Sorted Sorting.Permutation.
    + +
    +From hydras Require Import DecPreOrder DecPreOrder_Instances
    +     Sort_spec.
    +Import Relations Morphisms.
    + +
    +Section Generic.
    +  Variables (A:Type).
    + +
    +  Section Splitting.
    + +
    +
    + +
    +A function that splits any list in two lists of (almost) the same length + +
    +
    + +
    +    Function split (l:list A):=
    +      match l with
    +        | nil
    +        | _::nil(l,nil)
    +        | a::b::l
    +          let (l1,l2):= split l in (a::l1,b::l2)
    +      end.
    + +
    +    Function split'_aux (l l':list A) :=
    +      match l,l' with
    +      | x::l,_::_::l'
    +        let (l1,l2) := split'_aux l l' in
    +        (x::l1, l2)
    +      | _,_(nil,l)
    +      end.
    + +
    +    Function split' (l:list A) := split'_aux l l.
    + +
    + +
    + +
    +
    + +
    +Applying split to a list l returns a pair of two strictly shorter lists +
    +
    + +
    +    Lemma split_decr:
    +       l1 l2 a b, l1 = a::b::l2
    +                        length (fst(split l1)) < length l1
    +                        length (snd(split l1)) < length l1.
    + +
    +    Lemma split_permutation:
    +       l, Permutation ((fst(split l))++snd(split l)) l.
    + +
    + +
    +    Lemma split'_aux_length_preserve:
    +       l l',
    +        length(fst(split'_aux l l')) + length(snd (split'_aux l l')) =
    +        length l.
    + +
    +    Lemma split'_aux_length_fst:
    +       l l',
    +        length(fst(split'_aux l l')) =
    min (Nat.div2(length l')) (length l).
    + +
    + +
    + +
    + +
    +    Lemma split'_decr:
    +       l1 l2 a b, l1 = a::b::l2
    +                        length (fst(split' l1)) < length l1
    +                        length (snd(split' l1)) < length l1.
    + +
    +    Lemma split'_aux_eq:
    +       l l', ((fst(split'_aux l l'))++snd(split'_aux l l')) = l.
    + +
    +    Lemma split'_permutation:
    +       l, Permutation ((fst(split' l))++snd(split' l)) l.
    +  End Splitting.
    + +
    +  Section Merging.
    + +
    +    Fixpoint merge (leb : A A bool) l1 l2:=
    +      let fix merge_aux l2 {struct l2}:=
    +          match l1,l2 with
    +            | nil,_l2
    +            | _,nill1
    +            | a1::l1',a2::l2'
    +              if leb a1 a2 then a1 :: merge leb l1' l2 else a2 :: merge_aux l2'
    +          end
    +      in merge_aux l2.
    + +
    +    Variable le : relation A.
    + +
    +    Context (le_total : TotalPreOrder le).
    +    Context (le_dec : RelDecision le).
    + +
    +    Notation "a <= b" := (le a b).
    + +
    +    Lemma merge_rect:
    +       P: list A list A list A Type,
    +        ( l:list A, P nil l l)
    +        ( l: list A, P l nil l)
    +        ( a1 l1 a2 l2,
    +           a1 a2
    +           P l1 (a2::l2) (merge (fun x ybool_decide (x y)) l1 (a2::l2))
    +           P (a1::l1) (a2::l2) (a1::(merge (fun x ybool_decide (x y))l1 (a2::l2))))
    +        ( a1 l1 a2 l2,
    +           ¬ le a1 a2
    +           P (a1::l1) l2 (merge (fun x ybool_decide (x y))(a1::l1) l2)
    +           P (a1::l1) (a2::l2) (a2::(merge (fun x ybool_decide (x y)) (a1::l1) l2)))
    +         l1 l2, P l1 l2 (merge (fun x ybool_decide (x y)) l1 l2).
    + +
    +    Definition merge_ind ( P: list A list A list A Prop) :=
    +      merge_rect P.
    + +
    +    Definition merge_rec( P: list A list A list A Set) :=
    +      merge_rect P.
    + +
    +    Ltac induction_merge l1 l2:= pattern (merge (fun x ybool_decide (x y)) l1 l2 ); apply merge_rect.
    + +
    +    Lemma merge_equation:
    +       l1 l2,
    +        merge (fun x ybool_decide (x y)) l1 l2 =
    +        match l1,l2 with
    +          | nil,_l2
    +          | _,nill1
    +          | a1::l1',a2::l2'
    +            if decide (a1 a2) then a1 :: merge (fun x ybool_decide (x y)) l1' l2
    +            else a2 :: merge (fun x ybool_decide (x y)) l1 l2'
    +        end.
    + +
    +    Section Correctness.
    + +
    + +
    + +
    + +
    + +
    +      Lemma merge_Forall:
    +         (f:AProp) l1 l2,
    +          List.Forall f l1
    +          List.Forall f l2
    +          List.Forall f (merge (fun x ybool_decide (x y)) l1 l2) .
    + +
    +      Lemma merge_LocallySorted:
    +         l1 l2, LocallySorted le l1 LocallySorted le l2
    +                      LocallySorted le (merge (fun x ybool_decide (x y)) l1 l2).
    + +
    +      Lemma merge_permutation:
    +         l1 l2, Permutation (l1++l2) (merge (fun x ybool_decide (x y)) l1 l2).
    + +
    +      Section merge_sort.
    +        Variable split: list A (list A × list A).
    + +
    +        Hypothesis split_decr:
    +           l1 l2 a b, l1 = a::b::l2
    +                        length (fst(split l1)) < length l1
    +                        length (snd(split l1)) < length l1.
    + +
    +        Hypothesis split_permutation:
    +           l, Permutation ((fst(split l))++snd(split l)) l.
    + +
    + +
    +        Function merge_sort (leb : A A bool) (l:list A) {measure length l} :=
    +          match l with
    +          | nil | _ :: nill
    +          | _::_::_
    +            let (l1,l2) := split l in
    +            merge leb (merge_sort leb l1) (merge_sort leb l2)
    +          end.
    +        Defined.
    + +
    +        Theorem merge_sort_correct: sort_correct A le (merge_sort (fun x ybool_decide (x y))).
    +      End merge_sort.
    +    End Correctness.
    + +
    + +
    +    Definition sp_merge_sort:= merge_sort split split_decr.
    + +
    +    Definition stable_merge_sort := merge_sort split' split'_decr.
    + +
    +  End Merging.
    + +
    +End Generic.
    + +
    +Check (sp_merge_sort: sort_fun_t).
    +Check (stable_merge_sort: sort_fun_t).
    + +
    +Theorem sp_mergesort_OK : sort_spec sp_merge_sort.
    + +
    +Theorem stable_mergesort_OK : sort_spec stable_merge_sort.
    + +
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Prelude.MoreDecidable.html b/theories/html/hydras.Prelude.MoreDecidable.html new file mode 100644 index 00000000..7d0cc34a --- /dev/null +++ b/theories/html/hydras.Prelude.MoreDecidable.html @@ -0,0 +1,51 @@ + + + + + +hydras.Prelude.MoreDecidable + + + + +
    + + + +
    + +

    Library hydras.Prelude.MoreDecidable

    + +
    + +
    +From Coq Require Export Decidable Arith Lia.
    + +
    +Remark boundedCheck :
    P : nat Prop,
    ( x : nat, decidable (P x))
    c : nat,
    ( d : nat, d < c ¬ P d) ( d : nat, d < c P d).
    + +
    +Remark smallestExists :
    P : nat Prop,
    ( x : nat, decidable (P x))
    c : nat,
    P c a : nat, P a ( b : nat, b < a ¬ P b).
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Prelude.MoreLibHyps.html b/theories/html/hydras.Prelude.MoreLibHyps.html new file mode 100644 index 00000000..37e66ba5 --- /dev/null +++ b/theories/html/hydras.Prelude.MoreLibHyps.html @@ -0,0 +1,59 @@ + + + + + +hydras.Prelude.MoreLibHyps + + + + +
    + + + +
    + +

    Library hydras.Prelude.MoreLibHyps

    + +
    +From LibHyps Require Import LibHyps.
    + +
    +Tactic Notation (at level 4) tactic4(Tac) "/" "dr" :=
    +  Tac ; {< fun htry generalize dependent h }.
    + +
    +Tactic Notation (at level 4) tactic4(Tac) "/" "r?" :=
    +  Tac ; {< fun htry revert h }.
    + +
    +From Coq Require Import List.
    +Import ListNotations.
    +#[local] Open Scope autonaming_scope.
    + +
    + +
    +Ltac old_rename := rename_hyp_default.
    + +
    +Ltac rename_short n th :=
    +  match th with
    +  | (?f ?x ?y) ⇒ name ((f # 1) ++ (x # 1))
    +  | (?f ?x) ⇒ name ((f # 1))
    +  | _old_rename n th
    +  end.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Prelude.MoreLists.html b/theories/html/hydras.Prelude.MoreLists.html new file mode 100644 index 00000000..e9108978 --- /dev/null +++ b/theories/html/hydras.Prelude.MoreLists.html @@ -0,0 +1,417 @@ + + + + + +hydras.Prelude.MoreLists + + + + +
    + + + +
    + +

    Library hydras.Prelude.MoreLists

    + +
    +
    + +
    +Complements on lists + +
    + + Pierre Castéran, Univ. Bordeaux and LaBRI +
    +
    + +
    +From Coq Require Export List Arith Relations Lia.
    +From Coq Require Import Sorting.Sorted Compare_dec Sorting.Sorted.
    + +
    +
    + +
    +

    Sets of natural numbers as lists

    + +
    + +

    Definitions

    + +
    + + numbers from i to i+n-1 +
    +
    + +
    +Fixpoint iota_from i n :=
    +  match n with 0 ⇒ nil
    +            | S pi :: iota_from (S i) p
    +  end.
    + +
    +Definition interval i j := iota_from i (S j - i).
    + +
    +Definition bounded_by (n:nat)(s: list nat) :=
    +  List.Forall (fun iin)%nat s.
    + +
    + +
    +Definition shift (l: list nat) := List.map S l.
    + +
    +Fixpoint unshift (l : list nat) : list nat :=
    +  match l with
    +      nilnil
    +    | 0 :: l'unshift l'
    +    | S i :: l'i :: unshift l'
    +  end.
    + +
    +
    + +
    +sorted list of elements greater or equal than n +
    +
    + +
    +Inductive sorted_ge (n: nat) : list nat Prop :=
    +| sorted_ge_nil : sorted_ge n nil
    +| sorted_ge_one : p, np sorted_ge n (p::nil)
    +| sorted_ge_cons: p q s,
    +    n p p < q sorted_ge p (q::s)
    +    sorted_ge n (p::q::s).
    + +
    +
    + +
    +simpler than StdLib's last +
    +
    + +
    +Fixpoint simple_last {A} (x:A) s :=
    +  match s with
    +      nilx
    +    | i::s'simple_last i s'
    +  end.
    + +
    +
    + +
    +the list (x::s) without its last item +
    +
    + +
    +Fixpoint but_last {A:Type}(x:A) (s : list A) :=
    +  match s with
    +  | nilnil
    +  | y::s'x :: but_last y s'
    +  end.
    + +
    +Lemma but_last_iota_from : l i,
    +      but_last i (iota_from (S i) (S l)) = i::iota_from (S i) l.
    + +
    +Lemma interval_length i j : length (interval i j) = S j - i.
    + +
    +Lemma but_last_interval i j:
    +  i < j
    +  but_last i (interval (S i) (S j)) = i:: interval (S i) j.
    + +
    +Lemma but_last_shift' s : x,
    +     but_last (S x) (shift s) = shift (but_last x s).
    + +
    +Lemma unshift_but_last s : x,
    +    ¬ In 0 (x::s)
    +    unshift (but_last x s) = but_last (Nat.pred x) (unshift s).
    + +
    +Lemma unshift_app : s t, unshift (s ++ t) = unshift s ++ unshift t.
    + +
    +Lemma unshift_not_nil : s, ¬ In 0 s s nil unshift s nil.
    + +
    +Lemma but_last_app {A} : s (x:A),
    +  but_last x s ++ simple_last x s :: nil = x::s.
    + +
    +Lemma but_last_iota_from' j : i, but_last i (iota_from (S i) (S j)) =
    +                                       iota_from i (S j).
    + +
    +Definition ptwise_le: list nat list nat Prop := Forall2 le.
    + +
    +
    + +
    +

    Lemmas

    + +
    +
    + +
    +Lemma empty_interval i j : (j < i)%nat interval i j = nil.
    + +
    +Lemma shift_iota_from : i l, shift (iota_from i l) = iota_from (S i) l.
    + +
    +Lemma shift_interval (i j: nat): shift (interval i j) = interval (S i) (S j).
    + +
    +Lemma unshift_iota_from : i l, unshift (iota_from (S i) l) =
    +                                       iota_from i l.
    + +
    +Lemma unshift_interval (i j: nat): unshift (interval (S i) (S j)) =
    +                                   interval i j.
    + +
    +Lemma unshift_interval_pred (i j:nat) : 0 < j
    +  unshift (interval (S i) j) = interval i (Nat.pred j).
    + +
    +Lemma shift_no_zero l : ¬ In 0 (shift l).
    + +
    +Lemma shift_unshift l : unshift (shift l) = l.
    + +
    +Lemma unshift_shift l (H: ¬ In 0 l): shift (unshift l) = l.
    + +
    +Lemma unshift_pred : (s: list nat), ¬ In 0 s
    +                                            unshift s = List.map Nat.pred s.
    + +
    + +
    +Lemma sorted_ge_Forall (n:nat) : l, sorted_ge n l
    +                                           Forall (fun xn x) l.
    + +
    +Lemma sorted_ge_trans n p l : n p sorted_ge p l sorted_ge n l.
    + +
    +Lemma sorted_ge_not_In (n:nat) : l, sorted_ge (S n) l
    +                                           ¬ In n l.
    + +
    +#[global] Hint Constructors sorted_ge : lists.
    + +
    +Lemma sorted_inv_gt : n p s, sorted_ge n (p::s)
    +                                    (p < n)%nat False.
    + +
    +Lemma iota_from_app n p :
    +  iota_from n (S p) = iota_from n p ++ (n+p::nil)%nat.
    + +
    +Lemma iota_from_plus : k i j, iota_from i (k+j) =
    +                                     iota_from i k ++ iota_from (k+i) j.
    + +
    +Lemma interval_not_empty : i j, i j interval i j nil.
    + +
    +Lemma interval_not_empty_iff (n p : nat) :
    +  interval n p nil (n p)%nat.
    + +
    +Lemma interval_singleton (i:nat) : interval i i = i::nil.
    + +
    +Lemma interval_app (i j k:nat):
    +  (i j)%nat (j k)%nat
    +  interval i k = interval i j ++ interval (S j) k.
    + +
    +Lemma iota_from_unroll i l : iota_from i (S l) = i :: iota_from (S i) l.
    + +
    +Lemma interval_unroll : i j:nat , (i < j)%nat
    +                                       interval i j = i :: interval (S i) j.
    + +
    +Lemma iota_from_sorted_ge : p n q : nat,
    +    (q n)%nat
    +    sorted_ge q (iota_from n p).
    + +
    +Lemma interval_sorted_ge: p n q : nat, (q n)%nat
    +                                                sorted_ge q (interval n p).
    + +
    +Lemma iota_from_lt_not_In i j l : i < j ¬ In i (iota_from j l).
    + +
    +Lemma interval_lt_not_In :
    +   i j k, i < j ¬ In i (interval j k).
    + +
    +Section Forall2_right_induction.
    + +
    +Inductive Forall2R {A B: Type} (R: A B Prop) : list A list B Prop :=
    +  Forall2R_nil : Forall2R R nil nil
    +| Forall2R_last : l l' x y l1 l'1, Forall2R R l l'
    +                                          R x y
    +                                          l1 = l++(x::nil)
    +                                          l'1 = l' ++ (y::nil)
    +                                          Forall2R R l1 l'1.
    + +
    +Remark Forall2R_cons {A B: Type} (R: A B Prop):
    +   l l', Forall2R R l l' x y, R x y Forall2R R (x::l) (y:: l').
    + +
    + +
    +Remark Forall2_R {A B: Type} (R: A B Prop) :
    +   l l', Forall2 R l l' Forall2R R l l'.
    + +
    +Remark Forall2_RR {A B: Type} (R: A B Prop) :
    +   l l', Forall2R R l l' Forall2 R l l'.
    + +
    +Lemma Forall2R_iff {A B: Type} (R: A B Prop) :
    +   l l', Forall2R R l l' Forall2 R l l'.
    + +
    +Lemma Forall2_indR {A B : Type} (R : A B Prop) (P : list A list B Prop):
    +P nil nil
    +( (l : list A) (l' : list B) (x : A) (y : B)
    +   (l1 : list A) (l'1 : list B),
    Forall2 R l l' P l l'
    R x y l1 = l ++ x :: nil l'1 = l' ++ y :: nil P l1 l'1)
    +   (l : list A) (l0 : list B), Forall2 R l l0 P l l0.
    + +
    +End Forall2_right_induction.
    + +
    +Lemma sorted_le : i j X, i j
    +                                sorted_ge j X
    +                                sorted_ge i X.
    + +
    + +
    +Lemma sorted_tail : i j X, sorted_ge i (j::X)
    +                                  sorted_ge i X.
    + +
    +Lemma sorted_tail' : i j X, sorted_ge i (j::X)
    +                                   sorted_ge j X.
    + +
    +Lemma sorted_head : n m s, sorted_ge n (m::s)
    +                                   nm.
    + +
    +Lemma Sorted_mono {A:Type}(R S : relation A)
    +      (Hincl : x y, R x y S x y):
    +   l, Sorted R l Sorted S l.
    + +
    +Lemma sorted_ge_iff0 : l n, sorted_ge n l
    +                                    LocallySorted Peano.lt l
    +                                    List.Forall (fun in i) l.
    + +
    +Lemma sorted_ge_iff : l n, sorted_ge n l
    +                                    Sorted lt l
    +                                    List.Forall (fun in i) l.
    + +
    +Lemma sorted_ge_prefix :
    +   l1 n l2, sorted_ge n (l1 ++ l2) sorted_ge n l1.
    + +
    +Lemma sorted_In : i X, Sorted lt (i::X) j, In j X i < j.
    + +
    +Lemma sorted_not_in_tail : i j X, Sorted lt (i::X) ji
    +                                           ¬ (In j X).
    + +
    +Remark simple_last_correct {A}: s (x:A), simple_last x s = last s x.
    + +
    +Lemma In_sorted_ge_inv : x y s,
    +                             In x (y::s)
    +                             sorted_ge y s
    +                             y < x In x s y = x.
    + +
    +Lemma incl_inv : x y l1 l2, Sorted lt (x::l1)
    +                                    Sorted lt (y::l2)
    +                                    incl (x::l1)(y::l2)
    +                                    y x incl l1 l2.
    + +
    +Lemma incl_decomp : l1 l2, Sorted lt l1
    +                                   Sorted lt l2
    +                                   incl l1 l2
    +                                    l3 l4, l2 = l3 ++ l4
    +                                                  ptwise_le l3 l1.
    + +
    +  Lemma simple_last_app {A}: l l1 (x y:A), simple_last x (l++(y::l1)) =
    +                                     simple_last y l1 .
    + +
    +Lemma simple_last_app1 {A}: l (x y:A), simple_last x (l++(y::nil)) = y.
    + +
    +Lemma sorted_max_1 : s n, sorted_ge n s
    +                                 (n simple_last n s)%nat.
    + +
    +Lemma sorted_cut : l1 n x l2, sorted_ge n (l1++(x::l2))
    +                                    simple_last n l1 x.
    + +
    +Lemma sorted_max_2 : s n, sorted_ge n s
    +                                 Forall (fun i
    +                                           (i simple_last n s)%nat)
    +                                        s.
    + +
    +Lemma sorted_ge_suffix :
    +   l1 n l2, sorted_ge n (l1 ++ l2) sorted_ge (simple_last n l1) l2.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Prelude.MoreOrders.html b/theories/html/hydras.Prelude.MoreOrders.html new file mode 100644 index 00000000..9acd9f5a --- /dev/null +++ b/theories/html/hydras.Prelude.MoreOrders.html @@ -0,0 +1,115 @@ + + + + + +hydras.Prelude.MoreOrders + + + + +
    + + + +
    + +

    Library hydras.Prelude.MoreOrders

    + +
    +
    + +
    +Complements on strict orders +
    +
    + +
    +From Coq Require Import RelationClasses Relation_Operators Ensembles Setoid.
    +Import Relation_Definitions.
    +Set Implicit Arguments.
    + +
    +Definition leq {A:Type}(lt : relation A): relation A :=
    +  clos_refl A lt.
    + +
    +Section Defs.
    + +
    +  Variables (A : Type)
    +            (lt: relation A).
    + +
    +  #[local] Infix "<" := lt.
    +  #[local] Infix "<=" := (leq lt).
    + +
    +  Definition Least {sto : StrictOrder lt} (x : A):=
    +     y, x y.
    + +
    +  Definition Successor {sto : StrictOrder lt} (y x : A):=
    +    x < y ( z, x < z z < y False).
    + +
    +  Definition Limit {sto : StrictOrder lt} (x:A) :=
    +    ( w:A, w < x)
    +    ( y:A, y < x z:A, y < z z < x).
    + +
    +  Definition Omega_limit
    +              {sto : StrictOrder lt} (s: nat A) (x:A) :=
    +    ( i: nat, s i < x)
    +    ( y, y < x i:nat, y < s i).
    + +
    +  Definition Omega_limit_type
    +              `{lt : relation A}
    +              {sto : StrictOrder lt}
    +              (s: nat A) (x:A) : Type :=
    +    (( i: nat, s i < x) ×
    +     ( y, y < x {i:nat | y < s i}))%type.
    + +
    +  Lemma Omega_limit_not_Succ
    +        {sto : StrictOrder lt} (s: nat A) (x:A) :
    +    Omega_limit s x
    +     y, ¬ Successor x y.
    + +
    +  Lemma Least_not_Succ {sto : StrictOrder lt} (x:A) :
    +    Least x z, ¬ Successor x z.
    + +
    +  Lemma Omega_limit_Limit
    +        {sto : StrictOrder lt} (s: nat A) (x:A) :
    +    Omega_limit s x Limit x.
    + +
    +  Lemma Least_not_Limit {sto : StrictOrder lt} x :
    +    Least x ¬ Limit x.
    + +
    +End Defs.
    + +
    +Lemma le_lt_eq {A}{lt: relation A}:
    +   a b, leq lt a b lt a b a = b.
    + +
    +#[ global ] Instance leq_trans {A:Type}{lt: relation A}{sto: StrictOrder lt}:
    +  Transitive (leq lt).
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Prelude.MoreVectors.html b/theories/html/hydras.Prelude.MoreVectors.html new file mode 100644 index 00000000..4f82e08b --- /dev/null +++ b/theories/html/hydras.Prelude.MoreVectors.html @@ -0,0 +1,236 @@ + + + + + +hydras.Prelude.MoreVectors + + + + +
    + + + +
    + +

    Library hydras.Prelude.MoreVectors

    + +
    +From Coq Require Export Bool Arith Vector Lia.
    +Import Vector VectorNotations.
    + +
    +
    + +
    +generalities on vectors +
    +
    + +
    +Arguments cons {A} _ {n} _ .
    +Arguments nil {A}.
    + +
    +Definition Vid {A : Type} {n:nat} : t A n t A n :=
    +  match n with
    +    0 ⇒ fun v[]
    +  | S pfun vhd v :: tl v
    +  end.
    + +
    + +
    +Lemma Vid_eq : (n:nat) (A:Type)(v:t A n), v = Vid v.
    + +
    +Theorem t_0_nil : (A:Type) (v:t A 0), v = nil.
    + +
    +Theorem decomp :
    +   (A : Type) (n : nat) (v : t A (S n)),
    +    v = cons (hd v) (tl v).
    + +
    +Lemma decomp1 {A : Type} (v : t A 1):
    +  v = cons (hd v) (nil).
    + +
    +Definition vector_double_rect :
    +   (A:Type) (X: (n:nat),(t A n)->(t A n) Type),
    +    X 0 nil nil
    +    ( n (v1 v2 : t A n) a b, X n v1 v2
    +                                   X (S n) (cons a v1) (cons b v2))
    +     n (v1 v2 : t A n), X n v1 v2.
    +Defined.
    + +
    +Definition vector_triple_rect :
    +   (A:Type)
    +         (X: (n:nat),
    +             t A n t A n t A n Type),
    +    X 0 nil nil nil
    +    ( n (v1 v2 v3: t A n) a b c, X n v1 v2 v3
    +                                       X (S n) (cons a v1) (cons b v2)(cons c v3))
    +     n (v1 v2 v3: t A n), X n v1 v2 v3.
    +Defined.
    + +
    +Fixpoint vector_nth (A:Type)(n:nat)(p:nat)(v:t A p){struct v}
    +  : option A :=
    +  match n,v with
    +    _ , nilNone
    +  | 0 , cons b _Some b
    +  | S n', @cons _ _ p' v'vector_nth A n' p' v'
    +  end.
    + +
    +Arguments vector_nth {A } n {p}.
    + +
    +Lemma Forall_inv {A :Type}(P: A Prop)(n:nat)
    +  a v : Vector.Forall P (n:= S n) (Vector.cons a v)
    +          P a Vector.Forall P v .
    + +
    +Lemma Forall2_inv {A B:Type}(P: A B Prop)(n:nat)
    +  a b v w : Vector.Forall2 P (n:=S n)
    +              (Vector.cons a v)
    +              (Vector.cons b w)
    +            P a b Vector.Forall2 P v w.
    + +
    +
    + +
    +Computes the vector f(from), f(from+1), f(from+2),...,f (from+n-1) +
    +
    + +
    +Fixpoint vect_from_fun {A} (f : nat A) n from : t A n :=
    +  match n return t A n with
    +    0%natnil
    +  | S pcons (f from) (vect_from_fun f p (S from))
    +  end.
    + +
    +
    + +
    +On vector decomposition +
    +
    + +
    +Notation vfst := Vector.hd.
    +Notation vsnd v := (Vector.hd (Vector.tl v)).
    +Notation vthird v := (Vector.hd (Vector.tl (Vector.tl v))).
    +Notation vfourth v := (Vector.hd (Vector.tl (Vector.tl (Vector.tl v)))).
    + +
    +Lemma decomp2 {A} : v : Vector.t A 2,
    +    v = [Vector.hd v; Vector.hd (Vector.tl v)].
    + +
    +Lemma decompos2 {A} : v: Vector.t A 2, {a : A & {b : A | v = [a;b]}}.
    + +
    +Definition match2 {A B:Type} (f : A A B) (v: Vector.t A 2): B :=
    +  match (decompos2 v )
    +  with existT _ x Hx
    +         match Hx with exist _ y _f x y end end.
    + +
    +Definition Vec2_proj {A} (P2 : A A Prop) : Vector.t A 2 Prop.
    +Defined.
    + +
    + +
    +Ltac vdec2 v a b :=
    +  let x := fresh a in
    +  let y :=fresh b in
    +  let tmp := fresh "tmp" in
    +  let e :=fresh "e" in
    +  destruct (decompos2 v) as [x tmp]; destruct tmp as [y e]; subst v.
    + +
    +Lemma In_cases {A:Type}{n:nat} (v: t A (S n)) :
    +   x, In x v
    +            x = hd v In x (tl v).
    + +
    +Lemma Forall_and {A:Type}(P: A Prop) {n:nat} (v: t A (S n)) :
    +  Forall P v P (hd v) Forall P (tl v).
    + +
    +
    + +
    +For V8.11 +
    +
    + +
    +Lemma Forall_forall {A:Type}(P: A Prop) :
    +   {n:nat} (v: t A n) ,
    +    Forall P v ( a, In a v P a).
    + +
    +
    + +
    +Vectors of natural numbers +
    + +

    Maximum of a vector of nat

    + +
    +
    + +
    + +
    +Fixpoint max_v {n:nat} (v: Vector.t nat n) : nat :=
    +  match v with
    +  | nil ⇒ 0
    +  | cons x tmax x (max_v t)
    +  end.
    + +
    + +
    + +
    +Lemma max_v_2 : x y, max_v (x::y::nil) = max x y. +
    + +
    +Lemma max_v_lub : n (v: t nat n) y,
    +    (Forall (fun xx y) v)
    +    max_v v y. +
    + +
    +Lemma max_v_ge : n (v: t nat n) y,
    +    In y v y max_v v. +
    +Lemma max_v_tl {n:nat}(v: Vector.t nat (S n)) :
    +  max_v (Vector.tl v) max_v v.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Prelude.More_Arith.html b/theories/html/hydras.Prelude.More_Arith.html new file mode 100644 index 00000000..ae4f2805 --- /dev/null +++ b/theories/html/hydras.Prelude.More_Arith.html @@ -0,0 +1,177 @@ + + + + + +hydras.Prelude.More_Arith + + + + +
    + + + +
    + +

    Library hydras.Prelude.More_Arith

    + +
    + +
    +
    + +
    +Note by Pierre: + +
    + + Some lemmas of this file are possibly in Standard Library +
    +
    + +
    +From Coq Require Import Arith Lia .
    +Import Nat.
    + +
    +Section Arith_lemmas.
    + +
    + +
    +Lemma nat_double_or_s_double :
    +   n, { p, n = double p} + { p, n = S (double p)}.
    + +
    +Lemma div2_double_is_id : n : nat, div2 (double n) = n.
    + +
    +Lemma double_S (n:nat) : double (S n) = S (S (double n)).
    + +
    +Lemma double_plus (x y: nat): double (x + y)= double x + double y.
    + +
    +Lemma double_inj :
    +   (m n : nat), double m = double n m = n.
    + +
    +Lemma double_is_even :
    +   n : nat, Nat.Even (double n).
    + +
    +Lemma not_double_is_s_double :
    +   (m n : nat), S (double m) double n.
    + +
    +Lemma div2_of_Even n: Nat.Even n double (div2 n) = n.
    + +
    +Lemma even_prod :
    +   p q, Nat.Even ((p + q + 1) × (p + q)).
    + +
    +Lemma plus_2 :
    +   n, S (S n) = n + 2.
    + +
    +Lemma div2_incr :
    +   n m, n m div2 n div2 m.
    + +
    +Lemma div2_even_plus :
    +   n m, Even n div2 n + m = div2 (n + (double m)).
    + +
    +Lemma mult_lt_lt :
    +   p p' k, p × k < p' × k p < p'.
    + +
    +Lemma minus_semi_assoc :
    +   a b c, b > c a + (b - c) = (a + b) - c.
    + +
    +Lemma div_not_qlt :
    +   (a b : nat) (q q' r r' : nat),
    +    a = q × b + r a = q' × b + r' b > r b > r' ¬ q < q'.
    + +
    +Lemma div_eucl_unique :
    +   (a b : nat) (q q' r r' : nat),
    +    a = q × b + r a = q' × b + r' b > r b > r' q = q' r = r'.
    + +
    +Lemma max_le_plus (n p: nat) : Nat.max n p n + p.
    + +
    +Lemma max_le_regR : n p q, p q max p n max q n.
    + +
    +Lemma max_le_regL : n p q, p q max n p max n q.
    + +
    +Lemma lt_lt_Sn : a b c, a < b b < S c a < c.
    + +
    +End Arith_lemmas.
    + +
    +
    + +
    +From Cantor contrib +
    +
    + +
    +Notation power := Nat.pow (only parsing).
    + +
    +Lemma power_of_1 : p, power 1 p = 1.
    + +
    +Goal a b, 0 < power (S a) b.
    + +
    +Lemma pred_of_power : b e, pred (power (S b) (S e)) =
    +                                  (power (S b) e)*b +
    +                                  pred (power (S b) e).
    + +
    + +
    + +
    +Lemma get_predecessor : (n:nat), 0 < n {p:nat | n = S p}.
    + +
    +Ltac pred_exhib H name :=
    +  match type of H
    +       with O < ?n
    +         case (get_predecessor H); intro name; intro
    +  end.
    + +
    + +
    +Lemma Euc1 : b q q' r r', 0 < b
    +                                  q×b + r = q'×b + r'
    +                                  r < b r' < b q = q'.
    + +
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Prelude.OrdNotations.html b/theories/html/hydras.Prelude.OrdNotations.html new file mode 100644 index 00000000..cc89b016 --- /dev/null +++ b/theories/html/hydras.Prelude.OrdNotations.html @@ -0,0 +1,46 @@ + + + + + +hydras.Prelude.OrdNotations + + + + +
    + + + +
    + +

    Library hydras.Prelude.OrdNotations

    + +
    + +
    +Reserved Notation "x 'o<' y" (at level 70, no associativity).
    +Reserved Notation "x 'o<=' y" (at level 70, no associativity).
    +Reserved Notation "x 'o>=' y" (at level 70, no associativity).
    +Reserved Notation "x 'o>' y" (at level 70, no associativity).
    + +
    +Reserved Notation "x 'o<=' y 'o<=' z" (at level 70, y at next level).
    +Reserved Notation "x 'o<=' y 'o<' z" (at level 70, y at next level).
    +Reserved Notation "x 'o<' y 'o<' z" (at level 70, y at next level).
    +Reserved Notation "x 'o<' y 'o<=' z" (at level 70, y at next level).
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Prelude.Restriction.html b/theories/html/hydras.Prelude.Restriction.html new file mode 100644 index 00000000..685fcd9b --- /dev/null +++ b/theories/html/hydras.Prelude.Restriction.html @@ -0,0 +1,130 @@ + + + + + +hydras.Prelude.Restriction + + + + +
    + + + +
    + +

    Library hydras.Prelude.Restriction

    + +
    +
    + +
    + Pierre Casteran + LaBRI, University of Bordeaux and LaBRI + +
    + + Restriction of a binary relation + +
    +
    + +
    +From Coq Require Import Wellfounded Ensembles Relations.
    + +
    + +
    +Definition restrict {A:Type}(E: Ensemble A)(R: relation A) :=
    +  fun a bE a R a b E b.
    + +
    + +
    +Section restricted_recursion.
    + +
    +  Variables (A:Type)(E:AProp)(R:AAProp).
    + +
    + +
    +  Definition well_founded_restriction :=
    +     (a:A), E a Acc (restrict E R) a.
    + +
    +
    + +
    +Induction principle for the restriction of R to E +
    +
    + +
    +  Definition well_founded_restriction_rect :
    +    well_founded_restriction
    +     X : A Type,
    +      ( x : A, E x ( y : A, In _ E y R y x X y) X x)
    +       a : A, In _ E a X a.
    + +
    +End restricted_recursion.
    + +
    +Section Fix.
    +  Variables (A:Type)(E: Ensemble A)(R: relation A).
    +  Hypothesis Hwf : well_founded_restriction A E R.
    + +
    + +
    +  Variable P : A Type.
    +  Variable F : ( x : A, E x ( y : A, In _ E y R y x P y) P x).
    + +
    +  Lemma restriction_fwd : x y (H: restrict E R x y), E x.
    + +
    +  Definition restrict_build x y (Hx: E x)(Hy : E y)(H : R x y) :=
    +    conj Hx (conj H Hy) .
    + +
    +  Fixpoint FixR_F (x:A)(Hx : E x)(a: Acc (restrict E R)x ) : P x :=
    +    F _ Hx (fun (y:A) (h0 : E y) (h : R y x) ⇒
    +              FixR_F y (restriction_fwd y x
    +                                        (restrict_build y x h0 Hx h))
    +                     (Acc_inv a (restrict_build y x h0 Hx h))).
    +  Lemma FixR_F_eq :
    +     (x:A)(Hx : E x) (r: Acc (restrict E R) x) ,
    +      F _ Hx (fun (y : A)( h0 : E y) (h : R y x) ⇒
    +                 FixR_F y (restriction_fwd y x (restrict_build y x h0 Hx h))
    +                        (Acc_inv r (restrict_build y x h0 Hx h)))=
    +      FixR_F x Hx r.
    + +
    +  Hypothesis Rwf : well_founded_restriction A E R.
    + +
    +  Definition FixR (x:A)(H:E x) := FixR_F x H (Rwf x H).
    + +
    +End Fix.
    + +
    +Arguments FixR [A E R P] _ _ _ _.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Prelude.STDPP_compat.html b/theories/html/hydras.Prelude.STDPP_compat.html new file mode 100644 index 00000000..11e138d6 --- /dev/null +++ b/theories/html/hydras.Prelude.STDPP_compat.html @@ -0,0 +1,75 @@ + + + + + +hydras.Prelude.STDPP_compat + + + + +
    + + + +
    + +

    Library hydras.Prelude.STDPP_compat

    + +
    +From Coq Require Import Relations.
    + +
    +Class Assoc {A} (R : relation A) (f : A A A) : Prop :=
    +  assoc x y z : R (f x (f y z)) (f (f x y) z).
    + +
    +
    + +
    +Decision typeclasses following Spitters and van der Weegen +
    +
    + +
    +Class Decision (P : Prop) := decide : {P} + {¬P}.
    + +
    +#[export] Hint Mode Decision ! : typeclass_instances.
    +Arguments decide _ {_} : simpl never, assert.
    + +
    +Class RelDecision {A B} (R : A B Prop) :=
    +  decide_rel x y :> Decision (R x y).
    + +
    +#[export] Hint Mode RelDecision ! ! ! : typeclass_instances.
    + +
    +Arguments decide_rel {_ _} _ {_} _ _ : simpl never, assert.
    + +
    +Notation EqDecision A := (RelDecision (@eq A)).
    + +
    +Definition bool_decide (P : Prop) {dec : Decision P} : bool :=
    +  if dec then true else false.
    + +
    +Lemma bool_decide_eq_true (P : Prop) `{Decision P} : bool_decide P = true P.
    + +
    +Lemma bool_decide_eq_false (P : Prop) `{Decision P} : bool_decide P = false ¬P.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Prelude.Simple_LexProd.html b/theories/html/hydras.Prelude.Simple_LexProd.html new file mode 100644 index 00000000..9cb6e313 --- /dev/null +++ b/theories/html/hydras.Prelude.Simple_LexProd.html @@ -0,0 +1,97 @@ + + + + + +hydras.Prelude.Simple_LexProd + + + + +
    + + + +
    + +

    Library hydras.Prelude.Simple_LexProd

    + +
    +
    + +
    +Non dependent lexicographic product Pierre Castéran, Univ. Bordeaux and LaBRI +
    +
    + +
    +From Coq Require Import Relations Wellfounded.Lexicographic_Product
    +        Wellfounded.Inverse_Image Wellfounded.Inclusion Setoid.
    +From Coq Require Export RelationClasses.
    + +
    +Section Definitions.
    + +
    +  Variables (A B : Type)
    +            (ltA : relation A)
    +            (ltB : relation B).
    + +
    +  Hypothesis wfA : well_founded ltA.
    +  Hypothesis wfB : well_founded ltB.
    + +
    +  Let pair2sig (p: A × B) := existT (fun _ : AB) (fst p) (snd p).
    + +
    + +
    +  Inductive lexico : relation (A × B) :=
    +    lex_1 : a a' b b', ltA a a' lexico (a,b) (a',b')
    +  | lex_2 : a b b', ltB b b' lexico (a,b) (a,b') .
    + +
    + +
    +  #[global] Instance Trans_lex {SA : StrictOrder ltA}
    +         {SB : StrictOrder ltB} :Transitive lexico.
    + +
    +  #[global] Instance Strict_lex {SA : StrictOrder ltA}
    +         {SB : StrictOrder ltB} : StrictOrder lexico.
    + +
    + +
    +  Lemma wf_lexico : well_founded lexico.
    + +
    + +
    +End Definitions.
    + +
    +Arguments lexico {A B} _ _ _ _.
    +Arguments wf_lexico {A B ltA ltB} _ _ _.
    + +
    +Example Ex1 : lexico lt lt (3,5) (4,2).
    + +
    +Example Ex2 : lexico lt lt (3,5) (3,6).
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Prelude.Sort_spec.html b/theories/html/hydras.Prelude.Sort_spec.html new file mode 100644 index 00000000..51fe098d --- /dev/null +++ b/theories/html/hydras.Prelude.Sort_spec.html @@ -0,0 +1,214 @@ + + + + + +hydras.Prelude.Sort_spec + + + + +
    + + + +
    + +

    Library hydras.Prelude.Sort_spec

    + +
    +
    + +
    +Formal specification of list sorting functions +
    +
    + +
    +From Coq Require Export List RelationClasses Relations Sorting.Permutation
    +     Sorting.Sorted.
    +From hydras Require Export DecPreOrder.
    +From hydras Require Import DecPreOrder_Instances.
    + +
    +Definition sort_fun_t := A, (A A bool) list A list A.
    + +
    + +
    +Section R_given.
    + +
    +  Variables (A: Type)(R : relation A).
    + +
    + +
    +  Lemma LocallySorted_cons:
    +         l a b, LocallySorted R (b::l) R a b
    +                  LocallySorted R (a::b::l).
    + +
    +Definition sort_rel (l l': list A) :=
    +  LocallySorted R l' Permutation l l'.
    + +
    +Definition sort_correct (f: list A list A) : Prop :=
    +   l:list A, sort_rel l (f l).
    + +
    +
    + +
    +already defined in DecPreOrder ? +
    +
    + +
    +Definition equiv (x y : A) := R x y R y x.
    + +
    +#[global] Instance equiv_equiv (P: PreOrder R): Equivalence equiv.
    + +
    +
    + +
    +Abstract properties TODO: look into StdLib's Order whether some lemmas are already + proved +
    +
    + +
    +Lemma forall_weak (H: Transitive R):
    +   (l:list A) (a b:A), R a b
    +                         List.Forall (R b) l
    +                         List.Forall (R a) l.
    + +
    + +
    + +
    +
    + +
    +To remove when it compiles again +
    +
    + +
    +     Lemma LocallySorted_cons' (Htrans : Transitive R):
    +         l a, List.Forall (R a) l LocallySorted R l
    +              LocallySorted R (a::l).
    + +
    +      Lemma LocallySorted_trans (Htrans : Transitive R):
    +         l a x, LocallySorted R (a::l) R x a
    +                 LocallySorted R (x::l).
    + +
    + +
    +      Lemma LocallySorted_inv_In (Htrans : Transitive R):
    +         l x, LocallySorted R (x::l) y, In y l R x y.
    + +
    +End R_given.
    + +
    +Arguments LocallySorted {A} _ _.
    +#[global] Hint Constructors LocallySorted : lists.
    + +
    +
    + +
    +A sort must work on any decidable total pre-order +
    +
    + +
    +Definition sort_spec (f : sort_fun_t) :=
    (A:Type) (le:relation A) (P:TotalPreOrder le) (dec:RelDecision le) (l:list A),
    let l' := f A (fun x ybool_decide (le x y)) l in Permutation l l' LocallySorted le l'.
    + +
    +
    + +
    +A prototype for using TotalDecPreOrder type class +
    +
    + +
    +Definition sort (f:sort_fun_t)
    + {A} {le : relation A} {P: TotalPreOrder le} {dec:RelDecision le}
    + (l: list A) :=
    +  f A (fun x ybool_decide (le x y)) l.
    + +
    +
    + +
    +stability +
    +
    + +
    +Inductive marked {A B : Type}(leA : relation A)(leB : relation B)
    +          {pA : PreOrder leA}
    +          {pB : PreOrder leB}:
    +list (A × B) Prop :=
    +| marked0 : marked leA leB nil
    +| marked1 : a b l, marked leA leB l
    +            ( a' b', In (a',b') l
    +                           leA a a' lt b b')
    +            marked leA leB ((a,b)::l).
    + +
    +Definition stable (f : sort_fun_t) : Prop :=
    +   (A B : Type) leA leB
    +    (PA : TotalPreOrder leA) (PB : TotalPreOrder leB)
    +    (dec : RelDecision leA) (l : list (A × B)),
    +         marked leA leB l
    +         marked leA leB (sort f (P:= Total_Inverse_fun
    +                                (f:= fst : A × B A))
    +                      l).
    + +
    +
    + +
    +for testing only +
    +
    + +
    +Fixpoint mark {A}(l:list A)(from:nat) : list (A × nat) :=
    +match l with
    +| nilnil
    +| (a::l') ⇒ (a,from)::mark l' (S from)
    +end.
    + +
    +Definition stable_test (f : sort_fun_t)
    +      {A} {le : relation A}{P: TotalPreOrder le} {dec:RelDecision le}
    +           (l: list A) : list (A × nat) :=
    +    let m := mark l 0 in
    +      sort f (P:= @Total_Inverse_fun (A × nat) A fst le P) m.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Prelude.WfVariant.html b/theories/html/hydras.Prelude.WfVariant.html new file mode 100644 index 00000000..7fa98694 --- /dev/null +++ b/theories/html/hydras.Prelude.WfVariant.html @@ -0,0 +1,79 @@ + + + + + +hydras.Prelude.WfVariant + + + + +
    + + + +
    + +

    Library hydras.Prelude.WfVariant

    + +
    +
    + +
    +Pierre Casteran, LaBRI, University of Bordeaux Definition of termination variants +
    +
    + +
    +Set Implicit Arguments.
    + +
    +From Coq Require Import Relations Basics
    +     Wellfounded.Inverse_Image Wellfounded.Inclusion.
    + +
    +Section Variants.
    Variable E: Type.
    Variable tr : relation E. +
    Definition terminates := well_founded (flip tr).
    + +
    Variables (T: Type)
    +           (lt : relation T)
    +           (m : E T).
    + +
    Infix "<" := lt.
    + +
    Class WfVariant :=
    +   {
    +     wf : well_founded lt;
    +     decr : x y, tr x y m y < m x
    +   }.
    + +
    +Lemma Variant_termination (Var : WfVariant ) : terminates .
    + +
    +End Variants.
    + +
    Arguments decr {E tr T lt m} _ _ _ _.
    Arguments wf {E tr T lt m} _ _ .
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Prelude.ssrnat_extracts.html b/theories/html/hydras.Prelude.ssrnat_extracts.html new file mode 100644 index 00000000..11160b9a --- /dev/null +++ b/theories/html/hydras.Prelude.ssrnat_extracts.html @@ -0,0 +1,61 @@ + + + + + +hydras.Prelude.ssrnat_extracts + + + + +
    + + + +
    + +

    Library hydras.Prelude.ssrnat_extracts

    + +
    +
    + +
    +

    Notations adapted from Mathcomp's ssrnat

    + +
    +
    + +
    +Notation "n .+1" := (S n) (at level 2, left associativity,
    +  format "n .+1") : nat_scope.
    +Notation "n .+2" := n.+1.+1 (at level 2, left associativity,
    +  format "n .+2") : nat_scope.
    +Notation "n .+3" := n.+2.+1 (at level 2, left associativity,
    +  format "n .+3") : nat_scope.
    +Notation "n .+4" := n.+2.+2 (at level 2, left associativity,
    +  format "n .+4") : nat_scope.
    +Notation "n .+5" := n.+2.+3 (at level 2, left associativity,
    +  format "n .+5") : nat_scope.
    + +
    +Notation "n .-1" := (pred n) (at level 2, left associativity,
    +  format "n .-1") : nat_scope.
    +Notation "n .-2" := n.-1.-1 (at level 2, left associativity,
    +  format "n .-2") : nat_scope.
    +Notation "n .-3" := n.-2.-1 (at level 2, left associativity,
    +  format "n .-3") : nat_scope.
    +Notation "n .-4" := n.-3.-1 (at level 2, left associativity,
    +  format "n .-4") : nat_scope.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Schutte.AP.html b/theories/html/hydras.Schutte.AP.html new file mode 100644 index 00000000..822c3774 --- /dev/null +++ b/theories/html/hydras.Schutte.AP.html @@ -0,0 +1,330 @@ + + + + + +hydras.Schutte.AP + + + + +
    + + + +
    + +

    Library hydras.Schutte.AP

    + +
    + +
    +
    + +
    +

    Additive principal ordinals

    + +
    + + Pierre Casteran, LaBRI, Universite de Bordeaux +
    + + +
    + +In this library, we define the exponential of basis omega, also called phi0. + +
    + +In fact, ω α , written phi0 alpha in Coq, + is defined as the alpha-th additive principal ordinal. + +
    + + +
    +
    + +
    + +
    +
    + +
    +

    Main Definitions

    + + +
    + +

    Additive principal ordinals

    + + +
    +
    + +
    + +
    +Definition AP : Ensemble Ord :=
    +  fun alpha
    +    zero < alpha
    +    ( beta, beta < alpha beta + alpha = alpha).
    + +
    + +
    +
    + +
    +

    Exponential of basis omega

    + + +
    +
    + +
    + +
    +Definition _phi0 := ord AP.
    + +
    +Notation phi0 := _phi0.
    + +
    +Notation "'omega^'" := phi0 (only parsing) : schutte_scope.
    + +
    + +
    +
    + +
    +

    Omega-towers

    + + +
    +
    + +
    + +
    +Fixpoint omega_tower (i : nat) : Ord :=
    +  match i with
    +    0 ⇒ 1
    +  | S jphi0 (omega_tower j)
    +  end.
    + +
    + +
    +
    + +
    +

    The limit ordinal epsilon0

    + + +
    +
    + +
    +Definition epsilon0 := omega_limit omega_tower.
    + +
    + +
    +
    + +
    +

    Proofs, proofs, proofs ...

    + +
    + +

    About additive principals

    + +
    +
    + +
    +Lemma AP_one : In AP 1.
    + +
    +Lemma least_AP : least_member lt AP 1.
    + +
    +Lemma AP_omega : In AP omega.
    + +
    +#[global] Hint Resolve zero_lt_omega : schutte.
    + +
    +Lemma AP_finite_eq_one : n: nat, AP n n = 1.
    + +
    +
    + +
    +Thus, omega is the second additive principal +
    +
    + +
    +Lemma omega_second_AP :
    +  least_member lt
    +               (fun alpha ⇒ 1 < alpha In AP alpha)
    +               omega.
    + +
    + +
    +Lemma AP_plus_closed (alpha beta gamma : Ord):
    +  In AP alpha beta < alpha gamma < alpha
    +  beta + gamma < alpha. +
    + +
    + +
    +Lemma AP_mult_Sn_closed (alpha beta: Ord) :
    +  AP alpha beta < alpha n, mult_Sn beta n < alpha.
    + +
    +Lemma AP_mult_fin_r_closed (alpha beta: Ord) :
    +  AP alpha beta < alpha n, beta × n < alpha.
    + +
    + +
    + +
    +Theorem AP_unbounded : Unbounded AP. +
    + +
    + +
    +Theorem AP_closed : Closed AP. +
    +Theorem AP_o_segment : the_ordering_segment AP = ordinal. +
    +
    + +
    +

    Properties of phi0

    + +
    +
    + +
    +Theorem normal_phi0 : normal phi0 AP.
    + +
    +Lemma phi0_ordering : ordering_function phi0 ordinal AP.
    + +
    + +
    + +
    +Lemma phi0_elim : P : (OrdOrd)->Prop,
    +    ( f: OrdOrd,
    +        ordering_function f ordinal AP P f)
    +    P phi0.
    + +
    +Lemma AP_phi0 (alpha : Ord) : In AP (phi0 alpha). +
    +Lemma phi0_zero : phi0 zero = 1. +
    +Lemma phi0_mono (alpha beta : Ord) :
    +  alpha < beta phi0 alpha < phi0 beta. +
    +Lemma phi0_mono_weak (alpha beta : Ord) :
    +  alpha beta phi0 alpha phi0 beta. +
    +Lemma phi0_mono_R (alpha beta : Ord) :
    +  phi0 alpha < phi0 beta alpha < beta. +
    +Lemma phi0_mono_R_weak (alpha beta: Ord):
    +    phi0 alpha phi0 beta alpha beta. +
    +Lemma phi0_inj (alpha beta : Ord) :
    +  phi0 alpha = phi0 beta alpha = beta. +
    +Lemma phi0_positive (alpha : Ord): zero < phi0 alpha. +
    +Lemma plus_lt_phi0 (ksi alpha: Ord):
    +    ksi < phi0 alpha ksi + phi0 alpha = phi0 alpha. +
    +Lemma phi0_alpha_phi0_beta (alpha beta: Ord) :
    +  alpha < beta phi0 alpha + phi0 beta = phi0 beta. +
    +Lemma phi0_sup : U: Ensemble Ord,
    +    Inhabited U
    +    Countable U
    +    phi0 (|_| U) = |_| (image U phi0). +
    +Lemma phi0_of_limit (alpha : Ord) :
    +  is_limit alpha
    +  phi0 alpha = |_| (image (members alpha) phi0). +
    +Lemma AP_to_phi0 (alpha : Ord) :
    +  AP alpha beta, alpha = phi0 beta. +
    +Lemma AP_plus_AP (alpha beta gamma : Ord) :
    +  zero < beta
    +  phi0 alpha + beta = phi0 gamma
    +  alpha < gamma beta = phi0 gamma. +
    +Lemma is_limit_phi0 (alpha : Ord) :
    +  zero < alpha is_limit (phi0 alpha). +
    +Lemma omega_eqn : omega = phi0 1. +
    +Lemma le_phi0 (alpha : Ord) : alpha phi0 alpha. +
    +
    + +
    +

    Properties of epsilon0

    + +
    + +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Schutte.Addition.html b/theories/html/hydras.Schutte.Addition.html new file mode 100644 index 00000000..b92adbc8 --- /dev/null +++ b/theories/html/hydras.Schutte.Addition.html @@ -0,0 +1,272 @@ + + + + + +hydras.Schutte.Addition + + + + +
    + + + +
    + +

    Library hydras.Schutte.Addition

    + +
    + +
    +From Coq Require Import Arith Logic.Epsilon Ensembles.
    +From ZornsLemma Require Import CountableTypes.
    +From hydras Require Export Schutte_basics Ordering_Functions
    +     PartialFun Countable MoreEpsilonIota.
    +Set Implicit Arguments.
    +From hydras Require Export STDPP_compat.
    + +
    +
    + +
    +

    Definitions

    + +
    + +

    addition, multiplication by a positive integer

    + +
    +
    + +
    + +
    +Definition plus alpha := ord (ge alpha).
    +Infix "+" := plus : schutte_scope.
    + +
    + +
    +
    + +
    +returns alpha × (S n) + +
    +
    + +
    + +
    +Fixpoint mult_Sn (alpha:Ord)(n:nat){struct n} :Ord :=
    match n with 0 ⇒ alpha
    +            | S pmult_Sn alpha p + alpha
    end.
    + +
    +Definition mult_fin_r alpha n :=
    +  match n with
    +      0 ⇒ zero
    +    | S pmult_Sn alpha p
    +  end.
    + +
    +Infix "×" := mult_fin_r : schutte_scope.
    + +
    + +
    +
    + +
    +

    Proofs, proofs, proofs

    + + +
    +
    + +
    +Lemma Unbounded_ge (alpha : Ord) : Unbounded (ge alpha).
    + +
    +Lemma ge_o_segment (alpha : Ord) :
    the_ordering_segment (ge alpha) = ordinal.
    + +
    +Lemma plus_ordering (alpha : Ord) :
    +  ordering_function (plus alpha)
    +                    ordinal
    +                    (ge alpha).
    + +
    +Lemma plus_elim (alpha : Ord) :
    +   P : (OrdOrd)->Prop,
    +    ( f: OrdOrd,
    +        ordering_function f ordinal (ge alpha) P f)
    +    P (plus alpha).
    + +
    +Lemma normal_plus_alpha (alpha : Ord) :
    +  normal (plus alpha) (ge alpha).
    + +
    +
    + +
    +

    Basic properties of addition

    + + +
    +
    + +
    + +
    +Lemma alpha_plus_zero (alpha: Ord): alpha + zero = alpha. +
    +Remark ge_zero : (ge zero : Ensemble Ord) = ordinal.
    + +
    + +
    +Lemma zero_plus_alpha (alpha : Ord): zero + alpha = alpha.
    + +
    +Lemma le_plus_l (alpha beta : Ord) : alpha alpha + beta. +
    +Lemma le_plus_r (alpha beta : Ord) : beta alpha + beta. +
    +Lemma plus_mono_r (alpha beta gamma : Ord) :
    +  beta < gamma alpha + beta < alpha + gamma. +
    +Lemma plus_of_succ (alpha beta : Ord) :
    +  alpha + (succ beta) = succ (alpha + beta). +
    + +
    +Lemma plus_mono_r_weak (alpha beta gamma : Ord) :
    +  beta gamma alpha + beta alpha + gamma.
    + +
    +Lemma plus_reg_r (alpha beta gamma : Ord) :
    +  alpha + beta = alpha + gamma beta = gamma.
    + +
    +Lemma succ_is_plus_1 alpha : succ alpha = alpha + 1.
    + +
    +Lemma alpha_plus_sup (alpha : Ord) (A : Ensemble Ord) :
    +    Inhabited A
    +    Countable A
    +    alpha + |_| A = |_| (image A (plus alpha)).
    + +
    +Lemma plus_limit (alpha beta : Ord)
    +  : is_limit beta
    +    alpha + beta = |_| (image (members beta) (plus alpha)).
    + +
    +Lemma plus_FF : i j, F (i + j) = F i + F j.
    + +
    +Lemma one_plus_omega : 1 + omega = omega.
    + +
    +Lemma minus_exists (alpha beta : Ord) :
    +  alpha beta
    +   gamma, alpha + gamma = beta.
    + +
    +Section proof_of_associativity.
    +  Variables alpha beta : Ord.
    + +
    +  Lemma plus_assoc1 (gamma : Ord) :
    +    alpha + beta alpha + (beta + gamma) .
    + +
    +  Lemma plus_assoc2 (gamma : Ord) :
    +    alpha + beta gamma
    +     khi, gamma = alpha + (beta + khi).
    + +
    +  Let f_alpha_beta := plus (alpha + beta).
    + +
    +  Let g_alpha_beta gamma := alpha + (beta + gamma).
    + +
    +  Remark of_g : ordering_function g_alpha_beta ordinal (ge (alpha+beta)).
    + +
    +  Lemma of_u : fun_equiv f_alpha_beta g_alpha_beta ordinal ordinal.
    + +
    +  Lemma plus_assoc3 (gamma : Ord) :
    +    f_alpha_beta gamma = g_alpha_beta gamma.
    + +
    +  Lemma plus_assoc' (gamma : Ord) :
    +    alpha + (beta + gamma) = (alpha + beta) + gamma.
    + +
    +End proof_of_associativity.
    + +
    +#[global] Instance plus_assoc: Assoc eq plus.
    + +
    +Lemma one_plus_infinite (alpha : Ord) :
    +  omega alpha 1 + alpha = alpha.
    + +
    + +
    +Lemma finite_plus_infinite (n : nat) (alpha : Ord) :
    +  omega alpha n + alpha = alpha. +
    +Example L_3_plus_omega : 3 + omega = omega.
    + +
    +Lemma plus_mono_weak_l : alpha beta gamma,
    +                          alpha beta alpha + gamma beta + gamma.
    + +
    +Lemma plus_mono_bi : alpha beta gamma delta,
    +                        alpha gamma
    +                        beta < delta
    +                        alpha + beta < gamma + delta.
    + +
    +Lemma mult_fin_r_one : n, (F 1) × S n = F (S n).
    + +
    +Lemma mult_fin_r_mono : alpha beta , alpha < beta
    +    n, alpha × S n < beta × S n.
    + +
    +Lemma le_a_mult_Sn_a : alpha n, ordinal alpha
    +                                       alpha alpha × S n.
    + +
    +Lemma mult_Sn_mono2 : a, zero < a
    +                          n p, (n < p)%nat a × S n < a × S p.
    + +
    +Lemma mult_Sn_mono3 : alpha, zero < alpha
    +                          n p, (n < p)%nat alpha × S n + alpha
    +                                                     alpha × S p.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Schutte.CNF.html b/theories/html/hydras.Schutte.CNF.html new file mode 100644 index 00000000..5aff7077 --- /dev/null +++ b/theories/html/hydras.Schutte.CNF.html @@ -0,0 +1,258 @@ + + + + + +hydras.Schutte.CNF + + + + +
    + + + +
    + +

    Library hydras.Schutte.CNF

    + +
    + +
    +
    + +
    + Cantor normal form +
    + + Pierre Casteran, Labri and Univ Bordeaux. +
    +
    + +
    +From Coq Require Import Arith List Sorting.Sorted
    +     Logic.Epsilon Ensembles.
    +From hydras Require Export Schutte_basics Ordering_Functions
    +     PartialFun Countable Schutte.Addition AP.
    +From Coq Require Export Classical.
    +Import ListNotations.
    + +
    +Set Implicit Arguments.
    + +
    +
    + +
    +A Cantor normal form for a countable ordinal alpha is just a sorted +list l (in decreasing order) such that alpha is equal to the sum of the terms phi0 beta, for every term beta in l. + +
    + +Note that, if alpha is greater or equal than epsilon0, the members of l +are less or equal than alpha. + +
    + +For instance, the Cantor Normal Form of epsilon0 is just epsilon0 :: nil. + +
    + + +
    +
    + +
    +Definition cnf_t := list Ord.
    + +
    +Fixpoint eval (l : cnf_t) : Ord :=
    +  match l with
    +  | nilzero
    +  | beta :: l'phi0 beta + eval l'
    +  end.
    + +
    +Definition sorted (l: cnf_t) :=
    +  LocallySorted (fun alpha betabeta alpha) l.
    + +
    +Definition is_cnf_of (alpha : Ord)(l : cnf_t) : Prop :=
    +  sorted l alpha = eval l.
    + +
    +Definition exponents_lt (alpha: Ord) :=
    +  Forall (fun betabeta < alpha).
    + +
    +Definition exponents_le (alpha : Ord) :=
    +  Forall (fun betabeta alpha).
    + +
    + +
    +Lemma exponents_lt_eval alpha l: exponents_lt alpha l
    +                                 eval l < phi0 alpha.
    + +
    +Lemma sorted_tail alpha l: sorted (cons alpha l) sorted l.
    + +
    +Lemma nf_bounded beta l alpha :
    +  alpha phi0 beta is_cnf_of alpha l
    +  exponents_le beta l.
    + +
    +Lemma cnf_of_ap (alpha : Ord) :
    +  In AP alpha l, is_cnf_of alpha l.
    + +
    +Lemma sorted_lt_lt (beta: Ord) : l alpha,
    +    sorted (cons alpha l) alpha < beta
    +    eval (cons alpha l) < phi0 beta.
    + +
    +Lemma sorted_lt_lt_2 l alpha :
    +  sorted (cons alpha l)
    +  eval (cons alpha l) < phi0 (succ alpha).
    + +
    +Lemma cnf_head_eq alpha beta ol ol':
    +  sorted (cons alpha ol)
    +  sorted (cons beta ol')
    +  eval (cons alpha ol) = eval (cons beta ol')
    +  alpha = beta.
    + +
    +Lemma cnf_eq alpha beta ol ol':
    +  sorted (cons alpha ol)
    +  sorted (cons beta ol')
    +  eval (cons alpha ol) = eval (cons beta ol')
    +  alpha = beta eval ol = eval ol'.
    + +
    +Lemma cnf_plus1 (ol : cnf_t) :
    +  sorted ol alpha,
    +     ol', is_cnf_of (phi0 alpha + eval ol) ol'.
    + +
    +Lemma cnf_plus2 : ol, sorted ol
    +                              ol', sorted ol'
    +                                          ol'', is_cnf_of (eval ol + eval ol') ol''.
    + +
    +Lemma cnf_plus : ol alpha,
    +    is_cnf_of alpha ol ol' beta, is_cnf_of beta ol'
    +                                            ol'', is_cnf_of (alpha + beta) ol''.
    + +
    + +
    +
    + +
    +

    Every countable ordinal has (at least) a Cantor normal form

    + + +
    + + (Proof by transfinite induction) + +
    +
    + +
    + +
    +Theorem cnf_exists (alpha : Ord) :
    +   l: cnf_t, is_cnf_of alpha l. +
    +Lemma sorted_lt l alpha: sorted (alpha::l)
    +                          eval l < phi0 alpha + eval l.
    + +
    +
    + +
    +

    Unicity of cnf

    + + +
    + +(Proof by induction on lists) + +
    + + +
    +
    + +
    + +
    +Lemma cnf_unicity l alpha:
    +  is_cnf_of alpha l
    +   l', is_cnf_of alpha l' l = l'. +
    +
    + +
    +

    The main result

    + +
    +
    + +
    + +
    +Theorem cnf_exists_unique (alpha:Ord) :
    +  ! l: cnf_t, is_cnf_of alpha l.
    + +
    +
    + +
    +

    Cantor Normal Form and the ordinal epsilon0

    + +
    +
    + +
    + +
    +Lemma cnf_lt_epsilon0 : l alpha,
    +    is_cnf_of alpha l
    +    alpha < epsilon0
    +    Forall (fun betabeta < alpha) l. +
    + +
    +
    + +
    +The normal form of epsilon0 is just phi0 epsilon0 + +
    +
    + +
    + +
    + +
    +Lemma cnf_of_epsilon0 : is_cnf_of epsilon0 [epsilon0].
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Schutte.Correctness_E0.html b/theories/html/hydras.Schutte.Correctness_E0.html new file mode 100644 index 00000000..1733a461 --- /dev/null +++ b/theories/html/hydras.Schutte.Correctness_E0.html @@ -0,0 +1,175 @@ + + + + + +hydras.Schutte.Correctness_E0 + + + + +
    + + + +
    + +

    Library hydras.Schutte.Correctness_E0

    + +
    +
    + +
    + Injection from the set of ordinal terms in Cantor normal form + into the set of Schutte's countable ordinal numbers stricly less than + epsilon0. + +
    + + Pierre Castéran, Univ. Bordeaux and LaBRI + +
    + + This is intented to be a validation of main constructions and functions + designed for the type T1. + +
    + + +
    +
    + +
    + +
    +From hydras Require Import Epsilon0.Epsilon0 ON_Generic.
    +From hydras Require Import Schutte_basics Schutte.Addition AP CNF.
    + +
    +Import List PartialFun Ensembles.
    + +
    + +
    +Fixpoint inject (t:T1) : Ord :=
    +  match t with
    +  | T1.zerozero
    +  | T1.cons a n bAP._phi0 (inject a) × S n + inject b
    +  end.
    + +
    + +
    +Lemma inject_of_finite_pos : n, inject (\F (S n)) = F (S n).
    + +
    + +
    + +
    +Theorem inject_of_zero : inject T1.zero = zero.
    + +
    +Theorem inject_of_finite (n : nat):
    +  inject (\F n) = n.
    + +
    +Theorem inject_of_omega :
    +  inject T1omega = Schutte_basics._omega. +
    +Theorem inject_of_phi0 (alpha : T1):
    +  inject (T1.phi0 alpha) = AP._phi0 (inject alpha). +
    + +
    + +
    +Theorem inject_mono (beta gamma : T1) :
    +  T1.lt beta gamma
    +  T1.nf beta T1.nf gamma
    +  inject beta < inject gamma.
    + +
    +Theorem inject_injective (beta gamma : T1) : nf beta nf gamma
    +                                             inject beta = inject gamma beta = gamma.
    + +
    +Theorem inject_monoR (beta gamma : T1) :
    +  T1.nf beta T1.nf gamma
    +  inject beta < inject gamma
    +  (beta t1< gamma)%t1.
    + +
    + +
    +Theorem inject_lt_epsilon0 (alpha : T1):
    +  inject alpha < epsilon0. +
    + +
    +Lemma inject_rw (a b: T1) n : inject (T1.cons a n b) =
    +                              mult_Sn (AP._phi0 (inject a)) n + inject b.
    + +
    + +
    +Theorem inject_plus (alpha beta : T1):
    +  nf alpha nf beta
    +  inject (alpha + beta)%t1 = inject alpha + inject beta. +
    + +
    +Theorem inject_mult_fin_r (alpha : T1) :
    +  nf alpha
    +   n:nat,
    +    inject (alpha × n)%t1 = inject alpha × n. +
    +Lemma inject_lt_epsilon0_ex_cnf (alpha : Ord) :
    +   (H : alpha < epsilon0)
    +         (l: list Ord), is_cnf_of alpha l
    +                          t: T1, nf t inject t = eval l.
    + +
    +Theorem inject_lt_epsilon0_ex (alpha : Ord) (H : alpha < epsilon0) :
    +   t: T1, nf t inject t = alpha.
    + +
    +Theorem inject_lt_epsilon0_ex_unique (alpha : Ord) (H : alpha < epsilon0) :
    +  ! t: T1, nf t inject t = alpha.
    + +
    + +
    +Theorem embedding : fun_bijection (nf: Ensemble T1)
    +                                  (members epsilon0)
    +                                  inject. +
    + +
    +#[ global ] Instance Epsilon0_correct :
    +  ON_correct epsilon0 Epsilon0 (fun alphainject (cnf alpha)). +
    + +
    +
    + +
    +Correctness of E0.plus +
    +
    + +
    +Theorem E0_plus_correct : ON_op_ok E0add plus.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Schutte.Countable.html b/theories/html/hydras.Schutte.Countable.html new file mode 100644 index 00000000..9ec0c2e5 --- /dev/null +++ b/theories/html/hydras.Schutte.Countable.html @@ -0,0 +1,155 @@ + + + + + +hydras.Schutte.Countable + + + + +
    + + + +
    + +

    Library hydras.Schutte.Countable

    + +
    +
    + +
    +A formalization of denumerable sets. by Florian Hatat and Stéphane Desarzens +
    +
    + +
    +From Coq Require Import Ensembles Arith ArithRing
    +     Wellfounded Relations Wf_nat Finite_sets
    +     Logic.Epsilon Sets.Image Lia.
    + +
    +From ZornsLemma Require Import Classical_Wf CountableTypes Families.
    + +
    +From hydras Require Import MoreEpsilonIota PartialFun GRelations
    +     Prelude.More_Arith.
    + +
    +Import Nat.
    + +
    +Set Implicit Arguments.
    + +
    +
    + +
    +A is countable if there exists an injection from A to + Full_set nat. +
    +
    + +
    +Section Countable.
    + +
    +  Section Definitions.
    +    Variable U : Type.
    +    Variable A : Ensemble U.
    + +
    +
    + +
    +Predicate for relations which number the elements of A. + +
    + + These relations map each element of A to at least one integer, but they + are not required to be functional (injectivity is only needed to ensure that + A is countable). +
    +
    + +
    +    Definition rel_numbers (R: GRelation U nat) := rel_injection A Full_set R.
    + +
    +
    + +
    +Predicate for relations which enumerate A. +
    +
    +    Definition rel_enumerates (R : GRelation nat U) := rel_surjection Full_set A R.
    + +
    +    Theorem countable_surj :
    +      Countable A R, rel_enumerates R.
    + +
    +  End Definitions.
    + +
    +  Variable U : Type.
    + +
    +  Section Countable_seq_range.
    + +
    +    Definition seq_range (f : nat U) : Ensemble U :=
    +      image Full_set f.
    + +
    +    Lemma seq_range_countable :
    +       f, Countable (seq_range f).
    + +
    +  End Countable_seq_range.
    + +
    +  Section Countable_bijection.
    + +
    +    Variable V : Type.
    + +
    +    Variable A : Ensemble U.
    +    Variable B : Ensemble V.
    +    Variable g : U V.
    + +
    +    Hypothesis g_bij : fun_bijection A B g.
    + +
    +    Lemma countable_bij_fun :
    +      Countable A Countable B.
    + +
    +    Lemma countable_bij_funR :
    +      Countable B Countable A.
    + +
    +  End Countable_bijection.
    + +
    +End Countable.
    + +
    +Lemma countable_image : (U V:Type)(DA : Ensemble U)(f:UV),
    +    Countable DA Countable (image DA f).
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Schutte.Critical.html b/theories/html/hydras.Schutte.Critical.html new file mode 100644 index 00000000..61e13f95 --- /dev/null +++ b/theories/html/hydras.Schutte.Critical.html @@ -0,0 +1,320 @@ + + + + + +hydras.Schutte.Critical + + + + +
    + + + +
    + +

    Library hydras.Schutte.Critical

    + +
    + +
    +
    + +
    + +
    + + We adapt Schutte's definition of critical ordinals : + +
    + +
      +
    • Cr(zero) = AP (the set of additive principal ordinals ) + +
      + + +
    • +
    • if zero < alpha, then + Cr(alpha) is the intersection of all the sets of fixpoints + of the ordering functions of Cr(beta) for beta < alpha. + +
    • +
    + +
    +
    + +
    +From Coq Require Import Arith Logic.Epsilon Ensembles Classical.
    +From ZornsLemma Require Import CountableTypes.
    +From hydras Require Export Schutte_basics Ordering_Functions
    +     Countable Schutte.Addition AP CNF Well_Orders MoreEpsilonIota.
    + +
    +Set Implicit Arguments.
    + +
    +
    + +
    + Let us define a functional, the fixpoint of which we shall consider +
    +
    + +
    + +
    +Definition Cr_fun : alpha : Ord,
    +    ( beta : Ord, beta < alpha Ensemble Ord)
    +    Ensemble Ord
    +  :=
    +    fun (alpha: Ord)
    +        (Cr : beta, beta < alpha Ensemble Ord)
    +        (x : Ord) ⇒ (
    +        (alpha = zero AP x)
    +        (zero < alpha
    +          beta (H:beta < alpha),
    +           In (the_ordering_segment (Cr beta H)) x
    +           ord (Cr beta H) x = x)).
    + +
    +Definition Cr (alpha : Ord) : Ensemble Ord :=
    +  (Fix all_ord_acc
    +        (fun (_:Ord) ⇒ Ensemble Ord) Cr_fun) alpha.
    + +
    + +
    + +
    +Definition strongly_critical alpha := In (Cr alpha) alpha.
    + +
    +Definition maximal_critical alpha : Ensemble Ord :=
    +  fun gamma
    +    In (Cr alpha) gamma
    +     xi, alpha < xi ¬ In (Cr xi) gamma.
    + +
    +Definition Gamma0 := the_least strongly_critical.
    + +
    + +
    +
    + +
    + See Gamma0.Gamma0.phi +
    +
    + +
    + +
    +Definition phi (alpha : Ord) : Ord Ord := ord (Cr alpha).
    + +
    +Definition A_ (alpha : Ord) : Ensemble Ord := the_ordering_segment (Cr alpha).
    + +
    + +
    +Lemma Cr_extensional :
    +   (x:Ord)
    +         (f g : y : Ord, y < x (fun _ : OrdEnsemble Ord) y),
    +    ( (y : Ord) (p : y < x), f y p = g y p)
    +    ((Cr_fun f :Ensemble Ord) = (Cr_fun g :Ensemble Ord)).
    + +
    +Lemma Cr_equation (alpha : Ord) :
    +  Cr alpha =
    +  Cr_fun
    +    (fun (y : Ord) (h : y < alpha) ⇒ Cr y).
    + +
    +Lemma Cr_inv (alpha x : Ord):
    +  Cr alpha x
    +  ((alpha = zero (Cr alpha x AP x))
    +   (zero < alpha
    +    ( beta (H:beta < alpha),
    +        A_ beta x ord (Cr beta ) x = x))).
    + +
    +Lemma Cr_zero : x, AP x Cr zero x.
    + +
    +Lemma Cr_pos : alpha,
    +    zero < alpha
    +     x : Ord ,
    +      ( beta (H:beta < alpha),
    +          A_ beta x ord (Cr beta) x = x)
    +      Cr alpha x.
    + +
    +Lemma Cr_zero_inv : x, Cr zero x AP x.
    + +
    + +
    +Lemma Cr_zero_AP : Cr zero = AP. +
    +Lemma Cr_pos_inv (alpha : Ord) :
    +  zero < alpha
    +   x,
    +    Cr alpha x
    +    ( beta (H:beta < alpha), In (A_ beta) x phi beta x = x).
    + +
    +Lemma Cr_pos_iff (alpha : Ord) :
    +  zero < alpha
    +   x,
    +    (Cr alpha x
    +     ( beta (H:beta < alpha), In (A_ beta) x phi beta x = x)).
    + +
    +Lemma A_Cr (alpha beta:Ord) : In (A_ alpha) beta phi alpha beta = beta
    +                             In (Cr alpha) beta.
    + +
    +Lemma Cr_lt : alpha beta,
    +    beta < alpha x, Cr alpha x Cr beta x.
    + +
    +Lemma Cr_incl (alpha beta : Ord) (H :beta alpha) :
    +  Included (Cr alpha) (Cr beta).
    + +
    +Lemma phi0_well_named : alpha, phi0 alpha = phi 0 alpha.
    + +
    +Lemma Cr_1_iff (alpha : Ord):
    +  Cr 1 alpha AP alpha phi0 alpha = alpha.
    + +
    + +
    +Lemma epsilon0_Cr1 : In (Cr 1) epsilon0. +
    + +
    +
    + +
    +Lemma 5, p 82 of Schutte's book +
    +
    + +
    + +
    +Section Proof_of_Lemma5.
    +  Let P (alpha:Ord) := Unbounded (Cr alpha) Closed (Cr alpha).
    + +
    +  Lemma Lemma5_0 : P zero.
    + +
    +  Section Alpha_positive.
    +    Variable alpha : Ord.
    +    Hypothesis alpha_pos : zero < alpha.
    +    Hypothesis IHalpha : xi, xi < alpha P xi.
    + +
    +    Section Proof_unbounded.
    +      Variable beta : Ord.
    + +
    +      Fixpoint gamma_ (n:nat) : Ord :=
    +        match n with
    +          Osucc beta
    +        | S nsup
    +                   (fun (y : Ord) ⇒
    +                       xi: Ord, xi < alpha
    +                                      y = phi xi (gamma_ n))
    +        end.
    + +
    +      Let gamma := omega_limit gamma_.
    + +
    +      Lemma Lemma5_01 : beta < gamma.
    + +
    +      Lemma Lemma5_02 : xi, xi < alpha
    +                                    phi xi gamma = gamma.
    + +
    +      Lemma Lemma5_03 : In (Cr alpha) gamma.
    + +
    +      Remark A_full : xi, xi < alpha A_ xi = ordinal.
    + +
    +      Lemma Lemma5_04 : gamma, In (Cr alpha) gamma beta < gamma.
    + +
    +    End Proof_unbounded.
    + +
    +    Lemma Lemma5_1 : Unbounded (Cr alpha).
    + +
    +    Section closedness.
    +      Variable M : Ensemble Ord.
    +      Hypothesis HM : Inhabited M.
    +      Hypothesis CM : Countable M.
    +      Hypothesis IM : Included M (Cr alpha).
    + +
    +      Lemma Lemma5_2 : xi eta, xi < alpha
    +                                        In M eta
    +                                        phi xi eta = eta.
    +        Check (Cr_pos_iff alpha_pos).
    +      Qed.
    + +
    +      Lemma Lemma5_7 : In (Cr alpha) (sup M).
    + +
    +    End closedness.
    + +
    +    Lemma induct_step : P alpha.
    + +
    +  End Alpha_positive.
    + +
    +  Lemma Lemma5 : alpha, P alpha.
    + +
    +End Proof_of_Lemma5.
    + +
    + +
    +Theorem Unbounded_Cr alpha : Unbounded (Cr alpha). +
    +Theorem Closed_Cr alpha : Closed (Cr alpha). +
    + +
    +Theorem Th13_8 alpha : normal (phi alpha) (Cr alpha).
    + +
    +Corollary Th13_8_1 alpha : A_ alpha = ordinal.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Schutte.GRelations.html b/theories/html/hydras.Schutte.GRelations.html new file mode 100644 index 00000000..54baeb9d --- /dev/null +++ b/theories/html/hydras.Schutte.GRelations.html @@ -0,0 +1,155 @@ + + + + + +hydras.Schutte.GRelations + + + + +
    + + + +
    + +

    Library hydras.Schutte.GRelations

    + +
    +
    + +
    +General relations +
    + + by Florian Hatat, ENS-Lyon +
    +
    + +
    +From Coq Require Import Ensembles Classical Lia Arith.
    +From hydras Require Import PartialFun.
    + +
    +Section General_Relations.
    + +
    +  Section Definitions.
    +    Variables A B : Type.
    + +
    +
    + +
    +domain +
    +
    + +
    +    Variable DA : Ensemble A.
    + +
    +
    + +
    +codomain +
    +
    + +
    +    Variable DB : Ensemble B.
    + +
    +    Definition GRelation := A B Prop.
    + +
    +    Variable R : GRelation.
    + +
    +    Inductive rel_injection : Prop :=
    +     rel_inj_i : rel_domain DA R
    +          rel_codomain DA DB R
    +          rel_inj DA R
    +          rel_injection.
    + +
    +    Inductive rel_surjection : Prop :=
    +     rel_surj_i : rel_codomain DA DB R
    +          rel_functional DA R
    +          rel_onto DA DB R
    +          rel_surjection.
    +  End Definitions.
    + +
    Arguments rel_injection [A B].
    Arguments rel_surjection [A B].
    + +
    +  Variables A B : Type.
    +  Variable DA : Ensemble A.
    +  Variable DB : Ensemble B.
    + +
    +  Section injection2surjection.
    +    Variable R : GRelation A B.
    +    Hypothesis R_inj : rel_injection DA DB R.
    + +
    +    Lemma R_inv_surj : rel_surjection DB DA (rel_inv DA DB R).
    + +
    +  End injection2surjection.
    + +
    +  Section surjection2injection.
    +    Variable R : GRelation A B.
    +    Hypothesis R_surj : rel_surjection DA DB R.
    + +
    +    Definition R_inv := rel_inv DA DB R.
    + +
    +    Lemma R_inv_inj : rel_injection DB DA (rel_inv DA DB R).
    +  End surjection2injection.
    + +
    +  Section elagage.
    +    Section to_nat_elagage.
    +      Variable R : GRelation A nat.
    + +
    +      Definition R_nat_elaguee (x : A) (n : nat) : Prop :=
    +        R x n ( p, R x p n p).
    + +
    +      Lemma R_nat_elaguee_fun :
    +        rel_functional DA R_nat_elaguee.
    + +
    +      Lemma R_nat_elaguee_domain :
    +         y n, R y n p, R_nat_elaguee y p.
    + +
    +    End to_nat_elagage.
    +  End elagage.
    + +
    +End General_Relations.
    + +
    +Arguments rel_injection {A B}.
    +Arguments rel_surjection {A B}.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Schutte.Lub.html b/theories/html/hydras.Schutte.Lub.html new file mode 100644 index 00000000..ac3c5411 --- /dev/null +++ b/theories/html/hydras.Schutte.Lub.html @@ -0,0 +1,63 @@ + + + + + +hydras.Schutte.Lub + + + + +
    + + + +
    + +

    Library hydras.Schutte.Lub

    + +
    + +
    +Set Implicit Arguments.
    + +
    +From Coq Require Import Relations Ensembles.
    + +
    + +
    +Definition upper_bound (M:Type)
    +                       (D: Ensemble M)
    +                       (lt: relation M)
    +                       (X:Ensemble M)
    +                       (a:M) :=
    +   x, In _ D x In _ X x x = a lt x a.
    + +
    +Definition is_lub (M:Type)
    +                  (D : Ensemble M)
    +                  (lt : relation M)
    +                  (X:Ensemble M)
    +                  (a:M) :=
    +   In _ D a upper_bound D lt X a
    +   ( y, In _ D y
    +              upper_bound D lt X y
    +              y = a lt a y).
    + +
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Schutte.MoreEpsilonIota.html b/theories/html/hydras.Schutte.MoreEpsilonIota.html new file mode 100644 index 00000000..a699019b --- /dev/null +++ b/theories/html/hydras.Schutte.MoreEpsilonIota.html @@ -0,0 +1,163 @@ + + + + + +hydras.Schutte.MoreEpsilonIota + + + + +
    + + + +
    + +

    Library hydras.Schutte.MoreEpsilonIota

    + +
    +
    + +
    + +
    + + Complements to Coq.Logic.Epsilon + +
    + + Pierre Casteran, + LaBRI, University of Bordeaux + +
    +
    + +
    +From Coq Require Export Ensembles Logic.Epsilon.
    + +
    +Print epsilon_statement.
    + +
    +Print epsilon.
    + +
    +Check constructive_indefinite_description.
    + +
    +Check iota_statement.
    + +
    +Print iota.
    + +
    +Print iota_spec.
    + +
    +Set Implicit Arguments.
    +Arguments In {U} _ _.
    + +
    Lemma epsilon_ind {A:Type} (inh : inhabited A) (P Q : A Prop):
    +   (ex P ) ( a, P a Q a) Q (epsilon inh P).
    + +
    +Theorem epsilon_equiv {A:Type}(a: inhabited A)(P:AProp):
    +  (ex P)<-> P (epsilon a P).
    + +
    +Ltac epsilon_elim_aux :=
    +  match goal with [ |- (?P (epsilon (A:=?X) ?a ?Q))] ⇒
    +           apply epsilon_ind; auto
    +  end.
    + +
    +Ltac epsilon_elim := epsilon_elim_aux ||
    +  match goal with
    +  [ |- (?P (?k ?d))] ⇒
    +   (let v := eval cbv zeta beta delta [k] in (k d) in
    +     (match v with (epsilon ?w ?d) ⇒ change (P v); epsilon_elim_aux end))
    +  | [ |- (?P (?k ?arg ?arg1))] ⇒
    +   (let v := eval cbv zeta beta delta [k] in (k arg arg1) in
    +     (match v with (epsilon ?w ?d) ⇒ change (P v); epsilon_elim_aux end))
    +  | [ |- (?P ?k)] ⇒
    +   (let v := eval cbv zeta beta delta [k] in k in
    +     (match v with (epsilon ?w ?d) ⇒ change (P v); epsilon_elim_aux end))
    +  end.
    + +
    +Section On_Iota.
    +  Variables (A:Type)(P: A Prop).
    +  Hypothesis inhA : inhabited A.
    +  Hypothesis unique_P : ! x, P x.
    + +
    +  Lemma iota_spec_1 : unique P (iota inhA P).
    + +
    +  Lemma iota_eq : a, P a a = iota inhA P.
    + +
    +  Lemma iota_ind (Q:A Prop) :
    +    ( a, unique P a Q a) Q (iota inhA P).
    + +
    +End On_Iota.
    + +
    +Ltac iota_elim :=
    +  match goal with |- context c [(iota ?b ?P)] ⇒
    +  apply iota_ind end.
    + +
    + +
    +Class InH (A: Type) : Prop :=
    +   InHWit : inhabited A.
    + +
    +Definition some {A:Type} {H : InH A} (P: A Prop)
    +  := epsilon (@InHWit A H) P.
    + +
    +Definition the {A:Type} {H : InH A} (P: A Prop)
    +  := iota (@InHWit A H) P.
    + +
    +#[ global ] Instance inhNat : InH nat.
    +Qed.
    + +
    +
    + +
    +A small example +
    +
    + +
    + +
    +Definition some_pos := some (fun i ⇒ 0 < i).
    + +
    +Example Ex1 : 1 some_pos.
    +    unfold some_pos, some; epsilon_elim.
    +     42; auto with arith.
    +Qed.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Schutte.Ordering_Functions.html b/theories/html/hydras.Schutte.Ordering_Functions.html new file mode 100644 index 00000000..a47f2e13 --- /dev/null +++ b/theories/html/hydras.Schutte.Ordering_Functions.html @@ -0,0 +1,519 @@ + + + + + +hydras.Schutte.Ordering_Functions + + + + +
    + + + +
    + +

    Library hydras.Schutte.Ordering_Functions

    + +
    +
    + +
    +Ordering functions (after Schutte) +
    + + Pierre Casteran, LaBRI, University of Bordeaux + +
    + +Every subset A of Ord can be enumerated in an unique way + by a segment of Ord. + +
    + +Thus it makes sense to consider the alpha-th element of A + +
    + +This module shows the construction of the ordering function of A, following +Schutte's definitions. + +
    + + +
    +
    + +
    +From ZornsLemma Require Import CountableTypes.
    +From hydras Require Export Schutte_basics.
    +Import Ensembles Well_Orders Countable PartialFun.
    +Import Classical MoreEpsilonIota Epsilon.
    + +
    +Set Implicit Arguments.
    + +
    +
    + +
    +

    Main definitions

    + +
    +
    + +
    + +
    +Definition segment (A: Ensemble Ord) :=
    +   alpha beta, In A alpha beta < alpha In A beta.
    + +
    +Definition proper_segment (A: Ensemble Ord) :=
    +  segment A ¬ Same_set A ordinal.
    + +
    + +
    + +
    +Class ordering_function (f : Ord Ord)
    +           (A B : Ensemble Ord) : Prop :=
    +  Build_OF {
    +      OF_segment : segment A;
    +      OF_total : a, In A a In B (f a);
    +      OF_onto : b, In B b a, In A a f a = b;
    +      OF_mono : a b, In A a In A b a < b f a < f b
    +    }.
    + +
    +Definition ordering_segment (A B : Ensemble Ord) :=
    +   f : Ord Ord, ordering_function f A B.
    + +
    + +
    + +
    +Definition the_ordering_segment (B : Ensemble Ord) :=
    +  the (fun xordering_segment x B).
    + +
    +Definition ord (B : Ensemble Ord) :=
    +  some (fun fordering_function f (the_ordering_segment B) B).
    + +
    +Definition proper_segment_of (B : Ensemble Ord)(beta : Ord): Ensemble Ord :=
    +  fun alphaIn B alpha alpha < beta In B beta.
    + +
    +Definition normal (f : Ord Ord)(B : Ensemble Ord): Prop :=
    ordering_function f ordinal B continuous f ordinal B.
    + +
    +Definition fun_equiv (f g : Ord Ord)(A B : Ensemble Ord) :=
    +  Same_set A B a, In A a f a = g a.
    + +
    +
    + +
    +

    Properties of segments

    + +
    +
    + +
    +Lemma ordinal_segment : segment ordinal.
    + +
    +Lemma members_proper (alpha : Ord) :
    +  proper_segment (members alpha).
    + +
    +Lemma proper_members (A: Ensemble Ord) (H : proper_segment A) :
    +    a: Ord, Same_set A (members a).
    + +
    +Lemma countable_segment_proper : A : Ensemble Ord,
    +           segment A Countable A proper_segment A.
    + +
    +Lemma ordering_function_In f A B a :
    +   ordering_function f A B In A a In B (f a).
    + +
    +Lemma ordering_function_mono (f : Ord Ord) (A B: Ensemble Ord) :
    +  ordering_function f A B
    +   alpha beta,
    +    In A alpha In A beta alpha < beta f alpha < f beta.
    + +
    +#[global] Hint Resolve ordering_function_mono : schutte.
    + +
    +Lemma ordering_function_mono_weak (f : Ord Ord) (A B: Ensemble Ord) :
    ordering_function f A B
    +    a b, In A a In A b a b f a f b.
    + +
    +#[global] Hint Resolve ordering_function_mono_weak : schutte.
    + +
    +Lemma ordering_function_monoR : f A B, ordering_function f A B
    +    a b, In A a In A b f a < f b a < b.
    + +
    +#[global] Hint Resolve ordering_function_monoR : schutte.
    + +
    +Lemma Ordering_bijection : f A B, ordering_function f A B
    +                                         fun_bijection A B f.
    + +
    +Lemma ordering_function_mono_weakR :
    +   f A B, ordering_function f A B
    +                 a b, In A a In A b f a f b a b.
    + +
    +#[global] Hint Resolve ordering_function_mono_weakR : schutte.
    + +
    +Lemma ordering_function_seg : A B, ordering_segment A B
    +                                          segment A.
    + +
    +Lemma empty_ordering : B, ( b, ¬ B b)
    +                                 ordering_function (fun oo)
    +                                                   (members zero)
    +                                                   B.
    + +
    +Lemma segment_lt : A a b, segment A A a b < a A b.
    + +
    +Theorem segment_unbounded : A:Ensemble Ord, segment A
    +                                        Unbounded A
    +                                        A = ordinal.
    + +
    + +
    + +
    +Theorem ordering_le : f A B,
    +    ordering_function f A B
    +     alpha, In A alpha alpha f alpha. +
    + +
    +Section ordering_function_unicity.
    + +
    Variables B A1 A2 : Ensemble Ord.
    + +
    Variables f1 f2 : Ord Ord.
    Hypothesis O1 : ordering_function f1 A1 B.
    Hypothesis O2 : ordering_function f2 A2 B.
    + +
    + +
    +Theorem ordering_function_unicity : fun_equiv f1 f2 A1 A2.
    + +
    +End ordering_function_unicity.
    + +
    +Lemma ordering_function_seg_unicity : A1 A2 B,
    +           ordering_segment A1 B
    +           ordering_segment A2 B A1 = A2.
    + +
    +
    + +
    +Let us build now an ordering function, and the associated ordering segment + of any subset B composed of ordinals +
    +
    + +
    +Lemma proper_of_proper : B beta beta',
    +                           ordinal beta In B beta
    +                           In (proper_segment_of B beta) beta'
    +                           proper_segment_of B beta' =
    +                           proper_segment_of (proper_segment_of B beta) beta'.
    + +
    +Section building_ordering_function_1.
    Variable B : Ensemble Ord.
    + +
    Hypothesis H_B : beta, In B beta
    +                               ! A : Ensemble Ord,
    +                                    ordering_segment A
    +                                             (proper_segment_of B beta).
    + +
    Section beta_fixed.
    + +
    Variable beta : Ord.
    Hypothesis beta_B : In B beta.
    + +
    +
    + +
    +Let us build an ordering function for (proper_segment_of B beta) +
    +
    + +
    Definition _A := the (fun E
    +                          ordering_segment E (proper_segment_of B beta)).
    + +
    Definition _f := some (fun f
    +                           ordering_function f _A
    +                                             (proper_segment_of B beta)).
    + +
    Lemma of_beta' : ordering_function _f _A (proper_segment_of B beta).
    + +
    Remark Bbeta_denum : Countable (proper_segment_of B beta).
    + +
    + #[local] Hint Resolve of_beta': schutte.
    + +
    +Remark A_denum : Countable _A.
    + +
    +Lemma Proper_A : proper_segment _A.
    + +
    +Lemma g_def1 : g_beta: Ord, ordinal g_beta _A = members g_beta.
    + +
    +Lemma g_unic : g_beta g_beta', ordinal g_beta
    +                                      ordinal g_beta'
    +                                      _A = members g_beta
    +                                      _A = members g_beta'
    +                                      g_beta = g_beta'.
    + +
    +Definition g := iota inh_Ord (fun oordinal o _A = members o).
    + +
    +End beta_fixed.
    + +
    +Lemma g_def : beta, In B beta _A beta = members (g beta ).
    + +
    +Lemma g_lemma :
    +   beta, In B beta
    +       ordering_function (_f beta) (members (g beta))
    +                                       (proper_segment_of B beta).
    + +
    +Lemma g_mono : beta1 beta2, In B beta1 In B beta2
    +                                   beta1 < beta2
    +                                   g beta1 < g beta2.
    + +
    +Lemma L3a : segment (image B g).
    + +
    Lemma g_bij : fun_bijection B (image B g) g.
    + +
    + #[local] Hint Resolve g_bij : schutte.
    + +
    +Let g_1 := inv_fun inh_Ord B (image B g) g.
    + +
    +Lemma g_1_bij : fun_bijection (image B g) B g_1.
    + +
    +#[local] Hint Resolve g_1_bij : schutte.
    + +
    +Lemma g_1_of : ordering_function g_1 (image B g) B.
    + +
    +Lemma image_B_g_seg : ordering_segment (image B g) B.
    + +
    +
    + +
    +Corresponds to Lemma 3 of Schutte's chapter : + It is used twice in the building of ordering function for any subset B of ordinal +
    + + +
    +For any set B, we build by transfinite induction the ordering segment of + B and the (unique upto extensionnality) ordering function of B + +
    +
    + +
    +Section building_ordering_function_by_induction.
    + +
    Variable B : Ensemble Ord.
    + +
    Lemma ordering_segments_of_B (beta : Ord) :
    +  In B beta
    +  ! A : Ensemble Ord,
    +    ordering_segment A (proper_segment_of B beta).
    + +
    Theorem ordering_segment_ex_unique : ! S, ordering_segment S B.
    + +
    +Theorem ordering_function_ex : ! S, f, ordering_function f S B.
    + +
    +Lemma ord_ok :
    +  ordering_function (ord B) (the_ordering_segment B) B.
    + +
    +Lemma segment_the_ordering_segment :
    +  segment (the_ordering_segment B).
    + +
    +Lemma ord_eq (A : Ensemble Ord) (f : Ord Ord) :
    +  ordering_function f A B
    +  fun_equiv f (ord B) A (the_ordering_segment B).
    + +
    +End building_ordering_function_by_induction.
    + +
    + +
    +About ordering_function_ex.
    +About ordering_function_unicity.
    + +
    + +
    +Lemma of_image : f A B, ordering_function f A B
    +                               ordering_function f A (image A f).
    + +
    +Section Th13_5.
    Variables (A B : Ensemble Ord).
    Variable f : Ord Ord.
    Hypothesis f_ord : ordering_function f A B.
    + +
    Section recto.
    + +
    Hypothesis f_cont : continuous f A B.
    + +
    Lemma Th_13_5_1 : Closed B.
    + +
    +End recto.
    + +
    +Section verso.
    Hypothesis B_closed : Closed B.
    + +
    + +
    Lemma Th_13_5_2 : continuous f A B.
    + +
    +End verso.
    + +
    +End Th13_5.
    + +
    +Theorem TH_13_6 (B : Ensemble Ord)(f : Ord Ord) :
    +  normal f B Closed B Unbounded B.
    + +
    +Lemma ordering_unbounded_unbounded :
    +   A B f, ordering_function f A B
    +                 (Unbounded B Unbounded A).
    + +
    +Theorem TH_13_6R (A B : Ensemble Ord) (f : Ord Ord) :
    +  ordering_function f A B
    +  Closed B Unbounded B normal f B.
    + +
    +
    + +
    +If f is the ordering function of B, then f 0 is the least element of + B +
    +
    + +
    +Lemma ordering_function_least_least :
    B f , ordering_function f ordinal B
    +     least_member lt B (f zero).
    + +
    +Lemma segment_lt_closed : A a b, segment A
    +                                          In A b
    +                                          a < b
    +                                          In A a.
    + +
    +Lemma th_In A alpha : In (the_ordering_segment A) alpha
    +                             In A (ord A alpha).
    + +
    + +
    + +
    +About Th_13_5_2.
    + +
    + +
    +Arguments ord : clear implicits.
    +Arguments the_ordering_segment : clear implicits.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Schutte.PartialFun.html b/theories/html/hydras.Schutte.PartialFun.html new file mode 100644 index 00000000..5d302635 --- /dev/null +++ b/theories/html/hydras.Schutte.PartialFun.html @@ -0,0 +1,266 @@ + + + + + +hydras.Schutte.PartialFun + + + + +
    + + + +
    + +

    Library hydras.Schutte.PartialFun

    + +
    + +
    +
    + +
    +

    Partial functions

    + +
    + + Pierre Casteran, Univ. Bordeaux and LaBRI +
    + + We study the relationship between two representations of partial + functions : relational presentation, and with the iota description operator +
    +
    + +
    +From Coq Require Import ClassicalDescription Ensembles Image
    +  ProofIrrelevance.
    +Import ProofIrrelevanceFacts.
    +From ZornsLemma Require Import EnsemblesImplicit FunctionProperties ImageImplicit.
    +From hydras Require Import MoreEpsilonIota.
    + +
    +Set Implicit Arguments.
    + +
    +Section AB_given.
    +  Variables (A B : Type)
    +            (Ha : inhabited A)
    +            (Hb:inhabited B)
    +            (DA: Ensemble A)
    +            (DB : Ensemble B).
    + +
    +
    + +
    +

    Transformation of a functional relation into a function

    + +
    +
    + +
    +Definition iota_fun (R:AB Prop) : A B :=
    +  fun aiota Hb (fun b':BIn DA a R a b' In DB b').
    + +
    +Lemma iota_fun_e (R:AB Prop):
    +   (a:A), In DA a
    +   ( ! b, R a b In DB b)
    +   unique (fun b ⇒ (R a b In DB b)) (iota_fun R a).
    + +
    +Lemma iota_fun_ind (P:A Prop)
    +      (Q R:AB Prop):
    +   (a x:A), In DA a a = x
    +   ( ! b, R a b In DB b)
    +   P a
    +   ( b, unique (fun bR a b In DB b) b Q a b)
    +   Q x (iota_fun R a).
    + +
    +Section f_given.
    + +
    +  Variable f : A B.
    + +
    +
    + +
    +relational representation +
    +
    + +
    +  Variable Rf : A B Prop.
    + +
    +
    + +
    +abstract properties of a function (relational representation ) +
    +
    + +
    +  Definition rel_domain := a, In DA a b, Rf a b .
    +  Definition rel_codomain := a b, In DA a Rf a b In DB b.
    +  Definition rel_functional := a b b', In DA a
    +                              Rf a b Rf a b' b = b'.
    +  Definition rel_onto := b, In DB b a, In DA a Rf a b.
    +  Definition rel_inj := a a' b, In DA a
    +                                       In DA a'
    +                                       Rf a b
    +                                       Rf a' b
    +                                       a = a'.
    + +
    +  Inductive rel_injection : Prop :=
    +   rel_inj_i : rel_domain rel_codomain
    +        rel_functional
    +        rel_inj
    +        rel_injection.
    + +
    +  Inductive rel_bijection : Prop :=
    +   rel_bij_i : rel_domain rel_codomain
    +        rel_functional
    +        rel_onto
    +        rel_inj
    +        rel_bijection.
    + +
    +
    + +
    +Abstract properties of f: A->B (wrt. domain DA and codomain DB +
    +
    + +
    +  Definition fun_codomain := a, In DA a In DB (f a).
    +  Definition fun_onto := b, In DB b a, In DA a f a = b.
    +  Definition fun_inj := a a' , In DA a In DA a' f a = f a'
    +                 a = a'.
    + +
    +  Definition image := fun b a, In DA a f a = b.
    + +
    +  Inductive fun_injection : Prop :=
    +   fun_inj_i : fun_codomain
    +                            fun_inj fun_injection.
    + +
    +  Inductive fun_bijection : Prop :=
    +   fun_bij_i : fun_codomain fun_onto
    +                            fun_inj fun_bijection.
    + +
    +  Definition rel_inv := fun b aIn DA a In DB b Rf a b.
    + +
    +End f_given.
    + +
    +
    + +
    +Conversion from a relational definition : A->B->Prop into a partial + function of type A->B +
    +
    + +
    Section rel_to_fun.
    + +
    Variables
    +           (Rf : A B Prop).
    + +
    Definition r2i := iota_fun Rf.
    + +
    +End rel_to_fun.
    +End AB_given.
    + +
    +Section inversion_of_bijection.
    +  Variables (A B : Type)
    +           (inhA : inhabited A)
    +           (DA : Ensemble A)
    +           (DB : Ensemble B)
    +           (f : A B).
    + +
    Let inv_spec := fun y xIn DA x In DB y f x = y.
    + +
    Definition inv_fun := r2i inhA DB DA inv_spec.
    + +
    Hypothesis f_b : fun_bijection DA DB f.
    + +
    +Lemma inv_compose :
    +   x, DA x inv_fun (f x) = x.
    + +
    +Lemma inv_composeR : b, DB b f (inv_fun b) = b.
    + +
    +Lemma inv_fun_bij : fun_bijection DB DA inv_fun.
    + +
    +End inversion_of_bijection.
    + +
    +Lemma image_as_Im {A B : Type} (U : Ensemble A) (f : A B) :
    +  image U f = Im U f.
    + +
    +
    + +
    +convert a fun_bijection to a bijection in the sense of the + ZornsLemma library. +
    +
    +Definition fun_restr {U V : Type} (f : U V)
    +  {A : Ensemble U} {B : Ensemble V}
    +  (Hf : fun_codomain A B f) :
    +  { x : U | In A x } { y : V | In B y } :=
    +  fun p : { x : U | In A x }
    +    exist (fun y : VIn B y)
    +      (f (proj1_sig p))
    +      (Hf (proj1_sig p) (proj2_sig p)).
    + +
    +Lemma fun_bijection_codomain
    +  {U V : Type} {A : Ensemble U} {B : Ensemble V}
    +  (g : U V) (g_bij : fun_bijection A B g) :
    +  fun_codomain A B g.
    + +
    +Lemma fun_bijection_is_ZL_bijection
    +  {U V : Type} {A : Ensemble U} {B : Ensemble V}
    +  (g : U V) (g_bij : fun_bijection A B g) :
    +  FunctionProperties.bijective
    +    (fun_restr (fun_bijection_codomain g_bij)).
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Schutte.Schutte.html b/theories/html/hydras.Schutte.Schutte.html new file mode 100644 index 00000000..83938974 --- /dev/null +++ b/theories/html/hydras.Schutte.Schutte.html @@ -0,0 +1,162 @@ + + + + + +hydras.Schutte.Schutte + + + + +
    + + + +
    + +

    Library hydras.Schutte.Schutte

    + +
    + +
    +
    + +
    + +
    + + Axiomatic definition of countable ordinal numbers (after Kurt Schutte's + "Proof Theory" + +
    + + Pierre Casteran (LaBRI, University of Bordeaux) + with contributions by Florian Hatat (formerly student at ENS Lyon) + +
    + + +
    +
    + +
    +From hydras Require Export Schutte_basics Ordering_Functions
    +        Addition AP CNF Critical Correctness_E0.
    + +
    +
    + +
    +

    Warning

    + + +
    + +This directory contains an adaptation to Coq of the mathematical +presentation of the set of countable ordinal numbers by K. Schutte. + +
    + +In order to respect as most as possible the style of that presentation, +we chosed to work in classical logic augmented by Hilbert's [epsilon] +operator. + +
    + +So, all the construction herein is powered by six axioms, three of them are +Schutte's axioms, and the other ones allow us to work in that "classical" framework, still using the Coq proof assistant and its libraries. + +
    + +

    Schutte's Axioms

    + + +
    + + We consider a type ON (Ordinal numbers), well-ordered by some relation + lt, and such that every subset X of Ord is countable iff X is bounded. + +
    + +
    +
    +Axiom AX1 : WO lt.
    +
    +Axiom AX2 : X: Ensemble Ord, ( a, ( y, X yy < a)) →
    +                                   countable X.
    +
    +
    +Axiom AX3 : X : Ensemble Ord,
    +              countable X
    +               a, y, X yy < a.
    + +
    + +
    +
    + +

    Classical logic and Hilbert style

    + + +
    + +

    From Coq.Logic.Classical

    + + +
    + +
    +Axiom classic : P:Prop, P ∨ ¬ P. +
    + +
    +
    + +

    From Coq.Logic.Epsilon

    + + +
    + +
    +
    +Axiom epsilon_statement :
    +   (A : Type) (P : AProp), inhabited A
    +    { x : A | ( x, P x) → P x }.
    + +
    + +
    +
    + +

    Needed for epsilon to work properly.

    + + +
    + +
    +Axiom inh_Ord : inhabited Ord.
    + +
    + +
    +
    +
    +Example Ex42: omega + 42 + omega^2 = omega^2.
    +  Check AP_plus_closed. +
    +Qed.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Schutte.Schutte_basics.html b/theories/html/hydras.Schutte.Schutte_basics.html new file mode 100644 index 00000000..bf27873b --- /dev/null +++ b/theories/html/hydras.Schutte.Schutte_basics.html @@ -0,0 +1,824 @@ + + + + + +hydras.Schutte.Schutte_basics + + + + +
    + + + +
    + +

    Library hydras.Schutte.Schutte_basics

    + +
    + +
    +
    + +
    + Ordinals of the first and second class, + After Kurt Schuttes book : Proof theory + +
    + + +
    + + Pierre Casteran, Univ. Bordeaux and LaBRI +
    +
    + +
    +From Coq Require Import Relations Classical Classical_sets.
    +From ZornsLemma Require Import CountableTypes.
    +From hydras Require Import Well_Orders Lub Countable.
    + +
    +Import Compare_dec Coq.Sets.Image PartialFun MoreEpsilonIota.
    + +
    +Declare Scope schutte_scope.
    + +
    +Set Implicit Arguments.
    + +
    +#[global] Hint Unfold In : schutte.
    + +
    +Delimit Scope schutte_scope with sch.
    +Open Scope schutte_scope.
    + +
    +
    + +
    +

    Definitions

    + +
    + + The type of countable ordinal numbers +
    +
    + +
    + +
    +Parameter Ord : Type.
    +Parameter lt : relation Ord.
    +Infix "<" := lt : schutte_scope.
    + +
    +Notation ordinal := (@Full_set Ord).
    +Definition big0 alpha : Ensemble Ord := fun betabeta < alpha.
    + +
    + +
    + +
    +#[global] Hint Resolve ordinal_ok : schutte.
    + +
    +
    + +
    +

    The three axioms by Schutte

    + +
    + + First Schutte's axiom : Ord is well-ordered wrt lt +
    +
    + +
    + +
    +Axiom AX1 : WO lt.
    + +
    +#[global] Hint Resolve AX1 : schutte.
    + +
    +#[global] Instance WO_ord : WO lt := AX1.
    + +
    +
    + +
    +Stuff for using Coq.Logic.Epsilon +
    +
    + +
    +Axiom inh_Ord : inhabited Ord.
    + +
    +#[ global ] Instance InH_Ord : InH Ord. +
    +#[ global ] Instance Inh_OSets : InH (Ensemble Ord).
    + +
    +#[ global ] Instance Inh_Ord_Ord : InH (Ord Ord).
    + +
    +#[global] Hint Resolve AX1 Inh_Ord_Ord Inh_OSets inh_Ord : schutte.
    + +
    +Definition le := Le lt.
    + +
    +Infix "≤" := le : schutte_scope.
    + +
    +
    + +
    +Second and third axioms from Schutte + +
    + +A subset X of Ord is bounded iff X is countable +
    +
    + +
    + +
    +Axiom AX2 :
    +   X: Ensemble Ord,
    +    ( a, ( y, In X y y < a))
    +    Countable X.
    + +
    +Axiom AX3 :
    +   X : Ensemble Ord,
    +    Countable X
    +     a, y, In X y y < a.
    + +
    + +
    +
    + +
    +

    First definitions

    + + +
    +
    + +
    +Definition ge alpha : Ensemble Ord := fun betaalpha beta.
    + +
    +Definition Unbounded (X : Ensemble Ord) :=
    +   x: Ord, y, In X y x < y.
    + +
    + +
    +Definition zero := the_least ordinal.
    + +
    + +
    +Definition succ (alpha : Ord)
    +  := the_least (fun betaalpha < beta).
    + +
    + +
    +
    + +
    +Finite ordinals +
    +
    + +
    + +
    +Fixpoint finite (i:nat) : Ord :=
    +  match i with 0 ⇒ zero
    +            | S isucc (finite i)
    +  end.
    + +
    +Notation F i := (finite i).
    + +
    +Coercion finite : nat >-> Ord.
    + +
    + +
    +Definition is_finite := seq_range finite.
    + +
    +
    + +
    +

    Limits

    + +
    +
    + +
    + +
    +Definition sup_spec X lambda := is_lub ordinal lt X lambda.
    + +
    +Definition sup (X: Ensemble Ord) : Ord := the (sup_spec X).
    + +
    +Notation "'|_|' X" := (sup X) (at level 29) : schutte_scope.
    + +
    + +
    +
    + +
    + Limit of omega-sequences +
    +
    + +
    + +
    +Definition omega_limit (s:natOrd) : Ord
    +  := |_| (seq_range s).
    + +
    +Definition _omega := omega_limit finite.
    + +
    +Notation omega := (_omega).
    + +
    + +
    +
    + +
    +Successor and limit ordinals +
    +
    + +
    +Definition is_succ (alpha:Ord)
    +  := beta, alpha = succ beta.
    + +
    +Definition is_limit (alpha:Ord)
    +  := alpha zero ¬ is_succ alpha.
    + +
    +
    + +
    +Ordinals considered as sets +
    +
    + +
    +Definition members (a:Ord) := (fun bb < a).
    + +
    +Definition set_eq (X Y: Ord Prop) := a, (X a Y a).
    + +
    +
    + +
    +Induction (after Schutte) +
    +
    + +
    +Definition progressive (P : Ord Prop) : Prop :=
    +   a, ( b, b < a P b) P a.
    + +
    + +
    +Definition Closed (B : Ensemble Ord) : Prop :=
    +   M, Included M B Inhabited M Countable M
    +                            In B (|_| M).
    + +
    + +
    +Definition continuous (f:OrdOrd)(A B : Ensemble Ord) : Prop :=
    +  fun_codomain A B f
    +  Closed A
    +  ( U, Included U A Inhabited U
    +             Countable U |_| (image U f) = f (|_| U)).
    + +
    +
    + +
    +

    Basic properties

    + + +
    + + +
    +
    + +
    +Lemma Unbounded_not_countable (X: Ensemble Ord) :
    +    Unbounded X not (Countable X).
    + +
    +Lemma countable_not_Unbounded : X,
    +    Countable X not (Unbounded X).
    + +
    +Lemma Progressive_Acc: progressive (Acc lt).
    + +
    +Theorem transfinite_induction (P: OrdProp) : progressive P
    +                                  a, P a.
    + +
    +
    + +
    +

    Properties of le and lt

    + +
    +
    + +
    +Lemma le_refl : alpha, alpha alpha.
    + +
    +#[global] Hint Resolve le_refl : schutte.
    + +
    +Lemma eq_le : a b : Ord, a = b a b.
    + +
    +Lemma lt_le : a b: Ord, a < b a b.
    + +
    +Lemma lt_trans : a b c : Ord, a < b b < c a < c.
    + +
    +Lemma le_lt_trans : a b c, a b b < c a < c.
    + +
    +Lemma lt_le_trans : a b c, a < b b c a < c.
    + +
    +Lemma le_trans : a b c, a b b c a c.
    + +
    +Lemma lt_irrefl : a, ¬ (a < a).
    + +
    +Lemma le_antisym : a b, a b b a a = b.
    + +
    +Lemma le_eq_or_lt : a b, a b a = b a < b.
    + +
    +Lemma le_not_gt : a b, a b ¬ b < a.
    + +
    +#[global] Hint Resolve eq_le lt_le lt_trans le_trans le_lt_trans
    +     lt_le_trans lt_irrefl le_not_gt:
    +  schutte.
    + +
    +Lemma le_disj : alpha beta, alpha beta
    +                                   alpha = beta alpha < beta.
    + +
    +Lemma all_ord_acc : alpha : Ord, Acc lt alpha.
    + +
    +Lemma trichotomy : a b : Ord ,
    +                               a < b a = b b < a.
    + +
    + +
    +Lemma lt_or_ge : a b: Ord, a < b b a.
    + +
    +Lemma not_gt_le : a b, ¬ b < a a b.
    + +
    +#[global] Hint Unfold Included : schutte.
    + +
    +
    + +
    +

    Global properties

    + +
    +
    + +
    +Theorem Non_denum : ¬ Countable ordinal.
    + +
    +Lemma Inh_ord : Inhabited ordinal.
    + +
    +Theorem unbounded : alpha, beta, alpha < beta.
    + +
    +Lemma the_least_ok : X : Ensemble Ord,
    +    Inhabited X a, In X a the_least X a.
    + +
    +
    + +
    +

    About zero

    + +
    +
    + +
    + +
    +Lemma zero_le (alpha : Ord) : zero alpha. +
    + +
    +Lemma not_lt_zero : alpha, ¬ alpha < zero.
    + +
    +Lemma zero_or_greater : alpha : Ord,
    +    alpha = zero beta, beta < alpha.
    + +
    +Lemma zero_or_positive : alpha, alpha = zero zero < alpha.
    + +
    +
    + +
    +

    Properties of successor

    + +
    +
    + +
    + +
    +Definition succ_spec (alpha:Ord) :=
    +  least_member lt (fun zalpha < z).
    + +
    + +
    +Lemma succ_ok :
    +   alpha, succ_spec alpha (succ alpha). +
    + +
    + +
    +Lemma lt_succ (alpha : Ord): alpha < succ alpha.
    + +
    +#[global] Hint Resolve lt_succ : schutte. +
    +Lemma lt_succ_le (alpha beta : Ord):
    +  alpha < beta succ alpha beta.
    + +
    +Lemma lt_succ_le_2 (alpha beta : Ord):
    +  alpha < succ beta alpha beta. +
    +Lemma succ_mono (alpha beta : Ord):
    +  alpha < beta succ alpha < succ beta. +
    +Arguments succ_mono [ alpha beta].
    + +
    +Lemma succ_monoR (alpha beta : Ord) :
    succ alpha < succ beta alpha < beta. +
    +Lemma succ_injection (alpha beta : Ord) :
    +  succ alpha = succ beta alpha = beta. +
    +Lemma succ_zero_diff (alpha : Ord): succ alpha zero. +
    +Lemma zero_lt_succ : alpha, zero < succ alpha. +
    +Lemma lt_succ_lt (alpha beta : Ord) :
    +  is_limit beta alpha < beta succ alpha < beta. +
    + +
    +#[global] Hint Resolve zero_lt_succ zero_le : schutte.
    + +
    +
    + +
    +Less than finite is finite ... +
    +
    + +
    +Lemma finite_lt_inv : i o,
    +    o < F i
    +     j:nat , (j<i)%nat o = F j.
    + +
    +Lemma finite_mono : i j, (i<j)%nat F i < F j.
    + +
    +#[global] Hint Resolve finite_mono : schutte.
    + +
    +Lemma finite_inj : i j, F i = F j i = j.
    + +
    +
    + +
    +

    Building limits

    + +
    +
    + +
    +Lemma sup_exists : X, Countable X
    +                             ex (sup_spec X).
    + +
    +Lemma sup_unicity : X l l',
    +                      (Countable X x, X x ordinal x)
    +                      sup_spec X l sup_spec X l' l = l'.
    + +
    +Lemma sup_spec_unicity (X:Ensemble Ord) (HX : Countable X) :
    +  ! u, sup_spec X u.
    + +
    +Lemma sup_ok1 (X: Ensemble Ord)(HX : Countable X) :
    +  sup_spec X (sup X).
    + +
    +Lemma sup_upper_bound (X : Ensemble Ord) (alpha : Ord):
    +  Countable X In X alpha alpha |_| X.
    + +
    +Lemma sup_least_upper_bound (X : Ensemble Ord) (alpha : Ord) :
    +  Countable X ( y, In X y y alpha) sup X alpha.
    + +
    +Lemma sup_of_leq (alpha : Ord) :
    +    alpha = |_| (fun x : Ordx alpha).
    + +
    +Lemma sup_mono (X Y : Ensemble Ord) :
    +    Countable X
    +    Countable Y
    +    ( x, In X x y, In Y y x y)
    +|_| X |_| Y.
    + +
    +Lemma sup_eq_intro (X Y : Ensemble Ord):
    +  Countable X Countable Y
    +  Included X Y Included Y X
    +|_| X = |_| Y.
    + +
    +Lemma lt_sup_exists_leq (X: Ensemble Ord) :
    +  Countable X
    +   y, y < sup X
    +             x, In X x y x.
    + +
    +Lemma lt_sup_exists_lt (X : Ensemble Ord) :
    +  Countable X
    +   y, y < sup X x, In X x y < x.
    + +
    +Lemma members_eq (alpha beta : Ord) :
    +  members alpha = members beta alpha = beta.
    + +
    +Lemma sup_members_succ (alpha : Ord) :
    +  sup (members alpha) < alpha alpha = succ (|_| (members alpha)).
    + +
    +Lemma sup_members_not_succ (alpha beta : Ord) :
    +  alpha = sup (members alpha) alpha succ beta.
    + +
    +
    + +
    +

    Sequences of ordinals

    + +
    +
    + +
    +Definition seq_mono (s:nat Ord) :=
    +   i j, (i < j)%nat s i < s j.
    + +
    +Lemma seq_mono_intro (s: nat Ord) :
    +  ( i, s i < s (S i)) seq_mono s.
    + +
    +Lemma seq_mono_inj (s : nat Ord) :
    +  seq_mono s injective s.
    + +
    +#[global] Hint Resolve Countable.seq_range_countable seq_mono_intro : schutte.
    + +
    +#[global] Hint Constructors Full_set: core.
    + +
    +Lemma lt_omega_limit (s : nat Ord) :
    +  seq_mono s i, s i < omega_limit s.
    + +
    +Lemma omega_limit_least (s : nat Ord) :
    +    seq_mono s
    +     y : Ord,
    +      ( i, s i < y)
    +      omega_limit s y.
    + +
    +Lemma lt_omega_limit_lt_exists_lt (alpha : Ord) (s : nat Ord) :
    +  ( i, s i < s (S i))
    +  alpha < omega_limit s
    +   j, alpha < s j.
    + +
    +Lemma omega_limit_least_gt (alpha : Ord) (s : nat Ord)
    +      (Hmono : i, s i < s (S i))
    +      (H : alpha < omega_limit s) :
    +   i, least_member Peano.lt (fun jalpha < s j) i.
    + +
    +
    + +
    +

    Properties of omega

    + +
    +
    + +
    +Lemma finite_lt_omega (i : nat) : i < omega.
    + +
    +Lemma zero_lt_omega : zero < omega.
    + +
    +Lemma lt_omega_finite (alpha : Ord) :
    +  alpha < omega i:nat, alpha = i.
    + +
    +Lemma is_limit_omega : is_limit omega.
    + +
    +
    + +
    +

    About zero, is_succ and is_limit

    + +
    + + +
    +

    About members

    + +
    +
    + +
    +Lemma countable_members (alpha : Ord): Countable (members alpha).
    + +
    +#[global] Hint Resolve countable_members : schutte.
    + +
    +Lemma le_sup_members (alpha : Ord) : |_| (members alpha) alpha.
    + +
    +Lemma is_limit_sup_members (alpha : Ord) :
    +  is_limit alpha alpha = |_| (members alpha).
    + +
    +Lemma sup_members_disj (alpha : Ord) :
    +  alpha = sup (members alpha)
    +  alpha = zero is_limit alpha.
    + +
    +Theorem classification (alpha : Ord) :
    +  alpha = zero is_succ alpha is_limit alpha.
    + +
    +
    + +
    +

    Extensional equalities on sets of ordinals

    + +
    +
    + +
    +Lemma members_omega : Same_set (members omega) is_finite.
    + +
    +Lemma Not_Unbounded_bounded (X: Ensemble Ord):
    +   ¬ Unbounded X
    +    beta : Ord, x, In X x x < beta.
    + +
    +Lemma Not_Unbounded_countable (X : Ensemble Ord) :
    +  ¬ Unbounded X Countable X.
    + +
    +Lemma not_countable_unbounded (X : Ensemble Ord):
    +    ¬ Countable X Unbounded X.
    + +
    +Lemma le_alpha_zero (alpha : Ord) :
    +  alpha zero alpha = zero.
    + +
    +Lemma finite_not_limit (i: nat): ¬ is_limit i.
    + +
    + +
    +Definition zero: Ord := iota inh_Ord (least_member lt ordinal).
    + +
    +Lemma zero_le (alpha : Ord) : zero alpha.
    + +
    +Module Bad.
    + +
    +  Definition bottom := the_least Empty_set.
    + +
    +  Lemma le_zero_bottom : zero bottom.
    + +
    +  Lemma bottom_eq : bottom = bottom.
    + +
    +  Lemma le_bottom_zero : bottom zero. +
    +End Bad.
    + +
    +End iota_demo.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.Schutte.Well_Orders.html b/theories/html/hydras.Schutte.Well_Orders.html new file mode 100644 index 00000000..a6e6bbb2 --- /dev/null +++ b/theories/html/hydras.Schutte.Well_Orders.html @@ -0,0 +1,173 @@ + + + + + +hydras.Schutte.Well_Orders + + + + +
    + + + +
    + +

    Library hydras.Schutte.Well_Orders

    + +
    +
    + +
    + Well ordered sets (after Schutte) +
    + + Pierre Casteran LaBRI, Universite de Bordeaux +
    +
    + +
    +From Coq Require Import Relations Classical Classical_sets RelationClasses
    +     Wf_nat.
    + +
    +From hydras Require Import PartialFun.
    +Import MoreEpsilonIota.
    + +
    +Arguments In [U].
    +Arguments Included [U].
    + +
    +Set Implicit Arguments.
    +#[global] Hint Unfold In : core.
    + +
    +Section the_context.
    + +
    +  Variables (M:Type)
    +            (Lt : relation M).
    + +
    +  Definition Le (a b:M) := a = b Lt a b.
    + +
    +  Definition least_member (X:Ensemble M) (a:M) :=
    +    In X a x, In X x Le a x.
    + +
    +  Definition least_fixpoint (f : M M) (x:M) :=
    +    f x = x y: M, f y = y Le x y.
    + +
    +
    + +
    +Well Ordering +
    +
    + +
    +  Class WO : Type:=
    +    {
    +    Lt_trans : Transitive Lt;
    +    Lt_irreflexive : a:M, ¬ Lt a a;
    +    well_order : (X:Ensemble M)(a:M),
    +        In X a
    +         a0:M, least_member X a0
    +    }.
    + +
    + +
    +  Section About_WO.
    +    Context (Wo : WO).
    + +
    +    Lemma Lt_connect : a b, Lt a b a = b Lt b a.
    + +
    +    Lemma Le_refl : x:M, Le x x.
    + +
    +    Lemma Le_antisym : a b, Le a b Le b a a = b.
    + +
    +    #[global] Instance Le_trans : Transitive Le.
    + +
    +    Lemma Le_Lt_trans : x y z, Le x y Lt y z Lt x z.
    + +
    +    Lemma Lt_Le_trans : x y z, Lt x y Le y z Lt x z.
    + +
    +    Lemma Lt_not_Gt : x y, Lt x y ¬ Lt y x.
    + +
    +    Lemma least_member_lower_bound : X a,
    +        least_member X a b, In X b Le a b.
    + +
    +    Lemma least_member_glb :
    +       X a,
    +        least_member X a
    +         b, ( c, In X c Le b c)
    +                  Le b a.
    + +
    +    Theorem least_member_unicity : X a b,
    +        least_member X a least_member X b a = b.
    + +
    +    Theorem least_member_ex_unique :
    +       X x
    +               (inhX: In X x),
    +      ! a, least_member X a.
    + +
    +    Theorem least_member_of_eq : (X Y : Ensemble M) a b ,
    +        Included X Y Included Y X
    +        least_member X a
    +        least_member Y b
    +        a = b.
    + +
    +  End About_WO.
    + +
    +End the_context.
    + +
    + +
    +Definition the_least {M: Type} {Lt}
    +           {inh : InH M} {WO: WO Lt} (X: Ensemble M) : M :=
    +  the (least_member Lt X ).
    + +
    + +
    +Lemma the_least_unicity {M: Type} {Lt}
    +       {inh : InH M} {WO: WO Lt} (X: Ensemble M)
    +       (HX: Inhabited X)
    +  : ! l , least_member Lt X l.
    + +
    +#[ global ] Instance WO_nat : WO Peano.lt.
    +Qed.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.rpo.closure.html b/theories/html/hydras.rpo.closure.html new file mode 100644 index 00000000..396d8d09 --- /dev/null +++ b/theories/html/hydras.rpo.closure.html @@ -0,0 +1,73 @@ + + + + + +hydras.rpo.closure + + + + +
    + + + +
    + +

    Library hydras.rpo.closure

    + +
    +
    + +
    + by Evelyne Contejean, LRI +
    +
    + +
    + +
    +Set Implicit Arguments.
    + +
    +From Coq Require Import Relations.
    + +
    +Inductive trans_clos (A : Set) (R : relation A) : relation A:=
    +  | t_step : x y, R x y trans_clos R x y
    +  | t_trans : x y z, R x y trans_clos R y z trans_clos R x z.
    + +
    +Lemma trans_clos_is_trans :
    +   (A :Set) (R : relation A) a b c,
    +  trans_clos R a b trans_clos R b c trans_clos R a c.
    + +
    +Lemma acc_trans :
    (A : Set) (R : relation A) a, Acc R a Acc (trans_clos R) a.
    + +
    +Lemma wf_trans :
    +   (A : Set) (R : relation A) , well_founded R
    +                                      well_founded (trans_clos R).
    + +
    +Lemma inv_trans :
    +   (A : Set) (R : relation A) (P : A Prop),
    +  ( a b, P a R a b P b)
    +   a b, P a trans_clos R a b P b.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.rpo.decidable_set.html b/theories/html/hydras.rpo.decidable_set.html new file mode 100644 index 00000000..fadd9501 --- /dev/null +++ b/theories/html/hydras.rpo.decidable_set.html @@ -0,0 +1,48 @@ + + + + + +hydras.rpo.decidable_set + + + + +
    + + + +
    + +

    Library hydras.rpo.decidable_set

    + +
    +
    + +
    + by Evelyne Contejean +
    +
    + +
    +Module Type S.
    + +
    +Parameter A : Set.
    +Axiom eq_A_dec : a1 a2 : A, {a1 = a2} + {a1 a2}.
    + +
    +End S.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.rpo.dickson.html b/theories/html/hydras.rpo.dickson.html new file mode 100644 index 00000000..149dd566 --- /dev/null +++ b/theories/html/hydras.rpo.dickson.html @@ -0,0 +1,190 @@ + + + + + +hydras.rpo.dickson + + + + +
    + + + +
    + +

    Library hydras.rpo.dickson

    + +
    +
    + +
    + by Evelyne Contejean +
    + +

    Dickson Lemma: the multiset extension of a well-founded ordering is well-founded.

    + + +
    +
    + +
    +Set Implicit Arguments.
    + +
    +From Coq Require Import Relations List Setoid Multiset.
    +From hydras Require Import closure more_list list_permut.
    + +
    +Module Make (DS1 : decidable_set.S).
    + +
    +Module DS := DS1.
    +Module LP := list_permut.Make (DS1).
    +Import LP.
    + +
    +
    + +
    +

    Definition of the multiset extension of a relation.

    + +
    +
    +Inductive multiset_extension_step (R : relation elt) : list elt list elt Prop :=
    +  | rmv_case :
    +      l1 l2 l la a, ( b, In b la R b a)
    +      list_permut l1 (la ++ l) list_permut l2 (a :: l)
    +      multiset_extension_step R l1 l2.
    + +
    +
    + +
    +If n << {a} U m , then + either, there exists n' such that n = {a} U n' and n' << m, + or, there exists k, such that n = k U m, and k << {a}. +
    +
    + +
    +Lemma two_cases :
    R a m n,
    multiset_extension_step R n (a :: m)
    ( n', list_permut n (a :: n')
    +             multiset_extension_step R n' m)
    ( k, ( b, In b k R b a)
    +            list_permut n (k ++ m)).
    + +
    +
    + +
    +multiset_extension_step is compatible with permutation. +
    +
    +Lemma list_permut_multiset_extension_step_1 :
    +   R l1 l2 l, list_permut l1 l2
    +  multiset_extension_step R l1 l multiset_extension_step R l2 l.
    + +
    +Lemma list_permut_multiset_extension_step_2 :
    +   R l1 l2 l, list_permut l1 l2
    +  multiset_extension_step R l l1 multiset_extension_step R l l2.
    + +
    +Lemma context_multiset_extension_step_app1 :
    +   R l1 l2 l, multiset_extension_step R l1 l2
    +                         multiset_extension_step R (l ++ l1) (l ++ l2).
    + +
    +Lemma context_trans_clos_multiset_extension_step_app1 :
    +   R l1 l2 l, trans_clos (multiset_extension_step R) l1 l2
    +                         trans_clos (multiset_extension_step R) (l ++ l1) (l ++ l2).
    + +
    +Lemma context_multiset_extension_step_app2 :
    +   R l1 l2 l, multiset_extension_step R l1 l2
    +                         multiset_extension_step R (l1 ++ l) (l2 ++ l).
    + +
    +Add Parametric Morphism R : (@multiset_extension_step R) with signature (list_permut ==> list_permut ==> iff) as mult_morph.
    + +
    +
    + +
    +

    Accessibility lemmata.

    + +
    +
    +Lemma list_permut_acc :
    +   R l1 l2, list_permut l2 l1
    +  Acc (multiset_extension_step R) l1 Acc (multiset_extension_step R) l2.
    + +
    +Add Parametric Morphism R : (Acc (multiset_extension_step R)) with signature (list_permut ==> iff) as acc_morph.
    + +
    +Lemma dickson_aux1 :
    + (R : relation elt) a,
    ( b, R b a
    +   m, Acc (multiset_extension_step R) m
    +            Acc (multiset_extension_step R) (b :: m))
    m, Acc (multiset_extension_step R) m
    ( m', (multiset_extension_step R) m' m
    +             Acc (multiset_extension_step R) (a :: m'))
    Acc (multiset_extension_step R) (a :: m).
    + +
    +Lemma dickson_aux2 :
    + R m,
    +  Acc (multiset_extension_step R) m
    +   a, ( b, R b a
    +              m, Acc (multiset_extension_step R) m
    +                       Acc (multiset_extension_step R) (b :: m))
    +   Acc (multiset_extension_step R) (a :: m).
    + +
    +Lemma dickson_aux3 :
    + R a, Acc R a m, Acc (multiset_extension_step R) m
    +Acc (multiset_extension_step R) (a :: m).
    + +
    +
    + +
    +Main lemma. +
    +
    +Lemma dickson :
    +   R, well_founded R well_founded (multiset_extension_step R).
    + +
    +Lemma multiset_closure :
    +   R p q, transitive _ R
    +  closure.trans_clos (multiset_extension_step R) p q
    +         p', q', pq,
    +        list_permut p (p' ++ pq)
    +        list_permut q (q' ++ pq)
    +        q' nil
    +        ( a, In a p' b, In b q' R a b).
    + +
    +End Make.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.rpo.list_permut.html b/theories/html/hydras.rpo.list_permut.html new file mode 100644 index 00000000..2152e2f9 --- /dev/null +++ b/theories/html/hydras.rpo.list_permut.html @@ -0,0 +1,356 @@ + + + + + +hydras.rpo.list_permut + + + + +
    + + + +
    + +

    Library hydras.rpo.list_permut

    + +
    +
    + +
    +by Evelyne Contejean, LRI +
    + +

    Permutation over lists, and finite multisets.

    + +
    +
    + +
    +Set Implicit Arguments.
    + +
    +From Coq Require Import List Multiset Arith Setoid.
    +From hydras Require Import decidable_set more_list.
    + +
    +Module Type Permut.
    + +
    +Declare Module DS : decidable_set.S.
    + +
    +Definition elt := DS.A.
    +Definition eq_elt_dec := DS.eq_A_dec.
    + +
    +Fixpoint list_to_multiset (l : list elt) {struct l} : multiset elt :=
    +  match l with
    +  | nilEmptyBag elt
    +  | h :: tl
    +      munion (SingletonBag _ eq_elt_dec h) (list_to_multiset tl)
    +  end.
    + +
    +Definition list_permut (l1 l2:list elt) : Prop :=
    +  meq (list_to_multiset l1) (list_to_multiset l2).
    + +
    +End Permut.
    + +
    +
    + +
    +

    Definition of permutation over lists.

    + +
    +
    +Module Make (DS1 : decidable_set.S) <: Permut with Module DS:= DS1.
    + +
    +Module DS := DS1.
    +Import DS1.
    + +
    +Definition elt := DS.A.
    +Definition eq_elt_dec : t1 t2 : elt, {t1 = t2} + {t1 t2} := DS.eq_A_dec.
    + +
    +Fixpoint list_to_multiset (l : list elt) {struct l} : multiset elt :=
    +  match l with
    +  | nilEmptyBag elt
    +  | h :: tl
    +      munion (SingletonBag _ eq_elt_dec h) (list_to_multiset tl)
    +  end.
    + +
    +Definition list_permut (l1 l2:list elt) : Prop :=
    +  meq (list_to_multiset l1) (list_to_multiset l2).
    + +
    +
    + +
    +Properties over the multiplicity. +
    +
    +Lemma multiplicity_app :
    (l1 l2:list elt) (t : elt),
    +   multiplicity (list_to_multiset (l1 ++ l2)) t =
    +   multiplicity (list_to_multiset l1) t + multiplicity (list_to_multiset l2) t.
    + +
    +Lemma out_mult_O :
    +   (t : elt) (l:list elt), ¬ In t l multiplicity (list_to_multiset l) t = 0.
    + +
    +Lemma in_mult_S :
    (t : elt) (l : list elt), In t l multiplicity (list_to_multiset l) t 1.
    + +
    +
    + +
    +

    Permutation is a equivalence relation.

    + +Reflexivity. +
    +
    +Theorem list_permut_refl :
    (l : list elt), list_permut l l.
    + +
    +
    + +
    +Symetry. +
    +
    +Theorem list_permut_sym :
    l1 l2 : list elt, list_permut l1 l2 list_permut l2 l1.
    + +
    +#[global] Hint Immediate list_permut_refl : core.
    +#[global] Hint Resolve list_permut_sym : core.
    + +
    +
    + +
    +Transitivity. +
    +
    +Theorem list_permut_trans :
    +   l1 l2 l3 : list elt, list_permut l1 l2 list_permut l2 l3 list_permut l1 l3.
    + +
    +Add Relation (list elt) list_permut
    +reflexivity proved by list_permut_refl
    +symmetry proved by list_permut_sym
    +transitivity proved by list_permut_trans as LP.
    + +
    +
    + +
    +Permutation of an empty list. +
    +
    +Lemma list_permut_nil :
    l, list_permut l nil l = nil.
    + +
    +
    + +
    +

    Compatibility Properties.

    + + Permutation is compatible with In. +
    +
    +Lemma in_permut_in :
    +   l1 l2 e, In e l1 list_permut l1 l2 In e l2.
    +Add Morphism (In (A :=elt)) with signature (eq ==> list_permut ==> iff) as in_morph.
    + +
    +Lemma cons_permut_in :
    +   l1 l2 e, list_permut (e :: l1) l2 In e l2.
    + +
    +
    + +
    +Permutation is compatible with adding an element. +
    +
    +Lemma context_list_permut_cons :
    +   e l1 l2, list_permut l1 l2 list_permut (e :: l1) (e :: l2).
    + +
    +Add Morphism (List.cons (A:=elt)) with signature (eq ==> list_permut ==> list_permut)
    as add_elt_morph.
    + +
    +Lemma list_permut_add_inside :
    + a l1 l2 l3 l4,
    +  list_permut (l1 ++ l2) (l3 ++ l4)
    +  list_permut (l1 ++ a :: l2) (l3 ++ a :: l4).
    + +
    +Lemma list_permut_add_cons_inside :
    + a l l1 l2,
    +  list_permut l (l1 ++ l2)
    +  list_permut (a :: l) (l1 ++ a :: l2).
    + +
    +
    + +
    +Permutation is compatible with append. +
    +
    +Lemma context_list_permut_app1 :
    +   l l1 l2, list_permut l1 l2 list_permut (l ++ l1) (l ++ l2).
    + +
    +Lemma context_list_permut_app2 :
    +   l l1 l2, list_permut l1 l2 list_permut (l1 ++ l) (l2 ++ l).
    + +
    +Add Morphism (List.app (A:=elt))
    +with signature (list_permut ==> list_permut ==> list_permut) as app_morph.
    + +
    +Lemma list_permut_app_app :
    l1 l2, list_permut (l1 ++ l2) (l2 ++ l1).
    + +
    +
    + +
    +Permutation is compatible with removal of common elements +
    + + +
    +Permutation is compatible with length. +
    +
    +Lemma list_permut_length :
    l1 l2, list_permut l1 l2 length l1 = length l2.
    + +
    +Add Morphism (length (A:=elt)) with signature (list_permut ==> eq) as length_morph.
    + +
    +
    + +
    +Permutation is compatible with size. +
    +
    +Lemma list_permut_size :
    +   size l1 l2, list_permut l1 l2 list_size size l1 = list_size size l2.
    + +
    +Add Parametric Morphism size : (@list_size elt size) with signature (list_permut ==> @eq nat) as list_size_morph.
    + +
    +
    + +
    +Permutation is compatible with map. +
    +
    +Lemma list_permut_map :
    +   f l1 l2, list_permut l1 l2 list_permut (map f l1) (map f l2).
    + +
    +Add Parametric Morphism f : (map f) with signature list_permut ==> list_permut as map_morph.
    + +
    +
    + +
    +

    Permutation for short lists.

    + +
    + + +
    +

    Link with AC syntactic decomposition.

    + +
    + +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.rpo.list_set.html b/theories/html/hydras.rpo.list_set.html new file mode 100644 index 00000000..5fee66c0 --- /dev/null +++ b/theories/html/hydras.rpo.list_set.html @@ -0,0 +1,475 @@ + + + + + +hydras.rpo.list_set + + + + +
    + + + +
    + +

    Library hydras.rpo.list_set

    + +
    +
    + +
    +To do : Is it a clone of ListSet ? +
    + + Evelyne Contejean, LRI +
    + +

    Sets built with lists

    + +
    +
    + +
    +Set Implicit Arguments.
    + +
    +From Coq Require Import List Arith Lia.
    + +
    +From hydras Require Import more_list list_permut.
    + +
    +Module Type S.
    + +
    +Declare Module DS : decidable_set.S.
    + +
    +Definition elt := DS.A.
    +Definition eq_elt_dec := DS.eq_A_dec.
    + +
    +Fixpoint without_red (l : list elt) {struct l} : Prop :=
    +  match l with
    +  | nilTrue
    +  | e :: leif (In_dec eq_elt_dec e le) then False else without_red le
    +  end.
    + +
    +Record t : Set :=
    +  mk_set
    +  {
    +     support : list elt;
    +     is_a_set : without_red support
    +  }.
    + +
    +Definition cardinal s := List.length s.(support).
    + +
    +Definition subset s1 s2 : Prop :=
    +   e, In e s1.(support) In e s2.(support).
    + +
    +Axiom cardinal_subset :
    +   s1 s2, subset s1 s2 cardinal s1 cardinal s2.
    + +
    +End S.
    + +
    +
    + +
    +

    Definition of sets using lists.

    + +
    +
    +Module Make (DS1 : decidable_set.S) <: S with Module DS:= DS1.
    + +
    +Module DS := DS1.
    +Import DS1.
    +Module LP := list_permut.Make (DS1).
    + +
    +Definition elt := DS.A.
    +Definition eq_elt_dec : t1 t2 : elt, {t1 = t2} + {t1 t2} := DS.eq_A_dec.
    + +
    +Fixpoint without_red (l : list elt) {struct l} : Prop :=
    +  match l with
    +  | nilTrue
    +  | e :: leif (In_dec eq_elt_dec e le) then False else without_red le
    +  end.
    + +
    +Record t : Set :=
    +  mk_set
    +  {
    +     support : list elt;
    +     is_a_set : without_red support
    +  }.
    + +
    +Definition mem e s := In e s.(support).
    + +
    +Lemma mem_dec : e s, {mem e s}+{¬mem e s}.
    + +
    +Lemma add_prf :
    +   e l, without_red l ¬In e l without_red (e :: l).
    + +
    +Definition add e s :=
    +  match In_dec eq_elt_dec e s.(support) with
    +  | left _s
    +  | right Rmk_set (e :: s.(support)) (add_prf e s.(support) s.(is_a_set) R)
    +  end.
    + +
    +Lemma add_1 : e s, mem e (add e s).
    + +
    +Lemma add_2 : e e' s, mem e s mem e (add e' s).
    + +
    +Lemma add_12 : e e' s, mem e (add e' s) e = e' mem e s.
    + +
    +Fixpoint filter_aux (P : elt Prop) (P_dec : e, {P e}+{¬ P e})
    +   (l : list elt) {struct l} : list elt :=
    +  match l with
    +  | nilnil
    +  | e :: le
    +           if (P_dec e)
    +           then e :: (filter_aux P P_dec le)
    +           else filter_aux P P_dec le
    +   end.
    + +
    +Lemma included_filter_aux :
    + P P_dec e l, In e (filter_aux P P_dec l) In e l.
    + +
    +Lemma without_red_filter_aux :
    +   P P_dec l, without_red l without_red (filter_aux P P_dec l).
    + +
    +Definition filter P P_dec s :=
    +   mk_set (filter_aux P P_dec s.(support))
    +               (without_red_filter_aux P P_dec _ s.(is_a_set)).
    + +
    +Lemma filter_1_list :
    +   (P : elt Prop) P_dec l e, In e l P e In e (filter_aux P P_dec l).
    + +
    +Lemma filter_1 :
    +   (P : elt Prop) P_dec s e, mem e s P e mem e (filter P P_dec s).
    + +
    +Lemma filter_2_list :
    (P : elt Prop) P_dec l e, In e (filter_aux P P_dec l)
    +                In e l P e.
    + +
    +Lemma filter_2 :
    (P : elt Prop) P_dec s e, mem e (filter P P_dec s)
    +                mem e s P e.
    + +
    +Fixpoint remove_red (l : list elt) : list elt :=
    +  match l with
    +  | nilnil
    +  | e :: le
    +           if (In_dec eq_elt_dec e le)
    +           then remove_red le
    +           else e :: (remove_red le)
    +   end.
    + +
    +Lemma included_remove_red :
    + e l, In e (remove_red l) In e l.
    + +
    +Lemma remove_red_included : e l, In e l In e (remove_red l).
    + +
    +Lemma without_red_remove_red : l, without_red (remove_red l).
    + +
    +Lemma without_red_remove :
    +   e l1 l2, without_red (l1 ++ e :: l2) without_red (l1 ++ l2).
    + +
    +Lemma without_red_add :
    +   e l1 l2, without_red (l1 ++ l2) ¬In e (l1 ++ l2)
    +  without_red (l1 ++ e :: l2).
    + +
    +Lemma without_red_nil : without_red nil.
    + +
    +Definition empty : t :=
    +  mk_set nil without_red_nil.
    + +
    +Lemma without_red_singleton : e : elt, without_red (e :: nil).
    + +
    +Definition singleton (e : elt) : t :=
    +  mk_set (e :: nil) (without_red_singleton e).
    + +
    +Definition make_set (l : list elt) : t :=
    +  mk_set (remove_red l) (without_red_remove_red l).
    + +
    +Fixpoint add_without_red (acc l : list elt) {struct l} : list elt :=
    +  match l with
    +  | nilacc
    +  | e :: le
    +     if (In_dec eq_elt_dec e acc)
    +     then add_without_red acc le
    +     else add_without_red (e :: acc) le
    +  end.
    + +
    +Lemma without_red_add_without_red :
    +   l1 l2, without_red l1 without_red (add_without_red l1 l2).
    + +
    +Definition union s1 s2 :=
    +  mk_set (add_without_red s1.(support) s2.(support))
    +               (without_red_add_without_red s1.(support) s2.(support) s1.(is_a_set)).
    + +
    +Lemma union_1_aux :
    + (l1 l2 : list elt) (e : elt), In e l1 In e (add_without_red l1 l2).
    + +
    +Lemma union_1 : s1 s2 e, mem e s1 mem e (union s1 s2).
    + +
    +Lemma union_2_aux :
    + (l1 l2 : list elt) (e : elt), In e l2 In e (add_without_red l1 l2).
    + +
    +Lemma union_2 : s1 s2 e, mem e s2 mem e (union s1 s2).
    + +
    +Lemma union_12_aux :
    + (l1 l2 : list elt) (e : elt), In e (add_without_red l1 l2) In e l1 In e l2.
    + +
    +Lemma union_12 :
    +   s1 s2 e, mem e (union s1 s2) mem e s1 mem e s2.
    + +
    +Fixpoint remove_not_common (acc l1 l2 : list elt) {struct l2} : list elt :=
    +  match l2 with
    +  | nilacc
    +  | e :: l
    +      if In_dec eq_elt_dec e l1
    +      then remove_not_common (e :: acc) l1 l
    +      else remove_not_common acc l1 l
    +  end.
    + +
    +Lemma without_red_remove_not_common_aux :
    +   acc l1 l2, ( e, In e acc In e l2 False)
    +                           without_red acc without_red l1 without_red l2
    +                           without_red (remove_not_common acc l1 l2).
    + +
    +Lemma without_red_remove_not_common :
    +   l1 l2, without_red l1 without_red l2
    +                    without_red (remove_not_common nil l1 l2).
    + +
    +Definition inter s1 s2 :=
    +  mk_set (remove_not_common nil s1.(support) s2.(support))
    +               (without_red_remove_not_common _ _ s1.(is_a_set) s2.(is_a_set)).
    + +
    +Lemma inter_1_aux :
    +   acc l1 l2 e, In e (remove_not_common acc l1 l2) In e acc In e l1.
    + +
    +Lemma inter_1 : s1 s2 e, mem e (inter s1 s2) mem e s1.
    + +
    +Lemma inter_2_aux :
    +   acc l1 l2 e, In e (remove_not_common acc l1 l2) In e acc In e l2.
    + +
    +Lemma inter_2 : s1 s2 e, mem e (inter s1 s2) mem e s2.
    + +
    +Lemma inter_12_aux :
    +   acc l1 l2 e, In e l1 In e l2 In e (remove_not_common acc l1 l2).
    + +
    +Lemma inter_12 :
    +   s1 s2 e, mem e s1 mem e s2 mem e (inter s1 s2).
    + +
    +Definition subset s1 s2 : Prop :=
    +   e, mem e s1 mem e s2.
    + +
    +Lemma subset_dec : s1 s2, {subset s1 s2} + {¬ subset s1 s2}.
    + +
    +Lemma subset_union_1 :
    +   s1 s2, subset s1 (union s1 s2).
    + +
    +Lemma subset_union_2 :
    +   s1 s2, subset s2 (union s1 s2).
    + +
    +Lemma subset_inter_1 :
    +   s1 s2, subset (inter s1 s2) s1.
    + +
    +Lemma subset_inter_2 :
    +   s1 s2, subset (inter s1 s2) s2.
    + +
    +Definition eq_set s1 s2 :=
    +   e, mem e s1 mem e s2.
    + +
    +Lemma eq_set_dec : s1 s2, {eq_set s1 s2} + {¬eq_set s1 s2}.
    + +
    +Lemma eq_set_refl : s, eq_set s s.
    + +
    +Lemma eq_set_sym :
    +   s1 s2, eq_set s1 s2 eq_set s2 s1.
    + +
    +Lemma eq_set_trans :
    +   s1 s2 s3, eq_set s1 s2 eq_set s2 s3 eq_set s1 s3.
    + +
    +Lemma add_comm :
    +   e1 e2 s, eq_set (add e1 (add e2 s)) (add e2 (add e1 s)).
    + +
    +Lemma union_empty_1 :
    +   s, eq_set s (union empty s).
    + +
    +Lemma union_empty_2 :
    +   s, eq_set s (union s empty).
    + +
    +Lemma union_comm :
    +   s1 s2, eq_set (union s1 s2) (union s2 s1).
    + +
    +Lemma union_assoc :
    +   s1 s2 s3, eq_set (union s1 (union s2 s3)) (union (union s1 s2) s3).
    + +
    +Lemma filter_union :
    +   P P_dec s1 s2,
    +  eq_set (filter P P_dec (union s1 s2)) (union (filter P P_dec s1) (filter P P_dec s2)).
    + +
    +Lemma subset_filter :
    +   (P1 P2 : elt Prop) P1_dec P2_dec s1 s2, subset s1 s2
    +  ( e, P1 e P2 e) subset (filter P1 P1_dec s1) (filter P2 P2_dec s2).
    + +
    +Lemma subset_compat_1 :
    +   s1 s1' s2, eq_set s1 s1' subset s1 s2 subset s1' s2.
    + +
    +Lemma subset_compat_2 :
    +   s1 s2 s2', eq_set s2 s2' subset s1 s2 subset s1 s2'.
    + +
    +Lemma subset_compat :
    +    s1 s1' s2 s2', eq_set s1 s1' eq_set s2 s2'
    +                                    subset s1 s2 subset s1' s2'.
    + +
    +Lemma union_compat_subset_1 :
    +   s1 s2 s, subset s1 s2 subset (union s1 s) (union s2 s).
    + +
    +Lemma union_compat_subset_2 :
    +   s1 s2 s, subset s1 s2 subset (union s s1) (union s s2).
    + +
    +Lemma union_compat_eq_set :
    +   s1 s1' s2 s2', eq_set s1 s1' eq_set s2 s2'
    +    eq_set (union s1 s2) (union s1' s2').
    + +
    +Lemma subset_subset_union :
    +   s1 s2 s, subset s1 s subset s2 s subset (union s1 s2) s.
    + +
    +Definition cardinal s := List.length s.(support).
    + +
    +Lemma cardinal_subset :
    +   s1 s2, subset s1 s2 cardinal s1 cardinal s2.
    + +
    +Lemma cardinal_union_1 :
    +   s1 s2, cardinal s1 cardinal (union s1 s2).
    + +
    +Lemma cardinal_union_2 :
    +   s1 s2, cardinal s2 cardinal (union s1 s2).
    + +
    +Lemma cardinal_union_inter_12 :
    +   s1 s2, cardinal (union s1 s2) + cardinal (inter s1 s2) = cardinal s1 + cardinal s2.
    + +
    +Lemma cardinal_union:
    +   s1 s2, cardinal (union s1 s2) = cardinal s1 + cardinal s2 -cardinal (inter s1 s2).
    + +
    +Lemma cardinal_eq_set : s1 s2, eq_set s1 s2 cardinal s1 = cardinal s2.
    + +
    +Lemma subset_cardinal_not_eq_not_eq_set :
    s1 s2 e, subset s1 s2 ¬mem e s1 mem e s2
    +  cardinal s1 < cardinal s2.
    + +
    +Lemma eq_set_list_permut_support :
    +   s1 s2, eq_set s1 s2
    +                 LP.list_permut s1.(support) s2.(support).
    + +
    +Lemma without_red_permut :
    l1 l2, without_red l1 LP.list_permut l1 l2 without_red l2.
    + +
    +End Make.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.rpo.more_list.html b/theories/html/hydras.rpo.more_list.html new file mode 100644 index 00000000..a0ed48ff --- /dev/null +++ b/theories/html/hydras.rpo.more_list.html @@ -0,0 +1,442 @@ + + + + + +hydras.rpo.more_list + + + + +
    + + + +
    + +

    Library hydras.rpo.more_list

    + +
    +
    + +
    +by Evelyne Contejean, LRI +
    + +

    Some additional properties for the Coq lists.

    + +
    +
    + +
    +Set Implicit Arguments.
    + +
    +From Coq Require Import List Arith.
    + +
    +
    + +
    +

    Relations between length, map, append, In and nth.

    + +
    +
    + +
    +Lemma map_map :
    +   (A B C : Set) (l : (list A)) (f : B C) (g : A B),
    +  map f (map g l) = map (fun xf (g x)) l.
    + +
    +Lemma list_app_length :
    A, l1 l2 : list A, length (l1 ++ l2) = length l1 + length l2.
    + +
    +Lemma length_map :
    (A B : Set) (f : A B) (l : list A), length (map f l) = length l.
    + +
    +Lemma map_app :
    (A B : Set) (f : A B) l1 l2, map f (l1 ++ l2) = (map f l1) ++ (map f l2).
    + +
    +Lemma in_in_map :
    +   (A B : Set) (f : A B) a l, In a l In (f a) (map f l).
    + +
    +Lemma in_map_in :
    +   (A B : Set) (f : A B) b l, In b (map f l)
    +   a, In a l f a = b.
    + +
    +Lemma nth_error_map :
    +   (A B : Set) (f : A B) (l : list A) i,
    +  match nth_error (map f l) i with
    +  | Some f_li
    +           match nth_error l i with
    +            | Some lif_li = f li
    +            | NoneFalse
    +            end
    +  | None
    +            match nth_error l i with
    +            | Some liFalse
    +            | NoneTrue
    +            end
    +end.
    + +
    +
    + +
    +

    A measure on lists based on a measure on elements.

    + +
    +
    + +
    +Fixpoint list_size (A : Set) (size : A nat) (l : list A) {struct l} : nat :=
    +  match l with
    +  | nil ⇒ 0
    +  | h :: tlsize h + list_size size tl
    +  end.
    + +
    +Lemma list_size_tl_compat :
    +   (A : Set) (size : A nat) a b l, size a < size b
    +    list_size size (a :: l) < list_size size (b :: l).
    + +
    +Lemma list_size_app:
    (A : Set) (size : A nat) l1 l2,
    list_size size (l1 ++ l2) = list_size size l1 + list_size size l2.
    + +
    +Lemma list_size_fold :
    +   (A : Set) (size : A nat) l n,
    +  fold_left (fun (size_acc : nat) (a : A) ⇒ size_acc + size a) l n =
    +  n + list_size size l.
    + +
    +Lemma list_size_size_eq :
    +   (A : Set) (size1 : A nat) (size2 : A nat) l,
    ( a, In a l size1 a = size2 a) list_size size1 l = list_size size2 l.
    + +
    +
    + +
    +

    Induction principles for list.

    + + Induction on the length. +
    +
    +Definition list_rec2 :
    +   A, P : list A Type,
    +    ( (n:nat) (l : list A), length l n P l)
    +     l : list A, P l.
    + +
    +Definition o_length (A : Set) (l1 l2 : list A) : Prop := length l1 < length l2.
    + +
    +Theorem well_founded_length : A, well_founded (o_length (A := A)).
    + +
    +
    + +
    +Induction on the the size. +
    +
    +Definition list_rec3 (A : Set) (size : A nat) :
    +   P : list A Type,
    +    ( (n:nat) (l : list A), list_size size l n P l)
    +     l : list A, P l.
    + +
    +
    + +
    +

    How to remove an element in a list, whenever it is present.

    + +
    +
    +Fixpoint split_list (A : Set)
    +  (eqA : (a1 a2 : A), {a1=a2}+{a1a2})
    +  (l : list A) (t : A) {struct l} : list A × list A :=
    +  match l with
    +  | nil(nil, nil)
    +  | a :: l'
    +      if eqA t a
    +      then (nil, l')
    +      else let (l1,l2) := split_list eqA l' t in (a :: l1, l2)
    +  end.
    + +
    +Lemma split_list_app_cons :
    (A : Set) (eqA : (a1 a2 : A), {a1=a2}+{a1a2}) t l,
    +   In t l let (l1, l2) := split_list eqA l t in l = l1 ++ t :: l2.
    + +
    +Fixpoint remove (A : Set) (eqA : a1 a2 : A, {a1=a2}+{a1a2})
    +  (a : A) (l : list A) {struct l} : (option (list A)) :=
    +  match l with
    +  | nilNone
    +  | h :: tl
    +    if eqA a h
    +    then Some tl
    +    else
    +      match remove eqA a tl with
    +      | Some rmvSome (h :: rmv)
    +      | NoneNone
    +      end
    +  end.
    + +
    +Lemma in_remove :
    +   (A : Set) (eqA : a1 a2 : A, {a1=a2}+{a1a2}) a l,
    +  match remove eqA a l with
    +  | None¬In a l
    +  | Some l'In a l let (l1, l2) := split_list eqA l a in l' = l1 ++ l2
    +  end.
    + +
    +Fixpoint remove_list (A : Set) (eqA : (a1 a2 : A), {a1=a2}+{a1a2})
    +(la l : list A) {struct l} : option (list A) :=
    +  match la with
    +  | nilSome l
    +  | a :: la'
    +        match l with
    +        | nilNone
    +        | b :: l'
    +           if eqA a b
    +           then remove_list eqA la' l'
    +           else
    +             match remove_list eqA la l' with
    +             | NoneNone
    +             | Some rmvSome (b :: rmv)
    +             end
    +        end
    +  end.
    + +
    +
    + +
    +

    Iterators.

    + +
    +
    +Fixpoint fold_left2 (A B C : Set) (f : A B C A) (a : A) (l1 : list B) (l2 : list C)
    +  {struct l1} : option A :=
    +  match l1, l2 with
    +  | nil, nilSome a
    +  | b :: t1, c :: t2fold_left2 f (f a b c) t1 t2
    +  | _, _None
    +  end.
    + +
    +
    + +
    +

    more properties on the nth element.

    + +
    +
    +Lemma nth_error_ok_in :
    +   (A : Set) n (l : list A) (a : A),
    +  nth_error l n = Some a In a l.
    + +
    +
    + +
    +

    Association lists.

    + +

    find.

    + +
    +
    +Fixpoint find (A B : Set) (eqA : (a1 a2 : A), {a1=a2}+{a1a2})
    +(a : A) (l : list (A × B)) {struct l} : option (B) :=
    match l with
    + | nilNone
    + | (a1,b1) :: l
    +     if eqA a a1
    +     then Some b1
    +     else find eqA a l
    +  end.
    + +
    +Lemma find_not_mem :
    +   (A B : Set) (eqA : (a1 a2 : A), {a1=a2}+{a1a2})
    +  (a : A) (b : B) (l : list (A × B)) (dom : list A),
    +  ¬In a dom ( a', In a' dom find eqA a' ((a,b) :: l) = find eqA a' l).
    + +
    +
    + +
    +

    number of occurences of the first element of a pair.

    + +
    +
    +Fixpoint nb_occ (A B : Set) (eqA : (a1 a2 : A), {a1=a2}+{a1a2})
    +  (a : A) (l : list (A × B)) {struct l} : nat :=
    +  match l with
    +  | nil ⇒ 0
    +  | (a',_) :: tl
    +     if (eqA a a') then S (nb_occ eqA a tl) else nb_occ eqA a tl
    +  end.
    + +
    +Lemma none_nb_occ_O :
    +   (A B : Set) (eqA : (a1 a2 : A), {a1=a2}+{a1a2})
    +  (a : A) (l : list (A × B)),
    +  find eqA a l = None nb_occ eqA a l = 0.
    + +
    +Lemma some_nb_occ_Sn :
    +   (A B : Set) (eqA : (a1 a2 : A), {a1=a2}+{a1a2})
    +  (a : A) (l : list (A × B)) b,
    +  find eqA a l = Some b 1 nb_occ eqA a l.
    + +
    +Lemma nb_occ_app :
    +   (A B : Set) (eqA : (a1 a2 : A), {a1=a2}+{a1a2})
    +  a (l1 l2 : list (A × B)),
    +  nb_occ eqA a (l1++l2) = nb_occ eqA a l1 + nb_occ eqA a l2.
    + +
    +Lemma reduce_assoc_list :
    +   (A B : Set) (eqA : (a1 a2 : A), {a1=a2}+{a1a2}),
    +   (l : list (A × B)), l',
    ( a, nb_occ eqA a l' 1) ( a, find eqA a l = find eqA a l').
    + +
    +
    + +
    +map_without_repetition applies a function to the elements of a list, +but only a single time when there are several consecutive occurences of the +same element. Moreover, the function is supposed to return an option as a result, +in order to simulate exceptions, and the abnormal results are discarted. + +
    +
    + +
    +Fixpoint map_without_repetition (A B : Set)
    +  (eqA : (a1 a2 : A), {a1=a2}+{a1a2})
    +  (f : A option B) (l : list A) {struct l} : list B :=
    +    match l with
    +    | nil ⇒ (nil : list B)
    +    | h :: nil
    +      match f h with
    +      | Nonenil
    +      | Some f_hf_h :: nil
    +      end
    +    | h1 :: ((h2 :: tl) as l1)
    +    if (eqA h1 h2)
    +    then map_without_repetition eqA f l1
    +    else
    +      match f h1 with
    +      | Nonemap_without_repetition eqA f l1
    +      | Some f_h1f_h1 :: (map_without_repetition eqA f l1)
    +      end
    +end.
    + +
    +Lemma prop_map_without_repetition :
    (A B : Set) (eqA : (a1 a2 : A), {a1=a2}+{a1a2})
    +  (P : B Prop) f l,
    +  ( a, In a l
    +   match f a with
    +   | NoneTrue
    +   | Some f_aP f_a
    +   end)
    +   ( b, In b (map_without_repetition eqA f l) P b).
    + +
    +Lemma exists_map_without_repetition :
    +   (A B : Set) (eqA : (a1 a2 : A), {a1=a2}+{a1a2})
    +  (P : B Prop) f l,
    +  ( a, In a l match f a with
    +                        | NoneFalse
    +                        | Some f_aP f_a
    +                        end)
    +  ( b, In b (map_without_repetition eqA f l) P b).
    + +
    +
    + +
    +map12_without_repetition is similar to map_without_repetition, but the +applied function returns two optional results instead of one. + +
    +
    + +
    +Fixpoint map12_without_repetition (A B : Set)
    +  (eqA : (a1 a2 : A), {a1=a2}+{a1a2})
    +  (f : A option B × option B) (l : list A) {struct l} : list B :=
    +    match l with
    +    | nil ⇒ (nil : list B)
    +    | h :: nil
    +      match f h with
    +      | (None, None)nil
    +      | (Some f_h1, None)f_h1 :: nil
    +      | (None, Some f_h1)f_h1 :: nil
    +      | (Some f_h1, Some f_h2)f_h1 :: f_h2 :: nil
    +      end
    +    | h :: ((h' :: tl) as l1)
    +    if (eqA h h')
    +    then map12_without_repetition eqA f l1
    +    else
    +      match f h with
    +      | (None, None)map12_without_repetition eqA f l1
    +      | (Some f_h1, None)f_h1 :: (map12_without_repetition eqA f l1)
    +      | (None, Some f_h1)f_h1 :: (map12_without_repetition eqA f l1)
    +      | (Some f_h1, Some f_h2)f_h2 :: f_h1 :: (map12_without_repetition eqA f l1)
    +      end
    +end.
    + +
    +Lemma prop_map12_without_repetition :
    +   (A B : Set) (eqA : (a1 a2 : A), {a1=a2}+{a1a2})
    +  (P : B Prop) f l,
    +  ( a, In a l
    +   match f a with
    +   | (None, None)True
    +   | (Some f1_a, None)P f1_a
    +   | (None, Some f2_a)P f2_a
    +   | (Some f1_a, Some f2_a)P f1_a P f2_a
    +   end)
    ( b, In b (map12_without_repetition eqA f l) P b).
    + +
    +Lemma exists_map12_without_repetition :
    +   (A B : Set) (eqA : (a1 a2 : A), {a1=a2}+{a1a2})
    +  (P : B Prop) f l,
    +  (( a, In a l match f a with
    +                        | (None, None)False
    +                        | (None, Some f2_a)P f2_a
    +                        | (Some f1_a, None)P f1_a
    +                        | (Some f1_a, Some f2_a)P f1_a P f2_a
    +                        end)
    +  ( b, In b (map12_without_repetition eqA f l) P b)).
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.rpo.rpo.html b/theories/html/hydras.rpo.rpo.html new file mode 100644 index 00000000..5466e69d --- /dev/null +++ b/theories/html/hydras.rpo.rpo.html @@ -0,0 +1,676 @@ + + + + + +hydras.rpo.rpo + + + + +
    + + + +
    + +

    Library hydras.rpo.rpo

    + +
    +
    + +
    +by Evelyne Contejean, LRI +
    +
    + +
    +From Coq Require Import List Relations Wellfounded Arith Wf_nat Lia.
    +From hydras Require Import more_list list_permut dickson term.
    + +
    +
    + +
    +A non-dependent version of lexicographic extension. + +
    +
    + +
    +Definition lex (A B : Set)
    +  (eq_A_dec : a1 a2, {a1=a2}+{a1a2})
    +  (o1 : relation A) (o2 : relation B) (s t : _ × _) :=
    +  match s, t with (s1,s2), (t1,t2)
    +   if eq_A_dec s1 t1 then o2 s2 t2 else o1 s1 t1
    +  end.
    + +
    +
    + +
    +Transitivity of lexicographic extension. + +
    +
    + +
    +Lemma lex_trans :
    (A B : Set) eq_A_dec o1 o2,
    antisymmetric A o1 transitive A o1 transitive B o2
    transitive _ (lex _ _ eq_A_dec o1 o2).
    + +
    +
    + +
    +Well-foundedness of lexicographic extension. + +
    +
    + +
    +Lemma wf_lex :
    +   A B eq_A_dec o1 o2, well_founded o1 well_founded o2
    +                             well_founded (lex A B eq_A_dec o1 o2).
    + +
    +
    + +
    +

    Module Type Precedence,

    + +

    Definition of a precedence.

    + + +
    +
    + +
    +Module Type Precedence.
    +Parameter A : Set.
    +Parameter prec : relation A.
    + +
    +Inductive status_type : Set :=
    +  | Lex : status_type
    +  | Mul : status_type.
    + +
    +Parameter status : A status_type.
    + +
    +Axiom prec_dec : a1 a2 : A, {prec a1 a2} + {¬ prec a1 a2}.
    +Axiom prec_antisym : s, prec s s False.
    +Axiom prec_transitive : transitive A prec.
    + +
    +End Precedence.
    + +
    +
    + +
    +

    Module Type RPO,

    + +

    Definition of RPO from a precedence on symbols.

    + + +
    +
    + +
    +Module Type RPO.
    + +
    +Declare Module T : term.Term.
    +Declare Module P : Precedence with Definition A:= T.symbol.
    + +
    +Import T.
    +Import P.
    +Declare Module LP : list_permut.Permut with Definition DS.A:=term.
    +Import LP.
    + +
    +
    + +
    +

    Definition of rpo.

    + + +
    + + +
    +
    +Inductive rpo : term term Prop :=
    +  | Subterm : f l t s, In s l rpo_eq t s rpo t (Term f l)
    +  | Top_gt :
    +        f g l l', prec g f
    +       ( s', In s' l' rpo s' (Term f l))
    +       rpo (Term g l') (Term f l)
    +  | Top_eq_lex :
    +         f l l', status f = Lex rpo_lex l' l
    +        ( s', In s' l' rpo s' (Term f l))
    +        rpo (Term f l') (Term f l)
    +
    +  | Top_eq_mul :
    +         f l l', status f = Mul rpo_mul l' l
    +        rpo (Term f l') (Term f l)
    +
    +with rpo_eq : term term Prop :=
    +  | Eq : t, rpo_eq t t
    +  | Lt : s t, rpo s t rpo_eq s t
    +
    +with rpo_lex : list term list term Prop :=
    +  | List_gt :
    +       s t l l', rpo s t length l = length l'
    +      rpo_lex (s :: l) (t :: l')
    +  | List_eq : s l l', rpo_lex l l'
    +                             rpo_lex (s :: l) (s :: l')
    +
    +with rpo_mul : list term list term Prop :=
    +  | List_mul :
    +        a lg ls lc l l',
    +       list_permut l' (ls ++ lc)
    +       list_permut l (a :: lg ++ lc)
    +       ( b, In b ls a', In a' (a :: lg) rpo b a')
    +       rpo_mul l' l.
    + +
    +
    + +
    +

    rpo is a preorder, and its reflexive closure is an ordering.

    + + +
    +
    + +
    +Axiom rpo_closure :
    +   s t u,
    +  (rpo t s rpo u t rpo u s)
    +  (rpo s t rpo t s False)
    +  (rpo s s False)
    +  (rpo_eq s t rpo_eq t s s = t).
    + +
    +Axiom rpo_trans : s t u, rpo t s rpo u t rpo u s.
    + +
    +
    + +
    +

    Main theorem: when the precedence is well-founded, so is the rpo.

    + + +
    + + +
    + + +
    +

    RPO is compatible with the instanciation by a substitution.

    + + +
    +
    + +
    +Axiom rpo_subst :
    +   t s, rpo s t
    +   sigma, rpo (apply_subst sigma s) (apply_subst sigma t).
    + +
    +
    + +
    +

    RPO is compatible with adding context.

    + + +
    +
    + +
    +Axiom rpo_add_context :
    p ctx s t, rpo s t is_a_pos ctx p = true
    +  rpo (replace_at_pos ctx s p) (replace_at_pos ctx t p).
    + +
    +End RPO.
    + +
    +Module Make (T1: term.Term)
    +                    (P1 : Precedence with Definition A := T1.symbol)
    +<: RPO. +
    +Module T := T1.
    +Module P := P1.
    + +
    +Import T.
    +Import P.
    + +
    +Module LP := list_permut.Make (Term_eq_dec).
    +Import LP.
    + +
    +
    + +
    +

    Definition of size-based well-founded orderings for induction.

    + + +
    +
    + +
    +Definition o_size s t := size s < size t.
    + +
    +Lemma wf_size : well_founded o_size.
    + +
    +Definition size2 s := match s with (s1,s2)(size s1, size s2) end.
    +Definition o_size2 s t := lex _ _ eq_nat_dec lt lt (size2 s) (size2 t).
    +Lemma wf_size2 : well_founded o_size2.
    + +
    +Definition size3 s := match s with (s1,s2)(size s1, size2 s2) end.
    +Definition o_size3 s t :=
    +  lex _ _ eq_nat_dec lt (lex _ _ eq_nat_dec lt lt) (size3 s) (size3 t).
    +Lemma wf_size3 : well_founded o_size3.
    + +
    +Lemma lex1 :
    s f l t1 u1 t2 u2, In s l o_size3 (s,(t1,u1)) (Term f l,(t2,u2)).
    + +
    +Lemma lex1_bis :
    a f l t1 u1 t2 u2, o_size3 (Term f l,(t1,u1)) (Term f (a::l),(t2,u2)).
    + +
    +Lemma lex2 :
    +   t f l s u1 u2, In t l o_size3 (s,(t,u1)) (s,(Term f l, u2)).
    + +
    +Lemma lex3 :
    +   u f l s t, In u l o_size3 (s,(t,u)) (s,(t,Term f l)).
    + +
    +Lemma o_size3_trans : transitive _ o_size3.
    + +
    +
    + +
    +

    Definition of rpo.

    + + +
    +
    + +
    +Inductive rpo : term term Prop :=
    +  | Subterm : f l t s, In s l rpo_eq t s rpo t (Term f l)
    +  | Top_gt :
    +        f g l l', prec g f
    +       ( s', In s' l' rpo s' (Term f l))
    +       rpo (Term g l') (Term f l)
    +  | Top_eq_lex :
    +         f l l', status f = Lex rpo_lex l' l
    +        ( s', In s' l' rpo s' (Term f l))
    +        rpo (Term f l') (Term f l)
    +
    +  | Top_eq_mul :
    +         f l l', status f = Mul rpo_mul l' l
    +        rpo (Term f l') (Term f l)
    +
    +with rpo_eq : term term Prop :=
    +  | Eq : t, rpo_eq t t
    +  | Lt : s t, rpo s t rpo_eq s t
    +
    +with rpo_lex : list term list term Prop :=
    +  | List_gt :
    +       s t l l', rpo s t length l = length l'
    +      rpo_lex (s :: l) (t :: l')
    +  | List_eq : s l l', rpo_lex l l' rpo_lex (s :: l) (s :: l')
    +
    +with rpo_mul : list term list term Prop :=
    +  | List_mul :
    +        a lg ls lc l l',
    +       list_permut l' (ls ++ lc)
    +       list_permut l (a :: lg ++ lc)
    +       ( b, In b ls a', In a' (a :: lg) rpo b a')
    +       rpo_mul l' l.
    + +
    +Lemma rpo_lex_same_length :
    +   l l', rpo_lex l l' length l = length l'.
    + +
    +Lemma rpo_subterm :
    s t, rpo t s tj, direct_subterm tj t rpo tj s.
    + +
    +
    + +
    +

    rpo is a preorder, and its reflexive closure is an ordering.

    + + +
    +
    + +
    +Lemma rpo_closure :
    +   s t u,
    +  (rpo t s rpo u t rpo u s)
    +  (rpo s t rpo t s False)
    +  (rpo s s False)
    +  (rpo_eq s t rpo_eq t s s = t).
    + +
    +Lemma rpo_trans : s t u, rpo t s rpo u t rpo u s.
    + +
    +Record SN_term : Set :=
    +  mk_sn
    +  {
    +    tt : term;
    +    sn : Acc rpo tt
    +    }.
    + +
    +
    + +
    +

    Well-foundedness of rpo.

    + +How to build a built a list of pairs (terms, proof of accessibility) from +a global of accessibility on the list. + +
    +
    + +
    +Definition build_list_of_SN_terms :
    l (proof : t, In t l Acc rpo t), list SN_term.
    + +
    +
    + +
    +Projection on the first element of the pairs after building the +pairs as above is the identity. + +
    +
    + +
    +Lemma projection_list_of_SN_terms :
    +   l proof, map tt (build_list_of_SN_terms l proof) = l.
    + +
    +Lemma in_sn_sn :
    l s, In s (map tt l) Acc rpo s.
    + +
    +
    + +
    +Definition of rpo on accessible terms. + +
    +
    + +
    +Definition rpo_rest := fun s trpo (tt s) (tt t).
    + +
    +
    + +
    +Extension of rpo_lex to the accessible terms. + +
    +
    + +
    +Inductive rpo_lex_rest : list SN_term list SN_term Prop :=
    +  | List_gt_rest :
    +        s t l l', rpo_rest s t length l = length l'
    +       rpo_lex_rest (s :: l) (t :: l')
    +  | List_eq_rest : s t l l', tt s = tt t rpo_lex_rest l l'
    +        rpo_lex_rest (s :: l) (t :: l').
    + +
    +
    + +
    +A triviality: rpo on accessible terms is well-founded. + +
    + + +
    + + +
    +Proof of accessibility does not actually matter, provided at + least one exists. + +
    +
    + +
    +Lemma acc_lex_drop_proof :
    +   s t l, tt s = tt t Acc rpo_lex_rest (s::l) Acc rpo_lex_rest (t::l).
    + +
    +
    + +
    +Lexicographic extension of rpo on accessible terms lists is well-founded. + +
    + + +
    +Extension of rpo_mul to the accessible terms. + +
    +
    + +
    +Inductive rpo_mul_rest : list SN_term list SN_term Prop :=
    +  | List_mul_rest :
    +        a lg ls lc l l',
    +       list_permut (map tt l') (map tt (ls ++ lc))
    +       list_permut (map tt l) (map tt (a :: lg ++ lc))
    +       ( b, In b ls a', In a' (a :: lg) rpo_rest b a')
    +       rpo_mul_rest l' l.
    + +
    +
    + +
    +Definition of a finer grain for multiset extension. + +
    +
    + +
    +Inductive rpo_mul_rest_step : list SN_term list SN_term Prop :=
    +  | List_mul_rest_step :
    +        a ls lc l l',
    +       list_permut (map tt l') (map tt (ls ++ lc))
    +       list_permut (map tt l) (map tt (a :: lc))
    +       ( b, In b ls rpo_rest b a)
    +       rpo_mul_rest_step l' l.
    + +
    +
    + +
    +The plain multiset extension is in the transitive closure of +the finer grain extension. + +
    + + +
    +Splitting in two disjoint cases. + +
    +
    + +
    +Lemma two_cases_rpo :
    a m n,
    rpo_mul_rest_step n (a :: m)
    ( n', list_permut (map tt n) (map tt (a :: n'))
    +             rpo_mul_rest_step n' m)
    ( k, ( b, In b k rpo_rest b a)
    +            list_permut (map tt n) (map tt (k ++ m))).
    + +
    +Lemma list_permut_map_acc :
    l l', list_permut (map tt l) (map tt l')
    Acc rpo_mul_rest_step l Acc rpo_mul_rest_step l'.
    + +
    +
    + +
    +Multiset extension of rpo on accessible terms lists is well-founded. + +
    + + +
    +Another definition of rpo, only on scheme of accessible terms. + +
    +
    + +
    +Definition rpo_term : relation (symbol × list SN_term) :=
    fun f_l g_l'
    +  match f_l with
    +  | (f,l)
    +  match g_l' with
    +  | (g,l')
    +    if F.eq_symbol_dec f g
    +    then
    +      match status f with
    +      | Lexrpo_lex_rest l l'
    +      | Mulrpo_mul_rest l l'
    +      end
    +    else prec f g
    +  end
    +  end.
    + +
    +Lemma wf_rpo_term : well_founded prec well_founded rpo_term.
    + +
    +Lemma acc_build :
    +  well_founded prec f l,
    +  Acc rpo (Term f (map (fun sn_tttt sn_tt) l)).
    + +
    +
    + +
    +

    Main theorem: when the precedence is well-founded, so is the rpo.

    + + +
    + + +
    +

    RPO is compatible with the instanciation by a substitution.

    + + +
    +
    + +
    +Lemma rpo_subst :
    +   t s, rpo s t
    +   sigma, rpo (apply_subst sigma s) (apply_subst sigma t).
    + +
    +
    + +
    +

    RPO is compatible with adding context.

    + + +
    +
    + +
    +Lemma rpo_add_context :
    p ctx s t, rpo s t is_a_pos ctx p = true
    +  rpo (replace_at_pos ctx s p) (replace_at_pos ctx t p).
    + +
    +End Make.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.rpo.term.html b/theories/html/hydras.rpo.term.html new file mode 100644 index 00000000..323eac53 --- /dev/null +++ b/theories/html/hydras.rpo.term.html @@ -0,0 +1,916 @@ + + + + + +hydras.rpo.term + + + + +
    + + + +
    + +

    Library hydras.rpo.term

    + +
    +
    + +
    +by Evelyne Contejean, LRI +
    + +

    Term algebra defined as functor from a Module Signature and a Module Variable.

    + +
    +
    + +
    +From Coq Require Import List Arith.
    +From hydras Require Import more_list list_permut list_set.
    + +
    +Set Implicit Arguments.
    + +
    +
    + +
    +

    Module Type Signature.

    + + There are almost no assumptions, except a decidable equality +and an arity function. +
    +
    +Module Type Signature.
    + +
    +  Parameter symb : Set.
    +  Axiom eq_symbol_dec : f1 f2 : symb, {f1 = f2} + {f1 f2}.
    + +
    +
    + +
    +The arity of a symbol contains also the information about built-in theories as in CiME +
    +
    +  Inductive arity_type : Set :=
    +  | AC : arity_type
    +  | C : arity_type
    +  | Free : nat arity_type.
    + +
    +  Parameter arity : symb arity_type.
    +End Signature.
    + +
    +
    + +
    +

    Module Type Variables.

    + + There are almost no assumptions, except a decidable equality. +
    +
    +Module Type Variables.
    + +
    +  Parameter var : Set.
    +  Axiom eq_variable_dec : v1 v2 : var, {v1 = v2} + {v1 v2}.
    + +
    +End Variables.
    + +
    +
    + +
    +

    Module Type Term built from a signature and a set of variables.

    + +
    +
    +Module Type Term.
    + +
    +  Declare Module F : Signature.
    +  Declare Module X : Variables.
    + +
    +  Definition symbol := F.symb.
    +  Definition variable := X.var.
    + +
    +  Import F.
    +  Import X.
    + +
    + +
    +  Ltac destruct_arity f n Af :=
    +    generalize (refl_equal (arity f)); pattern f at 1; destruct (arity f) as [ | | n]; intro Af.
    + +
    +
    + +
    +Definition of terms. +Arity is not taken into account, and terms may be hill-formed. +
    +
    +  Inductive term : Set :=
    +  | Var : variable term
    +  | Term : symbol list term term.
    + +
    +  Definition direct_subterm t1 t2 : Prop :=
    +    match t2 with
    +    | Var _False
    +    | Term _ lIn t1 l
    +    end.
    + +
    +
    + +
    +Definition and a few properties of the size of a term. +
    +
    +  Fixpoint size (t:term) : nat :=
    +    match t with
    +    | Var v ⇒ 1
    +    | Term f l ⇒ 1 + fold_left (fun size_acc esize_acc + size e) l 0
    +    end.
    + +
    +  Axiom size_unfold :
    +     t, size t = match t with
    +                       | Var _ ⇒ 1
    +                       | Term f l ⇒ 1 + list_size size l
    +                       end.
    + +
    +  Axiom size_ge_one : t, 1 size t.
    + +
    +  Axiom size_direct_subterm :
    +     t1 t2, direct_subterm t1 t2 size t1 < size t2.
    + +
    +
    + +
    +

    Recursion on terms.

    + +
    +
    +  Section Recursion.
    +    Variable P : term Type.
    +    Variable Pl : list term Type.
    + +
    +    Axiom term_rec2 : ( n t, size t n P t) t, P t.
    +    Axiom term_rec3 :
    +      ( v, P (Var v)) ( f l, ( t, In t l P t) P (Term f l)) t, P t.
    +    Axiom term_rec4 :
    +      ( v, P (Var v)) ( f l, Pl l P (Term f l))
    +      ( l, ( t, In t l P t) Pl l) t, P t.
    +  End Recursion.
    + +
    +
    + +
    +

    Double recursion on terms.

    + +
    +
    +  Section DoubleRecursion.
    +    Variable P2 : term term Type.
    +    Variable Pl2 : list term list term Type.
    + +
    +    Axiom term_rec7 :
    +      ( v1 t2, P2 (Var v1) t2)
    +      ( t1 v2, P2 t1 (Var v2))
    +      ( f1 f2 l1 l2, Pl2 l1 l2 P2 (Term f1 l1) (Term f2 l2))
    +      ( l1 l2, ( t1 t2, In t1 l1 In t2 l2 P2 t1 t2) Pl2 l1 l2)
    +       t1 t2, P2 t1 t2.
    + +
    +    Axiom term_rec8 :
    +      ( v1 t2, P2 (Var v1) t2)
    +      ( t1 v2, P2 t1 (Var v2))
    +      ( f1 f2 l1 l2, Pl2 l1 l2 P2 (Term f1 l1) (Term f2 l2))
    +      ( l1 l2, ( t1 t2, In t1 l1 In t2 l2 P2 t1 t2) Pl2 l1 l2)
    +       l1 l2, Pl2 l1 l2.
    +  End DoubleRecursion.
    + +
    +
    + +
    +

    Equality on terms is decidable.

    + +
    +
    +  Axiom eq_term_dec : t1 t2:term, {t1 = t2} + {t1 t2}.
    +  Declare Module Term_eq_dec : decidable_set.S with Definition A:= term
    +    with Definition eq_A_dec := eq_term_dec.
    + +
    +
    + +
    +

    Well-formedness of terms, according to the arity.

    + +
    +
    +  Fixpoint well_formed (t:term) : Prop :=
    +    match t with
    +    | Var _True
    +    | Term f l
    +      let well_formed_list :=
    +          (fix well_formed_list (l:list term) : Prop :=
    +             match l with
    +             | nilTrue
    +             | h :: tlwell_formed h well_formed_list tl
    +             end) in
    +      well_formed_list l
    +      (match arity f with
    +       | Free nlength l = n
    +       | _length l = 2
    +       end)
    +    end.
    + +
    +  Axiom well_formed_unfold :
    +     t, well_formed t
    +              match t with
    +              | Var _True
    +              | Term f l
    +                ( u, In u l well_formed u)
    +                (match arity f with
    +                 | Free nlength l = n
    +                 | _length l = 2
    +                 end)
    +              end.
    + +
    +  Axiom well_formed_fold :
    +     t,
    +      match t with
    +      | Var _True
    +      | Term f l
    +        ( u, In u l well_formed u)
    +        (match arity f with
    +         | Free nlength l = n
    +         | _length l = 2
    +         end)
    +      end well_formed t.
    + +
    +  Fixpoint well_formed_list (l : list term) : Prop :=
    +    match l with
    +    | nilTrue
    +    | h :: tlwell_formed h well_formed_list tl
    +    end.
    + +
    +
    + +
    +

    Substitutions.

    + +
    +
    +  Definition substitution := list (variable × term).
    + +
    +  Fixpoint apply_subst (sigma : substitution) (t : term) {struct t} : term :=
    +    match t with
    +    | Var v
    +      match find eq_variable_dec v sigma with
    +      | Nonet
    +      | Some v_sigmav_sigma
    +      end
    +    | Term f lTerm f (map (apply_subst sigma) l)
    +    end.
    + +
    +  Axiom empty_subst_is_id : t, apply_subst nil t = t.
    +  Axiom empty_subst_is_id_list : l, map (apply_subst nil) l = l.
    + +
    +
    + +
    +Composition of substitutions. +
    +
    +  Definition map_subst (f : variable term term) sigma :=
    +    map (fun x
    +           match (x : variable × term) with
    +           | (v, v_sigma)(v, f v v_sigma)
    +           end)
    +        sigma.
    + +
    +  Definition subst_comp sigma1 sigma2 :=
    +    (map_subst (fun _ tapply_subst sigma1 t) sigma2)
    +      ++
    +      (map_subst (fun v t
    +                    match find eq_variable_dec v sigma2 with
    +                    | Nonet
    +                    | Some v_sigma2apply_subst sigma1 v_sigma2
    +                    end)
    +                 sigma1).
    + +
    +  Axiom subst_comp_is_subst_comp_aux1 :
    +     v sigma f,
    +      find eq_variable_dec v (map_subst f sigma) =
    +      match find eq_variable_dec v sigma with
    +      | NoneNone
    +      | Some tSome (f v t)
    +      end.
    + +
    +  Axiom subst_comp_is_subst_comp :
    +     sigma1 sigma2 t,
    +      apply_subst (subst_comp sigma1 sigma2) t =
    +      apply_subst sigma1 (apply_subst sigma2 t).
    + +
    +
    + +
    +Well-formed substitutions. +
    +
    +  Definition well_formed_subst sigma :=
    +     v, match find eq_variable_dec v sigma with
    +              | NoneTrue
    +              | Some twell_formed t
    +              end.
    + +
    +  Axiom well_formed_apply_subst :
    +     sigma, well_formed_subst sigma
    +                   t, well_formed t well_formed (apply_subst sigma t).
    + +
    +
    + +
    +

    Positions in a term.

    + +
    +
    +  Fixpoint is_a_pos (t : term) (p : list nat) {struct p}: bool :=
    +    match p with
    +    | niltrue
    +    | i :: q
    +      match t with
    +      | Var _false
    +      | Term _ l
    +        match nth_error l i with
    +        | Some tiis_a_pos ti q
    +        | Nonefalse
    +        end
    +      end
    +    end.
    + +
    +  Fixpoint subterm_at_pos (t : term) (p : list nat) {struct p}: option term :=
    +    match p with
    +    | nilSome t
    +    | i :: q
    +      match t with
    +      | Var _None
    +      | Term _ l
    +        match nth_error l i with
    +        | Some tisubterm_at_pos ti q
    +        | NoneNone
    +        end
    +      end
    +    end.
    + +
    +  Axiom size_subterm_at_pos :
    +     t i p, match subterm_at_pos t (i :: p) with
    +                  | Some usize u < size t
    +                  | NoneTrue
    +                  end.
    + +
    +  Axiom is_a_pos_exists_subtem :
    +     t p, is_a_pos t p = true u, subterm_at_pos t p = Some u.
    + +
    +  Fixpoint replace_at_pos (t u : term) (p : list nat) {struct p} : term :=
    +    match p with
    +    | nilu
    +    | i :: q
    +      match t with
    +      | Var _t
    +      | Term f l
    +        let replace_at_pos_list :=
    +            (fix replace_at_pos_list j (l : list term) {struct l}: list term :=
    +               match l with
    +               | nilnil
    +               | h :: tl
    +                 match j with
    +                 | O(replace_at_pos h u q) :: tl
    +                 | S kh :: (replace_at_pos_list k tl)
    +                 end
    +               end) in
    +        Term f (replace_at_pos_list i l)
    +      end
    +    end.
    + +
    +  Fixpoint replace_at_pos_list (l : list term) (u : term) (i : nat) (p : list nat)
    +           {struct l}: list term :=
    +    match l with
    +    | nilnil
    +    | h :: tl
    +      match i with
    +      | O(replace_at_pos h u p) :: tl
    +      | S jh :: (replace_at_pos_list tl u j p)
    +      end
    +    end.
    + +
    +  Axiom replace_at_pos_unfold :
    +     f l u i q,
    +      replace_at_pos (Term f l) u (i :: q) = Term f (replace_at_pos_list l u i q).
    + +
    +  Axiom replace_at_pos_is_replace_at_pos1 :
    +     t u p, is_a_pos t p = true
    +                  subterm_at_pos (replace_at_pos t u p) p = Some u.
    + +
    +  Axiom replace_at_pos_is_replace_at_pos2 :
    +     t p u, subterm_at_pos t p = Some u replace_at_pos t u p = t.
    + +
    +  Axiom subterm_at_pos_apply_subst_apply_subst_subterm_at_pos :
    +     t p sigma,
    +      match subterm_at_pos t p with
    +      | Some u
    +        subterm_at_pos (apply_subst sigma t) p = Some (apply_subst sigma u)
    +      | NoneTrue
    +      end.
    + +
    +  Axiom replace_at_pos_list_replace_at_pos_in_subterm :
    +     l1 ui l2 u i p, length l1 = i
    +                           replace_at_pos_list (l1 ++ ui :: l2) u i p =
    +                           l1 ++ (replace_at_pos ui u p) :: l2.
    + +
    +End Term.
    + +
    +
    + +
    +

    A functor building a Term Module from a Signature and a set of Variables.

    + +
    +
    + +
    +Module Make (F1 : Signature) (X1 : Variables) <:
    +  Term with Module F := F1 with Module X := X1.
    + +
    +  Module F := F1.
    +  Module X := X1.
    + +
    +  Definition symbol := F.symb.
    +  Definition variable := X.var.
    + +
    +  Import F.
    +  Import X.
    + +
    +  Module DecVar <: decidable_set.S.
    +    Definition A := variable.
    + +
    +    Lemma eq_A_dec : x y : A, { x = y } + { x y }.
    + +
    +  End DecVar.
    + +
    +  Module VSet <: list_set.S with Definition DS.A := variable :=
    +    list_set.Make (DecVar).
    + +
    +
    + +
    +Definition of terms. +Arity is not taken into account, and terms may be ill-formed. +
    +
    +  Inductive term : Set :=
    +  | Var : variable term
    +  | Term : symbol list term term.
    + +
    +  Definition direct_subterm t1 t2 : Prop :=
    +    match t2 with
    +    | Var _False
    +    | Term _ lIn t1 l
    +    end.
    + +
    +
    + +
    +Definition and a few properties of the size of a term. +
    +
    +  Fixpoint size (t:term) : nat :=
    +    match t with
    +    | Var v ⇒ 1
    +    | Term f l ⇒ 1 + fold_left (fun size_acc esize_acc + size e) l 0
    +    end.
    + +
    +  Lemma size_unfold :
    +     t,
    +      size t = match t with
    +               | Var _ ⇒ 1
    +               | Term f l ⇒ 1 + list_size size l
    +               end.
    + +
    +  Lemma size_ge_one : t, 1 size t.
    + +
    +  Lemma size_direct_subterm :
    +     t1 t2, direct_subterm t1 t2 size t1 < size t2.
    + +
    +
    + +
    +

    Recursion on terms.

    + +
    +
    +  Section Recursion.
    +    Variable P : term Type.
    +    Variable Pl : list term Type.
    + +
    +    Definition term_rec2 : ( n t, size t n P t) t, P t.
    + +
    +    Definition term_rec3 :
    +      ( v, P (Var v)) ( f l, ( t, In t l P t) P (Term f l)) t, P t.
    + +
    +    Definition term_rec4 :
    +      ( v, P (Var v)) ( f l, Pl l P (Term f l))
    +      ( l, ( t, In t l P t) Pl l) t, P t.
    +  End Recursion.
    + +
    +
    + +
    +

    Double recursion on terms.

    + +
    +
    +  Section DoubleRecursion.
    +    Variable P2 : term term Type.
    +    Variable Pl2 : list term list term Type.
    + +
    +    Definition term_rec7 :
    +      ( v1 t2, P2 (Var v1) t2)
    +      ( t1 v2, P2 t1 (Var v2))
    +      ( f1 f2 l1 l2, Pl2 l1 l2 P2 (Term f1 l1) (Term f2 l2))
    +      ( l1 l2, ( t1 t2, In t1 l1 In t2 l2 P2 t1 t2) Pl2 l1 l2)
    +       t1 t2, P2 t1 t2.
    + +
    +    Definition term_rec8 :
    +      ( v1 t2, P2 (Var v1) t2)
    +      ( t1 v2, P2 t1 (Var v2))
    +      ( f1 f2 l1 l2, Pl2 l1 l2 P2 (Term f1 l1) (Term f2 l2))
    +      ( l1 l2, ( t1 t2, In t1 l1 In t2 l2 P2 t1 t2) Pl2 l1 l2)
    +       l1 l2, Pl2 l1 l2.
    +  End DoubleRecursion.
    + +
    +
    + +
    +

    Equality on terms is decidable.

    + +
    +
    +  Theorem eq_term_dec :
    +     t1 t2:term, {t1 = t2} + {t1 t2}.
    + +
    +  Module Term_eq_dec : decidable_set.S with Definition A:= term
    +    with Definition eq_A_dec := eq_term_dec.
    +    Definition A := term.
    +    Definition eq_A_dec := eq_term_dec.
    +  End Term_eq_dec.
    + +
    +
    + +
    +

    Well-formedness of terms, according to the arity.

    + +
    +
    +  Fixpoint well_formed (t:term) : Prop :=
    +    match t with
    +    | Var _True
    +    | Term f l
    +      let well_formed_list :=
    +          (fix well_formed_list (l:list term) : Prop :=
    +             match l with
    +             | nilTrue
    +             | h :: tlwell_formed h well_formed_list tl
    +             end) in
    +      well_formed_list l
    +      (match arity f with
    +       | Free nlength l = n
    +       | _length l = 2
    +       end)
    +    end.
    + +
    +  Lemma well_formed_unfold :
    +     t, well_formed t
    +              match t with
    +              | Var _True
    +              | Term f l
    +                ( u, In u l well_formed u)
    +                (match arity f with
    +                 | Free nlength l = n
    +                 | _length l = 2
    +                 end)
    +              end.
    + +
    +  Lemma well_formed_fold :
    +     t,
    +      match t with
    +      | Var _True
    +      | Term f l
    +        ( u, In u l well_formed u)
    +        (match arity f with
    +         | Free nlength l = n
    +         | _length l = 2
    +         end)
    +      end well_formed t.
    + +
    +  Fixpoint well_formed_list (l : list term) : Prop :=
    +    match l with
    +    | nilTrue
    +    | h :: tlwell_formed h well_formed_list tl
    +    end.
    + +
    +
    + +
    +

    Substitutions.

    + +
    +
    +  Definition substitution := list (variable × term).
    + +
    +  Fixpoint apply_subst (sigma : substitution) (t : term) {struct t} : term :=
    +    match t with
    +    | Var v
    +      match find eq_variable_dec v sigma with
    +      | Nonet
    +      | Some v_sigmav_sigma
    +      end
    +    | Term f lTerm f (map (apply_subst sigma) l)
    +    end.
    + +
    +  Lemma empty_subst_is_id : t, apply_subst nil t = t.
    + +
    +  Lemma empty_subst_is_id_list : l, map (apply_subst nil) l = l.
    + +
    +
    + +
    +Composition of substitutions. +
    +
    +  Definition map_subst (f : variable term term) sigma :=
    +    map (fun x
    +           match (x : variable × term) with
    +           | (v, v_sigma)(v, f v v_sigma)
    +           end)
    +        sigma.
    + +
    +  Definition subst_comp sigma1 sigma2 :=
    +    (map_subst (fun _ tapply_subst sigma1 t) sigma2)
    +      ++
    +      (map_subst (fun v t
    +                    match find eq_variable_dec v sigma2 with
    +                    | Nonet
    +                    | Some v_sigma2apply_subst sigma1 v_sigma2
    +                    end)
    +                 sigma1).
    + +
    +  Lemma subst_comp_is_subst_comp_aux1 :
    +     v sigma f,
    +      find eq_variable_dec v (map_subst f sigma) =
    +      match find eq_variable_dec v sigma with
    +      | NoneNone
    +      | Some tSome (f v t)
    +      end.
    + +
    +  Lemma subst_comp_is_subst_comp_aux2 :
    +     v sigma1 sigma2,
    +      find (B:= term) eq_variable_dec v (sigma1 ++ sigma2) =
    +      match find eq_variable_dec v sigma1 with
    +      | Some _find eq_variable_dec v sigma1
    +      | Nonefind eq_variable_dec v sigma2
    +      end.
    + +
    +  Theorem subst_comp_is_subst_comp :
    +     sigma1 sigma2 t,
    +      apply_subst (subst_comp sigma1 sigma2) t =
    +      apply_subst sigma1 (apply_subst sigma2 t).
    + +
    +
    + +
    +Well-formed substitutions. +
    +
    +  Definition well_formed_subst sigma :=
    +     v, match find eq_variable_dec v sigma with
    +              | NoneTrue
    +              | Some twell_formed t
    +              end.
    + +
    +  Theorem well_formed_apply_subst :
    +     sigma, well_formed_subst sigma
    +                   t, well_formed t well_formed (apply_subst sigma t).
    + +
    +
    + +
    +

    Positions in a term.

    + +
    +
    +  Fixpoint is_a_pos (t : term) (p : list nat) {struct p}: bool :=
    +    match p with
    +    | niltrue
    +    | i :: q
    +      match t with
    +      | Var _false
    +      | Term _ l
    +        match nth_error l i with
    +        | Some tiis_a_pos ti q
    +        | Nonefalse
    +        end
    +      end
    +    end.
    + +
    +  Fixpoint subterm_at_pos (t : term) (p : list nat) {struct p}: option term :=
    +    match p with
    +    | nilSome t
    +    | i :: q
    +      match t with
    +      | Var _None
    +      | Term _ l
    +        match nth_error l i with
    +        | Some tisubterm_at_pos ti q
    +        | NoneNone
    +        end
    +      end
    +    end.
    + +
    +  Lemma size_subterm_at_pos :
    +     t i p, match subterm_at_pos t (i :: p) with
    +                  | Some usize u < size t
    +                  | NoneTrue
    +                  end.
    + +
    +  Lemma is_a_pos_exists_subtem :
    +     t p, is_a_pos t p = true u, subterm_at_pos t p = Some u.
    + +
    +  Fixpoint replace_at_pos (t u : term) (p : list nat) {struct p} : term :=
    +    match p with
    +    | nilu
    +    | i :: q
    +      match t with
    +      | Var _t
    +      | Term f l
    +        let replace_at_pos_list :=
    +            (fix replace_at_pos_list j (l : list term) {struct l}: list term :=
    +               match l with
    +               | nilnil
    +               | h :: tl
    +                 match j with
    +                 | O(replace_at_pos h u q) :: tl
    +                 | S kh :: (replace_at_pos_list k tl)
    +                 end
    +               end) in
    +        Term f (replace_at_pos_list i l)
    +      end
    +    end.
    + +
    +  Fixpoint replace_at_pos_list (l : list term) (u : term) (i : nat) (p : list nat)
    +           {struct l}: list term :=
    +    match l with
    +    | nilnil
    +    | h :: tl
    +      match i with
    +      | O(replace_at_pos h u p) :: tl
    +      | S jh :: (replace_at_pos_list tl u j p)
    +      end
    +    end.
    + +
    +  Lemma replace_at_pos_unfold :
    +     f l u i q,
    +      replace_at_pos (Term f l) u (i :: q) = Term f (replace_at_pos_list l u i q).
    + +
    +  Lemma replace_at_pos_is_replace_at_pos1 :
    +     t u p, is_a_pos t p = true
    +                  subterm_at_pos (replace_at_pos t u p) p = Some u.
    + +
    +  Lemma replace_at_pos_is_replace_at_pos2 :
    +     t p u, subterm_at_pos t p = Some u replace_at_pos t u p = t.
    + +
    +  Lemma subterm_at_pos_apply_subst_apply_subst_subterm_at_pos :
    +     t p sigma,
    +      match subterm_at_pos t p with
    +      | Some u
    +        subterm_at_pos (apply_subst sigma t) p = Some (apply_subst sigma u)
    +      | NoneTrue
    +      end.
    + +
    +  Lemma replace_at_pos_list_replace_at_pos_in_subterm :
    +     l1 ui l2 u i p, length l1 = i
    +                           replace_at_pos_list (l1 ++ ui :: l2) u i p =
    +                           l1 ++ (replace_at_pos ui u p) :: l2.
    + +
    +End Make.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.solutions_exercises.F_3.html b/theories/html/hydras.solutions_exercises.F_3.html new file mode 100644 index 00000000..de8c8d5c --- /dev/null +++ b/theories/html/hydras.solutions_exercises.F_3.html @@ -0,0 +1,200 @@ + + + + + +hydras.solutions_exercises.F_3 + + + + +
    + + + +
    + +

    Library hydras.solutions_exercises.F_3

    + +
    +From Coq Require Import Arith.
    +From hydras Require Import Iterates F_alpha E0.
    +From Coq Require Import ArithRing Lia Max.
    +Import Exp2.
    +From hydras Require Import Compat815.
    +Open Scope nat_scope.
    + +
    +Lemma LF3 : dominates_from 2 (F_ 3) (fun niterate exp2 n n).
    + +
    +
    + +
    +

    Proof that F_alpha (S n) > exp2 (F alpha n) for alpha >= 3 and

    + + n >= 2 (by induction over alpha) +
    +
    + +
    +Section S1.
    + +
    + +
    +  Let P alpha := n, 2 n exp2 (F_ alpha n) F_ alpha (S n).
    + +
    +  Remark F_3_eqn : n, F_ 3 n = iterate (F_ 2) (S n) n.
    + +
    +
    + +
    +

    Base case

    + +
    +
    + +
    +  Lemma P_3 : P 3.
    +
    + +
    +deprecated, not replaced yet +
    +
    + +
    +
    + +
    +Successor case +
    +
    + +
    +  Section Successor.
    + +
    +    Variable alpha: E0.
    +    Hypothesis H_alpha : P alpha.
    + +
    +    Remark R1: n, 2 n
    +                          p, n < p
    +                                   exp2 (F_ alpha n) F_ alpha p.
    + +
    +    Section S2.
    +      Variable n : nat.
    +      Hypothesis Hn : 2 n.
    + +
    +      Remark R3 :
    +        F_ (E0_succ alpha) (S n)= F_ alpha (iterate (F_ alpha) (S n) (S n)).
    + +
    +      Remark R3' : F_ (E0_succ alpha) n = iterate (F_ alpha) (S n) n.
    + +
    +      Remark R4 : F_ (E0_succ alpha) n < iterate (F_ alpha) (S n) (S n).
    + +
    +      Lemma L2 : exp2 (F_ (E0_succ alpha) n) (F_ (E0_succ alpha) (S n)).
    + +
    +    End S2.
    + +
    +    Lemma L3 : P (E0_succ alpha).
    + +
    +  End Successor.
    + +
    +
    + +
    +

    Limit case

    + +
    +
    + +
    +  Section Limit.
    +    Variable lambda : E0.
    +    Hypothesis Hlambda : E0limit lambda.
    +    Hypothesis IHlambda :
    +       alpha, E0fin 3 o alpha alpha o< lambda P alpha.
    + +
    +    Remark R5: beta, 3 o beta beta o< lambda
    +                             n, 2 n
    +                                       p, n < p
    +                                                exp2 (F_ beta n) F_ beta p.
    + +
    +    Section S3.
    +      Variable n: nat.
    +      Hypothesis Hn : 2 n.
    + +
    +      Lemma L04 : beta:T1,
    +          T1limit beta
    +           n, leq lt (\F (S n)) (Canon.canon beta (S n)).
    + +
    +      Lemma L04' : beta, E0limit beta
    +                                 n, (S n) o
    +                                          (Canon.Canon beta (S n)).
    + +
    +      Lemma L4 : exp2 (F_ lambda n) F_ lambda (S n).
    + +
    +    End S3.
    +  End Limit.
    + +
    +  Lemma L alpha : 3 o alpha P alpha.
    + +
    +End S1.
    + +
    +Theorem F_alpha_Sn alpha : 3 o alpha
    +                    n, 2 n exp2 (F_ alpha n) F_ alpha (S n).
    + +
    +
    + +
    +What happens if alpha is less than 3, or n less than 2 ? +
    +
    + +
    +Goal F_ 2 3 = 63.
    + +
    +Goal F_ 2 2 = 23.
    + +
    +Goal F_ 3 1 = 2047.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.solutions_exercises.FibonacciPR.html b/theories/html/hydras.solutions_exercises.FibonacciPR.html new file mode 100644 index 00000000..63d8956b --- /dev/null +++ b/theories/html/hydras.solutions_exercises.FibonacciPR.html @@ -0,0 +1,207 @@ + + + + + +hydras.solutions_exercises.FibonacciPR + + + + +
    + + + +
    + +

    Library hydras.solutions_exercises.FibonacciPR

    + +
    +From hydras Require Import primRec cPair extEqualNat.
    + +
    +
    + +
    +The famous Fibonacci function +
    +
    + +
    + +
    +Fixpoint fib (n:nat) : nat :=
    +  match n with
    +  | 0 ⇒ 1
    +  | 1 ⇒ 1
    +  | S ((S p) as q) ⇒ fib q + fib p
    +  end.
    + +
    + +
    +Section Proof_of_FibIsPR.
    + +
    +
    + +
    +To do : Some parts of this proof may be made more generic +
    + + let us consider another definition of fib, as an application of + nat_rec + +
    +
    + +
    +  Let fib_step (p: nat × nat) := (fst p + snd p, fst p).
    + +
    +  Let fib_iter n p:= (nat_rec (fun _ ⇒ (nat×nat)%type)
    +                              p
    +                              (fun _ pfib_step p)
    +                              n).
    +  Definition fib_alt n := snd (fib_iter n (1,1)).
    + +
    + +
    +
    + +
    +The theory of primitive functions deals only with functions + of type naryFunc n. + +
    + + So, let us define a variant of fib_alt + +
    + + +
    +
    + +
    +  Import LispAbbreviations.
    +  Check cPair.
    +  Print car.
    +  Check car.
    +  Check cdr.
    +  Search cPair isPR.
    +  Search car isPR.
    +  Search car cdr cPair.
    + +
    +  Let fib_step_cPair p := cPair (car p + cdr p)
    +                                (car p).
    + +
    +  Let fib_iter_cPair n p := nat_rec (fun _nat)
    +                                    p
    +                                    (fun _ pfib_step_cPair p)
    +                                    n.
    + +
    +  Definition fibPR n := cdr (fib_iter_cPair n (cPair 1 1)).
    + +
    +
    + +
    +Let us prove that fibPR is PR +
    +
    + +
    +  #[export] Instance fibPRIsPR: isPR 1 fibPR.
    + +
    +
    + +
    +Ok, but we must prove that fibPR is extensionaly equal to fib +
    + + let us consider the following relation +
    +
    + +
    +  Definition inv (p: nat×nat) (c: nat) := c = cPair (fst p) (snd p).
    + +
    +  Lemma inv_Pi : p c, inv p c snd p = cPairPi2 c.
    + +
    +  Lemma L0: inv (1,1) (cPair 1 1).
    + +
    +  Lemma LS : p c, inv p c inv (fib_step p) (fib_step_cPair c).
    + +
    +  Lemma L1 : p c,
    +      inv p c n,
    +        inv (fib_iter n p)
    +            (fib_iter_cPair n c).
    + +
    +  Lemma L2 : extEqual 1 fib_alt fibPR.
    + +
    +  #[export] Instance fib_altIsPR : isPR 1 fib_alt.
    + +
    +
    + +
    +It remains to prove that fib_alt is equivalent to the "classical" fib +
    +
    + +
    +  Lemma fib_OK0 : n,
    +      fib_iter n (1,1) = (fib (S n), fib n).
    + +
    +  Lemma fib_alt_Ok : extEqual 1 fib fib_alt.
    + +
    +  #[export] Instance fibIsPR : isPR 1 fib.
    + +
    +End Proof_of_FibIsPR.
    + +
    + +
    + +
    +
    + +
    +Too long ! + +
    + +Time Compute fibPR 3. + +
    +
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.solutions_exercises.Limit_Infinity.html b/theories/html/hydras.solutions_exercises.Limit_Infinity.html new file mode 100644 index 00000000..31f13093 --- /dev/null +++ b/theories/html/hydras.solutions_exercises.Limit_Infinity.html @@ -0,0 +1,107 @@ + + + + + +hydras.solutions_exercises.Limit_Infinity + + + + +
    + + + +
    + +

    Library hydras.solutions_exercises.Limit_Infinity

    + +
    +
    + +
    +Prove that, for any ordinal 0 < alpha < epsilon0, alpha is a limit + if and only if forall ordinal beta < alpha, there exists an infinite + number of ordinals betawee beta and alpha + +
    +
    + +
    +From hydras Require Import Epsilon0 T1.
    +Open Scope t1_scope.
    +From Coq Require Import Ensembles Image Compare_dec.
    + +
    +Definition Infinite {A: Type} (E: Ensemble A) :=
    +   s: nat A, injective s i, In E (s i).
    + +
    +Section On_alpha.
    + +
    +  Variable alpha : T1.
    +  Hypothesis Halpha : nf alpha.
    +  Hypothesis HnonZero : alpha zero.
    + +
    +  Section S1.
    +    Hypothesis H : T1limit alpha.
    + +
    +    Variable beta : T1.
    +    Hypothesis Hbeta : beta t1< alpha.
    + +
    +    Definition s (i:nat) := beta + S i.
    + +
    +    Lemma L1 (i: nat) : beta t1< s i t1< alpha.
    + +
    +
    + +
    +Shows that s is infinite +
    +
    + +
    +    Lemma L2 : i, s i t1< s (S i).
    + +
    +    Lemma L3: injective s.
    + +
    +  End S1.
    + +
    +  Section S2.
    +    Hypothesis H : beta, beta t1< alpha
    +                                  gamma, beta t1< gamma t1< alpha.
    + +
    +    Lemma L4 : T1limit alpha.
    + +
    +  End S2.
    + +
    +  Theorem Limit_Infinity : T1limit alpha ( beta,
    +                                                beta t1< alpha Infinite (fun gammabeta t1< gamma t1< alpha)).
    + +
    +End On_alpha.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.solutions_exercises.MinPR.html b/theories/html/hydras.solutions_exercises.MinPR.html new file mode 100644 index 00000000..20ec2f3f --- /dev/null +++ b/theories/html/hydras.solutions_exercises.MinPR.html @@ -0,0 +1,65 @@ + + + + + +hydras.solutions_exercises.MinPR + + + + +
    + + + +
    + +

    Library hydras.solutions_exercises.MinPR

    + +
    +
    + +
    +Prove that Stdlib's function min is primitive recursive +
    +
    + +
    +From hydras Require Import primRec extEqualNat.
    +From Coq Require Import Compare_dec Lia ArithRing.
    +Import PeanoNat.Nat.
    + +
    +Section Proof_of_MinIsPR.
    + +
    +  Let min_alt (a b: nat) : nat :=
    +    (charFunction 2 leBool a b) × a +
    +    (charFunction 2 ltBool b a) × b.
    + +
    +  Lemma min_alt_correct : extEqual 2 min_alt Nat.min.
    + +
    +  #[local] Instance minPR_PR : isPR 2 min_alt.
    + +
    +  #[export] Instance minIsPR : isPR 2 Nat.min.
    + +
    +End Proof_of_MinIsPR.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.solutions_exercises.MinPR2.html b/theories/html/hydras.solutions_exercises.MinPR2.html new file mode 100644 index 00000000..da281986 --- /dev/null +++ b/theories/html/hydras.solutions_exercises.MinPR2.html @@ -0,0 +1,88 @@ + + + + + +hydras.solutions_exercises.MinPR2 + + + + +
    + + + +
    + +

    Library hydras.solutions_exercises.MinPR2

    + +
    +
    + +
    +Prove that Stdlib's function Min is primitive recursive this is a variant of the exercise MinPR +
    +
    + +
    +From hydras Require Import primRec extEqualNat.
    +From Coq Require Import ArithRing Lia Compare_dec.
    + +
    +
    + +
    +Define an n-ary if-then-else +
    +
    + +
    +Fixpoint naryIf (n:nat) :
    +  naryRel n naryFunc n naryFunc n naryFunc n
    +  :=
    +    match n return (naryRel n naryFunc n naryFunc n naryFunc n) with
    +      0 ⇒ (fun b x yif b then x else y)
    +    | S mfun (p': naryRel (S m)) (g h: naryFunc (S m)) ⇒
    +               fun xnaryIf m (p' x) (g x) (h x)
    +    end.
    + +
    +#[export] Instance If2IsPR (p: naryRel 2)(f g : naryFunc 2):
    +  isPRrel 2 p isPR 2 f isPR 2 g
    +  isPR 2 (naryIf 2 p f g).
    + +
    +Section Proof_of_MinIsPR.
    + +
    +  Let minPR : naryFunc 2 :=
    +    naryIf 2 leBool
    +           (fun x _x)
    +           (fun _ yy).
    + +
    +  Lemma minPR_correct : extEqual 2 minPR PeanoNat.Nat.min.
    + +
    +  #[local] Instance minPR_PR : isPR 2 minPR.
    + +
    +  #[export] Instance minIsPR : isPR 2 min.
    + +
    +End Proof_of_MinIsPR.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.solutions_exercises.MorePRExamples.html b/theories/html/hydras.solutions_exercises.MorePRExamples.html new file mode 100644 index 00000000..c91dbf59 --- /dev/null +++ b/theories/html/hydras.solutions_exercises.MorePRExamples.html @@ -0,0 +1,123 @@ + + + + + +hydras.solutions_exercises.MorePRExamples + + + + +
    + + + +
    + +

    Library hydras.solutions_exercises.MorePRExamples

    + +
    +Require Import primRec Arith ArithRing List.
    +Import extEqualNat.
    + +
    +
    + +
    +

    Solution to an exercise

    + +
    +
    + +
    +Definition double n := n × 2.
    + +
    +Lemma doubleIsPR : isPR 1 double.
    + +
    + +
    +Fixpoint exp n p :=
    +  match p with
    +    0 ⇒ 1
    +  | S mexp n m × n
    +  end.
    + +
    + +
    +Definition exp_alt := fun a bnat_rec (fun _nat)
    +                                     1
    +                                     (fun _ yy × a)
    +                                     b.
    + +
    +Remark exp_alt_ok : extEqual 2 exp_alt exp.
    + +
    +#[local] Instance exp_alt_PR : isPR 2 exp_alt.
    + +
    +#[export] Instance expIsPR : isPR 2 exp.
    + +
    + +
    +Fixpoint tower2 n :=
    +  match n with
    +    0 ⇒ 1
    +  | S pexp 2 (tower2 p)
    +  end.
    + +
    + +
    +Definition tower2_alt h : nat := nat_rec (fun nnat)
    +                                1
    +                                (fun _ yexp 2 y)
    +                                h.
    + +
    +Remark tower2_alt_ok : extEqual 1 tower2_alt tower2.
    + +
    +#[local] Instance tower2_alt_PR : isPR 1 tower2_alt.
    + +
    +#[export] Instance tower2IsPR : isPR 1 tower2.
    + +
    +Fixpoint fact n :=
    +  match n with 0 ⇒ 1
    +          | S pn × fact p
    +  end.
    + +
    +Definition fact_alt
    +  : nat nat :=
    +  fun anat_rec _ 1 (fun x yS x × y) a.
    + +
    +Remark fact_alt_ok : extEqual 1 fact_alt fact.
    + +
    +#[local] Instance fact_altIsPR : isPR 1 fact_alt.
    + +
    +#[export] Instance factIsPR : isPR 1 fact.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.solutions_exercises.MultisetWf.html b/theories/html/hydras.solutions_exercises.MultisetWf.html new file mode 100644 index 00000000..856c49ee --- /dev/null +++ b/theories/html/hydras.solutions_exercises.MultisetWf.html @@ -0,0 +1,190 @@ + + + + + +hydras.solutions_exercises.MultisetWf + + + + +
    + + + +
    + +

    Library hydras.solutions_exercises.MultisetWf

    + +
    +Set Implicit Arguments.
    +Require Import Relations List Sorted Arith.
    +From hydras Require Import Restriction.
    +From Coq Require Import Lia.
    + +
    +Definition t (A:Type) := list (A × nat).
    + +
    + +
    +Section A_given.
    + +
    +  Variable A: Type.
    +  Variable LtA : relation A.
    + +
    + +
    +  Inductive lexpower: relation (t A) :=
    +    lex1: a n l, lexpower nil ((a,n)::l)
    +  | lex2: a n p l l', n < p lexpower ((a,n)::l) ((a,p)::l')
    +  | lex3: a b n p l l', LtA a b lexpower ((a,n)::l) ((b,p)::l')
    +  | lex4: a n l l', lexpower l l' lexpower ((a,n)::l) ((a,n)::l').
    + +
    +End A_given.
    + +
    +Section Counter_Example.
    +  Let R := lexpower lt.
    +  Hypothesis Hwf : well_founded R.
    + +
    +  Definition seq (n:nat) := repeat (0,0) n ++ ((2,0)::nil).
    + +
    +  Lemma decr_seq : n, R (seq (S n)) (seq n).
    + +
    +  Lemma not_acc : a b, R a b ¬ Acc R a ¬ Acc R b.
    + +
    +  Let is_in_seq l := i, l = seq i.
    + +
    +  Lemma is_in_seq_not_Acc : x, is_in_seq x ¬ Acc R x.
    + +
    +  Lemma contrad: False.
    + +
    +End Counter_Example.
    + +
    +
    + +
    +Lists in normal form +
    +
    + +
    +Definition lexnf {A: Type}(ltA : relation A) (l: t A)
    +  := LocallySorted (Basics.flip ltA) (map fst l).
    + +
    +Definition lexlt {A}(ltA : relation A) :=
    +  restrict (lexnf ltA) (lexpower ltA).
    + +
    +Section ProofOfLexwf.
    +  Variables (A: Type)
    +            (ltA : relation A).
    +  Hypothesis HwfA : well_founded ltA.
    + +
    +  #[local] Notation NF := (lexnf ltA).
    +  #[local] Notation LT := (lexlt ltA).
    + +
    +  Theorem lexwf:
    +     l, NF l Acc LT l.
    + +
    +  Lemma NF_inv1 : a n l, NF ((a,n)::l) NF l.
    + +
    +  Lemma NF_inv2 : a n b p l, NF((a,n)::(b,p)::l) ltA b a.
    + +
    +  Lemma LT_inv : a n l l',
    +      LT l' ((a,n)::l)
    +      l' = nil
    +      ( b p l'', l'= ((b,p)::l'') ltA b a)
    +      ( l'', l'=(a,n)::l'' LT l'' l)
    +      ( p l'', l'= ((a,p)::l'') p < n).
    + +
    +  Let Accs (a:A) := n l, NF ((a,n)::l)
    +                                Acc LT ((a,n)::l).
    + +
    +  Lemma Acc_nil : Acc LT nil.
    + +
    +  Lemma Accs_all: a:A, Accs a.
    + +
    +let us prepare an induction on l +
    +
    + +
    +  Lemma NF_Acc : l: t A, NF l Acc LT l.
    + +
    +End ProofOfLexwf.
    + +
    +Theorem lexwf {A}( ltA : relation A) :
    +  well_founded ltA
    +   l, lexnf ltA l Acc (lexlt ltA) l. +
    + +
    +Example Ex1 : lexpower lt ((2,7)::nil) ((3,0):: nil).
    + +
    +Example Ex2 : lexpower lt ((2,7)::(1,0)::(0,33)::nil) ((2,7)::(1,6)::nil).
    + +
    +Example Ex3 : lexnf lt ((2,7)::(1,0)::(0,33)::nil).
    + +
    + +
    +Section Impossibility1.
    +  Variable m : t nat nat.
    +  Hypothesis mDecr : l l': t nat, lexlt lt l l' m l < m l'.
    + +
    +  Definition iota (n:nat) := (0, n)::nil.
    +  Let x := m ((1,0)::nil).
    +  Let y := m (iota x).
    + +
    +  Fact F1 : y < x.
    +  Fact F2 : x y.
    + +
    +  Lemma impossible_nat : False.
    + +
    +End Impossibility1.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.solutions_exercises.OnCodeList.html b/theories/html/hydras.solutions_exercises.OnCodeList.html new file mode 100644 index 00000000..bca6224b --- /dev/null +++ b/theories/html/hydras.solutions_exercises.OnCodeList.html @@ -0,0 +1,50 @@ + + + + + +hydras.solutions_exercises.OnCodeList + + + + +
    + + + +
    + +

    Library hydras.solutions_exercises.OnCodeList

    + +
    +From hydras.Ackermann Require Import primRec cPair.
    +From Coq Require Import Arith.
    +From Equations Require Import Equations.
    + +
    +Equations members (a:nat): list nat by wf a:=
    +  members 0 := List.nil;
    +  members (S z) := cPairPi1 z:: members (cPairPi2 z).
    + +
    +Lemma membersOk n : n = codeList (members n).
    + +
    +Lemma membersOk' l : l = members (codeList l).
    + +
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.solutions_exercises.T1_ltNotWf.html b/theories/html/hydras.solutions_exercises.T1_ltNotWf.html new file mode 100644 index 00000000..c678f332 --- /dev/null +++ b/theories/html/hydras.solutions_exercises.T1_ltNotWf.html @@ -0,0 +1,93 @@ + + + + + +hydras.solutions_exercises.T1_ltNotWf + + + + +
    + + + +
    + +

    Library hydras.solutions_exercises.T1_ltNotWf

    + +
    +
    + +
    +The order lt on T is not well-founded +
    +
    + +
    +From hydras Require Import T1.
    +From Coq Require Import Relations.
    + +
    +Section Proof_of_lt_not_wf.
    + +
    +  Hypothesis lt_wf : well_founded lt.
    + +
    +  Fixpoint s (i:nat) : T1 :=
    +    match i with
    +      0 ⇒ phi0 2
    +    | S jcons 1 0 (s j)
    +    end.
    + +
    +  Lemma s_decr : i, lt (s (S i)) (s i).
    + +
    + +
    +  Section seq_intro.
    +    Variable A: Type.
    +    Variable seq : nat A.
    +    Variable R : A A Prop.
    +    Hypothesis Rwf : well_founded R.
    +    Let is_in_seq (x:A) := i : nat, x = seq i.
    + +
    +    Lemma not_acc : a b:A, R a b ¬ Acc R a ¬ Acc R b.
    + +
    +    Lemma acc_imp : a b:A, R a b Acc R b Acc R a.
    + +
    +    Lemma not_decreasing_aux : ¬ ( n:nat, R (seq (S n)) (seq n)).
    + +
    +  End seq_intro.
    + +
    +  Theorem not_decreasing (A:Type)(R: relation A) (Hwf : well_founded R) :
    +    ¬ ( seq : nat A, ( i:nat, R (seq (S i)) (seq i))).
    + +
    +  Lemma contrad : False.
    + +
    +End Proof_of_lt_not_wf.
    + +
    +Lemma lt_not_wf : ¬ well_founded lt.
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.solutions_exercises.ge_omega_iff.html b/theories/html/hydras.solutions_exercises.ge_omega_iff.html new file mode 100644 index 00000000..36c8e98d --- /dev/null +++ b/theories/html/hydras.solutions_exercises.ge_omega_iff.html @@ -0,0 +1,43 @@ + + + + + +hydras.solutions_exercises.ge_omega_iff + + + + +
    + + + +
    + +

    Library hydras.solutions_exercises.ge_omega_iff

    + +
    +From hydras Require Import T1 E0.
    +From Coq Require Import Lia.
    + +
    +Open Scope E0_scope.
    + +
    +Lemma ge_omega_iff (alpha : E0):
    +  E0_omega o alpha ( i:nat, i + alpha = alpha).
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.solutions_exercises.is_F_monotonous.html b/theories/html/hydras.solutions_exercises.is_F_monotonous.html new file mode 100644 index 00000000..d4ebc210 --- /dev/null +++ b/theories/html/hydras.solutions_exercises.is_F_monotonous.html @@ -0,0 +1,73 @@ + + + + + +hydras.solutions_exercises.is_F_monotonous + + + + +
    + + + +
    + +

    Library hydras.solutions_exercises.is_F_monotonous

    + +
    +From hydras Require Import Iterates F_alpha E0.
    +From Coq Require Import ArithRing Lia Max.
    +Import Exp2 Canon.
    +From Coq Require Import Mult.
    +Open Scope nat_scope.
    + +
    +Section S1.
    +  Hypothesis H : (alpha beta:E0), alpha o beta
    +                                          i, 2 i
    +                                                    F_ alpha i F_ beta i.
    + +
    + +
    +  Remark R1 : 3 o E0_omega.
    + +
    +  Remark R2 : 2 2.
    + +
    Let instance_H := H (E0fin 3) E0_omega R1 _ R2.
    + +
    +  Remark R3 : F_ E0_omega 2 = F_ 2 2.
    + +
    + +
    +  Remark R4 : F_ 3 2 = F_ 2 (F_ 2 (F_ 2 2)).
    + +
    +  Remark R6 : i, i < F_ 2 i.
    + +
    +  Lemma Fake_thm : False.
    + +
    +End S1.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.solutions_exercises.isqrt.html b/theories/html/hydras.solutions_exercises.isqrt.html new file mode 100644 index 00000000..49da54e6 --- /dev/null +++ b/theories/html/hydras.solutions_exercises.isqrt.html @@ -0,0 +1,109 @@ + + + + + +hydras.solutions_exercises.isqrt + + + + +
    + + + +
    + +

    Library hydras.solutions_exercises.isqrt

    + +
    + +
    +From hydras Require Import primRec extEqualNat ssrnat_extracts.
    +From Coq Require Import Min ArithRing Lia Compare_dec Arith Lia.
    + +
    +
    + +
    +Returns smallest value of x less or equal than b such that (P b x). + Otherwise returns b +
    +
    +Check boundedSearch.
    +Search boundedSearch.
    + +
    +Lemma boundedSearch3 :
    +   (P : naryRel 2) (b : nat), boundedSearch P b b.
    + +
    + +
    +Lemma boundedSearch4 :
    +   (P : naryRel 2) (b : nat),
    +    P b b = true
    +    P b (boundedSearch P b) = true.
    + +
    +Definition isqrt_spec n r := r × r n < r.+1 × r.+1.
    + +
    +Section sqrtIsPR.
    + +
    +  Let P (n r: nat) := Nat.ltb n (S r × S r).
    +  Definition isqrt := boundedSearch P.
    + +
    +  Section Proof_isqrt.
    +    Variable n: nat.
    + +
    +    Remark R00 : P n (isqrt n) = true.
    + +
    +    Lemma R01 : n < (isqrt n).+1 × (isqrt n).+1.
    + +
    +    Lemma R02 : isqrt n × isqrt n n.
    + +
    +  End Proof_isqrt.
    + +
    +   Lemma sqrt_correct (n: nat) : isqrt_spec n (isqrt n).
    + +
    + #[export] Instance issqrtIsPR : isPR 1 isqrt.
    + +
    +End sqrtIsPR.
    + +
    + +
    + +
    +
    + +
    +Extra work : + Define a faster implementation of sqrt_spec, and prove your function is + extensionnaly equal to isqrt (hence PR!) + +
    +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.solutions_exercises.lt_succ_le.html b/theories/html/hydras.solutions_exercises.lt_succ_le.html new file mode 100644 index 00000000..33b7ac72 --- /dev/null +++ b/theories/html/hydras.solutions_exercises.lt_succ_le.html @@ -0,0 +1,77 @@ + + + + + +hydras.solutions_exercises.lt_succ_le + + + + +
    + + + +
    + +

    Library hydras.solutions_exercises.lt_succ_le

    + +
    +From hydras Require Import OrdinalNotations.ON_Generic.
    +From Coq Require Import Relations.
    + +
    +Section Proofs_of_lt_succ_le.
    + +
    +Context (A:Type)
    +        (lt : relation A)
    +        (cmp : Compare A)
    +        (On : ON lt cmp).
    + +
    +Section Proofs.
    +  Variables alpha beta : A.
    + +
    +
    + +
    +beta is a successor of alpha +
    +
    + +
    +  Hypothesis Halphabeta : Successor beta alpha.
    + +
    +  Section S1.
    +  Variable gamma: A.
    +  Hypothesis HGammaBeta : lt gamma beta.
    + +
    +  Lemma L1: leq lt gamma alpha.
    + +
    +  End S1.
    + +
    +End Proofs.
    + +
    +End Proofs_of_lt_succ_le.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.solutions_exercises.predSuccUnicity.html b/theories/html/hydras.solutions_exercises.predSuccUnicity.html new file mode 100644 index 00000000..be9a008e --- /dev/null +++ b/theories/html/hydras.solutions_exercises.predSuccUnicity.html @@ -0,0 +1,109 @@ + + + + + +hydras.solutions_exercises.predSuccUnicity + + + + +
    + + + +
    + +

    Library hydras.solutions_exercises.predSuccUnicity

    + +
    +From hydras Require Import OrdinalNotations.ON_Generic.
    +From Coq Require Import Relations.
    + +
    +Section Proofs_of_unicity.
    + +
    +Context (A:Type)
    +        (lt le : relation A)
    +        (cmp : Compare A)
    +        (On : ON lt cmp).
    + +
    +Section Proofs.
    +  Variables alpha beta : A.
    + +
    +
    + +
    +beta is a successor of alpha +
    +
    + +
    +  Hypothesis Halphabeta : Successor beta alpha.
    + +
    +  Section S1.
    +  Variable gamma: A.
    +  Hypothesis Halphagamma : Successor gamma alpha.
    + +
    +  Lemma L1 : gamma = beta.
    + +
    +  End S1.
    + +
    +  Section S2.
    +    Variable gamma: A.
    +    Hypothesis Hgammaalpha : Successor beta gamma.
    + +
    +    Lemma L2 : gamma = alpha.
    + +
    +  End S2.
    + +
    +End Proofs.
    + +
    +
    + +
    +Please remind that Successor beta alpha must be read as + "beta is a successor of alpha" +
    + +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/hydras.solutions_exercises.schutte_cnf_counter_example.html b/theories/html/hydras.solutions_exercises.schutte_cnf_counter_example.html new file mode 100644 index 00000000..63c26f62 --- /dev/null +++ b/theories/html/hydras.solutions_exercises.schutte_cnf_counter_example.html @@ -0,0 +1,65 @@ + + + + + +hydras.solutions_exercises.schutte_cnf_counter_example + + + + +
    + + + +
    + +

    Library hydras.solutions_exercises.schutte_cnf_counter_example

    + +
    +From hydras Require Import Schutte AP CNF.
    +From Coq Require Import List.
    +Open Scope schutte_scope.
    + +
    +Section Cter_example.
    + +
    +  Hypothesis cnf_lt_epsilon0_iff :
    +     l alpha,
    +      is_cnf_of alpha l
    +      (alpha < epsilon0 Forall (fun betabeta < alpha) l).
    + +
    +  Let alpha := phi0 (succ epsilon0).
    +  Let l := succ epsilon0 :: nil.
    + +
    +  Remark R1 : epsilon0 < alpha.
    + +
    +  Remark R2 : is_cnf_of alpha l.
    + +
    +  Remark R3 : Forall (fun betabeta < alpha) l.
    + +
    +  Lemma counter_ex : False.
    + +
    +End Cter_example.
    + +
    +
    +
    + + + +
    + + + \ No newline at end of file diff --git a/theories/html/index.html b/theories/html/index.html new file mode 100644 index 00000000..5a926a68 --- /dev/null +++ b/theories/html/index.html @@ -0,0 +1,58432 @@ + + + + + +Index + + + + +
    + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Global IndexABCDEFGHIJKLMNOPQRSTUVWXYZ_other(28510 entries)
    Notation IndexABCDEFGHIJKLMNOPQRSTUVWXYZ_other(182 entries)
    Binder IndexABCDEFGHIJKLMNOPQRSTUVWXYZ_other(20431 entries)
    Module IndexABCDEFGHIJKLMNOPQRSTUVWXYZ_other(94 entries)
    Variable IndexABCDEFGHIJKLMNOPQRSTUVWXYZ_other(764 entries)
    Library IndexABCDEFGHIJKLMNOPQRSTUVWXYZ_other(191 entries)
    Lemma IndexABCDEFGHIJKLMNOPQRSTUVWXYZ_other(3916 entries)
    Constructor IndexABCDEFGHIJKLMNOPQRSTUVWXYZ_other(281 entries)
    Axiom IndexABCDEFGHIJKLMNOPQRSTUVWXYZ_other(52 entries)
    Inductive IndexABCDEFGHIJKLMNOPQRSTUVWXYZ_other(119 entries)
    Projection IndexABCDEFGHIJKLMNOPQRSTUVWXYZ_other(110 entries)
    Section IndexABCDEFGHIJKLMNOPQRSTUVWXYZ_other(284 entries)
    Instance IndexABCDEFGHIJKLMNOPQRSTUVWXYZ_other(366 entries)
    Abbreviation IndexABCDEFGHIJKLMNOPQRSTUVWXYZ_other(182 entries)
    Definition IndexABCDEFGHIJKLMNOPQRSTUVWXYZ_other(1486 entries)
    Record IndexABCDEFGHIJKLMNOPQRSTUVWXYZ_other(52 entries)
    +
    +

    Global Index

    +

    A

    +A [definition, in hydras.OrdinalNotations.ON_Omega2]
    +Abelian_Monoid [record, in additions.Monoid_def]
    +Abelian_EMonoid [record, in additions.Monoid_def]
    +Abstract_Properties.alpha [variable, in hydras.Epsilon0.Hprime]
    +Abstract_Properties [section, in hydras.Epsilon0.Hprime]
    +absurd1 [lemma, in hydras.Ackermann.LNN]
    +absurd1 [lemma, in hydras.Ackermann.LNT]
    +absurd1 [lemma, in hydras.Ackermann.folLogic]
    +AB_given.rel_to_fun.Rf [variable, in hydras.Schutte.PartialFun]
    +AB_given.rel_to_fun [section, in hydras.Schutte.PartialFun]
    +AB_given.f_given.Rf [variable, in hydras.Schutte.PartialFun]
    +AB_given.f_given.f [variable, in hydras.Schutte.PartialFun]
    +AB_given.f_given [section, in hydras.Schutte.PartialFun]
    +AB_given.DB [variable, in hydras.Schutte.PartialFun]
    +AB_given.DA [variable, in hydras.Schutte.PartialFun]
    +AB_given.Hb [variable, in hydras.Schutte.PartialFun]
    +AB_given.Ha [variable, in hydras.Schutte.PartialFun]
    +AB_given.B [variable, in hydras.Schutte.PartialFun]
    +AB_given.A [variable, in hydras.Schutte.PartialFun]
    +AB_given [section, in hydras.Schutte.PartialFun]
    +ab1:18 [binder, in hydras.MoreAck.Ack]
    +ab2:19 [binder, in hydras.MoreAck.Ack]
    +ab:34 [binder, in hydras.MoreAck.Ack]
    +Accs_all [lemma, in hydras.solutions_exercises.MultisetWf]
    +acc_from_to_round_plus [lemma, in hydras.Hydra.O2H]
    +acc_from [definition, in gaia_hydras.GPaths]
    +Acc_nil [lemma, in hydras.solutions_exercises.MultisetWf]
    +Acc_inverse_image [lemma, in additions.Wf_transparent]
    +Acc_lemma [lemma, in additions.Wf_transparent]
    +acc_from_LT [lemma, in hydras.Epsilon0.Paths]
    +acc_from_trans [lemma, in hydras.Epsilon0.Paths]
    +acc_from [definition, in hydras.Epsilon0.Paths]
    +acc_trans [lemma, in hydras.rpo.closure]
    +acc_rec [lemma, in gaia_hydras.nfwfgaia]
    +acc_imp [lemma, in hydras.solutions_exercises.T1_ltNotWf]
    +acc1:10 [binder, in additions.fib]
    +acc1:5 [binder, in additions.fib]
    +acc2:11 [binder, in additions.fib]
    +acc2:6 [binder, in additions.fib]
    +acc:108 [binder, in hydras.MoreAck.PrimRecExamples]
    +acc:113 [binder, in hydras.rpo.list_set]
    +acc:118 [binder, in hydras.rpo.list_set]
    +acc:126 [binder, in hydras.rpo.list_set]
    +acc:133 [binder, in hydras.rpo.list_set]
    +acc:140 [binder, in hydras.rpo.list_set]
    +acc:144 [binder, in hydras.rpo.list_set]
    +acc:148 [binder, in hydras.rpo.list_set]
    +acc:16 [binder, in additions.Compatibility]
    +acc:18 [binder, in additions.fib]
    +acc:20 [binder, in additions.Compatibility]
    +acc:232 [binder, in hydras.rpo.list_set]
    +acc:235 [binder, in hydras.rpo.list_set]
    +acc:238 [binder, in hydras.rpo.list_set]
    +acc:242 [binder, in hydras.rpo.list_set]
    +acc:71 [binder, in additions.fib]
    +acc:78 [binder, in additions.fib]
    +acc:87 [binder, in hydras.rpo.list_set]
    +Ack [definition, in hydras.MoreAck.Ack]
    +Ack [definition, in hydras.MoreAck.Ack]
    +Ack [library]
    +Ackermann [module, in gaia_hydras.nfwfgaia]
    +Ackermann.addC_CE [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.add_normal [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.add_le4 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.add_le3 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.add_inj [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.add_le2 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.add_le1 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.add_to_cons [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.add_fin_omega [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.add_int [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.add1Nfin [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.all_zeroE [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.all_zero [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.ap_pr2CE [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.ap_pr4 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.ap_pr3 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.ap_pr2 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.ap_pr1 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.ap_limit [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.ap_pr0 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.CompareT3Eq [constructor, in gaia_hydras.nfwfgaia]
    +Ackermann.CompareT3Gt [constructor, in gaia_hydras.nfwfgaia]
    +Ackermann.CompareT3Lt [constructor, in gaia_hydras.nfwfgaia]
    +Ackermann.compare_T3 [inductive, in gaia_hydras.nfwfgaia]
    +Ackermann.conc1 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.cons [constructor, in gaia_hydras.nfwfgaia]
    +Ackermann.epsilon0 [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.fincP [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.finite_ltP [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.fooCE [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.le_succ_succE [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.le_succ_succ [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.limit_of [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.limit_pr [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.limit_pr1 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.limit1 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.limit10 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.limit11 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.limit12a [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.limit12b1 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.limit12b2 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.limit12b3 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.limit12b4 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.limit12b5 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.limit12_hyp [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.limit2 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.limit3 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.limit4 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.limit5 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.limit6 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.limit7 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.limit8 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.limit9 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.lt_succ_le_4 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.lt_succ_le_3 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.lt_succ_le_2 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.lt_succ_le_1 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.lt_succ_succE [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.lt_succ_succ [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.lt_omega2 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.lt_omega1 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.lt_epsilon0 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.lt_not_wf [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.lt_psi [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.lt_rec [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.lt_psi_rec [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.minus_le [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.minus_lt [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.nf_add [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.nf_sub [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.nf_pred [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.nf_succ [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.nf_finite [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.nf_omega [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.nf_split [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.nf_Wf [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.nf_consE [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.nf_cons_cons [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.nf_int [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.nf_psi [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.nf_0 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.normal [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.normal_compose [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.normal_limit [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.normal_id [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.omega [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.omega_minus_one [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.omega_least_inf2 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.omega_least_inf1 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.one [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.phi [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.phia [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.phiE [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.phiE_3 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.phiE_2 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.phiE_1 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.phiL [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.phi_rec [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.phi_rec_psi [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.phi0 [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.phi1 [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.phi10 [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.phi11 [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.phi12a [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.phi12b2 [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.phi12b3 [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.phi12b4 [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.phi12b5 [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.phi3 [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.phi3v [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.phi4 [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.phi5 [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.phi6 [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.phi7 [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.phi8 [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.phi9 [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.pred_succ [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.pred_lt [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.pred_le [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.psi_succ_pr1 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.psi_succ [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.psi_lt2 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.psi_lt1 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.size [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.size_prop [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.size_prop1 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.size_psi [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.size_d [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.size_c [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.size_b [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.size_a [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.split_add [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.split_le [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.split_pred [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.split_succ [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.split_is_succ [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.split_limit [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.split_finite [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.sub_pr1rCE [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.sub_pr1r [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.sub_nz [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.sub_pr1 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.sub_pr [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.sub_le1 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.sub_1bCE [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.sub_1aCE [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.sub_int [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.sub1a [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.sub1b [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.sub1Nfin [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.succ_psiCE [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.succ_prCE [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.succ_psi2 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.succ_psi1 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.succ_is_add_one [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.succ_psi_lt2 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.succ_psi_lt [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.succ_psi [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.succ_nz [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.succ_inj [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.succ_p1 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.succ_pred [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.succ_lt [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.sup_Oalpha_succ [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.sup_Oalpha_limit [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.sup_Oalpha_zero [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.sup_unique [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.sup_of [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.Tf [abbreviation, in gaia_hydras.nfwfgaia]
    +Ackermann.TT1T3_inj [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T1succ_nat [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T1T3_surj [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T1T3_inc [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T1T3_lt_epsilon0 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T1_T3 [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.T3 [inductive, in gaia_hydras.nfwfgaia]
    +Ackermann.T3add [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.T3addA [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3addn0 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3addS [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3add_eq0 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3add0n [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3ap [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.T3bad [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.T3eq [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.T3eqE [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3eqP [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3eq_add2l [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3eq_le [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3finite [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.T3finite_succ [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3finite1 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3finite2 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3GeqNotGtn [constructor, in gaia_hydras.nfwfgaia]
    +Ackermann.T3GeqNotLtn [constructor, in gaia_hydras.nfwfgaia]
    +Ackermann.T3ge1 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3GtnNotLeq [constructor, in gaia_hydras.nfwfgaia]
    +Ackermann.T3gt1 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3is_succ [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.T3lcp0_pr [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3le [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.T3leNgt [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3lenn [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3len0 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3leP [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3leq_xor_gtn [inductive, in gaia_hydras.nfwfgaia]
    +Ackermann.T3le_add2r [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3le_add2l [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3le_psi [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3le_total [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3le_anti [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3le_trans [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3le_lt_trans [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3le_consE [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3le_eqVlt [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3le0n [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3limit [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.T3lt [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.T3lta [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.T3ltE [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3ltgtP [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3ltNge [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3ltnn [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3LtnNotGeq [constructor, in gaia_hydras.nfwfgaia]
    +Ackermann.T3ltn_xor_geq [inductive, in gaia_hydras.nfwfgaia]
    +Ackermann.T3ltn0 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3ltP [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3ltW [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3lt_add2r [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3lt_add2l [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3lt_psi_a [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3lt_psi_c [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3lt_psi_b [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3lt_psi_bc [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3lt_le_trans [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3lt_trans [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3lt_psi' [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3lt_trichotomy [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3lt_anti [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3lt_neAle [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3lt_ne' [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3lt_ne [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3lt_consE [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3lt_psi [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3lt0n [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3lt1 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3nat [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.T3nf [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.T3nf_finite [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3pred [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.T3split [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.T3sub [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.T3subnn [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3subn0 [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3sub0n [lemma, in gaia_hydras.nfwfgaia]
    +Ackermann.T3succ [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.T3_eqType [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.T3_eqMixin [definition, in gaia_hydras.nfwfgaia]
    +Ackermann.zero [constructor, in gaia_hydras.nfwfgaia]
    +_ - _ (ak_scope) [notation, in gaia_hydras.nfwfgaia]
    +_ + _ (ak_scope) [notation, in gaia_hydras.nfwfgaia]
    +_ > _ (ak_scope) [notation, in gaia_hydras.nfwfgaia]
    +_ >= _ (ak_scope) [notation, in gaia_hydras.nfwfgaia]
    +_ <= _ (ak_scope) [notation, in gaia_hydras.nfwfgaia]
    +_ < _ (ak_scope) [notation, in gaia_hydras.nfwfgaia]
    +\F _ (ak_scope) [notation, in gaia_hydras.nfwfgaia]
    +[ _ , _ , _ ] (ak_scope) [notation, in gaia_hydras.nfwfgaia]
    +_ < _ (cantor_scope) [notation, in gaia_hydras.nfwfgaia]
    +Ackm:13 [binder, in hydras.MoreAck.Ack]
    +AckNotPR [library]
    +Ackn_IsPR [instance, in hydras.MoreAck.AckNotPR]
    +AckSn_as_PRiterate [lemma, in hydras.MoreAck.AckNotPR]
    +AckSn_as_iterate [lemma, in hydras.MoreAck.AckNotPR]
    +Ack_not_PR [lemma, in hydras.MoreAck.AckNotPR]
    +Ack_iterate_rw [lemma, in hydras.Epsilon0.F_omega]
    +Ack_strict_mono_l [lemma, in hydras.MoreAck.Ack]
    +Ack_Sn_plus [lemma, in hydras.MoreAck.Ack]
    +Ack_mono_r [lemma, in hydras.MoreAck.Ack]
    +Ack_mono_l [lemma, in hydras.MoreAck.Ack]
    +Ack_strict_mono [lemma, in hydras.MoreAck.Ack]
    +Ack_properties [lemma, in hydras.MoreAck.Ack]
    +Ack_m_mono_weak [lemma, in hydras.MoreAck.Ack]
    +Ack_Properties.Induc_step.Hm [variable, in hydras.MoreAck.Ack]
    +Ack_Properties.Induc_step.m [variable, in hydras.MoreAck.Ack]
    +Ack_Properties.Induc_step [section, in hydras.MoreAck.Ack]
    +Ack_Properties.P [variable, in hydras.MoreAck.Ack]
    +Ack_Properties [section, in hydras.MoreAck.Ack]
    +Ack_4_n [lemma, in hydras.MoreAck.Ack]
    +Ack_3_n [lemma, in hydras.MoreAck.Ack]
    +Ack_2_n [lemma, in hydras.MoreAck.Ack]
    +Ack_1_n [lemma, in hydras.MoreAck.Ack]
    +Ack_S_S [lemma, in hydras.MoreAck.Ack]
    +Ack_S_0 [lemma, in hydras.MoreAck.Ack]
    +Ack_0 [lemma, in hydras.MoreAck.Ack]
    +Adaptation [section, in additions.Compatibility]
    +Add [constructor, in additions.Trace_exercise]
    +addExists [definition, in Goedel.PRrepresentable]
    +addForalls [definition, in Goedel.PRrepresentable]
    +Addition [library]
    +Addition_Chains [library]
    +addPairwiseEquals [lemma, in hydras.Ackermann.folLogic3]
    +add_r_0 [lemma, in hydras.Hydra.Hydra_Lemmas]
    +add_r [definition, in hydras.Hydra.Hydra_Definitions]
    +add_head_r_plus [definition, in hydras.Hydra.Hydra_Definitions]
    +add_head_r [definition, in hydras.Hydra.Hydra_Definitions]
    +Aeq:64 [binder, in additions.Monoid_def]
    +Alive [definition, in hydras.Hydra.Hydra_Definitions]
    +Alive_standard [lemma, in hydras.Hydra.Hydra_Theorems]
    +Alive_free [lemma, in hydras.Hydra.Hydra_Theorems]
    +all_cases [lemma, in hydras.Hydra.O2H]
    +all_ord_acc [lemma, in hydras.Schutte.Schutte_basics]
    +Almost_done [lemma, in hydras.Hydra.BigBattle]
    +alpha_0_eq [definition, in hydras.Epsilon0.T1]
    +alpha_0 [definition, in hydras.Epsilon0.T1]
    +alpha_pos [lemma, in hydras.Hydra.O2H]
    +alpha_lt_beta [lemma, in hydras.Schutte.AP]
    +alpha_plus_zero [lemma, in hydras.Epsilon0.E0]
    +alpha_sup [lemma, in hydras.Schutte.Ordering_Functions]
    +alpha_A [lemma, in hydras.Schutte.Ordering_Functions]
    +alpha_plus_sup [lemma, in hydras.Schutte.Addition]
    +alpha_plus_zero [lemma, in hydras.Schutte.Addition]
    +alpha':137 [binder, in hydras.Gamma0.Gamma0]
    +alpha':193 [binder, in hydras.Epsilon0.T1]
    +alpha':322 [binder, in hydras.Epsilon0.T1]
    +alpha':462 [binder, in hydras.Gamma0.Gamma0]
    +alpha':505 [binder, in hydras.Gamma0.Gamma0]
    +alpha':509 [binder, in hydras.Gamma0.Gamma0]
    +alpha':548 [binder, in hydras.Gamma0.Gamma0]
    +alpha':551 [binder, in hydras.Gamma0.Gamma0]
    +alpha':92 [binder, in hydras.Epsilon0.T1]
    +alpha1 [definition, in hydras.OrdinalNotations.ON_Finite]
    +alpha1:28 [binder, in hydras.Gamma0.T2]
    +alpha1:36 [binder, in hydras.Gamma0.T2]
    +alpha1:43 [binder, in hydras.Gamma0.T2]
    +alpha1:51 [binder, in hydras.Gamma0.T2]
    +alpha1:58 [binder, in hydras.Gamma0.T2]
    +alpha1:64 [binder, in hydras.Gamma0.T2]
    +alpha1:665 [binder, in hydras.Gamma0.Gamma0]
    +alpha1:674 [binder, in hydras.Gamma0.Gamma0]
    +alpha2:29 [binder, in hydras.Gamma0.T2]
    +alpha2:44 [binder, in hydras.Gamma0.T2]
    +alpha2:52 [binder, in hydras.Gamma0.T2]
    +alpha2:667 [binder, in hydras.Gamma0.Gamma0]
    +alpha2:676 [binder, in hydras.Gamma0.Gamma0]
    +alpha:1 [binder, in hydras.solutions_exercises.is_F_monotonous]
    +alpha:1 [binder, in gaia_hydras.GF_alpha]
    +alpha:1 [binder, in gaia_hydras.GHprime]
    +alpha:1 [binder, in hydras.Epsilon0.Hessenberg]
    +alpha:1 [binder, in hydras.Epsilon0.Large_Sets]
    +alpha:1 [binder, in hydras.Schutte.Critical]
    +alpha:1 [binder, in hydras.Schutte.AP]
    +alpha:1 [binder, in hydras.Epsilon0.L_alpha]
    +alpha:1 [binder, in hydras.Hydra.Hydra_Theorems]
    +alpha:1 [binder, in hydras.Epsilon0.Canon]
    +alpha:1 [binder, in hydras.solutions_exercises.ge_omega_iff]
    +alpha:1 [binder, in hydras.Epsilon0.Hprime]
    +alpha:1 [binder, in gaia_hydras.GL_alpha]
    +alpha:1 [binder, in gaia_hydras.T2Bridge]
    +alpha:1 [binder, in hydras.Schutte.Addition]
    +alpha:1 [binder, in gaia_hydras.GHessenberg]
    +alpha:10 [binder, in hydras.Schutte.Correctness_E0]
    +alpha:10 [binder, in gaia_hydras.GF_alpha]
    +alpha:10 [binder, in gaia_hydras.GHprime]
    +alpha:10 [binder, in hydras.Epsilon0.Hessenberg]
    +alpha:10 [binder, in hydras.Schutte.Critical]
    +alpha:10 [binder, in hydras.Schutte.Addition]
    +alpha:100 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +alpha:100 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:100 [binder, in hydras.Epsilon0.E0]
    +alpha:100 [binder, in hydras.Epsilon0.Paths]
    +alpha:101 [binder, in hydras.Hydra.O2H]
    +alpha:101 [binder, in hydras.Prelude.Comparable]
    +alpha:101 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:102 [binder, in hydras.Epsilon0.T1]
    +alpha:102 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:102 [binder, in hydras.OrdinalNotations.ON_Generic]
    +alpha:102 [binder, in hydras.Epsilon0.E0]
    +alpha:103 [binder, in hydras.Prelude.Comparable]
    +alpha:103 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +alpha:103 [binder, in hydras.Epsilon0.Paths]
    +alpha:104 [binder, in hydras.Hydra.O2H]
    +alpha:104 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +alpha:104 [binder, in hydras.Epsilon0.Canon]
    +alpha:104 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:104 [binder, in hydras.Epsilon0.E0]
    +alpha:105 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:105 [binder, in hydras.Epsilon0.E0]
    +alpha:106 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +alpha:106 [binder, in hydras.Epsilon0.Canon]
    +alpha:107 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:107 [binder, in hydras.Epsilon0.E0]
    +alpha:108 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:108 [binder, in hydras.Epsilon0.E0]
    +alpha:108 [binder, in hydras.Epsilon0.Paths]
    +alpha:109 [binder, in hydras.Epsilon0.Hessenberg]
    +alpha:109 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +alpha:109 [binder, in hydras.Epsilon0.Canon]
    +alpha:109 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:109 [binder, in hydras.Epsilon0.Paths]
    +alpha:11 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +alpha:11 [binder, in hydras.Gamma0.T2]
    +alpha:11 [binder, in hydras.Schutte.CNF]
    +alpha:11 [binder, in hydras.Schutte.Critical]
    +alpha:11 [binder, in hydras.Schutte.AP]
    +alpha:11 [binder, in hydras.OrdinalNotations.ON_mult]
    +alpha:11 [binder, in hydras.OrdinalNotations.ON_Finite]
    +alpha:11 [binder, in hydras.Epsilon0.E0]
    +alpha:11 [binder, in hydras.Schutte.Addition]
    +alpha:110 [binder, in hydras.Epsilon0.T1]
    +alpha:110 [binder, in hydras.Hydra.O2H]
    +alpha:110 [binder, in hydras.Epsilon0.E0]
    +alpha:111 [binder, in hydras.Epsilon0.Canon]
    +alpha:111 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:111 [binder, in hydras.Epsilon0.E0]
    +alpha:112 [binder, in hydras.Epsilon0.Hessenberg]
    +alpha:113 [binder, in hydras.Epsilon0.Canon]
    +alpha:113 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:113 [binder, in hydras.Epsilon0.E0]
    +alpha:113 [binder, in hydras.Epsilon0.Paths]
    +alpha:114 [binder, in hydras.Epsilon0.F_alpha]
    +alpha:114 [binder, in hydras.Epsilon0.Canon]
    +alpha:115 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:115 [binder, in hydras.OrdinalNotations.ON_Generic]
    +alpha:115 [binder, in hydras.Epsilon0.E0]
    +alpha:117 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:117 [binder, in hydras.Epsilon0.E0]
    +alpha:117 [binder, in hydras.Epsilon0.Hprime]
    +alpha:118 [binder, in hydras.Epsilon0.E0]
    +alpha:118 [binder, in hydras.Epsilon0.Paths]
    +alpha:119 [binder, in hydras.Epsilon0.T1]
    +alpha:119 [binder, in hydras.Epsilon0.F_alpha]
    +alpha:119 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:12 [binder, in hydras.Epsilon0.T1]
    +alpha:12 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +alpha:12 [binder, in hydras.Hydra.O2H]
    +alpha:12 [binder, in gaia_hydras.GHprime]
    +alpha:12 [binder, in hydras.Epsilon0.Large_Sets]
    +alpha:12 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +alpha:12 [binder, in hydras.Epsilon0.E0]
    +alpha:12 [binder, in hydras.Hydra.Epsilon0_Needed_Generic]
    +alpha:12 [binder, in hydras.Schutte.Addition]
    +alpha:120 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:120 [binder, in hydras.OrdinalNotations.ON_Generic]
    +alpha:120 [binder, in hydras.Epsilon0.E0]
    +alpha:121 [binder, in hydras.Epsilon0.T1]
    +alpha:121 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:123 [binder, in hydras.Epsilon0.Paths]
    +alpha:124 [binder, in hydras.Epsilon0.T1]
    +alpha:124 [binder, in hydras.Epsilon0.Hprime]
    +alpha:124 [binder, in hydras.Gamma0.Gamma0]
    +alpha:125 [binder, in hydras.Epsilon0.Large_Sets]
    +alpha:127 [binder, in hydras.Epsilon0.Large_Sets]
    +alpha:127 [binder, in hydras.Epsilon0.Paths]
    +alpha:127 [binder, in hydras.Gamma0.Gamma0]
    +alpha:128 [binder, in hydras.Epsilon0.Hprime]
    +alpha:129 [binder, in hydras.Epsilon0.Large_Sets]
    +alpha:13 [binder, in hydras.solutions_exercises.predSuccUnicity]
    +alpha:13 [binder, in gaia_hydras.GF_alpha]
    +alpha:13 [binder, in gaia_hydras.GHprime]
    +alpha:13 [binder, in hydras.OrdinalNotations.ON_O]
    +alpha:13 [binder, in hydras.Epsilon0.Hessenberg]
    +alpha:13 [binder, in hydras.Schutte.CNF]
    +alpha:13 [binder, in hydras.OrdinalNotations.ON_mult]
    +alpha:13 [binder, in hydras.OrdinalNotations.ON_plus]
    +alpha:13 [binder, in gaia_hydras.GL_alpha]
    +alpha:13 [binder, in hydras.Gamma0.Gamma0]
    +alpha:130 [binder, in hydras.Gamma0.Gamma0]
    +alpha:131 [binder, in hydras.Epsilon0.Large_Sets]
    +alpha:132 [binder, in hydras.OrdinalNotations.ON_Generic]
    +alpha:132 [binder, in hydras.Epsilon0.Paths]
    +alpha:133 [binder, in hydras.Epsilon0.Large_Sets]
    +alpha:133 [binder, in hydras.Gamma0.Gamma0]
    +alpha:135 [binder, in hydras.Epsilon0.Large_Sets]
    +alpha:136 [binder, in hydras.Schutte.Ordering_Functions]
    +alpha:137 [binder, in hydras.Epsilon0.Large_Sets]
    +alpha:137 [binder, in hydras.Schutte.Ordering_Functions]
    +alpha:139 [binder, in hydras.Epsilon0.Large_Sets]
    +alpha:139 [binder, in hydras.Epsilon0.Paths]
    +alpha:14 [binder, in hydras.Schutte.Correctness_E0]
    +alpha:14 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +alpha:14 [binder, in hydras.Schutte.Critical]
    +alpha:14 [binder, in hydras.Schutte.AP]
    +alpha:14 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +alpha:14 [binder, in hydras.OrdinalNotations.ON_Finite]
    +alpha:14 [binder, in hydras.Epsilon0.E0]
    +alpha:14 [binder, in hydras.Epsilon0.Paths]
    +alpha:14 [binder, in hydras.Gamma0.Gamma0]
    +alpha:141 [binder, in hydras.Epsilon0.T1]
    +alpha:141 [binder, in hydras.Epsilon0.Large_Sets]
    +alpha:145 [binder, in hydras.OrdinalNotations.ON_Generic]
    +alpha:145 [binder, in hydras.Epsilon0.Paths]
    +alpha:146 [binder, in hydras.Epsilon0.T1]
    +alpha:146 [binder, in hydras.Gamma0.Gamma0]
    +alpha:147 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:147 [binder, in hydras.Gamma0.Gamma0]
    +alpha:149 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:15 [binder, in hydras.Epsilon0.T1]
    +alpha:15 [binder, in hydras.Gamma0.T2]
    +alpha:15 [binder, in hydras.Hydra.O2H]
    +alpha:15 [binder, in gaia_hydras.GF_alpha]
    +alpha:15 [binder, in hydras.Schutte.CNF]
    +alpha:15 [binder, in hydras.Schutte.Critical]
    +alpha:15 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +alpha:15 [binder, in hydras.OrdinalNotations.ON_mult]
    +alpha:15 [binder, in hydras.Hydra.Epsilon0_Needed_Std]
    +alpha:15 [binder, in hydras.OrdinalNotations.ON_plus]
    +alpha:15 [binder, in gaia_hydras.GHydra]
    +alpha:15 [binder, in hydras.solutions_exercises.F_3]
    +alpha:15 [binder, in gaia_hydras.GL_alpha]
    +alpha:15 [binder, in hydras.Gamma0.Gamma0]
    +alpha:15 [binder, in hydras.Schutte.Addition]
    +alpha:150 [binder, in hydras.Epsilon0.T1]
    +alpha:151 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:151 [binder, in hydras.Epsilon0.Paths]
    +alpha:151 [binder, in hydras.Gamma0.Gamma0]
    +alpha:153 [binder, in hydras.Epsilon0.Paths]
    +alpha:153 [binder, in hydras.Gamma0.Gamma0]
    +alpha:154 [binder, in hydras.Epsilon0.Large_Sets]
    +alpha:155 [binder, in hydras.Epsilon0.T1]
    +alpha:156 [binder, in hydras.Epsilon0.Paths]
    +alpha:157 [binder, in hydras.Epsilon0.T1]
    +alpha:157 [binder, in hydras.Epsilon0.Large_Sets]
    +alpha:157 [binder, in hydras.Epsilon0.Paths]
    +alpha:157 [binder, in hydras.Gamma0.Gamma0]
    +alpha:158 [binder, in hydras.Epsilon0.F_alpha]
    +alpha:159 [binder, in hydras.Epsilon0.Paths]
    +alpha:16 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +alpha:16 [binder, in hydras.solutions_exercises.predSuccUnicity]
    +alpha:16 [binder, in gaia_hydras.GF_alpha]
    +alpha:16 [binder, in hydras.OrdinalNotations.ON_O]
    +alpha:16 [binder, in hydras.Epsilon0.Paths]
    +alpha:16 [binder, in hydras.Gamma0.Gamma0]
    +alpha:16 [binder, in hydras.Schutte.Addition]
    +alpha:160 [binder, in hydras.Epsilon0.F_alpha]
    +alpha:161 [binder, in hydras.Epsilon0.Paths]
    +alpha:162 [binder, in hydras.Epsilon0.F_alpha]
    +alpha:164 [binder, in hydras.Epsilon0.Paths]
    +alpha:165 [binder, in hydras.Epsilon0.F_alpha]
    +alpha:167 [binder, in hydras.Epsilon0.F_alpha]
    +alpha:168 [binder, in hydras.Schutte.Ordering_Functions]
    +alpha:169 [binder, in hydras.Epsilon0.Large_Sets]
    +alpha:169 [binder, in hydras.Epsilon0.Paths]
    +alpha:169 [binder, in hydras.Schutte.Ordering_Functions]
    +alpha:17 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +alpha:17 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +alpha:17 [binder, in hydras.OrdinalNotations.ON_plus]
    +alpha:17 [binder, in gaia_hydras.GHydra]
    +alpha:17 [binder, in hydras.OrdinalNotations.ON_Finite]
    +alpha:17 [binder, in gaia_hydras.GL_alpha]
    +alpha:17 [binder, in hydras.Gamma0.Gamma0]
    +alpha:17 [binder, in hydras.Schutte.Addition]
    +alpha:170 [binder, in hydras.Epsilon0.F_alpha]
    +alpha:170 [binder, in gaia_hydras.T1Bridge]
    +alpha:172 [binder, in gaia_hydras.T1Bridge]
    +alpha:174 [binder, in hydras.Epsilon0.F_alpha]
    +alpha:174 [binder, in hydras.Epsilon0.Paths]
    +alpha:174 [binder, in hydras.Gamma0.Gamma0]
    +alpha:175 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:175 [binder, in hydras.Gamma0.Gamma0]
    +alpha:176 [binder, in hydras.Epsilon0.F_alpha]
    +alpha:176 [binder, in hydras.Epsilon0.Large_Sets]
    +alpha:176 [binder, in hydras.Gamma0.Gamma0]
    +alpha:177 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:177 [binder, in hydras.Epsilon0.Paths]
    +alpha:178 [binder, in hydras.Epsilon0.F_alpha]
    +alpha:178 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:179 [binder, in hydras.Epsilon0.Large_Sets]
    +alpha:18 [binder, in hydras.Schutte.Correctness_E0]
    +alpha:18 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +alpha:18 [binder, in hydras.Hydra.O2H]
    +alpha:18 [binder, in gaia_hydras.GF_alpha]
    +alpha:18 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:180 [binder, in hydras.Epsilon0.F_alpha]
    +alpha:180 [binder, in hydras.Gamma0.Gamma0]
    +alpha:181 [binder, in hydras.Epsilon0.Large_Sets]
    +alpha:181 [binder, in hydras.Epsilon0.Paths]
    +alpha:182 [binder, in hydras.Gamma0.Gamma0]
    +alpha:183 [binder, in hydras.Epsilon0.Large_Sets]
    +alpha:185 [binder, in hydras.Epsilon0.Paths]
    +alpha:186 [binder, in hydras.Epsilon0.Large_Sets]
    +alpha:186 [binder, in hydras.Epsilon0.Paths]
    +alpha:188 [binder, in hydras.Epsilon0.Large_Sets]
    +alpha:188 [binder, in hydras.Schutte.Ordering_Functions]
    +alpha:188 [binder, in hydras.Gamma0.Gamma0]
    +alpha:19 [binder, in hydras.OrdinalNotations.ON_O]
    +alpha:19 [binder, in hydras.Schutte.CNF]
    +alpha:19 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +alpha:19 [binder, in hydras.Hydra.Epsilon0_Needed_Std]
    +alpha:19 [binder, in hydras.OrdinalNotations.ON_Finite]
    +alpha:19 [binder, in hydras.Epsilon0.Paths]
    +alpha:190 [binder, in hydras.Gamma0.Gamma0]
    +alpha:191 [binder, in hydras.Epsilon0.T1]
    +alpha:191 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:191 [binder, in hydras.Epsilon0.Paths]
    +alpha:192 [binder, in hydras.Epsilon0.T1]
    +alpha:192 [binder, in hydras.Gamma0.Gamma0]
    +alpha:193 [binder, in hydras.Epsilon0.Large_Sets]
    +alpha:193 [binder, in hydras.Epsilon0.Paths]
    +alpha:194 [binder, in hydras.Gamma0.Gamma0]
    +alpha:195 [binder, in hydras.Epsilon0.Large_Sets]
    +alpha:196 [binder, in hydras.Epsilon0.Paths]
    +alpha:196 [binder, in hydras.Gamma0.Gamma0]
    +alpha:197 [binder, in hydras.Epsilon0.Large_Sets]
    +alpha:197 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:198 [binder, in hydras.Gamma0.Gamma0]
    +alpha:199 [binder, in hydras.Epsilon0.Large_Sets]
    +alpha:2 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +alpha:2 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +alpha:2 [binder, in hydras.solutions_exercises.schutte_cnf_counter_example]
    +alpha:2 [binder, in gaia_hydras.ON_gfinite]
    +alpha:2 [binder, in hydras.solutions_exercises.F_3]
    +alpha:2 [binder, in hydras.OrdinalNotations.ON_Omega]
    +alpha:2 [binder, in hydras.Epsilon0.Paths]
    +alpha:2 [binder, in hydras.Schutte.Ordering_Functions]
    +alpha:2 [binder, in hydras.Schutte.Addition]
    +alpha:20 [binder, in hydras.Gamma0.T2]
    +alpha:20 [binder, in hydras.Hydra.O2H]
    +alpha:20 [binder, in hydras.Schutte.CNF]
    +alpha:20 [binder, in hydras.Hydra.Epsilon0_Needed_Std]
    +alpha:20 [binder, in gaia_hydras.GHydra]
    +alpha:20 [binder, in hydras.Epsilon0.E0]
    +alpha:20 [binder, in hydras.Schutte.Addition]
    +alpha:200 [binder, in hydras.Epsilon0.Paths]
    +alpha:200 [binder, in hydras.Gamma0.Gamma0]
    +alpha:202 [binder, in hydras.Epsilon0.T1]
    +alpha:202 [binder, in hydras.Gamma0.Gamma0]
    +alpha:203 [binder, in hydras.Epsilon0.T1]
    +alpha:203 [binder, in hydras.Epsilon0.Paths]
    +alpha:204 [binder, in hydras.Gamma0.Gamma0]
    +alpha:206 [binder, in hydras.Epsilon0.Paths]
    +alpha:207 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:207 [binder, in hydras.OrdinalNotations.ON_Generic]
    +alpha:208 [binder, in hydras.Epsilon0.T1]
    +alpha:209 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:21 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +alpha:21 [binder, in hydras.Gamma0.Gamma0]
    +alpha:210 [binder, in hydras.Epsilon0.T1]
    +alpha:210 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:211 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:211 [binder, in hydras.Gamma0.Gamma0]
    +alpha:212 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:212 [binder, in hydras.Gamma0.Gamma0]
    +alpha:213 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:213 [binder, in hydras.Gamma0.Gamma0]
    +alpha:214 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:215 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:22 [binder, in hydras.Schutte.Critical]
    +alpha:22 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +alpha:22 [binder, in hydras.Epsilon0.E0]
    +alpha:22 [binder, in hydras.Epsilon0.Paths]
    +alpha:22 [binder, in hydras.Schutte.Addition]
    +alpha:223 [binder, in hydras.Epsilon0.Paths]
    +alpha:228 [binder, in hydras.Epsilon0.Paths]
    +alpha:229 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:23 [binder, in hydras.Epsilon0.T1]
    +alpha:23 [binder, in hydras.Hydra.O2H]
    +alpha:23 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +alpha:23 [binder, in hydras.Hydra.Epsilon0_Needed_Std]
    +alpha:23 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:231 [binder, in hydras.Epsilon0.Paths]
    +alpha:232 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:237 [binder, in hydras.Epsilon0.Paths]
    +alpha:238 [binder, in hydras.Gamma0.Gamma0]
    +alpha:24 [binder, in hydras.Gamma0.T2]
    +alpha:24 [binder, in hydras.Schutte.CNF]
    +alpha:24 [binder, in hydras.Epsilon0.Large_Sets]
    +alpha:24 [binder, in hydras.Epsilon0.E0]
    +alpha:24 [binder, in hydras.Schutte.Addition]
    +alpha:240 [binder, in hydras.Epsilon0.T1]
    +alpha:240 [binder, in hydras.Gamma0.Gamma0]
    +alpha:242 [binder, in hydras.Epsilon0.T1]
    +alpha:242 [binder, in hydras.Epsilon0.Paths]
    +alpha:244 [binder, in hydras.Epsilon0.T1]
    +alpha:245 [binder, in hydras.Epsilon0.Paths]
    +alpha:247 [binder, in hydras.Epsilon0.Paths]
    +alpha:248 [binder, in hydras.Epsilon0.Paths]
    +alpha:25 [binder, in hydras.Hydra.O2H]
    +alpha:25 [binder, in gaia_hydras.GF_alpha]
    +alpha:25 [binder, in hydras.Schutte.Critical]
    +alpha:25 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +alpha:25 [binder, in hydras.OrdinalNotations.ON_Generic]
    +alpha:251 [binder, in hydras.Epsilon0.Paths]
    +alpha:254 [binder, in hydras.Epsilon0.Paths]
    +alpha:257 [binder, in hydras.Epsilon0.Paths]
    +alpha:26 [binder, in hydras.Schutte.CNF]
    +alpha:26 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +alpha:26 [binder, in hydras.Epsilon0.Canon]
    +alpha:26 [binder, in hydras.Epsilon0.E0]
    +alpha:26 [binder, in hydras.solutions_exercises.F_3]
    +alpha:261 [binder, in hydras.Epsilon0.Paths]
    +alpha:264 [binder, in hydras.Epsilon0.Paths]
    +alpha:265 [binder, in hydras.Epsilon0.Paths]
    +alpha:268 [binder, in hydras.Epsilon0.Paths]
    +alpha:27 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +alpha:27 [binder, in gaia_hydras.GF_alpha]
    +alpha:27 [binder, in hydras.Schutte.CNF]
    +alpha:27 [binder, in hydras.solutions_exercises.F_3]
    +alpha:27 [binder, in hydras.Schutte.Ordering_Functions]
    +alpha:27 [binder, in hydras.Schutte.Addition]
    +alpha:273 [binder, in hydras.Epsilon0.Paths]
    +alpha:276 [binder, in hydras.Epsilon0.Paths]
    +alpha:279 [binder, in hydras.Epsilon0.Paths]
    +alpha:28 [binder, in hydras.Epsilon0.T1]
    +alpha:28 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +alpha:28 [binder, in hydras.Epsilon0.Large_Sets]
    +alpha:281 [binder, in hydras.Epsilon0.Paths]
    +alpha:284 [binder, in hydras.Epsilon0.Paths]
    +alpha:287 [binder, in hydras.Epsilon0.Paths]
    +alpha:288 [binder, in hydras.Epsilon0.T1]
    +alpha:29 [binder, in hydras.Epsilon0.Canon]
    +alpha:29 [binder, in hydras.Epsilon0.E0]
    +alpha:29 [binder, in hydras.Epsilon0.Paths]
    +alpha:29 [binder, in hydras.Schutte.Addition]
    +alpha:290 [binder, in hydras.Epsilon0.T1]
    +alpha:290 [binder, in hydras.Epsilon0.Paths]
    +alpha:292 [binder, in hydras.Epsilon0.T1]
    +alpha:293 [binder, in hydras.Epsilon0.Paths]
    +alpha:294 [binder, in hydras.Epsilon0.T1]
    +alpha:296 [binder, in hydras.Epsilon0.T1]
    +alpha:296 [binder, in hydras.Epsilon0.Paths]
    +alpha:298 [binder, in hydras.Epsilon0.T1]
    +alpha:3 [binder, in hydras.Epsilon0.T1]
    +alpha:3 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +alpha:3 [binder, in hydras.Gamma0.T2]
    +alpha:3 [binder, in hydras.Epsilon0.Large_Sets]
    +alpha:3 [binder, in hydras.Schutte.Critical]
    +alpha:3 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +alpha:3 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:30 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +alpha:30 [binder, in gaia_hydras.GF_alpha]
    +alpha:30 [binder, in hydras.Schutte.Critical]
    +alpha:300 [binder, in hydras.Epsilon0.T1]
    +alpha:300 [binder, in hydras.Epsilon0.Paths]
    +alpha:302 [binder, in hydras.Epsilon0.T1]
    +alpha:304 [binder, in hydras.Epsilon0.T1]
    +alpha:304 [binder, in hydras.Epsilon0.Paths]
    +alpha:306 [binder, in hydras.Epsilon0.T1]
    +alpha:307 [binder, in hydras.Epsilon0.T1]
    +alpha:307 [binder, in hydras.Epsilon0.Paths]
    +alpha:308 [binder, in hydras.Epsilon0.T1]
    +alpha:309 [binder, in hydras.Epsilon0.T1]
    +alpha:31 [binder, in hydras.Schutte.CNF]
    +alpha:31 [binder, in hydras.Epsilon0.Large_Sets]
    +alpha:31 [binder, in hydras.Epsilon0.Canon]
    +alpha:31 [binder, in hydras.OrdinalNotations.ON_Finite]
    +alpha:31 [binder, in hydras.Epsilon0.E0]
    +alpha:31 [binder, in hydras.Epsilon0.Paths]
    +alpha:311 [binder, in hydras.Epsilon0.Paths]
    +alpha:313 [binder, in hydras.Epsilon0.T1]
    +alpha:316 [binder, in hydras.Epsilon0.T1]
    +alpha:316 [binder, in hydras.Epsilon0.Paths]
    +alpha:318 [binder, in hydras.Epsilon0.T1]
    +alpha:319 [binder, in hydras.Epsilon0.Paths]
    +alpha:32 [binder, in hydras.Schutte.Correctness_E0]
    +alpha:32 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +alpha:32 [binder, in gaia_hydras.GF_alpha]
    +alpha:32 [binder, in hydras.Epsilon0.L_alpha]
    +alpha:32 [binder, in hydras.Epsilon0.Canon]
    +alpha:32 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:32 [binder, in hydras.OrdinalNotations.ON_Finite]
    +alpha:32 [binder, in hydras.Epsilon0.Hprime]
    +alpha:32 [binder, in hydras.Schutte.Addition]
    +alpha:321 [binder, in hydras.Epsilon0.T1]
    +alpha:323 [binder, in hydras.Epsilon0.Paths]
    +alpha:325 [binder, in hydras.Epsilon0.Paths]
    +alpha:327 [binder, in hydras.Epsilon0.T1]
    +alpha:33 [binder, in gaia_hydras.GF_alpha]
    +alpha:33 [binder, in hydras.Epsilon0.Large_Sets]
    +alpha:33 [binder, in hydras.Epsilon0.E0]
    +alpha:330 [binder, in hydras.Epsilon0.Paths]
    +alpha:332 [binder, in hydras.Epsilon0.T1]
    +alpha:332 [binder, in hydras.Epsilon0.Paths]
    +alpha:334 [binder, in hydras.Epsilon0.Paths]
    +alpha:336 [binder, in hydras.Epsilon0.T1]
    +alpha:337 [binder, in hydras.Epsilon0.T1]
    +alpha:339 [binder, in hydras.Epsilon0.Paths]
    +alpha:34 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +alpha:34 [binder, in hydras.Epsilon0.L_alpha]
    +alpha:34 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:34 [binder, in hydras.OrdinalNotations.ON_Finite]
    +alpha:34 [binder, in hydras.Epsilon0.Hprime]
    +alpha:34 [binder, in hydras.Epsilon0.Paths]
    +alpha:340 [binder, in hydras.Epsilon0.T1]
    +alpha:343 [binder, in hydras.Epsilon0.T1]
    +alpha:343 [binder, in hydras.Epsilon0.Paths]
    +alpha:347 [binder, in hydras.Epsilon0.Paths]
    +alpha:349 [binder, in hydras.Epsilon0.T1]
    +alpha:35 [binder, in hydras.Schutte.Critical]
    +alpha:35 [binder, in hydras.Epsilon0.E0]
    +alpha:35 [binder, in hydras.Schutte.Ordering_Functions]
    +alpha:35 [binder, in hydras.Schutte.Addition]
    +alpha:351 [binder, in hydras.Epsilon0.Paths]
    +alpha:352 [binder, in hydras.Epsilon0.T1]
    +alpha:356 [binder, in hydras.Epsilon0.Paths]
    +alpha:357 [binder, in hydras.Epsilon0.Paths]
    +alpha:36 [binder, in hydras.Epsilon0.T1]
    +alpha:36 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +alpha:36 [binder, in hydras.Schutte.CNF]
    +alpha:36 [binder, in hydras.Epsilon0.Large_Sets]
    +alpha:36 [binder, in hydras.Epsilon0.L_alpha]
    +alpha:36 [binder, in hydras.Epsilon0.Hprime]
    +alpha:36 [binder, in hydras.Schutte.Addition]
    +alpha:362 [binder, in hydras.Epsilon0.Paths]
    +alpha:364 [binder, in hydras.Epsilon0.Paths]
    +alpha:37 [binder, in hydras.OrdinalNotations.ON_Generic]
    +alpha:37 [binder, in hydras.Epsilon0.E0]
    +alpha:37 [binder, in hydras.Epsilon0.Paths]
    +alpha:377 [binder, in hydras.Epsilon0.Paths]
    +alpha:38 [binder, in hydras.Epsilon0.T1]
    +alpha:38 [binder, in hydras.Schutte.Addition]
    +alpha:383 [binder, in hydras.Epsilon0.Paths]
    +alpha:388 [binder, in hydras.Epsilon0.Paths]
    +alpha:39 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +alpha:39 [binder, in hydras.Epsilon0.Large_Sets]
    +alpha:39 [binder, in hydras.Schutte.Critical]
    +alpha:39 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +alpha:39 [binder, in hydras.Epsilon0.F_omega]
    +alpha:39 [binder, in hydras.Epsilon0.E0]
    +alpha:393 [binder, in hydras.Epsilon0.T1]
    +alpha:395 [binder, in hydras.Epsilon0.Paths]
    +alpha:397 [binder, in hydras.Epsilon0.T1]
    +alpha:398 [binder, in hydras.Epsilon0.T1]
    +alpha:399 [binder, in hydras.Epsilon0.Paths]
    +alpha:4 [binder, in gaia_hydras.GHprime]
    +alpha:4 [binder, in hydras.Epsilon0.Large_Sets_Examples]
    +alpha:4 [binder, in hydras.Hydra.Hydra_Theorems]
    +alpha:4 [binder, in hydras.OrdinalNotations.ON_Finite]
    +alpha:4 [binder, in hydras.Epsilon0.E0]
    +alpha:4 [binder, in gaia_hydras.GL_alpha]
    +alpha:4 [binder, in gaia_hydras.T2Bridge]
    +alpha:4 [binder, in gaia_hydras.GHessenberg]
    +alpha:40 [binder, in hydras.Epsilon0.T1]
    +alpha:40 [binder, in hydras.Epsilon0.F_alpha]
    +alpha:40 [binder, in hydras.Epsilon0.F_omega]
    +alpha:40 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +alpha:40 [binder, in hydras.Epsilon0.E0]
    +alpha:40 [binder, in hydras.Epsilon0.Paths]
    +alpha:403 [binder, in hydras.Epsilon0.Paths]
    +alpha:405 [binder, in hydras.Epsilon0.T1]
    +alpha:406 [binder, in hydras.Epsilon0.T1]
    +alpha:407 [binder, in hydras.Epsilon0.Paths]
    +alpha:409 [binder, in hydras.Epsilon0.T1]
    +alpha:41 [binder, in hydras.Schutte.Correctness_E0]
    +alpha:41 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +alpha:41 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +alpha:41 [binder, in hydras.Epsilon0.L_alpha]
    +alpha:41 [binder, in hydras.Epsilon0.E0]
    +alpha:41 [binder, in hydras.Epsilon0.Hprime]
    +alpha:413 [binder, in hydras.Epsilon0.T1]
    +alpha:413 [binder, in hydras.Epsilon0.Paths]
    +alpha:418 [binder, in hydras.Epsilon0.T1]
    +alpha:419 [binder, in hydras.Epsilon0.T1]
    +alpha:419 [binder, in hydras.Epsilon0.Paths]
    +alpha:42 [binder, in hydras.Epsilon0.T1]
    +alpha:42 [binder, in hydras.Schutte.Correctness_E0]
    +alpha:42 [binder, in hydras.Epsilon0.F_alpha]
    +alpha:42 [binder, in hydras.Schutte.CNF]
    +alpha:42 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +alpha:42 [binder, in hydras.Epsilon0.Canon]
    +alpha:42 [binder, in hydras.Epsilon0.E0]
    +alpha:42 [binder, in hydras.Schutte.Addition]
    +alpha:420 [binder, in hydras.Epsilon0.T1]
    +alpha:423 [binder, in hydras.Epsilon0.Paths]
    +alpha:427 [binder, in hydras.Epsilon0.Paths]
    +alpha:43 [binder, in hydras.Schutte.Critical]
    +alpha:43 [binder, in hydras.Epsilon0.L_alpha]
    +alpha:43 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +alpha:431 [binder, in hydras.Epsilon0.Paths]
    +alpha:433 [binder, in hydras.Epsilon0.Paths]
    +alpha:437 [binder, in hydras.Epsilon0.Paths]
    +alpha:44 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +alpha:44 [binder, in hydras.Epsilon0.F_alpha]
    +alpha:44 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +alpha:44 [binder, in hydras.Epsilon0.Canon]
    +alpha:44 [binder, in hydras.Epsilon0.E0]
    +alpha:44 [binder, in hydras.Epsilon0.Paths]
    +alpha:443 [binder, in hydras.Epsilon0.Paths]
    +alpha:448 [binder, in hydras.Epsilon0.Paths]
    +alpha:45 [binder, in hydras.Epsilon0.T1]
    +alpha:45 [binder, in hydras.Epsilon0.Large_Sets]
    +alpha:45 [binder, in hydras.Schutte.Critical]
    +alpha:452 [binder, in hydras.Epsilon0.Paths]
    +alpha:453 [binder, in hydras.Gamma0.Gamma0]
    +alpha:454 [binder, in hydras.Epsilon0.Paths]
    +alpha:456 [binder, in hydras.Epsilon0.T1]
    +alpha:459 [binder, in hydras.Epsilon0.Paths]
    +alpha:46 [binder, in hydras.Schutte.Correctness_E0]
    +alpha:46 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +alpha:46 [binder, in hydras.Schutte.CNF]
    +alpha:46 [binder, in hydras.Schutte.AP]
    +alpha:46 [binder, in hydras.Epsilon0.E0]
    +alpha:460 [binder, in hydras.Gamma0.Gamma0]
    +alpha:462 [binder, in hydras.Epsilon0.Paths]
    +alpha:464 [binder, in hydras.Gamma0.Gamma0]
    +alpha:466 [binder, in hydras.Epsilon0.T1]
    +alpha:466 [binder, in hydras.Gamma0.Gamma0]
    +alpha:47 [binder, in hydras.Epsilon0.F_alpha]
    +alpha:47 [binder, in hydras.Schutte.AP]
    +alpha:47 [binder, in hydras.Epsilon0.L_alpha]
    +alpha:47 [binder, in hydras.Epsilon0.Canon]
    +alpha:47 [binder, in hydras.Epsilon0.E0]
    +alpha:470 [binder, in hydras.Epsilon0.Paths]
    +alpha:472 [binder, in hydras.Epsilon0.T1]
    +alpha:473 [binder, in hydras.Epsilon0.Paths]
    +alpha:474 [binder, in hydras.Epsilon0.T1]
    +alpha:475 [binder, in hydras.Epsilon0.Paths]
    +alpha:479 [binder, in hydras.Epsilon0.Paths]
    +alpha:48 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +alpha:48 [binder, in hydras.Schutte.CNF]
    +alpha:48 [binder, in hydras.Epsilon0.Large_Sets]
    +alpha:48 [binder, in hydras.Schutte.Critical]
    +alpha:48 [binder, in hydras.Epsilon0.Canon]
    +alpha:480 [binder, in hydras.Epsilon0.T1]
    +alpha:481 [binder, in hydras.Gamma0.Gamma0]
    +alpha:482 [binder, in hydras.Epsilon0.T1]
    +alpha:482 [binder, in hydras.Epsilon0.Paths]
    +alpha:484 [binder, in hydras.Epsilon0.T1]
    +alpha:486 [binder, in hydras.Epsilon0.T1]
    +alpha:486 [binder, in hydras.Epsilon0.Paths]
    +alpha:49 [binder, in hydras.Hydra.O2H]
    +alpha:49 [binder, in hydras.Epsilon0.F_alpha]
    +alpha:49 [binder, in hydras.Schutte.AP]
    +alpha:49 [binder, in hydras.Epsilon0.L_alpha]
    +alpha:49 [binder, in hydras.Epsilon0.E0]
    +alpha:49 [binder, in hydras.Epsilon0.Paths]
    +alpha:490 [binder, in hydras.Epsilon0.T1]
    +alpha:490 [binder, in hydras.Epsilon0.Paths]
    +alpha:492 [binder, in hydras.Gamma0.Gamma0]
    +alpha:494 [binder, in hydras.Epsilon0.Paths]
    +alpha:494 [binder, in hydras.Gamma0.Gamma0]
    +alpha:498 [binder, in hydras.Epsilon0.T1]
    +alpha:498 [binder, in hydras.Epsilon0.Paths]
    +alpha:499 [binder, in hydras.Gamma0.Gamma0]
    +alpha:5 [binder, in hydras.Gamma0.T2]
    +alpha:5 [binder, in gaia_hydras.GF_alpha]
    +alpha:5 [binder, in hydras.Schutte.CNF]
    +alpha:5 [binder, in hydras.Hydra.Battle_length]
    +alpha:5 [binder, in gaia_hydras.ON_gfinite]
    +alpha:50 [binder, in hydras.Hydra.O2H]
    +alpha:50 [binder, in hydras.Epsilon0.Canon]
    +alpha:50 [binder, in hydras.Epsilon0.E0]
    +alpha:502 [binder, in hydras.Epsilon0.Paths]
    +alpha:503 [binder, in hydras.Gamma0.Gamma0]
    +alpha:505 [binder, in hydras.Epsilon0.Paths]
    +alpha:507 [binder, in hydras.Gamma0.Gamma0]
    +alpha:51 [binder, in hydras.Schutte.CNF]
    +alpha:51 [binder, in hydras.Schutte.Critical]
    +alpha:51 [binder, in hydras.Schutte.AP]
    +alpha:51 [binder, in hydras.Schutte.Ordering_Functions]
    +alpha:510 [binder, in hydras.Epsilon0.Paths]
    +alpha:511 [binder, in hydras.Gamma0.Gamma0]
    +alpha:514 [binder, in hydras.Gamma0.Gamma0]
    +alpha:516 [binder, in hydras.Epsilon0.T1]
    +alpha:516 [binder, in hydras.Epsilon0.Paths]
    +alpha:517 [binder, in hydras.Gamma0.Gamma0]
    +alpha:52 [binder, in hydras.Epsilon0.F_alpha]
    +alpha:52 [binder, in hydras.Schutte.Critical]
    +alpha:52 [binder, in hydras.Epsilon0.Canon]
    +alpha:52 [binder, in hydras.Epsilon0.E0]
    +alpha:523 [binder, in hydras.Epsilon0.Paths]
    +alpha:524 [binder, in hydras.Epsilon0.T1]
    +alpha:525 [binder, in hydras.Epsilon0.T1]
    +alpha:526 [binder, in hydras.Epsilon0.Paths]
    +alpha:529 [binder, in hydras.Epsilon0.Paths]
    +alpha:53 [binder, in hydras.Schutte.Critical]
    +alpha:53 [binder, in hydras.Schutte.AP]
    +alpha:53 [binder, in hydras.Schutte.Addition]
    +alpha:532 [binder, in hydras.Epsilon0.Paths]
    +alpha:536 [binder, in hydras.Gamma0.Gamma0]
    +alpha:537 [binder, in hydras.Gamma0.Gamma0]
    +alpha:54 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +alpha:54 [binder, in hydras.Schutte.CNF]
    +alpha:54 [binder, in hydras.Epsilon0.Canon]
    +alpha:54 [binder, in hydras.Epsilon0.E0]
    +alpha:541 [binder, in hydras.Epsilon0.T1]
    +alpha:542 [binder, in hydras.Epsilon0.T1]
    +alpha:544 [binder, in hydras.Epsilon0.T1]
    +alpha:547 [binder, in hydras.Epsilon0.T1]
    +alpha:547 [binder, in hydras.Gamma0.Gamma0]
    +alpha:548 [binder, in hydras.Epsilon0.Paths]
    +alpha:549 [binder, in hydras.Epsilon0.T1]
    +alpha:55 [binder, in hydras.Epsilon0.Hessenberg]
    +alpha:55 [binder, in hydras.Schutte.AP]
    +alpha:55 [binder, in hydras.Epsilon0.Hprime]
    +alpha:55 [binder, in hydras.Epsilon0.Paths]
    +alpha:55 [binder, in hydras.Schutte.Addition]
    +alpha:550 [binder, in hydras.Gamma0.Gamma0]
    +alpha:551 [binder, in hydras.Epsilon0.T1]
    +alpha:552 [binder, in hydras.Epsilon0.Paths]
    +alpha:553 [binder, in hydras.Gamma0.Gamma0]
    +alpha:556 [binder, in hydras.Epsilon0.Paths]
    +alpha:558 [binder, in hydras.Epsilon0.T1]
    +alpha:56 [binder, in hydras.Epsilon0.F_alpha]
    +alpha:56 [binder, in hydras.Schutte.CNF]
    +alpha:56 [binder, in hydras.Epsilon0.Canon]
    +alpha:56 [binder, in hydras.Epsilon0.E0]
    +alpha:56 [binder, in hydras.Schutte.Addition]
    +alpha:561 [binder, in hydras.Epsilon0.Paths]
    +alpha:562 [binder, in hydras.Gamma0.Gamma0]
    +alpha:564 [binder, in hydras.Epsilon0.Paths]
    +alpha:568 [binder, in hydras.Epsilon0.T1]
    +alpha:569 [binder, in hydras.Epsilon0.Paths]
    +alpha:57 [binder, in hydras.Epsilon0.Hessenberg]
    +alpha:57 [binder, in hydras.Schutte.AP]
    +alpha:57 [binder, in hydras.Epsilon0.L_alpha]
    +alpha:57 [binder, in hydras.Epsilon0.E0]
    +alpha:573 [binder, in hydras.Epsilon0.Paths]
    +alpha:575 [binder, in hydras.Gamma0.Gamma0]
    +alpha:576 [binder, in hydras.Epsilon0.Paths]
    +alpha:576 [binder, in hydras.Gamma0.Gamma0]
    +alpha:58 [binder, in hydras.Epsilon0.F_alpha]
    +alpha:58 [binder, in hydras.Schutte.CNF]
    +alpha:58 [binder, in hydras.Epsilon0.L_alpha]
    +alpha:58 [binder, in hydras.Epsilon0.Paths]
    +alpha:581 [binder, in hydras.Gamma0.Gamma0]
    +alpha:582 [binder, in hydras.Epsilon0.T1]
    +alpha:582 [binder, in hydras.Epsilon0.Paths]
    +alpha:585 [binder, in hydras.Epsilon0.T1]
    +alpha:586 [binder, in hydras.Epsilon0.Paths]
    +alpha:589 [binder, in hydras.Epsilon0.Paths]
    +alpha:59 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +alpha:59 [binder, in hydras.Schutte.AP]
    +alpha:59 [binder, in hydras.Epsilon0.L_alpha]
    +alpha:59 [binder, in hydras.Epsilon0.E0]
    +alpha:59 [binder, in hydras.Schutte.Addition]
    +alpha:6 [binder, in hydras.Schutte.Correctness_E0]
    +alpha:6 [binder, in gaia_hydras.GHprime]
    +alpha:6 [binder, in hydras.OrdinalNotations.ON_Finite]
    +alpha:6 [binder, in hydras.Epsilon0.E0]
    +alpha:6 [binder, in gaia_hydras.GL_alpha]
    +alpha:6 [binder, in hydras.Schutte.Addition]
    +alpha:60 [binder, in hydras.Schutte.AP]
    +alpha:60 [binder, in hydras.Epsilon0.E0]
    +alpha:60 [binder, in hydras.Epsilon0.Hprime]
    +alpha:600 [binder, in hydras.Gamma0.Gamma0]
    +alpha:602 [binder, in hydras.Gamma0.Gamma0]
    +alpha:603 [binder, in hydras.Gamma0.Gamma0]
    +alpha:61 [binder, in hydras.Hydra.O2H]
    +alpha:61 [binder, in hydras.Epsilon0.Hessenberg]
    +alpha:61 [binder, in hydras.Schutte.CNF]
    +alpha:61 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:62 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +alpha:62 [binder, in hydras.Epsilon0.E0]
    +alpha:62 [binder, in hydras.Epsilon0.Paths]
    +alpha:621 [binder, in hydras.Gamma0.Gamma0]
    +alpha:623 [binder, in hydras.Gamma0.Gamma0]
    +alpha:625 [binder, in hydras.Gamma0.Gamma0]
    +alpha:629 [binder, in hydras.Gamma0.Gamma0]
    +alpha:63 [binder, in hydras.Schutte.Correctness_E0]
    +alpha:63 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +alpha:63 [binder, in hydras.Epsilon0.F_alpha]
    +alpha:63 [binder, in hydras.Epsilon0.Hessenberg]
    +alpha:63 [binder, in hydras.Schutte.AP]
    +alpha:633 [binder, in hydras.Epsilon0.T1]
    +alpha:635 [binder, in hydras.Epsilon0.T1]
    +alpha:638 [binder, in hydras.Epsilon0.T1]
    +alpha:64 [binder, in hydras.Epsilon0.F_alpha]
    +alpha:64 [binder, in hydras.Schutte.AP]
    +alpha:64 [binder, in hydras.Schutte.Addition]
    +alpha:640 [binder, in hydras.Epsilon0.T1]
    +alpha:640 [binder, in hydras.Gamma0.Gamma0]
    +alpha:642 [binder, in hydras.Epsilon0.T1]
    +alpha:644 [binder, in hydras.Gamma0.Gamma0]
    +alpha:645 [binder, in hydras.Gamma0.Gamma0]
    +alpha:646 [binder, in hydras.Epsilon0.T1]
    +alpha:646 [binder, in hydras.Gamma0.Gamma0]
    +alpha:647 [binder, in hydras.Epsilon0.T1]
    +alpha:649 [binder, in hydras.Epsilon0.T1]
    +alpha:65 [binder, in hydras.Schutte.Correctness_E0]
    +alpha:65 [binder, in hydras.Epsilon0.E0]
    +alpha:65 [binder, in hydras.Epsilon0.Hprime]
    +alpha:650 [binder, in hydras.Epsilon0.T1]
    +alpha:652 [binder, in hydras.Epsilon0.T1]
    +alpha:654 [binder, in hydras.Epsilon0.T1]
    +alpha:655 [binder, in hydras.Epsilon0.T1]
    +alpha:656 [binder, in hydras.Epsilon0.T1]
    +alpha:657 [binder, in hydras.Epsilon0.T1]
    +alpha:66 [binder, in hydras.Schutte.AP]
    +alpha:66 [binder, in hydras.OrdinalNotations.ON_Generic]
    +alpha:66 [binder, in hydras.Epsilon0.E0]
    +alpha:660 [binder, in hydras.Epsilon0.T1]
    +alpha:661 [binder, in hydras.Epsilon0.T1]
    +alpha:664 [binder, in hydras.Epsilon0.T1]
    +alpha:667 [binder, in hydras.Epsilon0.T1]
    +alpha:669 [binder, in hydras.Epsilon0.T1]
    +alpha:67 [binder, in hydras.Schutte.Correctness_E0]
    +alpha:67 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +alpha:67 [binder, in hydras.Epsilon0.E0]
    +alpha:67 [binder, in hydras.Schutte.Addition]
    +alpha:671 [binder, in hydras.Epsilon0.T1]
    +alpha:673 [binder, in hydras.Epsilon0.T1]
    +alpha:677 [binder, in hydras.Epsilon0.T1]
    +alpha:68 [binder, in hydras.Epsilon0.Hessenberg]
    +alpha:68 [binder, in hydras.Epsilon0.E0]
    +alpha:68 [binder, in hydras.Epsilon0.Hprime]
    +alpha:681 [binder, in hydras.Epsilon0.T1]
    +alpha:683 [binder, in hydras.Epsilon0.T1]
    +alpha:688 [binder, in hydras.Epsilon0.T1]
    +alpha:69 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +alpha:69 [binder, in hydras.Schutte.AP]
    +alpha:69 [binder, in hydras.Epsilon0.E0]
    +alpha:692 [binder, in hydras.Epsilon0.T1]
    +alpha:694 [binder, in hydras.Gamma0.Gamma0]
    +alpha:7 [binder, in hydras.Schutte.Correctness_E0]
    +alpha:7 [binder, in gaia_hydras.T1Choice]
    +alpha:7 [binder, in hydras.Hydra.O2H]
    +alpha:7 [binder, in gaia_hydras.GF_alpha]
    +alpha:7 [binder, in hydras.Schutte.CNF]
    +alpha:7 [binder, in hydras.Schutte.AP]
    +alpha:7 [binder, in hydras.Hydra.Battle_length]
    +alpha:7 [binder, in hydras.Epsilon0.E0]
    +alpha:7 [binder, in hydras.Epsilon0.Paths]
    +alpha:7 [binder, in gaia_hydras.GHessenberg]
    +alpha:70 [binder, in hydras.Epsilon0.T1]
    +alpha:70 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +alpha:70 [binder, in hydras.Epsilon0.Hessenberg]
    +alpha:70 [binder, in hydras.Schutte.AP]
    +alpha:70 [binder, in hydras.Epsilon0.Paths]
    +alpha:700 [binder, in hydras.Epsilon0.T1]
    +alpha:700 [binder, in hydras.Gamma0.Gamma0]
    +alpha:702 [binder, in hydras.Gamma0.Gamma0]
    +alpha:704 [binder, in hydras.Epsilon0.T1]
    +alpha:704 [binder, in hydras.Gamma0.Gamma0]
    +alpha:705 [binder, in hydras.Epsilon0.T1]
    +alpha:709 [binder, in hydras.Epsilon0.T1]
    +alpha:71 [binder, in hydras.Schutte.Correctness_E0]
    +alpha:71 [binder, in hydras.Epsilon0.E0]
    +alpha:710 [binder, in hydras.Gamma0.Gamma0]
    +alpha:713 [binder, in hydras.Epsilon0.T1]
    +alpha:713 [binder, in hydras.Gamma0.Gamma0]
    +alpha:715 [binder, in hydras.Gamma0.Gamma0]
    +alpha:716 [binder, in hydras.Epsilon0.T1]
    +alpha:719 [binder, in hydras.Epsilon0.T1]
    +alpha:72 [binder, in hydras.Schutte.AP]
    +alpha:72 [binder, in hydras.Epsilon0.Paths]
    +alpha:72 [binder, in hydras.Schutte.Addition]
    +alpha:73 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +alpha:73 [binder, in hydras.Schutte.AP]
    +alpha:73 [binder, in hydras.Epsilon0.E0]
    +alpha:74 [binder, in hydras.Schutte.Correctness_E0]
    +alpha:74 [binder, in hydras.Schutte.AP]
    +alpha:74 [binder, in hydras.Epsilon0.Paths]
    +alpha:740 [binder, in hydras.Epsilon0.T1]
    +alpha:75 [binder, in hydras.Epsilon0.E0]
    +alpha:76 [binder, in hydras.Epsilon0.Hessenberg]
    +alpha:76 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +alpha:77 [binder, in hydras.Schutte.Correctness_E0]
    +alpha:77 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +alpha:77 [binder, in hydras.Epsilon0.Canon]
    +alpha:77 [binder, in hydras.Epsilon0.E0]
    +alpha:78 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +alpha:78 [binder, in hydras.Epsilon0.E0]
    +alpha:8 [binder, in hydras.Hydra.O2H]
    +alpha:8 [binder, in gaia_hydras.GF_alpha]
    +alpha:8 [binder, in hydras.Schutte.AP]
    +alpha:8 [binder, in gaia_hydras.ON_gfinite]
    +alpha:8 [binder, in hydras.Epsilon0.Canon]
    +alpha:8 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:8 [binder, in hydras.OrdinalNotations.ON_Finite]
    +alpha:8 [binder, in hydras.Epsilon0.E0]
    +alpha:8 [binder, in gaia_hydras.GL_alpha]
    +alpha:80 [binder, in hydras.Epsilon0.Hessenberg]
    +alpha:80 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +alpha:80 [binder, in hydras.Epsilon0.Canon]
    +alpha:80 [binder, in hydras.Epsilon0.E0]
    +alpha:81 [binder, in hydras.Schutte.Critical]
    +alpha:82 [binder, in hydras.Schutte.Critical]
    +alpha:82 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +alpha:82 [binder, in hydras.Epsilon0.Paths]
    +alpha:83 [binder, in hydras.Schutte.Critical]
    +alpha:83 [binder, in hydras.Epsilon0.Canon]
    +alpha:83 [binder, in hydras.Epsilon0.E0]
    +alpha:83 [binder, in hydras.Schutte.Ordering_Functions]
    +alpha:84 [binder, in hydras.Hydra.O2H]
    +alpha:84 [binder, in hydras.Schutte.Critical]
    +alpha:84 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +alpha:84 [binder, in hydras.Epsilon0.Paths]
    +alpha:85 [binder, in hydras.Schutte.Critical]
    +alpha:85 [binder, in hydras.Epsilon0.Canon]
    +alpha:85 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:86 [binder, in hydras.Gamma0.T2]
    +alpha:86 [binder, in hydras.Epsilon0.E0]
    +alpha:86 [binder, in hydras.Epsilon0.Paths]
    +alpha:87 [binder, in hydras.Epsilon0.F_alpha]
    +alpha:87 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:88 [binder, in hydras.Hydra.O2H]
    +alpha:88 [binder, in hydras.Epsilon0.F_alpha]
    +alpha:89 [binder, in hydras.Epsilon0.F_alpha]
    +alpha:89 [binder, in hydras.Epsilon0.E0]
    +alpha:89 [binder, in hydras.Epsilon0.Paths]
    +alpha:9 [binder, in hydras.Epsilon0.T1]
    +alpha:9 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +alpha:9 [binder, in gaia_hydras.GF_alpha]
    +alpha:9 [binder, in hydras.OrdinalNotations.ON_O]
    +alpha:9 [binder, in hydras.Schutte.CNF]
    +alpha:9 [binder, in hydras.Epsilon0.Large_Sets]
    +alpha:9 [binder, in hydras.Schutte.Critical]
    +alpha:9 [binder, in hydras.OrdinalNotations.ON_mult]
    +alpha:9 [binder, in hydras.OrdinalNotations.ON_plus]
    +alpha:9 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:9 [binder, in hydras.Epsilon0.E0]
    +alpha:9 [binder, in hydras.Schutte.Addition]
    +alpha:90 [binder, in hydras.OrdinalNotations.ON_Generic]
    +alpha:91 [binder, in hydras.Epsilon0.T1]
    +alpha:91 [binder, in hydras.Epsilon0.F_alpha]
    +alpha:92 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +alpha:92 [binder, in hydras.Epsilon0.Canon]
    +alpha:92 [binder, in hydras.Epsilon0.E0]
    +alpha:92 [binder, in hydras.Epsilon0.Hprime]
    +alpha:93 [binder, in hydras.Epsilon0.F_alpha]
    +alpha:94 [binder, in hydras.Epsilon0.F_alpha]
    +alpha:94 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +alpha:94 [binder, in hydras.Schutte.Schutte_basics]
    +alpha:94 [binder, in hydras.Epsilon0.Paths]
    +alpha:95 [binder, in hydras.Epsilon0.F_alpha]
    +alpha:95 [binder, in hydras.Epsilon0.E0]
    +alpha:95 [binder, in hydras.Epsilon0.Hprime]
    +alpha:96 [binder, in hydras.Gamma0.T2]
    +alpha:96 [binder, in hydras.Epsilon0.Hessenberg]
    +alpha:96 [binder, in hydras.Epsilon0.Paths]
    +alpha:96 [binder, in hydras.Gamma0.Gamma0]
    +alpha:97 [binder, in hydras.Epsilon0.T1]
    +alpha:97 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +alpha:97 [binder, in hydras.Epsilon0.Paths]
    +alpha:98 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +alpha:98 [binder, in hydras.Epsilon0.Canon]
    +alpha:98 [binder, in hydras.Epsilon0.E0]
    +alpha:99 [binder, in hydras.Gamma0.T2]
    +alpha:99 [binder, in hydras.Prelude.Comparable]
    +Alt [module, in hydras.Epsilon0.Epsilon0rpo]
    +Alt [module, in hydras.MoreAck.Ack]
    +Alt [module, in additions.Demo]
    +Alt [module, in hydras.MoreAck.PrimRecExamples]
    +Alt [module, in hydras.Hydra.Hydra_Definitions]
    +alt_double_ok [lemma, in additions.Demo]
    +Alt.Ack [definition, in hydras.MoreAck.Ack]
    +Alt.addIsPR [instance, in hydras.MoreAck.PrimRecExamples]
    +Alt.addIsPR' [instance, in hydras.MoreAck.PrimRecExamples]
    +Alt.add' [definition, in hydras.MoreAck.PrimRecExamples]
    +Alt.add'_ok [lemma, in hydras.MoreAck.PrimRecExamples]
    +Alt.compose_01 [lemma, in hydras.MoreAck.PrimRecExamples]
    +Alt.const0_NIsPR [instance, in hydras.MoreAck.PrimRecExamples]
    +Alt.double [definition, in additions.Demo]
    +Alt.Eps0_rpo [module, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_alg [module, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_prec.prec_transitive [lemma, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_prec.prec_antisym [lemma, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_prec.prec_dec [lemma, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_prec.status [definition, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_prec.Mul [constructor, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_prec.Lex [constructor, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_prec.status_type [inductive, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_prec.prec [definition, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_prec.A [definition, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_prec [module, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_sig.arity [definition, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_sig.Free [constructor, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_sig.C [constructor, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_sig.AC [constructor, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_sig.arity_type [inductive, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_sig.eq_symbol_dec [lemma, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_sig.symb [definition, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_sig.ord_cons [constructor, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_sig.ord_zero [constructor, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_sig.nat_S [constructor, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_sig.nat_0 [constructor, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_sig.symb0 [inductive, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_sig [module, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.hnode [constructor, in hydras.Hydra.Hydra_Definitions]
    +Alt.Hydra [inductive, in hydras.Hydra.Hydra_Definitions]
    +Alt.lt_inc_rpo_0 [lemma, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.lt_subterm2 [lemma, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.lt_subterm1 [lemma, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.nat_2_term_mono [lemma, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.nat_lt_cons [lemma, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.nat_2_term [definition, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.nf_Acc [lemma, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.nf_Wf [lemma, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.pi2_5IsPR [instance, in hydras.MoreAck.PrimRecExamples]
    +Alt.predIsPR [instance, in hydras.MoreAck.PrimRecExamples]
    +Alt.rpo_trans [lemma, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.R_inc_rpo [lemma, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.R1 [lemma, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.R2 [lemma, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.R3 [lemma, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.R4 [lemma, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.succIsPR [instance, in hydras.MoreAck.PrimRecExamples]
    +Alt.transfinite_recursor [definition, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.transfinite_recursor_lt [definition, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.T1_size3 [lemma, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.T1_size2 [lemma, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.T1_size1 [lemma, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.T1_size [definition, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.T1_2_term [definition, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Vars [module, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Vars.empty_set [inductive, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Vars.eq_variable_dec [lemma, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Vars.var [definition, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.well_founded.R [variable, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.well_founded [section, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.well_founded_rpo [lemma, in hydras.Epsilon0.Epsilon0rpo]
    +Alt.xpred [definition, in hydras.MoreAck.PrimRecExamples]
    +Alt.zeroIsPR [instance, in hydras.MoreAck.PrimRecExamples]
    +Alt2 [module, in hydras.MoreAck.Ack]
    +Alt2.Ack [definition, in hydras.MoreAck.Ack]
    +Alt2.test1 [definition, in hydras.MoreAck.Ack]
    +Alt2.test2 [definition, in hydras.MoreAck.Ack]
    +Alt3 [module, in hydras.MoreAck.Ack]
    +Alt3.ack [definition, in hydras.MoreAck.Ack]
    +AM [library]
    +AM_power_Ok [lemma, in additions.AM]
    +AM_power [definition, in additions.AM]
    +AM:105 [binder, in additions.Pow]
    +AM:96 [binder, in additions.Pow_variant]
    +andE1 [lemma, in hydras.Ackermann.LNN]
    +andE1 [lemma, in hydras.Ackermann.LNT]
    +andE1 [lemma, in hydras.Ackermann.folLogic]
    +andE2 [lemma, in hydras.Ackermann.LNN]
    +andE2 [lemma, in hydras.Ackermann.LNT]
    +andE2 [lemma, in hydras.Ackermann.folLogic]
    +andH [definition, in hydras.Ackermann.fol]
    +andI [lemma, in hydras.Ackermann.LNN]
    +andI [lemma, in hydras.Ackermann.LNT]
    +andI [lemma, in hydras.Ackermann.folLogic]
    +andRel [definition, in hydras.Ackermann.primRec]
    +andRelPR [lemma, in hydras.Ackermann.primRec]
    +andSym [lemma, in hydras.Ackermann.LNN]
    +andSym [lemma, in hydras.Ackermann.LNT]
    +andSym [lemma, in hydras.Ackermann.folLogic]
    +anonymous0:360 [binder, in additions.Euclidean_Chains]
    +anonymous0:366 [binder, in additions.Euclidean_Chains]
    +anonymous0:372 [binder, in additions.Euclidean_Chains]
    +anonymous0:379 [binder, in additions.Euclidean_Chains]
    +anonymous:359 [binder, in additions.Euclidean_Chains]
    +anonymous:365 [binder, in additions.Euclidean_Chains]
    +anonymous:371 [binder, in additions.Euclidean_Chains]
    +anonymous:378 [binder, in additions.Euclidean_Chains]
    +anonymous:386 [binder, in additions.Euclidean_Chains]
    +anonymous:392 [binder, in additions.Euclidean_Chains]
    +anonymous:399 [binder, in additions.Euclidean_Chains]
    +answer [inductive, in hydras.Epsilon0.Large_Sets_Examples]
    +any_chain_parametric [definition, in additions.Addition_Chains]
    +ap [inductive, in hydras.Epsilon0.T1]
    +ap [definition, in hydras.OrdinalNotations.ON_Omega2]
    +ap [inductive, in hydras.Gamma0.T2]
    +AP [definition, in hydras.Schutte.AP]
    +AP [library]
    +apply [constructor, in hydras.Ackermann.fol]
    +approx [definition, in hydras.Epsilon0.Canon]
    +approx_ok [lemma, in hydras.Epsilon0.Canon]
    +ap_plusR [lemma, in hydras.Epsilon0.T1]
    +ap_plus [lemma, in hydras.Epsilon0.T1]
    +ap_intro [constructor, in hydras.Epsilon0.T1]
    +ap_cases [lemma, in hydras.OrdinalNotations.ON_Omega2]
    +ap_intro [constructor, in hydras.Gamma0.T2]
    +AP_plus_AP [lemma, in hydras.Schutte.AP]
    +AP_to_phi0 [lemma, in hydras.Schutte.AP]
    +AP_phi0 [lemma, in hydras.Schutte.AP]
    +AP_o_segment [lemma, in hydras.Schutte.AP]
    +AP_closed [lemma, in hydras.Schutte.AP]
    +AP_sup [lemma, in hydras.Schutte.AP]
    +AP_closed.denM [variable, in hydras.Schutte.AP]
    +AP_closed.inhM [variable, in hydras.Schutte.AP]
    +AP_closed.OM [variable, in hydras.Schutte.AP]
    +AP_closed.M [variable, in hydras.Schutte.AP]
    +AP_closed [section, in hydras.Schutte.AP]
    +AP_unbounded [lemma, in hydras.Schutte.AP]
    +AP_unbounded_0 [lemma, in hydras.Schutte.AP]
    +AP_Unbounded.ksi_fixed.n [variable, in hydras.Schutte.AP]
    +AP_Unbounded.ksi_fixed.lt_ksi [variable, in hydras.Schutte.AP]
    +AP_Unbounded.ksi_fixed.ksi [variable, in hydras.Schutte.AP]
    +AP_Unbounded.ksi_fixed [section, in hydras.Schutte.AP]
    +AP_Unbounded.beta [variable, in hydras.Schutte.AP]
    +AP_Unbounded.seq [variable, in hydras.Schutte.AP]
    +AP_Unbounded.alpha [variable, in hydras.Schutte.AP]
    +AP_Unbounded [section, in hydras.Schutte.AP]
    +AP_mult_fin_r_closed [lemma, in hydras.Schutte.AP]
    +AP_mult_Sn_closed [lemma, in hydras.Schutte.AP]
    +AP_plus_closed [lemma, in hydras.Schutte.AP]
    +AP_finite_eq_one [lemma, in hydras.Schutte.AP]
    +AP_omega [lemma, in hydras.Schutte.AP]
    +AP_one [lemma, in hydras.Schutte.AP]
    +ap_ref [lemma, in gaia_hydras.T1Bridge]
    +Arith_lemmas [section, in hydras.Prelude.More_Arith]
    +arityF [projection, in hydras.Ackermann.fol]
    +arityR [projection, in hydras.Ackermann.fol]
    +assoc [projection, in hydras.Prelude.STDPP_compat]
    +Assoc [record, in hydras.Prelude.STDPP_compat]
    +assoc [constructor, in hydras.Prelude.STDPP_compat]
    +Assoc [inductive, in hydras.Prelude.STDPP_compat]
    +assoc:105 [binder, in additions.fib]
    +assoc:112 [binder, in additions.fib]
    +assoc:123 [binder, in additions.fib]
    +atomic [constructor, in hydras.Ackermann.fol]
    +aux:10 [binder, in additions.Trace_exercise]
    +AXM [constructor, in hydras.Ackermann.folProof]
    +Axm [lemma, in hydras.Ackermann.LNN]
    +Axm [lemma, in hydras.Ackermann.LNT]
    +Axm [lemma, in hydras.Ackermann.folLogic]
    +AxmEq4 [definition, in hydras.Ackermann.folProof]
    +AxmEq5 [definition, in hydras.Ackermann.folProof]
    +Axm:120 [binder, in hydras.Ackermann.LNN2LNT]
    +axm:126 [binder, in hydras.Ackermann.LNN2LNT]
    +Axm:128 [binder, in hydras.Ackermann.LNN2LNT]
    +Axm:141 [binder, in hydras.Ackermann.LNN2LNT]
    +Axm:145 [binder, in hydras.Ackermann.LNN2LNT]
    +Axm:15 [binder, in Goedel.goedel2]
    +Axm:19 [binder, in Goedel.goedel2]
    +Axm:44 [binder, in Goedel.rosserPA]
    +Axm:47 [binder, in Goedel.rosserPA]
    +axp_scheme_length1 [lemma, in additions.Addition_Chains]
    +axp_correct [lemma, in additions.Addition_Chains]
    +axp_scheme [definition, in additions.Addition_Chains]
    +AX1 [axiom, in hydras.Schutte.Schutte_basics]
    +AX2 [axiom, in hydras.Schutte.Schutte_basics]
    +AX3 [axiom, in hydras.Schutte.Schutte_basics]
    +ax:252 [binder, in additions.Addition_Chains]
    +A_def.m [variable, in hydras.OrdinalNotations.ON_Omega2]
    +A_def [section, in hydras.OrdinalNotations.ON_Omega2]
    +A_full [lemma, in hydras.Schutte.Critical]
    +A_Cr [lemma, in hydras.Schutte.Critical]
    +A_ [definition, in hydras.Schutte.Critical]
    +A_given.LtA [variable, in hydras.solutions_exercises.MultisetWf]
    +A_given.A [variable, in hydras.solutions_exercises.MultisetWf]
    +A_given [section, in hydras.solutions_exercises.MultisetWf]
    +A_node [constructor, in additions.Addition_Chains]
    +A_closed [lemma, in hydras.Schutte.Ordering_Functions]
    +A_denum [lemma, in hydras.Schutte.Ordering_Functions]
    +a'':44 [binder, in hydras.Hydra.BigBattle]
    +a':1022 [binder, in gaia_hydras.nfwfgaia]
    +a':11 [binder, in hydras.Prelude.Simple_LexProd]
    +a':1150 [binder, in gaia_hydras.nfwfgaia]
    +a':116 [binder, in hydras.Epsilon0.T1]
    +a':1297 [binder, in gaia_hydras.nfwfgaia]
    +a':130 [binder, in gaia_hydras.nfwfgaia]
    +a':1301 [binder, in gaia_hydras.nfwfgaia]
    +a':1305 [binder, in gaia_hydras.nfwfgaia]
    +a':1309 [binder, in gaia_hydras.nfwfgaia]
    +a':1335 [binder, in gaia_hydras.nfwfgaia]
    +a':1381 [binder, in gaia_hydras.nfwfgaia]
    +a':1391 [binder, in gaia_hydras.nfwfgaia]
    +a':1419 [binder, in gaia_hydras.nfwfgaia]
    +a':1425 [binder, in gaia_hydras.nfwfgaia]
    +a':1433 [binder, in gaia_hydras.nfwfgaia]
    +a':1497 [binder, in gaia_hydras.nfwfgaia]
    +a':1505 [binder, in gaia_hydras.nfwfgaia]
    +a':153 [binder, in hydras.rpo.more_list]
    +a':1548 [binder, in gaia_hydras.nfwfgaia]
    +a':1582 [binder, in gaia_hydras.nfwfgaia]
    +a':1606 [binder, in gaia_hydras.nfwfgaia]
    +a':1615 [binder, in gaia_hydras.nfwfgaia]
    +a':1624 [binder, in gaia_hydras.nfwfgaia]
    +a':1632 [binder, in gaia_hydras.nfwfgaia]
    +a':164 [binder, in hydras.Epsilon0.T1]
    +a':1688 [binder, in gaia_hydras.nfwfgaia]
    +a':169 [binder, in hydras.rpo.rpo]
    +a':1694 [binder, in gaia_hydras.nfwfgaia]
    +a':173 [binder, in gaia_hydras.nfwfgaia]
    +a':175 [binder, in hydras.Epsilon0.T1]
    +a':18 [binder, in hydras.Epsilon0.Hessenberg]
    +a':189 [binder, in hydras.rpo.rpo]
    +a':191 [binder, in hydras.rpo.rpo]
    +a':2063 [binder, in gaia_hydras.nfwfgaia]
    +a':2077 [binder, in gaia_hydras.nfwfgaia]
    +a':2082 [binder, in gaia_hydras.nfwfgaia]
    +a':22 [binder, in hydras.Schutte.Correctness_E0]
    +a':222 [binder, in hydras.Epsilon0.T1]
    +a':224 [binder, in gaia_hydras.nfwfgaia]
    +a':228 [binder, in hydras.Epsilon0.T1]
    +a':23 [binder, in hydras.Hydra.BigBattle]
    +a':230 [binder, in gaia_hydras.nfwfgaia]
    +a':237 [binder, in hydras.rpo.rpo]
    +a':24 [binder, in hydras.Epsilon0.Hessenberg]
    +a':24 [binder, in additions.Monoid_instances]
    +a':240 [binder, in gaia_hydras.nfwfgaia]
    +a':250 [binder, in hydras.rpo.rpo]
    +a':255 [binder, in hydras.rpo.rpo]
    +a':256 [binder, in hydras.Epsilon0.T1]
    +a':257 [binder, in gaia_hydras.nfwfgaia]
    +a':300 [binder, in hydras.Gamma0.Gamma0]
    +a':307 [binder, in hydras.rpo.rpo]
    +a':308 [binder, in hydras.rpo.rpo]
    +a':32 [binder, in hydras.Hydra.BigBattle]
    +a':33 [binder, in hydras.Epsilon0.T1]
    +a':33 [binder, in hydras.Gamma0.Gamma0]
    +a':34 [binder, in hydras.Schutte.PartialFun]
    +a':346 [binder, in hydras.Epsilon0.T1]
    +a':35 [binder, in hydras.Epsilon0.Hessenberg]
    +a':358 [binder, in hydras.Epsilon0.T1]
    +a':364 [binder, in hydras.Epsilon0.T1]
    +a':378 [binder, in hydras.Epsilon0.T1]
    +a':388 [binder, in hydras.Epsilon0.T1]
    +a':40 [binder, in hydras.Hydra.BigBattle]
    +a':41 [binder, in hydras.Epsilon0.Hessenberg]
    +a':428 [binder, in hydras.Epsilon0.T1]
    +a':429 [binder, in gaia_hydras.nfwfgaia]
    +a':439 [binder, in hydras.Epsilon0.T1]
    +a':44 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +a':44 [binder, in hydras.Schutte.PartialFun]
    +a':48 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +a':49 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +a':51 [binder, in hydras.Epsilon0.Hessenberg]
    +a':52 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +a':53 [binder, in hydras.Epsilon0.T1]
    +a':53 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +a':534 [binder, in hydras.Epsilon0.T1]
    +a':538 [binder, in hydras.Ackermann.primRec]
    +a':56 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +a':56 [binder, in hydras.Hydra.BigBattle]
    +a':57 [binder, in hydras.Prelude.Sort_spec]
    +a':60 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +a':67 [binder, in hydras.Epsilon0.T1]
    +a':69 [binder, in gaia_hydras.T1Bridge]
    +a':725 [binder, in hydras.Epsilon0.T1]
    +a':74 [binder, in hydras.Epsilon0.T1]
    +a':74 [binder, in hydras.rpo.rpo]
    +a':75 [binder, in gaia_hydras.T1Bridge]
    +a':789 [binder, in gaia_hydras.nfwfgaia]
    +a':81 [binder, in hydras.Gamma0.T2]
    +a':846 [binder, in gaia_hydras.nfwfgaia]
    +a':869 [binder, in gaia_hydras.nfwfgaia]
    +a':896 [binder, in gaia_hydras.nfwfgaia]
    +a':900 [binder, in gaia_hydras.nfwfgaia]
    +a':906 [binder, in gaia_hydras.nfwfgaia]
    +a':914 [binder, in gaia_hydras.nfwfgaia]
    +a':942 [binder, in gaia_hydras.nfwfgaia]
    +a':990 [binder, in gaia_hydras.nfwfgaia]
    +a0:17 [binder, in hydras.Schutte.Well_Orders]
    +a0:191 [binder, in hydras.Ackermann.cPair]
    +a0:194 [binder, in hydras.Ackermann.cPair]
    +a0:198 [binder, in hydras.Ackermann.cPair]
    +a0:221 [binder, in hydras.Ackermann.cPair]
    +a0:225 [binder, in hydras.Ackermann.cPair]
    +a0:229 [binder, in hydras.Ackermann.cPair]
    +a0:233 [binder, in hydras.Ackermann.cPair]
    +a0:236 [binder, in hydras.Ackermann.cPair]
    +a0:238 [binder, in hydras.Ackermann.cPair]
    +a0:240 [binder, in hydras.Ackermann.cPair]
    +a0:242 [binder, in hydras.Ackermann.cPair]
    +a0:301 [binder, in hydras.Ackermann.folProp]
    +a0:308 [binder, in hydras.Ackermann.folProp]
    +a0:317 [binder, in hydras.Ackermann.folProp]
    +a0:324 [binder, in hydras.Ackermann.folProp]
    +a0:333 [binder, in hydras.Ackermann.folProp]
    +a0:340 [binder, in hydras.Ackermann.folProp]
    +a0:349 [binder, in hydras.Ackermann.folProp]
    +a0:356 [binder, in hydras.Ackermann.folProp]
    +a0:44 [binder, in hydras.Ackermann.LNN2LNT]
    +a0:531 [binder, in hydras.Ackermann.primRec]
    +a0:533 [binder, in hydras.Ackermann.primRec]
    +A1_A2 [lemma, in hydras.Schutte.Ordering_Functions]
    +a1:105 [binder, in hydras.rpo.more_list]
    +a1:113 [binder, in hydras.rpo.more_list]
    +A1:114 [binder, in hydras.Schutte.Ordering_Functions]
    +a1:122 [binder, in hydras.Prelude.Merge_Sort]
    +a1:130 [binder, in hydras.Prelude.Merge_Sort]
    +a1:1360 [binder, in hydras.Ackermann.codeSubFormula]
    +a1:137 [binder, in hydras.rpo.more_list]
    +a1:146 [binder, in hydras.rpo.more_list]
    +a1:156 [binder, in hydras.rpo.more_list]
    +a1:165 [binder, in hydras.rpo.more_list]
    +a1:172 [binder, in hydras.rpo.more_list]
    +a1:180 [binder, in hydras.rpo.more_list]
    +a1:188 [binder, in hydras.rpo.more_list]
    +a1:192 [binder, in hydras.Ackermann.cPair]
    +a1:195 [binder, in hydras.Ackermann.cPair]
    +a1:199 [binder, in hydras.Ackermann.cPair]
    +a1:2 [binder, in hydras.rpo.decidable_set]
    +a1:20 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +a1:203 [binder, in hydras.rpo.more_list]
    +a1:212 [binder, in hydras.rpo.more_list]
    +a1:222 [binder, in hydras.rpo.more_list]
    +a1:240 [binder, in hydras.rpo.more_list]
    +a1:249 [binder, in hydras.rpo.more_list]
    +a1:261 [binder, in hydras.rpo.more_list]
    +a1:261 [binder, in hydras.Gamma0.Gamma0]
    +a1:27 [binder, in hydras.rpo.rpo]
    +a1:3 [binder, in hydras.rpo.rpo]
    +a1:35 [binder, in hydras.Gamma0.Gamma0]
    +a1:43 [binder, in hydras.Gamma0.Gamma0]
    +a1:51 [binder, in hydras.Gamma0.Gamma0]
    +a1:59 [binder, in hydras.Gamma0.Gamma0]
    +a1:67 [binder, in hydras.Gamma0.Gamma0]
    +a1:75 [binder, in hydras.Gamma0.Gamma0]
    +a1:79 [binder, in hydras.rpo.more_list]
    +a1:81 [binder, in hydras.rpo.list_permut]
    +a1:82 [binder, in hydras.Gamma0.Gamma0]
    +a1:89 [binder, in hydras.rpo.more_list]
    +a1:97 [binder, in hydras.rpo.more_list]
    +A2_A1 [lemma, in hydras.Schutte.Ordering_Functions]
    +a2:106 [binder, in hydras.rpo.more_list]
    +a2:114 [binder, in hydras.rpo.more_list]
    +A2:115 [binder, in hydras.Schutte.Ordering_Functions]
    +a2:124 [binder, in hydras.Prelude.Merge_Sort]
    +a2:132 [binder, in hydras.Prelude.Merge_Sort]
    +a2:1361 [binder, in hydras.Ackermann.codeSubFormula]
    +a2:138 [binder, in hydras.rpo.more_list]
    +a2:147 [binder, in hydras.rpo.more_list]
    +a2:157 [binder, in hydras.rpo.more_list]
    +a2:166 [binder, in hydras.rpo.more_list]
    +a2:173 [binder, in hydras.rpo.more_list]
    +a2:181 [binder, in hydras.rpo.more_list]
    +a2:189 [binder, in hydras.rpo.more_list]
    +a2:196 [binder, in hydras.Ackermann.cPair]
    +a2:200 [binder, in hydras.Ackermann.cPair]
    +a2:204 [binder, in hydras.rpo.more_list]
    +a2:21 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +a2:213 [binder, in hydras.rpo.more_list]
    +a2:223 [binder, in hydras.rpo.more_list]
    +a2:241 [binder, in hydras.rpo.more_list]
    +a2:250 [binder, in hydras.rpo.more_list]
    +a2:262 [binder, in hydras.rpo.more_list]
    +a2:262 [binder, in hydras.Gamma0.Gamma0]
    +a2:28 [binder, in hydras.rpo.rpo]
    +a2:3 [binder, in hydras.rpo.decidable_set]
    +a2:36 [binder, in hydras.Gamma0.Gamma0]
    +a2:4 [binder, in hydras.rpo.rpo]
    +a2:44 [binder, in hydras.Gamma0.Gamma0]
    +a2:52 [binder, in hydras.Gamma0.Gamma0]
    +a2:60 [binder, in hydras.Gamma0.Gamma0]
    +a2:68 [binder, in hydras.Gamma0.Gamma0]
    +a2:76 [binder, in hydras.Gamma0.Gamma0]
    +a2:80 [binder, in hydras.rpo.more_list]
    +a2:83 [binder, in hydras.rpo.list_permut]
    +a2:90 [binder, in hydras.rpo.more_list]
    +a2:98 [binder, in hydras.rpo.more_list]
    +a:1 [binder, in Goedel.PRrepresentable]
    +a:1 [binder, in gaia_hydras.T1Choice]
    +A:1 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +A:1 [binder, in hydras.Prelude.Iterates]
    +A:1 [binder, in hydras.solutions_exercises.predSuccUnicity]
    +a:1 [binder, in hydras.Hydra.O2H]
    +a:1 [binder, in additions.Compatibility]
    +A:1 [binder, in hydras.Prelude.Restriction]
    +A:1 [binder, in hydras.solutions_exercises.Limit_Infinity]
    +A:1 [binder, in hydras.rpo.more_list]
    +A:1 [binder, in hydras.Prelude.Comparable]
    +A:1 [binder, in hydras.OrdinalNotations.ON_O]
    +A:1 [binder, in additions.Pow_variant]
    +a:1 [binder, in Goedel.fixPoint]
    +A:1 [binder, in additions.Pow]
    +A:1 [binder, in hydras.Prelude.Sort_spec]
    +A:1 [binder, in hydras.Prelude.DecPreOrder]
    +a:1 [binder, in gaia_hydras.GCanon]
    +A:1 [binder, in hydras.Schutte.MoreEpsilonIota]
    +a:1 [binder, in hydras.solutions_exercises.OnCodeList]
    +A:1 [binder, in hydras.solutions_exercises.MultisetWf]
    +A:1 [binder, in additions.Wf_transparent]
    +a:1 [binder, in gaia_hydras.T1Bridge]
    +A:1 [binder, in hydras.Prelude.MoreOrders]
    +A:1 [binder, in additions.Monoid_def]
    +A:1 [binder, in additions.Trace_exercise]
    +A:1 [binder, in hydras.solutions_exercises.lt_succ_le]
    +a:1 [binder, in hydras.Ackermann.prLogic]
    +A:1 [binder, in hydras.OrdinalNotations.ON_mult]
    +A:1 [binder, in additions.Euclidean_Chains]
    +A:1 [binder, in hydras.OrdinalNotations.ON_plus]
    +A:1 [binder, in hydras.Prelude.STDPP_compat]
    +a:1 [binder, in hydras.solutions_exercises.MinPR]
    +a:1 [binder, in hydras.Ackermann.NNtheory]
    +a:1 [binder, in gaia_hydras.GLarge_Sets]
    +A:1 [binder, in hydras.OrdinalNotations.ON_Generic]
    +A:1 [binder, in gaia_hydras.onType]
    +A:1 [binder, in additions.Addition_Chains]
    +a:1 [binder, in gaia_hydras.GaiaToHydra]
    +A:1 [binder, in hydras.Schutte.Ordering_Functions]
    +a:1 [binder, in hydras.Gamma0.Gamma0]
    +A:1 [binder, in hydras.rpo.closure]
    +A:1 [binder, in hydras.rpo.rpo]
    +A:1 [binder, in hydras.Prelude.MoreVectors]
    +a:10 [binder, in gaia_hydras.T1Choice]
    +A:10 [binder, in additions.Pow_variant]
    +a:10 [binder, in Goedel.fixPoint]
    +A:10 [binder, in additions.Pow]
    +A:10 [binder, in hydras.Prelude.DecPreOrder]
    +a:10 [binder, in gaia_hydras.GCanon]
    +a:10 [binder, in hydras.Hydra.Hydra_Termination]
    +a:10 [binder, in hydras.Ackermann.prLogic]
    +a:10 [binder, in hydras.Schutte.Ordering_Functions]
    +A:10 [binder, in hydras.rpo.closure]
    +a:10 [binder, in hydras.Prelude.Simple_LexProd]
    +A:10 [binder, in hydras.Ackermann.expressible]
    +a:100 [binder, in hydras.rpo.more_list]
    +a:100 [binder, in hydras.Ackermann.cPair]
    +a:100 [binder, in gaia_hydras.nfwfgaia]
    +a:1000 [binder, in gaia_hydras.nfwfgaia]
    +a:1003 [binder, in gaia_hydras.nfwfgaia]
    +a:1006 [binder, in gaia_hydras.nfwfgaia]
    +a:1008 [binder, in gaia_hydras.nfwfgaia]
    +A:101 [binder, in additions.fib]
    +A:101 [binder, in additions.Addition_Chains]
    +a:1012 [binder, in gaia_hydras.nfwfgaia]
    +a:1014 [binder, in gaia_hydras.nfwfgaia]
    +a:1019 [binder, in gaia_hydras.nfwfgaia]
    +a:102 [binder, in hydras.Prelude.Merge_Sort]
    +a:102 [binder, in gaia_hydras.T1Bridge]
    +a:102 [binder, in hydras.Ackermann.cPair]
    +a:102 [binder, in hydras.Ackermann.folLogic3]
    +a:1026 [binder, in gaia_hydras.nfwfgaia]
    +a:1029 [binder, in gaia_hydras.nfwfgaia]
    +a:103 [binder, in hydras.Gamma0.T2]
    +A:103 [binder, in additions.AM]
    +a:103 [binder, in hydras.Epsilon0.Hessenberg]
    +a:103 [binder, in hydras.MoreAck.AckNotPR]
    +a:103 [binder, in hydras.Ackermann.cPair]
    +a:1034 [binder, in gaia_hydras.nfwfgaia]
    +A:104 [binder, in hydras.rpo.more_list]
    +a:104 [binder, in gaia_hydras.T1Bridge]
    +a:1049 [binder, in gaia_hydras.nfwfgaia]
    +a:105 [binder, in hydras.MoreAck.AckNotPR]
    +a:105 [binder, in hydras.Ackermann.cPair]
    +a:105 [binder, in hydras.Ackermann.codeList]
    +a:105 [binder, in gaia_hydras.nfwfgaia]
    +A:105 [binder, in hydras.MoreAck.PrimRecExamples]
    +a:106 [binder, in hydras.Gamma0.T2]
    +a:106 [binder, in hydras.Epsilon0.Hessenberg]
    +a:106 [binder, in gaia_hydras.T1Bridge]
    +A:106 [binder, in hydras.OrdinalNotations.ON_Generic]
    +a:107 [binder, in hydras.Hydra.O2H]
    +a:107 [binder, in gaia_hydras.T1Bridge]
    +a:107 [binder, in hydras.Ackermann.cPair]
    +a:107 [binder, in gaia_hydras.nfwfgaia]
    +a:1077 [binder, in gaia_hydras.nfwfgaia]
    +a:1079 [binder, in gaia_hydras.nfwfgaia]
    +A:108 [binder, in additions.AM]
    +A:108 [binder, in hydras.Prelude.MoreLists]
    +a:108 [binder, in hydras.rpo.more_list]
    +a:108 [binder, in hydras.Ackermann.codeSubFormula]
    +A:108 [binder, in additions.fib]
    +A:108 [binder, in hydras.Hydra.Hydra_Lemmas]
    +a:1080 [binder, in gaia_hydras.nfwfgaia]
    +a:1081 [binder, in gaia_hydras.nfwfgaia]
    +a:1082 [binder, in gaia_hydras.nfwfgaia]
    +a:1083 [binder, in gaia_hydras.nfwfgaia]
    +a:109 [binder, in gaia_hydras.T1Bridge]
    +a:109 [binder, in hydras.Ackermann.cPair]
    +A:109 [binder, in additions.Addition_Chains]
    +a:1097 [binder, in gaia_hydras.nfwfgaia]
    +a:1099 [binder, in gaia_hydras.nfwfgaia]
    +A:11 [binder, in hydras.rpo.more_list]
    +a:11 [binder, in hydras.OrdinalNotations.ON_O]
    +a:11 [binder, in hydras.Schutte.Lub]
    +A:11 [binder, in hydras.Ackermann.folProp]
    +A:11 [binder, in hydras.MoreAck.AckNotPR]
    +a:11 [binder, in gaia_hydras.T1Bridge]
    +a:11 [binder, in hydras.Ackermann.prLogic]
    +A:11 [binder, in additions.Euclidean_Chains]
    +a:11 [binder, in hydras.Schutte.PartialFun]
    +a:11 [binder, in hydras.Schutte.Schutte_basics]
    +a:11 [binder, in hydras.Ackermann.NNtheory]
    +a:11 [binder, in gaia_hydras.GLarge_Sets]
    +A:11 [binder, in hydras.OrdinalNotations.ON_Generic]
    +a:11 [binder, in Goedel.goedel1]
    +a:11 [binder, in hydras.Ackermann.NN]
    +a:11 [binder, in hydras.rpo.dickson]
    +a:11 [binder, in hydras.solutions_exercises.isqrt]
    +a:11 [binder, in gaia_hydras.T2Bridge]
    +a:11 [binder, in Goedel.goedel2]
    +a:11 [binder, in hydras.Ackermann.expressible]
    +A:11 [binder, in hydras.Prelude.MoreVectors]
    +a:110 [binder, in hydras.Ackermann.cPair]
    +A:110 [binder, in additions.Euclidean_Chains]
    +a:110 [binder, in hydras.Ackermann.codeList]
    +a:110 [binder, in hydras.rpo.rpo]
    +a:1101 [binder, in gaia_hydras.nfwfgaia]
    +a:1103 [binder, in gaia_hydras.nfwfgaia]
    +a:1106 [binder, in gaia_hydras.nfwfgaia]
    +a:1109 [binder, in gaia_hydras.nfwfgaia]
    +a:111 [binder, in gaia_hydras.T1Bridge]
    +a:111 [binder, in gaia_hydras.nfwfgaia]
    +a:1111 [binder, in gaia_hydras.nfwfgaia]
    +a:112 [binder, in hydras.Hydra.O2H]
    +A:112 [binder, in hydras.rpo.more_list]
    +a:112 [binder, in gaia_hydras.T1Bridge]
    +a:112 [binder, in hydras.Ackermann.cPair]
    +a:1126 [binder, in gaia_hydras.nfwfgaia]
    +a:1129 [binder, in gaia_hydras.nfwfgaia]
    +a:113 [binder, in hydras.Epsilon0.T1]
    +a:113 [binder, in hydras.Ackermann.cPair]
    +a:113 [binder, in hydras.Schutte.Ordering_Functions]
    +a:113 [binder, in gaia_hydras.nfwfgaia]
    +a:1131 [binder, in gaia_hydras.nfwfgaia]
    +a:1135 [binder, in gaia_hydras.nfwfgaia]
    +a:1136 [binder, in gaia_hydras.nfwfgaia]
    +a:1137 [binder, in gaia_hydras.nfwfgaia]
    +a:1144 [binder, in gaia_hydras.nfwfgaia]
    +a:1148 [binder, in gaia_hydras.nfwfgaia]
    +a:115 [binder, in hydras.Epsilon0.Hessenberg]
    +A:115 [binder, in additions.Addition_Chains]
    +a:1154 [binder, in gaia_hydras.nfwfgaia]
    +a:1158 [binder, in gaia_hydras.nfwfgaia]
    +a:116 [binder, in gaia_hydras.T1Bridge]
    +A:116 [binder, in additions.fib]
    +a:1160 [binder, in gaia_hydras.nfwfgaia]
    +a:1162 [binder, in gaia_hydras.nfwfgaia]
    +a:1164 [binder, in gaia_hydras.nfwfgaia]
    +a:1166 [binder, in gaia_hydras.nfwfgaia]
    +a:1169 [binder, in gaia_hydras.nfwfgaia]
    +a:117 [binder, in gaia_hydras.T1Bridge]
    +a:117 [binder, in hydras.Ackermann.cPair]
    +a:117 [binder, in gaia_hydras.nfwfgaia]
    +a:1171 [binder, in gaia_hydras.nfwfgaia]
    +A:118 [binder, in additions.AM]
    +A:119 [binder, in hydras.Prelude.MoreLists]
    +a:119 [binder, in hydras.Epsilon0.Hessenberg]
    +a:119 [binder, in gaia_hydras.T1Bridge]
    +a:119 [binder, in hydras.Ackermann.cPair]
    +a:1191 [binder, in gaia_hydras.nfwfgaia]
    +a:1193 [binder, in gaia_hydras.nfwfgaia]
    +a:1195 [binder, in gaia_hydras.nfwfgaia]
    +a:1199 [binder, in gaia_hydras.nfwfgaia]
    +a:12 [binder, in gaia_hydras.T1Choice]
    +a:12 [binder, in hydras.Prelude.WfVariant]
    +a:12 [binder, in hydras.Ackermann.extEqualNat]
    +A:12 [binder, in hydras.Prelude.Comparable]
    +a:12 [binder, in hydras.OrdinalNotations.ON_O]
    +a:12 [binder, in gaia_hydras.GPaths]
    +a:12 [binder, in gaia_hydras.GCanon]
    +a:12 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +A:12 [binder, in hydras.Prelude.STDPP_compat]
    +a:12 [binder, in hydras.Ackermann.NN]
    +a:12 [binder, in hydras.rpo.closure]
    +a:12 [binder, in hydras.solutions_exercises.T1_ltNotWf]
    +A:12 [binder, in hydras.rpo.rpo]
    +a:1208 [binder, in gaia_hydras.nfwfgaia]
    +a:1209 [binder, in hydras.Ackermann.codeSubFormula]
    +A:121 [binder, in hydras.rpo.more_list]
    +a:121 [binder, in hydras.Epsilon0.Hessenberg]
    +A:121 [binder, in hydras.OrdinalNotations.ON_Generic]
    +a:1211 [binder, in gaia_hydras.nfwfgaia]
    +a:1212 [binder, in hydras.Ackermann.codeSubFormula]
    +a:1214 [binder, in gaia_hydras.nfwfgaia]
    +a:1216 [binder, in hydras.Ackermann.codeSubFormula]
    +a:122 [binder, in gaia_hydras.T1Bridge]
    +A:122 [binder, in additions.Addition_Chains]
    +A:122 [binder, in hydras.Schutte.Ordering_Functions]
    +a:1226 [binder, in gaia_hydras.nfwfgaia]
    +a:123 [binder, in hydras.Gamma0.T2]
    +A:123 [binder, in additions.AM]
    +a:123 [binder, in hydras.Epsilon0.Hessenberg]
    +a:123 [binder, in gaia_hydras.T1Bridge]
    +a:123 [binder, in hydras.Ackermann.fol]
    +a:1231 [binder, in gaia_hydras.nfwfgaia]
    +a:1233 [binder, in gaia_hydras.nfwfgaia]
    +a:1235 [binder, in gaia_hydras.nfwfgaia]
    +a:1237 [binder, in gaia_hydras.nfwfgaia]
    +A:124 [binder, in Goedel.PRrepresentable]
    +a:124 [binder, in hydras.Ackermann.folProp]
    +a:124 [binder, in gaia_hydras.T1Bridge]
    +a:1240 [binder, in gaia_hydras.nfwfgaia]
    +a:1244 [binder, in gaia_hydras.nfwfgaia]
    +a:1248 [binder, in gaia_hydras.nfwfgaia]
    +a:125 [binder, in hydras.Epsilon0.T1]
    +a:125 [binder, in hydras.rpo.more_list]
    +a:125 [binder, in hydras.Epsilon0.Hessenberg]
    +a:125 [binder, in gaia_hydras.T1Bridge]
    +a:125 [binder, in additions.fib]
    +a:1252 [binder, in gaia_hydras.nfwfgaia]
    +a:1255 [binder, in gaia_hydras.nfwfgaia]
    +a:1258 [binder, in gaia_hydras.nfwfgaia]
    +A:126 [binder, in hydras.Prelude.MoreLists]
    +a:126 [binder, in gaia_hydras.T1Bridge]
    +a:1261 [binder, in gaia_hydras.nfwfgaia]
    +a:127 [binder, in hydras.Gamma0.T2]
    +a:127 [binder, in gaia_hydras.T1Bridge]
    +a:127 [binder, in gaia_hydras.nfwfgaia]
    +a:1270 [binder, in gaia_hydras.nfwfgaia]
    +a:1271 [binder, in gaia_hydras.nfwfgaia]
    +a:1273 [binder, in gaia_hydras.nfwfgaia]
    +a:1275 [binder, in gaia_hydras.nfwfgaia]
    +a:1278 [binder, in gaia_hydras.nfwfgaia]
    +a:128 [binder, in hydras.Epsilon0.Hessenberg]
    +a:128 [binder, in hydras.Ackermann.fol]
    +A:128 [binder, in hydras.Hydra.Hydra_Lemmas]
    +a:1281 [binder, in hydras.Ackermann.codeSubFormula]
    +a:1283 [binder, in hydras.Ackermann.codeSubFormula]
    +a:1283 [binder, in gaia_hydras.nfwfgaia]
    +a:1285 [binder, in hydras.Ackermann.codeSubFormula]
    +a:1286 [binder, in gaia_hydras.nfwfgaia]
    +a:1289 [binder, in hydras.Ackermann.codeSubFormula]
    +a:1289 [binder, in gaia_hydras.nfwfgaia]
    +a:129 [binder, in gaia_hydras.T1Bridge]
    +A:129 [binder, in additions.Addition_Chains]
    +a:1292 [binder, in gaia_hydras.nfwfgaia]
    +a:1295 [binder, in gaia_hydras.nfwfgaia]
    +a:1299 [binder, in gaia_hydras.nfwfgaia]
    +a:13 [binder, in hydras.Prelude.Restriction]
    +a:13 [binder, in Goedel.fixPoint]
    +a:13 [binder, in gaia_hydras.GCanon]
    +a:13 [binder, in gaia_hydras.T1Bridge]
    +a:13 [binder, in hydras.Ackermann.prLogic]
    +a:13 [binder, in hydras.Hydra.BigBattle]
    +a:13 [binder, in hydras.Ackermann.NNtheory]
    +a:13 [binder, in hydras.Schutte.Well_Orders]
    +A:13 [binder, in additions.Addition_Chains]
    +a:13 [binder, in hydras.Schutte.Ordering_Functions]
    +a:13 [binder, in hydras.solutions_exercises.isqrt]
    +a:130 [binder, in hydras.OrdinalNotations.ON_Generic]
    +a:1303 [binder, in gaia_hydras.nfwfgaia]
    +a:1307 [binder, in gaia_hydras.nfwfgaia]
    +a:131 [binder, in hydras.Epsilon0.T1]
    +A:131 [binder, in Goedel.PRrepresentable]
    +a:131 [binder, in hydras.Gamma0.T2]
    +A:131 [binder, in hydras.Prelude.MoreLists]
    +A:131 [binder, in hydras.rpo.more_list]
    +a:131 [binder, in hydras.Epsilon0.Hessenberg]
    +a:131 [binder, in gaia_hydras.T1Bridge]
    +a:1312 [binder, in gaia_hydras.nfwfgaia]
    +a:1314 [binder, in gaia_hydras.nfwfgaia]
    +a:1318 [binder, in gaia_hydras.nfwfgaia]
    +a:132 [binder, in gaia_hydras.T1Bridge]
    +a:1320 [binder, in gaia_hydras.nfwfgaia]
    +a:133 [binder, in gaia_hydras.T1Bridge]
    +a:133 [binder, in hydras.Ackermann.primRec]
    +A:133 [binder, in hydras.OrdinalNotations.ON_Generic]
    +a:133 [binder, in gaia_hydras.nfwfgaia]
    +a:1330 [binder, in gaia_hydras.nfwfgaia]
    +a:134 [binder, in hydras.rpo.more_list]
    +a:1345 [binder, in gaia_hydras.nfwfgaia]
    +a:135 [binder, in hydras.Gamma0.T2]
    +A:135 [binder, in hydras.rpo.more_list]
    +a:135 [binder, in hydras.Ackermann.primRec]
    +a:1350 [binder, in gaia_hydras.nfwfgaia]
    +a:1355 [binder, in gaia_hydras.nfwfgaia]
    +a:136 [binder, in hydras.Epsilon0.T1]
    +A:136 [binder, in hydras.Prelude.MoreLists]
    +a:136 [binder, in hydras.Ackermann.codeSubFormula]
    +a:136 [binder, in gaia_hydras.nfwfgaia]
    +a:1360 [binder, in gaia_hydras.nfwfgaia]
    +a:1365 [binder, in gaia_hydras.nfwfgaia]
    +a:137 [binder, in hydras.Ackermann.LNT]
    +a:137 [binder, in hydras.Ackermann.primRec]
    +A:137 [binder, in hydras.Ackermann.fol]
    +a:1370 [binder, in gaia_hydras.nfwfgaia]
    +a:1376 [binder, in gaia_hydras.nfwfgaia]
    +a:138 [binder, in hydras.Ackermann.codeSubFormula]
    +a:138 [binder, in additions.fib]
    +a:1388 [binder, in gaia_hydras.nfwfgaia]
    +a:139 [binder, in hydras.Ackermann.LNT]
    +a:14 [binder, in Goedel.PRrepresentable]
    +a:14 [binder, in hydras.solutions_exercises.MinPR2]
    +a:14 [binder, in hydras.Prelude.WfVariant]
    +a:14 [binder, in hydras.Ackermann.extEqualNat]
    +a:14 [binder, in hydras.Schutte.MoreEpsilonIota]
    +a:14 [binder, in hydras.solutions_exercises.MultisetWf]
    +a:14 [binder, in hydras.Ackermann.folLogic3]
    +A:14 [binder, in additions.Addition_Chains]
    +a:14 [binder, in hydras.solutions_exercises.T1_ltNotWf]
    +a:14 [binder, in hydras.MoreAck.PrimRecExamples]
    +a:14 [binder, in hydras.Prelude.Simple_LexProd]
    +A:14 [binder, in hydras.Prelude.MoreVectors]
    +a:140 [binder, in hydras.Gamma0.T2]
    +a:140 [binder, in hydras.rpo.more_list]
    +a:140 [binder, in hydras.Ackermann.LNN]
    +a:140 [binder, in hydras.Ackermann.primRec]
    +A:140 [binder, in hydras.Ackermann.fol]
    +a:1407 [binder, in gaia_hydras.nfwfgaia]
    +A:141 [binder, in hydras.Prelude.MoreLists]
    +a:141 [binder, in gaia_hydras.T1Bridge]
    +a:141 [binder, in hydras.Gamma0.Gamma0]
    +a:1416 [binder, in gaia_hydras.nfwfgaia]
    +A:142 [binder, in Goedel.PRrepresentable]
    +a:142 [binder, in hydras.Ackermann.LNN]
    +a:142 [binder, in hydras.Ackermann.LNT]
    +a:142 [binder, in gaia_hydras.T1Bridge]
    +A:142 [binder, in additions.Euclidean_Chains]
    +A:142 [binder, in hydras.Ackermann.fol]
    +a:1422 [binder, in gaia_hydras.nfwfgaia]
    +a:1428 [binder, in gaia_hydras.nfwfgaia]
    +a:143 [binder, in hydras.Ackermann.primRec]
    +a:143 [binder, in additions.fib]
    +A:143 [binder, in hydras.Schutte.Ordering_Functions]
    +a:144 [binder, in hydras.Gamma0.T2]
    +A:144 [binder, in hydras.rpo.more_list]
    +a:144 [binder, in gaia_hydras.T1Bridge]
    +A:144 [binder, in hydras.Ackermann.fol]
    +A:144 [binder, in hydras.Hydra.Hydra_Definitions]
    +a:1441 [binder, in gaia_hydras.nfwfgaia]
    +a:1443 [binder, in gaia_hydras.nfwfgaia]
    +a:1445 [binder, in gaia_hydras.nfwfgaia]
    +a:1447 [binder, in gaia_hydras.nfwfgaia]
    +a:1449 [binder, in gaia_hydras.nfwfgaia]
    +a:145 [binder, in hydras.Ackermann.LNN]
    +a:146 [binder, in hydras.Gamma0.T2]
    +a:146 [binder, in hydras.Ackermann.LNT]
    +a:146 [binder, in hydras.Ackermann.primRec]
    +A:146 [binder, in hydras.Ackermann.fol]
    +A:146 [binder, in hydras.OrdinalNotations.ON_Generic]
    +a:1460 [binder, in gaia_hydras.nfwfgaia]
    +a:1461 [binder, in gaia_hydras.nfwfgaia]
    +a:1463 [binder, in gaia_hydras.nfwfgaia]
    +a:1465 [binder, in gaia_hydras.nfwfgaia]
    +a:1468 [binder, in gaia_hydras.nfwfgaia]
    +A:147 [binder, in hydras.Ackermann.fol]
    +A:147 [binder, in hydras.Schutte.Ordering_Functions]
    +a:1470 [binder, in gaia_hydras.nfwfgaia]
    +A:148 [binder, in additions.Euclidean_Chains]
    +a:148 [binder, in additions.fib]
    +a:149 [binder, in hydras.rpo.more_list]
    +a:149 [binder, in hydras.Ackermann.LNN]
    +A:149 [binder, in additions.Euclidean_Chains]
    +A:149 [binder, in hydras.Ackermann.fol]
    +a:1492 [binder, in gaia_hydras.nfwfgaia]
    +A:15 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +A:15 [binder, in hydras.rpo.more_list]
    +a:15 [binder, in hydras.OrdinalNotations.ON_O]
    +a:15 [binder, in hydras.Epsilon0.Hessenberg]
    +A:15 [binder, in hydras.Prelude.DecPreOrder]
    +a:15 [binder, in gaia_hydras.GCanon]
    +a:15 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +a:15 [binder, in gaia_hydras.T1Bridge]
    +a:15 [binder, in hydras.Schutte.Schutte_basics]
    +a:15 [binder, in hydras.Prelude.MoreDecidable]
    +a:15 [binder, in hydras.Schutte.Ordering_Functions]
    +A:15 [binder, in hydras.rpo.closure]
    +A:15 [binder, in hydras.MoreAck.FolExamples]
    +a:15 [binder, in gaia_hydras.GHessenberg]
    +a:150 [binder, in gaia_hydras.T1Bridge]
    +a:150 [binder, in hydras.Ackermann.primRec]
    +A:150 [binder, in additions.Euclidean_Chains]
    +A:150 [binder, in hydras.Schutte.Ordering_Functions]
    +a:1502 [binder, in gaia_hydras.nfwfgaia]
    +a:1509 [binder, in gaia_hydras.nfwfgaia]
    +a:151 [binder, in hydras.Ackermann.LNT]
    +a:152 [binder, in gaia_hydras.nfwfgaia]
    +a:1521 [binder, in gaia_hydras.nfwfgaia]
    +a:1524 [binder, in gaia_hydras.nfwfgaia]
    +a:1527 [binder, in gaia_hydras.nfwfgaia]
    +A:153 [binder, in Goedel.PRrepresentable]
    +a:153 [binder, in hydras.Ackermann.fol]
    +a:1531 [binder, in gaia_hydras.nfwfgaia]
    +a:1536 [binder, in gaia_hydras.nfwfgaia]
    +A:154 [binder, in hydras.rpo.more_list]
    +a:154 [binder, in hydras.Ackermann.LNN]
    +a:154 [binder, in hydras.Ackermann.primRec]
    +a:154 [binder, in gaia_hydras.nfwfgaia]
    +A:154 [binder, in hydras.Hydra.Hydra_Definitions]
    +a:1540 [binder, in gaia_hydras.nfwfgaia]
    +a:1543 [binder, in gaia_hydras.nfwfgaia]
    +A:155 [binder, in additions.Euclidean_Chains]
    +a:1551 [binder, in gaia_hydras.nfwfgaia]
    +a:1558 [binder, in gaia_hydras.nfwfgaia]
    +a:156 [binder, in hydras.Ackermann.LNT]
    +a:156 [binder, in gaia_hydras.nfwfgaia]
    +a:1561 [binder, in gaia_hydras.nfwfgaia]
    +a:1564 [binder, in gaia_hydras.nfwfgaia]
    +a:1568 [binder, in gaia_hydras.nfwfgaia]
    +a:1574 [binder, in gaia_hydras.nfwfgaia]
    +a:1578 [binder, in gaia_hydras.nfwfgaia]
    +a:158 [binder, in gaia_hydras.T1Bridge]
    +a:158 [binder, in hydras.Ackermann.primRec]
    +a:158 [binder, in hydras.Ackermann.fol]
    +a:158 [binder, in gaia_hydras.nfwfgaia]
    +a:1587 [binder, in gaia_hydras.nfwfgaia]
    +a:159 [binder, in hydras.rpo.more_list]
    +a:159 [binder, in hydras.Ackermann.LNN]
    +A:159 [binder, in hydras.OrdinalNotations.ON_Generic]
    +A:159 [binder, in additions.Addition_Chains]
    +a:1592 [binder, in gaia_hydras.nfwfgaia]
    +a:1595 [binder, in gaia_hydras.nfwfgaia]
    +a:1598 [binder, in gaia_hydras.nfwfgaia]
    +a:16 [binder, in hydras.solutions_exercises.MinPR2]
    +a:16 [binder, in additions.Fib2]
    +a:16 [binder, in hydras.Prelude.Comparable]
    +A:16 [binder, in additions.Pow_variant]
    +a:16 [binder, in Goedel.fixPoint]
    +A:16 [binder, in additions.Pow]
    +a:16 [binder, in hydras.Prelude.Sort_spec]
    +A:16 [binder, in hydras.MoreAck.AckNotPR]
    +a:16 [binder, in hydras.Schutte.MoreEpsilonIota]
    +a:16 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +a:16 [binder, in hydras.Hydra.BigBattle]
    +A:16 [binder, in hydras.Ackermann.fol]
    +a:16 [binder, in hydras.Ackermann.NNtheory]
    +a:16 [binder, in gaia_hydras.GLarge_Sets]
    +a:16 [binder, in hydras.Schutte.Well_Orders]
    +a:16 [binder, in Goedel.rosser]
    +A:16 [binder, in hydras.Ackermann.expressible]
    +A:16 [binder, in hydras.Prelude.MoreVectors]
    +a:160 [binder, in hydras.Epsilon0.T1]
    +a:160 [binder, in gaia_hydras.nfwfgaia]
    +a:1601 [binder, in gaia_hydras.nfwfgaia]
    +a:161 [binder, in hydras.Ackermann.LNT]
    +a:161 [binder, in hydras.Ackermann.fol]
    +a:1612 [binder, in gaia_hydras.nfwfgaia]
    +a:162 [binder, in hydras.Epsilon0.T1]
    +a:162 [binder, in hydras.Ackermann.LNN]
    +a:162 [binder, in gaia_hydras.T1Bridge]
    +A:162 [binder, in additions.Euclidean_Chains]
    +a:162 [binder, in hydras.rpo.rpo]
    +a:1621 [binder, in gaia_hydras.nfwfgaia]
    +a:1629 [binder, in gaia_hydras.nfwfgaia]
    +A:163 [binder, in hydras.rpo.more_list]
    +a:1635 [binder, in gaia_hydras.nfwfgaia]
    +a:164 [binder, in gaia_hydras.T1Bridge]
    +a:164 [binder, in hydras.Ackermann.primRec]
    +a:164 [binder, in hydras.Ackermann.fol]
    +A:165 [binder, in hydras.Prelude.MoreLists]
    +a:165 [binder, in hydras.Gamma0.Gamma0]
    +a:1650 [binder, in gaia_hydras.nfwfgaia]
    +a:166 [binder, in gaia_hydras.T1Bridge]
    +a:166 [binder, in hydras.Ackermann.primRec]
    +a:166 [binder, in hydras.Ackermann.cPair]
    +A:166 [binder, in additions.Addition_Chains]
    +a:1660 [binder, in gaia_hydras.nfwfgaia]
    +a:167 [binder, in hydras.Epsilon0.T1]
    +a:167 [binder, in hydras.Ackermann.fol]
    +a:1671 [binder, in gaia_hydras.nfwfgaia]
    +a:1674 [binder, in gaia_hydras.nfwfgaia]
    +a:168 [binder, in hydras.rpo.more_list]
    +a:168 [binder, in gaia_hydras.T1Bridge]
    +a:168 [binder, in hydras.Ackermann.primRec]
    +A:168 [binder, in additions.Euclidean_Chains]
    +a:169 [binder, in Goedel.PRrepresentable]
    +a:169 [binder, in hydras.Ackermann.LNN]
    +a:169 [binder, in hydras.OrdinalNotations.ON_Generic]
    +a:169 [binder, in hydras.Gamma0.Gamma0]
    +A:17 [binder, in hydras.Prelude.Iterates]
    +a:17 [binder, in gaia_hydras.GPaths]
    +a:17 [binder, in hydras.Ackermann.folProp]
    +a:17 [binder, in gaia_hydras.GCanon]
    +A:17 [binder, in hydras.Schutte.MoreEpsilonIota]
    +a:17 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +A:17 [binder, in additions.Euclidean_Chains]
    +a:17 [binder, in hydras.Schutte.PartialFun]
    +a:17 [binder, in hydras.rpo.closure]
    +a:17 [binder, in hydras.solutions_exercises.T1_ltNotWf]
    +A:17 [binder, in hydras.rpo.rpo]
    +a:170 [binder, in hydras.Epsilon0.T1]
    +a:170 [binder, in Goedel.PRrepresentable]
    +A:170 [binder, in hydras.rpo.more_list]
    +a:170 [binder, in hydras.Ackermann.model]
    +a:170 [binder, in gaia_hydras.nfwfgaia]
    +A:171 [binder, in hydras.Epsilon0.Large_Sets]
    +A:171 [binder, in hydras.OrdinalNotations.ON_Generic]
    +a:1718 [binder, in gaia_hydras.nfwfgaia]
    +a:1719 [binder, in gaia_hydras.nfwfgaia]
    +A:172 [binder, in hydras.Prelude.Iterates]
    +a:172 [binder, in hydras.Ackermann.model]
    +a:172 [binder, in hydras.Prelude.Merge_Sort]
    +a:172 [binder, in hydras.Ackermann.primRec]
    +A:172 [binder, in additions.Addition_Chains]
    +a:1720 [binder, in gaia_hydras.nfwfgaia]
    +a:1721 [binder, in gaia_hydras.nfwfgaia]
    +a:1722 [binder, in gaia_hydras.nfwfgaia]
    +a:173 [binder, in hydras.Epsilon0.T1]
    +a:173 [binder, in hydras.Ackermann.folProp]
    +a:1736 [binder, in gaia_hydras.nfwfgaia]
    +a:1738 [binder, in gaia_hydras.nfwfgaia]
    +A:174 [binder, in hydras.Ackermann.model]
    +a:174 [binder, in hydras.Ackermann.primRec]
    +a:174 [binder, in hydras.Ackermann.cPair]
    +a:1740 [binder, in gaia_hydras.nfwfgaia]
    +a:1742 [binder, in gaia_hydras.nfwfgaia]
    +a:1745 [binder, in gaia_hydras.nfwfgaia]
    +a:1749 [binder, in gaia_hydras.nfwfgaia]
    +a:175 [binder, in hydras.rpo.more_list]
    +a:175 [binder, in hydras.Ackermann.model]
    +a:175 [binder, in hydras.Ackermann.fol]
    +a:1752 [binder, in gaia_hydras.nfwfgaia]
    +a:176 [binder, in hydras.Ackermann.primRec]
    +a:176 [binder, in hydras.Ackermann.cPair]
    +A:176 [binder, in hydras.Schutte.Ordering_Functions]
    +a:176 [binder, in gaia_hydras.nfwfgaia]
    +a:1768 [binder, in gaia_hydras.nfwfgaia]
    +a:1771 [binder, in gaia_hydras.nfwfgaia]
    +a:1773 [binder, in gaia_hydras.nfwfgaia]
    +a:1777 [binder, in gaia_hydras.nfwfgaia]
    +a:1778 [binder, in gaia_hydras.nfwfgaia]
    +a:1779 [binder, in gaia_hydras.nfwfgaia]
    +a:178 [binder, in hydras.Epsilon0.T1]
    +A:178 [binder, in hydras.rpo.more_list]
    +a:178 [binder, in hydras.Ackermann.cPair]
    +a:1782 [binder, in gaia_hydras.nfwfgaia]
    +a:1783 [binder, in gaia_hydras.nfwfgaia]
    +a:179 [binder, in hydras.Ackermann.model]
    +A:179 [binder, in hydras.Schutte.Ordering_Functions]
    +a:179 [binder, in gaia_hydras.nfwfgaia]
    +a:1791 [binder, in gaia_hydras.nfwfgaia]
    +a:1796 [binder, in gaia_hydras.nfwfgaia]
    +a:1798 [binder, in gaia_hydras.nfwfgaia]
    +a:18 [binder, in Goedel.PRrepresentable]
    +a:18 [binder, in hydras.Prelude.Comparable]
    +a:18 [binder, in hydras.OrdinalNotations.ON_O]
    +a:18 [binder, in hydras.solutions_exercises.MorePRExamples]
    +A:18 [binder, in additions.Monoid_def]
    +a:18 [binder, in hydras.Hydra.BigBattle]
    +A:18 [binder, in hydras.Ackermann.fol]
    +A:18 [binder, in gaia_hydras.GLarge_Sets]
    +A:18 [binder, in additions.Addition_Chains]
    +A:18 [binder, in hydras.Schutte.Ordering_Functions]
    +A:18 [binder, in Goedel.rosser]
    +A:18 [binder, in hydras.rpo.closure]
    +a:18 [binder, in hydras.solutions_exercises.T1_ltNotWf]
    +A:18 [binder, in hydras.Ackermann.expressible]
    +a:180 [binder, in hydras.Ackermann.folProp]
    +a:180 [binder, in hydras.Ackermann.primRec]
    +a:180 [binder, in hydras.Ackermann.cPair]
    +a:180 [binder, in gaia_hydras.nfwfgaia]
    +a:1802 [binder, in gaia_hydras.nfwfgaia]
    +a:1804 [binder, in gaia_hydras.nfwfgaia]
    +a:1806 [binder, in gaia_hydras.nfwfgaia]
    +a:1808 [binder, in gaia_hydras.nfwfgaia]
    +a:181 [binder, in hydras.Epsilon0.T1]
    +A:181 [binder, in hydras.Ackermann.model]
    +a:1810 [binder, in gaia_hydras.nfwfgaia]
    +a:1813 [binder, in gaia_hydras.nfwfgaia]
    +a:1815 [binder, in gaia_hydras.nfwfgaia]
    +a:182 [binder, in hydras.Ackermann.model]
    +A:182 [binder, in additions.Euclidean_Chains]
    +A:182 [binder, in additions.Addition_Chains]
    +a:182 [binder, in gaia_hydras.nfwfgaia]
    +a:183 [binder, in hydras.rpo.more_list]
    +a:183 [binder, in hydras.Ackermann.primRec]
    +a:1835 [binder, in gaia_hydras.nfwfgaia]
    +a:1837 [binder, in gaia_hydras.nfwfgaia]
    +a:1839 [binder, in gaia_hydras.nfwfgaia]
    +A:184 [binder, in hydras.OrdinalNotations.ON_Generic]
    +A:184 [binder, in hydras.Schutte.Ordering_Functions]
    +a:1841 [binder, in gaia_hydras.nfwfgaia]
    +a:1843 [binder, in gaia_hydras.nfwfgaia]
    +a:185 [binder, in additions.Addition_Chains]
    +a:185 [binder, in hydras.Schutte.Ordering_Functions]
    +a:1856 [binder, in gaia_hydras.nfwfgaia]
    +a:186 [binder, in hydras.Epsilon0.T1]
    +A:186 [binder, in hydras.rpo.more_list]
    +a:186 [binder, in hydras.Ackermann.model]
    +a:186 [binder, in hydras.Ackermann.primRec]
    +a:1860 [binder, in gaia_hydras.nfwfgaia]
    +a:1865 [binder, in gaia_hydras.nfwfgaia]
    +a:1869 [binder, in gaia_hydras.nfwfgaia]
    +A:187 [binder, in hydras.Prelude.MoreLists]
    +A:187 [binder, in hydras.Schutte.Ordering_Functions]
    +a:1877 [binder, in gaia_hydras.nfwfgaia]
    +a:188 [binder, in additions.Euclidean_Chains]
    +a:1886 [binder, in gaia_hydras.nfwfgaia]
    +a:189 [binder, in hydras.Ackermann.folProp]
    +A:19 [binder, in hydras.Ackermann.folProof]
    +a:19 [binder, in Goedel.fixPoint]
    +a:19 [binder, in gaia_hydras.GCanon]
    +a:19 [binder, in hydras.Ackermann.cPair]
    +a:19 [binder, in gaia_hydras.GHydra]
    +A:19 [binder, in hydras.solutions_exercises.T1_ltNotWf]
    +a:19 [binder, in gaia_hydras.GHessenberg]
    +a:19 [binder, in hydras.Ackermann.expressible]
    +a:191 [binder, in hydras.Ackermann.primRec]
    +a:192 [binder, in hydras.Ackermann.model]
    +a:193 [binder, in hydras.rpo.more_list]
    +a:193 [binder, in additions.Addition_Chains]
    +a:194 [binder, in hydras.rpo.more_list]
    +a:194 [binder, in hydras.Ackermann.model]
    +a:194 [binder, in hydras.Ackermann.primRec]
    +A:194 [binder, in additions.Euclidean_Chains]
    +a:195 [binder, in hydras.rpo.more_list]
    +a:196 [binder, in hydras.rpo.more_list]
    +a:196 [binder, in hydras.Ackermann.model]
    +a:196 [binder, in hydras.Ackermann.folProp]
    +a:196 [binder, in additions.Addition_Chains]
    +a:197 [binder, in hydras.Epsilon0.T1]
    +a:197 [binder, in hydras.Ackermann.primRec]
    +a:198 [binder, in hydras.Ackermann.model]
    +A:198 [binder, in hydras.OrdinalNotations.ON_Generic]
    +a:2 [binder, in hydras.Hydra.O2H]
    +a:2 [binder, in gaia_hydras.GF_alpha]
    +a:2 [binder, in gaia_hydras.GPaths]
    +A:2 [binder, in hydras.Ackermann.model]
    +A:2 [binder, in additions.Euclidean_Chains]
    +a:2 [binder, in hydras.Ackermann.ListExt]
    +a:2 [binder, in hydras.Ackermann.NN]
    +A:20 [binder, in hydras.rpo.more_list]
    +a:20 [binder, in hydras.Prelude.Comparable]
    +a:20 [binder, in hydras.Prelude.Sort_spec]
    +A:20 [binder, in hydras.Prelude.DecPreOrder]
    +a:20 [binder, in hydras.Ackermann.folProp]
    +A:20 [binder, in hydras.MoreAck.AckNotPR]
    +A:20 [binder, in hydras.Schutte.MoreEpsilonIota]
    +a:20 [binder, in hydras.solutions_exercises.MultisetWf]
    +a:20 [binder, in hydras.Hydra.BigBattle]
    +A:20 [binder, in hydras.Ackermann.fol]
    +a:20 [binder, in additions.Monoid_instances]
    +a:20 [binder, in hydras.Schutte.Well_Orders]
    +a:20 [binder, in hydras.Ackermann.NN]
    +A:20 [binder, in hydras.rpo.closure]
    +A:200 [binder, in hydras.Ackermann.model]
    +a:2006 [binder, in gaia_hydras.nfwfgaia]
    +A:201 [binder, in hydras.Prelude.MoreLists]
    +A:201 [binder, in hydras.rpo.more_list]
    +a:201 [binder, in hydras.Ackermann.model]
    +a:201 [binder, in additions.Addition_Chains]
    +a:202 [binder, in hydras.Ackermann.primRec]
    +a:202 [binder, in additions.Addition_Chains]
    +a:2021 [binder, in gaia_hydras.nfwfgaia]
    +a:2025 [binder, in gaia_hydras.nfwfgaia]
    +a:2030 [binder, in gaia_hydras.nfwfgaia]
    +a:2037 [binder, in gaia_hydras.nfwfgaia]
    +a:2047 [binder, in gaia_hydras.nfwfgaia]
    +a:205 [binder, in hydras.Ackermann.model]
    +a:205 [binder, in hydras.Ackermann.folProp]
    +a:205 [binder, in hydras.Ackermann.primRec]
    +a:2050 [binder, in gaia_hydras.nfwfgaia]
    +a:2053 [binder, in gaia_hydras.nfwfgaia]
    +A:206 [binder, in hydras.Prelude.MoreLists]
    +a:206 [binder, in additions.Addition_Chains]
    +a:2061 [binder, in gaia_hydras.nfwfgaia]
    +A:207 [binder, in hydras.Ackermann.model]
    +a:207 [binder, in gaia_hydras.nfwfgaia]
    +a:2070 [binder, in gaia_hydras.nfwfgaia]
    +a:2073 [binder, in gaia_hydras.nfwfgaia]
    +a:208 [binder, in hydras.Ackermann.model]
    +a:208 [binder, in hydras.Ackermann.primRec]
    +A:208 [binder, in additions.Euclidean_Chains]
    +a:209 [binder, in hydras.OrdinalNotations.ON_Generic]
    +a:21 [binder, in hydras.Schutte.Correctness_E0]
    +a:21 [binder, in additions.Fib2]
    +A:21 [binder, in hydras.Prelude.MoreLists]
    +a:21 [binder, in hydras.OrdinalNotations.ON_O]
    +a:21 [binder, in gaia_hydras.GPaths]
    +a:21 [binder, in hydras.Epsilon0.Hessenberg]
    +A:21 [binder, in additions.Monoid_def]
    +a:21 [binder, in hydras.Ackermann.cPair]
    +A:21 [binder, in additions.Euclidean_Chains]
    +a:21 [binder, in hydras.Prelude.MoreDecidable]
    +a:21 [binder, in hydras.Ackermann.NN]
    +a:21 [binder, in gaia_hydras.GL_alpha]
    +a:21 [binder, in gaia_hydras.GHessenberg]
    +A:210 [binder, in hydras.rpo.more_list]
    +a:210 [binder, in hydras.Ackermann.codeList]
    +a:210 [binder, in gaia_hydras.nfwfgaia]
    +a:2109 [binder, in gaia_hydras.nfwfgaia]
    +a:211 [binder, in hydras.Epsilon0.T1]
    +a:211 [binder, in hydras.OrdinalNotations.ON_Generic]
    +a:212 [binder, in hydras.Epsilon0.T1]
    +a:212 [binder, in hydras.Ackermann.model]
    +a:212 [binder, in hydras.Ackermann.folProp]
    +a:213 [binder, in hydras.Ackermann.primRec]
    +a:213 [binder, in hydras.Ackermann.cPair]
    +a:213 [binder, in hydras.Ackermann.fol]
    +a:213 [binder, in hydras.OrdinalNotations.ON_Generic]
    +a:213 [binder, in gaia_hydras.nfwfgaia]
    +a:214 [binder, in hydras.Epsilon0.T1]
    +a:215 [binder, in hydras.OrdinalNotations.ON_Generic]
    +a:215 [binder, in hydras.Ackermann.codeList]
    +a:215 [binder, in hydras.Gamma0.Gamma0]
    +a:216 [binder, in hydras.Ackermann.primRec]
    +a:216 [binder, in hydras.Ackermann.fol]
    +a:216 [binder, in hydras.OrdinalNotations.ON_Generic]
    +a:216 [binder, in gaia_hydras.nfwfgaia]
    +a:217 [binder, in hydras.Gamma0.Gamma0]
    +a:218 [binder, in hydras.Epsilon0.T1]
    +a:218 [binder, in hydras.rpo.more_list]
    +a:218 [binder, in hydras.Ackermann.model]
    +a:218 [binder, in gaia_hydras.nfwfgaia]
    +a:219 [binder, in hydras.Epsilon0.T1]
    +a:219 [binder, in hydras.Ackermann.primRec]
    +A:22 [binder, in hydras.Ackermann.folProof]
    +a:22 [binder, in hydras.Epsilon0.T1]
    +a:22 [binder, in Goedel.PRrepresentable]
    +a:22 [binder, in hydras.Prelude.Comparable]
    +a:22 [binder, in hydras.OrdinalNotations.ON_O]
    +A:22 [binder, in Goedel.fixPoint]
    +a:22 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +a:22 [binder, in additions.fib]
    +A:22 [binder, in hydras.Ackermann.expressible]
    +a:22 [binder, in hydras.Prelude.MoreVectors]
    +A:220 [binder, in hydras.rpo.more_list]
    +a:220 [binder, in hydras.Ackermann.model]
    +a:221 [binder, in hydras.Ackermann.folProp]
    +a:221 [binder, in gaia_hydras.nfwfgaia]
    +a:222 [binder, in hydras.Ackermann.primRec]
    +A:223 [binder, in additions.Addition_Chains]
    +a:223 [binder, in hydras.Gamma0.Gamma0]
    +A:224 [binder, in additions.Euclidean_Chains]
    +a:225 [binder, in hydras.Epsilon0.T1]
    +a:225 [binder, in hydras.Ackermann.primRec]
    +a:226 [binder, in additions.Euclidean_Chains]
    +a:227 [binder, in hydras.Gamma0.Gamma0]
    +a:227 [binder, in gaia_hydras.nfwfgaia]
    +a:228 [binder, in hydras.rpo.more_list]
    +a:228 [binder, in hydras.Ackermann.folProp]
    +a:228 [binder, in additions.Addition_Chains]
    +a:229 [binder, in hydras.Epsilon0.T1]
    +a:229 [binder, in hydras.Ackermann.primRec]
    +a:23 [binder, in hydras.Ackermann.extEqualNat]
    +a:23 [binder, in hydras.rpo.more_list]
    +a:23 [binder, in hydras.OrdinalNotations.ON_O]
    +A:23 [binder, in additions.Pow_variant]
    +A:23 [binder, in additions.Pow]
    +a:23 [binder, in hydras.Prelude.Sort_spec]
    +a:23 [binder, in hydras.Prelude.DecPreOrder]
    +A:23 [binder, in hydras.Schutte.MoreEpsilonIota]
    +a:23 [binder, in hydras.Ackermann.cPair]
    +A:23 [binder, in hydras.Ackermann.fol]
    +a:23 [binder, in hydras.Schutte.Well_Orders]
    +a:23 [binder, in hydras.Gamma0.Gamma0]
    +a:23 [binder, in hydras.rpo.closure]
    +a:23 [binder, in gaia_hydras.GHessenberg]
    +a:230 [binder, in hydras.Epsilon0.T1]
    +A:230 [binder, in additions.AM]
    +a:230 [binder, in hydras.rpo.rpo]
    +a:231 [binder, in hydras.rpo.more_list]
    +A:231 [binder, in additions.Addition_Chains]
    +a:231 [binder, in hydras.Gamma0.Gamma0]
    +a:232 [binder, in hydras.Ackermann.primRec]
    +A:233 [binder, in hydras.Ackermann.checkPrf]
    +a:233 [binder, in gaia_hydras.nfwfgaia]
    +a:234 [binder, in hydras.Epsilon0.T1]
    +a:234 [binder, in hydras.rpo.more_list]
    +a:235 [binder, in hydras.Ackermann.primRec]
    +A:235 [binder, in additions.Euclidean_Chains]
    +a:235 [binder, in gaia_hydras.nfwfgaia]
    +a:236 [binder, in hydras.Ackermann.fol]
    +a:236 [binder, in additions.Addition_Chains]
    +a:237 [binder, in hydras.Epsilon0.T1]
    +A:237 [binder, in additions.AM]
    +a:237 [binder, in additions.Euclidean_Chains]
    +a:237 [binder, in gaia_hydras.nfwfgaia]
    +A:238 [binder, in hydras.rpo.more_list]
    +a:238 [binder, in hydras.Ackermann.primRec]
    +a:239 [binder, in hydras.Ackermann.fol]
    +a:24 [binder, in hydras.Prelude.More_Arith]
    +a:24 [binder, in hydras.OrdinalNotations.ON_O]
    +a:24 [binder, in gaia_hydras.GPaths]
    +a:24 [binder, in hydras.Epsilon0.F_omega]
    +a:24 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +A:24 [binder, in hydras.Ackermann.fol]
    +a:24 [binder, in hydras.Schutte.PartialFun]
    +A:24 [binder, in additions.Addition_Chains]
    +a:24 [binder, in gaia_hydras.GL_alpha]
    +a:24 [binder, in gaia_hydras.nfwfgaia]
    +A:240 [binder, in additions.Addition_Chains]
    +a:240 [binder, in hydras.rpo.rpo]
    +a:241 [binder, in hydras.Ackermann.primRec]
    +A:241 [binder, in additions.Euclidean_Chains]
    +a:243 [binder, in hydras.Ackermann.cPair]
    +a:243 [binder, in additions.Euclidean_Chains]
    +a:244 [binder, in additions.Addition_Chains]
    +a:245 [binder, in hydras.Ackermann.primRec]
    +A:247 [binder, in hydras.rpo.more_list]
    +a:247 [binder, in additions.Addition_Chains]
    +a:248 [binder, in hydras.Epsilon0.T1]
    +a:248 [binder, in hydras.Ackermann.primRec]
    +a:249 [binder, in hydras.Ackermann.subAll]
    +A:25 [binder, in hydras.Ackermann.folProof]
    +a:25 [binder, in hydras.Ackermann.extEqualNat]
    +A:25 [binder, in hydras.rpo.more_list]
    +a:25 [binder, in hydras.Prelude.Comparable]
    +A:25 [binder, in hydras.Prelude.DecPreOrder]
    +a:25 [binder, in hydras.Ackermann.PA]
    +a:25 [binder, in hydras.rpo.closure]
    +a:250 [binder, in additions.Addition_Chains]
    +a:251 [binder, in hydras.Ackermann.primRec]
    +a:252 [binder, in hydras.Epsilon0.T1]
    +a:252 [binder, in hydras.Ackermann.folProp]
    +a:253 [binder, in hydras.Epsilon0.T1]
    +a:253 [binder, in gaia_hydras.nfwfgaia]
    +a:254 [binder, in hydras.Ackermann.primRec]
    +A:254 [binder, in additions.Addition_Chains]
    +a:255 [binder, in hydras.rpo.more_list]
    +a:255 [binder, in gaia_hydras.nfwfgaia]
    +a:256 [binder, in hydras.rpo.rpo]
    +a:257 [binder, in hydras.Epsilon0.T1]
    +a:257 [binder, in hydras.Ackermann.primRec]
    +A:259 [binder, in hydras.rpo.more_list]
    +a:259 [binder, in hydras.Ackermann.folProp]
    +a:26 [binder, in Goedel.PRrepresentable]
    +A:26 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +A:26 [binder, in hydras.Prelude.MoreLists]
    +a:26 [binder, in additions.Compatibility]
    +a:26 [binder, in hydras.Prelude.Comparable]
    +A:26 [binder, in Goedel.fixPoint]
    +a:26 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +a:26 [binder, in hydras.Ackermann.PA]
    +A:26 [binder, in additions.Euclidean_Chains]
    +a:26 [binder, in hydras.Schutte.PartialFun]
    +a:26 [binder, in gaia_hydras.GHessenberg]
    +a:26 [binder, in hydras.MoreAck.PrimRecExamples]
    +A:26 [binder, in hydras.Ackermann.expressible]
    +a:260 [binder, in hydras.Epsilon0.T1]
    +a:260 [binder, in gaia_hydras.nfwfgaia]
    +A:261 [binder, in Goedel.PRrepresentable]
    +a:261 [binder, in hydras.Ackermann.primRec]
    +a:263 [binder, in hydras.Epsilon0.T1]
    +a:263 [binder, in gaia_hydras.nfwfgaia]
    +A:264 [binder, in additions.Addition_Chains]
    +A:265 [binder, in Goedel.PRrepresentable]
    +A:265 [binder, in hydras.Ackermann.checkPrf]
    +a:265 [binder, in hydras.Ackermann.primRec]
    +a:266 [binder, in hydras.Epsilon0.T1]
    +a:266 [binder, in hydras.Ackermann.cPair]
    +a:267 [binder, in hydras.rpo.more_list]
    +a:268 [binder, in hydras.Ackermann.folProp]
    +a:268 [binder, in hydras.Ackermann.cPair]
    +a:268 [binder, in hydras.Ackermann.fol]
    +a:268 [binder, in hydras.rpo.rpo]
    +a:269 [binder, in Goedel.PRrepresentable]
    +a:269 [binder, in hydras.Ackermann.primRec]
    +A:27 [binder, in hydras.Ackermann.folProof]
    +a:27 [binder, in hydras.Schutte.Correctness_E0]
    +a:27 [binder, in hydras.Prelude.More_Arith]
    +a:27 [binder, in hydras.Ackermann.extEqualNat]
    +a:27 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +a:27 [binder, in hydras.Epsilon0.Hessenberg]
    +a:27 [binder, in gaia_hydras.GCanon]
    +a:27 [binder, in hydras.solutions_exercises.MultisetWf]
    +a:27 [binder, in Goedel.rosserPA]
    +a:27 [binder, in hydras.OrdinalNotations.ON_Generic]
    +a:27 [binder, in gaia_hydras.GL_alpha]
    +a:27 [binder, in hydras.Ackermann.Languages]
    +A:27 [binder, in hydras.Prelude.MoreVectors]
    +a:270 [binder, in hydras.Epsilon0.T1]
    +a:270 [binder, in hydras.Ackermann.cPair]
    +a:270 [binder, in hydras.rpo.rpo]
    +a:271 [binder, in additions.Addition_Chains]
    +a:272 [binder, in hydras.Epsilon0.T1]
    +A:272 [binder, in Goedel.PRrepresentable]
    +a:272 [binder, in hydras.Ackermann.cPair]
    +a:272 [binder, in hydras.Ackermann.fol]
    +a:272 [binder, in hydras.Gamma0.Gamma0]
    +a:273 [binder, in hydras.Ackermann.primRec]
    +a:274 [binder, in hydras.Epsilon0.T1]
    +a:274 [binder, in hydras.Ackermann.cPair]
    +a:275 [binder, in hydras.Ackermann.folProp]
    +a:276 [binder, in hydras.Epsilon0.T1]
    +a:276 [binder, in hydras.Ackermann.cPair]
    +a:277 [binder, in hydras.Ackermann.primRec]
    +a:277 [binder, in hydras.Ackermann.cPair]
    +a:277 [binder, in hydras.Gamma0.Gamma0]
    +a:278 [binder, in hydras.Ackermann.cPair]
    +a:278 [binder, in gaia_hydras.nfwfgaia]
    +a:279 [binder, in hydras.Ackermann.cPair]
    +A:28 [binder, in Goedel.PRrepresentable]
    +A:28 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +a:28 [binder, in additions.Compatibility]
    +a:28 [binder, in hydras.Prelude.Comparable]
    +a:28 [binder, in gaia_hydras.GPaths]
    +a:28 [binder, in hydras.Prelude.DecPreOrder]
    +a:28 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +a:28 [binder, in hydras.Schutte.PartialFun]
    +a:28 [binder, in gaia_hydras.GL_alpha]
    +a:28 [binder, in gaia_hydras.GHessenberg]
    +a:280 [binder, in hydras.Ackermann.cPair]
    +a:280 [binder, in hydras.Ackermann.fol]
    +a:281 [binder, in hydras.Ackermann.cPair]
    +a:282 [binder, in hydras.Epsilon0.T1]
    +a:282 [binder, in hydras.Ackermann.primRec]
    +a:283 [binder, in hydras.Gamma0.Gamma0]
    +a:283 [binder, in gaia_hydras.nfwfgaia]
    +a:284 [binder, in gaia_hydras.nfwfgaia]
    +A:285 [binder, in Goedel.PRrepresentable]
    +a:286 [binder, in hydras.Ackermann.primRec]
    +a:287 [binder, in hydras.Epsilon0.T1]
    +a:287 [binder, in hydras.Gamma0.Gamma0]
    +A:29 [binder, in hydras.Ackermann.folProof]
    +a:29 [binder, in hydras.Prelude.Comparable]
    +A:29 [binder, in additions.Pow_variant]
    +A:29 [binder, in additions.Pow]
    +a:29 [binder, in gaia_hydras.GCanon]
    +A:29 [binder, in Goedel.rosserPA]
    +a:29 [binder, in hydras.Hydra.BigBattle]
    +A:29 [binder, in hydras.OrdinalNotations.ON_Generic]
    +a:29 [binder, in hydras.Ackermann.NN]
    +a:29 [binder, in hydras.Gamma0.Gamma0]
    +a:29 [binder, in hydras.MoreAck.PrimRecExamples]
    +a:290 [binder, in hydras.Ackermann.primRec]
    +A:291 [binder, in Goedel.PRrepresentable]
    +a:291 [binder, in hydras.Gamma0.Gamma0]
    +a:291 [binder, in gaia_hydras.nfwfgaia]
    +a:295 [binder, in hydras.Ackermann.primRec]
    +a:295 [binder, in hydras.Gamma0.Gamma0]
    +a:296 [binder, in gaia_hydras.nfwfgaia]
    +a:299 [binder, in hydras.Ackermann.primRec]
    +a:299 [binder, in hydras.Gamma0.Gamma0]
    +a:3 [binder, in additions.Compatibility]
    +a:3 [binder, in hydras.Ackermann.folLogic2]
    +a:3 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +a:3 [binder, in hydras.OrdinalNotations.Example_3PlusOmega]
    +a:3 [binder, in hydras.Ackermann.prLogic]
    +A:3 [binder, in additions.Euclidean_Chains]
    +a:3 [binder, in hydras.Ackermann.NNtheory]
    +a:3 [binder, in gaia_hydras.GLarge_Sets]
    +a:3 [binder, in hydras.Schutte.Well_Orders]
    +a:3 [binder, in hydras.Ackermann.folLogic3]
    +a:3 [binder, in hydras.Ackermann.NN]
    +a:30 [binder, in hydras.Epsilon0.T1]
    +a:30 [binder, in hydras.Ackermann.extEqualNat]
    +a:30 [binder, in additions.Compatibility]
    +a:30 [binder, in hydras.rpo.more_list]
    +a:30 [binder, in gaia_hydras.GPaths]
    +A:30 [binder, in hydras.Prelude.Sort_spec]
    +A:30 [binder, in hydras.Prelude.DecPreOrder]
    +a:30 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +a:30 [binder, in hydras.Ackermann.primRec]
    +a:30 [binder, in hydras.Ackermann.NN]
    +a:30 [binder, in gaia_hydras.GHessenberg]
    +a:303 [binder, in hydras.Ackermann.primRec]
    +a:306 [binder, in Goedel.PRrepresentable]
    +a:306 [binder, in hydras.Gamma0.Gamma0]
    +a:307 [binder, in hydras.Ackermann.primRec]
    +a:31 [binder, in Goedel.PRrepresentable]
    +A:31 [binder, in hydras.rpo.more_list]
    +a:31 [binder, in hydras.Ackermann.folLogic3]
    +a:310 [binder, in hydras.Epsilon0.T1]
    +a:310 [binder, in Goedel.PRrepresentable]
    +a:311 [binder, in hydras.Ackermann.primRec]
    +a:313 [binder, in Goedel.PRrepresentable]
    +a:315 [binder, in hydras.Ackermann.primRec]
    +a:316 [binder, in Goedel.PRrepresentable]
    +a:318 [binder, in Goedel.PRrepresentable]
    +A:318 [binder, in hydras.Ackermann.checkPrf]
    +a:318 [binder, in hydras.Ackermann.fol]
    +a:319 [binder, in hydras.Ackermann.primRec]
    +A:32 [binder, in hydras.Ackermann.folProof]
    +A:32 [binder, in Goedel.PRrepresentable]
    +a:32 [binder, in additions.Compatibility]
    +a:32 [binder, in hydras.Prelude.Restriction]
    +a:32 [binder, in hydras.Prelude.Comparable]
    +a:32 [binder, in gaia_hydras.GPaths]
    +a:32 [binder, in hydras.Epsilon0.Hessenberg]
    +A:32 [binder, in hydras.solutions_exercises.MultisetWf]
    +a:32 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +a:32 [binder, in hydras.Schutte.PartialFun]
    +A:32 [binder, in Goedel.codeSysPrf]
    +A:32 [binder, in hydras.Schutte.Ordering_Functions]
    +a:32 [binder, in hydras.Ackermann.Languages]
    +A:32 [binder, in hydras.Ackermann.expressible]
    +a:322 [binder, in hydras.Ackermann.fol]
    +a:324 [binder, in hydras.Ackermann.primRec]
    +A:326 [binder, in Goedel.PRrepresentable]
    +a:327 [binder, in gaia_hydras.nfwfgaia]
    +a:328 [binder, in hydras.Ackermann.primRec]
    +a:328 [binder, in gaia_hydras.nfwfgaia]
    +a:33 [binder, in hydras.Prelude.More_Arith]
    +a:33 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +a:33 [binder, in gaia_hydras.GCanon]
    +a:33 [binder, in hydras.Ackermann.cPair]
    +a:33 [binder, in hydras.Schutte.PartialFun]
    +a:33 [binder, in gaia_hydras.GHessenberg]
    +a:330 [binder, in hydras.Ackermann.fol]
    +A:331 [binder, in Goedel.PRrepresentable]
    +a:332 [binder, in hydras.Ackermann.primRec]
    +a:334 [binder, in gaia_hydras.nfwfgaia]
    +a:335 [binder, in gaia_hydras.nfwfgaia]
    +A:336 [binder, in Goedel.PRrepresentable]
    +a:336 [binder, in hydras.Ackermann.primRec]
    +a:336 [binder, in gaia_hydras.nfwfgaia]
    +a:337 [binder, in gaia_hydras.nfwfgaia]
    +a:338 [binder, in hydras.Ackermann.cPair]
    +a:338 [binder, in gaia_hydras.nfwfgaia]
    +A:339 [binder, in additions.Euclidean_Chains]
    +A:34 [binder, in hydras.Ackermann.folProof]
    +a:34 [binder, in additions.Compatibility]
    +A:34 [binder, in additions.FirstSteps]
    +a:34 [binder, in hydras.Prelude.Comparable]
    +a:34 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +a:34 [binder, in hydras.Ackermann.PA]
    +a:34 [binder, in hydras.Schutte.Well_Orders]
    +a:34 [binder, in hydras.Schutte.Ordering_Functions]
    +A:34 [binder, in hydras.Ackermann.expressible]
    +a:34 [binder, in hydras.Prelude.MoreVectors]
    +a:340 [binder, in hydras.Ackermann.primRec]
    +a:340 [binder, in hydras.Ackermann.cPair]
    +A:341 [binder, in hydras.Ackermann.subAll]
    +a:344 [binder, in hydras.Epsilon0.T1]
    +A:346 [binder, in hydras.Ackermann.subAll]
    +a:346 [binder, in hydras.Ackermann.cPair]
    +a:349 [binder, in hydras.Ackermann.cPair]
    +a:35 [binder, in Goedel.PRrepresentable]
    +A:35 [binder, in additions.AM]
    +a:35 [binder, in additions.Compatibility]
    +a:35 [binder, in hydras.Prelude.Comparable]
    +a:35 [binder, in additions.Pow_variant]
    +a:35 [binder, in additions.Pow]
    +A:35 [binder, in hydras.Prelude.DecPreOrder]
    +a:35 [binder, in hydras.Ackermann.folProp]
    +A:35 [binder, in hydras.solutions_exercises.MultisetWf]
    +a:35 [binder, in hydras.Ackermann.PA]
    +A:35 [binder, in additions.Euclidean_Chains]
    +a:35 [binder, in hydras.Schutte.Schutte_basics]
    +a:35 [binder, in Goedel.codeSysPrf]
    +A:35 [binder, in additions.Addition_Chains]
    +A:35 [binder, in hydras.MoreAck.FolExamples]
    +a:35 [binder, in hydras.Ackermann.expressible]
    +a:351 [binder, in Goedel.PRrepresentable]
    +A:351 [binder, in hydras.Ackermann.subAll]
    +a:352 [binder, in hydras.Ackermann.cPair]
    +a:353 [binder, in gaia_hydras.nfwfgaia]
    +A:354 [binder, in hydras.Ackermann.checkPrf]
    +a:355 [binder, in hydras.Epsilon0.T1]
    +a:355 [binder, in Goedel.PRrepresentable]
    +a:355 [binder, in hydras.Ackermann.cPair]
    +a:355 [binder, in gaia_hydras.nfwfgaia]
    +A:357 [binder, in hydras.Ackermann.subAll]
    +a:357 [binder, in gaia_hydras.nfwfgaia]
    +a:359 [binder, in Goedel.PRrepresentable]
    +a:359 [binder, in gaia_hydras.nfwfgaia]
    +A:36 [binder, in hydras.rpo.more_list]
    +a:36 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +A:36 [binder, in additions.Monoid_def]
    +a:36 [binder, in hydras.Hydra.BigBattle]
    +a:36 [binder, in additions.Addition_Chains]
    +a:36 [binder, in hydras.rpo.list_permut]
    +A:36 [binder, in hydras.Schutte.Ordering_Functions]
    +a:36 [binder, in gaia_hydras.GHessenberg]
    +a:361 [binder, in hydras.Epsilon0.T1]
    +a:361 [binder, in gaia_hydras.nfwfgaia]
    +a:362 [binder, in hydras.Ackermann.cPair]
    +a:362 [binder, in gaia_hydras.nfwfgaia]
    +a:363 [binder, in Goedel.PRrepresentable]
    +a:364 [binder, in hydras.Ackermann.fol]
    +a:365 [binder, in hydras.Ackermann.folProp]
    +a:365 [binder, in hydras.Ackermann.cPair]
    +a:368 [binder, in hydras.Ackermann.cPair]
    +a:368 [binder, in hydras.Ackermann.fol]
    +A:37 [binder, in hydras.Ackermann.folProof]
    +a:37 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +a:37 [binder, in hydras.Ackermann.cPair]
    +a:37 [binder, in hydras.Ackermann.wellFormed]
    +a:37 [binder, in gaia_hydras.onType]
    +a:37 [binder, in hydras.Schutte.Well_Orders]
    +a:37 [binder, in Goedel.codeSysPrf]
    +A:37 [binder, in hydras.Schutte.Addition]
    +A:370 [binder, in hydras.Ackermann.subAll]
    +a:371 [binder, in hydras.Ackermann.cPair]
    +a:372 [binder, in hydras.Ackermann.folProp]
    +a:375 [binder, in hydras.Epsilon0.T1]
    +a:375 [binder, in gaia_hydras.nfwfgaia]
    +a:376 [binder, in hydras.Ackermann.fol]
    +a:376 [binder, in gaia_hydras.nfwfgaia]
    +a:377 [binder, in gaia_hydras.nfwfgaia]
    +a:38 [binder, in additions.Compatibility]
    +a:38 [binder, in hydras.Prelude.Comparable]
    +a:38 [binder, in hydras.Epsilon0.Hessenberg]
    +a:38 [binder, in hydras.Prelude.DecPreOrder]
    +a:38 [binder, in hydras.Ackermann.NN]
    +a:38 [binder, in hydras.Schutte.Ordering_Functions]
    +A:38 [binder, in hydras.MoreAck.FolExamples]
    +A:38 [binder, in hydras.Ackermann.expressible]
    +a:380 [binder, in gaia_hydras.nfwfgaia]
    +a:381 [binder, in hydras.Epsilon0.T1]
    +a:381 [binder, in hydras.Ackermann.folProp]
    +a:381 [binder, in gaia_hydras.nfwfgaia]
    +a:385 [binder, in hydras.Epsilon0.T1]
    +a:385 [binder, in Goedel.PRrepresentable]
    +a:388 [binder, in hydras.Ackermann.folProp]
    +a:389 [binder, in Goedel.PRrepresentable]
    +A:39 [binder, in hydras.Ackermann.folProof]
    +a:39 [binder, in Goedel.PRrepresentable]
    +a:39 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +A:39 [binder, in additions.Pow_variant]
    +a:39 [binder, in gaia_hydras.GPaths]
    +A:39 [binder, in additions.Pow]
    +A:39 [binder, in hydras.Prelude.Sort_spec]
    +A:39 [binder, in hydras.Prelude.DecPreOrder]
    +a:39 [binder, in hydras.Ackermann.cPair]
    +a:39 [binder, in hydras.Ackermann.wellFormed]
    +a:39 [binder, in hydras.Schutte.Schutte_basics]
    +a:39 [binder, in gaia_hydras.onType]
    +a:390 [binder, in hydras.Epsilon0.T1]
    +a:393 [binder, in Goedel.PRrepresentable]
    +a:393 [binder, in hydras.Ackermann.checkPrf]
    +a:393 [binder, in gaia_hydras.nfwfgaia]
    +a:396 [binder, in gaia_hydras.nfwfgaia]
    +a:397 [binder, in Goedel.PRrepresentable]
    +a:397 [binder, in hydras.Ackermann.checkPrf]
    +a:398 [binder, in gaia_hydras.nfwfgaia]
    +a:4 [binder, in hydras.Prelude.Restriction]
    +A:4 [binder, in hydras.Prelude.Comparable]
    +a:4 [binder, in Goedel.fixPoint]
    +a:4 [binder, in hydras.Prelude.DecPreOrder]
    +a:4 [binder, in gaia_hydras.T1Bridge]
    +A:4 [binder, in additions.Monoid_def]
    +a:4 [binder, in additions.Addition_Chains]
    +A:4 [binder, in hydras.Schutte.Ordering_Functions]
    +A:40 [binder, in additions.FirstSteps]
    +a:40 [binder, in hydras.Prelude.Comparable]
    +a:40 [binder, in hydras.Schutte.PartialFun]
    +a:400 [binder, in Goedel.PRrepresentable]
    +A:401 [binder, in hydras.Epsilon0.T1]
    +a:402 [binder, in Goedel.PRrepresentable]
    +a:403 [binder, in hydras.Epsilon0.T1]
    +a:405 [binder, in Goedel.PRrepresentable]
    +A:407 [binder, in hydras.Ackermann.checkPrf]
    +a:408 [binder, in hydras.Ackermann.fol]
    +a:408 [binder, in gaia_hydras.nfwfgaia]
    +a:409 [binder, in Goedel.PRrepresentable]
    +A:41 [binder, in additions.AM]
    +A:41 [binder, in hydras.rpo.more_list]
    +a:41 [binder, in hydras.solutions_exercises.MultisetWf]
    +a:41 [binder, in gaia_hydras.T1Bridge]
    +A:41 [binder, in additions.Monoid_def]
    +a:41 [binder, in hydras.Ackermann.cPair]
    +a:41 [binder, in additions.Euclidean_Chains]
    +a:41 [binder, in hydras.Schutte.Schutte_basics]
    +a:41 [binder, in hydras.Schutte.Well_Orders]
    +A:41 [binder, in additions.Addition_Chains]
    +A:41 [binder, in hydras.MoreAck.FolExamples]
    +A:41 [binder, in hydras.Ackermann.expressible]
    +A:41 [binder, in hydras.Prelude.MoreVectors]
    +a:411 [binder, in gaia_hydras.nfwfgaia]
    +a:412 [binder, in hydras.Ackermann.fol]
    +a:413 [binder, in Goedel.PRrepresentable]
    +a:414 [binder, in hydras.Ackermann.primRec]
    +a:415 [binder, in hydras.Epsilon0.T1]
    +a:415 [binder, in gaia_hydras.nfwfgaia]
    +a:416 [binder, in hydras.Ackermann.primRec]
    +a:417 [binder, in Goedel.PRrepresentable]
    +a:418 [binder, in hydras.Ackermann.primRec]
    +a:42 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +a:42 [binder, in hydras.Prelude.Comparable]
    +a:42 [binder, in hydras.Prelude.DecPreOrder]
    +a:42 [binder, in additions.More_on_positive]
    +a:42 [binder, in gaia_hydras.T1Bridge]
    +A:42 [binder, in hydras.Prelude.MoreOrders]
    +A:42 [binder, in additions.Euclidean_Chains]
    +a:42 [binder, in hydras.Schutte.PartialFun]
    +a:42 [binder, in hydras.Ackermann.folLogic3]
    +a:420 [binder, in Goedel.PRrepresentable]
    +a:420 [binder, in hydras.Ackermann.primRec]
    +a:421 [binder, in hydras.Epsilon0.T1]
    +a:421 [binder, in hydras.Ackermann.fol]
    +a:422 [binder, in hydras.Epsilon0.T1]
    +a:422 [binder, in gaia_hydras.nfwfgaia]
    +a:424 [binder, in Goedel.PRrepresentable]
    +a:424 [binder, in hydras.Ackermann.primRec]
    +a:425 [binder, in hydras.Epsilon0.T1]
    +a:428 [binder, in hydras.Ackermann.fol]
    +a:429 [binder, in Goedel.PRrepresentable]
    +a:429 [binder, in hydras.Ackermann.primRec]
    +a:429 [binder, in hydras.Gamma0.Gamma0]
    +a:43 [binder, in hydras.Epsilon0.T1]
    +a:43 [binder, in Goedel.PRrepresentable]
    +a:43 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +a:43 [binder, in hydras.rpo.more_list]
    +a:43 [binder, in hydras.Ackermann.LNN2LNT]
    +a:43 [binder, in hydras.Prelude.Comparable]
    +a:43 [binder, in gaia_hydras.T1Bridge]
    +a:43 [binder, in hydras.Ackermann.PA]
    +a:43 [binder, in hydras.Schutte.PartialFun]
    +a:43 [binder, in hydras.rpo.dickson]
    +a:43 [binder, in hydras.rpo.list_permut]
    +A:43 [binder, in hydras.Schutte.Ordering_Functions]
    +a:430 [binder, in hydras.Ackermann.fol]
    +a:431 [binder, in hydras.Epsilon0.T1]
    +a:432 [binder, in Goedel.PRrepresentable]
    +a:432 [binder, in gaia_hydras.nfwfgaia]
    +a:435 [binder, in Goedel.PRrepresentable]
    +a:436 [binder, in hydras.Epsilon0.T1]
    +a:436 [binder, in hydras.Ackermann.primRec]
    +a:437 [binder, in gaia_hydras.nfwfgaia]
    +a:438 [binder, in Goedel.PRrepresentable]
    +A:438 [binder, in hydras.Ackermann.folProp]
    +a:44 [binder, in Goedel.PRrepresentable]
    +A:44 [binder, in hydras.Prelude.MoreLists]
    +a:44 [binder, in hydras.Prelude.Comparable]
    +a:44 [binder, in hydras.Epsilon0.Hessenberg]
    +A:44 [binder, in hydras.Prelude.DecPreOrder]
    +a:44 [binder, in hydras.solutions_exercises.MultisetWf]
    +a:44 [binder, in hydras.Ackermann.PA]
    +a:44 [binder, in hydras.Prelude.MoreOrders]
    +a:44 [binder, in hydras.Ackermann.primRec]
    +a:441 [binder, in gaia_hydras.nfwfgaia]
    +a:442 [binder, in hydras.Epsilon0.T1]
    +a:443 [binder, in gaia_hydras.nfwfgaia]
    +a:444 [binder, in hydras.Ackermann.fol]
    +a:445 [binder, in hydras.Ackermann.checkPrf]
    +a:445 [binder, in hydras.Ackermann.primRec]
    +a:445 [binder, in hydras.Gamma0.Gamma0]
    +a:445 [binder, in gaia_hydras.nfwfgaia]
    +a:446 [binder, in hydras.Epsilon0.T1]
    +a:447 [binder, in gaia_hydras.nfwfgaia]
    +a:448 [binder, in hydras.Epsilon0.T1]
    +a:449 [binder, in hydras.Ackermann.checkPrf]
    +a:449 [binder, in gaia_hydras.nfwfgaia]
    +a:45 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +a:45 [binder, in gaia_hydras.T1Bridge]
    +a:45 [binder, in hydras.Ackermann.cPair]
    +a:45 [binder, in Goedel.codeSysPrf]
    +A:45 [binder, in hydras.Schutte.Ordering_Functions]
    +A:45 [binder, in hydras.Ackermann.expressible]
    +a:450 [binder, in hydras.Ackermann.primRec]
    +a:450 [binder, in hydras.Gamma0.Gamma0]
    +a:450 [binder, in gaia_hydras.nfwfgaia]
    +a:451 [binder, in hydras.Epsilon0.T1]
    +a:451 [binder, in hydras.Gamma0.Gamma0]
    +a:452 [binder, in hydras.Gamma0.Gamma0]
    +a:452 [binder, in gaia_hydras.nfwfgaia]
    +a:453 [binder, in hydras.Epsilon0.T1]
    +A:453 [binder, in hydras.Ackermann.checkPrf]
    +a:457 [binder, in hydras.Gamma0.Gamma0]
    +a:457 [binder, in gaia_hydras.nfwfgaia]
    +a:458 [binder, in hydras.Epsilon0.T1]
    +a:458 [binder, in hydras.Ackermann.primRec]
    +a:459 [binder, in gaia_hydras.nfwfgaia]
    +a:46 [binder, in hydras.Epsilon0.T1]
    +A:46 [binder, in hydras.rpo.more_list]
    +a:46 [binder, in hydras.Prelude.Comparable]
    +A:46 [binder, in hydras.Prelude.Sort_spec]
    +a:46 [binder, in additions.More_on_positive]
    +A:46 [binder, in hydras.Prelude.MoreOrders]
    +A:46 [binder, in additions.Monoid_def]
    +a:46 [binder, in hydras.Schutte.PartialFun]
    +A:46 [binder, in hydras.Schutte.Schutte_basics]
    +a:46 [binder, in hydras.Schutte.Well_Orders]
    +A:46 [binder, in additions.Addition_Chains]
    +a:461 [binder, in hydras.Epsilon0.T1]
    +a:462 [binder, in gaia_hydras.nfwfgaia]
    +a:463 [binder, in hydras.Ackermann.primRec]
    +a:464 [binder, in hydras.Epsilon0.T1]
    +a:464 [binder, in gaia_hydras.nfwfgaia]
    +a:466 [binder, in gaia_hydras.nfwfgaia]
    +a:467 [binder, in hydras.Gamma0.Gamma0]
    +a:468 [binder, in hydras.Epsilon0.T1]
    +a:468 [binder, in hydras.Ackermann.primRec]
    +a:468 [binder, in gaia_hydras.nfwfgaia]
    +a:47 [binder, in Goedel.PRrepresentable]
    +a:47 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +a:47 [binder, in hydras.Prelude.More_Arith]
    +a:47 [binder, in hydras.Prelude.DecPreOrder]
    +A:47 [binder, in additions.Euclidean_Chains]
    +a:47 [binder, in Goedel.codeSysPrf]
    +a:47 [binder, in hydras.Schutte.Ordering_Functions]
    +a:470 [binder, in hydras.Epsilon0.T1]
    +a:472 [binder, in hydras.Ackermann.primRec]
    +a:473 [binder, in gaia_hydras.nfwfgaia]
    +a:476 [binder, in hydras.Epsilon0.T1]
    +a:478 [binder, in hydras.Epsilon0.T1]
    +a:48 [binder, in hydras.Epsilon0.T1]
    +a:48 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +a:48 [binder, in hydras.Prelude.Comparable]
    +A:48 [binder, in additions.Pow_variant]
    +A:48 [binder, in additions.Pow]
    +a:48 [binder, in hydras.Epsilon0.Hessenberg]
    +a:48 [binder, in gaia_hydras.GCanon]
    +a:48 [binder, in hydras.Ackermann.code]
    +a:48 [binder, in hydras.Hydra.BigBattle]
    +A:48 [binder, in hydras.OrdinalNotations.ON_Generic]
    +A:48 [binder, in hydras.Prelude.MoreVectors]
    +a:480 [binder, in hydras.Ackermann.primRec]
    +a:482 [binder, in hydras.Gamma0.Gamma0]
    +a:485 [binder, in hydras.Ackermann.primRec]
    +a:486 [binder, in hydras.Ackermann.checkPrf]
    +a:489 [binder, in hydras.Ackermann.primRec]
    +a:489 [binder, in hydras.Gamma0.Gamma0]
    +A:49 [binder, in hydras.Prelude.DecPreOrder]
    +a:49 [binder, in hydras.solutions_exercises.MultisetWf]
    +a:49 [binder, in gaia_hydras.T1Bridge]
    +a:49 [binder, in hydras.Ackermann.cPair]
    +a:49 [binder, in hydras.Schutte.Well_Orders]
    +a:49 [binder, in hydras.Ackermann.folLogic3]
    +A:49 [binder, in hydras.Schutte.Ordering_Functions]
    +a:490 [binder, in hydras.Ackermann.checkPrf]
    +a:490 [binder, in gaia_hydras.nfwfgaia]
    +a:492 [binder, in gaia_hydras.nfwfgaia]
    +a:494 [binder, in hydras.Ackermann.primRec]
    +a:494 [binder, in gaia_hydras.nfwfgaia]
    +a:496 [binder, in hydras.Epsilon0.T1]
    +a:499 [binder, in hydras.Ackermann.primRec]
    +a:5 [binder, in hydras.Ackermann.folProof]
    +a:5 [binder, in gaia_hydras.GPaths]
    +a:5 [binder, in hydras.Schutte.Lub]
    +a:5 [binder, in hydras.Prelude.Sort_spec]
    +a:5 [binder, in gaia_hydras.GCanon]
    +a:5 [binder, in hydras.Schutte.MoreEpsilonIota]
    +a:5 [binder, in hydras.Ackermann.prLogic]
    +a:5 [binder, in hydras.Schutte.Schutte_basics]
    +a:5 [binder, in hydras.Ackermann.NNtheory]
    +a:5 [binder, in gaia_hydras.GLarge_Sets]
    +a:5 [binder, in hydras.Ackermann.ListExt]
    +a:5 [binder, in hydras.Ackermann.folLogic3]
    +a:5 [binder, in hydras.Gamma0.Gamma0]
    +a:5 [binder, in hydras.MoreAck.FolExamples]
    +a:50 [binder, in hydras.Epsilon0.T1]
    +A:50 [binder, in hydras.rpo.more_list]
    +A:50 [binder, in hydras.Ackermann.code]
    +A:50 [binder, in additions.Euclidean_Chains]
    +a:50 [binder, in hydras.rpo.dickson]
    +a:50 [binder, in hydras.MoreAck.PrimRecExamples]
    +A:50 [binder, in hydras.Ackermann.expressible]
    +a:500 [binder, in hydras.Epsilon0.T1]
    +a:502 [binder, in hydras.Epsilon0.T1]
    +a:502 [binder, in hydras.Ackermann.checkPrf]
    +a:503 [binder, in hydras.Ackermann.primRec]
    +a:505 [binder, in hydras.Ackermann.primRec]
    +a:506 [binder, in hydras.Ackermann.checkPrf]
    +a:507 [binder, in hydras.Ackermann.primRec]
    +a:509 [binder, in hydras.Epsilon0.T1]
    +a:509 [binder, in hydras.Ackermann.primRec]
    +a:51 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +a:51 [binder, in hydras.Prelude.More_Arith]
    +a:51 [binder, in hydras.Prelude.Comparable]
    +a:51 [binder, in gaia_hydras.GPaths]
    +A:51 [binder, in additions.Monoid_def]
    +a:51 [binder, in hydras.Prelude.MoreVectors]
    +a:510 [binder, in hydras.Ackermann.checkPrf]
    +a:511 [binder, in hydras.Ackermann.primRec]
    +a:513 [binder, in hydras.Epsilon0.T1]
    +a:513 [binder, in hydras.Ackermann.primRec]
    +a:514 [binder, in hydras.Epsilon0.T1]
    +a:514 [binder, in hydras.Ackermann.checkPrf]
    +a:515 [binder, in hydras.Epsilon0.T1]
    +a:515 [binder, in hydras.Ackermann.primRec]
    +a:517 [binder, in hydras.Ackermann.primRec]
    +a:518 [binder, in hydras.Epsilon0.T1]
    +a:518 [binder, in hydras.Gamma0.Gamma0]
    +a:519 [binder, in hydras.Ackermann.primRec]
    +A:52 [binder, in additions.AM]
    +a:52 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +a:52 [binder, in hydras.Prelude.DecPreOrder]
    +a:52 [binder, in hydras.MoreAck.AckNotPR]
    +a:52 [binder, in hydras.Hydra.BigBattle]
    +a:52 [binder, in hydras.Schutte.PartialFun]
    +a:52 [binder, in hydras.Schutte.Schutte_basics]
    +a:520 [binder, in hydras.Epsilon0.T1]
    +a:520 [binder, in hydras.Gamma0.Gamma0]
    +a:521 [binder, in hydras.Epsilon0.T1]
    +a:521 [binder, in hydras.Ackermann.primRec]
    +a:523 [binder, in hydras.Ackermann.primRec]
    +a:524 [binder, in hydras.Gamma0.Gamma0]
    +a:525 [binder, in hydras.Ackermann.primRec]
    +a:526 [binder, in hydras.Epsilon0.T1]
    +a:527 [binder, in hydras.Ackermann.primRec]
    +a:527 [binder, in hydras.Gamma0.Gamma0]
    +a:528 [binder, in hydras.Epsilon0.T1]
    +a:529 [binder, in hydras.Ackermann.primRec]
    +a:53 [binder, in hydras.Ackermann.cPair]
    +A:53 [binder, in additions.Euclidean_Chains]
    +a:53 [binder, in hydras.Schutte.Schutte_basics]
    +A:53 [binder, in additions.Addition_Chains]
    +A:53 [binder, in hydras.Prelude.MoreVectors]
    +a:530 [binder, in hydras.Gamma0.Gamma0]
    +a:531 [binder, in hydras.Epsilon0.T1]
    +a:532 [binder, in hydras.Ackermann.primRec]
    +a:533 [binder, in hydras.Gamma0.Gamma0]
    +a:534 [binder, in hydras.Ackermann.primRec]
    +a:536 [binder, in hydras.Ackermann.primRec]
    +a:538 [binder, in hydras.Epsilon0.T1]
    +a:54 [binder, in hydras.Ackermann.LNN2LNT]
    +a:54 [binder, in hydras.Prelude.Comparable]
    +a:54 [binder, in hydras.Prelude.Sort_spec]
    +A:54 [binder, in hydras.Prelude.DecPreOrder]
    +a:54 [binder, in hydras.Ackermann.code]
    +a:54 [binder, in hydras.Schutte.Schutte_basics]
    +A:54 [binder, in hydras.Schutte.Ordering_Functions]
    +a:548 [binder, in hydras.Epsilon0.T1]
    +a:548 [binder, in hydras.Ackermann.primRec]
    +a:55 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +a:55 [binder, in hydras.rpo.more_list]
    +a:55 [binder, in hydras.Schutte.Schutte_basics]
    +a:55 [binder, in additions.Addition_Chains]
    +A:55 [binder, in hydras.Ackermann.expressible]
    +a:550 [binder, in hydras.Ackermann.primRec]
    +a:552 [binder, in hydras.Ackermann.primRec]
    +a:553 [binder, in hydras.Epsilon0.T1]
    +a:554 [binder, in hydras.Ackermann.primRec]
    +a:555 [binder, in hydras.Epsilon0.T1]
    +a:557 [binder, in gaia_hydras.nfwfgaia]
    +A:56 [binder, in hydras.rpo.more_list]
    +a:56 [binder, in hydras.Ackermann.LNN2LNT]
    +a:56 [binder, in gaia_hydras.GCanon]
    +a:56 [binder, in hydras.Ackermann.code]
    +a:56 [binder, in gaia_hydras.T1Bridge]
    +A:56 [binder, in additions.Monoid_def]
    +a:56 [binder, in hydras.Schutte.Schutte_basics]
    +a:56 [binder, in hydras.rpo.dickson]
    +a:56 [binder, in hydras.Schutte.Ordering_Functions]
    +a:562 [binder, in hydras.Epsilon0.T1]
    +a:562 [binder, in gaia_hydras.nfwfgaia]
    +a:563 [binder, in hydras.Gamma0.Gamma0]
    +a:564 [binder, in hydras.Ackermann.checkPrf]
    +a:564 [binder, in gaia_hydras.nfwfgaia]
    +a:565 [binder, in hydras.Gamma0.Gamma0]
    +a:566 [binder, in hydras.Ackermann.checkPrf]
    +a:567 [binder, in hydras.Ackermann.checkPrf]
    +a:568 [binder, in hydras.Ackermann.checkPrf]
    +a:569 [binder, in hydras.Gamma0.Gamma0]
    +a:569 [binder, in gaia_hydras.nfwfgaia]
    +a:57 [binder, in hydras.Prelude.Comparable]
    +a:57 [binder, in gaia_hydras.GPaths]
    +a:57 [binder, in hydras.Prelude.DecPreOrder]
    +A:57 [binder, in additions.Monoid_def]
    +a:57 [binder, in hydras.Ackermann.primRec]
    +a:57 [binder, in hydras.Ackermann.cPair]
    +A:57 [binder, in additions.Addition_Chains]
    +a:57 [binder, in hydras.Prelude.MoreVectors]
    +a:571 [binder, in hydras.Epsilon0.T1]
    +a:571 [binder, in hydras.Gamma0.Gamma0]
    +a:575 [binder, in hydras.Epsilon0.T1]
    +a:579 [binder, in hydras.Epsilon0.T1]
    +a:579 [binder, in hydras.Gamma0.Gamma0]
    +A:58 [binder, in Goedel.PRrepresentable]
    +a:58 [binder, in hydras.Ackermann.LNN2LNT]
    +a:58 [binder, in gaia_hydras.GPaths]
    +a:58 [binder, in hydras.Ackermann.code]
    +a:58 [binder, in hydras.Ackermann.cPair]
    +A:58 [binder, in Goedel.codeSysPrf]
    +a:58 [binder, in hydras.rpo.dickson]
    +A:58 [binder, in hydras.Ackermann.expressible]
    +a:583 [binder, in hydras.Ackermann.primRec]
    +a:585 [binder, in hydras.Ackermann.primRec]
    +a:585 [binder, in hydras.Gamma0.Gamma0]
    +a:587 [binder, in hydras.Ackermann.primRec]
    +a:587 [binder, in hydras.Gamma0.Gamma0]
    +a:589 [binder, in hydras.Ackermann.primRec]
    +a:59 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +A:59 [binder, in additions.AM]
    +a:59 [binder, in hydras.Prelude.Comparable]
    +A:59 [binder, in hydras.Prelude.DecPreOrder]
    +a:59 [binder, in hydras.solutions_exercises.MultisetWf]
    +a:59 [binder, in hydras.Ackermann.code]
    +A:59 [binder, in hydras.Schutte.Ordering_Functions]
    +a:59 [binder, in hydras.Ackermann.expressible]
    +a:591 [binder, in hydras.Ackermann.primRec]
    +a:592 [binder, in hydras.Gamma0.Gamma0]
    +a:593 [binder, in hydras.Ackermann.primRec]
    +a:595 [binder, in hydras.Ackermann.primRec]
    +a:595 [binder, in gaia_hydras.nfwfgaia]
    +a:596 [binder, in hydras.Gamma0.Gamma0]
    +a:597 [binder, in hydras.Epsilon0.T1]
    +a:6 [binder, in hydras.OrdinalNotations.ON_O]
    +A:6 [binder, in hydras.Ackermann.model]
    +A:6 [binder, in hydras.Schutte.MoreEpsilonIota]
    +a:6 [binder, in hydras.solutions_exercises.MultisetWf]
    +a:6 [binder, in hydras.solutions_exercises.MorePRExamples]
    +A:6 [binder, in additions.Monoid_def]
    +a:6 [binder, in hydras.Ackermann.cPair]
    +A:6 [binder, in gaia_hydras.GLarge_Sets]
    +a:6 [binder, in hydras.Schutte.Well_Orders]
    +A:6 [binder, in hydras.Schutte.Ordering_Functions]
    +a:6 [binder, in hydras.MoreAck.PrimRecExamples]
    +a:60 [binder, in hydras.Schutte.Correctness_E0]
    +a:60 [binder, in hydras.rpo.more_list]
    +A:60 [binder, in hydras.Prelude.Sort_spec]
    +a:60 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +a:60 [binder, in hydras.Ackermann.cPair]
    +a:60 [binder, in hydras.Hydra.BigBattle]
    +a:60 [binder, in hydras.rpo.dickson]
    +a:601 [binder, in hydras.Epsilon0.T1]
    +a:604 [binder, in hydras.Gamma0.Gamma0]
    +a:606 [binder, in hydras.Gamma0.Gamma0]
    +a:61 [binder, in hydras.Ackermann.LNN2LNT]
    +a:61 [binder, in hydras.Prelude.Comparable]
    +a:61 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +a:61 [binder, in hydras.Ackermann.code]
    +a:61 [binder, in gaia_hydras.T1Bridge]
    +A:61 [binder, in additions.Monoid_def]
    +a:61 [binder, in hydras.Ackermann.primRec]
    +a:61 [binder, in hydras.Ackermann.cPair]
    +A:61 [binder, in additions.Euclidean_Chains]
    +a:61 [binder, in hydras.Schutte.Ordering_Functions]
    +A:61 [binder, in hydras.Prelude.MoreVectors]
    +a:610 [binder, in gaia_hydras.nfwfgaia]
    +a:614 [binder, in gaia_hydras.nfwfgaia]
    +a:618 [binder, in hydras.Epsilon0.T1]
    +A:62 [binder, in Goedel.PRrepresentable]
    +a:62 [binder, in hydras.Prelude.DecPreOrder]
    +a:62 [binder, in hydras.solutions_exercises.MultisetWf]
    +a:62 [binder, in hydras.Ackermann.cPair]
    +a:62 [binder, in hydras.Schutte.Schutte_basics]
    +a:62 [binder, in hydras.OrdinalNotations.ON_Generic]
    +a:62 [binder, in additions.Addition_Chains]
    +A:62 [binder, in hydras.Ackermann.expressible]
    +a:620 [binder, in hydras.Gamma0.Gamma0]
    +a:626 [binder, in hydras.Epsilon0.T1]
    +a:626 [binder, in gaia_hydras.nfwfgaia]
    +a:629 [binder, in gaia_hydras.nfwfgaia]
    +A:63 [binder, in hydras.rpo.more_list]
    +a:63 [binder, in hydras.Prelude.Comparable]
    +a:63 [binder, in hydras.Ackermann.code]
    +a:63 [binder, in hydras.Hydra.BigBattle]
    +A:63 [binder, in additions.Addition_Chains]
    +a:633 [binder, in hydras.Gamma0.Gamma0]
    +a:637 [binder, in hydras.Gamma0.Gamma0]
    +a:64 [binder, in hydras.Epsilon0.T1]
    +a:64 [binder, in hydras.Ackermann.subAll]
    +a:64 [binder, in gaia_hydras.GPaths]
    +A:64 [binder, in hydras.Prelude.DecPreOrder]
    +a:64 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +a:64 [binder, in hydras.Ackermann.code]
    +a:64 [binder, in hydras.Schutte.Schutte_basics]
    +a:64 [binder, in hydras.rpo.list_permut]
    +A:64 [binder, in hydras.Schutte.Ordering_Functions]
    +a:64 [binder, in hydras.MoreAck.PrimRecExamples]
    +A:65 [binder, in Goedel.PRrepresentable]
    +a:65 [binder, in hydras.Prelude.Comparable]
    +a:65 [binder, in hydras.Epsilon0.Hessenberg]
    +a:65 [binder, in hydras.Ackermann.primRec]
    +A:65 [binder, in hydras.Schutte.PartialFun]
    +A:653 [binder, in hydras.Ackermann.checkPrf]
    +a:654 [binder, in gaia_hydras.nfwfgaia]
    +a:655 [binder, in hydras.Ackermann.checkPrf]
    +a:656 [binder, in gaia_hydras.nfwfgaia]
    +a:657 [binder, in hydras.Ackermann.checkPrf]
    +a:658 [binder, in gaia_hydras.nfwfgaia]
    +a:659 [binder, in hydras.Ackermann.checkPrf]
    +a:66 [binder, in hydras.Ackermann.code]
    +a:66 [binder, in gaia_hydras.T1Bridge]
    +a:66 [binder, in hydras.Schutte.Schutte_basics]
    +a:66 [binder, in hydras.MoreAck.PrimRecExamples]
    +A:66 [binder, in hydras.Ackermann.expressible]
    +a:661 [binder, in hydras.Ackermann.checkPrf]
    +a:663 [binder, in hydras.Ackermann.checkPrf]
    +a:665 [binder, in hydras.Ackermann.checkPrf]
    +a:667 [binder, in hydras.Ackermann.checkPrf]
    +a:669 [binder, in hydras.Ackermann.checkPrf]
    +a:669 [binder, in hydras.Gamma0.Gamma0]
    +a:67 [binder, in hydras.Ackermann.subAll]
    +a:67 [binder, in hydras.Prelude.Comparable]
    +a:67 [binder, in hydras.Prelude.DecPreOrder]
    +a:67 [binder, in hydras.Hydra.BigBattle]
    +A:67 [binder, in hydras.OrdinalNotations.ON_Generic]
    +A:67 [binder, in hydras.Schutte.Ordering_Functions]
    +a:67 [binder, in hydras.rpo.rpo]
    +A:67 [binder, in hydras.Prelude.MoreVectors]
    +a:670 [binder, in gaia_hydras.nfwfgaia]
    +a:671 [binder, in hydras.Ackermann.checkPrf]
    +a:671 [binder, in hydras.Gamma0.Gamma0]
    +a:673 [binder, in hydras.Ackermann.checkPrf]
    +a:675 [binder, in hydras.Ackermann.checkPrf]
    +a:675 [binder, in hydras.Ackermann.primRec]
    +a:677 [binder, in hydras.Ackermann.checkPrf]
    +a:679 [binder, in hydras.Ackermann.primRec]
    +A:68 [binder, in hydras.Prelude.Iterates]
    +A:68 [binder, in hydras.rpo.more_list]
    +a:68 [binder, in gaia_hydras.GPaths]
    +A:68 [binder, in hydras.Prelude.Sort_spec]
    +a:68 [binder, in gaia_hydras.GCanon]
    +A:68 [binder, in hydras.solutions_exercises.MultisetWf]
    +a:68 [binder, in hydras.Ackermann.code]
    +A:68 [binder, in additions.Euclidean_Chains]
    +a:689 [binder, in hydras.Gamma0.Gamma0]
    +A:69 [binder, in Goedel.PRrepresentable]
    +a:69 [binder, in hydras.Prelude.Comparable]
    +a:69 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +a:69 [binder, in hydras.Schutte.Schutte_basics]
    +a:69 [binder, in hydras.Ackermann.folLogic3]
    +a:69 [binder, in hydras.rpo.dickson]
    +a:69 [binder, in hydras.Schutte.Ordering_Functions]
    +a:69 [binder, in hydras.Schutte.Addition]
    +A:69 [binder, in hydras.Prelude.MoreVectors]
    +a:691 [binder, in hydras.Ackermann.primRec]
    +a:694 [binder, in hydras.Ackermann.primRec]
    +a:695 [binder, in gaia_hydras.nfwfgaia]
    +a:697 [binder, in gaia_hydras.nfwfgaia]
    +a:7 [binder, in hydras.Gamma0.T2]
    +A:7 [binder, in hydras.Prelude.Iterates]
    +a:7 [binder, in hydras.Ackermann.folLogic2]
    +a:7 [binder, in Goedel.fixPoint]
    +A:7 [binder, in hydras.Prelude.DecPreOrder]
    +a:7 [binder, in hydras.Schutte.MoreEpsilonIota]
    +a:7 [binder, in gaia_hydras.T1Bridge]
    +a:7 [binder, in hydras.Ackermann.prLogic]
    +a:7 [binder, in hydras.Ackermann.NNtheory]
    +a:7 [binder, in gaia_hydras.GLarge_Sets]
    +A:7 [binder, in hydras.OrdinalNotations.ON_Generic]
    +a:7 [binder, in gaia_hydras.T2Bridge]
    +a:7 [binder, in hydras.MoreAck.PrimRecExamples]
    +A:7 [binder, in hydras.Prelude.MoreVectors]
    +A:70 [binder, in hydras.Prelude.DecPreOrder]
    +a:70 [binder, in gaia_hydras.GCanon]
    +a:70 [binder, in hydras.Ackermann.code]
    +a:70 [binder, in hydras.Ackermann.primRec]
    +a:707 [binder, in hydras.Epsilon0.T1]
    +a:707 [binder, in gaia_hydras.nfwfgaia]
    +a:71 [binder, in hydras.Epsilon0.T1]
    +A:71 [binder, in hydras.rpo.more_list]
    +a:71 [binder, in hydras.Prelude.Comparable]
    +a:71 [binder, in gaia_hydras.GPaths]
    +a:71 [binder, in hydras.Hydra.BigBattle]
    +a:71 [binder, in hydras.Ackermann.folLogic3]
    +A:71 [binder, in additions.Addition_Chains]
    +A:71 [binder, in hydras.Schutte.Ordering_Functions]
    +A:71 [binder, in Goedel.rosser]
    +A:71 [binder, in hydras.Ackermann.expressible]
    +a:71 [binder, in hydras.Prelude.MoreVectors]
    +a:717 [binder, in gaia_hydras.nfwfgaia]
    +a:718 [binder, in gaia_hydras.nfwfgaia]
    +a:72 [binder, in hydras.Ackermann.subAll]
    +A:72 [binder, in additions.AM]
    +A:72 [binder, in hydras.Prelude.Iterates]
    +A:72 [binder, in hydras.rpo.more_list]
    +a:72 [binder, in hydras.Prelude.Comparable]
    +a:72 [binder, in hydras.Epsilon0.Hessenberg]
    +a:72 [binder, in hydras.Ackermann.code]
    +a:72 [binder, in gaia_hydras.T1Bridge]
    +A:72 [binder, in hydras.Schutte.PartialFun]
    +a:72 [binder, in hydras.Schutte.Schutte_basics]
    +a:720 [binder, in gaia_hydras.nfwfgaia]
    +a:722 [binder, in hydras.Epsilon0.T1]
    +a:723 [binder, in gaia_hydras.nfwfgaia]
    +a:727 [binder, in gaia_hydras.nfwfgaia]
    +a:729 [binder, in gaia_hydras.nfwfgaia]
    +A:73 [binder, in Goedel.PRrepresentable]
    +a:73 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +a:73 [binder, in hydras.Prelude.DecPreOrder]
    +a:73 [binder, in hydras.OrdinalNotations.ON_Generic]
    +A:73 [binder, in hydras.Prelude.MoreVectors]
    +a:731 [binder, in gaia_hydras.nfwfgaia]
    +a:732 [binder, in hydras.Epsilon0.T1]
    +a:733 [binder, in gaia_hydras.nfwfgaia]
    +a:735 [binder, in hydras.Epsilon0.T1]
    +a:737 [binder, in gaia_hydras.nfwfgaia]
    +a:739 [binder, in gaia_hydras.nfwfgaia]
    +a:74 [binder, in hydras.Prelude.Comparable]
    +A:74 [binder, in hydras.Prelude.Sort_spec]
    +a:74 [binder, in hydras.Ackermann.code]
    +A:74 [binder, in additions.fib]
    +a:747 [binder, in gaia_hydras.nfwfgaia]
    +a:749 [binder, in gaia_hydras.nfwfgaia]
    +a:75 [binder, in hydras.Gamma0.T2]
    +a:75 [binder, in gaia_hydras.GPaths]
    +a:75 [binder, in additions.Euclidean_Chains]
    +a:75 [binder, in hydras.Schutte.Schutte_basics]
    +a:752 [binder, in gaia_hydras.nfwfgaia]
    +a:756 [binder, in hydras.Ackermann.checkPrf]
    +a:756 [binder, in gaia_hydras.nfwfgaia]
    +a:758 [binder, in gaia_hydras.nfwfgaia]
    +A:76 [binder, in hydras.Prelude.Iterates]
    +a:76 [binder, in hydras.Prelude.Comparable]
    +a:76 [binder, in additions.Pow_variant]
    +A:76 [binder, in hydras.Prelude.DecPreOrder]
    +a:76 [binder, in hydras.Ackermann.fol]
    +A:76 [binder, in hydras.Schutte.Ordering_Functions]
    +a:760 [binder, in hydras.Ackermann.checkPrf]
    +a:760 [binder, in gaia_hydras.nfwfgaia]
    +a:77 [binder, in hydras.Epsilon0.T1]
    +a:77 [binder, in hydras.Ackermann.subAll]
    +a:77 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +a:77 [binder, in hydras.Epsilon0.Hessenberg]
    +A:77 [binder, in Goedel.codeSysPrf]
    +a:77 [binder, in hydras.Schutte.Ordering_Functions]
    +a:776 [binder, in gaia_hydras.nfwfgaia]
    +a:779 [binder, in gaia_hydras.nfwfgaia]
    +a:78 [binder, in hydras.Gamma0.T2]
    +A:78 [binder, in hydras.rpo.more_list]
    +a:78 [binder, in hydras.Prelude.Comparable]
    +a:78 [binder, in gaia_hydras.T1Bridge]
    +a:78 [binder, in hydras.Schutte.Schutte_basics]
    +a:78 [binder, in hydras.OrdinalNotations.ON_Generic]
    +A:78 [binder, in hydras.Prelude.MoreVectors]
    +a:783 [binder, in gaia_hydras.nfwfgaia]
    +a:786 [binder, in hydras.Ackermann.checkPrf]
    +a:786 [binder, in gaia_hydras.nfwfgaia]
    +a:788 [binder, in hydras.Ackermann.checkPrf]
    +a:79 [binder, in hydras.Ackermann.subAll]
    +a:79 [binder, in additions.Pow]
    +a:79 [binder, in hydras.Prelude.DecPreOrder]
    +a:79 [binder, in hydras.Schutte.Schutte_basics]
    +a:79 [binder, in hydras.Ackermann.folLogic3]
    +a:79 [binder, in hydras.rpo.list_permut]
    +A:79 [binder, in hydras.Schutte.Ordering_Functions]
    +a:792 [binder, in gaia_hydras.nfwfgaia]
    +a:793 [binder, in hydras.Ackermann.checkPrf]
    +a:799 [binder, in hydras.Ackermann.checkPrf]
    +A:8 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +a:8 [binder, in hydras.Ackermann.extEqualNat]
    +A:8 [binder, in hydras.rpo.more_list]
    +a:8 [binder, in hydras.OrdinalNotations.ON_O]
    +a:8 [binder, in gaia_hydras.GCanon]
    +a:8 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +a:8 [binder, in hydras.Ackermann.prLogic]
    +A:8 [binder, in additions.Euclidean_Chains]
    +a:8 [binder, in hydras.Schutte.PartialFun]
    +A:8 [binder, in gaia_hydras.GLarge_Sets]
    +a:8 [binder, in hydras.rpo.dickson]
    +a:8 [binder, in hydras.MoreAck.FolExamples]
    +A:8 [binder, in hydras.Ackermann.expressible]
    +A:80 [binder, in hydras.Prelude.Iterates]
    +a:80 [binder, in hydras.Prelude.Comparable]
    +a:80 [binder, in gaia_hydras.GPaths]
    +a:80 [binder, in hydras.Ackermann.cPair]
    +A:80 [binder, in hydras.Prelude.MoreVectors]
    +a:807 [binder, in hydras.Ackermann.checkPrf]
    +a:81 [binder, in hydras.Ackermann.subAll]
    +A:81 [binder, in hydras.Prelude.DecPreOrder]
    +a:81 [binder, in gaia_hydras.T1Bridge]
    +a:81 [binder, in hydras.Ackermann.cPair]
    +a:81 [binder, in hydras.Ackermann.fol]
    +a:81 [binder, in hydras.Schutte.Schutte_basics]
    +A:81 [binder, in additions.fib]
    +A:81 [binder, in hydras.OrdinalNotations.ON_Generic]
    +a:81 [binder, in hydras.Ackermann.folLogic3]
    +A:81 [binder, in hydras.Schutte.Ordering_Functions]
    +a:811 [binder, in hydras.Ackermann.checkPrf]
    +a:819 [binder, in hydras.Ackermann.codeSubFormula]
    +a:82 [binder, in hydras.Epsilon0.T1]
    +A:82 [binder, in additions.AM]
    +a:82 [binder, in hydras.Prelude.Comparable]
    +A:82 [binder, in hydras.Schutte.PartialFun]
    +A:82 [binder, in additions.Addition_Chains]
    +a:822 [binder, in hydras.Ackermann.codeSubFormula]
    +a:826 [binder, in hydras.Ackermann.codeSubFormula]
    +a:83 [binder, in hydras.Ackermann.cPair]
    +a:83 [binder, in hydras.Schutte.Schutte_basics]
    +a:830 [binder, in gaia_hydras.nfwfgaia]
    +a:84 [binder, in hydras.Prelude.Comparable]
    +A:84 [binder, in hydras.Prelude.DecPreOrder]
    +a:84 [binder, in gaia_hydras.T1Bridge]
    +A:84 [binder, in Goedel.codeSysPrf]
    +A:84 [binder, in hydras.Prelude.MoreVectors]
    +a:842 [binder, in hydras.Ackermann.codeSubFormula]
    +a:842 [binder, in gaia_hydras.nfwfgaia]
    +a:845 [binder, in hydras.Ackermann.codeSubFormula]
    +a:848 [binder, in hydras.Ackermann.codeSubFormula]
    +a:849 [binder, in hydras.Ackermann.checkPrf]
    +A:85 [binder, in Goedel.PRrepresentable]
    +a:85 [binder, in hydras.Ackermann.cPair]
    +a:85 [binder, in hydras.Ackermann.folLogic3]
    +a:851 [binder, in hydras.Ackermann.checkPrf]
    +a:852 [binder, in hydras.Ackermann.codeSubFormula]
    +a:852 [binder, in gaia_hydras.nfwfgaia]
    +a:853 [binder, in hydras.Ackermann.checkPrf]
    +a:854 [binder, in hydras.Ackermann.codeSubFormula]
    +a:855 [binder, in hydras.Ackermann.checkPrf]
    +a:856 [binder, in hydras.Ackermann.codeSubFormula]
    +a:86 [binder, in hydras.Hydra.O2H]
    +a:86 [binder, in hydras.Prelude.Comparable]
    +a:86 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +a:86 [binder, in gaia_hydras.T1Bridge]
    +a:86 [binder, in gaia_hydras.nfwfgaia]
    +a:860 [binder, in gaia_hydras.nfwfgaia]
    +a:865 [binder, in gaia_hydras.nfwfgaia]
    +a:87 [binder, in hydras.Epsilon0.T1]
    +A:87 [binder, in hydras.Prelude.DecPreOrder]
    +a:87 [binder, in hydras.Ackermann.cPair]
    +a:87 [binder, in additions.Addition_Chains]
    +A:88 [binder, in hydras.rpo.more_list]
    +a:88 [binder, in hydras.Prelude.Comparable]
    +a:88 [binder, in hydras.Epsilon0.Hessenberg]
    +a:88 [binder, in gaia_hydras.T1Bridge]
    +A:88 [binder, in additions.Euclidean_Chains]
    +A:88 [binder, in hydras.Schutte.PartialFun]
    +a:88 [binder, in hydras.Schutte.Schutte_basics]
    +A:88 [binder, in Goedel.codeSysPrf]
    +A:88 [binder, in additions.Addition_Chains]
    +a:88 [binder, in hydras.MoreAck.PrimRecExamples]
    +A:88 [binder, in hydras.Prelude.MoreVectors]
    +a:885 [binder, in gaia_hydras.nfwfgaia]
    +A:89 [binder, in Goedel.PRrepresentable]
    +a:89 [binder, in hydras.Prelude.Comparable]
    +a:89 [binder, in gaia_hydras.T1Bridge]
    +a:89 [binder, in hydras.Ackermann.cPair]
    +a:894 [binder, in gaia_hydras.nfwfgaia]
    +a:898 [binder, in gaia_hydras.nfwfgaia]
    +a:9 [binder, in gaia_hydras.T1Choice]
    +a:9 [binder, in hydras.Prelude.Restriction]
    +a:9 [binder, in additions.FirstSteps]
    +a:9 [binder, in hydras.Prelude.Comparable]
    +a:9 [binder, in gaia_hydras.GPaths]
    +a:9 [binder, in hydras.Ackermann.PAtheory]
    +a:9 [binder, in hydras.solutions_exercises.MultisetWf]
    +a:9 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +a:9 [binder, in gaia_hydras.T1Bridge]
    +a:9 [binder, in hydras.Ackermann.prLogic]
    +a:9 [binder, in hydras.Ackermann.NNtheory]
    +a:9 [binder, in gaia_hydras.GLarge_Sets]
    +a:9 [binder, in hydras.Prelude.MoreDecidable]
    +a:9 [binder, in gaia_hydras.T2Bridge]
    +a:9 [binder, in hydras.Gamma0.Gamma0]
    +A:9 [binder, in hydras.Prelude.MoreVectors]
    +a:90 [binder, in hydras.Gamma0.T2]
    +a:90 [binder, in hydras.Epsilon0.Hessenberg]
    +a:90 [binder, in gaia_hydras.T1Bridge]
    +a:90 [binder, in hydras.Schutte.Schutte_basics]
    +a:90 [binder, in additions.fib]
    +a:902 [binder, in gaia_hydras.nfwfgaia]
    +a:91 [binder, in hydras.Prelude.Comparable]
    +a:91 [binder, in hydras.Prelude.DecPreOrder]
    +a:91 [binder, in gaia_hydras.T1Bridge]
    +a:91 [binder, in hydras.Ackermann.cPair]
    +a:91 [binder, in hydras.OrdinalNotations.ON_Generic]
    +a:91 [binder, in hydras.Schutte.Ordering_Functions]
    +a:910 [binder, in gaia_hydras.nfwfgaia]
    +A:92 [binder, in Goedel.PRrepresentable]
    +a:92 [binder, in hydras.Epsilon0.Hessenberg]
    +a:92 [binder, in gaia_hydras.T1Bridge]
    +a:92 [binder, in hydras.Schutte.Schutte_basics]
    +a:92 [binder, in hydras.Prelude.MoreVectors]
    +a:923 [binder, in gaia_hydras.nfwfgaia]
    +a:925 [binder, in gaia_hydras.nfwfgaia]
    +a:927 [binder, in gaia_hydras.nfwfgaia]
    +a:929 [binder, in gaia_hydras.nfwfgaia]
    +A:93 [binder, in additions.AM]
    +a:93 [binder, in hydras.Prelude.Comparable]
    +A:93 [binder, in hydras.Prelude.DecPreOrder]
    +a:93 [binder, in hydras.Prelude.Merge_Sort]
    +a:93 [binder, in gaia_hydras.T1Bridge]
    +a:93 [binder, in hydras.Ackermann.cPair]
    +A:93 [binder, in hydras.OrdinalNotations.ON_Generic]
    +A:93 [binder, in Goedel.codeSysPrf]
    +A:93 [binder, in additions.Addition_Chains]
    +a:931 [binder, in gaia_hydras.nfwfgaia]
    +a:938 [binder, in gaia_hydras.nfwfgaia]
    +a:94 [binder, in hydras.Epsilon0.Hessenberg]
    +a:94 [binder, in hydras.Ackermann.folLogic3]
    +a:944 [binder, in gaia_hydras.nfwfgaia]
    +a:95 [binder, in gaia_hydras.T1Bridge]
    +a:95 [binder, in hydras.Ackermann.cPair]
    +a:955 [binder, in gaia_hydras.nfwfgaia]
    +a:956 [binder, in gaia_hydras.nfwfgaia]
    +a:958 [binder, in gaia_hydras.nfwfgaia]
    +A:96 [binder, in Goedel.PRrepresentable]
    +A:96 [binder, in hydras.rpo.more_list]
    +a:96 [binder, in hydras.Prelude.DecPreOrder]
    +a:960 [binder, in gaia_hydras.nfwfgaia]
    +a:962 [binder, in gaia_hydras.nfwfgaia]
    +a:964 [binder, in gaia_hydras.nfwfgaia]
    +a:97 [binder, in hydras.Prelude.Comparable]
    +a:97 [binder, in hydras.Epsilon0.Hessenberg]
    +a:97 [binder, in gaia_hydras.T1Bridge]
    +A:98 [binder, in additions.AM]
    +A:98 [binder, in hydras.Hydra.Hydra_Lemmas]
    +a:988 [binder, in gaia_hydras.nfwfgaia]
    +A:99 [binder, in additions.Euclidean_Chains]
    +a:99 [binder, in hydras.Schutte.Schutte_basics]
    +a:994 [binder, in gaia_hydras.nfwfgaia]
    +

    B

    +Bad [module, in additions.FirstSteps]
    +Bad [module, in hydras.Hydra.Hydra_Examples]
    +Bad [module, in additions.Euclidean_Chains]
    +Bad [module, in additions.Monoid_instances]
    +bad [definition, in hydras.OrdinalNotations.ON_Finite]
    +BadExample [section, in hydras.MoreAck.BadSubst]
    +BadExample.F [variable, in hydras.MoreAck.BadSubst]
    +BadExample.F1 [variable, in hydras.MoreAck.BadSubst]
    +BadSubst [module, in hydras.MoreAck.BadSubst]
    +BadSubst [library]
    +BadSubstF2 [module, in hydras.MoreAck.BadSubst]
    +BadSubstF2.substF [definition, in hydras.MoreAck.BadSubst]
    +BadSubst.substF [definition, in hydras.MoreAck.BadSubst]
    +bad_term [definition, in hydras.Epsilon0.T1]
    +Bad.correct_exp_too_strong [lemma, in additions.FirstSteps]
    +Bad.correct_expt_function [definition, in additions.FirstSteps]
    +Bad.CounterExample [section, in additions.FirstSteps]
    +Bad.CounterExample.mul [variable, in additions.FirstSteps]
    +Bad.CounterExample.one [variable, in additions.FirstSteps]
    +Bad.fact [definition, in additions.Monoid_instances]
    +Bad.Fchain_correct [definition, in additions.Euclidean_Chains]
    +Bad.F3_correct [lemma, in additions.Euclidean_Chains]
    +Bad.height_lt_size [lemma, in hydras.Hydra.Hydra_Examples]
    +Bad.int63_from_nat [definition, in additions.Monoid_instances]
    +Bad.mul_not_associative [lemma, in additions.FirstSteps]
    +Bad.one_not_neutral [lemma, in additions.FirstSteps]
    +Bad2 [module, in additions.Euclidean_Chains]
    +Bad2.Fcompose_correct [lemma, in additions.Euclidean_Chains]
    +Bad3 [module, in additions.Euclidean_Chains]
    +Bad3.Fchain_proper_bad_prf [projection, in additions.Euclidean_Chains]
    +Bad3.Fchain_proper [record, in additions.Euclidean_Chains]
    +Bad3.Fchain_proper_bad_prf [constructor, in additions.Euclidean_Chains]
    +Bad3.Fchain_proper [inductive, in additions.Euclidean_Chains]
    +Bad3.Fcompose_proper [instance, in additions.Euclidean_Chains]
    +Bad4 [module, in additions.Euclidean_Chains]
    +Bad4.Fplus [definition, in additions.Euclidean_Chains]
    +Bad4.F23 [definition, in additions.Euclidean_Chains]
    +Bad4.F23_ok [lemma, in additions.Euclidean_Chains]
    +bare_syntax [section, in hydras.MoreAck.LNN_Examples]
    +battle [abbreviation, in hydras.Hydra.Hydra_Definitions]
    +Battle [record, in hydras.Hydra.Hydra_Definitions]
    +battle_length_notPR.m [variable, in hydras.Hydra.Hydra_Theorems]
    +battle_length_notPR.h [variable, in hydras.Hydra.Hydra_Theorems]
    +battle_length_notPR.alpha [variable, in hydras.Hydra.Hydra_Theorems]
    +battle_length_notPR [section, in hydras.Hydra.Hydra_Theorems]
    +battle_length_std_Hardy [lemma, in hydras.Hydra.Hydra_Theorems]
    +battle_length_std [lemma, in hydras.Hydra.Battle_length]
    +Battle_length.l [variable, in hydras.Hydra.Battle_length]
    +Battle_length.Hk [variable, in hydras.Hydra.Battle_length]
    +Battle_length.k [variable, in hydras.Hydra.Battle_length]
    +Battle_length.Halpha [variable, in hydras.Hydra.Battle_length]
    +Battle_length.alpha [variable, in hydras.Hydra.Battle_length]
    +Battle_length [section, in hydras.Hydra.Battle_length]
    +battle_example [lemma, in hydras.Hydra.KP_example]
    +battle_length [definition, in hydras.Hydra.Hydra_Definitions]
    +battle_ok [projection, in hydras.Hydra.Hydra_Definitions]
    +battle_rel [projection, in hydras.Hydra.Hydra_Definitions]
    +Battle_length [library]
    +Bbeta_denum [lemma, in hydras.Schutte.Ordering_Functions]
    +beta [definition, in Goedel.PRrepresentable]
    +betaEquiv [lemma, in Goedel.PRrepresentable]
    +betaFormula [definition, in Goedel.PRrepresentable]
    +betaRepresentable [lemma, in Goedel.PRrepresentable]
    +betaThm2 [lemma, in Goedel.PRrepresentable]
    +betaThm3 [lemma, in Goedel.PRrepresentable]
    +betaThm4 [lemma, in Goedel.PRrepresentable]
    +betaThm5 [lemma, in Goedel.PRrepresentable]
    +beta_def [lemma, in Goedel.PRrepresentable]
    +beta_h [definition, in hydras.Hydra.Epsilon0_Needed_Generic]
    +beta':101 [binder, in hydras.Epsilon0.T1]
    +beta':105 [binder, in hydras.Epsilon0.T1]
    +beta':119 [binder, in hydras.Schutte.Ordering_Functions]
    +beta':138 [binder, in hydras.Gamma0.Gamma0]
    +beta':195 [binder, in hydras.Epsilon0.T1]
    +beta':314 [binder, in hydras.Epsilon0.Paths]
    +beta':326 [binder, in hydras.Epsilon0.T1]
    +beta':331 [binder, in hydras.Epsilon0.T1]
    +beta':335 [binder, in hydras.Epsilon0.T1]
    +beta':463 [binder, in hydras.Gamma0.Gamma0]
    +beta':506 [binder, in hydras.Gamma0.Gamma0]
    +beta':510 [binder, in hydras.Gamma0.Gamma0]
    +beta':680 [binder, in hydras.Epsilon0.T1]
    +beta':96 [binder, in hydras.Epsilon0.T1]
    +beta0:138 [binder, in hydras.Schutte.Ordering_Functions]
    +beta0:139 [binder, in hydras.Schutte.Ordering_Functions]
    +beta0:678 [binder, in hydras.Gamma0.Gamma0]
    +beta0:681 [binder, in hydras.Gamma0.Gamma0]
    +beta0:686 [binder, in hydras.Gamma0.Gamma0]
    +beta1 [definition, in hydras.OrdinalNotations.ON_Finite]
    +beta1:134 [binder, in hydras.Schutte.Ordering_Functions]
    +beta1:30 [binder, in hydras.Gamma0.T2]
    +beta1:37 [binder, in hydras.Gamma0.T2]
    +beta1:45 [binder, in hydras.Gamma0.T2]
    +beta1:495 [binder, in hydras.Gamma0.Gamma0]
    +beta1:501 [binder, in hydras.Gamma0.Gamma0]
    +beta1:53 [binder, in hydras.Gamma0.T2]
    +beta1:541 [binder, in hydras.Gamma0.Gamma0]
    +beta1:59 [binder, in hydras.Gamma0.T2]
    +beta1:649 [binder, in hydras.Gamma0.Gamma0]
    +beta1:65 [binder, in hydras.Gamma0.T2]
    +beta1:652 [binder, in hydras.Gamma0.Gamma0]
    +beta1:655 [binder, in hydras.Gamma0.Gamma0]
    +beta1:657 [binder, in hydras.Gamma0.Gamma0]
    +beta1:666 [binder, in hydras.Gamma0.Gamma0]
    +beta1:675 [binder, in hydras.Gamma0.Gamma0]
    +beta2:135 [binder, in hydras.Schutte.Ordering_Functions]
    +beta2:31 [binder, in hydras.Gamma0.T2]
    +beta2:38 [binder, in hydras.Gamma0.T2]
    +beta2:46 [binder, in hydras.Gamma0.T2]
    +beta2:496 [binder, in hydras.Gamma0.Gamma0]
    +beta2:502 [binder, in hydras.Gamma0.Gamma0]
    +beta2:542 [binder, in hydras.Gamma0.Gamma0]
    +beta2:650 [binder, in hydras.Gamma0.Gamma0]
    +beta2:653 [binder, in hydras.Gamma0.Gamma0]
    +beta2:656 [binder, in hydras.Gamma0.Gamma0]
    +beta2:658 [binder, in hydras.Gamma0.Gamma0]
    +beta2:668 [binder, in hydras.Gamma0.Gamma0]
    +beta2:677 [binder, in hydras.Gamma0.Gamma0]
    +beta:10 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +beta:10 [binder, in hydras.OrdinalNotations.ON_O]
    +beta:10 [binder, in hydras.Schutte.CNF]
    +beta:10 [binder, in hydras.OrdinalNotations.ON_mult]
    +beta:10 [binder, in hydras.OrdinalNotations.ON_plus]
    +beta:10 [binder, in hydras.Epsilon0.Canon]
    +beta:10 [binder, in hydras.Epsilon0.E0]
    +beta:10 [binder, in hydras.Epsilon0.Paths]
    +beta:10 [binder, in gaia_hydras.GHessenberg]
    +beta:100 [binder, in hydras.Epsilon0.T1]
    +beta:100 [binder, in hydras.Gamma0.T2]
    +beta:100 [binder, in hydras.Prelude.Comparable]
    +beta:100 [binder, in hydras.Epsilon0.Canon]
    +beta:101 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +beta:101 [binder, in hydras.Epsilon0.E0]
    +beta:102 [binder, in hydras.Prelude.Comparable]
    +beta:102 [binder, in hydras.Epsilon0.Hprime]
    +beta:102 [binder, in hydras.Epsilon0.Paths]
    +beta:103 [binder, in hydras.Hydra.O2H]
    +beta:103 [binder, in hydras.Schutte.Schutte_basics]
    +beta:103 [binder, in hydras.Epsilon0.E0]
    +beta:104 [binder, in hydras.Epsilon0.T1]
    +beta:104 [binder, in hydras.Prelude.Comparable]
    +beta:105 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +beta:105 [binder, in hydras.Epsilon0.Paths]
    +beta:106 [binder, in hydras.Hydra.O2H]
    +beta:106 [binder, in hydras.Epsilon0.E0]
    +beta:106 [binder, in hydras.Epsilon0.Hprime]
    +beta:106 [binder, in hydras.Epsilon0.Paths]
    +beta:109 [binder, in hydras.Epsilon0.E0]
    +beta:11 [binder, in hydras.Schutte.Correctness_E0]
    +beta:11 [binder, in gaia_hydras.GHprime]
    +beta:110 [binder, in hydras.Epsilon0.Hessenberg]
    +beta:110 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +beta:110 [binder, in hydras.Schutte.Schutte_basics]
    +beta:111 [binder, in hydras.Epsilon0.T1]
    +beta:111 [binder, in hydras.Hydra.O2H]
    +beta:111 [binder, in hydras.Epsilon0.Hprime]
    +beta:111 [binder, in hydras.Epsilon0.Paths]
    +beta:112 [binder, in hydras.Schutte.Schutte_basics]
    +beta:113 [binder, in hydras.Epsilon0.Hessenberg]
    +beta:114 [binder, in hydras.Schutte.Schutte_basics]
    +beta:114 [binder, in hydras.Epsilon0.E0]
    +beta:114 [binder, in hydras.Epsilon0.Paths]
    +beta:115 [binder, in hydras.Epsilon0.Hprime]
    +beta:115 [binder, in hydras.Epsilon0.Paths]
    +beta:116 [binder, in hydras.Schutte.Schutte_basics]
    +beta:116 [binder, in hydras.Epsilon0.E0]
    +beta:117 [binder, in hydras.Epsilon0.F_alpha]
    +beta:118 [binder, in gaia_hydras.T1Bridge]
    +beta:118 [binder, in hydras.Schutte.Schutte_basics]
    +beta:118 [binder, in hydras.Schutte.Ordering_Functions]
    +beta:119 [binder, in hydras.Epsilon0.E0]
    +beta:12 [binder, in hydras.Schutte.CNF]
    +beta:12 [binder, in hydras.Schutte.AP]
    +beta:12 [binder, in hydras.OrdinalNotations.ON_mult]
    +beta:12 [binder, in hydras.OrdinalNotations.ON_Finite]
    +beta:120 [binder, in hydras.Epsilon0.T1]
    +beta:120 [binder, in gaia_hydras.T1Bridge]
    +beta:120 [binder, in hydras.Epsilon0.Hprime]
    +beta:120 [binder, in hydras.Epsilon0.Paths]
    +beta:121 [binder, in hydras.Epsilon0.E0]
    +beta:121 [binder, in hydras.Schutte.Ordering_Functions]
    +beta:122 [binder, in hydras.Schutte.Schutte_basics]
    +beta:125 [binder, in hydras.Epsilon0.Hprime]
    +beta:125 [binder, in hydras.Gamma0.Gamma0]
    +beta:128 [binder, in gaia_hydras.T1Bridge]
    +beta:128 [binder, in hydras.Epsilon0.Paths]
    +beta:128 [binder, in hydras.Gamma0.Gamma0]
    +beta:129 [binder, in hydras.Epsilon0.Hprime]
    +beta:13 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +beta:13 [binder, in hydras.Hydra.Epsilon0_Needed_Std]
    +beta:130 [binder, in gaia_hydras.T1Bridge]
    +beta:131 [binder, in hydras.Gamma0.Gamma0]
    +beta:132 [binder, in hydras.Schutte.Ordering_Functions]
    +beta:133 [binder, in hydras.Epsilon0.Paths]
    +beta:133 [binder, in hydras.Schutte.Ordering_Functions]
    +beta:134 [binder, in gaia_hydras.T1Bridge]
    +beta:134 [binder, in hydras.Gamma0.Gamma0]
    +beta:14 [binder, in hydras.solutions_exercises.predSuccUnicity]
    +beta:14 [binder, in gaia_hydras.GF_alpha]
    +beta:14 [binder, in hydras.OrdinalNotations.ON_O]
    +beta:14 [binder, in hydras.Epsilon0.Hessenberg]
    +beta:14 [binder, in hydras.OrdinalNotations.ON_mult]
    +beta:14 [binder, in hydras.OrdinalNotations.ON_plus]
    +beta:142 [binder, in hydras.Epsilon0.T1]
    +beta:142 [binder, in hydras.Epsilon0.Paths]
    +beta:142 [binder, in hydras.Schutte.Ordering_Functions]
    +beta:145 [binder, in hydras.Gamma0.Gamma0]
    +beta:148 [binder, in hydras.Epsilon0.Paths]
    +beta:148 [binder, in hydras.Gamma0.Gamma0]
    +beta:15 [binder, in hydras.Schutte.Correctness_E0]
    +beta:15 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +beta:15 [binder, in hydras.Schutte.AP]
    +beta:15 [binder, in hydras.OrdinalNotations.ON_Finite]
    +beta:151 [binder, in hydras.Epsilon0.T1]
    +beta:152 [binder, in hydras.Gamma0.Gamma0]
    +beta:154 [binder, in hydras.Gamma0.Gamma0]
    +beta:155 [binder, in hydras.Epsilon0.Large_Sets]
    +beta:156 [binder, in hydras.Epsilon0.T1]
    +beta:158 [binder, in hydras.Gamma0.Gamma0]
    +beta:159 [binder, in hydras.Epsilon0.T1]
    +beta:16 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +beta:16 [binder, in hydras.OrdinalNotations.ON_mult]
    +beta:16 [binder, in hydras.OrdinalNotations.ON_plus]
    +beta:16 [binder, in hydras.Epsilon0.E0]
    +beta:163 [binder, in gaia_hydras.T1Bridge]
    +beta:163 [binder, in hydras.Epsilon0.Paths]
    +beta:165 [binder, in gaia_hydras.T1Bridge]
    +beta:166 [binder, in hydras.Epsilon0.Paths]
    +beta:167 [binder, in gaia_hydras.T1Bridge]
    +beta:17 [binder, in hydras.solutions_exercises.predSuccUnicity]
    +beta:17 [binder, in hydras.OrdinalNotations.ON_O]
    +beta:17 [binder, in hydras.Schutte.CNF]
    +beta:17 [binder, in hydras.Hydra.Epsilon0_Needed_Std]
    +beta:17 [binder, in hydras.solutions_exercises.F_3]
    +beta:171 [binder, in gaia_hydras.T1Bridge]
    +beta:171 [binder, in hydras.Epsilon0.Paths]
    +beta:173 [binder, in gaia_hydras.T1Bridge]
    +beta:176 [binder, in hydras.Schutte.Schutte_basics]
    +beta:177 [binder, in hydras.Gamma0.Gamma0]
    +beta:179 [binder, in hydras.Schutte.Schutte_basics]
    +beta:18 [binder, in hydras.solutions_exercises.Limit_Infinity]
    +beta:18 [binder, in hydras.OrdinalNotations.ON_plus]
    +beta:18 [binder, in hydras.OrdinalNotations.ON_Finite]
    +beta:18 [binder, in hydras.Gamma0.Gamma0]
    +beta:184 [binder, in hydras.Epsilon0.F_alpha]
    +beta:19 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +beta:19 [binder, in hydras.Schutte.Schutte_basics]
    +beta:191 [binder, in hydras.Gamma0.Gamma0]
    +beta:193 [binder, in hydras.Gamma0.Gamma0]
    +beta:194 [binder, in hydras.Epsilon0.Paths]
    +beta:195 [binder, in hydras.Gamma0.Gamma0]
    +beta:197 [binder, in hydras.Epsilon0.Paths]
    +beta:197 [binder, in hydras.Gamma0.Gamma0]
    +beta:199 [binder, in hydras.Gamma0.Gamma0]
    +beta:2 [binder, in hydras.solutions_exercises.is_F_monotonous]
    +beta:2 [binder, in hydras.Epsilon0.Hessenberg]
    +beta:2 [binder, in hydras.Schutte.Critical]
    +beta:2 [binder, in hydras.Schutte.AP]
    +beta:2 [binder, in gaia_hydras.GHessenberg]
    +beta:20 [binder, in hydras.Schutte.Correctness_E0]
    +beta:20 [binder, in hydras.OrdinalNotations.ON_O]
    +beta:20 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +beta:20 [binder, in hydras.OrdinalNotations.ON_Finite]
    +beta:201 [binder, in hydras.Gamma0.Gamma0]
    +beta:203 [binder, in hydras.Gamma0.Gamma0]
    +beta:205 [binder, in hydras.Gamma0.Gamma0]
    +beta:209 [binder, in hydras.Epsilon0.T1]
    +beta:21 [binder, in hydras.Gamma0.T2]
    +beta:21 [binder, in hydras.solutions_exercises.Limit_Infinity]
    +beta:21 [binder, in hydras.Epsilon0.E0]
    +beta:21 [binder, in hydras.Epsilon0.Paths]
    +beta:21 [binder, in hydras.Schutte.Addition]
    +beta:214 [binder, in hydras.Gamma0.Gamma0]
    +beta:217 [binder, in hydras.Schutte.Schutte_basics]
    +beta:219 [binder, in hydras.Schutte.Schutte_basics]
    +beta:22 [binder, in hydras.Schutte.CNF]
    +beta:22 [binder, in hydras.solutions_exercises.F_3]
    +beta:22 [binder, in hydras.Gamma0.Gamma0]
    +beta:221 [binder, in hydras.Schutte.Schutte_basics]
    +beta:225 [binder, in hydras.Epsilon0.Paths]
    +beta:23 [binder, in hydras.Schutte.Addition]
    +beta:233 [binder, in hydras.Epsilon0.Paths]
    +beta:239 [binder, in hydras.Gamma0.Gamma0]
    +beta:24 [binder, in hydras.Epsilon0.T1]
    +beta:24 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +beta:24 [binder, in hydras.Hydra.Epsilon0_Needed_Std]
    +beta:24 [binder, in hydras.Schutte.Schutte_basics]
    +beta:24 [binder, in hydras.solutions_exercises.F_3]
    +beta:24 [binder, in hydras.Epsilon0.Paths]
    +beta:241 [binder, in hydras.Epsilon0.T1]
    +beta:241 [binder, in hydras.Gamma0.Gamma0]
    +beta:243 [binder, in hydras.Epsilon0.T1]
    +beta:243 [binder, in hydras.Epsilon0.Paths]
    +beta:245 [binder, in hydras.Epsilon0.T1]
    +beta:249 [binder, in hydras.Epsilon0.Paths]
    +beta:25 [binder, in hydras.Gamma0.T2]
    +beta:25 [binder, in hydras.Epsilon0.Paths]
    +beta:25 [binder, in hydras.Schutte.Addition]
    +beta:252 [binder, in hydras.Epsilon0.Paths]
    +beta:255 [binder, in hydras.Epsilon0.Paths]
    +beta:258 [binder, in hydras.Epsilon0.Paths]
    +beta:259 [binder, in hydras.Epsilon0.Paths]
    +beta:26 [binder, in gaia_hydras.GF_alpha]
    +beta:26 [binder, in hydras.OrdinalNotations.ON_Generic]
    +beta:26 [binder, in hydras.Schutte.Ordering_Functions]
    +beta:262 [binder, in hydras.Epsilon0.Paths]
    +beta:266 [binder, in hydras.Epsilon0.Paths]
    +beta:269 [binder, in hydras.Epsilon0.Paths]
    +beta:27 [binder, in hydras.Hydra.O2H]
    +beta:27 [binder, in hydras.Schutte.Critical]
    +beta:27 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +beta:274 [binder, in hydras.Epsilon0.Paths]
    +beta:277 [binder, in hydras.Epsilon0.Paths]
    +beta:28 [binder, in gaia_hydras.GF_alpha]
    +beta:28 [binder, in hydras.Schutte.CNF]
    +beta:28 [binder, in hydras.Schutte.Addition]
    +beta:282 [binder, in hydras.Epsilon0.Paths]
    +beta:285 [binder, in hydras.Epsilon0.Paths]
    +beta:288 [binder, in hydras.Epsilon0.Paths]
    +beta:289 [binder, in hydras.Epsilon0.T1]
    +beta:29 [binder, in hydras.Epsilon0.T1]
    +beta:29 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +beta:291 [binder, in hydras.Epsilon0.T1]
    +beta:291 [binder, in hydras.Epsilon0.Paths]
    +beta:293 [binder, in hydras.Epsilon0.T1]
    +beta:294 [binder, in hydras.Epsilon0.Paths]
    +beta:295 [binder, in hydras.Epsilon0.T1]
    +beta:297 [binder, in hydras.Epsilon0.T1]
    +beta:297 [binder, in hydras.Epsilon0.Paths]
    +beta:299 [binder, in hydras.Epsilon0.T1]
    +beta:3 [binder, in hydras.solutions_exercises.schutte_cnf_counter_example]
    +beta:3 [binder, in gaia_hydras.ON_gfinite]
    +beta:3 [binder, in hydras.Epsilon0.Paths]
    +beta:3 [binder, in hydras.Schutte.Ordering_Functions]
    +beta:30 [binder, in hydras.Epsilon0.E0]
    +beta:30 [binder, in hydras.Schutte.Addition]
    +beta:301 [binder, in hydras.Epsilon0.T1]
    +beta:301 [binder, in hydras.Epsilon0.Paths]
    +beta:303 [binder, in hydras.Epsilon0.T1]
    +beta:305 [binder, in hydras.Epsilon0.T1]
    +beta:305 [binder, in hydras.Epsilon0.Paths]
    +beta:308 [binder, in hydras.Epsilon0.Paths]
    +beta:313 [binder, in hydras.Epsilon0.Paths]
    +beta:314 [binder, in hydras.Epsilon0.T1]
    +beta:317 [binder, in hydras.Epsilon0.T1]
    +beta:317 [binder, in hydras.Epsilon0.Paths]
    +beta:32 [binder, in hydras.Schutte.CNF]
    +beta:32 [binder, in hydras.Schutte.Critical]
    +beta:32 [binder, in hydras.Epsilon0.E0]
    +beta:320 [binder, in hydras.Epsilon0.T1]
    +beta:321 [binder, in hydras.Epsilon0.Paths]
    +beta:325 [binder, in hydras.Epsilon0.T1]
    +beta:33 [binder, in hydras.Schutte.Correctness_E0]
    +beta:33 [binder, in hydras.Schutte.Schutte_basics]
    +beta:33 [binder, in hydras.OrdinalNotations.ON_Finite]
    +beta:33 [binder, in hydras.Schutte.Addition]
    +beta:330 [binder, in hydras.Epsilon0.T1]
    +beta:334 [binder, in hydras.Epsilon0.T1]
    +beta:335 [binder, in hydras.Epsilon0.Paths]
    +beta:338 [binder, in hydras.Epsilon0.T1]
    +beta:34 [binder, in hydras.Epsilon0.E0]
    +beta:340 [binder, in hydras.Epsilon0.Paths]
    +beta:341 [binder, in hydras.Epsilon0.T1]
    +beta:344 [binder, in hydras.Epsilon0.Paths]
    +beta:348 [binder, in hydras.Epsilon0.Paths]
    +beta:35 [binder, in hydras.Schutte.Correctness_E0]
    +beta:35 [binder, in hydras.OrdinalNotations.ON_Finite]
    +beta:351 [binder, in hydras.Epsilon0.T1]
    +beta:352 [binder, in hydras.Epsilon0.Paths]
    +beta:354 [binder, in hydras.Epsilon0.T1]
    +beta:358 [binder, in hydras.Epsilon0.Paths]
    +beta:36 [binder, in hydras.Epsilon0.E0]
    +beta:36 [binder, in hydras.Epsilon0.Paths]
    +beta:361 [binder, in hydras.Epsilon0.Paths]
    +beta:365 [binder, in hydras.Epsilon0.Paths]
    +beta:37 [binder, in hydras.Epsilon0.T1]
    +beta:37 [binder, in hydras.Schutte.Correctness_E0]
    +beta:37 [binder, in hydras.Schutte.Critical]
    +beta:378 [binder, in hydras.Epsilon0.Paths]
    +beta:38 [binder, in hydras.Epsilon0.E0]
    +beta:38 [binder, in hydras.Epsilon0.Paths]
    +beta:384 [binder, in hydras.Epsilon0.Paths]
    +beta:389 [binder, in hydras.Epsilon0.Paths]
    +beta:39 [binder, in hydras.Epsilon0.T1]
    +beta:39 [binder, in hydras.Schutte.Correctness_E0]
    +beta:39 [binder, in hydras.Schutte.Addition]
    +beta:393 [binder, in hydras.Epsilon0.Paths]
    +beta:395 [binder, in hydras.Epsilon0.T1]
    +beta:396 [binder, in hydras.Epsilon0.Paths]
    +beta:4 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +beta:4 [binder, in hydras.Gamma0.T2]
    +beta:4 [binder, in hydras.Epsilon0.Hessenberg]
    +beta:4 [binder, in hydras.Schutte.Critical]
    +beta:4 [binder, in hydras.Schutte.Schutte_basics]
    +beta:40 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +beta:400 [binder, in hydras.Epsilon0.T1]
    +beta:400 [binder, in hydras.Epsilon0.Paths]
    +beta:405 [binder, in hydras.Epsilon0.Paths]
    +beta:407 [binder, in hydras.Epsilon0.T1]
    +beta:408 [binder, in hydras.Epsilon0.T1]
    +beta:409 [binder, in hydras.Epsilon0.Paths]
    +beta:41 [binder, in hydras.Epsilon0.T1]
    +beta:41 [binder, in hydras.Schutte.Critical]
    +beta:415 [binder, in hydras.Epsilon0.Paths]
    +beta:417 [binder, in hydras.Epsilon0.Paths]
    +beta:421 [binder, in hydras.Epsilon0.Paths]
    +beta:425 [binder, in hydras.Epsilon0.Paths]
    +beta:429 [binder, in hydras.Epsilon0.Paths]
    +beta:43 [binder, in hydras.Schutte.Correctness_E0]
    +beta:43 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +beta:43 [binder, in hydras.Schutte.Addition]
    +beta:435 [binder, in hydras.Epsilon0.Paths]
    +beta:439 [binder, in hydras.Epsilon0.Paths]
    +beta:44 [binder, in hydras.Schutte.CNF]
    +beta:44 [binder, in hydras.Schutte.Critical]
    +beta:44 [binder, in hydras.Epsilon0.L_alpha]
    +beta:450 [binder, in hydras.Epsilon0.Paths]
    +beta:454 [binder, in hydras.Gamma0.Gamma0]
    +beta:456 [binder, in hydras.Epsilon0.Paths]
    +beta:456 [binder, in hydras.Gamma0.Gamma0]
    +beta:457 [binder, in hydras.Epsilon0.T1]
    +beta:46 [binder, in hydras.Schutte.Critical]
    +beta:460 [binder, in hydras.Epsilon0.Paths]
    +beta:461 [binder, in hydras.Gamma0.Gamma0]
    +beta:464 [binder, in hydras.Epsilon0.Paths]
    +beta:465 [binder, in hydras.Gamma0.Gamma0]
    +beta:466 [binder, in hydras.Epsilon0.Paths]
    +beta:467 [binder, in hydras.Epsilon0.T1]
    +beta:47 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +beta:47 [binder, in hydras.Schutte.CNF]
    +beta:473 [binder, in hydras.Epsilon0.T1]
    +beta:475 [binder, in hydras.Epsilon0.T1]
    +beta:48 [binder, in hydras.Schutte.AP]
    +beta:48 [binder, in hydras.Epsilon0.L_alpha]
    +beta:48 [binder, in hydras.Epsilon0.E0]
    +beta:481 [binder, in hydras.Epsilon0.T1]
    +beta:483 [binder, in hydras.Epsilon0.T1]
    +beta:483 [binder, in hydras.Epsilon0.Paths]
    +beta:485 [binder, in hydras.Epsilon0.T1]
    +beta:487 [binder, in hydras.Epsilon0.Paths]
    +beta:488 [binder, in hydras.Epsilon0.T1]
    +beta:49 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +beta:49 [binder, in hydras.Schutte.CNF]
    +beta:49 [binder, in hydras.Schutte.Critical]
    +beta:491 [binder, in hydras.Epsilon0.Paths]
    +beta:492 [binder, in hydras.Epsilon0.T1]
    +beta:493 [binder, in hydras.Gamma0.Gamma0]
    +beta:495 [binder, in hydras.Epsilon0.Paths]
    +beta:499 [binder, in hydras.Epsilon0.T1]
    +beta:499 [binder, in hydras.Epsilon0.Paths]
    +beta:5 [binder, in hydras.Epsilon0.T1]
    +beta:5 [binder, in hydras.solutions_exercises.schutte_cnf_counter_example]
    +beta:5 [binder, in hydras.OrdinalNotations.ON_Finite]
    +beta:5 [binder, in hydras.Epsilon0.E0]
    +beta:50 [binder, in hydras.Schutte.AP]
    +beta:50 [binder, in hydras.Epsilon0.L_alpha]
    +beta:500 [binder, in hydras.Gamma0.Gamma0]
    +beta:503 [binder, in hydras.Epsilon0.Paths]
    +beta:504 [binder, in hydras.Gamma0.Gamma0]
    +beta:507 [binder, in hydras.Epsilon0.Paths]
    +beta:508 [binder, in hydras.Gamma0.Gamma0]
    +beta:51 [binder, in hydras.Epsilon0.E0]
    +beta:512 [binder, in hydras.Epsilon0.Paths]
    +beta:512 [binder, in hydras.Gamma0.Gamma0]
    +beta:515 [binder, in hydras.Gamma0.Gamma0]
    +beta:518 [binder, in hydras.Epsilon0.Paths]
    +beta:52 [binder, in hydras.Hydra.O2H]
    +beta:52 [binder, in hydras.Schutte.AP]
    +beta:52 [binder, in hydras.Epsilon0.Hprime]
    +beta:52 [binder, in hydras.Schutte.Ordering_Functions]
    +beta:525 [binder, in hydras.Epsilon0.Paths]
    +beta:53 [binder, in hydras.Epsilon0.E0]
    +beta:54 [binder, in hydras.Schutte.AP]
    +beta:549 [binder, in hydras.Epsilon0.Paths]
    +beta:55 [binder, in hydras.Epsilon0.E0]
    +beta:553 [binder, in hydras.Epsilon0.Paths]
    +beta:554 [binder, in hydras.Gamma0.Gamma0]
    +beta:557 [binder, in hydras.Epsilon0.Paths]
    +beta:56 [binder, in hydras.Epsilon0.Hessenberg]
    +beta:56 [binder, in hydras.Schutte.AP]
    +beta:56 [binder, in hydras.Epsilon0.Paths]
    +beta:560 [binder, in hydras.Epsilon0.T1]
    +beta:562 [binder, in hydras.Epsilon0.Paths]
    +beta:565 [binder, in hydras.Epsilon0.Paths]
    +beta:57 [binder, in hydras.Hydra.O2H]
    +beta:57 [binder, in hydras.Schutte.Addition]
    +beta:570 [binder, in hydras.Epsilon0.T1]
    +beta:570 [binder, in hydras.Epsilon0.Paths]
    +beta:577 [binder, in hydras.Epsilon0.Paths]
    +beta:577 [binder, in hydras.Gamma0.Gamma0]
    +beta:58 [binder, in hydras.Epsilon0.Hessenberg]
    +beta:58 [binder, in hydras.Epsilon0.Canon]
    +beta:58 [binder, in hydras.Epsilon0.E0]
    +beta:582 [binder, in hydras.Gamma0.Gamma0]
    +beta:583 [binder, in hydras.Epsilon0.T1]
    +beta:583 [binder, in hydras.Epsilon0.Paths]
    +beta:586 [binder, in hydras.Epsilon0.T1]
    +beta:587 [binder, in hydras.Epsilon0.Paths]
    +beta:589 [binder, in hydras.Epsilon0.T1]
    +beta:59 [binder, in hydras.Epsilon0.Paths]
    +beta:590 [binder, in hydras.Epsilon0.Paths]
    +beta:6 [binder, in hydras.Schutte.CNF]
    +beta:6 [binder, in gaia_hydras.ON_gfinite]
    +beta:60 [binder, in hydras.Schutte.Addition]
    +beta:601 [binder, in hydras.Gamma0.Gamma0]
    +beta:61 [binder, in hydras.Schutte.AP]
    +beta:62 [binder, in hydras.Epsilon0.Hessenberg]
    +beta:62 [binder, in hydras.Schutte.CNF]
    +beta:62 [binder, in hydras.Epsilon0.Canon]
    +beta:622 [binder, in hydras.Gamma0.Gamma0]
    +beta:624 [binder, in hydras.Gamma0.Gamma0]
    +beta:626 [binder, in hydras.Gamma0.Gamma0]
    +beta:63 [binder, in hydras.Epsilon0.Paths]
    +beta:630 [binder, in hydras.Gamma0.Gamma0]
    +beta:632 [binder, in hydras.Epsilon0.T1]
    +beta:634 [binder, in hydras.Epsilon0.T1]
    +beta:636 [binder, in hydras.Epsilon0.T1]
    +beta:64 [binder, in hydras.Schutte.Correctness_E0]
    +beta:64 [binder, in hydras.Epsilon0.Hessenberg]
    +beta:641 [binder, in hydras.Gamma0.Gamma0]
    +beta:644 [binder, in hydras.Epsilon0.T1]
    +beta:645 [binder, in hydras.Epsilon0.T1]
    +beta:648 [binder, in hydras.Epsilon0.T1]
    +beta:65 [binder, in hydras.Schutte.AP]
    +beta:65 [binder, in hydras.Schutte.Addition]
    +beta:651 [binder, in hydras.Epsilon0.T1]
    +beta:653 [binder, in hydras.Epsilon0.T1]
    +beta:659 [binder, in hydras.Epsilon0.T1]
    +beta:66 [binder, in hydras.Epsilon0.Paths]
    +beta:661 [binder, in hydras.Gamma0.Gamma0]
    +beta:662 [binder, in hydras.Gamma0.Gamma0]
    +beta:663 [binder, in hydras.Epsilon0.T1]
    +beta:666 [binder, in hydras.Epsilon0.T1]
    +beta:668 [binder, in hydras.Epsilon0.T1]
    +beta:67 [binder, in hydras.Schutte.AP]
    +beta:670 [binder, in hydras.Epsilon0.T1]
    +beta:672 [binder, in hydras.Epsilon0.T1]
    +beta:675 [binder, in hydras.Epsilon0.T1]
    +beta:679 [binder, in hydras.Epsilon0.T1]
    +beta:679 [binder, in hydras.Gamma0.Gamma0]
    +beta:682 [binder, in hydras.Epsilon0.T1]
    +beta:682 [binder, in hydras.Gamma0.Gamma0]
    +beta:684 [binder, in hydras.Epsilon0.T1]
    +beta:687 [binder, in hydras.Gamma0.Gamma0]
    +beta:69 [binder, in hydras.Epsilon0.Hessenberg]
    +beta:7 [binder, in hydras.Schutte.Critical]
    +beta:7 [binder, in hydras.Epsilon0.Large_Sets_Examples]
    +beta:70 [binder, in hydras.Epsilon0.E0]
    +beta:701 [binder, in hydras.Gamma0.Gamma0]
    +beta:703 [binder, in hydras.Gamma0.Gamma0]
    +beta:705 [binder, in hydras.Gamma0.Gamma0]
    +beta:706 [binder, in hydras.Epsilon0.T1]
    +beta:71 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +beta:71 [binder, in hydras.Epsilon0.F_alpha]
    +beta:71 [binder, in hydras.Epsilon0.Hessenberg]
    +beta:711 [binder, in hydras.Gamma0.Gamma0]
    +beta:712 [binder, in hydras.Epsilon0.T1]
    +beta:714 [binder, in hydras.Gamma0.Gamma0]
    +beta:715 [binder, in hydras.Epsilon0.T1]
    +beta:716 [binder, in hydras.Gamma0.Gamma0]
    +beta:718 [binder, in hydras.Epsilon0.T1]
    +beta:72 [binder, in hydras.Epsilon0.E0]
    +beta:721 [binder, in hydras.Epsilon0.T1]
    +beta:73 [binder, in hydras.Epsilon0.Canon]
    +beta:74 [binder, in hydras.Epsilon0.E0]
    +beta:75 [binder, in hydras.OrdinalNotations.ON_Generic]
    +beta:76 [binder, in hydras.Epsilon0.F_alpha]
    +beta:76 [binder, in hydras.Epsilon0.E0]
    +beta:76 [binder, in hydras.Epsilon0.Paths]
    +beta:78 [binder, in hydras.Epsilon0.Paths]
    +beta:79 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +beta:79 [binder, in hydras.Epsilon0.E0]
    +beta:8 [binder, in hydras.Schutte.Correctness_E0]
    +beta:8 [binder, in hydras.Epsilon0.Paths]
    +beta:8 [binder, in gaia_hydras.GHessenberg]
    +beta:80 [binder, in hydras.Hydra.O2H]
    +beta:81 [binder, in hydras.Epsilon0.F_alpha]
    +beta:81 [binder, in hydras.Epsilon0.Hessenberg]
    +beta:81 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +beta:81 [binder, in hydras.Epsilon0.E0]
    +beta:83 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +beta:84 [binder, in hydras.Epsilon0.E0]
    +beta:85 [binder, in hydras.Epsilon0.F_alpha]
    +beta:85 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +beta:86 [binder, in hydras.Epsilon0.Canon]
    +beta:86 [binder, in hydras.Schutte.Schutte_basics]
    +beta:87 [binder, in hydras.Epsilon0.E0]
    +beta:88 [binder, in hydras.Epsilon0.Paths]
    +beta:89 [binder, in hydras.Hydra.O2H]
    +beta:9 [binder, in hydras.Schutte.AP]
    +beta:9 [binder, in gaia_hydras.ON_gfinite]
    +beta:9 [binder, in hydras.OrdinalNotations.ON_Finite]
    +beta:90 [binder, in hydras.Epsilon0.E0]
    +beta:90 [binder, in hydras.Epsilon0.Paths]
    +beta:93 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +beta:93 [binder, in hydras.Epsilon0.Canon]
    +beta:93 [binder, in hydras.Epsilon0.E0]
    +beta:93 [binder, in hydras.Epsilon0.Hprime]
    +beta:95 [binder, in hydras.Epsilon0.T1]
    +beta:95 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +beta:95 [binder, in hydras.Schutte.Schutte_basics]
    +beta:96 [binder, in hydras.Epsilon0.F_alpha]
    +beta:97 [binder, in hydras.Gamma0.T2]
    +beta:99 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +beta:99 [binder, in hydras.Epsilon0.E0]
    +beta:99 [binder, in hydras.Epsilon0.Paths]
    +bigarg [definition, in additions.fib]
    +BigBattle [library]
    +bigO [definition, in hydras.OrdinalNotations.ON_Generic]
    +Bigstep [lemma, in hydras.Hydra.BigBattle]
    +big_to_small [lemma, in hydras.Hydra.Epsilon0_Needed_Free]
    +big_h [definition, in hydras.Hydra.Epsilon0_Needed_Generic]
    +big_to_small [lemma, in hydras.Hydra.Omega2_Small]
    +big_to_small [lemma, in hydras.Hydra.Omega_Small]
    +big0 [definition, in hydras.Schutte.Schutte_basics]
    +BinaryStrat [library]
    +binary_power_mult [definition, in additions.FirstSteps]
    +binary_power_mult_ok [lemma, in additions.Pow_variant]
    +binary_power_mult [definition, in additions.Pow_variant]
    +binary_power_mult_ok [lemma, in additions.Pow]
    +binary_power_mult [definition, in additions.Pow]
    +binary_power_mult [definition, in additions.fib]
    +binary_chain_length [lemma, in additions.Addition_Chains]
    +binary_generator_not_optimal [lemma, in additions.Addition_Chains]
    +binary_generator_correct [lemma, in additions.Addition_Chains]
    +binary_correct [lemma, in additions.Addition_Chains]
    +binary_power_proof.E_eq [variable, in additions.Addition_Chains]
    +binary_power_proof.E_one [variable, in additions.Addition_Chains]
    +binary_power_proof.E_op [variable, in additions.Addition_Chains]
    +binary_power_proof.A [variable, in additions.Addition_Chains]
    +binary_power_proof [section, in additions.Addition_Chains]
    +binary_chain [definition, in additions.Addition_Chains]
    +Binary_strat [instance, in additions.BinaryStrat]
    +bin_pow_scheme_length1 [lemma, in additions.Addition_Chains]
    +bin_pow_scheme [definition, in additions.Addition_Chains]
    +bits [definition, in additions.fib]
    +bitsP [lemma, in additions.fib]
    +bits_cat [lemma, in additions.fib]
    +bodd [definition, in hydras.Ackermann.primRec]
    +boddIsPR [instance, in hydras.Ackermann.primRec]
    +bool_eq_iff [lemma, in hydras.Epsilon0.T1]
    +bool_and_binop [instance, in additions.Monoid_def]
    +bool_decide_eq_false [lemma, in hydras.Prelude.STDPP_compat]
    +bool_decide_eq_true [lemma, in hydras.Prelude.STDPP_compat]
    +bool_decide [definition, in hydras.Prelude.STDPP_compat]
    +boundComputation [definition, in hydras.Ackermann.codeSubFormula]
    +boundComputationIsPR [instance, in hydras.Ackermann.codeSubFormula]
    +boundComputationMonotone [lemma, in hydras.Ackermann.codeSubFormula]
    +Bounded [section, in hydras.Hydra.Epsilon0_Needed_Generic]
    +boundedCheck [lemma, in hydras.Prelude.MoreDecidable]
    +boundedLT [lemma, in hydras.Ackermann.NNtheory]
    +boundedSearch [definition, in hydras.Ackermann.primRec]
    +boundedSearchHelp [definition, in hydras.Ackermann.primRec]
    +boundedSearch1 [lemma, in hydras.Ackermann.primRec]
    +boundedSearch2 [lemma, in hydras.Ackermann.primRec]
    +boundedSearch3 [lemma, in hydras.solutions_exercises.isqrt]
    +boundedSearch4 [lemma, in hydras.solutions_exercises.isqrt]
    +BoundedVariant [record, in hydras.Hydra.Hydra_Definitions]
    +bounded_by [definition, in hydras.Prelude.MoreLists]
    +bounded_transitionS [definition, in gaia_hydras.GPaths]
    +bounded_transitionS [definition, in hydras.Epsilon0.Paths]
    +Bounded.m_decrease [variable, in hydras.Hydra.Epsilon0_Needed_Generic]
    +boundMakeTrace [lemma, in hydras.Ackermann.codeSubFormula]
    +boundSearchIsPR [instance, in hydras.Ackermann.primRec]
    +boundSubFormulaHelp [lemma, in hydras.Ackermann.codeSubFormula]
    +boundSubFormulaHelp1 [lemma, in hydras.Ackermann.codeSubFormula]
    +boundSubFormulaHelp2 [lemma, in hydras.Ackermann.codeSubFormula]
    +boundSubTerm [lemma, in hydras.Ackermann.codeSubFormula]
    +boundSubTerms [lemma, in hydras.Ackermann.codeSubFormula]
    +box [definition, in Goedel.goedel2]
    +building_ordering_function_by_induction.B [variable, in hydras.Schutte.Ordering_Functions]
    +building_ordering_function_by_induction [section, in hydras.Schutte.Ordering_Functions]
    +building_ordering_function_1.g_1 [variable, in hydras.Schutte.Ordering_Functions]
    +building_ordering_function_1.beta_fixed.beta_B [variable, in hydras.Schutte.Ordering_Functions]
    +building_ordering_function_1.beta_fixed.beta [variable, in hydras.Schutte.Ordering_Functions]
    +building_ordering_function_1.beta_fixed [section, in hydras.Schutte.Ordering_Functions]
    +building_ordering_function_1.H_B [variable, in hydras.Schutte.Ordering_Functions]
    +building_ordering_function_1.B [variable, in hydras.Schutte.Ordering_Functions]
    +building_ordering_function_1 [section, in hydras.Schutte.Ordering_Functions]
    +Build_OF [constructor, in hydras.Schutte.Ordering_Functions]
    +but_last_iota_from' [lemma, in hydras.Prelude.MoreLists]
    +but_last_app [lemma, in hydras.Prelude.MoreLists]
    +but_last_shift' [lemma, in hydras.Prelude.MoreLists]
    +but_last_interval [lemma, in hydras.Prelude.MoreLists]
    +but_last_iota_from [lemma, in hydras.Prelude.MoreLists]
    +but_last [definition, in hydras.Prelude.MoreLists]
    +bVar [instance, in gaia_hydras.GHydra]
    +BVar:28 [binder, in gaia_hydras.GHydra]
    +B_termination [definition, in hydras.Hydra.Hydra_Definitions]
    +b'':45 [binder, in hydras.Hydra.BigBattle]
    +b':1023 [binder, in gaia_hydras.nfwfgaia]
    +b':1151 [binder, in gaia_hydras.nfwfgaia]
    +b':118 [binder, in hydras.Epsilon0.T1]
    +b':1280 [binder, in gaia_hydras.nfwfgaia]
    +b':1285 [binder, in gaia_hydras.nfwfgaia]
    +b':1288 [binder, in gaia_hydras.nfwfgaia]
    +b':1291 [binder, in gaia_hydras.nfwfgaia]
    +b':1294 [binder, in gaia_hydras.nfwfgaia]
    +b':1298 [binder, in gaia_hydras.nfwfgaia]
    +b':13 [binder, in hydras.Prelude.Simple_LexProd]
    +b':1302 [binder, in gaia_hydras.nfwfgaia]
    +b':1306 [binder, in gaia_hydras.nfwfgaia]
    +b':1310 [binder, in gaia_hydras.nfwfgaia]
    +b':1316 [binder, in gaia_hydras.nfwfgaia]
    +b':132 [binder, in gaia_hydras.nfwfgaia]
    +b':1336 [binder, in gaia_hydras.nfwfgaia]
    +b':1382 [binder, in gaia_hydras.nfwfgaia]
    +b':1392 [binder, in gaia_hydras.nfwfgaia]
    +b':1420 [binder, in gaia_hydras.nfwfgaia]
    +b':1426 [binder, in gaia_hydras.nfwfgaia]
    +b':1434 [binder, in gaia_hydras.nfwfgaia]
    +b':1498 [binder, in gaia_hydras.nfwfgaia]
    +b':1506 [binder, in gaia_hydras.nfwfgaia]
    +b':1549 [binder, in gaia_hydras.nfwfgaia]
    +b':1583 [binder, in gaia_hydras.nfwfgaia]
    +b':16 [binder, in hydras.Prelude.Simple_LexProd]
    +b':1607 [binder, in gaia_hydras.nfwfgaia]
    +b':1616 [binder, in gaia_hydras.nfwfgaia]
    +b':1618 [binder, in gaia_hydras.nfwfgaia]
    +b':1625 [binder, in gaia_hydras.nfwfgaia]
    +b':1627 [binder, in gaia_hydras.nfwfgaia]
    +b':1633 [binder, in gaia_hydras.nfwfgaia]
    +b':1689 [binder, in gaia_hydras.nfwfgaia]
    +b':1695 [binder, in gaia_hydras.nfwfgaia]
    +b':175 [binder, in gaia_hydras.nfwfgaia]
    +b':177 [binder, in hydras.Epsilon0.T1]
    +b':185 [binder, in hydras.Epsilon0.T1]
    +b':20 [binder, in hydras.Epsilon0.Hessenberg]
    +b':2064 [binder, in gaia_hydras.nfwfgaia]
    +b':2078 [binder, in gaia_hydras.nfwfgaia]
    +b':2083 [binder, in gaia_hydras.nfwfgaia]
    +b':224 [binder, in hydras.Epsilon0.T1]
    +b':226 [binder, in gaia_hydras.nfwfgaia]
    +b':232 [binder, in gaia_hydras.nfwfgaia]
    +b':233 [binder, in hydras.Epsilon0.T1]
    +b':24 [binder, in hydras.Hydra.BigBattle]
    +b':247 [binder, in hydras.Epsilon0.T1]
    +b':25 [binder, in additions.Monoid_instances]
    +b':259 [binder, in gaia_hydras.nfwfgaia]
    +b':26 [binder, in hydras.Schutte.Correctness_E0]
    +b':26 [binder, in hydras.Epsilon0.Hessenberg]
    +b':286 [binder, in hydras.Epsilon0.T1]
    +b':295 [binder, in gaia_hydras.nfwfgaia]
    +b':30 [binder, in hydras.Schutte.PartialFun]
    +b':302 [binder, in hydras.Gamma0.Gamma0]
    +b':31 [binder, in hydras.Schutte.Correctness_E0]
    +b':31 [binder, in hydras.Epsilon0.Hessenberg]
    +b':33 [binder, in hydras.Hydra.BigBattle]
    +b':34 [binder, in hydras.Gamma0.Gamma0]
    +b':35 [binder, in hydras.Epsilon0.T1]
    +b':360 [binder, in hydras.Epsilon0.T1]
    +b':365 [binder, in hydras.Epsilon0.T1]
    +b':37 [binder, in hydras.Epsilon0.Hessenberg]
    +b':379 [binder, in hydras.Epsilon0.T1]
    +b':384 [binder, in hydras.Epsilon0.T1]
    +b':389 [binder, in hydras.Epsilon0.T1]
    +b':41 [binder, in hydras.Hydra.BigBattle]
    +b':426 [binder, in gaia_hydras.nfwfgaia]
    +b':43 [binder, in hydras.Epsilon0.Hessenberg]
    +b':430 [binder, in hydras.Epsilon0.T1]
    +b':431 [binder, in gaia_hydras.nfwfgaia]
    +b':435 [binder, in hydras.Epsilon0.T1]
    +b':441 [binder, in hydras.Epsilon0.T1]
    +b':46 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +b':491 [binder, in hydras.Gamma0.Gamma0]
    +b':50 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +b':51 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +b':53 [binder, in hydras.Epsilon0.Hessenberg]
    +b':536 [binder, in hydras.Epsilon0.T1]
    +b':539 [binder, in hydras.Ackermann.primRec]
    +b':54 [binder, in hydras.Epsilon0.T1]
    +b':54 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +b':55 [binder, in gaia_hydras.T1Bridge]
    +b':57 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +b':57 [binder, in hydras.Hydra.BigBattle]
    +b':58 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +b':58 [binder, in hydras.Prelude.Sort_spec]
    +b':59 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +b':60 [binder, in gaia_hydras.T1Bridge]
    +b':62 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +b':65 [binder, in gaia_hydras.T1Bridge]
    +b':69 [binder, in hydras.Epsilon0.T1]
    +b':71 [binder, in gaia_hydras.T1Bridge]
    +b':727 [binder, in hydras.Epsilon0.T1]
    +b':76 [binder, in hydras.Epsilon0.T1]
    +b':77 [binder, in gaia_hydras.T1Bridge]
    +b':791 [binder, in gaia_hydras.nfwfgaia]
    +b':81 [binder, in hydras.Epsilon0.T1]
    +b':82 [binder, in hydras.Gamma0.T2]
    +b':847 [binder, in gaia_hydras.nfwfgaia]
    +b':86 [binder, in hydras.Epsilon0.T1]
    +b':870 [binder, in gaia_hydras.nfwfgaia]
    +b':897 [binder, in gaia_hydras.nfwfgaia]
    +b':9 [binder, in hydras.Schutte.PartialFun]
    +b':90 [binder, in hydras.Epsilon0.T1]
    +b':901 [binder, in gaia_hydras.nfwfgaia]
    +b':907 [binder, in gaia_hydras.nfwfgaia]
    +b':915 [binder, in gaia_hydras.nfwfgaia]
    +b':943 [binder, in gaia_hydras.nfwfgaia]
    +b':991 [binder, in gaia_hydras.nfwfgaia]
    +b0:193 [binder, in hydras.Ackermann.cPair]
    +b0:197 [binder, in hydras.Ackermann.cPair]
    +b0:201 [binder, in hydras.Ackermann.cPair]
    +b0:239 [binder, in hydras.Ackermann.cPair]
    +b0:241 [binder, in hydras.Ackermann.cPair]
    +b0:302 [binder, in hydras.Ackermann.folProp]
    +b0:309 [binder, in hydras.Ackermann.folProp]
    +b0:318 [binder, in hydras.Ackermann.folProp]
    +b0:325 [binder, in hydras.Ackermann.folProp]
    +b0:334 [binder, in hydras.Ackermann.folProp]
    +b0:341 [binder, in hydras.Ackermann.folProp]
    +b0:350 [binder, in hydras.Ackermann.folProp]
    +b0:357 [binder, in hydras.Ackermann.folProp]
    +b0:45 [binder, in hydras.Ackermann.LNN2LNT]
    +b0:718 [binder, in hydras.Ackermann.primRec]
    +b0:722 [binder, in hydras.Ackermann.primRec]
    +b0:724 [binder, in hydras.Ackermann.primRec]
    +b0:727 [binder, in hydras.Ackermann.primRec]
    +b0:730 [binder, in hydras.Ackermann.primRec]
    +b0:733 [binder, in hydras.Ackermann.primRec]
    +b0:736 [binder, in hydras.Ackermann.primRec]
    +b0:739 [binder, in hydras.Ackermann.primRec]
    +b0:742 [binder, in hydras.Ackermann.primRec]
    +b0:745 [binder, in hydras.Ackermann.primRec]
    +b0:748 [binder, in hydras.Ackermann.primRec]
    +b0:751 [binder, in hydras.Ackermann.primRec]
    +b0:754 [binder, in hydras.Ackermann.primRec]
    +b0:756 [binder, in hydras.Ackermann.primRec]
    +b0:758 [binder, in hydras.Ackermann.primRec]
    +b0:760 [binder, in hydras.Ackermann.primRec]
    +b0:762 [binder, in hydras.Ackermann.primRec]
    +b0:764 [binder, in hydras.Ackermann.primRec]
    +b0:766 [binder, in hydras.Ackermann.primRec]
    +b0:768 [binder, in hydras.Ackermann.primRec]
    +b0:770 [binder, in hydras.Ackermann.primRec]
    +b0:772 [binder, in hydras.Ackermann.primRec]
    +b0:774 [binder, in hydras.Ackermann.primRec]
    +b0:776 [binder, in hydras.Ackermann.primRec]
    +b0:778 [binder, in hydras.Ackermann.primRec]
    +b0:780 [binder, in hydras.Ackermann.primRec]
    +b0:782 [binder, in hydras.Ackermann.primRec]
    +b0:785 [binder, in hydras.Ackermann.primRec]
    +b0:789 [binder, in hydras.Ackermann.primRec]
    +b0:792 [binder, in hydras.Ackermann.primRec]
    +b0:796 [binder, in hydras.Ackermann.primRec]
    +b0:802 [binder, in hydras.Ackermann.primRec]
    +b0:807 [binder, in hydras.Ackermann.primRec]
    +b0:810 [binder, in hydras.Ackermann.primRec]
    +b1:1362 [binder, in hydras.Ackermann.codeSubFormula]
    +b1:366 [binder, in hydras.Ackermann.folProp]
    +b1:37 [binder, in hydras.Gamma0.Gamma0]
    +b1:373 [binder, in hydras.Ackermann.folProp]
    +b1:382 [binder, in hydras.Ackermann.folProp]
    +b1:389 [binder, in hydras.Ackermann.folProp]
    +b1:45 [binder, in hydras.Gamma0.Gamma0]
    +b1:458 [binder, in hydras.Gamma0.Gamma0]
    +b1:468 [binder, in hydras.Gamma0.Gamma0]
    +b1:472 [binder, in hydras.Gamma0.Gamma0]
    +b1:474 [binder, in hydras.Gamma0.Gamma0]
    +b1:477 [binder, in hydras.Gamma0.Gamma0]
    +b1:484 [binder, in hydras.Gamma0.Gamma0]
    +b1:486 [binder, in hydras.Gamma0.Gamma0]
    +b1:521 [binder, in hydras.Gamma0.Gamma0]
    +b1:53 [binder, in hydras.Gamma0.Gamma0]
    +b1:555 [binder, in hydras.Gamma0.Gamma0]
    +b1:559 [binder, in hydras.Gamma0.Gamma0]
    +b1:61 [binder, in hydras.Gamma0.Gamma0]
    +b1:69 [binder, in hydras.Gamma0.Gamma0]
    +b1:77 [binder, in hydras.Gamma0.Gamma0]
    +b1:82 [binder, in hydras.rpo.list_permut]
    +b1:83 [binder, in hydras.Gamma0.Gamma0]
    +b2:1363 [binder, in hydras.Ackermann.codeSubFormula]
    +b2:38 [binder, in hydras.Gamma0.Gamma0]
    +b2:459 [binder, in hydras.Gamma0.Gamma0]
    +b2:46 [binder, in hydras.Gamma0.Gamma0]
    +b2:469 [binder, in hydras.Gamma0.Gamma0]
    +b2:473 [binder, in hydras.Gamma0.Gamma0]
    +b2:475 [binder, in hydras.Gamma0.Gamma0]
    +b2:478 [binder, in hydras.Gamma0.Gamma0]
    +b2:485 [binder, in hydras.Gamma0.Gamma0]
    +b2:487 [binder, in hydras.Gamma0.Gamma0]
    +b2:522 [binder, in hydras.Gamma0.Gamma0]
    +b2:54 [binder, in hydras.Gamma0.Gamma0]
    +b2:556 [binder, in hydras.Gamma0.Gamma0]
    +b2:560 [binder, in hydras.Gamma0.Gamma0]
    +b2:62 [binder, in hydras.Gamma0.Gamma0]
    +b2:70 [binder, in hydras.Gamma0.Gamma0]
    +b2:84 [binder, in hydras.rpo.list_permut]
    +B:1 [binder, in hydras.Hydra.Epsilon0_Needed_Generic]
    +b:10 [binder, in hydras.Prelude.Comparable]
    +b:10 [binder, in gaia_hydras.GPaths]
    +b:10 [binder, in hydras.Ackermann.PAtheory]
    +b:10 [binder, in gaia_hydras.T1Bridge]
    +b:10 [binder, in hydras.Ackermann.NNtheory]
    +b:10 [binder, in hydras.Prelude.MoreDecidable]
    +b:10 [binder, in gaia_hydras.T2Bridge]
    +b:10 [binder, in hydras.Gamma0.Gamma0]
    +b:1002 [binder, in gaia_hydras.nfwfgaia]
    +b:1005 [binder, in gaia_hydras.nfwfgaia]
    +b:1009 [binder, in gaia_hydras.nfwfgaia]
    +b:101 [binder, in gaia_hydras.nfwfgaia]
    +b:1013 [binder, in gaia_hydras.nfwfgaia]
    +b:1015 [binder, in gaia_hydras.nfwfgaia]
    +b:102 [binder, in hydras.Ackermann.model]
    +b:1020 [binder, in gaia_hydras.nfwfgaia]
    +b:1027 [binder, in gaia_hydras.nfwfgaia]
    +b:103 [binder, in hydras.Prelude.Merge_Sort]
    +b:103 [binder, in gaia_hydras.T1Bridge]
    +b:103 [binder, in hydras.Ackermann.folLogic3]
    +b:1030 [binder, in gaia_hydras.nfwfgaia]
    +b:1035 [binder, in gaia_hydras.nfwfgaia]
    +b:104 [binder, in hydras.Epsilon0.Hessenberg]
    +b:104 [binder, in hydras.Ackermann.cPair]
    +b:105 [binder, in gaia_hydras.T1Bridge]
    +b:1050 [binder, in gaia_hydras.nfwfgaia]
    +b:106 [binder, in hydras.Ackermann.model]
    +b:106 [binder, in hydras.Ackermann.cPair]
    +b:107 [binder, in hydras.Epsilon0.Hessenberg]
    +b:1078 [binder, in gaia_hydras.nfwfgaia]
    +b:108 [binder, in gaia_hydras.T1Bridge]
    +b:108 [binder, in hydras.Ackermann.cPair]
    +b:109 [binder, in hydras.Hydra.O2H]
    +B:109 [binder, in hydras.Prelude.MoreLists]
    +b:109 [binder, in hydras.Ackermann.codeSubFormula]
    +b:1098 [binder, in gaia_hydras.nfwfgaia]
    +b:11 [binder, in gaia_hydras.T1Choice]
    +b:110 [binder, in hydras.Ackermann.model]
    +b:110 [binder, in gaia_hydras.T1Bridge]
    +B:110 [binder, in hydras.OrdinalNotations.ON_Generic]
    +b:1100 [binder, in gaia_hydras.nfwfgaia]
    +b:1102 [binder, in gaia_hydras.nfwfgaia]
    +b:1104 [binder, in gaia_hydras.nfwfgaia]
    +b:1107 [binder, in gaia_hydras.nfwfgaia]
    +b:111 [binder, in hydras.Gamma0.T2]
    +b:111 [binder, in hydras.Ackermann.folProp]
    +b:111 [binder, in hydras.Ackermann.cPair]
    +b:1110 [binder, in gaia_hydras.nfwfgaia]
    +b:1112 [binder, in gaia_hydras.nfwfgaia]
    +b:112 [binder, in hydras.Ackermann.codeSubFormula]
    +b:112 [binder, in gaia_hydras.nfwfgaia]
    +b:1127 [binder, in gaia_hydras.nfwfgaia]
    +b:113 [binder, in hydras.Hydra.O2H]
    +b:1130 [binder, in gaia_hydras.nfwfgaia]
    +b:1132 [binder, in gaia_hydras.nfwfgaia]
    +b:114 [binder, in hydras.Ackermann.model]
    +b:114 [binder, in hydras.Ackermann.cPair]
    +b:1145 [binder, in gaia_hydras.nfwfgaia]
    +b:1149 [binder, in gaia_hydras.nfwfgaia]
    +b:115 [binder, in hydras.Epsilon0.T1]
    +b:1155 [binder, in gaia_hydras.nfwfgaia]
    +b:1159 [binder, in gaia_hydras.nfwfgaia]
    +b:116 [binder, in hydras.Epsilon0.Hessenberg]
    +B:116 [binder, in hydras.Schutte.Ordering_Functions]
    +b:1161 [binder, in gaia_hydras.nfwfgaia]
    +b:1163 [binder, in gaia_hydras.nfwfgaia]
    +b:1165 [binder, in gaia_hydras.nfwfgaia]
    +b:1167 [binder, in gaia_hydras.nfwfgaia]
    +B:117 [binder, in hydras.Schutte.Ordering_Functions]
    +b:1170 [binder, in gaia_hydras.nfwfgaia]
    +b:1172 [binder, in gaia_hydras.nfwfgaia]
    +b:118 [binder, in hydras.Ackermann.cPair]
    +b:118 [binder, in hydras.Ackermann.codeList]
    +b:119 [binder, in hydras.Ackermann.codeList]
    +b:1192 [binder, in gaia_hydras.nfwfgaia]
    +b:1194 [binder, in gaia_hydras.nfwfgaia]
    +b:1196 [binder, in gaia_hydras.nfwfgaia]
    +B:12 [binder, in hydras.rpo.more_list]
    +b:12 [binder, in gaia_hydras.T1Bridge]
    +b:12 [binder, in hydras.Ackermann.prLogic]
    +b:12 [binder, in hydras.Schutte.PartialFun]
    +b:12 [binder, in hydras.Ackermann.NNtheory]
    +b:12 [binder, in hydras.Schutte.Ordering_Functions]
    +b:12 [binder, in hydras.solutions_exercises.isqrt]
    +b:12 [binder, in gaia_hydras.T2Bridge]
    +b:12 [binder, in hydras.Prelude.Simple_LexProd]
    +B:120 [binder, in hydras.Prelude.MoreLists]
    +b:120 [binder, in hydras.Epsilon0.Hessenberg]
    +b:120 [binder, in hydras.Ackermann.cPair]
    +b:1200 [binder, in gaia_hydras.nfwfgaia]
    +b:1209 [binder, in gaia_hydras.nfwfgaia]
    +b:1212 [binder, in gaia_hydras.nfwfgaia]
    +b:1215 [binder, in gaia_hydras.nfwfgaia]
    +b:1219 [binder, in gaia_hydras.nfwfgaia]
    +B:122 [binder, in hydras.rpo.more_list]
    +b:122 [binder, in hydras.Epsilon0.Hessenberg]
    +b:1227 [binder, in gaia_hydras.nfwfgaia]
    +b:1228 [binder, in hydras.Ackermann.codeSubFormula]
    +b:1231 [binder, in hydras.Ackermann.codeSubFormula]
    +b:1232 [binder, in gaia_hydras.nfwfgaia]
    +b:1234 [binder, in gaia_hydras.nfwfgaia]
    +b:1236 [binder, in gaia_hydras.nfwfgaia]
    +b:124 [binder, in hydras.Gamma0.T2]
    +b:1241 [binder, in gaia_hydras.nfwfgaia]
    +b:1247 [binder, in hydras.Ackermann.codeSubFormula]
    +b:1249 [binder, in gaia_hydras.nfwfgaia]
    +B:125 [binder, in Goedel.PRrepresentable]
    +b:125 [binder, in hydras.Ackermann.folProp]
    +B:125 [binder, in hydras.OrdinalNotations.ON_Generic]
    +B:125 [binder, in hydras.Hydra.Hydra_Definitions]
    +b:1250 [binder, in hydras.Ackermann.codeSubFormula]
    +b:1253 [binder, in gaia_hydras.nfwfgaia]
    +b:1256 [binder, in gaia_hydras.nfwfgaia]
    +b:126 [binder, in hydras.Ackermann.model]
    +b:126 [binder, in hydras.Epsilon0.Hessenberg]
    +b:1264 [binder, in gaia_hydras.nfwfgaia]
    +b:1269 [binder, in gaia_hydras.nfwfgaia]
    +B:127 [binder, in hydras.Prelude.MoreLists]
    +B:127 [binder, in hydras.Hydra.Hydra_Lemmas]
    +b:1272 [binder, in gaia_hydras.nfwfgaia]
    +b:1274 [binder, in gaia_hydras.nfwfgaia]
    +b:1276 [binder, in gaia_hydras.nfwfgaia]
    +b:1279 [binder, in gaia_hydras.nfwfgaia]
    +b:128 [binder, in hydras.Gamma0.T2]
    +b:1282 [binder, in hydras.Ackermann.codeSubFormula]
    +b:1284 [binder, in gaia_hydras.nfwfgaia]
    +b:1287 [binder, in gaia_hydras.nfwfgaia]
    +b:1288 [binder, in hydras.Ackermann.codeSubFormula]
    +b:129 [binder, in hydras.Epsilon0.Hessenberg]
    +b:129 [binder, in hydras.Ackermann.folProp]
    +b:129 [binder, in hydras.Ackermann.codeSubFormula]
    +b:129 [binder, in gaia_hydras.nfwfgaia]
    +b:1290 [binder, in gaia_hydras.nfwfgaia]
    +b:1293 [binder, in gaia_hydras.nfwfgaia]
    +b:1296 [binder, in gaia_hydras.nfwfgaia]
    +b:13 [binder, in gaia_hydras.T1Choice]
    +b:13 [binder, in hydras.Prelude.WfVariant]
    +b:13 [binder, in hydras.Ackermann.extEqualNat]
    +b:13 [binder, in gaia_hydras.GPaths]
    +b:13 [binder, in hydras.Schutte.PartialFun]
    +B:13 [binder, in hydras.Prelude.STDPP_compat]
    +b:13 [binder, in hydras.Ackermann.NN]
    +b:13 [binder, in hydras.rpo.closure]
    +b:13 [binder, in hydras.solutions_exercises.T1_ltNotWf]
    +B:13 [binder, in hydras.rpo.rpo]
    +b:130 [binder, in hydras.Ackermann.model]
    +b:130 [binder, in hydras.Ackermann.codeSubFormula]
    +b:1300 [binder, in gaia_hydras.nfwfgaia]
    +b:1304 [binder, in hydras.Ackermann.codeSubFormula]
    +b:1304 [binder, in gaia_hydras.nfwfgaia]
    +b:1307 [binder, in hydras.Ackermann.codeSubFormula]
    +b:1308 [binder, in gaia_hydras.nfwfgaia]
    +b:131 [binder, in hydras.OrdinalNotations.ON_Generic]
    +b:1313 [binder, in gaia_hydras.nfwfgaia]
    +b:1315 [binder, in gaia_hydras.nfwfgaia]
    +b:1319 [binder, in gaia_hydras.nfwfgaia]
    +b:132 [binder, in hydras.Epsilon0.T1]
    +B:132 [binder, in Goedel.PRrepresentable]
    +b:132 [binder, in hydras.Gamma0.T2]
    +B:132 [binder, in hydras.Prelude.MoreLists]
    +b:132 [binder, in hydras.Epsilon0.Hessenberg]
    +b:1321 [binder, in gaia_hydras.nfwfgaia]
    +b:1331 [binder, in gaia_hydras.nfwfgaia]
    +b:134 [binder, in hydras.Ackermann.model]
    +b:134 [binder, in hydras.Ackermann.primRec]
    +b:1346 [binder, in gaia_hydras.nfwfgaia]
    +b:1351 [binder, in gaia_hydras.nfwfgaia]
    +b:1356 [binder, in gaia_hydras.nfwfgaia]
    +b:136 [binder, in hydras.Gamma0.T2]
    +B:136 [binder, in hydras.rpo.more_list]
    +b:136 [binder, in hydras.Ackermann.primRec]
    +B:136 [binder, in hydras.Hydra.Hydra_Definitions]
    +b:1361 [binder, in gaia_hydras.nfwfgaia]
    +b:1366 [binder, in gaia_hydras.nfwfgaia]
    +b:137 [binder, in hydras.Epsilon0.T1]
    +B:137 [binder, in hydras.Prelude.MoreLists]
    +b:137 [binder, in hydras.Ackermann.codeSubFormula]
    +B:137 [binder, in hydras.OrdinalNotations.ON_Generic]
    +b:1371 [binder, in gaia_hydras.nfwfgaia]
    +b:1377 [binder, in gaia_hydras.nfwfgaia]
    +b:138 [binder, in hydras.Ackermann.model]
    +b:138 [binder, in hydras.Ackermann.primRec]
    +b:1384 [binder, in hydras.Ackermann.codeSubFormula]
    +b:1387 [binder, in hydras.Ackermann.codeSubFormula]
    +b:1389 [binder, in gaia_hydras.nfwfgaia]
    +b:139 [binder, in hydras.Ackermann.codeSubFormula]
    +b:14 [binder, in gaia_hydras.T1Bridge]
    +b:14 [binder, in hydras.Ackermann.prLogic]
    +b:14 [binder, in hydras.Hydra.BigBattle]
    +b:14 [binder, in hydras.Ackermann.NNtheory]
    +b:14 [binder, in hydras.solutions_exercises.isqrt]
    +b:140 [binder, in hydras.Ackermann.LNT]
    +B:140 [binder, in hydras.Hydra.Hydra_Definitions]
    +b:1402 [binder, in hydras.Ackermann.codeSubFormula]
    +b:1403 [binder, in hydras.Ackermann.codeSubFormula]
    +b:1408 [binder, in gaia_hydras.nfwfgaia]
    +b:141 [binder, in hydras.Gamma0.T2]
    +b:141 [binder, in hydras.Ackermann.primRec]
    +B:141 [binder, in hydras.Ackermann.fol]
    +b:1417 [binder, in gaia_hydras.nfwfgaia]
    +B:142 [binder, in hydras.Prelude.MoreLists]
    +b:142 [binder, in hydras.Gamma0.Gamma0]
    +b:1423 [binder, in gaia_hydras.nfwfgaia]
    +b:1429 [binder, in gaia_hydras.nfwfgaia]
    +B:143 [binder, in Goedel.PRrepresentable]
    +b:143 [binder, in hydras.Ackermann.LNN]
    +b:143 [binder, in hydras.Ackermann.LNT]
    +b:143 [binder, in gaia_hydras.T1Bridge]
    +B:143 [binder, in hydras.Ackermann.fol]
    +b:144 [binder, in hydras.Ackermann.primRec]
    +b:144 [binder, in additions.fib]
    +b:1442 [binder, in gaia_hydras.nfwfgaia]
    +b:1444 [binder, in gaia_hydras.nfwfgaia]
    +b:1446 [binder, in gaia_hydras.nfwfgaia]
    +b:1448 [binder, in gaia_hydras.nfwfgaia]
    +b:145 [binder, in hydras.Gamma0.T2]
    +B:145 [binder, in hydras.rpo.more_list]
    +b:145 [binder, in gaia_hydras.T1Bridge]
    +B:145 [binder, in hydras.Ackermann.fol]
    +b:1450 [binder, in gaia_hydras.nfwfgaia]
    +b:1459 [binder, in gaia_hydras.nfwfgaia]
    +b:146 [binder, in hydras.Ackermann.LNN]
    +b:1462 [binder, in gaia_hydras.nfwfgaia]
    +b:1464 [binder, in gaia_hydras.nfwfgaia]
    +b:1466 [binder, in gaia_hydras.nfwfgaia]
    +b:1469 [binder, in gaia_hydras.nfwfgaia]
    +b:147 [binder, in hydras.Gamma0.T2]
    +b:147 [binder, in hydras.Ackermann.LNT]
    +b:147 [binder, in hydras.Ackermann.primRec]
    +B:147 [binder, in hydras.Hydra.Hydra_Definitions]
    +b:1471 [binder, in gaia_hydras.nfwfgaia]
    +b:149 [binder, in additions.fib]
    +b:1493 [binder, in gaia_hydras.nfwfgaia]
    +b:15 [binder, in hydras.solutions_exercises.MinPR2]
    +b:15 [binder, in hydras.Prelude.WfVariant]
    +b:15 [binder, in hydras.Ackermann.extEqualNat]
    +b:15 [binder, in hydras.solutions_exercises.MultisetWf]
    +B:15 [binder, in hydras.OrdinalNotations.ON_Generic]
    +b:15 [binder, in hydras.Ackermann.folLogic3]
    +b:15 [binder, in hydras.solutions_exercises.T1_ltNotWf]
    +b:15 [binder, in hydras.MoreAck.PrimRecExamples]
    +b:15 [binder, in hydras.Prelude.Simple_LexProd]
    +b:150 [binder, in hydras.rpo.more_list]
    +b:150 [binder, in hydras.Ackermann.LNN]
    +B:150 [binder, in hydras.Ackermann.fol]
    +B:150 [binder, in hydras.OrdinalNotations.ON_Generic]
    +b:1503 [binder, in gaia_hydras.nfwfgaia]
    +b:1508 [binder, in gaia_hydras.nfwfgaia]
    +b:151 [binder, in hydras.Ackermann.primRec]
    +B:151 [binder, in hydras.Schutte.Ordering_Functions]
    +b:152 [binder, in hydras.Ackermann.LNT]
    +b:1520 [binder, in gaia_hydras.nfwfgaia]
    +b:1523 [binder, in gaia_hydras.nfwfgaia]
    +b:1526 [binder, in gaia_hydras.nfwfgaia]
    +b:153 [binder, in gaia_hydras.nfwfgaia]
    +b:1532 [binder, in gaia_hydras.nfwfgaia]
    +b:1537 [binder, in gaia_hydras.nfwfgaia]
    +B:154 [binder, in Goedel.PRrepresentable]
    +b:154 [binder, in hydras.Ackermann.fol]
    +b:154 [binder, in hydras.Ackermann.codePA]
    +b:1541 [binder, in gaia_hydras.nfwfgaia]
    +b:1544 [binder, in gaia_hydras.nfwfgaia]
    +B:155 [binder, in hydras.rpo.more_list]
    +b:155 [binder, in hydras.Ackermann.LNN]
    +b:155 [binder, in hydras.Ackermann.primRec]
    +b:155 [binder, in gaia_hydras.nfwfgaia]
    +b:1552 [binder, in gaia_hydras.nfwfgaia]
    +b:1559 [binder, in gaia_hydras.nfwfgaia]
    +b:156 [binder, in hydras.Ackermann.fol]
    +b:1562 [binder, in gaia_hydras.nfwfgaia]
    +b:1565 [binder, in gaia_hydras.nfwfgaia]
    +b:1569 [binder, in gaia_hydras.nfwfgaia]
    +b:157 [binder, in hydras.Ackermann.LNT]
    +b:157 [binder, in gaia_hydras.nfwfgaia]
    +b:157 [binder, in hydras.Ackermann.codePA]
    +B:157 [binder, in hydras.Hydra.Hydra_Definitions]
    +b:1575 [binder, in gaia_hydras.nfwfgaia]
    +b:1579 [binder, in gaia_hydras.nfwfgaia]
    +b:1588 [binder, in gaia_hydras.nfwfgaia]
    +b:159 [binder, in hydras.Ackermann.primRec]
    +b:159 [binder, in hydras.Ackermann.fol]
    +b:159 [binder, in gaia_hydras.nfwfgaia]
    +b:1593 [binder, in gaia_hydras.nfwfgaia]
    +b:1596 [binder, in gaia_hydras.nfwfgaia]
    +b:1599 [binder, in gaia_hydras.nfwfgaia]
    +B:16 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +B:16 [binder, in hydras.rpo.more_list]
    +b:16 [binder, in hydras.Prelude.MoreDecidable]
    +b:16 [binder, in hydras.rpo.dickson]
    +b:16 [binder, in hydras.Schutte.Ordering_Functions]
    +B:16 [binder, in hydras.MoreAck.FolExamples]
    +b:16 [binder, in gaia_hydras.GHessenberg]
    +b:160 [binder, in hydras.Ackermann.LNN]
    +b:1602 [binder, in gaia_hydras.nfwfgaia]
    +b:161 [binder, in gaia_hydras.nfwfgaia]
    +b:1613 [binder, in gaia_hydras.nfwfgaia]
    +b:1622 [binder, in gaia_hydras.nfwfgaia]
    +b:163 [binder, in hydras.Ackermann.LNN]
    +B:163 [binder, in hydras.OrdinalNotations.ON_Generic]
    +b:1630 [binder, in gaia_hydras.nfwfgaia]
    +b:1636 [binder, in gaia_hydras.nfwfgaia]
    +B:164 [binder, in hydras.rpo.more_list]
    +B:164 [binder, in hydras.Hydra.Hydra_Definitions]
    +b:165 [binder, in hydras.Ackermann.primRec]
    +b:165 [binder, in hydras.Ackermann.fol]
    +b:1651 [binder, in gaia_hydras.nfwfgaia]
    +b:166 [binder, in hydras.Epsilon0.T1]
    +b:166 [binder, in hydras.Gamma0.Gamma0]
    +b:1661 [binder, in gaia_hydras.nfwfgaia]
    +b:167 [binder, in hydras.Ackermann.primRec]
    +b:167 [binder, in hydras.Ackermann.cPair]
    +b:1672 [binder, in gaia_hydras.nfwfgaia]
    +b:1675 [binder, in gaia_hydras.nfwfgaia]
    +b:168 [binder, in hydras.Ackermann.fol]
    +b:168 [binder, in hydras.rpo.rpo]
    +b:169 [binder, in hydras.Epsilon0.T1]
    +b:169 [binder, in gaia_hydras.T1Bridge]
    +b:169 [binder, in hydras.Ackermann.primRec]
    +b:17 [binder, in hydras.solutions_exercises.MinPR2]
    +b:17 [binder, in additions.Fib2]
    +b:17 [binder, in hydras.Prelude.Comparable]
    +b:17 [binder, in hydras.Prelude.Sort_spec]
    +b:17 [binder, in hydras.Epsilon0.Hessenberg]
    +b:17 [binder, in hydras.Hydra.BigBattle]
    +B:17 [binder, in hydras.Ackermann.fol]
    +b:17 [binder, in Goedel.rosser]
    +b:170 [binder, in hydras.OrdinalNotations.ON_Generic]
    +b:170 [binder, in hydras.Gamma0.Gamma0]
    +B:171 [binder, in hydras.rpo.more_list]
    +b:171 [binder, in hydras.Ackermann.model]
    +b:171 [binder, in hydras.Ackermann.fol]
    +b:172 [binder, in hydras.Epsilon0.T1]
    +B:172 [binder, in hydras.Epsilon0.Large_Sets]
    +b:172 [binder, in gaia_hydras.nfwfgaia]
    +b:173 [binder, in hydras.Ackermann.model]
    +b:173 [binder, in hydras.Prelude.Merge_Sort]
    +b:173 [binder, in hydras.Ackermann.primRec]
    +b:1737 [binder, in gaia_hydras.nfwfgaia]
    +b:1739 [binder, in gaia_hydras.nfwfgaia]
    +b:174 [binder, in hydras.Ackermann.folProp]
    +B:174 [binder, in hydras.Schutte.Ordering_Functions]
    +b:1741 [binder, in gaia_hydras.nfwfgaia]
    +b:1743 [binder, in gaia_hydras.nfwfgaia]
    +b:1746 [binder, in gaia_hydras.nfwfgaia]
    +b:175 [binder, in hydras.Ackermann.primRec]
    +b:175 [binder, in hydras.Ackermann.cPair]
    +B:175 [binder, in hydras.OrdinalNotations.ON_Generic]
    +b:1750 [binder, in gaia_hydras.nfwfgaia]
    +b:1753 [binder, in gaia_hydras.nfwfgaia]
    +b:176 [binder, in hydras.Ackermann.model]
    +b:1769 [binder, in gaia_hydras.nfwfgaia]
    +b:177 [binder, in hydras.rpo.more_list]
    +b:177 [binder, in hydras.Ackermann.primRec]
    +b:177 [binder, in hydras.Ackermann.cPair]
    +B:177 [binder, in hydras.Schutte.Ordering_Functions]
    +b:177 [binder, in gaia_hydras.nfwfgaia]
    +b:1772 [binder, in gaia_hydras.nfwfgaia]
    +b:1774 [binder, in gaia_hydras.nfwfgaia]
    +b:178 [binder, in hydras.Ackermann.fol]
    +b:178 [binder, in gaia_hydras.nfwfgaia]
    +B:179 [binder, in hydras.rpo.more_list]
    +b:179 [binder, in hydras.Ackermann.cPair]
    +b:1792 [binder, in gaia_hydras.nfwfgaia]
    +b:1797 [binder, in gaia_hydras.nfwfgaia]
    +b:1799 [binder, in gaia_hydras.nfwfgaia]
    +b:18 [binder, in gaia_hydras.GPaths]
    +b:18 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +b:18 [binder, in hydras.Ackermann.codePA]
    +B:18 [binder, in hydras.rpo.rpo]
    +b:180 [binder, in hydras.Epsilon0.T1]
    +b:180 [binder, in hydras.Ackermann.model]
    +B:180 [binder, in hydras.Schutte.Ordering_Functions]
    +b:1803 [binder, in gaia_hydras.nfwfgaia]
    +b:1805 [binder, in gaia_hydras.nfwfgaia]
    +b:1807 [binder, in gaia_hydras.nfwfgaia]
    +b:1809 [binder, in gaia_hydras.nfwfgaia]
    +b:181 [binder, in hydras.Ackermann.folProp]
    +b:181 [binder, in hydras.Ackermann.primRec]
    +b:181 [binder, in hydras.Ackermann.cPair]
    +b:181 [binder, in gaia_hydras.nfwfgaia]
    +b:1811 [binder, in gaia_hydras.nfwfgaia]
    +b:1814 [binder, in gaia_hydras.nfwfgaia]
    +b:1816 [binder, in gaia_hydras.nfwfgaia]
    +B:182 [binder, in hydras.Schutte.Ordering_Functions]
    +b:183 [binder, in hydras.Epsilon0.T1]
    +b:183 [binder, in hydras.Ackermann.model]
    +B:183 [binder, in additions.Addition_Chains]
    +b:183 [binder, in gaia_hydras.nfwfgaia]
    +b:1836 [binder, in gaia_hydras.nfwfgaia]
    +b:1838 [binder, in gaia_hydras.nfwfgaia]
    +b:184 [binder, in hydras.Epsilon0.T1]
    +b:184 [binder, in hydras.Ackermann.primRec]
    +b:184 [binder, in hydras.Ackermann.fol]
    +b:1840 [binder, in gaia_hydras.nfwfgaia]
    +b:1842 [binder, in gaia_hydras.nfwfgaia]
    +b:1844 [binder, in gaia_hydras.nfwfgaia]
    +b:1857 [binder, in gaia_hydras.nfwfgaia]
    +b:186 [binder, in additions.Addition_Chains]
    +b:186 [binder, in hydras.Schutte.Ordering_Functions]
    +b:1866 [binder, in gaia_hydras.nfwfgaia]
    +B:187 [binder, in hydras.rpo.more_list]
    +b:187 [binder, in hydras.Ackermann.model]
    +b:187 [binder, in hydras.Ackermann.primRec]
    +b:1870 [binder, in gaia_hydras.nfwfgaia]
    +b:1878 [binder, in gaia_hydras.nfwfgaia]
    +b:188 [binder, in hydras.Epsilon0.T1]
    +B:188 [binder, in hydras.OrdinalNotations.ON_Generic]
    +b:188 [binder, in hydras.rpo.rpo]
    +b:1887 [binder, in gaia_hydras.nfwfgaia]
    +b:19 [binder, in hydras.Prelude.Comparable]
    +B:19 [binder, in hydras.Ackermann.fol]
    +b:19 [binder, in hydras.Schutte.PartialFun]
    +B:19 [binder, in gaia_hydras.GLarge_Sets]
    +B:19 [binder, in hydras.OrdinalNotations.ON_Generic]
    +B:19 [binder, in hydras.Schutte.Ordering_Functions]
    +b:190 [binder, in hydras.Ackermann.folProp]
    +b:190 [binder, in hydras.Ackermann.fol]
    +b:190 [binder, in hydras.rpo.rpo]
    +b:192 [binder, in hydras.Ackermann.primRec]
    +b:193 [binder, in hydras.Ackermann.model]
    +b:195 [binder, in hydras.Ackermann.model]
    +b:195 [binder, in hydras.Ackermann.primRec]
    +b:197 [binder, in hydras.Ackermann.model]
    +b:197 [binder, in hydras.Ackermann.folProp]
    +b:198 [binder, in hydras.Ackermann.primRec]
    +b:199 [binder, in hydras.Epsilon0.T1]
    +b:199 [binder, in hydras.Ackermann.model]
    +B:2 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +B:2 [binder, in hydras.rpo.more_list]
    +b:2 [binder, in hydras.Ackermann.prLogic]
    +b:2 [binder, in hydras.solutions_exercises.MinPR]
    +b:2 [binder, in hydras.Ackermann.NNtheory]
    +b:2 [binder, in hydras.solutions_exercises.isqrt]
    +b:2 [binder, in hydras.Gamma0.Gamma0]
    +B:2 [binder, in hydras.rpo.rpo]
    +b:20 [binder, in hydras.Ackermann.cPair]
    +b:20 [binder, in hydras.Schutte.PartialFun]
    +B:20 [binder, in Goedel.rosser]
    +b:20 [binder, in gaia_hydras.GHessenberg]
    +b:2007 [binder, in gaia_hydras.nfwfgaia]
    +B:202 [binder, in hydras.rpo.more_list]
    +b:202 [binder, in hydras.Ackermann.model]
    +B:202 [binder, in hydras.OrdinalNotations.ON_Generic]
    +b:2022 [binder, in gaia_hydras.nfwfgaia]
    +b:2026 [binder, in gaia_hydras.nfwfgaia]
    +b:203 [binder, in hydras.Ackermann.primRec]
    +b:2031 [binder, in gaia_hydras.nfwfgaia]
    +b:2038 [binder, in gaia_hydras.nfwfgaia]
    +b:2048 [binder, in gaia_hydras.nfwfgaia]
    +b:2051 [binder, in gaia_hydras.nfwfgaia]
    +b:2054 [binder, in gaia_hydras.nfwfgaia]
    +b:2059 [binder, in gaia_hydras.nfwfgaia]
    +b:206 [binder, in hydras.Ackermann.model]
    +b:206 [binder, in hydras.Ackermann.folProp]
    +b:206 [binder, in hydras.Ackermann.primRec]
    +b:206 [binder, in gaia_hydras.nfwfgaia]
    +b:2062 [binder, in gaia_hydras.nfwfgaia]
    +b:2071 [binder, in gaia_hydras.nfwfgaia]
    +b:2074 [binder, in gaia_hydras.nfwfgaia]
    +b:209 [binder, in hydras.Ackermann.model]
    +b:209 [binder, in hydras.Ackermann.primRec]
    +b:209 [binder, in gaia_hydras.nfwfgaia]
    +B:21 [binder, in hydras.rpo.more_list]
    +b:21 [binder, in hydras.Prelude.Comparable]
    +b:21 [binder, in gaia_hydras.GCanon]
    +b:21 [binder, in hydras.Hydra.BigBattle]
    +B:21 [binder, in hydras.Ackermann.fol]
    +b:21 [binder, in additions.Monoid_instances]
    +b:21 [binder, in hydras.Schutte.PartialFun]
    +b:21 [binder, in hydras.Schutte.Well_Orders]
    +B:21 [binder, in hydras.Schutte.Ordering_Functions]
    +b:21 [binder, in hydras.Ackermann.codePA]
    +b:210 [binder, in hydras.OrdinalNotations.ON_Generic]
    +B:211 [binder, in hydras.rpo.more_list]
    +b:212 [binder, in hydras.OrdinalNotations.ON_Generic]
    +b:212 [binder, in gaia_hydras.nfwfgaia]
    +b:213 [binder, in hydras.Epsilon0.T1]
    +b:213 [binder, in hydras.Ackermann.model]
    +b:213 [binder, in hydras.Ackermann.folProp]
    +b:214 [binder, in hydras.Ackermann.primRec]
    +b:214 [binder, in hydras.Ackermann.fol]
    +b:214 [binder, in hydras.OrdinalNotations.ON_Generic]
    +b:215 [binder, in hydras.Epsilon0.T1]
    +b:215 [binder, in gaia_hydras.nfwfgaia]
    +b:216 [binder, in hydras.Gamma0.Gamma0]
    +b:217 [binder, in hydras.Epsilon0.T1]
    +b:217 [binder, in hydras.Ackermann.primRec]
    +b:217 [binder, in hydras.Ackermann.fol]
    +b:218 [binder, in hydras.Gamma0.Gamma0]
    +b:219 [binder, in hydras.rpo.more_list]
    +b:219 [binder, in hydras.Ackermann.model]
    +b:219 [binder, in hydras.Ackermann.fol]
    +b:22 [binder, in additions.Fib2]
    +b:22 [binder, in gaia_hydras.GPaths]
    +b:22 [binder, in hydras.Ackermann.cPair]
    +b:22 [binder, in gaia_hydras.GHydra]
    +b:22 [binder, in hydras.Prelude.MoreDecidable]
    +b:22 [binder, in hydras.Ackermann.NN]
    +b:22 [binder, in gaia_hydras.GHessenberg]
    +b:220 [binder, in hydras.Ackermann.primRec]
    +b:220 [binder, in gaia_hydras.nfwfgaia]
    +b:221 [binder, in hydras.Epsilon0.T1]
    +B:221 [binder, in hydras.rpo.more_list]
    +b:221 [binder, in hydras.Ackermann.model]
    +b:222 [binder, in hydras.Ackermann.folProp]
    +b:222 [binder, in hydras.Ackermann.cPair]
    +b:223 [binder, in hydras.Ackermann.primRec]
    +b:223 [binder, in hydras.Ackermann.codeList]
    +b:223 [binder, in gaia_hydras.nfwfgaia]
    +b:224 [binder, in hydras.Ackermann.codeList]
    +b:224 [binder, in hydras.Gamma0.Gamma0]
    +b:226 [binder, in hydras.Ackermann.primRec]
    +b:226 [binder, in hydras.Ackermann.cPair]
    +b:227 [binder, in hydras.Epsilon0.T1]
    +b:228 [binder, in hydras.Gamma0.Gamma0]
    +b:229 [binder, in hydras.rpo.more_list]
    +b:229 [binder, in hydras.Ackermann.folProp]
    +b:229 [binder, in gaia_hydras.nfwfgaia]
    +B:23 [binder, in hydras.Ackermann.folProof]
    +b:23 [binder, in hydras.Prelude.Comparable]
    +b:23 [binder, in hydras.Epsilon0.Hessenberg]
    +b:23 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +B:23 [binder, in hydras.Schutte.Ordering_Functions]
    +B:23 [binder, in Goedel.rosser]
    +B:23 [binder, in hydras.Ackermann.expressible]
    +b:23 [binder, in hydras.Prelude.MoreVectors]
    +b:230 [binder, in hydras.rpo.more_list]
    +b:230 [binder, in hydras.Ackermann.primRec]
    +b:230 [binder, in hydras.Ackermann.cPair]
    +b:232 [binder, in hydras.Epsilon0.T1]
    +b:232 [binder, in hydras.Gamma0.Gamma0]
    +b:233 [binder, in hydras.rpo.more_list]
    +b:233 [binder, in hydras.Ackermann.primRec]
    +B:234 [binder, in hydras.Ackermann.checkPrf]
    +b:234 [binder, in hydras.Ackermann.cPair]
    +b:234 [binder, in gaia_hydras.nfwfgaia]
    +b:235 [binder, in hydras.Ackermann.cPair]
    +b:236 [binder, in hydras.Epsilon0.T1]
    +b:236 [binder, in hydras.rpo.more_list]
    +b:236 [binder, in hydras.Ackermann.primRec]
    +b:236 [binder, in gaia_hydras.nfwfgaia]
    +b:236 [binder, in hydras.rpo.rpo]
    +b:237 [binder, in hydras.rpo.more_list]
    +b:237 [binder, in hydras.Ackermann.cPair]
    +b:237 [binder, in hydras.Ackermann.fol]
    +b:239 [binder, in hydras.Epsilon0.T1]
    +B:239 [binder, in hydras.rpo.more_list]
    +b:239 [binder, in hydras.Ackermann.primRec]
    +b:239 [binder, in gaia_hydras.nfwfgaia]
    +B:24 [binder, in Goedel.fixPoint]
    +b:24 [binder, in hydras.Prelude.DecPreOrder]
    +b:24 [binder, in hydras.Ackermann.cPair]
    +b:24 [binder, in hydras.Schutte.Well_Orders]
    +b:24 [binder, in hydras.Gamma0.Gamma0]
    +b:24 [binder, in hydras.rpo.closure]
    +b:24 [binder, in gaia_hydras.GHessenberg]
    +b:242 [binder, in hydras.Ackermann.primRec]
    +b:245 [binder, in hydras.rpo.rpo]
    +b:246 [binder, in hydras.Epsilon0.T1]
    +b:246 [binder, in hydras.Ackermann.primRec]
    +b:247 [binder, in hydras.Ackermann.cPair]
    +B:248 [binder, in hydras.rpo.more_list]
    +b:248 [binder, in hydras.rpo.rpo]
    +b:249 [binder, in hydras.Ackermann.primRec]
    +b:249 [binder, in hydras.rpo.rpo]
    +b:25 [binder, in hydras.Schutte.Correctness_E0]
    +b:25 [binder, in hydras.Prelude.More_Arith]
    +b:25 [binder, in hydras.Epsilon0.F_omega]
    +b:25 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +B:25 [binder, in hydras.Ackermann.fol]
    +b:25 [binder, in hydras.Schutte.PartialFun]
    +B:25 [binder, in hydras.Schutte.Ordering_Functions]
    +b:25 [binder, in gaia_hydras.nfwfgaia]
    +b:250 [binder, in hydras.Epsilon0.T1]
    +b:252 [binder, in hydras.Ackermann.primRec]
    +b:252 [binder, in hydras.Ackermann.cPair]
    +b:253 [binder, in hydras.Ackermann.folProp]
    +b:253 [binder, in hydras.Ackermann.cPair]
    +b:253 [binder, in hydras.rpo.rpo]
    +b:254 [binder, in hydras.rpo.rpo]
    +b:255 [binder, in hydras.Epsilon0.T1]
    +b:255 [binder, in hydras.Ackermann.primRec]
    +b:256 [binder, in hydras.rpo.more_list]
    +b:257 [binder, in hydras.rpo.more_list]
    +b:258 [binder, in hydras.rpo.more_list]
    +b:258 [binder, in hydras.Ackermann.primRec]
    +b:259 [binder, in hydras.Epsilon0.T1]
    +B:26 [binder, in hydras.rpo.more_list]
    +b:26 [binder, in gaia_hydras.GPaths]
    +b:26 [binder, in hydras.rpo.closure]
    +B:260 [binder, in hydras.rpo.more_list]
    +b:260 [binder, in hydras.Ackermann.folProp]
    +b:260 [binder, in hydras.Ackermann.cPair]
    +b:261 [binder, in hydras.rpo.rpo]
    +b:262 [binder, in hydras.Epsilon0.T1]
    +B:262 [binder, in Goedel.PRrepresentable]
    +b:262 [binder, in hydras.Ackermann.primRec]
    +b:262 [binder, in gaia_hydras.nfwfgaia]
    +b:263 [binder, in hydras.Ackermann.cPair]
    +b:265 [binder, in hydras.Epsilon0.T1]
    +b:265 [binder, in gaia_hydras.nfwfgaia]
    +B:266 [binder, in Goedel.PRrepresentable]
    +B:266 [binder, in hydras.Ackermann.checkPrf]
    +b:266 [binder, in hydras.Ackermann.primRec]
    +b:267 [binder, in hydras.Epsilon0.T1]
    +b:267 [binder, in gaia_hydras.nfwfgaia]
    +b:268 [binder, in hydras.rpo.more_list]
    +b:269 [binder, in hydras.rpo.more_list]
    +b:269 [binder, in hydras.Ackermann.folProp]
    +b:269 [binder, in hydras.Ackermann.fol]
    +b:269 [binder, in gaia_hydras.nfwfgaia]
    +B:27 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +b:27 [binder, in hydras.Prelude.Comparable]
    +b:27 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +b:27 [binder, in hydras.Ackermann.PA]
    +b:27 [binder, in hydras.Schutte.PartialFun]
    +b:27 [binder, in gaia_hydras.GHessenberg]
    +b:27 [binder, in hydras.MoreAck.PrimRecExamples]
    +B:27 [binder, in hydras.Ackermann.expressible]
    +b:270 [binder, in Goedel.PRrepresentable]
    +b:270 [binder, in hydras.rpo.more_list]
    +b:270 [binder, in hydras.Ackermann.primRec]
    +b:271 [binder, in hydras.Epsilon0.T1]
    +b:271 [binder, in Goedel.PRrepresentable]
    +b:273 [binder, in hydras.Epsilon0.T1]
    +B:273 [binder, in Goedel.PRrepresentable]
    +b:273 [binder, in hydras.Ackermann.fol]
    +b:273 [binder, in hydras.Gamma0.Gamma0]
    +b:273 [binder, in gaia_hydras.nfwfgaia]
    +b:274 [binder, in hydras.Ackermann.primRec]
    +b:274 [binder, in gaia_hydras.nfwfgaia]
    +b:275 [binder, in hydras.Epsilon0.T1]
    +b:276 [binder, in hydras.Ackermann.folProp]
    +b:276 [binder, in hydras.Ackermann.fol]
    +b:277 [binder, in hydras.Epsilon0.T1]
    +b:278 [binder, in hydras.Ackermann.primRec]
    +B:28 [binder, in hydras.Ackermann.folProof]
    +b:28 [binder, in hydras.Prelude.More_Arith]
    +b:28 [binder, in hydras.Ackermann.extEqualNat]
    +b:28 [binder, in hydras.rpo.more_list]
    +B:28 [binder, in Goedel.fixPoint]
    +b:28 [binder, in hydras.solutions_exercises.MultisetWf]
    +b:28 [binder, in Goedel.rosserPA]
    +b:281 [binder, in hydras.Ackermann.fol]
    +b:283 [binder, in hydras.Ackermann.primRec]
    +b:284 [binder, in hydras.Epsilon0.T1]
    +b:284 [binder, in hydras.Ackermann.fol]
    +b:284 [binder, in hydras.Gamma0.Gamma0]
    +B:286 [binder, in Goedel.PRrepresentable]
    +b:287 [binder, in hydras.Ackermann.primRec]
    +b:288 [binder, in hydras.Gamma0.Gamma0]
    +b:29 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +b:29 [binder, in hydras.Epsilon0.Hessenberg]
    +b:29 [binder, in hydras.Prelude.DecPreOrder]
    +b:29 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +b:29 [binder, in hydras.Schutte.PartialFun]
    +B:29 [binder, in hydras.Schutte.Ordering_Functions]
    +b:29 [binder, in gaia_hydras.GHessenberg]
    +b:290 [binder, in additions.Euclidean_Chains]
    +b:291 [binder, in hydras.Ackermann.primRec]
    +B:292 [binder, in Goedel.PRrepresentable]
    +b:292 [binder, in hydras.Gamma0.Gamma0]
    +b:293 [binder, in gaia_hydras.nfwfgaia]
    +b:295 [binder, in additions.Euclidean_Chains]
    +b:296 [binder, in hydras.Ackermann.primRec]
    +b:296 [binder, in hydras.Gamma0.Gamma0]
    +b:3 [binder, in gaia_hydras.GPaths]
    +b:3 [binder, in hydras.Ackermann.ListExt]
    +B:30 [binder, in hydras.Ackermann.folProof]
    +b:30 [binder, in hydras.Schutte.Correctness_E0]
    +b:30 [binder, in hydras.Ackermann.codeSubTerm]
    +b:30 [binder, in hydras.Prelude.Comparable]
    +b:30 [binder, in hydras.Hydra.BigBattle]
    +b:30 [binder, in hydras.Gamma0.Gamma0]
    +b:30 [binder, in hydras.MoreAck.PrimRecExamples]
    +b:300 [binder, in Goedel.PRrepresentable]
    +b:300 [binder, in hydras.Ackermann.primRec]
    +b:304 [binder, in hydras.Ackermann.primRec]
    +b:307 [binder, in Goedel.PRrepresentable]
    +b:307 [binder, in hydras.Gamma0.Gamma0]
    +b:308 [binder, in hydras.Ackermann.primRec]
    +b:31 [binder, in hydras.Ackermann.extEqualNat]
    +b:31 [binder, in hydras.Ackermann.codeSubTerm]
    +b:31 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +B:31 [binder, in Goedel.rosserPA]
    +b:31 [binder, in hydras.Schutte.PartialFun]
    +b:31 [binder, in hydras.Ackermann.NN]
    +b:31 [binder, in gaia_hydras.GHessenberg]
    +b:311 [binder, in hydras.Epsilon0.T1]
    +b:311 [binder, in Goedel.PRrepresentable]
    +b:312 [binder, in hydras.Ackermann.primRec]
    +b:316 [binder, in hydras.Ackermann.primRec]
    +b:319 [binder, in Goedel.PRrepresentable]
    +B:319 [binder, in hydras.Ackermann.checkPrf]
    +b:319 [binder, in hydras.Ackermann.fol]
    +b:32 [binder, in hydras.Epsilon0.T1]
    +b:32 [binder, in hydras.Ackermann.codeSubTerm]
    +B:32 [binder, in hydras.rpo.more_list]
    +b:32 [binder, in hydras.Ackermann.folLogic3]
    +b:320 [binder, in hydras.Ackermann.primRec]
    +b:323 [binder, in hydras.Ackermann.fol]
    +b:325 [binder, in hydras.Ackermann.primRec]
    +b:326 [binder, in hydras.Ackermann.fol]
    +B:328 [binder, in Goedel.PRrepresentable]
    +b:329 [binder, in hydras.Ackermann.primRec]
    +B:33 [binder, in hydras.Ackermann.folProof]
    +b:33 [binder, in hydras.Ackermann.codeSubTerm]
    +b:33 [binder, in hydras.Prelude.Comparable]
    +b:33 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +B:33 [binder, in hydras.OrdinalNotations.ON_Generic]
    +B:33 [binder, in hydras.Schutte.Ordering_Functions]
    +b:331 [binder, in hydras.Ackermann.fol]
    +B:333 [binder, in Goedel.PRrepresentable]
    +b:333 [binder, in hydras.Ackermann.primRec]
    +b:337 [binder, in hydras.Ackermann.primRec]
    +B:338 [binder, in Goedel.PRrepresentable]
    +b:339 [binder, in hydras.Ackermann.cPair]
    +b:34 [binder, in hydras.Prelude.More_Arith]
    +b:34 [binder, in hydras.Ackermann.codeSubTerm]
    +b:34 [binder, in hydras.Epsilon0.Hessenberg]
    +B:34 [binder, in Goedel.rosserPA]
    +b:34 [binder, in hydras.Ackermann.cPair]
    +b:34 [binder, in gaia_hydras.GHessenberg]
    +b:341 [binder, in hydras.Ackermann.primRec]
    +b:341 [binder, in hydras.Ackermann.cPair]
    +B:342 [binder, in hydras.Ackermann.subAll]
    +B:347 [binder, in hydras.Ackermann.subAll]
    +b:347 [binder, in hydras.Ackermann.cPair]
    +b:348 [binder, in hydras.Epsilon0.T1]
    +b:35 [binder, in hydras.Ackermann.codeSubTerm]
    +b:35 [binder, in gaia_hydras.GCanon]
    +b:35 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +b:35 [binder, in hydras.Schutte.PartialFun]
    +b:35 [binder, in hydras.Schutte.Well_Orders]
    +b:35 [binder, in hydras.Prelude.MoreVectors]
    +b:350 [binder, in hydras.Ackermann.cPair]
    +b:352 [binder, in Goedel.PRrepresentable]
    +B:352 [binder, in hydras.Ackermann.subAll]
    +b:353 [binder, in hydras.Ackermann.cPair]
    +b:354 [binder, in gaia_hydras.nfwfgaia]
    +b:356 [binder, in Goedel.PRrepresentable]
    +b:356 [binder, in hydras.Ackermann.cPair]
    +b:356 [binder, in gaia_hydras.nfwfgaia]
    +b:357 [binder, in hydras.Epsilon0.T1]
    +b:358 [binder, in hydras.Ackermann.cPair]
    +b:358 [binder, in gaia_hydras.nfwfgaia]
    +b:36 [binder, in additions.Compatibility]
    +b:36 [binder, in hydras.Prelude.Comparable]
    +b:36 [binder, in hydras.Ackermann.folProp]
    +b:36 [binder, in hydras.Ackermann.PA]
    +b:36 [binder, in hydras.Schutte.Schutte_basics]
    +B:36 [binder, in hydras.MoreAck.FolExamples]
    +b:360 [binder, in Goedel.PRrepresentable]
    +b:360 [binder, in hydras.Ackermann.cPair]
    +b:360 [binder, in gaia_hydras.nfwfgaia]
    +b:362 [binder, in hydras.Epsilon0.T1]
    +b:363 [binder, in hydras.Ackermann.cPair]
    +b:364 [binder, in Goedel.PRrepresentable]
    +b:364 [binder, in gaia_hydras.nfwfgaia]
    +b:365 [binder, in hydras.Ackermann.fol]
    +b:366 [binder, in hydras.Ackermann.cPair]
    +b:369 [binder, in hydras.Ackermann.cPair]
    +b:369 [binder, in hydras.Ackermann.fol]
    +b:37 [binder, in gaia_hydras.GPaths]
    +b:37 [binder, in hydras.Hydra.BigBattle]
    +b:37 [binder, in gaia_hydras.GHessenberg]
    +b:372 [binder, in hydras.Ackermann.fol]
    +b:376 [binder, in hydras.Epsilon0.T1]
    +b:38 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +b:38 [binder, in hydras.Ackermann.cPair]
    +b:38 [binder, in hydras.Ackermann.wellFormed]
    +b:38 [binder, in gaia_hydras.onType]
    +b:38 [binder, in hydras.Schutte.Well_Orders]
    +b:383 [binder, in hydras.Epsilon0.T1]
    +b:386 [binder, in Goedel.PRrepresentable]
    +b:387 [binder, in hydras.Epsilon0.T1]
    +b:39 [binder, in hydras.Prelude.Comparable]
    +b:39 [binder, in hydras.Ackermann.NN]
    +b:39 [binder, in hydras.Schutte.Ordering_Functions]
    +b:390 [binder, in Goedel.PRrepresentable]
    +b:392 [binder, in hydras.Epsilon0.T1]
    +b:394 [binder, in Goedel.PRrepresentable]
    +b:394 [binder, in hydras.Ackermann.checkPrf]
    +b:395 [binder, in gaia_hydras.nfwfgaia]
    +b:397 [binder, in gaia_hydras.nfwfgaia]
    +b:398 [binder, in Goedel.PRrepresentable]
    +b:398 [binder, in hydras.Ackermann.checkPrf]
    +b:4 [binder, in hydras.solutions_exercises.MinPR2]
    +b:4 [binder, in hydras.Ackermann.folLogic2]
    +b:4 [binder, in hydras.Ackermann.prLogic]
    +b:4 [binder, in hydras.Ackermann.NNtheory]
    +b:4 [binder, in hydras.Schutte.Well_Orders]
    +b:4 [binder, in hydras.Ackermann.NN]
    +b:4 [binder, in hydras.solutions_exercises.isqrt]
    +B:40 [binder, in hydras.Ackermann.folProof]
    +b:40 [binder, in hydras.Epsilon0.Hessenberg]
    +b:40 [binder, in hydras.Ackermann.cPair]
    +b:40 [binder, in hydras.Ackermann.wellFormed]
    +b:40 [binder, in gaia_hydras.onType]
    +b:40 [binder, in hydras.Schutte.Ordering_Functions]
    +b:400 [binder, in gaia_hydras.nfwfgaia]
    +b:401 [binder, in Goedel.PRrepresentable]
    +b:403 [binder, in Goedel.PRrepresentable]
    +b:404 [binder, in hydras.Epsilon0.T1]
    +b:406 [binder, in Goedel.PRrepresentable]
    +b:409 [binder, in hydras.Ackermann.fol]
    +b:409 [binder, in gaia_hydras.nfwfgaia]
    +b:41 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +b:41 [binder, in hydras.Prelude.Comparable]
    +b:41 [binder, in hydras.Schutte.PartialFun]
    +b:410 [binder, in Goedel.PRrepresentable]
    +b:412 [binder, in gaia_hydras.nfwfgaia]
    +b:413 [binder, in hydras.Ackermann.fol]
    +b:414 [binder, in Goedel.PRrepresentable]
    +b:415 [binder, in hydras.Ackermann.primRec]
    +b:416 [binder, in hydras.Ackermann.fol]
    +b:416 [binder, in gaia_hydras.nfwfgaia]
    +b:417 [binder, in hydras.Epsilon0.T1]
    +b:417 [binder, in hydras.Ackermann.primRec]
    +b:418 [binder, in Goedel.PRrepresentable]
    +b:419 [binder, in hydras.Ackermann.primRec]
    +b:42 [binder, in hydras.Ackermann.cPair]
    +b:42 [binder, in hydras.Schutte.Schutte_basics]
    +b:42 [binder, in hydras.Schutte.Well_Orders]
    +b:421 [binder, in Goedel.PRrepresentable]
    +b:421 [binder, in hydras.Ackermann.primRec]
    +b:424 [binder, in hydras.Ackermann.fol]
    +b:424 [binder, in gaia_hydras.nfwfgaia]
    +b:425 [binder, in Goedel.PRrepresentable]
    +b:427 [binder, in hydras.Epsilon0.T1]
    +b:428 [binder, in gaia_hydras.nfwfgaia]
    +b:429 [binder, in hydras.Ackermann.fol]
    +b:43 [binder, in hydras.Prelude.DecPreOrder]
    +b:43 [binder, in additions.More_on_positive]
    +B:43 [binder, in hydras.Schutte.Schutte_basics]
    +b:430 [binder, in hydras.Ackermann.primRec]
    +b:430 [binder, in hydras.Gamma0.Gamma0]
    +b:432 [binder, in hydras.Ackermann.fol]
    +b:433 [binder, in hydras.Epsilon0.T1]
    +b:433 [binder, in gaia_hydras.nfwfgaia]
    +b:434 [binder, in hydras.Ackermann.fol]
    +b:436 [binder, in gaia_hydras.nfwfgaia]
    +b:437 [binder, in hydras.Ackermann.primRec]
    +b:438 [binder, in hydras.Epsilon0.T1]
    +b:438 [binder, in gaia_hydras.nfwfgaia]
    +b:44 [binder, in hydras.Epsilon0.T1]
    +b:44 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +b:44 [binder, in hydras.rpo.more_list]
    +b:44 [binder, in gaia_hydras.T1Bridge]
    +b:44 [binder, in hydras.rpo.dickson]
    +b:442 [binder, in gaia_hydras.nfwfgaia]
    +b:443 [binder, in hydras.Epsilon0.T1]
    +b:444 [binder, in hydras.Ackermann.primRec]
    +b:444 [binder, in gaia_hydras.nfwfgaia]
    +b:445 [binder, in hydras.Ackermann.fol]
    +b:446 [binder, in hydras.Ackermann.checkPrf]
    +b:446 [binder, in hydras.Ackermann.primRec]
    +b:446 [binder, in gaia_hydras.nfwfgaia]
    +b:447 [binder, in hydras.Epsilon0.T1]
    +b:448 [binder, in gaia_hydras.nfwfgaia]
    +b:449 [binder, in hydras.Epsilon0.T1]
    +b:45 [binder, in Goedel.PRrepresentable]
    +b:45 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +b:45 [binder, in hydras.Prelude.Comparable]
    +b:45 [binder, in hydras.Epsilon0.Hessenberg]
    +b:45 [binder, in hydras.Ackermann.PA]
    +b:45 [binder, in hydras.Prelude.MoreOrders]
    +b:45 [binder, in hydras.Schutte.PartialFun]
    +b:450 [binder, in hydras.Ackermann.checkPrf]
    +b:451 [binder, in hydras.Ackermann.primRec]
    +b:451 [binder, in gaia_hydras.nfwfgaia]
    +b:452 [binder, in hydras.Epsilon0.T1]
    +b:453 [binder, in gaia_hydras.nfwfgaia]
    +B:454 [binder, in hydras.Ackermann.checkPrf]
    +b:455 [binder, in hydras.Epsilon0.T1]
    +b:457 [binder, in hydras.Ackermann.primRec]
    +b:458 [binder, in gaia_hydras.nfwfgaia]
    +b:459 [binder, in hydras.Epsilon0.T1]
    +b:459 [binder, in hydras.Ackermann.primRec]
    +b:46 [binder, in hydras.solutions_exercises.MultisetWf]
    +b:46 [binder, in gaia_hydras.T1Bridge]
    +b:46 [binder, in hydras.Ackermann.cPair]
    +B:46 [binder, in hydras.Schutte.Ordering_Functions]
    +B:46 [binder, in hydras.Ackermann.expressible]
    +b:460 [binder, in gaia_hydras.nfwfgaia]
    +b:462 [binder, in hydras.Epsilon0.T1]
    +b:463 [binder, in gaia_hydras.nfwfgaia]
    +b:464 [binder, in hydras.Ackermann.primRec]
    +b:465 [binder, in hydras.Epsilon0.T1]
    +b:465 [binder, in gaia_hydras.nfwfgaia]
    +b:467 [binder, in gaia_hydras.nfwfgaia]
    +b:469 [binder, in hydras.Epsilon0.T1]
    +b:469 [binder, in gaia_hydras.nfwfgaia]
    +b:47 [binder, in hydras.Epsilon0.T1]
    +b:47 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +b:47 [binder, in hydras.Prelude.Comparable]
    +B:47 [binder, in hydras.Prelude.Sort_spec]
    +b:47 [binder, in additions.More_on_positive]
    +B:47 [binder, in hydras.Schutte.Schutte_basics]
    +b:471 [binder, in hydras.Epsilon0.T1]
    +b:474 [binder, in gaia_hydras.nfwfgaia]
    +b:477 [binder, in hydras.Epsilon0.T1]
    +b:478 [binder, in hydras.Ackermann.primRec]
    +b:479 [binder, in hydras.Epsilon0.T1]
    +b:479 [binder, in hydras.Ackermann.primRec]
    +b:48 [binder, in Goedel.PRrepresentable]
    +b:48 [binder, in hydras.Prelude.More_Arith]
    +b:48 [binder, in hydras.Ackermann.codeSubTerm]
    +b:48 [binder, in hydras.Prelude.DecPreOrder]
    +b:483 [binder, in hydras.Gamma0.Gamma0]
    +b:484 [binder, in hydras.Ackermann.primRec]
    +b:487 [binder, in hydras.Ackermann.checkPrf]
    +b:49 [binder, in hydras.Epsilon0.T1]
    +b:49 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +b:49 [binder, in hydras.Ackermann.codeSubTerm]
    +b:49 [binder, in hydras.Prelude.Comparable]
    +b:49 [binder, in hydras.Ackermann.code]
    +b:49 [binder, in hydras.Hydra.BigBattle]
    +b:490 [binder, in hydras.Ackermann.primRec]
    +b:490 [binder, in hydras.Gamma0.Gamma0]
    +b:491 [binder, in hydras.Ackermann.checkPrf]
    +b:491 [binder, in gaia_hydras.nfwfgaia]
    +b:493 [binder, in gaia_hydras.nfwfgaia]
    +b:495 [binder, in hydras.Ackermann.primRec]
    +b:495 [binder, in gaia_hydras.nfwfgaia]
    +b:497 [binder, in hydras.Epsilon0.T1]
    +b:5 [binder, in hydras.Prelude.Restriction]
    +b:5 [binder, in hydras.Prelude.DecPreOrder]
    +b:5 [binder, in hydras.Ackermann.cPair]
    +B:5 [binder, in hydras.OrdinalNotations.ON_mult]
    +B:5 [binder, in hydras.OrdinalNotations.ON_plus]
    +b:50 [binder, in hydras.Ackermann.codeSubTerm]
    +b:50 [binder, in hydras.Epsilon0.Hessenberg]
    +b:50 [binder, in gaia_hydras.T1Bridge]
    +b:50 [binder, in hydras.Ackermann.cPair]
    +b:50 [binder, in hydras.Schutte.Well_Orders]
    +B:50 [binder, in hydras.Schutte.Ordering_Functions]
    +b:501 [binder, in hydras.Epsilon0.T1]
    +b:503 [binder, in hydras.Ackermann.checkPrf]
    +b:504 [binder, in hydras.Epsilon0.T1]
    +b:504 [binder, in hydras.Ackermann.primRec]
    +b:506 [binder, in hydras.Ackermann.primRec]
    +b:507 [binder, in hydras.Ackermann.checkPrf]
    +b:508 [binder, in hydras.Ackermann.primRec]
    +b:51 [binder, in hydras.Epsilon0.T1]
    +b:51 [binder, in hydras.Ackermann.codeSubTerm]
    +b:51 [binder, in additions.More_on_positive]
    +b:51 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +B:51 [binder, in hydras.Ackermann.code]
    +b:51 [binder, in hydras.Schutte.PartialFun]
    +b:51 [binder, in hydras.Ackermann.codeList]
    +b:51 [binder, in hydras.rpo.dickson]
    +b:510 [binder, in hydras.Epsilon0.T1]
    +b:510 [binder, in hydras.Ackermann.primRec]
    +b:511 [binder, in hydras.Ackermann.checkPrf]
    +b:512 [binder, in hydras.Ackermann.primRec]
    +b:514 [binder, in hydras.Ackermann.primRec]
    +b:515 [binder, in hydras.Ackermann.checkPrf]
    +b:516 [binder, in hydras.Ackermann.primRec]
    +b:518 [binder, in hydras.Ackermann.primRec]
    +b:519 [binder, in hydras.Epsilon0.T1]
    +b:519 [binder, in hydras.Gamma0.Gamma0]
    +b:52 [binder, in hydras.Prelude.More_Arith]
    +b:52 [binder, in hydras.Prelude.Comparable]
    +B:52 [binder, in hydras.OrdinalNotations.ON_Generic]
    +b:52 [binder, in hydras.Ackermann.codeList]
    +b:520 [binder, in hydras.Ackermann.primRec]
    +b:522 [binder, in hydras.Epsilon0.T1]
    +b:522 [binder, in hydras.Ackermann.primRec]
    +b:524 [binder, in hydras.Ackermann.primRec]
    +b:525 [binder, in hydras.Gamma0.Gamma0]
    +b:526 [binder, in hydras.Ackermann.primRec]
    +b:528 [binder, in hydras.Ackermann.primRec]
    +b:528 [binder, in hydras.Gamma0.Gamma0]
    +b:53 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +b:53 [binder, in hydras.Prelude.More_Arith]
    +b:53 [binder, in hydras.Prelude.DecPreOrder]
    +b:53 [binder, in hydras.solutions_exercises.MultisetWf]
    +b:53 [binder, in gaia_hydras.T1Bridge]
    +b:53 [binder, in hydras.Hydra.BigBattle]
    +b:530 [binder, in hydras.Epsilon0.T1]
    +b:530 [binder, in hydras.Ackermann.primRec]
    +b:531 [binder, in hydras.Gamma0.Gamma0]
    +b:533 [binder, in hydras.Epsilon0.T1]
    +b:534 [binder, in hydras.Gamma0.Gamma0]
    +b:537 [binder, in hydras.Ackermann.primRec]
    +b:54 [binder, in additions.More_on_positive]
    +b:54 [binder, in gaia_hydras.GCanon]
    +b:54 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +b:54 [binder, in hydras.Ackermann.cPair]
    +B:54 [binder, in hydras.Prelude.MoreVectors]
    +b:540 [binder, in hydras.Epsilon0.T1]
    +b:549 [binder, in hydras.Ackermann.primRec]
    +b:55 [binder, in hydras.Ackermann.LNN2LNT]
    +b:55 [binder, in hydras.Prelude.Comparable]
    +b:55 [binder, in gaia_hydras.GPaths]
    +b:55 [binder, in hydras.Prelude.Sort_spec]
    +b:55 [binder, in hydras.Ackermann.code]
    +B:55 [binder, in hydras.Schutte.Ordering_Functions]
    +b:551 [binder, in hydras.Ackermann.primRec]
    +b:553 [binder, in hydras.Ackermann.primRec]
    +b:555 [binder, in hydras.Ackermann.primRec]
    +b:557 [binder, in hydras.Epsilon0.T1]
    +b:56 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +b:564 [binder, in hydras.Epsilon0.T1]
    +b:564 [binder, in hydras.Gamma0.Gamma0]
    +b:565 [binder, in gaia_hydras.nfwfgaia]
    +b:566 [binder, in hydras.Gamma0.Gamma0]
    +b:567 [binder, in gaia_hydras.nfwfgaia]
    +b:57 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +b:57 [binder, in hydras.Prelude.More_Arith]
    +b:57 [binder, in hydras.Ackermann.LNN2LNT]
    +b:57 [binder, in hydras.Ackermann.code]
    +b:57 [binder, in hydras.Schutte.Ordering_Functions]
    +b:570 [binder, in hydras.Gamma0.Gamma0]
    +b:572 [binder, in hydras.Epsilon0.T1]
    +b:572 [binder, in hydras.Gamma0.Gamma0]
    +b:576 [binder, in hydras.Epsilon0.T1]
    +b:58 [binder, in hydras.Prelude.Comparable]
    +b:58 [binder, in hydras.Prelude.DecPreOrder]
    +b:58 [binder, in additions.More_on_positive]
    +b:58 [binder, in gaia_hydras.T1Bridge]
    +b:58 [binder, in hydras.Prelude.MoreVectors]
    +b:580 [binder, in hydras.Epsilon0.T1]
    +b:584 [binder, in hydras.Ackermann.primRec]
    +b:586 [binder, in hydras.Ackermann.primRec]
    +b:586 [binder, in hydras.Gamma0.Gamma0]
    +b:588 [binder, in hydras.Ackermann.primRec]
    +b:588 [binder, in hydras.Gamma0.Gamma0]
    +b:59 [binder, in hydras.Ackermann.LNN2LNT]
    +b:59 [binder, in gaia_hydras.GPaths]
    +b:59 [binder, in hydras.Schutte.Schutte_basics]
    +b:590 [binder, in hydras.Ackermann.primRec]
    +b:592 [binder, in hydras.Ackermann.primRec]
    +b:593 [binder, in hydras.Gamma0.Gamma0]
    +b:594 [binder, in hydras.Ackermann.primRec]
    +b:596 [binder, in hydras.Ackermann.primRec]
    +b:597 [binder, in hydras.Gamma0.Gamma0]
    +b:599 [binder, in hydras.Epsilon0.T1]
    +b:6 [binder, in hydras.Ackermann.folProof]
    +b:6 [binder, in gaia_hydras.GPaths]
    +b:6 [binder, in hydras.Prelude.Sort_spec]
    +b:6 [binder, in hydras.Ackermann.prLogic]
    +b:6 [binder, in hydras.Ackermann.NNtheory]
    +b:6 [binder, in hydras.Ackermann.ListExt]
    +b:6 [binder, in hydras.Ackermann.folLogic3]
    +b:6 [binder, in hydras.Gamma0.Gamma0]
    +b:60 [binder, in hydras.Prelude.Comparable]
    +b:60 [binder, in hydras.Schutte.Schutte_basics]
    +B:60 [binder, in hydras.Schutte.Ordering_Functions]
    +b:603 [binder, in hydras.Epsilon0.T1]
    +b:604 [binder, in gaia_hydras.nfwfgaia]
    +b:605 [binder, in hydras.Gamma0.Gamma0]
    +b:61 [binder, in hydras.Schutte.Correctness_E0]
    +b:61 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +B:61 [binder, in hydras.Prelude.Sort_spec]
    +b:61 [binder, in hydras.Hydra.BigBattle]
    +b:611 [binder, in gaia_hydras.nfwfgaia]
    +b:615 [binder, in gaia_hydras.nfwfgaia]
    +b:62 [binder, in hydras.Prelude.Comparable]
    +b:62 [binder, in hydras.Schutte.Ordering_Functions]
    +b:620 [binder, in hydras.Epsilon0.T1]
    +b:628 [binder, in hydras.Epsilon0.T1]
    +b:628 [binder, in gaia_hydras.nfwfgaia]
    +b:63 [binder, in hydras.Prelude.DecPreOrder]
    +b:63 [binder, in gaia_hydras.T1Bridge]
    +b:63 [binder, in hydras.Ackermann.cPair]
    +b:63 [binder, in hydras.Schutte.Schutte_basics]
    +b:630 [binder, in gaia_hydras.nfwfgaia]
    +b:634 [binder, in hydras.Gamma0.Gamma0]
    +b:638 [binder, in hydras.Gamma0.Gamma0]
    +b:64 [binder, in hydras.Prelude.Comparable]
    +b:64 [binder, in hydras.Ackermann.cPair]
    +b:64 [binder, in hydras.Hydra.BigBattle]
    +b:64 [binder, in hydras.Schutte.PartialFun]
    +b:64 [binder, in hydras.OrdinalNotations.ON_Generic]
    +b:65 [binder, in gaia_hydras.GPaths]
    +b:65 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +b:65 [binder, in hydras.Ackermann.code]
    +b:65 [binder, in hydras.Schutte.Schutte_basics]
    +B:65 [binder, in hydras.Schutte.Ordering_Functions]
    +B:654 [binder, in hydras.Ackermann.checkPrf]
    +b:656 [binder, in hydras.Ackermann.checkPrf]
    +b:658 [binder, in hydras.Ackermann.checkPrf]
    +b:66 [binder, in hydras.Epsilon0.T1]
    +B:66 [binder, in Goedel.PRrepresentable]
    +b:66 [binder, in hydras.Prelude.Comparable]
    +b:66 [binder, in hydras.Ackermann.cPair]
    +B:66 [binder, in hydras.Schutte.PartialFun]
    +b:660 [binder, in hydras.Ackermann.checkPrf]
    +b:662 [binder, in hydras.Ackermann.checkPrf]
    +b:664 [binder, in hydras.Ackermann.checkPrf]
    +b:666 [binder, in hydras.Ackermann.checkPrf]
    +b:668 [binder, in hydras.Ackermann.checkPrf]
    +b:67 [binder, in hydras.Ackermann.code]
    +b:67 [binder, in hydras.Schutte.Schutte_basics]
    +B:67 [binder, in hydras.Hydra.Hydra_Lemmas]
    +B:67 [binder, in hydras.Ackermann.expressible]
    +b:670 [binder, in hydras.Ackermann.checkPrf]
    +b:670 [binder, in hydras.Gamma0.Gamma0]
    +b:672 [binder, in hydras.Ackermann.checkPrf]
    +b:672 [binder, in hydras.Gamma0.Gamma0]
    +b:672 [binder, in gaia_hydras.nfwfgaia]
    +b:674 [binder, in hydras.Ackermann.checkPrf]
    +b:676 [binder, in hydras.Ackermann.checkPrf]
    +b:676 [binder, in hydras.Ackermann.primRec]
    +b:678 [binder, in hydras.Ackermann.checkPrf]
    +b:68 [binder, in hydras.Prelude.Comparable]
    +b:68 [binder, in hydras.Prelude.DecPreOrder]
    +b:68 [binder, in gaia_hydras.T1Bridge]
    +b:68 [binder, in hydras.Ackermann.cPair]
    +b:68 [binder, in hydras.Hydra.BigBattle]
    +B:68 [binder, in hydras.Schutte.Ordering_Functions]
    +b:680 [binder, in hydras.Ackermann.primRec]
    +b:683 [binder, in hydras.Ackermann.primRec]
    +b:685 [binder, in hydras.Ackermann.primRec]
    +b:687 [binder, in hydras.Ackermann.primRec]
    +b:689 [binder, in hydras.Ackermann.primRec]
    +b:69 [binder, in gaia_hydras.GPaths]
    +b:69 [binder, in hydras.Ackermann.code]
    +b:69 [binder, in hydras.Hydra.BigBattle]
    +b:690 [binder, in hydras.Gamma0.Gamma0]
    +b:692 [binder, in hydras.Ackermann.primRec]
    +b:695 [binder, in hydras.Ackermann.primRec]
    +b:696 [binder, in gaia_hydras.nfwfgaia]
    +b:698 [binder, in hydras.Ackermann.primRec]
    +b:698 [binder, in gaia_hydras.nfwfgaia]
    +b:7 [binder, in hydras.OrdinalNotations.ON_O]
    +b:7 [binder, in hydras.solutions_exercises.MorePRExamples]
    +B:7 [binder, in hydras.Schutte.Ordering_Functions]
    +B:70 [binder, in Goedel.PRrepresentable]
    +b:70 [binder, in hydras.Prelude.Comparable]
    +b:70 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +b:70 [binder, in hydras.Ackermann.cPair]
    +b:70 [binder, in hydras.Schutte.Schutte_basics]
    +b:70 [binder, in hydras.Ackermann.folLogic3]
    +b:70 [binder, in hydras.rpo.dickson]
    +b:70 [binder, in hydras.Schutte.Ordering_Functions]
    +b:703 [binder, in hydras.Ackermann.primRec]
    +b:708 [binder, in hydras.Epsilon0.T1]
    +b:709 [binder, in hydras.Ackermann.primRec]
    +b:71 [binder, in hydras.Ackermann.code]
    +b:712 [binder, in hydras.Ackermann.primRec]
    +b:716 [binder, in hydras.Ackermann.primRec]
    +b:72 [binder, in gaia_hydras.GPaths]
    +b:72 [binder, in hydras.Ackermann.cPair]
    +b:72 [binder, in hydras.Ackermann.folLogic3]
    +B:72 [binder, in hydras.Schutte.Ordering_Functions]
    +b:72 [binder, in hydras.Prelude.MoreVectors]
    +b:720 [binder, in hydras.Ackermann.primRec]
    +b:721 [binder, in gaia_hydras.nfwfgaia]
    +b:724 [binder, in hydras.Epsilon0.T1]
    +b:728 [binder, in gaia_hydras.nfwfgaia]
    +b:73 [binder, in hydras.Epsilon0.T1]
    +b:73 [binder, in hydras.Prelude.Comparable]
    +b:73 [binder, in hydras.Ackermann.code]
    +B:73 [binder, in hydras.Schutte.PartialFun]
    +b:73 [binder, in hydras.Schutte.Schutte_basics]
    +B:73 [binder, in hydras.Schutte.Ordering_Functions]
    +b:73 [binder, in hydras.rpo.rpo]
    +b:730 [binder, in gaia_hydras.nfwfgaia]
    +b:731 [binder, in hydras.Epsilon0.T1]
    +b:732 [binder, in gaia_hydras.nfwfgaia]
    +b:734 [binder, in gaia_hydras.nfwfgaia]
    +b:736 [binder, in hydras.Epsilon0.T1]
    +b:738 [binder, in gaia_hydras.nfwfgaia]
    +b:74 [binder, in hydras.Epsilon0.Hessenberg]
    +b:74 [binder, in hydras.Prelude.DecPreOrder]
    +b:74 [binder, in gaia_hydras.T1Bridge]
    +b:74 [binder, in hydras.Ackermann.cPair]
    +b:74 [binder, in hydras.Schutte.Ordering_Functions]
    +B:74 [binder, in hydras.Prelude.MoreVectors]
    +b:740 [binder, in gaia_hydras.nfwfgaia]
    +b:75 [binder, in hydras.Prelude.Comparable]
    +b:75 [binder, in hydras.Ackermann.code]
    +b:757 [binder, in hydras.Ackermann.checkPrf]
    +b:76 [binder, in hydras.Gamma0.T2]
    +b:76 [binder, in gaia_hydras.GPaths]
    +b:76 [binder, in hydras.Ackermann.cPair]
    +b:76 [binder, in hydras.Schutte.Schutte_basics]
    +b:76 [binder, in hydras.OrdinalNotations.ON_Generic]
    +b:761 [binder, in hydras.Ackermann.checkPrf]
    +b:761 [binder, in gaia_hydras.nfwfgaia]
    +b:765 [binder, in gaia_hydras.nfwfgaia]
    +b:77 [binder, in hydras.Prelude.Comparable]
    +b:777 [binder, in gaia_hydras.nfwfgaia]
    +b:78 [binder, in hydras.Epsilon0.Hessenberg]
    +b:78 [binder, in hydras.Ackermann.cPair]
    +b:78 [binder, in hydras.Schutte.Ordering_Functions]
    +b:781 [binder, in gaia_hydras.nfwfgaia]
    +b:785 [binder, in gaia_hydras.nfwfgaia]
    +b:787 [binder, in hydras.Ackermann.checkPrf]
    +b:788 [binder, in hydras.Ackermann.primRec]
    +b:788 [binder, in gaia_hydras.nfwfgaia]
    +b:789 [binder, in hydras.Ackermann.checkPrf]
    +b:79 [binder, in hydras.Gamma0.T2]
    +b:79 [binder, in hydras.Prelude.Comparable]
    +b:79 [binder, in hydras.OrdinalNotations.ON_Generic]
    +b:791 [binder, in hydras.Ackermann.primRec]
    +b:793 [binder, in gaia_hydras.nfwfgaia]
    +b:794 [binder, in hydras.Ackermann.primRec]
    +b:798 [binder, in hydras.Ackermann.primRec]
    +b:799 [binder, in hydras.Ackermann.primRec]
    +b:8 [binder, in hydras.Gamma0.T2]
    +b:8 [binder, in hydras.Ackermann.folLogic2]
    +b:8 [binder, in gaia_hydras.T1Bridge]
    +b:8 [binder, in hydras.Ackermann.NNtheory]
    +b:8 [binder, in gaia_hydras.T2Bridge]
    +b:8 [binder, in hydras.MoreAck.PrimRecExamples]
    +b:80 [binder, in hydras.Epsilon0.T1]
    +b:80 [binder, in hydras.Prelude.DecPreOrder]
    +b:80 [binder, in hydras.Ackermann.codeSubFormula]
    +b:80 [binder, in gaia_hydras.T1Bridge]
    +b:80 [binder, in hydras.Schutte.Schutte_basics]
    +b:80 [binder, in hydras.Ackermann.folLogic3]
    +b:80 [binder, in hydras.rpo.list_permut]
    +b:800 [binder, in hydras.Ackermann.primRec]
    +b:804 [binder, in hydras.Ackermann.primRec]
    +b:805 [binder, in hydras.Ackermann.primRec]
    +b:806 [binder, in hydras.Ackermann.primRec]
    +b:809 [binder, in hydras.Ackermann.primRec]
    +b:81 [binder, in hydras.Prelude.Comparable]
    +b:81 [binder, in gaia_hydras.GPaths]
    +b:82 [binder, in hydras.Ackermann.cPair]
    +b:82 [binder, in hydras.Schutte.Schutte_basics]
    +b:82 [binder, in hydras.Ackermann.folLogic3]
    +B:82 [binder, in hydras.Schutte.Ordering_Functions]
    +b:83 [binder, in hydras.Prelude.Comparable]
    +b:83 [binder, in gaia_hydras.T1Bridge]
    +B:83 [binder, in hydras.Schutte.PartialFun]
    +b:838 [binder, in hydras.Ackermann.codeSubFormula]
    +b:84 [binder, in hydras.Ackermann.cPair]
    +b:84 [binder, in hydras.Schutte.Schutte_basics]
    +b:841 [binder, in hydras.Ackermann.codeSubFormula]
    +b:843 [binder, in gaia_hydras.nfwfgaia]
    +b:849 [binder, in hydras.Ackermann.codeSubFormula]
    +b:85 [binder, in hydras.Epsilon0.T1]
    +b:85 [binder, in hydras.Prelude.Comparable]
    +b:85 [binder, in gaia_hydras.T1Bridge]
    +B:85 [binder, in hydras.OrdinalNotations.ON_Generic]
    +b:850 [binder, in hydras.Ackermann.checkPrf]
    +b:852 [binder, in hydras.Ackermann.checkPrf]
    +b:853 [binder, in hydras.Ackermann.codeSubFormula]
    +b:853 [binder, in gaia_hydras.nfwfgaia]
    +b:854 [binder, in hydras.Ackermann.checkPrf]
    +b:855 [binder, in hydras.Ackermann.codeSubFormula]
    +b:856 [binder, in hydras.Ackermann.checkPrf]
    +b:857 [binder, in hydras.Ackermann.codeSubFormula]
    +b:86 [binder, in hydras.Ackermann.folLogic3]
    +b:861 [binder, in gaia_hydras.nfwfgaia]
    +b:866 [binder, in gaia_hydras.nfwfgaia]
    +b:869 [binder, in hydras.Ackermann.codeSubFormula]
    +b:87 [binder, in hydras.Prelude.Comparable]
    +b:87 [binder, in hydras.Epsilon0.Hessenberg]
    +b:87 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +b:87 [binder, in gaia_hydras.T1Bridge]
    +b:87 [binder, in gaia_hydras.nfwfgaia]
    +b:872 [binder, in hydras.Ackermann.codeSubFormula]
    +b:886 [binder, in gaia_hydras.nfwfgaia]
    +b:89 [binder, in hydras.Epsilon0.T1]
    +b:89 [binder, in hydras.Epsilon0.Hessenberg]
    +B:89 [binder, in hydras.Schutte.PartialFun]
    +b:89 [binder, in hydras.Schutte.Schutte_basics]
    +b:89 [binder, in hydras.MoreAck.PrimRecExamples]
    +b:893 [binder, in hydras.Ackermann.codeSubFormula]
    +b:895 [binder, in gaia_hydras.nfwfgaia]
    +b:896 [binder, in hydras.Ackermann.codeSubFormula]
    +b:899 [binder, in gaia_hydras.nfwfgaia]
    +B:9 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +b:9 [binder, in hydras.Ackermann.extEqualNat]
    +b:9 [binder, in hydras.rpo.dickson]
    +b:9 [binder, in hydras.MoreAck.FolExamples]
    +b:90 [binder, in hydras.Prelude.Comparable]
    +b:903 [binder, in gaia_hydras.nfwfgaia]
    +b:909 [binder, in hydras.Ackermann.codeSubFormula]
    +b:91 [binder, in hydras.Gamma0.T2]
    +b:91 [binder, in hydras.Epsilon0.Hessenberg]
    +b:91 [binder, in hydras.Schutte.Schutte_basics]
    +b:911 [binder, in gaia_hydras.nfwfgaia]
    +b:912 [binder, in hydras.Ackermann.codeSubFormula]
    +b:92 [binder, in hydras.Prelude.Comparable]
    +b:92 [binder, in hydras.Prelude.DecPreOrder]
    +b:92 [binder, in hydras.OrdinalNotations.ON_Generic]
    +b:924 [binder, in gaia_hydras.nfwfgaia]
    +b:926 [binder, in gaia_hydras.nfwfgaia]
    +b:928 [binder, in gaia_hydras.nfwfgaia]
    +B:93 [binder, in Goedel.PRrepresentable]
    +b:93 [binder, in hydras.Epsilon0.Hessenberg]
    +b:93 [binder, in hydras.Schutte.Schutte_basics]
    +b:930 [binder, in gaia_hydras.nfwfgaia]
    +b:932 [binder, in gaia_hydras.nfwfgaia]
    +b:936 [binder, in hydras.Ackermann.codeSubFormula]
    +b:939 [binder, in hydras.Ackermann.codeSubFormula]
    +b:939 [binder, in gaia_hydras.nfwfgaia]
    +b:94 [binder, in hydras.Prelude.Comparable]
    +b:94 [binder, in hydras.Prelude.Merge_Sort]
    +b:94 [binder, in gaia_hydras.T1Bridge]
    +b:945 [binder, in gaia_hydras.nfwfgaia]
    +b:95 [binder, in hydras.Epsilon0.Hessenberg]
    +b:95 [binder, in hydras.Ackermann.folLogic3]
    +b:954 [binder, in gaia_hydras.nfwfgaia]
    +b:957 [binder, in gaia_hydras.nfwfgaia]
    +b:959 [binder, in gaia_hydras.nfwfgaia]
    +b:96 [binder, in gaia_hydras.T1Bridge]
    +b:961 [binder, in gaia_hydras.nfwfgaia]
    +b:963 [binder, in gaia_hydras.nfwfgaia]
    +b:965 [binder, in gaia_hydras.nfwfgaia]
    +b:97 [binder, in hydras.Prelude.DecPreOrder]
    +B:97 [binder, in hydras.OrdinalNotations.ON_Generic]
    +b:98 [binder, in hydras.Prelude.Comparable]
    +b:98 [binder, in gaia_hydras.T1Bridge]
    +b:989 [binder, in gaia_hydras.nfwfgaia]
    +b:99 [binder, in hydras.Epsilon0.Hessenberg]
    +b:993 [binder, in gaia_hydras.nfwfgaia]
    +b:999 [binder, in gaia_hydras.nfwfgaia]
    +

    C

    +callIsPR [instance, in hydras.Ackermann.cPair]
    +call_lt_wf [lemma, in hydras.Epsilon0.F_alpha]
    +call_lt [definition, in hydras.Epsilon0.F_alpha]
    +canon [definition, in hydras.OrdinalNotations.ON_Omega2]
    +canon [definition, in gaia_hydras.GCanon]
    +Canon [definition, in hydras.Epsilon0.Canon]
    +canon [definition, in hydras.Epsilon0.Canon]
    +Canon [library]
    +canonS [abbreviation, in gaia_hydras.GCanon]
    +CanonSSn [lemma, in hydras.Epsilon0.Canon]
    +canonSSn [abbreviation, in hydras.Epsilon0.Canon]
    +canonS_rel_rounds [lemma, in hydras.Hydra.O2H]
    +canonS_iota [lemma, in hydras.Hydra.O2H]
    +canonS_iota_i [lemma, in hydras.Hydra.O2H]
    +canonS_iota_final [lemma, in hydras.Hydra.O2H]
    +canonS_iota_6 [lemma, in hydras.Hydra.O2H]
    +canonS_iota_5 [lemma, in hydras.Hydra.O2H]
    +canonS_iota_4 [lemma, in hydras.Hydra.O2H]
    +canonS_ocons_succE [lemma, in gaia_hydras.GCanon]
    +canonS_zero_inv [lemma, in gaia_hydras.GCanon]
    +canonS_phi0_succE [lemma, in gaia_hydras.GCanon]
    +canonS_cons_not_zero [lemma, in gaia_hydras.GCanon]
    +canonS_lt [lemma, in gaia_hydras.GCanon]
    +canonS_LE [lemma, in gaia_hydras.GCanon]
    +CanonS_phi0_Succ [lemma, in hydras.Epsilon0.Canon]
    +CanonS_lt [lemma, in hydras.Epsilon0.Canon]
    +CanonS_phi0_lim [lemma, in hydras.Epsilon0.Canon]
    +canonS_LE [lemma, in hydras.Epsilon0.Canon]
    +canonS_limit_mono [lemma, in hydras.Epsilon0.Canon]
    +canonS_limit_lub [lemma, in hydras.Epsilon0.Canon]
    +canonS_limit_strong [lemma, in hydras.Epsilon0.Canon]
    +canonS_cons_not_zero [lemma, in hydras.Epsilon0.Canon]
    +canonS_LT [lemma, in hydras.Epsilon0.Canon]
    +canonS_zero_inv [lemma, in hydras.Epsilon0.Canon]
    +canonS_cons_succ_eqn2 [lemma, in hydras.Epsilon0.Canon]
    +canonS_phi0_succ_eqn [lemma, in hydras.Epsilon0.Canon]
    +canonS_succ [lemma, in hydras.Epsilon0.Canon]
    +canonS_lim2 [lemma, in hydras.Epsilon0.Canon]
    +canonS_lim1 [lemma, in hydras.Epsilon0.Canon]
    +CanonS_Phi0_Succ_eqn [lemma, in hydras.Epsilon0.Paths]
    +CanonS_plus_1 [lemma, in hydras.Epsilon0.Paths]
    +Canon_plus [definition, in gaia_hydras.GF_alpha]
    +Canon_plus [definition, in gaia_hydras.GPaths]
    +canon_limit_of [lemma, in gaia_hydras.GCanon]
    +canon_limit_mono [lemma, in gaia_hydras.GCanon]
    +canon_limit_strong [lemma, in gaia_hydras.GCanon]
    +canon_lim3 [lemma, in gaia_hydras.GCanon]
    +canon_lim2 [lemma, in gaia_hydras.GCanon]
    +canon_tail [lemma, in gaia_hydras.GCanon]
    +canon_lim1 [lemma, in gaia_hydras.GCanon]
    +canon_SSn_zero [lemma, in gaia_hydras.GCanon]
    +canon_lt [lemma, in gaia_hydras.GCanon]
    +canon_succ [lemma, in gaia_hydras.GCanon]
    +canon_not_null [lemma, in hydras.Epsilon0.Large_Sets]
    +Canon_of_limit_not_null [lemma, in hydras.Epsilon0.Canon]
    +Canon_lt [lemma, in hydras.Epsilon0.Canon]
    +Canon_Omega [lemma, in hydras.Epsilon0.Canon]
    +Canon_Succ [lemma, in hydras.Epsilon0.Canon]
    +canon_limit_mono [lemma, in hydras.Epsilon0.Canon]
    +canon_limit_strong [lemma, in hydras.Epsilon0.Canon]
    +canon_lt [lemma, in hydras.Epsilon0.Canon]
    +canon_LT [lemma, in hydras.Epsilon0.Canon]
    +canon_SSn_zero [lemma, in hydras.Epsilon0.Canon]
    +canon_succ [lemma, in hydras.Epsilon0.Canon]
    +canon_lim3 [lemma, in hydras.Epsilon0.Canon]
    +canon_lim2 [lemma, in hydras.Epsilon0.Canon]
    +canon_lim1 [lemma, in hydras.Epsilon0.Canon]
    +canon_tail [lemma, in hydras.Epsilon0.Canon]
    +canon_zero [lemma, in hydras.Epsilon0.Canon]
    +Canon_examples [section, in hydras.Epsilon0.Canon]
    +Canon_plus_first_step_lim [lemma, in hydras.Epsilon0.Paths]
    +Canon_plus_first_step [lemma, in hydras.Epsilon0.Paths]
    +Canon_mono1 [lemma, in hydras.Epsilon0.Paths]
    +Canon_plus_inv [lemma, in hydras.Epsilon0.Paths]
    +Canon_plus [definition, in hydras.Epsilon0.Paths]
    +canon0_lt [lemma, in gaia_hydras.GCanon]
    +canon0_phi0_succE [lemma, in gaia_hydras.GCanon]
    +canon0_LT [lemma, in hydras.Epsilon0.Canon]
    +canon0_cons_succ_eqn2 [lemma, in hydras.Epsilon0.Canon]
    +canon0_phi0_succ_eqn [lemma, in hydras.Epsilon0.Canon]
    +canon0_succ [lemma, in hydras.Epsilon0.Canon]
    +canon0_lim2 [lemma, in hydras.Epsilon0.Canon]
    +CantorOrdinal [module, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.addC_CE [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.AddLocalNotation [section, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.add_simpl3 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.add_normal [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.add_le4 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.add_le3 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.add_inj [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.add_le2 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.add_le1 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.add_simpl2 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.add_simpl1 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.add_to_cons [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.add_fin_omega [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.add_int [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.add1Nfin [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.ap_pr4 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.ap_pr3 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.ap_pr2CE [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.ap_pr2 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.ap_pr1 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.ap_pr0 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.cantorCE2 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.cantorCE3 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.cantor_CE1 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.cantor_unique [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.cantor_exists [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.CompareT1Eq [constructor, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.CompareT1Gt [constructor, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.CompareT1Lt [constructor, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.compare_T1 [inductive, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.cons [constructor, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.div_by_omega_pr [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.expF_eq1 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.expF_eq0 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.expF_1n [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.expF_mul [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.expF_add [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.expO_add [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.expO_eq1 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.expO_eq0 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.expO_1n [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.expO_n0 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.expO_mul1 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.expx_nat [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.expx_pnat [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.expx0 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.expx1 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.expx1CE [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.exp_prod [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.exp_sum [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.exp_FO3 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.exp_FO2 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.exp_FO1 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.exp_FO [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.exp_consCE1 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.exp_int [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.exp_eq1 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.exp_eq0 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.exp_O [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.exp_F [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.exp0nz [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.exp00 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.exp1x [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.exp2omega [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.ex_middle_pick [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.ex_middle [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.fincP [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.fooCE [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.head_lt_cons [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.le_succ_succE [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.le_succ_succ [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.limit_prop [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.limit_fct [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.limit_lub [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.limit_unique [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.limit_of [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.limit_CE3 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.limit_CE2 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.limit_CE1 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.limit_unique2 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.limit_unique1 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.limit_v2 [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.limit_v1 [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.limit_pr [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.limit_pr1 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.limit1 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.limit2 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.limit3 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.LT [abbreviation, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.lt_succ_le_4 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.lt_succ_le_3 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.lt_succ_le_2 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.lt_succ_le_1 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.lt_succ_succE [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.lt_succ2CE [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.lt_succ_succ [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.lt_not_wf [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.minus_le [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.minus_lt [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.min_exists [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.mulA [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.mulnf0 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.mul_omega_pr3 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.mul_omega2_pr1 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.mul_omega_pr1 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.mul_sum_omega [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.mul_omega_limit [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.mul_int_limit [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.mul_fin_omega [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.mul_succ [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.mul_distr [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.mul_phi0 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.mul_int [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.mul_na [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_exp [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_expF [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_expO [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_rev_prod [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_rev_sum [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_rev_unique [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_rev [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_revCE [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_div_by_omega [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_mul [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_toNF [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_omega_plus_n [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_sub [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_add [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_pred [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_succ [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_log [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_phi0 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_finite [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_omega [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_split [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_Wf' [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_Wf [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.normal [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.normal_compose [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.normal_limit [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.normal_id [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.omega_plus_n [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.omega_tower_unbounded [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.omega_tower_nf [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.omega_tower [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.omega_minus_one [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.one [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.phi0 [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.phi0_log [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.phi0_lt1 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.phi0_le [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.phi0_lt [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.phi1 [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.phi2 [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.phi3 [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.plus_int_Ox [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.pow_mon3 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.pow_mon2 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.pow_mon1 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.pow_omega [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.pred_succ_CE [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.pred_succ [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.pred_lt [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.pred_le [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.split_add [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.split_limit1 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.split_le [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.split_pred [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.split_succ [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.split_finite [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.split_is_succ [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.split_limit [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.sub_pr1rCE [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.sub_nzCE [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.sub_nz [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.sub_pr1r [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.sub_pr1CE [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.sub_pr1 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.sub_pr [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.sub_le1 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.sub_int [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.sub_1bCE [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.sub_1aCE [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.sub1a [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.sub1b [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.sub1Nfin [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.succ_is_add_one [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.succ_injCE [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.succ_inj [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.succ_p1 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.succ_predCE [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.succ_pred [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.succ_lt [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.sup [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.sup_Oalpha_limit [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.sup_Oalpha_succ [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.sup_Oalpha_zero [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.sup_unique [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.tail_lt_cons [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.Tf [abbreviation, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.toNF [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.toNF_pred [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.toNF_succ [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.toNF_ex2 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.toNF_ex1 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.toNF_mon [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.toNF_nf [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.toNF_nz [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1 [inductive, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1add [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1addA [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1addn0 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1addS [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1add_eq0 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1add0n [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1ap [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1ap_phi0 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1bad [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1div_by_omega [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1eq [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1eqE [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1eqP [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1eq_mul2l [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1eq_add2l [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1eq_le [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1exp [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1finite [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1finite_succ [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1finite1 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1finite2 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1finite2CE [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1F_inj [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1GeqNotGtn [constructor, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1GeqNotLtn [constructor, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1ge1 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1GtnNotLeq [constructor, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1is_succ [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1le [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1leNgt [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1lenn [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1len0 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1leP [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1leq_xor_gtn [inductive, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1le_pmull [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1le_mul [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1le_mulCE [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1le_pmulrl [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1le_pmulrCE [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1le_pmulr [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1le_mul2r [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1le_mul2l [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1le_add2r [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1le_add2l [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1le_cons_le [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1le_trans [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1le_lt_trans [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1le_total [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1le_consE [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1le_eqVlt [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1le0n [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1limit [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1log [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1log_exp2 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1log_exp1 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1log_exp0 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1log_prod [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1log_phi0 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1lt [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1ltgtP [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1ltNge [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1ltnn [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1LtnNotGeq [constructor, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1ltn_xor_geq [inductive, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1ltn0 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1ltP [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1ltW [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1lt_mul2r [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1lt_mul2l [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1lt_add2r [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1lt_add2l [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1lt_cons_le [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1lt_le_trans [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1lt_trans [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1lt_anti [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1lt_trichotomy [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1lt_neAle [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1lt_ne' [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1lt_ne [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1lt0n [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1lt1 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1mul [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1muln0 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1muln1 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1muln1_CE [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1mul_omega [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1mul_eq1 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1mul_eq0 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1mul0n [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1mul1n [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1mul1nCE [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1nat [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1nat_inc [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1nf [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1nfCE [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1nf_rect [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1nf_finite [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1nf_finite1 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1nf_consb [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1nf_consa [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1nf_cons_cons [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1nf_cons0 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1omega [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1phi0_zero' [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1phi0_zero [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1pred [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1split [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1sub [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1subnn [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1subn0 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1sub0 [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1succ [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1succ_nat [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1transfinite_induction_Q [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1transfinite_induction [lemma, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1_eqType [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1_eqMixin [definition, in gaia_hydras.nfwfgaia]
    +CantorOrdinal.zero [constructor, in gaia_hydras.nfwfgaia]
    +_ ^ _ (cantor_scope) [notation, in gaia_hydras.nfwfgaia]
    +_ * _ (cantor_scope) [notation, in gaia_hydras.nfwfgaia]
    +_ - _ (cantor_scope) [notation, in gaia_hydras.nfwfgaia]
    +_ + _ (cantor_scope) [notation, in gaia_hydras.nfwfgaia]
    +_ > _ (cantor_scope) [notation, in gaia_hydras.nfwfgaia]
    +_ >= _ (cantor_scope) [notation, in gaia_hydras.nfwfgaia]
    +_ <= _ (cantor_scope) [notation, in gaia_hydras.nfwfgaia]
    +_ < _ (cantor_scope) [notation, in gaia_hydras.nfwfgaia]
    +\F _ (cantor_scope) [notation, in gaia_hydras.nfwfgaia]
    +Cantor_normal_form [lemma, in hydras.Epsilon0.T1]
    +cases_for_mult [lemma, in hydras.Epsilon0.T1]
    +case_Eq [lemma, in hydras.Schutte.Correctness_E0]
    +case_gt [lemma, in hydras.Schutte.Correctness_E0]
    +case_lt [lemma, in hydras.Schutte.Correctness_E0]
    +cf:11 [binder, in hydras.Ackermann.code]
    +cf:14 [binder, in hydras.Ackermann.code]
    +cf:17 [binder, in hydras.Ackermann.code]
    +cf:2 [binder, in hydras.Ackermann.codeFreeVar]
    +cf:2 [binder, in hydras.Ackermann.codeSubTerm]
    +cf:2 [binder, in hydras.Ackermann.checkPrf]
    +cf:2 [binder, in hydras.Ackermann.codeSubFormula]
    +cf:2 [binder, in hydras.Ackermann.wellFormed]
    +cf:2 [binder, in Goedel.codeSysPrf]
    +cf:2 [binder, in hydras.Ackermann.codePA]
    +chain [definition, in additions.Addition_Chains]
    +chain_gen_OK [lemma, in additions.AM]
    +chain_apply [definition, in additions.AM]
    +chain_trace [definition, in additions.Trace_exercise]
    +chain_gen_OK [lemma, in additions.Euclidean_Chains]
    +chain_type [definition, in additions.Euclidean_Chains]
    +chain_generator [definition, in additions.Addition_Chains]
    +chain_correct [definition, in additions.Addition_Chains]
    +chain_correct_nat [definition, in additions.Addition_Chains]
    +chain_apply [definition, in additions.Addition_Chains]
    +chain_execute [definition, in additions.Addition_Chains]
    +chain_length [definition, in additions.Addition_Chains]
    +charFunction [definition, in hydras.Ackermann.extEqualNat]
    +checkPrf [definition, in hydras.Ackermann.checkPrf]
    +checkPrf [library]
    +checkPrfAXM [definition, in hydras.Ackermann.checkPrf]
    +checkPrfAXMIsPR [instance, in hydras.Ackermann.checkPrf]
    +checkPrfCorrect1 [lemma, in hydras.Ackermann.checkPrf]
    +checkPrfCorrect2 [lemma, in hydras.Ackermann.checkPrf]
    +checkPrfCP [definition, in hydras.Ackermann.checkPrf]
    +checkPrfCPIsPR [instance, in hydras.Ackermann.checkPrf]
    +checkPrfEQnIsPR [lemma, in hydras.Ackermann.checkPrf]
    +checkPrfEQ1 [definition, in hydras.Ackermann.checkPrf]
    +checkPrfEQ1IsPR [instance, in hydras.Ackermann.checkPrf]
    +checkPrfEQ2 [definition, in hydras.Ackermann.checkPrf]
    +checkPrfEQ2IsPR [instance, in hydras.Ackermann.checkPrf]
    +checkPrfEQ3 [definition, in hydras.Ackermann.checkPrf]
    +checkPrfEQ3IsPR [instance, in hydras.Ackermann.checkPrf]
    +checkPrfEQ4 [definition, in hydras.Ackermann.checkPrf]
    +checkPrfEQ4IsPR [instance, in hydras.Ackermann.checkPrf]
    +checkPrfEQ5 [definition, in hydras.Ackermann.checkPrf]
    +checkPrfEQ5IsPR [instance, in hydras.Ackermann.checkPrf]
    +checkPrfFA1 [definition, in hydras.Ackermann.checkPrf]
    +checkPrfFA1IsPR [instance, in hydras.Ackermann.checkPrf]
    +checkPrfFA2 [definition, in hydras.Ackermann.checkPrf]
    +checkPrfFA2IsPR [instance, in hydras.Ackermann.checkPrf]
    +checkPrfFA3 [definition, in hydras.Ackermann.checkPrf]
    +checkPrfFA3IsPR [instance, in hydras.Ackermann.checkPrf]
    +checkPrfGEN [definition, in hydras.Ackermann.checkPrf]
    +checkPrfGENIsPR [instance, in hydras.Ackermann.checkPrf]
    +checkPrfHelp [definition, in hydras.Ackermann.checkPrf]
    +checkPrfHelpIsPR [instance, in hydras.Ackermann.checkPrf]
    +checkPrfIMP1 [definition, in hydras.Ackermann.checkPrf]
    +checkPrfIMP1IsPR [instance, in hydras.Ackermann.checkPrf]
    +checkPrfIMP2 [definition, in hydras.Ackermann.checkPrf]
    +checkPrfIMP2IsPR [instance, in hydras.Ackermann.checkPrf]
    +checkPrfIsPR [instance, in hydras.Ackermann.checkPrf]
    +checkPrfMP [definition, in hydras.Ackermann.checkPrf]
    +checkPrfMPIsPR [instance, in hydras.Ackermann.checkPrf]
    +checkSubFormulaTrace [definition, in hydras.Ackermann.codeSubFormula]
    +checkTraceCorrect [lemma, in hydras.Ackermann.codeSubFormula]
    +checkTraceIsPR [instance, in hydras.Ackermann.codeSubFormula]
    +Check_Proof.Prf [variable, in hydras.Ackermann.checkPrf]
    +Check_Proof.wellFormedFormula [variable, in hydras.Ackermann.checkPrf]
    +Check_Proof.wellFormedTerm [variable, in hydras.Ackermann.checkPrf]
    +Check_Proof.Formula [variable, in hydras.Ackermann.checkPrf]
    +Check_Proof.Terms [variable, in hydras.Ackermann.checkPrf]
    +Check_Proof.Term [variable, in hydras.Ackermann.checkPrf]
    +Check_Proof.codeRInj [variable, in hydras.Ackermann.checkPrf]
    +Check_Proof.codeFInj [variable, in hydras.Ackermann.checkPrf]
    +Check_Proof.codeArityRIsCorrect2 [variable, in hydras.Ackermann.checkPrf]
    +Check_Proof.codeArityRIsCorrect1 [variable, in hydras.Ackermann.checkPrf]
    +Check_Proof.codeArityFIsCorrect2 [variable, in hydras.Ackermann.checkPrf]
    +Check_Proof.codeArityFIsCorrect1 [variable, in hydras.Ackermann.checkPrf]
    +Check_Proof.codeArityR [variable, in hydras.Ackermann.checkPrf]
    +Check_Proof.codeArityF [variable, in hydras.Ackermann.checkPrf]
    +Check_Proof.L [variable, in hydras.Ackermann.checkPrf]
    +Check_Proof [section, in hydras.Ackermann.checkPrf]
    +ch:345 [binder, in additions.Euclidean_Chains]
    +ch:346 [binder, in additions.Euclidean_Chains]
    +ch:349 [binder, in additions.Euclidean_Chains]
    +ch:350 [binder, in additions.Euclidean_Chains]
    +classic_battle [definition, in hydras.Hydra.Hydra_Lemmas]
    +classification [lemma, in hydras.Schutte.Schutte_basics]
    +clog2 [definition, in additions.Addition_Chains]
    +close [definition, in hydras.Ackermann.folProp]
    +close [section, in hydras.Ackermann.codePA]
    +closed [definition, in hydras.Ackermann.folProp]
    +Closed [definition, in hydras.Schutte.Schutte_basics]
    +closedNatToTerm [lemma, in hydras.Ackermann.LNN]
    +closedNatToTerm [lemma, in hydras.Ackermann.LNT]
    +closedNN [lemma, in hydras.Ackermann.NN]
    +closedNN1 [lemma, in hydras.Ackermann.NN]
    +closedPA [lemma, in hydras.Ackermann.PA]
    +closedPA1 [lemma, in hydras.Ackermann.PA]
    +ClosedSystem [definition, in hydras.Ackermann.folProp]
    +closedT [lemma, in hydras.Ackermann.expressible]
    +Closed_Cr [lemma, in hydras.Schutte.Critical]
    +closeFrom [definition, in hydras.Ackermann.subAll]
    +closeList [definition, in hydras.Ackermann.folProp]
    +close.codeFormula [variable, in hydras.Ackermann.codePA]
    +close.Formula [variable, in hydras.Ackermann.codePA]
    +close.L [variable, in hydras.Ackermann.codePA]
    +closure [library]
    +cl:19 [binder, in hydras.Ackermann.code]
    +cL:4 [binder, in hydras.Ackermann.codeFreeVar]
    +cL:4 [binder, in hydras.Ackermann.codeSubTerm]
    +cL:4 [binder, in hydras.Ackermann.checkPrf]
    +cL:4 [binder, in hydras.Ackermann.codeSubFormula]
    +cL:4 [binder, in hydras.Ackermann.wellFormed]
    +cL:4 [binder, in Goedel.codeSysPrf]
    +cL:4 [binder, in hydras.Ackermann.codePA]
    +cmpA:3 [binder, in hydras.OrdinalNotations.ON_mult]
    +cmpA:3 [binder, in hydras.OrdinalNotations.ON_plus]
    +cmpA:4 [binder, in hydras.OrdinalNotations.ON_O]
    +cmpB:7 [binder, in hydras.OrdinalNotations.ON_mult]
    +cmpB:7 [binder, in hydras.OrdinalNotations.ON_plus]
    +cmp:13 [binder, in hydras.OrdinalNotations.ON_Generic]
    +cmp:14 [binder, in hydras.Prelude.Comparable]
    +cmp:3 [binder, in hydras.solutions_exercises.lt_succ_le]
    +cmp:3 [binder, in hydras.OrdinalNotations.ON_Generic]
    +cmp:4 [binder, in hydras.solutions_exercises.predSuccUnicity]
    +cmp:6 [binder, in hydras.Prelude.Comparable]
    +cmp:9 [binder, in hydras.OrdinalNotations.ON_Generic]
    +cm:106 [binder, in additions.fib]
    +cm:113 [binder, in additions.fib]
    +cm:124 [binder, in additions.fib]
    +cnf [projection, in gaia_hydras.T1Bridge]
    +cnf [projection, in hydras.Epsilon0.E0]
    +CNF [library]
    +cnf_of_epsilon0 [lemma, in hydras.Schutte.CNF]
    +cnf_lt_epsilon0 [lemma, in hydras.Schutte.CNF]
    +cnf_exists_unique [lemma, in hydras.Schutte.CNF]
    +cnf_unicity [lemma, in hydras.Schutte.CNF]
    +cnf_exists [lemma, in hydras.Schutte.CNF]
    +cnf_plus [lemma, in hydras.Schutte.CNF]
    +cnf_plus2 [lemma, in hydras.Schutte.CNF]
    +cnf_plus1 [lemma, in hydras.Schutte.CNF]
    +cnf_eq [lemma, in hydras.Schutte.CNF]
    +cnf_head_eq [lemma, in hydras.Schutte.CNF]
    +cnf_of_ap [lemma, in hydras.Schutte.CNF]
    +cnf_t [definition, in hydras.Schutte.CNF]
    +cnf_Cons [lemma, in hydras.Epsilon0.E0]
    +cnf_Omega_term [lemma, in hydras.Epsilon0.E0]
    +cnf_Succ [lemma, in hydras.Epsilon0.E0]
    +cnf_phi0 [lemma, in hydras.Epsilon0.E0]
    +cnf_rw [lemma, in hydras.Epsilon0.E0]
    +cnf_ok [projection, in hydras.Epsilon0.E0]
    +code [definition, in additions.AM]
    +code [library]
    +codeAnd [definition, in hydras.Ackermann.code]
    +codeAndCorrect [lemma, in hydras.Ackermann.code]
    +codeAndIsPR [instance, in hydras.Ackermann.checkPrf]
    +codeApp [definition, in hydras.Ackermann.codeList]
    +codeAppCorrect [lemma, in hydras.Ackermann.codeList]
    +codeAppIsPR [instance, in hydras.Ackermann.codeList]
    +codeArityFIsPR:6 [binder, in hydras.Ackermann.wellFormed]
    +codeArityFIsPR:7 [binder, in hydras.Ackermann.checkPrf]
    +codeArityFIsPR:7 [binder, in Goedel.codeSysPrf]
    +codeArityLNNFIsCorrect1 [lemma, in hydras.Ackermann.Languages]
    +codeArityLNNFIsCorrect2 [lemma, in hydras.Ackermann.Languages]
    +codeArityLNNR [definition, in hydras.Ackermann.Languages]
    +codeArityLNNRIsCorrect1 [lemma, in hydras.Ackermann.Languages]
    +codeArityLNNRIsCorrect2 [lemma, in hydras.Ackermann.Languages]
    +codeArityLNNRIsPR [instance, in hydras.Ackermann.Languages]
    +codeArityLNTF [definition, in hydras.Ackermann.Languages]
    +codeArityLNTFIsCorrect1 [lemma, in hydras.Ackermann.Languages]
    +codeArityLNTFIsCorrect2 [lemma, in hydras.Ackermann.Languages]
    +codeArityLNTFIsPR [instance, in hydras.Ackermann.Languages]
    +codeArityLNTR [definition, in hydras.Ackermann.Languages]
    +codeArityLNTRIsCorrect1 [lemma, in hydras.Ackermann.Languages]
    +codeArityLNTRIsCorrect2 [lemma, in hydras.Ackermann.Languages]
    +codeArityLNTRIsPR [instance, in hydras.Ackermann.Languages]
    +codeArityRIsPR:13 [binder, in hydras.Ackermann.checkPrf]
    +codeArityRIsPR:13 [binder, in Goedel.codeSysPrf]
    +codeArityRIsPR:181 [binder, in hydras.Ackermann.wellFormed]
    +codeAxmEqHelp [definition, in hydras.Ackermann.checkPrf]
    +codeAxmEqHelpIsPR [instance, in hydras.Ackermann.checkPrf]
    +codeClose [definition, in hydras.Ackermann.codePA]
    +codeCloseCorrect [lemma, in hydras.Ackermann.codePA]
    +codeCloseIsPR [instance, in hydras.Ackermann.codePA]
    +codeCloseList [definition, in hydras.Ackermann.codePA]
    +codeCloseListCorrect [lemma, in hydras.Ackermann.codePA]
    +codeCloseListIsPR [instance, in hydras.Ackermann.codePA]
    +codeF [definition, in hydras.Ackermann.code]
    +codeFInj [projection, in hydras.Ackermann.code]
    +codeFNN [definition, in Goedel.goedel1]
    +codeForall [definition, in hydras.Ackermann.code]
    +codeForallCorrect [lemma, in hydras.Ackermann.code]
    +codeForallIsPR [lemma, in hydras.Ackermann.prLogic]
    +codeFormula [definition, in hydras.Ackermann.code]
    +codeFormula [definition, in Goedel.rosserPA]
    +codeFormula [definition, in Goedel.rosser]
    +codeFormulaInj [lemma, in hydras.Ackermann.code]
    +codeFreeVar [library]
    +codeFreeVarFormula [definition, in hydras.Ackermann.codeFreeVar]
    +codeFreeVarFormulaCorrect [lemma, in hydras.Ackermann.codeFreeVar]
    +codeFreeVarFormulaIsPR [instance, in hydras.Ackermann.codeFreeVar]
    +codeFreeVarListFormula [definition, in hydras.Ackermann.codeFreeVar]
    +codeFreeVarListFormulaCorrect [lemma, in hydras.Ackermann.codeFreeVar]
    +codeFreeVarListFormulaIsPR [instance, in hydras.Ackermann.codeFreeVar]
    +codeFreeVarTerm [definition, in hydras.Ackermann.codeFreeVar]
    +codeFreeVarTermCorrect [lemma, in hydras.Ackermann.codeFreeVar]
    +codeFreeVarTermIsPR [lemma, in hydras.Ackermann.codeFreeVar]
    +codeFreeVarTerms [definition, in hydras.Ackermann.codeFreeVar]
    +codeFreeVarTermsCorrect [lemma, in hydras.Ackermann.codeFreeVar]
    +codeFreeVarTermsIsPR [instance, in hydras.Ackermann.codeFreeVar]
    +codeFreeVarTermTerms [definition, in hydras.Ackermann.codeFreeVar]
    +codeFreeVarTermTermsIsPR [instance, in hydras.Ackermann.codeFreeVar]
    +codeIff [definition, in hydras.Ackermann.code]
    +codeIffCorrect [lemma, in hydras.Ackermann.code]
    +codeIffIsPR [instance, in hydras.Ackermann.checkPrf]
    +codeImp [definition, in hydras.Ackermann.code]
    +codeImpCorrect [lemma, in hydras.Ackermann.code]
    +codeImpIsPR [instance, in hydras.Ackermann.prLogic]
    +codeIn [definition, in hydras.Ackermann.codeList]
    +codeInCorrect [lemma, in hydras.Ackermann.codeList]
    +codeInductionSchema [definition, in hydras.Ackermann.codePA]
    +codeInductionSchemaCorrect1 [lemma, in hydras.Ackermann.codePA]
    +codeInductionSchemaCorrect2 [lemma, in hydras.Ackermann.codePA]
    +codeInductionSchemaCorrect3 [lemma, in hydras.Ackermann.codePA]
    +codeInductionSchemaIsPR [instance, in hydras.Ackermann.codePA]
    +codeInIsPR [instance, in hydras.Ackermann.codeList]
    +codeLength [definition, in hydras.Ackermann.codeList]
    +codeLengthCorrect [lemma, in hydras.Ackermann.codeList]
    +codeLengthIsPR [instance, in hydras.Ackermann.codeList]
    +codeList [definition, in hydras.Ackermann.cPair]
    +codeList [library]
    +codeListInj [lemma, in hydras.Ackermann.cPair]
    +codeListRemove [definition, in hydras.Ackermann.codeList]
    +codeListRemoveCorrect [lemma, in hydras.Ackermann.codeList]
    +codeListRemoveIsPR [instance, in hydras.Ackermann.codeList]
    +codeLNNRelation [definition, in hydras.Ackermann.Languages]
    +codeLNNRelationInj [lemma, in hydras.Ackermann.Languages]
    +codeLNTFunction [definition, in hydras.Ackermann.Languages]
    +codeLNTFunctionInj [lemma, in hydras.Ackermann.Languages]
    +codeLNTRelation [definition, in hydras.Ackermann.Languages]
    +codeLNTRelationInj [lemma, in hydras.Ackermann.Languages]
    +codeNatToTerm [definition, in hydras.Ackermann.codeNatToTerm]
    +codeNatToTerm [library]
    +codeNatToTermCorrectLNN [lemma, in hydras.Ackermann.codeNatToTerm]
    +codeNatToTermCorrectLNT [lemma, in hydras.Ackermann.codeNatToTerm]
    +codeNatToTermIsPR [instance, in hydras.Ackermann.codeNatToTerm]
    +codeNewVar [definition, in hydras.Ackermann.codeSubFormula]
    +codeNewVarCorrect [lemma, in hydras.Ackermann.codeSubFormula]
    +codeNewVarIsPR [instance, in hydras.Ackermann.codeSubFormula]
    +codeNoDup [definition, in hydras.Ackermann.codeList]
    +codeNoDupCorrect [lemma, in hydras.Ackermann.codeList]
    +codeNoDupIsPR [instance, in hydras.Ackermann.codeList]
    +codeNot [definition, in hydras.Ackermann.code]
    +codeNotCorrect [lemma, in hydras.Ackermann.code]
    +codeNotIsPR [instance, in hydras.Ackermann.prLogic]
    +codeNth [definition, in hydras.Ackermann.cPair]
    +codeNthCorrect [lemma, in hydras.Ackermann.cPair]
    +codeNthIsPR [instance, in hydras.Ackermann.cPair]
    +codeNVarsCorrect [lemma, in hydras.Ackermann.checkPrf]
    +codeNVars1 [definition, in hydras.Ackermann.checkPrf]
    +codeNVars1IsPR [instance, in hydras.Ackermann.checkPrf]
    +codeNVars2 [definition, in hydras.Ackermann.checkPrf]
    +codeNVars2IsPR [instance, in hydras.Ackermann.checkPrf]
    +codeOpen [definition, in hydras.Ackermann.codePA]
    +codeOpenCorrect [lemma, in hydras.Ackermann.codePA]
    +codeOpenIsPR [instance, in hydras.Ackermann.codePA]
    +codeOr [definition, in hydras.Ackermann.code]
    +codeOrCorrect [lemma, in hydras.Ackermann.code]
    +codeOrIsPR [instance, in hydras.Ackermann.checkPrf]
    +codePA [definition, in hydras.Ackermann.codePA]
    +codePA [library]
    +codePAcorrect1 [lemma, in hydras.Ackermann.codePA]
    +codePAcorrect2 [lemma, in hydras.Ackermann.codePA]
    +codePAcorrect3 [lemma, in hydras.Ackermann.codePA]
    +codePAIsPR [instance, in hydras.Ackermann.codePA]
    +codePrf [definition, in hydras.Ackermann.code]
    +codePrf [definition, in Goedel.rosserPA]
    +codePrf [definition, in Goedel.rosser]
    +codePrfInjAxm [lemma, in hydras.Ackermann.code]
    +codeR [definition, in hydras.Ackermann.code]
    +codeRInj [projection, in hydras.Ackermann.code]
    +codeSubFormula [definition, in hydras.Ackermann.codeSubFormula]
    +codeSubFormula [library]
    +codeSubFormulaCorrect [lemma, in hydras.Ackermann.codeSubFormula]
    +codeSubFormulaIsPR [instance, in hydras.Ackermann.codeSubFormula]
    +codeSubTerm [definition, in hydras.Ackermann.codeSubTerm]
    +codeSubTerm [library]
    +codeSubTermCorrect [lemma, in hydras.Ackermann.codeSubTerm]
    +codeSubTermIsPR [instance, in hydras.Ackermann.codeSubTerm]
    +codeSubTerms [definition, in hydras.Ackermann.codeSubTerm]
    +codeSubTermsCorrect [lemma, in hydras.Ackermann.codeSubTerm]
    +codeSubTermsIsPR [lemma, in hydras.Ackermann.codeSubTerm]
    +codeSubTermTerms [definition, in hydras.Ackermann.codeSubTerm]
    +codeSubTermTermsIsPR [instance, in hydras.Ackermann.codeSubTerm]
    +codeSysPf [definition, in Goedel.codeSysPrf]
    +codeSysPf [definition, in Goedel.goedel1]
    +codeSysPf [definition, in Goedel.goedel2]
    +codeSysPfCorrect [lemma, in Goedel.codeSysPrf]
    +codeSysPfCorrect [definition, in Goedel.goedel1]
    +codeSysPfCorrect [definition, in Goedel.goedel2]
    +codeSysPrf [definition, in Goedel.rosserPA]
    +codeSysPrf [definition, in Goedel.codeSysPrf]
    +codeSysPrf [definition, in Goedel.goedel1]
    +codeSysPrf [definition, in Goedel.rosser]
    +codeSysPrf [library]
    +codeSysPrfCorrect1 [definition, in Goedel.rosserPA]
    +codeSysPrfCorrect1 [lemma, in Goedel.codeSysPrf]
    +codeSysPrfCorrect1 [definition, in Goedel.rosser]
    +codeSysPrfCorrect2 [definition, in Goedel.rosserPA]
    +codeSysPrfCorrect2 [lemma, in Goedel.codeSysPrf]
    +codeSysPrfCorrect2 [definition, in Goedel.goedel1]
    +codeSysPrfCorrect2 [definition, in Goedel.rosser]
    +codeSysPrfCorrect3 [definition, in Goedel.rosserPA]
    +codeSysPrfCorrect3 [lemma, in Goedel.codeSysPrf]
    +codeSysPrfCorrect3 [definition, in Goedel.goedel1]
    +codeSysPrfCorrect3 [definition, in Goedel.rosser]
    +codeSysPrfNCorrect1 [definition, in Goedel.rosserPA]
    +codeSysPrfNCorrect1 [lemma, in Goedel.codeSysPrf]
    +codeSysPrfNCorrect1 [definition, in Goedel.rosser]
    +codeSysPrfNCorrect2 [definition, in Goedel.rosserPA]
    +codeSysPrfNCorrect2 [lemma, in Goedel.codeSysPrf]
    +codeSysPrfNCorrect2 [definition, in Goedel.rosser]
    +codeSysPrfNCorrect3 [definition, in Goedel.rosserPA]
    +codeSysPrfNCorrect3 [lemma, in Goedel.codeSysPrf]
    +codeSysPrfNCorrect3 [definition, in Goedel.rosser]
    +codeSysPrfNot [definition, in Goedel.rosserPA]
    +codeSysPrfNot [definition, in Goedel.codeSysPrf]
    +codeSysPrfNot [definition, in Goedel.rosser]
    +codeTerm [definition, in hydras.Ackermann.code]
    +codeTermFreeVar [lemma, in hydras.Ackermann.codeSubFormula]
    +codeTermInj [lemma, in hydras.Ackermann.code]
    +codeTerms [definition, in hydras.Ackermann.code]
    +codeTermsInj [lemma, in hydras.Ackermann.code]
    +Code_Free_Vars.Terms [variable, in hydras.Ackermann.codeFreeVar]
    +Code_Free_Vars.Term [variable, in hydras.Ackermann.codeFreeVar]
    +Code_Free_Vars.System [variable, in hydras.Ackermann.codeFreeVar]
    +Code_Free_Vars.Formulas [variable, in hydras.Ackermann.codeFreeVar]
    +Code_Free_Vars.Formula [variable, in hydras.Ackermann.codeFreeVar]
    +Code_Free_Vars.L [variable, in hydras.Ackermann.codeFreeVar]
    +Code_Free_Vars [section, in hydras.Ackermann.codeFreeVar]
    +Code_Substitute_Term.Terms [variable, in hydras.Ackermann.codeSubTerm]
    +Code_Substitute_Term.Term [variable, in hydras.Ackermann.codeSubTerm]
    +Code_Substitute_Term.System [variable, in hydras.Ackermann.codeSubTerm]
    +Code_Substitute_Term.Formulas [variable, in hydras.Ackermann.codeSubTerm]
    +Code_Substitute_Term.Formula [variable, in hydras.Ackermann.codeSubTerm]
    +Code_Substitute_Term.L [variable, in hydras.Ackermann.codeSubTerm]
    +Code_Substitute_Term [section, in hydras.Ackermann.codeSubTerm]
    +Code_Substitute_Formula.codeTerm [variable, in hydras.Ackermann.codeSubFormula]
    +Code_Substitute_Formula.codeFormula [variable, in hydras.Ackermann.codeSubFormula]
    +Code_Substitute_Formula.L [variable, in hydras.Ackermann.codeSubFormula]
    +Code_Substitute_Formula [section, in hydras.Ackermann.codeSubFormula]
    +Code_Term_Formula_Proof.codeTermFormDef [section, in hydras.Ackermann.code]
    +Code_Term_Formula_Proof.SysPrf [variable, in hydras.Ackermann.code]
    +Code_Term_Formula_Proof.Prf [variable, in hydras.Ackermann.code]
    +Code_Term_Formula_Proof.Terms [variable, in hydras.Ackermann.code]
    +Code_Term_Formula_Proof.Term [variable, in hydras.Ackermann.code]
    +Code_Term_Formula_Proof.System [variable, in hydras.Ackermann.code]
    +Code_Term_Formula_Proof.Formulas [variable, in hydras.Ackermann.code]
    +Code_Term_Formula_Proof.Formula [variable, in hydras.Ackermann.code]
    +Code_Term_Formula_Proof.LcodeDef.cR [variable, in hydras.Ackermann.code]
    +Code_Term_Formula_Proof.LcodeDef.cF [variable, in hydras.Ackermann.code]
    +Code_Term_Formula_Proof.LcodeDef [section, in hydras.Ackermann.code]
    +Code_Term_Formula_Proof.L [variable, in hydras.Ackermann.code]
    +Code_Term_Formula_Proof [section, in hydras.Ackermann.code]
    +code_nat_list.drop [variable, in hydras.Ackermann.cPair]
    +code_nat_list [section, in hydras.Ackermann.cPair]
    +code_SysPrf.LNN.expressU2 [variable, in Goedel.codeSysPrf]
    +code_SysPrf.LNN.expressU1 [variable, in Goedel.codeSysPrf]
    +code_SysPrf.LNN.freeVarfU [variable, in Goedel.codeSysPrf]
    +code_SysPrf.LNN.v0 [variable, in Goedel.codeSysPrf]
    +code_SysPrf.LNN.fU [variable, in Goedel.codeSysPrf]
    +code_SysPrf.LNN.U [variable, in Goedel.codeSysPrf]
    +code_SysPrf.LNN.TextendsNN [variable, in Goedel.codeSysPrf]
    +code_SysPrf.LNN.T [variable, in Goedel.codeSysPrf]
    +code_SysPrf.LNN [section, in Goedel.codeSysPrf]
    +code_SysPrf.codeArityRIsCorrect2 [variable, in Goedel.codeSysPrf]
    +code_SysPrf.codeArityRIsCorrect1 [variable, in Goedel.codeSysPrf]
    +code_SysPrf.codeArityFIsCorrect2 [variable, in Goedel.codeSysPrf]
    +code_SysPrf.codeArityFIsCorrect1 [variable, in Goedel.codeSysPrf]
    +code_SysPrf.codeArityR [variable, in Goedel.codeSysPrf]
    +code_SysPrf.codeArityF [variable, in Goedel.codeSysPrf]
    +code_SysPrf.L [variable, in Goedel.codeSysPrf]
    +code_SysPrf [section, in Goedel.codeSysPrf]
    +Code_PA.codeFormulaInj [variable, in hydras.Ackermann.codePA]
    +Code_PA.codeFormula [variable, in hydras.Ackermann.codePA]
    +Code_PA.codeTerm [variable, in hydras.Ackermann.codePA]
    +Code_PA [section, in hydras.Ackermann.codePA]
    +coeff_lt [lemma, in hydras.Epsilon0.T1]
    +coeff_lt [lemma, in hydras.Schutte.Correctness_E0]
    +comp [instance, in hydras.OrdinalNotations.ON_Finite]
    +Comparable [section, in hydras.Prelude.Comparable]
    +Comparable [record, in hydras.Prelude.Comparable]
    +Comparable [library]
    +comparable_comp_spec [projection, in hydras.Prelude.Comparable]
    +comparable_sto [projection, in hydras.Prelude.Comparable]
    +Comparable0:15 [binder, in hydras.Prelude.Comparable]
    +compare [projection, in hydras.Prelude.Comparable]
    +Compare [record, in hydras.Prelude.Comparable]
    +compare [constructor, in hydras.Prelude.Comparable]
    +Compare [inductive, in hydras.Prelude.Comparable]
    +compareA:108 [binder, in hydras.OrdinalNotations.ON_Generic]
    +compareA:123 [binder, in hydras.OrdinalNotations.ON_Generic]
    +compareA:135 [binder, in hydras.OrdinalNotations.ON_Generic]
    +compareA:148 [binder, in hydras.OrdinalNotations.ON_Generic]
    +compareA:161 [binder, in hydras.OrdinalNotations.ON_Generic]
    +compareA:173 [binder, in hydras.OrdinalNotations.ON_Generic]
    +compareA:186 [binder, in hydras.OrdinalNotations.ON_Generic]
    +compareA:200 [binder, in hydras.OrdinalNotations.ON_Generic]
    +compareA:31 [binder, in hydras.OrdinalNotations.ON_Generic]
    +compareA:50 [binder, in hydras.OrdinalNotations.ON_Generic]
    +compareA:69 [binder, in hydras.OrdinalNotations.ON_Generic]
    +compareA:83 [binder, in hydras.OrdinalNotations.ON_Generic]
    +compareA:95 [binder, in hydras.OrdinalNotations.ON_Generic]
    +compareB:112 [binder, in hydras.OrdinalNotations.ON_Generic]
    +compareB:127 [binder, in hydras.OrdinalNotations.ON_Generic]
    +compareB:139 [binder, in hydras.OrdinalNotations.ON_Generic]
    +compareB:152 [binder, in hydras.OrdinalNotations.ON_Generic]
    +compareB:165 [binder, in hydras.OrdinalNotations.ON_Generic]
    +compareB:177 [binder, in hydras.OrdinalNotations.ON_Generic]
    +compareB:190 [binder, in hydras.OrdinalNotations.ON_Generic]
    +compareB:204 [binder, in hydras.OrdinalNotations.ON_Generic]
    +compareB:35 [binder, in hydras.OrdinalNotations.ON_Generic]
    +compareB:54 [binder, in hydras.OrdinalNotations.ON_Generic]
    +compareB:87 [binder, in hydras.OrdinalNotations.ON_Generic]
    +compareB:99 [binder, in hydras.OrdinalNotations.ON_Generic]
    +compare_reflectR [lemma, in hydras.Epsilon0.T1]
    +compare_of_phi0 [lemma, in hydras.Epsilon0.T1]
    +compare_fin_rw [lemma, in hydras.Epsilon0.T1]
    +compare_lt_iff [lemma, in hydras.Epsilon0.T1]
    +compare_lt_impl [lemma, in hydras.Epsilon0.T1]
    +compare_eq_iff [lemma, in hydras.Epsilon0.T1]
    +compare_refl [lemma, in hydras.Epsilon0.T1]
    +compare_correct [lemma, in hydras.Epsilon0.T1]
    +compare_reflect [lemma, in hydras.Epsilon0.T1]
    +compare_rev [lemma, in hydras.Epsilon0.T1]
    +compare_cons [lemma, in hydras.Epsilon0.T1]
    +compare_T1 [instance, in hydras.Epsilon0.T1]
    +compare_correct [lemma, in hydras.OrdinalNotations.ON_Omega2]
    +compare_reflect [lemma, in hydras.OrdinalNotations.ON_Omega2]
    +compare_omega2 [instance, in hydras.OrdinalNotations.ON_Omega2]
    +compare_reflect [lemma, in hydras.Prelude.Comparable]
    +compare_trans [lemma, in hydras.Prelude.Comparable]
    +compare_ge_iff [lemma, in hydras.Prelude.Comparable]
    +compare_le_iff [lemma, in hydras.Prelude.Comparable]
    +compare_le_iff_refl [lemma, in hydras.Prelude.Comparable]
    +compare_gt_not_lt [lemma, in hydras.Prelude.Comparable]
    +compare_lt_not_gt [lemma, in hydras.Prelude.Comparable]
    +compare_gt_trans [lemma, in hydras.Prelude.Comparable]
    +compare_gt_irrefl [lemma, in hydras.Prelude.Comparable]
    +compare_gt_iff [lemma, in hydras.Prelude.Comparable]
    +compare_eq_trans [lemma, in hydras.Prelude.Comparable]
    +compare_refl [lemma, in hydras.Prelude.Comparable]
    +compare_eq_iff [lemma, in hydras.Prelude.Comparable]
    +compare_lt_irrefl [lemma, in hydras.Prelude.Comparable]
    +compare_lt_trans [lemma, in hydras.Prelude.Comparable]
    +compare_lt_iff [lemma, in hydras.Prelude.Comparable]
    +compare_reflect [lemma, in hydras.OrdinalNotations.ON_O]
    +compare_correct [lemma, in hydras.OrdinalNotations.ON_O]
    +compare_O [instance, in hydras.OrdinalNotations.ON_O]
    +compare_nat_nat [instance, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +compare_h2g [lemma, in gaia_hydras.T1Bridge]
    +compare_g2h [lemma, in gaia_hydras.T1Bridge]
    +compare_ref [lemma, in gaia_hydras.T1Bridge]
    +compare_correct [lemma, in hydras.OrdinalNotations.ON_mult]
    +compare_reflect [lemma, in hydras.OrdinalNotations.ON_mult]
    +compare_mult [instance, in hydras.OrdinalNotations.ON_mult]
    +compare_correct [lemma, in hydras.OrdinalNotations.ON_plus]
    +compare_reflect [lemma, in hydras.OrdinalNotations.ON_plus]
    +compare_plus [instance, in hydras.OrdinalNotations.ON_plus]
    +compare_reflect [lemma, in hydras.OrdinalNotations.ON_Finite]
    +compare_correct [lemma, in hydras.OrdinalNotations.ON_Finite]
    +compare_fin [instance, in hydras.OrdinalNotations.ON_Finite]
    +compare_correct [lemma, in hydras.Epsilon0.E0]
    +compare_E0 [instance, in hydras.Epsilon0.E0]
    +compare_nat [instance, in hydras.OrdinalNotations.ON_Omega]
    +compare_rw_gt [lemma, in hydras.Gamma0.Gamma0]
    +compare_rw_eq [lemma, in hydras.Gamma0.Gamma0]
    +compare_rw_lt [lemma, in hydras.Gamma0.Gamma0]
    +compare_Gt [lemma, in hydras.Gamma0.Gamma0]
    +compare_Eq [lemma, in hydras.Gamma0.Gamma0]
    +compare_Lt [lemma, in hydras.Gamma0.Gamma0]
    +compare_correct [lemma, in hydras.Gamma0.Gamma0]
    +compare_reflect [lemma, in hydras.Gamma0.Gamma0]
    +compare_T2 [instance, in hydras.Gamma0.Gamma0]
    +compare:2 [binder, in additions.Trace_exercise]
    +comparison_eq_dec [instance, in hydras.Prelude.DecPreOrder]
    +Compatibility [library]
    +Compat815 [module, in hydras.Prelude.Compat815]
    +Compat815 [library]
    +Compat815.ind_0_1_SS [definition, in hydras.Prelude.Compat815]
    +Compat815.le_not_lt [lemma, in hydras.Prelude.Compat815]
    +Compat815.le_plus_r [lemma, in hydras.Prelude.Compat815]
    +Compat815.le_lt_n_Sm [lemma, in hydras.Prelude.Compat815]
    +Compat815.le_lt_or_eq [lemma, in hydras.Prelude.Compat815]
    +Compat815.le_n_0_eq [lemma, in hydras.Prelude.Compat815]
    +Compat815.lt_not_le [lemma, in hydras.Prelude.Compat815]
    +Compat815.lt_n_S [lemma, in hydras.Prelude.Compat815]
    +Compat815.lt_S_n [lemma, in hydras.Prelude.Compat815]
    +Compat815.lt_n_Sm_le [lemma, in hydras.Prelude.Compat815]
    +Compat815.mult_O_le [lemma, in hydras.Prelude.Compat815]
    +Compat815.n_SSn [lemma, in hydras.Prelude.Compat815]
    +Compat815.n_SSSn [lemma, in hydras.Prelude.Compat815]
    +Compat815.plus_Snm_nSm [lemma, in hydras.Prelude.Compat815]
    +composeFunc [constructor, in hydras.Ackermann.primRec]
    +composeSigmaFormula [definition, in Goedel.PRrepresentable]
    +composeSigmaRepresentable [lemma, in Goedel.PRrepresentable]
    +compose1_NIsPR [instance, in hydras.Ackermann.primRec]
    +compose1_3IsPR [instance, in hydras.Ackermann.primRec]
    +compose1_2IsPR [instance, in hydras.Ackermann.primRec]
    +compose1_1IsPR [instance, in hydras.Ackermann.primRec]
    +compose2 [definition, in hydras.Ackermann.primRec]
    +compose2Examples [section, in hydras.MoreAck.PrimRecExamples]
    +compose2Examples.f [variable, in hydras.MoreAck.PrimRecExamples]
    +compose2Examples.f' [variable, in hydras.MoreAck.PrimRecExamples]
    +compose2Examples.g [variable, in hydras.MoreAck.PrimRecExamples]
    +compose2Examples.g' [variable, in hydras.MoreAck.PrimRecExamples]
    +compose2Examples.h [variable, in hydras.MoreAck.PrimRecExamples]
    +compose2IsPR [instance, in hydras.Ackermann.primRec]
    +compose2_4IsPR [instance, in hydras.Ackermann.primRec]
    +compose2_3IsPR [instance, in hydras.Ackermann.primRec]
    +compose2_2IsPR [instance, in hydras.Ackermann.primRec]
    +compose2_1IsPR [instance, in hydras.Ackermann.primRec]
    +compose2_3 [lemma, in hydras.MoreAck.PrimRecExamples]
    +compose2_2 [lemma, in hydras.MoreAck.PrimRecExamples]
    +compose2_1 [lemma, in hydras.MoreAck.PrimRecExamples]
    +compose2_0 [lemma, in hydras.MoreAck.PrimRecExamples]
    +compose3_3IsPR [instance, in hydras.Ackermann.primRec]
    +compose3_2IsPR [instance, in hydras.Ackermann.primRec]
    +compose3_1IsPR [instance, in hydras.Ackermann.primRec]
    +compose4_3IsPR [instance, in hydras.Ackermann.primRec]
    +compose4_2IsPR [instance, in hydras.Ackermann.primRec]
    +Composition [section, in hydras.MoreAck.PrimRecExamples]
    +CompositionProofs [section, in additions.AM]
    +CompositionProofs.App [section, in additions.AM]
    +CompositionProofs.App.cn [variable, in additions.AM]
    +CompositionProofs.App.cp [variable, in additions.AM]
    +CompositionProofs.App.Hn [variable, in additions.AM]
    +CompositionProofs.App.Hp [variable, in additions.AM]
    +CompositionProofs.App.n [variable, in additions.AM]
    +CompositionProofs.App.p [variable, in additions.AM]
    +CompositionProofs.FFK [section, in additions.AM]
    +CompositionProofs.FFK.cp [variable, in additions.AM]
    +CompositionProofs.FFK.cq [variable, in additions.AM]
    +CompositionProofs.FFK.Hp [variable, in additions.AM]
    +CompositionProofs.FFK.Hq [variable, in additions.AM]
    +CompositionProofs.FFK.p [variable, in additions.AM]
    +CompositionProofs.FFK.q [variable, in additions.AM]
    +CompositionProofs.FK [section, in additions.AM]
    +CompositionProofs.FK.cn [variable, in additions.AM]
    +CompositionProofs.FK.Hn [variable, in additions.AM]
    +CompositionProofs.FK.n [variable, in additions.AM]
    +CompositionProofs.KFK [section, in additions.AM]
    +CompositionProofs.KFK.Hpr [variable, in additions.AM]
    +CompositionProofs.KFK.Hq [variable, in additions.AM]
    +CompositionProofs.KFK.kpr [variable, in additions.AM]
    +CompositionProofs.KFK.mq [variable, in additions.AM]
    +CompositionProofs.KFK.p [variable, in additions.AM]
    +CompositionProofs.KFK.q [variable, in additions.AM]
    +CompositionProofs.KFK.r [variable, in additions.AM]
    +Composition.f [variable, in hydras.MoreAck.PrimRecExamples]
    +Composition.g [variable, in hydras.MoreAck.PrimRecExamples]
    +Composition.h [variable, in hydras.MoreAck.PrimRecExamples]
    +Composition.k [variable, in hydras.MoreAck.PrimRecExamples]
    +Composition.t [variable, in hydras.MoreAck.PrimRecExamples]
    +Composition.u [variable, in hydras.MoreAck.PrimRecExamples]
    +Composition.v [variable, in hydras.MoreAck.PrimRecExamples]
    +Composition.x [variable, in hydras.MoreAck.PrimRecExamples]
    +Composition.y [variable, in hydras.MoreAck.PrimRecExamples]
    +Composition.z [variable, in hydras.MoreAck.PrimRecExamples]
    +computation [inductive, in additions.Addition_Chains]
    +computation_equiv [definition, in additions.Euclidean_Chains]
    +computation_eval_rw [lemma, in additions.Addition_Chains]
    +computation_eval [definition, in additions.Addition_Chains]
    +computation_execute [definition, in additions.Addition_Chains]
    +computation_length [definition, in additions.Addition_Chains]
    +computeEvalStrongRecHelp [lemma, in hydras.Ackermann.cPair]
    +comp_res:96 [binder, in hydras.Prelude.Comparable]
    +comp_equiv_equivalence [instance, in additions.Euclidean_Chains]
    +Comp_equiv [instance, in additions.Euclidean_Chains]
    +comp128 [definition, in additions.Addition_Chains]
    +Con [definition, in Goedel.goedel2]
    +config [definition, in additions.AM]
    +config_equiv [definition, in additions.AM]
    +cons [constructor, in hydras.Epsilon0.T1]
    +Cons [instance, in hydras.Epsilon0.E0]
    +Consistent [definition, in hydras.Ackermann.folProof]
    +constant_to_standard_path [lemma, in gaia_hydras.GPaths]
    +constant_to_standard_path [lemma, in hydras.Epsilon0.Paths]
    +constant_to_standard [lemma, in hydras.Epsilon0.Paths]
    +constant_to_standard_0 [lemma, in hydras.Epsilon0.Paths]
    +Constant_to_standard_Proof.delta [variable, in hydras.Epsilon0.Paths]
    +Constant_to_standard_Proof.m [variable, in hydras.Epsilon0.Paths]
    +Constant_to_standard_Proof.gamma [variable, in hydras.Epsilon0.Paths]
    +Constant_to_standard_Proof.l [variable, in hydras.Epsilon0.Paths]
    +Constant_to_standard_Proof.l_def [variable, in hydras.Epsilon0.Paths]
    +Constant_to_standard_Proof.P [variable, in hydras.Epsilon0.Paths]
    +Constant_to_standard_Proof.t [variable, in hydras.Epsilon0.Paths]
    +Constant_to_standard_Proof.Hpa [variable, in hydras.Epsilon0.Paths]
    +Constant_to_standard_Proof.Hpos [variable, in hydras.Epsilon0.Paths]
    +Constant_to_standard_Proof.Halpha [variable, in hydras.Epsilon0.Paths]
    +Constant_to_standard_Proof.n [variable, in hydras.Epsilon0.Paths]
    +Constant_to_standard_Proof.beta [variable, in hydras.Epsilon0.Paths]
    +Constant_to_standard_Proof.alpha [variable, in hydras.Epsilon0.Paths]
    +Constant_to_standard_Proof [section, in hydras.Epsilon0.Paths]
    +consTerms [lemma, in hydras.Ackermann.fol]
    +const_path [definition, in gaia_hydras.GPaths]
    +const_pathS_LT' [lemma, in hydras.Epsilon0.Paths]
    +const_pathS_eps_zero [lemma, in hydras.Epsilon0.Paths]
    +const_pathS_first_step [lemma, in hydras.Epsilon0.Paths]
    +const_pathS_eps_LE_2 [lemma, in hydras.Epsilon0.Paths]
    +const_pathS_eps_trans [lemma, in hydras.Epsilon0.Paths]
    +const_pathS_trans [lemma, in hydras.Epsilon0.Paths]
    +const_pathS_inv_strong [lemma, in hydras.Epsilon0.Paths]
    +const_pathS_inv [lemma, in hydras.Epsilon0.Paths]
    +const_pathS_LE [lemma, in hydras.Epsilon0.Paths]
    +const_path_LT [lemma, in hydras.Epsilon0.Paths]
    +const_pathS_LT [lemma, in hydras.Epsilon0.Paths]
    +const_pathS_zero [lemma, in hydras.Epsilon0.Paths]
    +const_pathS_nf [lemma, in hydras.Epsilon0.Paths]
    +const_pathS_repeatR [lemma, in hydras.Epsilon0.Paths]
    +const_pathS_repeat [lemma, in hydras.Epsilon0.Paths]
    +const_pathS_eps [definition, in hydras.Epsilon0.Paths]
    +const_pathSE [lemma, in hydras.Epsilon0.Paths]
    +const_path [definition, in hydras.Epsilon0.Paths]
    +const_pathS [definition, in hydras.Epsilon0.Paths]
    +const0_NIsPR [instance, in hydras.Ackermann.primRec]
    +const1_NIsPR [instance, in hydras.Ackermann.primRec]
    +cons_def [lemma, in hydras.Epsilon0.T1]
    +cons_nf [lemma, in hydras.Epsilon0.T1]
    +cons_succ [constructor, in hydras.Gamma0.T2]
    +cons_standard_path [lemma, in hydras.Epsilon0.Paths]
    +cons_standard_pathS [lemma, in hydras.Epsilon0.Paths]
    +cons_lt_epsilon0 [lemma, in hydras.Gamma0.Gamma0]
    +cons_rw [lemma, in hydras.Gamma0.Gamma0]
    +continuous [definition, in hydras.Schutte.Schutte_basics]
    +contrad [lemma, in hydras.solutions_exercises.MultisetWf]
    +contrad [lemma, in hydras.solutions_exercises.T1_ltNotWf]
    +contradiction [lemma, in hydras.Ackermann.LNN]
    +contradiction [lemma, in hydras.Ackermann.LNT]
    +contradiction [lemma, in hydras.Ackermann.folLogic]
    +Contradiction [lemma, in hydras.Hydra.Omega_Small]
    +Correctness [section, in hydras.Ackermann.fol]
    +correctness_statement [definition, in additions.AM]
    +correctness_statement [definition, in additions.Euclidean_Chains]
    +Correctness_E0 [library]
    +Correctness.L [variable, in hydras.Ackermann.fol]
    +Correctness.P [variable, in hydras.Ackermann.fol]
    +Correctness.Q [variable, in hydras.Ackermann.fol]
    +Correctness.R [variable, in hydras.Ackermann.fol]
    +correct_app [lemma, in additions.AM]
    +correct_generator [definition, in additions.Addition_Chains]
    +Cor12 [lemma, in gaia_hydras.GPaths]
    +Cor12 [lemma, in hydras.Epsilon0.Paths]
    +Cor12_E0 [lemma, in hydras.Epsilon0.Paths]
    +Cor12_3 [lemma, in hydras.Epsilon0.Paths]
    +Cor12_2 [lemma, in hydras.Epsilon0.Paths]
    +Cor12_1 [lemma, in hydras.Epsilon0.Paths]
    +Countable [section, in hydras.Schutte.Countable]
    +Countable [library]
    +countable_members [lemma, in hydras.Schutte.Schutte_basics]
    +countable_not_Unbounded [lemma, in hydras.Schutte.Schutte_basics]
    +countable_segment_proper [lemma, in hydras.Schutte.Ordering_Functions]
    +countable_image [lemma, in hydras.Schutte.Countable]
    +countable_bij_funR [lemma, in hydras.Schutte.Countable]
    +countable_bij_fun [lemma, in hydras.Schutte.Countable]
    +countable_surj [lemma, in hydras.Schutte.Countable]
    +Countable.Countable_bijection.g_bij [variable, in hydras.Schutte.Countable]
    +Countable.Countable_bijection.g [variable, in hydras.Schutte.Countable]
    +Countable.Countable_bijection.B [variable, in hydras.Schutte.Countable]
    +Countable.Countable_bijection.A [variable, in hydras.Schutte.Countable]
    +Countable.Countable_bijection.V [variable, in hydras.Schutte.Countable]
    +Countable.Countable_bijection [section, in hydras.Schutte.Countable]
    +Countable.Countable_seq_range [section, in hydras.Schutte.Countable]
    +Countable.Definitions [section, in hydras.Schutte.Countable]
    +Countable.Definitions.A [variable, in hydras.Schutte.Countable]
    +Countable.Definitions.U [variable, in hydras.Schutte.Countable]
    +Countable.U [variable, in hydras.Schutte.Countable]
    +Counter_Example.is_in_seq [variable, in hydras.solutions_exercises.MultisetWf]
    +Counter_Example.Hwf [variable, in hydras.solutions_exercises.MultisetWf]
    +Counter_Example.R [variable, in hydras.solutions_exercises.MultisetWf]
    +Counter_Example [section, in hydras.solutions_exercises.MultisetWf]
    +counter_ex [lemma, in hydras.solutions_exercises.schutte_cnf_counter_example]
    +count:9 [binder, in additions.AM]
    +CP [constructor, in hydras.Ackermann.folProof]
    +cPair [definition, in hydras.Ackermann.cPair]
    +cPair [library]
    +cPairInjHelp [lemma, in hydras.Ackermann.cPair]
    +cPairInj1 [lemma, in hydras.Ackermann.cPair]
    +cPairInj2 [lemma, in hydras.Ackermann.cPair]
    +cPairIsPR [instance, in hydras.Ackermann.cPair]
    +cPairLemma1 [lemma, in hydras.Ackermann.cPair]
    +cPairLe1 [lemma, in hydras.Ackermann.cPair]
    +cPairLe1A [lemma, in hydras.Ackermann.cPair]
    +cPairLe2 [lemma, in hydras.Ackermann.cPair]
    +cPairLe2A [lemma, in hydras.Ackermann.cPair]
    +cPairLe3 [lemma, in hydras.Ackermann.cPair]
    +cPairLt1 [lemma, in hydras.Ackermann.cPair]
    +cPairLt2 [lemma, in hydras.Ackermann.cPair]
    +cPairPi1 [definition, in hydras.Ackermann.cPair]
    +cPairPi1IsPR [instance, in hydras.Ackermann.cPair]
    +cPairPi2 [definition, in hydras.Ackermann.cPair]
    +cPairPi2IsPR [instance, in hydras.Ackermann.cPair]
    +cPairProjections [lemma, in hydras.Ackermann.cPair]
    +cPairProjectionsHelp [lemma, in hydras.Ackermann.cPair]
    +cPairProjections1 [lemma, in hydras.Ackermann.cPair]
    +cPairProjections2 [lemma, in hydras.Ackermann.cPair]
    +CPair_Order [section, in hydras.Ackermann.cPair]
    +CPair_projections.searchXY [variable, in hydras.Ackermann.cPair]
    +CPair_projections [section, in hydras.Ackermann.cPair]
    +CPair_Injectivity [section, in hydras.Ackermann.cPair]
    +cpower [definition, in additions.Addition_Chains]
    +cpower_pos [definition, in additions.Addition_Chains]
    +cp1 [lemma, in hydras.Ackermann.LNN]
    +cp1 [lemma, in hydras.Ackermann.LNT]
    +cp1 [lemma, in hydras.Ackermann.folLogic]
    +cp2 [lemma, in hydras.Ackermann.LNN]
    +cp2 [lemma, in hydras.Ackermann.LNT]
    +cp2 [lemma, in hydras.Ackermann.folLogic]
    +Cr [definition, in hydras.Schutte.Critical]
    +Critical [library]
    +Cr_1_iff [lemma, in hydras.Schutte.Critical]
    +Cr_incl [lemma, in hydras.Schutte.Critical]
    +Cr_lt [lemma, in hydras.Schutte.Critical]
    +Cr_pos_iff [lemma, in hydras.Schutte.Critical]
    +Cr_pos_inv [lemma, in hydras.Schutte.Critical]
    +Cr_zero_AP [lemma, in hydras.Schutte.Critical]
    +Cr_zero_inv [lemma, in hydras.Schutte.Critical]
    +Cr_pos [lemma, in hydras.Schutte.Critical]
    +Cr_zero [lemma, in hydras.Schutte.Critical]
    +Cr_inv [lemma, in hydras.Schutte.Critical]
    +Cr_equation [lemma, in hydras.Schutte.Critical]
    +Cr_extensional [lemma, in hydras.Schutte.Critical]
    +Cr_fun [definition, in hydras.Schutte.Critical]
    +cr:12 [binder, in hydras.Ackermann.code]
    +cr:15 [binder, in hydras.Ackermann.code]
    +cr:18 [binder, in hydras.Ackermann.code]
    +cr:3 [binder, in hydras.Ackermann.codeFreeVar]
    +cr:3 [binder, in hydras.Ackermann.codeSubTerm]
    +cr:3 [binder, in hydras.Ackermann.checkPrf]
    +cr:3 [binder, in hydras.Ackermann.codeSubFormula]
    +cr:3 [binder, in hydras.Ackermann.wellFormed]
    +cr:3 [binder, in Goedel.codeSysPrf]
    +cr:3 [binder, in hydras.Ackermann.codePA]
    +Cr:5 [binder, in hydras.Schutte.Critical]
    +cst_correct [lemma, in hydras.MoreAck.PrimRecExamples]
    +cst0_correct [lemma, in hydras.MoreAck.PrimRecExamples]
    +Cter_example.l [variable, in hydras.solutions_exercises.schutte_cnf_counter_example]
    +Cter_example.alpha [variable, in hydras.solutions_exercises.schutte_cnf_counter_example]
    +Cter_example.cnf_lt_epsilon0_iff [variable, in hydras.solutions_exercises.schutte_cnf_counter_example]
    +Cter_example [section, in hydras.solutions_exercises.schutte_cnf_counter_example]
    +cTriple [definition, in hydras.Ackermann.cPair]
    +cTripleIsPR [instance, in hydras.Ackermann.cPair]
    +cTriplePi1 [definition, in hydras.Ackermann.cPair]
    +cTriplePi1IsPR [instance, in hydras.Ackermann.cPair]
    +cTriplePi2 [definition, in hydras.Ackermann.cPair]
    +cTriplePi2IsPR [instance, in hydras.Ackermann.cPair]
    +cTriplePi3 [definition, in hydras.Ackermann.cPair]
    +cTriplePi3IsPR [instance, in hydras.Ackermann.cPair]
    +cTripleProj [lemma, in hydras.Ackermann.cPair]
    +cTripleProj1 [lemma, in hydras.Ackermann.cPair]
    +cTripleProj2 [lemma, in hydras.Ackermann.cPair]
    +cTripleProj3 [lemma, in hydras.Ackermann.cPair]
    +ctx:317 [binder, in hydras.rpo.rpo]
    +ctx:89 [binder, in hydras.rpo.rpo]
    +c'':46 [binder, in hydras.Hydra.BigBattle]
    +c':1025 [binder, in gaia_hydras.nfwfgaia]
    +c':1153 [binder, in gaia_hydras.nfwfgaia]
    +c':1337 [binder, in gaia_hydras.nfwfgaia]
    +c':1383 [binder, in gaia_hydras.nfwfgaia]
    +c':1393 [binder, in gaia_hydras.nfwfgaia]
    +c':1421 [binder, in gaia_hydras.nfwfgaia]
    +c':1427 [binder, in gaia_hydras.nfwfgaia]
    +c':1435 [binder, in gaia_hydras.nfwfgaia]
    +c':1499 [binder, in gaia_hydras.nfwfgaia]
    +c':1507 [binder, in gaia_hydras.nfwfgaia]
    +c':1550 [binder, in gaia_hydras.nfwfgaia]
    +c':1584 [binder, in gaia_hydras.nfwfgaia]
    +c':1608 [binder, in gaia_hydras.nfwfgaia]
    +c':1617 [binder, in gaia_hydras.nfwfgaia]
    +c':1619 [binder, in gaia_hydras.nfwfgaia]
    +c':1620 [binder, in gaia_hydras.nfwfgaia]
    +c':1626 [binder, in gaia_hydras.nfwfgaia]
    +c':1628 [binder, in gaia_hydras.nfwfgaia]
    +c':1634 [binder, in gaia_hydras.nfwfgaia]
    +c':1690 [binder, in gaia_hydras.nfwfgaia]
    +c':1696 [binder, in gaia_hydras.nfwfgaia]
    +c':2 [binder, in hydras.Epsilon0.F_alpha]
    +c':20 [binder, in additions.AM]
    +c':2065 [binder, in gaia_hydras.nfwfgaia]
    +c':2079 [binder, in gaia_hydras.nfwfgaia]
    +c':2084 [binder, in gaia_hydras.nfwfgaia]
    +c':25 [binder, in hydras.Hydra.BigBattle]
    +c':26 [binder, in additions.Monoid_instances]
    +c':28 [binder, in hydras.Gamma0.Gamma0]
    +c':303 [binder, in hydras.Gamma0.Gamma0]
    +c':34 [binder, in hydras.Hydra.BigBattle]
    +c':42 [binder, in hydras.Hydra.BigBattle]
    +c':46 [binder, in additions.Euclidean_Chains]
    +c':541 [binder, in hydras.Ackermann.primRec]
    +c':58 [binder, in additions.AM]
    +c':58 [binder, in hydras.Hydra.BigBattle]
    +c':584 [binder, in hydras.Gamma0.Gamma0]
    +c':81 [binder, in additions.Addition_Chains]
    +c':84 [binder, in hydras.Gamma0.T2]
    +c':872 [binder, in gaia_hydras.nfwfgaia]
    +c':909 [binder, in gaia_hydras.nfwfgaia]
    +c':917 [binder, in gaia_hydras.nfwfgaia]
    +c':949 [binder, in gaia_hydras.nfwfgaia]
    +c00 [projection, in additions.Monoid_instances]
    +c01 [projection, in additions.Monoid_instances]
    +C1 [definition, in additions.Addition_Chains]
    +c10 [projection, in additions.Monoid_instances]
    +c11 [projection, in additions.Monoid_instances]
    +c153 [definition, in additions.Fib2]
    +c1:1173 [binder, in gaia_hydras.nfwfgaia]
    +c1:1364 [binder, in hydras.Ackermann.codeSubFormula]
    +c1:1817 [binder, in gaia_hydras.nfwfgaia]
    +c1:470 [binder, in gaia_hydras.nfwfgaia]
    +c1:598 [binder, in gaia_hydras.nfwfgaia]
    +c1:73 [binder, in hydras.Gamma0.Gamma0]
    +c1:80 [binder, in hydras.Gamma0.Gamma0]
    +c1:85 [binder, in hydras.Gamma0.Gamma0]
    +c2:1174 [binder, in gaia_hydras.nfwfgaia]
    +c2:1365 [binder, in hydras.Ackermann.codeSubFormula]
    +c2:1818 [binder, in gaia_hydras.nfwfgaia]
    +c2:471 [binder, in gaia_hydras.nfwfgaia]
    +c2:599 [binder, in gaia_hydras.nfwfgaia]
    +c2:74 [binder, in hydras.Gamma0.Gamma0]
    +c2:81 [binder, in hydras.Gamma0.Gamma0]
    +c2:86 [binder, in hydras.Gamma0.Gamma0]
    +C3 [definition, in additions.Addition_Chains]
    +C31_7 [definition, in additions.AM]
    +c3:1175 [binder, in gaia_hydras.nfwfgaia]
    +c3:1819 [binder, in gaia_hydras.nfwfgaia]
    +c3:472 [binder, in gaia_hydras.nfwfgaia]
    +C7 [definition, in additions.Addition_Chains]
    +C7_ok' [definition, in additions.Addition_Chains]
    +C7_ok [definition, in additions.Addition_Chains]
    +C87 [definition, in additions.Addition_Chains]
    +C87_ok' [lemma, in additions.Addition_Chains]
    +C87_ok [definition, in additions.Addition_Chains]
    +C87' [definition, in additions.Euclidean_Chains]
    +c:1 [binder, in hydras.Epsilon0.F_alpha]
    +c:1001 [binder, in gaia_hydras.nfwfgaia]
    +c:1004 [binder, in gaia_hydras.nfwfgaia]
    +c:1007 [binder, in gaia_hydras.nfwfgaia]
    +c:101 [binder, in hydras.Epsilon0.Hessenberg]
    +c:101 [binder, in hydras.Ackermann.primRec]
    +c:1011 [binder, in gaia_hydras.nfwfgaia]
    +c:1032 [binder, in gaia_hydras.nfwfgaia]
    +c:1037 [binder, in gaia_hydras.nfwfgaia]
    +c:104 [binder, in hydras.MoreAck.PrimRecExamples]
    +c:105 [binder, in hydras.Epsilon0.Hessenberg]
    +c:1052 [binder, in gaia_hydras.nfwfgaia]
    +c:108 [binder, in hydras.Epsilon0.Hessenberg]
    +c:113 [binder, in hydras.Gamma0.T2]
    +c:113 [binder, in additions.AM]
    +c:1147 [binder, in gaia_hydras.nfwfgaia]
    +c:115 [binder, in hydras.Ackermann.cPair]
    +c:1168 [binder, in gaia_hydras.nfwfgaia]
    +c:117 [binder, in hydras.Epsilon0.Hessenberg]
    +c:12 [binder, in hydras.Gamma0.Gamma0]
    +c:1207 [binder, in gaia_hydras.nfwfgaia]
    +c:121 [binder, in hydras.Epsilon0.F_alpha]
    +c:1210 [binder, in gaia_hydras.nfwfgaia]
    +C:123 [binder, in hydras.rpo.more_list]
    +c:1254 [binder, in gaia_hydras.nfwfgaia]
    +c:1257 [binder, in gaia_hydras.nfwfgaia]
    +c:1260 [binder, in gaia_hydras.nfwfgaia]
    +c:1263 [binder, in gaia_hydras.nfwfgaia]
    +c:128 [binder, in hydras.Epsilon0.T1]
    +c:13 [binder, in additions.AM]
    +c:13 [binder, in hydras.Ackermann.code]
    +c:1322 [binder, in gaia_hydras.nfwfgaia]
    +c:133 [binder, in hydras.Epsilon0.Hessenberg]
    +c:1332 [binder, in gaia_hydras.nfwfgaia]
    +c:1347 [binder, in gaia_hydras.nfwfgaia]
    +c:1352 [binder, in gaia_hydras.nfwfgaia]
    +c:1357 [binder, in gaia_hydras.nfwfgaia]
    +c:1362 [binder, in gaia_hydras.nfwfgaia]
    +c:1367 [binder, in gaia_hydras.nfwfgaia]
    +C:1369 [binder, in hydras.Ackermann.codeSubFormula]
    +c:1372 [binder, in gaia_hydras.nfwfgaia]
    +c:1378 [binder, in gaia_hydras.nfwfgaia]
    +c:139 [binder, in hydras.Ackermann.primRec]
    +c:1390 [binder, in gaia_hydras.nfwfgaia]
    +c:14 [binder, in hydras.Prelude.MoreDecidable]
    +c:14 [binder, in hydras.rpo.closure]
    +C:1407 [binder, in hydras.Ackermann.codeSubFormula]
    +c:1418 [binder, in gaia_hydras.nfwfgaia]
    +c:142 [binder, in hydras.Ackermann.primRec]
    +c:1424 [binder, in gaia_hydras.nfwfgaia]
    +c:143 [binder, in hydras.Gamma0.T2]
    +c:1430 [binder, in gaia_hydras.nfwfgaia]
    +c:144 [binder, in hydras.Ackermann.LNT]
    +c:144 [binder, in hydras.Gamma0.Gamma0]
    +c:145 [binder, in hydras.Ackermann.primRec]
    +c:145 [binder, in additions.fib]
    +c:147 [binder, in hydras.Ackermann.LNN]
    +c:148 [binder, in hydras.Ackermann.LNT]
    +c:148 [binder, in hydras.Ackermann.primRec]
    +c:149 [binder, in hydras.Gamma0.T2]
    +c:1494 [binder, in gaia_hydras.nfwfgaia]
    +c:15 [binder, in hydras.solutions_exercises.FibonacciPR]
    +c:15 [binder, in hydras.Hydra.BigBattle]
    +c:1504 [binder, in gaia_hydras.nfwfgaia]
    +c:151 [binder, in hydras.Ackermann.LNN]
    +C:151 [binder, in hydras.Ackermann.fol]
    +c:1510 [binder, in gaia_hydras.nfwfgaia]
    +c:152 [binder, in hydras.Ackermann.primRec]
    +c:1522 [binder, in gaia_hydras.nfwfgaia]
    +c:1525 [binder, in gaia_hydras.nfwfgaia]
    +c:1528 [binder, in gaia_hydras.nfwfgaia]
    +c:153 [binder, in hydras.Ackermann.LNT]
    +c:1533 [binder, in gaia_hydras.nfwfgaia]
    +c:1538 [binder, in gaia_hydras.nfwfgaia]
    +c:1542 [binder, in gaia_hydras.nfwfgaia]
    +c:1545 [binder, in gaia_hydras.nfwfgaia]
    +c:1553 [binder, in gaia_hydras.nfwfgaia]
    +c:156 [binder, in hydras.Ackermann.LNN]
    +c:156 [binder, in hydras.Ackermann.primRec]
    +c:1560 [binder, in gaia_hydras.nfwfgaia]
    +c:1563 [binder, in gaia_hydras.nfwfgaia]
    +c:1566 [binder, in gaia_hydras.nfwfgaia]
    +c:157 [binder, in additions.AM]
    +c:1570 [binder, in gaia_hydras.nfwfgaia]
    +c:1576 [binder, in gaia_hydras.nfwfgaia]
    +c:1580 [binder, in gaia_hydras.nfwfgaia]
    +c:1589 [binder, in gaia_hydras.nfwfgaia]
    +c:16 [binder, in hydras.Ackermann.extEqualNat]
    +c:16 [binder, in hydras.Ackermann.code]
    +c:16 [binder, in additions.Euclidean_Chains]
    +c:16 [binder, in hydras.Ackermann.folLogic3]
    +c:16 [binder, in hydras.MoreAck.PrimRecExamples]
    +c:160 [binder, in hydras.Ackermann.primRec]
    +c:1603 [binder, in gaia_hydras.nfwfgaia]
    +c:1614 [binder, in gaia_hydras.nfwfgaia]
    +c:1623 [binder, in gaia_hydras.nfwfgaia]
    +c:1631 [binder, in gaia_hydras.nfwfgaia]
    +c:1637 [binder, in gaia_hydras.nfwfgaia]
    +c:164 [binder, in hydras.Ackermann.LNN]
    +c:164 [binder, in hydras.Gamma0.Gamma0]
    +c:1647 [binder, in gaia_hydras.nfwfgaia]
    +c:1652 [binder, in gaia_hydras.nfwfgaia]
    +c:1662 [binder, in gaia_hydras.nfwfgaia]
    +c:1673 [binder, in gaia_hydras.nfwfgaia]
    +c:1676 [binder, in gaia_hydras.nfwfgaia]
    +c:168 [binder, in hydras.Gamma0.Gamma0]
    +c:1685 [binder, in gaia_hydras.nfwfgaia]
    +c:1693 [binder, in gaia_hydras.nfwfgaia]
    +c:17 [binder, in hydras.solutions_exercises.FibonacciPR]
    +c:172 [binder, in hydras.Gamma0.Gamma0]
    +c:1747 [binder, in gaia_hydras.nfwfgaia]
    +c:1751 [binder, in gaia_hydras.nfwfgaia]
    +c:1754 [binder, in gaia_hydras.nfwfgaia]
    +c:179 [binder, in additions.Addition_Chains]
    +c:1793 [binder, in gaia_hydras.nfwfgaia]
    +c:180 [binder, in additions.Addition_Chains]
    +c:181 [binder, in additions.Addition_Chains]
    +c:1812 [binder, in gaia_hydras.nfwfgaia]
    +c:182 [binder, in hydras.Ackermann.primRec]
    +c:185 [binder, in hydras.Ackermann.primRec]
    +c:1858 [binder, in gaia_hydras.nfwfgaia]
    +c:187 [binder, in additions.Addition_Chains]
    +c:1879 [binder, in gaia_hydras.nfwfgaia]
    +c:188 [binder, in hydras.Ackermann.primRec]
    +c:1888 [binder, in gaia_hydras.nfwfgaia]
    +c:19 [binder, in additions.AM]
    +c:19 [binder, in hydras.solutions_exercises.FibonacciPR]
    +c:190 [binder, in hydras.Ackermann.cPair]
    +c:193 [binder, in hydras.Ackermann.primRec]
    +c:196 [binder, in hydras.Epsilon0.T1]
    +c:196 [binder, in hydras.Ackermann.primRec]
    +c:199 [binder, in hydras.Ackermann.primRec]
    +c:20 [binder, in hydras.Prelude.MoreDecidable]
    +c:2008 [binder, in gaia_hydras.nfwfgaia]
    +c:2023 [binder, in gaia_hydras.nfwfgaia]
    +c:2027 [binder, in gaia_hydras.nfwfgaia]
    +c:2032 [binder, in gaia_hydras.nfwfgaia]
    +c:2039 [binder, in gaia_hydras.nfwfgaia]
    +c:204 [binder, in hydras.Ackermann.primRec]
    +c:2046 [binder, in gaia_hydras.nfwfgaia]
    +c:2049 [binder, in gaia_hydras.nfwfgaia]
    +c:205 [binder, in additions.Addition_Chains]
    +c:2055 [binder, in gaia_hydras.nfwfgaia]
    +c:2060 [binder, in gaia_hydras.nfwfgaia]
    +c:207 [binder, in hydras.Ackermann.primRec]
    +c:207 [binder, in additions.Addition_Chains]
    +c:2072 [binder, in gaia_hydras.nfwfgaia]
    +c:2075 [binder, in gaia_hydras.nfwfgaia]
    +c:208 [binder, in additions.Addition_Chains]
    +c:208 [binder, in gaia_hydras.nfwfgaia]
    +c:21 [binder, in hydras.solutions_exercises.FibonacciPR]
    +c:210 [binder, in hydras.Ackermann.primRec]
    +c:211 [binder, in gaia_hydras.nfwfgaia]
    +c:213 [binder, in additions.Addition_Chains]
    +c:214 [binder, in additions.Addition_Chains]
    +c:214 [binder, in gaia_hydras.nfwfgaia]
    +c:215 [binder, in hydras.Ackermann.primRec]
    +c:215 [binder, in hydras.Ackermann.cPair]
    +c:216 [binder, in additions.Addition_Chains]
    +c:217 [binder, in gaia_hydras.nfwfgaia]
    +c:218 [binder, in hydras.Ackermann.primRec]
    +c:218 [binder, in additions.Addition_Chains]
    +c:22 [binder, in hydras.Hydra.BigBattle]
    +c:22 [binder, in additions.Monoid_instances]
    +c:220 [binder, in hydras.Gamma0.Gamma0]
    +c:221 [binder, in hydras.Ackermann.primRec]
    +c:224 [binder, in hydras.Ackermann.primRec]
    +c:226 [binder, in hydras.Gamma0.Gamma0]
    +c:227 [binder, in hydras.Ackermann.primRec]
    +c:23 [binder, in additions.Trace_exercise]
    +c:230 [binder, in hydras.Gamma0.Gamma0]
    +c:231 [binder, in hydras.Ackermann.primRec]
    +c:234 [binder, in hydras.Ackermann.primRec]
    +c:234 [binder, in hydras.Gamma0.Gamma0]
    +c:237 [binder, in hydras.Ackermann.primRec]
    +c:24 [binder, in hydras.Prelude.Comparable]
    +c:24 [binder, in additions.Trace_exercise]
    +c:240 [binder, in hydras.Ackermann.primRec]
    +c:243 [binder, in hydras.Ackermann.primRec]
    +c:247 [binder, in hydras.Ackermann.primRec]
    +c:25 [binder, in gaia_hydras.GHessenberg]
    +c:250 [binder, in hydras.Ackermann.primRec]
    +c:253 [binder, in hydras.Ackermann.primRec]
    +c:256 [binder, in hydras.Ackermann.primRec]
    +c:259 [binder, in hydras.Ackermann.primRec]
    +c:26 [binder, in additions.Fib2]
    +c:26 [binder, in hydras.Prelude.More_Arith]
    +C:26 [binder, in hydras.Ackermann.fol]
    +c:26 [binder, in hydras.Gamma0.Gamma0]
    +c:263 [binder, in hydras.Ackermann.primRec]
    +C:267 [binder, in hydras.Ackermann.checkPrf]
    +c:267 [binder, in hydras.Ackermann.primRec]
    +c:270 [binder, in hydras.Gamma0.Gamma0]
    +c:271 [binder, in hydras.Ackermann.primRec]
    +c:275 [binder, in hydras.Ackermann.primRec]
    +c:279 [binder, in hydras.Ackermann.primRec]
    +c:28 [binder, in additions.Fib2]
    +c:284 [binder, in hydras.Ackermann.primRec]
    +c:286 [binder, in hydras.Gamma0.Gamma0]
    +c:288 [binder, in hydras.Ackermann.primRec]
    +c:288 [binder, in additions.Addition_Chains]
    +c:290 [binder, in hydras.Gamma0.Gamma0]
    +c:292 [binder, in hydras.Ackermann.primRec]
    +c:294 [binder, in hydras.Gamma0.Gamma0]
    +c:297 [binder, in hydras.Ackermann.primRec]
    +c:297 [binder, in additions.Addition_Chains]
    +c:298 [binder, in hydras.Gamma0.Gamma0]
    +c:3 [binder, in additions.AM]
    +C:3 [binder, in hydras.rpo.more_list]
    +c:3 [binder, in hydras.Epsilon0.F_alpha]
    +c:3 [binder, in hydras.Prelude.MoreDecidable]
    +c:301 [binder, in hydras.Ackermann.primRec]
    +c:305 [binder, in hydras.Ackermann.primRec]
    +c:305 [binder, in gaia_hydras.nfwfgaia]
    +c:308 [binder, in Goedel.PRrepresentable]
    +c:308 [binder, in gaia_hydras.nfwfgaia]
    +c:309 [binder, in hydras.Ackermann.primRec]
    +c:309 [binder, in hydras.Gamma0.Gamma0]
    +C:31 [binder, in hydras.Ackermann.folProof]
    +c:31 [binder, in hydras.Prelude.Comparable]
    +c:31 [binder, in hydras.Hydra.BigBattle]
    +c:312 [binder, in hydras.Epsilon0.T1]
    +c:313 [binder, in hydras.Ackermann.primRec]
    +c:317 [binder, in hydras.Ackermann.primRec]
    +c:32 [binder, in hydras.Ackermann.extEqualNat]
    +c:32 [binder, in hydras.Gamma0.Gamma0]
    +c:32 [binder, in gaia_hydras.GHessenberg]
    +c:321 [binder, in hydras.Ackermann.primRec]
    +c:326 [binder, in hydras.Ackermann.primRec]
    +c:33 [binder, in hydras.Ackermann.folLogic3]
    +c:330 [binder, in hydras.Ackermann.primRec]
    +c:334 [binder, in hydras.Ackermann.primRec]
    +c:338 [binder, in hydras.Ackermann.primRec]
    +c:34 [binder, in additions.AM]
    +c:340 [binder, in Goedel.PRrepresentable]
    +c:342 [binder, in Goedel.PRrepresentable]
    +c:342 [binder, in hydras.Ackermann.primRec]
    +c:342 [binder, in hydras.Ackermann.cPair]
    +c:344 [binder, in Goedel.PRrepresentable]
    +c:345 [binder, in Goedel.PRrepresentable]
    +c:348 [binder, in hydras.Ackermann.cPair]
    +c:35 [binder, in hydras.Ackermann.cPair]
    +c:35 [binder, in gaia_hydras.GHessenberg]
    +c:351 [binder, in hydras.Ackermann.cPair]
    +c:352 [binder, in additions.Euclidean_Chains]
    +c:353 [binder, in Goedel.PRrepresentable]
    +c:354 [binder, in hydras.Ackermann.cPair]
    +c:357 [binder, in Goedel.PRrepresentable]
    +c:357 [binder, in hydras.Ackermann.cPair]
    +c:359 [binder, in hydras.Ackermann.cPair]
    +c:36 [binder, in hydras.Prelude.MoreVectors]
    +c:361 [binder, in Goedel.PRrepresentable]
    +c:361 [binder, in hydras.Ackermann.cPair]
    +c:364 [binder, in hydras.Ackermann.cPair]
    +c:365 [binder, in Goedel.PRrepresentable]
    +c:367 [binder, in hydras.Ackermann.cPair]
    +c:37 [binder, in hydras.Prelude.Comparable]
    +c:370 [binder, in hydras.Ackermann.cPair]
    +c:38 [binder, in hydras.Hydra.BigBattle]
    +c:38 [binder, in gaia_hydras.GHessenberg]
    +c:387 [binder, in Goedel.PRrepresentable]
    +c:39 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +c:39 [binder, in hydras.Schutte.Well_Orders]
    +c:391 [binder, in Goedel.PRrepresentable]
    +c:395 [binder, in Goedel.PRrepresentable]
    +c:399 [binder, in Goedel.PRrepresentable]
    +c:4 [binder, in additions.AM]
    +c:4 [binder, in hydras.Gamma0.Gamma0]
    +c:40 [binder, in additions.Addition_Chains]
    +c:401 [binder, in gaia_hydras.nfwfgaia]
    +c:407 [binder, in Goedel.PRrepresentable]
    +c:407 [binder, in gaia_hydras.nfwfgaia]
    +c:410 [binder, in gaia_hydras.nfwfgaia]
    +c:411 [binder, in Goedel.PRrepresentable]
    +c:414 [binder, in hydras.Epsilon0.T1]
    +c:414 [binder, in gaia_hydras.nfwfgaia]
    +c:415 [binder, in Goedel.PRrepresentable]
    +c:419 [binder, in Goedel.PRrepresentable]
    +c:43 [binder, in hydras.Ackermann.cPair]
    +c:43 [binder, in additions.Addition_Chains]
    +c:432 [binder, in hydras.Gamma0.Gamma0]
    +c:438 [binder, in hydras.Ackermann.primRec]
    +c:444 [binder, in hydras.Epsilon0.T1]
    +c:445 [binder, in hydras.Epsilon0.T1]
    +c:45 [binder, in additions.Euclidean_Chains]
    +c:450 [binder, in hydras.Epsilon0.T1]
    +c:460 [binder, in hydras.Epsilon0.T1]
    +c:461 [binder, in gaia_hydras.nfwfgaia]
    +c:463 [binder, in hydras.Epsilon0.T1]
    +c:47 [binder, in hydras.Ackermann.cPair]
    +c:480 [binder, in hydras.Gamma0.Gamma0]
    +c:49 [binder, in hydras.Prelude.More_Arith]
    +c:50 [binder, in hydras.Prelude.Comparable]
    +c:50 [binder, in hydras.Hydra.BigBattle]
    +c:505 [binder, in hydras.Epsilon0.T1]
    +c:51 [binder, in gaia_hydras.T1Bridge]
    +c:51 [binder, in hydras.Ackermann.cPair]
    +c:51 [binder, in additions.Addition_Chains]
    +c:52 [binder, in additions.Addition_Chains]
    +c:526 [binder, in hydras.Gamma0.Gamma0]
    +c:529 [binder, in hydras.Gamma0.Gamma0]
    +c:53 [binder, in hydras.Prelude.Comparable]
    +c:532 [binder, in hydras.Gamma0.Gamma0]
    +c:54 [binder, in hydras.Hydra.BigBattle]
    +c:540 [binder, in hydras.Ackermann.primRec]
    +c:55 [binder, in hydras.Ackermann.cPair]
    +c:558 [binder, in hydras.Gamma0.Gamma0]
    +c:56 [binder, in hydras.Prelude.Comparable]
    +c:56 [binder, in additions.Addition_Chains]
    +c:565 [binder, in hydras.Epsilon0.T1]
    +c:567 [binder, in hydras.Gamma0.Gamma0]
    +c:57 [binder, in additions.AM]
    +c:573 [binder, in hydras.Epsilon0.T1]
    +c:574 [binder, in hydras.Gamma0.Gamma0]
    +c:577 [binder, in hydras.Epsilon0.T1]
    +c:578 [binder, in hydras.Gamma0.Gamma0]
    +c:580 [binder, in hydras.Gamma0.Gamma0]
    +c:581 [binder, in hydras.Epsilon0.T1]
    +c:583 [binder, in hydras.Gamma0.Gamma0]
    +c:59 [binder, in hydras.Hydra.BigBattle]
    +c:591 [binder, in hydras.Gamma0.Gamma0]
    +c:594 [binder, in hydras.Gamma0.Gamma0]
    +c:599 [binder, in hydras.Gamma0.Gamma0]
    +c:604 [binder, in hydras.Epsilon0.T1]
    +c:607 [binder, in hydras.Epsilon0.T1]
    +c:611 [binder, in hydras.Epsilon0.T1]
    +c:614 [binder, in hydras.Epsilon0.T1]
    +c:614 [binder, in hydras.Ackermann.primRec]
    +c:617 [binder, in hydras.Epsilon0.T1]
    +c:621 [binder, in hydras.Epsilon0.T1]
    +c:622 [binder, in hydras.Ackermann.primRec]
    +c:623 [binder, in hydras.Epsilon0.T1]
    +c:626 [binder, in hydras.Ackermann.primRec]
    +c:629 [binder, in hydras.Epsilon0.T1]
    +c:636 [binder, in hydras.Gamma0.Gamma0]
    +c:641 [binder, in hydras.Ackermann.primRec]
    +c:646 [binder, in hydras.Ackermann.primRec]
    +c:654 [binder, in hydras.Ackermann.primRec]
    +c:673 [binder, in hydras.Gamma0.Gamma0]
    +c:677 [binder, in hydras.Ackermann.primRec]
    +c:68 [binder, in hydras.Schutte.Schutte_basics]
    +c:68 [binder, in additions.Addition_Chains]
    +c:681 [binder, in hydras.Ackermann.primRec]
    +c:684 [binder, in hydras.Ackermann.primRec]
    +c:686 [binder, in hydras.Ackermann.primRec]
    +c:688 [binder, in hydras.Ackermann.primRec]
    +c:69 [binder, in hydras.Prelude.DecPreOrder]
    +c:690 [binder, in hydras.Ackermann.primRec]
    +c:692 [binder, in hydras.Gamma0.Gamma0]
    +c:693 [binder, in hydras.Ackermann.primRec]
    +c:696 [binder, in hydras.Ackermann.primRec]
    +c:70 [binder, in additions.Addition_Chains]
    +c:71 [binder, in hydras.Gamma0.T2]
    +c:71 [binder, in additions.AM]
    +c:71 [binder, in hydras.Schutte.Schutte_basics]
    +c:717 [binder, in hydras.Ackermann.primRec]
    +c:721 [binder, in hydras.Ackermann.primRec]
    +c:722 [binder, in gaia_hydras.nfwfgaia]
    +c:726 [binder, in hydras.Ackermann.primRec]
    +c:729 [binder, in hydras.Ackermann.primRec]
    +c:732 [binder, in hydras.Ackermann.primRec]
    +c:733 [binder, in hydras.Epsilon0.T1]
    +c:735 [binder, in hydras.Ackermann.primRec]
    +c:737 [binder, in hydras.Epsilon0.T1]
    +c:738 [binder, in hydras.Ackermann.primRec]
    +c:74 [binder, in hydras.Schutte.Schutte_basics]
    +c:741 [binder, in hydras.Ackermann.primRec]
    +c:744 [binder, in hydras.Ackermann.primRec]
    +c:747 [binder, in hydras.Ackermann.primRec]
    +c:75 [binder, in hydras.Prelude.DecPreOrder]
    +c:750 [binder, in hydras.Ackermann.primRec]
    +c:753 [binder, in hydras.Ackermann.primRec]
    +c:759 [binder, in hydras.Ackermann.primRec]
    +c:761 [binder, in hydras.Ackermann.primRec]
    +c:763 [binder, in hydras.Ackermann.primRec]
    +c:765 [binder, in hydras.Ackermann.primRec]
    +c:767 [binder, in hydras.Ackermann.primRec]
    +c:769 [binder, in hydras.Ackermann.primRec]
    +c:77 [binder, in hydras.Schutte.Schutte_basics]
    +c:771 [binder, in hydras.Ackermann.primRec]
    +c:773 [binder, in hydras.Ackermann.primRec]
    +c:775 [binder, in hydras.Ackermann.primRec]
    +c:777 [binder, in hydras.Ackermann.primRec]
    +c:779 [binder, in hydras.Ackermann.primRec]
    +c:78 [binder, in additions.Addition_Chains]
    +c:781 [binder, in hydras.Ackermann.primRec]
    +c:784 [binder, in hydras.Ackermann.primRec]
    +c:787 [binder, in hydras.Ackermann.primRec]
    +c:79 [binder, in hydras.Epsilon0.Hessenberg]
    +c:795 [binder, in hydras.Ackermann.primRec]
    +c:8 [binder, in hydras.Prelude.MoreDecidable]
    +c:8 [binder, in hydras.Gamma0.Gamma0]
    +c:80 [binder, in additions.Addition_Chains]
    +c:801 [binder, in hydras.Ackermann.primRec]
    +c:81 [binder, in additions.AM]
    +c:850 [binder, in hydras.Ackermann.codeSubFormula]
    +c:854 [binder, in gaia_hydras.nfwfgaia]
    +c:863 [binder, in gaia_hydras.nfwfgaia]
    +c:868 [binder, in gaia_hydras.nfwfgaia]
    +c:88 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +c:9 [binder, in hydras.MoreAck.PrimRecExamples]
    +c:90 [binder, in hydras.MoreAck.PrimRecExamples]
    +c:905 [binder, in gaia_hydras.nfwfgaia]
    +c:91 [binder, in additions.AM]
    +c:913 [binder, in gaia_hydras.nfwfgaia]
    +c:92 [binder, in additions.AM]
    +c:93 [binder, in hydras.Gamma0.T2]
    +c:940 [binder, in gaia_hydras.nfwfgaia]
    +c:947 [binder, in gaia_hydras.nfwfgaia]
    +c:95 [binder, in hydras.Prelude.Comparable]
    +c:995 [binder, in gaia_hydras.nfwfgaia]
    +

    D

    +daughters:7 [binder, in hydras.Hydra.Hydra_Definitions]
    +DA:36 [binder, in hydras.Schutte.Countable]
    +DA:37 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +DB:38 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +DecidableSet [definition, in Goedel.rosser]
    +decidable_set [library]
    +decide [projection, in hydras.Prelude.STDPP_compat]
    +decide [constructor, in hydras.Prelude.STDPP_compat]
    +decideAxioms [lemma, in Goedel.rosserPA]
    +decideAxioms [lemma, in Goedel.rosser]
    +decide_hltE [lemma, in gaia_hydras.T1Bridge]
    +decide_rel [projection, in hydras.Prelude.STDPP_compat]
    +decide_rel [constructor, in hydras.Prelude.STDPP_compat]
    +Decision [record, in hydras.Prelude.STDPP_compat]
    +Decision [inductive, in hydras.Prelude.STDPP_compat]
    +decomp [lemma, in hydras.Prelude.MoreVectors]
    +decompose [lemma, in hydras.OrdinalNotations.ON_Omega2]
    +decompos2 [lemma, in hydras.Prelude.MoreVectors]
    +decomp1 [lemma, in hydras.Prelude.MoreVectors]
    +decomp2 [lemma, in hydras.Prelude.MoreVectors]
    +DecPreOrder [library]
    +DecPreOrder_Instances [library]
    +decr [projection, in hydras.Prelude.WfVariant]
    +decr_seq [lemma, in hydras.solutions_exercises.MultisetWf]
    +dec:20 [binder, in hydras.Prelude.STDPP_compat]
    +dec:33 [binder, in hydras.Prelude.Sort_spec]
    +dec:42 [binder, in hydras.Prelude.Sort_spec]
    +dec:66 [binder, in hydras.Prelude.Sort_spec]
    +dec:77 [binder, in hydras.Prelude.Sort_spec]
    +dec:90 [binder, in hydras.Prelude.DecPreOrder]
    +Deduction [library]
    +DeductionTheorem [lemma, in hydras.Ackermann.Deduction]
    +Deduction_Theorem.list_incl [variable, in hydras.Ackermann.Deduction]
    +Deduction_Theorem.SysPrf [variable, in hydras.Ackermann.Deduction]
    +Deduction_Theorem.Prf [variable, in hydras.Ackermann.Deduction]
    +Deduction_Theorem.Terms [variable, in hydras.Ackermann.Deduction]
    +Deduction_Theorem.Term [variable, in hydras.Ackermann.Deduction]
    +Deduction_Theorem.System [variable, in hydras.Ackermann.Deduction]
    +Deduction_Theorem.Formulas [variable, in hydras.Ackermann.Deduction]
    +Deduction_Theorem.Formula [variable, in hydras.Ackermann.Deduction]
    +Deduction_Theorem.L [variable, in hydras.Ackermann.Deduction]
    +Deduction_Theorem [section, in hydras.Ackermann.Deduction]
    +Definitions [section, in additions.FirstSteps]
    +Definitions [section, in hydras.OrdinalNotations.ON_Generic]
    +Definitions [section, in hydras.Prelude.Simple_LexProd]
    +Definitions.A [variable, in additions.FirstSteps]
    +Definitions.A [variable, in hydras.Prelude.Simple_LexProd]
    +Definitions.B [variable, in hydras.Prelude.Simple_LexProd]
    +Definitions.ltA [variable, in hydras.Prelude.Simple_LexProd]
    +Definitions.ltB [variable, in hydras.Prelude.Simple_LexProd]
    +Definitions.mult [variable, in additions.FirstSteps]
    +Definitions.one [variable, in additions.FirstSteps]
    +Definitions.pair2sig [variable, in hydras.Prelude.Simple_LexProd]
    +Definitions.wfA [variable, in hydras.Prelude.Simple_LexProd]
    +Definitions.wfB [variable, in hydras.Prelude.Simple_LexProd]
    +_ ^ _ [notation, in additions.FirstSteps]
    +_ * _ [notation, in additions.FirstSteps]
    +1 [notation, in additions.FirstSteps]
    +Defs [section, in hydras.Prelude.MoreOrders]
    +Defs [section, in hydras.OrdinalNotations.ON_mult]
    +Defs [section, in hydras.OrdinalNotations.ON_plus]
    +Defs.A [variable, in hydras.Prelude.MoreOrders]
    +Defs.lt [variable, in hydras.Prelude.MoreOrders]
    +_ <= _ [notation, in hydras.Prelude.MoreOrders]
    +_ < _ [notation, in hydras.Prelude.MoreOrders]
    +delta:593 [binder, in hydras.Epsilon0.T1]
    +delta:62 [binder, in hydras.Schutte.Addition]
    +Demo [module, in additions.Monoid_def]
    +Demo [library]
    +Demo_power [library]
    +Demo.nat_mult_op [instance, in additions.Monoid_def]
    +den_U [lemma, in hydras.Schutte.Ordering_Functions]
    +depth [definition, in hydras.Ackermann.fol]
    +depthForall [lemma, in hydras.Ackermann.fol]
    +depthImp1 [lemma, in hydras.Ackermann.fol]
    +depthImp2 [lemma, in hydras.Ackermann.fol]
    +depthNot [lemma, in hydras.Ackermann.fol]
    +depth_rec_demo.a [variable, in hydras.MoreAck.FolExamples]
    +depth_rec_demo.P [variable, in hydras.MoreAck.FolExamples]
    +depth_rec_demo.L [variable, in hydras.MoreAck.FolExamples]
    +depth_rec_demo [section, in hydras.MoreAck.FolExamples]
    +dest:102 [binder, in hydras.Hydra.Hydra_Definitions]
    +dicho [definition, in additions.Dichotomy]
    +Dichotomy [library]
    +Dicho_strat [instance, in additions.Dichotomy]
    +dicho_gt [lemma, in additions.Dichotomy]
    +dicho_lt [lemma, in additions.Dichotomy]
    +dicho_aux_gt [lemma, in additions.Dichotomy]
    +dicho_aux_lt [lemma, in additions.Dichotomy]
    +dicho_aux_le_xIXI [lemma, in additions.Dichotomy]
    +dicho_aux_le_xIXO [lemma, in additions.Dichotomy]
    +dicho_aux_le_xOXI [lemma, in additions.Dichotomy]
    +dicho_aux_le_xOXO [lemma, in additions.Dichotomy]
    +dicho_aux_xIxI [lemma, in additions.Dichotomy]
    +dicho_aux_xIxO [lemma, in additions.Dichotomy]
    +dicho_aux_xOxI [lemma, in additions.Dichotomy]
    +dicho_aux_xOxO [lemma, in additions.Dichotomy]
    +dickson [library]
    +diffP [lemma, in gaia_hydras.GPrelude]
    +Direct_proof.nf_Acc [lemma, in hydras.Epsilon0.T1]
    +Direct_proof.Acc_implies_Acc_strong [lemma, in hydras.Epsilon0.T1]
    +Direct_proof.Acc_strong_stronger [lemma, in hydras.Epsilon0.T1]
    +Direct_proof.acc_impl [lemma, in hydras.Epsilon0.T1]
    +Direct_proof.well_foundedness_proof.Acc_strong [variable, in hydras.Epsilon0.T1]
    +Direct_proof.wf_LT [lemma, in hydras.Epsilon0.T1]
    +Direct_proof.well_foundedness_proof.First_attempt [section, in hydras.Epsilon0.T1]
    +Direct_proof.Acc_zero [lemma, in hydras.Epsilon0.T1]
    +Direct_proof.well_foundedness_proof [section, in hydras.Epsilon0.T1]
    +Direct_proof [module, in hydras.Epsilon0.T1]
    +disp:27 [binder, in gaia_hydras.onType]
    +div_eucl_unique [lemma, in hydras.Prelude.More_Arith]
    +div_not_qlt [lemma, in hydras.Prelude.More_Arith]
    +div_gamma_pos [lemma, in additions.Strategies]
    +div2IsPR [instance, in hydras.Ackermann.cPair]
    +div2_even_plus [lemma, in hydras.Prelude.More_Arith]
    +div2_incr [lemma, in hydras.Prelude.More_Arith]
    +div2_of_Even [lemma, in hydras.Prelude.More_Arith]
    +div2_double_is_id [lemma, in hydras.Prelude.More_Arith]
    +dominates [definition, in hydras.Prelude.Iterates]
    +dominates [definition, in gaia_hydras.T1Bridge]
    +dominates_iterate [lemma, in hydras.Prelude.Iterates]
    +dominates_from_le [lemma, in hydras.Prelude.Iterates]
    +dominates_trans_strong [lemma, in hydras.Prelude.Iterates]
    +dominates_trans [lemma, in hydras.Prelude.Iterates]
    +dominates_from_trans [lemma, in hydras.Prelude.Iterates]
    +dominates_strong [definition, in hydras.Prelude.Iterates]
    +dominates_from [definition, in hydras.Prelude.Iterates]
    +dominates_strong [definition, in gaia_hydras.T1Bridge]
    +dominates_from [definition, in gaia_hydras.T1Bridge]
    +dom_AckNotPR [lemma, in hydras.MoreAck.AckNotPR]
    +dom_AckNotPR.Hf [variable, in hydras.MoreAck.AckNotPR]
    +dom_AckNotPR.f [variable, in hydras.MoreAck.AckNotPR]
    +dom_AckNotPR [section, in hydras.MoreAck.AckNotPR]
    +dom:152 [binder, in hydras.rpo.more_list]
    +Done [lemma, in hydras.Hydra.BigBattle]
    +double [definition, in hydras.solutions_exercises.MorePRExamples]
    +double [definition, in hydras.MoreAck.PrimRecExamples]
    +doubleIsPR [lemma, in hydras.solutions_exercises.MorePRExamples]
    +doubleIsPR [instance, in hydras.MoreAck.PrimRecExamples]
    +doubleS [definition, in hydras.Hydra.BigBattle]
    +doubleS_law [lemma, in hydras.Hydra.BigBattle]
    +double_is_even [lemma, in hydras.Prelude.More_Arith]
    +double_inj [lemma, in hydras.Prelude.More_Arith]
    +double_plus [lemma, in hydras.Prelude.More_Arith]
    +double_S [lemma, in hydras.Prelude.More_Arith]
    +DS_iota.Proof_case_6.Hn [variable, in hydras.Hydra.O2H]
    +DS_iota.Proof_case_6.n [variable, in hydras.Hydra.O2H]
    +DS_iota.Proof_case_6.gamma_pos [variable, in hydras.Hydra.O2H]
    +DS_iota.Proof_case_6.Hgamma [variable, in hydras.Hydra.O2H]
    +DS_iota.Proof_case_6.Hbeta [variable, in hydras.Hydra.O2H]
    +DS_iota.Proof_case_6.gamma [variable, in hydras.Hydra.O2H]
    +DS_iota.Proof_case_6.beta [variable, in hydras.Hydra.O2H]
    +DS_iota.Proof_case_6 [section, in hydras.Hydra.O2H]
    +DS_iota.Proof_case_5.Hn [variable, in hydras.Hydra.O2H]
    +DS_iota.Proof_case_5.n [variable, in hydras.Hydra.O2H]
    +DS_iota.Proof_case_5.Hgamma [variable, in hydras.Hydra.O2H]
    +DS_iota.Proof_case_5.gamma [variable, in hydras.Hydra.O2H]
    +DS_iota.Proof_case_5 [section, in hydras.Hydra.O2H]
    +DS_iota.Proof_case_4.Hn [variable, in hydras.Hydra.O2H]
    +DS_iota.Proof_case_4.n [variable, in hydras.Hydra.O2H]
    +DS_iota.Proof_case_4.Hlim [variable, in hydras.Hydra.O2H]
    +DS_iota.Proof_case_4.Hlambda [variable, in hydras.Hydra.O2H]
    +DS_iota.Proof_case_4.lambda [variable, in hydras.Hydra.O2H]
    +DS_iota.Proof_case_4 [section, in hydras.Hydra.O2H]
    +DS_iota_3 [lemma, in hydras.Hydra.O2H]
    +DS_iota_2 [lemma, in hydras.Hydra.O2H]
    +DS_iota_1 [lemma, in hydras.Hydra.O2H]
    +DS_iota.Hrec [variable, in hydras.Hydra.O2H]
    +DS_iota.nonzero [variable, in hydras.Hydra.O2H]
    +DS_iota.Halpha [variable, in hydras.Hydra.O2H]
    +DS_iota.i [variable, in hydras.Hydra.O2H]
    +DS_iota.alpha [variable, in hydras.Hydra.O2H]
    +DS_iota [section, in hydras.Hydra.O2H]
    +d':1205 [binder, in gaia_hydras.nfwfgaia]
    +d':1339 [binder, in gaia_hydras.nfwfgaia]
    +d':1385 [binder, in gaia_hydras.nfwfgaia]
    +d':1437 [binder, in gaia_hydras.nfwfgaia]
    +d':1501 [binder, in gaia_hydras.nfwfgaia]
    +d':1557 [binder, in gaia_hydras.nfwfgaia]
    +d':1586 [binder, in gaia_hydras.nfwfgaia]
    +d':1610 [binder, in gaia_hydras.nfwfgaia]
    +d':1692 [binder, in gaia_hydras.nfwfgaia]
    +d':2044 [binder, in gaia_hydras.nfwfgaia]
    +d':2067 [binder, in gaia_hydras.nfwfgaia]
    +d':27 [binder, in additions.Monoid_instances]
    +d':849 [binder, in gaia_hydras.nfwfgaia]
    +d:10 [binder, in hydras.MoreAck.PrimRecExamples]
    +d:116 [binder, in hydras.Ackermann.cPair]
    +d:118 [binder, in hydras.Epsilon0.Hessenberg]
    +d:13 [binder, in hydras.Prelude.MoreDecidable]
    +d:1308 [binder, in hydras.Ackermann.codeSubFormula]
    +d:1334 [binder, in gaia_hydras.nfwfgaia]
    +d:1349 [binder, in gaia_hydras.nfwfgaia]
    +d:1354 [binder, in gaia_hydras.nfwfgaia]
    +d:1359 [binder, in gaia_hydras.nfwfgaia]
    +d:1364 [binder, in gaia_hydras.nfwfgaia]
    +d:1369 [binder, in gaia_hydras.nfwfgaia]
    +d:1374 [binder, in gaia_hydras.nfwfgaia]
    +d:1380 [binder, in gaia_hydras.nfwfgaia]
    +d:1432 [binder, in gaia_hydras.nfwfgaia]
    +d:146 [binder, in additions.fib]
    +d:149 [binder, in hydras.Ackermann.LNT]
    +d:149 [binder, in hydras.Ackermann.primRec]
    +d:1496 [binder, in gaia_hydras.nfwfgaia]
    +d:152 [binder, in hydras.Ackermann.LNN]
    +d:153 [binder, in hydras.Ackermann.primRec]
    +d:1535 [binder, in gaia_hydras.nfwfgaia]
    +d:154 [binder, in hydras.Ackermann.LNT]
    +d:1546 [binder, in gaia_hydras.nfwfgaia]
    +d:1555 [binder, in gaia_hydras.nfwfgaia]
    +d:157 [binder, in hydras.Ackermann.LNN]
    +d:157 [binder, in hydras.Ackermann.primRec]
    +d:1591 [binder, in gaia_hydras.nfwfgaia]
    +d:1605 [binder, in gaia_hydras.nfwfgaia]
    +d:161 [binder, in hydras.Ackermann.primRec]
    +d:165 [binder, in hydras.Ackermann.LNN]
    +d:1654 [binder, in gaia_hydras.nfwfgaia]
    +d:1678 [binder, in gaia_hydras.nfwfgaia]
    +d:1687 [binder, in gaia_hydras.nfwfgaia]
    +d:17 [binder, in hydras.MoreAck.PrimRecExamples]
    +d:1795 [binder, in gaia_hydras.nfwfgaia]
    +d:19 [binder, in hydras.Prelude.MoreDecidable]
    +D:2 [binder, in hydras.Schutte.Lub]
    +d:2029 [binder, in gaia_hydras.nfwfgaia]
    +d:23 [binder, in additions.Monoid_instances]
    +d:264 [binder, in hydras.Ackermann.primRec]
    +d:268 [binder, in hydras.Ackermann.primRec]
    +d:272 [binder, in hydras.Ackermann.primRec]
    +d:276 [binder, in hydras.Ackermann.primRec]
    +d:280 [binder, in hydras.Ackermann.primRec]
    +d:285 [binder, in hydras.Ackermann.primRec]
    +d:289 [binder, in hydras.Ackermann.primRec]
    +d:293 [binder, in hydras.Ackermann.primRec]
    +d:298 [binder, in hydras.Ackermann.primRec]
    +d:302 [binder, in hydras.Ackermann.primRec]
    +d:306 [binder, in hydras.Ackermann.primRec]
    +d:310 [binder, in hydras.Ackermann.primRec]
    +d:314 [binder, in hydras.Ackermann.primRec]
    +d:318 [binder, in hydras.Ackermann.primRec]
    +d:322 [binder, in hydras.Ackermann.primRec]
    +d:327 [binder, in hydras.Ackermann.primRec]
    +d:331 [binder, in hydras.Ackermann.primRec]
    +d:335 [binder, in hydras.Ackermann.primRec]
    +d:335 [binder, in additions.Euclidean_Chains]
    +d:339 [binder, in hydras.Ackermann.primRec]
    +d:34 [binder, in hydras.Ackermann.folLogic3]
    +d:343 [binder, in hydras.Ackermann.primRec]
    +d:36 [binder, in hydras.Ackermann.cPair]
    +d:385 [binder, in additions.Euclidean_Chains]
    +d:391 [binder, in additions.Euclidean_Chains]
    +d:398 [binder, in additions.Euclidean_Chains]
    +d:4 [binder, in hydras.Prelude.MoreDecidable]
    +d:44 [binder, in hydras.Ackermann.cPair]
    +d:48 [binder, in hydras.Ackermann.cPair]
    +d:5 [binder, in hydras.Prelude.MoreDecidable]
    +d:52 [binder, in hydras.Ackermann.cPair]
    +d:56 [binder, in hydras.Ackermann.cPair]
    +d:567 [binder, in hydras.Epsilon0.T1]
    +d:595 [binder, in hydras.Gamma0.Gamma0]
    +d:609 [binder, in hydras.Epsilon0.T1]
    +d:625 [binder, in hydras.Epsilon0.T1]
    +d:631 [binder, in hydras.Epsilon0.T1]
    +d:655 [binder, in hydras.Ackermann.primRec]
    +D:8 [binder, in hydras.Schutte.Lub]
    +d:845 [binder, in gaia_hydras.nfwfgaia]
    +d:851 [binder, in hydras.Ackermann.codeSubFormula]
    +d:91 [binder, in hydras.MoreAck.PrimRecExamples]
    +

    E

    +Elements [definition, in hydras.Epsilon0.T1]
    +embedding [lemma, in hydras.Schutte.Correctness_E0]
    +EMonoid [record, in additions.Monoid_def]
    +empty_interval [lemma, in hydras.Prelude.MoreLists]
    +empty_ordering [lemma, in hydras.Schutte.Ordering_Functions]
    +Eone_right [projection, in additions.Monoid_def]
    +Eone_left [projection, in additions.Monoid_def]
    +Eop_proper [instance, in additions.Pow_variant]
    +Eop_proper [instance, in additions.Pow]
    +Eop_comm [projection, in additions.Monoid_def]
    +Eop_assoc [projection, in additions.Monoid_def]
    +Eop_proper [projection, in additions.Monoid_def]
    +epsilon [definition, in hydras.Gamma0.T2]
    +epsilon_0 [definition, in hydras.Epsilon0.T1]
    +epsilon_equiv [lemma, in hydras.Schutte.MoreEpsilonIota]
    +epsilon_ind [lemma, in hydras.Schutte.MoreEpsilonIota]
    +epsilon_fxp [lemma, in hydras.Gamma0.Gamma0]
    +epsilon0 [abbreviation, in hydras.Gamma0.T2]
    +epsilon0 [definition, in hydras.Schutte.AP]
    +Epsilon0 [instance, in gaia_hydras.T1Bridge]
    +Epsilon0 [instance, in hydras.Epsilon0.E0]
    +Epsilon0 [library]
    +Epsilon0rpo [library]
    +epsilon0_dec [instance, in hydras.Epsilon0.T1]
    +epsilon0_pre_order [instance, in hydras.Epsilon0.T1]
    +Epsilon0_correct [instance, in hydras.Schutte.Correctness_E0]
    +epsilon0_Cr1 [lemma, in hydras.Schutte.Critical]
    +epsilon0_lfp [lemma, in hydras.Schutte.AP]
    +epsilon0_AP [lemma, in hydras.Schutte.AP]
    +epsilon0_fxp [lemma, in hydras.Schutte.AP]
    +epsilon0_as_lub [lemma, in hydras.Gamma0.Gamma0]
    +epsilon0_fxp [lemma, in hydras.Gamma0.Gamma0]
    +Epsilon0_Needed_Std [library]
    +Epsilon0_Needed_Free [library]
    +Epsilon0_Needed_Generic [library]
    +eqA:107 [binder, in hydras.rpo.more_list]
    +eqA:115 [binder, in hydras.rpo.more_list]
    +eqA:139 [binder, in hydras.rpo.more_list]
    +eqA:148 [binder, in hydras.rpo.more_list]
    +eqA:158 [binder, in hydras.rpo.more_list]
    +eqA:167 [binder, in hydras.rpo.more_list]
    +eqA:174 [binder, in hydras.rpo.more_list]
    +eqA:182 [binder, in hydras.rpo.more_list]
    +eqA:190 [binder, in hydras.rpo.more_list]
    +eqA:205 [binder, in hydras.rpo.more_list]
    +eqA:214 [binder, in hydras.rpo.more_list]
    +eqA:224 [binder, in hydras.rpo.more_list]
    +eqA:242 [binder, in hydras.rpo.more_list]
    +eqA:251 [binder, in hydras.rpo.more_list]
    +eqA:263 [binder, in hydras.rpo.more_list]
    +eqA:81 [binder, in hydras.rpo.more_list]
    +eqA:91 [binder, in hydras.rpo.more_list]
    +eqA:99 [binder, in hydras.rpo.more_list]
    +EqDecision [abbreviation, in hydras.Prelude.STDPP_compat]
    +eqDepth [lemma, in hydras.Ackermann.fol]
    +eqIsPR [instance, in hydras.Ackermann.primRec]
    +eqLT [lemma, in hydras.Ackermann.LNN]
    +eqn_simpl2 [lemma, in gaia_hydras.nfwfgaia]
    +eqn_simpl1 [lemma, in gaia_hydras.nfwfgaia]
    +eqPlus [lemma, in hydras.Ackermann.LNN]
    +eqPlus [lemma, in hydras.Ackermann.LNT]
    +eqRefl [lemma, in hydras.Ackermann.LNN]
    +eqRefl [lemma, in hydras.Ackermann.LNT]
    +eqRefl [lemma, in hydras.Ackermann.folLogic3]
    +eqSucc [lemma, in hydras.Ackermann.LNN]
    +eqSucc [lemma, in hydras.Ackermann.LNT]
    +eqSym [lemma, in hydras.Ackermann.LNN]
    +eqSym [lemma, in hydras.Ackermann.LNT]
    +eqSym [lemma, in hydras.Ackermann.folLogic3]
    +eqTimes [lemma, in hydras.Ackermann.LNN]
    +eqTimes [lemma, in hydras.Ackermann.LNT]
    +eqTrans [lemma, in hydras.Ackermann.LNN]
    +eqTrans [lemma, in hydras.Ackermann.LNT]
    +eqTrans [lemma, in hydras.Ackermann.folLogic3]
    +equal [constructor, in hydras.Ackermann.fol]
    +equalFunction [lemma, in hydras.Ackermann.folLogic3]
    +Equality_Logic_Rules.termsMap [variable, in hydras.Ackermann.folLogic3]
    +Equality_Logic_Rules.SysPrf [variable, in hydras.Ackermann.folLogic3]
    +Equality_Logic_Rules.Prf [variable, in hydras.Ackermann.folLogic3]
    +Equality_Logic_Rules.L [variable, in hydras.Ackermann.folLogic3]
    +Equality_Logic_Rules [section, in hydras.Ackermann.folLogic3]
    +equalRelation [lemma, in hydras.Ackermann.folLogic3]
    +Equations_for_addition.case3.Hac [variable, in hydras.Schutte.Correctness_E0]
    +Equations_for_addition.case3 [section, in hydras.Schutte.Correctness_E0]
    +Equations_for_addition.case2.Hac [variable, in hydras.Schutte.Correctness_E0]
    +Equations_for_addition.case2 [section, in hydras.Schutte.Correctness_E0]
    +Equations_for_addition.case1.Hac [variable, in hydras.Schutte.Correctness_E0]
    +Equations_for_addition.case1 [section, in hydras.Schutte.Correctness_E0]
    +Equations_for_addition.beta [variable, in hydras.Schutte.Correctness_E0]
    +Equations_for_addition.alpha [variable, in hydras.Schutte.Correctness_E0]
    +Equations_for_addition.Hnfc [variable, in hydras.Schutte.Correctness_E0]
    +Equations_for_addition.Hnfa [variable, in hydras.Schutte.Correctness_E0]
    +Equations_for_addition.p [variable, in hydras.Schutte.Correctness_E0]
    +Equations_for_addition.n [variable, in hydras.Schutte.Correctness_E0]
    +Equations_for_addition.d [variable, in hydras.Schutte.Correctness_E0]
    +Equations_for_addition.c [variable, in hydras.Schutte.Correctness_E0]
    +Equations_for_addition.b [variable, in hydras.Schutte.Correctness_E0]
    +Equations_for_addition.a [variable, in hydras.Schutte.Correctness_E0]
    +Equations_for_addition [section, in hydras.Schutte.Correctness_E0]
    +equiv [definition, in hydras.Prelude.Sort_spec]
    +equiv [projection, in additions.Monoid_def]
    +Equiv [record, in additions.Monoid_def]
    +equiv [constructor, in additions.Monoid_def]
    +Equiv [inductive, in additions.Monoid_def]
    +Equivalence [section, in additions.Compatibility]
    +Equivalence.A [variable, in additions.Compatibility]
    +Equivalence.is_power_of [variable, in additions.Compatibility]
    +Equivalence.one [variable, in additions.Compatibility]
    +Equivalence.op [variable, in additions.Compatibility]
    +Equivalence.pos_iter_M [variable, in additions.Compatibility]
    +equiv_equiv [instance, in hydras.Prelude.Sort_spec]
    +equiv_equiv [instance, in hydras.Prelude.DecPreOrder]
    +equiv_not_lt [lemma, in hydras.Prelude.DecPreOrder]
    +Equiv_Trans [instance, in additions.Monoid_def]
    +Equiv_Sym [instance, in additions.Monoid_def]
    +Equiv_Refl [instance, in additions.Monoid_def]
    +Equiv_Equiv [instance, in additions.Monoid_def]
    +equiv:44 [binder, in additions.Euclidean_Chains]
    +equiv:49 [binder, in additions.Euclidean_Chains]
    +equiv:52 [binder, in additions.Euclidean_Chains]
    +equ:101 [binder, in additions.AM]
    +equ:106 [binder, in additions.AM]
    +equ:111 [binder, in additions.AM]
    +equ:121 [binder, in additions.AM]
    +equ:126 [binder, in additions.AM]
    +equ:38 [binder, in additions.AM]
    +equ:44 [binder, in additions.AM]
    +equ:55 [binder, in additions.AM]
    +equ:62 [binder, in additions.AM]
    +equ:75 [binder, in additions.AM]
    +equ:85 [binder, in additions.AM]
    +equ:96 [binder, in additions.AM]
    +eqv:104 [binder, in additions.Addition_Chains]
    +eqv:112 [binder, in additions.Addition_Chains]
    +eqv:118 [binder, in additions.Addition_Chains]
    +eqv:125 [binder, in additions.Addition_Chains]
    +eqv:132 [binder, in additions.Addition_Chains]
    +eqv:162 [binder, in additions.Addition_Chains]
    +eqv:169 [binder, in additions.Addition_Chains]
    +eqv:175 [binder, in additions.Addition_Chains]
    +eq_succ_lt [lemma, in hydras.Epsilon0.T1]
    +eq_succ_LT [lemma, in hydras.Epsilon0.T1]
    +eq_dec [lemma, in hydras.OrdinalNotations.ON_Omega2]
    +eq_dec [lemma, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +eq_equiv [instance, in additions.Monoid_def]
    +Eq_equiv [projection, in additions.Monoid_def]
    +eq_le [lemma, in hydras.Schutte.Schutte_basics]
    +eq_A_dec:19 [binder, in hydras.rpo.rpo]
    +eq_A_dec:14 [binder, in hydras.rpo.rpo]
    +eq_A_dec:5 [binder, in hydras.rpo.rpo]
    +EQ1 [constructor, in hydras.Ackermann.folProof]
    +EQ2 [constructor, in hydras.Ackermann.folProof]
    +EQ3 [constructor, in hydras.Ackermann.folProof]
    +EQ4 [constructor, in hydras.Ackermann.folProof]
    +EQ5 [constructor, in hydras.Ackermann.folProof]
    +essai [section, in hydras.Epsilon0.T1]
    +essai.n [variable, in hydras.Epsilon0.T1]
    +eta:80 [binder, in hydras.Schutte.Critical]
    +Euclidean_Chains [library]
    +Euc1 [lemma, in hydras.Prelude.More_Arith]
    +eval [definition, in hydras.Schutte.CNF]
    +evalComposeFunc [definition, in hydras.Ackermann.primRec]
    +evalConstFunc [definition, in hydras.Ackermann.primRec]
    +evalList [section, in hydras.MoreAck.AckNotPR]
    +evalList [definition, in hydras.Ackermann.primRec]
    +evalListComp [lemma, in hydras.MoreAck.AckNotPR]
    +evalListCompose2 [lemma, in hydras.MoreAck.AckNotPR]
    +evalListPrimrec_S [lemma, in hydras.MoreAck.AckNotPR]
    +evalListPrimrec_0 [lemma, in hydras.MoreAck.AckNotPR]
    +evalList_Const [lemma, in hydras.MoreAck.AckNotPR]
    +evalOneParamList [definition, in hydras.Ackermann.primRec]
    +evalPrimRec [definition, in hydras.Ackermann.primRec]
    +evalPrimRecFunc [definition, in hydras.Ackermann.primRec]
    +evalPrimRecParam [lemma, in hydras.Ackermann.primRec]
    +evalPrimRecs [definition, in hydras.Ackermann.primRec]
    +evalProjFunc [definition, in hydras.Ackermann.primRec]
    +evalProjFuncInd [lemma, in hydras.Ackermann.primRec]
    +evalStrongRec [definition, in hydras.Ackermann.cPair]
    +evalStrongRecHelp [definition, in hydras.Ackermann.cPair]
    +evalStrongRecHelpParam [lemma, in hydras.Ackermann.cPair]
    +evalStrongRecHelp1 [lemma, in hydras.Ackermann.cPair]
    +evalStrongRecHelp2 [lemma, in hydras.Ackermann.cPair]
    +evalStrongRecIsPR [instance, in hydras.Ackermann.cPair]
    +eval_pp [definition, in hydras.Epsilon0.T1]
    +even_prod [lemma, in hydras.Prelude.More_Arith]
    +every_battle_terminates [lemma, in hydras.Hydra.Hydra_Termination]
    +every_battle_terminates [lemma, in gaia_hydras.GHydra]
    +Ex [definition, in hydras.Epsilon0.Large_Sets]
    +exact_log2_spec [lemma, in additions.More_on_positive]
    +exact_log2xOx0 [lemma, in additions.More_on_positive]
    +exact_log2 [definition, in additions.More_on_positive]
    +Examples [section, in hydras.Ackermann.LNT]
    +Examples [section, in hydras.MoreAck.LNN_Examples]
    +Examples [module, in hydras.Hydra.Hydra_Examples]
    +Examples [module, in hydras.Ackermann.primRec]
    +Examples [module, in additions.Euclidean_Chains]
    +Examples.big_correct''' [lemma, in additions.Euclidean_Chains]
    +Examples.big_correct' [lemma, in additions.Euclidean_Chains]
    +Examples.big_correct [lemma, in additions.Euclidean_Chains]
    +Examples.big_chain [definition, in additions.Euclidean_Chains]
    +Examples.binary_int31_power [definition, in additions.Euclidean_Chains]
    +Examples.C87' [definition, in additions.Euclidean_Chains]
    +Examples.exact_sqrt [definition, in hydras.Ackermann.primRec]
    +Examples.exp56789 [definition, in additions.Euclidean_Chains]
    +Examples.Exx [definition, in hydras.Hydra.Hydra_Examples]
    +Examples.ex_2 [definition, in hydras.Hydra.Hydra_Examples]
    +Examples.ex1 [definition, in hydras.Hydra.Hydra_Examples]
    +Examples.ex4 [definition, in hydras.Hydra.Hydra_Examples]
    +Examples.Ex5 [definition, in hydras.Hydra.Hydra_Examples]
    +Examples.f [variable, in hydras.Ackermann.LNT]
    +Examples.fast_int63_power [definition, in additions.Euclidean_Chains]
    +Examples.f1 [variable, in hydras.MoreAck.LNN_Examples]
    +Examples.f2 [variable, in hydras.MoreAck.LNN_Examples]
    +Examples.f2' [variable, in hydras.MoreAck.LNN_Examples]
    +Examples.f3 [variable, in hydras.MoreAck.LNN_Examples]
    +Examples.f4 [variable, in hydras.MoreAck.LNN_Examples]
    +Examples.height_not_strictly_decreasing [definition, in hydras.Hydra.Hydra_Examples]
    +Examples.hsize_bigger [definition, in hydras.Hydra.Hydra_Examples]
    +Examples.Hy [definition, in hydras.Hydra.Hydra_Examples]
    +Examples.Hy_Hy''' [definition, in hydras.Hydra.Hydra_Examples]
    +Examples.Hy_3 [definition, in hydras.Hydra.Hydra_Examples]
    +Examples.Hy_2 [definition, in hydras.Hydra.Hydra_Examples]
    +Examples.Hy_1 [definition, in hydras.Hydra.Hydra_Examples]
    +Examples.Hy' [definition, in hydras.Hydra.Hydra_Examples]
    +Examples.Hy'H'' [definition, in hydras.Hydra.Hydra_Examples]
    +Examples.Hy'' [definition, in hydras.Hydra.Hydra_Examples]
    +Examples.Hy''_Hy''' [definition, in hydras.Hydra.Hydra_Examples]
    +Examples.Hy''' [definition, in hydras.Hydra.Hydra_Examples]
    +Examples.M [definition, in additions.Euclidean_Chains]
    +Examples.RM [lemma, in additions.Euclidean_Chains]
    +Examples.R2_example [definition, in hydras.Hydra.Hydra_Examples]
    +Examples.slow_int31_power [definition, in additions.Euclidean_Chains]
    +Examples.sqrtHelp [definition, in hydras.Ackermann.primRec]
    +Examples.t1 [variable, in hydras.MoreAck.LNN_Examples]
    +Examples.Unnamed_thm [definition, in additions.Euclidean_Chains]
    +Example_3PlusOmega [library]
    +exec [definition, in additions.AM]
    +exec_Proper [instance, in additions.AM]
    +exec_equiv [lemma, in additions.AM]
    +exec_app [lemma, in additions.AM]
    +exH' [abbreviation, in hydras.Ackermann.LNT]
    +existE [lemma, in hydras.Ackermann.LNN]
    +existE [lemma, in hydras.Ackermann.LNT]
    +existE [lemma, in hydras.Ackermann.folLogic]
    +existH [definition, in hydras.Ackermann.fol]
    +existI [lemma, in hydras.Ackermann.LNN]
    +existI [lemma, in hydras.Ackermann.LNT]
    +existI [lemma, in hydras.Ackermann.folLogic]
    +existSimp [lemma, in hydras.Ackermann.LNN]
    +existSimp [lemma, in hydras.Ackermann.LNT]
    +existSimp [lemma, in hydras.Ackermann.folLogic]
    +existSys [lemma, in hydras.Ackermann.LNN]
    +existSys [lemma, in hydras.Ackermann.LNT]
    +existSys [lemma, in hydras.Ackermann.folLogic]
    +exists_map12_without_repetition [lemma, in hydras.rpo.more_list]
    +exists_map_without_repetition [lemma, in hydras.rpo.more_list]
    +ExNotIncl [lemma, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +exp [definition, in hydras.Epsilon0.T1]
    +exp [definition, in hydras.solutions_exercises.MorePRExamples]
    +expIsPR [instance, in hydras.solutions_exercises.MorePRExamples]
    +exponents [definition, in additions.Trace_exercise]
    +exponents_lt_eval [lemma, in hydras.Schutte.CNF]
    +exponents_le [definition, in hydras.Schutte.CNF]
    +exponents_lt [definition, in hydras.Schutte.CNF]
    +exponent_pos_of_nat [lemma, in additions.Addition_Chains]
    +exponent_pos2nat [lemma, in additions.Addition_Chains]
    +exponent_nat_neq_0 [lemma, in additions.Addition_Chains]
    +Expressible [definition, in hydras.Ackermann.expressible]
    +expressible [library]
    +expressibleAlternate [lemma, in hydras.Ackermann.expressible]
    +expressibleExamples [library]
    +ExpressibleHelp [definition, in hydras.Ackermann.expressible]
    +expressT'1 [lemma, in Goedel.rosserPA]
    +expressT'1 [definition, in Goedel.goedel2]
    +expressT'2 [lemma, in Goedel.rosserPA]
    +expressT'2 [definition, in Goedel.goedel2]
    +exp_F_eq [lemma, in hydras.Epsilon0.T1]
    +exp_fin_omega [lemma, in hydras.Epsilon0.T1]
    +exp_F [definition, in hydras.Epsilon0.T1]
    +exp_alt_PR [instance, in hydras.solutions_exercises.MorePRExamples]
    +exp_alt_ok [lemma, in hydras.solutions_exercises.MorePRExamples]
    +exp_alt [definition, in hydras.solutions_exercises.MorePRExamples]
    +exp2 [definition, in additions.Addition_Chains]
    +exp2 [definition, in hydras.Prelude.Exp2]
    +Exp2 [library]
    +exp2S [lemma, in hydras.Prelude.Exp2]
    +exp2_as_iterate [lemma, in hydras.Prelude.Iterates]
    +exp2_mono_weak [lemma, in hydras.Prelude.Iterates]
    +exp2_mono [lemma, in hydras.Prelude.Iterates]
    +exp2_ge_S [lemma, in hydras.Prelude.Iterates]
    +exp2_k_mult_pos [lemma, in hydras.Epsilon0.Large_Sets]
    +exp2_mono1 [lemma, in hydras.Hydra.BigBattle]
    +exp2_Plus [lemma, in additions.Addition_Chains]
    +exp2_gt_id [lemma, in hydras.Prelude.Exp2]
    +exp2_not_zero [lemma, in hydras.Prelude.Exp2]
    +exp2_positive [lemma, in hydras.Prelude.Exp2]
    +exp:746 [binder, in hydras.Epsilon0.T1]
    +exp:751 [binder, in hydras.Epsilon0.T1]
    +Exs [section, in hydras.MoreAck.PrimRecExamples]
    +Exs.f [variable, in hydras.MoreAck.PrimRecExamples]
    +Exs.fdiv2 [variable, in hydras.MoreAck.PrimRecExamples]
    +Exs.ffib [variable, in hydras.MoreAck.PrimRecExamples]
    +extendsNN [lemma, in Goedel.rosserPA]
    +extendsNN [definition, in Goedel.goedel2]
    +extEqual [definition, in hydras.Ackermann.extEqualNat]
    +extEqualCompose [lemma, in hydras.Ackermann.primRec]
    +extEqualCompose2 [lemma, in hydras.Ackermann.primRec]
    +extEqualNat [library]
    +extEqualOneParamList [lemma, in hydras.Ackermann.primRec]
    +extEqualPrimRec [lemma, in hydras.Ackermann.primRec]
    +extEqualRefl [lemma, in hydras.Ackermann.extEqualNat]
    +extEqualSym [lemma, in hydras.Ackermann.extEqualNat]
    +extEqualTrans [lemma, in hydras.Ackermann.extEqualNat]
    +extEqualVector [definition, in hydras.Ackermann.primRec]
    +extEqualVectorGeneral [definition, in hydras.Ackermann.primRec]
    +extEqualVectorRefl [lemma, in hydras.Ackermann.primRec]
    +extEqual_ex1 [definition, in hydras.MoreAck.PrimRecExamples]
    +ex_pos [definition, in gaia_hydras.T1Choice]
    +ex_path4 [definition, in gaia_hydras.GPaths]
    +ex_path3 [definition, in gaia_hydras.GPaths]
    +ex_path2 [definition, in gaia_hydras.GPaths]
    +ex_path1 [definition, in gaia_hydras.GPaths]
    +ex_pathS2 [definition, in hydras.Epsilon0.Large_Sets_Examples]
    +ex_pathS1 [definition, in hydras.Epsilon0.Large_Sets_Examples]
    +ex_bool [definition, in additions.Monoid_def]
    +ex_string [definition, in additions.Monoid_def]
    +ex_path4 [definition, in hydras.Epsilon0.Paths]
    +ex_path3 [definition, in hydras.Epsilon0.Paths]
    +ex_path2 [definition, in hydras.Epsilon0.Paths]
    +ex_path1 [definition, in hydras.Epsilon0.Paths]
    +ex0 [definition, in gaia_hydras.GCanon]
    +Ex1 [definition, in hydras.Epsilon0.T1]
    +Ex1 [definition, in hydras.OrdinalNotations.ON_Omega2]
    +ex1 [definition, in hydras.OrdinalNotations.ON_Omega2]
    +Ex1 [definition, in hydras.Gamma0.T2]
    +ex1 [definition, in gaia_hydras.GCanon]
    +Ex1 [definition, in hydras.Schutte.MoreEpsilonIota]
    +ex1 [definition, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +Ex1 [definition, in hydras.solutions_exercises.MultisetWf]
    +Ex1 [definition, in hydras.Epsilon0.Large_Sets_Examples]
    +Ex1 [definition, in hydras.OrdinalNotations.ON_Finite]
    +Ex1 [definition, in gaia_hydras.GaiaToHydra]
    +Ex1 [definition, in hydras.MoreAck.PrimRecExamples]
    +Ex1 [definition, in hydras.Prelude.Simple_LexProd]
    +Ex10 [definition, in hydras.Gamma0.Gamma0]
    +Ex2 [definition, in hydras.Epsilon0.T1]
    +Ex2 [definition, in hydras.Gamma0.T2]
    +Ex2 [definition, in hydras.MoreAck.AckNotPR]
    +ex2 [definition, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +Ex2 [definition, in hydras.solutions_exercises.MultisetWf]
    +Ex2 [definition, in hydras.Epsilon0.Large_Sets_Examples]
    +Ex2 [definition, in hydras.MoreAck.PrimRecExamples]
    +Ex2 [definition, in hydras.Prelude.Simple_LexProd]
    +Ex3 [definition, in hydras.Epsilon0.T1]
    +Ex3 [definition, in hydras.Gamma0.T2]
    +ex3 [definition, in hydras.Epsilon0.Large_Sets]
    +Ex3 [definition, in hydras.solutions_exercises.MultisetWf]
    +Ex3 [definition, in hydras.MoreAck.PrimRecExamples]
    +Ex4 [definition, in hydras.Epsilon0.T1]
    +Ex4 [definition, in hydras.Gamma0.T2]
    +Ex4 [definition, in hydras.MoreAck.AckNotPR]
    +Ex4 [definition, in hydras.MoreAck.PrimRecExamples]
    +Ex42 [definition, in hydras.Schutte.Schutte]
    +Ex42 [definition, in hydras.OrdinalNotations.OmegaOmega]
    +Ex42 [definition, in hydras.Epsilon0.E0]
    +Ex5 [definition, in hydras.Epsilon0.T1]
    +Ex5 [definition, in hydras.Gamma0.T2]
    +Ex6 [definition, in hydras.Gamma0.T2]
    +Ex6 [definition, in hydras.Gamma0.Gamma0]
    +Ex7 [definition, in hydras.Gamma0.T2]
    +Ex7 [definition, in hydras.Gamma0.Gamma0]
    +Ex8 [definition, in hydras.Gamma0.T2]
    +Ex8 [definition, in hydras.Gamma0.Gamma0]
    +Ex9 [definition, in hydras.Gamma0.Gamma0]
    +E_eq:240 [binder, in additions.AM]
    +E_one:239 [binder, in additions.AM]
    +E_op:238 [binder, in additions.AM]
    +E_eq:233 [binder, in additions.AM]
    +E_one:232 [binder, in additions.AM]
    +E_op:231 [binder, in additions.AM]
    +E_eq:51 [binder, in additions.Pow_variant]
    +E_one:50 [binder, in additions.Pow_variant]
    +E_op:49 [binder, in additions.Pow_variant]
    +E_eq:42 [binder, in additions.Pow_variant]
    +E_one:41 [binder, in additions.Pow_variant]
    +E_op:40 [binder, in additions.Pow_variant]
    +E_eq:32 [binder, in additions.Pow_variant]
    +E_one:31 [binder, in additions.Pow_variant]
    +E_op:30 [binder, in additions.Pow_variant]
    +E_eq:26 [binder, in additions.Pow_variant]
    +E_one:25 [binder, in additions.Pow_variant]
    +E_op:24 [binder, in additions.Pow_variant]
    +E_eq:19 [binder, in additions.Pow_variant]
    +E_one:18 [binder, in additions.Pow_variant]
    +E_op:17 [binder, in additions.Pow_variant]
    +E_eq:13 [binder, in additions.Pow_variant]
    +E_one:12 [binder, in additions.Pow_variant]
    +E_op:11 [binder, in additions.Pow_variant]
    +E_eq:4 [binder, in additions.Pow_variant]
    +E_one:3 [binder, in additions.Pow_variant]
    +E_op:2 [binder, in additions.Pow_variant]
    +E_eq:59 [binder, in additions.Pow]
    +E_op:58 [binder, in additions.Pow]
    +E_eq:51 [binder, in additions.Pow]
    +E_one:50 [binder, in additions.Pow]
    +E_op:49 [binder, in additions.Pow]
    +E_eq:42 [binder, in additions.Pow]
    +E_one:41 [binder, in additions.Pow]
    +E_op:40 [binder, in additions.Pow]
    +E_eq:32 [binder, in additions.Pow]
    +E_one:31 [binder, in additions.Pow]
    +E_op:30 [binder, in additions.Pow]
    +E_eq:26 [binder, in additions.Pow]
    +E_one:25 [binder, in additions.Pow]
    +E_op:24 [binder, in additions.Pow]
    +E_eq:19 [binder, in additions.Pow]
    +E_one:18 [binder, in additions.Pow]
    +E_op:17 [binder, in additions.Pow]
    +E_eq:13 [binder, in additions.Pow]
    +E_one:12 [binder, in additions.Pow]
    +E_op:11 [binder, in additions.Pow]
    +E_eq:4 [binder, in additions.Pow]
    +E_one:3 [binder, in additions.Pow]
    +E_op:2 [binder, in additions.Pow]
    +E_eq:54 [binder, in additions.Monoid_def]
    +E_one:53 [binder, in additions.Monoid_def]
    +E_op:52 [binder, in additions.Monoid_def]
    +E_eq:49 [binder, in additions.Monoid_def]
    +E_one:48 [binder, in additions.Monoid_def]
    +E_op:47 [binder, in additions.Monoid_def]
    +E_eq:44 [binder, in additions.Monoid_def]
    +E_one:43 [binder, in additions.Monoid_def]
    +E_op:42 [binder, in additions.Monoid_def]
    +E_eq:39 [binder, in additions.Monoid_def]
    +E_one:38 [binder, in additions.Monoid_def]
    +E_op:37 [binder, in additions.Monoid_def]
    +E_eq:24 [binder, in additions.Monoid_def]
    +E_one:23 [binder, in additions.Monoid_def]
    +E_op:22 [binder, in additions.Monoid_def]
    +E_equiv:197 [binder, in additions.Euclidean_Chains]
    +E_one:196 [binder, in additions.Euclidean_Chains]
    +E_equiv:185 [binder, in additions.Euclidean_Chains]
    +E_one:184 [binder, in additions.Euclidean_Chains]
    +E_equiv:171 [binder, in additions.Euclidean_Chains]
    +E_one:170 [binder, in additions.Euclidean_Chains]
    +E_equiv:165 [binder, in additions.Euclidean_Chains]
    +E_one:164 [binder, in additions.Euclidean_Chains]
    +E_equiv:113 [binder, in additions.Euclidean_Chains]
    +E_one:112 [binder, in additions.Euclidean_Chains]
    +E_equiv:102 [binder, in additions.Euclidean_Chains]
    +E_one:101 [binder, in additions.Euclidean_Chains]
    +E_equiv:91 [binder, in additions.Euclidean_Chains]
    +E_one:90 [binder, in additions.Euclidean_Chains]
    +E_equiv:71 [binder, in additions.Euclidean_Chains]
    +E_one:70 [binder, in additions.Euclidean_Chains]
    +E_equiv:64 [binder, in additions.Euclidean_Chains]
    +E_one:63 [binder, in additions.Euclidean_Chains]
    +E_equiv:56 [binder, in additions.Euclidean_Chains]
    +E_one:55 [binder, in additions.Euclidean_Chains]
    +E_equiv:38 [binder, in additions.Euclidean_Chains]
    +E_one:37 [binder, in additions.Euclidean_Chains]
    +E_eq:234 [binder, in additions.Addition_Chains]
    +E_one:233 [binder, in additions.Addition_Chains]
    +E_op:232 [binder, in additions.Addition_Chains]
    +E_eq:226 [binder, in additions.Addition_Chains]
    +E_one:225 [binder, in additions.Addition_Chains]
    +E_op:224 [binder, in additions.Addition_Chains]
    +E_eq:74 [binder, in additions.Addition_Chains]
    +E_one:73 [binder, in additions.Addition_Chains]
    +E_op:72 [binder, in additions.Addition_Chains]
    +E_eq:66 [binder, in additions.Addition_Chains]
    +E_one:65 [binder, in additions.Addition_Chains]
    +E_op:64 [binder, in additions.Addition_Chains]
    +E_eq:60 [binder, in additions.Addition_Chains]
    +E_one:59 [binder, in additions.Addition_Chains]
    +E_op:58 [binder, in additions.Addition_Chains]
    +E_eq:49 [binder, in additions.Addition_Chains]
    +E_one:48 [binder, in additions.Addition_Chains]
    +E_op:47 [binder, in additions.Addition_Chains]
    +e':33 [binder, in hydras.rpo.list_set]
    +e':36 [binder, in hydras.rpo.list_set]
    +E0 [record, in gaia_hydras.T1Bridge]
    +E0 [record, in hydras.Epsilon0.E0]
    +E0 [library]
    +E0add [instance, in hydras.Epsilon0.E0]
    +E0Canon [definition, in gaia_hydras.GCanon]
    +E0compare [instance, in gaia_hydras.T1Bridge]
    +E0compare_correct [lemma, in gaia_hydras.T1Bridge]
    +E0eqb [definition, in gaia_hydras.T1Bridge]
    +E0fin [definition, in gaia_hydras.T1Bridge]
    +E0fin [instance, in hydras.Epsilon0.E0]
    +E0finS [instance, in hydras.Epsilon0.E0]
    +E0fin_cnf [lemma, in gaia_hydras.T1Bridge]
    +E0g2h_omegaE [lemma, in gaia_hydras.T1Bridge]
    +E0g2h_plusE [lemma, in gaia_hydras.T1Bridge]
    +E0g2h_mulE [lemma, in gaia_hydras.T1Bridge]
    +E0g2h_phi0 [lemma, in gaia_hydras.T1Bridge]
    +E0g2h_Fin [lemma, in gaia_hydras.T1Bridge]
    +E0is_succE [lemma, in gaia_hydras.T1Bridge]
    +E0is_succ_succ [lemma, in gaia_hydras.T1Bridge]
    +E0is_succ [definition, in gaia_hydras.T1Bridge]
    +E0is_succ [definition, in hydras.Epsilon0.E0]
    +E0le [definition, in gaia_hydras.T1Bridge]
    +E0le [definition, in hydras.Epsilon0.E0]
    +E0limit [definition, in gaia_hydras.T1Bridge]
    +E0limit [definition, in hydras.Epsilon0.E0]
    +E0lt [definition, in gaia_hydras.T1Bridge]
    +E0lt [definition, in hydras.Epsilon0.E0]
    +E0lt_wf [lemma, in hydras.Epsilon0.E0]
    +E0mul [definition, in gaia_hydras.T1Bridge]
    +E0mul [instance, in hydras.Epsilon0.E0]
    +E0one [instance, in hydras.Epsilon0.E0]
    +E0plus [definition, in gaia_hydras.T1Bridge]
    +e0Sub [definition, in gaia_hydras.T1Bridge]
    +E0succb [abbreviation, in hydras.Epsilon0.E0]
    +E0zero [definition, in gaia_hydras.T1Bridge]
    +E0zero [instance, in hydras.Epsilon0.E0]
    +E0_plus_correct [lemma, in hydras.Schutte.Correctness_E0]
    +E0_canon_lt [lemma, in gaia_hydras.GCanon]
    +E0_comp [instance, in gaia_hydras.T1Bridge]
    +E0_sto [instance, in gaia_hydras.T1Bridge]
    +E0_pred_succK [lemma, in gaia_hydras.T1Bridge]
    +E0_diffE [lemma, in gaia_hydras.T1Bridge]
    +E0_eqE [lemma, in gaia_hydras.T1Bridge]
    +E0_g2h_h2gK [lemma, in gaia_hydras.T1Bridge]
    +E0_h2g_g2hK [lemma, in gaia_hydras.T1Bridge]
    +E0_h2g_nf [lemma, in gaia_hydras.T1Bridge]
    +E0_g2h [definition, in gaia_hydras.T1Bridge]
    +E0_h2g [definition, in gaia_hydras.T1Bridge]
    +E0_phi0 [definition, in gaia_hydras.T1Bridge]
    +E0_omega [definition, in gaia_hydras.T1Bridge]
    +E0_pred [definition, in gaia_hydras.T1Bridge]
    +E0_succ [definition, in gaia_hydras.T1Bridge]
    +E0_eqtype [definition, in gaia_hydras.T1Bridge]
    +E0_eq_mixin [definition, in gaia_hydras.T1Bridge]
    +E0_lt_ge [lemma, in hydras.Epsilon0.E0]
    +E0_lt_eq_lt [lemma, in hydras.Epsilon0.E0]
    +E0_not_Lt_zero [lemma, in hydras.Epsilon0.E0]
    +E0_Lt_Succ_inv [lemma, in hydras.Epsilon0.E0]
    +E0_Lt_irrefl [lemma, in hydras.Epsilon0.E0]
    +E0_comp [instance, in hydras.Epsilon0.E0]
    +E0_pred_Lt [lemma, in hydras.Epsilon0.E0]
    +E0_pred_of_Succ [lemma, in hydras.Epsilon0.E0]
    +E0_sto [instance, in hydras.Epsilon0.E0]
    +E0_pred [definition, in hydras.Epsilon0.E0]
    +E0_eq_dec [lemma, in hydras.Epsilon0.E0]
    +E0_eq_iff [lemma, in hydras.Epsilon0.E0]
    +E0_eq_intro [lemma, in hydras.Epsilon0.E0]
    +E0_phi0 [instance, in hydras.Epsilon0.E0]
    +E0_succ [instance, in hydras.Epsilon0.E0]
    +E0_omega [instance, in hydras.Epsilon0.E0]
    +E1 [definition, in hydras.Epsilon0.T1]
    +e1 [definition, in hydras.OrdinalNotations.ON_Omega2]
    +e1:103 [binder, in additions.fib]
    +e1:110 [binder, in additions.fib]
    +e1:179 [binder, in hydras.rpo.list_set]
    +E2 [definition, in hydras.Epsilon0.T1]
    +e2 [definition, in hydras.OrdinalNotations.ON_Omega2]
    +e2:104 [binder, in additions.fib]
    +e2:111 [binder, in additions.fib]
    +e2:180 [binder, in hydras.rpo.list_set]
    +e:10 [binder, in hydras.rpo.list_set]
    +e:100 [binder, in hydras.rpo.list_set]
    +e:103 [binder, in hydras.rpo.list_set]
    +e:106 [binder, in hydras.rpo.list_set]
    +e:109 [binder, in hydras.rpo.list_set]
    +e:11 [binder, in hydras.MoreAck.PrimRecExamples]
    +e:112 [binder, in hydras.rpo.list_set]
    +e:119 [binder, in additions.fib]
    +e:121 [binder, in hydras.rpo.list_set]
    +E:126 [binder, in hydras.Schutte.Ordering_Functions]
    +e:129 [binder, in hydras.rpo.list_set]
    +e:132 [binder, in hydras.rpo.list_set]
    +e:136 [binder, in hydras.rpo.list_set]
    +e:139 [binder, in hydras.rpo.list_set]
    +e:143 [binder, in hydras.rpo.list_set]
    +e:147 [binder, in hydras.rpo.list_set]
    +e:151 [binder, in hydras.rpo.list_set]
    +e:154 [binder, in hydras.rpo.list_set]
    +e:157 [binder, in hydras.rpo.list_set]
    +e:170 [binder, in hydras.rpo.list_set]
    +e:199 [binder, in hydras.rpo.list_set]
    +E:2 [binder, in hydras.Prelude.Restriction]
    +E:2 [binder, in hydras.solutions_exercises.Limit_Infinity]
    +e:204 [binder, in hydras.rpo.term]
    +e:21 [binder, in hydras.rpo.term]
    +e:22 [binder, in hydras.rpo.list_set]
    +e:24 [binder, in hydras.rpo.list_set]
    +e:241 [binder, in hydras.rpo.list_set]
    +e:245 [binder, in hydras.rpo.list_set]
    +e:252 [binder, in hydras.rpo.list_set]
    +e:26 [binder, in hydras.rpo.list_set]
    +e:28 [binder, in hydras.rpo.list_set]
    +e:29 [binder, in hydras.rpo.list_permut]
    +e:30 [binder, in hydras.rpo.list_set]
    +e:32 [binder, in hydras.rpo.list_set]
    +e:32 [binder, in hydras.rpo.list_permut]
    +e:33 [binder, in hydras.rpo.list_permut]
    +e:35 [binder, in hydras.rpo.list_set]
    +e:39 [binder, in hydras.rpo.list_set]
    +e:46 [binder, in hydras.rpo.list_set]
    +e:54 [binder, in hydras.Prelude.More_Arith]
    +e:55 [binder, in hydras.rpo.list_permut]
    +e:57 [binder, in hydras.rpo.list_set]
    +e:61 [binder, in hydras.rpo.list_set]
    +e:65 [binder, in hydras.rpo.list_set]
    +e:69 [binder, in hydras.rpo.list_set]
    +e:73 [binder, in hydras.rpo.list_set]
    +e:743 [binder, in hydras.Epsilon0.T1]
    +e:75 [binder, in hydras.rpo.list_set]
    +e:754 [binder, in hydras.Epsilon0.T1]
    +e:78 [binder, in hydras.rpo.list_set]
    +e:81 [binder, in hydras.rpo.list_set]
    +e:84 [binder, in hydras.rpo.list_set]
    +e:85 [binder, in hydras.rpo.list_set]
    +e:92 [binder, in hydras.MoreAck.PrimRecExamples]
    +e:97 [binder, in hydras.rpo.list_set]
    +

    F

    +f [definition, in hydras.OrdinalNotations.Example_3PlusOmega]
    +F [abbreviation, in hydras.Schutte.Schutte_basics]
    +F [lemma, in gaia_hydras.onType]
    +f [axiom, in hydras.Prelude.LibHyps_Experiments]
    +F [definition, in Goedel.goedel2]
    +fact [definition, in hydras.solutions_exercises.MorePRExamples]
    +factIsPR [instance, in hydras.solutions_exercises.MorePRExamples]
    +fact_altIsPR [instance, in hydras.solutions_exercises.MorePRExamples]
    +fact_alt_ok [lemma, in hydras.solutions_exercises.MorePRExamples]
    +fact_alt [definition, in hydras.solutions_exercises.MorePRExamples]
    +fact_correct [lemma, in hydras.MoreAck.PrimRecExamples]
    +Fake_thm [lemma, in hydras.solutions_exercises.is_F_monotonous]
    +Fapply [definition, in additions.Euclidean_Chains]
    +fastexp [definition, in additions.fib]
    +fastexp2 [definition, in additions.fib]
    +fastexp3 [definition, in additions.fib]
    +fastexp3P [lemma, in additions.fib]
    +fastexp4 [definition, in additions.fib]
    +FA1 [constructor, in hydras.Ackermann.folProof]
    +FA2 [constructor, in hydras.Ackermann.folProof]
    +FA3 [constructor, in hydras.Ackermann.folProof]
    +fA:181 [binder, in hydras.OrdinalNotations.ON_Generic]
    +fbij [lemma, in hydras.Schutte.Ordering_Functions]
    +fB:182 [binder, in hydras.OrdinalNotations.ON_Generic]
    +Fchain [definition, in additions.Euclidean_Chains]
    +Fchain_correct [definition, in additions.AM]
    +Fchain_proper_prf [projection, in additions.Euclidean_Chains]
    +Fchain_proper [record, in additions.Euclidean_Chains]
    +Fchain_proper_prf [constructor, in additions.Euclidean_Chains]
    +Fchain_proper [inductive, in additions.Euclidean_Chains]
    +Fchain_correct [definition, in additions.Euclidean_Chains]
    +Fchain_correct_nat [definition, in additions.Euclidean_Chains]
    +Fcompose [definition, in additions.Euclidean_Chains]
    +Fcompose_proper [instance, in additions.Euclidean_Chains]
    +Fcompose_correct [lemma, in additions.Euclidean_Chains]
    +Fcompose_correct_nat [lemma, in additions.Euclidean_Chains]
    +fc1:120 [binder, in additions.Euclidean_Chains]
    +fc1:129 [binder, in additions.Euclidean_Chains]
    +fc1:133 [binder, in additions.Euclidean_Chains]
    +fc2:121 [binder, in additions.Euclidean_Chains]
    +fc2:130 [binder, in additions.Euclidean_Chains]
    +fc2:134 [binder, in additions.Euclidean_Chains]
    +fc:108 [binder, in additions.Euclidean_Chains]
    +fc:34 [binder, in additions.Euclidean_Chains]
    +fc:79 [binder, in additions.Euclidean_Chains]
    +fc:86 [binder, in additions.Euclidean_Chains]
    +Fexp2 [definition, in additions.Euclidean_Chains]
    +Fexp2_proper [instance, in additions.Euclidean_Chains]
    +Fexp2_correct [lemma, in additions.Euclidean_Chains]
    +Fexp2_nat_correct [lemma, in additions.Euclidean_Chains]
    +Fexp2_nat_proper [instance, in additions.Euclidean_Chains]
    +Fexp2_of_nat [definition, in additions.Euclidean_Chains]
    +FF [lemma, in hydras.Epsilon0.F_omega]
    +FFK [definition, in additions.AM]
    +FFK [definition, in additions.Euclidean_Chains]
    +FFK_correct [lemma, in additions.AM]
    +FFK_proper [instance, in additions.Euclidean_Chains]
    +FFK_correct [lemma, in additions.Euclidean_Chains]
    +FFK_correct_nat [lemma, in additions.Euclidean_Chains]
    +fib [definition, in additions.Fib2]
    +fib [definition, in hydras.solutions_exercises.FibonacciPR]
    +fib [definition, in additions.fib]
    +fib [library]
    +fibIsPR [instance, in hydras.solutions_exercises.FibonacciPR]
    +fibm [definition, in additions.fib]
    +fibmP [lemma, in additions.fib]
    +fibonacci [definition, in additions.FirstSteps]
    +fibonacci [definition, in additions.Naive]
    +FibonacciPR [library]
    +fibPR [definition, in hydras.solutions_exercises.FibonacciPR]
    +fibPRIsPR [instance, in hydras.solutions_exercises.FibonacciPR]
    +fibt [definition, in additions.fib]
    +fibtP [lemma, in additions.fib]
    +fibt_aux [lemma, in additions.fib]
    +fibZ2P [lemma, in additions.fib]
    +fibZ3P [lemma, in additions.fib]
    +fib_with_chain [definition, in additions.Fib2]
    +fib_eucl [definition, in additions.Fib2]
    +fib_pos [definition, in additions.Fib2]
    +fib_mul2_OK [lemma, in additions.Fib2]
    +fib_mul2_OK_0 [lemma, in additions.Fib2]
    +fib_mul2 [definition, in additions.Fib2]
    +fib_SSn [lemma, in additions.Fib2]
    +fib_ind [lemma, in additions.Fib2]
    +fib_alt_Ok [lemma, in hydras.solutions_exercises.FibonacciPR]
    +fib_OK0 [lemma, in hydras.solutions_exercises.FibonacciPR]
    +fib_altIsPR [instance, in hydras.solutions_exercises.FibonacciPR]
    +fib_alt [definition, in hydras.solutions_exercises.FibonacciPR]
    +Fib2 [library]
    +filter001IsPR [instance, in hydras.Ackermann.primRec]
    +filter0011IsPR [instance, in hydras.Ackermann.primRec]
    +filter01IsPR [instance, in hydras.Ackermann.primRec]
    +filter010IsPR [instance, in hydras.Ackermann.primRec]
    +filter011IsPR [instance, in hydras.Ackermann.primRec]
    +filter10IsPR [instance, in hydras.Ackermann.primRec]
    +filter100IsPR [instance, in hydras.Ackermann.primRec]
    +filter1000IsPR [instance, in hydras.Ackermann.primRec]
    +filter101IsPR [instance, in hydras.Ackermann.primRec]
    +filter1011IsPR [instance, in hydras.Ackermann.primRec]
    +filter110IsPR [instance, in hydras.Ackermann.primRec]
    +filter1100IsPR [instance, in hydras.Ackermann.primRec]
    +fin [abbreviation, in hydras.Epsilon0.T1]
    +fin [definition, in hydras.OrdinalNotations.ON_Omega2]
    +fin [definition, in hydras.Gamma0.T2]
    +fin [definition, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +Fin [abbreviation, in hydras.Epsilon0.E0]
    +find [definition, in hydras.rpo.more_list]
    +find_not_mem [lemma, in hydras.rpo.more_list]
    +finite [definition, in hydras.Schutte.Schutte_basics]
    +finite_ltR [lemma, in hydras.Epsilon0.T1]
    +finite_lt [lemma, in hydras.Epsilon0.T1]
    +finite_succ [constructor, in hydras.Gamma0.T2]
    +Finite_ref [lemma, in gaia_hydras.T1Bridge]
    +finite_not_limit [lemma, in hydras.Schutte.Schutte_basics]
    +finite_lt_omega [lemma, in hydras.Schutte.Schutte_basics]
    +finite_inj [lemma, in hydras.Schutte.Schutte_basics]
    +finite_mono [lemma, in hydras.Schutte.Schutte_basics]
    +finite_lt_inv [lemma, in hydras.Schutte.Schutte_basics]
    +finite_is_finite [lemma, in hydras.Gamma0.Gamma0]
    +finite_plus_infinite [lemma, in hydras.Schutte.Addition]
    +FinOrd [instance, in hydras.OrdinalNotations.ON_Finite]
    +finord_ON [instance, in gaia_hydras.ON_gfinite]
    +finord_lt_wf [lemma, in gaia_hydras.ON_gfinite]
    +finord_comp [instance, in gaia_hydras.ON_gfinite]
    +finord_sto [instance, in gaia_hydras.ON_gfinite]
    +finord_compare_correct [lemma, in gaia_hydras.ON_gfinite]
    +finord_compare [instance, in gaia_hydras.ON_gfinite]
    +finord_lt [definition, in gaia_hydras.ON_gfinite]
    +FinOrd_Omega [instance, in hydras.OrdinalNotations.ON_Omega]
    +FinS_Succ_eq [lemma, in hydras.Epsilon0.E0]
    +FinS_eq [lemma, in hydras.Epsilon0.E0]
    +fin_lt_omega [lemma, in hydras.Gamma0.Gamma0]
    +fin:90 [binder, in additions.Addition_Chains]
    +FirstIncompletenessA [lemma, in Goedel.goedel1]
    +FirstIncompletenessA [lemma, in Goedel.goedel2]
    +FirstIncompletenessB [lemma, in Goedel.goedel1]
    +FirstSteps [library]
    +first_toggle [definition, in hydras.Prelude.First_toggle]
    +First_Order_Logic.Formula_Depth_Induction [section, in hydras.Ackermann.fol]
    +First_Order_Logic.Formula_Decidability.consTermsHelp [variable, in hydras.Ackermann.fol]
    +First_Order_Logic.Formula_Decidability.nilTermsHelp [variable, in hydras.Ackermann.fol]
    +First_Order_Logic.Formula_Decidability.language_eqdec [variable, in hydras.Ackermann.fol]
    +First_Order_Logic.Formula_Decidability [section, in hydras.Ackermann.fol]
    +First_Order_Logic.L [variable, in hydras.Ackermann.fol]
    +First_Order_Logic [section, in hydras.Ackermann.fol]
    +First_toggle [library]
    +Fix [section, in hydras.Prelude.Restriction]
    +fixPoint [library]
    +FixpointDef [module, in gaia_hydras.GHessenberg]
    +FixpointDef.oplus [definition, in gaia_hydras.GHessenberg]
    +FixPointLNN [lemma, in Goedel.fixPoint]
    +FixPointLNT [lemma, in Goedel.fixPoint]
    +FixR [definition, in hydras.Prelude.Restriction]
    +FixR_F_eq [lemma, in hydras.Prelude.Restriction]
    +FixR_F [definition, in hydras.Prelude.Restriction]
    +Fix.A [variable, in hydras.Prelude.Restriction]
    +Fix.E [variable, in hydras.Prelude.Restriction]
    +Fix.F [variable, in hydras.Prelude.Restriction]
    +Fix.Hwf [variable, in hydras.Prelude.Restriction]
    +Fix.P [variable, in hydras.Prelude.Restriction]
    +Fix.R [variable, in hydras.Prelude.Restriction]
    +Fix.Rwf [variable, in hydras.Prelude.Restriction]
    +FK [definition, in additions.AM]
    +FK [definition, in additions.Euclidean_Chains]
    +Fkont [definition, in additions.Euclidean_Chains]
    +Fkont_equiv [definition, in additions.Euclidean_Chains]
    +Fkont_proper_prf [projection, in additions.Euclidean_Chains]
    +Fkont_proper [record, in additions.Euclidean_Chains]
    +Fkont_proper_prf [constructor, in additions.Euclidean_Chains]
    +Fkont_proper [inductive, in additions.Euclidean_Chains]
    +FK_correct [lemma, in additions.AM]
    +FK_proper [instance, in additions.Euclidean_Chains]
    +FK_correct [lemma, in additions.Euclidean_Chains]
    +flatten [definition, in additions.Addition_Chains]
    +flatten [lemma, in hydras.Epsilon0.Paths]
    +flatten_valid_2 [lemma, in additions.Addition_Chains]
    +flatten_valid [lemma, in additions.Addition_Chains]
    +flatten_aux_valid [lemma, in additions.Addition_Chains]
    +flatten_aux [definition, in additions.Addition_Chains]
    +fn1:47 [binder, in additions.fib]
    +fn2:48 [binder, in additions.fib]
    +fn3:49 [binder, in additions.fib]
    +fn:33 [binder, in additions.AM]
    +fn:443 [binder, in hydras.Ackermann.primRec]
    +fn:456 [binder, in hydras.Ackermann.primRec]
    +fn:477 [binder, in hydras.Ackermann.primRec]
    +FO [constructor, in hydras.Prelude.Fuel]
    +fol [library]
    +fold_left2 [definition, in hydras.rpo.more_list]
    +FolExamples [library]
    +folLogic [library]
    +folLogic2 [library]
    +folLogic3 [library]
    +FolNotations [module, in hydras.Ackermann.fol]
    +FolNotations.exH' [abbreviation, in hydras.Ackermann.fol]
    +_ <->' _ (fol_scope) [notation, in hydras.Ackermann.fol]
    +_ <->'' _ (fol_scope) [notation, in hydras.Ackermann.fol]
    +_ /\' _ (fol_scope) [notation, in hydras.Ackermann.fol]
    +_ \/' _ (fol_scope) [notation, in hydras.Ackermann.fol]
    +_ <> _ (fol_scope) [notation, in hydras.Ackermann.fol]
    +_ = _ (fol_scope) [notation, in hydras.Ackermann.fol]
    +allH _ .. _ , _ (fol_scope) [notation, in hydras.Ackermann.fol]
    +exH _ .. _ , _ (fol_scope) [notation, in hydras.Ackermann.fol]
    +v# _ (fol_scope) [notation, in hydras.Ackermann.fol]
    +_ <-> _ (fol_scope) [notation, in hydras.Ackermann.fol]
    +~ _ (fol_scope) [notation, in hydras.Ackermann.fol]
    +_ -> _ (fol_scope) [notation, in hydras.Ackermann.fol]
    +_ /\ _ (fol_scope) [notation, in hydras.Ackermann.fol]
    +_ \/ _ (fol_scope) [notation, in hydras.Ackermann.fol]
    +_ = _ (fol_scope) [notation, in hydras.Ackermann.fol]
    +folProof [library]
    +folProp [library]
    +folReplace [library]
    +Fol_Properties.Substitution.Substitution_Properties [section, in hydras.Ackermann.folProp]
    +Fol_Properties.Substitution.Extensions [section, in hydras.Ackermann.folProp]
    +Fol_Properties.Substitution [section, in hydras.Ackermann.folProp]
    +Fol_Properties.Free_Variables [section, in hydras.Ackermann.folProp]
    +Fol_Properties.lt_depth [variable, in hydras.Ackermann.folProp]
    +Fol_Properties.L [variable, in hydras.Ackermann.folProp]
    +Fol_Properties [section, in hydras.Ackermann.folProp]
    +foo [definition, in hydras.Prelude.Fuel]
    +foo:167 [binder, in hydras.Schutte.Ordering_Functions]
    +foo:42 [binder, in hydras.Ackermann.fol]
    +foo:45 [binder, in hydras.Ackermann.fol]
    +forallE [lemma, in hydras.Ackermann.LNN]
    +forallE [lemma, in hydras.Ackermann.LNT]
    +forallE [lemma, in hydras.Ackermann.folLogic]
    +forallH [constructor, in hydras.Ackermann.fol]
    +forallI [lemma, in hydras.Ackermann.LNN]
    +forallI [lemma, in hydras.Ackermann.LNT]
    +forallI [lemma, in hydras.Ackermann.folLogic]
    +forallSimp [lemma, in hydras.Ackermann.LNN]
    +forallSimp [lemma, in hydras.Ackermann.LNT]
    +forallSimp [lemma, in hydras.Ackermann.folLogic]
    +forall_weak [lemma, in hydras.Prelude.Sort_spec]
    +Forall_forall [lemma, in hydras.Prelude.MoreVectors]
    +Forall_and [lemma, in hydras.Prelude.MoreVectors]
    +Forall_inv [lemma, in hydras.Prelude.MoreVectors]
    +Forall2R [inductive, in hydras.Prelude.MoreLists]
    +Forall2R_iff [lemma, in hydras.Prelude.MoreLists]
    +Forall2R_cons [lemma, in hydras.Prelude.MoreLists]
    +Forall2R_last [constructor, in hydras.Prelude.MoreLists]
    +Forall2R_nil [constructor, in hydras.Prelude.MoreLists]
    +Forall2_indR [lemma, in hydras.Prelude.MoreLists]
    +Forall2_RR [lemma, in hydras.Prelude.MoreLists]
    +Forall2_R [lemma, in hydras.Prelude.MoreLists]
    +Forall2_right_induction [section, in hydras.Prelude.MoreLists]
    +Forall2_inv [lemma, in hydras.Prelude.MoreVectors]
    +Formula [abbreviation, in hydras.Ackermann.subAll]
    +Formula [definition, in hydras.Ackermann.LNN]
    +Formula [definition, in hydras.Ackermann.LNT]
    +Formula [abbreviation, in hydras.Ackermann.folProp]
    +Formula [abbreviation, in hydras.Ackermann.codeSubFormula]
    +Formula [inductive, in hydras.Ackermann.fol]
    +Formula [abbreviation, in hydras.Ackermann.folLogic3]
    +Formulas [abbreviation, in hydras.Ackermann.subAll]
    +Formulas [definition, in hydras.Ackermann.LNN]
    +Formulas [definition, in hydras.Ackermann.LNT]
    +Formulas [abbreviation, in hydras.Ackermann.folProp]
    +Formulas [abbreviation, in hydras.Ackermann.codeSubFormula]
    +Formulas [definition, in hydras.Ackermann.fol]
    +Formulas [abbreviation, in hydras.Ackermann.folLogic3]
    +FormulasToFormula [definition, in Goedel.PRrepresentable]
    +FormulasToFuncs [definition, in Goedel.PRrepresentable]
    +Formula_depth_ind2 [lemma, in hydras.Ackermann.fol]
    +Formula_depth_ind [definition, in hydras.Ackermann.fol]
    +Formula_depth_rec2_forall [lemma, in hydras.Ackermann.fol]
    +Formula_depth_rec2_not [lemma, in hydras.Ackermann.fol]
    +Formula_depth_rec2_imp [lemma, in hydras.Ackermann.fol]
    +Formula_depth_rec2rec_nice [lemma, in hydras.Ackermann.fol]
    +Formula_depth_rec2 [definition, in hydras.Ackermann.fol]
    +Formula_depth_rec2rec [definition, in hydras.Ackermann.fol]
    +Formula_depth_rec_indep [lemma, in hydras.Ackermann.fol]
    +Formula_depth_rec [definition, in hydras.Ackermann.fol]
    +Formula_depth_rec_rec [definition, in hydras.Ackermann.fol]
    +formula_eqdec [lemma, in hydras.Ackermann.fol]
    +fp:233 [binder, in additions.Euclidean_Chains]
    +fp:302 [binder, in additions.Euclidean_Chains]
    +fp:318 [binder, in additions.Euclidean_Chains]
    +fp:320 [binder, in additions.Euclidean_Chains]
    +Fp:323 [binder, in additions.Euclidean_Chains]
    +Fp:328 [binder, in additions.Euclidean_Chains]
    +fq:223 [binder, in additions.Euclidean_Chains]
    +fq:232 [binder, in additions.Euclidean_Chains]
    +fq:234 [binder, in additions.Euclidean_Chains]
    +fq:294 [binder, in additions.Euclidean_Chains]
    +fq:299 [binder, in additions.Euclidean_Chains]
    +fq:303 [binder, in additions.Euclidean_Chains]
    +fq:319 [binder, in additions.Euclidean_Chains]
    +fq:321 [binder, in additions.Euclidean_Chains]
    +frec:113 [binder, in hydras.Ackermann.folProp]
    +frec:74 [binder, in hydras.Ackermann.codeSubFormula]
    +frec:76 [binder, in hydras.Ackermann.folProp]
    +frec:98 [binder, in hydras.Ackermann.folProp]
    +free [instance, in hydras.Hydra.Hydra_Definitions]
    +freeVarAddExists1 [lemma, in Goedel.PRrepresentable]
    +freeVarAddExists2 [lemma, in Goedel.PRrepresentable]
    +freeVarAddForalls1 [lemma, in Goedel.PRrepresentable]
    +freeVarAddForalls2 [lemma, in Goedel.PRrepresentable]
    +freeVarClosed [lemma, in hydras.Ackermann.folProp]
    +freeVarClosedList1 [lemma, in hydras.Ackermann.folProp]
    +freeVarClosedList2 [lemma, in hydras.Ackermann.folProp]
    +freeVarCodeSysPf [lemma, in Goedel.codeSysPrf]
    +freeVarCodeSysPrf [lemma, in Goedel.codeSysPrf]
    +freeVarCodeSysPrfN [definition, in Goedel.rosserPA]
    +freeVarCodeSysPrfN [lemma, in Goedel.codeSysPrf]
    +freeVarCodeSysPrfN [definition, in Goedel.rosser]
    +freeVarF [definition, in hydras.Ackermann.folProp]
    +freeVarFormula [abbreviation, in hydras.Ackermann.folProp]
    +freeVarG [lemma, in Goedel.goedel1]
    +freeVarInterpFormula [lemma, in hydras.Ackermann.model]
    +freeVarInterpRel [lemma, in hydras.Ackermann.model]
    +freeVarInterpTerm [lemma, in hydras.Ackermann.model]
    +freeVarListFormula [definition, in hydras.Ackermann.folProp]
    +freeVarListFormulaApp [lemma, in hydras.Ackermann.folProp]
    +freeVarLT [lemma, in hydras.Ackermann.LNN]
    +freeVarMap [definition, in hydras.Ackermann.subAll]
    +freeVarMap_ext [lemma, in hydras.Ackermann.subAll]
    +freeVarMap1 [lemma, in hydras.Ackermann.subAll]
    +freeVarNNHelp [lemma, in hydras.Ackermann.model]
    +freeVarPlus [lemma, in hydras.Ackermann.LNN]
    +freeVarPlus [lemma, in hydras.Ackermann.LNT]
    +freeVarPrimRecPiFormulaHelp1 [lemma, in Goedel.PRrepresentable]
    +freeVarPrimRecSigmaFormulaHelp1 [lemma, in Goedel.PRrepresentable]
    +freeVarRepT' [lemma, in Goedel.rosserPA]
    +freeVarRepT' [definition, in Goedel.goedel2]
    +freeVarSubAllFormula1 [lemma, in hydras.Ackermann.subAll]
    +freeVarSubAllFormula2 [lemma, in hydras.Ackermann.subAll]
    +freeVarSubAllTerms1 [lemma, in hydras.Ackermann.subAll]
    +freeVarSubAllTerms2 [lemma, in hydras.Ackermann.subAll]
    +freeVarSubAllTerm1 [lemma, in hydras.Ackermann.subAll]
    +freeVarSubAllTerm2 [lemma, in hydras.Ackermann.subAll]
    +freeVarSubFormula1 [lemma, in hydras.Ackermann.subProp]
    +freeVarSubFormula2 [lemma, in hydras.Ackermann.subProp]
    +freeVarSubFormula3 [lemma, in hydras.Ackermann.subProp]
    +freeVarSubFormula4 [lemma, in hydras.Ackermann.subProp]
    +freeVarSubTerms1 [lemma, in hydras.Ackermann.subProp]
    +freeVarSubTerms2 [lemma, in hydras.Ackermann.subProp]
    +freeVarSubTerms3 [lemma, in hydras.Ackermann.subProp]
    +freeVarSubTerms4 [lemma, in hydras.Ackermann.subProp]
    +freeVarSubTerm1 [lemma, in hydras.Ackermann.subProp]
    +freeVarSubTerm2 [lemma, in hydras.Ackermann.subProp]
    +freeVarSubTerm3 [lemma, in hydras.Ackermann.subProp]
    +freeVarSubTerm4 [lemma, in hydras.Ackermann.subProp]
    +freeVarSucc [lemma, in hydras.Ackermann.LNN]
    +freeVarSucc [lemma, in hydras.Ackermann.LNT]
    +freeVarT [definition, in hydras.Ackermann.folProp]
    +freeVarTApply [lemma, in hydras.Ackermann.folProp]
    +freeVarTerm [abbreviation, in hydras.Ackermann.folProp]
    +freeVarTerms [abbreviation, in hydras.Ackermann.folProp]
    +freeVarTimes [lemma, in hydras.Ackermann.LNN]
    +freeVarTimes [lemma, in hydras.Ackermann.LNT]
    +freeVarTs [definition, in hydras.Ackermann.folProp]
    +freeVarZero [lemma, in hydras.Ackermann.LNN]
    +freeVarZero [lemma, in hydras.Ackermann.LNT]
    +Free_Variables [section, in hydras.Ackermann.LNN]
    +Free_Variables [section, in hydras.Ackermann.LNT]
    +from:16 [binder, in gaia_hydras.GPaths]
    +from:34 [binder, in gaia_hydras.GPaths]
    +from:44 [binder, in gaia_hydras.GPaths]
    +from:47 [binder, in gaia_hydras.GPaths]
    +from:64 [binder, in hydras.Prelude.MoreVectors]
    +from:70 [binder, in hydras.Prelude.Sort_spec]
    +FS [abbreviation, in hydras.Epsilon0.T1]
    +FS [abbreviation, in hydras.Gamma0.T2]
    +FS [constructor, in hydras.Prelude.Fuel]
    +fstar_S [lemma, in hydras.Epsilon0.F_alpha]
    +Fstar_S [lemma, in hydras.Epsilon0.F_alpha]
    +FS_rw [lemma, in hydras.Epsilon0.T1]
    +fs:19 [binder, in hydras.MoreAck.AckNotPR]
    +fs:448 [binder, in Goedel.PRrepresentable]
    +fs:459 [binder, in Goedel.PRrepresentable]
    +fs:467 [binder, in Goedel.PRrepresentable]
    +fs:77 [binder, in hydras.Ackermann.primRec]
    +fuel [inductive, in hydras.Prelude.Fuel]
    +Fuel [library]
    +fuel:747 [binder, in hydras.Epsilon0.T1]
    +fuel:87 [binder, in hydras.Epsilon0.Canon]
    +fuel:94 [binder, in hydras.Epsilon0.Canon]
    +func [projection, in hydras.Ackermann.model]
    +Functions [projection, in hydras.Ackermann.fol]
    +fun_le_trans [lemma, in hydras.Prelude.Iterates]
    +fun_le [definition, in hydras.Prelude.Iterates]
    +fun_le [definition, in gaia_hydras.T1Bridge]
    +fun_bijection_is_ZL_bijection [lemma, in hydras.Schutte.PartialFun]
    +fun_bijection_codomain [lemma, in hydras.Schutte.PartialFun]
    +fun_restr [definition, in hydras.Schutte.PartialFun]
    +fun_bij_i [constructor, in hydras.Schutte.PartialFun]
    +fun_bijection [inductive, in hydras.Schutte.PartialFun]
    +fun_inj_i [constructor, in hydras.Schutte.PartialFun]
    +fun_injection [inductive, in hydras.Schutte.PartialFun]
    +fun_inj [definition, in hydras.Schutte.PartialFun]
    +fun_onto [definition, in hydras.Schutte.PartialFun]
    +fun_codomain [definition, in hydras.Schutte.PartialFun]
    +fun_equiv [definition, in hydras.Schutte.Ordering_Functions]
    +fun2PR [definition, in hydras.Ackermann.primRec]
    +fusion [definition, in additions.Trace_exercise]
    +F_alpha_not_PR [lemma, in gaia_hydras.GF_alpha]
    +F_alpha_not_PR_E0 [lemma, in gaia_hydras.GF_alpha]
    +F_restricted_mono_l [lemma, in gaia_hydras.GF_alpha]
    +F_limE [lemma, in gaia_hydras.GF_alpha]
    +F_succE [lemma, in gaia_hydras.GF_alpha]
    +F_alpha_0_eq [lemma, in gaia_hydras.GF_alpha]
    +F_mono_l [lemma, in gaia_hydras.GF_alpha]
    +F_zeroE [lemma, in gaia_hydras.GF_alpha]
    +F_alpha_positive [lemma, in gaia_hydras.GF_alpha]
    +F_alpha_Succ_le [lemma, in gaia_hydras.GF_alpha]
    +F_alpha_dom [lemma, in gaia_hydras.GF_alpha]
    +F_alpha_mono [lemma, in gaia_hydras.GF_alpha]
    +F_alpha_gt [lemma, in gaia_hydras.GF_alpha]
    +F_ [definition, in gaia_hydras.GF_alpha]
    +f_succ_eqn [lemma, in hydras.Epsilon0.F_alpha]
    +f_lim_eqn [lemma, in hydras.Epsilon0.F_alpha]
    +f_zero_eqn [lemma, in hydras.Epsilon0.F_alpha]
    +f_star_iterate [lemma, in hydras.Epsilon0.F_alpha]
    +f_star_Succ [lemma, in hydras.Epsilon0.F_alpha]
    +f_eq2 [lemma, in hydras.Epsilon0.F_alpha]
    +f_star_zero_eqn [lemma, in hydras.Epsilon0.F_alpha]
    +f_ [definition, in hydras.Epsilon0.F_alpha]
    +f_star [definition, in hydras.Epsilon0.F_alpha]
    +F_mono_l [lemma, in hydras.Epsilon0.F_alpha]
    +F_mono_l_0 [lemma, in hydras.Epsilon0.F_alpha]
    +F_monotony_l.case_lt.Hd [variable, in hydras.Epsilon0.F_alpha]
    +F_monotony_l.case_lt.Hlt [variable, in hydras.Epsilon0.F_alpha]
    +F_monotony_l.case_lt.n [variable, in hydras.Epsilon0.F_alpha]
    +F_monotony_l.case_lt [section, in hydras.Epsilon0.F_alpha]
    +F_monotony_l.case_eq.Heq [variable, in hydras.Epsilon0.F_alpha]
    +F_monotony_l.case_eq [section, in hydras.Epsilon0.F_alpha]
    +F_monotony_l.H'_beta_alpha [variable, in hydras.Epsilon0.F_alpha]
    +F_monotony_l.beta [variable, in hydras.Epsilon0.F_alpha]
    +F_monotony_l.alpha [variable, in hydras.Epsilon0.F_alpha]
    +F_monotony_l [section, in hydras.Epsilon0.F_alpha]
    +F_alpha_ge_S [abbreviation, in hydras.Epsilon0.F_alpha]
    +F_restricted_mono_l [lemma, in hydras.Epsilon0.F_alpha]
    +F_alpha_dom [lemma, in hydras.Epsilon0.F_alpha]
    +F_alpha_Succ_le [lemma, in hydras.Epsilon0.F_alpha]
    +F_alpha_positive [lemma, in hydras.Epsilon0.F_alpha]
    +F_alpha_gt [lemma, in hydras.Epsilon0.F_alpha]
    +F_alpha_mono [lemma, in hydras.Epsilon0.F_alpha]
    +F_One_Zero_ge [lemma, in hydras.Epsilon0.F_alpha]
    +F_One_Zero_dom [lemma, in hydras.Epsilon0.F_alpha]
    +F_alpha_0_eq [lemma, in hydras.Epsilon0.F_alpha]
    +F_succ_eqn [lemma, in hydras.Epsilon0.F_alpha]
    +F_lim_eqn [lemma, in hydras.Epsilon0.F_alpha]
    +F_zero_eqn [lemma, in hydras.Epsilon0.F_alpha]
    +F_star_iterate [lemma, in hydras.Epsilon0.F_alpha]
    +F_star_Succ [lemma, in hydras.Epsilon0.F_alpha]
    +F_eq2 [lemma, in hydras.Epsilon0.F_alpha]
    +F_star_zero_eqn [lemma, in hydras.Epsilon0.F_alpha]
    +F_ [definition, in hydras.Epsilon0.F_alpha]
    +F_star [definition, in hydras.Epsilon0.F_alpha]
    +f_ok_inv [lemma, in hydras.Epsilon0.Large_Sets]
    +F_alpha_notPR_inv [lemma, in hydras.Epsilon0.F_omega]
    +F_alpha_PR_inv [lemma, in hydras.Epsilon0.F_omega]
    +F_n_PR [instance, in hydras.Epsilon0.F_omega]
    +F_0_isPR [instance, in hydras.Epsilon0.F_omega]
    +F_alpha_not_PR [lemma, in hydras.Epsilon0.F_omega]
    +F_alpha_notPR.H [variable, in hydras.Epsilon0.F_omega]
    +F_alpha_notPR.case_lt.Halpha [variable, in hydras.Epsilon0.F_omega]
    +F_alpha_notPR.case_lt [section, in hydras.Epsilon0.F_omega]
    +F_alpha_notPR.alpha [variable, in hydras.Epsilon0.F_omega]
    +F_alpha_notPR [section, in hydras.Epsilon0.F_omega]
    +F_omega_not_PR [lemma, in hydras.Epsilon0.F_omega]
    +F_omega_PR:13 [binder, in hydras.Epsilon0.F_omega]
    +F_omega_notPR [section, in hydras.Epsilon0.F_omega]
    +F_vs_Ack [lemma, in hydras.Epsilon0.F_omega]
    +F_iterate_rw [lemma, in hydras.Epsilon0.F_omega]
    +f_Sv:55 [binder, in hydras.Ackermann.PA]
    +f_0:54 [binder, in hydras.Ackermann.PA]
    +f_Sv:4 [binder, in hydras.Ackermann.PA]
    +f_0:3 [binder, in hydras.Ackermann.PA]
    +F_incl_ij [instance, in hydras.OrdinalNotations.ON_Finite]
    +F_alpha_Sn [lemma, in hydras.solutions_exercises.F_3]
    +F_3_eqn [lemma, in hydras.solutions_exercises.F_3]
    +f_minoration [lemma, in hydras.Epsilon0.Hprime]
    +f_sup_commutes [lemma, in hydras.Schutte.Ordering_Functions]
    +F_not_lim [lemma, in hydras.Gamma0.Gamma0]
    +f_l:286 [binder, in hydras.rpo.rpo]
    +f_l:283 [binder, in hydras.rpo.rpo]
    +f_l:274 [binder, in hydras.rpo.rpo]
    +F_3 [library]
    +F_alpha [library]
    +F_omega [library]
    +f':19 [binder, in gaia_hydras.T1Bridge]
    +f':22 [binder, in gaia_hydras.T1Bridge]
    +f':33 [binder, in gaia_hydras.T1Bridge]
    +f':348 [binder, in hydras.Ackermann.primRec]
    +f':36 [binder, in gaia_hydras.T1Bridge]
    +f0 [definition, in hydras.MoreAck.LNN_Examples]
    +F0 [lemma, in hydras.Epsilon0.Hprime]
    +f0:1239 [binder, in hydras.Ackermann.codeSubFormula]
    +f0:1242 [binder, in hydras.Ackermann.codeSubFormula]
    +f0:1296 [binder, in hydras.Ackermann.codeSubFormula]
    +f0:1299 [binder, in hydras.Ackermann.codeSubFormula]
    +f0:13 [binder, in hydras.Ackermann.PA]
    +f0:148 [binder, in hydras.Ackermann.codePA]
    +f0:151 [binder, in hydras.Ackermann.codePA]
    +f0:158 [binder, in hydras.Ackermann.codePA]
    +f0:160 [binder, in hydras.Ackermann.codePA]
    +f0:208 [binder, in hydras.Ackermann.fol]
    +f0:231 [binder, in hydras.Ackermann.fol]
    +f0:249 [binder, in hydras.Ackermann.fol]
    +f0:299 [binder, in hydras.Ackermann.fol]
    +f0:345 [binder, in hydras.Ackermann.fol]
    +f0:389 [binder, in hydras.Ackermann.fol]
    +f0:41 [binder, in hydras.Ackermann.Languages]
    +f0:42 [binder, in hydras.Ackermann.Languages]
    +f0:43 [binder, in hydras.Ackermann.Languages]
    +f0:44 [binder, in hydras.Ackermann.Languages]
    +f0:441 [binder, in hydras.Ackermann.fol]
    +f0:45 [binder, in hydras.Ackermann.Languages]
    +f0:46 [binder, in hydras.Ackermann.Languages]
    +f0:62 [binder, in hydras.Ackermann.folLogic3]
    +F1 [definition, in additions.AM]
    +F1 [lemma, in hydras.solutions_exercises.MultisetWf]
    +F1 [definition, in additions.Euclidean_Chains]
    +F1 [lemma, in hydras.Epsilon0.Hprime]
    +f1 [definition, in hydras.MoreAck.FolExamples]
    +F1 [lemma, in hydras.Hydra.KP_example]
    +f1rec:67 [binder, in hydras.Ackermann.codeSubFormula]
    +F1_correct [lemma, in additions.AM]
    +F1_proper [instance, in additions.Euclidean_Chains]
    +F1_correct [lemma, in additions.Euclidean_Chains]
    +F1_neutral_r [lemma, in additions.Euclidean_Chains]
    +F1_neutral_l [lemma, in additions.Euclidean_Chains]
    +F1_simpl [lemma, in hydras.Epsilon0.Hprime]
    +F144 [definition, in additions.Euclidean_Chains]
    +F197887 [definition, in additions.AM]
    +f1:106 [binder, in hydras.Ackermann.primRec]
    +f1:109 [binder, in hydras.Ackermann.primRec]
    +f1:110 [binder, in hydras.Ackermann.folReplace]
    +f1:12 [binder, in hydras.Ackermann.folReplace]
    +f1:140 [binder, in additions.Euclidean_Chains]
    +f1:144 [binder, in hydras.Ackermann.codeSubFormula]
    +f1:152 [binder, in hydras.Ackermann.folProp]
    +f1:17 [binder, in hydras.Ackermann.folReplace]
    +f1:19 [binder, in additions.Euclidean_Chains]
    +f1:2 [binder, in hydras.rpo.term]
    +f1:2 [binder, in hydras.Ackermann.folReplace]
    +f1:20 [binder, in hydras.Ackermann.folReplace]
    +f1:200 [binder, in hydras.Ackermann.codeSubFormula]
    +f1:203 [binder, in hydras.Ackermann.fol]
    +f1:208 [binder, in hydras.Ackermann.codeSubFormula]
    +f1:226 [binder, in hydras.Ackermann.fol]
    +f1:23 [binder, in hydras.Ackermann.folReplace]
    +f1:232 [binder, in hydras.rpo.term]
    +f1:244 [binder, in hydras.Ackermann.fol]
    +f1:244 [binder, in hydras.Gamma0.Gamma0]
    +f1:246 [binder, in hydras.rpo.term]
    +f1:26 [binder, in hydras.Ackermann.folReplace]
    +f1:294 [binder, in hydras.Ackermann.fol]
    +f1:3 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +f1:30 [binder, in hydras.Ackermann.folReplace]
    +f1:34 [binder, in hydras.Ackermann.folReplace]
    +f1:340 [binder, in hydras.Ackermann.fol]
    +f1:351 [binder, in hydras.Ackermann.primRec]
    +f1:365 [binder, in hydras.Ackermann.primRec]
    +f1:37 [binder, in hydras.Ackermann.subAll]
    +f1:371 [binder, in hydras.Ackermann.primRec]
    +f1:383 [binder, in hydras.Ackermann.primRec]
    +f1:384 [binder, in hydras.Ackermann.fol]
    +f1:389 [binder, in hydras.Ackermann.primRec]
    +f1:39 [binder, in hydras.Ackermann.folReplace]
    +f1:392 [binder, in hydras.Ackermann.folProp]
    +f1:396 [binder, in hydras.Ackermann.folProp]
    +f1:396 [binder, in hydras.Ackermann.primRec]
    +f1:403 [binder, in hydras.Ackermann.primRec]
    +f1:405 [binder, in hydras.Ackermann.folProp]
    +f1:409 [binder, in hydras.Ackermann.folProp]
    +f1:44 [binder, in hydras.Ackermann.folReplace]
    +f1:49 [binder, in hydras.Ackermann.folReplace]
    +f1:54 [binder, in hydras.Ackermann.folReplace]
    +f1:55 [binder, in hydras.rpo.term]
    +f1:59 [binder, in hydras.Ackermann.folReplace]
    +f1:64 [binder, in hydras.Ackermann.folReplace]
    +f1:66 [binder, in hydras.Ackermann.codeSubFormula]
    +f1:68 [binder, in hydras.Ackermann.folReplace]
    +f1:7 [binder, in hydras.Ackermann.folReplace]
    +f1:70 [binder, in hydras.rpo.term]
    +f1:72 [binder, in hydras.Ackermann.folReplace]
    +f1:77 [binder, in hydras.Ackermann.folReplace]
    +f1:80 [binder, in additions.Euclidean_Chains]
    +f1:82 [binder, in hydras.Ackermann.folReplace]
    +f1:87 [binder, in hydras.Ackermann.folReplace]
    +f1:97 [binder, in additions.Euclidean_Chains]
    +F2 [lemma, in hydras.Epsilon0.F_alpha]
    +F2 [lemma, in hydras.solutions_exercises.MultisetWf]
    +F2 [definition, in additions.Euclidean_Chains]
    +F2 [lemma, in hydras.Epsilon0.Hprime]
    +f2 [definition, in hydras.MoreAck.FolExamples]
    +F2 [lemma, in hydras.Hydra.KP_example]
    +F2C [definition, in additions.Euclidean_Chains]
    +F2C_correct [lemma, in additions.Euclidean_Chains]
    +F2q [definition, in additions.AM]
    +F2q_correct [lemma, in additions.AM]
    +F2q_correct_1 [lemma, in additions.AM]
    +F2q_correct_0 [lemma, in additions.AM]
    +F2q_of_nat [definition, in additions.AM]
    +f2rec:69 [binder, in hydras.Ackermann.codeSubFormula]
    +F2_proper [instance, in additions.Euclidean_Chains]
    +F2_correct [lemma, in additions.Euclidean_Chains]
    +f2:102 [binder, in hydras.Ackermann.codeSubFormula]
    +f2:107 [binder, in hydras.Ackermann.primRec]
    +f2:110 [binder, in hydras.Ackermann.primRec]
    +f2:111 [binder, in hydras.Ackermann.folReplace]
    +f2:13 [binder, in hydras.Ackermann.folReplace]
    +f2:1370 [binder, in hydras.Ackermann.codeSubFormula]
    +f2:1373 [binder, in hydras.Ackermann.codeSubFormula]
    +f2:141 [binder, in additions.Euclidean_Chains]
    +f2:145 [binder, in hydras.Ackermann.codeSubFormula]
    +f2:153 [binder, in hydras.Ackermann.folProp]
    +f2:18 [binder, in hydras.Ackermann.folReplace]
    +f2:20 [binder, in additions.Euclidean_Chains]
    +f2:201 [binder, in hydras.Ackermann.codeSubFormula]
    +f2:206 [binder, in hydras.Ackermann.fol]
    +f2:209 [binder, in hydras.Ackermann.codeSubFormula]
    +f2:21 [binder, in hydras.Ackermann.folReplace]
    +f2:229 [binder, in hydras.Ackermann.fol]
    +f2:233 [binder, in hydras.rpo.term]
    +f2:24 [binder, in hydras.Ackermann.folReplace]
    +f2:245 [binder, in hydras.Gamma0.Gamma0]
    +f2:247 [binder, in hydras.rpo.term]
    +f2:247 [binder, in hydras.Ackermann.fol]
    +f2:27 [binder, in hydras.Ackermann.folReplace]
    +f2:297 [binder, in hydras.Ackermann.fol]
    +f2:3 [binder, in hydras.rpo.term]
    +f2:3 [binder, in hydras.Ackermann.folReplace]
    +f2:31 [binder, in hydras.Ackermann.folReplace]
    +f2:343 [binder, in hydras.Ackermann.fol]
    +f2:35 [binder, in hydras.Ackermann.folReplace]
    +f2:352 [binder, in hydras.Ackermann.primRec]
    +f2:366 [binder, in hydras.Ackermann.primRec]
    +f2:372 [binder, in hydras.Ackermann.primRec]
    +f2:38 [binder, in hydras.Ackermann.subAll]
    +f2:384 [binder, in hydras.Ackermann.primRec]
    +f2:387 [binder, in hydras.Ackermann.fol]
    +f2:390 [binder, in hydras.Ackermann.primRec]
    +f2:393 [binder, in hydras.Ackermann.folProp]
    +f2:397 [binder, in hydras.Ackermann.folProp]
    +f2:397 [binder, in hydras.Ackermann.primRec]
    +f2:4 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +f2:40 [binder, in hydras.Ackermann.folReplace]
    +f2:404 [binder, in hydras.Ackermann.primRec]
    +f2:406 [binder, in hydras.Ackermann.folProp]
    +f2:410 [binder, in hydras.Ackermann.folProp]
    +f2:45 [binder, in hydras.Ackermann.folReplace]
    +f2:50 [binder, in hydras.Ackermann.folReplace]
    +f2:55 [binder, in hydras.Ackermann.folReplace]
    +f2:56 [binder, in hydras.rpo.term]
    +f2:60 [binder, in hydras.Ackermann.folReplace]
    +f2:65 [binder, in hydras.Ackermann.folReplace]
    +f2:68 [binder, in hydras.Ackermann.codeSubFormula]
    +f2:69 [binder, in hydras.Ackermann.folReplace]
    +f2:71 [binder, in hydras.rpo.term]
    +f2:73 [binder, in hydras.Ackermann.folReplace]
    +f2:78 [binder, in hydras.Ackermann.folReplace]
    +f2:8 [binder, in hydras.Ackermann.folReplace]
    +f2:81 [binder, in additions.Euclidean_Chains]
    +f2:83 [binder, in hydras.Ackermann.folReplace]
    +f2:88 [binder, in hydras.Ackermann.folReplace]
    +f2:93 [binder, in hydras.Ackermann.codeSubFormula]
    +f2:98 [binder, in additions.Euclidean_Chains]
    +F3 [definition, in additions.AM]
    +F3 [definition, in additions.Euclidean_Chains]
    +F3 [lemma, in hydras.Epsilon0.Hprime]
    +f3 [definition, in hydras.MoreAck.FolExamples]
    +F3_correct [lemma, in additions.AM]
    +F3_proper [instance, in additions.Euclidean_Chains]
    +F3_correct [lemma, in additions.Euclidean_Chains]
    +f3:14 [binder, in hydras.Ackermann.folReplace]
    +f3:146 [binder, in hydras.Ackermann.codeSubFormula]
    +f3:202 [binder, in hydras.Ackermann.codeSubFormula]
    +f3:209 [binder, in hydras.Ackermann.fol]
    +f3:210 [binder, in hydras.Ackermann.codeSubFormula]
    +f3:232 [binder, in hydras.Ackermann.fol]
    +f3:250 [binder, in hydras.Ackermann.fol]
    +f3:300 [binder, in hydras.Ackermann.fol]
    +f3:346 [binder, in hydras.Ackermann.fol]
    +f3:353 [binder, in hydras.Ackermann.primRec]
    +f3:36 [binder, in hydras.Ackermann.folReplace]
    +f3:367 [binder, in hydras.Ackermann.primRec]
    +f3:373 [binder, in hydras.Ackermann.primRec]
    +f3:390 [binder, in hydras.Ackermann.fol]
    +f3:391 [binder, in hydras.Ackermann.primRec]
    +f3:4 [binder, in hydras.Ackermann.folReplace]
    +f3:405 [binder, in hydras.Ackermann.primRec]
    +f3:41 [binder, in hydras.Ackermann.folReplace]
    +f3:411 [binder, in hydras.Ackermann.folProp]
    +f3:46 [binder, in hydras.Ackermann.folReplace]
    +f3:51 [binder, in hydras.Ackermann.folReplace]
    +f3:56 [binder, in hydras.Ackermann.folReplace]
    +f3:61 [binder, in hydras.Ackermann.folReplace]
    +f3:74 [binder, in hydras.Ackermann.folReplace]
    +f3:79 [binder, in hydras.Ackermann.folReplace]
    +f3:84 [binder, in hydras.Ackermann.folReplace]
    +f3:89 [binder, in hydras.Ackermann.folReplace]
    +f3:9 [binder, in hydras.Ackermann.folReplace]
    +f4:10 [binder, in hydras.Ackermann.folReplace]
    +f4:147 [binder, in hydras.Ackermann.codeSubFormula]
    +f4:15 [binder, in hydras.Ackermann.folReplace]
    +f4:203 [binder, in hydras.Ackermann.codeSubFormula]
    +f4:211 [binder, in hydras.Ackermann.codeSubFormula]
    +f4:211 [binder, in hydras.Ackermann.fol]
    +f4:234 [binder, in hydras.Ackermann.fol]
    +f4:261 [binder, in hydras.Ackermann.fol]
    +f4:311 [binder, in hydras.Ackermann.fol]
    +f4:357 [binder, in hydras.Ackermann.fol]
    +f4:37 [binder, in hydras.Ackermann.folReplace]
    +f4:374 [binder, in hydras.Ackermann.primRec]
    +f4:401 [binder, in hydras.Ackermann.fol]
    +f4:42 [binder, in hydras.Ackermann.folReplace]
    +f4:47 [binder, in hydras.Ackermann.folReplace]
    +f4:5 [binder, in hydras.Ackermann.folReplace]
    +f4:52 [binder, in hydras.Ackermann.folReplace]
    +f4:57 [binder, in hydras.Ackermann.folReplace]
    +f4:62 [binder, in hydras.Ackermann.folReplace]
    +f4:75 [binder, in hydras.Ackermann.folReplace]
    +f4:80 [binder, in hydras.Ackermann.folReplace]
    +f4:85 [binder, in hydras.Ackermann.folReplace]
    +f4:90 [binder, in hydras.Ackermann.folReplace]
    +F5 [lemma, in hydras.Epsilon0.F_alpha]
    +f5:148 [binder, in hydras.Ackermann.codeSubFormula]
    +f5:204 [binder, in hydras.Ackermann.codeSubFormula]
    +f5:212 [binder, in hydras.Ackermann.codeSubFormula]
    +f5:215 [binder, in hydras.Ackermann.fol]
    +f5:238 [binder, in hydras.Ackermann.fol]
    +f5:270 [binder, in hydras.Ackermann.fol]
    +f5:320 [binder, in hydras.Ackermann.fol]
    +f5:366 [binder, in hydras.Ackermann.fol]
    +f5:410 [binder, in hydras.Ackermann.fol]
    +f5:91 [binder, in hydras.Ackermann.folReplace]
    +F6 [lemma, in hydras.Epsilon0.F_alpha]
    +f6:92 [binder, in hydras.Ackermann.folReplace]
    +F7 [lemma, in hydras.Epsilon0.F_alpha]
    +F8 [lemma, in hydras.Epsilon0.F_alpha]
    +F87 [definition, in additions.Euclidean_Chains]
    +F9 [lemma, in hydras.Epsilon0.F_alpha]
    +F9 [definition, in additions.Euclidean_Chains]
    +F9_correct [lemma, in additions.Euclidean_Chains]
    +f:1 [binder, in hydras.Ackermann.PAconsistent]
    +f:1 [binder, in hydras.Ackermann.NN2PA]
    +f:1 [binder, in hydras.MoreAck.AckNotPR]
    +f:1 [binder, in hydras.MoreAck.Iterate_compat]
    +f:1 [binder, in hydras.Ackermann.PA]
    +f:10 [binder, in hydras.Ackermann.folProof]
    +f:10 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +f:10 [binder, in hydras.MoreAck.AckNotPR]
    +f:10 [binder, in hydras.Epsilon0.Large_Sets]
    +f:10 [binder, in Goedel.rosserPA]
    +f:10 [binder, in hydras.Ackermann.wellFormed]
    +f:10 [binder, in gaia_hydras.GLarge_Sets]
    +f:10 [binder, in hydras.Ackermann.wConsistent]
    +f:100 [binder, in hydras.Ackermann.LNN2LNT]
    +f:100 [binder, in hydras.Ackermann.folLogic]
    +f:100 [binder, in hydras.Ackermann.folLogic3]
    +f:1000 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1001 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1002 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1003 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1006 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1009 [binder, in hydras.Ackermann.codeSubFormula]
    +f:101 [binder, in hydras.Ackermann.LNT]
    +f:101 [binder, in hydras.Ackermann.codePA]
    +f:1012 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1015 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1018 [binder, in hydras.Ackermann.codeSubFormula]
    +f:102 [binder, in hydras.Ackermann.LNN]
    +f:102 [binder, in hydras.Ackermann.folReplace]
    +f:102 [binder, in hydras.Ackermann.codePA]
    +f:1021 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1022 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1023 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1024 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1025 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1026 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1027 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1029 [binder, in hydras.Ackermann.codeSubFormula]
    +f:103 [binder, in hydras.Ackermann.folProp]
    +f:103 [binder, in hydras.Ackermann.folLogic]
    +f:103 [binder, in hydras.OrdinalNotations.ON_Generic]
    +f:103 [binder, in gaia_hydras.nfwfgaia]
    +f:103 [binder, in hydras.Ackermann.codePA]
    +f:1031 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1033 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1035 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1037 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1039 [binder, in hydras.Ackermann.codeSubFormula]
    +f:104 [binder, in hydras.Prelude.Iterates]
    +f:104 [binder, in hydras.Ackermann.LNN]
    +f:104 [binder, in hydras.Ackermann.LNT]
    +f:104 [binder, in hydras.rpo.rpo]
    +f:1041 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1043 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1045 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1047 [binder, in hydras.Ackermann.codeSubFormula]
    +f:105 [binder, in hydras.Ackermann.codePA]
    +f:1050 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1053 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1056 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1059 [binder, in hydras.Ackermann.codeSubFormula]
    +f:106 [binder, in hydras.Ackermann.folLogic]
    +f:1062 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1065 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1068 [binder, in hydras.Ackermann.codeSubFormula]
    +f:107 [binder, in hydras.Ackermann.LNN]
    +f:107 [binder, in hydras.Ackermann.LNT]
    +f:107 [binder, in hydras.Ackermann.folReplace]
    +f:107 [binder, in hydras.Ackermann.codePA]
    +f:1071 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1073 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1075 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1077 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1079 [binder, in hydras.Ackermann.codeSubFormula]
    +f:108 [binder, in hydras.Prelude.Iterates]
    +f:108 [binder, in hydras.Ackermann.folLogic]
    +f:1081 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1083 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1084 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1085 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1086 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1087 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1088 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1089 [binder, in hydras.Ackermann.codeSubFormula]
    +f:109 [binder, in Goedel.rosserPA]
    +f:109 [binder, in hydras.Ackermann.fol]
    +f:109 [binder, in hydras.Ackermann.codePA]
    +f:1090 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1091 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1093 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1095 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1097 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1099 [binder, in hydras.Ackermann.codeSubFormula]
    +f:11 [binder, in hydras.Prelude.Iterates]
    +f:11 [binder, in hydras.Ackermann.checkPrf]
    +f:11 [binder, in hydras.Ackermann.fol]
    +f:11 [binder, in hydras.Ackermann.folLogic]
    +f:11 [binder, in Goedel.codeSysPrf]
    +f:110 [binder, in hydras.rpo.term]
    +f:110 [binder, in hydras.Ackermann.LNN]
    +f:110 [binder, in hydras.Ackermann.LNT]
    +f:110 [binder, in hydras.Ackermann.folProp]
    +f:110 [binder, in Goedel.rosserPA]
    +f:1101 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1103 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1105 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1107 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1109 [binder, in hydras.Ackermann.codeSubFormula]
    +f:111 [binder, in hydras.Ackermann.codePA]
    +f:111 [binder, in hydras.rpo.rpo]
    +f:1111 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1112 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1113 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1114 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1115 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1116 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1117 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1119 [binder, in hydras.Ackermann.codeSubFormula]
    +f:112 [binder, in Goedel.rosserPA]
    +f:112 [binder, in hydras.Ackermann.folLogic]
    +f:1121 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1123 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1125 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1127 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1129 [binder, in hydras.Ackermann.codeSubFormula]
    +f:113 [binder, in hydras.Prelude.Iterates]
    +f:113 [binder, in hydras.Ackermann.LNN2LNT]
    +f:113 [binder, in hydras.Ackermann.LNN]
    +f:113 [binder, in hydras.Ackermann.LNT]
    +f:113 [binder, in hydras.Ackermann.codePA]
    +f:1131 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1133 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1135 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1137 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1139 [binder, in hydras.Ackermann.codeSubFormula]
    +f:114 [binder, in hydras.Ackermann.subAll]
    +f:114 [binder, in hydras.Ackermann.LNN2LNT]
    +f:1141 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1143 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1145 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1146 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1147 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1148 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1149 [binder, in hydras.Ackermann.codeSubFormula]
    +f:115 [binder, in hydras.Ackermann.folLogic]
    +f:115 [binder, in hydras.Ackermann.codePA]
    +f:1150 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1151 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1152 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1153 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1155 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1157 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1159 [binder, in hydras.Ackermann.codeSubFormula]
    +f:116 [binder, in hydras.Ackermann.LNN]
    +f:116 [binder, in hydras.Ackermann.LNT]
    +f:116 [binder, in hydras.Ackermann.codeSubFormula]
    +f:116 [binder, in hydras.Ackermann.fol]
    +f:116 [binder, in hydras.OrdinalNotations.ON_Generic]
    +f:116 [binder, in hydras.Ackermann.codePA]
    +f:1161 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1162 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1163 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1164 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1165 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1166 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1167 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1168 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1169 [binder, in hydras.Ackermann.codeSubFormula]
    +f:117 [binder, in hydras.Ackermann.codePA]
    +f:1171 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1173 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1175 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1177 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1179 [binder, in hydras.Ackermann.codeSubFormula]
    +f:118 [binder, in hydras.Ackermann.LNT]
    +f:118 [binder, in hydras.Ackermann.folLogic]
    +f:118 [binder, in hydras.Ackermann.codePA]
    +f:118 [binder, in hydras.rpo.rpo]
    +f:1181 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1183 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1185 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1187 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1189 [binder, in hydras.Ackermann.codeSubFormula]
    +f:119 [binder, in hydras.Prelude.Iterates]
    +f:119 [binder, in hydras.Ackermann.LNN2LNT]
    +f:119 [binder, in hydras.Ackermann.LNN]
    +f:119 [binder, in hydras.Ackermann.codeSubFormula]
    +f:119 [binder, in hydras.Ackermann.primRec]
    +f:119 [binder, in hydras.Ackermann.codePA]
    +f:1191 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1193 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1195 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1197 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1198 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1199 [binder, in hydras.Ackermann.codeSubFormula]
    +f:12 [binder, in hydras.Ackermann.folProof]
    +f:12 [binder, in hydras.solutions_exercises.MinPR2]
    +f:12 [binder, in hydras.Ackermann.model]
    +f:12 [binder, in hydras.Ackermann.PA]
    +f:12 [binder, in Goedel.goedel1]
    +f:12 [binder, in hydras.Ackermann.codePA]
    +f:12 [binder, in Goedel.goedel2]
    +f:12 [binder, in hydras.MoreAck.PrimRecExamples]
    +f:120 [binder, in hydras.rpo.term]
    +f:120 [binder, in hydras.Ackermann.folLogic]
    +f:1201 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1203 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1205 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1207 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1208 [binder, in hydras.Ackermann.codeSubFormula]
    +f:121 [binder, in hydras.Ackermann.LNN]
    +f:121 [binder, in hydras.Ackermann.codePA]
    +f:122 [binder, in hydras.Ackermann.LNT]
    +f:122 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1220 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1223 [binder, in hydras.Ackermann.codeSubFormula]
    +f:123 [binder, in hydras.Prelude.Iterates]
    +f:123 [binder, in hydras.Ackermann.folLogic]
    +f:123 [binder, in hydras.Ackermann.codePA]
    +f:1232 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1235 [binder, in hydras.Ackermann.codeSubFormula]
    +f:124 [binder, in hydras.rpo.more_list]
    +f:124 [binder, in hydras.Ackermann.primRec]
    +f:124 [binder, in hydras.rpo.rpo]
    +f:125 [binder, in hydras.Ackermann.LNN2LNT]
    +f:125 [binder, in hydras.Ackermann.LNN]
    +f:125 [binder, in hydras.Ackermann.LNT]
    +f:125 [binder, in hydras.Ackermann.codePA]
    +f:1256 [binder, in hydras.Ackermann.codeSubFormula]
    +f:126 [binder, in hydras.Prelude.Iterates]
    +f:127 [binder, in hydras.Ackermann.folLogic]
    +f:127 [binder, in hydras.Schutte.Ordering_Functions]
    +f:127 [binder, in hydras.Ackermann.codePA]
    +f:128 [binder, in hydras.Prelude.Iterates]
    +f:128 [binder, in hydras.Ackermann.LNN]
    +f:128 [binder, in hydras.Ackermann.LNT]
    +f:129 [binder, in hydras.Ackermann.codePA]
    +f:1293 [binder, in hydras.Ackermann.codeSubFormula]
    +f:13 [binder, in hydras.Ackermann.folProof]
    +f:13 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +f:13 [binder, in hydras.rpo.more_list]
    +f:13 [binder, in hydras.Ackermann.LNT]
    +f:13 [binder, in hydras.Epsilon0.Large_Sets]
    +f:13 [binder, in Goedel.rosserPA]
    +f:13 [binder, in gaia_hydras.onType]
    +f:13 [binder, in Goedel.goedel1]
    +f:13 [binder, in hydras.Ackermann.Languages]
    +f:13 [binder, in Goedel.goedel2]
    +f:130 [binder, in hydras.Ackermann.codeFreeVar]
    +f:130 [binder, in hydras.Ackermann.LNT]
    +f:131 [binder, in hydras.Prelude.Iterates]
    +f:131 [binder, in hydras.Ackermann.LNN]
    +f:131 [binder, in hydras.Ackermann.codeSubFormula]
    +f:131 [binder, in hydras.Ackermann.codePA]
    +f:132 [binder, in hydras.Ackermann.codeFreeVar]
    +f:132 [binder, in hydras.Ackermann.codePA]
    +f:133 [binder, in hydras.Ackermann.codeFreeVar]
    +f:133 [binder, in hydras.Ackermann.LNN]
    +f:133 [binder, in hydras.Ackermann.LNT]
    +f:133 [binder, in hydras.Ackermann.folProp]
    +f:133 [binder, in hydras.Ackermann.subProp]
    +f:133 [binder, in hydras.Ackermann.fol]
    +f:133 [binder, in hydras.Ackermann.codePA]
    +f:134 [binder, in hydras.Ackermann.fol]
    +f:134 [binder, in hydras.Ackermann.codePA]
    +f:135 [binder, in hydras.Ackermann.codeFreeVar]
    +f:135 [binder, in hydras.Ackermann.codePA]
    +f:136 [binder, in hydras.Ackermann.LNN]
    +f:136 [binder, in hydras.Ackermann.codePA]
    +f:136 [binder, in hydras.rpo.rpo]
    +f:1366 [binder, in hydras.Ackermann.codeSubFormula]
    +f:137 [binder, in hydras.Ackermann.folProp]
    +f:137 [binder, in hydras.Ackermann.subProp]
    +f:137 [binder, in hydras.Ackermann.codePA]
    +f:1376 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1379 [binder, in hydras.Ackermann.codeSubFormula]
    +f:138 [binder, in hydras.Ackermann.LNN2LNT]
    +f:138 [binder, in hydras.Ackermann.codePA]
    +f:1387 [binder, in gaia_hydras.nfwfgaia]
    +f:139 [binder, in hydras.Ackermann.LNN2LNT]
    +f:139 [binder, in hydras.Ackermann.folProp]
    +f:139 [binder, in additions.Euclidean_Chains]
    +f:139 [binder, in hydras.Ackermann.codePA]
    +f:1396 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1396 [binder, in gaia_hydras.nfwfgaia]
    +f:1399 [binder, in hydras.Ackermann.codeSubFormula]
    +f:14 [binder, in hydras.Ackermann.PA]
    +f:14 [binder, in hydras.Ackermann.folLogic]
    +f:14 [binder, in Goedel.goedel1]
    +f:14 [binder, in hydras.Ackermann.Languages]
    +f:14 [binder, in hydras.Schutte.Addition]
    +f:14 [binder, in Goedel.goedel2]
    +f:140 [binder, in hydras.Ackermann.LNN2LNT]
    +f:140 [binder, in hydras.rpo.rpo]
    +f:1404 [binder, in hydras.Ackermann.codeSubFormula]
    +f:141 [binder, in hydras.Prelude.Iterates]
    +f:141 [binder, in hydras.Ackermann.folProp]
    +f:1410 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1417 [binder, in hydras.Ackermann.codeSubFormula]
    +f:142 [binder, in hydras.OrdinalNotations.ON_Generic]
    +f:142 [binder, in hydras.Ackermann.codePA]
    +f:1422 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1427 [binder, in hydras.Ackermann.codeSubFormula]
    +f:143 [binder, in hydras.Ackermann.model]
    +f:143 [binder, in hydras.Ackermann.codePA]
    +f:1430 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1433 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1436 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1439 [binder, in hydras.Ackermann.codeSubFormula]
    +f:144 [binder, in hydras.Ackermann.LNN2LNT]
    +f:1442 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1445 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1448 [binder, in hydras.Ackermann.codeSubFormula]
    +f:145 [binder, in hydras.rpo.rpo]
    +f:1451 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1454 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1457 [binder, in hydras.Ackermann.codeSubFormula]
    +f:146 [binder, in hydras.Schutte.Ordering_Functions]
    +f:1460 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1463 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1466 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1469 [binder, in hydras.Ackermann.codeSubFormula]
    +f:147 [binder, in hydras.Ackermann.codeFreeVar]
    +f:147 [binder, in hydras.Ackermann.model]
    +f:147 [binder, in hydras.Hydra.Hydra_Lemmas]
    +f:1472 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1475 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1478 [binder, in hydras.Ackermann.codeSubFormula]
    +f:148 [binder, in hydras.Schutte.Ordering_Functions]
    +f:1481 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1484 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1487 [binder, in hydras.Ackermann.codeSubFormula]
    +f:149 [binder, in hydras.Ackermann.codeFreeVar]
    +f:149 [binder, in hydras.Schutte.Ordering_Functions]
    +f:149 [binder, in hydras.rpo.rpo]
    +f:1490 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1493 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1496 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1499 [binder, in hydras.Ackermann.codeSubFormula]
    +f:15 [binder, in hydras.Ackermann.folProof]
    +f:15 [binder, in additions.Euclidean_Chains]
    +f:15 [binder, in Goedel.goedel1]
    +f:15 [binder, in hydras.Ackermann.codePA]
    +f:15 [binder, in hydras.Ackermann.expressible]
    +f:150 [binder, in hydras.Ackermann.model]
    +f:150 [binder, in hydras.Hydra.Hydra_Lemmas]
    +f:1502 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1505 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1508 [binder, in hydras.Ackermann.codeSubFormula]
    +f:151 [binder, in hydras.Prelude.Iterates]
    +f:151 [binder, in hydras.Ackermann.codeFreeVar]
    +f:1511 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1513 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1515 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1518 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1521 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1524 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1527 [binder, in hydras.Ackermann.codeSubFormula]
    +f:153 [binder, in hydras.Ackermann.codeFreeVar]
    +f:153 [binder, in hydras.Ackermann.model]
    +f:1530 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1533 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1536 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1539 [binder, in hydras.Ackermann.codeSubFormula]
    +f:154 [binder, in hydras.Ackermann.model]
    +f:1542 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1545 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1548 [binder, in hydras.Ackermann.codeSubFormula]
    +f:155 [binder, in hydras.Ackermann.codeFreeVar]
    +f:155 [binder, in hydras.Ackermann.model]
    +f:155 [binder, in hydras.OrdinalNotations.ON_Generic]
    +f:1551 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1554 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1557 [binder, in hydras.Ackermann.codeSubFormula]
    +f:156 [binder, in hydras.Ackermann.subProp]
    +f:156 [binder, in hydras.Prelude.Merge_Sort]
    +f:1560 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1563 [binder, in hydras.Ackermann.codeSubFormula]
    +f:1566 [binder, in hydras.Ackermann.codeSubFormula]
    +f:157 [binder, in hydras.Ackermann.codeFreeVar]
    +f:159 [binder, in hydras.Ackermann.codeFreeVar]
    +f:16 [binder, in hydras.Ackermann.LNN]
    +f:16 [binder, in hydras.Ackermann.LNT]
    +f:16 [binder, in hydras.Ackermann.folProp]
    +f:160 [binder, in hydras.Prelude.Iterates]
    +f:160 [binder, in hydras.Ackermann.subProp]
    +f:161 [binder, in hydras.Ackermann.codeFreeVar]
    +f:162 [binder, in hydras.Ackermann.codePA]
    +f:163 [binder, in hydras.Ackermann.codeFreeVar]
    +f:165 [binder, in hydras.Ackermann.codeFreeVar]
    +f:165 [binder, in hydras.Ackermann.subProp]
    +f:165 [binder, in hydras.Ackermann.cPair]
    +f:165 [binder, in hydras.Ackermann.codePA]
    +f:166 [binder, in hydras.Ackermann.model]
    +f:166 [binder, in hydras.Ackermann.codePA]
    +f:167 [binder, in hydras.Ackermann.codeFreeVar]
    +f:167 [binder, in hydras.OrdinalNotations.ON_Generic]
    +f:167 [binder, in hydras.Ackermann.codePA]
    +f:168 [binder, in hydras.rpo.term]
    +f:169 [binder, in hydras.Ackermann.codeFreeVar]
    +f:169 [binder, in hydras.Ackermann.cPair]
    +f:17 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +f:17 [binder, in hydras.rpo.more_list]
    +f:17 [binder, in hydras.Ackermann.folLogic]
    +f:17 [binder, in hydras.Ackermann.expressible]
    +f:170 [binder, in hydras.Prelude.Iterates]
    +f:170 [binder, in hydras.Ackermann.codePA]
    +f:171 [binder, in hydras.Prelude.Iterates]
    +f:173 [binder, in hydras.Prelude.Iterates]
    +f:173 [binder, in hydras.Ackermann.codeFreeVar]
    +f:173 [binder, in hydras.Ackermann.cPair]
    +f:173 [binder, in hydras.Ackermann.codePA]
    +f:174 [binder, in gaia_hydras.T1Bridge]
    +f:174 [binder, in hydras.Ackermann.codePA]
    +f:175 [binder, in hydras.Ackermann.codeFreeVar]
    +f:175 [binder, in hydras.Schutte.Ordering_Functions]
    +f:175 [binder, in hydras.Ackermann.codePA]
    +f:176 [binder, in hydras.Ackermann.codePA]
    +f:177 [binder, in hydras.Ackermann.codeFreeVar]
    +f:177 [binder, in hydras.Ackermann.codePA]
    +f:178 [binder, in hydras.Schutte.Ordering_Functions]
    +f:178 [binder, in hydras.Ackermann.codePA]
    +f:179 [binder, in hydras.Ackermann.codeFreeVar]
    +f:179 [binder, in gaia_hydras.T1Bridge]
    +f:179 [binder, in hydras.OrdinalNotations.ON_Generic]
    +f:179 [binder, in hydras.Ackermann.codePA]
    +f:18 [binder, in hydras.Prelude.Iterates]
    +f:18 [binder, in hydras.Ackermann.LNT]
    +f:18 [binder, in hydras.Schutte.Critical]
    +f:18 [binder, in gaia_hydras.T1Bridge]
    +f:18 [binder, in gaia_hydras.GL_alpha]
    +f:18 [binder, in hydras.Ackermann.Languages]
    +f:18 [binder, in Goedel.goedel2]
    +f:180 [binder, in hydras.Ackermann.codePA]
    +f:181 [binder, in hydras.Ackermann.codeFreeVar]
    +f:181 [binder, in hydras.Schutte.Ordering_Functions]
    +f:181 [binder, in hydras.Ackermann.codePA]
    +f:182 [binder, in gaia_hydras.T1Bridge]
    +f:182 [binder, in hydras.Ackermann.codePA]
    +f:183 [binder, in hydras.Ackermann.codeFreeVar]
    +f:183 [binder, in hydras.Schutte.Ordering_Functions]
    +f:183 [binder, in hydras.Ackermann.codePA]
    +f:184 [binder, in hydras.Prelude.Iterates]
    +f:184 [binder, in hydras.Ackermann.codePA]
    +f:1845 [binder, in gaia_hydras.nfwfgaia]
    +f:185 [binder, in gaia_hydras.T1Bridge]
    +f:185 [binder, in hydras.Ackermann.codePA]
    +f:1852 [binder, in gaia_hydras.nfwfgaia]
    +f:186 [binder, in hydras.Ackermann.codePA]
    +f:1861 [binder, in gaia_hydras.nfwfgaia]
    +f:1863 [binder, in gaia_hydras.nfwfgaia]
    +f:1867 [binder, in gaia_hydras.nfwfgaia]
    +f:187 [binder, in hydras.Ackermann.codeFreeVar]
    +f:187 [binder, in gaia_hydras.T1Bridge]
    +f:187 [binder, in hydras.Ackermann.wellFormed]
    +f:187 [binder, in hydras.Ackermann.codePA]
    +f:1871 [binder, in gaia_hydras.nfwfgaia]
    +f:1872 [binder, in gaia_hydras.nfwfgaia]
    +f:1876 [binder, in gaia_hydras.nfwfgaia]
    +f:188 [binder, in hydras.Ackermann.codePA]
    +f:189 [binder, in hydras.Ackermann.subAll]
    +f:189 [binder, in hydras.Ackermann.codeFreeVar]
    +f:189 [binder, in hydras.Ackermann.cPair]
    +f:189 [binder, in hydras.Ackermann.wellFormed]
    +f:189 [binder, in hydras.Ackermann.codePA]
    +f:19 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +f:19 [binder, in hydras.Ackermann.LNN]
    +f:19 [binder, in hydras.Ackermann.checkPrf]
    +f:19 [binder, in hydras.Ackermann.PA]
    +f:19 [binder, in gaia_hydras.GL_alpha]
    +f:190 [binder, in hydras.Ackermann.wellFormed]
    +f:190 [binder, in hydras.Ackermann.codePA]
    +f:191 [binder, in hydras.Prelude.Iterates]
    +f:191 [binder, in hydras.Ackermann.codeFreeVar]
    +f:191 [binder, in hydras.Ackermann.codePA]
    +f:192 [binder, in hydras.Ackermann.wellFormed]
    +f:192 [binder, in hydras.OrdinalNotations.ON_Generic]
    +f:192 [binder, in hydras.Ackermann.codePA]
    +f:193 [binder, in hydras.Ackermann.codeFreeVar]
    +f:193 [binder, in hydras.Ackermann.codePA]
    +f:194 [binder, in hydras.Ackermann.codePA]
    +f:195 [binder, in hydras.Ackermann.codeFreeVar]
    +f:195 [binder, in hydras.Ackermann.wellFormed]
    +f:195 [binder, in hydras.Ackermann.codePA]
    +f:1950 [binder, in gaia_hydras.nfwfgaia]
    +f:1956 [binder, in gaia_hydras.nfwfgaia]
    +f:196 [binder, in hydras.Ackermann.codePA]
    +f:1963 [binder, in gaia_hydras.nfwfgaia]
    +f:1968 [binder, in gaia_hydras.nfwfgaia]
    +f:197 [binder, in hydras.Ackermann.codeFreeVar]
    +f:197 [binder, in hydras.Ackermann.codePA]
    +f:1974 [binder, in gaia_hydras.nfwfgaia]
    +f:198 [binder, in hydras.Ackermann.wellFormed]
    +f:198 [binder, in hydras.Ackermann.codePA]
    +f:1980 [binder, in gaia_hydras.nfwfgaia]
    +f:1985 [binder, in gaia_hydras.nfwfgaia]
    +f:199 [binder, in hydras.Ackermann.codePA]
    +f:1991 [binder, in gaia_hydras.nfwfgaia]
    +f:1996 [binder, in gaia_hydras.nfwfgaia]
    +F:2 [binder, in hydras.MoreAck.BadSubst]
    +f:2 [binder, in hydras.Prelude.Iterates]
    +f:2 [binder, in hydras.Ackermann.wConsistent]
    +f:20 [binder, in hydras.Ackermann.model]
    +f:20 [binder, in Goedel.rosserPA]
    +f:20 [binder, in hydras.Ackermann.folLogic]
    +f:20 [binder, in hydras.Schutte.Ordering_Functions]
    +f:200 [binder, in hydras.Prelude.Iterates]
    +f:200 [binder, in hydras.Ackermann.codePA]
    +f:2002 [binder, in gaia_hydras.nfwfgaia]
    +f:2005 [binder, in gaia_hydras.nfwfgaia]
    +f:2009 [binder, in gaia_hydras.nfwfgaia]
    +f:201 [binder, in hydras.Ackermann.codeFreeVar]
    +f:201 [binder, in hydras.Ackermann.wellFormed]
    +f:201 [binder, in hydras.Ackermann.codePA]
    +f:202 [binder, in hydras.Ackermann.codeFreeVar]
    +f:202 [binder, in hydras.Ackermann.cPair]
    +f:202 [binder, in hydras.Ackermann.wellFormed]
    +f:202 [binder, in hydras.Ackermann.codePA]
    +f:203 [binder, in hydras.Ackermann.codeFreeVar]
    +f:203 [binder, in hydras.Ackermann.codePA]
    +f:204 [binder, in hydras.Ackermann.wellFormed]
    +f:204 [binder, in hydras.Ackermann.codePA]
    +f:205 [binder, in hydras.Ackermann.codeFreeVar]
    +f:205 [binder, in hydras.Ackermann.codePA]
    +f:206 [binder, in hydras.rpo.more_list]
    +f:206 [binder, in hydras.Ackermann.cPair]
    +f:206 [binder, in hydras.Ackermann.wellFormed]
    +f:206 [binder, in hydras.OrdinalNotations.ON_Generic]
    +f:206 [binder, in hydras.Ackermann.codePA]
    +f:207 [binder, in hydras.Ackermann.codeFreeVar]
    +f:207 [binder, in hydras.Ackermann.fol]
    +f:207 [binder, in hydras.Ackermann.codePA]
    +f:208 [binder, in hydras.Ackermann.wellFormed]
    +f:208 [binder, in hydras.Ackermann.codePA]
    +f:2088 [binder, in gaia_hydras.nfwfgaia]
    +f:209 [binder, in hydras.Ackermann.codeFreeVar]
    +f:209 [binder, in hydras.Ackermann.cPair]
    +f:209 [binder, in hydras.Ackermann.codePA]
    +f:2094 [binder, in gaia_hydras.nfwfgaia]
    +f:2099 [binder, in gaia_hydras.nfwfgaia]
    +f:21 [binder, in hydras.Prelude.Iterates]
    +f:21 [binder, in hydras.Ackermann.LNN]
    +f:21 [binder, in hydras.Ackermann.LNT]
    +f:21 [binder, in hydras.Ackermann.subProp]
    +f:21 [binder, in gaia_hydras.T1Bridge]
    +f:21 [binder, in Goedel.rosserPA]
    +f:21 [binder, in hydras.Ackermann.expressible]
    +f:210 [binder, in hydras.Ackermann.wellFormed]
    +f:210 [binder, in hydras.Ackermann.fol]
    +f:210 [binder, in hydras.Ackermann.codePA]
    +f:2105 [binder, in gaia_hydras.nfwfgaia]
    +f:2107 [binder, in gaia_hydras.nfwfgaia]
    +f:211 [binder, in hydras.Ackermann.codeFreeVar]
    +f:211 [binder, in hydras.Ackermann.cPair]
    +f:211 [binder, in hydras.Ackermann.codePA]
    +f:212 [binder, in hydras.Ackermann.codeFreeVar]
    +f:212 [binder, in hydras.Ackermann.wellFormed]
    +f:212 [binder, in hydras.Ackermann.codePA]
    +f:213 [binder, in hydras.Ackermann.codeFreeVar]
    +f:213 [binder, in hydras.Ackermann.codePA]
    +f:214 [binder, in hydras.Ackermann.wellFormed]
    +f:214 [binder, in hydras.Ackermann.codePA]
    +f:215 [binder, in hydras.Ackermann.codeFreeVar]
    +f:215 [binder, in hydras.Ackermann.codePA]
    +f:216 [binder, in hydras.rpo.term]
    +f:216 [binder, in hydras.rpo.more_list]
    +f:216 [binder, in hydras.Ackermann.cPair]
    +f:216 [binder, in hydras.Ackermann.wellFormed]
    +f:216 [binder, in hydras.Ackermann.codePA]
    +f:217 [binder, in hydras.Ackermann.codeFreeVar]
    +f:217 [binder, in hydras.Ackermann.codePA]
    +f:218 [binder, in hydras.Ackermann.wellFormed]
    +f:218 [binder, in hydras.Ackermann.codePA]
    +f:219 [binder, in hydras.Ackermann.codeFreeVar]
    +f:219 [binder, in hydras.Ackermann.codePA]
    +f:22 [binder, in hydras.rpo.more_list]
    +f:22 [binder, in hydras.Ackermann.PA]
    +f:22 [binder, in hydras.Ackermann.folLogic]
    +f:22 [binder, in gaia_hydras.GL_alpha]
    +f:22 [binder, in Goedel.goedel2]
    +f:220 [binder, in hydras.Ackermann.wellFormed]
    +f:220 [binder, in hydras.Ackermann.codePA]
    +f:221 [binder, in hydras.rpo.term]
    +f:221 [binder, in hydras.Ackermann.codeFreeVar]
    +f:221 [binder, in hydras.Ackermann.codePA]
    +f:222 [binder, in hydras.Prelude.Iterates]
    +f:222 [binder, in hydras.Ackermann.codeFreeVar]
    +f:222 [binder, in hydras.Ackermann.wellFormed]
    +f:222 [binder, in hydras.Ackermann.codePA]
    +f:223 [binder, in hydras.Ackermann.codeFreeVar]
    +f:223 [binder, in hydras.Ackermann.model]
    +f:223 [binder, in hydras.Ackermann.codePA]
    +f:224 [binder, in hydras.Ackermann.codeFreeVar]
    +f:224 [binder, in hydras.Ackermann.wellFormed]
    +f:224 [binder, in hydras.Ackermann.codePA]
    +f:225 [binder, in hydras.Ackermann.codeFreeVar]
    +f:225 [binder, in hydras.Ackermann.codePA]
    +f:226 [binder, in hydras.Ackermann.codeFreeVar]
    +f:226 [binder, in hydras.rpo.more_list]
    +f:226 [binder, in hydras.Ackermann.wellFormed]
    +f:226 [binder, in hydras.Ackermann.codePA]
    +f:227 [binder, in hydras.Ackermann.subAll]
    +f:227 [binder, in hydras.Ackermann.codeFreeVar]
    +f:227 [binder, in hydras.Ackermann.codePA]
    +f:228 [binder, in hydras.Ackermann.codeFreeVar]
    +f:228 [binder, in hydras.Ackermann.wellFormed]
    +f:228 [binder, in hydras.Ackermann.codePA]
    +f:229 [binder, in hydras.Ackermann.codeFreeVar]
    +f:23 [binder, in hydras.MoreAck.AckNotPR]
    +f:230 [binder, in hydras.Ackermann.wellFormed]
    +f:230 [binder, in hydras.Ackermann.fol]
    +f:231 [binder, in hydras.Ackermann.codeFreeVar]
    +f:231 [binder, in hydras.Ackermann.codePA]
    +f:232 [binder, in hydras.Ackermann.folProp]
    +f:232 [binder, in hydras.Ackermann.wellFormed]
    +f:233 [binder, in hydras.Ackermann.codeFreeVar]
    +f:233 [binder, in hydras.Ackermann.fol]
    +f:234 [binder, in hydras.Ackermann.codePA]
    +f:235 [binder, in hydras.Ackermann.codeFreeVar]
    +f:235 [binder, in hydras.Ackermann.wellFormed]
    +f:235 [binder, in hydras.Ackermann.codePA]
    +f:236 [binder, in hydras.Prelude.Iterates]
    +f:236 [binder, in hydras.Ackermann.codePA]
    +f:237 [binder, in hydras.Ackermann.codeFreeVar]
    +f:237 [binder, in hydras.Ackermann.codePA]
    +f:238 [binder, in hydras.Ackermann.codeFreeVar]
    +f:238 [binder, in hydras.Ackermann.wellFormed]
    +f:239 [binder, in hydras.Ackermann.codeFreeVar]
    +f:24 [binder, in hydras.Ackermann.LNN]
    +f:24 [binder, in hydras.Ackermann.LNT]
    +f:24 [binder, in hydras.Ackermann.folLogic]
    +f:24 [binder, in Goedel.goedel1]
    +f:24 [binder, in hydras.Schutte.Ordering_Functions]
    +f:24 [binder, in hydras.Ackermann.codePA]
    +f:24 [binder, in Goedel.goedel2]
    +f:240 [binder, in hydras.Ackermann.codeFreeVar]
    +f:240 [binder, in additions.Euclidean_Chains]
    +f:240 [binder, in hydras.Ackermann.wellFormed]
    +f:241 [binder, in hydras.Prelude.Iterates]
    +f:241 [binder, in hydras.Ackermann.codeFreeVar]
    +f:242 [binder, in hydras.Ackermann.codeFreeVar]
    +f:242 [binder, in hydras.Ackermann.wellFormed]
    +f:243 [binder, in hydras.Ackermann.codeFreeVar]
    +f:243 [binder, in hydras.rpo.more_list]
    +f:244 [binder, in hydras.Ackermann.cPair]
    +f:244 [binder, in hydras.Ackermann.wellFormed]
    +f:245 [binder, in hydras.Prelude.Iterates]
    +f:245 [binder, in hydras.Ackermann.codeFreeVar]
    +f:246 [binder, in hydras.Ackermann.wellFormed]
    +f:247 [binder, in hydras.Ackermann.codeFreeVar]
    +f:248 [binder, in hydras.Ackermann.wellFormed]
    +f:248 [binder, in hydras.Ackermann.fol]
    +f:248 [binder, in hydras.Gamma0.Gamma0]
    +f:249 [binder, in hydras.Prelude.Iterates]
    +f:249 [binder, in hydras.Ackermann.codeFreeVar]
    +f:249 [binder, in hydras.Ackermann.wellFormed]
    +f:25 [binder, in hydras.Prelude.Iterates]
    +f:25 [binder, in hydras.Ackermann.folLogic2]
    +f:25 [binder, in additions.Euclidean_Chains]
    +f:25 [binder, in gaia_hydras.GL_alpha]
    +f:25 [binder, in hydras.Ackermann.expressible]
    +f:250 [binder, in hydras.Ackermann.wellFormed]
    +f:251 [binder, in hydras.Ackermann.subAll]
    +f:251 [binder, in hydras.Ackermann.codeFreeVar]
    +f:251 [binder, in hydras.Ackermann.wellFormed]
    +f:251 [binder, in hydras.Ackermann.fol]
    +f:252 [binder, in hydras.Ackermann.wellFormed]
    +f:253 [binder, in hydras.Ackermann.codeFreeVar]
    +f:253 [binder, in hydras.rpo.more_list]
    +f:253 [binder, in hydras.Ackermann.wellFormed]
    +f:254 [binder, in hydras.Ackermann.wellFormed]
    +f:254 [binder, in hydras.Gamma0.Gamma0]
    +f:255 [binder, in hydras.Ackermann.subAll]
    +f:255 [binder, in hydras.Ackermann.codeFreeVar]
    +f:256 [binder, in hydras.Ackermann.wellFormed]
    +f:257 [binder, in hydras.Ackermann.codeFreeVar]
    +f:258 [binder, in hydras.Ackermann.wellFormed]
    +f:259 [binder, in hydras.Ackermann.codeFreeVar]
    +f:26 [binder, in Goedel.codeSysPrf]
    +f:26 [binder, in gaia_hydras.nfwfgaia]
    +f:26 [binder, in hydras.Ackermann.Languages]
    +f:260 [binder, in hydras.Ackermann.codeFreeVar]
    +f:260 [binder, in hydras.Ackermann.wellFormed]
    +f:260 [binder, in hydras.Ackermann.fol]
    +f:260 [binder, in hydras.Gamma0.Gamma0]
    +f:261 [binder, in hydras.Ackermann.codeFreeVar]
    +f:262 [binder, in hydras.Ackermann.codeFreeVar]
    +f:262 [binder, in hydras.Ackermann.wellFormed]
    +f:262 [binder, in hydras.Ackermann.fol]
    +f:263 [binder, in hydras.Ackermann.codeFreeVar]
    +f:264 [binder, in hydras.Ackermann.codeFreeVar]
    +f:264 [binder, in hydras.Ackermann.wellFormed]
    +f:265 [binder, in hydras.Ackermann.codeFreeVar]
    +f:265 [binder, in hydras.rpo.more_list]
    +f:266 [binder, in hydras.Ackermann.codeFreeVar]
    +f:266 [binder, in hydras.Ackermann.wellFormed]
    +f:267 [binder, in hydras.Ackermann.codeFreeVar]
    +f:268 [binder, in hydras.Ackermann.wellFormed]
    +f:269 [binder, in hydras.Ackermann.codeFreeVar]
    +f:27 [binder, in hydras.rpo.more_list]
    +f:27 [binder, in hydras.Ackermann.LNN]
    +f:27 [binder, in hydras.Ackermann.LNT]
    +f:27 [binder, in additions.Euclidean_Chains]
    +f:27 [binder, in hydras.Ackermann.folLogic]
    +f:27 [binder, in Goedel.rosser]
    +f:27 [binder, in hydras.Ackermann.codePA]
    +f:27 [binder, in hydras.Schutte.Countable]
    +f:270 [binder, in hydras.Ackermann.wellFormed]
    +f:271 [binder, in hydras.Ackermann.codeFreeVar]
    +f:272 [binder, in hydras.Ackermann.wellFormed]
    +f:273 [binder, in hydras.Ackermann.codeFreeVar]
    +f:274 [binder, in hydras.Ackermann.wellFormed]
    +f:275 [binder, in hydras.Ackermann.codeFreeVar]
    +f:276 [binder, in hydras.Ackermann.codeFreeVar]
    +f:276 [binder, in hydras.Ackermann.wellFormed]
    +f:277 [binder, in hydras.Ackermann.codeFreeVar]
    +f:278 [binder, in hydras.Ackermann.codeFreeVar]
    +f:278 [binder, in hydras.Ackermann.wellFormed]
    +f:279 [binder, in hydras.Ackermann.codeFreeVar]
    +f:279 [binder, in hydras.Ackermann.folProp]
    +f:28 [binder, in hydras.Ackermann.model]
    +f:28 [binder, in additions.Euclidean_Chains]
    +f:28 [binder, in Goedel.codeSysPrf]
    +f:28 [binder, in hydras.Schutte.Ordering_Functions]
    +f:28 [binder, in hydras.Schutte.Countable]
    +f:280 [binder, in hydras.Ackermann.codeFreeVar]
    +f:280 [binder, in hydras.Ackermann.wellFormed]
    +f:280 [binder, in hydras.rpo.rpo]
    +f:281 [binder, in hydras.Ackermann.codeFreeVar]
    +f:282 [binder, in hydras.Ackermann.subAll]
    +f:282 [binder, in hydras.Ackermann.codeFreeVar]
    +f:282 [binder, in hydras.Ackermann.wellFormed]
    +f:283 [binder, in hydras.Ackermann.codeFreeVar]
    +f:284 [binder, in hydras.Ackermann.codeFreeVar]
    +f:284 [binder, in hydras.Ackermann.wellFormed]
    +f:285 [binder, in hydras.Ackermann.codeFreeVar]
    +f:286 [binder, in hydras.Ackermann.codeFreeVar]
    +f:286 [binder, in hydras.Ackermann.wellFormed]
    +f:287 [binder, in hydras.Ackermann.subAll]
    +f:287 [binder, in hydras.Ackermann.codeFreeVar]
    +f:288 [binder, in hydras.rpo.term]
    +f:288 [binder, in hydras.Ackermann.codeFreeVar]
    +f:288 [binder, in hydras.Ackermann.wellFormed]
    +f:289 [binder, in hydras.Ackermann.codeFreeVar]
    +f:29 [binder, in hydras.Ackermann.model]
    +f:29 [binder, in hydras.Prelude.Sort_spec]
    +f:29 [binder, in gaia_hydras.nfwfgaia]
    +f:290 [binder, in hydras.Ackermann.codeFreeVar]
    +f:290 [binder, in hydras.Ackermann.wellFormed]
    +f:291 [binder, in hydras.Ackermann.codeFreeVar]
    +f:292 [binder, in hydras.Ackermann.codeFreeVar]
    +f:292 [binder, in hydras.Ackermann.wellFormed]
    +f:294 [binder, in hydras.Ackermann.wellFormed]
    +f:296 [binder, in hydras.Ackermann.wellFormed]
    +f:297 [binder, in hydras.Ackermann.subAll]
    +f:298 [binder, in hydras.rpo.term]
    +f:298 [binder, in hydras.Ackermann.wellFormed]
    +f:298 [binder, in hydras.Ackermann.fol]
    +f:3 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +F:3 [binder, in hydras.Ackermann.NN2PA]
    +f:3 [binder, in hydras.Prelude.STDPP_compat]
    +f:3 [binder, in hydras.Ackermann.folLogic]
    +f:30 [binder, in hydras.Prelude.Iterates]
    +f:30 [binder, in hydras.Ackermann.LNN]
    +f:30 [binder, in hydras.Ackermann.LNT]
    +f:30 [binder, in hydras.Ackermann.folLogic]
    +f:30 [binder, in hydras.Schutte.Ordering_Functions]
    +f:30 [binder, in hydras.Ackermann.codePA]
    +f:30 [binder, in hydras.MoreAck.FolExamples]
    +f:300 [binder, in hydras.Ackermann.wellFormed]
    +f:301 [binder, in hydras.Ackermann.fol]
    +f:302 [binder, in hydras.Ackermann.wellFormed]
    +f:303 [binder, in hydras.Ackermann.wellFormed]
    +f:304 [binder, in hydras.Ackermann.wellFormed]
    +f:305 [binder, in hydras.Ackermann.wellFormed]
    +f:306 [binder, in hydras.Ackermann.wellFormed]
    +f:307 [binder, in hydras.Ackermann.wellFormed]
    +f:308 [binder, in hydras.Ackermann.wellFormed]
    +f:309 [binder, in hydras.Ackermann.wellFormed]
    +f:31 [binder, in hydras.Ackermann.folLogic2]
    +f:31 [binder, in Goedel.codeSysPrf]
    +f:31 [binder, in hydras.Ackermann.Languages]
    +f:31 [binder, in hydras.Ackermann.expressible]
    +f:310 [binder, in hydras.Ackermann.wellFormed]
    +f:310 [binder, in hydras.Ackermann.fol]
    +f:311 [binder, in hydras.Ackermann.wellFormed]
    +f:312 [binder, in hydras.Ackermann.wellFormed]
    +f:312 [binder, in hydras.Ackermann.fol]
    +f:313 [binder, in hydras.Ackermann.wellFormed]
    +f:314 [binder, in hydras.Ackermann.wellFormed]
    +f:315 [binder, in hydras.Ackermann.wellFormed]
    +f:316 [binder, in hydras.Ackermann.subAll]
    +f:316 [binder, in hydras.Ackermann.wellFormed]
    +f:317 [binder, in hydras.Ackermann.wellFormed]
    +f:318 [binder, in hydras.Ackermann.wellFormed]
    +f:319 [binder, in hydras.Ackermann.wellFormed]
    +f:32 [binder, in hydras.Prelude.Iterates]
    +f:32 [binder, in hydras.Ackermann.LNT]
    +f:32 [binder, in gaia_hydras.T1Bridge]
    +f:320 [binder, in hydras.Ackermann.wellFormed]
    +f:321 [binder, in hydras.Ackermann.wellFormed]
    +f:322 [binder, in hydras.Ackermann.wellFormed]
    +f:323 [binder, in hydras.Ackermann.wellFormed]
    +f:324 [binder, in hydras.Ackermann.wellFormed]
    +f:326 [binder, in hydras.Ackermann.wellFormed]
    +f:328 [binder, in hydras.Ackermann.wellFormed]
    +f:33 [binder, in hydras.rpo.more_list]
    +f:33 [binder, in hydras.Ackermann.LNN]
    +f:33 [binder, in hydras.Ackermann.folLogic]
    +f:33 [binder, in hydras.Ackermann.codePA]
    +f:33 [binder, in hydras.Ackermann.expressible]
    +f:330 [binder, in hydras.Ackermann.wellFormed]
    +f:332 [binder, in hydras.Ackermann.wellFormed]
    +f:333 [binder, in hydras.Ackermann.wellFormed]
    +f:334 [binder, in hydras.Ackermann.wellFormed]
    +f:335 [binder, in hydras.Ackermann.wellFormed]
    +f:336 [binder, in hydras.Ackermann.wellFormed]
    +f:337 [binder, in hydras.Ackermann.wellFormed]
    +f:338 [binder, in hydras.Ackermann.wellFormed]
    +f:339 [binder, in hydras.Ackermann.wellFormed]
    +f:34 [binder, in hydras.Ackermann.LNT]
    +f:340 [binder, in hydras.Ackermann.wellFormed]
    +f:341 [binder, in hydras.Ackermann.wellFormed]
    +f:342 [binder, in hydras.Ackermann.wellFormed]
    +f:343 [binder, in hydras.Ackermann.wellFormed]
    +f:344 [binder, in hydras.Ackermann.primRec]
    +f:344 [binder, in hydras.Ackermann.wellFormed]
    +f:344 [binder, in hydras.Ackermann.fol]
    +f:345 [binder, in hydras.Ackermann.wellFormed]
    +f:346 [binder, in hydras.rpo.term]
    +f:347 [binder, in hydras.Ackermann.primRec]
    +f:347 [binder, in hydras.Ackermann.fol]
    +f:35 [binder, in hydras.Ackermann.folLogic2]
    +f:35 [binder, in hydras.Ackermann.LNN]
    +f:35 [binder, in gaia_hydras.T1Bridge]
    +F:350 [binder, in Goedel.PRrepresentable]
    +F:354 [binder, in Goedel.PRrepresentable]
    +f:356 [binder, in hydras.Ackermann.primRec]
    +f:356 [binder, in hydras.Ackermann.fol]
    +F:358 [binder, in Goedel.PRrepresentable]
    +f:358 [binder, in hydras.Ackermann.fol]
    +f:36 [binder, in hydras.Prelude.Iterates]
    +f:36 [binder, in hydras.Ackermann.LNT]
    +f:36 [binder, in hydras.Ackermann.folLogic]
    +f:36 [binder, in hydras.Ackermann.Languages]
    +f:36 [binder, in hydras.Ackermann.codePA]
    +f:360 [binder, in hydras.Ackermann.primRec]
    +F:362 [binder, in Goedel.PRrepresentable]
    +f:37 [binder, in hydras.rpo.term]
    +f:37 [binder, in hydras.Ackermann.LNN]
    +f:37 [binder, in hydras.Epsilon0.Large_Sets]
    +f:37 [binder, in Goedel.rosserPA]
    +f:37 [binder, in hydras.Schutte.Countable]
    +f:37 [binder, in hydras.Ackermann.expressible]
    +f:378 [binder, in hydras.Ackermann.primRec]
    +f:38 [binder, in hydras.Prelude.Sort_spec]
    +f:38 [binder, in hydras.Ackermann.folProp]
    +f:38 [binder, in hydras.Ackermann.code]
    +f:38 [binder, in hydras.Ackermann.folLogic]
    +F:384 [binder, in Goedel.PRrepresentable]
    +F:388 [binder, in Goedel.PRrepresentable]
    +f:388 [binder, in hydras.Ackermann.fol]
    +f:39 [binder, in hydras.Prelude.Iterates]
    +f:39 [binder, in additions.FirstSteps]
    +f:39 [binder, in hydras.Ackermann.LNN]
    +f:39 [binder, in hydras.Ackermann.LNT]
    +F:39 [binder, in hydras.Ackermann.folProp]
    +f:39 [binder, in hydras.Ackermann.codePA]
    +f:39 [binder, in hydras.MoreAck.PrimRecExamples]
    +f:391 [binder, in hydras.Ackermann.fol]
    +F:392 [binder, in Goedel.PRrepresentable]
    +F:396 [binder, in Goedel.PRrepresentable]
    +f:4 [binder, in hydras.MoreAck.AckNotPR]
    +f:4 [binder, in hydras.MoreAck.Iterate_compat]
    +f:40 [binder, in hydras.Epsilon0.Large_Sets]
    +f:40 [binder, in hydras.Ackermann.expressible]
    +f:400 [binder, in hydras.Ackermann.folProp]
    +f:400 [binder, in hydras.Ackermann.fol]
    +f:402 [binder, in hydras.Ackermann.fol]
    +F:404 [binder, in Goedel.PRrepresentable]
    +F:408 [binder, in Goedel.PRrepresentable]
    +f:41 [binder, in hydras.Prelude.Iterates]
    +F:41 [binder, in hydras.Ackermann.folProp]
    +f:41 [binder, in hydras.Ackermann.code]
    +f:41 [binder, in hydras.rpo.rpo]
    +f:411 [binder, in hydras.Ackermann.primRec]
    +F:412 [binder, in Goedel.PRrepresentable]
    +f:414 [binder, in hydras.Ackermann.folProp]
    +F:416 [binder, in Goedel.PRrepresentable]
    +f:42 [binder, in hydras.Ackermann.LNN]
    +f:42 [binder, in hydras.Ackermann.LNT]
    +f:42 [binder, in hydras.Ackermann.folProp]
    +f:42 [binder, in hydras.MoreAck.AckNotPR]
    +f:42 [binder, in hydras.Ackermann.folLogic]
    +f:42 [binder, in gaia_hydras.nfwfgaia]
    +f:422 [binder, in hydras.Ackermann.primRec]
    +f:426 [binder, in hydras.Ackermann.folProp]
    +f:427 [binder, in hydras.Ackermann.primRec]
    +f:428 [binder, in Goedel.PRrepresentable]
    +f:428 [binder, in hydras.Ackermann.folProp]
    +f:43 [binder, in hydras.rpo.term]
    +f:43 [binder, in hydras.Ackermann.folProof]
    +f:43 [binder, in hydras.Prelude.Iterates]
    +f:43 [binder, in hydras.Epsilon0.Large_Sets]
    +f:431 [binder, in Goedel.PRrepresentable]
    +f:433 [binder, in hydras.Ackermann.folProp]
    +f:434 [binder, in Goedel.PRrepresentable]
    +f:434 [binder, in hydras.Ackermann.primRec]
    +f:437 [binder, in Goedel.PRrepresentable]
    +f:44 [binder, in hydras.Ackermann.subAll]
    +f:44 [binder, in hydras.Ackermann.model]
    +f:44 [binder, in hydras.Ackermann.subProp]
    +f:44 [binder, in hydras.Ackermann.code]
    +f:44 [binder, in hydras.Schutte.Ordering_Functions]
    +f:44 [binder, in hydras.Ackermann.expressible]
    +f:440 [binder, in hydras.Ackermann.fol]
    +f:442 [binder, in hydras.Ackermann.folProp]
    +f:442 [binder, in hydras.Ackermann.fol]
    +f:445 [binder, in Goedel.PRrepresentable]
    +f:446 [binder, in hydras.Ackermann.fol]
    +f:45 [binder, in hydras.Ackermann.folProof]
    +f:45 [binder, in hydras.Ackermann.LNN]
    +f:45 [binder, in hydras.Ackermann.LNT]
    +f:45 [binder, in hydras.Ackermann.folProp]
    +f:45 [binder, in hydras.Schutte.AP]
    +f:45 [binder, in hydras.Epsilon0.L_alpha]
    +f:45 [binder, in hydras.Schutte.Schutte_basics]
    +f:45 [binder, in hydras.rpo.rpo]
    +f:456 [binder, in Goedel.PRrepresentable]
    +f:46 [binder, in hydras.Prelude.Iterates]
    +f:46 [binder, in hydras.MoreAck.AckNotPR]
    +f:46 [binder, in hydras.Epsilon0.Large_Sets]
    +f:46 [binder, in hydras.Ackermann.folLogic]
    +f:46 [binder, in hydras.MoreAck.PrimRecExamples]
    +f:47 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +f:47 [binder, in gaia_hydras.nfwfgaia]
    +f:47 [binder, in hydras.Ackermann.Languages]
    +f:47 [binder, in hydras.MoreAck.PrimRecExamples]
    +f:474 [binder, in Goedel.PRrepresentable]
    +f:48 [binder, in hydras.Ackermann.LNN]
    +f:48 [binder, in hydras.Ackermann.LNT]
    +f:48 [binder, in hydras.Schutte.Ordering_Functions]
    +f:48 [binder, in hydras.Ackermann.Languages]
    +f:48 [binder, in hydras.Ackermann.expressible]
    +f:49 [binder, in hydras.Prelude.Iterates]
    +f:49 [binder, in hydras.Ackermann.LNN2LNT]
    +f:49 [binder, in hydras.Epsilon0.Large_Sets]
    +f:49 [binder, in hydras.Ackermann.folLogic]
    +f:49 [binder, in gaia_hydras.nfwfgaia]
    +f:5 [binder, in hydras.rpo.more_list]
    +f:5 [binder, in hydras.Ackermann.folLogic2]
    +f:5 [binder, in hydras.Ackermann.code]
    +f:5 [binder, in hydras.Ackermann.PA]
    +f:5 [binder, in hydras.Schutte.Ordering_Functions]
    +f:50 [binder, in hydras.Ackermann.folProof]
    +f:50 [binder, in hydras.Ackermann.subAll]
    +f:50 [binder, in hydras.MoreAck.AckNotPR]
    +f:50 [binder, in hydras.Ackermann.Languages]
    +f:50 [binder, in hydras.rpo.rpo]
    +f:51 [binder, in hydras.Ackermann.LNN]
    +f:514 [binder, in gaia_hydras.nfwfgaia]
    +f:519 [binder, in gaia_hydras.nfwfgaia]
    +f:52 [binder, in hydras.Ackermann.folProof]
    +f:52 [binder, in Goedel.PRrepresentable]
    +f:52 [binder, in hydras.Ackermann.LNT]
    +f:52 [binder, in hydras.Ackermann.PA]
    +f:52 [binder, in hydras.Ackermann.folLogic]
    +f:52 [binder, in gaia_hydras.nfwfgaia]
    +f:52 [binder, in hydras.MoreAck.PrimRecExamples]
    +f:524 [binder, in gaia_hydras.nfwfgaia]
    +f:527 [binder, in gaia_hydras.nfwfgaia]
    +f:53 [binder, in hydras.Prelude.Iterates]
    +f:53 [binder, in hydras.Schutte.Ordering_Functions]
    +f:538 [binder, in hydras.Ackermann.checkPrf]
    +f:54 [binder, in hydras.Ackermann.folProof]
    +f:54 [binder, in hydras.Ackermann.model]
    +f:54 [binder, in hydras.rpo.rpo]
    +f:541 [binder, in hydras.Ackermann.checkPrf]
    +f:542 [binder, in gaia_hydras.nfwfgaia]
    +f:544 [binder, in hydras.Ackermann.checkPrf]
    +f:545 [binder, in hydras.Ackermann.checkPrf]
    +f:546 [binder, in gaia_hydras.nfwfgaia]
    +f:548 [binder, in hydras.Ackermann.checkPrf]
    +f:55 [binder, in hydras.Ackermann.LNN]
    +f:55 [binder, in hydras.Ackermann.folLogic]
    +f:55 [binder, in hydras.MoreAck.PrimRecExamples]
    +f:550 [binder, in gaia_hydras.nfwfgaia]
    +f:553 [binder, in gaia_hydras.nfwfgaia]
    +f:558 [binder, in gaia_hydras.nfwfgaia]
    +f:56 [binder, in hydras.Ackermann.LNT]
    +f:56 [binder, in hydras.Ackermann.primRec]
    +f:56 [binder, in hydras.OrdinalNotations.ON_Generic]
    +f:560 [binder, in gaia_hydras.nfwfgaia]
    +f:566 [binder, in gaia_hydras.nfwfgaia]
    +f:568 [binder, in gaia_hydras.nfwfgaia]
    +f:57 [binder, in hydras.Prelude.Iterates]
    +f:57 [binder, in Goedel.rosserPA]
    +f:57 [binder, in Goedel.codeSysPrf]
    +f:576 [binder, in gaia_hydras.nfwfgaia]
    +f:58 [binder, in hydras.Ackermann.model]
    +f:58 [binder, in hydras.Ackermann.folLogic]
    +f:58 [binder, in hydras.Schutte.Ordering_Functions]
    +f:582 [binder, in gaia_hydras.nfwfgaia]
    +f:587 [binder, in gaia_hydras.nfwfgaia]
    +f:59 [binder, in hydras.Ackermann.LNN]
    +f:59 [binder, in hydras.Ackermann.LNT]
    +f:59 [binder, in hydras.Prelude.Sort_spec]
    +f:59 [binder, in hydras.MoreAck.PrimRecExamples]
    +f:593 [binder, in gaia_hydras.nfwfgaia]
    +f:596 [binder, in gaia_hydras.nfwfgaia]
    +f:599 [binder, in hydras.Ackermann.primRec]
    +F:6 [binder, in hydras.Ackermann.Deduction]
    +f:6 [binder, in hydras.Ackermann.folLogic]
    +f:61 [binder, in hydras.Ackermann.folLogic]
    +f:618 [binder, in hydras.Ackermann.primRec]
    +f:62 [binder, in hydras.Prelude.Iterates]
    +f:62 [binder, in hydras.Ackermann.LNN2LNT]
    +f:62 [binder, in hydras.Ackermann.LNN]
    +f:62 [binder, in hydras.Ackermann.LNT]
    +f:62 [binder, in hydras.Ackermann.fol]
    +f:62 [binder, in hydras.Prelude.MoreVectors]
    +f:621 [binder, in hydras.Ackermann.primRec]
    +f:625 [binder, in hydras.Ackermann.primRec]
    +f:63 [binder, in hydras.Ackermann.primRec]
    +f:63 [binder, in hydras.Epsilon0.Hprime]
    +f:63 [binder, in hydras.Schutte.Ordering_Functions]
    +f:630 [binder, in hydras.Ackermann.primRec]
    +f:634 [binder, in hydras.Ackermann.primRec]
    +f:639 [binder, in hydras.Ackermann.primRec]
    +f:64 [binder, in hydras.Ackermann.LNN2LNT]
    +f:64 [binder, in hydras.Ackermann.folProp]
    +f:64 [binder, in hydras.Ackermann.folLogic]
    +f:64 [binder, in hydras.Ackermann.codePA]
    +f:65 [binder, in hydras.Prelude.Iterates]
    +f:65 [binder, in hydras.Ackermann.LNN]
    +f:65 [binder, in hydras.Ackermann.LNT]
    +f:65 [binder, in hydras.Ackermann.Languages]
    +f:65 [binder, in hydras.Ackermann.codePA]
    +f:66 [binder, in hydras.Ackermann.LNN2LNT]
    +f:66 [binder, in hydras.Schutte.Ordering_Functions]
    +f:66 [binder, in hydras.Ackermann.codePA]
    +f:661 [binder, in hydras.Ackermann.primRec]
    +f:669 [binder, in hydras.Ackermann.primRec]
    +f:67 [binder, in hydras.Ackermann.subProp]
    +f:67 [binder, in additions.Euclidean_Chains]
    +f:67 [binder, in hydras.Ackermann.folLogic]
    +f:67 [binder, in hydras.Ackermann.codePA]
    +f:68 [binder, in hydras.Ackermann.LNN]
    +f:68 [binder, in hydras.Ackermann.LNT]
    +f:68 [binder, in hydras.Schutte.PartialFun]
    +f:68 [binder, in hydras.Ackermann.codePA]
    +f:69 [binder, in hydras.Prelude.Iterates]
    +f:69 [binder, in hydras.Ackermann.LNN2LNT]
    +f:69 [binder, in hydras.Ackermann.fol]
    +f:69 [binder, in Goedel.rosser]
    +f:69 [binder, in hydras.Ackermann.codePA]
    +f:7 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +f:7 [binder, in hydras.Epsilon0.Large_Sets]
    +f:7 [binder, in hydras.Ackermann.wellFormed]
    +f:7 [binder, in Goedel.goedel1]
    +f:7 [binder, in Goedel.rosser]
    +f:7 [binder, in hydras.Ackermann.codePA]
    +f:7 [binder, in Goedel.goedel2]
    +f:7 [binder, in hydras.Ackermann.expressible]
    +f:70 [binder, in Goedel.rosser]
    +f:70 [binder, in gaia_hydras.nfwfgaia]
    +f:70 [binder, in hydras.Ackermann.codePA]
    +f:70 [binder, in hydras.MoreAck.PrimRecExamples]
    +f:71 [binder, in hydras.Ackermann.LNN]
    +f:71 [binder, in hydras.Ackermann.LNT]
    +f:71 [binder, in hydras.Schutte.PartialFun]
    +f:71 [binder, in hydras.Ackermann.folLogic]
    +f:72 [binder, in hydras.MoreAck.AckNotPR]
    +f:72 [binder, in hydras.Ackermann.codePA]
    +f:73 [binder, in hydras.Prelude.Iterates]
    +f:73 [binder, in hydras.Prelude.Sort_spec]
    +f:73 [binder, in hydras.MoreAck.AckNotPR]
    +f:73 [binder, in hydras.Ackermann.codeSubFormula]
    +f:73 [binder, in gaia_hydras.nfwfgaia]
    +f:73 [binder, in hydras.Ackermann.codePA]
    +f:73 [binder, in hydras.MoreAck.PrimRecExamples]
    +f:731 [binder, in hydras.Ackermann.checkPrf]
    +f:74 [binder, in hydras.Ackermann.LNN]
    +f:74 [binder, in hydras.Ackermann.LNT]
    +f:74 [binder, in hydras.Ackermann.folProp]
    +f:74 [binder, in hydras.MoreAck.AckNotPR]
    +f:74 [binder, in hydras.Ackermann.primRec]
    +f:74 [binder, in hydras.Ackermann.folLogic]
    +f:75 [binder, in Goedel.codeSysPrf]
    +f:75 [binder, in hydras.rpo.list_permut]
    +f:75 [binder, in Goedel.rosser]
    +f:75 [binder, in hydras.Ackermann.codePA]
    +f:75 [binder, in hydras.Prelude.MoreVectors]
    +f:76 [binder, in hydras.Ackermann.model]
    +f:76 [binder, in hydras.Ackermann.folLogic3]
    +f:77 [binder, in hydras.Prelude.Iterates]
    +f:77 [binder, in hydras.Ackermann.LNN]
    +f:77 [binder, in hydras.Ackermann.LNT]
    +f:77 [binder, in additions.Euclidean_Chains]
    +f:77 [binder, in gaia_hydras.nfwfgaia]
    +f:77 [binder, in hydras.Ackermann.codePA]
    +f:78 [binder, in hydras.MoreAck.AckNotPR]
    +f:78 [binder, in hydras.Ackermann.folLogic]
    +f:78 [binder, in hydras.rpo.list_permut]
    +f:78 [binder, in hydras.MoreAck.PrimRecExamples]
    +f:79 [binder, in Goedel.PRrepresentable]
    +f:79 [binder, in hydras.Ackermann.model]
    +f:79 [binder, in hydras.Ackermann.codeSubFormula]
    +f:79 [binder, in hydras.Ackermann.codePA]
    +f:8 [binder, in hydras.Ackermann.folProof]
    +F:8 [binder, in hydras.MoreAck.BadSubst]
    +f:8 [binder, in hydras.Prelude.Iterates]
    +f:8 [binder, in hydras.Ackermann.checkPrf]
    +f:8 [binder, in Goedel.rosserPA]
    +f:8 [binder, in hydras.Ackermann.folLogic]
    +f:8 [binder, in gaia_hydras.onType]
    +f:8 [binder, in hydras.Schutte.Well_Orders]
    +f:8 [binder, in Goedel.codeSysPrf]
    +f:80 [binder, in hydras.Ackermann.LNN]
    +f:80 [binder, in hydras.Schutte.Ordering_Functions]
    +f:80 [binder, in gaia_hydras.nfwfgaia]
    +f:81 [binder, in hydras.Prelude.Iterates]
    +f:81 [binder, in hydras.Ackermann.LNT]
    +f:81 [binder, in Goedel.codeSysPrf]
    +f:81 [binder, in hydras.Ackermann.codePA]
    +f:819 [binder, in hydras.Ackermann.primRec]
    +f:82 [binder, in hydras.Ackermann.folLogic]
    +f:82 [binder, in hydras.MoreAck.PrimRecExamples]
    +f:821 [binder, in hydras.Ackermann.checkPrf]
    +f:822 [binder, in hydras.Ackermann.primRec]
    +f:823 [binder, in hydras.Ackermann.checkPrf]
    +f:825 [binder, in hydras.Ackermann.checkPrf]
    +f:827 [binder, in hydras.Ackermann.checkPrf]
    +f:829 [binder, in hydras.Ackermann.checkPrf]
    +f:83 [binder, in hydras.MoreAck.AckNotPR]
    +f:83 [binder, in Goedel.codeSysPrf]
    +f:83 [binder, in hydras.Ackermann.codePA]
    +f:831 [binder, in hydras.Ackermann.checkPrf]
    +f:833 [binder, in hydras.Ackermann.checkPrf]
    +f:836 [binder, in hydras.Ackermann.checkPrf]
    +f:84 [binder, in hydras.Ackermann.LNN]
    +f:84 [binder, in hydras.Ackermann.LNT]
    +f:846 [binder, in hydras.Ackermann.checkPrf]
    +f:85 [binder, in hydras.Ackermann.folProp]
    +f:85 [binder, in hydras.Ackermann.folLogic]
    +f:85 [binder, in hydras.Epsilon0.Hprime]
    +f:85 [binder, in hydras.Ackermann.codePA]
    +f:859 [binder, in hydras.Ackermann.checkPrf]
    +f:86 [binder, in hydras.Ackermann.subAll]
    +f:864 [binder, in hydras.Ackermann.checkPrf]
    +f:87 [binder, in hydras.Prelude.Iterates]
    +f:87 [binder, in hydras.Ackermann.LNN]
    +f:87 [binder, in hydras.Ackermann.model]
    +f:87 [binder, in Goedel.codeSysPrf]
    +F:87 [binder, in hydras.Epsilon0.Hprime]
    +f:87 [binder, in hydras.Ackermann.codePA]
    +f:874 [binder, in gaia_hydras.nfwfgaia]
    +f:877 [binder, in hydras.Ackermann.checkPrf]
    +f:88 [binder, in hydras.Ackermann.LNT]
    +f:880 [binder, in hydras.Ackermann.checkPrf]
    +f:89 [binder, in hydras.Ackermann.folLogic]
    +f:89 [binder, in hydras.Ackermann.codePA]
    +f:9 [binder, in hydras.Ackermann.folLogic2]
    +f:9 [binder, in hydras.Prelude.Sort_spec]
    +f:9 [binder, in hydras.Ackermann.folProp]
    +f:9 [binder, in hydras.Ackermann.Deduction]
    +f:9 [binder, in Goedel.goedel1]
    +f:9 [binder, in Goedel.rosser]
    +f:9 [binder, in hydras.Ackermann.codePA]
    +f:9 [binder, in Goedel.goedel2]
    +f:9 [binder, in hydras.Ackermann.expressible]
    +f:90 [binder, in hydras.Ackermann.subProp]
    +f:90 [binder, in hydras.Ackermann.fol]
    +f:91 [binder, in hydras.Ackermann.LNN]
    +f:91 [binder, in hydras.Ackermann.fol]
    +f:91 [binder, in hydras.Ackermann.folLogic]
    +f:91 [binder, in Goedel.codeSysPrf]
    +f:91 [binder, in hydras.Ackermann.codePA]
    +f:92 [binder, in hydras.Ackermann.subAll]
    +f:92 [binder, in hydras.Prelude.Iterates]
    +f:92 [binder, in hydras.Ackermann.LNT]
    +f:93 [binder, in hydras.Ackermann.codePA]
    +f:94 [binder, in hydras.Ackermann.folLogic]
    +f:940 [binder, in hydras.Ackermann.codeSubFormula]
    +f:943 [binder, in hydras.Ackermann.codeSubFormula]
    +f:946 [binder, in hydras.Ackermann.codeSubFormula]
    +f:949 [binder, in hydras.Ackermann.codeSubFormula]
    +f:95 [binder, in hydras.Ackermann.LNN]
    +f:95 [binder, in hydras.Ackermann.LNT]
    +f:95 [binder, in hydras.Ackermann.codePA]
    +f:952 [binder, in hydras.Ackermann.codeSubFormula]
    +f:955 [binder, in hydras.Ackermann.codeSubFormula]
    +f:958 [binder, in hydras.Ackermann.codeSubFormula]
    +f:96 [binder, in hydras.Ackermann.LNN2LNT]
    +f:96 [binder, in hydras.Ackermann.folProp]
    +f:961 [binder, in hydras.Ackermann.codeSubFormula]
    +f:964 [binder, in hydras.Ackermann.codeSubFormula]
    +f:967 [binder, in hydras.Ackermann.codeSubFormula]
    +f:97 [binder, in hydras.Ackermann.folLogic]
    +f:97 [binder, in hydras.Ackermann.folReplace]
    +f:97 [binder, in hydras.Ackermann.codePA]
    +f:970 [binder, in hydras.Ackermann.codeSubFormula]
    +f:973 [binder, in hydras.Ackermann.codeSubFormula]
    +f:976 [binder, in hydras.Ackermann.codeSubFormula]
    +f:979 [binder, in hydras.Ackermann.codeSubFormula]
    +f:98 [binder, in hydras.Prelude.Iterates]
    +f:98 [binder, in hydras.Ackermann.LNN]
    +f:980 [binder, in hydras.Ackermann.codeSubFormula]
    +f:981 [binder, in hydras.Ackermann.codeSubFormula]
    +f:984 [binder, in hydras.Ackermann.codeSubFormula]
    +f:987 [binder, in hydras.Ackermann.codeSubFormula]
    +f:99 [binder, in hydras.Ackermann.LNT]
    +f:99 [binder, in hydras.Ackermann.codePA]
    +f:990 [binder, in hydras.Ackermann.codeSubFormula]
    +f:993 [binder, in hydras.Ackermann.codeSubFormula]
    +f:996 [binder, in hydras.Ackermann.codeSubFormula]
    +f:999 [binder, in hydras.Ackermann.codeSubFormula]
    +

    G

    +g [definition, in hydras.OrdinalNotations.Example_3PlusOmega]
    +g [axiom, in hydras.Prelude.LibHyps_Experiments]
    +G [definition, in Goedel.goedel1]
    +g [definition, in hydras.Schutte.Ordering_Functions]
    +G [definition, in Goedel.goedel2]
    +GaiaToHydra [library]
    +Gamma [section, in additions.AM]
    +Gamma [section, in additions.Euclidean_Chains]
    +gammaA:295 [binder, in additions.Addition_Chains]
    +gammaB:296 [binder, in additions.Addition_Chains]
    +gamma_gt [projection, in additions.Strategies]
    +gamma_lt [projection, in additions.Strategies]
    +gamma_ [definition, in hydras.Schutte.Critical]
    +gamma_nat:204 [binder, in additions.Addition_Chains]
    +gamma_positive [lemma, in hydras.Epsilon0.Paths]
    +gamma':140 [binder, in hydras.Gamma0.Gamma0]
    +gamma':161 [binder, in hydras.Gamma0.Gamma0]
    +Gamma.All_OK.c [variable, in additions.AM]
    +Gamma.All_OK.n [variable, in additions.AM]
    +Gamma.All_OK [section, in additions.AM]
    +Gamma.gamma [variable, in additions.AM]
    +Gamma.gamma [variable, in additions.Euclidean_Chains]
    +Gamma0 [definition, in hydras.Schutte.Critical]
    +Gamma0 [module, in gaia_hydras.nfwfgaia]
    +Gamma0 [library]
    +Gamma0_rpo [module, in hydras.Gamma0.Gamma0]
    +Gamma0_alg [module, in hydras.Gamma0.Gamma0]
    +Gamma0_prec.prec_transitive [lemma, in hydras.Gamma0.Gamma0]
    +Gamma0_prec.prec_antisym [lemma, in hydras.Gamma0.Gamma0]
    +Gamma0_prec.prec_dec [lemma, in hydras.Gamma0.Gamma0]
    +Gamma0_prec.status [definition, in hydras.Gamma0.Gamma0]
    +Gamma0_prec.Mul [constructor, in hydras.Gamma0.Gamma0]
    +Gamma0_prec.Lex [constructor, in hydras.Gamma0.Gamma0]
    +Gamma0_prec.status_type [inductive, in hydras.Gamma0.Gamma0]
    +Gamma0_prec.prec [definition, in hydras.Gamma0.Gamma0]
    +Gamma0_prec.A [definition, in hydras.Gamma0.Gamma0]
    +Gamma0_prec [module, in hydras.Gamma0.Gamma0]
    +Gamma0_sig.arity [definition, in hydras.Gamma0.Gamma0]
    +Gamma0_sig.Free [constructor, in hydras.Gamma0.Gamma0]
    +Gamma0_sig.C [constructor, in hydras.Gamma0.Gamma0]
    +Gamma0_sig.AC [constructor, in hydras.Gamma0.Gamma0]
    +Gamma0_sig.arity_type [inductive, in hydras.Gamma0.Gamma0]
    +Gamma0_sig.eq_symbol_dec [lemma, in hydras.Gamma0.Gamma0]
    +Gamma0_sig.symb [definition, in hydras.Gamma0.Gamma0]
    +Gamma0_sig.ord_cons [constructor, in hydras.Gamma0.Gamma0]
    +Gamma0_sig.ord_psi [constructor, in hydras.Gamma0.Gamma0]
    +Gamma0_sig.ord_zero [constructor, in hydras.Gamma0.Gamma0]
    +Gamma0_sig.nat_S [constructor, in hydras.Gamma0.Gamma0]
    +Gamma0_sig.nat_0 [constructor, in hydras.Gamma0.Gamma0]
    +Gamma0_sig.symb0 [inductive, in hydras.Gamma0.Gamma0]
    +Gamma0_sig [module, in hydras.Gamma0.Gamma0]
    +Gamma0.add_le4 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.add_le3 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.add_inj [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.add_le2 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.add_le1 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.add_to_cons [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.add_fin_omega [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.add_int [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.add1Nfin [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.ap_pr4 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.ap_pr3 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.ap_pr2 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.ap_pr1 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.ap_limit [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.ap_pr0 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.CompareT2Eq [constructor, in gaia_hydras.nfwfgaia]
    +Gamma0.CompareT2Gt [constructor, in gaia_hydras.nfwfgaia]
    +Gamma0.CompareT2Lt [constructor, in gaia_hydras.nfwfgaia]
    +Gamma0.compare_T2 [inductive, in gaia_hydras.nfwfgaia]
    +Gamma0.cons [constructor, in gaia_hydras.nfwfgaia]
    +Gamma0.epsilon0 [definition, in gaia_hydras.nfwfgaia]
    +Gamma0.le_succ_succE [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.le_succ_succ [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.limit_pr [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.limit_pr1 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.lt_succ_le_4 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.lt_succ_le_3 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.lt_succ_le_2 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.lt_succ_le_1 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.lt_succ_succE [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.lt_succ_succ [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.lt_tail [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.lt_psi [definition, in gaia_hydras.nfwfgaia]
    +Gamma0.lt_rec [definition, in gaia_hydras.nfwfgaia]
    +Gamma0.minus_le [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.minus_lt [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.nf_phi [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.nf_add [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.nf_sub [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.nf_pred [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.nf_succ [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.nf_split [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.nf_finite [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.nf_one [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.nf_omega [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.nf_psi [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.no_critical [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.omega [definition, in gaia_hydras.nfwfgaia]
    +Gamma0.omega_minus_one [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.omega_least_inf2 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.omega_least_inf1 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.omega_lt_epsilon0 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.one [definition, in gaia_hydras.nfwfgaia]
    +Gamma0.phi [definition, in gaia_hydras.nfwfgaia]
    +Gamma0.phi_inv3 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.phi_inv2 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.phi_inv0 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.phi_ltE [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.phi_eqE [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.phi_inj1 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.phi_inj [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.phi_mono_c [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.phi_mono_b [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.phi_mono_a [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.phi_inv1 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.phi_ab_le2 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.phi_ab_le1 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.phi_spec4c [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.phi_spec4b [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.phi_spec4a [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.phi_spec3 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.phi_spec2 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.phi_spec1 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.phi_principalR [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.phi_cases [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.phi_succ [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.phi_fix2 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.phi_fix1 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.phi_le3 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.phi_le2 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.phi_le1 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.phi_ap [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.pred_succ [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.pred_lt [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.pred_le [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.psi [definition, in gaia_hydras.nfwfgaia]
    +Gamma0.psi_phi1 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.psi_phi [definition, in gaia_hydras.nfwfgaia]
    +Gamma0.psi_phi_aux [definition, in gaia_hydras.nfwfgaia]
    +Gamma0.psi_lt2 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.psi_lt1 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.size [definition, in gaia_hydras.nfwfgaia]
    +Gamma0.size_prop [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.size_prop1 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.split_add [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.split_le [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.split_pred [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.split_succ [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.split_is_succ [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.split_limit [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.split_finite [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.sub_pr1r [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.sub_nz [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.sub_pr1 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.sub_pr [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.sub_le1 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.sub_int [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.sub1a [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.sub1b [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.sub1Nfin [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.succ_is_add_one [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.succ_psi_lt2 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.succ_psi_lt [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.succ_psi [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.succ_nz [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.succ_inj [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.succ_p1 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.succ_pred [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.succ_lt [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T1succ_nat [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T1T2 [definition, in gaia_hydras.nfwfgaia]
    +Gamma0.T1T2range1 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T1T2range2 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T1T2_inc [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T1T2_inj [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2 [inductive, in gaia_hydras.nfwfgaia]
    +Gamma0.T2add [definition, in gaia_hydras.nfwfgaia]
    +Gamma0.T2addA [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2addn0 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2add_eq0 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2add0n [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2ap [definition, in gaia_hydras.nfwfgaia]
    +Gamma0.T2eq [definition, in gaia_hydras.nfwfgaia]
    +Gamma0.T2eqE [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2eqP [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2eq_add2l [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2eq_le [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2finite [definition, in gaia_hydras.nfwfgaia]
    +Gamma0.T2finite_succ [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2finite1 [definition, in gaia_hydras.nfwfgaia]
    +Gamma0.T2finite2 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2GeqNotGtn [constructor, in gaia_hydras.nfwfgaia]
    +Gamma0.T2GeqNotLtn [constructor, in gaia_hydras.nfwfgaia]
    +Gamma0.T2ge1 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2GtnNotLeq [constructor, in gaia_hydras.nfwfgaia]
    +Gamma0.T2gt1 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2is_succ [definition, in gaia_hydras.nfwfgaia]
    +Gamma0.T2le [definition, in gaia_hydras.nfwfgaia]
    +Gamma0.T2leNgt [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2lenn [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2len0 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2leP [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2leq_xor_gtn [inductive, in gaia_hydras.nfwfgaia]
    +Gamma0.T2le_add2r [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2le_add2l [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2le_psi_b [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2le_psi1 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2le_trans [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2le_lt_trans [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2le_total [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2le_eqVlt [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2le_consE [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2le0n [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2limit [definition, in gaia_hydras.nfwfgaia]
    +Gamma0.T2lt [definition, in gaia_hydras.nfwfgaia]
    +Gamma0.T2lta [definition, in gaia_hydras.nfwfgaia]
    +Gamma0.T2ltE [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2ltgtP [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2ltNge [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2ltnn [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2LtnNotGeq [constructor, in gaia_hydras.nfwfgaia]
    +Gamma0.T2ltn_xor_geq [inductive, in gaia_hydras.nfwfgaia]
    +Gamma0.T2ltn0 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2ltP [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2ltW [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2lt_add2r [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2lt_add2l [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2lt_psi_a [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2lt_psi_b [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2lt_le_trans [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2lt_trans [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2lt_psi_aux [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2lt_trichotomy [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2lt_anti [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2lt_neAle [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2lt_ne' [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2lt_ne [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2lt_consE [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2lt_psi [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2lt0n [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2lt1 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2nat [definition, in gaia_hydras.nfwfgaia]
    +Gamma0.T2nat_inc [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2nf [definition, in gaia_hydras.nfwfgaia]
    +Gamma0.T2nf_finite [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2nf_consE [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2nf_cons_cons [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2pred [definition, in gaia_hydras.nfwfgaia]
    +Gamma0.T2split [definition, in gaia_hydras.nfwfgaia]
    +Gamma0.T2sub [definition, in gaia_hydras.nfwfgaia]
    +Gamma0.T2subnn [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2subn0 [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2sub0n [lemma, in gaia_hydras.nfwfgaia]
    +Gamma0.T2succ [definition, in gaia_hydras.nfwfgaia]
    +Gamma0.T2_pr2 [definition, in gaia_hydras.nfwfgaia]
    +Gamma0.T2_pr1 [definition, in gaia_hydras.nfwfgaia]
    +Gamma0.T2_eqType [definition, in gaia_hydras.nfwfgaia]
    +Gamma0.T2_eqMixin [definition, in gaia_hydras.nfwfgaia]
    +Gamma0.zero [constructor, in gaia_hydras.nfwfgaia]
    +_ - _ (g0_scope) [notation, in gaia_hydras.nfwfgaia]
    +_ + _ (g0_scope) [notation, in gaia_hydras.nfwfgaia]
    +_ > _ (g0_scope) [notation, in gaia_hydras.nfwfgaia]
    +_ >= _ (g0_scope) [notation, in gaia_hydras.nfwfgaia]
    +_ <= _ (g0_scope) [notation, in gaia_hydras.nfwfgaia]
    +_ < _ (g0_scope) [notation, in gaia_hydras.nfwfgaia]
    +\F _ (g0_scope) [notation, in gaia_hydras.nfwfgaia]
    +[ _ , _ ] (g0_scope) [notation, in gaia_hydras.nfwfgaia]
    +gamma0:544 [binder, in hydras.Gamma0.Gamma0]
    +gamma1 [definition, in hydras.OrdinalNotations.ON_Finite]
    +gamma1:34 [binder, in hydras.Gamma0.T2]
    +gamma1:41 [binder, in hydras.Gamma0.T2]
    +gamma1:49 [binder, in hydras.Gamma0.T2]
    +gamma1:56 [binder, in hydras.Gamma0.T2]
    +gamma1:62 [binder, in hydras.Gamma0.T2]
    +gamma1:67 [binder, in hydras.Gamma0.T2]
    +gamma2:35 [binder, in hydras.Gamma0.T2]
    +gamma2:42 [binder, in hydras.Gamma0.T2]
    +gamma2:50 [binder, in hydras.Gamma0.T2]
    +gamma2:57 [binder, in hydras.Gamma0.T2]
    +gamma2:63 [binder, in hydras.Gamma0.T2]
    +gamma2:68 [binder, in hydras.Gamma0.T2]
    +gamma:1 [binder, in additions.Strategies]
    +gamma:10 [binder, in hydras.Schutte.AP]
    +gamma:102 [binder, in hydras.Gamma0.T2]
    +gamma:111 [binder, in hydras.Epsilon0.Hessenberg]
    +gamma:112 [binder, in hydras.Epsilon0.T1]
    +gamma:114 [binder, in hydras.Epsilon0.Hessenberg]
    +gamma:117 [binder, in hydras.Epsilon0.Paths]
    +gamma:12 [binder, in hydras.Schutte.Critical]
    +gamma:122 [binder, in hydras.Epsilon0.E0]
    +gamma:122 [binder, in hydras.Epsilon0.Paths]
    +gamma:125 [binder, in hydras.Epsilon0.Paths]
    +gamma:126 [binder, in hydras.Gamma0.Gamma0]
    +gamma:129 [binder, in hydras.Gamma0.Gamma0]
    +gamma:13 [binder, in hydras.Schutte.Correctness_E0]
    +gamma:131 [binder, in hydras.Epsilon0.Paths]
    +gamma:132 [binder, in hydras.Gamma0.Gamma0]
    +gamma:136 [binder, in hydras.Gamma0.Gamma0]
    +gamma:138 [binder, in hydras.Epsilon0.Paths]
    +gamma:144 [binder, in hydras.Epsilon0.Paths]
    +gamma:15 [binder, in hydras.solutions_exercises.predSuccUnicity]
    +gamma:150 [binder, in hydras.Gamma0.Gamma0]
    +gamma:156 [binder, in hydras.Gamma0.Gamma0]
    +gamma:160 [binder, in hydras.Gamma0.Gamma0]
    +gamma:162 [binder, in hydras.Gamma0.Gamma0]
    +gamma:167 [binder, in hydras.Epsilon0.Paths]
    +gamma:17 [binder, in hydras.Schutte.Correctness_E0]
    +gamma:172 [binder, in hydras.Epsilon0.Paths]
    +gamma:179 [binder, in hydras.Gamma0.Gamma0]
    +gamma:18 [binder, in hydras.solutions_exercises.predSuccUnicity]
    +gamma:18 [binder, in hydras.Epsilon0.Paths]
    +gamma:19 [binder, in hydras.solutions_exercises.Limit_Infinity]
    +gamma:20 [binder, in hydras.Gamma0.Gamma0]
    +gamma:203 [binder, in additions.Addition_Chains]
    +gamma:216 [binder, in hydras.Epsilon0.Paths]
    +gamma:22 [binder, in hydras.solutions_exercises.Limit_Infinity]
    +gamma:220 [binder, in hydras.Epsilon0.Paths]
    +gamma:23 [binder, in additions.Fib2]
    +gamma:25 [binder, in gaia_hydras.GCanon]
    +gamma:250 [binder, in hydras.Epsilon0.Paths]
    +gamma:26 [binder, in hydras.Schutte.Addition]
    +gamma:27 [binder, in hydras.Gamma0.T2]
    +gamma:298 [binder, in hydras.Epsilon0.Paths]
    +gamma:302 [binder, in hydras.Epsilon0.Paths]
    +gamma:309 [binder, in hydras.Epsilon0.Paths]
    +gamma:31 [binder, in hydras.Schutte.Addition]
    +gamma:315 [binder, in hydras.Epsilon0.T1]
    +gamma:33 [binder, in hydras.Epsilon0.Paths]
    +gamma:339 [binder, in hydras.Epsilon0.T1]
    +gamma:34 [binder, in hydras.Schutte.Correctness_E0]
    +gamma:34 [binder, in hydras.Epsilon0.Canon]
    +gamma:34 [binder, in hydras.Schutte.Addition]
    +gamma:342 [binder, in hydras.Epsilon0.T1]
    +gamma:35 [binder, in hydras.Epsilon0.Canon]
    +gamma:36 [binder, in hydras.Schutte.Correctness_E0]
    +gamma:38 [binder, in hydras.Schutte.Correctness_E0]
    +gamma:38 [binder, in hydras.Epsilon0.Canon]
    +gamma:39 [binder, in gaia_hydras.GCanon]
    +gamma:396 [binder, in hydras.Epsilon0.T1]
    +gamma:40 [binder, in hydras.Schutte.Correctness_E0]
    +gamma:40 [binder, in hydras.Epsilon0.Canon]
    +gamma:44 [binder, in hydras.Schutte.Addition]
    +gamma:468 [binder, in hydras.Epsilon0.Paths]
    +gamma:47 [binder, in hydras.Schutte.Addition]
    +gamma:48 [binder, in hydras.Schutte.Addition]
    +gamma:498 [binder, in hydras.Gamma0.Gamma0]
    +gamma:50 [binder, in hydras.Schutte.CNF]
    +gamma:50 [binder, in hydras.Schutte.Addition]
    +gamma:509 [binder, in hydras.Epsilon0.Paths]
    +gamma:51 [binder, in hydras.Schutte.Addition]
    +gamma:513 [binder, in hydras.Epsilon0.Paths]
    +gamma:513 [binder, in hydras.Gamma0.Gamma0]
    +gamma:516 [binder, in hydras.Gamma0.Gamma0]
    +gamma:519 [binder, in hydras.Epsilon0.Paths]
    +gamma:52 [binder, in hydras.Schutte.Addition]
    +gamma:54 [binder, in hydras.Epsilon0.Hessenberg]
    +gamma:542 [binder, in hydras.Epsilon0.Paths]
    +gamma:545 [binder, in hydras.Gamma0.Gamma0]
    +gamma:58 [binder, in hydras.Hydra.O2H]
    +gamma:58 [binder, in hydras.Schutte.Addition]
    +gamma:581 [binder, in hydras.Epsilon0.Paths]
    +gamma:584 [binder, in hydras.Epsilon0.T1]
    +gamma:59 [binder, in hydras.Epsilon0.Hessenberg]
    +gamma:590 [binder, in hydras.Epsilon0.T1]
    +gamma:60 [binder, in hydras.Hydra.O2H]
    +gamma:60 [binder, in hydras.Epsilon0.Hessenberg]
    +gamma:61 [binder, in hydras.Schutte.Addition]
    +gamma:627 [binder, in hydras.Gamma0.Gamma0]
    +gamma:63 [binder, in hydras.Hydra.O2H]
    +gamma:631 [binder, in hydras.Gamma0.Gamma0]
    +gamma:637 [binder, in hydras.Epsilon0.T1]
    +gamma:643 [binder, in hydras.Gamma0.Gamma0]
    +gamma:660 [binder, in hydras.Gamma0.Gamma0]
    +gamma:663 [binder, in hydras.Gamma0.Gamma0]
    +gamma:67 [binder, in hydras.Epsilon0.Hessenberg]
    +gamma:676 [binder, in hydras.Epsilon0.T1]
    +gamma:68 [binder, in hydras.Schutte.AP]
    +gamma:693 [binder, in hydras.Gamma0.Gamma0]
    +gamma:7 [binder, in additions.Strategies]
    +gamma:72 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +gamma:74 [binder, in hydras.Schutte.Critical]
    +gamma:82 [binder, in hydras.Hydra.O2H]
    +gamma:82 [binder, in hydras.Epsilon0.Hessenberg]
    +gamma:82 [binder, in hydras.Epsilon0.E0]
    +gamma:85 [binder, in hydras.Epsilon0.E0]
    +gamma:91 [binder, in hydras.Epsilon0.Canon]
    +gamma:96 [binder, in hydras.Epsilon0.E0]
    +gamma:97 [binder, in hydras.Epsilon0.Canon]
    +GCanon [library]
    +gcanon_limit_v2 [lemma, in gaia_hydras.GCanon]
    +gcanon_zero [lemma, in gaia_hydras.GCanon]
    +gcons [constructor, in hydras.Gamma0.T2]
    +gcons_lt_e0 [constructor, in hydras.Gamma0.T2]
    +gcons_nf [constructor, in hydras.Gamma0.T2]
    +ge [definition, in hydras.Schutte.Schutte_basics]
    +GEN [constructor, in hydras.Ackermann.folProof]
    +General_Relations.elagage.to_nat_elagage.R [variable, in hydras.Schutte.GRelations]
    +General_Relations.elagage.to_nat_elagage [section, in hydras.Schutte.GRelations]
    +General_Relations.elagage [section, in hydras.Schutte.GRelations]
    +General_Relations.surjection2injection.R_surj [variable, in hydras.Schutte.GRelations]
    +General_Relations.surjection2injection.R [variable, in hydras.Schutte.GRelations]
    +General_Relations.surjection2injection [section, in hydras.Schutte.GRelations]
    +General_Relations.injection2surjection.R_inj [variable, in hydras.Schutte.GRelations]
    +General_Relations.injection2surjection.R [variable, in hydras.Schutte.GRelations]
    +General_Relations.injection2surjection [section, in hydras.Schutte.GRelations]
    +General_Relations.DB [variable, in hydras.Schutte.GRelations]
    +General_Relations.DA [variable, in hydras.Schutte.GRelations]
    +General_Relations.B [variable, in hydras.Schutte.GRelations]
    +General_Relations.A [variable, in hydras.Schutte.GRelations]
    +General_Relations.Definitions.R [variable, in hydras.Schutte.GRelations]
    +General_Relations.Definitions.DB [variable, in hydras.Schutte.GRelations]
    +General_Relations.Definitions.DA [variable, in hydras.Schutte.GRelations]
    +General_Relations.Definitions.B [variable, in hydras.Schutte.GRelations]
    +General_Relations.Definitions.A [variable, in hydras.Schutte.GRelations]
    +General_Relations.Definitions [section, in hydras.Schutte.GRelations]
    +General_Relations [section, in hydras.Schutte.GRelations]
    +Generic [section, in hydras.Prelude.Merge_Sort]
    +Generic.A [variable, in hydras.Prelude.Merge_Sort]
    +Generic.Merging [section, in hydras.Prelude.Merge_Sort]
    +Generic.Merging.Correctness [section, in hydras.Prelude.Merge_Sort]
    +Generic.Merging.Correctness.merge_sort.split_permutation [variable, in hydras.Prelude.Merge_Sort]
    +Generic.Merging.Correctness.merge_sort.split_decr [variable, in hydras.Prelude.Merge_Sort]
    +Generic.Merging.Correctness.merge_sort.split [variable, in hydras.Prelude.Merge_Sort]
    +Generic.Merging.Correctness.merge_sort [section, in hydras.Prelude.Merge_Sort]
    +Generic.Merging.le [variable, in hydras.Prelude.Merge_Sort]
    +_ <= _ [notation, in hydras.Prelude.Merge_Sort]
    +Generic.Splitting [section, in hydras.Prelude.Merge_Sort]
    +gen_K [constructor, in additions.Euclidean_Chains]
    +gen_F [constructor, in additions.Euclidean_Chains]
    +gen:219 [binder, in additions.Addition_Chains]
    +get_decomposition [definition, in hydras.Epsilon0.T1]
    +get_predecessor [lemma, in hydras.Prelude.More_Arith]
    +ge_omega_iff [lemma, in hydras.solutions_exercises.ge_omega_iff]
    +ge_zero [lemma, in hydras.Schutte.Addition]
    +ge_o_segment [lemma, in hydras.Schutte.Addition]
    +ge_omega_iff [library]
    +gE0le_iff [lemma, in gaia_hydras.T1Bridge]
    +gE0lt_wf [lemma, in gaia_hydras.T1Bridge]
    +gE0lt_iff [lemma, in gaia_hydras.T1Bridge]
    +gE0_eq_intro [lemma, in gaia_hydras.T1Bridge]
    +GF_alpha [library]
    +GHessenberg [library]
    +GHprime [library]
    +GHydra [library]
    +GLarge_Sets [library]
    +GL_alpha [library]
    +gnaw [definition, in gaia_hydras.GPaths]
    +Gnaw [definition, in hydras.Epsilon0.Large_Sets]
    +gnaw [definition, in hydras.Epsilon0.Paths]
    +gnawS [definition, in gaia_hydras.GPaths]
    +GnawS [definition, in hydras.Epsilon0.Large_Sets]
    +gnawS [definition, in hydras.Epsilon0.Paths]
    +GnawS_omega [lemma, in hydras.Epsilon0.Large_Sets]
    +GnawS_Gnaw [lemma, in hydras.Epsilon0.Large_Sets]
    +gnawS_path_toS [lemma, in hydras.Epsilon0.Paths]
    +gnawS_cut2 [lemma, in hydras.Epsilon0.Paths]
    +gnawS_cut1 [lemma, in hydras.Epsilon0.Paths]
    +gnawS_SSn [lemma, in hydras.Epsilon0.Paths]
    +gnawS_tail [lemma, in hydras.Epsilon0.Paths]
    +gnawS_succ_eqn2 [lemma, in hydras.Epsilon0.Paths]
    +gnawS_succ_eqn1 [lemma, in hydras.Epsilon0.Paths]
    +gnawS_lim2 [lemma, in hydras.Epsilon0.Paths]
    +gnawS_lim1 [lemma, in hydras.Epsilon0.Paths]
    +gnaws_rw [lemma, in hydras.Epsilon0.Paths]
    +gnawS_app [lemma, in hydras.Epsilon0.Paths]
    +gnawS_to_path_toS [lemma, in hydras.Epsilon0.Paths]
    +gnawS_nf [lemma, in hydras.Epsilon0.Paths]
    +gnawS_zero [lemma, in hydras.Epsilon0.Paths]
    +gnawS_gnaw [lemma, in hydras.Epsilon0.Paths]
    +gnaw_omega_1 [lemma, in hydras.Epsilon0.Large_Sets]
    +gnaw_omega_n_SSn [lemma, in hydras.Epsilon0.Large_Sets]
    +Gnaw_omega [lemma, in hydras.Epsilon0.Large_Sets]
    +Gnaw_GnawS [lemma, in hydras.Epsilon0.Large_Sets]
    +gnaw_last_step [lemma, in hydras.Epsilon0.Large_Sets]
    +gnaw_n_R [lemma, in hydras.Epsilon0.Large_Sets]
    +gnaw_finite [lemma, in hydras.Epsilon0.Large_Sets]
    +gnaw_finite_1 [lemma, in hydras.Epsilon0.Large_Sets]
    +gnaw_finite_1_iota [lemma, in hydras.Epsilon0.Large_Sets]
    +gnaw_path_to [lemma, in hydras.Epsilon0.Paths]
    +gnaw_app [lemma, in hydras.Epsilon0.Paths]
    +gnaw_to_path_to [lemma, in hydras.Epsilon0.Paths]
    +gnaw_rw [lemma, in hydras.Epsilon0.Paths]
    +gnaw_succ [lemma, in hydras.Epsilon0.Paths]
    +gnaw_zero [lemma, in hydras.Epsilon0.Paths]
    +gnaw_nf [lemma, in hydras.Epsilon0.Paths]
    +gnaw_gnawS [lemma, in hydras.Epsilon0.Paths]
    +Goedel'sIncompleteness1st [lemma, in Goedel.goedel1]
    +Goedel's_1st_Incompleteness.expressT2 [variable, in Goedel.goedel1]
    +Goedel's_1st_Incompleteness.expressT1 [variable, in Goedel.goedel1]
    +Goedel's_1st_Incompleteness.freeVarRepT [variable, in Goedel.goedel1]
    +Goedel's_1st_Incompleteness.v0 [variable, in Goedel.goedel1]
    +Goedel's_1st_Incompleteness.repT [variable, in Goedel.goedel1]
    +Goedel's_1st_Incompleteness.extendsNN [variable, in Goedel.goedel1]
    +Goedel's_1st_Incompleteness.T [variable, in Goedel.goedel1]
    +Goedel's_1st_Incompleteness [section, in Goedel.goedel1]
    +Goedel's_2nd_Incompleteness.HBL3 [variable, in Goedel.goedel2]
    +Goedel's_2nd_Incompleteness.HBL2 [variable, in Goedel.goedel2]
    +Goedel's_2nd_Incompleteness.Goedel1PA [section, in Goedel.goedel2]
    +Goedel's_2nd_Incompleteness.expressT2 [variable, in Goedel.goedel2]
    +Goedel's_2nd_Incompleteness.expressT1 [variable, in Goedel.goedel2]
    +Goedel's_2nd_Incompleteness.freeVarRepT [variable, in Goedel.goedel2]
    +Goedel's_2nd_Incompleteness.v0 [variable, in Goedel.goedel2]
    +Goedel's_2nd_Incompleteness.repT [variable, in Goedel.goedel2]
    +Goedel's_2nd_Incompleteness.extendsPA [variable, in Goedel.goedel2]
    +Goedel's_2nd_Incompleteness.T [variable, in Goedel.goedel2]
    +Goedel's_2nd_Incompleteness [section, in Goedel.goedel2]
    +goedel1 [library]
    +goedel2 [library]
    +go:159 [binder, in hydras.Hydra.Hydra_Lemmas]
    +GPaths [library]
    +GPrelude [library]
    +gP:26 [binder, in gaia_hydras.T1Bridge]
    +grec:79 [binder, in hydras.Ackermann.folProp]
    +GRelation [definition, in hydras.Schutte.GRelations]
    +GRelations [library]
    +gR:29 [binder, in gaia_hydras.T1Bridge]
    +GS [lemma, in Goedel.goedel2]
    +gstrict_lub [definition, in gaia_hydras.T1Bridge]
    +gs:37 [binder, in hydras.MoreAck.AckNotPR]
    +gtail [definition, in hydras.Gamma0.T2]
    +gtIsPR [instance, in hydras.Ackermann.primRec]
    +g_bij:91 [binder, in hydras.Schutte.PartialFun]
    +g_bij:85 [binder, in hydras.Schutte.PartialFun]
    +g_1_of [lemma, in hydras.Schutte.Ordering_Functions]
    +g_1_bij [lemma, in hydras.Schutte.Ordering_Functions]
    +g_bij [lemma, in hydras.Schutte.Ordering_Functions]
    +g_mono [lemma, in hydras.Schutte.Ordering_Functions]
    +g_lemma [lemma, in hydras.Schutte.Ordering_Functions]
    +g_def [lemma, in hydras.Schutte.Ordering_Functions]
    +g_beta':130 [binder, in hydras.Schutte.Ordering_Functions]
    +g_beta:129 [binder, in hydras.Schutte.Ordering_Functions]
    +g_unic [lemma, in hydras.Schutte.Ordering_Functions]
    +g_beta:128 [binder, in hydras.Schutte.Ordering_Functions]
    +g_def1 [lemma, in hydras.Schutte.Ordering_Functions]
    +g_l':275 [binder, in hydras.rpo.rpo]
    +G0 [module, in hydras.Gamma0.Gamma0]
    +G0.compare_correct [lemma, in hydras.Gamma0.Gamma0]
    +G0.compare_G0 [instance, in hydras.Gamma0.Gamma0]
    +G0.Ex42 [definition, in hydras.Gamma0.Gamma0]
    +G0.Finite [instance, in hydras.Gamma0.Gamma0]
    +G0.Gamma0 [instance, in hydras.Gamma0.Gamma0]
    +G0.Gamma0_comp [instance, in hydras.Gamma0.Gamma0]
    +G0.G0 [record, in hydras.Gamma0.Gamma0]
    +G0.le [definition, in hydras.Gamma0.Gamma0]
    +G0.lt [definition, in hydras.Gamma0.Gamma0]
    +G0.LT [definition, in hydras.Gamma0.Gamma0]
    +G0.lt_wf [lemma, in hydras.Gamma0.Gamma0]
    +G0.lt_sto [instance, in hydras.Gamma0.Gamma0]
    +G0.lt_LT_incl [lemma, in hydras.Gamma0.Gamma0]
    +G0.Lt_wf [lemma, in hydras.Gamma0.Gamma0]
    +G0.mkg0 [constructor, in hydras.Gamma0.Gamma0]
    +G0.nfb_proof_unicity [lemma, in hydras.Gamma0.Gamma0]
    +G0.nfb_equiv [lemma, in hydras.Gamma0.Gamma0]
    +G0.nfb_a [lemma, in hydras.Gamma0.Gamma0]
    +G0.omega [abbreviation, in hydras.Gamma0.Gamma0]
    +G0.Omega [instance, in hydras.Gamma0.Gamma0]
    +G0.phi [abbreviation, in hydras.Gamma0.Gamma0]
    +G0.Phi [instance, in hydras.Gamma0.Gamma0]
    +G0.phi0 [abbreviation, in hydras.Gamma0.Gamma0]
    +G0.Plus [instance, in hydras.Gamma0.Gamma0]
    +G0.vnf [projection, in hydras.Gamma0.Gamma0]
    +G0.vnf_ok [projection, in hydras.Gamma0.Gamma0]
    +G0.zero [instance, in hydras.Gamma0.Gamma0]
    +G0.zero_nfb [lemma, in hydras.Gamma0.Gamma0]
    +omega^ (g0_scope) [notation, in hydras.Gamma0.Gamma0]
    +_ + _ (g0_scope) [notation, in hydras.Gamma0.Gamma0]
    +g0:22 [binder, in hydras.Ackermann.Deduction]
    +g0:23 [binder, in hydras.Ackermann.Deduction]
    +g0:64 [binder, in hydras.MoreAck.AckNotPR]
    +g0:65 [binder, in hydras.MoreAck.AckNotPR]
    +g1:111 [binder, in hydras.Ackermann.primRec]
    +g1:114 [binder, in hydras.Ackermann.primRec]
    +g2h [definition, in gaia_hydras.T1Bridge]
    +g2h [definition, in gaia_hydras.T2Bridge]
    +g2h_canon [lemma, in gaia_hydras.GCanon]
    +g2h_seq [definition, in gaia_hydras.T1Bridge]
    +g2h_E0zero [lemma, in gaia_hydras.T1Bridge]
    +g2h_E0_succ [lemma, in gaia_hydras.T1Bridge]
    +g2h_succ [lemma, in gaia_hydras.T1Bridge]
    +g2h_plusE [lemma, in gaia_hydras.T1Bridge]
    +g2h_multE [lemma, in gaia_hydras.T1Bridge]
    +g2h_zero [lemma, in gaia_hydras.T1Bridge]
    +g2h_cons [lemma, in gaia_hydras.T1Bridge]
    +g2h_phi0 [lemma, in gaia_hydras.T1Bridge]
    +g2h_diffE [lemma, in gaia_hydras.T1Bridge]
    +g2h_eqE [lemma, in gaia_hydras.T1Bridge]
    +g2h_h2gK [lemma, in gaia_hydras.T1Bridge]
    +g2h_eqE [lemma, in gaia_hydras.T2Bridge]
    +g2h_h2gK [lemma, in gaia_hydras.T2Bridge]
    +g2:112 [binder, in hydras.Ackermann.primRec]
    +g2:115 [binder, in hydras.Ackermann.primRec]
    +g:10 [binder, in hydras.Ackermann.Deduction]
    +g:102 [binder, in hydras.Ackermann.LNT]
    +g:103 [binder, in hydras.Ackermann.folReplace]
    +g:104 [binder, in hydras.OrdinalNotations.ON_Generic]
    +g:105 [binder, in hydras.Ackermann.LNN]
    +g:105 [binder, in hydras.Ackermann.LNT]
    +g:108 [binder, in hydras.Ackermann.LNN]
    +g:108 [binder, in hydras.Ackermann.LNT]
    +g:108 [binder, in hydras.Ackermann.folReplace]
    +g:109 [binder, in hydras.Ackermann.folLogic]
    +g:110 [binder, in hydras.Ackermann.fol]
    +g:111 [binder, in hydras.Ackermann.LNN]
    +g:113 [binder, in hydras.Ackermann.folLogic]
    +g:116 [binder, in hydras.Ackermann.folLogic]
    +g:117 [binder, in hydras.Ackermann.fol]
    +g:117 [binder, in hydras.OrdinalNotations.ON_Generic]
    +g:119 [binder, in hydras.Ackermann.LNT]
    +g:12 [binder, in hydras.Ackermann.primRec]
    +g:12 [binder, in hydras.Ackermann.Deduction]
    +g:12 [binder, in hydras.Ackermann.folLogic]
    +g:121 [binder, in hydras.Ackermann.folLogic]
    +g:122 [binder, in hydras.Ackermann.LNN2LNT]
    +g:122 [binder, in hydras.Ackermann.LNN]
    +g:123 [binder, in hydras.Ackermann.LNT]
    +g:124 [binder, in hydras.Ackermann.folLogic]
    +g:126 [binder, in hydras.Ackermann.LNN]
    +g:126 [binder, in hydras.Ackermann.LNT]
    +g:127 [binder, in hydras.Ackermann.LNN2LNT]
    +g:129 [binder, in hydras.Ackermann.LNN]
    +g:13 [binder, in hydras.solutions_exercises.MinPR2]
    +g:13 [binder, in Goedel.rosser]
    +g:130 [binder, in hydras.Ackermann.LNN2LNT]
    +g:131 [binder, in hydras.Ackermann.LNT]
    +g:132 [binder, in hydras.Ackermann.LNN2LNT]
    +g:133 [binder, in Goedel.PRrepresentable]
    +g:133 [binder, in hydras.Ackermann.LNN2LNT]
    +g:134 [binder, in hydras.Ackermann.LNN2LNT]
    +g:134 [binder, in hydras.Ackermann.LNN]
    +g:134 [binder, in hydras.Ackermann.LNT]
    +g:134 [binder, in hydras.Ackermann.subProp]
    +g:135 [binder, in hydras.Ackermann.LNN2LNT]
    +g:137 [binder, in hydras.Ackermann.LNN]
    +g:14 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +g:14 [binder, in Goedel.rosser]
    +G:14 [binder, in hydras.MoreAck.FolExamples]
    +g:141 [binder, in hydras.Ackermann.codePA]
    +g:141 [binder, in hydras.rpo.rpo]
    +g:142 [binder, in hydras.Ackermann.LNN2LNT]
    +g:143 [binder, in hydras.OrdinalNotations.ON_Generic]
    +g:144 [binder, in Goedel.PRrepresentable]
    +g:146 [binder, in hydras.Ackermann.LNN2LNT]
    +g:149 [binder, in hydras.Ackermann.codeSubFormula]
    +g:15 [binder, in hydras.Ackermann.Deduction]
    +g:15 [binder, in hydras.Ackermann.folLogic]
    +g:152 [binder, in hydras.Prelude.Iterates]
    +g:155 [binder, in Goedel.PRrepresentable]
    +g:156 [binder, in hydras.OrdinalNotations.ON_Generic]
    +g:16 [binder, in Goedel.rosserPA]
    +g:16 [binder, in Goedel.goedel2]
    +g:161 [binder, in hydras.Prelude.Iterates]
    +g:162 [binder, in hydras.Ackermann.primRec]
    +g:167 [binder, in hydras.Ackermann.model]
    +g:168 [binder, in hydras.Ackermann.model]
    +g:168 [binder, in hydras.OrdinalNotations.ON_Generic]
    +g:169 [binder, in hydras.Prelude.Iterates]
    +g:169 [binder, in hydras.Ackermann.model]
    +g:169 [binder, in hydras.Ackermann.codePA]
    +g:17 [binder, in Goedel.rosserPA]
    +g:170 [binder, in hydras.Ackermann.primRec]
    +g:172 [binder, in hydras.Ackermann.codePA]
    +g:174 [binder, in hydras.Prelude.Iterates]
    +g:178 [binder, in hydras.Ackermann.codeSubTerm]
    +g:178 [binder, in gaia_hydras.T1Bridge]
    +g:178 [binder, in hydras.Ackermann.primRec]
    +g:18 [binder, in Goedel.rosserPA]
    +g:18 [binder, in hydras.Ackermann.folLogic]
    +g:18 [binder, in Goedel.goedel1]
    +g:180 [binder, in hydras.OrdinalNotations.ON_Generic]
    +g:181 [binder, in hydras.Ackermann.codeSubTerm]
    +g:181 [binder, in gaia_hydras.T1Bridge]
    +g:184 [binder, in gaia_hydras.T1Bridge]
    +g:185 [binder, in hydras.Prelude.Iterates]
    +g:186 [binder, in hydras.Prelude.Iterates]
    +g:188 [binder, in hydras.Prelude.Iterates]
    +g:188 [binder, in gaia_hydras.T1Bridge]
    +g:189 [binder, in hydras.Ackermann.primRec]
    +g:19 [binder, in hydras.Ackermann.LNT]
    +g:19 [binder, in hydras.Schutte.Critical]
    +g:19 [binder, in Goedel.rosserPA]
    +g:19 [binder, in Goedel.goedel1]
    +g:19 [binder, in hydras.Ackermann.Languages]
    +g:192 [binder, in hydras.Prelude.Iterates]
    +g:193 [binder, in hydras.Prelude.Iterates]
    +g:193 [binder, in hydras.OrdinalNotations.ON_Generic]
    +g:195 [binder, in hydras.Prelude.Iterates]
    +g:199 [binder, in hydras.Prelude.Iterates]
    +g:20 [binder, in hydras.Ackermann.checkPrf]
    +g:20 [binder, in Goedel.goedel1]
    +g:20 [binder, in Goedel.goedel2]
    +g:200 [binder, in hydras.Ackermann.primRec]
    +g:201 [binder, in hydras.Prelude.Iterates]
    +g:204 [binder, in hydras.Prelude.Iterates]
    +g:205 [binder, in hydras.Ackermann.codeSubFormula]
    +g:21 [binder, in Goedel.goedel1]
    +g:2108 [binder, in gaia_hydras.nfwfgaia]
    +g:211 [binder, in hydras.Ackermann.primRec]
    +g:213 [binder, in hydras.Ackermann.codeSubFormula]
    +g:216 [binder, in hydras.Prelude.Iterates]
    +g:217 [binder, in hydras.Prelude.Iterates]
    +g:218 [binder, in hydras.Prelude.Iterates]
    +g:219 [binder, in hydras.Prelude.Iterates]
    +g:22 [binder, in hydras.Ackermann.LNN]
    +g:22 [binder, in hydras.Ackermann.LNT]
    +g:22 [binder, in Goedel.goedel1]
    +g:220 [binder, in hydras.Prelude.Iterates]
    +g:221 [binder, in additions.Addition_Chains]
    +g:223 [binder, in hydras.Prelude.Iterates]
    +g:227 [binder, in hydras.Prelude.Iterates]
    +g:228 [binder, in hydras.Ackermann.primRec]
    +g:229 [binder, in additions.Addition_Chains]
    +g:23 [binder, in Goedel.goedel1]
    +g:234 [binder, in hydras.Ackermann.wellFormed]
    +g:237 [binder, in hydras.Ackermann.wellFormed]
    +g:238 [binder, in additions.Addition_Chains]
    +g:24 [binder, in Goedel.rosserPA]
    +g:244 [binder, in hydras.Ackermann.primRec]
    +g:25 [binder, in hydras.Ackermann.LNN]
    +g:25 [binder, in hydras.Ackermann.LNT]
    +g:25 [binder, in Goedel.rosserPA]
    +g:25 [binder, in hydras.Ackermann.folLogic]
    +g:25 [binder, in Goedel.rosser]
    +g:25 [binder, in Goedel.goedel2]
    +g:252 [binder, in hydras.Ackermann.fol]
    +g:255 [binder, in hydras.Gamma0.Gamma0]
    +g:260 [binder, in hydras.Ackermann.primRec]
    +g:264 [binder, in hydras.Ackermann.cPair]
    +g:278 [binder, in hydras.rpo.rpo]
    +g:279 [binder, in hydras.rpo.rpo]
    +g:28 [binder, in hydras.Ackermann.LNN]
    +g:28 [binder, in hydras.Ackermann.LNT]
    +g:28 [binder, in hydras.Ackermann.folLogic]
    +g:281 [binder, in hydras.Ackermann.primRec]
    +g:29 [binder, in hydras.Prelude.Iterates]
    +g:294 [binder, in hydras.Ackermann.primRec]
    +g:302 [binder, in hydras.Ackermann.fol]
    +g:31 [binder, in hydras.Ackermann.LNN]
    +g:31 [binder, in hydras.Ackermann.folLogic]
    +g:31 [binder, in hydras.Schutte.Ordering_Functions]
    +g:31 [binder, in hydras.MoreAck.FolExamples]
    +g:320 [binder, in hydras.rpo.rpo]
    +g:321 [binder, in hydras.rpo.rpo]
    +g:323 [binder, in hydras.Ackermann.primRec]
    +g:327 [binder, in Goedel.PRrepresentable]
    +g:33 [binder, in hydras.Prelude.Iterates]
    +g:332 [binder, in Goedel.PRrepresentable]
    +g:337 [binder, in Goedel.PRrepresentable]
    +g:34 [binder, in hydras.Ackermann.folLogic]
    +g:34 [binder, in Goedel.codeSysPrf]
    +g:345 [binder, in hydras.Ackermann.primRec]
    +g:348 [binder, in hydras.Ackermann.fol]
    +g:349 [binder, in hydras.Ackermann.primRec]
    +g:35 [binder, in hydras.Prelude.Iterates]
    +g:354 [binder, in hydras.Ackermann.primRec]
    +g:357 [binder, in hydras.Ackermann.primRec]
    +g:36 [binder, in Goedel.rosserPA]
    +g:361 [binder, in hydras.Ackermann.primRec]
    +g:368 [binder, in hydras.Ackermann.primRec]
    +g:37 [binder, in hydras.Ackermann.LNT]
    +g:375 [binder, in hydras.Ackermann.primRec]
    +g:379 [binder, in hydras.Ackermann.primRec]
    +g:38 [binder, in hydras.Prelude.Iterates]
    +g:385 [binder, in hydras.Ackermann.primRec]
    +g:39 [binder, in hydras.MoreAck.AckNotPR]
    +g:39 [binder, in Goedel.rosserPA]
    +g:39 [binder, in hydras.Ackermann.folLogic]
    +g:392 [binder, in hydras.Ackermann.primRec]
    +g:392 [binder, in hydras.Ackermann.fol]
    +g:398 [binder, in hydras.Ackermann.primRec]
    +g:40 [binder, in hydras.Ackermann.LNN]
    +g:40 [binder, in hydras.Ackermann.LNT]
    +g:406 [binder, in hydras.Ackermann.primRec]
    +g:41 [binder, in hydras.Epsilon0.Large_Sets]
    +g:42 [binder, in hydras.Ackermann.code]
    +g:42 [binder, in Goedel.rosserPA]
    +g:423 [binder, in hydras.Ackermann.primRec]
    +g:428 [binder, in hydras.Ackermann.primRec]
    +g:43 [binder, in hydras.Ackermann.LNN]
    +g:43 [binder, in hydras.Ackermann.LNT]
    +g:43 [binder, in hydras.MoreAck.AckNotPR]
    +g:43 [binder, in hydras.Ackermann.folLogic]
    +g:435 [binder, in hydras.Ackermann.primRec]
    +g:44 [binder, in hydras.Prelude.Iterates]
    +g:45 [binder, in hydras.MoreAck.PrimRecExamples]
    +g:46 [binder, in hydras.Ackermann.LNN]
    +g:46 [binder, in hydras.Ackermann.LNT]
    +g:46 [binder, in Goedel.rosserPA]
    +g:46 [binder, in hydras.rpo.rpo]
    +g:47 [binder, in hydras.MoreAck.AckNotPR]
    +g:47 [binder, in hydras.Ackermann.folLogic]
    +g:48 [binder, in hydras.Ackermann.folProof]
    +g:48 [binder, in hydras.MoreAck.PrimRecExamples]
    +g:49 [binder, in hydras.Ackermann.LNN]
    +g:49 [binder, in hydras.Ackermann.LNT]
    +g:49 [binder, in Goedel.rosserPA]
    +g:49 [binder, in hydras.Ackermann.expressible]
    +g:50 [binder, in hydras.Epsilon0.Large_Sets]
    +g:50 [binder, in Goedel.rosserPA]
    +g:50 [binder, in hydras.Ackermann.folLogic]
    +g:51 [binder, in hydras.MoreAck.AckNotPR]
    +g:51 [binder, in Goedel.rosserPA]
    +g:51 [binder, in hydras.MoreAck.PrimRecExamples]
    +g:52 [binder, in hydras.Ackermann.LNN]
    +g:52 [binder, in Goedel.rosserPA]
    +g:53 [binder, in hydras.Ackermann.LNT]
    +g:53 [binder, in Goedel.rosserPA]
    +g:53 [binder, in hydras.Ackermann.folLogic]
    +g:53 [binder, in gaia_hydras.nfwfgaia]
    +g:53 [binder, in hydras.MoreAck.PrimRecExamples]
    +g:54 [binder, in Goedel.rosserPA]
    +g:55 [binder, in Goedel.rosserPA]
    +g:56 [binder, in hydras.Ackermann.LNN]
    +g:56 [binder, in hydras.Ackermann.folLogic]
    +g:56 [binder, in hydras.MoreAck.PrimRecExamples]
    +g:563 [binder, in hydras.Ackermann.checkPrf]
    +g:565 [binder, in hydras.Ackermann.checkPrf]
    +g:57 [binder, in hydras.Ackermann.LNT]
    +g:57 [binder, in hydras.OrdinalNotations.ON_Generic]
    +g:58 [binder, in hydras.Prelude.Iterates]
    +g:59 [binder, in hydras.Ackermann.folLogic]
    +g:59 [binder, in Goedel.codeSysPrf]
    +g:597 [binder, in gaia_hydras.nfwfgaia]
    +g:6 [binder, in hydras.rpo.more_list]
    +g:6 [binder, in hydras.Ackermann.code]
    +g:6 [binder, in hydras.Ackermann.PA]
    +g:60 [binder, in hydras.Ackermann.LNN]
    +g:60 [binder, in hydras.Ackermann.LNT]
    +g:60 [binder, in hydras.MoreAck.PrimRecExamples]
    +g:62 [binder, in hydras.Ackermann.primRec]
    +g:62 [binder, in hydras.Ackermann.folLogic]
    +g:63 [binder, in hydras.Prelude.Iterates]
    +g:63 [binder, in hydras.Ackermann.LNN]
    +g:63 [binder, in hydras.Ackermann.LNT]
    +g:63 [binder, in hydras.Ackermann.fol]
    +g:64 [binder, in hydras.Ackermann.primRec]
    +g:645 [binder, in hydras.Ackermann.primRec]
    +g:65 [binder, in hydras.MoreAck.PrimRecExamples]
    +g:651 [binder, in hydras.Ackermann.primRec]
    +g:656 [binder, in hydras.Ackermann.primRec]
    +g:66 [binder, in hydras.Prelude.Iterates]
    +g:66 [binder, in hydras.Ackermann.LNN]
    +g:66 [binder, in hydras.Ackermann.LNT]
    +g:66 [binder, in hydras.MoreAck.AckNotPR]
    +g:663 [binder, in hydras.Ackermann.primRec]
    +g:668 [binder, in hydras.Ackermann.primRec]
    +g:67 [binder, in hydras.MoreAck.AckNotPR]
    +g:67 [binder, in hydras.MoreAck.PrimRecExamples]
    +g:68 [binder, in hydras.Ackermann.model]
    +g:68 [binder, in hydras.Ackermann.primRec]
    +g:69 [binder, in hydras.Ackermann.LNN]
    +g:69 [binder, in hydras.Ackermann.LNT]
    +g:70 [binder, in hydras.Ackermann.fol]
    +g:71 [binder, in hydras.MoreAck.PrimRecExamples]
    +g:72 [binder, in hydras.Ackermann.LNN]
    +g:72 [binder, in hydras.Ackermann.LNT]
    +g:74 [binder, in hydras.MoreAck.PrimRecExamples]
    +g:75 [binder, in hydras.Ackermann.LNN]
    +g:77 [binder, in hydras.Ackermann.folProp]
    +g:781 [binder, in hydras.Ackermann.codeSubFormula]
    +g:784 [binder, in hydras.Ackermann.codeSubFormula]
    +g:79 [binder, in hydras.Ackermann.folLogic]
    +g:79 [binder, in hydras.MoreAck.PrimRecExamples]
    +g:8 [binder, in hydras.solutions_exercises.MinPR2]
    +g:812 [binder, in hydras.Ackermann.primRec]
    +g:816 [binder, in hydras.Ackermann.primRec]
    +g:82 [binder, in hydras.Prelude.Iterates]
    +g:820 [binder, in hydras.Ackermann.primRec]
    +g:823 [binder, in hydras.Ackermann.primRec]
    +g:83 [binder, in hydras.MoreAck.PrimRecExamples]
    +g:84 [binder, in hydras.Schutte.PartialFun]
    +g:86 [binder, in hydras.Ackermann.folProp]
    +g:86 [binder, in hydras.Ackermann.folLogic]
    +g:86 [binder, in Goedel.codeSysPrf]
    +g:89 [binder, in hydras.Ackermann.LNT]
    +g:89 [binder, in Goedel.codeSysPrf]
    +g:89 [binder, in hydras.Epsilon0.Hprime]
    +g:9 [binder, in hydras.Ackermann.primRec]
    +g:9 [binder, in hydras.Ackermann.folLogic]
    +g:90 [binder, in hydras.Schutte.PartialFun]
    +g:92 [binder, in hydras.Ackermann.LNN]
    +g:92 [binder, in hydras.Ackermann.folLogic]
    +g:94 [binder, in hydras.Ackermann.codeSubFormula]
    +g:95 [binder, in hydras.Ackermann.folLogic]
    +g:96 [binder, in hydras.Ackermann.LNT]
    +g:96 [binder, in hydras.MoreAck.AckNotPR]
    +g:98 [binder, in hydras.Ackermann.folLogic]
    +g:98 [binder, in hydras.Ackermann.folReplace]
    +g:99 [binder, in hydras.Ackermann.LNN]
    +

    H

    +h [axiom, in hydras.Prelude.LibHyps_Experiments]
    +HAB:175 [binder, in hydras.Epsilon0.Large_Sets]
    +HAB:22 [binder, in gaia_hydras.GLarge_Sets]
    +HAck:88 [binder, in hydras.MoreAck.AckNotPR]
    +half [definition, in additions.BinaryStrat]
    +Halpha:14 [binder, in gaia_hydras.GHprime]
    +Halpha:170 [binder, in hydras.Epsilon0.Large_Sets]
    +Halpha:401 [binder, in hydras.Epsilon0.Paths]
    +Halpha:662 [binder, in hydras.Epsilon0.T1]
    +Halpha:665 [binder, in hydras.Epsilon0.T1]
    +Halpha:710 [binder, in hydras.Epsilon0.T1]
    +Ha:17 [binder, in gaia_hydras.GLarge_Sets]
    +HA:173 [binder, in hydras.Epsilon0.Large_Sets]
    +HA:20 [binder, in gaia_hydras.GLarge_Sets]
    +Ha:390 [binder, in hydras.Epsilon0.Paths]
    +Ha:50 [binder, in gaia_hydras.GCanon]
    +Ha:9 [binder, in gaia_hydras.GCanon]
    +Ha:98 [binder, in hydras.Epsilon0.Hessenberg]
    +HBL1 [lemma, in Goedel.goedel2]
    +hbounded_transitionS [abbreviation, in gaia_hydras.GPaths]
    +Hb:100 [binder, in hydras.Epsilon0.Hessenberg]
    +HB:174 [binder, in hydras.Epsilon0.Large_Sets]
    +HB:21 [binder, in gaia_hydras.GLarge_Sets]
    +Hb:391 [binder, in hydras.Epsilon0.Paths]
    +hcanon [abbreviation, in gaia_hydras.GCanon]
    +hCanon_plus [abbreviation, in gaia_hydras.GPaths]
    +hcnf [abbreviation, in gaia_hydras.T1Bridge]
    +hcons [abbreviation, in gaia_hydras.T2Bridge]
    +hcons [constructor, in hydras.Hydra.Hydra_Definitions]
    +hconst_path [abbreviation, in gaia_hydras.GPaths]
    +hconst_pathS [abbreviation, in gaia_hydras.GPaths]
    +hcons_mult_S2 [lemma, in hydras.Hydra.Hydra_Lemmas]
    +hcons_mult_S1 [lemma, in hydras.Hydra.Hydra_Lemmas]
    +hcons_mult_S0 [lemma, in hydras.Hydra.Hydra_Lemmas]
    +hcons_mult_comm [lemma, in hydras.Hydra.Hydra_Lemmas]
    +hcons_mult_app [lemma, in hydras.Hydra.Hydra_Lemmas]
    +hcons_mult [definition, in hydras.Hydra.Hydra_Definitions]
    +Hc:102 [binder, in hydras.Epsilon0.Hessenberg]
    +head [abbreviation, in hydras.Hydra.Hydra_Definitions]
    +headbits [lemma, in additions.fib]
    +head_LT_cons [lemma, in hydras.Epsilon0.T1]
    +head_lt_cons [lemma, in hydras.Epsilon0.T1]
    +head_lt [lemma, in hydras.Epsilon0.T1]
    +head_lt [lemma, in hydras.Schutte.Correctness_E0]
    +head_no_round [lemma, in hydras.Hydra.Hydra_Lemmas]
    +head_no_round_n [lemma, in hydras.Hydra.Hydra_Lemmas]
    +height [definition, in hydras.Hydra.Hydra_Definitions]
    +height_lt_size [lemma, in hydras.Hydra.Hydra_Examples]
    +height_bad [lemma, in hydras.Hydra.Omega_Small]
    +height_var [instance, in hydras.Hydra.Omega_Small]
    +height:17 [binder, in hydras.Epsilon0.T1]
    +Hessenberg [library]
    +hE0 [abbreviation, in gaia_hydras.T1Bridge]
    +hE0fin [abbreviation, in gaia_hydras.T1Bridge]
    +hE0is_succ [abbreviation, in gaia_hydras.T1Bridge]
    +hE0le [abbreviation, in gaia_hydras.T1Bridge]
    +hE0limit [abbreviation, in gaia_hydras.T1Bridge]
    +hE0lt [abbreviation, in gaia_hydras.T1Bridge]
    +hE0omega [abbreviation, in gaia_hydras.T1Bridge]
    +hE0phi0 [abbreviation, in gaia_hydras.T1Bridge]
    +hE0zero [abbreviation, in gaia_hydras.T1Bridge]
    +HFLim [lemma, in hydras.Epsilon0.F_alpha]
    +HFsucc [lemma, in hydras.Epsilon0.F_alpha]
    +hF_ [abbreviation, in gaia_hydras.GF_alpha]
    +Hf':121 [binder, in hydras.Prelude.Iterates]
    +Hf':155 [binder, in hydras.Prelude.Iterates]
    +Hf':94 [binder, in hydras.Prelude.Iterates]
    +HF0 [lemma, in hydras.Epsilon0.F_alpha]
    +Hf:120 [binder, in hydras.Prelude.Iterates]
    +Hf:154 [binder, in hydras.Prelude.Iterates]
    +Hf:47 [binder, in hydras.Prelude.Iterates]
    +Hf:50 [binder, in hydras.Prelude.Iterates]
    +Hf:74 [binder, in hydras.Schutte.PartialFun]
    +Hf:75 [binder, in hydras.MoreAck.AckNotPR]
    +Hf:79 [binder, in hydras.MoreAck.AckNotPR]
    +Hf:84 [binder, in hydras.MoreAck.AckNotPR]
    +Hf:88 [binder, in hydras.Prelude.Iterates]
    +Hf:93 [binder, in hydras.Prelude.Iterates]
    +Hgamma:159 [binder, in additions.AM]
    +Hgamma:24 [binder, in additions.Fib2]
    +Hgamma:354 [binder, in additions.Euclidean_Chains]
    +Hgamma:8 [binder, in additions.Strategies]
    +hgnaw [abbreviation, in gaia_hydras.GPaths]
    +hgnawS [abbreviation, in gaia_hydras.GPaths]
    +Hgt:163 [binder, in hydras.Prelude.Iterates]
    +hh_2 [constructor, in hydras.Hydra.O2H]
    +hh_1 [constructor, in hydras.Hydra.O2H]
    +Hij:64 [binder, in gaia_hydras.GCanon]
    +Hincl:170 [binder, in hydras.Prelude.MoreLists]
    +hinit [definition, in hydras.Hydra.BigBattle]
    +Hk:74 [binder, in additions.Euclidean_Chains]
    +Hlambda:51 [binder, in gaia_hydras.GCanon]
    +hlarge [abbreviation, in gaia_hydras.GLarge_Sets]
    +hlargeS [abbreviation, in gaia_hydras.GLarge_Sets]
    +Hlim:45 [binder, in gaia_hydras.GCanon]
    +Hlim:52 [binder, in gaia_hydras.GCanon]
    +Hlim:63 [binder, in gaia_hydras.GCanon]
    +Hlim:67 [binder, in gaia_hydras.GCanon]
    +hlt_iff [lemma, in gaia_hydras.T1Bridge]
    +hL_spec [abbreviation, in gaia_hydras.GLarge_Sets]
    +hmlarge [abbreviation, in gaia_hydras.GLarge_Sets]
    +hmlargeS [abbreviation, in gaia_hydras.GLarge_Sets]
    +Hmono:200 [binder, in hydras.Schutte.Schutte_basics]
    +Hmu [lemma, in hydras.Hydra.Epsilon0_Needed_Std]
    +hmultA [lemma, in gaia_hydras.GaiaToHydra]
    +hmult_dist [lemma, in gaia_hydras.GaiaToHydra]
    +Hmu:2 [binder, in hydras.Hydra.Epsilon0_Needed_Free]
    +Hmu:3 [binder, in hydras.Hydra.Epsilon0_Needed_Generic]
    +Hm':165 [binder, in hydras.Prelude.Iterates]
    +Hm:164 [binder, in hydras.Prelude.Iterates]
    +hnf_g2h [lemma, in gaia_hydras.T1Bridge]
    +Hnf:3 [binder, in gaia_hydras.GF_alpha]
    +Hnf:34 [binder, in gaia_hydras.GF_alpha]
    +Hnf:40 [binder, in gaia_hydras.GCanon]
    +Hnf:44 [binder, in gaia_hydras.GCanon]
    +Hnf:62 [binder, in gaia_hydras.GCanon]
    +Hnf:66 [binder, in gaia_hydras.GCanon]
    +hnil [constructor, in hydras.Hydra.Hydra_Definitions]
    +hoplus [abbreviation, in gaia_hydras.GHessenberg]
    +hpath [abbreviation, in gaia_hydras.GPaths]
    +hpathS [abbreviation, in gaia_hydras.GPaths]
    +hpath_to [abbreviation, in gaia_hydras.GPaths]
    +Hprime [library]
    +hP:25 [binder, in gaia_hydras.T1Bridge]
    +Hrecb:719 [binder, in hydras.Ackermann.primRec]
    +Hrecb:723 [binder, in hydras.Ackermann.primRec]
    +Hrecb:725 [binder, in hydras.Ackermann.primRec]
    +Hrecb:728 [binder, in hydras.Ackermann.primRec]
    +Hrecb:731 [binder, in hydras.Ackermann.primRec]
    +Hrecb:734 [binder, in hydras.Ackermann.primRec]
    +Hrecb:737 [binder, in hydras.Ackermann.primRec]
    +Hrecb:740 [binder, in hydras.Ackermann.primRec]
    +Hrecb:743 [binder, in hydras.Ackermann.primRec]
    +Hrecb:746 [binder, in hydras.Ackermann.primRec]
    +Hrecb:749 [binder, in hydras.Ackermann.primRec]
    +Hrecb:752 [binder, in hydras.Ackermann.primRec]
    +Hrecb:755 [binder, in hydras.Ackermann.primRec]
    +Hrecb:757 [binder, in hydras.Ackermann.primRec]
    +Hrecb:783 [binder, in hydras.Ackermann.primRec]
    +Hrecb:786 [binder, in hydras.Ackermann.primRec]
    +Hrecb:790 [binder, in hydras.Ackermann.primRec]
    +Hrecb:793 [binder, in hydras.Ackermann.primRec]
    +Hrecb:797 [binder, in hydras.Ackermann.primRec]
    +Hrecb:803 [binder, in hydras.Ackermann.primRec]
    +Hrecb:808 [binder, in hydras.Ackermann.primRec]
    +Hrecb:811 [binder, in hydras.Ackermann.primRec]
    +Hrecn:128 [binder, in hydras.Ackermann.cPair]
    +Hrecn:144 [binder, in hydras.Ackermann.cPair]
    +Hrecn:147 [binder, in hydras.Ackermann.cPair]
    +Hrecn:151 [binder, in hydras.Ackermann.cPair]
    +Hrecn:155 [binder, in hydras.Ackermann.cPair]
    +Hrecn:157 [binder, in hydras.Ackermann.cPair]
    +Hrecn:160 [binder, in hydras.Ackermann.cPair]
    +Hrecn:178 [binder, in hydras.Ackermann.model]
    +Hrecn:185 [binder, in hydras.Ackermann.model]
    +Hrecn:204 [binder, in hydras.Ackermann.model]
    +Hrecn:211 [binder, in hydras.Ackermann.model]
    +Hrecn:64 [binder, in hydras.Ackermann.folLogic3]
    +Hrecs:10 [binder, in hydras.Ackermann.codeSubFormula]
    +Hrecs:108 [binder, in hydras.Ackermann.codeList]
    +Hrecs:11 [binder, in hydras.Ackermann.codeList]
    +Hrecs:113 [binder, in hydras.Ackermann.codeList]
    +Hrecs:116 [binder, in hydras.Ackermann.codeList]
    +Hrecs:12 [binder, in hydras.Ackermann.codeSubFormula]
    +Hrecs:121 [binder, in hydras.Ackermann.codeList]
    +Hrecs:124 [binder, in hydras.Ackermann.codeList]
    +Hrecs:127 [binder, in hydras.Ackermann.codeList]
    +Hrecs:13 [binder, in hydras.Ackermann.codeList]
    +Hrecs:130 [binder, in hydras.Ackermann.codeList]
    +Hrecs:133 [binder, in hydras.Ackermann.codeList]
    +Hrecs:136 [binder, in hydras.Ackermann.codeList]
    +Hrecs:139 [binder, in hydras.Ackermann.codeList]
    +Hrecs:14 [binder, in hydras.Ackermann.codeSubFormula]
    +Hrecs:142 [binder, in hydras.Ackermann.codeList]
    +Hrecs:145 [binder, in hydras.Ackermann.codeList]
    +Hrecs:147 [binder, in hydras.Ackermann.codeList]
    +Hrecs:149 [binder, in hydras.Ackermann.codeList]
    +Hrecs:15 [binder, in hydras.Ackermann.codeList]
    +Hrecs:151 [binder, in hydras.Ackermann.codeList]
    +Hrecs:153 [binder, in hydras.Ackermann.codeList]
    +Hrecs:155 [binder, in hydras.Ackermann.codeList]
    +Hrecs:16 [binder, in hydras.Ackermann.codeSubFormula]
    +Hrecs:165 [binder, in hydras.Ackermann.codeList]
    +Hrecs:168 [binder, in hydras.Ackermann.codeList]
    +Hrecs:17 [binder, in hydras.Ackermann.codeList]
    +Hrecs:171 [binder, in hydras.Ackermann.codeList]
    +Hrecs:174 [binder, in hydras.Ackermann.codeList]
    +Hrecs:177 [binder, in hydras.Ackermann.codeList]
    +Hrecs:18 [binder, in hydras.Ackermann.codeSubFormula]
    +Hrecs:180 [binder, in hydras.Ackermann.codeList]
    +Hrecs:19 [binder, in hydras.Ackermann.wellFormed]
    +Hrecs:19 [binder, in hydras.Ackermann.codeList]
    +Hrecs:197 [binder, in hydras.Ackermann.codeList]
    +Hrecs:199 [binder, in hydras.Ackermann.codeList]
    +Hrecs:2 [binder, in hydras.Ackermann.codeList]
    +Hrecs:20 [binder, in hydras.Ackermann.codeSubFormula]
    +Hrecs:201 [binder, in hydras.Ackermann.codeList]
    +Hrecs:203 [binder, in hydras.Ackermann.codeList]
    +Hrecs:205 [binder, in hydras.Ackermann.codeList]
    +Hrecs:207 [binder, in hydras.Ackermann.codeList]
    +Hrecs:21 [binder, in hydras.Ackermann.wellFormed]
    +Hrecs:21 [binder, in hydras.Ackermann.codeList]
    +Hrecs:213 [binder, in hydras.Ackermann.codeList]
    +Hrecs:218 [binder, in hydras.Ackermann.codeList]
    +Hrecs:22 [binder, in hydras.Ackermann.codeSubFormula]
    +Hrecs:221 [binder, in hydras.Ackermann.codeList]
    +Hrecs:226 [binder, in hydras.Ackermann.codeList]
    +Hrecs:229 [binder, in hydras.Ackermann.codeList]
    +Hrecs:23 [binder, in hydras.Ackermann.codeList]
    +Hrecs:232 [binder, in hydras.Ackermann.codeList]
    +Hrecs:235 [binder, in hydras.Ackermann.codeList]
    +Hrecs:238 [binder, in hydras.Ackermann.codeList]
    +Hrecs:24 [binder, in hydras.Ackermann.codeSubFormula]
    +Hrecs:241 [binder, in hydras.Ackermann.codeList]
    +Hrecs:244 [binder, in hydras.Ackermann.codeList]
    +Hrecs:247 [binder, in hydras.Ackermann.codeList]
    +Hrecs:25 [binder, in hydras.Ackermann.codeList]
    +Hrecs:250 [binder, in hydras.Ackermann.codeList]
    +Hrecs:253 [binder, in hydras.Ackermann.codeList]
    +Hrecs:256 [binder, in hydras.Ackermann.codeList]
    +Hrecs:259 [binder, in hydras.Ackermann.codeList]
    +Hrecs:26 [binder, in hydras.Ackermann.codeSubFormula]
    +Hrecs:27 [binder, in hydras.Ackermann.codeList]
    +Hrecs:276 [binder, in hydras.Ackermann.codeList]
    +Hrecs:278 [binder, in hydras.Ackermann.codeList]
    +Hrecs:28 [binder, in hydras.Ackermann.codeSubFormula]
    +Hrecs:280 [binder, in hydras.Ackermann.codeList]
    +Hrecs:282 [binder, in hydras.Ackermann.codeList]
    +Hrecs:284 [binder, in hydras.Ackermann.codeList]
    +Hrecs:286 [binder, in hydras.Ackermann.codeList]
    +Hrecs:29 [binder, in hydras.Ackermann.codeList]
    +Hrecs:30 [binder, in hydras.Ackermann.codeSubFormula]
    +Hrecs:31 [binder, in hydras.Ackermann.codeList]
    +Hrecs:32 [binder, in hydras.Ackermann.codeSubFormula]
    +Hrecs:34 [binder, in hydras.Ackermann.codeSubFormula]
    +Hrecs:36 [binder, in hydras.Ackermann.codeSubFormula]
    +Hrecs:41 [binder, in hydras.Ackermann.codeList]
    +Hrecs:42 [binder, in hydras.Ackermann.codeSubFormula]
    +Hrecs:44 [binder, in hydras.Ackermann.codeSubFormula]
    +Hrecs:46 [binder, in hydras.Ackermann.codeSubFormula]
    +Hrecs:46 [binder, in hydras.Ackermann.codeList]
    +Hrecs:48 [binder, in hydras.Ackermann.codeSubFormula]
    +Hrecs:49 [binder, in hydras.Ackermann.codeList]
    +Hrecs:5 [binder, in hydras.Ackermann.codeList]
    +Hrecs:54 [binder, in hydras.Ackermann.codeList]
    +Hrecs:57 [binder, in hydras.Ackermann.codeList]
    +Hrecs:60 [binder, in hydras.Ackermann.codeList]
    +Hrecs:63 [binder, in hydras.Ackermann.codeList]
    +Hrecs:66 [binder, in hydras.Ackermann.codeList]
    +Hrecs:69 [binder, in hydras.Ackermann.codeList]
    +Hrecs:7 [binder, in hydras.Ackermann.codeSubFormula]
    +Hrecs:7 [binder, in hydras.Ackermann.codeList]
    +Hrecs:72 [binder, in hydras.Ackermann.codeList]
    +Hrecs:74 [binder, in hydras.Ackermann.codeList]
    +Hrecs:76 [binder, in hydras.Ackermann.codeList]
    +Hrecs:78 [binder, in hydras.Ackermann.codeList]
    +Hrecs:80 [binder, in hydras.Ackermann.codeList]
    +Hrecs:82 [binder, in hydras.Ackermann.codeList]
    +Hrecs:84 [binder, in hydras.Ackermann.codeList]
    +Hrecs:86 [binder, in hydras.Ackermann.codeList]
    +Hrecs:9 [binder, in hydras.Ackermann.codeList]
    +Hrecs:90 [binder, in hydras.Ackermann.codeList]
    +Hrecs:92 [binder, in hydras.Ackermann.codeList]
    +Hrecs:94 [binder, in hydras.Ackermann.codeList]
    +Hrecs:96 [binder, in hydras.Ackermann.codeList]
    +hR:28 [binder, in gaia_hydras.T1Bridge]
    +hsize [definition, in hydras.Hydra.Hydra_Definitions]
    +hstandard_gnaw [abbreviation, in gaia_hydras.GPaths]
    +hs_eq_dec [lemma, in hydras.Hydra.Hydra_Definitions]
    +hs':140 [binder, in hydras.Hydra.Hydra_Lemmas]
    +hs':142 [binder, in hydras.Hydra.Hydra_Lemmas]
    +hs2l [definition, in hydras.Hydra.Hydra_Definitions]
    +hs2lK [lemma, in hydras.Hydra.Hydra_Definitions]
    +hs:139 [binder, in hydras.Hydra.Hydra_Lemmas]
    +hs:141 [binder, in hydras.Hydra.Hydra_Lemmas]
    +hs:8 [binder, in gaia_hydras.GHydra]
    +hs:9 [binder, in gaia_hydras.GHydra]
    +htransition [abbreviation, in gaia_hydras.GPaths]
    +Htrans:18 [binder, in hydras.Prelude.Sort_spec]
    +Htrans:21 [binder, in hydras.Prelude.Sort_spec]
    +Htrans:25 [binder, in hydras.Prelude.Sort_spec]
    +hT1 [abbreviation, in gaia_hydras.T1Bridge]
    +hT2 [abbreviation, in gaia_hydras.T2Bridge]
    +hVar [instance, in gaia_hydras.GHydra]
    +HVariant [instance, in hydras.Hydra.Hydra_Termination]
    +Hvariant [record, in hydras.Hydra.Hydra_Definitions]
    +HVariant_0 [instance, in hydras.Hydra.Hydra_Termination]
    +Hvariant_Termination [lemma, in hydras.Hydra.Hydra_Lemmas]
    +Hvar:2 [binder, in hydras.Hydra.Omega2_Small]
    +Hvar:2 [binder, in hydras.Hydra.Omega_Small]
    +Hwf:130 [binder, in hydras.Hydra.Hydra_Lemmas]
    +Hwf:21 [binder, in hydras.solutions_exercises.T1_ltNotWf]
    +HX:142 [binder, in hydras.Schutte.Schutte_basics]
    +HX:145 [binder, in hydras.Schutte.Schutte_basics]
    +Hx:27 [binder, in hydras.Prelude.Restriction]
    +Hx:31 [binder, in hydras.Prelude.Restriction]
    +Hx:38 [binder, in hydras.Prelude.Restriction]
    +HX:61 [binder, in hydras.Schutte.Well_Orders]
    +hyd [abbreviation, in hydras.Hydra.BigBattle]
    +Hydra [inductive, in hydras.Hydra.Hydra_Definitions]
    +Hydrae [inductive, in hydras.Hydra.Hydra_Definitions]
    +Hydrae_rect2 [definition, in hydras.Hydra.Hydra_Definitions]
    +HydraGaia_Examples [library]
    +Hydra_rect2 [definition, in hydras.Hydra.Hydra_Definitions]
    +Hydra_Termination [library]
    +Hydra_Extraction [library]
    +Hydra_Lemmas [library]
    +Hydra_Definitions [library]
    +Hydra_Examples [library]
    +Hydra_Theorems [library]
    +hyd_mult [definition, in hydras.Hydra.Hydra_Definitions]
    +hyd1 [abbreviation, in hydras.Hydra.Hydra_Definitions]
    +hyd2 [abbreviation, in hydras.Hydra.Hydra_Definitions]
    +hyd3 [abbreviation, in hydras.Hydra.Hydra_Definitions]
    +hyd4 [abbreviation, in hydras.Hydra.KP_example]
    +hyper_exp2_S [lemma, in hydras.Prelude.Iterates]
    +hyper_exp2 [definition, in hydras.Prelude.Iterates]
    +Hypos [section, in hydras.Prelude.First_toggle]
    +Hypos.Hn [variable, in hydras.Prelude.First_toggle]
    +Hypos.Hnp [variable, in hydras.Prelude.First_toggle]
    +Hypos.Hp [variable, in hydras.Prelude.First_toggle]
    +Hypos.R [variable, in hydras.Prelude.First_toggle]
    +Hypos.search_toggle [variable, in hydras.Prelude.First_toggle]
    +Hypos.spec [variable, in hydras.Prelude.First_toggle]
    +Hyp1:20 [binder, in hydras.Ackermann.folProof]
    +Hyp2:21 [binder, in hydras.Ackermann.folProof]
    +hyp:220 [binder, in hydras.Ackermann.fol]
    +hyp:221 [binder, in hydras.Ackermann.fol]
    +hyp:222 [binder, in hydras.Ackermann.fol]
    +Hyp:24 [binder, in hydras.Ackermann.folProof]
    +Hyp:46 [binder, in hydras.Ackermann.folProof]
    +Hyp:48 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +hy_app_l_nil [lemma, in hydras.Hydra.O2H]
    +hy_app_assoc [lemma, in hydras.Hydra.Hydra_Lemmas]
    +hy_app [definition, in hydras.Hydra.Hydra_Definitions]
    +Hy'':5 [binder, in hydras.Hydra.Hydra_Examples]
    +Hy:28 [binder, in hydras.Prelude.Restriction]
    +Hy:4 [binder, in hydras.Hydra.Epsilon0_Needed_Std]
    +Hy:5 [binder, in hydras.Hydra.Epsilon0_Needed_Free]
    +Hy:6 [binder, in hydras.Hydra.Epsilon0_Needed_Generic]
    +hzero [abbreviation, in gaia_hydras.T2Bridge]
    +h_eq_dec [lemma, in hydras.Hydra.Hydra_Definitions]
    +h_forall [definition, in hydras.Hydra.Hydra_Definitions]
    +H'_F [lemma, in gaia_hydras.GF_alpha]
    +H'_omega_cube_min [lemma, in gaia_hydras.GHprime]
    +H'_alpha_gt [lemma, in gaia_hydras.GHprime]
    +H'_alpha_mono [lemma, in gaia_hydras.GHprime]
    +H'_dom [lemma, in gaia_hydras.GHprime]
    +H'_omega_double [lemma, in gaia_hydras.GHprime]
    +H'_omega [lemma, in gaia_hydras.GHprime]
    +H'_eq3 [lemma, in gaia_hydras.GHprime]
    +H'_eq2 [lemma, in gaia_hydras.GHprime]
    +H'_eq1 [lemma, in gaia_hydras.GHprime]
    +H'_ [definition, in gaia_hydras.GHprime]
    +H'_F [lemma, in hydras.Epsilon0.F_alpha]
    +H'_F.IHalpha [variable, in hydras.Epsilon0.F_alpha]
    +H'_F.alpha [variable, in hydras.Epsilon0.F_alpha]
    +H'_F.P [variable, in hydras.Epsilon0.F_alpha]
    +H'_F [section, in hydras.Epsilon0.F_alpha]
    +H'_L_ [lemma, in hydras.Epsilon0.L_alpha]
    +H'_dom [lemma, in hydras.Epsilon0.Hprime]
    +H'_mono_l [lemma, in hydras.Epsilon0.Hprime]
    +H'_mono_l_1 [lemma, in hydras.Epsilon0.Hprime]
    +H'_mono_l_0 [lemma, in hydras.Epsilon0.Hprime]
    +H'_alpha_mono_weak [lemma, in hydras.Epsilon0.Hprime]
    +H'_alpha_ge_id [lemma, in hydras.Epsilon0.Hprime]
    +H'_restricted_mono_l [lemma, in hydras.Epsilon0.Hprime]
    +H'_alpha_dom [lemma, in hydras.Epsilon0.Hprime]
    +H'_alpha_Succ_le [lemma, in hydras.Epsilon0.Hprime]
    +H'_alpha_gt [lemma, in hydras.Epsilon0.Hprime]
    +H'_alpha_mono [lemma, in hydras.Epsilon0.Hprime]
    +H'_non_mono1 [lemma, in hydras.Epsilon0.Hprime]
    +H'_omega_cube_min [lemma, in hydras.Epsilon0.Hprime]
    +H'_omega_sqr_min [lemma, in hydras.Epsilon0.Hprime]
    +H'_Phi0_omega_exact_formula [lemma, in hydras.Epsilon0.Hprime]
    +H'_Phi0_omega [lemma, in hydras.Epsilon0.Hprime]
    +H'_omega_cube_3.N [variable, in hydras.Epsilon0.Hprime]
    +H'_omega_cube_3.f [variable, in hydras.Epsilon0.Hprime]
    +H'_omega_cube_3 [section, in hydras.Epsilon0.Hprime]
    +H'_omega_cube [lemma, in hydras.Epsilon0.Hprime]
    +H'_Phi0_Si [lemma, in hydras.Epsilon0.Hprime]
    +H'_Phi0_succ [lemma, in hydras.Epsilon0.Hprime]
    +H'_Phi0_succ_0 [lemma, in hydras.Epsilon0.Hprime]
    +H'_Phi0_succ_1 [lemma, in hydras.Epsilon0.Hprime]
    +H'_succ_fun [definition, in hydras.Epsilon0.Hprime]
    +H'_Omega_term [lemma, in hydras.Epsilon0.Hprime]
    +H'_Fin_iterate [lemma, in hydras.Epsilon0.Hprime]
    +H'_Omega_term_0 [lemma, in hydras.Epsilon0.Hprime]
    +H'_Omega_term_1 [lemma, in hydras.Epsilon0.Hprime]
    +H'_cons [lemma, in hydras.Epsilon0.Hprime]
    +H'_cons.i [variable, in hydras.Epsilon0.Hprime]
    +H'_cons.alpha [variable, in hydras.Epsilon0.Hprime]
    +H'_cons [section, in hydras.Epsilon0.Hprime]
    +H'_omega_sqr [lemma, in hydras.Epsilon0.Hprime]
    +H'_omega_i [lemma, in hydras.Epsilon0.Hprime]
    +H'_omega_4 [lemma, in hydras.Epsilon0.Hprime]
    +H'_omega_3 [lemma, in hydras.Epsilon0.Hprime]
    +H'_omega_double [lemma, in hydras.Epsilon0.Hprime]
    +H'_Plus_Fin [lemma, in hydras.Epsilon0.Hprime]
    +H'_omega [lemma, in hydras.Epsilon0.Hprime]
    +H'_Fin [lemma, in hydras.Epsilon0.Hprime]
    +H'_eq2 [lemma, in hydras.Epsilon0.Hprime]
    +H'_eq3 [lemma, in hydras.Epsilon0.Hprime]
    +H'_eq2_0 [lemma, in hydras.Epsilon0.Hprime]
    +H'_eq1 [lemma, in hydras.Epsilon0.Hprime]
    +H'_ [definition, in hydras.Epsilon0.Hprime]
    +H'_L_ [lemma, in gaia_hydras.GL_alpha]
    +h'':100 [binder, in hydras.Hydra.Hydra_Definitions]
    +h'':135 [binder, in hydras.Hydra.Hydra_Definitions]
    +h'':83 [binder, in hydras.Hydra.Hydra_Lemmas]
    +h':100 [binder, in hydras.Hydra.O2H]
    +h':101 [binder, in hydras.Hydra.Hydra_Definitions]
    +h':107 [binder, in hydras.Hydra.Hydra_Lemmas]
    +H':108 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +h':110 [binder, in hydras.Hydra.Hydra_Definitions]
    +h':113 [binder, in hydras.Hydra.Hydra_Definitions]
    +h':115 [binder, in hydras.Hydra.Hydra_Lemmas]
    +h':116 [binder, in hydras.Hydra.Hydra_Definitions]
    +h':118 [binder, in hydras.Hydra.Hydra_Lemmas]
    +h':12 [binder, in gaia_hydras.GHydra]
    +h':121 [binder, in hydras.Hydra.Hydra_Definitions]
    +h':122 [binder, in hydras.Hydra.Hydra_Lemmas]
    +h':124 [binder, in hydras.Hydra.Hydra_Lemmas]
    +h':124 [binder, in hydras.Hydra.Hydra_Definitions]
    +h':13 [binder, in hydras.Hydra.Hydra_Definitions]
    +h':130 [binder, in hydras.Hydra.Hydra_Definitions]
    +h':132 [binder, in hydras.Hydra.Hydra_Lemmas]
    +h':134 [binder, in hydras.Hydra.Hydra_Lemmas]
    +h':134 [binder, in hydras.Hydra.Hydra_Definitions]
    +h':138 [binder, in hydras.Hydra.Hydra_Lemmas]
    +h':14 [binder, in gaia_hydras.GHydra]
    +h':141 [binder, in hydras.Hydra.Hydra_Definitions]
    +h':152 [binder, in hydras.Hydra.Hydra_Definitions]
    +h':167 [binder, in hydras.Hydra.Hydra_Definitions]
    +h':178 [binder, in hydras.Prelude.Iterates]
    +h':19 [binder, in hydras.Hydra.Hydra_Lemmas]
    +h':2 [binder, in hydras.Hydra.Hydra_Examples]
    +h':23 [binder, in hydras.Hydra.Hydra_Termination]
    +h':25 [binder, in hydras.Hydra.Hydra_Termination]
    +H':28 [binder, in hydras.Epsilon0.E0]
    +h':3 [binder, in hydras.Hydra.Hydra_Examples]
    +h':35 [binder, in hydras.Hydra.Hydra_Termination]
    +h':36 [binder, in hydras.Hydra.O2H]
    +h':4 [binder, in hydras.Hydra.Hydra_Examples]
    +h':44 [binder, in hydras.Hydra.Hydra_Termination]
    +h':46 [binder, in hydras.Hydra.Hydra_Termination]
    +H':489 [binder, in hydras.Epsilon0.T1]
    +h':49 [binder, in hydras.Hydra.Hydra_Termination]
    +H':493 [binder, in hydras.Epsilon0.T1]
    +h':51 [binder, in hydras.Hydra.O2H]
    +h':51 [binder, in hydras.Hydra.Hydra_Termination]
    +H':696 [binder, in hydras.Gamma0.Gamma0]
    +h':7 [binder, in hydras.Hydra.Epsilon0_Needed_Free]
    +h':71 [binder, in hydras.Hydra.Hydra_Lemmas]
    +h':72 [binder, in hydras.Hydra.Hydra_Definitions]
    +h':76 [binder, in hydras.Hydra.Hydra_Lemmas]
    +h':80 [binder, in hydras.Hydra.Hydra_Lemmas]
    +h':82 [binder, in hydras.Hydra.Hydra_Lemmas]
    +h':86 [binder, in hydras.Hydra.Hydra_Definitions]
    +h':9 [binder, in hydras.Hydra.Epsilon0_Needed_Generic]
    +h':90 [binder, in hydras.Hydra.O2H]
    +h':93 [binder, in hydras.Hydra.O2H]
    +h':93 [binder, in hydras.Hydra.Hydra_Definitions]
    +h':95 [binder, in hydras.Hydra.Hydra_Definitions]
    +h':98 [binder, in hydras.Hydra.Hydra_Definitions]
    +h0 [definition, in hydras.Hydra.KP_example]
    +h0_h1 [lemma, in hydras.Hydra.KP_example]
    +H0:21 [binder, in hydras.Epsilon0.F_omega]
    +H0:294 [binder, in hydras.rpo.rpo]
    +H0:296 [binder, in hydras.rpo.rpo]
    +H0:298 [binder, in hydras.rpo.rpo]
    +h0:35 [binder, in hydras.Prelude.Restriction]
    +h0:41 [binder, in hydras.Prelude.Restriction]
    +H0:47 [binder, in hydras.Ackermann.LNN2LNT]
    +h0:6 [binder, in hydras.Hydra.Epsilon0_Needed_Std]
    +H0:7 [binder, in hydras.Prelude.Compat815]
    +H0:73 [binder, in hydras.Ackermann.LNN2LNT]
    +h0:73 [binder, in hydras.Hydra.Hydra_Lemmas]
    +H0:76 [binder, in hydras.Ackermann.LNN2LNT]
    +H0:79 [binder, in hydras.Ackermann.LNN2LNT]
    +H0:82 [binder, in hydras.Ackermann.LNN2LNT]
    +H0:85 [binder, in hydras.Ackermann.LNN2LNT]
    +H0:88 [binder, in hydras.Ackermann.LNN2LNT]
    +h0:9 [binder, in hydras.Hydra.Epsilon0_Needed_Std]
    +H0:91 [binder, in hydras.Ackermann.LNN2LNT]
    +H0:94 [binder, in hydras.Ackermann.LNN2LNT]
    +h1 [abbreviation, in hydras.Hydra.BigBattle]
    +h1 [definition, in hydras.Hydra.KP_example]
    +h1_h2 [lemma, in hydras.Hydra.KP_example]
    +h1:116 [binder, in hydras.Ackermann.primRec]
    +H1:310 [binder, in hydras.rpo.rpo]
    +H1:312 [binder, in hydras.rpo.rpo]
    +H1:32 [binder, in hydras.MoreAck.FolExamples]
    +h1:36 [binder, in hydras.Hydra.Hydra_Lemmas]
    +H1:371 [binder, in hydras.Epsilon0.T1]
    +H1:373 [binder, in hydras.Epsilon0.T1]
    +h1:41 [binder, in hydras.Hydra.Hydra_Lemmas]
    +H1:48 [binder, in hydras.Ackermann.LNN2LNT]
    +H1:60 [binder, in hydras.Epsilon0.T1]
    +H1:62 [binder, in hydras.Epsilon0.T1]
    +H1:74 [binder, in hydras.Ackermann.LNN2LNT]
    +H1:77 [binder, in hydras.Ackermann.LNN2LNT]
    +H1:8 [binder, in hydras.Prelude.Compat815]
    +H1:80 [binder, in hydras.Ackermann.LNN2LNT]
    +H1:83 [binder, in hydras.Ackermann.LNN2LNT]
    +H1:86 [binder, in hydras.Ackermann.LNN2LNT]
    +H1:89 [binder, in hydras.Ackermann.LNN2LNT]
    +H1:92 [binder, in hydras.Ackermann.LNN2LNT]
    +H1:95 [binder, in hydras.Ackermann.LNN2LNT]
    +h2 [abbreviation, in hydras.Hydra.BigBattle]
    +h2 [definition, in hydras.Hydra.KP_example]
    +h2g [definition, in gaia_hydras.T1Bridge]
    +h2g [definition, in gaia_hydras.T2Bridge]
    +h2g_seq [definition, in gaia_hydras.T1Bridge]
    +h2g_zero [lemma, in gaia_hydras.T1Bridge]
    +h2g_cons [lemma, in gaia_hydras.T1Bridge]
    +h2g_diffE [lemma, in gaia_hydras.T1Bridge]
    +h2g_eqE [lemma, in gaia_hydras.T1Bridge]
    +h2g_g2hK [lemma, in gaia_hydras.T1Bridge]
    +h2g_eqE [lemma, in gaia_hydras.T2Bridge]
    +h2g_g2hK [lemma, in gaia_hydras.T2Bridge]
    +h2_h3 [lemma, in hydras.Hydra.KP_example]
    +H2:10 [binder, in hydras.Prelude.Compat815]
    +h2:117 [binder, in hydras.Ackermann.primRec]
    +H2:33 [binder, in hydras.MoreAck.FolExamples]
    +h2:37 [binder, in hydras.Hydra.Hydra_Lemmas]
    +H2:374 [binder, in hydras.Epsilon0.T1]
    +h2:42 [binder, in hydras.Hydra.Hydra_Lemmas]
    +H2:63 [binder, in hydras.Epsilon0.T1]
    +h3 [abbreviation, in hydras.Hydra.BigBattle]
    +h3 [definition, in hydras.Hydra.KP_example]
    +h:1 [binder, in hydras.Hydra.Hydra_Examples]
    +h:1 [binder, in hydras.Hydra.Hydra_Termination]
    +h:1 [binder, in gaia_hydras.GHydra]
    +h:1 [binder, in hydras.Hydra.Hydra_Lemmas]
    +h:10 [binder, in hydras.Ackermann.primRec]
    +h:10 [binder, in gaia_hydras.GHydra]
    +h:10 [binder, in hydras.Hydra.Hydra_Lemmas]
    +h:105 [binder, in hydras.Hydra.Hydra_Lemmas]
    +h:106 [binder, in hydras.Hydra.Hydra_Definitions]
    +H:107 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +h:109 [binder, in hydras.Hydra.Hydra_Definitions]
    +h:11 [binder, in hydras.Hydra.Hydra_Termination]
    +h:11 [binder, in hydras.Hydra.Epsilon0_Needed_Std]
    +h:11 [binder, in gaia_hydras.GHydra]
    +h:11 [binder, in hydras.Hydra.Epsilon0_Needed_Generic]
    +H:11 [binder, in hydras.Schutte.Countable]
    +h:110 [binder, in hydras.Ackermann.folLogic]
    +h:112 [binder, in hydras.Hydra.Hydra_Definitions]
    +h:114 [binder, in hydras.Hydra.Hydra_Lemmas]
    +h:114 [binder, in hydras.Hydra.Hydra_Definitions]
    +h:117 [binder, in hydras.Hydra.Hydra_Lemmas]
    +h:12 [binder, in hydras.solutions_exercises.MorePRExamples]
    +h:12 [binder, in hydras.Hydra.Hydra_Definitions]
    +h:120 [binder, in hydras.Ackermann.LNT]
    +h:120 [binder, in additions.fib]
    +h:120 [binder, in hydras.Hydra.Hydra_Definitions]
    +h:121 [binder, in hydras.Hydra.Hydra_Lemmas]
    +h:123 [binder, in hydras.Ackermann.LNN]
    +h:123 [binder, in hydras.Hydra.Hydra_Lemmas]
    +h:123 [binder, in hydras.Hydra.Hydra_Definitions]
    +h:125 [binder, in hydras.Ackermann.folLogic]
    +h:129 [binder, in hydras.Hydra.Hydra_Definitions]
    +h:13 [binder, in hydras.Ackermann.primRec]
    +h:13 [binder, in gaia_hydras.GHydra]
    +H:13 [binder, in hydras.MoreAck.PrimRecExamples]
    +h:132 [binder, in hydras.Hydra.Hydra_Definitions]
    +h:133 [binder, in hydras.Hydra.Hydra_Lemmas]
    +h:135 [binder, in hydras.Ackermann.LNT]
    +h:135 [binder, in hydras.Hydra.Hydra_Lemmas]
    +h:137 [binder, in hydras.Hydra.Hydra_Lemmas]
    +h:138 [binder, in hydras.Ackermann.LNN]
    +h:138 [binder, in hydras.Hydra.Hydra_Definitions]
    +H:14 [binder, in hydras.MoreAck.BadSubst]
    +H:14 [binder, in hydras.Prelude.Sort_spec]
    +h:142 [binder, in hydras.Hydra.Hydra_Definitions]
    +h:144 [binder, in hydras.Hydra.Hydra_Lemmas]
    +h:146 [binder, in hydras.Hydra.Hydra_Lemmas]
    +h:149 [binder, in hydras.Hydra.Hydra_Lemmas]
    +h:15 [binder, in hydras.Hydra.Hydra_Termination]
    +h:151 [binder, in hydras.Hydra.Hydra_Definitions]
    +h:152 [binder, in hydras.Hydra.Hydra_Lemmas]
    +h:155 [binder, in hydras.Hydra.Hydra_Lemmas]
    +H:157 [binder, in hydras.Prelude.Iterates]
    +H:16 [binder, in hydras.Prelude.First_toggle]
    +h:162 [binder, in hydras.Hydra.Hydra_Definitions]
    +H:163 [binder, in hydras.Ackermann.primRec]
    +h:166 [binder, in hydras.Hydra.Hydra_Definitions]
    +H:171 [binder, in hydras.Ackermann.primRec]
    +H:172 [binder, in hydras.Ackermann.folProp]
    +h:175 [binder, in hydras.Prelude.Iterates]
    +H:179 [binder, in hydras.Ackermann.folProp]
    +H:179 [binder, in hydras.Ackermann.primRec]
    +H:18 [binder, in hydras.Epsilon0.F_omega]
    +h:18 [binder, in hydras.Hydra.Hydra_Lemmas]
    +H:188 [binder, in hydras.Ackermann.folProp]
    +H:190 [binder, in hydras.Ackermann.primRec]
    +H:195 [binder, in hydras.Ackermann.folProp]
    +H:201 [binder, in hydras.Ackermann.primRec]
    +H:201 [binder, in hydras.Schutte.Schutte_basics]
    +H:204 [binder, in hydras.Ackermann.folProp]
    +h:205 [binder, in hydras.Prelude.Iterates]
    +H:21 [binder, in hydras.Schutte.MoreEpsilonIota]
    +H:211 [binder, in hydras.Ackermann.folProp]
    +H:212 [binder, in hydras.Ackermann.primRec]
    +h:22 [binder, in hydras.Hydra.Hydra_Termination]
    +H:22 [binder, in hydras.Prelude.STDPP_compat]
    +H:220 [binder, in hydras.Ackermann.folProp]
    +H:227 [binder, in hydras.Ackermann.folProp]
    +H:24 [binder, in hydras.Prelude.Restriction]
    +h:24 [binder, in hydras.Schutte.Critical]
    +H:24 [binder, in hydras.Schutte.MoreEpsilonIota]
    +h:24 [binder, in hydras.Hydra.Hydra_Termination]
    +H:24 [binder, in hydras.Prelude.STDPP_compat]
    +h:24 [binder, in hydras.Hydra.Hydra_Definitions]
    +H:25 [binder, in hydras.Epsilon0.E0]
    +H:251 [binder, in hydras.Ackermann.folProp]
    +H:258 [binder, in hydras.Ackermann.folProp]
    +h:26 [binder, in gaia_hydras.GHydra]
    +H:265 [binder, in hydras.Ackermann.cPair]
    +H:267 [binder, in hydras.Ackermann.folProp]
    +H:27 [binder, in hydras.Epsilon0.E0]
    +H:274 [binder, in hydras.Ackermann.folProp]
    +h:28 [binder, in hydras.Hydra.O2H]
    +H:28 [binder, in hydras.Schutte.Critical]
    +H:29 [binder, in hydras.Prelude.Restriction]
    +h:30 [binder, in hydras.Hydra.Hydra_Definitions]
    +H:300 [binder, in hydras.Ackermann.folProp]
    +H:307 [binder, in hydras.Ackermann.folProp]
    +H:316 [binder, in hydras.Ackermann.folProp]
    +h:32 [binder, in hydras.Hydra.O2H]
    +H:323 [binder, in hydras.Ackermann.folProp]
    +h:329 [binder, in Goedel.PRrepresentable]
    +H:33 [binder, in hydras.MoreAck.AckNotPR]
    +H:33 [binder, in hydras.Schutte.Critical]
    +H:332 [binder, in hydras.Ackermann.folProp]
    +h:334 [binder, in Goedel.PRrepresentable]
    +h:339 [binder, in Goedel.PRrepresentable]
    +H:339 [binder, in hydras.Ackermann.folProp]
    +h:34 [binder, in hydras.Hydra.Hydra_Termination]
    +H:34 [binder, in hydras.MoreAck.FolExamples]
    +H:348 [binder, in hydras.Ackermann.folProp]
    +h:35 [binder, in hydras.Hydra.O2H]
    +H:355 [binder, in hydras.Ackermann.folProp]
    +h:36 [binder, in hydras.Prelude.Restriction]
    +h:36 [binder, in hydras.Hydra.Hydra_Definitions]
    +h:362 [binder, in hydras.Ackermann.primRec]
    +H:364 [binder, in hydras.Ackermann.folProp]
    +H:369 [binder, in hydras.Epsilon0.T1]
    +H:37 [binder, in hydras.Schutte.Ordering_Functions]
    +H:370 [binder, in hydras.Epsilon0.T1]
    +H:371 [binder, in hydras.Ackermann.folProp]
    +H:372 [binder, in hydras.Epsilon0.T1]
    +h:38 [binder, in hydras.MoreAck.AckNotPR]
    +H:38 [binder, in hydras.Schutte.Critical]
    +H:38 [binder, in hydras.Hydra.Hydra_Termination]
    +H:380 [binder, in hydras.Ackermann.folProp]
    +H:385 [binder, in hydras.Epsilon0.Paths]
    +H:387 [binder, in hydras.Ackermann.folProp]
    +h:40 [binder, in hydras.Hydra.O2H]
    +h:40 [binder, in hydras.Ackermann.folLogic]
    +H:41 [binder, in hydras.Hydra.Hydra_Termination]
    +h:41 [binder, in hydras.Hydra.Hydra_Definitions]
    +h:42 [binder, in hydras.Prelude.Restriction]
    +H:42 [binder, in hydras.Schutte.Critical]
    +H:423 [binder, in hydras.Epsilon0.T1]
    +h:43 [binder, in hydras.Hydra.Hydra_Termination]
    +H:44 [binder, in hydras.Schutte.Correctness_E0]
    +h:44 [binder, in hydras.Ackermann.folLogic]
    +h:45 [binder, in hydras.Prelude.Iterates]
    +h:45 [binder, in hydras.Hydra.O2H]
    +H:45 [binder, in hydras.Prelude.Restriction]
    +h:45 [binder, in hydras.Hydra.Hydra_Termination]
    +H:46 [binder, in hydras.Ackermann.LNN2LNT]
    +h:47 [binder, in hydras.Hydra.Hydra_Termination]
    +h:48 [binder, in hydras.Hydra.Hydra_Termination]
    +H:487 [binder, in hydras.Epsilon0.T1]
    +H:491 [binder, in hydras.Epsilon0.T1]
    +H:5 [binder, in hydras.Hydra.Hydra_Theorems]
    +h:5 [binder, in hydras.Hydra.Epsilon0_Needed_Std]
    +h:5 [binder, in hydras.Hydra.Hydra_Lemmas]
    +h:50 [binder, in hydras.Ackermann.LNT]
    +H:50 [binder, in hydras.Schutte.Critical]
    +h:50 [binder, in hydras.Hydra.Hydra_Termination]
    +h:50 [binder, in hydras.Hydra.Hydra_Lemmas]
    +h:53 [binder, in hydras.Ackermann.LNN]
    +H:54 [binder, in hydras.Prelude.Iterates]
    +h:54 [binder, in hydras.Ackermann.LNT]
    +h:54 [binder, in hydras.Hydra.Hydra_Definitions]
    +H:55 [binder, in hydras.MoreAck.AckNotPR]
    +h:55 [binder, in hydras.Hydra.Hydra_Lemmas]
    +h:57 [binder, in hydras.Ackermann.LNN]
    +H:58 [binder, in hydras.Epsilon0.T1]
    +H:59 [binder, in hydras.Epsilon0.T1]
    +h:59 [binder, in hydras.Prelude.Iterates]
    +h:6 [binder, in hydras.Hydra.Epsilon0_Needed_Free]
    +h:6 [binder, in hydras.Hydra.Hydra_Examples]
    +h:60 [binder, in hydras.Hydra.Hydra_Lemmas]
    +h:60 [binder, in hydras.Hydra.Hydra_Definitions]
    +H:61 [binder, in hydras.Epsilon0.T1]
    +h:63 [binder, in gaia_hydras.nfwfgaia]
    +h:64 [binder, in hydras.Prelude.Iterates]
    +H:64 [binder, in hydras.Prelude.MoreLists]
    +h:65 [binder, in hydras.Hydra.Hydra_Lemmas]
    +h:657 [binder, in hydras.Ackermann.primRec]
    +h:66 [binder, in hydras.Hydra.Hydra_Lemmas]
    +h:67 [binder, in hydras.Prelude.Iterates]
    +H:68 [binder, in hydras.Schutte.Correctness_E0]
    +h:69 [binder, in hydras.Ackermann.primRec]
    +h:69 [binder, in hydras.Hydra.Hydra_Lemmas]
    +H:695 [binder, in hydras.Gamma0.Gamma0]
    +h:7 [binder, in hydras.Hydra.Hydra_Examples]
    +h:7 [binder, in hydras.Hydra.Hydra_Termination]
    +h:7 [binder, in gaia_hydras.GHydra]
    +h:71 [binder, in hydras.Hydra.Hydra_Definitions]
    +H:711 [binder, in hydras.Epsilon0.T1]
    +H:72 [binder, in hydras.Schutte.Correctness_E0]
    +H:72 [binder, in hydras.Ackermann.LNN2LNT]
    +h:73 [binder, in hydras.Hydra.Hydra_Definitions]
    +H:75 [binder, in hydras.Schutte.Correctness_E0]
    +h:75 [binder, in hydras.Hydra.Hydra_Lemmas]
    +H:78 [binder, in hydras.Ackermann.LNN2LNT]
    +h:78 [binder, in hydras.Hydra.Hydra_Lemmas]
    +H:8 [binder, in hydras.Schutte.Critical]
    +h:8 [binder, in hydras.Hydra.Hydra_Examples]
    +h:8 [binder, in hydras.Hydra.Epsilon0_Needed_Generic]
    +H:8 [binder, in hydras.Schutte.Countable]
    +h:81 [binder, in hydras.Hydra.Hydra_Lemmas]
    +H:84 [binder, in hydras.Prelude.Iterates]
    +H:84 [binder, in hydras.Ackermann.LNN2LNT]
    +h:85 [binder, in hydras.Hydra.Hydra_Definitions]
    +h:88 [binder, in hydras.Hydra.Hydra_Lemmas]
    +h:88 [binder, in hydras.Hydra.Hydra_Definitions]
    +h:9 [binder, in hydras.solutions_exercises.MinPR2]
    +h:9 [binder, in hydras.Hydra.Hydra_Examples]
    +H:90 [binder, in hydras.Ackermann.LNN2LNT]
    +h:91 [binder, in hydras.Hydra.Hydra_Lemmas]
    +h:92 [binder, in hydras.Hydra.O2H]
    +h:92 [binder, in hydras.Hydra.Hydra_Definitions]
    +h:93 [binder, in hydras.Hydra.Hydra_Lemmas]
    +h:94 [binder, in hydras.Hydra.Hydra_Definitions]
    +h:96 [binder, in hydras.Hydra.O2H]
    +h:96 [binder, in hydras.Hydra.Hydra_Lemmas]
    +h:97 [binder, in hydras.Hydra.Hydra_Definitions]
    +h:98 [binder, in hydras.Hydra.O2H]
    +h:99 [binder, in hydras.Hydra.Hydra_Definitions]
    +

    I

    +idIsPR [instance, in hydras.Ackermann.primRec]
    +idn:126 [binder, in additions.fib]
    +id_le_f_alpha [lemma, in hydras.Epsilon0.F_alpha]
    +Id2 [definition, in additions.Monoid_instances]
    +id:118 [binder, in additions.fib]
    +iffExist [lemma, in hydras.Ackermann.folReplace]
    +iffE1 [lemma, in hydras.Ackermann.LNN]
    +iffE1 [lemma, in hydras.Ackermann.LNT]
    +iffE1 [lemma, in hydras.Ackermann.folLogic]
    +iffE2 [lemma, in hydras.Ackermann.LNN]
    +iffE2 [lemma, in hydras.Ackermann.LNT]
    +iffE2 [lemma, in hydras.Ackermann.folLogic]
    +iffH [definition, in hydras.Ackermann.fol]
    +iffI [lemma, in hydras.Ackermann.LNN]
    +iffI [lemma, in hydras.Ackermann.LNT]
    +iffI [lemma, in hydras.Ackermann.folLogic]
    +iffRefl [lemma, in hydras.Ackermann.LNN]
    +iffRefl [lemma, in hydras.Ackermann.LNT]
    +iffRefl [lemma, in hydras.Ackermann.folLogic]
    +iffSym [lemma, in hydras.Ackermann.LNN]
    +iffSym [lemma, in hydras.Ackermann.LNT]
    +iffSym [lemma, in hydras.Ackermann.folLogic]
    +iffTrans [lemma, in hydras.Ackermann.LNN]
    +iffTrans [lemma, in hydras.Ackermann.LNT]
    +iffTrans [lemma, in hydras.Ackermann.folLogic]
    +ifThenElseH [definition, in hydras.Ackermann.fol]
    +if_simpl [lemma, in gaia_hydras.nfwfgaia]
    +If2IsPR [instance, in hydras.solutions_exercises.MinPR2]
    +ignoreParams [definition, in hydras.Ackermann.primRec]
    +ignoreParamsIsPR [instance, in hydras.Ackermann.primRec]
    +Ignore_Params [section, in hydras.Ackermann.primRec]
    +IHn:102 [binder, in hydras.MoreAck.AckNotPR]
    +image [definition, in hydras.Schutte.PartialFun]
    +image_as_Im [lemma, in hydras.Schutte.PartialFun]
    +image_B_g_seg [lemma, in hydras.Schutte.Ordering_Functions]
    +impE [lemma, in hydras.Ackermann.LNN]
    +impE [lemma, in hydras.Ackermann.LNT]
    +impE [lemma, in hydras.Ackermann.folLogic]
    +impForall [lemma, in hydras.Ackermann.folReplace]
    +impH [constructor, in hydras.Ackermann.fol]
    +impI [lemma, in hydras.Ackermann.LNN]
    +impI [lemma, in hydras.Ackermann.LNT]
    +impI [lemma, in hydras.Ackermann.folLogic]
    +ImpossibilityProof [section, in gaia_hydras.GHydra]
    +ImpossibilityProof.m [variable, in gaia_hydras.GHydra]
    +ImpossibilityProof.mh [variable, in gaia_hydras.GHydra]
    +ImpossibilityProof.mu [variable, in gaia_hydras.GHydra]
    +ImpossibilityProof.nfMu [variable, in gaia_hydras.GHydra]
    +Impossibility_free [lemma, in hydras.Hydra.Epsilon0_Needed_Free]
    +Impossibility_Proof.small_h [variable, in hydras.Hydra.Epsilon0_Needed_Free]
    +Impossibility_Proof.big_h [variable, in hydras.Hydra.Epsilon0_Needed_Free]
    +Impossibility_Proof [section, in hydras.Hydra.Epsilon0_Needed_Free]
    +Impossibility_Proof [section, in hydras.MoreAck.AckNotPR]
    +Impossibility_std [lemma, in hydras.Hydra.Epsilon0_Needed_Std]
    +Impossibility_Proof.small_h [variable, in hydras.Hydra.Epsilon0_Needed_Std]
    +Impossibility_Proof.big_h [variable, in hydras.Hydra.Epsilon0_Needed_Std]
    +Impossibility_Proof [section, in hydras.Hydra.Epsilon0_Needed_Std]
    +Impossibility_std [lemma, in gaia_hydras.GHydra]
    +Impossibility_free [lemma, in gaia_hydras.GHydra]
    +Impossibility_Proof.small_h [variable, in hydras.Hydra.Omega2_Small]
    +Impossibility_Proof.iota [variable, in hydras.Hydra.Omega2_Small]
    +Impossibility_Proof.big_h [variable, in hydras.Hydra.Omega2_Small]
    +Impossibility_Proof.m [variable, in hydras.Hydra.Omega2_Small]
    +Impossibility_Proof [section, in hydras.Hydra.Omega2_Small]
    +Impossibility_Proof.small_h [variable, in hydras.Hydra.Omega_Small]
    +Impossibility_Proof.big_h [variable, in hydras.Hydra.Omega_Small]
    +Impossibility_Proof.iota [variable, in hydras.Hydra.Omega_Small]
    +Impossibility_Proof.m [variable, in hydras.Hydra.Omega_Small]
    +Impossibility_Proof [section, in hydras.Hydra.Omega_Small]
    +Impossibility1 [section, in hydras.solutions_exercises.MultisetWf]
    +Impossibility1.m [variable, in hydras.solutions_exercises.MultisetWf]
    +Impossibility1.mDecr [variable, in hydras.solutions_exercises.MultisetWf]
    +Impossibility1.x [variable, in hydras.solutions_exercises.MultisetWf]
    +Impossibility1.y [variable, in hydras.solutions_exercises.MultisetWf]
    +Impossible [lemma, in hydras.Hydra.Omega2_Small]
    +impossible_nat [lemma, in hydras.solutions_exercises.MultisetWf]
    +impRefl [lemma, in hydras.Ackermann.LNN]
    +impRefl [lemma, in hydras.Ackermann.LNT]
    +impRefl [lemma, in hydras.Ackermann.folLogic]
    +impTrans [lemma, in hydras.Ackermann.LNN]
    +impTrans [lemma, in hydras.Ackermann.LNT]
    +impTrans [lemma, in hydras.Ackermann.folLogic]
    +IMP1 [constructor, in hydras.Ackermann.folProof]
    +IMP2 [constructor, in hydras.Ackermann.folProof]
    +im_U_f [lemma, in hydras.Schutte.Ordering_Functions]
    +Incl [instance, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +Included_s [definition, in hydras.Prelude.DecPreOrder_Instances]
    +Inclusion_ij.b [variable, in hydras.OrdinalNotations.ON_Finite]
    +Inclusion_ij.Hij [variable, in hydras.OrdinalNotations.ON_Finite]
    +Inclusion_ij.j [variable, in hydras.OrdinalNotations.ON_Finite]
    +Inclusion_ij.i [variable, in hydras.OrdinalNotations.ON_Finite]
    +Inclusion_ij [section, in hydras.OrdinalNotations.ON_Finite]
    +incl_decomp [lemma, in hydras.Prelude.MoreLists]
    +incl_inv [lemma, in hydras.Prelude.MoreLists]
    +Incompleteness [lemma, in Goedel.rosser]
    +Inconsistent [definition, in hydras.Ackermann.folProof]
    +Inc_U_A [lemma, in hydras.Schutte.Ordering_Functions]
    +independent [definition, in hydras.Ackermann.folProof]
    +indIsPR [instance, in hydras.Ackermann.primRec]
    +induct [lemma, in hydras.Ackermann.PA]
    +InductionSchema [definition, in hydras.Ackermann.PA]
    +inductive_step.Hn [variable, in hydras.Epsilon0.F_omega]
    +inductive_step.n [variable, in hydras.Epsilon0.F_omega]
    +inductive_step [section, in hydras.Epsilon0.F_omega]
    +induct_step [lemma, in hydras.Schutte.Critical]
    +ind1ParamIsPR [instance, in hydras.Ackermann.primRec]
    +ind2ParamIsPR [instance, in hydras.Ackermann.primRec]
    +Infinite [definition, in hydras.solutions_exercises.Limit_Infinity]
    +info [inductive, in additions.Trace_exercise]
    +InH [record, in hydras.Schutte.MoreEpsilonIota]
    +InH [inductive, in hydras.Schutte.MoreEpsilonIota]
    +inhNat [instance, in hydras.Schutte.MoreEpsilonIota]
    +InHWit [projection, in hydras.Schutte.MoreEpsilonIota]
    +InHWit [constructor, in hydras.Schutte.MoreEpsilonIota]
    +inhX:45 [binder, in hydras.Schutte.Well_Orders]
    +Inh_ord [lemma, in hydras.Schutte.Schutte_basics]
    +Inh_Ord_Ord [instance, in hydras.Schutte.Schutte_basics]
    +Inh_OSets [instance, in hydras.Schutte.Schutte_basics]
    +InH_Ord [instance, in hydras.Schutte.Schutte_basics]
    +inh_Ord [axiom, in hydras.Schutte.Schutte_basics]
    +inh_U [lemma, in hydras.Schutte.Ordering_Functions]
    +inh:2 [binder, in hydras.Schutte.MoreEpsilonIota]
    +inh:53 [binder, in hydras.Schutte.Well_Orders]
    +inh:58 [binder, in hydras.Schutte.Well_Orders]
    +Init [constructor, in additions.Trace_exercise]
    +inject [definition, in hydras.Schutte.Correctness_E0]
    +inject_lt_epsilon0_ex_unique [lemma, in hydras.Schutte.Correctness_E0]
    +inject_lt_epsilon0_ex [lemma, in hydras.Schutte.Correctness_E0]
    +inject_lt_epsilon0_ex_cnf [lemma, in hydras.Schutte.Correctness_E0]
    +inject_mult_fin_r [lemma, in hydras.Schutte.Correctness_E0]
    +inject_plus [lemma, in hydras.Schutte.Correctness_E0]
    +inject_rw [lemma, in hydras.Schutte.Correctness_E0]
    +inject_lt_epsilon0 [lemma, in hydras.Schutte.Correctness_E0]
    +inject_monoR [lemma, in hydras.Schutte.Correctness_E0]
    +inject_injective [lemma, in hydras.Schutte.Correctness_E0]
    +inject_mono [lemma, in hydras.Schutte.Correctness_E0]
    +inject_mono_0 [lemma, in hydras.Schutte.Correctness_E0]
    +inject_of_phi0 [lemma, in hydras.Schutte.Correctness_E0]
    +inject_of_omega [lemma, in hydras.Schutte.Correctness_E0]
    +inject_of_finite [lemma, in hydras.Schutte.Correctness_E0]
    +inject_of_zero [lemma, in hydras.Schutte.Correctness_E0]
    +inject_of_finite_pos [lemma, in hydras.Schutte.Correctness_E0]
    +input:61 [binder, in hydras.Ackermann.codeSubFormula]
    +instr [inductive, in additions.AM]
    +interpFormula [definition, in hydras.Ackermann.model]
    +interpRels [definition, in hydras.Ackermann.model]
    +interpTerm [definition, in hydras.Ackermann.model]
    +interpTerms [definition, in hydras.Ackermann.model]
    +interpTermsVector [definition, in hydras.Ackermann.model]
    +interval [definition, in hydras.Prelude.MoreLists]
    +interval_lt_not_In [lemma, in hydras.Prelude.MoreLists]
    +interval_sorted_ge [lemma, in hydras.Prelude.MoreLists]
    +interval_unroll [lemma, in hydras.Prelude.MoreLists]
    +interval_app [lemma, in hydras.Prelude.MoreLists]
    +interval_singleton [lemma, in hydras.Prelude.MoreLists]
    +interval_not_empty_iff [lemma, in hydras.Prelude.MoreLists]
    +interval_not_empty [lemma, in hydras.Prelude.MoreLists]
    +interval_length [lemma, in hydras.Prelude.MoreLists]
    +interval_def [lemma, in gaia_hydras.GPaths]
    +Int63mult [instance, in additions.Monoid_instances]
    +int63_mult_op [instance, in additions.Monoid_instances]
    +inv [definition, in hydras.solutions_exercises.FibonacciPR]
    +invar:18 [binder, in hydras.Prelude.First_toggle]
    +Inverse_fun [instance, in hydras.Prelude.DecPreOrder_Instances]
    +Inverse_Image_transp.Rof [variable, in additions.Wf_transparent]
    +Inverse_Image_transp.f [variable, in additions.Wf_transparent]
    +Inverse_Image_transp.R [variable, in additions.Wf_transparent]
    +Inverse_Image_transp.B [variable, in additions.Wf_transparent]
    +Inverse_Image_transp.A [variable, in additions.Wf_transparent]
    +Inverse_Image_transp [section, in additions.Wf_transparent]
    +inversion_of_bijection.f_b [variable, in hydras.Schutte.PartialFun]
    +inversion_of_bijection.inv_spec [variable, in hydras.Schutte.PartialFun]
    +inversion_of_bijection.f [variable, in hydras.Schutte.PartialFun]
    +inversion_of_bijection.DB [variable, in hydras.Schutte.PartialFun]
    +inversion_of_bijection.DA [variable, in hydras.Schutte.PartialFun]
    +inversion_of_bijection.inhA [variable, in hydras.Schutte.PartialFun]
    +inversion_of_bijection.B [variable, in hydras.Schutte.PartialFun]
    +inversion_of_bijection.A [variable, in hydras.Schutte.PartialFun]
    +inversion_of_bijection [section, in hydras.Schutte.PartialFun]
    +inv_Pi [lemma, in hydras.solutions_exercises.FibonacciPR]
    +inv_fun_bij [lemma, in hydras.Schutte.PartialFun]
    +inv_composeR [lemma, in hydras.Schutte.PartialFun]
    +inv_compose [lemma, in hydras.Schutte.PartialFun]
    +inv_fun [definition, in hydras.Schutte.PartialFun]
    +inv_trans [lemma, in hydras.rpo.closure]
    +In_betaFormula_subst_2_1 [lemma, in Goedel.PRrepresentable]
    +In_betaFormula_subst_2 [lemma, in Goedel.PRrepresentable]
    +In_betaFormula [lemma, in Goedel.PRrepresentable]
    +In_betaFormula_subst_1 [lemma, in Goedel.PRrepresentable]
    +In_betaFormula_subst_1_2 [lemma, in Goedel.PRrepresentable]
    +In_betaFormula_subst_1_2_0 [lemma, in Goedel.PRrepresentable]
    +In_sorted_ge_inv [lemma, in hydras.Prelude.MoreLists]
    +in_remove [lemma, in hydras.rpo.more_list]
    +in_map_in [lemma, in hydras.rpo.more_list]
    +in_in_map [lemma, in hydras.rpo.more_list]
    +In_freeVarSys [definition, in hydras.Ackermann.folProp]
    +In_freeVarListFormulaE [lemma, in hydras.Ackermann.folProp]
    +In_freeVarListFormula [lemma, in hydras.Ackermann.folProp]
    +In_list_remove2 [abbreviation, in hydras.Ackermann.ListExt]
    +in_remove_neq [lemma, in hydras.Ackermann.ListExt]
    +In_add2 [lemma, in hydras.MoreAck.FolExamples]
    +In_add1 [lemma, in hydras.MoreAck.FolExamples]
    +In_cases [lemma, in hydras.Prelude.MoreVectors]
    +iota [definition, in hydras.Hydra.O2H]
    +iota [definition, in hydras.solutions_exercises.MultisetWf]
    +iotas [definition, in hydras.Hydra.O2H]
    +iotas_succ [lemma, in hydras.Hydra.O2H]
    +iota_phi0 [lemma, in hydras.Hydra.O2H]
    +iota_of_succ [lemma, in hydras.Hydra.O2H]
    +iota_tail [lemma, in hydras.Hydra.O2H]
    +iota_rw4 [lemma, in hydras.Hydra.O2H]
    +iota_rw3 [lemma, in hydras.Hydra.O2H]
    +iota_rw2 [lemma, in hydras.Hydra.O2H]
    +iota_rw1 [lemma, in hydras.Hydra.O2H]
    +iota_succ_round [lemma, in hydras.Hydra.O2H]
    +iota_succ_round_n [lemma, in hydras.Hydra.O2H]
    +iota_succ_R1 [lemma, in hydras.Hydra.O2H]
    +iota_iotas [lemma, in hydras.Hydra.O2H]
    +iota_from_lt_not_In [lemma, in hydras.Prelude.MoreLists]
    +iota_from_sorted_ge [lemma, in hydras.Prelude.MoreLists]
    +iota_from_unroll [lemma, in hydras.Prelude.MoreLists]
    +iota_from_plus [lemma, in hydras.Prelude.MoreLists]
    +iota_from_app [lemma, in hydras.Prelude.MoreLists]
    +iota_from [definition, in hydras.Prelude.MoreLists]
    +iota_adapt [lemma, in gaia_hydras.GPaths]
    +iota_ind [lemma, in hydras.Schutte.MoreEpsilonIota]
    +iota_eq [lemma, in hydras.Schutte.MoreEpsilonIota]
    +iota_spec_1 [lemma, in hydras.Schutte.MoreEpsilonIota]
    +iota_fun_ind [lemma, in hydras.Schutte.PartialFun]
    +iota_fun_e [lemma, in hydras.Schutte.PartialFun]
    +iota_fun [definition, in hydras.Schutte.PartialFun]
    +iota_demo.Bad.le_bottom_zero [lemma, in hydras.Schutte.Schutte_basics]
    +iota_demo.Bad.bottom_eq [lemma, in hydras.Schutte.Schutte_basics]
    +iota_demo.Bad.le_zero_bottom [lemma, in hydras.Schutte.Schutte_basics]
    +iota_demo.Bad.bottom [definition, in hydras.Schutte.Schutte_basics]
    +iota_demo.Bad [module, in hydras.Schutte.Schutte_basics]
    +iota_demo.zero_le [lemma, in hydras.Schutte.Schutte_basics]
    +iota_demo.zero [definition, in hydras.Schutte.Schutte_basics]
    +iota_demo.zero [definition, in hydras.Schutte.Schutte_basics]
    +iota_demo.R [lemma, in hydras.Schutte.Schutte_basics]
    +iota_demo [module, in hydras.Schutte.Schutte_basics]
    +iota_mono [lemma, in hydras.OrdinalNotations.ON_Finite]
    +iota_compare_commute [lemma, in hydras.OrdinalNotations.ON_Finite]
    +iota_ij [definition, in hydras.OrdinalNotations.ON_Finite]
    +iota:101 [binder, in hydras.OrdinalNotations.ON_Generic]
    +iota:114 [binder, in hydras.OrdinalNotations.ON_Generic]
    +iota:129 [binder, in hydras.OrdinalNotations.ON_Generic]
    +iota:141 [binder, in hydras.OrdinalNotations.ON_Generic]
    +iota:154 [binder, in hydras.OrdinalNotations.ON_Generic]
    +iota:38 [binder, in hydras.OrdinalNotations.ON_Generic]
    +iota:71 [binder, in hydras.OrdinalNotations.ON_Generic]
    +iota:89 [binder, in hydras.OrdinalNotations.ON_Generic]
    +Iso_same_op [definition, in hydras.OrdinalNotations.ON_Generic]
    +Iso_same_fun [definition, in hydras.OrdinalNotations.ON_Generic]
    +Iso_same_cst [definition, in hydras.OrdinalNotations.ON_Generic]
    +iso_inv2 [projection, in hydras.OrdinalNotations.ON_Generic]
    +iso_inv1 [projection, in hydras.OrdinalNotations.ON_Generic]
    +iso_compare [projection, in hydras.OrdinalNotations.ON_Generic]
    +isPR [record, in hydras.Ackermann.primRec]
    +isPR [inductive, in hydras.Ackermann.primRec]
    +isPRextEqual [instance, in hydras.Ackermann.primRec]
    +isPRrel [record, in hydras.Ackermann.primRec]
    +isPRrel [inductive, in hydras.Ackermann.primRec]
    +isPRTrans [instance, in hydras.Ackermann.primRec]
    +iSPR_Ack_Sn [instance, in hydras.MoreAck.AckNotPR]
    +isqrt [definition, in hydras.solutions_exercises.isqrt]
    +isqrt [library]
    +isqrt_spec [definition, in hydras.solutions_exercises.isqrt]
    +issqrtIsPR [instance, in hydras.solutions_exercises.isqrt]
    +is_limit_cons [constructor, in hydras.Gamma0.T2]
    +is_limit_0 [constructor, in hydras.Gamma0.T2]
    +is_limit [inductive, in hydras.Gamma0.T2]
    +is_successor [inductive, in hydras.Gamma0.T2]
    +is_finite [inductive, in hydras.Gamma0.T2]
    +is_lub [definition, in hydras.Schutte.Lub]
    +is_cnf_of [definition, in hydras.Schutte.CNF]
    +is_limit_phi0 [lemma, in hydras.Schutte.AP]
    +is_in_seq_not_Acc [lemma, in hydras.solutions_exercises.MultisetWf]
    +is_pr_rel [projection, in hydras.Ackermann.primRec]
    +is_pr_rel [constructor, in hydras.Ackermann.primRec]
    +is_pr [projection, in hydras.Ackermann.primRec]
    +is_pr [constructor, in hydras.Ackermann.primRec]
    +is_limit_sup_members [lemma, in hydras.Schutte.Schutte_basics]
    +is_limit_omega [lemma, in hydras.Schutte.Schutte_basics]
    +is_limit [definition, in hydras.Schutte.Schutte_basics]
    +is_succ [definition, in hydras.Schutte.Schutte_basics]
    +is_finite [definition, in hydras.Schutte.Schutte_basics]
    +is_successor_of [definition, in gaia_hydras.onType]
    +is_limit_ab [lemma, in hydras.Gamma0.Gamma0]
    +is_limit_intro [lemma, in hydras.Gamma0.Gamma0]
    +is_limit_cons_inv [lemma, in hydras.Gamma0.Gamma0]
    +is_limit_not_succ [lemma, in hydras.Gamma0.Gamma0]
    +is_finite_finite [lemma, in hydras.Gamma0.Gamma0]
    +is_F_monotonous [library]
    +iterate [definition, in hydras.Prelude.Iterates]
    +iterate [definition, in hydras.Ackermann.primRec]
    +iterateIsPR [instance, in hydras.Ackermann.primRec]
    +Iterates [library]
    +iterate_ge_diag' [lemma, in hydras.Prelude.Iterates]
    +iterate_gt_diag' [lemma, in hydras.Prelude.Iterates]
    +iterate_ge_from [lemma, in hydras.Prelude.Iterates]
    +iterate_ext2 [lemma, in hydras.Prelude.Iterates]
    +iterate_dom_prop [lemma, in hydras.Prelude.Iterates]
    +iterate_mono_1 [lemma, in hydras.Prelude.Iterates]
    +iterate_ge'' [lemma, in hydras.Prelude.Iterates]
    +iterate_ge' [lemma, in hydras.Prelude.Iterates]
    +iterate_Sge [lemma, in hydras.Prelude.Iterates]
    +iterate_ge [lemma, in hydras.Prelude.Iterates]
    +iterate_mono [lemma, in hydras.Prelude.Iterates]
    +iterate_mono2 [lemma, in hydras.Prelude.Iterates]
    +iterate_le_np_le [lemma, in hydras.Prelude.Iterates]
    +iterate_le_n_Sn [lemma, in hydras.Prelude.Iterates]
    +iterate_lt_from [lemma, in hydras.Prelude.Iterates]
    +iterate_lt [lemma, in hydras.Prelude.Iterates]
    +iterate_le [lemma, in hydras.Prelude.Iterates]
    +iterate_ext [lemma, in hydras.Prelude.Iterates]
    +iterate_rw [lemma, in hydras.Prelude.Iterates]
    +iterate_S_eqn2 [lemma, in hydras.Prelude.Iterates]
    +iterate_S_eqn [lemma, in hydras.Prelude.Iterates]
    +iterate_compat3 [lemma, in hydras.Prelude.Iterates]
    +iterate_compat2 [lemma, in hydras.Prelude.Iterates]
    +iterate_compat [lemma, in hydras.Prelude.Iterates]
    +iterate_comm [lemma, in hydras.Prelude.Iterates]
    +iterate_nat_rec [lemma, in hydras.MoreAck.AckNotPR]
    +iterate_extEqual [lemma, in hydras.MoreAck.Iterate_compat]
    +iterate_compat [lemma, in hydras.MoreAck.Iterate_compat]
    +Iterate_compat [library]
    +iterate2_mono2 [lemma, in hydras.Prelude.Iterates]
    +iterate2_mono3 [lemma, in hydras.Prelude.Iterates]
    +iterate2_mono_weak [lemma, in hydras.Prelude.Iterates]
    +iterate2_mono [lemma, in hydras.Prelude.Iterates]
    +iter_combine [lemma, in additions.fib]
    +iter_comm [lemma, in additions.fib]
    +iter_mul [lemma, in additions.fib]
    +I_i_wf [lemma, in gaia_hydras.onType]
    +i':179 [binder, in hydras.Prelude.Iterates]
    +i1 [definition, in hydras.OrdinalNotations.ON_Finite]
    +i2 [definition, in hydras.OrdinalNotations.ON_Finite]
    +i:1 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +i:1 [binder, in hydras.Prelude.MoreLists]
    +i:1 [binder, in gaia_hydras.GPaths]
    +i:1 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +i:1 [binder, in hydras.OrdinalNotations.ON_Omega]
    +i:1 [binder, in hydras.Epsilon0.Paths]
    +i:10 [binder, in hydras.Prelude.First_toggle]
    +i:10 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +i:10 [binder, in hydras.Hydra.Epsilon0_Needed_Std]
    +i:10 [binder, in hydras.Hydra.BigBattle]
    +i:10 [binder, in hydras.Hydra.Omega2_Small]
    +i:10 [binder, in gaia_hydras.GL_alpha]
    +i:101 [binder, in hydras.Prelude.Iterates]
    +i:102 [binder, in hydras.Prelude.MoreLists]
    +i:102 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +i:103 [binder, in hydras.Epsilon0.Canon]
    +i:104 [binder, in hydras.Epsilon0.F_alpha]
    +i:104 [binder, in hydras.Hydra.Hydra_Lemmas]
    +i:104 [binder, in gaia_hydras.nfwfgaia]
    +i:105 [binder, in hydras.Prelude.MoreLists]
    +i:106 [binder, in gaia_hydras.nfwfgaia]
    +i:108 [binder, in hydras.Epsilon0.T1]
    +i:108 [binder, in hydras.Epsilon0.F_alpha]
    +i:108 [binder, in hydras.Epsilon0.Canon]
    +i:109 [binder, in hydras.Epsilon0.F_alpha]
    +i:109 [binder, in hydras.Epsilon0.Large_Sets]
    +i:11 [binder, in hydras.Hydra.O2H]
    +i:11 [binder, in hydras.solutions_exercises.Limit_Infinity]
    +i:11 [binder, in gaia_hydras.GPaths]
    +i:11 [binder, in hydras.Epsilon0.Canon]
    +i:11 [binder, in hydras.solutions_exercises.T1_ltNotWf]
    +i:110 [binder, in hydras.Epsilon0.F_alpha]
    +i:110 [binder, in hydras.Epsilon0.Canon]
    +i:111 [binder, in hydras.Epsilon0.F_alpha]
    +i:111 [binder, in hydras.Epsilon0.Large_Sets]
    +i:112 [binder, in hydras.Epsilon0.Large_Sets]
    +i:112 [binder, in hydras.Epsilon0.Canon]
    +i:112 [binder, in hydras.Epsilon0.E0]
    +i:113 [binder, in hydras.Epsilon0.F_alpha]
    +i:113 [binder, in hydras.Epsilon0.Large_Sets]
    +i:114 [binder, in hydras.Epsilon0.Large_Sets]
    +i:115 [binder, in hydras.Epsilon0.Large_Sets]
    +i:115 [binder, in hydras.Epsilon0.Canon]
    +i:116 [binder, in hydras.Epsilon0.Large_Sets]
    +i:116 [binder, in hydras.Hydra.Hydra_Lemmas]
    +i:119 [binder, in hydras.Hydra.Hydra_Lemmas]
    +i:119 [binder, in hydras.Hydra.Hydra_Definitions]
    +i:12 [binder, in gaia_hydras.GF_alpha]
    +i:12 [binder, in hydras.solutions_exercises.Limit_Infinity]
    +i:12 [binder, in hydras.Epsilon0.Canon]
    +i:12 [binder, in hydras.Hydra.Omega2_Small]
    +i:122 [binder, in hydras.Epsilon0.F_alpha]
    +i:123 [binder, in hydras.Schutte.Schutte_basics]
    +i:125 [binder, in hydras.Hydra.Hydra_Lemmas]
    +i:126 [binder, in hydras.Schutte.Schutte_basics]
    +i:127 [binder, in additions.fib]
    +i:128 [binder, in hydras.Schutte.Schutte_basics]
    +i:128 [binder, in additions.fib]
    +i:128 [binder, in hydras.Hydra.Hydra_Definitions]
    +i:129 [binder, in additions.fib]
    +i:13 [binder, in hydras.solutions_exercises.Limit_Infinity]
    +i:13 [binder, in hydras.Hydra.Epsilon0_Needed_Generic]
    +i:13 [binder, in hydras.Epsilon0.Paths]
    +i:130 [binder, in additions.fib]
    +i:131 [binder, in additions.fib]
    +i:131 [binder, in hydras.Hydra.Hydra_Definitions]
    +i:132 [binder, in hydras.Prelude.Iterates]
    +i:132 [binder, in additions.fib]
    +i:133 [binder, in additions.fib]
    +i:14 [binder, in hydras.Hydra.O2H]
    +i:14 [binder, in hydras.solutions_exercises.Limit_Infinity]
    +i:14 [binder, in gaia_hydras.GCanon]
    +i:14 [binder, in hydras.Hydra.Epsilon0_Needed_Std]
    +i:14 [binder, in hydras.Epsilon0.Canon]
    +i:14 [binder, in hydras.Hydra.Hydra_Lemmas]
    +i:14 [binder, in hydras.Hydra.Epsilon0_Needed_Generic]
    +i:14 [binder, in hydras.Hydra.Omega2_Small]
    +i:14 [binder, in gaia_hydras.GL_alpha]
    +i:140 [binder, in gaia_hydras.T1Bridge]
    +i:142 [binder, in hydras.rpo.term]
    +i:142 [binder, in hydras.Prelude.Iterates]
    +i:143 [binder, in hydras.Hydra.Hydra_Definitions]
    +i:15 [binder, in hydras.Epsilon0.Large_Sets]
    +i:15 [binder, in gaia_hydras.GLarge_Sets]
    +i:15 [binder, in hydras.Epsilon0.Paths]
    +i:150 [binder, in additions.fib]
    +i:150 [binder, in hydras.Hydra.Hydra_Definitions]
    +i:153 [binder, in hydras.Prelude.MoreLists]
    +i:156 [binder, in hydras.Prelude.MoreLists]
    +i:157 [binder, in gaia_hydras.T1Bridge]
    +i:158 [binder, in hydras.Prelude.Iterates]
    +i:159 [binder, in hydras.Prelude.MoreLists]
    +i:159 [binder, in hydras.Epsilon0.F_alpha]
    +i:159 [binder, in gaia_hydras.T1Bridge]
    +i:16 [binder, in hydras.Hydra.O2H]
    +i:16 [binder, in hydras.solutions_exercises.Limit_Infinity]
    +i:16 [binder, in gaia_hydras.GCanon]
    +i:16 [binder, in hydras.Epsilon0.Canon]
    +i:16 [binder, in gaia_hydras.GL_alpha]
    +i:161 [binder, in hydras.Epsilon0.F_alpha]
    +i:162 [binder, in hydras.Prelude.Iterates]
    +i:163 [binder, in hydras.rpo.term]
    +i:1638 [binder, in gaia_hydras.nfwfgaia]
    +i:164 [binder, in hydras.Epsilon0.F_alpha]
    +i:1641 [binder, in gaia_hydras.nfwfgaia]
    +i:1644 [binder, in gaia_hydras.nfwfgaia]
    +i:165 [binder, in hydras.Hydra.Hydra_Definitions]
    +i:166 [binder, in hydras.Epsilon0.F_alpha]
    +i:167 [binder, in hydras.Prelude.Iterates]
    +i:169 [binder, in hydras.Epsilon0.F_alpha]
    +i:17 [binder, in gaia_hydras.GF_alpha]
    +i:17 [binder, in additions.Compatibility]
    +i:17 [binder, in hydras.Prelude.First_toggle]
    +i:17 [binder, in hydras.Epsilon0.Large_Sets]
    +i:17 [binder, in hydras.Epsilon0.E0]
    +i:171 [binder, in hydras.rpo.term]
    +i:172 [binder, in hydras.Epsilon0.F_alpha]
    +i:173 [binder, in hydras.Epsilon0.F_alpha]
    +i:174 [binder, in hydras.Prelude.MoreLists]
    +i:175 [binder, in hydras.Epsilon0.F_alpha]
    +i:176 [binder, in hydras.Prelude.Iterates]
    +i:176 [binder, in hydras.Epsilon0.Paths]
    +i:177 [binder, in hydras.Prelude.MoreLists]
    +i:177 [binder, in hydras.Epsilon0.F_alpha]
    +i:178 [binder, in hydras.Epsilon0.Large_Sets]
    +i:179 [binder, in hydras.Epsilon0.F_alpha]
    +i:179 [binder, in hydras.Epsilon0.Paths]
    +i:18 [binder, in gaia_hydras.GCanon]
    +i:18 [binder, in hydras.Hydra.Epsilon0_Needed_Std]
    +i:18 [binder, in hydras.Epsilon0.E0]
    +i:181 [binder, in hydras.Prelude.MoreLists]
    +i:181 [binder, in hydras.Schutte.Schutte_basics]
    +i:184 [binder, in hydras.Prelude.MoreLists]
    +i:184 [binder, in hydras.Schutte.Schutte_basics]
    +i:187 [binder, in hydras.Schutte.Schutte_basics]
    +i:187 [binder, in hydras.Epsilon0.Paths]
    +i:189 [binder, in hydras.Epsilon0.Large_Sets]
    +i:189 [binder, in hydras.Epsilon0.Paths]
    +i:19 [binder, in hydras.Hydra.O2H]
    +i:19 [binder, in gaia_hydras.GF_alpha]
    +i:19 [binder, in hydras.Epsilon0.Large_Sets]
    +i:19 [binder, in hydras.Hydra.BigBattle]
    +i:190 [binder, in hydras.rpo.term]
    +i:190 [binder, in hydras.Schutte.Schutte_basics]
    +i:191 [binder, in hydras.Epsilon0.Large_Sets]
    +i:193 [binder, in hydras.Schutte.Schutte_basics]
    +i:199 [binder, in hydras.Schutte.Schutte_basics]
    +i:199 [binder, in additions.Addition_Chains]
    +i:2 [binder, in gaia_hydras.GHprime]
    +i:2 [binder, in gaia_hydras.GCanon]
    +i:2 [binder, in hydras.Epsilon0.L_alpha]
    +i:2 [binder, in hydras.Epsilon0.Canon]
    +i:2 [binder, in hydras.OrdinalNotations.ON_Finite]
    +i:2 [binder, in gaia_hydras.GPrelude]
    +i:2 [binder, in hydras.solutions_exercises.ge_omega_iff]
    +i:2 [binder, in hydras.Epsilon0.Hprime]
    +i:2 [binder, in gaia_hydras.GL_alpha]
    +i:2 [binder, in hydras.solutions_exercises.T1_ltNotWf]
    +i:20 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +i:20 [binder, in gaia_hydras.GF_alpha]
    +i:20 [binder, in gaia_hydras.GPaths]
    +i:20 [binder, in hydras.Prelude.MoreOrders]
    +i:202 [binder, in hydras.Epsilon0.Large_Sets]
    +i:202 [binder, in hydras.Schutte.Schutte_basics]
    +i:204 [binder, in hydras.Schutte.Schutte_basics]
    +i:204 [binder, in hydras.Epsilon0.Paths]
    +i:205 [binder, in hydras.Schutte.Schutte_basics]
    +i:206 [binder, in hydras.Schutte.Schutte_basics]
    +i:207 [binder, in hydras.Epsilon0.Paths]
    +i:208 [binder, in hydras.Schutte.Schutte_basics]
    +i:21 [binder, in hydras.Hydra.O2H]
    +i:21 [binder, in gaia_hydras.GF_alpha]
    +i:21 [binder, in additions.More_on_positive]
    +i:21 [binder, in hydras.Epsilon0.Large_Sets]
    +i:21 [binder, in hydras.Schutte.AP]
    +i:21 [binder, in hydras.Hydra.Epsilon0_Needed_Std]
    +i:21 [binder, in hydras.Epsilon0.Canon]
    +i:210 [binder, in hydras.Epsilon0.Paths]
    +i:214 [binder, in hydras.Epsilon0.Paths]
    +i:217 [binder, in hydras.Epsilon0.Paths]
    +i:218 [binder, in hydras.Prelude.MoreLists]
    +i:22 [binder, in gaia_hydras.GF_alpha]
    +i:22 [binder, in gaia_hydras.GCanon]
    +i:22 [binder, in hydras.Schutte.AP]
    +i:22 [binder, in hydras.Prelude.MoreOrders]
    +i:221 [binder, in hydras.Epsilon0.Paths]
    +i:226 [binder, in hydras.Epsilon0.Paths]
    +i:23 [binder, in gaia_hydras.GPaths]
    +i:23 [binder, in hydras.solutions_exercises.T1_ltNotWf]
    +i:230 [binder, in hydras.Schutte.Schutte_basics]
    +i:233 [binder, in hydras.Prelude.Iterates]
    +i:237 [binder, in hydras.Prelude.Iterates]
    +i:24 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +i:24 [binder, in hydras.Hydra.O2H]
    +i:24 [binder, in gaia_hydras.GCanon]
    +i:24 [binder, in hydras.Schutte.AP]
    +i:24 [binder, in hydras.Epsilon0.Canon]
    +i:24 [binder, in additions.fib]
    +i:240 [binder, in hydras.Prelude.Iterates]
    +i:241 [binder, in gaia_hydras.nfwfgaia]
    +i:244 [binder, in hydras.Prelude.Iterates]
    +i:244 [binder, in gaia_hydras.nfwfgaia]
    +i:247 [binder, in gaia_hydras.nfwfgaia]
    +i:248 [binder, in hydras.Prelude.Iterates]
    +i:25 [binder, in hydras.Schutte.Schutte_basics]
    +i:25 [binder, in additions.fib]
    +i:26 [binder, in gaia_hydras.GCanon]
    +i:26 [binder, in hydras.Schutte.MoreEpsilonIota]
    +i:26 [binder, in hydras.Hydra.Epsilon0_Needed_Std]
    +i:26 [binder, in additions.fib]
    +i:267 [binder, in hydras.Epsilon0.Paths]
    +i:27 [binder, in gaia_hydras.GPaths]
    +i:27 [binder, in hydras.Prelude.MoreOrders]
    +i:271 [binder, in hydras.Epsilon0.Paths]
    +i:28 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +i:28 [binder, in hydras.Epsilon0.F_omega]
    +i:28 [binder, in hydras.Hydra.Epsilon0_Needed_Std]
    +i:28 [binder, in hydras.Hydra.BigBattle]
    +i:28 [binder, in hydras.Epsilon0.Canon]
    +i:28 [binder, in hydras.Epsilon0.Paths]
    +i:280 [binder, in hydras.Epsilon0.Paths]
    +i:283 [binder, in hydras.Epsilon0.Paths]
    +i:286 [binder, in hydras.Epsilon0.Paths]
    +i:29 [binder, in hydras.Prelude.MoreOrders]
    +i:29 [binder, in additions.fib]
    +i:29 [binder, in gaia_hydras.GL_alpha]
    +i:299 [binder, in hydras.Epsilon0.Paths]
    +i:3 [binder, in hydras.solutions_exercises.is_F_monotonous]
    +i:3 [binder, in gaia_hydras.GHprime]
    +i:3 [binder, in gaia_hydras.GCanon]
    +i:3 [binder, in hydras.Schutte.AP]
    +i:3 [binder, in gaia_hydras.GL_alpha]
    +i:3 [binder, in hydras.Hydra.Omega_Small]
    +i:30 [binder, in gaia_hydras.GCanon]
    +i:30 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +i:30 [binder, in hydras.solutions_exercises.MultisetWf]
    +i:30 [binder, in hydras.Epsilon0.Canon]
    +i:30 [binder, in hydras.Epsilon0.Paths]
    +i:31 [binder, in gaia_hydras.GCanon]
    +i:31 [binder, in hydras.Epsilon0.L_alpha]
    +i:31 [binder, in hydras.Epsilon0.Hprime]
    +i:310 [binder, in hydras.Epsilon0.Paths]
    +i:315 [binder, in hydras.Epsilon0.Paths]
    +i:318 [binder, in hydras.Epsilon0.Paths]
    +i:32 [binder, in hydras.Prelude.MoreLists]
    +i:322 [binder, in hydras.rpo.term]
    +i:324 [binder, in hydras.Epsilon0.Paths]
    +i:327 [binder, in hydras.Epsilon0.Paths]
    +i:33 [binder, in hydras.Prelude.MoreLists]
    +i:33 [binder, in hydras.Epsilon0.L_alpha]
    +i:33 [binder, in hydras.Epsilon0.Canon]
    +i:33 [binder, in hydras.Epsilon0.Hprime]
    +i:331 [binder, in hydras.Epsilon0.Paths]
    +i:333 [binder, in hydras.Epsilon0.Paths]
    +i:337 [binder, in hydras.Epsilon0.Paths]
    +i:341 [binder, in hydras.rpo.term]
    +i:341 [binder, in hydras.Epsilon0.Paths]
    +i:345 [binder, in hydras.Epsilon0.Paths]
    +i:349 [binder, in hydras.rpo.term]
    +i:349 [binder, in hydras.Epsilon0.Paths]
    +i:35 [binder, in hydras.Prelude.MoreLists]
    +i:35 [binder, in hydras.rpo.more_list]
    +i:35 [binder, in additions.More_on_positive]
    +i:35 [binder, in hydras.Epsilon0.L_alpha]
    +i:35 [binder, in hydras.Hydra.BigBattle]
    +i:35 [binder, in hydras.Epsilon0.Hprime]
    +i:353 [binder, in hydras.Epsilon0.Paths]
    +i:358 [binder, in additions.Euclidean_Chains]
    +i:36 [binder, in gaia_hydras.GCanon]
    +i:36 [binder, in hydras.Epsilon0.Canon]
    +i:36 [binder, in hydras.MoreAck.PrimRecExamples]
    +i:360 [binder, in hydras.Epsilon0.Paths]
    +i:364 [binder, in additions.Euclidean_Chains]
    +i:365 [binder, in hydras.rpo.term]
    +i:367 [binder, in hydras.rpo.term]
    +i:37 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +i:37 [binder, in additions.More_on_positive]
    +i:37 [binder, in gaia_hydras.GCanon]
    +i:37 [binder, in hydras.Epsilon0.L_alpha]
    +i:37 [binder, in hydras.Epsilon0.F_omega]
    +i:37 [binder, in hydras.Epsilon0.Hprime]
    +i:370 [binder, in additions.Euclidean_Chains]
    +i:372 [binder, in hydras.rpo.term]
    +i:377 [binder, in additions.Euclidean_Chains]
    +i:38 [binder, in hydras.Epsilon0.L_alpha]
    +i:38 [binder, in hydras.Epsilon0.Hprime]
    +i:382 [binder, in hydras.Epsilon0.Paths]
    +i:4 [binder, in hydras.solutions_exercises.Limit_Infinity]
    +i:4 [binder, in hydras.Epsilon0.F_alpha]
    +i:4 [binder, in gaia_hydras.GCanon]
    +i:4 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +i:4 [binder, in hydras.Prelude.Exp2]
    +i:4 [binder, in hydras.Epsilon0.Paths]
    +i:4 [binder, in hydras.Hydra.Omega_Small]
    +i:40 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +i:40 [binder, in hydras.Schutte.Addition]
    +i:402 [binder, in hydras.Epsilon0.Paths]
    +i:406 [binder, in hydras.Epsilon0.Paths]
    +i:41 [binder, in hydras.Epsilon0.F_alpha]
    +i:41 [binder, in gaia_hydras.GCanon]
    +i:41 [binder, in hydras.Epsilon0.Canon]
    +i:412 [binder, in hydras.Epsilon0.Paths]
    +i:418 [binder, in hydras.Epsilon0.Paths]
    +i:42 [binder, in hydras.Epsilon0.L_alpha]
    +i:42 [binder, in additions.fib]
    +i:42 [binder, in hydras.Epsilon0.Hprime]
    +i:422 [binder, in hydras.Epsilon0.Paths]
    +i:424 [binder, in hydras.Epsilon0.T1]
    +i:426 [binder, in hydras.Epsilon0.Paths]
    +i:43 [binder, in hydras.Epsilon0.F_alpha]
    +i:43 [binder, in gaia_hydras.GPaths]
    +i:430 [binder, in hydras.Epsilon0.Paths]
    +i:432 [binder, in hydras.Epsilon0.Paths]
    +i:436 [binder, in hydras.Epsilon0.Paths]
    +i:44 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +i:44 [binder, in gaia_hydras.nfwfgaia]
    +i:441 [binder, in hydras.Epsilon0.Paths]
    +i:442 [binder, in hydras.Epsilon0.Paths]
    +i:447 [binder, in hydras.Epsilon0.Paths]
    +i:45 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +i:45 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +i:45 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +i:45 [binder, in hydras.Epsilon0.Canon]
    +i:45 [binder, in additions.fib]
    +i:45 [binder, in hydras.Epsilon0.E0]
    +i:45 [binder, in gaia_hydras.nfwfgaia]
    +i:451 [binder, in hydras.Epsilon0.Paths]
    +i:453 [binder, in hydras.Epsilon0.Paths]
    +i:457 [binder, in hydras.Epsilon0.Paths]
    +i:46 [binder, in hydras.Epsilon0.F_alpha]
    +i:46 [binder, in gaia_hydras.GPaths]
    +i:46 [binder, in gaia_hydras.GCanon]
    +i:46 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +i:46 [binder, in hydras.Epsilon0.Canon]
    +i:46 [binder, in gaia_hydras.nfwfgaia]
    +i:461 [binder, in hydras.Epsilon0.Paths]
    +i:469 [binder, in hydras.Epsilon0.Paths]
    +i:47 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +i:47 [binder, in hydras.Hydra.BigBattle]
    +i:47 [binder, in hydras.Epsilon0.Hprime]
    +i:47 [binder, in hydras.MoreAck.FolExamples]
    +i:471 [binder, in hydras.Epsilon0.Paths]
    +i:476 [binder, in hydras.Epsilon0.Paths]
    +i:478 [binder, in hydras.Epsilon0.Paths]
    +i:48 [binder, in hydras.Prelude.MoreLists]
    +i:48 [binder, in hydras.Epsilon0.F_alpha]
    +i:48 [binder, in gaia_hydras.GPaths]
    +i:48 [binder, in hydras.Epsilon0.Paths]
    +i:480 [binder, in hydras.Epsilon0.Paths]
    +i:485 [binder, in hydras.Epsilon0.Paths]
    +i:489 [binder, in hydras.Epsilon0.Paths]
    +i:49 [binder, in hydras.Prelude.MoreLists]
    +i:49 [binder, in hydras.Epsilon0.Canon]
    +i:49 [binder, in hydras.MoreAck.FolExamples]
    +i:492 [binder, in hydras.Epsilon0.Paths]
    +i:496 [binder, in hydras.Epsilon0.Paths]
    +i:5 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +i:5 [binder, in hydras.solutions_exercises.is_F_monotonous]
    +i:5 [binder, in hydras.Prelude.MoreLists]
    +i:5 [binder, in gaia_hydras.GHprime]
    +i:5 [binder, in hydras.Epsilon0.Large_Sets_Examples]
    +i:5 [binder, in hydras.solutions_exercises.F_3]
    +i:5 [binder, in hydras.Prelude.Exp2]
    +i:5 [binder, in gaia_hydras.GL_alpha]
    +i:5 [binder, in hydras.Hydra.Omega_Small]
    +i:5 [binder, in hydras.solutions_exercises.T1_ltNotWf]
    +i:50 [binder, in gaia_hydras.GPaths]
    +i:50 [binder, in additions.More_on_positive]
    +i:500 [binder, in hydras.Epsilon0.Paths]
    +i:504 [binder, in hydras.Epsilon0.Paths]
    +i:51 [binder, in hydras.Prelude.MoreLists]
    +i:51 [binder, in hydras.Epsilon0.F_alpha]
    +i:51 [binder, in hydras.Hydra.BigBattle]
    +i:51 [binder, in hydras.Epsilon0.Canon]
    +i:51 [binder, in additions.fib]
    +i:51 [binder, in hydras.Hydra.Hydra_Lemmas]
    +i:51 [binder, in hydras.Hydra.Hydra_Definitions]
    +i:514 [binder, in hydras.Epsilon0.Paths]
    +i:52 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +i:520 [binder, in hydras.Epsilon0.Paths]
    +i:522 [binder, in hydras.Epsilon0.Paths]
    +i:527 [binder, in hydras.Epsilon0.Paths]
    +i:53 [binder, in hydras.Prelude.MoreLists]
    +i:53 [binder, in gaia_hydras.GPaths]
    +i:53 [binder, in additions.More_on_positive]
    +i:53 [binder, in hydras.Epsilon0.Canon]
    +i:530 [binder, in hydras.Epsilon0.Paths]
    +i:533 [binder, in hydras.Epsilon0.Paths]
    +i:54 [binder, in hydras.Epsilon0.F_alpha]
    +i:54 [binder, in hydras.Epsilon0.L_alpha]
    +i:54 [binder, in additions.fib]
    +i:54 [binder, in hydras.Epsilon0.Paths]
    +i:544 [binder, in hydras.Epsilon0.Paths]
    +i:545 [binder, in hydras.Epsilon0.Paths]
    +i:546 [binder, in hydras.Epsilon0.Paths]
    +i:55 [binder, in hydras.Prelude.MoreLists]
    +i:55 [binder, in hydras.Epsilon0.F_alpha]
    +i:55 [binder, in gaia_hydras.GCanon]
    +i:55 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +i:55 [binder, in hydras.Epsilon0.Canon]
    +i:55 [binder, in hydras.Hydra.Hydra_Definitions]
    +i:554 [binder, in hydras.Epsilon0.Paths]
    +i:56 [binder, in hydras.Epsilon0.L_alpha]
    +i:56 [binder, in hydras.Hydra.Hydra_Lemmas]
    +i:56 [binder, in hydras.Epsilon0.Hprime]
    +i:560 [binder, in hydras.Epsilon0.Paths]
    +i:567 [binder, in hydras.Epsilon0.Paths]
    +i:57 [binder, in hydras.Prelude.MoreLists]
    +i:57 [binder, in hydras.Epsilon0.F_alpha]
    +i:57 [binder, in additions.More_on_positive]
    +i:57 [binder, in gaia_hydras.GCanon]
    +i:57 [binder, in hydras.Epsilon0.Paths]
    +i:571 [binder, in hydras.Epsilon0.Paths]
    +i:574 [binder, in hydras.Epsilon0.Paths]
    +i:579 [binder, in hydras.Epsilon0.Paths]
    +i:58 [binder, in hydras.Epsilon0.Hprime]
    +i:580 [binder, in hydras.Epsilon0.Paths]
    +i:585 [binder, in hydras.Epsilon0.Paths]
    +i:588 [binder, in hydras.Epsilon0.Paths]
    +i:59 [binder, in hydras.Prelude.MoreLists]
    +i:59 [binder, in hydras.Epsilon0.F_alpha]
    +i:59 [binder, in hydras.Epsilon0.Canon]
    +i:59 [binder, in additions.fib]
    +i:6 [binder, in gaia_hydras.GCanon]
    +i:6 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +i:6 [binder, in hydras.solutions_exercises.F_3]
    +i:6 [binder, in hydras.Hydra.Omega2_Small]
    +i:60 [binder, in hydras.Prelude.Iterates]
    +i:60 [binder, in hydras.Epsilon0.F_alpha]
    +i:60 [binder, in additions.More_on_positive]
    +i:60 [binder, in gaia_hydras.GCanon]
    +i:60 [binder, in hydras.Epsilon0.L_alpha]
    +i:61 [binder, in hydras.Epsilon0.F_alpha]
    +i:61 [binder, in hydras.Epsilon0.E0]
    +i:61 [binder, in hydras.Hydra.Hydra_Lemmas]
    +i:61 [binder, in hydras.Epsilon0.Hprime]
    +i:61 [binder, in hydras.Epsilon0.Paths]
    +i:62 [binder, in hydras.Epsilon0.F_alpha]
    +i:62 [binder, in gaia_hydras.GPaths]
    +i:62 [binder, in hydras.Hydra.BigBattle]
    +i:63 [binder, in hydras.Epsilon0.Canon]
    +i:63 [binder, in hydras.Epsilon0.E0]
    +i:64 [binder, in hydras.Epsilon0.Canon]
    +i:64 [binder, in hydras.Epsilon0.E0]
    +i:64 [binder, in hydras.Hydra.Hydra_Lemmas]
    +i:64 [binder, in hydras.Epsilon0.Paths]
    +i:65 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +i:65 [binder, in hydras.Hydra.BigBattle]
    +i:65 [binder, in hydras.Epsilon0.Canon]
    +i:66 [binder, in gaia_hydras.GPaths]
    +i:66 [binder, in hydras.Hydra.BigBattle]
    +i:66 [binder, in hydras.Epsilon0.Canon]
    +i:67 [binder, in hydras.Epsilon0.Large_Sets]
    +i:67 [binder, in hydras.Epsilon0.Canon]
    +i:68 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +i:68 [binder, in hydras.MoreAck.AckNotPR]
    +i:68 [binder, in hydras.Epsilon0.Canon]
    +i:68 [binder, in hydras.Hydra.Hydra_Lemmas]
    +i:68 [binder, in hydras.MoreAck.PrimRecExamples]
    +i:687 [binder, in hydras.Epsilon0.T1]
    +i:689 [binder, in hydras.Epsilon0.T1]
    +i:69 [binder, in gaia_hydras.GCanon]
    +i:69 [binder, in hydras.Epsilon0.Large_Sets]
    +i:69 [binder, in hydras.Epsilon0.Canon]
    +i:69 [binder, in hydras.Epsilon0.Paths]
    +i:693 [binder, in hydras.Epsilon0.T1]
    +i:696 [binder, in hydras.Epsilon0.T1]
    +i:7 [binder, in gaia_hydras.GHprime]
    +i:7 [binder, in gaia_hydras.GPaths]
    +i:7 [binder, in gaia_hydras.GCanon]
    +i:7 [binder, in hydras.Hydra.Epsilon0_Needed_Std]
    +i:7 [binder, in hydras.Epsilon0.Canon]
    +i:7 [binder, in hydras.Hydra.Epsilon0_Needed_Generic]
    +i:7 [binder, in gaia_hydras.GL_alpha]
    +i:70 [binder, in hydras.MoreAck.AckNotPR]
    +i:70 [binder, in hydras.Epsilon0.Large_Sets]
    +i:70 [binder, in hydras.Hydra.BigBattle]
    +i:70 [binder, in hydras.Epsilon0.Canon]
    +i:70 [binder, in hydras.Epsilon0.Hprime]
    +i:702 [binder, in hydras.Epsilon0.T1]
    +i:703 [binder, in hydras.Epsilon0.T1]
    +i:71 [binder, in gaia_hydras.GCanon]
    +i:71 [binder, in hydras.Epsilon0.Large_Sets]
    +i:71 [binder, in hydras.Schutte.AP]
    +i:71 [binder, in hydras.Epsilon0.Canon]
    +i:71 [binder, in hydras.Epsilon0.Paths]
    +i:717 [binder, in hydras.Epsilon0.T1]
    +i:73 [binder, in gaia_hydras.GPaths]
    +i:73 [binder, in hydras.Epsilon0.Large_Sets]
    +i:73 [binder, in hydras.Epsilon0.Paths]
    +i:74 [binder, in hydras.Epsilon0.Large_Sets]
    +i:74 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +i:74 [binder, in hydras.Epsilon0.Canon]
    +i:74 [binder, in hydras.Hydra.Hydra_Lemmas]
    +i:75 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +i:75 [binder, in hydras.MoreAck.PrimRecExamples]
    +i:76 [binder, in hydras.Epsilon0.Canon]
    +i:77 [binder, in hydras.Hydra.Hydra_Lemmas]
    +i:78 [binder, in hydras.Epsilon0.Large_Sets]
    +i:78 [binder, in hydras.Epsilon0.Canon]
    +i:79 [binder, in gaia_hydras.GPaths]
    +i:79 [binder, in hydras.Epsilon0.Large_Sets]
    +i:8 [binder, in gaia_hydras.GPaths]
    +i:8 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +i:8 [binder, in hydras.Hydra.Omega2_Small]
    +i:80 [binder, in hydras.Epsilon0.Large_Sets]
    +i:81 [binder, in hydras.Epsilon0.Large_Sets]
    +i:81 [binder, in hydras.Epsilon0.Canon]
    +i:81 [binder, in hydras.Epsilon0.Paths]
    +i:82 [binder, in hydras.Prelude.MoreLists]
    +i:82 [binder, in hydras.Epsilon0.Large_Sets]
    +i:83 [binder, in hydras.Hydra.O2H]
    +i:83 [binder, in hydras.Epsilon0.Paths]
    +i:84 [binder, in hydras.Prelude.MoreLists]
    +i:84 [binder, in hydras.Epsilon0.Large_Sets]
    +i:84 [binder, in hydras.MoreAck.PrimRecExamples]
    +i:85 [binder, in hydras.Gamma0.T2]
    +i:85 [binder, in hydras.Hydra.O2H]
    +i:85 [binder, in hydras.Hydra.Hydra_Lemmas]
    +i:85 [binder, in hydras.Epsilon0.Paths]
    +i:86 [binder, in hydras.Epsilon0.Hprime]
    +i:87 [binder, in hydras.Epsilon0.Large_Sets]
    +i:87 [binder, in hydras.Hydra.Hydra_Lemmas]
    +i:88 [binder, in hydras.Prelude.MoreLists]
    +i:88 [binder, in hydras.Epsilon0.Canon]
    +i:88 [binder, in hydras.Epsilon0.E0]
    +i:89 [binder, in hydras.Prelude.Iterates]
    +i:89 [binder, in hydras.Prelude.MoreLists]
    +i:89 [binder, in hydras.Epsilon0.Large_Sets]
    +i:89 [binder, in hydras.Hydra.Hydra_Lemmas]
    +i:9 [binder, in hydras.Prelude.MoreLists]
    +i:9 [binder, in hydras.Hydra.Hydra_Lemmas]
    +i:9 [binder, in hydras.Epsilon0.Paths]
    +i:9 [binder, in gaia_hydras.GL_alpha]
    +i:90 [binder, in hydras.Epsilon0.Large_Sets]
    +i:91 [binder, in hydras.Epsilon0.Large_Sets]
    +i:91 [binder, in hydras.Epsilon0.Paths]
    +i:92 [binder, in hydras.Prelude.MoreLists]
    +i:92 [binder, in hydras.Hydra.Hydra_Lemmas]
    +i:94 [binder, in hydras.Prelude.MoreLists]
    +i:94 [binder, in hydras.Epsilon0.E0]
    +i:95 [binder, in hydras.Prelude.Iterates]
    +i:95 [binder, in hydras.Hydra.O2H]
    +i:95 [binder, in hydras.Epsilon0.Canon]
    +i:95 [binder, in hydras.Hydra.Hydra_Lemmas]
    +i:96 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +i:97 [binder, in hydras.Hydra.O2H]
    +i:97 [binder, in hydras.Epsilon0.E0]
    +i:98 [binder, in hydras.Epsilon0.F_alpha]
    +i:99 [binder, in hydras.Epsilon0.Canon]
    +

    J

    +j:102 [binder, in hydras.Prelude.Iterates]
    +j:103 [binder, in hydras.Prelude.MoreLists]
    +j:106 [binder, in hydras.Prelude.MoreLists]
    +j:106 [binder, in hydras.Hydra.Hydra_Lemmas]
    +j:109 [binder, in hydras.Epsilon0.T1]
    +j:11 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +j:11 [binder, in hydras.Hydra.Omega2_Small]
    +j:12 [binder, in hydras.Hydra.Epsilon0_Needed_Std]
    +j:120 [binder, in hydras.Hydra.Hydra_Lemmas]
    +j:124 [binder, in hydras.Prelude.Iterates]
    +j:125 [binder, in hydras.Schutte.Schutte_basics]
    +j:126 [binder, in hydras.Hydra.Hydra_Lemmas]
    +j:127 [binder, in hydras.Prelude.Iterates]
    +j:127 [binder, in hydras.Schutte.Schutte_basics]
    +j:129 [binder, in hydras.Schutte.Schutte_basics]
    +j:13 [binder, in hydras.Hydra.Omega2_Small]
    +j:130 [binder, in hydras.Prelude.Iterates]
    +j:133 [binder, in hydras.Hydra.Hydra_Definitions]
    +j:15 [binder, in hydras.solutions_exercises.Limit_Infinity]
    +j:15 [binder, in hydras.Hydra.Omega2_Small]
    +j:151 [binder, in additions.fib]
    +j:154 [binder, in hydras.Prelude.MoreLists]
    +j:155 [binder, in hydras.rpo.term]
    +j:157 [binder, in hydras.Prelude.MoreLists]
    +j:16 [binder, in hydras.Hydra.Epsilon0_Needed_Std]
    +j:160 [binder, in hydras.Prelude.MoreLists]
    +j:168 [binder, in hydras.Prelude.Iterates]
    +j:17 [binder, in hydras.solutions_exercises.Limit_Infinity]
    +j:182 [binder, in hydras.Schutte.Schutte_basics]
    +j:183 [binder, in hydras.Prelude.MoreLists]
    +j:185 [binder, in hydras.Prelude.MoreLists]
    +j:194 [binder, in hydras.Schutte.Schutte_basics]
    +j:200 [binder, in additions.Addition_Chains]
    +j:203 [binder, in hydras.Schutte.Schutte_basics]
    +j:21 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +j:23 [binder, in hydras.Schutte.AP]
    +j:238 [binder, in hydras.Prelude.Iterates]
    +j:243 [binder, in hydras.Prelude.Iterates]
    +j:247 [binder, in hydras.Prelude.Iterates]
    +j:25 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +j:25 [binder, in gaia_hydras.GPaths]
    +j:25 [binder, in hydras.Schutte.AP]
    +j:251 [binder, in hydras.Prelude.Iterates]
    +j:29 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +j:3 [binder, in gaia_hydras.GPrelude]
    +j:31 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +j:333 [binder, in hydras.rpo.term]
    +j:338 [binder, in hydras.Epsilon0.Paths]
    +j:34 [binder, in hydras.Prelude.MoreLists]
    +j:36 [binder, in hydras.Prelude.MoreLists]
    +j:39 [binder, in hydras.Hydra.BigBattle]
    +j:404 [binder, in hydras.Epsilon0.Paths]
    +j:408 [binder, in hydras.Epsilon0.Paths]
    +j:41 [binder, in hydras.Schutte.Addition]
    +j:414 [binder, in hydras.Epsilon0.Paths]
    +j:416 [binder, in hydras.Epsilon0.Paths]
    +j:42 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +j:420 [binder, in hydras.Epsilon0.Paths]
    +j:424 [binder, in hydras.Epsilon0.Paths]
    +j:428 [binder, in hydras.Epsilon0.Paths]
    +j:43 [binder, in additions.fib]
    +j:434 [binder, in hydras.Epsilon0.Paths]
    +j:438 [binder, in hydras.Epsilon0.Paths]
    +j:449 [binder, in hydras.Epsilon0.Paths]
    +j:455 [binder, in hydras.Epsilon0.Paths]
    +j:458 [binder, in hydras.Epsilon0.Paths]
    +j:46 [binder, in additions.fib]
    +j:463 [binder, in hydras.Epsilon0.Paths]
    +j:465 [binder, in hydras.Epsilon0.Paths]
    +j:47 [binder, in hydras.Prelude.MoreLists]
    +j:481 [binder, in hydras.Epsilon0.Paths]
    +j:49 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +j:493 [binder, in hydras.Epsilon0.Paths]
    +j:497 [binder, in hydras.Epsilon0.Paths]
    +j:5 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +j:50 [binder, in hydras.Prelude.MoreLists]
    +j:501 [binder, in hydras.Epsilon0.Paths]
    +j:506 [binder, in hydras.Epsilon0.Paths]
    +j:515 [binder, in hydras.Epsilon0.Paths]
    +j:52 [binder, in additions.fib]
    +j:521 [binder, in hydras.Epsilon0.Paths]
    +j:524 [binder, in hydras.Epsilon0.Paths]
    +j:531 [binder, in hydras.Epsilon0.Paths]
    +j:54 [binder, in hydras.Prelude.MoreLists]
    +j:54 [binder, in gaia_hydras.GPaths]
    +j:55 [binder, in hydras.Hydra.BigBattle]
    +j:55 [binder, in additions.fib]
    +j:555 [binder, in hydras.Epsilon0.Paths]
    +j:559 [binder, in hydras.Epsilon0.Paths]
    +j:568 [binder, in hydras.Epsilon0.Paths]
    +j:57 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +j:575 [binder, in hydras.Epsilon0.Paths]
    +j:58 [binder, in hydras.Prelude.MoreLists]
    +j:6 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +j:6 [binder, in hydras.Prelude.MoreLists]
    +j:6 [binder, in hydras.Epsilon0.Large_Sets_Examples]
    +j:60 [binder, in hydras.Prelude.MoreLists]
    +j:60 [binder, in additions.fib]
    +j:61 [binder, in hydras.Prelude.Iterates]
    +j:61 [binder, in additions.More_on_positive]
    +j:61 [binder, in gaia_hydras.GCanon]
    +j:63 [binder, in gaia_hydras.GPaths]
    +j:65 [binder, in hydras.Epsilon0.Paths]
    +j:66 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +j:69 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +j:7 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +j:7 [binder, in hydras.Hydra.Omega2_Small]
    +j:70 [binder, in hydras.Hydra.Hydra_Lemmas]
    +j:74 [binder, in gaia_hydras.GPaths]
    +j:75 [binder, in hydras.Epsilon0.Paths]
    +j:77 [binder, in hydras.Epsilon0.Paths]
    +j:78 [binder, in gaia_hydras.GPaths]
    +j:79 [binder, in hydras.Epsilon0.Canon]
    +j:79 [binder, in hydras.Hydra.Hydra_Lemmas]
    +j:8 [binder, in hydras.Hydra.Epsilon0_Needed_Std]
    +j:82 [binder, in hydras.Epsilon0.Canon]
    +j:83 [binder, in hydras.Prelude.MoreLists]
    +j:85 [binder, in hydras.Prelude.MoreLists]
    +j:87 [binder, in hydras.Epsilon0.Paths]
    +j:9 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +j:9 [binder, in hydras.Hydra.Omega2_Small]
    +j:90 [binder, in hydras.Prelude.Iterates]
    +j:90 [binder, in hydras.Prelude.MoreLists]
    +j:90 [binder, in hydras.Hydra.Hydra_Lemmas]
    +j:92 [binder, in hydras.Epsilon0.Paths]
    +j:94 [binder, in hydras.Hydra.Hydra_Lemmas]
    +j:95 [binder, in hydras.Prelude.MoreLists]
    +j:96 [binder, in hydras.Prelude.Iterates]
    +j:96 [binder, in hydras.Epsilon0.Canon]
    +j:97 [binder, in hydras.Hydra.Hydra_Lemmas]
    +j:99 [binder, in hydras.Hydra.O2H]
    +

    K

    +kbr:222 [binder, in additions.Euclidean_Chains]
    +kbr:231 [binder, in additions.Euclidean_Chains]
    +kbr:293 [binder, in additions.Euclidean_Chains]
    +kbr:298 [binder, in additions.Euclidean_Chains]
    +Kchain [definition, in additions.Euclidean_Chains]
    +Kchain_correct [definition, in additions.AM]
    +Kchain_correct_conv [lemma, in additions.Euclidean_Chains]
    +Kchain_proper_prf [projection, in additions.Euclidean_Chains]
    +Kchain_proper [record, in additions.Euclidean_Chains]
    +Kchain_proper_prf [constructor, in additions.Euclidean_Chains]
    +Kchain_proper [inductive, in additions.Euclidean_Chains]
    +Kchain_correct [definition, in additions.Euclidean_Chains]
    +Kchain_correct_nat [definition, in additions.Euclidean_Chains]
    +kc:181 [binder, in additions.Euclidean_Chains]
    +kc:191 [binder, in additions.Euclidean_Chains]
    +kc:192 [binder, in additions.Euclidean_Chains]
    +kc:204 [binder, in additions.Euclidean_Chains]
    +kc:218 [binder, in additions.Euclidean_Chains]
    +kc:221 [binder, in additions.Euclidean_Chains]
    +KFF [definition, in additions.AM]
    +KFF [definition, in additions.Euclidean_Chains]
    +KFF_correct [lemma, in additions.AM]
    +KFF_correct [lemma, in additions.Euclidean_Chains]
    +KFF_proper [instance, in additions.Euclidean_Chains]
    +KFF_correct_nat [lemma, in additions.Euclidean_Chains]
    +KFK [definition, in additions.AM]
    +KFK [definition, in additions.Euclidean_Chains]
    +KFK_correct [lemma, in additions.AM]
    +KFK_correct [lemma, in additions.Euclidean_Chains]
    +KFK_proper [lemma, in additions.Euclidean_Chains]
    +KFK_correct_nat [lemma, in additions.Euclidean_Chains]
    +KFK_proof.Hq_prop [variable, in additions.Euclidean_Chains]
    +KFK_proof.Hbr_prop [variable, in additions.Euclidean_Chains]
    +KFK_proof.Hq [variable, in additions.Euclidean_Chains]
    +KFK_proof.Hbr [variable, in additions.Euclidean_Chains]
    +KFK_proof.fq [variable, in additions.Euclidean_Chains]
    +KFK_proof.kbr [variable, in additions.Euclidean_Chains]
    +KFK_proof.r [variable, in additions.Euclidean_Chains]
    +KFK_proof.q [variable, in additions.Euclidean_Chains]
    +KFK_proof.b [variable, in additions.Euclidean_Chains]
    +KFK_proof [section, in additions.Euclidean_Chains]
    +khi:170 [binder, in hydras.Schutte.Ordering_Functions]
    +khi:171 [binder, in hydras.Schutte.Ordering_Functions]
    +khi:172 [binder, in hydras.Schutte.Ordering_Functions]
    +khi:173 [binder, in hydras.Schutte.Ordering_Functions]
    +khi:49 [binder, in hydras.Schutte.Addition]
    +khi:92 [binder, in hydras.Schutte.Ordering_Functions]
    +khi:93 [binder, in hydras.Schutte.Ordering_Functions]
    +Kkont [definition, in additions.Euclidean_Chains]
    +Kkont_equiv [definition, in additions.Euclidean_Chains]
    +Kkont_proper [definition, in additions.Euclidean_Chains]
    +knp:207 [binder, in additions.Euclidean_Chains]
    +knp:211 [binder, in additions.Euclidean_Chains]
    +kont_type [definition, in additions.Euclidean_Chains]
    +KP [section, in hydras.Hydra.KP_example]
    +kpr:27 [binder, in additions.AM]
    +kpr:31 [binder, in additions.AM]
    +KP_5_iii [lemma, in hydras.Epsilon0.Paths]
    +KP_arrowS_zero [lemma, in hydras.Epsilon0.Paths]
    +KP_arrowS [definition, in hydras.Epsilon0.Paths]
    +KP_example [library]
    +KP.h' [variable, in hydras.Hydra.KP_example]
    +ksi_plus_beta_eq [lemma, in hydras.Schutte.AP]
    +ksi_plus_beta [lemma, in hydras.Schutte.AP]
    +ksi_plus_seq_n' [lemma, in hydras.Schutte.AP]
    +ksi_plus_seq_n [lemma, in hydras.Schutte.AP]
    +ksi:58 [binder, in hydras.Schutte.AP]
    +KS_thm_2_4 [lemma, in gaia_hydras.GPaths]
    +KS_thm_2_4_E0 [lemma, in hydras.Epsilon0.Paths]
    +KS_thm_2_4 [lemma, in hydras.Epsilon0.Paths]
    +KS_thm_2_4_lemma5 [lemma, in hydras.Epsilon0.Paths]
    +KS_thm_2_4_lemma4 [lemma, in hydras.Epsilon0.Paths]
    +KS_thm_2_4_lemma3 [lemma, in hydras.Epsilon0.Paths]
    +KS_thm_2_4_lemma3_0 [lemma, in hydras.Epsilon0.Paths]
    +KS_thm_2_4_lemma2 [lemma, in hydras.Epsilon0.Paths]
    +KS_thm_2_4_lemma1' [lemma, in hydras.Epsilon0.Paths]
    +KS_thm_2_4_lemma1 [lemma, in hydras.Epsilon0.Paths]
    +k':105 [binder, in additions.Euclidean_Chains]
    +k':116 [binder, in additions.Euclidean_Chains]
    +k':174 [binder, in additions.Euclidean_Chains]
    +k':200 [binder, in additions.Euclidean_Chains]
    +k10_7:330 [binder, in additions.Euclidean_Chains]
    +k17_7 [definition, in additions.Euclidean_Chains]
    +K2F [definition, in additions.Euclidean_Chains]
    +K2F_proper [instance, in additions.Euclidean_Chains]
    +K2F_correct [lemma, in additions.Euclidean_Chains]
    +K2F_correct_nat [lemma, in additions.Euclidean_Chains]
    +k3_1_proper [lemma, in additions.Euclidean_Chains]
    +k3_1_correct [lemma, in additions.Euclidean_Chains]
    +k3_1 [definition, in additions.Euclidean_Chains]
    +k7_3:329 [binder, in additions.Euclidean_Chains]
    +k7_3_correct [lemma, in additions.Euclidean_Chains]
    +k7_3_proper [instance, in additions.Euclidean_Chains]
    +k7_3 [definition, in additions.Euclidean_Chains]
    +K99_24 [definition, in additions.AM]
    +k:10 [binder, in hydras.Hydra.Hydra_Theorems]
    +k:102 [binder, in hydras.Epsilon0.Canon]
    +k:104 [binder, in additions.Euclidean_Chains]
    +k:107 [binder, in hydras.Prelude.MoreLists]
    +k:107 [binder, in hydras.Epsilon0.Canon]
    +k:11 [binder, in hydras.Epsilon0.Large_Sets]
    +k:11 [binder, in gaia_hydras.GL_alpha]
    +k:110 [binder, in hydras.Epsilon0.Large_Sets]
    +k:115 [binder, in additions.Euclidean_Chains]
    +k:117 [binder, in hydras.Epsilon0.Large_Sets]
    +k:118 [binder, in hydras.Epsilon0.Large_Sets]
    +k:12 [binder, in additions.Euclidean_Chains]
    +k:12 [binder, in gaia_hydras.GLarge_Sets]
    +k:12 [binder, in gaia_hydras.GL_alpha]
    +k:122 [binder, in hydras.Epsilon0.Large_Sets]
    +k:122 [binder, in hydras.Epsilon0.Hprime]
    +k:133 [binder, in hydras.Prelude.Iterates]
    +k:137 [binder, in hydras.Hydra.Hydra_Definitions]
    +k:14 [binder, in hydras.Epsilon0.Large_Sets]
    +k:1402 [binder, in gaia_hydras.nfwfgaia]
    +k:143 [binder, in hydras.Prelude.Iterates]
    +k:143 [binder, in additions.Euclidean_Chains]
    +k:15 [binder, in additions.fib]
    +k:15 [binder, in hydras.rpo.dickson]
    +k:151 [binder, in additions.Euclidean_Chains]
    +k:153 [binder, in hydras.Prelude.Iterates]
    +k:156 [binder, in additions.Euclidean_Chains]
    +k:16 [binder, in hydras.Epsilon0.T1]
    +k:16 [binder, in gaia_hydras.GHprime]
    +k:16 [binder, in gaia_hydras.GHydra]
    +k:166 [binder, in hydras.Prelude.Iterates]
    +k:167 [binder, in additions.Euclidean_Chains]
    +k:17 [binder, in hydras.Epsilon0.F_omega]
    +k:17 [binder, in hydras.MoreAck.Ack]
    +k:173 [binder, in additions.Euclidean_Chains]
    +k:18 [binder, in gaia_hydras.GHydra]
    +k:187 [binder, in hydras.Prelude.Iterates]
    +k:187 [binder, in additions.Euclidean_Chains]
    +k:1889 [binder, in gaia_hydras.nfwfgaia]
    +k:194 [binder, in hydras.Prelude.Iterates]
    +k:199 [binder, in additions.Euclidean_Chains]
    +k:2 [binder, in hydras.Hydra.Hydra_Theorems]
    +k:20 [binder, in gaia_hydras.GL_alpha]
    +k:2013 [binder, in gaia_hydras.nfwfgaia]
    +k:207 [binder, in hydras.Prelude.Iterates]
    +k:209 [binder, in additions.Euclidean_Chains]
    +k:21 [binder, in gaia_hydras.GHydra]
    +k:210 [binder, in hydras.Prelude.Iterates]
    +k:211 [binder, in hydras.Prelude.Iterates]
    +k:212 [binder, in hydras.Prelude.Iterates]
    +k:213 [binder, in hydras.Prelude.Iterates]
    +k:22 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +k:22 [binder, in additions.Euclidean_Chains]
    +k:22 [binder, in hydras.Hydra.Epsilon0_Needed_Std]
    +k:225 [binder, in additions.Euclidean_Chains]
    +k:226 [binder, in hydras.Prelude.Iterates]
    +k:23 [binder, in hydras.Prelude.More_Arith]
    +k:23 [binder, in gaia_hydras.GL_alpha]
    +k:234 [binder, in hydras.Prelude.Iterates]
    +k:236 [binder, in additions.Euclidean_Chains]
    +k:242 [binder, in additions.Euclidean_Chains]
    +k:25 [binder, in hydras.Epsilon0.Large_Sets]
    +k:252 [binder, in hydras.Prelude.Iterates]
    +k:26 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +k:26 [binder, in gaia_hydras.GL_alpha]
    +k:260 [binder, in hydras.rpo.rpo]
    +k:32 [binder, in hydras.MoreAck.AckNotPR]
    +k:38 [binder, in hydras.Epsilon0.Large_Sets]
    +k:39 [binder, in hydras.Epsilon0.L_alpha]
    +k:39 [binder, in hydras.Epsilon0.Hprime]
    +k:4 [binder, in additions.Euclidean_Chains]
    +k:40 [binder, in hydras.Epsilon0.L_alpha]
    +k:40 [binder, in additions.Euclidean_Chains]
    +k:40 [binder, in hydras.Epsilon0.Hprime]
    +k:40 [binder, in hydras.MoreAck.PrimRecExamples]
    +k:410 [binder, in hydras.Epsilon0.Paths]
    +k:43 [binder, in hydras.Hydra.BigBattle]
    +k:43 [binder, in hydras.Epsilon0.Hprime]
    +k:44 [binder, in hydras.Epsilon0.Large_Sets]
    +k:44 [binder, in hydras.Epsilon0.Hprime]
    +k:45 [binder, in hydras.Epsilon0.Hprime]
    +k:46 [binder, in hydras.Epsilon0.L_alpha]
    +k:46 [binder, in hydras.Epsilon0.Hprime]
    +k:467 [binder, in hydras.Epsilon0.Paths]
    +k:47 [binder, in hydras.Epsilon0.Large_Sets]
    +k:48 [binder, in hydras.Epsilon0.Hprime]
    +k:49 [binder, in hydras.Epsilon0.Hprime]
    +k:508 [binder, in hydras.Epsilon0.Paths]
    +k:51 [binder, in hydras.Epsilon0.Large_Sets]
    +k:51 [binder, in hydras.Epsilon0.L_alpha]
    +k:52 [binder, in hydras.Epsilon0.L_alpha]
    +k:53 [binder, in hydras.Epsilon0.L_alpha]
    +k:53 [binder, in hydras.Epsilon0.Hprime]
    +k:54 [binder, in hydras.Epsilon0.Hprime]
    +k:54 [binder, in gaia_hydras.nfwfgaia]
    +k:541 [binder, in hydras.Epsilon0.Paths]
    +k:55 [binder, in hydras.Epsilon0.L_alpha]
    +k:57 [binder, in hydras.Epsilon0.Hprime]
    +k:578 [binder, in hydras.Epsilon0.Paths]
    +k:58 [binder, in hydras.Epsilon0.Large_Sets]
    +k:58 [binder, in additions.Euclidean_Chains]
    +k:58 [binder, in gaia_hydras.nfwfgaia]
    +k:59 [binder, in hydras.Epsilon0.Hprime]
    +k:6 [binder, in hydras.Hydra.Hydra_Theorems]
    +k:6 [binder, in hydras.Hydra.Battle_length]
    +k:60 [binder, in gaia_hydras.nfwfgaia]
    +k:62 [binder, in hydras.Epsilon0.Hprime]
    +k:63 [binder, in hydras.Epsilon0.Large_Sets]
    +k:64 [binder, in hydras.Epsilon0.Hprime]
    +k:65 [binder, in hydras.Epsilon0.Large_Sets]
    +k:66 [binder, in hydras.Epsilon0.Large_Sets]
    +k:66 [binder, in hydras.Epsilon0.Hprime]
    +k:67 [binder, in hydras.Epsilon0.Hprime]
    +k:68 [binder, in hydras.Epsilon0.Large_Sets]
    +k:69 [binder, in hydras.Epsilon0.Hprime]
    +k:7 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +k:7 [binder, in hydras.Hydra.Hydra_Theorems]
    +k:7 [binder, in additions.Addition_Chains]
    +k:71 [binder, in hydras.Epsilon0.Hprime]
    +k:72 [binder, in hydras.Epsilon0.Large_Sets]
    +k:72 [binder, in hydras.Hydra.Hydra_Lemmas]
    +k:72 [binder, in hydras.Epsilon0.Hprime]
    +k:73 [binder, in additions.Euclidean_Chains]
    +k:73 [binder, in hydras.Epsilon0.Hprime]
    +k:74 [binder, in hydras.Epsilon0.Hprime]
    +k:75 [binder, in hydras.Epsilon0.Large_Sets]
    +k:76 [binder, in hydras.Epsilon0.Large_Sets]
    +k:77 [binder, in hydras.Epsilon0.Large_Sets]
    +k:77 [binder, in hydras.MoreAck.Ack]
    +k:79 [binder, in hydras.Epsilon0.Hprime]
    +k:8 [binder, in gaia_hydras.GHprime]
    +k:8 [binder, in hydras.Epsilon0.Large_Sets]
    +k:8 [binder, in hydras.Hydra.Hydra_Theorems]
    +k:8 [binder, in hydras.Hydra.Battle_length]
    +k:80 [binder, in hydras.Epsilon0.Hprime]
    +k:81 [binder, in hydras.Prelude.MoreLists]
    +k:83 [binder, in hydras.Epsilon0.Large_Sets]
    +k:83 [binder, in hydras.Epsilon0.Hprime]
    +k:84 [binder, in hydras.Epsilon0.Hprime]
    +k:85 [binder, in hydras.Epsilon0.Large_Sets]
    +k:88 [binder, in hydras.Epsilon0.Hprime]
    +k:880 [binder, in gaia_hydras.nfwfgaia]
    +k:9 [binder, in gaia_hydras.GHprime]
    +k:9 [binder, in hydras.Hydra.Hydra_Theorems]
    +k:9 [binder, in additions.Euclidean_Chains]
    +k:90 [binder, in hydras.Epsilon0.Hprime]
    +k:91 [binder, in hydras.Prelude.MoreLists]
    +k:91 [binder, in hydras.Epsilon0.Hprime]
    +k:92 [binder, in hydras.Epsilon0.Large_Sets]
    +k:93 [binder, in hydras.MoreAck.AckNotPR]
    +k:93 [binder, in hydras.Epsilon0.Large_Sets]
    +k:93 [binder, in additions.Euclidean_Chains]
    +k:94 [binder, in hydras.Epsilon0.Hprime]
    +k:95 [binder, in hydras.MoreAck.AckNotPR]
    +k:95 [binder, in hydras.Epsilon0.Large_Sets]
    +k:96 [binder, in hydras.Epsilon0.Large_Sets]
    +k:99 [binder, in hydras.Prelude.Iterates]
    +

    L

    +L [lemma, in hydras.Epsilon0.F_omega]
    +L [lemma, in hydras.solutions_exercises.F_3]
    +L [lemma, in additions.Addition_Chains]
    +lambda:13 [binder, in hydras.Epsilon0.Canon]
    +lambda:15 [binder, in hydras.Epsilon0.Canon]
    +lambda:156 [binder, in gaia_hydras.T1Bridge]
    +lambda:161 [binder, in gaia_hydras.T1Bridge]
    +lambda:18 [binder, in hydras.Epsilon0.Canon]
    +lambda:20 [binder, in hydras.Epsilon0.Canon]
    +lambda:209 [binder, in hydras.Epsilon0.Paths]
    +lambda:213 [binder, in hydras.Epsilon0.Paths]
    +lambda:23 [binder, in gaia_hydras.GCanon]
    +lambda:23 [binder, in hydras.Epsilon0.Canon]
    +lambda:27 [binder, in hydras.Epsilon0.Canon]
    +lambda:29 [binder, in hydras.Schutte.Schutte_basics]
    +lambda:32 [binder, in gaia_hydras.GCanon]
    +lambda:336 [binder, in hydras.Epsilon0.Paths]
    +lambda:43 [binder, in gaia_hydras.GCanon]
    +lambda:49 [binder, in gaia_hydras.GCanon]
    +lambda:53 [binder, in gaia_hydras.GCanon]
    +lambda:566 [binder, in hydras.Epsilon0.Paths]
    +lambda:58 [binder, in gaia_hydras.GCanon]
    +lambda:59 [binder, in gaia_hydras.GCanon]
    +lambda:60 [binder, in hydras.Epsilon0.Canon]
    +lambda:61 [binder, in gaia_hydras.GPaths]
    +lambda:61 [binder, in hydras.Epsilon0.Canon]
    +lambda:62 [binder, in hydras.Hydra.O2H]
    +lambda:65 [binder, in gaia_hydras.GCanon]
    +lambda:686 [binder, in hydras.Epsilon0.T1]
    +lambda:72 [binder, in hydras.Epsilon0.Canon]
    +lambda:75 [binder, in hydras.Epsilon0.Canon]
    +Language [record, in hydras.Ackermann.fol]
    +language [constructor, in hydras.Ackermann.fol]
    +Languages [library]
    +language_decidable [definition, in hydras.Ackermann.fol]
    +Large [definition, in hydras.Epsilon0.Large_Sets]
    +large [definition, in hydras.Epsilon0.Large_Sets]
    +large [definition, in gaia_hydras.GLarge_Sets]
    +Largeb [definition, in hydras.Epsilon0.Large_Sets]
    +largeb [definition, in hydras.Epsilon0.Large_Sets]
    +largeb_n_R [lemma, in hydras.Epsilon0.Large_Sets]
    +largeb_n [lemma, in hydras.Epsilon0.Large_Sets]
    +largeb_finite [lemma, in hydras.Epsilon0.Large_Sets]
    +Largeb_Sb [lemma, in hydras.Epsilon0.Large_Sets]
    +largeb_Sb [lemma, in hydras.Epsilon0.Large_Sets]
    +LargeS [definition, in hydras.Epsilon0.Large_Sets]
    +largeS [definition, in hydras.Epsilon0.Large_Sets]
    +largeS [definition, in gaia_hydras.GLarge_Sets]
    +LargeSb [definition, in hydras.Epsilon0.Large_Sets]
    +largeSb [definition, in hydras.Epsilon0.Large_Sets]
    +LargeSb_b [lemma, in hydras.Epsilon0.Large_Sets]
    +largeSb_b [lemma, in hydras.Epsilon0.Large_Sets]
    +largeS_iff [lemma, in hydras.Epsilon0.Large_Sets]
    +large_omega_iff [lemma, in hydras.Epsilon0.Large_Sets]
    +large_omega_2 [lemma, in hydras.Epsilon0.Large_Sets]
    +large_omega_1 [lemma, in hydras.Epsilon0.Large_Sets]
    +large_n_iff [lemma, in hydras.Epsilon0.Large_Sets]
    +large_iff [lemma, in hydras.Epsilon0.Large_Sets]
    +large_set_check [definition, in hydras.Epsilon0.Large_Sets_Examples]
    +Large_Sets [library]
    +Large_Sets_Examples [library]
    +la:116 [binder, in hydras.rpo.more_list]
    +la:7 [binder, in hydras.rpo.dickson]
    +Lcode [record, in hydras.Ackermann.code]
    +LcodeLNN [instance, in hydras.Ackermann.codeNatToTerm]
    +LcodeLNT [instance, in hydras.Ackermann.codeNatToTerm]
    +lc:165 [binder, in hydras.rpo.rpo]
    +lc:233 [binder, in hydras.rpo.rpo]
    +lc:242 [binder, in hydras.rpo.rpo]
    +lc:70 [binder, in hydras.rpo.rpo]
    +LE [definition, in hydras.Epsilon0.T1]
    +le [abbreviation, in hydras.Epsilon0.T1]
    +le [definition, in hydras.Gamma0.T2]
    +le [abbreviation, in hydras.Prelude.Comparable]
    +le [definition, in hydras.OrdinalNotations.ON_O]
    +LE [abbreviation, in gaia_hydras.T1Bridge]
    +le [definition, in hydras.OrdinalNotations.ON_mult]
    +le [definition, in hydras.OrdinalNotations.ON_plus]
    +le [definition, in hydras.Schutte.Schutte_basics]
    +Le [definition, in hydras.Schutte.Well_Orders]
    +Least [definition, in hydras.Prelude.MoreOrders]
    +Least_zero [lemma, in hydras.OrdinalNotations.ON_Omega2]
    +least_AP [lemma, in hydras.Schutte.AP]
    +Least_is_0 [lemma, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +Least_not_Limit [lemma, in hydras.Prelude.MoreOrders]
    +Least_not_Succ [lemma, in hydras.Prelude.MoreOrders]
    +least_member_of_eq [lemma, in hydras.Schutte.Well_Orders]
    +least_member_ex_unique [lemma, in hydras.Schutte.Well_Orders]
    +least_member_unicity [lemma, in hydras.Schutte.Well_Orders]
    +least_member_glb [lemma, in hydras.Schutte.Well_Orders]
    +least_member_lower_bound [lemma, in hydras.Schutte.Well_Orders]
    +least_fixpoint [definition, in hydras.Schutte.Well_Orders]
    +least_member [definition, in hydras.Schutte.Well_Orders]
    +leA:48 [binder, in hydras.Prelude.Sort_spec]
    +leA:62 [binder, in hydras.Prelude.Sort_spec]
    +leBool [definition, in hydras.Ackermann.primRec]
    +leb:107 [binder, in hydras.Prelude.Merge_Sort]
    +leB:11 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +leb:177 [binder, in hydras.Prelude.Merge_Sort]
    +leB:18 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +leb:183 [binder, in hydras.Prelude.Merge_Sort]
    +leb:185 [binder, in hydras.Prelude.Merge_Sort]
    +leb:188 [binder, in hydras.Prelude.Merge_Sort]
    +leb:193 [binder, in hydras.Prelude.Merge_Sort]
    +leb:195 [binder, in hydras.Prelude.Merge_Sort]
    +leB:4 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +leB:49 [binder, in hydras.Prelude.Sort_spec]
    +leB:63 [binder, in hydras.Prelude.Sort_spec]
    +leIsPR [instance, in hydras.Ackermann.primRec]
    +lemmas_on_length [section, in hydras.Gamma0.Gamma0]
    +Lemma_4_5_2 [lemma, in hydras.Epsilon0.Large_Sets]
    +Lemma_4_5_1 [lemma, in hydras.Epsilon0.Large_Sets]
    +Lemma_4_4_2 [lemma, in hydras.Epsilon0.Large_Sets]
    +Lemma_4_4_Proof.H0 [variable, in hydras.Epsilon0.Large_Sets]
    +Lemma_4_4_Proof.H [variable, in hydras.Epsilon0.Large_Sets]
    +Lemma_4_4_Proof.Hs [variable, in hydras.Epsilon0.Large_Sets]
    +Lemma_4_4_Proof.s [variable, in hydras.Epsilon0.Large_Sets]
    +Lemma_4_4_Proof.n [variable, in hydras.Epsilon0.Large_Sets]
    +Lemma_4_4_Proof.Hbeta [variable, in hydras.Epsilon0.Large_Sets]
    +Lemma_4_4_Proof.Halpha [variable, in hydras.Epsilon0.Large_Sets]
    +Lemma_4_4_Proof.beta [variable, in hydras.Epsilon0.Large_Sets]
    +Lemma_4_4_Proof.alpha [variable, in hydras.Epsilon0.Large_Sets]
    +Lemma_4_4_Proof [section, in hydras.Epsilon0.Large_Sets]
    +Lemma_4_4_0 [lemma, in hydras.Epsilon0.Paths]
    +Lemma_4_4_1 [lemma, in hydras.Epsilon0.Paths]
    +Lemma_4_3 [lemma, in hydras.Epsilon0.Paths]
    +Lemma_4_3_0 [lemma, in hydras.Epsilon0.Paths]
    +Lemma_4_3_Proof.H4 [variable, in hydras.Epsilon0.Paths]
    +Lemma_4_3_Proof.H1 [variable, in hydras.Epsilon0.Paths]
    +Lemma_4_3_Proof.H0 [variable, in hydras.Epsilon0.Paths]
    +Lemma_4_3_Proof.n2 [variable, in hydras.Epsilon0.Paths]
    +Lemma_4_3_Proof.n1 [variable, in hydras.Epsilon0.Paths]
    +Lemma_4_3_Proof.n0 [variable, in hydras.Epsilon0.Paths]
    +Lemma_4_3_Proof.nf2 [variable, in hydras.Epsilon0.Paths]
    +Lemma_4_3_Proof.nf1 [variable, in hydras.Epsilon0.Paths]
    +Lemma_4_3_Proof.H00 [variable, in hydras.Epsilon0.Paths]
    +Lemma_4_3_Proof.beta [variable, in hydras.Epsilon0.Paths]
    +Lemma_4_3_Proof.alpha [variable, in hydras.Epsilon0.Paths]
    +Lemma_4_3_Proof [section, in hydras.Epsilon0.Paths]
    +Lemma2_6_1 [lemma, in gaia_hydras.GPaths]
    +Lemma2_6_1_E0 [lemma, in hydras.Epsilon0.Paths]
    +Lemma2_6_1 [lemma, in hydras.Epsilon0.Paths]
    +Lemma4_4 [lemma, in hydras.Epsilon0.Large_Sets]
    +Lemma5 [lemma, in hydras.Schutte.Critical]
    +Lemma5_7 [lemma, in hydras.Schutte.Critical]
    +Lemma5_2 [lemma, in hydras.Schutte.Critical]
    +Lemma5_1 [lemma, in hydras.Schutte.Critical]
    +Lemma5_04 [lemma, in hydras.Schutte.Critical]
    +Lemma5_03 [lemma, in hydras.Schutte.Critical]
    +Lemma5_02 [lemma, in hydras.Schutte.Critical]
    +Lemma5_01 [lemma, in hydras.Schutte.Critical]
    +Lemma5_0 [lemma, in hydras.Schutte.Critical]
    +lengthTerms [lemma, in hydras.Ackermann.wellFormed]
    +length_abnc [lemma, in hydras.Gamma0.T2]
    +length_ab [lemma, in hydras.Gamma0.T2]
    +length_psi [lemma, in hydras.Gamma0.T2]
    +length_n [lemma, in hydras.Gamma0.T2]
    +length_c [lemma, in hydras.Gamma0.T2]
    +length_b [lemma, in hydras.Gamma0.T2]
    +length_a [lemma, in hydras.Gamma0.T2]
    +length_map [lemma, in hydras.rpo.more_list]
    +leq [definition, in hydras.Prelude.MoreOrders]
    +leq_trans [instance, in hydras.Prelude.MoreOrders]
    +lex [definition, in hydras.rpo.rpo]
    +LExamples [section, in hydras.Ackermann.fol]
    +LExamples.ex1 [variable, in hydras.Ackermann.fol]
    +LExamples.ex2 [variable, in hydras.Ackermann.fol]
    +LExamples.ex3 [variable, in hydras.Ackermann.fol]
    +LExamples.L [variable, in hydras.Ackermann.fol]
    +LExamples.P [variable, in hydras.Ackermann.fol]
    +LExamples.Q [variable, in hydras.Ackermann.fol]
    +lexico [inductive, in hydras.Prelude.Simple_LexProd]
    +lexlt [definition, in hydras.solutions_exercises.MultisetWf]
    +lexnf [definition, in hydras.solutions_exercises.MultisetWf]
    +lexpower [inductive, in hydras.solutions_exercises.MultisetWf]
    +lexprod [section, in hydras.Prelude.DecPreOrder_Instances]
    +lexprod.A [variable, in hydras.Prelude.DecPreOrder_Instances]
    +lexprod.B [variable, in hydras.Prelude.DecPreOrder_Instances]
    +lexprod.leA [variable, in hydras.Prelude.DecPreOrder_Instances]
    +lexprod.leB [variable, in hydras.Prelude.DecPreOrder_Instances]
    +_ <lex _ [notation, in hydras.Prelude.DecPreOrder_Instances]
    +_ <=lex _ [notation, in hydras.Prelude.DecPreOrder_Instances]
    +_ =B= _ [notation, in hydras.Prelude.DecPreOrder_Instances]
    +_ =A= _ [notation, in hydras.Prelude.DecPreOrder_Instances]
    +_ <B _ [notation, in hydras.Prelude.DecPreOrder_Instances]
    +_ <=B _ [notation, in hydras.Prelude.DecPreOrder_Instances]
    +_ <A _ [notation, in hydras.Prelude.DecPreOrder_Instances]
    +_ <=A _ [notation, in hydras.Prelude.DecPreOrder_Instances]
    +lexwf [lemma, in hydras.solutions_exercises.MultisetWf]
    +lexwf [lemma, in hydras.solutions_exercises.MultisetWf]
    +lex_prod_dec [instance, in hydras.Prelude.DecPreOrder_Instances]
    +lex_strict_intro_left [lemma, in hydras.Prelude.DecPreOrder_Instances]
    +lex_strict_intro_right [lemma, in hydras.Prelude.DecPreOrder_Instances]
    +lex_inv_right [lemma, in hydras.Prelude.DecPreOrder_Instances]
    +lex_inv_left [lemma, in hydras.Prelude.DecPreOrder_Instances]
    +lex_of_equiv [lemma, in hydras.Prelude.DecPreOrder_Instances]
    +lex_prod [inductive, in hydras.Prelude.DecPreOrder_Instances]
    +Lex_nat_wf [instance, in hydras.MoreAck.Ack]
    +lex_nat_wf [lemma, in hydras.MoreAck.Ack]
    +lex_nat [definition, in hydras.MoreAck.Ack]
    +lex_2 [constructor, in hydras.Prelude.Simple_LexProd]
    +lex_1 [constructor, in hydras.Prelude.Simple_LexProd]
    +lex_trans [lemma, in hydras.rpo.rpo]
    +lex1 [constructor, in hydras.Prelude.DecPreOrder_Instances]
    +lex1 [constructor, in hydras.solutions_exercises.MultisetWf]
    +lex2 [constructor, in hydras.Prelude.DecPreOrder_Instances]
    +lex2 [constructor, in hydras.solutions_exercises.MultisetWf]
    +lex3 [constructor, in hydras.solutions_exercises.MultisetWf]
    +lex4 [constructor, in hydras.solutions_exercises.MultisetWf]
    +LE_LT_eq_dec [lemma, in hydras.Epsilon0.T1]
    +LE_r [lemma, in hydras.Epsilon0.T1]
    +le_lt_LT [lemma, in hydras.Epsilon0.T1]
    +LE_phi0 [lemma, in hydras.Epsilon0.T1]
    +LE_LT_trans [lemma, in hydras.Epsilon0.T1]
    +LE_antisym [lemma, in hydras.Epsilon0.T1]
    +LE_trans [lemma, in hydras.Epsilon0.T1]
    +LE_refl [lemma, in hydras.Epsilon0.T1]
    +LE_zero [lemma, in hydras.Epsilon0.T1]
    +LE_le [lemma, in hydras.Epsilon0.T1]
    +LE_nf_r [lemma, in hydras.Epsilon0.T1]
    +LE_nf_l [lemma, in hydras.Epsilon0.T1]
    +le_phi0 [lemma, in hydras.Epsilon0.T1]
    +le_tail [lemma, in hydras.Epsilon0.T1]
    +le_zero_inv [lemma, in hydras.Epsilon0.T1]
    +le_inv [lemma, in hydras.Epsilon0.T1]
    +le_eq_lt_dec [lemma, in hydras.Epsilon0.T1]
    +le_0 [lemma, in hydras.OrdinalNotations.ON_Omega2]
    +le_intror [lemma, in hydras.OrdinalNotations.ON_Omega2]
    +le_min_bd [lemma, in hydras.Prelude.Comparable]
    +le_min_a [lemma, in hydras.Prelude.Comparable]
    +le_max_b [lemma, in hydras.Prelude.Comparable]
    +le_max_a [lemma, in hydras.Prelude.Comparable]
    +le_not_gt [lemma, in hydras.Prelude.Comparable]
    +le_lt_trans [lemma, in hydras.Prelude.Comparable]
    +le_trans [lemma, in hydras.Prelude.Comparable]
    +le_refl [lemma, in hydras.Prelude.Comparable]
    +le_lt_equiv_dec [lemma, in hydras.Prelude.DecPreOrder]
    +le_lt_weak [lemma, in hydras.Prelude.DecPreOrder]
    +le_lt_trans [lemma, in hydras.Prelude.DecPreOrder]
    +le_not_gt [lemma, in hydras.Prelude.DecPreOrder]
    +le_phi0 [lemma, in hydras.Schutte.AP]
    +le_lt_trans [lemma, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +le_0 [lemma, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +le_intror [lemma, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +le_introl [lemma, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +le_S_Ack [lemma, in hydras.MoreAck.Ack]
    +le_dec:118 [binder, in hydras.Prelude.Merge_Sort]
    +le_total:117 [binder, in hydras.Prelude.Merge_Sort]
    +LE_ref [lemma, in gaia_hydras.T1Bridge]
    +le_ref [lemma, in gaia_hydras.T1Bridge]
    +le_lt_eq [lemma, in hydras.Prelude.MoreOrders]
    +le_alpha_zero [lemma, in hydras.Schutte.Schutte_basics]
    +le_sup_members [lemma, in hydras.Schutte.Schutte_basics]
    +le_disj [lemma, in hydras.Schutte.Schutte_basics]
    +le_not_gt [lemma, in hydras.Schutte.Schutte_basics]
    +le_eq_or_lt [lemma, in hydras.Schutte.Schutte_basics]
    +le_antisym [lemma, in hydras.Schutte.Schutte_basics]
    +le_trans [lemma, in hydras.Schutte.Schutte_basics]
    +le_lt_trans [lemma, in hydras.Schutte.Schutte_basics]
    +le_refl [lemma, in hydras.Schutte.Schutte_basics]
    +Le_refl [lemma, in hydras.Epsilon0.E0]
    +Le_trans [lemma, in hydras.Epsilon0.E0]
    +le_lt_eq_dec [lemma, in hydras.Epsilon0.E0]
    +Le_iff [lemma, in hydras.Epsilon0.E0]
    +Le_Lt_trans [lemma, in hydras.Schutte.Well_Orders]
    +Le_trans [instance, in hydras.Schutte.Well_Orders]
    +Le_antisym [lemma, in hydras.Schutte.Well_Orders]
    +Le_refl [lemma, in hydras.Schutte.Well_Orders]
    +le_plus_l [lemma, in hydras.Gamma0.Gamma0]
    +le_plus_r [lemma, in hydras.Gamma0.Gamma0]
    +le_b_phi_ab [lemma, in hydras.Gamma0.Gamma0]
    +le_one_cons [lemma, in hydras.Gamma0.Gamma0]
    +le_cons_tail [lemma, in hydras.Gamma0.Gamma0]
    +le_trans [lemma, in hydras.Gamma0.Gamma0]
    +le_lt_trans [lemma, in hydras.Gamma0.Gamma0]
    +le_inv_nc [lemma, in hydras.Gamma0.Gamma0]
    +le_psi_term_le [lemma, in hydras.Gamma0.Gamma0]
    +le_zero_alpha [lemma, in hydras.Gamma0.Gamma0]
    +le_a_mult_Sn_a [lemma, in hydras.Schutte.Addition]
    +le_plus_r [lemma, in hydras.Schutte.Addition]
    +le_plus_l [lemma, in hydras.Schutte.Addition]
    +le:16 [binder, in hydras.Prelude.DecPreOrder]
    +le:21 [binder, in hydras.Prelude.DecPreOrder]
    +le:26 [binder, in hydras.Prelude.DecPreOrder]
    +le:3 [binder, in hydras.solutions_exercises.predSuccUnicity]
    +Le:3 [binder, in hydras.OrdinalNotations.ON_O]
    +le:31 [binder, in hydras.Prelude.Sort_spec]
    +le:36 [binder, in hydras.Prelude.DecPreOrder]
    +le:40 [binder, in hydras.Prelude.Sort_spec]
    +le:40 [binder, in hydras.Prelude.DecPreOrder]
    +le:45 [binder, in hydras.Prelude.DecPreOrder]
    +le:50 [binder, in hydras.Prelude.DecPreOrder]
    +le:55 [binder, in hydras.Prelude.DecPreOrder]
    +le:60 [binder, in hydras.Prelude.DecPreOrder]
    +le:65 [binder, in hydras.Prelude.DecPreOrder]
    +le:71 [binder, in hydras.Prelude.DecPreOrder]
    +le:75 [binder, in hydras.Prelude.Sort_spec]
    +le:77 [binder, in hydras.Prelude.DecPreOrder]
    +le:82 [binder, in hydras.Prelude.DecPreOrder]
    +le:85 [binder, in hydras.Prelude.DecPreOrder]
    +le:88 [binder, in hydras.Prelude.DecPreOrder]
    +le:94 [binder, in hydras.Prelude.DecPreOrder]
    +LF1 [lemma, in gaia_hydras.GF_alpha]
    +LF1 [lemma, in hydras.Epsilon0.F_alpha]
    +LF2 [lemma, in gaia_hydras.GF_alpha]
    +LF2 [lemma, in hydras.Epsilon0.F_alpha]
    +LF2_0 [lemma, in hydras.Epsilon0.F_alpha]
    +LF2' [lemma, in gaia_hydras.GF_alpha]
    +LF2' [lemma, in hydras.Epsilon0.F_alpha]
    +LF3 [lemma, in hydras.solutions_exercises.F_3]
    +LF3_2 [lemma, in gaia_hydras.GF_alpha]
    +LF3_2 [lemma, in hydras.Epsilon0.F_alpha]
    +lg:163 [binder, in hydras.rpo.rpo]
    +lg:231 [binder, in hydras.rpo.rpo]
    +lg:68 [binder, in hydras.rpo.rpo]
    +lheight [definition, in hydras.Hydra.Hydra_Definitions]
    +lhsize [definition, in hydras.Hydra.Hydra_Definitions]
    +LibHyps_Experiments [library]
    +liftCloseFrom [lemma, in hydras.Ackermann.subAll]
    +lim [section, in hydras.Epsilon0.Large_Sets]
    +Limit [definition, in hydras.Prelude.MoreOrders]
    +limitb [abbreviation, in hydras.Epsilon0.T1]
    +limitb [definition, in hydras.OrdinalNotations.ON_Omega2]
    +limitb [definition, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +Limitb [abbreviation, in hydras.Epsilon0.E0]
    +limitb_limit [lemma, in hydras.OrdinalNotations.ON_Omega2]
    +LimitNotSucc [lemma, in hydras.Prelude.Comparable]
    +limit_is_lub [lemma, in hydras.OrdinalNotations.ON_Omega2]
    +limit_is_lub_0 [lemma, in hydras.OrdinalNotations.ON_Omega2]
    +limit_no_R1 [lemma, in hydras.Hydra.O2H]
    +limit_no_head [lemma, in hydras.Hydra.O2H]
    +Limit_Infinity [lemma, in hydras.solutions_exercises.Limit_Infinity]
    +limit_canonS_not_zero [lemma, in gaia_hydras.GCanon]
    +limit_iff [lemma, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +limit_is_omega [lemma, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +Limit_gt_Zero [lemma, in hydras.Epsilon0.E0]
    +Limit_not_Zero [lemma, in hydras.Epsilon0.E0]
    +limit_of [definition, in gaia_hydras.onType]
    +limit_v2 [definition, in gaia_hydras.onType]
    +limit_rounds [lemma, in hydras.Hydra.Omega2_Small]
    +limit_rounds_0 [lemma, in hydras.Hydra.Omega2_Small]
    +limit_step [constructor, in hydras.Hydra.Omega2_Small]
    +limit_plus_fin_ok [lemma, in hydras.Gamma0.Gamma0]
    +limit_plus_fin_inv0 [lemma, in hydras.Gamma0.Gamma0]
    +limit_plus_fin_lim [lemma, in hydras.Gamma0.Gamma0]
    +limit_plus_fin_plus [lemma, in hydras.Gamma0.Gamma0]
    +limit_plus_F_cons [constructor, in hydras.Gamma0.Gamma0]
    +limit_plus_F_0 [constructor, in hydras.Gamma0.Gamma0]
    +limit_plus_fin [inductive, in hydras.Gamma0.Gamma0]
    +Limit_Infinity [library]
    +lim.f [variable, in hydras.Epsilon0.Large_Sets]
    +lim.H [variable, in hydras.Epsilon0.Large_Sets]
    +lim.Hlim [variable, in hydras.Epsilon0.Large_Sets]
    +lim.Hnf [variable, in hydras.Epsilon0.Large_Sets]
    +lim.lambda [variable, in hydras.Epsilon0.Large_Sets]
    +LispAbbreviations [module, in hydras.Ackermann.cPair]
    +LispAbbreviations.caar [abbreviation, in hydras.Ackermann.cPair]
    +LispAbbreviations.caddr [abbreviation, in hydras.Ackermann.cPair]
    +LispAbbreviations.cadr [abbreviation, in hydras.Ackermann.cPair]
    +LispAbbreviations.car [abbreviation, in hydras.Ackermann.cPair]
    +LispAbbreviations.cddddr [abbreviation, in hydras.Ackermann.cPair]
    +LispAbbreviations.cdddr [abbreviation, in hydras.Ackermann.cPair]
    +LispAbbreviations.cddr [abbreviation, in hydras.Ackermann.cPair]
    +LispAbbreviations.cdr [abbreviation, in hydras.Ackermann.cPair]
    +ListExt [library]
    +listValues [definition, in hydras.Ackermann.cPair]
    +List_length [instance, in hydras.Prelude.DecPreOrder_Instances]
    +list_rec3 [definition, in hydras.rpo.more_list]
    +list_rec2 [definition, in hydras.rpo.more_list]
    +list_size_size_eq [lemma, in hydras.rpo.more_list]
    +list_size_fold [lemma, in hydras.rpo.more_list]
    +list_size_app [lemma, in hydras.rpo.more_list]
    +list_size_tl_compat [lemma, in hydras.rpo.more_list]
    +list_size [definition, in hydras.rpo.more_list]
    +list_app_length [lemma, in hydras.rpo.more_list]
    +List_Remove.Aeq_dec [variable, in hydras.Ackermann.ListExt]
    +List_Remove.A [variable, in hydras.Ackermann.ListExt]
    +List_Remove [section, in hydras.Ackermann.ListExt]
    +list_permut [library]
    +list_set [library]
    +LL [lemma, in hydras.Epsilon0.F_alpha]
    +LNN [definition, in hydras.Ackermann.Languages]
    +LNN [library]
    +LNNArityF [definition, in hydras.Ackermann.Languages]
    +LNNArityR [definition, in hydras.Ackermann.Languages]
    +LNNRelation [inductive, in hydras.Ackermann.Languages]
    +LNN_eqdec [lemma, in hydras.Ackermann.LNN]
    +LNN_FixPoint.codeFormula [variable, in Goedel.fixPoint]
    +LNN_FixPoint [section, in Goedel.fixPoint]
    +LNN_Examples [library]
    +LNN2LNT [library]
    +LNN2LNT_subFormula [lemma, in hydras.Ackermann.LNN2LNT]
    +LNN2LNT_freeVarF2 [lemma, in hydras.Ackermann.LNN2LNT]
    +LNN2LNT_freeVarF1 [lemma, in hydras.Ackermann.LNN2LNT]
    +LNN2LNT_freeVarF [lemma, in hydras.Ackermann.LNN2LNT]
    +LNN2LNT_exist [lemma, in hydras.Ackermann.LNN2LNT]
    +LNN2LNT_iff [lemma, in hydras.Ackermann.LNN2LNT]
    +LNN2LNT_and [lemma, in hydras.Ackermann.LNN2LNT]
    +LNN2LNT_or [lemma, in hydras.Ackermann.LNN2LNT]
    +LNN2LNT_formula [definition, in hydras.Ackermann.LNN2LNT]
    +LNN2LNT_subTerms [lemma, in hydras.Ackermann.LNN2LNT]
    +LNN2LNT_subTerm [lemma, in hydras.Ackermann.LNN2LNT]
    +LNN2LNT_freeVarTs [lemma, in hydras.Ackermann.LNN2LNT]
    +LNN2LNT_freeVarT [lemma, in hydras.Ackermann.LNN2LNT]
    +LNN2LNT_natToTerm [lemma, in hydras.Ackermann.LNN2LNT]
    +LNN2LNT_terms [definition, in hydras.Ackermann.LNN2LNT]
    +LNN2LNT_term [definition, in hydras.Ackermann.LNN2LNT]
    +LNotPR [lemma, in hydras.Hydra.Hydra_Theorems]
    +LNT [module, in hydras.Ackermann.LNT]
    +LNT [definition, in hydras.Ackermann.Languages]
    +LNT [library]
    +LNTFunction [inductive, in hydras.Ackermann.Languages]
    +LNTFunctionArity [definition, in hydras.Ackermann.Languages]
    +LNTRelation [inductive, in hydras.Ackermann.Languages]
    +LNTRelationR [definition, in hydras.Ackermann.Languages]
    +LNT_eqdec [lemma, in hydras.Ackermann.LNT]
    +LNT_FixPoint.codeFormula [variable, in Goedel.fixPoint]
    +LNT_FixPoint [section, in Goedel.fixPoint]
    +LNT.Plus [definition, in hydras.Ackermann.LNT]
    +LNT.Succ [definition, in hydras.Ackermann.LNT]
    +LNT.Times [definition, in hydras.Ackermann.LNT]
    +LNT.Zero [definition, in hydras.Ackermann.LNT]
    +LNT2LNN_subFormula [lemma, in hydras.Ackermann.LNN2LNT]
    +LNT2LNN_freeVarF [lemma, in hydras.Ackermann.LNN2LNT]
    +LNT2LNN_freeVarT [lemma, in hydras.Ackermann.LNN2LNT]
    +LNT2LNN_subTerm [lemma, in hydras.Ackermann.LNN2LNT]
    +LNT2LNN_formula [definition, in hydras.Ackermann.LNN2LNT]
    +LNT2LNN_natToTerm [lemma, in hydras.Ackermann.LNN2LNT]
    +LNT2LNN_terms [definition, in hydras.Ackermann.LNN2LNT]
    +LNT2LNN_term [definition, in hydras.Ackermann.LNN2LNT]
    +LNT2LNT_formula [lemma, in hydras.Ackermann.LNN2LNT]
    +LNT2LNT_term [lemma, in hydras.Ackermann.LNN2LNT]
    +LO [module, in hydras.OrdinalNotations.OmegaOmega]
    +LocallySorted_inv_In [lemma, in hydras.Prelude.Sort_spec]
    +LocallySorted_trans [lemma, in hydras.Prelude.Sort_spec]
    +LocallySorted_cons' [lemma, in hydras.Prelude.Sort_spec]
    +LocallySorted_cons [lemma, in hydras.Prelude.Sort_spec]
    +Logic [section, in hydras.Ackermann.LNN]
    +Logic [section, in hydras.Ackermann.LNT]
    +Logic_Rules.Other_Rules [section, in hydras.Ackermann.folLogic]
    +Logic_Rules.Not_Rules [section, in hydras.Ackermann.folLogic]
    +Logic_Rules.SysPrf [variable, in hydras.Ackermann.folLogic]
    +Logic_Rules.Prf [variable, in hydras.Ackermann.folLogic]
    +Logic_Rules.Terms [variable, in hydras.Ackermann.folLogic]
    +Logic_Rules.Term [variable, in hydras.Ackermann.folLogic]
    +Logic_Rules.System [variable, in hydras.Ackermann.folLogic]
    +Logic_Rules.Formulas [variable, in hydras.Ackermann.folLogic]
    +Logic_Rules.Formula [variable, in hydras.Ackermann.folLogic]
    +Logic_Rules.L [variable, in hydras.Ackermann.folLogic]
    +Logic_Rules [section, in hydras.Ackermann.folLogic]
    +LO.ap [inductive, in hydras.OrdinalNotations.OmegaOmega]
    +LO.ap_intro [constructor, in hydras.OrdinalNotations.OmegaOmega]
    +LO.compare_correct [lemma, in hydras.OrdinalNotations.OmegaOmega]
    +LO.compare_reflect [lemma, in hydras.OrdinalNotations.OmegaOmega]
    +LO.compare_rev [lemma, in hydras.OrdinalNotations.OmegaOmega]
    +LO.compare_ref [lemma, in hydras.OrdinalNotations.OmegaOmega]
    +LO.compare_oo [instance, in hydras.OrdinalNotations.OmegaOmega]
    +LO.cons [abbreviation, in hydras.OrdinalNotations.OmegaOmega]
    +LO.cons_nf [lemma, in hydras.OrdinalNotations.OmegaOmega]
    +LO.eq_ref [lemma, in hydras.OrdinalNotations.OmegaOmega]
    +LO.fin [definition, in hydras.OrdinalNotations.OmegaOmega]
    +LO.fin_nf [lemma, in hydras.OrdinalNotations.OmegaOmega]
    +LO.FS [abbreviation, in hydras.OrdinalNotations.OmegaOmega]
    +LO.limitb [definition, in hydras.OrdinalNotations.OmegaOmega]
    +LO.limitb_ref [lemma, in hydras.OrdinalNotations.OmegaOmega]
    +LO.lo_comparable [instance, in hydras.OrdinalNotations.OmegaOmega]
    +LO.lo_strorder [instance, in hydras.OrdinalNotations.OmegaOmega]
    +LO.lt [definition, in hydras.OrdinalNotations.OmegaOmega]
    +LO.lt_trans [lemma, in hydras.OrdinalNotations.OmegaOmega]
    +LO.lt_irrefl [lemma, in hydras.OrdinalNotations.OmegaOmega]
    +LO.lt_ref [lemma, in hydras.OrdinalNotations.OmegaOmega]
    +LO.mult [definition, in hydras.OrdinalNotations.OmegaOmega]
    +LO.mult_plus_distr_l [lemma, in hydras.OrdinalNotations.OmegaOmega]
    +LO.mult_nf [lemma, in hydras.OrdinalNotations.OmegaOmega]
    +LO.mult_ref [lemma, in hydras.OrdinalNotations.OmegaOmega]
    +LO.nf [definition, in hydras.OrdinalNotations.OmegaOmega]
    +LO.nf_ref [lemma, in hydras.OrdinalNotations.OmegaOmega]
    +LO.nf_inv3 [lemma, in hydras.OrdinalNotations.OmegaOmega]
    +LO.nf_inv2 [lemma, in hydras.OrdinalNotations.OmegaOmega]
    +LO.nf_b [definition, in hydras.OrdinalNotations.OmegaOmega]
    +LO.omega [abbreviation, in hydras.OrdinalNotations.OmegaOmega]
    +LO.phi0 [abbreviation, in hydras.OrdinalNotations.OmegaOmega]
    +LO.phi0_nf [lemma, in hydras.OrdinalNotations.OmegaOmega]
    +LO.phi0_ref [lemma, in hydras.OrdinalNotations.OmegaOmega]
    +LO.plus [definition, in hydras.OrdinalNotations.OmegaOmega]
    +LO.plus_assoc [instance, in hydras.OrdinalNotations.OmegaOmega]
    +LO.plus_nf [lemma, in hydras.OrdinalNotations.OmegaOmega]
    +LO.plus_ref [lemma, in hydras.OrdinalNotations.OmegaOmega]
    +LO.refine [definition, in hydras.OrdinalNotations.OmegaOmega]
    +LO.single_nf [lemma, in hydras.OrdinalNotations.OmegaOmega]
    +LO.succ [definition, in hydras.OrdinalNotations.OmegaOmega]
    +LO.succb [definition, in hydras.OrdinalNotations.OmegaOmega]
    +LO.succb_ref [lemma, in hydras.OrdinalNotations.OmegaOmega]
    +LO.succ_nf [lemma, in hydras.OrdinalNotations.OmegaOmega]
    +LO.succ_ref [lemma, in hydras.OrdinalNotations.OmegaOmega]
    +LO.t [definition, in hydras.OrdinalNotations.OmegaOmega]
    +LO.zero [definition, in hydras.OrdinalNotations.OmegaOmega]
    +LO.zero_nf [lemma, in hydras.OrdinalNotations.OmegaOmega]
    +_ * _ (lo_scope) [notation, in hydras.OrdinalNotations.OmegaOmega]
    +_ + _ (lo_scope) [notation, in hydras.OrdinalNotations.OmegaOmega]
    +LS [lemma, in hydras.solutions_exercises.FibonacciPR]
    +LS [lemma, in hydras.Hydra.BigBattle]
    +ls1:246 [binder, in hydras.rpo.rpo]
    +ls1:251 [binder, in hydras.rpo.rpo]
    +ls2:247 [binder, in hydras.rpo.rpo]
    +ls2:252 [binder, in hydras.rpo.rpo]
    +ls:164 [binder, in hydras.rpo.rpo]
    +ls:232 [binder, in hydras.rpo.rpo]
    +ls:241 [binder, in hydras.rpo.rpo]
    +ls:69 [binder, in hydras.rpo.rpo]
    +LT [definition, in hydras.Epsilon0.T1]
    +lt [definition, in hydras.Epsilon0.T1]
    +lt [inductive, in hydras.Gamma0.T2]
    +lt [definition, in hydras.OrdinalNotations.ON_O]
    +lt [definition, in hydras.Prelude.DecPreOrder]
    +LT [abbreviation, in hydras.solutions_exercises.MultisetWf]
    +LT [abbreviation, in gaia_hydras.T1Bridge]
    +lt [definition, in hydras.OrdinalNotations.ON_mult]
    +lt [definition, in hydras.OrdinalNotations.ON_plus]
    +lt [axiom, in hydras.Schutte.Schutte_basics]
    +lt [definition, in hydras.OrdinalNotations.ON_Finite]
    +ltA:107 [binder, in hydras.OrdinalNotations.ON_Generic]
    +ltA:122 [binder, in hydras.OrdinalNotations.ON_Generic]
    +ltA:134 [binder, in hydras.OrdinalNotations.ON_Generic]
    +ltA:147 [binder, in hydras.OrdinalNotations.ON_Generic]
    +ltA:160 [binder, in hydras.OrdinalNotations.ON_Generic]
    +ltA:172 [binder, in hydras.OrdinalNotations.ON_Generic]
    +ltA:185 [binder, in hydras.OrdinalNotations.ON_Generic]
    +ltA:199 [binder, in hydras.OrdinalNotations.ON_Generic]
    +ltA:2 [binder, in hydras.OrdinalNotations.ON_mult]
    +ltA:2 [binder, in hydras.OrdinalNotations.ON_plus]
    +ltA:30 [binder, in hydras.OrdinalNotations.ON_Generic]
    +ltA:33 [binder, in hydras.solutions_exercises.MultisetWf]
    +ltA:36 [binder, in hydras.solutions_exercises.MultisetWf]
    +ltA:49 [binder, in hydras.OrdinalNotations.ON_Generic]
    +ltA:68 [binder, in hydras.OrdinalNotations.ON_Generic]
    +ltA:69 [binder, in hydras.solutions_exercises.MultisetWf]
    +ltA:82 [binder, in hydras.OrdinalNotations.ON_Generic]
    +ltA:94 [binder, in hydras.OrdinalNotations.ON_Generic]
    +ltBool [definition, in hydras.Ackermann.primRec]
    +ltBoolFalse [lemma, in hydras.Ackermann.primRec]
    +ltBoolTrue [lemma, in hydras.Ackermann.primRec]
    +Ltb_ij [lemma, in hydras.OrdinalNotations.ON_Finite]
    +ltB:111 [binder, in hydras.OrdinalNotations.ON_Generic]
    +ltB:126 [binder, in hydras.OrdinalNotations.ON_Generic]
    +ltB:138 [binder, in hydras.OrdinalNotations.ON_Generic]
    +ltB:151 [binder, in hydras.OrdinalNotations.ON_Generic]
    +ltB:164 [binder, in hydras.OrdinalNotations.ON_Generic]
    +ltB:176 [binder, in hydras.OrdinalNotations.ON_Generic]
    +ltB:189 [binder, in hydras.OrdinalNotations.ON_Generic]
    +ltB:203 [binder, in hydras.OrdinalNotations.ON_Generic]
    +ltB:34 [binder, in hydras.OrdinalNotations.ON_Generic]
    +ltB:53 [binder, in hydras.OrdinalNotations.ON_Generic]
    +ltB:6 [binder, in hydras.OrdinalNotations.ON_mult]
    +ltB:6 [binder, in hydras.OrdinalNotations.ON_plus]
    +ltB:86 [binder, in hydras.OrdinalNotations.ON_Generic]
    +ltB:98 [binder, in hydras.OrdinalNotations.ON_Generic]
    +LTFormula [definition, in hydras.Ackermann.LNN2LNT]
    +ltIsPR [instance, in hydras.Ackermann.primRec]
    +ltn_add_ll [lemma, in gaia_hydras.nfwfgaia]
    +ltn_add_el [lemma, in gaia_hydras.nfwfgaia]
    +ltn_add_le [lemma, in gaia_hydras.nfwfgaia]
    +ltn_simpl2 [lemma, in gaia_hydras.nfwfgaia]
    +ltn_simpl1 [lemma, in gaia_hydras.nfwfgaia]
    +lt_succ_le_2' [lemma, in hydras.Epsilon0.T1]
    +LT_succ_LT_eq_dec [lemma, in hydras.Epsilon0.T1]
    +lt_one [lemma, in hydras.Epsilon0.T1]
    +lt_cons_phi0_inv [lemma, in hydras.Epsilon0.T1]
    +LT_eq_LT_dec [lemma, in hydras.Epsilon0.T1]
    +LT_succ [lemma, in hydras.Epsilon0.T1]
    +LT_add [lemma, in hydras.Epsilon0.T1]
    +lt_plus_r [lemma, in hydras.Epsilon0.T1]
    +lt_plus_l [lemma, in hydras.Epsilon0.T1]
    +LT_of_finite [lemma, in hydras.Epsilon0.T1]
    +lt_omega_inv [lemma, in hydras.Epsilon0.T1]
    +LT_one [lemma, in hydras.Epsilon0.T1]
    +LT_succ_LE_2 [lemma, in hydras.Epsilon0.T1]
    +LT_succ_LE [lemma, in hydras.Epsilon0.T1]
    +lt_succ_le [lemma, in hydras.Epsilon0.T1]
    +lt_succ_le_2 [lemma, in hydras.Epsilon0.T1]
    +LT_succ_LE_R [lemma, in hydras.Epsilon0.T1]
    +lt_succ_le_R [lemma, in hydras.Epsilon0.T1]
    +LT_cons_0 [lemma, in hydras.Epsilon0.T1]
    +LT_inv_strong [lemma, in hydras.Epsilon0.T1]
    +LT_right [constructor, in hydras.Epsilon0.T1]
    +LT_middle [constructor, in hydras.Epsilon0.T1]
    +LT_left [constructor, in hydras.Epsilon0.T1]
    +LT_cases [inductive, in hydras.Epsilon0.T1]
    +LT_inv [lemma, in hydras.Epsilon0.T1]
    +LT_St [instance, in hydras.Epsilon0.T1]
    +LT_LE_trans [lemma, in hydras.Epsilon0.T1]
    +LT_irrefl [lemma, in hydras.Epsilon0.T1]
    +LT_trans [lemma, in hydras.Epsilon0.T1]
    +LT_lt [lemma, in hydras.Epsilon0.T1]
    +LT_nf_r [lemma, in hydras.Epsilon0.T1]
    +LT_nf_l [lemma, in hydras.Epsilon0.T1]
    +lt_a_phi0_b_iff [lemma, in hydras.Epsilon0.T1]
    +lt_a_phi0_b_def [lemma, in hydras.Epsilon0.T1]
    +lt_a_phi0_b_phi0R [lemma, in hydras.Epsilon0.T1]
    +lt_a_phi0_b_phi0 [lemma, in hydras.Epsilon0.T1]
    +lt_a_phi0_b_intro [lemma, in hydras.Epsilon0.T1]
    +lt_a_phi0_b_inv1 [lemma, in hydras.Epsilon0.T1]
    +lt_le_dec [definition, in hydras.Epsilon0.T1]
    +lt_eq_lt_dec [definition, in hydras.Epsilon0.T1]
    +lt_a_phi0_b_inv [lemma, in hydras.Epsilon0.T1]
    +lt_a_phi0_a [lemma, in hydras.Epsilon0.T1]
    +lt_succ [lemma, in hydras.Epsilon0.T1]
    +lt_a_phi0_b_c [constructor, in hydras.Epsilon0.T1]
    +lt_a_phi0_b_z [constructor, in hydras.Epsilon0.T1]
    +lt_a_phi0_b [inductive, in hydras.Epsilon0.T1]
    +lt_dec [instance, in hydras.Epsilon0.T1]
    +lt_inv_head [lemma, in hydras.Epsilon0.T1]
    +lt_trans [lemma, in hydras.Epsilon0.T1]
    +lt_fin_iff [lemma, in hydras.Epsilon0.T1]
    +lt_inv_tail [lemma, in hydras.Epsilon0.T1]
    +lt_inv_coeff_dec [lemma, in hydras.Epsilon0.T1]
    +lt_inv_coeff [lemma, in hydras.Epsilon0.T1]
    +lt_inv [lemma, in hydras.Epsilon0.T1]
    +lt_irrefl [lemma, in hydras.Epsilon0.T1]
    +lt_inv_strong [lemma, in hydras.Epsilon0.T1]
    +lt_right [constructor, in hydras.Epsilon0.T1]
    +lt_middle [constructor, in hydras.Epsilon0.T1]
    +lt_left [constructor, in hydras.Epsilon0.T1]
    +lt_cases [inductive, in hydras.Epsilon0.T1]
    +lt_omega [lemma, in hydras.OrdinalNotations.ON_Omega2]
    +lt_eq_lt_dec [lemma, in hydras.OrdinalNotations.ON_Omega2]
    +lt_succ [lemma, in hydras.OrdinalNotations.ON_Omega2]
    +lt_succ_le [lemma, in hydras.OrdinalNotations.ON_Omega2]
    +lt_epsilon0 [inductive, in hydras.Gamma0.T2]
    +lt_7 [constructor, in hydras.Gamma0.T2]
    +lt_6 [constructor, in hydras.Gamma0.T2]
    +lt_5 [constructor, in hydras.Gamma0.T2]
    +lt_4 [constructor, in hydras.Gamma0.T2]
    +lt_3 [constructor, in hydras.Gamma0.T2]
    +lt_2 [constructor, in hydras.Gamma0.T2]
    +lt_1 [constructor, in hydras.Gamma0.T2]
    +lt_lt_Sn [lemma, in hydras.Prelude.More_Arith]
    +LT_to_round_plus [lemma, in hydras.Hydra.O2H]
    +Lt_n_F_Zero_n [lemma, in hydras.Epsilon0.F_alpha]
    +lt_eq_lt_dec [definition, in hydras.Prelude.Comparable]
    +lt_eq_lt [lemma, in hydras.Prelude.Comparable]
    +lt_incl_le [lemma, in hydras.Prelude.Comparable]
    +lt_le_trans [lemma, in hydras.Prelude.Comparable]
    +lt_not_ge [lemma, in hydras.Prelude.Comparable]
    +lt_not_gt [lemma, in hydras.Prelude.Comparable]
    +lt_irrefl [abbreviation, in hydras.Prelude.Comparable]
    +lt_trans [abbreviation, in hydras.Prelude.Comparable]
    +lt_wf [lemma, in hydras.OrdinalNotations.ON_O]
    +LT_to_standard_path [lemma, in gaia_hydras.GPaths]
    +LT_path_to [lemma, in gaia_hydras.GPaths]
    +lt_a_phi0_b_oplus [lemma, in hydras.Epsilon0.Hessenberg]
    +lt_transitive [instance, in hydras.Prelude.DecPreOrder]
    +lt_le_trans [lemma, in hydras.Prelude.DecPreOrder]
    +lt_not_equiv [lemma, in hydras.Prelude.DecPreOrder]
    +lt_not_ge [lemma, in hydras.Prelude.DecPreOrder]
    +lt_irreflexive [lemma, in hydras.Prelude.DecPreOrder]
    +lt_S_2i [lemma, in additions.More_on_positive]
    +lt_phi0 [lemma, in hydras.Schutte.AP]
    +lt_beta_exists [lemma, in hydras.Schutte.AP]
    +lt_omega [lemma, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +lt_succ [lemma, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +lt_succ_le [lemma, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +lt_le_trans [lemma, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +LT_inv [lemma, in hydras.solutions_exercises.MultisetWf]
    +lt_wf_double_ind [lemma, in hydras.MoreAck.Ack]
    +lt_wf_ind [lemma, in hydras.MoreAck.Ack]
    +LT_ref [lemma, in gaia_hydras.T1Bridge]
    +lt_ref [lemma, in gaia_hydras.T1Bridge]
    +lt_eq_lt_dec [lemma, in hydras.OrdinalNotations.ON_mult]
    +lt_wf [lemma, in hydras.OrdinalNotations.ON_mult]
    +lt_strorder [instance, in hydras.OrdinalNotations.ON_mult]
    +LT_to_standard_battle [lemma, in hydras.Hydra.Epsilon0_Needed_Std]
    +lt_eq_lt_dec [lemma, in hydras.OrdinalNotations.ON_plus]
    +lt_wf [lemma, in hydras.OrdinalNotations.ON_plus]
    +lt_strorder [instance, in hydras.OrdinalNotations.ON_plus]
    +lt_depth [definition, in hydras.Ackermann.fol]
    +lt_omega_finite [lemma, in hydras.Schutte.Schutte_basics]
    +lt_omega_limit_lt_exists_lt [lemma, in hydras.Schutte.Schutte_basics]
    +lt_omega_limit [lemma, in hydras.Schutte.Schutte_basics]
    +lt_sup_exists_lt [lemma, in hydras.Schutte.Schutte_basics]
    +lt_sup_exists_leq [lemma, in hydras.Schutte.Schutte_basics]
    +lt_succ_lt [lemma, in hydras.Schutte.Schutte_basics]
    +lt_succ_le_2 [lemma, in hydras.Schutte.Schutte_basics]
    +lt_succ_le [lemma, in hydras.Schutte.Schutte_basics]
    +lt_succ [lemma, in hydras.Schutte.Schutte_basics]
    +lt_or_ge [lemma, in hydras.Schutte.Schutte_basics]
    +lt_irrefl [lemma, in hydras.Schutte.Schutte_basics]
    +lt_le_trans [lemma, in hydras.Schutte.Schutte_basics]
    +lt_trans [lemma, in hydras.Schutte.Schutte_basics]
    +lt_le [lemma, in hydras.Schutte.Schutte_basics]
    +lt_wf [lemma, in hydras.OrdinalNotations.ON_Finite]
    +lt_omega_inv [lemma, in hydras.Epsilon0.E0]
    +Lt_Le_incl [lemma, in hydras.Epsilon0.E0]
    +Lt_trans [lemma, in hydras.Epsilon0.E0]
    +lt_Succ_le_2 [lemma, in hydras.Epsilon0.E0]
    +lt_Succ_inv [lemma, in hydras.Epsilon0.E0]
    +Lt_Succ [lemma, in hydras.Epsilon0.E0]
    +Lt_Succ_Le [lemma, in hydras.Epsilon0.E0]
    +Lt_not_Gt [lemma, in hydras.Schutte.Well_Orders]
    +Lt_Le_trans [lemma, in hydras.Schutte.Well_Orders]
    +Lt_connect [lemma, in hydras.Schutte.Well_Orders]
    +Lt_irreflexive [projection, in hydras.Schutte.Well_Orders]
    +Lt_trans [projection, in hydras.Schutte.Well_Orders]
    +LT_to_standard_path [lemma, in hydras.Epsilon0.Paths]
    +LT_acc_from [lemma, in hydras.Epsilon0.Paths]
    +LT_path_to [lemma, in hydras.Epsilon0.Paths]
    +LT_path_toS [lemma, in hydras.Epsilon0.Paths]
    +lt_not_gt [lemma, in hydras.Gamma0.Gamma0]
    +lt_epsilon0_succ [lemma, in hydras.Gamma0.Gamma0]
    +lt_epsilon0_trans [lemma, in hydras.Gamma0.Gamma0]
    +lt_epsilon0_okR [lemma, in hydras.Gamma0.Gamma0]
    +lt_epsilon0_ok [lemma, in hydras.Gamma0.Gamma0]
    +lt_a_phi_ab [lemma, in hydras.Gamma0.Gamma0]
    +lt_inc_rpo_0 [lemma, in hydras.Gamma0.Gamma0]
    +lt_rpo_cons_cons [lemma, in hydras.Gamma0.Gamma0]
    +lt_incl_rpo.H [variable, in hydras.Gamma0.Gamma0]
    +lt_incl_rpo.nf2 [variable, in hydras.Gamma0.Gamma0]
    +lt_incl_rpo.nf1 [variable, in hydras.Gamma0.Gamma0]
    +lt_incl_rpo.Hrec [variable, in hydras.Gamma0.Gamma0]
    +lt_incl_rpo.Hsize [variable, in hydras.Gamma0.Gamma0]
    +lt_incl_rpo.n2 [variable, in hydras.Gamma0.Gamma0]
    +lt_incl_rpo.n1 [variable, in hydras.Gamma0.Gamma0]
    +lt_incl_rpo.c2 [variable, in hydras.Gamma0.Gamma0]
    +lt_incl_rpo.b2 [variable, in hydras.Gamma0.Gamma0]
    +lt_incl_rpo.a2 [variable, in hydras.Gamma0.Gamma0]
    +lt_incl_rpo.c1 [variable, in hydras.Gamma0.Gamma0]
    +lt_incl_rpo.b1 [variable, in hydras.Gamma0.Gamma0]
    +lt_incl_rpo.a1 [variable, in hydras.Gamma0.Gamma0]
    +lt_incl_rpo.s [variable, in hydras.Gamma0.Gamma0]
    +lt_incl_rpo [section, in hydras.Gamma0.Gamma0]
    +lt_subterm1 [lemma, in hydras.Gamma0.Gamma0]
    +lt_succ_le [lemma, in hydras.Gamma0.Gamma0]
    +lt_succ [lemma, in hydras.Gamma0.Gamma0]
    +lt_compatR [lemma, in hydras.Gamma0.Gamma0]
    +lt_compat [lemma, in hydras.Gamma0.Gamma0]
    +lt_omega_is_fin [lemma, in hydras.Gamma0.Gamma0]
    +lt_omega_inv [lemma, in hydras.Gamma0.Gamma0]
    +lt_cons_omega_inv [lemma, in hydras.Gamma0.Gamma0]
    +lt_one_inv [lemma, in hydras.Gamma0.Gamma0]
    +lt_tail [lemma, in hydras.Gamma0.Gamma0]
    +lt_tail0 [lemma, in hydras.Gamma0.Gamma0]
    +lt_alpha_cons [lemma, in hydras.Gamma0.Gamma0]
    +lt_alpha_psi [lemma, in hydras.Gamma0.Gamma0]
    +lt_beta_cons [lemma, in hydras.Gamma0.Gamma0]
    +lt_beta_psi [lemma, in hydras.Gamma0.Gamma0]
    +lt_le_trans [lemma, in hydras.Gamma0.Gamma0]
    +lt_trans [lemma, in hydras.Gamma0.Gamma0]
    +lt_trans0 [lemma, in hydras.Gamma0.Gamma0]
    +lt_ge_dec [definition, in hydras.Gamma0.Gamma0]
    +lt_eq_lt_dec [definition, in hydras.Gamma0.Gamma0]
    +lt_than_psi [lemma, in hydras.Gamma0.Gamma0]
    +lt_irr [lemma, in hydras.Gamma0.Gamma0]
    +lt_wf [lemma, in gaia_hydras.nfwfgaia]
    +LT_ [constructor, in hydras.Ackermann.Languages]
    +lt_not_wf [lemma, in hydras.solutions_exercises.T1_ltNotWf]
    +lt_succ_le [library]
    +LT1 [lemma, in hydras.Epsilon0.T1]
    +LT2 [lemma, in hydras.Epsilon0.T1]
    +LT3 [lemma, in hydras.Epsilon0.T1]
    +LT4 [lemma, in hydras.Epsilon0.T1]
    +Lt:109 [binder, in hydras.Hydra.Hydra_Lemmas]
    +lt:12 [binder, in hydras.OrdinalNotations.ON_Generic]
    +lt:129 [binder, in hydras.Hydra.Hydra_Lemmas]
    +lt:13 [binder, in hydras.Prelude.Comparable]
    +Lt:145 [binder, in hydras.Hydra.Hydra_Definitions]
    +Lt:155 [binder, in hydras.Hydra.Hydra_Definitions]
    +lt:2 [binder, in hydras.solutions_exercises.predSuccUnicity]
    +Lt:2 [binder, in hydras.OrdinalNotations.ON_O]
    +lt:2 [binder, in hydras.Prelude.MoreOrders]
    +lt:2 [binder, in hydras.solutions_exercises.lt_succ_le]
    +lt:2 [binder, in hydras.OrdinalNotations.ON_Generic]
    +lt:23 [binder, in hydras.Prelude.MoreOrders]
    +lt:3 [binder, in hydras.Schutte.Lub]
    +lt:43 [binder, in hydras.Prelude.MoreOrders]
    +lt:47 [binder, in hydras.Prelude.MoreOrders]
    +lt:5 [binder, in hydras.Prelude.Comparable]
    +Lt:52 [binder, in hydras.Schutte.Well_Orders]
    +Lt:57 [binder, in hydras.Schutte.Well_Orders]
    +lt:8 [binder, in hydras.OrdinalNotations.ON_Generic]
    +lt:9 [binder, in hydras.Schutte.Lub]
    +Lt:99 [binder, in hydras.Hydra.Hydra_Lemmas]
    +lub [definition, in hydras.Gamma0.Gamma0]
    +Lub [library]
    +lub_mono [lemma, in hydras.Gamma0.Gamma0]
    +lub_unicity [lemma, in hydras.Gamma0.Gamma0]
    +Lvar [lemma, in hydras.Hydra.Epsilon0_Needed_Std]
    +L_3_plus_omega [definition, in hydras.OrdinalNotations.ON_Omega2]
    +L_omega_cube_3_eq [lemma, in hydras.Epsilon0.Large_Sets]
    +L_omega_cube_eqn [lemma, in hydras.Epsilon0.Large_Sets]
    +L_omega_cube_ok [lemma, in hydras.Epsilon0.Large_Sets]
    +L_omega_cube [definition, in hydras.Epsilon0.Large_Sets]
    +L_omega_square_times_ok [lemma, in hydras.Epsilon0.Large_Sets]
    +L_omega_square_times [definition, in hydras.Epsilon0.Large_Sets]
    +L_phi0_mult_Sle [lemma, in hydras.Epsilon0.Large_Sets]
    +L_phi0_mult_smono [lemma, in hydras.Epsilon0.Large_Sets]
    +L_phi0_mult_ok [lemma, in hydras.Epsilon0.Large_Sets]
    +L_phi0_mult [definition, in hydras.Epsilon0.Large_Sets]
    +L_omega_square_ok [lemma, in hydras.Epsilon0.Large_Sets]
    +L_omega_square_smono [lemma, in hydras.Epsilon0.Large_Sets]
    +L_omega_square_Sle [lemma, in hydras.Epsilon0.Large_Sets]
    +L_omega_square_eqn [lemma, in hydras.Epsilon0.Large_Sets]
    +L_omega_square_eqn1 [lemma, in hydras.Epsilon0.Large_Sets]
    +L_omega_square [definition, in hydras.Epsilon0.Large_Sets]
    +L_omega_mult_eqn [lemma, in hydras.Epsilon0.Large_Sets]
    +L_omega_mult_ok [lemma, in hydras.Epsilon0.Large_Sets]
    +L_omega_mult_Sle [lemma, in hydras.Epsilon0.Large_Sets]
    +L_omega_mult [definition, in hydras.Epsilon0.Large_Sets]
    +L_omega_ok [lemma, in hydras.Epsilon0.Large_Sets]
    +L_omega_smono [lemma, in hydras.Epsilon0.Large_Sets]
    +L_omega_Sle [lemma, in hydras.Epsilon0.Large_Sets]
    +L_omega [definition, in hydras.Epsilon0.Large_Sets]
    +L_fin_ok [lemma, in hydras.Epsilon0.Large_Sets]
    +L_S_succ_rw [lemma, in hydras.Epsilon0.Large_Sets]
    +L_fin_smono [lemma, in hydras.Epsilon0.Large_Sets]
    +L_finS_S_le [lemma, in hydras.Epsilon0.Large_Sets]
    +L_fin [definition, in hydras.Epsilon0.Large_Sets]
    +L_lim_ok [lemma, in hydras.Epsilon0.Large_Sets]
    +L_lim [definition, in hydras.Epsilon0.Large_Sets]
    +L_succ_ok [lemma, in hydras.Epsilon0.Large_Sets]
    +L_succ_Sle [lemma, in hydras.Epsilon0.Large_Sets]
    +L_succ_mono [lemma, in hydras.Epsilon0.Large_Sets]
    +L_succ [definition, in hydras.Epsilon0.Large_Sets]
    +L_spec_unicity [lemma, in hydras.Epsilon0.Large_Sets]
    +L_pos_inv [lemma, in hydras.Epsilon0.Large_Sets]
    +L_zero_inv [lemma, in hydras.Epsilon0.Large_Sets]
    +L_spec_compat [lemma, in hydras.Epsilon0.Large_Sets]
    +L_spec_inv2 [lemma, in hydras.Epsilon0.Large_Sets]
    +L_test [definition, in hydras.Epsilon0.Large_Sets]
    +L_spec1 [constructor, in hydras.Epsilon0.Large_Sets]
    +L_spec0 [constructor, in hydras.Epsilon0.Large_Sets]
    +L_spec [inductive, in hydras.Epsilon0.Large_Sets]
    +L_correct [lemma, in hydras.Epsilon0.L_alpha]
    +L_ok [lemma, in hydras.Epsilon0.L_alpha]
    +L_ok_lim [lemma, in hydras.Epsilon0.L_alpha]
    +L_ok_succ [lemma, in hydras.Epsilon0.L_alpha]
    +L_ok0 [lemma, in hydras.Epsilon0.L_alpha]
    +L_correct_proof.P [variable, in hydras.Epsilon0.L_alpha]
    +L_correct_proof [section, in hydras.Epsilon0.L_alpha]
    +L_succ_ok [lemma, in hydras.Epsilon0.L_alpha]
    +L_ge_S [lemma, in hydras.Epsilon0.L_alpha]
    +L_ge_id [lemma, in hydras.Epsilon0.L_alpha]
    +L_omega [lemma, in hydras.Epsilon0.L_alpha]
    +L_finite [lemma, in hydras.Epsilon0.L_alpha]
    +L_lim_eqn [lemma, in hydras.Epsilon0.L_alpha]
    +L_succ_eqn [lemma, in hydras.Epsilon0.L_alpha]
    +L_eq2 [lemma, in hydras.Epsilon0.L_alpha]
    +L_zero_eqn [lemma, in hydras.Epsilon0.L_alpha]
    +L_ [definition, in hydras.Epsilon0.L_alpha]
    +L_3_plus_omega [instance, in hydras.OrdinalNotations.Example_3PlusOmega]
    +l_std_ok [lemma, in hydras.Hydra.Battle_length]
    +l_std [definition, in hydras.Hydra.Battle_length]
    +L_0_3 [lemma, in hydras.Hydra.BigBattle]
    +L_2_3 [lemma, in hydras.Hydra.BigBattle]
    +L_0_2 [lemma, in hydras.Hydra.BigBattle]
    +l_std_ok [lemma, in gaia_hydras.GHydra]
    +l_stdE [lemma, in gaia_hydras.GHydra]
    +l_std [definition, in gaia_hydras.GHydra]
    +L_fin_ok [lemma, in gaia_hydras.GLarge_Sets]
    +L_spec [definition, in gaia_hydras.GLarge_Sets]
    +L_3_plus_omega [definition, in hydras.Epsilon0.E0]
    +L_correct [lemma, in gaia_hydras.GL_alpha]
    +L_pos_inv [lemma, in gaia_hydras.GL_alpha]
    +L_spec1 [lemma, in gaia_hydras.GL_alpha]
    +L_spec0 [lemma, in gaia_hydras.GL_alpha]
    +L_spec [definition, in gaia_hydras.GL_alpha]
    +L_ge_S [lemma, in gaia_hydras.GL_alpha]
    +L_ge_id [lemma, in gaia_hydras.GL_alpha]
    +L_omega [lemma, in gaia_hydras.GL_alpha]
    +L_finite [lemma, in gaia_hydras.GL_alpha]
    +L_limE [lemma, in gaia_hydras.GL_alpha]
    +L_succE [lemma, in gaia_hydras.GL_alpha]
    +L_eq2 [lemma, in gaia_hydras.GL_alpha]
    +L_zeroE [lemma, in gaia_hydras.GL_alpha]
    +L_ [definition, in gaia_hydras.GL_alpha]
    +L_3_plus_omega [definition, in hydras.Schutte.Addition]
    +L_alpha [library]
    +l'':55 [binder, in hydras.solutions_exercises.MultisetWf]
    +l'':56 [binder, in hydras.solutions_exercises.MultisetWf]
    +l'':58 [binder, in hydras.solutions_exercises.MultisetWf]
    +l'1:118 [binder, in hydras.Prelude.MoreLists]
    +l'1:150 [binder, in hydras.Prelude.MoreLists]
    +l':105 [binder, in hydras.Prelude.Merge_Sort]
    +l':114 [binder, in hydras.Prelude.MoreLists]
    +l':123 [binder, in hydras.Prelude.MoreLists]
    +l':13 [binder, in hydras.solutions_exercises.MultisetWf]
    +l':130 [binder, in hydras.Prelude.MoreLists]
    +l':135 [binder, in hydras.Prelude.MoreLists]
    +l':139 [binder, in hydras.Schutte.Schutte_basics]
    +l':14 [binder, in gaia_hydras.GLarge_Sets]
    +l':140 [binder, in hydras.Prelude.MoreLists]
    +l':143 [binder, in hydras.rpo.rpo]
    +l':146 [binder, in hydras.Prelude.MoreLists]
    +l':147 [binder, in hydras.rpo.rpo]
    +l':15 [binder, in hydras.Hydra.Hydra_Definitions]
    +l':151 [binder, in hydras.rpo.rpo]
    +l':158 [binder, in hydras.rpo.rpo]
    +l':161 [binder, in hydras.rpo.rpo]
    +l':167 [binder, in hydras.rpo.rpo]
    +l':171 [binder, in hydras.rpo.rpo]
    +l':19 [binder, in hydras.solutions_exercises.MultisetWf]
    +l':192 [binder, in hydras.rpo.more_list]
    +l':20 [binder, in additions.Trace_exercise]
    +l':218 [binder, in hydras.rpo.rpo]
    +l':222 [binder, in hydras.rpo.rpo]
    +l':224 [binder, in hydras.rpo.rpo]
    +l':23 [binder, in hydras.solutions_exercises.MultisetWf]
    +l':235 [binder, in hydras.rpo.rpo]
    +l':244 [binder, in hydras.rpo.rpo]
    +l':267 [binder, in hydras.rpo.rpo]
    +l':27 [binder, in hydras.Epsilon0.Large_Sets]
    +l':30 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +l':34 [binder, in hydras.Prelude.Merge_Sort]
    +l':37 [binder, in hydras.Prelude.Sort_spec]
    +l':41 [binder, in hydras.Prelude.Merge_Sort]
    +l':43 [binder, in hydras.Prelude.Merge_Sort]
    +l':46 [binder, in hydras.Prelude.Merge_Sort]
    +l':48 [binder, in hydras.Hydra.O2H]
    +l':48 [binder, in hydras.rpo.rpo]
    +l':52 [binder, in hydras.solutions_exercises.MultisetWf]
    +l':52 [binder, in hydras.Prelude.Merge_Sort]
    +l':52 [binder, in hydras.rpo.rpo]
    +l':56 [binder, in hydras.rpo.rpo]
    +l':57 [binder, in hydras.Schutte.CNF]
    +l':614 [binder, in hydras.Gamma0.Gamma0]
    +l':618 [binder, in hydras.Gamma0.Gamma0]
    +l':63 [binder, in hydras.rpo.rpo]
    +l':66 [binder, in hydras.rpo.rpo]
    +l':699 [binder, in hydras.Epsilon0.T1]
    +l':72 [binder, in hydras.rpo.rpo]
    +l':73 [binder, in hydras.solutions_exercises.MultisetWf]
    +l':8 [binder, in hydras.Prelude.Sort_spec]
    +l':89 [binder, in hydras.Ackermann.primRec]
    +l':93 [binder, in hydras.Ackermann.primRec]
    +l':97 [binder, in hydras.Prelude.Merge_Sort]
    +l':99 [binder, in hydras.Prelude.Merge_Sort]
    +L0 [lemma, in hydras.Epsilon0.T1]
    +L0 [lemma, in additions.AM]
    +L0 [lemma, in hydras.solutions_exercises.FibonacciPR]
    +L0_95 [lemma, in hydras.Hydra.BigBattle]
    +L00 [lemma, in hydras.Epsilon0.F_omega]
    +L02 [lemma, in hydras.Epsilon0.F_omega]
    +L03 [lemma, in hydras.Epsilon0.T1]
    +L04 [lemma, in hydras.solutions_exercises.F_3]
    +L04' [lemma, in hydras.solutions_exercises.F_3]
    +L05 [lemma, in hydras.Epsilon0.T1]
    +L06 [lemma, in hydras.Hydra.Battle_length]
    +l0:152 [binder, in hydras.Prelude.MoreLists]
    +l0:296 [binder, in hydras.Ackermann.codeFreeVar]
    +l0:298 [binder, in hydras.Ackermann.codeFreeVar]
    +l0:298 [binder, in hydras.Ackermann.codeList]
    +l0:300 [binder, in hydras.Ackermann.codeList]
    +L1 [lemma, in hydras.Epsilon0.T1]
    +L1 [lemma, in hydras.solutions_exercises.predSuccUnicity]
    +L1 [lemma, in hydras.MoreAck.expressibleExamples]
    +L1 [lemma, in hydras.solutions_exercises.Limit_Infinity]
    +L1 [lemma, in hydras.solutions_exercises.FibonacciPR]
    +L1 [lemma, in hydras.solutions_exercises.lt_succ_le]
    +L1' [lemma, in gaia_hydras.T1Bridge]
    +L10 [lemma, in hydras.Epsilon0.T1]
    +L10 [lemma, in hydras.Hydra.BigBattle]
    +L11 [lemma, in hydras.Epsilon0.T1]
    +L12 [lemma, in hydras.Epsilon0.T1]
    +L13 [lemma, in hydras.Epsilon0.T1]
    +L14 [lemma, in hydras.Epsilon0.T1]
    +l1:100 [binder, in hydras.Prelude.Merge_Sort]
    +l1:101 [binder, in hydras.rpo.list_set]
    +l1:101 [binder, in hydras.rpo.list_permut]
    +l1:104 [binder, in hydras.Ackermann.primRec]
    +l1:107 [binder, in hydras.rpo.list_set]
    +l1:108 [binder, in hydras.Prelude.Merge_Sort]
    +l1:11 [binder, in hydras.rpo.list_permut]
    +l1:110 [binder, in hydras.rpo.more_list]
    +l1:114 [binder, in hydras.rpo.list_set]
    +l1:117 [binder, in hydras.Prelude.MoreLists]
    +l1:119 [binder, in hydras.rpo.list_set]
    +l1:12 [binder, in hydras.Prelude.Merge_Sort]
    +l1:122 [binder, in hydras.rpo.list_set]
    +l1:123 [binder, in hydras.Prelude.Merge_Sort]
    +l1:126 [binder, in hydras.rpo.more_list]
    +l1:127 [binder, in hydras.rpo.list_set]
    +l1:13 [binder, in hydras.rpo.list_permut]
    +l1:131 [binder, in hydras.Prelude.Merge_Sort]
    +l1:134 [binder, in hydras.rpo.list_set]
    +l1:138 [binder, in hydras.Prelude.Merge_Sort]
    +l1:141 [binder, in additions.fib]
    +l1:141 [binder, in hydras.rpo.list_set]
    +l1:145 [binder, in hydras.rpo.list_set]
    +l1:146 [binder, in hydras.Prelude.Merge_Sort]
    +l1:149 [binder, in hydras.Prelude.MoreLists]
    +l1:149 [binder, in hydras.rpo.list_set]
    +l1:157 [binder, in hydras.Prelude.Merge_Sort]
    +l1:161 [binder, in hydras.Prelude.Merge_Sort]
    +l1:165 [binder, in hydras.Prelude.Merge_Sort]
    +l1:17 [binder, in hydras.Prelude.Merge_Sort]
    +l1:170 [binder, in hydras.Prelude.Merge_Sort]
    +l1:178 [binder, in hydras.Prelude.MoreLists]
    +l1:18 [binder, in hydras.rpo.more_list]
    +l1:18 [binder, in hydras.rpo.dickson]
    +l1:181 [binder, in hydras.Prelude.Merge_Sort]
    +l1:184 [binder, in hydras.rpo.more_list]
    +l1:185 [binder, in hydras.Ackermann.fol]
    +l1:186 [binder, in hydras.rpo.term]
    +l1:191 [binder, in hydras.Prelude.Merge_Sort]
    +l1:191 [binder, in hydras.Ackermann.fol]
    +l1:195 [binder, in hydras.Prelude.MoreLists]
    +l1:197 [binder, in hydras.Prelude.MoreLists]
    +l1:197 [binder, in hydras.rpo.more_list]
    +l1:198 [binder, in hydras.Prelude.Merge_Sort]
    +l1:199 [binder, in hydras.rpo.more_list]
    +l1:203 [binder, in hydras.Prelude.MoreLists]
    +l1:21 [binder, in hydras.rpo.list_permut]
    +l1:212 [binder, in hydras.Prelude.MoreLists]
    +l1:219 [binder, in hydras.Prelude.MoreLists]
    +l1:22 [binder, in hydras.rpo.dickson]
    +l1:23 [binder, in hydras.rpo.list_permut]
    +l1:233 [binder, in hydras.rpo.list_set]
    +l1:234 [binder, in hydras.rpo.term]
    +l1:236 [binder, in hydras.rpo.term]
    +l1:236 [binder, in hydras.rpo.list_set]
    +l1:239 [binder, in hydras.rpo.list_set]
    +l1:243 [binder, in hydras.rpo.list_set]
    +l1:248 [binder, in hydras.rpo.term]
    +l1:250 [binder, in hydras.rpo.term]
    +l1:254 [binder, in hydras.rpo.term]
    +l1:257 [binder, in hydras.rpo.list_set]
    +l1:26 [binder, in hydras.rpo.dickson]
    +l1:27 [binder, in hydras.rpo.list_permut]
    +l1:3 [binder, in additions.Trace_exercise]
    +l1:30 [binder, in hydras.rpo.dickson]
    +l1:30 [binder, in hydras.rpo.list_permut]
    +l1:324 [binder, in hydras.rpo.rpo]
    +l1:327 [binder, in hydras.rpo.rpo]
    +l1:34 [binder, in hydras.rpo.dickson]
    +l1:34 [binder, in hydras.rpo.list_permut]
    +l1:368 [binder, in hydras.rpo.term]
    +l1:37 [binder, in hydras.rpo.list_permut]
    +l1:38 [binder, in hydras.Prelude.Merge_Sort]
    +l1:39 [binder, in hydras.rpo.dickson]
    +l1:4 [binder, in hydras.rpo.dickson]
    +l1:4 [binder, in hydras.rpo.list_permut]
    +l1:43 [binder, in hydras.Ackermann.codeList]
    +l1:45 [binder, in hydras.rpo.list_permut]
    +l1:48 [binder, in hydras.rpo.more_list]
    +l1:48 [binder, in hydras.rpo.list_permut]
    +l1:49 [binder, in hydras.Prelude.Merge_Sort]
    +l1:5 [binder, in hydras.Prelude.Merge_Sort]
    +l1:51 [binder, in hydras.rpo.list_permut]
    +l1:53 [binder, in hydras.rpo.list_permut]
    +l1:56 [binder, in hydras.Prelude.Merge_Sort]
    +l1:56 [binder, in additions.fib]
    +l1:56 [binder, in hydras.rpo.list_permut]
    +l1:57 [binder, in hydras.rpo.term]
    +l1:59 [binder, in hydras.rpo.term]
    +l1:59 [binder, in hydras.rpo.list_permut]
    +l1:61 [binder, in additions.fib]
    +l1:62 [binder, in hydras.rpo.list_permut]
    +l1:67 [binder, in hydras.rpo.list_permut]
    +l1:69 [binder, in hydras.rpo.more_list]
    +l1:70 [binder, in hydras.rpo.list_permut]
    +l1:72 [binder, in hydras.rpo.term]
    +l1:74 [binder, in hydras.rpo.term]
    +l1:76 [binder, in hydras.rpo.list_permut]
    +l1:78 [binder, in hydras.rpo.term]
    +l1:79 [binder, in hydras.rpo.list_set]
    +l1:82 [binder, in hydras.rpo.list_set]
    +l1:85 [binder, in hydras.rpo.list_permut]
    +l1:86 [binder, in hydras.rpo.more_list]
    +l1:9 [binder, in hydras.rpo.more_list]
    +l1:91 [binder, in hydras.Prelude.Merge_Sort]
    +l1:91 [binder, in hydras.rpo.list_set]
    +l1:93 [binder, in hydras.rpo.list_permut]
    +l1:94 [binder, in hydras.rpo.more_list]
    +l1:95 [binder, in hydras.rpo.list_set]
    +l1:99 [binder, in hydras.Ackermann.primRec]
    +l1:99 [binder, in additions.fib]
    +L2 [lemma, in hydras.Epsilon0.T1]
    +L2 [lemma, in hydras.solutions_exercises.predSuccUnicity]
    +L2 [lemma, in hydras.MoreAck.expressibleExamples]
    +L2 [lemma, in hydras.solutions_exercises.Limit_Infinity]
    +L2 [lemma, in hydras.Epsilon0.F_omega]
    +L2 [lemma, in hydras.solutions_exercises.FibonacciPR]
    +L2 [lemma, in hydras.solutions_exercises.F_3]
    +L2 [lemma, in additions.Addition_Chains]
    +l2hs [definition, in hydras.Hydra.Hydra_Definitions]
    +l2hsK [lemma, in hydras.Hydra.Hydra_Definitions]
    +L2_95_S [lemma, in hydras.Hydra.BigBattle]
    +L2_95 [lemma, in hydras.Hydra.BigBattle]
    +L2_6_2 [lemma, in hydras.Epsilon0.Paths]
    +l2':253 [binder, in hydras.rpo.list_set]
    +l2':254 [binder, in hydras.rpo.list_set]
    +L22 [lemma, in hydras.Hydra.BigBattle]
    +l2:10 [binder, in hydras.rpo.more_list]
    +l2:100 [binder, in hydras.Ackermann.primRec]
    +l2:100 [binder, in additions.fib]
    +l2:101 [binder, in hydras.Prelude.Merge_Sort]
    +l2:102 [binder, in hydras.rpo.list_set]
    +l2:102 [binder, in hydras.rpo.list_permut]
    +l2:105 [binder, in hydras.Ackermann.primRec]
    +l2:108 [binder, in hydras.rpo.list_set]
    +l2:109 [binder, in hydras.Prelude.Merge_Sort]
    +l2:111 [binder, in hydras.rpo.more_list]
    +l2:111 [binder, in hydras.Prelude.Merge_Sort]
    +l2:115 [binder, in hydras.rpo.list_set]
    +l2:12 [binder, in hydras.rpo.list_permut]
    +l2:120 [binder, in hydras.rpo.list_set]
    +l2:123 [binder, in hydras.rpo.list_set]
    +l2:125 [binder, in hydras.Prelude.Merge_Sort]
    +l2:127 [binder, in hydras.rpo.more_list]
    +l2:128 [binder, in hydras.rpo.list_set]
    +l2:13 [binder, in hydras.Prelude.Merge_Sort]
    +l2:133 [binder, in hydras.Prelude.Merge_Sort]
    +l2:135 [binder, in hydras.rpo.list_set]
    +l2:139 [binder, in hydras.Prelude.Merge_Sort]
    +l2:14 [binder, in hydras.rpo.list_permut]
    +l2:142 [binder, in additions.fib]
    +l2:142 [binder, in hydras.rpo.list_set]
    +l2:146 [binder, in hydras.rpo.list_set]
    +l2:147 [binder, in hydras.Prelude.Merge_Sort]
    +l2:150 [binder, in hydras.rpo.list_set]
    +l2:158 [binder, in hydras.Prelude.Merge_Sort]
    +l2:162 [binder, in hydras.Prelude.Merge_Sort]
    +l2:166 [binder, in hydras.Prelude.Merge_Sort]
    +l2:171 [binder, in hydras.Prelude.Merge_Sort]
    +l2:18 [binder, in hydras.Prelude.Merge_Sort]
    +l2:180 [binder, in hydras.Prelude.MoreLists]
    +l2:182 [binder, in hydras.Prelude.Merge_Sort]
    +l2:185 [binder, in hydras.rpo.more_list]
    +l2:186 [binder, in hydras.Ackermann.fol]
    +l2:188 [binder, in hydras.rpo.term]
    +l2:19 [binder, in hydras.rpo.more_list]
    +l2:19 [binder, in hydras.rpo.dickson]
    +l2:192 [binder, in hydras.Prelude.Merge_Sort]
    +l2:192 [binder, in hydras.Ackermann.fol]
    +l2:196 [binder, in hydras.Prelude.MoreLists]
    +l2:198 [binder, in hydras.Prelude.MoreLists]
    +l2:198 [binder, in hydras.rpo.more_list]
    +l2:199 [binder, in hydras.Prelude.Merge_Sort]
    +l2:200 [binder, in hydras.rpo.more_list]
    +l2:215 [binder, in hydras.Prelude.MoreLists]
    +l2:22 [binder, in hydras.rpo.list_permut]
    +l2:221 [binder, in hydras.Prelude.MoreLists]
    +l2:23 [binder, in hydras.rpo.dickson]
    +l2:234 [binder, in hydras.rpo.list_set]
    +l2:235 [binder, in hydras.rpo.term]
    +l2:237 [binder, in hydras.rpo.term]
    +l2:237 [binder, in hydras.rpo.list_set]
    +l2:24 [binder, in hydras.rpo.list_permut]
    +l2:240 [binder, in hydras.rpo.list_set]
    +l2:244 [binder, in hydras.rpo.list_set]
    +l2:249 [binder, in hydras.rpo.term]
    +l2:251 [binder, in hydras.rpo.term]
    +l2:255 [binder, in hydras.rpo.term]
    +l2:258 [binder, in hydras.rpo.term]
    +l2:258 [binder, in hydras.rpo.list_set]
    +l2:259 [binder, in hydras.rpo.term]
    +l2:27 [binder, in hydras.rpo.dickson]
    +l2:28 [binder, in hydras.rpo.list_permut]
    +l2:31 [binder, in hydras.rpo.dickson]
    +l2:31 [binder, in hydras.rpo.list_permut]
    +l2:326 [binder, in hydras.rpo.rpo]
    +l2:329 [binder, in hydras.rpo.rpo]
    +l2:35 [binder, in hydras.rpo.dickson]
    +l2:35 [binder, in hydras.rpo.list_permut]
    +l2:370 [binder, in hydras.rpo.term]
    +l2:38 [binder, in hydras.rpo.list_permut]
    +l2:39 [binder, in hydras.Prelude.Merge_Sort]
    +l2:4 [binder, in additions.Trace_exercise]
    +l2:40 [binder, in hydras.rpo.dickson]
    +l2:44 [binder, in hydras.Ackermann.codeList]
    +l2:46 [binder, in hydras.rpo.list_permut]
    +l2:49 [binder, in hydras.rpo.more_list]
    +l2:49 [binder, in hydras.rpo.list_permut]
    +l2:5 [binder, in hydras.rpo.dickson]
    +l2:5 [binder, in hydras.rpo.list_permut]
    +l2:50 [binder, in hydras.Prelude.Merge_Sort]
    +l2:52 [binder, in hydras.rpo.list_permut]
    +l2:54 [binder, in hydras.rpo.list_permut]
    +l2:57 [binder, in hydras.Prelude.Merge_Sort]
    +l2:57 [binder, in additions.fib]
    +l2:57 [binder, in hydras.rpo.list_permut]
    +l2:58 [binder, in hydras.rpo.term]
    +l2:6 [binder, in hydras.Prelude.Merge_Sort]
    +l2:6 [binder, in additions.Trace_exercise]
    +l2:60 [binder, in hydras.rpo.term]
    +l2:60 [binder, in hydras.rpo.list_permut]
    +l2:62 [binder, in additions.fib]
    +l2:63 [binder, in hydras.rpo.list_permut]
    +l2:68 [binder, in hydras.rpo.list_permut]
    +l2:70 [binder, in hydras.rpo.more_list]
    +l2:71 [binder, in hydras.rpo.list_permut]
    +l2:73 [binder, in hydras.rpo.term]
    +l2:75 [binder, in hydras.rpo.term]
    +l2:77 [binder, in hydras.rpo.list_permut]
    +l2:79 [binder, in hydras.rpo.term]
    +l2:80 [binder, in hydras.rpo.list_set]
    +l2:83 [binder, in hydras.rpo.list_set]
    +l2:86 [binder, in hydras.rpo.list_permut]
    +l2:87 [binder, in hydras.rpo.more_list]
    +l2:92 [binder, in hydras.Prelude.Merge_Sort]
    +l2:92 [binder, in hydras.rpo.list_set]
    +l2:94 [binder, in hydras.rpo.list_permut]
    +l2:95 [binder, in hydras.rpo.more_list]
    +l2:96 [binder, in hydras.rpo.list_set]
    +L3 [lemma, in hydras.Epsilon0.T1]
    +L3 [lemma, in hydras.MoreAck.expressibleExamples]
    +L3 [lemma, in hydras.solutions_exercises.Limit_Infinity]
    +L3 [lemma, in hydras.solutions_exercises.F_3]
    +L3a [lemma, in hydras.Schutte.Ordering_Functions]
    +L3_u [lemma, in hydras.Schutte.Ordering_Functions]
    +l3:199 [binder, in hydras.Prelude.MoreLists]
    +l3:25 [binder, in hydras.rpo.list_permut]
    +l3:39 [binder, in hydras.rpo.list_permut]
    +l3:87 [binder, in hydras.rpo.list_permut]
    +l3:95 [binder, in hydras.rpo.list_permut]
    +L4 [lemma, in hydras.Epsilon0.T1]
    +L4 [lemma, in hydras.MoreAck.expressibleExamples]
    +L4 [lemma, in hydras.solutions_exercises.Limit_Infinity]
    +L4 [lemma, in hydras.Hydra.BigBattle]
    +L4 [lemma, in hydras.solutions_exercises.F_3]
    +L46 [lemma, in hydras.Hydra.BigBattle]
    +l4:200 [binder, in hydras.Prelude.MoreLists]
    +l4:40 [binder, in hydras.rpo.list_permut]
    +l4:88 [binder, in hydras.rpo.list_permut]
    +l4:96 [binder, in hydras.rpo.list_permut]
    +L5 [lemma, in hydras.Epsilon0.T1]
    +L5 [lemma, in hydras.MoreAck.expressibleExamples]
    +L5 [lemma, in hydras.MoreAck.Ack]
    +L6 [lemma, in hydras.Epsilon0.T1]
    +L6 [lemma, in hydras.MoreAck.expressibleExamples]
    +L7 [lemma, in hydras.Epsilon0.T1]
    +L8 [lemma, in hydras.Epsilon0.T1]
    +L87'' [lemma, in additions.Addition_Chains]
    +L9 [lemma, in hydras.Epsilon0.T1]
    +L94 [lemma, in hydras.Hydra.BigBattle]
    +L95 [lemma, in hydras.Hydra.BigBattle]
    +L:1 [binder, in hydras.MoreAck.BadSubst]
    +l:1 [binder, in hydras.Schutte.CNF]
    +l:1 [binder, in hydras.solutions_exercises.schutte_cnf_counter_example]
    +l:1 [binder, in hydras.rpo.list_set]
    +l:1 [binder, in hydras.rpo.list_permut]
    +l:10 [binder, in hydras.Prelude.MoreLists]
    +l:10 [binder, in hydras.Prelude.Sort_spec]
    +l:10 [binder, in hydras.Prelude.Merge_Sort]
    +l:10 [binder, in hydras.Ackermann.codePA]
    +l:101 [binder, in hydras.rpo.more_list]
    +l:104 [binder, in hydras.Prelude.MoreLists]
    +l:104 [binder, in hydras.Prelude.Merge_Sort]
    +l:105 [binder, in hydras.rpo.rpo]
    +l:106 [binder, in hydras.Prelude.Merge_Sort]
    +l:106 [binder, in hydras.Ackermann.codeList]
    +l:108 [binder, in hydras.rpo.term]
    +l:109 [binder, in hydras.rpo.more_list]
    +l:109 [binder, in hydras.Ackermann.folReplace]
    +l:11 [binder, in hydras.Prelude.MoreLists]
    +L:11 [binder, in hydras.MoreAck.FolExamples]
    +l:111 [binder, in hydras.Ackermann.codeList]
    +l:112 [binder, in hydras.rpo.rpo]
    +l:113 [binder, in hydras.Prelude.MoreLists]
    +l:117 [binder, in hydras.rpo.more_list]
    +l:119 [binder, in hydras.rpo.rpo]
    +l:12 [binder, in hydras.solutions_exercises.MultisetWf]
    +l:120 [binder, in hydras.Prelude.Merge_Sort]
    +l:121 [binder, in hydras.Prelude.Merge_Sort]
    +l:121 [binder, in hydras.Ackermann.cPair]
    +l:121 [binder, in additions.fib]
    +l:122 [binder, in hydras.Prelude.MoreLists]
    +l:123 [binder, in hydras.Epsilon0.Hprime]
    +l:124 [binder, in hydras.Ackermann.cPair]
    +l:125 [binder, in hydras.rpo.rpo]
    +l:1284 [binder, in hydras.Ackermann.codeSubFormula]
    +l:129 [binder, in hydras.Prelude.MoreLists]
    +l:13 [binder, in gaia_hydras.GLarge_Sets]
    +l:13 [binder, in hydras.Ackermann.codePA]
    +L:13 [binder, in hydras.MoreAck.FolExamples]
    +l:131 [binder, in hydras.Ackermann.cPair]
    +l:132 [binder, in hydras.Ackermann.cPair]
    +l:133 [binder, in hydras.rpo.more_list]
    +l:133 [binder, in hydras.Ackermann.cPair]
    +l:134 [binder, in hydras.Prelude.MoreLists]
    +l:135 [binder, in hydras.Ackermann.cPair]
    +l:135 [binder, in additions.fib]
    +l:136 [binder, in hydras.Ackermann.cPair]
    +l:137 [binder, in hydras.rpo.rpo]
    +l:1375 [binder, in gaia_hydras.nfwfgaia]
    +l:138 [binder, in hydras.Ackermann.cPair]
    +l:138 [binder, in hydras.Schutte.Schutte_basics]
    +l:1386 [binder, in gaia_hydras.nfwfgaia]
    +l:139 [binder, in hydras.Prelude.MoreLists]
    +l:139 [binder, in hydras.Hydra.Hydra_Definitions]
    +l:14 [binder, in hydras.rpo.more_list]
    +l:14 [binder, in hydras.Schutte.CNF]
    +l:14 [binder, in hydras.Prelude.Merge_Sort]
    +l:14 [binder, in hydras.Hydra.Hydra_Definitions]
    +l:140 [binder, in hydras.Ackermann.cPair]
    +l:141 [binder, in hydras.rpo.more_list]
    +l:141 [binder, in hydras.Ackermann.cPair]
    +l:142 [binder, in hydras.rpo.rpo]
    +l:143 [binder, in hydras.Ackermann.cPair]
    +l:145 [binder, in hydras.Prelude.MoreLists]
    +l:146 [binder, in hydras.Ackermann.cPair]
    +l:146 [binder, in hydras.Ackermann.codePA]
    +l:146 [binder, in hydras.rpo.rpo]
    +l:147 [binder, in additions.fib]
    +l:149 [binder, in hydras.Ackermann.codePA]
    +l:15 [binder, in hydras.Prelude.Sort_spec]
    +l:150 [binder, in hydras.rpo.rpo]
    +l:151 [binder, in hydras.Prelude.MoreLists]
    +l:151 [binder, in hydras.rpo.more_list]
    +l:156 [binder, in hydras.rpo.term]
    +l:157 [binder, in hydras.rpo.rpo]
    +l:16 [binder, in hydras.Schutte.CNF]
    +l:16 [binder, in hydras.rpo.list_set]
    +l:160 [binder, in hydras.rpo.more_list]
    +l:160 [binder, in hydras.rpo.rpo]
    +l:161 [binder, in hydras.rpo.term]
    +l:166 [binder, in hydras.rpo.rpo]
    +l:169 [binder, in hydras.rpo.term]
    +l:169 [binder, in hydras.rpo.more_list]
    +l:17 [binder, in hydras.rpo.list_permut]
    +l:170 [binder, in hydras.rpo.rpo]
    +l:171 [binder, in hydras.Prelude.MoreLists]
    +l:172 [binder, in hydras.Prelude.MoreLists]
    +l:175 [binder, in hydras.Prelude.MoreLists]
    +l:175 [binder, in hydras.Prelude.Merge_Sort]
    +l:176 [binder, in hydras.rpo.more_list]
    +l:178 [binder, in hydras.Prelude.Merge_Sort]
    +l:18 [binder, in hydras.Schutte.CNF]
    +l:18 [binder, in hydras.solutions_exercises.MultisetWf]
    +l:184 [binder, in hydras.Prelude.Merge_Sort]
    +l:186 [binder, in hydras.Prelude.Merge_Sort]
    +l:189 [binder, in hydras.Prelude.Merge_Sort]
    +l:19 [binder, in hydras.Prelude.Sort_spec]
    +l:19 [binder, in hydras.Ackermann.folProp]
    +l:19 [binder, in additions.Trace_exercise]
    +l:19 [binder, in hydras.rpo.list_permut]
    +l:19 [binder, in hydras.Hydra.Hydra_Definitions]
    +l:191 [binder, in hydras.rpo.more_list]
    +l:194 [binder, in hydras.Prelude.Merge_Sort]
    +l:196 [binder, in hydras.Prelude.Merge_Sort]
    +l:2 [binder, in hydras.Prelude.Merge_Sort]
    +l:20 [binder, in hydras.rpo.dickson]
    +l:20 [binder, in hydras.rpo.list_permut]
    +l:200 [binder, in hydras.rpo.rpo]
    +l:202 [binder, in hydras.Prelude.MoreLists]
    +l:205 [binder, in hydras.rpo.rpo]
    +l:207 [binder, in hydras.Prelude.MoreLists]
    +l:207 [binder, in hydras.rpo.more_list]
    +l:207 [binder, in hydras.rpo.rpo]
    +l:208 [binder, in hydras.rpo.rpo]
    +l:209 [binder, in hydras.rpo.rpo]
    +l:21 [binder, in hydras.Schutte.CNF]
    +l:211 [binder, in hydras.Ackermann.codeList]
    +l:216 [binder, in hydras.Ackermann.codeList]
    +l:217 [binder, in hydras.rpo.term]
    +l:217 [binder, in hydras.rpo.more_list]
    +l:217 [binder, in hydras.rpo.rpo]
    +l:22 [binder, in hydras.Prelude.Sort_spec]
    +l:22 [binder, in hydras.solutions_exercises.MultisetWf]
    +l:22 [binder, in hydras.Ackermann.codePA]
    +l:221 [binder, in hydras.rpo.rpo]
    +l:222 [binder, in hydras.rpo.term]
    +l:223 [binder, in hydras.rpo.term]
    +l:223 [binder, in hydras.rpo.rpo]
    +l:227 [binder, in hydras.rpo.more_list]
    +l:227 [binder, in hydras.rpo.rpo]
    +l:23 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +l:23 [binder, in hydras.Schutte.CNF]
    +l:23 [binder, in hydras.Hydra.Hydra_Definitions]
    +l:232 [binder, in hydras.rpo.more_list]
    +l:234 [binder, in hydras.rpo.rpo]
    +l:235 [binder, in hydras.rpo.more_list]
    +l:24 [binder, in hydras.rpo.more_list]
    +l:24 [binder, in hydras.Ackermann.folProp]
    +l:24 [binder, in hydras.rpo.dickson]
    +l:243 [binder, in hydras.rpo.rpo]
    +l:244 [binder, in hydras.rpo.more_list]
    +l:25 [binder, in hydras.Schutte.CNF]
    +l:25 [binder, in hydras.Ackermann.codePA]
    +l:25 [binder, in hydras.Hydra.Hydra_Definitions]
    +l:254 [binder, in hydras.rpo.more_list]
    +l:26 [binder, in hydras.Prelude.Sort_spec]
    +l:26 [binder, in hydras.Epsilon0.Large_Sets]
    +l:26 [binder, in hydras.rpo.list_permut]
    +l:266 [binder, in hydras.rpo.more_list]
    +l:266 [binder, in hydras.rpo.rpo]
    +l:267 [binder, in hydras.rpo.term]
    +l:27 [binder, in hydras.Ackermann.folProp]
    +l:27 [binder, in hydras.Ackermann.primRec]
    +l:27 [binder, in hydras.rpo.list_set]
    +l:277 [binder, in hydras.rpo.term]
    +l:28 [binder, in hydras.rpo.dickson]
    +l:28 [binder, in hydras.Ackermann.Languages]
    +l:28 [binder, in hydras.Ackermann.codePA]
    +l:281 [binder, in hydras.rpo.rpo]
    +l:285 [binder, in hydras.rpo.term]
    +l:286 [binder, in hydras.rpo.term]
    +l:287 [binder, in hydras.rpo.term]
    +l:29 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +l:29 [binder, in hydras.rpo.more_list]
    +l:29 [binder, in gaia_hydras.GPaths]
    +l:29 [binder, in hydras.solutions_exercises.MultisetWf]
    +l:29 [binder, in hydras.Ackermann.primRec]
    +l:293 [binder, in hydras.Ackermann.codeFreeVar]
    +l:295 [binder, in hydras.Ackermann.codeFreeVar]
    +l:295 [binder, in hydras.Ackermann.codeList]
    +l:297 [binder, in hydras.Ackermann.codeList]
    +l:3 [binder, in hydras.Hydra.Hydra_Theorems]
    +l:3 [binder, in hydras.Ackermann.Deduction]
    +l:3 [binder, in hydras.Ackermann.codeList]
    +l:300 [binder, in hydras.Ackermann.codeFreeVar]
    +l:302 [binder, in hydras.Ackermann.codeFreeVar]
    +l:302 [binder, in hydras.Ackermann.codeList]
    +l:304 [binder, in hydras.Ackermann.codeFreeVar]
    +l:304 [binder, in hydras.Ackermann.codeList]
    +l:305 [binder, in hydras.rpo.term]
    +l:306 [binder, in hydras.rpo.term]
    +l:306 [binder, in hydras.Ackermann.codeFreeVar]
    +l:306 [binder, in hydras.Ackermann.codeList]
    +l:308 [binder, in hydras.Ackermann.codeFreeVar]
    +l:308 [binder, in hydras.Ackermann.codeList]
    +l:31 [binder, in hydras.Prelude.MoreLists]
    +l:31 [binder, in hydras.Ackermann.codePA]
    +l:31 [binder, in hydras.Hydra.Hydra_Definitions]
    +l:310 [binder, in hydras.Ackermann.codeFreeVar]
    +l:310 [binder, in hydras.Ackermann.codeList]
    +l:312 [binder, in hydras.Ackermann.codeFreeVar]
    +l:312 [binder, in hydras.Ackermann.codeList]
    +l:314 [binder, in hydras.Ackermann.codeFreeVar]
    +l:314 [binder, in hydras.Ackermann.codeList]
    +l:316 [binder, in hydras.Ackermann.codeFreeVar]
    +l:316 [binder, in hydras.Ackermann.codeList]
    +l:318 [binder, in hydras.Ackermann.codeFreeVar]
    +l:318 [binder, in hydras.Ackermann.codeList]
    +l:319 [binder, in hydras.Ackermann.codeList]
    +l:32 [binder, in hydras.Ackermann.subAll]
    +l:32 [binder, in hydras.Ackermann.folProp]
    +l:32 [binder, in hydras.rpo.dickson]
    +l:320 [binder, in hydras.Ackermann.codeFreeVar]
    +l:320 [binder, in hydras.Ackermann.codeList]
    +l:321 [binder, in hydras.Ackermann.codeFreeVar]
    +l:322 [binder, in hydras.Ackermann.codeFreeVar]
    +l:322 [binder, in hydras.Ackermann.codeList]
    +l:323 [binder, in hydras.Ackermann.codeFreeVar]
    +l:324 [binder, in hydras.Ackermann.codeFreeVar]
    +l:324 [binder, in hydras.Ackermann.codeList]
    +l:325 [binder, in hydras.Ackermann.codeFreeVar]
    +l:326 [binder, in hydras.Ackermann.codeList]
    +l:328 [binder, in hydras.Ackermann.codeList]
    +l:33 [binder, in hydras.Prelude.Merge_Sort]
    +l:33 [binder, in hydras.Ackermann.Languages]
    +l:330 [binder, in hydras.Ackermann.codeList]
    +l:332 [binder, in hydras.Ackermann.codeList]
    +l:334 [binder, in hydras.rpo.term]
    +l:334 [binder, in hydras.Ackermann.codeList]
    +l:336 [binder, in hydras.Ackermann.codeList]
    +l:338 [binder, in hydras.Ackermann.codeList]
    +l:339 [binder, in hydras.rpo.term]
    +l:34 [binder, in hydras.rpo.more_list]
    +l:34 [binder, in hydras.Prelude.Sort_spec]
    +l:34 [binder, in hydras.solutions_exercises.MultisetWf]
    +l:34 [binder, in hydras.Ackermann.codePA]
    +l:340 [binder, in hydras.Ackermann.codeList]
    +l:341 [binder, in hydras.Ackermann.codeList]
    +l:342 [binder, in hydras.Ackermann.codeList]
    +l:344 [binder, in hydras.Ackermann.codeList]
    +l:346 [binder, in hydras.Ackermann.codeList]
    +l:347 [binder, in hydras.rpo.term]
    +l:348 [binder, in hydras.Ackermann.codeList]
    +l:35 [binder, in hydras.Hydra.Hydra_Lemmas]
    +l:350 [binder, in hydras.Ackermann.codeList]
    +l:351 [binder, in hydras.rpo.term]
    +l:352 [binder, in hydras.rpo.term]
    +l:352 [binder, in hydras.Ackermann.codeList]
    +l:354 [binder, in hydras.Ackermann.codeList]
    +l:355 [binder, in hydras.Ackermann.codeList]
    +l:359 [binder, in hydras.rpo.term]
    +l:36 [binder, in hydras.Ackermann.subAll]
    +l:36 [binder, in hydras.Ackermann.primRec]
    +l:36 [binder, in hydras.rpo.dickson]
    +l:360 [binder, in hydras.rpo.term]
    +l:364 [binder, in hydras.rpo.term]
    +l:366 [binder, in hydras.rpo.term]
    +l:37 [binder, in hydras.Ackermann.Languages]
    +l:37 [binder, in hydras.Ackermann.codePA]
    +l:38 [binder, in hydras.rpo.term]
    +l:38 [binder, in hydras.rpo.more_list]
    +l:39 [binder, in hydras.Ackermann.Languages]
    +l:4 [binder, in hydras.rpo.more_list]
    +l:4 [binder, in hydras.Prelude.Sort_spec]
    +l:4 [binder, in hydras.Schutte.CNF]
    +l:40 [binder, in hydras.Ackermann.subAll]
    +l:40 [binder, in hydras.solutions_exercises.MultisetWf]
    +l:40 [binder, in hydras.Prelude.Merge_Sort]
    +l:40 [binder, in hydras.Hydra.Hydra_Lemmas]
    +l:40 [binder, in hydras.Ackermann.codePA]
    +l:41 [binder, in hydras.rpo.list_set]
    +l:411 [binder, in hydras.Epsilon0.Paths]
    +l:42 [binder, in hydras.Prelude.Merge_Sort]
    +l:42 [binder, in hydras.Ackermann.codePA]
    +l:42 [binder, in hydras.rpo.rpo]
    +l:43 [binder, in hydras.Prelude.Sort_spec]
    +l:43 [binder, in hydras.solutions_exercises.MultisetWf]
    +l:43 [binder, in hydras.MoreAck.FolExamples]
    +l:44 [binder, in hydras.rpo.term]
    +l:44 [binder, in hydras.rpo.list_permut]
    +l:44 [binder, in hydras.Ackermann.codePA]
    +l:440 [binder, in hydras.Epsilon0.Paths]
    +l:444 [binder, in hydras.Epsilon0.Paths]
    +l:45 [binder, in hydras.rpo.term]
    +l:45 [binder, in hydras.rpo.more_list]
    +l:45 [binder, in hydras.Prelude.Merge_Sort]
    +l:45 [binder, in hydras.Ackermann.primRec]
    +l:45 [binder, in hydras.Hydra.Hydra_Lemmas]
    +l:46 [binder, in hydras.Ackermann.codePA]
    +l:47 [binder, in hydras.Hydra.O2H]
    +l:47 [binder, in hydras.rpo.list_set]
    +l:47 [binder, in hydras.rpo.list_permut]
    +l:47 [binder, in hydras.rpo.rpo]
    +l:477 [binder, in hydras.Epsilon0.Paths]
    +l:48 [binder, in hydras.solutions_exercises.MultisetWf]
    +l:48 [binder, in hydras.Ackermann.codePA]
    +l:484 [binder, in hydras.Epsilon0.Paths]
    +l:488 [binder, in hydras.Epsilon0.Paths]
    +l:49 [binder, in gaia_hydras.GPaths]
    +l:49 [binder, in hydras.Hydra.Hydra_Lemmas]
    +l:5 [binder, in hydras.Ackermann.codeSubFormula]
    +l:5 [binder, in hydras.Ackermann.codePA]
    +l:50 [binder, in additions.fib]
    +l:50 [binder, in hydras.rpo.list_set]
    +l:50 [binder, in hydras.Epsilon0.Paths]
    +l:50 [binder, in hydras.rpo.list_permut]
    +l:50 [binder, in hydras.Ackermann.codePA]
    +l:51 [binder, in hydras.solutions_exercises.MultisetWf]
    +l:51 [binder, in hydras.Prelude.Merge_Sort]
    +l:51 [binder, in hydras.rpo.rpo]
    +l:52 [binder, in hydras.Prelude.MoreLists]
    +l:52 [binder, in hydras.rpo.more_list]
    +l:52 [binder, in gaia_hydras.GPaths]
    +l:52 [binder, in hydras.Schutte.CNF]
    +l:52 [binder, in hydras.Ackermann.codePA]
    +l:53 [binder, in hydras.Schutte.CNF]
    +l:53 [binder, in additions.fib]
    +l:54 [binder, in hydras.Ackermann.codePA]
    +l:547 [binder, in hydras.Epsilon0.Paths]
    +l:55 [binder, in hydras.Schutte.CNF]
    +l:55 [binder, in hydras.Ackermann.primRec]
    +l:55 [binder, in hydras.rpo.rpo]
    +l:551 [binder, in hydras.Epsilon0.Paths]
    +l:56 [binder, in hydras.Prelude.MoreLists]
    +l:56 [binder, in hydras.Prelude.Sort_spec]
    +l:56 [binder, in hydras.rpo.list_set]
    +l:56 [binder, in hydras.Ackermann.codePA]
    +l:58 [binder, in additions.fib]
    +l:58 [binder, in hydras.rpo.list_permut]
    +l:58 [binder, in hydras.Ackermann.codePA]
    +l:59 [binder, in hydras.rpo.more_list]
    +l:59 [binder, in hydras.Schutte.CNF]
    +l:6 [binder, in hydras.rpo.dickson]
    +l:60 [binder, in hydras.Schutte.CNF]
    +l:60 [binder, in hydras.Ackermann.codePA]
    +l:61 [binder, in hydras.Prelude.MoreLists]
    +l:61 [binder, in hydras.solutions_exercises.MultisetWf]
    +l:61 [binder, in hydras.rpo.list_permut]
    +l:61 [binder, in hydras.Ackermann.codePA]
    +l:613 [binder, in hydras.Gamma0.Gamma0]
    +l:617 [binder, in hydras.Gamma0.Gamma0]
    +l:62 [binder, in hydras.Prelude.MoreLists]
    +l:62 [binder, in hydras.Schutte.Well_Orders]
    +l:62 [binder, in hydras.Ackermann.codePA]
    +l:62 [binder, in hydras.rpo.rpo]
    +l:63 [binder, in hydras.Prelude.MoreLists]
    +l:63 [binder, in hydras.Ackermann.codePA]
    +l:64 [binder, in hydras.solutions_exercises.MultisetWf]
    +l:64 [binder, in hydras.rpo.list_set]
    +l:65 [binder, in hydras.rpo.rpo]
    +l:66 [binder, in hydras.rpo.more_list]
    +l:66 [binder, in hydras.solutions_exercises.MultisetWf]
    +l:67 [binder, in hydras.Prelude.MoreLists]
    +l:67 [binder, in hydras.rpo.more_list]
    +l:67 [binder, in hydras.Prelude.Sort_spec]
    +l:67 [binder, in hydras.solutions_exercises.MultisetWf]
    +l:68 [binder, in hydras.Ackermann.folProp]
    +l:69 [binder, in hydras.Schutte.Correctness_E0]
    +l:69 [binder, in hydras.Prelude.Sort_spec]
    +l:69 [binder, in hydras.Ackermann.folProp]
    +l:691 [binder, in hydras.Epsilon0.T1]
    +l:695 [binder, in hydras.Epsilon0.T1]
    +l:698 [binder, in hydras.Epsilon0.T1]
    +L:7 [binder, in hydras.MoreAck.BadSubst]
    +l:7 [binder, in hydras.Prelude.Sort_spec]
    +l:7 [binder, in hydras.solutions_exercises.OnCodeList]
    +l:7 [binder, in hydras.Prelude.Merge_Sort]
    +l:7 [binder, in hydras.Ackermann.ListExt]
    +l:70 [binder, in hydras.solutions_exercises.MultisetWf]
    +l:70 [binder, in hydras.rpo.list_set]
    +l:71 [binder, in hydras.rpo.rpo]
    +l:72 [binder, in hydras.solutions_exercises.MultisetWf]
    +l:73 [binder, in hydras.Prelude.MoreLists]
    +l:73 [binder, in hydras.Ackermann.folProp]
    +l:74 [binder, in hydras.rpo.list_set]
    +l:75 [binder, in hydras.Prelude.MoreLists]
    +l:76 [binder, in hydras.rpo.more_list]
    +l:76 [binder, in hydras.rpo.list_set]
    +l:77 [binder, in hydras.rpo.more_list]
    +l:77 [binder, in additions.fib]
    +l:77 [binder, in hydras.rpo.list_set]
    +l:78 [binder, in hydras.Prelude.Sort_spec]
    +l:794 [binder, in hydras.Ackermann.checkPrf]
    +l:8 [binder, in hydras.Schutte.CNF]
    +l:8 [binder, in hydras.Ackermann.codeSubFormula]
    +l:8 [binder, in hydras.solutions_exercises.MultisetWf]
    +l:8 [binder, in hydras.Prelude.Merge_Sort]
    +l:8 [binder, in hydras.rpo.list_permut]
    +l:8 [binder, in hydras.Ackermann.codePA]
    +l:80 [binder, in hydras.Prelude.Merge_Sort]
    +l:800 [binder, in hydras.Ackermann.checkPrf]
    +l:805 [binder, in hydras.Ackermann.checkPrf]
    +l:809 [binder, in hydras.Ackermann.checkPrf]
    +l:82 [binder, in hydras.rpo.more_list]
    +l:82 [binder, in hydras.Prelude.Merge_Sort]
    +l:83 [binder, in hydras.Prelude.Merge_Sort]
    +l:835 [binder, in hydras.Ackermann.checkPrf]
    +l:84 [binder, in hydras.Hydra.Hydra_Lemmas]
    +l:847 [binder, in hydras.Ackermann.checkPrf]
    +l:85 [binder, in hydras.Prelude.Merge_Sort]
    +l:86 [binder, in hydras.Prelude.Merge_Sort]
    +l:86 [binder, in hydras.Hydra.Hydra_Lemmas]
    +l:86 [binder, in hydras.rpo.list_set]
    +l:860 [binder, in hydras.Ackermann.checkPrf]
    +l:864 [binder, in gaia_hydras.nfwfgaia]
    +l:865 [binder, in hydras.Ackermann.checkPrf]
    +l:87 [binder, in hydras.rpo.term]
    +l:87 [binder, in hydras.Ackermann.primRec]
    +l:87 [binder, in hydras.Gamma0.Gamma0]
    +l:873 [binder, in gaia_hydras.nfwfgaia]
    +l:878 [binder, in hydras.Ackermann.checkPrf]
    +l:88 [binder, in hydras.rpo.list_set]
    +l:881 [binder, in hydras.Ackermann.checkPrf]
    +l:9 [binder, in hydras.Hydra.O2H]
    +l:9 [binder, in hydras.Prelude.First_toggle]
    +l:92 [binder, in hydras.Ackermann.primRec]
    +l:93 [binder, in hydras.Prelude.MoreLists]
    +l:93 [binder, in hydras.rpo.more_list]
    +l:94 [binder, in hydras.Hydra.O2H]
    +l:95 [binder, in hydras.Prelude.Merge_Sort]
    +l:96 [binder, in hydras.Prelude.Merge_Sort]
    +l:96 [binder, in hydras.Ackermann.primRec]
    +l:98 [binder, in hydras.Prelude.Merge_Sort]
    +l:99 [binder, in hydras.rpo.term]
    +

    M

    +m [definition, in hydras.Hydra.Hydra_Termination]
    +M [definition, in hydras.Hydra.BigBattle]
    +m [definition, in gaia_hydras.GHydra]
    +majorAnyPR [lemma, in hydras.MoreAck.AckNotPR]
    +majorized [definition, in hydras.MoreAck.AckNotPR]
    +majorizedPR [definition, in hydras.MoreAck.AckNotPR]
    +majorizedS [definition, in hydras.MoreAck.AckNotPR]
    +majorizedSPR [definition, in hydras.MoreAck.AckNotPR]
    +majorProjection [lemma, in hydras.MoreAck.AckNotPR]
    +majorPR1 [lemma, in hydras.MoreAck.AckNotPR]
    +majorPR2 [lemma, in hydras.MoreAck.AckNotPR]
    +majorPR2_strict [lemma, in hydras.MoreAck.AckNotPR]
    +majorSucc [lemma, in hydras.MoreAck.AckNotPR]
    +majorZero [lemma, in hydras.MoreAck.AckNotPR]
    +Make [module, in hydras.rpo.term]
    +Make [module, in hydras.rpo.list_set]
    +Make [module, in hydras.rpo.dickson]
    +Make [module, in hydras.rpo.list_permut]
    +Make [module, in hydras.rpo.rpo]
    +makeTrace [definition, in hydras.Ackermann.codeSubFormula]
    +makeTraceCorrect [lemma, in hydras.Ackermann.codeSubFormula]
    +makeTraceForall [definition, in hydras.Ackermann.codeSubFormula]
    +makeTraceForallNice [lemma, in hydras.Ackermann.codeSubFormula]
    +makeTraceImp [definition, in hydras.Ackermann.codeSubFormula]
    +makeTraceImpNice [lemma, in hydras.Ackermann.codeSubFormula]
    +makeTraceNot [definition, in hydras.Ackermann.codeSubFormula]
    +makeTraceNotNice [lemma, in hydras.Ackermann.codeSubFormula]
    +makeTrace1 [lemma, in hydras.Ackermann.codeSubFormula]
    +makeTrace2 [lemma, in hydras.Ackermann.codeSubFormula]
    +make_chain [definition, in additions.AM]
    +make_chain_correct [lemma, in additions.Euclidean_Chains]
    +make_chain [definition, in additions.Euclidean_Chains]
    +Make.acc_build [lemma, in hydras.rpo.rpo]
    +Make.acc_lex_drop_proof [lemma, in hydras.rpo.rpo]
    +Make.ac_syntactic [lemma, in hydras.rpo.list_permut]
    +Make.ac_syntactic_aux [lemma, in hydras.rpo.list_permut]
    +Make.add [definition, in hydras.rpo.list_set]
    +Make.add_comm [lemma, in hydras.rpo.list_set]
    +Make.add_without_red [definition, in hydras.rpo.list_set]
    +Make.add_12 [lemma, in hydras.rpo.list_set]
    +Make.add_2 [lemma, in hydras.rpo.list_set]
    +Make.add_1 [lemma, in hydras.rpo.list_set]
    +Make.add_prf [lemma, in hydras.rpo.list_set]
    +Make.apply_subst [definition, in hydras.rpo.term]
    +Make.build_list_of_SN_terms [definition, in hydras.rpo.rpo]
    +Make.cardinal [definition, in hydras.rpo.list_set]
    +Make.cardinal_eq_set [lemma, in hydras.rpo.list_set]
    +Make.cardinal_union [lemma, in hydras.rpo.list_set]
    +Make.cardinal_union_inter_12 [lemma, in hydras.rpo.list_set]
    +Make.cardinal_union_2 [lemma, in hydras.rpo.list_set]
    +Make.cardinal_union_1 [lemma, in hydras.rpo.list_set]
    +Make.cardinal_subset [lemma, in hydras.rpo.list_set]
    +Make.cons_permut_in [lemma, in hydras.rpo.list_permut]
    +Make.context_multiset_extension_step_app2 [lemma, in hydras.rpo.dickson]
    +Make.context_trans_clos_multiset_extension_step_app1 [lemma, in hydras.rpo.dickson]
    +Make.context_multiset_extension_step_app1 [lemma, in hydras.rpo.dickson]
    +Make.context_list_permut_app2 [lemma, in hydras.rpo.list_permut]
    +Make.context_list_permut_app1 [lemma, in hydras.rpo.list_permut]
    +Make.context_list_permut_cons [lemma, in hydras.rpo.list_permut]
    +Make.DecVar [module, in hydras.rpo.term]
    +Make.DecVar.A [definition, in hydras.rpo.term]
    +Make.DecVar.eq_A_dec [lemma, in hydras.rpo.term]
    +Make.dickson [lemma, in hydras.rpo.dickson]
    +Make.dickson_aux3 [lemma, in hydras.rpo.dickson]
    +Make.dickson_aux2 [lemma, in hydras.rpo.dickson]
    +Make.dickson_aux1 [lemma, in hydras.rpo.dickson]
    +Make.direct_subterm [definition, in hydras.rpo.term]
    +Make.DoubleRecursion [section, in hydras.rpo.term]
    +Make.DoubleRecursion.Pl2 [variable, in hydras.rpo.term]
    +Make.DoubleRecursion.P2 [variable, in hydras.rpo.term]
    +Make.DS [module, in hydras.rpo.list_set]
    +Make.DS [module, in hydras.rpo.dickson]
    +Make.DS [module, in hydras.rpo.list_permut]
    +Make.elt [definition, in hydras.rpo.list_set]
    +Make.elt [definition, in hydras.rpo.list_permut]
    +Make.empty [definition, in hydras.rpo.list_set]
    +Make.empty_subst_is_id_list [lemma, in hydras.rpo.term]
    +Make.empty_subst_is_id [lemma, in hydras.rpo.term]
    +Make.Eq [constructor, in hydras.rpo.rpo]
    +Make.eq_term_dec [lemma, in hydras.rpo.term]
    +Make.eq_set_list_permut_support [lemma, in hydras.rpo.list_set]
    +Make.eq_set_trans [lemma, in hydras.rpo.list_set]
    +Make.eq_set_sym [lemma, in hydras.rpo.list_set]
    +Make.eq_set_refl [lemma, in hydras.rpo.list_set]
    +Make.eq_set_dec [lemma, in hydras.rpo.list_set]
    +Make.eq_set [definition, in hydras.rpo.list_set]
    +Make.eq_elt_dec [definition, in hydras.rpo.list_set]
    +Make.eq_elt_dec [definition, in hydras.rpo.list_permut]
    +Make.F [module, in hydras.rpo.term]
    +Make.filter [definition, in hydras.rpo.list_set]
    +Make.filter_union [lemma, in hydras.rpo.list_set]
    +Make.filter_2 [lemma, in hydras.rpo.list_set]
    +Make.filter_2_list [lemma, in hydras.rpo.list_set]
    +Make.filter_1 [lemma, in hydras.rpo.list_set]
    +Make.filter_1_list [lemma, in hydras.rpo.list_set]
    +Make.filter_aux [definition, in hydras.rpo.list_set]
    +Make.included_remove_red [lemma, in hydras.rpo.list_set]
    +Make.included_filter_aux [lemma, in hydras.rpo.list_set]
    +Make.inter [definition, in hydras.rpo.list_set]
    +Make.inter_12 [lemma, in hydras.rpo.list_set]
    +Make.inter_12_aux [lemma, in hydras.rpo.list_set]
    +Make.inter_2 [lemma, in hydras.rpo.list_set]
    +Make.inter_2_aux [lemma, in hydras.rpo.list_set]
    +Make.inter_1 [lemma, in hydras.rpo.list_set]
    +Make.inter_1_aux [lemma, in hydras.rpo.list_set]
    +Make.in_permut_in [lemma, in hydras.rpo.list_permut]
    +Make.in_mult_S [lemma, in hydras.rpo.list_permut]
    +Make.in_sn_sn [lemma, in hydras.rpo.rpo]
    +Make.is_a_pos_exists_subtem [lemma, in hydras.rpo.term]
    +Make.is_a_pos [definition, in hydras.rpo.term]
    +Make.is_a_set [projection, in hydras.rpo.list_set]
    +Make.lex1 [lemma, in hydras.rpo.rpo]
    +Make.lex1_bis [lemma, in hydras.rpo.rpo]
    +Make.lex2 [lemma, in hydras.rpo.rpo]
    +Make.lex3 [lemma, in hydras.rpo.rpo]
    +Make.list_permut_acc [lemma, in hydras.rpo.dickson]
    +Make.list_permut_multiset_extension_step_2 [lemma, in hydras.rpo.dickson]
    +Make.list_permut_multiset_extension_step_1 [lemma, in hydras.rpo.dickson]
    +Make.list_permut_dec [lemma, in hydras.rpo.list_permut]
    +Make.list_permut_length_2 [lemma, in hydras.rpo.list_permut]
    +Make.list_permut_length_1 [lemma, in hydras.rpo.list_permut]
    +Make.list_permut_map [lemma, in hydras.rpo.list_permut]
    +Make.list_permut_size [lemma, in hydras.rpo.list_permut]
    +Make.list_permut_length [lemma, in hydras.rpo.list_permut]
    +Make.list_permut_remove_hd [lemma, in hydras.rpo.list_permut]
    +Make.list_permut_app_app [lemma, in hydras.rpo.list_permut]
    +Make.list_permut_add_cons_inside [lemma, in hydras.rpo.list_permut]
    +Make.list_permut_add_inside [lemma, in hydras.rpo.list_permut]
    +Make.list_permut_nil [lemma, in hydras.rpo.list_permut]
    +Make.list_permut_trans [lemma, in hydras.rpo.list_permut]
    +Make.list_permut_sym [lemma, in hydras.rpo.list_permut]
    +Make.list_permut_refl [lemma, in hydras.rpo.list_permut]
    +Make.list_permut [definition, in hydras.rpo.list_permut]
    +Make.list_to_multiset [definition, in hydras.rpo.list_permut]
    +Make.list_permut_map_acc [lemma, in hydras.rpo.rpo]
    +Make.List_mul_rest_step [constructor, in hydras.rpo.rpo]
    +Make.List_mul_rest [constructor, in hydras.rpo.rpo]
    +Make.List_eq_rest [constructor, in hydras.rpo.rpo]
    +Make.List_gt_rest [constructor, in hydras.rpo.rpo]
    +Make.List_mul [constructor, in hydras.rpo.rpo]
    +Make.List_eq [constructor, in hydras.rpo.rpo]
    +Make.List_gt [constructor, in hydras.rpo.rpo]
    +Make.LP [module, in hydras.rpo.list_set]
    +Make.LP [module, in hydras.rpo.dickson]
    +Make.LP [module, in hydras.rpo.rpo]
    +Make.Lt [constructor, in hydras.rpo.rpo]
    +Make.make_set [definition, in hydras.rpo.list_set]
    +Make.map_subst [definition, in hydras.rpo.term]
    +Make.mem [definition, in hydras.rpo.list_set]
    +Make.mem_dec [lemma, in hydras.rpo.list_set]
    +Make.mk_set [constructor, in hydras.rpo.list_set]
    +Make.mk_sn [constructor, in hydras.rpo.rpo]
    +Make.multiplicity_app [lemma, in hydras.rpo.list_permut]
    +Make.multiset_closure [lemma, in hydras.rpo.dickson]
    +Make.multiset_extension_step [inductive, in hydras.rpo.dickson]
    +Make.out_mult_O [lemma, in hydras.rpo.list_permut]
    +Make.o_size3_trans [lemma, in hydras.rpo.rpo]
    +Make.o_size3 [definition, in hydras.rpo.rpo]
    +Make.o_size2 [definition, in hydras.rpo.rpo]
    +Make.o_size [definition, in hydras.rpo.rpo]
    +Make.P [module, in hydras.rpo.rpo]
    +Make.projection_list_of_SN_terms [lemma, in hydras.rpo.rpo]
    +Make.Recursion [section, in hydras.rpo.term]
    +Make.Recursion.P [variable, in hydras.rpo.term]
    +Make.Recursion.Pl [variable, in hydras.rpo.term]
    +Make.remove_not_common [definition, in hydras.rpo.list_set]
    +Make.remove_red_included [lemma, in hydras.rpo.list_set]
    +Make.remove_red [definition, in hydras.rpo.list_set]
    +Make.remove_context_list_permut_app2 [lemma, in hydras.rpo.list_permut]
    +Make.remove_context_list_permut_cons [lemma, in hydras.rpo.list_permut]
    +Make.replace_at_pos_list_replace_at_pos_in_subterm [lemma, in hydras.rpo.term]
    +Make.replace_at_pos_is_replace_at_pos2 [lemma, in hydras.rpo.term]
    +Make.replace_at_pos_is_replace_at_pos1 [lemma, in hydras.rpo.term]
    +Make.replace_at_pos_unfold [lemma, in hydras.rpo.term]
    +Make.replace_at_pos_list [definition, in hydras.rpo.term]
    +Make.replace_at_pos [definition, in hydras.rpo.term]
    +Make.rmv_case [constructor, in hydras.rpo.dickson]
    +Make.rpo [inductive, in hydras.rpo.rpo]
    +Make.rpo_add_context [lemma, in hydras.rpo.rpo]
    +Make.rpo_subst [lemma, in hydras.rpo.rpo]
    +Make.rpo_term [definition, in hydras.rpo.rpo]
    +Make.rpo_mul_trans_clos [lemma, in hydras.rpo.rpo]
    +Make.rpo_mul_rest_step [inductive, in hydras.rpo.rpo]
    +Make.rpo_mul_rest [inductive, in hydras.rpo.rpo]
    +Make.rpo_lex_rest_same_length [lemma, in hydras.rpo.rpo]
    +Make.rpo_lex_rest [inductive, in hydras.rpo.rpo]
    +Make.rpo_rest [definition, in hydras.rpo.rpo]
    +Make.rpo_trans [lemma, in hydras.rpo.rpo]
    +Make.rpo_closure [lemma, in hydras.rpo.rpo]
    +Make.rpo_subterm [lemma, in hydras.rpo.rpo]
    +Make.rpo_lex_same_length [lemma, in hydras.rpo.rpo]
    +Make.rpo_mul [inductive, in hydras.rpo.rpo]
    +Make.rpo_lex [inductive, in hydras.rpo.rpo]
    +Make.rpo_eq [inductive, in hydras.rpo.rpo]
    +Make.singleton [definition, in hydras.rpo.list_set]
    +Make.size [definition, in hydras.rpo.term]
    +Make.size_subterm_at_pos [lemma, in hydras.rpo.term]
    +Make.size_direct_subterm [lemma, in hydras.rpo.term]
    +Make.size_ge_one [lemma, in hydras.rpo.term]
    +Make.size_unfold [lemma, in hydras.rpo.term]
    +Make.size2 [definition, in hydras.rpo.rpo]
    +Make.size3 [definition, in hydras.rpo.rpo]
    +Make.sn [projection, in hydras.rpo.rpo]
    +Make.SN_term [record, in hydras.rpo.rpo]
    +Make.subset [definition, in hydras.rpo.list_set]
    +Make.subset_cardinal_not_eq_not_eq_set [lemma, in hydras.rpo.list_set]
    +Make.subset_subset_union [lemma, in hydras.rpo.list_set]
    +Make.subset_compat [lemma, in hydras.rpo.list_set]
    +Make.subset_compat_2 [lemma, in hydras.rpo.list_set]
    +Make.subset_compat_1 [lemma, in hydras.rpo.list_set]
    +Make.subset_filter [lemma, in hydras.rpo.list_set]
    +Make.subset_inter_2 [lemma, in hydras.rpo.list_set]
    +Make.subset_inter_1 [lemma, in hydras.rpo.list_set]
    +Make.subset_union_2 [lemma, in hydras.rpo.list_set]
    +Make.subset_union_1 [lemma, in hydras.rpo.list_set]
    +Make.subset_dec [lemma, in hydras.rpo.list_set]
    +Make.substitution [definition, in hydras.rpo.term]
    +Make.subst_comp_is_subst_comp [lemma, in hydras.rpo.term]
    +Make.subst_comp_is_subst_comp_aux2 [lemma, in hydras.rpo.term]
    +Make.subst_comp_is_subst_comp_aux1 [lemma, in hydras.rpo.term]
    +Make.subst_comp [definition, in hydras.rpo.term]
    +Make.Subterm [constructor, in hydras.rpo.rpo]
    +Make.subterm_at_pos_apply_subst_apply_subst_subterm_at_pos [lemma, in hydras.rpo.term]
    +Make.subterm_at_pos [definition, in hydras.rpo.term]
    +Make.support [projection, in hydras.rpo.list_set]
    +Make.symbol [definition, in hydras.rpo.term]
    +Make.t [record, in hydras.rpo.list_set]
    +Make.T [module, in hydras.rpo.rpo]
    +Make.Term [constructor, in hydras.rpo.term]
    +Make.term [inductive, in hydras.rpo.term]
    +Make.Term_eq_dec.eq_A_dec [definition, in hydras.rpo.term]
    +Make.Term_eq_dec.A [definition, in hydras.rpo.term]
    +Make.Term_eq_dec [module, in hydras.rpo.term]
    +Make.term_rec8 [definition, in hydras.rpo.term]
    +Make.term_rec7 [definition, in hydras.rpo.term]
    +Make.term_rec4 [definition, in hydras.rpo.term]
    +Make.term_rec3 [definition, in hydras.rpo.term]
    +Make.term_rec2 [definition, in hydras.rpo.term]
    +Make.Top_eq_mul [constructor, in hydras.rpo.rpo]
    +Make.Top_eq_lex [constructor, in hydras.rpo.rpo]
    +Make.Top_gt [constructor, in hydras.rpo.rpo]
    +Make.tt [projection, in hydras.rpo.rpo]
    +Make.two_cases [lemma, in hydras.rpo.dickson]
    +Make.two_cases_rpo [lemma, in hydras.rpo.rpo]
    +Make.union [definition, in hydras.rpo.list_set]
    +Make.union_compat_eq_set [lemma, in hydras.rpo.list_set]
    +Make.union_compat_subset_2 [lemma, in hydras.rpo.list_set]
    +Make.union_compat_subset_1 [lemma, in hydras.rpo.list_set]
    +Make.union_assoc [lemma, in hydras.rpo.list_set]
    +Make.union_comm [lemma, in hydras.rpo.list_set]
    +Make.union_empty_2 [lemma, in hydras.rpo.list_set]
    +Make.union_empty_1 [lemma, in hydras.rpo.list_set]
    +Make.union_12 [lemma, in hydras.rpo.list_set]
    +Make.union_12_aux [lemma, in hydras.rpo.list_set]
    +Make.union_2 [lemma, in hydras.rpo.list_set]
    +Make.union_2_aux [lemma, in hydras.rpo.list_set]
    +Make.union_1 [lemma, in hydras.rpo.list_set]
    +Make.union_1_aux [lemma, in hydras.rpo.list_set]
    +Make.Var [constructor, in hydras.rpo.term]
    +Make.variable [definition, in hydras.rpo.term]
    +Make.VSet [module, in hydras.rpo.term]
    +Make.well_formed_apply_subst [lemma, in hydras.rpo.term]
    +Make.well_formed_subst [definition, in hydras.rpo.term]
    +Make.well_formed_list [definition, in hydras.rpo.term]
    +Make.well_formed_fold [lemma, in hydras.rpo.term]
    +Make.well_formed_unfold [lemma, in hydras.rpo.term]
    +Make.well_formed [definition, in hydras.rpo.term]
    +Make.wf_rpo [lemma, in hydras.rpo.rpo]
    +Make.wf_rpo_term [lemma, in hydras.rpo.rpo]
    +Make.wf_on_mul_rest [lemma, in hydras.rpo.rpo]
    +Make.wf_on_lex_rest [lemma, in hydras.rpo.rpo]
    +Make.wf_on_rest [lemma, in hydras.rpo.rpo]
    +Make.wf_size3 [lemma, in hydras.rpo.rpo]
    +Make.wf_size2 [lemma, in hydras.rpo.rpo]
    +Make.wf_size [lemma, in hydras.rpo.rpo]
    +Make.without_red_permut [lemma, in hydras.rpo.list_set]
    +Make.without_red_remove_not_common [lemma, in hydras.rpo.list_set]
    +Make.without_red_remove_not_common_aux [lemma, in hydras.rpo.list_set]
    +Make.without_red_add_without_red [lemma, in hydras.rpo.list_set]
    +Make.without_red_singleton [lemma, in hydras.rpo.list_set]
    +Make.without_red_nil [lemma, in hydras.rpo.list_set]
    +Make.without_red_add [lemma, in hydras.rpo.list_set]
    +Make.without_red_remove [lemma, in hydras.rpo.list_set]
    +Make.without_red_remove_red [lemma, in hydras.rpo.list_set]
    +Make.without_red_filter_aux [lemma, in hydras.rpo.list_set]
    +Make.without_red [definition, in hydras.rpo.list_set]
    +Make.X [module, in hydras.rpo.term]
    +mapListLemma [lemma, in hydras.Ackermann.codeSubFormula]
    +map_without_repetition [definition, in hydras.rpo.more_list]
    +map_app [lemma, in hydras.rpo.more_list]
    +map_map [lemma, in hydras.rpo.more_list]
    +map12_without_repetition [definition, in hydras.rpo.more_list]
    +map:296 [binder, in hydras.Ackermann.subAll]
    +map:340 [binder, in hydras.Ackermann.subAll]
    +map:345 [binder, in hydras.Ackermann.subAll]
    +map:350 [binder, in hydras.Ackermann.subAll]
    +map:373 [binder, in hydras.Ackermann.subAll]
    +mark [definition, in hydras.Prelude.Sort_spec]
    +marked [inductive, in hydras.Prelude.Sort_spec]
    +marked0 [constructor, in hydras.Prelude.Sort_spec]
    +marked1 [constructor, in hydras.Prelude.Sort_spec]
    +match2 [definition, in hydras.Prelude.MoreVectors]
    +max [definition, in hydras.Prelude.Comparable]
    +maxApp [lemma, in hydras.Ackermann.codeSubFormula]
    +maximal_critical [definition, in hydras.Schutte.Critical]
    +maxIsPR [instance, in hydras.Ackermann.primRec]
    +maxLemma [lemma, in hydras.Ackermann.codeSubFormula]
    +maxLemma2 [lemma, in hydras.Ackermann.codeSubFormula]
    +maxLemma3 [lemma, in hydras.Ackermann.codeSubFormula]
    +maxSubTerm [lemma, in hydras.Ackermann.codeSubFormula]
    +maxSubTerms [lemma, in hydras.Ackermann.codeSubFormula]
    +maxVarFreeVar [lemma, in hydras.Ackermann.codeSubFormula]
    +max_nf [lemma, in hydras.Epsilon0.T1]
    +max_le_regL [lemma, in hydras.Prelude.More_Arith]
    +max_le_regR [lemma, in hydras.Prelude.More_Arith]
    +max_le_plus [lemma, in hydras.Prelude.More_Arith]
    +max_assoc [instance, in hydras.Prelude.Comparable]
    +max_refl [lemma, in hydras.Prelude.Comparable]
    +max_ge_b [lemma, in hydras.Prelude.Comparable]
    +max_ge_a [lemma, in hydras.Prelude.Comparable]
    +max_comm [lemma, in hydras.Prelude.Comparable]
    +max_dec [lemma, in hydras.Prelude.Comparable]
    +max_v_tl [lemma, in hydras.Prelude.MoreVectors]
    +max_v_ge [lemma, in hydras.Prelude.MoreVectors]
    +max_v_lub [lemma, in hydras.Prelude.MoreVectors]
    +max_v_2 [lemma, in hydras.Prelude.MoreVectors]
    +max_v [definition, in hydras.Prelude.MoreVectors]
    +measure_lt [definition, in hydras.OrdinalNotations.ON_Generic]
    +mem [definition, in hydras.Ackermann.fol]
    +members [definition, in hydras.solutions_exercises.OnCodeList]
    +members [definition, in hydras.Schutte.Schutte_basics]
    +membersOk [lemma, in hydras.solutions_exercises.OnCodeList]
    +membersOk' [lemma, in hydras.solutions_exercises.OnCodeList]
    +members_omega [lemma, in hydras.Schutte.Schutte_basics]
    +members_eq [lemma, in hydras.Schutte.Schutte_basics]
    +members_proper [lemma, in hydras.Schutte.Ordering_Functions]
    +mem_head_mult_inv [lemma, in hydras.Hydra.O2H]
    +mem_head [inductive, in hydras.Hydra.O2H]
    +merge [definition, in hydras.Prelude.Merge_Sort]
    +merge_sort_correct [lemma, in hydras.Prelude.Merge_Sort]
    +merge_permutation [lemma, in hydras.Prelude.Merge_Sort]
    +merge_LocallySorted [lemma, in hydras.Prelude.Merge_Sort]
    +merge_Forall [lemma, in hydras.Prelude.Merge_Sort]
    +merge_equation [lemma, in hydras.Prelude.Merge_Sort]
    +merge_rec [definition, in hydras.Prelude.Merge_Sort]
    +merge_ind [definition, in hydras.Prelude.Merge_Sort]
    +merge_rect [lemma, in hydras.Prelude.Merge_Sort]
    +merge_aux:115 [binder, in hydras.Prelude.Merge_Sort]
    +Merge_Sort [library]
    +min [definition, in hydras.Prelude.Comparable]
    +minimize [definition, in Goedel.PRrepresentable]
    +minimize1 [lemma, in Goedel.PRrepresentable]
    +minIsPR [instance, in hydras.solutions_exercises.MinPR2]
    +minIsPR [instance, in hydras.solutions_exercises.MinPR]
    +minoration [lemma, in hydras.Hydra.BigBattle]
    +minoration_3 [lemma, in hydras.Hydra.BigBattle]
    +minoration_2 [lemma, in hydras.Hydra.BigBattle]
    +minoration_1 [lemma, in hydras.Hydra.BigBattle]
    +minoration_0 [lemma, in hydras.Hydra.BigBattle]
    +MinPR [library]
    +minPR_PR [instance, in hydras.solutions_exercises.MinPR2]
    +minPR_correct [lemma, in hydras.solutions_exercises.MinPR2]
    +minPR_PR [instance, in hydras.solutions_exercises.MinPR]
    +MinPR2 [library]
    +minus [definition, in hydras.Epsilon0.T1]
    +minusIndIsPR [instance, in hydras.Ackermann.primRec]
    +minusIsPR [instance, in hydras.Ackermann.primRec]
    +minus_le [lemma, in hydras.Epsilon0.T1]
    +minus_a_a [lemma, in hydras.Epsilon0.T1]
    +minus_lt [lemma, in hydras.Epsilon0.T1]
    +minus_semi_assoc [lemma, in hydras.Prelude.More_Arith]
    +minus_exists [lemma, in hydras.Schutte.Addition]
    +min_assoc [instance, in hydras.Prelude.Comparable]
    +min_refl [lemma, in hydras.Prelude.Comparable]
    +min_le_b [lemma, in hydras.Prelude.Comparable]
    +min_le_ad [lemma, in hydras.Prelude.Comparable]
    +min_dec [lemma, in hydras.Prelude.Comparable]
    +min_comm [lemma, in hydras.Prelude.Comparable]
    +min_max_iff [lemma, in hydras.Prelude.Comparable]
    +min_alt_correct [lemma, in hydras.solutions_exercises.MinPR]
    +misc [library]
    +mIsPR [instance, in hydras.Hydra.Hydra_Theorems]
    +mkE0 [constructor, in gaia_hydras.T1Bridge]
    +mkord [constructor, in hydras.Epsilon0.E0]
    +mkP [constructor, in hydras.Epsilon0.F_alpha]
    +mkP [constructor, in hydras.Epsilon0.Hprime]
    +mkQ [constructor, in hydras.Epsilon0.F_alpha]
    +mks [constructor, in hydras.Hydra.BigBattle]
    +mlarge [definition, in hydras.Epsilon0.Large_Sets]
    +mlarge [definition, in gaia_hydras.GLarge_Sets]
    +mlargeS [definition, in hydras.Epsilon0.Large_Sets]
    +mlargeS [definition, in gaia_hydras.GLarge_Sets]
    +mlargeS_iff [lemma, in hydras.Epsilon0.Large_Sets]
    +mlarge_omega [lemma, in hydras.Epsilon0.Large_Sets]
    +mlarge_FS [lemma, in hydras.Epsilon0.Large_Sets]
    +mlarge_iff [lemma, in hydras.Epsilon0.Large_Sets]
    +mlarge_unshift [lemma, in hydras.Epsilon0.Large_Sets]
    +mlarge_unicity [lemma, in hydras.Epsilon0.Large_Sets]
    +mlarge_unicity [lemma, in gaia_hydras.GLarge_Sets]
    +ml_1 [lemma, in hydras.Gamma0.Gamma0]
    +ml_psi [lemma, in hydras.Gamma0.Gamma0]
    +Model [record, in hydras.Ackermann.model]
    +model [constructor, in hydras.Ackermann.model]
    +model [library]
    +ModelConsistent [lemma, in hydras.Ackermann.model]
    +Model_Theory.Consistent_Theory.T [variable, in hydras.Ackermann.model]
    +Model_Theory.Consistent_Theory [section, in hydras.Ackermann.model]
    +Model_Theory.M [variable, in hydras.Ackermann.model]
    +Model_Theory.L [variable, in hydras.Ackermann.model]
    +Model_Theory [section, in hydras.Ackermann.model]
    +mod_Equiv [instance, in additions.Monoid_instances]
    +mod_op [instance, in additions.Monoid_instances]
    +mod_equiv [instance, in additions.Monoid_instances]
    +mod_eq [definition, in additions.Monoid_instances]
    +Monoid [record, in additions.Monoid_def]
    +Monoid_EMonoid [instance, in additions.Monoid_def]
    +Monoid_Exp [inductive, in additions.Addition_Chains]
    +Monoid_instances [library]
    +Monoid_def [library]
    +mono_weak [lemma, in hydras.Prelude.Iterates]
    +mono_injective [lemma, in hydras.Prelude.Iterates]
    +mono_le [lemma, in hydras.Prelude.Iterates]
    +mono_F_Zero [lemma, in hydras.Epsilon0.F_alpha]
    +mono_seq_weak2 [lemma, in hydras.Schutte.AP]
    +mono_seq2 [lemma, in hydras.Schutte.AP]
    +mono_seq [lemma, in hydras.Schutte.AP]
    +MoreDecidable [library]
    +MoreEpsilonIota [library]
    +MoreExamples [module, in hydras.MoreAck.PrimRecExamples]
    +MoreExamples.cst [definition, in hydras.MoreAck.PrimRecExamples]
    +MoreExamples.cst0 [definition, in hydras.MoreAck.PrimRecExamples]
    +MoreExamples.fact [definition, in hydras.MoreAck.PrimRecExamples]
    +MoreExamples.mult [definition, in hydras.MoreAck.PrimRecExamples]
    +MoreExamples.plus [definition, in hydras.MoreAck.PrimRecExamples]
    +MoreLibHyps [library]
    +MoreLists [library]
    +MoreOrders [library]
    +MoreOrderType [section, in gaia_hydras.onType]
    +MoreOrderType.disp [variable, in gaia_hydras.onType]
    +MoreOrderType.Succ_no_limit.Hlim [variable, in gaia_hydras.onType]
    +MoreOrderType.Succ_no_limit.Hsucc [variable, in gaia_hydras.onType]
    +MoreOrderType.Succ_no_limit.s [variable, in gaia_hydras.onType]
    +MoreOrderType.Succ_no_limit.y [variable, in gaia_hydras.onType]
    +MoreOrderType.Succ_no_limit.x [variable, in gaia_hydras.onType]
    +MoreOrderType.Succ_no_limit [section, in gaia_hydras.onType]
    +MoreOrderType.T [variable, in gaia_hydras.onType]
    +MorePRExamples [library]
    +MoreVectors [library]
    +More_Logic_Rules.SysPrf [variable, in hydras.Ackermann.folLogic2]
    +More_Logic_Rules.Prf [variable, in hydras.Ackermann.folLogic2]
    +More_Logic_Rules.Terms [variable, in hydras.Ackermann.folLogic2]
    +More_Logic_Rules.Term [variable, in hydras.Ackermann.folLogic2]
    +More_Logic_Rules.System [variable, in hydras.Ackermann.folLogic2]
    +More_Logic_Rules.Formulas [variable, in hydras.Ackermann.folLogic2]
    +More_Logic_Rules.Formula [variable, in hydras.Ackermann.folLogic2]
    +More_Logic_Rules.L [variable, in hydras.Ackermann.folLogic2]
    +More_Logic_Rules [section, in hydras.Ackermann.folLogic2]
    +More_Arith [library]
    +more_list [library]
    +More_on_positive [library]
    +moser_lepper [definition, in hydras.Gamma0.Gamma0]
    +MP [constructor, in hydras.Ackermann.folProof]
    +MPSys [lemma, in hydras.MoreAck.FolExamples]
    +mp:29 [binder, in additions.AM]
    +mq:28 [binder, in additions.AM]
    +mq:30 [binder, in additions.AM]
    +mq:32 [binder, in additions.AM]
    +ms [definition, in hydras.Hydra.Hydra_Termination]
    +ms [definition, in gaia_hydras.GHydra]
    +ms_eqn3 [lemma, in hydras.Hydra.Hydra_Termination]
    +ms_nf [lemma, in hydras.Hydra.Hydra_Termination]
    +ms_eqn2 [lemma, in hydras.Hydra.Hydra_Termination]
    +MUL [constructor, in additions.AM]
    +mult [abbreviation, in hydras.Epsilon0.T1]
    +Mult [abbreviation, in hydras.Epsilon0.E0]
    +Mult [constructor, in additions.Addition_Chains]
    +multE4 [lemma, in gaia_hydras.T1Bridge]
    +multE5 [lemma, in gaia_hydras.T1Bridge]
    +multIndIsPR [instance, in hydras.Ackermann.primRec]
    +MultisetWf [library]
    +multIsPR [instance, in hydras.Ackermann.primRec]
    +multLemma1 [lemma, in hydras.Ackermann.wellFormed]
    +multLemma2 [lemma, in hydras.Ackermann.wellFormed]
    +mults_squares [definition, in additions.AM]
    +mults:5 [binder, in additions.AM]
    +mult_plus_distr_l [lemma, in hydras.Epsilon0.T1]
    +mult_mono [lemma, in hydras.Epsilon0.T1]
    +mult_nf [lemma, in hydras.Epsilon0.T1]
    +mult_Sn_add [lemma, in hydras.Epsilon0.T1]
    +mult_0_a [lemma, in hydras.Epsilon0.T1]
    +mult_nf_fin [lemma, in hydras.Epsilon0.T1]
    +mult_a_1 [lemma, in hydras.Epsilon0.T1]
    +mult_1_a [lemma, in hydras.Epsilon0.T1]
    +mult_a_0 [lemma, in hydras.Epsilon0.T1]
    +mult_compat [lemma, in hydras.Epsilon0.T1]
    +mult_fin_omega [lemma, in hydras.Epsilon0.T1]
    +mult_Sn_dist [lemma, in hydras.Schutte.Correctness_E0]
    +mult_fin_l [definition, in hydras.OrdinalNotations.ON_Omega2]
    +mult_fin_r [definition, in hydras.OrdinalNotations.ON_Omega2]
    +mult_lt_lt [lemma, in hydras.Prelude.More_Arith]
    +mult_ref [lemma, in gaia_hydras.T1Bridge]
    +mult_ref0 [lemma, in gaia_hydras.T1Bridge]
    +mult_op [projection, in additions.Monoid_def]
    +Mult_op [record, in additions.Monoid_def]
    +mult_op [constructor, in additions.Monoid_def]
    +Mult_op [inductive, in additions.Monoid_def]
    +mult_comp [instance, in hydras.OrdinalNotations.ON_mult]
    +mult_mod_associative [lemma, in additions.Monoid_instances]
    +mult_mod_proper [instance, in additions.Monoid_instances]
    +mult_mod [definition, in additions.Monoid_instances]
    +mult_plus_distr_l [lemma, in hydras.Epsilon0.E0]
    +mult_fin_rw [lemma, in hydras.Epsilon0.E0]
    +Mult_i [instance, in hydras.Epsilon0.E0]
    +mult_Sn_mono3 [lemma, in hydras.Schutte.Addition]
    +mult_Sn_mono2 [lemma, in hydras.Schutte.Addition]
    +mult_fin_r_mono [lemma, in hydras.Schutte.Addition]
    +mult_fin_r_one [lemma, in hydras.Schutte.Addition]
    +mult_fin_r [definition, in hydras.Schutte.Addition]
    +mult_Sn [definition, in hydras.Schutte.Addition]
    +mult_correct [lemma, in hydras.MoreAck.PrimRecExamples]
    +mult_eqn1 [lemma, in hydras.MoreAck.PrimRecExamples]
    +mult:35 [binder, in additions.FirstSteps]
    +mult:41 [binder, in additions.FirstSteps]
    +Mul_node [constructor, in additions.Addition_Chains]
    +Mul2 [instance, in additions.Fib2]
    +mul2 [definition, in additions.Fib2]
    +mul:75 [binder, in additions.fib]
    +mul:82 [binder, in additions.fib]
    +mul:88 [binder, in additions.fib]
    +mul:94 [binder, in additions.fib]
    +mu_beta_h [lemma, in hydras.Hydra.Epsilon0_Needed_Generic]
    +mu_positive [lemma, in hydras.Hydra.Epsilon0_Needed_Generic]
    +mu:1 [binder, in hydras.Hydra.Epsilon0_Needed_Free]
    +mu:1 [binder, in hydras.Hydra.Epsilon0_Needed_Std]
    +mu:160 [binder, in hydras.Hydra.Hydra_Definitions]
    +mu:2 [binder, in hydras.Hydra.Epsilon0_Needed_Generic]
    +mu:29 [binder, in gaia_hydras.GHydra]
    +mu:32 [binder, in gaia_hydras.GHydra]
    +mVariant [lemma, in gaia_hydras.GHydra]
    +my_pow_m2lmul [lemma, in additions.fib]
    +my_pow_m3lmul [lemma, in additions.fib]
    +my_powP [lemma, in additions.fib]
    +my_pow [definition, in additions.fib]
    +m_lt [lemma, in hydras.Hydra.Epsilon0_Needed_Free]
    +m_variant_LT [lemma, in hydras.Hydra.Epsilon0_Needed_Free]
    +m_ge [lemma, in hydras.Hydra.Epsilon0_Needed_Free]
    +M_given.Power_of_op [section, in additions.Pow_variant]
    +M_given.About_power [section, in additions.Pow_variant]
    +M_given.E_eq [variable, in additions.Pow_variant]
    +M_given.E_one [variable, in additions.Pow_variant]
    +M_given.E_op [variable, in additions.Pow_variant]
    +M_given.A [variable, in additions.Pow_variant]
    +M_given [section, in additions.Pow_variant]
    +M_given.Power_of_op [section, in additions.Pow]
    +M_given.E_one [variable, in additions.Pow]
    +M_given.A [variable, in additions.Pow]
    +M_given [section, in additions.Pow]
    +m_dominates_Ack [lemma, in hydras.Hydra.Hydra_Theorems]
    +m_dominates_Ack_from_3 [lemma, in hydras.Hydra.Hydra_Theorems]
    +m_ge_Ack [lemma, in hydras.Hydra.Hydra_Theorems]
    +m_ge_F_omega [lemma, in hydras.Hydra.Hydra_Theorems]
    +m_eqn [lemma, in hydras.Hydra.Hydra_Theorems]
    +m_ms [lemma, in hydras.Hydra.Hydra_Termination]
    +m_nf [lemma, in hydras.Hydra.Hydra_Termination]
    +m_lt [lemma, in hydras.Hydra.Epsilon0_Needed_Std]
    +m_decrease [lemma, in hydras.Hydra.Epsilon0_Needed_Std]
    +m_ge [lemma, in hydras.Hydra.Epsilon0_Needed_Std]
    +m_neq_0 [lemma, in additions.Monoid_instances]
    +m_nf [lemma, in gaia_hydras.GHydra]
    +m_ref [lemma, in gaia_hydras.GHydra]
    +m_strict_mono [lemma, in hydras.Hydra.Hydra_Lemmas]
    +m_ge_generic [lemma, in hydras.Hydra.Epsilon0_Needed_Generic]
    +m_ge_0 [lemma, in hydras.Hydra.Epsilon0_Needed_Generic]
    +m_ge [lemma, in hydras.Hydra.Omega2_Small]
    +m_lt [lemma, in hydras.Hydra.Omega2_Small]
    +m_big_h_not_null [lemma, in hydras.Hydra.Omega2_Small]
    +m_def [lemma, in hydras.Epsilon0.Paths]
    +m_ge [lemma, in hydras.Hydra.Omega_Small]
    +m_lt [lemma, in hydras.Hydra.Omega_Small]
    +m_bounded [projection, in hydras.Hydra.Hydra_Definitions]
    +M'':37 [binder, in additions.Naive]
    +m':19 [binder, in additions.Monoid_instances]
    +M':29 [binder, in additions.Naive]
    +M':32 [binder, in additions.FirstSteps]
    +M':36 [binder, in additions.Naive]
    +m':47 [binder, in hydras.rpo.dickson]
    +m':88 [binder, in hydras.Ackermann.primRec]
    +m0:60 [binder, in hydras.Ackermann.folLogic3]
    +m1:12 [binder, in gaia_hydras.nfwfgaia]
    +m1:14 [binder, in hydras.Ackermann.subAll]
    +m1:152 [binder, in additions.fib]
    +m1:16 [binder, in gaia_hydras.nfwfgaia]
    +m1:19 [binder, in hydras.Ackermann.subAll]
    +m1:20 [binder, in gaia_hydras.nfwfgaia]
    +m1:208 [binder, in hydras.Ackermann.subAll]
    +m1:213 [binder, in hydras.Ackermann.subAll]
    +m1:218 [binder, in hydras.Ackermann.subAll]
    +m1:223 [binder, in hydras.Ackermann.subAll]
    +m1:228 [binder, in hydras.Ackermann.subAll]
    +m1:24 [binder, in hydras.Ackermann.subAll]
    +m1:29 [binder, in hydras.Ackermann.subAll]
    +m1:51 [binder, in hydras.Ackermann.subAll]
    +m1:659 [binder, in gaia_hydras.nfwfgaia]
    +m1:663 [binder, in gaia_hydras.nfwfgaia]
    +M2 [module, in additions.FirstSteps]
    +M2 [module, in additions.Naive]
    +M2 [record, in additions.Monoid_instances]
    +m2lfib [definition, in additions.fib]
    +m2lfibP [lemma, in additions.fib]
    +m2lmul [definition, in additions.fib]
    +m2lmulP [lemma, in additions.fib]
    +m2lmx [definition, in additions.fib]
    +m2lpow [definition, in additions.fib]
    +M2N [definition, in additions.Monoid_instances]
    +M2_Monoid [instance, in additions.Monoid_instances]
    +M2_op [instance, in additions.Monoid_instances]
    +M2_eq_intros [lemma, in additions.Monoid_instances]
    +M2_mult [definition, in additions.Monoid_instances]
    +M2_def.rt [variable, in additions.Monoid_instances]
    +_ * _ [notation, in additions.Monoid_instances]
    +_ + _ [notation, in additions.Monoid_instances]
    +1 [notation, in additions.Monoid_instances]
    +0 [notation, in additions.Monoid_instances]
    +M2_def.mult [variable, in additions.Monoid_instances]
    +M2_def.plus [variable, in additions.Monoid_instances]
    +M2_def.one [variable, in additions.Monoid_instances]
    +M2_def.zero [variable, in additions.Monoid_instances]
    +M2_def.A [variable, in additions.Monoid_instances]
    +M2_def [section, in additions.Monoid_instances]
    +M2.c00 [projection, in additions.FirstSteps]
    +M2.c00 [projection, in additions.Naive]
    +M2.c01 [projection, in additions.FirstSteps]
    +M2.c01 [projection, in additions.Naive]
    +M2.c10 [projection, in additions.FirstSteps]
    +M2.c10 [projection, in additions.Naive]
    +M2.c11 [projection, in additions.FirstSteps]
    +M2.c11 [projection, in additions.Naive]
    +M2.Definitions [section, in additions.Naive]
    +M2.Definitions.A [variable, in additions.Naive]
    +M2.Definitions.mult [variable, in additions.Naive]
    +M2.Definitions.one [variable, in additions.Naive]
    +M2.Definitions.plus [variable, in additions.Naive]
    +M2.Definitions.rt [variable, in additions.Naive]
    +M2.Definitions.zero [variable, in additions.Naive]
    +_ ** _ [notation, in additions.Naive]
    +_ * _ [notation, in additions.Naive]
    +_ + _ [notation, in additions.Naive]
    +0 [notation, in additions.Naive]
    +1 [notation, in additions.Naive]
    +M2.Id2 [definition, in additions.FirstSteps]
    +M2.Id2 [definition, in additions.Naive]
    +M2.Id2_neutral [lemma, in additions.Naive]
    +M2.mat [constructor, in additions.FirstSteps]
    +M2.mat [constructor, in additions.Naive]
    +M2.M2_mult [definition, in additions.FirstSteps]
    +_ * _ [notation, in additions.FirstSteps]
    +_ + _ [notation, in additions.FirstSteps]
    +1 [notation, in additions.FirstSteps]
    +0 [notation, in additions.FirstSteps]
    +M2.M2_Definitions.rt [variable, in additions.FirstSteps]
    +M2.M2_Definitions.mult [variable, in additions.FirstSteps]
    +M2.M2_Definitions.plus [variable, in additions.FirstSteps]
    +M2.M2_Definitions.one [variable, in additions.FirstSteps]
    +M2.M2_Definitions.zero [variable, in additions.FirstSteps]
    +M2.M2_Definitions.A [variable, in additions.FirstSteps]
    +M2.M2_Definitions [section, in additions.FirstSteps]
    +M2.M2_mult_assoc [lemma, in additions.Naive]
    +M2.M2_mult [definition, in additions.Naive]
    +M2.power [definition, in additions.Naive]
    +M2.power_of_plus [lemma, in additions.Naive]
    +M2.t [record, in additions.FirstSteps]
    +M2.t [record, in additions.Naive]
    +m2:13 [binder, in gaia_hydras.nfwfgaia]
    +m2:15 [binder, in hydras.Ackermann.subAll]
    +m2:153 [binder, in additions.fib]
    +m2:17 [binder, in gaia_hydras.nfwfgaia]
    +m2:20 [binder, in hydras.Ackermann.subAll]
    +m2:209 [binder, in hydras.Ackermann.subAll]
    +m2:21 [binder, in gaia_hydras.nfwfgaia]
    +m2:214 [binder, in hydras.Ackermann.subAll]
    +m2:219 [binder, in hydras.Ackermann.subAll]
    +m2:224 [binder, in hydras.Ackermann.subAll]
    +m2:229 [binder, in hydras.Ackermann.subAll]
    +m2:25 [binder, in hydras.Ackermann.subAll]
    +m2:30 [binder, in hydras.Ackermann.subAll]
    +m2:52 [binder, in hydras.Ackermann.subAll]
    +m2:660 [binder, in gaia_hydras.nfwfgaia]
    +m2:664 [binder, in gaia_hydras.nfwfgaia]
    +m3lfib [definition, in additions.fib]
    +m3lfibP [lemma, in additions.fib]
    +m3lid [definition, in additions.fib]
    +m3lmul [definition, in additions.fib]
    +m3lmulP [lemma, in additions.fib]
    +m3lmx [definition, in additions.fib]
    +m3lpow [definition, in additions.fib]
    +m4lfib [definition, in additions.fib]
    +m4lmul [definition, in additions.fib]
    +m4lmx [definition, in additions.fib]
    +m4lval [definition, in additions.fib]
    +M7_3 [definition, in additions.AM]
    +M:1 [binder, in hydras.Schutte.Lub]
    +m:1 [binder, in hydras.MoreAck.Ack]
    +m:102 [binder, in Goedel.PRrepresentable]
    +M:102 [binder, in additions.AM]
    +m:102 [binder, in hydras.Hydra.Hydra_Lemmas]
    +m:103 [binder, in hydras.Ackermann.primRec]
    +M:103 [binder, in additions.Euclidean_Chains]
    +M:105 [binder, in additions.Addition_Chains]
    +m:107 [binder, in Goedel.PRrepresentable]
    +M:107 [binder, in additions.AM]
    +m:109 [binder, in hydras.Ackermann.subAll]
    +m:11 [binder, in hydras.Prelude.More_Arith]
    +M:11 [binder, in additions.Compatibility]
    +M:112 [binder, in additions.AM]
    +m:112 [binder, in hydras.Hydra.Hydra_Lemmas]
    +m:113 [binder, in Goedel.PRrepresentable]
    +M:113 [binder, in additions.Addition_Chains]
    +m:1134 [binder, in gaia_hydras.nfwfgaia]
    +M:114 [binder, in additions.Euclidean_Chains]
    +m:1141 [binder, in gaia_hydras.nfwfgaia]
    +m:115 [binder, in hydras.Ackermann.subAll]
    +m:115 [binder, in additions.fib]
    +m:1156 [binder, in gaia_hydras.nfwfgaia]
    +m:117 [binder, in Goedel.PRrepresentable]
    +m:1177 [binder, in gaia_hydras.nfwfgaia]
    +m:1180 [binder, in gaia_hydras.nfwfgaia]
    +m:1183 [binder, in gaia_hydras.nfwfgaia]
    +m:1186 [binder, in gaia_hydras.nfwfgaia]
    +m:1189 [binder, in gaia_hydras.nfwfgaia]
    +m:119 [binder, in Goedel.PRrepresentable]
    +M:119 [binder, in hydras.Epsilon0.Large_Sets]
    +M:119 [binder, in additions.Addition_Chains]
    +m:12 [binder, in hydras.Ackermann.subAll]
    +m:12 [binder, in hydras.rpo.dickson]
    +M:122 [binder, in additions.AM]
    +m:1227 [binder, in hydras.Ackermann.codeSubFormula]
    +m:123 [binder, in Goedel.PRrepresentable]
    +m:1230 [binder, in hydras.Ackermann.codeSubFormula]
    +m:1246 [binder, in hydras.Ackermann.codeSubFormula]
    +m:1249 [binder, in hydras.Ackermann.codeSubFormula]
    +m:125 [binder, in hydras.Ackermann.cPair]
    +M:126 [binder, in additions.Addition_Chains]
    +M:127 [binder, in additions.AM]
    +m:127 [binder, in hydras.Ackermann.cPair]
    +m:130 [binder, in Goedel.PRrepresentable]
    +m:1303 [binder, in hydras.Ackermann.codeSubFormula]
    +m:1306 [binder, in hydras.Ackermann.codeSubFormula]
    +m:131 [binder, in hydras.Hydra.Hydra_Lemmas]
    +M:133 [binder, in additions.Addition_Chains]
    +m:135 [binder, in Goedel.PRrepresentable]
    +m:135 [binder, in hydras.Ackermann.codeSubFormula]
    +m:136 [binder, in additions.fib]
    +m:1383 [binder, in hydras.Ackermann.codeSubFormula]
    +m:1386 [binder, in hydras.Ackermann.codeSubFormula]
    +m:139 [binder, in additions.fib]
    +M:14 [binder, in additions.Pow_variant]
    +M:14 [binder, in additions.Pow]
    +m:14 [binder, in hydras.MoreAck.Ack]
    +m:141 [binder, in Goedel.PRrepresentable]
    +m:144 [binder, in hydras.Ackermann.codePA]
    +m:145 [binder, in hydras.Ackermann.codePA]
    +m:146 [binder, in Goedel.PRrepresentable]
    +m:1472 [binder, in gaia_hydras.nfwfgaia]
    +m:1474 [binder, in gaia_hydras.nfwfgaia]
    +m:1478 [binder, in gaia_hydras.nfwfgaia]
    +m:148 [binder, in hydras.Hydra.Hydra_Definitions]
    +m:1482 [binder, in gaia_hydras.nfwfgaia]
    +m:1488 [binder, in gaia_hydras.nfwfgaia]
    +m:1490 [binder, in gaia_hydras.nfwfgaia]
    +m:15 [binder, in hydras.Ackermann.NNtheory]
    +m:15 [binder, in hydras.Schutte.Countable]
    +m:150 [binder, in hydras.Ackermann.cPair]
    +m:152 [binder, in Goedel.PRrepresentable]
    +m:1529 [binder, in gaia_hydras.nfwfgaia]
    +m:153 [binder, in hydras.Ackermann.codePA]
    +m:154 [binder, in hydras.Ackermann.cPair]
    +m:154 [binder, in additions.fib]
    +m:156 [binder, in hydras.Ackermann.cPair]
    +m:156 [binder, in hydras.Ackermann.codePA]
    +m:157 [binder, in Goedel.PRrepresentable]
    +m:158 [binder, in hydras.Ackermann.cPair]
    +m:158 [binder, in additions.fib]
    +m:158 [binder, in hydras.Hydra.Hydra_Definitions]
    +m:159 [binder, in hydras.Ackermann.cPair]
    +m:16 [binder, in hydras.Ackermann.subAll]
    +m:16 [binder, in hydras.Ackermann.primRec]
    +m:16 [binder, in hydras.OrdinalNotations.ON_Generic]
    +m:16 [binder, in gaia_hydras.onType]
    +m:160 [binder, in additions.fib]
    +m:161 [binder, in hydras.Ackermann.cPair]
    +m:163 [binder, in hydras.Prelude.MoreLists]
    +M:163 [binder, in additions.Addition_Chains]
    +M:166 [binder, in additions.Euclidean_Chains]
    +m:17 [binder, in hydras.Ackermann.codePA]
    +M:170 [binder, in additions.Addition_Chains]
    +M:172 [binder, in additions.Euclidean_Chains]
    +M:176 [binder, in additions.Addition_Chains]
    +m:1776 [binder, in gaia_hydras.nfwfgaia]
    +m:1785 [binder, in gaia_hydras.nfwfgaia]
    +m:18 [binder, in hydras.Prelude.More_Arith]
    +m:18 [binder, in hydras.MoreAck.AckNotPR]
    +m:18 [binder, in hydras.Ackermann.primRec]
    +m:18 [binder, in additions.Monoid_instances]
    +m:1800 [binder, in gaia_hydras.nfwfgaia]
    +m:1821 [binder, in gaia_hydras.nfwfgaia]
    +m:1824 [binder, in gaia_hydras.nfwfgaia]
    +m:1827 [binder, in gaia_hydras.nfwfgaia]
    +m:183 [binder, in hydras.Ackermann.fol]
    +m:1830 [binder, in gaia_hydras.nfwfgaia]
    +m:1833 [binder, in gaia_hydras.nfwfgaia]
    +m:184 [binder, in gaia_hydras.nfwfgaia]
    +m:1848 [binder, in gaia_hydras.nfwfgaia]
    +m:1855 [binder, in gaia_hydras.nfwfgaia]
    +M:186 [binder, in additions.Euclidean_Chains]
    +m:186 [binder, in gaia_hydras.nfwfgaia]
    +m:1875 [binder, in gaia_hydras.nfwfgaia]
    +m:188 [binder, in gaia_hydras.nfwfgaia]
    +m:1881 [binder, in gaia_hydras.nfwfgaia]
    +m:189 [binder, in hydras.Ackermann.fol]
    +m:1898 [binder, in gaia_hydras.nfwfgaia]
    +m:19 [binder, in hydras.Prelude.Compat815]
    +m:19 [binder, in hydras.Ackermann.model]
    +m:19 [binder, in hydras.Schutte.Countable]
    +m:1907 [binder, in gaia_hydras.nfwfgaia]
    +m:1916 [binder, in gaia_hydras.nfwfgaia]
    +M:192 [binder, in additions.Addition_Chains]
    +m:192 [binder, in gaia_hydras.nfwfgaia]
    +m:1937 [binder, in gaia_hydras.nfwfgaia]
    +m:1942 [binder, in gaia_hydras.nfwfgaia]
    +m:1947 [binder, in gaia_hydras.nfwfgaia]
    +m:196 [binder, in hydras.Ackermann.wellFormed]
    +m:196 [binder, in gaia_hydras.nfwfgaia]
    +M:198 [binder, in additions.Euclidean_Chains]
    +m:1982 [binder, in gaia_hydras.nfwfgaia]
    +m:1987 [binder, in gaia_hydras.nfwfgaia]
    +m:199 [binder, in hydras.Ackermann.wellFormed]
    +m:1993 [binder, in gaia_hydras.nfwfgaia]
    +m:1998 [binder, in gaia_hydras.nfwfgaia]
    +m:2 [binder, in hydras.Ackermann.NN2PA]
    +m:2 [binder, in hydras.Hydra.Epsilon0_Needed_Std]
    +m:20 [binder, in hydras.Prelude.More_Arith]
    +M:20 [binder, in additions.Pow_variant]
    +M:20 [binder, in additions.Pow]
    +m:20 [binder, in hydras.OrdinalNotations.ON_Generic]
    +m:20 [binder, in hydras.Ackermann.codePA]
    +m:2004 [binder, in gaia_hydras.nfwfgaia]
    +m:202 [binder, in gaia_hydras.nfwfgaia]
    +m:204 [binder, in gaia_hydras.nfwfgaia]
    +m:208 [binder, in hydras.Ackermann.cPair]
    +m:21 [binder, in hydras.Ackermann.subAll]
    +m:21 [binder, in hydras.Prelude.Compat815]
    +m:22 [binder, in hydras.Ackermann.primRec]
    +M:227 [binder, in additions.Addition_Chains]
    +m:23 [binder, in hydras.Prelude.Compat815]
    +M:234 [binder, in additions.AM]
    +M:235 [binder, in additions.Addition_Chains]
    +m:237 [binder, in Goedel.PRrepresentable]
    +m:240 [binder, in Goedel.PRrepresentable]
    +M:241 [binder, in additions.AM]
    +m:243 [binder, in Goedel.PRrepresentable]
    +m:246 [binder, in Goedel.PRrepresentable]
    +m:246 [binder, in hydras.Ackermann.cPair]
    +m:25 [binder, in hydras.Prelude.Compat815]
    +m:25 [binder, in hydras.MoreAck.AckNotPR]
    +m:25 [binder, in hydras.MoreAck.Ack]
    +m:25 [binder, in hydras.Ackermann.primRec]
    +m:257 [binder, in hydras.Ackermann.subAll]
    +m:257 [binder, in hydras.rpo.rpo]
    +m:26 [binder, in hydras.Ackermann.subAll]
    +m:26 [binder, in hydras.Ackermann.primRec]
    +M:269 [binder, in additions.Addition_Chains]
    +m:269 [binder, in hydras.rpo.rpo]
    +m:27 [binder, in hydras.Prelude.Compat815]
    +M:27 [binder, in additions.Pow_variant]
    +M:27 [binder, in additions.Pow]
    +m:271 [binder, in hydras.rpo.rpo]
    +m:272 [binder, in hydras.rpo.rpo]
    +m:273 [binder, in hydras.rpo.rpo]
    +m:28 [binder, in hydras.MoreAck.Ack]
    +m:28 [binder, in hydras.Ackermann.primRec]
    +M:28 [binder, in additions.Naive]
    +m:285 [binder, in hydras.Ackermann.subAll]
    +m:29 [binder, in hydras.Prelude.Compat815]
    +m:290 [binder, in hydras.Ackermann.subAll]
    +m:295 [binder, in hydras.Ackermann.subAll]
    +m:3 [binder, in hydras.Prelude.Compat815]
    +m:3 [binder, in hydras.Hydra.Epsilon0_Needed_Free]
    +m:3 [binder, in hydras.Ackermann.PAtheory]
    +m:30 [binder, in hydras.Ackermann.model]
    +m:30 [binder, in hydras.Schutte.AP]
    +M:30 [binder, in additions.Naive]
    +m:30 [binder, in gaia_hydras.GHydra]
    +m:31 [binder, in hydras.Ackermann.subAll]
    +M:31 [binder, in additions.FirstSteps]
    +m:31 [binder, in hydras.Prelude.Compat815]
    +m:315 [binder, in hydras.Ackermann.subAll]
    +m:32 [binder, in hydras.Ackermann.primRec]
    +M:33 [binder, in additions.Pow_variant]
    +M:33 [binder, in additions.Pow]
    +m:33 [binder, in hydras.Schutte.AP]
    +m:33 [binder, in hydras.MoreAck.Ack]
    +m:33 [binder, in gaia_hydras.GHydra]
    +M:34 [binder, in additions.Naive]
    +m:35 [binder, in hydras.Ackermann.subAll]
    +m:35 [binder, in hydras.Prelude.Compat815]
    +m:35 [binder, in hydras.Ackermann.primRec]
    +M:35 [binder, in additions.Naive]
    +m:35 [binder, in hydras.Ackermann.folLogic3]
    +m:36 [binder, in hydras.MoreAck.AckNotPR]
    +m:37 [binder, in additions.Addition_Chains]
    +M:38 [binder, in additions.Naive]
    +m:385 [binder, in gaia_hydras.nfwfgaia]
    +m:387 [binder, in gaia_hydras.nfwfgaia]
    +m:39 [binder, in hydras.Ackermann.subAll]
    +M:39 [binder, in additions.AM]
    +M:39 [binder, in additions.Euclidean_Chains]
    +m:4 [binder, in hydras.Hydra.Epsilon0_Needed_Generic]
    +M:40 [binder, in additions.Monoid_def]
    +m:40 [binder, in additions.fib]
    +m:41 [binder, in hydras.Ackermann.subAll]
    +M:43 [binder, in additions.Pow_variant]
    +M:43 [binder, in additions.Pow]
    +m:43 [binder, in hydras.Ackermann.primRec]
    +m:43 [binder, in hydras.Ackermann.wellFormed]
    +m:439 [binder, in gaia_hydras.nfwfgaia]
    +M:44 [binder, in hydras.Schutte.Schutte_basics]
    +m:447 [binder, in Goedel.PRrepresentable]
    +m:45 [binder, in hydras.Ackermann.subAll]
    +M:45 [binder, in additions.AM]
    +M:45 [binder, in additions.Monoid_def]
    +m:45 [binder, in hydras.Ackermann.wellFormed]
    +m:45 [binder, in hydras.rpo.dickson]
    +m:458 [binder, in Goedel.PRrepresentable]
    +m:46 [binder, in hydras.MoreAck.Ack]
    +m:46 [binder, in hydras.rpo.dickson]
    +m:461 [binder, in Goedel.PRrepresentable]
    +m:466 [binder, in Goedel.PRrepresentable]
    +m:469 [binder, in Goedel.PRrepresentable]
    +m:47 [binder, in hydras.MoreAck.Ack]
    +m:476 [binder, in gaia_hydras.nfwfgaia]
    +m:479 [binder, in gaia_hydras.nfwfgaia]
    +m:48 [binder, in hydras.Ackermann.wellFormed]
    +m:482 [binder, in gaia_hydras.nfwfgaia]
    +m:485 [binder, in gaia_hydras.nfwfgaia]
    +m:488 [binder, in gaia_hydras.nfwfgaia]
    +m:49 [binder, in hydras.rpo.dickson]
    +m:5 [binder, in hydras.Prelude.Compat815]
    +M:5 [binder, in additions.Pow_variant]
    +M:5 [binder, in additions.Pow]
    +m:5 [binder, in hydras.Ackermann.PAtheory]
    +m:50 [binder, in Goedel.PRrepresentable]
    +M:50 [binder, in additions.Monoid_def]
    +m:50 [binder, in hydras.Ackermann.primRec]
    +m:50 [binder, in hydras.Ackermann.wellFormed]
    +M:50 [binder, in additions.Addition_Chains]
    +M:51 [binder, in hydras.Schutte.Well_Orders]
    +M:52 [binder, in additions.Pow_variant]
    +M:52 [binder, in additions.Pow]
    +m:52 [binder, in hydras.rpo.dickson]
    +m:53 [binder, in hydras.Ackermann.subAll]
    +m:53 [binder, in hydras.MoreAck.Ack]
    +m:53 [binder, in hydras.Ackermann.primRec]
    +m:53 [binder, in hydras.Ackermann.wellFormed]
    +m:53 [binder, in hydras.rpo.dickson]
    +m:539 [binder, in hydras.Ackermann.checkPrf]
    +m:54 [binder, in hydras.MoreAck.AckNotPR]
    +m:54 [binder, in hydras.Ackermann.primRec]
    +m:54 [binder, in hydras.rpo.dickson]
    +m:542 [binder, in hydras.Ackermann.checkPrf]
    +m:545 [binder, in gaia_hydras.nfwfgaia]
    +m:546 [binder, in hydras.Ackermann.checkPrf]
    +m:549 [binder, in hydras.Ackermann.checkPrf]
    +m:549 [binder, in gaia_hydras.nfwfgaia]
    +M:55 [binder, in additions.Monoid_def]
    +m:551 [binder, in hydras.Ackermann.checkPrf]
    +m:553 [binder, in hydras.Ackermann.checkPrf]
    +m:555 [binder, in hydras.Ackermann.checkPrf]
    +m:557 [binder, in hydras.Ackermann.checkPrf]
    +m:559 [binder, in hydras.Ackermann.checkPrf]
    +m:56 [binder, in Goedel.PRrepresentable]
    +M:56 [binder, in additions.AM]
    +M:56 [binder, in hydras.Schutte.Well_Orders]
    +m:56 [binder, in gaia_hydras.nfwfgaia]
    +m:561 [binder, in hydras.Ackermann.checkPrf]
    +m:562 [binder, in hydras.Ackermann.checkPrf]
    +m:569 [binder, in hydras.Ackermann.checkPrf]
    +M:57 [binder, in additions.Euclidean_Chains]
    +m:57 [binder, in hydras.rpo.dickson]
    +m:570 [binder, in hydras.Ackermann.checkPrf]
    +m:571 [binder, in hydras.Ackermann.checkPrf]
    +m:572 [binder, in hydras.Ackermann.checkPrf]
    +m:573 [binder, in hydras.Ackermann.checkPrf]
    +m:574 [binder, in hydras.Ackermann.checkPrf]
    +m:574 [binder, in gaia_hydras.nfwfgaia]
    +m:575 [binder, in hydras.Ackermann.checkPrf]
    +m:575 [binder, in gaia_hydras.nfwfgaia]
    +m:576 [binder, in hydras.Ackermann.checkPrf]
    +m:577 [binder, in hydras.Ackermann.checkPrf]
    +m:578 [binder, in hydras.Ackermann.checkPrf]
    +m:579 [binder, in hydras.Ackermann.checkPrf]
    +m:580 [binder, in hydras.Ackermann.checkPrf]
    +m:581 [binder, in hydras.Ackermann.checkPrf]
    +m:582 [binder, in hydras.Ackermann.checkPrf]
    +m:583 [binder, in hydras.Ackermann.checkPrf]
    +m:584 [binder, in hydras.Ackermann.checkPrf]
    +m:585 [binder, in hydras.Ackermann.checkPrf]
    +m:586 [binder, in hydras.Ackermann.checkPrf]
    +m:587 [binder, in hydras.Ackermann.checkPrf]
    +m:588 [binder, in hydras.Ackermann.checkPrf]
    +m:59 [binder, in hydras.Ackermann.subAll]
    +m:59 [binder, in hydras.MoreAck.AckNotPR]
    +m:59 [binder, in hydras.rpo.dickson]
    +m:590 [binder, in hydras.Ackermann.checkPrf]
    +m:592 [binder, in hydras.Ackermann.checkPrf]
    +m:594 [binder, in hydras.Ackermann.checkPrf]
    +m:596 [binder, in hydras.Ackermann.checkPrf]
    +m:598 [binder, in hydras.Ackermann.checkPrf]
    +m:598 [binder, in hydras.Ackermann.primRec]
    +m:6 [binder, in hydras.MoreAck.Ack]
    +m:6 [binder, in hydras.Ackermann.primRec]
    +m:60 [binder, in Goedel.PRrepresentable]
    +M:60 [binder, in additions.Pow_variant]
    +M:60 [binder, in additions.Pow]
    +m:60 [binder, in hydras.MoreAck.Ack]
    +M:60 [binder, in additions.Monoid_def]
    +m:600 [binder, in hydras.Ackermann.checkPrf]
    +m:602 [binder, in hydras.Ackermann.checkPrf]
    +m:603 [binder, in hydras.Ackermann.primRec]
    +m:604 [binder, in hydras.Ackermann.checkPrf]
    +m:606 [binder, in hydras.Ackermann.checkPrf]
    +m:606 [binder, in hydras.Ackermann.primRec]
    +m:608 [binder, in hydras.Ackermann.checkPrf]
    +m:609 [binder, in hydras.Ackermann.checkPrf]
    +m:609 [binder, in hydras.Ackermann.primRec]
    +m:609 [binder, in gaia_hydras.nfwfgaia]
    +m:61 [binder, in hydras.MoreAck.Ack]
    +M:61 [binder, in additions.Addition_Chains]
    +m:61 [binder, in hydras.rpo.dickson]
    +m:610 [binder, in hydras.Ackermann.checkPrf]
    +m:611 [binder, in hydras.Ackermann.checkPrf]
    +m:612 [binder, in hydras.Ackermann.checkPrf]
    +m:612 [binder, in hydras.Ackermann.primRec]
    +m:613 [binder, in hydras.Ackermann.checkPrf]
    +m:614 [binder, in hydras.Ackermann.checkPrf]
    +m:615 [binder, in hydras.Ackermann.checkPrf]
    +m:616 [binder, in hydras.Ackermann.checkPrf]
    +m:617 [binder, in hydras.Ackermann.checkPrf]
    +m:619 [binder, in hydras.Ackermann.checkPrf]
    +m:62 [binder, in hydras.MoreAck.AckNotPR]
    +m:62 [binder, in hydras.MoreAck.Ack]
    +m:62 [binder, in hydras.Ackermann.wellFormed]
    +m:620 [binder, in hydras.Ackermann.primRec]
    +m:621 [binder, in hydras.Ackermann.checkPrf]
    +m:623 [binder, in hydras.Ackermann.checkPrf]
    +m:624 [binder, in hydras.Ackermann.primRec]
    +m:625 [binder, in hydras.Ackermann.checkPrf]
    +m:627 [binder, in hydras.Ackermann.checkPrf]
    +m:629 [binder, in hydras.Ackermann.checkPrf]
    +m:629 [binder, in hydras.Ackermann.primRec]
    +M:63 [binder, in additions.AM]
    +m:63 [binder, in hydras.MoreAck.Ack]
    +m:63 [binder, in additions.fib]
    +m:631 [binder, in hydras.Ackermann.checkPrf]
    +m:632 [binder, in hydras.Ackermann.primRec]
    +m:633 [binder, in hydras.Ackermann.checkPrf]
    +m:635 [binder, in hydras.Ackermann.checkPrf]
    +m:637 [binder, in hydras.Ackermann.checkPrf]
    +m:637 [binder, in hydras.Ackermann.primRec]
    +m:638 [binder, in hydras.Ackermann.checkPrf]
    +m:639 [binder, in hydras.Ackermann.checkPrf]
    +m:64 [binder, in Goedel.PRrepresentable]
    +m:640 [binder, in hydras.Ackermann.checkPrf]
    +m:641 [binder, in hydras.Ackermann.checkPrf]
    +m:642 [binder, in hydras.Ackermann.checkPrf]
    +m:643 [binder, in hydras.Ackermann.checkPrf]
    +m:643 [binder, in hydras.Ackermann.primRec]
    +m:644 [binder, in hydras.Ackermann.checkPrf]
    +m:645 [binder, in hydras.Ackermann.checkPrf]
    +m:646 [binder, in hydras.Ackermann.checkPrf]
    +m:647 [binder, in hydras.Ackermann.checkPrf]
    +m:648 [binder, in hydras.Ackermann.checkPrf]
    +m:648 [binder, in hydras.Ackermann.primRec]
    +M:65 [binder, in additions.Monoid_def]
    +M:65 [binder, in additions.Euclidean_Chains]
    +m:651 [binder, in gaia_hydras.nfwfgaia]
    +m:66 [binder, in hydras.MoreAck.Ack]
    +M:67 [binder, in additions.Addition_Chains]
    +m:68 [binder, in Goedel.PRrepresentable]
    +m:68 [binder, in gaia_hydras.nfwfgaia]
    +m:69 [binder, in hydras.MoreAck.Ack]
    +m:69 [binder, in additions.fib]
    +M:7 [binder, in hydras.Schutte.Lub]
    +m:70 [binder, in hydras.Ackermann.subAll]
    +m:704 [binder, in gaia_hydras.nfwfgaia]
    +m:71 [binder, in hydras.MoreAck.Ack]
    +m:714 [binder, in gaia_hydras.nfwfgaia]
    +m:72 [binder, in Goedel.PRrepresentable]
    +M:72 [binder, in additions.Euclidean_Chains]
    +m:73 [binder, in hydras.MoreAck.Ack]
    +M:73 [binder, in additions.Monoid_def]
    +m:74 [binder, in hydras.Ackermann.subAll]
    +m:75 [binder, in hydras.MoreAck.Ack]
    +M:75 [binder, in additions.Addition_Chains]
    +m:751 [binder, in gaia_hydras.nfwfgaia]
    +m:754 [binder, in gaia_hydras.nfwfgaia]
    +M:76 [binder, in additions.AM]
    +m:76 [binder, in hydras.Ackermann.primRec]
    +m:76 [binder, in additions.fib]
    +m:77 [binder, in Goedel.PRrepresentable]
    +m:78 [binder, in hydras.MoreAck.Ack]
    +m:79 [binder, in hydras.Prelude.Sort_spec]
    +m:8 [binder, in hydras.Ackermann.subAll]
    +m:8 [binder, in hydras.Prelude.More_Arith]
    +m:8 [binder, in hydras.Ackermann.primRec]
    +m:807 [binder, in gaia_hydras.nfwfgaia]
    +m:809 [binder, in gaia_hydras.nfwfgaia]
    +m:82 [binder, in hydras.MoreAck.Ack]
    +m:83 [binder, in Goedel.PRrepresentable]
    +m:83 [binder, in hydras.Ackermann.subAll]
    +m:83 [binder, in additions.fib]
    +m:837 [binder, in hydras.Ackermann.codeSubFormula]
    +m:840 [binder, in hydras.Ackermann.codeSubFormula]
    +m:845 [binder, in hydras.Ackermann.checkPrf]
    +m:85 [binder, in hydras.MoreAck.Ack]
    +m:85 [binder, in additions.fib]
    +m:857 [binder, in hydras.Ackermann.checkPrf]
    +M:86 [binder, in additions.AM]
    +m:86 [binder, in hydras.Ackermann.primRec]
    +m:862 [binder, in hydras.Ackermann.checkPrf]
    +m:868 [binder, in hydras.Ackermann.codeSubFormula]
    +m:87 [binder, in Goedel.PRrepresentable]
    +m:87 [binder, in hydras.Ackermann.subAll]
    +m:871 [binder, in hydras.Ackermann.codeSubFormula]
    +m:892 [binder, in hydras.Ackermann.codeSubFormula]
    +m:895 [binder, in hydras.Ackermann.codeSubFormula]
    +m:9 [binder, in hydras.Ackermann.subAll]
    +m:908 [binder, in hydras.Ackermann.codeSubFormula]
    +m:91 [binder, in Goedel.PRrepresentable]
    +m:91 [binder, in hydras.Ackermann.primRec]
    +m:911 [binder, in hydras.Ackermann.codeSubFormula]
    +M:92 [binder, in additions.Euclidean_Chains]
    +m:93 [binder, in hydras.Ackermann.subAll]
    +m:935 [binder, in hydras.Ackermann.codeSubFormula]
    +m:938 [binder, in hydras.Ackermann.codeSubFormula]
    +m:95 [binder, in Goedel.PRrepresentable]
    +m:95 [binder, in hydras.Ackermann.primRec]
    +m:966 [binder, in gaia_hydras.nfwfgaia]
    +m:968 [binder, in gaia_hydras.nfwfgaia]
    +m:97 [binder, in hydras.Ackermann.subAll]
    +M:97 [binder, in additions.AM]
    +m:970 [binder, in gaia_hydras.nfwfgaia]
    +m:974 [binder, in gaia_hydras.nfwfgaia]
    +m:978 [binder, in gaia_hydras.nfwfgaia]
    +m:98 [binder, in hydras.Ackermann.primRec]
    +m:984 [binder, in gaia_hydras.nfwfgaia]
    +m:986 [binder, in gaia_hydras.nfwfgaia]
    +

    N

    +N [definition, in hydras.Hydra.BigBattle]
    +Naive [library]
    +nAnd [lemma, in hydras.Ackermann.LNN]
    +nAnd [lemma, in hydras.Ackermann.LNT]
    +nAnd [lemma, in hydras.Ackermann.folLogic]
    +naryFunc [definition, in hydras.Ackermann.extEqualNat]
    +naryFunc [definition, in hydras.Ackermann.model]
    +naryIf [definition, in hydras.solutions_exercises.MinPR2]
    +naryRel [definition, in hydras.Ackermann.extEqualNat]
    +naryRel [definition, in hydras.Ackermann.model]
    +natLE [lemma, in hydras.Ackermann.NNtheory]
    +natLT [lemma, in hydras.Ackermann.NNtheory]
    +natModel [definition, in hydras.Ackermann.PAconsistent]
    +Natmult [instance, in additions.Monoid_instances]
    +natNE [lemma, in hydras.Ackermann.NNtheory]
    +Natplus [instance, in additions.Monoid_instances]
    +natPlus [lemma, in hydras.Ackermann.NNtheory]
    +natTimes [lemma, in hydras.Ackermann.NNtheory]
    +natToTerm [definition, in hydras.Ackermann.LNN]
    +natToTerm [definition, in hydras.Ackermann.LNT]
    +natToTermLNN [definition, in hydras.Ackermann.codeNatToTerm]
    +natToTermLNT [definition, in hydras.Ackermann.codeNatToTerm]
    +Nat_le_TO [instance, in hydras.Prelude.DecPreOrder_Instances]
    +Nat_le_dec [instance, in hydras.Prelude.DecPreOrder_Instances]
    +nat_double_or_s_double [lemma, in hydras.Prelude.More_Arith]
    +nat_power_ok [lemma, in additions.Compatibility]
    +nat_eqb_false [lemma, in hydras.Ackermann.primRec]
    +nat_plus_op [instance, in additions.Monoid_instances]
    +nat_mult_op [instance, in additions.Monoid_instances]
    +nat_2_term_mono [lemma, in hydras.Gamma0.Gamma0]
    +nat_lt_psi [lemma, in hydras.Gamma0.Gamma0]
    +nat_lt_cons [lemma, in hydras.Gamma0.Gamma0]
    +nat_2_term [definition, in hydras.Gamma0.Gamma0]
    +NA:4 [binder, in hydras.OrdinalNotations.ON_mult]
    +NA:4 [binder, in hydras.OrdinalNotations.ON_plus]
    +nbterms [definition, in hydras.Gamma0.T2]
    +nb_occ_app [lemma, in hydras.rpo.more_list]
    +nb_occ [definition, in hydras.rpo.more_list]
    +NB:8 [binder, in hydras.OrdinalNotations.ON_mult]
    +NB:8 [binder, in hydras.OrdinalNotations.ON_plus]
    +neqIsPR [instance, in hydras.Ackermann.primRec]
    +nested_Ack_bound [lemma, in hydras.MoreAck.Ack]
    +neutral_r [lemma, in additions.Fib2]
    +neutral_l [lemma, in additions.Fib2]
    +NewNotations [library]
    +newVar [definition, in hydras.Ackermann.folProp]
    +newVar1 [lemma, in hydras.Ackermann.folProp]
    +newVar2 [lemma, in hydras.Ackermann.folProp]
    +nExist [lemma, in hydras.Ackermann.LNN]
    +nExist [lemma, in hydras.Ackermann.LNT]
    +nExist [lemma, in hydras.Ackermann.folLogic]
    +next [definition, in hydras.Hydra.BigBattle]
    +next_fib [lemma, in additions.Fib2]
    +next_step [definition, in hydras.Hydra.Hydra_Lemmas]
    +next_round [definition, in hydras.Hydra.Hydra_Lemmas]
    +next_round_dec [definition, in hydras.Hydra.Hydra_Lemmas]
    +nf [definition, in hydras.Epsilon0.T1]
    +nf [inductive, in hydras.Gamma0.T2]
    +NF [abbreviation, in hydras.solutions_exercises.MultisetWf]
    +nfb [definition, in hydras.Gamma0.Gamma0]
    +nForall [lemma, in hydras.Ackermann.LNN]
    +nForall [lemma, in hydras.Ackermann.LNT]
    +nForall [lemma, in hydras.Ackermann.folLogic]
    +nfwfgaia [library]
    +nf_LT_right [lemma, in hydras.Epsilon0.T1]
    +nf_exp_F [lemma, in hydras.Epsilon0.T1]
    +nf_LT_iff [lemma, in hydras.Epsilon0.T1]
    +nf_omega_omega [lemma, in hydras.Epsilon0.T1]
    +nf_phi0 [lemma, in hydras.Epsilon0.T1]
    +nf_omega [lemma, in hydras.Epsilon0.T1]
    +nf_Wf [lemma, in hydras.Epsilon0.T1]
    +nf_Acc [definition, in hydras.Epsilon0.T1]
    +nf_tail_lt [lemma, in hydras.Epsilon0.T1]
    +nf_cons_LT [lemma, in hydras.Epsilon0.T1]
    +nf_rect [definition, in hydras.Epsilon0.T1]
    +nf_omega_tower [lemma, in hydras.Epsilon0.T1]
    +nf_coeff_irrelevance [lemma, in hydras.Epsilon0.T1]
    +nf_intro' [lemma, in hydras.Epsilon0.T1]
    +nf_intro [lemma, in hydras.Epsilon0.T1]
    +nf_tail_lt_nf [lemma, in hydras.Epsilon0.T1]
    +nf_of_finite [lemma, in hydras.Epsilon0.T1]
    +nf_fin [lemma, in hydras.Epsilon0.T1]
    +nf_FS [lemma, in hydras.Epsilon0.T1]
    +nf_b_cons_eq [lemma, in hydras.Epsilon0.T1]
    +nf_cons_iff [lemma, in hydras.Epsilon0.T1]
    +nf_cons_inv [lemma, in hydras.Epsilon0.T1]
    +nf_inv3 [lemma, in hydras.Epsilon0.T1]
    +nf_inv2 [lemma, in hydras.Epsilon0.T1]
    +nf_inv1 [lemma, in hydras.Epsilon0.T1]
    +nf_b [definition, in hydras.Epsilon0.T1]
    +nf_epsilon [lemma, in hydras.Gamma0.T2]
    +nf_epsilon0 [lemma, in hydras.Gamma0.T2]
    +nf_omega [lemma, in hydras.Gamma0.T2]
    +nf_fin [lemma, in hydras.Gamma0.T2]
    +nf_bounded [lemma, in hydras.Schutte.CNF]
    +NF_Acc [lemma, in hydras.solutions_exercises.MultisetWf]
    +NF_inv2 [lemma, in hydras.solutions_exercises.MultisetWf]
    +NF_inv1 [lemma, in hydras.solutions_exercises.MultisetWf]
    +nf_ref [lemma, in gaia_hydras.T1Bridge]
    +nf_canon [lemma, in hydras.Epsilon0.Canon]
    +nf_proof_unicity [lemma, in hydras.Epsilon0.E0]
    +nf_m [lemma, in hydras.Hydra.Epsilon0_Needed_Generic]
    +nf_intro [lemma, in hydras.Gamma0.Gamma0]
    +nf_coeff_irrelevance [lemma, in hydras.Gamma0.Gamma0]
    +nf_Wf [lemma, in hydras.Gamma0.Gamma0]
    +nf_c2 [lemma, in hydras.Gamma0.Gamma0]
    +nf_c1 [lemma, in hydras.Gamma0.Gamma0]
    +nf_b2 [lemma, in hydras.Gamma0.Gamma0]
    +nf_b1 [lemma, in hydras.Gamma0.Gamma0]
    +nf_a2 [lemma, in hydras.Gamma0.Gamma0]
    +nf_a1 [lemma, in hydras.Gamma0.Gamma0]
    +nf_subterm [lemma, in hydras.Gamma0.Gamma0]
    +nf_fin_inv [lemma, in hydras.Gamma0.Gamma0]
    +nf_inv_tail [lemma, in hydras.Gamma0.Gamma0]
    +nf_c [lemma, in hydras.Gamma0.Gamma0]
    +nf_b [lemma, in hydras.Gamma0.Gamma0]
    +nf_a [lemma, in hydras.Gamma0.Gamma0]
    +nh [projection, in hydras.Hydra.BigBattle]
    +nilTerms [lemma, in hydras.Ackermann.fol]
    +nImp [lemma, in hydras.Ackermann.LNN]
    +nImp [lemma, in hydras.Ackermann.LNT]
    +nImp [lemma, in hydras.Ackermann.folLogic]
    +Nmodulo [section, in additions.Monoid_instances]
    +Nmodulo.m [variable, in additions.Monoid_instances]
    +Nmodulo.m_gt_1 [variable, in additions.Monoid_instances]
    +Nmod_Monoid [instance, in additions.Monoid_instances]
    +NMult [instance, in additions.Monoid_instances]
    +NN [definition, in hydras.Ackermann.NN]
    +NN [section, in hydras.Ackermann.NN]
    +NN [library]
    +nnE [lemma, in hydras.Ackermann.LNN]
    +nnE [lemma, in hydras.Ackermann.LNT]
    +nnE [lemma, in hydras.Ackermann.folLogic]
    +nnHelp [definition, in hydras.Ackermann.model]
    +nnI [lemma, in hydras.Ackermann.LNN]
    +nnI [lemma, in hydras.Ackermann.LNT]
    +nnI [lemma, in hydras.Ackermann.folLogic]
    +NNnotations [module, in hydras.Ackermann.LNN]
    +NNnotations.LT [definition, in hydras.Ackermann.LNN]
    +NNnotations.Plus [definition, in hydras.Ackermann.LNN]
    +NNnotations.Succ [definition, in hydras.Ackermann.LNN]
    +NNnotations.S_ [abbreviation, in hydras.Ackermann.LNN]
    +NNnotations.Times [definition, in hydras.Ackermann.LNN]
    +NNnotations.Zero [definition, in hydras.Ackermann.LNN]
    +fol:_ * _ [notation, in hydras.Ackermann.LNN]
    +fol:_ + _ [notation, in hydras.Ackermann.LNN]
    +_ < _ (fol_scope) [notation, in hydras.Ackermann.LNN]
    +_ * _ (fol_scope) [notation, in hydras.Ackermann.LNN]
    +_ + _ (fol_scope) [notation, in hydras.Ackermann.LNN]
    +nnPlusNotNeeded [lemma, in hydras.Ackermann.NNtheory]
    +NNtheory [library]
    +nnTranslate [definition, in hydras.Ackermann.model]
    +nn1 [lemma, in hydras.Ackermann.NN]
    +NN1 [definition, in hydras.Ackermann.NN]
    +nn2 [lemma, in hydras.Ackermann.NN]
    +NN2 [definition, in hydras.Ackermann.NN]
    +NN2PA [lemma, in hydras.Ackermann.NN2PA]
    +NN2PA [library]
    +nn3 [lemma, in hydras.Ackermann.NN]
    +NN3 [definition, in hydras.Ackermann.NN]
    +nn4 [lemma, in hydras.Ackermann.NN]
    +NN4 [definition, in hydras.Ackermann.NN]
    +nn5 [lemma, in hydras.Ackermann.NN]
    +NN5 [definition, in hydras.Ackermann.NN]
    +nn6 [lemma, in hydras.Ackermann.NN]
    +NN6 [definition, in hydras.Ackermann.NN]
    +nn7 [lemma, in hydras.Ackermann.NN]
    +NN7 [definition, in hydras.Ackermann.NN]
    +NN72PA [lemma, in hydras.Ackermann.PAtheory]
    +nn8 [lemma, in hydras.Ackermann.NN]
    +NN8 [definition, in hydras.Ackermann.NN]
    +NN82PA [lemma, in hydras.Ackermann.PAtheory]
    +nn9 [lemma, in hydras.Ackermann.NN]
    +NN9 [definition, in hydras.Ackermann.NN]
    +NN92PA [lemma, in hydras.Ackermann.PAtheory]
    +node [constructor, in hydras.Hydra.Hydra_Definitions]
    +noMiddle [lemma, in hydras.Ackermann.LNN]
    +noMiddle [lemma, in hydras.Ackermann.LNT]
    +noMiddle [lemma, in hydras.Ackermann.folLogic]
    +none_nb_occ_O [lemma, in hydras.rpo.more_list]
    +non_commutativity_of_plus [definition, in hydras.OrdinalNotations.ON_Omega2]
    +Non_denum [lemma, in hydras.Schutte.Schutte_basics]
    +non_optimality_proof.binary_opt [variable, in additions.Addition_Chains]
    +non_optimality_proof [section, in additions.Addition_Chains]
    +nOr [lemma, in hydras.Ackermann.LNN]
    +nOr [lemma, in hydras.Ackermann.LNT]
    +nOr [lemma, in hydras.Ackermann.folLogic]
    +normal [definition, in hydras.Schutte.Ordering_Functions]
    +normal_phi0 [lemma, in hydras.Schutte.AP]
    +normal_plus_alpha [lemma, in hydras.Schutte.Addition]
    +notBoundedForall [lemma, in Goedel.PRrepresentable]
    +notCon2wNotCon [lemma, in hydras.Ackermann.wConsistent]
    +notH [constructor, in hydras.Ackermann.fol]
    +NotIncl [section, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +notInFreeVarSys [lemma, in hydras.Ackermann.folProp]
    +notRel [definition, in hydras.Ackermann.primRec]
    +notRelPR [lemma, in hydras.Ackermann.primRec]
    +notZero [definition, in hydras.Ackermann.primRec]
    +notZeroIsPR [instance, in hydras.Ackermann.primRec]
    +not_LT_zero [lemma, in hydras.Epsilon0.T1]
    +not_zero_lt [lemma, in hydras.Epsilon0.T1]
    +not_zero_gt_0 [lemma, in hydras.Epsilon0.T1]
    +not_lt_zero [lemma, in hydras.Epsilon0.T1]
    +not_double_is_s_double [lemma, in hydras.Prelude.More_Arith]
    +not_le_gt [lemma, in hydras.Prelude.DecPreOrder]
    +not_le_ge [lemma, in hydras.Prelude.DecPreOrder]
    +not_AP_inv2 [lemma, in hydras.Schutte.CNF]
    +not_AP_inv_0 [lemma, in hydras.Schutte.CNF]
    +not_acc [lemma, in hydras.solutions_exercises.MultisetWf]
    +not_countable_unbounded [lemma, in hydras.Schutte.Schutte_basics]
    +Not_Unbounded_countable [lemma, in hydras.Schutte.Schutte_basics]
    +Not_Unbounded_bounded [lemma, in hydras.Schutte.Schutte_basics]
    +not_is_succ_limit [lemma, in hydras.Schutte.Schutte_basics]
    +not_is_limit_succ [lemma, in hydras.Schutte.Schutte_basics]
    +not_is_limit_zero [lemma, in hydras.Schutte.Schutte_basics]
    +not_is_succ_zero [lemma, in hydras.Schutte.Schutte_basics]
    +not_lt_zero [lemma, in hydras.Schutte.Schutte_basics]
    +not_gt_le [lemma, in hydras.Schutte.Schutte_basics]
    +not_lt_zero [lemma, in hydras.Gamma0.Gamma0]
    +not_decreasing [lemma, in gaia_hydras.nfwfgaia]
    +not_decreasing [lemma, in hydras.solutions_exercises.T1_ltNotWf]
    +not_decreasing_aux [lemma, in hydras.solutions_exercises.T1_ltNotWf]
    +not_acc [lemma, in hydras.solutions_exercises.T1_ltNotWf]
    +NPlus [instance, in additions.Monoid_instances]
    +Npos_power_compat [lemma, in additions.Compatibility]
    +Npos_gt_0 [lemma, in additions.More_on_positive]
    +Npos_diff_zero [lemma, in additions.More_on_positive]
    +nth_error_ok_in [lemma, in hydras.rpo.more_list]
    +nth_error_map [lemma, in hydras.rpo.more_list]
    +nVars [definition, in hydras.Ackermann.folProof]
    +nv:118 [binder, in hydras.Ackermann.folProp]
    +nv:13 [binder, in hydras.MoreAck.BadSubst]
    +nv:2 [binder, in hydras.Ackermann.PAtheory]
    +nv:283 [binder, in hydras.Ackermann.folProp]
    +nv:30 [binder, in Goedel.codeSysPrf]
    +nv:404 [binder, in hydras.Ackermann.folProp]
    +nv:432 [binder, in hydras.Ackermann.folProp]
    +nv:437 [binder, in hydras.Ackermann.folProp]
    +nv:48 [binder, in hydras.Ackermann.subAll]
    +nv:65 [binder, in hydras.Ackermann.codeSubFormula]
    +N_size_gt [lemma, in additions.Compatibility]
    +N_pow_compat [lemma, in additions.Compatibility]
    +N_pow_power [lemma, in additions.Compatibility]
    +N_pow [definition, in additions.Compatibility]
    +N_bpow [definition, in additions.FirstSteps]
    +N_bpow_commute [lemma, in additions.Pow_variant]
    +N_bpow_ok_R [lemma, in additions.Pow_variant]
    +N_bpow_ok [lemma, in additions.Pow_variant]
    +N_bpow [definition, in additions.Pow_variant]
    +N_bpow_commute [lemma, in additions.Pow]
    +N_bpow_ok_R [lemma, in additions.Pow]
    +N_bpow_ok [lemma, in additions.Pow]
    +N_bpow [definition, in additions.Pow]
    +N_le_mul_pos [lemma, in additions.More_on_positive]
    +N_pos_div_eucl_q0 [lemma, in additions.More_on_positive]
    +N_pos_div_eucl_rest [lemma, in additions.More_on_positive]
    +N_pos_div_eucl_divides [lemma, in additions.More_on_positive]
    +N_pos_N2pos [lemma, in additions.More_on_positive]
    +N_le_1_pos [lemma, in additions.More_on_positive]
    +N_0_le_n [lemma, in additions.More_on_positive]
    +N_mod.power [definition, in additions.Naive]
    +N_mod.mult_mod [definition, in additions.Naive]
    +N_mod.m_fixed.m [variable, in additions.Naive]
    +N_mod.m_fixed [section, in additions.Naive]
    +N_mod [module, in additions.Naive]
    +N_plus_op [instance, in additions.Monoid_instances]
    +N_mult_op [instance, in additions.Monoid_instances]
    +N_simpl [lemma, in hydras.Epsilon0.Hprime]
    +n'':11 [binder, in gaia_hydras.nfwfgaia]
    +n'':8 [binder, in gaia_hydras.nfwfgaia]
    +n':10 [binder, in gaia_hydras.nfwfgaia]
    +n':1024 [binder, in gaia_hydras.nfwfgaia]
    +n':1152 [binder, in gaia_hydras.nfwfgaia]
    +n':117 [binder, in hydras.Epsilon0.T1]
    +n':1204 [binder, in gaia_hydras.nfwfgaia]
    +n':131 [binder, in gaia_hydras.nfwfgaia]
    +n':1338 [binder, in gaia_hydras.nfwfgaia]
    +n':1384 [binder, in gaia_hydras.nfwfgaia]
    +n':139 [binder, in hydras.Gamma0.Gamma0]
    +n':14 [binder, in hydras.rpo.dickson]
    +n':1436 [binder, in gaia_hydras.nfwfgaia]
    +n':1500 [binder, in gaia_hydras.nfwfgaia]
    +n':1556 [binder, in gaia_hydras.nfwfgaia]
    +n':1585 [binder, in gaia_hydras.nfwfgaia]
    +n':1609 [binder, in gaia_hydras.nfwfgaia]
    +n':165 [binder, in hydras.Epsilon0.T1]
    +n':1691 [binder, in gaia_hydras.nfwfgaia]
    +n':174 [binder, in gaia_hydras.nfwfgaia]
    +n':176 [binder, in hydras.Epsilon0.T1]
    +n':19 [binder, in hydras.Epsilon0.Hessenberg]
    +n':194 [binder, in hydras.Epsilon0.T1]
    +n':2043 [binder, in gaia_hydras.nfwfgaia]
    +n':2066 [binder, in gaia_hydras.nfwfgaia]
    +n':223 [binder, in hydras.Epsilon0.T1]
    +n':225 [binder, in gaia_hydras.nfwfgaia]
    +n':231 [binder, in gaia_hydras.nfwfgaia]
    +n':24 [binder, in hydras.Schutte.Correctness_E0]
    +n':25 [binder, in hydras.Epsilon0.Hessenberg]
    +n':258 [binder, in gaia_hydras.nfwfgaia]
    +n':259 [binder, in hydras.rpo.rpo]
    +n':27 [binder, in hydras.Gamma0.Gamma0]
    +n':285 [binder, in hydras.Epsilon0.T1]
    +n':29 [binder, in hydras.Schutte.Correctness_E0]
    +n':294 [binder, in gaia_hydras.nfwfgaia]
    +n':3 [binder, in gaia_hydras.nfwfgaia]
    +n':30 [binder, in hydras.Epsilon0.Hessenberg]
    +n':301 [binder, in hydras.Gamma0.Gamma0]
    +n':305 [binder, in hydras.Gamma0.Gamma0]
    +n':324 [binder, in hydras.Epsilon0.T1]
    +n':329 [binder, in hydras.Epsilon0.T1]
    +n':34 [binder, in hydras.Epsilon0.T1]
    +n':347 [binder, in hydras.Epsilon0.T1]
    +n':359 [binder, in hydras.Epsilon0.T1]
    +n':36 [binder, in hydras.Epsilon0.Hessenberg]
    +n':366 [binder, in hydras.Epsilon0.T1]
    +n':380 [binder, in hydras.Epsilon0.T1]
    +n':42 [binder, in hydras.Epsilon0.Hessenberg]
    +n':425 [binder, in gaia_hydras.nfwfgaia]
    +n':429 [binder, in hydras.Epsilon0.T1]
    +n':430 [binder, in gaia_hydras.nfwfgaia]
    +n':434 [binder, in hydras.Epsilon0.T1]
    +n':440 [binder, in hydras.Epsilon0.T1]
    +n':5 [binder, in gaia_hydras.nfwfgaia]
    +n':50 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +n':50 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +n':52 [binder, in hydras.Epsilon0.Hessenberg]
    +n':535 [binder, in hydras.Epsilon0.T1]
    +n':54 [binder, in gaia_hydras.T1Bridge]
    +n':55 [binder, in hydras.Epsilon0.T1]
    +n':55 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +n':58 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +n':59 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +n':59 [binder, in gaia_hydras.T1Bridge]
    +n':590 [binder, in hydras.Gamma0.Gamma0]
    +n':64 [binder, in gaia_hydras.T1Bridge]
    +n':68 [binder, in hydras.Epsilon0.T1]
    +n':7 [binder, in gaia_hydras.nfwfgaia]
    +n':70 [binder, in gaia_hydras.T1Bridge]
    +n':726 [binder, in hydras.Epsilon0.T1]
    +n':75 [binder, in hydras.Epsilon0.T1]
    +n':76 [binder, in gaia_hydras.T1Bridge]
    +n':79 [binder, in hydras.Epsilon0.T1]
    +n':790 [binder, in gaia_hydras.nfwfgaia]
    +n':83 [binder, in hydras.Gamma0.T2]
    +n':84 [binder, in hydras.Epsilon0.T1]
    +n':848 [binder, in gaia_hydras.nfwfgaia]
    +n':871 [binder, in gaia_hydras.nfwfgaia]
    +n':908 [binder, in gaia_hydras.nfwfgaia]
    +n':916 [binder, in gaia_hydras.nfwfgaia]
    +n':94 [binder, in hydras.Epsilon0.T1]
    +n':948 [binder, in gaia_hydras.nfwfgaia]
    +n':99 [binder, in hydras.Epsilon0.T1]
    +n0:18 [binder, in hydras.Ackermann.wellFormed]
    +n0:194 [binder, in hydras.Ackermann.fol]
    +n0:195 [binder, in hydras.Ackermann.fol]
    +n0:196 [binder, in hydras.Ackermann.fol]
    +n0:197 [binder, in hydras.Ackermann.fol]
    +n0:20 [binder, in hydras.Ackermann.wellFormed]
    +n0:231 [binder, in hydras.Ackermann.subAll]
    +n0:232 [binder, in hydras.Ackermann.subAll]
    +n0:241 [binder, in hydras.Ackermann.subAll]
    +n0:243 [binder, in hydras.Ackermann.subAll]
    +n0:31 [binder, in hydras.Schutte.AP]
    +n0:32 [binder, in hydras.Schutte.AP]
    +n0:379 [binder, in hydras.Epsilon0.Paths]
    +n0:650 [binder, in hydras.Ackermann.primRec]
    +n1 [projection, in hydras.Hydra.BigBattle]
    +n1:105 [binder, in Goedel.rosserPA]
    +n1:107 [binder, in hydras.Epsilon0.T1]
    +n1:107 [binder, in Goedel.rosserPA]
    +n1:122 [binder, in additions.Euclidean_Chains]
    +n1:131 [binder, in additions.Euclidean_Chains]
    +n1:14 [binder, in gaia_hydras.nfwfgaia]
    +n1:15 [binder, in hydras.Prelude.Compat815]
    +n1:18 [binder, in gaia_hydras.nfwfgaia]
    +n1:198 [binder, in hydras.Ackermann.fol]
    +n1:199 [binder, in hydras.Ackermann.fol]
    +n1:22 [binder, in gaia_hydras.nfwfgaia]
    +n1:223 [binder, in Goedel.PRrepresentable]
    +n1:230 [binder, in Goedel.PRrepresentable]
    +n1:318 [binder, in hydras.Gamma0.Gamma0]
    +n1:32 [binder, in hydras.Gamma0.T2]
    +n1:324 [binder, in hydras.Gamma0.Gamma0]
    +n1:340 [binder, in hydras.Gamma0.Gamma0]
    +n1:345 [binder, in hydras.Gamma0.Gamma0]
    +n1:362 [binder, in hydras.Gamma0.Gamma0]
    +n1:368 [binder, in hydras.Gamma0.Gamma0]
    +n1:38 [binder, in Goedel.rosser]
    +n1:380 [binder, in hydras.Epsilon0.Paths]
    +n1:384 [binder, in hydras.Gamma0.Gamma0]
    +n1:389 [binder, in hydras.Gamma0.Gamma0]
    +n1:39 [binder, in hydras.Gamma0.T2]
    +n1:39 [binder, in hydras.Gamma0.Gamma0]
    +n1:400 [binder, in hydras.Gamma0.Gamma0]
    +n1:410 [binder, in hydras.Gamma0.Gamma0]
    +n1:43 [binder, in Goedel.rosser]
    +n1:45 [binder, in Goedel.rosser]
    +n1:47 [binder, in hydras.Gamma0.T2]
    +n1:47 [binder, in hydras.Gamma0.Gamma0]
    +n1:50 [binder, in Goedel.rosser]
    +n1:54 [binder, in hydras.Gamma0.T2]
    +n1:55 [binder, in hydras.Gamma0.Gamma0]
    +n1:60 [binder, in hydras.Gamma0.T2]
    +n1:63 [binder, in hydras.Gamma0.Gamma0]
    +n1:66 [binder, in hydras.Gamma0.T2]
    +n1:661 [binder, in gaia_hydras.nfwfgaia]
    +n1:665 [binder, in gaia_hydras.nfwfgaia]
    +n1:68 [binder, in Goedel.rosserPA]
    +n1:71 [binder, in hydras.Gamma0.Gamma0]
    +n1:73 [binder, in Goedel.rosserPA]
    +n1:75 [binder, in Goedel.rosserPA]
    +n1:78 [binder, in hydras.Gamma0.Gamma0]
    +n1:80 [binder, in Goedel.rosserPA]
    +n1:82 [binder, in additions.Euclidean_Chains]
    +n1:84 [binder, in hydras.Gamma0.Gamma0]
    +n1:94 [binder, in Goedel.rosserPA]
    +n1:99 [binder, in Goedel.rosserPA]
    +n2 [projection, in hydras.Hydra.BigBattle]
    +N2pos [definition, in additions.More_on_positive]
    +N2pos_lt_switch2 [lemma, in additions.More_on_positive]
    +N2pos_lt_switch [lemma, in additions.More_on_positive]
    +N2pos_pos [lemma, in additions.More_on_positive]
    +n2t [abbreviation, in hydras.Ackermann.LNN]
    +n2:123 [binder, in additions.Euclidean_Chains]
    +n2:132 [binder, in additions.Euclidean_Chains]
    +n2:15 [binder, in gaia_hydras.nfwfgaia]
    +n2:19 [binder, in gaia_hydras.nfwfgaia]
    +n2:23 [binder, in gaia_hydras.nfwfgaia]
    +n2:325 [binder, in hydras.Gamma0.Gamma0]
    +n2:33 [binder, in hydras.Gamma0.T2]
    +n2:332 [binder, in hydras.Gamma0.Gamma0]
    +n2:346 [binder, in hydras.Gamma0.Gamma0]
    +n2:352 [binder, in hydras.Gamma0.Gamma0]
    +n2:369 [binder, in hydras.Gamma0.Gamma0]
    +n2:376 [binder, in hydras.Gamma0.Gamma0]
    +n2:381 [binder, in hydras.Epsilon0.Paths]
    +n2:390 [binder, in hydras.Gamma0.Gamma0]
    +n2:396 [binder, in hydras.Gamma0.Gamma0]
    +n2:40 [binder, in hydras.Gamma0.T2]
    +n2:40 [binder, in hydras.Gamma0.Gamma0]
    +n2:401 [binder, in hydras.Gamma0.Gamma0]
    +n2:406 [binder, in hydras.Gamma0.Gamma0]
    +n2:48 [binder, in hydras.Gamma0.T2]
    +n2:48 [binder, in hydras.Gamma0.Gamma0]
    +n2:55 [binder, in hydras.Gamma0.T2]
    +n2:56 [binder, in hydras.Gamma0.Gamma0]
    +n2:61 [binder, in hydras.Gamma0.T2]
    +n2:64 [binder, in hydras.Gamma0.Gamma0]
    +n2:662 [binder, in gaia_hydras.nfwfgaia]
    +n2:666 [binder, in gaia_hydras.nfwfgaia]
    +n2:72 [binder, in hydras.Gamma0.Gamma0]
    +n2:79 [binder, in hydras.Gamma0.Gamma0]
    +n2:83 [binder, in additions.Euclidean_Chains]
    +n2:871 [binder, in hydras.Ackermann.checkPrf]
    +n2:874 [binder, in hydras.Ackermann.checkPrf]
    +n3:17 [binder, in hydras.Prelude.Compat815]
    +n3:48 [binder, in Goedel.rosser]
    +n3:53 [binder, in Goedel.rosser]
    +n3:78 [binder, in Goedel.rosserPA]
    +n3:83 [binder, in Goedel.rosserPA]
    +n:1 [binder, in hydras.solutions_exercises.MinPR2]
    +n:1 [binder, in additions.Fib2]
    +n:1 [binder, in hydras.Prelude.More_Arith]
    +n:1 [binder, in hydras.Ackermann.extEqualNat]
    +n:1 [binder, in hydras.MoreAck.expressibleExamples]
    +n:1 [binder, in hydras.Prelude.Compat815]
    +n:1 [binder, in hydras.Prelude.Fuel]
    +n:1 [binder, in hydras.Epsilon0.F_omega]
    +n:1 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +n:1 [binder, in hydras.solutions_exercises.MorePRExamples]
    +n:1 [binder, in hydras.solutions_exercises.FibonacciPR]
    +n:1 [binder, in hydras.Ackermann.cPair]
    +n:1 [binder, in gaia_hydras.ON_gfinite]
    +n:1 [binder, in additions.Monoid_instances]
    +n:1 [binder, in hydras.OrdinalNotations.ON_Finite]
    +n:1 [binder, in additions.fib]
    +n:1 [binder, in hydras.Ackermann.codeList]
    +n:1 [binder, in hydras.Prelude.LibHyps_Experiments]
    +n:1 [binder, in hydras.solutions_exercises.F_3]
    +n:1 [binder, in hydras.Ackermann.codeNatToTerm]
    +n:1 [binder, in hydras.Prelude.Exp2]
    +n:1 [binder, in additions.Demo]
    +n:1 [binder, in hydras.MoreAck.PrimRecExamples]
    +n:10 [binder, in hydras.Prelude.More_Arith]
    +n:10 [binder, in hydras.Ackermann.codeFreeVar]
    +n:10 [binder, in hydras.MoreAck.expressibleExamples]
    +n:10 [binder, in hydras.Ackermann.checkPrf]
    +n:10 [binder, in hydras.solutions_exercises.MultisetWf]
    +n:10 [binder, in hydras.Prelude.Fuel]
    +n:10 [binder, in hydras.Epsilon0.F_omega]
    +n:10 [binder, in hydras.MoreAck.Ack]
    +n:10 [binder, in hydras.solutions_exercises.FibonacciPR]
    +n:10 [binder, in gaia_hydras.ON_gfinite]
    +n:10 [binder, in hydras.OrdinalNotations.ON_Finite]
    +n:10 [binder, in gaia_hydras.onType]
    +n:10 [binder, in hydras.Ackermann.codeList]
    +n:10 [binder, in Goedel.codeSysPrf]
    +n:10 [binder, in hydras.solutions_exercises.isqrt]
    +n:100 [binder, in Goedel.PRrepresentable]
    +n:100 [binder, in hydras.Ackermann.subAll]
    +n:100 [binder, in hydras.Prelude.Iterates]
    +n:100 [binder, in hydras.Prelude.MoreLists]
    +n:100 [binder, in hydras.Ackermann.fol]
    +n:100 [binder, in hydras.Ackermann.codeList]
    +n:100 [binder, in hydras.MoreAck.PrimRecExamples]
    +n:101 [binder, in hydras.Gamma0.T2]
    +n:101 [binder, in hydras.Ackermann.subAll]
    +n:101 [binder, in hydras.Ackermann.folProp]
    +n:101 [binder, in Goedel.rosserPA]
    +n:101 [binder, in hydras.Ackermann.fol]
    +n:101 [binder, in hydras.Epsilon0.Canon]
    +n:101 [binder, in hydras.Ackermann.codeList]
    +n:101 [binder, in hydras.MoreAck.PrimRecExamples]
    +n:1010 [binder, in gaia_hydras.nfwfgaia]
    +n:102 [binder, in hydras.Ackermann.primRec]
    +n:102 [binder, in hydras.Ackermann.fol]
    +n:102 [binder, in hydras.Ackermann.codeList]
    +n:1021 [binder, in gaia_hydras.nfwfgaia]
    +n:1028 [binder, in gaia_hydras.nfwfgaia]
    +n:103 [binder, in hydras.Epsilon0.T1]
    +n:103 [binder, in hydras.Ackermann.subAll]
    +n:103 [binder, in Goedel.rosserPA]
    +n:103 [binder, in hydras.Ackermann.codeList]
    +n:103 [binder, in hydras.Epsilon0.Hprime]
    +n:103 [binder, in hydras.Prelude.MoreVectors]
    +n:1031 [binder, in gaia_hydras.nfwfgaia]
    +n:1033 [binder, in gaia_hydras.nfwfgaia]
    +n:1036 [binder, in gaia_hydras.nfwfgaia]
    +n:104 [binder, in hydras.Ackermann.subAll]
    +n:104 [binder, in hydras.Ackermann.LNN2LNT]
    +n:104 [binder, in hydras.Ackermann.codeList]
    +n:105 [binder, in hydras.Ackermann.subProp]
    +n:105 [binder, in hydras.Ackermann.fol]
    +n:105 [binder, in hydras.Epsilon0.Canon]
    +n:105 [binder, in hydras.Hydra.Hydra_Definitions]
    +n:1051 [binder, in gaia_hydras.nfwfgaia]
    +n:106 [binder, in hydras.Epsilon0.T1]
    +n:106 [binder, in Goedel.PRrepresentable]
    +n:106 [binder, in hydras.Ackermann.subAll]
    +n:106 [binder, in hydras.Prelude.Iterates]
    +n:106 [binder, in hydras.Ackermann.LNN2LNT]
    +n:106 [binder, in additions.Pow]
    +n:106 [binder, in hydras.Ackermann.fol]
    +n:106 [binder, in hydras.Prelude.MoreVectors]
    +n:107 [binder, in hydras.Ackermann.subAll]
    +n:107 [binder, in hydras.MoreAck.AckNotPR]
    +n:107 [binder, in hydras.Ackermann.subProp]
    +n:107 [binder, in additions.fib]
    +n:107 [binder, in hydras.Ackermann.codeList]
    +n:107 [binder, in hydras.MoreAck.PrimRecExamples]
    +n:107 [binder, in hydras.Hydra.Hydra_Definitions]
    +n:1073 [binder, in gaia_hydras.nfwfgaia]
    +n:108 [binder, in hydras.Ackermann.primRec]
    +n:109 [binder, in hydras.Ackermann.LNN2LNT]
    +n:109 [binder, in hydras.Ackermann.folProp]
    +n:11 [binder, in hydras.Ackermann.folProof]
    +n:11 [binder, in gaia_hydras.GF_alpha]
    +n:11 [binder, in hydras.Prelude.Compat815]
    +n:11 [binder, in hydras.Ackermann.LNN2LNT]
    +n:11 [binder, in gaia_hydras.GCanon]
    +n:11 [binder, in hydras.Ackermann.subProp]
    +n:11 [binder, in hydras.Ackermann.codeSubFormula]
    +n:11 [binder, in hydras.Hydra.Hydra_Theorems]
    +n:11 [binder, in hydras.Ackermann.primRec]
    +n:11 [binder, in gaia_hydras.ON_gfinite]
    +n:11 [binder, in hydras.Gamma0.Gamma0]
    +n:110 [binder, in hydras.Prelude.Iterates]
    +n:110 [binder, in hydras.Epsilon0.Hprime]
    +n:111 [binder, in hydras.Ackermann.LNN2LNT]
    +n:112 [binder, in Goedel.PRrepresentable]
    +n:112 [binder, in hydras.Gamma0.T2]
    +n:112 [binder, in hydras.Ackermann.subAll]
    +n:112 [binder, in hydras.Epsilon0.F_alpha]
    +n:112 [binder, in hydras.Ackermann.codeList]
    +n:112 [binder, in hydras.Epsilon0.Hprime]
    +n:113 [binder, in gaia_hydras.T1Bridge]
    +n:113 [binder, in hydras.Ackermann.primRec]
    +n:1133 [binder, in gaia_hydras.nfwfgaia]
    +n:114 [binder, in hydras.Epsilon0.T1]
    +n:114 [binder, in hydras.Ackermann.subProp]
    +n:114 [binder, in additions.fib]
    +n:114 [binder, in hydras.Epsilon0.Hprime]
    +n:1140 [binder, in gaia_hydras.nfwfgaia]
    +n:1142 [binder, in gaia_hydras.nfwfgaia]
    +n:1146 [binder, in gaia_hydras.nfwfgaia]
    +n:115 [binder, in hydras.Epsilon0.F_alpha]
    +n:115 [binder, in hydras.Ackermann.codeList]
    +n:115 [binder, in hydras.Hydra.Hydra_Definitions]
    +n:1157 [binder, in gaia_hydras.nfwfgaia]
    +n:116 [binder, in hydras.Prelude.Iterates]
    +n:116 [binder, in hydras.Ackermann.subProp]
    +n:116 [binder, in hydras.Epsilon0.Hprime]
    +n:117 [binder, in hydras.Gamma0.Gamma0]
    +n:1178 [binder, in gaia_hydras.nfwfgaia]
    +n:118 [binder, in Goedel.PRrepresentable]
    +n:118 [binder, in hydras.Ackermann.subAll]
    +n:118 [binder, in hydras.Ackermann.subProp]
    +n:118 [binder, in hydras.Ackermann.primRec]
    +n:1181 [binder, in gaia_hydras.nfwfgaia]
    +n:1184 [binder, in gaia_hydras.nfwfgaia]
    +n:1187 [binder, in gaia_hydras.nfwfgaia]
    +n:119 [binder, in hydras.Ackermann.subAll]
    +n:119 [binder, in hydras.Ackermann.folProp]
    +n:119 [binder, in hydras.Epsilon0.Hprime]
    +n:1190 [binder, in gaia_hydras.nfwfgaia]
    +n:12 [binder, in hydras.Schutte.Correctness_E0]
    +n:12 [binder, in Goedel.PRrepresentable]
    +n:12 [binder, in hydras.Prelude.More_Arith]
    +n:12 [binder, in hydras.Prelude.Iterates]
    +n:12 [binder, in hydras.Ackermann.codeFreeVar]
    +n:12 [binder, in hydras.Prelude.Compat815]
    +n:12 [binder, in Goedel.fixPoint]
    +n:12 [binder, in hydras.Epsilon0.F_omega]
    +n:12 [binder, in hydras.Hydra.Hydra_Theorems]
    +n:12 [binder, in gaia_hydras.ON_gfinite]
    +n:12 [binder, in hydras.Ackermann.fol]
    +n:12 [binder, in gaia_hydras.onType]
    +n:12 [binder, in hydras.Ackermann.codeList]
    +n:12 [binder, in hydras.Ackermann.expressible]
    +n:12 [binder, in hydras.Prelude.MoreVectors]
    +n:120 [binder, in hydras.Ackermann.subAll]
    +n:120 [binder, in hydras.Epsilon0.F_alpha]
    +N:120 [binder, in hydras.Epsilon0.Large_Sets]
    +n:120 [binder, in hydras.Ackermann.codeList]
    +n:121 [binder, in Goedel.PRrepresentable]
    +n:121 [binder, in hydras.Ackermann.folProp]
    +n:121 [binder, in gaia_hydras.T1Bridge]
    +n:121 [binder, in hydras.Epsilon0.Hprime]
    +n:1215 [binder, in hydras.Ackermann.codeSubFormula]
    +n:1219 [binder, in hydras.Ackermann.codeSubFormula]
    +n:122 [binder, in hydras.Prelude.Iterates]
    +n:122 [binder, in hydras.Ackermann.subProp]
    +n:1226 [binder, in hydras.Ackermann.codeSubFormula]
    +n:1229 [binder, in hydras.Ackermann.codeSubFormula]
    +n:123 [binder, in hydras.Ackermann.subAll]
    +N:123 [binder, in hydras.Epsilon0.Large_Sets]
    +n:123 [binder, in hydras.Ackermann.primRec]
    +n:123 [binder, in hydras.Ackermann.codeList]
    +n:124 [binder, in hydras.Ackermann.subAll]
    +n:124 [binder, in hydras.Epsilon0.Hessenberg]
    +n:1245 [binder, in hydras.Ackermann.codeSubFormula]
    +n:1247 [binder, in gaia_hydras.nfwfgaia]
    +n:1248 [binder, in hydras.Ackermann.codeSubFormula]
    +n:125 [binder, in hydras.Gamma0.T2]
    +n:125 [binder, in hydras.Ackermann.subAll]
    +n:125 [binder, in hydras.Prelude.Iterates]
    +n:1252 [binder, in hydras.Ackermann.codeSubFormula]
    +n:1254 [binder, in hydras.Ackermann.codeSubFormula]
    +n:126 [binder, in hydras.Ackermann.subAll]
    +n:126 [binder, in hydras.Ackermann.primRec]
    +n:126 [binder, in hydras.Ackermann.cPair]
    +n:126 [binder, in hydras.Ackermann.codeList]
    +n:126 [binder, in hydras.Epsilon0.Hprime]
    +n:1260 [binder, in hydras.Ackermann.codeSubFormula]
    +n:1262 [binder, in hydras.Ackermann.codeSubFormula]
    +n:1264 [binder, in hydras.Ackermann.codeSubFormula]
    +n:127 [binder, in hydras.Ackermann.subAll]
    +n:127 [binder, in hydras.Epsilon0.Hessenberg]
    +n:127 [binder, in hydras.Ackermann.subProp]
    +n:1277 [binder, in gaia_hydras.nfwfgaia]
    +n:128 [binder, in Goedel.PRrepresentable]
    +n:128 [binder, in hydras.Ackermann.subAll]
    +n:128 [binder, in additions.AM]
    +n:128 [binder, in gaia_hydras.nfwfgaia]
    +n:129 [binder, in hydras.Gamma0.T2]
    +n:129 [binder, in hydras.Prelude.Iterates]
    +n:129 [binder, in hydras.Ackermann.codeList]
    +n:13 [binder, in hydras.Prelude.More_Arith]
    +n:13 [binder, in hydras.Ackermann.LNN2LNT]
    +n:13 [binder, in hydras.Ackermann.codeSubFormula]
    +n:13 [binder, in hydras.Schutte.AP]
    +n:13 [binder, in hydras.Hydra.Hydra_Theorems]
    +n:13 [binder, in hydras.solutions_exercises.FibonacciPR]
    +n:13 [binder, in gaia_hydras.ON_gfinite]
    +n:13 [binder, in hydras.OrdinalNotations.ON_Finite]
    +n:13 [binder, in hydras.Epsilon0.E0]
    +n:13 [binder, in hydras.Ackermann.wConsistent]
    +n:13 [binder, in hydras.rpo.dickson]
    +n:130 [binder, in hydras.Epsilon0.Hessenberg]
    +n:130 [binder, in hydras.Ackermann.primRec]
    +n:130 [binder, in hydras.Ackermann.cPair]
    +n:130 [binder, in hydras.Epsilon0.Hprime]
    +n:1302 [binder, in hydras.Ackermann.codeSubFormula]
    +n:1305 [binder, in hydras.Ackermann.codeSubFormula]
    +n:131 [binder, in additions.AM]
    +n:131 [binder, in hydras.Ackermann.primRec]
    +n:1317 [binder, in gaia_hydras.nfwfgaia]
    +n:132 [binder, in additions.AM]
    +n:132 [binder, in hydras.rpo.more_list]
    +n:132 [binder, in hydras.Ackermann.codeList]
    +n:133 [binder, in hydras.Gamma0.T2]
    +n:133 [binder, in additions.AM]
    +n:1333 [binder, in gaia_hydras.nfwfgaia]
    +n:134 [binder, in hydras.Ackermann.codeSubFormula]
    +n:134 [binder, in hydras.Ackermann.cPair]
    +n:134 [binder, in gaia_hydras.nfwfgaia]
    +n:1348 [binder, in gaia_hydras.nfwfgaia]
    +n:135 [binder, in additions.Euclidean_Chains]
    +n:135 [binder, in hydras.Ackermann.codeList]
    +n:135 [binder, in hydras.Gamma0.Gamma0]
    +n:1353 [binder, in gaia_hydras.nfwfgaia]
    +n:1358 [binder, in gaia_hydras.nfwfgaia]
    +n:136 [binder, in additions.Euclidean_Chains]
    +n:136 [binder, in hydras.Hydra.Hydra_Lemmas]
    +n:1363 [binder, in gaia_hydras.nfwfgaia]
    +n:1368 [binder, in gaia_hydras.nfwfgaia]
    +n:137 [binder, in hydras.Epsilon0.Hprime]
    +n:1373 [binder, in gaia_hydras.nfwfgaia]
    +n:1379 [binder, in gaia_hydras.nfwfgaia]
    +n:138 [binder, in hydras.Gamma0.T2]
    +n:138 [binder, in hydras.Ackermann.codeList]
    +n:1382 [binder, in hydras.Ackermann.codeSubFormula]
    +n:1385 [binder, in hydras.Ackermann.codeSubFormula]
    +n:139 [binder, in Goedel.PRrepresentable]
    +n:139 [binder, in hydras.Epsilon0.Hprime]
    +n:1390 [binder, in hydras.Ackermann.codeSubFormula]
    +n:1394 [binder, in hydras.Ackermann.codeSubFormula]
    +n:14 [binder, in hydras.Ackermann.folProof]
    +n:14 [binder, in hydras.Gamma0.T2]
    +n:14 [binder, in additions.Fib2]
    +n:14 [binder, in hydras.Prelude.MoreLists]
    +n:14 [binder, in hydras.MoreAck.AckNotPR]
    +n:14 [binder, in hydras.Hydra.Hydra_Theorems]
    +n:14 [binder, in hydras.solutions_exercises.MorePRExamples]
    +n:14 [binder, in hydras.Ackermann.primRec]
    +n:14 [binder, in additions.Naive]
    +n:14 [binder, in additions.fib]
    +n:14 [binder, in hydras.Ackermann.codeList]
    +n:140 [binder, in hydras.Ackermann.codePA]
    +n:141 [binder, in hydras.Ackermann.codeList]
    +n:1413 [binder, in gaia_hydras.nfwfgaia]
    +n:142 [binder, in hydras.Gamma0.T2]
    +n:142 [binder, in hydras.Ackermann.cPair]
    +n:142 [binder, in hydras.Epsilon0.Hprime]
    +n:143 [binder, in hydras.Hydra.Hydra_Lemmas]
    +n:143 [binder, in hydras.Gamma0.Gamma0]
    +n:1431 [binder, in gaia_hydras.nfwfgaia]
    +n:144 [binder, in hydras.Ackermann.codeList]
    +n:144 [binder, in hydras.Epsilon0.Hprime]
    +n:145 [binder, in hydras.Ackermann.cPair]
    +n:145 [binder, in hydras.Hydra.Hydra_Lemmas]
    +n:1457 [binder, in gaia_hydras.nfwfgaia]
    +n:146 [binder, in hydras.Ackermann.codeList]
    +n:147 [binder, in hydras.Epsilon0.T1]
    +n:1473 [binder, in gaia_hydras.nfwfgaia]
    +n:1475 [binder, in gaia_hydras.nfwfgaia]
    +n:1479 [binder, in gaia_hydras.nfwfgaia]
    +n:148 [binder, in hydras.Gamma0.T2]
    +n:148 [binder, in hydras.Ackermann.codeList]
    +n:148 [binder, in hydras.Hydra.Hydra_Lemmas]
    +n:1483 [binder, in gaia_hydras.nfwfgaia]
    +n:1489 [binder, in gaia_hydras.nfwfgaia]
    +n:149 [binder, in hydras.Ackermann.cPair]
    +n:149 [binder, in hydras.Gamma0.Gamma0]
    +n:1491 [binder, in gaia_hydras.nfwfgaia]
    +n:1495 [binder, in gaia_hydras.nfwfgaia]
    +n:15 [binder, in additions.Fib2]
    +n:15 [binder, in gaia_hydras.GHprime]
    +n:15 [binder, in hydras.Ackermann.folLogic2]
    +n:15 [binder, in hydras.Ackermann.LNN2LNT]
    +n:15 [binder, in Goedel.fixPoint]
    +n:15 [binder, in hydras.Ackermann.codeSubFormula]
    +n:15 [binder, in hydras.Hydra.Hydra_Theorems]
    +n:15 [binder, in hydras.Ackermann.PA]
    +n:15 [binder, in hydras.solutions_exercises.MorePRExamples]
    +n:15 [binder, in hydras.Ackermann.primRec]
    +n:15 [binder, in hydras.Epsilon0.E0]
    +n:15 [binder, in gaia_hydras.onType]
    +n:150 [binder, in Goedel.PRrepresentable]
    +n:150 [binder, in hydras.Ackermann.codeSubFormula]
    +n:150 [binder, in hydras.Ackermann.codeList]
    +n:152 [binder, in gaia_hydras.T1Bridge]
    +n:152 [binder, in hydras.Ackermann.codeList]
    +n:152 [binder, in hydras.Ackermann.codePA]
    +n:153 [binder, in hydras.Epsilon0.Large_Sets]
    +n:153 [binder, in hydras.Ackermann.cPair]
    +n:153 [binder, in hydras.Hydra.Hydra_Lemmas]
    +n:1530 [binder, in gaia_hydras.nfwfgaia]
    +n:1534 [binder, in gaia_hydras.nfwfgaia]
    +n:154 [binder, in gaia_hydras.T1Bridge]
    +n:154 [binder, in hydras.Ackermann.codeList]
    +n:1547 [binder, in gaia_hydras.nfwfgaia]
    +n:155 [binder, in hydras.Ackermann.fol]
    +n:155 [binder, in hydras.Gamma0.Gamma0]
    +n:155 [binder, in hydras.Ackermann.codePA]
    +n:1554 [binder, in gaia_hydras.nfwfgaia]
    +n:156 [binder, in hydras.Ackermann.subAll]
    +n:156 [binder, in hydras.Prelude.Iterates]
    +n:156 [binder, in hydras.Epsilon0.Large_Sets]
    +n:156 [binder, in hydras.Ackermann.codeList]
    +n:157 [binder, in hydras.Ackermann.codeList]
    +n:1577 [binder, in gaia_hydras.nfwfgaia]
    +n:158 [binder, in hydras.Epsilon0.T1]
    +n:158 [binder, in hydras.Ackermann.subAll]
    +n:158 [binder, in hydras.Ackermann.LNT]
    +n:158 [binder, in hydras.Ackermann.codeList]
    +n:1581 [binder, in gaia_hydras.nfwfgaia]
    +n:159 [binder, in hydras.Prelude.Iterates]
    +n:159 [binder, in additions.fib]
    +n:159 [binder, in hydras.Ackermann.codeList]
    +n:159 [binder, in hydras.Gamma0.Gamma0]
    +n:1590 [binder, in gaia_hydras.nfwfgaia]
    +n:16 [binder, in hydras.Ackermann.folProof]
    +n:16 [binder, in hydras.Schutte.Correctness_E0]
    +n:16 [binder, in Goedel.PRrepresentable]
    +n:16 [binder, in hydras.Prelude.More_Arith]
    +n:16 [binder, in hydras.Ackermann.checkPrf]
    +n:16 [binder, in hydras.Epsilon0.Hessenberg]
    +n:16 [binder, in hydras.Ackermann.subProp]
    +n:16 [binder, in hydras.Epsilon0.Large_Sets]
    +n:16 [binder, in hydras.Schutte.AP]
    +n:16 [binder, in hydras.solutions_exercises.MultisetWf]
    +N:16 [binder, in hydras.Epsilon0.F_omega]
    +n:16 [binder, in hydras.Hydra.Hydra_Termination]
    +n:16 [binder, in hydras.Ackermann.wellFormed]
    +n:16 [binder, in hydras.OrdinalNotations.ON_Finite]
    +n:16 [binder, in additions.fib]
    +n:16 [binder, in hydras.Ackermann.codeList]
    +n:16 [binder, in Goedel.codeSysPrf]
    +n:16 [binder, in hydras.Ackermann.codePA]
    +n:16 [binder, in hydras.solutions_exercises.T1_ltNotWf]
    +n:160 [binder, in hydras.Ackermann.subAll]
    +n:160 [binder, in hydras.Ackermann.model]
    +n:160 [binder, in hydras.Ackermann.codeList]
    +n:1604 [binder, in gaia_hydras.nfwfgaia]
    +n:161 [binder, in hydras.Epsilon0.T1]
    +n:161 [binder, in additions.fib]
    +n:161 [binder, in hydras.Ackermann.codeList]
    +n:1611 [binder, in gaia_hydras.nfwfgaia]
    +n:162 [binder, in hydras.Ackermann.subAll]
    +n:162 [binder, in hydras.Prelude.MoreLists]
    +n:162 [binder, in hydras.Ackermann.codeList]
    +n:163 [binder, in hydras.Epsilon0.T1]
    +n:163 [binder, in hydras.Epsilon0.F_alpha]
    +n:163 [binder, in hydras.Ackermann.codeList]
    +n:163 [binder, in hydras.Gamma0.Gamma0]
    +n:164 [binder, in hydras.Ackermann.cPair]
    +n:164 [binder, in hydras.Ackermann.codeList]
    +n:1653 [binder, in gaia_hydras.nfwfgaia]
    +n:166 [binder, in hydras.Ackermann.LNN]
    +n:166 [binder, in hydras.Schutte.Schutte_basics]
    +n:167 [binder, in hydras.Ackermann.subAll]
    +n:167 [binder, in hydras.Schutte.Schutte_basics]
    +n:167 [binder, in hydras.Ackermann.codeList]
    +n:167 [binder, in hydras.Gamma0.Gamma0]
    +n:1677 [binder, in gaia_hydras.nfwfgaia]
    +n:168 [binder, in hydras.Epsilon0.T1]
    +n:168 [binder, in hydras.Ackermann.subAll]
    +n:168 [binder, in hydras.Epsilon0.F_alpha]
    +n:168 [binder, in hydras.Ackermann.cPair]
    +n:168 [binder, in hydras.Epsilon0.Paths]
    +n:168 [binder, in gaia_hydras.nfwfgaia]
    +n:168 [binder, in hydras.Ackermann.codePA]
    +n:1680 [binder, in gaia_hydras.nfwfgaia]
    +n:1686 [binder, in gaia_hydras.nfwfgaia]
    +n:17 [binder, in hydras.Ackermann.subAll]
    +n:17 [binder, in hydras.Prelude.More_Arith]
    +n:17 [binder, in hydras.Ackermann.extEqualNat]
    +n:17 [binder, in hydras.Hydra.O2H]
    +n:17 [binder, in hydras.Ackermann.folLogic2]
    +n:17 [binder, in hydras.MoreAck.AckNotPR]
    +n:17 [binder, in hydras.Ackermann.codeSubFormula]
    +n:17 [binder, in hydras.Ackermann.primRec]
    +n:17 [binder, in hydras.Epsilon0.Canon]
    +n:17 [binder, in hydras.Hydra.Hydra_Lemmas]
    +n:17 [binder, in hydras.Prelude.MoreVectors]
    +n:170 [binder, in hydras.Ackermann.subAll]
    +n:170 [binder, in hydras.Ackermann.codeList]
    +n:171 [binder, in hydras.Epsilon0.T1]
    +n:171 [binder, in hydras.Epsilon0.F_alpha]
    +n:171 [binder, in hydras.Gamma0.Gamma0]
    +n:171 [binder, in gaia_hydras.nfwfgaia]
    +n:171 [binder, in hydras.Ackermann.codePA]
    +n:1713 [binder, in gaia_hydras.nfwfgaia]
    +n:1714 [binder, in gaia_hydras.nfwfgaia]
    +n:172 [binder, in hydras.Ackermann.subAll]
    +n:172 [binder, in hydras.Ackermann.cPair]
    +n:173 [binder, in hydras.Prelude.MoreLists]
    +n:173 [binder, in hydras.Schutte.Schutte_basics]
    +n:173 [binder, in hydras.Ackermann.codeList]
    +n:173 [binder, in hydras.Epsilon0.Paths]
    +n:173 [binder, in hydras.Gamma0.Gamma0]
    +n:174 [binder, in hydras.Epsilon0.T1]
    +n:174 [binder, in hydras.Ackermann.subAll]
    +n:174 [binder, in hydras.Schutte.Schutte_basics]
    +n:175 [binder, in gaia_hydras.T1Bridge]
    +n:176 [binder, in hydras.Ackermann.subAll]
    +n:176 [binder, in hydras.Prelude.MoreLists]
    +n:176 [binder, in hydras.Ackermann.codeList]
    +n:177 [binder, in hydras.Ackermann.model]
    +n:177 [binder, in gaia_hydras.T1Bridge]
    +n:1775 [binder, in gaia_hydras.nfwfgaia]
    +n:178 [binder, in hydras.Gamma0.Gamma0]
    +n:1784 [binder, in gaia_hydras.nfwfgaia]
    +n:1786 [binder, in gaia_hydras.nfwfgaia]
    +n:179 [binder, in hydras.Epsilon0.T1]
    +n:179 [binder, in hydras.Ackermann.subAll]
    +n:179 [binder, in hydras.Prelude.MoreLists]
    +n:179 [binder, in additions.Euclidean_Chains]
    +n:179 [binder, in hydras.Ackermann.codeList]
    +n:1794 [binder, in gaia_hydras.nfwfgaia]
    +n:18 [binder, in additions.Fib2]
    +n:18 [binder, in additions.FirstSteps]
    +n:18 [binder, in hydras.Prelude.Compat815]
    +n:18 [binder, in Goedel.fixPoint]
    +n:18 [binder, in hydras.Epsilon0.Large_Sets]
    +n:18 [binder, in hydras.Schutte.AP]
    +n:18 [binder, in hydras.Ackermann.NNtheory]
    +n:18 [binder, in hydras.Ackermann.codeList]
    +n:18 [binder, in hydras.solutions_exercises.F_3]
    +n:1801 [binder, in gaia_hydras.nfwfgaia]
    +n:181 [binder, in hydras.Gamma0.Gamma0]
    +n:182 [binder, in hydras.Epsilon0.T1]
    +n:182 [binder, in hydras.Ackermann.subAll]
    +n:182 [binder, in hydras.Prelude.Iterates]
    +n:182 [binder, in hydras.Ackermann.fol]
    +n:182 [binder, in hydras.Ackermann.codeList]
    +n:1822 [binder, in gaia_hydras.nfwfgaia]
    +n:1825 [binder, in gaia_hydras.nfwfgaia]
    +n:1828 [binder, in gaia_hydras.nfwfgaia]
    +n:183 [binder, in gaia_hydras.T1Bridge]
    +n:183 [binder, in hydras.Gamma0.Gamma0]
    +n:1831 [binder, in gaia_hydras.nfwfgaia]
    +n:1834 [binder, in gaia_hydras.nfwfgaia]
    +n:184 [binder, in hydras.Ackermann.model]
    +n:184 [binder, in hydras.Ackermann.wellFormed]
    +n:184 [binder, in hydras.Ackermann.codeList]
    +n:1847 [binder, in gaia_hydras.nfwfgaia]
    +n:1849 [binder, in gaia_hydras.nfwfgaia]
    +n:185 [binder, in hydras.Ackermann.subAll]
    +n:185 [binder, in hydras.Epsilon0.F_alpha]
    +n:185 [binder, in hydras.Gamma0.Gamma0]
    +n:185 [binder, in gaia_hydras.nfwfgaia]
    +n:1851 [binder, in gaia_hydras.nfwfgaia]
    +n:1853 [binder, in gaia_hydras.nfwfgaia]
    +n:1854 [binder, in gaia_hydras.nfwfgaia]
    +n:186 [binder, in gaia_hydras.T1Bridge]
    +n:186 [binder, in hydras.Ackermann.codeList]
    +n:1862 [binder, in gaia_hydras.nfwfgaia]
    +n:1864 [binder, in gaia_hydras.nfwfgaia]
    +n:1868 [binder, in gaia_hydras.nfwfgaia]
    +n:187 [binder, in hydras.Epsilon0.T1]
    +n:187 [binder, in hydras.Gamma0.Gamma0]
    +n:187 [binder, in gaia_hydras.nfwfgaia]
    +n:1874 [binder, in gaia_hydras.nfwfgaia]
    +n:188 [binder, in hydras.Ackermann.cPair]
    +n:188 [binder, in hydras.Ackermann.fol]
    +n:188 [binder, in hydras.Ackermann.codeList]
    +n:1880 [binder, in gaia_hydras.nfwfgaia]
    +n:1883 [binder, in gaia_hydras.nfwfgaia]
    +n:189 [binder, in gaia_hydras.T1Bridge]
    +n:189 [binder, in additions.Euclidean_Chains]
    +n:189 [binder, in hydras.Gamma0.Gamma0]
    +n:189 [binder, in gaia_hydras.nfwfgaia]
    +n:1893 [binder, in gaia_hydras.nfwfgaia]
    +n:1897 [binder, in gaia_hydras.nfwfgaia]
    +n:19 [binder, in hydras.Schutte.Correctness_E0]
    +n:19 [binder, in additions.Fib2]
    +n:19 [binder, in hydras.Prelude.More_Arith]
    +n:19 [binder, in hydras.Prelude.Iterates]
    +n:19 [binder, in hydras.Ackermann.folLogic2]
    +n:19 [binder, in additions.More_on_positive]
    +n:19 [binder, in hydras.Ackermann.codeSubFormula]
    +n:19 [binder, in hydras.Epsilon0.F_omega]
    +n:19 [binder, in gaia_hydras.ON_gfinite]
    +n:19 [binder, in hydras.Epsilon0.Canon]
    +n:19 [binder, in hydras.Ackermann.NNtheory]
    +n:19 [binder, in hydras.Gamma0.Gamma0]
    +n:19 [binder, in hydras.Ackermann.codePA]
    +n:19 [binder, in hydras.Prelude.MoreVectors]
    +n:190 [binder, in hydras.Ackermann.codeList]
    +n:1901 [binder, in gaia_hydras.nfwfgaia]
    +n:1906 [binder, in gaia_hydras.nfwfgaia]
    +n:1910 [binder, in gaia_hydras.nfwfgaia]
    +n:1915 [binder, in gaia_hydras.nfwfgaia]
    +n:1919 [binder, in gaia_hydras.nfwfgaia]
    +n:192 [binder, in hydras.Ackermann.codeList]
    +n:1925 [binder, in gaia_hydras.nfwfgaia]
    +n:193 [binder, in gaia_hydras.nfwfgaia]
    +n:1931 [binder, in gaia_hydras.nfwfgaia]
    +n:1936 [binder, in gaia_hydras.nfwfgaia]
    +n:194 [binder, in hydras.Ackermann.wellFormed]
    +n:194 [binder, in hydras.Ackermann.codeList]
    +n:1941 [binder, in gaia_hydras.nfwfgaia]
    +n:1946 [binder, in gaia_hydras.nfwfgaia]
    +n:195 [binder, in hydras.Ackermann.codeList]
    +n:195 [binder, in additions.Addition_Chains]
    +n:1951 [binder, in gaia_hydras.nfwfgaia]
    +n:1957 [binder, in gaia_hydras.nfwfgaia]
    +n:196 [binder, in hydras.Ackermann.codeList]
    +n:1964 [binder, in gaia_hydras.nfwfgaia]
    +n:1969 [binder, in gaia_hydras.nfwfgaia]
    +n:197 [binder, in hydras.Ackermann.wellFormed]
    +n:197 [binder, in gaia_hydras.nfwfgaia]
    +n:1975 [binder, in gaia_hydras.nfwfgaia]
    +n:198 [binder, in hydras.Epsilon0.T1]
    +n:198 [binder, in hydras.Ackermann.codeList]
    +n:1981 [binder, in gaia_hydras.nfwfgaia]
    +n:1986 [binder, in gaia_hydras.nfwfgaia]
    +n:1992 [binder, in gaia_hydras.nfwfgaia]
    +n:1997 [binder, in gaia_hydras.nfwfgaia]
    +n:2 [binder, in hydras.Ackermann.folProof]
    +n:2 [binder, in hydras.Prelude.MoreLists]
    +n:2 [binder, in hydras.MoreAck.expressibleExamples]
    +n:2 [binder, in additions.Compatibility]
    +n:2 [binder, in hydras.Prelude.Compat815]
    +n:2 [binder, in hydras.Prelude.First_toggle]
    +n:2 [binder, in hydras.Ackermann.LNN2LNT]
    +n:2 [binder, in hydras.MoreAck.Iterate_compat]
    +n:2 [binder, in hydras.MoreAck.Ack]
    +n:2 [binder, in hydras.solutions_exercises.MorePRExamples]
    +n:2 [binder, in additions.Naive]
    +n:2 [binder, in gaia_hydras.nfwfgaia]
    +n:2 [binder, in additions.Demo]
    +n:2 [binder, in hydras.Prelude.MoreVectors]
    +n:20 [binder, in Goedel.PRrepresentable]
    +n:20 [binder, in additions.Fib2]
    +n:20 [binder, in hydras.Prelude.Compat815]
    +n:20 [binder, in hydras.Ackermann.LNN2LNT]
    +n:20 [binder, in gaia_hydras.GCanon]
    +n:20 [binder, in hydras.Schutte.GRelations]
    +n:20 [binder, in hydras.Epsilon0.Large_Sets]
    +n:20 [binder, in hydras.Prelude.Fuel]
    +n:20 [binder, in hydras.Ackermann.codeList]
    +n:20 [binder, in hydras.Schutte.Countable]
    +n:20 [binder, in hydras.Ackermann.expressible]
    +n:200 [binder, in hydras.Epsilon0.T1]
    +n:200 [binder, in hydras.Ackermann.wellFormed]
    +n:200 [binder, in hydras.Ackermann.codeList]
    +n:2003 [binder, in gaia_hydras.nfwfgaia]
    +n:201 [binder, in hydras.Epsilon0.T1]
    +n:201 [binder, in hydras.Epsilon0.Large_Sets]
    +n:2019 [binder, in gaia_hydras.nfwfgaia]
    +n:202 [binder, in hydras.Ackermann.codeList]
    +n:2024 [binder, in gaia_hydras.nfwfgaia]
    +n:2028 [binder, in gaia_hydras.nfwfgaia]
    +n:203 [binder, in hydras.Ackermann.model]
    +n:203 [binder, in hydras.Epsilon0.Large_Sets]
    +n:203 [binder, in hydras.Ackermann.cPair]
    +n:203 [binder, in gaia_hydras.nfwfgaia]
    +n:204 [binder, in hydras.Epsilon0.T1]
    +n:204 [binder, in hydras.Ackermann.codeList]
    +n:205 [binder, in additions.Euclidean_Chains]
    +n:205 [binder, in gaia_hydras.nfwfgaia]
    +n:206 [binder, in hydras.Epsilon0.T1]
    +n:206 [binder, in hydras.Epsilon0.Large_Sets]
    +n:206 [binder, in hydras.Ackermann.codeList]
    +n:207 [binder, in hydras.Ackermann.cPair]
    +n:208 [binder, in hydras.Epsilon0.Large_Sets]
    +n:208 [binder, in hydras.Ackermann.codeList]
    +n:209 [binder, in hydras.Epsilon0.Large_Sets]
    +n:209 [binder, in hydras.Ackermann.codeList]
    +n:209 [binder, in additions.Addition_Chains]
    +n:21 [binder, in Goedel.fixPoint]
    +N:21 [binder, in hydras.MoreAck.AckNotPR]
    +n:21 [binder, in hydras.Ackermann.codeSubFormula]
    +n:21 [binder, in hydras.solutions_exercises.MultisetWf]
    +n:21 [binder, in hydras.Ackermann.code]
    +n:21 [binder, in hydras.Ackermann.primRec]
    +n:21 [binder, in gaia_hydras.ON_gfinite]
    +n:21 [binder, in hydras.OrdinalNotations.ON_Finite]
    +n:21 [binder, in hydras.Schutte.Countable]
    +n:210 [binder, in hydras.Ackermann.subAll]
    +n:210 [binder, in hydras.Ackermann.model]
    +n:210 [binder, in hydras.Epsilon0.Large_Sets]
    +n:210 [binder, in hydras.Ackermann.cPair]
    +n:211 [binder, in hydras.Ackermann.subAll]
    +n:211 [binder, in hydras.Prelude.MoreLists]
    +n:211 [binder, in additions.Addition_Chains]
    +n:211 [binder, in hydras.Epsilon0.Paths]
    +n:212 [binder, in hydras.rpo.term]
    +n:212 [binder, in hydras.Epsilon0.Large_Sets]
    +n:212 [binder, in hydras.Ackermann.cPair]
    +n:212 [binder, in additions.Euclidean_Chains]
    +n:212 [binder, in hydras.Ackermann.codeList]
    +n:213 [binder, in hydras.Prelude.MoreLists]
    +n:214 [binder, in hydras.Epsilon0.Large_Sets]
    +n:214 [binder, in hydras.Ackermann.cPair]
    +n:215 [binder, in hydras.Ackermann.subAll]
    +n:216 [binder, in hydras.Epsilon0.T1]
    +n:216 [binder, in hydras.Ackermann.subAll]
    +n:216 [binder, in hydras.Epsilon0.Large_Sets]
    +n:217 [binder, in hydras.Prelude.MoreLists]
    +n:217 [binder, in hydras.Ackermann.codeList]
    +n:218 [binder, in hydras.Epsilon0.Paths]
    +n:219 [binder, in additions.Euclidean_Chains]
    +n:219 [binder, in hydras.Gamma0.Gamma0]
    +n:219 [binder, in gaia_hydras.nfwfgaia]
    +n:22 [binder, in hydras.Ackermann.subAll]
    +n:22 [binder, in hydras.Ackermann.codeFreeVar]
    +n:22 [binder, in hydras.Hydra.O2H]
    +n:22 [binder, in hydras.Prelude.Compat815]
    +n:22 [binder, in hydras.Ackermann.LNN2LNT]
    +n:22 [binder, in additions.Pow_variant]
    +n:22 [binder, in additions.Pow]
    +n:22 [binder, in hydras.Epsilon0.Hessenberg]
    +n:22 [binder, in additions.More_on_positive]
    +n:22 [binder, in hydras.MoreAck.Ack]
    +n:22 [binder, in hydras.solutions_exercises.FibonacciPR]
    +n:22 [binder, in hydras.Epsilon0.Canon]
    +n:22 [binder, in hydras.OrdinalNotations.ON_Finite]
    +n:22 [binder, in hydras.Ackermann.codeList]
    +n:22 [binder, in hydras.MoreAck.PrimRecExamples]
    +n:220 [binder, in hydras.Epsilon0.T1]
    +n:220 [binder, in hydras.Ackermann.subAll]
    +n:220 [binder, in hydras.Prelude.MoreLists]
    +n:220 [binder, in hydras.Ackermann.codeList]
    +n:221 [binder, in hydras.Ackermann.subAll]
    +n:222 [binder, in gaia_hydras.nfwfgaia]
    +n:224 [binder, in hydras.Epsilon0.Paths]
    +n:225 [binder, in hydras.Ackermann.subAll]
    +n:225 [binder, in hydras.Ackermann.codeList]
    +n:225 [binder, in hydras.Gamma0.Gamma0]
    +n:226 [binder, in hydras.Epsilon0.T1]
    +n:227 [binder, in additions.AM]
    +n:228 [binder, in hydras.Ackermann.codeList]
    +n:228 [binder, in gaia_hydras.nfwfgaia]
    +n:229 [binder, in hydras.Epsilon0.Paths]
    +n:229 [binder, in hydras.Gamma0.Gamma0]
    +n:23 [binder, in hydras.Schutte.Correctness_E0]
    +n:23 [binder, in hydras.Prelude.Iterates]
    +n:23 [binder, in gaia_hydras.GF_alpha]
    +n:23 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +n:23 [binder, in additions.More_on_positive]
    +n:23 [binder, in hydras.Schutte.GRelations]
    +n:23 [binder, in hydras.Ackermann.codeSubFormula]
    +n:23 [binder, in hydras.Epsilon0.Large_Sets]
    +n:23 [binder, in hydras.Prelude.Fuel]
    +n:23 [binder, in hydras.solutions_exercises.FibonacciPR]
    +n:23 [binder, in gaia_hydras.ON_gfinite]
    +n:23 [binder, in hydras.OrdinalNotations.ON_Finite]
    +n:23 [binder, in hydras.Epsilon0.E0]
    +n:23 [binder, in hydras.solutions_exercises.F_3]
    +n:230 [binder, in hydras.Ackermann.subAll]
    +n:230 [binder, in hydras.Prelude.Iterates]
    +n:230 [binder, in additions.Addition_Chains]
    +n:231 [binder, in hydras.Epsilon0.T1]
    +n:231 [binder, in hydras.Ackermann.codeList]
    +n:232 [binder, in hydras.Prelude.Iterates]
    +n:232 [binder, in hydras.Epsilon0.Paths]
    +n:232 [binder, in hydras.Ackermann.codePA]
    +n:233 [binder, in hydras.Gamma0.Gamma0]
    +n:233 [binder, in hydras.Ackermann.codePA]
    +n:234 [binder, in hydras.Ackermann.codeList]
    +n:235 [binder, in hydras.Epsilon0.T1]
    +n:235 [binder, in hydras.Prelude.Iterates]
    +n:236 [binder, in additions.AM]
    +n:237 [binder, in hydras.Ackermann.codeList]
    +n:238 [binder, in hydras.Epsilon0.T1]
    +n:238 [binder, in hydras.Epsilon0.Paths]
    +n:238 [binder, in gaia_hydras.nfwfgaia]
    +n:239 [binder, in hydras.Prelude.Iterates]
    +n:24 [binder, in Goedel.PRrepresentable]
    +n:24 [binder, in hydras.Ackermann.extEqualNat]
    +n:24 [binder, in gaia_hydras.GF_alpha]
    +n:24 [binder, in hydras.Prelude.Compat815]
    +n:24 [binder, in hydras.Ackermann.LNN2LNT]
    +n:24 [binder, in hydras.MoreAck.AckNotPR]
    +n:24 [binder, in hydras.Prelude.Fuel]
    +n:24 [binder, in hydras.MoreAck.Ack]
    +n:24 [binder, in hydras.OrdinalNotations.ON_Finite]
    +n:24 [binder, in hydras.Ackermann.codeList]
    +n:24 [binder, in hydras.Ackermann.folLogic3]
    +n:24 [binder, in hydras.Ackermann.Languages]
    +n:24 [binder, in hydras.Ackermann.expressible]
    +n:24 [binder, in hydras.Prelude.MoreVectors]
    +n:240 [binder, in hydras.Ackermann.codeList]
    +n:242 [binder, in hydras.Prelude.Iterates]
    +n:243 [binder, in additions.AM]
    +n:243 [binder, in hydras.Ackermann.codeList]
    +n:245 [binder, in hydras.Ackermann.cPair]
    +n:246 [binder, in hydras.Prelude.Iterates]
    +n:246 [binder, in hydras.Ackermann.codeList]
    +n:249 [binder, in hydras.Epsilon0.T1]
    +n:249 [binder, in hydras.Ackermann.codeList]
    +n:25 [binder, in additions.Fib2]
    +n:25 [binder, in additions.Compatibility]
    +n:25 [binder, in additions.More_on_positive]
    +n:25 [binder, in hydras.Schutte.GRelations]
    +n:25 [binder, in hydras.Ackermann.codeSubFormula]
    +n:25 [binder, in hydras.solutions_exercises.MultisetWf]
    +n:25 [binder, in hydras.Hydra.Epsilon0_Needed_Std]
    +n:25 [binder, in hydras.Epsilon0.Canon]
    +n:25 [binder, in hydras.OrdinalNotations.ON_Finite]
    +n:25 [binder, in gaia_hydras.onType]
    +n:25 [binder, in hydras.solutions_exercises.F_3]
    +n:25 [binder, in hydras.Gamma0.Gamma0]
    +n:250 [binder, in hydras.Ackermann.subAll]
    +n:250 [binder, in hydras.Prelude.Iterates]
    +n:251 [binder, in hydras.Epsilon0.T1]
    +n:252 [binder, in hydras.Ackermann.codeList]
    +n:254 [binder, in hydras.Epsilon0.T1]
    +n:254 [binder, in hydras.Ackermann.subAll]
    +n:254 [binder, in gaia_hydras.nfwfgaia]
    +n:255 [binder, in hydras.Ackermann.codeList]
    +n:256 [binder, in gaia_hydras.nfwfgaia]
    +n:258 [binder, in hydras.Epsilon0.T1]
    +n:258 [binder, in hydras.Ackermann.codeList]
    +n:258 [binder, in hydras.rpo.rpo]
    +n:26 [binder, in hydras.Gamma0.T2]
    +n:26 [binder, in hydras.Prelude.Iterates]
    +n:26 [binder, in hydras.Ackermann.extEqualNat]
    +n:26 [binder, in hydras.Hydra.O2H]
    +n:26 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +n:26 [binder, in hydras.Prelude.Compat815]
    +n:26 [binder, in hydras.Ackermann.codeSubTerm]
    +n:26 [binder, in hydras.solutions_exercises.MultisetWf]
    +n:26 [binder, in hydras.Prelude.Fuel]
    +n:26 [binder, in hydras.Hydra.Hydra_Termination]
    +n:26 [binder, in hydras.Ackermann.codeList]
    +n:26 [binder, in hydras.MoreAck.FolExamples]
    +n:261 [binder, in hydras.Epsilon0.T1]
    +n:261 [binder, in hydras.Ackermann.codeList]
    +n:261 [binder, in gaia_hydras.nfwfgaia]
    +n:263 [binder, in hydras.Ackermann.codeList]
    +n:264 [binder, in hydras.Epsilon0.T1]
    +n:264 [binder, in hydras.Gamma0.Gamma0]
    +n:264 [binder, in gaia_hydras.nfwfgaia]
    +n:265 [binder, in hydras.Ackermann.codeList]
    +n:266 [binder, in gaia_hydras.nfwfgaia]
    +n:267 [binder, in hydras.Ackermann.codeList]
    +n:267 [binder, in hydras.Gamma0.Gamma0]
    +n:268 [binder, in hydras.Epsilon0.T1]
    +n:268 [binder, in gaia_hydras.nfwfgaia]
    +n:269 [binder, in hydras.Ackermann.codeList]
    +n:27 [binder, in hydras.Ackermann.subAll]
    +n:27 [binder, in additions.Compatibility]
    +n:27 [binder, in hydras.MoreAck.AckNotPR]
    +n:27 [binder, in hydras.Ackermann.codeSubFormula]
    +n:27 [binder, in hydras.MoreAck.Ack]
    +n:27 [binder, in hydras.Hydra.Epsilon0_Needed_Std]
    +n:27 [binder, in hydras.Ackermann.wellFormed]
    +n:27 [binder, in gaia_hydras.nfwfgaia]
    +n:270 [binder, in hydras.Epsilon0.Paths]
    +n:271 [binder, in hydras.Ackermann.codeList]
    +n:271 [binder, in hydras.Gamma0.Gamma0]
    +n:272 [binder, in hydras.Epsilon0.Paths]
    +n:273 [binder, in hydras.Ackermann.codeList]
    +n:274 [binder, in hydras.Ackermann.codeList]
    +n:275 [binder, in hydras.Ackermann.codeList]
    +n:275 [binder, in hydras.Epsilon0.Paths]
    +n:277 [binder, in hydras.Ackermann.codeList]
    +n:278 [binder, in hydras.Epsilon0.T1]
    +n:278 [binder, in Goedel.PRrepresentable]
    +n:278 [binder, in hydras.Epsilon0.Paths]
    +n:279 [binder, in hydras.Epsilon0.T1]
    +n:279 [binder, in hydras.Ackermann.codeList]
    +n:279 [binder, in additions.Addition_Chains]
    +n:28 [binder, in hydras.Schutte.Correctness_E0]
    +n:28 [binder, in hydras.Prelude.Iterates]
    +n:28 [binder, in hydras.Prelude.Compat815]
    +n:28 [binder, in hydras.Ackermann.codeSubTerm]
    +n:28 [binder, in hydras.Epsilon0.Hessenberg]
    +n:28 [binder, in gaia_hydras.GCanon]
    +n:28 [binder, in hydras.Schutte.AP]
    +n:28 [binder, in hydras.Prelude.Fuel]
    +n:28 [binder, in hydras.Ackermann.codeList]
    +n:28 [binder, in hydras.solutions_exercises.F_3]
    +n:28 [binder, in hydras.Hydra.Hydra_Lemmas]
    +n:28 [binder, in hydras.MoreAck.PrimRecExamples]
    +n:28 [binder, in hydras.Ackermann.expressible]
    +n:28 [binder, in hydras.Prelude.MoreVectors]
    +n:281 [binder, in hydras.Epsilon0.T1]
    +n:281 [binder, in Goedel.PRrepresentable]
    +n:281 [binder, in hydras.Ackermann.codeList]
    +n:282 [binder, in hydras.Ackermann.cPair]
    +n:282 [binder, in additions.Addition_Chains]
    +n:283 [binder, in hydras.Epsilon0.T1]
    +n:283 [binder, in hydras.Ackermann.codeList]
    +n:284 [binder, in Goedel.PRrepresentable]
    +n:284 [binder, in hydras.Ackermann.cPair]
    +n:285 [binder, in hydras.Ackermann.codeList]
    +n:285 [binder, in hydras.Gamma0.Gamma0]
    +n:286 [binder, in hydras.Ackermann.cPair]
    +n:287 [binder, in hydras.Ackermann.codeList]
    +n:288 [binder, in hydras.Ackermann.cPair]
    +n:288 [binder, in hydras.Ackermann.codeList]
    +n:289 [binder, in hydras.Ackermann.codeList]
    +n:289 [binder, in hydras.Epsilon0.Paths]
    +n:289 [binder, in hydras.Gamma0.Gamma0]
    +n:29 [binder, in hydras.Ackermann.extEqualNat]
    +n:29 [binder, in gaia_hydras.GF_alpha]
    +n:29 [binder, in additions.Compatibility]
    +n:29 [binder, in hydras.Ackermann.LNN2LNT]
    +n:29 [binder, in hydras.Ackermann.subProp]
    +n:29 [binder, in hydras.Schutte.GRelations]
    +n:29 [binder, in hydras.Ackermann.codeSubFormula]
    +n:29 [binder, in hydras.Schutte.AP]
    +n:29 [binder, in hydras.Prelude.Fuel]
    +n:29 [binder, in hydras.Ackermann.code]
    +n:29 [binder, in hydras.Hydra.Hydra_Termination]
    +n:29 [binder, in additions.Euclidean_Chains]
    +n:29 [binder, in hydras.Ackermann.wellFormed]
    +n:29 [binder, in Goedel.rosser]
    +n:290 [binder, in Goedel.PRrepresentable]
    +n:290 [binder, in hydras.Ackermann.cPair]
    +n:290 [binder, in hydras.Ackermann.codeList]
    +n:290 [binder, in gaia_hydras.nfwfgaia]
    +n:291 [binder, in hydras.Ackermann.codeList]
    +n:292 [binder, in hydras.Ackermann.cPair]
    +n:292 [binder, in hydras.Ackermann.codeList]
    +n:292 [binder, in hydras.Epsilon0.Paths]
    +n:292 [binder, in gaia_hydras.nfwfgaia]
    +n:293 [binder, in hydras.Ackermann.codeList]
    +n:293 [binder, in hydras.Gamma0.Gamma0]
    +n:294 [binder, in hydras.Ackermann.subAll]
    +n:294 [binder, in hydras.Ackermann.cPair]
    +n:294 [binder, in hydras.Ackermann.codeList]
    +n:295 [binder, in hydras.Epsilon0.Paths]
    +n:296 [binder, in Goedel.PRrepresentable]
    +n:296 [binder, in hydras.Ackermann.cPair]
    +n:297 [binder, in hydras.Gamma0.Gamma0]
    +n:298 [binder, in hydras.Ackermann.cPair]
    +n:3 [binder, in hydras.Ackermann.subAll]
    +n:3 [binder, in hydras.Prelude.Iterates]
    +n:3 [binder, in hydras.MoreAck.expressibleExamples]
    +n:3 [binder, in hydras.Ackermann.model]
    +n:3 [binder, in Goedel.fixPoint]
    +n:3 [binder, in hydras.Ackermann.folProp]
    +n:3 [binder, in additions.More_on_positive]
    +n:3 [binder, in hydras.Epsilon0.F_omega]
    +n:3 [binder, in hydras.OrdinalNotations.ON_Finite]
    +n:3 [binder, in hydras.solutions_exercises.F_3]
    +n:3 [binder, in hydras.Gamma0.Gamma0]
    +n:3 [binder, in hydras.Schutte.Addition]
    +n:3 [binder, in gaia_hydras.GHessenberg]
    +n:30 [binder, in hydras.Prelude.Compat815]
    +n:30 [binder, in hydras.MoreAck.AckNotPR]
    +n:30 [binder, in hydras.Ackermann.codeList]
    +n:30 [binder, in gaia_hydras.nfwfgaia]
    +n:30 [binder, in hydras.Ackermann.Languages]
    +n:30 [binder, in hydras.Prelude.MoreVectors]
    +n:300 [binder, in hydras.Ackermann.cPair]
    +n:302 [binder, in Goedel.PRrepresentable]
    +n:302 [binder, in hydras.Ackermann.cPair]
    +n:303 [binder, in Goedel.PRrepresentable]
    +n:303 [binder, in hydras.Epsilon0.Paths]
    +n:304 [binder, in Goedel.PRrepresentable]
    +n:304 [binder, in hydras.Ackermann.cPair]
    +n:304 [binder, in hydras.Gamma0.Gamma0]
    +n:305 [binder, in Goedel.PRrepresentable]
    +n:306 [binder, in hydras.Ackermann.cPair]
    +n:306 [binder, in hydras.Epsilon0.Paths]
    +n:308 [binder, in hydras.Ackermann.cPair]
    +n:308 [binder, in hydras.Gamma0.Gamma0]
    +n:31 [binder, in hydras.Epsilon0.T1]
    +n:31 [binder, in hydras.Hydra.O2H]
    +n:31 [binder, in gaia_hydras.GF_alpha]
    +n:31 [binder, in additions.Compatibility]
    +n:31 [binder, in hydras.Ackermann.codeSubFormula]
    +n:31 [binder, in hydras.Ackermann.primRec]
    +n:31 [binder, in additions.Naive]
    +n:31 [binder, in hydras.Ackermann.wellFormed]
    +n:31 [binder, in Goedel.rosser]
    +n:31 [binder, in hydras.Gamma0.Gamma0]
    +n:31 [binder, in gaia_hydras.nfwfgaia]
    +n:310 [binder, in hydras.Ackermann.cPair]
    +n:312 [binder, in hydras.Ackermann.cPair]
    +n:312 [binder, in hydras.Epsilon0.Paths]
    +n:314 [binder, in hydras.Ackermann.subAll]
    +n:314 [binder, in hydras.Ackermann.cPair]
    +n:316 [binder, in hydras.Ackermann.cPair]
    +n:318 [binder, in hydras.Ackermann.cPair]
    +n:319 [binder, in hydras.Epsilon0.T1]
    +n:32 [binder, in hydras.rpo.term]
    +n:32 [binder, in hydras.Prelude.Compat815]
    +n:32 [binder, in hydras.Ackermann.code]
    +n:32 [binder, in hydras.MoreAck.Ack]
    +n:32 [binder, in hydras.Ackermann.fol]
    +n:32 [binder, in hydras.Ackermann.codeList]
    +n:32 [binder, in hydras.Hydra.Hydra_Lemmas]
    +n:32 [binder, in gaia_hydras.nfwfgaia]
    +n:320 [binder, in hydras.Ackermann.cPair]
    +n:320 [binder, in hydras.Epsilon0.Paths]
    +n:321 [binder, in gaia_hydras.nfwfgaia]
    +n:322 [binder, in hydras.Ackermann.cPair]
    +n:322 [binder, in hydras.Epsilon0.Paths]
    +n:323 [binder, in hydras.Epsilon0.T1]
    +n:323 [binder, in gaia_hydras.nfwfgaia]
    +n:324 [binder, in hydras.Ackermann.cPair]
    +n:325 [binder, in Goedel.PRrepresentable]
    +n:325 [binder, in gaia_hydras.nfwfgaia]
    +n:326 [binder, in hydras.Ackermann.cPair]
    +n:326 [binder, in hydras.Epsilon0.Paths]
    +n:326 [binder, in gaia_hydras.nfwfgaia]
    +n:327 [binder, in hydras.Ackermann.cPair]
    +n:328 [binder, in hydras.Epsilon0.T1]
    +n:328 [binder, in hydras.Ackermann.cPair]
    +n:328 [binder, in hydras.Epsilon0.Paths]
    +n:329 [binder, in hydras.Ackermann.cPair]
    +n:33 [binder, in additions.Compatibility]
    +n:33 [binder, in additions.FirstSteps]
    +n:33 [binder, in hydras.Prelude.Compat815]
    +n:33 [binder, in hydras.Epsilon0.Hessenberg]
    +n:33 [binder, in hydras.Ackermann.codeSubFormula]
    +n:33 [binder, in hydras.Hydra.Hydra_Termination]
    +n:33 [binder, in additions.Euclidean_Chains]
    +n:33 [binder, in hydras.Ackermann.codeList]
    +n:330 [binder, in Goedel.PRrepresentable]
    +n:330 [binder, in hydras.Ackermann.cPair]
    +n:331 [binder, in hydras.Ackermann.cPair]
    +n:332 [binder, in hydras.Ackermann.cPair]
    +n:333 [binder, in hydras.Epsilon0.T1]
    +n:333 [binder, in hydras.Ackermann.cPair]
    +n:333 [binder, in additions.Euclidean_Chains]
    +n:334 [binder, in hydras.Ackermann.cPair]
    +n:335 [binder, in Goedel.PRrepresentable]
    +n:336 [binder, in hydras.Ackermann.cPair]
    +n:34 [binder, in hydras.Prelude.Iterates]
    +n:34 [binder, in hydras.Prelude.Compat815]
    +n:34 [binder, in gaia_hydras.GCanon]
    +n:34 [binder, in hydras.MoreAck.AckNotPR]
    +n:34 [binder, in hydras.Ackermann.subProp]
    +n:34 [binder, in hydras.Schutte.AP]
    +n:34 [binder, in hydras.Ackermann.fol]
    +n:34 [binder, in hydras.Ackermann.codeList]
    +n:342 [binder, in hydras.Epsilon0.Paths]
    +n:343 [binder, in hydras.Ackermann.cPair]
    +n:344 [binder, in hydras.Ackermann.cPair]
    +n:345 [binder, in hydras.Epsilon0.T1]
    +n:345 [binder, in hydras.Ackermann.cPair]
    +n:346 [binder, in hydras.Epsilon0.Paths]
    +n:35 [binder, in hydras.Ackermann.codeSubFormula]
    +n:35 [binder, in hydras.Ackermann.code]
    +n:35 [binder, in hydras.Ackermann.codeList]
    +n:35 [binder, in Goedel.rosser]
    +n:35 [binder, in hydras.Ackermann.Languages]
    +n:350 [binder, in hydras.Epsilon0.T1]
    +n:350 [binder, in hydras.Epsilon0.Paths]
    +n:353 [binder, in hydras.Epsilon0.T1]
    +n:354 [binder, in hydras.Epsilon0.Paths]
    +n:355 [binder, in hydras.Epsilon0.Paths]
    +n:356 [binder, in hydras.Epsilon0.T1]
    +n:359 [binder, in hydras.Epsilon0.Paths]
    +n:36 [binder, in hydras.Ackermann.codeSubTerm]
    +n:36 [binder, in hydras.Ackermann.LNN2LNT]
    +n:36 [binder, in hydras.Ackermann.codeList]
    +n:36 [binder, in hydras.Ackermann.expressible]
    +n:363 [binder, in hydras.Epsilon0.T1]
    +n:363 [binder, in gaia_hydras.nfwfgaia]
    +n:364 [binder, in hydras.Ackermann.subAll]
    +n:367 [binder, in hydras.Ackermann.subAll]
    +n:37 [binder, in hydras.Prelude.Iterates]
    +n:37 [binder, in additions.Compatibility]
    +n:37 [binder, in hydras.Ackermann.codeSubFormula]
    +n:37 [binder, in hydras.Schutte.AP]
    +n:37 [binder, in hydras.Ackermann.fol]
    +n:37 [binder, in hydras.Epsilon0.Canon]
    +n:37 [binder, in hydras.Ackermann.codeList]
    +n:37 [binder, in hydras.Hydra.Hydra_Definitions]
    +n:37 [binder, in hydras.Prelude.MoreVectors]
    +n:370 [binder, in Goedel.PRrepresentable]
    +n:371 [binder, in Goedel.PRrepresentable]
    +n:376 [binder, in hydras.Ackermann.subAll]
    +n:377 [binder, in hydras.Epsilon0.T1]
    +n:379 [binder, in hydras.Ackermann.subAll]
    +n:38 [binder, in additions.FirstSteps]
    +n:38 [binder, in hydras.Ackermann.LNN2LNT]
    +n:38 [binder, in gaia_hydras.GCanon]
    +n:38 [binder, in hydras.Ackermann.codeSubFormula]
    +n:38 [binder, in hydras.Epsilon0.F_omega]
    +n:38 [binder, in hydras.Ackermann.codeList]
    +n:38 [binder, in hydras.Ackermann.folLogic3]
    +n:38 [binder, in hydras.Ackermann.Languages]
    +n:382 [binder, in hydras.Epsilon0.T1]
    +n:384 [binder, in gaia_hydras.nfwfgaia]
    +n:386 [binder, in hydras.Epsilon0.T1]
    +n:386 [binder, in gaia_hydras.nfwfgaia]
    +n:387 [binder, in hydras.Epsilon0.Paths]
    +n:388 [binder, in gaia_hydras.nfwfgaia]
    +n:39 [binder, in hydras.Prelude.More_Arith]
    +n:39 [binder, in hydras.Epsilon0.Hessenberg]
    +n:39 [binder, in hydras.Ackermann.subProp]
    +n:39 [binder, in hydras.Ackermann.codeSubFormula]
    +n:39 [binder, in gaia_hydras.T1Bridge]
    +n:39 [binder, in additions.Naive]
    +n:39 [binder, in hydras.Epsilon0.Canon]
    +n:39 [binder, in additions.fib]
    +n:39 [binder, in hydras.Ackermann.codeList]
    +n:39 [binder, in hydras.Ackermann.folLogic3]
    +n:39 [binder, in hydras.Ackermann.expressible]
    +n:391 [binder, in hydras.Epsilon0.T1]
    +n:392 [binder, in hydras.Epsilon0.Paths]
    +n:394 [binder, in hydras.Epsilon0.T1]
    +n:394 [binder, in hydras.Epsilon0.Paths]
    +n:394 [binder, in gaia_hydras.nfwfgaia]
    +n:397 [binder, in hydras.Epsilon0.Paths]
    +n:399 [binder, in hydras.Epsilon0.T1]
    +n:4 [binder, in hydras.Epsilon0.T1]
    +n:4 [binder, in hydras.Schutte.Correctness_E0]
    +n:4 [binder, in hydras.Prelude.More_Arith]
    +n:4 [binder, in hydras.Ackermann.extEqualNat]
    +n:4 [binder, in gaia_hydras.GF_alpha]
    +n:4 [binder, in hydras.MoreAck.expressibleExamples]
    +n:4 [binder, in additions.Compatibility]
    +n:4 [binder, in hydras.Prelude.Compat815]
    +n:4 [binder, in hydras.Prelude.First_toggle]
    +n:4 [binder, in gaia_hydras.GPaths]
    +n:4 [binder, in hydras.Ackermann.PAtheory]
    +n:4 [binder, in hydras.Prelude.Fuel]
    +n:4 [binder, in hydras.Ackermann.cPair]
    +n:4 [binder, in gaia_hydras.ON_gfinite]
    +n:4 [binder, in additions.Monoid_instances]
    +n:4 [binder, in additions.fib]
    +n:4 [binder, in hydras.Ackermann.codeList]
    +n:4 [binder, in hydras.Prelude.LibHyps_Experiments]
    +n:4 [binder, in hydras.solutions_exercises.F_3]
    +n:4 [binder, in hydras.Ackermann.codeNatToTerm]
    +n:4 [binder, in gaia_hydras.nfwfgaia]
    +n:4 [binder, in hydras.Ackermann.expressible]
    +n:40 [binder, in hydras.Prelude.Iterates]
    +n:40 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +n:40 [binder, in hydras.Ackermann.LNN2LNT]
    +n:40 [binder, in hydras.Ackermann.model]
    +n:40 [binder, in hydras.MoreAck.AckNotPR]
    +n:40 [binder, in hydras.Ackermann.codeSubFormula]
    +n:40 [binder, in hydras.Prelude.Fuel]
    +n:40 [binder, in hydras.Ackermann.fol]
    +n:40 [binder, in hydras.Ackermann.codeList]
    +n:40 [binder, in hydras.Ackermann.folLogic3]
    +n:40 [binder, in Goedel.rosser]
    +n:40 [binder, in hydras.Ackermann.Languages]
    +n:41 [binder, in hydras.Prelude.More_Arith]
    +n:41 [binder, in hydras.Ackermann.codeSubFormula]
    +n:41 [binder, in additions.Naive]
    +n:41 [binder, in hydras.Ackermann.wellFormed]
    +n:41 [binder, in gaia_hydras.onType]
    +n:41 [binder, in hydras.Ackermann.folLogic3]
    +n:41 [binder, in hydras.rpo.list_permut]
    +n:41 [binder, in gaia_hydras.nfwfgaia]
    +n:41 [binder, in hydras.MoreAck.PrimRecExamples]
    +n:416 [binder, in hydras.Epsilon0.T1]
    +n:419 [binder, in hydras.Ackermann.folProp]
    +n:42 [binder, in gaia_hydras.GCanon]
    +n:42 [binder, in hydras.Epsilon0.Large_Sets]
    +n:42 [binder, in hydras.solutions_exercises.MultisetWf]
    +n:42 [binder, in hydras.Ackermann.primRec]
    +n:42 [binder, in hydras.Hydra.Hydra_Termination]
    +n:42 [binder, in hydras.rpo.list_permut]
    +n:42 [binder, in hydras.Hydra.Hydra_Definitions]
    +n:42 [binder, in hydras.Prelude.MoreVectors]
    +n:421 [binder, in hydras.Ackermann.folProp]
    +n:423 [binder, in hydras.Ackermann.folProp]
    +n:423 [binder, in gaia_hydras.nfwfgaia]
    +n:426 [binder, in hydras.Epsilon0.T1]
    +n:427 [binder, in gaia_hydras.nfwfgaia]
    +n:43 [binder, in hydras.Ackermann.subAll]
    +n:43 [binder, in additions.Compatibility]
    +n:43 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +n:43 [binder, in hydras.Ackermann.codeSubFormula]
    +n:43 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +n:43 [binder, in hydras.Prelude.Fuel]
    +n:43 [binder, in hydras.Epsilon0.Canon]
    +n:43 [binder, in hydras.Epsilon0.E0]
    +n:43 [binder, in gaia_hydras.nfwfgaia]
    +n:43 [binder, in hydras.MoreAck.PrimRecExamples]
    +n:43 [binder, in hydras.Ackermann.expressible]
    +n:431 [binder, in hydras.Ackermann.fol]
    +n:431 [binder, in hydras.Gamma0.Gamma0]
    +n:432 [binder, in hydras.Epsilon0.T1]
    +n:433 [binder, in hydras.Ackermann.primRec]
    +n:433 [binder, in hydras.Ackermann.fol]
    +n:433 [binder, in hydras.Gamma0.Gamma0]
    +n:437 [binder, in hydras.Epsilon0.T1]
    +n:44 [binder, in hydras.Prelude.More_Arith]
    +n:44 [binder, in hydras.Hydra.O2H]
    +n:44 [binder, in additions.FirstSteps]
    +n:44 [binder, in hydras.MoreAck.AckNotPR]
    +n:44 [binder, in hydras.Prelude.Fuel]
    +n:44 [binder, in additions.fib]
    +n:44 [binder, in hydras.MoreAck.PrimRecExamples]
    +n:440 [binder, in gaia_hydras.nfwfgaia]
    +n:441 [binder, in hydras.Ackermann.primRec]
    +n:442 [binder, in hydras.Ackermann.primRec]
    +n:444 [binder, in Goedel.PRrepresentable]
    +n:446 [binder, in Goedel.PRrepresentable]
    +n:449 [binder, in hydras.Ackermann.primRec]
    +n:45 [binder, in hydras.Schutte.Correctness_E0]
    +n:45 [binder, in additions.FirstSteps]
    +n:45 [binder, in hydras.Epsilon0.F_alpha]
    +n:45 [binder, in hydras.Ackermann.codeSubFormula]
    +n:45 [binder, in hydras.solutions_exercises.MultisetWf]
    +n:45 [binder, in hydras.Ackermann.codeList]
    +n:454 [binder, in hydras.Epsilon0.T1]
    +n:454 [binder, in hydras.Ackermann.primRec]
    +n:455 [binder, in Goedel.PRrepresentable]
    +n:455 [binder, in hydras.Ackermann.primRec]
    +n:457 [binder, in Goedel.PRrepresentable]
    +n:46 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +n:46 [binder, in hydras.Prelude.Fuel]
    +n:46 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +n:46 [binder, in hydras.Ackermann.wellFormed]
    +n:46 [binder, in hydras.Hydra.Hydra_Lemmas]
    +n:462 [binder, in hydras.Ackermann.primRec]
    +n:465 [binder, in Goedel.PRrepresentable]
    +n:467 [binder, in hydras.Ackermann.primRec]
    +n:47 [binder, in hydras.Schutte.Correctness_E0]
    +n:47 [binder, in additions.FirstSteps]
    +n:47 [binder, in gaia_hydras.GCanon]
    +n:47 [binder, in hydras.Ackermann.codeSubFormula]
    +n:47 [binder, in hydras.Ackermann.folLogic3]
    +n:47 [binder, in hydras.Ackermann.expressible]
    +n:470 [binder, in additions.Euclidean_Chains]
    +n:470 [binder, in hydras.Gamma0.Gamma0]
    +n:471 [binder, in hydras.Ackermann.primRec]
    +n:472 [binder, in hydras.Epsilon0.Paths]
    +n:473 [binder, in Goedel.PRrepresentable]
    +n:474 [binder, in additions.Euclidean_Chains]
    +n:475 [binder, in hydras.Ackermann.primRec]
    +n:476 [binder, in hydras.Ackermann.primRec]
    +n:476 [binder, in additions.Euclidean_Chains]
    +n:476 [binder, in hydras.Gamma0.Gamma0]
    +n:477 [binder, in gaia_hydras.nfwfgaia]
    +n:478 [binder, in additions.Euclidean_Chains]
    +n:479 [binder, in hydras.Gamma0.Gamma0]
    +n:48 [binder, in hydras.Prelude.Iterates]
    +n:48 [binder, in hydras.MoreAck.AckNotPR]
    +n:48 [binder, in hydras.Prelude.Fuel]
    +n:48 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +n:48 [binder, in hydras.Ackermann.codeList]
    +n:48 [binder, in hydras.Ackermann.folLogic3]
    +n:48 [binder, in gaia_hydras.nfwfgaia]
    +n:480 [binder, in gaia_hydras.nfwfgaia]
    +n:483 [binder, in hydras.Ackermann.primRec]
    +n:483 [binder, in gaia_hydras.nfwfgaia]
    +n:486 [binder, in gaia_hydras.nfwfgaia]
    +n:488 [binder, in hydras.Ackermann.primRec]
    +n:488 [binder, in hydras.Gamma0.Gamma0]
    +n:489 [binder, in gaia_hydras.nfwfgaia]
    +n:49 [binder, in hydras.Epsilon0.Hessenberg]
    +n:49 [binder, in hydras.Ackermann.codeSubFormula]
    +n:49 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +n:49 [binder, in hydras.Prelude.Fuel]
    +n:49 [binder, in hydras.MoreAck.Ack]
    +n:49 [binder, in hydras.Ackermann.primRec]
    +n:49 [binder, in hydras.Ackermann.Languages]
    +n:493 [binder, in hydras.Ackermann.primRec]
    +n:494 [binder, in hydras.Epsilon0.T1]
    +n:495 [binder, in hydras.Epsilon0.T1]
    +n:496 [binder, in gaia_hydras.nfwfgaia]
    +n:497 [binder, in hydras.Gamma0.Gamma0]
    +n:498 [binder, in hydras.Ackermann.primRec]
    +n:499 [binder, in gaia_hydras.nfwfgaia]
    +n:5 [binder, in hydras.Schutte.Correctness_E0]
    +n:5 [binder, in additions.Fib2]
    +n:5 [binder, in hydras.Prelude.More_Arith]
    +n:5 [binder, in hydras.MoreAck.expressibleExamples]
    +n:5 [binder, in hydras.Ackermann.NN2PA]
    +n:5 [binder, in additions.FirstSteps]
    +n:5 [binder, in hydras.MoreAck.Iterate_compat]
    +n:5 [binder, in hydras.Prelude.Fuel]
    +n:5 [binder, in hydras.solutions_exercises.FibonacciPR]
    +n:5 [binder, in hydras.Ackermann.primRec]
    +n:5 [binder, in hydras.Ackermann.codeNatToTerm]
    +n:5 [binder, in hydras.Ackermann.wConsistent]
    +n:5 [binder, in hydras.solutions_exercises.isqrt]
    +n:50 [binder, in additions.FirstSteps]
    +n:50 [binder, in hydras.Epsilon0.F_alpha]
    +n:50 [binder, in hydras.Ackermann.folProp]
    +n:50 [binder, in hydras.Ackermann.codeSubFormula]
    +n:50 [binder, in hydras.solutions_exercises.MultisetWf]
    +n:50 [binder, in hydras.MoreAck.Ack]
    +n:50 [binder, in gaia_hydras.nfwfgaia]
    +n:50 [binder, in hydras.Prelude.MoreVectors]
    +n:501 [binder, in gaia_hydras.nfwfgaia]
    +n:502 [binder, in hydras.Ackermann.primRec]
    +n:503 [binder, in hydras.Epsilon0.T1]
    +n:506 [binder, in hydras.Epsilon0.T1]
    +n:508 [binder, in hydras.Epsilon0.T1]
    +n:51 [binder, in Goedel.PRrepresentable]
    +n:51 [binder, in hydras.Prelude.Iterates]
    +n:51 [binder, in hydras.Ackermann.codeSubFormula]
    +n:51 [binder, in hydras.MoreAck.Ack]
    +n:51 [binder, in hydras.Ackermann.wellFormed]
    +n:51 [binder, in gaia_hydras.nfwfgaia]
    +n:51 [binder, in hydras.Ackermann.expressible]
    +n:511 [binder, in hydras.Epsilon0.T1]
    +n:511 [binder, in hydras.Epsilon0.Paths]
    +n:516 [binder, in gaia_hydras.nfwfgaia]
    +n:517 [binder, in hydras.Epsilon0.T1]
    +n:517 [binder, in hydras.Epsilon0.Paths]
    +n:518 [binder, in hydras.Ackermann.checkPrf]
    +n:518 [binder, in gaia_hydras.nfwfgaia]
    +n:52 [binder, in hydras.Epsilon0.T1]
    +n:52 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +n:52 [binder, in hydras.Ackermann.model]
    +n:52 [binder, in hydras.Ackermann.subProp]
    +n:52 [binder, in hydras.Ackermann.codeSubFormula]
    +n:52 [binder, in hydras.MoreAck.Ack]
    +n:52 [binder, in gaia_hydras.T1Bridge]
    +n:521 [binder, in gaia_hydras.nfwfgaia]
    +n:523 [binder, in hydras.Epsilon0.T1]
    +n:523 [binder, in hydras.Gamma0.Gamma0]
    +n:523 [binder, in gaia_hydras.nfwfgaia]
    +n:527 [binder, in hydras.Epsilon0.T1]
    +n:529 [binder, in hydras.Epsilon0.T1]
    +n:53 [binder, in hydras.rpo.more_list]
    +n:53 [binder, in hydras.Epsilon0.F_alpha]
    +n:53 [binder, in hydras.MoreAck.AckNotPR]
    +n:53 [binder, in hydras.Ackermann.codeSubFormula]
    +n:53 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +n:53 [binder, in hydras.Ackermann.fol]
    +n:53 [binder, in hydras.Ackermann.codeList]
    +n:53 [binder, in hydras.Epsilon0.Paths]
    +n:530 [binder, in gaia_hydras.nfwfgaia]
    +n:531 [binder, in gaia_hydras.nfwfgaia]
    +n:532 [binder, in hydras.Epsilon0.T1]
    +n:535 [binder, in hydras.Ackermann.primRec]
    +n:535 [binder, in hydras.Gamma0.Gamma0]
    +n:537 [binder, in hydras.Ackermann.checkPrf]
    +n:539 [binder, in hydras.Epsilon0.T1]
    +n:54 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +n:54 [binder, in additions.Pow_variant]
    +n:54 [binder, in additions.Pow]
    +n:54 [binder, in hydras.Ackermann.codeSubFormula]
    +n:54 [binder, in hydras.MoreAck.Ack]
    +n:54 [binder, in hydras.Ackermann.folLogic3]
    +n:54 [binder, in hydras.Hydra.Hydra_Lemmas]
    +n:54 [binder, in hydras.Schutte.Addition]
    +n:542 [binder, in hydras.Ackermann.primRec]
    +n:543 [binder, in hydras.Epsilon0.T1]
    +n:543 [binder, in hydras.Gamma0.Gamma0]
    +n:543 [binder, in gaia_hydras.nfwfgaia]
    +n:544 [binder, in gaia_hydras.nfwfgaia]
    +n:545 [binder, in hydras.Epsilon0.T1]
    +n:545 [binder, in hydras.Ackermann.primRec]
    +n:548 [binder, in gaia_hydras.nfwfgaia]
    +n:55 [binder, in Goedel.PRrepresentable]
    +n:55 [binder, in hydras.Prelude.More_Arith]
    +n:55 [binder, in hydras.Prelude.Iterates]
    +n:55 [binder, in hydras.Ackermann.codeSubFormula]
    +n:55 [binder, in hydras.Ackermann.folLogic3]
    +n:55 [binder, in Goedel.rosser]
    +n:55 [binder, in gaia_hydras.nfwfgaia]
    +n:550 [binder, in hydras.Epsilon0.T1]
    +n:550 [binder, in hydras.Epsilon0.Paths]
    +n:552 [binder, in hydras.Epsilon0.T1]
    +n:554 [binder, in hydras.Epsilon0.T1]
    +n:556 [binder, in hydras.Epsilon0.T1]
    +n:556 [binder, in hydras.Ackermann.primRec]
    +n:556 [binder, in gaia_hydras.nfwfgaia]
    +n:557 [binder, in hydras.Gamma0.Gamma0]
    +n:558 [binder, in hydras.Epsilon0.Paths]
    +n:559 [binder, in hydras.Epsilon0.T1]
    +n:559 [binder, in hydras.Ackermann.primRec]
    +n:559 [binder, in gaia_hydras.nfwfgaia]
    +n:56 [binder, in hydras.Ackermann.model]
    +n:56 [binder, in hydras.MoreAck.AckNotPR]
    +n:56 [binder, in hydras.Ackermann.codeSubFormula]
    +n:56 [binder, in hydras.OrdinalNotations.OmegaOmega]
    +n:56 [binder, in hydras.Ackermann.fol]
    +n:56 [binder, in hydras.Ackermann.codeList]
    +n:56 [binder, in hydras.Prelude.MoreVectors]
    +n:561 [binder, in hydras.Gamma0.Gamma0]
    +n:561 [binder, in gaia_hydras.nfwfgaia]
    +n:562 [binder, in hydras.Ackermann.primRec]
    +n:563 [binder, in hydras.Epsilon0.T1]
    +n:563 [binder, in hydras.Epsilon0.Paths]
    +n:563 [binder, in gaia_hydras.nfwfgaia]
    +n:564 [binder, in hydras.Ackermann.primRec]
    +n:568 [binder, in hydras.Gamma0.Gamma0]
    +n:569 [binder, in hydras.Epsilon0.T1]
    +n:57 [binder, in hydras.Ackermann.subProp]
    +n:57 [binder, in hydras.MoreAck.Ack]
    +n:57 [binder, in gaia_hydras.T1Bridge]
    +n:57 [binder, in hydras.Epsilon0.Canon]
    +n:57 [binder, in hydras.Ackermann.folLogic3]
    +n:57 [binder, in Goedel.rosser]
    +n:57 [binder, in gaia_hydras.nfwfgaia]
    +n:572 [binder, in hydras.Epsilon0.Paths]
    +n:573 [binder, in hydras.Gamma0.Gamma0]
    +n:574 [binder, in hydras.Epsilon0.T1]
    +n:574 [binder, in hydras.Ackermann.primRec]
    +n:578 [binder, in hydras.Epsilon0.T1]
    +n:58 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +n:58 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +n:58 [binder, in hydras.MoreAck.AckNotPR]
    +n:58 [binder, in hydras.Ackermann.primRec]
    +n:58 [binder, in hydras.Ackermann.fol]
    +n:584 [binder, in hydras.Epsilon0.Paths]
    +n:589 [binder, in hydras.Ackermann.checkPrf]
    +n:589 [binder, in hydras.Gamma0.Gamma0]
    +n:59 [binder, in Goedel.PRrepresentable]
    +n:59 [binder, in hydras.Schutte.Critical]
    +n:59 [binder, in hydras.MoreAck.Ack]
    +n:59 [binder, in Goedel.rosserPA]
    +n:59 [binder, in hydras.Ackermann.wellFormed]
    +n:59 [binder, in hydras.Ackermann.codeList]
    +n:59 [binder, in hydras.Hydra.Hydra_Lemmas]
    +n:595 [binder, in hydras.Epsilon0.T1]
    +n:597 [binder, in hydras.Ackermann.primRec]
    +n:598 [binder, in hydras.Epsilon0.T1]
    +n:598 [binder, in hydras.Gamma0.Gamma0]
    +n:6 [binder, in hydras.Epsilon0.T1]
    +n:6 [binder, in additions.Fib2]
    +n:6 [binder, in gaia_hydras.GF_alpha]
    +n:6 [binder, in hydras.MoreAck.expressibleExamples]
    +n:6 [binder, in Goedel.fixPoint]
    +n:6 [binder, in hydras.Ackermann.PAtheory]
    +n:6 [binder, in hydras.Ackermann.subProp]
    +n:6 [binder, in hydras.Ackermann.codeSubFormula]
    +n:6 [binder, in hydras.solutions_exercises.OnCodeList]
    +n:6 [binder, in hydras.Schutte.AP]
    +n:6 [binder, in additions.Naive]
    +n:6 [binder, in hydras.Ackermann.codeList]
    +n:6 [binder, in hydras.Hydra.Hydra_Lemmas]
    +n:6 [binder, in hydras.Prelude.Exp2]
    +n:6 [binder, in hydras.Epsilon0.Paths]
    +n:6 [binder, in hydras.Hydra.Omega_Small]
    +n:6 [binder, in gaia_hydras.nfwfgaia]
    +n:6 [binder, in hydras.Schutte.Countable]
    +n:6 [binder, in hydras.Prelude.MoreVectors]
    +n:60 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +n:60 [binder, in hydras.solutions_exercises.MultisetWf]
    +n:60 [binder, in hydras.Ackermann.code]
    +n:60 [binder, in hydras.Ackermann.expressible]
    +n:602 [binder, in hydras.Epsilon0.T1]
    +n:602 [binder, in hydras.Ackermann.primRec]
    +n:603 [binder, in gaia_hydras.nfwfgaia]
    +n:605 [binder, in hydras.Ackermann.primRec]
    +n:606 [binder, in hydras.Epsilon0.T1]
    +n:608 [binder, in hydras.Ackermann.primRec]
    +n:608 [binder, in gaia_hydras.nfwfgaia]
    +n:61 [binder, in hydras.Ackermann.subAll]
    +n:61 [binder, in hydras.rpo.more_list]
    +n:61 [binder, in hydras.MoreAck.AckNotPR]
    +n:61 [binder, in Goedel.rosserPA]
    +n:61 [binder, in hydras.Ackermann.wellFormed]
    +n:61 [binder, in Goedel.rosser]
    +n:61 [binder, in gaia_hydras.nfwfgaia]
    +n:610 [binder, in hydras.Epsilon0.T1]
    +n:613 [binder, in hydras.Epsilon0.T1]
    +n:613 [binder, in hydras.Ackermann.primRec]
    +n:616 [binder, in hydras.Epsilon0.T1]
    +n:617 [binder, in hydras.Ackermann.primRec]
    +n:618 [binder, in hydras.Ackermann.checkPrf]
    +n:619 [binder, in hydras.Epsilon0.T1]
    +n:62 [binder, in hydras.Schutte.Correctness_E0]
    +n:62 [binder, in hydras.Ackermann.subAll]
    +n:62 [binder, in hydras.rpo.more_list]
    +n:62 [binder, in additions.Pow_variant]
    +n:62 [binder, in hydras.Ackermann.model]
    +n:62 [binder, in additions.Pow]
    +n:62 [binder, in hydras.Ackermann.subProp]
    +n:62 [binder, in hydras.Prelude.Fuel]
    +n:62 [binder, in hydras.Ackermann.code]
    +n:62 [binder, in gaia_hydras.T1Bridge]
    +n:62 [binder, in hydras.Ackermann.codeList]
    +n:62 [binder, in hydras.Ackermann.Languages]
    +n:622 [binder, in hydras.Epsilon0.T1]
    +n:627 [binder, in hydras.Epsilon0.T1]
    +n:627 [binder, in gaia_hydras.nfwfgaia]
    +n:628 [binder, in hydras.Ackermann.primRec]
    +n:63 [binder, in Goedel.PRrepresentable]
    +n:63 [binder, in hydras.solutions_exercises.MultisetWf]
    +n:63 [binder, in hydras.Ackermann.folLogic3]
    +n:63 [binder, in Goedel.rosser]
    +n:63 [binder, in hydras.Schutte.Addition]
    +n:63 [binder, in hydras.Prelude.MoreVectors]
    +n:631 [binder, in hydras.Ackermann.primRec]
    +n:632 [binder, in hydras.Gamma0.Gamma0]
    +n:635 [binder, in hydras.Gamma0.Gamma0]
    +n:636 [binder, in hydras.Ackermann.primRec]
    +n:639 [binder, in hydras.Epsilon0.T1]
    +n:639 [binder, in hydras.Gamma0.Gamma0]
    +n:64 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +n:64 [binder, in hydras.MoreAck.Ack]
    +n:64 [binder, in hydras.Ackermann.Languages]
    +n:64 [binder, in hydras.Ackermann.expressible]
    +n:641 [binder, in hydras.Epsilon0.T1]
    +n:642 [binder, in hydras.Ackermann.primRec]
    +n:642 [binder, in hydras.Gamma0.Gamma0]
    +n:643 [binder, in hydras.Epsilon0.T1]
    +n:647 [binder, in hydras.Ackermann.primRec]
    +n:647 [binder, in hydras.Gamma0.Gamma0]
    +n:649 [binder, in hydras.Ackermann.checkPrf]
    +n:65 [binder, in hydras.Epsilon0.T1]
    +n:65 [binder, in hydras.Ackermann.subAll]
    +n:65 [binder, in hydras.rpo.more_list]
    +n:65 [binder, in additions.Pow_variant]
    +n:65 [binder, in additions.Pow]
    +n:65 [binder, in hydras.Schutte.Critical]
    +n:65 [binder, in hydras.solutions_exercises.MultisetWf]
    +n:65 [binder, in Goedel.rosserPA]
    +n:65 [binder, in hydras.Ackermann.codeList]
    +n:65 [binder, in hydras.rpo.list_permut]
    +n:651 [binder, in hydras.Gamma0.Gamma0]
    +n:652 [binder, in gaia_hydras.nfwfgaia]
    +n:653 [binder, in hydras.Ackermann.primRec]
    +n:654 [binder, in hydras.Gamma0.Gamma0]
    +n:658 [binder, in hydras.Epsilon0.T1]
    +n:659 [binder, in hydras.Gamma0.Gamma0]
    +n:66 [binder, in hydras.Schutte.Correctness_E0]
    +n:66 [binder, in hydras.Prelude.MoreLists]
    +n:66 [binder, in hydras.Epsilon0.Hessenberg]
    +n:66 [binder, in hydras.Schutte.Critical]
    +n:66 [binder, in additions.Euclidean_Chains]
    +n:66 [binder, in hydras.rpo.list_permut]
    +n:66 [binder, in hydras.Schutte.Addition]
    +n:660 [binder, in hydras.Ackermann.primRec]
    +n:664 [binder, in hydras.Gamma0.Gamma0]
    +n:667 [binder, in hydras.Ackermann.primRec]
    +n:667 [binder, in gaia_hydras.nfwfgaia]
    +n:668 [binder, in gaia_hydras.nfwfgaia]
    +n:67 [binder, in Goedel.PRrepresentable]
    +n:67 [binder, in hydras.Epsilon0.F_alpha]
    +n:67 [binder, in gaia_hydras.GPaths]
    +n:67 [binder, in hydras.MoreAck.Ack]
    +n:67 [binder, in gaia_hydras.T1Bridge]
    +n:67 [binder, in hydras.Ackermann.primRec]
    +n:67 [binder, in gaia_hydras.nfwfgaia]
    +n:67 [binder, in hydras.Hydra.Hydra_Definitions]
    +n:671 [binder, in hydras.Ackermann.primRec]
    +n:671 [binder, in gaia_hydras.nfwfgaia]
    +n:674 [binder, in hydras.Epsilon0.T1]
    +n:678 [binder, in hydras.Epsilon0.T1]
    +n:678 [binder, in hydras.Ackermann.primRec]
    +n:68 [binder, in hydras.Ackermann.subAll]
    +n:68 [binder, in additions.Pow_variant]
    +n:68 [binder, in additions.Pow]
    +n:68 [binder, in hydras.Ackermann.codeList]
    +n:68 [binder, in hydras.Schutte.Addition]
    +n:680 [binder, in hydras.Gamma0.Gamma0]
    +n:682 [binder, in hydras.Ackermann.primRec]
    +n:683 [binder, in hydras.Gamma0.Gamma0]
    +n:683 [binder, in gaia_hydras.nfwfgaia]
    +n:688 [binder, in hydras.Gamma0.Gamma0]
    +n:69 [binder, in additions.Addition_Chains]
    +n:69 [binder, in gaia_hydras.nfwfgaia]
    +n:69 [binder, in hydras.Ackermann.expressible]
    +n:691 [binder, in hydras.Gamma0.Gamma0]
    +n:7 [binder, in additions.Fib2]
    +n:7 [binder, in hydras.Ackermann.extEqualNat]
    +n:7 [binder, in hydras.Prelude.MoreLists]
    +n:7 [binder, in hydras.MoreAck.expressibleExamples]
    +n:7 [binder, in additions.Pow_variant]
    +n:7 [binder, in hydras.Ackermann.model]
    +n:7 [binder, in additions.Pow]
    +n:7 [binder, in additions.More_on_positive]
    +n:7 [binder, in hydras.solutions_exercises.MultisetWf]
    +n:7 [binder, in hydras.Prelude.Fuel]
    +n:7 [binder, in hydras.MoreAck.Ack]
    +n:7 [binder, in hydras.Ackermann.primRec]
    +n:7 [binder, in gaia_hydras.ON_gfinite]
    +n:7 [binder, in hydras.OrdinalNotations.ON_Finite]
    +n:7 [binder, in hydras.Prelude.Exp2]
    +n:7 [binder, in hydras.solutions_exercises.isqrt]
    +n:7 [binder, in hydras.Gamma0.Gamma0]
    +n:7 [binder, in hydras.Schutte.Addition]
    +n:70 [binder, in hydras.Prelude.Iterates]
    +n:70 [binder, in additions.Pow_variant]
    +n:70 [binder, in gaia_hydras.GPaths]
    +n:70 [binder, in additions.Pow]
    +n:70 [binder, in hydras.Ackermann.folProp]
    +n:70 [binder, in hydras.MoreAck.Ack]
    +n:70 [binder, in Goedel.rosserPA]
    +n:70 [binder, in hydras.Schutte.Addition]
    +n:702 [binder, in gaia_hydras.nfwfgaia]
    +n:704 [binder, in hydras.Ackermann.primRec]
    +n:706 [binder, in hydras.Ackermann.primRec]
    +n:708 [binder, in gaia_hydras.nfwfgaia]
    +n:71 [binder, in Goedel.PRrepresentable]
    +n:71 [binder, in hydras.Prelude.MoreLists]
    +n:71 [binder, in hydras.Ackermann.folProp]
    +n:71 [binder, in hydras.Schutte.Critical]
    +n:71 [binder, in hydras.Ackermann.codeList]
    +n:71 [binder, in gaia_hydras.nfwfgaia]
    +n:712 [binder, in hydras.Gamma0.Gamma0]
    +n:712 [binder, in gaia_hydras.nfwfgaia]
    +n:714 [binder, in hydras.Epsilon0.T1]
    +n:72 [binder, in hydras.Epsilon0.T1]
    +n:72 [binder, in hydras.Epsilon0.F_alpha]
    +n:72 [binder, in hydras.Ackermann.folProp]
    +n:72 [binder, in hydras.Schutte.Critical]
    +n:72 [binder, in hydras.MoreAck.Ack]
    +n:72 [binder, in hydras.Hydra.BigBattle]
    +n:72 [binder, in hydras.rpo.list_permut]
    +n:720 [binder, in hydras.Epsilon0.T1]
    +n:723 [binder, in hydras.Epsilon0.T1]
    +n:724 [binder, in gaia_hydras.nfwfgaia]
    +n:73 [binder, in additions.Pow]
    +n:73 [binder, in hydras.Epsilon0.Hessenberg]
    +n:73 [binder, in gaia_hydras.T1Bridge]
    +n:73 [binder, in hydras.Ackermann.primRec]
    +n:73 [binder, in hydras.Hydra.BigBattle]
    +n:73 [binder, in hydras.Ackermann.codeList]
    +n:73 [binder, in hydras.rpo.list_permut]
    +n:73 [binder, in hydras.Schutte.Addition]
    +n:736 [binder, in gaia_hydras.nfwfgaia]
    +n:74 [binder, in hydras.Prelude.Iterates]
    +n:74 [binder, in hydras.Prelude.MoreLists]
    +n:74 [binder, in hydras.Epsilon0.F_alpha]
    +n:74 [binder, in additions.Pow_variant]
    +n:74 [binder, in hydras.Ackermann.model]
    +n:74 [binder, in hydras.MoreAck.Ack]
    +n:74 [binder, in gaia_hydras.nfwfgaia]
    +n:748 [binder, in gaia_hydras.nfwfgaia]
    +n:75 [binder, in hydras.rpo.more_list]
    +n:75 [binder, in hydras.Ackermann.LNN2LNT]
    +n:75 [binder, in hydras.Ackermann.subProp]
    +n:75 [binder, in hydras.solutions_exercises.MultisetWf]
    +n:75 [binder, in hydras.Ackermann.primRec]
    +n:75 [binder, in hydras.Hydra.BigBattle]
    +n:75 [binder, in hydras.Ackermann.codeList]
    +n:75 [binder, in hydras.Epsilon0.Hprime]
    +n:75 [binder, in gaia_hydras.nfwfgaia]
    +n:750 [binder, in gaia_hydras.nfwfgaia]
    +n:753 [binder, in gaia_hydras.nfwfgaia]
    +n:755 [binder, in gaia_hydras.nfwfgaia]
    +n:756 [binder, in hydras.Epsilon0.T1]
    +n:757 [binder, in gaia_hydras.nfwfgaia]
    +n:759 [binder, in gaia_hydras.nfwfgaia]
    +n:76 [binder, in hydras.Ackermann.subAll]
    +n:76 [binder, in hydras.Prelude.MoreLists]
    +n:76 [binder, in hydras.MoreAck.AckNotPR]
    +n:76 [binder, in hydras.MoreAck.Ack]
    +n:76 [binder, in Goedel.codeSysPrf]
    +n:76 [binder, in gaia_hydras.nfwfgaia]
    +n:76 [binder, in hydras.Hydra.Hydra_Definitions]
    +n:764 [binder, in gaia_hydras.nfwfgaia]
    +n:767 [binder, in gaia_hydras.nfwfgaia]
    +n:769 [binder, in gaia_hydras.nfwfgaia]
    +n:77 [binder, in hydras.Gamma0.T2]
    +n:77 [binder, in gaia_hydras.GPaths]
    +n:77 [binder, in hydras.Ackermann.model]
    +n:77 [binder, in additions.Pow]
    +n:77 [binder, in hydras.Ackermann.codeList]
    +n:77 [binder, in hydras.Epsilon0.Hprime]
    +n:78 [binder, in hydras.Epsilon0.T1]
    +n:78 [binder, in Goedel.PRrepresentable]
    +n:78 [binder, in hydras.Prelude.Iterates]
    +n:78 [binder, in hydras.Ackermann.codeSubFormula]
    +n:78 [binder, in gaia_hydras.nfwfgaia]
    +n:780 [binder, in gaia_hydras.nfwfgaia]
    +n:784 [binder, in gaia_hydras.nfwfgaia]
    +n:787 [binder, in gaia_hydras.nfwfgaia]
    +n:79 [binder, in additions.AM]
    +n:79 [binder, in hydras.Prelude.MoreLists]
    +n:79 [binder, in hydras.MoreAck.Ack]
    +n:79 [binder, in gaia_hydras.T1Bridge]
    +n:79 [binder, in hydras.Ackermann.codeList]
    +n:79 [binder, in gaia_hydras.nfwfgaia]
    +n:795 [binder, in gaia_hydras.nfwfgaia]
    +n:796 [binder, in hydras.Ackermann.checkPrf]
    +n:8 [binder, in hydras.Epsilon0.T1]
    +n:8 [binder, in hydras.MoreAck.expressibleExamples]
    +n:8 [binder, in hydras.solutions_exercises.FibonacciPR]
    +n:8 [binder, in hydras.Hydra.BigBattle]
    +n:8 [binder, in additions.Naive]
    +n:8 [binder, in hydras.Ackermann.codeList]
    +n:80 [binder, in hydras.Gamma0.T2]
    +n:80 [binder, in hydras.Epsilon0.F_alpha]
    +n:80 [binder, in hydras.MoreAck.AckNotPR]
    +n:80 [binder, in hydras.Ackermann.subProp]
    +n:80 [binder, in hydras.MoreAck.Ack]
    +n:802 [binder, in hydras.Ackermann.checkPrf]
    +n:802 [binder, in gaia_hydras.nfwfgaia]
    +n:806 [binder, in hydras.Ackermann.checkPrf]
    +n:806 [binder, in gaia_hydras.nfwfgaia]
    +n:81 [binder, in hydras.Hydra.O2H]
    +n:81 [binder, in hydras.Ackermann.LNN2LNT]
    +n:81 [binder, in additions.Pow_variant]
    +n:81 [binder, in hydras.Ackermann.model]
    +n:81 [binder, in hydras.Ackermann.codeList]
    +n:81 [binder, in hydras.Epsilon0.Hprime]
    +n:81 [binder, in gaia_hydras.nfwfgaia]
    +n:81 [binder, in hydras.Prelude.MoreVectors]
    +n:810 [binder, in hydras.Ackermann.checkPrf]
    +n:817 [binder, in hydras.Ackermann.primRec]
    +n:818 [binder, in hydras.Ackermann.primRec]
    +n:82 [binder, in Goedel.PRrepresentable]
    +n:82 [binder, in hydras.Epsilon0.F_alpha]
    +n:82 [binder, in hydras.Ackermann.folProp]
    +n:82 [binder, in gaia_hydras.T1Bridge]
    +n:82 [binder, in gaia_hydras.nfwfgaia]
    +n:821 [binder, in hydras.Ackermann.primRec]
    +n:825 [binder, in hydras.Ackermann.codeSubFormula]
    +n:829 [binder, in hydras.Ackermann.codeSubFormula]
    +n:83 [binder, in hydras.Epsilon0.T1]
    +n:83 [binder, in additions.Pow_variant]
    +n:83 [binder, in additions.Pow]
    +n:83 [binder, in hydras.Ackermann.folProp]
    +n:83 [binder, in hydras.MoreAck.Ack]
    +n:83 [binder, in hydras.Ackermann.codeList]
    +n:83 [binder, in gaia_hydras.nfwfgaia]
    +n:834 [binder, in gaia_hydras.nfwfgaia]
    +n:836 [binder, in hydras.Ackermann.codeSubFormula]
    +n:839 [binder, in hydras.Ackermann.codeSubFormula]
    +n:84 [binder, in hydras.Epsilon0.F_alpha]
    +n:84 [binder, in hydras.MoreAck.Ack]
    +n:84 [binder, in hydras.Epsilon0.Canon]
    +n:844 [binder, in hydras.Ackermann.checkPrf]
    +n:844 [binder, in gaia_hydras.nfwfgaia]
    +n:85 [binder, in hydras.Ackermann.subAll]
    +n:85 [binder, in hydras.Prelude.Iterates]
    +n:85 [binder, in additions.Pow_variant]
    +n:85 [binder, in additions.Pow]
    +n:85 [binder, in hydras.MoreAck.AckNotPR]
    +n:85 [binder, in hydras.Ackermann.subProp]
    +n:85 [binder, in Goedel.rosserPA]
    +n:85 [binder, in hydras.Ackermann.primRec]
    +n:85 [binder, in hydras.Ackermann.codeList]
    +n:85 [binder, in gaia_hydras.nfwfgaia]
    +n:858 [binder, in hydras.Ackermann.checkPrf]
    +n:86 [binder, in Goedel.PRrepresentable]
    +n:86 [binder, in hydras.Prelude.MoreLists]
    +n:86 [binder, in hydras.Epsilon0.F_alpha]
    +n:86 [binder, in hydras.Prelude.MoreVectors]
    +n:862 [binder, in gaia_hydras.nfwfgaia]
    +n:863 [binder, in hydras.Ackermann.checkPrf]
    +n:867 [binder, in hydras.Ackermann.codeSubFormula]
    +n:867 [binder, in gaia_hydras.nfwfgaia]
    +n:87 [binder, in hydras.Hydra.O2H]
    +n:87 [binder, in hydras.Ackermann.LNN2LNT]
    +n:87 [binder, in additions.Pow_variant]
    +n:87 [binder, in Goedel.rosserPA]
    +n:87 [binder, in hydras.Ackermann.codeList]
    +n:870 [binder, in hydras.Ackermann.codeSubFormula]
    +n:873 [binder, in hydras.Ackermann.codeSubFormula]
    +n:877 [binder, in hydras.Ackermann.codeSubFormula]
    +n:88 [binder, in hydras.Epsilon0.T1]
    +n:88 [binder, in hydras.Ackermann.codeList]
    +n:88 [binder, in gaia_hydras.nfwfgaia]
    +n:881 [binder, in hydras.Ackermann.codeSubFormula]
    +n:89 [binder, in hydras.Gamma0.T2]
    +n:89 [binder, in hydras.Ackermann.subAll]
    +n:89 [binder, in hydras.Ackermann.codeList]
    +n:89 [binder, in gaia_hydras.nfwfgaia]
    +n:891 [binder, in hydras.Ackermann.codeSubFormula]
    +n:891 [binder, in gaia_hydras.nfwfgaia]
    +n:894 [binder, in hydras.Ackermann.codeSubFormula]
    +n:9 [binder, in hydras.Ackermann.folProof]
    +n:9 [binder, in hydras.Schutte.Correctness_E0]
    +n:9 [binder, in hydras.Gamma0.T2]
    +n:9 [binder, in hydras.Prelude.More_Arith]
    +n:9 [binder, in hydras.Prelude.Iterates]
    +n:9 [binder, in hydras.Prelude.Compat815]
    +n:9 [binder, in hydras.Ackermann.LNN2LNT]
    +n:9 [binder, in Goedel.fixPoint]
    +n:9 [binder, in hydras.Epsilon0.Hessenberg]
    +n:9 [binder, in additions.More_on_positive]
    +n:9 [binder, in hydras.MoreAck.AckNotPR]
    +n:9 [binder, in hydras.Ackermann.codeSubFormula]
    +n:9 [binder, in hydras.Prelude.Fuel]
    +n:9 [binder, in hydras.solutions_exercises.MorePRExamples]
    +n:9 [binder, in hydras.Hydra.Hydra_Termination]
    +n:9 [binder, in hydras.Hydra.BigBattle]
    +n:9 [binder, in hydras.Ackermann.wellFormed]
    +n:9 [binder, in hydras.Epsilon0.Canon]
    +n:9 [binder, in additions.fib]
    +n:9 [binder, in hydras.solutions_exercises.F_3]
    +n:9 [binder, in gaia_hydras.nfwfgaia]
    +n:9 [binder, in hydras.Schutte.Countable]
    +n:90 [binder, in Goedel.PRrepresentable]
    +n:90 [binder, in hydras.Epsilon0.F_alpha]
    +n:90 [binder, in additions.Pow]
    +n:90 [binder, in hydras.MoreAck.AckNotPR]
    +n:90 [binder, in hydras.Ackermann.primRec]
    +n:90 [binder, in hydras.Ackermann.folLogic3]
    +n:90 [binder, in hydras.Prelude.MoreVectors]
    +n:904 [binder, in gaia_hydras.nfwfgaia]
    +n:907 [binder, in hydras.Ackermann.codeSubFormula]
    +n:91 [binder, in Goedel.rosserPA]
    +n:91 [binder, in hydras.Epsilon0.E0]
    +n:91 [binder, in hydras.Ackermann.codeList]
    +n:91 [binder, in hydras.Hydra.Hydra_Definitions]
    +n:910 [binder, in hydras.Ackermann.codeSubFormula]
    +n:912 [binder, in gaia_hydras.nfwfgaia]
    +n:913 [binder, in hydras.Ackermann.codeSubFormula]
    +n:918 [binder, in hydras.Ackermann.codeSubFormula]
    +n:92 [binder, in hydras.Gamma0.T2]
    +n:92 [binder, in hydras.Epsilon0.F_alpha]
    +n:92 [binder, in hydras.MoreAck.AckNotPR]
    +n:92 [binder, in hydras.Ackermann.fol]
    +n:92 [binder, in hydras.Ackermann.folLogic3]
    +n:92 [binder, in Goedel.codeSysPrf]
    +n:923 [binder, in hydras.Ackermann.codeSubFormula]
    +n:93 [binder, in hydras.Epsilon0.T1]
    +n:93 [binder, in hydras.Ackermann.LNN2LNT]
    +n:93 [binder, in additions.Pow]
    +n:93 [binder, in hydras.Ackermann.codeList]
    +n:93 [binder, in hydras.Prelude.MoreVectors]
    +n:934 [binder, in hydras.Ackermann.codeSubFormula]
    +n:936 [binder, in gaia_hydras.nfwfgaia]
    +n:937 [binder, in hydras.Ackermann.codeSubFormula]
    +n:94 [binder, in Goedel.PRrepresentable]
    +n:94 [binder, in hydras.MoreAck.AckNotPR]
    +n:94 [binder, in hydras.Ackermann.primRec]
    +n:941 [binder, in gaia_hydras.nfwfgaia]
    +n:946 [binder, in gaia_hydras.nfwfgaia]
    +n:95 [binder, in hydras.Ackermann.subAll]
    +n:95 [binder, in hydras.Ackermann.fol]
    +n:95 [binder, in hydras.Ackermann.codeList]
    +n:95 [binder, in hydras.MoreAck.PrimRecExamples]
    +n:950 [binder, in gaia_hydras.nfwfgaia]
    +n:952 [binder, in gaia_hydras.nfwfgaia]
    +n:96 [binder, in additions.Pow]
    +n:96 [binder, in Goedel.rosserPA]
    +n:96 [binder, in hydras.Ackermann.folLogic3]
    +n:96 [binder, in hydras.Hydra.Hydra_Definitions]
    +n:967 [binder, in gaia_hydras.nfwfgaia]
    +n:969 [binder, in gaia_hydras.nfwfgaia]
    +n:97 [binder, in hydras.Prelude.MoreLists]
    +n:97 [binder, in hydras.Epsilon0.F_alpha]
    +n:97 [binder, in additions.Pow_variant]
    +n:97 [binder, in hydras.MoreAck.AckNotPR]
    +n:97 [binder, in hydras.Ackermann.subProp]
    +n:97 [binder, in hydras.Ackermann.primRec]
    +n:97 [binder, in hydras.Ackermann.codeList]
    +n:97 [binder, in gaia_hydras.nfwfgaia]
    +n:971 [binder, in gaia_hydras.nfwfgaia]
    +n:975 [binder, in gaia_hydras.nfwfgaia]
    +n:979 [binder, in gaia_hydras.nfwfgaia]
    +n:98 [binder, in hydras.Epsilon0.T1]
    +n:98 [binder, in hydras.Gamma0.T2]
    +n:98 [binder, in hydras.Ackermann.codeList]
    +n:98 [binder, in hydras.Epsilon0.Hprime]
    +n:985 [binder, in gaia_hydras.nfwfgaia]
    +n:987 [binder, in gaia_hydras.nfwfgaia]
    +n:99 [binder, in hydras.Epsilon0.F_alpha]
    +n:99 [binder, in hydras.Ackermann.subProp]
    +n:99 [binder, in hydras.Ackermann.codeList]
    +n:99 [binder, in hydras.Prelude.MoreVectors]
    +

    O

    +OA_given [section, in hydras.OrdinalNotations.ON_O]
    +OA:109 [binder, in hydras.OrdinalNotations.ON_Generic]
    +OA:124 [binder, in hydras.OrdinalNotations.ON_Generic]
    +OA:136 [binder, in hydras.OrdinalNotations.ON_Generic]
    +OA:149 [binder, in hydras.OrdinalNotations.ON_Generic]
    +OA:162 [binder, in hydras.OrdinalNotations.ON_Generic]
    +OA:174 [binder, in hydras.OrdinalNotations.ON_Generic]
    +OA:187 [binder, in hydras.OrdinalNotations.ON_Generic]
    +OA:201 [binder, in hydras.OrdinalNotations.ON_Generic]
    +OA:32 [binder, in hydras.OrdinalNotations.ON_Generic]
    +OA:5 [binder, in hydras.OrdinalNotations.ON_O]
    +OA:51 [binder, in hydras.OrdinalNotations.ON_Generic]
    +OA:70 [binder, in hydras.OrdinalNotations.ON_Generic]
    +OA:84 [binder, in hydras.OrdinalNotations.ON_Generic]
    +OA:96 [binder, in hydras.OrdinalNotations.ON_Generic]
    +OB:100 [binder, in hydras.OrdinalNotations.ON_Generic]
    +OB:113 [binder, in hydras.OrdinalNotations.ON_Generic]
    +OB:128 [binder, in hydras.OrdinalNotations.ON_Generic]
    +OB:140 [binder, in hydras.OrdinalNotations.ON_Generic]
    +OB:153 [binder, in hydras.OrdinalNotations.ON_Generic]
    +OB:166 [binder, in hydras.OrdinalNotations.ON_Generic]
    +OB:178 [binder, in hydras.OrdinalNotations.ON_Generic]
    +OB:191 [binder, in hydras.OrdinalNotations.ON_Generic]
    +OB:205 [binder, in hydras.OrdinalNotations.ON_Generic]
    +OB:36 [binder, in hydras.OrdinalNotations.ON_Generic]
    +OB:55 [binder, in hydras.OrdinalNotations.ON_Generic]
    +OB:88 [binder, in hydras.OrdinalNotations.ON_Generic]
    +of_image [lemma, in hydras.Schutte.Ordering_Functions]
    +of_beta' [lemma, in hydras.Schutte.Ordering_Functions]
    +OF_mono [projection, in hydras.Schutte.Ordering_Functions]
    +OF_onto [projection, in hydras.Schutte.Ordering_Functions]
    +OF_total [projection, in hydras.Schutte.Ordering_Functions]
    +OF_segment [projection, in hydras.Schutte.Ordering_Functions]
    +of_u [lemma, in hydras.Schutte.Addition]
    +of_g [lemma, in hydras.Schutte.Addition]
    +OK [definition, in additions.AM]
    +Ok [constructor, in hydras.Epsilon0.Large_Sets_Examples]
    +OK [definition, in additions.Euclidean_Chains]
    +OK87 [lemma, in additions.Euclidean_Chains]
    +Olt [instance, in hydras.Epsilon0.F_alpha]
    +Olt [instance, in hydras.Epsilon0.L_alpha]
    +Olt [instance, in hydras.Epsilon0.Hprime]
    +ol'':40 [binder, in hydras.Schutte.CNF]
    +ol'':45 [binder, in hydras.Schutte.CNF]
    +ol':30 [binder, in hydras.Schutte.CNF]
    +ol':34 [binder, in hydras.Schutte.CNF]
    +ol':37 [binder, in hydras.Schutte.CNF]
    +ol':39 [binder, in hydras.Schutte.CNF]
    +ol':43 [binder, in hydras.Schutte.CNF]
    +ol:29 [binder, in hydras.Schutte.CNF]
    +ol:33 [binder, in hydras.Schutte.CNF]
    +ol:35 [binder, in hydras.Schutte.CNF]
    +ol:38 [binder, in hydras.Schutte.CNF]
    +ol:41 [binder, in hydras.Schutte.CNF]
    +omega [abbreviation, in hydras.Epsilon0.T1]
    +omega [abbreviation, in hydras.OrdinalNotations.ON_Omega2]
    +omega [abbreviation, in hydras.Gamma0.T2]
    +omega [abbreviation, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +omega [abbreviation, in hydras.Schutte.Schutte_basics]
    +Omega [instance, in hydras.OrdinalNotations.ON_Omega]
    +omeganf [lemma, in gaia_hydras.T1Bridge]
    +OmegaOmega [library]
    +omega_limit [lemma, in hydras.Epsilon0.T1]
    +omega_omega [definition, in hydras.Epsilon0.T1]
    +omega_term_def [lemma, in hydras.Epsilon0.T1]
    +omega_term_plus_rw [lemma, in hydras.Epsilon0.T1]
    +omega_tower [definition, in hydras.Epsilon0.T1]
    +omega_term [definition, in hydras.Epsilon0.T1]
    +omega_ap [lemma, in hydras.OrdinalNotations.ON_Omega2]
    +Omega_limit_limitb [lemma, in hydras.OrdinalNotations.ON_Omega2]
    +omega_is_limit [lemma, in hydras.OrdinalNotations.ON_Omega2]
    +omega_ex2 [definition, in hydras.Epsilon0.Large_Sets]
    +omega_ex1 [definition, in hydras.Epsilon0.Large_Sets]
    +omega_square_thrice_eqn [definition, in hydras.Epsilon0.Large_Sets]
    +omega_mult_mlarge_0 [lemma, in hydras.Epsilon0.Large_Sets]
    +omega_tower_mono [lemma, in hydras.Schutte.AP]
    +omega_eqn [lemma, in hydras.Schutte.AP]
    +omega_second_AP [lemma, in hydras.Schutte.AP]
    +omega_tower [definition, in hydras.Schutte.AP]
    +Omega_as_lub [lemma, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +omega_not_succ [lemma, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +omega_is_limit [lemma, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +Omega_plus_Omega [instance, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +omega_omega_1_3 [definition, in hydras.Epsilon0.Large_Sets_Examples]
    +omega_omega_1_4 [definition, in hydras.Epsilon0.Large_Sets_Examples]
    +omega_ref [lemma, in gaia_hydras.T1Bridge]
    +Omega_limit_Limit [lemma, in hydras.Prelude.MoreOrders]
    +Omega_limit_not_Succ [lemma, in hydras.Prelude.MoreOrders]
    +Omega_limit_type [definition, in hydras.Prelude.MoreOrders]
    +Omega_limit [definition, in hydras.Prelude.MoreOrders]
    +omega_limit_least_gt [lemma, in hydras.Schutte.Schutte_basics]
    +omega_limit_least [lemma, in hydras.Schutte.Schutte_basics]
    +omega_limit [definition, in hydras.Schutte.Schutte_basics]
    +Omega_term_plus [lemma, in hydras.Epsilon0.E0]
    +Omega_2 [instance, in hydras.Epsilon0.E0]
    +Omega_term [instance, in hydras.Epsilon0.E0]
    +omega_lt_wf [lemma, in gaia_hydras.onType]
    +omega_ok [instance, in hydras.OrdinalNotations.ON_Omega]
    +Omega_comp [instance, in hydras.OrdinalNotations.ON_Omega]
    +omega_lt_epsilon [lemma, in hydras.Gamma0.Gamma0]
    +omega_lt_epsilon0 [lemma, in hydras.Gamma0.Gamma0]
    +Omega_Small [library]
    +Omega2 [instance, in hydras.OrdinalNotations.ON_Omega2]
    +Omega2_Small [library]
    +om12 [definition, in gaia_hydras.onType]
    +om67 [definition, in gaia_hydras.onType]
    +ON [record, in hydras.OrdinalNotations.ON_Generic]
    +OnCodeList [library]
    +ONDef [module, in gaia_hydras.onType]
    +ONDef.Exports [module, in gaia_hydras.onType]
    +ONDef.Exports.Lemmas [section, in gaia_hydras.onType]
    +ONDef.Exports.Lemmas.disp [variable, in gaia_hydras.onType]
    +ONDef.Exports.Lemmas.U [variable, in gaia_hydras.onType]
    +ONDef.Exports.ON [abbreviation, in gaia_hydras.onType]
    +ONDef.Exports.on [abbreviation, in gaia_hydras.onType]
    +ONDef.Exports.ONMixin [abbreviation, in gaia_hydras.onType]
    +ONDef.Exports.tricho [definition, in gaia_hydras.onType]
    +ONDef.Exports.trichoP [lemma, in gaia_hydras.onType]
    +ONDef.Exports.wf [lemma, in gaia_hydras.onType]
    +ONDef.Mixin [constructor, in gaia_hydras.onType]
    +ONDef.mixin_of [record, in gaia_hydras.onType]
    +ONDef.on_struct [definition, in gaia_hydras.onType]
    +ONDef.Pack [constructor, in gaia_hydras.onType]
    +ONDef.Packing [section, in gaia_hydras.onType]
    +ONDef.Packing.cT [variable, in gaia_hydras.onType]
    +ONDef.Packing.disp [variable, in gaia_hydras.onType]
    +ONDef.pack_type [record, in gaia_hydras.onType]
    +ONDef.type [projection, in gaia_hydras.onType]
    +one [abbreviation, in hydras.Epsilon0.T1]
    +one [abbreviation, in hydras.Gamma0.T2]
    +ONEpsilon0Def [section, in gaia_hydras.onType]
    +one_ref [lemma, in gaia_hydras.T1Bridge]
    +one_right [projection, in additions.Monoid_def]
    +one_left [projection, in additions.Monoid_def]
    +one_step [inductive, in hydras.Hydra.BigBattle]
    +one_mod_neutral_r [lemma, in additions.Monoid_instances]
    +one_mod_neutral_l [lemma, in additions.Monoid_instances]
    +One_node [constructor, in additions.Addition_Chains]
    +one_plus_infinite [lemma, in hydras.Schutte.Addition]
    +one_plus_omega [lemma, in hydras.Schutte.Addition]
    +one:100 [binder, in additions.AM]
    +one:103 [binder, in additions.Addition_Chains]
    +one:105 [binder, in additions.AM]
    +one:110 [binder, in additions.AM]
    +one:111 [binder, in additions.Addition_Chains]
    +one:117 [binder, in additions.Addition_Chains]
    +one:120 [binder, in additions.AM]
    +one:124 [binder, in additions.Addition_Chains]
    +one:125 [binder, in additions.AM]
    +one:131 [binder, in additions.Addition_Chains]
    +one:161 [binder, in additions.Addition_Chains]
    +one:168 [binder, in additions.Addition_Chains]
    +one:174 [binder, in additions.Addition_Chains]
    +one:36 [binder, in additions.FirstSteps]
    +one:37 [binder, in additions.AM]
    +one:42 [binder, in additions.FirstSteps]
    +one:43 [binder, in additions.AM]
    +one:54 [binder, in additions.AM]
    +one:59 [binder, in additions.Monoid_def]
    +one:61 [binder, in additions.AM]
    +one:63 [binder, in additions.Monoid_def]
    +one:74 [binder, in additions.AM]
    +one:8 [binder, in additions.Monoid_def]
    +one:84 [binder, in additions.AM]
    +one:95 [binder, in additions.AM]
    +onFiniteDef [section, in gaia_hydras.onType]
    +onFiniteDef.i [variable, in gaia_hydras.onType]
    +onFiniteMixin [definition, in gaia_hydras.onType]
    +onFiniteType [definition, in gaia_hydras.onType]
    +onOmegaDef [section, in gaia_hydras.onType]
    +onOmegaMixin [definition, in gaia_hydras.onType]
    +onOmegaType [definition, in gaia_hydras.onType]
    +onType [library]
    +on_length [section, in hydras.Gamma0.T2]
    +On_alpha.S2.H [variable, in hydras.solutions_exercises.Limit_Infinity]
    +On_alpha.S2 [section, in hydras.solutions_exercises.Limit_Infinity]
    +On_alpha.S1.Hbeta [variable, in hydras.solutions_exercises.Limit_Infinity]
    +On_alpha.S1.beta [variable, in hydras.solutions_exercises.Limit_Infinity]
    +On_alpha.S1.H [variable, in hydras.solutions_exercises.Limit_Infinity]
    +On_alpha.S1 [section, in hydras.solutions_exercises.Limit_Infinity]
    +On_alpha.HnonZero [variable, in hydras.solutions_exercises.Limit_Infinity]
    +On_alpha.Halpha [variable, in hydras.solutions_exercises.Limit_Infinity]
    +On_alpha.alpha [variable, in hydras.solutions_exercises.Limit_Infinity]
    +On_alpha [section, in hydras.solutions_exercises.Limit_Infinity]
    +ON_O [instance, in hydras.OrdinalNotations.ON_O]
    +ON_O_comp [instance, in hydras.OrdinalNotations.ON_O]
    +On_Iota.unique_P [variable, in hydras.Schutte.MoreEpsilonIota]
    +On_Iota.inhA [variable, in hydras.Schutte.MoreEpsilonIota]
    +On_Iota.P [variable, in hydras.Schutte.MoreEpsilonIota]
    +On_Iota.A [variable, in hydras.Schutte.MoreEpsilonIota]
    +On_Iota [section, in hydras.Schutte.MoreEpsilonIota]
    +ON_mult [instance, in hydras.OrdinalNotations.ON_mult]
    +ON_plus [instance, in hydras.OrdinalNotations.ON_plus]
    +ON_op_ok [definition, in hydras.OrdinalNotations.ON_Generic]
    +ON_fun_ok [definition, in hydras.OrdinalNotations.ON_Generic]
    +ON_cst_ok [definition, in hydras.OrdinalNotations.ON_Generic]
    +On_compare_spec [projection, in hydras.OrdinalNotations.ON_Generic]
    +ON_correct_onto [projection, in hydras.OrdinalNotations.ON_Generic]
    +ON_correct_inj [projection, in hydras.OrdinalNotations.ON_Generic]
    +ON_correct [record, in hydras.OrdinalNotations.ON_Generic]
    +ON_Iso [record, in hydras.OrdinalNotations.ON_Generic]
    +ON_le [definition, in hydras.OrdinalNotations.ON_Generic]
    +ON_lt [definition, in hydras.OrdinalNotations.ON_Generic]
    +ON_compare [definition, in hydras.OrdinalNotations.ON_Generic]
    +ON_t [definition, in hydras.OrdinalNotations.ON_Generic]
    +ON_wf [projection, in hydras.OrdinalNotations.ON_Generic]
    +ON_comp [projection, in hydras.OrdinalNotations.ON_Generic]
    +ON_Generic [library]
    +ON_mult [library]
    +ON_Finite [library]
    +ON_Omega_plus_omega [library]
    +ON_Omega [library]
    +ON_Omega2 [library]
    +ON_plus [library]
    +ON_gfinite [library]
    +ON_O [library]
    +on:10 [binder, in hydras.OrdinalNotations.ON_Generic]
    +on:14 [binder, in hydras.OrdinalNotations.ON_Generic]
    +On:4 [binder, in hydras.solutions_exercises.lt_succ_le]
    +On:5 [binder, in hydras.solutions_exercises.predSuccUnicity]
    +OO [module, in hydras.OrdinalNotations.OmegaOmega]
    +OO.compare_OO [instance, in hydras.OrdinalNotations.OmegaOmega]
    +OO.data [projection, in hydras.OrdinalNotations.OmegaOmega]
    +OO.data_ok [projection, in hydras.OrdinalNotations.OmegaOmega]
    +OO.embed [instance, in hydras.OrdinalNotations.OmegaOmega]
    +OO.Fin [instance, in hydras.OrdinalNotations.OmegaOmega]
    +OO.le [definition, in hydras.OrdinalNotations.OmegaOmega]
    +OO.lt [definition, in hydras.OrdinalNotations.OmegaOmega]
    +OO.lt_wf [lemma, in hydras.OrdinalNotations.OmegaOmega]
    +OO.lt_embed [lemma, in hydras.OrdinalNotations.OmegaOmega]
    +OO.mkord [constructor, in hydras.OrdinalNotations.OmegaOmega]
    +OO.mult [instance, in hydras.OrdinalNotations.OmegaOmega]
    +OO.nf_proof_unicity [lemma, in hydras.OrdinalNotations.OmegaOmega]
    +OO.omega [abbreviation, in hydras.OrdinalNotations.OmegaOmega]
    +OO.ON_OO [instance, in hydras.OrdinalNotations.OmegaOmega]
    +OO.OO [record, in hydras.OrdinalNotations.OmegaOmega]
    +OO.OO_comp [instance, in hydras.OrdinalNotations.OmegaOmega]
    +OO.OO_eq_intro [lemma, in hydras.OrdinalNotations.OmegaOmega]
    +OO.oo_str [instance, in hydras.OrdinalNotations.OmegaOmega]
    +OO.phi0 [instance, in hydras.OrdinalNotations.OmegaOmega]
    +OO.plus [instance, in hydras.OrdinalNotations.OmegaOmega]
    +OO.Succ [instance, in hydras.OrdinalNotations.OmegaOmega]
    +OO.Zero [instance, in hydras.OrdinalNotations.OmegaOmega]
    +OO._Omega [instance, in hydras.OrdinalNotations.OmegaOmega]
    +_ * _ (OO_scope) [notation, in hydras.OrdinalNotations.OmegaOmega]
    +omega^ (OO_scope) [notation, in hydras.OrdinalNotations.OmegaOmega]
    +_ * _ (OO_scope) [notation, in hydras.OrdinalNotations.OmegaOmega]
    +_ + _ (OO_scope) [notation, in hydras.OrdinalNotations.OmegaOmega]
    +OpaqueWf [module, in hydras.Prelude.Fuel]
    +OpaqueWf.lt_wf [lemma, in hydras.Prelude.Fuel]
    +opA:194 [binder, in hydras.OrdinalNotations.ON_Generic]
    +opB:195 [binder, in hydras.OrdinalNotations.ON_Generic]
    +open [definition, in hydras.Ackermann.PA]
    +openClosed [lemma, in hydras.Ackermann.folLogic]
    +oplus [definition, in hydras.Epsilon0.Hessenberg]
    +Oplus [instance, in hydras.Epsilon0.E0]
    +oplus [definition, in gaia_hydras.GHessenberg]
    +oplusA [lemma, in gaia_hydras.GHessenberg]
    +oplusa0 [lemma, in gaia_hydras.GHessenberg]
    +oplusC [lemma, in gaia_hydras.GHessenberg]
    +oplusE [lemma, in gaia_hydras.GHessenberg]
    +oplus_lt_phi0 [lemma, in hydras.Epsilon0.Hessenberg]
    +oplus_of_phi0 [lemma, in hydras.Epsilon0.Hessenberg]
    +oplus_of_phi0_0 [lemma, in hydras.Epsilon0.Hessenberg]
    +oplus_strict_mono_bi [lemma, in hydras.Epsilon0.Hessenberg]
    +oplus_strict_mono_LT_r [lemma, in hydras.Epsilon0.Hessenberg]
    +oplus_strict_mono_LT_l [lemma, in hydras.Epsilon0.Hessenberg]
    +oplus_strict_mono_l [lemma, in hydras.Epsilon0.Hessenberg]
    +oplus_strict_mono_r [lemma, in hydras.Epsilon0.Hessenberg]
    +oplus_strict_mono_0 [lemma, in hydras.Epsilon0.Hessenberg]
    +oplus_le2 [lemma, in hydras.Epsilon0.Hessenberg]
    +oplus_le1 [lemma, in hydras.Epsilon0.Hessenberg]
    +oplus_lt2 [lemma, in hydras.Epsilon0.Hessenberg]
    +oplus_lt1 [lemma, in hydras.Epsilon0.Hessenberg]
    +oplus_lt_0 [lemma, in hydras.Epsilon0.Hessenberg]
    +oplus_assoc [lemma, in hydras.Epsilon0.Hessenberg]
    +oplus_assoc_0 [lemma, in hydras.Epsilon0.Hessenberg]
    +oplus_lt_rw2 [lemma, in hydras.Epsilon0.Hessenberg]
    +oplus_comm [lemma, in hydras.Epsilon0.Hessenberg]
    +oplus_comm_0 [lemma, in hydras.Epsilon0.Hessenberg]
    +oplus_nf [lemma, in hydras.Epsilon0.Hessenberg]
    +oplus_nf_0 [lemma, in hydras.Epsilon0.Hessenberg]
    +oplus_bounded_phi0 [lemma, in hydras.Epsilon0.Hessenberg]
    +oplus_cons_cons [lemma, in hydras.Epsilon0.Hessenberg]
    +oplus_eqn [lemma, in hydras.Epsilon0.Hessenberg]
    +oplus_compare_Gt [lemma, in hydras.Epsilon0.Hessenberg]
    +oplus_gt_rw [lemma, in hydras.Epsilon0.Hessenberg]
    +oplus_eq_rw [lemma, in hydras.Epsilon0.Hessenberg]
    +oplus_lt_rw [lemma, in hydras.Epsilon0.Hessenberg]
    +oplus_compare_Lt [lemma, in hydras.Epsilon0.Hessenberg]
    +oplus_0_l [lemma, in hydras.Epsilon0.Hessenberg]
    +oplus_0_r [lemma, in hydras.Epsilon0.Hessenberg]
    +oplus_aux:8 [binder, in hydras.Epsilon0.Hessenberg]
    +oPlus_rw [lemma, in hydras.Epsilon0.E0]
    +Oplus_assoc [instance, in hydras.Epsilon0.E0]
    +oplus_lt_phi0 [lemma, in gaia_hydras.GHessenberg]
    +oplus_strict_mono_r [lemma, in gaia_hydras.GHessenberg]
    +oplus_strict_mono_l [lemma, in gaia_hydras.GHessenberg]
    +oplus_lt2 [lemma, in gaia_hydras.GHessenberg]
    +oplus_lt1 [lemma, in gaia_hydras.GHessenberg]
    +oplus_nf [lemma, in gaia_hydras.GHessenberg]
    +oplus_aux:14 [binder, in gaia_hydras.GHessenberg]
    +oplus0b [lemma, in gaia_hydras.GHessenberg]
    +optimal [definition, in additions.Addition_Chains]
    +optimal_upper_bound [lemma, in additions.Addition_Chains]
    +optimal_generator [definition, in additions.Addition_Chains]
    +op_comm [projection, in additions.Monoid_def]
    +op_assoc [projection, in additions.Monoid_def]
    +op:100 [binder, in additions.Euclidean_Chains]
    +op:102 [binder, in additions.fib]
    +op:102 [binder, in additions.Addition_Chains]
    +op:104 [binder, in additions.AM]
    +op:109 [binder, in additions.AM]
    +op:109 [binder, in additions.fib]
    +op:110 [binder, in additions.Addition_Chains]
    +op:111 [binder, in additions.Euclidean_Chains]
    +op:116 [binder, in additions.Addition_Chains]
    +op:117 [binder, in additions.fib]
    +op:119 [binder, in additions.AM]
    +op:123 [binder, in additions.Addition_Chains]
    +op:124 [binder, in additions.AM]
    +op:130 [binder, in additions.Addition_Chains]
    +op:160 [binder, in additions.Addition_Chains]
    +op:163 [binder, in additions.Euclidean_Chains]
    +op:167 [binder, in additions.Addition_Chains]
    +op:169 [binder, in additions.Euclidean_Chains]
    +op:173 [binder, in additions.Addition_Chains]
    +op:183 [binder, in additions.Euclidean_Chains]
    +op:195 [binder, in additions.Euclidean_Chains]
    +op:36 [binder, in additions.AM]
    +op:36 [binder, in additions.Euclidean_Chains]
    +op:42 [binder, in additions.AM]
    +op:42 [binder, in additions.Addition_Chains]
    +op:43 [binder, in additions.Euclidean_Chains]
    +op:48 [binder, in additions.Euclidean_Chains]
    +op:5 [binder, in additions.Monoid_def]
    +op:51 [binder, in additions.Euclidean_Chains]
    +op:53 [binder, in additions.AM]
    +op:54 [binder, in additions.Euclidean_Chains]
    +op:54 [binder, in additions.Addition_Chains]
    +op:58 [binder, in additions.Monoid_def]
    +op:60 [binder, in additions.AM]
    +op:62 [binder, in additions.Monoid_def]
    +op:62 [binder, in additions.Euclidean_Chains]
    +op:69 [binder, in additions.Euclidean_Chains]
    +op:7 [binder, in additions.Monoid_def]
    +op:73 [binder, in additions.AM]
    +op:83 [binder, in additions.AM]
    +op:89 [binder, in additions.Euclidean_Chains]
    +op:94 [binder, in additions.AM]
    +op:99 [binder, in additions.AM]
    +Ord [axiom, in hydras.Schutte.Schutte_basics]
    +ord [definition, in hydras.Schutte.Ordering_Functions]
    +ordering_function_least_least [lemma, in hydras.Schutte.Ordering_Functions]
    +ordering_unbounded_unbounded [lemma, in hydras.Schutte.Ordering_Functions]
    +ordering_function_ex [lemma, in hydras.Schutte.Ordering_Functions]
    +ordering_segment_ex_unique [lemma, in hydras.Schutte.Ordering_Functions]
    +ordering_segments_of_B [lemma, in hydras.Schutte.Ordering_Functions]
    +ordering_function_seg_unicity [lemma, in hydras.Schutte.Ordering_Functions]
    +ordering_function_unicity [lemma, in hydras.Schutte.Ordering_Functions]
    +ordering_function_unicity.O2 [variable, in hydras.Schutte.Ordering_Functions]
    +ordering_function_unicity.O1 [variable, in hydras.Schutte.Ordering_Functions]
    +ordering_function_unicity.f2 [variable, in hydras.Schutte.Ordering_Functions]
    +ordering_function_unicity.f1 [variable, in hydras.Schutte.Ordering_Functions]
    +ordering_function_unicity.A2 [variable, in hydras.Schutte.Ordering_Functions]
    +ordering_function_unicity.A1 [variable, in hydras.Schutte.Ordering_Functions]
    +ordering_function_unicity.B [variable, in hydras.Schutte.Ordering_Functions]
    +ordering_function_unicity [section, in hydras.Schutte.Ordering_Functions]
    +ordering_function_unicity_1.O2 [variable, in hydras.Schutte.Ordering_Functions]
    +ordering_function_unicity_1.O1 [variable, in hydras.Schutte.Ordering_Functions]
    +ordering_function_unicity_1.f2 [variable, in hydras.Schutte.Ordering_Functions]
    +ordering_function_unicity_1.f1 [variable, in hydras.Schutte.Ordering_Functions]
    +ordering_function_unicity_1.A2 [variable, in hydras.Schutte.Ordering_Functions]
    +ordering_function_unicity_1.A1 [variable, in hydras.Schutte.Ordering_Functions]
    +ordering_function_unicity_1.B [variable, in hydras.Schutte.Ordering_Functions]
    +ordering_function_unicity_1 [section, in hydras.Schutte.Ordering_Functions]
    +ordering_le [lemma, in hydras.Schutte.Ordering_Functions]
    +ordering_function_seg [lemma, in hydras.Schutte.Ordering_Functions]
    +ordering_function_mono_weakR [lemma, in hydras.Schutte.Ordering_Functions]
    +Ordering_bijection [lemma, in hydras.Schutte.Ordering_Functions]
    +ordering_function_monoR [lemma, in hydras.Schutte.Ordering_Functions]
    +ordering_function_mono_weak [lemma, in hydras.Schutte.Ordering_Functions]
    +ordering_function_mono [lemma, in hydras.Schutte.Ordering_Functions]
    +ordering_function_In [lemma, in hydras.Schutte.Ordering_Functions]
    +ordering_segment [definition, in hydras.Schutte.Ordering_Functions]
    +ordering_function [record, in hydras.Schutte.Ordering_Functions]
    +Ordering_Functions [library]
    +ordinal [abbreviation, in hydras.Schutte.Schutte_basics]
    +ordinal_ok [lemma, in hydras.Schutte.Schutte_basics]
    +ordinal_segment [lemma, in hydras.Schutte.Ordering_Functions]
    +OrdNotations [library]
    +ord_eq [lemma, in hydras.Schutte.Ordering_Functions]
    +ord_ok [lemma, in hydras.Schutte.Ordering_Functions]
    +orE [lemma, in hydras.Ackermann.LNN]
    +orE [lemma, in hydras.Ackermann.LNT]
    +orE [lemma, in hydras.Ackermann.folLogic]
    +orH [definition, in hydras.Ackermann.fol]
    +orI1 [lemma, in hydras.Ackermann.LNN]
    +orI1 [lemma, in hydras.Ackermann.LNT]
    +orI1 [lemma, in hydras.Ackermann.folLogic]
    +orI2 [lemma, in hydras.Ackermann.LNN]
    +orI2 [lemma, in hydras.Ackermann.LNT]
    +orI2 [lemma, in hydras.Ackermann.folLogic]
    +orRel [definition, in hydras.Ackermann.primRec]
    +orRelPR [lemma, in hydras.Ackermann.primRec]
    +orSym [lemma, in hydras.Ackermann.LNN]
    +orSym [lemma, in hydras.Ackermann.LNT]
    +orSym [lemma, in hydras.Ackermann.folLogic]
    +orSys [lemma, in hydras.Ackermann.LNN]
    +orSys [lemma, in hydras.Ackermann.LNT]
    +orSys [lemma, in hydras.Ackermann.folLogic]
    +output:62 [binder, in hydras.Ackermann.codeSubFormula]
    +o_length [definition, in hydras.rpo.more_list]
    +o_finite_mult_mono [lemma, in hydras.Epsilon0.Hessenberg]
    +o_finite_mult_lt_phi0_1 [lemma, in hydras.Epsilon0.Hessenberg]
    +o_finite_mult_rw [lemma, in hydras.Epsilon0.Hessenberg]
    +o_finite_mult_nf [lemma, in hydras.Epsilon0.Hessenberg]
    +o_finite_mult [definition, in hydras.Epsilon0.Hessenberg]
    +o_finite_mult_S_rw [lemma, in hydras.Hydra.Hydra_Termination]
    +o_36_of_42 [definition, in gaia_hydras.ON_gfinite]
    +o_33_of_42 [definition, in gaia_hydras.ON_gfinite]
    +o_finite_mult [definition, in gaia_hydras.GHessenberg]
    +o':423 [binder, in hydras.Gamma0.Gamma0]
    +o':434 [binder, in hydras.Gamma0.Gamma0]
    +o':437 [binder, in hydras.Gamma0.Gamma0]
    +o':61 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +o':64 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +o1:15 [binder, in hydras.rpo.rpo]
    +o1:20 [binder, in hydras.rpo.rpo]
    +o1:6 [binder, in hydras.rpo.rpo]
    +O2H [library]
    +o2iota [lemma, in hydras.Hydra.Epsilon0_Needed_Std]
    +o2iota_1 [lemma, in hydras.Hydra.Epsilon0_Needed_Std]
    +o2iota_0 [lemma, in hydras.Hydra.Epsilon0_Needed_Std]
    +o2:16 [binder, in hydras.rpo.rpo]
    +o2:21 [binder, in hydras.rpo.rpo]
    +o2:7 [binder, in hydras.rpo.rpo]
    +O3O [definition, in hydras.OrdinalNotations.Example_3PlusOmega]
    +o:10 [binder, in hydras.Hydra.O2H]
    +o:124 [binder, in hydras.Schutte.Schutte_basics]
    +o:13 [binder, in hydras.Hydra.O2H]
    +o:131 [binder, in hydras.Schutte.Ordering_Functions]
    +o:18 [binder, in hydras.Schutte.Addition]
    +o:19 [binder, in hydras.Schutte.Addition]
    +o:280 [binder, in hydras.Gamma0.Gamma0]
    +o:36 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +o:424 [binder, in hydras.Gamma0.Gamma0]
    +o:435 [binder, in hydras.Gamma0.Gamma0]
    +o:436 [binder, in hydras.Gamma0.Gamma0]
    +o:537 [binder, in hydras.Epsilon0.T1]
    +o:619 [binder, in hydras.Gamma0.Gamma0]
    +o:62 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +o:628 [binder, in hydras.Gamma0.Gamma0]
    +o:63 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +o:63 [binder, in hydras.Schutte.CNF]
    +o:64 [binder, in hydras.Schutte.CNF]
    +o:75 [binder, in hydras.Schutte.Ordering_Functions]
    +

    P

    +P [record, in hydras.Epsilon0.F_alpha]
    +P [axiom, in hydras.Prelude.LibHyps_Experiments]
    +P [record, in hydras.Epsilon0.Hprime]
    +PA [definition, in hydras.Prelude.DecPreOrder_Instances]
    +PA [projection, in hydras.Epsilon0.F_alpha]
    +PA [definition, in hydras.Ackermann.PA]
    +PA [section, in hydras.Ackermann.PA]
    +PA [projection, in hydras.Epsilon0.Hprime]
    +PA [library]
    +PAboundedLT [lemma, in hydras.Ackermann.NN2PA]
    +PAconsistent [lemma, in hydras.Ackermann.PAconsistent]
    +PAconsistent [library]
    +PAdec [lemma, in hydras.Ackermann.PA]
    +PAIncomplete [lemma, in Goedel.rosserPA]
    +PairwiseEqual [definition, in hydras.Ackermann.folLogic3]
    +pair:134 [binder, in Goedel.PRrepresentable]
    +pair:145 [binder, in Goedel.PRrepresentable]
    +pair:156 [binder, in Goedel.PRrepresentable]
    +pair:239 [binder, in Goedel.PRrepresentable]
    +pair:245 [binder, in Goedel.PRrepresentable]
    +pair:460 [binder, in Goedel.PRrepresentable]
    +pair:468 [binder, in Goedel.PRrepresentable]
    +paPlusSym [lemma, in hydras.Ackermann.PAtheory]
    +parametric [definition, in additions.Addition_Chains]
    +param_correctness_for_free [lemma, in additions.Addition_Chains]
    +param_correctness [lemma, in additions.Addition_Chains]
    +param_correctness_nat [lemma, in additions.Addition_Chains]
    +param_correctness_aux [lemma, in additions.Addition_Chains]
    +PartialFun [library]
    +path [abbreviation, in gaia_hydras.GPaths]
    +path [definition, in hydras.Epsilon0.Paths]
    +PAtheory [library]
    +pathS [definition, in gaia_hydras.GPaths]
    +pathS [definition, in hydras.Epsilon0.Paths]
    +Paths [library]
    +path_to_round_plus [lemma, in hydras.Hydra.O2H]
    +path_toS_round_plus [lemma, in hydras.Hydra.O2H]
    +path_toS_trace [lemma, in hydras.Hydra.O2H]
    +path_to_LT [lemma, in gaia_hydras.GPaths]
    +path_to_iff1 [lemma, in gaia_hydras.GPaths]
    +path_to_inv1 [lemma, in gaia_hydras.GPaths]
    +path_tob [definition, in gaia_hydras.GPaths]
    +path_to [definition, in gaia_hydras.GPaths]
    +path_to_omega_mult [lemma, in hydras.Epsilon0.Large_Sets]
    +path_to_standard_equiv [lemma, in hydras.Epsilon0.Paths]
    +path_toS_standardS_equiv [lemma, in hydras.Epsilon0.Paths]
    +path_to_S_standard_pathS [lemma, in hydras.Epsilon0.Paths]
    +path_to_S_iota_from [lemma, in hydras.Epsilon0.Paths]
    +path_to_LT [lemma, in hydras.Epsilon0.Paths]
    +path_toS_LT [lemma, in hydras.Epsilon0.Paths]
    +path_to_gnaw [lemma, in hydras.Epsilon0.Paths]
    +path_to_mult [lemma, in hydras.Epsilon0.Paths]
    +path_toS_mult [lemma, in hydras.Epsilon0.Paths]
    +path_to_tail [lemma, in hydras.Epsilon0.Paths]
    +path_toS_tail [lemma, in hydras.Epsilon0.Paths]
    +path_to_not_In_zero [lemma, in hydras.Epsilon0.Paths]
    +path_to_zero [lemma, in hydras.Epsilon0.Paths]
    +path_toS_zero [lemma, in hydras.Epsilon0.Paths]
    +path_toS_zero_inv [lemma, in hydras.Epsilon0.Paths]
    +path_toS_zero_one [lemma, in hydras.Epsilon0.Paths]
    +path_toS_zero_but_last [lemma, in hydras.Epsilon0.Paths]
    +path_to_appR [lemma, in hydras.Epsilon0.Paths]
    +path_toS_appR [lemma, in hydras.Epsilon0.Paths]
    +path_to_decompose [lemma, in hydras.Epsilon0.Paths]
    +path_toS_decompose [lemma, in hydras.Epsilon0.Paths]
    +path_to_app [lemma, in hydras.Epsilon0.Paths]
    +path_toS_app [lemma, in hydras.Epsilon0.Paths]
    +path_toS_gnawS [lemma, in hydras.Epsilon0.Paths]
    +path_acc_from [lemma, in hydras.Epsilon0.Paths]
    +path_toS_nf [lemma, in hydras.Epsilon0.Paths]
    +path_to_path_toS_iff [lemma, in hydras.Epsilon0.Paths]
    +path_to_path_toS [lemma, in hydras.Epsilon0.Paths]
    +path_toS_path_to [lemma, in hydras.Epsilon0.Paths]
    +path_to_interval_inv_le [lemma, in hydras.Epsilon0.Paths]
    +path_toS_cons [constructor, in hydras.Epsilon0.Paths]
    +path_toS_1 [constructor, in hydras.Epsilon0.Paths]
    +path_toS [inductive, in hydras.Epsilon0.Paths]
    +path_to_not_nil [lemma, in hydras.Epsilon0.Paths]
    +path_to_cons [constructor, in hydras.Epsilon0.Paths]
    +path_to_1 [constructor, in hydras.Epsilon0.Paths]
    +path_to [inductive, in hydras.Epsilon0.Paths]
    +paZeroOrSucc [lemma, in hydras.Ackermann.PAtheory]
    +PA_Succ [lemma, in hydras.Epsilon0.Hprime]
    +PA_Zero [lemma, in hydras.Epsilon0.Hprime]
    +pa1 [lemma, in hydras.Ackermann.PA]
    +PA1 [definition, in hydras.Ackermann.PA]
    +pa2 [lemma, in hydras.Ackermann.PA]
    +PA2 [definition, in hydras.Ackermann.PA]
    +pa3 [lemma, in hydras.Ackermann.PA]
    +PA3 [definition, in hydras.Ackermann.PA]
    +pa4 [lemma, in hydras.Ackermann.PA]
    +PA4 [definition, in hydras.Ackermann.PA]
    +pa5 [lemma, in hydras.Ackermann.PA]
    +PA5 [definition, in hydras.Ackermann.PA]
    +pa6 [lemma, in hydras.Ackermann.PA]
    +PA6 [definition, in hydras.Ackermann.PA]
    +PA7 [definition, in hydras.Ackermann.PA]
    +pA:50 [binder, in hydras.Prelude.Sort_spec]
    +PA:64 [binder, in hydras.Prelude.Sort_spec]
    +PB [definition, in hydras.Prelude.DecPreOrder_Instances]
    +PB [projection, in hydras.Epsilon0.F_alpha]
    +PB [projection, in hydras.Epsilon0.Hprime]
    +PB:5 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +pB:51 [binder, in hydras.Prelude.Sort_spec]
    +PB:65 [binder, in hydras.Prelude.Sort_spec]
    +PC [projection, in hydras.Epsilon0.F_alpha]
    +PC [projection, in hydras.Epsilon0.Hprime]
    +PC_Zero [lemma, in hydras.Epsilon0.Hprime]
    +PD [projection, in hydras.Epsilon0.F_alpha]
    +PD [projection, in hydras.Epsilon0.Hprime]
    +Pdec:3 [binder, in hydras.Prelude.First_toggle]
    +PD_Zero [lemma, in hydras.Epsilon0.Hprime]
    +PE [projection, in hydras.Epsilon0.F_alpha]
    +PE [projection, in hydras.Epsilon0.Hprime]
    +Permut [module, in hydras.rpo.list_permut]
    +Permut.DS [module, in hydras.rpo.list_permut]
    +Permut.elt [definition, in hydras.rpo.list_permut]
    +Permut.eq_elt_dec [definition, in hydras.rpo.list_permut]
    +Permut.list_permut [definition, in hydras.rpo.list_permut]
    +Permut.list_to_multiset [definition, in hydras.rpo.list_permut]
    +PF87 [lemma, in additions.Euclidean_Chains]
    +pf:39 [binder, in hydras.MoreAck.FolExamples]
    +pf:40 [binder, in hydras.MoreAck.FolExamples]
    +phi [definition, in hydras.Schutte.Critical]
    +phi [definition, in hydras.Gamma0.Gamma0]
    +phi_mono_RR [lemma, in hydras.Gamma0.Gamma0]
    +phi_psi [lemma, in hydras.Gamma0.Gamma0]
    +phi_to_psi_6 [lemma, in hydras.Gamma0.Gamma0]
    +phi_to_psi_5 [lemma, in hydras.Gamma0.Gamma0]
    +phi_to_psi_4 [lemma, in hydras.Gamma0.Gamma0]
    +phi_to_psi_3 [lemma, in hydras.Gamma0.Gamma0]
    +phi_to_psi_2 [lemma, in hydras.Gamma0.Gamma0]
    +phi_to_psi_1 [lemma, in hydras.Gamma0.Gamma0]
    +phi_to_psi.alpha [variable, in hydras.Gamma0.Gamma0]
    +phi_to_psi [section, in hydras.Gamma0.Gamma0]
    +phi_inj_r [lemma, in hydras.Gamma0.Gamma0]
    +phi_mono_weak_r [lemma, in hydras.Gamma0.Gamma0]
    +phi_mono_r [lemma, in hydras.Gamma0.Gamma0]
    +phi_of_psi_plus_fin [lemma, in hydras.Gamma0.Gamma0]
    +phi_alpha_zero_gt_alpha [lemma, in hydras.Gamma0.Gamma0]
    +phi_principalR [lemma, in hydras.Gamma0.Gamma0]
    +phi_spec1 [lemma, in hydras.Gamma0.Gamma0]
    +phi_le_ge [lemma, in hydras.Gamma0.Gamma0]
    +phi_le [lemma, in hydras.Gamma0.Gamma0]
    +phi_fix [lemma, in hydras.Gamma0.Gamma0]
    +phi_of_any_cons [lemma, in hydras.Gamma0.Gamma0]
    +phi_nf [lemma, in hydras.Gamma0.Gamma0]
    +phi_cases [lemma, in hydras.Gamma0.Gamma0]
    +phi_cases' [lemma, in hydras.Gamma0.Gamma0]
    +phi_cases_aux [lemma, in hydras.Gamma0.Gamma0]
    +phi_of_psi_succ [lemma, in hydras.Gamma0.Gamma0]
    +phi_alpha_zero [lemma, in hydras.Gamma0.Gamma0]
    +phi_principal [lemma, in hydras.Gamma0.Gamma0]
    +phi_to_psi [lemma, in hydras.Gamma0.Gamma0]
    +phi_of_psi [lemma, in hydras.Gamma0.Gamma0]
    +phi0 [abbreviation, in hydras.Epsilon0.T1]
    +phi0 [abbreviation, in hydras.Schutte.AP]
    +phi0_eq [lemma, in hydras.Epsilon0.T1]
    +phi0_eq_bad [lemma, in hydras.Epsilon0.T1]
    +phi0_plus_mult [lemma, in hydras.Epsilon0.T1]
    +phi0_mono [lemma, in hydras.Epsilon0.T1]
    +phi0_mono_strict_LT [lemma, in hydras.Epsilon0.T1]
    +phi0_mono_strict [lemma, in hydras.Epsilon0.T1]
    +phi0_ltR [lemma, in hydras.Epsilon0.T1]
    +phi0_lt [lemma, in hydras.Epsilon0.T1]
    +phi0_mult_plus_lt_phi0R [lemma, in hydras.Schutte.Correctness_E0]
    +phi0_mult_plus_lt_phi0 [lemma, in hydras.Schutte.Correctness_E0]
    +phi0_mult_lt_phi0 [lemma, in hydras.Schutte.Correctness_E0]
    +phi0_mult.f_ok [variable, in hydras.Epsilon0.Large_Sets]
    +phi0_mult.f_Sle [variable, in hydras.Epsilon0.Large_Sets]
    +phi0_mult.f_mono [variable, in hydras.Epsilon0.Large_Sets]
    +phi0_mult.Halpha [variable, in hydras.Epsilon0.Large_Sets]
    +phi0_mult.f [variable, in hydras.Epsilon0.Large_Sets]
    +phi0_mult.alpha [variable, in hydras.Epsilon0.Large_Sets]
    +phi0_mult [section, in hydras.Epsilon0.Large_Sets]
    +phi0_well_named [lemma, in hydras.Schutte.Critical]
    +phi0_lt_epsilon0_R [lemma, in hydras.Schutte.AP]
    +phi0_lt_epsilon0 [lemma, in hydras.Schutte.AP]
    +phi0_of_limit [lemma, in hydras.Schutte.AP]
    +phi0_sup [lemma, in hydras.Schutte.AP]
    +phi0_alpha_phi0_beta [lemma, in hydras.Schutte.AP]
    +phi0_positive [lemma, in hydras.Schutte.AP]
    +phi0_inj [lemma, in hydras.Schutte.AP]
    +phi0_mono_R_weak [lemma, in hydras.Schutte.AP]
    +phi0_mono_R [lemma, in hydras.Schutte.AP]
    +phi0_mono_weak [lemma, in hydras.Schutte.AP]
    +phi0_mono [lemma, in hydras.Schutte.AP]
    +phi0_zero [lemma, in hydras.Schutte.AP]
    +phi0_elim [lemma, in hydras.Schutte.AP]
    +phi0_ordering [lemma, in hydras.Schutte.AP]
    +phi0_ref [lemma, in gaia_hydras.T1Bridge]
    +phi0_mono [lemma, in hydras.Epsilon0.E0]
    +Phi0_def [lemma, in hydras.Epsilon0.Hprime]
    +phi:198 [binder, in hydras.Prelude.Iterates]
    +phi:214 [binder, in hydras.Prelude.Iterates]
    +phi:29 [binder, in hydras.MoreAck.FolExamples]
    +phi:69 [binder, in hydras.MoreAck.PrimRecExamples]
    +phi:76 [binder, in hydras.MoreAck.PrimRecExamples]
    +phi:85 [binder, in hydras.MoreAck.PrimRecExamples]
    +pi1_4IsPR [instance, in hydras.Ackermann.primRec]
    +pi1_3IsPR [instance, in hydras.Ackermann.primRec]
    +pi1_2IsPR [instance, in hydras.Ackermann.primRec]
    +pi2_4IsPR [instance, in hydras.Ackermann.primRec]
    +pi2_3IsPR [instance, in hydras.Ackermann.primRec]
    +pi2_2IsPR [instance, in hydras.Ackermann.primRec]
    +pi3_4IsPR [instance, in hydras.Ackermann.primRec]
    +pi3_3IsPR [instance, in hydras.Ackermann.primRec]
    +pi4_4IsPR [instance, in hydras.Ackermann.primRec]
    +plus [abbreviation, in hydras.Epsilon0.T1]
    +plus [definition, in hydras.OrdinalNotations.ON_Omega2]
    +Plus [abbreviation, in hydras.Epsilon0.E0]
    +plus [definition, in hydras.Gamma0.Gamma0]
    +plus [definition, in hydras.Schutte.Addition]
    +plusIndIsPR [instance, in hydras.Ackermann.primRec]
    +plusIsPR [instance, in hydras.Ackermann.primRec]
    +plus_cons_cons_eqn [lemma, in hydras.Epsilon0.T1]
    +plus_smono_LT_r [lemma, in hydras.Epsilon0.T1]
    +plus_compat [lemma, in hydras.Epsilon0.T1]
    +plus_left_absorb [lemma, in hydras.Epsilon0.T1]
    +plus_is_zero [lemma, in hydras.Epsilon0.T1]
    +plus_nf [lemma, in hydras.Epsilon0.T1]
    +plus_nf0 [lemma, in hydras.Epsilon0.T1]
    +plus_cons_cons_rw3 [lemma, in hydras.Epsilon0.T1]
    +plus_cons_cons_rw2 [lemma, in hydras.Epsilon0.T1]
    +plus_cons_cons_rw1 [lemma, in hydras.Epsilon0.T1]
    +plus_zero_r [lemma, in hydras.Epsilon0.T1]
    +plus_zero [lemma, in hydras.Epsilon0.T1]
    +plus_alpha_mult_phi0 [lemma, in hydras.Schutte.Correctness_E0]
    +plus_assoc [instance, in hydras.OrdinalNotations.ON_Omega2]
    +plus_compat [lemma, in hydras.OrdinalNotations.ON_Omega2]
    +plus_2 [lemma, in hydras.Prelude.More_Arith]
    +plus_lt_phi0 [lemma, in hydras.Schutte.AP]
    +plus_ref [lemma, in gaia_hydras.T1Bridge]
    +plus_comp [instance, in hydras.OrdinalNotations.ON_plus]
    +plus_assoc [instance, in hydras.Epsilon0.E0]
    +Plus_rw [lemma, in hydras.Epsilon0.E0]
    +plus_mono_l_weak [lemma, in hydras.Gamma0.Gamma0]
    +plus_mono_r [lemma, in hydras.Gamma0.Gamma0]
    +plus_nf [lemma, in hydras.Gamma0.Gamma0]
    +plus_alpha_0 [lemma, in hydras.Gamma0.Gamma0]
    +Plus_ [constructor, in hydras.Ackermann.Languages]
    +plus_mono_bi [lemma, in hydras.Schutte.Addition]
    +plus_mono_weak_l [lemma, in hydras.Schutte.Addition]
    +plus_assoc [instance, in hydras.Schutte.Addition]
    +plus_assoc' [lemma, in hydras.Schutte.Addition]
    +plus_assoc3 [lemma, in hydras.Schutte.Addition]
    +plus_assoc2 [lemma, in hydras.Schutte.Addition]
    +plus_assoc1 [lemma, in hydras.Schutte.Addition]
    +plus_FF [lemma, in hydras.Schutte.Addition]
    +plus_limit [lemma, in hydras.Schutte.Addition]
    +plus_reg_r [lemma, in hydras.Schutte.Addition]
    +plus_mono_r_weak [lemma, in hydras.Schutte.Addition]
    +plus_of_succ [lemma, in hydras.Schutte.Addition]
    +plus_mono_r [lemma, in hydras.Schutte.Addition]
    +plus_elim [lemma, in hydras.Schutte.Addition]
    +plus_ordering [lemma, in hydras.Schutte.Addition]
    +plus_correct [lemma, in hydras.MoreAck.PrimRecExamples]
    +PMult [instance, in additions.Monoid_instances]
    +positive_4step_ind [lemma, in additions.More_on_positive]
    +Pos_to_nat_diff_0 [lemma, in additions.AM]
    +Pos_pow_compat [lemma, in additions.Compatibility]
    +Pos_pow_power [lemma, in additions.Compatibility]
    +Pos_iter_ok [lemma, in additions.Compatibility]
    +Pos_iter_op_ok [lemma, in additions.Compatibility]
    +Pos_iter_op_ok_0 [lemma, in additions.Compatibility]
    +Pos_pow [definition, in additions.Compatibility]
    +Pos_bpow [definition, in additions.FirstSteps]
    +Pos_bpow_ok_R [lemma, in additions.Pow_variant]
    +Pos_bpow_ok [lemma, in additions.Pow_variant]
    +Pos_bpow [definition, in additions.Pow_variant]
    +Pos_bpow_of_bpow [lemma, in additions.Pow]
    +Pos_bpow_of_plus [lemma, in additions.Pow]
    +Pos_bpow_ok_R [lemma, in additions.Pow]
    +Pos_bpow_proper [instance, in additions.Pow]
    +Pos_bpow_ok [lemma, in additions.Pow]
    +Pos_bpow [definition, in additions.Pow]
    +pos_div_eucl_quotient_lt [lemma, in additions.More_on_positive]
    +pos_div_eucl_quotient_pos [lemma, in additions.More_on_positive]
    +pos_gt_3 [lemma, in additions.More_on_positive]
    +pos_lt_wf [lemma, in additions.More_on_positive]
    +pos_lt_mul [lemma, in additions.More_on_positive]
    +pos_le_mul [lemma, in additions.More_on_positive]
    +Pos_to_nat_neq_0 [lemma, in additions.More_on_positive]
    +pos_eq_dec [definition, in additions.More_on_positive]
    +Pos2Nat_morph [lemma, in additions.Compatibility]
    +Pos2Nat_le_n_pn [lemma, in additions.More_on_positive]
    +Pos2Nat_le_1_p [lemma, in additions.More_on_positive]
    +pos2N_inj_add [lemma, in additions.More_on_positive]
    +pos2N_inj_lt [lemma, in additions.More_on_positive]
    +Pow [library]
    +power [abbreviation, in hydras.Prelude.More_Arith]
    +power [definition, in additions.FirstSteps]
    +power [definition, in additions.Pow_variant]
    +power [definition, in additions.Pow]
    +power_of_1 [lemma, in hydras.Prelude.More_Arith]
    +power_t [definition, in additions.FirstSteps]
    +power_of_mult [lemma, in additions.Pow_variant]
    +power_of_square [lemma, in additions.Pow_variant]
    +power_of_power [lemma, in additions.Pow_variant]
    +power_commute_with_x [lemma, in additions.Pow_variant]
    +power_commute [lemma, in additions.Pow_variant]
    +power_of_plus [lemma, in additions.Pow_variant]
    +power_proper [instance, in additions.Pow_variant]
    +power_eq3 [lemma, in additions.Pow_variant]
    +power_eq2 [lemma, in additions.Pow_variant]
    +power_eq1 [lemma, in additions.Pow_variant]
    +power_of_mult [lemma, in additions.Pow]
    +power_of_square [lemma, in additions.Pow]
    +power_of_power_comm [lemma, in additions.Pow]
    +power_of_power [lemma, in additions.Pow]
    +power_commute_with_x [lemma, in additions.Pow]
    +power_commute [lemma, in additions.Pow]
    +power_of_plus [lemma, in additions.Pow]
    +power_proper [instance, in additions.Pow]
    +power_eq3 [lemma, in additions.Pow]
    +power_eq2 [lemma, in additions.Pow]
    +power_eq1 [lemma, in additions.Pow]
    +power_R_is_a_refinement [lemma, in additions.Addition_Chains]
    +power_R_1 [lemma, in additions.Addition_Chains]
    +power_R_Mult [lemma, in additions.Addition_Chains]
    +power_R [definition, in additions.Addition_Chains]
    +pow_17 [definition, in additions.Pow_variant]
    +pow_17 [definition, in additions.Pow]
    +Pow_variant [library]
    +pow3 [definition, in hydras.Ackermann.codeSubFormula]
    +pow3IsPR [instance, in hydras.Ackermann.codeSubFormula]
    +pow3Min [lemma, in hydras.Ackermann.codeSubFormula]
    +pow3Monotone [lemma, in hydras.Ackermann.codeSubFormula]
    +PO_lex_prod [instance, in hydras.Prelude.DecPreOrder_Instances]
    +PO1 [lemma, in additions.Euclidean_Chains]
    +PO2 [lemma, in additions.Euclidean_Chains]
    +PO3 [lemma, in additions.Euclidean_Chains]
    +PO4 [lemma, in additions.Euclidean_Chains]
    +PO6 [lemma, in additions.Euclidean_Chains]
    +PO8 [lemma, in additions.Euclidean_Chains]
    +PO9 [lemma, in additions.Euclidean_Chains]
    +pp [definition, in hydras.Epsilon0.T1]
    +ppE0 [definition, in gaia_hydras.T1Bridge]
    +ppT1 [inductive, in hydras.Epsilon0.T1]
    +pp_size [definition, in hydras.Epsilon0.T1]
    +PP_omega [constructor, in hydras.Epsilon0.T1]
    +PP_exp [constructor, in hydras.Epsilon0.T1]
    +PP_mult [constructor, in hydras.Epsilon0.T1]
    +PP_add [constructor, in hydras.Epsilon0.T1]
    +PP_fin [constructor, in hydras.Epsilon0.T1]
    +pp0 [definition, in hydras.Epsilon0.T1]
    +pq:68 [binder, in hydras.rpo.dickson]
    +PRcompose1 [definition, in hydras.MoreAck.PrimRecExamples]
    +PRcons [constructor, in hydras.Ackermann.primRec]
    +Precedence [module, in hydras.rpo.rpo]
    +Precedence.A [axiom, in hydras.rpo.rpo]
    +Precedence.Lex [constructor, in hydras.rpo.rpo]
    +Precedence.Mul [constructor, in hydras.rpo.rpo]
    +Precedence.prec [axiom, in hydras.rpo.rpo]
    +Precedence.prec_transitive [axiom, in hydras.rpo.rpo]
    +Precedence.prec_antisym [axiom, in hydras.rpo.rpo]
    +Precedence.prec_dec [axiom, in hydras.rpo.rpo]
    +Precedence.status [axiom, in hydras.rpo.rpo]
    +Precedence.status_type [inductive, in hydras.rpo.rpo]
    +pred [definition, in hydras.Epsilon0.T1]
    +pred [definition, in hydras.Gamma0.T2]
    +Predecessor_unicity [lemma, in hydras.solutions_exercises.predSuccUnicity]
    +predIsPR [instance, in hydras.Ackermann.primRec]
    +predSuccUnicity [library]
    +pred_nf [lemma, in hydras.Epsilon0.T1]
    +pred_LT [lemma, in hydras.Epsilon0.T1]
    +pred_of_limitR [lemma, in hydras.Epsilon0.T1]
    +pred_of_limit [lemma, in hydras.Epsilon0.T1]
    +pred_of_succ [lemma, in hydras.Epsilon0.T1]
    +pred_of_power [lemma, in hydras.Prelude.More_Arith]
    +pred_of_succ [lemma, in hydras.Gamma0.Gamma0]
    +pred_of_limit [lemma, in hydras.Gamma0.Gamma0]
    +pred_of_cons' [lemma, in hydras.Gamma0.Gamma0]
    +pred_of_cons [lemma, in hydras.Gamma0.Gamma0]
    +preorder_equiv [definition, in hydras.Prelude.DecPreOrder]
    +preserveValue [lemma, in hydras.Ackermann.model]
    +PReval [abbreviation, in hydras.Ackermann.primRec]
    +PRevalN [abbreviation, in hydras.Ackermann.primRec]
    +Prf [inductive, in hydras.Ackermann.folProof]
    +prf:11 [binder, in hydras.Ackermann.Deduction]
    +prf:121 [binder, in hydras.Ackermann.LNN2LNT]
    +prf:129 [binder, in hydras.Ackermann.LNN2LNT]
    +prf:45 [binder, in hydras.Ackermann.code]
    +prf:47 [binder, in hydras.Ackermann.folProof]
    +Primitive_Recursive_Representable [section, in Goedel.PRrepresentable]
    +Primitive_recursion.f [variable, in hydras.MoreAck.PrimRecExamples]
    +Primitive_recursion.h [variable, in hydras.MoreAck.PrimRecExamples]
    +Primitive_recursion.g [variable, in hydras.MoreAck.PrimRecExamples]
    +Primitive_recursion.z [variable, in hydras.MoreAck.PrimRecExamples]
    +Primitive_recursion.y [variable, in hydras.MoreAck.PrimRecExamples]
    +Primitive_recursion.x [variable, in hydras.MoreAck.PrimRecExamples]
    +Primitive_recursion [section, in hydras.MoreAck.PrimRecExamples]
    +PrimRec [inductive, in hydras.Ackermann.primRec]
    +primRec [library]
    +PrimRecExamples [library]
    +primRecFormula [definition, in Goedel.PRrepresentable]
    +primRecFunc [constructor, in hydras.Ackermann.primRec]
    +primRecPiFormulaHelp [definition, in Goedel.PRrepresentable]
    +primRecRepresentable [lemma, in Goedel.PRrepresentable]
    +primRecRepresentable1 [lemma, in Goedel.PRrepresentable]
    +PrimRecs [inductive, in hydras.Ackermann.primRec]
    +primRecsFormula [definition, in Goedel.PRrepresentable]
    +primRecSigmaFormula [definition, in Goedel.PRrepresentable]
    +primRecSigmaFormulaHelp [definition, in Goedel.PRrepresentable]
    +primRecSigmaRepresentable [lemma, in Goedel.PRrepresentable]
    +PrimRecs_PrimRec_ind [definition, in hydras.Ackermann.primRec]
    +PrimRecs_PrimRec_rec [definition, in hydras.Ackermann.primRec]
    +PrimRec_PrimRecs_ind [definition, in hydras.Ackermann.primRec]
    +PrimRec_PrimRecs_rec [definition, in hydras.Ackermann.primRec]
    +PrimRec_2_S [lemma, in hydras.MoreAck.PrimRecExamples]
    +PrimRec_2_0 [lemma, in hydras.MoreAck.PrimRecExamples]
    +PrimRec_1_S [lemma, in hydras.MoreAck.PrimRecExamples]
    +PrimRec_1_0 [lemma, in hydras.MoreAck.PrimRecExamples]
    +PrimRec_0_S [lemma, in hydras.MoreAck.PrimRecExamples]
    +PrimRec_0_0 [lemma, in hydras.MoreAck.PrimRecExamples]
    +prLogic [library]
    +PRnil [constructor, in hydras.Ackermann.primRec]
    +PRNotations [module, in hydras.Ackermann.primRec]
    +PRNotations.pi1_3 [abbreviation, in hydras.Ackermann.primRec]
    +PRNotations.pi1_2 [abbreviation, in hydras.Ackermann.primRec]
    +PRNotations.pi1_1 [abbreviation, in hydras.Ackermann.primRec]
    +PRNotations.pi2_3 [abbreviation, in hydras.Ackermann.primRec]
    +PRNotations.pi2_2 [abbreviation, in hydras.Ackermann.primRec]
    +PRNotations.pi3_3 [abbreviation, in hydras.Ackermann.primRec]
    +PRNotations.PRcomp [abbreviation, in hydras.Ackermann.primRec]
    +PRNotations.PRrec [abbreviation, in hydras.Ackermann.primRec]
    +[ _ ; _ ; .. ; _ ] (pr_scope) [notation, in hydras.Ackermann.primRec]
    +[ _ ] (pr_scope) [notation, in hydras.Ackermann.primRec]
    +_ :: _ (pr_scope) [notation, in hydras.Ackermann.primRec]
    +progressive [definition, in hydras.Schutte.Schutte_basics]
    +Progressive_Acc [lemma, in hydras.Schutte.Schutte_basics]
    +projectionList [definition, in hydras.Ackermann.primRec]
    +projectionListApplyParam [lemma, in hydras.Ackermann.primRec]
    +projectionListId [lemma, in hydras.Ackermann.primRec]
    +projectionListInd [lemma, in hydras.Ackermann.primRec]
    +projectionListPR [definition, in hydras.Ackermann.primRec]
    +projFormula [definition, in Goedel.PRrepresentable]
    +projFunc [constructor, in hydras.Ackermann.primRec]
    +projRepresentable [lemma, in Goedel.PRrepresentable]
    +proj_le_max [lemma, in hydras.MoreAck.AckNotPR]
    +ProofH [section, in hydras.Ackermann.folProof]
    +ProofH.Example [section, in hydras.Ackermann.folProof]
    +ProofH.Formula [variable, in hydras.Ackermann.folProof]
    +ProofH.Formulas [variable, in hydras.Ackermann.folProof]
    +ProofH.L [variable, in hydras.Ackermann.folProof]
    +ProofH.System [variable, in hydras.Ackermann.folProof]
    +ProofH.Term [variable, in hydras.Ackermann.folProof]
    +ProofH.Terms [variable, in hydras.Ackermann.folProof]
    +ProofOfLexwf [section, in hydras.solutions_exercises.MultisetWf]
    +ProofOfLexwf.A [variable, in hydras.solutions_exercises.MultisetWf]
    +ProofOfLexwf.Accs [variable, in hydras.solutions_exercises.MultisetWf]
    +ProofOfLexwf.HwfA [variable, in hydras.solutions_exercises.MultisetWf]
    +ProofOfLexwf.ltA [variable, in hydras.solutions_exercises.MultisetWf]
    +Proofs_of_unicity.Proofs.S2.Hgammaalpha [variable, in hydras.solutions_exercises.predSuccUnicity]
    +Proofs_of_unicity.Proofs.S2.gamma [variable, in hydras.solutions_exercises.predSuccUnicity]
    +Proofs_of_unicity.Proofs.S2 [section, in hydras.solutions_exercises.predSuccUnicity]
    +Proofs_of_unicity.Proofs.S1.Halphagamma [variable, in hydras.solutions_exercises.predSuccUnicity]
    +Proofs_of_unicity.Proofs.S1.gamma [variable, in hydras.solutions_exercises.predSuccUnicity]
    +Proofs_of_unicity.Proofs.S1 [section, in hydras.solutions_exercises.predSuccUnicity]
    +Proofs_of_unicity.Proofs.Halphabeta [variable, in hydras.solutions_exercises.predSuccUnicity]
    +Proofs_of_unicity.Proofs.beta [variable, in hydras.solutions_exercises.predSuccUnicity]
    +Proofs_of_unicity.Proofs.alpha [variable, in hydras.solutions_exercises.predSuccUnicity]
    +Proofs_of_unicity.Proofs [section, in hydras.solutions_exercises.predSuccUnicity]
    +Proofs_of_unicity [section, in hydras.solutions_exercises.predSuccUnicity]
    +Proofs_of_lt_succ_le.Proofs.S1.HGammaBeta [variable, in hydras.solutions_exercises.lt_succ_le]
    +Proofs_of_lt_succ_le.Proofs.S1.gamma [variable, in hydras.solutions_exercises.lt_succ_le]
    +Proofs_of_lt_succ_le.Proofs.S1 [section, in hydras.solutions_exercises.lt_succ_le]
    +Proofs_of_lt_succ_le.Proofs.Halphabeta [variable, in hydras.solutions_exercises.lt_succ_le]
    +Proofs_of_lt_succ_le.Proofs.beta [variable, in hydras.solutions_exercises.lt_succ_le]
    +Proofs_of_lt_succ_le.Proofs.alpha [variable, in hydras.solutions_exercises.lt_succ_le]
    +Proofs_of_lt_succ_le.Proofs [section, in hydras.solutions_exercises.lt_succ_le]
    +Proofs_of_lt_succ_le [section, in hydras.solutions_exercises.lt_succ_le]
    +Proof_of_dist.P [variable, in hydras.Epsilon0.T1]
    +Proof_of_dist [section, in hydras.Epsilon0.T1]
    +Proof_of_mult_nf.Induction.IHbeta [variable, in hydras.Epsilon0.T1]
    +Proof_of_mult_nf.Induction.Hbeta [variable, in hydras.Epsilon0.T1]
    +Proof_of_mult_nf.Induction.beta [variable, in hydras.Epsilon0.T1]
    +Proof_of_mult_nf.Induction [section, in hydras.Epsilon0.T1]
    +Proof_of_mult_nf.P [variable, in hydras.Epsilon0.T1]
    +Proof_of_mult_nf.Halpha [variable, in hydras.Epsilon0.T1]
    +Proof_of_mult_nf.alpha [variable, in hydras.Epsilon0.T1]
    +Proof_of_mult_nf [section, in hydras.Epsilon0.T1]
    +Proof_of_MinIsPR.minPR [variable, in hydras.solutions_exercises.MinPR2]
    +Proof_of_MinIsPR [section, in hydras.solutions_exercises.MinPR2]
    +Proof_of_oplus_lt1.H0 [variable, in hydras.Epsilon0.Hessenberg]
    +Proof_of_oplus_lt1.n [variable, in hydras.Epsilon0.Hessenberg]
    +Proof_of_oplus_lt1.a2 [variable, in hydras.Epsilon0.Hessenberg]
    +Proof_of_oplus_lt1.a1 [variable, in hydras.Epsilon0.Hessenberg]
    +Proof_of_oplus_lt1 [section, in hydras.Epsilon0.Hessenberg]
    +Proof_of_oplus_assoc [section, in hydras.Epsilon0.Hessenberg]
    +Proof_of_oplus_comm [section, in hydras.Epsilon0.Hessenberg]
    +Proof_of_plus_nf [section, in hydras.Epsilon0.Hessenberg]
    +Proof_of_Ackn_PR.S_step.n [variable, in hydras.MoreAck.AckNotPR]
    +Proof_of_Ackn_PR.S_step [section, in hydras.MoreAck.AckNotPR]
    +Proof_of_Ackn_PR [section, in hydras.MoreAck.AckNotPR]
    +Proof_of_4_5_2.HlargeA [variable, in hydras.Epsilon0.Large_Sets]
    +Proof_of_4_5_2.HAB1 [variable, in hydras.Epsilon0.Large_Sets]
    +Proof_of_4_5_2.HB [variable, in hydras.Epsilon0.Large_Sets]
    +Proof_of_4_5_2.HA [variable, in hydras.Epsilon0.Large_Sets]
    +Proof_of_4_5_2.Halpha [variable, in hydras.Epsilon0.Large_Sets]
    +Proof_of_4_5_2.alpha [variable, in hydras.Epsilon0.Large_Sets]
    +Proof_of_4_5_2.B2 [variable, in hydras.Epsilon0.Large_Sets]
    +Proof_of_4_5_2.B1 [variable, in hydras.Epsilon0.Large_Sets]
    +Proof_of_4_5_2.A [variable, in hydras.Epsilon0.Large_Sets]
    +Proof_of_4_5_2 [section, in hydras.Epsilon0.Large_Sets]
    +Proof_of_Lemma5.Alpha_positive.closedness.IM [variable, in hydras.Schutte.Critical]
    +Proof_of_Lemma5.Alpha_positive.closedness.CM [variable, in hydras.Schutte.Critical]
    +Proof_of_Lemma5.Alpha_positive.closedness.HM [variable, in hydras.Schutte.Critical]
    +Proof_of_Lemma5.Alpha_positive.closedness.M [variable, in hydras.Schutte.Critical]
    +Proof_of_Lemma5.Alpha_positive.closedness [section, in hydras.Schutte.Critical]
    +Proof_of_Lemma5.Alpha_positive.Proof_unbounded.gamma [variable, in hydras.Schutte.Critical]
    +Proof_of_Lemma5.Alpha_positive.Proof_unbounded.beta [variable, in hydras.Schutte.Critical]
    +Proof_of_Lemma5.Alpha_positive.Proof_unbounded [section, in hydras.Schutte.Critical]
    +Proof_of_Lemma5.Alpha_positive.IHalpha [variable, in hydras.Schutte.Critical]
    +Proof_of_Lemma5.Alpha_positive.alpha_pos [variable, in hydras.Schutte.Critical]
    +Proof_of_Lemma5.Alpha_positive.alpha [variable, in hydras.Schutte.Critical]
    +Proof_of_Lemma5.Alpha_positive [section, in hydras.Schutte.Critical]
    +Proof_of_Lemma5.P [variable, in hydras.Schutte.Critical]
    +Proof_of_Lemma5 [section, in hydras.Schutte.Critical]
    +Proof_of_nested_Ack_bound [section, in hydras.MoreAck.Ack]
    +Proof_of_mult_ref [section, in gaia_hydras.T1Bridge]
    +Proof_of_FibIsPR.fib_iter_cPair [variable, in hydras.solutions_exercises.FibonacciPR]
    +Proof_of_FibIsPR.fib_step_cPair [variable, in hydras.solutions_exercises.FibonacciPR]
    +Proof_of_FibIsPR.fib_iter [variable, in hydras.solutions_exercises.FibonacciPR]
    +Proof_of_FibIsPR.fib_step [variable, in hydras.solutions_exercises.FibonacciPR]
    +Proof_of_FibIsPR [section, in hydras.solutions_exercises.FibonacciPR]
    +Proof_of_MinIsPR.min_alt [variable, in hydras.solutions_exercises.MinPR]
    +Proof_of_MinIsPR [section, in hydras.solutions_exercises.MinPR]
    +Proof_of_H'_mono_l.Limit_case.Hbeta [variable, in hydras.Epsilon0.Hprime]
    +Proof_of_H'_mono_l.Limit_case [section, in hydras.Epsilon0.Hprime]
    +Proof_of_H'_mono_l.Succ_case.Hgamma [variable, in hydras.Epsilon0.Hprime]
    +Proof_of_H'_mono_l.Succ_case.gamma [variable, in hydras.Epsilon0.Hprime]
    +Proof_of_H'_mono_l.Succ_case [section, in hydras.Epsilon0.Hprime]
    +Proof_of_H'_mono_l.H_alpha_beta [variable, in hydras.Epsilon0.Hprime]
    +Proof_of_H'_mono_l.beta [variable, in hydras.Epsilon0.Hprime]
    +Proof_of_H'_mono_l.alpha [variable, in hydras.Epsilon0.Hprime]
    +Proof_of_H'_mono_l [section, in hydras.Epsilon0.Hprime]
    +Proof_of_Abstract_Properties.The_induction.alpha_limit.Hlim [variable, in hydras.Epsilon0.Hprime]
    +Proof_of_Abstract_Properties.The_induction.alpha_limit [section, in hydras.Epsilon0.Hprime]
    +Proof_of_Abstract_Properties.The_induction.alpha_Succ.alpha_def [variable, in hydras.Epsilon0.Hprime]
    +Proof_of_Abstract_Properties.The_induction.alpha_Succ.beta [variable, in hydras.Epsilon0.Hprime]
    +Proof_of_Abstract_Properties.The_induction.alpha_Succ [section, in hydras.Epsilon0.Hprime]
    +Proof_of_Abstract_Properties.The_induction.Halpha [variable, in hydras.Epsilon0.Hprime]
    +Proof_of_Abstract_Properties.The_induction.alpha [variable, in hydras.Epsilon0.Hprime]
    +Proof_of_Abstract_Properties.The_induction [section, in hydras.Epsilon0.Hprime]
    +Proof_of_Abstract_Properties [section, in hydras.Epsilon0.Hprime]
    +proof_of_associativity.g_alpha_beta [variable, in hydras.Schutte.Addition]
    +proof_of_associativity.f_alpha_beta [variable, in hydras.Schutte.Addition]
    +proof_of_associativity.beta [variable, in hydras.Schutte.Addition]
    +proof_of_associativity.alpha [variable, in hydras.Schutte.Addition]
    +proof_of_associativity [section, in hydras.Schutte.Addition]
    +Proof_of_lt_not_wf.seq_intro.is_in_seq [variable, in hydras.solutions_exercises.T1_ltNotWf]
    +Proof_of_lt_not_wf.seq_intro.Rwf [variable, in hydras.solutions_exercises.T1_ltNotWf]
    +Proof_of_lt_not_wf.seq_intro.R [variable, in hydras.solutions_exercises.T1_ltNotWf]
    +Proof_of_lt_not_wf.seq_intro.seq [variable, in hydras.solutions_exercises.T1_ltNotWf]
    +Proof_of_lt_not_wf.seq_intro.A [variable, in hydras.solutions_exercises.T1_ltNotWf]
    +Proof_of_lt_not_wf.seq_intro [section, in hydras.solutions_exercises.T1_ltNotWf]
    +Proof_of_lt_not_wf.lt_wf [variable, in hydras.solutions_exercises.T1_ltNotWf]
    +Proof_of_lt_not_wf [section, in hydras.solutions_exercises.T1_ltNotWf]
    +proof:202 [binder, in hydras.rpo.rpo]
    +proof:206 [binder, in hydras.rpo.rpo]
    +Properties [section, in hydras.Epsilon0.F_alpha]
    +Properties_of_f_alpha.The_induction [section, in hydras.Epsilon0.F_alpha]
    +Properties_of_f_alpha [section, in hydras.Epsilon0.F_alpha]
    +Properties.The_induction.alpha_limit.Hlim [variable, in hydras.Epsilon0.F_alpha]
    +Properties.The_induction.alpha_limit [section, in hydras.Epsilon0.F_alpha]
    +Properties.The_induction.alpha_Succ.alpha_def [variable, in hydras.Epsilon0.F_alpha]
    +Properties.The_induction.alpha_Succ.beta [variable, in hydras.Epsilon0.F_alpha]
    +Properties.The_induction.alpha_Succ [section, in hydras.Epsilon0.F_alpha]
    +Properties.The_induction.Halpha [variable, in hydras.Epsilon0.F_alpha]
    +Properties.The_induction.alpha [variable, in hydras.Epsilon0.F_alpha]
    +Properties.The_induction [section, in hydras.Epsilon0.F_alpha]
    +proper_statement [definition, in additions.Euclidean_Chains]
    +Proper_A [lemma, in hydras.Schutte.Ordering_Functions]
    +proper_of_proper [lemma, in hydras.Schutte.Ordering_Functions]
    +proper_members [lemma, in hydras.Schutte.Ordering_Functions]
    +proper_segment_of [definition, in hydras.Schutte.Ordering_Functions]
    +proper_segment [definition, in hydras.Schutte.Ordering_Functions]
    +Proposition_2_3a [lemma, in hydras.Epsilon0.Paths]
    +prop_map12_without_repetition [lemma, in hydras.rpo.more_list]
    +prop_map_without_repetition [lemma, in hydras.rpo.more_list]
    +PrO_Included [instance, in hydras.Prelude.DecPreOrder_Instances]
    +PRrepresentable [library]
    +pr:120 [binder, in Goedel.PRrepresentable]
    +pr:633 [binder, in hydras.Ackermann.primRec]
    +pr:638 [binder, in hydras.Ackermann.primRec]
    +psi [definition, in hydras.Gamma0.T2]
    +psi_eq [lemma, in hydras.Gamma0.T2]
    +psi_term [definition, in hydras.Gamma0.T2]
    +psi_principal [lemma, in hydras.Gamma0.Gamma0]
    +psi_lt_epsilon0 [lemma, in hydras.Gamma0.Gamma0]
    +psi_lt_head [lemma, in hydras.Gamma0.Gamma0]
    +psi_le_cons [lemma, in hydras.Gamma0.Gamma0]
    +psi:215 [binder, in hydras.Prelude.Iterates]
    +ptwise_le [definition, in hydras.Prelude.MoreLists]
    +PUSH [constructor, in additions.AM]
    +PZero [lemma, in hydras.Epsilon0.F_alpha]
    +PZero [lemma, in hydras.Epsilon0.Hprime]
    +P_mult_op [instance, in additions.Monoid_instances]
    +P_3 [lemma, in hydras.solutions_exercises.F_3]
    +P_alpha [lemma, in hydras.Epsilon0.Hprime]
    +P_alpha_0 [lemma, in hydras.Epsilon0.Hprime]
    +P_dec:190 [binder, in hydras.rpo.list_set]
    +P_dec:67 [binder, in hydras.rpo.list_set]
    +P_dec:63 [binder, in hydras.rpo.list_set]
    +P_dec:59 [binder, in hydras.rpo.list_set]
    +P_dec:55 [binder, in hydras.rpo.list_set]
    +P_dec:52 [binder, in hydras.rpo.list_set]
    +P_dec:49 [binder, in hydras.rpo.list_set]
    +P_dec:45 [binder, in hydras.rpo.list_set]
    +P_dec:40 [binder, in hydras.rpo.list_set]
    +P_dec [instance, in hydras.Epsilon0.Paths]
    +P_well_founded_induction_type [lemma, in gaia_hydras.nfwfgaia]
    +p':2 [binder, in additions.More_on_positive]
    +p':22 [binder, in hydras.Prelude.More_Arith]
    +p':40 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +p':66 [binder, in hydras.rpo.dickson]
    +p':7 [binder, in hydras.solutions_exercises.MinPR2]
    +P0 [lemma, in hydras.MoreAck.Ack]
    +p0:395 [binder, in additions.Euclidean_Chains]
    +p0:402 [binder, in additions.Euclidean_Chains]
    +P0:46 [binder, in hydras.Prelude.DecPreOrder]
    +p0:838 [binder, in hydras.Ackermann.checkPrf]
    +p0:841 [binder, in hydras.Ackermann.checkPrf]
    +P0:89 [binder, in hydras.Prelude.DecPreOrder]
    +P0:95 [binder, in hydras.Prelude.DecPreOrder]
    +P1_dec:195 [binder, in hydras.rpo.list_set]
    +p1:109 [binder, in hydras.Ackermann.codeList]
    +p1:114 [binder, in hydras.Ackermann.codeList]
    +p1:117 [binder, in hydras.Ackermann.codeList]
    +p1:122 [binder, in hydras.Ackermann.codeList]
    +p1:125 [binder, in hydras.Ackermann.codeList]
    +p1:128 [binder, in hydras.Ackermann.codeList]
    +p1:1309 [binder, in hydras.Ackermann.codeSubFormula]
    +p1:131 [binder, in hydras.Ackermann.codeList]
    +p1:1313 [binder, in hydras.Ackermann.codeSubFormula]
    +p1:1315 [binder, in hydras.Ackermann.codeSubFormula]
    +p1:1318 [binder, in hydras.Ackermann.codeSubFormula]
    +p1:1320 [binder, in hydras.Ackermann.codeSubFormula]
    +p1:1323 [binder, in hydras.Ackermann.codeSubFormula]
    +p1:1326 [binder, in hydras.Ackermann.codeSubFormula]
    +p1:1329 [binder, in hydras.Ackermann.codeSubFormula]
    +p1:1332 [binder, in hydras.Ackermann.codeSubFormula]
    +p1:1335 [binder, in hydras.Ackermann.codeSubFormula]
    +p1:1338 [binder, in hydras.Ackermann.codeSubFormula]
    +p1:134 [binder, in hydras.Ackermann.codeList]
    +p1:1348 [binder, in hydras.Ackermann.codeSubFormula]
    +p1:1350 [binder, in hydras.Ackermann.codeSubFormula]
    +p1:1352 [binder, in hydras.Ackermann.codeSubFormula]
    +p1:1354 [binder, in hydras.Ackermann.codeSubFormula]
    +p1:1356 [binder, in hydras.Ackermann.codeSubFormula]
    +p1:1358 [binder, in hydras.Ackermann.codeSubFormula]
    +p1:137 [binder, in hydras.Ackermann.codeList]
    +p1:140 [binder, in hydras.Ackermann.codeList]
    +p1:143 [binder, in hydras.Ackermann.codeList]
    +p1:166 [binder, in hydras.Ackermann.codeList]
    +p1:169 [binder, in hydras.Ackermann.codeList]
    +p1:172 [binder, in hydras.Ackermann.codeList]
    +p1:175 [binder, in hydras.Ackermann.codeList]
    +p1:178 [binder, in hydras.Ackermann.codeList]
    +p1:181 [binder, in hydras.Ackermann.codeList]
    +p1:183 [binder, in hydras.Ackermann.codeList]
    +p1:185 [binder, in hydras.Ackermann.codeList]
    +p1:187 [binder, in hydras.Ackermann.codeList]
    +p1:189 [binder, in hydras.Ackermann.codeList]
    +p1:191 [binder, in hydras.Ackermann.codeList]
    +p1:193 [binder, in hydras.Ackermann.codeList]
    +P1:193 [binder, in hydras.rpo.list_set]
    +p1:214 [binder, in hydras.Ackermann.codeList]
    +p1:219 [binder, in hydras.Ackermann.codeList]
    +p1:222 [binder, in hydras.Ackermann.codeList]
    +p1:227 [binder, in hydras.Ackermann.codeList]
    +p1:230 [binder, in hydras.Ackermann.codeList]
    +p1:233 [binder, in hydras.Ackermann.codeList]
    +p1:236 [binder, in hydras.Ackermann.codeList]
    +p1:239 [binder, in hydras.Ackermann.codeList]
    +p1:242 [binder, in hydras.Ackermann.codeList]
    +p1:245 [binder, in hydras.Ackermann.codeList]
    +p1:248 [binder, in hydras.Ackermann.codeList]
    +p1:251 [binder, in hydras.Ackermann.codeList]
    +p1:254 [binder, in hydras.Ackermann.codeList]
    +p1:257 [binder, in hydras.Ackermann.codeList]
    +p1:260 [binder, in hydras.Ackermann.codeList]
    +p1:262 [binder, in hydras.Ackermann.codeList]
    +p1:264 [binder, in hydras.Ackermann.codeList]
    +p1:266 [binder, in hydras.Ackermann.codeList]
    +p1:268 [binder, in hydras.Ackermann.codeList]
    +p1:270 [binder, in hydras.Ackermann.codeList]
    +p1:272 [binder, in hydras.Ackermann.codeList]
    +p1:33 [binder, in hydras.Ackermann.primRec]
    +p1:42 [binder, in hydras.Ackermann.codeList]
    +p1:47 [binder, in hydras.Ackermann.codeList]
    +p1:50 [binder, in hydras.Ackermann.codeList]
    +p1:55 [binder, in hydras.Ackermann.codeList]
    +p1:58 [binder, in hydras.Ackermann.codeList]
    +p1:61 [binder, in hydras.Ackermann.codeList]
    +p1:610 [binder, in hydras.Ackermann.primRec]
    +p1:615 [binder, in hydras.Ackermann.primRec]
    +p1:64 [binder, in hydras.Ackermann.codeList]
    +p1:67 [binder, in hydras.Ackermann.codeList]
    +p1:70 [binder, in hydras.Ackermann.codeList]
    +P2_dec:196 [binder, in hydras.rpo.list_set]
    +p2:1310 [binder, in hydras.Ackermann.codeSubFormula]
    +p2:1314 [binder, in hydras.Ackermann.codeSubFormula]
    +p2:1316 [binder, in hydras.Ackermann.codeSubFormula]
    +p2:1319 [binder, in hydras.Ackermann.codeSubFormula]
    +p2:1321 [binder, in hydras.Ackermann.codeSubFormula]
    +p2:1324 [binder, in hydras.Ackermann.codeSubFormula]
    +p2:1327 [binder, in hydras.Ackermann.codeSubFormula]
    +p2:1330 [binder, in hydras.Ackermann.codeSubFormula]
    +p2:1333 [binder, in hydras.Ackermann.codeSubFormula]
    +p2:1336 [binder, in hydras.Ackermann.codeSubFormula]
    +p2:1339 [binder, in hydras.Ackermann.codeSubFormula]
    +p2:1349 [binder, in hydras.Ackermann.codeSubFormula]
    +p2:1351 [binder, in hydras.Ackermann.codeSubFormula]
    +p2:1353 [binder, in hydras.Ackermann.codeSubFormula]
    +p2:1355 [binder, in hydras.Ackermann.codeSubFormula]
    +p2:1357 [binder, in hydras.Ackermann.codeSubFormula]
    +p2:1359 [binder, in hydras.Ackermann.codeSubFormula]
    +P2:194 [binder, in hydras.rpo.list_set]
    +p2:34 [binder, in hydras.Ackermann.primRec]
    +p2:611 [binder, in hydras.Ackermann.primRec]
    +p2:616 [binder, in hydras.Ackermann.primRec]
    +P2:79 [binder, in hydras.Prelude.MoreVectors]
    +P87 [definition, in additions.Addition_Chains]
    +P:1 [binder, in hydras.Prelude.First_toggle]
    +p:1 [binder, in additions.More_on_positive]
    +P:1 [binder, in hydras.Prelude.MoreDecidable]
    +p:1 [binder, in additions.BinaryStrat]
    +p:1 [binder, in additions.Dichotomy]
    +P:1 [binder, in hydras.solutions_exercises.isqrt]
    +p:1 [binder, in gaia_hydras.nfwfgaia]
    +p:10 [binder, in additions.FirstSteps]
    +p:10 [binder, in additions.More_on_positive]
    +p:10 [binder, in hydras.solutions_exercises.F_3]
    +p:101 [binder, in hydras.Ackermann.checkPrf]
    +p:103 [binder, in hydras.Ackermann.checkPrf]
    +p:105 [binder, in hydras.Ackermann.checkPrf]
    +p:106 [binder, in hydras.Ackermann.checkPrf]
    +p:107 [binder, in hydras.Ackermann.checkPrf]
    +p:108 [binder, in hydras.Ackermann.checkPrf]
    +p:109 [binder, in hydras.Ackermann.checkPrf]
    +p:11 [binder, in hydras.solutions_exercises.MinPR2]
    +p:11 [binder, in hydras.MoreAck.expressibleExamples]
    +p:11 [binder, in additions.More_on_positive]
    +p:11 [binder, in hydras.solutions_exercises.MultisetWf]
    +p:11 [binder, in hydras.Epsilon0.F_omega]
    +p:11 [binder, in hydras.solutions_exercises.FibonacciPR]
    +P:11 [binder, in hydras.Prelude.MoreDecidable]
    +p:110 [binder, in hydras.Ackermann.checkPrf]
    +p:111 [binder, in hydras.Prelude.Iterates]
    +p:111 [binder, in hydras.Ackermann.checkPrf]
    +p:111 [binder, in hydras.Ackermann.fol]
    +p:112 [binder, in hydras.Ackermann.checkPrf]
    +p:113 [binder, in hydras.Ackermann.checkPrf]
    +p:114 [binder, in hydras.Ackermann.folProp]
    +p:115 [binder, in hydras.Ackermann.checkPrf]
    +p:117 [binder, in hydras.Ackermann.checkPrf]
    +p:1176 [binder, in gaia_hydras.nfwfgaia]
    +p:1179 [binder, in gaia_hydras.nfwfgaia]
    +p:118 [binder, in hydras.Ackermann.fol]
    +p:1182 [binder, in gaia_hydras.nfwfgaia]
    +p:1185 [binder, in gaia_hydras.nfwfgaia]
    +p:1188 [binder, in gaia_hydras.nfwfgaia]
    +p:119 [binder, in hydras.Ackermann.checkPrf]
    +P:119 [binder, in hydras.Prelude.Merge_Sort]
    +p:12 [binder, in additions.Fib2]
    +p:12 [binder, in additions.More_on_positive]
    +p:12 [binder, in hydras.solutions_exercises.FibonacciPR]
    +p:121 [binder, in hydras.Ackermann.checkPrf]
    +P:121 [binder, in hydras.Epsilon0.Large_Sets]
    +p:121 [binder, in hydras.Ackermann.primRec]
    +p:123 [binder, in hydras.Ackermann.checkPrf]
    +P:124 [binder, in hydras.Epsilon0.Large_Sets]
    +p:125 [binder, in hydras.Ackermann.checkPrf]
    +p:125 [binder, in hydras.Ackermann.primRec]
    +p:127 [binder, in hydras.Ackermann.checkPrf]
    +p:127 [binder, in hydras.Epsilon0.Hprime]
    +p:129 [binder, in hydras.Ackermann.checkPrf]
    +p:13 [binder, in additions.Fib2]
    +P:13 [binder, in hydras.Prelude.Sort_spec]
    +p:13 [binder, in additions.More_on_positive]
    +p:13 [binder, in additions.Trace_exercise]
    +P:13 [binder, in hydras.Schutte.Addition]
    +p:13 [binder, in hydras.Schutte.Countable]
    +p:130 [binder, in hydras.Ackermann.checkPrf]
    +p:131 [binder, in hydras.Ackermann.checkPrf]
    +p:131 [binder, in hydras.Epsilon0.Hprime]
    +p:132 [binder, in hydras.rpo.term]
    +p:132 [binder, in hydras.Ackermann.checkPrf]
    +p:133 [binder, in hydras.Ackermann.checkPrf]
    +p:134 [binder, in additions.fib]
    +p:1340 [binder, in gaia_hydras.nfwfgaia]
    +p:135 [binder, in hydras.Ackermann.checkPrf]
    +p:137 [binder, in hydras.rpo.term]
    +p:137 [binder, in hydras.Ackermann.checkPrf]
    +p:137 [binder, in additions.Euclidean_Chains]
    +p:137 [binder, in additions.fib]
    +p:138 [binder, in hydras.Ackermann.checkPrf]
    +p:138 [binder, in additions.Euclidean_Chains]
    +p:138 [binder, in hydras.Epsilon0.Hprime]
    +p:139 [binder, in hydras.Gamma0.T2]
    +p:139 [binder, in hydras.Ackermann.checkPrf]
    +p:14 [binder, in hydras.Prelude.More_Arith]
    +p:14 [binder, in additions.FirstSteps]
    +p:14 [binder, in hydras.solutions_exercises.FibonacciPR]
    +P:14 [binder, in hydras.Schutte.PartialFun]
    +p:140 [binder, in hydras.Ackermann.checkPrf]
    +p:140 [binder, in additions.fib]
    +p:140 [binder, in hydras.Epsilon0.Hprime]
    +p:1408 [binder, in hydras.Ackermann.codeSubFormula]
    +p:141 [binder, in hydras.Ackermann.checkPrf]
    +p:1413 [binder, in hydras.Ackermann.codeSubFormula]
    +p:1415 [binder, in hydras.Ackermann.codeSubFormula]
    +P:142 [binder, in hydras.Prelude.Merge_Sort]
    +p:1420 [binder, in hydras.Ackermann.codeSubFormula]
    +p:1425 [binder, in hydras.Ackermann.codeSubFormula]
    +p:143 [binder, in hydras.rpo.term]
    +p:143 [binder, in hydras.Ackermann.checkPrf]
    +P:143 [binder, in hydras.Prelude.Merge_Sort]
    +p:143 [binder, in hydras.Epsilon0.Hprime]
    +P:144 [binder, in hydras.Prelude.MoreLists]
    +p:145 [binder, in hydras.Ackermann.checkPrf]
    +p:145 [binder, in hydras.Epsilon0.Hprime]
    +p:1458 [binder, in gaia_hydras.nfwfgaia]
    +p:146 [binder, in hydras.rpo.term]
    +p:147 [binder, in hydras.Ackermann.checkPrf]
    +p:149 [binder, in hydras.Ackermann.checkPrf]
    +p:15 [binder, in additions.More_on_positive]
    +p:151 [binder, in hydras.rpo.term]
    +p:151 [binder, in hydras.Ackermann.checkPrf]
    +P:152 [binder, in hydras.Ackermann.fol]
    +p:153 [binder, in hydras.Ackermann.checkPrf]
    +p:155 [binder, in hydras.Ackermann.checkPrf]
    +p:155 [binder, in additions.fib]
    +p:156 [binder, in additions.fib]
    +p:1569 [binder, in hydras.Ackermann.codeSubFormula]
    +p:157 [binder, in hydras.Ackermann.checkPrf]
    +P:157 [binder, in hydras.Ackermann.fol]
    +p:157 [binder, in additions.fib]
    +p:1571 [binder, in hydras.Ackermann.codeSubFormula]
    +p:1573 [binder, in hydras.Ackermann.codeSubFormula]
    +p:1575 [binder, in hydras.Ackermann.codeSubFormula]
    +p:1577 [binder, in hydras.Ackermann.codeSubFormula]
    +p:1579 [binder, in hydras.Ackermann.codeSubFormula]
    +p:1581 [binder, in hydras.Ackermann.codeSubFormula]
    +p:1583 [binder, in hydras.Ackermann.codeSubFormula]
    +p:1585 [binder, in hydras.Ackermann.codeSubFormula]
    +p:1587 [binder, in hydras.Ackermann.codeSubFormula]
    +p:1589 [binder, in hydras.Ackermann.codeSubFormula]
    +p:159 [binder, in hydras.Ackermann.checkPrf]
    +p:1591 [binder, in hydras.Ackermann.codeSubFormula]
    +p:16 [binder, in hydras.solutions_exercises.FibonacciPR]
    +p:16 [binder, in hydras.Hydra.Omega2_Small]
    +p:161 [binder, in hydras.Ackermann.checkPrf]
    +p:163 [binder, in hydras.Ackermann.checkPrf]
    +P:163 [binder, in hydras.Ackermann.fol]
    +p:164 [binder, in hydras.rpo.term]
    +p:164 [binder, in hydras.Ackermann.checkPrf]
    +p:165 [binder, in hydras.Ackermann.checkPrf]
    +p:166 [binder, in hydras.Ackermann.checkPrf]
    +p:167 [binder, in hydras.Ackermann.checkPrf]
    +p:168 [binder, in hydras.Ackermann.checkPrf]
    +p:169 [binder, in hydras.Ackermann.checkPrf]
    +p:169 [binder, in gaia_hydras.nfwfgaia]
    +p:17 [binder, in hydras.Prelude.MoreLists]
    +p:17 [binder, in additions.More_on_positive]
    +p:17 [binder, in hydras.solutions_exercises.MultisetWf]
    +p:17 [binder, in additions.fib]
    +P:17 [binder, in hydras.Prelude.MoreDecidable]
    +p:17 [binder, in hydras.Schutte.Countable]
    +p:170 [binder, in hydras.Ackermann.checkPrf]
    +p:171 [binder, in hydras.Ackermann.checkPrf]
    +p:172 [binder, in hydras.Ackermann.checkPrf]
    +p:172 [binder, in hydras.Ackermann.fol]
    +p:173 [binder, in hydras.Ackermann.checkPrf]
    +p:174 [binder, in hydras.Ackermann.checkPrf]
    +p:175 [binder, in hydras.Ackermann.checkPrf]
    +p:175 [binder, in hydras.rpo.rpo]
    +p:176 [binder, in hydras.rpo.term]
    +p:176 [binder, in hydras.Ackermann.checkPrf]
    +p:176 [binder, in gaia_hydras.T1Bridge]
    +p:177 [binder, in hydras.Ackermann.checkPrf]
    +p:178 [binder, in hydras.Ackermann.checkPrf]
    +p:178 [binder, in hydras.rpo.rpo]
    +p:179 [binder, in hydras.rpo.term]
    +p:179 [binder, in hydras.Ackermann.checkPrf]
    +p:18 [binder, in hydras.Prelude.MoreLists]
    +p:18 [binder, in additions.Compatibility]
    +p:18 [binder, in hydras.solutions_exercises.FibonacciPR]
    +p:180 [binder, in hydras.Ackermann.checkPrf]
    +p:180 [binder, in gaia_hydras.T1Bridge]
    +p:180 [binder, in additions.Euclidean_Chains]
    +p:181 [binder, in hydras.Ackermann.checkPrf]
    +p:182 [binder, in hydras.Ackermann.checkPrf]
    +p:1820 [binder, in gaia_hydras.nfwfgaia]
    +p:1823 [binder, in gaia_hydras.nfwfgaia]
    +p:1826 [binder, in gaia_hydras.nfwfgaia]
    +p:1829 [binder, in gaia_hydras.nfwfgaia]
    +p:183 [binder, in hydras.rpo.term]
    +p:183 [binder, in hydras.Ackermann.checkPrf]
    +p:1832 [binder, in gaia_hydras.nfwfgaia]
    +p:184 [binder, in hydras.Gamma0.Gamma0]
    +p:185 [binder, in hydras.Ackermann.checkPrf]
    +p:186 [binder, in hydras.Gamma0.Gamma0]
    +p:187 [binder, in hydras.Ackermann.checkPrf]
    +p:189 [binder, in hydras.Ackermann.checkPrf]
    +P:189 [binder, in hydras.rpo.list_set]
    +P:19 [binder, in hydras.Prelude.STDPP_compat]
    +p:19 [binder, in hydras.solutions_exercises.F_3]
    +p:19 [binder, in Goedel.rosser]
    +p:190 [binder, in additions.Euclidean_Chains]
    +p:191 [binder, in hydras.rpo.term]
    +p:191 [binder, in hydras.Ackermann.checkPrf]
    +p:192 [binder, in hydras.Ackermann.checkPrf]
    +p:193 [binder, in hydras.Ackermann.checkPrf]
    +p:194 [binder, in hydras.Ackermann.checkPrf]
    +p:195 [binder, in hydras.Ackermann.checkPrf]
    +p:197 [binder, in hydras.Ackermann.checkPrf]
    +p:199 [binder, in hydras.Ackermann.checkPrf]
    +p:2 [binder, in hydras.Prelude.More_Arith]
    +p:2 [binder, in hydras.Epsilon0.F_omega]
    +p:2 [binder, in gaia_hydras.onType]
    +p:2 [binder, in hydras.Prelude.LibHyps_Experiments]
    +p:2 [binder, in hydras.MoreAck.PrimRecExamples]
    +p:20 [binder, in hydras.solutions_exercises.FibonacciPR]
    +p:20 [binder, in gaia_hydras.ON_gfinite]
    +P:200 [binder, in hydras.Ackermann.fol]
    +p:201 [binder, in hydras.Ackermann.checkPrf]
    +p:203 [binder, in hydras.Ackermann.checkPrf]
    +p:205 [binder, in hydras.Epsilon0.T1]
    +p:205 [binder, in hydras.Ackermann.checkPrf]
    +p:206 [binder, in additions.Euclidean_Chains]
    +p:207 [binder, in hydras.Epsilon0.T1]
    +p:207 [binder, in hydras.Ackermann.checkPrf]
    +p:209 [binder, in hydras.Ackermann.checkPrf]
    +p:21 [binder, in hydras.Prelude.More_Arith]
    +p:21 [binder, in additions.Compatibility]
    +p:21 [binder, in hydras.Schutte.GRelations]
    +p:21 [binder, in hydras.Schutte.Critical]
    +P:21 [binder, in hydras.Prelude.STDPP_compat]
    +p:21 [binder, in additions.fib]
    +p:21 [binder, in hydras.Prelude.Simple_LexProd]
    +p:210 [binder, in additions.Addition_Chains]
    +p:211 [binder, in hydras.Ackermann.checkPrf]
    +p:212 [binder, in hydras.Ackermann.checkPrf]
    +p:212 [binder, in additions.Addition_Chains]
    +p:213 [binder, in hydras.Ackermann.checkPrf]
    +p:213 [binder, in additions.Euclidean_Chains]
    +p:214 [binder, in hydras.Ackermann.checkPrf]
    +P:215 [binder, in hydras.rpo.more_list]
    +p:215 [binder, in hydras.Ackermann.checkPrf]
    +p:215 [binder, in additions.Addition_Chains]
    +p:217 [binder, in hydras.Ackermann.checkPrf]
    +p:217 [binder, in additions.Addition_Chains]
    +p:219 [binder, in hydras.Ackermann.checkPrf]
    +P:22 [binder, in hydras.Prelude.DecPreOrder]
    +P:22 [binder, in hydras.Schutte.MoreEpsilonIota]
    +p:22 [binder, in gaia_hydras.ON_gfinite]
    +P:22 [binder, in hydras.rpo.closure]
    +p:220 [binder, in additions.Euclidean_Chains]
    +p:220 [binder, in additions.Addition_Chains]
    +p:221 [binder, in hydras.Ackermann.checkPrf]
    +p:222 [binder, in additions.Addition_Chains]
    +p:223 [binder, in hydras.Ackermann.checkPrf]
    +P:223 [binder, in hydras.Ackermann.fol]
    +p:224 [binder, in hydras.Ackermann.checkPrf]
    +P:225 [binder, in hydras.rpo.more_list]
    +p:225 [binder, in hydras.Ackermann.checkPrf]
    +p:226 [binder, in hydras.Ackermann.checkPrf]
    +p:227 [binder, in hydras.Ackermann.checkPrf]
    +p:228 [binder, in hydras.Ackermann.checkPrf]
    +p:229 [binder, in hydras.Ackermann.checkPrf]
    +p:23 [binder, in additions.Compatibility]
    +P:23 [binder, in hydras.MoreAck.Ack]
    +P:23 [binder, in hydras.Prelude.STDPP_compat]
    +p:23 [binder, in additions.fib]
    +p:23 [binder, in hydras.MoreAck.PrimRecExamples]
    +p:23 [binder, in hydras.Prelude.Simple_LexProd]
    +p:23 [binder, in hydras.Schutte.Countable]
    +p:230 [binder, in hydras.Ackermann.checkPrf]
    +p:231 [binder, in hydras.Prelude.Iterates]
    +p:231 [binder, in hydras.Ackermann.checkPrf]
    +p:235 [binder, in hydras.Ackermann.checkPrf]
    +p:236 [binder, in hydras.Ackermann.checkPrf]
    +p:237 [binder, in hydras.Ackermann.checkPrf]
    +p:238 [binder, in hydras.Ackermann.checkPrf]
    +p:239 [binder, in hydras.Ackermann.checkPrf]
    +p:239 [binder, in additions.Addition_Chains]
    +p:24 [binder, in additions.More_on_positive]
    +p:24 [binder, in hydras.Schutte.GRelations]
    +p:240 [binder, in hydras.Ackermann.checkPrf]
    +p:241 [binder, in hydras.Ackermann.checkPrf]
    +P:241 [binder, in hydras.Ackermann.fol]
    +p:241 [binder, in additions.Addition_Chains]
    +p:242 [binder, in hydras.Ackermann.checkPrf]
    +p:243 [binder, in hydras.Ackermann.checkPrf]
    +p:244 [binder, in hydras.Ackermann.checkPrf]
    +p:245 [binder, in hydras.Ackermann.checkPrf]
    +p:246 [binder, in hydras.Ackermann.checkPrf]
    +p:247 [binder, in hydras.Ackermann.checkPrf]
    +p:248 [binder, in hydras.Ackermann.checkPrf]
    +p:249 [binder, in hydras.Ackermann.checkPrf]
    +p:25 [binder, in hydras.Ackermann.checkPrf]
    +P:25 [binder, in hydras.Schutte.MoreEpsilonIota]
    +p:25 [binder, in hydras.Schutte.Countable]
    +p:250 [binder, in hydras.Ackermann.checkPrf]
    +p:251 [binder, in hydras.Ackermann.checkPrf]
    +P:252 [binder, in hydras.rpo.more_list]
    +p:252 [binder, in hydras.Ackermann.checkPrf]
    +p:253 [binder, in hydras.Ackermann.checkPrf]
    +p:254 [binder, in hydras.Ackermann.checkPrf]
    +p:255 [binder, in hydras.Ackermann.checkPrf]
    +p:255 [binder, in additions.Addition_Chains]
    +p:256 [binder, in hydras.Ackermann.checkPrf]
    +p:257 [binder, in hydras.Ackermann.checkPrf]
    +p:258 [binder, in hydras.Ackermann.checkPrf]
    +p:259 [binder, in hydras.Ackermann.checkPrf]
    +p:26 [binder, in additions.AM]
    +p:26 [binder, in additions.More_on_positive]
    +P:26 [binder, in hydras.MoreAck.Ack]
    +p:260 [binder, in hydras.Ackermann.checkPrf]
    +p:261 [binder, in hydras.Ackermann.checkPrf]
    +p:262 [binder, in hydras.Ackermann.checkPrf]
    +p:263 [binder, in hydras.Ackermann.checkPrf]
    +p:263 [binder, in additions.Addition_Chains]
    +P:264 [binder, in hydras.rpo.more_list]
    +p:268 [binder, in hydras.Ackermann.checkPrf]
    +p:269 [binder, in hydras.Epsilon0.T1]
    +p:269 [binder, in hydras.Ackermann.checkPrf]
    +p:269 [binder, in hydras.Gamma0.Gamma0]
    +p:27 [binder, in hydras.Prelude.Iterates]
    +p:27 [binder, in hydras.Ackermann.checkPrf]
    +P:27 [binder, in hydras.Prelude.DecPreOrder]
    +p:270 [binder, in hydras.Ackermann.checkPrf]
    +p:270 [binder, in additions.Addition_Chains]
    +p:271 [binder, in hydras.Ackermann.checkPrf]
    +p:272 [binder, in hydras.Ackermann.checkPrf]
    +p:273 [binder, in hydras.Ackermann.checkPrf]
    +p:273 [binder, in additions.Addition_Chains]
    +p:274 [binder, in hydras.Ackermann.checkPrf]
    +p:275 [binder, in hydras.Ackermann.checkPrf]
    +P:275 [binder, in gaia_hydras.nfwfgaia]
    +p:276 [binder, in hydras.Ackermann.checkPrf]
    +p:276 [binder, in additions.Addition_Chains]
    +p:277 [binder, in hydras.Ackermann.checkPrf]
    +p:278 [binder, in hydras.Ackermann.checkPrf]
    +p:279 [binder, in hydras.Ackermann.checkPrf]
    +P:279 [binder, in gaia_hydras.nfwfgaia]
    +p:28 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +p:28 [binder, in hydras.Ackermann.checkPrf]
    +p:28 [binder, in hydras.Schutte.GRelations]
    +P:280 [binder, in hydras.Epsilon0.T1]
    +p:280 [binder, in hydras.Ackermann.checkPrf]
    +p:281 [binder, in hydras.Ackermann.checkPrf]
    +p:282 [binder, in hydras.Ackermann.checkPrf]
    +p:283 [binder, in hydras.Ackermann.checkPrf]
    +p:283 [binder, in additions.Addition_Chains]
    +p:284 [binder, in hydras.Ackermann.checkPrf]
    +p:284 [binder, in additions.Addition_Chains]
    +p:285 [binder, in hydras.Ackermann.checkPrf]
    +p:285 [binder, in hydras.Ackermann.fol]
    +p:285 [binder, in additions.Addition_Chains]
    +p:286 [binder, in hydras.Ackermann.subAll]
    +p:286 [binder, in hydras.Ackermann.checkPrf]
    +p:286 [binder, in additions.Addition_Chains]
    +p:287 [binder, in hydras.Ackermann.checkPrf]
    +p:287 [binder, in additions.Addition_Chains]
    +p:288 [binder, in hydras.Ackermann.checkPrf]
    +p:289 [binder, in hydras.Ackermann.checkPrf]
    +P:289 [binder, in gaia_hydras.nfwfgaia]
    +p:29 [binder, in hydras.Ackermann.checkPrf]
    +p:29 [binder, in hydras.MoreAck.Ack]
    +p:290 [binder, in hydras.Ackermann.checkPrf]
    +p:291 [binder, in hydras.Ackermann.subAll]
    +p:291 [binder, in hydras.Ackermann.checkPrf]
    +P:291 [binder, in hydras.Ackermann.fol]
    +p:292 [binder, in hydras.Ackermann.checkPrf]
    +p:293 [binder, in hydras.Ackermann.checkPrf]
    +p:294 [binder, in hydras.Ackermann.checkPrf]
    +p:295 [binder, in hydras.Ackermann.checkPrf]
    +p:296 [binder, in hydras.Ackermann.checkPrf]
    +p:297 [binder, in hydras.Ackermann.checkPrf]
    +p:298 [binder, in hydras.Ackermann.checkPrf]
    +P:299 [binder, in Goedel.PRrepresentable]
    +p:299 [binder, in hydras.Ackermann.checkPrf]
    +p:3 [binder, in hydras.Prelude.More_Arith]
    +p:3 [binder, in additions.Strategies]
    +P:3 [binder, in hydras.Schutte.MoreEpsilonIota]
    +p:3 [binder, in hydras.solutions_exercises.MorePRExamples]
    +p:3 [binder, in additions.BinaryStrat]
    +p:3 [binder, in hydras.Hydra.Omega2_Small]
    +P:3 [binder, in hydras.solutions_exercises.isqrt]
    +p:30 [binder, in hydras.Ackermann.checkPrf]
    +p:30 [binder, in Goedel.rosserPA]
    +p:300 [binder, in hydras.Ackermann.checkPrf]
    +p:300 [binder, in additions.Euclidean_Chains]
    +p:301 [binder, in hydras.Ackermann.checkPrf]
    +p:302 [binder, in hydras.Ackermann.checkPrf]
    +p:303 [binder, in hydras.Ackermann.checkPrf]
    +p:304 [binder, in hydras.Ackermann.checkPrf]
    +p:305 [binder, in hydras.Ackermann.checkPrf]
    +p:306 [binder, in hydras.Ackermann.checkPrf]
    +p:307 [binder, in hydras.Ackermann.checkPrf]
    +p:308 [binder, in hydras.Ackermann.checkPrf]
    +p:309 [binder, in hydras.Ackermann.checkPrf]
    +p:31 [binder, in hydras.Prelude.Iterates]
    +p:31 [binder, in hydras.Ackermann.checkPrf]
    +p:31 [binder, in additions.More_on_positive]
    +p:31 [binder, in hydras.MoreAck.Ack]
    +p:31 [binder, in additions.Dichotomy]
    +p:310 [binder, in hydras.Ackermann.checkPrf]
    +p:311 [binder, in hydras.Ackermann.checkPrf]
    +p:312 [binder, in hydras.rpo.term]
    +p:312 [binder, in hydras.Ackermann.checkPrf]
    +p:313 [binder, in hydras.Ackermann.checkPrf]
    +p:314 [binder, in hydras.Ackermann.checkPrf]
    +p:315 [binder, in hydras.Ackermann.checkPrf]
    +p:316 [binder, in hydras.Ackermann.checkPrf]
    +p:316 [binder, in additions.Euclidean_Chains]
    +p:316 [binder, in hydras.rpo.rpo]
    +p:317 [binder, in hydras.rpo.term]
    +p:32 [binder, in hydras.Ackermann.checkPrf]
    +P:32 [binder, in hydras.Prelude.Sort_spec]
    +p:32 [binder, in hydras.Schutte.GRelations]
    +p:32 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +p:32 [binder, in additions.Euclidean_Chains]
    +p:32 [binder, in additions.Dichotomy]
    +p:320 [binder, in hydras.Ackermann.checkPrf]
    +p:321 [binder, in hydras.Ackermann.checkPrf]
    +p:322 [binder, in hydras.Ackermann.checkPrf]
    +p:322 [binder, in additions.Euclidean_Chains]
    +p:323 [binder, in hydras.rpo.term]
    +p:323 [binder, in hydras.Ackermann.checkPrf]
    +p:324 [binder, in hydras.Ackermann.checkPrf]
    +p:325 [binder, in hydras.rpo.term]
    +p:325 [binder, in hydras.Ackermann.checkPrf]
    +p:326 [binder, in hydras.Ackermann.checkPrf]
    +p:327 [binder, in hydras.Ackermann.checkPrf]
    +p:328 [binder, in hydras.Ackermann.checkPrf]
    +p:329 [binder, in hydras.rpo.term]
    +p:329 [binder, in hydras.Ackermann.checkPrf]
    +p:329 [binder, in hydras.Epsilon0.Paths]
    +p:33 [binder, in hydras.Ackermann.checkPrf]
    +p:33 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +p:33 [binder, in Goedel.codeSysPrf]
    +p:33 [binder, in additions.Dichotomy]
    +p:33 [binder, in gaia_hydras.nfwfgaia]
    +p:330 [binder, in hydras.Ackermann.checkPrf]
    +p:331 [binder, in hydras.Ackermann.checkPrf]
    +p:332 [binder, in hydras.Ackermann.checkPrf]
    +p:333 [binder, in hydras.Ackermann.checkPrf]
    +p:334 [binder, in hydras.Ackermann.checkPrf]
    +p:334 [binder, in additions.Euclidean_Chains]
    +p:335 [binder, in hydras.Ackermann.checkPrf]
    +p:336 [binder, in hydras.Ackermann.checkPrf]
    +p:337 [binder, in hydras.Ackermann.checkPrf]
    +P:337 [binder, in hydras.Ackermann.fol]
    +p:338 [binder, in hydras.Ackermann.checkPrf]
    +p:339 [binder, in hydras.Ackermann.checkPrf]
    +p:34 [binder, in hydras.Ackermann.checkPrf]
    +p:34 [binder, in additions.More_on_positive]
    +p:34 [binder, in additions.Dichotomy]
    +p:340 [binder, in hydras.Ackermann.checkPrf]
    +p:341 [binder, in hydras.Ackermann.checkPrf]
    +p:342 [binder, in hydras.rpo.term]
    +p:342 [binder, in hydras.Ackermann.checkPrf]
    +p:343 [binder, in hydras.Ackermann.checkPrf]
    +p:344 [binder, in hydras.Ackermann.checkPrf]
    +p:345 [binder, in hydras.Ackermann.checkPrf]
    +p:346 [binder, in hydras.Ackermann.checkPrf]
    +p:347 [binder, in hydras.Ackermann.checkPrf]
    +p:348 [binder, in hydras.Ackermann.checkPrf]
    +p:349 [binder, in hydras.Ackermann.checkPrf]
    +p:35 [binder, in hydras.Ackermann.checkPrf]
    +p:35 [binder, in hydras.Ackermann.fol]
    +p:35 [binder, in additions.Dichotomy]
    +p:350 [binder, in hydras.Ackermann.checkPrf]
    +p:351 [binder, in hydras.Ackermann.checkPrf]
    +p:352 [binder, in hydras.Ackermann.checkPrf]
    +p:355 [binder, in hydras.rpo.term]
    +p:357 [binder, in hydras.rpo.term]
    +p:357 [binder, in hydras.Ackermann.checkPrf]
    +p:358 [binder, in hydras.Ackermann.checkPrf]
    +p:359 [binder, in hydras.Ackermann.checkPrf]
    +p:36 [binder, in additions.Pow_variant]
    +p:36 [binder, in hydras.Ackermann.checkPrf]
    +p:36 [binder, in additions.Pow]
    +p:36 [binder, in additions.More_on_positive]
    +p:36 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +p:36 [binder, in additions.Dichotomy]
    +p:360 [binder, in hydras.Ackermann.checkPrf]
    +p:361 [binder, in hydras.Ackermann.checkPrf]
    +p:362 [binder, in hydras.rpo.term]
    +p:362 [binder, in hydras.Ackermann.checkPrf]
    +p:363 [binder, in hydras.Ackermann.checkPrf]
    +p:363 [binder, in hydras.Epsilon0.Paths]
    +p:364 [binder, in hydras.Ackermann.checkPrf]
    +p:365 [binder, in hydras.Ackermann.checkPrf]
    +p:366 [binder, in hydras.Ackermann.checkPrf]
    +p:367 [binder, in hydras.Ackermann.checkPrf]
    +p:368 [binder, in hydras.Ackermann.checkPrf]
    +p:369 [binder, in hydras.Ackermann.checkPrf]
    +p:37 [binder, in hydras.Ackermann.checkPrf]
    +P:37 [binder, in hydras.Prelude.DecPreOrder]
    +p:37 [binder, in hydras.MoreAck.Ack]
    +p:37 [binder, in additions.Dichotomy]
    +p:370 [binder, in hydras.Ackermann.checkPrf]
    +p:371 [binder, in hydras.Ackermann.checkPrf]
    +p:372 [binder, in hydras.Ackermann.checkPrf]
    +p:373 [binder, in hydras.rpo.term]
    +p:373 [binder, in hydras.Ackermann.checkPrf]
    +p:374 [binder, in hydras.Ackermann.checkPrf]
    +p:375 [binder, in hydras.Ackermann.checkPrf]
    +p:375 [binder, in additions.Euclidean_Chains]
    +p:376 [binder, in hydras.Ackermann.checkPrf]
    +p:377 [binder, in hydras.Ackermann.checkPrf]
    +p:378 [binder, in hydras.Ackermann.checkPrf]
    +p:379 [binder, in hydras.Ackermann.checkPrf]
    +p:38 [binder, in hydras.Ackermann.checkPrf]
    +P:38 [binder, in additions.More_on_positive]
    +p:38 [binder, in hydras.Ackermann.fol]
    +P:38 [binder, in hydras.rpo.list_set]
    +p:38 [binder, in additions.Dichotomy]
    +p:380 [binder, in hydras.Ackermann.checkPrf]
    +p:381 [binder, in hydras.Ackermann.checkPrf]
    +P:381 [binder, in hydras.Ackermann.fol]
    +p:382 [binder, in hydras.Ackermann.checkPrf]
    +p:382 [binder, in additions.Euclidean_Chains]
    +p:383 [binder, in hydras.Ackermann.checkPrf]
    +p:384 [binder, in hydras.Ackermann.checkPrf]
    +p:384 [binder, in additions.Euclidean_Chains]
    +p:385 [binder, in hydras.Ackermann.checkPrf]
    +p:386 [binder, in hydras.Ackermann.checkPrf]
    +p:387 [binder, in hydras.Ackermann.checkPrf]
    +p:388 [binder, in hydras.Ackermann.checkPrf]
    +p:389 [binder, in hydras.Ackermann.checkPrf]
    +p:39 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +p:39 [binder, in additions.Compatibility]
    +p:39 [binder, in hydras.Ackermann.checkPrf]
    +p:39 [binder, in additions.More_on_positive]
    +p:39 [binder, in additions.Dichotomy]
    +p:390 [binder, in hydras.Ackermann.checkPrf]
    +p:390 [binder, in additions.Euclidean_Chains]
    +p:391 [binder, in hydras.Ackermann.checkPrf]
    +p:392 [binder, in hydras.Ackermann.checkPrf]
    +p:395 [binder, in hydras.Ackermann.checkPrf]
    +p:396 [binder, in hydras.Ackermann.checkPrf]
    +p:397 [binder, in additions.Euclidean_Chains]
    +p:398 [binder, in hydras.Epsilon0.Paths]
    +p:399 [binder, in hydras.Ackermann.checkPrf]
    +P:4 [binder, in additions.Fib2]
    +p:4 [binder, in additions.More_on_positive]
    +p:4 [binder, in hydras.Epsilon0.F_omega]
    +p:4 [binder, in hydras.solutions_exercises.FibonacciPR]
    +p:4 [binder, in additions.Dichotomy]
    +p:40 [binder, in hydras.Prelude.More_Arith]
    +p:40 [binder, in hydras.Ackermann.checkPrf]
    +p:40 [binder, in additions.More_on_positive]
    +p:40 [binder, in additions.Naive]
    +P:40 [binder, in hydras.Schutte.Schutte_basics]
    +p:40 [binder, in additions.Dichotomy]
    +p:400 [binder, in hydras.Ackermann.checkPrf]
    +p:401 [binder, in hydras.Ackermann.checkPrf]
    +p:402 [binder, in hydras.Ackermann.checkPrf]
    +p:403 [binder, in hydras.Ackermann.checkPrf]
    +p:404 [binder, in hydras.Ackermann.checkPrf]
    +p:405 [binder, in hydras.Ackermann.checkPrf]
    +p:409 [binder, in hydras.Ackermann.checkPrf]
    +p:41 [binder, in hydras.Ackermann.checkPrf]
    +P:41 [binder, in hydras.Prelude.Sort_spec]
    +P:41 [binder, in hydras.Prelude.DecPreOrder]
    +p:41 [binder, in additions.More_on_positive]
    +p:41 [binder, in hydras.Ackermann.fol]
    +p:41 [binder, in additions.Dichotomy]
    +P:410 [binder, in hydras.Epsilon0.T1]
    +p:410 [binder, in hydras.Ackermann.checkPrf]
    +p:411 [binder, in hydras.Ackermann.checkPrf]
    +p:412 [binder, in hydras.Ackermann.checkPrf]
    +p:413 [binder, in hydras.Ackermann.checkPrf]
    +p:414 [binder, in hydras.Ackermann.checkPrf]
    +p:415 [binder, in hydras.Ackermann.checkPrf]
    +p:416 [binder, in hydras.Ackermann.checkPrf]
    +p:417 [binder, in hydras.Ackermann.checkPrf]
    +p:418 [binder, in hydras.Ackermann.checkPrf]
    +p:419 [binder, in hydras.Ackermann.checkPrf]
    +p:42 [binder, in hydras.Prelude.More_Arith]
    +p:42 [binder, in hydras.Ackermann.checkPrf]
    +p:42 [binder, in additions.Dichotomy]
    +p:42 [binder, in hydras.MoreAck.PrimRecExamples]
    +p:420 [binder, in hydras.Ackermann.checkPrf]
    +p:421 [binder, in hydras.Ackermann.checkPrf]
    +p:422 [binder, in hydras.Ackermann.checkPrf]
    +p:423 [binder, in hydras.Ackermann.checkPrf]
    +p:424 [binder, in hydras.Ackermann.checkPrf]
    +p:425 [binder, in hydras.Ackermann.checkPrf]
    +p:426 [binder, in hydras.Ackermann.checkPrf]
    +p:427 [binder, in hydras.Ackermann.checkPrf]
    +P:427 [binder, in hydras.Ackermann.fol]
    +p:428 [binder, in hydras.Ackermann.checkPrf]
    +p:429 [binder, in hydras.Ackermann.checkPrf]
    +p:43 [binder, in hydras.Ackermann.checkPrf]
    +p:43 [binder, in additions.Dichotomy]
    +p:43 [binder, in hydras.Prelude.MoreVectors]
    +p:430 [binder, in hydras.Ackermann.checkPrf]
    +p:431 [binder, in hydras.Ackermann.checkPrf]
    +p:432 [binder, in hydras.Ackermann.checkPrf]
    +p:433 [binder, in hydras.Ackermann.checkPrf]
    +p:434 [binder, in hydras.Ackermann.checkPrf]
    +p:435 [binder, in hydras.Ackermann.checkPrf]
    +P:435 [binder, in hydras.Ackermann.fol]
    +p:436 [binder, in hydras.Ackermann.checkPrf]
    +p:437 [binder, in hydras.Ackermann.checkPrf]
    +p:438 [binder, in hydras.Ackermann.checkPrf]
    +p:439 [binder, in hydras.Ackermann.checkPrf]
    +P:44 [binder, in hydras.Schutte.AP]
    +p:44 [binder, in hydras.Ackermann.fol]
    +P:44 [binder, in hydras.rpo.list_set]
    +p:440 [binder, in hydras.Ackermann.checkPrf]
    +p:441 [binder, in hydras.Ackermann.checkPrf]
    +p:442 [binder, in hydras.Ackermann.checkPrf]
    +P:442 [binder, in hydras.Gamma0.Gamma0]
    +p:443 [binder, in hydras.Ackermann.checkPrf]
    +p:444 [binder, in hydras.Ackermann.checkPrf]
    +P:446 [binder, in hydras.Gamma0.Gamma0]
    +p:447 [binder, in hydras.Ackermann.checkPrf]
    +p:448 [binder, in hydras.Ackermann.checkPrf]
    +p:45 [binder, in hydras.Prelude.More_Arith]
    +p:45 [binder, in additions.Pow_variant]
    +p:45 [binder, in hydras.Ackermann.checkPrf]
    +p:45 [binder, in additions.Pow]
    +p:451 [binder, in hydras.Ackermann.checkPrf]
    +p:456 [binder, in hydras.Ackermann.checkPrf]
    +p:457 [binder, in hydras.Ackermann.checkPrf]
    +p:458 [binder, in hydras.Ackermann.checkPrf]
    +p:459 [binder, in hydras.Ackermann.checkPrf]
    +p:46 [binder, in additions.FirstSteps]
    +p:460 [binder, in hydras.Ackermann.checkPrf]
    +p:461 [binder, in hydras.Ackermann.checkPrf]
    +p:462 [binder, in hydras.Ackermann.checkPrf]
    +p:463 [binder, in hydras.Ackermann.checkPrf]
    +p:464 [binder, in hydras.Ackermann.checkPrf]
    +p:465 [binder, in hydras.Ackermann.checkPrf]
    +p:466 [binder, in hydras.Ackermann.checkPrf]
    +p:467 [binder, in hydras.Ackermann.checkPrf]
    +p:468 [binder, in hydras.Ackermann.checkPrf]
    +p:469 [binder, in hydras.Ackermann.checkPrf]
    +p:47 [binder, in hydras.Ackermann.checkPrf]
    +p:47 [binder, in hydras.solutions_exercises.MultisetWf]
    +p:47 [binder, in hydras.Ackermann.fol]
    +p:470 [binder, in hydras.Ackermann.checkPrf]
    +p:471 [binder, in hydras.Ackermann.checkPrf]
    +P:471 [binder, in hydras.Gamma0.Gamma0]
    +p:472 [binder, in hydras.Ackermann.checkPrf]
    +p:472 [binder, in additions.Euclidean_Chains]
    +p:473 [binder, in hydras.Ackermann.checkPrf]
    +p:474 [binder, in hydras.Ackermann.checkPrf]
    +p:475 [binder, in Goedel.PRrepresentable]
    +p:475 [binder, in hydras.Ackermann.checkPrf]
    +p:475 [binder, in gaia_hydras.nfwfgaia]
    +p:476 [binder, in hydras.Ackermann.checkPrf]
    +p:477 [binder, in hydras.Ackermann.checkPrf]
    +p:478 [binder, in hydras.Ackermann.checkPrf]
    +p:478 [binder, in gaia_hydras.nfwfgaia]
    +p:479 [binder, in hydras.Ackermann.checkPrf]
    +p:48 [binder, in hydras.Schutte.Correctness_E0]
    +p:48 [binder, in additions.FirstSteps]
    +p:48 [binder, in hydras.MoreAck.Ack]
    +P:48 [binder, in hydras.rpo.list_set]
    +p:480 [binder, in hydras.Ackermann.checkPrf]
    +p:481 [binder, in hydras.Ackermann.checkPrf]
    +p:481 [binder, in gaia_hydras.nfwfgaia]
    +p:482 [binder, in hydras.Ackermann.checkPrf]
    +p:483 [binder, in hydras.Ackermann.checkPrf]
    +p:484 [binder, in hydras.Ackermann.checkPrf]
    +p:484 [binder, in gaia_hydras.nfwfgaia]
    +p:485 [binder, in hydras.Ackermann.checkPrf]
    +p:487 [binder, in gaia_hydras.nfwfgaia]
    +p:488 [binder, in hydras.Ackermann.checkPrf]
    +p:489 [binder, in hydras.Ackermann.checkPrf]
    +p:49 [binder, in hydras.Ackermann.checkPrf]
    +P:49 [binder, in hydras.Prelude.MoreVectors]
    +p:492 [binder, in hydras.Ackermann.checkPrf]
    +p:493 [binder, in hydras.Ackermann.checkPrf]
    +p:494 [binder, in hydras.Ackermann.checkPrf]
    +p:495 [binder, in hydras.Ackermann.checkPrf]
    +p:496 [binder, in hydras.Ackermann.checkPrf]
    +p:497 [binder, in hydras.Ackermann.checkPrf]
    +p:498 [binder, in hydras.Ackermann.checkPrf]
    +p:499 [binder, in hydras.Ackermann.checkPrf]
    +p:5 [binder, in hydras.Prelude.First_toggle]
    +p:5 [binder, in additions.Strategies]
    +p:5 [binder, in additions.More_on_positive]
    +p:5 [binder, in hydras.Epsilon0.F_omega]
    +p:5 [binder, in hydras.Prelude.LibHyps_Experiments]
    +p:5 [binder, in additions.Dichotomy]
    +p:50 [binder, in hydras.Prelude.More_Arith]
    +p:50 [binder, in hydras.Ackermann.fol]
    +p:500 [binder, in hydras.Ackermann.checkPrf]
    +p:501 [binder, in hydras.Ackermann.checkPrf]
    +P:502 [binder, in gaia_hydras.nfwfgaia]
    +p:504 [binder, in hydras.Ackermann.checkPrf]
    +p:505 [binder, in hydras.Ackermann.checkPrf]
    +P:505 [binder, in gaia_hydras.nfwfgaia]
    +p:507 [binder, in hydras.Epsilon0.T1]
    +p:508 [binder, in hydras.Ackermann.checkPrf]
    +P:508 [binder, in gaia_hydras.nfwfgaia]
    +p:509 [binder, in hydras.Ackermann.checkPrf]
    +p:51 [binder, in hydras.Ackermann.checkPrf]
    +P:51 [binder, in hydras.Prelude.DecPreOrder]
    +P:51 [binder, in hydras.Schutte.Schutte_basics]
    +P:51 [binder, in hydras.rpo.list_set]
    +p:512 [binder, in hydras.Epsilon0.T1]
    +p:512 [binder, in hydras.Ackermann.checkPrf]
    +p:513 [binder, in hydras.Ackermann.checkPrf]
    +p:516 [binder, in hydras.Ackermann.checkPrf]
    +p:519 [binder, in hydras.Ackermann.checkPrf]
    +p:52 [binder, in hydras.Prelude.Iterates]
    +p:52 [binder, in hydras.Ackermann.code]
    +p:521 [binder, in hydras.Ackermann.checkPrf]
    +p:522 [binder, in hydras.Ackermann.checkPrf]
    +p:523 [binder, in hydras.Ackermann.checkPrf]
    +p:524 [binder, in hydras.Ackermann.checkPrf]
    +p:525 [binder, in hydras.Ackermann.checkPrf]
    +p:526 [binder, in hydras.Ackermann.checkPrf]
    +p:527 [binder, in hydras.Ackermann.checkPrf]
    +p:528 [binder, in hydras.Ackermann.checkPrf]
    +p:528 [binder, in hydras.Epsilon0.Paths]
    +p:529 [binder, in hydras.Ackermann.checkPrf]
    +p:53 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +p:53 [binder, in hydras.Ackermann.checkPrf]
    +p:530 [binder, in hydras.Ackermann.checkPrf]
    +p:531 [binder, in hydras.Ackermann.checkPrf]
    +p:532 [binder, in hydras.Ackermann.checkPrf]
    +p:533 [binder, in hydras.Ackermann.checkPrf]
    +p:535 [binder, in hydras.Ackermann.checkPrf]
    +p:54 [binder, in hydras.solutions_exercises.MultisetWf]
    +P:54 [binder, in hydras.rpo.list_set]
    +p:540 [binder, in hydras.Gamma0.Gamma0]
    +p:546 [binder, in hydras.Epsilon0.T1]
    +p:546 [binder, in hydras.Gamma0.Gamma0]
    +p:549 [binder, in hydras.Gamma0.Gamma0]
    +p:55 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +p:55 [binder, in hydras.Ackermann.checkPrf]
    +P:55 [binder, in hydras.Prelude.MoreVectors]
    +p:552 [binder, in hydras.Gamma0.Gamma0]
    +p:56 [binder, in hydras.Prelude.More_Arith]
    +p:56 [binder, in hydras.Prelude.Iterates]
    +P:56 [binder, in hydras.Prelude.DecPreOrder]
    +p:561 [binder, in hydras.Epsilon0.T1]
    +p:566 [binder, in hydras.Epsilon0.T1]
    +p:57 [binder, in hydras.Ackermann.checkPrf]
    +p:57 [binder, in hydras.solutions_exercises.MultisetWf]
    +p:58 [binder, in hydras.MoreAck.Ack]
    +P:58 [binder, in hydras.rpo.list_set]
    +p:59 [binder, in hydras.Ackermann.checkPrf]
    +p:59 [binder, in gaia_hydras.nfwfgaia]
    +p:596 [binder, in hydras.Epsilon0.T1]
    +P:6 [binder, in hydras.Prelude.Compat815]
    +p:6 [binder, in additions.More_on_positive]
    +p:6 [binder, in hydras.solutions_exercises.FibonacciPR]
    +P:6 [binder, in hydras.Prelude.MoreDecidable]
    +p:60 [binder, in Goedel.codeSysPrf]
    +p:600 [binder, in hydras.Epsilon0.T1]
    +p:604 [binder, in hydras.Ackermann.primRec]
    +p:605 [binder, in hydras.Epsilon0.T1]
    +p:607 [binder, in hydras.Ackermann.primRec]
    +P:607 [binder, in hydras.Gamma0.Gamma0]
    +p:608 [binder, in hydras.Epsilon0.T1]
    +p:61 [binder, in hydras.Ackermann.checkPrf]
    +P:61 [binder, in hydras.Prelude.DecPreOrder]
    +p:612 [binder, in hydras.Epsilon0.T1]
    +P:612 [binder, in hydras.Gamma0.Gamma0]
    +p:615 [binder, in hydras.Epsilon0.T1]
    +P:615 [binder, in hydras.Gamma0.Gamma0]
    +p:619 [binder, in hydras.Ackermann.primRec]
    +P:62 [binder, in hydras.rpo.list_set]
    +p:624 [binder, in hydras.Epsilon0.T1]
    +p:63 [binder, in additions.Pow_variant]
    +p:63 [binder, in hydras.Ackermann.checkPrf]
    +p:63 [binder, in additions.Pow]
    +p:63 [binder, in additions.More_on_positive]
    +p:630 [binder, in hydras.Epsilon0.T1]
    +p:635 [binder, in hydras.Ackermann.primRec]
    +P:64 [binder, in hydras.rpo.more_list]
    +p:64 [binder, in hydras.Ackermann.fol]
    +p:64 [binder, in additions.fib]
    +p:64 [binder, in hydras.rpo.dickson]
    +p:640 [binder, in hydras.Ackermann.primRec]
    +p:65 [binder, in hydras.Ackermann.checkPrf]
    +p:65 [binder, in hydras.MoreAck.Ack]
    +p:650 [binder, in hydras.Ackermann.checkPrf]
    +p:650 [binder, in gaia_hydras.nfwfgaia]
    +p:66 [binder, in additions.Pow_variant]
    +p:66 [binder, in hydras.Ackermann.checkPrf]
    +p:66 [binder, in additions.Pow]
    +P:66 [binder, in hydras.Prelude.DecPreOrder]
    +P:66 [binder, in hydras.rpo.list_set]
    +p:662 [binder, in hydras.Ackermann.primRec]
    +p:67 [binder, in hydras.Ackermann.checkPrf]
    +p:679 [binder, in hydras.Ackermann.checkPrf]
    +p:68 [binder, in hydras.Ackermann.checkPrf]
    +p:68 [binder, in hydras.MoreAck.Ack]
    +p:680 [binder, in hydras.Ackermann.checkPrf]
    +p:681 [binder, in hydras.Ackermann.checkPrf]
    +p:682 [binder, in hydras.Ackermann.checkPrf]
    +p:683 [binder, in hydras.Ackermann.checkPrf]
    +p:684 [binder, in hydras.Ackermann.checkPrf]
    +p:685 [binder, in hydras.Ackermann.checkPrf]
    +p:686 [binder, in hydras.Ackermann.checkPrf]
    +p:687 [binder, in hydras.Ackermann.checkPrf]
    +p:688 [binder, in hydras.Ackermann.checkPrf]
    +p:689 [binder, in hydras.Ackermann.checkPrf]
    +p:69 [binder, in hydras.Ackermann.checkPrf]
    +p:690 [binder, in hydras.Ackermann.checkPrf]
    +p:691 [binder, in hydras.Ackermann.checkPrf]
    +p:692 [binder, in hydras.Ackermann.checkPrf]
    +p:693 [binder, in hydras.Ackermann.checkPrf]
    +p:694 [binder, in hydras.Ackermann.checkPrf]
    +p:695 [binder, in hydras.Ackermann.checkPrf]
    +p:696 [binder, in hydras.Ackermann.checkPrf]
    +p:697 [binder, in hydras.Ackermann.checkPrf]
    +P:697 [binder, in hydras.Ackermann.primRec]
    +p:698 [binder, in hydras.Ackermann.checkPrf]
    +p:699 [binder, in hydras.Ackermann.checkPrf]
    +p:7 [binder, in hydras.Epsilon0.F_omega]
    +p:7 [binder, in hydras.solutions_exercises.FibonacciPR]
    +p:7 [binder, in additions.Dichotomy]
    +p:7 [binder, in hydras.Prelude.Simple_LexProd]
    +p:70 [binder, in additions.AM]
    +P:70 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +p:70 [binder, in hydras.Ackermann.checkPrf]
    +p:70 [binder, in hydras.Ackermann.codeSubFormula]
    +p:70 [binder, in additions.fib]
    +p:700 [binder, in hydras.Ackermann.checkPrf]
    +p:701 [binder, in hydras.Ackermann.checkPrf]
    +p:702 [binder, in hydras.Ackermann.checkPrf]
    +P:702 [binder, in hydras.Ackermann.primRec]
    +p:703 [binder, in hydras.Ackermann.checkPrf]
    +p:704 [binder, in hydras.Ackermann.checkPrf]
    +p:705 [binder, in hydras.Ackermann.checkPrf]
    +p:706 [binder, in hydras.Ackermann.checkPrf]
    +p:706 [binder, in gaia_hydras.nfwfgaia]
    +p:707 [binder, in hydras.Ackermann.checkPrf]
    +p:708 [binder, in hydras.Ackermann.checkPrf]
    +P:708 [binder, in hydras.Ackermann.primRec]
    +p:709 [binder, in hydras.Ackermann.checkPrf]
    +p:71 [binder, in additions.Pow_variant]
    +p:71 [binder, in hydras.Ackermann.checkPrf]
    +p:71 [binder, in additions.Pow]
    +p:71 [binder, in hydras.Ackermann.fol]
    +p:71 [binder, in hydras.Schutte.Addition]
    +p:710 [binder, in hydras.Ackermann.checkPrf]
    +p:711 [binder, in hydras.Ackermann.checkPrf]
    +P:711 [binder, in hydras.Ackermann.primRec]
    +p:712 [binder, in hydras.Ackermann.checkPrf]
    +p:713 [binder, in hydras.Ackermann.checkPrf]
    +P:713 [binder, in hydras.Ackermann.primRec]
    +p:714 [binder, in hydras.Ackermann.checkPrf]
    +P:714 [binder, in hydras.Ackermann.primRec]
    +p:715 [binder, in hydras.Ackermann.checkPrf]
    +P:715 [binder, in hydras.Ackermann.primRec]
    +p:716 [binder, in hydras.Ackermann.checkPrf]
    +p:716 [binder, in gaia_hydras.nfwfgaia]
    +p:717 [binder, in hydras.Ackermann.checkPrf]
    +p:718 [binder, in hydras.Ackermann.checkPrf]
    +p:719 [binder, in hydras.Ackermann.checkPrf]
    +p:72 [binder, in hydras.Prelude.MoreLists]
    +p:72 [binder, in hydras.Ackermann.checkPrf]
    +P:72 [binder, in hydras.Prelude.DecPreOrder]
    +p:720 [binder, in hydras.Ackermann.checkPrf]
    +p:721 [binder, in hydras.Ackermann.checkPrf]
    +p:722 [binder, in hydras.Ackermann.checkPrf]
    +p:723 [binder, in hydras.Ackermann.checkPrf]
    +p:724 [binder, in hydras.Ackermann.checkPrf]
    +p:725 [binder, in hydras.Ackermann.checkPrf]
    +p:726 [binder, in hydras.Ackermann.checkPrf]
    +p:727 [binder, in hydras.Ackermann.checkPrf]
    +p:728 [binder, in hydras.Ackermann.checkPrf]
    +p:729 [binder, in hydras.Ackermann.checkPrf]
    +p:73 [binder, in hydras.Ackermann.checkPrf]
    +p:732 [binder, in hydras.Ackermann.checkPrf]
    +p:733 [binder, in hydras.Ackermann.checkPrf]
    +p:734 [binder, in hydras.Epsilon0.T1]
    +p:734 [binder, in hydras.Ackermann.checkPrf]
    +p:735 [binder, in hydras.Ackermann.checkPrf]
    +p:736 [binder, in hydras.Ackermann.checkPrf]
    +p:737 [binder, in hydras.Ackermann.checkPrf]
    +p:738 [binder, in hydras.Ackermann.checkPrf]
    +p:739 [binder, in hydras.Ackermann.checkPrf]
    +P:74 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +P:74 [binder, in hydras.rpo.more_list]
    +p:74 [binder, in additions.Pow]
    +p:74 [binder, in hydras.Schutte.Addition]
    +p:740 [binder, in hydras.Ackermann.checkPrf]
    +p:741 [binder, in hydras.Ackermann.checkPrf]
    +p:742 [binder, in hydras.Ackermann.checkPrf]
    +p:743 [binder, in hydras.Ackermann.checkPrf]
    +p:744 [binder, in hydras.Ackermann.checkPrf]
    +p:745 [binder, in hydras.Ackermann.checkPrf]
    +p:746 [binder, in hydras.Ackermann.checkPrf]
    +p:747 [binder, in hydras.Ackermann.checkPrf]
    +p:748 [binder, in hydras.Ackermann.checkPrf]
    +p:749 [binder, in hydras.Ackermann.checkPrf]
    +p:75 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +p:75 [binder, in additions.Pow_variant]
    +p:75 [binder, in hydras.Ackermann.checkPrf]
    +p:75 [binder, in hydras.Ackermann.codeSubFormula]
    +p:750 [binder, in hydras.Ackermann.checkPrf]
    +p:751 [binder, in hydras.Ackermann.checkPrf]
    +p:752 [binder, in hydras.Ackermann.checkPrf]
    +p:753 [binder, in hydras.Ackermann.checkPrf]
    +p:754 [binder, in hydras.Ackermann.checkPrf]
    +p:755 [binder, in hydras.Ackermann.checkPrf]
    +p:758 [binder, in hydras.Ackermann.checkPrf]
    +p:759 [binder, in hydras.Ackermann.checkPrf]
    +P:76 [binder, in hydras.Prelude.Sort_spec]
    +p:76 [binder, in additions.Euclidean_Chains]
    +p:76 [binder, in hydras.Hydra.BigBattle]
    +p:76 [binder, in hydras.Epsilon0.Hprime]
    +p:762 [binder, in hydras.Ackermann.checkPrf]
    +p:763 [binder, in hydras.Ackermann.checkPrf]
    +p:764 [binder, in hydras.Ackermann.checkPrf]
    +p:765 [binder, in hydras.Ackermann.checkPrf]
    +p:766 [binder, in hydras.Ackermann.checkPrf]
    +p:767 [binder, in hydras.Ackermann.checkPrf]
    +p:768 [binder, in hydras.Ackermann.checkPrf]
    +p:769 [binder, in hydras.Ackermann.checkPrf]
    +p:77 [binder, in hydras.Prelude.MoreLists]
    +p:77 [binder, in hydras.Ackermann.checkPrf]
    +p:77 [binder, in additions.Addition_Chains]
    +p:770 [binder, in hydras.Ackermann.checkPrf]
    +p:771 [binder, in hydras.Ackermann.checkPrf]
    +p:772 [binder, in hydras.Ackermann.checkPrf]
    +p:773 [binder, in hydras.Ackermann.checkPrf]
    +p:774 [binder, in hydras.Ackermann.checkPrf]
    +p:775 [binder, in hydras.Ackermann.checkPrf]
    +p:776 [binder, in hydras.Ackermann.checkPrf]
    +p:777 [binder, in hydras.Ackermann.checkPrf]
    +p:778 [binder, in hydras.Ackermann.checkPrf]
    +p:779 [binder, in hydras.Ackermann.checkPrf]
    +p:78 [binder, in additions.Pow_variant]
    +p:78 [binder, in additions.Pow]
    +P:78 [binder, in hydras.Prelude.DecPreOrder]
    +p:78 [binder, in additions.Euclidean_Chains]
    +p:78 [binder, in hydras.Schutte.PartialFun]
    +p:78 [binder, in Goedel.codeSysPrf]
    +p:78 [binder, in hydras.Epsilon0.Hprime]
    +p:780 [binder, in hydras.Ackermann.checkPrf]
    +p:781 [binder, in hydras.Ackermann.checkPrf]
    +p:782 [binder, in hydras.Ackermann.checkPrf]
    +p:783 [binder, in hydras.Ackermann.checkPrf]
    +p:784 [binder, in hydras.Ackermann.checkPrf]
    +p:785 [binder, in hydras.Ackermann.checkPrf]
    +p:79 [binder, in hydras.Ackermann.checkPrf]
    +p:79 [binder, in additions.Addition_Chains]
    +p:790 [binder, in hydras.Ackermann.checkPrf]
    +p:797 [binder, in hydras.Ackermann.checkPrf]
    +p:8 [binder, in gaia_hydras.T1Choice]
    +p:8 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +p:8 [binder, in additions.Fib2]
    +p:8 [binder, in additions.More_on_positive]
    +P:8 [binder, in hydras.Schutte.MoreEpsilonIota]
    +P:8 [binder, in hydras.Hydra.Hydra_Definitions]
    +p:80 [binder, in additions.AM]
    +p:80 [binder, in hydras.Prelude.MoreLists]
    +p:80 [binder, in hydras.Ackermann.folProp]
    +p:803 [binder, in hydras.Ackermann.checkPrf]
    +p:81 [binder, in hydras.Ackermann.checkPrf]
    +p:81 [binder, in additions.Pow]
    +p:81 [binder, in hydras.MoreAck.Ack]
    +p:813 [binder, in hydras.Ackermann.checkPrf]
    +p:815 [binder, in hydras.Ackermann.checkPrf]
    +p:817 [binder, in hydras.Ackermann.checkPrf]
    +p:818 [binder, in hydras.Ackermann.checkPrf]
    +p:819 [binder, in hydras.Ackermann.checkPrf]
    +p:82 [binder, in hydras.Ackermann.checkPrf]
    +p:82 [binder, in hydras.Ackermann.codeSubFormula]
    +p:82 [binder, in hydras.Epsilon0.Hprime]
    +p:820 [binder, in hydras.Ackermann.checkPrf]
    +p:822 [binder, in hydras.Ackermann.checkPrf]
    +p:824 [binder, in hydras.Ackermann.checkPrf]
    +p:826 [binder, in hydras.Ackermann.checkPrf]
    +p:828 [binder, in hydras.Ackermann.checkPrf]
    +p:83 [binder, in hydras.Ackermann.checkPrf]
    +P:83 [binder, in hydras.Prelude.DecPreOrder]
    +p:830 [binder, in hydras.Ackermann.checkPrf]
    +p:832 [binder, in hydras.Ackermann.checkPrf]
    +p:834 [binder, in hydras.Ackermann.checkPrf]
    +p:837 [binder, in hydras.Ackermann.checkPrf]
    +p:84 [binder, in hydras.Ackermann.checkPrf]
    +p:84 [binder, in additions.fib]
    +p:848 [binder, in hydras.Ackermann.checkPrf]
    +p:85 [binder, in hydras.Ackermann.checkPrf]
    +p:85 [binder, in hydras.Ackermann.codeSubFormula]
    +p:85 [binder, in Goedel.codeSysPrf]
    +P:85 [binder, in hydras.Prelude.MoreVectors]
    +p:850 [binder, in gaia_hydras.nfwfgaia]
    +p:86 [binder, in hydras.Ackermann.checkPrf]
    +P:86 [binder, in hydras.Prelude.DecPreOrder]
    +p:86 [binder, in hydras.Epsilon0.Large_Sets]
    +p:86 [binder, in hydras.MoreAck.Ack]
    +p:86 [binder, in additions.fib]
    +p:861 [binder, in hydras.Ackermann.checkPrf]
    +p:866 [binder, in hydras.Ackermann.checkPrf]
    +p:867 [binder, in hydras.Ackermann.checkPrf]
    +p:869 [binder, in hydras.Ackermann.checkPrf]
    +p:87 [binder, in hydras.Prelude.MoreLists]
    +p:87 [binder, in hydras.Ackermann.checkPrf]
    +p:87 [binder, in additions.Pow]
    +p:872 [binder, in hydras.Ackermann.checkPrf]
    +p:875 [binder, in hydras.Ackermann.checkPrf]
    +p:879 [binder, in hydras.Ackermann.checkPrf]
    +p:88 [binder, in additions.Pow_variant]
    +p:88 [binder, in hydras.Ackermann.checkPrf]
    +p:88 [binder, in hydras.rpo.rpo]
    +p:882 [binder, in hydras.Ackermann.checkPrf]
    +p:89 [binder, in hydras.Ackermann.checkPrf]
    +P:89 [binder, in hydras.Prelude.MoreVectors]
    +p:9 [binder, in hydras.MoreAck.expressibleExamples]
    +p:9 [binder, in additions.Strategies]
    +p:9 [binder, in hydras.Epsilon0.F_omega]
    +p:9 [binder, in hydras.solutions_exercises.FibonacciPR]
    +p:9 [binder, in additions.Naive]
    +P:9 [binder, in hydras.Prelude.STDPP_compat]
    +p:9 [binder, in additions.Dichotomy]
    +p:90 [binder, in hydras.Ackermann.checkPrf]
    +p:90 [binder, in hydras.Ackermann.codeSubFormula]
    +p:90 [binder, in Goedel.codeSysPrf]
    +p:91 [binder, in hydras.Ackermann.checkPrf]
    +p:91 [binder, in additions.Pow]
    +p:91 [binder, in additions.fib]
    +p:92 [binder, in hydras.Ackermann.checkPrf]
    +p:93 [binder, in hydras.Ackermann.checkPrf]
    +p:937 [binder, in gaia_hydras.nfwfgaia]
    +p:94 [binder, in hydras.Ackermann.checkPrf]
    +p:94 [binder, in additions.Pow]
    +p:94 [binder, in Goedel.codeSysPrf]
    +p:95 [binder, in hydras.Ackermann.checkPrf]
    +p:951 [binder, in gaia_hydras.nfwfgaia]
    +p:953 [binder, in gaia_hydras.nfwfgaia]
    +p:96 [binder, in hydras.Prelude.MoreLists]
    +p:96 [binder, in hydras.Ackermann.checkPrf]
    +p:96 [binder, in additions.fib]
    +p:97 [binder, in hydras.Ackermann.checkPrf]
    +p:97 [binder, in additions.Pow]
    +p:99 [binder, in hydras.Prelude.MoreLists]
    +p:99 [binder, in hydras.Ackermann.checkPrf]
    +p:99 [binder, in hydras.Ackermann.folProp]
    +

    Q

    +Q [record, in hydras.Epsilon0.F_alpha]
    +QA [projection, in hydras.Epsilon0.F_alpha]
    +QA0 [lemma, in hydras.Epsilon0.F_alpha]
    +QD [projection, in hydras.Epsilon0.F_alpha]
    +QD0 [lemma, in hydras.Epsilon0.F_alpha]
    +QE [projection, in hydras.Epsilon0.F_alpha]
    +q':11 [binder, in hydras.Prelude.First_toggle]
    +q':30 [binder, in hydras.Prelude.More_Arith]
    +q':36 [binder, in hydras.Prelude.More_Arith]
    +q':59 [binder, in hydras.Prelude.More_Arith]
    +q':67 [binder, in hydras.rpo.dickson]
    +q:10 [binder, in additions.Strategies]
    +q:100 [binder, in hydras.Ackermann.codeSubFormula]
    +q:101 [binder, in hydras.Prelude.MoreLists]
    +q:101 [binder, in hydras.Ackermann.codeSubFormula]
    +q:105 [binder, in hydras.Ackermann.codeSubFormula]
    +q:106 [binder, in hydras.Ackermann.codeSubFormula]
    +q:107 [binder, in hydras.Ackermann.folProp]
    +q:108 [binder, in hydras.Ackermann.folProp]
    +q:113 [binder, in hydras.Ackermann.codeSubFormula]
    +q:114 [binder, in hydras.Ackermann.fol]
    +Q:114 [binder, in gaia_hydras.nfwfgaia]
    +q:115 [binder, in hydras.Ackermann.codeSubFormula]
    +q:12 [binder, in hydras.Prelude.First_toggle]
    +q:12 [binder, in hydras.MoreAck.AckNotPR]
    +q:121 [binder, in hydras.Ackermann.fol]
    +q:126 [binder, in hydras.Ackermann.fol]
    +q:13 [binder, in hydras.Prelude.First_toggle]
    +q:130 [binder, in hydras.Ackermann.folProp]
    +q:131 [binder, in hydras.Ackermann.fol]
    +q:132 [binder, in hydras.Ackermann.folProp]
    +q:14 [binder, in hydras.Prelude.First_toggle]
    +q:14 [binder, in additions.More_on_positive]
    +q:14 [binder, in additions.Trace_exercise]
    +q:15 [binder, in hydras.Prelude.More_Arith]
    +q:15 [binder, in hydras.Prelude.First_toggle]
    +Q:15 [binder, in hydras.Schutte.MoreEpsilonIota]
    +Q:15 [binder, in hydras.Schutte.PartialFun]
    +q:16 [binder, in additions.More_on_positive]
    +Q:162 [binder, in hydras.Ackermann.fol]
    +q:17 [binder, in hydras.Hydra.Omega2_Small]
    +q:172 [binder, in hydras.rpo.term]
    +q:173 [binder, in hydras.Ackermann.fol]
    +q:174 [binder, in hydras.Ackermann.fol]
    +q:176 [binder, in hydras.Ackermann.fol]
    +q:18 [binder, in additions.More_on_positive]
    +q:187 [binder, in hydras.Ackermann.fol]
    +q:19 [binder, in hydras.Prelude.MoreLists]
    +q:193 [binder, in hydras.Ackermann.fol]
    +q:21 [binder, in Goedel.rosser]
    +q:22 [binder, in hydras.Prelude.Simple_LexProd]
    +q:23 [binder, in additions.AM]
    +q:24 [binder, in Goedel.rosser]
    +q:24 [binder, in hydras.Prelude.Simple_LexProd]
    +Q:240 [binder, in hydras.Ackermann.fol]
    +q:255 [binder, in hydras.Ackermann.fol]
    +q:258 [binder, in hydras.Ackermann.fol]
    +q:259 [binder, in hydras.Ackermann.fol]
    +q:264 [binder, in hydras.Ackermann.subAll]
    +q:265 [binder, in hydras.Ackermann.subAll]
    +q:265 [binder, in hydras.Ackermann.fol]
    +q:266 [binder, in hydras.Ackermann.fol]
    +q:27 [binder, in hydras.Schutte.GRelations]
    +q:277 [binder, in hydras.Ackermann.fol]
    +q:279 [binder, in hydras.Ackermann.fol]
    +Q:280 [binder, in gaia_hydras.nfwfgaia]
    +q:286 [binder, in hydras.Ackermann.fol]
    +q:287 [binder, in hydras.Ackermann.fol]
    +q:29 [binder, in hydras.Prelude.More_Arith]
    +Q:290 [binder, in hydras.Ackermann.fol]
    +q:291 [binder, in additions.Euclidean_Chains]
    +q:296 [binder, in additions.Euclidean_Chains]
    +q:3 [binder, in hydras.Prelude.LibHyps_Experiments]
    +q:3 [binder, in hydras.MoreAck.PrimRecExamples]
    +q:30 [binder, in hydras.MoreAck.Ack]
    +q:301 [binder, in additions.Euclidean_Chains]
    +q:305 [binder, in hydras.Ackermann.fol]
    +q:308 [binder, in hydras.Ackermann.fol]
    +q:309 [binder, in hydras.Ackermann.fol]
    +q:31 [binder, in hydras.Schutte.GRelations]
    +q:315 [binder, in hydras.Ackermann.fol]
    +q:316 [binder, in hydras.Ackermann.fol]
    +q:317 [binder, in additions.Euclidean_Chains]
    +q:32 [binder, in Goedel.rosserPA]
    +q:327 [binder, in hydras.Ackermann.fol]
    +q:329 [binder, in hydras.Ackermann.fol]
    +q:332 [binder, in hydras.Ackermann.fol]
    +Q:336 [binder, in hydras.Ackermann.fol]
    +q:34 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +q:35 [binder, in hydras.Prelude.More_Arith]
    +q:35 [binder, in Goedel.rosserPA]
    +q:350 [binder, in hydras.rpo.term]
    +q:351 [binder, in hydras.Ackermann.fol]
    +q:354 [binder, in hydras.Ackermann.fol]
    +q:355 [binder, in hydras.Ackermann.fol]
    +q:361 [binder, in additions.Euclidean_Chains]
    +q:361 [binder, in hydras.Ackermann.fol]
    +q:362 [binder, in hydras.Ackermann.fol]
    +q:367 [binder, in additions.Euclidean_Chains]
    +q:37 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +q:373 [binder, in additions.Euclidean_Chains]
    +q:373 [binder, in hydras.Ackermann.fol]
    +q:375 [binder, in hydras.Ackermann.fol]
    +q:377 [binder, in hydras.Ackermann.fol]
    +q:380 [binder, in additions.Euclidean_Chains]
    +Q:380 [binder, in hydras.Ackermann.fol]
    +q:387 [binder, in additions.Euclidean_Chains]
    +q:393 [binder, in additions.Euclidean_Chains]
    +q:395 [binder, in hydras.Ackermann.fol]
    +q:398 [binder, in hydras.Ackermann.fol]
    +q:399 [binder, in hydras.Ackermann.fol]
    +Q:4 [binder, in hydras.Schutte.MoreEpsilonIota]
    +q:400 [binder, in additions.Euclidean_Chains]
    +q:405 [binder, in hydras.Ackermann.fol]
    +q:406 [binder, in hydras.Ackermann.fol]
    +q:417 [binder, in hydras.Ackermann.fol]
    +q:419 [binder, in hydras.Ackermann.fol]
    +q:422 [binder, in hydras.Ackermann.fol]
    +q:425 [binder, in hydras.Ackermann.fol]
    +q:43 [binder, in hydras.Prelude.More_Arith]
    +q:44 [binder, in additions.More_on_positive]
    +Q:447 [binder, in hydras.Gamma0.Gamma0]
    +q:46 [binder, in hydras.Prelude.More_Arith]
    +q:48 [binder, in additions.More_on_positive]
    +q:49 [binder, in additions.FirstSteps]
    +Q:504 [binder, in gaia_hydras.nfwfgaia]
    +q:52 [binder, in additions.More_on_positive]
    +q:53 [binder, in hydras.Ackermann.code]
    +q:55 [binder, in additions.More_on_positive]
    +q:58 [binder, in hydras.Prelude.More_Arith]
    +q:6 [binder, in hydras.Prelude.LibHyps_Experiments]
    +q:61 [binder, in hydras.Ackermann.folLogic3]
    +Q:616 [binder, in hydras.Gamma0.Gamma0]
    +q:62 [binder, in additions.More_on_positive]
    +q:65 [binder, in hydras.rpo.dickson]
    +q:664 [binder, in hydras.Ackermann.primRec]
    +q:67 [binder, in hydras.Ackermann.fol]
    +q:701 [binder, in hydras.Ackermann.primRec]
    +q:707 [binder, in hydras.Ackermann.primRec]
    +q:74 [binder, in hydras.Ackermann.fol]
    +q:79 [binder, in hydras.Ackermann.fol]
    +q:84 [binder, in hydras.Ackermann.fol]
    +q:873 [binder, in hydras.Ackermann.checkPrf]
    +q:876 [binder, in hydras.Ackermann.checkPrf]
    +q:9 [binder, in additions.Fib2]
    +q:90 [binder, in hydras.Ackermann.folProp]
    +q:94 [binder, in hydras.Ackermann.folProp]
    +q:95 [binder, in hydras.Ackermann.folProp]
    +q:97 [binder, in hydras.Ackermann.codeSubFormula]
    +q:98 [binder, in hydras.Prelude.MoreLists]
    +

    R

    +RAlim [lemma, in hydras.Epsilon0.F_alpha]
    +RAlim [lemma, in hydras.Epsilon0.Hprime]
    +RB [lemma, in hydras.Epsilon0.F_alpha]
    +RB [lemma, in hydras.Epsilon0.Hprime]
    +RBlim [lemma, in hydras.Epsilon0.F_alpha]
    +RBlim [lemma, in hydras.Epsilon0.Hprime]
    +RC [lemma, in hydras.Epsilon0.F_alpha]
    +RC [lemma, in hydras.Epsilon0.Hprime]
    +RClim [lemma, in hydras.Epsilon0.F_alpha]
    +RClim [lemma, in hydras.Epsilon0.Hprime]
    +RD [lemma, in hydras.Epsilon0.F_alpha]
    +RD [lemma, in hydras.Epsilon0.Hprime]
    +RDB:19 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +RDlim [lemma, in hydras.Epsilon0.F_alpha]
    +RDlim [lemma, in hydras.Epsilon0.Hprime]
    +RE [lemma, in hydras.Epsilon0.F_alpha]
    +RE [lemma, in hydras.Epsilon0.Hprime]
    +reachable [definition, in hydras.Hydra.BigBattle]
    +reachable_S [lemma, in hydras.Hydra.BigBattle]
    +reassoc [definition, in hydras.Epsilon0.T1]
    +rebindExist [lemma, in hydras.Ackermann.folLogic2]
    +rebindForall [lemma, in hydras.Ackermann.folLogic2]
    +recf:16 [binder, in hydras.Ackermann.PA]
    +recs:100 [binder, in hydras.Ackermann.checkPrf]
    +recs:100 [binder, in hydras.Ackermann.codePA]
    +recs:1004 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:1007 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:101 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:101 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:1010 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:1013 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:1016 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:1019 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:102 [binder, in hydras.Ackermann.checkPrf]
    +recs:103 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:103 [binder, in hydras.Ackermann.wellFormed]
    +recs:104 [binder, in hydras.Ackermann.checkPrf]
    +recs:104 [binder, in hydras.Ackermann.codePA]
    +recs:1048 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:105 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:105 [binder, in hydras.Ackermann.wellFormed]
    +recs:1051 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:1054 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:1057 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:106 [binder, in hydras.Ackermann.codePA]
    +recs:1060 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:1063 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:1066 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:1069 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:107 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:107 [binder, in hydras.Ackermann.wellFormed]
    +recs:1072 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:1074 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:1076 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:1078 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:108 [binder, in hydras.Ackermann.codePA]
    +recs:1080 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:1082 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:109 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:109 [binder, in hydras.Ackermann.wellFormed]
    +recs:1092 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:1094 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:1096 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:1098 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:11 [binder, in hydras.Ackermann.codePA]
    +recs:110 [binder, in hydras.Ackermann.codePA]
    +recs:1100 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:1102 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:1104 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:1106 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:1108 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:111 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:111 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:111 [binder, in hydras.Ackermann.wellFormed]
    +recs:1110 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:1118 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:112 [binder, in hydras.Ackermann.codePA]
    +recs:1120 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:1122 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:1124 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:1126 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:1128 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:113 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:113 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:113 [binder, in hydras.Ackermann.wellFormed]
    +recs:1130 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:1132 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:1134 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:1136 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:1138 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:114 [binder, in hydras.Ackermann.checkPrf]
    +recs:114 [binder, in hydras.Ackermann.codePA]
    +recs:1140 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:1142 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:1144 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:115 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:115 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:1154 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:1156 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:1158 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:116 [binder, in hydras.Ackermann.checkPrf]
    +recs:1160 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:117 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:118 [binder, in hydras.Ackermann.checkPrf]
    +recs:119 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:120 [binder, in hydras.Ackermann.checkPrf]
    +recs:120 [binder, in hydras.Ackermann.codePA]
    +recs:121 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:121 [binder, in hydras.Ackermann.wellFormed]
    +recs:122 [binder, in hydras.Ackermann.checkPrf]
    +recs:122 [binder, in hydras.Ackermann.codePA]
    +recs:1221 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:1224 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:123 [binder, in hydras.Ackermann.wellFormed]
    +recs:124 [binder, in hydras.Ackermann.checkPrf]
    +recs:124 [binder, in hydras.Ackermann.codePA]
    +recs:1240 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:1243 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:125 [binder, in hydras.Ackermann.wellFormed]
    +recs:126 [binder, in hydras.Ackermann.checkPrf]
    +recs:126 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:126 [binder, in hydras.Ackermann.codePA]
    +recs:127 [binder, in hydras.Ackermann.wellFormed]
    +recs:128 [binder, in hydras.Ackermann.checkPrf]
    +recs:128 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:128 [binder, in hydras.Ackermann.codePA]
    +recs:129 [binder, in hydras.Ackermann.wellFormed]
    +recs:1297 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:13 [binder, in hydras.Ackermann.wellFormed]
    +recs:130 [binder, in hydras.Ackermann.codePA]
    +recs:1300 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:131 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:131 [binder, in hydras.Ackermann.wellFormed]
    +recs:133 [binder, in hydras.Ackermann.wellFormed]
    +recs:134 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:134 [binder, in hydras.Ackermann.checkPrf]
    +recs:135 [binder, in hydras.Ackermann.wellFormed]
    +recs:136 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:136 [binder, in hydras.Ackermann.checkPrf]
    +recs:137 [binder, in hydras.Ackermann.wellFormed]
    +recs:1371 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:1374 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:139 [binder, in hydras.Ackermann.wellFormed]
    +recs:14 [binder, in hydras.Ackermann.codePA]
    +recs:141 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:141 [binder, in hydras.Ackermann.wellFormed]
    +recs:142 [binder, in hydras.Ackermann.checkPrf]
    +recs:143 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:143 [binder, in hydras.Ackermann.wellFormed]
    +recs:144 [binder, in hydras.Ackermann.checkPrf]
    +recs:145 [binder, in hydras.Ackermann.wellFormed]
    +recs:146 [binder, in hydras.Ackermann.checkPrf]
    +recs:147 [binder, in hydras.Ackermann.wellFormed]
    +recs:147 [binder, in hydras.Ackermann.codePA]
    +recs:148 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:148 [binder, in hydras.Ackermann.checkPrf]
    +recs:149 [binder, in hydras.Ackermann.wellFormed]
    +recs:15 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:150 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:150 [binder, in hydras.Ackermann.checkPrf]
    +recs:150 [binder, in hydras.Ackermann.codePA]
    +recs:151 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:151 [binder, in hydras.Ackermann.wellFormed]
    +recs:152 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:152 [binder, in hydras.Ackermann.checkPrf]
    +recs:154 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:154 [binder, in hydras.Ackermann.checkPrf]
    +recs:156 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:156 [binder, in hydras.Ackermann.checkPrf]
    +recs:158 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:158 [binder, in hydras.Ackermann.checkPrf]
    +recs:159 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:159 [binder, in hydras.Ackermann.codePA]
    +recs:160 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:160 [binder, in hydras.Ackermann.checkPrf]
    +recs:161 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:161 [binder, in hydras.Ackermann.wellFormed]
    +recs:161 [binder, in hydras.Ackermann.codePA]
    +recs:162 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:162 [binder, in hydras.Ackermann.checkPrf]
    +recs:163 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:163 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:163 [binder, in hydras.Ackermann.wellFormed]
    +recs:164 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:165 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:165 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:165 [binder, in hydras.Ackermann.wellFormed]
    +recs:166 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:167 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:167 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:167 [binder, in hydras.Ackermann.wellFormed]
    +recs:168 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:169 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:169 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:169 [binder, in hydras.Ackermann.wellFormed]
    +recs:17 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:170 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:171 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:171 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:171 [binder, in hydras.Ackermann.wellFormed]
    +recs:173 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:173 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:174 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:175 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:175 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:176 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:177 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:177 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:178 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:180 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:180 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:181 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:182 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:183 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:183 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:184 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:184 [binder, in hydras.Ackermann.checkPrf]
    +recs:185 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:185 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:186 [binder, in hydras.Ackermann.checkPrf]
    +recs:187 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:187 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:188 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:188 [binder, in hydras.Ackermann.checkPrf]
    +recs:188 [binder, in hydras.Ackermann.wellFormed]
    +recs:189 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:19 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:19 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:190 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:190 [binder, in hydras.Ackermann.checkPrf]
    +recs:191 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:191 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:191 [binder, in hydras.Ackermann.wellFormed]
    +recs:192 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:193 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:193 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:193 [binder, in hydras.Ackermann.wellFormed]
    +recs:194 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:195 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:196 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:196 [binder, in hydras.Ackermann.checkPrf]
    +recs:198 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:198 [binder, in hydras.Ackermann.checkPrf]
    +recs:200 [binder, in hydras.Ackermann.checkPrf]
    +recs:202 [binder, in hydras.Ackermann.checkPrf]
    +recs:203 [binder, in hydras.Ackermann.wellFormed]
    +recs:204 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:204 [binder, in hydras.Ackermann.checkPrf]
    +recs:205 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:205 [binder, in hydras.Ackermann.wellFormed]
    +recs:206 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:206 [binder, in hydras.Ackermann.checkPrf]
    +recs:207 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:207 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:207 [binder, in hydras.Ackermann.wellFormed]
    +recs:208 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:208 [binder, in hydras.Ackermann.checkPrf]
    +recs:209 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:209 [binder, in hydras.Ackermann.wellFormed]
    +recs:21 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:210 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:210 [binder, in hydras.Ackermann.checkPrf]
    +recs:211 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:211 [binder, in hydras.Ackermann.wellFormed]
    +recs:213 [binder, in hydras.Ackermann.wellFormed]
    +recs:214 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:215 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:215 [binder, in hydras.Ackermann.wellFormed]
    +recs:216 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:216 [binder, in hydras.Ackermann.checkPrf]
    +recs:217 [binder, in hydras.Ackermann.wellFormed]
    +recs:218 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:218 [binder, in hydras.Ackermann.checkPrf]
    +recs:219 [binder, in hydras.Ackermann.wellFormed]
    +recs:220 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:220 [binder, in hydras.Ackermann.checkPrf]
    +recs:221 [binder, in hydras.Ackermann.wellFormed]
    +recs:222 [binder, in hydras.Ackermann.checkPrf]
    +recs:223 [binder, in hydras.Ackermann.wellFormed]
    +recs:225 [binder, in hydras.Ackermann.wellFormed]
    +recs:227 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:227 [binder, in hydras.Ackermann.wellFormed]
    +recs:229 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:229 [binder, in hydras.Ackermann.wellFormed]
    +recs:23 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:23 [binder, in hydras.Ackermann.codePA]
    +recs:230 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:231 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:231 [binder, in hydras.Ackermann.wellFormed]
    +recs:232 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:232 [binder, in hydras.Ackermann.checkPrf]
    +recs:233 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:233 [binder, in hydras.Ackermann.wellFormed]
    +recs:234 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:235 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:236 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:236 [binder, in hydras.Ackermann.wellFormed]
    +recs:238 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:239 [binder, in hydras.Ackermann.wellFormed]
    +recs:24 [binder, in hydras.Ackermann.wellFormed]
    +recs:240 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:241 [binder, in hydras.Ackermann.wellFormed]
    +recs:242 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:243 [binder, in hydras.Ackermann.wellFormed]
    +recs:244 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:244 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:245 [binder, in hydras.Ackermann.wellFormed]
    +recs:246 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:246 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:247 [binder, in hydras.Ackermann.wellFormed]
    +recs:248 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:25 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:250 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:252 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:254 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:255 [binder, in hydras.Ackermann.wellFormed]
    +recs:256 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:257 [binder, in hydras.Ackermann.wellFormed]
    +recs:258 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:259 [binder, in hydras.Ackermann.wellFormed]
    +recs:26 [binder, in hydras.Ackermann.checkPrf]
    +recs:26 [binder, in hydras.Ackermann.wellFormed]
    +recs:26 [binder, in hydras.Ackermann.codePA]
    +recs:261 [binder, in hydras.Ackermann.wellFormed]
    +recs:263 [binder, in hydras.Ackermann.wellFormed]
    +recs:264 [binder, in hydras.Ackermann.checkPrf]
    +recs:265 [binder, in hydras.Ackermann.wellFormed]
    +recs:267 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:267 [binder, in hydras.Ackermann.cPair]
    +recs:267 [binder, in hydras.Ackermann.wellFormed]
    +recs:268 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:269 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:269 [binder, in hydras.Ackermann.cPair]
    +recs:269 [binder, in hydras.Ackermann.wellFormed]
    +recs:27 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:270 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:271 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:271 [binder, in hydras.Ackermann.cPair]
    +recs:271 [binder, in hydras.Ackermann.wellFormed]
    +recs:272 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:273 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:273 [binder, in hydras.Ackermann.cPair]
    +recs:273 [binder, in hydras.Ackermann.wellFormed]
    +recs:274 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:275 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:275 [binder, in hydras.Ackermann.cPair]
    +recs:275 [binder, in hydras.Ackermann.wellFormed]
    +recs:277 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:277 [binder, in hydras.Ackermann.wellFormed]
    +recs:279 [binder, in hydras.Ackermann.wellFormed]
    +recs:281 [binder, in hydras.Ackermann.wellFormed]
    +recs:283 [binder, in hydras.Ackermann.cPair]
    +recs:283 [binder, in hydras.Ackermann.wellFormed]
    +recs:285 [binder, in hydras.Ackermann.cPair]
    +recs:285 [binder, in hydras.Ackermann.wellFormed]
    +recs:287 [binder, in hydras.Ackermann.cPair]
    +recs:287 [binder, in hydras.Ackermann.wellFormed]
    +recs:289 [binder, in hydras.Ackermann.cPair]
    +recs:289 [binder, in hydras.Ackermann.wellFormed]
    +recs:29 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:29 [binder, in hydras.Ackermann.codePA]
    +recs:291 [binder, in hydras.Ackermann.cPair]
    +recs:291 [binder, in hydras.Ackermann.wellFormed]
    +recs:293 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:293 [binder, in hydras.Ackermann.cPair]
    +recs:293 [binder, in hydras.Ackermann.wellFormed]
    +recs:294 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:295 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:295 [binder, in hydras.Ackermann.cPair]
    +recs:295 [binder, in hydras.Ackermann.wellFormed]
    +recs:296 [binder, in hydras.Ackermann.codeList]
    +recs:297 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:297 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:297 [binder, in hydras.Ackermann.cPair]
    +recs:297 [binder, in hydras.Ackermann.wellFormed]
    +recs:299 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:299 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:299 [binder, in hydras.Ackermann.cPair]
    +recs:299 [binder, in hydras.Ackermann.wellFormed]
    +recs:299 [binder, in hydras.Ackermann.codeList]
    +recs:301 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:301 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:301 [binder, in hydras.Ackermann.cPair]
    +recs:301 [binder, in hydras.Ackermann.wellFormed]
    +recs:301 [binder, in hydras.Ackermann.codeList]
    +recs:303 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:303 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:303 [binder, in hydras.Ackermann.cPair]
    +recs:303 [binder, in hydras.Ackermann.codeList]
    +recs:305 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:305 [binder, in hydras.Ackermann.cPair]
    +recs:305 [binder, in hydras.Ackermann.codeList]
    +recs:307 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:307 [binder, in hydras.Ackermann.cPair]
    +recs:307 [binder, in hydras.Ackermann.codeList]
    +recs:309 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:309 [binder, in hydras.Ackermann.cPair]
    +recs:309 [binder, in hydras.Ackermann.codeList]
    +recs:31 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:311 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:311 [binder, in hydras.Ackermann.cPair]
    +recs:311 [binder, in hydras.Ackermann.codeList]
    +recs:313 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:313 [binder, in hydras.Ackermann.cPair]
    +recs:313 [binder, in hydras.Ackermann.codeList]
    +recs:315 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:315 [binder, in hydras.Ackermann.cPair]
    +recs:315 [binder, in hydras.Ackermann.codeList]
    +recs:317 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:317 [binder, in hydras.Ackermann.checkPrf]
    +recs:317 [binder, in hydras.Ackermann.cPair]
    +recs:317 [binder, in hydras.Ackermann.codeList]
    +recs:319 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:319 [binder, in hydras.Ackermann.cPair]
    +recs:32 [binder, in hydras.Ackermann.codePA]
    +recs:321 [binder, in hydras.Ackermann.cPair]
    +recs:321 [binder, in hydras.Ackermann.codeList]
    +recs:323 [binder, in hydras.Ackermann.cPair]
    +recs:323 [binder, in hydras.Ackermann.codeList]
    +recs:325 [binder, in hydras.Ackermann.cPair]
    +recs:325 [binder, in hydras.Ackermann.wellFormed]
    +recs:325 [binder, in hydras.Ackermann.codeList]
    +recs:327 [binder, in hydras.Ackermann.wellFormed]
    +recs:327 [binder, in hydras.Ackermann.codeList]
    +recs:329 [binder, in hydras.Ackermann.wellFormed]
    +recs:329 [binder, in hydras.Ackermann.codeList]
    +recs:33 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:331 [binder, in hydras.Ackermann.wellFormed]
    +recs:331 [binder, in hydras.Ackermann.codeList]
    +recs:333 [binder, in hydras.Ackermann.codeList]
    +recs:335 [binder, in hydras.Ackermann.cPair]
    +recs:335 [binder, in hydras.Ackermann.codeList]
    +recs:337 [binder, in hydras.Ackermann.cPair]
    +recs:337 [binder, in hydras.Ackermann.codeList]
    +recs:339 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:339 [binder, in hydras.Ackermann.codeList]
    +recs:34 [binder, in hydras.Ackermann.wellFormed]
    +recs:341 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:343 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:343 [binder, in hydras.Ackermann.codeList]
    +recs:345 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:345 [binder, in hydras.Ackermann.codeList]
    +recs:347 [binder, in hydras.Ackermann.codeList]
    +recs:349 [binder, in hydras.Ackermann.codeList]
    +recs:35 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:35 [binder, in hydras.Ackermann.codePA]
    +recs:351 [binder, in hydras.Ackermann.codeList]
    +recs:353 [binder, in hydras.Ackermann.checkPrf]
    +recs:353 [binder, in hydras.Ackermann.codeList]
    +recs:36 [binder, in hydras.Ackermann.wellFormed]
    +recs:37 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:38 [binder, in hydras.Ackermann.codePA]
    +recs:39 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:406 [binder, in hydras.Ackermann.checkPrf]
    +recs:409 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:41 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:41 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:41 [binder, in hydras.Ackermann.codePA]
    +recs:411 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:413 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:415 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:417 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:419 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:421 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:423 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:43 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:43 [binder, in hydras.Ackermann.codePA]
    +recs:433 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:435 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:437 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:439 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:44 [binder, in hydras.Ackermann.checkPrf]
    +recs:449 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:45 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:45 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:45 [binder, in hydras.Ackermann.codePA]
    +recs:451 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:452 [binder, in hydras.Ackermann.checkPrf]
    +recs:453 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:455 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:46 [binder, in hydras.Ackermann.checkPrf]
    +recs:47 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:47 [binder, in hydras.Ackermann.codePA]
    +recs:48 [binder, in hydras.Ackermann.checkPrf]
    +recs:49 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:49 [binder, in hydras.Ackermann.codePA]
    +recs:491 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:493 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:495 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:497 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:50 [binder, in hydras.Ackermann.checkPrf]
    +recs:505 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:507 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:509 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:51 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:51 [binder, in hydras.Ackermann.codePA]
    +recs:511 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:517 [binder, in hydras.Ackermann.checkPrf]
    +recs:52 [binder, in hydras.Ackermann.checkPrf]
    +recs:520 [binder, in hydras.Ackermann.checkPrf]
    +recs:53 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:53 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:53 [binder, in hydras.Ackermann.codePA]
    +recs:534 [binder, in hydras.Ackermann.checkPrf]
    +recs:536 [binder, in hydras.Ackermann.checkPrf]
    +recs:539 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:54 [binder, in hydras.Ackermann.checkPrf]
    +recs:541 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:543 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:545 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:55 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:55 [binder, in hydras.Ackermann.codePA]
    +recs:553 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:555 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:557 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:559 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:56 [binder, in hydras.Ackermann.checkPrf]
    +recs:56 [binder, in hydras.Ackermann.wellFormed]
    +recs:57 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:57 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:57 [binder, in hydras.Ackermann.codePA]
    +recs:58 [binder, in hydras.Ackermann.checkPrf]
    +recs:58 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:58 [binder, in hydras.Ackermann.wellFormed]
    +recs:59 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:59 [binder, in hydras.Ackermann.codePA]
    +recs:6 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:6 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:6 [binder, in hydras.Ackermann.codePA]
    +recs:60 [binder, in hydras.Ackermann.checkPrf]
    +recs:61 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:619 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:62 [binder, in hydras.Ackermann.checkPrf]
    +recs:621 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:623 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:625 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:627 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:629 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:631 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:633 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:64 [binder, in hydras.Ackermann.checkPrf]
    +recs:643 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:645 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:647 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:649 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:65 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:65 [binder, in hydras.Ackermann.wellFormed]
    +recs:651 [binder, in hydras.Ackermann.checkPrf]
    +recs:67 [binder, in hydras.Ackermann.wellFormed]
    +recs:69 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:69 [binder, in hydras.Ackermann.wellFormed]
    +recs:693 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:696 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:699 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:702 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:705 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:708 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:71 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:71 [binder, in hydras.Ackermann.wellFormed]
    +recs:71 [binder, in hydras.Ackermann.codePA]
    +recs:711 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:714 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:717 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:720 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:723 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:726 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:728 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:73 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:73 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:73 [binder, in hydras.Ackermann.wellFormed]
    +recs:730 [binder, in hydras.Ackermann.checkPrf]
    +recs:730 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:732 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:734 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:736 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:738 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:74 [binder, in hydras.Ackermann.checkPrf]
    +recs:74 [binder, in hydras.Ackermann.codePA]
    +recs:740 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:742 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:744 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:746 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:748 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:75 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:75 [binder, in hydras.Ackermann.wellFormed]
    +recs:76 [binder, in hydras.Ackermann.checkPrf]
    +recs:76 [binder, in hydras.Ackermann.codePA]
    +recs:762 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:764 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:766 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:768 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:77 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:77 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:77 [binder, in hydras.Ackermann.wellFormed]
    +recs:770 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:772 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:774 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:776 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:778 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:78 [binder, in hydras.Ackermann.checkPrf]
    +recs:78 [binder, in hydras.Ackermann.codePA]
    +recs:780 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:783 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:786 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:788 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:79 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:79 [binder, in hydras.Ackermann.wellFormed]
    +recs:790 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:791 [binder, in hydras.Ackermann.checkPrf]
    +recs:792 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:794 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:796 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:798 [binder, in hydras.Ackermann.checkPrf]
    +recs:798 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:80 [binder, in hydras.Ackermann.checkPrf]
    +recs:80 [binder, in hydras.Ackermann.codePA]
    +recs:804 [binder, in hydras.Ackermann.checkPrf]
    +recs:808 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:81 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:81 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:81 [binder, in hydras.Ackermann.wellFormed]
    +recs:810 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:812 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:814 [binder, in hydras.Ackermann.checkPrf]
    +recs:814 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:816 [binder, in hydras.Ackermann.checkPrf]
    +recs:82 [binder, in hydras.Ackermann.codePA]
    +recs:83 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:83 [binder, in hydras.Ackermann.wellFormed]
    +recs:831 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:834 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:839 [binder, in hydras.Ackermann.checkPrf]
    +recs:84 [binder, in hydras.Ackermann.codePA]
    +recs:842 [binder, in hydras.Ackermann.checkPrf]
    +recs:85 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:85 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:85 [binder, in hydras.Ackermann.wellFormed]
    +recs:86 [binder, in hydras.Ackermann.codePA]
    +recs:862 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:865 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:868 [binder, in hydras.Ackermann.checkPrf]
    +recs:87 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:87 [binder, in hydras.Ackermann.wellFormed]
    +recs:870 [binder, in hydras.Ackermann.checkPrf]
    +recs:88 [binder, in hydras.Ackermann.codePA]
    +recs:886 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:889 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:89 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:89 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:89 [binder, in hydras.Ackermann.wellFormed]
    +recs:90 [binder, in hydras.Ackermann.codePA]
    +recs:902 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:905 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:91 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:91 [binder, in hydras.Ackermann.wellFormed]
    +recs:92 [binder, in hydras.Ackermann.codePA]
    +recs:929 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:93 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:93 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:932 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:94 [binder, in hydras.Ackermann.codePA]
    +recs:941 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:944 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:947 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:95 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:95 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:950 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:953 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:956 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:959 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:96 [binder, in hydras.Ackermann.codePA]
    +recs:962 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:965 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:968 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:97 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:97 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:971 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:974 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:977 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:98 [binder, in hydras.Ackermann.checkPrf]
    +recs:98 [binder, in hydras.Ackermann.codePA]
    +recs:982 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:985 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:988 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:99 [binder, in hydras.Ackermann.codeFreeVar]
    +recs:99 [binder, in hydras.Ackermann.codeSubTerm]
    +recs:991 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:994 [binder, in hydras.Ackermann.codeSubFormula]
    +recs:997 [binder, in hydras.Ackermann.codeSubFormula]
    +rec:10 [binder, in hydras.Ackermann.codeNatToTerm]
    +rec:100 [binder, in Goedel.rosserPA]
    +rec:102 [binder, in Goedel.rosserPA]
    +rec:104 [binder, in Goedel.rosserPA]
    +rec:106 [binder, in Goedel.rosserPA]
    +rec:108 [binder, in Goedel.rosserPA]
    +rec:11 [binder, in hydras.Ackermann.codeNatToTerm]
    +rec:12 [binder, in hydras.Ackermann.codeNatToTerm]
    +rec:1268 [binder, in hydras.Ackermann.codeSubFormula]
    +rec:1269 [binder, in hydras.Ackermann.codeSubFormula]
    +rec:1270 [binder, in hydras.Ackermann.codeSubFormula]
    +rec:1271 [binder, in hydras.Ackermann.codeSubFormula]
    +rec:1272 [binder, in hydras.Ackermann.codeSubFormula]
    +rec:1273 [binder, in hydras.Ackermann.codeSubFormula]
    +rec:1274 [binder, in hydras.Ackermann.codeSubFormula]
    +rec:1275 [binder, in hydras.Ackermann.codeSubFormula]
    +rec:1276 [binder, in hydras.Ackermann.codeSubFormula]
    +rec:1277 [binder, in hydras.Ackermann.codeSubFormula]
    +rec:1278 [binder, in hydras.Ackermann.codeSubFormula]
    +rec:1279 [binder, in hydras.Ackermann.codeSubFormula]
    +rec:1280 [binder, in hydras.Ackermann.codeSubFormula]
    +rec:13 [binder, in hydras.Ackermann.codeNatToTerm]
    +rec:1311 [binder, in hydras.Ackermann.codeSubFormula]
    +rec:1312 [binder, in hydras.Ackermann.codeSubFormula]
    +rec:1317 [binder, in hydras.Ackermann.codeSubFormula]
    +rec:1322 [binder, in hydras.Ackermann.codeSubFormula]
    +rec:1325 [binder, in hydras.Ackermann.codeSubFormula]
    +rec:1328 [binder, in hydras.Ackermann.codeSubFormula]
    +rec:1331 [binder, in hydras.Ackermann.codeSubFormula]
    +rec:1334 [binder, in hydras.Ackermann.codeSubFormula]
    +rec:1337 [binder, in hydras.Ackermann.codeSubFormula]
    +rec:1340 [binder, in hydras.Ackermann.codeSubFormula]
    +rec:1341 [binder, in hydras.Ackermann.codeSubFormula]
    +rec:1342 [binder, in hydras.Ackermann.codeSubFormula]
    +rec:1343 [binder, in hydras.Ackermann.codeSubFormula]
    +rec:1344 [binder, in hydras.Ackermann.codeSubFormula]
    +rec:1345 [binder, in hydras.Ackermann.codeSubFormula]
    +rec:1346 [binder, in hydras.Ackermann.codeSubFormula]
    +rec:1347 [binder, in hydras.Ackermann.codeSubFormula]
    +rec:137 [binder, in Goedel.PRrepresentable]
    +rec:14 [binder, in hydras.Prelude.Iterates]
    +rec:14 [binder, in hydras.Ackermann.codeNatToTerm]
    +rec:148 [binder, in Goedel.PRrepresentable]
    +rec:15 [binder, in hydras.Ackermann.codeNatToTerm]
    +rec:159 [binder, in Goedel.PRrepresentable]
    +rec:160 [binder, in hydras.Ackermann.fol]
    +rec:166 [binder, in hydras.Ackermann.fol]
    +rec:242 [binder, in Goedel.PRrepresentable]
    +rec:248 [binder, in Goedel.PRrepresentable]
    +rec:29 [binder, in hydras.Ackermann.Languages]
    +rec:30 [binder, in Goedel.rosser]
    +rec:32 [binder, in Goedel.rosser]
    +rec:34 [binder, in hydras.Ackermann.Languages]
    +rec:36 [binder, in Goedel.codeSysPrf]
    +rec:38 [binder, in Goedel.codeSysPrf]
    +rec:39 [binder, in Goedel.rosser]
    +rec:44 [binder, in Goedel.rosser]
    +rec:46 [binder, in Goedel.codeSysPrf]
    +rec:463 [binder, in Goedel.PRrepresentable]
    +rec:471 [binder, in Goedel.PRrepresentable]
    +rec:48 [binder, in Goedel.codeSysPrf]
    +rec:49 [binder, in Goedel.rosser]
    +rec:54 [binder, in Goedel.rosser]
    +rec:540 [binder, in hydras.Ackermann.checkPrf]
    +rec:543 [binder, in hydras.Ackermann.checkPrf]
    +rec:547 [binder, in hydras.Ackermann.checkPrf]
    +rec:550 [binder, in hydras.Ackermann.checkPrf]
    +rec:552 [binder, in hydras.Ackermann.checkPrf]
    +rec:554 [binder, in hydras.Ackermann.checkPrf]
    +rec:556 [binder, in hydras.Ackermann.checkPrf]
    +rec:558 [binder, in hydras.Ackermann.checkPrf]
    +rec:56 [binder, in Goedel.rosser]
    +rec:560 [binder, in hydras.Ackermann.checkPrf]
    +rec:577 [binder, in hydras.Ackermann.primRec]
    +rec:578 [binder, in hydras.Ackermann.primRec]
    +rec:579 [binder, in hydras.Ackermann.primRec]
    +rec:58 [binder, in Goedel.rosser]
    +rec:580 [binder, in hydras.Ackermann.primRec]
    +rec:591 [binder, in hydras.Ackermann.checkPrf]
    +rec:593 [binder, in hydras.Ackermann.checkPrf]
    +rec:595 [binder, in hydras.Ackermann.checkPrf]
    +rec:597 [binder, in hydras.Ackermann.checkPrf]
    +rec:599 [binder, in hydras.Ackermann.checkPrf]
    +rec:6 [binder, in hydras.Ackermann.codeNatToTerm]
    +rec:60 [binder, in Goedel.rosserPA]
    +rec:601 [binder, in hydras.Ackermann.checkPrf]
    +rec:603 [binder, in hydras.Ackermann.checkPrf]
    +rec:605 [binder, in hydras.Ackermann.checkPrf]
    +rec:607 [binder, in hydras.Ackermann.checkPrf]
    +rec:62 [binder, in Goedel.rosserPA]
    +rec:62 [binder, in Goedel.rosser]
    +rec:620 [binder, in hydras.Ackermann.checkPrf]
    +rec:622 [binder, in hydras.Ackermann.checkPrf]
    +rec:624 [binder, in hydras.Ackermann.checkPrf]
    +rec:626 [binder, in hydras.Ackermann.checkPrf]
    +rec:628 [binder, in hydras.Ackermann.checkPrf]
    +rec:630 [binder, in hydras.Ackermann.checkPrf]
    +rec:632 [binder, in hydras.Ackermann.checkPrf]
    +rec:634 [binder, in hydras.Ackermann.checkPrf]
    +rec:636 [binder, in hydras.Ackermann.checkPrf]
    +rec:64 [binder, in Goedel.rosser]
    +rec:69 [binder, in Goedel.rosserPA]
    +rec:7 [binder, in hydras.Ackermann.codeNatToTerm]
    +rec:74 [binder, in Goedel.rosserPA]
    +rec:79 [binder, in Goedel.rosserPA]
    +rec:795 [binder, in hydras.Ackermann.checkPrf]
    +rec:8 [binder, in hydras.Ackermann.codeNatToTerm]
    +rec:801 [binder, in hydras.Ackermann.checkPrf]
    +rec:808 [binder, in hydras.Ackermann.checkPrf]
    +rec:81 [binder, in hydras.Ackermann.codeSubFormula]
    +rec:812 [binder, in hydras.Ackermann.checkPrf]
    +rec:813 [binder, in hydras.Ackermann.primRec]
    +rec:84 [binder, in Goedel.rosserPA]
    +rec:86 [binder, in Goedel.rosserPA]
    +rec:88 [binder, in Goedel.rosserPA]
    +rec:9 [binder, in hydras.Ackermann.codeNatToTerm]
    +rec:95 [binder, in Goedel.rosserPA]
    +reduceAddExists [lemma, in Goedel.PRrepresentable]
    +reduceAddExistsOneWay [lemma, in Goedel.PRrepresentable]
    +reduceAddForalls [lemma, in Goedel.PRrepresentable]
    +reduceAnd [lemma, in hydras.Ackermann.folReplace]
    +reduceCloseList [lemma, in hydras.Ackermann.folReplace]
    +reduceExist [lemma, in hydras.Ackermann.folReplace]
    +reduceForall [lemma, in hydras.Ackermann.folReplace]
    +reduceIff [lemma, in hydras.Ackermann.folReplace]
    +reduceIfThenElse [lemma, in hydras.Ackermann.folReplace]
    +reduceImp [lemma, in hydras.Ackermann.folReplace]
    +reduceNot [lemma, in hydras.Ackermann.folReplace]
    +reduceOr [lemma, in hydras.Ackermann.folReplace]
    +reduceSub [lemma, in hydras.Ackermann.folReplace]
    +reduceSubAll [lemma, in hydras.Ackermann.subAll]
    +reduce_lt_plus [lemma, in hydras.Epsilon0.T1]
    +reduce_assoc_list [lemma, in hydras.rpo.more_list]
    +reduce1stCompose [lemma, in hydras.Ackermann.primRec]
    +reduce2ndCompose [lemma, in hydras.Ackermann.primRec]
    +Refinement_proof.E_eq [variable, in additions.Addition_Chains]
    +Refinement_proof.E_one [variable, in additions.Addition_Chains]
    +Refinement_proof.E_op [variable, in additions.Addition_Chains]
    +Refinement_proof.A [variable, in additions.Addition_Chains]
    +Refinement_proof [section, in additions.Addition_Chains]
    +refinesPred [definition, in gaia_hydras.T1Bridge]
    +refinesRel [definition, in gaia_hydras.T1Bridge]
    +refines0 [definition, in gaia_hydras.T1Bridge]
    +refines1 [definition, in gaia_hydras.T1Bridge]
    +refines1_R [lemma, in gaia_hydras.T1Bridge]
    +refines2 [definition, in gaia_hydras.T1Bridge]
    +refines2_R [lemma, in gaia_hydras.T1Bridge]
    +reflection [abbreviation, in Goedel.goedel1]
    +rel [projection, in hydras.Ackermann.model]
    +Relations [projection, in hydras.Ackermann.fol]
    +RelDecision [record, in hydras.Prelude.STDPP_compat]
    +RelDecision [inductive, in hydras.Prelude.STDPP_compat]
    +RelDecision_Inverse_fun [instance, in hydras.Prelude.DecPreOrder_Instances]
    +RElim [lemma, in hydras.Epsilon0.F_alpha]
    +RElim [lemma, in hydras.Epsilon0.Hprime]
    +rel_surj_i [constructor, in hydras.Schutte.GRelations]
    +rel_surjection [inductive, in hydras.Schutte.GRelations]
    +rel_inj_i [constructor, in hydras.Schutte.GRelations]
    +rel_injection [inductive, in hydras.Schutte.GRelations]
    +rel_inv [definition, in hydras.Schutte.PartialFun]
    +rel_bij_i [constructor, in hydras.Schutte.PartialFun]
    +rel_bijection [inductive, in hydras.Schutte.PartialFun]
    +rel_inj_i [constructor, in hydras.Schutte.PartialFun]
    +rel_injection [inductive, in hydras.Schutte.PartialFun]
    +rel_inj [definition, in hydras.Schutte.PartialFun]
    +rel_onto [definition, in hydras.Schutte.PartialFun]
    +rel_functional [definition, in hydras.Schutte.PartialFun]
    +rel_codomain [definition, in hydras.Schutte.PartialFun]
    +rel_domain [definition, in hydras.Schutte.PartialFun]
    +rel_enumerates [definition, in hydras.Schutte.Countable]
    +rel_numbers [definition, in hydras.Schutte.Countable]
    +rem [abbreviation, in Goedel.PRrepresentable]
    +Remaining [constructor, in hydras.Epsilon0.Large_Sets_Examples]
    +remove [definition, in hydras.rpo.more_list]
    +remove_first_sumand [lemma, in hydras.Epsilon0.T1]
    +remove_list [definition, in hydras.rpo.more_list]
    +remove_heads_r_free [lemma, in hydras.Hydra.Hydra_Lemmas]
    +remove_heads_r [lemma, in hydras.Hydra.Hydra_Lemmas]
    +Rem0 [lemma, in hydras.Epsilon0.Paths]
    +Rem01 [lemma, in hydras.Epsilon0.Paths]
    +Rem02 [lemma, in hydras.Epsilon0.Paths]
    +Rem03 [lemma, in hydras.Epsilon0.Paths]
    +Rem04 [lemma, in hydras.Epsilon0.Paths]
    +Rem05 [lemma, in hydras.Epsilon0.Paths]
    +Rem06 [lemma, in hydras.Epsilon0.Paths]
    +Rem08 [lemma, in hydras.Epsilon0.Paths]
    +Rem09 [lemma, in hydras.Epsilon0.Paths]
    +rem1 [lemma, in hydras.Hydra.O2H]
    +Rem1 [lemma, in hydras.MoreAck.Ack]
    +Rem1 [lemma, in hydras.Epsilon0.Paths]
    +Rem10 [lemma, in hydras.Epsilon0.Paths]
    +Rem11 [lemma, in hydras.Epsilon0.Paths]
    +rem2 [lemma, in hydras.Hydra.O2H]
    +Rem2 [lemma, in hydras.MoreAck.Ack]
    +Rem2 [lemma, in hydras.Epsilon0.Paths]
    +rem3 [lemma, in hydras.Hydra.O2H]
    +Rem3 [lemma, in hydras.MoreAck.Ack]
    +Rem3 [lemma, in hydras.Hydra.Epsilon0_Needed_Std]
    +Rem4 [lemma, in hydras.Hydra.Epsilon0_Needed_Std]
    +rem6 [lemma, in hydras.Hydra.O2H]
    +rem61 [lemma, in hydras.Hydra.O2H]
    +rem62 [lemma, in hydras.Hydra.O2H]
    +rep [definition, in hydras.OrdinalNotations.ON_Generic]
    +replaceCompose2 [lemma, in hydras.Ackermann.primRec]
    +ReplaceFormulaTerm [definition, in hydras.Ackermann.codeSubFormula]
    +ReplaceFormulaTermIsPR [instance, in hydras.Ackermann.codeSubFormula]
    +ReplaceFormulaTermMonotone [lemma, in hydras.Ackermann.codeSubFormula]
    +ReplaceFormulaTermSub [lemma, in hydras.Ackermann.codeSubFormula]
    +Replacement [section, in hydras.Ackermann.folReplace]
    +Replacement.Formula [variable, in hydras.Ackermann.folReplace]
    +Replacement.Formulas [variable, in hydras.Ackermann.folReplace]
    +Replacement.L [variable, in hydras.Ackermann.folReplace]
    +Replacement.SysPrf [variable, in hydras.Ackermann.folReplace]
    +Replacement.System [variable, in hydras.Ackermann.folReplace]
    +Replacement.Term [variable, in hydras.Ackermann.folReplace]
    +Replacement.Terms [variable, in hydras.Ackermann.folReplace]
    +ReplaceTermsTerm [definition, in hydras.Ackermann.codeSubFormula]
    +ReplaceTermsTermIsPR [instance, in hydras.Ackermann.codeSubFormula]
    +ReplaceTermsTermMonotone [lemma, in hydras.Ackermann.codeSubFormula]
    +ReplaceTermsTermSub [lemma, in hydras.Ackermann.codeSubFormula]
    +ReplaceTermTerm [definition, in hydras.Ackermann.codeSubFormula]
    +ReplaceTermTermIsPR [instance, in hydras.Ackermann.codeSubFormula]
    +ReplaceTermTermMonotone [lemma, in hydras.Ackermann.codeSubFormula]
    +ReplaceTermTermsTerm [definition, in hydras.Ackermann.codeSubFormula]
    +ReplaceTermTermsTermIsPR [instance, in hydras.Ackermann.codeSubFormula]
    +ReplaceTermTermsTermMonotone [lemma, in hydras.Ackermann.codeSubFormula]
    +ReplaceTermTermSub [lemma, in hydras.Ackermann.codeSubFormula]
    +replace_at_pos_list:338 [binder, in hydras.rpo.term]
    +replace_at_pos_list:160 [binder, in hydras.rpo.term]
    +Representable [definition, in Goedel.PRrepresentable]
    +Representable [definition, in hydras.Ackermann.expressible]
    +RepresentableAlternate [definition, in Goedel.PRrepresentable]
    +RepresentableAlternate [lemma, in hydras.Ackermann.expressible]
    +RepresentableExpressible [section, in hydras.Ackermann.expressible]
    +RepresentableExpressible.closedT1 [variable, in hydras.Ackermann.expressible]
    +RepresentableExpressible.nn1 [variable, in hydras.Ackermann.expressible]
    +RepresentableExpressible.T [variable, in hydras.Ackermann.expressible]
    +RepresentableHalfHelp [lemma, in hydras.Ackermann.expressible]
    +RepresentableHalf1 [definition, in hydras.Ackermann.expressible]
    +RepresentableHalf1Alternate [lemma, in hydras.Ackermann.expressible]
    +RepresentableHalf2 [definition, in hydras.Ackermann.expressible]
    +RepresentableHalf2Alternate [lemma, in hydras.Ackermann.expressible]
    +RepresentableHelp [definition, in Goedel.PRrepresentable]
    +RepresentableHelp [definition, in hydras.Ackermann.expressible]
    +RepresentablesHelp [definition, in Goedel.PRrepresentable]
    +Representable_ext [definition, in Goedel.PRrepresentable]
    +Representable_ext [lemma, in hydras.Ackermann.expressible]
    +Representable2Expressible [lemma, in hydras.Ackermann.expressible]
    +RepresentsInSelf [definition, in Goedel.rosser]
    +rep:66 [binder, in Goedel.rosser]
    +restrict [definition, in hydras.Prelude.Restriction]
    +restrict [definition, in gaia_hydras.onType]
    +restrict [lemma, in hydras.Schutte.Ordering_Functions]
    +restrict [definition, in gaia_hydras.nfwfgaia]
    +restricted_recursion.R [variable, in hydras.Prelude.Restriction]
    +restricted_recursion.E [variable, in hydras.Prelude.Restriction]
    +restricted_recursion.A [variable, in hydras.Prelude.Restriction]
    +restricted_recursion [section, in hydras.Prelude.Restriction]
    +restricted_recursion.R [variable, in gaia_hydras.nfwfgaia]
    +restricted_recursion.P [variable, in gaia_hydras.nfwfgaia]
    +restricted_recursion.A [variable, in gaia_hydras.nfwfgaia]
    +restricted_recursion [section, in gaia_hydras.nfwfgaia]
    +Restriction [library]
    +restriction_fwd [lemma, in hydras.Prelude.Restriction]
    +restrict_build [definition, in hydras.Prelude.Restriction]
    +rest:3 [binder, in hydras.Epsilon0.Large_Sets_Examples]
    +rest:63 [binder, in hydras.Ackermann.codeSubFormula]
    +result_equiv_equiv [instance, in additions.AM]
    +result_equiv_success [constructor, in additions.AM]
    +result_equiv_fail [constructor, in additions.AM]
    +result_equiv [inductive, in additions.AM]
    +Return [constructor, in additions.Addition_Chains]
    +Return_proper [instance, in additions.Euclidean_Chains]
    +rosser [library]
    +rosserPA [library]
    +Rosser'sIncompleteness [lemma, in Goedel.rosserPA]
    +Rosser'sIncompleteness [lemma, in Goedel.rosser]
    +Rosser's_Incompleteness.expressT2 [variable, in Goedel.rosserPA]
    +Rosser's_Incompleteness.expressT1 [variable, in Goedel.rosserPA]
    +Rosser's_Incompleteness.freeVarRepT [variable, in Goedel.rosserPA]
    +Rosser's_Incompleteness.v0 [variable, in Goedel.rosserPA]
    +Rosser's_Incompleteness.repT [variable, in Goedel.rosserPA]
    +Rosser's_Incompleteness.extendsPA [variable, in Goedel.rosserPA]
    +Rosser's_Incompleteness.T [variable, in Goedel.rosserPA]
    +Rosser's_Incompleteness [section, in Goedel.rosserPA]
    +Rosser's_Incompleteness.expressT2 [variable, in Goedel.rosser]
    +Rosser's_Incompleteness.expressT1 [variable, in Goedel.rosser]
    +Rosser's_Incompleteness.freeVarRepT [variable, in Goedel.rosser]
    +Rosser's_Incompleteness.v0 [variable, in Goedel.rosser]
    +Rosser's_Incompleteness.repT [variable, in Goedel.rosser]
    +Rosser's_Incompleteness.extendsNN [variable, in Goedel.rosser]
    +Rosser's_Incompleteness.T [variable, in Goedel.rosser]
    +Rosser's_Incompleteness [section, in Goedel.rosser]
    +round [projection, in hydras.Hydra.BigBattle]
    +round [definition, in hydras.Hydra.Hydra_Definitions]
    +rounds [inductive, in hydras.Hydra.Hydra_Definitions]
    +rounds_free_equiv2 [lemma, in hydras.Hydra.Hydra_Lemmas]
    +rounds_free_equiv1 [lemma, in hydras.Hydra.Hydra_Lemmas]
    +rounds_trans [lemma, in hydras.Hydra.Hydra_Lemmas]
    +rounds_n [constructor, in hydras.Hydra.Hydra_Definitions]
    +rounds_1 [constructor, in hydras.Hydra.Hydra_Definitions]
    +round_decr [lemma, in hydras.Hydra.Hydra_Termination]
    +round_n_inv [lemma, in hydras.Hydra.Hydra_Lemmas]
    +round_n_remove_h [lemma, in hydras.Hydra.Hydra_Lemmas]
    +round_plus_trans [lemma, in hydras.Hydra.Hydra_Lemmas]
    +round_S [lemma, in hydras.Hydra.Omega_Small]
    +round_t [definition, in hydras.Hydra.Hydra_Definitions]
    +round_spec [definition, in hydras.Hydra.Hydra_Definitions]
    +round_star_intro [lemma, in hydras.Hydra.Hydra_Definitions]
    +round_star [definition, in hydras.Hydra.Hydra_Definitions]
    +round_plus [definition, in hydras.Hydra.Hydra_Definitions]
    +round_n [definition, in hydras.Hydra.Hydra_Definitions]
    +RP [lemma, in hydras.Epsilon0.F_alpha]
    +RP [lemma, in hydras.Epsilon0.Hprime]
    +RPO [module, in hydras.rpo.rpo]
    +rpo [library]
    +rpo_7_1 [lemma, in hydras.Gamma0.Gamma0]
    +rpo_6_4 [lemma, in hydras.Gamma0.Gamma0]
    +rpo_6_1 [lemma, in hydras.Gamma0.Gamma0]
    +rpo_5_4 [lemma, in hydras.Gamma0.Gamma0]
    +rpo_5_1 [lemma, in hydras.Gamma0.Gamma0]
    +rpo_5_3 [lemma, in hydras.Gamma0.Gamma0]
    +rpo_5_2 [lemma, in hydras.Gamma0.Gamma0]
    +rpo_4_4 [lemma, in hydras.Gamma0.Gamma0]
    +rpo_4_1 [lemma, in hydras.Gamma0.Gamma0]
    +rpo_4_3 [lemma, in hydras.Gamma0.Gamma0]
    +rpo_4_2 [lemma, in hydras.Gamma0.Gamma0]
    +rpo_3_4 [lemma, in hydras.Gamma0.Gamma0]
    +rpo_3_1 [lemma, in hydras.Gamma0.Gamma0]
    +rpo_3_3 [lemma, in hydras.Gamma0.Gamma0]
    +rpo_3_2 [lemma, in hydras.Gamma0.Gamma0]
    +rpo_2_4 [lemma, in hydras.Gamma0.Gamma0]
    +rpo_2_1 [lemma, in hydras.Gamma0.Gamma0]
    +rpo_2_3 [lemma, in hydras.Gamma0.Gamma0]
    +rpo_2_2 [lemma, in hydras.Gamma0.Gamma0]
    +rpo_trans [lemma, in hydras.Gamma0.Gamma0]
    +RPO.Eq [constructor, in hydras.rpo.rpo]
    +RPO.List_mul [constructor, in hydras.rpo.rpo]
    +RPO.List_eq [constructor, in hydras.rpo.rpo]
    +RPO.List_gt [constructor, in hydras.rpo.rpo]
    +RPO.LP [module, in hydras.rpo.rpo]
    +RPO.Lt [constructor, in hydras.rpo.rpo]
    +RPO.P [module, in hydras.rpo.rpo]
    +RPO.rpo [inductive, in hydras.rpo.rpo]
    +RPO.rpo_add_context [axiom, in hydras.rpo.rpo]
    +RPO.rpo_subst [axiom, in hydras.rpo.rpo]
    +RPO.rpo_trans [axiom, in hydras.rpo.rpo]
    +RPO.rpo_closure [axiom, in hydras.rpo.rpo]
    +RPO.rpo_mul [inductive, in hydras.rpo.rpo]
    +RPO.rpo_lex [inductive, in hydras.rpo.rpo]
    +RPO.rpo_eq [inductive, in hydras.rpo.rpo]
    +RPO.Subterm [constructor, in hydras.rpo.rpo]
    +RPO.T [module, in hydras.rpo.rpo]
    +RPO.Top_eq_mul [constructor, in hydras.rpo.rpo]
    +RPO.Top_eq_lex [constructor, in hydras.rpo.rpo]
    +RPO.Top_gt [constructor, in hydras.rpo.rpo]
    +RPO.wf_rpo [axiom, in hydras.rpo.rpo]
    +rt:9 [binder, in hydras.Prelude.DecPreOrder]
    +Rwf [lemma, in hydras.Prelude.First_toggle]
    +R_given.R [variable, in hydras.Prelude.Sort_spec]
    +R_given.A [variable, in hydras.Prelude.Sort_spec]
    +R_given [section, in hydras.Prelude.Sort_spec]
    +R_nat_elaguee_domain [lemma, in hydras.Schutte.GRelations]
    +R_nat_elaguee_fun [lemma, in hydras.Schutte.GRelations]
    +R_nat_elaguee [definition, in hydras.Schutte.GRelations]
    +R_inv_inj [lemma, in hydras.Schutte.GRelations]
    +R_inv [definition, in hydras.Schutte.GRelations]
    +R_inv_surj [lemma, in hydras.Schutte.GRelations]
    +R_pred_Sn [lemma, in hydras.Gamma0.Gamma0]
    +R_inc_rpo [lemma, in hydras.Gamma0.Gamma0]
    +r':32 [binder, in hydras.Prelude.More_Arith]
    +r':38 [binder, in hydras.Prelude.More_Arith]
    +R':547 [binder, in hydras.Ackermann.primRec]
    +R':561 [binder, in hydras.Ackermann.primRec]
    +r':61 [binder, in hydras.Prelude.More_Arith]
    +r':90 [binder, in hydras.Hydra.Hydra_Definitions]
    +R0 [lemma, in hydras.MoreAck.Ack]
    +R0 [lemma, in hydras.Hydra.Battle_length]
    +R0 [lemma, in gaia_hydras.onType]
    +R0 [lemma, in hydras.Epsilon0.Hprime]
    +R00 [lemma, in hydras.Epsilon0.F_omega]
    +R00 [lemma, in hydras.solutions_exercises.isqrt]
    +R01 [instance, in hydras.Epsilon0.F_omega]
    +R01 [lemma, in hydras.solutions_exercises.isqrt]
    +R02 [instance, in hydras.Epsilon0.F_omega]
    +R02 [lemma, in hydras.solutions_exercises.isqrt]
    +R03 [instance, in hydras.Epsilon0.F_omega]
    +R1 [lemma, in hydras.solutions_exercises.is_F_monotonous]
    +R1 [lemma, in hydras.Epsilon0.F_alpha]
    +R1 [lemma, in hydras.MoreAck.AckNotPR]
    +R1 [lemma, in hydras.Epsilon0.Large_Sets]
    +R1 [lemma, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +R1 [lemma, in hydras.MoreAck.Ack]
    +R1 [lemma, in hydras.solutions_exercises.schutte_cnf_counter_example]
    +R1 [lemma, in gaia_hydras.onType]
    +R1 [lemma, in hydras.solutions_exercises.F_3]
    +R1 [lemma, in hydras.Epsilon0.Hprime]
    +R1 [definition, in hydras.Schutte.Ordering_Functions]
    +R1 [lemma, in hydras.Gamma0.Gamma0]
    +R1 [lemma, in hydras.MoreAck.FolExamples]
    +R1 [inductive, in hydras.Hydra.Hydra_Definitions]
    +R1_mem_head [lemma, in hydras.Hydra.O2H]
    +R1_R2 [lemma, in hydras.Hydra.O2H]
    +R1_hcons_mult [lemma, in hydras.Hydra.O2H]
    +R1_hcons [lemma, in hydras.Hydra.O2H]
    +R1_decr [lemma, in hydras.Hydra.Hydra_Termination]
    +R1_decr_0 [lemma, in hydras.Hydra.Hydra_Termination]
    +R1_remove_r_i [lemma, in hydras.Hydra.Hydra_Lemmas]
    +R1_app [lemma, in hydras.Hydra.Hydra_Lemmas]
    +R1_iff [lemma, in hydras.Hydra.Hydra_Lemmas]
    +R1_aux [lemma, in hydras.Schutte.Ordering_Functions]
    +R1_intro [constructor, in hydras.Hydra.Hydra_Definitions]
    +R12 [lemma, in hydras.Epsilon0.Paths]
    +R13 [lemma, in hydras.Epsilon0.Paths]
    +R14 [lemma, in hydras.Epsilon0.Paths]
    +R15 [lemma, in hydras.Epsilon0.Paths]
    +R16 [lemma, in hydras.Epsilon0.Paths]
    +R17 [lemma, in hydras.Epsilon0.Paths]
    +R18 [lemma, in hydras.Epsilon0.Paths]
    +R19 [lemma, in hydras.Epsilon0.Paths]
    +R1:2 [binder, in additions.Wf_transparent]
    +r1:41 [binder, in hydras.Gamma0.Gamma0]
    +r1:49 [binder, in hydras.Gamma0.Gamma0]
    +r1:57 [binder, in hydras.Gamma0.Gamma0]
    +r1:65 [binder, in hydras.Gamma0.Gamma0]
    +R2 [lemma, in hydras.solutions_exercises.is_F_monotonous]
    +R2 [instance, in hydras.MoreAck.AckNotPR]
    +R2 [lemma, in hydras.Epsilon0.Large_Sets]
    +R2 [lemma, in hydras.MoreAck.Ack]
    +R2 [lemma, in hydras.solutions_exercises.schutte_cnf_counter_example]
    +R2 [lemma, in hydras.Hydra.Battle_length]
    +R2 [lemma, in hydras.Epsilon0.Hprime]
    +R2 [lemma, in hydras.Schutte.Ordering_Functions]
    +R2 [lemma, in hydras.Gamma0.Gamma0]
    +R2 [inductive, in hydras.Hydra.Hydra_Definitions]
    +r2i [definition, in hydras.Schutte.PartialFun]
    +R2_decr [lemma, in hydras.Hydra.Hydra_Termination]
    +R2_decr_0 [lemma, in hydras.Hydra.Hydra_Termination]
    +R2_app [lemma, in hydras.Hydra.Hydra_Lemmas]
    +R2_ind2 [definition, in hydras.Hydra.Hydra_Lemmas]
    +R2_iff [lemma, in hydras.Hydra.Hydra_Lemmas]
    +R2_intro_2 [constructor, in hydras.Hydra.Hydra_Definitions]
    +R2_intro [constructor, in hydras.Hydra.Hydra_Definitions]
    +R20 [lemma, in hydras.Epsilon0.Paths]
    +R21 [lemma, in hydras.Epsilon0.Paths]
    +R22 [lemma, in hydras.Epsilon0.Paths]
    +R23 [lemma, in hydras.Epsilon0.Paths]
    +R24 [lemma, in hydras.Epsilon0.Paths]
    +R25 [lemma, in hydras.Epsilon0.Paths]
    +R26 [lemma, in hydras.Epsilon0.Paths]
    +R27 [lemma, in hydras.Epsilon0.Paths]
    +R28 [lemma, in hydras.Epsilon0.Paths]
    +R29 [lemma, in hydras.Epsilon0.Paths]
    +R2:3 [binder, in additions.Wf_transparent]
    +r2:42 [binder, in hydras.Gamma0.Gamma0]
    +r2:50 [binder, in hydras.Gamma0.Gamma0]
    +r2:58 [binder, in hydras.Gamma0.Gamma0]
    +r2:66 [binder, in hydras.Gamma0.Gamma0]
    +R3 [lemma, in hydras.solutions_exercises.is_F_monotonous]
    +R3 [lemma, in hydras.MoreAck.Ack]
    +R3 [lemma, in hydras.solutions_exercises.schutte_cnf_counter_example]
    +R3 [lemma, in hydras.Hydra.Battle_length]
    +R3 [lemma, in hydras.solutions_exercises.F_3]
    +R3 [lemma, in hydras.Epsilon0.Hprime]
    +R3 [lemma, in hydras.Schutte.Ordering_Functions]
    +R3 [lemma, in hydras.Gamma0.Gamma0]
    +R3' [lemma, in hydras.solutions_exercises.F_3]
    +R30 [lemma, in hydras.Epsilon0.Paths]
    +R31 [lemma, in hydras.Epsilon0.Paths]
    +R31_0 [lemma, in hydras.Epsilon0.Paths]
    +R4 [lemma, in hydras.solutions_exercises.is_F_monotonous]
    +R4 [lemma, in hydras.Hydra.Battle_length]
    +R4 [lemma, in hydras.solutions_exercises.F_3]
    +R4 [lemma, in hydras.Epsilon0.Hprime]
    +R4 [lemma, in hydras.Schutte.Ordering_Functions]
    +R4 [lemma, in hydras.Gamma0.Gamma0]
    +R4_3_4 [lemma, in hydras.Epsilon0.Paths]
    +R4_3_3 [lemma, in hydras.Epsilon0.Paths]
    +R4_3_2 [lemma, in hydras.Epsilon0.Paths]
    +R4_3_1 [lemma, in hydras.Epsilon0.Paths]
    +R4' [lemma, in hydras.Schutte.Ordering_Functions]
    +R4'' [lemma, in hydras.Schutte.Ordering_Functions]
    +R42 [lemma, in hydras.Schutte.Ordering_Functions]
    +R5 [lemma, in hydras.Epsilon0.F_omega]
    +R5 [lemma, in hydras.MoreAck.Ack]
    +R5 [lemma, in hydras.Hydra.Battle_length]
    +R5 [lemma, in hydras.solutions_exercises.F_3]
    +R5 [lemma, in hydras.Epsilon0.Hprime]
    +R5 [lemma, in hydras.Schutte.Ordering_Functions]
    +R5 [lemma, in hydras.Gamma0.Gamma0]
    +R6 [lemma, in hydras.solutions_exercises.is_F_monotonous]
    +R6 [lemma, in hydras.Hydra.Battle_length]
    +R6 [lemma, in hydras.Schutte.Ordering_Functions]
    +R7 [lemma, in hydras.Schutte.Ordering_Functions]
    +R:1 [binder, in hydras.rpo.dickson]
    +r:10 [binder, in hydras.Ackermann.PA]
    +R:10 [binder, in hydras.Schutte.PartialFun]
    +R:10 [binder, in hydras.rpo.dickson]
    +r:11 [binder, in additions.Strategies]
    +R:11 [binder, in hydras.Prelude.DecPreOrder]
    +R:11 [binder, in hydras.rpo.closure]
    +R:110 [binder, in hydras.Prelude.MoreLists]
    +r:114 [binder, in hydras.Ackermann.codeSubFormula]
    +R:121 [binder, in hydras.Prelude.MoreLists]
    +R:127 [binder, in hydras.Ackermann.primRec]
    +R:128 [binder, in hydras.Prelude.MoreLists]
    +r:131 [binder, in hydras.Ackermann.folProp]
    +R:133 [binder, in hydras.Prelude.MoreLists]
    +r:137 [binder, in hydras.Gamma0.T2]
    +R:138 [binder, in hydras.Prelude.MoreLists]
    +r:14 [binder, in hydras.Ackermann.model]
    +r:14 [binder, in hydras.Ackermann.checkPrf]
    +R:14 [binder, in hydras.Prelude.STDPP_compat]
    +r:14 [binder, in Goedel.codeSysPrf]
    +R:143 [binder, in hydras.Prelude.MoreLists]
    +r:148 [binder, in hydras.Ackermann.folProp]
    +r:15 [binder, in hydras.Ackermann.fol]
    +R:16 [binder, in hydras.Schutte.PartialFun]
    +R:16 [binder, in hydras.rpo.closure]
    +R:16 [binder, in hydras.Ackermann.Languages]
    +R:166 [binder, in hydras.Prelude.MoreLists]
    +r:17 [binder, in hydras.Ackermann.checkPrf]
    +r:17 [binder, in Goedel.codeSysPrf]
    +R:17 [binder, in hydras.rpo.dickson]
    +r:177 [binder, in hydras.Ackermann.folProp]
    +r:182 [binder, in hydras.Ackermann.wellFormed]
    +R:184 [binder, in additions.Addition_Chains]
    +r:185 [binder, in hydras.Ackermann.wellFormed]
    +R:19 [binder, in hydras.rpo.closure]
    +r:193 [binder, in hydras.Ackermann.folProp]
    +R:2 [binder, in hydras.Prelude.DecPreOrder]
    +R:2 [binder, in hydras.Prelude.STDPP_compat]
    +R:2 [binder, in hydras.rpo.closure]
    +R:20 [binder, in hydras.Ackermann.extEqualNat]
    +R:20 [binder, in hydras.Ackermann.Languages]
    +R:20 [binder, in hydras.solutions_exercises.T1_ltNotWf]
    +r:204 [binder, in hydras.Ackermann.fol]
    +r:209 [binder, in hydras.Ackermann.folProp]
    +R:21 [binder, in hydras.rpo.dickson]
    +R:21 [binder, in hydras.rpo.closure]
    +R:22 [binder, in hydras.Ackermann.extEqualNat]
    +R:22 [binder, in hydras.Ackermann.checkPrf]
    +r:22 [binder, in hydras.Ackermann.Languages]
    +r:225 [binder, in hydras.Ackermann.folProp]
    +r:227 [binder, in hydras.Ackermann.fol]
    +r:23 [binder, in hydras.Ackermann.Languages]
    +r:245 [binder, in hydras.Ackermann.fol]
    +R:25 [binder, in hydras.rpo.dickson]
    +r:25 [binder, in hydras.Ackermann.Languages]
    +r:256 [binder, in hydras.Ackermann.folProp]
    +r:27 [binder, in additions.Fib2]
    +r:272 [binder, in hydras.Ackermann.folProp]
    +r:278 [binder, in hydras.Ackermann.fol]
    +r:284 [binder, in hydras.Ackermann.subAll]
    +r:289 [binder, in hydras.Ackermann.subAll]
    +R:29 [binder, in hydras.rpo.dickson]
    +r:292 [binder, in additions.Euclidean_Chains]
    +r:295 [binder, in hydras.Ackermann.fol]
    +r:297 [binder, in additions.Euclidean_Chains]
    +R:3 [binder, in hydras.Prelude.Restriction]
    +r:3 [binder, in gaia_hydras.onType]
    +R:3 [binder, in hydras.Schutte.Countable]
    +r:305 [binder, in hydras.Ackermann.folProp]
    +r:31 [binder, in hydras.Prelude.More_Arith]
    +r:31 [binder, in hydras.Ackermann.model]
    +R:31 [binder, in hydras.Prelude.DecPreOrder]
    +r:319 [binder, in hydras.Ackermann.subAll]
    +r:321 [binder, in hydras.Ackermann.subAll]
    +r:321 [binder, in hydras.Ackermann.folProp]
    +r:328 [binder, in hydras.Ackermann.fol]
    +r:33 [binder, in hydras.Schutte.GRelations]
    +R:33 [binder, in hydras.rpo.dickson]
    +r:337 [binder, in hydras.Ackermann.folProp]
    +r:34 [binder, in hydras.Schutte.GRelations]
    +r:341 [binder, in hydras.Ackermann.fol]
    +r:35 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +r:353 [binder, in hydras.Ackermann.folProp]
    +r:362 [binder, in additions.Euclidean_Chains]
    +r:368 [binder, in additions.Euclidean_Chains]
    +r:369 [binder, in hydras.Ackermann.folProp]
    +r:37 [binder, in hydras.Prelude.More_Arith]
    +r:37 [binder, in hydras.Ackermann.model]
    +R:37 [binder, in hydras.rpo.dickson]
    +r:374 [binder, in additions.Euclidean_Chains]
    +r:374 [binder, in hydras.Ackermann.fol]
    +r:38 [binder, in hydras.Ackermann.model]
    +r:38 [binder, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +R:38 [binder, in hydras.rpo.dickson]
    +r:381 [binder, in additions.Euclidean_Chains]
    +r:385 [binder, in hydras.Ackermann.folProp]
    +r:385 [binder, in hydras.Ackermann.fol]
    +r:388 [binder, in additions.Euclidean_Chains]
    +r:39 [binder, in hydras.Prelude.Restriction]
    +r:394 [binder, in additions.Euclidean_Chains]
    +R:4 [binder, in hydras.Schutte.Countable]
    +r:401 [binder, in additions.Euclidean_Chains]
    +R:402 [binder, in hydras.Epsilon0.T1]
    +R:41 [binder, in hydras.rpo.dickson]
    +r:418 [binder, in hydras.Ackermann.fol]
    +R:42 [binder, in hydras.Ackermann.folProof]
    +R:42 [binder, in hydras.rpo.dickson]
    +r:438 [binder, in hydras.Ackermann.fol]
    +r:45 [binder, in additions.More_on_positive]
    +R:48 [binder, in hydras.rpo.dickson]
    +r:49 [binder, in additions.More_on_positive]
    +R:5 [binder, in hydras.Schutte.Countable]
    +R:51 [binder, in hydras.Ackermann.Languages]
    +R:52 [binder, in hydras.Ackermann.Languages]
    +r:54 [binder, in hydras.Ackermann.Languages]
    +R:54 [binder, in hydras.Ackermann.expressible]
    +R:543 [binder, in hydras.Ackermann.primRec]
    +R:546 [binder, in hydras.Ackermann.primRec]
    +R:55 [binder, in hydras.rpo.dickson]
    +r:55 [binder, in hydras.Ackermann.Languages]
    +R:557 [binder, in hydras.Ackermann.primRec]
    +r:56 [binder, in additions.More_on_positive]
    +r:56 [binder, in hydras.Ackermann.Languages]
    +R:560 [binder, in hydras.Ackermann.primRec]
    +R:563 [binder, in hydras.Ackermann.primRec]
    +R:565 [binder, in hydras.Ackermann.primRec]
    +r:57 [binder, in hydras.Ackermann.Languages]
    +R:57 [binder, in hydras.Ackermann.expressible]
    +r:58 [binder, in hydras.Ackermann.Languages]
    +r:59 [binder, in additions.More_on_positive]
    +r:59 [binder, in hydras.Ackermann.Languages]
    +r:6 [binder, in hydras.solutions_exercises.isqrt]
    +r:60 [binder, in hydras.Prelude.More_Arith]
    +r:60 [binder, in hydras.Ackermann.Languages]
    +r:61 [binder, in hydras.Ackermann.Languages]
    +R:61 [binder, in hydras.Ackermann.expressible]
    +R:62 [binder, in hydras.rpo.dickson]
    +R:63 [binder, in hydras.rpo.dickson]
    +r:63 [binder, in hydras.Ackermann.Languages]
    +r:64 [binder, in hydras.Ackermann.model]
    +R:65 [binder, in hydras.Ackermann.expressible]
    +r:652 [binder, in hydras.Ackermann.checkPrf]
    +r:66 [binder, in hydras.Ackermann.folLogic3]
    +r:67 [binder, in additions.fib]
    +r:68 [binder, in additions.fib]
    +R:7 [binder, in hydras.Ackermann.folProof]
    +r:7 [binder, in hydras.Ackermann.PAconsistent]
    +R:7 [binder, in hydras.Schutte.PartialFun]
    +R:70 [binder, in hydras.Ackermann.expressible]
    +R:8 [binder, in hydras.Prelude.DecPreOrder]
    +R:8 [binder, in hydras.Ackermann.code]
    +r:8 [binder, in hydras.solutions_exercises.isqrt]
    +r:85 [binder, in hydras.Ackermann.model]
    +r:88 [binder, in hydras.Ackermann.codeSubFormula]
    +r:89 [binder, in hydras.Hydra.Hydra_Definitions]
    +

    S

    +s [definition, in hydras.solutions_exercises.Limit_Infinity]
    +S [module, in hydras.rpo.decidable_set]
    +S [module, in hydras.rpo.list_set]
    +s [definition, in hydras.solutions_exercises.T1_ltNotWf]
    +SA1 [lemma, in hydras.Schutte.Ordering_Functions]
    +SA2 [lemma, in hydras.Schutte.Ordering_Functions]
    +SA:17 [binder, in hydras.Prelude.Simple_LexProd]
    +SA:19 [binder, in hydras.Prelude.Simple_LexProd]
    +SB:18 [binder, in hydras.Prelude.Simple_LexProd]
    +SB:20 [binder, in hydras.Prelude.Simple_LexProd]
    +Schutte [library]
    +Schutte_basics [library]
    +schutte_cnf_counter_example [library]
    +searchProof [lemma, in Goedel.rosserPA]
    +searchProof [lemma, in Goedel.rosser]
    +searchXYIsPR [instance, in hydras.Ackermann.cPair]
    +SecondIncompletness [lemma, in Goedel.goedel2]
    +segment [definition, in hydras.Schutte.Ordering_Functions]
    +segment_lt_closed [lemma, in hydras.Schutte.Ordering_Functions]
    +segment_the_ordering_segment [lemma, in hydras.Schutte.Ordering_Functions]
    +segment_unbounded [lemma, in hydras.Schutte.Ordering_Functions]
    +segment_lt [lemma, in hydras.Schutte.Ordering_Functions]
    +self_lt_free [lemma, in hydras.Hydra.Epsilon0_Needed_Free]
    +self_lt_standard [lemma, in hydras.Hydra.Epsilon0_Needed_Std]
    +Semantics [section, in additions.AM]
    +Semantics.A [variable, in additions.AM]
    +Semantics.mul [variable, in additions.AM]
    +Semantics.one [variable, in additions.AM]
    +Semibundled [module, in hydras.Prelude.DecPreOrder]
    +Semibundled.dec_dec [projection, in hydras.Prelude.DecPreOrder]
    +Semibundled.TotalDec [record, in hydras.Prelude.DecPreOrder]
    +Semibundled.TotalDecPreOrder [record, in hydras.Prelude.DecPreOrder]
    +Semibundled.total_dec_total [projection, in hydras.Prelude.DecPreOrder]
    +Semibundled.total_dec_pre_order [projection, in hydras.Prelude.DecPreOrder]
    +Semibundled.total_dec [projection, in hydras.Prelude.DecPreOrder]
    +Sentence [definition, in hydras.Ackermann.LNN]
    +Sentence [definition, in hydras.Ackermann.LNT]
    +Sentence [definition, in hydras.Ackermann.folProp]
    +seq [definition, in hydras.solutions_exercises.MultisetWf]
    +Sequences [section, in gaia_hydras.nfwfgaia]
    +Sequences.A [variable, in gaia_hydras.nfwfgaia]
    +Sequences.R [variable, in gaia_hydras.nfwfgaia]
    +Sequences.W [variable, in gaia_hydras.nfwfgaia]
    +seq_mono_inj [lemma, in hydras.Schutte.Schutte_basics]
    +seq_mono_intro [lemma, in hydras.Schutte.Schutte_basics]
    +seq_mono [definition, in hydras.Schutte.Schutte_basics]
    +seq_range_countable [lemma, in hydras.Schutte.Countable]
    +seq_range [definition, in hydras.Schutte.Countable]
    +seq:22 [binder, in hydras.solutions_exercises.T1_ltNotWf]
    +set_eq [definition, in hydras.Schutte.Schutte_basics]
    +shift [definition, in hydras.Prelude.MoreLists]
    +shift_unshift [lemma, in hydras.Prelude.MoreLists]
    +shift_no_zero [lemma, in hydras.Prelude.MoreLists]
    +shift_interval [lemma, in hydras.Prelude.MoreLists]
    +shift_iota_from [lemma, in hydras.Prelude.MoreLists]
    +SigA:279 [binder, in Goedel.PRrepresentable]
    +SigA:282 [binder, in Goedel.PRrepresentable]
    +SigA:297 [binder, in Goedel.PRrepresentable]
    +SigB:280 [binder, in Goedel.PRrepresentable]
    +SigB:283 [binder, in Goedel.PRrepresentable]
    +SigB:298 [binder, in Goedel.PRrepresentable]
    +sigma1:113 [binder, in hydras.rpo.term]
    +sigma1:122 [binder, in hydras.rpo.term]
    +sigma1:291 [binder, in hydras.rpo.term]
    +sigma1:300 [binder, in hydras.rpo.term]
    +sigma1:302 [binder, in hydras.rpo.term]
    +sigma2:114 [binder, in hydras.rpo.term]
    +sigma2:123 [binder, in hydras.rpo.term]
    +sigma2:292 [binder, in hydras.rpo.term]
    +sigma2:301 [binder, in hydras.rpo.term]
    +sigma2:303 [binder, in hydras.rpo.term]
    +sigma:102 [binder, in hydras.rpo.term]
    +sigma:111 [binder, in hydras.rpo.term]
    +sigma:119 [binder, in hydras.rpo.term]
    +sigma:126 [binder, in hydras.rpo.term]
    +sigma:128 [binder, in hydras.rpo.term]
    +sigma:184 [binder, in hydras.rpo.term]
    +sigma:280 [binder, in hydras.rpo.term]
    +sigma:289 [binder, in hydras.rpo.term]
    +sigma:297 [binder, in hydras.rpo.term]
    +sigma:307 [binder, in hydras.rpo.term]
    +sigma:309 [binder, in hydras.rpo.term]
    +sigma:315 [binder, in hydras.rpo.rpo]
    +sigma:363 [binder, in hydras.rpo.term]
    +sigma:86 [binder, in hydras.rpo.rpo]
    +Signature [module, in hydras.rpo.term]
    +signature [inductive, in additions.Euclidean_Chains]
    +signature_measure [definition, in additions.Euclidean_Chains]
    +signature_exponent [definition, in additions.Euclidean_Chains]
    +Signature.AC [constructor, in hydras.rpo.term]
    +Signature.arity [axiom, in hydras.rpo.term]
    +Signature.arity_type [inductive, in hydras.rpo.term]
    +Signature.C [constructor, in hydras.rpo.term]
    +Signature.eq_symbol_dec [axiom, in hydras.rpo.term]
    +Signature.Free [constructor, in hydras.rpo.term]
    +Signature.symb [axiom, in hydras.rpo.term]
    +sig_eq_intro [lemma, in hydras.OrdinalNotations.ON_Finite]
    +simple_last_app1 [lemma, in hydras.Prelude.MoreLists]
    +simple_last_app [lemma, in hydras.Prelude.MoreLists]
    +simple_last_correct [lemma, in hydras.Prelude.MoreLists]
    +simple_last [definition, in hydras.Prelude.MoreLists]
    +Simple_LexProd [library]
    +single_nf [lemma, in hydras.Epsilon0.T1]
    +single_nf [constructor, in hydras.Gamma0.T2]
    +size_acc:203 [binder, in hydras.rpo.term]
    +size_acc:20 [binder, in hydras.rpo.term]
    +size_acc:54 [binder, in hydras.rpo.more_list]
    +size1:57 [binder, in hydras.rpo.more_list]
    +size2:58 [binder, in hydras.rpo.more_list]
    +size:37 [binder, in hydras.rpo.more_list]
    +size:42 [binder, in hydras.rpo.more_list]
    +size:47 [binder, in hydras.rpo.more_list]
    +size:51 [binder, in hydras.rpo.more_list]
    +size:69 [binder, in hydras.rpo.list_permut]
    +size:73 [binder, in hydras.rpo.more_list]
    +size:74 [binder, in hydras.rpo.list_permut]
    +slowexp [definition, in additions.fib]
    +smallestExists [lemma, in hydras.Prelude.MoreDecidable]
    +small_h [definition, in hydras.Hydra.Epsilon0_Needed_Generic]
    +small_lemma [lemma, in hydras.Epsilon0.Paths]
    +SmNotPR [lemma, in hydras.Hydra.Hydra_Theorems]
    +smono_Sle [lemma, in hydras.Prelude.Iterates]
    +sn_tt:288 [binder, in hydras.rpo.rpo]
    +sn_tt:285 [binder, in hydras.rpo.rpo]
    +sn_tt:282 [binder, in hydras.rpo.rpo]
    +some [definition, in hydras.Schutte.MoreEpsilonIota]
    +some_pos' [definition, in gaia_hydras.T1Choice]
    +some_pos [definition, in gaia_hydras.T1Choice]
    +some_nb_occ_Sn [lemma, in hydras.rpo.more_list]
    +some_pos [definition, in hydras.Schutte.MoreEpsilonIota]
    +sort [definition, in hydras.Prelude.Sort_spec]
    +sorted [definition, in hydras.Schutte.CNF]
    +sorted_ge_suffix [lemma, in hydras.Prelude.MoreLists]
    +sorted_max_2 [lemma, in hydras.Prelude.MoreLists]
    +sorted_cut [lemma, in hydras.Prelude.MoreLists]
    +sorted_max_1 [lemma, in hydras.Prelude.MoreLists]
    +sorted_not_in_tail [lemma, in hydras.Prelude.MoreLists]
    +sorted_In [lemma, in hydras.Prelude.MoreLists]
    +sorted_ge_prefix [lemma, in hydras.Prelude.MoreLists]
    +sorted_ge_iff [lemma, in hydras.Prelude.MoreLists]
    +sorted_ge_iff0 [lemma, in hydras.Prelude.MoreLists]
    +Sorted_mono [lemma, in hydras.Prelude.MoreLists]
    +sorted_head [lemma, in hydras.Prelude.MoreLists]
    +sorted_tail' [lemma, in hydras.Prelude.MoreLists]
    +sorted_tail [lemma, in hydras.Prelude.MoreLists]
    +sorted_le [lemma, in hydras.Prelude.MoreLists]
    +sorted_inv_gt [lemma, in hydras.Prelude.MoreLists]
    +sorted_ge_not_In [lemma, in hydras.Prelude.MoreLists]
    +sorted_ge_trans [lemma, in hydras.Prelude.MoreLists]
    +sorted_ge_Forall [lemma, in hydras.Prelude.MoreLists]
    +sorted_ge_cons [constructor, in hydras.Prelude.MoreLists]
    +sorted_ge_one [constructor, in hydras.Prelude.MoreLists]
    +sorted_ge_nil [constructor, in hydras.Prelude.MoreLists]
    +sorted_ge [inductive, in hydras.Prelude.MoreLists]
    +sorted_lt [lemma, in hydras.Schutte.CNF]
    +sorted_lt_lt_2 [lemma, in hydras.Schutte.CNF]
    +sorted_lt_lt [lemma, in hydras.Schutte.CNF]
    +sorted_tail [lemma, in hydras.Schutte.CNF]
    +sort_spec [definition, in hydras.Prelude.Sort_spec]
    +sort_correct [definition, in hydras.Prelude.Sort_spec]
    +sort_rel [definition, in hydras.Prelude.Sort_spec]
    +sort_fun_t [definition, in hydras.Prelude.Sort_spec]
    +Sort_spec [library]
    +split_list_app_cons [lemma, in hydras.rpo.more_list]
    +split_list [definition, in hydras.rpo.more_list]
    +split_permutation [lemma, in hydras.Prelude.Merge_Sort]
    +split_decr [lemma, in hydras.Prelude.Merge_Sort]
    +split'_permutation [lemma, in hydras.Prelude.Merge_Sort]
    +split'_aux_eq [lemma, in hydras.Prelude.Merge_Sort]
    +split'_decr [lemma, in hydras.Prelude.Merge_Sort]
    +split'_aux_length_fst [lemma, in hydras.Prelude.Merge_Sort]
    +split'_aux_length_preserve [lemma, in hydras.Prelude.Merge_Sort]
    +sp_mergesort_OK [lemma, in hydras.Prelude.Merge_Sort]
    +sp_merge_sort [definition, in hydras.Prelude.Merge_Sort]
    +SQR [constructor, in additions.AM]
    +sqrtIsPR [section, in hydras.solutions_exercises.isqrt]
    +sqrtIsPR.P [variable, in hydras.solutions_exercises.isqrt]
    +sqrtIsPR.Proof_isqrt.n [variable, in hydras.solutions_exercises.isqrt]
    +sqrtIsPR.Proof_isqrt [section, in hydras.solutions_exercises.isqrt]
    +sqrt_correct [lemma, in hydras.solutions_exercises.isqrt]
    +sqr_eqn [lemma, in additions.Pow_variant]
    +sqr_eqn [lemma, in additions.Pow]
    +squares:6 [binder, in additions.AM]
    +ssrnat_extracts [library]
    +ss:113 [binder, in hydras.Ackermann.fol]
    +ss:120 [binder, in hydras.Ackermann.fol]
    +ss:125 [binder, in hydras.Ackermann.fol]
    +ss:130 [binder, in hydras.Ackermann.fol]
    +ss:28 [binder, in hydras.Ackermann.folLogic3]
    +ss:30 [binder, in hydras.Ackermann.folLogic3]
    +ss:31 [binder, in hydras.Ackermann.code]
    +ss:34 [binder, in hydras.Ackermann.code]
    +ss:37 [binder, in hydras.Ackermann.code]
    +ss:37 [binder, in hydras.Ackermann.folLogic3]
    +ss:4 [binder, in hydras.Ackermann.folProp]
    +ss:44 [binder, in hydras.Ackermann.folLogic3]
    +ss:51 [binder, in hydras.Ackermann.folProp]
    +ss:51 [binder, in hydras.Ackermann.folLogic3]
    +ss:59 [binder, in hydras.Ackermann.folLogic3]
    +ss:66 [binder, in hydras.Ackermann.fol]
    +ss:68 [binder, in hydras.Ackermann.folLogic3]
    +ss:73 [binder, in hydras.Ackermann.fol]
    +ss:78 [binder, in hydras.Ackermann.fol]
    +ss:78 [binder, in hydras.Ackermann.folLogic3]
    +ss:83 [binder, in hydras.Ackermann.fol]
    +ss:94 [binder, in hydras.Ackermann.fol]
    +ss:97 [binder, in hydras.Ackermann.fol]
    +stable [definition, in hydras.Prelude.Sort_spec]
    +stable_test [definition, in hydras.Prelude.Sort_spec]
    +stable_mergesort_OK [lemma, in hydras.Prelude.Merge_Sort]
    +stable_merge_sort [definition, in hydras.Prelude.Merge_Sort]
    +stack [definition, in additions.AM]
    +Stack_equiv_equiv [instance, in additions.AM]
    +Stack_equiv_refl [instance, in additions.AM]
    +stack_equivn [constructor, in additions.AM]
    +stack_equiv0 [constructor, in additions.AM]
    +stack_equiv [inductive, in additions.AM]
    +standard [instance, in hydras.Hydra.Hydra_Definitions]
    +standard_gnaw_iota_from [lemma, in gaia_hydras.GPaths]
    +standard_gnaw [definition, in gaia_hydras.GPaths]
    +standard_path [definition, in gaia_hydras.GPaths]
    +standard_battle_head [lemma, in hydras.Hydra.Hydra_Lemmas]
    +standard_incl_free [lemma, in hydras.Hydra.Hydra_Lemmas]
    +standard_gnaw_2_zero [lemma, in hydras.Epsilon0.Paths]
    +standard_path_to_zero [lemma, in hydras.Epsilon0.Paths]
    +standard_gnaw_to_zero [lemma, in hydras.Epsilon0.Paths]
    +standard_pathS_app [lemma, in hydras.Epsilon0.Paths]
    +standard_path_equiv_2 [lemma, in hydras.Epsilon0.Paths]
    +standard_path_equiv_1 [lemma, in hydras.Epsilon0.Paths]
    +standard_gnaw_nf [lemma, in hydras.Epsilon0.Paths]
    +standard_gnaw_to_path [lemma, in hydras.Epsilon0.Paths]
    +standard_gnaw_S_zero [lemma, in hydras.Epsilon0.Paths]
    +standard_path_compose [lemma, in hydras.Epsilon0.Paths]
    +standard_path_lt2 [lemma, in hydras.Epsilon0.Paths]
    +standard_path_zero [lemma, in hydras.Epsilon0.Paths]
    +standard_path_to_nf [lemma, in hydras.Epsilon0.Paths]
    +standard_path_LE [lemma, in hydras.Epsilon0.Paths]
    +standard_gnaw_plus [lemma, in hydras.Epsilon0.Paths]
    +standard_gnaw_iota_from [lemma, in hydras.Epsilon0.Paths]
    +standard_gnaw_zero [lemma, in hydras.Epsilon0.Paths]
    +standard_path_path_to [lemma, in hydras.Epsilon0.Paths]
    +standard_pathS_path_toS [lemma, in hydras.Epsilon0.Paths]
    +standard_path_origin [lemma, in hydras.Epsilon0.Paths]
    +standard_path_toS_zero [lemma, in hydras.Epsilon0.Paths]
    +standard_path_to_le_inv [lemma, in hydras.Epsilon0.Paths]
    +standard_path_toS_le_inv [lemma, in hydras.Epsilon0.Paths]
    +standard_path_unshift [lemma, in hydras.Epsilon0.Paths]
    +standard_path_unshift_0 [lemma, in hydras.Epsilon0.Paths]
    +standard_path_shift [lemma, in hydras.Epsilon0.Paths]
    +standard_path [definition, in hydras.Epsilon0.Paths]
    +standard_path_to [inductive, in hydras.Epsilon0.Paths]
    +standard_pathS [definition, in hydras.Epsilon0.Paths]
    +standard_path_toS [inductive, in hydras.Epsilon0.Paths]
    +standard_gnaw [definition, in hydras.Epsilon0.Paths]
    +state [record, in hydras.Hydra.BigBattle]
    +STDPP_compat [library]
    +stdS_S [constructor, in hydras.Epsilon0.Paths]
    +stdS_1 [constructor, in hydras.Epsilon0.Paths]
    +std_S [constructor, in hydras.Epsilon0.Paths]
    +std_1 [constructor, in hydras.Epsilon0.Paths]
    +step [section, in hydras.Epsilon0.F_omega]
    +step [inductive, in hydras.Hydra.Omega2_Small]
    +steps [inductive, in hydras.Hydra.BigBattle]
    +steps_rounds [lemma, in hydras.Hydra.BigBattle]
    +steps_S [constructor, in hydras.Hydra.BigBattle]
    +steps1 [constructor, in hydras.Hydra.BigBattle]
    +step_rounds [lemma, in hydras.Hydra.BigBattle]
    +step_to_battle [lemma, in hydras.Hydra.Omega2_Small]
    +step.F [variable, in hydras.Epsilon0.F_omega]
    +step.Hn [variable, in hydras.Epsilon0.F_omega]
    +step.n [variable, in hydras.Epsilon0.F_omega]
    +step1 [constructor, in hydras.Hydra.BigBattle]
    +step2 [constructor, in hydras.Hydra.BigBattle]
    +step3 [constructor, in hydras.Hydra.BigBattle]
    +sto [instance, in hydras.OrdinalNotations.ON_O]
    +sto [instance, in hydras.OrdinalNotations.ON_Finite]
    +sto:12 [binder, in hydras.Prelude.MoreOrders]
    +sto:17 [binder, in hydras.Prelude.MoreOrders]
    +sto:24 [binder, in hydras.Prelude.MoreOrders]
    +sto:30 [binder, in hydras.Prelude.MoreOrders]
    +sto:34 [binder, in hydras.Prelude.MoreOrders]
    +sto:37 [binder, in hydras.Prelude.MoreOrders]
    +sto:40 [binder, in hydras.Prelude.MoreOrders]
    +sto:48 [binder, in hydras.Prelude.MoreOrders]
    +sto:5 [binder, in hydras.Prelude.MoreOrders]
    +sto:8 [binder, in hydras.Prelude.MoreOrders]
    +Strategies [library]
    +Strategy [record, in additions.Strategies]
    +strict_lub_T1limit [lemma, in hydras.Epsilon0.T1]
    +strict_lub_unique [lemma, in hydras.Epsilon0.T1]
    +strict_lub_maj [definition, in hydras.Epsilon0.T1]
    +strict_lub_lub [definition, in hydras.Epsilon0.T1]
    +strict_lub [definition, in hydras.Epsilon0.T1]
    +strict_mono_iterate_S [lemma, in hydras.Prelude.Iterates]
    +strict_mono [definition, in hydras.Prelude.Iterates]
    +strict_mono [definition, in gaia_hydras.T1Bridge]
    +strict_lub_ref [lemma, in gaia_hydras.T1Bridge]
    +Strict_lex [instance, in hydras.Prelude.Simple_LexProd]
    +string_op [instance, in additions.Monoid_def]
    +strongly_critical [definition, in hydras.Schutte.Critical]
    +Strong_Recursion [section, in hydras.Ackermann.cPair]
    +St:110 [binder, in hydras.Hydra.Hydra_Lemmas]
    +subAddExistsNice [lemma, in Goedel.PRrepresentable]
    +subAddForallsNice [lemma, in Goedel.PRrepresentable]
    +subAll [library]
    +subAllCloseFrom [lemma, in hydras.Ackermann.subAll]
    +subAllCloseFrom1 [lemma, in hydras.Ackermann.subAll]
    +subAllFormula [definition, in hydras.Ackermann.subAll]
    +subAllFormulaId [lemma, in hydras.Ackermann.subAll]
    +subAllFormula_ext [lemma, in hydras.Ackermann.subAll]
    +subAllnVars1 [lemma, in hydras.Ackermann.folLogic3]
    +subAllnVars2 [lemma, in hydras.Ackermann.folLogic3]
    +subAllSubAllFormula [lemma, in hydras.Ackermann.subAll]
    +subAllSubAllTerm [lemma, in hydras.Ackermann.subAll]
    +subAllSubAllTerms [lemma, in hydras.Ackermann.subAll]
    +subAllSubFormula [lemma, in hydras.Ackermann.subAll]
    +subAllTerm [definition, in hydras.Ackermann.subAll]
    +subAllTermId [lemma, in hydras.Ackermann.subAll]
    +subAllTerms [definition, in hydras.Ackermann.subAll]
    +subAllTermsId [lemma, in hydras.Ackermann.subAll]
    +subAllTerms_ext [lemma, in hydras.Ackermann.subAll]
    +subAllTerm_ext [lemma, in hydras.Ackermann.subAll]
    +SubAllVars [section, in hydras.Ackermann.subAll]
    +SubAllVars.L [variable, in hydras.Ackermann.subAll]
    +SubAllVars.subAllCloseFrom [section, in hydras.Ackermann.subAll]
    +subFormulaAnd [lemma, in hydras.Ackermann.folProp]
    +subFormulaDepth [lemma, in hydras.Ackermann.folProp]
    +subFormulaEqual [lemma, in hydras.Ackermann.folProp]
    +subFormulaExch [lemma, in hydras.Ackermann.subProp]
    +subFormulaExist [lemma, in hydras.Ackermann.folProp]
    +subFormulaExist2 [lemma, in hydras.Ackermann.folProp]
    +subFormulaForall [lemma, in hydras.Ackermann.folProp]
    +subFormulaForall2 [lemma, in hydras.Ackermann.folProp]
    +subFormulaId [lemma, in hydras.Ackermann.folProp]
    +subFormulaIff [lemma, in hydras.Ackermann.folProp]
    +subFormulaIfThenElse [lemma, in hydras.Ackermann.folProp]
    +subFormulaImp [lemma, in hydras.Ackermann.folProp]
    +subFormulaMinimize [lemma, in Goedel.PRrepresentable]
    +subFormulaNil [lemma, in hydras.Ackermann.subProp]
    +subFormulaNot [lemma, in hydras.Ackermann.folProp]
    +subFormulaNTE [lemma, in hydras.Ackermann.subProp]
    +subFormulaNTEHelp [lemma, in hydras.Ackermann.subProp]
    +subFormulaOr [lemma, in hydras.Ackermann.folProp]
    +subFormulaRelation [lemma, in hydras.Ackermann.folProp]
    +subFormulaTrans [lemma, in hydras.Ackermann.subProp]
    +subInterpFormula [lemma, in hydras.Ackermann.model]
    +subInterpFormula1 [lemma, in hydras.Ackermann.model]
    +subInterpFormula2 [lemma, in hydras.Ackermann.model]
    +subInterpRel [lemma, in hydras.Ackermann.model]
    +subInterpTerm [lemma, in hydras.Ackermann.model]
    +subNNHelp [lemma, in hydras.Ackermann.model]
    +SubON [record, in hydras.OrdinalNotations.ON_Generic]
    +SubON_least [lemma, in hydras.OrdinalNotations.ON_Generic]
    +SubON_limit [lemma, in hydras.OrdinalNotations.ON_Generic]
    +SubON_successor [lemma, in hydras.OrdinalNotations.ON_Generic]
    +SubON_inj [lemma, in hydras.OrdinalNotations.ON_Generic]
    +SubON_mono [lemma, in hydras.OrdinalNotations.ON_Generic]
    +SubON_properties [section, in hydras.OrdinalNotations.ON_Generic]
    +SubON_same_op [definition, in hydras.OrdinalNotations.ON_Generic]
    +SubON_same_fun [definition, in hydras.OrdinalNotations.ON_Generic]
    +SubON_same_cst [definition, in hydras.OrdinalNotations.ON_Generic]
    +SubON_onto [projection, in hydras.OrdinalNotations.ON_Generic]
    +SubON_incl [projection, in hydras.OrdinalNotations.ON_Generic]
    +SubON_compare [projection, in hydras.OrdinalNotations.ON_Generic]
    +subProp [library]
    +subStar [definition, in Goedel.fixPoint]
    +subStarIsPR [instance, in Goedel.fixPoint]
    +substExHC [lemma, in hydras.Ackermann.folProp]
    +substF [definition, in hydras.Ackermann.folProp]
    +substF2 [abbreviation, in hydras.Ackermann.folProp]
    +substF3 [abbreviation, in hydras.Ackermann.folProp]
    +substF4 [abbreviation, in hydras.Ackermann.folProp]
    +substF5 [abbreviation, in hydras.Ackermann.folProp]
    +substF6 [abbreviation, in hydras.Ackermann.folProp]
    +substF7 [abbreviation, in hydras.Ackermann.folProp]
    +substF8 [abbreviation, in hydras.Ackermann.folProp]
    +substF9 [abbreviation, in hydras.Ackermann.folProp]
    +substituteFormula [abbreviation, in hydras.Ackermann.folProp]
    +substituteFormulaForall [definition, in hydras.Ackermann.folProp]
    +substituteFormulaForallNice [lemma, in hydras.Ackermann.folProp]
    +substituteFormulaHelp [definition, in hydras.Ackermann.folProp]
    +substituteFormulaImp [definition, in hydras.Ackermann.folProp]
    +substituteFormulaImpNice [lemma, in hydras.Ackermann.folProp]
    +substituteFormulaNot [definition, in hydras.Ackermann.folProp]
    +substituteFormulaNotNice [lemma, in hydras.Ackermann.folProp]
    +substituteTerm [abbreviation, in hydras.Ackermann.folProp]
    +substituteTerms [abbreviation, in hydras.Ackermann.folProp]
    +Substitution_Properties.SysPrf [variable, in hydras.Ackermann.subProp]
    +Substitution_Properties.Terms [variable, in hydras.Ackermann.subProp]
    +Substitution_Properties.Term [variable, in hydras.Ackermann.subProp]
    +Substitution_Properties.System [variable, in hydras.Ackermann.subProp]
    +Substitution_Properties.Formulas [variable, in hydras.Ackermann.subProp]
    +Substitution_Properties.Formula [variable, in hydras.Ackermann.subProp]
    +Substitution_Properties.L [variable, in hydras.Ackermann.subProp]
    +Substitution_Properties [section, in hydras.Ackermann.subProp]
    +substT [definition, in hydras.Ackermann.folProp]
    +substTs [definition, in hydras.Ackermann.folProp]
    +subSubAllFormula [lemma, in hydras.Ackermann.subAll]
    +subSubAllTerm [lemma, in hydras.Ackermann.subAll]
    +subSubAllTerms [lemma, in hydras.Ackermann.subAll]
    +subSubFormula [lemma, in hydras.Ackermann.folLogic2]
    +subSubTerm [lemma, in hydras.Ackermann.folLogic2]
    +subSubTerms [lemma, in hydras.Ackermann.folLogic2]
    +subterm [inductive, in hydras.Gamma0.Gamma0]
    +subTermApply [lemma, in hydras.Ackermann.folProp]
    +subTermExch [lemma, in hydras.Ackermann.subProp]
    +subTermId [lemma, in hydras.Ackermann.folProp]
    +subTermNil [lemma, in hydras.Ackermann.subProp]
    +subTermsExch [lemma, in hydras.Ackermann.subProp]
    +subTermsId [lemma, in hydras.Ackermann.folProp]
    +subTermsNil [lemma, in hydras.Ackermann.subProp]
    +subTermsTrans [lemma, in hydras.Ackermann.subProp]
    +subTermTrans [lemma, in hydras.Ackermann.subProp]
    +subTermVar1 [lemma, in hydras.Ackermann.folProp]
    +subTermVar2 [lemma, in hydras.Ackermann.folProp]
    +subterm_lt [lemma, in hydras.Gamma0.Gamma0]
    +subterm_trans [constructor, in hydras.Gamma0.Gamma0]
    +subterm_c [constructor, in hydras.Gamma0.Gamma0]
    +subterm_b [constructor, in hydras.Gamma0.Gamma0]
    +subterm_a [constructor, in hydras.Gamma0.Gamma0]
    +subToSubAll [lemma, in hydras.Ackermann.subAll]
    +subWithEquals [lemma, in hydras.Ackermann.folLogic3]
    +subWithEqualsTerm [lemma, in hydras.Ackermann.folLogic3]
    +subWithEqualsTerms [lemma, in hydras.Ackermann.folLogic3]
    +succ [definition, in hydras.Epsilon0.T1]
    +succ [definition, in hydras.OrdinalNotations.ON_Omega2]
    +succ [definition, in hydras.Gamma0.T2]
    +succ [section, in hydras.Epsilon0.Large_Sets]
    +succ [definition, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +succ [definition, in hydras.Schutte.Schutte_basics]
    +Succ [abbreviation, in hydras.Epsilon0.E0]
    +succb [abbreviation, in hydras.Epsilon0.T1]
    +succb [definition, in hydras.OrdinalNotations.ON_Omega2]
    +succb [definition, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +succb_correct [lemma, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +Succb_Succ [lemma, in hydras.Epsilon0.E0]
    +succb_not_lim [lemma, in hydras.Gamma0.Gamma0]
    +Successor [definition, in hydras.Prelude.MoreOrders]
    +Successor_succ [lemma, in hydras.OrdinalNotations.ON_Omega2]
    +Successor_not [lemma, in hydras.OrdinalNotations.ON_Omega2]
    +Successor_inv [lemma, in hydras.OrdinalNotations.ON_Omega2]
    +Successor_unicity [lemma, in hydras.solutions_exercises.predSuccUnicity]
    +Successor_succ [lemma, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +Successor_inv4 [lemma, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +Successor_inv3 [lemma, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +Successor_inv2 [lemma, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +Successor_inv1 [lemma, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +succFormula [definition, in Goedel.PRrepresentable]
    +succFunc [constructor, in hydras.Ackermann.primRec]
    +succIsPR [instance, in hydras.Ackermann.primRec]
    +succRepresentable [lemma, in Goedel.PRrepresentable]
    +succ_rw1 [lemma, in hydras.Epsilon0.T1]
    +succ_cons' [lemma, in hydras.Epsilon0.T1]
    +succ_cons [lemma, in hydras.Epsilon0.T1]
    +succ_lt_limit [lemma, in hydras.Epsilon0.T1]
    +succ_not_limit [lemma, in hydras.Epsilon0.T1]
    +succ_compat [lemma, in hydras.Epsilon0.T1]
    +succ_compatS [lemma, in hydras.Epsilon0.T1]
    +succ_injective [lemma, in hydras.Epsilon0.T1]
    +succ_monomorphism [lemma, in hydras.Epsilon0.T1]
    +succ_strict_monoR [lemma, in hydras.Epsilon0.T1]
    +succ_mono [lemma, in hydras.Epsilon0.T1]
    +succ_strict_mono_LT [lemma, in hydras.Epsilon0.T1]
    +succ_strict_mono [lemma, in hydras.Epsilon0.T1]
    +succ_of_plus_finite [lemma, in hydras.Epsilon0.T1]
    +succ_is_plus_one [lemma, in hydras.Epsilon0.T1]
    +succ_nf [lemma, in hydras.Epsilon0.T1]
    +succ_lt_a_phi0_b [lemma, in hydras.Epsilon0.T1]
    +succ_is_succ [lemma, in hydras.Epsilon0.T1]
    +succ_not_zero [lemma, in hydras.Epsilon0.T1]
    +succ_is_plus_1 [lemma, in hydras.OrdinalNotations.ON_Omega2]
    +succ_ok [lemma, in hydras.OrdinalNotations.ON_Omega2]
    +succ_finite [constructor, in hydras.Gamma0.T2]
    +succ_correct [lemma, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +succ_ref [lemma, in gaia_hydras.T1Bridge]
    +succ_zero_diff [lemma, in hydras.Schutte.Schutte_basics]
    +succ_injection [lemma, in hydras.Schutte.Schutte_basics]
    +succ_monoR [lemma, in hydras.Schutte.Schutte_basics]
    +succ_mono [lemma, in hydras.Schutte.Schutte_basics]
    +succ_ok [lemma, in hydras.Schutte.Schutte_basics]
    +succ_spec [definition, in hydras.Schutte.Schutte_basics]
    +succ_correct [lemma, in hydras.Epsilon0.E0]
    +Succ_of_cons [lemma, in hydras.Epsilon0.E0]
    +Succ_rw [lemma, in hydras.Epsilon0.E0]
    +Succ_lt_T1limit [lemma, in hydras.Epsilon0.E0]
    +Succ_not_T1limit [lemma, in hydras.Epsilon0.E0]
    +Succ_not_Zero [lemma, in hydras.Epsilon0.E0]
    +Succ_Succb [lemma, in hydras.Epsilon0.E0]
    +Succ_inj [lemma, in hydras.Epsilon0.E0]
    +succ_rounds [lemma, in hydras.Hydra.Omega2_Small]
    +succ_step [constructor, in hydras.Hydra.Omega2_Small]
    +succ_limit_dec [lemma, in hydras.Gamma0.Gamma0]
    +succ_nf [lemma, in hydras.Gamma0.Gamma0]
    +succ_as_plus [lemma, in hydras.Gamma0.Gamma0]
    +succ_of_cons [lemma, in hydras.Gamma0.Gamma0]
    +succ_lt_le [lemma, in hydras.Gamma0.Gamma0]
    +Succ_ [constructor, in hydras.Ackermann.Languages]
    +succ_is_plus_1 [lemma, in hydras.Schutte.Addition]
    +succ.beta [variable, in hydras.Epsilon0.Large_Sets]
    +succ.f [variable, in hydras.Epsilon0.Large_Sets]
    +succ.f_ok [variable, in hydras.Epsilon0.Large_Sets]
    +succ.f_Sle [variable, in hydras.Epsilon0.Large_Sets]
    +succ.f_mono [variable, in hydras.Epsilon0.Large_Sets]
    +succ.Hbeta [variable, in hydras.Epsilon0.Large_Sets]
    +sumToN [definition, in hydras.Ackermann.cPair]
    +sumToNIsPR [instance, in hydras.Ackermann.cPair]
    +sumToN1 [lemma, in hydras.Ackermann.cPair]
    +sumToN2 [lemma, in hydras.Ackermann.cPair]
    +sup [definition, in hydras.Schutte.Schutte_basics]
    +SuperbigStep [lemma, in hydras.Hydra.BigBattle]
    +supM_gt0 [lemma, in hydras.Schutte.AP]
    +sup_members_disj [lemma, in hydras.Schutte.Schutte_basics]
    +sup_members_not_succ [lemma, in hydras.Schutte.Schutte_basics]
    +sup_members_succ [lemma, in hydras.Schutte.Schutte_basics]
    +sup_eq_intro [lemma, in hydras.Schutte.Schutte_basics]
    +sup_mono [lemma, in hydras.Schutte.Schutte_basics]
    +sup_of_leq [lemma, in hydras.Schutte.Schutte_basics]
    +sup_least_upper_bound [lemma, in hydras.Schutte.Schutte_basics]
    +sup_upper_bound [lemma, in hydras.Schutte.Schutte_basics]
    +sup_ok1 [lemma, in hydras.Schutte.Schutte_basics]
    +sup_spec_unicity [lemma, in hydras.Schutte.Schutte_basics]
    +sup_unicity [lemma, in hydras.Schutte.Schutte_basics]
    +sup_exists [lemma, in hydras.Schutte.Schutte_basics]
    +sup_spec [definition, in hydras.Schutte.Schutte_basics]
    +sup_M_in_B [lemma, in hydras.Schutte.Ordering_Functions]
    +Su:208 [binder, in hydras.OrdinalNotations.ON_Generic]
    +SWAP [constructor, in additions.AM]
    +swapIsPR [instance, in hydras.Ackermann.primRec]
    +switchIsPR [instance, in hydras.Ackermann.primRec]
    +switchPR [definition, in hydras.Ackermann.primRec]
    +switch5IsPR [lemma, in hydras.Ackermann.codeSubFormula]
    +sysExtend [lemma, in hydras.Ackermann.LNN]
    +sysExtend [lemma, in hydras.Ackermann.LNT]
    +sysExtend [lemma, in hydras.Ackermann.folLogic]
    +SysPrf [definition, in hydras.Ackermann.folProof]
    +SysPrf [abbreviation, in hydras.Ackermann.subAll]
    +SysPrf [definition, in hydras.Ackermann.LNN]
    +SysPrf [definition, in hydras.Ackermann.LNT]
    +SysPrf_rephrase [lemma, in hydras.Ackermann.Deduction]
    +System [abbreviation, in hydras.Ackermann.subAll]
    +System [definition, in hydras.Ackermann.LNN]
    +System [definition, in hydras.Ackermann.LNT]
    +System [abbreviation, in hydras.Ackermann.folProp]
    +System [abbreviation, in hydras.Ackermann.codeSubFormula]
    +System [definition, in hydras.Ackermann.fol]
    +System [abbreviation, in hydras.Ackermann.folLogic3]
    +sysWeaken [lemma, in hydras.Ackermann.LNN]
    +sysWeaken [lemma, in hydras.Ackermann.LNT]
    +sysWeaken [lemma, in hydras.Ackermann.folLogic]
    +S_pred_rw [lemma, in hydras.Prelude.Iterates]
    +S_ [abbreviation, in hydras.Ackermann.LNT]
    +s_decr [lemma, in hydras.solutions_exercises.T1_ltNotWf]
    +s':117 [binder, in additions.AM]
    +s':13 [binder, in hydras.Hydra.Hydra_Lemmas]
    +s':144 [binder, in hydras.rpo.rpo]
    +s':148 [binder, in hydras.rpo.rpo]
    +s':16 [binder, in hydras.Hydra.Hydra_Lemmas]
    +s':19 [binder, in hydras.Hydra.Hydra_Termination]
    +s':199 [binder, in hydras.Epsilon0.Paths]
    +s':202 [binder, in hydras.Epsilon0.Paths]
    +s':21 [binder, in hydras.Hydra.Hydra_Termination]
    +s':21 [binder, in hydras.Hydra.Hydra_Lemmas]
    +s':28 [binder, in hydras.Hydra.Hydra_Termination]
    +s':289 [binder, in hydras.rpo.rpo]
    +s':290 [binder, in hydras.rpo.rpo]
    +s':291 [binder, in hydras.rpo.rpo]
    +s':292 [binder, in hydras.rpo.rpo]
    +s':299 [binder, in hydras.rpo.rpo]
    +s':300 [binder, in hydras.rpo.rpo]
    +s':31 [binder, in hydras.Hydra.Hydra_Termination]
    +s':37 [binder, in hydras.Hydra.Hydra_Termination]
    +s':40 [binder, in hydras.Hydra.Hydra_Termination]
    +s':43 [binder, in hydras.Hydra.O2H]
    +s':49 [binder, in hydras.rpo.rpo]
    +s':51 [binder, in additions.AM]
    +s':53 [binder, in hydras.Hydra.Hydra_Lemmas]
    +s':53 [binder, in hydras.rpo.rpo]
    +s':58 [binder, in hydras.Hydra.Hydra_Lemmas]
    +s':62 [binder, in hydras.Hydra.Hydra_Definitions]
    +s':63 [binder, in hydras.Hydra.Hydra_Lemmas]
    +s':66 [binder, in hydras.Hydra.Hydra_Definitions]
    +s':69 [binder, in additions.AM]
    +s':75 [binder, in hydras.Hydra.Hydra_Definitions]
    +s':8 [binder, in hydras.Hydra.Hydra_Lemmas]
    +s':82 [binder, in hydras.Hydra.Hydra_Definitions]
    +s':84 [binder, in hydras.Hydra.Hydra_Definitions]
    +S.A [axiom, in hydras.rpo.decidable_set]
    +S.cardinal [definition, in hydras.rpo.list_set]
    +S.cardinal_subset [axiom, in hydras.rpo.list_set]
    +S.DS [module, in hydras.rpo.list_set]
    +S.elt [definition, in hydras.rpo.list_set]
    +S.eq_A_dec [axiom, in hydras.rpo.decidable_set]
    +S.eq_elt_dec [definition, in hydras.rpo.list_set]
    +S.is_a_set [projection, in hydras.rpo.list_set]
    +S.mk_set [constructor, in hydras.rpo.list_set]
    +S.subset [definition, in hydras.rpo.list_set]
    +S.support [projection, in hydras.rpo.list_set]
    +S.t [record, in hydras.rpo.list_set]
    +S.without_red [definition, in hydras.rpo.list_set]
    +S0 [inductive, in hydras.Hydra.Hydra_Definitions]
    +S0_mem_head [lemma, in hydras.Hydra.O2H]
    +S0_decr [lemma, in hydras.Hydra.Hydra_Termination]
    +S0_decr_0 [lemma, in hydras.Hydra.Hydra_Termination]
    +S0_remove_r_i [lemma, in hydras.Hydra.Hydra_Lemmas]
    +S0_remove_r [lemma, in hydras.Hydra.Hydra_Lemmas]
    +S0_app [lemma, in hydras.Hydra.Hydra_Lemmas]
    +S0_rest [constructor, in hydras.Hydra.Hydra_Definitions]
    +S0_first [constructor, in hydras.Hydra.Hydra_Definitions]
    +s0:1241 [binder, in hydras.Ackermann.codeSubFormula]
    +s0:1244 [binder, in hydras.Ackermann.codeSubFormula]
    +s0:1298 [binder, in hydras.Ackermann.codeSubFormula]
    +s0:1301 [binder, in hydras.Ackermann.codeSubFormula]
    +s0:1372 [binder, in hydras.Ackermann.codeSubFormula]
    +s0:1375 [binder, in hydras.Ackermann.codeSubFormula]
    +s0:21 [binder, in hydras.Ackermann.codeSubTerm]
    +s0:25 [binder, in hydras.Ackermann.codeSubTerm]
    +s0:43 [binder, in hydras.Ackermann.codeSubTerm]
    +s0:47 [binder, in hydras.Ackermann.codeSubTerm]
    +s0:863 [binder, in hydras.Ackermann.codeSubFormula]
    +s0:866 [binder, in hydras.Ackermann.codeSubFormula]
    +s0:887 [binder, in hydras.Ackermann.codeSubFormula]
    +s0:890 [binder, in hydras.Ackermann.codeSubFormula]
    +s0:903 [binder, in hydras.Ackermann.codeSubFormula]
    +s0:906 [binder, in hydras.Ackermann.codeSubFormula]
    +s0:930 [binder, in hydras.Ackermann.codeSubFormula]
    +s0:933 [binder, in hydras.Ackermann.codeSubFormula]
    +S1 [section, in hydras.solutions_exercises.is_F_monotonous]
    +S1 [section, in hydras.solutions_exercises.F_3]
    +S1 [section, in additions.Addition_Chains]
    +S1 [inductive, in hydras.Hydra.Hydra_Definitions]
    +S1_decr [lemma, in hydras.Hydra.Hydra_Termination]
    +S1_decr_0 [lemma, in hydras.Hydra.Hydra_Termination]
    +S1_app [lemma, in hydras.Hydra.Hydra_Lemmas]
    +S1_next [constructor, in hydras.Hydra.Hydra_Definitions]
    +S1_first [constructor, in hydras.Hydra.Hydra_Definitions]
    +s1':201 [binder, in hydras.rpo.list_set]
    +s1':207 [binder, in hydras.rpo.list_set]
    +s1':217 [binder, in hydras.rpo.list_set]
    +S1.H [variable, in hydras.solutions_exercises.is_F_monotonous]
    +S1.instance_H [variable, in hydras.solutions_exercises.is_F_monotonous]
    +S1.Limit [section, in hydras.solutions_exercises.F_3]
    +S1.Limit.Hlambda [variable, in hydras.solutions_exercises.F_3]
    +S1.Limit.IHlambda [variable, in hydras.solutions_exercises.F_3]
    +S1.Limit.lambda [variable, in hydras.solutions_exercises.F_3]
    +S1.Limit.S3 [section, in hydras.solutions_exercises.F_3]
    +S1.Limit.S3.Hn [variable, in hydras.solutions_exercises.F_3]
    +S1.Limit.S3.n [variable, in hydras.solutions_exercises.F_3]
    +S1.P [variable, in hydras.solutions_exercises.F_3]
    +S1.Successor [section, in hydras.solutions_exercises.F_3]
    +S1.Successor.alpha [variable, in hydras.solutions_exercises.F_3]
    +S1.Successor.H_alpha [variable, in hydras.solutions_exercises.F_3]
    +S1.Successor.S2 [section, in hydras.solutions_exercises.F_3]
    +S1.Successor.S2.Hn [variable, in hydras.solutions_exercises.F_3]
    +S1.Successor.S2.n [variable, in hydras.solutions_exercises.F_3]
    +s1:104 [binder, in hydras.rpo.list_set]
    +s1:11 [binder, in hydras.rpo.list_set]
    +s1:110 [binder, in hydras.rpo.list_set]
    +s1:112 [binder, in hydras.Ackermann.subProp]
    +s1:1210 [binder, in hydras.Ackermann.codeSubFormula]
    +s1:1213 [binder, in hydras.Ackermann.codeSubFormula]
    +s1:1217 [binder, in hydras.Ackermann.codeSubFormula]
    +s1:124 [binder, in hydras.rpo.list_set]
    +s1:13 [binder, in hydras.Ackermann.folLogic2]
    +s1:130 [binder, in hydras.rpo.list_set]
    +s1:131 [binder, in hydras.Ackermann.subProp]
    +s1:137 [binder, in hydras.rpo.list_set]
    +s1:146 [binder, in hydras.Ackermann.subProp]
    +s1:150 [binder, in hydras.Ackermann.subProp]
    +s1:152 [binder, in hydras.rpo.list_set]
    +s1:154 [binder, in hydras.Ackermann.subProp]
    +s1:155 [binder, in hydras.rpo.list_set]
    +s1:158 [binder, in hydras.rpo.list_set]
    +s1:160 [binder, in hydras.rpo.list_set]
    +s1:162 [binder, in hydras.rpo.list_set]
    +s1:164 [binder, in hydras.rpo.list_set]
    +s1:166 [binder, in hydras.rpo.list_set]
    +s1:168 [binder, in hydras.rpo.list_set]
    +s1:169 [binder, in hydras.Ackermann.subProp]
    +s1:171 [binder, in hydras.rpo.list_set]
    +s1:174 [binder, in hydras.rpo.list_set]
    +s1:176 [binder, in hydras.rpo.list_set]
    +s1:184 [binder, in hydras.rpo.list_set]
    +s1:186 [binder, in hydras.rpo.list_set]
    +s1:191 [binder, in hydras.rpo.list_set]
    +s1:197 [binder, in hydras.rpo.list_set]
    +s1:2 [binder, in hydras.Hydra.Hydra_Lemmas]
    +s1:200 [binder, in hydras.rpo.list_set]
    +s1:203 [binder, in hydras.rpo.list_set]
    +s1:206 [binder, in hydras.rpo.list_set]
    +s1:210 [binder, in hydras.rpo.list_set]
    +s1:213 [binder, in hydras.rpo.list_set]
    +s1:216 [binder, in hydras.rpo.list_set]
    +s1:22 [binder, in hydras.Hydra.Hydra_Lemmas]
    +s1:220 [binder, in hydras.rpo.list_set]
    +s1:224 [binder, in hydras.rpo.list_set]
    +s1:226 [binder, in hydras.rpo.list_set]
    +s1:228 [binder, in hydras.rpo.list_set]
    +s1:23 [binder, in hydras.Ackermann.folLogic2]
    +s1:230 [binder, in hydras.rpo.list_set]
    +s1:234 [binder, in hydras.Epsilon0.Paths]
    +s1:239 [binder, in hydras.Epsilon0.Paths]
    +s1:246 [binder, in hydras.rpo.list_set]
    +s1:248 [binder, in hydras.rpo.list_set]
    +s1:25 [binder, in hydras.Hydra.Hydra_Lemmas]
    +s1:250 [binder, in hydras.rpo.list_set]
    +s1:255 [binder, in hydras.rpo.list_set]
    +s1:28 [binder, in hydras.Ackermann.folLogic2]
    +s1:29 [binder, in hydras.Hydra.O2H]
    +s1:29 [binder, in hydras.Hydra.Hydra_Lemmas]
    +s1:33 [binder, in hydras.Hydra.O2H]
    +s1:33 [binder, in hydras.Hydra.Hydra_Lemmas]
    +s1:43 [binder, in hydras.Hydra.Hydra_Definitions]
    +s1:47 [binder, in hydras.Hydra.Hydra_Lemmas]
    +s1:8 [binder, in hydras.rpo.list_set]
    +s1:820 [binder, in hydras.Ackermann.codeSubFormula]
    +s1:823 [binder, in hydras.Ackermann.codeSubFormula]
    +s1:827 [binder, in hydras.Ackermann.codeSubFormula]
    +s1:843 [binder, in hydras.Ackermann.codeSubFormula]
    +s1:846 [binder, in hydras.Ackermann.codeSubFormula]
    +s1:93 [binder, in hydras.rpo.list_set]
    +s1:98 [binder, in hydras.rpo.list_set]
    +S2 [section, in additions.Addition_Chains]
    +S2 [inductive, in hydras.Hydra.Hydra_Definitions]
    +S2_app [lemma, in hydras.Hydra.Hydra_Lemmas]
    +S2_ind2 [definition, in hydras.Hydra.Hydra_Lemmas]
    +S2_iff [lemma, in hydras.Hydra.Hydra_Lemmas]
    +S2_next [constructor, in hydras.Hydra.Hydra_Definitions]
    +S2_first [constructor, in hydras.Hydra.Hydra_Definitions]
    +s2':205 [binder, in hydras.rpo.list_set]
    +s2':209 [binder, in hydras.rpo.list_set]
    +s2':219 [binder, in hydras.rpo.list_set]
    +S2.a [variable, in additions.Addition_Chains]
    +S2.A [variable, in additions.Addition_Chains]
    +S2.b [variable, in additions.Addition_Chains]
    +S2.B [variable, in additions.Addition_Chains]
    +S2.R_true [variable, in additions.Addition_Chains]
    +S256 [section, in additions.Monoid_instances]
    +S256.mod256 [variable, in additions.Monoid_instances]
    +s2:105 [binder, in hydras.rpo.list_set]
    +s2:111 [binder, in hydras.rpo.list_set]
    +s2:113 [binder, in hydras.Ackermann.subProp]
    +s2:12 [binder, in hydras.rpo.list_set]
    +s2:1211 [binder, in hydras.Ackermann.codeSubFormula]
    +s2:1214 [binder, in hydras.Ackermann.codeSubFormula]
    +s2:1218 [binder, in hydras.Ackermann.codeSubFormula]
    +s2:1238 [binder, in hydras.Ackermann.codeSubFormula]
    +s2:125 [binder, in hydras.rpo.list_set]
    +s2:131 [binder, in hydras.rpo.list_set]
    +s2:132 [binder, in hydras.Ackermann.subProp]
    +s2:138 [binder, in hydras.rpo.list_set]
    +s2:14 [binder, in hydras.Ackermann.folLogic2]
    +s2:147 [binder, in hydras.Ackermann.subProp]
    +s2:151 [binder, in hydras.Ackermann.subProp]
    +s2:153 [binder, in hydras.rpo.list_set]
    +s2:155 [binder, in hydras.Ackermann.subProp]
    +s2:156 [binder, in hydras.rpo.list_set]
    +s2:159 [binder, in hydras.rpo.list_set]
    +s2:161 [binder, in hydras.rpo.list_set]
    +s2:163 [binder, in hydras.rpo.list_set]
    +s2:165 [binder, in hydras.rpo.list_set]
    +s2:167 [binder, in hydras.rpo.list_set]
    +s2:169 [binder, in hydras.rpo.list_set]
    +s2:170 [binder, in hydras.Ackermann.subProp]
    +s2:172 [binder, in hydras.rpo.list_set]
    +s2:175 [binder, in hydras.rpo.list_set]
    +s2:177 [binder, in hydras.rpo.list_set]
    +s2:185 [binder, in hydras.rpo.list_set]
    +s2:187 [binder, in hydras.rpo.list_set]
    +s2:192 [binder, in hydras.rpo.list_set]
    +s2:198 [binder, in hydras.rpo.list_set]
    +s2:202 [binder, in hydras.rpo.list_set]
    +s2:204 [binder, in hydras.rpo.list_set]
    +s2:208 [binder, in hydras.rpo.list_set]
    +s2:211 [binder, in hydras.rpo.list_set]
    +s2:214 [binder, in hydras.rpo.list_set]
    +s2:218 [binder, in hydras.rpo.list_set]
    +s2:221 [binder, in hydras.rpo.list_set]
    +s2:225 [binder, in hydras.rpo.list_set]
    +s2:227 [binder, in hydras.rpo.list_set]
    +s2:229 [binder, in hydras.rpo.list_set]
    +s2:23 [binder, in hydras.Hydra.Hydra_Lemmas]
    +s2:231 [binder, in hydras.rpo.list_set]
    +s2:235 [binder, in hydras.Epsilon0.Paths]
    +s2:24 [binder, in hydras.Ackermann.folLogic2]
    +s2:240 [binder, in hydras.Epsilon0.Paths]
    +s2:247 [binder, in hydras.rpo.list_set]
    +s2:249 [binder, in hydras.rpo.list_set]
    +s2:251 [binder, in hydras.rpo.list_set]
    +s2:256 [binder, in hydras.rpo.list_set]
    +s2:26 [binder, in hydras.Hydra.Hydra_Lemmas]
    +s2:29 [binder, in hydras.Ackermann.folLogic2]
    +s2:3 [binder, in hydras.Hydra.Hydra_Lemmas]
    +s2:30 [binder, in hydras.Hydra.O2H]
    +s2:30 [binder, in hydras.Hydra.Hydra_Lemmas]
    +s2:34 [binder, in hydras.Hydra.O2H]
    +s2:34 [binder, in hydras.Hydra.Hydra_Lemmas]
    +s2:44 [binder, in hydras.Hydra.Hydra_Definitions]
    +s2:48 [binder, in hydras.Hydra.Hydra_Lemmas]
    +s2:821 [binder, in hydras.Ackermann.codeSubFormula]
    +s2:824 [binder, in hydras.Ackermann.codeSubFormula]
    +s2:828 [binder, in hydras.Ackermann.codeSubFormula]
    +s2:844 [binder, in hydras.Ackermann.codeSubFormula]
    +s2:847 [binder, in hydras.Ackermann.codeSubFormula]
    +s2:9 [binder, in hydras.rpo.list_set]
    +s2:900 [binder, in hydras.Ackermann.codeSubFormula]
    +s2:917 [binder, in hydras.Ackermann.codeSubFormula]
    +s2:922 [binder, in hydras.Ackermann.codeSubFormula]
    +s2:927 [binder, in hydras.Ackermann.codeSubFormula]
    +s2:94 [binder, in hydras.rpo.list_set]
    +s2:99 [binder, in hydras.rpo.list_set]
    +s3:178 [binder, in hydras.rpo.list_set]
    +s3:188 [binder, in hydras.rpo.list_set]
    +s3:24 [binder, in hydras.Hydra.Hydra_Lemmas]
    +s3:27 [binder, in hydras.Hydra.Hydra_Lemmas]
    +s3:31 [binder, in hydras.Hydra.Hydra_Lemmas]
    +s3:4 [binder, in hydras.Hydra.Hydra_Lemmas]
    +s:10 [binder, in hydras.Ackermann.codeSubTerm]
    +S:10 [binder, in hydras.MoreAck.FolExamples]
    +s:1005 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1008 [binder, in hydras.Ackermann.codeSubFormula]
    +s:101 [binder, in hydras.Epsilon0.Paths]
    +s:101 [binder, in hydras.Ackermann.folReplace]
    +s:101 [binder, in hydras.rpo.rpo]
    +s:1011 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1014 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1017 [binder, in hydras.Ackermann.codeSubFormula]
    +s:102 [binder, in hydras.Hydra.O2H]
    +s:1020 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1028 [binder, in hydras.Ackermann.codeSubFormula]
    +s:103 [binder, in hydras.Ackermann.LNN2LNT]
    +s:103 [binder, in hydras.rpo.rpo]
    +s:1030 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1032 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1034 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1036 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1038 [binder, in hydras.Ackermann.codeSubFormula]
    +s:104 [binder, in hydras.Ackermann.subProp]
    +s:104 [binder, in hydras.Epsilon0.Paths]
    +s:1040 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1042 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1044 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1046 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1049 [binder, in hydras.Ackermann.codeSubFormula]
    +s:105 [binder, in hydras.Hydra.O2H]
    +s:105 [binder, in hydras.Ackermann.model]
    +s:1052 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1055 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1058 [binder, in hydras.Ackermann.codeSubFormula]
    +s:106 [binder, in hydras.Ackermann.folReplace]
    +s:1061 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1064 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1067 [binder, in hydras.Ackermann.codeSubFormula]
    +s:107 [binder, in hydras.Epsilon0.Paths]
    +s:1070 [binder, in hydras.Ackermann.codeSubFormula]
    +s:108 [binder, in hydras.Hydra.O2H]
    +s:109 [binder, in hydras.Ackermann.model]
    +s:11 [binder, in hydras.Hydra.Hydra_Lemmas]
    +s:110 [binder, in hydras.Epsilon0.Paths]
    +s:111 [binder, in hydras.Ackermann.subAll]
    +s:112 [binder, in hydras.Epsilon0.Paths]
    +s:113 [binder, in hydras.Ackermann.model]
    +s:115 [binder, in additions.AM]
    +s:116 [binder, in hydras.Ackermann.LNN2LNT]
    +s:117 [binder, in hydras.Ackermann.subAll]
    +s:117 [binder, in hydras.Ackermann.model]
    +s:1170 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1172 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1174 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1176 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1178 [binder, in hydras.Ackermann.codeSubFormula]
    +s:118 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1180 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1182 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1184 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1186 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1188 [binder, in hydras.Ackermann.codeSubFormula]
    +s:119 [binder, in hydras.Epsilon0.Paths]
    +s:1190 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1192 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1194 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1196 [binder, in hydras.Ackermann.codeSubFormula]
    +s:12 [binder, in hydras.Hydra.Hydra_Termination]
    +s:12 [binder, in hydras.Hydra.Hydra_Lemmas]
    +s:120 [binder, in hydras.rpo.rpo]
    +s:1200 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1202 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1204 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1206 [binder, in hydras.Ackermann.codeSubFormula]
    +s:121 [binder, in hydras.Ackermann.subProp]
    +s:121 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1222 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1225 [binder, in hydras.Ackermann.codeSubFormula]
    +s:124 [binder, in hydras.Ackermann.codeSubTerm]
    +s:124 [binder, in hydras.Ackermann.codeSubFormula]
    +s:124 [binder, in hydras.Epsilon0.Paths]
    +s:1251 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1259 [binder, in hydras.Ackermann.codeSubFormula]
    +s:126 [binder, in hydras.Ackermann.subProp]
    +s:126 [binder, in hydras.Epsilon0.Large_Sets]
    +s:126 [binder, in hydras.Epsilon0.Paths]
    +s:126 [binder, in hydras.rpo.rpo]
    +s:1267 [binder, in hydras.Ackermann.codeSubFormula]
    +s:127 [binder, in hydras.Ackermann.codeSubTerm]
    +s:128 [binder, in hydras.Epsilon0.Large_Sets]
    +s:1287 [binder, in hydras.Ackermann.codeSubFormula]
    +s:129 [binder, in hydras.Ackermann.model]
    +s:1292 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1295 [binder, in hydras.Ackermann.codeSubFormula]
    +s:13 [binder, in hydras.Ackermann.codeSubTerm]
    +s:13 [binder, in hydras.Hydra.Hydra_Termination]
    +s:130 [binder, in additions.AM]
    +s:130 [binder, in hydras.Ackermann.codeSubTerm]
    +s:130 [binder, in hydras.Epsilon0.Large_Sets]
    +s:132 [binder, in hydras.Epsilon0.Large_Sets]
    +s:133 [binder, in hydras.Ackermann.codeSubTerm]
    +s:133 [binder, in hydras.Ackermann.model]
    +s:133 [binder, in hydras.Ackermann.codeSubFormula]
    +s:134 [binder, in hydras.Epsilon0.Large_Sets]
    +s:134 [binder, in hydras.Epsilon0.Paths]
    +s:135 [binder, in hydras.Ackermann.folProp]
    +s:136 [binder, in hydras.Ackermann.codeSubTerm]
    +s:136 [binder, in hydras.Ackermann.subProp]
    +s:136 [binder, in hydras.Epsilon0.Large_Sets]
    +s:1368 [binder, in hydras.Ackermann.codeSubFormula]
    +s:137 [binder, in hydras.Ackermann.model]
    +s:1378 [binder, in hydras.Ackermann.codeSubFormula]
    +s:138 [binder, in hydras.Epsilon0.Large_Sets]
    +s:1381 [binder, in hydras.Ackermann.codeSubFormula]
    +s:139 [binder, in hydras.Ackermann.codeSubTerm]
    +s:139 [binder, in hydras.rpo.rpo]
    +s:1391 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1395 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1398 [binder, in hydras.Ackermann.codeSubFormula]
    +s:14 [binder, in hydras.Ackermann.subProp]
    +s:14 [binder, in hydras.Hydra.Hydra_Termination]
    +s:140 [binder, in hydras.Ackermann.subProp]
    +s:140 [binder, in hydras.Epsilon0.Large_Sets]
    +s:140 [binder, in hydras.Epsilon0.Paths]
    +S:140 [binder, in hydras.Schutte.Ordering_Functions]
    +s:1401 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1406 [binder, in hydras.Ackermann.codeSubFormula]
    +s:141 [binder, in hydras.Ackermann.model]
    +s:1412 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1419 [binder, in hydras.Ackermann.codeSubFormula]
    +s:142 [binder, in hydras.Ackermann.codeSubTerm]
    +s:142 [binder, in hydras.Epsilon0.Large_Sets]
    +s:1424 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1429 [binder, in hydras.Ackermann.codeSubFormula]
    +s:143 [binder, in hydras.Ackermann.folProp]
    +s:143 [binder, in hydras.Ackermann.subProp]
    +s:1432 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1435 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1438 [binder, in hydras.Ackermann.codeSubFormula]
    +S:144 [binder, in hydras.Schutte.Ordering_Functions]
    +s:1441 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1444 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1447 [binder, in hydras.Ackermann.codeSubFormula]
    +s:145 [binder, in hydras.Ackermann.codeSubTerm]
    +s:145 [binder, in hydras.Ackermann.model]
    +S:145 [binder, in hydras.Schutte.Ordering_Functions]
    +s:1450 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1453 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1456 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1459 [binder, in hydras.Ackermann.codeSubFormula]
    +s:146 [binder, in hydras.Epsilon0.Paths]
    +s:1462 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1465 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1468 [binder, in hydras.Ackermann.codeSubFormula]
    +s:147 [binder, in hydras.Ackermann.folProp]
    +s:1471 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1474 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1477 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1480 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1483 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1486 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1489 [binder, in hydras.Ackermann.codeSubFormula]
    +s:149 [binder, in hydras.Ackermann.model]
    +s:1492 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1495 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1498 [binder, in hydras.Ackermann.codeSubFormula]
    +s:15 [binder, in additions.AM]
    +s:15 [binder, in gaia_hydras.GPaths]
    +s:15 [binder, in hydras.Hydra.Hydra_Lemmas]
    +s:1501 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1504 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1507 [binder, in hydras.Ackermann.codeSubFormula]
    +s:151 [binder, in hydras.Ackermann.folProp]
    +s:151 [binder, in gaia_hydras.T1Bridge]
    +s:1510 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1512 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1514 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1517 [binder, in hydras.Ackermann.codeSubFormula]
    +s:152 [binder, in hydras.Epsilon0.Large_Sets]
    +s:1520 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1523 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1526 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1529 [binder, in hydras.Ackermann.codeSubFormula]
    +s:153 [binder, in gaia_hydras.T1Bridge]
    +s:153 [binder, in hydras.rpo.rpo]
    +s:1532 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1535 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1538 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1541 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1544 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1547 [binder, in hydras.Ackermann.codeSubFormula]
    +s:155 [binder, in hydras.Ackermann.folProp]
    +s:155 [binder, in gaia_hydras.T1Bridge]
    +s:155 [binder, in hydras.rpo.rpo]
    +s:1550 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1553 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1556 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1559 [binder, in hydras.Ackermann.codeSubFormula]
    +s:156 [binder, in additions.AM]
    +s:1562 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1565 [binder, in hydras.Ackermann.codeSubFormula]
    +s:1568 [binder, in hydras.Ackermann.codeSubFormula]
    +s:157 [binder, in hydras.Ackermann.model]
    +s:158 [binder, in hydras.Epsilon0.Large_Sets]
    +s:158 [binder, in hydras.Epsilon0.Paths]
    +s:159 [binder, in hydras.Ackermann.subProp]
    +s:159 [binder, in hydras.rpo.rpo]
    +s:16 [binder, in hydras.Hydra.Hydra_Definitions]
    +s:160 [binder, in additions.AM]
    +s:160 [binder, in gaia_hydras.T1Bridge]
    +s:160 [binder, in hydras.Epsilon0.Paths]
    +s:162 [binder, in hydras.Epsilon0.Paths]
    +s:163 [binder, in additions.AM]
    +s:164 [binder, in additions.AM]
    +s:164 [binder, in hydras.Prelude.MoreLists]
    +s:164 [binder, in hydras.Ackermann.subProp]
    +s:165 [binder, in hydras.Epsilon0.Paths]
    +s:166 [binder, in additions.AM]
    +S:167 [binder, in hydras.Prelude.MoreLists]
    +s:168 [binder, in additions.AM]
    +s:169 [binder, in additions.AM]
    +s:17 [binder, in hydras.Ackermann.codeSubTerm]
    +s:17 [binder, in hydras.Hydra.Hydra_Termination]
    +s:17 [binder, in hydras.Epsilon0.Paths]
    +s:170 [binder, in hydras.Epsilon0.Paths]
    +s:172 [binder, in hydras.rpo.rpo]
    +s:173 [binder, in hydras.rpo.list_set]
    +s:175 [binder, in hydras.Epsilon0.Paths]
    +s:177 [binder, in hydras.Epsilon0.Large_Sets]
    +s:178 [binder, in hydras.Epsilon0.Paths]
    +s:18 [binder, in hydras.Prelude.MoreOrders]
    +s:18 [binder, in hydras.Hydra.Hydra_Termination]
    +s:180 [binder, in hydras.Epsilon0.Large_Sets]
    +s:180 [binder, in hydras.Schutte.Schutte_basics]
    +s:180 [binder, in hydras.Epsilon0.Paths]
    +s:181 [binder, in hydras.rpo.list_set]
    +s:181 [binder, in hydras.rpo.rpo]
    +s:182 [binder, in hydras.Epsilon0.Large_Sets]
    +s:182 [binder, in hydras.rpo.list_set]
    +s:182 [binder, in hydras.Epsilon0.Paths]
    +s:183 [binder, in hydras.Schutte.Schutte_basics]
    +s:183 [binder, in hydras.rpo.list_set]
    +s:183 [binder, in hydras.Epsilon0.Paths]
    +s:184 [binder, in hydras.Epsilon0.Large_Sets]
    +s:184 [binder, in hydras.Epsilon0.Paths]
    +s:185 [binder, in hydras.Epsilon0.Large_Sets]
    +s:185 [binder, in hydras.Schutte.Schutte_basics]
    +s:186 [binder, in hydras.Schutte.Schutte_basics]
    +s:187 [binder, in hydras.Epsilon0.Large_Sets]
    +s:188 [binder, in hydras.Prelude.MoreLists]
    +s:188 [binder, in hydras.Schutte.Schutte_basics]
    +s:188 [binder, in hydras.Epsilon0.Paths]
    +s:19 [binder, in hydras.Ackermann.LNN2LNT]
    +s:19 [binder, in gaia_hydras.GPaths]
    +s:19 [binder, in hydras.Ackermann.subProp]
    +s:190 [binder, in hydras.Epsilon0.Large_Sets]
    +s:190 [binder, in hydras.Epsilon0.Paths]
    +s:192 [binder, in hydras.Prelude.MoreLists]
    +s:192 [binder, in hydras.Epsilon0.Large_Sets]
    +s:192 [binder, in hydras.Schutte.Schutte_basics]
    +s:192 [binder, in hydras.Epsilon0.Paths]
    +s:194 [binder, in hydras.Epsilon0.Large_Sets]
    +s:194 [binder, in hydras.rpo.rpo]
    +s:195 [binder, in hydras.Epsilon0.Paths]
    +s:196 [binder, in hydras.Epsilon0.Large_Sets]
    +s:198 [binder, in hydras.Epsilon0.Large_Sets]
    +s:198 [binder, in hydras.Schutte.Schutte_basics]
    +s:198 [binder, in hydras.Epsilon0.Paths]
    +s:2 [binder, in hydras.Ackermann.folProp]
    +s:2 [binder, in hydras.Epsilon0.Large_Sets]
    +s:2 [binder, in hydras.Hydra.Hydra_Termination]
    +s:2 [binder, in gaia_hydras.GHydra]
    +s:2 [binder, in gaia_hydras.GLarge_Sets]
    +s:20 [binder, in hydras.Prelude.MoreLists]
    +s:20 [binder, in hydras.Hydra.Hydra_Termination]
    +s:20 [binder, in hydras.Hydra.Hydra_Lemmas]
    +s:20 [binder, in hydras.Epsilon0.Paths]
    +s:200 [binder, in hydras.Epsilon0.Large_Sets]
    +s:201 [binder, in hydras.Epsilon0.Paths]
    +s:204 [binder, in hydras.Epsilon0.Large_Sets]
    +s:205 [binder, in hydras.Epsilon0.Large_Sets]
    +s:205 [binder, in hydras.Epsilon0.Paths]
    +s:207 [binder, in hydras.Epsilon0.Large_Sets]
    +s:208 [binder, in hydras.Epsilon0.Paths]
    +S:21 [binder, in hydras.Ackermann.Languages]
    +s:210 [binder, in hydras.Prelude.MoreLists]
    +s:210 [binder, in hydras.rpo.rpo]
    +s:211 [binder, in hydras.Epsilon0.Large_Sets]
    +s:211 [binder, in hydras.rpo.rpo]
    +s:212 [binder, in hydras.rpo.list_set]
    +s:212 [binder, in hydras.Epsilon0.Paths]
    +s:213 [binder, in hydras.Epsilon0.Large_Sets]
    +s:215 [binder, in hydras.Epsilon0.Large_Sets]
    +s:215 [binder, in hydras.rpo.list_set]
    +s:215 [binder, in hydras.Epsilon0.Paths]
    +s:215 [binder, in hydras.rpo.rpo]
    +s:216 [binder, in hydras.Prelude.MoreLists]
    +s:219 [binder, in hydras.Epsilon0.Paths]
    +s:219 [binder, in hydras.rpo.rpo]
    +s:22 [binder, in additions.AM]
    +s:22 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +s:22 [binder, in hydras.Epsilon0.Large_Sets]
    +s:22 [binder, in hydras.Hydra.Hydra_Definitions]
    +s:222 [binder, in hydras.rpo.list_set]
    +s:222 [binder, in hydras.Epsilon0.Paths]
    +s:223 [binder, in hydras.rpo.list_set]
    +s:225 [binder, in hydras.rpo.rpo]
    +s:227 [binder, in hydras.Epsilon0.Paths]
    +s:228 [binder, in additions.AM]
    +s:23 [binder, in hydras.Prelude.MoreLists]
    +S:23 [binder, in hydras.Ackermann.checkPrf]
    +s:23 [binder, in hydras.Ackermann.subProp]
    +s:23 [binder, in hydras.rpo.list_set]
    +s:23 [binder, in hydras.Epsilon0.Paths]
    +s:230 [binder, in hydras.Epsilon0.Paths]
    +s:234 [binder, in hydras.Ackermann.folProp]
    +s:236 [binder, in hydras.Epsilon0.Paths]
    +s:241 [binder, in hydras.Epsilon0.Paths]
    +s:244 [binder, in hydras.Epsilon0.Paths]
    +s:246 [binder, in hydras.Epsilon0.Paths]
    +s:25 [binder, in hydras.Prelude.MoreOrders]
    +s:25 [binder, in hydras.rpo.list_set]
    +s:253 [binder, in hydras.Epsilon0.Paths]
    +s:256 [binder, in hydras.Epsilon0.Paths]
    +s:260 [binder, in hydras.Epsilon0.Paths]
    +s:262 [binder, in hydras.rpo.rpo]
    +s:263 [binder, in hydras.Epsilon0.Paths]
    +s:263 [binder, in hydras.Gamma0.Gamma0]
    +s:263 [binder, in hydras.rpo.rpo]
    +s:264 [binder, in hydras.rpo.rpo]
    +s:265 [binder, in hydras.rpo.rpo]
    +s:27 [binder, in hydras.Ackermann.LNN2LNT]
    +s:27 [binder, in hydras.Ackermann.subProp]
    +s:27 [binder, in hydras.Hydra.Hydra_Termination]
    +s:277 [binder, in Goedel.PRrepresentable]
    +s:28 [binder, in hydras.Prelude.MoreLists]
    +s:28 [binder, in hydras.Ackermann.code]
    +s:282 [binder, in hydras.Ackermann.folProp]
    +s:283 [binder, in hydras.Ackermann.subAll]
    +s:288 [binder, in hydras.Ackermann.subAll]
    +s:29 [binder, in hydras.rpo.list_set]
    +s:3 [binder, in hydras.solutions_exercises.Limit_Infinity]
    +s:30 [binder, in hydras.Epsilon0.Large_Sets]
    +s:30 [binder, in hydras.Hydra.Hydra_Termination]
    +s:30 [binder, in hydras.rpo.rpo]
    +s:31 [binder, in gaia_hydras.GPaths]
    +s:31 [binder, in hydras.Prelude.MoreOrders]
    +s:31 [binder, in hydras.Schutte.Schutte_basics]
    +s:31 [binder, in hydras.rpo.list_set]
    +s:314 [binder, in hydras.rpo.rpo]
    +s:318 [binder, in hydras.rpo.rpo]
    +s:32 [binder, in hydras.Ackermann.subProp]
    +s:32 [binder, in hydras.Epsilon0.Large_Sets]
    +s:32 [binder, in hydras.Hydra.Hydra_Termination]
    +s:32 [binder, in hydras.Epsilon0.Paths]
    +s:33 [binder, in gaia_hydras.GPaths]
    +s:336 [binder, in additions.Euclidean_Chains]
    +s:338 [binder, in additions.Euclidean_Chains]
    +s:34 [binder, in hydras.Ackermann.folLogic2]
    +s:34 [binder, in hydras.rpo.list_set]
    +s:341 [binder, in additions.Euclidean_Chains]
    +s:343 [binder, in additions.Euclidean_Chains]
    +s:347 [binder, in additions.Euclidean_Chains]
    +s:35 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +s:35 [binder, in gaia_hydras.GPaths]
    +s:35 [binder, in hydras.Epsilon0.Large_Sets]
    +s:35 [binder, in hydras.Epsilon0.Paths]
    +s:351 [binder, in additions.Euclidean_Chains]
    +s:355 [binder, in additions.Euclidean_Chains]
    +s:357 [binder, in additions.Euclidean_Chains]
    +s:359 [binder, in hydras.Ackermann.subAll]
    +s:36 [binder, in hydras.Hydra.Hydra_Termination]
    +s:363 [binder, in additions.Euclidean_Chains]
    +s:369 [binder, in additions.Euclidean_Chains]
    +s:37 [binder, in hydras.Prelude.MoreLists]
    +s:37 [binder, in hydras.Ackermann.subProp]
    +s:37 [binder, in hydras.rpo.list_set]
    +s:372 [binder, in hydras.Ackermann.subAll]
    +s:376 [binder, in additions.Euclidean_Chains]
    +s:38 [binder, in hydras.Ackermann.folLogic2]
    +s:38 [binder, in gaia_hydras.GPaths]
    +s:38 [binder, in hydras.Prelude.MoreOrders]
    +s:38 [binder, in hydras.Hydra.Hydra_Definitions]
    +s:383 [binder, in additions.Euclidean_Chains]
    +s:386 [binder, in hydras.Epsilon0.Paths]
    +s:389 [binder, in additions.Euclidean_Chains]
    +s:39 [binder, in hydras.Hydra.O2H]
    +s:39 [binder, in hydras.Prelude.MoreLists]
    +s:39 [binder, in hydras.Ackermann.codeSubTerm]
    +s:39 [binder, in hydras.Hydra.Hydra_Termination]
    +s:39 [binder, in hydras.Epsilon0.Paths]
    +s:395 [binder, in hydras.Ackermann.folProp]
    +s:396 [binder, in additions.Euclidean_Chains]
    +s:399 [binder, in hydras.Ackermann.folProp]
    +s:4 [binder, in hydras.Ackermann.subProp]
    +s:4 [binder, in hydras.Epsilon0.Large_Sets]
    +s:4 [binder, in gaia_hydras.GLarge_Sets]
    +s:403 [binder, in hydras.Ackermann.folProp]
    +s:403 [binder, in additions.Euclidean_Chains]
    +s:406 [binder, in additions.Euclidean_Chains]
    +s:407 [binder, in additions.Euclidean_Chains]
    +s:408 [binder, in hydras.Ackermann.folProp]
    +s:409 [binder, in additions.Euclidean_Chains]
    +s:41 [binder, in hydras.Hydra.O2H]
    +s:41 [binder, in hydras.Prelude.MoreLists]
    +s:41 [binder, in hydras.Epsilon0.Paths]
    +s:411 [binder, in additions.Euclidean_Chains]
    +s:412 [binder, in additions.Euclidean_Chains]
    +s:413 [binder, in hydras.Ackermann.folProp]
    +s:416 [binder, in hydras.Ackermann.folProp]
    +s:42 [binder, in hydras.Hydra.O2H]
    +s:42 [binder, in hydras.Ackermann.subProp]
    +s:423 [binder, in Goedel.PRrepresentable]
    +s:427 [binder, in Goedel.PRrepresentable]
    +s:43 [binder, in hydras.Prelude.MoreLists]
    +s:430 [binder, in Goedel.PRrepresentable]
    +s:431 [binder, in hydras.Ackermann.folProp]
    +s:433 [binder, in Goedel.PRrepresentable]
    +s:436 [binder, in Goedel.PRrepresentable]
    +s:436 [binder, in hydras.Ackermann.folProp]
    +s:439 [binder, in Goedel.PRrepresentable]
    +s:44 [binder, in hydras.rpo.rpo]
    +s:45 [binder, in hydras.Prelude.MoreLists]
    +s:45 [binder, in hydras.Epsilon0.Paths]
    +s:46 [binder, in Goedel.PRrepresentable]
    +s:46 [binder, in hydras.Hydra.O2H]
    +s:46 [binder, in hydras.Ackermann.subProp]
    +s:47 [binder, in hydras.Ackermann.folProp]
    +s:47 [binder, in hydras.Hydra.Hydra_Definitions]
    +s:471 [binder, in additions.Euclidean_Chains]
    +s:49 [binder, in Goedel.PRrepresentable]
    +s:50 [binder, in additions.AM]
    +s:50 [binder, in hydras.Ackermann.subProp]
    +s:50 [binder, in hydras.Hydra.Hydra_Definitions]
    +s:51 [binder, in Goedel.codeSysPrf]
    +s:52 [binder, in hydras.Hydra.Hydra_Lemmas]
    +s:53 [binder, in hydras.rpo.list_set]
    +S:53 [binder, in hydras.Ackermann.Languages]
    +S:544 [binder, in hydras.Ackermann.primRec]
    +s:55 [binder, in hydras.Ackermann.codeSubTerm]
    +s:55 [binder, in hydras.Ackermann.subProp]
    +s:55 [binder, in Goedel.codeSysPrf]
    +S:558 [binder, in hydras.Ackermann.primRec]
    +s:56 [binder, in gaia_hydras.GPaths]
    +s:57 [binder, in hydras.Hydra.Hydra_Lemmas]
    +s:58 [binder, in hydras.rpo.rpo]
    +s:59 [binder, in hydras.Ackermann.codeSubTerm]
    +s:59 [binder, in hydras.Hydra.Hydra_Definitions]
    +s:6 [binder, in hydras.Hydra.BigBattle]
    +S:6 [binder, in hydras.MoreAck.FolExamples]
    +s:60 [binder, in gaia_hydras.GPaths]
    +s:60 [binder, in hydras.Ackermann.folProp]
    +s:60 [binder, in hydras.Ackermann.subProp]
    +s:60 [binder, in hydras.Ackermann.codeSubFormula]
    +s:60 [binder, in hydras.rpo.list_set]
    +s:60 [binder, in hydras.rpo.rpo]
    +s:61 [binder, in hydras.Hydra.Hydra_Definitions]
    +s:62 [binder, in hydras.Hydra.Hydra_Lemmas]
    +s:63 [binder, in hydras.Ackermann.codeSubTerm]
    +s:63 [binder, in hydras.Ackermann.folProp]
    +s:64 [binder, in hydras.rpo.rpo]
    +s:65 [binder, in hydras.Prelude.MoreLists]
    +s:65 [binder, in hydras.Ackermann.subProp]
    +s:65 [binder, in hydras.Hydra.Hydra_Definitions]
    +s:67 [binder, in additions.AM]
    +s:67 [binder, in hydras.Ackermann.codeSubTerm]
    +s:67 [binder, in hydras.Ackermann.folProp]
    +s:67 [binder, in Goedel.codeSysPrf]
    +s:68 [binder, in hydras.rpo.list_set]
    +s:685 [binder, in hydras.Epsilon0.T1]
    +s:69 [binder, in hydras.Ackermann.subProp]
    +s:690 [binder, in hydras.Epsilon0.T1]
    +s:694 [binder, in hydras.Epsilon0.T1]
    +s:694 [binder, in hydras.Ackermann.codeSubFormula]
    +s:697 [binder, in hydras.Epsilon0.T1]
    +s:697 [binder, in hydras.Ackermann.codeSubFormula]
    +s:7 [binder, in hydras.Ackermann.Deduction]
    +s:7 [binder, in hydras.Hydra.Hydra_Lemmas]
    +s:7 [binder, in hydras.rpo.list_set]
    +s:70 [binder, in hydras.Hydra.Hydra_Definitions]
    +s:700 [binder, in hydras.Ackermann.codeSubFormula]
    +s:701 [binder, in hydras.Epsilon0.T1]
    +s:703 [binder, in hydras.Ackermann.codeSubFormula]
    +s:706 [binder, in hydras.Ackermann.codeSubFormula]
    +s:709 [binder, in hydras.Ackermann.codeSubFormula]
    +s:71 [binder, in hydras.Ackermann.codeSubTerm]
    +s:71 [binder, in hydras.Ackermann.LNN2LNT]
    +s:71 [binder, in Goedel.codeSysPrf]
    +s:712 [binder, in hydras.Ackermann.codeSubFormula]
    +s:715 [binder, in hydras.Ackermann.codeSubFormula]
    +s:718 [binder, in hydras.Ackermann.codeSubFormula]
    +s:72 [binder, in hydras.Ackermann.codeSubFormula]
    +s:72 [binder, in Goedel.rosser]
    +s:721 [binder, in hydras.Ackermann.codeSubFormula]
    +s:724 [binder, in hydras.Ackermann.codeSubFormula]
    +s:73 [binder, in hydras.Ackermann.model]
    +s:73 [binder, in hydras.Ackermann.subProp]
    +s:74 [binder, in hydras.Hydra.Hydra_Definitions]
    +s:75 [binder, in Goedel.PRrepresentable]
    +s:75 [binder, in hydras.Ackermann.codeSubTerm]
    +s:75 [binder, in hydras.rpo.rpo]
    +s:755 [binder, in hydras.Ackermann.codeSubFormula]
    +s:756 [binder, in hydras.Ackermann.codeSubFormula]
    +s:757 [binder, in hydras.Ackermann.codeSubFormula]
    +s:758 [binder, in hydras.Ackermann.codeSubFormula]
    +s:759 [binder, in hydras.Ackermann.codeSubFormula]
    +s:760 [binder, in hydras.Ackermann.codeSubFormula]
    +s:77 [binder, in hydras.Ackermann.codeSubFormula]
    +s:78 [binder, in additions.AM]
    +s:78 [binder, in hydras.Prelude.MoreLists]
    +s:78 [binder, in hydras.Ackermann.subProp]
    +s:79 [binder, in hydras.Ackermann.codeSubTerm]
    +s:79 [binder, in hydras.rpo.rpo]
    +s:8 [binder, in hydras.Prelude.MoreLists]
    +s:8 [binder, in hydras.Ackermann.codeSubTerm]
    +s:8 [binder, in hydras.Hydra.Hydra_Termination]
    +s:8 [binder, in hydras.rpo.rpo]
    +s:81 [binder, in hydras.Hydra.Hydra_Definitions]
    +s:816 [binder, in hydras.Ackermann.codeSubFormula]
    +s:818 [binder, in hydras.Ackermann.codeSubFormula]
    +s:83 [binder, in hydras.Ackermann.codeSubTerm]
    +s:83 [binder, in hydras.Ackermann.subProp]
    +s:83 [binder, in hydras.Hydra.Hydra_Definitions]
    +s:832 [binder, in hydras.Ackermann.codeSubFormula]
    +s:835 [binder, in hydras.Ackermann.codeSubFormula]
    +s:84 [binder, in hydras.Ackermann.model]
    +s:85 [binder, in hydras.rpo.rpo]
    +s:860 [binder, in hydras.Ackermann.codeSubFormula]
    +s:87 [binder, in hydras.Ackermann.codeSubTerm]
    +s:87 [binder, in hydras.Ackermann.codeSubFormula]
    +s:87 [binder, in hydras.Hydra.Hydra_Definitions]
    +s:876 [binder, in hydras.Ackermann.codeSubFormula]
    +s:88 [binder, in additions.AM]
    +s:88 [binder, in hydras.Ackermann.subProp]
    +s:880 [binder, in hydras.Ackermann.codeSubFormula]
    +s:884 [binder, in hydras.Ackermann.codeSubFormula]
    +s:89 [binder, in additions.AM]
    +s:89 [binder, in hydras.Ackermann.model]
    +s:9 [binder, in hydras.Ackermann.subProp]
    +S:9 [binder, in hydras.Ackermann.code]
    +s:9 [binder, in hydras.Hydra.Hydra_Definitions]
    +s:90 [binder, in hydras.rpo.rpo]
    +s:91 [binder, in hydras.Ackermann.codeSubTerm]
    +s:92 [binder, in hydras.Ackermann.subProp]
    +s:92 [binder, in hydras.Ackermann.codeSubFormula]
    +s:93 [binder, in hydras.Epsilon0.Paths]
    +s:93 [binder, in hydras.rpo.rpo]
    +s:942 [binder, in hydras.Ackermann.codeSubFormula]
    +s:945 [binder, in hydras.Ackermann.codeSubFormula]
    +s:948 [binder, in hydras.Ackermann.codeSubFormula]
    +s:95 [binder, in hydras.Epsilon0.Paths]
    +s:95 [binder, in hydras.rpo.rpo]
    +s:951 [binder, in hydras.Ackermann.codeSubFormula]
    +s:954 [binder, in hydras.Ackermann.codeSubFormula]
    +s:957 [binder, in hydras.Ackermann.codeSubFormula]
    +s:96 [binder, in hydras.Ackermann.subProp]
    +s:96 [binder, in hydras.Ackermann.folReplace]
    +s:960 [binder, in hydras.Ackermann.codeSubFormula]
    +s:963 [binder, in hydras.Ackermann.codeSubFormula]
    +s:966 [binder, in hydras.Ackermann.codeSubFormula]
    +s:969 [binder, in hydras.Ackermann.codeSubFormula]
    +s:97 [binder, in hydras.rpo.rpo]
    +s:972 [binder, in hydras.Ackermann.codeSubFormula]
    +s:975 [binder, in hydras.Ackermann.codeSubFormula]
    +s:978 [binder, in hydras.Ackermann.codeSubFormula]
    +s:98 [binder, in Goedel.PRrepresentable]
    +s:98 [binder, in hydras.Epsilon0.Paths]
    +s:983 [binder, in hydras.Ackermann.codeSubFormula]
    +s:986 [binder, in hydras.Ackermann.codeSubFormula]
    +s:989 [binder, in hydras.Ackermann.codeSubFormula]
    +s:99 [binder, in hydras.Ackermann.subAll]
    +s:99 [binder, in hydras.rpo.rpo]
    +s:992 [binder, in hydras.Ackermann.codeSubFormula]
    +s:995 [binder, in hydras.Ackermann.codeSubFormula]
    +s:998 [binder, in hydras.Ackermann.codeSubFormula]
    +

    T

    +t [definition, in hydras.OrdinalNotations.ON_Omega2]
    +t [definition, in hydras.OrdinalNotations.ON_O]
    +t [definition, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +t [definition, in hydras.solutions_exercises.MultisetWf]
    +t [definition, in hydras.OrdinalNotations.ON_mult]
    +t [definition, in hydras.OrdinalNotations.ON_plus]
    +t [definition, in hydras.OrdinalNotations.ON_Finite]
    +tail_LT_cons [lemma, in hydras.Epsilon0.T1]
    +tail_lt_cons [lemma, in hydras.Epsilon0.T1]
    +tail_lt [lemma, in hydras.Epsilon0.T1]
    +ta1:310 [binder, in hydras.Gamma0.Gamma0]
    +ta1:314 [binder, in hydras.Gamma0.Gamma0]
    +ta1:320 [binder, in hydras.Gamma0.Gamma0]
    +ta1:328 [binder, in hydras.Gamma0.Gamma0]
    +ta1:334 [binder, in hydras.Gamma0.Gamma0]
    +ta1:337 [binder, in hydras.Gamma0.Gamma0]
    +ta1:342 [binder, in hydras.Gamma0.Gamma0]
    +ta1:349 [binder, in hydras.Gamma0.Gamma0]
    +ta1:354 [binder, in hydras.Gamma0.Gamma0]
    +ta1:358 [binder, in hydras.Gamma0.Gamma0]
    +ta1:364 [binder, in hydras.Gamma0.Gamma0]
    +ta1:372 [binder, in hydras.Gamma0.Gamma0]
    +ta1:378 [binder, in hydras.Gamma0.Gamma0]
    +ta1:381 [binder, in hydras.Gamma0.Gamma0]
    +ta1:386 [binder, in hydras.Gamma0.Gamma0]
    +ta1:393 [binder, in hydras.Gamma0.Gamma0]
    +ta1:398 [binder, in hydras.Gamma0.Gamma0]
    +ta1:404 [binder, in hydras.Gamma0.Gamma0]
    +ta1:408 [binder, in hydras.Gamma0.Gamma0]
    +ta2:311 [binder, in hydras.Gamma0.Gamma0]
    +ta2:315 [binder, in hydras.Gamma0.Gamma0]
    +ta2:321 [binder, in hydras.Gamma0.Gamma0]
    +ta2:329 [binder, in hydras.Gamma0.Gamma0]
    +ta2:355 [binder, in hydras.Gamma0.Gamma0]
    +ta2:359 [binder, in hydras.Gamma0.Gamma0]
    +ta2:365 [binder, in hydras.Gamma0.Gamma0]
    +ta2:373 [binder, in hydras.Gamma0.Gamma0]
    +ta2:379 [binder, in hydras.Gamma0.Gamma0]
    +ta2:382 [binder, in hydras.Gamma0.Gamma0]
    +ta2:387 [binder, in hydras.Gamma0.Gamma0]
    +ta2:394 [binder, in hydras.Gamma0.Gamma0]
    +TA:35 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +tb1:312 [binder, in hydras.Gamma0.Gamma0]
    +tb1:316 [binder, in hydras.Gamma0.Gamma0]
    +tb1:322 [binder, in hydras.Gamma0.Gamma0]
    +tb1:330 [binder, in hydras.Gamma0.Gamma0]
    +tb1:335 [binder, in hydras.Gamma0.Gamma0]
    +tb1:338 [binder, in hydras.Gamma0.Gamma0]
    +tb1:343 [binder, in hydras.Gamma0.Gamma0]
    +tb1:350 [binder, in hydras.Gamma0.Gamma0]
    +tb1:356 [binder, in hydras.Gamma0.Gamma0]
    +tb1:360 [binder, in hydras.Gamma0.Gamma0]
    +tb1:366 [binder, in hydras.Gamma0.Gamma0]
    +tb1:374 [binder, in hydras.Gamma0.Gamma0]
    +tb1:380 [binder, in hydras.Gamma0.Gamma0]
    +tb1:383 [binder, in hydras.Gamma0.Gamma0]
    +tb1:388 [binder, in hydras.Gamma0.Gamma0]
    +tb1:395 [binder, in hydras.Gamma0.Gamma0]
    +tb1:399 [binder, in hydras.Gamma0.Gamma0]
    +tb1:405 [binder, in hydras.Gamma0.Gamma0]
    +tb1:409 [binder, in hydras.Gamma0.Gamma0]
    +tb2:313 [binder, in hydras.Gamma0.Gamma0]
    +tb2:317 [binder, in hydras.Gamma0.Gamma0]
    +tb2:323 [binder, in hydras.Gamma0.Gamma0]
    +tb2:331 [binder, in hydras.Gamma0.Gamma0]
    +tb2:336 [binder, in hydras.Gamma0.Gamma0]
    +tb2:339 [binder, in hydras.Gamma0.Gamma0]
    +tb2:344 [binder, in hydras.Gamma0.Gamma0]
    +tb2:351 [binder, in hydras.Gamma0.Gamma0]
    +tb2:357 [binder, in hydras.Gamma0.Gamma0]
    +tb2:361 [binder, in hydras.Gamma0.Gamma0]
    +tb2:367 [binder, in hydras.Gamma0.Gamma0]
    +tb2:375 [binder, in hydras.Gamma0.Gamma0]
    +TB:12 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +TB:36 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +Tcons [constructor, in hydras.Ackermann.fol]
    +tc1:319 [binder, in hydras.Gamma0.Gamma0]
    +tc1:326 [binder, in hydras.Gamma0.Gamma0]
    +tc1:341 [binder, in hydras.Gamma0.Gamma0]
    +tc1:347 [binder, in hydras.Gamma0.Gamma0]
    +tc1:363 [binder, in hydras.Gamma0.Gamma0]
    +tc1:370 [binder, in hydras.Gamma0.Gamma0]
    +tc1:385 [binder, in hydras.Gamma0.Gamma0]
    +tc1:391 [binder, in hydras.Gamma0.Gamma0]
    +tc1:402 [binder, in hydras.Gamma0.Gamma0]
    +tc1:411 [binder, in hydras.Gamma0.Gamma0]
    +tc2:327 [binder, in hydras.Gamma0.Gamma0]
    +tc2:333 [binder, in hydras.Gamma0.Gamma0]
    +tc2:348 [binder, in hydras.Gamma0.Gamma0]
    +tc2:353 [binder, in hydras.Gamma0.Gamma0]
    +tc2:371 [binder, in hydras.Gamma0.Gamma0]
    +tc2:377 [binder, in hydras.Gamma0.Gamma0]
    +tc2:392 [binder, in hydras.Gamma0.Gamma0]
    +tc2:397 [binder, in hydras.Gamma0.Gamma0]
    +tc2:403 [binder, in hydras.Gamma0.Gamma0]
    +tc2:407 [binder, in hydras.Gamma0.Gamma0]
    +tc2:412 [binder, in hydras.Gamma0.Gamma0]
    +ten [definition, in hydras.Epsilon0.T1]
    +Term [module, in hydras.rpo.term]
    +Term [abbreviation, in hydras.Ackermann.subAll]
    +Term [definition, in hydras.Ackermann.LNN]
    +Term [definition, in hydras.Ackermann.LNT]
    +Term [abbreviation, in hydras.Ackermann.folProp]
    +Term [abbreviation, in hydras.Ackermann.codeSubFormula]
    +Term [inductive, in hydras.Ackermann.fol]
    +Term [abbreviation, in hydras.Ackermann.folLogic3]
    +term [library]
    +terminates [definition, in hydras.Prelude.WfVariant]
    +Termination [definition, in hydras.Hydra.Hydra_Definitions]
    +Termination_strong [lemma, in hydras.Hydra.Hydra_Lemmas]
    +Terms [abbreviation, in hydras.Ackermann.subAll]
    +Terms [definition, in hydras.Ackermann.LNN]
    +Terms [definition, in hydras.Ackermann.LNT]
    +Terms [abbreviation, in hydras.Ackermann.folProp]
    +Terms [abbreviation, in hydras.Ackermann.codeSubFormula]
    +Terms [inductive, in hydras.Ackermann.fol]
    +Terms [abbreviation, in hydras.Ackermann.folLogic3]
    +terms_eqdec [lemma, in hydras.Ackermann.fol]
    +Terms_Term_rec_full [definition, in hydras.Ackermann.fol]
    +Terms_Term_rec [definition, in hydras.Ackermann.fol]
    +Terms_Term_ind [definition, in hydras.Ackermann.fol]
    +term_eqdec [lemma, in hydras.Ackermann.fol]
    +Term_Terms_rec_full [definition, in hydras.Ackermann.fol]
    +Term_Terms_rec [definition, in hydras.Ackermann.fol]
    +Term_Terms_ind [definition, in hydras.Ackermann.fol]
    +Term.apply_subst [definition, in hydras.rpo.term]
    +Term.direct_subterm [definition, in hydras.rpo.term]
    +Term.DoubleRecursion [section, in hydras.rpo.term]
    +Term.DoubleRecursion.Pl2 [variable, in hydras.rpo.term]
    +Term.DoubleRecursion.P2 [variable, in hydras.rpo.term]
    +Term.empty_subst_is_id_list [axiom, in hydras.rpo.term]
    +Term.empty_subst_is_id [axiom, in hydras.rpo.term]
    +Term.eq_term_dec [axiom, in hydras.rpo.term]
    +Term.F [module, in hydras.rpo.term]
    +Term.is_a_pos_exists_subtem [axiom, in hydras.rpo.term]
    +Term.is_a_pos [definition, in hydras.rpo.term]
    +Term.map_subst [definition, in hydras.rpo.term]
    +Term.Recursion [section, in hydras.rpo.term]
    +Term.Recursion.P [variable, in hydras.rpo.term]
    +Term.Recursion.Pl [variable, in hydras.rpo.term]
    +Term.replace_at_pos_list_replace_at_pos_in_subterm [axiom, in hydras.rpo.term]
    +Term.replace_at_pos_is_replace_at_pos2 [axiom, in hydras.rpo.term]
    +Term.replace_at_pos_is_replace_at_pos1 [axiom, in hydras.rpo.term]
    +Term.replace_at_pos_unfold [axiom, in hydras.rpo.term]
    +Term.replace_at_pos_list [definition, in hydras.rpo.term]
    +Term.replace_at_pos [definition, in hydras.rpo.term]
    +Term.size [definition, in hydras.rpo.term]
    +Term.size_subterm_at_pos [axiom, in hydras.rpo.term]
    +Term.size_direct_subterm [axiom, in hydras.rpo.term]
    +Term.size_ge_one [axiom, in hydras.rpo.term]
    +Term.size_unfold [axiom, in hydras.rpo.term]
    +Term.substitution [definition, in hydras.rpo.term]
    +Term.subst_comp_is_subst_comp [axiom, in hydras.rpo.term]
    +Term.subst_comp_is_subst_comp_aux1 [axiom, in hydras.rpo.term]
    +Term.subst_comp [definition, in hydras.rpo.term]
    +Term.subterm_at_pos_apply_subst_apply_subst_subterm_at_pos [axiom, in hydras.rpo.term]
    +Term.subterm_at_pos [definition, in hydras.rpo.term]
    +Term.symbol [definition, in hydras.rpo.term]
    +Term.Term [constructor, in hydras.rpo.term]
    +Term.term [inductive, in hydras.rpo.term]
    +Term.Term_eq_dec [module, in hydras.rpo.term]
    +Term.term_rec8 [axiom, in hydras.rpo.term]
    +Term.term_rec7 [axiom, in hydras.rpo.term]
    +Term.term_rec4 [axiom, in hydras.rpo.term]
    +Term.term_rec3 [axiom, in hydras.rpo.term]
    +Term.term_rec2 [axiom, in hydras.rpo.term]
    +Term.Var [constructor, in hydras.rpo.term]
    +Term.variable [definition, in hydras.rpo.term]
    +Term.well_formed_apply_subst [axiom, in hydras.rpo.term]
    +Term.well_formed_subst [definition, in hydras.rpo.term]
    +Term.well_formed_list [definition, in hydras.rpo.term]
    +Term.well_formed_fold [axiom, in hydras.rpo.term]
    +Term.well_formed_unfold [axiom, in hydras.rpo.term]
    +Term.well_formed [definition, in hydras.rpo.term]
    +Term.X [module, in hydras.rpo.term]
    +test [definition, in hydras.Hydra.BigBattle]
    +the [definition, in hydras.Schutte.MoreEpsilonIota]
    +Theorem_4_5 [lemma, in hydras.Epsilon0.Large_Sets]
    +Theorem_4_5 [lemma, in gaia_hydras.GLarge_Sets]
    +the_least_ok [lemma, in hydras.Schutte.Schutte_basics]
    +the_least_unicity [lemma, in hydras.Schutte.Well_Orders]
    +the_least [definition, in hydras.Schutte.Well_Orders]
    +the_context.About_WO [section, in hydras.Schutte.Well_Orders]
    +the_context.Lt [variable, in hydras.Schutte.Well_Orders]
    +the_context.M [variable, in hydras.Schutte.Well_Orders]
    +the_context [section, in hydras.Schutte.Well_Orders]
    +the_exponent [definition, in additions.Addition_Chains]
    +the_exponent_nat [definition, in additions.Addition_Chains]
    +the_ordering_segment [definition, in hydras.Schutte.Ordering_Functions]
    +TH_packed [lemma, in hydras.Epsilon0.F_alpha]
    +th_In [lemma, in hydras.Schutte.Ordering_Functions]
    +TH_13_6R [lemma, in hydras.Schutte.Ordering_Functions]
    +TH_13_6 [lemma, in hydras.Schutte.Ordering_Functions]
    +Th_13_5_2 [lemma, in hydras.Schutte.Ordering_Functions]
    +Th_13_5_1 [lemma, in hydras.Schutte.Ordering_Functions]
    +th_14_6 [lemma, in hydras.Gamma0.Gamma0]
    +th_14_5 [lemma, in hydras.Gamma0.Gamma0]
    +Th13_8_1 [lemma, in hydras.Schutte.Critical]
    +Th13_8 [lemma, in hydras.Schutte.Critical]
    +Th13_5.verso.U_fixed.alpha_ [variable, in hydras.Schutte.Ordering_Functions]
    +Th13_5.verso.U_fixed.U_inc_A [variable, in hydras.Schutte.Ordering_Functions]
    +Th13_5.verso.U_fixed.U_den [variable, in hydras.Schutte.Ordering_Functions]
    +Th13_5.verso.U_fixed.U_non_empty [variable, in hydras.Schutte.Ordering_Functions]
    +Th13_5.verso.U_fixed.U [variable, in hydras.Schutte.Ordering_Functions]
    +Th13_5.verso.U_fixed [section, in hydras.Schutte.Ordering_Functions]
    +Th13_5.verso.B_closed [variable, in hydras.Schutte.Ordering_Functions]
    +Th13_5.verso [section, in hydras.Schutte.Ordering_Functions]
    +Th13_5.recto.M_fixed.U [variable, in hydras.Schutte.Ordering_Functions]
    +Th13_5.recto.M_fixed.den [variable, in hydras.Schutte.Ordering_Functions]
    +Th13_5.recto.M_fixed.ne [variable, in hydras.Schutte.Ordering_Functions]
    +Th13_5.recto.M_fixed.inc [variable, in hydras.Schutte.Ordering_Functions]
    +Th13_5.recto.M_fixed.M [variable, in hydras.Schutte.Ordering_Functions]
    +Th13_5.recto.M_fixed [section, in hydras.Schutte.Ordering_Functions]
    +Th13_5.recto.f_cont [variable, in hydras.Schutte.Ordering_Functions]
    +Th13_5.recto [section, in hydras.Schutte.Ordering_Functions]
    +Th13_5.f_ord [variable, in hydras.Schutte.Ordering_Functions]
    +Th13_5.f [variable, in hydras.Schutte.Ordering_Functions]
    +Th13_5.B [variable, in hydras.Schutte.Ordering_Functions]
    +Th13_5.A [variable, in hydras.Schutte.Ordering_Functions]
    +Th13_5 [section, in hydras.Schutte.Ordering_Functions]
    +Times_ [constructor, in hydras.Ackermann.Languages]
    +tj:174 [binder, in hydras.rpo.rpo]
    +tj:177 [binder, in hydras.rpo.rpo]
    +tj:180 [binder, in hydras.rpo.rpo]
    +Tnil [constructor, in hydras.Ackermann.fol]
    +Too_far [constructor, in hydras.Epsilon0.Large_Sets_Examples]
    +Total [record, in hydras.Prelude.DecPreOrder]
    +Total [inductive, in hydras.Prelude.DecPreOrder]
    +totalness [projection, in hydras.Prelude.DecPreOrder]
    +totalness [constructor, in hydras.Prelude.DecPreOrder]
    +TotalPreOrder [record, in hydras.Prelude.DecPreOrder]
    +Total_Inverse_fun [instance, in hydras.Prelude.DecPreOrder_Instances]
    +total_pre_order_total [projection, in hydras.Prelude.DecPreOrder]
    +total_pre_order_pre [projection, in hydras.Prelude.DecPreOrder]
    +Total_Reflexive [instance, in hydras.Prelude.DecPreOrder]
    +tower2 [definition, in hydras.solutions_exercises.MorePRExamples]
    +tower2IsPR [instance, in hydras.solutions_exercises.MorePRExamples]
    +tower2_alt_PR [instance, in hydras.solutions_exercises.MorePRExamples]
    +tower2_alt_ok [lemma, in hydras.solutions_exercises.MorePRExamples]
    +tower2_alt [definition, in hydras.solutions_exercises.MorePRExamples]
    +Toy [module, in hydras.MoreAck.FolExamples]
    +Toy.A [abbreviation, in hydras.MoreAck.FolExamples]
    +Toy.a [abbreviation, in hydras.MoreAck.FolExamples]
    +Toy.Adds [definition, in hydras.MoreAck.FolExamples]
    +Toy.arityF [definition, in hydras.MoreAck.FolExamples]
    +Toy.arityR [definition, in hydras.MoreAck.FolExamples]
    +Toy.a_ [constructor, in hydras.MoreAck.FolExamples]
    +Toy.A_ [constructor, in hydras.MoreAck.FolExamples]
    +Toy.B [abbreviation, in hydras.MoreAck.FolExamples]
    +Toy.b [abbreviation, in hydras.MoreAck.FolExamples]
    +Toy.b_ [constructor, in hydras.MoreAck.FolExamples]
    +Toy.B_ [constructor, in hydras.MoreAck.FolExamples]
    +Toy.C [abbreviation, in hydras.MoreAck.FolExamples]
    +Toy.C_ [constructor, in hydras.MoreAck.FolExamples]
    +Toy.ded1 [lemma, in hydras.MoreAck.FolExamples]
    +Toy.ded2 [lemma, in hydras.MoreAck.FolExamples]
    +Toy.ded3 [lemma, in hydras.MoreAck.FolExamples]
    +Toy.drinkers_thm [lemma, in hydras.MoreAck.FolExamples]
    +Toy.Drinkers_theorem.f [variable, in hydras.MoreAck.FolExamples]
    +Toy.Drinkers_theorem [section, in hydras.MoreAck.FolExamples]
    +Toy.D0 [lemma, in hydras.MoreAck.FolExamples]
    +Toy.D01 [lemma, in hydras.MoreAck.FolExamples]
    +Toy.eq_refl [lemma, in hydras.MoreAck.FolExamples]
    +Toy.f [abbreviation, in hydras.MoreAck.FolExamples]
    +Toy.Fun [inductive, in hydras.MoreAck.FolExamples]
    +Toy.f_ [constructor, in hydras.MoreAck.FolExamples]
    +Toy.F1 [definition, in hydras.MoreAck.FolExamples]
    +Toy.F2 [definition, in hydras.MoreAck.FolExamples]
    +Toy.F3 [definition, in hydras.MoreAck.FolExamples]
    +Toy.F4 [definition, in hydras.MoreAck.FolExamples]
    +Toy.F5 [definition, in hydras.MoreAck.FolExamples]
    +Toy.F6 [definition, in hydras.MoreAck.FolExamples]
    +Toy.g [abbreviation, in hydras.MoreAck.FolExamples]
    +Toy.g_ [constructor, in hydras.MoreAck.FolExamples]
    +Toy.h [abbreviation, in hydras.MoreAck.FolExamples]
    +Toy.h_ [constructor, in hydras.MoreAck.FolExamples]
    +Toy.L [definition, in hydras.MoreAck.FolExamples]
    +Toy.Ldec [definition, in hydras.MoreAck.FolExamples]
    +Toy.MP' [lemma, in hydras.MoreAck.FolExamples]
    +Toy.OnSubstF [section, in hydras.MoreAck.FolExamples]
    +Toy.OnSubstF.F [variable, in hydras.MoreAck.FolExamples]
    +Toy.P [abbreviation, in hydras.MoreAck.FolExamples]
    +Toy.peirce [lemma, in hydras.MoreAck.FolExamples]
    +Toy.Peirce [definition, in hydras.MoreAck.FolExamples]
    +Toy.PeirceProof [section, in hydras.MoreAck.FolExamples]
    +Toy.PrfContrex7 [definition, in hydras.MoreAck.FolExamples]
    +Toy.PrfContrex9 [definition, in hydras.MoreAck.FolExamples]
    +Toy.PrfEx1 [definition, in hydras.MoreAck.FolExamples]
    +Toy.PrfEx10 [definition, in hydras.MoreAck.FolExamples]
    +Toy.PrfEx11 [definition, in hydras.MoreAck.FolExamples]
    +Toy.PrfEx2 [lemma, in hydras.MoreAck.FolExamples]
    +Toy.PrfEx2' [definition, in hydras.MoreAck.FolExamples]
    +Toy.PrfEx3 [definition, in hydras.MoreAck.FolExamples]
    +Toy.PrfEx4 [definition, in hydras.MoreAck.FolExamples]
    +Toy.PrfEx5 [definition, in hydras.MoreAck.FolExamples]
    +Toy.PrfEx6 [definition, in hydras.MoreAck.FolExamples]
    +Toy.PrfEx8 [definition, in hydras.MoreAck.FolExamples]
    +Toy.PrfEx9 [definition, in hydras.MoreAck.FolExamples]
    +Toy.PrimedSymbols [section, in hydras.MoreAck.FolExamples]
    +Toy.ProofOfEx3 [section, in hydras.MoreAck.FolExamples]
    +Toy.P_ [constructor, in hydras.MoreAck.FolExamples]
    +Toy.Q [abbreviation, in hydras.MoreAck.FolExamples]
    +Toy.Q_ [constructor, in hydras.MoreAck.FolExamples]
    +Toy.R [abbreviation, in hydras.MoreAck.FolExamples]
    +Toy.Rel [inductive, in hydras.MoreAck.FolExamples]
    +Toy.R_ [constructor, in hydras.MoreAck.FolExamples]
    +Toy.SysPrfEx2 [definition, in hydras.MoreAck.FolExamples]
    +Toy.t0 [definition, in hydras.MoreAck.FolExamples]
    +Toy.t1 [definition, in hydras.MoreAck.FolExamples]
    +Toy.t2 [definition, in hydras.MoreAck.FolExamples]
    +Toy.t3 [definition, in hydras.MoreAck.FolExamples]
    +Toy.t4 [definition, in hydras.MoreAck.FolExamples]
    +Toy.Unnamed_thm8 [definition, in hydras.MoreAck.FolExamples]
    +Toy.Unnamed_thm7 [definition, in hydras.MoreAck.FolExamples]
    +Toy.Unnamed_thm6 [definition, in hydras.MoreAck.FolExamples]
    +Toy.Unnamed_thm5 [definition, in hydras.MoreAck.FolExamples]
    +Toy.Unnamed_thm4 [definition, in hydras.MoreAck.FolExamples]
    +Toy.Unnamed_thm3 [definition, in hydras.MoreAck.FolExamples]
    +Toy.Unnamed_thm2 [definition, in hydras.MoreAck.FolExamples]
    +Toy.Unnamed_thm1 [definition, in hydras.MoreAck.FolExamples]
    +Toy.Unnamed_thm0 [definition, in hydras.MoreAck.FolExamples]
    +Toy.Unnamed_thm [definition, in hydras.MoreAck.FolExamples]
    +To_lex_prod [instance, in hydras.Prelude.DecPreOrder_Instances]
    +to:14 [binder, in gaia_hydras.GPaths]
    +to:36 [binder, in gaia_hydras.GPaths]
    +to:42 [binder, in gaia_hydras.GPaths]
    +to:45 [binder, in gaia_hydras.GPaths]
    +Tprf2T'prf [lemma, in Goedel.rosserPA]
    +Tprf2T'prf [definition, in Goedel.goedel2]
    +trace [definition, in hydras.Hydra.Hydra_Definitions]
    +trace_to_std [lemma, in hydras.Hydra.O2H]
    +trace_to_std_0 [lemma, in hydras.Hydra.O2H]
    +trace_to_round_plus [lemma, in hydras.Hydra.O2H]
    +trace_mult [definition, in additions.Trace_exercise]
    +trace_compare [definition, in additions.Trace_exercise]
    +trace_toS [constructor, in hydras.Hydra.Hydra_Definitions]
    +trace_to1 [constructor, in hydras.Hydra.Hydra_Definitions]
    +trace_to [inductive, in hydras.Hydra.Hydra_Definitions]
    +Trace_exercise [library]
    +trace:125 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:127 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:140 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:142 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:152 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:153 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:154 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:155 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:156 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:157 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:158 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:159 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:160 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:161 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:162 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:164 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:166 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:168 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:170 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:172 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:174 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:176 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:178 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:179 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:180 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:182 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:184 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:186 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:188 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:189 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:190 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:192 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:194 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:195 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:196 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:197 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:198 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:199 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:206 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:214 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:216 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:217 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:218 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:219 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:220 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:221 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:222 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:223 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:224 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:225 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:226 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:228 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:230 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:232 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:234 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:236 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:237 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:239 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:241 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:243 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:245 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:247 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:248 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:249 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:250 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:251 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:252 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:253 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:254 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:255 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:256 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:257 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:258 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:259 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:260 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:261 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:262 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:263 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:264 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:265 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:266 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:268 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:270 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:272 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:274 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:276 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:278 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:279 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:280 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:281 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:282 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:283 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:284 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:285 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:286 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:287 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:288 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:289 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:290 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:291 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:292 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:294 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:296 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:298 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:300 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:302 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:304 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:305 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:306 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:307 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:308 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:309 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:310 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:311 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:312 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:313 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:314 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:315 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:316 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:317 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:318 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:319 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:320 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:321 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:322 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:323 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:324 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:325 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:326 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:327 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:328 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:329 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:330 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:331 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:332 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:333 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:334 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:335 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:336 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:337 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:338 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:340 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:342 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:344 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:346 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:347 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:348 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:349 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:350 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:351 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:352 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:353 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:354 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:355 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:356 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:357 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:358 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:359 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:360 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:361 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:362 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:363 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:364 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:365 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:366 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:367 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:368 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:369 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:370 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:371 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:372 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:373 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:374 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:375 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:376 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:377 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:378 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:379 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:380 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:381 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:382 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:383 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:384 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:385 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:386 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:387 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:388 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:389 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:390 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:391 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:392 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:393 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:394 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:395 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:396 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:397 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:398 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:399 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:400 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:401 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:402 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:403 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:404 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:405 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:406 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:407 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:408 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:410 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:412 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:414 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:416 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:418 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:420 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:422 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:424 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:425 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:426 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:427 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:428 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:429 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:430 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:431 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:432 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:434 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:436 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:438 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:440 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:441 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:442 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:443 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:444 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:445 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:446 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:447 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:448 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:450 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:452 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:454 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:456 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:457 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:458 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:459 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:460 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:461 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:462 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:463 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:464 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:465 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:466 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:467 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:468 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:469 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:470 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:471 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:472 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:473 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:474 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:475 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:476 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:477 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:478 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:479 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:480 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:481 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:482 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:483 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:484 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:485 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:486 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:487 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:488 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:489 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:490 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:492 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:494 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:496 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:498 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:499 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:500 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:501 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:502 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:503 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:504 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:506 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:508 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:510 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:512 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:513 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:514 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:515 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:516 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:517 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:518 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:519 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:520 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:521 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:522 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:523 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:524 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:525 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:526 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:527 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:528 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:529 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:530 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:531 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:532 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:533 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:534 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:535 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:536 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:537 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:538 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:540 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:542 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:544 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:546 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:547 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:548 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:549 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:550 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:551 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:552 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:554 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:556 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:558 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:560 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:561 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:562 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:563 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:564 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:565 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:566 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:567 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:568 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:569 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:57 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:570 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:571 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:572 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:573 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:574 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:575 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:576 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:577 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:578 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:579 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:580 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:581 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:582 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:583 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:584 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:585 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:586 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:587 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:588 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:589 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:590 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:591 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:592 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:593 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:594 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:595 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:596 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:597 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:598 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:599 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:600 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:601 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:602 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:603 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:604 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:605 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:606 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:607 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:608 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:609 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:610 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:611 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:612 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:613 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:614 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:615 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:616 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:617 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:618 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:620 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:622 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:624 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:626 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:628 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:630 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:632 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:634 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:635 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:636 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:637 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:638 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:639 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:640 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:641 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:642 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:644 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:646 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:648 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:650 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:651 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:652 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:653 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:654 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:655 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:656 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:657 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:658 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:659 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:660 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:661 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:662 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:663 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:664 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:665 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:666 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:667 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:668 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:669 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:670 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:671 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:672 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:673 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:674 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:675 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:676 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:677 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:678 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:679 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:680 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:681 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:682 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:683 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:684 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:685 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:686 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:687 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:688 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:689 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:690 [binder, in hydras.Ackermann.codeSubFormula]
    +trace:691 [binder, in hydras.Ackermann.codeSubFormula]
    +transfinite_recursor [definition, in hydras.Epsilon0.T1]
    +transfinite_recursor_lt [definition, in hydras.Epsilon0.T1]
    +transfinite_induction [lemma, in hydras.Schutte.Schutte_basics]
    +transfinite_induction_Q [definition, in hydras.Gamma0.Gamma0]
    +transfinite_induction [definition, in hydras.Gamma0.Gamma0]
    +transition [definition, in gaia_hydras.GPaths]
    +transition [definition, in hydras.Epsilon0.Paths]
    +transitionb [definition, in gaia_hydras.GPaths]
    +transitionP [lemma, in gaia_hydras.GPaths]
    +transition_S [definition, in hydras.Epsilon0.Paths]
    +translateLT [definition, in hydras.Ackermann.LNN2LNT]
    +translateLT1 [lemma, in hydras.Ackermann.LNN2LNT]
    +translatePrf [lemma, in hydras.Ackermann.LNN2LNT]
    +translateProof [lemma, in hydras.Ackermann.LNN2LNT]
    +Translate_Proof.AxiomsOK [variable, in hydras.Ackermann.LNN2LNT]
    +Translate_Proof.V [variable, in hydras.Ackermann.LNN2LNT]
    +Translate_Proof.U [variable, in hydras.Ackermann.LNN2LNT]
    +Translate_Proof [section, in hydras.Ackermann.LNN2LNT]
    +trans_aux [lemma, in hydras.Gamma0.Gamma0]
    +trans_proof.induc [variable, in hydras.Gamma0.Gamma0]
    +trans_proof.H23 [variable, in hydras.Gamma0.Gamma0]
    +trans_proof.H12 [variable, in hydras.Gamma0.Gamma0]
    +trans_proof.n3 [variable, in hydras.Gamma0.Gamma0]
    +trans_proof.n2 [variable, in hydras.Gamma0.Gamma0]
    +trans_proof.n1 [variable, in hydras.Gamma0.Gamma0]
    +trans_proof.c3 [variable, in hydras.Gamma0.Gamma0]
    +trans_proof.b3 [variable, in hydras.Gamma0.Gamma0]
    +trans_proof.a3 [variable, in hydras.Gamma0.Gamma0]
    +trans_proof.c2 [variable, in hydras.Gamma0.Gamma0]
    +trans_proof.b2 [variable, in hydras.Gamma0.Gamma0]
    +trans_proof.a2 [variable, in hydras.Gamma0.Gamma0]
    +trans_proof.c1 [variable, in hydras.Gamma0.Gamma0]
    +trans_proof.b1 [variable, in hydras.Gamma0.Gamma0]
    +trans_proof.a1 [variable, in hydras.Gamma0.Gamma0]
    +trans_proof [section, in hydras.Gamma0.Gamma0]
    +trans_clos_is_trans [lemma, in hydras.rpo.closure]
    +trans_clos [inductive, in hydras.rpo.closure]
    +Trans_lex [instance, in hydras.Prelude.Simple_LexProd]
    +TreeT1K [lemma, in gaia_hydras.T1Choice]
    +Tree2T1 [definition, in gaia_hydras.T1Choice]
    +trichotomy [lemma, in hydras.Schutte.Schutte_basics]
    +tricho_aux [lemma, in hydras.Gamma0.Gamma0]
    +tricho_lt_7 [lemma, in hydras.Gamma0.Gamma0]
    +tricho_lt_5 [lemma, in hydras.Gamma0.Gamma0]
    +tricho_lt_4' [lemma, in hydras.Gamma0.Gamma0]
    +tricho_lt_4 [lemma, in hydras.Gamma0.Gamma0]
    +tricho_lt_3 [lemma, in hydras.Gamma0.Gamma0]
    +tricho_lt_2' [lemma, in hydras.Gamma0.Gamma0]
    +tricho_lt_2 [lemma, in hydras.Gamma0.Gamma0]
    +triple:184 [binder, in hydras.rpo.rpo]
    +triple:186 [binder, in hydras.rpo.rpo]
    +Tr:100 [binder, in hydras.Hydra.Hydra_Lemmas]
    +ts:10 [binder, in hydras.Ackermann.folProp]
    +ts:100 [binder, in hydras.Ackermann.subProp]
    +ts:102 [binder, in hydras.Ackermann.subAll]
    +ts:105 [binder, in hydras.Ackermann.subAll]
    +ts:105 [binder, in hydras.Ackermann.LNN2LNT]
    +ts:106 [binder, in hydras.Ackermann.subProp]
    +ts:107 [binder, in hydras.Ackermann.LNN2LNT]
    +ts:108 [binder, in hydras.Ackermann.subAll]
    +ts:108 [binder, in hydras.Ackermann.subProp]
    +ts:11 [binder, in hydras.Ackermann.codeFreeVar]
    +ts:11 [binder, in hydras.Ackermann.PA]
    +ts:110 [binder, in hydras.Ackermann.LNN2LNT]
    +ts:112 [binder, in hydras.Ackermann.LNN2LNT]
    +ts:112 [binder, in hydras.Ackermann.fol]
    +ts:115 [binder, in hydras.Ackermann.subProp]
    +ts:117 [binder, in hydras.Ackermann.subProp]
    +ts:119 [binder, in hydras.Ackermann.subProp]
    +ts:119 [binder, in hydras.Ackermann.fol]
    +ts:12 [binder, in hydras.Ackermann.LNN2LNT]
    +ts:12 [binder, in hydras.Ackermann.subProp]
    +ts:123 [binder, in hydras.Ackermann.subProp]
    +ts:124 [binder, in hydras.Ackermann.fol]
    +ts:1253 [binder, in hydras.Ackermann.codeSubFormula]
    +ts:1255 [binder, in hydras.Ackermann.codeSubFormula]
    +ts:1261 [binder, in hydras.Ackermann.codeSubFormula]
    +ts:1263 [binder, in hydras.Ackermann.codeSubFormula]
    +ts:1265 [binder, in hydras.Ackermann.codeSubFormula]
    +ts:128 [binder, in hydras.Ackermann.subProp]
    +ts:129 [binder, in hydras.Ackermann.fol]
    +ts:13 [binder, in hydras.Ackermann.codeFreeVar]
    +ts:14 [binder, in hydras.Ackermann.LNN2LNT]
    +ts:149 [binder, in hydras.Ackermann.folProp]
    +ts:15 [binder, in hydras.Ackermann.wellFormed]
    +ts:16 [binder, in hydras.Ackermann.folLogic2]
    +ts:16 [binder, in hydras.Ackermann.LNN2LNT]
    +ts:161 [binder, in hydras.Ackermann.model]
    +ts:17 [binder, in hydras.Ackermann.subProp]
    +ts:17 [binder, in hydras.Ackermann.wellFormed]
    +ts:18 [binder, in hydras.Ackermann.subAll]
    +ts:18 [binder, in hydras.Ackermann.folLogic2]
    +ts:180 [binder, in hydras.Ackermann.subAll]
    +ts:183 [binder, in hydras.Ackermann.subAll]
    +ts:186 [binder, in hydras.Ackermann.subAll]
    +ts:20 [binder, in hydras.Ackermann.folLogic2]
    +ts:21 [binder, in hydras.Ackermann.LNN2LNT]
    +ts:212 [binder, in hydras.Ackermann.subAll]
    +ts:217 [binder, in hydras.Ackermann.subAll]
    +ts:22 [binder, in hydras.Ackermann.model]
    +ts:22 [binder, in hydras.Ackermann.code]
    +ts:222 [binder, in hydras.Ackermann.subAll]
    +ts:23 [binder, in hydras.Ackermann.subAll]
    +ts:23 [binder, in hydras.Ackermann.codeFreeVar]
    +ts:23 [binder, in hydras.Ackermann.LNN2LNT]
    +ts:25 [binder, in hydras.Ackermann.LNN2LNT]
    +ts:27 [binder, in hydras.Ackermann.codeSubTerm]
    +ts:27 [binder, in hydras.Ackermann.folLogic3]
    +ts:28 [binder, in hydras.Ackermann.subAll]
    +ts:28 [binder, in hydras.Ackermann.wellFormed]
    +ts:29 [binder, in hydras.Ackermann.codeSubTerm]
    +ts:29 [binder, in hydras.Ackermann.folLogic3]
    +ts:3 [binder, in hydras.Ackermann.LNN2LNT]
    +ts:30 [binder, in hydras.Ackermann.LNN2LNT]
    +ts:30 [binder, in hydras.Ackermann.subProp]
    +ts:30 [binder, in hydras.Ackermann.code]
    +ts:30 [binder, in hydras.Ackermann.wellFormed]
    +ts:32 [binder, in hydras.Ackermann.wellFormed]
    +ts:33 [binder, in hydras.Ackermann.model]
    +ts:33 [binder, in hydras.Ackermann.code]
    +ts:35 [binder, in hydras.Ackermann.subProp]
    +ts:36 [binder, in hydras.Ackermann.code]
    +ts:36 [binder, in hydras.Ackermann.folLogic3]
    +ts:37 [binder, in hydras.Ackermann.codeSubTerm]
    +ts:39 [binder, in hydras.Ackermann.LNN2LNT]
    +ts:4 [binder, in hydras.Ackermann.subAll]
    +ts:40 [binder, in hydras.Ackermann.subProp]
    +ts:41 [binder, in hydras.Ackermann.LNN2LNT]
    +ts:42 [binder, in hydras.Ackermann.LNN2LNT]
    +ts:420 [binder, in hydras.Ackermann.folProp]
    +ts:422 [binder, in hydras.Ackermann.folProp]
    +ts:424 [binder, in hydras.Ackermann.folProp]
    +ts:43 [binder, in hydras.Ackermann.folLogic3]
    +ts:44 [binder, in hydras.Ackermann.wellFormed]
    +ts:49 [binder, in hydras.Ackermann.wellFormed]
    +ts:50 [binder, in hydras.Ackermann.folLogic3]
    +ts:53 [binder, in hydras.Ackermann.LNN2LNT]
    +ts:53 [binder, in hydras.Ackermann.model]
    +ts:53 [binder, in hydras.Ackermann.subProp]
    +ts:54 [binder, in hydras.Ackermann.wellFormed]
    +ts:57 [binder, in hydras.Ackermann.model]
    +ts:58 [binder, in hydras.Ackermann.subProp]
    +ts:58 [binder, in hydras.Ackermann.folLogic3]
    +ts:63 [binder, in hydras.Ackermann.subAll]
    +ts:63 [binder, in hydras.Ackermann.model]
    +ts:63 [binder, in hydras.Ackermann.subProp]
    +ts:63 [binder, in hydras.Ackermann.wellFormed]
    +ts:65 [binder, in hydras.Ackermann.folProp]
    +ts:65 [binder, in hydras.Ackermann.fol]
    +ts:66 [binder, in hydras.Ackermann.subAll]
    +ts:67 [binder, in hydras.Ackermann.folLogic3]
    +ts:69 [binder, in hydras.Ackermann.subAll]
    +ts:7 [binder, in hydras.Ackermann.subProp]
    +ts:72 [binder, in hydras.Ackermann.fol]
    +ts:75 [binder, in hydras.Ackermann.model]
    +ts:76 [binder, in hydras.Ackermann.subProp]
    +ts:77 [binder, in hydras.Ackermann.fol]
    +ts:77 [binder, in hydras.Ackermann.folLogic3]
    +ts:78 [binder, in hydras.Ackermann.subAll]
    +ts:78 [binder, in hydras.Ackermann.model]
    +ts:80 [binder, in hydras.Ackermann.subAll]
    +ts:81 [binder, in hydras.Ackermann.subProp]
    +ts:82 [binder, in hydras.Ackermann.subAll]
    +ts:82 [binder, in hydras.Ackermann.model]
    +ts:82 [binder, in hydras.Ackermann.fol]
    +ts:86 [binder, in hydras.Ackermann.subProp]
    +ts:874 [binder, in hydras.Ackermann.codeSubFormula]
    +ts:878 [binder, in hydras.Ackermann.codeSubFormula]
    +ts:882 [binder, in hydras.Ackermann.codeSubFormula]
    +ts:91 [binder, in hydras.Ackermann.folLogic3]
    +ts:914 [binder, in hydras.Ackermann.codeSubFormula]
    +ts:919 [binder, in hydras.Ackermann.codeSubFormula]
    +ts:924 [binder, in hydras.Ackermann.codeSubFormula]
    +ts:93 [binder, in hydras.Ackermann.fol]
    +ts:93 [binder, in hydras.Ackermann.folLogic3]
    +ts:96 [binder, in hydras.Ackermann.fol]
    +ts:97 [binder, in hydras.Ackermann.folLogic3]
    +ts:98 [binder, in hydras.Ackermann.subProp]
    +Two [instance, in hydras.Epsilon0.E0]
    +two [definition, in additions.BinaryStrat]
    +Two_strat [instance, in additions.BinaryStrat]
    +type:64 [binder, in hydras.Ackermann.codeSubFormula]
    +type:792 [binder, in hydras.Ackermann.checkPrf]
    +type:840 [binder, in hydras.Ackermann.checkPrf]
    +type:843 [binder, in hydras.Ackermann.checkPrf]
    +t_trans [constructor, in hydras.rpo.closure]
    +t_step [constructor, in hydras.rpo.closure]
    +t_0_nil [lemma, in hydras.Prelude.MoreVectors]
    +T' [definition, in Goedel.rosserPA]
    +T' [definition, in Goedel.goedel2]
    +T'prf2Tprf [lemma, in Goedel.rosserPA]
    +t'':115 [binder, in hydras.Gamma0.Gamma0]
    +t':114 [binder, in hydras.Gamma0.Gamma0]
    +t':16 [binder, in additions.Trace_exercise]
    +t':165 [binder, in additions.Addition_Chains]
    +t':178 [binder, in additions.Addition_Chains]
    +t':322 [binder, in hydras.rpo.rpo]
    +t':323 [binder, in hydras.rpo.rpo]
    +t':70 [binder, in hydras.Gamma0.T2]
    +t':86 [binder, in additions.Addition_Chains]
    +t':89 [binder, in hydras.Gamma0.Gamma0]
    +t':91 [binder, in hydras.Gamma0.Gamma0]
    +t':93 [binder, in hydras.Gamma0.Gamma0]
    +t0_empty [lemma, in hydras.OrdinalNotations.ON_Finite]
    +t0:171 [binder, in hydras.Ackermann.folProp]
    +t0:18 [binder, in hydras.Ackermann.codeFreeVar]
    +t0:18 [binder, in hydras.Ackermann.codeSubTerm]
    +t0:187 [binder, in hydras.Ackermann.folProp]
    +t0:20 [binder, in hydras.Ackermann.codeFreeVar]
    +t0:202 [binder, in hydras.Ackermann.fol]
    +t0:203 [binder, in hydras.Ackermann.folProp]
    +t0:219 [binder, in hydras.Ackermann.folProp]
    +t0:22 [binder, in hydras.Ackermann.codeSubTerm]
    +t0:225 [binder, in hydras.Ackermann.fol]
    +t0:24 [binder, in hydras.Ackermann.codeFreeVar]
    +t0:243 [binder, in hydras.Ackermann.fol]
    +t0:250 [binder, in hydras.Ackermann.folProp]
    +t0:26 [binder, in hydras.Ackermann.codeFreeVar]
    +t0:266 [binder, in hydras.Ackermann.folProp]
    +t0:293 [binder, in hydras.Ackermann.fol]
    +t0:299 [binder, in hydras.Ackermann.folProp]
    +t0:315 [binder, in hydras.Ackermann.folProp]
    +t0:331 [binder, in hydras.Ackermann.folProp]
    +t0:339 [binder, in hydras.Ackermann.fol]
    +t0:347 [binder, in hydras.Ackermann.folProp]
    +t0:363 [binder, in hydras.Ackermann.folProp]
    +t0:379 [binder, in hydras.Ackermann.folProp]
    +t0:383 [binder, in hydras.Ackermann.fol]
    +t0:40 [binder, in hydras.Ackermann.codeSubTerm]
    +t0:437 [binder, in hydras.Ackermann.fol]
    +t0:44 [binder, in hydras.Ackermann.codeSubTerm]
    +t0:84 [binder, in hydras.Ackermann.codeSubFormula]
    +t0:861 [binder, in hydras.Ackermann.codeSubFormula]
    +t0:864 [binder, in hydras.Ackermann.codeSubFormula]
    +t0:885 [binder, in hydras.Ackermann.codeSubFormula]
    +t0:888 [binder, in hydras.Ackermann.codeSubFormula]
    +t0:9 [binder, in hydras.Ackermann.PA]
    +t0:901 [binder, in hydras.Ackermann.codeSubFormula]
    +t0:904 [binder, in hydras.Ackermann.codeSubFormula]
    +t0:928 [binder, in hydras.Ackermann.codeSubFormula]
    +t0:931 [binder, in hydras.Ackermann.codeSubFormula]
    +T1 [inductive, in hydras.Epsilon0.T1]
    +T1 [abbreviation, in gaia_hydras.T1Bridge]
    +T1 [library]
    +T1add [definition, in hydras.Epsilon0.T1]
    +T1addA [lemma, in hydras.Epsilon0.T1]
    +T1addAssoc [instance, in hydras.Epsilon0.T1]
    +T1add_not_monotonous_l [lemma, in hydras.Epsilon0.T1]
    +T1Bridge [library]
    +T1Choice [definition, in gaia_hydras.T1Choice]
    +T1Choice [library]
    +T1compare [instance, in gaia_hydras.T1Bridge]
    +T1compare_correct [lemma, in gaia_hydras.T1Bridge]
    +T1eqE [lemma, in gaia_hydras.T1Bridge]
    +T1eq_h2g [lemma, in gaia_hydras.T1Bridge]
    +T1eq_refl [lemma, in gaia_hydras.T1Bridge]
    +T1F_ [definition, in gaia_hydras.GF_alpha]
    +T1is_succ_iff [lemma, in hydras.Epsilon0.T1]
    +T1is_succ_def [lemma, in hydras.Epsilon0.T1]
    +T1is_succ [definition, in hydras.Epsilon0.T1]
    +T1is_succ_ref [lemma, in gaia_hydras.T1Bridge]
    +T1leOrderMixin [definition, in gaia_hydras.T1Choice]
    +T1le_asym [lemma, in gaia_hydras.T1Choice]
    +T1le_iff [lemma, in gaia_hydras.T1Bridge]
    +T1limit [definition, in hydras.Epsilon0.T1]
    +T1limit_succ_tail [lemma, in hydras.Epsilon0.T1]
    +T1limit_not_zero [lemma, in hydras.Epsilon0.T1]
    +T1limit_succ [lemma, in hydras.Epsilon0.T1]
    +T1limit_cases [lemma, in hydras.Epsilon0.T1]
    +T1limit_ref [lemma, in gaia_hydras.T1Bridge]
    +T1limit_canonS_not_zero [lemma, in hydras.Epsilon0.Canon]
    +T1limit_plus [lemma, in hydras.Epsilon0.E0]
    +T1limit_phi0 [lemma, in hydras.Epsilon0.E0]
    +T1limit_Omega_term [lemma, in hydras.Epsilon0.E0]
    +T1ltE [lemma, in gaia_hydras.T1Choice]
    +T1lt_iff [lemma, in gaia_hydras.T1Bridge]
    +T1max [definition, in gaia_hydras.T1Choice]
    +T1maxE [lemma, in gaia_hydras.T1Choice]
    +T1min [definition, in gaia_hydras.T1Choice]
    +T1minE [lemma, in gaia_hydras.T1Choice]
    +T1mixin [definition, in gaia_hydras.T1Choice]
    +T1mul [definition, in hydras.Epsilon0.T1]
    +T1mulE4 [lemma, in gaia_hydras.T1Bridge]
    +T1mulE5 [lemma, in gaia_hydras.T1Bridge]
    +T1mul_not_monotonous [lemma, in hydras.Epsilon0.T1]
    +T1mul_cons_cons_E [lemma, in gaia_hydras.T1Bridge]
    +T1mul_a0E [lemma, in gaia_hydras.T1Bridge]
    +T1nat [definition, in hydras.Epsilon0.T1]
    +T1nf_canon [lemma, in gaia_hydras.GCanon]
    +T1omega [abbreviation, in hydras.Epsilon0.T1]
    +T1orderType [definition, in gaia_hydras.T1Choice]
    +T1pp [definition, in gaia_hydras.T1Bridge]
    +T1toH [definition, in gaia_hydras.GHydra]
    +T1_wf [lemma, in hydras.Epsilon0.T1]
    +T1_eq_dec [definition, in hydras.Epsilon0.T1]
    +t1_strorder [instance, in hydras.Epsilon0.T1]
    +T1_le_Mixin [definition, in gaia_hydras.T1Choice]
    +T1_to_T2 [definition, in hydras.Gamma0.T2]
    +t1_0 [definition, in hydras.MoreAck.LNN_Examples]
    +T1_to_T2_monoR [lemma, in hydras.Gamma0.Gamma0]
    +T1_to_T2_mono [lemma, in hydras.Gamma0.Gamma0]
    +T1_to_T2_R [definition, in hydras.Gamma0.Gamma0]
    +T1_to_T2_lt [lemma, in hydras.Gamma0.Gamma0]
    +T1_to_T2_inj [lemma, in hydras.Gamma0.Gamma0]
    +t1_0 [definition, in hydras.MoreAck.FolExamples]
    +T1_ltNotWf [library]
    +T12Tree [definition, in gaia_hydras.T1Choice]
    +T12Tree_inj [lemma, in gaia_hydras.T1Choice]
    +t1:106 [binder, in hydras.rpo.rpo]
    +t1:113 [binder, in hydras.rpo.rpo]
    +t1:118 [binder, in hydras.Gamma0.Gamma0]
    +t1:121 [binder, in hydras.Gamma0.Gamma0]
    +t1:14 [binder, in hydras.rpo.term]
    +t1:14 [binder, in hydras.Ackermann.codeFreeVar]
    +t1:14 [binder, in hydras.rpo.list_set]
    +t1:144 [binder, in hydras.Ackermann.folProp]
    +t1:16 [binder, in hydras.Ackermann.codeFreeVar]
    +t1:197 [binder, in hydras.rpo.term]
    +t1:206 [binder, in hydras.Gamma0.Gamma0]
    +t1:208 [binder, in hydras.rpo.term]
    +t1:230 [binder, in hydras.rpo.term]
    +t1:236 [binder, in hydras.Gamma0.Gamma0]
    +t1:238 [binder, in hydras.rpo.term]
    +t1:240 [binder, in hydras.rpo.term]
    +t1:244 [binder, in hydras.rpo.term]
    +t1:252 [binder, in hydras.rpo.term]
    +t1:256 [binder, in hydras.rpo.term]
    +t1:27 [binder, in hydras.rpo.term]
    +t1:275 [binder, in hydras.Gamma0.Gamma0]
    +t1:31 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +t1:36 [binder, in Goedel.PRrepresentable]
    +t1:40 [binder, in Goedel.PRrepresentable]
    +t1:445 [binder, in hydras.Epsilon0.Paths]
    +t1:49 [binder, in Goedel.codeSysPrf]
    +t1:53 [binder, in hydras.rpo.term]
    +t1:53 [binder, in Goedel.codeSysPrf]
    +t1:6 [binder, in hydras.rpo.list_permut]
    +t1:61 [binder, in hydras.rpo.term]
    +t1:63 [binder, in hydras.rpo.term]
    +t1:65 [binder, in Goedel.codeSysPrf]
    +t1:68 [binder, in hydras.rpo.term]
    +t1:684 [binder, in hydras.Gamma0.Gamma0]
    +t1:69 [binder, in Goedel.codeSysPrf]
    +t1:76 [binder, in hydras.rpo.term]
    +t1:81 [binder, in hydras.rpo.term]
    +t1:94 [binder, in hydras.Gamma0.Gamma0]
    +T2 [inductive, in hydras.Gamma0.T2]
    +T2 [abbreviation, in gaia_hydras.T2Bridge]
    +T2 [library]
    +T2Bridge [library]
    +t2_length_aux [definition, in hydras.Gamma0.T2]
    +t2_length [definition, in hydras.Gamma0.T2]
    +T2_size_psi [lemma, in hydras.Gamma0.Gamma0]
    +T2_size4 [lemma, in hydras.Gamma0.Gamma0]
    +T2_size3 [lemma, in hydras.Gamma0.Gamma0]
    +T2_size2 [lemma, in hydras.Gamma0.Gamma0]
    +T2_size1 [lemma, in hydras.Gamma0.Gamma0]
    +T2_size [definition, in hydras.Gamma0.Gamma0]
    +T2_2_term [definition, in hydras.Gamma0.Gamma0]
    +t2:108 [binder, in hydras.rpo.rpo]
    +t2:115 [binder, in hydras.rpo.rpo]
    +t2:119 [binder, in hydras.Gamma0.Gamma0]
    +t2:122 [binder, in hydras.Gamma0.Gamma0]
    +t2:145 [binder, in hydras.Ackermann.folProp]
    +t2:15 [binder, in hydras.rpo.term]
    +t2:15 [binder, in hydras.rpo.list_set]
    +t2:198 [binder, in hydras.rpo.term]
    +t2:207 [binder, in hydras.Gamma0.Gamma0]
    +t2:209 [binder, in hydras.rpo.term]
    +t2:229 [binder, in hydras.rpo.term]
    +t2:237 [binder, in hydras.Gamma0.Gamma0]
    +t2:239 [binder, in hydras.rpo.term]
    +t2:241 [binder, in hydras.rpo.term]
    +t2:243 [binder, in hydras.rpo.term]
    +t2:253 [binder, in hydras.rpo.term]
    +t2:257 [binder, in hydras.rpo.term]
    +t2:261 [binder, in hydras.rpo.term]
    +t2:263 [binder, in hydras.rpo.term]
    +t2:276 [binder, in hydras.Gamma0.Gamma0]
    +t2:28 [binder, in hydras.rpo.term]
    +t2:32 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +t2:37 [binder, in Goedel.PRrepresentable]
    +t2:41 [binder, in Goedel.PRrepresentable]
    +t2:446 [binder, in hydras.Epsilon0.Paths]
    +t2:50 [binder, in Goedel.codeSysPrf]
    +t2:52 [binder, in hydras.rpo.term]
    +t2:54 [binder, in Goedel.codeSysPrf]
    +t2:62 [binder, in hydras.rpo.term]
    +t2:64 [binder, in hydras.rpo.term]
    +t2:66 [binder, in Goedel.codeSysPrf]
    +t2:67 [binder, in hydras.rpo.term]
    +t2:685 [binder, in hydras.Gamma0.Gamma0]
    +t2:7 [binder, in hydras.rpo.list_permut]
    +t2:70 [binder, in Goedel.codeSysPrf]
    +t2:77 [binder, in hydras.rpo.term]
    +t2:82 [binder, in hydras.rpo.term]
    +t2:95 [binder, in hydras.Gamma0.Gamma0]
    +t3:120 [binder, in hydras.Gamma0.Gamma0]
    +t3:123 [binder, in hydras.Gamma0.Gamma0]
    +t:1 [binder, in hydras.Schutte.Correctness_E0]
    +t:1 [binder, in hydras.Ackermann.LNN2LNT]
    +t:1 [binder, in hydras.Ackermann.PAtheory]
    +T:1 [binder, in gaia_hydras.GPrelude]
    +T:1 [binder, in hydras.Ackermann.wConsistent]
    +t:10 [binder, in hydras.MoreAck.BadSubst]
    +t:10 [binder, in hydras.Ackermann.folLogic2]
    +t:10 [binder, in hydras.Ackermann.LNN2LNT]
    +T:10 [binder, in hydras.Ackermann.folLogic]
    +t:100 [binder, in hydras.Ackermann.codeFreeVar]
    +t:100 [binder, in hydras.Ackermann.codeSubTerm]
    +T:100 [binder, in hydras.Ackermann.LNT]
    +t:100 [binder, in hydras.Ackermann.wellFormed]
    +t:100 [binder, in additions.Addition_Chains]
    +t:101 [binder, in hydras.Ackermann.LNN2LNT]
    +T:101 [binder, in hydras.Ackermann.LNN]
    +t:101 [binder, in hydras.Ackermann.subProp]
    +t:101 [binder, in hydras.Ackermann.wellFormed]
    +t:102 [binder, in hydras.Ackermann.codeFreeVar]
    +t:102 [binder, in hydras.Ackermann.codeSubTerm]
    +t:102 [binder, in hydras.Ackermann.wellFormed]
    +T:102 [binder, in hydras.Ackermann.folLogic]
    +t:102 [binder, in hydras.rpo.rpo]
    +t:103 [binder, in hydras.rpo.term]
    +t:103 [binder, in hydras.Ackermann.codeFreeVar]
    +T:103 [binder, in hydras.Ackermann.LNN]
    +T:103 [binder, in hydras.Ackermann.LNT]
    +t:104 [binder, in hydras.Ackermann.codeFreeVar]
    +t:104 [binder, in hydras.Ackermann.codeSubTerm]
    +t:104 [binder, in hydras.Ackermann.wellFormed]
    +T:104 [binder, in hydras.Ackermann.folLogic3]
    +T:104 [binder, in hydras.Ackermann.folReplace]
    +t:105 [binder, in hydras.Ackermann.codeFreeVar]
    +T:105 [binder, in hydras.Ackermann.folLogic]
    +t:106 [binder, in hydras.rpo.term]
    +t:106 [binder, in hydras.Ackermann.codeFreeVar]
    +t:106 [binder, in hydras.Ackermann.codeSubTerm]
    +T:106 [binder, in hydras.Ackermann.LNN]
    +T:106 [binder, in hydras.Ackermann.LNT]
    +t:106 [binder, in hydras.Ackermann.wellFormed]
    +t:106 [binder, in additions.Addition_Chains]
    +t:107 [binder, in hydras.Ackermann.codeFreeVar]
    +T:107 [binder, in hydras.Ackermann.folLogic]
    +t:108 [binder, in hydras.Ackermann.codeFreeVar]
    +t:108 [binder, in hydras.Ackermann.codeSubTerm]
    +t:108 [binder, in hydras.Ackermann.LNN2LNT]
    +t:108 [binder, in hydras.Ackermann.wellFormed]
    +t:108 [binder, in hydras.Hydra.Hydra_Definitions]
    +t:109 [binder, in hydras.Ackermann.codeFreeVar]
    +T:109 [binder, in hydras.Ackermann.LNN]
    +T:109 [binder, in hydras.Ackermann.LNT]
    +t:109 [binder, in hydras.Ackermann.subProp]
    +T:11 [binder, in hydras.Ackermann.folReplace]
    +t:110 [binder, in hydras.Ackermann.codeFreeVar]
    +t:110 [binder, in hydras.Ackermann.codeSubTerm]
    +t:110 [binder, in hydras.Ackermann.wellFormed]
    +T:111 [binder, in hydras.Ackermann.folLogic]
    +t:111 [binder, in hydras.Hydra.Hydra_Definitions]
    +t:112 [binder, in hydras.Ackermann.codeFreeVar]
    +t:112 [binder, in hydras.Ackermann.codeSubTerm]
    +T:112 [binder, in hydras.Ackermann.LNN]
    +T:112 [binder, in hydras.Ackermann.LNT]
    +t:112 [binder, in hydras.Ackermann.wellFormed]
    +T:112 [binder, in hydras.Ackermann.folReplace]
    +T:113 [binder, in hydras.Ackermann.subAll]
    +t:113 [binder, in hydras.Gamma0.Gamma0]
    +t:114 [binder, in hydras.Gamma0.T2]
    +t:114 [binder, in hydras.Ackermann.codeFreeVar]
    +t:114 [binder, in hydras.Ackermann.codeSubTerm]
    +t:114 [binder, in hydras.Ackermann.wellFormed]
    +T:114 [binder, in hydras.Ackermann.folLogic]
    +t:114 [binder, in additions.Addition_Chains]
    +t:115 [binder, in hydras.rpo.term]
    +T:115 [binder, in hydras.Ackermann.LNN]
    +T:115 [binder, in hydras.Ackermann.LNT]
    +t:115 [binder, in hydras.Ackermann.wellFormed]
    +t:116 [binder, in hydras.Ackermann.codeFreeVar]
    +t:116 [binder, in hydras.Ackermann.codeSubTerm]
    +t:116 [binder, in hydras.Ackermann.wellFormed]
    +t:116 [binder, in hydras.Epsilon0.Paths]
    +t:117 [binder, in hydras.rpo.term]
    +t:117 [binder, in hydras.Gamma0.T2]
    +t:117 [binder, in hydras.Ackermann.codeSubTerm]
    +T:117 [binder, in hydras.Ackermann.LNT]
    +t:117 [binder, in hydras.Ackermann.wellFormed]
    +T:117 [binder, in hydras.Ackermann.folLogic]
    +t:117 [binder, in hydras.rpo.rpo]
    +t:118 [binder, in hydras.Gamma0.T2]
    +t:118 [binder, in hydras.Ackermann.codeFreeVar]
    +t:118 [binder, in hydras.Ackermann.codeSubTerm]
    +T:118 [binder, in hydras.Ackermann.LNN]
    +t:118 [binder, in hydras.Ackermann.wellFormed]
    +t:119 [binder, in hydras.Ackermann.codeSubTerm]
    +t:119 [binder, in hydras.Ackermann.wellFormed]
    +T:119 [binder, in hydras.Ackermann.folLogic]
    +t:12 [binder, in hydras.Ackermann.codeSubTerm]
    +T:12 [binder, in hydras.Ackermann.LNT]
    +t:12 [binder, in hydras.Ackermann.wellFormed]
    +t:12 [binder, in additions.Addition_Chains]
    +t:12 [binder, in hydras.MoreAck.FolExamples]
    +t:120 [binder, in hydras.Ackermann.codeFreeVar]
    +t:120 [binder, in hydras.Ackermann.codeSubTerm]
    +T:120 [binder, in hydras.Ackermann.LNN]
    +t:120 [binder, in hydras.Ackermann.wellFormed]
    +t:120 [binder, in additions.Addition_Chains]
    +t:121 [binder, in hydras.Ackermann.codeSubTerm]
    +T:121 [binder, in hydras.Ackermann.LNT]
    +t:121 [binder, in hydras.Epsilon0.Paths]
    +t:122 [binder, in hydras.Ackermann.codeFreeVar]
    +t:122 [binder, in hydras.Ackermann.codeSubTerm]
    +t:122 [binder, in hydras.Ackermann.wellFormed]
    +T:122 [binder, in hydras.Ackermann.folLogic]
    +t:123 [binder, in hydras.Ackermann.codeFreeVar]
    +t:124 [binder, in hydras.rpo.term]
    +t:124 [binder, in hydras.Ackermann.codeFreeVar]
    +T:124 [binder, in hydras.Ackermann.LNN]
    +T:124 [binder, in hydras.Ackermann.LNT]
    +t:124 [binder, in hydras.Ackermann.wellFormed]
    +t:125 [binder, in hydras.Ackermann.codeFreeVar]
    +t:125 [binder, in hydras.Ackermann.codeSubTerm]
    +t:1257 [binder, in hydras.Ackermann.codeSubFormula]
    +t:126 [binder, in hydras.Ackermann.codeFreeVar]
    +t:126 [binder, in hydras.Ackermann.wellFormed]
    +T:126 [binder, in hydras.Ackermann.folLogic]
    +t:127 [binder, in hydras.Ackermann.codeFreeVar]
    +T:127 [binder, in hydras.Ackermann.LNN]
    +T:127 [binder, in hydras.Ackermann.LNT]
    +t:127 [binder, in additions.Addition_Chains]
    +t:127 [binder, in hydras.rpo.rpo]
    +t:128 [binder, in hydras.Ackermann.codeFreeVar]
    +t:128 [binder, in hydras.Ackermann.codeSubTerm]
    +t:128 [binder, in hydras.Ackermann.wellFormed]
    +t:129 [binder, in hydras.rpo.term]
    +t:129 [binder, in hydras.Ackermann.codeFreeVar]
    +T:129 [binder, in hydras.Ackermann.LNT]
    +t:129 [binder, in hydras.Epsilon0.Paths]
    +t:13 [binder, in hydras.Ackermann.subAll]
    +T:13 [binder, in hydras.Ackermann.folLogic]
    +T:13 [binder, in hydras.Ackermann.folLogic3]
    +T:130 [binder, in hydras.Ackermann.LNN]
    +t:130 [binder, in hydras.Ackermann.wellFormed]
    +t:131 [binder, in hydras.rpo.term]
    +t:131 [binder, in hydras.Ackermann.codeSubTerm]
    +T:132 [binder, in hydras.Ackermann.LNN]
    +T:132 [binder, in hydras.Ackermann.LNT]
    +t:132 [binder, in hydras.Ackermann.wellFormed]
    +t:134 [binder, in hydras.Ackermann.codeSubTerm]
    +t:134 [binder, in hydras.Ackermann.wellFormed]
    +t:134 [binder, in additions.Addition_Chains]
    +T:135 [binder, in hydras.Ackermann.LNN]
    +t:135 [binder, in hydras.Epsilon0.Paths]
    +t:136 [binder, in hydras.rpo.term]
    +T:136 [binder, in hydras.Ackermann.LNT]
    +t:136 [binder, in hydras.Ackermann.wellFormed]
    +t:137 [binder, in hydras.Ackermann.codeSubTerm]
    +T:138 [binder, in hydras.Ackermann.LNT]
    +T:138 [binder, in hydras.Ackermann.subProp]
    +t:138 [binder, in hydras.Ackermann.wellFormed]
    +t:138 [binder, in hydras.rpo.rpo]
    +T:139 [binder, in hydras.Ackermann.LNN]
    +T:14 [binder, in hydras.Ackermann.LNT]
    +T:14 [binder, in hydras.Ackermann.folProp]
    +t:14 [binder, in hydras.Ackermann.wellFormed]
    +T:14 [binder, in hydras.Ackermann.wConsistent]
    +t:140 [binder, in hydras.Ackermann.codeSubTerm]
    +t:140 [binder, in hydras.Ackermann.wellFormed]
    +t:141 [binder, in hydras.rpo.term]
    +T:141 [binder, in hydras.Ackermann.LNN]
    +T:141 [binder, in hydras.Ackermann.LNT]
    +t:141 [binder, in hydras.Epsilon0.Paths]
    +t:142 [binder, in hydras.Ackermann.wellFormed]
    +t:143 [binder, in hydras.Ackermann.codeSubTerm]
    +T:144 [binder, in hydras.Ackermann.LNN]
    +t:144 [binder, in hydras.Ackermann.wellFormed]
    +t:145 [binder, in hydras.rpo.term]
    +T:145 [binder, in hydras.Ackermann.LNT]
    +t:146 [binder, in hydras.Ackermann.codeSubTerm]
    +t:146 [binder, in hydras.Ackermann.wellFormed]
    +t:147 [binder, in additions.Euclidean_Chains]
    +t:147 [binder, in hydras.Epsilon0.Paths]
    +t:148 [binder, in hydras.Ackermann.codeSubTerm]
    +T:148 [binder, in hydras.Ackermann.LNN]
    +t:148 [binder, in hydras.Ackermann.wellFormed]
    +t:149 [binder, in hydras.rpo.term]
    +t:15 [binder, in hydras.Ackermann.codeSubTerm]
    +T:15 [binder, in hydras.Ackermann.LNN]
    +t:15 [binder, in additions.Trace_exercise]
    +t:15 [binder, in hydras.rpo.list_permut]
    +t:150 [binder, in hydras.Ackermann.codeSubTerm]
    +T:150 [binder, in hydras.Ackermann.LNT]
    +t:150 [binder, in hydras.Ackermann.wellFormed]
    +t:151 [binder, in hydras.Hydra.Hydra_Lemmas]
    +t:152 [binder, in hydras.Ackermann.codeSubTerm]
    +t:152 [binder, in hydras.Ackermann.wellFormed]
    +t:152 [binder, in hydras.rpo.rpo]
    +T:153 [binder, in hydras.Ackermann.LNN]
    +t:153 [binder, in hydras.Ackermann.wellFormed]
    +t:154 [binder, in hydras.Ackermann.codeSubTerm]
    +t:154 [binder, in hydras.Ackermann.wellFormed]
    +t:154 [binder, in hydras.Hydra.Hydra_Lemmas]
    +t:154 [binder, in hydras.rpo.rpo]
    +T:155 [binder, in hydras.Ackermann.LNT]
    +t:155 [binder, in hydras.Ackermann.wellFormed]
    +t:156 [binder, in hydras.Ackermann.codeSubTerm]
    +t:156 [binder, in hydras.Ackermann.wellFormed]
    +t:156 [binder, in hydras.rpo.rpo]
    +T:157 [binder, in hydras.Ackermann.subProp]
    +t:157 [binder, in hydras.Ackermann.wellFormed]
    +t:158 [binder, in hydras.Ackermann.codeSubTerm]
    +T:158 [binder, in hydras.Ackermann.LNN]
    +t:158 [binder, in hydras.Ackermann.wellFormed]
    +t:159 [binder, in hydras.Epsilon0.Large_Sets]
    +t:159 [binder, in hydras.Ackermann.wellFormed]
    +T:16 [binder, in hydras.Ackermann.folLogic]
    +t:16 [binder, in hydras.rpo.list_permut]
    +T:16 [binder, in hydras.Ackermann.folReplace]
    +t:160 [binder, in hydras.Ackermann.codeSubTerm]
    +t:160 [binder, in hydras.Ackermann.wellFormed]
    +T:161 [binder, in hydras.Ackermann.LNN]
    +T:161 [binder, in hydras.Ackermann.subProp]
    +t:162 [binder, in hydras.Ackermann.codeSubTerm]
    +t:162 [binder, in hydras.Ackermann.wellFormed]
    +t:164 [binder, in hydras.Ackermann.codeSubTerm]
    +t:164 [binder, in hydras.Ackermann.wellFormed]
    +t:164 [binder, in additions.Addition_Chains]
    +t:166 [binder, in hydras.Ackermann.codeSubTerm]
    +T:166 [binder, in hydras.Ackermann.subProp]
    +t:166 [binder, in hydras.Ackermann.wellFormed]
    +t:168 [binder, in hydras.Ackermann.codeSubTerm]
    +t:168 [binder, in hydras.Ackermann.wellFormed]
    +t:17 [binder, in hydras.rpo.term]
    +t:17 [binder, in hydras.Ackermann.LNN2LNT]
    +T:17 [binder, in hydras.Ackermann.LNN]
    +T:17 [binder, in hydras.Ackermann.LNT]
    +t:170 [binder, in hydras.Ackermann.codeSubTerm]
    +t:170 [binder, in hydras.Ackermann.folProp]
    +t:170 [binder, in hydras.Ackermann.wellFormed]
    +t:171 [binder, in additions.Addition_Chains]
    +t:172 [binder, in hydras.Ackermann.codeSubTerm]
    +t:172 [binder, in hydras.Ackermann.wellFormed]
    +t:173 [binder, in hydras.Ackermann.wellFormed]
    +t:173 [binder, in hydras.rpo.rpo]
    +t:174 [binder, in hydras.rpo.term]
    +t:174 [binder, in hydras.Ackermann.codeSubTerm]
    +t:174 [binder, in hydras.Ackermann.wellFormed]
    +t:175 [binder, in hydras.Ackermann.wellFormed]
    +t:176 [binder, in hydras.Ackermann.codeSubTerm]
    +t:176 [binder, in hydras.Ackermann.wellFormed]
    +t:177 [binder, in hydras.Ackermann.subAll]
    +t:177 [binder, in hydras.Ackermann.wellFormed]
    +t:177 [binder, in additions.Addition_Chains]
    +t:178 [binder, in hydras.rpo.term]
    +t:178 [binder, in hydras.Ackermann.folProp]
    +t:178 [binder, in additions.Euclidean_Chains]
    +t:178 [binder, in hydras.Ackermann.wellFormed]
    +t:179 [binder, in hydras.Ackermann.codeSubTerm]
    +t:179 [binder, in hydras.Ackermann.wellFormed]
    +t:18 [binder, in hydras.Ackermann.model]
    +t:18 [binder, in hydras.rpo.list_permut]
    +t:182 [binder, in hydras.rpo.term]
    +t:182 [binder, in hydras.Ackermann.codeSubTerm]
    +t:182 [binder, in hydras.rpo.rpo]
    +t:184 [binder, in hydras.Ackermann.codeSubTerm]
    +t:186 [binder, in hydras.Ackermann.codeSubTerm]
    +t:186 [binder, in hydras.Ackermann.folProp]
    +T:188 [binder, in hydras.Ackermann.subAll]
    +t:188 [binder, in hydras.Ackermann.codeSubTerm]
    +T:19 [binder, in hydras.Ackermann.folLogic]
    +T:19 [binder, in hydras.Ackermann.folReplace]
    +t:190 [binder, in hydras.Ackermann.codeSubTerm]
    +t:192 [binder, in hydras.Ackermann.codeSubTerm]
    +t:194 [binder, in hydras.Ackermann.codeSubTerm]
    +t:194 [binder, in hydras.Ackermann.folProp]
    +t:195 [binder, in hydras.rpo.rpo]
    +t:196 [binder, in hydras.Ackermann.codeSubTerm]
    +t:197 [binder, in hydras.Ackermann.codeSubTerm]
    +t:198 [binder, in hydras.Ackermann.codeSubTerm]
    +t:199 [binder, in hydras.Ackermann.codeSubTerm]
    +t:2 [binder, in hydras.Ackermann.subAll]
    +T:2 [binder, in hydras.Ackermann.folLogic2]
    +t:2 [binder, in hydras.Ackermann.subProp]
    +T:2 [binder, in hydras.Ackermann.folLogic]
    +T:2 [binder, in hydras.Ackermann.folLogic3]
    +T:20 [binder, in hydras.Ackermann.LNN]
    +T:20 [binder, in hydras.Ackermann.LNT]
    +t:20 [binder, in hydras.Ackermann.code]
    +t:200 [binder, in hydras.rpo.term]
    +t:200 [binder, in hydras.Ackermann.codeSubTerm]
    +t:201 [binder, in hydras.Ackermann.codeSubTerm]
    +t:201 [binder, in hydras.Ackermann.fol]
    +t:201 [binder, in hydras.rpo.rpo]
    +t:202 [binder, in hydras.Ackermann.codeSubTerm]
    +t:202 [binder, in hydras.Ackermann.folProp]
    +t:203 [binder, in hydras.Ackermann.codeSubTerm]
    +t:203 [binder, in hydras.rpo.rpo]
    +t:204 [binder, in hydras.Ackermann.codeSubTerm]
    +t:204 [binder, in hydras.rpo.rpo]
    +t:205 [binder, in hydras.rpo.term]
    +t:205 [binder, in hydras.Ackermann.fol]
    +t:206 [binder, in hydras.Ackermann.codeSubTerm]
    +t:207 [binder, in hydras.rpo.term]
    +t:207 [binder, in hydras.Ackermann.subAll]
    +t:208 [binder, in hydras.Ackermann.codeSubTerm]
    +T:21 [binder, in hydras.Ackermann.folLogic]
    +t:210 [binder, in hydras.Ackermann.codeSubTerm]
    +t:210 [binder, in hydras.Ackermann.folProp]
    +t:212 [binder, in hydras.rpo.rpo]
    +t:213 [binder, in hydras.rpo.term]
    +t:214 [binder, in hydras.rpo.term]
    +t:216 [binder, in hydras.rpo.rpo]
    +t:218 [binder, in hydras.rpo.term]
    +t:218 [binder, in hydras.Ackermann.folProp]
    +t:219 [binder, in hydras.rpo.term]
    +t:22 [binder, in hydras.rpo.term]
    +t:22 [binder, in hydras.Ackermann.wellFormed]
    +T:22 [binder, in hydras.Ackermann.folReplace]
    +t:220 [binder, in hydras.rpo.rpo]
    +t:224 [binder, in hydras.rpo.term]
    +t:224 [binder, in hydras.Ackermann.fol]
    +t:225 [binder, in hydras.rpo.term]
    +T:226 [binder, in hydras.Ackermann.subAll]
    +t:226 [binder, in hydras.Ackermann.folProp]
    +t:226 [binder, in hydras.rpo.rpo]
    +t:228 [binder, in hydras.Ackermann.fol]
    +T:23 [binder, in hydras.Ackermann.LNN]
    +T:23 [binder, in hydras.Ackermann.LNT]
    +t:23 [binder, in hydras.Ackermann.wellFormed]
    +T:23 [binder, in hydras.Ackermann.folLogic]
    +T:23 [binder, in hydras.Ackermann.folLogic3]
    +t:235 [binder, in hydras.Gamma0.Gamma0]
    +t:242 [binder, in hydras.Ackermann.fol]
    +t:246 [binder, in hydras.Ackermann.fol]
    +t:249 [binder, in hydras.Ackermann.folProp]
    +t:25 [binder, in hydras.rpo.term]
    +t:25 [binder, in hydras.Ackermann.subProp]
    +t:25 [binder, in hydras.Ackermann.wellFormed]
    +T:25 [binder, in hydras.Ackermann.folReplace]
    +T:256 [binder, in hydras.Ackermann.subAll]
    +t:257 [binder, in hydras.Ackermann.folProp]
    +T:26 [binder, in hydras.Ackermann.LNN]
    +T:26 [binder, in hydras.Ackermann.LNT]
    +T:26 [binder, in hydras.Ackermann.folLogic]
    +t:260 [binder, in hydras.rpo.term]
    +t:262 [binder, in hydras.rpo.term]
    +t:264 [binder, in hydras.rpo.term]
    +t:265 [binder, in hydras.Ackermann.folProp]
    +t:268 [binder, in hydras.Gamma0.Gamma0]
    +t:27 [binder, in hydras.Ackermann.code]
    +t:271 [binder, in hydras.rpo.term]
    +t:273 [binder, in hydras.Ackermann.folProp]
    +t:274 [binder, in hydras.rpo.term]
    +t:274 [binder, in hydras.Gamma0.Gamma0]
    +t:28 [binder, in hydras.Ackermann.codeFreeVar]
    +t:28 [binder, in hydras.Ackermann.LNN2LNT]
    +T:28 [binder, in gaia_hydras.onType]
    +t:281 [binder, in hydras.rpo.term]
    +t:284 [binder, in hydras.rpo.term]
    +T:29 [binder, in hydras.Ackermann.LNN]
    +T:29 [binder, in hydras.Ackermann.LNT]
    +T:29 [binder, in hydras.Ackermann.folLogic]
    +T:29 [binder, in hydras.Ackermann.folReplace]
    +t:292 [binder, in hydras.Ackermann.fol]
    +t:293 [binder, in hydras.rpo.term]
    +t:293 [binder, in hydras.rpo.rpo]
    +t:295 [binder, in hydras.rpo.term]
    +t:295 [binder, in hydras.rpo.rpo]
    +t:296 [binder, in hydras.Ackermann.fol]
    +t:297 [binder, in hydras.rpo.rpo]
    +T:298 [binder, in hydras.Ackermann.subAll]
    +t:298 [binder, in hydras.Ackermann.folProp]
    +t:30 [binder, in hydras.Ackermann.codeFreeVar]
    +t:30 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +T:30 [binder, in hydras.Ackermann.folLogic2]
    +t:301 [binder, in hydras.rpo.rpo]
    +t:302 [binder, in hydras.rpo.rpo]
    +t:303 [binder, in hydras.rpo.rpo]
    +t:304 [binder, in hydras.rpo.term]
    +t:304 [binder, in hydras.rpo.rpo]
    +t:305 [binder, in hydras.rpo.rpo]
    +t:306 [binder, in hydras.Ackermann.folProp]
    +t:306 [binder, in hydras.rpo.rpo]
    +t:309 [binder, in hydras.rpo.rpo]
    +T:31 [binder, in hydras.Ackermann.LNT]
    +t:310 [binder, in hydras.rpo.term]
    +t:311 [binder, in hydras.rpo.term]
    +t:311 [binder, in hydras.rpo.rpo]
    +t:313 [binder, in hydras.rpo.rpo]
    +t:314 [binder, in hydras.Ackermann.folProp]
    +t:316 [binder, in hydras.rpo.term]
    +T:317 [binder, in hydras.Ackermann.subAll]
    +t:319 [binder, in hydras.rpo.rpo]
    +t:32 [binder, in hydras.Ackermann.codeFreeVar]
    +T:32 [binder, in hydras.Ackermann.LNN]
    +T:32 [binder, in hydras.Ackermann.folLogic]
    +t:321 [binder, in hydras.rpo.term]
    +t:322 [binder, in hydras.Ackermann.folProp]
    +t:324 [binder, in hydras.rpo.term]
    +t:327 [binder, in hydras.rpo.term]
    +t:33 [binder, in hydras.rpo.term]
    +T:33 [binder, in hydras.Ackermann.LNT]
    +t:33 [binder, in hydras.Ackermann.wellFormed]
    +T:33 [binder, in hydras.Ackermann.folReplace]
    +t:330 [binder, in hydras.Ackermann.folProp]
    +t:338 [binder, in hydras.Ackermann.folProp]
    +t:338 [binder, in hydras.Ackermann.fol]
    +T:339 [binder, in hydras.Ackermann.subAll]
    +t:34 [binder, in hydras.rpo.term]
    +t:34 [binder, in hydras.Ackermann.codeFreeVar]
    +T:34 [binder, in hydras.Ackermann.LNN]
    +t:342 [binder, in hydras.Ackermann.fol]
    +T:344 [binder, in hydras.Ackermann.subAll]
    +t:346 [binder, in hydras.Ackermann.folProp]
    +T:349 [binder, in hydras.Ackermann.subAll]
    +T:35 [binder, in hydras.Ackermann.LNT]
    +t:35 [binder, in hydras.Ackermann.wellFormed]
    +T:35 [binder, in hydras.Ackermann.folLogic]
    +t:353 [binder, in hydras.rpo.term]
    +t:354 [binder, in hydras.Ackermann.folProp]
    +t:356 [binder, in hydras.rpo.term]
    +T:356 [binder, in hydras.Ackermann.subAll]
    +t:356 [binder, in hydras.Ackermann.checkPrf]
    +t:36 [binder, in hydras.Ackermann.folProof]
    +t:36 [binder, in hydras.Ackermann.codeFreeVar]
    +T:36 [binder, in hydras.Ackermann.LNN]
    +t:361 [binder, in hydras.rpo.term]
    +t:362 [binder, in hydras.Ackermann.folProp]
    +T:369 [binder, in hydras.Ackermann.subAll]
    +t:37 [binder, in hydras.Ackermann.LNN2LNT]
    +T:37 [binder, in hydras.Ackermann.folLogic]
    +t:37 [binder, in hydras.MoreAck.FolExamples]
    +t:370 [binder, in hydras.Ackermann.folProp]
    +t:378 [binder, in hydras.Ackermann.folProp]
    +t:38 [binder, in hydras.Ackermann.codeFreeVar]
    +T:38 [binder, in hydras.Ackermann.LNN]
    +T:38 [binder, in hydras.Ackermann.LNT]
    +T:38 [binder, in hydras.Ackermann.folReplace]
    +t:382 [binder, in hydras.Ackermann.fol]
    +t:386 [binder, in hydras.Ackermann.folProp]
    +t:386 [binder, in hydras.Ackermann.fol]
    +t:39 [binder, in hydras.rpo.term]
    +t:4 [binder, in gaia_hydras.T1Choice]
    +t:4 [binder, in hydras.MoreAck.BadSubst]
    +T:4 [binder, in hydras.Ackermann.folLogic]
    +T:4 [binder, in hydras.Ackermann.folLogic3]
    +T:4 [binder, in hydras.MoreAck.FolExamples]
    +t:40 [binder, in hydras.rpo.term]
    +t:40 [binder, in hydras.Ackermann.codeFreeVar]
    +T:41 [binder, in hydras.Ackermann.LNN]
    +T:41 [binder, in hydras.Ackermann.LNT]
    +T:41 [binder, in hydras.Ackermann.folLogic]
    +t:417 [binder, in hydras.Ackermann.folProp]
    +t:42 [binder, in hydras.Ackermann.codeFreeVar]
    +t:42 [binder, in hydras.Prelude.MoreLists]
    +t:42 [binder, in hydras.Ackermann.wellFormed]
    +T:43 [binder, in hydras.Ackermann.folReplace]
    +t:43 [binder, in hydras.rpo.rpo]
    +t:436 [binder, in hydras.Ackermann.fol]
    +t:439 [binder, in hydras.Ackermann.fol]
    +T:44 [binder, in hydras.Ackermann.folProof]
    +t:44 [binder, in hydras.Ackermann.codeFreeVar]
    +T:44 [binder, in hydras.Ackermann.LNN]
    +T:44 [binder, in hydras.Ackermann.LNT]
    +T:44 [binder, in hydras.Ackermann.folProp]
    +t:441 [binder, in hydras.Ackermann.folProp]
    +T:45 [binder, in hydras.Ackermann.folLogic]
    +t:46 [binder, in hydras.rpo.term]
    +t:46 [binder, in hydras.Ackermann.codeFreeVar]
    +t:47 [binder, in hydras.rpo.term]
    +T:47 [binder, in hydras.Ackermann.LNN]
    +T:47 [binder, in hydras.Ackermann.LNT]
    +t:47 [binder, in hydras.Ackermann.wellFormed]
    +t:474 [binder, in hydras.Epsilon0.Paths]
    +t:48 [binder, in hydras.Ackermann.codeFreeVar]
    +t:48 [binder, in hydras.Ackermann.subProp]
    +t:48 [binder, in hydras.Ackermann.fol]
    +T:48 [binder, in hydras.Ackermann.folLogic]
    +T:48 [binder, in hydras.Ackermann.folReplace]
    +T:48 [binder, in hydras.MoreAck.FolExamples]
    +T:49 [binder, in hydras.Ackermann.folProof]
    +t:49 [binder, in hydras.Ackermann.folProp]
    +t:5 [binder, in hydras.Ackermann.codeFreeVar]
    +t:5 [binder, in hydras.Ackermann.codeSubTerm]
    +t:50 [binder, in hydras.Ackermann.codeFreeVar]
    +T:50 [binder, in hydras.Ackermann.LNN]
    +t:50 [binder, in hydras.Ackermann.model]
    +T:51 [binder, in hydras.Ackermann.folProof]
    +T:51 [binder, in hydras.Ackermann.LNT]
    +t:51 [binder, in hydras.Ackermann.fol]
    +T:51 [binder, in hydras.Ackermann.folLogic]
    +t:52 [binder, in hydras.Ackermann.codeFreeVar]
    +t:52 [binder, in hydras.Ackermann.codeSubTerm]
    +t:52 [binder, in hydras.Ackermann.wellFormed]
    +T:53 [binder, in hydras.Ackermann.folProof]
    +t:53 [binder, in hydras.Ackermann.folProp]
    +T:53 [binder, in hydras.Ackermann.folReplace]
    +t:534 [binder, in hydras.Epsilon0.Paths]
    +t:54 [binder, in hydras.Ackermann.codeFreeVar]
    +T:54 [binder, in hydras.Ackermann.LNN]
    +T:54 [binder, in hydras.Ackermann.folLogic]
    +t:543 [binder, in hydras.Epsilon0.Paths]
    +T:55 [binder, in hydras.Ackermann.LNT]
    +t:55 [binder, in hydras.Ackermann.wellFormed]
    +t:55 [binder, in hydras.Ackermann.fol]
    +t:56 [binder, in hydras.Ackermann.codeFreeVar]
    +t:56 [binder, in hydras.Ackermann.codeSubTerm]
    +T:56 [binder, in hydras.Ackermann.folLogic3]
    +t:57 [binder, in hydras.Ackermann.wellFormed]
    +T:57 [binder, in hydras.Ackermann.folLogic]
    +t:57 [binder, in hydras.rpo.rpo]
    +t:58 [binder, in hydras.Ackermann.subAll]
    +t:58 [binder, in hydras.Ackermann.codeFreeVar]
    +T:58 [binder, in hydras.Ackermann.LNN]
    +T:58 [binder, in hydras.Ackermann.LNT]
    +T:58 [binder, in hydras.Ackermann.folReplace]
    +t:59 [binder, in hydras.rpo.rpo]
    +T:6 [binder, in hydras.Ackermann.folLogic2]
    +T:6 [binder, in hydras.Ackermann.wConsistent]
    +T:6 [binder, in hydras.Ackermann.folReplace]
    +t:60 [binder, in hydras.Ackermann.codeFreeVar]
    +t:60 [binder, in hydras.Ackermann.codeSubTerm]
    +t:60 [binder, in hydras.Ackermann.wellFormed]
    +T:60 [binder, in hydras.Ackermann.folLogic]
    +t:61 [binder, in hydras.Ackermann.codeFreeVar]
    +T:61 [binder, in hydras.Ackermann.LNN]
    +T:61 [binder, in hydras.Ackermann.LNT]
    +t:61 [binder, in hydras.rpo.rpo]
    +t:62 [binder, in hydras.Ackermann.codeFreeVar]
    +t:63 [binder, in hydras.Ackermann.codeFreeVar]
    +T:63 [binder, in hydras.Ackermann.folLogic]
    +T:63 [binder, in hydras.Ackermann.folReplace]
    +t:64 [binder, in hydras.Ackermann.codeFreeVar]
    +t:64 [binder, in hydras.Ackermann.codeSubTerm]
    +T:64 [binder, in hydras.Ackermann.LNN]
    +T:64 [binder, in hydras.Ackermann.LNT]
    +t:64 [binder, in hydras.Ackermann.wellFormed]
    +t:65 [binder, in hydras.Ackermann.codeFreeVar]
    +T:65 [binder, in hydras.Ackermann.folLogic3]
    +T:65 [binder, in Goedel.rosser]
    +t:66 [binder, in hydras.Ackermann.codeFreeVar]
    +t:66 [binder, in hydras.Ackermann.wellFormed]
    +T:66 [binder, in hydras.Ackermann.folLogic]
    +t:67 [binder, in hydras.Ackermann.codeFreeVar]
    +T:67 [binder, in hydras.Ackermann.LNN]
    +T:67 [binder, in hydras.Ackermann.LNT]
    +T:67 [binder, in hydras.Ackermann.folReplace]
    +t:68 [binder, in hydras.Ackermann.codeFreeVar]
    +t:68 [binder, in hydras.Ackermann.codeSubTerm]
    +T:68 [binder, in hydras.Ackermann.LNN2LNT]
    +t:68 [binder, in hydras.Ackermann.wellFormed]
    +t:69 [binder, in hydras.Gamma0.T2]
    +t:69 [binder, in hydras.Ackermann.codeFreeVar]
    +t:69 [binder, in hydras.Ackermann.folLogic]
    +t:692 [binder, in hydras.Ackermann.codeSubFormula]
    +t:695 [binder, in hydras.Ackermann.codeSubFormula]
    +t:698 [binder, in hydras.Ackermann.codeSubFormula]
    +t:7 [binder, in hydras.Ackermann.codeFreeVar]
    +T:7 [binder, in hydras.Ackermann.folLogic]
    +T:7 [binder, in hydras.MoreAck.FolExamples]
    +t:70 [binder, in hydras.Schutte.Correctness_E0]
    +t:70 [binder, in hydras.Ackermann.codeFreeVar]
    +T:70 [binder, in hydras.Ackermann.LNN]
    +T:70 [binder, in hydras.Ackermann.LNT]
    +t:70 [binder, in hydras.Ackermann.wellFormed]
    +T:70 [binder, in hydras.Ackermann.folLogic]
    +t:701 [binder, in hydras.Ackermann.codeSubFormula]
    +t:704 [binder, in hydras.Ackermann.codeSubFormula]
    +t:707 [binder, in hydras.Ackermann.codeSubFormula]
    +t:71 [binder, in hydras.Ackermann.model]
    +t:71 [binder, in hydras.Ackermann.subProp]
    +T:71 [binder, in hydras.Ackermann.folReplace]
    +t:710 [binder, in hydras.Ackermann.codeSubFormula]
    +t:713 [binder, in hydras.Ackermann.codeSubFormula]
    +t:716 [binder, in hydras.Ackermann.codeSubFormula]
    +t:719 [binder, in hydras.Ackermann.codeSubFormula]
    +t:72 [binder, in hydras.Ackermann.codeFreeVar]
    +t:72 [binder, in hydras.Ackermann.codeSubTerm]
    +t:72 [binder, in hydras.Ackermann.wellFormed]
    +t:722 [binder, in hydras.Ackermann.codeSubFormula]
    +t:725 [binder, in hydras.Ackermann.codeSubFormula]
    +t:727 [binder, in hydras.Ackermann.codeSubFormula]
    +t:729 [binder, in hydras.Ackermann.codeSubFormula]
    +t:73 [binder, in hydras.Schutte.Correctness_E0]
    +t:73 [binder, in hydras.Ackermann.subAll]
    +T:73 [binder, in hydras.Ackermann.LNN]
    +T:73 [binder, in hydras.Ackermann.LNT]
    +T:73 [binder, in hydras.Ackermann.folLogic]
    +t:731 [binder, in hydras.Ackermann.codeSubFormula]
    +t:733 [binder, in hydras.Ackermann.codeSubFormula]
    +t:735 [binder, in hydras.Ackermann.codeSubFormula]
    +t:737 [binder, in hydras.Ackermann.codeSubFormula]
    +t:739 [binder, in hydras.Ackermann.codeSubFormula]
    +t:74 [binder, in hydras.Ackermann.codeFreeVar]
    +t:74 [binder, in hydras.Ackermann.wellFormed]
    +T:74 [binder, in Goedel.rosser]
    +t:741 [binder, in hydras.Ackermann.codeSubFormula]
    +t:743 [binder, in hydras.Ackermann.codeSubFormula]
    +t:745 [binder, in hydras.Ackermann.codeSubFormula]
    +t:747 [binder, in hydras.Ackermann.codeSubFormula]
    +t:749 [binder, in hydras.Ackermann.codeSubFormula]
    +T:75 [binder, in hydras.Ackermann.folLogic3]
    +t:750 [binder, in hydras.Ackermann.codeSubFormula]
    +t:751 [binder, in hydras.Ackermann.codeSubFormula]
    +t:752 [binder, in hydras.Ackermann.codeSubFormula]
    +t:753 [binder, in hydras.Ackermann.codeSubFormula]
    +t:754 [binder, in hydras.Ackermann.codeSubFormula]
    +t:755 [binder, in hydras.Epsilon0.T1]
    +t:76 [binder, in hydras.Schutte.Correctness_E0]
    +t:76 [binder, in hydras.Ackermann.codeFreeVar]
    +t:76 [binder, in hydras.Ackermann.codeSubTerm]
    +T:76 [binder, in hydras.Ackermann.LNN]
    +T:76 [binder, in hydras.Ackermann.LNT]
    +t:76 [binder, in hydras.Ackermann.wellFormed]
    +t:76 [binder, in hydras.Ackermann.folLogic]
    +T:76 [binder, in hydras.Ackermann.folReplace]
    +t:76 [binder, in hydras.rpo.rpo]
    +t:761 [binder, in hydras.Ackermann.codeSubFormula]
    +t:763 [binder, in hydras.Ackermann.codeSubFormula]
    +t:765 [binder, in hydras.Ackermann.codeSubFormula]
    +t:767 [binder, in hydras.Ackermann.codeSubFormula]
    +t:769 [binder, in hydras.Ackermann.codeSubFormula]
    +T:77 [binder, in hydras.Ackermann.folLogic]
    +t:771 [binder, in hydras.Ackermann.codeSubFormula]
    +t:773 [binder, in hydras.Ackermann.codeSubFormula]
    +t:775 [binder, in hydras.Ackermann.codeSubFormula]
    +t:777 [binder, in hydras.Ackermann.codeSubFormula]
    +t:779 [binder, in hydras.Ackermann.codeSubFormula]
    +t:78 [binder, in hydras.Ackermann.codeFreeVar]
    +t:78 [binder, in hydras.Ackermann.wellFormed]
    +t:782 [binder, in hydras.Ackermann.codeSubFormula]
    +t:785 [binder, in hydras.Ackermann.codeSubFormula]
    +t:787 [binder, in hydras.Ackermann.codeSubFormula]
    +t:789 [binder, in hydras.Ackermann.codeSubFormula]
    +T:79 [binder, in hydras.Ackermann.LNN]
    +t:79 [binder, in hydras.Ackermann.LNT]
    +t:791 [binder, in hydras.Ackermann.codeSubFormula]
    +t:793 [binder, in hydras.Ackermann.codeSubFormula]
    +t:795 [binder, in hydras.Ackermann.codeSubFormula]
    +t:797 [binder, in hydras.Ackermann.codeSubFormula]
    +t:799 [binder, in hydras.Ackermann.codeSubFormula]
    +t:8 [binder, in hydras.Ackermann.codeFreeVar]
    +t:8 [binder, in hydras.MoreAck.AckNotPR]
    +t:8 [binder, in hydras.Ackermann.PA]
    +T:8 [binder, in hydras.Ackermann.Deduction]
    +t:80 [binder, in hydras.Ackermann.codeFreeVar]
    +t:80 [binder, in hydras.Ackermann.codeSubTerm]
    +T:80 [binder, in hydras.Ackermann.LNT]
    +t:80 [binder, in hydras.Ackermann.wellFormed]
    +t:80 [binder, in hydras.rpo.rpo]
    +t:800 [binder, in hydras.Ackermann.codeSubFormula]
    +t:801 [binder, in hydras.Ackermann.codeSubFormula]
    +t:802 [binder, in hydras.Ackermann.codeSubFormula]
    +t:803 [binder, in hydras.Ackermann.codeSubFormula]
    +t:804 [binder, in hydras.Ackermann.codeSubFormula]
    +t:805 [binder, in hydras.Ackermann.codeSubFormula]
    +t:806 [binder, in hydras.Ackermann.codeSubFormula]
    +t:807 [binder, in hydras.Ackermann.codeSubFormula]
    +t:809 [binder, in hydras.Ackermann.codeSubFormula]
    +T:81 [binder, in hydras.Ackermann.folLogic]
    +T:81 [binder, in hydras.Ackermann.folReplace]
    +t:811 [binder, in hydras.Ackermann.codeSubFormula]
    +t:811 [binder, in gaia_hydras.nfwfgaia]
    +t:813 [binder, in hydras.Ackermann.codeSubFormula]
    +t:815 [binder, in hydras.Ackermann.codeSubFormula]
    +t:817 [binder, in hydras.Ackermann.codeSubFormula]
    +t:82 [binder, in hydras.Ackermann.codeFreeVar]
    +t:82 [binder, in hydras.Ackermann.LNN]
    +t:82 [binder, in hydras.Ackermann.wellFormed]
    +t:83 [binder, in hydras.rpo.more_list]
    +T:83 [binder, in hydras.Ackermann.LNN]
    +T:83 [binder, in hydras.Ackermann.LNT]
    +t:83 [binder, in hydras.Ackermann.codeSubFormula]
    +t:830 [binder, in hydras.Ackermann.codeSubFormula]
    +t:833 [binder, in hydras.Ackermann.codeSubFormula]
    +t:84 [binder, in hydras.rpo.term]
    +t:84 [binder, in hydras.Ackermann.codeFreeVar]
    +t:84 [binder, in hydras.Ackermann.codeSubTerm]
    +t:84 [binder, in hydras.Ackermann.wellFormed]
    +T:84 [binder, in hydras.Ackermann.folLogic]
    +t:84 [binder, in hydras.rpo.rpo]
    +t:85 [binder, in additions.Addition_Chains]
    +t:858 [binder, in hydras.Ackermann.codeSubFormula]
    +t:86 [binder, in hydras.Ackermann.codeFreeVar]
    +T:86 [binder, in hydras.Ackermann.LNN]
    +t:86 [binder, in hydras.Ackermann.LNT]
    +t:86 [binder, in hydras.Ackermann.wellFormed]
    +T:86 [binder, in hydras.Ackermann.folReplace]
    +T:87 [binder, in hydras.Ackermann.LNT]
    +t:87 [binder, in hydras.Ackermann.folLogic3]
    +t:88 [binder, in hydras.Ackermann.codeFreeVar]
    +t:88 [binder, in hydras.Ackermann.codeSubTerm]
    +t:88 [binder, in hydras.Ackermann.wellFormed]
    +T:88 [binder, in hydras.Ackermann.folLogic]
    +t:88 [binder, in hydras.Gamma0.Gamma0]
    +t:89 [binder, in hydras.Ackermann.LNN]
    +t:89 [binder, in hydras.Ackermann.codeSubFormula]
    +T:89 [binder, in hydras.Ackermann.folLogic3]
    +t:89 [binder, in additions.Addition_Chains]
    +t:897 [binder, in hydras.Ackermann.codeSubFormula]
    +t:9 [binder, in hydras.Ackermann.codeFreeVar]
    +t:9 [binder, in hydras.Ackermann.codeSubTerm]
    +T:9 [binder, in hydras.Ackermann.wConsistent]
    +t:9 [binder, in hydras.rpo.rpo]
    +t:90 [binder, in hydras.Ackermann.codeFreeVar]
    +T:90 [binder, in hydras.Ackermann.LNN]
    +t:90 [binder, in hydras.Ackermann.wellFormed]
    +T:90 [binder, in hydras.Ackermann.folLogic]
    +t:90 [binder, in hydras.Gamma0.Gamma0]
    +t:91 [binder, in hydras.rpo.term]
    +t:91 [binder, in hydras.Hydra.O2H]
    +T:91 [binder, in hydras.Ackermann.LNT]
    +t:91 [binder, in hydras.rpo.rpo]
    +t:92 [binder, in hydras.Ackermann.codeFreeVar]
    +t:92 [binder, in hydras.Ackermann.codeSubTerm]
    +t:92 [binder, in hydras.rpo.more_list]
    +t:92 [binder, in hydras.Ackermann.wellFormed]
    +t:92 [binder, in hydras.Gamma0.Gamma0]
    +t:93 [binder, in hydras.Ackermann.wellFormed]
    +T:93 [binder, in hydras.Ackermann.folLogic]
    +T:93 [binder, in hydras.Ackermann.folReplace]
    +t:94 [binder, in hydras.Ackermann.codeFreeVar]
    +t:94 [binder, in hydras.Ackermann.codeSubTerm]
    +T:94 [binder, in hydras.Ackermann.LNN]
    +T:94 [binder, in hydras.Ackermann.LNT]
    +t:94 [binder, in hydras.Ackermann.subProp]
    +t:94 [binder, in hydras.Ackermann.wellFormed]
    +t:94 [binder, in additions.Addition_Chains]
    +T:94 [binder, in hydras.Ackermann.folReplace]
    +t:94 [binder, in hydras.MoreAck.PrimRecExamples]
    +t:94 [binder, in hydras.rpo.rpo]
    +t:95 [binder, in hydras.rpo.term]
    +t:95 [binder, in hydras.Ackermann.wellFormed]
    +t:96 [binder, in hydras.Ackermann.subAll]
    +t:96 [binder, in hydras.Ackermann.codeFreeVar]
    +t:96 [binder, in hydras.Ackermann.codeSubTerm]
    +t:96 [binder, in hydras.Ackermann.wellFormed]
    +T:96 [binder, in hydras.Ackermann.folLogic]
    +T:97 [binder, in hydras.Ackermann.LNN]
    +t:97 [binder, in hydras.Ackermann.wellFormed]
    +t:98 [binder, in hydras.Ackermann.codeFreeVar]
    +t:98 [binder, in hydras.Ackermann.codeSubTerm]
    +T:98 [binder, in hydras.Ackermann.LNT]
    +t:98 [binder, in hydras.Ackermann.wellFormed]
    +t:98 [binder, in hydras.rpo.rpo]
    +t:99 [binder, in hydras.Ackermann.wellFormed]
    +T:99 [binder, in hydras.Ackermann.folLogic]
    +T:99 [binder, in hydras.Ackermann.folLogic3]
    +T:99 [binder, in hydras.Ackermann.folReplace]
    +t:99 [binder, in hydras.MoreAck.PrimRecExamples]
    +

    U

    +U [projection, in hydras.Ackermann.model]
    +ui:187 [binder, in hydras.rpo.term]
    +ui:325 [binder, in hydras.rpo.rpo]
    +ui:328 [binder, in hydras.rpo.rpo]
    +ui:369 [binder, in hydras.rpo.term]
    +unbounded [lemma, in hydras.Schutte.Schutte_basics]
    +Unbounded [definition, in hydras.Schutte.Schutte_basics]
    +Unbounded_Cr [lemma, in hydras.Schutte.Critical]
    +Unbounded_not_countable [lemma, in hydras.Schutte.Schutte_basics]
    +Unbounded_ge [lemma, in hydras.Schutte.Addition]
    +undecidable [abbreviation, in hydras.Ackermann.folProof]
    +unique_decomposition [lemma, in hydras.Epsilon0.T1]
    +unique_decomposition [lemma, in hydras.OrdinalNotations.ON_Omega2]
    +Unnamed_thm9 [definition, in gaia_hydras.T1Choice]
    +Unnamed_thm8 [definition, in gaia_hydras.T1Choice]
    +Unnamed_thm7 [definition, in gaia_hydras.T1Choice]
    +Unnamed_thm6 [definition, in gaia_hydras.T1Choice]
    +Unnamed_thm5 [definition, in gaia_hydras.T1Choice]
    +Unnamed_thm5 [definition, in gaia_hydras.T1Choice]
    +Unnamed_thm4 [definition, in gaia_hydras.T1Choice]
    +Unnamed_thm3 [definition, in gaia_hydras.T1Choice]
    +Unnamed_thm2 [definition, in gaia_hydras.T1Choice]
    +Unnamed_thm1 [definition, in gaia_hydras.T1Choice]
    +Unnamed_thm0 [definition, in gaia_hydras.T1Choice]
    +Unnamed_thm [definition, in gaia_hydras.T1Choice]
    +Unnamed_thm [definition, in hydras.Prelude.More_Arith]
    +Unnamed_thm [definition, in hydras.MoreAck.expressibleExamples]
    +Unnamed_thm0 [definition, in hydras.MoreAck.LNN_Examples]
    +Unnamed_thm [definition, in hydras.MoreAck.LNN_Examples]
    +Unnamed_thm [definition, in additions.Monoid_def]
    +Unnamed_thm0 [definition, in hydras.Ackermann.fol]
    +Unnamed_thm [definition, in hydras.Ackermann.fol]
    +Unnamed_thm [definition, in hydras.Epsilon0.Canon]
    +Unnamed_thm [definition, in hydras.OrdinalNotations.ON_Finite]
    +Unnamed_thm1 [definition, in hydras.Prelude.LibHyps_Experiments]
    +Unnamed_thm0 [definition, in hydras.Prelude.LibHyps_Experiments]
    +Unnamed_thm [definition, in hydras.Prelude.LibHyps_Experiments]
    +Unnamed_thm1 [definition, in hydras.solutions_exercises.F_3]
    +Unnamed_thm0 [definition, in hydras.solutions_exercises.F_3]
    +Unnamed_thm [definition, in hydras.solutions_exercises.F_3]
    +Unnamed_thm [definition, in additions.Addition_Chains]
    +Unnamed_thm [definition, in hydras.Epsilon0.Hprime]
    +Unnamed_thm [definition, in hydras.MoreAck.FolExamples]
    +Unnamed_thm [definition, in hydras.MoreAck.FolExamples]
    +Unnamed_thm2 [definition, in hydras.MoreAck.PrimRecExamples]
    +Unnamed_thm1 [definition, in hydras.MoreAck.PrimRecExamples]
    +Unnamed_thm0 [definition, in hydras.MoreAck.PrimRecExamples]
    +Unnamed_thm [definition, in hydras.MoreAck.PrimRecExamples]
    +unshift [definition, in hydras.Prelude.MoreLists]
    +unshift_pred [lemma, in hydras.Prelude.MoreLists]
    +unshift_shift [lemma, in hydras.Prelude.MoreLists]
    +unshift_interval_pred [lemma, in hydras.Prelude.MoreLists]
    +unshift_interval [lemma, in hydras.Prelude.MoreLists]
    +unshift_iota_from [lemma, in hydras.Prelude.MoreLists]
    +unshift_not_nil [lemma, in hydras.Prelude.MoreLists]
    +unshift_app [lemma, in hydras.Prelude.MoreLists]
    +unshift_but_last [lemma, in hydras.Prelude.MoreLists]
    +updateValue [definition, in hydras.Ackermann.model]
    +upper_bound [definition, in hydras.Schutte.Lub]
    +Usual [module, in Goedel.PRrepresentable]
    +Usual.beta [definition, in Goedel.PRrepresentable]
    +Usual.β [abbreviation, in Goedel.PRrepresentable]
    +u':693 [binder, in gaia_hydras.nfwfgaia]
    +u1:107 [binder, in hydras.rpo.rpo]
    +u1:114 [binder, in hydras.rpo.rpo]
    +u1:121 [binder, in hydras.rpo.rpo]
    +u1:89 [binder, in hydras.rpo.list_permut]
    +u1:97 [binder, in hydras.rpo.list_permut]
    +u2:109 [binder, in hydras.rpo.rpo]
    +u2:116 [binder, in hydras.rpo.rpo]
    +u2:122 [binder, in hydras.rpo.rpo]
    +u2:90 [binder, in hydras.rpo.list_permut]
    +u2:98 [binder, in hydras.rpo.list_permut]
    +u3:91 [binder, in hydras.rpo.list_permut]
    +u3:99 [binder, in hydras.rpo.list_permut]
    +u4:100 [binder, in hydras.rpo.list_permut]
    +u4:92 [binder, in hydras.rpo.list_permut]
    +u:1202 [binder, in gaia_hydras.nfwfgaia]
    +u:1213 [binder, in gaia_hydras.nfwfgaia]
    +u:123 [binder, in hydras.rpo.rpo]
    +u:1238 [binder, in gaia_hydras.nfwfgaia]
    +u:1242 [binder, in gaia_hydras.nfwfgaia]
    +u:1245 [binder, in gaia_hydras.nfwfgaia]
    +u:1265 [binder, in gaia_hydras.nfwfgaia]
    +u:1281 [binder, in gaia_hydras.nfwfgaia]
    +u:130 [binder, in hydras.Epsilon0.Paths]
    +U:136 [binder, in hydras.Ackermann.LNN2LNT]
    +u:136 [binder, in hydras.Epsilon0.Paths]
    +u:137 [binder, in hydras.Epsilon0.Paths]
    +u:143 [binder, in hydras.Schutte.Schutte_basics]
    +u:143 [binder, in hydras.Epsilon0.Paths]
    +u:147 [binder, in hydras.rpo.term]
    +U:15 [binder, in hydras.Ackermann.LNT]
    +u:150 [binder, in hydras.rpo.term]
    +u:150 [binder, in hydras.Epsilon0.Paths]
    +u:1512 [binder, in gaia_hydras.nfwfgaia]
    +u:1515 [binder, in gaia_hydras.nfwfgaia]
    +u:1518 [binder, in gaia_hydras.nfwfgaia]
    +u:155 [binder, in hydras.Epsilon0.Paths]
    +u:161 [binder, in hydras.Schutte.Ordering_Functions]
    +u:162 [binder, in hydras.rpo.term]
    +u:170 [binder, in hydras.rpo.term]
    +u:175 [binder, in hydras.rpo.term]
    +u:1788 [binder, in gaia_hydras.nfwfgaia]
    +U:18 [binder, in hydras.Ackermann.LNN]
    +u:180 [binder, in hydras.rpo.term]
    +u:183 [binder, in hydras.rpo.rpo]
    +u:189 [binder, in hydras.rpo.term]
    +u:196 [binder, in hydras.rpo.rpo]
    +u:2041 [binder, in gaia_hydras.nfwfgaia]
    +u:2052 [binder, in gaia_hydras.nfwfgaia]
    +u:2080 [binder, in gaia_hydras.nfwfgaia]
    +u:2085 [binder, in gaia_hydras.nfwfgaia]
    +U:24 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +U:25 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +u:273 [binder, in hydras.rpo.term]
    +u:276 [binder, in hydras.rpo.term]
    +u:326 [binder, in hydras.rpo.term]
    +u:328 [binder, in hydras.rpo.term]
    +U:34 [binder, in hydras.Schutte.Countable]
    +u:340 [binder, in hydras.rpo.term]
    +u:348 [binder, in hydras.rpo.term]
    +u:354 [binder, in hydras.rpo.term]
    +u:358 [binder, in hydras.rpo.term]
    +u:371 [binder, in hydras.rpo.term]
    +u:390 [binder, in gaia_hydras.nfwfgaia]
    +u:413 [binder, in gaia_hydras.nfwfgaia]
    +U:48 [binder, in hydras.Schutte.Schutte_basics]
    +U:5 [binder, in hydras.Ackermann.folLogic]
    +U:62 [binder, in hydras.Schutte.AP]
    +U:67 [binder, in hydras.Schutte.PartialFun]
    +u:679 [binder, in gaia_hydras.nfwfgaia]
    +u:686 [binder, in gaia_hydras.nfwfgaia]
    +u:688 [binder, in gaia_hydras.nfwfgaia]
    +U:69 [binder, in hydras.Schutte.PartialFun]
    +u:691 [binder, in gaia_hydras.nfwfgaia]
    +u:701 [binder, in gaia_hydras.nfwfgaia]
    +u:711 [binder, in gaia_hydras.nfwfgaia]
    +u:719 [binder, in gaia_hydras.nfwfgaia]
    +u:745 [binder, in gaia_hydras.nfwfgaia]
    +u:77 [binder, in hydras.rpo.rpo]
    +u:799 [binder, in gaia_hydras.nfwfgaia]
    +U:80 [binder, in hydras.Schutte.PartialFun]
    +u:81 [binder, in hydras.rpo.rpo]
    +u:810 [binder, in gaia_hydras.nfwfgaia]
    +u:814 [binder, in gaia_hydras.nfwfgaia]
    +U:86 [binder, in hydras.Schutte.PartialFun]
    +u:93 [binder, in hydras.rpo.term]
    +u:97 [binder, in hydras.rpo.term]
    +u:996 [binder, in gaia_hydras.nfwfgaia]
    +

    V

    +value:103 [binder, in hydras.Ackermann.model]
    +value:107 [binder, in hydras.Ackermann.model]
    +value:111 [binder, in hydras.Ackermann.model]
    +value:115 [binder, in hydras.Ackermann.model]
    +value:127 [binder, in hydras.Ackermann.model]
    +value:131 [binder, in hydras.Ackermann.model]
    +value:135 [binder, in hydras.Ackermann.model]
    +value:139 [binder, in hydras.Ackermann.model]
    +value:142 [binder, in hydras.Ackermann.model]
    +value:146 [binder, in hydras.Ackermann.model]
    +value:159 [binder, in hydras.Ackermann.model]
    +value:165 [binder, in hydras.Ackermann.model]
    +value:17 [binder, in hydras.Ackermann.model]
    +value:21 [binder, in hydras.Ackermann.model]
    +value:222 [binder, in hydras.Ackermann.model]
    +value:32 [binder, in hydras.Ackermann.model]
    +value:39 [binder, in hydras.Ackermann.model]
    +value:43 [binder, in hydras.Ackermann.model]
    +value:70 [binder, in hydras.Ackermann.model]
    +value:80 [binder, in hydras.Ackermann.model]
    +value:86 [binder, in hydras.Ackermann.model]
    +var [instance, in hydras.Hydra.Hydra_Termination]
    +var [constructor, in hydras.Ackermann.fol]
    +varFormula [definition, in hydras.Ackermann.codeSubFormula]
    +Variables [module, in hydras.rpo.term]
    +Variables.eq_variable_dec [axiom, in hydras.rpo.term]
    +Variables.var [axiom, in hydras.rpo.term]
    +Variants [section, in hydras.Prelude.WfVariant]
    +Variants.E [variable, in hydras.Prelude.WfVariant]
    +Variants.lt [variable, in hydras.Prelude.WfVariant]
    +Variants.m [variable, in hydras.Prelude.WfVariant]
    +Variants.T [variable, in hydras.Prelude.WfVariant]
    +Variants.tr [variable, in hydras.Prelude.WfVariant]
    +_ < _ [notation, in hydras.Prelude.WfVariant]
    +Variant_termination [lemma, in hydras.Prelude.WfVariant]
    +Variant_lt_standard [lemma, in hydras.Hydra.Hydra_Theorems]
    +Variant_LT_standard [lemma, in hydras.Hydra.Hydra_Theorems]
    +Variant_lt_free [lemma, in hydras.Hydra.Hydra_Theorems]
    +Variant_LT_free_0 [lemma, in hydras.Hydra.Hydra_Theorems]
    +variant_mono_free [lemma, in hydras.Hydra.Hydra_Lemmas]
    +variant_decr [projection, in hydras.Hydra.Hydra_Definitions]
    +Vars [module, in hydras.Gamma0.Gamma0]
    +Vars.empty_set [inductive, in hydras.Gamma0.Gamma0]
    +Vars.eq_variable_dec [lemma, in hydras.Gamma0.Gamma0]
    +Vars.var [definition, in hydras.Gamma0.Gamma0]
    +Var:11 [binder, in hydras.Prelude.WfVariant]
    +Var:159 [binder, in hydras.Hydra.Hydra_Definitions]
    +Var:27 [binder, in gaia_hydras.GHydra]
    +Var:3 [binder, in hydras.Hydra.Epsilon0_Needed_Std]
    +Var:31 [binder, in gaia_hydras.GHydra]
    +Var:34 [binder, in gaia_hydras.GHydra]
    +Var:4 [binder, in hydras.Hydra.Epsilon0_Needed_Free]
    +Var:5 [binder, in hydras.Hydra.Epsilon0_Needed_Generic]
    +vector_nth [definition, in hydras.Prelude.MoreVectors]
    +vector_triple_rect [definition, in hydras.Prelude.MoreVectors]
    +vector_double_rect [definition, in hydras.Prelude.MoreVectors]
    +vect_from_fun [definition, in hydras.Prelude.MoreVectors]
    +Vec2_proj [definition, in hydras.Prelude.MoreVectors]
    +vfourth [abbreviation, in hydras.Prelude.MoreVectors]
    +vfst [abbreviation, in hydras.Prelude.MoreVectors]
    +Vid [definition, in hydras.Prelude.MoreVectors]
    +Vid_eq [lemma, in hydras.Prelude.MoreVectors]
    +vsnd [abbreviation, in hydras.Prelude.MoreVectors]
    +vs:103 [binder, in Goedel.PRrepresentable]
    +vs:108 [binder, in Goedel.PRrepresentable]
    +vs:114 [binder, in Goedel.PRrepresentable]
    +vthird [abbreviation, in hydras.Prelude.MoreVectors]
    +v':694 [binder, in gaia_hydras.nfwfgaia]
    +v0:107 [binder, in hydras.Ackermann.codeSubFormula]
    +v0:1286 [binder, in hydras.Ackermann.codeSubFormula]
    +v0:1290 [binder, in hydras.Ackermann.codeSubFormula]
    +v0:20 [binder, in hydras.Ackermann.codeSubTerm]
    +v0:24 [binder, in hydras.Ackermann.codeSubTerm]
    +v0:42 [binder, in hydras.Ackermann.codeSubTerm]
    +v0:46 [binder, in hydras.Ackermann.codeSubTerm]
    +v1:102 [binder, in hydras.Ackermann.subProp]
    +v1:11 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +v1:11 [binder, in hydras.Ackermann.folLogic2]
    +v1:110 [binder, in hydras.Ackermann.subProp]
    +v1:121 [binder, in hydras.Ackermann.subAll]
    +v1:122 [binder, in hydras.Ackermann.subAll]
    +v1:124 [binder, in hydras.Ackermann.subProp]
    +v1:129 [binder, in hydras.Ackermann.subAll]
    +v1:129 [binder, in hydras.Ackermann.subProp]
    +v1:130 [binder, in hydras.Ackermann.subAll]
    +v1:131 [binder, in hydras.Ackermann.subAll]
    +v1:132 [binder, in hydras.Ackermann.subAll]
    +v1:133 [binder, in hydras.Ackermann.subAll]
    +v1:134 [binder, in hydras.Ackermann.subAll]
    +v1:135 [binder, in hydras.Ackermann.subAll]
    +v1:136 [binder, in hydras.Ackermann.subAll]
    +v1:137 [binder, in hydras.Ackermann.subAll]
    +v1:138 [binder, in hydras.Ackermann.subAll]
    +v1:139 [binder, in hydras.Ackermann.subAll]
    +v1:140 [binder, in hydras.Ackermann.subAll]
    +v1:141 [binder, in hydras.Ackermann.subAll]
    +v1:141 [binder, in hydras.Ackermann.subProp]
    +v1:142 [binder, in hydras.Ackermann.subAll]
    +v1:143 [binder, in hydras.Ackermann.subAll]
    +v1:144 [binder, in hydras.Ackermann.subAll]
    +v1:144 [binder, in hydras.Ackermann.subProp]
    +v1:145 [binder, in hydras.Ackermann.subAll]
    +v1:146 [binder, in hydras.Ackermann.subAll]
    +v1:147 [binder, in hydras.Ackermann.subAll]
    +v1:148 [binder, in hydras.Ackermann.subAll]
    +v1:148 [binder, in hydras.Ackermann.subProp]
    +v1:149 [binder, in hydras.Ackermann.subAll]
    +v1:150 [binder, in hydras.Ackermann.subAll]
    +v1:151 [binder, in hydras.Ackermann.subAll]
    +v1:152 [binder, in hydras.Ackermann.subAll]
    +v1:152 [binder, in hydras.Ackermann.subProp]
    +v1:153 [binder, in hydras.Ackermann.subAll]
    +v1:154 [binder, in hydras.Ackermann.subAll]
    +v1:155 [binder, in hydras.Ackermann.subAll]
    +v1:157 [binder, in hydras.Ackermann.subAll]
    +v1:159 [binder, in hydras.Ackermann.subAll]
    +v1:161 [binder, in hydras.Ackermann.subAll]
    +v1:162 [binder, in hydras.Ackermann.subProp]
    +v1:163 [binder, in hydras.Ackermann.subAll]
    +v1:164 [binder, in hydras.Ackermann.subAll]
    +v1:165 [binder, in hydras.Ackermann.subAll]
    +v1:166 [binder, in hydras.Ackermann.subAll]
    +v1:167 [binder, in hydras.Ackermann.subProp]
    +v1:169 [binder, in hydras.Ackermann.subAll]
    +v1:171 [binder, in hydras.Ackermann.subAll]
    +v1:173 [binder, in hydras.Ackermann.subAll]
    +v1:175 [binder, in hydras.Ackermann.subAll]
    +v1:20 [binder, in hydras.Prelude.MoreVectors]
    +v1:21 [binder, in hydras.Ackermann.folLogic2]
    +v1:228 [binder, in hydras.rpo.term]
    +v1:242 [binder, in hydras.rpo.term]
    +v1:25 [binder, in hydras.Prelude.MoreVectors]
    +v1:252 [binder, in hydras.Gamma0.Gamma0]
    +v1:26 [binder, in hydras.Ackermann.folLogic2]
    +v1:31 [binder, in hydras.Prelude.MoreVectors]
    +v1:38 [binder, in hydras.Prelude.MoreVectors]
    +v1:48 [binder, in hydras.Ackermann.model]
    +v1:51 [binder, in hydras.rpo.term]
    +v1:60 [binder, in hydras.Ackermann.model]
    +v1:66 [binder, in hydras.rpo.term]
    +v1:66 [binder, in hydras.Ackermann.model]
    +v1:9 [binder, in hydras.rpo.term]
    +v2:10 [binder, in hydras.rpo.term]
    +v2:103 [binder, in hydras.Ackermann.subProp]
    +v2:111 [binder, in hydras.Ackermann.subProp]
    +v2:12 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +v2:12 [binder, in hydras.Ackermann.folLogic2]
    +v2:125 [binder, in hydras.Ackermann.subProp]
    +v2:130 [binder, in hydras.Ackermann.subProp]
    +v2:142 [binder, in hydras.Ackermann.subProp]
    +v2:145 [binder, in hydras.Ackermann.subProp]
    +v2:149 [binder, in hydras.Ackermann.subProp]
    +v2:153 [binder, in hydras.Ackermann.subProp]
    +v2:163 [binder, in hydras.Ackermann.subProp]
    +v2:168 [binder, in hydras.Ackermann.subProp]
    +v2:21 [binder, in hydras.Prelude.MoreVectors]
    +v2:22 [binder, in hydras.Ackermann.folLogic2]
    +v2:231 [binder, in hydras.rpo.term]
    +v2:245 [binder, in hydras.rpo.term]
    +v2:253 [binder, in hydras.Gamma0.Gamma0]
    +v2:26 [binder, in hydras.Prelude.MoreVectors]
    +v2:27 [binder, in hydras.Ackermann.folLogic2]
    +v2:32 [binder, in hydras.Prelude.MoreVectors]
    +v2:39 [binder, in hydras.Prelude.MoreVectors]
    +v2:49 [binder, in hydras.Ackermann.model]
    +v2:54 [binder, in hydras.rpo.term]
    +v2:61 [binder, in hydras.Ackermann.model]
    +v2:67 [binder, in hydras.Ackermann.model]
    +v2:69 [binder, in hydras.rpo.term]
    +v3:33 [binder, in hydras.Prelude.MoreVectors]
    +v3:40 [binder, in hydras.Prelude.MoreVectors]
    +v:1 [binder, in hydras.Ackermann.NN]
    +v:10 [binder, in hydras.Prelude.MoreVectors]
    +v:100 [binder, in hydras.Ackermann.LNN]
    +v:100 [binder, in hydras.Ackermann.folReplace]
    +v:100 [binder, in hydras.Prelude.MoreVectors]
    +v:101 [binder, in hydras.Ackermann.folLogic]
    +v:101 [binder, in hydras.Ackermann.folLogic3]
    +v:102 [binder, in hydras.Ackermann.LNN2LNT]
    +V:103 [binder, in hydras.Hydra.Hydra_Lemmas]
    +v:104 [binder, in hydras.Ackermann.model]
    +v:104 [binder, in hydras.Ackermann.folLogic]
    +v:104 [binder, in hydras.Prelude.MoreVectors]
    +v:105 [binder, in hydras.Ackermann.folReplace]
    +v:107 [binder, in hydras.Prelude.MoreVectors]
    +v:108 [binder, in hydras.Ackermann.model]
    +v:11 [binder, in hydras.Ackermann.codeSubTerm]
    +v:11 [binder, in Goedel.fixPoint]
    +v:11 [binder, in hydras.Ackermann.wConsistent]
    +v:110 [binder, in hydras.Ackermann.subAll]
    +v:111 [binder, in hydras.Ackermann.LNT]
    +v:111 [binder, in Goedel.rosserPA]
    +v:112 [binder, in hydras.Ackermann.model]
    +v:113 [binder, in Goedel.rosserPA]
    +V:113 [binder, in hydras.Hydra.Hydra_Lemmas]
    +v:113 [binder, in hydras.Ackermann.folReplace]
    +v:114 [binder, in hydras.Ackermann.LNN]
    +v:114 [binder, in hydras.Ackermann.LNT]
    +v:115 [binder, in hydras.Ackermann.LNN2LNT]
    +v:116 [binder, in hydras.rpo.term]
    +v:116 [binder, in hydras.Ackermann.subAll]
    +v:116 [binder, in hydras.Ackermann.model]
    +v:117 [binder, in hydras.Ackermann.LNN]
    +v:117 [binder, in hydras.Ackermann.codeSubFormula]
    +v:118 [binder, in hydras.rpo.term]
    +v:12 [binder, in Goedel.rosserPA]
    +v:120 [binder, in hydras.Ackermann.subProp]
    +v:120 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1203 [binder, in gaia_hydras.nfwfgaia]
    +v:122 [binder, in additions.fib]
    +v:123 [binder, in hydras.Ackermann.codeSubTerm]
    +v:123 [binder, in hydras.Ackermann.LNN2LNT]
    +v:123 [binder, in hydras.Ackermann.folProp]
    +v:123 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1236 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1239 [binder, in gaia_hydras.nfwfgaia]
    +v:1243 [binder, in gaia_hydras.nfwfgaia]
    +v:1246 [binder, in gaia_hydras.nfwfgaia]
    +v:1258 [binder, in hydras.Ackermann.codeSubFormula]
    +v:126 [binder, in hydras.Gamma0.T2]
    +v:126 [binder, in hydras.Ackermann.codeSubTerm]
    +v:1266 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1266 [binder, in gaia_hydras.nfwfgaia]
    +v:127 [binder, in hydras.rpo.term]
    +v:128 [binder, in hydras.Ackermann.model]
    +v:1282 [binder, in gaia_hydras.nfwfgaia]
    +v:129 [binder, in hydras.Ackermann.codeSubTerm]
    +v:1291 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1294 [binder, in hydras.Ackermann.codeSubFormula]
    +v:13 [binder, in hydras.MoreAck.AckNotPR]
    +v:13 [binder, in hydras.Ackermann.subProp]
    +v:13 [binder, in hydras.Prelude.MoreVectors]
    +v:130 [binder, in hydras.Gamma0.T2]
    +v:131 [binder, in hydras.Ackermann.LNN2LNT]
    +v:132 [binder, in hydras.Ackermann.codeSubTerm]
    +v:132 [binder, in hydras.Ackermann.model]
    +v:132 [binder, in hydras.Ackermann.codeSubFormula]
    +v:134 [binder, in hydras.Gamma0.T2]
    +v:134 [binder, in hydras.Ackermann.folProp]
    +v:135 [binder, in hydras.Ackermann.codeSubTerm]
    +v:135 [binder, in hydras.Ackermann.subProp]
    +v:136 [binder, in Goedel.PRrepresentable]
    +v:136 [binder, in hydras.Ackermann.model]
    +v:1367 [binder, in hydras.Ackermann.codeSubFormula]
    +V:137 [binder, in hydras.Ackermann.LNN2LNT]
    +v:1377 [binder, in hydras.Ackermann.codeSubFormula]
    +v:138 [binder, in Goedel.PRrepresentable]
    +v:138 [binder, in hydras.Ackermann.codeSubTerm]
    +v:1380 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1389 [binder, in hydras.Ackermann.codeSubFormula]
    +v:139 [binder, in hydras.Ackermann.subProp]
    +v:1393 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1397 [binder, in hydras.Ackermann.codeSubFormula]
    +v:14 [binder, in hydras.Ackermann.codeSubTerm]
    +v:14 [binder, in Goedel.fixPoint]
    +v:140 [binder, in hydras.Ackermann.model]
    +v:1400 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1405 [binder, in hydras.Ackermann.codeSubFormula]
    +v:141 [binder, in hydras.Ackermann.codeSubTerm]
    +v:1411 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1418 [binder, in hydras.Ackermann.codeSubFormula]
    +v:142 [binder, in hydras.Ackermann.folProp]
    +v:1423 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1428 [binder, in hydras.Ackermann.codeSubFormula]
    +v:143 [binder, in hydras.Ackermann.LNN2LNT]
    +v:1431 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1434 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1437 [binder, in hydras.Ackermann.codeSubFormula]
    +v:144 [binder, in hydras.Ackermann.codeSubTerm]
    +v:144 [binder, in hydras.Ackermann.model]
    +v:1440 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1443 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1446 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1449 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1452 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1455 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1458 [binder, in hydras.Ackermann.codeSubFormula]
    +v:146 [binder, in hydras.Ackermann.folProp]
    +v:1461 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1464 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1467 [binder, in hydras.Ackermann.codeSubFormula]
    +v:147 [binder, in Goedel.PRrepresentable]
    +v:147 [binder, in hydras.Ackermann.codeSubTerm]
    +v:147 [binder, in hydras.Ackermann.LNN2LNT]
    +v:1470 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1473 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1476 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1479 [binder, in hydras.Ackermann.codeSubFormula]
    +v:148 [binder, in hydras.Ackermann.model]
    +v:148 [binder, in hydras.Ackermann.fol]
    +v:1482 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1485 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1488 [binder, in hydras.Ackermann.codeSubFormula]
    +v:149 [binder, in Goedel.PRrepresentable]
    +v:149 [binder, in hydras.Ackermann.codeSubTerm]
    +v:1491 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1494 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1497 [binder, in hydras.Ackermann.codeSubFormula]
    +v:15 [binder, in hydras.Ackermann.folProp]
    +v:15 [binder, in hydras.Prelude.MoreVectors]
    +v:150 [binder, in hydras.Ackermann.folProp]
    +v:1500 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1503 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1506 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1509 [binder, in hydras.Ackermann.codeSubFormula]
    +v:151 [binder, in hydras.Ackermann.codeSubTerm]
    +v:1511 [binder, in gaia_hydras.nfwfgaia]
    +v:1514 [binder, in gaia_hydras.nfwfgaia]
    +v:1516 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1517 [binder, in gaia_hydras.nfwfgaia]
    +v:1519 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1522 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1525 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1528 [binder, in hydras.Ackermann.codeSubFormula]
    +v:153 [binder, in hydras.Ackermann.codeSubTerm]
    +v:1531 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1534 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1537 [binder, in hydras.Ackermann.codeSubFormula]
    +v:154 [binder, in hydras.Ackermann.folProp]
    +v:1540 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1543 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1546 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1549 [binder, in hydras.Ackermann.codeSubFormula]
    +v:155 [binder, in hydras.Ackermann.codeSubTerm]
    +v:1552 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1555 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1558 [binder, in hydras.Ackermann.codeSubFormula]
    +v:156 [binder, in hydras.Ackermann.model]
    +v:1561 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1564 [binder, in hydras.Ackermann.codeSubFormula]
    +v:1567 [binder, in hydras.Ackermann.codeSubFormula]
    +v:157 [binder, in hydras.Ackermann.codeSubTerm]
    +v:158 [binder, in Goedel.PRrepresentable]
    +v:158 [binder, in hydras.Ackermann.subProp]
    +v:16 [binder, in hydras.Ackermann.codeSubTerm]
    +v:160 [binder, in Goedel.PRrepresentable]
    +v:162 [binder, in hydras.Ackermann.LNT]
    +v:17 [binder, in Goedel.fixPoint]
    +v:17 [binder, in Goedel.goedel2]
    +v:170 [binder, in hydras.Ackermann.LNN]
    +v:1789 [binder, in gaia_hydras.nfwfgaia]
    +v:18 [binder, in hydras.Ackermann.LNN2LNT]
    +v:18 [binder, in hydras.Ackermann.folProp]
    +v:18 [binder, in hydras.Ackermann.subProp]
    +v:192 [binder, in hydras.rpo.rpo]
    +v:193 [binder, in hydras.rpo.rpo]
    +v:197 [binder, in hydras.Ackermann.subAll]
    +v:199 [binder, in hydras.Ackermann.subAll]
    +v:2 [binder, in Goedel.fixPoint]
    +v:2 [binder, in hydras.Ackermann.PA]
    +v:20 [binder, in Goedel.fixPoint]
    +v:20 [binder, in hydras.Ackermann.PA]
    +v:2042 [binder, in gaia_hydras.nfwfgaia]
    +v:2086 [binder, in gaia_hydras.nfwfgaia]
    +v:21 [binder, in Goedel.goedel2]
    +v:212 [binder, in hydras.Ackermann.fol]
    +v:215 [binder, in hydras.rpo.term]
    +v:22 [binder, in hydras.MoreAck.AckNotPR]
    +v:22 [binder, in hydras.Ackermann.subProp]
    +v:220 [binder, in hydras.rpo.term]
    +v:23 [binder, in Goedel.fixPoint]
    +v:23 [binder, in hydras.Ackermann.PA]
    +v:233 [binder, in hydras.Ackermann.subAll]
    +v:233 [binder, in hydras.Ackermann.folProp]
    +v:234 [binder, in hydras.Ackermann.subAll]
    +v:235 [binder, in hydras.Ackermann.subAll]
    +v:235 [binder, in hydras.Ackermann.fol]
    +v:236 [binder, in hydras.Ackermann.subAll]
    +v:237 [binder, in hydras.Ackermann.subAll]
    +v:238 [binder, in Goedel.PRrepresentable]
    +v:238 [binder, in hydras.Ackermann.subAll]
    +v:239 [binder, in hydras.Ackermann.subAll]
    +v:24 [binder, in hydras.Ackermann.PA]
    +v:24 [binder, in Goedel.codeSysPrf]
    +v:240 [binder, in hydras.Ackermann.subAll]
    +v:241 [binder, in Goedel.PRrepresentable]
    +v:242 [binder, in hydras.Ackermann.subAll]
    +v:244 [binder, in Goedel.PRrepresentable]
    +v:244 [binder, in hydras.Ackermann.subAll]
    +v:247 [binder, in Goedel.PRrepresentable]
    +v:247 [binder, in hydras.Ackermann.subAll]
    +v:248 [binder, in hydras.Ackermann.subAll]
    +v:25 [binder, in hydras.Ackermann.folProp]
    +v:258 [binder, in hydras.Ackermann.subAll]
    +v:26 [binder, in hydras.Ackermann.folProof]
    +v:26 [binder, in hydras.Ackermann.LNN2LNT]
    +v:26 [binder, in hydras.Ackermann.subProp]
    +v:263 [binder, in Goedel.PRrepresentable]
    +v:267 [binder, in Goedel.PRrepresentable]
    +v:267 [binder, in hydras.Ackermann.fol]
    +v:27 [binder, in Goedel.fixPoint]
    +v:271 [binder, in hydras.Ackermann.fol]
    +v:274 [binder, in Goedel.PRrepresentable]
    +v:28 [binder, in hydras.Ackermann.folProp]
    +v:28 [binder, in hydras.MoreAck.AckNotPR]
    +v:28 [binder, in hydras.Ackermann.folReplace]
    +v:28 [binder, in Goedel.rosser]
    +v:281 [binder, in hydras.Ackermann.folProp]
    +v:287 [binder, in Goedel.PRrepresentable]
    +v:288 [binder, in Goedel.PRrepresentable]
    +v:289 [binder, in Goedel.PRrepresentable]
    +v:29 [binder, in Goedel.PRrepresentable]
    +v:293 [binder, in Goedel.PRrepresentable]
    +v:294 [binder, in hydras.rpo.term]
    +v:294 [binder, in Goedel.PRrepresentable]
    +v:295 [binder, in Goedel.PRrepresentable]
    +v:296 [binder, in hydras.rpo.term]
    +v:299 [binder, in hydras.rpo.term]
    +v:299 [binder, in hydras.Ackermann.subAll]
    +v:3 [binder, in hydras.MoreAck.BadSubst]
    +v:3 [binder, in hydras.Ackermann.subProp]
    +v:3 [binder, in hydras.Ackermann.wConsistent]
    +v:3 [binder, in hydras.Ackermann.expressible]
    +v:308 [binder, in hydras.rpo.term]
    +v:309 [binder, in Goedel.PRrepresentable]
    +v:31 [binder, in hydras.Ackermann.folProp]
    +v:31 [binder, in hydras.MoreAck.AckNotPR]
    +v:31 [binder, in hydras.Ackermann.subProp]
    +v:312 [binder, in Goedel.PRrepresentable]
    +v:314 [binder, in Goedel.PRrepresentable]
    +v:315 [binder, in Goedel.PRrepresentable]
    +v:317 [binder, in Goedel.PRrepresentable]
    +v:317 [binder, in hydras.Ackermann.fol]
    +v:32 [binder, in hydras.Ackermann.folReplace]
    +v:320 [binder, in Goedel.PRrepresentable]
    +v:320 [binder, in hydras.Ackermann.subAll]
    +v:321 [binder, in Goedel.PRrepresentable]
    +v:321 [binder, in hydras.Ackermann.fol]
    +v:322 [binder, in Goedel.PRrepresentable]
    +v:322 [binder, in hydras.Ackermann.subAll]
    +v:323 [binder, in Goedel.PRrepresentable]
    +v:324 [binder, in Goedel.PRrepresentable]
    +v:33 [binder, in Goedel.PRrepresentable]
    +v:33 [binder, in hydras.Ackermann.folLogic2]
    +v:343 [binder, in hydras.Ackermann.subAll]
    +v:348 [binder, in hydras.Ackermann.subAll]
    +v:35 [binder, in hydras.Ackermann.folProof]
    +v:35 [binder, in hydras.MoreAck.AckNotPR]
    +V:35 [binder, in hydras.Schutte.Countable]
    +v:353 [binder, in hydras.Ackermann.subAll]
    +v:355 [binder, in hydras.Ackermann.checkPrf]
    +v:358 [binder, in hydras.Ackermann.subAll]
    +v:36 [binder, in hydras.rpo.term]
    +v:36 [binder, in hydras.Ackermann.subProp]
    +v:363 [binder, in hydras.Ackermann.fol]
    +v:367 [binder, in hydras.Ackermann.fol]
    +v:37 [binder, in hydras.Ackermann.folLogic2]
    +v:37 [binder, in hydras.Ackermann.folProp]
    +v:371 [binder, in hydras.Ackermann.subAll]
    +v:38 [binder, in hydras.Ackermann.folProof]
    +v:38 [binder, in Goedel.PRrepresentable]
    +v:38 [binder, in hydras.Ackermann.codeSubTerm]
    +v:39 [binder, in Goedel.codeSysPrf]
    +v:391 [binder, in gaia_hydras.nfwfgaia]
    +v:394 [binder, in hydras.Ackermann.folProp]
    +v:398 [binder, in hydras.Ackermann.folProp]
    +v:4 [binder, in hydras.Prelude.MoreVectors]
    +v:40 [binder, in hydras.Ackermann.folProp]
    +v:40 [binder, in Goedel.rosserPA]
    +v:40 [binder, in Goedel.codeSysPrf]
    +v:402 [binder, in hydras.Ackermann.folProp]
    +v:407 [binder, in hydras.Ackermann.folProp]
    +v:407 [binder, in hydras.Ackermann.fol]
    +v:408 [binder, in hydras.Ackermann.checkPrf]
    +v:41 [binder, in hydras.Ackermann.folProof]
    +v:41 [binder, in hydras.Ackermann.model]
    +v:41 [binder, in hydras.MoreAck.AckNotPR]
    +v:41 [binder, in hydras.Ackermann.subProp]
    +v:41 [binder, in additions.fib]
    +v:41 [binder, in Goedel.codeSysPrf]
    +v:411 [binder, in hydras.Ackermann.fol]
    +v:412 [binder, in hydras.Ackermann.folProp]
    +v:415 [binder, in hydras.Ackermann.folProp]
    +v:418 [binder, in hydras.Ackermann.folProp]
    +v:42 [binder, in hydras.rpo.term]
    +v:42 [binder, in Goedel.PRrepresentable]
    +v:42 [binder, in hydras.Ackermann.subAll]
    +v:42 [binder, in Goedel.codeSysPrf]
    +v:42 [binder, in hydras.Ackermann.expressible]
    +v:420 [binder, in hydras.Ackermann.fol]
    +v:422 [binder, in Goedel.PRrepresentable]
    +v:425 [binder, in hydras.Ackermann.folProp]
    +v:426 [binder, in Goedel.PRrepresentable]
    +v:427 [binder, in hydras.Ackermann.folProp]
    +v:43 [binder, in hydras.Ackermann.folProp]
    +v:43 [binder, in Goedel.rosserPA]
    +v:43 [binder, in Goedel.codeSysPrf]
    +v:430 [binder, in hydras.Ackermann.folProp]
    +v:435 [binder, in hydras.Ackermann.folProp]
    +v:439 [binder, in hydras.Ackermann.folProp]
    +v:44 [binder, in Goedel.codeSysPrf]
    +v:44 [binder, in hydras.Prelude.MoreVectors]
    +v:440 [binder, in Goedel.PRrepresentable]
    +v:441 [binder, in Goedel.PRrepresentable]
    +v:442 [binder, in Goedel.PRrepresentable]
    +v:443 [binder, in Goedel.PRrepresentable]
    +v:443 [binder, in hydras.Ackermann.folProp]
    +v:443 [binder, in hydras.Ackermann.fol]
    +v:45 [binder, in hydras.MoreAck.AckNotPR]
    +v:45 [binder, in hydras.Ackermann.subProp]
    +v:45 [binder, in Goedel.rosserPA]
    +v:45 [binder, in hydras.Ackermann.folLogic3]
    +v:455 [binder, in hydras.Ackermann.checkPrf]
    +v:46 [binder, in hydras.Ackermann.folLogic3]
    +v:462 [binder, in Goedel.PRrepresentable]
    +v:464 [binder, in Goedel.PRrepresentable]
    +v:470 [binder, in Goedel.PRrepresentable]
    +v:472 [binder, in Goedel.PRrepresentable]
    +v:48 [binder, in Goedel.rosserPA]
    +v:49 [binder, in hydras.Ackermann.subAll]
    +v:49 [binder, in hydras.MoreAck.AckNotPR]
    +v:49 [binder, in hydras.Ackermann.subProp]
    +v:5 [binder, in Goedel.fixPoint]
    +v:5 [binder, in Goedel.goedel1]
    +v:5 [binder, in Goedel.rosser]
    +v:5 [binder, in Goedel.goedel2]
    +v:5 [binder, in hydras.Prelude.MoreVectors]
    +v:52 [binder, in hydras.Ackermann.folLogic3]
    +v:52 [binder, in Goedel.codeSysPrf]
    +v:52 [binder, in hydras.Prelude.MoreVectors]
    +v:53 [binder, in hydras.Ackermann.PA]
    +v:53 [binder, in hydras.Ackermann.folLogic3]
    +v:54 [binder, in hydras.Ackermann.subAll]
    +v:54 [binder, in hydras.Ackermann.codeSubTerm]
    +v:54 [binder, in hydras.Ackermann.subProp]
    +v:55 [binder, in hydras.Ackermann.subAll]
    +v:56 [binder, in hydras.Ackermann.subAll]
    +v:56 [binder, in Goedel.codeSysPrf]
    +v:57 [binder, in Goedel.PRrepresentable]
    +v:57 [binder, in hydras.Ackermann.subAll]
    +v:58 [binder, in hydras.Ackermann.codeSubTerm]
    +v:58 [binder, in Goedel.rosserPA]
    +v:59 [binder, in hydras.Ackermann.folProp]
    +v:59 [binder, in hydras.Ackermann.subProp]
    +v:59 [binder, in hydras.Ackermann.codeSubFormula]
    +v:59 [binder, in hydras.Prelude.MoreVectors]
    +v:6 [binder, in Goedel.rosserPA]
    +v:60 [binder, in hydras.Ackermann.subAll]
    +v:60 [binder, in hydras.Ackermann.LNN2LNT]
    +v:61 [binder, in Goedel.PRrepresentable]
    +v:61 [binder, in hydras.Ackermann.folProp]
    +v:61 [binder, in Goedel.codeSysPrf]
    +v:62 [binder, in hydras.Ackermann.codeSubTerm]
    +v:62 [binder, in Goedel.codeSysPrf]
    +v:623 [binder, in hydras.Ackermann.primRec]
    +v:627 [binder, in hydras.Ackermann.primRec]
    +v:63 [binder, in hydras.Ackermann.LNN2LNT]
    +v:63 [binder, in Goedel.codeSysPrf]
    +v:63 [binder, in hydras.Ackermann.expressible]
    +v:64 [binder, in hydras.Ackermann.subProp]
    +v:64 [binder, in Goedel.codeSysPrf]
    +v:644 [binder, in hydras.Ackermann.primRec]
    +v:649 [binder, in hydras.Ackermann.primRec]
    +v:65 [binder, in hydras.Ackermann.LNN2LNT]
    +v:65 [binder, in hydras.Ackermann.folLogic]
    +v:66 [binder, in hydras.Ackermann.codeSubTerm]
    +v:66 [binder, in hydras.Ackermann.folProp]
    +v:66 [binder, in hydras.Ackermann.folReplace]
    +v:67 [binder, in hydras.Ackermann.LNN2LNT]
    +v:67 [binder, in Goedel.rosser]
    +v:68 [binder, in hydras.Ackermann.subProp]
    +v:68 [binder, in hydras.Ackermann.folLogic]
    +v:68 [binder, in Goedel.codeSysPrf]
    +v:68 [binder, in hydras.Prelude.MoreVectors]
    +v:680 [binder, in gaia_hydras.nfwfgaia]
    +v:687 [binder, in gaia_hydras.nfwfgaia]
    +v:689 [binder, in gaia_hydras.nfwfgaia]
    +v:69 [binder, in hydras.MoreAck.AckNotPR]
    +v:692 [binder, in gaia_hydras.nfwfgaia]
    +v:7 [binder, in hydras.Ackermann.codeSubTerm]
    +v:7 [binder, in hydras.Ackermann.PA]
    +v:70 [binder, in hydras.Ackermann.codeSubTerm]
    +v:70 [binder, in hydras.Ackermann.LNN2LNT]
    +V:70 [binder, in hydras.Schutte.PartialFun]
    +v:70 [binder, in hydras.Ackermann.folReplace]
    +v:70 [binder, in hydras.Prelude.MoreVectors]
    +v:703 [binder, in gaia_hydras.nfwfgaia]
    +v:71 [binder, in hydras.Ackermann.subAll]
    +v:71 [binder, in hydras.MoreAck.AckNotPR]
    +v:71 [binder, in hydras.Ackermann.codeSubFormula]
    +v:713 [binder, in gaia_hydras.nfwfgaia]
    +v:72 [binder, in hydras.Ackermann.model]
    +v:72 [binder, in hydras.Ackermann.subProp]
    +v:72 [binder, in hydras.Ackermann.folLogic]
    +v:72 [binder, in Goedel.codeSysPrf]
    +v:73 [binder, in Goedel.codeSysPrf]
    +v:74 [binder, in Goedel.PRrepresentable]
    +v:74 [binder, in hydras.Ackermann.codeSubTerm]
    +v:74 [binder, in Goedel.codeSysPrf]
    +v:746 [binder, in gaia_hydras.nfwfgaia]
    +v:75 [binder, in hydras.Ackermann.subAll]
    +v:75 [binder, in hydras.Ackermann.LNT]
    +v:75 [binder, in hydras.Ackermann.folLogic]
    +v:76 [binder, in Goedel.PRrepresentable]
    +v:76 [binder, in hydras.Ackermann.codeSubFormula]
    +v:76 [binder, in hydras.Prelude.MoreVectors]
    +v:77 [binder, in hydras.Ackermann.subProp]
    +v:78 [binder, in hydras.Ackermann.codeSubTerm]
    +v:78 [binder, in hydras.Ackermann.LNN]
    +v:78 [binder, in hydras.Ackermann.LNT]
    +v:79 [binder, in Goedel.codeSysPrf]
    +v:8 [binder, in Goedel.fixPoint]
    +v:8 [binder, in hydras.Ackermann.subProp]
    +v:8 [binder, in hydras.Prelude.MoreVectors]
    +v:80 [binder, in hydras.Ackermann.folLogic]
    +v:80 [binder, in Goedel.codeSysPrf]
    +v:800 [binder, in gaia_hydras.nfwfgaia]
    +v:803 [binder, in gaia_hydras.nfwfgaia]
    +v:805 [binder, in gaia_hydras.nfwfgaia]
    +v:81 [binder, in hydras.Ackermann.LNN]
    +V:81 [binder, in hydras.Schutte.PartialFun]
    +v:82 [binder, in hydras.Ackermann.codeSubTerm]
    +v:82 [binder, in hydras.Ackermann.LNT]
    +v:82 [binder, in hydras.Ackermann.subProp]
    +v:82 [binder, in Goedel.codeSysPrf]
    +v:82 [binder, in hydras.Prelude.MoreVectors]
    +v:83 [binder, in hydras.Ackermann.model]
    +v:83 [binder, in hydras.Ackermann.folLogic]
    +v:84 [binder, in Goedel.PRrepresentable]
    +v:84 [binder, in hydras.Ackermann.subAll]
    +v:85 [binder, in hydras.Ackermann.LNN]
    +v:85 [binder, in hydras.Ackermann.LNT]
    +v:859 [binder, in hydras.Ackermann.codeSubFormula]
    +v:86 [binder, in hydras.Ackermann.codeSubTerm]
    +v:86 [binder, in hydras.Ackermann.codeSubFormula]
    +v:87 [binder, in hydras.Ackermann.subProp]
    +V:87 [binder, in hydras.Schutte.PartialFun]
    +v:87 [binder, in hydras.Ackermann.folLogic]
    +v:87 [binder, in hydras.Prelude.MoreVectors]
    +v:875 [binder, in hydras.Ackermann.codeSubFormula]
    +v:879 [binder, in hydras.Ackermann.codeSubFormula]
    +v:88 [binder, in Goedel.PRrepresentable]
    +v:88 [binder, in hydras.Ackermann.subAll]
    +v:88 [binder, in hydras.Ackermann.LNN]
    +v:88 [binder, in hydras.Ackermann.model]
    +v:88 [binder, in hydras.Ackermann.folLogic3]
    +v:883 [binder, in hydras.Ackermann.codeSubFormula]
    +v:898 [binder, in hydras.Ackermann.codeSubFormula]
    +v:9 [binder, in hydras.MoreAck.BadSubst]
    +v:90 [binder, in hydras.Ackermann.subAll]
    +v:90 [binder, in hydras.Ackermann.codeSubTerm]
    +v:90 [binder, in hydras.Ackermann.LNT]
    +v:91 [binder, in hydras.Ackermann.subAll]
    +v:91 [binder, in hydras.Ackermann.subProp]
    +v:91 [binder, in hydras.Ackermann.codeSubFormula]
    +v:91 [binder, in hydras.Prelude.MoreVectors]
    +v:915 [binder, in hydras.Ackermann.codeSubFormula]
    +v:920 [binder, in hydras.Ackermann.codeSubFormula]
    +v:925 [binder, in hydras.Ackermann.codeSubFormula]
    +v:93 [binder, in hydras.Ackermann.LNN]
    +v:93 [binder, in hydras.Ackermann.LNT]
    +v:94 [binder, in hydras.Ackermann.subAll]
    +v:94 [binder, in hydras.Prelude.MoreVectors]
    +v:95 [binder, in hydras.Ackermann.subProp]
    +v:95 [binder, in hydras.Ackermann.folReplace]
    +v:96 [binder, in hydras.Ackermann.LNN]
    +v:97 [binder, in Goedel.PRrepresentable]
    +v:97 [binder, in hydras.Ackermann.LNT]
    +v:98 [binder, in hydras.Ackermann.subAll]
    +v:98 [binder, in hydras.Ackermann.folLogic3]
    +v:99 [binder, in Goedel.PRrepresentable]
    +v:997 [binder, in gaia_hydras.nfwfgaia]
    +

    W

    +wConsistent [definition, in hydras.Ackermann.wConsistent]
    +wConsistent [library]
    +wCon2Con [lemma, in hydras.Ackermann.wConsistent]
    +wellFormed [library]
    +wellFormedFormula [definition, in hydras.Ackermann.wellFormed]
    +wellFormedFormulaCorrect1 [lemma, in hydras.Ackermann.wellFormed]
    +wellFormedFormulaCorrect2 [lemma, in hydras.Ackermann.wellFormed]
    +wellFormedFormulaIsPR [instance, in hydras.Ackermann.wellFormed]
    +wellFormedTerm [definition, in hydras.Ackermann.wellFormed]
    +wellFormedTermCorrect1 [lemma, in hydras.Ackermann.wellFormed]
    +wellFormedTermCorrect2 [lemma, in hydras.Ackermann.wellFormed]
    +wellFormedTermIsPR [instance, in hydras.Ackermann.wellFormed]
    +wellFormedTerms [definition, in hydras.Ackermann.wellFormed]
    +wellFormedTermsCorrect1 [lemma, in hydras.Ackermann.wellFormed]
    +wellFormedTermsCorrect2 [lemma, in hydras.Ackermann.wellFormed]
    +wellFormedTermsIsPR [instance, in hydras.Ackermann.wellFormed]
    +wellFormedTermTerms [definition, in hydras.Ackermann.wellFormed]
    +wellFormedTermTermsCorrect2 [lemma, in hydras.Ackermann.wellFormed]
    +wellFormedTermTermsIsPR [instance, in hydras.Ackermann.wellFormed]
    +well_formed_list:270 [binder, in hydras.rpo.term]
    +well_formed_list:90 [binder, in hydras.rpo.term]
    +well_founded_restriction_rect [definition, in hydras.Prelude.Restriction]
    +well_founded_restriction [definition, in hydras.Prelude.Restriction]
    +well_founded_length [lemma, in hydras.rpo.more_list]
    +Well_Formed_Term.Well_Formed_Formula.Formula [variable, in hydras.Ackermann.wellFormed]
    +Well_Formed_Term.Well_Formed_Formula.codeArityRIsCorrect2 [variable, in hydras.Ackermann.wellFormed]
    +Well_Formed_Term.Well_Formed_Formula.codeArityRIsCorrect1 [variable, in hydras.Ackermann.wellFormed]
    +Well_Formed_Term.Well_Formed_Formula.codeArityR [variable, in hydras.Ackermann.wellFormed]
    +Well_Formed_Term.Well_Formed_Formula [section, in hydras.Ackermann.wellFormed]
    +Well_Formed_Term.Terms [variable, in hydras.Ackermann.wellFormed]
    +Well_Formed_Term.Term [variable, in hydras.Ackermann.wellFormed]
    +Well_Formed_Term.codeArityFIsCorrect2 [variable, in hydras.Ackermann.wellFormed]
    +Well_Formed_Term.codeArityFIsCorrect1 [variable, in hydras.Ackermann.wellFormed]
    +Well_Formed_Term.codeArityF [variable, in hydras.Ackermann.wellFormed]
    +Well_Formed_Term.L [variable, in hydras.Ackermann.wellFormed]
    +Well_Formed_Term [section, in hydras.Ackermann.wellFormed]
    +well_order [projection, in hydras.Schutte.Well_Orders]
    +well_founded.R [variable, in hydras.Gamma0.Gamma0]
    +well_founded [section, in hydras.Gamma0.Gamma0]
    +well_founded_rpo [lemma, in hydras.Gamma0.Gamma0]
    +well_founded_P [definition, in gaia_hydras.nfwfgaia]
    +Well_Orders [library]
    +WF [instance, in hydras.OrdinalNotations.ON_Omega2]
    +wf [projection, in hydras.Prelude.WfVariant]
    +WF [instance, in hydras.Epsilon0.F_alpha]
    +Wfsum [module, in gaia_hydras.nfwfgaia]
    +Wfsum.extension [definition, in gaia_hydras.nfwfgaia]
    +Wfsum.f [definition, in gaia_hydras.nfwfgaia]
    +Wfsum.f_correct [lemma, in gaia_hydras.nfwfgaia]
    +Wfsum.f_eqn [lemma, in gaia_hydras.nfwfgaia]
    +Wfsum.f_spec_simp [lemma, in gaia_hydras.nfwfgaia]
    +Wfsum.f_spec [definition, in gaia_hydras.nfwfgaia]
    +Wfsum.f1 [definition, in gaia_hydras.nfwfgaia]
    +Wfsum.f2 [definition, in gaia_hydras.nfwfgaia]
    +Wfsum.lt_dec [lemma, in gaia_hydras.nfwfgaia]
    +Wfsum.psum [definition, in gaia_hydras.nfwfgaia]
    +Wfsum.psum_exten [lemma, in gaia_hydras.nfwfgaia]
    +WfVariant [record, in hydras.Prelude.WfVariant]
    +WfVariant [library]
    +wf_inverse_image_transparent [lemma, in additions.Wf_transparent]
    +wf_incl_transparent [lemma, in additions.Wf_transparent]
    +wf_measure [lemma, in hydras.OrdinalNotations.ON_Generic]
    +wf_ltn [lemma, in gaia_hydras.onType]
    +wf_trans [lemma, in hydras.rpo.closure]
    +Wf_ex3.f_correct [lemma, in gaia_hydras.nfwfgaia]
    +Wf_ex3.f_eqn [lemma, in gaia_hydras.nfwfgaia]
    +Wf_ex3.f [definition, in gaia_hydras.nfwfgaia]
    +Wf_ex3.f2 [definition, in gaia_hydras.nfwfgaia]
    +Wf_ex3.f1 [definition, in gaia_hydras.nfwfgaia]
    +Wf_ex3.odd_dec [lemma, in gaia_hydras.nfwfgaia]
    +Wf_ex3.f0c [lemma, in gaia_hydras.nfwfgaia]
    +Wf_ex3.f0b [lemma, in gaia_hydras.nfwfgaia]
    +Wf_ex3.f0a [lemma, in gaia_hydras.nfwfgaia]
    +Wf_ex3.f_spec_simp2 [lemma, in gaia_hydras.nfwfgaia]
    +Wf_ex3.f_spec_simp1 [lemma, in gaia_hydras.nfwfgaia]
    +Wf_ex3.f_spec_simp [lemma, in gaia_hydras.nfwfgaia]
    +Wf_ex3.f_spec [definition, in gaia_hydras.nfwfgaia]
    +Wf_ex3.lte_wf [lemma, in gaia_hydras.nfwfgaia]
    +Wf_ex3.lte [definition, in gaia_hydras.nfwfgaia]
    +Wf_ex3 [module, in gaia_hydras.nfwfgaia]
    +Wf_ex.f_correct [lemma, in gaia_hydras.nfwfgaia]
    +Wf_ex.f_eqn [lemma, in gaia_hydras.nfwfgaia]
    +Wf_ex.f [definition, in gaia_hydras.nfwfgaia]
    +Wf_ex.f2 [definition, in gaia_hydras.nfwfgaia]
    +Wf_ex.f1 [definition, in gaia_hydras.nfwfgaia]
    +Wf_ex.f0 [lemma, in gaia_hydras.nfwfgaia]
    +Wf_ex.f_spec_simp [lemma, in gaia_hydras.nfwfgaia]
    +Wf_ex.f_spec [definition, in gaia_hydras.nfwfgaia]
    +Wf_ex [module, in gaia_hydras.nfwfgaia]
    +wf_lexico [lemma, in hydras.Prelude.Simple_LexProd]
    +wf_lex [lemma, in hydras.rpo.rpo]
    +Wf_transparent [library]
    +Wf:101 [binder, in hydras.Hydra.Hydra_Lemmas]
    +Wf:111 [binder, in hydras.Hydra.Hydra_Lemmas]
    +Wf:146 [binder, in hydras.Hydra.Hydra_Definitions]
    +Wf:156 [binder, in hydras.Hydra.Hydra_Definitions]
    +wInconsistent [definition, in hydras.Ackermann.wConsistent]
    +with_matrices.R [variable, in additions.fib]
    +with_matrices [section, in additions.fib]
    +WO [record, in hydras.Schutte.Well_Orders]
    +WO_ord [instance, in hydras.Schutte.Schutte_basics]
    +WO_nat [instance, in hydras.Schutte.Well_Orders]
    +Wo:19 [binder, in hydras.Schutte.Well_Orders]
    +WO:54 [binder, in hydras.Schutte.Well_Orders]
    +WO:59 [binder, in hydras.Schutte.Well_Orders]
    +w:101 [binder, in Goedel.PRrepresentable]
    +w:122 [binder, in Goedel.PRrepresentable]
    +w:1237 [binder, in hydras.Ackermann.codeSubFormula]
    +w:129 [binder, in Goedel.PRrepresentable]
    +w:1388 [binder, in hydras.Ackermann.codeSubFormula]
    +w:1392 [binder, in hydras.Ackermann.codeSubFormula]
    +w:14 [binder, in hydras.Prelude.MoreOrders]
    +w:140 [binder, in Goedel.PRrepresentable]
    +w:151 [binder, in Goedel.PRrepresentable]
    +w:1513 [binder, in gaia_hydras.nfwfgaia]
    +w:1516 [binder, in gaia_hydras.nfwfgaia]
    +w:1519 [binder, in gaia_hydras.nfwfgaia]
    +w:300 [binder, in hydras.Ackermann.subAll]
    +w:399 [binder, in hydras.Ackermann.primRec]
    +w:407 [binder, in hydras.Ackermann.primRec]
    +w:60 [binder, in hydras.Prelude.MoreVectors]
    +w:705 [binder, in gaia_hydras.nfwfgaia]
    +w:715 [binder, in gaia_hydras.nfwfgaia]
    +w:815 [binder, in gaia_hydras.nfwfgaia]
    +w:822 [binder, in gaia_hydras.nfwfgaia]
    +w:899 [binder, in hydras.Ackermann.codeSubFormula]
    +w:916 [binder, in hydras.Ackermann.codeSubFormula]
    +w:921 [binder, in hydras.Ackermann.codeSubFormula]
    +w:926 [binder, in hydras.Ackermann.codeSubFormula]
    +w:998 [binder, in gaia_hydras.nfwfgaia]
    +

    X

    +xb:227 [binder, in additions.Euclidean_Chains]
    +xb:238 [binder, in additions.Euclidean_Chains]
    +xb:254 [binder, in additions.Euclidean_Chains]
    +xb:258 [binder, in additions.Euclidean_Chains]
    +xb:262 [binder, in additions.Euclidean_Chains]
    +xb:266 [binder, in additions.Euclidean_Chains]
    +xb:304 [binder, in additions.Euclidean_Chains]
    +xb:306 [binder, in additions.Euclidean_Chains]
    +xb:308 [binder, in additions.Euclidean_Chains]
    +xb:310 [binder, in additions.Euclidean_Chains]
    +xi:13 [binder, in hydras.Schutte.Critical]
    +xi:56 [binder, in hydras.Schutte.Critical]
    +xi:63 [binder, in hydras.Schutte.Critical]
    +xi:64 [binder, in hydras.Schutte.Critical]
    +xi:73 [binder, in hydras.Schutte.Critical]
    +xi:79 [binder, in hydras.Schutte.Critical]
    +xPair [definition, in hydras.Ackermann.cPair]
    +xPairDef [lemma, in hydras.Ackermann.cPair]
    +xr:228 [binder, in additions.Euclidean_Chains]
    +xr:255 [binder, in additions.Euclidean_Chains]
    +xr:259 [binder, in additions.Euclidean_Chains]
    +xr:263 [binder, in additions.Euclidean_Chains]
    +xr:267 [binder, in additions.Euclidean_Chains]
    +x':1395 [binder, in gaia_hydras.nfwfgaia]
    +x':526 [binder, in gaia_hydras.nfwfgaia]
    +x':529 [binder, in gaia_hydras.nfwfgaia]
    +x0:123 [binder, in hydras.Ackermann.model]
    +x0:125 [binder, in hydras.Ackermann.model]
    +x0:200 [binder, in hydras.Ackermann.folProp]
    +x0:216 [binder, in hydras.Ackermann.folProp]
    +x0:226 [binder, in Goedel.PRrepresentable]
    +x0:228 [binder, in Goedel.PRrepresentable]
    +x0:233 [binder, in Goedel.PRrepresentable]
    +x0:235 [binder, in Goedel.PRrepresentable]
    +x0:296 [binder, in hydras.Ackermann.folProp]
    +x0:312 [binder, in hydras.Ackermann.folProp]
    +x0:329 [binder, in hydras.Ackermann.subAll]
    +x0:331 [binder, in hydras.Ackermann.subAll]
    +x0:332 [binder, in hydras.Ackermann.subAll]
    +x0:334 [binder, in hydras.Ackermann.subAll]
    +x0:335 [binder, in hydras.Ackermann.subAll]
    +x0:336 [binder, in hydras.Ackermann.subAll]
    +x0:337 [binder, in hydras.Ackermann.subAll]
    +x0:338 [binder, in hydras.Ackermann.subAll]
    +x0:360 [binder, in hydras.Ackermann.folProp]
    +x0:376 [binder, in hydras.Ackermann.folProp]
    +x0:90 [binder, in hydras.Ackermann.model]
    +x0:91 [binder, in hydras.Ackermann.model]
    +x0:92 [binder, in hydras.Ackermann.model]
    +x0:93 [binder, in hydras.Ackermann.model]
    +x0:95 [binder, in hydras.Ackermann.model]
    +x0:97 [binder, in hydras.Ackermann.model]
    +x10:30 [binder, in additions.Addition_Chains]
    +x16:104 [binder, in additions.Pow]
    +x16:95 [binder, in additions.Pow_variant]
    +x1:328 [binder, in hydras.Ackermann.folProp]
    +x1:344 [binder, in hydras.Ackermann.folProp]
    +x20:31 [binder, in additions.Addition_Chains]
    +x2:101 [binder, in additions.Pow]
    +x2:153 [binder, in additions.Euclidean_Chains]
    +x2:158 [binder, in additions.Euclidean_Chains]
    +x2:16 [binder, in additions.Addition_Chains]
    +x2:20 [binder, in additions.Addition_Chains]
    +x2:249 [binder, in additions.Addition_Chains]
    +x2:253 [binder, in additions.Addition_Chains]
    +x2:26 [binder, in additions.Addition_Chains]
    +x2:260 [binder, in additions.Addition_Chains]
    +x2:262 [binder, in additions.Addition_Chains]
    +x2:92 [binder, in additions.Pow_variant]
    +x3:154 [binder, in additions.Euclidean_Chains]
    +x3:159 [binder, in additions.Euclidean_Chains]
    +x3:17 [binder, in additions.Addition_Chains]
    +x3:21 [binder, in additions.Addition_Chains]
    +x3:27 [binder, in additions.Addition_Chains]
    +x40:32 [binder, in additions.Addition_Chains]
    +x4:10 [binder, in hydras.Ackermann.PAconsistent]
    +x4:102 [binder, in additions.Pow]
    +x4:9 [binder, in hydras.Ackermann.PAconsistent]
    +x4:93 [binder, in additions.Pow_variant]
    +x6:160 [binder, in additions.Euclidean_Chains]
    +x6:22 [binder, in additions.Addition_Chains]
    +x6:28 [binder, in additions.Addition_Chains]
    +x7:161 [binder, in additions.Euclidean_Chains]
    +x7:23 [binder, in additions.Addition_Chains]
    +x7:29 [binder, in additions.Addition_Chains]
    +x80:33 [binder, in additions.Addition_Chains]
    +x87:34 [binder, in additions.Addition_Chains]
    +x8:103 [binder, in additions.Pow]
    +x8:94 [binder, in additions.Pow_variant]
    +x:1 [binder, in hydras.Ackermann.LNN]
    +x:1 [binder, in hydras.Ackermann.LNT]
    +x:1 [binder, in additions.Naive]
    +x:10 [binder, in hydras.solutions_exercises.MinPR2]
    +x:10 [binder, in hydras.Prelude.Iterates]
    +X:10 [binder, in hydras.Prelude.Restriction]
    +x:10 [binder, in hydras.Ackermann.LNN]
    +X:10 [binder, in hydras.Schutte.Lub]
    +x:10 [binder, in hydras.Ackermann.subProp]
    +x:10 [binder, in hydras.Prelude.MoreOrders]
    +x:10 [binder, in additions.Monoid_def]
    +x:10 [binder, in additions.Euclidean_Chains]
    +X:10 [binder, in hydras.Schutte.Schutte_basics]
    +x:10 [binder, in hydras.Ackermann.NN]
    +x:10 [binder, in hydras.solutions_exercises.T1_ltNotWf]
    +x:10 [binder, in hydras.Schutte.Countable]
    +x:100 [binder, in hydras.Ackermann.model]
    +x:100 [binder, in additions.Pow]
    +x:100 [binder, in hydras.Schutte.Ordering_Functions]
    +x:101 [binder, in hydras.Ackermann.model]
    +x:101 [binder, in gaia_hydras.T1Bridge]
    +x:101 [binder, in hydras.Ackermann.cPair]
    +x:1016 [binder, in gaia_hydras.nfwfgaia]
    +x:102 [binder, in hydras.Schutte.Ordering_Functions]
    +x:102 [binder, in hydras.MoreAck.PrimRecExamples]
    +x:102 [binder, in hydras.Prelude.MoreVectors]
    +x:103 [binder, in hydras.Ackermann.fol]
    +x:1038 [binder, in gaia_hydras.nfwfgaia]
    +x:1039 [binder, in gaia_hydras.nfwfgaia]
    +x:104 [binder, in hydras.Schutte.Ordering_Functions]
    +x:1041 [binder, in gaia_hydras.nfwfgaia]
    +x:1043 [binder, in gaia_hydras.nfwfgaia]
    +x:1046 [binder, in gaia_hydras.nfwfgaia]
    +x:105 [binder, in hydras.Prelude.Iterates]
    +x:105 [binder, in hydras.OrdinalNotations.ON_Generic]
    +x:1053 [binder, in gaia_hydras.nfwfgaia]
    +x:1054 [binder, in gaia_hydras.nfwfgaia]
    +x:1055 [binder, in gaia_hydras.nfwfgaia]
    +x:1056 [binder, in gaia_hydras.nfwfgaia]
    +x:1057 [binder, in gaia_hydras.nfwfgaia]
    +x:1058 [binder, in gaia_hydras.nfwfgaia]
    +x:106 [binder, in additions.Euclidean_Chains]
    +x:1061 [binder, in gaia_hydras.nfwfgaia]
    +x:1064 [binder, in gaia_hydras.nfwfgaia]
    +x:1067 [binder, in gaia_hydras.nfwfgaia]
    +x:1068 [binder, in gaia_hydras.nfwfgaia]
    +x:1069 [binder, in gaia_hydras.nfwfgaia]
    +x:107 [binder, in hydras.Prelude.Iterates]
    +x:107 [binder, in additions.Pow]
    +x:107 [binder, in hydras.Ackermann.fol]
    +x:1070 [binder, in gaia_hydras.nfwfgaia]
    +x:1071 [binder, in gaia_hydras.nfwfgaia]
    +x:1072 [binder, in gaia_hydras.nfwfgaia]
    +x:1074 [binder, in gaia_hydras.nfwfgaia]
    +x:1075 [binder, in gaia_hydras.nfwfgaia]
    +x:1084 [binder, in gaia_hydras.nfwfgaia]
    +x:1085 [binder, in gaia_hydras.nfwfgaia]
    +x:1086 [binder, in gaia_hydras.nfwfgaia]
    +x:1087 [binder, in gaia_hydras.nfwfgaia]
    +x:1089 [binder, in gaia_hydras.nfwfgaia]
    +x:109 [binder, in hydras.Prelude.Iterates]
    +x:1091 [binder, in gaia_hydras.nfwfgaia]
    +x:1093 [binder, in gaia_hydras.nfwfgaia]
    +x:1095 [binder, in gaia_hydras.nfwfgaia]
    +x:11 [binder, in hydras.Prelude.Restriction]
    +x:11 [binder, in hydras.Ackermann.LNT]
    +x:11 [binder, in hydras.Prelude.Sort_spec]
    +x:11 [binder, in hydras.Ackermann.PAtheory]
    +x:11 [binder, in additions.Wf_transparent]
    +x:11 [binder, in hydras.Ackermann.cPair]
    +x:11 [binder, in additions.Naive]
    +x:11 [binder, in hydras.Prelude.LibHyps_Experiments]
    +x:11 [binder, in hydras.Ackermann.folLogic3]
    +x:11 [binder, in Goedel.rosser]
    +x:11 [binder, in hydras.Ackermann.Languages]
    +x:1105 [binder, in gaia_hydras.nfwfgaia]
    +x:1108 [binder, in gaia_hydras.nfwfgaia]
    +x:1113 [binder, in gaia_hydras.nfwfgaia]
    +x:1114 [binder, in gaia_hydras.nfwfgaia]
    +x:1119 [binder, in gaia_hydras.nfwfgaia]
    +x:112 [binder, in hydras.rpo.term]
    +x:112 [binder, in hydras.Prelude.Iterates]
    +x:1124 [binder, in gaia_hydras.nfwfgaia]
    +x:1125 [binder, in gaia_hydras.nfwfgaia]
    +x:1128 [binder, in gaia_hydras.nfwfgaia]
    +x:1138 [binder, in gaia_hydras.nfwfgaia]
    +x:1139 [binder, in gaia_hydras.nfwfgaia]
    +x:114 [binder, in additions.AM]
    +x:114 [binder, in hydras.Prelude.Iterates]
    +x:1143 [binder, in gaia_hydras.nfwfgaia]
    +x:115 [binder, in hydras.Prelude.MoreLists]
    +x:115 [binder, in hydras.Ackermann.fol]
    +x:115 [binder, in gaia_hydras.nfwfgaia]
    +x:117 [binder, in hydras.Prelude.Iterates]
    +x:117 [binder, in additions.Euclidean_Chains]
    +x:118 [binder, in hydras.Ackermann.model]
    +x:118 [binder, in hydras.OrdinalNotations.ON_Generic]
    +x:118 [binder, in gaia_hydras.nfwfgaia]
    +x:119 [binder, in hydras.Ackermann.model]
    +x:119 [binder, in gaia_hydras.nfwfgaia]
    +x:1197 [binder, in gaia_hydras.nfwfgaia]
    +x:12 [binder, in additions.Compatibility]
    +x:12 [binder, in hydras.Ackermann.LNN]
    +x:12 [binder, in hydras.Schutte.MoreEpsilonIota]
    +x:12 [binder, in additions.Wf_transparent]
    +x:12 [binder, in hydras.Prelude.MoreDecidable]
    +x:12 [binder, in hydras.Ackermann.folLogic3]
    +x:12 [binder, in hydras.Ackermann.wConsistent]
    +x:12 [binder, in Goedel.rosser]
    +x:12 [binder, in hydras.Schutte.Countable]
    +x:120 [binder, in hydras.Ackermann.model]
    +x:1201 [binder, in gaia_hydras.nfwfgaia]
    +x:1206 [binder, in gaia_hydras.nfwfgaia]
    +x:121 [binder, in hydras.Ackermann.model]
    +x:1217 [binder, in gaia_hydras.nfwfgaia]
    +x:1218 [binder, in gaia_hydras.nfwfgaia]
    +x:122 [binder, in hydras.Ackermann.model]
    +x:122 [binder, in hydras.Ackermann.fol]
    +x:122 [binder, in gaia_hydras.nfwfgaia]
    +x:1220 [binder, in gaia_hydras.nfwfgaia]
    +x:1222 [binder, in gaia_hydras.nfwfgaia]
    +x:1224 [binder, in gaia_hydras.nfwfgaia]
    +x:1229 [binder, in gaia_hydras.nfwfgaia]
    +x:124 [binder, in hydras.Prelude.MoreLists]
    +x:124 [binder, in hydras.Ackermann.model]
    +x:1250 [binder, in gaia_hydras.nfwfgaia]
    +x:1259 [binder, in gaia_hydras.nfwfgaia]
    +x:126 [binder, in Goedel.PRrepresentable]
    +x:126 [binder, in hydras.Prelude.Merge_Sort]
    +x:1262 [binder, in gaia_hydras.nfwfgaia]
    +x:1267 [binder, in gaia_hydras.nfwfgaia]
    +x:1268 [binder, in gaia_hydras.nfwfgaia]
    +x:127 [binder, in hydras.Ackermann.fol]
    +x:128 [binder, in hydras.Prelude.Merge_Sort]
    +x:129 [binder, in additions.AM]
    +X:129 [binder, in hydras.Ackermann.cPair]
    +x:13 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +x:13 [binder, in hydras.Prelude.Iterates]
    +x:13 [binder, in additions.FirstSteps]
    +x:13 [binder, in hydras.Ackermann.LNN]
    +x:13 [binder, in hydras.Ackermann.PAtheory]
    +x:13 [binder, in hydras.Prelude.MoreOrders]
    +x:13 [binder, in hydras.Ackermann.cPair]
    +x:13 [binder, in additions.Euclidean_Chains]
    +x:13 [binder, in additions.Naive]
    +X:130 [binder, in hydras.Schutte.Schutte_basics]
    +x:1311 [binder, in gaia_hydras.nfwfgaia]
    +x:132 [binder, in hydras.Ackermann.primRec]
    +x:132 [binder, in hydras.Ackermann.fol]
    +x:1325 [binder, in gaia_hydras.nfwfgaia]
    +x:134 [binder, in hydras.Prelude.Merge_Sort]
    +x:1342 [binder, in gaia_hydras.nfwfgaia]
    +x:135 [binder, in gaia_hydras.T1Bridge]
    +x:135 [binder, in hydras.Ackermann.fol]
    +x:136 [binder, in hydras.Prelude.Merge_Sort]
    +x:136 [binder, in hydras.Ackermann.fol]
    +x:137 [binder, in hydras.Ackermann.codeFreeVar]
    +x:137 [binder, in gaia_hydras.T1Bridge]
    +X:137 [binder, in hydras.Schutte.Schutte_basics]
    +x:138 [binder, in hydras.Ackermann.codeFreeVar]
    +x:138 [binder, in gaia_hydras.nfwfgaia]
    +x:139 [binder, in hydras.Ackermann.codeFreeVar]
    +x:139 [binder, in gaia_hydras.T1Bridge]
    +x:1394 [binder, in gaia_hydras.nfwfgaia]
    +x:1397 [binder, in gaia_hydras.nfwfgaia]
    +x:14 [binder, in gaia_hydras.T1Choice]
    +x:14 [binder, in additions.AM]
    +x:14 [binder, in additions.Compatibility]
    +x:14 [binder, in Goedel.rosserPA]
    +x:14 [binder, in additions.Monoid_def]
    +x:14 [binder, in gaia_hydras.ON_gfinite]
    +x:14 [binder, in hydras.Ackermann.Deduction]
    +X:14 [binder, in hydras.Schutte.Schutte_basics]
    +x:14 [binder, in gaia_hydras.onType]
    +x:14 [binder, in hydras.Ackermann.NN]
    +x:14 [binder, in hydras.Schutte.Countable]
    +x:140 [binder, in hydras.Ackermann.codeFreeVar]
    +x:140 [binder, in hydras.Prelude.Merge_Sort]
    +x:140 [binder, in hydras.Schutte.Schutte_basics]
    +x:140 [binder, in gaia_hydras.nfwfgaia]
    +x:1405 [binder, in gaia_hydras.nfwfgaia]
    +x:1409 [binder, in hydras.Ackermann.codeSubFormula]
    +x:1409 [binder, in gaia_hydras.nfwfgaia]
    +x:141 [binder, in hydras.Ackermann.codeFreeVar]
    +X:141 [binder, in hydras.Schutte.Schutte_basics]
    +x:141 [binder, in gaia_hydras.nfwfgaia]
    +x:1411 [binder, in gaia_hydras.nfwfgaia]
    +x:1414 [binder, in hydras.Ackermann.codeSubFormula]
    +x:1414 [binder, in gaia_hydras.nfwfgaia]
    +x:1416 [binder, in hydras.Ackermann.codeSubFormula]
    +x:142 [binder, in hydras.Ackermann.codeFreeVar]
    +x:142 [binder, in gaia_hydras.nfwfgaia]
    +x:1421 [binder, in hydras.Ackermann.codeSubFormula]
    +x:1426 [binder, in hydras.Ackermann.codeSubFormula]
    +x:143 [binder, in hydras.Ackermann.codeFreeVar]
    +x:1438 [binder, in gaia_hydras.nfwfgaia]
    +x:1439 [binder, in gaia_hydras.nfwfgaia]
    +x:144 [binder, in hydras.Ackermann.codeFreeVar]
    +x:144 [binder, in hydras.Prelude.Merge_Sort]
    +x:144 [binder, in additions.Euclidean_Chains]
    +X:144 [binder, in hydras.Schutte.Schutte_basics]
    +x:144 [binder, in hydras.OrdinalNotations.ON_Generic]
    +x:1440 [binder, in gaia_hydras.nfwfgaia]
    +x:145 [binder, in hydras.Ackermann.codeFreeVar]
    +x:1451 [binder, in gaia_hydras.nfwfgaia]
    +x:1452 [binder, in gaia_hydras.nfwfgaia]
    +x:1453 [binder, in gaia_hydras.nfwfgaia]
    +x:1454 [binder, in gaia_hydras.nfwfgaia]
    +x:1455 [binder, in gaia_hydras.nfwfgaia]
    +x:146 [binder, in hydras.Ackermann.codeFreeVar]
    +x:146 [binder, in gaia_hydras.T1Bridge]
    +X:146 [binder, in hydras.Schutte.Schutte_basics]
    +x:1467 [binder, in gaia_hydras.nfwfgaia]
    +x:147 [binder, in hydras.Prelude.MoreLists]
    +x:148 [binder, in hydras.Prelude.Merge_Sort]
    +x:148 [binder, in gaia_hydras.T1Bridge]
    +x:148 [binder, in hydras.Ackermann.cPair]
    +X:148 [binder, in hydras.Schutte.Schutte_basics]
    +x:148 [binder, in gaia_hydras.nfwfgaia]
    +x:1486 [binder, in gaia_hydras.nfwfgaia]
    +x:149 [binder, in hydras.Epsilon0.Paths]
    +x:15 [binder, in hydras.Prelude.Iterates]
    +x:15 [binder, in additions.Compatibility]
    +x:15 [binder, in additions.Pow_variant]
    +x:15 [binder, in additions.Pow]
    +x:15 [binder, in hydras.Ackermann.PAtheory]
    +x:15 [binder, in hydras.MoreAck.AckNotPR]
    +x:15 [binder, in hydras.Ackermann.subProp]
    +x:15 [binder, in Goedel.rosserPA]
    +x:15 [binder, in hydras.Ackermann.cPair]
    +x:15 [binder, in gaia_hydras.ON_gfinite]
    +X:15 [binder, in hydras.Schutte.Well_Orders]
    +x:15 [binder, in additions.Addition_Chains]
    +x:15 [binder, in Goedel.rosser]
    +x:150 [binder, in gaia_hydras.nfwfgaia]
    +x:151 [binder, in gaia_hydras.nfwfgaia]
    +x:152 [binder, in hydras.Prelude.Merge_Sort]
    +x:152 [binder, in hydras.Ackermann.cPair]
    +x:152 [binder, in additions.Euclidean_Chains]
    +x:152 [binder, in hydras.Schutte.Schutte_basics]
    +x:152 [binder, in hydras.Epsilon0.Paths]
    +x:153 [binder, in hydras.Schutte.Schutte_basics]
    +x:1539 [binder, in gaia_hydras.nfwfgaia]
    +x:154 [binder, in hydras.Prelude.Merge_Sort]
    +x:154 [binder, in hydras.Schutte.Schutte_basics]
    +x:154 [binder, in hydras.Epsilon0.Paths]
    +X:155 [binder, in hydras.Prelude.MoreLists]
    +X:155 [binder, in hydras.Schutte.Schutte_basics]
    +x:156 [binder, in hydras.Ackermann.folProp]
    +x:1567 [binder, in gaia_hydras.nfwfgaia]
    +x:157 [binder, in additions.Euclidean_Chains]
    +x:157 [binder, in hydras.Schutte.Schutte_basics]
    +x:157 [binder, in hydras.OrdinalNotations.ON_Generic]
    +x:1570 [binder, in hydras.Ackermann.codeSubFormula]
    +x:1571 [binder, in gaia_hydras.nfwfgaia]
    +x:1572 [binder, in hydras.Ackermann.codeSubFormula]
    +x:1574 [binder, in hydras.Ackermann.codeSubFormula]
    +x:1576 [binder, in hydras.Ackermann.codeSubFormula]
    +x:1578 [binder, in hydras.Ackermann.codeSubFormula]
    +X:158 [binder, in hydras.Prelude.MoreLists]
    +x:158 [binder, in hydras.Ackermann.folProp]
    +x:1580 [binder, in hydras.Ackermann.codeSubFormula]
    +x:1582 [binder, in hydras.Ackermann.codeSubFormula]
    +x:1584 [binder, in hydras.Ackermann.codeSubFormula]
    +x:1586 [binder, in hydras.Ackermann.codeSubFormula]
    +x:1588 [binder, in hydras.Ackermann.codeSubFormula]
    +x:159 [binder, in hydras.Prelude.Merge_Sort]
    +X:159 [binder, in hydras.Schutte.Schutte_basics]
    +x:1590 [binder, in hydras.Ackermann.codeSubFormula]
    +x:1592 [binder, in hydras.Ackermann.codeSubFormula]
    +x:1594 [binder, in gaia_hydras.nfwfgaia]
    +x:1597 [binder, in gaia_hydras.nfwfgaia]
    +x:16 [binder, in gaia_hydras.T1Choice]
    +x:16 [binder, in hydras.Prelude.Iterates]
    +x:16 [binder, in hydras.Ackermann.PAtheory]
    +x:16 [binder, in hydras.Schutte.Critical]
    +x:16 [binder, in gaia_hydras.T1Bridge]
    +x:16 [binder, in additions.Monoid_def]
    +x:16 [binder, in hydras.Prelude.STDPP_compat]
    +x:16 [binder, in Goedel.goedel1]
    +x:16 [binder, in hydras.Ackermann.NN]
    +x:16 [binder, in hydras.Schutte.Countable]
    +x:160 [binder, in hydras.Ackermann.folProp]
    +x:1600 [binder, in gaia_hydras.nfwfgaia]
    +x:161 [binder, in Goedel.PRrepresentable]
    +X:161 [binder, in hydras.Prelude.MoreLists]
    +X:161 [binder, in hydras.Schutte.Schutte_basics]
    +x:162 [binder, in hydras.Ackermann.folProp]
    +x:162 [binder, in hydras.Ackermann.cPair]
    +x:162 [binder, in gaia_hydras.nfwfgaia]
    +x:163 [binder, in Goedel.PRrepresentable]
    +x:163 [binder, in hydras.Prelude.Merge_Sort]
    +x:163 [binder, in hydras.Ackermann.cPair]
    +x:163 [binder, in hydras.Schutte.Schutte_basics]
    +x:163 [binder, in gaia_hydras.nfwfgaia]
    +x:163 [binder, in hydras.Ackermann.codePA]
    +x:164 [binder, in Goedel.PRrepresentable]
    +x:164 [binder, in hydras.Ackermann.folProp]
    +x:164 [binder, in hydras.Schutte.Schutte_basics]
    +x:164 [binder, in gaia_hydras.nfwfgaia]
    +x:164 [binder, in hydras.Ackermann.codePA]
    +x:165 [binder, in hydras.Schutte.Schutte_basics]
    +x:165 [binder, in gaia_hydras.nfwfgaia]
    +x:1655 [binder, in gaia_hydras.nfwfgaia]
    +x:1656 [binder, in gaia_hydras.nfwfgaia]
    +x:1658 [binder, in gaia_hydras.nfwfgaia]
    +x:166 [binder, in Goedel.PRrepresentable]
    +x:166 [binder, in hydras.Ackermann.folProp]
    +x:166 [binder, in gaia_hydras.nfwfgaia]
    +x:1663 [binder, in gaia_hydras.nfwfgaia]
    +x:1666 [binder, in gaia_hydras.nfwfgaia]
    +x:1668 [binder, in gaia_hydras.nfwfgaia]
    +x:167 [binder, in Goedel.PRrepresentable]
    +x:167 [binder, in hydras.Prelude.Merge_Sort]
    +x:167 [binder, in gaia_hydras.nfwfgaia]
    +x:1679 [binder, in gaia_hydras.nfwfgaia]
    +x:168 [binder, in Goedel.PRrepresentable]
    +x:168 [binder, in hydras.Prelude.MoreLists]
    +x:168 [binder, in hydras.Ackermann.folProp]
    +X:168 [binder, in hydras.Schutte.Schutte_basics]
    +x:1681 [binder, in gaia_hydras.nfwfgaia]
    +x:1682 [binder, in gaia_hydras.nfwfgaia]
    +x:1683 [binder, in gaia_hydras.nfwfgaia]
    +x:1684 [binder, in gaia_hydras.nfwfgaia]
    +x:1697 [binder, in gaia_hydras.nfwfgaia]
    +x:1698 [binder, in gaia_hydras.nfwfgaia]
    +x:17 [binder, in additions.FirstSteps]
    +x:17 [binder, in hydras.Ackermann.PA]
    +x:17 [binder, in hydras.Ackermann.cPair]
    +x:17 [binder, in gaia_hydras.ON_gfinite]
    +x:17 [binder, in hydras.Ackermann.Deduction]
    +x:17 [binder, in hydras.Ackermann.NNtheory]
    +x:17 [binder, in hydras.OrdinalNotations.ON_Generic]
    +x:17 [binder, in gaia_hydras.onType]
    +x:17 [binder, in hydras.Ackermann.folLogic3]
    +x:17 [binder, in Goedel.goedel1]
    +x:170 [binder, in hydras.Schutte.Schutte_basics]
    +x:1701 [binder, in gaia_hydras.nfwfgaia]
    +x:1704 [binder, in gaia_hydras.nfwfgaia]
    +x:1707 [binder, in gaia_hydras.nfwfgaia]
    +x:1708 [binder, in gaia_hydras.nfwfgaia]
    +x:1709 [binder, in gaia_hydras.nfwfgaia]
    +x:171 [binder, in Goedel.PRrepresentable]
    +x:171 [binder, in hydras.Ackermann.codeFreeVar]
    +x:171 [binder, in hydras.Schutte.Schutte_basics]
    +x:1710 [binder, in gaia_hydras.nfwfgaia]
    +x:1711 [binder, in gaia_hydras.nfwfgaia]
    +x:1712 [binder, in gaia_hydras.nfwfgaia]
    +x:1715 [binder, in gaia_hydras.nfwfgaia]
    +x:1716 [binder, in gaia_hydras.nfwfgaia]
    +x:172 [binder, in hydras.Ackermann.codeFreeVar]
    +x:172 [binder, in hydras.Schutte.Schutte_basics]
    +x:1723 [binder, in gaia_hydras.nfwfgaia]
    +x:1724 [binder, in gaia_hydras.nfwfgaia]
    +x:1725 [binder, in gaia_hydras.nfwfgaia]
    +x:1726 [binder, in gaia_hydras.nfwfgaia]
    +x:1728 [binder, in gaia_hydras.nfwfgaia]
    +x:173 [binder, in Goedel.PRrepresentable]
    +x:1730 [binder, in gaia_hydras.nfwfgaia]
    +x:1732 [binder, in gaia_hydras.nfwfgaia]
    +x:1734 [binder, in gaia_hydras.nfwfgaia]
    +x:1744 [binder, in gaia_hydras.nfwfgaia]
    +x:1748 [binder, in gaia_hydras.nfwfgaia]
    +x:175 [binder, in Goedel.PRrepresentable]
    +x:175 [binder, in additions.Euclidean_Chains]
    +x:1755 [binder, in gaia_hydras.nfwfgaia]
    +x:1756 [binder, in gaia_hydras.nfwfgaia]
    +x:1761 [binder, in gaia_hydras.nfwfgaia]
    +x:1766 [binder, in gaia_hydras.nfwfgaia]
    +x:1767 [binder, in gaia_hydras.nfwfgaia]
    +x:177 [binder, in Goedel.PRrepresentable]
    +x:177 [binder, in hydras.Prelude.Iterates]
    +x:177 [binder, in hydras.Ackermann.fol]
    +x:1770 [binder, in gaia_hydras.nfwfgaia]
    +x:178 [binder, in hydras.Ackermann.subAll]
    +x:1780 [binder, in gaia_hydras.nfwfgaia]
    +x:1781 [binder, in gaia_hydras.nfwfgaia]
    +x:1787 [binder, in gaia_hydras.nfwfgaia]
    +x:179 [binder, in Goedel.PRrepresentable]
    +x:179 [binder, in hydras.Ackermann.fol]
    +x:1790 [binder, in gaia_hydras.nfwfgaia]
    +x:18 [binder, in gaia_hydras.T1Choice]
    +x:18 [binder, in hydras.solutions_exercises.MinPR2]
    +x:18 [binder, in additions.Euclidean_Chains]
    +x:18 [binder, in hydras.Ackermann.Deduction]
    +x:18 [binder, in hydras.Schutte.PartialFun]
    +x:18 [binder, in hydras.Prelude.MoreDecidable]
    +x:18 [binder, in hydras.Ackermann.NN]
    +x:18 [binder, in hydras.Schutte.Countable]
    +X:18 [binder, in hydras.Prelude.MoreVectors]
    +x:180 [binder, in hydras.Prelude.Iterates]
    +x:180 [binder, in hydras.Ackermann.fol]
    +x:181 [binder, in Goedel.PRrepresentable]
    +x:181 [binder, in hydras.Ackermann.subAll]
    +x:181 [binder, in hydras.Prelude.Iterates]
    +x:181 [binder, in hydras.Ackermann.fol]
    +X:182 [binder, in hydras.Prelude.MoreLists]
    +x:183 [binder, in Goedel.PRrepresentable]
    +x:183 [binder, in hydras.Prelude.Iterates]
    +x:183 [binder, in hydras.OrdinalNotations.ON_Generic]
    +x:184 [binder, in hydras.Ackermann.subAll]
    +x:184 [binder, in hydras.Ackermann.folProp]
    +x:1846 [binder, in gaia_hydras.nfwfgaia]
    +x:185 [binder, in Goedel.PRrepresentable]
    +x:185 [binder, in hydras.Ackermann.codeFreeVar]
    +x:186 [binder, in hydras.Ackermann.codeFreeVar]
    +X:186 [binder, in hydras.Prelude.MoreLists]
    +x:187 [binder, in Goedel.PRrepresentable]
    +x:187 [binder, in hydras.Ackermann.subAll]
    +x:1873 [binder, in gaia_hydras.nfwfgaia]
    +x:188 [binder, in hydras.Ackermann.model]
    +x:1882 [binder, in gaia_hydras.nfwfgaia]
    +x:189 [binder, in Goedel.PRrepresentable]
    +x:189 [binder, in hydras.Prelude.Iterates]
    +x:189 [binder, in hydras.Prelude.MoreLists]
    +x:1890 [binder, in gaia_hydras.nfwfgaia]
    +x:1891 [binder, in gaia_hydras.nfwfgaia]
    +x:1892 [binder, in gaia_hydras.nfwfgaia]
    +x:1896 [binder, in gaia_hydras.nfwfgaia]
    +x:1899 [binder, in gaia_hydras.nfwfgaia]
    +x:19 [binder, in additions.Compatibility]
    +x:19 [binder, in hydras.Prelude.Restriction]
    +x:19 [binder, in hydras.Schutte.GRelations]
    +x:19 [binder, in hydras.solutions_exercises.MorePRExamples]
    +x:19 [binder, in hydras.Prelude.MoreOrders]
    +x:19 [binder, in hydras.Ackermann.Deduction]
    +x:19 [binder, in hydras.Ackermann.folLogic3]
    +x:19 [binder, in additions.Addition_Chains]
    +x:19 [binder, in hydras.Ackermann.NN]
    +x:190 [binder, in hydras.Ackermann.subAll]
    +x:190 [binder, in hydras.Prelude.MoreLists]
    +x:190 [binder, in hydras.Ackermann.model]
    +x:1904 [binder, in gaia_hydras.nfwfgaia]
    +x:1908 [binder, in gaia_hydras.nfwfgaia]
    +x:191 [binder, in Goedel.PRrepresentable]
    +x:191 [binder, in hydras.Ackermann.subAll]
    +x:1913 [binder, in gaia_hydras.nfwfgaia]
    +x:1917 [binder, in gaia_hydras.nfwfgaia]
    +x:192 [binder, in hydras.Ackermann.subAll]
    +x:1922 [binder, in gaia_hydras.nfwfgaia]
    +x:1928 [binder, in gaia_hydras.nfwfgaia]
    +x:193 [binder, in hydras.rpo.term]
    +x:193 [binder, in Goedel.PRrepresentable]
    +x:193 [binder, in hydras.Ackermann.subAll]
    +x:193 [binder, in hydras.Prelude.MoreLists]
    +x:1934 [binder, in gaia_hydras.nfwfgaia]
    +x:1938 [binder, in gaia_hydras.nfwfgaia]
    +x:194 [binder, in hydras.Ackermann.subAll]
    +x:194 [binder, in additions.Addition_Chains]
    +x:1943 [binder, in gaia_hydras.nfwfgaia]
    +x:1948 [binder, in gaia_hydras.nfwfgaia]
    +x:195 [binder, in Goedel.PRrepresentable]
    +x:195 [binder, in hydras.Ackermann.subAll]
    +x:1954 [binder, in gaia_hydras.nfwfgaia]
    +x:196 [binder, in hydras.Ackermann.subAll]
    +x:196 [binder, in hydras.Prelude.Iterates]
    +x:196 [binder, in hydras.OrdinalNotations.ON_Generic]
    +x:1960 [binder, in gaia_hydras.nfwfgaia]
    +x:197 [binder, in Goedel.PRrepresentable]
    +x:197 [binder, in additions.Addition_Chains]
    +x:1972 [binder, in gaia_hydras.nfwfgaia]
    +x:1978 [binder, in gaia_hydras.nfwfgaia]
    +x:198 [binder, in hydras.Ackermann.subAll]
    +x:1983 [binder, in gaia_hydras.nfwfgaia]
    +x:1988 [binder, in gaia_hydras.nfwfgaia]
    +x:199 [binder, in Goedel.PRrepresentable]
    +x:199 [binder, in hydras.Ackermann.codeFreeVar]
    +x:1994 [binder, in gaia_hydras.nfwfgaia]
    +x:1999 [binder, in gaia_hydras.nfwfgaia]
    +x:2 [binder, in hydras.MoreAck.AckNotPR]
    +x:2 [binder, in Goedel.rosserPA]
    +X:2 [binder, in hydras.Ackermann.Deduction]
    +x:2 [binder, in hydras.Prelude.MoreDecidable]
    +x:20 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +x:20 [binder, in hydras.Prelude.Iterates]
    +x:20 [binder, in hydras.Ackermann.subProp]
    +x:20 [binder, in gaia_hydras.T1Bridge]
    +x:20 [binder, in hydras.Ackermann.Deduction]
    +X:20 [binder, in hydras.Schutte.Schutte_basics]
    +x:200 [binder, in hydras.Ackermann.subAll]
    +x:200 [binder, in hydras.Ackermann.codeFreeVar]
    +x:200 [binder, in gaia_hydras.nfwfgaia]
    +x:201 [binder, in Goedel.PRrepresentable]
    +x:201 [binder, in hydras.Ackermann.subAll]
    +x:201 [binder, in additions.Euclidean_Chains]
    +x:2010 [binder, in gaia_hydras.nfwfgaia]
    +x:2016 [binder, in gaia_hydras.nfwfgaia]
    +x:2017 [binder, in gaia_hydras.nfwfgaia]
    +x:2018 [binder, in gaia_hydras.nfwfgaia]
    +x:202 [binder, in hydras.Ackermann.subAll]
    +x:202 [binder, in hydras.Prelude.Iterates]
    +x:2020 [binder, in gaia_hydras.nfwfgaia]
    +x:203 [binder, in Goedel.PRrepresentable]
    +x:203 [binder, in hydras.Ackermann.subAll]
    +x:203 [binder, in hydras.Prelude.Iterates]
    +x:2033 [binder, in gaia_hydras.nfwfgaia]
    +x:2034 [binder, in gaia_hydras.nfwfgaia]
    +x:2035 [binder, in gaia_hydras.nfwfgaia]
    +x:204 [binder, in hydras.Ackermann.subAll]
    +x:204 [binder, in hydras.Prelude.MoreLists]
    +x:2040 [binder, in gaia_hydras.nfwfgaia]
    +x:2045 [binder, in gaia_hydras.nfwfgaia]
    +x:205 [binder, in Goedel.PRrepresentable]
    +x:205 [binder, in hydras.Ackermann.subAll]
    +x:2057 [binder, in gaia_hydras.nfwfgaia]
    +x:2058 [binder, in gaia_hydras.nfwfgaia]
    +x:206 [binder, in hydras.Ackermann.subAll]
    +x:206 [binder, in hydras.Prelude.Iterates]
    +x:2068 [binder, in gaia_hydras.nfwfgaia]
    +x:207 [binder, in Goedel.PRrepresentable]
    +x:2076 [binder, in gaia_hydras.nfwfgaia]
    +x:208 [binder, in hydras.Prelude.Iterates]
    +x:208 [binder, in hydras.Prelude.MoreLists]
    +x:2081 [binder, in gaia_hydras.nfwfgaia]
    +x:2089 [binder, in gaia_hydras.nfwfgaia]
    +x:209 [binder, in Goedel.PRrepresentable]
    +x:2095 [binder, in gaia_hydras.nfwfgaia]
    +x:2096 [binder, in gaia_hydras.nfwfgaia]
    +x:2098 [binder, in gaia_hydras.nfwfgaia]
    +x:21 [binder, in additions.AM]
    +x:21 [binder, in additions.Pow_variant]
    +x:21 [binder, in additions.Pow]
    +x:21 [binder, in hydras.Ackermann.Deduction]
    +x:21 [binder, in hydras.Schutte.Schutte_basics]
    +x:21 [binder, in hydras.OrdinalNotations.ON_Generic]
    +x:21 [binder, in hydras.Ackermann.folLogic3]
    +x:21 [binder, in hydras.MoreAck.FolExamples]
    +x:2100 [binder, in gaia_hydras.nfwfgaia]
    +x:2103 [binder, in gaia_hydras.nfwfgaia]
    +x:2104 [binder, in gaia_hydras.nfwfgaia]
    +x:2106 [binder, in gaia_hydras.nfwfgaia]
    +x:211 [binder, in Goedel.PRrepresentable]
    +x:213 [binder, in Goedel.PRrepresentable]
    +x:214 [binder, in hydras.Prelude.MoreLists]
    +x:214 [binder, in hydras.Ackermann.model]
    +x:214 [binder, in additions.Euclidean_Chains]
    +x:215 [binder, in Goedel.PRrepresentable]
    +x:216 [binder, in hydras.Ackermann.model]
    +x:216 [binder, in additions.Euclidean_Chains]
    +X:216 [binder, in hydras.Schutte.Schutte_basics]
    +x:217 [binder, in Goedel.PRrepresentable]
    +x:217 [binder, in hydras.Ackermann.cPair]
    +x:218 [binder, in hydras.Prelude.Merge_Sort]
    +x:218 [binder, in hydras.Schutte.Schutte_basics]
    +x:219 [binder, in Goedel.PRrepresentable]
    +x:219 [binder, in hydras.Ackermann.cPair]
    +x:22 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +x:22 [binder, in hydras.Prelude.Iterates]
    +x:22 [binder, in hydras.Prelude.MoreLists]
    +x:22 [binder, in additions.Compatibility]
    +x:22 [binder, in hydras.Prelude.Restriction]
    +x:22 [binder, in Goedel.rosserPA]
    +x:22 [binder, in hydras.Ackermann.fol]
    +x:22 [binder, in hydras.Schutte.Well_Orders]
    +x:22 [binder, in hydras.Ackermann.folLogic3]
    +x:22 [binder, in hydras.Schutte.Ordering_Functions]
    +x:22 [binder, in Goedel.rosser]
    +x:22 [binder, in hydras.Schutte.Countable]
    +x:220 [binder, in hydras.Prelude.Merge_Sort]
    +x:220 [binder, in hydras.Schutte.Schutte_basics]
    +x:221 [binder, in Goedel.PRrepresentable]
    +x:221 [binder, in hydras.Prelude.Iterates]
    +x:222 [binder, in hydras.Prelude.Merge_Sort]
    +x:222 [binder, in hydras.Schutte.Schutte_basics]
    +x:223 [binder, in hydras.Ackermann.cPair]
    +x:223 [binder, in hydras.Schutte.Schutte_basics]
    +x:224 [binder, in hydras.Prelude.Iterates]
    +x:224 [binder, in hydras.Prelude.Merge_Sort]
    +x:225 [binder, in Goedel.PRrepresentable]
    +x:225 [binder, in hydras.Prelude.Iterates]
    +x:225 [binder, in hydras.Schutte.Schutte_basics]
    +x:226 [binder, in hydras.Prelude.Merge_Sort]
    +x:227 [binder, in hydras.Ackermann.cPair]
    +X:227 [binder, in hydras.Schutte.Schutte_basics]
    +x:228 [binder, in hydras.Prelude.Iterates]
    +x:228 [binder, in hydras.Prelude.Merge_Sort]
    +X:228 [binder, in hydras.Schutte.Schutte_basics]
    +x:229 [binder, in hydras.Ackermann.codePA]
    +x:23 [binder, in hydras.Ackermann.folProp]
    +x:23 [binder, in gaia_hydras.T1Bridge]
    +x:23 [binder, in Goedel.rosserPA]
    +x:23 [binder, in additions.Euclidean_Chains]
    +x:23 [binder, in hydras.OrdinalNotations.ON_Generic]
    +x:23 [binder, in hydras.Ackermann.NN]
    +x:23 [binder, in hydras.MoreAck.FolExamples]
    +x:230 [binder, in hydras.Prelude.Merge_Sort]
    +x:230 [binder, in hydras.Ackermann.codePA]
    +x:231 [binder, in hydras.Ackermann.cPair]
    +x:232 [binder, in Goedel.PRrepresentable]
    +x:232 [binder, in hydras.Prelude.Merge_Sort]
    +x:234 [binder, in hydras.Prelude.Merge_Sort]
    +x:235 [binder, in additions.AM]
    +x:235 [binder, in hydras.Ackermann.folProp]
    +x:236 [binder, in hydras.Prelude.Merge_Sort]
    +x:237 [binder, in hydras.Ackermann.folProp]
    +x:238 [binder, in hydras.Prelude.Merge_Sort]
    +x:239 [binder, in hydras.Ackermann.folProp]
    +x:24 [binder, in additions.Compatibility]
    +x:24 [binder, in hydras.Prelude.Sort_spec]
    +x:24 [binder, in hydras.Ackermann.subProp]
    +x:24 [binder, in hydras.Schutte.Countable]
    +x:241 [binder, in hydras.Ackermann.folProp]
    +x:242 [binder, in additions.AM]
    +x:243 [binder, in hydras.Ackermann.folProp]
    +x:245 [binder, in hydras.Ackermann.subAll]
    +x:245 [binder, in hydras.Ackermann.folProp]
    +x:245 [binder, in additions.Addition_Chains]
    +x:246 [binder, in hydras.Ackermann.subAll]
    +x:247 [binder, in hydras.Ackermann.folProp]
    +x:248 [binder, in hydras.Ackermann.cPair]
    +x:248 [binder, in additions.Addition_Chains]
    +x:249 [binder, in Goedel.PRrepresentable]
    +x:25 [binder, in hydras.Prelude.Restriction]
    +x:25 [binder, in Goedel.fixPoint]
    +x:25 [binder, in hydras.Ackermann.cPair]
    +x:25 [binder, in hydras.Schutte.Well_Orders]
    +x:25 [binder, in additions.Addition_Chains]
    +x:25 [binder, in hydras.Ackermann.NN]
    +x:25 [binder, in hydras.MoreAck.FolExamples]
    +x:250 [binder, in hydras.Ackermann.cPair]
    +x:250 [binder, in gaia_hydras.nfwfgaia]
    +x:251 [binder, in Goedel.PRrepresentable]
    +x:251 [binder, in additions.Addition_Chains]
    +x:253 [binder, in Goedel.PRrepresentable]
    +x:254 [binder, in hydras.Ackermann.cPair]
    +x:255 [binder, in Goedel.PRrepresentable]
    +x:256 [binder, in hydras.Ackermann.cPair]
    +x:257 [binder, in Goedel.PRrepresentable]
    +x:258 [binder, in hydras.Ackermann.cPair]
    +x:258 [binder, in additions.Addition_Chains]
    +x:259 [binder, in Goedel.PRrepresentable]
    +x:259 [binder, in hydras.Ackermann.subAll]
    +x:259 [binder, in additions.Addition_Chains]
    +x:26 [binder, in hydras.Ackermann.folProp]
    +x:26 [binder, in hydras.MoreAck.AckNotPR]
    +x:26 [binder, in hydras.Schutte.Critical]
    +x:26 [binder, in hydras.Epsilon0.F_omega]
    +x:26 [binder, in hydras.Prelude.MoreOrders]
    +x:26 [binder, in Goedel.rosserPA]
    +x:26 [binder, in hydras.OrdinalNotations.ON_Finite]
    +x:26 [binder, in Goedel.rosser]
    +x:260 [binder, in hydras.Ackermann.subAll]
    +x:261 [binder, in hydras.Ackermann.subAll]
    +x:261 [binder, in hydras.Ackermann.cPair]
    +x:261 [binder, in additions.Addition_Chains]
    +x:262 [binder, in hydras.Ackermann.subAll]
    +x:263 [binder, in hydras.Ackermann.subAll]
    +x:263 [binder, in hydras.Ackermann.folProp]
    +x:264 [binder, in Goedel.PRrepresentable]
    +x:266 [binder, in hydras.Ackermann.subAll]
    +x:267 [binder, in hydras.Ackermann.subAll]
    +x:268 [binder, in Goedel.PRrepresentable]
    +x:268 [binder, in hydras.Ackermann.subAll]
    +x:269 [binder, in hydras.Ackermann.subAll]
    +x:27 [binder, in hydras.Prelude.MoreLists]
    +x:27 [binder, in hydras.Prelude.Sort_spec]
    +x:27 [binder, in additions.More_on_positive]
    +x:27 [binder, in gaia_hydras.T1Bridge]
    +x:27 [binder, in hydras.Ackermann.cPair]
    +x:27 [binder, in hydras.Ackermann.fol]
    +x:27 [binder, in hydras.Ackermann.NN]
    +x:270 [binder, in hydras.Ackermann.subAll]
    +X:270 [binder, in additions.Euclidean_Chains]
    +x:270 [binder, in gaia_hydras.nfwfgaia]
    +x:271 [binder, in hydras.Ackermann.subAll]
    +x:271 [binder, in gaia_hydras.nfwfgaia]
    +x:272 [binder, in hydras.Ackermann.subAll]
    +x:272 [binder, in additions.Addition_Chains]
    +x:273 [binder, in hydras.Ackermann.subAll]
    +x:274 [binder, in hydras.Ackermann.subAll]
    +x:274 [binder, in additions.Addition_Chains]
    +x:275 [binder, in Goedel.PRrepresentable]
    +x:275 [binder, in hydras.Ackermann.subAll]
    +x:276 [binder, in hydras.Ackermann.subAll]
    +X:276 [binder, in additions.Euclidean_Chains]
    +x:276 [binder, in gaia_hydras.nfwfgaia]
    +x:277 [binder, in hydras.Ackermann.subAll]
    +x:278 [binder, in hydras.Ackermann.subAll]
    +x:279 [binder, in hydras.Ackermann.subAll]
    +x:28 [binder, in additions.Pow_variant]
    +x:28 [binder, in additions.Pow]
    +x:28 [binder, in hydras.Ackermann.subProp]
    +x:28 [binder, in hydras.Ackermann.PA]
    +x:28 [binder, in additions.Monoid_def]
    +X:28 [binder, in hydras.Schutte.Schutte_basics]
    +x:28 [binder, in hydras.OrdinalNotations.ON_Generic]
    +x:28 [binder, in hydras.Schutte.Well_Orders]
    +x:28 [binder, in hydras.Ackermann.NN]
    +x:280 [binder, in hydras.Ackermann.subAll]
    +x:280 [binder, in hydras.Ackermann.folProp]
    +x:281 [binder, in hydras.Ackermann.subAll]
    +x:281 [binder, in gaia_hydras.nfwfgaia]
    +x:284 [binder, in hydras.Ackermann.folProp]
    +x:285 [binder, in gaia_hydras.nfwfgaia]
    +x:286 [binder, in hydras.Ackermann.folProp]
    +x:287 [binder, in gaia_hydras.nfwfgaia]
    +x:288 [binder, in hydras.Ackermann.folProp]
    +x:288 [binder, in hydras.Ackermann.fol]
    +x:289 [binder, in hydras.Ackermann.fol]
    +x:29 [binder, in Goedel.fixPoint]
    +x:29 [binder, in hydras.Ackermann.folProp]
    +x:29 [binder, in additions.More_on_positive]
    +x:29 [binder, in hydras.MoreAck.AckNotPR]
    +x:29 [binder, in hydras.Epsilon0.Large_Sets]
    +x:29 [binder, in hydras.Schutte.Critical]
    +x:29 [binder, in hydras.Epsilon0.F_omega]
    +x:29 [binder, in hydras.Ackermann.cPair]
    +x:29 [binder, in hydras.Ackermann.fol]
    +X:29 [binder, in hydras.Prelude.MoreVectors]
    +x:290 [binder, in hydras.rpo.term]
    +x:290 [binder, in hydras.Ackermann.folProp]
    +x:292 [binder, in hydras.Ackermann.subAll]
    +x:292 [binder, in hydras.Ackermann.folProp]
    +x:293 [binder, in hydras.Ackermann.subAll]
    +x:293 [binder, in additions.Addition_Chains]
    +x:294 [binder, in hydras.Ackermann.folProp]
    +x:297 [binder, in gaia_hydras.nfwfgaia]
    +x:3 [binder, in Goedel.PRrepresentable]
    +x:3 [binder, in hydras.Ackermann.PAconsistent]
    +x:3 [binder, in hydras.Ackermann.LNN]
    +x:3 [binder, in hydras.Ackermann.LNT]
    +x:3 [binder, in hydras.MoreAck.Iterate_compat]
    +x:30 [binder, in Goedel.PRrepresentable]
    +x:30 [binder, in hydras.Prelude.Restriction]
    +x:30 [binder, in hydras.Ackermann.folProp]
    +x:30 [binder, in gaia_hydras.T1Bridge]
    +x:30 [binder, in hydras.Ackermann.PA]
    +x:30 [binder, in additions.Monoid_instances]
    +X:30 [binder, in hydras.Schutte.Schutte_basics]
    +x:300 [binder, in gaia_hydras.nfwfgaia]
    +x:301 [binder, in Goedel.PRrepresentable]
    +x:301 [binder, in hydras.Ackermann.subAll]
    +x:302 [binder, in hydras.Ackermann.subAll]
    +x:302 [binder, in gaia_hydras.nfwfgaia]
    +x:303 [binder, in hydras.Ackermann.subAll]
    +x:304 [binder, in hydras.Ackermann.subAll]
    +x:305 [binder, in hydras.Ackermann.subAll]
    +x:306 [binder, in hydras.Ackermann.subAll]
    +x:307 [binder, in hydras.Ackermann.subAll]
    +x:308 [binder, in hydras.Ackermann.subAll]
    +x:309 [binder, in hydras.Ackermann.subAll]
    +x:31 [binder, in hydras.Schutte.Critical]
    +x:31 [binder, in hydras.solutions_exercises.MultisetWf]
    +x:31 [binder, in hydras.Epsilon0.F_omega]
    +x:31 [binder, in hydras.Ackermann.cPair]
    +x:31 [binder, in hydras.Schutte.Well_Orders]
    +x:310 [binder, in hydras.Ackermann.subAll]
    +x:311 [binder, in hydras.Ackermann.subAll]
    +x:311 [binder, in gaia_hydras.nfwfgaia]
    +x:312 [binder, in hydras.Ackermann.subAll]
    +x:313 [binder, in hydras.Ackermann.subAll]
    +x:314 [binder, in gaia_hydras.nfwfgaia]
    +x:315 [binder, in gaia_hydras.nfwfgaia]
    +x:316 [binder, in gaia_hydras.nfwfgaia]
    +x:317 [binder, in gaia_hydras.nfwfgaia]
    +x:318 [binder, in hydras.Ackermann.subAll]
    +x:318 [binder, in gaia_hydras.nfwfgaia]
    +x:319 [binder, in gaia_hydras.nfwfgaia]
    +x:32 [binder, in hydras.Ackermann.folLogic2]
    +x:32 [binder, in hydras.Ackermann.PA]
    +x:32 [binder, in hydras.Prelude.MoreOrders]
    +x:32 [binder, in additions.Monoid_def]
    +x:32 [binder, in additions.Monoid_instances]
    +x:32 [binder, in additions.fib]
    +x:32 [binder, in hydras.Ackermann.NN]
    +x:320 [binder, in gaia_hydras.nfwfgaia]
    +x:322 [binder, in gaia_hydras.nfwfgaia]
    +x:323 [binder, in hydras.Ackermann.subAll]
    +x:324 [binder, in hydras.Ackermann.subAll]
    +x:324 [binder, in gaia_hydras.nfwfgaia]
    +x:325 [binder, in hydras.Ackermann.subAll]
    +x:326 [binder, in hydras.Ackermann.subAll]
    +x:327 [binder, in hydras.Ackermann.subAll]
    +x:328 [binder, in hydras.Ackermann.subAll]
    +x:329 [binder, in gaia_hydras.nfwfgaia]
    +x:33 [binder, in hydras.Ackermann.subProp]
    +x:33 [binder, in hydras.Epsilon0.F_omega]
    +x:33 [binder, in hydras.Ackermann.PA]
    +x:33 [binder, in Goedel.rosserPA]
    +x:33 [binder, in hydras.Ackermann.fol]
    +x:33 [binder, in additions.fib]
    +X:33 [binder, in hydras.Schutte.Well_Orders]
    +x:33 [binder, in Goedel.rosser]
    +x:330 [binder, in hydras.Ackermann.subAll]
    +x:330 [binder, in gaia_hydras.nfwfgaia]
    +x:332 [binder, in gaia_hydras.nfwfgaia]
    +x:333 [binder, in hydras.Ackermann.subAll]
    +x:333 [binder, in hydras.Ackermann.fol]
    +x:334 [binder, in hydras.Ackermann.fol]
    +x:335 [binder, in hydras.Ackermann.fol]
    +x:339 [binder, in gaia_hydras.nfwfgaia]
    +x:34 [binder, in Goedel.PRrepresentable]
    +x:34 [binder, in additions.Pow_variant]
    +x:34 [binder, in additions.Pow]
    +x:34 [binder, in hydras.Epsilon0.Large_Sets]
    +x:34 [binder, in hydras.Schutte.Critical]
    +x:34 [binder, in additions.Monoid_def]
    +x:34 [binder, in additions.Monoid_instances]
    +x:34 [binder, in hydras.Ackermann.NN]
    +x:34 [binder, in Goedel.rosser]
    +x:34 [binder, in gaia_hydras.nfwfgaia]
    +x:341 [binder, in gaia_hydras.nfwfgaia]
    +x:342 [binder, in gaia_hydras.nfwfgaia]
    +x:343 [binder, in gaia_hydras.nfwfgaia]
    +x:345 [binder, in gaia_hydras.nfwfgaia]
    +x:346 [binder, in hydras.Ackermann.primRec]
    +x:347 [binder, in gaia_hydras.nfwfgaia]
    +x:349 [binder, in gaia_hydras.nfwfgaia]
    +x:35 [binder, in hydras.Prelude.Sort_spec]
    +x:35 [binder, in hydras.Epsilon0.F_omega]
    +x:35 [binder, in hydras.Prelude.MoreOrders]
    +x:350 [binder, in hydras.Ackermann.primRec]
    +x:351 [binder, in gaia_hydras.nfwfgaia]
    +x:354 [binder, in hydras.Ackermann.subAll]
    +x:355 [binder, in hydras.Ackermann.subAll]
    +x:355 [binder, in hydras.Ackermann.primRec]
    +x:358 [binder, in hydras.Ackermann.primRec]
    +x:36 [binder, in hydras.Ackermann.folLogic2]
    +x:36 [binder, in hydras.Schutte.Critical]
    +x:36 [binder, in hydras.Ackermann.fol]
    +X:36 [binder, in hydras.Schutte.Well_Orders]
    +x:36 [binder, in hydras.Ackermann.NN]
    +x:360 [binder, in hydras.Ackermann.subAll]
    +x:361 [binder, in hydras.Ackermann.subAll]
    +x:362 [binder, in hydras.Ackermann.subAll]
    +x:363 [binder, in hydras.Ackermann.subAll]
    +x:363 [binder, in hydras.Ackermann.primRec]
    +x:365 [binder, in hydras.Ackermann.subAll]
    +x:365 [binder, in gaia_hydras.nfwfgaia]
    +x:366 [binder, in hydras.Ackermann.subAll]
    +x:368 [binder, in hydras.Ackermann.subAll]
    +x:369 [binder, in hydras.Ackermann.primRec]
    +x:37 [binder, in hydras.Prelude.Restriction]
    +x:37 [binder, in additions.FirstSteps]
    +x:37 [binder, in hydras.Ackermann.PA]
    +x:37 [binder, in additions.Monoid_instances]
    +X:37 [binder, in hydras.Schutte.Schutte_basics]
    +x:37 [binder, in additions.fib]
    +x:37 [binder, in hydras.Ackermann.NN]
    +x:370 [binder, in gaia_hydras.nfwfgaia]
    +x:374 [binder, in hydras.Ackermann.subAll]
    +x:375 [binder, in hydras.Ackermann.subAll]
    +x:376 [binder, in Goedel.PRrepresentable]
    +x:376 [binder, in hydras.Ackermann.primRec]
    +x:377 [binder, in hydras.Ackermann.subAll]
    +x:378 [binder, in Goedel.PRrepresentable]
    +x:378 [binder, in hydras.Ackermann.subAll]
    +x:378 [binder, in hydras.Ackermann.fol]
    +x:378 [binder, in gaia_hydras.nfwfgaia]
    +x:379 [binder, in hydras.Ackermann.fol]
    +x:379 [binder, in gaia_hydras.nfwfgaia]
    +x:38 [binder, in hydras.Prelude.MoreLists]
    +x:38 [binder, in hydras.Ackermann.subProp]
    +x:38 [binder, in Goedel.rosserPA]
    +x:38 [binder, in additions.Monoid_instances]
    +x:38 [binder, in gaia_hydras.nfwfgaia]
    +x:380 [binder, in Goedel.PRrepresentable]
    +x:380 [binder, in hydras.Ackermann.subAll]
    +x:380 [binder, in hydras.Ackermann.primRec]
    +x:382 [binder, in Goedel.PRrepresentable]
    +x:382 [binder, in gaia_hydras.nfwfgaia]
    +x:383 [binder, in gaia_hydras.nfwfgaia]
    +x:386 [binder, in hydras.Ackermann.primRec]
    +x:389 [binder, in gaia_hydras.nfwfgaia]
    +x:39 [binder, in hydras.Ackermann.PA]
    +x:39 [binder, in hydras.Prelude.MoreOrders]
    +x:39 [binder, in hydras.Ackermann.fol]
    +x:39 [binder, in gaia_hydras.nfwfgaia]
    +x:392 [binder, in gaia_hydras.nfwfgaia]
    +x:393 [binder, in hydras.Ackermann.primRec]
    +x:399 [binder, in gaia_hydras.nfwfgaia]
    +x:4 [binder, in hydras.Prelude.Iterates]
    +x:4 [binder, in hydras.Ackermann.NN2PA]
    +x:4 [binder, in additions.FirstSteps]
    +X:4 [binder, in hydras.Schutte.Lub]
    +x:4 [binder, in hydras.Ackermann.Deduction]
    +x:4 [binder, in gaia_hydras.onType]
    +x:4 [binder, in hydras.Ackermann.wConsistent]
    +x:4 [binder, in hydras.MoreAck.PrimRecExamples]
    +x:40 [binder, in additions.AM]
    +x:40 [binder, in hydras.Prelude.MoreLists]
    +x:40 [binder, in additions.Compatibility]
    +x:40 [binder, in hydras.Schutte.Critical]
    +x:40 [binder, in gaia_hydras.T1Bridge]
    +x:40 [binder, in hydras.Ackermann.primRec]
    +x:40 [binder, in hydras.OrdinalNotations.ON_Generic]
    +X:40 [binder, in hydras.Schutte.Well_Orders]
    +x:40 [binder, in hydras.Ackermann.NN]
    +x:400 [binder, in hydras.Ackermann.primRec]
    +x:401 [binder, in hydras.Ackermann.folProp]
    +x:408 [binder, in hydras.Ackermann.primRec]
    +x:41 [binder, in additions.Compatibility]
    +x:41 [binder, in hydras.Ackermann.PA]
    +x:41 [binder, in hydras.Prelude.MoreOrders]
    +x:41 [binder, in Goedel.rosserPA]
    +x:41 [binder, in hydras.Ackermann.primRec]
    +x:41 [binder, in hydras.Schutte.Ordering_Functions]
    +x:411 [binder, in hydras.Epsilon0.T1]
    +x:412 [binder, in hydras.Ackermann.primRec]
    +x:42 [binder, in hydras.Prelude.Iterates]
    +x:42 [binder, in hydras.Ackermann.model]
    +x:42 [binder, in hydras.Ackermann.PA]
    +x:42 [binder, in hydras.Ackermann.NN]
    +x:42 [binder, in hydras.Schutte.Ordering_Functions]
    +X:42 [binder, in hydras.MoreAck.FolExamples]
    +x:423 [binder, in hydras.Ackermann.fol]
    +x:425 [binder, in hydras.Ackermann.primRec]
    +x:426 [binder, in hydras.Ackermann.fol]
    +x:429 [binder, in hydras.Ackermann.folProp]
    +x:43 [binder, in additions.FirstSteps]
    +x:43 [binder, in hydras.Ackermann.subProp]
    +x:43 [binder, in hydras.OrdinalNotations.ON_Generic]
    +X:43 [binder, in hydras.Schutte.Well_Orders]
    +x:431 [binder, in hydras.Ackermann.primRec]
    +x:434 [binder, in hydras.Ackermann.folProp]
    +x:434 [binder, in gaia_hydras.nfwfgaia]
    +x:435 [binder, in gaia_hydras.nfwfgaia]
    +x:438 [binder, in hydras.Gamma0.Gamma0]
    +x:439 [binder, in hydras.Ackermann.primRec]
    +x:44 [binder, in additions.Compatibility]
    +x:44 [binder, in hydras.Prelude.Restriction]
    +x:44 [binder, in additions.Pow_variant]
    +x:44 [binder, in additions.Pow]
    +x:44 [binder, in hydras.Prelude.Sort_spec]
    +x:44 [binder, in hydras.Schutte.Well_Orders]
    +x:44 [binder, in hydras.Ackermann.NN]
    +x:440 [binder, in hydras.Ackermann.folProp]
    +x:440 [binder, in hydras.Gamma0.Gamma0]
    +x:443 [binder, in hydras.Gamma0.Gamma0]
    +x:447 [binder, in hydras.Ackermann.primRec]
    +x:448 [binder, in hydras.Gamma0.Gamma0]
    +x:45 [binder, in hydras.Ackermann.NN]
    +x:452 [binder, in hydras.Ackermann.primRec]
    +x:46 [binder, in hydras.Prelude.MoreLists]
    +x:46 [binder, in hydras.Ackermann.folProp]
    +x:46 [binder, in hydras.Ackermann.PA]
    +x:46 [binder, in hydras.OrdinalNotations.ON_Generic]
    +x:46 [binder, in hydras.MoreAck.FolExamples]
    +x:460 [binder, in hydras.Ackermann.primRec]
    +x:465 [binder, in hydras.Ackermann.primRec]
    +x:469 [binder, in hydras.Ackermann.primRec]
    +x:47 [binder, in hydras.Ackermann.model]
    +x:47 [binder, in hydras.Ackermann.subProp]
    +x:47 [binder, in hydras.Schutte.Critical]
    +x:47 [binder, in gaia_hydras.T1Bridge]
    +X:47 [binder, in hydras.Schutte.Well_Orders]
    +x:473 [binder, in hydras.Ackermann.primRec]
    +x:473 [binder, in additions.Euclidean_Chains]
    +x:475 [binder, in additions.Euclidean_Chains]
    +x:477 [binder, in additions.Euclidean_Chains]
    +x:479 [binder, in additions.Euclidean_Chains]
    +x:48 [binder, in additions.AM]
    +x:48 [binder, in hydras.Ackermann.folProp]
    +x:48 [binder, in hydras.Ackermann.PA]
    +x:480 [binder, in additions.Euclidean_Chains]
    +x:481 [binder, in hydras.Ackermann.primRec]
    +x:486 [binder, in hydras.Ackermann.primRec]
    +X:49 [binder, in hydras.Schutte.Schutte_basics]
    +x:49 [binder, in hydras.MoreAck.PrimRecExamples]
    +x:491 [binder, in hydras.Ackermann.primRec]
    +x:496 [binder, in hydras.Ackermann.primRec]
    +x:5 [binder, in hydras.solutions_exercises.MinPR2]
    +x:5 [binder, in hydras.Ackermann.PAconsistent]
    +x:5 [binder, in additions.Compatibility]
    +x:5 [binder, in hydras.Ackermann.LNN]
    +x:5 [binder, in hydras.Ackermann.LNT]
    +x:5 [binder, in hydras.MoreAck.AckNotPR]
    +x:5 [binder, in hydras.Ackermann.subProp]
    +x:5 [binder, in additions.Euclidean_Chains]
    +x:5 [binder, in additions.Naive]
    +X:5 [binder, in hydras.Ackermann.Deduction]
    +x:5 [binder, in hydras.Prelude.STDPP_compat]
    +X:5 [binder, in hydras.Schutte.Well_Orders]
    +x:5 [binder, in additions.Addition_Chains]
    +x:5 [binder, in hydras.Ackermann.NN]
    +x:5 [binder, in hydras.rpo.closure]
    +x:5 [binder, in hydras.Ackermann.Languages]
    +x:50 [binder, in hydras.Ackermann.PA]
    +X:50 [binder, in hydras.Schutte.Schutte_basics]
    +x:500 [binder, in hydras.Ackermann.primRec]
    +x:500 [binder, in gaia_hydras.nfwfgaia]
    +x:503 [binder, in gaia_hydras.nfwfgaia]
    +x:506 [binder, in gaia_hydras.nfwfgaia]
    +x:507 [binder, in gaia_hydras.nfwfgaia]
    +x:509 [binder, in gaia_hydras.nfwfgaia]
    +x:51 [binder, in hydras.Ackermann.model]
    +x:51 [binder, in hydras.Ackermann.subProp]
    +x:51 [binder, in hydras.Ackermann.PA]
    +x:515 [binder, in gaia_hydras.nfwfgaia]
    +x:52 [binder, in hydras.Ackermann.folProp]
    +x:520 [binder, in gaia_hydras.nfwfgaia]
    +x:525 [binder, in gaia_hydras.nfwfgaia]
    +x:528 [binder, in gaia_hydras.nfwfgaia]
    +x:53 [binder, in additions.Pow_variant]
    +x:53 [binder, in additions.Pow]
    +x:532 [binder, in gaia_hydras.nfwfgaia]
    +x:535 [binder, in gaia_hydras.nfwfgaia]
    +x:536 [binder, in gaia_hydras.nfwfgaia]
    +x:537 [binder, in gaia_hydras.nfwfgaia]
    +x:538 [binder, in gaia_hydras.nfwfgaia]
    +x:539 [binder, in gaia_hydras.nfwfgaia]
    +x:54 [binder, in hydras.Ackermann.fol]
    +x:54 [binder, in hydras.MoreAck.PrimRecExamples]
    +x:540 [binder, in gaia_hydras.nfwfgaia]
    +x:541 [binder, in gaia_hydras.nfwfgaia]
    +x:547 [binder, in gaia_hydras.nfwfgaia]
    +x:55 [binder, in hydras.Ackermann.model]
    +X:55 [binder, in hydras.Schutte.Well_Orders]
    +x:551 [binder, in gaia_hydras.nfwfgaia]
    +x:554 [binder, in gaia_hydras.nfwfgaia]
    +x:56 [binder, in hydras.Ackermann.subProp]
    +x:56 [binder, in Goedel.rosserPA]
    +x:566 [binder, in hydras.Ackermann.primRec]
    +x:567 [binder, in hydras.Ackermann.primRec]
    +x:568 [binder, in hydras.Ackermann.primRec]
    +x:569 [binder, in hydras.Ackermann.primRec]
    +x:57 [binder, in hydras.MoreAck.AckNotPR]
    +x:57 [binder, in hydras.Ackermann.fol]
    +x:57 [binder, in hydras.MoreAck.PrimRecExamples]
    +x:570 [binder, in hydras.Ackermann.primRec]
    +x:570 [binder, in gaia_hydras.nfwfgaia]
    +x:571 [binder, in hydras.Ackermann.primRec]
    +x:572 [binder, in hydras.Ackermann.primRec]
    +x:573 [binder, in hydras.Ackermann.primRec]
    +x:573 [binder, in gaia_hydras.nfwfgaia]
    +x:577 [binder, in gaia_hydras.nfwfgaia]
    +x:581 [binder, in hydras.Ackermann.primRec]
    +x:582 [binder, in hydras.Ackermann.primRec]
    +x:583 [binder, in gaia_hydras.nfwfgaia]
    +x:584 [binder, in gaia_hydras.nfwfgaia]
    +x:586 [binder, in gaia_hydras.nfwfgaia]
    +x:588 [binder, in gaia_hydras.nfwfgaia]
    +x:59 [binder, in hydras.Ackermann.model]
    +x:59 [binder, in hydras.Ackermann.fol]
    +x:59 [binder, in hydras.OrdinalNotations.ON_Generic]
    +x:59 [binder, in Goedel.rosser]
    +x:591 [binder, in gaia_hydras.nfwfgaia]
    +x:592 [binder, in gaia_hydras.nfwfgaia]
    +x:594 [binder, in gaia_hydras.nfwfgaia]
    +x:6 [binder, in Goedel.PRrepresentable]
    +x:6 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +x:6 [binder, in hydras.Prelude.More_Arith]
    +x:6 [binder, in hydras.Ackermann.LNN]
    +x:6 [binder, in additions.Pow_variant]
    +x:6 [binder, in hydras.Schutte.Lub]
    +x:6 [binder, in additions.Pow]
    +x:6 [binder, in hydras.Schutte.Critical]
    +x:6 [binder, in hydras.Prelude.MoreOrders]
    +x:60 [binder, in hydras.Ackermann.fol]
    +X:60 [binder, in hydras.Schutte.Well_Orders]
    +x:60 [binder, in Goedel.rosser]
    +x:605 [binder, in gaia_hydras.nfwfgaia]
    +x:606 [binder, in gaia_hydras.nfwfgaia]
    +x:607 [binder, in gaia_hydras.nfwfgaia]
    +x:608 [binder, in hydras.Gamma0.Gamma0]
    +x:61 [binder, in additions.Pow_variant]
    +x:61 [binder, in additions.Pow]
    +x:61 [binder, in hydras.Ackermann.subProp]
    +x:61 [binder, in hydras.Schutte.PartialFun]
    +x:61 [binder, in hydras.MoreAck.PrimRecExamples]
    +x:611 [binder, in hydras.Gamma0.Gamma0]
    +x:612 [binder, in gaia_hydras.nfwfgaia]
    +x:616 [binder, in gaia_hydras.nfwfgaia]
    +x:617 [binder, in gaia_hydras.nfwfgaia]
    +x:618 [binder, in gaia_hydras.nfwfgaia]
    +x:619 [binder, in gaia_hydras.nfwfgaia]
    +x:62 [binder, in hydras.Ackermann.folProp]
    +x:621 [binder, in gaia_hydras.nfwfgaia]
    +x:623 [binder, in gaia_hydras.nfwfgaia]
    +x:63 [binder, in hydras.Prelude.Fuel]
    +x:63 [binder, in Goedel.rosserPA]
    +x:63 [binder, in hydras.Schutte.PartialFun]
    +x:636 [binder, in gaia_hydras.nfwfgaia]
    +x:64 [binder, in additions.Pow_variant]
    +x:64 [binder, in additions.Pow]
    +x:64 [binder, in Goedel.rosserPA]
    +x:64 [binder, in gaia_hydras.nfwfgaia]
    +x:644 [binder, in gaia_hydras.nfwfgaia]
    +x:647 [binder, in gaia_hydras.nfwfgaia]
    +x:65 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +x:65 [binder, in hydras.Ackermann.model]
    +x:652 [binder, in hydras.Ackermann.primRec]
    +x:653 [binder, in gaia_hydras.nfwfgaia]
    +x:655 [binder, in gaia_hydras.nfwfgaia]
    +x:657 [binder, in gaia_hydras.nfwfgaia]
    +x:658 [binder, in hydras.Ackermann.primRec]
    +x:66 [binder, in additions.AM]
    +x:66 [binder, in hydras.Ackermann.subProp]
    +x:66 [binder, in hydras.Ackermann.primRec]
    +x:66 [binder, in gaia_hydras.nfwfgaia]
    +x:665 [binder, in hydras.Ackermann.primRec]
    +x:666 [binder, in hydras.Ackermann.primRec]
    +x:67 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +x:67 [binder, in additions.Pow_variant]
    +x:67 [binder, in additions.Pow]
    +x:67 [binder, in hydras.Schutte.Critical]
    +x:67 [binder, in additions.Monoid_def]
    +x:670 [binder, in hydras.Ackermann.primRec]
    +x:672 [binder, in hydras.Ackermann.primRec]
    +x:673 [binder, in gaia_hydras.nfwfgaia]
    +x:674 [binder, in gaia_hydras.nfwfgaia]
    +x:677 [binder, in gaia_hydras.nfwfgaia]
    +x:678 [binder, in gaia_hydras.nfwfgaia]
    +x:68 [binder, in hydras.Prelude.MoreLists]
    +x:68 [binder, in hydras.Schutte.Critical]
    +x:68 [binder, in hydras.Ackermann.fol]
    +x:68 [binder, in Goedel.rosser]
    +x:681 [binder, in gaia_hydras.nfwfgaia]
    +x:684 [binder, in gaia_hydras.nfwfgaia]
    +x:685 [binder, in gaia_hydras.nfwfgaia]
    +x:69 [binder, in hydras.Prelude.MoreLists]
    +x:69 [binder, in additions.Pow_variant]
    +x:69 [binder, in hydras.Ackermann.model]
    +x:69 [binder, in additions.Pow]
    +x:69 [binder, in hydras.Schutte.Critical]
    +x:690 [binder, in gaia_hydras.nfwfgaia]
    +x:699 [binder, in gaia_hydras.nfwfgaia]
    +x:7 [binder, in hydras.rpo.more_list]
    +x:7 [binder, in hydras.Ackermann.LNT]
    +x:7 [binder, in hydras.Ackermann.cPair]
    +x:7 [binder, in additions.Naive]
    +x:7 [binder, in hydras.Prelude.MoreDecidable]
    +x:7 [binder, in hydras.Schutte.Well_Orders]
    +x:7 [binder, in hydras.Ackermann.folLogic3]
    +x:7 [binder, in hydras.Ackermann.wConsistent]
    +x:7 [binder, in hydras.Ackermann.NN]
    +x:7 [binder, in hydras.rpo.closure]
    +x:7 [binder, in hydras.Ackermann.Languages]
    +x:7 [binder, in hydras.Schutte.Countable]
    +x:70 [binder, in hydras.Prelude.MoreLists]
    +x:70 [binder, in hydras.Ackermann.subProp]
    +x:70 [binder, in hydras.Schutte.Critical]
    +x:705 [binder, in hydras.Ackermann.primRec]
    +x:706 [binder, in hydras.Gamma0.Gamma0]
    +x:708 [binder, in hydras.Gamma0.Gamma0]
    +x:709 [binder, in gaia_hydras.nfwfgaia]
    +x:71 [binder, in hydras.Prelude.Iterates]
    +x:71 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +x:710 [binder, in hydras.Ackermann.primRec]
    +x:72 [binder, in additions.Pow_variant]
    +x:72 [binder, in additions.Pow]
    +x:72 [binder, in hydras.MoreAck.PrimRecExamples]
    +x:728 [binder, in hydras.Epsilon0.T1]
    +x:73 [binder, in additions.Pow_variant]
    +x:73 [binder, in hydras.Ackermann.folLogic3]
    +x:73 [binder, in Goedel.rosser]
    +x:735 [binder, in gaia_hydras.nfwfgaia]
    +x:74 [binder, in hydras.OrdinalNotations.ON_Omega2]
    +x:74 [binder, in hydras.Ackermann.subProp]
    +x:74 [binder, in hydras.Hydra.BigBattle]
    +x:74 [binder, in hydras.Ackermann.folLogic3]
    +x:75 [binder, in hydras.Prelude.Iterates]
    +x:75 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +x:75 [binder, in additions.Pow]
    +x:75 [binder, in hydras.Epsilon0.Hessenberg]
    +x:75 [binder, in additions.Monoid_def]
    +x:75 [binder, in hydras.Ackermann.fol]
    +x:75 [binder, in hydras.Schutte.PartialFun]
    +x:76 [binder, in additions.Pow]
    +x:76 [binder, in additions.Addition_Chains]
    +x:762 [binder, in gaia_hydras.nfwfgaia]
    +x:763 [binder, in gaia_hydras.nfwfgaia]
    +x:766 [binder, in gaia_hydras.nfwfgaia]
    +x:768 [binder, in gaia_hydras.nfwfgaia]
    +x:77 [binder, in additions.AM]
    +x:77 [binder, in additions.Pow_variant]
    +x:77 [binder, in hydras.MoreAck.AckNotPR]
    +x:77 [binder, in hydras.Schutte.PartialFun]
    +x:77 [binder, in hydras.MoreAck.PrimRecExamples]
    +x:770 [binder, in gaia_hydras.nfwfgaia]
    +x:771 [binder, in gaia_hydras.nfwfgaia]
    +x:773 [binder, in gaia_hydras.nfwfgaia]
    +x:774 [binder, in gaia_hydras.nfwfgaia]
    +x:778 [binder, in gaia_hydras.nfwfgaia]
    +x:782 [binder, in gaia_hydras.nfwfgaia]
    +x:79 [binder, in hydras.Prelude.Iterates]
    +x:79 [binder, in additions.Pow_variant]
    +x:79 [binder, in hydras.Ackermann.subProp]
    +x:794 [binder, in gaia_hydras.nfwfgaia]
    +x:797 [binder, in gaia_hydras.nfwfgaia]
    +x:8 [binder, in hydras.Prelude.WfVariant]
    +x:8 [binder, in additions.FirstSteps]
    +x:8 [binder, in hydras.Ackermann.LNN]
    +x:8 [binder, in additions.Wf_transparent]
    +x:8 [binder, in hydras.Ackermann.wConsistent]
    +x:80 [binder, in additions.Pow_variant]
    +x:80 [binder, in additions.Pow]
    +x:80 [binder, in hydras.Ackermann.fol]
    +x:80 [binder, in hydras.MoreAck.PrimRecExamples]
    +x:81 [binder, in hydras.MoreAck.AckNotPR]
    +x:813 [binder, in gaia_hydras.nfwfgaia]
    +x:814 [binder, in hydras.Ackermann.primRec]
    +x:815 [binder, in hydras.Ackermann.primRec]
    +x:816 [binder, in gaia_hydras.nfwfgaia]
    +x:819 [binder, in gaia_hydras.nfwfgaia]
    +x:82 [binder, in additions.Pow_variant]
    +x:82 [binder, in additions.Pow]
    +x:823 [binder, in gaia_hydras.nfwfgaia]
    +x:826 [binder, in gaia_hydras.nfwfgaia]
    +x:829 [binder, in gaia_hydras.nfwfgaia]
    +x:83 [binder, in hydras.Prelude.Iterates]
    +x:83 [binder, in hydras.Ackermann.folLogic3]
    +x:83 [binder, in hydras.Prelude.MoreVectors]
    +x:831 [binder, in gaia_hydras.nfwfgaia]
    +x:837 [binder, in gaia_hydras.nfwfgaia]
    +x:84 [binder, in additions.Pow_variant]
    +x:84 [binder, in additions.Pow]
    +x:84 [binder, in hydras.Ackermann.subProp]
    +x:84 [binder, in hydras.Ackermann.folLogic3]
    +x:85 [binder, in hydras.Ackermann.fol]
    +x:857 [binder, in gaia_hydras.nfwfgaia]
    +x:86 [binder, in hydras.Prelude.Iterates]
    +x:86 [binder, in additions.Pow_variant]
    +x:86 [binder, in additions.Pow]
    +x:86 [binder, in hydras.MoreAck.AckNotPR]
    +x:86 [binder, in hydras.MoreAck.PrimRecExamples]
    +x:87 [binder, in additions.AM]
    +x:87 [binder, in hydras.Ackermann.fol]
    +x:87 [binder, in additions.fib]
    +x:875 [binder, in gaia_hydras.nfwfgaia]
    +x:88 [binder, in additions.Pow]
    +x:88 [binder, in hydras.Epsilon0.Large_Sets]
    +x:883 [binder, in gaia_hydras.nfwfgaia]
    +x:887 [binder, in gaia_hydras.nfwfgaia]
    +x:889 [binder, in gaia_hydras.nfwfgaia]
    +x:89 [binder, in additions.Pow_variant]
    +x:89 [binder, in additions.Pow]
    +x:89 [binder, in hydras.Ackermann.subProp]
    +x:89 [binder, in Goedel.rosserPA]
    +x:89 [binder, in hydras.Ackermann.fol]
    +x:89 [binder, in additions.fib]
    +x:892 [binder, in gaia_hydras.nfwfgaia]
    +x:9 [binder, in Goedel.PRrepresentable]
    +x:9 [binder, in hydras.Ackermann.LNT]
    +x:9 [binder, in hydras.Ackermann.cPair]
    +x:9 [binder, in gaia_hydras.onType]
    +x:9 [binder, in hydras.Schutte.Well_Orders]
    +x:9 [binder, in hydras.Ackermann.folLogic3]
    +x:9 [binder, in additions.Addition_Chains]
    +x:9 [binder, in hydras.Ackermann.NN]
    +x:90 [binder, in additions.Pow_variant]
    +x:90 [binder, in Goedel.rosserPA]
    +x:90 [binder, in gaia_hydras.nfwfgaia]
    +x:91 [binder, in additions.Pow_variant]
    +x:918 [binder, in gaia_hydras.nfwfgaia]
    +x:919 [binder, in gaia_hydras.nfwfgaia]
    +x:92 [binder, in additions.Pow]
    +x:920 [binder, in gaia_hydras.nfwfgaia]
    +x:921 [binder, in gaia_hydras.nfwfgaia]
    +x:922 [binder, in gaia_hydras.nfwfgaia]
    +x:93 [binder, in hydras.Ackermann.subProp]
    +x:93 [binder, in hydras.MoreAck.PrimRecExamples]
    +x:933 [binder, in gaia_hydras.nfwfgaia]
    +x:934 [binder, in gaia_hydras.nfwfgaia]
    +x:935 [binder, in gaia_hydras.nfwfgaia]
    +x:94 [binder, in hydras.Ackermann.model]
    +x:94 [binder, in additions.Euclidean_Chains]
    +x:94 [binder, in gaia_hydras.nfwfgaia]
    +x:95 [binder, in additions.Pow]
    +x:95 [binder, in additions.fib]
    +x:95 [binder, in gaia_hydras.nfwfgaia]
    +x:96 [binder, in hydras.Ackermann.model]
    +x:96 [binder, in hydras.MoreAck.PrimRecExamples]
    +x:97 [binder, in additions.Addition_Chains]
    +x:97 [binder, in hydras.Prelude.MoreVectors]
    +x:98 [binder, in additions.Pow_variant]
    +x:98 [binder, in hydras.Ackermann.model]
    +x:98 [binder, in additions.Pow]
    +x:98 [binder, in hydras.MoreAck.AckNotPR]
    +X:98 [binder, in hydras.Schutte.Schutte_basics]
    +x:98 [binder, in hydras.Schutte.Ordering_Functions]
    +x:982 [binder, in gaia_hydras.nfwfgaia]
    +x:99 [binder, in hydras.Ackermann.model]
    +x:99 [binder, in additions.Pow]
    +x:99 [binder, in hydras.MoreAck.AckNotPR]
    +x:99 [binder, in hydras.Ackermann.cPair]
    +x:992 [binder, in gaia_hydras.nfwfgaia]
    +

    Y

    +y0:272 [binder, in additions.Euclidean_Chains]
    +y0:274 [binder, in additions.Euclidean_Chains]
    +y0:278 [binder, in additions.Euclidean_Chains]
    +y0:280 [binder, in additions.Euclidean_Chains]
    +y:10 [binder, in Goedel.PRrepresentable]
    +y:10 [binder, in hydras.Ackermann.LNT]
    +y:10 [binder, in additions.Wf_transparent]
    +y:10 [binder, in hydras.Ackermann.cPair]
    +y:10 [binder, in hydras.Schutte.Well_Orders]
    +y:10 [binder, in additions.Addition_Chains]
    +y:100 [binder, in hydras.Ackermann.folProp]
    +y:100 [binder, in hydras.MoreAck.AckNotPR]
    +y:101 [binder, in hydras.Schutte.Ordering_Functions]
    +y:101 [binder, in hydras.Prelude.MoreVectors]
    +y:102 [binder, in hydras.Ackermann.folProp]
    +y:103 [binder, in hydras.Schutte.Ordering_Functions]
    +y:103 [binder, in hydras.MoreAck.PrimRecExamples]
    +y:104 [binder, in hydras.Ackermann.folProp]
    +y:104 [binder, in hydras.MoreAck.AckNotPR]
    +y:104 [binder, in hydras.Ackermann.fol]
    +y:1040 [binder, in gaia_hydras.nfwfgaia]
    +y:105 [binder, in hydras.Schutte.Ordering_Functions]
    +y:105 [binder, in hydras.Prelude.MoreVectors]
    +y:106 [binder, in hydras.MoreAck.AckNotPR]
    +y:107 [binder, in additions.Euclidean_Chains]
    +y:1076 [binder, in gaia_hydras.nfwfgaia]
    +y:108 [binder, in additions.Pow]
    +y:108 [binder, in hydras.Ackermann.fol]
    +y:1088 [binder, in gaia_hydras.nfwfgaia]
    +y:1090 [binder, in gaia_hydras.nfwfgaia]
    +y:1092 [binder, in gaia_hydras.nfwfgaia]
    +y:1094 [binder, in gaia_hydras.nfwfgaia]
    +y:1096 [binder, in gaia_hydras.nfwfgaia]
    +y:11 [binder, in hydras.Ackermann.LNN]
    +y:11 [binder, in additions.Monoid_def]
    +y:11 [binder, in gaia_hydras.onType]
    +y:1115 [binder, in gaia_hydras.nfwfgaia]
    +y:112 [binder, in hydras.Ackermann.folProp]
    +y:1120 [binder, in gaia_hydras.nfwfgaia]
    +y:115 [binder, in hydras.Prelude.Iterates]
    +y:115 [binder, in hydras.Ackermann.folProp]
    +y:116 [binder, in additions.AM]
    +y:116 [binder, in hydras.Prelude.MoreLists]
    +y:116 [binder, in gaia_hydras.nfwfgaia]
    +y:117 [binder, in hydras.Ackermann.folProp]
    +y:118 [binder, in hydras.Prelude.Iterates]
    +y:118 [binder, in additions.Euclidean_Chains]
    +y:119 [binder, in hydras.OrdinalNotations.ON_Generic]
    +y:12 [binder, in hydras.Prelude.Restriction]
    +y:12 [binder, in hydras.Schutte.Lub]
    +y:12 [binder, in hydras.Prelude.Sort_spec]
    +y:12 [binder, in hydras.Ackermann.cPair]
    +y:12 [binder, in additions.Naive]
    +y:12 [binder, in hydras.Schutte.Schutte_basics]
    +y:12 [binder, in hydras.Prelude.LibHyps_Experiments]
    +y:120 [binder, in hydras.Ackermann.folProp]
    +y:1216 [binder, in gaia_hydras.nfwfgaia]
    +y:122 [binder, in hydras.Ackermann.folProp]
    +y:123 [binder, in gaia_hydras.nfwfgaia]
    +y:1230 [binder, in gaia_hydras.nfwfgaia]
    +y:124 [binder, in additions.Euclidean_Chains]
    +y:125 [binder, in hydras.Prelude.MoreLists]
    +y:125 [binder, in additions.Euclidean_Chains]
    +y:1251 [binder, in gaia_hydras.nfwfgaia]
    +y:126 [binder, in hydras.Ackermann.folProp]
    +y:126 [binder, in additions.Euclidean_Chains]
    +y:127 [binder, in hydras.Prelude.Merge_Sort]
    +y:127 [binder, in additions.Euclidean_Chains]
    +y:128 [binder, in additions.Euclidean_Chains]
    +y:129 [binder, in hydras.Prelude.Merge_Sort]
    +y:13 [binder, in Goedel.PRrepresentable]
    +y:13 [binder, in additions.Compatibility]
    +y:13 [binder, in hydras.solutions_exercises.MorePRExamples]
    +y:131 [binder, in hydras.Schutte.Schutte_basics]
    +y:132 [binder, in hydras.Schutte.Schutte_basics]
    +y:1326 [binder, in gaia_hydras.nfwfgaia]
    +y:134 [binder, in hydras.Schutte.Schutte_basics]
    +y:135 [binder, in hydras.Prelude.Merge_Sort]
    +y:136 [binder, in hydras.Ackermann.folProp]
    +y:136 [binder, in gaia_hydras.T1Bridge]
    +y:136 [binder, in hydras.Schutte.Schutte_basics]
    +y:137 [binder, in hydras.Prelude.Merge_Sort]
    +y:138 [binder, in hydras.Ackermann.folProp]
    +y:138 [binder, in gaia_hydras.T1Bridge]
    +y:1398 [binder, in gaia_hydras.nfwfgaia]
    +y:14 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +y:14 [binder, in hydras.Ackermann.LNN]
    +y:14 [binder, in hydras.Ackermann.cPair]
    +y:14 [binder, in additions.Euclidean_Chains]
    +y:140 [binder, in hydras.Ackermann.folProp]
    +y:1406 [binder, in gaia_hydras.nfwfgaia]
    +y:141 [binder, in hydras.Prelude.Merge_Sort]
    +y:1410 [binder, in gaia_hydras.nfwfgaia]
    +y:1412 [binder, in gaia_hydras.nfwfgaia]
    +y:1415 [binder, in gaia_hydras.nfwfgaia]
    +y:143 [binder, in gaia_hydras.nfwfgaia]
    +y:145 [binder, in hydras.Prelude.Merge_Sort]
    +y:145 [binder, in additions.Euclidean_Chains]
    +y:1456 [binder, in gaia_hydras.nfwfgaia]
    +y:147 [binder, in gaia_hydras.T1Bridge]
    +y:148 [binder, in hydras.Prelude.MoreLists]
    +y:1487 [binder, in gaia_hydras.nfwfgaia]
    +y:149 [binder, in hydras.Prelude.Merge_Sort]
    +y:149 [binder, in gaia_hydras.T1Bridge]
    +y:149 [binder, in gaia_hydras.nfwfgaia]
    +y:15 [binder, in gaia_hydras.T1Choice]
    +y:15 [binder, in hydras.Prelude.MoreOrders]
    +y:150 [binder, in hydras.Schutte.Schutte_basics]
    +y:153 [binder, in hydras.Prelude.Merge_Sort]
    +y:155 [binder, in hydras.Prelude.Merge_Sort]
    +Y:156 [binder, in hydras.Schutte.Schutte_basics]
    +y:157 [binder, in hydras.Ackermann.folProp]
    +y:158 [binder, in hydras.Schutte.Schutte_basics]
    +y:158 [binder, in hydras.OrdinalNotations.ON_Generic]
    +y:159 [binder, in hydras.Ackermann.folProp]
    +y:16 [binder, in hydras.Ackermann.cPair]
    +y:16 [binder, in gaia_hydras.ON_gfinite]
    +y:16 [binder, in hydras.Schutte.Schutte_basics]
    +y:160 [binder, in hydras.Prelude.Merge_Sort]
    +Y:160 [binder, in hydras.Schutte.Schutte_basics]
    +y:161 [binder, in hydras.Ackermann.folProp]
    +y:162 [binder, in hydras.Schutte.Schutte_basics]
    +y:163 [binder, in hydras.Ackermann.folProp]
    +y:164 [binder, in hydras.Prelude.Merge_Sort]
    +y:165 [binder, in hydras.Ackermann.folProp]
    +y:1657 [binder, in gaia_hydras.nfwfgaia]
    +y:1659 [binder, in gaia_hydras.nfwfgaia]
    +y:167 [binder, in hydras.Ackermann.folProp]
    +y:168 [binder, in hydras.Prelude.Merge_Sort]
    +y:169 [binder, in hydras.Prelude.MoreLists]
    +y:169 [binder, in hydras.Ackermann.folProp]
    +y:169 [binder, in hydras.Schutte.Schutte_basics]
    +y:17 [binder, in Goedel.PRrepresentable]
    +y:17 [binder, in gaia_hydras.T1Choice]
    +y:17 [binder, in hydras.Schutte.Critical]
    +y:17 [binder, in gaia_hydras.T1Bridge]
    +y:17 [binder, in hydras.Prelude.STDPP_compat]
    +y:1717 [binder, in gaia_hydras.nfwfgaia]
    +y:1727 [binder, in gaia_hydras.nfwfgaia]
    +y:1729 [binder, in gaia_hydras.nfwfgaia]
    +y:1731 [binder, in gaia_hydras.nfwfgaia]
    +y:1733 [binder, in gaia_hydras.nfwfgaia]
    +y:1735 [binder, in gaia_hydras.nfwfgaia]
    +y:175 [binder, in hydras.Ackermann.folProp]
    +y:1757 [binder, in gaia_hydras.nfwfgaia]
    +y:176 [binder, in hydras.Ackermann.folProp]
    +y:176 [binder, in additions.Euclidean_Chains]
    +y:1762 [binder, in gaia_hydras.nfwfgaia]
    +y:18 [binder, in hydras.Ackermann.PA]
    +y:18 [binder, in hydras.Ackermann.cPair]
    +y:18 [binder, in gaia_hydras.ON_gfinite]
    +y:18 [binder, in hydras.OrdinalNotations.ON_Generic]
    +y:18 [binder, in gaia_hydras.onType]
    +y:182 [binder, in hydras.Ackermann.folProp]
    +y:183 [binder, in hydras.Ackermann.folProp]
    +y:185 [binder, in hydras.Ackermann.folProp]
    +y:1850 [binder, in gaia_hydras.nfwfgaia]
    +y:189 [binder, in hydras.Ackermann.model]
    +y:189 [binder, in hydras.Schutte.Schutte_basics]
    +y:19 [binder, in gaia_hydras.T1Choice]
    +y:19 [binder, in hydras.solutions_exercises.MinPR2]
    +y:190 [binder, in hydras.Prelude.Iterates]
    +y:1900 [binder, in gaia_hydras.nfwfgaia]
    +y:1905 [binder, in gaia_hydras.nfwfgaia]
    +y:1909 [binder, in gaia_hydras.nfwfgaia]
    +y:191 [binder, in hydras.Prelude.MoreLists]
    +y:191 [binder, in hydras.Ackermann.model]
    +y:191 [binder, in hydras.Ackermann.folProp]
    +y:1914 [binder, in gaia_hydras.nfwfgaia]
    +y:1918 [binder, in gaia_hydras.nfwfgaia]
    +y:192 [binder, in hydras.Ackermann.folProp]
    +y:1923 [binder, in gaia_hydras.nfwfgaia]
    +y:1929 [binder, in gaia_hydras.nfwfgaia]
    +y:1935 [binder, in gaia_hydras.nfwfgaia]
    +y:1939 [binder, in gaia_hydras.nfwfgaia]
    +y:194 [binder, in hydras.rpo.term]
    +y:194 [binder, in hydras.Prelude.MoreLists]
    +y:1944 [binder, in gaia_hydras.nfwfgaia]
    +y:1949 [binder, in gaia_hydras.nfwfgaia]
    +y:195 [binder, in hydras.Schutte.Schutte_basics]
    +y:1955 [binder, in gaia_hydras.nfwfgaia]
    +y:196 [binder, in hydras.Schutte.Schutte_basics]
    +y:1961 [binder, in gaia_hydras.nfwfgaia]
    +y:1967 [binder, in gaia_hydras.nfwfgaia]
    +y:197 [binder, in hydras.Prelude.Iterates]
    +y:197 [binder, in hydras.OrdinalNotations.ON_Generic]
    +y:1979 [binder, in gaia_hydras.nfwfgaia]
    +y:198 [binder, in hydras.Ackermann.folProp]
    +y:198 [binder, in additions.Addition_Chains]
    +y:1984 [binder, in gaia_hydras.nfwfgaia]
    +y:1989 [binder, in gaia_hydras.nfwfgaia]
    +y:199 [binder, in hydras.Ackermann.folProp]
    +y:1995 [binder, in gaia_hydras.nfwfgaia]
    +y:2 [binder, in hydras.Ackermann.LNN]
    +y:2 [binder, in hydras.Ackermann.LNT]
    +y:20 [binder, in hydras.Prelude.Restriction]
    +y:20 [binder, in hydras.Schutte.Critical]
    +y:20 [binder, in hydras.solutions_exercises.MorePRExamples]
    +y:2000 [binder, in gaia_hydras.nfwfgaia]
    +y:201 [binder, in hydras.Ackermann.folProp]
    +y:201 [binder, in gaia_hydras.nfwfgaia]
    +y:202 [binder, in additions.Euclidean_Chains]
    +y:205 [binder, in hydras.Prelude.MoreLists]
    +y:2056 [binder, in gaia_hydras.nfwfgaia]
    +y:207 [binder, in hydras.Ackermann.folProp]
    +y:208 [binder, in hydras.Ackermann.folProp]
    +y:209 [binder, in hydras.Prelude.Iterates]
    +y:209 [binder, in hydras.Prelude.MoreLists]
    +y:2091 [binder, in gaia_hydras.nfwfgaia]
    +y:2093 [binder, in gaia_hydras.nfwfgaia]
    +y:2097 [binder, in gaia_hydras.nfwfgaia]
    +y:21 [binder, in Goedel.PRrepresentable]
    +y:21 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +y:21 [binder, in hydras.Ackermann.PA]
    +y:21 [binder, in hydras.Prelude.MoreOrders]
    +y:210 [binder, in additions.Euclidean_Chains]
    +y:214 [binder, in hydras.Ackermann.folProp]
    +y:215 [binder, in hydras.Ackermann.model]
    +y:215 [binder, in hydras.Ackermann.folProp]
    +y:215 [binder, in additions.Euclidean_Chains]
    +y:217 [binder, in hydras.Ackermann.model]
    +y:217 [binder, in hydras.Ackermann.folProp]
    +y:217 [binder, in additions.Euclidean_Chains]
    +y:218 [binder, in hydras.Ackermann.cPair]
    +y:219 [binder, in hydras.Prelude.Merge_Sort]
    +y:22 [binder, in hydras.Schutte.GRelations]
    +y:22 [binder, in hydras.Schutte.Schutte_basics]
    +y:22 [binder, in hydras.OrdinalNotations.ON_Generic]
    +y:220 [binder, in hydras.Ackermann.cPair]
    +y:221 [binder, in hydras.Prelude.Merge_Sort]
    +y:223 [binder, in hydras.Ackermann.folProp]
    +y:223 [binder, in hydras.Prelude.Merge_Sort]
    +y:224 [binder, in hydras.Ackermann.folProp]
    +y:224 [binder, in hydras.Ackermann.cPair]
    +y:224 [binder, in hydras.Schutte.Schutte_basics]
    +y:225 [binder, in hydras.Prelude.Merge_Sort]
    +y:226 [binder, in hydras.Schutte.Schutte_basics]
    +y:227 [binder, in hydras.Prelude.Merge_Sort]
    +y:228 [binder, in hydras.Ackermann.cPair]
    +y:229 [binder, in hydras.Prelude.Iterates]
    +y:229 [binder, in hydras.Prelude.Merge_Sort]
    +y:229 [binder, in additions.Euclidean_Chains]
    +y:23 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +y:23 [binder, in hydras.Prelude.Restriction]
    +y:23 [binder, in hydras.Schutte.Critical]
    +y:230 [binder, in hydras.Ackermann.folProp]
    +y:231 [binder, in hydras.Ackermann.folProp]
    +y:231 [binder, in hydras.Prelude.Merge_Sort]
    +y:232 [binder, in hydras.Ackermann.cPair]
    +y:233 [binder, in hydras.Prelude.Merge_Sort]
    +y:235 [binder, in hydras.Prelude.Merge_Sort]
    +y:236 [binder, in hydras.Ackermann.folProp]
    +y:237 [binder, in hydras.Prelude.Merge_Sort]
    +y:238 [binder, in hydras.Ackermann.folProp]
    +y:239 [binder, in hydras.Prelude.Merge_Sort]
    +y:239 [binder, in additions.Euclidean_Chains]
    +y:24 [binder, in hydras.Prelude.Iterates]
    +y:24 [binder, in gaia_hydras.T1Bridge]
    +y:24 [binder, in additions.Euclidean_Chains]
    +y:24 [binder, in hydras.OrdinalNotations.ON_Generic]
    +y:240 [binder, in hydras.Ackermann.folProp]
    +y:242 [binder, in hydras.Ackermann.folProp]
    +y:244 [binder, in hydras.Ackermann.folProp]
    +y:244 [binder, in additions.Euclidean_Chains]
    +y:246 [binder, in hydras.Ackermann.folProp]
    +y:246 [binder, in additions.Addition_Chains]
    +y:248 [binder, in hydras.Ackermann.folProp]
    +y:249 [binder, in hydras.Ackermann.cPair]
    +y:25 [binder, in Goedel.PRrepresentable]
    +y:251 [binder, in hydras.Ackermann.cPair]
    +y:254 [binder, in hydras.Ackermann.folProp]
    +y:255 [binder, in hydras.Ackermann.folProp]
    +y:255 [binder, in hydras.Ackermann.cPair]
    +y:256 [binder, in additions.Euclidean_Chains]
    +y:257 [binder, in hydras.Ackermann.cPair]
    +y:259 [binder, in hydras.Ackermann.cPair]
    +y:26 [binder, in hydras.Prelude.Restriction]
    +y:26 [binder, in hydras.Schutte.GRelations]
    +y:26 [binder, in hydras.Ackermann.cPair]
    +y:26 [binder, in hydras.Schutte.Well_Orders]
    +y:260 [binder, in additions.Euclidean_Chains]
    +y:261 [binder, in hydras.Ackermann.folProp]
    +y:262 [binder, in hydras.Ackermann.folProp]
    +y:262 [binder, in hydras.Ackermann.cPair]
    +y:264 [binder, in hydras.Ackermann.folProp]
    +y:264 [binder, in additions.Euclidean_Chains]
    +y:268 [binder, in additions.Euclidean_Chains]
    +y:27 [binder, in hydras.Epsilon0.F_omega]
    +y:27 [binder, in hydras.OrdinalNotations.ON_Finite]
    +y:270 [binder, in hydras.Ackermann.folProp]
    +y:271 [binder, in hydras.Ackermann.folProp]
    +Y:271 [binder, in additions.Euclidean_Chains]
    +y:272 [binder, in gaia_hydras.nfwfgaia]
    +y:277 [binder, in hydras.Ackermann.folProp]
    +Y:277 [binder, in additions.Euclidean_Chains]
    +y:277 [binder, in gaia_hydras.nfwfgaia]
    +y:278 [binder, in hydras.Ackermann.folProp]
    +y:28 [binder, in hydras.Prelude.Sort_spec]
    +y:28 [binder, in additions.More_on_positive]
    +y:28 [binder, in hydras.Prelude.MoreOrders]
    +y:28 [binder, in hydras.Ackermann.cPair]
    +y:28 [binder, in hydras.Ackermann.fol]
    +y:282 [binder, in additions.Euclidean_Chains]
    +y:282 [binder, in gaia_hydras.nfwfgaia]
    +y:284 [binder, in additions.Euclidean_Chains]
    +y:285 [binder, in hydras.Ackermann.folProp]
    +y:286 [binder, in additions.Euclidean_Chains]
    +y:286 [binder, in gaia_hydras.nfwfgaia]
    +y:287 [binder, in hydras.Ackermann.folProp]
    +y:288 [binder, in additions.Euclidean_Chains]
    +y:288 [binder, in gaia_hydras.nfwfgaia]
    +y:289 [binder, in hydras.Ackermann.folProp]
    +y:29 [binder, in additions.Monoid_def]
    +y:29 [binder, in hydras.Schutte.Well_Orders]
    +y:291 [binder, in hydras.Ackermann.folProp]
    +y:293 [binder, in hydras.Ackermann.folProp]
    +y:294 [binder, in additions.Addition_Chains]
    +y:295 [binder, in hydras.Ackermann.folProp]
    +y:297 [binder, in hydras.Ackermann.folProp]
    +y:3 [binder, in hydras.MoreAck.AckNotPR]
    +y:30 [binder, in additions.More_on_positive]
    +y:30 [binder, in hydras.Schutte.GRelations]
    +y:30 [binder, in hydras.Epsilon0.F_omega]
    +y:30 [binder, in hydras.Ackermann.cPair]
    +y:30 [binder, in hydras.Ackermann.fol]
    +y:303 [binder, in hydras.Ackermann.folProp]
    +y:304 [binder, in hydras.Ackermann.folProp]
    +y:305 [binder, in additions.Euclidean_Chains]
    +y:307 [binder, in additions.Euclidean_Chains]
    +y:309 [binder, in additions.Euclidean_Chains]
    +y:31 [binder, in gaia_hydras.T1Bridge]
    +y:31 [binder, in additions.Monoid_instances]
    +y:310 [binder, in hydras.Ackermann.folProp]
    +y:311 [binder, in hydras.Ackermann.folProp]
    +y:311 [binder, in additions.Euclidean_Chains]
    +y:312 [binder, in additions.Euclidean_Chains]
    +y:313 [binder, in hydras.Ackermann.folProp]
    +y:313 [binder, in additions.Euclidean_Chains]
    +y:314 [binder, in additions.Euclidean_Chains]
    +y:315 [binder, in additions.Euclidean_Chains]
    +y:319 [binder, in hydras.Ackermann.folProp]
    +y:32 [binder, in hydras.Epsilon0.F_omega]
    +y:32 [binder, in hydras.Ackermann.cPair]
    +y:32 [binder, in hydras.Schutte.Well_Orders]
    +y:320 [binder, in hydras.Ackermann.folProp]
    +y:324 [binder, in additions.Euclidean_Chains]
    +y:325 [binder, in additions.Euclidean_Chains]
    +y:326 [binder, in hydras.Ackermann.folProp]
    +y:326 [binder, in additions.Euclidean_Chains]
    +y:327 [binder, in hydras.Ackermann.folProp]
    +y:327 [binder, in additions.Euclidean_Chains]
    +y:329 [binder, in hydras.Ackermann.folProp]
    +y:33 [binder, in hydras.Prelude.MoreOrders]
    +y:33 [binder, in additions.Monoid_instances]
    +y:331 [binder, in gaia_hydras.nfwfgaia]
    +y:333 [binder, in gaia_hydras.nfwfgaia]
    +y:335 [binder, in hydras.Ackermann.folProp]
    +y:336 [binder, in hydras.Ackermann.folProp]
    +y:34 [binder, in hydras.Prelude.Restriction]
    +y:34 [binder, in hydras.Epsilon0.F_omega]
    +y:34 [binder, in gaia_hydras.T1Bridge]
    +y:34 [binder, in additions.fib]
    +y:340 [binder, in gaia_hydras.nfwfgaia]
    +y:342 [binder, in hydras.Ackermann.folProp]
    +y:343 [binder, in hydras.Ackermann.folProp]
    +y:344 [binder, in gaia_hydras.nfwfgaia]
    +y:345 [binder, in hydras.Ackermann.folProp]
    +y:346 [binder, in gaia_hydras.nfwfgaia]
    +y:348 [binder, in gaia_hydras.nfwfgaia]
    +y:35 [binder, in additions.Monoid_instances]
    +y:350 [binder, in gaia_hydras.nfwfgaia]
    +y:351 [binder, in hydras.Ackermann.folProp]
    +y:352 [binder, in hydras.Ackermann.folProp]
    +y:352 [binder, in gaia_hydras.nfwfgaia]
    +y:358 [binder, in hydras.Ackermann.folProp]
    +y:359 [binder, in hydras.Ackermann.folProp]
    +y:359 [binder, in hydras.Ackermann.primRec]
    +y:36 [binder, in hydras.Prelude.Sort_spec]
    +y:36 [binder, in hydras.Epsilon0.F_omega]
    +y:36 [binder, in gaia_hydras.nfwfgaia]
    +y:361 [binder, in hydras.Ackermann.folProp]
    +y:364 [binder, in hydras.Ackermann.primRec]
    +y:366 [binder, in gaia_hydras.nfwfgaia]
    +y:367 [binder, in hydras.Ackermann.folProp]
    +y:368 [binder, in hydras.Ackermann.folProp]
    +y:37 [binder, in gaia_hydras.T1Bridge]
    +y:37 [binder, in gaia_hydras.nfwfgaia]
    +y:370 [binder, in hydras.Ackermann.primRec]
    +y:371 [binder, in gaia_hydras.nfwfgaia]
    +y:374 [binder, in hydras.Ackermann.folProp]
    +y:375 [binder, in hydras.Ackermann.folProp]
    +y:377 [binder, in Goedel.PRrepresentable]
    +y:377 [binder, in hydras.Ackermann.folProp]
    +y:377 [binder, in hydras.Ackermann.primRec]
    +y:379 [binder, in Goedel.PRrepresentable]
    +Y:38 [binder, in hydras.Schutte.Schutte_basics]
    +y:38 [binder, in additions.fib]
    +y:381 [binder, in Goedel.PRrepresentable]
    +y:381 [binder, in hydras.Ackermann.primRec]
    +y:383 [binder, in Goedel.PRrepresentable]
    +y:383 [binder, in hydras.Ackermann.folProp]
    +y:384 [binder, in hydras.Ackermann.folProp]
    +y:387 [binder, in hydras.Ackermann.primRec]
    +y:390 [binder, in hydras.Ackermann.folProp]
    +y:391 [binder, in hydras.Ackermann.folProp]
    +y:394 [binder, in hydras.Ackermann.primRec]
    +y:4 [binder, in Goedel.PRrepresentable]
    +y:4 [binder, in hydras.Ackermann.PAconsistent]
    +y:4 [binder, in hydras.Ackermann.LNN]
    +y:4 [binder, in hydras.Ackermann.LNT]
    +y:40 [binder, in hydras.Prelude.Restriction]
    +y:40 [binder, in gaia_hydras.nfwfgaia]
    +y:401 [binder, in hydras.Ackermann.primRec]
    +y:409 [binder, in hydras.Ackermann.primRec]
    +y:41 [binder, in hydras.OrdinalNotations.ON_Generic]
    +y:412 [binder, in hydras.Epsilon0.T1]
    +y:413 [binder, in hydras.Ackermann.primRec]
    +y:42 [binder, in additions.Compatibility]
    +y:426 [binder, in hydras.Ackermann.primRec]
    +y:432 [binder, in hydras.Ackermann.primRec]
    +y:439 [binder, in hydras.Gamma0.Gamma0]
    +y:440 [binder, in hydras.Ackermann.primRec]
    +y:441 [binder, in hydras.Gamma0.Gamma0]
    +y:444 [binder, in hydras.Gamma0.Gamma0]
    +y:448 [binder, in hydras.Ackermann.primRec]
    +y:449 [binder, in hydras.Gamma0.Gamma0]
    +y:45 [binder, in hydras.Prelude.Sort_spec]
    +y:45 [binder, in hydras.OrdinalNotations.ON_Generic]
    +y:453 [binder, in hydras.Ackermann.primRec]
    +y:461 [binder, in hydras.Ackermann.primRec]
    +y:466 [binder, in hydras.Ackermann.primRec]
    +y:470 [binder, in hydras.Ackermann.primRec]
    +y:474 [binder, in hydras.Ackermann.primRec]
    +y:48 [binder, in gaia_hydras.T1Bridge]
    +Y:48 [binder, in hydras.Schutte.Well_Orders]
    +y:482 [binder, in hydras.Ackermann.primRec]
    +y:487 [binder, in hydras.Ackermann.primRec]
    +y:49 [binder, in additions.AM]
    +y:492 [binder, in hydras.Ackermann.primRec]
    +y:497 [binder, in hydras.Ackermann.primRec]
    +y:5 [binder, in gaia_hydras.onType]
    +y:5 [binder, in hydras.MoreAck.PrimRecExamples]
    +y:501 [binder, in hydras.Ackermann.primRec]
    +y:510 [binder, in gaia_hydras.nfwfgaia]
    +y:517 [binder, in gaia_hydras.nfwfgaia]
    +y:522 [binder, in gaia_hydras.nfwfgaia]
    +y:552 [binder, in gaia_hydras.nfwfgaia]
    +y:555 [binder, in gaia_hydras.nfwfgaia]
    +y:579 [binder, in gaia_hydras.nfwfgaia]
    +y:58 [binder, in hydras.MoreAck.PrimRecExamples]
    +y:581 [binder, in gaia_hydras.nfwfgaia]
    +y:585 [binder, in gaia_hydras.nfwfgaia]
    +y:59 [binder, in hydras.Ackermann.cPair]
    +y:6 [binder, in hydras.solutions_exercises.MinPR2]
    +y:6 [binder, in hydras.Ackermann.PAconsistent]
    +y:6 [binder, in additions.Compatibility]
    +y:6 [binder, in hydras.MoreAck.AckNotPR]
    +y:6 [binder, in additions.Euclidean_Chains]
    +y:6 [binder, in hydras.Prelude.STDPP_compat]
    +y:6 [binder, in additions.Addition_Chains]
    +y:6 [binder, in hydras.rpo.closure]
    +y:60 [binder, in hydras.MoreAck.AckNotPR]
    +y:60 [binder, in hydras.Schutte.PartialFun]
    +y:60 [binder, in hydras.OrdinalNotations.ON_Generic]
    +y:609 [binder, in hydras.Gamma0.Gamma0]
    +y:61 [binder, in hydras.Ackermann.fol]
    +y:610 [binder, in hydras.Gamma0.Gamma0]
    +y:613 [binder, in gaia_hydras.nfwfgaia]
    +y:62 [binder, in hydras.Schutte.Critical]
    +y:62 [binder, in hydras.MoreAck.PrimRecExamples]
    +y:622 [binder, in gaia_hydras.nfwfgaia]
    +y:624 [binder, in gaia_hydras.nfwfgaia]
    +y:63 [binder, in hydras.MoreAck.AckNotPR]
    +y:637 [binder, in gaia_hydras.nfwfgaia]
    +y:645 [binder, in gaia_hydras.nfwfgaia]
    +y:648 [binder, in gaia_hydras.nfwfgaia]
    +y:65 [binder, in hydras.Ackermann.cPair]
    +y:65 [binder, in gaia_hydras.nfwfgaia]
    +y:659 [binder, in hydras.Ackermann.primRec]
    +y:66 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +y:669 [binder, in gaia_hydras.nfwfgaia]
    +y:67 [binder, in hydras.Ackermann.cPair]
    +y:673 [binder, in hydras.Ackermann.primRec]
    +y:68 [binder, in additions.AM]
    +y:68 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +y:68 [binder, in additions.Monoid_def]
    +y:682 [binder, in gaia_hydras.nfwfgaia]
    +y:69 [binder, in hydras.Ackermann.cPair]
    +y:7 [binder, in Goedel.PRrepresentable]
    +y:7 [binder, in hydras.Prelude.DecPreOrder_Instances]
    +y:7 [binder, in hydras.Prelude.More_Arith]
    +y:7 [binder, in hydras.Ackermann.LNN]
    +y:7 [binder, in hydras.Prelude.MoreOrders]
    +y:700 [binder, in gaia_hydras.nfwfgaia]
    +y:707 [binder, in hydras.Gamma0.Gamma0]
    +y:709 [binder, in hydras.Gamma0.Gamma0]
    +y:71 [binder, in hydras.Ackermann.cPair]
    +y:710 [binder, in gaia_hydras.nfwfgaia]
    +y:72 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +y:729 [binder, in hydras.Epsilon0.T1]
    +y:73 [binder, in hydras.Ackermann.cPair]
    +y:75 [binder, in hydras.Ackermann.folProp]
    +y:75 [binder, in hydras.Ackermann.cPair]
    +y:76 [binder, in hydras.Epsilon0.Epsilon0rpo]
    +y:76 [binder, in additions.Monoid_def]
    +y:76 [binder, in hydras.Schutte.PartialFun]
    +y:77 [binder, in hydras.Ackermann.cPair]
    +y:772 [binder, in gaia_hydras.nfwfgaia]
    +y:775 [binder, in gaia_hydras.nfwfgaia]
    +y:78 [binder, in hydras.Ackermann.folProp]
    +y:79 [binder, in hydras.Ackermann.cPair]
    +y:79 [binder, in hydras.Schutte.PartialFun]
    +y:8 [binder, in hydras.Ackermann.LNT]
    +y:8 [binder, in hydras.solutions_exercises.MorePRExamples]
    +y:8 [binder, in hydras.Ackermann.cPair]
    +y:8 [binder, in hydras.rpo.closure]
    +y:81 [binder, in hydras.Ackermann.folProp]
    +y:81 [binder, in hydras.MoreAck.PrimRecExamples]
    +y:817 [binder, in gaia_hydras.nfwfgaia]
    +y:82 [binder, in hydras.MoreAck.AckNotPR]
    +y:820 [binder, in gaia_hydras.nfwfgaia]
    +y:824 [binder, in gaia_hydras.nfwfgaia]
    +y:827 [binder, in gaia_hydras.nfwfgaia]
    +y:832 [binder, in gaia_hydras.nfwfgaia]
    +y:838 [binder, in gaia_hydras.nfwfgaia]
    +y:84 [binder, in hydras.Ackermann.folProp]
    +y:84 [binder, in additions.Euclidean_Chains]
    +y:84 [binder, in gaia_hydras.nfwfgaia]
    +y:85 [binder, in additions.Euclidean_Chains]
    +y:86 [binder, in hydras.Ackermann.cPair]
    +y:87 [binder, in hydras.Ackermann.folProp]
    +y:87 [binder, in hydras.MoreAck.AckNotPR]
    +y:87 [binder, in hydras.MoreAck.PrimRecExamples]
    +y:876 [binder, in gaia_hydras.nfwfgaia]
    +y:88 [binder, in hydras.Ackermann.cPair]
    +y:884 [binder, in gaia_hydras.nfwfgaia]
    +y:888 [binder, in gaia_hydras.nfwfgaia]
    +y:890 [binder, in gaia_hydras.nfwfgaia]
    +y:893 [binder, in gaia_hydras.nfwfgaia]
    +y:9 [binder, in hydras.Prelude.WfVariant]
    +y:9 [binder, in hydras.Ackermann.LNN]
    +y:9 [binder, in additions.Wf_transparent]
    +y:9 [binder, in hydras.Prelude.MoreOrders]
    +y:90 [binder, in hydras.Ackermann.cPair]
    +y:91 [binder, in hydras.Ackermann.folProp]
    +y:92 [binder, in hydras.Ackermann.cPair]
    +y:92 [binder, in gaia_hydras.nfwfgaia]
    +y:93 [binder, in gaia_hydras.nfwfgaia]
    +y:94 [binder, in hydras.Ackermann.cPair]
    +y:94 [binder, in hydras.Schutte.Ordering_Functions]
    +y:95 [binder, in additions.Euclidean_Chains]
    +y:95 [binder, in hydras.Schutte.Ordering_Functions]
    +y:96 [binder, in hydras.Ackermann.cPair]
    +y:96 [binder, in hydras.Schutte.Ordering_Functions]
    +y:96 [binder, in gaia_hydras.nfwfgaia]
    +y:97 [binder, in hydras.Ackermann.folProp]
    +y:97 [binder, in hydras.Ackermann.cPair]
    +y:97 [binder, in hydras.Schutte.Ordering_Functions]
    +y:97 [binder, in hydras.MoreAck.PrimRecExamples]
    +y:98 [binder, in hydras.Ackermann.cPair]
    +y:98 [binder, in additions.Addition_Chains]
    +y:98 [binder, in hydras.Prelude.MoreVectors]
    +y:983 [binder, in gaia_hydras.nfwfgaia]
    +y:99 [binder, in additions.Pow_variant]
    +y:99 [binder, in hydras.Schutte.Ordering_Functions]
    +

    Z

    +Z [module, in additions.Naive]
    +zero [constructor, in hydras.Epsilon0.T1]
    +zero [definition, in hydras.OrdinalNotations.ON_Omega2]
    +zero [constructor, in hydras.Gamma0.T2]
    +zero [definition, in hydras.Schutte.Schutte_basics]
    +Zero [abbreviation, in hydras.Epsilon0.E0]
    +zeroFormula [definition, in Goedel.PRrepresentable]
    +zeroFunc [constructor, in hydras.Ackermann.primRec]
    +ZeroLimitSucc_dec [definition, in hydras.OrdinalNotations.ON_Generic]
    +zeroRepresentable [lemma, in Goedel.PRrepresentable]
    +zero_limit_succ_dec [definition, in hydras.Epsilon0.T1]
    +zero_le [lemma, in hydras.Epsilon0.T1]
    +zero_nf [lemma, in hydras.Epsilon0.T1]
    +zero_lt [lemma, in hydras.Epsilon0.T1]
    +zero_lt [lemma, in hydras.Schutte.Correctness_E0]
    +zero_limit_succ_dec [definition, in hydras.OrdinalNotations.ON_Omega2]
    +Zero_limit_succ_dec [definition, in hydras.OrdinalNotations.ON_Omega2]
    +zero_le [lemma, in hydras.OrdinalNotations.ON_Omega2]
    +zero_lt_e0 [constructor, in hydras.Gamma0.T2]
    +zero_nf [constructor, in hydras.Gamma0.T2]
    +zero_finite [constructor, in hydras.Gamma0.T2]
    +zero_lt_beta [lemma, in hydras.Schutte.AP]
    +Zero_limit_succ_dec [definition, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +zero_ref [lemma, in gaia_hydras.T1Bridge]
    +zero_lt_omega [lemma, in hydras.Schutte.Schutte_basics]
    +zero_lt_succ [lemma, in hydras.Schutte.Schutte_basics]
    +zero_or_positive [lemma, in hydras.Schutte.Schutte_basics]
    +zero_or_greater [lemma, in hydras.Schutte.Schutte_basics]
    +zero_le [lemma, in hydras.Schutte.Schutte_basics]
    +Zero_limit_succ_dec [definition, in hydras.OrdinalNotations.ON_Finite]
    +Zero_limit_succ_dec [definition, in hydras.Epsilon0.E0]
    +Zero_Limit_Succ_dec [definition, in hydras.Epsilon0.E0]
    +Zero_limit_succ_dec [definition, in hydras.OrdinalNotations.ON_Omega]
    +zero_not_lim [lemma, in hydras.Gamma0.Gamma0]
    +zero_lt_succ [lemma, in hydras.Gamma0.Gamma0]
    +Zero_ [constructor, in hydras.Ackermann.Languages]
    +zero_plus_alpha [lemma, in hydras.Schutte.Addition]
    +Zfibt [definition, in additions.fib]
    +ZLS_dec [lemma, in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +ZMult [instance, in additions.Monoid_instances]
    +ZMult_Abelian [instance, in additions.Monoid_instances]
    +ZtoR [definition, in additions.fib]
    +ZtoRD [lemma, in additions.fib]
    +ZtoRM [lemma, in additions.fib]
    +Z_le_TO [instance, in hydras.Prelude.DecPreOrder_Instances]
    +Z_le_dec [instance, in hydras.Prelude.DecPreOrder_Instances]
    +Z_pow_compat [lemma, in additions.Compatibility]
    +Z_pow_compat_pos [lemma, in additions.Compatibility]
    +Z_pow [definition, in additions.Compatibility]
    +Z_mult_op [instance, in additions.Monoid_instances]
    +z':2092 [binder, in gaia_hydras.nfwfgaia]
    +z':2102 [binder, in gaia_hydras.nfwfgaia]
    +z':580 [binder, in gaia_hydras.nfwfgaia]
    +z':590 [binder, in gaia_hydras.nfwfgaia]
    +Z.power [definition, in additions.Naive]
    +Z.power_of_plus [lemma, in additions.Naive]
    +Z.power_S [lemma, in additions.Naive]
    +z0:273 [binder, in additions.Euclidean_Chains]
    +z0:275 [binder, in additions.Euclidean_Chains]
    +z0:279 [binder, in additions.Euclidean_Chains]
    +z0:281 [binder, in additions.Euclidean_Chains]
    +z1:103 [binder, in hydras.Ackermann.codeSubFormula]
    +z1:105 [binder, in hydras.Ackermann.folProp]
    +z1:110 [binder, in hydras.Ackermann.codeSubFormula]
    +z1:127 [binder, in hydras.Ackermann.folProp]
    +z1:169 [binder, in hydras.Ackermann.fol]
    +z1:253 [binder, in hydras.Ackermann.fol]
    +z1:263 [binder, in hydras.Ackermann.fol]
    +z1:274 [binder, in hydras.Ackermann.fol]
    +z1:282 [binder, in hydras.Ackermann.fol]
    +z1:303 [binder, in hydras.Ackermann.fol]
    +z1:313 [binder, in hydras.Ackermann.fol]
    +z1:324 [binder, in hydras.Ackermann.fol]
    +z1:349 [binder, in hydras.Ackermann.fol]
    +z1:359 [binder, in hydras.Ackermann.fol]
    +z1:370 [binder, in hydras.Ackermann.fol]
    +z1:393 [binder, in hydras.Ackermann.fol]
    +z1:403 [binder, in hydras.Ackermann.fol]
    +z1:414 [binder, in hydras.Ackermann.fol]
    +z1:88 [binder, in hydras.Ackermann.folProp]
    +z1:95 [binder, in hydras.Ackermann.codeSubFormula]
    +z2:104 [binder, in hydras.Ackermann.codeSubFormula]
    +z2:106 [binder, in hydras.Ackermann.folProp]
    +z2:111 [binder, in hydras.Ackermann.codeSubFormula]
    +z2:128 [binder, in hydras.Ackermann.folProp]
    +z2:170 [binder, in hydras.Ackermann.fol]
    +z2:254 [binder, in hydras.Ackermann.fol]
    +z2:264 [binder, in hydras.Ackermann.fol]
    +z2:275 [binder, in hydras.Ackermann.fol]
    +z2:283 [binder, in hydras.Ackermann.fol]
    +z2:304 [binder, in hydras.Ackermann.fol]
    +z2:314 [binder, in hydras.Ackermann.fol]
    +z2:325 [binder, in hydras.Ackermann.fol]
    +z2:350 [binder, in hydras.Ackermann.fol]
    +z2:360 [binder, in hydras.Ackermann.fol]
    +z2:371 [binder, in hydras.Ackermann.fol]
    +z2:394 [binder, in hydras.Ackermann.fol]
    +z2:404 [binder, in hydras.Ackermann.fol]
    +z2:415 [binder, in hydras.Ackermann.fol]
    +z2:89 [binder, in hydras.Ackermann.folProp]
    +z2:96 [binder, in hydras.Ackermann.codeSubFormula]
    +z3:256 [binder, in hydras.Ackermann.fol]
    +z3:306 [binder, in hydras.Ackermann.fol]
    +z3:352 [binder, in hydras.Ackermann.fol]
    +z3:396 [binder, in hydras.Ackermann.fol]
    +z3:92 [binder, in hydras.Ackermann.folProp]
    +z3:98 [binder, in hydras.Ackermann.codeSubFormula]
    +z4:257 [binder, in hydras.Ackermann.fol]
    +z4:307 [binder, in hydras.Ackermann.fol]
    +z4:353 [binder, in hydras.Ackermann.fol]
    +z4:397 [binder, in hydras.Ackermann.fol]
    +z4:93 [binder, in hydras.Ackermann.folProp]
    +z4:99 [binder, in hydras.Ackermann.codeSubFormula]
    +z:1 [binder, in hydras.OrdinalNotations.Example_3PlusOmega]
    +z:100 [binder, in hydras.Epsilon0.Large_Sets]
    +z:101 [binder, in hydras.Epsilon0.Large_Sets]
    +z:102 [binder, in hydras.Epsilon0.Large_Sets]
    +z:103 [binder, in hydras.Prelude.Iterates]
    +z:106 [binder, in hydras.Schutte.Schutte_basics]
    +z:11 [binder, in Goedel.PRrepresentable]
    +z:11 [binder, in hydras.Prelude.MoreOrders]
    +z:11 [binder, in additions.Addition_Chains]
    +z:12 [binder, in additions.Monoid_def]
    +z:13 [binder, in hydras.Ackermann.Deduction]
    +z:133 [binder, in hydras.Schutte.Schutte_basics]
    +z:134 [binder, in hydras.Prelude.Iterates]
    +z:135 [binder, in hydras.Prelude.Iterates]
    +z:135 [binder, in hydras.Schutte.Schutte_basics]
    +z:136 [binder, in hydras.Prelude.Iterates]
    +z:137 [binder, in hydras.Prelude.Iterates]
    +z:138 [binder, in hydras.Prelude.Iterates]
    +z:139 [binder, in hydras.Prelude.Iterates]
    +z:140 [binder, in hydras.Prelude.Iterates]
    +z:144 [binder, in hydras.Prelude.Iterates]
    +z:145 [binder, in hydras.Prelude.Iterates]
    +z:146 [binder, in hydras.Prelude.Iterates]
    +z:146 [binder, in additions.Euclidean_Chains]
    +z:147 [binder, in hydras.Prelude.Iterates]
    +z:148 [binder, in hydras.Prelude.Iterates]
    +z:149 [binder, in hydras.Prelude.Iterates]
    +z:15 [binder, in Goedel.PRrepresentable]
    +z:150 [binder, in hydras.Prelude.Iterates]
    +z:16 [binder, in hydras.Prelude.MoreOrders]
    +z:16 [binder, in hydras.Ackermann.Deduction]
    +z:170 [binder, in hydras.Ackermann.cPair]
    +z:171 [binder, in hydras.Ackermann.cPair]
    +z:177 [binder, in additions.Euclidean_Chains]
    +z:182 [binder, in hydras.Ackermann.cPair]
    +z:183 [binder, in hydras.Ackermann.cPair]
    +z:184 [binder, in hydras.Ackermann.cPair]
    +z:185 [binder, in hydras.Ackermann.cPair]
    +z:186 [binder, in hydras.Ackermann.cPair]
    +z:187 [binder, in hydras.Ackermann.cPair]
    +z:19 [binder, in Goedel.PRrepresentable]
    +z:19 [binder, in gaia_hydras.onType]
    +z:1924 [binder, in gaia_hydras.nfwfgaia]
    +z:1930 [binder, in gaia_hydras.nfwfgaia]
    +z:1940 [binder, in gaia_hydras.nfwfgaia]
    +z:1945 [binder, in gaia_hydras.nfwfgaia]
    +z:1962 [binder, in gaia_hydras.nfwfgaia]
    +z:1973 [binder, in gaia_hydras.nfwfgaia]
    +z:1990 [binder, in gaia_hydras.nfwfgaia]
    +z:2 [binder, in Goedel.PRrepresentable]
    +z:2001 [binder, in gaia_hydras.nfwfgaia]
    +z:2087 [binder, in gaia_hydras.nfwfgaia]
    +z:2090 [binder, in gaia_hydras.nfwfgaia]
    +z:2101 [binder, in gaia_hydras.nfwfgaia]
    +z:23 [binder, in Goedel.PRrepresentable]
    +z:230 [binder, in additions.Euclidean_Chains]
    +z:231 [binder, in hydras.Schutte.Schutte_basics]
    +z:257 [binder, in additions.Euclidean_Chains]
    +z:26 [binder, in gaia_hydras.onType]
    +z:261 [binder, in additions.Euclidean_Chains]
    +z:265 [binder, in additions.Euclidean_Chains]
    +z:269 [binder, in additions.Euclidean_Chains]
    +z:27 [binder, in Goedel.PRrepresentable]
    +z:27 [binder, in hydras.Schutte.Well_Orders]
    +z:276 [binder, in Goedel.PRrepresentable]
    +z:283 [binder, in additions.Euclidean_Chains]
    +z:285 [binder, in additions.Euclidean_Chains]
    +z:287 [binder, in additions.Euclidean_Chains]
    +z:289 [binder, in additions.Euclidean_Chains]
    +z:30 [binder, in additions.Monoid_def]
    +z:30 [binder, in hydras.Schutte.Well_Orders]
    +z:341 [binder, in Goedel.PRrepresentable]
    +z:343 [binder, in Goedel.PRrepresentable]
    +z:346 [binder, in Goedel.PRrepresentable]
    +z:347 [binder, in Goedel.PRrepresentable]
    +z:348 [binder, in Goedel.PRrepresentable]
    +z:349 [binder, in Goedel.PRrepresentable]
    +z:35 [binder, in gaia_hydras.nfwfgaia]
    +z:36 [binder, in hydras.Prelude.MoreOrders]
    +z:36 [binder, in additions.Monoid_instances]
    +z:366 [binder, in Goedel.PRrepresentable]
    +z:367 [binder, in Goedel.PRrepresentable]
    +z:368 [binder, in Goedel.PRrepresentable]
    +z:369 [binder, in Goedel.PRrepresentable]
    +z:372 [binder, in Goedel.PRrepresentable]
    +z:373 [binder, in Goedel.PRrepresentable]
    +z:374 [binder, in Goedel.PRrepresentable]
    +z:375 [binder, in Goedel.PRrepresentable]
    +z:38 [binder, in gaia_hydras.T1Bridge]
    +z:382 [binder, in hydras.Ackermann.primRec]
    +z:388 [binder, in hydras.Ackermann.primRec]
    +z:395 [binder, in hydras.Ackermann.primRec]
    +z:402 [binder, in hydras.Ackermann.primRec]
    +z:402 [binder, in gaia_hydras.nfwfgaia]
    +z:403 [binder, in gaia_hydras.nfwfgaia]
    +z:404 [binder, in gaia_hydras.nfwfgaia]
    +z:405 [binder, in gaia_hydras.nfwfgaia]
    +z:406 [binder, in gaia_hydras.nfwfgaia]
    +z:410 [binder, in hydras.Ackermann.primRec]
    +z:417 [binder, in gaia_hydras.nfwfgaia]
    +z:418 [binder, in gaia_hydras.nfwfgaia]
    +z:419 [binder, in gaia_hydras.nfwfgaia]
    +z:420 [binder, in gaia_hydras.nfwfgaia]
    +z:421 [binder, in gaia_hydras.nfwfgaia]
    +Z:43 [binder, in hydras.Ackermann.code]
    +z:43 [binder, in hydras.Ackermann.fol]
    +z:454 [binder, in gaia_hydras.nfwfgaia]
    +z:455 [binder, in gaia_hydras.nfwfgaia]
    +z:456 [binder, in gaia_hydras.nfwfgaia]
    +z:46 [binder, in hydras.Ackermann.fol]
    +z:49 [binder, in hydras.Ackermann.fol]
    +z:5 [binder, in Goedel.PRrepresentable]
    +z:511 [binder, in gaia_hydras.nfwfgaia]
    +z:512 [binder, in gaia_hydras.nfwfgaia]
    +z:513 [binder, in gaia_hydras.nfwfgaia]
    +z:52 [binder, in hydras.Ackermann.fol]
    +z:57 [binder, in hydras.Schutte.Schutte_basics]
    +z:578 [binder, in gaia_hydras.nfwfgaia]
    +z:58 [binder, in hydras.Schutte.Schutte_basics]
    +z:589 [binder, in gaia_hydras.nfwfgaia]
    +z:62 [binder, in gaia_hydras.nfwfgaia]
    +z:625 [binder, in gaia_hydras.nfwfgaia]
    +z:63 [binder, in hydras.MoreAck.PrimRecExamples]
    +z:631 [binder, in gaia_hydras.nfwfgaia]
    +z:632 [binder, in gaia_hydras.nfwfgaia]
    +z:633 [binder, in gaia_hydras.nfwfgaia]
    +z:634 [binder, in gaia_hydras.nfwfgaia]
    +z:635 [binder, in gaia_hydras.nfwfgaia]
    +z:638 [binder, in gaia_hydras.nfwfgaia]
    +z:639 [binder, in gaia_hydras.nfwfgaia]
    +z:640 [binder, in gaia_hydras.nfwfgaia]
    +z:641 [binder, in gaia_hydras.nfwfgaia]
    +z:642 [binder, in gaia_hydras.nfwfgaia]
    +z:643 [binder, in gaia_hydras.nfwfgaia]
    +z:646 [binder, in gaia_hydras.nfwfgaia]
    +z:649 [binder, in gaia_hydras.nfwfgaia]
    +z:7 [binder, in hydras.MoreAck.AckNotPR]
    +z:7 [binder, in additions.Euclidean_Chains]
    +z:7 [binder, in hydras.Prelude.STDPP_compat]
    +z:730 [binder, in hydras.Epsilon0.T1]
    +z:741 [binder, in gaia_hydras.nfwfgaia]
    +z:742 [binder, in gaia_hydras.nfwfgaia]
    +z:743 [binder, in gaia_hydras.nfwfgaia]
    +z:744 [binder, in gaia_hydras.nfwfgaia]
    +z:796 [binder, in gaia_hydras.nfwfgaia]
    +z:798 [binder, in gaia_hydras.nfwfgaia]
    +z:8 [binder, in Goedel.PRrepresentable]
    +z:8 [binder, in additions.Addition_Chains]
    +z:801 [binder, in gaia_hydras.nfwfgaia]
    +z:804 [binder, in gaia_hydras.nfwfgaia]
    +z:808 [binder, in gaia_hydras.nfwfgaia]
    +z:812 [binder, in gaia_hydras.nfwfgaia]
    +z:818 [binder, in gaia_hydras.nfwfgaia]
    +z:821 [binder, in gaia_hydras.nfwfgaia]
    +z:825 [binder, in gaia_hydras.nfwfgaia]
    +z:828 [binder, in gaia_hydras.nfwfgaia]
    +z:833 [binder, in gaia_hydras.nfwfgaia]
    +z:86 [binder, in hydras.Ackermann.fol]
    +z:88 [binder, in hydras.Ackermann.fol]
    +z:9 [binder, in hydras.rpo.closure]
    +z:91 [binder, in hydras.Prelude.Iterates]
    +z:91 [binder, in gaia_hydras.nfwfgaia]
    +z:94 [binder, in hydras.Epsilon0.Large_Sets]
    +z:96 [binder, in hydras.Schutte.Schutte_basics]
    +z:97 [binder, in hydras.Prelude.Iterates]
    +z:97 [binder, in hydras.Epsilon0.Large_Sets]
    +z:97 [binder, in hydras.Schutte.Schutte_basics]
    +z:98 [binder, in hydras.Epsilon0.Large_Sets]
    +z:98 [binder, in hydras.Ackermann.fol]
    +z:98 [binder, in hydras.MoreAck.PrimRecExamples]
    +z:99 [binder, in hydras.Epsilon0.Large_Sets]
    +z:99 [binder, in hydras.Ackermann.fol]
    +z:99 [binder, in additions.Addition_Chains]
    +

    _

    +_phi0 [definition, in hydras.Schutte.AP]
    +_omega [definition, in hydras.Schutte.Schutte_basics]
    +_Omega [abbreviation, in hydras.Epsilon0.E0]
    +_f [definition, in hydras.Schutte.Ordering_Functions]
    +_A [definition, in hydras.Schutte.Ordering_Functions]
    +

    other

    +fol:_ <> _ [notation, in hydras.Ackermann.fol]
    +fol:_ = _ [notation, in hydras.Ackermann.fol]
    +fol:_ <-> _ [notation, in hydras.Ackermann.fol]
    +fol:_ -> _ [notation, in hydras.Ackermann.fol]
    +fol:_ ∧ _ [notation, in hydras.Ackermann.fol]
    +fol:_ ∨ _ [notation, in hydras.Ackermann.fol]
    +fol:( _ ) [notation, in hydras.Ackermann.fol]
    +fol:{ _ } [notation, in hydras.Ackermann.fol]
    +fol:~ _ [notation, in hydras.Ackermann.fol]
    +fol:∀ _ , _ [notation, in hydras.Ackermann.fol]
    +fol:∃ _ , _ [notation, in hydras.Ackermann.fol]
    +_ o+ _ (cantor_scope) [notation, in gaia_hydras.GHessenberg]
    +_ O+ _ (E0_scope) [notation, in hydras.Epsilon0.E0]
    +_ * _ (E0_scope) [notation, in hydras.Epsilon0.E0]
    +E0_omega^ (E0_scope) [notation, in hydras.Epsilon0.E0]
    +_ + _ (E0_scope) [notation, in hydras.Epsilon0.E0]
    +_ o<= _ (E0_scope) [notation, in hydras.Epsilon0.E0]
    +_ o< _ (E0_scope) [notation, in hydras.Epsilon0.E0]
    +_ ^ _ (M_scope) [notation, in additions.Pow_variant]
    +_ ^b _ (M_scope) [notation, in additions.Pow_variant]
    +_ ^ _ (M_scope) [notation, in additions.Pow_variant]
    +_ ^ _ (M_scope) [notation, in additions.Pow]
    +_ ^b _ (M_scope) [notation, in additions.Pow]
    +_ ^ _ (M_scope) [notation, in additions.Pow]
    +_ * _ (M_scope) [notation, in additions.Monoid_def]
    +_ .-4 (nat_scope) [notation, in hydras.Prelude.ssrnat_extracts]
    +_ .-3 (nat_scope) [notation, in hydras.Prelude.ssrnat_extracts]
    +_ .-2 (nat_scope) [notation, in hydras.Prelude.ssrnat_extracts]
    +_ .-1 (nat_scope) [notation, in hydras.Prelude.ssrnat_extracts]
    +_ .+5 (nat_scope) [notation, in hydras.Prelude.ssrnat_extracts]
    +_ .+4 (nat_scope) [notation, in hydras.Prelude.ssrnat_extracts]
    +_ .+3 (nat_scope) [notation, in hydras.Prelude.ssrnat_extracts]
    +_ .+2 (nat_scope) [notation, in hydras.Prelude.ssrnat_extracts]
    +_ .+1 (nat_scope) [notation, in hydras.Prelude.ssrnat_extracts]
    +_ <->' _ (nt_scope) [notation, in hydras.Ackermann.LNT]
    +_ <->'' _ (nt_scope) [notation, in hydras.Ackermann.LNT]
    +_ /\' _ (nt_scope) [notation, in hydras.Ackermann.LNT]
    +_ \/' _ (nt_scope) [notation, in hydras.Ackermann.LNT]
    +_ * _ (nt_scope) [notation, in hydras.Ackermann.LNT]
    +_ + _ (nt_scope) [notation, in hydras.Ackermann.LNT]
    +allH _ .. _ , _ (nt_scope) [notation, in hydras.Ackermann.LNT]
    +exH _ .. _ , _ (nt_scope) [notation, in hydras.Ackermann.LNT]
    +v# _ (nt_scope) [notation, in hydras.Ackermann.LNT]
    +_ <> _ (nt_scope) [notation, in hydras.Ackermann.LNT]
    +_ = _ (nt_scope) [notation, in hydras.Ackermann.LNT]
    +_ <-> _ (nt_scope) [notation, in hydras.Ackermann.LNT]
    +~ _ (nt_scope) [notation, in hydras.Ackermann.LNT]
    +_ -> _ (nt_scope) [notation, in hydras.Ackermann.LNT]
    +_ /\ _ (nt_scope) [notation, in hydras.Ackermann.LNT]
    +_ \/ _ (nt_scope) [notation, in hydras.Ackermann.LNT]
    +_ = _ (nt_scope) [notation, in hydras.Ackermann.LNT]
    +_ * _ (ON_scope) [notation, in hydras.OrdinalNotations.ON_Omega2]
    +_ + _ (ON_scope) [notation, in hydras.OrdinalNotations.ON_Omega2]
    +_ o?= _ (ON_scope) [notation, in hydras.OrdinalNotations.ON_Generic]
    +_ o<= _ (ON_scope) [notation, in hydras.OrdinalNotations.ON_Generic]
    +_ o< _ (ON_scope) [notation, in hydras.OrdinalNotations.ON_Generic]
    +_ ^ _ (ppT1_scope) [notation, in hydras.Epsilon0.T1]
    +_ * _ (ppT1_scope) [notation, in hydras.Epsilon0.T1]
    +_ + _ (ppT1_scope) [notation, in hydras.Epsilon0.T1]
    +omega^ (schutte_scope) [notation, in hydras.Schutte.AP]
    +|_| _ (schutte_scope) [notation, in hydras.Schutte.Schutte_basics]
    +_ <= _ (schutte_scope) [notation, in hydras.Schutte.Schutte_basics]
    +_ < _ (schutte_scope) [notation, in hydras.Schutte.Schutte_basics]
    +_ * _ (schutte_scope) [notation, in hydras.Schutte.Addition]
    +_ + _ (schutte_scope) [notation, in hydras.Schutte.Addition]
    +_ == _ (type_scope) [notation, in additions.Monoid_def]
    +_ == _ (type_scope) [notation, in additions.Addition_Chains]
    +_ t1< _ t1< _ (t1_scope) [notation, in hydras.Epsilon0.T1]
    +_ t1<= _ (t1_scope) [notation, in hydras.Epsilon0.T1]
    +_ t1< _ (t1_scope) [notation, in hydras.Epsilon0.T1]
    +_ ^ _ (t1_scope) [notation, in hydras.Epsilon0.T1]
    +_ - _ (t1_scope) [notation, in hydras.Epsilon0.T1]
    +_ * _ (t1_scope) [notation, in hydras.Epsilon0.T1]
    +_ + _ (t1_scope) [notation, in hydras.Epsilon0.T1]
    +\F _ (t1_scope) [notation, in hydras.Epsilon0.T1]
    +_ t2<= _ (T2_scope) [notation, in hydras.Gamma0.T2]
    +_ t2< _ (T2_scope) [notation, in hydras.Gamma0.T2]
    +[ _ , _ ] (T2_scope) [notation, in hydras.Gamma0.T2]
    +_ + _ (T2_scope) [notation, in hydras.Gamma0.Gamma0]
    +_ <_phi0 _ [notation, in hydras.Epsilon0.T1]
    +_ < _ [notation, in gaia_hydras.T1Choice]
    +_ <= _ [notation, in gaia_hydras.T1Choice]
    +_ '<s' _ [notation, in hydras.Prelude.DecPreOrder_Instances]
    +_ <: _ [notation, in hydras.Prelude.DecPreOrder_Instances]
    +_ >>s _ [notation, in hydras.Prelude.Iterates]
    +_ >> _ [notation, in hydras.Prelude.Iterates]
    +_ <<= _ [notation, in hydras.Prelude.Iterates]
    +_ o+ _ [notation, in hydras.Epsilon0.Hessenberg]
    +_ =x= _ [notation, in hydras.Ackermann.primRec]
    +_ <--- _ times _ ; _ [notation, in additions.Addition_Chains]
    +_ -*-> _ [notation, in hydras.Hydra.Hydra_Definitions]
    +_ -+-> _ [notation, in hydras.Hydra.Hydra_Definitions]
    +_ -1-> _ [notation, in hydras.Hydra.Hydra_Definitions]
    +f[ _ ]f [notation, in hydras.Ackermann.fol]
    +SetAdds _ _ .. _ [notation, in hydras.Ackermann.NewNotations]
    +SetEnum _ _ .. _ [notation, in hydras.Ackermann.NewNotations]
    +v_apply _ _ [notation, in hydras.MoreAck.AckNotPR]
    +α [definition, in gaia_hydras.HydraGaia_Examples]
    +β [abbreviation, in Goedel.PRrepresentable]
    +β [definition, in gaia_hydras.HydraGaia_Examples]
    +βR [abbreviation, in Goedel.PRrepresentable]
    +ω [abbreviation, in hydras.Epsilon0.T1]
    +


    +

    Notation Index

    +

    A

    +_ - _ (ak_scope) [in gaia_hydras.nfwfgaia]
    +_ + _ (ak_scope) [in gaia_hydras.nfwfgaia]
    +_ > _ (ak_scope) [in gaia_hydras.nfwfgaia]
    +_ >= _ (ak_scope) [in gaia_hydras.nfwfgaia]
    +_ <= _ (ak_scope) [in gaia_hydras.nfwfgaia]
    +_ < _ (ak_scope) [in gaia_hydras.nfwfgaia]
    +\F _ (ak_scope) [in gaia_hydras.nfwfgaia]
    +[ _ , _ , _ ] (ak_scope) [in gaia_hydras.nfwfgaia]
    +_ < _ (cantor_scope) [in gaia_hydras.nfwfgaia]
    +

    C

    +_ ^ _ (cantor_scope) [in gaia_hydras.nfwfgaia]
    +_ * _ (cantor_scope) [in gaia_hydras.nfwfgaia]
    +_ - _ (cantor_scope) [in gaia_hydras.nfwfgaia]
    +_ + _ (cantor_scope) [in gaia_hydras.nfwfgaia]
    +_ > _ (cantor_scope) [in gaia_hydras.nfwfgaia]
    +_ >= _ (cantor_scope) [in gaia_hydras.nfwfgaia]
    +_ <= _ (cantor_scope) [in gaia_hydras.nfwfgaia]
    +_ < _ (cantor_scope) [in gaia_hydras.nfwfgaia]
    +\F _ (cantor_scope) [in gaia_hydras.nfwfgaia]
    +

    D

    +_ ^ _ [in additions.FirstSteps]
    +_ * _ [in additions.FirstSteps]
    +1 [in additions.FirstSteps]
    +_ <= _ [in hydras.Prelude.MoreOrders]
    +_ < _ [in hydras.Prelude.MoreOrders]
    +

    F

    +_ <->' _ (fol_scope) [in hydras.Ackermann.fol]
    +_ <->'' _ (fol_scope) [in hydras.Ackermann.fol]
    +_ /\' _ (fol_scope) [in hydras.Ackermann.fol]
    +_ \/' _ (fol_scope) [in hydras.Ackermann.fol]
    +_ <> _ (fol_scope) [in hydras.Ackermann.fol]
    +_ = _ (fol_scope) [in hydras.Ackermann.fol]
    +allH _ .. _ , _ (fol_scope) [in hydras.Ackermann.fol]
    +exH _ .. _ , _ (fol_scope) [in hydras.Ackermann.fol]
    +v# _ (fol_scope) [in hydras.Ackermann.fol]
    +_ <-> _ (fol_scope) [in hydras.Ackermann.fol]
    +~ _ (fol_scope) [in hydras.Ackermann.fol]
    +_ -> _ (fol_scope) [in hydras.Ackermann.fol]
    +_ /\ _ (fol_scope) [in hydras.Ackermann.fol]
    +_ \/ _ (fol_scope) [in hydras.Ackermann.fol]
    +_ = _ (fol_scope) [in hydras.Ackermann.fol]
    +

    G

    +_ - _ (g0_scope) [in gaia_hydras.nfwfgaia]
    +_ + _ (g0_scope) [in gaia_hydras.nfwfgaia]
    +_ > _ (g0_scope) [in gaia_hydras.nfwfgaia]
    +_ >= _ (g0_scope) [in gaia_hydras.nfwfgaia]
    +_ <= _ (g0_scope) [in gaia_hydras.nfwfgaia]
    +_ < _ (g0_scope) [in gaia_hydras.nfwfgaia]
    +\F _ (g0_scope) [in gaia_hydras.nfwfgaia]
    +[ _ , _ ] (g0_scope) [in gaia_hydras.nfwfgaia]
    +_ <= _ [in hydras.Prelude.Merge_Sort]
    +omega^ (g0_scope) [in hydras.Gamma0.Gamma0]
    +_ + _ (g0_scope) [in hydras.Gamma0.Gamma0]
    +

    L

    +_ <lex _ [in hydras.Prelude.DecPreOrder_Instances]
    +_ <=lex _ [in hydras.Prelude.DecPreOrder_Instances]
    +_ =B= _ [in hydras.Prelude.DecPreOrder_Instances]
    +_ =A= _ [in hydras.Prelude.DecPreOrder_Instances]
    +_ <B _ [in hydras.Prelude.DecPreOrder_Instances]
    +_ <=B _ [in hydras.Prelude.DecPreOrder_Instances]
    +_ <A _ [in hydras.Prelude.DecPreOrder_Instances]
    +_ <=A _ [in hydras.Prelude.DecPreOrder_Instances]
    +_ * _ (lo_scope) [in hydras.OrdinalNotations.OmegaOmega]
    +_ + _ (lo_scope) [in hydras.OrdinalNotations.OmegaOmega]
    +

    M

    +_ * _ [in additions.Monoid_instances]
    +_ + _ [in additions.Monoid_instances]
    +1 [in additions.Monoid_instances]
    +0 [in additions.Monoid_instances]
    +_ ** _ [in additions.Naive]
    +_ * _ [in additions.Naive]
    +_ + _ [in additions.Naive]
    +0 [in additions.Naive]
    +1 [in additions.Naive]
    +_ * _ [in additions.FirstSteps]
    +_ + _ [in additions.FirstSteps]
    +1 [in additions.FirstSteps]
    +0 [in additions.FirstSteps]
    +

    N

    +fol:_ * _ [in hydras.Ackermann.LNN]
    +fol:_ + _ [in hydras.Ackermann.LNN]
    +_ < _ (fol_scope) [in hydras.Ackermann.LNN]
    +_ * _ (fol_scope) [in hydras.Ackermann.LNN]
    +_ + _ (fol_scope) [in hydras.Ackermann.LNN]
    +

    O

    +_ * _ (OO_scope) [in hydras.OrdinalNotations.OmegaOmega]
    +omega^ (OO_scope) [in hydras.OrdinalNotations.OmegaOmega]
    +_ * _ (OO_scope) [in hydras.OrdinalNotations.OmegaOmega]
    +_ + _ (OO_scope) [in hydras.OrdinalNotations.OmegaOmega]
    +

    P

    +[ _ ; _ ; .. ; _ ] (pr_scope) [in hydras.Ackermann.primRec]
    +[ _ ] (pr_scope) [in hydras.Ackermann.primRec]
    +_ :: _ (pr_scope) [in hydras.Ackermann.primRec]
    +

    V

    +_ < _ [in hydras.Prelude.WfVariant]
    +

    other

    +fol:_ <> _ [in hydras.Ackermann.fol]
    +fol:_ = _ [in hydras.Ackermann.fol]
    +fol:_ <-> _ [in hydras.Ackermann.fol]
    +fol:_ -> _ [in hydras.Ackermann.fol]
    +fol:_ ∧ _ [in hydras.Ackermann.fol]
    +fol:_ ∨ _ [in hydras.Ackermann.fol]
    +fol:( _ ) [in hydras.Ackermann.fol]
    +fol:{ _ } [in hydras.Ackermann.fol]
    +fol:~ _ [in hydras.Ackermann.fol]
    +fol:∀ _ , _ [in hydras.Ackermann.fol]
    +fol:∃ _ , _ [in hydras.Ackermann.fol]
    +_ o+ _ (cantor_scope) [in gaia_hydras.GHessenberg]
    +_ O+ _ (E0_scope) [in hydras.Epsilon0.E0]
    +_ * _ (E0_scope) [in hydras.Epsilon0.E0]
    +E0_omega^ (E0_scope) [in hydras.Epsilon0.E0]
    +_ + _ (E0_scope) [in hydras.Epsilon0.E0]
    +_ o<= _ (E0_scope) [in hydras.Epsilon0.E0]
    +_ o< _ (E0_scope) [in hydras.Epsilon0.E0]
    +_ ^ _ (M_scope) [in additions.Pow_variant]
    +_ ^b _ (M_scope) [in additions.Pow_variant]
    +_ ^ _ (M_scope) [in additions.Pow_variant]
    +_ ^ _ (M_scope) [in additions.Pow]
    +_ ^b _ (M_scope) [in additions.Pow]
    +_ ^ _ (M_scope) [in additions.Pow]
    +_ * _ (M_scope) [in additions.Monoid_def]
    +_ .-4 (nat_scope) [in hydras.Prelude.ssrnat_extracts]
    +_ .-3 (nat_scope) [in hydras.Prelude.ssrnat_extracts]
    +_ .-2 (nat_scope) [in hydras.Prelude.ssrnat_extracts]
    +_ .-1 (nat_scope) [in hydras.Prelude.ssrnat_extracts]
    +_ .+5 (nat_scope) [in hydras.Prelude.ssrnat_extracts]
    +_ .+4 (nat_scope) [in hydras.Prelude.ssrnat_extracts]
    +_ .+3 (nat_scope) [in hydras.Prelude.ssrnat_extracts]
    +_ .+2 (nat_scope) [in hydras.Prelude.ssrnat_extracts]
    +_ .+1 (nat_scope) [in hydras.Prelude.ssrnat_extracts]
    +_ <->' _ (nt_scope) [in hydras.Ackermann.LNT]
    +_ <->'' _ (nt_scope) [in hydras.Ackermann.LNT]
    +_ /\' _ (nt_scope) [in hydras.Ackermann.LNT]
    +_ \/' _ (nt_scope) [in hydras.Ackermann.LNT]
    +_ * _ (nt_scope) [in hydras.Ackermann.LNT]
    +_ + _ (nt_scope) [in hydras.Ackermann.LNT]
    +allH _ .. _ , _ (nt_scope) [in hydras.Ackermann.LNT]
    +exH _ .. _ , _ (nt_scope) [in hydras.Ackermann.LNT]
    +v# _ (nt_scope) [in hydras.Ackermann.LNT]
    +_ <> _ (nt_scope) [in hydras.Ackermann.LNT]
    +_ = _ (nt_scope) [in hydras.Ackermann.LNT]
    +_ <-> _ (nt_scope) [in hydras.Ackermann.LNT]
    +~ _ (nt_scope) [in hydras.Ackermann.LNT]
    +_ -> _ (nt_scope) [in hydras.Ackermann.LNT]
    +_ /\ _ (nt_scope) [in hydras.Ackermann.LNT]
    +_ \/ _ (nt_scope) [in hydras.Ackermann.LNT]
    +_ = _ (nt_scope) [in hydras.Ackermann.LNT]
    +_ * _ (ON_scope) [in hydras.OrdinalNotations.ON_Omega2]
    +_ + _ (ON_scope) [in hydras.OrdinalNotations.ON_Omega2]
    +_ o?= _ (ON_scope) [in hydras.OrdinalNotations.ON_Generic]
    +_ o<= _ (ON_scope) [in hydras.OrdinalNotations.ON_Generic]
    +_ o< _ (ON_scope) [in hydras.OrdinalNotations.ON_Generic]
    +_ ^ _ (ppT1_scope) [in hydras.Epsilon0.T1]
    +_ * _ (ppT1_scope) [in hydras.Epsilon0.T1]
    +_ + _ (ppT1_scope) [in hydras.Epsilon0.T1]
    +omega^ (schutte_scope) [in hydras.Schutte.AP]
    +|_| _ (schutte_scope) [in hydras.Schutte.Schutte_basics]
    +_ <= _ (schutte_scope) [in hydras.Schutte.Schutte_basics]
    +_ < _ (schutte_scope) [in hydras.Schutte.Schutte_basics]
    +_ * _ (schutte_scope) [in hydras.Schutte.Addition]
    +_ + _ (schutte_scope) [in hydras.Schutte.Addition]
    +_ == _ (type_scope) [in additions.Monoid_def]
    +_ == _ (type_scope) [in additions.Addition_Chains]
    +_ t1< _ t1< _ (t1_scope) [in hydras.Epsilon0.T1]
    +_ t1<= _ (t1_scope) [in hydras.Epsilon0.T1]
    +_ t1< _ (t1_scope) [in hydras.Epsilon0.T1]
    +_ ^ _ (t1_scope) [in hydras.Epsilon0.T1]
    +_ - _ (t1_scope) [in hydras.Epsilon0.T1]
    +_ * _ (t1_scope) [in hydras.Epsilon0.T1]
    +_ + _ (t1_scope) [in hydras.Epsilon0.T1]
    +\F _ (t1_scope) [in hydras.Epsilon0.T1]
    +_ t2<= _ (T2_scope) [in hydras.Gamma0.T2]
    +_ t2< _ (T2_scope) [in hydras.Gamma0.T2]
    +[ _ , _ ] (T2_scope) [in hydras.Gamma0.T2]
    +_ + _ (T2_scope) [in hydras.Gamma0.Gamma0]
    +_ <_phi0 _ [in hydras.Epsilon0.T1]
    +_ < _ [in gaia_hydras.T1Choice]
    +_ <= _ [in gaia_hydras.T1Choice]
    +_ '<s' _ [in hydras.Prelude.DecPreOrder_Instances]
    +_ <: _ [in hydras.Prelude.DecPreOrder_Instances]
    +_ >>s _ [in hydras.Prelude.Iterates]
    +_ >> _ [in hydras.Prelude.Iterates]
    +_ <<= _ [in hydras.Prelude.Iterates]
    +_ o+ _ [in hydras.Epsilon0.Hessenberg]
    +_ =x= _ [in hydras.Ackermann.primRec]
    +_ <--- _ times _ ; _ [in additions.Addition_Chains]
    +_ -*-> _ [in hydras.Hydra.Hydra_Definitions]
    +_ -+-> _ [in hydras.Hydra.Hydra_Definitions]
    +_ -1-> _ [in hydras.Hydra.Hydra_Definitions]
    +f[ _ ]f [in hydras.Ackermann.fol]
    +SetAdds _ _ .. _ [in hydras.Ackermann.NewNotations]
    +SetEnum _ _ .. _ [in hydras.Ackermann.NewNotations]
    +v_apply _ _ [in hydras.MoreAck.AckNotPR]
    +


    +

    Binder Index

    +

    A

    +ab1:18 [in hydras.MoreAck.Ack]
    +ab2:19 [in hydras.MoreAck.Ack]
    +ab:34 [in hydras.MoreAck.Ack]
    +acc1:10 [in additions.fib]
    +acc1:5 [in additions.fib]
    +acc2:11 [in additions.fib]
    +acc2:6 [in additions.fib]
    +acc:108 [in hydras.MoreAck.PrimRecExamples]
    +acc:113 [in hydras.rpo.list_set]
    +acc:118 [in hydras.rpo.list_set]
    +acc:126 [in hydras.rpo.list_set]
    +acc:133 [in hydras.rpo.list_set]
    +acc:140 [in hydras.rpo.list_set]
    +acc:144 [in hydras.rpo.list_set]
    +acc:148 [in hydras.rpo.list_set]
    +acc:16 [in additions.Compatibility]
    +acc:18 [in additions.fib]
    +acc:20 [in additions.Compatibility]
    +acc:232 [in hydras.rpo.list_set]
    +acc:235 [in hydras.rpo.list_set]
    +acc:238 [in hydras.rpo.list_set]
    +acc:242 [in hydras.rpo.list_set]
    +acc:71 [in additions.fib]
    +acc:78 [in additions.fib]
    +acc:87 [in hydras.rpo.list_set]
    +Ackm:13 [in hydras.MoreAck.Ack]
    +Aeq:64 [in additions.Monoid_def]
    +alpha':137 [in hydras.Gamma0.Gamma0]
    +alpha':193 [in hydras.Epsilon0.T1]
    +alpha':322 [in hydras.Epsilon0.T1]
    +alpha':462 [in hydras.Gamma0.Gamma0]
    +alpha':505 [in hydras.Gamma0.Gamma0]
    +alpha':509 [in hydras.Gamma0.Gamma0]
    +alpha':548 [in hydras.Gamma0.Gamma0]
    +alpha':551 [in hydras.Gamma0.Gamma0]
    +alpha':92 [in hydras.Epsilon0.T1]
    +alpha1:28 [in hydras.Gamma0.T2]
    +alpha1:36 [in hydras.Gamma0.T2]
    +alpha1:43 [in hydras.Gamma0.T2]
    +alpha1:51 [in hydras.Gamma0.T2]
    +alpha1:58 [in hydras.Gamma0.T2]
    +alpha1:64 [in hydras.Gamma0.T2]
    +alpha1:665 [in hydras.Gamma0.Gamma0]
    +alpha1:674 [in hydras.Gamma0.Gamma0]
    +alpha2:29 [in hydras.Gamma0.T2]
    +alpha2:44 [in hydras.Gamma0.T2]
    +alpha2:52 [in hydras.Gamma0.T2]
    +alpha2:667 [in hydras.Gamma0.Gamma0]
    +alpha2:676 [in hydras.Gamma0.Gamma0]
    +alpha:1 [in hydras.solutions_exercises.is_F_monotonous]
    +alpha:1 [in gaia_hydras.GF_alpha]
    +alpha:1 [in gaia_hydras.GHprime]
    +alpha:1 [in hydras.Epsilon0.Hessenberg]
    +alpha:1 [in hydras.Epsilon0.Large_Sets]
    +alpha:1 [in hydras.Schutte.Critical]
    +alpha:1 [in hydras.Schutte.AP]
    +alpha:1 [in hydras.Epsilon0.L_alpha]
    +alpha:1 [in hydras.Hydra.Hydra_Theorems]
    +alpha:1 [in hydras.Epsilon0.Canon]
    +alpha:1 [in hydras.solutions_exercises.ge_omega_iff]
    +alpha:1 [in hydras.Epsilon0.Hprime]
    +alpha:1 [in gaia_hydras.GL_alpha]
    +alpha:1 [in gaia_hydras.T2Bridge]
    +alpha:1 [in hydras.Schutte.Addition]
    +alpha:1 [in gaia_hydras.GHessenberg]
    +alpha:10 [in hydras.Schutte.Correctness_E0]
    +alpha:10 [in gaia_hydras.GF_alpha]
    +alpha:10 [in gaia_hydras.GHprime]
    +alpha:10 [in hydras.Epsilon0.Hessenberg]
    +alpha:10 [in hydras.Schutte.Critical]
    +alpha:10 [in hydras.Schutte.Addition]
    +alpha:100 [in hydras.OrdinalNotations.OmegaOmega]
    +alpha:100 [in hydras.Schutte.Schutte_basics]
    +alpha:100 [in hydras.Epsilon0.E0]
    +alpha:100 [in hydras.Epsilon0.Paths]
    +alpha:101 [in hydras.Hydra.O2H]
    +alpha:101 [in hydras.Prelude.Comparable]
    +alpha:101 [in hydras.Schutte.Schutte_basics]
    +alpha:102 [in hydras.Epsilon0.T1]
    +alpha:102 [in hydras.Schutte.Schutte_basics]
    +alpha:102 [in hydras.OrdinalNotations.ON_Generic]
    +alpha:102 [in hydras.Epsilon0.E0]
    +alpha:103 [in hydras.Prelude.Comparable]
    +alpha:103 [in hydras.OrdinalNotations.OmegaOmega]
    +alpha:103 [in hydras.Epsilon0.Paths]
    +alpha:104 [in hydras.Hydra.O2H]
    +alpha:104 [in hydras.OrdinalNotations.OmegaOmega]
    +alpha:104 [in hydras.Epsilon0.Canon]
    +alpha:104 [in hydras.Schutte.Schutte_basics]
    +alpha:104 [in hydras.Epsilon0.E0]
    +alpha:105 [in hydras.Schutte.Schutte_basics]
    +alpha:105 [in hydras.Epsilon0.E0]
    +alpha:106 [in hydras.OrdinalNotations.OmegaOmega]
    +alpha:106 [in hydras.Epsilon0.Canon]
    +alpha:107 [in hydras.Schutte.Schutte_basics]
    +alpha:107 [in hydras.Epsilon0.E0]
    +alpha:108 [in hydras.Schutte.Schutte_basics]
    +alpha:108 [in hydras.Epsilon0.E0]
    +alpha:108 [in hydras.Epsilon0.Paths]
    +alpha:109 [in hydras.Epsilon0.Hessenberg]
    +alpha:109 [in hydras.OrdinalNotations.OmegaOmega]
    +alpha:109 [in hydras.Epsilon0.Canon]
    +alpha:109 [in hydras.Schutte.Schutte_basics]
    +alpha:109 [in hydras.Epsilon0.Paths]
    +alpha:11 [in hydras.OrdinalNotations.ON_Omega2]
    +alpha:11 [in hydras.Gamma0.T2]
    +alpha:11 [in hydras.Schutte.CNF]
    +alpha:11 [in hydras.Schutte.Critical]
    +alpha:11 [in hydras.Schutte.AP]
    +alpha:11 [in hydras.OrdinalNotations.ON_mult]
    +alpha:11 [in hydras.OrdinalNotations.ON_Finite]
    +alpha:11 [in hydras.Epsilon0.E0]
    +alpha:11 [in hydras.Schutte.Addition]
    +alpha:110 [in hydras.Epsilon0.T1]
    +alpha:110 [in hydras.Hydra.O2H]
    +alpha:110 [in hydras.Epsilon0.E0]
    +alpha:111 [in hydras.Epsilon0.Canon]
    +alpha:111 [in hydras.Schutte.Schutte_basics]
    +alpha:111 [in hydras.Epsilon0.E0]
    +alpha:112 [in hydras.Epsilon0.Hessenberg]
    +alpha:113 [in hydras.Epsilon0.Canon]
    +alpha:113 [in hydras.Schutte.Schutte_basics]
    +alpha:113 [in hydras.Epsilon0.E0]
    +alpha:113 [in hydras.Epsilon0.Paths]
    +alpha:114 [in hydras.Epsilon0.F_alpha]
    +alpha:114 [in hydras.Epsilon0.Canon]
    +alpha:115 [in hydras.Schutte.Schutte_basics]
    +alpha:115 [in hydras.OrdinalNotations.ON_Generic]
    +alpha:115 [in hydras.Epsilon0.E0]
    +alpha:117 [in hydras.Schutte.Schutte_basics]
    +alpha:117 [in hydras.Epsilon0.E0]
    +alpha:117 [in hydras.Epsilon0.Hprime]
    +alpha:118 [in hydras.Epsilon0.E0]
    +alpha:118 [in hydras.Epsilon0.Paths]
    +alpha:119 [in hydras.Epsilon0.T1]
    +alpha:119 [in hydras.Epsilon0.F_alpha]
    +alpha:119 [in hydras.Schutte.Schutte_basics]
    +alpha:12 [in hydras.Epsilon0.T1]
    +alpha:12 [in hydras.OrdinalNotations.ON_Omega2]
    +alpha:12 [in hydras.Hydra.O2H]
    +alpha:12 [in gaia_hydras.GHprime]
    +alpha:12 [in hydras.Epsilon0.Large_Sets]
    +alpha:12 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +alpha:12 [in hydras.Epsilon0.E0]
    +alpha:12 [in hydras.Hydra.Epsilon0_Needed_Generic]
    +alpha:12 [in hydras.Schutte.Addition]
    +alpha:120 [in hydras.Schutte.Schutte_basics]
    +alpha:120 [in hydras.OrdinalNotations.ON_Generic]
    +alpha:120 [in hydras.Epsilon0.E0]
    +alpha:121 [in hydras.Epsilon0.T1]
    +alpha:121 [in hydras.Schutte.Schutte_basics]
    +alpha:123 [in hydras.Epsilon0.Paths]
    +alpha:124 [in hydras.Epsilon0.T1]
    +alpha:124 [in hydras.Epsilon0.Hprime]
    +alpha:124 [in hydras.Gamma0.Gamma0]
    +alpha:125 [in hydras.Epsilon0.Large_Sets]
    +alpha:127 [in hydras.Epsilon0.Large_Sets]
    +alpha:127 [in hydras.Epsilon0.Paths]
    +alpha:127 [in hydras.Gamma0.Gamma0]
    +alpha:128 [in hydras.Epsilon0.Hprime]
    +alpha:129 [in hydras.Epsilon0.Large_Sets]
    +alpha:13 [in hydras.solutions_exercises.predSuccUnicity]
    +alpha:13 [in gaia_hydras.GF_alpha]
    +alpha:13 [in gaia_hydras.GHprime]
    +alpha:13 [in hydras.OrdinalNotations.ON_O]
    +alpha:13 [in hydras.Epsilon0.Hessenberg]
    +alpha:13 [in hydras.Schutte.CNF]
    +alpha:13 [in hydras.OrdinalNotations.ON_mult]
    +alpha:13 [in hydras.OrdinalNotations.ON_plus]
    +alpha:13 [in gaia_hydras.GL_alpha]
    +alpha:13 [in hydras.Gamma0.Gamma0]
    +alpha:130 [in hydras.Gamma0.Gamma0]
    +alpha:131 [in hydras.Epsilon0.Large_Sets]
    +alpha:132 [in hydras.OrdinalNotations.ON_Generic]
    +alpha:132 [in hydras.Epsilon0.Paths]
    +alpha:133 [in hydras.Epsilon0.Large_Sets]
    +alpha:133 [in hydras.Gamma0.Gamma0]
    +alpha:135 [in hydras.Epsilon0.Large_Sets]
    +alpha:136 [in hydras.Schutte.Ordering_Functions]
    +alpha:137 [in hydras.Epsilon0.Large_Sets]
    +alpha:137 [in hydras.Schutte.Ordering_Functions]
    +alpha:139 [in hydras.Epsilon0.Large_Sets]
    +alpha:139 [in hydras.Epsilon0.Paths]
    +alpha:14 [in hydras.Schutte.Correctness_E0]
    +alpha:14 [in hydras.OrdinalNotations.ON_Omega2]
    +alpha:14 [in hydras.Schutte.Critical]
    +alpha:14 [in hydras.Schutte.AP]
    +alpha:14 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +alpha:14 [in hydras.OrdinalNotations.ON_Finite]
    +alpha:14 [in hydras.Epsilon0.E0]
    +alpha:14 [in hydras.Epsilon0.Paths]
    +alpha:14 [in hydras.Gamma0.Gamma0]
    +alpha:141 [in hydras.Epsilon0.T1]
    +alpha:141 [in hydras.Epsilon0.Large_Sets]
    +alpha:145 [in hydras.OrdinalNotations.ON_Generic]
    +alpha:145 [in hydras.Epsilon0.Paths]
    +alpha:146 [in hydras.Epsilon0.T1]
    +alpha:146 [in hydras.Gamma0.Gamma0]
    +alpha:147 [in hydras.Schutte.Schutte_basics]
    +alpha:147 [in hydras.Gamma0.Gamma0]
    +alpha:149 [in hydras.Schutte.Schutte_basics]
    +alpha:15 [in hydras.Epsilon0.T1]
    +alpha:15 [in hydras.Gamma0.T2]
    +alpha:15 [in hydras.Hydra.O2H]
    +alpha:15 [in gaia_hydras.GF_alpha]
    +alpha:15 [in hydras.Schutte.CNF]
    +alpha:15 [in hydras.Schutte.Critical]
    +alpha:15 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +alpha:15 [in hydras.OrdinalNotations.ON_mult]
    +alpha:15 [in hydras.Hydra.Epsilon0_Needed_Std]
    +alpha:15 [in hydras.OrdinalNotations.ON_plus]
    +alpha:15 [in gaia_hydras.GHydra]
    +alpha:15 [in hydras.solutions_exercises.F_3]
    +alpha:15 [in gaia_hydras.GL_alpha]
    +alpha:15 [in hydras.Gamma0.Gamma0]
    +alpha:15 [in hydras.Schutte.Addition]
    +alpha:150 [in hydras.Epsilon0.T1]
    +alpha:151 [in hydras.Schutte.Schutte_basics]
    +alpha:151 [in hydras.Epsilon0.Paths]
    +alpha:151 [in hydras.Gamma0.Gamma0]
    +alpha:153 [in hydras.Epsilon0.Paths]
    +alpha:153 [in hydras.Gamma0.Gamma0]
    +alpha:154 [in hydras.Epsilon0.Large_Sets]
    +alpha:155 [in hydras.Epsilon0.T1]
    +alpha:156 [in hydras.Epsilon0.Paths]
    +alpha:157 [in hydras.Epsilon0.T1]
    +alpha:157 [in hydras.Epsilon0.Large_Sets]
    +alpha:157 [in hydras.Epsilon0.Paths]
    +alpha:157 [in hydras.Gamma0.Gamma0]
    +alpha:158 [in hydras.Epsilon0.F_alpha]
    +alpha:159 [in hydras.Epsilon0.Paths]
    +alpha:16 [in hydras.OrdinalNotations.ON_Omega2]
    +alpha:16 [in hydras.solutions_exercises.predSuccUnicity]
    +alpha:16 [in gaia_hydras.GF_alpha]
    +alpha:16 [in hydras.OrdinalNotations.ON_O]
    +alpha:16 [in hydras.Epsilon0.Paths]
    +alpha:16 [in hydras.Gamma0.Gamma0]
    +alpha:16 [in hydras.Schutte.Addition]
    +alpha:160 [in hydras.Epsilon0.F_alpha]
    +alpha:161 [in hydras.Epsilon0.Paths]
    +alpha:162 [in hydras.Epsilon0.F_alpha]
    +alpha:164 [in hydras.Epsilon0.Paths]
    +alpha:165 [in hydras.Epsilon0.F_alpha]
    +alpha:167 [in hydras.Epsilon0.F_alpha]
    +alpha:168 [in hydras.Schutte.Ordering_Functions]
    +alpha:169 [in hydras.Epsilon0.Large_Sets]
    +alpha:169 [in hydras.Epsilon0.Paths]
    +alpha:169 [in hydras.Schutte.Ordering_Functions]
    +alpha:17 [in hydras.OrdinalNotations.ON_Omega2]
    +alpha:17 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +alpha:17 [in hydras.OrdinalNotations.ON_plus]
    +alpha:17 [in gaia_hydras.GHydra]
    +alpha:17 [in hydras.OrdinalNotations.ON_Finite]
    +alpha:17 [in gaia_hydras.GL_alpha]
    +alpha:17 [in hydras.Gamma0.Gamma0]
    +alpha:17 [in hydras.Schutte.Addition]
    +alpha:170 [in hydras.Epsilon0.F_alpha]
    +alpha:170 [in gaia_hydras.T1Bridge]
    +alpha:172 [in gaia_hydras.T1Bridge]
    +alpha:174 [in hydras.Epsilon0.F_alpha]
    +alpha:174 [in hydras.Epsilon0.Paths]
    +alpha:174 [in hydras.Gamma0.Gamma0]
    +alpha:175 [in hydras.Schutte.Schutte_basics]
    +alpha:175 [in hydras.Gamma0.Gamma0]
    +alpha:176 [in hydras.Epsilon0.F_alpha]
    +alpha:176 [in hydras.Epsilon0.Large_Sets]
    +alpha:176 [in hydras.Gamma0.Gamma0]
    +alpha:177 [in hydras.Schutte.Schutte_basics]
    +alpha:177 [in hydras.Epsilon0.Paths]
    +alpha:178 [in hydras.Epsilon0.F_alpha]
    +alpha:178 [in hydras.Schutte.Schutte_basics]
    +alpha:179 [in hydras.Epsilon0.Large_Sets]
    +alpha:18 [in hydras.Schutte.Correctness_E0]
    +alpha:18 [in hydras.OrdinalNotations.ON_Omega2]
    +alpha:18 [in hydras.Hydra.O2H]
    +alpha:18 [in gaia_hydras.GF_alpha]
    +alpha:18 [in hydras.Schutte.Schutte_basics]
    +alpha:180 [in hydras.Epsilon0.F_alpha]
    +alpha:180 [in hydras.Gamma0.Gamma0]
    +alpha:181 [in hydras.Epsilon0.Large_Sets]
    +alpha:181 [in hydras.Epsilon0.Paths]
    +alpha:182 [in hydras.Gamma0.Gamma0]
    +alpha:183 [in hydras.Epsilon0.Large_Sets]
    +alpha:185 [in hydras.Epsilon0.Paths]
    +alpha:186 [in hydras.Epsilon0.Large_Sets]
    +alpha:186 [in hydras.Epsilon0.Paths]
    +alpha:188 [in hydras.Epsilon0.Large_Sets]
    +alpha:188 [in hydras.Schutte.Ordering_Functions]
    +alpha:188 [in hydras.Gamma0.Gamma0]
    +alpha:19 [in hydras.OrdinalNotations.ON_O]
    +alpha:19 [in hydras.Schutte.CNF]
    +alpha:19 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +alpha:19 [in hydras.Hydra.Epsilon0_Needed_Std]
    +alpha:19 [in hydras.OrdinalNotations.ON_Finite]
    +alpha:19 [in hydras.Epsilon0.Paths]
    +alpha:190 [in hydras.Gamma0.Gamma0]
    +alpha:191 [in hydras.Epsilon0.T1]
    +alpha:191 [in hydras.Schutte.Schutte_basics]
    +alpha:191 [in hydras.Epsilon0.Paths]
    +alpha:192 [in hydras.Epsilon0.T1]
    +alpha:192 [in hydras.Gamma0.Gamma0]
    +alpha:193 [in hydras.Epsilon0.Large_Sets]
    +alpha:193 [in hydras.Epsilon0.Paths]
    +alpha:194 [in hydras.Gamma0.Gamma0]
    +alpha:195 [in hydras.Epsilon0.Large_Sets]
    +alpha:196 [in hydras.Epsilon0.Paths]
    +alpha:196 [in hydras.Gamma0.Gamma0]
    +alpha:197 [in hydras.Epsilon0.Large_Sets]
    +alpha:197 [in hydras.Schutte.Schutte_basics]
    +alpha:198 [in hydras.Gamma0.Gamma0]
    +alpha:199 [in hydras.Epsilon0.Large_Sets]
    +alpha:2 [in hydras.OrdinalNotations.ON_Omega2]
    +alpha:2 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +alpha:2 [in hydras.solutions_exercises.schutte_cnf_counter_example]
    +alpha:2 [in gaia_hydras.ON_gfinite]
    +alpha:2 [in hydras.solutions_exercises.F_3]
    +alpha:2 [in hydras.OrdinalNotations.ON_Omega]
    +alpha:2 [in hydras.Epsilon0.Paths]
    +alpha:2 [in hydras.Schutte.Ordering_Functions]
    +alpha:2 [in hydras.Schutte.Addition]
    +alpha:20 [in hydras.Gamma0.T2]
    +alpha:20 [in hydras.Hydra.O2H]
    +alpha:20 [in hydras.Schutte.CNF]
    +alpha:20 [in hydras.Hydra.Epsilon0_Needed_Std]
    +alpha:20 [in gaia_hydras.GHydra]
    +alpha:20 [in hydras.Epsilon0.E0]
    +alpha:20 [in hydras.Schutte.Addition]
    +alpha:200 [in hydras.Epsilon0.Paths]
    +alpha:200 [in hydras.Gamma0.Gamma0]
    +alpha:202 [in hydras.Epsilon0.T1]
    +alpha:202 [in hydras.Gamma0.Gamma0]
    +alpha:203 [in hydras.Epsilon0.T1]
    +alpha:203 [in hydras.Epsilon0.Paths]
    +alpha:204 [in hydras.Gamma0.Gamma0]
    +alpha:206 [in hydras.Epsilon0.Paths]
    +alpha:207 [in hydras.Schutte.Schutte_basics]
    +alpha:207 [in hydras.OrdinalNotations.ON_Generic]
    +alpha:208 [in hydras.Epsilon0.T1]
    +alpha:209 [in hydras.Schutte.Schutte_basics]
    +alpha:21 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +alpha:21 [in hydras.Gamma0.Gamma0]
    +alpha:210 [in hydras.Epsilon0.T1]
    +alpha:210 [in hydras.Schutte.Schutte_basics]
    +alpha:211 [in hydras.Schutte.Schutte_basics]
    +alpha:211 [in hydras.Gamma0.Gamma0]
    +alpha:212 [in hydras.Schutte.Schutte_basics]
    +alpha:212 [in hydras.Gamma0.Gamma0]
    +alpha:213 [in hydras.Schutte.Schutte_basics]
    +alpha:213 [in hydras.Gamma0.Gamma0]
    +alpha:214 [in hydras.Schutte.Schutte_basics]
    +alpha:215 [in hydras.Schutte.Schutte_basics]
    +alpha:22 [in hydras.Schutte.Critical]
    +alpha:22 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +alpha:22 [in hydras.Epsilon0.E0]
    +alpha:22 [in hydras.Epsilon0.Paths]
    +alpha:22 [in hydras.Schutte.Addition]
    +alpha:223 [in hydras.Epsilon0.Paths]
    +alpha:228 [in hydras.Epsilon0.Paths]
    +alpha:229 [in hydras.Schutte.Schutte_basics]
    +alpha:23 [in hydras.Epsilon0.T1]
    +alpha:23 [in hydras.Hydra.O2H]
    +alpha:23 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +alpha:23 [in hydras.Hydra.Epsilon0_Needed_Std]
    +alpha:23 [in hydras.Schutte.Schutte_basics]
    +alpha:231 [in hydras.Epsilon0.Paths]
    +alpha:232 [in hydras.Schutte.Schutte_basics]
    +alpha:237 [in hydras.Epsilon0.Paths]
    +alpha:238 [in hydras.Gamma0.Gamma0]
    +alpha:24 [in hydras.Gamma0.T2]
    +alpha:24 [in hydras.Schutte.CNF]
    +alpha:24 [in hydras.Epsilon0.Large_Sets]
    +alpha:24 [in hydras.Epsilon0.E0]
    +alpha:24 [in hydras.Schutte.Addition]
    +alpha:240 [in hydras.Epsilon0.T1]
    +alpha:240 [in hydras.Gamma0.Gamma0]
    +alpha:242 [in hydras.Epsilon0.T1]
    +alpha:242 [in hydras.Epsilon0.Paths]
    +alpha:244 [in hydras.Epsilon0.T1]
    +alpha:245 [in hydras.Epsilon0.Paths]
    +alpha:247 [in hydras.Epsilon0.Paths]
    +alpha:248 [in hydras.Epsilon0.Paths]
    +alpha:25 [in hydras.Hydra.O2H]
    +alpha:25 [in gaia_hydras.GF_alpha]
    +alpha:25 [in hydras.Schutte.Critical]
    +alpha:25 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +alpha:25 [in hydras.OrdinalNotations.ON_Generic]
    +alpha:251 [in hydras.Epsilon0.Paths]
    +alpha:254 [in hydras.Epsilon0.Paths]
    +alpha:257 [in hydras.Epsilon0.Paths]
    +alpha:26 [in hydras.Schutte.CNF]
    +alpha:26 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +alpha:26 [in hydras.Epsilon0.Canon]
    +alpha:26 [in hydras.Epsilon0.E0]
    +alpha:26 [in hydras.solutions_exercises.F_3]
    +alpha:261 [in hydras.Epsilon0.Paths]
    +alpha:264 [in hydras.Epsilon0.Paths]
    +alpha:265 [in hydras.Epsilon0.Paths]
    +alpha:268 [in hydras.Epsilon0.Paths]
    +alpha:27 [in hydras.OrdinalNotations.ON_Omega2]
    +alpha:27 [in gaia_hydras.GF_alpha]
    +alpha:27 [in hydras.Schutte.CNF]
    +alpha:27 [in hydras.solutions_exercises.F_3]
    +alpha:27 [in hydras.Schutte.Ordering_Functions]
    +alpha:27 [in hydras.Schutte.Addition]
    +alpha:273 [in hydras.Epsilon0.Paths]
    +alpha:276 [in hydras.Epsilon0.Paths]
    +alpha:279 [in hydras.Epsilon0.Paths]
    +alpha:28 [in hydras.Epsilon0.T1]
    +alpha:28 [in hydras.OrdinalNotations.ON_Omega2]
    +alpha:28 [in hydras.Epsilon0.Large_Sets]
    +alpha:281 [in hydras.Epsilon0.Paths]
    +alpha:284 [in hydras.Epsilon0.Paths]
    +alpha:287 [in hydras.Epsilon0.Paths]
    +alpha:288 [in hydras.Epsilon0.T1]
    +alpha:29 [in hydras.Epsilon0.Canon]
    +alpha:29 [in hydras.Epsilon0.E0]
    +alpha:29 [in hydras.Epsilon0.Paths]
    +alpha:29 [in hydras.Schutte.Addition]
    +alpha:290 [in hydras.Epsilon0.T1]
    +alpha:290 [in hydras.Epsilon0.Paths]
    +alpha:292 [in hydras.Epsilon0.T1]
    +alpha:293 [in hydras.Epsilon0.Paths]
    +alpha:294 [in hydras.Epsilon0.T1]
    +alpha:296 [in hydras.Epsilon0.T1]
    +alpha:296 [in hydras.Epsilon0.Paths]
    +alpha:298 [in hydras.Epsilon0.T1]
    +alpha:3 [in hydras.Epsilon0.T1]
    +alpha:3 [in hydras.OrdinalNotations.ON_Omega2]
    +alpha:3 [in hydras.Gamma0.T2]
    +alpha:3 [in hydras.Epsilon0.Large_Sets]
    +alpha:3 [in hydras.Schutte.Critical]
    +alpha:3 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +alpha:3 [in hydras.Schutte.Schutte_basics]
    +alpha:30 [in hydras.OrdinalNotations.ON_Omega2]
    +alpha:30 [in gaia_hydras.GF_alpha]
    +alpha:30 [in hydras.Schutte.Critical]
    +alpha:300 [in hydras.Epsilon0.T1]
    +alpha:300 [in hydras.Epsilon0.Paths]
    +alpha:302 [in hydras.Epsilon0.T1]
    +alpha:304 [in hydras.Epsilon0.T1]
    +alpha:304 [in hydras.Epsilon0.Paths]
    +alpha:306 [in hydras.Epsilon0.T1]
    +alpha:307 [in hydras.Epsilon0.T1]
    +alpha:307 [in hydras.Epsilon0.Paths]
    +alpha:308 [in hydras.Epsilon0.T1]
    +alpha:309 [in hydras.Epsilon0.T1]
    +alpha:31 [in hydras.Schutte.CNF]
    +alpha:31 [in hydras.Epsilon0.Large_Sets]
    +alpha:31 [in hydras.Epsilon0.Canon]
    +alpha:31 [in hydras.OrdinalNotations.ON_Finite]
    +alpha:31 [in hydras.Epsilon0.E0]
    +alpha:31 [in hydras.Epsilon0.Paths]
    +alpha:311 [in hydras.Epsilon0.Paths]
    +alpha:313 [in hydras.Epsilon0.T1]
    +alpha:316 [in hydras.Epsilon0.T1]
    +alpha:316 [in hydras.Epsilon0.Paths]
    +alpha:318 [in hydras.Epsilon0.T1]
    +alpha:319 [in hydras.Epsilon0.Paths]
    +alpha:32 [in hydras.Schutte.Correctness_E0]
    +alpha:32 [in hydras.OrdinalNotations.ON_Omega2]
    +alpha:32 [in gaia_hydras.GF_alpha]
    +alpha:32 [in hydras.Epsilon0.L_alpha]
    +alpha:32 [in hydras.Epsilon0.Canon]
    +alpha:32 [in hydras.Schutte.Schutte_basics]
    +alpha:32 [in hydras.OrdinalNotations.ON_Finite]
    +alpha:32 [in hydras.Epsilon0.Hprime]
    +alpha:32 [in hydras.Schutte.Addition]
    +alpha:321 [in hydras.Epsilon0.T1]
    +alpha:323 [in hydras.Epsilon0.Paths]
    +alpha:325 [in hydras.Epsilon0.Paths]
    +alpha:327 [in hydras.Epsilon0.T1]
    +alpha:33 [in gaia_hydras.GF_alpha]
    +alpha:33 [in hydras.Epsilon0.Large_Sets]
    +alpha:33 [in hydras.Epsilon0.E0]
    +alpha:330 [in hydras.Epsilon0.Paths]
    +alpha:332 [in hydras.Epsilon0.T1]
    +alpha:332 [in hydras.Epsilon0.Paths]
    +alpha:334 [in hydras.Epsilon0.Paths]
    +alpha:336 [in hydras.Epsilon0.T1]
    +alpha:337 [in hydras.Epsilon0.T1]
    +alpha:339 [in hydras.Epsilon0.Paths]
    +alpha:34 [in hydras.OrdinalNotations.ON_Omega2]
    +alpha:34 [in hydras.Epsilon0.L_alpha]
    +alpha:34 [in hydras.Schutte.Schutte_basics]
    +alpha:34 [in hydras.OrdinalNotations.ON_Finite]
    +alpha:34 [in hydras.Epsilon0.Hprime]
    +alpha:34 [in hydras.Epsilon0.Paths]
    +alpha:340 [in hydras.Epsilon0.T1]
    +alpha:343 [in hydras.Epsilon0.T1]
    +alpha:343 [in hydras.Epsilon0.Paths]
    +alpha:347 [in hydras.Epsilon0.Paths]
    +alpha:349 [in hydras.Epsilon0.T1]
    +alpha:35 [in hydras.Schutte.Critical]
    +alpha:35 [in hydras.Epsilon0.E0]
    +alpha:35 [in hydras.Schutte.Ordering_Functions]
    +alpha:35 [in hydras.Schutte.Addition]
    +alpha:351 [in hydras.Epsilon0.Paths]
    +alpha:352 [in hydras.Epsilon0.T1]
    +alpha:356 [in hydras.Epsilon0.Paths]
    +alpha:357 [in hydras.Epsilon0.Paths]
    +alpha:36 [in hydras.Epsilon0.T1]
    +alpha:36 [in hydras.OrdinalNotations.ON_Omega2]
    +alpha:36 [in hydras.Schutte.CNF]
    +alpha:36 [in hydras.Epsilon0.Large_Sets]
    +alpha:36 [in hydras.Epsilon0.L_alpha]
    +alpha:36 [in hydras.Epsilon0.Hprime]
    +alpha:36 [in hydras.Schutte.Addition]
    +alpha:362 [in hydras.Epsilon0.Paths]
    +alpha:364 [in hydras.Epsilon0.Paths]
    +alpha:37 [in hydras.OrdinalNotations.ON_Generic]
    +alpha:37 [in hydras.Epsilon0.E0]
    +alpha:37 [in hydras.Epsilon0.Paths]
    +alpha:377 [in hydras.Epsilon0.Paths]
    +alpha:38 [in hydras.Epsilon0.T1]
    +alpha:38 [in hydras.Schutte.Addition]
    +alpha:383 [in hydras.Epsilon0.Paths]
    +alpha:388 [in hydras.Epsilon0.Paths]
    +alpha:39 [in hydras.OrdinalNotations.ON_Omega2]
    +alpha:39 [in hydras.Epsilon0.Large_Sets]
    +alpha:39 [in hydras.Schutte.Critical]
    +alpha:39 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +alpha:39 [in hydras.Epsilon0.F_omega]
    +alpha:39 [in hydras.Epsilon0.E0]
    +alpha:393 [in hydras.Epsilon0.T1]
    +alpha:395 [in hydras.Epsilon0.Paths]
    +alpha:397 [in hydras.Epsilon0.T1]
    +alpha:398 [in hydras.Epsilon0.T1]
    +alpha:399 [in hydras.Epsilon0.Paths]
    +alpha:4 [in gaia_hydras.GHprime]
    +alpha:4 [in hydras.Epsilon0.Large_Sets_Examples]
    +alpha:4 [in hydras.Hydra.Hydra_Theorems]
    +alpha:4 [in hydras.OrdinalNotations.ON_Finite]
    +alpha:4 [in hydras.Epsilon0.E0]
    +alpha:4 [in gaia_hydras.GL_alpha]
    +alpha:4 [in gaia_hydras.T2Bridge]
    +alpha:4 [in gaia_hydras.GHessenberg]
    +alpha:40 [in hydras.Epsilon0.T1]
    +alpha:40 [in hydras.Epsilon0.F_alpha]
    +alpha:40 [in hydras.Epsilon0.F_omega]
    +alpha:40 [in hydras.OrdinalNotations.OmegaOmega]
    +alpha:40 [in hydras.Epsilon0.E0]
    +alpha:40 [in hydras.Epsilon0.Paths]
    +alpha:403 [in hydras.Epsilon0.Paths]
    +alpha:405 [in hydras.Epsilon0.T1]
    +alpha:406 [in hydras.Epsilon0.T1]
    +alpha:407 [in hydras.Epsilon0.Paths]
    +alpha:409 [in hydras.Epsilon0.T1]
    +alpha:41 [in hydras.Schutte.Correctness_E0]
    +alpha:41 [in hydras.OrdinalNotations.ON_Omega2]
    +alpha:41 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +alpha:41 [in hydras.Epsilon0.L_alpha]
    +alpha:41 [in hydras.Epsilon0.E0]
    +alpha:41 [in hydras.Epsilon0.Hprime]
    +alpha:413 [in hydras.Epsilon0.T1]
    +alpha:413 [in hydras.Epsilon0.Paths]
    +alpha:418 [in hydras.Epsilon0.T1]
    +alpha:419 [in hydras.Epsilon0.T1]
    +alpha:419 [in hydras.Epsilon0.Paths]
    +alpha:42 [in hydras.Epsilon0.T1]
    +alpha:42 [in hydras.Schutte.Correctness_E0]
    +alpha:42 [in hydras.Epsilon0.F_alpha]
    +alpha:42 [in hydras.Schutte.CNF]
    +alpha:42 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +alpha:42 [in hydras.Epsilon0.Canon]
    +alpha:42 [in hydras.Epsilon0.E0]
    +alpha:42 [in hydras.Schutte.Addition]
    +alpha:420 [in hydras.Epsilon0.T1]
    +alpha:423 [in hydras.Epsilon0.Paths]
    +alpha:427 [in hydras.Epsilon0.Paths]
    +alpha:43 [in hydras.Schutte.Critical]
    +alpha:43 [in hydras.Epsilon0.L_alpha]
    +alpha:43 [in hydras.OrdinalNotations.OmegaOmega]
    +alpha:431 [in hydras.Epsilon0.Paths]
    +alpha:433 [in hydras.Epsilon0.Paths]
    +alpha:437 [in hydras.Epsilon0.Paths]
    +alpha:44 [in hydras.OrdinalNotations.ON_Omega2]
    +alpha:44 [in hydras.Epsilon0.F_alpha]
    +alpha:44 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +alpha:44 [in hydras.Epsilon0.Canon]
    +alpha:44 [in hydras.Epsilon0.E0]
    +alpha:44 [in hydras.Epsilon0.Paths]
    +alpha:443 [in hydras.Epsilon0.Paths]
    +alpha:448 [in hydras.Epsilon0.Paths]
    +alpha:45 [in hydras.Epsilon0.T1]
    +alpha:45 [in hydras.Epsilon0.Large_Sets]
    +alpha:45 [in hydras.Schutte.Critical]
    +alpha:452 [in hydras.Epsilon0.Paths]
    +alpha:453 [in hydras.Gamma0.Gamma0]
    +alpha:454 [in hydras.Epsilon0.Paths]
    +alpha:456 [in hydras.Epsilon0.T1]
    +alpha:459 [in hydras.Epsilon0.Paths]
    +alpha:46 [in hydras.Schutte.Correctness_E0]
    +alpha:46 [in hydras.OrdinalNotations.ON_Omega2]
    +alpha:46 [in hydras.Schutte.CNF]
    +alpha:46 [in hydras.Schutte.AP]
    +alpha:46 [in hydras.Epsilon0.E0]
    +alpha:460 [in hydras.Gamma0.Gamma0]
    +alpha:462 [in hydras.Epsilon0.Paths]
    +alpha:464 [in hydras.Gamma0.Gamma0]
    +alpha:466 [in hydras.Epsilon0.T1]
    +alpha:466 [in hydras.Gamma0.Gamma0]
    +alpha:47 [in hydras.Epsilon0.F_alpha]
    +alpha:47 [in hydras.Schutte.AP]
    +alpha:47 [in hydras.Epsilon0.L_alpha]
    +alpha:47 [in hydras.Epsilon0.Canon]
    +alpha:47 [in hydras.Epsilon0.E0]
    +alpha:470 [in hydras.Epsilon0.Paths]
    +alpha:472 [in hydras.Epsilon0.T1]
    +alpha:473 [in hydras.Epsilon0.Paths]
    +alpha:474 [in hydras.Epsilon0.T1]
    +alpha:475 [in hydras.Epsilon0.Paths]
    +alpha:479 [in hydras.Epsilon0.Paths]
    +alpha:48 [in hydras.OrdinalNotations.ON_Omega2]
    +alpha:48 [in hydras.Schutte.CNF]
    +alpha:48 [in hydras.Epsilon0.Large_Sets]
    +alpha:48 [in hydras.Schutte.Critical]
    +alpha:48 [in hydras.Epsilon0.Canon]
    +alpha:480 [in hydras.Epsilon0.T1]
    +alpha:481 [in hydras.Gamma0.Gamma0]
    +alpha:482 [in hydras.Epsilon0.T1]
    +alpha:482 [in hydras.Epsilon0.Paths]
    +alpha:484 [in hydras.Epsilon0.T1]
    +alpha:486 [in hydras.Epsilon0.T1]
    +alpha:486 [in hydras.Epsilon0.Paths]
    +alpha:49 [in hydras.Hydra.O2H]
    +alpha:49 [in hydras.Epsilon0.F_alpha]
    +alpha:49 [in hydras.Schutte.AP]
    +alpha:49 [in hydras.Epsilon0.L_alpha]
    +alpha:49 [in hydras.Epsilon0.E0]
    +alpha:49 [in hydras.Epsilon0.Paths]
    +alpha:490 [in hydras.Epsilon0.T1]
    +alpha:490 [in hydras.Epsilon0.Paths]
    +alpha:492 [in hydras.Gamma0.Gamma0]
    +alpha:494 [in hydras.Epsilon0.Paths]
    +alpha:494 [in hydras.Gamma0.Gamma0]
    +alpha:498 [in hydras.Epsilon0.T1]
    +alpha:498 [in hydras.Epsilon0.Paths]
    +alpha:499 [in hydras.Gamma0.Gamma0]
    +alpha:5 [in hydras.Gamma0.T2]
    +alpha:5 [in gaia_hydras.GF_alpha]
    +alpha:5 [in hydras.Schutte.CNF]
    +alpha:5 [in hydras.Hydra.Battle_length]
    +alpha:5 [in gaia_hydras.ON_gfinite]
    +alpha:50 [in hydras.Hydra.O2H]
    +alpha:50 [in hydras.Epsilon0.Canon]
    +alpha:50 [in hydras.Epsilon0.E0]
    +alpha:502 [in hydras.Epsilon0.Paths]
    +alpha:503 [in hydras.Gamma0.Gamma0]
    +alpha:505 [in hydras.Epsilon0.Paths]
    +alpha:507 [in hydras.Gamma0.Gamma0]
    +alpha:51 [in hydras.Schutte.CNF]
    +alpha:51 [in hydras.Schutte.Critical]
    +alpha:51 [in hydras.Schutte.AP]
    +alpha:51 [in hydras.Schutte.Ordering_Functions]
    +alpha:510 [in hydras.Epsilon0.Paths]
    +alpha:511 [in hydras.Gamma0.Gamma0]
    +alpha:514 [in hydras.Gamma0.Gamma0]
    +alpha:516 [in hydras.Epsilon0.T1]
    +alpha:516 [in hydras.Epsilon0.Paths]
    +alpha:517 [in hydras.Gamma0.Gamma0]
    +alpha:52 [in hydras.Epsilon0.F_alpha]
    +alpha:52 [in hydras.Schutte.Critical]
    +alpha:52 [in hydras.Epsilon0.Canon]
    +alpha:52 [in hydras.Epsilon0.E0]
    +alpha:523 [in hydras.Epsilon0.Paths]
    +alpha:524 [in hydras.Epsilon0.T1]
    +alpha:525 [in hydras.Epsilon0.T1]
    +alpha:526 [in hydras.Epsilon0.Paths]
    +alpha:529 [in hydras.Epsilon0.Paths]
    +alpha:53 [in hydras.Schutte.Critical]
    +alpha:53 [in hydras.Schutte.AP]
    +alpha:53 [in hydras.Schutte.Addition]
    +alpha:532 [in hydras.Epsilon0.Paths]
    +alpha:536 [in hydras.Gamma0.Gamma0]
    +alpha:537 [in hydras.Gamma0.Gamma0]
    +alpha:54 [in hydras.OrdinalNotations.ON_Omega2]
    +alpha:54 [in hydras.Schutte.CNF]
    +alpha:54 [in hydras.Epsilon0.Canon]
    +alpha:54 [in hydras.Epsilon0.E0]
    +alpha:541 [in hydras.Epsilon0.T1]
    +alpha:542 [in hydras.Epsilon0.T1]
    +alpha:544 [in hydras.Epsilon0.T1]
    +alpha:547 [in hydras.Epsilon0.T1]
    +alpha:547 [in hydras.Gamma0.Gamma0]
    +alpha:548 [in hydras.Epsilon0.Paths]
    +alpha:549 [in hydras.Epsilon0.T1]
    +alpha:55 [in hydras.Epsilon0.Hessenberg]
    +alpha:55 [in hydras.Schutte.AP]
    +alpha:55 [in hydras.Epsilon0.Hprime]
    +alpha:55 [in hydras.Epsilon0.Paths]
    +alpha:55 [in hydras.Schutte.Addition]
    +alpha:550 [in hydras.Gamma0.Gamma0]
    +alpha:551 [in hydras.Epsilon0.T1]
    +alpha:552 [in hydras.Epsilon0.Paths]
    +alpha:553 [in hydras.Gamma0.Gamma0]
    +alpha:556 [in hydras.Epsilon0.Paths]
    +alpha:558 [in hydras.Epsilon0.T1]
    +alpha:56 [in hydras.Epsilon0.F_alpha]
    +alpha:56 [in hydras.Schutte.CNF]
    +alpha:56 [in hydras.Epsilon0.Canon]
    +alpha:56 [in hydras.Epsilon0.E0]
    +alpha:56 [in hydras.Schutte.Addition]
    +alpha:561 [in hydras.Epsilon0.Paths]
    +alpha:562 [in hydras.Gamma0.Gamma0]
    +alpha:564 [in hydras.Epsilon0.Paths]
    +alpha:568 [in hydras.Epsilon0.T1]
    +alpha:569 [in hydras.Epsilon0.Paths]
    +alpha:57 [in hydras.Epsilon0.Hessenberg]
    +alpha:57 [in hydras.Schutte.AP]
    +alpha:57 [in hydras.Epsilon0.L_alpha]
    +alpha:57 [in hydras.Epsilon0.E0]
    +alpha:573 [in hydras.Epsilon0.Paths]
    +alpha:575 [in hydras.Gamma0.Gamma0]
    +alpha:576 [in hydras.Epsilon0.Paths]
    +alpha:576 [in hydras.Gamma0.Gamma0]
    +alpha:58 [in hydras.Epsilon0.F_alpha]
    +alpha:58 [in hydras.Schutte.CNF]
    +alpha:58 [in hydras.Epsilon0.L_alpha]
    +alpha:58 [in hydras.Epsilon0.Paths]
    +alpha:581 [in hydras.Gamma0.Gamma0]
    +alpha:582 [in hydras.Epsilon0.T1]
    +alpha:582 [in hydras.Epsilon0.Paths]
    +alpha:585 [in hydras.Epsilon0.T1]
    +alpha:586 [in hydras.Epsilon0.Paths]
    +alpha:589 [in hydras.Epsilon0.Paths]
    +alpha:59 [in hydras.OrdinalNotations.ON_Omega2]
    +alpha:59 [in hydras.Schutte.AP]
    +alpha:59 [in hydras.Epsilon0.L_alpha]
    +alpha:59 [in hydras.Epsilon0.E0]
    +alpha:59 [in hydras.Schutte.Addition]
    +alpha:6 [in hydras.Schutte.Correctness_E0]
    +alpha:6 [in gaia_hydras.GHprime]
    +alpha:6 [in hydras.OrdinalNotations.ON_Finite]
    +alpha:6 [in hydras.Epsilon0.E0]
    +alpha:6 [in gaia_hydras.GL_alpha]
    +alpha:6 [in hydras.Schutte.Addition]
    +alpha:60 [in hydras.Schutte.AP]
    +alpha:60 [in hydras.Epsilon0.E0]
    +alpha:60 [in hydras.Epsilon0.Hprime]
    +alpha:600 [in hydras.Gamma0.Gamma0]
    +alpha:602 [in hydras.Gamma0.Gamma0]
    +alpha:603 [in hydras.Gamma0.Gamma0]
    +alpha:61 [in hydras.Hydra.O2H]
    +alpha:61 [in hydras.Epsilon0.Hessenberg]
    +alpha:61 [in hydras.Schutte.CNF]
    +alpha:61 [in hydras.Schutte.Schutte_basics]
    +alpha:62 [in hydras.OrdinalNotations.ON_Omega2]
    +alpha:62 [in hydras.Epsilon0.E0]
    +alpha:62 [in hydras.Epsilon0.Paths]
    +alpha:621 [in hydras.Gamma0.Gamma0]
    +alpha:623 [in hydras.Gamma0.Gamma0]
    +alpha:625 [in hydras.Gamma0.Gamma0]
    +alpha:629 [in hydras.Gamma0.Gamma0]
    +alpha:63 [in hydras.Schutte.Correctness_E0]
    +alpha:63 [in hydras.OrdinalNotations.ON_Omega2]
    +alpha:63 [in hydras.Epsilon0.F_alpha]
    +alpha:63 [in hydras.Epsilon0.Hessenberg]
    +alpha:63 [in hydras.Schutte.AP]
    +alpha:633 [in hydras.Epsilon0.T1]
    +alpha:635 [in hydras.Epsilon0.T1]
    +alpha:638 [in hydras.Epsilon0.T1]
    +alpha:64 [in hydras.Epsilon0.F_alpha]
    +alpha:64 [in hydras.Schutte.AP]
    +alpha:64 [in hydras.Schutte.Addition]
    +alpha:640 [in hydras.Epsilon0.T1]
    +alpha:640 [in hydras.Gamma0.Gamma0]
    +alpha:642 [in hydras.Epsilon0.T1]
    +alpha:644 [in hydras.Gamma0.Gamma0]
    +alpha:645 [in hydras.Gamma0.Gamma0]
    +alpha:646 [in hydras.Epsilon0.T1]
    +alpha:646 [in hydras.Gamma0.Gamma0]
    +alpha:647 [in hydras.Epsilon0.T1]
    +alpha:649 [in hydras.Epsilon0.T1]
    +alpha:65 [in hydras.Schutte.Correctness_E0]
    +alpha:65 [in hydras.Epsilon0.E0]
    +alpha:65 [in hydras.Epsilon0.Hprime]
    +alpha:650 [in hydras.Epsilon0.T1]
    +alpha:652 [in hydras.Epsilon0.T1]
    +alpha:654 [in hydras.Epsilon0.T1]
    +alpha:655 [in hydras.Epsilon0.T1]
    +alpha:656 [in hydras.Epsilon0.T1]
    +alpha:657 [in hydras.Epsilon0.T1]
    +alpha:66 [in hydras.Schutte.AP]
    +alpha:66 [in hydras.OrdinalNotations.ON_Generic]
    +alpha:66 [in hydras.Epsilon0.E0]
    +alpha:660 [in hydras.Epsilon0.T1]
    +alpha:661 [in hydras.Epsilon0.T1]
    +alpha:664 [in hydras.Epsilon0.T1]
    +alpha:667 [in hydras.Epsilon0.T1]
    +alpha:669 [in hydras.Epsilon0.T1]
    +alpha:67 [in hydras.Schutte.Correctness_E0]
    +alpha:67 [in hydras.OrdinalNotations.ON_Omega2]
    +alpha:67 [in hydras.Epsilon0.E0]
    +alpha:67 [in hydras.Schutte.Addition]
    +alpha:671 [in hydras.Epsilon0.T1]
    +alpha:673 [in hydras.Epsilon0.T1]
    +alpha:677 [in hydras.Epsilon0.T1]
    +alpha:68 [in hydras.Epsilon0.Hessenberg]
    +alpha:68 [in hydras.Epsilon0.E0]
    +alpha:68 [in hydras.Epsilon0.Hprime]
    +alpha:681 [in hydras.Epsilon0.T1]
    +alpha:683 [in hydras.Epsilon0.T1]
    +alpha:688 [in hydras.Epsilon0.T1]
    +alpha:69 [in hydras.Epsilon0.Epsilon0rpo]
    +alpha:69 [in hydras.Schutte.AP]
    +alpha:69 [in hydras.Epsilon0.E0]
    +alpha:692 [in hydras.Epsilon0.T1]
    +alpha:694 [in hydras.Gamma0.Gamma0]
    +alpha:7 [in hydras.Schutte.Correctness_E0]
    +alpha:7 [in gaia_hydras.T1Choice]
    +alpha:7 [in hydras.Hydra.O2H]
    +alpha:7 [in gaia_hydras.GF_alpha]
    +alpha:7 [in hydras.Schutte.CNF]
    +alpha:7 [in hydras.Schutte.AP]
    +alpha:7 [in hydras.Hydra.Battle_length]
    +alpha:7 [in hydras.Epsilon0.E0]
    +alpha:7 [in hydras.Epsilon0.Paths]
    +alpha:7 [in gaia_hydras.GHessenberg]
    +alpha:70 [in hydras.Epsilon0.T1]
    +alpha:70 [in hydras.OrdinalNotations.ON_Omega2]
    +alpha:70 [in hydras.Epsilon0.Hessenberg]
    +alpha:70 [in hydras.Schutte.AP]
    +alpha:70 [in hydras.Epsilon0.Paths]
    +alpha:700 [in hydras.Epsilon0.T1]
    +alpha:700 [in hydras.Gamma0.Gamma0]
    +alpha:702 [in hydras.Gamma0.Gamma0]
    +alpha:704 [in hydras.Epsilon0.T1]
    +alpha:704 [in hydras.Gamma0.Gamma0]
    +alpha:705 [in hydras.Epsilon0.T1]
    +alpha:709 [in hydras.Epsilon0.T1]
    +alpha:71 [in hydras.Schutte.Correctness_E0]
    +alpha:71 [in hydras.Epsilon0.E0]
    +alpha:710 [in hydras.Gamma0.Gamma0]
    +alpha:713 [in hydras.Epsilon0.T1]
    +alpha:713 [in hydras.Gamma0.Gamma0]
    +alpha:715 [in hydras.Gamma0.Gamma0]
    +alpha:716 [in hydras.Epsilon0.T1]
    +alpha:719 [in hydras.Epsilon0.T1]
    +alpha:72 [in hydras.Schutte.AP]
    +alpha:72 [in hydras.Epsilon0.Paths]
    +alpha:72 [in hydras.Schutte.Addition]
    +alpha:73 [in hydras.OrdinalNotations.ON_Omega2]
    +alpha:73 [in hydras.Schutte.AP]
    +alpha:73 [in hydras.Epsilon0.E0]
    +alpha:74 [in hydras.Schutte.Correctness_E0]
    +alpha:74 [in hydras.Schutte.AP]
    +alpha:74 [in hydras.Epsilon0.Paths]
    +alpha:740 [in hydras.Epsilon0.T1]
    +alpha:75 [in hydras.Epsilon0.E0]
    +alpha:76 [in hydras.Epsilon0.Hessenberg]
    +alpha:76 [in hydras.OrdinalNotations.OmegaOmega]
    +alpha:77 [in hydras.Schutte.Correctness_E0]
    +alpha:77 [in hydras.OrdinalNotations.OmegaOmega]
    +alpha:77 [in hydras.Epsilon0.Canon]
    +alpha:77 [in hydras.Epsilon0.E0]
    +alpha:78 [in hydras.OrdinalNotations.OmegaOmega]
    +alpha:78 [in hydras.Epsilon0.E0]
    +alpha:8 [in hydras.Hydra.O2H]
    +alpha:8 [in gaia_hydras.GF_alpha]
    +alpha:8 [in hydras.Schutte.AP]
    +alpha:8 [in gaia_hydras.ON_gfinite]
    +alpha:8 [in hydras.Epsilon0.Canon]
    +alpha:8 [in hydras.Schutte.Schutte_basics]
    +alpha:8 [in hydras.OrdinalNotations.ON_Finite]
    +alpha:8 [in hydras.Epsilon0.E0]
    +alpha:8 [in gaia_hydras.GL_alpha]
    +alpha:80 [in hydras.Epsilon0.Hessenberg]
    +alpha:80 [in hydras.OrdinalNotations.OmegaOmega]
    +alpha:80 [in hydras.Epsilon0.Canon]
    +alpha:80 [in hydras.Epsilon0.E0]
    +alpha:81 [in hydras.Schutte.Critical]
    +alpha:82 [in hydras.Schutte.Critical]
    +alpha:82 [in hydras.OrdinalNotations.OmegaOmega]
    +alpha:82 [in hydras.Epsilon0.Paths]
    +alpha:83 [in hydras.Schutte.Critical]
    +alpha:83 [in hydras.Epsilon0.Canon]
    +alpha:83 [in hydras.Epsilon0.E0]
    +alpha:83 [in hydras.Schutte.Ordering_Functions]
    +alpha:84 [in hydras.Hydra.O2H]
    +alpha:84 [in hydras.Schutte.Critical]
    +alpha:84 [in hydras.OrdinalNotations.OmegaOmega]
    +alpha:84 [in hydras.Epsilon0.Paths]
    +alpha:85 [in hydras.Schutte.Critical]
    +alpha:85 [in hydras.Epsilon0.Canon]
    +alpha:85 [in hydras.Schutte.Schutte_basics]
    +alpha:86 [in hydras.Gamma0.T2]
    +alpha:86 [in hydras.Epsilon0.E0]
    +alpha:86 [in hydras.Epsilon0.Paths]
    +alpha:87 [in hydras.Epsilon0.F_alpha]
    +alpha:87 [in hydras.Schutte.Schutte_basics]
    +alpha:88 [in hydras.Hydra.O2H]
    +alpha:88 [in hydras.Epsilon0.F_alpha]
    +alpha:89 [in hydras.Epsilon0.F_alpha]
    +alpha:89 [in hydras.Epsilon0.E0]
    +alpha:89 [in hydras.Epsilon0.Paths]
    +alpha:9 [in hydras.Epsilon0.T1]
    +alpha:9 [in hydras.OrdinalNotations.ON_Omega2]
    +alpha:9 [in gaia_hydras.GF_alpha]
    +alpha:9 [in hydras.OrdinalNotations.ON_O]
    +alpha:9 [in hydras.Schutte.CNF]
    +alpha:9 [in hydras.Epsilon0.Large_Sets]
    +alpha:9 [in hydras.Schutte.Critical]
    +alpha:9 [in hydras.OrdinalNotations.ON_mult]
    +alpha:9 [in hydras.OrdinalNotations.ON_plus]
    +alpha:9 [in hydras.Schutte.Schutte_basics]
    +alpha:9 [in hydras.Epsilon0.E0]
    +alpha:9 [in hydras.Schutte.Addition]
    +alpha:90 [in hydras.OrdinalNotations.ON_Generic]
    +alpha:91 [in hydras.Epsilon0.T1]
    +alpha:91 [in hydras.Epsilon0.F_alpha]
    +alpha:92 [in hydras.OrdinalNotations.OmegaOmega]
    +alpha:92 [in hydras.Epsilon0.Canon]
    +alpha:92 [in hydras.Epsilon0.E0]
    +alpha:92 [in hydras.Epsilon0.Hprime]
    +alpha:93 [in hydras.Epsilon0.F_alpha]
    +alpha:94 [in hydras.Epsilon0.F_alpha]
    +alpha:94 [in hydras.OrdinalNotations.OmegaOmega]
    +alpha:94 [in hydras.Schutte.Schutte_basics]
    +alpha:94 [in hydras.Epsilon0.Paths]
    +alpha:95 [in hydras.Epsilon0.F_alpha]
    +alpha:95 [in hydras.Epsilon0.E0]
    +alpha:95 [in hydras.Epsilon0.Hprime]
    +alpha:96 [in hydras.Gamma0.T2]
    +alpha:96 [in hydras.Epsilon0.Hessenberg]
    +alpha:96 [in hydras.Epsilon0.Paths]
    +alpha:96 [in hydras.Gamma0.Gamma0]
    +alpha:97 [in hydras.Epsilon0.T1]
    +alpha:97 [in hydras.OrdinalNotations.OmegaOmega]
    +alpha:97 [in hydras.Epsilon0.Paths]
    +alpha:98 [in hydras.OrdinalNotations.OmegaOmega]
    +alpha:98 [in hydras.Epsilon0.Canon]
    +alpha:98 [in hydras.Epsilon0.E0]
    +alpha:99 [in hydras.Gamma0.T2]
    +alpha:99 [in hydras.Prelude.Comparable]
    +AM:105 [in additions.Pow]
    +AM:96 [in additions.Pow_variant]
    +anonymous0:360 [in additions.Euclidean_Chains]
    +anonymous0:366 [in additions.Euclidean_Chains]
    +anonymous0:372 [in additions.Euclidean_Chains]
    +anonymous0:379 [in additions.Euclidean_Chains]
    +anonymous:359 [in additions.Euclidean_Chains]
    +anonymous:365 [in additions.Euclidean_Chains]
    +anonymous:371 [in additions.Euclidean_Chains]
    +anonymous:378 [in additions.Euclidean_Chains]
    +anonymous:386 [in additions.Euclidean_Chains]
    +anonymous:392 [in additions.Euclidean_Chains]
    +anonymous:399 [in additions.Euclidean_Chains]
    +assoc:105 [in additions.fib]
    +assoc:112 [in additions.fib]
    +assoc:123 [in additions.fib]
    +aux:10 [in additions.Trace_exercise]
    +Axm:120 [in hydras.Ackermann.LNN2LNT]
    +axm:126 [in hydras.Ackermann.LNN2LNT]
    +Axm:128 [in hydras.Ackermann.LNN2LNT]
    +Axm:141 [in hydras.Ackermann.LNN2LNT]
    +Axm:145 [in hydras.Ackermann.LNN2LNT]
    +Axm:15 [in Goedel.goedel2]
    +Axm:19 [in Goedel.goedel2]
    +Axm:44 [in Goedel.rosserPA]
    +Axm:47 [in Goedel.rosserPA]
    +ax:252 [in additions.Addition_Chains]
    +a'':44 [in hydras.Hydra.BigBattle]
    +a':1022 [in gaia_hydras.nfwfgaia]
    +a':11 [in hydras.Prelude.Simple_LexProd]
    +a':1150 [in gaia_hydras.nfwfgaia]
    +a':116 [in hydras.Epsilon0.T1]
    +a':1297 [in gaia_hydras.nfwfgaia]
    +a':130 [in gaia_hydras.nfwfgaia]
    +a':1301 [in gaia_hydras.nfwfgaia]
    +a':1305 [in gaia_hydras.nfwfgaia]
    +a':1309 [in gaia_hydras.nfwfgaia]
    +a':1335 [in gaia_hydras.nfwfgaia]
    +a':1381 [in gaia_hydras.nfwfgaia]
    +a':1391 [in gaia_hydras.nfwfgaia]
    +a':1419 [in gaia_hydras.nfwfgaia]
    +a':1425 [in gaia_hydras.nfwfgaia]
    +a':1433 [in gaia_hydras.nfwfgaia]
    +a':1497 [in gaia_hydras.nfwfgaia]
    +a':1505 [in gaia_hydras.nfwfgaia]
    +a':153 [in hydras.rpo.more_list]
    +a':1548 [in gaia_hydras.nfwfgaia]
    +a':1582 [in gaia_hydras.nfwfgaia]
    +a':1606 [in gaia_hydras.nfwfgaia]
    +a':1615 [in gaia_hydras.nfwfgaia]
    +a':1624 [in gaia_hydras.nfwfgaia]
    +a':1632 [in gaia_hydras.nfwfgaia]
    +a':164 [in hydras.Epsilon0.T1]
    +a':1688 [in gaia_hydras.nfwfgaia]
    +a':169 [in hydras.rpo.rpo]
    +a':1694 [in gaia_hydras.nfwfgaia]
    +a':173 [in gaia_hydras.nfwfgaia]
    +a':175 [in hydras.Epsilon0.T1]
    +a':18 [in hydras.Epsilon0.Hessenberg]
    +a':189 [in hydras.rpo.rpo]
    +a':191 [in hydras.rpo.rpo]
    +a':2063 [in gaia_hydras.nfwfgaia]
    +a':2077 [in gaia_hydras.nfwfgaia]
    +a':2082 [in gaia_hydras.nfwfgaia]
    +a':22 [in hydras.Schutte.Correctness_E0]
    +a':222 [in hydras.Epsilon0.T1]
    +a':224 [in gaia_hydras.nfwfgaia]
    +a':228 [in hydras.Epsilon0.T1]
    +a':23 [in hydras.Hydra.BigBattle]
    +a':230 [in gaia_hydras.nfwfgaia]
    +a':237 [in hydras.rpo.rpo]
    +a':24 [in hydras.Epsilon0.Hessenberg]
    +a':24 [in additions.Monoid_instances]
    +a':240 [in gaia_hydras.nfwfgaia]
    +a':250 [in hydras.rpo.rpo]
    +a':255 [in hydras.rpo.rpo]
    +a':256 [in hydras.Epsilon0.T1]
    +a':257 [in gaia_hydras.nfwfgaia]
    +a':300 [in hydras.Gamma0.Gamma0]
    +a':307 [in hydras.rpo.rpo]
    +a':308 [in hydras.rpo.rpo]
    +a':32 [in hydras.Hydra.BigBattle]
    +a':33 [in hydras.Epsilon0.T1]
    +a':33 [in hydras.Gamma0.Gamma0]
    +a':34 [in hydras.Schutte.PartialFun]
    +a':346 [in hydras.Epsilon0.T1]
    +a':35 [in hydras.Epsilon0.Hessenberg]
    +a':358 [in hydras.Epsilon0.T1]
    +a':364 [in hydras.Epsilon0.T1]
    +a':378 [in hydras.Epsilon0.T1]
    +a':388 [in hydras.Epsilon0.T1]
    +a':40 [in hydras.Hydra.BigBattle]
    +a':41 [in hydras.Epsilon0.Hessenberg]
    +a':428 [in hydras.Epsilon0.T1]
    +a':429 [in gaia_hydras.nfwfgaia]
    +a':439 [in hydras.Epsilon0.T1]
    +a':44 [in hydras.Prelude.DecPreOrder_Instances]
    +a':44 [in hydras.Schutte.PartialFun]
    +a':48 [in hydras.Prelude.DecPreOrder_Instances]
    +a':49 [in hydras.Epsilon0.Epsilon0rpo]
    +a':51 [in hydras.Epsilon0.Hessenberg]
    +a':52 [in hydras.Prelude.DecPreOrder_Instances]
    +a':53 [in hydras.Epsilon0.T1]
    +a':53 [in hydras.Epsilon0.Epsilon0rpo]
    +a':534 [in hydras.Epsilon0.T1]
    +a':538 [in hydras.Ackermann.primRec]
    +a':56 [in hydras.Prelude.DecPreOrder_Instances]
    +a':56 [in hydras.Hydra.BigBattle]
    +a':57 [in hydras.Prelude.Sort_spec]
    +a':60 [in hydras.Prelude.DecPreOrder_Instances]
    +a':67 [in hydras.Epsilon0.T1]
    +a':69 [in gaia_hydras.T1Bridge]
    +a':725 [in hydras.Epsilon0.T1]
    +a':74 [in hydras.Epsilon0.T1]
    +a':74 [in hydras.rpo.rpo]
    +a':75 [in gaia_hydras.T1Bridge]
    +a':789 [in gaia_hydras.nfwfgaia]
    +a':81 [in hydras.Gamma0.T2]
    +a':846 [in gaia_hydras.nfwfgaia]
    +a':869 [in gaia_hydras.nfwfgaia]
    +a':896 [in gaia_hydras.nfwfgaia]
    +a':900 [in gaia_hydras.nfwfgaia]
    +a':906 [in gaia_hydras.nfwfgaia]
    +a':914 [in gaia_hydras.nfwfgaia]
    +a':942 [in gaia_hydras.nfwfgaia]
    +a':990 [in gaia_hydras.nfwfgaia]
    +a0:17 [in hydras.Schutte.Well_Orders]
    +a0:191 [in hydras.Ackermann.cPair]
    +a0:194 [in hydras.Ackermann.cPair]
    +a0:198 [in hydras.Ackermann.cPair]
    +a0:221 [in hydras.Ackermann.cPair]
    +a0:225 [in hydras.Ackermann.cPair]
    +a0:229 [in hydras.Ackermann.cPair]
    +a0:233 [in hydras.Ackermann.cPair]
    +a0:236 [in hydras.Ackermann.cPair]
    +a0:238 [in hydras.Ackermann.cPair]
    +a0:240 [in hydras.Ackermann.cPair]
    +a0:242 [in hydras.Ackermann.cPair]
    +a0:301 [in hydras.Ackermann.folProp]
    +a0:308 [in hydras.Ackermann.folProp]
    +a0:317 [in hydras.Ackermann.folProp]
    +a0:324 [in hydras.Ackermann.folProp]
    +a0:333 [in hydras.Ackermann.folProp]
    +a0:340 [in hydras.Ackermann.folProp]
    +a0:349 [in hydras.Ackermann.folProp]
    +a0:356 [in hydras.Ackermann.folProp]
    +a0:44 [in hydras.Ackermann.LNN2LNT]
    +a0:531 [in hydras.Ackermann.primRec]
    +a0:533 [in hydras.Ackermann.primRec]
    +a1:105 [in hydras.rpo.more_list]
    +a1:113 [in hydras.rpo.more_list]
    +A1:114 [in hydras.Schutte.Ordering_Functions]
    +a1:122 [in hydras.Prelude.Merge_Sort]
    +a1:130 [in hydras.Prelude.Merge_Sort]
    +a1:1360 [in hydras.Ackermann.codeSubFormula]
    +a1:137 [in hydras.rpo.more_list]
    +a1:146 [in hydras.rpo.more_list]
    +a1:156 [in hydras.rpo.more_list]
    +a1:165 [in hydras.rpo.more_list]
    +a1:172 [in hydras.rpo.more_list]
    +a1:180 [in hydras.rpo.more_list]
    +a1:188 [in hydras.rpo.more_list]
    +a1:192 [in hydras.Ackermann.cPair]
    +a1:195 [in hydras.Ackermann.cPair]
    +a1:199 [in hydras.Ackermann.cPair]
    +a1:2 [in hydras.rpo.decidable_set]
    +a1:20 [in hydras.Epsilon0.Epsilon0rpo]
    +a1:203 [in hydras.rpo.more_list]
    +a1:212 [in hydras.rpo.more_list]
    +a1:222 [in hydras.rpo.more_list]
    +a1:240 [in hydras.rpo.more_list]
    +a1:249 [in hydras.rpo.more_list]
    +a1:261 [in hydras.rpo.more_list]
    +a1:261 [in hydras.Gamma0.Gamma0]
    +a1:27 [in hydras.rpo.rpo]
    +a1:3 [in hydras.rpo.rpo]
    +a1:35 [in hydras.Gamma0.Gamma0]
    +a1:43 [in hydras.Gamma0.Gamma0]
    +a1:51 [in hydras.Gamma0.Gamma0]
    +a1:59 [in hydras.Gamma0.Gamma0]
    +a1:67 [in hydras.Gamma0.Gamma0]
    +a1:75 [in hydras.Gamma0.Gamma0]
    +a1:79 [in hydras.rpo.more_list]
    +a1:81 [in hydras.rpo.list_permut]
    +a1:82 [in hydras.Gamma0.Gamma0]
    +a1:89 [in hydras.rpo.more_list]
    +a1:97 [in hydras.rpo.more_list]
    +a2:106 [in hydras.rpo.more_list]
    +a2:114 [in hydras.rpo.more_list]
    +A2:115 [in hydras.Schutte.Ordering_Functions]
    +a2:124 [in hydras.Prelude.Merge_Sort]
    +a2:132 [in hydras.Prelude.Merge_Sort]
    +a2:1361 [in hydras.Ackermann.codeSubFormula]
    +a2:138 [in hydras.rpo.more_list]
    +a2:147 [in hydras.rpo.more_list]
    +a2:157 [in hydras.rpo.more_list]
    +a2:166 [in hydras.rpo.more_list]
    +a2:173 [in hydras.rpo.more_list]
    +a2:181 [in hydras.rpo.more_list]
    +a2:189 [in hydras.rpo.more_list]
    +a2:196 [in hydras.Ackermann.cPair]
    +a2:200 [in hydras.Ackermann.cPair]
    +a2:204 [in hydras.rpo.more_list]
    +a2:21 [in hydras.Epsilon0.Epsilon0rpo]
    +a2:213 [in hydras.rpo.more_list]
    +a2:223 [in hydras.rpo.more_list]
    +a2:241 [in hydras.rpo.more_list]
    +a2:250 [in hydras.rpo.more_list]
    +a2:262 [in hydras.rpo.more_list]
    +a2:262 [in hydras.Gamma0.Gamma0]
    +a2:28 [in hydras.rpo.rpo]
    +a2:3 [in hydras.rpo.decidable_set]
    +a2:36 [in hydras.Gamma0.Gamma0]
    +a2:4 [in hydras.rpo.rpo]
    +a2:44 [in hydras.Gamma0.Gamma0]
    +a2:52 [in hydras.Gamma0.Gamma0]
    +a2:60 [in hydras.Gamma0.Gamma0]
    +a2:68 [in hydras.Gamma0.Gamma0]
    +a2:76 [in hydras.Gamma0.Gamma0]
    +a2:80 [in hydras.rpo.more_list]
    +a2:83 [in hydras.rpo.list_permut]
    +a2:90 [in hydras.rpo.more_list]
    +a2:98 [in hydras.rpo.more_list]
    +a:1 [in Goedel.PRrepresentable]
    +a:1 [in gaia_hydras.T1Choice]
    +A:1 [in hydras.Prelude.DecPreOrder_Instances]
    +A:1 [in hydras.Prelude.Iterates]
    +A:1 [in hydras.solutions_exercises.predSuccUnicity]
    +a:1 [in hydras.Hydra.O2H]
    +a:1 [in additions.Compatibility]
    +A:1 [in hydras.Prelude.Restriction]
    +A:1 [in hydras.solutions_exercises.Limit_Infinity]
    +A:1 [in hydras.rpo.more_list]
    +A:1 [in hydras.Prelude.Comparable]
    +A:1 [in hydras.OrdinalNotations.ON_O]
    +A:1 [in additions.Pow_variant]
    +a:1 [in Goedel.fixPoint]
    +A:1 [in additions.Pow]
    +A:1 [in hydras.Prelude.Sort_spec]
    +A:1 [in hydras.Prelude.DecPreOrder]
    +a:1 [in gaia_hydras.GCanon]
    +A:1 [in hydras.Schutte.MoreEpsilonIota]
    +a:1 [in hydras.solutions_exercises.OnCodeList]
    +A:1 [in hydras.solutions_exercises.MultisetWf]
    +A:1 [in additions.Wf_transparent]
    +a:1 [in gaia_hydras.T1Bridge]
    +A:1 [in hydras.Prelude.MoreOrders]
    +A:1 [in additions.Monoid_def]
    +A:1 [in additions.Trace_exercise]
    +A:1 [in hydras.solutions_exercises.lt_succ_le]
    +a:1 [in hydras.Ackermann.prLogic]
    +A:1 [in hydras.OrdinalNotations.ON_mult]
    +A:1 [in additions.Euclidean_Chains]
    +A:1 [in hydras.OrdinalNotations.ON_plus]
    +A:1 [in hydras.Prelude.STDPP_compat]
    +a:1 [in hydras.solutions_exercises.MinPR]
    +a:1 [in hydras.Ackermann.NNtheory]
    +a:1 [in gaia_hydras.GLarge_Sets]
    +A:1 [in hydras.OrdinalNotations.ON_Generic]
    +A:1 [in gaia_hydras.onType]
    +A:1 [in additions.Addition_Chains]
    +a:1 [in gaia_hydras.GaiaToHydra]
    +A:1 [in hydras.Schutte.Ordering_Functions]
    +a:1 [in hydras.Gamma0.Gamma0]
    +A:1 [in hydras.rpo.closure]
    +A:1 [in hydras.rpo.rpo]
    +A:1 [in hydras.Prelude.MoreVectors]
    +a:10 [in gaia_hydras.T1Choice]
    +A:10 [in additions.Pow_variant]
    +a:10 [in Goedel.fixPoint]
    +A:10 [in additions.Pow]
    +A:10 [in hydras.Prelude.DecPreOrder]
    +a:10 [in gaia_hydras.GCanon]
    +a:10 [in hydras.Hydra.Hydra_Termination]
    +a:10 [in hydras.Ackermann.prLogic]
    +a:10 [in hydras.Schutte.Ordering_Functions]
    +A:10 [in hydras.rpo.closure]
    +a:10 [in hydras.Prelude.Simple_LexProd]
    +A:10 [in hydras.Ackermann.expressible]
    +a:100 [in hydras.rpo.more_list]
    +a:100 [in hydras.Ackermann.cPair]
    +a:100 [in gaia_hydras.nfwfgaia]
    +a:1000 [in gaia_hydras.nfwfgaia]
    +a:1003 [in gaia_hydras.nfwfgaia]
    +a:1006 [in gaia_hydras.nfwfgaia]
    +a:1008 [in gaia_hydras.nfwfgaia]
    +A:101 [in additions.fib]
    +A:101 [in additions.Addition_Chains]
    +a:1012 [in gaia_hydras.nfwfgaia]
    +a:1014 [in gaia_hydras.nfwfgaia]
    +a:1019 [in gaia_hydras.nfwfgaia]
    +a:102 [in hydras.Prelude.Merge_Sort]
    +a:102 [in gaia_hydras.T1Bridge]
    +a:102 [in hydras.Ackermann.cPair]
    +a:102 [in hydras.Ackermann.folLogic3]
    +a:1026 [in gaia_hydras.nfwfgaia]
    +a:1029 [in gaia_hydras.nfwfgaia]
    +a:103 [in hydras.Gamma0.T2]
    +A:103 [in additions.AM]
    +a:103 [in hydras.Epsilon0.Hessenberg]
    +a:103 [in hydras.MoreAck.AckNotPR]
    +a:103 [in hydras.Ackermann.cPair]
    +a:1034 [in gaia_hydras.nfwfgaia]
    +A:104 [in hydras.rpo.more_list]
    +a:104 [in gaia_hydras.T1Bridge]
    +a:1049 [in gaia_hydras.nfwfgaia]
    +a:105 [in hydras.MoreAck.AckNotPR]
    +a:105 [in hydras.Ackermann.cPair]
    +a:105 [in hydras.Ackermann.codeList]
    +a:105 [in gaia_hydras.nfwfgaia]
    +A:105 [in hydras.MoreAck.PrimRecExamples]
    +a:106 [in hydras.Gamma0.T2]
    +a:106 [in hydras.Epsilon0.Hessenberg]
    +a:106 [in gaia_hydras.T1Bridge]
    +A:106 [in hydras.OrdinalNotations.ON_Generic]
    +a:107 [in hydras.Hydra.O2H]
    +a:107 [in gaia_hydras.T1Bridge]
    +a:107 [in hydras.Ackermann.cPair]
    +a:107 [in gaia_hydras.nfwfgaia]
    +a:1077 [in gaia_hydras.nfwfgaia]
    +a:1079 [in gaia_hydras.nfwfgaia]
    +A:108 [in additions.AM]
    +A:108 [in hydras.Prelude.MoreLists]
    +a:108 [in hydras.rpo.more_list]
    +a:108 [in hydras.Ackermann.codeSubFormula]
    +A:108 [in additions.fib]
    +A:108 [in hydras.Hydra.Hydra_Lemmas]
    +a:1080 [in gaia_hydras.nfwfgaia]
    +a:1081 [in gaia_hydras.nfwfgaia]
    +a:1082 [in gaia_hydras.nfwfgaia]
    +a:1083 [in gaia_hydras.nfwfgaia]
    +a:109 [in gaia_hydras.T1Bridge]
    +a:109 [in hydras.Ackermann.cPair]
    +A:109 [in additions.Addition_Chains]
    +a:1097 [in gaia_hydras.nfwfgaia]
    +a:1099 [in gaia_hydras.nfwfgaia]
    +A:11 [in hydras.rpo.more_list]
    +a:11 [in hydras.OrdinalNotations.ON_O]
    +a:11 [in hydras.Schutte.Lub]
    +A:11 [in hydras.Ackermann.folProp]
    +A:11 [in hydras.MoreAck.AckNotPR]
    +a:11 [in gaia_hydras.T1Bridge]
    +a:11 [in hydras.Ackermann.prLogic]
    +A:11 [in additions.Euclidean_Chains]
    +a:11 [in hydras.Schutte.PartialFun]
    +a:11 [in hydras.Schutte.Schutte_basics]
    +a:11 [in hydras.Ackermann.NNtheory]
    +a:11 [in gaia_hydras.GLarge_Sets]
    +A:11 [in hydras.OrdinalNotations.ON_Generic]
    +a:11 [in Goedel.goedel1]
    +a:11 [in hydras.Ackermann.NN]
    +a:11 [in hydras.rpo.dickson]
    +a:11 [in hydras.solutions_exercises.isqrt]
    +a:11 [in gaia_hydras.T2Bridge]
    +a:11 [in Goedel.goedel2]
    +a:11 [in hydras.Ackermann.expressible]
    +A:11 [in hydras.Prelude.MoreVectors]
    +a:110 [in hydras.Ackermann.cPair]
    +A:110 [in additions.Euclidean_Chains]
    +a:110 [in hydras.Ackermann.codeList]
    +a:110 [in hydras.rpo.rpo]
    +a:1101 [in gaia_hydras.nfwfgaia]
    +a:1103 [in gaia_hydras.nfwfgaia]
    +a:1106 [in gaia_hydras.nfwfgaia]
    +a:1109 [in gaia_hydras.nfwfgaia]
    +a:111 [in gaia_hydras.T1Bridge]
    +a:111 [in gaia_hydras.nfwfgaia]
    +a:1111 [in gaia_hydras.nfwfgaia]
    +a:112 [in hydras.Hydra.O2H]
    +A:112 [in hydras.rpo.more_list]
    +a:112 [in gaia_hydras.T1Bridge]
    +a:112 [in hydras.Ackermann.cPair]
    +a:1126 [in gaia_hydras.nfwfgaia]
    +a:1129 [in gaia_hydras.nfwfgaia]
    +a:113 [in hydras.Epsilon0.T1]
    +a:113 [in hydras.Ackermann.cPair]
    +a:113 [in hydras.Schutte.Ordering_Functions]
    +a:113 [in gaia_hydras.nfwfgaia]
    +a:1131 [in gaia_hydras.nfwfgaia]
    +a:1135 [in gaia_hydras.nfwfgaia]
    +a:1136 [in gaia_hydras.nfwfgaia]
    +a:1137 [in gaia_hydras.nfwfgaia]
    +a:1144 [in gaia_hydras.nfwfgaia]
    +a:1148 [in gaia_hydras.nfwfgaia]
    +a:115 [in hydras.Epsilon0.Hessenberg]
    +A:115 [in additions.Addition_Chains]
    +a:1154 [in gaia_hydras.nfwfgaia]
    +a:1158 [in gaia_hydras.nfwfgaia]
    +a:116 [in gaia_hydras.T1Bridge]
    +A:116 [in additions.fib]
    +a:1160 [in gaia_hydras.nfwfgaia]
    +a:1162 [in gaia_hydras.nfwfgaia]
    +a:1164 [in gaia_hydras.nfwfgaia]
    +a:1166 [in gaia_hydras.nfwfgaia]
    +a:1169 [in gaia_hydras.nfwfgaia]
    +a:117 [in gaia_hydras.T1Bridge]
    +a:117 [in hydras.Ackermann.cPair]
    +a:117 [in gaia_hydras.nfwfgaia]
    +a:1171 [in gaia_hydras.nfwfgaia]
    +A:118 [in additions.AM]
    +A:119 [in hydras.Prelude.MoreLists]
    +a:119 [in hydras.Epsilon0.Hessenberg]
    +a:119 [in gaia_hydras.T1Bridge]
    +a:119 [in hydras.Ackermann.cPair]
    +a:1191 [in gaia_hydras.nfwfgaia]
    +a:1193 [in gaia_hydras.nfwfgaia]
    +a:1195 [in gaia_hydras.nfwfgaia]
    +a:1199 [in gaia_hydras.nfwfgaia]
    +a:12 [in gaia_hydras.T1Choice]
    +a:12 [in hydras.Prelude.WfVariant]
    +a:12 [in hydras.Ackermann.extEqualNat]
    +A:12 [in hydras.Prelude.Comparable]
    +a:12 [in hydras.OrdinalNotations.ON_O]
    +a:12 [in gaia_hydras.GPaths]
    +a:12 [in gaia_hydras.GCanon]
    +a:12 [in hydras.OrdinalNotations.OmegaOmega]
    +A:12 [in hydras.Prelude.STDPP_compat]
    +a:12 [in hydras.Ackermann.NN]
    +a:12 [in hydras.rpo.closure]
    +a:12 [in hydras.solutions_exercises.T1_ltNotWf]
    +A:12 [in hydras.rpo.rpo]
    +a:1208 [in gaia_hydras.nfwfgaia]
    +a:1209 [in hydras.Ackermann.codeSubFormula]
    +A:121 [in hydras.rpo.more_list]
    +a:121 [in hydras.Epsilon0.Hessenberg]
    +A:121 [in hydras.OrdinalNotations.ON_Generic]
    +a:1211 [in gaia_hydras.nfwfgaia]
    +a:1212 [in hydras.Ackermann.codeSubFormula]
    +a:1214 [in gaia_hydras.nfwfgaia]
    +a:1216 [in hydras.Ackermann.codeSubFormula]
    +a:122 [in gaia_hydras.T1Bridge]
    +A:122 [in additions.Addition_Chains]
    +A:122 [in hydras.Schutte.Ordering_Functions]
    +a:1226 [in gaia_hydras.nfwfgaia]
    +a:123 [in hydras.Gamma0.T2]
    +A:123 [in additions.AM]
    +a:123 [in hydras.Epsilon0.Hessenberg]
    +a:123 [in gaia_hydras.T1Bridge]
    +a:123 [in hydras.Ackermann.fol]
    +a:1231 [in gaia_hydras.nfwfgaia]
    +a:1233 [in gaia_hydras.nfwfgaia]
    +a:1235 [in gaia_hydras.nfwfgaia]
    +a:1237 [in gaia_hydras.nfwfgaia]
    +A:124 [in Goedel.PRrepresentable]
    +a:124 [in hydras.Ackermann.folProp]
    +a:124 [in gaia_hydras.T1Bridge]
    +a:1240 [in gaia_hydras.nfwfgaia]
    +a:1244 [in gaia_hydras.nfwfgaia]
    +a:1248 [in gaia_hydras.nfwfgaia]
    +a:125 [in hydras.Epsilon0.T1]
    +a:125 [in hydras.rpo.more_list]
    +a:125 [in hydras.Epsilon0.Hessenberg]
    +a:125 [in gaia_hydras.T1Bridge]
    +a:125 [in additions.fib]
    +a:1252 [in gaia_hydras.nfwfgaia]
    +a:1255 [in gaia_hydras.nfwfgaia]
    +a:1258 [in gaia_hydras.nfwfgaia]
    +A:126 [in hydras.Prelude.MoreLists]
    +a:126 [in gaia_hydras.T1Bridge]
    +a:1261 [in gaia_hydras.nfwfgaia]
    +a:127 [in hydras.Gamma0.T2]
    +a:127 [in gaia_hydras.T1Bridge]
    +a:127 [in gaia_hydras.nfwfgaia]
    +a:1270 [in gaia_hydras.nfwfgaia]
    +a:1271 [in gaia_hydras.nfwfgaia]
    +a:1273 [in gaia_hydras.nfwfgaia]
    +a:1275 [in gaia_hydras.nfwfgaia]
    +a:1278 [in gaia_hydras.nfwfgaia]
    +a:128 [in hydras.Epsilon0.Hessenberg]
    +a:128 [in hydras.Ackermann.fol]
    +A:128 [in hydras.Hydra.Hydra_Lemmas]
    +a:1281 [in hydras.Ackermann.codeSubFormula]
    +a:1283 [in hydras.Ackermann.codeSubFormula]
    +a:1283 [in gaia_hydras.nfwfgaia]
    +a:1285 [in hydras.Ackermann.codeSubFormula]
    +a:1286 [in gaia_hydras.nfwfgaia]
    +a:1289 [in hydras.Ackermann.codeSubFormula]
    +a:1289 [in gaia_hydras.nfwfgaia]
    +a:129 [in gaia_hydras.T1Bridge]
    +A:129 [in additions.Addition_Chains]
    +a:1292 [in gaia_hydras.nfwfgaia]
    +a:1295 [in gaia_hydras.nfwfgaia]
    +a:1299 [in gaia_hydras.nfwfgaia]
    +a:13 [in hydras.Prelude.Restriction]
    +a:13 [in Goedel.fixPoint]
    +a:13 [in gaia_hydras.GCanon]
    +a:13 [in gaia_hydras.T1Bridge]
    +a:13 [in hydras.Ackermann.prLogic]
    +a:13 [in hydras.Hydra.BigBattle]
    +a:13 [in hydras.Ackermann.NNtheory]
    +a:13 [in hydras.Schutte.Well_Orders]
    +A:13 [in additions.Addition_Chains]
    +a:13 [in hydras.Schutte.Ordering_Functions]
    +a:13 [in hydras.solutions_exercises.isqrt]
    +a:130 [in hydras.OrdinalNotations.ON_Generic]
    +a:1303 [in gaia_hydras.nfwfgaia]
    +a:1307 [in gaia_hydras.nfwfgaia]
    +a:131 [in hydras.Epsilon0.T1]
    +A:131 [in Goedel.PRrepresentable]
    +a:131 [in hydras.Gamma0.T2]
    +A:131 [in hydras.Prelude.MoreLists]
    +A:131 [in hydras.rpo.more_list]
    +a:131 [in hydras.Epsilon0.Hessenberg]
    +a:131 [in gaia_hydras.T1Bridge]
    +a:1312 [in gaia_hydras.nfwfgaia]
    +a:1314 [in gaia_hydras.nfwfgaia]
    +a:1318 [in gaia_hydras.nfwfgaia]
    +a:132 [in gaia_hydras.T1Bridge]
    +a:1320 [in gaia_hydras.nfwfgaia]
    +a:133 [in gaia_hydras.T1Bridge]
    +a:133 [in hydras.Ackermann.primRec]
    +A:133 [in hydras.OrdinalNotations.ON_Generic]
    +a:133 [in gaia_hydras.nfwfgaia]
    +a:1330 [in gaia_hydras.nfwfgaia]
    +a:134 [in hydras.rpo.more_list]
    +a:1345 [in gaia_hydras.nfwfgaia]
    +a:135 [in hydras.Gamma0.T2]
    +A:135 [in hydras.rpo.more_list]
    +a:135 [in hydras.Ackermann.primRec]
    +a:1350 [in gaia_hydras.nfwfgaia]
    +a:1355 [in gaia_hydras.nfwfgaia]
    +a:136 [in hydras.Epsilon0.T1]
    +A:136 [in hydras.Prelude.MoreLists]
    +a:136 [in hydras.Ackermann.codeSubFormula]
    +a:136 [in gaia_hydras.nfwfgaia]
    +a:1360 [in gaia_hydras.nfwfgaia]
    +a:1365 [in gaia_hydras.nfwfgaia]
    +a:137 [in hydras.Ackermann.LNT]
    +a:137 [in hydras.Ackermann.primRec]
    +A:137 [in hydras.Ackermann.fol]
    +a:1370 [in gaia_hydras.nfwfgaia]
    +a:1376 [in gaia_hydras.nfwfgaia]
    +a:138 [in hydras.Ackermann.codeSubFormula]
    +a:138 [in additions.fib]
    +a:1388 [in gaia_hydras.nfwfgaia]
    +a:139 [in hydras.Ackermann.LNT]
    +a:14 [in Goedel.PRrepresentable]
    +a:14 [in hydras.solutions_exercises.MinPR2]
    +a:14 [in hydras.Prelude.WfVariant]
    +a:14 [in hydras.Ackermann.extEqualNat]
    +a:14 [in hydras.Schutte.MoreEpsilonIota]
    +a:14 [in hydras.solutions_exercises.MultisetWf]
    +a:14 [in hydras.Ackermann.folLogic3]
    +A:14 [in additions.Addition_Chains]
    +a:14 [in hydras.solutions_exercises.T1_ltNotWf]
    +a:14 [in hydras.MoreAck.PrimRecExamples]
    +a:14 [in hydras.Prelude.Simple_LexProd]
    +A:14 [in hydras.Prelude.MoreVectors]
    +a:140 [in hydras.Gamma0.T2]
    +a:140 [in hydras.rpo.more_list]
    +a:140 [in hydras.Ackermann.LNN]
    +a:140 [in hydras.Ackermann.primRec]
    +A:140 [in hydras.Ackermann.fol]
    +a:1407 [in gaia_hydras.nfwfgaia]
    +A:141 [in hydras.Prelude.MoreLists]
    +a:141 [in gaia_hydras.T1Bridge]
    +a:141 [in hydras.Gamma0.Gamma0]
    +a:1416 [in gaia_hydras.nfwfgaia]
    +A:142 [in Goedel.PRrepresentable]
    +a:142 [in hydras.Ackermann.LNN]
    +a:142 [in hydras.Ackermann.LNT]
    +a:142 [in gaia_hydras.T1Bridge]
    +A:142 [in additions.Euclidean_Chains]
    +A:142 [in hydras.Ackermann.fol]
    +a:1422 [in gaia_hydras.nfwfgaia]
    +a:1428 [in gaia_hydras.nfwfgaia]
    +a:143 [in hydras.Ackermann.primRec]
    +a:143 [in additions.fib]
    +A:143 [in hydras.Schutte.Ordering_Functions]
    +a:144 [in hydras.Gamma0.T2]
    +A:144 [in hydras.rpo.more_list]
    +a:144 [in gaia_hydras.T1Bridge]
    +A:144 [in hydras.Ackermann.fol]
    +A:144 [in hydras.Hydra.Hydra_Definitions]
    +a:1441 [in gaia_hydras.nfwfgaia]
    +a:1443 [in gaia_hydras.nfwfgaia]
    +a:1445 [in gaia_hydras.nfwfgaia]
    +a:1447 [in gaia_hydras.nfwfgaia]
    +a:1449 [in gaia_hydras.nfwfgaia]
    +a:145 [in hydras.Ackermann.LNN]
    +a:146 [in hydras.Gamma0.T2]
    +a:146 [in hydras.Ackermann.LNT]
    +a:146 [in hydras.Ackermann.primRec]
    +A:146 [in hydras.Ackermann.fol]
    +A:146 [in hydras.OrdinalNotations.ON_Generic]
    +a:1460 [in gaia_hydras.nfwfgaia]
    +a:1461 [in gaia_hydras.nfwfgaia]
    +a:1463 [in gaia_hydras.nfwfgaia]
    +a:1465 [in gaia_hydras.nfwfgaia]
    +a:1468 [in gaia_hydras.nfwfgaia]
    +A:147 [in hydras.Ackermann.fol]
    +A:147 [in hydras.Schutte.Ordering_Functions]
    +a:1470 [in gaia_hydras.nfwfgaia]
    +A:148 [in additions.Euclidean_Chains]
    +a:148 [in additions.fib]
    +a:149 [in hydras.rpo.more_list]
    +a:149 [in hydras.Ackermann.LNN]
    +A:149 [in additions.Euclidean_Chains]
    +A:149 [in hydras.Ackermann.fol]
    +a:1492 [in gaia_hydras.nfwfgaia]
    +A:15 [in hydras.Prelude.DecPreOrder_Instances]
    +A:15 [in hydras.rpo.more_list]
    +a:15 [in hydras.OrdinalNotations.ON_O]
    +a:15 [in hydras.Epsilon0.Hessenberg]
    +A:15 [in hydras.Prelude.DecPreOrder]
    +a:15 [in gaia_hydras.GCanon]
    +a:15 [in hydras.OrdinalNotations.OmegaOmega]
    +a:15 [in gaia_hydras.T1Bridge]
    +a:15 [in hydras.Schutte.Schutte_basics]
    +a:15 [in hydras.Prelude.MoreDecidable]
    +a:15 [in hydras.Schutte.Ordering_Functions]
    +A:15 [in hydras.rpo.closure]
    +A:15 [in hydras.MoreAck.FolExamples]
    +a:15 [in gaia_hydras.GHessenberg]
    +a:150 [in gaia_hydras.T1Bridge]
    +a:150 [in hydras.Ackermann.primRec]
    +A:150 [in additions.Euclidean_Chains]
    +A:150 [in hydras.Schutte.Ordering_Functions]
    +a:1502 [in gaia_hydras.nfwfgaia]
    +a:1509 [in gaia_hydras.nfwfgaia]
    +a:151 [in hydras.Ackermann.LNT]
    +a:152 [in gaia_hydras.nfwfgaia]
    +a:1521 [in gaia_hydras.nfwfgaia]
    +a:1524 [in gaia_hydras.nfwfgaia]
    +a:1527 [in gaia_hydras.nfwfgaia]
    +A:153 [in Goedel.PRrepresentable]
    +a:153 [in hydras.Ackermann.fol]
    +a:1531 [in gaia_hydras.nfwfgaia]
    +a:1536 [in gaia_hydras.nfwfgaia]
    +A:154 [in hydras.rpo.more_list]
    +a:154 [in hydras.Ackermann.LNN]
    +a:154 [in hydras.Ackermann.primRec]
    +a:154 [in gaia_hydras.nfwfgaia]
    +A:154 [in hydras.Hydra.Hydra_Definitions]
    +a:1540 [in gaia_hydras.nfwfgaia]
    +a:1543 [in gaia_hydras.nfwfgaia]
    +A:155 [in additions.Euclidean_Chains]
    +a:1551 [in gaia_hydras.nfwfgaia]
    +a:1558 [in gaia_hydras.nfwfgaia]
    +a:156 [in hydras.Ackermann.LNT]
    +a:156 [in gaia_hydras.nfwfgaia]
    +a:1561 [in gaia_hydras.nfwfgaia]
    +a:1564 [in gaia_hydras.nfwfgaia]
    +a:1568 [in gaia_hydras.nfwfgaia]
    +a:1574 [in gaia_hydras.nfwfgaia]
    +a:1578 [in gaia_hydras.nfwfgaia]
    +a:158 [in gaia_hydras.T1Bridge]
    +a:158 [in hydras.Ackermann.primRec]
    +a:158 [in hydras.Ackermann.fol]
    +a:158 [in gaia_hydras.nfwfgaia]
    +a:1587 [in gaia_hydras.nfwfgaia]
    +a:159 [in hydras.rpo.more_list]
    +a:159 [in hydras.Ackermann.LNN]
    +A:159 [in hydras.OrdinalNotations.ON_Generic]
    +A:159 [in additions.Addition_Chains]
    +a:1592 [in gaia_hydras.nfwfgaia]
    +a:1595 [in gaia_hydras.nfwfgaia]
    +a:1598 [in gaia_hydras.nfwfgaia]
    +a:16 [in hydras.solutions_exercises.MinPR2]
    +a:16 [in additions.Fib2]
    +a:16 [in hydras.Prelude.Comparable]
    +A:16 [in additions.Pow_variant]
    +a:16 [in Goedel.fixPoint]
    +A:16 [in additions.Pow]
    +a:16 [in hydras.Prelude.Sort_spec]
    +A:16 [in hydras.MoreAck.AckNotPR]
    +a:16 [in hydras.Schutte.MoreEpsilonIota]
    +a:16 [in hydras.OrdinalNotations.OmegaOmega]
    +a:16 [in hydras.Hydra.BigBattle]
    +A:16 [in hydras.Ackermann.fol]
    +a:16 [in hydras.Ackermann.NNtheory]
    +a:16 [in gaia_hydras.GLarge_Sets]
    +a:16 [in hydras.Schutte.Well_Orders]
    +a:16 [in Goedel.rosser]
    +A:16 [in hydras.Ackermann.expressible]
    +A:16 [in hydras.Prelude.MoreVectors]
    +a:160 [in hydras.Epsilon0.T1]
    +a:160 [in gaia_hydras.nfwfgaia]
    +a:1601 [in gaia_hydras.nfwfgaia]
    +a:161 [in hydras.Ackermann.LNT]
    +a:161 [in hydras.Ackermann.fol]
    +a:1612 [in gaia_hydras.nfwfgaia]
    +a:162 [in hydras.Epsilon0.T1]
    +a:162 [in hydras.Ackermann.LNN]
    +a:162 [in gaia_hydras.T1Bridge]
    +A:162 [in additions.Euclidean_Chains]
    +a:162 [in hydras.rpo.rpo]
    +a:1621 [in gaia_hydras.nfwfgaia]
    +a:1629 [in gaia_hydras.nfwfgaia]
    +A:163 [in hydras.rpo.more_list]
    +a:1635 [in gaia_hydras.nfwfgaia]
    +a:164 [in gaia_hydras.T1Bridge]
    +a:164 [in hydras.Ackermann.primRec]
    +a:164 [in hydras.Ackermann.fol]
    +A:165 [in hydras.Prelude.MoreLists]
    +a:165 [in hydras.Gamma0.Gamma0]
    +a:1650 [in gaia_hydras.nfwfgaia]
    +a:166 [in gaia_hydras.T1Bridge]
    +a:166 [in hydras.Ackermann.primRec]
    +a:166 [in hydras.Ackermann.cPair]
    +A:166 [in additions.Addition_Chains]
    +a:1660 [in gaia_hydras.nfwfgaia]
    +a:167 [in hydras.Epsilon0.T1]
    +a:167 [in hydras.Ackermann.fol]
    +a:1671 [in gaia_hydras.nfwfgaia]
    +a:1674 [in gaia_hydras.nfwfgaia]
    +a:168 [in hydras.rpo.more_list]
    +a:168 [in gaia_hydras.T1Bridge]
    +a:168 [in hydras.Ackermann.primRec]
    +A:168 [in additions.Euclidean_Chains]
    +a:169 [in Goedel.PRrepresentable]
    +a:169 [in hydras.Ackermann.LNN]
    +a:169 [in hydras.OrdinalNotations.ON_Generic]
    +a:169 [in hydras.Gamma0.Gamma0]
    +A:17 [in hydras.Prelude.Iterates]
    +a:17 [in gaia_hydras.GPaths]
    +a:17 [in hydras.Ackermann.folProp]
    +a:17 [in gaia_hydras.GCanon]
    +A:17 [in hydras.Schutte.MoreEpsilonIota]
    +a:17 [in hydras.OrdinalNotations.OmegaOmega]
    +A:17 [in additions.Euclidean_Chains]
    +a:17 [in hydras.Schutte.PartialFun]
    +a:17 [in hydras.rpo.closure]
    +a:17 [in hydras.solutions_exercises.T1_ltNotWf]
    +A:17 [in hydras.rpo.rpo]
    +a:170 [in hydras.Epsilon0.T1]
    +a:170 [in Goedel.PRrepresentable]
    +A:170 [in hydras.rpo.more_list]
    +a:170 [in hydras.Ackermann.model]
    +a:170 [in gaia_hydras.nfwfgaia]
    +A:171 [in hydras.Epsilon0.Large_Sets]
    +A:171 [in hydras.OrdinalNotations.ON_Generic]
    +a:1718 [in gaia_hydras.nfwfgaia]
    +a:1719 [in gaia_hydras.nfwfgaia]
    +A:172 [in hydras.Prelude.Iterates]
    +a:172 [in hydras.Ackermann.model]
    +a:172 [in hydras.Prelude.Merge_Sort]
    +a:172 [in hydras.Ackermann.primRec]
    +A:172 [in additions.Addition_Chains]
    +a:1720 [in gaia_hydras.nfwfgaia]
    +a:1721 [in gaia_hydras.nfwfgaia]
    +a:1722 [in gaia_hydras.nfwfgaia]
    +a:173 [in hydras.Epsilon0.T1]
    +a:173 [in hydras.Ackermann.folProp]
    +a:1736 [in gaia_hydras.nfwfgaia]
    +a:1738 [in gaia_hydras.nfwfgaia]
    +A:174 [in hydras.Ackermann.model]
    +a:174 [in hydras.Ackermann.primRec]
    +a:174 [in hydras.Ackermann.cPair]
    +a:1740 [in gaia_hydras.nfwfgaia]
    +a:1742 [in gaia_hydras.nfwfgaia]
    +a:1745 [in gaia_hydras.nfwfgaia]
    +a:1749 [in gaia_hydras.nfwfgaia]
    +a:175 [in hydras.rpo.more_list]
    +a:175 [in hydras.Ackermann.model]
    +a:175 [in hydras.Ackermann.fol]
    +a:1752 [in gaia_hydras.nfwfgaia]
    +a:176 [in hydras.Ackermann.primRec]
    +a:176 [in hydras.Ackermann.cPair]
    +A:176 [in hydras.Schutte.Ordering_Functions]
    +a:176 [in gaia_hydras.nfwfgaia]
    +a:1768 [in gaia_hydras.nfwfgaia]
    +a:1771 [in gaia_hydras.nfwfgaia]
    +a:1773 [in gaia_hydras.nfwfgaia]
    +a:1777 [in gaia_hydras.nfwfgaia]
    +a:1778 [in gaia_hydras.nfwfgaia]
    +a:1779 [in gaia_hydras.nfwfgaia]
    +a:178 [in hydras.Epsilon0.T1]
    +A:178 [in hydras.rpo.more_list]
    +a:178 [in hydras.Ackermann.cPair]
    +a:1782 [in gaia_hydras.nfwfgaia]
    +a:1783 [in gaia_hydras.nfwfgaia]
    +a:179 [in hydras.Ackermann.model]
    +A:179 [in hydras.Schutte.Ordering_Functions]
    +a:179 [in gaia_hydras.nfwfgaia]
    +a:1791 [in gaia_hydras.nfwfgaia]
    +a:1796 [in gaia_hydras.nfwfgaia]
    +a:1798 [in gaia_hydras.nfwfgaia]
    +a:18 [in Goedel.PRrepresentable]
    +a:18 [in hydras.Prelude.Comparable]
    +a:18 [in hydras.OrdinalNotations.ON_O]
    +a:18 [in hydras.solutions_exercises.MorePRExamples]
    +A:18 [in additions.Monoid_def]
    +a:18 [in hydras.Hydra.BigBattle]
    +A:18 [in hydras.Ackermann.fol]
    +A:18 [in gaia_hydras.GLarge_Sets]
    +A:18 [in additions.Addition_Chains]
    +A:18 [in hydras.Schutte.Ordering_Functions]
    +A:18 [in Goedel.rosser]
    +A:18 [in hydras.rpo.closure]
    +a:18 [in hydras.solutions_exercises.T1_ltNotWf]
    +A:18 [in hydras.Ackermann.expressible]
    +a:180 [in hydras.Ackermann.folProp]
    +a:180 [in hydras.Ackermann.primRec]
    +a:180 [in hydras.Ackermann.cPair]
    +a:180 [in gaia_hydras.nfwfgaia]
    +a:1802 [in gaia_hydras.nfwfgaia]
    +a:1804 [in gaia_hydras.nfwfgaia]
    +a:1806 [in gaia_hydras.nfwfgaia]
    +a:1808 [in gaia_hydras.nfwfgaia]
    +a:181 [in hydras.Epsilon0.T1]
    +A:181 [in hydras.Ackermann.model]
    +a:1810 [in gaia_hydras.nfwfgaia]
    +a:1813 [in gaia_hydras.nfwfgaia]
    +a:1815 [in gaia_hydras.nfwfgaia]
    +a:182 [in hydras.Ackermann.model]
    +A:182 [in additions.Euclidean_Chains]
    +A:182 [in additions.Addition_Chains]
    +a:182 [in gaia_hydras.nfwfgaia]
    +a:183 [in hydras.rpo.more_list]
    +a:183 [in hydras.Ackermann.primRec]
    +a:1835 [in gaia_hydras.nfwfgaia]
    +a:1837 [in gaia_hydras.nfwfgaia]
    +a:1839 [in gaia_hydras.nfwfgaia]
    +A:184 [in hydras.OrdinalNotations.ON_Generic]
    +A:184 [in hydras.Schutte.Ordering_Functions]
    +a:1841 [in gaia_hydras.nfwfgaia]
    +a:1843 [in gaia_hydras.nfwfgaia]
    +a:185 [in additions.Addition_Chains]
    +a:185 [in hydras.Schutte.Ordering_Functions]
    +a:1856 [in gaia_hydras.nfwfgaia]
    +a:186 [in hydras.Epsilon0.T1]
    +A:186 [in hydras.rpo.more_list]
    +a:186 [in hydras.Ackermann.model]
    +a:186 [in hydras.Ackermann.primRec]
    +a:1860 [in gaia_hydras.nfwfgaia]
    +a:1865 [in gaia_hydras.nfwfgaia]
    +a:1869 [in gaia_hydras.nfwfgaia]
    +A:187 [in hydras.Prelude.MoreLists]
    +A:187 [in hydras.Schutte.Ordering_Functions]
    +a:1877 [in gaia_hydras.nfwfgaia]
    +a:188 [in additions.Euclidean_Chains]
    +a:1886 [in gaia_hydras.nfwfgaia]
    +a:189 [in hydras.Ackermann.folProp]
    +A:19 [in hydras.Ackermann.folProof]
    +a:19 [in Goedel.fixPoint]
    +a:19 [in gaia_hydras.GCanon]
    +a:19 [in hydras.Ackermann.cPair]
    +a:19 [in gaia_hydras.GHydra]
    +A:19 [in hydras.solutions_exercises.T1_ltNotWf]
    +a:19 [in gaia_hydras.GHessenberg]
    +a:19 [in hydras.Ackermann.expressible]
    +a:191 [in hydras.Ackermann.primRec]
    +a:192 [in hydras.Ackermann.model]
    +a:193 [in hydras.rpo.more_list]
    +a:193 [in additions.Addition_Chains]
    +a:194 [in hydras.rpo.more_list]
    +a:194 [in hydras.Ackermann.model]
    +a:194 [in hydras.Ackermann.primRec]
    +A:194 [in additions.Euclidean_Chains]
    +a:195 [in hydras.rpo.more_list]
    +a:196 [in hydras.rpo.more_list]
    +a:196 [in hydras.Ackermann.model]
    +a:196 [in hydras.Ackermann.folProp]
    +a:196 [in additions.Addition_Chains]
    +a:197 [in hydras.Epsilon0.T1]
    +a:197 [in hydras.Ackermann.primRec]
    +a:198 [in hydras.Ackermann.model]
    +A:198 [in hydras.OrdinalNotations.ON_Generic]
    +a:2 [in hydras.Hydra.O2H]
    +a:2 [in gaia_hydras.GF_alpha]
    +a:2 [in gaia_hydras.GPaths]
    +A:2 [in hydras.Ackermann.model]
    +A:2 [in additions.Euclidean_Chains]
    +a:2 [in hydras.Ackermann.ListExt]
    +a:2 [in hydras.Ackermann.NN]
    +A:20 [in hydras.rpo.more_list]
    +a:20 [in hydras.Prelude.Comparable]
    +a:20 [in hydras.Prelude.Sort_spec]
    +A:20 [in hydras.Prelude.DecPreOrder]
    +a:20 [in hydras.Ackermann.folProp]
    +A:20 [in hydras.MoreAck.AckNotPR]
    +A:20 [in hydras.Schutte.MoreEpsilonIota]
    +a:20 [in hydras.solutions_exercises.MultisetWf]
    +a:20 [in hydras.Hydra.BigBattle]
    +A:20 [in hydras.Ackermann.fol]
    +a:20 [in additions.Monoid_instances]
    +a:20 [in hydras.Schutte.Well_Orders]
    +a:20 [in hydras.Ackermann.NN]
    +A:20 [in hydras.rpo.closure]
    +A:200 [in hydras.Ackermann.model]
    +a:2006 [in gaia_hydras.nfwfgaia]
    +A:201 [in hydras.Prelude.MoreLists]
    +A:201 [in hydras.rpo.more_list]
    +a:201 [in hydras.Ackermann.model]
    +a:201 [in additions.Addition_Chains]
    +a:202 [in hydras.Ackermann.primRec]
    +a:202 [in additions.Addition_Chains]
    +a:2021 [in gaia_hydras.nfwfgaia]
    +a:2025 [in gaia_hydras.nfwfgaia]
    +a:2030 [in gaia_hydras.nfwfgaia]
    +a:2037 [in gaia_hydras.nfwfgaia]
    +a:2047 [in gaia_hydras.nfwfgaia]
    +a:205 [in hydras.Ackermann.model]
    +a:205 [in hydras.Ackermann.folProp]
    +a:205 [in hydras.Ackermann.primRec]
    +a:2050 [in gaia_hydras.nfwfgaia]
    +a:2053 [in gaia_hydras.nfwfgaia]
    +A:206 [in hydras.Prelude.MoreLists]
    +a:206 [in additions.Addition_Chains]
    +a:2061 [in gaia_hydras.nfwfgaia]
    +A:207 [in hydras.Ackermann.model]
    +a:207 [in gaia_hydras.nfwfgaia]
    +a:2070 [in gaia_hydras.nfwfgaia]
    +a:2073 [in gaia_hydras.nfwfgaia]
    +a:208 [in hydras.Ackermann.model]
    +a:208 [in hydras.Ackermann.primRec]
    +A:208 [in additions.Euclidean_Chains]
    +a:209 [in hydras.OrdinalNotations.ON_Generic]
    +a:21 [in hydras.Schutte.Correctness_E0]
    +a:21 [in additions.Fib2]
    +A:21 [in hydras.Prelude.MoreLists]
    +a:21 [in hydras.OrdinalNotations.ON_O]
    +a:21 [in gaia_hydras.GPaths]
    +a:21 [in hydras.Epsilon0.Hessenberg]
    +A:21 [in additions.Monoid_def]
    +a:21 [in hydras.Ackermann.cPair]
    +A:21 [in additions.Euclidean_Chains]
    +a:21 [in hydras.Prelude.MoreDecidable]
    +a:21 [in hydras.Ackermann.NN]
    +a:21 [in gaia_hydras.GL_alpha]
    +a:21 [in gaia_hydras.GHessenberg]
    +A:210 [in hydras.rpo.more_list]
    +a:210 [in hydras.Ackermann.codeList]
    +a:210 [in gaia_hydras.nfwfgaia]
    +a:2109 [in gaia_hydras.nfwfgaia]
    +a:211 [in hydras.Epsilon0.T1]
    +a:211 [in hydras.OrdinalNotations.ON_Generic]
    +a:212 [in hydras.Epsilon0.T1]
    +a:212 [in hydras.Ackermann.model]
    +a:212 [in hydras.Ackermann.folProp]
    +a:213 [in hydras.Ackermann.primRec]
    +a:213 [in hydras.Ackermann.cPair]
    +a:213 [in hydras.Ackermann.fol]
    +a:213 [in hydras.OrdinalNotations.ON_Generic]
    +a:213 [in gaia_hydras.nfwfgaia]
    +a:214 [in hydras.Epsilon0.T1]
    +a:215 [in hydras.OrdinalNotations.ON_Generic]
    +a:215 [in hydras.Ackermann.codeList]
    +a:215 [in hydras.Gamma0.Gamma0]
    +a:216 [in hydras.Ackermann.primRec]
    +a:216 [in hydras.Ackermann.fol]
    +a:216 [in hydras.OrdinalNotations.ON_Generic]
    +a:216 [in gaia_hydras.nfwfgaia]
    +a:217 [in hydras.Gamma0.Gamma0]
    +a:218 [in hydras.Epsilon0.T1]
    +a:218 [in hydras.rpo.more_list]
    +a:218 [in hydras.Ackermann.model]
    +a:218 [in gaia_hydras.nfwfgaia]
    +a:219 [in hydras.Epsilon0.T1]
    +a:219 [in hydras.Ackermann.primRec]
    +A:22 [in hydras.Ackermann.folProof]
    +a:22 [in hydras.Epsilon0.T1]
    +a:22 [in Goedel.PRrepresentable]
    +a:22 [in hydras.Prelude.Comparable]
    +a:22 [in hydras.OrdinalNotations.ON_O]
    +A:22 [in Goedel.fixPoint]
    +a:22 [in hydras.OrdinalNotations.OmegaOmega]
    +a:22 [in additions.fib]
    +A:22 [in hydras.Ackermann.expressible]
    +a:22 [in hydras.Prelude.MoreVectors]
    +A:220 [in hydras.rpo.more_list]
    +a:220 [in hydras.Ackermann.model]
    +a:221 [in hydras.Ackermann.folProp]
    +a:221 [in gaia_hydras.nfwfgaia]
    +a:222 [in hydras.Ackermann.primRec]
    +A:223 [in additions.Addition_Chains]
    +a:223 [in hydras.Gamma0.Gamma0]
    +A:224 [in additions.Euclidean_Chains]
    +a:225 [in hydras.Epsilon0.T1]
    +a:225 [in hydras.Ackermann.primRec]
    +a:226 [in additions.Euclidean_Chains]
    +a:227 [in hydras.Gamma0.Gamma0]
    +a:227 [in gaia_hydras.nfwfgaia]
    +a:228 [in hydras.rpo.more_list]
    +a:228 [in hydras.Ackermann.folProp]
    +a:228 [in additions.Addition_Chains]
    +a:229 [in hydras.Epsilon0.T1]
    +a:229 [in hydras.Ackermann.primRec]
    +a:23 [in hydras.Ackermann.extEqualNat]
    +a:23 [in hydras.rpo.more_list]
    +a:23 [in hydras.OrdinalNotations.ON_O]
    +A:23 [in additions.Pow_variant]
    +A:23 [in additions.Pow]
    +a:23 [in hydras.Prelude.Sort_spec]
    +a:23 [in hydras.Prelude.DecPreOrder]
    +A:23 [in hydras.Schutte.MoreEpsilonIota]
    +a:23 [in hydras.Ackermann.cPair]
    +A:23 [in hydras.Ackermann.fol]
    +a:23 [in hydras.Schutte.Well_Orders]
    +a:23 [in hydras.Gamma0.Gamma0]
    +a:23 [in hydras.rpo.closure]
    +a:23 [in gaia_hydras.GHessenberg]
    +a:230 [in hydras.Epsilon0.T1]
    +A:230 [in additions.AM]
    +a:230 [in hydras.rpo.rpo]
    +a:231 [in hydras.rpo.more_list]
    +A:231 [in additions.Addition_Chains]
    +a:231 [in hydras.Gamma0.Gamma0]
    +a:232 [in hydras.Ackermann.primRec]
    +A:233 [in hydras.Ackermann.checkPrf]
    +a:233 [in gaia_hydras.nfwfgaia]
    +a:234 [in hydras.Epsilon0.T1]
    +a:234 [in hydras.rpo.more_list]
    +a:235 [in hydras.Ackermann.primRec]
    +A:235 [in additions.Euclidean_Chains]
    +a:235 [in gaia_hydras.nfwfgaia]
    +a:236 [in hydras.Ackermann.fol]
    +a:236 [in additions.Addition_Chains]
    +a:237 [in hydras.Epsilon0.T1]
    +A:237 [in additions.AM]
    +a:237 [in additions.Euclidean_Chains]
    +a:237 [in gaia_hydras.nfwfgaia]
    +A:238 [in hydras.rpo.more_list]
    +a:238 [in hydras.Ackermann.primRec]
    +a:239 [in hydras.Ackermann.fol]
    +a:24 [in hydras.Prelude.More_Arith]
    +a:24 [in hydras.OrdinalNotations.ON_O]
    +a:24 [in gaia_hydras.GPaths]
    +a:24 [in hydras.Epsilon0.F_omega]
    +a:24 [in hydras.OrdinalNotations.OmegaOmega]
    +A:24 [in hydras.Ackermann.fol]
    +a:24 [in hydras.Schutte.PartialFun]
    +A:24 [in additions.Addition_Chains]
    +a:24 [in gaia_hydras.GL_alpha]
    +a:24 [in gaia_hydras.nfwfgaia]
    +A:240 [in additions.Addition_Chains]
    +a:240 [in hydras.rpo.rpo]
    +a:241 [in hydras.Ackermann.primRec]
    +A:241 [in additions.Euclidean_Chains]
    +a:243 [in hydras.Ackermann.cPair]
    +a:243 [in additions.Euclidean_Chains]
    +a:244 [in additions.Addition_Chains]
    +a:245 [in hydras.Ackermann.primRec]
    +A:247 [in hydras.rpo.more_list]
    +a:247 [in additions.Addition_Chains]
    +a:248 [in hydras.Epsilon0.T1]
    +a:248 [in hydras.Ackermann.primRec]
    +a:249 [in hydras.Ackermann.subAll]
    +A:25 [in hydras.Ackermann.folProof]
    +a:25 [in hydras.Ackermann.extEqualNat]
    +A:25 [in hydras.rpo.more_list]
    +a:25 [in hydras.Prelude.Comparable]
    +A:25 [in hydras.Prelude.DecPreOrder]
    +a:25 [in hydras.Ackermann.PA]
    +a:25 [in hydras.rpo.closure]
    +a:250 [in additions.Addition_Chains]
    +a:251 [in hydras.Ackermann.primRec]
    +a:252 [in hydras.Epsilon0.T1]
    +a:252 [in hydras.Ackermann.folProp]
    +a:253 [in hydras.Epsilon0.T1]
    +a:253 [in gaia_hydras.nfwfgaia]
    +a:254 [in hydras.Ackermann.primRec]
    +A:254 [in additions.Addition_Chains]
    +a:255 [in hydras.rpo.more_list]
    +a:255 [in gaia_hydras.nfwfgaia]
    +a:256 [in hydras.rpo.rpo]
    +a:257 [in hydras.Epsilon0.T1]
    +a:257 [in hydras.Ackermann.primRec]
    +A:259 [in hydras.rpo.more_list]
    +a:259 [in hydras.Ackermann.folProp]
    +a:26 [in Goedel.PRrepresentable]
    +A:26 [in hydras.Prelude.DecPreOrder_Instances]
    +A:26 [in hydras.Prelude.MoreLists]
    +a:26 [in additions.Compatibility]
    +a:26 [in hydras.Prelude.Comparable]
    +A:26 [in Goedel.fixPoint]
    +a:26 [in hydras.OrdinalNotations.OmegaOmega]
    +a:26 [in hydras.Ackermann.PA]
    +A:26 [in additions.Euclidean_Chains]
    +a:26 [in hydras.Schutte.PartialFun]
    +a:26 [in gaia_hydras.GHessenberg]
    +a:26 [in hydras.MoreAck.PrimRecExamples]
    +A:26 [in hydras.Ackermann.expressible]
    +a:260 [in hydras.Epsilon0.T1]
    +a:260 [in gaia_hydras.nfwfgaia]
    +A:261 [in Goedel.PRrepresentable]
    +a:261 [in hydras.Ackermann.primRec]
    +a:263 [in hydras.Epsilon0.T1]
    +a:263 [in gaia_hydras.nfwfgaia]
    +A:264 [in additions.Addition_Chains]
    +A:265 [in Goedel.PRrepresentable]
    +A:265 [in hydras.Ackermann.checkPrf]
    +a:265 [in hydras.Ackermann.primRec]
    +a:266 [in hydras.Epsilon0.T1]
    +a:266 [in hydras.Ackermann.cPair]
    +a:267 [in hydras.rpo.more_list]
    +a:268 [in hydras.Ackermann.folProp]
    +a:268 [in hydras.Ackermann.cPair]
    +a:268 [in hydras.Ackermann.fol]
    +a:268 [in hydras.rpo.rpo]
    +a:269 [in Goedel.PRrepresentable]
    +a:269 [in hydras.Ackermann.primRec]
    +A:27 [in hydras.Ackermann.folProof]
    +a:27 [in hydras.Schutte.Correctness_E0]
    +a:27 [in hydras.Prelude.More_Arith]
    +a:27 [in hydras.Ackermann.extEqualNat]
    +a:27 [in hydras.Epsilon0.Epsilon0rpo]
    +a:27 [in hydras.Epsilon0.Hessenberg]
    +a:27 [in gaia_hydras.GCanon]
    +a:27 [in hydras.solutions_exercises.MultisetWf]
    +a:27 [in Goedel.rosserPA]
    +a:27 [in hydras.OrdinalNotations.ON_Generic]
    +a:27 [in gaia_hydras.GL_alpha]
    +a:27 [in hydras.Ackermann.Languages]
    +A:27 [in hydras.Prelude.MoreVectors]
    +a:270 [in hydras.Epsilon0.T1]
    +a:270 [in hydras.Ackermann.cPair]
    +a:270 [in hydras.rpo.rpo]
    +a:271 [in additions.Addition_Chains]
    +a:272 [in hydras.Epsilon0.T1]
    +A:272 [in Goedel.PRrepresentable]
    +a:272 [in hydras.Ackermann.cPair]
    +a:272 [in hydras.Ackermann.fol]
    +a:272 [in hydras.Gamma0.Gamma0]
    +a:273 [in hydras.Ackermann.primRec]
    +a:274 [in hydras.Epsilon0.T1]
    +a:274 [in hydras.Ackermann.cPair]
    +a:275 [in hydras.Ackermann.folProp]
    +a:276 [in hydras.Epsilon0.T1]
    +a:276 [in hydras.Ackermann.cPair]
    +a:277 [in hydras.Ackermann.primRec]
    +a:277 [in hydras.Ackermann.cPair]
    +a:277 [in hydras.Gamma0.Gamma0]
    +a:278 [in hydras.Ackermann.cPair]
    +a:278 [in gaia_hydras.nfwfgaia]
    +a:279 [in hydras.Ackermann.cPair]
    +A:28 [in Goedel.PRrepresentable]
    +A:28 [in hydras.Prelude.DecPreOrder_Instances]
    +a:28 [in additions.Compatibility]
    +a:28 [in hydras.Prelude.Comparable]
    +a:28 [in gaia_hydras.GPaths]
    +a:28 [in hydras.Prelude.DecPreOrder]
    +a:28 [in hydras.OrdinalNotations.OmegaOmega]
    +a:28 [in hydras.Schutte.PartialFun]
    +a:28 [in gaia_hydras.GL_alpha]
    +a:28 [in gaia_hydras.GHessenberg]
    +a:280 [in hydras.Ackermann.cPair]
    +a:280 [in hydras.Ackermann.fol]
    +a:281 [in hydras.Ackermann.cPair]
    +a:282 [in hydras.Epsilon0.T1]
    +a:282 [in hydras.Ackermann.primRec]
    +a:283 [in hydras.Gamma0.Gamma0]
    +a:283 [in gaia_hydras.nfwfgaia]
    +a:284 [in gaia_hydras.nfwfgaia]
    +A:285 [in Goedel.PRrepresentable]
    +a:286 [in hydras.Ackermann.primRec]
    +a:287 [in hydras.Epsilon0.T1]
    +a:287 [in hydras.Gamma0.Gamma0]
    +A:29 [in hydras.Ackermann.folProof]
    +a:29 [in hydras.Prelude.Comparable]
    +A:29 [in additions.Pow_variant]
    +A:29 [in additions.Pow]
    +a:29 [in gaia_hydras.GCanon]
    +A:29 [in Goedel.rosserPA]
    +a:29 [in hydras.Hydra.BigBattle]
    +A:29 [in hydras.OrdinalNotations.ON_Generic]
    +a:29 [in hydras.Ackermann.NN]
    +a:29 [in hydras.Gamma0.Gamma0]
    +a:29 [in hydras.MoreAck.PrimRecExamples]
    +a:290 [in hydras.Ackermann.primRec]
    +A:291 [in Goedel.PRrepresentable]
    +a:291 [in hydras.Gamma0.Gamma0]
    +a:291 [in gaia_hydras.nfwfgaia]
    +a:295 [in hydras.Ackermann.primRec]
    +a:295 [in hydras.Gamma0.Gamma0]
    +a:296 [in gaia_hydras.nfwfgaia]
    +a:299 [in hydras.Ackermann.primRec]
    +a:299 [in hydras.Gamma0.Gamma0]
    +a:3 [in additions.Compatibility]
    +a:3 [in hydras.Ackermann.folLogic2]
    +a:3 [in hydras.OrdinalNotations.OmegaOmega]
    +a:3 [in hydras.OrdinalNotations.Example_3PlusOmega]
    +a:3 [in hydras.Ackermann.prLogic]
    +A:3 [in additions.Euclidean_Chains]
    +a:3 [in hydras.Ackermann.NNtheory]
    +a:3 [in gaia_hydras.GLarge_Sets]
    +a:3 [in hydras.Schutte.Well_Orders]
    +a:3 [in hydras.Ackermann.folLogic3]
    +a:3 [in hydras.Ackermann.NN]
    +a:30 [in hydras.Epsilon0.T1]
    +a:30 [in hydras.Ackermann.extEqualNat]
    +a:30 [in additions.Compatibility]
    +a:30 [in hydras.rpo.more_list]
    +a:30 [in gaia_hydras.GPaths]
    +A:30 [in hydras.Prelude.Sort_spec]
    +A:30 [in hydras.Prelude.DecPreOrder]
    +a:30 [in hydras.OrdinalNotations.OmegaOmega]
    +a:30 [in hydras.Ackermann.primRec]
    +a:30 [in hydras.Ackermann.NN]
    +a:30 [in gaia_hydras.GHessenberg]
    +a:303 [in hydras.Ackermann.primRec]
    +a:306 [in Goedel.PRrepresentable]
    +a:306 [in hydras.Gamma0.Gamma0]
    +a:307 [in hydras.Ackermann.primRec]
    +a:31 [in Goedel.PRrepresentable]
    +A:31 [in hydras.rpo.more_list]
    +a:31 [in hydras.Ackermann.folLogic3]
    +a:310 [in hydras.Epsilon0.T1]
    +a:310 [in Goedel.PRrepresentable]
    +a:311 [in hydras.Ackermann.primRec]
    +a:313 [in Goedel.PRrepresentable]
    +a:315 [in hydras.Ackermann.primRec]
    +a:316 [in Goedel.PRrepresentable]
    +a:318 [in Goedel.PRrepresentable]
    +A:318 [in hydras.Ackermann.checkPrf]
    +a:318 [in hydras.Ackermann.fol]
    +a:319 [in hydras.Ackermann.primRec]
    +A:32 [in hydras.Ackermann.folProof]
    +A:32 [in Goedel.PRrepresentable]
    +a:32 [in additions.Compatibility]
    +a:32 [in hydras.Prelude.Restriction]
    +a:32 [in hydras.Prelude.Comparable]
    +a:32 [in gaia_hydras.GPaths]
    +a:32 [in hydras.Epsilon0.Hessenberg]
    +A:32 [in hydras.solutions_exercises.MultisetWf]
    +a:32 [in hydras.OrdinalNotations.OmegaOmega]
    +a:32 [in hydras.Schutte.PartialFun]
    +A:32 [in Goedel.codeSysPrf]
    +A:32 [in hydras.Schutte.Ordering_Functions]
    +a:32 [in hydras.Ackermann.Languages]
    +A:32 [in hydras.Ackermann.expressible]
    +a:322 [in hydras.Ackermann.fol]
    +a:324 [in hydras.Ackermann.primRec]
    +A:326 [in Goedel.PRrepresentable]
    +a:327 [in gaia_hydras.nfwfgaia]
    +a:328 [in hydras.Ackermann.primRec]
    +a:328 [in gaia_hydras.nfwfgaia]
    +a:33 [in hydras.Prelude.More_Arith]
    +a:33 [in hydras.Epsilon0.Epsilon0rpo]
    +a:33 [in gaia_hydras.GCanon]
    +a:33 [in hydras.Ackermann.cPair]
    +a:33 [in hydras.Schutte.PartialFun]
    +a:33 [in gaia_hydras.GHessenberg]
    +a:330 [in hydras.Ackermann.fol]
    +A:331 [in Goedel.PRrepresentable]
    +a:332 [in hydras.Ackermann.primRec]
    +a:334 [in gaia_hydras.nfwfgaia]
    +a:335 [in gaia_hydras.nfwfgaia]
    +A:336 [in Goedel.PRrepresentable]
    +a:336 [in hydras.Ackermann.primRec]
    +a:336 [in gaia_hydras.nfwfgaia]
    +a:337 [in gaia_hydras.nfwfgaia]
    +a:338 [in hydras.Ackermann.cPair]
    +a:338 [in gaia_hydras.nfwfgaia]
    +A:339 [in additions.Euclidean_Chains]
    +A:34 [in hydras.Ackermann.folProof]
    +a:34 [in additions.Compatibility]
    +A:34 [in additions.FirstSteps]
    +a:34 [in hydras.Prelude.Comparable]
    +a:34 [in hydras.OrdinalNotations.OmegaOmega]
    +a:34 [in hydras.Ackermann.PA]
    +a:34 [in hydras.Schutte.Well_Orders]
    +a:34 [in hydras.Schutte.Ordering_Functions]
    +A:34 [in hydras.Ackermann.expressible]
    +a:34 [in hydras.Prelude.MoreVectors]
    +a:340 [in hydras.Ackermann.primRec]
    +a:340 [in hydras.Ackermann.cPair]
    +A:341 [in hydras.Ackermann.subAll]
    +a:344 [in hydras.Epsilon0.T1]
    +A:346 [in hydras.Ackermann.subAll]
    +a:346 [in hydras.Ackermann.cPair]
    +a:349 [in hydras.Ackermann.cPair]
    +a:35 [in Goedel.PRrepresentable]
    +A:35 [in additions.AM]
    +a:35 [in additions.Compatibility]
    +a:35 [in hydras.Prelude.Comparable]
    +a:35 [in additions.Pow_variant]
    +a:35 [in additions.Pow]
    +A:35 [in hydras.Prelude.DecPreOrder]
    +a:35 [in hydras.Ackermann.folProp]
    +A:35 [in hydras.solutions_exercises.MultisetWf]
    +a:35 [in hydras.Ackermann.PA]
    +A:35 [in additions.Euclidean_Chains]
    +a:35 [in hydras.Schutte.Schutte_basics]
    +a:35 [in Goedel.codeSysPrf]
    +A:35 [in additions.Addition_Chains]
    +A:35 [in hydras.MoreAck.FolExamples]
    +a:35 [in hydras.Ackermann.expressible]
    +a:351 [in Goedel.PRrepresentable]
    +A:351 [in hydras.Ackermann.subAll]
    +a:352 [in hydras.Ackermann.cPair]
    +a:353 [in gaia_hydras.nfwfgaia]
    +A:354 [in hydras.Ackermann.checkPrf]
    +a:355 [in hydras.Epsilon0.T1]
    +a:355 [in Goedel.PRrepresentable]
    +a:355 [in hydras.Ackermann.cPair]
    +a:355 [in gaia_hydras.nfwfgaia]
    +A:357 [in hydras.Ackermann.subAll]
    +a:357 [in gaia_hydras.nfwfgaia]
    +a:359 [in Goedel.PRrepresentable]
    +a:359 [in gaia_hydras.nfwfgaia]
    +A:36 [in hydras.rpo.more_list]
    +a:36 [in hydras.OrdinalNotations.OmegaOmega]
    +A:36 [in additions.Monoid_def]
    +a:36 [in hydras.Hydra.BigBattle]
    +a:36 [in additions.Addition_Chains]
    +a:36 [in hydras.rpo.list_permut]
    +A:36 [in hydras.Schutte.Ordering_Functions]
    +a:36 [in gaia_hydras.GHessenberg]
    +a:361 [in hydras.Epsilon0.T1]
    +a:361 [in gaia_hydras.nfwfgaia]
    +a:362 [in hydras.Ackermann.cPair]
    +a:362 [in gaia_hydras.nfwfgaia]
    +a:363 [in Goedel.PRrepresentable]
    +a:364 [in hydras.Ackermann.fol]
    +a:365 [in hydras.Ackermann.folProp]
    +a:365 [in hydras.Ackermann.cPair]
    +a:368 [in hydras.Ackermann.cPair]
    +a:368 [in hydras.Ackermann.fol]
    +A:37 [in hydras.Ackermann.folProof]
    +a:37 [in hydras.OrdinalNotations.OmegaOmega]
    +a:37 [in hydras.Ackermann.cPair]
    +a:37 [in hydras.Ackermann.wellFormed]
    +a:37 [in gaia_hydras.onType]
    +a:37 [in hydras.Schutte.Well_Orders]
    +a:37 [in Goedel.codeSysPrf]
    +A:37 [in hydras.Schutte.Addition]
    +A:370 [in hydras.Ackermann.subAll]
    +a:371 [in hydras.Ackermann.cPair]
    +a:372 [in hydras.Ackermann.folProp]
    +a:375 [in hydras.Epsilon0.T1]
    +a:375 [in gaia_hydras.nfwfgaia]
    +a:376 [in hydras.Ackermann.fol]
    +a:376 [in gaia_hydras.nfwfgaia]
    +a:377 [in gaia_hydras.nfwfgaia]
    +a:38 [in additions.Compatibility]
    +a:38 [in hydras.Prelude.Comparable]
    +a:38 [in hydras.Epsilon0.Hessenberg]
    +a:38 [in hydras.Prelude.DecPreOrder]
    +a:38 [in hydras.Ackermann.NN]
    +a:38 [in hydras.Schutte.Ordering_Functions]
    +A:38 [in hydras.MoreAck.FolExamples]
    +A:38 [in hydras.Ackermann.expressible]
    +a:380 [in gaia_hydras.nfwfgaia]
    +a:381 [in hydras.Epsilon0.T1]
    +a:381 [in hydras.Ackermann.folProp]
    +a:381 [in gaia_hydras.nfwfgaia]
    +a:385 [in hydras.Epsilon0.T1]
    +a:385 [in Goedel.PRrepresentable]
    +a:388 [in hydras.Ackermann.folProp]
    +a:389 [in Goedel.PRrepresentable]
    +A:39 [in hydras.Ackermann.folProof]
    +a:39 [in Goedel.PRrepresentable]
    +a:39 [in hydras.Epsilon0.Epsilon0rpo]
    +A:39 [in additions.Pow_variant]
    +a:39 [in gaia_hydras.GPaths]
    +A:39 [in additions.Pow]
    +A:39 [in hydras.Prelude.Sort_spec]
    +A:39 [in hydras.Prelude.DecPreOrder]
    +a:39 [in hydras.Ackermann.cPair]
    +a:39 [in hydras.Ackermann.wellFormed]
    +a:39 [in hydras.Schutte.Schutte_basics]
    +a:39 [in gaia_hydras.onType]
    +a:390 [in hydras.Epsilon0.T1]
    +a:393 [in Goedel.PRrepresentable]
    +a:393 [in hydras.Ackermann.checkPrf]
    +a:393 [in gaia_hydras.nfwfgaia]
    +a:396 [in gaia_hydras.nfwfgaia]
    +a:397 [in Goedel.PRrepresentable]
    +a:397 [in hydras.Ackermann.checkPrf]
    +a:398 [in gaia_hydras.nfwfgaia]
    +a:4 [in hydras.Prelude.Restriction]
    +A:4 [in hydras.Prelude.Comparable]
    +a:4 [in Goedel.fixPoint]
    +a:4 [in hydras.Prelude.DecPreOrder]
    +a:4 [in gaia_hydras.T1Bridge]
    +A:4 [in additions.Monoid_def]
    +a:4 [in additions.Addition_Chains]
    +A:4 [in hydras.Schutte.Ordering_Functions]
    +A:40 [in additions.FirstSteps]
    +a:40 [in hydras.Prelude.Comparable]
    +a:40 [in hydras.Schutte.PartialFun]
    +a:400 [in Goedel.PRrepresentable]
    +A:401 [in hydras.Epsilon0.T1]
    +a:402 [in Goedel.PRrepresentable]
    +a:403 [in hydras.Epsilon0.T1]
    +a:405 [in Goedel.PRrepresentable]
    +A:407 [in hydras.Ackermann.checkPrf]
    +a:408 [in hydras.Ackermann.fol]
    +a:408 [in gaia_hydras.nfwfgaia]
    +a:409 [in Goedel.PRrepresentable]
    +A:41 [in additions.AM]
    +A:41 [in hydras.rpo.more_list]
    +a:41 [in hydras.solutions_exercises.MultisetWf]
    +a:41 [in gaia_hydras.T1Bridge]
    +A:41 [in additions.Monoid_def]
    +a:41 [in hydras.Ackermann.cPair]
    +a:41 [in additions.Euclidean_Chains]
    +a:41 [in hydras.Schutte.Schutte_basics]
    +a:41 [in hydras.Schutte.Well_Orders]
    +A:41 [in additions.Addition_Chains]
    +A:41 [in hydras.MoreAck.FolExamples]
    +A:41 [in hydras.Ackermann.expressible]
    +A:41 [in hydras.Prelude.MoreVectors]
    +a:411 [in gaia_hydras.nfwfgaia]
    +a:412 [in hydras.Ackermann.fol]
    +a:413 [in Goedel.PRrepresentable]
    +a:414 [in hydras.Ackermann.primRec]
    +a:415 [in hydras.Epsilon0.T1]
    +a:415 [in gaia_hydras.nfwfgaia]
    +a:416 [in hydras.Ackermann.primRec]
    +a:417 [in Goedel.PRrepresentable]
    +a:418 [in hydras.Ackermann.primRec]
    +a:42 [in hydras.Epsilon0.Epsilon0rpo]
    +a:42 [in hydras.Prelude.Comparable]
    +a:42 [in hydras.Prelude.DecPreOrder]
    +a:42 [in additions.More_on_positive]
    +a:42 [in gaia_hydras.T1Bridge]
    +A:42 [in hydras.Prelude.MoreOrders]
    +A:42 [in additions.Euclidean_Chains]
    +a:42 [in hydras.Schutte.PartialFun]
    +a:42 [in hydras.Ackermann.folLogic3]
    +a:420 [in Goedel.PRrepresentable]
    +a:420 [in hydras.Ackermann.primRec]
    +a:421 [in hydras.Epsilon0.T1]
    +a:421 [in hydras.Ackermann.fol]
    +a:422 [in hydras.Epsilon0.T1]
    +a:422 [in gaia_hydras.nfwfgaia]
    +a:424 [in Goedel.PRrepresentable]
    +a:424 [in hydras.Ackermann.primRec]
    +a:425 [in hydras.Epsilon0.T1]
    +a:428 [in hydras.Ackermann.fol]
    +a:429 [in Goedel.PRrepresentable]
    +a:429 [in hydras.Ackermann.primRec]
    +a:429 [in hydras.Gamma0.Gamma0]
    +a:43 [in hydras.Epsilon0.T1]
    +a:43 [in Goedel.PRrepresentable]
    +a:43 [in hydras.Prelude.DecPreOrder_Instances]
    +a:43 [in hydras.rpo.more_list]
    +a:43 [in hydras.Ackermann.LNN2LNT]
    +a:43 [in hydras.Prelude.Comparable]
    +a:43 [in gaia_hydras.T1Bridge]
    +a:43 [in hydras.Ackermann.PA]
    +a:43 [in hydras.Schutte.PartialFun]
    +a:43 [in hydras.rpo.dickson]
    +a:43 [in hydras.rpo.list_permut]
    +A:43 [in hydras.Schutte.Ordering_Functions]
    +a:430 [in hydras.Ackermann.fol]
    +a:431 [in hydras.Epsilon0.T1]
    +a:432 [in Goedel.PRrepresentable]
    +a:432 [in gaia_hydras.nfwfgaia]
    +a:435 [in Goedel.PRrepresentable]
    +a:436 [in hydras.Epsilon0.T1]
    +a:436 [in hydras.Ackermann.primRec]
    +a:437 [in gaia_hydras.nfwfgaia]
    +a:438 [in Goedel.PRrepresentable]
    +A:438 [in hydras.Ackermann.folProp]
    +a:44 [in Goedel.PRrepresentable]
    +A:44 [in hydras.Prelude.MoreLists]
    +a:44 [in hydras.Prelude.Comparable]
    +a:44 [in hydras.Epsilon0.Hessenberg]
    +A:44 [in hydras.Prelude.DecPreOrder]
    +a:44 [in hydras.solutions_exercises.MultisetWf]
    +a:44 [in hydras.Ackermann.PA]
    +a:44 [in hydras.Prelude.MoreOrders]
    +a:44 [in hydras.Ackermann.primRec]
    +a:441 [in gaia_hydras.nfwfgaia]
    +a:442 [in hydras.Epsilon0.T1]
    +a:443 [in gaia_hydras.nfwfgaia]
    +a:444 [in hydras.Ackermann.fol]
    +a:445 [in hydras.Ackermann.checkPrf]
    +a:445 [in hydras.Ackermann.primRec]
    +a:445 [in hydras.Gamma0.Gamma0]
    +a:445 [in gaia_hydras.nfwfgaia]
    +a:446 [in hydras.Epsilon0.T1]
    +a:447 [in gaia_hydras.nfwfgaia]
    +a:448 [in hydras.Epsilon0.T1]
    +a:449 [in hydras.Ackermann.checkPrf]
    +a:449 [in gaia_hydras.nfwfgaia]
    +a:45 [in hydras.Epsilon0.Epsilon0rpo]
    +a:45 [in gaia_hydras.T1Bridge]
    +a:45 [in hydras.Ackermann.cPair]
    +a:45 [in Goedel.codeSysPrf]
    +A:45 [in hydras.Schutte.Ordering_Functions]
    +A:45 [in hydras.Ackermann.expressible]
    +a:450 [in hydras.Ackermann.primRec]
    +a:450 [in hydras.Gamma0.Gamma0]
    +a:450 [in gaia_hydras.nfwfgaia]
    +a:451 [in hydras.Epsilon0.T1]
    +a:451 [in hydras.Gamma0.Gamma0]
    +a:452 [in hydras.Gamma0.Gamma0]
    +a:452 [in gaia_hydras.nfwfgaia]
    +a:453 [in hydras.Epsilon0.T1]
    +A:453 [in hydras.Ackermann.checkPrf]
    +a:457 [in hydras.Gamma0.Gamma0]
    +a:457 [in gaia_hydras.nfwfgaia]
    +a:458 [in hydras.Epsilon0.T1]
    +a:458 [in hydras.Ackermann.primRec]
    +a:459 [in gaia_hydras.nfwfgaia]
    +a:46 [in hydras.Epsilon0.T1]
    +A:46 [in hydras.rpo.more_list]
    +a:46 [in hydras.Prelude.Comparable]
    +A:46 [in hydras.Prelude.Sort_spec]
    +a:46 [in additions.More_on_positive]
    +A:46 [in hydras.Prelude.MoreOrders]
    +A:46 [in additions.Monoid_def]
    +a:46 [in hydras.Schutte.PartialFun]
    +A:46 [in hydras.Schutte.Schutte_basics]
    +a:46 [in hydras.Schutte.Well_Orders]
    +A:46 [in additions.Addition_Chains]
    +a:461 [in hydras.Epsilon0.T1]
    +a:462 [in gaia_hydras.nfwfgaia]
    +a:463 [in hydras.Ackermann.primRec]
    +a:464 [in hydras.Epsilon0.T1]
    +a:464 [in gaia_hydras.nfwfgaia]
    +a:466 [in gaia_hydras.nfwfgaia]
    +a:467 [in hydras.Gamma0.Gamma0]
    +a:468 [in hydras.Epsilon0.T1]
    +a:468 [in hydras.Ackermann.primRec]
    +a:468 [in gaia_hydras.nfwfgaia]
    +a:47 [in Goedel.PRrepresentable]
    +a:47 [in hydras.Prelude.DecPreOrder_Instances]
    +a:47 [in hydras.Prelude.More_Arith]
    +a:47 [in hydras.Prelude.DecPreOrder]
    +A:47 [in additions.Euclidean_Chains]
    +a:47 [in Goedel.codeSysPrf]
    +a:47 [in hydras.Schutte.Ordering_Functions]
    +a:470 [in hydras.Epsilon0.T1]
    +a:472 [in hydras.Ackermann.primRec]
    +a:473 [in gaia_hydras.nfwfgaia]
    +a:476 [in hydras.Epsilon0.T1]
    +a:478 [in hydras.Epsilon0.T1]
    +a:48 [in hydras.Epsilon0.T1]
    +a:48 [in hydras.Epsilon0.Epsilon0rpo]
    +a:48 [in hydras.Prelude.Comparable]
    +A:48 [in additions.Pow_variant]
    +A:48 [in additions.Pow]
    +a:48 [in hydras.Epsilon0.Hessenberg]
    +a:48 [in gaia_hydras.GCanon]
    +a:48 [in hydras.Ackermann.code]
    +a:48 [in hydras.Hydra.BigBattle]
    +A:48 [in hydras.OrdinalNotations.ON_Generic]
    +A:48 [in hydras.Prelude.MoreVectors]
    +a:480 [in hydras.Ackermann.primRec]
    +a:482 [in hydras.Gamma0.Gamma0]
    +a:485 [in hydras.Ackermann.primRec]
    +a:486 [in hydras.Ackermann.checkPrf]
    +a:489 [in hydras.Ackermann.primRec]
    +a:489 [in hydras.Gamma0.Gamma0]
    +A:49 [in hydras.Prelude.DecPreOrder]
    +a:49 [in hydras.solutions_exercises.MultisetWf]
    +a:49 [in gaia_hydras.T1Bridge]
    +a:49 [in hydras.Ackermann.cPair]
    +a:49 [in hydras.Schutte.Well_Orders]
    +a:49 [in hydras.Ackermann.folLogic3]
    +A:49 [in hydras.Schutte.Ordering_Functions]
    +a:490 [in hydras.Ackermann.checkPrf]
    +a:490 [in gaia_hydras.nfwfgaia]
    +a:492 [in gaia_hydras.nfwfgaia]
    +a:494 [in hydras.Ackermann.primRec]
    +a:494 [in gaia_hydras.nfwfgaia]
    +a:496 [in hydras.Epsilon0.T1]
    +a:499 [in hydras.Ackermann.primRec]
    +a:5 [in hydras.Ackermann.folProof]
    +a:5 [in gaia_hydras.GPaths]
    +a:5 [in hydras.Schutte.Lub]
    +a:5 [in hydras.Prelude.Sort_spec]
    +a:5 [in gaia_hydras.GCanon]
    +a:5 [in hydras.Schutte.MoreEpsilonIota]
    +a:5 [in hydras.Ackermann.prLogic]
    +a:5 [in hydras.Schutte.Schutte_basics]
    +a:5 [in hydras.Ackermann.NNtheory]
    +a:5 [in gaia_hydras.GLarge_Sets]
    +a:5 [in hydras.Ackermann.ListExt]
    +a:5 [in hydras.Ackermann.folLogic3]
    +a:5 [in hydras.Gamma0.Gamma0]
    +a:5 [in hydras.MoreAck.FolExamples]
    +a:50 [in hydras.Epsilon0.T1]
    +A:50 [in hydras.rpo.more_list]
    +A:50 [in hydras.Ackermann.code]
    +A:50 [in additions.Euclidean_Chains]
    +a:50 [in hydras.rpo.dickson]
    +a:50 [in hydras.MoreAck.PrimRecExamples]
    +A:50 [in hydras.Ackermann.expressible]
    +a:500 [in hydras.Epsilon0.T1]
    +a:502 [in hydras.Epsilon0.T1]
    +a:502 [in hydras.Ackermann.checkPrf]
    +a:503 [in hydras.Ackermann.primRec]
    +a:505 [in hydras.Ackermann.primRec]
    +a:506 [in hydras.Ackermann.checkPrf]
    +a:507 [in hydras.Ackermann.primRec]
    +a:509 [in hydras.Epsilon0.T1]
    +a:509 [in hydras.Ackermann.primRec]
    +a:51 [in hydras.Prelude.DecPreOrder_Instances]
    +a:51 [in hydras.Prelude.More_Arith]
    +a:51 [in hydras.Prelude.Comparable]
    +a:51 [in gaia_hydras.GPaths]
    +A:51 [in additions.Monoid_def]
    +a:51 [in hydras.Prelude.MoreVectors]
    +a:510 [in hydras.Ackermann.checkPrf]
    +a:511 [in hydras.Ackermann.primRec]
    +a:513 [in hydras.Epsilon0.T1]
    +a:513 [in hydras.Ackermann.primRec]
    +a:514 [in hydras.Epsilon0.T1]
    +a:514 [in hydras.Ackermann.checkPrf]
    +a:515 [in hydras.Epsilon0.T1]
    +a:515 [in hydras.Ackermann.primRec]
    +a:517 [in hydras.Ackermann.primRec]
    +a:518 [in hydras.Epsilon0.T1]
    +a:518 [in hydras.Gamma0.Gamma0]
    +a:519 [in hydras.Ackermann.primRec]
    +A:52 [in additions.AM]
    +a:52 [in hydras.Epsilon0.Epsilon0rpo]
    +a:52 [in hydras.Prelude.DecPreOrder]
    +a:52 [in hydras.MoreAck.AckNotPR]
    +a:52 [in hydras.Hydra.BigBattle]
    +a:52 [in hydras.Schutte.PartialFun]
    +a:52 [in hydras.Schutte.Schutte_basics]
    +a:520 [in hydras.Epsilon0.T1]
    +a:520 [in hydras.Gamma0.Gamma0]
    +a:521 [in hydras.Epsilon0.T1]
    +a:521 [in hydras.Ackermann.primRec]
    +a:523 [in hydras.Ackermann.primRec]
    +a:524 [in hydras.Gamma0.Gamma0]
    +a:525 [in hydras.Ackermann.primRec]
    +a:526 [in hydras.Epsilon0.T1]
    +a:527 [in hydras.Ackermann.primRec]
    +a:527 [in hydras.Gamma0.Gamma0]
    +a:528 [in hydras.Epsilon0.T1]
    +a:529 [in hydras.Ackermann.primRec]
    +a:53 [in hydras.Ackermann.cPair]
    +A:53 [in additions.Euclidean_Chains]
    +a:53 [in hydras.Schutte.Schutte_basics]
    +A:53 [in additions.Addition_Chains]
    +A:53 [in hydras.Prelude.MoreVectors]
    +a:530 [in hydras.Gamma0.Gamma0]
    +a:531 [in hydras.Epsilon0.T1]
    +a:532 [in hydras.Ackermann.primRec]
    +a:533 [in hydras.Gamma0.Gamma0]
    +a:534 [in hydras.Ackermann.primRec]
    +a:536 [in hydras.Ackermann.primRec]
    +a:538 [in hydras.Epsilon0.T1]
    +a:54 [in hydras.Ackermann.LNN2LNT]
    +a:54 [in hydras.Prelude.Comparable]
    +a:54 [in hydras.Prelude.Sort_spec]
    +A:54 [in hydras.Prelude.DecPreOrder]
    +a:54 [in hydras.Ackermann.code]
    +a:54 [in hydras.Schutte.Schutte_basics]
    +A:54 [in hydras.Schutte.Ordering_Functions]
    +a:548 [in hydras.Epsilon0.T1]
    +a:548 [in hydras.Ackermann.primRec]
    +a:55 [in hydras.Prelude.DecPreOrder_Instances]
    +a:55 [in hydras.rpo.more_list]
    +a:55 [in hydras.Schutte.Schutte_basics]
    +a:55 [in additions.Addition_Chains]
    +A:55 [in hydras.Ackermann.expressible]
    +a:550 [in hydras.Ackermann.primRec]
    +a:552 [in hydras.Ackermann.primRec]
    +a:553 [in hydras.Epsilon0.T1]
    +a:554 [in hydras.Ackermann.primRec]
    +a:555 [in hydras.Epsilon0.T1]
    +a:557 [in gaia_hydras.nfwfgaia]
    +A:56 [in hydras.rpo.more_list]
    +a:56 [in hydras.Ackermann.LNN2LNT]
    +a:56 [in gaia_hydras.GCanon]
    +a:56 [in hydras.Ackermann.code]
    +a:56 [in gaia_hydras.T1Bridge]
    +A:56 [in additions.Monoid_def]
    +a:56 [in hydras.Schutte.Schutte_basics]
    +a:56 [in hydras.rpo.dickson]
    +a:56 [in hydras.Schutte.Ordering_Functions]
    +a:562 [in hydras.Epsilon0.T1]
    +a:562 [in gaia_hydras.nfwfgaia]
    +a:563 [in hydras.Gamma0.Gamma0]
    +a:564 [in hydras.Ackermann.checkPrf]
    +a:564 [in gaia_hydras.nfwfgaia]
    +a:565 [in hydras.Gamma0.Gamma0]
    +a:566 [in hydras.Ackermann.checkPrf]
    +a:567 [in hydras.Ackermann.checkPrf]
    +a:568 [in hydras.Ackermann.checkPrf]
    +a:569 [in hydras.Gamma0.Gamma0]
    +a:569 [in gaia_hydras.nfwfgaia]
    +a:57 [in hydras.Prelude.Comparable]
    +a:57 [in gaia_hydras.GPaths]
    +a:57 [in hydras.Prelude.DecPreOrder]
    +A:57 [in additions.Monoid_def]
    +a:57 [in hydras.Ackermann.primRec]
    +a:57 [in hydras.Ackermann.cPair]
    +A:57 [in additions.Addition_Chains]
    +a:57 [in hydras.Prelude.MoreVectors]
    +a:571 [in hydras.Epsilon0.T1]
    +a:571 [in hydras.Gamma0.Gamma0]
    +a:575 [in hydras.Epsilon0.T1]
    +a:579 [in hydras.Epsilon0.T1]
    +a:579 [in hydras.Gamma0.Gamma0]
    +A:58 [in Goedel.PRrepresentable]
    +a:58 [in hydras.Ackermann.LNN2LNT]
    +a:58 [in gaia_hydras.GPaths]
    +a:58 [in hydras.Ackermann.code]
    +a:58 [in hydras.Ackermann.cPair]
    +A:58 [in Goedel.codeSysPrf]
    +a:58 [in hydras.rpo.dickson]
    +A:58 [in hydras.Ackermann.expressible]
    +a:583 [in hydras.Ackermann.primRec]
    +a:585 [in hydras.Ackermann.primRec]
    +a:585 [in hydras.Gamma0.Gamma0]
    +a:587 [in hydras.Ackermann.primRec]
    +a:587 [in hydras.Gamma0.Gamma0]
    +a:589 [in hydras.Ackermann.primRec]
    +a:59 [in hydras.Prelude.DecPreOrder_Instances]
    +A:59 [in additions.AM]
    +a:59 [in hydras.Prelude.Comparable]
    +A:59 [in hydras.Prelude.DecPreOrder]
    +a:59 [in hydras.solutions_exercises.MultisetWf]
    +a:59 [in hydras.Ackermann.code]
    +A:59 [in hydras.Schutte.Ordering_Functions]
    +a:59 [in hydras.Ackermann.expressible]
    +a:591 [in hydras.Ackermann.primRec]
    +a:592 [in hydras.Gamma0.Gamma0]
    +a:593 [in hydras.Ackermann.primRec]
    +a:595 [in hydras.Ackermann.primRec]
    +a:595 [in gaia_hydras.nfwfgaia]
    +a:596 [in hydras.Gamma0.Gamma0]
    +a:597 [in hydras.Epsilon0.T1]
    +a:6 [in hydras.OrdinalNotations.ON_O]
    +A:6 [in hydras.Ackermann.model]
    +A:6 [in hydras.Schutte.MoreEpsilonIota]
    +a:6 [in hydras.solutions_exercises.MultisetWf]
    +a:6 [in hydras.solutions_exercises.MorePRExamples]
    +A:6 [in additions.Monoid_def]
    +a:6 [in hydras.Ackermann.cPair]
    +A:6 [in gaia_hydras.GLarge_Sets]
    +a:6 [in hydras.Schutte.Well_Orders]
    +A:6 [in hydras.Schutte.Ordering_Functions]
    +a:6 [in hydras.MoreAck.PrimRecExamples]
    +a:60 [in hydras.Schutte.Correctness_E0]
    +a:60 [in hydras.rpo.more_list]
    +A:60 [in hydras.Prelude.Sort_spec]
    +a:60 [in hydras.OrdinalNotations.OmegaOmega]
    +a:60 [in hydras.Ackermann.cPair]
    +a:60 [in hydras.Hydra.BigBattle]
    +a:60 [in hydras.rpo.dickson]
    +a:601 [in hydras.Epsilon0.T1]
    +a:604 [in hydras.Gamma0.Gamma0]
    +a:606 [in hydras.Gamma0.Gamma0]
    +a:61 [in hydras.Ackermann.LNN2LNT]
    +a:61 [in hydras.Prelude.Comparable]
    +a:61 [in hydras.OrdinalNotations.OmegaOmega]
    +a:61 [in hydras.Ackermann.code]
    +a:61 [in gaia_hydras.T1Bridge]
    +A:61 [in additions.Monoid_def]
    +a:61 [in hydras.Ackermann.primRec]
    +a:61 [in hydras.Ackermann.cPair]
    +A:61 [in additions.Euclidean_Chains]
    +a:61 [in hydras.Schutte.Ordering_Functions]
    +A:61 [in hydras.Prelude.MoreVectors]
    +a:610 [in gaia_hydras.nfwfgaia]
    +a:614 [in gaia_hydras.nfwfgaia]
    +a:618 [in hydras.Epsilon0.T1]
    +A:62 [in Goedel.PRrepresentable]
    +a:62 [in hydras.Prelude.DecPreOrder]
    +a:62 [in hydras.solutions_exercises.MultisetWf]
    +a:62 [in hydras.Ackermann.cPair]
    +a:62 [in hydras.Schutte.Schutte_basics]
    +a:62 [in hydras.OrdinalNotations.ON_Generic]
    +a:62 [in additions.Addition_Chains]
    +A:62 [in hydras.Ackermann.expressible]
    +a:620 [in hydras.Gamma0.Gamma0]
    +a:626 [in hydras.Epsilon0.T1]
    +a:626 [in gaia_hydras.nfwfgaia]
    +a:629 [in gaia_hydras.nfwfgaia]
    +A:63 [in hydras.rpo.more_list]
    +a:63 [in hydras.Prelude.Comparable]
    +a:63 [in hydras.Ackermann.code]
    +a:63 [in hydras.Hydra.BigBattle]
    +A:63 [in additions.Addition_Chains]
    +a:633 [in hydras.Gamma0.Gamma0]
    +a:637 [in hydras.Gamma0.Gamma0]
    +a:64 [in hydras.Epsilon0.T1]
    +a:64 [in hydras.Ackermann.subAll]
    +a:64 [in gaia_hydras.GPaths]
    +A:64 [in hydras.Prelude.DecPreOrder]
    +a:64 [in hydras.OrdinalNotations.OmegaOmega]
    +a:64 [in hydras.Ackermann.code]
    +a:64 [in hydras.Schutte.Schutte_basics]
    +a:64 [in hydras.rpo.list_permut]
    +A:64 [in hydras.Schutte.Ordering_Functions]
    +a:64 [in hydras.MoreAck.PrimRecExamples]
    +A:65 [in Goedel.PRrepresentable]
    +a:65 [in hydras.Prelude.Comparable]
    +a:65 [in hydras.Epsilon0.Hessenberg]
    +a:65 [in hydras.Ackermann.primRec]
    +A:65 [in hydras.Schutte.PartialFun]
    +A:653 [in hydras.Ackermann.checkPrf]
    +a:654 [in gaia_hydras.nfwfgaia]
    +a:655 [in hydras.Ackermann.checkPrf]
    +a:656 [in gaia_hydras.nfwfgaia]
    +a:657 [in hydras.Ackermann.checkPrf]
    +a:658 [in gaia_hydras.nfwfgaia]
    +a:659 [in hydras.Ackermann.checkPrf]
    +a:66 [in hydras.Ackermann.code]
    +a:66 [in gaia_hydras.T1Bridge]
    +a:66 [in hydras.Schutte.Schutte_basics]
    +a:66 [in hydras.MoreAck.PrimRecExamples]
    +A:66 [in hydras.Ackermann.expressible]
    +a:661 [in hydras.Ackermann.checkPrf]
    +a:663 [in hydras.Ackermann.checkPrf]
    +a:665 [in hydras.Ackermann.checkPrf]
    +a:667 [in hydras.Ackermann.checkPrf]
    +a:669 [in hydras.Ackermann.checkPrf]
    +a:669 [in hydras.Gamma0.Gamma0]
    +a:67 [in hydras.Ackermann.subAll]
    +a:67 [in hydras.Prelude.Comparable]
    +a:67 [in hydras.Prelude.DecPreOrder]
    +a:67 [in hydras.Hydra.BigBattle]
    +A:67 [in hydras.OrdinalNotations.ON_Generic]
    +A:67 [in hydras.Schutte.Ordering_Functions]
    +a:67 [in hydras.rpo.rpo]
    +A:67 [in hydras.Prelude.MoreVectors]
    +a:670 [in gaia_hydras.nfwfgaia]
    +a:671 [in hydras.Ackermann.checkPrf]
    +a:671 [in hydras.Gamma0.Gamma0]
    +a:673 [in hydras.Ackermann.checkPrf]
    +a:675 [in hydras.Ackermann.checkPrf]
    +a:675 [in hydras.Ackermann.primRec]
    +a:677 [in hydras.Ackermann.checkPrf]
    +a:679 [in hydras.Ackermann.primRec]
    +A:68 [in hydras.Prelude.Iterates]
    +A:68 [in hydras.rpo.more_list]
    +a:68 [in gaia_hydras.GPaths]
    +A:68 [in hydras.Prelude.Sort_spec]
    +a:68 [in gaia_hydras.GCanon]
    +A:68 [in hydras.solutions_exercises.MultisetWf]
    +a:68 [in hydras.Ackermann.code]
    +A:68 [in additions.Euclidean_Chains]
    +a:689 [in hydras.Gamma0.Gamma0]
    +A:69 [in Goedel.PRrepresentable]
    +a:69 [in hydras.Prelude.Comparable]
    +a:69 [in hydras.OrdinalNotations.OmegaOmega]
    +a:69 [in hydras.Schutte.Schutte_basics]
    +a:69 [in hydras.Ackermann.folLogic3]
    +a:69 [in hydras.rpo.dickson]
    +a:69 [in hydras.Schutte.Ordering_Functions]
    +a:69 [in hydras.Schutte.Addition]
    +A:69 [in hydras.Prelude.MoreVectors]
    +a:691 [in hydras.Ackermann.primRec]
    +a:694 [in hydras.Ackermann.primRec]
    +a:695 [in gaia_hydras.nfwfgaia]
    +a:697 [in gaia_hydras.nfwfgaia]
    +a:7 [in hydras.Gamma0.T2]
    +A:7 [in hydras.Prelude.Iterates]
    +a:7 [in hydras.Ackermann.folLogic2]
    +a:7 [in Goedel.fixPoint]
    +A:7 [in hydras.Prelude.DecPreOrder]
    +a:7 [in hydras.Schutte.MoreEpsilonIota]
    +a:7 [in gaia_hydras.T1Bridge]
    +a:7 [in hydras.Ackermann.prLogic]
    +a:7 [in hydras.Ackermann.NNtheory]
    +a:7 [in gaia_hydras.GLarge_Sets]
    +A:7 [in hydras.OrdinalNotations.ON_Generic]
    +a:7 [in gaia_hydras.T2Bridge]
    +a:7 [in hydras.MoreAck.PrimRecExamples]
    +A:7 [in hydras.Prelude.MoreVectors]
    +A:70 [in hydras.Prelude.DecPreOrder]
    +a:70 [in gaia_hydras.GCanon]
    +a:70 [in hydras.Ackermann.code]
    +a:70 [in hydras.Ackermann.primRec]
    +a:707 [in hydras.Epsilon0.T1]
    +a:707 [in gaia_hydras.nfwfgaia]
    +a:71 [in hydras.Epsilon0.T1]
    +A:71 [in hydras.rpo.more_list]
    +a:71 [in hydras.Prelude.Comparable]
    +a:71 [in gaia_hydras.GPaths]
    +a:71 [in hydras.Hydra.BigBattle]
    +a:71 [in hydras.Ackermann.folLogic3]
    +A:71 [in additions.Addition_Chains]
    +A:71 [in hydras.Schutte.Ordering_Functions]
    +A:71 [in Goedel.rosser]
    +A:71 [in hydras.Ackermann.expressible]
    +a:71 [in hydras.Prelude.MoreVectors]
    +a:717 [in gaia_hydras.nfwfgaia]
    +a:718 [in gaia_hydras.nfwfgaia]
    +a:72 [in hydras.Ackermann.subAll]
    +A:72 [in additions.AM]
    +A:72 [in hydras.Prelude.Iterates]
    +A:72 [in hydras.rpo.more_list]
    +a:72 [in hydras.Prelude.Comparable]
    +a:72 [in hydras.Epsilon0.Hessenberg]
    +a:72 [in hydras.Ackermann.code]
    +a:72 [in gaia_hydras.T1Bridge]
    +A:72 [in hydras.Schutte.PartialFun]
    +a:72 [in hydras.Schutte.Schutte_basics]
    +a:720 [in gaia_hydras.nfwfgaia]
    +a:722 [in hydras.Epsilon0.T1]
    +a:723 [in gaia_hydras.nfwfgaia]
    +a:727 [in gaia_hydras.nfwfgaia]
    +a:729 [in gaia_hydras.nfwfgaia]
    +A:73 [in Goedel.PRrepresentable]
    +a:73 [in hydras.Epsilon0.Epsilon0rpo]
    +a:73 [in hydras.Prelude.DecPreOrder]
    +a:73 [in hydras.OrdinalNotations.ON_Generic]
    +A:73 [in hydras.Prelude.MoreVectors]
    +a:731 [in gaia_hydras.nfwfgaia]
    +a:732 [in hydras.Epsilon0.T1]
    +a:733 [in gaia_hydras.nfwfgaia]
    +a:735 [in hydras.Epsilon0.T1]
    +a:737 [in gaia_hydras.nfwfgaia]
    +a:739 [in gaia_hydras.nfwfgaia]
    +a:74 [in hydras.Prelude.Comparable]
    +A:74 [in hydras.Prelude.Sort_spec]
    +a:74 [in hydras.Ackermann.code]
    +A:74 [in additions.fib]
    +a:747 [in gaia_hydras.nfwfgaia]
    +a:749 [in gaia_hydras.nfwfgaia]
    +a:75 [in hydras.Gamma0.T2]
    +a:75 [in gaia_hydras.GPaths]
    +a:75 [in additions.Euclidean_Chains]
    +a:75 [in hydras.Schutte.Schutte_basics]
    +a:752 [in gaia_hydras.nfwfgaia]
    +a:756 [in hydras.Ackermann.checkPrf]
    +a:756 [in gaia_hydras.nfwfgaia]
    +a:758 [in gaia_hydras.nfwfgaia]
    +A:76 [in hydras.Prelude.Iterates]
    +a:76 [in hydras.Prelude.Comparable]
    +a:76 [in additions.Pow_variant]
    +A:76 [in hydras.Prelude.DecPreOrder]
    +a:76 [in hydras.Ackermann.fol]
    +A:76 [in hydras.Schutte.Ordering_Functions]
    +a:760 [in hydras.Ackermann.checkPrf]
    +a:760 [in gaia_hydras.nfwfgaia]
    +a:77 [in hydras.Epsilon0.T1]
    +a:77 [in hydras.Ackermann.subAll]
    +a:77 [in hydras.Epsilon0.Epsilon0rpo]
    +a:77 [in hydras.Epsilon0.Hessenberg]
    +A:77 [in Goedel.codeSysPrf]
    +a:77 [in hydras.Schutte.Ordering_Functions]
    +a:776 [in gaia_hydras.nfwfgaia]
    +a:779 [in gaia_hydras.nfwfgaia]
    +a:78 [in hydras.Gamma0.T2]
    +A:78 [in hydras.rpo.more_list]
    +a:78 [in hydras.Prelude.Comparable]
    +a:78 [in gaia_hydras.T1Bridge]
    +a:78 [in hydras.Schutte.Schutte_basics]
    +a:78 [in hydras.OrdinalNotations.ON_Generic]
    +A:78 [in hydras.Prelude.MoreVectors]
    +a:783 [in gaia_hydras.nfwfgaia]
    +a:786 [in hydras.Ackermann.checkPrf]
    +a:786 [in gaia_hydras.nfwfgaia]
    +a:788 [in hydras.Ackermann.checkPrf]
    +a:79 [in hydras.Ackermann.subAll]
    +a:79 [in additions.Pow]
    +a:79 [in hydras.Prelude.DecPreOrder]
    +a:79 [in hydras.Schutte.Schutte_basics]
    +a:79 [in hydras.Ackermann.folLogic3]
    +a:79 [in hydras.rpo.list_permut]
    +A:79 [in hydras.Schutte.Ordering_Functions]
    +a:792 [in gaia_hydras.nfwfgaia]
    +a:793 [in hydras.Ackermann.checkPrf]
    +a:799 [in hydras.Ackermann.checkPrf]
    +A:8 [in hydras.Prelude.DecPreOrder_Instances]
    +a:8 [in hydras.Ackermann.extEqualNat]
    +A:8 [in hydras.rpo.more_list]
    +a:8 [in hydras.OrdinalNotations.ON_O]
    +a:8 [in gaia_hydras.GCanon]
    +a:8 [in hydras.OrdinalNotations.OmegaOmega]
    +a:8 [in hydras.Ackermann.prLogic]
    +A:8 [in additions.Euclidean_Chains]
    +a:8 [in hydras.Schutte.PartialFun]
    +A:8 [in gaia_hydras.GLarge_Sets]
    +a:8 [in hydras.rpo.dickson]
    +a:8 [in hydras.MoreAck.FolExamples]
    +A:8 [in hydras.Ackermann.expressible]
    +A:80 [in hydras.Prelude.Iterates]
    +a:80 [in hydras.Prelude.Comparable]
    +a:80 [in gaia_hydras.GPaths]
    +a:80 [in hydras.Ackermann.cPair]
    +A:80 [in hydras.Prelude.MoreVectors]
    +a:807 [in hydras.Ackermann.checkPrf]
    +a:81 [in hydras.Ackermann.subAll]
    +A:81 [in hydras.Prelude.DecPreOrder]
    +a:81 [in gaia_hydras.T1Bridge]
    +a:81 [in hydras.Ackermann.cPair]
    +a:81 [in hydras.Ackermann.fol]
    +a:81 [in hydras.Schutte.Schutte_basics]
    +A:81 [in additions.fib]
    +A:81 [in hydras.OrdinalNotations.ON_Generic]
    +a:81 [in hydras.Ackermann.folLogic3]
    +A:81 [in hydras.Schutte.Ordering_Functions]
    +a:811 [in hydras.Ackermann.checkPrf]
    +a:819 [in hydras.Ackermann.codeSubFormula]
    +a:82 [in hydras.Epsilon0.T1]
    +A:82 [in additions.AM]
    +a:82 [in hydras.Prelude.Comparable]
    +A:82 [in hydras.Schutte.PartialFun]
    +A:82 [in additions.Addition_Chains]
    +a:822 [in hydras.Ackermann.codeSubFormula]
    +a:826 [in hydras.Ackermann.codeSubFormula]
    +a:83 [in hydras.Ackermann.cPair]
    +a:83 [in hydras.Schutte.Schutte_basics]
    +a:830 [in gaia_hydras.nfwfgaia]
    +a:84 [in hydras.Prelude.Comparable]
    +A:84 [in hydras.Prelude.DecPreOrder]
    +a:84 [in gaia_hydras.T1Bridge]
    +A:84 [in Goedel.codeSysPrf]
    +A:84 [in hydras.Prelude.MoreVectors]
    +a:842 [in hydras.Ackermann.codeSubFormula]
    +a:842 [in gaia_hydras.nfwfgaia]
    +a:845 [in hydras.Ackermann.codeSubFormula]
    +a:848 [in hydras.Ackermann.codeSubFormula]
    +a:849 [in hydras.Ackermann.checkPrf]
    +A:85 [in Goedel.PRrepresentable]
    +a:85 [in hydras.Ackermann.cPair]
    +a:85 [in hydras.Ackermann.folLogic3]
    +a:851 [in hydras.Ackermann.checkPrf]
    +a:852 [in hydras.Ackermann.codeSubFormula]
    +a:852 [in gaia_hydras.nfwfgaia]
    +a:853 [in hydras.Ackermann.checkPrf]
    +a:854 [in hydras.Ackermann.codeSubFormula]
    +a:855 [in hydras.Ackermann.checkPrf]
    +a:856 [in hydras.Ackermann.codeSubFormula]
    +a:86 [in hydras.Hydra.O2H]
    +a:86 [in hydras.Prelude.Comparable]
    +a:86 [in hydras.OrdinalNotations.OmegaOmega]
    +a:86 [in gaia_hydras.T1Bridge]
    +a:86 [in gaia_hydras.nfwfgaia]
    +a:860 [in gaia_hydras.nfwfgaia]
    +a:865 [in gaia_hydras.nfwfgaia]
    +a:87 [in hydras.Epsilon0.T1]
    +A:87 [in hydras.Prelude.DecPreOrder]
    +a:87 [in hydras.Ackermann.cPair]
    +a:87 [in additions.Addition_Chains]
    +A:88 [in hydras.rpo.more_list]
    +a:88 [in hydras.Prelude.Comparable]
    +a:88 [in hydras.Epsilon0.Hessenberg]
    +a:88 [in gaia_hydras.T1Bridge]
    +A:88 [in additions.Euclidean_Chains]
    +A:88 [in hydras.Schutte.PartialFun]
    +a:88 [in hydras.Schutte.Schutte_basics]
    +A:88 [in Goedel.codeSysPrf]
    +A:88 [in additions.Addition_Chains]
    +a:88 [in hydras.MoreAck.PrimRecExamples]
    +A:88 [in hydras.Prelude.MoreVectors]
    +a:885 [in gaia_hydras.nfwfgaia]
    +A:89 [in Goedel.PRrepresentable]
    +a:89 [in hydras.Prelude.Comparable]
    +a:89 [in gaia_hydras.T1Bridge]
    +a:89 [in hydras.Ackermann.cPair]
    +a:894 [in gaia_hydras.nfwfgaia]
    +a:898 [in gaia_hydras.nfwfgaia]
    +a:9 [in gaia_hydras.T1Choice]
    +a:9 [in hydras.Prelude.Restriction]
    +a:9 [in additions.FirstSteps]
    +a:9 [in hydras.Prelude.Comparable]
    +a:9 [in gaia_hydras.GPaths]
    +a:9 [in hydras.Ackermann.PAtheory]
    +a:9 [in hydras.solutions_exercises.MultisetWf]
    +a:9 [in hydras.OrdinalNotations.OmegaOmega]
    +a:9 [in gaia_hydras.T1Bridge]
    +a:9 [in hydras.Ackermann.prLogic]
    +a:9 [in hydras.Ackermann.NNtheory]
    +a:9 [in gaia_hydras.GLarge_Sets]
    +a:9 [in hydras.Prelude.MoreDecidable]
    +a:9 [in gaia_hydras.T2Bridge]
    +a:9 [in hydras.Gamma0.Gamma0]
    +A:9 [in hydras.Prelude.MoreVectors]
    +a:90 [in hydras.Gamma0.T2]
    +a:90 [in hydras.Epsilon0.Hessenberg]
    +a:90 [in gaia_hydras.T1Bridge]
    +a:90 [in hydras.Schutte.Schutte_basics]
    +a:90 [in additions.fib]
    +a:902 [in gaia_hydras.nfwfgaia]
    +a:91 [in hydras.Prelude.Comparable]
    +a:91 [in hydras.Prelude.DecPreOrder]
    +a:91 [in gaia_hydras.T1Bridge]
    +a:91 [in hydras.Ackermann.cPair]
    +a:91 [in hydras.OrdinalNotations.ON_Generic]
    +a:91 [in hydras.Schutte.Ordering_Functions]
    +a:910 [in gaia_hydras.nfwfgaia]
    +A:92 [in Goedel.PRrepresentable]
    +a:92 [in hydras.Epsilon0.Hessenberg]
    +a:92 [in gaia_hydras.T1Bridge]
    +a:92 [in hydras.Schutte.Schutte_basics]
    +a:92 [in hydras.Prelude.MoreVectors]
    +a:923 [in gaia_hydras.nfwfgaia]
    +a:925 [in gaia_hydras.nfwfgaia]
    +a:927 [in gaia_hydras.nfwfgaia]
    +a:929 [in gaia_hydras.nfwfgaia]
    +A:93 [in additions.AM]
    +a:93 [in hydras.Prelude.Comparable]
    +A:93 [in hydras.Prelude.DecPreOrder]
    +a:93 [in hydras.Prelude.Merge_Sort]
    +a:93 [in gaia_hydras.T1Bridge]
    +a:93 [in hydras.Ackermann.cPair]
    +A:93 [in hydras.OrdinalNotations.ON_Generic]
    +A:93 [in Goedel.codeSysPrf]
    +A:93 [in additions.Addition_Chains]
    +a:931 [in gaia_hydras.nfwfgaia]
    +a:938 [in gaia_hydras.nfwfgaia]
    +a:94 [in hydras.Epsilon0.Hessenberg]
    +a:94 [in hydras.Ackermann.folLogic3]
    +a:944 [in gaia_hydras.nfwfgaia]
    +a:95 [in gaia_hydras.T1Bridge]
    +a:95 [in hydras.Ackermann.cPair]
    +a:955 [in gaia_hydras.nfwfgaia]
    +a:956 [in gaia_hydras.nfwfgaia]
    +a:958 [in gaia_hydras.nfwfgaia]
    +A:96 [in Goedel.PRrepresentable]
    +A:96 [in hydras.rpo.more_list]
    +a:96 [in hydras.Prelude.DecPreOrder]
    +a:960 [in gaia_hydras.nfwfgaia]
    +a:962 [in gaia_hydras.nfwfgaia]
    +a:964 [in gaia_hydras.nfwfgaia]
    +a:97 [in hydras.Prelude.Comparable]
    +a:97 [in hydras.Epsilon0.Hessenberg]
    +a:97 [in gaia_hydras.T1Bridge]
    +A:98 [in additions.AM]
    +A:98 [in hydras.Hydra.Hydra_Lemmas]
    +a:988 [in gaia_hydras.nfwfgaia]
    +A:99 [in additions.Euclidean_Chains]
    +a:99 [in hydras.Schutte.Schutte_basics]
    +a:994 [in gaia_hydras.nfwfgaia]
    +

    B

    +beta':101 [in hydras.Epsilon0.T1]
    +beta':105 [in hydras.Epsilon0.T1]
    +beta':119 [in hydras.Schutte.Ordering_Functions]
    +beta':138 [in hydras.Gamma0.Gamma0]
    +beta':195 [in hydras.Epsilon0.T1]
    +beta':314 [in hydras.Epsilon0.Paths]
    +beta':326 [in hydras.Epsilon0.T1]
    +beta':331 [in hydras.Epsilon0.T1]
    +beta':335 [in hydras.Epsilon0.T1]
    +beta':463 [in hydras.Gamma0.Gamma0]
    +beta':506 [in hydras.Gamma0.Gamma0]
    +beta':510 [in hydras.Gamma0.Gamma0]
    +beta':680 [in hydras.Epsilon0.T1]
    +beta':96 [in hydras.Epsilon0.T1]
    +beta0:138 [in hydras.Schutte.Ordering_Functions]
    +beta0:139 [in hydras.Schutte.Ordering_Functions]
    +beta0:678 [in hydras.Gamma0.Gamma0]
    +beta0:681 [in hydras.Gamma0.Gamma0]
    +beta0:686 [in hydras.Gamma0.Gamma0]
    +beta1:134 [in hydras.Schutte.Ordering_Functions]
    +beta1:30 [in hydras.Gamma0.T2]
    +beta1:37 [in hydras.Gamma0.T2]
    +beta1:45 [in hydras.Gamma0.T2]
    +beta1:495 [in hydras.Gamma0.Gamma0]
    +beta1:501 [in hydras.Gamma0.Gamma0]
    +beta1:53 [in hydras.Gamma0.T2]
    +beta1:541 [in hydras.Gamma0.Gamma0]
    +beta1:59 [in hydras.Gamma0.T2]
    +beta1:649 [in hydras.Gamma0.Gamma0]
    +beta1:65 [in hydras.Gamma0.T2]
    +beta1:652 [in hydras.Gamma0.Gamma0]
    +beta1:655 [in hydras.Gamma0.Gamma0]
    +beta1:657 [in hydras.Gamma0.Gamma0]
    +beta1:666 [in hydras.Gamma0.Gamma0]
    +beta1:675 [in hydras.Gamma0.Gamma0]
    +beta2:135 [in hydras.Schutte.Ordering_Functions]
    +beta2:31 [in hydras.Gamma0.T2]
    +beta2:38 [in hydras.Gamma0.T2]
    +beta2:46 [in hydras.Gamma0.T2]
    +beta2:496 [in hydras.Gamma0.Gamma0]
    +beta2:502 [in hydras.Gamma0.Gamma0]
    +beta2:542 [in hydras.Gamma0.Gamma0]
    +beta2:650 [in hydras.Gamma0.Gamma0]
    +beta2:653 [in hydras.Gamma0.Gamma0]
    +beta2:656 [in hydras.Gamma0.Gamma0]
    +beta2:658 [in hydras.Gamma0.Gamma0]
    +beta2:668 [in hydras.Gamma0.Gamma0]
    +beta2:677 [in hydras.Gamma0.Gamma0]
    +beta:10 [in hydras.OrdinalNotations.ON_Omega2]
    +beta:10 [in hydras.OrdinalNotations.ON_O]
    +beta:10 [in hydras.Schutte.CNF]
    +beta:10 [in hydras.OrdinalNotations.ON_mult]
    +beta:10 [in hydras.OrdinalNotations.ON_plus]
    +beta:10 [in hydras.Epsilon0.Canon]
    +beta:10 [in hydras.Epsilon0.E0]
    +beta:10 [in hydras.Epsilon0.Paths]
    +beta:10 [in gaia_hydras.GHessenberg]
    +beta:100 [in hydras.Epsilon0.T1]
    +beta:100 [in hydras.Gamma0.T2]
    +beta:100 [in hydras.Prelude.Comparable]
    +beta:100 [in hydras.Epsilon0.Canon]
    +beta:101 [in hydras.OrdinalNotations.OmegaOmega]
    +beta:101 [in hydras.Epsilon0.E0]
    +beta:102 [in hydras.Prelude.Comparable]
    +beta:102 [in hydras.Epsilon0.Hprime]
    +beta:102 [in hydras.Epsilon0.Paths]
    +beta:103 [in hydras.Hydra.O2H]
    +beta:103 [in hydras.Schutte.Schutte_basics]
    +beta:103 [in hydras.Epsilon0.E0]
    +beta:104 [in hydras.Epsilon0.T1]
    +beta:104 [in hydras.Prelude.Comparable]
    +beta:105 [in hydras.OrdinalNotations.OmegaOmega]
    +beta:105 [in hydras.Epsilon0.Paths]
    +beta:106 [in hydras.Hydra.O2H]
    +beta:106 [in hydras.Epsilon0.E0]
    +beta:106 [in hydras.Epsilon0.Hprime]
    +beta:106 [in hydras.Epsilon0.Paths]
    +beta:109 [in hydras.Epsilon0.E0]
    +beta:11 [in hydras.Schutte.Correctness_E0]
    +beta:11 [in gaia_hydras.GHprime]
    +beta:110 [in hydras.Epsilon0.Hessenberg]
    +beta:110 [in hydras.OrdinalNotations.OmegaOmega]
    +beta:110 [in hydras.Schutte.Schutte_basics]
    +beta:111 [in hydras.Epsilon0.T1]
    +beta:111 [in hydras.Hydra.O2H]
    +beta:111 [in hydras.Epsilon0.Hprime]
    +beta:111 [in hydras.Epsilon0.Paths]
    +beta:112 [in hydras.Schutte.Schutte_basics]
    +beta:113 [in hydras.Epsilon0.Hessenberg]
    +beta:114 [in hydras.Schutte.Schutte_basics]
    +beta:114 [in hydras.Epsilon0.E0]
    +beta:114 [in hydras.Epsilon0.Paths]
    +beta:115 [in hydras.Epsilon0.Hprime]
    +beta:115 [in hydras.Epsilon0.Paths]
    +beta:116 [in hydras.Schutte.Schutte_basics]
    +beta:116 [in hydras.Epsilon0.E0]
    +beta:117 [in hydras.Epsilon0.F_alpha]
    +beta:118 [in gaia_hydras.T1Bridge]
    +beta:118 [in hydras.Schutte.Schutte_basics]
    +beta:118 [in hydras.Schutte.Ordering_Functions]
    +beta:119 [in hydras.Epsilon0.E0]
    +beta:12 [in hydras.Schutte.CNF]
    +beta:12 [in hydras.Schutte.AP]
    +beta:12 [in hydras.OrdinalNotations.ON_mult]
    +beta:12 [in hydras.OrdinalNotations.ON_Finite]
    +beta:120 [in hydras.Epsilon0.T1]
    +beta:120 [in gaia_hydras.T1Bridge]
    +beta:120 [in hydras.Epsilon0.Hprime]
    +beta:120 [in hydras.Epsilon0.Paths]
    +beta:121 [in hydras.Epsilon0.E0]
    +beta:121 [in hydras.Schutte.Ordering_Functions]
    +beta:122 [in hydras.Schutte.Schutte_basics]
    +beta:125 [in hydras.Epsilon0.Hprime]
    +beta:125 [in hydras.Gamma0.Gamma0]
    +beta:128 [in gaia_hydras.T1Bridge]
    +beta:128 [in hydras.Epsilon0.Paths]
    +beta:128 [in hydras.Gamma0.Gamma0]
    +beta:129 [in hydras.Epsilon0.Hprime]
    +beta:13 [in hydras.OrdinalNotations.ON_Omega2]
    +beta:13 [in hydras.Hydra.Epsilon0_Needed_Std]
    +beta:130 [in gaia_hydras.T1Bridge]
    +beta:131 [in hydras.Gamma0.Gamma0]
    +beta:132 [in hydras.Schutte.Ordering_Functions]
    +beta:133 [in hydras.Epsilon0.Paths]
    +beta:133 [in hydras.Schutte.Ordering_Functions]
    +beta:134 [in gaia_hydras.T1Bridge]
    +beta:134 [in hydras.Gamma0.Gamma0]
    +beta:14 [in hydras.solutions_exercises.predSuccUnicity]
    +beta:14 [in gaia_hydras.GF_alpha]
    +beta:14 [in hydras.OrdinalNotations.ON_O]
    +beta:14 [in hydras.Epsilon0.Hessenberg]
    +beta:14 [in hydras.OrdinalNotations.ON_mult]
    +beta:14 [in hydras.OrdinalNotations.ON_plus]
    +beta:142 [in hydras.Epsilon0.T1]
    +beta:142 [in hydras.Epsilon0.Paths]
    +beta:142 [in hydras.Schutte.Ordering_Functions]
    +beta:145 [in hydras.Gamma0.Gamma0]
    +beta:148 [in hydras.Epsilon0.Paths]
    +beta:148 [in hydras.Gamma0.Gamma0]
    +beta:15 [in hydras.Schutte.Correctness_E0]
    +beta:15 [in hydras.OrdinalNotations.ON_Omega2]
    +beta:15 [in hydras.Schutte.AP]
    +beta:15 [in hydras.OrdinalNotations.ON_Finite]
    +beta:151 [in hydras.Epsilon0.T1]
    +beta:152 [in hydras.Gamma0.Gamma0]
    +beta:154 [in hydras.Gamma0.Gamma0]
    +beta:155 [in hydras.Epsilon0.Large_Sets]
    +beta:156 [in hydras.Epsilon0.T1]
    +beta:158 [in hydras.Gamma0.Gamma0]
    +beta:159 [in hydras.Epsilon0.T1]
    +beta:16 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +beta:16 [in hydras.OrdinalNotations.ON_mult]
    +beta:16 [in hydras.OrdinalNotations.ON_plus]
    +beta:16 [in hydras.Epsilon0.E0]
    +beta:163 [in gaia_hydras.T1Bridge]
    +beta:163 [in hydras.Epsilon0.Paths]
    +beta:165 [in gaia_hydras.T1Bridge]
    +beta:166 [in hydras.Epsilon0.Paths]
    +beta:167 [in gaia_hydras.T1Bridge]
    +beta:17 [in hydras.solutions_exercises.predSuccUnicity]
    +beta:17 [in hydras.OrdinalNotations.ON_O]
    +beta:17 [in hydras.Schutte.CNF]
    +beta:17 [in hydras.Hydra.Epsilon0_Needed_Std]
    +beta:17 [in hydras.solutions_exercises.F_3]
    +beta:171 [in gaia_hydras.T1Bridge]
    +beta:171 [in hydras.Epsilon0.Paths]
    +beta:173 [in gaia_hydras.T1Bridge]
    +beta:176 [in hydras.Schutte.Schutte_basics]
    +beta:177 [in hydras.Gamma0.Gamma0]
    +beta:179 [in hydras.Schutte.Schutte_basics]
    +beta:18 [in hydras.solutions_exercises.Limit_Infinity]
    +beta:18 [in hydras.OrdinalNotations.ON_plus]
    +beta:18 [in hydras.OrdinalNotations.ON_Finite]
    +beta:18 [in hydras.Gamma0.Gamma0]
    +beta:184 [in hydras.Epsilon0.F_alpha]
    +beta:19 [in hydras.OrdinalNotations.ON_Omega2]
    +beta:19 [in hydras.Schutte.Schutte_basics]
    +beta:191 [in hydras.Gamma0.Gamma0]
    +beta:193 [in hydras.Gamma0.Gamma0]
    +beta:194 [in hydras.Epsilon0.Paths]
    +beta:195 [in hydras.Gamma0.Gamma0]
    +beta:197 [in hydras.Epsilon0.Paths]
    +beta:197 [in hydras.Gamma0.Gamma0]
    +beta:199 [in hydras.Gamma0.Gamma0]
    +beta:2 [in hydras.solutions_exercises.is_F_monotonous]
    +beta:2 [in hydras.Epsilon0.Hessenberg]
    +beta:2 [in hydras.Schutte.Critical]
    +beta:2 [in hydras.Schutte.AP]
    +beta:2 [in gaia_hydras.GHessenberg]
    +beta:20 [in hydras.Schutte.Correctness_E0]
    +beta:20 [in hydras.OrdinalNotations.ON_O]
    +beta:20 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +beta:20 [in hydras.OrdinalNotations.ON_Finite]
    +beta:201 [in hydras.Gamma0.Gamma0]
    +beta:203 [in hydras.Gamma0.Gamma0]
    +beta:205 [in hydras.Gamma0.Gamma0]
    +beta:209 [in hydras.Epsilon0.T1]
    +beta:21 [in hydras.Gamma0.T2]
    +beta:21 [in hydras.solutions_exercises.Limit_Infinity]
    +beta:21 [in hydras.Epsilon0.E0]
    +beta:21 [in hydras.Epsilon0.Paths]
    +beta:21 [in hydras.Schutte.Addition]
    +beta:214 [in hydras.Gamma0.Gamma0]
    +beta:217 [in hydras.Schutte.Schutte_basics]
    +beta:219 [in hydras.Schutte.Schutte_basics]
    +beta:22 [in hydras.Schutte.CNF]
    +beta:22 [in hydras.solutions_exercises.F_3]
    +beta:22 [in hydras.Gamma0.Gamma0]
    +beta:221 [in hydras.Schutte.Schutte_basics]
    +beta:225 [in hydras.Epsilon0.Paths]
    +beta:23 [in hydras.Schutte.Addition]
    +beta:233 [in hydras.Epsilon0.Paths]
    +beta:239 [in hydras.Gamma0.Gamma0]
    +beta:24 [in hydras.Epsilon0.T1]
    +beta:24 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +beta:24 [in hydras.Hydra.Epsilon0_Needed_Std]
    +beta:24 [in hydras.Schutte.Schutte_basics]
    +beta:24 [in hydras.solutions_exercises.F_3]
    +beta:24 [in hydras.Epsilon0.Paths]
    +beta:241 [in hydras.Epsilon0.T1]
    +beta:241 [in hydras.Gamma0.Gamma0]
    +beta:243 [in hydras.Epsilon0.T1]
    +beta:243 [in hydras.Epsilon0.Paths]
    +beta:245 [in hydras.Epsilon0.T1]
    +beta:249 [in hydras.Epsilon0.Paths]
    +beta:25 [in hydras.Gamma0.T2]
    +beta:25 [in hydras.Epsilon0.Paths]
    +beta:25 [in hydras.Schutte.Addition]
    +beta:252 [in hydras.Epsilon0.Paths]
    +beta:255 [in hydras.Epsilon0.Paths]
    +beta:258 [in hydras.Epsilon0.Paths]
    +beta:259 [in hydras.Epsilon0.Paths]
    +beta:26 [in gaia_hydras.GF_alpha]
    +beta:26 [in hydras.OrdinalNotations.ON_Generic]
    +beta:26 [in hydras.Schutte.Ordering_Functions]
    +beta:262 [in hydras.Epsilon0.Paths]
    +beta:266 [in hydras.Epsilon0.Paths]
    +beta:269 [in hydras.Epsilon0.Paths]
    +beta:27 [in hydras.Hydra.O2H]
    +beta:27 [in hydras.Schutte.Critical]
    +beta:27 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +beta:274 [in hydras.Epsilon0.Paths]
    +beta:277 [in hydras.Epsilon0.Paths]
    +beta:28 [in gaia_hydras.GF_alpha]
    +beta:28 [in hydras.Schutte.CNF]
    +beta:28 [in hydras.Schutte.Addition]
    +beta:282 [in hydras.Epsilon0.Paths]
    +beta:285 [in hydras.Epsilon0.Paths]
    +beta:288 [in hydras.Epsilon0.Paths]
    +beta:289 [in hydras.Epsilon0.T1]
    +beta:29 [in hydras.Epsilon0.T1]
    +beta:29 [in hydras.OrdinalNotations.ON_Omega2]
    +beta:291 [in hydras.Epsilon0.T1]
    +beta:291 [in hydras.Epsilon0.Paths]
    +beta:293 [in hydras.Epsilon0.T1]
    +beta:294 [in hydras.Epsilon0.Paths]
    +beta:295 [in hydras.Epsilon0.T1]
    +beta:297 [in hydras.Epsilon0.T1]
    +beta:297 [in hydras.Epsilon0.Paths]
    +beta:299 [in hydras.Epsilon0.T1]
    +beta:3 [in hydras.solutions_exercises.schutte_cnf_counter_example]
    +beta:3 [in gaia_hydras.ON_gfinite]
    +beta:3 [in hydras.Epsilon0.Paths]
    +beta:3 [in hydras.Schutte.Ordering_Functions]
    +beta:30 [in hydras.Epsilon0.E0]
    +beta:30 [in hydras.Schutte.Addition]
    +beta:301 [in hydras.Epsilon0.T1]
    +beta:301 [in hydras.Epsilon0.Paths]
    +beta:303 [in hydras.Epsilon0.T1]
    +beta:305 [in hydras.Epsilon0.T1]
    +beta:305 [in hydras.Epsilon0.Paths]
    +beta:308 [in hydras.Epsilon0.Paths]
    +beta:313 [in hydras.Epsilon0.Paths]
    +beta:314 [in hydras.Epsilon0.T1]
    +beta:317 [in hydras.Epsilon0.T1]
    +beta:317 [in hydras.Epsilon0.Paths]
    +beta:32 [in hydras.Schutte.CNF]
    +beta:32 [in hydras.Schutte.Critical]
    +beta:32 [in hydras.Epsilon0.E0]
    +beta:320 [in hydras.Epsilon0.T1]
    +beta:321 [in hydras.Epsilon0.Paths]
    +beta:325 [in hydras.Epsilon0.T1]
    +beta:33 [in hydras.Schutte.Correctness_E0]
    +beta:33 [in hydras.Schutte.Schutte_basics]
    +beta:33 [in hydras.OrdinalNotations.ON_Finite]
    +beta:33 [in hydras.Schutte.Addition]
    +beta:330 [in hydras.Epsilon0.T1]
    +beta:334 [in hydras.Epsilon0.T1]
    +beta:335 [in hydras.Epsilon0.Paths]
    +beta:338 [in hydras.Epsilon0.T1]
    +beta:34 [in hydras.Epsilon0.E0]
    +beta:340 [in hydras.Epsilon0.Paths]
    +beta:341 [in hydras.Epsilon0.T1]
    +beta:344 [in hydras.Epsilon0.Paths]
    +beta:348 [in hydras.Epsilon0.Paths]
    +beta:35 [in hydras.Schutte.Correctness_E0]
    +beta:35 [in hydras.OrdinalNotations.ON_Finite]
    +beta:351 [in hydras.Epsilon0.T1]
    +beta:352 [in hydras.Epsilon0.Paths]
    +beta:354 [in hydras.Epsilon0.T1]
    +beta:358 [in hydras.Epsilon0.Paths]
    +beta:36 [in hydras.Epsilon0.E0]
    +beta:36 [in hydras.Epsilon0.Paths]
    +beta:361 [in hydras.Epsilon0.Paths]
    +beta:365 [in hydras.Epsilon0.Paths]
    +beta:37 [in hydras.Epsilon0.T1]
    +beta:37 [in hydras.Schutte.Correctness_E0]
    +beta:37 [in hydras.Schutte.Critical]
    +beta:378 [in hydras.Epsilon0.Paths]
    +beta:38 [in hydras.Epsilon0.E0]
    +beta:38 [in hydras.Epsilon0.Paths]
    +beta:384 [in hydras.Epsilon0.Paths]
    +beta:389 [in hydras.Epsilon0.Paths]
    +beta:39 [in hydras.Epsilon0.T1]
    +beta:39 [in hydras.Schutte.Correctness_E0]
    +beta:39 [in hydras.Schutte.Addition]
    +beta:393 [in hydras.Epsilon0.Paths]
    +beta:395 [in hydras.Epsilon0.T1]
    +beta:396 [in hydras.Epsilon0.Paths]
    +beta:4 [in hydras.OrdinalNotations.ON_Omega2]
    +beta:4 [in hydras.Gamma0.T2]
    +beta:4 [in hydras.Epsilon0.Hessenberg]
    +beta:4 [in hydras.Schutte.Critical]
    +beta:4 [in hydras.Schutte.Schutte_basics]
    +beta:40 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +beta:400 [in hydras.Epsilon0.T1]
    +beta:400 [in hydras.Epsilon0.Paths]
    +beta:405 [in hydras.Epsilon0.Paths]
    +beta:407 [in hydras.Epsilon0.T1]
    +beta:408 [in hydras.Epsilon0.T1]
    +beta:409 [in hydras.Epsilon0.Paths]
    +beta:41 [in hydras.Epsilon0.T1]
    +beta:41 [in hydras.Schutte.Critical]
    +beta:415 [in hydras.Epsilon0.Paths]
    +beta:417 [in hydras.Epsilon0.Paths]
    +beta:421 [in hydras.Epsilon0.Paths]
    +beta:425 [in hydras.Epsilon0.Paths]
    +beta:429 [in hydras.Epsilon0.Paths]
    +beta:43 [in hydras.Schutte.Correctness_E0]
    +beta:43 [in hydras.OrdinalNotations.ON_Omega2]
    +beta:43 [in hydras.Schutte.Addition]
    +beta:435 [in hydras.Epsilon0.Paths]
    +beta:439 [in hydras.Epsilon0.Paths]
    +beta:44 [in hydras.Schutte.CNF]
    +beta:44 [in hydras.Schutte.Critical]
    +beta:44 [in hydras.Epsilon0.L_alpha]
    +beta:450 [in hydras.Epsilon0.Paths]
    +beta:454 [in hydras.Gamma0.Gamma0]
    +beta:456 [in hydras.Epsilon0.Paths]
    +beta:456 [in hydras.Gamma0.Gamma0]
    +beta:457 [in hydras.Epsilon0.T1]
    +beta:46 [in hydras.Schutte.Critical]
    +beta:460 [in hydras.Epsilon0.Paths]
    +beta:461 [in hydras.Gamma0.Gamma0]
    +beta:464 [in hydras.Epsilon0.Paths]
    +beta:465 [in hydras.Gamma0.Gamma0]
    +beta:466 [in hydras.Epsilon0.Paths]
    +beta:467 [in hydras.Epsilon0.T1]
    +beta:47 [in hydras.OrdinalNotations.ON_Omega2]
    +beta:47 [in hydras.Schutte.CNF]
    +beta:473 [in hydras.Epsilon0.T1]
    +beta:475 [in hydras.Epsilon0.T1]
    +beta:48 [in hydras.Schutte.AP]
    +beta:48 [in hydras.Epsilon0.L_alpha]
    +beta:48 [in hydras.Epsilon0.E0]
    +beta:481 [in hydras.Epsilon0.T1]
    +beta:483 [in hydras.Epsilon0.T1]
    +beta:483 [in hydras.Epsilon0.Paths]
    +beta:485 [in hydras.Epsilon0.T1]
    +beta:487 [in hydras.Epsilon0.Paths]
    +beta:488 [in hydras.Epsilon0.T1]
    +beta:49 [in hydras.OrdinalNotations.ON_Omega2]
    +beta:49 [in hydras.Schutte.CNF]
    +beta:49 [in hydras.Schutte.Critical]
    +beta:491 [in hydras.Epsilon0.Paths]
    +beta:492 [in hydras.Epsilon0.T1]
    +beta:493 [in hydras.Gamma0.Gamma0]
    +beta:495 [in hydras.Epsilon0.Paths]
    +beta:499 [in hydras.Epsilon0.T1]
    +beta:499 [in hydras.Epsilon0.Paths]
    +beta:5 [in hydras.Epsilon0.T1]
    +beta:5 [in hydras.solutions_exercises.schutte_cnf_counter_example]
    +beta:5 [in hydras.OrdinalNotations.ON_Finite]
    +beta:5 [in hydras.Epsilon0.E0]
    +beta:50 [in hydras.Schutte.AP]
    +beta:50 [in hydras.Epsilon0.L_alpha]
    +beta:500 [in hydras.Gamma0.Gamma0]
    +beta:503 [in hydras.Epsilon0.Paths]
    +beta:504 [in hydras.Gamma0.Gamma0]
    +beta:507 [in hydras.Epsilon0.Paths]
    +beta:508 [in hydras.Gamma0.Gamma0]
    +beta:51 [in hydras.Epsilon0.E0]
    +beta:512 [in hydras.Epsilon0.Paths]
    +beta:512 [in hydras.Gamma0.Gamma0]
    +beta:515 [in hydras.Gamma0.Gamma0]
    +beta:518 [in hydras.Epsilon0.Paths]
    +beta:52 [in hydras.Hydra.O2H]
    +beta:52 [in hydras.Schutte.AP]
    +beta:52 [in hydras.Epsilon0.Hprime]
    +beta:52 [in hydras.Schutte.Ordering_Functions]
    +beta:525 [in hydras.Epsilon0.Paths]
    +beta:53 [in hydras.Epsilon0.E0]
    +beta:54 [in hydras.Schutte.AP]
    +beta:549 [in hydras.Epsilon0.Paths]
    +beta:55 [in hydras.Epsilon0.E0]
    +beta:553 [in hydras.Epsilon0.Paths]
    +beta:554 [in hydras.Gamma0.Gamma0]
    +beta:557 [in hydras.Epsilon0.Paths]
    +beta:56 [in hydras.Epsilon0.Hessenberg]
    +beta:56 [in hydras.Schutte.AP]
    +beta:56 [in hydras.Epsilon0.Paths]
    +beta:560 [in hydras.Epsilon0.T1]
    +beta:562 [in hydras.Epsilon0.Paths]
    +beta:565 [in hydras.Epsilon0.Paths]
    +beta:57 [in hydras.Hydra.O2H]
    +beta:57 [in hydras.Schutte.Addition]
    +beta:570 [in hydras.Epsilon0.T1]
    +beta:570 [in hydras.Epsilon0.Paths]
    +beta:577 [in hydras.Epsilon0.Paths]
    +beta:577 [in hydras.Gamma0.Gamma0]
    +beta:58 [in hydras.Epsilon0.Hessenberg]
    +beta:58 [in hydras.Epsilon0.Canon]
    +beta:58 [in hydras.Epsilon0.E0]
    +beta:582 [in hydras.Gamma0.Gamma0]
    +beta:583 [in hydras.Epsilon0.T1]
    +beta:583 [in hydras.Epsilon0.Paths]
    +beta:586 [in hydras.Epsilon0.T1]
    +beta:587 [in hydras.Epsilon0.Paths]
    +beta:589 [in hydras.Epsilon0.T1]
    +beta:59 [in hydras.Epsilon0.Paths]
    +beta:590 [in hydras.Epsilon0.Paths]
    +beta:6 [in hydras.Schutte.CNF]
    +beta:6 [in gaia_hydras.ON_gfinite]
    +beta:60 [in hydras.Schutte.Addition]
    +beta:601 [in hydras.Gamma0.Gamma0]
    +beta:61 [in hydras.Schutte.AP]
    +beta:62 [in hydras.Epsilon0.Hessenberg]
    +beta:62 [in hydras.Schutte.CNF]
    +beta:62 [in hydras.Epsilon0.Canon]
    +beta:622 [in hydras.Gamma0.Gamma0]
    +beta:624 [in hydras.Gamma0.Gamma0]
    +beta:626 [in hydras.Gamma0.Gamma0]
    +beta:63 [in hydras.Epsilon0.Paths]
    +beta:630 [in hydras.Gamma0.Gamma0]
    +beta:632 [in hydras.Epsilon0.T1]
    +beta:634 [in hydras.Epsilon0.T1]
    +beta:636 [in hydras.Epsilon0.T1]
    +beta:64 [in hydras.Schutte.Correctness_E0]
    +beta:64 [in hydras.Epsilon0.Hessenberg]
    +beta:641 [in hydras.Gamma0.Gamma0]
    +beta:644 [in hydras.Epsilon0.T1]
    +beta:645 [in hydras.Epsilon0.T1]
    +beta:648 [in hydras.Epsilon0.T1]
    +beta:65 [in hydras.Schutte.AP]
    +beta:65 [in hydras.Schutte.Addition]
    +beta:651 [in hydras.Epsilon0.T1]
    +beta:653 [in hydras.Epsilon0.T1]
    +beta:659 [in hydras.Epsilon0.T1]
    +beta:66 [in hydras.Epsilon0.Paths]
    +beta:661 [in hydras.Gamma0.Gamma0]
    +beta:662 [in hydras.Gamma0.Gamma0]
    +beta:663 [in hydras.Epsilon0.T1]
    +beta:666 [in hydras.Epsilon0.T1]
    +beta:668 [in hydras.Epsilon0.T1]
    +beta:67 [in hydras.Schutte.AP]
    +beta:670 [in hydras.Epsilon0.T1]
    +beta:672 [in hydras.Epsilon0.T1]
    +beta:675 [in hydras.Epsilon0.T1]
    +beta:679 [in hydras.Epsilon0.T1]
    +beta:679 [in hydras.Gamma0.Gamma0]
    +beta:682 [in hydras.Epsilon0.T1]
    +beta:682 [in hydras.Gamma0.Gamma0]
    +beta:684 [in hydras.Epsilon0.T1]
    +beta:687 [in hydras.Gamma0.Gamma0]
    +beta:69 [in hydras.Epsilon0.Hessenberg]
    +beta:7 [in hydras.Schutte.Critical]
    +beta:7 [in hydras.Epsilon0.Large_Sets_Examples]
    +beta:70 [in hydras.Epsilon0.E0]
    +beta:701 [in hydras.Gamma0.Gamma0]
    +beta:703 [in hydras.Gamma0.Gamma0]
    +beta:705 [in hydras.Gamma0.Gamma0]
    +beta:706 [in hydras.Epsilon0.T1]
    +beta:71 [in hydras.OrdinalNotations.ON_Omega2]
    +beta:71 [in hydras.Epsilon0.F_alpha]
    +beta:71 [in hydras.Epsilon0.Hessenberg]
    +beta:711 [in hydras.Gamma0.Gamma0]
    +beta:712 [in hydras.Epsilon0.T1]
    +beta:714 [in hydras.Gamma0.Gamma0]
    +beta:715 [in hydras.Epsilon0.T1]
    +beta:716 [in hydras.Gamma0.Gamma0]
    +beta:718 [in hydras.Epsilon0.T1]
    +beta:72 [in hydras.Epsilon0.E0]
    +beta:721 [in hydras.Epsilon0.T1]
    +beta:73 [in hydras.Epsilon0.Canon]
    +beta:74 [in hydras.Epsilon0.E0]
    +beta:75 [in hydras.OrdinalNotations.ON_Generic]
    +beta:76 [in hydras.Epsilon0.F_alpha]
    +beta:76 [in hydras.Epsilon0.E0]
    +beta:76 [in hydras.Epsilon0.Paths]
    +beta:78 [in hydras.Epsilon0.Paths]
    +beta:79 [in hydras.OrdinalNotations.OmegaOmega]
    +beta:79 [in hydras.Epsilon0.E0]
    +beta:8 [in hydras.Schutte.Correctness_E0]
    +beta:8 [in hydras.Epsilon0.Paths]
    +beta:8 [in gaia_hydras.GHessenberg]
    +beta:80 [in hydras.Hydra.O2H]
    +beta:81 [in hydras.Epsilon0.F_alpha]
    +beta:81 [in hydras.Epsilon0.Hessenberg]
    +beta:81 [in hydras.OrdinalNotations.OmegaOmega]
    +beta:81 [in hydras.Epsilon0.E0]
    +beta:83 [in hydras.OrdinalNotations.OmegaOmega]
    +beta:84 [in hydras.Epsilon0.E0]
    +beta:85 [in hydras.Epsilon0.F_alpha]
    +beta:85 [in hydras.OrdinalNotations.OmegaOmega]
    +beta:86 [in hydras.Epsilon0.Canon]
    +beta:86 [in hydras.Schutte.Schutte_basics]
    +beta:87 [in hydras.Epsilon0.E0]
    +beta:88 [in hydras.Epsilon0.Paths]
    +beta:89 [in hydras.Hydra.O2H]
    +beta:9 [in hydras.Schutte.AP]
    +beta:9 [in gaia_hydras.ON_gfinite]
    +beta:9 [in hydras.OrdinalNotations.ON_Finite]
    +beta:90 [in hydras.Epsilon0.E0]
    +beta:90 [in hydras.Epsilon0.Paths]
    +beta:93 [in hydras.OrdinalNotations.OmegaOmega]
    +beta:93 [in hydras.Epsilon0.Canon]
    +beta:93 [in hydras.Epsilon0.E0]
    +beta:93 [in hydras.Epsilon0.Hprime]
    +beta:95 [in hydras.Epsilon0.T1]
    +beta:95 [in hydras.OrdinalNotations.OmegaOmega]
    +beta:95 [in hydras.Schutte.Schutte_basics]
    +beta:96 [in hydras.Epsilon0.F_alpha]
    +beta:97 [in hydras.Gamma0.T2]
    +beta:99 [in hydras.OrdinalNotations.OmegaOmega]
    +beta:99 [in hydras.Epsilon0.E0]
    +beta:99 [in hydras.Epsilon0.Paths]
    +BVar:28 [in gaia_hydras.GHydra]
    +b'':45 [in hydras.Hydra.BigBattle]
    +b':1023 [in gaia_hydras.nfwfgaia]
    +b':1151 [in gaia_hydras.nfwfgaia]
    +b':118 [in hydras.Epsilon0.T1]
    +b':1280 [in gaia_hydras.nfwfgaia]
    +b':1285 [in gaia_hydras.nfwfgaia]
    +b':1288 [in gaia_hydras.nfwfgaia]
    +b':1291 [in gaia_hydras.nfwfgaia]
    +b':1294 [in gaia_hydras.nfwfgaia]
    +b':1298 [in gaia_hydras.nfwfgaia]
    +b':13 [in hydras.Prelude.Simple_LexProd]
    +b':1302 [in gaia_hydras.nfwfgaia]
    +b':1306 [in gaia_hydras.nfwfgaia]
    +b':1310 [in gaia_hydras.nfwfgaia]
    +b':1316 [in gaia_hydras.nfwfgaia]
    +b':132 [in gaia_hydras.nfwfgaia]
    +b':1336 [in gaia_hydras.nfwfgaia]
    +b':1382 [in gaia_hydras.nfwfgaia]
    +b':1392 [in gaia_hydras.nfwfgaia]
    +b':1420 [in gaia_hydras.nfwfgaia]
    +b':1426 [in gaia_hydras.nfwfgaia]
    +b':1434 [in gaia_hydras.nfwfgaia]
    +b':1498 [in gaia_hydras.nfwfgaia]
    +b':1506 [in gaia_hydras.nfwfgaia]
    +b':1549 [in gaia_hydras.nfwfgaia]
    +b':1583 [in gaia_hydras.nfwfgaia]
    +b':16 [in hydras.Prelude.Simple_LexProd]
    +b':1607 [in gaia_hydras.nfwfgaia]
    +b':1616 [in gaia_hydras.nfwfgaia]
    +b':1618 [in gaia_hydras.nfwfgaia]
    +b':1625 [in gaia_hydras.nfwfgaia]
    +b':1627 [in gaia_hydras.nfwfgaia]
    +b':1633 [in gaia_hydras.nfwfgaia]
    +b':1689 [in gaia_hydras.nfwfgaia]
    +b':1695 [in gaia_hydras.nfwfgaia]
    +b':175 [in gaia_hydras.nfwfgaia]
    +b':177 [in hydras.Epsilon0.T1]
    +b':185 [in hydras.Epsilon0.T1]
    +b':20 [in hydras.Epsilon0.Hessenberg]
    +b':2064 [in gaia_hydras.nfwfgaia]
    +b':2078 [in gaia_hydras.nfwfgaia]
    +b':2083 [in gaia_hydras.nfwfgaia]
    +b':224 [in hydras.Epsilon0.T1]
    +b':226 [in gaia_hydras.nfwfgaia]
    +b':232 [in gaia_hydras.nfwfgaia]
    +b':233 [in hydras.Epsilon0.T1]
    +b':24 [in hydras.Hydra.BigBattle]
    +b':247 [in hydras.Epsilon0.T1]
    +b':25 [in additions.Monoid_instances]
    +b':259 [in gaia_hydras.nfwfgaia]
    +b':26 [in hydras.Schutte.Correctness_E0]
    +b':26 [in hydras.Epsilon0.Hessenberg]
    +b':286 [in hydras.Epsilon0.T1]
    +b':295 [in gaia_hydras.nfwfgaia]
    +b':30 [in hydras.Schutte.PartialFun]
    +b':302 [in hydras.Gamma0.Gamma0]
    +b':31 [in hydras.Schutte.Correctness_E0]
    +b':31 [in hydras.Epsilon0.Hessenberg]
    +b':33 [in hydras.Hydra.BigBattle]
    +b':34 [in hydras.Gamma0.Gamma0]
    +b':35 [in hydras.Epsilon0.T1]
    +b':360 [in hydras.Epsilon0.T1]
    +b':365 [in hydras.Epsilon0.T1]
    +b':37 [in hydras.Epsilon0.Hessenberg]
    +b':379 [in hydras.Epsilon0.T1]
    +b':384 [in hydras.Epsilon0.T1]
    +b':389 [in hydras.Epsilon0.T1]
    +b':41 [in hydras.Hydra.BigBattle]
    +b':426 [in gaia_hydras.nfwfgaia]
    +b':43 [in hydras.Epsilon0.Hessenberg]
    +b':430 [in hydras.Epsilon0.T1]
    +b':431 [in gaia_hydras.nfwfgaia]
    +b':435 [in hydras.Epsilon0.T1]
    +b':441 [in hydras.Epsilon0.T1]
    +b':46 [in hydras.Prelude.DecPreOrder_Instances]
    +b':491 [in hydras.Gamma0.Gamma0]
    +b':50 [in hydras.Prelude.DecPreOrder_Instances]
    +b':51 [in hydras.Epsilon0.Epsilon0rpo]
    +b':53 [in hydras.Epsilon0.Hessenberg]
    +b':536 [in hydras.Epsilon0.T1]
    +b':539 [in hydras.Ackermann.primRec]
    +b':54 [in hydras.Epsilon0.T1]
    +b':54 [in hydras.Prelude.DecPreOrder_Instances]
    +b':55 [in gaia_hydras.T1Bridge]
    +b':57 [in hydras.Epsilon0.Epsilon0rpo]
    +b':57 [in hydras.Hydra.BigBattle]
    +b':58 [in hydras.Prelude.DecPreOrder_Instances]
    +b':58 [in hydras.Prelude.Sort_spec]
    +b':59 [in hydras.OrdinalNotations.OmegaOmega]
    +b':60 [in gaia_hydras.T1Bridge]
    +b':62 [in hydras.Prelude.DecPreOrder_Instances]
    +b':65 [in gaia_hydras.T1Bridge]
    +b':69 [in hydras.Epsilon0.T1]
    +b':71 [in gaia_hydras.T1Bridge]
    +b':727 [in hydras.Epsilon0.T1]
    +b':76 [in hydras.Epsilon0.T1]
    +b':77 [in gaia_hydras.T1Bridge]
    +b':791 [in gaia_hydras.nfwfgaia]
    +b':81 [in hydras.Epsilon0.T1]
    +b':82 [in hydras.Gamma0.T2]
    +b':847 [in gaia_hydras.nfwfgaia]
    +b':86 [in hydras.Epsilon0.T1]
    +b':870 [in gaia_hydras.nfwfgaia]
    +b':897 [in gaia_hydras.nfwfgaia]
    +b':9 [in hydras.Schutte.PartialFun]
    +b':90 [in hydras.Epsilon0.T1]
    +b':901 [in gaia_hydras.nfwfgaia]
    +b':907 [in gaia_hydras.nfwfgaia]
    +b':915 [in gaia_hydras.nfwfgaia]
    +b':943 [in gaia_hydras.nfwfgaia]
    +b':991 [in gaia_hydras.nfwfgaia]
    +b0:193 [in hydras.Ackermann.cPair]
    +b0:197 [in hydras.Ackermann.cPair]
    +b0:201 [in hydras.Ackermann.cPair]
    +b0:239 [in hydras.Ackermann.cPair]
    +b0:241 [in hydras.Ackermann.cPair]
    +b0:302 [in hydras.Ackermann.folProp]
    +b0:309 [in hydras.Ackermann.folProp]
    +b0:318 [in hydras.Ackermann.folProp]
    +b0:325 [in hydras.Ackermann.folProp]
    +b0:334 [in hydras.Ackermann.folProp]
    +b0:341 [in hydras.Ackermann.folProp]
    +b0:350 [in hydras.Ackermann.folProp]
    +b0:357 [in hydras.Ackermann.folProp]
    +b0:45 [in hydras.Ackermann.LNN2LNT]
    +b0:718 [in hydras.Ackermann.primRec]
    +b0:722 [in hydras.Ackermann.primRec]
    +b0:724 [in hydras.Ackermann.primRec]
    +b0:727 [in hydras.Ackermann.primRec]
    +b0:730 [in hydras.Ackermann.primRec]
    +b0:733 [in hydras.Ackermann.primRec]
    +b0:736 [in hydras.Ackermann.primRec]
    +b0:739 [in hydras.Ackermann.primRec]
    +b0:742 [in hydras.Ackermann.primRec]
    +b0:745 [in hydras.Ackermann.primRec]
    +b0:748 [in hydras.Ackermann.primRec]
    +b0:751 [in hydras.Ackermann.primRec]
    +b0:754 [in hydras.Ackermann.primRec]
    +b0:756 [in hydras.Ackermann.primRec]
    +b0:758 [in hydras.Ackermann.primRec]
    +b0:760 [in hydras.Ackermann.primRec]
    +b0:762 [in hydras.Ackermann.primRec]
    +b0:764 [in hydras.Ackermann.primRec]
    +b0:766 [in hydras.Ackermann.primRec]
    +b0:768 [in hydras.Ackermann.primRec]
    +b0:770 [in hydras.Ackermann.primRec]
    +b0:772 [in hydras.Ackermann.primRec]
    +b0:774 [in hydras.Ackermann.primRec]
    +b0:776 [in hydras.Ackermann.primRec]
    +b0:778 [in hydras.Ackermann.primRec]
    +b0:780 [in hydras.Ackermann.primRec]
    +b0:782 [in hydras.Ackermann.primRec]
    +b0:785 [in hydras.Ackermann.primRec]
    +b0:789 [in hydras.Ackermann.primRec]
    +b0:792 [in hydras.Ackermann.primRec]
    +b0:796 [in hydras.Ackermann.primRec]
    +b0:802 [in hydras.Ackermann.primRec]
    +b0:807 [in hydras.Ackermann.primRec]
    +b0:810 [in hydras.Ackermann.primRec]
    +b1:1362 [in hydras.Ackermann.codeSubFormula]
    +b1:366 [in hydras.Ackermann.folProp]
    +b1:37 [in hydras.Gamma0.Gamma0]
    +b1:373 [in hydras.Ackermann.folProp]
    +b1:382 [in hydras.Ackermann.folProp]
    +b1:389 [in hydras.Ackermann.folProp]
    +b1:45 [in hydras.Gamma0.Gamma0]
    +b1:458 [in hydras.Gamma0.Gamma0]
    +b1:468 [in hydras.Gamma0.Gamma0]
    +b1:472 [in hydras.Gamma0.Gamma0]
    +b1:474 [in hydras.Gamma0.Gamma0]
    +b1:477 [in hydras.Gamma0.Gamma0]
    +b1:484 [in hydras.Gamma0.Gamma0]
    +b1:486 [in hydras.Gamma0.Gamma0]
    +b1:521 [in hydras.Gamma0.Gamma0]
    +b1:53 [in hydras.Gamma0.Gamma0]
    +b1:555 [in hydras.Gamma0.Gamma0]
    +b1:559 [in hydras.Gamma0.Gamma0]
    +b1:61 [in hydras.Gamma0.Gamma0]
    +b1:69 [in hydras.Gamma0.Gamma0]
    +b1:77 [in hydras.Gamma0.Gamma0]
    +b1:82 [in hydras.rpo.list_permut]
    +b1:83 [in hydras.Gamma0.Gamma0]
    +b2:1363 [in hydras.Ackermann.codeSubFormula]
    +b2:38 [in hydras.Gamma0.Gamma0]
    +b2:459 [in hydras.Gamma0.Gamma0]
    +b2:46 [in hydras.Gamma0.Gamma0]
    +b2:469 [in hydras.Gamma0.Gamma0]
    +b2:473 [in hydras.Gamma0.Gamma0]
    +b2:475 [in hydras.Gamma0.Gamma0]
    +b2:478 [in hydras.Gamma0.Gamma0]
    +b2:485 [in hydras.Gamma0.Gamma0]
    +b2:487 [in hydras.Gamma0.Gamma0]
    +b2:522 [in hydras.Gamma0.Gamma0]
    +b2:54 [in hydras.Gamma0.Gamma0]
    +b2:556 [in hydras.Gamma0.Gamma0]
    +b2:560 [in hydras.Gamma0.Gamma0]
    +b2:62 [in hydras.Gamma0.Gamma0]
    +b2:70 [in hydras.Gamma0.Gamma0]
    +b2:84 [in hydras.rpo.list_permut]
    +B:1 [in hydras.Hydra.Epsilon0_Needed_Generic]
    +b:10 [in hydras.Prelude.Comparable]
    +b:10 [in gaia_hydras.GPaths]
    +b:10 [in hydras.Ackermann.PAtheory]
    +b:10 [in gaia_hydras.T1Bridge]
    +b:10 [in hydras.Ackermann.NNtheory]
    +b:10 [in hydras.Prelude.MoreDecidable]
    +b:10 [in gaia_hydras.T2Bridge]
    +b:10 [in hydras.Gamma0.Gamma0]
    +b:1002 [in gaia_hydras.nfwfgaia]
    +b:1005 [in gaia_hydras.nfwfgaia]
    +b:1009 [in gaia_hydras.nfwfgaia]
    +b:101 [in gaia_hydras.nfwfgaia]
    +b:1013 [in gaia_hydras.nfwfgaia]
    +b:1015 [in gaia_hydras.nfwfgaia]
    +b:102 [in hydras.Ackermann.model]
    +b:1020 [in gaia_hydras.nfwfgaia]
    +b:1027 [in gaia_hydras.nfwfgaia]
    +b:103 [in hydras.Prelude.Merge_Sort]
    +b:103 [in gaia_hydras.T1Bridge]
    +b:103 [in hydras.Ackermann.folLogic3]
    +b:1030 [in gaia_hydras.nfwfgaia]
    +b:1035 [in gaia_hydras.nfwfgaia]
    +b:104 [in hydras.Epsilon0.Hessenberg]
    +b:104 [in hydras.Ackermann.cPair]
    +b:105 [in gaia_hydras.T1Bridge]
    +b:1050 [in gaia_hydras.nfwfgaia]
    +b:106 [in hydras.Ackermann.model]
    +b:106 [in hydras.Ackermann.cPair]
    +b:107 [in hydras.Epsilon0.Hessenberg]
    +b:1078 [in gaia_hydras.nfwfgaia]
    +b:108 [in gaia_hydras.T1Bridge]
    +b:108 [in hydras.Ackermann.cPair]
    +b:109 [in hydras.Hydra.O2H]
    +B:109 [in hydras.Prelude.MoreLists]
    +b:109 [in hydras.Ackermann.codeSubFormula]
    +b:1098 [in gaia_hydras.nfwfgaia]
    +b:11 [in gaia_hydras.T1Choice]
    +b:110 [in hydras.Ackermann.model]
    +b:110 [in gaia_hydras.T1Bridge]
    +B:110 [in hydras.OrdinalNotations.ON_Generic]
    +b:1100 [in gaia_hydras.nfwfgaia]
    +b:1102 [in gaia_hydras.nfwfgaia]
    +b:1104 [in gaia_hydras.nfwfgaia]
    +b:1107 [in gaia_hydras.nfwfgaia]
    +b:111 [in hydras.Gamma0.T2]
    +b:111 [in hydras.Ackermann.folProp]
    +b:111 [in hydras.Ackermann.cPair]
    +b:1110 [in gaia_hydras.nfwfgaia]
    +b:1112 [in gaia_hydras.nfwfgaia]
    +b:112 [in hydras.Ackermann.codeSubFormula]
    +b:112 [in gaia_hydras.nfwfgaia]
    +b:1127 [in gaia_hydras.nfwfgaia]
    +b:113 [in hydras.Hydra.O2H]
    +b:1130 [in gaia_hydras.nfwfgaia]
    +b:1132 [in gaia_hydras.nfwfgaia]
    +b:114 [in hydras.Ackermann.model]
    +b:114 [in hydras.Ackermann.cPair]
    +b:1145 [in gaia_hydras.nfwfgaia]
    +b:1149 [in gaia_hydras.nfwfgaia]
    +b:115 [in hydras.Epsilon0.T1]
    +b:1155 [in gaia_hydras.nfwfgaia]
    +b:1159 [in gaia_hydras.nfwfgaia]
    +b:116 [in hydras.Epsilon0.Hessenberg]
    +B:116 [in hydras.Schutte.Ordering_Functions]
    +b:1161 [in gaia_hydras.nfwfgaia]
    +b:1163 [in gaia_hydras.nfwfgaia]
    +b:1165 [in gaia_hydras.nfwfgaia]
    +b:1167 [in gaia_hydras.nfwfgaia]
    +B:117 [in hydras.Schutte.Ordering_Functions]
    +b:1170 [in gaia_hydras.nfwfgaia]
    +b:1172 [in gaia_hydras.nfwfgaia]
    +b:118 [in hydras.Ackermann.cPair]
    +b:118 [in hydras.Ackermann.codeList]
    +b:119 [in hydras.Ackermann.codeList]
    +b:1192 [in gaia_hydras.nfwfgaia]
    +b:1194 [in gaia_hydras.nfwfgaia]
    +b:1196 [in gaia_hydras.nfwfgaia]
    +B:12 [in hydras.rpo.more_list]
    +b:12 [in gaia_hydras.T1Bridge]
    +b:12 [in hydras.Ackermann.prLogic]
    +b:12 [in hydras.Schutte.PartialFun]
    +b:12 [in hydras.Ackermann.NNtheory]
    +b:12 [in hydras.Schutte.Ordering_Functions]
    +b:12 [in hydras.solutions_exercises.isqrt]
    +b:12 [in gaia_hydras.T2Bridge]
    +b:12 [in hydras.Prelude.Simple_LexProd]
    +B:120 [in hydras.Prelude.MoreLists]
    +b:120 [in hydras.Epsilon0.Hessenberg]
    +b:120 [in hydras.Ackermann.cPair]
    +b:1200 [in gaia_hydras.nfwfgaia]
    +b:1209 [in gaia_hydras.nfwfgaia]
    +b:1212 [in gaia_hydras.nfwfgaia]
    +b:1215 [in gaia_hydras.nfwfgaia]
    +b:1219 [in gaia_hydras.nfwfgaia]
    +B:122 [in hydras.rpo.more_list]
    +b:122 [in hydras.Epsilon0.Hessenberg]
    +b:1227 [in gaia_hydras.nfwfgaia]
    +b:1228 [in hydras.Ackermann.codeSubFormula]
    +b:1231 [in hydras.Ackermann.codeSubFormula]
    +b:1232 [in gaia_hydras.nfwfgaia]
    +b:1234 [in gaia_hydras.nfwfgaia]
    +b:1236 [in gaia_hydras.nfwfgaia]
    +b:124 [in hydras.Gamma0.T2]
    +b:1241 [in gaia_hydras.nfwfgaia]
    +b:1247 [in hydras.Ackermann.codeSubFormula]
    +b:1249 [in gaia_hydras.nfwfgaia]
    +B:125 [in Goedel.PRrepresentable]
    +b:125 [in hydras.Ackermann.folProp]
    +B:125 [in hydras.OrdinalNotations.ON_Generic]
    +B:125 [in hydras.Hydra.Hydra_Definitions]
    +b:1250 [in hydras.Ackermann.codeSubFormula]
    +b:1253 [in gaia_hydras.nfwfgaia]
    +b:1256 [in gaia_hydras.nfwfgaia]
    +b:126 [in hydras.Ackermann.model]
    +b:126 [in hydras.Epsilon0.Hessenberg]
    +b:1264 [in gaia_hydras.nfwfgaia]
    +b:1269 [in gaia_hydras.nfwfgaia]
    +B:127 [in hydras.Prelude.MoreLists]
    +B:127 [in hydras.Hydra.Hydra_Lemmas]
    +b:1272 [in gaia_hydras.nfwfgaia]
    +b:1274 [in gaia_hydras.nfwfgaia]
    +b:1276 [in gaia_hydras.nfwfgaia]
    +b:1279 [in gaia_hydras.nfwfgaia]
    +b:128 [in hydras.Gamma0.T2]
    +b:1282 [in hydras.Ackermann.codeSubFormula]
    +b:1284 [in gaia_hydras.nfwfgaia]
    +b:1287 [in gaia_hydras.nfwfgaia]
    +b:1288 [in hydras.Ackermann.codeSubFormula]
    +b:129 [in hydras.Epsilon0.Hessenberg]
    +b:129 [in hydras.Ackermann.folProp]
    +b:129 [in hydras.Ackermann.codeSubFormula]
    +b:129 [in gaia_hydras.nfwfgaia]
    +b:1290 [in gaia_hydras.nfwfgaia]
    +b:1293 [in gaia_hydras.nfwfgaia]
    +b:1296 [in gaia_hydras.nfwfgaia]
    +b:13 [in gaia_hydras.T1Choice]
    +b:13 [in hydras.Prelude.WfVariant]
    +b:13 [in hydras.Ackermann.extEqualNat]
    +b:13 [in gaia_hydras.GPaths]
    +b:13 [in hydras.Schutte.PartialFun]
    +B:13 [in hydras.Prelude.STDPP_compat]
    +b:13 [in hydras.Ackermann.NN]
    +b:13 [in hydras.rpo.closure]
    +b:13 [in hydras.solutions_exercises.T1_ltNotWf]
    +B:13 [in hydras.rpo.rpo]
    +b:130 [in hydras.Ackermann.model]
    +b:130 [in hydras.Ackermann.codeSubFormula]
    +b:1300 [in gaia_hydras.nfwfgaia]
    +b:1304 [in hydras.Ackermann.codeSubFormula]
    +b:1304 [in gaia_hydras.nfwfgaia]
    +b:1307 [in hydras.Ackermann.codeSubFormula]
    +b:1308 [in gaia_hydras.nfwfgaia]
    +b:131 [in hydras.OrdinalNotations.ON_Generic]
    +b:1313 [in gaia_hydras.nfwfgaia]
    +b:1315 [in gaia_hydras.nfwfgaia]
    +b:1319 [in gaia_hydras.nfwfgaia]
    +b:132 [in hydras.Epsilon0.T1]
    +B:132 [in Goedel.PRrepresentable]
    +b:132 [in hydras.Gamma0.T2]
    +B:132 [in hydras.Prelude.MoreLists]
    +b:132 [in hydras.Epsilon0.Hessenberg]
    +b:1321 [in gaia_hydras.nfwfgaia]
    +b:1331 [in gaia_hydras.nfwfgaia]
    +b:134 [in hydras.Ackermann.model]
    +b:134 [in hydras.Ackermann.primRec]
    +b:1346 [in gaia_hydras.nfwfgaia]
    +b:1351 [in gaia_hydras.nfwfgaia]
    +b:1356 [in gaia_hydras.nfwfgaia]
    +b:136 [in hydras.Gamma0.T2]
    +B:136 [in hydras.rpo.more_list]
    +b:136 [in hydras.Ackermann.primRec]
    +B:136 [in hydras.Hydra.Hydra_Definitions]
    +b:1361 [in gaia_hydras.nfwfgaia]
    +b:1366 [in gaia_hydras.nfwfgaia]
    +b:137 [in hydras.Epsilon0.T1]
    +B:137 [in hydras.Prelude.MoreLists]
    +b:137 [in hydras.Ackermann.codeSubFormula]
    +B:137 [in hydras.OrdinalNotations.ON_Generic]
    +b:1371 [in gaia_hydras.nfwfgaia]
    +b:1377 [in gaia_hydras.nfwfgaia]
    +b:138 [in hydras.Ackermann.model]
    +b:138 [in hydras.Ackermann.primRec]
    +b:1384 [in hydras.Ackermann.codeSubFormula]
    +b:1387 [in hydras.Ackermann.codeSubFormula]
    +b:1389 [in gaia_hydras.nfwfgaia]
    +b:139 [in hydras.Ackermann.codeSubFormula]
    +b:14 [in gaia_hydras.T1Bridge]
    +b:14 [in hydras.Ackermann.prLogic]
    +b:14 [in hydras.Hydra.BigBattle]
    +b:14 [in hydras.Ackermann.NNtheory]
    +b:14 [in hydras.solutions_exercises.isqrt]
    +b:140 [in hydras.Ackermann.LNT]
    +B:140 [in hydras.Hydra.Hydra_Definitions]
    +b:1402 [in hydras.Ackermann.codeSubFormula]
    +b:1403 [in hydras.Ackermann.codeSubFormula]
    +b:1408 [in gaia_hydras.nfwfgaia]
    +b:141 [in hydras.Gamma0.T2]
    +b:141 [in hydras.Ackermann.primRec]
    +B:141 [in hydras.Ackermann.fol]
    +b:1417 [in gaia_hydras.nfwfgaia]
    +B:142 [in hydras.Prelude.MoreLists]
    +b:142 [in hydras.Gamma0.Gamma0]
    +b:1423 [in gaia_hydras.nfwfgaia]
    +b:1429 [in gaia_hydras.nfwfgaia]
    +B:143 [in Goedel.PRrepresentable]
    +b:143 [in hydras.Ackermann.LNN]
    +b:143 [in hydras.Ackermann.LNT]
    +b:143 [in gaia_hydras.T1Bridge]
    +B:143 [in hydras.Ackermann.fol]
    +b:144 [in hydras.Ackermann.primRec]
    +b:144 [in additions.fib]
    +b:1442 [in gaia_hydras.nfwfgaia]
    +b:1444 [in gaia_hydras.nfwfgaia]
    +b:1446 [in gaia_hydras.nfwfgaia]
    +b:1448 [in gaia_hydras.nfwfgaia]
    +b:145 [in hydras.Gamma0.T2]
    +B:145 [in hydras.rpo.more_list]
    +b:145 [in gaia_hydras.T1Bridge]
    +B:145 [in hydras.Ackermann.fol]
    +b:1450 [in gaia_hydras.nfwfgaia]
    +b:1459 [in gaia_hydras.nfwfgaia]
    +b:146 [in hydras.Ackermann.LNN]
    +b:1462 [in gaia_hydras.nfwfgaia]
    +b:1464 [in gaia_hydras.nfwfgaia]
    +b:1466 [in gaia_hydras.nfwfgaia]
    +b:1469 [in gaia_hydras.nfwfgaia]
    +b:147 [in hydras.Gamma0.T2]
    +b:147 [in hydras.Ackermann.LNT]
    +b:147 [in hydras.Ackermann.primRec]
    +B:147 [in hydras.Hydra.Hydra_Definitions]
    +b:1471 [in gaia_hydras.nfwfgaia]
    +b:149 [in additions.fib]
    +b:1493 [in gaia_hydras.nfwfgaia]
    +b:15 [in hydras.solutions_exercises.MinPR2]
    +b:15 [in hydras.Prelude.WfVariant]
    +b:15 [in hydras.Ackermann.extEqualNat]
    +b:15 [in hydras.solutions_exercises.MultisetWf]
    +B:15 [in hydras.OrdinalNotations.ON_Generic]
    +b:15 [in hydras.Ackermann.folLogic3]
    +b:15 [in hydras.solutions_exercises.T1_ltNotWf]
    +b:15 [in hydras.MoreAck.PrimRecExamples]
    +b:15 [in hydras.Prelude.Simple_LexProd]
    +b:150 [in hydras.rpo.more_list]
    +b:150 [in hydras.Ackermann.LNN]
    +B:150 [in hydras.Ackermann.fol]
    +B:150 [in hydras.OrdinalNotations.ON_Generic]
    +b:1503 [in gaia_hydras.nfwfgaia]
    +b:1508 [in gaia_hydras.nfwfgaia]
    +b:151 [in hydras.Ackermann.primRec]
    +B:151 [in hydras.Schutte.Ordering_Functions]
    +b:152 [in hydras.Ackermann.LNT]
    +b:1520 [in gaia_hydras.nfwfgaia]
    +b:1523 [in gaia_hydras.nfwfgaia]
    +b:1526 [in gaia_hydras.nfwfgaia]
    +b:153 [in gaia_hydras.nfwfgaia]
    +b:1532 [in gaia_hydras.nfwfgaia]
    +b:1537 [in gaia_hydras.nfwfgaia]
    +B:154 [in Goedel.PRrepresentable]
    +b:154 [in hydras.Ackermann.fol]
    +b:154 [in hydras.Ackermann.codePA]
    +b:1541 [in gaia_hydras.nfwfgaia]
    +b:1544 [in gaia_hydras.nfwfgaia]
    +B:155 [in hydras.rpo.more_list]
    +b:155 [in hydras.Ackermann.LNN]
    +b:155 [in hydras.Ackermann.primRec]
    +b:155 [in gaia_hydras.nfwfgaia]
    +b:1552 [in gaia_hydras.nfwfgaia]
    +b:1559 [in gaia_hydras.nfwfgaia]
    +b:156 [in hydras.Ackermann.fol]
    +b:1562 [in gaia_hydras.nfwfgaia]
    +b:1565 [in gaia_hydras.nfwfgaia]
    +b:1569 [in gaia_hydras.nfwfgaia]
    +b:157 [in hydras.Ackermann.LNT]
    +b:157 [in gaia_hydras.nfwfgaia]
    +b:157 [in hydras.Ackermann.codePA]
    +B:157 [in hydras.Hydra.Hydra_Definitions]
    +b:1575 [in gaia_hydras.nfwfgaia]
    +b:1579 [in gaia_hydras.nfwfgaia]
    +b:1588 [in gaia_hydras.nfwfgaia]
    +b:159 [in hydras.Ackermann.primRec]
    +b:159 [in hydras.Ackermann.fol]
    +b:159 [in gaia_hydras.nfwfgaia]
    +b:1593 [in gaia_hydras.nfwfgaia]
    +b:1596 [in gaia_hydras.nfwfgaia]
    +b:1599 [in gaia_hydras.nfwfgaia]
    +B:16 [in hydras.Prelude.DecPreOrder_Instances]
    +B:16 [in hydras.rpo.more_list]
    +b:16 [in hydras.Prelude.MoreDecidable]
    +b:16 [in hydras.rpo.dickson]
    +b:16 [in hydras.Schutte.Ordering_Functions]
    +B:16 [in hydras.MoreAck.FolExamples]
    +b:16 [in gaia_hydras.GHessenberg]
    +b:160 [in hydras.Ackermann.LNN]
    +b:1602 [in gaia_hydras.nfwfgaia]
    +b:161 [in gaia_hydras.nfwfgaia]
    +b:1613 [in gaia_hydras.nfwfgaia]
    +b:1622 [in gaia_hydras.nfwfgaia]
    +b:163 [in hydras.Ackermann.LNN]
    +B:163 [in hydras.OrdinalNotations.ON_Generic]
    +b:1630 [in gaia_hydras.nfwfgaia]
    +b:1636 [in gaia_hydras.nfwfgaia]
    +B:164 [in hydras.rpo.more_list]
    +B:164 [in hydras.Hydra.Hydra_Definitions]
    +b:165 [in hydras.Ackermann.primRec]
    +b:165 [in hydras.Ackermann.fol]
    +b:1651 [in gaia_hydras.nfwfgaia]
    +b:166 [in hydras.Epsilon0.T1]
    +b:166 [in hydras.Gamma0.Gamma0]
    +b:1661 [in gaia_hydras.nfwfgaia]
    +b:167 [in hydras.Ackermann.primRec]
    +b:167 [in hydras.Ackermann.cPair]
    +b:1672 [in gaia_hydras.nfwfgaia]
    +b:1675 [in gaia_hydras.nfwfgaia]
    +b:168 [in hydras.Ackermann.fol]
    +b:168 [in hydras.rpo.rpo]
    +b:169 [in hydras.Epsilon0.T1]
    +b:169 [in gaia_hydras.T1Bridge]
    +b:169 [in hydras.Ackermann.primRec]
    +b:17 [in hydras.solutions_exercises.MinPR2]
    +b:17 [in additions.Fib2]
    +b:17 [in hydras.Prelude.Comparable]
    +b:17 [in hydras.Prelude.Sort_spec]
    +b:17 [in hydras.Epsilon0.Hessenberg]
    +b:17 [in hydras.Hydra.BigBattle]
    +B:17 [in hydras.Ackermann.fol]
    +b:17 [in Goedel.rosser]
    +b:170 [in hydras.OrdinalNotations.ON_Generic]
    +b:170 [in hydras.Gamma0.Gamma0]
    +B:171 [in hydras.rpo.more_list]
    +b:171 [in hydras.Ackermann.model]
    +b:171 [in hydras.Ackermann.fol]
    +b:172 [in hydras.Epsilon0.T1]
    +B:172 [in hydras.Epsilon0.Large_Sets]
    +b:172 [in gaia_hydras.nfwfgaia]
    +b:173 [in hydras.Ackermann.model]
    +b:173 [in hydras.Prelude.Merge_Sort]
    +b:173 [in hydras.Ackermann.primRec]
    +b:1737 [in gaia_hydras.nfwfgaia]
    +b:1739 [in gaia_hydras.nfwfgaia]
    +b:174 [in hydras.Ackermann.folProp]
    +B:174 [in hydras.Schutte.Ordering_Functions]
    +b:1741 [in gaia_hydras.nfwfgaia]
    +b:1743 [in gaia_hydras.nfwfgaia]
    +b:1746 [in gaia_hydras.nfwfgaia]
    +b:175 [in hydras.Ackermann.primRec]
    +b:175 [in hydras.Ackermann.cPair]
    +B:175 [in hydras.OrdinalNotations.ON_Generic]
    +b:1750 [in gaia_hydras.nfwfgaia]
    +b:1753 [in gaia_hydras.nfwfgaia]
    +b:176 [in hydras.Ackermann.model]
    +b:1769 [in gaia_hydras.nfwfgaia]
    +b:177 [in hydras.rpo.more_list]
    +b:177 [in hydras.Ackermann.primRec]
    +b:177 [in hydras.Ackermann.cPair]
    +B:177 [in hydras.Schutte.Ordering_Functions]
    +b:177 [in gaia_hydras.nfwfgaia]
    +b:1772 [in gaia_hydras.nfwfgaia]
    +b:1774 [in gaia_hydras.nfwfgaia]
    +b:178 [in hydras.Ackermann.fol]
    +b:178 [in gaia_hydras.nfwfgaia]
    +B:179 [in hydras.rpo.more_list]
    +b:179 [in hydras.Ackermann.cPair]
    +b:1792 [in gaia_hydras.nfwfgaia]
    +b:1797 [in gaia_hydras.nfwfgaia]
    +b:1799 [in gaia_hydras.nfwfgaia]
    +b:18 [in gaia_hydras.GPaths]
    +b:18 [in hydras.OrdinalNotations.OmegaOmega]
    +b:18 [in hydras.Ackermann.codePA]
    +B:18 [in hydras.rpo.rpo]
    +b:180 [in hydras.Epsilon0.T1]
    +b:180 [in hydras.Ackermann.model]
    +B:180 [in hydras.Schutte.Ordering_Functions]
    +b:1803 [in gaia_hydras.nfwfgaia]
    +b:1805 [in gaia_hydras.nfwfgaia]
    +b:1807 [in gaia_hydras.nfwfgaia]
    +b:1809 [in gaia_hydras.nfwfgaia]
    +b:181 [in hydras.Ackermann.folProp]
    +b:181 [in hydras.Ackermann.primRec]
    +b:181 [in hydras.Ackermann.cPair]
    +b:181 [in gaia_hydras.nfwfgaia]
    +b:1811 [in gaia_hydras.nfwfgaia]
    +b:1814 [in gaia_hydras.nfwfgaia]
    +b:1816 [in gaia_hydras.nfwfgaia]
    +B:182 [in hydras.Schutte.Ordering_Functions]
    +b:183 [in hydras.Epsilon0.T1]
    +b:183 [in hydras.Ackermann.model]
    +B:183 [in additions.Addition_Chains]
    +b:183 [in gaia_hydras.nfwfgaia]
    +b:1836 [in gaia_hydras.nfwfgaia]
    +b:1838 [in gaia_hydras.nfwfgaia]
    +b:184 [in hydras.Epsilon0.T1]
    +b:184 [in hydras.Ackermann.primRec]
    +b:184 [in hydras.Ackermann.fol]
    +b:1840 [in gaia_hydras.nfwfgaia]
    +b:1842 [in gaia_hydras.nfwfgaia]
    +b:1844 [in gaia_hydras.nfwfgaia]
    +b:1857 [in gaia_hydras.nfwfgaia]
    +b:186 [in additions.Addition_Chains]
    +b:186 [in hydras.Schutte.Ordering_Functions]
    +b:1866 [in gaia_hydras.nfwfgaia]
    +B:187 [in hydras.rpo.more_list]
    +b:187 [in hydras.Ackermann.model]
    +b:187 [in hydras.Ackermann.primRec]
    +b:1870 [in gaia_hydras.nfwfgaia]
    +b:1878 [in gaia_hydras.nfwfgaia]
    +b:188 [in hydras.Epsilon0.T1]
    +B:188 [in hydras.OrdinalNotations.ON_Generic]
    +b:188 [in hydras.rpo.rpo]
    +b:1887 [in gaia_hydras.nfwfgaia]
    +b:19 [in hydras.Prelude.Comparable]
    +B:19 [in hydras.Ackermann.fol]
    +b:19 [in hydras.Schutte.PartialFun]
    +B:19 [in gaia_hydras.GLarge_Sets]
    +B:19 [in hydras.OrdinalNotations.ON_Generic]
    +B:19 [in hydras.Schutte.Ordering_Functions]
    +b:190 [in hydras.Ackermann.folProp]
    +b:190 [in hydras.Ackermann.fol]
    +b:190 [in hydras.rpo.rpo]
    +b:192 [in hydras.Ackermann.primRec]
    +b:193 [in hydras.Ackermann.model]
    +b:195 [in hydras.Ackermann.model]
    +b:195 [in hydras.Ackermann.primRec]
    +b:197 [in hydras.Ackermann.model]
    +b:197 [in hydras.Ackermann.folProp]
    +b:198 [in hydras.Ackermann.primRec]
    +b:199 [in hydras.Epsilon0.T1]
    +b:199 [in hydras.Ackermann.model]
    +B:2 [in hydras.Prelude.DecPreOrder_Instances]
    +B:2 [in hydras.rpo.more_list]
    +b:2 [in hydras.Ackermann.prLogic]
    +b:2 [in hydras.solutions_exercises.MinPR]
    +b:2 [in hydras.Ackermann.NNtheory]
    +b:2 [in hydras.solutions_exercises.isqrt]
    +b:2 [in hydras.Gamma0.Gamma0]
    +B:2 [in hydras.rpo.rpo]
    +b:20 [in hydras.Ackermann.cPair]
    +b:20 [in hydras.Schutte.PartialFun]
    +B:20 [in Goedel.rosser]
    +b:20 [in gaia_hydras.GHessenberg]
    +b:2007 [in gaia_hydras.nfwfgaia]
    +B:202 [in hydras.rpo.more_list]
    +b:202 [in hydras.Ackermann.model]
    +B:202 [in hydras.OrdinalNotations.ON_Generic]
    +b:2022 [in gaia_hydras.nfwfgaia]
    +b:2026 [in gaia_hydras.nfwfgaia]
    +b:203 [in hydras.Ackermann.primRec]
    +b:2031 [in gaia_hydras.nfwfgaia]
    +b:2038 [in gaia_hydras.nfwfgaia]
    +b:2048 [in gaia_hydras.nfwfgaia]
    +b:2051 [in gaia_hydras.nfwfgaia]
    +b:2054 [in gaia_hydras.nfwfgaia]
    +b:2059 [in gaia_hydras.nfwfgaia]
    +b:206 [in hydras.Ackermann.model]
    +b:206 [in hydras.Ackermann.folProp]
    +b:206 [in hydras.Ackermann.primRec]
    +b:206 [in gaia_hydras.nfwfgaia]
    +b:2062 [in gaia_hydras.nfwfgaia]
    +b:2071 [in gaia_hydras.nfwfgaia]
    +b:2074 [in gaia_hydras.nfwfgaia]
    +b:209 [in hydras.Ackermann.model]
    +b:209 [in hydras.Ackermann.primRec]
    +b:209 [in gaia_hydras.nfwfgaia]
    +B:21 [in hydras.rpo.more_list]
    +b:21 [in hydras.Prelude.Comparable]
    +b:21 [in gaia_hydras.GCanon]
    +b:21 [in hydras.Hydra.BigBattle]
    +B:21 [in hydras.Ackermann.fol]
    +b:21 [in additions.Monoid_instances]
    +b:21 [in hydras.Schutte.PartialFun]
    +b:21 [in hydras.Schutte.Well_Orders]
    +B:21 [in hydras.Schutte.Ordering_Functions]
    +b:21 [in hydras.Ackermann.codePA]
    +b:210 [in hydras.OrdinalNotations.ON_Generic]
    +B:211 [in hydras.rpo.more_list]
    +b:212 [in hydras.OrdinalNotations.ON_Generic]
    +b:212 [in gaia_hydras.nfwfgaia]
    +b:213 [in hydras.Epsilon0.T1]
    +b:213 [in hydras.Ackermann.model]
    +b:213 [in hydras.Ackermann.folProp]
    +b:214 [in hydras.Ackermann.primRec]
    +b:214 [in hydras.Ackermann.fol]
    +b:214 [in hydras.OrdinalNotations.ON_Generic]
    +b:215 [in hydras.Epsilon0.T1]
    +b:215 [in gaia_hydras.nfwfgaia]
    +b:216 [in hydras.Gamma0.Gamma0]
    +b:217 [in hydras.Epsilon0.T1]
    +b:217 [in hydras.Ackermann.primRec]
    +b:217 [in hydras.Ackermann.fol]
    +b:218 [in hydras.Gamma0.Gamma0]
    +b:219 [in hydras.rpo.more_list]
    +b:219 [in hydras.Ackermann.model]
    +b:219 [in hydras.Ackermann.fol]
    +b:22 [in additions.Fib2]
    +b:22 [in gaia_hydras.GPaths]
    +b:22 [in hydras.Ackermann.cPair]
    +b:22 [in gaia_hydras.GHydra]
    +b:22 [in hydras.Prelude.MoreDecidable]
    +b:22 [in hydras.Ackermann.NN]
    +b:22 [in gaia_hydras.GHessenberg]
    +b:220 [in hydras.Ackermann.primRec]
    +b:220 [in gaia_hydras.nfwfgaia]
    +b:221 [in hydras.Epsilon0.T1]
    +B:221 [in hydras.rpo.more_list]
    +b:221 [in hydras.Ackermann.model]
    +b:222 [in hydras.Ackermann.folProp]
    +b:222 [in hydras.Ackermann.cPair]
    +b:223 [in hydras.Ackermann.primRec]
    +b:223 [in hydras.Ackermann.codeList]
    +b:223 [in gaia_hydras.nfwfgaia]
    +b:224 [in hydras.Ackermann.codeList]
    +b:224 [in hydras.Gamma0.Gamma0]
    +b:226 [in hydras.Ackermann.primRec]
    +b:226 [in hydras.Ackermann.cPair]
    +b:227 [in hydras.Epsilon0.T1]
    +b:228 [in hydras.Gamma0.Gamma0]
    +b:229 [in hydras.rpo.more_list]
    +b:229 [in hydras.Ackermann.folProp]
    +b:229 [in gaia_hydras.nfwfgaia]
    +B:23 [in hydras.Ackermann.folProof]
    +b:23 [in hydras.Prelude.Comparable]
    +b:23 [in hydras.Epsilon0.Hessenberg]
    +b:23 [in hydras.OrdinalNotations.OmegaOmega]
    +B:23 [in hydras.Schutte.Ordering_Functions]
    +B:23 [in Goedel.rosser]
    +B:23 [in hydras.Ackermann.expressible]
    +b:23 [in hydras.Prelude.MoreVectors]
    +b:230 [in hydras.rpo.more_list]
    +b:230 [in hydras.Ackermann.primRec]
    +b:230 [in hydras.Ackermann.cPair]
    +b:232 [in hydras.Epsilon0.T1]
    +b:232 [in hydras.Gamma0.Gamma0]
    +b:233 [in hydras.rpo.more_list]
    +b:233 [in hydras.Ackermann.primRec]
    +B:234 [in hydras.Ackermann.checkPrf]
    +b:234 [in hydras.Ackermann.cPair]
    +b:234 [in gaia_hydras.nfwfgaia]
    +b:235 [in hydras.Ackermann.cPair]
    +b:236 [in hydras.Epsilon0.T1]
    +b:236 [in hydras.rpo.more_list]
    +b:236 [in hydras.Ackermann.primRec]
    +b:236 [in gaia_hydras.nfwfgaia]
    +b:236 [in hydras.rpo.rpo]
    +b:237 [in hydras.rpo.more_list]
    +b:237 [in hydras.Ackermann.cPair]
    +b:237 [in hydras.Ackermann.fol]
    +b:239 [in hydras.Epsilon0.T1]
    +B:239 [in hydras.rpo.more_list]
    +b:239 [in hydras.Ackermann.primRec]
    +b:239 [in gaia_hydras.nfwfgaia]
    +B:24 [in Goedel.fixPoint]
    +b:24 [in hydras.Prelude.DecPreOrder]
    +b:24 [in hydras.Ackermann.cPair]
    +b:24 [in hydras.Schutte.Well_Orders]
    +b:24 [in hydras.Gamma0.Gamma0]
    +b:24 [in hydras.rpo.closure]
    +b:24 [in gaia_hydras.GHessenberg]
    +b:242 [in hydras.Ackermann.primRec]
    +b:245 [in hydras.rpo.rpo]
    +b:246 [in hydras.Epsilon0.T1]
    +b:246 [in hydras.Ackermann.primRec]
    +b:247 [in hydras.Ackermann.cPair]
    +B:248 [in hydras.rpo.more_list]
    +b:248 [in hydras.rpo.rpo]
    +b:249 [in hydras.Ackermann.primRec]
    +b:249 [in hydras.rpo.rpo]
    +b:25 [in hydras.Schutte.Correctness_E0]
    +b:25 [in hydras.Prelude.More_Arith]
    +b:25 [in hydras.Epsilon0.F_omega]
    +b:25 [in hydras.OrdinalNotations.OmegaOmega]
    +B:25 [in hydras.Ackermann.fol]
    +b:25 [in hydras.Schutte.PartialFun]
    +B:25 [in hydras.Schutte.Ordering_Functions]
    +b:25 [in gaia_hydras.nfwfgaia]
    +b:250 [in hydras.Epsilon0.T1]
    +b:252 [in hydras.Ackermann.primRec]
    +b:252 [in hydras.Ackermann.cPair]
    +b:253 [in hydras.Ackermann.folProp]
    +b:253 [in hydras.Ackermann.cPair]
    +b:253 [in hydras.rpo.rpo]
    +b:254 [in hydras.rpo.rpo]
    +b:255 [in hydras.Epsilon0.T1]
    +b:255 [in hydras.Ackermann.primRec]
    +b:256 [in hydras.rpo.more_list]
    +b:257 [in hydras.rpo.more_list]
    +b:258 [in hydras.rpo.more_list]
    +b:258 [in hydras.Ackermann.primRec]
    +b:259 [in hydras.Epsilon0.T1]
    +B:26 [in hydras.rpo.more_list]
    +b:26 [in gaia_hydras.GPaths]
    +b:26 [in hydras.rpo.closure]
    +B:260 [in hydras.rpo.more_list]
    +b:260 [in hydras.Ackermann.folProp]
    +b:260 [in hydras.Ackermann.cPair]
    +b:261 [in hydras.rpo.rpo]
    +b:262 [in hydras.Epsilon0.T1]
    +B:262 [in Goedel.PRrepresentable]
    +b:262 [in hydras.Ackermann.primRec]
    +b:262 [in gaia_hydras.nfwfgaia]
    +b:263 [in hydras.Ackermann.cPair]
    +b:265 [in hydras.Epsilon0.T1]
    +b:265 [in gaia_hydras.nfwfgaia]
    +B:266 [in Goedel.PRrepresentable]
    +B:266 [in hydras.Ackermann.checkPrf]
    +b:266 [in hydras.Ackermann.primRec]
    +b:267 [in hydras.Epsilon0.T1]
    +b:267 [in gaia_hydras.nfwfgaia]
    +b:268 [in hydras.rpo.more_list]
    +b:269 [in hydras.rpo.more_list]
    +b:269 [in hydras.Ackermann.folProp]
    +b:269 [in hydras.Ackermann.fol]
    +b:269 [in gaia_hydras.nfwfgaia]
    +B:27 [in hydras.Prelude.DecPreOrder_Instances]
    +b:27 [in hydras.Prelude.Comparable]
    +b:27 [in hydras.OrdinalNotations.OmegaOmega]
    +b:27 [in hydras.Ackermann.PA]
    +b:27 [in hydras.Schutte.PartialFun]
    +b:27 [in gaia_hydras.GHessenberg]
    +b:27 [in hydras.MoreAck.PrimRecExamples]
    +B:27 [in hydras.Ackermann.expressible]
    +b:270 [in Goedel.PRrepresentable]
    +b:270 [in hydras.rpo.more_list]
    +b:270 [in hydras.Ackermann.primRec]
    +b:271 [in hydras.Epsilon0.T1]
    +b:271 [in Goedel.PRrepresentable]
    +b:273 [in hydras.Epsilon0.T1]
    +B:273 [in Goedel.PRrepresentable]
    +b:273 [in hydras.Ackermann.fol]
    +b:273 [in hydras.Gamma0.Gamma0]
    +b:273 [in gaia_hydras.nfwfgaia]
    +b:274 [in hydras.Ackermann.primRec]
    +b:274 [in gaia_hydras.nfwfgaia]
    +b:275 [in hydras.Epsilon0.T1]
    +b:276 [in hydras.Ackermann.folProp]
    +b:276 [in hydras.Ackermann.fol]
    +b:277 [in hydras.Epsilon0.T1]
    +b:278 [in hydras.Ackermann.primRec]
    +B:28 [in hydras.Ackermann.folProof]
    +b:28 [in hydras.Prelude.More_Arith]
    +b:28 [in hydras.Ackermann.extEqualNat]
    +b:28 [in hydras.rpo.more_list]
    +B:28 [in Goedel.fixPoint]
    +b:28 [in hydras.solutions_exercises.MultisetWf]
    +b:28 [in Goedel.rosserPA]
    +b:281 [in hydras.Ackermann.fol]
    +b:283 [in hydras.Ackermann.primRec]
    +b:284 [in hydras.Epsilon0.T1]
    +b:284 [in hydras.Ackermann.fol]
    +b:284 [in hydras.Gamma0.Gamma0]
    +B:286 [in Goedel.PRrepresentable]
    +b:287 [in hydras.Ackermann.primRec]
    +b:288 [in hydras.Gamma0.Gamma0]
    +b:29 [in hydras.Epsilon0.Epsilon0rpo]
    +b:29 [in hydras.Epsilon0.Hessenberg]
    +b:29 [in hydras.Prelude.DecPreOrder]
    +b:29 [in hydras.OrdinalNotations.OmegaOmega]
    +b:29 [in hydras.Schutte.PartialFun]
    +B:29 [in hydras.Schutte.Ordering_Functions]
    +b:29 [in gaia_hydras.GHessenberg]
    +b:290 [in additions.Euclidean_Chains]
    +b:291 [in hydras.Ackermann.primRec]
    +B:292 [in Goedel.PRrepresentable]
    +b:292 [in hydras.Gamma0.Gamma0]
    +b:293 [in gaia_hydras.nfwfgaia]
    +b:295 [in additions.Euclidean_Chains]
    +b:296 [in hydras.Ackermann.primRec]
    +b:296 [in hydras.Gamma0.Gamma0]
    +b:3 [in gaia_hydras.GPaths]
    +b:3 [in hydras.Ackermann.ListExt]
    +B:30 [in hydras.Ackermann.folProof]
    +b:30 [in hydras.Schutte.Correctness_E0]
    +b:30 [in hydras.Ackermann.codeSubTerm]
    +b:30 [in hydras.Prelude.Comparable]
    +b:30 [in hydras.Hydra.BigBattle]
    +b:30 [in hydras.Gamma0.Gamma0]
    +b:30 [in hydras.MoreAck.PrimRecExamples]
    +b:300 [in Goedel.PRrepresentable]
    +b:300 [in hydras.Ackermann.primRec]
    +b:304 [in hydras.Ackermann.primRec]
    +b:307 [in Goedel.PRrepresentable]
    +b:307 [in hydras.Gamma0.Gamma0]
    +b:308 [in hydras.Ackermann.primRec]
    +b:31 [in hydras.Ackermann.extEqualNat]
    +b:31 [in hydras.Ackermann.codeSubTerm]
    +b:31 [in hydras.OrdinalNotations.OmegaOmega]
    +B:31 [in Goedel.rosserPA]
    +b:31 [in hydras.Schutte.PartialFun]
    +b:31 [in hydras.Ackermann.NN]
    +b:31 [in gaia_hydras.GHessenberg]
    +b:311 [in hydras.Epsilon0.T1]
    +b:311 [in Goedel.PRrepresentable]
    +b:312 [in hydras.Ackermann.primRec]
    +b:316 [in hydras.Ackermann.primRec]
    +b:319 [in Goedel.PRrepresentable]
    +B:319 [in hydras.Ackermann.checkPrf]
    +b:319 [in hydras.Ackermann.fol]
    +b:32 [in hydras.Epsilon0.T1]
    +b:32 [in hydras.Ackermann.codeSubTerm]
    +B:32 [in hydras.rpo.more_list]
    +b:32 [in hydras.Ackermann.folLogic3]
    +b:320 [in hydras.Ackermann.primRec]
    +b:323 [in hydras.Ackermann.fol]
    +b:325 [in hydras.Ackermann.primRec]
    +b:326 [in hydras.Ackermann.fol]
    +B:328 [in Goedel.PRrepresentable]
    +b:329 [in hydras.Ackermann.primRec]
    +B:33 [in hydras.Ackermann.folProof]
    +b:33 [in hydras.Ackermann.codeSubTerm]
    +b:33 [in hydras.Prelude.Comparable]
    +b:33 [in hydras.OrdinalNotations.OmegaOmega]
    +B:33 [in hydras.OrdinalNotations.ON_Generic]
    +B:33 [in hydras.Schutte.Ordering_Functions]
    +b:331 [in hydras.Ackermann.fol]
    +B:333 [in Goedel.PRrepresentable]
    +b:333 [in hydras.Ackermann.primRec]
    +b:337 [in hydras.Ackermann.primRec]
    +B:338 [in Goedel.PRrepresentable]
    +b:339 [in hydras.Ackermann.cPair]
    +b:34 [in hydras.Prelude.More_Arith]
    +b:34 [in hydras.Ackermann.codeSubTerm]
    +b:34 [in hydras.Epsilon0.Hessenberg]
    +B:34 [in Goedel.rosserPA]
    +b:34 [in hydras.Ackermann.cPair]
    +b:34 [in gaia_hydras.GHessenberg]
    +b:341 [in hydras.Ackermann.primRec]
    +b:341 [in hydras.Ackermann.cPair]
    +B:342 [in hydras.Ackermann.subAll]
    +B:347 [in hydras.Ackermann.subAll]
    +b:347 [in hydras.Ackermann.cPair]
    +b:348 [in hydras.Epsilon0.T1]
    +b:35 [in hydras.Ackermann.codeSubTerm]
    +b:35 [in gaia_hydras.GCanon]
    +b:35 [in hydras.OrdinalNotations.OmegaOmega]
    +b:35 [in hydras.Schutte.PartialFun]
    +b:35 [in hydras.Schutte.Well_Orders]
    +b:35 [in hydras.Prelude.MoreVectors]
    +b:350 [in hydras.Ackermann.cPair]
    +b:352 [in Goedel.PRrepresentable]
    +B:352 [in hydras.Ackermann.subAll]
    +b:353 [in hydras.Ackermann.cPair]
    +b:354 [in gaia_hydras.nfwfgaia]
    +b:356 [in Goedel.PRrepresentable]
    +b:356 [in hydras.Ackermann.cPair]
    +b:356 [in gaia_hydras.nfwfgaia]
    +b:357 [in hydras.Epsilon0.T1]
    +b:358 [in hydras.Ackermann.cPair]
    +b:358 [in gaia_hydras.nfwfgaia]
    +b:36 [in additions.Compatibility]
    +b:36 [in hydras.Prelude.Comparable]
    +b:36 [in hydras.Ackermann.folProp]
    +b:36 [in hydras.Ackermann.PA]
    +b:36 [in hydras.Schutte.Schutte_basics]
    +B:36 [in hydras.MoreAck.FolExamples]
    +b:360 [in Goedel.PRrepresentable]
    +b:360 [in hydras.Ackermann.cPair]
    +b:360 [in gaia_hydras.nfwfgaia]
    +b:362 [in hydras.Epsilon0.T1]
    +b:363 [in hydras.Ackermann.cPair]
    +b:364 [in Goedel.PRrepresentable]
    +b:364 [in gaia_hydras.nfwfgaia]
    +b:365 [in hydras.Ackermann.fol]
    +b:366 [in hydras.Ackermann.cPair]
    +b:369 [in hydras.Ackermann.cPair]
    +b:369 [in hydras.Ackermann.fol]
    +b:37 [in gaia_hydras.GPaths]
    +b:37 [in hydras.Hydra.BigBattle]
    +b:37 [in gaia_hydras.GHessenberg]
    +b:372 [in hydras.Ackermann.fol]
    +b:376 [in hydras.Epsilon0.T1]
    +b:38 [in hydras.OrdinalNotations.OmegaOmega]
    +b:38 [in hydras.Ackermann.cPair]
    +b:38 [in hydras.Ackermann.wellFormed]
    +b:38 [in gaia_hydras.onType]
    +b:38 [in hydras.Schutte.Well_Orders]
    +b:383 [in hydras.Epsilon0.T1]
    +b:386 [in Goedel.PRrepresentable]
    +b:387 [in hydras.Epsilon0.T1]
    +b:39 [in hydras.Prelude.Comparable]
    +b:39 [in hydras.Ackermann.NN]
    +b:39 [in hydras.Schutte.Ordering_Functions]
    +b:390 [in Goedel.PRrepresentable]
    +b:392 [in hydras.Epsilon0.T1]
    +b:394 [in Goedel.PRrepresentable]
    +b:394 [in hydras.Ackermann.checkPrf]
    +b:395 [in gaia_hydras.nfwfgaia]
    +b:397 [in gaia_hydras.nfwfgaia]
    +b:398 [in Goedel.PRrepresentable]
    +b:398 [in hydras.Ackermann.checkPrf]
    +b:4 [in hydras.solutions_exercises.MinPR2]
    +b:4 [in hydras.Ackermann.folLogic2]
    +b:4 [in hydras.Ackermann.prLogic]
    +b:4 [in hydras.Ackermann.NNtheory]
    +b:4 [in hydras.Schutte.Well_Orders]
    +b:4 [in hydras.Ackermann.NN]
    +b:4 [in hydras.solutions_exercises.isqrt]
    +B:40 [in hydras.Ackermann.folProof]
    +b:40 [in hydras.Epsilon0.Hessenberg]
    +b:40 [in hydras.Ackermann.cPair]
    +b:40 [in hydras.Ackermann.wellFormed]
    +b:40 [in gaia_hydras.onType]
    +b:40 [in hydras.Schutte.Ordering_Functions]
    +b:400 [in gaia_hydras.nfwfgaia]
    +b:401 [in Goedel.PRrepresentable]
    +b:403 [in Goedel.PRrepresentable]
    +b:404 [in hydras.Epsilon0.T1]
    +b:406 [in Goedel.PRrepresentable]
    +b:409 [in hydras.Ackermann.fol]
    +b:409 [in gaia_hydras.nfwfgaia]
    +b:41 [in hydras.Epsilon0.Epsilon0rpo]
    +b:41 [in hydras.Prelude.Comparable]
    +b:41 [in hydras.Schutte.PartialFun]
    +b:410 [in Goedel.PRrepresentable]
    +b:412 [in gaia_hydras.nfwfgaia]
    +b:413 [in hydras.Ackermann.fol]
    +b:414 [in Goedel.PRrepresentable]
    +b:415 [in hydras.Ackermann.primRec]
    +b:416 [in hydras.Ackermann.fol]
    +b:416 [in gaia_hydras.nfwfgaia]
    +b:417 [in hydras.Epsilon0.T1]
    +b:417 [in hydras.Ackermann.primRec]
    +b:418 [in Goedel.PRrepresentable]
    +b:419 [in hydras.Ackermann.primRec]
    +b:42 [in hydras.Ackermann.cPair]
    +b:42 [in hydras.Schutte.Schutte_basics]
    +b:42 [in hydras.Schutte.Well_Orders]
    +b:421 [in Goedel.PRrepresentable]
    +b:421 [in hydras.Ackermann.primRec]
    +b:424 [in hydras.Ackermann.fol]
    +b:424 [in gaia_hydras.nfwfgaia]
    +b:425 [in Goedel.PRrepresentable]
    +b:427 [in hydras.Epsilon0.T1]
    +b:428 [in gaia_hydras.nfwfgaia]
    +b:429 [in hydras.Ackermann.fol]
    +b:43 [in hydras.Prelude.DecPreOrder]
    +b:43 [in additions.More_on_positive]
    +B:43 [in hydras.Schutte.Schutte_basics]
    +b:430 [in hydras.Ackermann.primRec]
    +b:430 [in hydras.Gamma0.Gamma0]
    +b:432 [in hydras.Ackermann.fol]
    +b:433 [in hydras.Epsilon0.T1]
    +b:433 [in gaia_hydras.nfwfgaia]
    +b:434 [in hydras.Ackermann.fol]
    +b:436 [in gaia_hydras.nfwfgaia]
    +b:437 [in hydras.Ackermann.primRec]
    +b:438 [in hydras.Epsilon0.T1]
    +b:438 [in gaia_hydras.nfwfgaia]
    +b:44 [in hydras.Epsilon0.T1]
    +b:44 [in hydras.Epsilon0.Epsilon0rpo]
    +b:44 [in hydras.rpo.more_list]
    +b:44 [in gaia_hydras.T1Bridge]
    +b:44 [in hydras.rpo.dickson]
    +b:442 [in gaia_hydras.nfwfgaia]
    +b:443 [in hydras.Epsilon0.T1]
    +b:444 [in hydras.Ackermann.primRec]
    +b:444 [in gaia_hydras.nfwfgaia]
    +b:445 [in hydras.Ackermann.fol]
    +b:446 [in hydras.Ackermann.checkPrf]
    +b:446 [in hydras.Ackermann.primRec]
    +b:446 [in gaia_hydras.nfwfgaia]
    +b:447 [in hydras.Epsilon0.T1]
    +b:448 [in gaia_hydras.nfwfgaia]
    +b:449 [in hydras.Epsilon0.T1]
    +b:45 [in Goedel.PRrepresentable]
    +b:45 [in hydras.Prelude.DecPreOrder_Instances]
    +b:45 [in hydras.Prelude.Comparable]
    +b:45 [in hydras.Epsilon0.Hessenberg]
    +b:45 [in hydras.Ackermann.PA]
    +b:45 [in hydras.Prelude.MoreOrders]
    +b:45 [in hydras.Schutte.PartialFun]
    +b:450 [in hydras.Ackermann.checkPrf]
    +b:451 [in hydras.Ackermann.primRec]
    +b:451 [in gaia_hydras.nfwfgaia]
    +b:452 [in hydras.Epsilon0.T1]
    +b:453 [in gaia_hydras.nfwfgaia]
    +B:454 [in hydras.Ackermann.checkPrf]
    +b:455 [in hydras.Epsilon0.T1]
    +b:457 [in hydras.Ackermann.primRec]
    +b:458 [in gaia_hydras.nfwfgaia]
    +b:459 [in hydras.Epsilon0.T1]
    +b:459 [in hydras.Ackermann.primRec]
    +b:46 [in hydras.solutions_exercises.MultisetWf]
    +b:46 [in gaia_hydras.T1Bridge]
    +b:46 [in hydras.Ackermann.cPair]
    +B:46 [in hydras.Schutte.Ordering_Functions]
    +B:46 [in hydras.Ackermann.expressible]
    +b:460 [in gaia_hydras.nfwfgaia]
    +b:462 [in hydras.Epsilon0.T1]
    +b:463 [in gaia_hydras.nfwfgaia]
    +b:464 [in hydras.Ackermann.primRec]
    +b:465 [in hydras.Epsilon0.T1]
    +b:465 [in gaia_hydras.nfwfgaia]
    +b:467 [in gaia_hydras.nfwfgaia]
    +b:469 [in hydras.Epsilon0.T1]
    +b:469 [in gaia_hydras.nfwfgaia]
    +b:47 [in hydras.Epsilon0.T1]
    +b:47 [in hydras.Epsilon0.Epsilon0rpo]
    +b:47 [in hydras.Prelude.Comparable]
    +B:47 [in hydras.Prelude.Sort_spec]
    +b:47 [in additions.More_on_positive]
    +B:47 [in hydras.Schutte.Schutte_basics]
    +b:471 [in hydras.Epsilon0.T1]
    +b:474 [in gaia_hydras.nfwfgaia]
    +b:477 [in hydras.Epsilon0.T1]
    +b:478 [in hydras.Ackermann.primRec]
    +b:479 [in hydras.Epsilon0.T1]
    +b:479 [in hydras.Ackermann.primRec]
    +b:48 [in Goedel.PRrepresentable]
    +b:48 [in hydras.Prelude.More_Arith]
    +b:48 [in hydras.Ackermann.codeSubTerm]
    +b:48 [in hydras.Prelude.DecPreOrder]
    +b:483 [in hydras.Gamma0.Gamma0]
    +b:484 [in hydras.Ackermann.primRec]
    +b:487 [in hydras.Ackermann.checkPrf]
    +b:49 [in hydras.Epsilon0.T1]
    +b:49 [in hydras.Prelude.DecPreOrder_Instances]
    +b:49 [in hydras.Ackermann.codeSubTerm]
    +b:49 [in hydras.Prelude.Comparable]
    +b:49 [in hydras.Ackermann.code]
    +b:49 [in hydras.Hydra.BigBattle]
    +b:490 [in hydras.Ackermann.primRec]
    +b:490 [in hydras.Gamma0.Gamma0]
    +b:491 [in hydras.Ackermann.checkPrf]
    +b:491 [in gaia_hydras.nfwfgaia]
    +b:493 [in gaia_hydras.nfwfgaia]
    +b:495 [in hydras.Ackermann.primRec]
    +b:495 [in gaia_hydras.nfwfgaia]
    +b:497 [in hydras.Epsilon0.T1]
    +b:5 [in hydras.Prelude.Restriction]
    +b:5 [in hydras.Prelude.DecPreOrder]
    +b:5 [in hydras.Ackermann.cPair]
    +B:5 [in hydras.OrdinalNotations.ON_mult]
    +B:5 [in hydras.OrdinalNotations.ON_plus]
    +b:50 [in hydras.Ackermann.codeSubTerm]
    +b:50 [in hydras.Epsilon0.Hessenberg]
    +b:50 [in gaia_hydras.T1Bridge]
    +b:50 [in hydras.Ackermann.cPair]
    +b:50 [in hydras.Schutte.Well_Orders]
    +B:50 [in hydras.Schutte.Ordering_Functions]
    +b:501 [in hydras.Epsilon0.T1]
    +b:503 [in hydras.Ackermann.checkPrf]
    +b:504 [in hydras.Epsilon0.T1]
    +b:504 [in hydras.Ackermann.primRec]
    +b:506 [in hydras.Ackermann.primRec]
    +b:507 [in hydras.Ackermann.checkPrf]
    +b:508 [in hydras.Ackermann.primRec]
    +b:51 [in hydras.Epsilon0.T1]
    +b:51 [in hydras.Ackermann.codeSubTerm]
    +b:51 [in additions.More_on_positive]
    +b:51 [in hydras.OrdinalNotations.OmegaOmega]
    +B:51 [in hydras.Ackermann.code]
    +b:51 [in hydras.Schutte.PartialFun]
    +b:51 [in hydras.Ackermann.codeList]
    +b:51 [in hydras.rpo.dickson]
    +b:510 [in hydras.Epsilon0.T1]
    +b:510 [in hydras.Ackermann.primRec]
    +b:511 [in hydras.Ackermann.checkPrf]
    +b:512 [in hydras.Ackermann.primRec]
    +b:514 [in hydras.Ackermann.primRec]
    +b:515 [in hydras.Ackermann.checkPrf]
    +b:516 [in hydras.Ackermann.primRec]
    +b:518 [in hydras.Ackermann.primRec]
    +b:519 [in hydras.Epsilon0.T1]
    +b:519 [in hydras.Gamma0.Gamma0]
    +b:52 [in hydras.Prelude.More_Arith]
    +b:52 [in hydras.Prelude.Comparable]
    +B:52 [in hydras.OrdinalNotations.ON_Generic]
    +b:52 [in hydras.Ackermann.codeList]
    +b:520 [in hydras.Ackermann.primRec]
    +b:522 [in hydras.Epsilon0.T1]
    +b:522 [in hydras.Ackermann.primRec]
    +b:524 [in hydras.Ackermann.primRec]
    +b:525 [in hydras.Gamma0.Gamma0]
    +b:526 [in hydras.Ackermann.primRec]
    +b:528 [in hydras.Ackermann.primRec]
    +b:528 [in hydras.Gamma0.Gamma0]
    +b:53 [in hydras.Prelude.DecPreOrder_Instances]
    +b:53 [in hydras.Prelude.More_Arith]
    +b:53 [in hydras.Prelude.DecPreOrder]
    +b:53 [in hydras.solutions_exercises.MultisetWf]
    +b:53 [in gaia_hydras.T1Bridge]
    +b:53 [in hydras.Hydra.BigBattle]
    +b:530 [in hydras.Epsilon0.T1]
    +b:530 [in hydras.Ackermann.primRec]
    +b:531 [in hydras.Gamma0.Gamma0]
    +b:533 [in hydras.Epsilon0.T1]
    +b:534 [in hydras.Gamma0.Gamma0]
    +b:537 [in hydras.Ackermann.primRec]
    +b:54 [in additions.More_on_positive]
    +b:54 [in gaia_hydras.GCanon]
    +b:54 [in hydras.OrdinalNotations.OmegaOmega]
    +b:54 [in hydras.Ackermann.cPair]
    +B:54 [in hydras.Prelude.MoreVectors]
    +b:540 [in hydras.Epsilon0.T1]
    +b:549 [in hydras.Ackermann.primRec]
    +b:55 [in hydras.Ackermann.LNN2LNT]
    +b:55 [in hydras.Prelude.Comparable]
    +b:55 [in gaia_hydras.GPaths]
    +b:55 [in hydras.Prelude.Sort_spec]
    +b:55 [in hydras.Ackermann.code]
    +B:55 [in hydras.Schutte.Ordering_Functions]
    +b:551 [in hydras.Ackermann.primRec]
    +b:553 [in hydras.Ackermann.primRec]
    +b:555 [in hydras.Ackermann.primRec]
    +b:557 [in hydras.Epsilon0.T1]
    +b:56 [in hydras.Epsilon0.Epsilon0rpo]
    +b:564 [in hydras.Epsilon0.T1]
    +b:564 [in hydras.Gamma0.Gamma0]
    +b:565 [in gaia_hydras.nfwfgaia]
    +b:566 [in hydras.Gamma0.Gamma0]
    +b:567 [in gaia_hydras.nfwfgaia]
    +b:57 [in hydras.Prelude.DecPreOrder_Instances]
    +b:57 [in hydras.Prelude.More_Arith]
    +b:57 [in hydras.Ackermann.LNN2LNT]
    +b:57 [in hydras.Ackermann.code]
    +b:57 [in hydras.Schutte.Ordering_Functions]
    +b:570 [in hydras.Gamma0.Gamma0]
    +b:572 [in hydras.Epsilon0.T1]
    +b:572 [in hydras.Gamma0.Gamma0]
    +b:576 [in hydras.Epsilon0.T1]
    +b:58 [in hydras.Prelude.Comparable]
    +b:58 [in hydras.Prelude.DecPreOrder]
    +b:58 [in additions.More_on_positive]
    +b:58 [in gaia_hydras.T1Bridge]
    +b:58 [in hydras.Prelude.MoreVectors]
    +b:580 [in hydras.Epsilon0.T1]
    +b:584 [in hydras.Ackermann.primRec]
    +b:586 [in hydras.Ackermann.primRec]
    +b:586 [in hydras.Gamma0.Gamma0]
    +b:588 [in hydras.Ackermann.primRec]
    +b:588 [in hydras.Gamma0.Gamma0]
    +b:59 [in hydras.Ackermann.LNN2LNT]
    +b:59 [in gaia_hydras.GPaths]
    +b:59 [in hydras.Schutte.Schutte_basics]
    +b:590 [in hydras.Ackermann.primRec]
    +b:592 [in hydras.Ackermann.primRec]
    +b:593 [in hydras.Gamma0.Gamma0]
    +b:594 [in hydras.Ackermann.primRec]
    +b:596 [in hydras.Ackermann.primRec]
    +b:597 [in hydras.Gamma0.Gamma0]
    +b:599 [in hydras.Epsilon0.T1]
    +b:6 [in hydras.Ackermann.folProof]
    +b:6 [in gaia_hydras.GPaths]
    +b:6 [in hydras.Prelude.Sort_spec]
    +b:6 [in hydras.Ackermann.prLogic]
    +b:6 [in hydras.Ackermann.NNtheory]
    +b:6 [in hydras.Ackermann.ListExt]
    +b:6 [in hydras.Ackermann.folLogic3]
    +b:6 [in hydras.Gamma0.Gamma0]
    +b:60 [in hydras.Prelude.Comparable]
    +b:60 [in hydras.Schutte.Schutte_basics]
    +B:60 [in hydras.Schutte.Ordering_Functions]
    +b:603 [in hydras.Epsilon0.T1]
    +b:604 [in gaia_hydras.nfwfgaia]
    +b:605 [in hydras.Gamma0.Gamma0]
    +b:61 [in hydras.Schutte.Correctness_E0]
    +b:61 [in hydras.Prelude.DecPreOrder_Instances]
    +B:61 [in hydras.Prelude.Sort_spec]
    +b:61 [in hydras.Hydra.BigBattle]
    +b:611 [in gaia_hydras.nfwfgaia]
    +b:615 [in gaia_hydras.nfwfgaia]
    +b:62 [in hydras.Prelude.Comparable]
    +b:62 [in hydras.Schutte.Ordering_Functions]
    +b:620 [in hydras.Epsilon0.T1]
    +b:628 [in hydras.Epsilon0.T1]
    +b:628 [in gaia_hydras.nfwfgaia]
    +b:63 [in hydras.Prelude.DecPreOrder]
    +b:63 [in gaia_hydras.T1Bridge]
    +b:63 [in hydras.Ackermann.cPair]
    +b:63 [in hydras.Schutte.Schutte_basics]
    +b:630 [in gaia_hydras.nfwfgaia]
    +b:634 [in hydras.Gamma0.Gamma0]
    +b:638 [in hydras.Gamma0.Gamma0]
    +b:64 [in hydras.Prelude.Comparable]
    +b:64 [in hydras.Ackermann.cPair]
    +b:64 [in hydras.Hydra.BigBattle]
    +b:64 [in hydras.Schutte.PartialFun]
    +b:64 [in hydras.OrdinalNotations.ON_Generic]
    +b:65 [in gaia_hydras.GPaths]
    +b:65 [in hydras.OrdinalNotations.OmegaOmega]
    +b:65 [in hydras.Ackermann.code]
    +b:65 [in hydras.Schutte.Schutte_basics]
    +B:65 [in hydras.Schutte.Ordering_Functions]
    +B:654 [in hydras.Ackermann.checkPrf]
    +b:656 [in hydras.Ackermann.checkPrf]
    +b:658 [in hydras.Ackermann.checkPrf]
    +b:66 [in hydras.Epsilon0.T1]
    +B:66 [in Goedel.PRrepresentable]
    +b:66 [in hydras.Prelude.Comparable]
    +b:66 [in hydras.Ackermann.cPair]
    +B:66 [in hydras.Schutte.PartialFun]
    +b:660 [in hydras.Ackermann.checkPrf]
    +b:662 [in hydras.Ackermann.checkPrf]
    +b:664 [in hydras.Ackermann.checkPrf]
    +b:666 [in hydras.Ackermann.checkPrf]
    +b:668 [in hydras.Ackermann.checkPrf]
    +b:67 [in hydras.Ackermann.code]
    +b:67 [in hydras.Schutte.Schutte_basics]
    +B:67 [in hydras.Hydra.Hydra_Lemmas]
    +B:67 [in hydras.Ackermann.expressible]
    +b:670 [in hydras.Ackermann.checkPrf]
    +b:670 [in hydras.Gamma0.Gamma0]
    +b:672 [in hydras.Ackermann.checkPrf]
    +b:672 [in hydras.Gamma0.Gamma0]
    +b:672 [in gaia_hydras.nfwfgaia]
    +b:674 [in hydras.Ackermann.checkPrf]
    +b:676 [in hydras.Ackermann.checkPrf]
    +b:676 [in hydras.Ackermann.primRec]
    +b:678 [in hydras.Ackermann.checkPrf]
    +b:68 [in hydras.Prelude.Comparable]
    +b:68 [in hydras.Prelude.DecPreOrder]
    +b:68 [in gaia_hydras.T1Bridge]
    +b:68 [in hydras.Ackermann.cPair]
    +b:68 [in hydras.Hydra.BigBattle]
    +B:68 [in hydras.Schutte.Ordering_Functions]
    +b:680 [in hydras.Ackermann.primRec]
    +b:683 [in hydras.Ackermann.primRec]
    +b:685 [in hydras.Ackermann.primRec]
    +b:687 [in hydras.Ackermann.primRec]
    +b:689 [in hydras.Ackermann.primRec]
    +b:69 [in gaia_hydras.GPaths]
    +b:69 [in hydras.Ackermann.code]
    +b:69 [in hydras.Hydra.BigBattle]
    +b:690 [in hydras.Gamma0.Gamma0]
    +b:692 [in hydras.Ackermann.primRec]
    +b:695 [in hydras.Ackermann.primRec]
    +b:696 [in gaia_hydras.nfwfgaia]
    +b:698 [in hydras.Ackermann.primRec]
    +b:698 [in gaia_hydras.nfwfgaia]
    +b:7 [in hydras.OrdinalNotations.ON_O]
    +b:7 [in hydras.solutions_exercises.MorePRExamples]
    +B:7 [in hydras.Schutte.Ordering_Functions]
    +B:70 [in Goedel.PRrepresentable]
    +b:70 [in hydras.Prelude.Comparable]
    +b:70 [in hydras.OrdinalNotations.OmegaOmega]
    +b:70 [in hydras.Ackermann.cPair]
    +b:70 [in hydras.Schutte.Schutte_basics]
    +b:70 [in hydras.Ackermann.folLogic3]
    +b:70 [in hydras.rpo.dickson]
    +b:70 [in hydras.Schutte.Ordering_Functions]
    +b:703 [in hydras.Ackermann.primRec]
    +b:708 [in hydras.Epsilon0.T1]
    +b:709 [in hydras.Ackermann.primRec]
    +b:71 [in hydras.Ackermann.code]
    +b:712 [in hydras.Ackermann.primRec]
    +b:716 [in hydras.Ackermann.primRec]
    +b:72 [in gaia_hydras.GPaths]
    +b:72 [in hydras.Ackermann.cPair]
    +b:72 [in hydras.Ackermann.folLogic3]
    +B:72 [in hydras.Schutte.Ordering_Functions]
    +b:72 [in hydras.Prelude.MoreVectors]
    +b:720 [in hydras.Ackermann.primRec]
    +b:721 [in gaia_hydras.nfwfgaia]
    +b:724 [in hydras.Epsilon0.T1]
    +b:728 [in gaia_hydras.nfwfgaia]
    +b:73 [in hydras.Epsilon0.T1]
    +b:73 [in hydras.Prelude.Comparable]
    +b:73 [in hydras.Ackermann.code]
    +B:73 [in hydras.Schutte.PartialFun]
    +b:73 [in hydras.Schutte.Schutte_basics]
    +B:73 [in hydras.Schutte.Ordering_Functions]
    +b:73 [in hydras.rpo.rpo]
    +b:730 [in gaia_hydras.nfwfgaia]
    +b:731 [in hydras.Epsilon0.T1]
    +b:732 [in gaia_hydras.nfwfgaia]
    +b:734 [in gaia_hydras.nfwfgaia]
    +b:736 [in hydras.Epsilon0.T1]
    +b:738 [in gaia_hydras.nfwfgaia]
    +b:74 [in hydras.Epsilon0.Hessenberg]
    +b:74 [in hydras.Prelude.DecPreOrder]
    +b:74 [in gaia_hydras.T1Bridge]
    +b:74 [in hydras.Ackermann.cPair]
    +b:74 [in hydras.Schutte.Ordering_Functions]
    +B:74 [in hydras.Prelude.MoreVectors]
    +b:740 [in gaia_hydras.nfwfgaia]
    +b:75 [in hydras.Prelude.Comparable]
    +b:75 [in hydras.Ackermann.code]
    +b:757 [in hydras.Ackermann.checkPrf]
    +b:76 [in hydras.Gamma0.T2]
    +b:76 [in gaia_hydras.GPaths]
    +b:76 [in hydras.Ackermann.cPair]
    +b:76 [in hydras.Schutte.Schutte_basics]
    +b:76 [in hydras.OrdinalNotations.ON_Generic]
    +b:761 [in hydras.Ackermann.checkPrf]
    +b:761 [in gaia_hydras.nfwfgaia]
    +b:765 [in gaia_hydras.nfwfgaia]
    +b:77 [in hydras.Prelude.Comparable]
    +b:777 [in gaia_hydras.nfwfgaia]
    +b:78 [in hydras.Epsilon0.Hessenberg]
    +b:78 [in hydras.Ackermann.cPair]
    +b:78 [in hydras.Schutte.Ordering_Functions]
    +b:781 [in gaia_hydras.nfwfgaia]
    +b:785 [in gaia_hydras.nfwfgaia]
    +b:787 [in hydras.Ackermann.checkPrf]
    +b:788 [in hydras.Ackermann.primRec]
    +b:788 [in gaia_hydras.nfwfgaia]
    +b:789 [in hydras.Ackermann.checkPrf]
    +b:79 [in hydras.Gamma0.T2]
    +b:79 [in hydras.Prelude.Comparable]
    +b:79 [in hydras.OrdinalNotations.ON_Generic]
    +b:791 [in hydras.Ackermann.primRec]
    +b:793 [in gaia_hydras.nfwfgaia]
    +b:794 [in hydras.Ackermann.primRec]
    +b:798 [in hydras.Ackermann.primRec]
    +b:799 [in hydras.Ackermann.primRec]
    +b:8 [in hydras.Gamma0.T2]
    +b:8 [in hydras.Ackermann.folLogic2]
    +b:8 [in gaia_hydras.T1Bridge]
    +b:8 [in hydras.Ackermann.NNtheory]
    +b:8 [in gaia_hydras.T2Bridge]
    +b:8 [in hydras.MoreAck.PrimRecExamples]
    +b:80 [in hydras.Epsilon0.T1]
    +b:80 [in hydras.Prelude.DecPreOrder]
    +b:80 [in hydras.Ackermann.codeSubFormula]
    +b:80 [in gaia_hydras.T1Bridge]
    +b:80 [in hydras.Schutte.Schutte_basics]
    +b:80 [in hydras.Ackermann.folLogic3]
    +b:80 [in hydras.rpo.list_permut]
    +b:800 [in hydras.Ackermann.primRec]
    +b:804 [in hydras.Ackermann.primRec]
    +b:805 [in hydras.Ackermann.primRec]
    +b:806 [in hydras.Ackermann.primRec]
    +b:809 [in hydras.Ackermann.primRec]
    +b:81 [in hydras.Prelude.Comparable]
    +b:81 [in gaia_hydras.GPaths]
    +b:82 [in hydras.Ackermann.cPair]
    +b:82 [in hydras.Schutte.Schutte_basics]
    +b:82 [in hydras.Ackermann.folLogic3]
    +B:82 [in hydras.Schutte.Ordering_Functions]
    +b:83 [in hydras.Prelude.Comparable]
    +b:83 [in gaia_hydras.T1Bridge]
    +B:83 [in hydras.Schutte.PartialFun]
    +b:838 [in hydras.Ackermann.codeSubFormula]
    +b:84 [in hydras.Ackermann.cPair]
    +b:84 [in hydras.Schutte.Schutte_basics]
    +b:841 [in hydras.Ackermann.codeSubFormula]
    +b:843 [in gaia_hydras.nfwfgaia]
    +b:849 [in hydras.Ackermann.codeSubFormula]
    +b:85 [in hydras.Epsilon0.T1]
    +b:85 [in hydras.Prelude.Comparable]
    +b:85 [in gaia_hydras.T1Bridge]
    +B:85 [in hydras.OrdinalNotations.ON_Generic]
    +b:850 [in hydras.Ackermann.checkPrf]
    +b:852 [in hydras.Ackermann.checkPrf]
    +b:853 [in hydras.Ackermann.codeSubFormula]
    +b:853 [in gaia_hydras.nfwfgaia]
    +b:854 [in hydras.Ackermann.checkPrf]
    +b:855 [in hydras.Ackermann.codeSubFormula]
    +b:856 [in hydras.Ackermann.checkPrf]
    +b:857 [in hydras.Ackermann.codeSubFormula]
    +b:86 [in hydras.Ackermann.folLogic3]
    +b:861 [in gaia_hydras.nfwfgaia]
    +b:866 [in gaia_hydras.nfwfgaia]
    +b:869 [in hydras.Ackermann.codeSubFormula]
    +b:87 [in hydras.Prelude.Comparable]
    +b:87 [in hydras.Epsilon0.Hessenberg]
    +b:87 [in hydras.OrdinalNotations.OmegaOmega]
    +b:87 [in gaia_hydras.T1Bridge]
    +b:87 [in gaia_hydras.nfwfgaia]
    +b:872 [in hydras.Ackermann.codeSubFormula]
    +b:886 [in gaia_hydras.nfwfgaia]
    +b:89 [in hydras.Epsilon0.T1]
    +b:89 [in hydras.Epsilon0.Hessenberg]
    +B:89 [in hydras.Schutte.PartialFun]
    +b:89 [in hydras.Schutte.Schutte_basics]
    +b:89 [in hydras.MoreAck.PrimRecExamples]
    +b:893 [in hydras.Ackermann.codeSubFormula]
    +b:895 [in gaia_hydras.nfwfgaia]
    +b:896 [in hydras.Ackermann.codeSubFormula]
    +b:899 [in gaia_hydras.nfwfgaia]
    +B:9 [in hydras.Prelude.DecPreOrder_Instances]
    +b:9 [in hydras.Ackermann.extEqualNat]
    +b:9 [in hydras.rpo.dickson]
    +b:9 [in hydras.MoreAck.FolExamples]
    +b:90 [in hydras.Prelude.Comparable]
    +b:903 [in gaia_hydras.nfwfgaia]
    +b:909 [in hydras.Ackermann.codeSubFormula]
    +b:91 [in hydras.Gamma0.T2]
    +b:91 [in hydras.Epsilon0.Hessenberg]
    +b:91 [in hydras.Schutte.Schutte_basics]
    +b:911 [in gaia_hydras.nfwfgaia]
    +b:912 [in hydras.Ackermann.codeSubFormula]
    +b:92 [in hydras.Prelude.Comparable]
    +b:92 [in hydras.Prelude.DecPreOrder]
    +b:92 [in hydras.OrdinalNotations.ON_Generic]
    +b:924 [in gaia_hydras.nfwfgaia]
    +b:926 [in gaia_hydras.nfwfgaia]
    +b:928 [in gaia_hydras.nfwfgaia]
    +B:93 [in Goedel.PRrepresentable]
    +b:93 [in hydras.Epsilon0.Hessenberg]
    +b:93 [in hydras.Schutte.Schutte_basics]
    +b:930 [in gaia_hydras.nfwfgaia]
    +b:932 [in gaia_hydras.nfwfgaia]
    +b:936 [in hydras.Ackermann.codeSubFormula]
    +b:939 [in hydras.Ackermann.codeSubFormula]
    +b:939 [in gaia_hydras.nfwfgaia]
    +b:94 [in hydras.Prelude.Comparable]
    +b:94 [in hydras.Prelude.Merge_Sort]
    +b:94 [in gaia_hydras.T1Bridge]
    +b:945 [in gaia_hydras.nfwfgaia]
    +b:95 [in hydras.Epsilon0.Hessenberg]
    +b:95 [in hydras.Ackermann.folLogic3]
    +b:954 [in gaia_hydras.nfwfgaia]
    +b:957 [in gaia_hydras.nfwfgaia]
    +b:959 [in gaia_hydras.nfwfgaia]
    +b:96 [in gaia_hydras.T1Bridge]
    +b:961 [in gaia_hydras.nfwfgaia]
    +b:963 [in gaia_hydras.nfwfgaia]
    +b:965 [in gaia_hydras.nfwfgaia]
    +b:97 [in hydras.Prelude.DecPreOrder]
    +B:97 [in hydras.OrdinalNotations.ON_Generic]
    +b:98 [in hydras.Prelude.Comparable]
    +b:98 [in gaia_hydras.T1Bridge]
    +b:989 [in gaia_hydras.nfwfgaia]
    +b:99 [in hydras.Epsilon0.Hessenberg]
    +b:993 [in gaia_hydras.nfwfgaia]
    +b:999 [in gaia_hydras.nfwfgaia]
    +

    C

    +cf:11 [in hydras.Ackermann.code]
    +cf:14 [in hydras.Ackermann.code]
    +cf:17 [in hydras.Ackermann.code]
    +cf:2 [in hydras.Ackermann.codeFreeVar]
    +cf:2 [in hydras.Ackermann.codeSubTerm]
    +cf:2 [in hydras.Ackermann.checkPrf]
    +cf:2 [in hydras.Ackermann.codeSubFormula]
    +cf:2 [in hydras.Ackermann.wellFormed]
    +cf:2 [in Goedel.codeSysPrf]
    +cf:2 [in hydras.Ackermann.codePA]
    +ch:345 [in additions.Euclidean_Chains]
    +ch:346 [in additions.Euclidean_Chains]
    +ch:349 [in additions.Euclidean_Chains]
    +ch:350 [in additions.Euclidean_Chains]
    +cl:19 [in hydras.Ackermann.code]
    +cL:4 [in hydras.Ackermann.codeFreeVar]
    +cL:4 [in hydras.Ackermann.codeSubTerm]
    +cL:4 [in hydras.Ackermann.checkPrf]
    +cL:4 [in hydras.Ackermann.codeSubFormula]
    +cL:4 [in hydras.Ackermann.wellFormed]
    +cL:4 [in Goedel.codeSysPrf]
    +cL:4 [in hydras.Ackermann.codePA]
    +cmpA:3 [in hydras.OrdinalNotations.ON_mult]
    +cmpA:3 [in hydras.OrdinalNotations.ON_plus]
    +cmpA:4 [in hydras.OrdinalNotations.ON_O]
    +cmpB:7 [in hydras.OrdinalNotations.ON_mult]
    +cmpB:7 [in hydras.OrdinalNotations.ON_plus]
    +cmp:13 [in hydras.OrdinalNotations.ON_Generic]
    +cmp:14 [in hydras.Prelude.Comparable]
    +cmp:3 [in hydras.solutions_exercises.lt_succ_le]
    +cmp:3 [in hydras.OrdinalNotations.ON_Generic]
    +cmp:4 [in hydras.solutions_exercises.predSuccUnicity]
    +cmp:6 [in hydras.Prelude.Comparable]
    +cmp:9 [in hydras.OrdinalNotations.ON_Generic]
    +cm:106 [in additions.fib]
    +cm:113 [in additions.fib]
    +cm:124 [in additions.fib]
    +codeArityFIsPR:6 [in hydras.Ackermann.wellFormed]
    +codeArityFIsPR:7 [in hydras.Ackermann.checkPrf]
    +codeArityFIsPR:7 [in Goedel.codeSysPrf]
    +codeArityRIsPR:13 [in hydras.Ackermann.checkPrf]
    +codeArityRIsPR:13 [in Goedel.codeSysPrf]
    +codeArityRIsPR:181 [in hydras.Ackermann.wellFormed]
    +Comparable0:15 [in hydras.Prelude.Comparable]
    +compareA:108 [in hydras.OrdinalNotations.ON_Generic]
    +compareA:123 [in hydras.OrdinalNotations.ON_Generic]
    +compareA:135 [in hydras.OrdinalNotations.ON_Generic]
    +compareA:148 [in hydras.OrdinalNotations.ON_Generic]
    +compareA:161 [in hydras.OrdinalNotations.ON_Generic]
    +compareA:173 [in hydras.OrdinalNotations.ON_Generic]
    +compareA:186 [in hydras.OrdinalNotations.ON_Generic]
    +compareA:200 [in hydras.OrdinalNotations.ON_Generic]
    +compareA:31 [in hydras.OrdinalNotations.ON_Generic]
    +compareA:50 [in hydras.OrdinalNotations.ON_Generic]
    +compareA:69 [in hydras.OrdinalNotations.ON_Generic]
    +compareA:83 [in hydras.OrdinalNotations.ON_Generic]
    +compareA:95 [in hydras.OrdinalNotations.ON_Generic]
    +compareB:112 [in hydras.OrdinalNotations.ON_Generic]
    +compareB:127 [in hydras.OrdinalNotations.ON_Generic]
    +compareB:139 [in hydras.OrdinalNotations.ON_Generic]
    +compareB:152 [in hydras.OrdinalNotations.ON_Generic]
    +compareB:165 [in hydras.OrdinalNotations.ON_Generic]
    +compareB:177 [in hydras.OrdinalNotations.ON_Generic]
    +compareB:190 [in hydras.OrdinalNotations.ON_Generic]
    +compareB:204 [in hydras.OrdinalNotations.ON_Generic]
    +compareB:35 [in hydras.OrdinalNotations.ON_Generic]
    +compareB:54 [in hydras.OrdinalNotations.ON_Generic]
    +compareB:87 [in hydras.OrdinalNotations.ON_Generic]
    +compareB:99 [in hydras.OrdinalNotations.ON_Generic]
    +compare:2 [in additions.Trace_exercise]
    +comp_res:96 [in hydras.Prelude.Comparable]
    +count:9 [in additions.AM]
    +cr:12 [in hydras.Ackermann.code]
    +cr:15 [in hydras.Ackermann.code]
    +cr:18 [in hydras.Ackermann.code]
    +cr:3 [in hydras.Ackermann.codeFreeVar]
    +cr:3 [in hydras.Ackermann.codeSubTerm]
    +cr:3 [in hydras.Ackermann.checkPrf]
    +cr:3 [in hydras.Ackermann.codeSubFormula]
    +cr:3 [in hydras.Ackermann.wellFormed]
    +cr:3 [in Goedel.codeSysPrf]
    +cr:3 [in hydras.Ackermann.codePA]
    +Cr:5 [in hydras.Schutte.Critical]
    +ctx:317 [in hydras.rpo.rpo]
    +ctx:89 [in hydras.rpo.rpo]
    +c'':46 [in hydras.Hydra.BigBattle]
    +c':1025 [in gaia_hydras.nfwfgaia]
    +c':1153 [in gaia_hydras.nfwfgaia]
    +c':1337 [in gaia_hydras.nfwfgaia]
    +c':1383 [in gaia_hydras.nfwfgaia]
    +c':1393 [in gaia_hydras.nfwfgaia]
    +c':1421 [in gaia_hydras.nfwfgaia]
    +c':1427 [in gaia_hydras.nfwfgaia]
    +c':1435 [in gaia_hydras.nfwfgaia]
    +c':1499 [in gaia_hydras.nfwfgaia]
    +c':1507 [in gaia_hydras.nfwfgaia]
    +c':1550 [in gaia_hydras.nfwfgaia]
    +c':1584 [in gaia_hydras.nfwfgaia]
    +c':1608 [in gaia_hydras.nfwfgaia]
    +c':1617 [in gaia_hydras.nfwfgaia]
    +c':1619 [in gaia_hydras.nfwfgaia]
    +c':1620 [in gaia_hydras.nfwfgaia]
    +c':1626 [in gaia_hydras.nfwfgaia]
    +c':1628 [in gaia_hydras.nfwfgaia]
    +c':1634 [in gaia_hydras.nfwfgaia]
    +c':1690 [in gaia_hydras.nfwfgaia]
    +c':1696 [in gaia_hydras.nfwfgaia]
    +c':2 [in hydras.Epsilon0.F_alpha]
    +c':20 [in additions.AM]
    +c':2065 [in gaia_hydras.nfwfgaia]
    +c':2079 [in gaia_hydras.nfwfgaia]
    +c':2084 [in gaia_hydras.nfwfgaia]
    +c':25 [in hydras.Hydra.BigBattle]
    +c':26 [in additions.Monoid_instances]
    +c':28 [in hydras.Gamma0.Gamma0]
    +c':303 [in hydras.Gamma0.Gamma0]
    +c':34 [in hydras.Hydra.BigBattle]
    +c':42 [in hydras.Hydra.BigBattle]
    +c':46 [in additions.Euclidean_Chains]
    +c':541 [in hydras.Ackermann.primRec]
    +c':58 [in additions.AM]
    +c':58 [in hydras.Hydra.BigBattle]
    +c':584 [in hydras.Gamma0.Gamma0]
    +c':81 [in additions.Addition_Chains]
    +c':84 [in hydras.Gamma0.T2]
    +c':872 [in gaia_hydras.nfwfgaia]
    +c':909 [in gaia_hydras.nfwfgaia]
    +c':917 [in gaia_hydras.nfwfgaia]
    +c':949 [in gaia_hydras.nfwfgaia]
    +c1:1173 [in gaia_hydras.nfwfgaia]
    +c1:1364 [in hydras.Ackermann.codeSubFormula]
    +c1:1817 [in gaia_hydras.nfwfgaia]
    +c1:470 [in gaia_hydras.nfwfgaia]
    +c1:598 [in gaia_hydras.nfwfgaia]
    +c1:73 [in hydras.Gamma0.Gamma0]
    +c1:80 [in hydras.Gamma0.Gamma0]
    +c1:85 [in hydras.Gamma0.Gamma0]
    +c2:1174 [in gaia_hydras.nfwfgaia]
    +c2:1365 [in hydras.Ackermann.codeSubFormula]
    +c2:1818 [in gaia_hydras.nfwfgaia]
    +c2:471 [in gaia_hydras.nfwfgaia]
    +c2:599 [in gaia_hydras.nfwfgaia]
    +c2:74 [in hydras.Gamma0.Gamma0]
    +c2:81 [in hydras.Gamma0.Gamma0]
    +c2:86 [in hydras.Gamma0.Gamma0]
    +c3:1175 [in gaia_hydras.nfwfgaia]
    +c3:1819 [in gaia_hydras.nfwfgaia]
    +c3:472 [in gaia_hydras.nfwfgaia]
    +c:1 [in hydras.Epsilon0.F_alpha]
    +c:1001 [in gaia_hydras.nfwfgaia]
    +c:1004 [in gaia_hydras.nfwfgaia]
    +c:1007 [in gaia_hydras.nfwfgaia]
    +c:101 [in hydras.Epsilon0.Hessenberg]
    +c:101 [in hydras.Ackermann.primRec]
    +c:1011 [in gaia_hydras.nfwfgaia]
    +c:1032 [in gaia_hydras.nfwfgaia]
    +c:1037 [in gaia_hydras.nfwfgaia]
    +c:104 [in hydras.MoreAck.PrimRecExamples]
    +c:105 [in hydras.Epsilon0.Hessenberg]
    +c:1052 [in gaia_hydras.nfwfgaia]
    +c:108 [in hydras.Epsilon0.Hessenberg]
    +c:113 [in hydras.Gamma0.T2]
    +c:113 [in additions.AM]
    +c:1147 [in gaia_hydras.nfwfgaia]
    +c:115 [in hydras.Ackermann.cPair]
    +c:1168 [in gaia_hydras.nfwfgaia]
    +c:117 [in hydras.Epsilon0.Hessenberg]
    +c:12 [in hydras.Gamma0.Gamma0]
    +c:1207 [in gaia_hydras.nfwfgaia]
    +c:121 [in hydras.Epsilon0.F_alpha]
    +c:1210 [in gaia_hydras.nfwfgaia]
    +C:123 [in hydras.rpo.more_list]
    +c:1254 [in gaia_hydras.nfwfgaia]
    +c:1257 [in gaia_hydras.nfwfgaia]
    +c:1260 [in gaia_hydras.nfwfgaia]
    +c:1263 [in gaia_hydras.nfwfgaia]
    +c:128 [in hydras.Epsilon0.T1]
    +c:13 [in additions.AM]
    +c:13 [in hydras.Ackermann.code]
    +c:1322 [in gaia_hydras.nfwfgaia]
    +c:133 [in hydras.Epsilon0.Hessenberg]
    +c:1332 [in gaia_hydras.nfwfgaia]
    +c:1347 [in gaia_hydras.nfwfgaia]
    +c:1352 [in gaia_hydras.nfwfgaia]
    +c:1357 [in gaia_hydras.nfwfgaia]
    +c:1362 [in gaia_hydras.nfwfgaia]
    +c:1367 [in gaia_hydras.nfwfgaia]
    +C:1369 [in hydras.Ackermann.codeSubFormula]
    +c:1372 [in gaia_hydras.nfwfgaia]
    +c:1378 [in gaia_hydras.nfwfgaia]
    +c:139 [in hydras.Ackermann.primRec]
    +c:1390 [in gaia_hydras.nfwfgaia]
    +c:14 [in hydras.Prelude.MoreDecidable]
    +c:14 [in hydras.rpo.closure]
    +C:1407 [in hydras.Ackermann.codeSubFormula]
    +c:1418 [in gaia_hydras.nfwfgaia]
    +c:142 [in hydras.Ackermann.primRec]
    +c:1424 [in gaia_hydras.nfwfgaia]
    +c:143 [in hydras.Gamma0.T2]
    +c:1430 [in gaia_hydras.nfwfgaia]
    +c:144 [in hydras.Ackermann.LNT]
    +c:144 [in hydras.Gamma0.Gamma0]
    +c:145 [in hydras.Ackermann.primRec]
    +c:145 [in additions.fib]
    +c:147 [in hydras.Ackermann.LNN]
    +c:148 [in hydras.Ackermann.LNT]
    +c:148 [in hydras.Ackermann.primRec]
    +c:149 [in hydras.Gamma0.T2]
    +c:1494 [in gaia_hydras.nfwfgaia]
    +c:15 [in hydras.solutions_exercises.FibonacciPR]
    +c:15 [in hydras.Hydra.BigBattle]
    +c:1504 [in gaia_hydras.nfwfgaia]
    +c:151 [in hydras.Ackermann.LNN]
    +C:151 [in hydras.Ackermann.fol]
    +c:1510 [in gaia_hydras.nfwfgaia]
    +c:152 [in hydras.Ackermann.primRec]
    +c:1522 [in gaia_hydras.nfwfgaia]
    +c:1525 [in gaia_hydras.nfwfgaia]
    +c:1528 [in gaia_hydras.nfwfgaia]
    +c:153 [in hydras.Ackermann.LNT]
    +c:1533 [in gaia_hydras.nfwfgaia]
    +c:1538 [in gaia_hydras.nfwfgaia]
    +c:1542 [in gaia_hydras.nfwfgaia]
    +c:1545 [in gaia_hydras.nfwfgaia]
    +c:1553 [in gaia_hydras.nfwfgaia]
    +c:156 [in hydras.Ackermann.LNN]
    +c:156 [in hydras.Ackermann.primRec]
    +c:1560 [in gaia_hydras.nfwfgaia]
    +c:1563 [in gaia_hydras.nfwfgaia]
    +c:1566 [in gaia_hydras.nfwfgaia]
    +c:157 [in additions.AM]
    +c:1570 [in gaia_hydras.nfwfgaia]
    +c:1576 [in gaia_hydras.nfwfgaia]
    +c:1580 [in gaia_hydras.nfwfgaia]
    +c:1589 [in gaia_hydras.nfwfgaia]
    +c:16 [in hydras.Ackermann.extEqualNat]
    +c:16 [in hydras.Ackermann.code]
    +c:16 [in additions.Euclidean_Chains]
    +c:16 [in hydras.Ackermann.folLogic3]
    +c:16 [in hydras.MoreAck.PrimRecExamples]
    +c:160 [in hydras.Ackermann.primRec]
    +c:1603 [in gaia_hydras.nfwfgaia]
    +c:1614 [in gaia_hydras.nfwfgaia]
    +c:1623 [in gaia_hydras.nfwfgaia]
    +c:1631 [in gaia_hydras.nfwfgaia]
    +c:1637 [in gaia_hydras.nfwfgaia]
    +c:164 [in hydras.Ackermann.LNN]
    +c:164 [in hydras.Gamma0.Gamma0]
    +c:1647 [in gaia_hydras.nfwfgaia]
    +c:1652 [in gaia_hydras.nfwfgaia]
    +c:1662 [in gaia_hydras.nfwfgaia]
    +c:1673 [in gaia_hydras.nfwfgaia]
    +c:1676 [in gaia_hydras.nfwfgaia]
    +c:168 [in hydras.Gamma0.Gamma0]
    +c:1685 [in gaia_hydras.nfwfgaia]
    +c:1693 [in gaia_hydras.nfwfgaia]
    +c:17 [in hydras.solutions_exercises.FibonacciPR]
    +c:172 [in hydras.Gamma0.Gamma0]
    +c:1747 [in gaia_hydras.nfwfgaia]
    +c:1751 [in gaia_hydras.nfwfgaia]
    +c:1754 [in gaia_hydras.nfwfgaia]
    +c:179 [in additions.Addition_Chains]
    +c:1793 [in gaia_hydras.nfwfgaia]
    +c:180 [in additions.Addition_Chains]
    +c:181 [in additions.Addition_Chains]
    +c:1812 [in gaia_hydras.nfwfgaia]
    +c:182 [in hydras.Ackermann.primRec]
    +c:185 [in hydras.Ackermann.primRec]
    +c:1858 [in gaia_hydras.nfwfgaia]
    +c:187 [in additions.Addition_Chains]
    +c:1879 [in gaia_hydras.nfwfgaia]
    +c:188 [in hydras.Ackermann.primRec]
    +c:1888 [in gaia_hydras.nfwfgaia]
    +c:19 [in additions.AM]
    +c:19 [in hydras.solutions_exercises.FibonacciPR]
    +c:190 [in hydras.Ackermann.cPair]
    +c:193 [in hydras.Ackermann.primRec]
    +c:196 [in hydras.Epsilon0.T1]
    +c:196 [in hydras.Ackermann.primRec]
    +c:199 [in hydras.Ackermann.primRec]
    +c:20 [in hydras.Prelude.MoreDecidable]
    +c:2008 [in gaia_hydras.nfwfgaia]
    +c:2023 [in gaia_hydras.nfwfgaia]
    +c:2027 [in gaia_hydras.nfwfgaia]
    +c:2032 [in gaia_hydras.nfwfgaia]
    +c:2039 [in gaia_hydras.nfwfgaia]
    +c:204 [in hydras.Ackermann.primRec]
    +c:2046 [in gaia_hydras.nfwfgaia]
    +c:2049 [in gaia_hydras.nfwfgaia]
    +c:205 [in additions.Addition_Chains]
    +c:2055 [in gaia_hydras.nfwfgaia]
    +c:2060 [in gaia_hydras.nfwfgaia]
    +c:207 [in hydras.Ackermann.primRec]
    +c:207 [in additions.Addition_Chains]
    +c:2072 [in gaia_hydras.nfwfgaia]
    +c:2075 [in gaia_hydras.nfwfgaia]
    +c:208 [in additions.Addition_Chains]
    +c:208 [in gaia_hydras.nfwfgaia]
    +c:21 [in hydras.solutions_exercises.FibonacciPR]
    +c:210 [in hydras.Ackermann.primRec]
    +c:211 [in gaia_hydras.nfwfgaia]
    +c:213 [in additions.Addition_Chains]
    +c:214 [in additions.Addition_Chains]
    +c:214 [in gaia_hydras.nfwfgaia]
    +c:215 [in hydras.Ackermann.primRec]
    +c:215 [in hydras.Ackermann.cPair]
    +c:216 [in additions.Addition_Chains]
    +c:217 [in gaia_hydras.nfwfgaia]
    +c:218 [in hydras.Ackermann.primRec]
    +c:218 [in additions.Addition_Chains]
    +c:22 [in hydras.Hydra.BigBattle]
    +c:22 [in additions.Monoid_instances]
    +c:220 [in hydras.Gamma0.Gamma0]
    +c:221 [in hydras.Ackermann.primRec]
    +c:224 [in hydras.Ackermann.primRec]
    +c:226 [in hydras.Gamma0.Gamma0]
    +c:227 [in hydras.Ackermann.primRec]
    +c:23 [in additions.Trace_exercise]
    +c:230 [in hydras.Gamma0.Gamma0]
    +c:231 [in hydras.Ackermann.primRec]
    +c:234 [in hydras.Ackermann.primRec]
    +c:234 [in hydras.Gamma0.Gamma0]
    +c:237 [in hydras.Ackermann.primRec]
    +c:24 [in hydras.Prelude.Comparable]
    +c:24 [in additions.Trace_exercise]
    +c:240 [in hydras.Ackermann.primRec]
    +c:243 [in hydras.Ackermann.primRec]
    +c:247 [in hydras.Ackermann.primRec]
    +c:25 [in gaia_hydras.GHessenberg]
    +c:250 [in hydras.Ackermann.primRec]
    +c:253 [in hydras.Ackermann.primRec]
    +c:256 [in hydras.Ackermann.primRec]
    +c:259 [in hydras.Ackermann.primRec]
    +c:26 [in additions.Fib2]
    +c:26 [in hydras.Prelude.More_Arith]
    +C:26 [in hydras.Ackermann.fol]
    +c:26 [in hydras.Gamma0.Gamma0]
    +c:263 [in hydras.Ackermann.primRec]
    +C:267 [in hydras.Ackermann.checkPrf]
    +c:267 [in hydras.Ackermann.primRec]
    +c:270 [in hydras.Gamma0.Gamma0]
    +c:271 [in hydras.Ackermann.primRec]
    +c:275 [in hydras.Ackermann.primRec]
    +c:279 [in hydras.Ackermann.primRec]
    +c:28 [in additions.Fib2]
    +c:284 [in hydras.Ackermann.primRec]
    +c:286 [in hydras.Gamma0.Gamma0]
    +c:288 [in hydras.Ackermann.primRec]
    +c:288 [in additions.Addition_Chains]
    +c:290 [in hydras.Gamma0.Gamma0]
    +c:292 [in hydras.Ackermann.primRec]
    +c:294 [in hydras.Gamma0.Gamma0]
    +c:297 [in hydras.Ackermann.primRec]
    +c:297 [in additions.Addition_Chains]
    +c:298 [in hydras.Gamma0.Gamma0]
    +c:3 [in additions.AM]
    +C:3 [in hydras.rpo.more_list]
    +c:3 [in hydras.Epsilon0.F_alpha]
    +c:3 [in hydras.Prelude.MoreDecidable]
    +c:301 [in hydras.Ackermann.primRec]
    +c:305 [in hydras.Ackermann.primRec]
    +c:305 [in gaia_hydras.nfwfgaia]
    +c:308 [in Goedel.PRrepresentable]
    +c:308 [in gaia_hydras.nfwfgaia]
    +c:309 [in hydras.Ackermann.primRec]
    +c:309 [in hydras.Gamma0.Gamma0]
    +C:31 [in hydras.Ackermann.folProof]
    +c:31 [in hydras.Prelude.Comparable]
    +c:31 [in hydras.Hydra.BigBattle]
    +c:312 [in hydras.Epsilon0.T1]
    +c:313 [in hydras.Ackermann.primRec]
    +c:317 [in hydras.Ackermann.primRec]
    +c:32 [in hydras.Ackermann.extEqualNat]
    +c:32 [in hydras.Gamma0.Gamma0]
    +c:32 [in gaia_hydras.GHessenberg]
    +c:321 [in hydras.Ackermann.primRec]
    +c:326 [in hydras.Ackermann.primRec]
    +c:33 [in hydras.Ackermann.folLogic3]
    +c:330 [in hydras.Ackermann.primRec]
    +c:334 [in hydras.Ackermann.primRec]
    +c:338 [in hydras.Ackermann.primRec]
    +c:34 [in additions.AM]
    +c:340 [in Goedel.PRrepresentable]
    +c:342 [in Goedel.PRrepresentable]
    +c:342 [in hydras.Ackermann.primRec]
    +c:342 [in hydras.Ackermann.cPair]
    +c:344 [in Goedel.PRrepresentable]
    +c:345 [in Goedel.PRrepresentable]
    +c:348 [in hydras.Ackermann.cPair]
    +c:35 [in hydras.Ackermann.cPair]
    +c:35 [in gaia_hydras.GHessenberg]
    +c:351 [in hydras.Ackermann.cPair]
    +c:352 [in additions.Euclidean_Chains]
    +c:353 [in Goedel.PRrepresentable]
    +c:354 [in hydras.Ackermann.cPair]
    +c:357 [in Goedel.PRrepresentable]
    +c:357 [in hydras.Ackermann.cPair]
    +c:359 [in hydras.Ackermann.cPair]
    +c:36 [in hydras.Prelude.MoreVectors]
    +c:361 [in Goedel.PRrepresentable]
    +c:361 [in hydras.Ackermann.cPair]
    +c:364 [in hydras.Ackermann.cPair]
    +c:365 [in Goedel.PRrepresentable]
    +c:367 [in hydras.Ackermann.cPair]
    +c:37 [in hydras.Prelude.Comparable]
    +c:370 [in hydras.Ackermann.cPair]
    +c:38 [in hydras.Hydra.BigBattle]
    +c:38 [in gaia_hydras.GHessenberg]
    +c:387 [in Goedel.PRrepresentable]
    +c:39 [in hydras.OrdinalNotations.OmegaOmega]
    +c:39 [in hydras.Schutte.Well_Orders]
    +c:391 [in Goedel.PRrepresentable]
    +c:395 [in Goedel.PRrepresentable]
    +c:399 [in Goedel.PRrepresentable]
    +c:4 [in additions.AM]
    +c:4 [in hydras.Gamma0.Gamma0]
    +c:40 [in additions.Addition_Chains]
    +c:401 [in gaia_hydras.nfwfgaia]
    +c:407 [in Goedel.PRrepresentable]
    +c:407 [in gaia_hydras.nfwfgaia]
    +c:410 [in gaia_hydras.nfwfgaia]
    +c:411 [in Goedel.PRrepresentable]
    +c:414 [in hydras.Epsilon0.T1]
    +c:414 [in gaia_hydras.nfwfgaia]
    +c:415 [in Goedel.PRrepresentable]
    +c:419 [in Goedel.PRrepresentable]
    +c:43 [in hydras.Ackermann.cPair]
    +c:43 [in additions.Addition_Chains]
    +c:432 [in hydras.Gamma0.Gamma0]
    +c:438 [in hydras.Ackermann.primRec]
    +c:444 [in hydras.Epsilon0.T1]
    +c:445 [in hydras.Epsilon0.T1]
    +c:45 [in additions.Euclidean_Chains]
    +c:450 [in hydras.Epsilon0.T1]
    +c:460 [in hydras.Epsilon0.T1]
    +c:461 [in gaia_hydras.nfwfgaia]
    +c:463 [in hydras.Epsilon0.T1]
    +c:47 [in hydras.Ackermann.cPair]
    +c:480 [in hydras.Gamma0.Gamma0]
    +c:49 [in hydras.Prelude.More_Arith]
    +c:50 [in hydras.Prelude.Comparable]
    +c:50 [in hydras.Hydra.BigBattle]
    +c:505 [in hydras.Epsilon0.T1]
    +c:51 [in gaia_hydras.T1Bridge]
    +c:51 [in hydras.Ackermann.cPair]
    +c:51 [in additions.Addition_Chains]
    +c:52 [in additions.Addition_Chains]
    +c:526 [in hydras.Gamma0.Gamma0]
    +c:529 [in hydras.Gamma0.Gamma0]
    +c:53 [in hydras.Prelude.Comparable]
    +c:532 [in hydras.Gamma0.Gamma0]
    +c:54 [in hydras.Hydra.BigBattle]
    +c:540 [in hydras.Ackermann.primRec]
    +c:55 [in hydras.Ackermann.cPair]
    +c:558 [in hydras.Gamma0.Gamma0]
    +c:56 [in hydras.Prelude.Comparable]
    +c:56 [in additions.Addition_Chains]
    +c:565 [in hydras.Epsilon0.T1]
    +c:567 [in hydras.Gamma0.Gamma0]
    +c:57 [in additions.AM]
    +c:573 [in hydras.Epsilon0.T1]
    +c:574 [in hydras.Gamma0.Gamma0]
    +c:577 [in hydras.Epsilon0.T1]
    +c:578 [in hydras.Gamma0.Gamma0]
    +c:580 [in hydras.Gamma0.Gamma0]
    +c:581 [in hydras.Epsilon0.T1]
    +c:583 [in hydras.Gamma0.Gamma0]
    +c:59 [in hydras.Hydra.BigBattle]
    +c:591 [in hydras.Gamma0.Gamma0]
    +c:594 [in hydras.Gamma0.Gamma0]
    +c:599 [in hydras.Gamma0.Gamma0]
    +c:604 [in hydras.Epsilon0.T1]
    +c:607 [in hydras.Epsilon0.T1]
    +c:611 [in hydras.Epsilon0.T1]
    +c:614 [in hydras.Epsilon0.T1]
    +c:614 [in hydras.Ackermann.primRec]
    +c:617 [in hydras.Epsilon0.T1]
    +c:621 [in hydras.Epsilon0.T1]
    +c:622 [in hydras.Ackermann.primRec]
    +c:623 [in hydras.Epsilon0.T1]
    +c:626 [in hydras.Ackermann.primRec]
    +c:629 [in hydras.Epsilon0.T1]
    +c:636 [in hydras.Gamma0.Gamma0]
    +c:641 [in hydras.Ackermann.primRec]
    +c:646 [in hydras.Ackermann.primRec]
    +c:654 [in hydras.Ackermann.primRec]
    +c:673 [in hydras.Gamma0.Gamma0]
    +c:677 [in hydras.Ackermann.primRec]
    +c:68 [in hydras.Schutte.Schutte_basics]
    +c:68 [in additions.Addition_Chains]
    +c:681 [in hydras.Ackermann.primRec]
    +c:684 [in hydras.Ackermann.primRec]
    +c:686 [in hydras.Ackermann.primRec]
    +c:688 [in hydras.Ackermann.primRec]
    +c:69 [in hydras.Prelude.DecPreOrder]
    +c:690 [in hydras.Ackermann.primRec]
    +c:692 [in hydras.Gamma0.Gamma0]
    +c:693 [in hydras.Ackermann.primRec]
    +c:696 [in hydras.Ackermann.primRec]
    +c:70 [in additions.Addition_Chains]
    +c:71 [in hydras.Gamma0.T2]
    +c:71 [in additions.AM]
    +c:71 [in hydras.Schutte.Schutte_basics]
    +c:717 [in hydras.Ackermann.primRec]
    +c:721 [in hydras.Ackermann.primRec]
    +c:722 [in gaia_hydras.nfwfgaia]
    +c:726 [in hydras.Ackermann.primRec]
    +c:729 [in hydras.Ackermann.primRec]
    +c:732 [in hydras.Ackermann.primRec]
    +c:733 [in hydras.Epsilon0.T1]
    +c:735 [in hydras.Ackermann.primRec]
    +c:737 [in hydras.Epsilon0.T1]
    +c:738 [in hydras.Ackermann.primRec]
    +c:74 [in hydras.Schutte.Schutte_basics]
    +c:741 [in hydras.Ackermann.primRec]
    +c:744 [in hydras.Ackermann.primRec]
    +c:747 [in hydras.Ackermann.primRec]
    +c:75 [in hydras.Prelude.DecPreOrder]
    +c:750 [in hydras.Ackermann.primRec]
    +c:753 [in hydras.Ackermann.primRec]
    +c:759 [in hydras.Ackermann.primRec]
    +c:761 [in hydras.Ackermann.primRec]
    +c:763 [in hydras.Ackermann.primRec]
    +c:765 [in hydras.Ackermann.primRec]
    +c:767 [in hydras.Ackermann.primRec]
    +c:769 [in hydras.Ackermann.primRec]
    +c:77 [in hydras.Schutte.Schutte_basics]
    +c:771 [in hydras.Ackermann.primRec]
    +c:773 [in hydras.Ackermann.primRec]
    +c:775 [in hydras.Ackermann.primRec]
    +c:777 [in hydras.Ackermann.primRec]
    +c:779 [in hydras.Ackermann.primRec]
    +c:78 [in additions.Addition_Chains]
    +c:781 [in hydras.Ackermann.primRec]
    +c:784 [in hydras.Ackermann.primRec]
    +c:787 [in hydras.Ackermann.primRec]
    +c:79 [in hydras.Epsilon0.Hessenberg]
    +c:795 [in hydras.Ackermann.primRec]
    +c:8 [in hydras.Prelude.MoreDecidable]
    +c:8 [in hydras.Gamma0.Gamma0]
    +c:80 [in additions.Addition_Chains]
    +c:801 [in hydras.Ackermann.primRec]
    +c:81 [in additions.AM]
    +c:850 [in hydras.Ackermann.codeSubFormula]
    +c:854 [in gaia_hydras.nfwfgaia]
    +c:863 [in gaia_hydras.nfwfgaia]
    +c:868 [in gaia_hydras.nfwfgaia]
    +c:88 [in hydras.OrdinalNotations.OmegaOmega]
    +c:9 [in hydras.MoreAck.PrimRecExamples]
    +c:90 [in hydras.MoreAck.PrimRecExamples]
    +c:905 [in gaia_hydras.nfwfgaia]
    +c:91 [in additions.AM]
    +c:913 [in gaia_hydras.nfwfgaia]
    +c:92 [in additions.AM]
    +c:93 [in hydras.Gamma0.T2]
    +c:940 [in gaia_hydras.nfwfgaia]
    +c:947 [in gaia_hydras.nfwfgaia]
    +c:95 [in hydras.Prelude.Comparable]
    +c:995 [in gaia_hydras.nfwfgaia]
    +

    D

    +daughters:7 [in hydras.Hydra.Hydra_Definitions]
    +DA:36 [in hydras.Schutte.Countable]
    +DA:37 [in hydras.Prelude.DecPreOrder_Instances]
    +DB:38 [in hydras.Prelude.DecPreOrder_Instances]
    +dec:20 [in hydras.Prelude.STDPP_compat]
    +dec:33 [in hydras.Prelude.Sort_spec]
    +dec:42 [in hydras.Prelude.Sort_spec]
    +dec:66 [in hydras.Prelude.Sort_spec]
    +dec:77 [in hydras.Prelude.Sort_spec]
    +dec:90 [in hydras.Prelude.DecPreOrder]
    +delta:593 [in hydras.Epsilon0.T1]
    +delta:62 [in hydras.Schutte.Addition]
    +dest:102 [in hydras.Hydra.Hydra_Definitions]
    +disp:27 [in gaia_hydras.onType]
    +dom:152 [in hydras.rpo.more_list]
    +d':1205 [in gaia_hydras.nfwfgaia]
    +d':1339 [in gaia_hydras.nfwfgaia]
    +d':1385 [in gaia_hydras.nfwfgaia]
    +d':1437 [in gaia_hydras.nfwfgaia]
    +d':1501 [in gaia_hydras.nfwfgaia]
    +d':1557 [in gaia_hydras.nfwfgaia]
    +d':1586 [in gaia_hydras.nfwfgaia]
    +d':1610 [in gaia_hydras.nfwfgaia]
    +d':1692 [in gaia_hydras.nfwfgaia]
    +d':2044 [in gaia_hydras.nfwfgaia]
    +d':2067 [in gaia_hydras.nfwfgaia]
    +d':27 [in additions.Monoid_instances]
    +d':849 [in gaia_hydras.nfwfgaia]
    +d:10 [in hydras.MoreAck.PrimRecExamples]
    +d:116 [in hydras.Ackermann.cPair]
    +d:118 [in hydras.Epsilon0.Hessenberg]
    +d:13 [in hydras.Prelude.MoreDecidable]
    +d:1308 [in hydras.Ackermann.codeSubFormula]
    +d:1334 [in gaia_hydras.nfwfgaia]
    +d:1349 [in gaia_hydras.nfwfgaia]
    +d:1354 [in gaia_hydras.nfwfgaia]
    +d:1359 [in gaia_hydras.nfwfgaia]
    +d:1364 [in gaia_hydras.nfwfgaia]
    +d:1369 [in gaia_hydras.nfwfgaia]
    +d:1374 [in gaia_hydras.nfwfgaia]
    +d:1380 [in gaia_hydras.nfwfgaia]
    +d:1432 [in gaia_hydras.nfwfgaia]
    +d:146 [in additions.fib]
    +d:149 [in hydras.Ackermann.LNT]
    +d:149 [in hydras.Ackermann.primRec]
    +d:1496 [in gaia_hydras.nfwfgaia]
    +d:152 [in hydras.Ackermann.LNN]
    +d:153 [in hydras.Ackermann.primRec]
    +d:1535 [in gaia_hydras.nfwfgaia]
    +d:154 [in hydras.Ackermann.LNT]
    +d:1546 [in gaia_hydras.nfwfgaia]
    +d:1555 [in gaia_hydras.nfwfgaia]
    +d:157 [in hydras.Ackermann.LNN]
    +d:157 [in hydras.Ackermann.primRec]
    +d:1591 [in gaia_hydras.nfwfgaia]
    +d:1605 [in gaia_hydras.nfwfgaia]
    +d:161 [in hydras.Ackermann.primRec]
    +d:165 [in hydras.Ackermann.LNN]
    +d:1654 [in gaia_hydras.nfwfgaia]
    +d:1678 [in gaia_hydras.nfwfgaia]
    +d:1687 [in gaia_hydras.nfwfgaia]
    +d:17 [in hydras.MoreAck.PrimRecExamples]
    +d:1795 [in gaia_hydras.nfwfgaia]
    +d:19 [in hydras.Prelude.MoreDecidable]
    +D:2 [in hydras.Schutte.Lub]
    +d:2029 [in gaia_hydras.nfwfgaia]
    +d:23 [in additions.Monoid_instances]
    +d:264 [in hydras.Ackermann.primRec]
    +d:268 [in hydras.Ackermann.primRec]
    +d:272 [in hydras.Ackermann.primRec]
    +d:276 [in hydras.Ackermann.primRec]
    +d:280 [in hydras.Ackermann.primRec]
    +d:285 [in hydras.Ackermann.primRec]
    +d:289 [in hydras.Ackermann.primRec]
    +d:293 [in hydras.Ackermann.primRec]
    +d:298 [in hydras.Ackermann.primRec]
    +d:302 [in hydras.Ackermann.primRec]
    +d:306 [in hydras.Ackermann.primRec]
    +d:310 [in hydras.Ackermann.primRec]
    +d:314 [in hydras.Ackermann.primRec]
    +d:318 [in hydras.Ackermann.primRec]
    +d:322 [in hydras.Ackermann.primRec]
    +d:327 [in hydras.Ackermann.primRec]
    +d:331 [in hydras.Ackermann.primRec]
    +d:335 [in hydras.Ackermann.primRec]
    +d:335 [in additions.Euclidean_Chains]
    +d:339 [in hydras.Ackermann.primRec]
    +d:34 [in hydras.Ackermann.folLogic3]
    +d:343 [in hydras.Ackermann.primRec]
    +d:36 [in hydras.Ackermann.cPair]
    +d:385 [in additions.Euclidean_Chains]
    +d:391 [in additions.Euclidean_Chains]
    +d:398 [in additions.Euclidean_Chains]
    +d:4 [in hydras.Prelude.MoreDecidable]
    +d:44 [in hydras.Ackermann.cPair]
    +d:48 [in hydras.Ackermann.cPair]
    +d:5 [in hydras.Prelude.MoreDecidable]
    +d:52 [in hydras.Ackermann.cPair]
    +d:56 [in hydras.Ackermann.cPair]
    +d:567 [in hydras.Epsilon0.T1]
    +d:595 [in hydras.Gamma0.Gamma0]
    +d:609 [in hydras.Epsilon0.T1]
    +d:625 [in hydras.Epsilon0.T1]
    +d:631 [in hydras.Epsilon0.T1]
    +d:655 [in hydras.Ackermann.primRec]
    +D:8 [in hydras.Schutte.Lub]
    +d:845 [in gaia_hydras.nfwfgaia]
    +d:851 [in hydras.Ackermann.codeSubFormula]
    +d:91 [in hydras.MoreAck.PrimRecExamples]
    +

    E

    +eqA:107 [in hydras.rpo.more_list]
    +eqA:115 [in hydras.rpo.more_list]
    +eqA:139 [in hydras.rpo.more_list]
    +eqA:148 [in hydras.rpo.more_list]
    +eqA:158 [in hydras.rpo.more_list]
    +eqA:167 [in hydras.rpo.more_list]
    +eqA:174 [in hydras.rpo.more_list]
    +eqA:182 [in hydras.rpo.more_list]
    +eqA:190 [in hydras.rpo.more_list]
    +eqA:205 [in hydras.rpo.more_list]
    +eqA:214 [in hydras.rpo.more_list]
    +eqA:224 [in hydras.rpo.more_list]
    +eqA:242 [in hydras.rpo.more_list]
    +eqA:251 [in hydras.rpo.more_list]
    +eqA:263 [in hydras.rpo.more_list]
    +eqA:81 [in hydras.rpo.more_list]
    +eqA:91 [in hydras.rpo.more_list]
    +eqA:99 [in hydras.rpo.more_list]
    +equiv:44 [in additions.Euclidean_Chains]
    +equiv:49 [in additions.Euclidean_Chains]
    +equiv:52 [in additions.Euclidean_Chains]
    +equ:101 [in additions.AM]
    +equ:106 [in additions.AM]
    +equ:111 [in additions.AM]
    +equ:121 [in additions.AM]
    +equ:126 [in additions.AM]
    +equ:38 [in additions.AM]
    +equ:44 [in additions.AM]
    +equ:55 [in additions.AM]
    +equ:62 [in additions.AM]
    +equ:75 [in additions.AM]
    +equ:85 [in additions.AM]
    +equ:96 [in additions.AM]
    +eqv:104 [in additions.Addition_Chains]
    +eqv:112 [in additions.Addition_Chains]
    +eqv:118 [in additions.Addition_Chains]
    +eqv:125 [in additions.Addition_Chains]
    +eqv:132 [in additions.Addition_Chains]
    +eqv:162 [in additions.Addition_Chains]
    +eqv:169 [in additions.Addition_Chains]
    +eqv:175 [in additions.Addition_Chains]
    +eq_A_dec:19 [in hydras.rpo.rpo]
    +eq_A_dec:14 [in hydras.rpo.rpo]
    +eq_A_dec:5 [in hydras.rpo.rpo]
    +eta:80 [in hydras.Schutte.Critical]
    +exp:746 [in hydras.Epsilon0.T1]
    +exp:751 [in hydras.Epsilon0.T1]
    +E_eq:240 [in additions.AM]
    +E_one:239 [in additions.AM]
    +E_op:238 [in additions.AM]
    +E_eq:233 [in additions.AM]
    +E_one:232 [in additions.AM]
    +E_op:231 [in additions.AM]
    +E_eq:51 [in additions.Pow_variant]
    +E_one:50 [in additions.Pow_variant]
    +E_op:49 [in additions.Pow_variant]
    +E_eq:42 [in additions.Pow_variant]
    +E_one:41 [in additions.Pow_variant]
    +E_op:40 [in additions.Pow_variant]
    +E_eq:32 [in additions.Pow_variant]
    +E_one:31 [in additions.Pow_variant]
    +E_op:30 [in additions.Pow_variant]
    +E_eq:26 [in additions.Pow_variant]
    +E_one:25 [in additions.Pow_variant]
    +E_op:24 [in additions.Pow_variant]
    +E_eq:19 [in additions.Pow_variant]
    +E_one:18 [in additions.Pow_variant]
    +E_op:17 [in additions.Pow_variant]
    +E_eq:13 [in additions.Pow_variant]
    +E_one:12 [in additions.Pow_variant]
    +E_op:11 [in additions.Pow_variant]
    +E_eq:4 [in additions.Pow_variant]
    +E_one:3 [in additions.Pow_variant]
    +E_op:2 [in additions.Pow_variant]
    +E_eq:59 [in additions.Pow]
    +E_op:58 [in additions.Pow]
    +E_eq:51 [in additions.Pow]
    +E_one:50 [in additions.Pow]
    +E_op:49 [in additions.Pow]
    +E_eq:42 [in additions.Pow]
    +E_one:41 [in additions.Pow]
    +E_op:40 [in additions.Pow]
    +E_eq:32 [in additions.Pow]
    +E_one:31 [in additions.Pow]
    +E_op:30 [in additions.Pow]
    +E_eq:26 [in additions.Pow]
    +E_one:25 [in additions.Pow]
    +E_op:24 [in additions.Pow]
    +E_eq:19 [in additions.Pow]
    +E_one:18 [in additions.Pow]
    +E_op:17 [in additions.Pow]
    +E_eq:13 [in additions.Pow]
    +E_one:12 [in additions.Pow]
    +E_op:11 [in additions.Pow]
    +E_eq:4 [in additions.Pow]
    +E_one:3 [in additions.Pow]
    +E_op:2 [in additions.Pow]
    +E_eq:54 [in additions.Monoid_def]
    +E_one:53 [in additions.Monoid_def]
    +E_op:52 [in additions.Monoid_def]
    +E_eq:49 [in additions.Monoid_def]
    +E_one:48 [in additions.Monoid_def]
    +E_op:47 [in additions.Monoid_def]
    +E_eq:44 [in additions.Monoid_def]
    +E_one:43 [in additions.Monoid_def]
    +E_op:42 [in additions.Monoid_def]
    +E_eq:39 [in additions.Monoid_def]
    +E_one:38 [in additions.Monoid_def]
    +E_op:37 [in additions.Monoid_def]
    +E_eq:24 [in additions.Monoid_def]
    +E_one:23 [in additions.Monoid_def]
    +E_op:22 [in additions.Monoid_def]
    +E_equiv:197 [in additions.Euclidean_Chains]
    +E_one:196 [in additions.Euclidean_Chains]
    +E_equiv:185 [in additions.Euclidean_Chains]
    +E_one:184 [in additions.Euclidean_Chains]
    +E_equiv:171 [in additions.Euclidean_Chains]
    +E_one:170 [in additions.Euclidean_Chains]
    +E_equiv:165 [in additions.Euclidean_Chains]
    +E_one:164 [in additions.Euclidean_Chains]
    +E_equiv:113 [in additions.Euclidean_Chains]
    +E_one:112 [in additions.Euclidean_Chains]
    +E_equiv:102 [in additions.Euclidean_Chains]
    +E_one:101 [in additions.Euclidean_Chains]
    +E_equiv:91 [in additions.Euclidean_Chains]
    +E_one:90 [in additions.Euclidean_Chains]
    +E_equiv:71 [in additions.Euclidean_Chains]
    +E_one:70 [in additions.Euclidean_Chains]
    +E_equiv:64 [in additions.Euclidean_Chains]
    +E_one:63 [in additions.Euclidean_Chains]
    +E_equiv:56 [in additions.Euclidean_Chains]
    +E_one:55 [in additions.Euclidean_Chains]
    +E_equiv:38 [in additions.Euclidean_Chains]
    +E_one:37 [in additions.Euclidean_Chains]
    +E_eq:234 [in additions.Addition_Chains]
    +E_one:233 [in additions.Addition_Chains]
    +E_op:232 [in additions.Addition_Chains]
    +E_eq:226 [in additions.Addition_Chains]
    +E_one:225 [in additions.Addition_Chains]
    +E_op:224 [in additions.Addition_Chains]
    +E_eq:74 [in additions.Addition_Chains]
    +E_one:73 [in additions.Addition_Chains]
    +E_op:72 [in additions.Addition_Chains]
    +E_eq:66 [in additions.Addition_Chains]
    +E_one:65 [in additions.Addition_Chains]
    +E_op:64 [in additions.Addition_Chains]
    +E_eq:60 [in additions.Addition_Chains]
    +E_one:59 [in additions.Addition_Chains]
    +E_op:58 [in additions.Addition_Chains]
    +E_eq:49 [in additions.Addition_Chains]
    +E_one:48 [in additions.Addition_Chains]
    +E_op:47 [in additions.Addition_Chains]
    +e':33 [in hydras.rpo.list_set]
    +e':36 [in hydras.rpo.list_set]
    +e1:103 [in additions.fib]
    +e1:110 [in additions.fib]
    +e1:179 [in hydras.rpo.list_set]
    +e2:104 [in additions.fib]
    +e2:111 [in additions.fib]
    +e2:180 [in hydras.rpo.list_set]
    +e:10 [in hydras.rpo.list_set]
    +e:100 [in hydras.rpo.list_set]
    +e:103 [in hydras.rpo.list_set]
    +e:106 [in hydras.rpo.list_set]
    +e:109 [in hydras.rpo.list_set]
    +e:11 [in hydras.MoreAck.PrimRecExamples]
    +e:112 [in hydras.rpo.list_set]
    +e:119 [in additions.fib]
    +e:121 [in hydras.rpo.list_set]
    +E:126 [in hydras.Schutte.Ordering_Functions]
    +e:129 [in hydras.rpo.list_set]
    +e:132 [in hydras.rpo.list_set]
    +e:136 [in hydras.rpo.list_set]
    +e:139 [in hydras.rpo.list_set]
    +e:143 [in hydras.rpo.list_set]
    +e:147 [in hydras.rpo.list_set]
    +e:151 [in hydras.rpo.list_set]
    +e:154 [in hydras.rpo.list_set]
    +e:157 [in hydras.rpo.list_set]
    +e:170 [in hydras.rpo.list_set]
    +e:199 [in hydras.rpo.list_set]
    +E:2 [in hydras.Prelude.Restriction]
    +E:2 [in hydras.solutions_exercises.Limit_Infinity]
    +e:204 [in hydras.rpo.term]
    +e:21 [in hydras.rpo.term]
    +e:22 [in hydras.rpo.list_set]
    +e:24 [in hydras.rpo.list_set]
    +e:241 [in hydras.rpo.list_set]
    +e:245 [in hydras.rpo.list_set]
    +e:252 [in hydras.rpo.list_set]
    +e:26 [in hydras.rpo.list_set]
    +e:28 [in hydras.rpo.list_set]
    +e:29 [in hydras.rpo.list_permut]
    +e:30 [in hydras.rpo.list_set]
    +e:32 [in hydras.rpo.list_set]
    +e:32 [in hydras.rpo.list_permut]
    +e:33 [in hydras.rpo.list_permut]
    +e:35 [in hydras.rpo.list_set]
    +e:39 [in hydras.rpo.list_set]
    +e:46 [in hydras.rpo.list_set]
    +e:54 [in hydras.Prelude.More_Arith]
    +e:55 [in hydras.rpo.list_permut]
    +e:57 [in hydras.rpo.list_set]
    +e:61 [in hydras.rpo.list_set]
    +e:65 [in hydras.rpo.list_set]
    +e:69 [in hydras.rpo.list_set]
    +e:73 [in hydras.rpo.list_set]
    +e:743 [in hydras.Epsilon0.T1]
    +e:75 [in hydras.rpo.list_set]
    +e:754 [in hydras.Epsilon0.T1]
    +e:78 [in hydras.rpo.list_set]
    +e:81 [in hydras.rpo.list_set]
    +e:84 [in hydras.rpo.list_set]
    +e:85 [in hydras.rpo.list_set]
    +e:92 [in hydras.MoreAck.PrimRecExamples]
    +e:97 [in hydras.rpo.list_set]
    +

    F

    +fA:181 [in hydras.OrdinalNotations.ON_Generic]
    +fB:182 [in hydras.OrdinalNotations.ON_Generic]
    +fc1:120 [in additions.Euclidean_Chains]
    +fc1:129 [in additions.Euclidean_Chains]
    +fc1:133 [in additions.Euclidean_Chains]
    +fc2:121 [in additions.Euclidean_Chains]
    +fc2:130 [in additions.Euclidean_Chains]
    +fc2:134 [in additions.Euclidean_Chains]
    +fc:108 [in additions.Euclidean_Chains]
    +fc:34 [in additions.Euclidean_Chains]
    +fc:79 [in additions.Euclidean_Chains]
    +fc:86 [in additions.Euclidean_Chains]
    +fin:90 [in additions.Addition_Chains]
    +fn1:47 [in additions.fib]
    +fn2:48 [in additions.fib]
    +fn3:49 [in additions.fib]
    +fn:33 [in additions.AM]
    +fn:443 [in hydras.Ackermann.primRec]
    +fn:456 [in hydras.Ackermann.primRec]
    +fn:477 [in hydras.Ackermann.primRec]
    +foo:167 [in hydras.Schutte.Ordering_Functions]
    +foo:42 [in hydras.Ackermann.fol]
    +foo:45 [in hydras.Ackermann.fol]
    +fp:233 [in additions.Euclidean_Chains]
    +fp:302 [in additions.Euclidean_Chains]
    +fp:318 [in additions.Euclidean_Chains]
    +fp:320 [in additions.Euclidean_Chains]
    +Fp:323 [in additions.Euclidean_Chains]
    +Fp:328 [in additions.Euclidean_Chains]
    +fq:223 [in additions.Euclidean_Chains]
    +fq:232 [in additions.Euclidean_Chains]
    +fq:234 [in additions.Euclidean_Chains]
    +fq:294 [in additions.Euclidean_Chains]
    +fq:299 [in additions.Euclidean_Chains]
    +fq:303 [in additions.Euclidean_Chains]
    +fq:319 [in additions.Euclidean_Chains]
    +fq:321 [in additions.Euclidean_Chains]
    +frec:113 [in hydras.Ackermann.folProp]
    +frec:74 [in hydras.Ackermann.codeSubFormula]
    +frec:76 [in hydras.Ackermann.folProp]
    +frec:98 [in hydras.Ackermann.folProp]
    +from:16 [in gaia_hydras.GPaths]
    +from:34 [in gaia_hydras.GPaths]
    +from:44 [in gaia_hydras.GPaths]
    +from:47 [in gaia_hydras.GPaths]
    +from:64 [in hydras.Prelude.MoreVectors]
    +from:70 [in hydras.Prelude.Sort_spec]
    +fs:19 [in hydras.MoreAck.AckNotPR]
    +fs:448 [in Goedel.PRrepresentable]
    +fs:459 [in Goedel.PRrepresentable]
    +fs:467 [in Goedel.PRrepresentable]
    +fs:77 [in hydras.Ackermann.primRec]
    +fuel:747 [in hydras.Epsilon0.T1]
    +fuel:87 [in hydras.Epsilon0.Canon]
    +fuel:94 [in hydras.Epsilon0.Canon]
    +F_omega_PR:13 [in hydras.Epsilon0.F_omega]
    +f_Sv:55 [in hydras.Ackermann.PA]
    +f_0:54 [in hydras.Ackermann.PA]
    +f_Sv:4 [in hydras.Ackermann.PA]
    +f_0:3 [in hydras.Ackermann.PA]
    +f_l:286 [in hydras.rpo.rpo]
    +f_l:283 [in hydras.rpo.rpo]
    +f_l:274 [in hydras.rpo.rpo]
    +f':19 [in gaia_hydras.T1Bridge]
    +f':22 [in gaia_hydras.T1Bridge]
    +f':33 [in gaia_hydras.T1Bridge]
    +f':348 [in hydras.Ackermann.primRec]
    +f':36 [in gaia_hydras.T1Bridge]
    +f0:1239 [in hydras.Ackermann.codeSubFormula]
    +f0:1242 [in hydras.Ackermann.codeSubFormula]
    +f0:1296 [in hydras.Ackermann.codeSubFormula]
    +f0:1299 [in hydras.Ackermann.codeSubFormula]
    +f0:13 [in hydras.Ackermann.PA]
    +f0:148 [in hydras.Ackermann.codePA]
    +f0:151 [in hydras.Ackermann.codePA]
    +f0:158 [in hydras.Ackermann.codePA]
    +f0:160 [in hydras.Ackermann.codePA]
    +f0:208 [in hydras.Ackermann.fol]
    +f0:231 [in hydras.Ackermann.fol]
    +f0:249 [in hydras.Ackermann.fol]
    +f0:299 [in hydras.Ackermann.fol]
    +f0:345 [in hydras.Ackermann.fol]
    +f0:389 [in hydras.Ackermann.fol]
    +f0:41 [in hydras.Ackermann.Languages]
    +f0:42 [in hydras.Ackermann.Languages]
    +f0:43 [in hydras.Ackermann.Languages]
    +f0:44 [in hydras.Ackermann.Languages]
    +f0:441 [in hydras.Ackermann.fol]
    +f0:45 [in hydras.Ackermann.Languages]
    +f0:46 [in hydras.Ackermann.Languages]
    +f0:62 [in hydras.Ackermann.folLogic3]
    +f1rec:67 [in hydras.Ackermann.codeSubFormula]
    +f1:106 [in hydras.Ackermann.primRec]
    +f1:109 [in hydras.Ackermann.primRec]
    +f1:110 [in hydras.Ackermann.folReplace]
    +f1:12 [in hydras.Ackermann.folReplace]
    +f1:140 [in additions.Euclidean_Chains]
    +f1:144 [in hydras.Ackermann.codeSubFormula]
    +f1:152 [in hydras.Ackermann.folProp]
    +f1:17 [in hydras.Ackermann.folReplace]
    +f1:19 [in additions.Euclidean_Chains]
    +f1:2 [in hydras.rpo.term]
    +f1:2 [in hydras.Ackermann.folReplace]
    +f1:20 [in hydras.Ackermann.folReplace]
    +f1:200 [in hydras.Ackermann.codeSubFormula]
    +f1:203 [in hydras.Ackermann.fol]
    +f1:208 [in hydras.Ackermann.codeSubFormula]
    +f1:226 [in hydras.Ackermann.fol]
    +f1:23 [in hydras.Ackermann.folReplace]
    +f1:232 [in hydras.rpo.term]
    +f1:244 [in hydras.Ackermann.fol]
    +f1:244 [in hydras.Gamma0.Gamma0]
    +f1:246 [in hydras.rpo.term]
    +f1:26 [in hydras.Ackermann.folReplace]
    +f1:294 [in hydras.Ackermann.fol]
    +f1:3 [in hydras.Epsilon0.Epsilon0rpo]
    +f1:30 [in hydras.Ackermann.folReplace]
    +f1:34 [in hydras.Ackermann.folReplace]
    +f1:340 [in hydras.Ackermann.fol]
    +f1:351 [in hydras.Ackermann.primRec]
    +f1:365 [in hydras.Ackermann.primRec]
    +f1:37 [in hydras.Ackermann.subAll]
    +f1:371 [in hydras.Ackermann.primRec]
    +f1:383 [in hydras.Ackermann.primRec]
    +f1:384 [in hydras.Ackermann.fol]
    +f1:389 [in hydras.Ackermann.primRec]
    +f1:39 [in hydras.Ackermann.folReplace]
    +f1:392 [in hydras.Ackermann.folProp]
    +f1:396 [in hydras.Ackermann.folProp]
    +f1:396 [in hydras.Ackermann.primRec]
    +f1:403 [in hydras.Ackermann.primRec]
    +f1:405 [in hydras.Ackermann.folProp]
    +f1:409 [in hydras.Ackermann.folProp]
    +f1:44 [in hydras.Ackermann.folReplace]
    +f1:49 [in hydras.Ackermann.folReplace]
    +f1:54 [in hydras.Ackermann.folReplace]
    +f1:55 [in hydras.rpo.term]
    +f1:59 [in hydras.Ackermann.folReplace]
    +f1:64 [in hydras.Ackermann.folReplace]
    +f1:66 [in hydras.Ackermann.codeSubFormula]
    +f1:68 [in hydras.Ackermann.folReplace]
    +f1:7 [in hydras.Ackermann.folReplace]
    +f1:70 [in hydras.rpo.term]
    +f1:72 [in hydras.Ackermann.folReplace]
    +f1:77 [in hydras.Ackermann.folReplace]
    +f1:80 [in additions.Euclidean_Chains]
    +f1:82 [in hydras.Ackermann.folReplace]
    +f1:87 [in hydras.Ackermann.folReplace]
    +f1:97 [in additions.Euclidean_Chains]
    +f2rec:69 [in hydras.Ackermann.codeSubFormula]
    +f2:102 [in hydras.Ackermann.codeSubFormula]
    +f2:107 [in hydras.Ackermann.primRec]
    +f2:110 [in hydras.Ackermann.primRec]
    +f2:111 [in hydras.Ackermann.folReplace]
    +f2:13 [in hydras.Ackermann.folReplace]
    +f2:1370 [in hydras.Ackermann.codeSubFormula]
    +f2:1373 [in hydras.Ackermann.codeSubFormula]
    +f2:141 [in additions.Euclidean_Chains]
    +f2:145 [in hydras.Ackermann.codeSubFormula]
    +f2:153 [in hydras.Ackermann.folProp]
    +f2:18 [in hydras.Ackermann.folReplace]
    +f2:20 [in additions.Euclidean_Chains]
    +f2:201 [in hydras.Ackermann.codeSubFormula]
    +f2:206 [in hydras.Ackermann.fol]
    +f2:209 [in hydras.Ackermann.codeSubFormula]
    +f2:21 [in hydras.Ackermann.folReplace]
    +f2:229 [in hydras.Ackermann.fol]
    +f2:233 [in hydras.rpo.term]
    +f2:24 [in hydras.Ackermann.folReplace]
    +f2:245 [in hydras.Gamma0.Gamma0]
    +f2:247 [in hydras.rpo.term]
    +f2:247 [in hydras.Ackermann.fol]
    +f2:27 [in hydras.Ackermann.folReplace]
    +f2:297 [in hydras.Ackermann.fol]
    +f2:3 [in hydras.rpo.term]
    +f2:3 [in hydras.Ackermann.folReplace]
    +f2:31 [in hydras.Ackermann.folReplace]
    +f2:343 [in hydras.Ackermann.fol]
    +f2:35 [in hydras.Ackermann.folReplace]
    +f2:352 [in hydras.Ackermann.primRec]
    +f2:366 [in hydras.Ackermann.primRec]
    +f2:372 [in hydras.Ackermann.primRec]
    +f2:38 [in hydras.Ackermann.subAll]
    +f2:384 [in hydras.Ackermann.primRec]
    +f2:387 [in hydras.Ackermann.fol]
    +f2:390 [in hydras.Ackermann.primRec]
    +f2:393 [in hydras.Ackermann.folProp]
    +f2:397 [in hydras.Ackermann.folProp]
    +f2:397 [in hydras.Ackermann.primRec]
    +f2:4 [in hydras.Epsilon0.Epsilon0rpo]
    +f2:40 [in hydras.Ackermann.folReplace]
    +f2:404 [in hydras.Ackermann.primRec]
    +f2:406 [in hydras.Ackermann.folProp]
    +f2:410 [in hydras.Ackermann.folProp]
    +f2:45 [in hydras.Ackermann.folReplace]
    +f2:50 [in hydras.Ackermann.folReplace]
    +f2:55 [in hydras.Ackermann.folReplace]
    +f2:56 [in hydras.rpo.term]
    +f2:60 [in hydras.Ackermann.folReplace]
    +f2:65 [in hydras.Ackermann.folReplace]
    +f2:68 [in hydras.Ackermann.codeSubFormula]
    +f2:69 [in hydras.Ackermann.folReplace]
    +f2:71 [in hydras.rpo.term]
    +f2:73 [in hydras.Ackermann.folReplace]
    +f2:78 [in hydras.Ackermann.folReplace]
    +f2:8 [in hydras.Ackermann.folReplace]
    +f2:81 [in additions.Euclidean_Chains]
    +f2:83 [in hydras.Ackermann.folReplace]
    +f2:88 [in hydras.Ackermann.folReplace]
    +f2:93 [in hydras.Ackermann.codeSubFormula]
    +f2:98 [in additions.Euclidean_Chains]
    +f3:14 [in hydras.Ackermann.folReplace]
    +f3:146 [in hydras.Ackermann.codeSubFormula]
    +f3:202 [in hydras.Ackermann.codeSubFormula]
    +f3:209 [in hydras.Ackermann.fol]
    +f3:210 [in hydras.Ackermann.codeSubFormula]
    +f3:232 [in hydras.Ackermann.fol]
    +f3:250 [in hydras.Ackermann.fol]
    +f3:300 [in hydras.Ackermann.fol]
    +f3:346 [in hydras.Ackermann.fol]
    +f3:353 [in hydras.Ackermann.primRec]
    +f3:36 [in hydras.Ackermann.folReplace]
    +f3:367 [in hydras.Ackermann.primRec]
    +f3:373 [in hydras.Ackermann.primRec]
    +f3:390 [in hydras.Ackermann.fol]
    +f3:391 [in hydras.Ackermann.primRec]
    +f3:4 [in hydras.Ackermann.folReplace]
    +f3:405 [in hydras.Ackermann.primRec]
    +f3:41 [in hydras.Ackermann.folReplace]
    +f3:411 [in hydras.Ackermann.folProp]
    +f3:46 [in hydras.Ackermann.folReplace]
    +f3:51 [in hydras.Ackermann.folReplace]
    +f3:56 [in hydras.Ackermann.folReplace]
    +f3:61 [in hydras.Ackermann.folReplace]
    +f3:74 [in hydras.Ackermann.folReplace]
    +f3:79 [in hydras.Ackermann.folReplace]
    +f3:84 [in hydras.Ackermann.folReplace]
    +f3:89 [in hydras.Ackermann.folReplace]
    +f3:9 [in hydras.Ackermann.folReplace]
    +f4:10 [in hydras.Ackermann.folReplace]
    +f4:147 [in hydras.Ackermann.codeSubFormula]
    +f4:15 [in hydras.Ackermann.folReplace]
    +f4:203 [in hydras.Ackermann.codeSubFormula]
    +f4:211 [in hydras.Ackermann.codeSubFormula]
    +f4:211 [in hydras.Ackermann.fol]
    +f4:234 [in hydras.Ackermann.fol]
    +f4:261 [in hydras.Ackermann.fol]
    +f4:311 [in hydras.Ackermann.fol]
    +f4:357 [in hydras.Ackermann.fol]
    +f4:37 [in hydras.Ackermann.folReplace]
    +f4:374 [in hydras.Ackermann.primRec]
    +f4:401 [in hydras.Ackermann.fol]
    +f4:42 [in hydras.Ackermann.folReplace]
    +f4:47 [in hydras.Ackermann.folReplace]
    +f4:5 [in hydras.Ackermann.folReplace]
    +f4:52 [in hydras.Ackermann.folReplace]
    +f4:57 [in hydras.Ackermann.folReplace]
    +f4:62 [in hydras.Ackermann.folReplace]
    +f4:75 [in hydras.Ackermann.folReplace]
    +f4:80 [in hydras.Ackermann.folReplace]
    +f4:85 [in hydras.Ackermann.folReplace]
    +f4:90 [in hydras.Ackermann.folReplace]
    +f5:148 [in hydras.Ackermann.codeSubFormula]
    +f5:204 [in hydras.Ackermann.codeSubFormula]
    +f5:212 [in hydras.Ackermann.codeSubFormula]
    +f5:215 [in hydras.Ackermann.fol]
    +f5:238 [in hydras.Ackermann.fol]
    +f5:270 [in hydras.Ackermann.fol]
    +f5:320 [in hydras.Ackermann.fol]
    +f5:366 [in hydras.Ackermann.fol]
    +f5:410 [in hydras.Ackermann.fol]
    +f5:91 [in hydras.Ackermann.folReplace]
    +f6:92 [in hydras.Ackermann.folReplace]
    +f:1 [in hydras.Ackermann.PAconsistent]
    +f:1 [in hydras.Ackermann.NN2PA]
    +f:1 [in hydras.MoreAck.AckNotPR]
    +f:1 [in hydras.MoreAck.Iterate_compat]
    +f:1 [in hydras.Ackermann.PA]
    +f:10 [in hydras.Ackermann.folProof]
    +f:10 [in hydras.Prelude.DecPreOrder_Instances]
    +f:10 [in hydras.MoreAck.AckNotPR]
    +f:10 [in hydras.Epsilon0.Large_Sets]
    +f:10 [in Goedel.rosserPA]
    +f:10 [in hydras.Ackermann.wellFormed]
    +f:10 [in gaia_hydras.GLarge_Sets]
    +f:10 [in hydras.Ackermann.wConsistent]
    +f:100 [in hydras.Ackermann.LNN2LNT]
    +f:100 [in hydras.Ackermann.folLogic]
    +f:100 [in hydras.Ackermann.folLogic3]
    +f:1000 [in hydras.Ackermann.codeSubFormula]
    +f:1001 [in hydras.Ackermann.codeSubFormula]
    +f:1002 [in hydras.Ackermann.codeSubFormula]
    +f:1003 [in hydras.Ackermann.codeSubFormula]
    +f:1006 [in hydras.Ackermann.codeSubFormula]
    +f:1009 [in hydras.Ackermann.codeSubFormula]
    +f:101 [in hydras.Ackermann.LNT]
    +f:101 [in hydras.Ackermann.codePA]
    +f:1012 [in hydras.Ackermann.codeSubFormula]
    +f:1015 [in hydras.Ackermann.codeSubFormula]
    +f:1018 [in hydras.Ackermann.codeSubFormula]
    +f:102 [in hydras.Ackermann.LNN]
    +f:102 [in hydras.Ackermann.folReplace]
    +f:102 [in hydras.Ackermann.codePA]
    +f:1021 [in hydras.Ackermann.codeSubFormula]
    +f:1022 [in hydras.Ackermann.codeSubFormula]
    +f:1023 [in hydras.Ackermann.codeSubFormula]
    +f:1024 [in hydras.Ackermann.codeSubFormula]
    +f:1025 [in hydras.Ackermann.codeSubFormula]
    +f:1026 [in hydras.Ackermann.codeSubFormula]
    +f:1027 [in hydras.Ackermann.codeSubFormula]
    +f:1029 [in hydras.Ackermann.codeSubFormula]
    +f:103 [in hydras.Ackermann.folProp]
    +f:103 [in hydras.Ackermann.folLogic]
    +f:103 [in hydras.OrdinalNotations.ON_Generic]
    +f:103 [in gaia_hydras.nfwfgaia]
    +f:103 [in hydras.Ackermann.codePA]
    +f:1031 [in hydras.Ackermann.codeSubFormula]
    +f:1033 [in hydras.Ackermann.codeSubFormula]
    +f:1035 [in hydras.Ackermann.codeSubFormula]
    +f:1037 [in hydras.Ackermann.codeSubFormula]
    +f:1039 [in hydras.Ackermann.codeSubFormula]
    +f:104 [in hydras.Prelude.Iterates]
    +f:104 [in hydras.Ackermann.LNN]
    +f:104 [in hydras.Ackermann.LNT]
    +f:104 [in hydras.rpo.rpo]
    +f:1041 [in hydras.Ackermann.codeSubFormula]
    +f:1043 [in hydras.Ackermann.codeSubFormula]
    +f:1045 [in hydras.Ackermann.codeSubFormula]
    +f:1047 [in hydras.Ackermann.codeSubFormula]
    +f:105 [in hydras.Ackermann.codePA]
    +f:1050 [in hydras.Ackermann.codeSubFormula]
    +f:1053 [in hydras.Ackermann.codeSubFormula]
    +f:1056 [in hydras.Ackermann.codeSubFormula]
    +f:1059 [in hydras.Ackermann.codeSubFormula]
    +f:106 [in hydras.Ackermann.folLogic]
    +f:1062 [in hydras.Ackermann.codeSubFormula]
    +f:1065 [in hydras.Ackermann.codeSubFormula]
    +f:1068 [in hydras.Ackermann.codeSubFormula]
    +f:107 [in hydras.Ackermann.LNN]
    +f:107 [in hydras.Ackermann.LNT]
    +f:107 [in hydras.Ackermann.folReplace]
    +f:107 [in hydras.Ackermann.codePA]
    +f:1071 [in hydras.Ackermann.codeSubFormula]
    +f:1073 [in hydras.Ackermann.codeSubFormula]
    +f:1075 [in hydras.Ackermann.codeSubFormula]
    +f:1077 [in hydras.Ackermann.codeSubFormula]
    +f:1079 [in hydras.Ackermann.codeSubFormula]
    +f:108 [in hydras.Prelude.Iterates]
    +f:108 [in hydras.Ackermann.folLogic]
    +f:1081 [in hydras.Ackermann.codeSubFormula]
    +f:1083 [in hydras.Ackermann.codeSubFormula]
    +f:1084 [in hydras.Ackermann.codeSubFormula]
    +f:1085 [in hydras.Ackermann.codeSubFormula]
    +f:1086 [in hydras.Ackermann.codeSubFormula]
    +f:1087 [in hydras.Ackermann.codeSubFormula]
    +f:1088 [in hydras.Ackermann.codeSubFormula]
    +f:1089 [in hydras.Ackermann.codeSubFormula]
    +f:109 [in Goedel.rosserPA]
    +f:109 [in hydras.Ackermann.fol]
    +f:109 [in hydras.Ackermann.codePA]
    +f:1090 [in hydras.Ackermann.codeSubFormula]
    +f:1091 [in hydras.Ackermann.codeSubFormula]
    +f:1093 [in hydras.Ackermann.codeSubFormula]
    +f:1095 [in hydras.Ackermann.codeSubFormula]
    +f:1097 [in hydras.Ackermann.codeSubFormula]
    +f:1099 [in hydras.Ackermann.codeSubFormula]
    +f:11 [in hydras.Prelude.Iterates]
    +f:11 [in hydras.Ackermann.checkPrf]
    +f:11 [in hydras.Ackermann.fol]
    +f:11 [in hydras.Ackermann.folLogic]
    +f:11 [in Goedel.codeSysPrf]
    +f:110 [in hydras.rpo.term]
    +f:110 [in hydras.Ackermann.LNN]
    +f:110 [in hydras.Ackermann.LNT]
    +f:110 [in hydras.Ackermann.folProp]
    +f:110 [in Goedel.rosserPA]
    +f:1101 [in hydras.Ackermann.codeSubFormula]
    +f:1103 [in hydras.Ackermann.codeSubFormula]
    +f:1105 [in hydras.Ackermann.codeSubFormula]
    +f:1107 [in hydras.Ackermann.codeSubFormula]
    +f:1109 [in hydras.Ackermann.codeSubFormula]
    +f:111 [in hydras.Ackermann.codePA]
    +f:111 [in hydras.rpo.rpo]
    +f:1111 [in hydras.Ackermann.codeSubFormula]
    +f:1112 [in hydras.Ackermann.codeSubFormula]
    +f:1113 [in hydras.Ackermann.codeSubFormula]
    +f:1114 [in hydras.Ackermann.codeSubFormula]
    +f:1115 [in hydras.Ackermann.codeSubFormula]
    +f:1116 [in hydras.Ackermann.codeSubFormula]
    +f:1117 [in hydras.Ackermann.codeSubFormula]
    +f:1119 [in hydras.Ackermann.codeSubFormula]
    +f:112 [in Goedel.rosserPA]
    +f:112 [in hydras.Ackermann.folLogic]
    +f:1121 [in hydras.Ackermann.codeSubFormula]
    +f:1123 [in hydras.Ackermann.codeSubFormula]
    +f:1125 [in hydras.Ackermann.codeSubFormula]
    +f:1127 [in hydras.Ackermann.codeSubFormula]
    +f:1129 [in hydras.Ackermann.codeSubFormula]
    +f:113 [in hydras.Prelude.Iterates]
    +f:113 [in hydras.Ackermann.LNN2LNT]
    +f:113 [in hydras.Ackermann.LNN]
    +f:113 [in hydras.Ackermann.LNT]
    +f:113 [in hydras.Ackermann.codePA]
    +f:1131 [in hydras.Ackermann.codeSubFormula]
    +f:1133 [in hydras.Ackermann.codeSubFormula]
    +f:1135 [in hydras.Ackermann.codeSubFormula]
    +f:1137 [in hydras.Ackermann.codeSubFormula]
    +f:1139 [in hydras.Ackermann.codeSubFormula]
    +f:114 [in hydras.Ackermann.subAll]
    +f:114 [in hydras.Ackermann.LNN2LNT]
    +f:1141 [in hydras.Ackermann.codeSubFormula]
    +f:1143 [in hydras.Ackermann.codeSubFormula]
    +f:1145 [in hydras.Ackermann.codeSubFormula]
    +f:1146 [in hydras.Ackermann.codeSubFormula]
    +f:1147 [in hydras.Ackermann.codeSubFormula]
    +f:1148 [in hydras.Ackermann.codeSubFormula]
    +f:1149 [in hydras.Ackermann.codeSubFormula]
    +f:115 [in hydras.Ackermann.folLogic]
    +f:115 [in hydras.Ackermann.codePA]
    +f:1150 [in hydras.Ackermann.codeSubFormula]
    +f:1151 [in hydras.Ackermann.codeSubFormula]
    +f:1152 [in hydras.Ackermann.codeSubFormula]
    +f:1153 [in hydras.Ackermann.codeSubFormula]
    +f:1155 [in hydras.Ackermann.codeSubFormula]
    +f:1157 [in hydras.Ackermann.codeSubFormula]
    +f:1159 [in hydras.Ackermann.codeSubFormula]
    +f:116 [in hydras.Ackermann.LNN]
    +f:116 [in hydras.Ackermann.LNT]
    +f:116 [in hydras.Ackermann.codeSubFormula]
    +f:116 [in hydras.Ackermann.fol]
    +f:116 [in hydras.OrdinalNotations.ON_Generic]
    +f:116 [in hydras.Ackermann.codePA]
    +f:1161 [in hydras.Ackermann.codeSubFormula]
    +f:1162 [in hydras.Ackermann.codeSubFormula]
    +f:1163 [in hydras.Ackermann.codeSubFormula]
    +f:1164 [in hydras.Ackermann.codeSubFormula]
    +f:1165 [in hydras.Ackermann.codeSubFormula]
    +f:1166 [in hydras.Ackermann.codeSubFormula]
    +f:1167 [in hydras.Ackermann.codeSubFormula]
    +f:1168 [in hydras.Ackermann.codeSubFormula]
    +f:1169 [in hydras.Ackermann.codeSubFormula]
    +f:117 [in hydras.Ackermann.codePA]
    +f:1171 [in hydras.Ackermann.codeSubFormula]
    +f:1173 [in hydras.Ackermann.codeSubFormula]
    +f:1175 [in hydras.Ackermann.codeSubFormula]
    +f:1177 [in hydras.Ackermann.codeSubFormula]
    +f:1179 [in hydras.Ackermann.codeSubFormula]
    +f:118 [in hydras.Ackermann.LNT]
    +f:118 [in hydras.Ackermann.folLogic]
    +f:118 [in hydras.Ackermann.codePA]
    +f:118 [in hydras.rpo.rpo]
    +f:1181 [in hydras.Ackermann.codeSubFormula]
    +f:1183 [in hydras.Ackermann.codeSubFormula]
    +f:1185 [in hydras.Ackermann.codeSubFormula]
    +f:1187 [in hydras.Ackermann.codeSubFormula]
    +f:1189 [in hydras.Ackermann.codeSubFormula]
    +f:119 [in hydras.Prelude.Iterates]
    +f:119 [in hydras.Ackermann.LNN2LNT]
    +f:119 [in hydras.Ackermann.LNN]
    +f:119 [in hydras.Ackermann.codeSubFormula]
    +f:119 [in hydras.Ackermann.primRec]
    +f:119 [in hydras.Ackermann.codePA]
    +f:1191 [in hydras.Ackermann.codeSubFormula]
    +f:1193 [in hydras.Ackermann.codeSubFormula]
    +f:1195 [in hydras.Ackermann.codeSubFormula]
    +f:1197 [in hydras.Ackermann.codeSubFormula]
    +f:1198 [in hydras.Ackermann.codeSubFormula]
    +f:1199 [in hydras.Ackermann.codeSubFormula]
    +f:12 [in hydras.Ackermann.folProof]
    +f:12 [in hydras.solutions_exercises.MinPR2]
    +f:12 [in hydras.Ackermann.model]
    +f:12 [in hydras.Ackermann.PA]
    +f:12 [in Goedel.goedel1]
    +f:12 [in hydras.Ackermann.codePA]
    +f:12 [in Goedel.goedel2]
    +f:12 [in hydras.MoreAck.PrimRecExamples]
    +f:120 [in hydras.rpo.term]
    +f:120 [in hydras.Ackermann.folLogic]
    +f:1201 [in hydras.Ackermann.codeSubFormula]
    +f:1203 [in hydras.Ackermann.codeSubFormula]
    +f:1205 [in hydras.Ackermann.codeSubFormula]
    +f:1207 [in hydras.Ackermann.codeSubFormula]
    +f:1208 [in hydras.Ackermann.codeSubFormula]
    +f:121 [in hydras.Ackermann.LNN]
    +f:121 [in hydras.Ackermann.codePA]
    +f:122 [in hydras.Ackermann.LNT]
    +f:122 [in hydras.Ackermann.codeSubFormula]
    +f:1220 [in hydras.Ackermann.codeSubFormula]
    +f:1223 [in hydras.Ackermann.codeSubFormula]
    +f:123 [in hydras.Prelude.Iterates]
    +f:123 [in hydras.Ackermann.folLogic]
    +f:123 [in hydras.Ackermann.codePA]
    +f:1232 [in hydras.Ackermann.codeSubFormula]
    +f:1235 [in hydras.Ackermann.codeSubFormula]
    +f:124 [in hydras.rpo.more_list]
    +f:124 [in hydras.Ackermann.primRec]
    +f:124 [in hydras.rpo.rpo]
    +f:125 [in hydras.Ackermann.LNN2LNT]
    +f:125 [in hydras.Ackermann.LNN]
    +f:125 [in hydras.Ackermann.LNT]
    +f:125 [in hydras.Ackermann.codePA]
    +f:1256 [in hydras.Ackermann.codeSubFormula]
    +f:126 [in hydras.Prelude.Iterates]
    +f:127 [in hydras.Ackermann.folLogic]
    +f:127 [in hydras.Schutte.Ordering_Functions]
    +f:127 [in hydras.Ackermann.codePA]
    +f:128 [in hydras.Prelude.Iterates]
    +f:128 [in hydras.Ackermann.LNN]
    +f:128 [in hydras.Ackermann.LNT]
    +f:129 [in hydras.Ackermann.codePA]
    +f:1293 [in hydras.Ackermann.codeSubFormula]
    +f:13 [in hydras.Ackermann.folProof]
    +f:13 [in hydras.Epsilon0.Epsilon0rpo]
    +f:13 [in hydras.rpo.more_list]
    +f:13 [in hydras.Ackermann.LNT]
    +f:13 [in hydras.Epsilon0.Large_Sets]
    +f:13 [in Goedel.rosserPA]
    +f:13 [in gaia_hydras.onType]
    +f:13 [in Goedel.goedel1]
    +f:13 [in hydras.Ackermann.Languages]
    +f:13 [in Goedel.goedel2]
    +f:130 [in hydras.Ackermann.codeFreeVar]
    +f:130 [in hydras.Ackermann.LNT]
    +f:131 [in hydras.Prelude.Iterates]
    +f:131 [in hydras.Ackermann.LNN]
    +f:131 [in hydras.Ackermann.codeSubFormula]
    +f:131 [in hydras.Ackermann.codePA]
    +f:132 [in hydras.Ackermann.codeFreeVar]
    +f:132 [in hydras.Ackermann.codePA]
    +f:133 [in hydras.Ackermann.codeFreeVar]
    +f:133 [in hydras.Ackermann.LNN]
    +f:133 [in hydras.Ackermann.LNT]
    +f:133 [in hydras.Ackermann.folProp]
    +f:133 [in hydras.Ackermann.subProp]
    +f:133 [in hydras.Ackermann.fol]
    +f:133 [in hydras.Ackermann.codePA]
    +f:134 [in hydras.Ackermann.fol]
    +f:134 [in hydras.Ackermann.codePA]
    +f:135 [in hydras.Ackermann.codeFreeVar]
    +f:135 [in hydras.Ackermann.codePA]
    +f:136 [in hydras.Ackermann.LNN]
    +f:136 [in hydras.Ackermann.codePA]
    +f:136 [in hydras.rpo.rpo]
    +f:1366 [in hydras.Ackermann.codeSubFormula]
    +f:137 [in hydras.Ackermann.folProp]
    +f:137 [in hydras.Ackermann.subProp]
    +f:137 [in hydras.Ackermann.codePA]
    +f:1376 [in hydras.Ackermann.codeSubFormula]
    +f:1379 [in hydras.Ackermann.codeSubFormula]
    +f:138 [in hydras.Ackermann.LNN2LNT]
    +f:138 [in hydras.Ackermann.codePA]
    +f:1387 [in gaia_hydras.nfwfgaia]
    +f:139 [in hydras.Ackermann.LNN2LNT]
    +f:139 [in hydras.Ackermann.folProp]
    +f:139 [in additions.Euclidean_Chains]
    +f:139 [in hydras.Ackermann.codePA]
    +f:1396 [in hydras.Ackermann.codeSubFormula]
    +f:1396 [in gaia_hydras.nfwfgaia]
    +f:1399 [in hydras.Ackermann.codeSubFormula]
    +f:14 [in hydras.Ackermann.PA]
    +f:14 [in hydras.Ackermann.folLogic]
    +f:14 [in Goedel.goedel1]
    +f:14 [in hydras.Ackermann.Languages]
    +f:14 [in hydras.Schutte.Addition]
    +f:14 [in Goedel.goedel2]
    +f:140 [in hydras.Ackermann.LNN2LNT]
    +f:140 [in hydras.rpo.rpo]
    +f:1404 [in hydras.Ackermann.codeSubFormula]
    +f:141 [in hydras.Prelude.Iterates]
    +f:141 [in hydras.Ackermann.folProp]
    +f:1410 [in hydras.Ackermann.codeSubFormula]
    +f:1417 [in hydras.Ackermann.codeSubFormula]
    +f:142 [in hydras.OrdinalNotations.ON_Generic]
    +f:142 [in hydras.Ackermann.codePA]
    +f:1422 [in hydras.Ackermann.codeSubFormula]
    +f:1427 [in hydras.Ackermann.codeSubFormula]
    +f:143 [in hydras.Ackermann.model]
    +f:143 [in hydras.Ackermann.codePA]
    +f:1430 [in hydras.Ackermann.codeSubFormula]
    +f:1433 [in hydras.Ackermann.codeSubFormula]
    +f:1436 [in hydras.Ackermann.codeSubFormula]
    +f:1439 [in hydras.Ackermann.codeSubFormula]
    +f:144 [in hydras.Ackermann.LNN2LNT]
    +f:1442 [in hydras.Ackermann.codeSubFormula]
    +f:1445 [in hydras.Ackermann.codeSubFormula]
    +f:1448 [in hydras.Ackermann.codeSubFormula]
    +f:145 [in hydras.rpo.rpo]
    +f:1451 [in hydras.Ackermann.codeSubFormula]
    +f:1454 [in hydras.Ackermann.codeSubFormula]
    +f:1457 [in hydras.Ackermann.codeSubFormula]
    +f:146 [in hydras.Schutte.Ordering_Functions]
    +f:1460 [in hydras.Ackermann.codeSubFormula]
    +f:1463 [in hydras.Ackermann.codeSubFormula]
    +f:1466 [in hydras.Ackermann.codeSubFormula]
    +f:1469 [in hydras.Ackermann.codeSubFormula]
    +f:147 [in hydras.Ackermann.codeFreeVar]
    +f:147 [in hydras.Ackermann.model]
    +f:147 [in hydras.Hydra.Hydra_Lemmas]
    +f:1472 [in hydras.Ackermann.codeSubFormula]
    +f:1475 [in hydras.Ackermann.codeSubFormula]
    +f:1478 [in hydras.Ackermann.codeSubFormula]
    +f:148 [in hydras.Schutte.Ordering_Functions]
    +f:1481 [in hydras.Ackermann.codeSubFormula]
    +f:1484 [in hydras.Ackermann.codeSubFormula]
    +f:1487 [in hydras.Ackermann.codeSubFormula]
    +f:149 [in hydras.Ackermann.codeFreeVar]
    +f:149 [in hydras.Schutte.Ordering_Functions]
    +f:149 [in hydras.rpo.rpo]
    +f:1490 [in hydras.Ackermann.codeSubFormula]
    +f:1493 [in hydras.Ackermann.codeSubFormula]
    +f:1496 [in hydras.Ackermann.codeSubFormula]
    +f:1499 [in hydras.Ackermann.codeSubFormula]
    +f:15 [in hydras.Ackermann.folProof]
    +f:15 [in additions.Euclidean_Chains]
    +f:15 [in Goedel.goedel1]
    +f:15 [in hydras.Ackermann.codePA]
    +f:15 [in hydras.Ackermann.expressible]
    +f:150 [in hydras.Ackermann.model]
    +f:150 [in hydras.Hydra.Hydra_Lemmas]
    +f:1502 [in hydras.Ackermann.codeSubFormula]
    +f:1505 [in hydras.Ackermann.codeSubFormula]
    +f:1508 [in hydras.Ackermann.codeSubFormula]
    +f:151 [in hydras.Prelude.Iterates]
    +f:151 [in hydras.Ackermann.codeFreeVar]
    +f:1511 [in hydras.Ackermann.codeSubFormula]
    +f:1513 [in hydras.Ackermann.codeSubFormula]
    +f:1515 [in hydras.Ackermann.codeSubFormula]
    +f:1518 [in hydras.Ackermann.codeSubFormula]
    +f:1521 [in hydras.Ackermann.codeSubFormula]
    +f:1524 [in hydras.Ackermann.codeSubFormula]
    +f:1527 [in hydras.Ackermann.codeSubFormula]
    +f:153 [in hydras.Ackermann.codeFreeVar]
    +f:153 [in hydras.Ackermann.model]
    +f:1530 [in hydras.Ackermann.codeSubFormula]
    +f:1533 [in hydras.Ackermann.codeSubFormula]
    +f:1536 [in hydras.Ackermann.codeSubFormula]
    +f:1539 [in hydras.Ackermann.codeSubFormula]
    +f:154 [in hydras.Ackermann.model]
    +f:1542 [in hydras.Ackermann.codeSubFormula]
    +f:1545 [in hydras.Ackermann.codeSubFormula]
    +f:1548 [in hydras.Ackermann.codeSubFormula]
    +f:155 [in hydras.Ackermann.codeFreeVar]
    +f:155 [in hydras.Ackermann.model]
    +f:155 [in hydras.OrdinalNotations.ON_Generic]
    +f:1551 [in hydras.Ackermann.codeSubFormula]
    +f:1554 [in hydras.Ackermann.codeSubFormula]
    +f:1557 [in hydras.Ackermann.codeSubFormula]
    +f:156 [in hydras.Ackermann.subProp]
    +f:156 [in hydras.Prelude.Merge_Sort]
    +f:1560 [in hydras.Ackermann.codeSubFormula]
    +f:1563 [in hydras.Ackermann.codeSubFormula]
    +f:1566 [in hydras.Ackermann.codeSubFormula]
    +f:157 [in hydras.Ackermann.codeFreeVar]
    +f:159 [in hydras.Ackermann.codeFreeVar]
    +f:16 [in hydras.Ackermann.LNN]
    +f:16 [in hydras.Ackermann.LNT]
    +f:16 [in hydras.Ackermann.folProp]
    +f:160 [in hydras.Prelude.Iterates]
    +f:160 [in hydras.Ackermann.subProp]
    +f:161 [in hydras.Ackermann.codeFreeVar]
    +f:162 [in hydras.Ackermann.codePA]
    +f:163 [in hydras.Ackermann.codeFreeVar]
    +f:165 [in hydras.Ackermann.codeFreeVar]
    +f:165 [in hydras.Ackermann.subProp]
    +f:165 [in hydras.Ackermann.cPair]
    +f:165 [in hydras.Ackermann.codePA]
    +f:166 [in hydras.Ackermann.model]
    +f:166 [in hydras.Ackermann.codePA]
    +f:167 [in hydras.Ackermann.codeFreeVar]
    +f:167 [in hydras.OrdinalNotations.ON_Generic]
    +f:167 [in hydras.Ackermann.codePA]
    +f:168 [in hydras.rpo.term]
    +f:169 [in hydras.Ackermann.codeFreeVar]
    +f:169 [in hydras.Ackermann.cPair]
    +f:17 [in hydras.Prelude.DecPreOrder_Instances]
    +f:17 [in hydras.rpo.more_list]
    +f:17 [in hydras.Ackermann.folLogic]
    +f:17 [in hydras.Ackermann.expressible]
    +f:170 [in hydras.Prelude.Iterates]
    +f:170 [in hydras.Ackermann.codePA]
    +f:171 [in hydras.Prelude.Iterates]
    +f:173 [in hydras.Prelude.Iterates]
    +f:173 [in hydras.Ackermann.codeFreeVar]
    +f:173 [in hydras.Ackermann.cPair]
    +f:173 [in hydras.Ackermann.codePA]
    +f:174 [in gaia_hydras.T1Bridge]
    +f:174 [in hydras.Ackermann.codePA]
    +f:175 [in hydras.Ackermann.codeFreeVar]
    +f:175 [in hydras.Schutte.Ordering_Functions]
    +f:175 [in hydras.Ackermann.codePA]
    +f:176 [in hydras.Ackermann.codePA]
    +f:177 [in hydras.Ackermann.codeFreeVar]
    +f:177 [in hydras.Ackermann.codePA]
    +f:178 [in hydras.Schutte.Ordering_Functions]
    +f:178 [in hydras.Ackermann.codePA]
    +f:179 [in hydras.Ackermann.codeFreeVar]
    +f:179 [in gaia_hydras.T1Bridge]
    +f:179 [in hydras.OrdinalNotations.ON_Generic]
    +f:179 [in hydras.Ackermann.codePA]
    +f:18 [in hydras.Prelude.Iterates]
    +f:18 [in hydras.Ackermann.LNT]
    +f:18 [in hydras.Schutte.Critical]
    +f:18 [in gaia_hydras.T1Bridge]
    +f:18 [in gaia_hydras.GL_alpha]
    +f:18 [in hydras.Ackermann.Languages]
    +f:18 [in Goedel.goedel2]
    +f:180 [in hydras.Ackermann.codePA]
    +f:181 [in hydras.Ackermann.codeFreeVar]
    +f:181 [in hydras.Schutte.Ordering_Functions]
    +f:181 [in hydras.Ackermann.codePA]
    +f:182 [in gaia_hydras.T1Bridge]
    +f:182 [in hydras.Ackermann.codePA]
    +f:183 [in hydras.Ackermann.codeFreeVar]
    +f:183 [in hydras.Schutte.Ordering_Functions]
    +f:183 [in hydras.Ackermann.codePA]
    +f:184 [in hydras.Prelude.Iterates]
    +f:184 [in hydras.Ackermann.codePA]
    +f:1845 [in gaia_hydras.nfwfgaia]
    +f:185 [in gaia_hydras.T1Bridge]
    +f:185 [in hydras.Ackermann.codePA]
    +f:1852 [in gaia_hydras.nfwfgaia]
    +f:186 [in hydras.Ackermann.codePA]
    +f:1861 [in gaia_hydras.nfwfgaia]
    +f:1863 [in gaia_hydras.nfwfgaia]
    +f:1867 [in gaia_hydras.nfwfgaia]
    +f:187 [in hydras.Ackermann.codeFreeVar]
    +f:187 [in gaia_hydras.T1Bridge]
    +f:187 [in hydras.Ackermann.wellFormed]
    +f:187 [in hydras.Ackermann.codePA]
    +f:1871 [in gaia_hydras.nfwfgaia]
    +f:1872 [in gaia_hydras.nfwfgaia]
    +f:1876 [in gaia_hydras.nfwfgaia]
    +f:188 [in hydras.Ackermann.codePA]
    +f:189 [in hydras.Ackermann.subAll]
    +f:189 [in hydras.Ackermann.codeFreeVar]
    +f:189 [in hydras.Ackermann.cPair]
    +f:189 [in hydras.Ackermann.wellFormed]
    +f:189 [in hydras.Ackermann.codePA]
    +f:19 [in hydras.Epsilon0.Epsilon0rpo]
    +f:19 [in hydras.Ackermann.LNN]
    +f:19 [in hydras.Ackermann.checkPrf]
    +f:19 [in hydras.Ackermann.PA]
    +f:19 [in gaia_hydras.GL_alpha]
    +f:190 [in hydras.Ackermann.wellFormed]
    +f:190 [in hydras.Ackermann.codePA]
    +f:191 [in hydras.Prelude.Iterates]
    +f:191 [in hydras.Ackermann.codeFreeVar]
    +f:191 [in hydras.Ackermann.codePA]
    +f:192 [in hydras.Ackermann.wellFormed]
    +f:192 [in hydras.OrdinalNotations.ON_Generic]
    +f:192 [in hydras.Ackermann.codePA]
    +f:193 [in hydras.Ackermann.codeFreeVar]
    +f:193 [in hydras.Ackermann.codePA]
    +f:194 [in hydras.Ackermann.codePA]
    +f:195 [in hydras.Ackermann.codeFreeVar]
    +f:195 [in hydras.Ackermann.wellFormed]
    +f:195 [in hydras.Ackermann.codePA]
    +f:1950 [in gaia_hydras.nfwfgaia]
    +f:1956 [in gaia_hydras.nfwfgaia]
    +f:196 [in hydras.Ackermann.codePA]
    +f:1963 [in gaia_hydras.nfwfgaia]
    +f:1968 [in gaia_hydras.nfwfgaia]
    +f:197 [in hydras.Ackermann.codeFreeVar]
    +f:197 [in hydras.Ackermann.codePA]
    +f:1974 [in gaia_hydras.nfwfgaia]
    +f:198 [in hydras.Ackermann.wellFormed]
    +f:198 [in hydras.Ackermann.codePA]
    +f:1980 [in gaia_hydras.nfwfgaia]
    +f:1985 [in gaia_hydras.nfwfgaia]
    +f:199 [in hydras.Ackermann.codePA]
    +f:1991 [in gaia_hydras.nfwfgaia]
    +f:1996 [in gaia_hydras.nfwfgaia]
    +F:2 [in hydras.MoreAck.BadSubst]
    +f:2 [in hydras.Prelude.Iterates]
    +f:2 [in hydras.Ackermann.wConsistent]
    +f:20 [in hydras.Ackermann.model]
    +f:20 [in Goedel.rosserPA]
    +f:20 [in hydras.Ackermann.folLogic]
    +f:20 [in hydras.Schutte.Ordering_Functions]
    +f:200 [in hydras.Prelude.Iterates]
    +f:200 [in hydras.Ackermann.codePA]
    +f:2002 [in gaia_hydras.nfwfgaia]
    +f:2005 [in gaia_hydras.nfwfgaia]
    +f:2009 [in gaia_hydras.nfwfgaia]
    +f:201 [in hydras.Ackermann.codeFreeVar]
    +f:201 [in hydras.Ackermann.wellFormed]
    +f:201 [in hydras.Ackermann.codePA]
    +f:202 [in hydras.Ackermann.codeFreeVar]
    +f:202 [in hydras.Ackermann.cPair]
    +f:202 [in hydras.Ackermann.wellFormed]
    +f:202 [in hydras.Ackermann.codePA]
    +f:203 [in hydras.Ackermann.codeFreeVar]
    +f:203 [in hydras.Ackermann.codePA]
    +f:204 [in hydras.Ackermann.wellFormed]
    +f:204 [in hydras.Ackermann.codePA]
    +f:205 [in hydras.Ackermann.codeFreeVar]
    +f:205 [in hydras.Ackermann.codePA]
    +f:206 [in hydras.rpo.more_list]
    +f:206 [in hydras.Ackermann.cPair]
    +f:206 [in hydras.Ackermann.wellFormed]
    +f:206 [in hydras.OrdinalNotations.ON_Generic]
    +f:206 [in hydras.Ackermann.codePA]
    +f:207 [in hydras.Ackermann.codeFreeVar]
    +f:207 [in hydras.Ackermann.fol]
    +f:207 [in hydras.Ackermann.codePA]
    +f:208 [in hydras.Ackermann.wellFormed]
    +f:208 [in hydras.Ackermann.codePA]
    +f:2088 [in gaia_hydras.nfwfgaia]
    +f:209 [in hydras.Ackermann.codeFreeVar]
    +f:209 [in hydras.Ackermann.cPair]
    +f:209 [in hydras.Ackermann.codePA]
    +f:2094 [in gaia_hydras.nfwfgaia]
    +f:2099 [in gaia_hydras.nfwfgaia]
    +f:21 [in hydras.Prelude.Iterates]
    +f:21 [in hydras.Ackermann.LNN]
    +f:21 [in hydras.Ackermann.LNT]
    +f:21 [in hydras.Ackermann.subProp]
    +f:21 [in gaia_hydras.T1Bridge]
    +f:21 [in Goedel.rosserPA]
    +f:21 [in hydras.Ackermann.expressible]
    +f:210 [in hydras.Ackermann.wellFormed]
    +f:210 [in hydras.Ackermann.fol]
    +f:210 [in hydras.Ackermann.codePA]
    +f:2105 [in gaia_hydras.nfwfgaia]
    +f:2107 [in gaia_hydras.nfwfgaia]
    +f:211 [in hydras.Ackermann.codeFreeVar]
    +f:211 [in hydras.Ackermann.cPair]
    +f:211 [in hydras.Ackermann.codePA]
    +f:212 [in hydras.Ackermann.codeFreeVar]
    +f:212 [in hydras.Ackermann.wellFormed]
    +f:212 [in hydras.Ackermann.codePA]
    +f:213 [in hydras.Ackermann.codeFreeVar]
    +f:213 [in hydras.Ackermann.codePA]
    +f:214 [in hydras.Ackermann.wellFormed]
    +f:214 [in hydras.Ackermann.codePA]
    +f:215 [in hydras.Ackermann.codeFreeVar]
    +f:215 [in hydras.Ackermann.codePA]
    +f:216 [in hydras.rpo.term]
    +f:216 [in hydras.rpo.more_list]
    +f:216 [in hydras.Ackermann.cPair]
    +f:216 [in hydras.Ackermann.wellFormed]
    +f:216 [in hydras.Ackermann.codePA]
    +f:217 [in hydras.Ackermann.codeFreeVar]
    +f:217 [in hydras.Ackermann.codePA]
    +f:218 [in hydras.Ackermann.wellFormed]
    +f:218 [in hydras.Ackermann.codePA]
    +f:219 [in hydras.Ackermann.codeFreeVar]
    +f:219 [in hydras.Ackermann.codePA]
    +f:22 [in hydras.rpo.more_list]
    +f:22 [in hydras.Ackermann.PA]
    +f:22 [in hydras.Ackermann.folLogic]
    +f:22 [in gaia_hydras.GL_alpha]
    +f:22 [in Goedel.goedel2]
    +f:220 [in hydras.Ackermann.wellFormed]
    +f:220 [in hydras.Ackermann.codePA]
    +f:221 [in hydras.rpo.term]
    +f:221 [in hydras.Ackermann.codeFreeVar]
    +f:221 [in hydras.Ackermann.codePA]
    +f:222 [in hydras.Prelude.Iterates]
    +f:222 [in hydras.Ackermann.codeFreeVar]
    +f:222 [in hydras.Ackermann.wellFormed]
    +f:222 [in hydras.Ackermann.codePA]
    +f:223 [in hydras.Ackermann.codeFreeVar]
    +f:223 [in hydras.Ackermann.model]
    +f:223 [in hydras.Ackermann.codePA]
    +f:224 [in hydras.Ackermann.codeFreeVar]
    +f:224 [in hydras.Ackermann.wellFormed]
    +f:224 [in hydras.Ackermann.codePA]
    +f:225 [in hydras.Ackermann.codeFreeVar]
    +f:225 [in hydras.Ackermann.codePA]
    +f:226 [in hydras.Ackermann.codeFreeVar]
    +f:226 [in hydras.rpo.more_list]
    +f:226 [in hydras.Ackermann.wellFormed]
    +f:226 [in hydras.Ackermann.codePA]
    +f:227 [in hydras.Ackermann.subAll]
    +f:227 [in hydras.Ackermann.codeFreeVar]
    +f:227 [in hydras.Ackermann.codePA]
    +f:228 [in hydras.Ackermann.codeFreeVar]
    +f:228 [in hydras.Ackermann.wellFormed]
    +f:228 [in hydras.Ackermann.codePA]
    +f:229 [in hydras.Ackermann.codeFreeVar]
    +f:23 [in hydras.MoreAck.AckNotPR]
    +f:230 [in hydras.Ackermann.wellFormed]
    +f:230 [in hydras.Ackermann.fol]
    +f:231 [in hydras.Ackermann.codeFreeVar]
    +f:231 [in hydras.Ackermann.codePA]
    +f:232 [in hydras.Ackermann.folProp]
    +f:232 [in hydras.Ackermann.wellFormed]
    +f:233 [in hydras.Ackermann.codeFreeVar]
    +f:233 [in hydras.Ackermann.fol]
    +f:234 [in hydras.Ackermann.codePA]
    +f:235 [in hydras.Ackermann.codeFreeVar]
    +f:235 [in hydras.Ackermann.wellFormed]
    +f:235 [in hydras.Ackermann.codePA]
    +f:236 [in hydras.Prelude.Iterates]
    +f:236 [in hydras.Ackermann.codePA]
    +f:237 [in hydras.Ackermann.codeFreeVar]
    +f:237 [in hydras.Ackermann.codePA]
    +f:238 [in hydras.Ackermann.codeFreeVar]
    +f:238 [in hydras.Ackermann.wellFormed]
    +f:239 [in hydras.Ackermann.codeFreeVar]
    +f:24 [in hydras.Ackermann.LNN]
    +f:24 [in hydras.Ackermann.LNT]
    +f:24 [in hydras.Ackermann.folLogic]
    +f:24 [in Goedel.goedel1]
    +f:24 [in hydras.Schutte.Ordering_Functions]
    +f:24 [in hydras.Ackermann.codePA]
    +f:24 [in Goedel.goedel2]
    +f:240 [in hydras.Ackermann.codeFreeVar]
    +f:240 [in additions.Euclidean_Chains]
    +f:240 [in hydras.Ackermann.wellFormed]
    +f:241 [in hydras.Prelude.Iterates]
    +f:241 [in hydras.Ackermann.codeFreeVar]
    +f:242 [in hydras.Ackermann.codeFreeVar]
    +f:242 [in hydras.Ackermann.wellFormed]
    +f:243 [in hydras.Ackermann.codeFreeVar]
    +f:243 [in hydras.rpo.more_list]
    +f:244 [in hydras.Ackermann.cPair]
    +f:244 [in hydras.Ackermann.wellFormed]
    +f:245 [in hydras.Prelude.Iterates]
    +f:245 [in hydras.Ackermann.codeFreeVar]
    +f:246 [in hydras.Ackermann.wellFormed]
    +f:247 [in hydras.Ackermann.codeFreeVar]
    +f:248 [in hydras.Ackermann.wellFormed]
    +f:248 [in hydras.Ackermann.fol]
    +f:248 [in hydras.Gamma0.Gamma0]
    +f:249 [in hydras.Prelude.Iterates]
    +f:249 [in hydras.Ackermann.codeFreeVar]
    +f:249 [in hydras.Ackermann.wellFormed]
    +f:25 [in hydras.Prelude.Iterates]
    +f:25 [in hydras.Ackermann.folLogic2]
    +f:25 [in additions.Euclidean_Chains]
    +f:25 [in gaia_hydras.GL_alpha]
    +f:25 [in hydras.Ackermann.expressible]
    +f:250 [in hydras.Ackermann.wellFormed]
    +f:251 [in hydras.Ackermann.subAll]
    +f:251 [in hydras.Ackermann.codeFreeVar]
    +f:251 [in hydras.Ackermann.wellFormed]
    +f:251 [in hydras.Ackermann.fol]
    +f:252 [in hydras.Ackermann.wellFormed]
    +f:253 [in hydras.Ackermann.codeFreeVar]
    +f:253 [in hydras.rpo.more_list]
    +f:253 [in hydras.Ackermann.wellFormed]
    +f:254 [in hydras.Ackermann.wellFormed]
    +f:254 [in hydras.Gamma0.Gamma0]
    +f:255 [in hydras.Ackermann.subAll]
    +f:255 [in hydras.Ackermann.codeFreeVar]
    +f:256 [in hydras.Ackermann.wellFormed]
    +f:257 [in hydras.Ackermann.codeFreeVar]
    +f:258 [in hydras.Ackermann.wellFormed]
    +f:259 [in hydras.Ackermann.codeFreeVar]
    +f:26 [in Goedel.codeSysPrf]
    +f:26 [in gaia_hydras.nfwfgaia]
    +f:26 [in hydras.Ackermann.Languages]
    +f:260 [in hydras.Ackermann.codeFreeVar]
    +f:260 [in hydras.Ackermann.wellFormed]
    +f:260 [in hydras.Ackermann.fol]
    +f:260 [in hydras.Gamma0.Gamma0]
    +f:261 [in hydras.Ackermann.codeFreeVar]
    +f:262 [in hydras.Ackermann.codeFreeVar]
    +f:262 [in hydras.Ackermann.wellFormed]
    +f:262 [in hydras.Ackermann.fol]
    +f:263 [in hydras.Ackermann.codeFreeVar]
    +f:264 [in hydras.Ackermann.codeFreeVar]
    +f:264 [in hydras.Ackermann.wellFormed]
    +f:265 [in hydras.Ackermann.codeFreeVar]
    +f:265 [in hydras.rpo.more_list]
    +f:266 [in hydras.Ackermann.codeFreeVar]
    +f:266 [in hydras.Ackermann.wellFormed]
    +f:267 [in hydras.Ackermann.codeFreeVar]
    +f:268 [in hydras.Ackermann.wellFormed]
    +f:269 [in hydras.Ackermann.codeFreeVar]
    +f:27 [in hydras.rpo.more_list]
    +f:27 [in hydras.Ackermann.LNN]
    +f:27 [in hydras.Ackermann.LNT]
    +f:27 [in additions.Euclidean_Chains]
    +f:27 [in hydras.Ackermann.folLogic]
    +f:27 [in Goedel.rosser]
    +f:27 [in hydras.Ackermann.codePA]
    +f:27 [in hydras.Schutte.Countable]
    +f:270 [in hydras.Ackermann.wellFormed]
    +f:271 [in hydras.Ackermann.codeFreeVar]
    +f:272 [in hydras.Ackermann.wellFormed]
    +f:273 [in hydras.Ackermann.codeFreeVar]
    +f:274 [in hydras.Ackermann.wellFormed]
    +f:275 [in hydras.Ackermann.codeFreeVar]
    +f:276 [in hydras.Ackermann.codeFreeVar]
    +f:276 [in hydras.Ackermann.wellFormed]
    +f:277 [in hydras.Ackermann.codeFreeVar]
    +f:278 [in hydras.Ackermann.codeFreeVar]
    +f:278 [in hydras.Ackermann.wellFormed]
    +f:279 [in hydras.Ackermann.codeFreeVar]
    +f:279 [in hydras.Ackermann.folProp]
    +f:28 [in hydras.Ackermann.model]
    +f:28 [in additions.Euclidean_Chains]
    +f:28 [in Goedel.codeSysPrf]
    +f:28 [in hydras.Schutte.Ordering_Functions]
    +f:28 [in hydras.Schutte.Countable]
    +f:280 [in hydras.Ackermann.codeFreeVar]
    +f:280 [in hydras.Ackermann.wellFormed]
    +f:280 [in hydras.rpo.rpo]
    +f:281 [in hydras.Ackermann.codeFreeVar]
    +f:282 [in hydras.Ackermann.subAll]
    +f:282 [in hydras.Ackermann.codeFreeVar]
    +f:282 [in hydras.Ackermann.wellFormed]
    +f:283 [in hydras.Ackermann.codeFreeVar]
    +f:284 [in hydras.Ackermann.codeFreeVar]
    +f:284 [in hydras.Ackermann.wellFormed]
    +f:285 [in hydras.Ackermann.codeFreeVar]
    +f:286 [in hydras.Ackermann.codeFreeVar]
    +f:286 [in hydras.Ackermann.wellFormed]
    +f:287 [in hydras.Ackermann.subAll]
    +f:287 [in hydras.Ackermann.codeFreeVar]
    +f:288 [in hydras.rpo.term]
    +f:288 [in hydras.Ackermann.codeFreeVar]
    +f:288 [in hydras.Ackermann.wellFormed]
    +f:289 [in hydras.Ackermann.codeFreeVar]
    +f:29 [in hydras.Ackermann.model]
    +f:29 [in hydras.Prelude.Sort_spec]
    +f:29 [in gaia_hydras.nfwfgaia]
    +f:290 [in hydras.Ackermann.codeFreeVar]
    +f:290 [in hydras.Ackermann.wellFormed]
    +f:291 [in hydras.Ackermann.codeFreeVar]
    +f:292 [in hydras.Ackermann.codeFreeVar]
    +f:292 [in hydras.Ackermann.wellFormed]
    +f:294 [in hydras.Ackermann.wellFormed]
    +f:296 [in hydras.Ackermann.wellFormed]
    +f:297 [in hydras.Ackermann.subAll]
    +f:298 [in hydras.rpo.term]
    +f:298 [in hydras.Ackermann.wellFormed]
    +f:298 [in hydras.Ackermann.fol]
    +f:3 [in hydras.Prelude.DecPreOrder_Instances]
    +F:3 [in hydras.Ackermann.NN2PA]
    +f:3 [in hydras.Prelude.STDPP_compat]
    +f:3 [in hydras.Ackermann.folLogic]
    +f:30 [in hydras.Prelude.Iterates]
    +f:30 [in hydras.Ackermann.LNN]
    +f:30 [in hydras.Ackermann.LNT]
    +f:30 [in hydras.Ackermann.folLogic]
    +f:30 [in hydras.Schutte.Ordering_Functions]
    +f:30 [in hydras.Ackermann.codePA]
    +f:30 [in hydras.MoreAck.FolExamples]
    +f:300 [in hydras.Ackermann.wellFormed]
    +f:301 [in hydras.Ackermann.fol]
    +f:302 [in hydras.Ackermann.wellFormed]
    +f:303 [in hydras.Ackermann.wellFormed]
    +f:304 [in hydras.Ackermann.wellFormed]
    +f:305 [in hydras.Ackermann.wellFormed]
    +f:306 [in hydras.Ackermann.wellFormed]
    +f:307 [in hydras.Ackermann.wellFormed]
    +f:308 [in hydras.Ackermann.wellFormed]
    +f:309 [in hydras.Ackermann.wellFormed]
    +f:31 [in hydras.Ackermann.folLogic2]
    +f:31 [in Goedel.codeSysPrf]
    +f:31 [in hydras.Ackermann.Languages]
    +f:31 [in hydras.Ackermann.expressible]
    +f:310 [in hydras.Ackermann.wellFormed]
    +f:310 [in hydras.Ackermann.fol]
    +f:311 [in hydras.Ackermann.wellFormed]
    +f:312 [in hydras.Ackermann.wellFormed]
    +f:312 [in hydras.Ackermann.fol]
    +f:313 [in hydras.Ackermann.wellFormed]
    +f:314 [in hydras.Ackermann.wellFormed]
    +f:315 [in hydras.Ackermann.wellFormed]
    +f:316 [in hydras.Ackermann.subAll]
    +f:316 [in hydras.Ackermann.wellFormed]
    +f:317 [in hydras.Ackermann.wellFormed]
    +f:318 [in hydras.Ackermann.wellFormed]
    +f:319 [in hydras.Ackermann.wellFormed]
    +f:32 [in hydras.Prelude.Iterates]
    +f:32 [in hydras.Ackermann.LNT]
    +f:32 [in gaia_hydras.T1Bridge]
    +f:320 [in hydras.Ackermann.wellFormed]
    +f:321 [in hydras.Ackermann.wellFormed]
    +f:322 [in hydras.Ackermann.wellFormed]
    +f:323 [in hydras.Ackermann.wellFormed]
    +f:324 [in hydras.Ackermann.wellFormed]
    +f:326 [in hydras.Ackermann.wellFormed]
    +f:328 [in hydras.Ackermann.wellFormed]
    +f:33 [in hydras.rpo.more_list]
    +f:33 [in hydras.Ackermann.LNN]
    +f:33 [in hydras.Ackermann.folLogic]
    +f:33 [in hydras.Ackermann.codePA]
    +f:33 [in hydras.Ackermann.expressible]
    +f:330 [in hydras.Ackermann.wellFormed]
    +f:332 [in hydras.Ackermann.wellFormed]
    +f:333 [in hydras.Ackermann.wellFormed]
    +f:334 [in hydras.Ackermann.wellFormed]
    +f:335 [in hydras.Ackermann.wellFormed]
    +f:336 [in hydras.Ackermann.wellFormed]
    +f:337 [in hydras.Ackermann.wellFormed]
    +f:338 [in hydras.Ackermann.wellFormed]
    +f:339 [in hydras.Ackermann.wellFormed]
    +f:34 [in hydras.Ackermann.LNT]
    +f:340 [in hydras.Ackermann.wellFormed]
    +f:341 [in hydras.Ackermann.wellFormed]
    +f:342 [in hydras.Ackermann.wellFormed]
    +f:343 [in hydras.Ackermann.wellFormed]
    +f:344 [in hydras.Ackermann.primRec]
    +f:344 [in hydras.Ackermann.wellFormed]
    +f:344 [in hydras.Ackermann.fol]
    +f:345 [in hydras.Ackermann.wellFormed]
    +f:346 [in hydras.rpo.term]
    +f:347 [in hydras.Ackermann.primRec]
    +f:347 [in hydras.Ackermann.fol]
    +f:35 [in hydras.Ackermann.folLogic2]
    +f:35 [in hydras.Ackermann.LNN]
    +f:35 [in gaia_hydras.T1Bridge]
    +F:350 [in Goedel.PRrepresentable]
    +F:354 [in Goedel.PRrepresentable]
    +f:356 [in hydras.Ackermann.primRec]
    +f:356 [in hydras.Ackermann.fol]
    +F:358 [in Goedel.PRrepresentable]
    +f:358 [in hydras.Ackermann.fol]
    +f:36 [in hydras.Prelude.Iterates]
    +f:36 [in hydras.Ackermann.LNT]
    +f:36 [in hydras.Ackermann.folLogic]
    +f:36 [in hydras.Ackermann.Languages]
    +f:36 [in hydras.Ackermann.codePA]
    +f:360 [in hydras.Ackermann.primRec]
    +F:362 [in Goedel.PRrepresentable]
    +f:37 [in hydras.rpo.term]
    +f:37 [in hydras.Ackermann.LNN]
    +f:37 [in hydras.Epsilon0.Large_Sets]
    +f:37 [in Goedel.rosserPA]
    +f:37 [in hydras.Schutte.Countable]
    +f:37 [in hydras.Ackermann.expressible]
    +f:378 [in hydras.Ackermann.primRec]
    +f:38 [in hydras.Prelude.Sort_spec]
    +f:38 [in hydras.Ackermann.folProp]
    +f:38 [in hydras.Ackermann.code]
    +f:38 [in hydras.Ackermann.folLogic]
    +F:384 [in Goedel.PRrepresentable]
    +F:388 [in Goedel.PRrepresentable]
    +f:388 [in hydras.Ackermann.fol]
    +f:39 [in hydras.Prelude.Iterates]
    +f:39 [in additions.FirstSteps]
    +f:39 [in hydras.Ackermann.LNN]
    +f:39 [in hydras.Ackermann.LNT]
    +F:39 [in hydras.Ackermann.folProp]
    +f:39 [in hydras.Ackermann.codePA]
    +f:39 [in hydras.MoreAck.PrimRecExamples]
    +f:391 [in hydras.Ackermann.fol]
    +F:392 [in Goedel.PRrepresentable]
    +F:396 [in Goedel.PRrepresentable]
    +f:4 [in hydras.MoreAck.AckNotPR]
    +f:4 [in hydras.MoreAck.Iterate_compat]
    +f:40 [in hydras.Epsilon0.Large_Sets]
    +f:40 [in hydras.Ackermann.expressible]
    +f:400 [in hydras.Ackermann.folProp]
    +f:400 [in hydras.Ackermann.fol]
    +f:402 [in hydras.Ackermann.fol]
    +F:404 [in Goedel.PRrepresentable]
    +F:408 [in Goedel.PRrepresentable]
    +f:41 [in hydras.Prelude.Iterates]
    +F:41 [in hydras.Ackermann.folProp]
    +f:41 [in hydras.Ackermann.code]
    +f:41 [in hydras.rpo.rpo]
    +f:411 [in hydras.Ackermann.primRec]
    +F:412 [in Goedel.PRrepresentable]
    +f:414 [in hydras.Ackermann.folProp]
    +F:416 [in Goedel.PRrepresentable]
    +f:42 [in hydras.Ackermann.LNN]
    +f:42 [in hydras.Ackermann.LNT]
    +f:42 [in hydras.Ackermann.folProp]
    +f:42 [in hydras.MoreAck.AckNotPR]
    +f:42 [in hydras.Ackermann.folLogic]
    +f:42 [in gaia_hydras.nfwfgaia]
    +f:422 [in hydras.Ackermann.primRec]
    +f:426 [in hydras.Ackermann.folProp]
    +f:427 [in hydras.Ackermann.primRec]
    +f:428 [in Goedel.PRrepresentable]
    +f:428 [in hydras.Ackermann.folProp]
    +f:43 [in hydras.rpo.term]
    +f:43 [in hydras.Ackermann.folProof]
    +f:43 [in hydras.Prelude.Iterates]
    +f:43 [in hydras.Epsilon0.Large_Sets]
    +f:431 [in Goedel.PRrepresentable]
    +f:433 [in hydras.Ackermann.folProp]
    +f:434 [in Goedel.PRrepresentable]
    +f:434 [in hydras.Ackermann.primRec]
    +f:437 [in Goedel.PRrepresentable]
    +f:44 [in hydras.Ackermann.subAll]
    +f:44 [in hydras.Ackermann.model]
    +f:44 [in hydras.Ackermann.subProp]
    +f:44 [in hydras.Ackermann.code]
    +f:44 [in hydras.Schutte.Ordering_Functions]
    +f:44 [in hydras.Ackermann.expressible]
    +f:440 [in hydras.Ackermann.fol]
    +f:442 [in hydras.Ackermann.folProp]
    +f:442 [in hydras.Ackermann.fol]
    +f:445 [in Goedel.PRrepresentable]
    +f:446 [in hydras.Ackermann.fol]
    +f:45 [in hydras.Ackermann.folProof]
    +f:45 [in hydras.Ackermann.LNN]
    +f:45 [in hydras.Ackermann.LNT]
    +f:45 [in hydras.Ackermann.folProp]
    +f:45 [in hydras.Schutte.AP]
    +f:45 [in hydras.Epsilon0.L_alpha]
    +f:45 [in hydras.Schutte.Schutte_basics]
    +f:45 [in hydras.rpo.rpo]
    +f:456 [in Goedel.PRrepresentable]
    +f:46 [in hydras.Prelude.Iterates]
    +f:46 [in hydras.MoreAck.AckNotPR]
    +f:46 [in hydras.Epsilon0.Large_Sets]
    +f:46 [in hydras.Ackermann.folLogic]
    +f:46 [in hydras.MoreAck.PrimRecExamples]
    +f:47 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +f:47 [in gaia_hydras.nfwfgaia]
    +f:47 [in hydras.Ackermann.Languages]
    +f:47 [in hydras.MoreAck.PrimRecExamples]
    +f:474 [in Goedel.PRrepresentable]
    +f:48 [in hydras.Ackermann.LNN]
    +f:48 [in hydras.Ackermann.LNT]
    +f:48 [in hydras.Schutte.Ordering_Functions]
    +f:48 [in hydras.Ackermann.Languages]
    +f:48 [in hydras.Ackermann.expressible]
    +f:49 [in hydras.Prelude.Iterates]
    +f:49 [in hydras.Ackermann.LNN2LNT]
    +f:49 [in hydras.Epsilon0.Large_Sets]
    +f:49 [in hydras.Ackermann.folLogic]
    +f:49 [in gaia_hydras.nfwfgaia]
    +f:5 [in hydras.rpo.more_list]
    +f:5 [in hydras.Ackermann.folLogic2]
    +f:5 [in hydras.Ackermann.code]
    +f:5 [in hydras.Ackermann.PA]
    +f:5 [in hydras.Schutte.Ordering_Functions]
    +f:50 [in hydras.Ackermann.folProof]
    +f:50 [in hydras.Ackermann.subAll]
    +f:50 [in hydras.MoreAck.AckNotPR]
    +f:50 [in hydras.Ackermann.Languages]
    +f:50 [in hydras.rpo.rpo]
    +f:51 [in hydras.Ackermann.LNN]
    +f:514 [in gaia_hydras.nfwfgaia]
    +f:519 [in gaia_hydras.nfwfgaia]
    +f:52 [in hydras.Ackermann.folProof]
    +f:52 [in Goedel.PRrepresentable]
    +f:52 [in hydras.Ackermann.LNT]
    +f:52 [in hydras.Ackermann.PA]
    +f:52 [in hydras.Ackermann.folLogic]
    +f:52 [in gaia_hydras.nfwfgaia]
    +f:52 [in hydras.MoreAck.PrimRecExamples]
    +f:524 [in gaia_hydras.nfwfgaia]
    +f:527 [in gaia_hydras.nfwfgaia]
    +f:53 [in hydras.Prelude.Iterates]
    +f:53 [in hydras.Schutte.Ordering_Functions]
    +f:538 [in hydras.Ackermann.checkPrf]
    +f:54 [in hydras.Ackermann.folProof]
    +f:54 [in hydras.Ackermann.model]
    +f:54 [in hydras.rpo.rpo]
    +f:541 [in hydras.Ackermann.checkPrf]
    +f:542 [in gaia_hydras.nfwfgaia]
    +f:544 [in hydras.Ackermann.checkPrf]
    +f:545 [in hydras.Ackermann.checkPrf]
    +f:546 [in gaia_hydras.nfwfgaia]
    +f:548 [in hydras.Ackermann.checkPrf]
    +f:55 [in hydras.Ackermann.LNN]
    +f:55 [in hydras.Ackermann.folLogic]
    +f:55 [in hydras.MoreAck.PrimRecExamples]
    +f:550 [in gaia_hydras.nfwfgaia]
    +f:553 [in gaia_hydras.nfwfgaia]
    +f:558 [in gaia_hydras.nfwfgaia]
    +f:56 [in hydras.Ackermann.LNT]
    +f:56 [in hydras.Ackermann.primRec]
    +f:56 [in hydras.OrdinalNotations.ON_Generic]
    +f:560 [in gaia_hydras.nfwfgaia]
    +f:566 [in gaia_hydras.nfwfgaia]
    +f:568 [in gaia_hydras.nfwfgaia]
    +f:57 [in hydras.Prelude.Iterates]
    +f:57 [in Goedel.rosserPA]
    +f:57 [in Goedel.codeSysPrf]
    +f:576 [in gaia_hydras.nfwfgaia]
    +f:58 [in hydras.Ackermann.model]
    +f:58 [in hydras.Ackermann.folLogic]
    +f:58 [in hydras.Schutte.Ordering_Functions]
    +f:582 [in gaia_hydras.nfwfgaia]
    +f:587 [in gaia_hydras.nfwfgaia]
    +f:59 [in hydras.Ackermann.LNN]
    +f:59 [in hydras.Ackermann.LNT]
    +f:59 [in hydras.Prelude.Sort_spec]
    +f:59 [in hydras.MoreAck.PrimRecExamples]
    +f:593 [in gaia_hydras.nfwfgaia]
    +f:596 [in gaia_hydras.nfwfgaia]
    +f:599 [in hydras.Ackermann.primRec]
    +F:6 [in hydras.Ackermann.Deduction]
    +f:6 [in hydras.Ackermann.folLogic]
    +f:61 [in hydras.Ackermann.folLogic]
    +f:618 [in hydras.Ackermann.primRec]
    +f:62 [in hydras.Prelude.Iterates]
    +f:62 [in hydras.Ackermann.LNN2LNT]
    +f:62 [in hydras.Ackermann.LNN]
    +f:62 [in hydras.Ackermann.LNT]
    +f:62 [in hydras.Ackermann.fol]
    +f:62 [in hydras.Prelude.MoreVectors]
    +f:621 [in hydras.Ackermann.primRec]
    +f:625 [in hydras.Ackermann.primRec]
    +f:63 [in hydras.Ackermann.primRec]
    +f:63 [in hydras.Epsilon0.Hprime]
    +f:63 [in hydras.Schutte.Ordering_Functions]
    +f:630 [in hydras.Ackermann.primRec]
    +f:634 [in hydras.Ackermann.primRec]
    +f:639 [in hydras.Ackermann.primRec]
    +f:64 [in hydras.Ackermann.LNN2LNT]
    +f:64 [in hydras.Ackermann.folProp]
    +f:64 [in hydras.Ackermann.folLogic]
    +f:64 [in hydras.Ackermann.codePA]
    +f:65 [in hydras.Prelude.Iterates]
    +f:65 [in hydras.Ackermann.LNN]
    +f:65 [in hydras.Ackermann.LNT]
    +f:65 [in hydras.Ackermann.Languages]
    +f:65 [in hydras.Ackermann.codePA]
    +f:66 [in hydras.Ackermann.LNN2LNT]
    +f:66 [in hydras.Schutte.Ordering_Functions]
    +f:66 [in hydras.Ackermann.codePA]
    +f:661 [in hydras.Ackermann.primRec]
    +f:669 [in hydras.Ackermann.primRec]
    +f:67 [in hydras.Ackermann.subProp]
    +f:67 [in additions.Euclidean_Chains]
    +f:67 [in hydras.Ackermann.folLogic]
    +f:67 [in hydras.Ackermann.codePA]
    +f:68 [in hydras.Ackermann.LNN]
    +f:68 [in hydras.Ackermann.LNT]
    +f:68 [in hydras.Schutte.PartialFun]
    +f:68 [in hydras.Ackermann.codePA]
    +f:69 [in hydras.Prelude.Iterates]
    +f:69 [in hydras.Ackermann.LNN2LNT]
    +f:69 [in hydras.Ackermann.fol]
    +f:69 [in Goedel.rosser]
    +f:69 [in hydras.Ackermann.codePA]
    +f:7 [in hydras.Epsilon0.Epsilon0rpo]
    +f:7 [in hydras.Epsilon0.Large_Sets]
    +f:7 [in hydras.Ackermann.wellFormed]
    +f:7 [in Goedel.goedel1]
    +f:7 [in Goedel.rosser]
    +f:7 [in hydras.Ackermann.codePA]
    +f:7 [in Goedel.goedel2]
    +f:7 [in hydras.Ackermann.expressible]
    +f:70 [in Goedel.rosser]
    +f:70 [in gaia_hydras.nfwfgaia]
    +f:70 [in hydras.Ackermann.codePA]
    +f:70 [in hydras.MoreAck.PrimRecExamples]
    +f:71 [in hydras.Ackermann.LNN]
    +f:71 [in hydras.Ackermann.LNT]
    +f:71 [in hydras.Schutte.PartialFun]
    +f:71 [in hydras.Ackermann.folLogic]
    +f:72 [in hydras.MoreAck.AckNotPR]
    +f:72 [in hydras.Ackermann.codePA]
    +f:73 [in hydras.Prelude.Iterates]
    +f:73 [in hydras.Prelude.Sort_spec]
    +f:73 [in hydras.MoreAck.AckNotPR]
    +f:73 [in hydras.Ackermann.codeSubFormula]
    +f:73 [in gaia_hydras.nfwfgaia]
    +f:73 [in hydras.Ackermann.codePA]
    +f:73 [in hydras.MoreAck.PrimRecExamples]
    +f:731 [in hydras.Ackermann.checkPrf]
    +f:74 [in hydras.Ackermann.LNN]
    +f:74 [in hydras.Ackermann.LNT]
    +f:74 [in hydras.Ackermann.folProp]
    +f:74 [in hydras.MoreAck.AckNotPR]
    +f:74 [in hydras.Ackermann.primRec]
    +f:74 [in hydras.Ackermann.folLogic]
    +f:75 [in Goedel.codeSysPrf]
    +f:75 [in hydras.rpo.list_permut]
    +f:75 [in Goedel.rosser]
    +f:75 [in hydras.Ackermann.codePA]
    +f:75 [in hydras.Prelude.MoreVectors]
    +f:76 [in hydras.Ackermann.model]
    +f:76 [in hydras.Ackermann.folLogic3]
    +f:77 [in hydras.Prelude.Iterates]
    +f:77 [in hydras.Ackermann.LNN]
    +f:77 [in hydras.Ackermann.LNT]
    +f:77 [in additions.Euclidean_Chains]
    +f:77 [in gaia_hydras.nfwfgaia]
    +f:77 [in hydras.Ackermann.codePA]
    +f:78 [in hydras.MoreAck.AckNotPR]
    +f:78 [in hydras.Ackermann.folLogic]
    +f:78 [in hydras.rpo.list_permut]
    +f:78 [in hydras.MoreAck.PrimRecExamples]
    +f:79 [in Goedel.PRrepresentable]
    +f:79 [in hydras.Ackermann.model]
    +f:79 [in hydras.Ackermann.codeSubFormula]
    +f:79 [in hydras.Ackermann.codePA]
    +f:8 [in hydras.Ackermann.folProof]
    +F:8 [in hydras.MoreAck.BadSubst]
    +f:8 [in hydras.Prelude.Iterates]
    +f:8 [in hydras.Ackermann.checkPrf]
    +f:8 [in Goedel.rosserPA]
    +f:8 [in hydras.Ackermann.folLogic]
    +f:8 [in gaia_hydras.onType]
    +f:8 [in hydras.Schutte.Well_Orders]
    +f:8 [in Goedel.codeSysPrf]
    +f:80 [in hydras.Ackermann.LNN]
    +f:80 [in hydras.Schutte.Ordering_Functions]
    +f:80 [in gaia_hydras.nfwfgaia]
    +f:81 [in hydras.Prelude.Iterates]
    +f:81 [in hydras.Ackermann.LNT]
    +f:81 [in Goedel.codeSysPrf]
    +f:81 [in hydras.Ackermann.codePA]
    +f:819 [in hydras.Ackermann.primRec]
    +f:82 [in hydras.Ackermann.folLogic]
    +f:82 [in hydras.MoreAck.PrimRecExamples]
    +f:821 [in hydras.Ackermann.checkPrf]
    +f:822 [in hydras.Ackermann.primRec]
    +f:823 [in hydras.Ackermann.checkPrf]
    +f:825 [in hydras.Ackermann.checkPrf]
    +f:827 [in hydras.Ackermann.checkPrf]
    +f:829 [in hydras.Ackermann.checkPrf]
    +f:83 [in hydras.MoreAck.AckNotPR]
    +f:83 [in Goedel.codeSysPrf]
    +f:83 [in hydras.Ackermann.codePA]
    +f:831 [in hydras.Ackermann.checkPrf]
    +f:833 [in hydras.Ackermann.checkPrf]
    +f:836 [in hydras.Ackermann.checkPrf]
    +f:84 [in hydras.Ackermann.LNN]
    +f:84 [in hydras.Ackermann.LNT]
    +f:846 [in hydras.Ackermann.checkPrf]
    +f:85 [in hydras.Ackermann.folProp]
    +f:85 [in hydras.Ackermann.folLogic]
    +f:85 [in hydras.Epsilon0.Hprime]
    +f:85 [in hydras.Ackermann.codePA]
    +f:859 [in hydras.Ackermann.checkPrf]
    +f:86 [in hydras.Ackermann.subAll]
    +f:864 [in hydras.Ackermann.checkPrf]
    +f:87 [in hydras.Prelude.Iterates]
    +f:87 [in hydras.Ackermann.LNN]
    +f:87 [in hydras.Ackermann.model]
    +f:87 [in Goedel.codeSysPrf]
    +F:87 [in hydras.Epsilon0.Hprime]
    +f:87 [in hydras.Ackermann.codePA]
    +f:874 [in gaia_hydras.nfwfgaia]
    +f:877 [in hydras.Ackermann.checkPrf]
    +f:88 [in hydras.Ackermann.LNT]
    +f:880 [in hydras.Ackermann.checkPrf]
    +f:89 [in hydras.Ackermann.folLogic]
    +f:89 [in hydras.Ackermann.codePA]
    +f:9 [in hydras.Ackermann.folLogic2]
    +f:9 [in hydras.Prelude.Sort_spec]
    +f:9 [in hydras.Ackermann.folProp]
    +f:9 [in hydras.Ackermann.Deduction]
    +f:9 [in Goedel.goedel1]
    +f:9 [in Goedel.rosser]
    +f:9 [in hydras.Ackermann.codePA]
    +f:9 [in Goedel.goedel2]
    +f:9 [in hydras.Ackermann.expressible]
    +f:90 [in hydras.Ackermann.subProp]
    +f:90 [in hydras.Ackermann.fol]
    +f:91 [in hydras.Ackermann.LNN]
    +f:91 [in hydras.Ackermann.fol]
    +f:91 [in hydras.Ackermann.folLogic]
    +f:91 [in Goedel.codeSysPrf]
    +f:91 [in hydras.Ackermann.codePA]
    +f:92 [in hydras.Ackermann.subAll]
    +f:92 [in hydras.Prelude.Iterates]
    +f:92 [in hydras.Ackermann.LNT]
    +f:93 [in hydras.Ackermann.codePA]
    +f:94 [in hydras.Ackermann.folLogic]
    +f:940 [in hydras.Ackermann.codeSubFormula]
    +f:943 [in hydras.Ackermann.codeSubFormula]
    +f:946 [in hydras.Ackermann.codeSubFormula]
    +f:949 [in hydras.Ackermann.codeSubFormula]
    +f:95 [in hydras.Ackermann.LNN]
    +f:95 [in hydras.Ackermann.LNT]
    +f:95 [in hydras.Ackermann.codePA]
    +f:952 [in hydras.Ackermann.codeSubFormula]
    +f:955 [in hydras.Ackermann.codeSubFormula]
    +f:958 [in hydras.Ackermann.codeSubFormula]
    +f:96 [in hydras.Ackermann.LNN2LNT]
    +f:96 [in hydras.Ackermann.folProp]
    +f:961 [in hydras.Ackermann.codeSubFormula]
    +f:964 [in hydras.Ackermann.codeSubFormula]
    +f:967 [in hydras.Ackermann.codeSubFormula]
    +f:97 [in hydras.Ackermann.folLogic]
    +f:97 [in hydras.Ackermann.folReplace]
    +f:97 [in hydras.Ackermann.codePA]
    +f:970 [in hydras.Ackermann.codeSubFormula]
    +f:973 [in hydras.Ackermann.codeSubFormula]
    +f:976 [in hydras.Ackermann.codeSubFormula]
    +f:979 [in hydras.Ackermann.codeSubFormula]
    +f:98 [in hydras.Prelude.Iterates]
    +f:98 [in hydras.Ackermann.LNN]
    +f:980 [in hydras.Ackermann.codeSubFormula]
    +f:981 [in hydras.Ackermann.codeSubFormula]
    +f:984 [in hydras.Ackermann.codeSubFormula]
    +f:987 [in hydras.Ackermann.codeSubFormula]
    +f:99 [in hydras.Ackermann.LNT]
    +f:99 [in hydras.Ackermann.codePA]
    +f:990 [in hydras.Ackermann.codeSubFormula]
    +f:993 [in hydras.Ackermann.codeSubFormula]
    +f:996 [in hydras.Ackermann.codeSubFormula]
    +f:999 [in hydras.Ackermann.codeSubFormula]
    +

    G

    +gammaA:295 [in additions.Addition_Chains]
    +gammaB:296 [in additions.Addition_Chains]
    +gamma_nat:204 [in additions.Addition_Chains]
    +gamma':140 [in hydras.Gamma0.Gamma0]
    +gamma':161 [in hydras.Gamma0.Gamma0]
    +gamma0:544 [in hydras.Gamma0.Gamma0]
    +gamma1:34 [in hydras.Gamma0.T2]
    +gamma1:41 [in hydras.Gamma0.T2]
    +gamma1:49 [in hydras.Gamma0.T2]
    +gamma1:56 [in hydras.Gamma0.T2]
    +gamma1:62 [in hydras.Gamma0.T2]
    +gamma1:67 [in hydras.Gamma0.T2]
    +gamma2:35 [in hydras.Gamma0.T2]
    +gamma2:42 [in hydras.Gamma0.T2]
    +gamma2:50 [in hydras.Gamma0.T2]
    +gamma2:57 [in hydras.Gamma0.T2]
    +gamma2:63 [in hydras.Gamma0.T2]
    +gamma2:68 [in hydras.Gamma0.T2]
    +gamma:1 [in additions.Strategies]
    +gamma:10 [in hydras.Schutte.AP]
    +gamma:102 [in hydras.Gamma0.T2]
    +gamma:111 [in hydras.Epsilon0.Hessenberg]
    +gamma:112 [in hydras.Epsilon0.T1]
    +gamma:114 [in hydras.Epsilon0.Hessenberg]
    +gamma:117 [in hydras.Epsilon0.Paths]
    +gamma:12 [in hydras.Schutte.Critical]
    +gamma:122 [in hydras.Epsilon0.E0]
    +gamma:122 [in hydras.Epsilon0.Paths]
    +gamma:125 [in hydras.Epsilon0.Paths]
    +gamma:126 [in hydras.Gamma0.Gamma0]
    +gamma:129 [in hydras.Gamma0.Gamma0]
    +gamma:13 [in hydras.Schutte.Correctness_E0]
    +gamma:131 [in hydras.Epsilon0.Paths]
    +gamma:132 [in hydras.Gamma0.Gamma0]
    +gamma:136 [in hydras.Gamma0.Gamma0]
    +gamma:138 [in hydras.Epsilon0.Paths]
    +gamma:144 [in hydras.Epsilon0.Paths]
    +gamma:15 [in hydras.solutions_exercises.predSuccUnicity]
    +gamma:150 [in hydras.Gamma0.Gamma0]
    +gamma:156 [in hydras.Gamma0.Gamma0]
    +gamma:160 [in hydras.Gamma0.Gamma0]
    +gamma:162 [in hydras.Gamma0.Gamma0]
    +gamma:167 [in hydras.Epsilon0.Paths]
    +gamma:17 [in hydras.Schutte.Correctness_E0]
    +gamma:172 [in hydras.Epsilon0.Paths]
    +gamma:179 [in hydras.Gamma0.Gamma0]
    +gamma:18 [in hydras.solutions_exercises.predSuccUnicity]
    +gamma:18 [in hydras.Epsilon0.Paths]
    +gamma:19 [in hydras.solutions_exercises.Limit_Infinity]
    +gamma:20 [in hydras.Gamma0.Gamma0]
    +gamma:203 [in additions.Addition_Chains]
    +gamma:216 [in hydras.Epsilon0.Paths]
    +gamma:22 [in hydras.solutions_exercises.Limit_Infinity]
    +gamma:220 [in hydras.Epsilon0.Paths]
    +gamma:23 [in additions.Fib2]
    +gamma:25 [in gaia_hydras.GCanon]
    +gamma:250 [in hydras.Epsilon0.Paths]
    +gamma:26 [in hydras.Schutte.Addition]
    +gamma:27 [in hydras.Gamma0.T2]
    +gamma:298 [in hydras.Epsilon0.Paths]
    +gamma:302 [in hydras.Epsilon0.Paths]
    +gamma:309 [in hydras.Epsilon0.Paths]
    +gamma:31 [in hydras.Schutte.Addition]
    +gamma:315 [in hydras.Epsilon0.T1]
    +gamma:33 [in hydras.Epsilon0.Paths]
    +gamma:339 [in hydras.Epsilon0.T1]
    +gamma:34 [in hydras.Schutte.Correctness_E0]
    +gamma:34 [in hydras.Epsilon0.Canon]
    +gamma:34 [in hydras.Schutte.Addition]
    +gamma:342 [in hydras.Epsilon0.T1]
    +gamma:35 [in hydras.Epsilon0.Canon]
    +gamma:36 [in hydras.Schutte.Correctness_E0]
    +gamma:38 [in hydras.Schutte.Correctness_E0]
    +gamma:38 [in hydras.Epsilon0.Canon]
    +gamma:39 [in gaia_hydras.GCanon]
    +gamma:396 [in hydras.Epsilon0.T1]
    +gamma:40 [in hydras.Schutte.Correctness_E0]
    +gamma:40 [in hydras.Epsilon0.Canon]
    +gamma:44 [in hydras.Schutte.Addition]
    +gamma:468 [in hydras.Epsilon0.Paths]
    +gamma:47 [in hydras.Schutte.Addition]
    +gamma:48 [in hydras.Schutte.Addition]
    +gamma:498 [in hydras.Gamma0.Gamma0]
    +gamma:50 [in hydras.Schutte.CNF]
    +gamma:50 [in hydras.Schutte.Addition]
    +gamma:509 [in hydras.Epsilon0.Paths]
    +gamma:51 [in hydras.Schutte.Addition]
    +gamma:513 [in hydras.Epsilon0.Paths]
    +gamma:513 [in hydras.Gamma0.Gamma0]
    +gamma:516 [in hydras.Gamma0.Gamma0]
    +gamma:519 [in hydras.Epsilon0.Paths]
    +gamma:52 [in hydras.Schutte.Addition]
    +gamma:54 [in hydras.Epsilon0.Hessenberg]
    +gamma:542 [in hydras.Epsilon0.Paths]
    +gamma:545 [in hydras.Gamma0.Gamma0]
    +gamma:58 [in hydras.Hydra.O2H]
    +gamma:58 [in hydras.Schutte.Addition]
    +gamma:581 [in hydras.Epsilon0.Paths]
    +gamma:584 [in hydras.Epsilon0.T1]
    +gamma:59 [in hydras.Epsilon0.Hessenberg]
    +gamma:590 [in hydras.Epsilon0.T1]
    +gamma:60 [in hydras.Hydra.O2H]
    +gamma:60 [in hydras.Epsilon0.Hessenberg]
    +gamma:61 [in hydras.Schutte.Addition]
    +gamma:627 [in hydras.Gamma0.Gamma0]
    +gamma:63 [in hydras.Hydra.O2H]
    +gamma:631 [in hydras.Gamma0.Gamma0]
    +gamma:637 [in hydras.Epsilon0.T1]
    +gamma:643 [in hydras.Gamma0.Gamma0]
    +gamma:660 [in hydras.Gamma0.Gamma0]
    +gamma:663 [in hydras.Gamma0.Gamma0]
    +gamma:67 [in hydras.Epsilon0.Hessenberg]
    +gamma:676 [in hydras.Epsilon0.T1]
    +gamma:68 [in hydras.Schutte.AP]
    +gamma:693 [in hydras.Gamma0.Gamma0]
    +gamma:7 [in additions.Strategies]
    +gamma:72 [in hydras.OrdinalNotations.ON_Omega2]
    +gamma:74 [in hydras.Schutte.Critical]
    +gamma:82 [in hydras.Hydra.O2H]
    +gamma:82 [in hydras.Epsilon0.Hessenberg]
    +gamma:82 [in hydras.Epsilon0.E0]
    +gamma:85 [in hydras.Epsilon0.E0]
    +gamma:91 [in hydras.Epsilon0.Canon]
    +gamma:96 [in hydras.Epsilon0.E0]
    +gamma:97 [in hydras.Epsilon0.Canon]
    +gen:219 [in additions.Addition_Chains]
    +go:159 [in hydras.Hydra.Hydra_Lemmas]
    +gP:26 [in gaia_hydras.T1Bridge]
    +grec:79 [in hydras.Ackermann.folProp]
    +gR:29 [in gaia_hydras.T1Bridge]
    +gs:37 [in hydras.MoreAck.AckNotPR]
    +g_bij:91 [in hydras.Schutte.PartialFun]
    +g_bij:85 [in hydras.Schutte.PartialFun]
    +g_beta':130 [in hydras.Schutte.Ordering_Functions]
    +g_beta:129 [in hydras.Schutte.Ordering_Functions]
    +g_beta:128 [in hydras.Schutte.Ordering_Functions]
    +g_l':275 [in hydras.rpo.rpo]
    +g0:22 [in hydras.Ackermann.Deduction]
    +g0:23 [in hydras.Ackermann.Deduction]
    +g0:64 [in hydras.MoreAck.AckNotPR]
    +g0:65 [in hydras.MoreAck.AckNotPR]
    +g1:111 [in hydras.Ackermann.primRec]
    +g1:114 [in hydras.Ackermann.primRec]
    +g2:112 [in hydras.Ackermann.primRec]
    +g2:115 [in hydras.Ackermann.primRec]
    +g:10 [in hydras.Ackermann.Deduction]
    +g:102 [in hydras.Ackermann.LNT]
    +g:103 [in hydras.Ackermann.folReplace]
    +g:104 [in hydras.OrdinalNotations.ON_Generic]
    +g:105 [in hydras.Ackermann.LNN]
    +g:105 [in hydras.Ackermann.LNT]
    +g:108 [in hydras.Ackermann.LNN]
    +g:108 [in hydras.Ackermann.LNT]
    +g:108 [in hydras.Ackermann.folReplace]
    +g:109 [in hydras.Ackermann.folLogic]
    +g:110 [in hydras.Ackermann.fol]
    +g:111 [in hydras.Ackermann.LNN]
    +g:113 [in hydras.Ackermann.folLogic]
    +g:116 [in hydras.Ackermann.folLogic]
    +g:117 [in hydras.Ackermann.fol]
    +g:117 [in hydras.OrdinalNotations.ON_Generic]
    +g:119 [in hydras.Ackermann.LNT]
    +g:12 [in hydras.Ackermann.primRec]
    +g:12 [in hydras.Ackermann.Deduction]
    +g:12 [in hydras.Ackermann.folLogic]
    +g:121 [in hydras.Ackermann.folLogic]
    +g:122 [in hydras.Ackermann.LNN2LNT]
    +g:122 [in hydras.Ackermann.LNN]
    +g:123 [in hydras.Ackermann.LNT]
    +g:124 [in hydras.Ackermann.folLogic]
    +g:126 [in hydras.Ackermann.LNN]
    +g:126 [in hydras.Ackermann.LNT]
    +g:127 [in hydras.Ackermann.LNN2LNT]
    +g:129 [in hydras.Ackermann.LNN]
    +g:13 [in hydras.solutions_exercises.MinPR2]
    +g:13 [in Goedel.rosser]
    +g:130 [in hydras.Ackermann.LNN2LNT]
    +g:131 [in hydras.Ackermann.LNT]
    +g:132 [in hydras.Ackermann.LNN2LNT]
    +g:133 [in Goedel.PRrepresentable]
    +g:133 [in hydras.Ackermann.LNN2LNT]
    +g:134 [in hydras.Ackermann.LNN2LNT]
    +g:134 [in hydras.Ackermann.LNN]
    +g:134 [in hydras.Ackermann.LNT]
    +g:134 [in hydras.Ackermann.subProp]
    +g:135 [in hydras.Ackermann.LNN2LNT]
    +g:137 [in hydras.Ackermann.LNN]
    +g:14 [in hydras.Epsilon0.Epsilon0rpo]
    +g:14 [in Goedel.rosser]
    +G:14 [in hydras.MoreAck.FolExamples]
    +g:141 [in hydras.Ackermann.codePA]
    +g:141 [in hydras.rpo.rpo]
    +g:142 [in hydras.Ackermann.LNN2LNT]
    +g:143 [in hydras.OrdinalNotations.ON_Generic]
    +g:144 [in Goedel.PRrepresentable]
    +g:146 [in hydras.Ackermann.LNN2LNT]
    +g:149 [in hydras.Ackermann.codeSubFormula]
    +g:15 [in hydras.Ackermann.Deduction]
    +g:15 [in hydras.Ackermann.folLogic]
    +g:152 [in hydras.Prelude.Iterates]
    +g:155 [in Goedel.PRrepresentable]
    +g:156 [in hydras.OrdinalNotations.ON_Generic]
    +g:16 [in Goedel.rosserPA]
    +g:16 [in Goedel.goedel2]
    +g:161 [in hydras.Prelude.Iterates]
    +g:162 [in hydras.Ackermann.primRec]
    +g:167 [in hydras.Ackermann.model]
    +g:168 [in hydras.Ackermann.model]
    +g:168 [in hydras.OrdinalNotations.ON_Generic]
    +g:169 [in hydras.Prelude.Iterates]
    +g:169 [in hydras.Ackermann.model]
    +g:169 [in hydras.Ackermann.codePA]
    +g:17 [in Goedel.rosserPA]
    +g:170 [in hydras.Ackermann.primRec]
    +g:172 [in hydras.Ackermann.codePA]
    +g:174 [in hydras.Prelude.Iterates]
    +g:178 [in hydras.Ackermann.codeSubTerm]
    +g:178 [in gaia_hydras.T1Bridge]
    +g:178 [in hydras.Ackermann.primRec]
    +g:18 [in Goedel.rosserPA]
    +g:18 [in hydras.Ackermann.folLogic]
    +g:18 [in Goedel.goedel1]
    +g:180 [in hydras.OrdinalNotations.ON_Generic]
    +g:181 [in hydras.Ackermann.codeSubTerm]
    +g:181 [in gaia_hydras.T1Bridge]
    +g:184 [in gaia_hydras.T1Bridge]
    +g:185 [in hydras.Prelude.Iterates]
    +g:186 [in hydras.Prelude.Iterates]
    +g:188 [in hydras.Prelude.Iterates]
    +g:188 [in gaia_hydras.T1Bridge]
    +g:189 [in hydras.Ackermann.primRec]
    +g:19 [in hydras.Ackermann.LNT]
    +g:19 [in hydras.Schutte.Critical]
    +g:19 [in Goedel.rosserPA]
    +g:19 [in Goedel.goedel1]
    +g:19 [in hydras.Ackermann.Languages]
    +g:192 [in hydras.Prelude.Iterates]
    +g:193 [in hydras.Prelude.Iterates]
    +g:193 [in hydras.OrdinalNotations.ON_Generic]
    +g:195 [in hydras.Prelude.Iterates]
    +g:199 [in hydras.Prelude.Iterates]
    +g:20 [in hydras.Ackermann.checkPrf]
    +g:20 [in Goedel.goedel1]
    +g:20 [in Goedel.goedel2]
    +g:200 [in hydras.Ackermann.primRec]
    +g:201 [in hydras.Prelude.Iterates]
    +g:204 [in hydras.Prelude.Iterates]
    +g:205 [in hydras.Ackermann.codeSubFormula]
    +g:21 [in Goedel.goedel1]
    +g:2108 [in gaia_hydras.nfwfgaia]
    +g:211 [in hydras.Ackermann.primRec]
    +g:213 [in hydras.Ackermann.codeSubFormula]
    +g:216 [in hydras.Prelude.Iterates]
    +g:217 [in hydras.Prelude.Iterates]
    +g:218 [in hydras.Prelude.Iterates]
    +g:219 [in hydras.Prelude.Iterates]
    +g:22 [in hydras.Ackermann.LNN]
    +g:22 [in hydras.Ackermann.LNT]
    +g:22 [in Goedel.goedel1]
    +g:220 [in hydras.Prelude.Iterates]
    +g:221 [in additions.Addition_Chains]
    +g:223 [in hydras.Prelude.Iterates]
    +g:227 [in hydras.Prelude.Iterates]
    +g:228 [in hydras.Ackermann.primRec]
    +g:229 [in additions.Addition_Chains]
    +g:23 [in Goedel.goedel1]
    +g:234 [in hydras.Ackermann.wellFormed]
    +g:237 [in hydras.Ackermann.wellFormed]
    +g:238 [in additions.Addition_Chains]
    +g:24 [in Goedel.rosserPA]
    +g:244 [in hydras.Ackermann.primRec]
    +g:25 [in hydras.Ackermann.LNN]
    +g:25 [in hydras.Ackermann.LNT]
    +g:25 [in Goedel.rosserPA]
    +g:25 [in hydras.Ackermann.folLogic]
    +g:25 [in Goedel.rosser]
    +g:25 [in Goedel.goedel2]
    +g:252 [in hydras.Ackermann.fol]
    +g:255 [in hydras.Gamma0.Gamma0]
    +g:260 [in hydras.Ackermann.primRec]
    +g:264 [in hydras.Ackermann.cPair]
    +g:278 [in hydras.rpo.rpo]
    +g:279 [in hydras.rpo.rpo]
    +g:28 [in hydras.Ackermann.LNN]
    +g:28 [in hydras.Ackermann.LNT]
    +g:28 [in hydras.Ackermann.folLogic]
    +g:281 [in hydras.Ackermann.primRec]
    +g:29 [in hydras.Prelude.Iterates]
    +g:294 [in hydras.Ackermann.primRec]
    +g:302 [in hydras.Ackermann.fol]
    +g:31 [in hydras.Ackermann.LNN]
    +g:31 [in hydras.Ackermann.folLogic]
    +g:31 [in hydras.Schutte.Ordering_Functions]
    +g:31 [in hydras.MoreAck.FolExamples]
    +g:320 [in hydras.rpo.rpo]
    +g:321 [in hydras.rpo.rpo]
    +g:323 [in hydras.Ackermann.primRec]
    +g:327 [in Goedel.PRrepresentable]
    +g:33 [in hydras.Prelude.Iterates]
    +g:332 [in Goedel.PRrepresentable]
    +g:337 [in Goedel.PRrepresentable]
    +g:34 [in hydras.Ackermann.folLogic]
    +g:34 [in Goedel.codeSysPrf]
    +g:345 [in hydras.Ackermann.primRec]
    +g:348 [in hydras.Ackermann.fol]
    +g:349 [in hydras.Ackermann.primRec]
    +g:35 [in hydras.Prelude.Iterates]
    +g:354 [in hydras.Ackermann.primRec]
    +g:357 [in hydras.Ackermann.primRec]
    +g:36 [in Goedel.rosserPA]
    +g:361 [in hydras.Ackermann.primRec]
    +g:368 [in hydras.Ackermann.primRec]
    +g:37 [in hydras.Ackermann.LNT]
    +g:375 [in hydras.Ackermann.primRec]
    +g:379 [in hydras.Ackermann.primRec]
    +g:38 [in hydras.Prelude.Iterates]
    +g:385 [in hydras.Ackermann.primRec]
    +g:39 [in hydras.MoreAck.AckNotPR]
    +g:39 [in Goedel.rosserPA]
    +g:39 [in hydras.Ackermann.folLogic]
    +g:392 [in hydras.Ackermann.primRec]
    +g:392 [in hydras.Ackermann.fol]
    +g:398 [in hydras.Ackermann.primRec]
    +g:40 [in hydras.Ackermann.LNN]
    +g:40 [in hydras.Ackermann.LNT]
    +g:406 [in hydras.Ackermann.primRec]
    +g:41 [in hydras.Epsilon0.Large_Sets]
    +g:42 [in hydras.Ackermann.code]
    +g:42 [in Goedel.rosserPA]
    +g:423 [in hydras.Ackermann.primRec]
    +g:428 [in hydras.Ackermann.primRec]
    +g:43 [in hydras.Ackermann.LNN]
    +g:43 [in hydras.Ackermann.LNT]
    +g:43 [in hydras.MoreAck.AckNotPR]
    +g:43 [in hydras.Ackermann.folLogic]
    +g:435 [in hydras.Ackermann.primRec]
    +g:44 [in hydras.Prelude.Iterates]
    +g:45 [in hydras.MoreAck.PrimRecExamples]
    +g:46 [in hydras.Ackermann.LNN]
    +g:46 [in hydras.Ackermann.LNT]
    +g:46 [in Goedel.rosserPA]
    +g:46 [in hydras.rpo.rpo]
    +g:47 [in hydras.MoreAck.AckNotPR]
    +g:47 [in hydras.Ackermann.folLogic]
    +g:48 [in hydras.Ackermann.folProof]
    +g:48 [in hydras.MoreAck.PrimRecExamples]
    +g:49 [in hydras.Ackermann.LNN]
    +g:49 [in hydras.Ackermann.LNT]
    +g:49 [in Goedel.rosserPA]
    +g:49 [in hydras.Ackermann.expressible]
    +g:50 [in hydras.Epsilon0.Large_Sets]
    +g:50 [in Goedel.rosserPA]
    +g:50 [in hydras.Ackermann.folLogic]
    +g:51 [in hydras.MoreAck.AckNotPR]
    +g:51 [in Goedel.rosserPA]
    +g:51 [in hydras.MoreAck.PrimRecExamples]
    +g:52 [in hydras.Ackermann.LNN]
    +g:52 [in Goedel.rosserPA]
    +g:53 [in hydras.Ackermann.LNT]
    +g:53 [in Goedel.rosserPA]
    +g:53 [in hydras.Ackermann.folLogic]
    +g:53 [in gaia_hydras.nfwfgaia]
    +g:53 [in hydras.MoreAck.PrimRecExamples]
    +g:54 [in Goedel.rosserPA]
    +g:55 [in Goedel.rosserPA]
    +g:56 [in hydras.Ackermann.LNN]
    +g:56 [in hydras.Ackermann.folLogic]
    +g:56 [in hydras.MoreAck.PrimRecExamples]
    +g:563 [in hydras.Ackermann.checkPrf]
    +g:565 [in hydras.Ackermann.checkPrf]
    +g:57 [in hydras.Ackermann.LNT]
    +g:57 [in hydras.OrdinalNotations.ON_Generic]
    +g:58 [in hydras.Prelude.Iterates]
    +g:59 [in hydras.Ackermann.folLogic]
    +g:59 [in Goedel.codeSysPrf]
    +g:597 [in gaia_hydras.nfwfgaia]
    +g:6 [in hydras.rpo.more_list]
    +g:6 [in hydras.Ackermann.code]
    +g:6 [in hydras.Ackermann.PA]
    +g:60 [in hydras.Ackermann.LNN]
    +g:60 [in hydras.Ackermann.LNT]
    +g:60 [in hydras.MoreAck.PrimRecExamples]
    +g:62 [in hydras.Ackermann.primRec]
    +g:62 [in hydras.Ackermann.folLogic]
    +g:63 [in hydras.Prelude.Iterates]
    +g:63 [in hydras.Ackermann.LNN]
    +g:63 [in hydras.Ackermann.LNT]
    +g:63 [in hydras.Ackermann.fol]
    +g:64 [in hydras.Ackermann.primRec]
    +g:645 [in hydras.Ackermann.primRec]
    +g:65 [in hydras.MoreAck.PrimRecExamples]
    +g:651 [in hydras.Ackermann.primRec]
    +g:656 [in hydras.Ackermann.primRec]
    +g:66 [in hydras.Prelude.Iterates]
    +g:66 [in hydras.Ackermann.LNN]
    +g:66 [in hydras.Ackermann.LNT]
    +g:66 [in hydras.MoreAck.AckNotPR]
    +g:663 [in hydras.Ackermann.primRec]
    +g:668 [in hydras.Ackermann.primRec]
    +g:67 [in hydras.MoreAck.AckNotPR]
    +g:67 [in hydras.MoreAck.PrimRecExamples]
    +g:68 [in hydras.Ackermann.model]
    +g:68 [in hydras.Ackermann.primRec]
    +g:69 [in hydras.Ackermann.LNN]
    +g:69 [in hydras.Ackermann.LNT]
    +g:70 [in hydras.Ackermann.fol]
    +g:71 [in hydras.MoreAck.PrimRecExamples]
    +g:72 [in hydras.Ackermann.LNN]
    +g:72 [in hydras.Ackermann.LNT]
    +g:74 [in hydras.MoreAck.PrimRecExamples]
    +g:75 [in hydras.Ackermann.LNN]
    +g:77 [in hydras.Ackermann.folProp]
    +g:781 [in hydras.Ackermann.codeSubFormula]
    +g:784 [in hydras.Ackermann.codeSubFormula]
    +g:79 [in hydras.Ackermann.folLogic]
    +g:79 [in hydras.MoreAck.PrimRecExamples]
    +g:8 [in hydras.solutions_exercises.MinPR2]
    +g:812 [in hydras.Ackermann.primRec]
    +g:816 [in hydras.Ackermann.primRec]
    +g:82 [in hydras.Prelude.Iterates]
    +g:820 [in hydras.Ackermann.primRec]
    +g:823 [in hydras.Ackermann.primRec]
    +g:83 [in hydras.MoreAck.PrimRecExamples]
    +g:84 [in hydras.Schutte.PartialFun]
    +g:86 [in hydras.Ackermann.folProp]
    +g:86 [in hydras.Ackermann.folLogic]
    +g:86 [in Goedel.codeSysPrf]
    +g:89 [in hydras.Ackermann.LNT]
    +g:89 [in Goedel.codeSysPrf]
    +g:89 [in hydras.Epsilon0.Hprime]
    +g:9 [in hydras.Ackermann.primRec]
    +g:9 [in hydras.Ackermann.folLogic]
    +g:90 [in hydras.Schutte.PartialFun]
    +g:92 [in hydras.Ackermann.LNN]
    +g:92 [in hydras.Ackermann.folLogic]
    +g:94 [in hydras.Ackermann.codeSubFormula]
    +g:95 [in hydras.Ackermann.folLogic]
    +g:96 [in hydras.Ackermann.LNT]
    +g:96 [in hydras.MoreAck.AckNotPR]
    +g:98 [in hydras.Ackermann.folLogic]
    +g:98 [in hydras.Ackermann.folReplace]
    +g:99 [in hydras.Ackermann.LNN]
    +

    H

    +HAB:175 [in hydras.Epsilon0.Large_Sets]
    +HAB:22 [in gaia_hydras.GLarge_Sets]
    +HAck:88 [in hydras.MoreAck.AckNotPR]
    +Halpha:14 [in gaia_hydras.GHprime]
    +Halpha:170 [in hydras.Epsilon0.Large_Sets]
    +Halpha:401 [in hydras.Epsilon0.Paths]
    +Halpha:662 [in hydras.Epsilon0.T1]
    +Halpha:665 [in hydras.Epsilon0.T1]
    +Halpha:710 [in hydras.Epsilon0.T1]
    +Ha:17 [in gaia_hydras.GLarge_Sets]
    +HA:173 [in hydras.Epsilon0.Large_Sets]
    +HA:20 [in gaia_hydras.GLarge_Sets]
    +Ha:390 [in hydras.Epsilon0.Paths]
    +Ha:50 [in gaia_hydras.GCanon]
    +Ha:9 [in gaia_hydras.GCanon]
    +Ha:98 [in hydras.Epsilon0.Hessenberg]
    +Hb:100 [in hydras.Epsilon0.Hessenberg]
    +HB:174 [in hydras.Epsilon0.Large_Sets]
    +HB:21 [in gaia_hydras.GLarge_Sets]
    +Hb:391 [in hydras.Epsilon0.Paths]
    +Hc:102 [in hydras.Epsilon0.Hessenberg]
    +height:17 [in hydras.Epsilon0.T1]
    +Hf':121 [in hydras.Prelude.Iterates]
    +Hf':155 [in hydras.Prelude.Iterates]
    +Hf':94 [in hydras.Prelude.Iterates]
    +Hf:120 [in hydras.Prelude.Iterates]
    +Hf:154 [in hydras.Prelude.Iterates]
    +Hf:47 [in hydras.Prelude.Iterates]
    +Hf:50 [in hydras.Prelude.Iterates]
    +Hf:74 [in hydras.Schutte.PartialFun]
    +Hf:75 [in hydras.MoreAck.AckNotPR]
    +Hf:79 [in hydras.MoreAck.AckNotPR]
    +Hf:84 [in hydras.MoreAck.AckNotPR]
    +Hf:88 [in hydras.Prelude.Iterates]
    +Hf:93 [in hydras.Prelude.Iterates]
    +Hgamma:159 [in additions.AM]
    +Hgamma:24 [in additions.Fib2]
    +Hgamma:354 [in additions.Euclidean_Chains]
    +Hgamma:8 [in additions.Strategies]
    +Hgt:163 [in hydras.Prelude.Iterates]
    +Hij:64 [in gaia_hydras.GCanon]
    +Hincl:170 [in hydras.Prelude.MoreLists]
    +Hk:74 [in additions.Euclidean_Chains]
    +Hlambda:51 [in gaia_hydras.GCanon]
    +Hlim:45 [in gaia_hydras.GCanon]
    +Hlim:52 [in gaia_hydras.GCanon]
    +Hlim:63 [in gaia_hydras.GCanon]
    +Hlim:67 [in gaia_hydras.GCanon]
    +Hmono:200 [in hydras.Schutte.Schutte_basics]
    +Hmu:2 [in hydras.Hydra.Epsilon0_Needed_Free]
    +Hmu:3 [in hydras.Hydra.Epsilon0_Needed_Generic]
    +Hm':165 [in hydras.Prelude.Iterates]
    +Hm:164 [in hydras.Prelude.Iterates]
    +Hnf:3 [in gaia_hydras.GF_alpha]
    +Hnf:34 [in gaia_hydras.GF_alpha]
    +Hnf:40 [in gaia_hydras.GCanon]
    +Hnf:44 [in gaia_hydras.GCanon]
    +Hnf:62 [in gaia_hydras.GCanon]
    +Hnf:66 [in gaia_hydras.GCanon]
    +hP:25 [in gaia_hydras.T1Bridge]
    +Hrecb:719 [in hydras.Ackermann.primRec]
    +Hrecb:723 [in hydras.Ackermann.primRec]
    +Hrecb:725 [in hydras.Ackermann.primRec]
    +Hrecb:728 [in hydras.Ackermann.primRec]
    +Hrecb:731 [in hydras.Ackermann.primRec]
    +Hrecb:734 [in hydras.Ackermann.primRec]
    +Hrecb:737 [in hydras.Ackermann.primRec]
    +Hrecb:740 [in hydras.Ackermann.primRec]
    +Hrecb:743 [in hydras.Ackermann.primRec]
    +Hrecb:746 [in hydras.Ackermann.primRec]
    +Hrecb:749 [in hydras.Ackermann.primRec]
    +Hrecb:752 [in hydras.Ackermann.primRec]
    +Hrecb:755 [in hydras.Ackermann.primRec]
    +Hrecb:757 [in hydras.Ackermann.primRec]
    +Hrecb:783 [in hydras.Ackermann.primRec]
    +Hrecb:786 [in hydras.Ackermann.primRec]
    +Hrecb:790 [in hydras.Ackermann.primRec]
    +Hrecb:793 [in hydras.Ackermann.primRec]
    +Hrecb:797 [in hydras.Ackermann.primRec]
    +Hrecb:803 [in hydras.Ackermann.primRec]
    +Hrecb:808 [in hydras.Ackermann.primRec]
    +Hrecb:811 [in hydras.Ackermann.primRec]
    +Hrecn:128 [in hydras.Ackermann.cPair]
    +Hrecn:144 [in hydras.Ackermann.cPair]
    +Hrecn:147 [in hydras.Ackermann.cPair]
    +Hrecn:151 [in hydras.Ackermann.cPair]
    +Hrecn:155 [in hydras.Ackermann.cPair]
    +Hrecn:157 [in hydras.Ackermann.cPair]
    +Hrecn:160 [in hydras.Ackermann.cPair]
    +Hrecn:178 [in hydras.Ackermann.model]
    +Hrecn:185 [in hydras.Ackermann.model]
    +Hrecn:204 [in hydras.Ackermann.model]
    +Hrecn:211 [in hydras.Ackermann.model]
    +Hrecn:64 [in hydras.Ackermann.folLogic3]
    +Hrecs:10 [in hydras.Ackermann.codeSubFormula]
    +Hrecs:108 [in hydras.Ackermann.codeList]
    +Hrecs:11 [in hydras.Ackermann.codeList]
    +Hrecs:113 [in hydras.Ackermann.codeList]
    +Hrecs:116 [in hydras.Ackermann.codeList]
    +Hrecs:12 [in hydras.Ackermann.codeSubFormula]
    +Hrecs:121 [in hydras.Ackermann.codeList]
    +Hrecs:124 [in hydras.Ackermann.codeList]
    +Hrecs:127 [in hydras.Ackermann.codeList]
    +Hrecs:13 [in hydras.Ackermann.codeList]
    +Hrecs:130 [in hydras.Ackermann.codeList]
    +Hrecs:133 [in hydras.Ackermann.codeList]
    +Hrecs:136 [in hydras.Ackermann.codeList]
    +Hrecs:139 [in hydras.Ackermann.codeList]
    +Hrecs:14 [in hydras.Ackermann.codeSubFormula]
    +Hrecs:142 [in hydras.Ackermann.codeList]
    +Hrecs:145 [in hydras.Ackermann.codeList]
    +Hrecs:147 [in hydras.Ackermann.codeList]
    +Hrecs:149 [in hydras.Ackermann.codeList]
    +Hrecs:15 [in hydras.Ackermann.codeList]
    +Hrecs:151 [in hydras.Ackermann.codeList]
    +Hrecs:153 [in hydras.Ackermann.codeList]
    +Hrecs:155 [in hydras.Ackermann.codeList]
    +Hrecs:16 [in hydras.Ackermann.codeSubFormula]
    +Hrecs:165 [in hydras.Ackermann.codeList]
    +Hrecs:168 [in hydras.Ackermann.codeList]
    +Hrecs:17 [in hydras.Ackermann.codeList]
    +Hrecs:171 [in hydras.Ackermann.codeList]
    +Hrecs:174 [in hydras.Ackermann.codeList]
    +Hrecs:177 [in hydras.Ackermann.codeList]
    +Hrecs:18 [in hydras.Ackermann.codeSubFormula]
    +Hrecs:180 [in hydras.Ackermann.codeList]
    +Hrecs:19 [in hydras.Ackermann.wellFormed]
    +Hrecs:19 [in hydras.Ackermann.codeList]
    +Hrecs:197 [in hydras.Ackermann.codeList]
    +Hrecs:199 [in hydras.Ackermann.codeList]
    +Hrecs:2 [in hydras.Ackermann.codeList]
    +Hrecs:20 [in hydras.Ackermann.codeSubFormula]
    +Hrecs:201 [in hydras.Ackermann.codeList]
    +Hrecs:203 [in hydras.Ackermann.codeList]
    +Hrecs:205 [in hydras.Ackermann.codeList]
    +Hrecs:207 [in hydras.Ackermann.codeList]
    +Hrecs:21 [in hydras.Ackermann.wellFormed]
    +Hrecs:21 [in hydras.Ackermann.codeList]
    +Hrecs:213 [in hydras.Ackermann.codeList]
    +Hrecs:218 [in hydras.Ackermann.codeList]
    +Hrecs:22 [in hydras.Ackermann.codeSubFormula]
    +Hrecs:221 [in hydras.Ackermann.codeList]
    +Hrecs:226 [in hydras.Ackermann.codeList]
    +Hrecs:229 [in hydras.Ackermann.codeList]
    +Hrecs:23 [in hydras.Ackermann.codeList]
    +Hrecs:232 [in hydras.Ackermann.codeList]
    +Hrecs:235 [in hydras.Ackermann.codeList]
    +Hrecs:238 [in hydras.Ackermann.codeList]
    +Hrecs:24 [in hydras.Ackermann.codeSubFormula]
    +Hrecs:241 [in hydras.Ackermann.codeList]
    +Hrecs:244 [in hydras.Ackermann.codeList]
    +Hrecs:247 [in hydras.Ackermann.codeList]
    +Hrecs:25 [in hydras.Ackermann.codeList]
    +Hrecs:250 [in hydras.Ackermann.codeList]
    +Hrecs:253 [in hydras.Ackermann.codeList]
    +Hrecs:256 [in hydras.Ackermann.codeList]
    +Hrecs:259 [in hydras.Ackermann.codeList]
    +Hrecs:26 [in hydras.Ackermann.codeSubFormula]
    +Hrecs:27 [in hydras.Ackermann.codeList]
    +Hrecs:276 [in hydras.Ackermann.codeList]
    +Hrecs:278 [in hydras.Ackermann.codeList]
    +Hrecs:28 [in hydras.Ackermann.codeSubFormula]
    +Hrecs:280 [in hydras.Ackermann.codeList]
    +Hrecs:282 [in hydras.Ackermann.codeList]
    +Hrecs:284 [in hydras.Ackermann.codeList]
    +Hrecs:286 [in hydras.Ackermann.codeList]
    +Hrecs:29 [in hydras.Ackermann.codeList]
    +Hrecs:30 [in hydras.Ackermann.codeSubFormula]
    +Hrecs:31 [in hydras.Ackermann.codeList]
    +Hrecs:32 [in hydras.Ackermann.codeSubFormula]
    +Hrecs:34 [in hydras.Ackermann.codeSubFormula]
    +Hrecs:36 [in hydras.Ackermann.codeSubFormula]
    +Hrecs:41 [in hydras.Ackermann.codeList]
    +Hrecs:42 [in hydras.Ackermann.codeSubFormula]
    +Hrecs:44 [in hydras.Ackermann.codeSubFormula]
    +Hrecs:46 [in hydras.Ackermann.codeSubFormula]
    +Hrecs:46 [in hydras.Ackermann.codeList]
    +Hrecs:48 [in hydras.Ackermann.codeSubFormula]
    +Hrecs:49 [in hydras.Ackermann.codeList]
    +Hrecs:5 [in hydras.Ackermann.codeList]
    +Hrecs:54 [in hydras.Ackermann.codeList]
    +Hrecs:57 [in hydras.Ackermann.codeList]
    +Hrecs:60 [in hydras.Ackermann.codeList]
    +Hrecs:63 [in hydras.Ackermann.codeList]
    +Hrecs:66 [in hydras.Ackermann.codeList]
    +Hrecs:69 [in hydras.Ackermann.codeList]
    +Hrecs:7 [in hydras.Ackermann.codeSubFormula]
    +Hrecs:7 [in hydras.Ackermann.codeList]
    +Hrecs:72 [in hydras.Ackermann.codeList]
    +Hrecs:74 [in hydras.Ackermann.codeList]
    +Hrecs:76 [in hydras.Ackermann.codeList]
    +Hrecs:78 [in hydras.Ackermann.codeList]
    +Hrecs:80 [in hydras.Ackermann.codeList]
    +Hrecs:82 [in hydras.Ackermann.codeList]
    +Hrecs:84 [in hydras.Ackermann.codeList]
    +Hrecs:86 [in hydras.Ackermann.codeList]
    +Hrecs:9 [in hydras.Ackermann.codeList]
    +Hrecs:90 [in hydras.Ackermann.codeList]
    +Hrecs:92 [in hydras.Ackermann.codeList]
    +Hrecs:94 [in hydras.Ackermann.codeList]
    +Hrecs:96 [in hydras.Ackermann.codeList]
    +hR:28 [in gaia_hydras.T1Bridge]
    +hs':140 [in hydras.Hydra.Hydra_Lemmas]
    +hs':142 [in hydras.Hydra.Hydra_Lemmas]
    +hs:139 [in hydras.Hydra.Hydra_Lemmas]
    +hs:141 [in hydras.Hydra.Hydra_Lemmas]
    +hs:8 [in gaia_hydras.GHydra]
    +hs:9 [in gaia_hydras.GHydra]
    +Htrans:18 [in hydras.Prelude.Sort_spec]
    +Htrans:21 [in hydras.Prelude.Sort_spec]
    +Htrans:25 [in hydras.Prelude.Sort_spec]
    +Hvar:2 [in hydras.Hydra.Omega2_Small]
    +Hvar:2 [in hydras.Hydra.Omega_Small]
    +Hwf:130 [in hydras.Hydra.Hydra_Lemmas]
    +Hwf:21 [in hydras.solutions_exercises.T1_ltNotWf]
    +HX:142 [in hydras.Schutte.Schutte_basics]
    +HX:145 [in hydras.Schutte.Schutte_basics]
    +Hx:27 [in hydras.Prelude.Restriction]
    +Hx:31 [in hydras.Prelude.Restriction]
    +Hx:38 [in hydras.Prelude.Restriction]
    +HX:61 [in hydras.Schutte.Well_Orders]
    +Hyp1:20 [in hydras.Ackermann.folProof]
    +Hyp2:21 [in hydras.Ackermann.folProof]
    +hyp:220 [in hydras.Ackermann.fol]
    +hyp:221 [in hydras.Ackermann.fol]
    +hyp:222 [in hydras.Ackermann.fol]
    +Hyp:24 [in hydras.Ackermann.folProof]
    +Hyp:46 [in hydras.Ackermann.folProof]
    +Hyp:48 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +Hy'':5 [in hydras.Hydra.Hydra_Examples]
    +Hy:28 [in hydras.Prelude.Restriction]
    +Hy:4 [in hydras.Hydra.Epsilon0_Needed_Std]
    +Hy:5 [in hydras.Hydra.Epsilon0_Needed_Free]
    +Hy:6 [in hydras.Hydra.Epsilon0_Needed_Generic]
    +h'':100 [in hydras.Hydra.Hydra_Definitions]
    +h'':135 [in hydras.Hydra.Hydra_Definitions]
    +h'':83 [in hydras.Hydra.Hydra_Lemmas]
    +h':100 [in hydras.Hydra.O2H]
    +h':101 [in hydras.Hydra.Hydra_Definitions]
    +h':107 [in hydras.Hydra.Hydra_Lemmas]
    +H':108 [in hydras.OrdinalNotations.OmegaOmega]
    +h':110 [in hydras.Hydra.Hydra_Definitions]
    +h':113 [in hydras.Hydra.Hydra_Definitions]
    +h':115 [in hydras.Hydra.Hydra_Lemmas]
    +h':116 [in hydras.Hydra.Hydra_Definitions]
    +h':118 [in hydras.Hydra.Hydra_Lemmas]
    +h':12 [in gaia_hydras.GHydra]
    +h':121 [in hydras.Hydra.Hydra_Definitions]
    +h':122 [in hydras.Hydra.Hydra_Lemmas]
    +h':124 [in hydras.Hydra.Hydra_Lemmas]
    +h':124 [in hydras.Hydra.Hydra_Definitions]
    +h':13 [in hydras.Hydra.Hydra_Definitions]
    +h':130 [in hydras.Hydra.Hydra_Definitions]
    +h':132 [in hydras.Hydra.Hydra_Lemmas]
    +h':134 [in hydras.Hydra.Hydra_Lemmas]
    +h':134 [in hydras.Hydra.Hydra_Definitions]
    +h':138 [in hydras.Hydra.Hydra_Lemmas]
    +h':14 [in gaia_hydras.GHydra]
    +h':141 [in hydras.Hydra.Hydra_Definitions]
    +h':152 [in hydras.Hydra.Hydra_Definitions]
    +h':167 [in hydras.Hydra.Hydra_Definitions]
    +h':178 [in hydras.Prelude.Iterates]
    +h':19 [in hydras.Hydra.Hydra_Lemmas]
    +h':2 [in hydras.Hydra.Hydra_Examples]
    +h':23 [in hydras.Hydra.Hydra_Termination]
    +h':25 [in hydras.Hydra.Hydra_Termination]
    +H':28 [in hydras.Epsilon0.E0]
    +h':3 [in hydras.Hydra.Hydra_Examples]
    +h':35 [in hydras.Hydra.Hydra_Termination]
    +h':36 [in hydras.Hydra.O2H]
    +h':4 [in hydras.Hydra.Hydra_Examples]
    +h':44 [in hydras.Hydra.Hydra_Termination]
    +h':46 [in hydras.Hydra.Hydra_Termination]
    +H':489 [in hydras.Epsilon0.T1]
    +h':49 [in hydras.Hydra.Hydra_Termination]
    +H':493 [in hydras.Epsilon0.T1]
    +h':51 [in hydras.Hydra.O2H]
    +h':51 [in hydras.Hydra.Hydra_Termination]
    +H':696 [in hydras.Gamma0.Gamma0]
    +h':7 [in hydras.Hydra.Epsilon0_Needed_Free]
    +h':71 [in hydras.Hydra.Hydra_Lemmas]
    +h':72 [in hydras.Hydra.Hydra_Definitions]
    +h':76 [in hydras.Hydra.Hydra_Lemmas]
    +h':80 [in hydras.Hydra.Hydra_Lemmas]
    +h':82 [in hydras.Hydra.Hydra_Lemmas]
    +h':86 [in hydras.Hydra.Hydra_Definitions]
    +h':9 [in hydras.Hydra.Epsilon0_Needed_Generic]
    +h':90 [in hydras.Hydra.O2H]
    +h':93 [in hydras.Hydra.O2H]
    +h':93 [in hydras.Hydra.Hydra_Definitions]
    +h':95 [in hydras.Hydra.Hydra_Definitions]
    +h':98 [in hydras.Hydra.Hydra_Definitions]
    +H0:21 [in hydras.Epsilon0.F_omega]
    +H0:294 [in hydras.rpo.rpo]
    +H0:296 [in hydras.rpo.rpo]
    +H0:298 [in hydras.rpo.rpo]
    +h0:35 [in hydras.Prelude.Restriction]
    +h0:41 [in hydras.Prelude.Restriction]
    +H0:47 [in hydras.Ackermann.LNN2LNT]
    +h0:6 [in hydras.Hydra.Epsilon0_Needed_Std]
    +H0:7 [in hydras.Prelude.Compat815]
    +H0:73 [in hydras.Ackermann.LNN2LNT]
    +h0:73 [in hydras.Hydra.Hydra_Lemmas]
    +H0:76 [in hydras.Ackermann.LNN2LNT]
    +H0:79 [in hydras.Ackermann.LNN2LNT]
    +H0:82 [in hydras.Ackermann.LNN2LNT]
    +H0:85 [in hydras.Ackermann.LNN2LNT]
    +H0:88 [in hydras.Ackermann.LNN2LNT]
    +h0:9 [in hydras.Hydra.Epsilon0_Needed_Std]
    +H0:91 [in hydras.Ackermann.LNN2LNT]
    +H0:94 [in hydras.Ackermann.LNN2LNT]
    +h1:116 [in hydras.Ackermann.primRec]
    +H1:310 [in hydras.rpo.rpo]
    +H1:312 [in hydras.rpo.rpo]
    +H1:32 [in hydras.MoreAck.FolExamples]
    +h1:36 [in hydras.Hydra.Hydra_Lemmas]
    +H1:371 [in hydras.Epsilon0.T1]
    +H1:373 [in hydras.Epsilon0.T1]
    +h1:41 [in hydras.Hydra.Hydra_Lemmas]
    +H1:48 [in hydras.Ackermann.LNN2LNT]
    +H1:60 [in hydras.Epsilon0.T1]
    +H1:62 [in hydras.Epsilon0.T1]
    +H1:74 [in hydras.Ackermann.LNN2LNT]
    +H1:77 [in hydras.Ackermann.LNN2LNT]
    +H1:8 [in hydras.Prelude.Compat815]
    +H1:80 [in hydras.Ackermann.LNN2LNT]
    +H1:83 [in hydras.Ackermann.LNN2LNT]
    +H1:86 [in hydras.Ackermann.LNN2LNT]
    +H1:89 [in hydras.Ackermann.LNN2LNT]
    +H1:92 [in hydras.Ackermann.LNN2LNT]
    +H1:95 [in hydras.Ackermann.LNN2LNT]
    +H2:10 [in hydras.Prelude.Compat815]
    +h2:117 [in hydras.Ackermann.primRec]
    +H2:33 [in hydras.MoreAck.FolExamples]
    +h2:37 [in hydras.Hydra.Hydra_Lemmas]
    +H2:374 [in hydras.Epsilon0.T1]
    +h2:42 [in hydras.Hydra.Hydra_Lemmas]
    +H2:63 [in hydras.Epsilon0.T1]
    +h:1 [in hydras.Hydra.Hydra_Examples]
    +h:1 [in hydras.Hydra.Hydra_Termination]
    +h:1 [in gaia_hydras.GHydra]
    +h:1 [in hydras.Hydra.Hydra_Lemmas]
    +h:10 [in hydras.Ackermann.primRec]
    +h:10 [in gaia_hydras.GHydra]
    +h:10 [in hydras.Hydra.Hydra_Lemmas]
    +h:105 [in hydras.Hydra.Hydra_Lemmas]
    +h:106 [in hydras.Hydra.Hydra_Definitions]
    +H:107 [in hydras.OrdinalNotations.OmegaOmega]
    +h:109 [in hydras.Hydra.Hydra_Definitions]
    +h:11 [in hydras.Hydra.Hydra_Termination]
    +h:11 [in hydras.Hydra.Epsilon0_Needed_Std]
    +h:11 [in gaia_hydras.GHydra]
    +h:11 [in hydras.Hydra.Epsilon0_Needed_Generic]
    +H:11 [in hydras.Schutte.Countable]
    +h:110 [in hydras.Ackermann.folLogic]
    +h:112 [in hydras.Hydra.Hydra_Definitions]
    +h:114 [in hydras.Hydra.Hydra_Lemmas]
    +h:114 [in hydras.Hydra.Hydra_Definitions]
    +h:117 [in hydras.Hydra.Hydra_Lemmas]
    +h:12 [in hydras.solutions_exercises.MorePRExamples]
    +h:12 [in hydras.Hydra.Hydra_Definitions]
    +h:120 [in hydras.Ackermann.LNT]
    +h:120 [in additions.fib]
    +h:120 [in hydras.Hydra.Hydra_Definitions]
    +h:121 [in hydras.Hydra.Hydra_Lemmas]
    +h:123 [in hydras.Ackermann.LNN]
    +h:123 [in hydras.Hydra.Hydra_Lemmas]
    +h:123 [in hydras.Hydra.Hydra_Definitions]
    +h:125 [in hydras.Ackermann.folLogic]
    +h:129 [in hydras.Hydra.Hydra_Definitions]
    +h:13 [in hydras.Ackermann.primRec]
    +h:13 [in gaia_hydras.GHydra]
    +H:13 [in hydras.MoreAck.PrimRecExamples]
    +h:132 [in hydras.Hydra.Hydra_Definitions]
    +h:133 [in hydras.Hydra.Hydra_Lemmas]
    +h:135 [in hydras.Ackermann.LNT]
    +h:135 [in hydras.Hydra.Hydra_Lemmas]
    +h:137 [in hydras.Hydra.Hydra_Lemmas]
    +h:138 [in hydras.Ackermann.LNN]
    +h:138 [in hydras.Hydra.Hydra_Definitions]
    +H:14 [in hydras.MoreAck.BadSubst]
    +H:14 [in hydras.Prelude.Sort_spec]
    +h:142 [in hydras.Hydra.Hydra_Definitions]
    +h:144 [in hydras.Hydra.Hydra_Lemmas]
    +h:146 [in hydras.Hydra.Hydra_Lemmas]
    +h:149 [in hydras.Hydra.Hydra_Lemmas]
    +h:15 [in hydras.Hydra.Hydra_Termination]
    +h:151 [in hydras.Hydra.Hydra_Definitions]
    +h:152 [in hydras.Hydra.Hydra_Lemmas]
    +h:155 [in hydras.Hydra.Hydra_Lemmas]
    +H:157 [in hydras.Prelude.Iterates]
    +H:16 [in hydras.Prelude.First_toggle]
    +h:162 [in hydras.Hydra.Hydra_Definitions]
    +H:163 [in hydras.Ackermann.primRec]
    +h:166 [in hydras.Hydra.Hydra_Definitions]
    +H:171 [in hydras.Ackermann.primRec]
    +H:172 [in hydras.Ackermann.folProp]
    +h:175 [in hydras.Prelude.Iterates]
    +H:179 [in hydras.Ackermann.folProp]
    +H:179 [in hydras.Ackermann.primRec]
    +H:18 [in hydras.Epsilon0.F_omega]
    +h:18 [in hydras.Hydra.Hydra_Lemmas]
    +H:188 [in hydras.Ackermann.folProp]
    +H:190 [in hydras.Ackermann.primRec]
    +H:195 [in hydras.Ackermann.folProp]
    +H:201 [in hydras.Ackermann.primRec]
    +H:201 [in hydras.Schutte.Schutte_basics]
    +H:204 [in hydras.Ackermann.folProp]
    +h:205 [in hydras.Prelude.Iterates]
    +H:21 [in hydras.Schutte.MoreEpsilonIota]
    +H:211 [in hydras.Ackermann.folProp]
    +H:212 [in hydras.Ackermann.primRec]
    +h:22 [in hydras.Hydra.Hydra_Termination]
    +H:22 [in hydras.Prelude.STDPP_compat]
    +H:220 [in hydras.Ackermann.folProp]
    +H:227 [in hydras.Ackermann.folProp]
    +H:24 [in hydras.Prelude.Restriction]
    +h:24 [in hydras.Schutte.Critical]
    +H:24 [in hydras.Schutte.MoreEpsilonIota]
    +h:24 [in hydras.Hydra.Hydra_Termination]
    +H:24 [in hydras.Prelude.STDPP_compat]
    +h:24 [in hydras.Hydra.Hydra_Definitions]
    +H:25 [in hydras.Epsilon0.E0]
    +H:251 [in hydras.Ackermann.folProp]
    +H:258 [in hydras.Ackermann.folProp]
    +h:26 [in gaia_hydras.GHydra]
    +H:265 [in hydras.Ackermann.cPair]
    +H:267 [in hydras.Ackermann.folProp]
    +H:27 [in hydras.Epsilon0.E0]
    +H:274 [in hydras.Ackermann.folProp]
    +h:28 [in hydras.Hydra.O2H]
    +H:28 [in hydras.Schutte.Critical]
    +H:29 [in hydras.Prelude.Restriction]
    +h:30 [in hydras.Hydra.Hydra_Definitions]
    +H:300 [in hydras.Ackermann.folProp]
    +H:307 [in hydras.Ackermann.folProp]
    +H:316 [in hydras.Ackermann.folProp]
    +h:32 [in hydras.Hydra.O2H]
    +H:323 [in hydras.Ackermann.folProp]
    +h:329 [in Goedel.PRrepresentable]
    +H:33 [in hydras.MoreAck.AckNotPR]
    +H:33 [in hydras.Schutte.Critical]
    +H:332 [in hydras.Ackermann.folProp]
    +h:334 [in Goedel.PRrepresentable]
    +h:339 [in Goedel.PRrepresentable]
    +H:339 [in hydras.Ackermann.folProp]
    +h:34 [in hydras.Hydra.Hydra_Termination]
    +H:34 [in hydras.MoreAck.FolExamples]
    +H:348 [in hydras.Ackermann.folProp]
    +h:35 [in hydras.Hydra.O2H]
    +H:355 [in hydras.Ackermann.folProp]
    +h:36 [in hydras.Prelude.Restriction]
    +h:36 [in hydras.Hydra.Hydra_Definitions]
    +h:362 [in hydras.Ackermann.primRec]
    +H:364 [in hydras.Ackermann.folProp]
    +H:369 [in hydras.Epsilon0.T1]
    +H:37 [in hydras.Schutte.Ordering_Functions]
    +H:370 [in hydras.Epsilon0.T1]
    +H:371 [in hydras.Ackermann.folProp]
    +H:372 [in hydras.Epsilon0.T1]
    +h:38 [in hydras.MoreAck.AckNotPR]
    +H:38 [in hydras.Schutte.Critical]
    +H:38 [in hydras.Hydra.Hydra_Termination]
    +H:380 [in hydras.Ackermann.folProp]
    +H:385 [in hydras.Epsilon0.Paths]
    +H:387 [in hydras.Ackermann.folProp]
    +h:40 [in hydras.Hydra.O2H]
    +h:40 [in hydras.Ackermann.folLogic]
    +H:41 [in hydras.Hydra.Hydra_Termination]
    +h:41 [in hydras.Hydra.Hydra_Definitions]
    +h:42 [in hydras.Prelude.Restriction]
    +H:42 [in hydras.Schutte.Critical]
    +H:423 [in hydras.Epsilon0.T1]
    +h:43 [in hydras.Hydra.Hydra_Termination]
    +H:44 [in hydras.Schutte.Correctness_E0]
    +h:44 [in hydras.Ackermann.folLogic]
    +h:45 [in hydras.Prelude.Iterates]
    +h:45 [in hydras.Hydra.O2H]
    +H:45 [in hydras.Prelude.Restriction]
    +h:45 [in hydras.Hydra.Hydra_Termination]
    +H:46 [in hydras.Ackermann.LNN2LNT]
    +h:47 [in hydras.Hydra.Hydra_Termination]
    +h:48 [in hydras.Hydra.Hydra_Termination]
    +H:487 [in hydras.Epsilon0.T1]
    +H:491 [in hydras.Epsilon0.T1]
    +H:5 [in hydras.Hydra.Hydra_Theorems]
    +h:5 [in hydras.Hydra.Epsilon0_Needed_Std]
    +h:5 [in hydras.Hydra.Hydra_Lemmas]
    +h:50 [in hydras.Ackermann.LNT]
    +H:50 [in hydras.Schutte.Critical]
    +h:50 [in hydras.Hydra.Hydra_Termination]
    +h:50 [in hydras.Hydra.Hydra_Lemmas]
    +h:53 [in hydras.Ackermann.LNN]
    +H:54 [in hydras.Prelude.Iterates]
    +h:54 [in hydras.Ackermann.LNT]
    +h:54 [in hydras.Hydra.Hydra_Definitions]
    +H:55 [in hydras.MoreAck.AckNotPR]
    +h:55 [in hydras.Hydra.Hydra_Lemmas]
    +h:57 [in hydras.Ackermann.LNN]
    +H:58 [in hydras.Epsilon0.T1]
    +H:59 [in hydras.Epsilon0.T1]
    +h:59 [in hydras.Prelude.Iterates]
    +h:6 [in hydras.Hydra.Epsilon0_Needed_Free]
    +h:6 [in hydras.Hydra.Hydra_Examples]
    +h:60 [in hydras.Hydra.Hydra_Lemmas]
    +h:60 [in hydras.Hydra.Hydra_Definitions]
    +H:61 [in hydras.Epsilon0.T1]
    +h:63 [in gaia_hydras.nfwfgaia]
    +h:64 [in hydras.Prelude.Iterates]
    +H:64 [in hydras.Prelude.MoreLists]
    +h:65 [in hydras.Hydra.Hydra_Lemmas]
    +h:657 [in hydras.Ackermann.primRec]
    +h:66 [in hydras.Hydra.Hydra_Lemmas]
    +h:67 [in hydras.Prelude.Iterates]
    +H:68 [in hydras.Schutte.Correctness_E0]
    +h:69 [in hydras.Ackermann.primRec]
    +h:69 [in hydras.Hydra.Hydra_Lemmas]
    +H:695 [in hydras.Gamma0.Gamma0]
    +h:7 [in hydras.Hydra.Hydra_Examples]
    +h:7 [in hydras.Hydra.Hydra_Termination]
    +h:7 [in gaia_hydras.GHydra]
    +h:71 [in hydras.Hydra.Hydra_Definitions]
    +H:711 [in hydras.Epsilon0.T1]
    +H:72 [in hydras.Schutte.Correctness_E0]
    +H:72 [in hydras.Ackermann.LNN2LNT]
    +h:73 [in hydras.Hydra.Hydra_Definitions]
    +H:75 [in hydras.Schutte.Correctness_E0]
    +h:75 [in hydras.Hydra.Hydra_Lemmas]
    +H:78 [in hydras.Ackermann.LNN2LNT]
    +h:78 [in hydras.Hydra.Hydra_Lemmas]
    +H:8 [in hydras.Schutte.Critical]
    +h:8 [in hydras.Hydra.Hydra_Examples]
    +h:8 [in hydras.Hydra.Epsilon0_Needed_Generic]
    +H:8 [in hydras.Schutte.Countable]
    +h:81 [in hydras.Hydra.Hydra_Lemmas]
    +H:84 [in hydras.Prelude.Iterates]
    +H:84 [in hydras.Ackermann.LNN2LNT]
    +h:85 [in hydras.Hydra.Hydra_Definitions]
    +h:88 [in hydras.Hydra.Hydra_Lemmas]
    +h:88 [in hydras.Hydra.Hydra_Definitions]
    +h:9 [in hydras.solutions_exercises.MinPR2]
    +h:9 [in hydras.Hydra.Hydra_Examples]
    +H:90 [in hydras.Ackermann.LNN2LNT]
    +h:91 [in hydras.Hydra.Hydra_Lemmas]
    +h:92 [in hydras.Hydra.O2H]
    +h:92 [in hydras.Hydra.Hydra_Definitions]
    +h:93 [in hydras.Hydra.Hydra_Lemmas]
    +h:94 [in hydras.Hydra.Hydra_Definitions]
    +h:96 [in hydras.Hydra.O2H]
    +h:96 [in hydras.Hydra.Hydra_Lemmas]
    +h:97 [in hydras.Hydra.Hydra_Definitions]
    +h:98 [in hydras.Hydra.O2H]
    +h:99 [in hydras.Hydra.Hydra_Definitions]
    +

    I

    +idn:126 [in additions.fib]
    +id:118 [in additions.fib]
    +IHn:102 [in hydras.MoreAck.AckNotPR]
    +inhX:45 [in hydras.Schutte.Well_Orders]
    +inh:2 [in hydras.Schutte.MoreEpsilonIota]
    +inh:53 [in hydras.Schutte.Well_Orders]
    +inh:58 [in hydras.Schutte.Well_Orders]
    +input:61 [in hydras.Ackermann.codeSubFormula]
    +invar:18 [in hydras.Prelude.First_toggle]
    +iota:101 [in hydras.OrdinalNotations.ON_Generic]
    +iota:114 [in hydras.OrdinalNotations.ON_Generic]
    +iota:129 [in hydras.OrdinalNotations.ON_Generic]
    +iota:141 [in hydras.OrdinalNotations.ON_Generic]
    +iota:154 [in hydras.OrdinalNotations.ON_Generic]
    +iota:38 [in hydras.OrdinalNotations.ON_Generic]
    +iota:71 [in hydras.OrdinalNotations.ON_Generic]
    +iota:89 [in hydras.OrdinalNotations.ON_Generic]
    +i':179 [in hydras.Prelude.Iterates]
    +i:1 [in hydras.OrdinalNotations.ON_Omega2]
    +i:1 [in hydras.Prelude.MoreLists]
    +i:1 [in gaia_hydras.GPaths]
    +i:1 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +i:1 [in hydras.OrdinalNotations.ON_Omega]
    +i:1 [in hydras.Epsilon0.Paths]
    +i:10 [in hydras.Prelude.First_toggle]
    +i:10 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +i:10 [in hydras.Hydra.Epsilon0_Needed_Std]
    +i:10 [in hydras.Hydra.BigBattle]
    +i:10 [in hydras.Hydra.Omega2_Small]
    +i:10 [in gaia_hydras.GL_alpha]
    +i:101 [in hydras.Prelude.Iterates]
    +i:102 [in hydras.Prelude.MoreLists]
    +i:102 [in hydras.OrdinalNotations.OmegaOmega]
    +i:103 [in hydras.Epsilon0.Canon]
    +i:104 [in hydras.Epsilon0.F_alpha]
    +i:104 [in hydras.Hydra.Hydra_Lemmas]
    +i:104 [in gaia_hydras.nfwfgaia]
    +i:105 [in hydras.Prelude.MoreLists]
    +i:106 [in gaia_hydras.nfwfgaia]
    +i:108 [in hydras.Epsilon0.T1]
    +i:108 [in hydras.Epsilon0.F_alpha]
    +i:108 [in hydras.Epsilon0.Canon]
    +i:109 [in hydras.Epsilon0.F_alpha]
    +i:109 [in hydras.Epsilon0.Large_Sets]
    +i:11 [in hydras.Hydra.O2H]
    +i:11 [in hydras.solutions_exercises.Limit_Infinity]
    +i:11 [in gaia_hydras.GPaths]
    +i:11 [in hydras.Epsilon0.Canon]
    +i:11 [in hydras.solutions_exercises.T1_ltNotWf]
    +i:110 [in hydras.Epsilon0.F_alpha]
    +i:110 [in hydras.Epsilon0.Canon]
    +i:111 [in hydras.Epsilon0.F_alpha]
    +i:111 [in hydras.Epsilon0.Large_Sets]
    +i:112 [in hydras.Epsilon0.Large_Sets]
    +i:112 [in hydras.Epsilon0.Canon]
    +i:112 [in hydras.Epsilon0.E0]
    +i:113 [in hydras.Epsilon0.F_alpha]
    +i:113 [in hydras.Epsilon0.Large_Sets]
    +i:114 [in hydras.Epsilon0.Large_Sets]
    +i:115 [in hydras.Epsilon0.Large_Sets]
    +i:115 [in hydras.Epsilon0.Canon]
    +i:116 [in hydras.Epsilon0.Large_Sets]
    +i:116 [in hydras.Hydra.Hydra_Lemmas]
    +i:119 [in hydras.Hydra.Hydra_Lemmas]
    +i:119 [in hydras.Hydra.Hydra_Definitions]
    +i:12 [in gaia_hydras.GF_alpha]
    +i:12 [in hydras.solutions_exercises.Limit_Infinity]
    +i:12 [in hydras.Epsilon0.Canon]
    +i:12 [in hydras.Hydra.Omega2_Small]
    +i:122 [in hydras.Epsilon0.F_alpha]
    +i:123 [in hydras.Schutte.Schutte_basics]
    +i:125 [in hydras.Hydra.Hydra_Lemmas]
    +i:126 [in hydras.Schutte.Schutte_basics]
    +i:127 [in additions.fib]
    +i:128 [in hydras.Schutte.Schutte_basics]
    +i:128 [in additions.fib]
    +i:128 [in hydras.Hydra.Hydra_Definitions]
    +i:129 [in additions.fib]
    +i:13 [in hydras.solutions_exercises.Limit_Infinity]
    +i:13 [in hydras.Hydra.Epsilon0_Needed_Generic]
    +i:13 [in hydras.Epsilon0.Paths]
    +i:130 [in additions.fib]
    +i:131 [in additions.fib]
    +i:131 [in hydras.Hydra.Hydra_Definitions]
    +i:132 [in hydras.Prelude.Iterates]
    +i:132 [in additions.fib]
    +i:133 [in additions.fib]
    +i:14 [in hydras.Hydra.O2H]
    +i:14 [in hydras.solutions_exercises.Limit_Infinity]
    +i:14 [in gaia_hydras.GCanon]
    +i:14 [in hydras.Hydra.Epsilon0_Needed_Std]
    +i:14 [in hydras.Epsilon0.Canon]
    +i:14 [in hydras.Hydra.Hydra_Lemmas]
    +i:14 [in hydras.Hydra.Epsilon0_Needed_Generic]
    +i:14 [in hydras.Hydra.Omega2_Small]
    +i:14 [in gaia_hydras.GL_alpha]
    +i:140 [in gaia_hydras.T1Bridge]
    +i:142 [in hydras.rpo.term]
    +i:142 [in hydras.Prelude.Iterates]
    +i:143 [in hydras.Hydra.Hydra_Definitions]
    +i:15 [in hydras.Epsilon0.Large_Sets]
    +i:15 [in gaia_hydras.GLarge_Sets]
    +i:15 [in hydras.Epsilon0.Paths]
    +i:150 [in additions.fib]
    +i:150 [in hydras.Hydra.Hydra_Definitions]
    +i:153 [in hydras.Prelude.MoreLists]
    +i:156 [in hydras.Prelude.MoreLists]
    +i:157 [in gaia_hydras.T1Bridge]
    +i:158 [in hydras.Prelude.Iterates]
    +i:159 [in hydras.Prelude.MoreLists]
    +i:159 [in hydras.Epsilon0.F_alpha]
    +i:159 [in gaia_hydras.T1Bridge]
    +i:16 [in hydras.Hydra.O2H]
    +i:16 [in hydras.solutions_exercises.Limit_Infinity]
    +i:16 [in gaia_hydras.GCanon]
    +i:16 [in hydras.Epsilon0.Canon]
    +i:16 [in gaia_hydras.GL_alpha]
    +i:161 [in hydras.Epsilon0.F_alpha]
    +i:162 [in hydras.Prelude.Iterates]
    +i:163 [in hydras.rpo.term]
    +i:1638 [in gaia_hydras.nfwfgaia]
    +i:164 [in hydras.Epsilon0.F_alpha]
    +i:1641 [in gaia_hydras.nfwfgaia]
    +i:1644 [in gaia_hydras.nfwfgaia]
    +i:165 [in hydras.Hydra.Hydra_Definitions]
    +i:166 [in hydras.Epsilon0.F_alpha]
    +i:167 [in hydras.Prelude.Iterates]
    +i:169 [in hydras.Epsilon0.F_alpha]
    +i:17 [in gaia_hydras.GF_alpha]
    +i:17 [in additions.Compatibility]
    +i:17 [in hydras.Prelude.First_toggle]
    +i:17 [in hydras.Epsilon0.Large_Sets]
    +i:17 [in hydras.Epsilon0.E0]
    +i:171 [in hydras.rpo.term]
    +i:172 [in hydras.Epsilon0.F_alpha]
    +i:173 [in hydras.Epsilon0.F_alpha]
    +i:174 [in hydras.Prelude.MoreLists]
    +i:175 [in hydras.Epsilon0.F_alpha]
    +i:176 [in hydras.Prelude.Iterates]
    +i:176 [in hydras.Epsilon0.Paths]
    +i:177 [in hydras.Prelude.MoreLists]
    +i:177 [in hydras.Epsilon0.F_alpha]
    +i:178 [in hydras.Epsilon0.Large_Sets]
    +i:179 [in hydras.Epsilon0.F_alpha]
    +i:179 [in hydras.Epsilon0.Paths]
    +i:18 [in gaia_hydras.GCanon]
    +i:18 [in hydras.Hydra.Epsilon0_Needed_Std]
    +i:18 [in hydras.Epsilon0.E0]
    +i:181 [in hydras.Prelude.MoreLists]
    +i:181 [in hydras.Schutte.Schutte_basics]
    +i:184 [in hydras.Prelude.MoreLists]
    +i:184 [in hydras.Schutte.Schutte_basics]
    +i:187 [in hydras.Schutte.Schutte_basics]
    +i:187 [in hydras.Epsilon0.Paths]
    +i:189 [in hydras.Epsilon0.Large_Sets]
    +i:189 [in hydras.Epsilon0.Paths]
    +i:19 [in hydras.Hydra.O2H]
    +i:19 [in gaia_hydras.GF_alpha]
    +i:19 [in hydras.Epsilon0.Large_Sets]
    +i:19 [in hydras.Hydra.BigBattle]
    +i:190 [in hydras.rpo.term]
    +i:190 [in hydras.Schutte.Schutte_basics]
    +i:191 [in hydras.Epsilon0.Large_Sets]
    +i:193 [in hydras.Schutte.Schutte_basics]
    +i:199 [in hydras.Schutte.Schutte_basics]
    +i:199 [in additions.Addition_Chains]
    +i:2 [in gaia_hydras.GHprime]
    +i:2 [in gaia_hydras.GCanon]
    +i:2 [in hydras.Epsilon0.L_alpha]
    +i:2 [in hydras.Epsilon0.Canon]
    +i:2 [in hydras.OrdinalNotations.ON_Finite]
    +i:2 [in gaia_hydras.GPrelude]
    +i:2 [in hydras.solutions_exercises.ge_omega_iff]
    +i:2 [in hydras.Epsilon0.Hprime]
    +i:2 [in gaia_hydras.GL_alpha]
    +i:2 [in hydras.solutions_exercises.T1_ltNotWf]
    +i:20 [in hydras.OrdinalNotations.ON_Omega2]
    +i:20 [in gaia_hydras.GF_alpha]
    +i:20 [in gaia_hydras.GPaths]
    +i:20 [in hydras.Prelude.MoreOrders]
    +i:202 [in hydras.Epsilon0.Large_Sets]
    +i:202 [in hydras.Schutte.Schutte_basics]
    +i:204 [in hydras.Schutte.Schutte_basics]
    +i:204 [in hydras.Epsilon0.Paths]
    +i:205 [in hydras.Schutte.Schutte_basics]
    +i:206 [in hydras.Schutte.Schutte_basics]
    +i:207 [in hydras.Epsilon0.Paths]
    +i:208 [in hydras.Schutte.Schutte_basics]
    +i:21 [in hydras.Hydra.O2H]
    +i:21 [in gaia_hydras.GF_alpha]
    +i:21 [in additions.More_on_positive]
    +i:21 [in hydras.Epsilon0.Large_Sets]
    +i:21 [in hydras.Schutte.AP]
    +i:21 [in hydras.Hydra.Epsilon0_Needed_Std]
    +i:21 [in hydras.Epsilon0.Canon]
    +i:210 [in hydras.Epsilon0.Paths]
    +i:214 [in hydras.Epsilon0.Paths]
    +i:217 [in hydras.Epsilon0.Paths]
    +i:218 [in hydras.Prelude.MoreLists]
    +i:22 [in gaia_hydras.GF_alpha]
    +i:22 [in gaia_hydras.GCanon]
    +i:22 [in hydras.Schutte.AP]
    +i:22 [in hydras.Prelude.MoreOrders]
    +i:221 [in hydras.Epsilon0.Paths]
    +i:226 [in hydras.Epsilon0.Paths]
    +i:23 [in gaia_hydras.GPaths]
    +i:23 [in hydras.solutions_exercises.T1_ltNotWf]
    +i:230 [in hydras.Schutte.Schutte_basics]
    +i:233 [in hydras.Prelude.Iterates]
    +i:237 [in hydras.Prelude.Iterates]
    +i:24 [in hydras.OrdinalNotations.ON_Omega2]
    +i:24 [in hydras.Hydra.O2H]
    +i:24 [in gaia_hydras.GCanon]
    +i:24 [in hydras.Schutte.AP]
    +i:24 [in hydras.Epsilon0.Canon]
    +i:24 [in additions.fib]
    +i:240 [in hydras.Prelude.Iterates]
    +i:241 [in gaia_hydras.nfwfgaia]
    +i:244 [in hydras.Prelude.Iterates]
    +i:244 [in gaia_hydras.nfwfgaia]
    +i:247 [in gaia_hydras.nfwfgaia]
    +i:248 [in hydras.Prelude.Iterates]
    +i:25 [in hydras.Schutte.Schutte_basics]
    +i:25 [in additions.fib]
    +i:26 [in gaia_hydras.GCanon]
    +i:26 [in hydras.Schutte.MoreEpsilonIota]
    +i:26 [in hydras.Hydra.Epsilon0_Needed_Std]
    +i:26 [in additions.fib]
    +i:267 [in hydras.Epsilon0.Paths]
    +i:27 [in gaia_hydras.GPaths]
    +i:27 [in hydras.Prelude.MoreOrders]
    +i:271 [in hydras.Epsilon0.Paths]
    +i:28 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +i:28 [in hydras.Epsilon0.F_omega]
    +i:28 [in hydras.Hydra.Epsilon0_Needed_Std]
    +i:28 [in hydras.Hydra.BigBattle]
    +i:28 [in hydras.Epsilon0.Canon]
    +i:28 [in hydras.Epsilon0.Paths]
    +i:280 [in hydras.Epsilon0.Paths]
    +i:283 [in hydras.Epsilon0.Paths]
    +i:286 [in hydras.Epsilon0.Paths]
    +i:29 [in hydras.Prelude.MoreOrders]
    +i:29 [in additions.fib]
    +i:29 [in gaia_hydras.GL_alpha]
    +i:299 [in hydras.Epsilon0.Paths]
    +i:3 [in hydras.solutions_exercises.is_F_monotonous]
    +i:3 [in gaia_hydras.GHprime]
    +i:3 [in gaia_hydras.GCanon]
    +i:3 [in hydras.Schutte.AP]
    +i:3 [in gaia_hydras.GL_alpha]
    +i:3 [in hydras.Hydra.Omega_Small]
    +i:30 [in gaia_hydras.GCanon]
    +i:30 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +i:30 [in hydras.solutions_exercises.MultisetWf]
    +i:30 [in hydras.Epsilon0.Canon]
    +i:30 [in hydras.Epsilon0.Paths]
    +i:31 [in gaia_hydras.GCanon]
    +i:31 [in hydras.Epsilon0.L_alpha]
    +i:31 [in hydras.Epsilon0.Hprime]
    +i:310 [in hydras.Epsilon0.Paths]
    +i:315 [in hydras.Epsilon0.Paths]
    +i:318 [in hydras.Epsilon0.Paths]
    +i:32 [in hydras.Prelude.MoreLists]
    +i:322 [in hydras.rpo.term]
    +i:324 [in hydras.Epsilon0.Paths]
    +i:327 [in hydras.Epsilon0.Paths]
    +i:33 [in hydras.Prelude.MoreLists]
    +i:33 [in hydras.Epsilon0.L_alpha]
    +i:33 [in hydras.Epsilon0.Canon]
    +i:33 [in hydras.Epsilon0.Hprime]
    +i:331 [in hydras.Epsilon0.Paths]
    +i:333 [in hydras.Epsilon0.Paths]
    +i:337 [in hydras.Epsilon0.Paths]
    +i:341 [in hydras.rpo.term]
    +i:341 [in hydras.Epsilon0.Paths]
    +i:345 [in hydras.Epsilon0.Paths]
    +i:349 [in hydras.rpo.term]
    +i:349 [in hydras.Epsilon0.Paths]
    +i:35 [in hydras.Prelude.MoreLists]
    +i:35 [in hydras.rpo.more_list]
    +i:35 [in additions.More_on_positive]
    +i:35 [in hydras.Epsilon0.L_alpha]
    +i:35 [in hydras.Hydra.BigBattle]
    +i:35 [in hydras.Epsilon0.Hprime]
    +i:353 [in hydras.Epsilon0.Paths]
    +i:358 [in additions.Euclidean_Chains]
    +i:36 [in gaia_hydras.GCanon]
    +i:36 [in hydras.Epsilon0.Canon]
    +i:36 [in hydras.MoreAck.PrimRecExamples]
    +i:360 [in hydras.Epsilon0.Paths]
    +i:364 [in additions.Euclidean_Chains]
    +i:365 [in hydras.rpo.term]
    +i:367 [in hydras.rpo.term]
    +i:37 [in hydras.OrdinalNotations.ON_Omega2]
    +i:37 [in additions.More_on_positive]
    +i:37 [in gaia_hydras.GCanon]
    +i:37 [in hydras.Epsilon0.L_alpha]
    +i:37 [in hydras.Epsilon0.F_omega]
    +i:37 [in hydras.Epsilon0.Hprime]
    +i:370 [in additions.Euclidean_Chains]
    +i:372 [in hydras.rpo.term]
    +i:377 [in additions.Euclidean_Chains]
    +i:38 [in hydras.Epsilon0.L_alpha]
    +i:38 [in hydras.Epsilon0.Hprime]
    +i:382 [in hydras.Epsilon0.Paths]
    +i:4 [in hydras.solutions_exercises.Limit_Infinity]
    +i:4 [in hydras.Epsilon0.F_alpha]
    +i:4 [in gaia_hydras.GCanon]
    +i:4 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +i:4 [in hydras.Prelude.Exp2]
    +i:4 [in hydras.Epsilon0.Paths]
    +i:4 [in hydras.Hydra.Omega_Small]
    +i:40 [in hydras.OrdinalNotations.ON_Omega2]
    +i:40 [in hydras.Schutte.Addition]
    +i:402 [in hydras.Epsilon0.Paths]
    +i:406 [in hydras.Epsilon0.Paths]
    +i:41 [in hydras.Epsilon0.F_alpha]
    +i:41 [in gaia_hydras.GCanon]
    +i:41 [in hydras.Epsilon0.Canon]
    +i:412 [in hydras.Epsilon0.Paths]
    +i:418 [in hydras.Epsilon0.Paths]
    +i:42 [in hydras.Epsilon0.L_alpha]
    +i:42 [in additions.fib]
    +i:42 [in hydras.Epsilon0.Hprime]
    +i:422 [in hydras.Epsilon0.Paths]
    +i:424 [in hydras.Epsilon0.T1]
    +i:426 [in hydras.Epsilon0.Paths]
    +i:43 [in hydras.Epsilon0.F_alpha]
    +i:43 [in gaia_hydras.GPaths]
    +i:430 [in hydras.Epsilon0.Paths]
    +i:432 [in hydras.Epsilon0.Paths]
    +i:436 [in hydras.Epsilon0.Paths]
    +i:44 [in hydras.OrdinalNotations.OmegaOmega]
    +i:44 [in gaia_hydras.nfwfgaia]
    +i:441 [in hydras.Epsilon0.Paths]
    +i:442 [in hydras.Epsilon0.Paths]
    +i:447 [in hydras.Epsilon0.Paths]
    +i:45 [in hydras.OrdinalNotations.ON_Omega2]
    +i:45 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +i:45 [in hydras.OrdinalNotations.OmegaOmega]
    +i:45 [in hydras.Epsilon0.Canon]
    +i:45 [in additions.fib]
    +i:45 [in hydras.Epsilon0.E0]
    +i:45 [in gaia_hydras.nfwfgaia]
    +i:451 [in hydras.Epsilon0.Paths]
    +i:453 [in hydras.Epsilon0.Paths]
    +i:457 [in hydras.Epsilon0.Paths]
    +i:46 [in hydras.Epsilon0.F_alpha]
    +i:46 [in gaia_hydras.GPaths]
    +i:46 [in gaia_hydras.GCanon]
    +i:46 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +i:46 [in hydras.Epsilon0.Canon]
    +i:46 [in gaia_hydras.nfwfgaia]
    +i:461 [in hydras.Epsilon0.Paths]
    +i:469 [in hydras.Epsilon0.Paths]
    +i:47 [in hydras.OrdinalNotations.OmegaOmega]
    +i:47 [in hydras.Hydra.BigBattle]
    +i:47 [in hydras.Epsilon0.Hprime]
    +i:47 [in hydras.MoreAck.FolExamples]
    +i:471 [in hydras.Epsilon0.Paths]
    +i:476 [in hydras.Epsilon0.Paths]
    +i:478 [in hydras.Epsilon0.Paths]
    +i:48 [in hydras.Prelude.MoreLists]
    +i:48 [in hydras.Epsilon0.F_alpha]
    +i:48 [in gaia_hydras.GPaths]
    +i:48 [in hydras.Epsilon0.Paths]
    +i:480 [in hydras.Epsilon0.Paths]
    +i:485 [in hydras.Epsilon0.Paths]
    +i:489 [in hydras.Epsilon0.Paths]
    +i:49 [in hydras.Prelude.MoreLists]
    +i:49 [in hydras.Epsilon0.Canon]
    +i:49 [in hydras.MoreAck.FolExamples]
    +i:492 [in hydras.Epsilon0.Paths]
    +i:496 [in hydras.Epsilon0.Paths]
    +i:5 [in hydras.OrdinalNotations.ON_Omega2]
    +i:5 [in hydras.solutions_exercises.is_F_monotonous]
    +i:5 [in hydras.Prelude.MoreLists]
    +i:5 [in gaia_hydras.GHprime]
    +i:5 [in hydras.Epsilon0.Large_Sets_Examples]
    +i:5 [in hydras.solutions_exercises.F_3]
    +i:5 [in hydras.Prelude.Exp2]
    +i:5 [in gaia_hydras.GL_alpha]
    +i:5 [in hydras.Hydra.Omega_Small]
    +i:5 [in hydras.solutions_exercises.T1_ltNotWf]
    +i:50 [in gaia_hydras.GPaths]
    +i:50 [in additions.More_on_positive]
    +i:500 [in hydras.Epsilon0.Paths]
    +i:504 [in hydras.Epsilon0.Paths]
    +i:51 [in hydras.Prelude.MoreLists]
    +i:51 [in hydras.Epsilon0.F_alpha]
    +i:51 [in hydras.Hydra.BigBattle]
    +i:51 [in hydras.Epsilon0.Canon]
    +i:51 [in additions.fib]
    +i:51 [in hydras.Hydra.Hydra_Lemmas]
    +i:51 [in hydras.Hydra.Hydra_Definitions]
    +i:514 [in hydras.Epsilon0.Paths]
    +i:52 [in hydras.OrdinalNotations.OmegaOmega]
    +i:520 [in hydras.Epsilon0.Paths]
    +i:522 [in hydras.Epsilon0.Paths]
    +i:527 [in hydras.Epsilon0.Paths]
    +i:53 [in hydras.Prelude.MoreLists]
    +i:53 [in gaia_hydras.GPaths]
    +i:53 [in additions.More_on_positive]
    +i:53 [in hydras.Epsilon0.Canon]
    +i:530 [in hydras.Epsilon0.Paths]
    +i:533 [in hydras.Epsilon0.Paths]
    +i:54 [in hydras.Epsilon0.F_alpha]
    +i:54 [in hydras.Epsilon0.L_alpha]
    +i:54 [in additions.fib]
    +i:54 [in hydras.Epsilon0.Paths]
    +i:544 [in hydras.Epsilon0.Paths]
    +i:545 [in hydras.Epsilon0.Paths]
    +i:546 [in hydras.Epsilon0.Paths]
    +i:55 [in hydras.Prelude.MoreLists]
    +i:55 [in hydras.Epsilon0.F_alpha]
    +i:55 [in gaia_hydras.GCanon]
    +i:55 [in hydras.OrdinalNotations.OmegaOmega]
    +i:55 [in hydras.Epsilon0.Canon]
    +i:55 [in hydras.Hydra.Hydra_Definitions]
    +i:554 [in hydras.Epsilon0.Paths]
    +i:56 [in hydras.Epsilon0.L_alpha]
    +i:56 [in hydras.Hydra.Hydra_Lemmas]
    +i:56 [in hydras.Epsilon0.Hprime]
    +i:560 [in hydras.Epsilon0.Paths]
    +i:567 [in hydras.Epsilon0.Paths]
    +i:57 [in hydras.Prelude.MoreLists]
    +i:57 [in hydras.Epsilon0.F_alpha]
    +i:57 [in additions.More_on_positive]
    +i:57 [in gaia_hydras.GCanon]
    +i:57 [in hydras.Epsilon0.Paths]
    +i:571 [in hydras.Epsilon0.Paths]
    +i:574 [in hydras.Epsilon0.Paths]
    +i:579 [in hydras.Epsilon0.Paths]
    +i:58 [in hydras.Epsilon0.Hprime]
    +i:580 [in hydras.Epsilon0.Paths]
    +i:585 [in hydras.Epsilon0.Paths]
    +i:588 [in hydras.Epsilon0.Paths]
    +i:59 [in hydras.Prelude.MoreLists]
    +i:59 [in hydras.Epsilon0.F_alpha]
    +i:59 [in hydras.Epsilon0.Canon]
    +i:59 [in additions.fib]
    +i:6 [in gaia_hydras.GCanon]
    +i:6 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +i:6 [in hydras.solutions_exercises.F_3]
    +i:6 [in hydras.Hydra.Omega2_Small]
    +i:60 [in hydras.Prelude.Iterates]
    +i:60 [in hydras.Epsilon0.F_alpha]
    +i:60 [in additions.More_on_positive]
    +i:60 [in gaia_hydras.GCanon]
    +i:60 [in hydras.Epsilon0.L_alpha]
    +i:61 [in hydras.Epsilon0.F_alpha]
    +i:61 [in hydras.Epsilon0.E0]
    +i:61 [in hydras.Hydra.Hydra_Lemmas]
    +i:61 [in hydras.Epsilon0.Hprime]
    +i:61 [in hydras.Epsilon0.Paths]
    +i:62 [in hydras.Epsilon0.F_alpha]
    +i:62 [in gaia_hydras.GPaths]
    +i:62 [in hydras.Hydra.BigBattle]
    +i:63 [in hydras.Epsilon0.Canon]
    +i:63 [in hydras.Epsilon0.E0]
    +i:64 [in hydras.Epsilon0.Canon]
    +i:64 [in hydras.Epsilon0.E0]
    +i:64 [in hydras.Hydra.Hydra_Lemmas]
    +i:64 [in hydras.Epsilon0.Paths]
    +i:65 [in hydras.OrdinalNotations.ON_Omega2]
    +i:65 [in hydras.Hydra.BigBattle]
    +i:65 [in hydras.Epsilon0.Canon]
    +i:66 [in gaia_hydras.GPaths]
    +i:66 [in hydras.Hydra.BigBattle]
    +i:66 [in hydras.Epsilon0.Canon]
    +i:67 [in hydras.Epsilon0.Large_Sets]
    +i:67 [in hydras.Epsilon0.Canon]
    +i:68 [in hydras.OrdinalNotations.ON_Omega2]
    +i:68 [in hydras.MoreAck.AckNotPR]
    +i:68 [in hydras.Epsilon0.Canon]
    +i:68 [in hydras.Hydra.Hydra_Lemmas]
    +i:68 [in hydras.MoreAck.PrimRecExamples]
    +i:687 [in hydras.Epsilon0.T1]
    +i:689 [in hydras.Epsilon0.T1]
    +i:69 [in gaia_hydras.GCanon]
    +i:69 [in hydras.Epsilon0.Large_Sets]
    +i:69 [in hydras.Epsilon0.Canon]
    +i:69 [in hydras.Epsilon0.Paths]
    +i:693 [in hydras.Epsilon0.T1]
    +i:696 [in hydras.Epsilon0.T1]
    +i:7 [in gaia_hydras.GHprime]
    +i:7 [in gaia_hydras.GPaths]
    +i:7 [in gaia_hydras.GCanon]
    +i:7 [in hydras.Hydra.Epsilon0_Needed_Std]
    +i:7 [in hydras.Epsilon0.Canon]
    +i:7 [in hydras.Hydra.Epsilon0_Needed_Generic]
    +i:7 [in gaia_hydras.GL_alpha]
    +i:70 [in hydras.MoreAck.AckNotPR]
    +i:70 [in hydras.Epsilon0.Large_Sets]
    +i:70 [in hydras.Hydra.BigBattle]
    +i:70 [in hydras.Epsilon0.Canon]
    +i:70 [in hydras.Epsilon0.Hprime]
    +i:702 [in hydras.Epsilon0.T1]
    +i:703 [in hydras.Epsilon0.T1]
    +i:71 [in gaia_hydras.GCanon]
    +i:71 [in hydras.Epsilon0.Large_Sets]
    +i:71 [in hydras.Schutte.AP]
    +i:71 [in hydras.Epsilon0.Canon]
    +i:71 [in hydras.Epsilon0.Paths]
    +i:717 [in hydras.Epsilon0.T1]
    +i:73 [in gaia_hydras.GPaths]
    +i:73 [in hydras.Epsilon0.Large_Sets]
    +i:73 [in hydras.Epsilon0.Paths]
    +i:74 [in hydras.Epsilon0.Large_Sets]
    +i:74 [in hydras.OrdinalNotations.OmegaOmega]
    +i:74 [in hydras.Epsilon0.Canon]
    +i:74 [in hydras.Hydra.Hydra_Lemmas]
    +i:75 [in hydras.OrdinalNotations.OmegaOmega]
    +i:75 [in hydras.MoreAck.PrimRecExamples]
    +i:76 [in hydras.Epsilon0.Canon]
    +i:77 [in hydras.Hydra.Hydra_Lemmas]
    +i:78 [in hydras.Epsilon0.Large_Sets]
    +i:78 [in hydras.Epsilon0.Canon]
    +i:79 [in gaia_hydras.GPaths]
    +i:79 [in hydras.Epsilon0.Large_Sets]
    +i:8 [in gaia_hydras.GPaths]
    +i:8 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +i:8 [in hydras.Hydra.Omega2_Small]
    +i:80 [in hydras.Epsilon0.Large_Sets]
    +i:81 [in hydras.Epsilon0.Large_Sets]
    +i:81 [in hydras.Epsilon0.Canon]
    +i:81 [in hydras.Epsilon0.Paths]
    +i:82 [in hydras.Prelude.MoreLists]
    +i:82 [in hydras.Epsilon0.Large_Sets]
    +i:83 [in hydras.Hydra.O2H]
    +i:83 [in hydras.Epsilon0.Paths]
    +i:84 [in hydras.Prelude.MoreLists]
    +i:84 [in hydras.Epsilon0.Large_Sets]
    +i:84 [in hydras.MoreAck.PrimRecExamples]
    +i:85 [in hydras.Gamma0.T2]
    +i:85 [in hydras.Hydra.O2H]
    +i:85 [in hydras.Hydra.Hydra_Lemmas]
    +i:85 [in hydras.Epsilon0.Paths]
    +i:86 [in hydras.Epsilon0.Hprime]
    +i:87 [in hydras.Epsilon0.Large_Sets]
    +i:87 [in hydras.Hydra.Hydra_Lemmas]
    +i:88 [in hydras.Prelude.MoreLists]
    +i:88 [in hydras.Epsilon0.Canon]
    +i:88 [in hydras.Epsilon0.E0]
    +i:89 [in hydras.Prelude.Iterates]
    +i:89 [in hydras.Prelude.MoreLists]
    +i:89 [in hydras.Epsilon0.Large_Sets]
    +i:89 [in hydras.Hydra.Hydra_Lemmas]
    +i:9 [in hydras.Prelude.MoreLists]
    +i:9 [in hydras.Hydra.Hydra_Lemmas]
    +i:9 [in hydras.Epsilon0.Paths]
    +i:9 [in gaia_hydras.GL_alpha]
    +i:90 [in hydras.Epsilon0.Large_Sets]
    +i:91 [in hydras.Epsilon0.Large_Sets]
    +i:91 [in hydras.Epsilon0.Paths]
    +i:92 [in hydras.Prelude.MoreLists]
    +i:92 [in hydras.Hydra.Hydra_Lemmas]
    +i:94 [in hydras.Prelude.MoreLists]
    +i:94 [in hydras.Epsilon0.E0]
    +i:95 [in hydras.Prelude.Iterates]
    +i:95 [in hydras.Hydra.O2H]
    +i:95 [in hydras.Epsilon0.Canon]
    +i:95 [in hydras.Hydra.Hydra_Lemmas]
    +i:96 [in hydras.OrdinalNotations.OmegaOmega]
    +i:97 [in hydras.Hydra.O2H]
    +i:97 [in hydras.Epsilon0.E0]
    +i:98 [in hydras.Epsilon0.F_alpha]
    +i:99 [in hydras.Epsilon0.Canon]
    +

    J

    +j:102 [in hydras.Prelude.Iterates]
    +j:103 [in hydras.Prelude.MoreLists]
    +j:106 [in hydras.Prelude.MoreLists]
    +j:106 [in hydras.Hydra.Hydra_Lemmas]
    +j:109 [in hydras.Epsilon0.T1]
    +j:11 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +j:11 [in hydras.Hydra.Omega2_Small]
    +j:12 [in hydras.Hydra.Epsilon0_Needed_Std]
    +j:120 [in hydras.Hydra.Hydra_Lemmas]
    +j:124 [in hydras.Prelude.Iterates]
    +j:125 [in hydras.Schutte.Schutte_basics]
    +j:126 [in hydras.Hydra.Hydra_Lemmas]
    +j:127 [in hydras.Prelude.Iterates]
    +j:127 [in hydras.Schutte.Schutte_basics]
    +j:129 [in hydras.Schutte.Schutte_basics]
    +j:13 [in hydras.Hydra.Omega2_Small]
    +j:130 [in hydras.Prelude.Iterates]
    +j:133 [in hydras.Hydra.Hydra_Definitions]
    +j:15 [in hydras.solutions_exercises.Limit_Infinity]
    +j:15 [in hydras.Hydra.Omega2_Small]
    +j:151 [in additions.fib]
    +j:154 [in hydras.Prelude.MoreLists]
    +j:155 [in hydras.rpo.term]
    +j:157 [in hydras.Prelude.MoreLists]
    +j:16 [in hydras.Hydra.Epsilon0_Needed_Std]
    +j:160 [in hydras.Prelude.MoreLists]
    +j:168 [in hydras.Prelude.Iterates]
    +j:17 [in hydras.solutions_exercises.Limit_Infinity]
    +j:182 [in hydras.Schutte.Schutte_basics]
    +j:183 [in hydras.Prelude.MoreLists]
    +j:185 [in hydras.Prelude.MoreLists]
    +j:194 [in hydras.Schutte.Schutte_basics]
    +j:200 [in additions.Addition_Chains]
    +j:203 [in hydras.Schutte.Schutte_basics]
    +j:21 [in hydras.OrdinalNotations.ON_Omega2]
    +j:23 [in hydras.Schutte.AP]
    +j:238 [in hydras.Prelude.Iterates]
    +j:243 [in hydras.Prelude.Iterates]
    +j:247 [in hydras.Prelude.Iterates]
    +j:25 [in hydras.OrdinalNotations.ON_Omega2]
    +j:25 [in gaia_hydras.GPaths]
    +j:25 [in hydras.Schutte.AP]
    +j:251 [in hydras.Prelude.Iterates]
    +j:29 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +j:3 [in gaia_hydras.GPrelude]
    +j:31 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +j:333 [in hydras.rpo.term]
    +j:338 [in hydras.Epsilon0.Paths]
    +j:34 [in hydras.Prelude.MoreLists]
    +j:36 [in hydras.Prelude.MoreLists]
    +j:39 [in hydras.Hydra.BigBattle]
    +j:404 [in hydras.Epsilon0.Paths]
    +j:408 [in hydras.Epsilon0.Paths]
    +j:41 [in hydras.Schutte.Addition]
    +j:414 [in hydras.Epsilon0.Paths]
    +j:416 [in hydras.Epsilon0.Paths]
    +j:42 [in hydras.OrdinalNotations.ON_Omega2]
    +j:420 [in hydras.Epsilon0.Paths]
    +j:424 [in hydras.Epsilon0.Paths]
    +j:428 [in hydras.Epsilon0.Paths]
    +j:43 [in additions.fib]
    +j:434 [in hydras.Epsilon0.Paths]
    +j:438 [in hydras.Epsilon0.Paths]
    +j:449 [in hydras.Epsilon0.Paths]
    +j:455 [in hydras.Epsilon0.Paths]
    +j:458 [in hydras.Epsilon0.Paths]
    +j:46 [in additions.fib]
    +j:463 [in hydras.Epsilon0.Paths]
    +j:465 [in hydras.Epsilon0.Paths]
    +j:47 [in hydras.Prelude.MoreLists]
    +j:481 [in hydras.Epsilon0.Paths]
    +j:49 [in hydras.OrdinalNotations.OmegaOmega]
    +j:493 [in hydras.Epsilon0.Paths]
    +j:497 [in hydras.Epsilon0.Paths]
    +j:5 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +j:50 [in hydras.Prelude.MoreLists]
    +j:501 [in hydras.Epsilon0.Paths]
    +j:506 [in hydras.Epsilon0.Paths]
    +j:515 [in hydras.Epsilon0.Paths]
    +j:52 [in additions.fib]
    +j:521 [in hydras.Epsilon0.Paths]
    +j:524 [in hydras.Epsilon0.Paths]
    +j:531 [in hydras.Epsilon0.Paths]
    +j:54 [in hydras.Prelude.MoreLists]
    +j:54 [in gaia_hydras.GPaths]
    +j:55 [in hydras.Hydra.BigBattle]
    +j:55 [in additions.fib]
    +j:555 [in hydras.Epsilon0.Paths]
    +j:559 [in hydras.Epsilon0.Paths]
    +j:568 [in hydras.Epsilon0.Paths]
    +j:57 [in hydras.OrdinalNotations.OmegaOmega]
    +j:575 [in hydras.Epsilon0.Paths]
    +j:58 [in hydras.Prelude.MoreLists]
    +j:6 [in hydras.OrdinalNotations.ON_Omega2]
    +j:6 [in hydras.Prelude.MoreLists]
    +j:6 [in hydras.Epsilon0.Large_Sets_Examples]
    +j:60 [in hydras.Prelude.MoreLists]
    +j:60 [in additions.fib]
    +j:61 [in hydras.Prelude.Iterates]
    +j:61 [in additions.More_on_positive]
    +j:61 [in gaia_hydras.GCanon]
    +j:63 [in gaia_hydras.GPaths]
    +j:65 [in hydras.Epsilon0.Paths]
    +j:66 [in hydras.OrdinalNotations.ON_Omega2]
    +j:69 [in hydras.OrdinalNotations.ON_Omega2]
    +j:7 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +j:7 [in hydras.Hydra.Omega2_Small]
    +j:70 [in hydras.Hydra.Hydra_Lemmas]
    +j:74 [in gaia_hydras.GPaths]
    +j:75 [in hydras.Epsilon0.Paths]
    +j:77 [in hydras.Epsilon0.Paths]
    +j:78 [in gaia_hydras.GPaths]
    +j:79 [in hydras.Epsilon0.Canon]
    +j:79 [in hydras.Hydra.Hydra_Lemmas]
    +j:8 [in hydras.Hydra.Epsilon0_Needed_Std]
    +j:82 [in hydras.Epsilon0.Canon]
    +j:83 [in hydras.Prelude.MoreLists]
    +j:85 [in hydras.Prelude.MoreLists]
    +j:87 [in hydras.Epsilon0.Paths]
    +j:9 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +j:9 [in hydras.Hydra.Omega2_Small]
    +j:90 [in hydras.Prelude.Iterates]
    +j:90 [in hydras.Prelude.MoreLists]
    +j:90 [in hydras.Hydra.Hydra_Lemmas]
    +j:92 [in hydras.Epsilon0.Paths]
    +j:94 [in hydras.Hydra.Hydra_Lemmas]
    +j:95 [in hydras.Prelude.MoreLists]
    +j:96 [in hydras.Prelude.Iterates]
    +j:96 [in hydras.Epsilon0.Canon]
    +j:97 [in hydras.Hydra.Hydra_Lemmas]
    +j:99 [in hydras.Hydra.O2H]
    +

    K

    +kbr:222 [in additions.Euclidean_Chains]
    +kbr:231 [in additions.Euclidean_Chains]
    +kbr:293 [in additions.Euclidean_Chains]
    +kbr:298 [in additions.Euclidean_Chains]
    +kc:181 [in additions.Euclidean_Chains]
    +kc:191 [in additions.Euclidean_Chains]
    +kc:192 [in additions.Euclidean_Chains]
    +kc:204 [in additions.Euclidean_Chains]
    +kc:218 [in additions.Euclidean_Chains]
    +kc:221 [in additions.Euclidean_Chains]
    +khi:170 [in hydras.Schutte.Ordering_Functions]
    +khi:171 [in hydras.Schutte.Ordering_Functions]
    +khi:172 [in hydras.Schutte.Ordering_Functions]
    +khi:173 [in hydras.Schutte.Ordering_Functions]
    +khi:49 [in hydras.Schutte.Addition]
    +khi:92 [in hydras.Schutte.Ordering_Functions]
    +khi:93 [in hydras.Schutte.Ordering_Functions]
    +knp:207 [in additions.Euclidean_Chains]
    +knp:211 [in additions.Euclidean_Chains]
    +kpr:27 [in additions.AM]
    +kpr:31 [in additions.AM]
    +ksi:58 [in hydras.Schutte.AP]
    +k':105 [in additions.Euclidean_Chains]
    +k':116 [in additions.Euclidean_Chains]
    +k':174 [in additions.Euclidean_Chains]
    +k':200 [in additions.Euclidean_Chains]
    +k10_7:330 [in additions.Euclidean_Chains]
    +k7_3:329 [in additions.Euclidean_Chains]
    +k:10 [in hydras.Hydra.Hydra_Theorems]
    +k:102 [in hydras.Epsilon0.Canon]
    +k:104 [in additions.Euclidean_Chains]
    +k:107 [in hydras.Prelude.MoreLists]
    +k:107 [in hydras.Epsilon0.Canon]
    +k:11 [in hydras.Epsilon0.Large_Sets]
    +k:11 [in gaia_hydras.GL_alpha]
    +k:110 [in hydras.Epsilon0.Large_Sets]
    +k:115 [in additions.Euclidean_Chains]
    +k:117 [in hydras.Epsilon0.Large_Sets]
    +k:118 [in hydras.Epsilon0.Large_Sets]
    +k:12 [in additions.Euclidean_Chains]
    +k:12 [in gaia_hydras.GLarge_Sets]
    +k:12 [in gaia_hydras.GL_alpha]
    +k:122 [in hydras.Epsilon0.Large_Sets]
    +k:122 [in hydras.Epsilon0.Hprime]
    +k:133 [in hydras.Prelude.Iterates]
    +k:137 [in hydras.Hydra.Hydra_Definitions]
    +k:14 [in hydras.Epsilon0.Large_Sets]
    +k:1402 [in gaia_hydras.nfwfgaia]
    +k:143 [in hydras.Prelude.Iterates]
    +k:143 [in additions.Euclidean_Chains]
    +k:15 [in additions.fib]
    +k:15 [in hydras.rpo.dickson]
    +k:151 [in additions.Euclidean_Chains]
    +k:153 [in hydras.Prelude.Iterates]
    +k:156 [in additions.Euclidean_Chains]
    +k:16 [in hydras.Epsilon0.T1]
    +k:16 [in gaia_hydras.GHprime]
    +k:16 [in gaia_hydras.GHydra]
    +k:166 [in hydras.Prelude.Iterates]
    +k:167 [in additions.Euclidean_Chains]
    +k:17 [in hydras.Epsilon0.F_omega]
    +k:17 [in hydras.MoreAck.Ack]
    +k:173 [in additions.Euclidean_Chains]
    +k:18 [in gaia_hydras.GHydra]
    +k:187 [in hydras.Prelude.Iterates]
    +k:187 [in additions.Euclidean_Chains]
    +k:1889 [in gaia_hydras.nfwfgaia]
    +k:194 [in hydras.Prelude.Iterates]
    +k:199 [in additions.Euclidean_Chains]
    +k:2 [in hydras.Hydra.Hydra_Theorems]
    +k:20 [in gaia_hydras.GL_alpha]
    +k:2013 [in gaia_hydras.nfwfgaia]
    +k:207 [in hydras.Prelude.Iterates]
    +k:209 [in additions.Euclidean_Chains]
    +k:21 [in gaia_hydras.GHydra]
    +k:210 [in hydras.Prelude.Iterates]
    +k:211 [in hydras.Prelude.Iterates]
    +k:212 [in hydras.Prelude.Iterates]
    +k:213 [in hydras.Prelude.Iterates]
    +k:22 [in hydras.OrdinalNotations.ON_Omega2]
    +k:22 [in additions.Euclidean_Chains]
    +k:22 [in hydras.Hydra.Epsilon0_Needed_Std]
    +k:225 [in additions.Euclidean_Chains]
    +k:226 [in hydras.Prelude.Iterates]
    +k:23 [in hydras.Prelude.More_Arith]
    +k:23 [in gaia_hydras.GL_alpha]
    +k:234 [in hydras.Prelude.Iterates]
    +k:236 [in additions.Euclidean_Chains]
    +k:242 [in additions.Euclidean_Chains]
    +k:25 [in hydras.Epsilon0.Large_Sets]
    +k:252 [in hydras.Prelude.Iterates]
    +k:26 [in hydras.OrdinalNotations.ON_Omega2]
    +k:26 [in gaia_hydras.GL_alpha]
    +k:260 [in hydras.rpo.rpo]
    +k:32 [in hydras.MoreAck.AckNotPR]
    +k:38 [in hydras.Epsilon0.Large_Sets]
    +k:39 [in hydras.Epsilon0.L_alpha]
    +k:39 [in hydras.Epsilon0.Hprime]
    +k:4 [in additions.Euclidean_Chains]
    +k:40 [in hydras.Epsilon0.L_alpha]
    +k:40 [in additions.Euclidean_Chains]
    +k:40 [in hydras.Epsilon0.Hprime]
    +k:40 [in hydras.MoreAck.PrimRecExamples]
    +k:410 [in hydras.Epsilon0.Paths]
    +k:43 [in hydras.Hydra.BigBattle]
    +k:43 [in hydras.Epsilon0.Hprime]
    +k:44 [in hydras.Epsilon0.Large_Sets]
    +k:44 [in hydras.Epsilon0.Hprime]
    +k:45 [in hydras.Epsilon0.Hprime]
    +k:46 [in hydras.Epsilon0.L_alpha]
    +k:46 [in hydras.Epsilon0.Hprime]
    +k:467 [in hydras.Epsilon0.Paths]
    +k:47 [in hydras.Epsilon0.Large_Sets]
    +k:48 [in hydras.Epsilon0.Hprime]
    +k:49 [in hydras.Epsilon0.Hprime]
    +k:508 [in hydras.Epsilon0.Paths]
    +k:51 [in hydras.Epsilon0.Large_Sets]
    +k:51 [in hydras.Epsilon0.L_alpha]
    +k:52 [in hydras.Epsilon0.L_alpha]
    +k:53 [in hydras.Epsilon0.L_alpha]
    +k:53 [in hydras.Epsilon0.Hprime]
    +k:54 [in hydras.Epsilon0.Hprime]
    +k:54 [in gaia_hydras.nfwfgaia]
    +k:541 [in hydras.Epsilon0.Paths]
    +k:55 [in hydras.Epsilon0.L_alpha]
    +k:57 [in hydras.Epsilon0.Hprime]
    +k:578 [in hydras.Epsilon0.Paths]
    +k:58 [in hydras.Epsilon0.Large_Sets]
    +k:58 [in additions.Euclidean_Chains]
    +k:58 [in gaia_hydras.nfwfgaia]
    +k:59 [in hydras.Epsilon0.Hprime]
    +k:6 [in hydras.Hydra.Hydra_Theorems]
    +k:6 [in hydras.Hydra.Battle_length]
    +k:60 [in gaia_hydras.nfwfgaia]
    +k:62 [in hydras.Epsilon0.Hprime]
    +k:63 [in hydras.Epsilon0.Large_Sets]
    +k:64 [in hydras.Epsilon0.Hprime]
    +k:65 [in hydras.Epsilon0.Large_Sets]
    +k:66 [in hydras.Epsilon0.Large_Sets]
    +k:66 [in hydras.Epsilon0.Hprime]
    +k:67 [in hydras.Epsilon0.Hprime]
    +k:68 [in hydras.Epsilon0.Large_Sets]
    +k:69 [in hydras.Epsilon0.Hprime]
    +k:7 [in hydras.OrdinalNotations.ON_Omega2]
    +k:7 [in hydras.Hydra.Hydra_Theorems]
    +k:7 [in additions.Addition_Chains]
    +k:71 [in hydras.Epsilon0.Hprime]
    +k:72 [in hydras.Epsilon0.Large_Sets]
    +k:72 [in hydras.Hydra.Hydra_Lemmas]
    +k:72 [in hydras.Epsilon0.Hprime]
    +k:73 [in additions.Euclidean_Chains]
    +k:73 [in hydras.Epsilon0.Hprime]
    +k:74 [in hydras.Epsilon0.Hprime]
    +k:75 [in hydras.Epsilon0.Large_Sets]
    +k:76 [in hydras.Epsilon0.Large_Sets]
    +k:77 [in hydras.Epsilon0.Large_Sets]
    +k:77 [in hydras.MoreAck.Ack]
    +k:79 [in hydras.Epsilon0.Hprime]
    +k:8 [in gaia_hydras.GHprime]
    +k:8 [in hydras.Epsilon0.Large_Sets]
    +k:8 [in hydras.Hydra.Hydra_Theorems]
    +k:8 [in hydras.Hydra.Battle_length]
    +k:80 [in hydras.Epsilon0.Hprime]
    +k:81 [in hydras.Prelude.MoreLists]
    +k:83 [in hydras.Epsilon0.Large_Sets]
    +k:83 [in hydras.Epsilon0.Hprime]
    +k:84 [in hydras.Epsilon0.Hprime]
    +k:85 [in hydras.Epsilon0.Large_Sets]
    +k:88 [in hydras.Epsilon0.Hprime]
    +k:880 [in gaia_hydras.nfwfgaia]
    +k:9 [in gaia_hydras.GHprime]
    +k:9 [in hydras.Hydra.Hydra_Theorems]
    +k:9 [in additions.Euclidean_Chains]
    +k:90 [in hydras.Epsilon0.Hprime]
    +k:91 [in hydras.Prelude.MoreLists]
    +k:91 [in hydras.Epsilon0.Hprime]
    +k:92 [in hydras.Epsilon0.Large_Sets]
    +k:93 [in hydras.MoreAck.AckNotPR]
    +k:93 [in hydras.Epsilon0.Large_Sets]
    +k:93 [in additions.Euclidean_Chains]
    +k:94 [in hydras.Epsilon0.Hprime]
    +k:95 [in hydras.MoreAck.AckNotPR]
    +k:95 [in hydras.Epsilon0.Large_Sets]
    +k:96 [in hydras.Epsilon0.Large_Sets]
    +k:99 [in hydras.Prelude.Iterates]
    +

    L

    +lambda:13 [in hydras.Epsilon0.Canon]
    +lambda:15 [in hydras.Epsilon0.Canon]
    +lambda:156 [in gaia_hydras.T1Bridge]
    +lambda:161 [in gaia_hydras.T1Bridge]
    +lambda:18 [in hydras.Epsilon0.Canon]
    +lambda:20 [in hydras.Epsilon0.Canon]
    +lambda:209 [in hydras.Epsilon0.Paths]
    +lambda:213 [in hydras.Epsilon0.Paths]
    +lambda:23 [in gaia_hydras.GCanon]
    +lambda:23 [in hydras.Epsilon0.Canon]
    +lambda:27 [in hydras.Epsilon0.Canon]
    +lambda:29 [in hydras.Schutte.Schutte_basics]
    +lambda:32 [in gaia_hydras.GCanon]
    +lambda:336 [in hydras.Epsilon0.Paths]
    +lambda:43 [in gaia_hydras.GCanon]
    +lambda:49 [in gaia_hydras.GCanon]
    +lambda:53 [in gaia_hydras.GCanon]
    +lambda:566 [in hydras.Epsilon0.Paths]
    +lambda:58 [in gaia_hydras.GCanon]
    +lambda:59 [in gaia_hydras.GCanon]
    +lambda:60 [in hydras.Epsilon0.Canon]
    +lambda:61 [in gaia_hydras.GPaths]
    +lambda:61 [in hydras.Epsilon0.Canon]
    +lambda:62 [in hydras.Hydra.O2H]
    +lambda:65 [in gaia_hydras.GCanon]
    +lambda:686 [in hydras.Epsilon0.T1]
    +lambda:72 [in hydras.Epsilon0.Canon]
    +lambda:75 [in hydras.Epsilon0.Canon]
    +la:116 [in hydras.rpo.more_list]
    +la:7 [in hydras.rpo.dickson]
    +lc:165 [in hydras.rpo.rpo]
    +lc:233 [in hydras.rpo.rpo]
    +lc:242 [in hydras.rpo.rpo]
    +lc:70 [in hydras.rpo.rpo]
    +leA:48 [in hydras.Prelude.Sort_spec]
    +leA:62 [in hydras.Prelude.Sort_spec]
    +leb:107 [in hydras.Prelude.Merge_Sort]
    +leB:11 [in hydras.Prelude.DecPreOrder_Instances]
    +leb:177 [in hydras.Prelude.Merge_Sort]
    +leB:18 [in hydras.Prelude.DecPreOrder_Instances]
    +leb:183 [in hydras.Prelude.Merge_Sort]
    +leb:185 [in hydras.Prelude.Merge_Sort]
    +leb:188 [in hydras.Prelude.Merge_Sort]
    +leb:193 [in hydras.Prelude.Merge_Sort]
    +leb:195 [in hydras.Prelude.Merge_Sort]
    +leB:4 [in hydras.Prelude.DecPreOrder_Instances]
    +leB:49 [in hydras.Prelude.Sort_spec]
    +leB:63 [in hydras.Prelude.Sort_spec]
    +le_dec:118 [in hydras.Prelude.Merge_Sort]
    +le_total:117 [in hydras.Prelude.Merge_Sort]
    +le:16 [in hydras.Prelude.DecPreOrder]
    +le:21 [in hydras.Prelude.DecPreOrder]
    +le:26 [in hydras.Prelude.DecPreOrder]
    +le:3 [in hydras.solutions_exercises.predSuccUnicity]
    +Le:3 [in hydras.OrdinalNotations.ON_O]
    +le:31 [in hydras.Prelude.Sort_spec]
    +le:36 [in hydras.Prelude.DecPreOrder]
    +le:40 [in hydras.Prelude.Sort_spec]
    +le:40 [in hydras.Prelude.DecPreOrder]
    +le:45 [in hydras.Prelude.DecPreOrder]
    +le:50 [in hydras.Prelude.DecPreOrder]
    +le:55 [in hydras.Prelude.DecPreOrder]
    +le:60 [in hydras.Prelude.DecPreOrder]
    +le:65 [in hydras.Prelude.DecPreOrder]
    +le:71 [in hydras.Prelude.DecPreOrder]
    +le:75 [in hydras.Prelude.Sort_spec]
    +le:77 [in hydras.Prelude.DecPreOrder]
    +le:82 [in hydras.Prelude.DecPreOrder]
    +le:85 [in hydras.Prelude.DecPreOrder]
    +le:88 [in hydras.Prelude.DecPreOrder]
    +le:94 [in hydras.Prelude.DecPreOrder]
    +lg:163 [in hydras.rpo.rpo]
    +lg:231 [in hydras.rpo.rpo]
    +lg:68 [in hydras.rpo.rpo]
    +ls1:246 [in hydras.rpo.rpo]
    +ls1:251 [in hydras.rpo.rpo]
    +ls2:247 [in hydras.rpo.rpo]
    +ls2:252 [in hydras.rpo.rpo]
    +ls:164 [in hydras.rpo.rpo]
    +ls:232 [in hydras.rpo.rpo]
    +ls:241 [in hydras.rpo.rpo]
    +ls:69 [in hydras.rpo.rpo]
    +ltA:107 [in hydras.OrdinalNotations.ON_Generic]
    +ltA:122 [in hydras.OrdinalNotations.ON_Generic]
    +ltA:134 [in hydras.OrdinalNotations.ON_Generic]
    +ltA:147 [in hydras.OrdinalNotations.ON_Generic]
    +ltA:160 [in hydras.OrdinalNotations.ON_Generic]
    +ltA:172 [in hydras.OrdinalNotations.ON_Generic]
    +ltA:185 [in hydras.OrdinalNotations.ON_Generic]
    +ltA:199 [in hydras.OrdinalNotations.ON_Generic]
    +ltA:2 [in hydras.OrdinalNotations.ON_mult]
    +ltA:2 [in hydras.OrdinalNotations.ON_plus]
    +ltA:30 [in hydras.OrdinalNotations.ON_Generic]
    +ltA:33 [in hydras.solutions_exercises.MultisetWf]
    +ltA:36 [in hydras.solutions_exercises.MultisetWf]
    +ltA:49 [in hydras.OrdinalNotations.ON_Generic]
    +ltA:68 [in hydras.OrdinalNotations.ON_Generic]
    +ltA:69 [in hydras.solutions_exercises.MultisetWf]
    +ltA:82 [in hydras.OrdinalNotations.ON_Generic]
    +ltA:94 [in hydras.OrdinalNotations.ON_Generic]
    +ltB:111 [in hydras.OrdinalNotations.ON_Generic]
    +ltB:126 [in hydras.OrdinalNotations.ON_Generic]
    +ltB:138 [in hydras.OrdinalNotations.ON_Generic]
    +ltB:151 [in hydras.OrdinalNotations.ON_Generic]
    +ltB:164 [in hydras.OrdinalNotations.ON_Generic]
    +ltB:176 [in hydras.OrdinalNotations.ON_Generic]
    +ltB:189 [in hydras.OrdinalNotations.ON_Generic]
    +ltB:203 [in hydras.OrdinalNotations.ON_Generic]
    +ltB:34 [in hydras.OrdinalNotations.ON_Generic]
    +ltB:53 [in hydras.OrdinalNotations.ON_Generic]
    +ltB:6 [in hydras.OrdinalNotations.ON_mult]
    +ltB:6 [in hydras.OrdinalNotations.ON_plus]
    +ltB:86 [in hydras.OrdinalNotations.ON_Generic]
    +ltB:98 [in hydras.OrdinalNotations.ON_Generic]
    +Lt:109 [in hydras.Hydra.Hydra_Lemmas]
    +lt:12 [in hydras.OrdinalNotations.ON_Generic]
    +lt:129 [in hydras.Hydra.Hydra_Lemmas]
    +lt:13 [in hydras.Prelude.Comparable]
    +Lt:145 [in hydras.Hydra.Hydra_Definitions]
    +Lt:155 [in hydras.Hydra.Hydra_Definitions]
    +lt:2 [in hydras.solutions_exercises.predSuccUnicity]
    +Lt:2 [in hydras.OrdinalNotations.ON_O]
    +lt:2 [in hydras.Prelude.MoreOrders]
    +lt:2 [in hydras.solutions_exercises.lt_succ_le]
    +lt:2 [in hydras.OrdinalNotations.ON_Generic]
    +lt:23 [in hydras.Prelude.MoreOrders]
    +lt:3 [in hydras.Schutte.Lub]
    +lt:43 [in hydras.Prelude.MoreOrders]
    +lt:47 [in hydras.Prelude.MoreOrders]
    +lt:5 [in hydras.Prelude.Comparable]
    +Lt:52 [in hydras.Schutte.Well_Orders]
    +Lt:57 [in hydras.Schutte.Well_Orders]
    +lt:8 [in hydras.OrdinalNotations.ON_Generic]
    +lt:9 [in hydras.Schutte.Lub]
    +Lt:99 [in hydras.Hydra.Hydra_Lemmas]
    +l'':55 [in hydras.solutions_exercises.MultisetWf]
    +l'':56 [in hydras.solutions_exercises.MultisetWf]
    +l'':58 [in hydras.solutions_exercises.MultisetWf]
    +l'1:118 [in hydras.Prelude.MoreLists]
    +l'1:150 [in hydras.Prelude.MoreLists]
    +l':105 [in hydras.Prelude.Merge_Sort]
    +l':114 [in hydras.Prelude.MoreLists]
    +l':123 [in hydras.Prelude.MoreLists]
    +l':13 [in hydras.solutions_exercises.MultisetWf]
    +l':130 [in hydras.Prelude.MoreLists]
    +l':135 [in hydras.Prelude.MoreLists]
    +l':139 [in hydras.Schutte.Schutte_basics]
    +l':14 [in gaia_hydras.GLarge_Sets]
    +l':140 [in hydras.Prelude.MoreLists]
    +l':143 [in hydras.rpo.rpo]
    +l':146 [in hydras.Prelude.MoreLists]
    +l':147 [in hydras.rpo.rpo]
    +l':15 [in hydras.Hydra.Hydra_Definitions]
    +l':151 [in hydras.rpo.rpo]
    +l':158 [in hydras.rpo.rpo]
    +l':161 [in hydras.rpo.rpo]
    +l':167 [in hydras.rpo.rpo]
    +l':171 [in hydras.rpo.rpo]
    +l':19 [in hydras.solutions_exercises.MultisetWf]
    +l':192 [in hydras.rpo.more_list]
    +l':20 [in additions.Trace_exercise]
    +l':218 [in hydras.rpo.rpo]
    +l':222 [in hydras.rpo.rpo]
    +l':224 [in hydras.rpo.rpo]
    +l':23 [in hydras.solutions_exercises.MultisetWf]
    +l':235 [in hydras.rpo.rpo]
    +l':244 [in hydras.rpo.rpo]
    +l':267 [in hydras.rpo.rpo]
    +l':27 [in hydras.Epsilon0.Large_Sets]
    +l':30 [in hydras.Prelude.DecPreOrder_Instances]
    +l':34 [in hydras.Prelude.Merge_Sort]
    +l':37 [in hydras.Prelude.Sort_spec]
    +l':41 [in hydras.Prelude.Merge_Sort]
    +l':43 [in hydras.Prelude.Merge_Sort]
    +l':46 [in hydras.Prelude.Merge_Sort]
    +l':48 [in hydras.Hydra.O2H]
    +l':48 [in hydras.rpo.rpo]
    +l':52 [in hydras.solutions_exercises.MultisetWf]
    +l':52 [in hydras.Prelude.Merge_Sort]
    +l':52 [in hydras.rpo.rpo]
    +l':56 [in hydras.rpo.rpo]
    +l':57 [in hydras.Schutte.CNF]
    +l':614 [in hydras.Gamma0.Gamma0]
    +l':618 [in hydras.Gamma0.Gamma0]
    +l':63 [in hydras.rpo.rpo]
    +l':66 [in hydras.rpo.rpo]
    +l':699 [in hydras.Epsilon0.T1]
    +l':72 [in hydras.rpo.rpo]
    +l':73 [in hydras.solutions_exercises.MultisetWf]
    +l':8 [in hydras.Prelude.Sort_spec]
    +l':89 [in hydras.Ackermann.primRec]
    +l':93 [in hydras.Ackermann.primRec]
    +l':97 [in hydras.Prelude.Merge_Sort]
    +l':99 [in hydras.Prelude.Merge_Sort]
    +l0:152 [in hydras.Prelude.MoreLists]
    +l0:296 [in hydras.Ackermann.codeFreeVar]
    +l0:298 [in hydras.Ackermann.codeFreeVar]
    +l0:298 [in hydras.Ackermann.codeList]
    +l0:300 [in hydras.Ackermann.codeList]
    +l1:100 [in hydras.Prelude.Merge_Sort]
    +l1:101 [in hydras.rpo.list_set]
    +l1:101 [in hydras.rpo.list_permut]
    +l1:104 [in hydras.Ackermann.primRec]
    +l1:107 [in hydras.rpo.list_set]
    +l1:108 [in hydras.Prelude.Merge_Sort]
    +l1:11 [in hydras.rpo.list_permut]
    +l1:110 [in hydras.rpo.more_list]
    +l1:114 [in hydras.rpo.list_set]
    +l1:117 [in hydras.Prelude.MoreLists]
    +l1:119 [in hydras.rpo.list_set]
    +l1:12 [in hydras.Prelude.Merge_Sort]
    +l1:122 [in hydras.rpo.list_set]
    +l1:123 [in hydras.Prelude.Merge_Sort]
    +l1:126 [in hydras.rpo.more_list]
    +l1:127 [in hydras.rpo.list_set]
    +l1:13 [in hydras.rpo.list_permut]
    +l1:131 [in hydras.Prelude.Merge_Sort]
    +l1:134 [in hydras.rpo.list_set]
    +l1:138 [in hydras.Prelude.Merge_Sort]
    +l1:141 [in additions.fib]
    +l1:141 [in hydras.rpo.list_set]
    +l1:145 [in hydras.rpo.list_set]
    +l1:146 [in hydras.Prelude.Merge_Sort]
    +l1:149 [in hydras.Prelude.MoreLists]
    +l1:149 [in hydras.rpo.list_set]
    +l1:157 [in hydras.Prelude.Merge_Sort]
    +l1:161 [in hydras.Prelude.Merge_Sort]
    +l1:165 [in hydras.Prelude.Merge_Sort]
    +l1:17 [in hydras.Prelude.Merge_Sort]
    +l1:170 [in hydras.Prelude.Merge_Sort]
    +l1:178 [in hydras.Prelude.MoreLists]
    +l1:18 [in hydras.rpo.more_list]
    +l1:18 [in hydras.rpo.dickson]
    +l1:181 [in hydras.Prelude.Merge_Sort]
    +l1:184 [in hydras.rpo.more_list]
    +l1:185 [in hydras.Ackermann.fol]
    +l1:186 [in hydras.rpo.term]
    +l1:191 [in hydras.Prelude.Merge_Sort]
    +l1:191 [in hydras.Ackermann.fol]
    +l1:195 [in hydras.Prelude.MoreLists]
    +l1:197 [in hydras.Prelude.MoreLists]
    +l1:197 [in hydras.rpo.more_list]
    +l1:198 [in hydras.Prelude.Merge_Sort]
    +l1:199 [in hydras.rpo.more_list]
    +l1:203 [in hydras.Prelude.MoreLists]
    +l1:21 [in hydras.rpo.list_permut]
    +l1:212 [in hydras.Prelude.MoreLists]
    +l1:219 [in hydras.Prelude.MoreLists]
    +l1:22 [in hydras.rpo.dickson]
    +l1:23 [in hydras.rpo.list_permut]
    +l1:233 [in hydras.rpo.list_set]
    +l1:234 [in hydras.rpo.term]
    +l1:236 [in hydras.rpo.term]
    +l1:236 [in hydras.rpo.list_set]
    +l1:239 [in hydras.rpo.list_set]
    +l1:243 [in hydras.rpo.list_set]
    +l1:248 [in hydras.rpo.term]
    +l1:250 [in hydras.rpo.term]
    +l1:254 [in hydras.rpo.term]
    +l1:257 [in hydras.rpo.list_set]
    +l1:26 [in hydras.rpo.dickson]
    +l1:27 [in hydras.rpo.list_permut]
    +l1:3 [in additions.Trace_exercise]
    +l1:30 [in hydras.rpo.dickson]
    +l1:30 [in hydras.rpo.list_permut]
    +l1:324 [in hydras.rpo.rpo]
    +l1:327 [in hydras.rpo.rpo]
    +l1:34 [in hydras.rpo.dickson]
    +l1:34 [in hydras.rpo.list_permut]
    +l1:368 [in hydras.rpo.term]
    +l1:37 [in hydras.rpo.list_permut]
    +l1:38 [in hydras.Prelude.Merge_Sort]
    +l1:39 [in hydras.rpo.dickson]
    +l1:4 [in hydras.rpo.dickson]
    +l1:4 [in hydras.rpo.list_permut]
    +l1:43 [in hydras.Ackermann.codeList]
    +l1:45 [in hydras.rpo.list_permut]
    +l1:48 [in hydras.rpo.more_list]
    +l1:48 [in hydras.rpo.list_permut]
    +l1:49 [in hydras.Prelude.Merge_Sort]
    +l1:5 [in hydras.Prelude.Merge_Sort]
    +l1:51 [in hydras.rpo.list_permut]
    +l1:53 [in hydras.rpo.list_permut]
    +l1:56 [in hydras.Prelude.Merge_Sort]
    +l1:56 [in additions.fib]
    +l1:56 [in hydras.rpo.list_permut]
    +l1:57 [in hydras.rpo.term]
    +l1:59 [in hydras.rpo.term]
    +l1:59 [in hydras.rpo.list_permut]
    +l1:61 [in additions.fib]
    +l1:62 [in hydras.rpo.list_permut]
    +l1:67 [in hydras.rpo.list_permut]
    +l1:69 [in hydras.rpo.more_list]
    +l1:70 [in hydras.rpo.list_permut]
    +l1:72 [in hydras.rpo.term]
    +l1:74 [in hydras.rpo.term]
    +l1:76 [in hydras.rpo.list_permut]
    +l1:78 [in hydras.rpo.term]
    +l1:79 [in hydras.rpo.list_set]
    +l1:82 [in hydras.rpo.list_set]
    +l1:85 [in hydras.rpo.list_permut]
    +l1:86 [in hydras.rpo.more_list]
    +l1:9 [in hydras.rpo.more_list]
    +l1:91 [in hydras.Prelude.Merge_Sort]
    +l1:91 [in hydras.rpo.list_set]
    +l1:93 [in hydras.rpo.list_permut]
    +l1:94 [in hydras.rpo.more_list]
    +l1:95 [in hydras.rpo.list_set]
    +l1:99 [in hydras.Ackermann.primRec]
    +l1:99 [in additions.fib]
    +l2':253 [in hydras.rpo.list_set]
    +l2':254 [in hydras.rpo.list_set]
    +l2:10 [in hydras.rpo.more_list]
    +l2:100 [in hydras.Ackermann.primRec]
    +l2:100 [in additions.fib]
    +l2:101 [in hydras.Prelude.Merge_Sort]
    +l2:102 [in hydras.rpo.list_set]
    +l2:102 [in hydras.rpo.list_permut]
    +l2:105 [in hydras.Ackermann.primRec]
    +l2:108 [in hydras.rpo.list_set]
    +l2:109 [in hydras.Prelude.Merge_Sort]
    +l2:111 [in hydras.rpo.more_list]
    +l2:111 [in hydras.Prelude.Merge_Sort]
    +l2:115 [in hydras.rpo.list_set]
    +l2:12 [in hydras.rpo.list_permut]
    +l2:120 [in hydras.rpo.list_set]
    +l2:123 [in hydras.rpo.list_set]
    +l2:125 [in hydras.Prelude.Merge_Sort]
    +l2:127 [in hydras.rpo.more_list]
    +l2:128 [in hydras.rpo.list_set]
    +l2:13 [in hydras.Prelude.Merge_Sort]
    +l2:133 [in hydras.Prelude.Merge_Sort]
    +l2:135 [in hydras.rpo.list_set]
    +l2:139 [in hydras.Prelude.Merge_Sort]
    +l2:14 [in hydras.rpo.list_permut]
    +l2:142 [in additions.fib]
    +l2:142 [in hydras.rpo.list_set]
    +l2:146 [in hydras.rpo.list_set]
    +l2:147 [in hydras.Prelude.Merge_Sort]
    +l2:150 [in hydras.rpo.list_set]
    +l2:158 [in hydras.Prelude.Merge_Sort]
    +l2:162 [in hydras.Prelude.Merge_Sort]
    +l2:166 [in hydras.Prelude.Merge_Sort]
    +l2:171 [in hydras.Prelude.Merge_Sort]
    +l2:18 [in hydras.Prelude.Merge_Sort]
    +l2:180 [in hydras.Prelude.MoreLists]
    +l2:182 [in hydras.Prelude.Merge_Sort]
    +l2:185 [in hydras.rpo.more_list]
    +l2:186 [in hydras.Ackermann.fol]
    +l2:188 [in hydras.rpo.term]
    +l2:19 [in hydras.rpo.more_list]
    +l2:19 [in hydras.rpo.dickson]
    +l2:192 [in hydras.Prelude.Merge_Sort]
    +l2:192 [in hydras.Ackermann.fol]
    +l2:196 [in hydras.Prelude.MoreLists]
    +l2:198 [in hydras.Prelude.MoreLists]
    +l2:198 [in hydras.rpo.more_list]
    +l2:199 [in hydras.Prelude.Merge_Sort]
    +l2:200 [in hydras.rpo.more_list]
    +l2:215 [in hydras.Prelude.MoreLists]
    +l2:22 [in hydras.rpo.list_permut]
    +l2:221 [in hydras.Prelude.MoreLists]
    +l2:23 [in hydras.rpo.dickson]
    +l2:234 [in hydras.rpo.list_set]
    +l2:235 [in hydras.rpo.term]
    +l2:237 [in hydras.rpo.term]
    +l2:237 [in hydras.rpo.list_set]
    +l2:24 [in hydras.rpo.list_permut]
    +l2:240 [in hydras.rpo.list_set]
    +l2:244 [in hydras.rpo.list_set]
    +l2:249 [in hydras.rpo.term]
    +l2:251 [in hydras.rpo.term]
    +l2:255 [in hydras.rpo.term]
    +l2:258 [in hydras.rpo.term]
    +l2:258 [in hydras.rpo.list_set]
    +l2:259 [in hydras.rpo.term]
    +l2:27 [in hydras.rpo.dickson]
    +l2:28 [in hydras.rpo.list_permut]
    +l2:31 [in hydras.rpo.dickson]
    +l2:31 [in hydras.rpo.list_permut]
    +l2:326 [in hydras.rpo.rpo]
    +l2:329 [in hydras.rpo.rpo]
    +l2:35 [in hydras.rpo.dickson]
    +l2:35 [in hydras.rpo.list_permut]
    +l2:370 [in hydras.rpo.term]
    +l2:38 [in hydras.rpo.list_permut]
    +l2:39 [in hydras.Prelude.Merge_Sort]
    +l2:4 [in additions.Trace_exercise]
    +l2:40 [in hydras.rpo.dickson]
    +l2:44 [in hydras.Ackermann.codeList]
    +l2:46 [in hydras.rpo.list_permut]
    +l2:49 [in hydras.rpo.more_list]
    +l2:49 [in hydras.rpo.list_permut]
    +l2:5 [in hydras.rpo.dickson]
    +l2:5 [in hydras.rpo.list_permut]
    +l2:50 [in hydras.Prelude.Merge_Sort]
    +l2:52 [in hydras.rpo.list_permut]
    +l2:54 [in hydras.rpo.list_permut]
    +l2:57 [in hydras.Prelude.Merge_Sort]
    +l2:57 [in additions.fib]
    +l2:57 [in hydras.rpo.list_permut]
    +l2:58 [in hydras.rpo.term]
    +l2:6 [in hydras.Prelude.Merge_Sort]
    +l2:6 [in additions.Trace_exercise]
    +l2:60 [in hydras.rpo.term]
    +l2:60 [in hydras.rpo.list_permut]
    +l2:62 [in additions.fib]
    +l2:63 [in hydras.rpo.list_permut]
    +l2:68 [in hydras.rpo.list_permut]
    +l2:70 [in hydras.rpo.more_list]
    +l2:71 [in hydras.rpo.list_permut]
    +l2:73 [in hydras.rpo.term]
    +l2:75 [in hydras.rpo.term]
    +l2:77 [in hydras.rpo.list_permut]
    +l2:79 [in hydras.rpo.term]
    +l2:80 [in hydras.rpo.list_set]
    +l2:83 [in hydras.rpo.list_set]
    +l2:86 [in hydras.rpo.list_permut]
    +l2:87 [in hydras.rpo.more_list]
    +l2:92 [in hydras.Prelude.Merge_Sort]
    +l2:92 [in hydras.rpo.list_set]
    +l2:94 [in hydras.rpo.list_permut]
    +l2:95 [in hydras.rpo.more_list]
    +l2:96 [in hydras.rpo.list_set]
    +l3:199 [in hydras.Prelude.MoreLists]
    +l3:25 [in hydras.rpo.list_permut]
    +l3:39 [in hydras.rpo.list_permut]
    +l3:87 [in hydras.rpo.list_permut]
    +l3:95 [in hydras.rpo.list_permut]
    +l4:200 [in hydras.Prelude.MoreLists]
    +l4:40 [in hydras.rpo.list_permut]
    +l4:88 [in hydras.rpo.list_permut]
    +l4:96 [in hydras.rpo.list_permut]
    +L:1 [in hydras.MoreAck.BadSubst]
    +l:1 [in hydras.Schutte.CNF]
    +l:1 [in hydras.solutions_exercises.schutte_cnf_counter_example]
    +l:1 [in hydras.rpo.list_set]
    +l:1 [in hydras.rpo.list_permut]
    +l:10 [in hydras.Prelude.MoreLists]
    +l:10 [in hydras.Prelude.Sort_spec]
    +l:10 [in hydras.Prelude.Merge_Sort]
    +l:10 [in hydras.Ackermann.codePA]
    +l:101 [in hydras.rpo.more_list]
    +l:104 [in hydras.Prelude.MoreLists]
    +l:104 [in hydras.Prelude.Merge_Sort]
    +l:105 [in hydras.rpo.rpo]
    +l:106 [in hydras.Prelude.Merge_Sort]
    +l:106 [in hydras.Ackermann.codeList]
    +l:108 [in hydras.rpo.term]
    +l:109 [in hydras.rpo.more_list]
    +l:109 [in hydras.Ackermann.folReplace]
    +l:11 [in hydras.Prelude.MoreLists]
    +L:11 [in hydras.MoreAck.FolExamples]
    +l:111 [in hydras.Ackermann.codeList]
    +l:112 [in hydras.rpo.rpo]
    +l:113 [in hydras.Prelude.MoreLists]
    +l:117 [in hydras.rpo.more_list]
    +l:119 [in hydras.rpo.rpo]
    +l:12 [in hydras.solutions_exercises.MultisetWf]
    +l:120 [in hydras.Prelude.Merge_Sort]
    +l:121 [in hydras.Prelude.Merge_Sort]
    +l:121 [in hydras.Ackermann.cPair]
    +l:121 [in additions.fib]
    +l:122 [in hydras.Prelude.MoreLists]
    +l:123 [in hydras.Epsilon0.Hprime]
    +l:124 [in hydras.Ackermann.cPair]
    +l:125 [in hydras.rpo.rpo]
    +l:1284 [in hydras.Ackermann.codeSubFormula]
    +l:129 [in hydras.Prelude.MoreLists]
    +l:13 [in gaia_hydras.GLarge_Sets]
    +l:13 [in hydras.Ackermann.codePA]
    +L:13 [in hydras.MoreAck.FolExamples]
    +l:131 [in hydras.Ackermann.cPair]
    +l:132 [in hydras.Ackermann.cPair]
    +l:133 [in hydras.rpo.more_list]
    +l:133 [in hydras.Ackermann.cPair]
    +l:134 [in hydras.Prelude.MoreLists]
    +l:135 [in hydras.Ackermann.cPair]
    +l:135 [in additions.fib]
    +l:136 [in hydras.Ackermann.cPair]
    +l:137 [in hydras.rpo.rpo]
    +l:1375 [in gaia_hydras.nfwfgaia]
    +l:138 [in hydras.Ackermann.cPair]
    +l:138 [in hydras.Schutte.Schutte_basics]
    +l:1386 [in gaia_hydras.nfwfgaia]
    +l:139 [in hydras.Prelude.MoreLists]
    +l:139 [in hydras.Hydra.Hydra_Definitions]
    +l:14 [in hydras.rpo.more_list]
    +l:14 [in hydras.Schutte.CNF]
    +l:14 [in hydras.Prelude.Merge_Sort]
    +l:14 [in hydras.Hydra.Hydra_Definitions]
    +l:140 [in hydras.Ackermann.cPair]
    +l:141 [in hydras.rpo.more_list]
    +l:141 [in hydras.Ackermann.cPair]
    +l:142 [in hydras.rpo.rpo]
    +l:143 [in hydras.Ackermann.cPair]
    +l:145 [in hydras.Prelude.MoreLists]
    +l:146 [in hydras.Ackermann.cPair]
    +l:146 [in hydras.Ackermann.codePA]
    +l:146 [in hydras.rpo.rpo]
    +l:147 [in additions.fib]
    +l:149 [in hydras.Ackermann.codePA]
    +l:15 [in hydras.Prelude.Sort_spec]
    +l:150 [in hydras.rpo.rpo]
    +l:151 [in hydras.Prelude.MoreLists]
    +l:151 [in hydras.rpo.more_list]
    +l:156 [in hydras.rpo.term]
    +l:157 [in hydras.rpo.rpo]
    +l:16 [in hydras.Schutte.CNF]
    +l:16 [in hydras.rpo.list_set]
    +l:160 [in hydras.rpo.more_list]
    +l:160 [in hydras.rpo.rpo]
    +l:161 [in hydras.rpo.term]
    +l:166 [in hydras.rpo.rpo]
    +l:169 [in hydras.rpo.term]
    +l:169 [in hydras.rpo.more_list]
    +l:17 [in hydras.rpo.list_permut]
    +l:170 [in hydras.rpo.rpo]
    +l:171 [in hydras.Prelude.MoreLists]
    +l:172 [in hydras.Prelude.MoreLists]
    +l:175 [in hydras.Prelude.MoreLists]
    +l:175 [in hydras.Prelude.Merge_Sort]
    +l:176 [in hydras.rpo.more_list]
    +l:178 [in hydras.Prelude.Merge_Sort]
    +l:18 [in hydras.Schutte.CNF]
    +l:18 [in hydras.solutions_exercises.MultisetWf]
    +l:184 [in hydras.Prelude.Merge_Sort]
    +l:186 [in hydras.Prelude.Merge_Sort]
    +l:189 [in hydras.Prelude.Merge_Sort]
    +l:19 [in hydras.Prelude.Sort_spec]
    +l:19 [in hydras.Ackermann.folProp]
    +l:19 [in additions.Trace_exercise]
    +l:19 [in hydras.rpo.list_permut]
    +l:19 [in hydras.Hydra.Hydra_Definitions]
    +l:191 [in hydras.rpo.more_list]
    +l:194 [in hydras.Prelude.Merge_Sort]
    +l:196 [in hydras.Prelude.Merge_Sort]
    +l:2 [in hydras.Prelude.Merge_Sort]
    +l:20 [in hydras.rpo.dickson]
    +l:20 [in hydras.rpo.list_permut]
    +l:200 [in hydras.rpo.rpo]
    +l:202 [in hydras.Prelude.MoreLists]
    +l:205 [in hydras.rpo.rpo]
    +l:207 [in hydras.Prelude.MoreLists]
    +l:207 [in hydras.rpo.more_list]
    +l:207 [in hydras.rpo.rpo]
    +l:208 [in hydras.rpo.rpo]
    +l:209 [in hydras.rpo.rpo]
    +l:21 [in hydras.Schutte.CNF]
    +l:211 [in hydras.Ackermann.codeList]
    +l:216 [in hydras.Ackermann.codeList]
    +l:217 [in hydras.rpo.term]
    +l:217 [in hydras.rpo.more_list]
    +l:217 [in hydras.rpo.rpo]
    +l:22 [in hydras.Prelude.Sort_spec]
    +l:22 [in hydras.solutions_exercises.MultisetWf]
    +l:22 [in hydras.Ackermann.codePA]
    +l:221 [in hydras.rpo.rpo]
    +l:222 [in hydras.rpo.term]
    +l:223 [in hydras.rpo.term]
    +l:223 [in hydras.rpo.rpo]
    +l:227 [in hydras.rpo.more_list]
    +l:227 [in hydras.rpo.rpo]
    +l:23 [in hydras.OrdinalNotations.ON_Omega2]
    +l:23 [in hydras.Schutte.CNF]
    +l:23 [in hydras.Hydra.Hydra_Definitions]
    +l:232 [in hydras.rpo.more_list]
    +l:234 [in hydras.rpo.rpo]
    +l:235 [in hydras.rpo.more_list]
    +l:24 [in hydras.rpo.more_list]
    +l:24 [in hydras.Ackermann.folProp]
    +l:24 [in hydras.rpo.dickson]
    +l:243 [in hydras.rpo.rpo]
    +l:244 [in hydras.rpo.more_list]
    +l:25 [in hydras.Schutte.CNF]
    +l:25 [in hydras.Ackermann.codePA]
    +l:25 [in hydras.Hydra.Hydra_Definitions]
    +l:254 [in hydras.rpo.more_list]
    +l:26 [in hydras.Prelude.Sort_spec]
    +l:26 [in hydras.Epsilon0.Large_Sets]
    +l:26 [in hydras.rpo.list_permut]
    +l:266 [in hydras.rpo.more_list]
    +l:266 [in hydras.rpo.rpo]
    +l:267 [in hydras.rpo.term]
    +l:27 [in hydras.Ackermann.folProp]
    +l:27 [in hydras.Ackermann.primRec]
    +l:27 [in hydras.rpo.list_set]
    +l:277 [in hydras.rpo.term]
    +l:28 [in hydras.rpo.dickson]
    +l:28 [in hydras.Ackermann.Languages]
    +l:28 [in hydras.Ackermann.codePA]
    +l:281 [in hydras.rpo.rpo]
    +l:285 [in hydras.rpo.term]
    +l:286 [in hydras.rpo.term]
    +l:287 [in hydras.rpo.term]
    +l:29 [in hydras.Prelude.DecPreOrder_Instances]
    +l:29 [in hydras.rpo.more_list]
    +l:29 [in gaia_hydras.GPaths]
    +l:29 [in hydras.solutions_exercises.MultisetWf]
    +l:29 [in hydras.Ackermann.primRec]
    +l:293 [in hydras.Ackermann.codeFreeVar]
    +l:295 [in hydras.Ackermann.codeFreeVar]
    +l:295 [in hydras.Ackermann.codeList]
    +l:297 [in hydras.Ackermann.codeList]
    +l:3 [in hydras.Hydra.Hydra_Theorems]
    +l:3 [in hydras.Ackermann.Deduction]
    +l:3 [in hydras.Ackermann.codeList]
    +l:300 [in hydras.Ackermann.codeFreeVar]
    +l:302 [in hydras.Ackermann.codeFreeVar]
    +l:302 [in hydras.Ackermann.codeList]
    +l:304 [in hydras.Ackermann.codeFreeVar]
    +l:304 [in hydras.Ackermann.codeList]
    +l:305 [in hydras.rpo.term]
    +l:306 [in hydras.rpo.term]
    +l:306 [in hydras.Ackermann.codeFreeVar]
    +l:306 [in hydras.Ackermann.codeList]
    +l:308 [in hydras.Ackermann.codeFreeVar]
    +l:308 [in hydras.Ackermann.codeList]
    +l:31 [in hydras.Prelude.MoreLists]
    +l:31 [in hydras.Ackermann.codePA]
    +l:31 [in hydras.Hydra.Hydra_Definitions]
    +l:310 [in hydras.Ackermann.codeFreeVar]
    +l:310 [in hydras.Ackermann.codeList]
    +l:312 [in hydras.Ackermann.codeFreeVar]
    +l:312 [in hydras.Ackermann.codeList]
    +l:314 [in hydras.Ackermann.codeFreeVar]
    +l:314 [in hydras.Ackermann.codeList]
    +l:316 [in hydras.Ackermann.codeFreeVar]
    +l:316 [in hydras.Ackermann.codeList]
    +l:318 [in hydras.Ackermann.codeFreeVar]
    +l:318 [in hydras.Ackermann.codeList]
    +l:319 [in hydras.Ackermann.codeList]
    +l:32 [in hydras.Ackermann.subAll]
    +l:32 [in hydras.Ackermann.folProp]
    +l:32 [in hydras.rpo.dickson]
    +l:320 [in hydras.Ackermann.codeFreeVar]
    +l:320 [in hydras.Ackermann.codeList]
    +l:321 [in hydras.Ackermann.codeFreeVar]
    +l:322 [in hydras.Ackermann.codeFreeVar]
    +l:322 [in hydras.Ackermann.codeList]
    +l:323 [in hydras.Ackermann.codeFreeVar]
    +l:324 [in hydras.Ackermann.codeFreeVar]
    +l:324 [in hydras.Ackermann.codeList]
    +l:325 [in hydras.Ackermann.codeFreeVar]
    +l:326 [in hydras.Ackermann.codeList]
    +l:328 [in hydras.Ackermann.codeList]
    +l:33 [in hydras.Prelude.Merge_Sort]
    +l:33 [in hydras.Ackermann.Languages]
    +l:330 [in hydras.Ackermann.codeList]
    +l:332 [in hydras.Ackermann.codeList]
    +l:334 [in hydras.rpo.term]
    +l:334 [in hydras.Ackermann.codeList]
    +l:336 [in hydras.Ackermann.codeList]
    +l:338 [in hydras.Ackermann.codeList]
    +l:339 [in hydras.rpo.term]
    +l:34 [in hydras.rpo.more_list]
    +l:34 [in hydras.Prelude.Sort_spec]
    +l:34 [in hydras.solutions_exercises.MultisetWf]
    +l:34 [in hydras.Ackermann.codePA]
    +l:340 [in hydras.Ackermann.codeList]
    +l:341 [in hydras.Ackermann.codeList]
    +l:342 [in hydras.Ackermann.codeList]
    +l:344 [in hydras.Ackermann.codeList]
    +l:346 [in hydras.Ackermann.codeList]
    +l:347 [in hydras.rpo.term]
    +l:348 [in hydras.Ackermann.codeList]
    +l:35 [in hydras.Hydra.Hydra_Lemmas]
    +l:350 [in hydras.Ackermann.codeList]
    +l:351 [in hydras.rpo.term]
    +l:352 [in hydras.rpo.term]
    +l:352 [in hydras.Ackermann.codeList]
    +l:354 [in hydras.Ackermann.codeList]
    +l:355 [in hydras.Ackermann.codeList]
    +l:359 [in hydras.rpo.term]
    +l:36 [in hydras.Ackermann.subAll]
    +l:36 [in hydras.Ackermann.primRec]
    +l:36 [in hydras.rpo.dickson]
    +l:360 [in hydras.rpo.term]
    +l:364 [in hydras.rpo.term]
    +l:366 [in hydras.rpo.term]
    +l:37 [in hydras.Ackermann.Languages]
    +l:37 [in hydras.Ackermann.codePA]
    +l:38 [in hydras.rpo.term]
    +l:38 [in hydras.rpo.more_list]
    +l:39 [in hydras.Ackermann.Languages]
    +l:4 [in hydras.rpo.more_list]
    +l:4 [in hydras.Prelude.Sort_spec]
    +l:4 [in hydras.Schutte.CNF]
    +l:40 [in hydras.Ackermann.subAll]
    +l:40 [in hydras.solutions_exercises.MultisetWf]
    +l:40 [in hydras.Prelude.Merge_Sort]
    +l:40 [in hydras.Hydra.Hydra_Lemmas]
    +l:40 [in hydras.Ackermann.codePA]
    +l:41 [in hydras.rpo.list_set]
    +l:411 [in hydras.Epsilon0.Paths]
    +l:42 [in hydras.Prelude.Merge_Sort]
    +l:42 [in hydras.Ackermann.codePA]
    +l:42 [in hydras.rpo.rpo]
    +l:43 [in hydras.Prelude.Sort_spec]
    +l:43 [in hydras.solutions_exercises.MultisetWf]
    +l:43 [in hydras.MoreAck.FolExamples]
    +l:44 [in hydras.rpo.term]
    +l:44 [in hydras.rpo.list_permut]
    +l:44 [in hydras.Ackermann.codePA]
    +l:440 [in hydras.Epsilon0.Paths]
    +l:444 [in hydras.Epsilon0.Paths]
    +l:45 [in hydras.rpo.term]
    +l:45 [in hydras.rpo.more_list]
    +l:45 [in hydras.Prelude.Merge_Sort]
    +l:45 [in hydras.Ackermann.primRec]
    +l:45 [in hydras.Hydra.Hydra_Lemmas]
    +l:46 [in hydras.Ackermann.codePA]
    +l:47 [in hydras.Hydra.O2H]
    +l:47 [in hydras.rpo.list_set]
    +l:47 [in hydras.rpo.list_permut]
    +l:47 [in hydras.rpo.rpo]
    +l:477 [in hydras.Epsilon0.Paths]
    +l:48 [in hydras.solutions_exercises.MultisetWf]
    +l:48 [in hydras.Ackermann.codePA]
    +l:484 [in hydras.Epsilon0.Paths]
    +l:488 [in hydras.Epsilon0.Paths]
    +l:49 [in gaia_hydras.GPaths]
    +l:49 [in hydras.Hydra.Hydra_Lemmas]
    +l:5 [in hydras.Ackermann.codeSubFormula]
    +l:5 [in hydras.Ackermann.codePA]
    +l:50 [in additions.fib]
    +l:50 [in hydras.rpo.list_set]
    +l:50 [in hydras.Epsilon0.Paths]
    +l:50 [in hydras.rpo.list_permut]
    +l:50 [in hydras.Ackermann.codePA]
    +l:51 [in hydras.solutions_exercises.MultisetWf]
    +l:51 [in hydras.Prelude.Merge_Sort]
    +l:51 [in hydras.rpo.rpo]
    +l:52 [in hydras.Prelude.MoreLists]
    +l:52 [in hydras.rpo.more_list]
    +l:52 [in gaia_hydras.GPaths]
    +l:52 [in hydras.Schutte.CNF]
    +l:52 [in hydras.Ackermann.codePA]
    +l:53 [in hydras.Schutte.CNF]
    +l:53 [in additions.fib]
    +l:54 [in hydras.Ackermann.codePA]
    +l:547 [in hydras.Epsilon0.Paths]
    +l:55 [in hydras.Schutte.CNF]
    +l:55 [in hydras.Ackermann.primRec]
    +l:55 [in hydras.rpo.rpo]
    +l:551 [in hydras.Epsilon0.Paths]
    +l:56 [in hydras.Prelude.MoreLists]
    +l:56 [in hydras.Prelude.Sort_spec]
    +l:56 [in hydras.rpo.list_set]
    +l:56 [in hydras.Ackermann.codePA]
    +l:58 [in additions.fib]
    +l:58 [in hydras.rpo.list_permut]
    +l:58 [in hydras.Ackermann.codePA]
    +l:59 [in hydras.rpo.more_list]
    +l:59 [in hydras.Schutte.CNF]
    +l:6 [in hydras.rpo.dickson]
    +l:60 [in hydras.Schutte.CNF]
    +l:60 [in hydras.Ackermann.codePA]
    +l:61 [in hydras.Prelude.MoreLists]
    +l:61 [in hydras.solutions_exercises.MultisetWf]
    +l:61 [in hydras.rpo.list_permut]
    +l:61 [in hydras.Ackermann.codePA]
    +l:613 [in hydras.Gamma0.Gamma0]
    +l:617 [in hydras.Gamma0.Gamma0]
    +l:62 [in hydras.Prelude.MoreLists]
    +l:62 [in hydras.Schutte.Well_Orders]
    +l:62 [in hydras.Ackermann.codePA]
    +l:62 [in hydras.rpo.rpo]
    +l:63 [in hydras.Prelude.MoreLists]
    +l:63 [in hydras.Ackermann.codePA]
    +l:64 [in hydras.solutions_exercises.MultisetWf]
    +l:64 [in hydras.rpo.list_set]
    +l:65 [in hydras.rpo.rpo]
    +l:66 [in hydras.rpo.more_list]
    +l:66 [in hydras.solutions_exercises.MultisetWf]
    +l:67 [in hydras.Prelude.MoreLists]
    +l:67 [in hydras.rpo.more_list]
    +l:67 [in hydras.Prelude.Sort_spec]
    +l:67 [in hydras.solutions_exercises.MultisetWf]
    +l:68 [in hydras.Ackermann.folProp]
    +l:69 [in hydras.Schutte.Correctness_E0]
    +l:69 [in hydras.Prelude.Sort_spec]
    +l:69 [in hydras.Ackermann.folProp]
    +l:691 [in hydras.Epsilon0.T1]
    +l:695 [in hydras.Epsilon0.T1]
    +l:698 [in hydras.Epsilon0.T1]
    +L:7 [in hydras.MoreAck.BadSubst]
    +l:7 [in hydras.Prelude.Sort_spec]
    +l:7 [in hydras.solutions_exercises.OnCodeList]
    +l:7 [in hydras.Prelude.Merge_Sort]
    +l:7 [in hydras.Ackermann.ListExt]
    +l:70 [in hydras.solutions_exercises.MultisetWf]
    +l:70 [in hydras.rpo.list_set]
    +l:71 [in hydras.rpo.rpo]
    +l:72 [in hydras.solutions_exercises.MultisetWf]
    +l:73 [in hydras.Prelude.MoreLists]
    +l:73 [in hydras.Ackermann.folProp]
    +l:74 [in hydras.rpo.list_set]
    +l:75 [in hydras.Prelude.MoreLists]
    +l:76 [in hydras.rpo.more_list]
    +l:76 [in hydras.rpo.list_set]
    +l:77 [in hydras.rpo.more_list]
    +l:77 [in additions.fib]
    +l:77 [in hydras.rpo.list_set]
    +l:78 [in hydras.Prelude.Sort_spec]
    +l:794 [in hydras.Ackermann.checkPrf]
    +l:8 [in hydras.Schutte.CNF]
    +l:8 [in hydras.Ackermann.codeSubFormula]
    +l:8 [in hydras.solutions_exercises.MultisetWf]
    +l:8 [in hydras.Prelude.Merge_Sort]
    +l:8 [in hydras.rpo.list_permut]
    +l:8 [in hydras.Ackermann.codePA]
    +l:80 [in hydras.Prelude.Merge_Sort]
    +l:800 [in hydras.Ackermann.checkPrf]
    +l:805 [in hydras.Ackermann.checkPrf]
    +l:809 [in hydras.Ackermann.checkPrf]
    +l:82 [in hydras.rpo.more_list]
    +l:82 [in hydras.Prelude.Merge_Sort]
    +l:83 [in hydras.Prelude.Merge_Sort]
    +l:835 [in hydras.Ackermann.checkPrf]
    +l:84 [in hydras.Hydra.Hydra_Lemmas]
    +l:847 [in hydras.Ackermann.checkPrf]
    +l:85 [in hydras.Prelude.Merge_Sort]
    +l:86 [in hydras.Prelude.Merge_Sort]
    +l:86 [in hydras.Hydra.Hydra_Lemmas]
    +l:86 [in hydras.rpo.list_set]
    +l:860 [in hydras.Ackermann.checkPrf]
    +l:864 [in gaia_hydras.nfwfgaia]
    +l:865 [in hydras.Ackermann.checkPrf]
    +l:87 [in hydras.rpo.term]
    +l:87 [in hydras.Ackermann.primRec]
    +l:87 [in hydras.Gamma0.Gamma0]
    +l:873 [in gaia_hydras.nfwfgaia]
    +l:878 [in hydras.Ackermann.checkPrf]
    +l:88 [in hydras.rpo.list_set]
    +l:881 [in hydras.Ackermann.checkPrf]
    +l:9 [in hydras.Hydra.O2H]
    +l:9 [in hydras.Prelude.First_toggle]
    +l:92 [in hydras.Ackermann.primRec]
    +l:93 [in hydras.Prelude.MoreLists]
    +l:93 [in hydras.rpo.more_list]
    +l:94 [in hydras.Hydra.O2H]
    +l:95 [in hydras.Prelude.Merge_Sort]
    +l:96 [in hydras.Prelude.Merge_Sort]
    +l:96 [in hydras.Ackermann.primRec]
    +l:98 [in hydras.Prelude.Merge_Sort]
    +l:99 [in hydras.rpo.term]
    +

    M

    +map:296 [in hydras.Ackermann.subAll]
    +map:340 [in hydras.Ackermann.subAll]
    +map:345 [in hydras.Ackermann.subAll]
    +map:350 [in hydras.Ackermann.subAll]
    +map:373 [in hydras.Ackermann.subAll]
    +merge_aux:115 [in hydras.Prelude.Merge_Sort]
    +mp:29 [in additions.AM]
    +mq:28 [in additions.AM]
    +mq:30 [in additions.AM]
    +mq:32 [in additions.AM]
    +mults:5 [in additions.AM]
    +mult:35 [in additions.FirstSteps]
    +mult:41 [in additions.FirstSteps]
    +mul:75 [in additions.fib]
    +mul:82 [in additions.fib]
    +mul:88 [in additions.fib]
    +mul:94 [in additions.fib]
    +mu:1 [in hydras.Hydra.Epsilon0_Needed_Free]
    +mu:1 [in hydras.Hydra.Epsilon0_Needed_Std]
    +mu:160 [in hydras.Hydra.Hydra_Definitions]
    +mu:2 [in hydras.Hydra.Epsilon0_Needed_Generic]
    +mu:29 [in gaia_hydras.GHydra]
    +mu:32 [in gaia_hydras.GHydra]
    +M'':37 [in additions.Naive]
    +m':19 [in additions.Monoid_instances]
    +M':29 [in additions.Naive]
    +M':32 [in additions.FirstSteps]
    +M':36 [in additions.Naive]
    +m':47 [in hydras.rpo.dickson]
    +m':88 [in hydras.Ackermann.primRec]
    +m0:60 [in hydras.Ackermann.folLogic3]
    +m1:12 [in gaia_hydras.nfwfgaia]
    +m1:14 [in hydras.Ackermann.subAll]
    +m1:152 [in additions.fib]
    +m1:16 [in gaia_hydras.nfwfgaia]
    +m1:19 [in hydras.Ackermann.subAll]
    +m1:20 [in gaia_hydras.nfwfgaia]
    +m1:208 [in hydras.Ackermann.subAll]
    +m1:213 [in hydras.Ackermann.subAll]
    +m1:218 [in hydras.Ackermann.subAll]
    +m1:223 [in hydras.Ackermann.subAll]
    +m1:228 [in hydras.Ackermann.subAll]
    +m1:24 [in hydras.Ackermann.subAll]
    +m1:29 [in hydras.Ackermann.subAll]
    +m1:51 [in hydras.Ackermann.subAll]
    +m1:659 [in gaia_hydras.nfwfgaia]
    +m1:663 [in gaia_hydras.nfwfgaia]
    +m2:13 [in gaia_hydras.nfwfgaia]
    +m2:15 [in hydras.Ackermann.subAll]
    +m2:153 [in additions.fib]
    +m2:17 [in gaia_hydras.nfwfgaia]
    +m2:20 [in hydras.Ackermann.subAll]
    +m2:209 [in hydras.Ackermann.subAll]
    +m2:21 [in gaia_hydras.nfwfgaia]
    +m2:214 [in hydras.Ackermann.subAll]
    +m2:219 [in hydras.Ackermann.subAll]
    +m2:224 [in hydras.Ackermann.subAll]
    +m2:229 [in hydras.Ackermann.subAll]
    +m2:25 [in hydras.Ackermann.subAll]
    +m2:30 [in hydras.Ackermann.subAll]
    +m2:52 [in hydras.Ackermann.subAll]
    +m2:660 [in gaia_hydras.nfwfgaia]
    +m2:664 [in gaia_hydras.nfwfgaia]
    +M:1 [in hydras.Schutte.Lub]
    +m:1 [in hydras.MoreAck.Ack]
    +m:102 [in Goedel.PRrepresentable]
    +M:102 [in additions.AM]
    +m:102 [in hydras.Hydra.Hydra_Lemmas]
    +m:103 [in hydras.Ackermann.primRec]
    +M:103 [in additions.Euclidean_Chains]
    +M:105 [in additions.Addition_Chains]
    +m:107 [in Goedel.PRrepresentable]
    +M:107 [in additions.AM]
    +m:109 [in hydras.Ackermann.subAll]
    +m:11 [in hydras.Prelude.More_Arith]
    +M:11 [in additions.Compatibility]
    +M:112 [in additions.AM]
    +m:112 [in hydras.Hydra.Hydra_Lemmas]
    +m:113 [in Goedel.PRrepresentable]
    +M:113 [in additions.Addition_Chains]
    +m:1134 [in gaia_hydras.nfwfgaia]
    +M:114 [in additions.Euclidean_Chains]
    +m:1141 [in gaia_hydras.nfwfgaia]
    +m:115 [in hydras.Ackermann.subAll]
    +m:115 [in additions.fib]
    +m:1156 [in gaia_hydras.nfwfgaia]
    +m:117 [in Goedel.PRrepresentable]
    +m:1177 [in gaia_hydras.nfwfgaia]
    +m:1180 [in gaia_hydras.nfwfgaia]
    +m:1183 [in gaia_hydras.nfwfgaia]
    +m:1186 [in gaia_hydras.nfwfgaia]
    +m:1189 [in gaia_hydras.nfwfgaia]
    +m:119 [in Goedel.PRrepresentable]
    +M:119 [in hydras.Epsilon0.Large_Sets]
    +M:119 [in additions.Addition_Chains]
    +m:12 [in hydras.Ackermann.subAll]
    +m:12 [in hydras.rpo.dickson]
    +M:122 [in additions.AM]
    +m:1227 [in hydras.Ackermann.codeSubFormula]
    +m:123 [in Goedel.PRrepresentable]
    +m:1230 [in hydras.Ackermann.codeSubFormula]
    +m:1246 [in hydras.Ackermann.codeSubFormula]
    +m:1249 [in hydras.Ackermann.codeSubFormula]
    +m:125 [in hydras.Ackermann.cPair]
    +M:126 [in additions.Addition_Chains]
    +M:127 [in additions.AM]
    +m:127 [in hydras.Ackermann.cPair]
    +m:130 [in Goedel.PRrepresentable]
    +m:1303 [in hydras.Ackermann.codeSubFormula]
    +m:1306 [in hydras.Ackermann.codeSubFormula]
    +m:131 [in hydras.Hydra.Hydra_Lemmas]
    +M:133 [in additions.Addition_Chains]
    +m:135 [in Goedel.PRrepresentable]
    +m:135 [in hydras.Ackermann.codeSubFormula]
    +m:136 [in additions.fib]
    +m:1383 [in hydras.Ackermann.codeSubFormula]
    +m:1386 [in hydras.Ackermann.codeSubFormula]
    +m:139 [in additions.fib]
    +M:14 [in additions.Pow_variant]
    +M:14 [in additions.Pow]
    +m:14 [in hydras.MoreAck.Ack]
    +m:141 [in Goedel.PRrepresentable]
    +m:144 [in hydras.Ackermann.codePA]
    +m:145 [in hydras.Ackermann.codePA]
    +m:146 [in Goedel.PRrepresentable]
    +m:1472 [in gaia_hydras.nfwfgaia]
    +m:1474 [in gaia_hydras.nfwfgaia]
    +m:1478 [in gaia_hydras.nfwfgaia]
    +m:148 [in hydras.Hydra.Hydra_Definitions]
    +m:1482 [in gaia_hydras.nfwfgaia]
    +m:1488 [in gaia_hydras.nfwfgaia]
    +m:1490 [in gaia_hydras.nfwfgaia]
    +m:15 [in hydras.Ackermann.NNtheory]
    +m:15 [in hydras.Schutte.Countable]
    +m:150 [in hydras.Ackermann.cPair]
    +m:152 [in Goedel.PRrepresentable]
    +m:1529 [in gaia_hydras.nfwfgaia]
    +m:153 [in hydras.Ackermann.codePA]
    +m:154 [in hydras.Ackermann.cPair]
    +m:154 [in additions.fib]
    +m:156 [in hydras.Ackermann.cPair]
    +m:156 [in hydras.Ackermann.codePA]
    +m:157 [in Goedel.PRrepresentable]
    +m:158 [in hydras.Ackermann.cPair]
    +m:158 [in additions.fib]
    +m:158 [in hydras.Hydra.Hydra_Definitions]
    +m:159 [in hydras.Ackermann.cPair]
    +m:16 [in hydras.Ackermann.subAll]
    +m:16 [in hydras.Ackermann.primRec]
    +m:16 [in hydras.OrdinalNotations.ON_Generic]
    +m:16 [in gaia_hydras.onType]
    +m:160 [in additions.fib]
    +m:161 [in hydras.Ackermann.cPair]
    +m:163 [in hydras.Prelude.MoreLists]
    +M:163 [in additions.Addition_Chains]
    +M:166 [in additions.Euclidean_Chains]
    +m:17 [in hydras.Ackermann.codePA]
    +M:170 [in additions.Addition_Chains]
    +M:172 [in additions.Euclidean_Chains]
    +M:176 [in additions.Addition_Chains]
    +m:1776 [in gaia_hydras.nfwfgaia]
    +m:1785 [in gaia_hydras.nfwfgaia]
    +m:18 [in hydras.Prelude.More_Arith]
    +m:18 [in hydras.MoreAck.AckNotPR]
    +m:18 [in hydras.Ackermann.primRec]
    +m:18 [in additions.Monoid_instances]
    +m:1800 [in gaia_hydras.nfwfgaia]
    +m:1821 [in gaia_hydras.nfwfgaia]
    +m:1824 [in gaia_hydras.nfwfgaia]
    +m:1827 [in gaia_hydras.nfwfgaia]
    +m:183 [in hydras.Ackermann.fol]
    +m:1830 [in gaia_hydras.nfwfgaia]
    +m:1833 [in gaia_hydras.nfwfgaia]
    +m:184 [in gaia_hydras.nfwfgaia]
    +m:1848 [in gaia_hydras.nfwfgaia]
    +m:1855 [in gaia_hydras.nfwfgaia]
    +M:186 [in additions.Euclidean_Chains]
    +m:186 [in gaia_hydras.nfwfgaia]
    +m:1875 [in gaia_hydras.nfwfgaia]
    +m:188 [in gaia_hydras.nfwfgaia]
    +m:1881 [in gaia_hydras.nfwfgaia]
    +m:189 [in hydras.Ackermann.fol]
    +m:1898 [in gaia_hydras.nfwfgaia]
    +m:19 [in hydras.Prelude.Compat815]
    +m:19 [in hydras.Ackermann.model]
    +m:19 [in hydras.Schutte.Countable]
    +m:1907 [in gaia_hydras.nfwfgaia]
    +m:1916 [in gaia_hydras.nfwfgaia]
    +M:192 [in additions.Addition_Chains]
    +m:192 [in gaia_hydras.nfwfgaia]
    +m:1937 [in gaia_hydras.nfwfgaia]
    +m:1942 [in gaia_hydras.nfwfgaia]
    +m:1947 [in gaia_hydras.nfwfgaia]
    +m:196 [in hydras.Ackermann.wellFormed]
    +m:196 [in gaia_hydras.nfwfgaia]
    +M:198 [in additions.Euclidean_Chains]
    +m:1982 [in gaia_hydras.nfwfgaia]
    +m:1987 [in gaia_hydras.nfwfgaia]
    +m:199 [in hydras.Ackermann.wellFormed]
    +m:1993 [in gaia_hydras.nfwfgaia]
    +m:1998 [in gaia_hydras.nfwfgaia]
    +m:2 [in hydras.Ackermann.NN2PA]
    +m:2 [in hydras.Hydra.Epsilon0_Needed_Std]
    +m:20 [in hydras.Prelude.More_Arith]
    +M:20 [in additions.Pow_variant]
    +M:20 [in additions.Pow]
    +m:20 [in hydras.OrdinalNotations.ON_Generic]
    +m:20 [in hydras.Ackermann.codePA]
    +m:2004 [in gaia_hydras.nfwfgaia]
    +m:202 [in gaia_hydras.nfwfgaia]
    +m:204 [in gaia_hydras.nfwfgaia]
    +m:208 [in hydras.Ackermann.cPair]
    +m:21 [in hydras.Ackermann.subAll]
    +m:21 [in hydras.Prelude.Compat815]
    +m:22 [in hydras.Ackermann.primRec]
    +M:227 [in additions.Addition_Chains]
    +m:23 [in hydras.Prelude.Compat815]
    +M:234 [in additions.AM]
    +M:235 [in additions.Addition_Chains]
    +m:237 [in Goedel.PRrepresentable]
    +m:240 [in Goedel.PRrepresentable]
    +M:241 [in additions.AM]
    +m:243 [in Goedel.PRrepresentable]
    +m:246 [in Goedel.PRrepresentable]
    +m:246 [in hydras.Ackermann.cPair]
    +m:25 [in hydras.Prelude.Compat815]
    +m:25 [in hydras.MoreAck.AckNotPR]
    +m:25 [in hydras.MoreAck.Ack]
    +m:25 [in hydras.Ackermann.primRec]
    +m:257 [in hydras.Ackermann.subAll]
    +m:257 [in hydras.rpo.rpo]
    +m:26 [in hydras.Ackermann.subAll]
    +m:26 [in hydras.Ackermann.primRec]
    +M:269 [in additions.Addition_Chains]
    +m:269 [in hydras.rpo.rpo]
    +m:27 [in hydras.Prelude.Compat815]
    +M:27 [in additions.Pow_variant]
    +M:27 [in additions.Pow]
    +m:271 [in hydras.rpo.rpo]
    +m:272 [in hydras.rpo.rpo]
    +m:273 [in hydras.rpo.rpo]
    +m:28 [in hydras.MoreAck.Ack]
    +m:28 [in hydras.Ackermann.primRec]
    +M:28 [in additions.Naive]
    +m:285 [in hydras.Ackermann.subAll]
    +m:29 [in hydras.Prelude.Compat815]
    +m:290 [in hydras.Ackermann.subAll]
    +m:295 [in hydras.Ackermann.subAll]
    +m:3 [in hydras.Prelude.Compat815]
    +m:3 [in hydras.Hydra.Epsilon0_Needed_Free]
    +m:3 [in hydras.Ackermann.PAtheory]
    +m:30 [in hydras.Ackermann.model]
    +m:30 [in hydras.Schutte.AP]
    +M:30 [in additions.Naive]
    +m:30 [in gaia_hydras.GHydra]
    +m:31 [in hydras.Ackermann.subAll]
    +M:31 [in additions.FirstSteps]
    +m:31 [in hydras.Prelude.Compat815]
    +m:315 [in hydras.Ackermann.subAll]
    +m:32 [in hydras.Ackermann.primRec]
    +M:33 [in additions.Pow_variant]
    +M:33 [in additions.Pow]
    +m:33 [in hydras.Schutte.AP]
    +m:33 [in hydras.MoreAck.Ack]
    +m:33 [in gaia_hydras.GHydra]
    +M:34 [in additions.Naive]
    +m:35 [in hydras.Ackermann.subAll]
    +m:35 [in hydras.Prelude.Compat815]
    +m:35 [in hydras.Ackermann.primRec]
    +M:35 [in additions.Naive]
    +m:35 [in hydras.Ackermann.folLogic3]
    +m:36 [in hydras.MoreAck.AckNotPR]
    +m:37 [in additions.Addition_Chains]
    +M:38 [in additions.Naive]
    +m:385 [in gaia_hydras.nfwfgaia]
    +m:387 [in gaia_hydras.nfwfgaia]
    +m:39 [in hydras.Ackermann.subAll]
    +M:39 [in additions.AM]
    +M:39 [in additions.Euclidean_Chains]
    +m:4 [in hydras.Hydra.Epsilon0_Needed_Generic]
    +M:40 [in additions.Monoid_def]
    +m:40 [in additions.fib]
    +m:41 [in hydras.Ackermann.subAll]
    +M:43 [in additions.Pow_variant]
    +M:43 [in additions.Pow]
    +m:43 [in hydras.Ackermann.primRec]
    +m:43 [in hydras.Ackermann.wellFormed]
    +m:439 [in gaia_hydras.nfwfgaia]
    +M:44 [in hydras.Schutte.Schutte_basics]
    +m:447 [in Goedel.PRrepresentable]
    +m:45 [in hydras.Ackermann.subAll]
    +M:45 [in additions.AM]
    +M:45 [in additions.Monoid_def]
    +m:45 [in hydras.Ackermann.wellFormed]
    +m:45 [in hydras.rpo.dickson]
    +m:458 [in Goedel.PRrepresentable]
    +m:46 [in hydras.MoreAck.Ack]
    +m:46 [in hydras.rpo.dickson]
    +m:461 [in Goedel.PRrepresentable]
    +m:466 [in Goedel.PRrepresentable]
    +m:469 [in Goedel.PRrepresentable]
    +m:47 [in hydras.MoreAck.Ack]
    +m:476 [in gaia_hydras.nfwfgaia]
    +m:479 [in gaia_hydras.nfwfgaia]
    +m:48 [in hydras.Ackermann.wellFormed]
    +m:482 [in gaia_hydras.nfwfgaia]
    +m:485 [in gaia_hydras.nfwfgaia]
    +m:488 [in gaia_hydras.nfwfgaia]
    +m:49 [in hydras.rpo.dickson]
    +m:5 [in hydras.Prelude.Compat815]
    +M:5 [in additions.Pow_variant]
    +M:5 [in additions.Pow]
    +m:5 [in hydras.Ackermann.PAtheory]
    +m:50 [in Goedel.PRrepresentable]
    +M:50 [in additions.Monoid_def]
    +m:50 [in hydras.Ackermann.primRec]
    +m:50 [in hydras.Ackermann.wellFormed]
    +M:50 [in additions.Addition_Chains]
    +M:51 [in hydras.Schutte.Well_Orders]
    +M:52 [in additions.Pow_variant]
    +M:52 [in additions.Pow]
    +m:52 [in hydras.rpo.dickson]
    +m:53 [in hydras.Ackermann.subAll]
    +m:53 [in hydras.MoreAck.Ack]
    +m:53 [in hydras.Ackermann.primRec]
    +m:53 [in hydras.Ackermann.wellFormed]
    +m:53 [in hydras.rpo.dickson]
    +m:539 [in hydras.Ackermann.checkPrf]
    +m:54 [in hydras.MoreAck.AckNotPR]
    +m:54 [in hydras.Ackermann.primRec]
    +m:54 [in hydras.rpo.dickson]
    +m:542 [in hydras.Ackermann.checkPrf]
    +m:545 [in gaia_hydras.nfwfgaia]
    +m:546 [in hydras.Ackermann.checkPrf]
    +m:549 [in hydras.Ackermann.checkPrf]
    +m:549 [in gaia_hydras.nfwfgaia]
    +M:55 [in additions.Monoid_def]
    +m:551 [in hydras.Ackermann.checkPrf]
    +m:553 [in hydras.Ackermann.checkPrf]
    +m:555 [in hydras.Ackermann.checkPrf]
    +m:557 [in hydras.Ackermann.checkPrf]
    +m:559 [in hydras.Ackermann.checkPrf]
    +m:56 [in Goedel.PRrepresentable]
    +M:56 [in additions.AM]
    +M:56 [in hydras.Schutte.Well_Orders]
    +m:56 [in gaia_hydras.nfwfgaia]
    +m:561 [in hydras.Ackermann.checkPrf]
    +m:562 [in hydras.Ackermann.checkPrf]
    +m:569 [in hydras.Ackermann.checkPrf]
    +M:57 [in additions.Euclidean_Chains]
    +m:57 [in hydras.rpo.dickson]
    +m:570 [in hydras.Ackermann.checkPrf]
    +m:571 [in hydras.Ackermann.checkPrf]
    +m:572 [in hydras.Ackermann.checkPrf]
    +m:573 [in hydras.Ackermann.checkPrf]
    +m:574 [in hydras.Ackermann.checkPrf]
    +m:574 [in gaia_hydras.nfwfgaia]
    +m:575 [in hydras.Ackermann.checkPrf]
    +m:575 [in gaia_hydras.nfwfgaia]
    +m:576 [in hydras.Ackermann.checkPrf]
    +m:577 [in hydras.Ackermann.checkPrf]
    +m:578 [in hydras.Ackermann.checkPrf]
    +m:579 [in hydras.Ackermann.checkPrf]
    +m:580 [in hydras.Ackermann.checkPrf]
    +m:581 [in hydras.Ackermann.checkPrf]
    +m:582 [in hydras.Ackermann.checkPrf]
    +m:583 [in hydras.Ackermann.checkPrf]
    +m:584 [in hydras.Ackermann.checkPrf]
    +m:585 [in hydras.Ackermann.checkPrf]
    +m:586 [in hydras.Ackermann.checkPrf]
    +m:587 [in hydras.Ackermann.checkPrf]
    +m:588 [in hydras.Ackermann.checkPrf]
    +m:59 [in hydras.Ackermann.subAll]
    +m:59 [in hydras.MoreAck.AckNotPR]
    +m:59 [in hydras.rpo.dickson]
    +m:590 [in hydras.Ackermann.checkPrf]
    +m:592 [in hydras.Ackermann.checkPrf]
    +m:594 [in hydras.Ackermann.checkPrf]
    +m:596 [in hydras.Ackermann.checkPrf]
    +m:598 [in hydras.Ackermann.checkPrf]
    +m:598 [in hydras.Ackermann.primRec]
    +m:6 [in hydras.MoreAck.Ack]
    +m:6 [in hydras.Ackermann.primRec]
    +m:60 [in Goedel.PRrepresentable]
    +M:60 [in additions.Pow_variant]
    +M:60 [in additions.Pow]
    +m:60 [in hydras.MoreAck.Ack]
    +M:60 [in additions.Monoid_def]
    +m:600 [in hydras.Ackermann.checkPrf]
    +m:602 [in hydras.Ackermann.checkPrf]
    +m:603 [in hydras.Ackermann.primRec]
    +m:604 [in hydras.Ackermann.checkPrf]
    +m:606 [in hydras.Ackermann.checkPrf]
    +m:606 [in hydras.Ackermann.primRec]
    +m:608 [in hydras.Ackermann.checkPrf]
    +m:609 [in hydras.Ackermann.checkPrf]
    +m:609 [in hydras.Ackermann.primRec]
    +m:609 [in gaia_hydras.nfwfgaia]
    +m:61 [in hydras.MoreAck.Ack]
    +M:61 [in additions.Addition_Chains]
    +m:61 [in hydras.rpo.dickson]
    +m:610 [in hydras.Ackermann.checkPrf]
    +m:611 [in hydras.Ackermann.checkPrf]
    +m:612 [in hydras.Ackermann.checkPrf]
    +m:612 [in hydras.Ackermann.primRec]
    +m:613 [in hydras.Ackermann.checkPrf]
    +m:614 [in hydras.Ackermann.checkPrf]
    +m:615 [in hydras.Ackermann.checkPrf]
    +m:616 [in hydras.Ackermann.checkPrf]
    +m:617 [in hydras.Ackermann.checkPrf]
    +m:619 [in hydras.Ackermann.checkPrf]
    +m:62 [in hydras.MoreAck.AckNotPR]
    +m:62 [in hydras.MoreAck.Ack]
    +m:62 [in hydras.Ackermann.wellFormed]
    +m:620 [in hydras.Ackermann.primRec]
    +m:621 [in hydras.Ackermann.checkPrf]
    +m:623 [in hydras.Ackermann.checkPrf]
    +m:624 [in hydras.Ackermann.primRec]
    +m:625 [in hydras.Ackermann.checkPrf]
    +m:627 [in hydras.Ackermann.checkPrf]
    +m:629 [in hydras.Ackermann.checkPrf]
    +m:629 [in hydras.Ackermann.primRec]
    +M:63 [in additions.AM]
    +m:63 [in hydras.MoreAck.Ack]
    +m:63 [in additions.fib]
    +m:631 [in hydras.Ackermann.checkPrf]
    +m:632 [in hydras.Ackermann.primRec]
    +m:633 [in hydras.Ackermann.checkPrf]
    +m:635 [in hydras.Ackermann.checkPrf]
    +m:637 [in hydras.Ackermann.checkPrf]
    +m:637 [in hydras.Ackermann.primRec]
    +m:638 [in hydras.Ackermann.checkPrf]
    +m:639 [in hydras.Ackermann.checkPrf]
    +m:64 [in Goedel.PRrepresentable]
    +m:640 [in hydras.Ackermann.checkPrf]
    +m:641 [in hydras.Ackermann.checkPrf]
    +m:642 [in hydras.Ackermann.checkPrf]
    +m:643 [in hydras.Ackermann.checkPrf]
    +m:643 [in hydras.Ackermann.primRec]
    +m:644 [in hydras.Ackermann.checkPrf]
    +m:645 [in hydras.Ackermann.checkPrf]
    +m:646 [in hydras.Ackermann.checkPrf]
    +m:647 [in hydras.Ackermann.checkPrf]
    +m:648 [in hydras.Ackermann.checkPrf]
    +m:648 [in hydras.Ackermann.primRec]
    +M:65 [in additions.Monoid_def]
    +M:65 [in additions.Euclidean_Chains]
    +m:651 [in gaia_hydras.nfwfgaia]
    +m:66 [in hydras.MoreAck.Ack]
    +M:67 [in additions.Addition_Chains]
    +m:68 [in Goedel.PRrepresentable]
    +m:68 [in gaia_hydras.nfwfgaia]
    +m:69 [in hydras.MoreAck.Ack]
    +m:69 [in additions.fib]
    +M:7 [in hydras.Schutte.Lub]
    +m:70 [in hydras.Ackermann.subAll]
    +m:704 [in gaia_hydras.nfwfgaia]
    +m:71 [in hydras.MoreAck.Ack]
    +m:714 [in gaia_hydras.nfwfgaia]
    +m:72 [in Goedel.PRrepresentable]
    +M:72 [in additions.Euclidean_Chains]
    +m:73 [in hydras.MoreAck.Ack]
    +M:73 [in additions.Monoid_def]
    +m:74 [in hydras.Ackermann.subAll]
    +m:75 [in hydras.MoreAck.Ack]
    +M:75 [in additions.Addition_Chains]
    +m:751 [in gaia_hydras.nfwfgaia]
    +m:754 [in gaia_hydras.nfwfgaia]
    +M:76 [in additions.AM]
    +m:76 [in hydras.Ackermann.primRec]
    +m:76 [in additions.fib]
    +m:77 [in Goedel.PRrepresentable]
    +m:78 [in hydras.MoreAck.Ack]
    +m:79 [in hydras.Prelude.Sort_spec]
    +m:8 [in hydras.Ackermann.subAll]
    +m:8 [in hydras.Prelude.More_Arith]
    +m:8 [in hydras.Ackermann.primRec]
    +m:807 [in gaia_hydras.nfwfgaia]
    +m:809 [in gaia_hydras.nfwfgaia]
    +m:82 [in hydras.MoreAck.Ack]
    +m:83 [in Goedel.PRrepresentable]
    +m:83 [in hydras.Ackermann.subAll]
    +m:83 [in additions.fib]
    +m:837 [in hydras.Ackermann.codeSubFormula]
    +m:840 [in hydras.Ackermann.codeSubFormula]
    +m:845 [in hydras.Ackermann.checkPrf]
    +m:85 [in hydras.MoreAck.Ack]
    +m:85 [in additions.fib]
    +m:857 [in hydras.Ackermann.checkPrf]
    +M:86 [in additions.AM]
    +m:86 [in hydras.Ackermann.primRec]
    +m:862 [in hydras.Ackermann.checkPrf]
    +m:868 [in hydras.Ackermann.codeSubFormula]
    +m:87 [in Goedel.PRrepresentable]
    +m:87 [in hydras.Ackermann.subAll]
    +m:871 [in hydras.Ackermann.codeSubFormula]
    +m:892 [in hydras.Ackermann.codeSubFormula]
    +m:895 [in hydras.Ackermann.codeSubFormula]
    +m:9 [in hydras.Ackermann.subAll]
    +m:908 [in hydras.Ackermann.codeSubFormula]
    +m:91 [in Goedel.PRrepresentable]
    +m:91 [in hydras.Ackermann.primRec]
    +m:911 [in hydras.Ackermann.codeSubFormula]
    +M:92 [in additions.Euclidean_Chains]
    +m:93 [in hydras.Ackermann.subAll]
    +m:935 [in hydras.Ackermann.codeSubFormula]
    +m:938 [in hydras.Ackermann.codeSubFormula]
    +m:95 [in Goedel.PRrepresentable]
    +m:95 [in hydras.Ackermann.primRec]
    +m:966 [in gaia_hydras.nfwfgaia]
    +m:968 [in gaia_hydras.nfwfgaia]
    +m:97 [in hydras.Ackermann.subAll]
    +M:97 [in additions.AM]
    +m:970 [in gaia_hydras.nfwfgaia]
    +m:974 [in gaia_hydras.nfwfgaia]
    +m:978 [in gaia_hydras.nfwfgaia]
    +m:98 [in hydras.Ackermann.primRec]
    +m:984 [in gaia_hydras.nfwfgaia]
    +m:986 [in gaia_hydras.nfwfgaia]
    +

    N

    +NA:4 [in hydras.OrdinalNotations.ON_mult]
    +NA:4 [in hydras.OrdinalNotations.ON_plus]
    +NB:8 [in hydras.OrdinalNotations.ON_mult]
    +NB:8 [in hydras.OrdinalNotations.ON_plus]
    +nv:118 [in hydras.Ackermann.folProp]
    +nv:13 [in hydras.MoreAck.BadSubst]
    +nv:2 [in hydras.Ackermann.PAtheory]
    +nv:283 [in hydras.Ackermann.folProp]
    +nv:30 [in Goedel.codeSysPrf]
    +nv:404 [in hydras.Ackermann.folProp]
    +nv:432 [in hydras.Ackermann.folProp]
    +nv:437 [in hydras.Ackermann.folProp]
    +nv:48 [in hydras.Ackermann.subAll]
    +nv:65 [in hydras.Ackermann.codeSubFormula]
    +n'':11 [in gaia_hydras.nfwfgaia]
    +n'':8 [in gaia_hydras.nfwfgaia]
    +n':10 [in gaia_hydras.nfwfgaia]
    +n':1024 [in gaia_hydras.nfwfgaia]
    +n':1152 [in gaia_hydras.nfwfgaia]
    +n':117 [in hydras.Epsilon0.T1]
    +n':1204 [in gaia_hydras.nfwfgaia]
    +n':131 [in gaia_hydras.nfwfgaia]
    +n':1338 [in gaia_hydras.nfwfgaia]
    +n':1384 [in gaia_hydras.nfwfgaia]
    +n':139 [in hydras.Gamma0.Gamma0]
    +n':14 [in hydras.rpo.dickson]
    +n':1436 [in gaia_hydras.nfwfgaia]
    +n':1500 [in gaia_hydras.nfwfgaia]
    +n':1556 [in gaia_hydras.nfwfgaia]
    +n':1585 [in gaia_hydras.nfwfgaia]
    +n':1609 [in gaia_hydras.nfwfgaia]
    +n':165 [in hydras.Epsilon0.T1]
    +n':1691 [in gaia_hydras.nfwfgaia]
    +n':174 [in gaia_hydras.nfwfgaia]
    +n':176 [in hydras.Epsilon0.T1]
    +n':19 [in hydras.Epsilon0.Hessenberg]
    +n':194 [in hydras.Epsilon0.T1]
    +n':2043 [in gaia_hydras.nfwfgaia]
    +n':2066 [in gaia_hydras.nfwfgaia]
    +n':223 [in hydras.Epsilon0.T1]
    +n':225 [in gaia_hydras.nfwfgaia]
    +n':231 [in gaia_hydras.nfwfgaia]
    +n':24 [in hydras.Schutte.Correctness_E0]
    +n':25 [in hydras.Epsilon0.Hessenberg]
    +n':258 [in gaia_hydras.nfwfgaia]
    +n':259 [in hydras.rpo.rpo]
    +n':27 [in hydras.Gamma0.Gamma0]
    +n':285 [in hydras.Epsilon0.T1]
    +n':29 [in hydras.Schutte.Correctness_E0]
    +n':294 [in gaia_hydras.nfwfgaia]
    +n':3 [in gaia_hydras.nfwfgaia]
    +n':30 [in hydras.Epsilon0.Hessenberg]
    +n':301 [in hydras.Gamma0.Gamma0]
    +n':305 [in hydras.Gamma0.Gamma0]
    +n':324 [in hydras.Epsilon0.T1]
    +n':329 [in hydras.Epsilon0.T1]
    +n':34 [in hydras.Epsilon0.T1]
    +n':347 [in hydras.Epsilon0.T1]
    +n':359 [in hydras.Epsilon0.T1]
    +n':36 [in hydras.Epsilon0.Hessenberg]
    +n':366 [in hydras.Epsilon0.T1]
    +n':380 [in hydras.Epsilon0.T1]
    +n':42 [in hydras.Epsilon0.Hessenberg]
    +n':425 [in gaia_hydras.nfwfgaia]
    +n':429 [in hydras.Epsilon0.T1]
    +n':430 [in gaia_hydras.nfwfgaia]
    +n':434 [in hydras.Epsilon0.T1]
    +n':440 [in hydras.Epsilon0.T1]
    +n':5 [in gaia_hydras.nfwfgaia]
    +n':50 [in hydras.Epsilon0.Epsilon0rpo]
    +n':50 [in hydras.OrdinalNotations.OmegaOmega]
    +n':52 [in hydras.Epsilon0.Hessenberg]
    +n':535 [in hydras.Epsilon0.T1]
    +n':54 [in gaia_hydras.T1Bridge]
    +n':55 [in hydras.Epsilon0.T1]
    +n':55 [in hydras.Epsilon0.Epsilon0rpo]
    +n':58 [in hydras.OrdinalNotations.OmegaOmega]
    +n':59 [in hydras.Epsilon0.Epsilon0rpo]
    +n':59 [in gaia_hydras.T1Bridge]
    +n':590 [in hydras.Gamma0.Gamma0]
    +n':64 [in gaia_hydras.T1Bridge]
    +n':68 [in hydras.Epsilon0.T1]
    +n':7 [in gaia_hydras.nfwfgaia]
    +n':70 [in gaia_hydras.T1Bridge]
    +n':726 [in hydras.Epsilon0.T1]
    +n':75 [in hydras.Epsilon0.T1]
    +n':76 [in gaia_hydras.T1Bridge]
    +n':79 [in hydras.Epsilon0.T1]
    +n':790 [in gaia_hydras.nfwfgaia]
    +n':83 [in hydras.Gamma0.T2]
    +n':84 [in hydras.Epsilon0.T1]
    +n':848 [in gaia_hydras.nfwfgaia]
    +n':871 [in gaia_hydras.nfwfgaia]
    +n':908 [in gaia_hydras.nfwfgaia]
    +n':916 [in gaia_hydras.nfwfgaia]
    +n':94 [in hydras.Epsilon0.T1]
    +n':948 [in gaia_hydras.nfwfgaia]
    +n':99 [in hydras.Epsilon0.T1]
    +n0:18 [in hydras.Ackermann.wellFormed]
    +n0:194 [in hydras.Ackermann.fol]
    +n0:195 [in hydras.Ackermann.fol]
    +n0:196 [in hydras.Ackermann.fol]
    +n0:197 [in hydras.Ackermann.fol]
    +n0:20 [in hydras.Ackermann.wellFormed]
    +n0:231 [in hydras.Ackermann.subAll]
    +n0:232 [in hydras.Ackermann.subAll]
    +n0:241 [in hydras.Ackermann.subAll]
    +n0:243 [in hydras.Ackermann.subAll]
    +n0:31 [in hydras.Schutte.AP]
    +n0:32 [in hydras.Schutte.AP]
    +n0:379 [in hydras.Epsilon0.Paths]
    +n0:650 [in hydras.Ackermann.primRec]
    +n1:105 [in Goedel.rosserPA]
    +n1:107 [in hydras.Epsilon0.T1]
    +n1:107 [in Goedel.rosserPA]
    +n1:122 [in additions.Euclidean_Chains]
    +n1:131 [in additions.Euclidean_Chains]
    +n1:14 [in gaia_hydras.nfwfgaia]
    +n1:15 [in hydras.Prelude.Compat815]
    +n1:18 [in gaia_hydras.nfwfgaia]
    +n1:198 [in hydras.Ackermann.fol]
    +n1:199 [in hydras.Ackermann.fol]
    +n1:22 [in gaia_hydras.nfwfgaia]
    +n1:223 [in Goedel.PRrepresentable]
    +n1:230 [in Goedel.PRrepresentable]
    +n1:318 [in hydras.Gamma0.Gamma0]
    +n1:32 [in hydras.Gamma0.T2]
    +n1:324 [in hydras.Gamma0.Gamma0]
    +n1:340 [in hydras.Gamma0.Gamma0]
    +n1:345 [in hydras.Gamma0.Gamma0]
    +n1:362 [in hydras.Gamma0.Gamma0]
    +n1:368 [in hydras.Gamma0.Gamma0]
    +n1:38 [in Goedel.rosser]
    +n1:380 [in hydras.Epsilon0.Paths]
    +n1:384 [in hydras.Gamma0.Gamma0]
    +n1:389 [in hydras.Gamma0.Gamma0]
    +n1:39 [in hydras.Gamma0.T2]
    +n1:39 [in hydras.Gamma0.Gamma0]
    +n1:400 [in hydras.Gamma0.Gamma0]
    +n1:410 [in hydras.Gamma0.Gamma0]
    +n1:43 [in Goedel.rosser]
    +n1:45 [in Goedel.rosser]
    +n1:47 [in hydras.Gamma0.T2]
    +n1:47 [in hydras.Gamma0.Gamma0]
    +n1:50 [in Goedel.rosser]
    +n1:54 [in hydras.Gamma0.T2]
    +n1:55 [in hydras.Gamma0.Gamma0]
    +n1:60 [in hydras.Gamma0.T2]
    +n1:63 [in hydras.Gamma0.Gamma0]
    +n1:66 [in hydras.Gamma0.T2]
    +n1:661 [in gaia_hydras.nfwfgaia]
    +n1:665 [in gaia_hydras.nfwfgaia]
    +n1:68 [in Goedel.rosserPA]
    +n1:71 [in hydras.Gamma0.Gamma0]
    +n1:73 [in Goedel.rosserPA]
    +n1:75 [in Goedel.rosserPA]
    +n1:78 [in hydras.Gamma0.Gamma0]
    +n1:80 [in Goedel.rosserPA]
    +n1:82 [in additions.Euclidean_Chains]
    +n1:84 [in hydras.Gamma0.Gamma0]
    +n1:94 [in Goedel.rosserPA]
    +n1:99 [in Goedel.rosserPA]
    +n2:123 [in additions.Euclidean_Chains]
    +n2:132 [in additions.Euclidean_Chains]
    +n2:15 [in gaia_hydras.nfwfgaia]
    +n2:19 [in gaia_hydras.nfwfgaia]
    +n2:23 [in gaia_hydras.nfwfgaia]
    +n2:325 [in hydras.Gamma0.Gamma0]
    +n2:33 [in hydras.Gamma0.T2]
    +n2:332 [in hydras.Gamma0.Gamma0]
    +n2:346 [in hydras.Gamma0.Gamma0]
    +n2:352 [in hydras.Gamma0.Gamma0]
    +n2:369 [in hydras.Gamma0.Gamma0]
    +n2:376 [in hydras.Gamma0.Gamma0]
    +n2:381 [in hydras.Epsilon0.Paths]
    +n2:390 [in hydras.Gamma0.Gamma0]
    +n2:396 [in hydras.Gamma0.Gamma0]
    +n2:40 [in hydras.Gamma0.T2]
    +n2:40 [in hydras.Gamma0.Gamma0]
    +n2:401 [in hydras.Gamma0.Gamma0]
    +n2:406 [in hydras.Gamma0.Gamma0]
    +n2:48 [in hydras.Gamma0.T2]
    +n2:48 [in hydras.Gamma0.Gamma0]
    +n2:55 [in hydras.Gamma0.T2]
    +n2:56 [in hydras.Gamma0.Gamma0]
    +n2:61 [in hydras.Gamma0.T2]
    +n2:64 [in hydras.Gamma0.Gamma0]
    +n2:662 [in gaia_hydras.nfwfgaia]
    +n2:666 [in gaia_hydras.nfwfgaia]
    +n2:72 [in hydras.Gamma0.Gamma0]
    +n2:79 [in hydras.Gamma0.Gamma0]
    +n2:83 [in additions.Euclidean_Chains]
    +n2:871 [in hydras.Ackermann.checkPrf]
    +n2:874 [in hydras.Ackermann.checkPrf]
    +n3:17 [in hydras.Prelude.Compat815]
    +n3:48 [in Goedel.rosser]
    +n3:53 [in Goedel.rosser]
    +n3:78 [in Goedel.rosserPA]
    +n3:83 [in Goedel.rosserPA]
    +n:1 [in hydras.solutions_exercises.MinPR2]
    +n:1 [in additions.Fib2]
    +n:1 [in hydras.Prelude.More_Arith]
    +n:1 [in hydras.Ackermann.extEqualNat]
    +n:1 [in hydras.MoreAck.expressibleExamples]
    +n:1 [in hydras.Prelude.Compat815]
    +n:1 [in hydras.Prelude.Fuel]
    +n:1 [in hydras.Epsilon0.F_omega]
    +n:1 [in hydras.OrdinalNotations.OmegaOmega]
    +n:1 [in hydras.solutions_exercises.MorePRExamples]
    +n:1 [in hydras.solutions_exercises.FibonacciPR]
    +n:1 [in hydras.Ackermann.cPair]
    +n:1 [in gaia_hydras.ON_gfinite]
    +n:1 [in additions.Monoid_instances]
    +n:1 [in hydras.OrdinalNotations.ON_Finite]
    +n:1 [in additions.fib]
    +n:1 [in hydras.Ackermann.codeList]
    +n:1 [in hydras.Prelude.LibHyps_Experiments]
    +n:1 [in hydras.solutions_exercises.F_3]
    +n:1 [in hydras.Ackermann.codeNatToTerm]
    +n:1 [in hydras.Prelude.Exp2]
    +n:1 [in additions.Demo]
    +n:1 [in hydras.MoreAck.PrimRecExamples]
    +n:10 [in hydras.Prelude.More_Arith]
    +n:10 [in hydras.Ackermann.codeFreeVar]
    +n:10 [in hydras.MoreAck.expressibleExamples]
    +n:10 [in hydras.Ackermann.checkPrf]
    +n:10 [in hydras.solutions_exercises.MultisetWf]
    +n:10 [in hydras.Prelude.Fuel]
    +n:10 [in hydras.Epsilon0.F_omega]
    +n:10 [in hydras.MoreAck.Ack]
    +n:10 [in hydras.solutions_exercises.FibonacciPR]
    +n:10 [in gaia_hydras.ON_gfinite]
    +n:10 [in hydras.OrdinalNotations.ON_Finite]
    +n:10 [in gaia_hydras.onType]
    +n:10 [in hydras.Ackermann.codeList]
    +n:10 [in Goedel.codeSysPrf]
    +n:10 [in hydras.solutions_exercises.isqrt]
    +n:100 [in Goedel.PRrepresentable]
    +n:100 [in hydras.Ackermann.subAll]
    +n:100 [in hydras.Prelude.Iterates]
    +n:100 [in hydras.Prelude.MoreLists]
    +n:100 [in hydras.Ackermann.fol]
    +n:100 [in hydras.Ackermann.codeList]
    +n:100 [in hydras.MoreAck.PrimRecExamples]
    +n:101 [in hydras.Gamma0.T2]
    +n:101 [in hydras.Ackermann.subAll]
    +n:101 [in hydras.Ackermann.folProp]
    +n:101 [in Goedel.rosserPA]
    +n:101 [in hydras.Ackermann.fol]
    +n:101 [in hydras.Epsilon0.Canon]
    +n:101 [in hydras.Ackermann.codeList]
    +n:101 [in hydras.MoreAck.PrimRecExamples]
    +n:1010 [in gaia_hydras.nfwfgaia]
    +n:102 [in hydras.Ackermann.primRec]
    +n:102 [in hydras.Ackermann.fol]
    +n:102 [in hydras.Ackermann.codeList]
    +n:1021 [in gaia_hydras.nfwfgaia]
    +n:1028 [in gaia_hydras.nfwfgaia]
    +n:103 [in hydras.Epsilon0.T1]
    +n:103 [in hydras.Ackermann.subAll]
    +n:103 [in Goedel.rosserPA]
    +n:103 [in hydras.Ackermann.codeList]
    +n:103 [in hydras.Epsilon0.Hprime]
    +n:103 [in hydras.Prelude.MoreVectors]
    +n:1031 [in gaia_hydras.nfwfgaia]
    +n:1033 [in gaia_hydras.nfwfgaia]
    +n:1036 [in gaia_hydras.nfwfgaia]
    +n:104 [in hydras.Ackermann.subAll]
    +n:104 [in hydras.Ackermann.LNN2LNT]
    +n:104 [in hydras.Ackermann.codeList]
    +n:105 [in hydras.Ackermann.subProp]
    +n:105 [in hydras.Ackermann.fol]
    +n:105 [in hydras.Epsilon0.Canon]
    +n:105 [in hydras.Hydra.Hydra_Definitions]
    +n:1051 [in gaia_hydras.nfwfgaia]
    +n:106 [in hydras.Epsilon0.T1]
    +n:106 [in Goedel.PRrepresentable]
    +n:106 [in hydras.Ackermann.subAll]
    +n:106 [in hydras.Prelude.Iterates]
    +n:106 [in hydras.Ackermann.LNN2LNT]
    +n:106 [in additions.Pow]
    +n:106 [in hydras.Ackermann.fol]
    +n:106 [in hydras.Prelude.MoreVectors]
    +n:107 [in hydras.Ackermann.subAll]
    +n:107 [in hydras.MoreAck.AckNotPR]
    +n:107 [in hydras.Ackermann.subProp]
    +n:107 [in additions.fib]
    +n:107 [in hydras.Ackermann.codeList]
    +n:107 [in hydras.MoreAck.PrimRecExamples]
    +n:107 [in hydras.Hydra.Hydra_Definitions]
    +n:1073 [in gaia_hydras.nfwfgaia]
    +n:108 [in hydras.Ackermann.primRec]
    +n:109 [in hydras.Ackermann.LNN2LNT]
    +n:109 [in hydras.Ackermann.folProp]
    +n:11 [in hydras.Ackermann.folProof]
    +n:11 [in gaia_hydras.GF_alpha]
    +n:11 [in hydras.Prelude.Compat815]
    +n:11 [in hydras.Ackermann.LNN2LNT]
    +n:11 [in gaia_hydras.GCanon]
    +n:11 [in hydras.Ackermann.subProp]
    +n:11 [in hydras.Ackermann.codeSubFormula]
    +n:11 [in hydras.Hydra.Hydra_Theorems]
    +n:11 [in hydras.Ackermann.primRec]
    +n:11 [in gaia_hydras.ON_gfinite]
    +n:11 [in hydras.Gamma0.Gamma0]
    +n:110 [in hydras.Prelude.Iterates]
    +n:110 [in hydras.Epsilon0.Hprime]
    +n:111 [in hydras.Ackermann.LNN2LNT]
    +n:112 [in Goedel.PRrepresentable]
    +n:112 [in hydras.Gamma0.T2]
    +n:112 [in hydras.Ackermann.subAll]
    +n:112 [in hydras.Epsilon0.F_alpha]
    +n:112 [in hydras.Ackermann.codeList]
    +n:112 [in hydras.Epsilon0.Hprime]
    +n:113 [in gaia_hydras.T1Bridge]
    +n:113 [in hydras.Ackermann.primRec]
    +n:1133 [in gaia_hydras.nfwfgaia]
    +n:114 [in hydras.Epsilon0.T1]
    +n:114 [in hydras.Ackermann.subProp]
    +n:114 [in additions.fib]
    +n:114 [in hydras.Epsilon0.Hprime]
    +n:1140 [in gaia_hydras.nfwfgaia]
    +n:1142 [in gaia_hydras.nfwfgaia]
    +n:1146 [in gaia_hydras.nfwfgaia]
    +n:115 [in hydras.Epsilon0.F_alpha]
    +n:115 [in hydras.Ackermann.codeList]
    +n:115 [in hydras.Hydra.Hydra_Definitions]
    +n:1157 [in gaia_hydras.nfwfgaia]
    +n:116 [in hydras.Prelude.Iterates]
    +n:116 [in hydras.Ackermann.subProp]
    +n:116 [in hydras.Epsilon0.Hprime]
    +n:117 [in hydras.Gamma0.Gamma0]
    +n:1178 [in gaia_hydras.nfwfgaia]
    +n:118 [in Goedel.PRrepresentable]
    +n:118 [in hydras.Ackermann.subAll]
    +n:118 [in hydras.Ackermann.subProp]
    +n:118 [in hydras.Ackermann.primRec]
    +n:1181 [in gaia_hydras.nfwfgaia]
    +n:1184 [in gaia_hydras.nfwfgaia]
    +n:1187 [in gaia_hydras.nfwfgaia]
    +n:119 [in hydras.Ackermann.subAll]
    +n:119 [in hydras.Ackermann.folProp]
    +n:119 [in hydras.Epsilon0.Hprime]
    +n:1190 [in gaia_hydras.nfwfgaia]
    +n:12 [in hydras.Schutte.Correctness_E0]
    +n:12 [in Goedel.PRrepresentable]
    +n:12 [in hydras.Prelude.More_Arith]
    +n:12 [in hydras.Prelude.Iterates]
    +n:12 [in hydras.Ackermann.codeFreeVar]
    +n:12 [in hydras.Prelude.Compat815]
    +n:12 [in Goedel.fixPoint]
    +n:12 [in hydras.Epsilon0.F_omega]
    +n:12 [in hydras.Hydra.Hydra_Theorems]
    +n:12 [in gaia_hydras.ON_gfinite]
    +n:12 [in hydras.Ackermann.fol]
    +n:12 [in gaia_hydras.onType]
    +n:12 [in hydras.Ackermann.codeList]
    +n:12 [in hydras.Ackermann.expressible]
    +n:12 [in hydras.Prelude.MoreVectors]
    +n:120 [in hydras.Ackermann.subAll]
    +n:120 [in hydras.Epsilon0.F_alpha]
    +N:120 [in hydras.Epsilon0.Large_Sets]
    +n:120 [in hydras.Ackermann.codeList]
    +n:121 [in Goedel.PRrepresentable]
    +n:121 [in hydras.Ackermann.folProp]
    +n:121 [in gaia_hydras.T1Bridge]
    +n:121 [in hydras.Epsilon0.Hprime]
    +n:1215 [in hydras.Ackermann.codeSubFormula]
    +n:1219 [in hydras.Ackermann.codeSubFormula]
    +n:122 [in hydras.Prelude.Iterates]
    +n:122 [in hydras.Ackermann.subProp]
    +n:1226 [in hydras.Ackermann.codeSubFormula]
    +n:1229 [in hydras.Ackermann.codeSubFormula]
    +n:123 [in hydras.Ackermann.subAll]
    +N:123 [in hydras.Epsilon0.Large_Sets]
    +n:123 [in hydras.Ackermann.primRec]
    +n:123 [in hydras.Ackermann.codeList]
    +n:124 [in hydras.Ackermann.subAll]
    +n:124 [in hydras.Epsilon0.Hessenberg]
    +n:1245 [in hydras.Ackermann.codeSubFormula]
    +n:1247 [in gaia_hydras.nfwfgaia]
    +n:1248 [in hydras.Ackermann.codeSubFormula]
    +n:125 [in hydras.Gamma0.T2]
    +n:125 [in hydras.Ackermann.subAll]
    +n:125 [in hydras.Prelude.Iterates]
    +n:1252 [in hydras.Ackermann.codeSubFormula]
    +n:1254 [in hydras.Ackermann.codeSubFormula]
    +n:126 [in hydras.Ackermann.subAll]
    +n:126 [in hydras.Ackermann.primRec]
    +n:126 [in hydras.Ackermann.cPair]
    +n:126 [in hydras.Ackermann.codeList]
    +n:126 [in hydras.Epsilon0.Hprime]
    +n:1260 [in hydras.Ackermann.codeSubFormula]
    +n:1262 [in hydras.Ackermann.codeSubFormula]
    +n:1264 [in hydras.Ackermann.codeSubFormula]
    +n:127 [in hydras.Ackermann.subAll]
    +n:127 [in hydras.Epsilon0.Hessenberg]
    +n:127 [in hydras.Ackermann.subProp]
    +n:1277 [in gaia_hydras.nfwfgaia]
    +n:128 [in Goedel.PRrepresentable]
    +n:128 [in hydras.Ackermann.subAll]
    +n:128 [in additions.AM]
    +n:128 [in gaia_hydras.nfwfgaia]
    +n:129 [in hydras.Gamma0.T2]
    +n:129 [in hydras.Prelude.Iterates]
    +n:129 [in hydras.Ackermann.codeList]
    +n:13 [in hydras.Prelude.More_Arith]
    +n:13 [in hydras.Ackermann.LNN2LNT]
    +n:13 [in hydras.Ackermann.codeSubFormula]
    +n:13 [in hydras.Schutte.AP]
    +n:13 [in hydras.Hydra.Hydra_Theorems]
    +n:13 [in hydras.solutions_exercises.FibonacciPR]
    +n:13 [in gaia_hydras.ON_gfinite]
    +n:13 [in hydras.OrdinalNotations.ON_Finite]
    +n:13 [in hydras.Epsilon0.E0]
    +n:13 [in hydras.Ackermann.wConsistent]
    +n:13 [in hydras.rpo.dickson]
    +n:130 [in hydras.Epsilon0.Hessenberg]
    +n:130 [in hydras.Ackermann.primRec]
    +n:130 [in hydras.Ackermann.cPair]
    +n:130 [in hydras.Epsilon0.Hprime]
    +n:1302 [in hydras.Ackermann.codeSubFormula]
    +n:1305 [in hydras.Ackermann.codeSubFormula]
    +n:131 [in additions.AM]
    +n:131 [in hydras.Ackermann.primRec]
    +n:1317 [in gaia_hydras.nfwfgaia]
    +n:132 [in additions.AM]
    +n:132 [in hydras.rpo.more_list]
    +n:132 [in hydras.Ackermann.codeList]
    +n:133 [in hydras.Gamma0.T2]
    +n:133 [in additions.AM]
    +n:1333 [in gaia_hydras.nfwfgaia]
    +n:134 [in hydras.Ackermann.codeSubFormula]
    +n:134 [in hydras.Ackermann.cPair]
    +n:134 [in gaia_hydras.nfwfgaia]
    +n:1348 [in gaia_hydras.nfwfgaia]
    +n:135 [in additions.Euclidean_Chains]
    +n:135 [in hydras.Ackermann.codeList]
    +n:135 [in hydras.Gamma0.Gamma0]
    +n:1353 [in gaia_hydras.nfwfgaia]
    +n:1358 [in gaia_hydras.nfwfgaia]
    +n:136 [in additions.Euclidean_Chains]
    +n:136 [in hydras.Hydra.Hydra_Lemmas]
    +n:1363 [in gaia_hydras.nfwfgaia]
    +n:1368 [in gaia_hydras.nfwfgaia]
    +n:137 [in hydras.Epsilon0.Hprime]
    +n:1373 [in gaia_hydras.nfwfgaia]
    +n:1379 [in gaia_hydras.nfwfgaia]
    +n:138 [in hydras.Gamma0.T2]
    +n:138 [in hydras.Ackermann.codeList]
    +n:1382 [in hydras.Ackermann.codeSubFormula]
    +n:1385 [in hydras.Ackermann.codeSubFormula]
    +n:139 [in Goedel.PRrepresentable]
    +n:139 [in hydras.Epsilon0.Hprime]
    +n:1390 [in hydras.Ackermann.codeSubFormula]
    +n:1394 [in hydras.Ackermann.codeSubFormula]
    +n:14 [in hydras.Ackermann.folProof]
    +n:14 [in hydras.Gamma0.T2]
    +n:14 [in additions.Fib2]
    +n:14 [in hydras.Prelude.MoreLists]
    +n:14 [in hydras.MoreAck.AckNotPR]
    +n:14 [in hydras.Hydra.Hydra_Theorems]
    +n:14 [in hydras.solutions_exercises.MorePRExamples]
    +n:14 [in hydras.Ackermann.primRec]
    +n:14 [in additions.Naive]
    +n:14 [in additions.fib]
    +n:14 [in hydras.Ackermann.codeList]
    +n:140 [in hydras.Ackermann.codePA]
    +n:141 [in hydras.Ackermann.codeList]
    +n:1413 [in gaia_hydras.nfwfgaia]
    +n:142 [in hydras.Gamma0.T2]
    +n:142 [in hydras.Ackermann.cPair]
    +n:142 [in hydras.Epsilon0.Hprime]
    +n:143 [in hydras.Hydra.Hydra_Lemmas]
    +n:143 [in hydras.Gamma0.Gamma0]
    +n:1431 [in gaia_hydras.nfwfgaia]
    +n:144 [in hydras.Ackermann.codeList]
    +n:144 [in hydras.Epsilon0.Hprime]
    +n:145 [in hydras.Ackermann.cPair]
    +n:145 [in hydras.Hydra.Hydra_Lemmas]
    +n:1457 [in gaia_hydras.nfwfgaia]
    +n:146 [in hydras.Ackermann.codeList]
    +n:147 [in hydras.Epsilon0.T1]
    +n:1473 [in gaia_hydras.nfwfgaia]
    +n:1475 [in gaia_hydras.nfwfgaia]
    +n:1479 [in gaia_hydras.nfwfgaia]
    +n:148 [in hydras.Gamma0.T2]
    +n:148 [in hydras.Ackermann.codeList]
    +n:148 [in hydras.Hydra.Hydra_Lemmas]
    +n:1483 [in gaia_hydras.nfwfgaia]
    +n:1489 [in gaia_hydras.nfwfgaia]
    +n:149 [in hydras.Ackermann.cPair]
    +n:149 [in hydras.Gamma0.Gamma0]
    +n:1491 [in gaia_hydras.nfwfgaia]
    +n:1495 [in gaia_hydras.nfwfgaia]
    +n:15 [in additions.Fib2]
    +n:15 [in gaia_hydras.GHprime]
    +n:15 [in hydras.Ackermann.folLogic2]
    +n:15 [in hydras.Ackermann.LNN2LNT]
    +n:15 [in Goedel.fixPoint]
    +n:15 [in hydras.Ackermann.codeSubFormula]
    +n:15 [in hydras.Hydra.Hydra_Theorems]
    +n:15 [in hydras.Ackermann.PA]
    +n:15 [in hydras.solutions_exercises.MorePRExamples]
    +n:15 [in hydras.Ackermann.primRec]
    +n:15 [in hydras.Epsilon0.E0]
    +n:15 [in gaia_hydras.onType]
    +n:150 [in Goedel.PRrepresentable]
    +n:150 [in hydras.Ackermann.codeSubFormula]
    +n:150 [in hydras.Ackermann.codeList]
    +n:152 [in gaia_hydras.T1Bridge]
    +n:152 [in hydras.Ackermann.codeList]
    +n:152 [in hydras.Ackermann.codePA]
    +n:153 [in hydras.Epsilon0.Large_Sets]
    +n:153 [in hydras.Ackermann.cPair]
    +n:153 [in hydras.Hydra.Hydra_Lemmas]
    +n:1530 [in gaia_hydras.nfwfgaia]
    +n:1534 [in gaia_hydras.nfwfgaia]
    +n:154 [in gaia_hydras.T1Bridge]
    +n:154 [in hydras.Ackermann.codeList]
    +n:1547 [in gaia_hydras.nfwfgaia]
    +n:155 [in hydras.Ackermann.fol]
    +n:155 [in hydras.Gamma0.Gamma0]
    +n:155 [in hydras.Ackermann.codePA]
    +n:1554 [in gaia_hydras.nfwfgaia]
    +n:156 [in hydras.Ackermann.subAll]
    +n:156 [in hydras.Prelude.Iterates]
    +n:156 [in hydras.Epsilon0.Large_Sets]
    +n:156 [in hydras.Ackermann.codeList]
    +n:157 [in hydras.Ackermann.codeList]
    +n:1577 [in gaia_hydras.nfwfgaia]
    +n:158 [in hydras.Epsilon0.T1]
    +n:158 [in hydras.Ackermann.subAll]
    +n:158 [in hydras.Ackermann.LNT]
    +n:158 [in hydras.Ackermann.codeList]
    +n:1581 [in gaia_hydras.nfwfgaia]
    +n:159 [in hydras.Prelude.Iterates]
    +n:159 [in additions.fib]
    +n:159 [in hydras.Ackermann.codeList]
    +n:159 [in hydras.Gamma0.Gamma0]
    +n:1590 [in gaia_hydras.nfwfgaia]
    +n:16 [in hydras.Ackermann.folProof]
    +n:16 [in hydras.Schutte.Correctness_E0]
    +n:16 [in Goedel.PRrepresentable]
    +n:16 [in hydras.Prelude.More_Arith]
    +n:16 [in hydras.Ackermann.checkPrf]
    +n:16 [in hydras.Epsilon0.Hessenberg]
    +n:16 [in hydras.Ackermann.subProp]
    +n:16 [in hydras.Epsilon0.Large_Sets]
    +n:16 [in hydras.Schutte.AP]
    +n:16 [in hydras.solutions_exercises.MultisetWf]
    +N:16 [in hydras.Epsilon0.F_omega]
    +n:16 [in hydras.Hydra.Hydra_Termination]
    +n:16 [in hydras.Ackermann.wellFormed]
    +n:16 [in hydras.OrdinalNotations.ON_Finite]
    +n:16 [in additions.fib]
    +n:16 [in hydras.Ackermann.codeList]
    +n:16 [in Goedel.codeSysPrf]
    +n:16 [in hydras.Ackermann.codePA]
    +n:16 [in hydras.solutions_exercises.T1_ltNotWf]
    +n:160 [in hydras.Ackermann.subAll]
    +n:160 [in hydras.Ackermann.model]
    +n:160 [in hydras.Ackermann.codeList]
    +n:1604 [in gaia_hydras.nfwfgaia]
    +n:161 [in hydras.Epsilon0.T1]
    +n:161 [in additions.fib]
    +n:161 [in hydras.Ackermann.codeList]
    +n:1611 [in gaia_hydras.nfwfgaia]
    +n:162 [in hydras.Ackermann.subAll]
    +n:162 [in hydras.Prelude.MoreLists]
    +n:162 [in hydras.Ackermann.codeList]
    +n:163 [in hydras.Epsilon0.T1]
    +n:163 [in hydras.Epsilon0.F_alpha]
    +n:163 [in hydras.Ackermann.codeList]
    +n:163 [in hydras.Gamma0.Gamma0]
    +n:164 [in hydras.Ackermann.cPair]
    +n:164 [in hydras.Ackermann.codeList]
    +n:1653 [in gaia_hydras.nfwfgaia]
    +n:166 [in hydras.Ackermann.LNN]
    +n:166 [in hydras.Schutte.Schutte_basics]
    +n:167 [in hydras.Ackermann.subAll]
    +n:167 [in hydras.Schutte.Schutte_basics]
    +n:167 [in hydras.Ackermann.codeList]
    +n:167 [in hydras.Gamma0.Gamma0]
    +n:1677 [in gaia_hydras.nfwfgaia]
    +n:168 [in hydras.Epsilon0.T1]
    +n:168 [in hydras.Ackermann.subAll]
    +n:168 [in hydras.Epsilon0.F_alpha]
    +n:168 [in hydras.Ackermann.cPair]
    +n:168 [in hydras.Epsilon0.Paths]
    +n:168 [in gaia_hydras.nfwfgaia]
    +n:168 [in hydras.Ackermann.codePA]
    +n:1680 [in gaia_hydras.nfwfgaia]
    +n:1686 [in gaia_hydras.nfwfgaia]
    +n:17 [in hydras.Ackermann.subAll]
    +n:17 [in hydras.Prelude.More_Arith]
    +n:17 [in hydras.Ackermann.extEqualNat]
    +n:17 [in hydras.Hydra.O2H]
    +n:17 [in hydras.Ackermann.folLogic2]
    +n:17 [in hydras.MoreAck.AckNotPR]
    +n:17 [in hydras.Ackermann.codeSubFormula]
    +n:17 [in hydras.Ackermann.primRec]
    +n:17 [in hydras.Epsilon0.Canon]
    +n:17 [in hydras.Hydra.Hydra_Lemmas]
    +n:17 [in hydras.Prelude.MoreVectors]
    +n:170 [in hydras.Ackermann.subAll]
    +n:170 [in hydras.Ackermann.codeList]
    +n:171 [in hydras.Epsilon0.T1]
    +n:171 [in hydras.Epsilon0.F_alpha]
    +n:171 [in hydras.Gamma0.Gamma0]
    +n:171 [in gaia_hydras.nfwfgaia]
    +n:171 [in hydras.Ackermann.codePA]
    +n:1713 [in gaia_hydras.nfwfgaia]
    +n:1714 [in gaia_hydras.nfwfgaia]
    +n:172 [in hydras.Ackermann.subAll]
    +n:172 [in hydras.Ackermann.cPair]
    +n:173 [in hydras.Prelude.MoreLists]
    +n:173 [in hydras.Schutte.Schutte_basics]
    +n:173 [in hydras.Ackermann.codeList]
    +n:173 [in hydras.Epsilon0.Paths]
    +n:173 [in hydras.Gamma0.Gamma0]
    +n:174 [in hydras.Epsilon0.T1]
    +n:174 [in hydras.Ackermann.subAll]
    +n:174 [in hydras.Schutte.Schutte_basics]
    +n:175 [in gaia_hydras.T1Bridge]
    +n:176 [in hydras.Ackermann.subAll]
    +n:176 [in hydras.Prelude.MoreLists]
    +n:176 [in hydras.Ackermann.codeList]
    +n:177 [in hydras.Ackermann.model]
    +n:177 [in gaia_hydras.T1Bridge]
    +n:1775 [in gaia_hydras.nfwfgaia]
    +n:178 [in hydras.Gamma0.Gamma0]
    +n:1784 [in gaia_hydras.nfwfgaia]
    +n:1786 [in gaia_hydras.nfwfgaia]
    +n:179 [in hydras.Epsilon0.T1]
    +n:179 [in hydras.Ackermann.subAll]
    +n:179 [in hydras.Prelude.MoreLists]
    +n:179 [in additions.Euclidean_Chains]
    +n:179 [in hydras.Ackermann.codeList]
    +n:1794 [in gaia_hydras.nfwfgaia]
    +n:18 [in additions.Fib2]
    +n:18 [in additions.FirstSteps]
    +n:18 [in hydras.Prelude.Compat815]
    +n:18 [in Goedel.fixPoint]
    +n:18 [in hydras.Epsilon0.Large_Sets]
    +n:18 [in hydras.Schutte.AP]
    +n:18 [in hydras.Ackermann.NNtheory]
    +n:18 [in hydras.Ackermann.codeList]
    +n:18 [in hydras.solutions_exercises.F_3]
    +n:1801 [in gaia_hydras.nfwfgaia]
    +n:181 [in hydras.Gamma0.Gamma0]
    +n:182 [in hydras.Epsilon0.T1]
    +n:182 [in hydras.Ackermann.subAll]
    +n:182 [in hydras.Prelude.Iterates]
    +n:182 [in hydras.Ackermann.fol]
    +n:182 [in hydras.Ackermann.codeList]
    +n:1822 [in gaia_hydras.nfwfgaia]
    +n:1825 [in gaia_hydras.nfwfgaia]
    +n:1828 [in gaia_hydras.nfwfgaia]
    +n:183 [in gaia_hydras.T1Bridge]
    +n:183 [in hydras.Gamma0.Gamma0]
    +n:1831 [in gaia_hydras.nfwfgaia]
    +n:1834 [in gaia_hydras.nfwfgaia]
    +n:184 [in hydras.Ackermann.model]
    +n:184 [in hydras.Ackermann.wellFormed]
    +n:184 [in hydras.Ackermann.codeList]
    +n:1847 [in gaia_hydras.nfwfgaia]
    +n:1849 [in gaia_hydras.nfwfgaia]
    +n:185 [in hydras.Ackermann.subAll]
    +n:185 [in hydras.Epsilon0.F_alpha]
    +n:185 [in hydras.Gamma0.Gamma0]
    +n:185 [in gaia_hydras.nfwfgaia]
    +n:1851 [in gaia_hydras.nfwfgaia]
    +n:1853 [in gaia_hydras.nfwfgaia]
    +n:1854 [in gaia_hydras.nfwfgaia]
    +n:186 [in gaia_hydras.T1Bridge]
    +n:186 [in hydras.Ackermann.codeList]
    +n:1862 [in gaia_hydras.nfwfgaia]
    +n:1864 [in gaia_hydras.nfwfgaia]
    +n:1868 [in gaia_hydras.nfwfgaia]
    +n:187 [in hydras.Epsilon0.T1]
    +n:187 [in hydras.Gamma0.Gamma0]
    +n:187 [in gaia_hydras.nfwfgaia]
    +n:1874 [in gaia_hydras.nfwfgaia]
    +n:188 [in hydras.Ackermann.cPair]
    +n:188 [in hydras.Ackermann.fol]
    +n:188 [in hydras.Ackermann.codeList]
    +n:1880 [in gaia_hydras.nfwfgaia]
    +n:1883 [in gaia_hydras.nfwfgaia]
    +n:189 [in gaia_hydras.T1Bridge]
    +n:189 [in additions.Euclidean_Chains]
    +n:189 [in hydras.Gamma0.Gamma0]
    +n:189 [in gaia_hydras.nfwfgaia]
    +n:1893 [in gaia_hydras.nfwfgaia]
    +n:1897 [in gaia_hydras.nfwfgaia]
    +n:19 [in hydras.Schutte.Correctness_E0]
    +n:19 [in additions.Fib2]
    +n:19 [in hydras.Prelude.More_Arith]
    +n:19 [in hydras.Prelude.Iterates]
    +n:19 [in hydras.Ackermann.folLogic2]
    +n:19 [in additions.More_on_positive]
    +n:19 [in hydras.Ackermann.codeSubFormula]
    +n:19 [in hydras.Epsilon0.F_omega]
    +n:19 [in gaia_hydras.ON_gfinite]
    +n:19 [in hydras.Epsilon0.Canon]
    +n:19 [in hydras.Ackermann.NNtheory]
    +n:19 [in hydras.Gamma0.Gamma0]
    +n:19 [in hydras.Ackermann.codePA]
    +n:19 [in hydras.Prelude.MoreVectors]
    +n:190 [in hydras.Ackermann.codeList]
    +n:1901 [in gaia_hydras.nfwfgaia]
    +n:1906 [in gaia_hydras.nfwfgaia]
    +n:1910 [in gaia_hydras.nfwfgaia]
    +n:1915 [in gaia_hydras.nfwfgaia]
    +n:1919 [in gaia_hydras.nfwfgaia]
    +n:192 [in hydras.Ackermann.codeList]
    +n:1925 [in gaia_hydras.nfwfgaia]
    +n:193 [in gaia_hydras.nfwfgaia]
    +n:1931 [in gaia_hydras.nfwfgaia]
    +n:1936 [in gaia_hydras.nfwfgaia]
    +n:194 [in hydras.Ackermann.wellFormed]
    +n:194 [in hydras.Ackermann.codeList]
    +n:1941 [in gaia_hydras.nfwfgaia]
    +n:1946 [in gaia_hydras.nfwfgaia]
    +n:195 [in hydras.Ackermann.codeList]
    +n:195 [in additions.Addition_Chains]
    +n:1951 [in gaia_hydras.nfwfgaia]
    +n:1957 [in gaia_hydras.nfwfgaia]
    +n:196 [in hydras.Ackermann.codeList]
    +n:1964 [in gaia_hydras.nfwfgaia]
    +n:1969 [in gaia_hydras.nfwfgaia]
    +n:197 [in hydras.Ackermann.wellFormed]
    +n:197 [in gaia_hydras.nfwfgaia]
    +n:1975 [in gaia_hydras.nfwfgaia]
    +n:198 [in hydras.Epsilon0.T1]
    +n:198 [in hydras.Ackermann.codeList]
    +n:1981 [in gaia_hydras.nfwfgaia]
    +n:1986 [in gaia_hydras.nfwfgaia]
    +n:1992 [in gaia_hydras.nfwfgaia]
    +n:1997 [in gaia_hydras.nfwfgaia]
    +n:2 [in hydras.Ackermann.folProof]
    +n:2 [in hydras.Prelude.MoreLists]
    +n:2 [in hydras.MoreAck.expressibleExamples]
    +n:2 [in additions.Compatibility]
    +n:2 [in hydras.Prelude.Compat815]
    +n:2 [in hydras.Prelude.First_toggle]
    +n:2 [in hydras.Ackermann.LNN2LNT]
    +n:2 [in hydras.MoreAck.Iterate_compat]
    +n:2 [in hydras.MoreAck.Ack]
    +n:2 [in hydras.solutions_exercises.MorePRExamples]
    +n:2 [in additions.Naive]
    +n:2 [in gaia_hydras.nfwfgaia]
    +n:2 [in additions.Demo]
    +n:2 [in hydras.Prelude.MoreVectors]
    +n:20 [in Goedel.PRrepresentable]
    +n:20 [in additions.Fib2]
    +n:20 [in hydras.Prelude.Compat815]
    +n:20 [in hydras.Ackermann.LNN2LNT]
    +n:20 [in gaia_hydras.GCanon]
    +n:20 [in hydras.Schutte.GRelations]
    +n:20 [in hydras.Epsilon0.Large_Sets]
    +n:20 [in hydras.Prelude.Fuel]
    +n:20 [in hydras.Ackermann.codeList]
    +n:20 [in hydras.Schutte.Countable]
    +n:20 [in hydras.Ackermann.expressible]
    +n:200 [in hydras.Epsilon0.T1]
    +n:200 [in hydras.Ackermann.wellFormed]
    +n:200 [in hydras.Ackermann.codeList]
    +n:2003 [in gaia_hydras.nfwfgaia]
    +n:201 [in hydras.Epsilon0.T1]
    +n:201 [in hydras.Epsilon0.Large_Sets]
    +n:2019 [in gaia_hydras.nfwfgaia]
    +n:202 [in hydras.Ackermann.codeList]
    +n:2024 [in gaia_hydras.nfwfgaia]
    +n:2028 [in gaia_hydras.nfwfgaia]
    +n:203 [in hydras.Ackermann.model]
    +n:203 [in hydras.Epsilon0.Large_Sets]
    +n:203 [in hydras.Ackermann.cPair]
    +n:203 [in gaia_hydras.nfwfgaia]
    +n:204 [in hydras.Epsilon0.T1]
    +n:204 [in hydras.Ackermann.codeList]
    +n:205 [in additions.Euclidean_Chains]
    +n:205 [in gaia_hydras.nfwfgaia]
    +n:206 [in hydras.Epsilon0.T1]
    +n:206 [in hydras.Epsilon0.Large_Sets]
    +n:206 [in hydras.Ackermann.codeList]
    +n:207 [in hydras.Ackermann.cPair]
    +n:208 [in hydras.Epsilon0.Large_Sets]
    +n:208 [in hydras.Ackermann.codeList]
    +n:209 [in hydras.Epsilon0.Large_Sets]
    +n:209 [in hydras.Ackermann.codeList]
    +n:209 [in additions.Addition_Chains]
    +n:21 [in Goedel.fixPoint]
    +N:21 [in hydras.MoreAck.AckNotPR]
    +n:21 [in hydras.Ackermann.codeSubFormula]
    +n:21 [in hydras.solutions_exercises.MultisetWf]
    +n:21 [in hydras.Ackermann.code]
    +n:21 [in hydras.Ackermann.primRec]
    +n:21 [in gaia_hydras.ON_gfinite]
    +n:21 [in hydras.OrdinalNotations.ON_Finite]
    +n:21 [in hydras.Schutte.Countable]
    +n:210 [in hydras.Ackermann.subAll]
    +n:210 [in hydras.Ackermann.model]
    +n:210 [in hydras.Epsilon0.Large_Sets]
    +n:210 [in hydras.Ackermann.cPair]
    +n:211 [in hydras.Ackermann.subAll]
    +n:211 [in hydras.Prelude.MoreLists]
    +n:211 [in additions.Addition_Chains]
    +n:211 [in hydras.Epsilon0.Paths]
    +n:212 [in hydras.rpo.term]
    +n:212 [in hydras.Epsilon0.Large_Sets]
    +n:212 [in hydras.Ackermann.cPair]
    +n:212 [in additions.Euclidean_Chains]
    +n:212 [in hydras.Ackermann.codeList]
    +n:213 [in hydras.Prelude.MoreLists]
    +n:214 [in hydras.Epsilon0.Large_Sets]
    +n:214 [in hydras.Ackermann.cPair]
    +n:215 [in hydras.Ackermann.subAll]
    +n:216 [in hydras.Epsilon0.T1]
    +n:216 [in hydras.Ackermann.subAll]
    +n:216 [in hydras.Epsilon0.Large_Sets]
    +n:217 [in hydras.Prelude.MoreLists]
    +n:217 [in hydras.Ackermann.codeList]
    +n:218 [in hydras.Epsilon0.Paths]
    +n:219 [in additions.Euclidean_Chains]
    +n:219 [in hydras.Gamma0.Gamma0]
    +n:219 [in gaia_hydras.nfwfgaia]
    +n:22 [in hydras.Ackermann.subAll]
    +n:22 [in hydras.Ackermann.codeFreeVar]
    +n:22 [in hydras.Hydra.O2H]
    +n:22 [in hydras.Prelude.Compat815]
    +n:22 [in hydras.Ackermann.LNN2LNT]
    +n:22 [in additions.Pow_variant]
    +n:22 [in additions.Pow]
    +n:22 [in hydras.Epsilon0.Hessenberg]
    +n:22 [in additions.More_on_positive]
    +n:22 [in hydras.MoreAck.Ack]
    +n:22 [in hydras.solutions_exercises.FibonacciPR]
    +n:22 [in hydras.Epsilon0.Canon]
    +n:22 [in hydras.OrdinalNotations.ON_Finite]
    +n:22 [in hydras.Ackermann.codeList]
    +n:22 [in hydras.MoreAck.PrimRecExamples]
    +n:220 [in hydras.Epsilon0.T1]
    +n:220 [in hydras.Ackermann.subAll]
    +n:220 [in hydras.Prelude.MoreLists]
    +n:220 [in hydras.Ackermann.codeList]
    +n:221 [in hydras.Ackermann.subAll]
    +n:222 [in gaia_hydras.nfwfgaia]
    +n:224 [in hydras.Epsilon0.Paths]
    +n:225 [in hydras.Ackermann.subAll]
    +n:225 [in hydras.Ackermann.codeList]
    +n:225 [in hydras.Gamma0.Gamma0]
    +n:226 [in hydras.Epsilon0.T1]
    +n:227 [in additions.AM]
    +n:228 [in hydras.Ackermann.codeList]
    +n:228 [in gaia_hydras.nfwfgaia]
    +n:229 [in hydras.Epsilon0.Paths]
    +n:229 [in hydras.Gamma0.Gamma0]
    +n:23 [in hydras.Schutte.Correctness_E0]
    +n:23 [in hydras.Prelude.Iterates]
    +n:23 [in gaia_hydras.GF_alpha]
    +n:23 [in hydras.Epsilon0.Epsilon0rpo]
    +n:23 [in additions.More_on_positive]
    +n:23 [in hydras.Schutte.GRelations]
    +n:23 [in hydras.Ackermann.codeSubFormula]
    +n:23 [in hydras.Epsilon0.Large_Sets]
    +n:23 [in hydras.Prelude.Fuel]
    +n:23 [in hydras.solutions_exercises.FibonacciPR]
    +n:23 [in gaia_hydras.ON_gfinite]
    +n:23 [in hydras.OrdinalNotations.ON_Finite]
    +n:23 [in hydras.Epsilon0.E0]
    +n:23 [in hydras.solutions_exercises.F_3]
    +n:230 [in hydras.Ackermann.subAll]
    +n:230 [in hydras.Prelude.Iterates]
    +n:230 [in additions.Addition_Chains]
    +n:231 [in hydras.Epsilon0.T1]
    +n:231 [in hydras.Ackermann.codeList]
    +n:232 [in hydras.Prelude.Iterates]
    +n:232 [in hydras.Epsilon0.Paths]
    +n:232 [in hydras.Ackermann.codePA]
    +n:233 [in hydras.Gamma0.Gamma0]
    +n:233 [in hydras.Ackermann.codePA]
    +n:234 [in hydras.Ackermann.codeList]
    +n:235 [in hydras.Epsilon0.T1]
    +n:235 [in hydras.Prelude.Iterates]
    +n:236 [in additions.AM]
    +n:237 [in hydras.Ackermann.codeList]
    +n:238 [in hydras.Epsilon0.T1]
    +n:238 [in hydras.Epsilon0.Paths]
    +n:238 [in gaia_hydras.nfwfgaia]
    +n:239 [in hydras.Prelude.Iterates]
    +n:24 [in Goedel.PRrepresentable]
    +n:24 [in hydras.Ackermann.extEqualNat]
    +n:24 [in gaia_hydras.GF_alpha]
    +n:24 [in hydras.Prelude.Compat815]
    +n:24 [in hydras.Ackermann.LNN2LNT]
    +n:24 [in hydras.MoreAck.AckNotPR]
    +n:24 [in hydras.Prelude.Fuel]
    +n:24 [in hydras.MoreAck.Ack]
    +n:24 [in hydras.OrdinalNotations.ON_Finite]
    +n:24 [in hydras.Ackermann.codeList]
    +n:24 [in hydras.Ackermann.folLogic3]
    +n:24 [in hydras.Ackermann.Languages]
    +n:24 [in hydras.Ackermann.expressible]
    +n:24 [in hydras.Prelude.MoreVectors]
    +n:240 [in hydras.Ackermann.codeList]
    +n:242 [in hydras.Prelude.Iterates]
    +n:243 [in additions.AM]
    +n:243 [in hydras.Ackermann.codeList]
    +n:245 [in hydras.Ackermann.cPair]
    +n:246 [in hydras.Prelude.Iterates]
    +n:246 [in hydras.Ackermann.codeList]
    +n:249 [in hydras.Epsilon0.T1]
    +n:249 [in hydras.Ackermann.codeList]
    +n:25 [in additions.Fib2]
    +n:25 [in additions.Compatibility]
    +n:25 [in additions.More_on_positive]
    +n:25 [in hydras.Schutte.GRelations]
    +n:25 [in hydras.Ackermann.codeSubFormula]
    +n:25 [in hydras.solutions_exercises.MultisetWf]
    +n:25 [in hydras.Hydra.Epsilon0_Needed_Std]
    +n:25 [in hydras.Epsilon0.Canon]
    +n:25 [in hydras.OrdinalNotations.ON_Finite]
    +n:25 [in gaia_hydras.onType]
    +n:25 [in hydras.solutions_exercises.F_3]
    +n:25 [in hydras.Gamma0.Gamma0]
    +n:250 [in hydras.Ackermann.subAll]
    +n:250 [in hydras.Prelude.Iterates]
    +n:251 [in hydras.Epsilon0.T1]
    +n:252 [in hydras.Ackermann.codeList]
    +n:254 [in hydras.Epsilon0.T1]
    +n:254 [in hydras.Ackermann.subAll]
    +n:254 [in gaia_hydras.nfwfgaia]
    +n:255 [in hydras.Ackermann.codeList]
    +n:256 [in gaia_hydras.nfwfgaia]
    +n:258 [in hydras.Epsilon0.T1]
    +n:258 [in hydras.Ackermann.codeList]
    +n:258 [in hydras.rpo.rpo]
    +n:26 [in hydras.Gamma0.T2]
    +n:26 [in hydras.Prelude.Iterates]
    +n:26 [in hydras.Ackermann.extEqualNat]
    +n:26 [in hydras.Hydra.O2H]
    +n:26 [in hydras.Epsilon0.Epsilon0rpo]
    +n:26 [in hydras.Prelude.Compat815]
    +n:26 [in hydras.Ackermann.codeSubTerm]
    +n:26 [in hydras.solutions_exercises.MultisetWf]
    +n:26 [in hydras.Prelude.Fuel]
    +n:26 [in hydras.Hydra.Hydra_Termination]
    +n:26 [in hydras.Ackermann.codeList]
    +n:26 [in hydras.MoreAck.FolExamples]
    +n:261 [in hydras.Epsilon0.T1]
    +n:261 [in hydras.Ackermann.codeList]
    +n:261 [in gaia_hydras.nfwfgaia]
    +n:263 [in hydras.Ackermann.codeList]
    +n:264 [in hydras.Epsilon0.T1]
    +n:264 [in hydras.Gamma0.Gamma0]
    +n:264 [in gaia_hydras.nfwfgaia]
    +n:265 [in hydras.Ackermann.codeList]
    +n:266 [in gaia_hydras.nfwfgaia]
    +n:267 [in hydras.Ackermann.codeList]
    +n:267 [in hydras.Gamma0.Gamma0]
    +n:268 [in hydras.Epsilon0.T1]
    +n:268 [in gaia_hydras.nfwfgaia]
    +n:269 [in hydras.Ackermann.codeList]
    +n:27 [in hydras.Ackermann.subAll]
    +n:27 [in additions.Compatibility]
    +n:27 [in hydras.MoreAck.AckNotPR]
    +n:27 [in hydras.Ackermann.codeSubFormula]
    +n:27 [in hydras.MoreAck.Ack]
    +n:27 [in hydras.Hydra.Epsilon0_Needed_Std]
    +n:27 [in hydras.Ackermann.wellFormed]
    +n:27 [in gaia_hydras.nfwfgaia]
    +n:270 [in hydras.Epsilon0.Paths]
    +n:271 [in hydras.Ackermann.codeList]
    +n:271 [in hydras.Gamma0.Gamma0]
    +n:272 [in hydras.Epsilon0.Paths]
    +n:273 [in hydras.Ackermann.codeList]
    +n:274 [in hydras.Ackermann.codeList]
    +n:275 [in hydras.Ackermann.codeList]
    +n:275 [in hydras.Epsilon0.Paths]
    +n:277 [in hydras.Ackermann.codeList]
    +n:278 [in hydras.Epsilon0.T1]
    +n:278 [in Goedel.PRrepresentable]
    +n:278 [in hydras.Epsilon0.Paths]
    +n:279 [in hydras.Epsilon0.T1]
    +n:279 [in hydras.Ackermann.codeList]
    +n:279 [in additions.Addition_Chains]
    +n:28 [in hydras.Schutte.Correctness_E0]
    +n:28 [in hydras.Prelude.Iterates]
    +n:28 [in hydras.Prelude.Compat815]
    +n:28 [in hydras.Ackermann.codeSubTerm]
    +n:28 [in hydras.Epsilon0.Hessenberg]
    +n:28 [in gaia_hydras.GCanon]
    +n:28 [in hydras.Schutte.AP]
    +n:28 [in hydras.Prelude.Fuel]
    +n:28 [in hydras.Ackermann.codeList]
    +n:28 [in hydras.solutions_exercises.F_3]
    +n:28 [in hydras.Hydra.Hydra_Lemmas]
    +n:28 [in hydras.MoreAck.PrimRecExamples]
    +n:28 [in hydras.Ackermann.expressible]
    +n:28 [in hydras.Prelude.MoreVectors]
    +n:281 [in hydras.Epsilon0.T1]
    +n:281 [in Goedel.PRrepresentable]
    +n:281 [in hydras.Ackermann.codeList]
    +n:282 [in hydras.Ackermann.cPair]
    +n:282 [in additions.Addition_Chains]
    +n:283 [in hydras.Epsilon0.T1]
    +n:283 [in hydras.Ackermann.codeList]
    +n:284 [in Goedel.PRrepresentable]
    +n:284 [in hydras.Ackermann.cPair]
    +n:285 [in hydras.Ackermann.codeList]
    +n:285 [in hydras.Gamma0.Gamma0]
    +n:286 [in hydras.Ackermann.cPair]
    +n:287 [in hydras.Ackermann.codeList]
    +n:288 [in hydras.Ackermann.cPair]
    +n:288 [in hydras.Ackermann.codeList]
    +n:289 [in hydras.Ackermann.codeList]
    +n:289 [in hydras.Epsilon0.Paths]
    +n:289 [in hydras.Gamma0.Gamma0]
    +n:29 [in hydras.Ackermann.extEqualNat]
    +n:29 [in gaia_hydras.GF_alpha]
    +n:29 [in additions.Compatibility]
    +n:29 [in hydras.Ackermann.LNN2LNT]
    +n:29 [in hydras.Ackermann.subProp]
    +n:29 [in hydras.Schutte.GRelations]
    +n:29 [in hydras.Ackermann.codeSubFormula]
    +n:29 [in hydras.Schutte.AP]
    +n:29 [in hydras.Prelude.Fuel]
    +n:29 [in hydras.Ackermann.code]
    +n:29 [in hydras.Hydra.Hydra_Termination]
    +n:29 [in additions.Euclidean_Chains]
    +n:29 [in hydras.Ackermann.wellFormed]
    +n:29 [in Goedel.rosser]
    +n:290 [in Goedel.PRrepresentable]
    +n:290 [in hydras.Ackermann.cPair]
    +n:290 [in hydras.Ackermann.codeList]
    +n:290 [in gaia_hydras.nfwfgaia]
    +n:291 [in hydras.Ackermann.codeList]
    +n:292 [in hydras.Ackermann.cPair]
    +n:292 [in hydras.Ackermann.codeList]
    +n:292 [in hydras.Epsilon0.Paths]
    +n:292 [in gaia_hydras.nfwfgaia]
    +n:293 [in hydras.Ackermann.codeList]
    +n:293 [in hydras.Gamma0.Gamma0]
    +n:294 [in hydras.Ackermann.subAll]
    +n:294 [in hydras.Ackermann.cPair]
    +n:294 [in hydras.Ackermann.codeList]
    +n:295 [in hydras.Epsilon0.Paths]
    +n:296 [in Goedel.PRrepresentable]
    +n:296 [in hydras.Ackermann.cPair]
    +n:297 [in hydras.Gamma0.Gamma0]
    +n:298 [in hydras.Ackermann.cPair]
    +n:3 [in hydras.Ackermann.subAll]
    +n:3 [in hydras.Prelude.Iterates]
    +n:3 [in hydras.MoreAck.expressibleExamples]
    +n:3 [in hydras.Ackermann.model]
    +n:3 [in Goedel.fixPoint]
    +n:3 [in hydras.Ackermann.folProp]
    +n:3 [in additions.More_on_positive]
    +n:3 [in hydras.Epsilon0.F_omega]
    +n:3 [in hydras.OrdinalNotations.ON_Finite]
    +n:3 [in hydras.solutions_exercises.F_3]
    +n:3 [in hydras.Gamma0.Gamma0]
    +n:3 [in hydras.Schutte.Addition]
    +n:3 [in gaia_hydras.GHessenberg]
    +n:30 [in hydras.Prelude.Compat815]
    +n:30 [in hydras.MoreAck.AckNotPR]
    +n:30 [in hydras.Ackermann.codeList]
    +n:30 [in gaia_hydras.nfwfgaia]
    +n:30 [in hydras.Ackermann.Languages]
    +n:30 [in hydras.Prelude.MoreVectors]
    +n:300 [in hydras.Ackermann.cPair]
    +n:302 [in Goedel.PRrepresentable]
    +n:302 [in hydras.Ackermann.cPair]
    +n:303 [in Goedel.PRrepresentable]
    +n:303 [in hydras.Epsilon0.Paths]
    +n:304 [in Goedel.PRrepresentable]
    +n:304 [in hydras.Ackermann.cPair]
    +n:304 [in hydras.Gamma0.Gamma0]
    +n:305 [in Goedel.PRrepresentable]
    +n:306 [in hydras.Ackermann.cPair]
    +n:306 [in hydras.Epsilon0.Paths]
    +n:308 [in hydras.Ackermann.cPair]
    +n:308 [in hydras.Gamma0.Gamma0]
    +n:31 [in hydras.Epsilon0.T1]
    +n:31 [in hydras.Hydra.O2H]
    +n:31 [in gaia_hydras.GF_alpha]
    +n:31 [in additions.Compatibility]
    +n:31 [in hydras.Ackermann.codeSubFormula]
    +n:31 [in hydras.Ackermann.primRec]
    +n:31 [in additions.Naive]
    +n:31 [in hydras.Ackermann.wellFormed]
    +n:31 [in Goedel.rosser]
    +n:31 [in hydras.Gamma0.Gamma0]
    +n:31 [in gaia_hydras.nfwfgaia]
    +n:310 [in hydras.Ackermann.cPair]
    +n:312 [in hydras.Ackermann.cPair]
    +n:312 [in hydras.Epsilon0.Paths]
    +n:314 [in hydras.Ackermann.subAll]
    +n:314 [in hydras.Ackermann.cPair]
    +n:316 [in hydras.Ackermann.cPair]
    +n:318 [in hydras.Ackermann.cPair]
    +n:319 [in hydras.Epsilon0.T1]
    +n:32 [in hydras.rpo.term]
    +n:32 [in hydras.Prelude.Compat815]
    +n:32 [in hydras.Ackermann.code]
    +n:32 [in hydras.MoreAck.Ack]
    +n:32 [in hydras.Ackermann.fol]
    +n:32 [in hydras.Ackermann.codeList]
    +n:32 [in hydras.Hydra.Hydra_Lemmas]
    +n:32 [in gaia_hydras.nfwfgaia]
    +n:320 [in hydras.Ackermann.cPair]
    +n:320 [in hydras.Epsilon0.Paths]
    +n:321 [in gaia_hydras.nfwfgaia]
    +n:322 [in hydras.Ackermann.cPair]
    +n:322 [in hydras.Epsilon0.Paths]
    +n:323 [in hydras.Epsilon0.T1]
    +n:323 [in gaia_hydras.nfwfgaia]
    +n:324 [in hydras.Ackermann.cPair]
    +n:325 [in Goedel.PRrepresentable]
    +n:325 [in gaia_hydras.nfwfgaia]
    +n:326 [in hydras.Ackermann.cPair]
    +n:326 [in hydras.Epsilon0.Paths]
    +n:326 [in gaia_hydras.nfwfgaia]
    +n:327 [in hydras.Ackermann.cPair]
    +n:328 [in hydras.Epsilon0.T1]
    +n:328 [in hydras.Ackermann.cPair]
    +n:328 [in hydras.Epsilon0.Paths]
    +n:329 [in hydras.Ackermann.cPair]
    +n:33 [in additions.Compatibility]
    +n:33 [in additions.FirstSteps]
    +n:33 [in hydras.Prelude.Compat815]
    +n:33 [in hydras.Epsilon0.Hessenberg]
    +n:33 [in hydras.Ackermann.codeSubFormula]
    +n:33 [in hydras.Hydra.Hydra_Termination]
    +n:33 [in additions.Euclidean_Chains]
    +n:33 [in hydras.Ackermann.codeList]
    +n:330 [in Goedel.PRrepresentable]
    +n:330 [in hydras.Ackermann.cPair]
    +n:331 [in hydras.Ackermann.cPair]
    +n:332 [in hydras.Ackermann.cPair]
    +n:333 [in hydras.Epsilon0.T1]
    +n:333 [in hydras.Ackermann.cPair]
    +n:333 [in additions.Euclidean_Chains]
    +n:334 [in hydras.Ackermann.cPair]
    +n:335 [in Goedel.PRrepresentable]
    +n:336 [in hydras.Ackermann.cPair]
    +n:34 [in hydras.Prelude.Iterates]
    +n:34 [in hydras.Prelude.Compat815]
    +n:34 [in gaia_hydras.GCanon]
    +n:34 [in hydras.MoreAck.AckNotPR]
    +n:34 [in hydras.Ackermann.subProp]
    +n:34 [in hydras.Schutte.AP]
    +n:34 [in hydras.Ackermann.fol]
    +n:34 [in hydras.Ackermann.codeList]
    +n:342 [in hydras.Epsilon0.Paths]
    +n:343 [in hydras.Ackermann.cPair]
    +n:344 [in hydras.Ackermann.cPair]
    +n:345 [in hydras.Epsilon0.T1]
    +n:345 [in hydras.Ackermann.cPair]
    +n:346 [in hydras.Epsilon0.Paths]
    +n:35 [in hydras.Ackermann.codeSubFormula]
    +n:35 [in hydras.Ackermann.code]
    +n:35 [in hydras.Ackermann.codeList]
    +n:35 [in Goedel.rosser]
    +n:35 [in hydras.Ackermann.Languages]
    +n:350 [in hydras.Epsilon0.T1]
    +n:350 [in hydras.Epsilon0.Paths]
    +n:353 [in hydras.Epsilon0.T1]
    +n:354 [in hydras.Epsilon0.Paths]
    +n:355 [in hydras.Epsilon0.Paths]
    +n:356 [in hydras.Epsilon0.T1]
    +n:359 [in hydras.Epsilon0.Paths]
    +n:36 [in hydras.Ackermann.codeSubTerm]
    +n:36 [in hydras.Ackermann.LNN2LNT]
    +n:36 [in hydras.Ackermann.codeList]
    +n:36 [in hydras.Ackermann.expressible]
    +n:363 [in hydras.Epsilon0.T1]
    +n:363 [in gaia_hydras.nfwfgaia]
    +n:364 [in hydras.Ackermann.subAll]
    +n:367 [in hydras.Ackermann.subAll]
    +n:37 [in hydras.Prelude.Iterates]
    +n:37 [in additions.Compatibility]
    +n:37 [in hydras.Ackermann.codeSubFormula]
    +n:37 [in hydras.Schutte.AP]
    +n:37 [in hydras.Ackermann.fol]
    +n:37 [in hydras.Epsilon0.Canon]
    +n:37 [in hydras.Ackermann.codeList]
    +n:37 [in hydras.Hydra.Hydra_Definitions]
    +n:37 [in hydras.Prelude.MoreVectors]
    +n:370 [in Goedel.PRrepresentable]
    +n:371 [in Goedel.PRrepresentable]
    +n:376 [in hydras.Ackermann.subAll]
    +n:377 [in hydras.Epsilon0.T1]
    +n:379 [in hydras.Ackermann.subAll]
    +n:38 [in additions.FirstSteps]
    +n:38 [in hydras.Ackermann.LNN2LNT]
    +n:38 [in gaia_hydras.GCanon]
    +n:38 [in hydras.Ackermann.codeSubFormula]
    +n:38 [in hydras.Epsilon0.F_omega]
    +n:38 [in hydras.Ackermann.codeList]
    +n:38 [in hydras.Ackermann.folLogic3]
    +n:38 [in hydras.Ackermann.Languages]
    +n:382 [in hydras.Epsilon0.T1]
    +n:384 [in gaia_hydras.nfwfgaia]
    +n:386 [in hydras.Epsilon0.T1]
    +n:386 [in gaia_hydras.nfwfgaia]
    +n:387 [in hydras.Epsilon0.Paths]
    +n:388 [in gaia_hydras.nfwfgaia]
    +n:39 [in hydras.Prelude.More_Arith]
    +n:39 [in hydras.Epsilon0.Hessenberg]
    +n:39 [in hydras.Ackermann.subProp]
    +n:39 [in hydras.Ackermann.codeSubFormula]
    +n:39 [in gaia_hydras.T1Bridge]
    +n:39 [in additions.Naive]
    +n:39 [in hydras.Epsilon0.Canon]
    +n:39 [in additions.fib]
    +n:39 [in hydras.Ackermann.codeList]
    +n:39 [in hydras.Ackermann.folLogic3]
    +n:39 [in hydras.Ackermann.expressible]
    +n:391 [in hydras.Epsilon0.T1]
    +n:392 [in hydras.Epsilon0.Paths]
    +n:394 [in hydras.Epsilon0.T1]
    +n:394 [in hydras.Epsilon0.Paths]
    +n:394 [in gaia_hydras.nfwfgaia]
    +n:397 [in hydras.Epsilon0.Paths]
    +n:399 [in hydras.Epsilon0.T1]
    +n:4 [in hydras.Epsilon0.T1]
    +n:4 [in hydras.Schutte.Correctness_E0]
    +n:4 [in hydras.Prelude.More_Arith]
    +n:4 [in hydras.Ackermann.extEqualNat]
    +n:4 [in gaia_hydras.GF_alpha]
    +n:4 [in hydras.MoreAck.expressibleExamples]
    +n:4 [in additions.Compatibility]
    +n:4 [in hydras.Prelude.Compat815]
    +n:4 [in hydras.Prelude.First_toggle]
    +n:4 [in gaia_hydras.GPaths]
    +n:4 [in hydras.Ackermann.PAtheory]
    +n:4 [in hydras.Prelude.Fuel]
    +n:4 [in hydras.Ackermann.cPair]
    +n:4 [in gaia_hydras.ON_gfinite]
    +n:4 [in additions.Monoid_instances]
    +n:4 [in additions.fib]
    +n:4 [in hydras.Ackermann.codeList]
    +n:4 [in hydras.Prelude.LibHyps_Experiments]
    +n:4 [in hydras.solutions_exercises.F_3]
    +n:4 [in hydras.Ackermann.codeNatToTerm]
    +n:4 [in gaia_hydras.nfwfgaia]
    +n:4 [in hydras.Ackermann.expressible]
    +n:40 [in hydras.Prelude.Iterates]
    +n:40 [in hydras.Epsilon0.Epsilon0rpo]
    +n:40 [in hydras.Ackermann.LNN2LNT]
    +n:40 [in hydras.Ackermann.model]
    +n:40 [in hydras.MoreAck.AckNotPR]
    +n:40 [in hydras.Ackermann.codeSubFormula]
    +n:40 [in hydras.Prelude.Fuel]
    +n:40 [in hydras.Ackermann.fol]
    +n:40 [in hydras.Ackermann.codeList]
    +n:40 [in hydras.Ackermann.folLogic3]
    +n:40 [in Goedel.rosser]
    +n:40 [in hydras.Ackermann.Languages]
    +n:41 [in hydras.Prelude.More_Arith]
    +n:41 [in hydras.Ackermann.codeSubFormula]
    +n:41 [in additions.Naive]
    +n:41 [in hydras.Ackermann.wellFormed]
    +n:41 [in gaia_hydras.onType]
    +n:41 [in hydras.Ackermann.folLogic3]
    +n:41 [in hydras.rpo.list_permut]
    +n:41 [in gaia_hydras.nfwfgaia]
    +n:41 [in hydras.MoreAck.PrimRecExamples]
    +n:416 [in hydras.Epsilon0.T1]
    +n:419 [in hydras.Ackermann.folProp]
    +n:42 [in gaia_hydras.GCanon]
    +n:42 [in hydras.Epsilon0.Large_Sets]
    +n:42 [in hydras.solutions_exercises.MultisetWf]
    +n:42 [in hydras.Ackermann.primRec]
    +n:42 [in hydras.Hydra.Hydra_Termination]
    +n:42 [in hydras.rpo.list_permut]
    +n:42 [in hydras.Hydra.Hydra_Definitions]
    +n:42 [in hydras.Prelude.MoreVectors]
    +n:421 [in hydras.Ackermann.folProp]
    +n:423 [in hydras.Ackermann.folProp]
    +n:423 [in gaia_hydras.nfwfgaia]
    +n:426 [in hydras.Epsilon0.T1]
    +n:427 [in gaia_hydras.nfwfgaia]
    +n:43 [in hydras.Ackermann.subAll]
    +n:43 [in additions.Compatibility]
    +n:43 [in hydras.Epsilon0.Epsilon0rpo]
    +n:43 [in hydras.Ackermann.codeSubFormula]
    +n:43 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +n:43 [in hydras.Prelude.Fuel]
    +n:43 [in hydras.Epsilon0.Canon]
    +n:43 [in hydras.Epsilon0.E0]
    +n:43 [in gaia_hydras.nfwfgaia]
    +n:43 [in hydras.MoreAck.PrimRecExamples]
    +n:43 [in hydras.Ackermann.expressible]
    +n:431 [in hydras.Ackermann.fol]
    +n:431 [in hydras.Gamma0.Gamma0]
    +n:432 [in hydras.Epsilon0.T1]
    +n:433 [in hydras.Ackermann.primRec]
    +n:433 [in hydras.Ackermann.fol]
    +n:433 [in hydras.Gamma0.Gamma0]
    +n:437 [in hydras.Epsilon0.T1]
    +n:44 [in hydras.Prelude.More_Arith]
    +n:44 [in hydras.Hydra.O2H]
    +n:44 [in additions.FirstSteps]
    +n:44 [in hydras.MoreAck.AckNotPR]
    +n:44 [in hydras.Prelude.Fuel]
    +n:44 [in additions.fib]
    +n:44 [in hydras.MoreAck.PrimRecExamples]
    +n:440 [in gaia_hydras.nfwfgaia]
    +n:441 [in hydras.Ackermann.primRec]
    +n:442 [in hydras.Ackermann.primRec]
    +n:444 [in Goedel.PRrepresentable]
    +n:446 [in Goedel.PRrepresentable]
    +n:449 [in hydras.Ackermann.primRec]
    +n:45 [in hydras.Schutte.Correctness_E0]
    +n:45 [in additions.FirstSteps]
    +n:45 [in hydras.Epsilon0.F_alpha]
    +n:45 [in hydras.Ackermann.codeSubFormula]
    +n:45 [in hydras.solutions_exercises.MultisetWf]
    +n:45 [in hydras.Ackermann.codeList]
    +n:454 [in hydras.Epsilon0.T1]
    +n:454 [in hydras.Ackermann.primRec]
    +n:455 [in Goedel.PRrepresentable]
    +n:455 [in hydras.Ackermann.primRec]
    +n:457 [in Goedel.PRrepresentable]
    +n:46 [in hydras.Epsilon0.Epsilon0rpo]
    +n:46 [in hydras.Prelude.Fuel]
    +n:46 [in hydras.OrdinalNotations.OmegaOmega]
    +n:46 [in hydras.Ackermann.wellFormed]
    +n:46 [in hydras.Hydra.Hydra_Lemmas]
    +n:462 [in hydras.Ackermann.primRec]
    +n:465 [in Goedel.PRrepresentable]
    +n:467 [in hydras.Ackermann.primRec]
    +n:47 [in hydras.Schutte.Correctness_E0]
    +n:47 [in additions.FirstSteps]
    +n:47 [in gaia_hydras.GCanon]
    +n:47 [in hydras.Ackermann.codeSubFormula]
    +n:47 [in hydras.Ackermann.folLogic3]
    +n:47 [in hydras.Ackermann.expressible]
    +n:470 [in additions.Euclidean_Chains]
    +n:470 [in hydras.Gamma0.Gamma0]
    +n:471 [in hydras.Ackermann.primRec]
    +n:472 [in hydras.Epsilon0.Paths]
    +n:473 [in Goedel.PRrepresentable]
    +n:474 [in additions.Euclidean_Chains]
    +n:475 [in hydras.Ackermann.primRec]
    +n:476 [in hydras.Ackermann.primRec]
    +n:476 [in additions.Euclidean_Chains]
    +n:476 [in hydras.Gamma0.Gamma0]
    +n:477 [in gaia_hydras.nfwfgaia]
    +n:478 [in additions.Euclidean_Chains]
    +n:479 [in hydras.Gamma0.Gamma0]
    +n:48 [in hydras.Prelude.Iterates]
    +n:48 [in hydras.MoreAck.AckNotPR]
    +n:48 [in hydras.Prelude.Fuel]
    +n:48 [in hydras.OrdinalNotations.OmegaOmega]
    +n:48 [in hydras.Ackermann.codeList]
    +n:48 [in hydras.Ackermann.folLogic3]
    +n:48 [in gaia_hydras.nfwfgaia]
    +n:480 [in gaia_hydras.nfwfgaia]
    +n:483 [in hydras.Ackermann.primRec]
    +n:483 [in gaia_hydras.nfwfgaia]
    +n:486 [in gaia_hydras.nfwfgaia]
    +n:488 [in hydras.Ackermann.primRec]
    +n:488 [in hydras.Gamma0.Gamma0]
    +n:489 [in gaia_hydras.nfwfgaia]
    +n:49 [in hydras.Epsilon0.Hessenberg]
    +n:49 [in hydras.Ackermann.codeSubFormula]
    +n:49 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +n:49 [in hydras.Prelude.Fuel]
    +n:49 [in hydras.MoreAck.Ack]
    +n:49 [in hydras.Ackermann.primRec]
    +n:49 [in hydras.Ackermann.Languages]
    +n:493 [in hydras.Ackermann.primRec]
    +n:494 [in hydras.Epsilon0.T1]
    +n:495 [in hydras.Epsilon0.T1]
    +n:496 [in gaia_hydras.nfwfgaia]
    +n:497 [in hydras.Gamma0.Gamma0]
    +n:498 [in hydras.Ackermann.primRec]
    +n:499 [in gaia_hydras.nfwfgaia]
    +n:5 [in hydras.Schutte.Correctness_E0]
    +n:5 [in additions.Fib2]
    +n:5 [in hydras.Prelude.More_Arith]
    +n:5 [in hydras.MoreAck.expressibleExamples]
    +n:5 [in hydras.Ackermann.NN2PA]
    +n:5 [in additions.FirstSteps]
    +n:5 [in hydras.MoreAck.Iterate_compat]
    +n:5 [in hydras.Prelude.Fuel]
    +n:5 [in hydras.solutions_exercises.FibonacciPR]
    +n:5 [in hydras.Ackermann.primRec]
    +n:5 [in hydras.Ackermann.codeNatToTerm]
    +n:5 [in hydras.Ackermann.wConsistent]
    +n:5 [in hydras.solutions_exercises.isqrt]
    +n:50 [in additions.FirstSteps]
    +n:50 [in hydras.Epsilon0.F_alpha]
    +n:50 [in hydras.Ackermann.folProp]
    +n:50 [in hydras.Ackermann.codeSubFormula]
    +n:50 [in hydras.solutions_exercises.MultisetWf]
    +n:50 [in hydras.MoreAck.Ack]
    +n:50 [in gaia_hydras.nfwfgaia]
    +n:50 [in hydras.Prelude.MoreVectors]
    +n:501 [in gaia_hydras.nfwfgaia]
    +n:502 [in hydras.Ackermann.primRec]
    +n:503 [in hydras.Epsilon0.T1]
    +n:506 [in hydras.Epsilon0.T1]
    +n:508 [in hydras.Epsilon0.T1]
    +n:51 [in Goedel.PRrepresentable]
    +n:51 [in hydras.Prelude.Iterates]
    +n:51 [in hydras.Ackermann.codeSubFormula]
    +n:51 [in hydras.MoreAck.Ack]
    +n:51 [in hydras.Ackermann.wellFormed]
    +n:51 [in gaia_hydras.nfwfgaia]
    +n:51 [in hydras.Ackermann.expressible]
    +n:511 [in hydras.Epsilon0.T1]
    +n:511 [in hydras.Epsilon0.Paths]
    +n:516 [in gaia_hydras.nfwfgaia]
    +n:517 [in hydras.Epsilon0.T1]
    +n:517 [in hydras.Epsilon0.Paths]
    +n:518 [in hydras.Ackermann.checkPrf]
    +n:518 [in gaia_hydras.nfwfgaia]
    +n:52 [in hydras.Epsilon0.T1]
    +n:52 [in hydras.OrdinalNotations.ON_Omega2]
    +n:52 [in hydras.Ackermann.model]
    +n:52 [in hydras.Ackermann.subProp]
    +n:52 [in hydras.Ackermann.codeSubFormula]
    +n:52 [in hydras.MoreAck.Ack]
    +n:52 [in gaia_hydras.T1Bridge]
    +n:521 [in gaia_hydras.nfwfgaia]
    +n:523 [in hydras.Epsilon0.T1]
    +n:523 [in hydras.Gamma0.Gamma0]
    +n:523 [in gaia_hydras.nfwfgaia]
    +n:527 [in hydras.Epsilon0.T1]
    +n:529 [in hydras.Epsilon0.T1]
    +n:53 [in hydras.rpo.more_list]
    +n:53 [in hydras.Epsilon0.F_alpha]
    +n:53 [in hydras.MoreAck.AckNotPR]
    +n:53 [in hydras.Ackermann.codeSubFormula]
    +n:53 [in hydras.OrdinalNotations.OmegaOmega]
    +n:53 [in hydras.Ackermann.fol]
    +n:53 [in hydras.Ackermann.codeList]
    +n:53 [in hydras.Epsilon0.Paths]
    +n:530 [in gaia_hydras.nfwfgaia]
    +n:531 [in gaia_hydras.nfwfgaia]
    +n:532 [in hydras.Epsilon0.T1]
    +n:535 [in hydras.Ackermann.primRec]
    +n:535 [in hydras.Gamma0.Gamma0]
    +n:537 [in hydras.Ackermann.checkPrf]
    +n:539 [in hydras.Epsilon0.T1]
    +n:54 [in hydras.Epsilon0.Epsilon0rpo]
    +n:54 [in additions.Pow_variant]
    +n:54 [in additions.Pow]
    +n:54 [in hydras.Ackermann.codeSubFormula]
    +n:54 [in hydras.MoreAck.Ack]
    +n:54 [in hydras.Ackermann.folLogic3]
    +n:54 [in hydras.Hydra.Hydra_Lemmas]
    +n:54 [in hydras.Schutte.Addition]
    +n:542 [in hydras.Ackermann.primRec]
    +n:543 [in hydras.Epsilon0.T1]
    +n:543 [in hydras.Gamma0.Gamma0]
    +n:543 [in gaia_hydras.nfwfgaia]
    +n:544 [in gaia_hydras.nfwfgaia]
    +n:545 [in hydras.Epsilon0.T1]
    +n:545 [in hydras.Ackermann.primRec]
    +n:548 [in gaia_hydras.nfwfgaia]
    +n:55 [in Goedel.PRrepresentable]
    +n:55 [in hydras.Prelude.More_Arith]
    +n:55 [in hydras.Prelude.Iterates]
    +n:55 [in hydras.Ackermann.codeSubFormula]
    +n:55 [in hydras.Ackermann.folLogic3]
    +n:55 [in Goedel.rosser]
    +n:55 [in gaia_hydras.nfwfgaia]
    +n:550 [in hydras.Epsilon0.T1]
    +n:550 [in hydras.Epsilon0.Paths]
    +n:552 [in hydras.Epsilon0.T1]
    +n:554 [in hydras.Epsilon0.T1]
    +n:556 [in hydras.Epsilon0.T1]
    +n:556 [in hydras.Ackermann.primRec]
    +n:556 [in gaia_hydras.nfwfgaia]
    +n:557 [in hydras.Gamma0.Gamma0]
    +n:558 [in hydras.Epsilon0.Paths]
    +n:559 [in hydras.Epsilon0.T1]
    +n:559 [in hydras.Ackermann.primRec]
    +n:559 [in gaia_hydras.nfwfgaia]
    +n:56 [in hydras.Ackermann.model]
    +n:56 [in hydras.MoreAck.AckNotPR]
    +n:56 [in hydras.Ackermann.codeSubFormula]
    +n:56 [in hydras.OrdinalNotations.OmegaOmega]
    +n:56 [in hydras.Ackermann.fol]
    +n:56 [in hydras.Ackermann.codeList]
    +n:56 [in hydras.Prelude.MoreVectors]
    +n:561 [in hydras.Gamma0.Gamma0]
    +n:561 [in gaia_hydras.nfwfgaia]
    +n:562 [in hydras.Ackermann.primRec]
    +n:563 [in hydras.Epsilon0.T1]
    +n:563 [in hydras.Epsilon0.Paths]
    +n:563 [in gaia_hydras.nfwfgaia]
    +n:564 [in hydras.Ackermann.primRec]
    +n:568 [in hydras.Gamma0.Gamma0]
    +n:569 [in hydras.Epsilon0.T1]
    +n:57 [in hydras.Ackermann.subProp]
    +n:57 [in hydras.MoreAck.Ack]
    +n:57 [in gaia_hydras.T1Bridge]
    +n:57 [in hydras.Epsilon0.Canon]
    +n:57 [in hydras.Ackermann.folLogic3]
    +n:57 [in Goedel.rosser]
    +n:57 [in gaia_hydras.nfwfgaia]
    +n:572 [in hydras.Epsilon0.Paths]
    +n:573 [in hydras.Gamma0.Gamma0]
    +n:574 [in hydras.Epsilon0.T1]
    +n:574 [in hydras.Ackermann.primRec]
    +n:578 [in hydras.Epsilon0.T1]
    +n:58 [in hydras.OrdinalNotations.ON_Omega2]
    +n:58 [in hydras.Epsilon0.Epsilon0rpo]
    +n:58 [in hydras.MoreAck.AckNotPR]
    +n:58 [in hydras.Ackermann.primRec]
    +n:58 [in hydras.Ackermann.fol]
    +n:584 [in hydras.Epsilon0.Paths]
    +n:589 [in hydras.Ackermann.checkPrf]
    +n:589 [in hydras.Gamma0.Gamma0]
    +n:59 [in Goedel.PRrepresentable]
    +n:59 [in hydras.Schutte.Critical]
    +n:59 [in hydras.MoreAck.Ack]
    +n:59 [in Goedel.rosserPA]
    +n:59 [in hydras.Ackermann.wellFormed]
    +n:59 [in hydras.Ackermann.codeList]
    +n:59 [in hydras.Hydra.Hydra_Lemmas]
    +n:595 [in hydras.Epsilon0.T1]
    +n:597 [in hydras.Ackermann.primRec]
    +n:598 [in hydras.Epsilon0.T1]
    +n:598 [in hydras.Gamma0.Gamma0]
    +n:6 [in hydras.Epsilon0.T1]
    +n:6 [in additions.Fib2]
    +n:6 [in gaia_hydras.GF_alpha]
    +n:6 [in hydras.MoreAck.expressibleExamples]
    +n:6 [in Goedel.fixPoint]
    +n:6 [in hydras.Ackermann.PAtheory]
    +n:6 [in hydras.Ackermann.subProp]
    +n:6 [in hydras.Ackermann.codeSubFormula]
    +n:6 [in hydras.solutions_exercises.OnCodeList]
    +n:6 [in hydras.Schutte.AP]
    +n:6 [in additions.Naive]
    +n:6 [in hydras.Ackermann.codeList]
    +n:6 [in hydras.Hydra.Hydra_Lemmas]
    +n:6 [in hydras.Prelude.Exp2]
    +n:6 [in hydras.Epsilon0.Paths]
    +n:6 [in hydras.Hydra.Omega_Small]
    +n:6 [in gaia_hydras.nfwfgaia]
    +n:6 [in hydras.Schutte.Countable]
    +n:6 [in hydras.Prelude.MoreVectors]
    +n:60 [in hydras.Epsilon0.Epsilon0rpo]
    +n:60 [in hydras.solutions_exercises.MultisetWf]
    +n:60 [in hydras.Ackermann.code]
    +n:60 [in hydras.Ackermann.expressible]
    +n:602 [in hydras.Epsilon0.T1]
    +n:602 [in hydras.Ackermann.primRec]
    +n:603 [in gaia_hydras.nfwfgaia]
    +n:605 [in hydras.Ackermann.primRec]
    +n:606 [in hydras.Epsilon0.T1]
    +n:608 [in hydras.Ackermann.primRec]
    +n:608 [in gaia_hydras.nfwfgaia]
    +n:61 [in hydras.Ackermann.subAll]
    +n:61 [in hydras.rpo.more_list]
    +n:61 [in hydras.MoreAck.AckNotPR]
    +n:61 [in Goedel.rosserPA]
    +n:61 [in hydras.Ackermann.wellFormed]
    +n:61 [in Goedel.rosser]
    +n:61 [in gaia_hydras.nfwfgaia]
    +n:610 [in hydras.Epsilon0.T1]
    +n:613 [in hydras.Epsilon0.T1]
    +n:613 [in hydras.Ackermann.primRec]
    +n:616 [in hydras.Epsilon0.T1]
    +n:617 [in hydras.Ackermann.primRec]
    +n:618 [in hydras.Ackermann.checkPrf]
    +n:619 [in hydras.Epsilon0.T1]
    +n:62 [in hydras.Schutte.Correctness_E0]
    +n:62 [in hydras.Ackermann.subAll]
    +n:62 [in hydras.rpo.more_list]
    +n:62 [in additions.Pow_variant]
    +n:62 [in hydras.Ackermann.model]
    +n:62 [in additions.Pow]
    +n:62 [in hydras.Ackermann.subProp]
    +n:62 [in hydras.Prelude.Fuel]
    +n:62 [in hydras.Ackermann.code]
    +n:62 [in gaia_hydras.T1Bridge]
    +n:62 [in hydras.Ackermann.codeList]
    +n:62 [in hydras.Ackermann.Languages]
    +n:622 [in hydras.Epsilon0.T1]
    +n:627 [in hydras.Epsilon0.T1]
    +n:627 [in gaia_hydras.nfwfgaia]
    +n:628 [in hydras.Ackermann.primRec]
    +n:63 [in Goedel.PRrepresentable]
    +n:63 [in hydras.solutions_exercises.MultisetWf]
    +n:63 [in hydras.Ackermann.folLogic3]
    +n:63 [in Goedel.rosser]
    +n:63 [in hydras.Schutte.Addition]
    +n:63 [in hydras.Prelude.MoreVectors]
    +n:631 [in hydras.Ackermann.primRec]
    +n:632 [in hydras.Gamma0.Gamma0]
    +n:635 [in hydras.Gamma0.Gamma0]
    +n:636 [in hydras.Ackermann.primRec]
    +n:639 [in hydras.Epsilon0.T1]
    +n:639 [in hydras.Gamma0.Gamma0]
    +n:64 [in hydras.OrdinalNotations.ON_Omega2]
    +n:64 [in hydras.MoreAck.Ack]
    +n:64 [in hydras.Ackermann.Languages]
    +n:64 [in hydras.Ackermann.expressible]
    +n:641 [in hydras.Epsilon0.T1]
    +n:642 [in hydras.Ackermann.primRec]
    +n:642 [in hydras.Gamma0.Gamma0]
    +n:643 [in hydras.Epsilon0.T1]
    +n:647 [in hydras.Ackermann.primRec]
    +n:647 [in hydras.Gamma0.Gamma0]
    +n:649 [in hydras.Ackermann.checkPrf]
    +n:65 [in hydras.Epsilon0.T1]
    +n:65 [in hydras.Ackermann.subAll]
    +n:65 [in hydras.rpo.more_list]
    +n:65 [in additions.Pow_variant]
    +n:65 [in additions.Pow]
    +n:65 [in hydras.Schutte.Critical]
    +n:65 [in hydras.solutions_exercises.MultisetWf]
    +n:65 [in Goedel.rosserPA]
    +n:65 [in hydras.Ackermann.codeList]
    +n:65 [in hydras.rpo.list_permut]
    +n:651 [in hydras.Gamma0.Gamma0]
    +n:652 [in gaia_hydras.nfwfgaia]
    +n:653 [in hydras.Ackermann.primRec]
    +n:654 [in hydras.Gamma0.Gamma0]
    +n:658 [in hydras.Epsilon0.T1]
    +n:659 [in hydras.Gamma0.Gamma0]
    +n:66 [in hydras.Schutte.Correctness_E0]
    +n:66 [in hydras.Prelude.MoreLists]
    +n:66 [in hydras.Epsilon0.Hessenberg]
    +n:66 [in hydras.Schutte.Critical]
    +n:66 [in additions.Euclidean_Chains]
    +n:66 [in hydras.rpo.list_permut]
    +n:66 [in hydras.Schutte.Addition]
    +n:660 [in hydras.Ackermann.primRec]
    +n:664 [in hydras.Gamma0.Gamma0]
    +n:667 [in hydras.Ackermann.primRec]
    +n:667 [in gaia_hydras.nfwfgaia]
    +n:668 [in gaia_hydras.nfwfgaia]
    +n:67 [in Goedel.PRrepresentable]
    +n:67 [in hydras.Epsilon0.F_alpha]
    +n:67 [in gaia_hydras.GPaths]
    +n:67 [in hydras.MoreAck.Ack]
    +n:67 [in gaia_hydras.T1Bridge]
    +n:67 [in hydras.Ackermann.primRec]
    +n:67 [in gaia_hydras.nfwfgaia]
    +n:67 [in hydras.Hydra.Hydra_Definitions]
    +n:671 [in hydras.Ackermann.primRec]
    +n:671 [in gaia_hydras.nfwfgaia]
    +n:674 [in hydras.Epsilon0.T1]
    +n:678 [in hydras.Epsilon0.T1]
    +n:678 [in hydras.Ackermann.primRec]
    +n:68 [in hydras.Ackermann.subAll]
    +n:68 [in additions.Pow_variant]
    +n:68 [in additions.Pow]
    +n:68 [in hydras.Ackermann.codeList]
    +n:68 [in hydras.Schutte.Addition]
    +n:680 [in hydras.Gamma0.Gamma0]
    +n:682 [in hydras.Ackermann.primRec]
    +n:683 [in hydras.Gamma0.Gamma0]
    +n:683 [in gaia_hydras.nfwfgaia]
    +n:688 [in hydras.Gamma0.Gamma0]
    +n:69 [in additions.Addition_Chains]
    +n:69 [in gaia_hydras.nfwfgaia]
    +n:69 [in hydras.Ackermann.expressible]
    +n:691 [in hydras.Gamma0.Gamma0]
    +n:7 [in additions.Fib2]
    +n:7 [in hydras.Ackermann.extEqualNat]
    +n:7 [in hydras.Prelude.MoreLists]
    +n:7 [in hydras.MoreAck.expressibleExamples]
    +n:7 [in additions.Pow_variant]
    +n:7 [in hydras.Ackermann.model]
    +n:7 [in additions.Pow]
    +n:7 [in additions.More_on_positive]
    +n:7 [in hydras.solutions_exercises.MultisetWf]
    +n:7 [in hydras.Prelude.Fuel]
    +n:7 [in hydras.MoreAck.Ack]
    +n:7 [in hydras.Ackermann.primRec]
    +n:7 [in gaia_hydras.ON_gfinite]
    +n:7 [in hydras.OrdinalNotations.ON_Finite]
    +n:7 [in hydras.Prelude.Exp2]
    +n:7 [in hydras.solutions_exercises.isqrt]
    +n:7 [in hydras.Gamma0.Gamma0]
    +n:7 [in hydras.Schutte.Addition]
    +n:70 [in hydras.Prelude.Iterates]
    +n:70 [in additions.Pow_variant]
    +n:70 [in gaia_hydras.GPaths]
    +n:70 [in additions.Pow]
    +n:70 [in hydras.Ackermann.folProp]
    +n:70 [in hydras.MoreAck.Ack]
    +n:70 [in Goedel.rosserPA]
    +n:70 [in hydras.Schutte.Addition]
    +n:702 [in gaia_hydras.nfwfgaia]
    +n:704 [in hydras.Ackermann.primRec]
    +n:706 [in hydras.Ackermann.primRec]
    +n:708 [in gaia_hydras.nfwfgaia]
    +n:71 [in Goedel.PRrepresentable]
    +n:71 [in hydras.Prelude.MoreLists]
    +n:71 [in hydras.Ackermann.folProp]
    +n:71 [in hydras.Schutte.Critical]
    +n:71 [in hydras.Ackermann.codeList]
    +n:71 [in gaia_hydras.nfwfgaia]
    +n:712 [in hydras.Gamma0.Gamma0]
    +n:712 [in gaia_hydras.nfwfgaia]
    +n:714 [in hydras.Epsilon0.T1]
    +n:72 [in hydras.Epsilon0.T1]
    +n:72 [in hydras.Epsilon0.F_alpha]
    +n:72 [in hydras.Ackermann.folProp]
    +n:72 [in hydras.Schutte.Critical]
    +n:72 [in hydras.MoreAck.Ack]
    +n:72 [in hydras.Hydra.BigBattle]
    +n:72 [in hydras.rpo.list_permut]
    +n:720 [in hydras.Epsilon0.T1]
    +n:723 [in hydras.Epsilon0.T1]
    +n:724 [in gaia_hydras.nfwfgaia]
    +n:73 [in additions.Pow]
    +n:73 [in hydras.Epsilon0.Hessenberg]
    +n:73 [in gaia_hydras.T1Bridge]
    +n:73 [in hydras.Ackermann.primRec]
    +n:73 [in hydras.Hydra.BigBattle]
    +n:73 [in hydras.Ackermann.codeList]
    +n:73 [in hydras.rpo.list_permut]
    +n:73 [in hydras.Schutte.Addition]
    +n:736 [in gaia_hydras.nfwfgaia]
    +n:74 [in hydras.Prelude.Iterates]
    +n:74 [in hydras.Prelude.MoreLists]
    +n:74 [in hydras.Epsilon0.F_alpha]
    +n:74 [in additions.Pow_variant]
    +n:74 [in hydras.Ackermann.model]
    +n:74 [in hydras.MoreAck.Ack]
    +n:74 [in gaia_hydras.nfwfgaia]
    +n:748 [in gaia_hydras.nfwfgaia]
    +n:75 [in hydras.rpo.more_list]
    +n:75 [in hydras.Ackermann.LNN2LNT]
    +n:75 [in hydras.Ackermann.subProp]
    +n:75 [in hydras.solutions_exercises.MultisetWf]
    +n:75 [in hydras.Ackermann.primRec]
    +n:75 [in hydras.Hydra.BigBattle]
    +n:75 [in hydras.Ackermann.codeList]
    +n:75 [in hydras.Epsilon0.Hprime]
    +n:75 [in gaia_hydras.nfwfgaia]
    +n:750 [in gaia_hydras.nfwfgaia]
    +n:753 [in gaia_hydras.nfwfgaia]
    +n:755 [in gaia_hydras.nfwfgaia]
    +n:756 [in hydras.Epsilon0.T1]
    +n:757 [in gaia_hydras.nfwfgaia]
    +n:759 [in gaia_hydras.nfwfgaia]
    +n:76 [in hydras.Ackermann.subAll]
    +n:76 [in hydras.Prelude.MoreLists]
    +n:76 [in hydras.MoreAck.AckNotPR]
    +n:76 [in hydras.MoreAck.Ack]
    +n:76 [in Goedel.codeSysPrf]
    +n:76 [in gaia_hydras.nfwfgaia]
    +n:76 [in hydras.Hydra.Hydra_Definitions]
    +n:764 [in gaia_hydras.nfwfgaia]
    +n:767 [in gaia_hydras.nfwfgaia]
    +n:769 [in gaia_hydras.nfwfgaia]
    +n:77 [in hydras.Gamma0.T2]
    +n:77 [in gaia_hydras.GPaths]
    +n:77 [in hydras.Ackermann.model]
    +n:77 [in additions.Pow]
    +n:77 [in hydras.Ackermann.codeList]
    +n:77 [in hydras.Epsilon0.Hprime]
    +n:78 [in hydras.Epsilon0.T1]
    +n:78 [in Goedel.PRrepresentable]
    +n:78 [in hydras.Prelude.Iterates]
    +n:78 [in hydras.Ackermann.codeSubFormula]
    +n:78 [in gaia_hydras.nfwfgaia]
    +n:780 [in gaia_hydras.nfwfgaia]
    +n:784 [in gaia_hydras.nfwfgaia]
    +n:787 [in gaia_hydras.nfwfgaia]
    +n:79 [in additions.AM]
    +n:79 [in hydras.Prelude.MoreLists]
    +n:79 [in hydras.MoreAck.Ack]
    +n:79 [in gaia_hydras.T1Bridge]
    +n:79 [in hydras.Ackermann.codeList]
    +n:79 [in gaia_hydras.nfwfgaia]
    +n:795 [in gaia_hydras.nfwfgaia]
    +n:796 [in hydras.Ackermann.checkPrf]
    +n:8 [in hydras.Epsilon0.T1]
    +n:8 [in hydras.MoreAck.expressibleExamples]
    +n:8 [in hydras.solutions_exercises.FibonacciPR]
    +n:8 [in hydras.Hydra.BigBattle]
    +n:8 [in additions.Naive]
    +n:8 [in hydras.Ackermann.codeList]
    +n:80 [in hydras.Gamma0.T2]
    +n:80 [in hydras.Epsilon0.F_alpha]
    +n:80 [in hydras.MoreAck.AckNotPR]
    +n:80 [in hydras.Ackermann.subProp]
    +n:80 [in hydras.MoreAck.Ack]
    +n:802 [in hydras.Ackermann.checkPrf]
    +n:802 [in gaia_hydras.nfwfgaia]
    +n:806 [in hydras.Ackermann.checkPrf]
    +n:806 [in gaia_hydras.nfwfgaia]
    +n:81 [in hydras.Hydra.O2H]
    +n:81 [in hydras.Ackermann.LNN2LNT]
    +n:81 [in additions.Pow_variant]
    +n:81 [in hydras.Ackermann.model]
    +n:81 [in hydras.Ackermann.codeList]
    +n:81 [in hydras.Epsilon0.Hprime]
    +n:81 [in gaia_hydras.nfwfgaia]
    +n:81 [in hydras.Prelude.MoreVectors]
    +n:810 [in hydras.Ackermann.checkPrf]
    +n:817 [in hydras.Ackermann.primRec]
    +n:818 [in hydras.Ackermann.primRec]
    +n:82 [in Goedel.PRrepresentable]
    +n:82 [in hydras.Epsilon0.F_alpha]
    +n:82 [in hydras.Ackermann.folProp]
    +n:82 [in gaia_hydras.T1Bridge]
    +n:82 [in gaia_hydras.nfwfgaia]
    +n:821 [in hydras.Ackermann.primRec]
    +n:825 [in hydras.Ackermann.codeSubFormula]
    +n:829 [in hydras.Ackermann.codeSubFormula]
    +n:83 [in hydras.Epsilon0.T1]
    +n:83 [in additions.Pow_variant]
    +n:83 [in additions.Pow]
    +n:83 [in hydras.Ackermann.folProp]
    +n:83 [in hydras.MoreAck.Ack]
    +n:83 [in hydras.Ackermann.codeList]
    +n:83 [in gaia_hydras.nfwfgaia]
    +n:834 [in gaia_hydras.nfwfgaia]
    +n:836 [in hydras.Ackermann.codeSubFormula]
    +n:839 [in hydras.Ackermann.codeSubFormula]
    +n:84 [in hydras.Epsilon0.F_alpha]
    +n:84 [in hydras.MoreAck.Ack]
    +n:84 [in hydras.Epsilon0.Canon]
    +n:844 [in hydras.Ackermann.checkPrf]
    +n:844 [in gaia_hydras.nfwfgaia]
    +n:85 [in hydras.Ackermann.subAll]
    +n:85 [in hydras.Prelude.Iterates]
    +n:85 [in additions.Pow_variant]
    +n:85 [in additions.Pow]
    +n:85 [in hydras.MoreAck.AckNotPR]
    +n:85 [in hydras.Ackermann.subProp]
    +n:85 [in Goedel.rosserPA]
    +n:85 [in hydras.Ackermann.primRec]
    +n:85 [in hydras.Ackermann.codeList]
    +n:85 [in gaia_hydras.nfwfgaia]
    +n:858 [in hydras.Ackermann.checkPrf]
    +n:86 [in Goedel.PRrepresentable]
    +n:86 [in hydras.Prelude.MoreLists]
    +n:86 [in hydras.Epsilon0.F_alpha]
    +n:86 [in hydras.Prelude.MoreVectors]
    +n:862 [in gaia_hydras.nfwfgaia]
    +n:863 [in hydras.Ackermann.checkPrf]
    +n:867 [in hydras.Ackermann.codeSubFormula]
    +n:867 [in gaia_hydras.nfwfgaia]
    +n:87 [in hydras.Hydra.O2H]
    +n:87 [in hydras.Ackermann.LNN2LNT]
    +n:87 [in additions.Pow_variant]
    +n:87 [in Goedel.rosserPA]
    +n:87 [in hydras.Ackermann.codeList]
    +n:870 [in hydras.Ackermann.codeSubFormula]
    +n:873 [in hydras.Ackermann.codeSubFormula]
    +n:877 [in hydras.Ackermann.codeSubFormula]
    +n:88 [in hydras.Epsilon0.T1]
    +n:88 [in hydras.Ackermann.codeList]
    +n:88 [in gaia_hydras.nfwfgaia]
    +n:881 [in hydras.Ackermann.codeSubFormula]
    +n:89 [in hydras.Gamma0.T2]
    +n:89 [in hydras.Ackermann.subAll]
    +n:89 [in hydras.Ackermann.codeList]
    +n:89 [in gaia_hydras.nfwfgaia]
    +n:891 [in hydras.Ackermann.codeSubFormula]
    +n:891 [in gaia_hydras.nfwfgaia]
    +n:894 [in hydras.Ackermann.codeSubFormula]
    +n:9 [in hydras.Ackermann.folProof]
    +n:9 [in hydras.Schutte.Correctness_E0]
    +n:9 [in hydras.Gamma0.T2]
    +n:9 [in hydras.Prelude.More_Arith]
    +n:9 [in hydras.Prelude.Iterates]
    +n:9 [in hydras.Prelude.Compat815]
    +n:9 [in hydras.Ackermann.LNN2LNT]
    +n:9 [in Goedel.fixPoint]
    +n:9 [in hydras.Epsilon0.Hessenberg]
    +n:9 [in additions.More_on_positive]
    +n:9 [in hydras.MoreAck.AckNotPR]
    +n:9 [in hydras.Ackermann.codeSubFormula]
    +n:9 [in hydras.Prelude.Fuel]
    +n:9 [in hydras.solutions_exercises.MorePRExamples]
    +n:9 [in hydras.Hydra.Hydra_Termination]
    +n:9 [in hydras.Hydra.BigBattle]
    +n:9 [in hydras.Ackermann.wellFormed]
    +n:9 [in hydras.Epsilon0.Canon]
    +n:9 [in additions.fib]
    +n:9 [in hydras.solutions_exercises.F_3]
    +n:9 [in gaia_hydras.nfwfgaia]
    +n:9 [in hydras.Schutte.Countable]
    +n:90 [in Goedel.PRrepresentable]
    +n:90 [in hydras.Epsilon0.F_alpha]
    +n:90 [in additions.Pow]
    +n:90 [in hydras.MoreAck.AckNotPR]
    +n:90 [in hydras.Ackermann.primRec]
    +n:90 [in hydras.Ackermann.folLogic3]
    +n:90 [in hydras.Prelude.MoreVectors]
    +n:904 [in gaia_hydras.nfwfgaia]
    +n:907 [in hydras.Ackermann.codeSubFormula]
    +n:91 [in Goedel.rosserPA]
    +n:91 [in hydras.Epsilon0.E0]
    +n:91 [in hydras.Ackermann.codeList]
    +n:91 [in hydras.Hydra.Hydra_Definitions]
    +n:910 [in hydras.Ackermann.codeSubFormula]
    +n:912 [in gaia_hydras.nfwfgaia]
    +n:913 [in hydras.Ackermann.codeSubFormula]
    +n:918 [in hydras.Ackermann.codeSubFormula]
    +n:92 [in hydras.Gamma0.T2]
    +n:92 [in hydras.Epsilon0.F_alpha]
    +n:92 [in hydras.MoreAck.AckNotPR]
    +n:92 [in hydras.Ackermann.fol]
    +n:92 [in hydras.Ackermann.folLogic3]
    +n:92 [in Goedel.codeSysPrf]
    +n:923 [in hydras.Ackermann.codeSubFormula]
    +n:93 [in hydras.Epsilon0.T1]
    +n:93 [in hydras.Ackermann.LNN2LNT]
    +n:93 [in additions.Pow]
    +n:93 [in hydras.Ackermann.codeList]
    +n:93 [in hydras.Prelude.MoreVectors]
    +n:934 [in hydras.Ackermann.codeSubFormula]
    +n:936 [in gaia_hydras.nfwfgaia]
    +n:937 [in hydras.Ackermann.codeSubFormula]
    +n:94 [in Goedel.PRrepresentable]
    +n:94 [in hydras.MoreAck.AckNotPR]
    +n:94 [in hydras.Ackermann.primRec]
    +n:941 [in gaia_hydras.nfwfgaia]
    +n:946 [in gaia_hydras.nfwfgaia]
    +n:95 [in hydras.Ackermann.subAll]
    +n:95 [in hydras.Ackermann.fol]
    +n:95 [in hydras.Ackermann.codeList]
    +n:95 [in hydras.MoreAck.PrimRecExamples]
    +n:950 [in gaia_hydras.nfwfgaia]
    +n:952 [in gaia_hydras.nfwfgaia]
    +n:96 [in additions.Pow]
    +n:96 [in Goedel.rosserPA]
    +n:96 [in hydras.Ackermann.folLogic3]
    +n:96 [in hydras.Hydra.Hydra_Definitions]
    +n:967 [in gaia_hydras.nfwfgaia]
    +n:969 [in gaia_hydras.nfwfgaia]
    +n:97 [in hydras.Prelude.MoreLists]
    +n:97 [in hydras.Epsilon0.F_alpha]
    +n:97 [in additions.Pow_variant]
    +n:97 [in hydras.MoreAck.AckNotPR]
    +n:97 [in hydras.Ackermann.subProp]
    +n:97 [in hydras.Ackermann.primRec]
    +n:97 [in hydras.Ackermann.codeList]
    +n:97 [in gaia_hydras.nfwfgaia]
    +n:971 [in gaia_hydras.nfwfgaia]
    +n:975 [in gaia_hydras.nfwfgaia]
    +n:979 [in gaia_hydras.nfwfgaia]
    +n:98 [in hydras.Epsilon0.T1]
    +n:98 [in hydras.Gamma0.T2]
    +n:98 [in hydras.Ackermann.codeList]
    +n:98 [in hydras.Epsilon0.Hprime]
    +n:985 [in gaia_hydras.nfwfgaia]
    +n:987 [in gaia_hydras.nfwfgaia]
    +n:99 [in hydras.Epsilon0.F_alpha]
    +n:99 [in hydras.Ackermann.subProp]
    +n:99 [in hydras.Ackermann.codeList]
    +n:99 [in hydras.Prelude.MoreVectors]
    +

    O

    +OA:109 [in hydras.OrdinalNotations.ON_Generic]
    +OA:124 [in hydras.OrdinalNotations.ON_Generic]
    +OA:136 [in hydras.OrdinalNotations.ON_Generic]
    +OA:149 [in hydras.OrdinalNotations.ON_Generic]
    +OA:162 [in hydras.OrdinalNotations.ON_Generic]
    +OA:174 [in hydras.OrdinalNotations.ON_Generic]
    +OA:187 [in hydras.OrdinalNotations.ON_Generic]
    +OA:201 [in hydras.OrdinalNotations.ON_Generic]
    +OA:32 [in hydras.OrdinalNotations.ON_Generic]
    +OA:5 [in hydras.OrdinalNotations.ON_O]
    +OA:51 [in hydras.OrdinalNotations.ON_Generic]
    +OA:70 [in hydras.OrdinalNotations.ON_Generic]
    +OA:84 [in hydras.OrdinalNotations.ON_Generic]
    +OA:96 [in hydras.OrdinalNotations.ON_Generic]
    +OB:100 [in hydras.OrdinalNotations.ON_Generic]
    +OB:113 [in hydras.OrdinalNotations.ON_Generic]
    +OB:128 [in hydras.OrdinalNotations.ON_Generic]
    +OB:140 [in hydras.OrdinalNotations.ON_Generic]
    +OB:153 [in hydras.OrdinalNotations.ON_Generic]
    +OB:166 [in hydras.OrdinalNotations.ON_Generic]
    +OB:178 [in hydras.OrdinalNotations.ON_Generic]
    +OB:191 [in hydras.OrdinalNotations.ON_Generic]
    +OB:205 [in hydras.OrdinalNotations.ON_Generic]
    +OB:36 [in hydras.OrdinalNotations.ON_Generic]
    +OB:55 [in hydras.OrdinalNotations.ON_Generic]
    +OB:88 [in hydras.OrdinalNotations.ON_Generic]
    +ol'':40 [in hydras.Schutte.CNF]
    +ol'':45 [in hydras.Schutte.CNF]
    +ol':30 [in hydras.Schutte.CNF]
    +ol':34 [in hydras.Schutte.CNF]
    +ol':37 [in hydras.Schutte.CNF]
    +ol':39 [in hydras.Schutte.CNF]
    +ol':43 [in hydras.Schutte.CNF]
    +ol:29 [in hydras.Schutte.CNF]
    +ol:33 [in hydras.Schutte.CNF]
    +ol:35 [in hydras.Schutte.CNF]
    +ol:38 [in hydras.Schutte.CNF]
    +ol:41 [in hydras.Schutte.CNF]
    +one:100 [in additions.AM]
    +one:103 [in additions.Addition_Chains]
    +one:105 [in additions.AM]
    +one:110 [in additions.AM]
    +one:111 [in additions.Addition_Chains]
    +one:117 [in additions.Addition_Chains]
    +one:120 [in additions.AM]
    +one:124 [in additions.Addition_Chains]
    +one:125 [in additions.AM]
    +one:131 [in additions.Addition_Chains]
    +one:161 [in additions.Addition_Chains]
    +one:168 [in additions.Addition_Chains]
    +one:174 [in additions.Addition_Chains]
    +one:36 [in additions.FirstSteps]
    +one:37 [in additions.AM]
    +one:42 [in additions.FirstSteps]
    +one:43 [in additions.AM]
    +one:54 [in additions.AM]
    +one:59 [in additions.Monoid_def]
    +one:61 [in additions.AM]
    +one:63 [in additions.Monoid_def]
    +one:74 [in additions.AM]
    +one:8 [in additions.Monoid_def]
    +one:84 [in additions.AM]
    +one:95 [in additions.AM]
    +on:10 [in hydras.OrdinalNotations.ON_Generic]
    +on:14 [in hydras.OrdinalNotations.ON_Generic]
    +On:4 [in hydras.solutions_exercises.lt_succ_le]
    +On:5 [in hydras.solutions_exercises.predSuccUnicity]
    +opA:194 [in hydras.OrdinalNotations.ON_Generic]
    +opB:195 [in hydras.OrdinalNotations.ON_Generic]
    +oplus_aux:8 [in hydras.Epsilon0.Hessenberg]
    +oplus_aux:14 [in gaia_hydras.GHessenberg]
    +op:100 [in additions.Euclidean_Chains]
    +op:102 [in additions.fib]
    +op:102 [in additions.Addition_Chains]
    +op:104 [in additions.AM]
    +op:109 [in additions.AM]
    +op:109 [in additions.fib]
    +op:110 [in additions.Addition_Chains]
    +op:111 [in additions.Euclidean_Chains]
    +op:116 [in additions.Addition_Chains]
    +op:117 [in additions.fib]
    +op:119 [in additions.AM]
    +op:123 [in additions.Addition_Chains]
    +op:124 [in additions.AM]
    +op:130 [in additions.Addition_Chains]
    +op:160 [in additions.Addition_Chains]
    +op:163 [in additions.Euclidean_Chains]
    +op:167 [in additions.Addition_Chains]
    +op:169 [in additions.Euclidean_Chains]
    +op:173 [in additions.Addition_Chains]
    +op:183 [in additions.Euclidean_Chains]
    +op:195 [in additions.Euclidean_Chains]
    +op:36 [in additions.AM]
    +op:36 [in additions.Euclidean_Chains]
    +op:42 [in additions.AM]
    +op:42 [in additions.Addition_Chains]
    +op:43 [in additions.Euclidean_Chains]
    +op:48 [in additions.Euclidean_Chains]
    +op:5 [in additions.Monoid_def]
    +op:51 [in additions.Euclidean_Chains]
    +op:53 [in additions.AM]
    +op:54 [in additions.Euclidean_Chains]
    +op:54 [in additions.Addition_Chains]
    +op:58 [in additions.Monoid_def]
    +op:60 [in additions.AM]
    +op:62 [in additions.Monoid_def]
    +op:62 [in additions.Euclidean_Chains]
    +op:69 [in additions.Euclidean_Chains]
    +op:7 [in additions.Monoid_def]
    +op:73 [in additions.AM]
    +op:83 [in additions.AM]
    +op:89 [in additions.Euclidean_Chains]
    +op:94 [in additions.AM]
    +op:99 [in additions.AM]
    +output:62 [in hydras.Ackermann.codeSubFormula]
    +o':423 [in hydras.Gamma0.Gamma0]
    +o':434 [in hydras.Gamma0.Gamma0]
    +o':437 [in hydras.Gamma0.Gamma0]
    +o':61 [in hydras.Epsilon0.Epsilon0rpo]
    +o':64 [in hydras.Epsilon0.Epsilon0rpo]
    +o1:15 [in hydras.rpo.rpo]
    +o1:20 [in hydras.rpo.rpo]
    +o1:6 [in hydras.rpo.rpo]
    +o2:16 [in hydras.rpo.rpo]
    +o2:21 [in hydras.rpo.rpo]
    +o2:7 [in hydras.rpo.rpo]
    +o:10 [in hydras.Hydra.O2H]
    +o:124 [in hydras.Schutte.Schutte_basics]
    +o:13 [in hydras.Hydra.O2H]
    +o:131 [in hydras.Schutte.Ordering_Functions]
    +o:18 [in hydras.Schutte.Addition]
    +o:19 [in hydras.Schutte.Addition]
    +o:280 [in hydras.Gamma0.Gamma0]
    +o:36 [in hydras.Epsilon0.Epsilon0rpo]
    +o:424 [in hydras.Gamma0.Gamma0]
    +o:435 [in hydras.Gamma0.Gamma0]
    +o:436 [in hydras.Gamma0.Gamma0]
    +o:537 [in hydras.Epsilon0.T1]
    +o:619 [in hydras.Gamma0.Gamma0]
    +o:62 [in hydras.Epsilon0.Epsilon0rpo]
    +o:628 [in hydras.Gamma0.Gamma0]
    +o:63 [in hydras.Epsilon0.Epsilon0rpo]
    +o:63 [in hydras.Schutte.CNF]
    +o:64 [in hydras.Schutte.CNF]
    +o:75 [in hydras.Schutte.Ordering_Functions]
    +

    P

    +pair:134 [in Goedel.PRrepresentable]
    +pair:145 [in Goedel.PRrepresentable]
    +pair:156 [in Goedel.PRrepresentable]
    +pair:239 [in Goedel.PRrepresentable]
    +pair:245 [in Goedel.PRrepresentable]
    +pair:460 [in Goedel.PRrepresentable]
    +pair:468 [in Goedel.PRrepresentable]
    +pA:50 [in hydras.Prelude.Sort_spec]
    +PA:64 [in hydras.Prelude.Sort_spec]
    +PB:5 [in hydras.Prelude.DecPreOrder_Instances]
    +pB:51 [in hydras.Prelude.Sort_spec]
    +PB:65 [in hydras.Prelude.Sort_spec]
    +Pdec:3 [in hydras.Prelude.First_toggle]
    +pf:39 [in hydras.MoreAck.FolExamples]
    +pf:40 [in hydras.MoreAck.FolExamples]
    +phi:198 [in hydras.Prelude.Iterates]
    +phi:214 [in hydras.Prelude.Iterates]
    +phi:29 [in hydras.MoreAck.FolExamples]
    +phi:69 [in hydras.MoreAck.PrimRecExamples]
    +phi:76 [in hydras.MoreAck.PrimRecExamples]
    +phi:85 [in hydras.MoreAck.PrimRecExamples]
    +pq:68 [in hydras.rpo.dickson]
    +prf:11 [in hydras.Ackermann.Deduction]
    +prf:121 [in hydras.Ackermann.LNN2LNT]
    +prf:129 [in hydras.Ackermann.LNN2LNT]
    +prf:45 [in hydras.Ackermann.code]
    +prf:47 [in hydras.Ackermann.folProof]
    +proof:202 [in hydras.rpo.rpo]
    +proof:206 [in hydras.rpo.rpo]
    +pr:120 [in Goedel.PRrepresentable]
    +pr:633 [in hydras.Ackermann.primRec]
    +pr:638 [in hydras.Ackermann.primRec]
    +psi:215 [in hydras.Prelude.Iterates]
    +P_dec:190 [in hydras.rpo.list_set]
    +P_dec:67 [in hydras.rpo.list_set]
    +P_dec:63 [in hydras.rpo.list_set]
    +P_dec:59 [in hydras.rpo.list_set]
    +P_dec:55 [in hydras.rpo.list_set]
    +P_dec:52 [in hydras.rpo.list_set]
    +P_dec:49 [in hydras.rpo.list_set]
    +P_dec:45 [in hydras.rpo.list_set]
    +P_dec:40 [in hydras.rpo.list_set]
    +p':2 [in additions.More_on_positive]
    +p':22 [in hydras.Prelude.More_Arith]
    +p':40 [in hydras.Prelude.DecPreOrder_Instances]
    +p':66 [in hydras.rpo.dickson]
    +p':7 [in hydras.solutions_exercises.MinPR2]
    +p0:395 [in additions.Euclidean_Chains]
    +p0:402 [in additions.Euclidean_Chains]
    +P0:46 [in hydras.Prelude.DecPreOrder]
    +p0:838 [in hydras.Ackermann.checkPrf]
    +p0:841 [in hydras.Ackermann.checkPrf]
    +P0:89 [in hydras.Prelude.DecPreOrder]
    +P0:95 [in hydras.Prelude.DecPreOrder]
    +P1_dec:195 [in hydras.rpo.list_set]
    +p1:109 [in hydras.Ackermann.codeList]
    +p1:114 [in hydras.Ackermann.codeList]
    +p1:117 [in hydras.Ackermann.codeList]
    +p1:122 [in hydras.Ackermann.codeList]
    +p1:125 [in hydras.Ackermann.codeList]
    +p1:128 [in hydras.Ackermann.codeList]
    +p1:1309 [in hydras.Ackermann.codeSubFormula]
    +p1:131 [in hydras.Ackermann.codeList]
    +p1:1313 [in hydras.Ackermann.codeSubFormula]
    +p1:1315 [in hydras.Ackermann.codeSubFormula]
    +p1:1318 [in hydras.Ackermann.codeSubFormula]
    +p1:1320 [in hydras.Ackermann.codeSubFormula]
    +p1:1323 [in hydras.Ackermann.codeSubFormula]
    +p1:1326 [in hydras.Ackermann.codeSubFormula]
    +p1:1329 [in hydras.Ackermann.codeSubFormula]
    +p1:1332 [in hydras.Ackermann.codeSubFormula]
    +p1:1335 [in hydras.Ackermann.codeSubFormula]
    +p1:1338 [in hydras.Ackermann.codeSubFormula]
    +p1:134 [in hydras.Ackermann.codeList]
    +p1:1348 [in hydras.Ackermann.codeSubFormula]
    +p1:1350 [in hydras.Ackermann.codeSubFormula]
    +p1:1352 [in hydras.Ackermann.codeSubFormula]
    +p1:1354 [in hydras.Ackermann.codeSubFormula]
    +p1:1356 [in hydras.Ackermann.codeSubFormula]
    +p1:1358 [in hydras.Ackermann.codeSubFormula]
    +p1:137 [in hydras.Ackermann.codeList]
    +p1:140 [in hydras.Ackermann.codeList]
    +p1:143 [in hydras.Ackermann.codeList]
    +p1:166 [in hydras.Ackermann.codeList]
    +p1:169 [in hydras.Ackermann.codeList]
    +p1:172 [in hydras.Ackermann.codeList]
    +p1:175 [in hydras.Ackermann.codeList]
    +p1:178 [in hydras.Ackermann.codeList]
    +p1:181 [in hydras.Ackermann.codeList]
    +p1:183 [in hydras.Ackermann.codeList]
    +p1:185 [in hydras.Ackermann.codeList]
    +p1:187 [in hydras.Ackermann.codeList]
    +p1:189 [in hydras.Ackermann.codeList]
    +p1:191 [in hydras.Ackermann.codeList]
    +p1:193 [in hydras.Ackermann.codeList]
    +P1:193 [in hydras.rpo.list_set]
    +p1:214 [in hydras.Ackermann.codeList]
    +p1:219 [in hydras.Ackermann.codeList]
    +p1:222 [in hydras.Ackermann.codeList]
    +p1:227 [in hydras.Ackermann.codeList]
    +p1:230 [in hydras.Ackermann.codeList]
    +p1:233 [in hydras.Ackermann.codeList]
    +p1:236 [in hydras.Ackermann.codeList]
    +p1:239 [in hydras.Ackermann.codeList]
    +p1:242 [in hydras.Ackermann.codeList]
    +p1:245 [in hydras.Ackermann.codeList]
    +p1:248 [in hydras.Ackermann.codeList]
    +p1:251 [in hydras.Ackermann.codeList]
    +p1:254 [in hydras.Ackermann.codeList]
    +p1:257 [in hydras.Ackermann.codeList]
    +p1:260 [in hydras.Ackermann.codeList]
    +p1:262 [in hydras.Ackermann.codeList]
    +p1:264 [in hydras.Ackermann.codeList]
    +p1:266 [in hydras.Ackermann.codeList]
    +p1:268 [in hydras.Ackermann.codeList]
    +p1:270 [in hydras.Ackermann.codeList]
    +p1:272 [in hydras.Ackermann.codeList]
    +p1:33 [in hydras.Ackermann.primRec]
    +p1:42 [in hydras.Ackermann.codeList]
    +p1:47 [in hydras.Ackermann.codeList]
    +p1:50 [in hydras.Ackermann.codeList]
    +p1:55 [in hydras.Ackermann.codeList]
    +p1:58 [in hydras.Ackermann.codeList]
    +p1:61 [in hydras.Ackermann.codeList]
    +p1:610 [in hydras.Ackermann.primRec]
    +p1:615 [in hydras.Ackermann.primRec]
    +p1:64 [in hydras.Ackermann.codeList]
    +p1:67 [in hydras.Ackermann.codeList]
    +p1:70 [in hydras.Ackermann.codeList]
    +P2_dec:196 [in hydras.rpo.list_set]
    +p2:1310 [in hydras.Ackermann.codeSubFormula]
    +p2:1314 [in hydras.Ackermann.codeSubFormula]
    +p2:1316 [in hydras.Ackermann.codeSubFormula]
    +p2:1319 [in hydras.Ackermann.codeSubFormula]
    +p2:1321 [in hydras.Ackermann.codeSubFormula]
    +p2:1324 [in hydras.Ackermann.codeSubFormula]
    +p2:1327 [in hydras.Ackermann.codeSubFormula]
    +p2:1330 [in hydras.Ackermann.codeSubFormula]
    +p2:1333 [in hydras.Ackermann.codeSubFormula]
    +p2:1336 [in hydras.Ackermann.codeSubFormula]
    +p2:1339 [in hydras.Ackermann.codeSubFormula]
    +p2:1349 [in hydras.Ackermann.codeSubFormula]
    +p2:1351 [in hydras.Ackermann.codeSubFormula]
    +p2:1353 [in hydras.Ackermann.codeSubFormula]
    +p2:1355 [in hydras.Ackermann.codeSubFormula]
    +p2:1357 [in hydras.Ackermann.codeSubFormula]
    +p2:1359 [in hydras.Ackermann.codeSubFormula]
    +P2:194 [in hydras.rpo.list_set]
    +p2:34 [in hydras.Ackermann.primRec]
    +p2:611 [in hydras.Ackermann.primRec]
    +p2:616 [in hydras.Ackermann.primRec]
    +P2:79 [in hydras.Prelude.MoreVectors]
    +P:1 [in hydras.Prelude.First_toggle]
    +p:1 [in additions.More_on_positive]
    +P:1 [in hydras.Prelude.MoreDecidable]
    +p:1 [in additions.BinaryStrat]
    +p:1 [in additions.Dichotomy]
    +P:1 [in hydras.solutions_exercises.isqrt]
    +p:1 [in gaia_hydras.nfwfgaia]
    +p:10 [in additions.FirstSteps]
    +p:10 [in additions.More_on_positive]
    +p:10 [in hydras.solutions_exercises.F_3]
    +p:101 [in hydras.Ackermann.checkPrf]
    +p:103 [in hydras.Ackermann.checkPrf]
    +p:105 [in hydras.Ackermann.checkPrf]
    +p:106 [in hydras.Ackermann.checkPrf]
    +p:107 [in hydras.Ackermann.checkPrf]
    +p:108 [in hydras.Ackermann.checkPrf]
    +p:109 [in hydras.Ackermann.checkPrf]
    +p:11 [in hydras.solutions_exercises.MinPR2]
    +p:11 [in hydras.MoreAck.expressibleExamples]
    +p:11 [in additions.More_on_positive]
    +p:11 [in hydras.solutions_exercises.MultisetWf]
    +p:11 [in hydras.Epsilon0.F_omega]
    +p:11 [in hydras.solutions_exercises.FibonacciPR]
    +P:11 [in hydras.Prelude.MoreDecidable]
    +p:110 [in hydras.Ackermann.checkPrf]
    +p:111 [in hydras.Prelude.Iterates]
    +p:111 [in hydras.Ackermann.checkPrf]
    +p:111 [in hydras.Ackermann.fol]
    +p:112 [in hydras.Ackermann.checkPrf]
    +p:113 [in hydras.Ackermann.checkPrf]
    +p:114 [in hydras.Ackermann.folProp]
    +p:115 [in hydras.Ackermann.checkPrf]
    +p:117 [in hydras.Ackermann.checkPrf]
    +p:1176 [in gaia_hydras.nfwfgaia]
    +p:1179 [in gaia_hydras.nfwfgaia]
    +p:118 [in hydras.Ackermann.fol]
    +p:1182 [in gaia_hydras.nfwfgaia]
    +p:1185 [in gaia_hydras.nfwfgaia]
    +p:1188 [in gaia_hydras.nfwfgaia]
    +p:119 [in hydras.Ackermann.checkPrf]
    +P:119 [in hydras.Prelude.Merge_Sort]
    +p:12 [in additions.Fib2]
    +p:12 [in additions.More_on_positive]
    +p:12 [in hydras.solutions_exercises.FibonacciPR]
    +p:121 [in hydras.Ackermann.checkPrf]
    +P:121 [in hydras.Epsilon0.Large_Sets]
    +p:121 [in hydras.Ackermann.primRec]
    +p:123 [in hydras.Ackermann.checkPrf]
    +P:124 [in hydras.Epsilon0.Large_Sets]
    +p:125 [in hydras.Ackermann.checkPrf]
    +p:125 [in hydras.Ackermann.primRec]
    +p:127 [in hydras.Ackermann.checkPrf]
    +p:127 [in hydras.Epsilon0.Hprime]
    +p:129 [in hydras.Ackermann.checkPrf]
    +p:13 [in additions.Fib2]
    +P:13 [in hydras.Prelude.Sort_spec]
    +p:13 [in additions.More_on_positive]
    +p:13 [in additions.Trace_exercise]
    +P:13 [in hydras.Schutte.Addition]
    +p:13 [in hydras.Schutte.Countable]
    +p:130 [in hydras.Ackermann.checkPrf]
    +p:131 [in hydras.Ackermann.checkPrf]
    +p:131 [in hydras.Epsilon0.Hprime]
    +p:132 [in hydras.rpo.term]
    +p:132 [in hydras.Ackermann.checkPrf]
    +p:133 [in hydras.Ackermann.checkPrf]
    +p:134 [in additions.fib]
    +p:1340 [in gaia_hydras.nfwfgaia]
    +p:135 [in hydras.Ackermann.checkPrf]
    +p:137 [in hydras.rpo.term]
    +p:137 [in hydras.Ackermann.checkPrf]
    +p:137 [in additions.Euclidean_Chains]
    +p:137 [in additions.fib]
    +p:138 [in hydras.Ackermann.checkPrf]
    +p:138 [in additions.Euclidean_Chains]
    +p:138 [in hydras.Epsilon0.Hprime]
    +p:139 [in hydras.Gamma0.T2]
    +p:139 [in hydras.Ackermann.checkPrf]
    +p:14 [in hydras.Prelude.More_Arith]
    +p:14 [in additions.FirstSteps]
    +p:14 [in hydras.solutions_exercises.FibonacciPR]
    +P:14 [in hydras.Schutte.PartialFun]
    +p:140 [in hydras.Ackermann.checkPrf]
    +p:140 [in additions.fib]
    +p:140 [in hydras.Epsilon0.Hprime]
    +p:1408 [in hydras.Ackermann.codeSubFormula]
    +p:141 [in hydras.Ackermann.checkPrf]
    +p:1413 [in hydras.Ackermann.codeSubFormula]
    +p:1415 [in hydras.Ackermann.codeSubFormula]
    +P:142 [in hydras.Prelude.Merge_Sort]
    +p:1420 [in hydras.Ackermann.codeSubFormula]
    +p:1425 [in hydras.Ackermann.codeSubFormula]
    +p:143 [in hydras.rpo.term]
    +p:143 [in hydras.Ackermann.checkPrf]
    +P:143 [in hydras.Prelude.Merge_Sort]
    +p:143 [in hydras.Epsilon0.Hprime]
    +P:144 [in hydras.Prelude.MoreLists]
    +p:145 [in hydras.Ackermann.checkPrf]
    +p:145 [in hydras.Epsilon0.Hprime]
    +p:1458 [in gaia_hydras.nfwfgaia]
    +p:146 [in hydras.rpo.term]
    +p:147 [in hydras.Ackermann.checkPrf]
    +p:149 [in hydras.Ackermann.checkPrf]
    +p:15 [in additions.More_on_positive]
    +p:151 [in hydras.rpo.term]
    +p:151 [in hydras.Ackermann.checkPrf]
    +P:152 [in hydras.Ackermann.fol]
    +p:153 [in hydras.Ackermann.checkPrf]
    +p:155 [in hydras.Ackermann.checkPrf]
    +p:155 [in additions.fib]
    +p:156 [in additions.fib]
    +p:1569 [in hydras.Ackermann.codeSubFormula]
    +p:157 [in hydras.Ackermann.checkPrf]
    +P:157 [in hydras.Ackermann.fol]
    +p:157 [in additions.fib]
    +p:1571 [in hydras.Ackermann.codeSubFormula]
    +p:1573 [in hydras.Ackermann.codeSubFormula]
    +p:1575 [in hydras.Ackermann.codeSubFormula]
    +p:1577 [in hydras.Ackermann.codeSubFormula]
    +p:1579 [in hydras.Ackermann.codeSubFormula]
    +p:1581 [in hydras.Ackermann.codeSubFormula]
    +p:1583 [in hydras.Ackermann.codeSubFormula]
    +p:1585 [in hydras.Ackermann.codeSubFormula]
    +p:1587 [in hydras.Ackermann.codeSubFormula]
    +p:1589 [in hydras.Ackermann.codeSubFormula]
    +p:159 [in hydras.Ackermann.checkPrf]
    +p:1591 [in hydras.Ackermann.codeSubFormula]
    +p:16 [in hydras.solutions_exercises.FibonacciPR]
    +p:16 [in hydras.Hydra.Omega2_Small]
    +p:161 [in hydras.Ackermann.checkPrf]
    +p:163 [in hydras.Ackermann.checkPrf]
    +P:163 [in hydras.Ackermann.fol]
    +p:164 [in hydras.rpo.term]
    +p:164 [in hydras.Ackermann.checkPrf]
    +p:165 [in hydras.Ackermann.checkPrf]
    +p:166 [in hydras.Ackermann.checkPrf]
    +p:167 [in hydras.Ackermann.checkPrf]
    +p:168 [in hydras.Ackermann.checkPrf]
    +p:169 [in hydras.Ackermann.checkPrf]
    +p:169 [in gaia_hydras.nfwfgaia]
    +p:17 [in hydras.Prelude.MoreLists]
    +p:17 [in additions.More_on_positive]
    +p:17 [in hydras.solutions_exercises.MultisetWf]
    +p:17 [in additions.fib]
    +P:17 [in hydras.Prelude.MoreDecidable]
    +p:17 [in hydras.Schutte.Countable]
    +p:170 [in hydras.Ackermann.checkPrf]
    +p:171 [in hydras.Ackermann.checkPrf]
    +p:172 [in hydras.Ackermann.checkPrf]
    +p:172 [in hydras.Ackermann.fol]
    +p:173 [in hydras.Ackermann.checkPrf]
    +p:174 [in hydras.Ackermann.checkPrf]
    +p:175 [in hydras.Ackermann.checkPrf]
    +p:175 [in hydras.rpo.rpo]
    +p:176 [in hydras.rpo.term]
    +p:176 [in hydras.Ackermann.checkPrf]
    +p:176 [in gaia_hydras.T1Bridge]
    +p:177 [in hydras.Ackermann.checkPrf]
    +p:178 [in hydras.Ackermann.checkPrf]
    +p:178 [in hydras.rpo.rpo]
    +p:179 [in hydras.rpo.term]
    +p:179 [in hydras.Ackermann.checkPrf]
    +p:18 [in hydras.Prelude.MoreLists]
    +p:18 [in additions.Compatibility]
    +p:18 [in hydras.solutions_exercises.FibonacciPR]
    +p:180 [in hydras.Ackermann.checkPrf]
    +p:180 [in gaia_hydras.T1Bridge]
    +p:180 [in additions.Euclidean_Chains]
    +p:181 [in hydras.Ackermann.checkPrf]
    +p:182 [in hydras.Ackermann.checkPrf]
    +p:1820 [in gaia_hydras.nfwfgaia]
    +p:1823 [in gaia_hydras.nfwfgaia]
    +p:1826 [in gaia_hydras.nfwfgaia]
    +p:1829 [in gaia_hydras.nfwfgaia]
    +p:183 [in hydras.rpo.term]
    +p:183 [in hydras.Ackermann.checkPrf]
    +p:1832 [in gaia_hydras.nfwfgaia]
    +p:184 [in hydras.Gamma0.Gamma0]
    +p:185 [in hydras.Ackermann.checkPrf]
    +p:186 [in hydras.Gamma0.Gamma0]
    +p:187 [in hydras.Ackermann.checkPrf]
    +p:189 [in hydras.Ackermann.checkPrf]
    +P:189 [in hydras.rpo.list_set]
    +P:19 [in hydras.Prelude.STDPP_compat]
    +p:19 [in hydras.solutions_exercises.F_3]
    +p:19 [in Goedel.rosser]
    +p:190 [in additions.Euclidean_Chains]
    +p:191 [in hydras.rpo.term]
    +p:191 [in hydras.Ackermann.checkPrf]
    +p:192 [in hydras.Ackermann.checkPrf]
    +p:193 [in hydras.Ackermann.checkPrf]
    +p:194 [in hydras.Ackermann.checkPrf]
    +p:195 [in hydras.Ackermann.checkPrf]
    +p:197 [in hydras.Ackermann.checkPrf]
    +p:199 [in hydras.Ackermann.checkPrf]
    +p:2 [in hydras.Prelude.More_Arith]
    +p:2 [in hydras.Epsilon0.F_omega]
    +p:2 [in gaia_hydras.onType]
    +p:2 [in hydras.Prelude.LibHyps_Experiments]
    +p:2 [in hydras.MoreAck.PrimRecExamples]
    +p:20 [in hydras.solutions_exercises.FibonacciPR]
    +p:20 [in gaia_hydras.ON_gfinite]
    +P:200 [in hydras.Ackermann.fol]
    +p:201 [in hydras.Ackermann.checkPrf]
    +p:203 [in hydras.Ackermann.checkPrf]
    +p:205 [in hydras.Epsilon0.T1]
    +p:205 [in hydras.Ackermann.checkPrf]
    +p:206 [in additions.Euclidean_Chains]
    +p:207 [in hydras.Epsilon0.T1]
    +p:207 [in hydras.Ackermann.checkPrf]
    +p:209 [in hydras.Ackermann.checkPrf]
    +p:21 [in hydras.Prelude.More_Arith]
    +p:21 [in additions.Compatibility]
    +p:21 [in hydras.Schutte.GRelations]
    +p:21 [in hydras.Schutte.Critical]
    +P:21 [in hydras.Prelude.STDPP_compat]
    +p:21 [in additions.fib]
    +p:21 [in hydras.Prelude.Simple_LexProd]
    +p:210 [in additions.Addition_Chains]
    +p:211 [in hydras.Ackermann.checkPrf]
    +p:212 [in hydras.Ackermann.checkPrf]
    +p:212 [in additions.Addition_Chains]
    +p:213 [in hydras.Ackermann.checkPrf]
    +p:213 [in additions.Euclidean_Chains]
    +p:214 [in hydras.Ackermann.checkPrf]
    +P:215 [in hydras.rpo.more_list]
    +p:215 [in hydras.Ackermann.checkPrf]
    +p:215 [in additions.Addition_Chains]
    +p:217 [in hydras.Ackermann.checkPrf]
    +p:217 [in additions.Addition_Chains]
    +p:219 [in hydras.Ackermann.checkPrf]
    +P:22 [in hydras.Prelude.DecPreOrder]
    +P:22 [in hydras.Schutte.MoreEpsilonIota]
    +p:22 [in gaia_hydras.ON_gfinite]
    +P:22 [in hydras.rpo.closure]
    +p:220 [in additions.Euclidean_Chains]
    +p:220 [in additions.Addition_Chains]
    +p:221 [in hydras.Ackermann.checkPrf]
    +p:222 [in additions.Addition_Chains]
    +p:223 [in hydras.Ackermann.checkPrf]
    +P:223 [in hydras.Ackermann.fol]
    +p:224 [in hydras.Ackermann.checkPrf]
    +P:225 [in hydras.rpo.more_list]
    +p:225 [in hydras.Ackermann.checkPrf]
    +p:226 [in hydras.Ackermann.checkPrf]
    +p:227 [in hydras.Ackermann.checkPrf]
    +p:228 [in hydras.Ackermann.checkPrf]
    +p:229 [in hydras.Ackermann.checkPrf]
    +p:23 [in additions.Compatibility]
    +P:23 [in hydras.MoreAck.Ack]
    +P:23 [in hydras.Prelude.STDPP_compat]
    +p:23 [in additions.fib]
    +p:23 [in hydras.MoreAck.PrimRecExamples]
    +p:23 [in hydras.Prelude.Simple_LexProd]
    +p:23 [in hydras.Schutte.Countable]
    +p:230 [in hydras.Ackermann.checkPrf]
    +p:231 [in hydras.Prelude.Iterates]
    +p:231 [in hydras.Ackermann.checkPrf]
    +p:235 [in hydras.Ackermann.checkPrf]
    +p:236 [in hydras.Ackermann.checkPrf]
    +p:237 [in hydras.Ackermann.checkPrf]
    +p:238 [in hydras.Ackermann.checkPrf]
    +p:239 [in hydras.Ackermann.checkPrf]
    +p:239 [in additions.Addition_Chains]
    +p:24 [in additions.More_on_positive]
    +p:24 [in hydras.Schutte.GRelations]
    +p:240 [in hydras.Ackermann.checkPrf]
    +p:241 [in hydras.Ackermann.checkPrf]
    +P:241 [in hydras.Ackermann.fol]
    +p:241 [in additions.Addition_Chains]
    +p:242 [in hydras.Ackermann.checkPrf]
    +p:243 [in hydras.Ackermann.checkPrf]
    +p:244 [in hydras.Ackermann.checkPrf]
    +p:245 [in hydras.Ackermann.checkPrf]
    +p:246 [in hydras.Ackermann.checkPrf]
    +p:247 [in hydras.Ackermann.checkPrf]
    +p:248 [in hydras.Ackermann.checkPrf]
    +p:249 [in hydras.Ackermann.checkPrf]
    +p:25 [in hydras.Ackermann.checkPrf]
    +P:25 [in hydras.Schutte.MoreEpsilonIota]
    +p:25 [in hydras.Schutte.Countable]
    +p:250 [in hydras.Ackermann.checkPrf]
    +p:251 [in hydras.Ackermann.checkPrf]
    +P:252 [in hydras.rpo.more_list]
    +p:252 [in hydras.Ackermann.checkPrf]
    +p:253 [in hydras.Ackermann.checkPrf]
    +p:254 [in hydras.Ackermann.checkPrf]
    +p:255 [in hydras.Ackermann.checkPrf]
    +p:255 [in additions.Addition_Chains]
    +p:256 [in hydras.Ackermann.checkPrf]
    +p:257 [in hydras.Ackermann.checkPrf]
    +p:258 [in hydras.Ackermann.checkPrf]
    +p:259 [in hydras.Ackermann.checkPrf]
    +p:26 [in additions.AM]
    +p:26 [in additions.More_on_positive]
    +P:26 [in hydras.MoreAck.Ack]
    +p:260 [in hydras.Ackermann.checkPrf]
    +p:261 [in hydras.Ackermann.checkPrf]
    +p:262 [in hydras.Ackermann.checkPrf]
    +p:263 [in hydras.Ackermann.checkPrf]
    +p:263 [in additions.Addition_Chains]
    +P:264 [in hydras.rpo.more_list]
    +p:268 [in hydras.Ackermann.checkPrf]
    +p:269 [in hydras.Epsilon0.T1]
    +p:269 [in hydras.Ackermann.checkPrf]
    +p:269 [in hydras.Gamma0.Gamma0]
    +p:27 [in hydras.Prelude.Iterates]
    +p:27 [in hydras.Ackermann.checkPrf]
    +P:27 [in hydras.Prelude.DecPreOrder]
    +p:270 [in hydras.Ackermann.checkPrf]
    +p:270 [in additions.Addition_Chains]
    +p:271 [in hydras.Ackermann.checkPrf]
    +p:272 [in hydras.Ackermann.checkPrf]
    +p:273 [in hydras.Ackermann.checkPrf]
    +p:273 [in additions.Addition_Chains]
    +p:274 [in hydras.Ackermann.checkPrf]
    +p:275 [in hydras.Ackermann.checkPrf]
    +P:275 [in gaia_hydras.nfwfgaia]
    +p:276 [in hydras.Ackermann.checkPrf]
    +p:276 [in additions.Addition_Chains]
    +p:277 [in hydras.Ackermann.checkPrf]
    +p:278 [in hydras.Ackermann.checkPrf]
    +p:279 [in hydras.Ackermann.checkPrf]
    +P:279 [in gaia_hydras.nfwfgaia]
    +p:28 [in hydras.Epsilon0.Epsilon0rpo]
    +p:28 [in hydras.Ackermann.checkPrf]
    +p:28 [in hydras.Schutte.GRelations]
    +P:280 [in hydras.Epsilon0.T1]
    +p:280 [in hydras.Ackermann.checkPrf]
    +p:281 [in hydras.Ackermann.checkPrf]
    +p:282 [in hydras.Ackermann.checkPrf]
    +p:283 [in hydras.Ackermann.checkPrf]
    +p:283 [in additions.Addition_Chains]
    +p:284 [in hydras.Ackermann.checkPrf]
    +p:284 [in additions.Addition_Chains]
    +p:285 [in hydras.Ackermann.checkPrf]
    +p:285 [in hydras.Ackermann.fol]
    +p:285 [in additions.Addition_Chains]
    +p:286 [in hydras.Ackermann.subAll]
    +p:286 [in hydras.Ackermann.checkPrf]
    +p:286 [in additions.Addition_Chains]
    +p:287 [in hydras.Ackermann.checkPrf]
    +p:287 [in additions.Addition_Chains]
    +p:288 [in hydras.Ackermann.checkPrf]
    +p:289 [in hydras.Ackermann.checkPrf]
    +P:289 [in gaia_hydras.nfwfgaia]
    +p:29 [in hydras.Ackermann.checkPrf]
    +p:29 [in hydras.MoreAck.Ack]
    +p:290 [in hydras.Ackermann.checkPrf]
    +p:291 [in hydras.Ackermann.subAll]
    +p:291 [in hydras.Ackermann.checkPrf]
    +P:291 [in hydras.Ackermann.fol]
    +p:292 [in hydras.Ackermann.checkPrf]
    +p:293 [in hydras.Ackermann.checkPrf]
    +p:294 [in hydras.Ackermann.checkPrf]
    +p:295 [in hydras.Ackermann.checkPrf]
    +p:296 [in hydras.Ackermann.checkPrf]
    +p:297 [in hydras.Ackermann.checkPrf]
    +p:298 [in hydras.Ackermann.checkPrf]
    +P:299 [in Goedel.PRrepresentable]
    +p:299 [in hydras.Ackermann.checkPrf]
    +p:3 [in hydras.Prelude.More_Arith]
    +p:3 [in additions.Strategies]
    +P:3 [in hydras.Schutte.MoreEpsilonIota]
    +p:3 [in hydras.solutions_exercises.MorePRExamples]
    +p:3 [in additions.BinaryStrat]
    +p:3 [in hydras.Hydra.Omega2_Small]
    +P:3 [in hydras.solutions_exercises.isqrt]
    +p:30 [in hydras.Ackermann.checkPrf]
    +p:30 [in Goedel.rosserPA]
    +p:300 [in hydras.Ackermann.checkPrf]
    +p:300 [in additions.Euclidean_Chains]
    +p:301 [in hydras.Ackermann.checkPrf]
    +p:302 [in hydras.Ackermann.checkPrf]
    +p:303 [in hydras.Ackermann.checkPrf]
    +p:304 [in hydras.Ackermann.checkPrf]
    +p:305 [in hydras.Ackermann.checkPrf]
    +p:306 [in hydras.Ackermann.checkPrf]
    +p:307 [in hydras.Ackermann.checkPrf]
    +p:308 [in hydras.Ackermann.checkPrf]
    +p:309 [in hydras.Ackermann.checkPrf]
    +p:31 [in hydras.Prelude.Iterates]
    +p:31 [in hydras.Ackermann.checkPrf]
    +p:31 [in additions.More_on_positive]
    +p:31 [in hydras.MoreAck.Ack]
    +p:31 [in additions.Dichotomy]
    +p:310 [in hydras.Ackermann.checkPrf]
    +p:311 [in hydras.Ackermann.checkPrf]
    +p:312 [in hydras.rpo.term]
    +p:312 [in hydras.Ackermann.checkPrf]
    +p:313 [in hydras.Ackermann.checkPrf]
    +p:314 [in hydras.Ackermann.checkPrf]
    +p:315 [in hydras.Ackermann.checkPrf]
    +p:316 [in hydras.Ackermann.checkPrf]
    +p:316 [in additions.Euclidean_Chains]
    +p:316 [in hydras.rpo.rpo]
    +p:317 [in hydras.rpo.term]
    +p:32 [in hydras.Ackermann.checkPrf]
    +P:32 [in hydras.Prelude.Sort_spec]
    +p:32 [in hydras.Schutte.GRelations]
    +p:32 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +p:32 [in additions.Euclidean_Chains]
    +p:32 [in additions.Dichotomy]
    +p:320 [in hydras.Ackermann.checkPrf]
    +p:321 [in hydras.Ackermann.checkPrf]
    +p:322 [in hydras.Ackermann.checkPrf]
    +p:322 [in additions.Euclidean_Chains]
    +p:323 [in hydras.rpo.term]
    +p:323 [in hydras.Ackermann.checkPrf]
    +p:324 [in hydras.Ackermann.checkPrf]
    +p:325 [in hydras.rpo.term]
    +p:325 [in hydras.Ackermann.checkPrf]
    +p:326 [in hydras.Ackermann.checkPrf]
    +p:327 [in hydras.Ackermann.checkPrf]
    +p:328 [in hydras.Ackermann.checkPrf]
    +p:329 [in hydras.rpo.term]
    +p:329 [in hydras.Ackermann.checkPrf]
    +p:329 [in hydras.Epsilon0.Paths]
    +p:33 [in hydras.Ackermann.checkPrf]
    +p:33 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +p:33 [in Goedel.codeSysPrf]
    +p:33 [in additions.Dichotomy]
    +p:33 [in gaia_hydras.nfwfgaia]
    +p:330 [in hydras.Ackermann.checkPrf]
    +p:331 [in hydras.Ackermann.checkPrf]
    +p:332 [in hydras.Ackermann.checkPrf]
    +p:333 [in hydras.Ackermann.checkPrf]
    +p:334 [in hydras.Ackermann.checkPrf]
    +p:334 [in additions.Euclidean_Chains]
    +p:335 [in hydras.Ackermann.checkPrf]
    +p:336 [in hydras.Ackermann.checkPrf]
    +p:337 [in hydras.Ackermann.checkPrf]
    +P:337 [in hydras.Ackermann.fol]
    +p:338 [in hydras.Ackermann.checkPrf]
    +p:339 [in hydras.Ackermann.checkPrf]
    +p:34 [in hydras.Ackermann.checkPrf]
    +p:34 [in additions.More_on_positive]
    +p:34 [in additions.Dichotomy]
    +p:340 [in hydras.Ackermann.checkPrf]
    +p:341 [in hydras.Ackermann.checkPrf]
    +p:342 [in hydras.rpo.term]
    +p:342 [in hydras.Ackermann.checkPrf]
    +p:343 [in hydras.Ackermann.checkPrf]
    +p:344 [in hydras.Ackermann.checkPrf]
    +p:345 [in hydras.Ackermann.checkPrf]
    +p:346 [in hydras.Ackermann.checkPrf]
    +p:347 [in hydras.Ackermann.checkPrf]
    +p:348 [in hydras.Ackermann.checkPrf]
    +p:349 [in hydras.Ackermann.checkPrf]
    +p:35 [in hydras.Ackermann.checkPrf]
    +p:35 [in hydras.Ackermann.fol]
    +p:35 [in additions.Dichotomy]
    +p:350 [in hydras.Ackermann.checkPrf]
    +p:351 [in hydras.Ackermann.checkPrf]
    +p:352 [in hydras.Ackermann.checkPrf]
    +p:355 [in hydras.rpo.term]
    +p:357 [in hydras.rpo.term]
    +p:357 [in hydras.Ackermann.checkPrf]
    +p:358 [in hydras.Ackermann.checkPrf]
    +p:359 [in hydras.Ackermann.checkPrf]
    +p:36 [in additions.Pow_variant]
    +p:36 [in hydras.Ackermann.checkPrf]
    +p:36 [in additions.Pow]
    +p:36 [in additions.More_on_positive]
    +p:36 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +p:36 [in additions.Dichotomy]
    +p:360 [in hydras.Ackermann.checkPrf]
    +p:361 [in hydras.Ackermann.checkPrf]
    +p:362 [in hydras.rpo.term]
    +p:362 [in hydras.Ackermann.checkPrf]
    +p:363 [in hydras.Ackermann.checkPrf]
    +p:363 [in hydras.Epsilon0.Paths]
    +p:364 [in hydras.Ackermann.checkPrf]
    +p:365 [in hydras.Ackermann.checkPrf]
    +p:366 [in hydras.Ackermann.checkPrf]
    +p:367 [in hydras.Ackermann.checkPrf]
    +p:368 [in hydras.Ackermann.checkPrf]
    +p:369 [in hydras.Ackermann.checkPrf]
    +p:37 [in hydras.Ackermann.checkPrf]
    +P:37 [in hydras.Prelude.DecPreOrder]
    +p:37 [in hydras.MoreAck.Ack]
    +p:37 [in additions.Dichotomy]
    +p:370 [in hydras.Ackermann.checkPrf]
    +p:371 [in hydras.Ackermann.checkPrf]
    +p:372 [in hydras.Ackermann.checkPrf]
    +p:373 [in hydras.rpo.term]
    +p:373 [in hydras.Ackermann.checkPrf]
    +p:374 [in hydras.Ackermann.checkPrf]
    +p:375 [in hydras.Ackermann.checkPrf]
    +p:375 [in additions.Euclidean_Chains]
    +p:376 [in hydras.Ackermann.checkPrf]
    +p:377 [in hydras.Ackermann.checkPrf]
    +p:378 [in hydras.Ackermann.checkPrf]
    +p:379 [in hydras.Ackermann.checkPrf]
    +p:38 [in hydras.Ackermann.checkPrf]
    +P:38 [in additions.More_on_positive]
    +p:38 [in hydras.Ackermann.fol]
    +P:38 [in hydras.rpo.list_set]
    +p:38 [in additions.Dichotomy]
    +p:380 [in hydras.Ackermann.checkPrf]
    +p:381 [in hydras.Ackermann.checkPrf]
    +P:381 [in hydras.Ackermann.fol]
    +p:382 [in hydras.Ackermann.checkPrf]
    +p:382 [in additions.Euclidean_Chains]
    +p:383 [in hydras.Ackermann.checkPrf]
    +p:384 [in hydras.Ackermann.checkPrf]
    +p:384 [in additions.Euclidean_Chains]
    +p:385 [in hydras.Ackermann.checkPrf]
    +p:386 [in hydras.Ackermann.checkPrf]
    +p:387 [in hydras.Ackermann.checkPrf]
    +p:388 [in hydras.Ackermann.checkPrf]
    +p:389 [in hydras.Ackermann.checkPrf]
    +p:39 [in hydras.Prelude.DecPreOrder_Instances]
    +p:39 [in additions.Compatibility]
    +p:39 [in hydras.Ackermann.checkPrf]
    +p:39 [in additions.More_on_positive]
    +p:39 [in additions.Dichotomy]
    +p:390 [in hydras.Ackermann.checkPrf]
    +p:390 [in additions.Euclidean_Chains]
    +p:391 [in hydras.Ackermann.checkPrf]
    +p:392 [in hydras.Ackermann.checkPrf]
    +p:395 [in hydras.Ackermann.checkPrf]
    +p:396 [in hydras.Ackermann.checkPrf]
    +p:397 [in additions.Euclidean_Chains]
    +p:398 [in hydras.Epsilon0.Paths]
    +p:399 [in hydras.Ackermann.checkPrf]
    +P:4 [in additions.Fib2]
    +p:4 [in additions.More_on_positive]
    +p:4 [in hydras.Epsilon0.F_omega]
    +p:4 [in hydras.solutions_exercises.FibonacciPR]
    +p:4 [in additions.Dichotomy]
    +p:40 [in hydras.Prelude.More_Arith]
    +p:40 [in hydras.Ackermann.checkPrf]
    +p:40 [in additions.More_on_positive]
    +p:40 [in additions.Naive]
    +P:40 [in hydras.Schutte.Schutte_basics]
    +p:40 [in additions.Dichotomy]
    +p:400 [in hydras.Ackermann.checkPrf]
    +p:401 [in hydras.Ackermann.checkPrf]
    +p:402 [in hydras.Ackermann.checkPrf]
    +p:403 [in hydras.Ackermann.checkPrf]
    +p:404 [in hydras.Ackermann.checkPrf]
    +p:405 [in hydras.Ackermann.checkPrf]
    +p:409 [in hydras.Ackermann.checkPrf]
    +p:41 [in hydras.Ackermann.checkPrf]
    +P:41 [in hydras.Prelude.Sort_spec]
    +P:41 [in hydras.Prelude.DecPreOrder]
    +p:41 [in additions.More_on_positive]
    +p:41 [in hydras.Ackermann.fol]
    +p:41 [in additions.Dichotomy]
    +P:410 [in hydras.Epsilon0.T1]
    +p:410 [in hydras.Ackermann.checkPrf]
    +p:411 [in hydras.Ackermann.checkPrf]
    +p:412 [in hydras.Ackermann.checkPrf]
    +p:413 [in hydras.Ackermann.checkPrf]
    +p:414 [in hydras.Ackermann.checkPrf]
    +p:415 [in hydras.Ackermann.checkPrf]
    +p:416 [in hydras.Ackermann.checkPrf]
    +p:417 [in hydras.Ackermann.checkPrf]
    +p:418 [in hydras.Ackermann.checkPrf]
    +p:419 [in hydras.Ackermann.checkPrf]
    +p:42 [in hydras.Prelude.More_Arith]
    +p:42 [in hydras.Ackermann.checkPrf]
    +p:42 [in additions.Dichotomy]
    +p:42 [in hydras.MoreAck.PrimRecExamples]
    +p:420 [in hydras.Ackermann.checkPrf]
    +p:421 [in hydras.Ackermann.checkPrf]
    +p:422 [in hydras.Ackermann.checkPrf]
    +p:423 [in hydras.Ackermann.checkPrf]
    +p:424 [in hydras.Ackermann.checkPrf]
    +p:425 [in hydras.Ackermann.checkPrf]
    +p:426 [in hydras.Ackermann.checkPrf]
    +p:427 [in hydras.Ackermann.checkPrf]
    +P:427 [in hydras.Ackermann.fol]
    +p:428 [in hydras.Ackermann.checkPrf]
    +p:429 [in hydras.Ackermann.checkPrf]
    +p:43 [in hydras.Ackermann.checkPrf]
    +p:43 [in additions.Dichotomy]
    +p:43 [in hydras.Prelude.MoreVectors]
    +p:430 [in hydras.Ackermann.checkPrf]
    +p:431 [in hydras.Ackermann.checkPrf]
    +p:432 [in hydras.Ackermann.checkPrf]
    +p:433 [in hydras.Ackermann.checkPrf]
    +p:434 [in hydras.Ackermann.checkPrf]
    +p:435 [in hydras.Ackermann.checkPrf]
    +P:435 [in hydras.Ackermann.fol]
    +p:436 [in hydras.Ackermann.checkPrf]
    +p:437 [in hydras.Ackermann.checkPrf]
    +p:438 [in hydras.Ackermann.checkPrf]
    +p:439 [in hydras.Ackermann.checkPrf]
    +P:44 [in hydras.Schutte.AP]
    +p:44 [in hydras.Ackermann.fol]
    +P:44 [in hydras.rpo.list_set]
    +p:440 [in hydras.Ackermann.checkPrf]
    +p:441 [in hydras.Ackermann.checkPrf]
    +p:442 [in hydras.Ackermann.checkPrf]
    +P:442 [in hydras.Gamma0.Gamma0]
    +p:443 [in hydras.Ackermann.checkPrf]
    +p:444 [in hydras.Ackermann.checkPrf]
    +P:446 [in hydras.Gamma0.Gamma0]
    +p:447 [in hydras.Ackermann.checkPrf]
    +p:448 [in hydras.Ackermann.checkPrf]
    +p:45 [in hydras.Prelude.More_Arith]
    +p:45 [in additions.Pow_variant]
    +p:45 [in hydras.Ackermann.checkPrf]
    +p:45 [in additions.Pow]
    +p:451 [in hydras.Ackermann.checkPrf]
    +p:456 [in hydras.Ackermann.checkPrf]
    +p:457 [in hydras.Ackermann.checkPrf]
    +p:458 [in hydras.Ackermann.checkPrf]
    +p:459 [in hydras.Ackermann.checkPrf]
    +p:46 [in additions.FirstSteps]
    +p:460 [in hydras.Ackermann.checkPrf]
    +p:461 [in hydras.Ackermann.checkPrf]
    +p:462 [in hydras.Ackermann.checkPrf]
    +p:463 [in hydras.Ackermann.checkPrf]
    +p:464 [in hydras.Ackermann.checkPrf]
    +p:465 [in hydras.Ackermann.checkPrf]
    +p:466 [in hydras.Ackermann.checkPrf]
    +p:467 [in hydras.Ackermann.checkPrf]
    +p:468 [in hydras.Ackermann.checkPrf]
    +p:469 [in hydras.Ackermann.checkPrf]
    +p:47 [in hydras.Ackermann.checkPrf]
    +p:47 [in hydras.solutions_exercises.MultisetWf]
    +p:47 [in hydras.Ackermann.fol]
    +p:470 [in hydras.Ackermann.checkPrf]
    +p:471 [in hydras.Ackermann.checkPrf]
    +P:471 [in hydras.Gamma0.Gamma0]
    +p:472 [in hydras.Ackermann.checkPrf]
    +p:472 [in additions.Euclidean_Chains]
    +p:473 [in hydras.Ackermann.checkPrf]
    +p:474 [in hydras.Ackermann.checkPrf]
    +p:475 [in Goedel.PRrepresentable]
    +p:475 [in hydras.Ackermann.checkPrf]
    +p:475 [in gaia_hydras.nfwfgaia]
    +p:476 [in hydras.Ackermann.checkPrf]
    +p:477 [in hydras.Ackermann.checkPrf]
    +p:478 [in hydras.Ackermann.checkPrf]
    +p:478 [in gaia_hydras.nfwfgaia]
    +p:479 [in hydras.Ackermann.checkPrf]
    +p:48 [in hydras.Schutte.Correctness_E0]
    +p:48 [in additions.FirstSteps]
    +p:48 [in hydras.MoreAck.Ack]
    +P:48 [in hydras.rpo.list_set]
    +p:480 [in hydras.Ackermann.checkPrf]
    +p:481 [in hydras.Ackermann.checkPrf]
    +p:481 [in gaia_hydras.nfwfgaia]
    +p:482 [in hydras.Ackermann.checkPrf]
    +p:483 [in hydras.Ackermann.checkPrf]
    +p:484 [in hydras.Ackermann.checkPrf]
    +p:484 [in gaia_hydras.nfwfgaia]
    +p:485 [in hydras.Ackermann.checkPrf]
    +p:487 [in gaia_hydras.nfwfgaia]
    +p:488 [in hydras.Ackermann.checkPrf]
    +p:489 [in hydras.Ackermann.checkPrf]
    +p:49 [in hydras.Ackermann.checkPrf]
    +P:49 [in hydras.Prelude.MoreVectors]
    +p:492 [in hydras.Ackermann.checkPrf]
    +p:493 [in hydras.Ackermann.checkPrf]
    +p:494 [in hydras.Ackermann.checkPrf]
    +p:495 [in hydras.Ackermann.checkPrf]
    +p:496 [in hydras.Ackermann.checkPrf]
    +p:497 [in hydras.Ackermann.checkPrf]
    +p:498 [in hydras.Ackermann.checkPrf]
    +p:499 [in hydras.Ackermann.checkPrf]
    +p:5 [in hydras.Prelude.First_toggle]
    +p:5 [in additions.Strategies]
    +p:5 [in additions.More_on_positive]
    +p:5 [in hydras.Epsilon0.F_omega]
    +p:5 [in hydras.Prelude.LibHyps_Experiments]
    +p:5 [in additions.Dichotomy]
    +p:50 [in hydras.Prelude.More_Arith]
    +p:50 [in hydras.Ackermann.fol]
    +p:500 [in hydras.Ackermann.checkPrf]
    +p:501 [in hydras.Ackermann.checkPrf]
    +P:502 [in gaia_hydras.nfwfgaia]
    +p:504 [in hydras.Ackermann.checkPrf]
    +p:505 [in hydras.Ackermann.checkPrf]
    +P:505 [in gaia_hydras.nfwfgaia]
    +p:507 [in hydras.Epsilon0.T1]
    +p:508 [in hydras.Ackermann.checkPrf]
    +P:508 [in gaia_hydras.nfwfgaia]
    +p:509 [in hydras.Ackermann.checkPrf]
    +p:51 [in hydras.Ackermann.checkPrf]
    +P:51 [in hydras.Prelude.DecPreOrder]
    +P:51 [in hydras.Schutte.Schutte_basics]
    +P:51 [in hydras.rpo.list_set]
    +p:512 [in hydras.Epsilon0.T1]
    +p:512 [in hydras.Ackermann.checkPrf]
    +p:513 [in hydras.Ackermann.checkPrf]
    +p:516 [in hydras.Ackermann.checkPrf]
    +p:519 [in hydras.Ackermann.checkPrf]
    +p:52 [in hydras.Prelude.Iterates]
    +p:52 [in hydras.Ackermann.code]
    +p:521 [in hydras.Ackermann.checkPrf]
    +p:522 [in hydras.Ackermann.checkPrf]
    +p:523 [in hydras.Ackermann.checkPrf]
    +p:524 [in hydras.Ackermann.checkPrf]
    +p:525 [in hydras.Ackermann.checkPrf]
    +p:526 [in hydras.Ackermann.checkPrf]
    +p:527 [in hydras.Ackermann.checkPrf]
    +p:528 [in hydras.Ackermann.checkPrf]
    +p:528 [in hydras.Epsilon0.Paths]
    +p:529 [in hydras.Ackermann.checkPrf]
    +p:53 [in hydras.OrdinalNotations.ON_Omega2]
    +p:53 [in hydras.Ackermann.checkPrf]
    +p:530 [in hydras.Ackermann.checkPrf]
    +p:531 [in hydras.Ackermann.checkPrf]
    +p:532 [in hydras.Ackermann.checkPrf]
    +p:533 [in hydras.Ackermann.checkPrf]
    +p:535 [in hydras.Ackermann.checkPrf]
    +p:54 [in hydras.solutions_exercises.MultisetWf]
    +P:54 [in hydras.rpo.list_set]
    +p:540 [in hydras.Gamma0.Gamma0]
    +p:546 [in hydras.Epsilon0.T1]
    +p:546 [in hydras.Gamma0.Gamma0]
    +p:549 [in hydras.Gamma0.Gamma0]
    +p:55 [in hydras.OrdinalNotations.ON_Omega2]
    +p:55 [in hydras.Ackermann.checkPrf]
    +P:55 [in hydras.Prelude.MoreVectors]
    +p:552 [in hydras.Gamma0.Gamma0]
    +p:56 [in hydras.Prelude.More_Arith]
    +p:56 [in hydras.Prelude.Iterates]
    +P:56 [in hydras.Prelude.DecPreOrder]
    +p:561 [in hydras.Epsilon0.T1]
    +p:566 [in hydras.Epsilon0.T1]
    +p:57 [in hydras.Ackermann.checkPrf]
    +p:57 [in hydras.solutions_exercises.MultisetWf]
    +p:58 [in hydras.MoreAck.Ack]
    +P:58 [in hydras.rpo.list_set]
    +p:59 [in hydras.Ackermann.checkPrf]
    +p:59 [in gaia_hydras.nfwfgaia]
    +p:596 [in hydras.Epsilon0.T1]
    +P:6 [in hydras.Prelude.Compat815]
    +p:6 [in additions.More_on_positive]
    +p:6 [in hydras.solutions_exercises.FibonacciPR]
    +P:6 [in hydras.Prelude.MoreDecidable]
    +p:60 [in Goedel.codeSysPrf]
    +p:600 [in hydras.Epsilon0.T1]
    +p:604 [in hydras.Ackermann.primRec]
    +p:605 [in hydras.Epsilon0.T1]
    +p:607 [in hydras.Ackermann.primRec]
    +P:607 [in hydras.Gamma0.Gamma0]
    +p:608 [in hydras.Epsilon0.T1]
    +p:61 [in hydras.Ackermann.checkPrf]
    +P:61 [in hydras.Prelude.DecPreOrder]
    +p:612 [in hydras.Epsilon0.T1]
    +P:612 [in hydras.Gamma0.Gamma0]
    +p:615 [in hydras.Epsilon0.T1]
    +P:615 [in hydras.Gamma0.Gamma0]
    +p:619 [in hydras.Ackermann.primRec]
    +P:62 [in hydras.rpo.list_set]
    +p:624 [in hydras.Epsilon0.T1]
    +p:63 [in additions.Pow_variant]
    +p:63 [in hydras.Ackermann.checkPrf]
    +p:63 [in additions.Pow]
    +p:63 [in additions.More_on_positive]
    +p:630 [in hydras.Epsilon0.T1]
    +p:635 [in hydras.Ackermann.primRec]
    +P:64 [in hydras.rpo.more_list]
    +p:64 [in hydras.Ackermann.fol]
    +p:64 [in additions.fib]
    +p:64 [in hydras.rpo.dickson]
    +p:640 [in hydras.Ackermann.primRec]
    +p:65 [in hydras.Ackermann.checkPrf]
    +p:65 [in hydras.MoreAck.Ack]
    +p:650 [in hydras.Ackermann.checkPrf]
    +p:650 [in gaia_hydras.nfwfgaia]
    +p:66 [in additions.Pow_variant]
    +p:66 [in hydras.Ackermann.checkPrf]
    +p:66 [in additions.Pow]
    +P:66 [in hydras.Prelude.DecPreOrder]
    +P:66 [in hydras.rpo.list_set]
    +p:662 [in hydras.Ackermann.primRec]
    +p:67 [in hydras.Ackermann.checkPrf]
    +p:679 [in hydras.Ackermann.checkPrf]
    +p:68 [in hydras.Ackermann.checkPrf]
    +p:68 [in hydras.MoreAck.Ack]
    +p:680 [in hydras.Ackermann.checkPrf]
    +p:681 [in hydras.Ackermann.checkPrf]
    +p:682 [in hydras.Ackermann.checkPrf]
    +p:683 [in hydras.Ackermann.checkPrf]
    +p:684 [in hydras.Ackermann.checkPrf]
    +p:685 [in hydras.Ackermann.checkPrf]
    +p:686 [in hydras.Ackermann.checkPrf]
    +p:687 [in hydras.Ackermann.checkPrf]
    +p:688 [in hydras.Ackermann.checkPrf]
    +p:689 [in hydras.Ackermann.checkPrf]
    +p:69 [in hydras.Ackermann.checkPrf]
    +p:690 [in hydras.Ackermann.checkPrf]
    +p:691 [in hydras.Ackermann.checkPrf]
    +p:692 [in hydras.Ackermann.checkPrf]
    +p:693 [in hydras.Ackermann.checkPrf]
    +p:694 [in hydras.Ackermann.checkPrf]
    +p:695 [in hydras.Ackermann.checkPrf]
    +p:696 [in hydras.Ackermann.checkPrf]
    +p:697 [in hydras.Ackermann.checkPrf]
    +P:697 [in hydras.Ackermann.primRec]
    +p:698 [in hydras.Ackermann.checkPrf]
    +p:699 [in hydras.Ackermann.checkPrf]
    +p:7 [in hydras.Epsilon0.F_omega]
    +p:7 [in hydras.solutions_exercises.FibonacciPR]
    +p:7 [in additions.Dichotomy]
    +p:7 [in hydras.Prelude.Simple_LexProd]
    +p:70 [in additions.AM]
    +P:70 [in hydras.Epsilon0.Epsilon0rpo]
    +p:70 [in hydras.Ackermann.checkPrf]
    +p:70 [in hydras.Ackermann.codeSubFormula]
    +p:70 [in additions.fib]
    +p:700 [in hydras.Ackermann.checkPrf]
    +p:701 [in hydras.Ackermann.checkPrf]
    +p:702 [in hydras.Ackermann.checkPrf]
    +P:702 [in hydras.Ackermann.primRec]
    +p:703 [in hydras.Ackermann.checkPrf]
    +p:704 [in hydras.Ackermann.checkPrf]
    +p:705 [in hydras.Ackermann.checkPrf]
    +p:706 [in hydras.Ackermann.checkPrf]
    +p:706 [in gaia_hydras.nfwfgaia]
    +p:707 [in hydras.Ackermann.checkPrf]
    +p:708 [in hydras.Ackermann.checkPrf]
    +P:708 [in hydras.Ackermann.primRec]
    +p:709 [in hydras.Ackermann.checkPrf]
    +p:71 [in additions.Pow_variant]
    +p:71 [in hydras.Ackermann.checkPrf]
    +p:71 [in additions.Pow]
    +p:71 [in hydras.Ackermann.fol]
    +p:71 [in hydras.Schutte.Addition]
    +p:710 [in hydras.Ackermann.checkPrf]
    +p:711 [in hydras.Ackermann.checkPrf]
    +P:711 [in hydras.Ackermann.primRec]
    +p:712 [in hydras.Ackermann.checkPrf]
    +p:713 [in hydras.Ackermann.checkPrf]
    +P:713 [in hydras.Ackermann.primRec]
    +p:714 [in hydras.Ackermann.checkPrf]
    +P:714 [in hydras.Ackermann.primRec]
    +p:715 [in hydras.Ackermann.checkPrf]
    +P:715 [in hydras.Ackermann.primRec]
    +p:716 [in hydras.Ackermann.checkPrf]
    +p:716 [in gaia_hydras.nfwfgaia]
    +p:717 [in hydras.Ackermann.checkPrf]
    +p:718 [in hydras.Ackermann.checkPrf]
    +p:719 [in hydras.Ackermann.checkPrf]
    +p:72 [in hydras.Prelude.MoreLists]
    +p:72 [in hydras.Ackermann.checkPrf]
    +P:72 [in hydras.Prelude.DecPreOrder]
    +p:720 [in hydras.Ackermann.checkPrf]
    +p:721 [in hydras.Ackermann.checkPrf]
    +p:722 [in hydras.Ackermann.checkPrf]
    +p:723 [in hydras.Ackermann.checkPrf]
    +p:724 [in hydras.Ackermann.checkPrf]
    +p:725 [in hydras.Ackermann.checkPrf]
    +p:726 [in hydras.Ackermann.checkPrf]
    +p:727 [in hydras.Ackermann.checkPrf]
    +p:728 [in hydras.Ackermann.checkPrf]
    +p:729 [in hydras.Ackermann.checkPrf]
    +p:73 [in hydras.Ackermann.checkPrf]
    +p:732 [in hydras.Ackermann.checkPrf]
    +p:733 [in hydras.Ackermann.checkPrf]
    +p:734 [in hydras.Epsilon0.T1]
    +p:734 [in hydras.Ackermann.checkPrf]
    +p:735 [in hydras.Ackermann.checkPrf]
    +p:736 [in hydras.Ackermann.checkPrf]
    +p:737 [in hydras.Ackermann.checkPrf]
    +p:738 [in hydras.Ackermann.checkPrf]
    +p:739 [in hydras.Ackermann.checkPrf]
    +P:74 [in hydras.Epsilon0.Epsilon0rpo]
    +P:74 [in hydras.rpo.more_list]
    +p:74 [in additions.Pow]
    +p:74 [in hydras.Schutte.Addition]
    +p:740 [in hydras.Ackermann.checkPrf]
    +p:741 [in hydras.Ackermann.checkPrf]
    +p:742 [in hydras.Ackermann.checkPrf]
    +p:743 [in hydras.Ackermann.checkPrf]
    +p:744 [in hydras.Ackermann.checkPrf]
    +p:745 [in hydras.Ackermann.checkPrf]
    +p:746 [in hydras.Ackermann.checkPrf]
    +p:747 [in hydras.Ackermann.checkPrf]
    +p:748 [in hydras.Ackermann.checkPrf]
    +p:749 [in hydras.Ackermann.checkPrf]
    +p:75 [in hydras.OrdinalNotations.ON_Omega2]
    +p:75 [in additions.Pow_variant]
    +p:75 [in hydras.Ackermann.checkPrf]
    +p:75 [in hydras.Ackermann.codeSubFormula]
    +p:750 [in hydras.Ackermann.checkPrf]
    +p:751 [in hydras.Ackermann.checkPrf]
    +p:752 [in hydras.Ackermann.checkPrf]
    +p:753 [in hydras.Ackermann.checkPrf]
    +p:754 [in hydras.Ackermann.checkPrf]
    +p:755 [in hydras.Ackermann.checkPrf]
    +p:758 [in hydras.Ackermann.checkPrf]
    +p:759 [in hydras.Ackermann.checkPrf]
    +P:76 [in hydras.Prelude.Sort_spec]
    +p:76 [in additions.Euclidean_Chains]
    +p:76 [in hydras.Hydra.BigBattle]
    +p:76 [in hydras.Epsilon0.Hprime]
    +p:762 [in hydras.Ackermann.checkPrf]
    +p:763 [in hydras.Ackermann.checkPrf]
    +p:764 [in hydras.Ackermann.checkPrf]
    +p:765 [in hydras.Ackermann.checkPrf]
    +p:766 [in hydras.Ackermann.checkPrf]
    +p:767 [in hydras.Ackermann.checkPrf]
    +p:768 [in hydras.Ackermann.checkPrf]
    +p:769 [in hydras.Ackermann.checkPrf]
    +p:77 [in hydras.Prelude.MoreLists]
    +p:77 [in hydras.Ackermann.checkPrf]
    +p:77 [in additions.Addition_Chains]
    +p:770 [in hydras.Ackermann.checkPrf]
    +p:771 [in hydras.Ackermann.checkPrf]
    +p:772 [in hydras.Ackermann.checkPrf]
    +p:773 [in hydras.Ackermann.checkPrf]
    +p:774 [in hydras.Ackermann.checkPrf]
    +p:775 [in hydras.Ackermann.checkPrf]
    +p:776 [in hydras.Ackermann.checkPrf]
    +p:777 [in hydras.Ackermann.checkPrf]
    +p:778 [in hydras.Ackermann.checkPrf]
    +p:779 [in hydras.Ackermann.checkPrf]
    +p:78 [in additions.Pow_variant]
    +p:78 [in additions.Pow]
    +P:78 [in hydras.Prelude.DecPreOrder]
    +p:78 [in additions.Euclidean_Chains]
    +p:78 [in hydras.Schutte.PartialFun]
    +p:78 [in Goedel.codeSysPrf]
    +p:78 [in hydras.Epsilon0.Hprime]
    +p:780 [in hydras.Ackermann.checkPrf]
    +p:781 [in hydras.Ackermann.checkPrf]
    +p:782 [in hydras.Ackermann.checkPrf]
    +p:783 [in hydras.Ackermann.checkPrf]
    +p:784 [in hydras.Ackermann.checkPrf]
    +p:785 [in hydras.Ackermann.checkPrf]
    +p:79 [in hydras.Ackermann.checkPrf]
    +p:79 [in additions.Addition_Chains]
    +p:790 [in hydras.Ackermann.checkPrf]
    +p:797 [in hydras.Ackermann.checkPrf]
    +p:8 [in gaia_hydras.T1Choice]
    +p:8 [in hydras.OrdinalNotations.ON_Omega2]
    +p:8 [in additions.Fib2]
    +p:8 [in additions.More_on_positive]
    +P:8 [in hydras.Schutte.MoreEpsilonIota]
    +P:8 [in hydras.Hydra.Hydra_Definitions]
    +p:80 [in additions.AM]
    +p:80 [in hydras.Prelude.MoreLists]
    +p:80 [in hydras.Ackermann.folProp]
    +p:803 [in hydras.Ackermann.checkPrf]
    +p:81 [in hydras.Ackermann.checkPrf]
    +p:81 [in additions.Pow]
    +p:81 [in hydras.MoreAck.Ack]
    +p:813 [in hydras.Ackermann.checkPrf]
    +p:815 [in hydras.Ackermann.checkPrf]
    +p:817 [in hydras.Ackermann.checkPrf]
    +p:818 [in hydras.Ackermann.checkPrf]
    +p:819 [in hydras.Ackermann.checkPrf]
    +p:82 [in hydras.Ackermann.checkPrf]
    +p:82 [in hydras.Ackermann.codeSubFormula]
    +p:82 [in hydras.Epsilon0.Hprime]
    +p:820 [in hydras.Ackermann.checkPrf]
    +p:822 [in hydras.Ackermann.checkPrf]
    +p:824 [in hydras.Ackermann.checkPrf]
    +p:826 [in hydras.Ackermann.checkPrf]
    +p:828 [in hydras.Ackermann.checkPrf]
    +p:83 [in hydras.Ackermann.checkPrf]
    +P:83 [in hydras.Prelude.DecPreOrder]
    +p:830 [in hydras.Ackermann.checkPrf]
    +p:832 [in hydras.Ackermann.checkPrf]
    +p:834 [in hydras.Ackermann.checkPrf]
    +p:837 [in hydras.Ackermann.checkPrf]
    +p:84 [in hydras.Ackermann.checkPrf]
    +p:84 [in additions.fib]
    +p:848 [in hydras.Ackermann.checkPrf]
    +p:85 [in hydras.Ackermann.checkPrf]
    +p:85 [in hydras.Ackermann.codeSubFormula]
    +p:85 [in Goedel.codeSysPrf]
    +P:85 [in hydras.Prelude.MoreVectors]
    +p:850 [in gaia_hydras.nfwfgaia]
    +p:86 [in hydras.Ackermann.checkPrf]
    +P:86 [in hydras.Prelude.DecPreOrder]
    +p:86 [in hydras.Epsilon0.Large_Sets]
    +p:86 [in hydras.MoreAck.Ack]
    +p:86 [in additions.fib]
    +p:861 [in hydras.Ackermann.checkPrf]
    +p:866 [in hydras.Ackermann.checkPrf]
    +p:867 [in hydras.Ackermann.checkPrf]
    +p:869 [in hydras.Ackermann.checkPrf]
    +p:87 [in hydras.Prelude.MoreLists]
    +p:87 [in hydras.Ackermann.checkPrf]
    +p:87 [in additions.Pow]
    +p:872 [in hydras.Ackermann.checkPrf]
    +p:875 [in hydras.Ackermann.checkPrf]
    +p:879 [in hydras.Ackermann.checkPrf]
    +p:88 [in additions.Pow_variant]
    +p:88 [in hydras.Ackermann.checkPrf]
    +p:88 [in hydras.rpo.rpo]
    +p:882 [in hydras.Ackermann.checkPrf]
    +p:89 [in hydras.Ackermann.checkPrf]
    +P:89 [in hydras.Prelude.MoreVectors]
    +p:9 [in hydras.MoreAck.expressibleExamples]
    +p:9 [in additions.Strategies]
    +p:9 [in hydras.Epsilon0.F_omega]
    +p:9 [in hydras.solutions_exercises.FibonacciPR]
    +p:9 [in additions.Naive]
    +P:9 [in hydras.Prelude.STDPP_compat]
    +p:9 [in additions.Dichotomy]
    +p:90 [in hydras.Ackermann.checkPrf]
    +p:90 [in hydras.Ackermann.codeSubFormula]
    +p:90 [in Goedel.codeSysPrf]
    +p:91 [in hydras.Ackermann.checkPrf]
    +p:91 [in additions.Pow]
    +p:91 [in additions.fib]
    +p:92 [in hydras.Ackermann.checkPrf]
    +p:93 [in hydras.Ackermann.checkPrf]
    +p:937 [in gaia_hydras.nfwfgaia]
    +p:94 [in hydras.Ackermann.checkPrf]
    +p:94 [in additions.Pow]
    +p:94 [in Goedel.codeSysPrf]
    +p:95 [in hydras.Ackermann.checkPrf]
    +p:951 [in gaia_hydras.nfwfgaia]
    +p:953 [in gaia_hydras.nfwfgaia]
    +p:96 [in hydras.Prelude.MoreLists]
    +p:96 [in hydras.Ackermann.checkPrf]
    +p:96 [in additions.fib]
    +p:97 [in hydras.Ackermann.checkPrf]
    +p:97 [in additions.Pow]
    +p:99 [in hydras.Prelude.MoreLists]
    +p:99 [in hydras.Ackermann.checkPrf]
    +p:99 [in hydras.Ackermann.folProp]
    +

    Q

    +q':11 [in hydras.Prelude.First_toggle]
    +q':30 [in hydras.Prelude.More_Arith]
    +q':36 [in hydras.Prelude.More_Arith]
    +q':59 [in hydras.Prelude.More_Arith]
    +q':67 [in hydras.rpo.dickson]
    +q:10 [in additions.Strategies]
    +q:100 [in hydras.Ackermann.codeSubFormula]
    +q:101 [in hydras.Prelude.MoreLists]
    +q:101 [in hydras.Ackermann.codeSubFormula]
    +q:105 [in hydras.Ackermann.codeSubFormula]
    +q:106 [in hydras.Ackermann.codeSubFormula]
    +q:107 [in hydras.Ackermann.folProp]
    +q:108 [in hydras.Ackermann.folProp]
    +q:113 [in hydras.Ackermann.codeSubFormula]
    +q:114 [in hydras.Ackermann.fol]
    +Q:114 [in gaia_hydras.nfwfgaia]
    +q:115 [in hydras.Ackermann.codeSubFormula]
    +q:12 [in hydras.Prelude.First_toggle]
    +q:12 [in hydras.MoreAck.AckNotPR]
    +q:121 [in hydras.Ackermann.fol]
    +q:126 [in hydras.Ackermann.fol]
    +q:13 [in hydras.Prelude.First_toggle]
    +q:130 [in hydras.Ackermann.folProp]
    +q:131 [in hydras.Ackermann.fol]
    +q:132 [in hydras.Ackermann.folProp]
    +q:14 [in hydras.Prelude.First_toggle]
    +q:14 [in additions.More_on_positive]
    +q:14 [in additions.Trace_exercise]
    +q:15 [in hydras.Prelude.More_Arith]
    +q:15 [in hydras.Prelude.First_toggle]
    +Q:15 [in hydras.Schutte.MoreEpsilonIota]
    +Q:15 [in hydras.Schutte.PartialFun]
    +q:16 [in additions.More_on_positive]
    +Q:162 [in hydras.Ackermann.fol]
    +q:17 [in hydras.Hydra.Omega2_Small]
    +q:172 [in hydras.rpo.term]
    +q:173 [in hydras.Ackermann.fol]
    +q:174 [in hydras.Ackermann.fol]
    +q:176 [in hydras.Ackermann.fol]
    +q:18 [in additions.More_on_positive]
    +q:187 [in hydras.Ackermann.fol]
    +q:19 [in hydras.Prelude.MoreLists]
    +q:193 [in hydras.Ackermann.fol]
    +q:21 [in Goedel.rosser]
    +q:22 [in hydras.Prelude.Simple_LexProd]
    +q:23 [in additions.AM]
    +q:24 [in Goedel.rosser]
    +q:24 [in hydras.Prelude.Simple_LexProd]
    +Q:240 [in hydras.Ackermann.fol]
    +q:255 [in hydras.Ackermann.fol]
    +q:258 [in hydras.Ackermann.fol]
    +q:259 [in hydras.Ackermann.fol]
    +q:264 [in hydras.Ackermann.subAll]
    +q:265 [in hydras.Ackermann.subAll]
    +q:265 [in hydras.Ackermann.fol]
    +q:266 [in hydras.Ackermann.fol]
    +q:27 [in hydras.Schutte.GRelations]
    +q:277 [in hydras.Ackermann.fol]
    +q:279 [in hydras.Ackermann.fol]
    +Q:280 [in gaia_hydras.nfwfgaia]
    +q:286 [in hydras.Ackermann.fol]
    +q:287 [in hydras.Ackermann.fol]
    +q:29 [in hydras.Prelude.More_Arith]
    +Q:290 [in hydras.Ackermann.fol]
    +q:291 [in additions.Euclidean_Chains]
    +q:296 [in additions.Euclidean_Chains]
    +q:3 [in hydras.Prelude.LibHyps_Experiments]
    +q:3 [in hydras.MoreAck.PrimRecExamples]
    +q:30 [in hydras.MoreAck.Ack]
    +q:301 [in additions.Euclidean_Chains]
    +q:305 [in hydras.Ackermann.fol]
    +q:308 [in hydras.Ackermann.fol]
    +q:309 [in hydras.Ackermann.fol]
    +q:31 [in hydras.Schutte.GRelations]
    +q:315 [in hydras.Ackermann.fol]
    +q:316 [in hydras.Ackermann.fol]
    +q:317 [in additions.Euclidean_Chains]
    +q:32 [in Goedel.rosserPA]
    +q:327 [in hydras.Ackermann.fol]
    +q:329 [in hydras.Ackermann.fol]
    +q:332 [in hydras.Ackermann.fol]
    +Q:336 [in hydras.Ackermann.fol]
    +q:34 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +q:35 [in hydras.Prelude.More_Arith]
    +q:35 [in Goedel.rosserPA]
    +q:350 [in hydras.rpo.term]
    +q:351 [in hydras.Ackermann.fol]
    +q:354 [in hydras.Ackermann.fol]
    +q:355 [in hydras.Ackermann.fol]
    +q:361 [in additions.Euclidean_Chains]
    +q:361 [in hydras.Ackermann.fol]
    +q:362 [in hydras.Ackermann.fol]
    +q:367 [in additions.Euclidean_Chains]
    +q:37 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +q:373 [in additions.Euclidean_Chains]
    +q:373 [in hydras.Ackermann.fol]
    +q:375 [in hydras.Ackermann.fol]
    +q:377 [in hydras.Ackermann.fol]
    +q:380 [in additions.Euclidean_Chains]
    +Q:380 [in hydras.Ackermann.fol]
    +q:387 [in additions.Euclidean_Chains]
    +q:393 [in additions.Euclidean_Chains]
    +q:395 [in hydras.Ackermann.fol]
    +q:398 [in hydras.Ackermann.fol]
    +q:399 [in hydras.Ackermann.fol]
    +Q:4 [in hydras.Schutte.MoreEpsilonIota]
    +q:400 [in additions.Euclidean_Chains]
    +q:405 [in hydras.Ackermann.fol]
    +q:406 [in hydras.Ackermann.fol]
    +q:417 [in hydras.Ackermann.fol]
    +q:419 [in hydras.Ackermann.fol]
    +q:422 [in hydras.Ackermann.fol]
    +q:425 [in hydras.Ackermann.fol]
    +q:43 [in hydras.Prelude.More_Arith]
    +q:44 [in additions.More_on_positive]
    +Q:447 [in hydras.Gamma0.Gamma0]
    +q:46 [in hydras.Prelude.More_Arith]
    +q:48 [in additions.More_on_positive]
    +q:49 [in additions.FirstSteps]
    +Q:504 [in gaia_hydras.nfwfgaia]
    +q:52 [in additions.More_on_positive]
    +q:53 [in hydras.Ackermann.code]
    +q:55 [in additions.More_on_positive]
    +q:58 [in hydras.Prelude.More_Arith]
    +q:6 [in hydras.Prelude.LibHyps_Experiments]
    +q:61 [in hydras.Ackermann.folLogic3]
    +Q:616 [in hydras.Gamma0.Gamma0]
    +q:62 [in additions.More_on_positive]
    +q:65 [in hydras.rpo.dickson]
    +q:664 [in hydras.Ackermann.primRec]
    +q:67 [in hydras.Ackermann.fol]
    +q:701 [in hydras.Ackermann.primRec]
    +q:707 [in hydras.Ackermann.primRec]
    +q:74 [in hydras.Ackermann.fol]
    +q:79 [in hydras.Ackermann.fol]
    +q:84 [in hydras.Ackermann.fol]
    +q:873 [in hydras.Ackermann.checkPrf]
    +q:876 [in hydras.Ackermann.checkPrf]
    +q:9 [in additions.Fib2]
    +q:90 [in hydras.Ackermann.folProp]
    +q:94 [in hydras.Ackermann.folProp]
    +q:95 [in hydras.Ackermann.folProp]
    +q:97 [in hydras.Ackermann.codeSubFormula]
    +q:98 [in hydras.Prelude.MoreLists]
    +

    R

    +RDB:19 [in hydras.Prelude.DecPreOrder_Instances]
    +recf:16 [in hydras.Ackermann.PA]
    +recs:100 [in hydras.Ackermann.checkPrf]
    +recs:100 [in hydras.Ackermann.codePA]
    +recs:1004 [in hydras.Ackermann.codeSubFormula]
    +recs:1007 [in hydras.Ackermann.codeSubFormula]
    +recs:101 [in hydras.Ackermann.codeFreeVar]
    +recs:101 [in hydras.Ackermann.codeSubTerm]
    +recs:1010 [in hydras.Ackermann.codeSubFormula]
    +recs:1013 [in hydras.Ackermann.codeSubFormula]
    +recs:1016 [in hydras.Ackermann.codeSubFormula]
    +recs:1019 [in hydras.Ackermann.codeSubFormula]
    +recs:102 [in hydras.Ackermann.checkPrf]
    +recs:103 [in hydras.Ackermann.codeSubTerm]
    +recs:103 [in hydras.Ackermann.wellFormed]
    +recs:104 [in hydras.Ackermann.checkPrf]
    +recs:104 [in hydras.Ackermann.codePA]
    +recs:1048 [in hydras.Ackermann.codeSubFormula]
    +recs:105 [in hydras.Ackermann.codeSubTerm]
    +recs:105 [in hydras.Ackermann.wellFormed]
    +recs:1051 [in hydras.Ackermann.codeSubFormula]
    +recs:1054 [in hydras.Ackermann.codeSubFormula]
    +recs:1057 [in hydras.Ackermann.codeSubFormula]
    +recs:106 [in hydras.Ackermann.codePA]
    +recs:1060 [in hydras.Ackermann.codeSubFormula]
    +recs:1063 [in hydras.Ackermann.codeSubFormula]
    +recs:1066 [in hydras.Ackermann.codeSubFormula]
    +recs:1069 [in hydras.Ackermann.codeSubFormula]
    +recs:107 [in hydras.Ackermann.codeSubTerm]
    +recs:107 [in hydras.Ackermann.wellFormed]
    +recs:1072 [in hydras.Ackermann.codeSubFormula]
    +recs:1074 [in hydras.Ackermann.codeSubFormula]
    +recs:1076 [in hydras.Ackermann.codeSubFormula]
    +recs:1078 [in hydras.Ackermann.codeSubFormula]
    +recs:108 [in hydras.Ackermann.codePA]
    +recs:1080 [in hydras.Ackermann.codeSubFormula]
    +recs:1082 [in hydras.Ackermann.codeSubFormula]
    +recs:109 [in hydras.Ackermann.codeSubTerm]
    +recs:109 [in hydras.Ackermann.wellFormed]
    +recs:1092 [in hydras.Ackermann.codeSubFormula]
    +recs:1094 [in hydras.Ackermann.codeSubFormula]
    +recs:1096 [in hydras.Ackermann.codeSubFormula]
    +recs:1098 [in hydras.Ackermann.codeSubFormula]
    +recs:11 [in hydras.Ackermann.codePA]
    +recs:110 [in hydras.Ackermann.codePA]
    +recs:1100 [in hydras.Ackermann.codeSubFormula]
    +recs:1102 [in hydras.Ackermann.codeSubFormula]
    +recs:1104 [in hydras.Ackermann.codeSubFormula]
    +recs:1106 [in hydras.Ackermann.codeSubFormula]
    +recs:1108 [in hydras.Ackermann.codeSubFormula]
    +recs:111 [in hydras.Ackermann.codeFreeVar]
    +recs:111 [in hydras.Ackermann.codeSubTerm]
    +recs:111 [in hydras.Ackermann.wellFormed]
    +recs:1110 [in hydras.Ackermann.codeSubFormula]
    +recs:1118 [in hydras.Ackermann.codeSubFormula]
    +recs:112 [in hydras.Ackermann.codePA]
    +recs:1120 [in hydras.Ackermann.codeSubFormula]
    +recs:1122 [in hydras.Ackermann.codeSubFormula]
    +recs:1124 [in hydras.Ackermann.codeSubFormula]
    +recs:1126 [in hydras.Ackermann.codeSubFormula]
    +recs:1128 [in hydras.Ackermann.codeSubFormula]
    +recs:113 [in hydras.Ackermann.codeFreeVar]
    +recs:113 [in hydras.Ackermann.codeSubTerm]
    +recs:113 [in hydras.Ackermann.wellFormed]
    +recs:1130 [in hydras.Ackermann.codeSubFormula]
    +recs:1132 [in hydras.Ackermann.codeSubFormula]
    +recs:1134 [in hydras.Ackermann.codeSubFormula]
    +recs:1136 [in hydras.Ackermann.codeSubFormula]
    +recs:1138 [in hydras.Ackermann.codeSubFormula]
    +recs:114 [in hydras.Ackermann.checkPrf]
    +recs:114 [in hydras.Ackermann.codePA]
    +recs:1140 [in hydras.Ackermann.codeSubFormula]
    +recs:1142 [in hydras.Ackermann.codeSubFormula]
    +recs:1144 [in hydras.Ackermann.codeSubFormula]
    +recs:115 [in hydras.Ackermann.codeFreeVar]
    +recs:115 [in hydras.Ackermann.codeSubTerm]
    +recs:1154 [in hydras.Ackermann.codeSubFormula]
    +recs:1156 [in hydras.Ackermann.codeSubFormula]
    +recs:1158 [in hydras.Ackermann.codeSubFormula]
    +recs:116 [in hydras.Ackermann.checkPrf]
    +recs:1160 [in hydras.Ackermann.codeSubFormula]
    +recs:117 [in hydras.Ackermann.codeFreeVar]
    +recs:118 [in hydras.Ackermann.checkPrf]
    +recs:119 [in hydras.Ackermann.codeFreeVar]
    +recs:120 [in hydras.Ackermann.checkPrf]
    +recs:120 [in hydras.Ackermann.codePA]
    +recs:121 [in hydras.Ackermann.codeFreeVar]
    +recs:121 [in hydras.Ackermann.wellFormed]
    +recs:122 [in hydras.Ackermann.checkPrf]
    +recs:122 [in hydras.Ackermann.codePA]
    +recs:1221 [in hydras.Ackermann.codeSubFormula]
    +recs:1224 [in hydras.Ackermann.codeSubFormula]
    +recs:123 [in hydras.Ackermann.wellFormed]
    +recs:124 [in hydras.Ackermann.checkPrf]
    +recs:124 [in hydras.Ackermann.codePA]
    +recs:1240 [in hydras.Ackermann.codeSubFormula]
    +recs:1243 [in hydras.Ackermann.codeSubFormula]
    +recs:125 [in hydras.Ackermann.wellFormed]
    +recs:126 [in hydras.Ackermann.checkPrf]
    +recs:126 [in hydras.Ackermann.codeSubFormula]
    +recs:126 [in hydras.Ackermann.codePA]
    +recs:127 [in hydras.Ackermann.wellFormed]
    +recs:128 [in hydras.Ackermann.checkPrf]
    +recs:128 [in hydras.Ackermann.codeSubFormula]
    +recs:128 [in hydras.Ackermann.codePA]
    +recs:129 [in hydras.Ackermann.wellFormed]
    +recs:1297 [in hydras.Ackermann.codeSubFormula]
    +recs:13 [in hydras.Ackermann.wellFormed]
    +recs:130 [in hydras.Ackermann.codePA]
    +recs:1300 [in hydras.Ackermann.codeSubFormula]
    +recs:131 [in hydras.Ackermann.codeFreeVar]
    +recs:131 [in hydras.Ackermann.wellFormed]
    +recs:133 [in hydras.Ackermann.wellFormed]
    +recs:134 [in hydras.Ackermann.codeFreeVar]
    +recs:134 [in hydras.Ackermann.checkPrf]
    +recs:135 [in hydras.Ackermann.wellFormed]
    +recs:136 [in hydras.Ackermann.codeFreeVar]
    +recs:136 [in hydras.Ackermann.checkPrf]
    +recs:137 [in hydras.Ackermann.wellFormed]
    +recs:1371 [in hydras.Ackermann.codeSubFormula]
    +recs:1374 [in hydras.Ackermann.codeSubFormula]
    +recs:139 [in hydras.Ackermann.wellFormed]
    +recs:14 [in hydras.Ackermann.codePA]
    +recs:141 [in hydras.Ackermann.codeSubFormula]
    +recs:141 [in hydras.Ackermann.wellFormed]
    +recs:142 [in hydras.Ackermann.checkPrf]
    +recs:143 [in hydras.Ackermann.codeSubFormula]
    +recs:143 [in hydras.Ackermann.wellFormed]
    +recs:144 [in hydras.Ackermann.checkPrf]
    +recs:145 [in hydras.Ackermann.wellFormed]
    +recs:146 [in hydras.Ackermann.checkPrf]
    +recs:147 [in hydras.Ackermann.wellFormed]
    +recs:147 [in hydras.Ackermann.codePA]
    +recs:148 [in hydras.Ackermann.codeFreeVar]
    +recs:148 [in hydras.Ackermann.checkPrf]
    +recs:149 [in hydras.Ackermann.wellFormed]
    +recs:15 [in hydras.Ackermann.codeFreeVar]
    +recs:150 [in hydras.Ackermann.codeFreeVar]
    +recs:150 [in hydras.Ackermann.checkPrf]
    +recs:150 [in hydras.Ackermann.codePA]
    +recs:151 [in hydras.Ackermann.codeSubFormula]
    +recs:151 [in hydras.Ackermann.wellFormed]
    +recs:152 [in hydras.Ackermann.codeFreeVar]
    +recs:152 [in hydras.Ackermann.checkPrf]
    +recs:154 [in hydras.Ackermann.codeFreeVar]
    +recs:154 [in hydras.Ackermann.checkPrf]
    +recs:156 [in hydras.Ackermann.codeFreeVar]
    +recs:156 [in hydras.Ackermann.checkPrf]
    +recs:158 [in hydras.Ackermann.codeFreeVar]
    +recs:158 [in hydras.Ackermann.checkPrf]
    +recs:159 [in hydras.Ackermann.codeSubTerm]
    +recs:159 [in hydras.Ackermann.codePA]
    +recs:160 [in hydras.Ackermann.codeFreeVar]
    +recs:160 [in hydras.Ackermann.checkPrf]
    +recs:161 [in hydras.Ackermann.codeSubTerm]
    +recs:161 [in hydras.Ackermann.wellFormed]
    +recs:161 [in hydras.Ackermann.codePA]
    +recs:162 [in hydras.Ackermann.codeFreeVar]
    +recs:162 [in hydras.Ackermann.checkPrf]
    +recs:163 [in hydras.Ackermann.codeSubTerm]
    +recs:163 [in hydras.Ackermann.codeSubFormula]
    +recs:163 [in hydras.Ackermann.wellFormed]
    +recs:164 [in hydras.Ackermann.codeFreeVar]
    +recs:165 [in hydras.Ackermann.codeSubTerm]
    +recs:165 [in hydras.Ackermann.codeSubFormula]
    +recs:165 [in hydras.Ackermann.wellFormed]
    +recs:166 [in hydras.Ackermann.codeFreeVar]
    +recs:167 [in hydras.Ackermann.codeSubTerm]
    +recs:167 [in hydras.Ackermann.codeSubFormula]
    +recs:167 [in hydras.Ackermann.wellFormed]
    +recs:168 [in hydras.Ackermann.codeFreeVar]
    +recs:169 [in hydras.Ackermann.codeSubTerm]
    +recs:169 [in hydras.Ackermann.codeSubFormula]
    +recs:169 [in hydras.Ackermann.wellFormed]
    +recs:17 [in hydras.Ackermann.codeFreeVar]
    +recs:170 [in hydras.Ackermann.codeFreeVar]
    +recs:171 [in hydras.Ackermann.codeSubTerm]
    +recs:171 [in hydras.Ackermann.codeSubFormula]
    +recs:171 [in hydras.Ackermann.wellFormed]
    +recs:173 [in hydras.Ackermann.codeSubTerm]
    +recs:173 [in hydras.Ackermann.codeSubFormula]
    +recs:174 [in hydras.Ackermann.codeFreeVar]
    +recs:175 [in hydras.Ackermann.codeSubTerm]
    +recs:175 [in hydras.Ackermann.codeSubFormula]
    +recs:176 [in hydras.Ackermann.codeFreeVar]
    +recs:177 [in hydras.Ackermann.codeSubTerm]
    +recs:177 [in hydras.Ackermann.codeSubFormula]
    +recs:178 [in hydras.Ackermann.codeFreeVar]
    +recs:180 [in hydras.Ackermann.codeFreeVar]
    +recs:180 [in hydras.Ackermann.codeSubTerm]
    +recs:181 [in hydras.Ackermann.codeSubFormula]
    +recs:182 [in hydras.Ackermann.codeFreeVar]
    +recs:183 [in hydras.Ackermann.codeSubTerm]
    +recs:183 [in hydras.Ackermann.codeSubFormula]
    +recs:184 [in hydras.Ackermann.codeFreeVar]
    +recs:184 [in hydras.Ackermann.checkPrf]
    +recs:185 [in hydras.Ackermann.codeSubTerm]
    +recs:185 [in hydras.Ackermann.codeSubFormula]
    +recs:186 [in hydras.Ackermann.checkPrf]
    +recs:187 [in hydras.Ackermann.codeSubTerm]
    +recs:187 [in hydras.Ackermann.codeSubFormula]
    +recs:188 [in hydras.Ackermann.codeFreeVar]
    +recs:188 [in hydras.Ackermann.checkPrf]
    +recs:188 [in hydras.Ackermann.wellFormed]
    +recs:189 [in hydras.Ackermann.codeSubTerm]
    +recs:19 [in hydras.Ackermann.codeFreeVar]
    +recs:19 [in hydras.Ackermann.codeSubTerm]
    +recs:190 [in hydras.Ackermann.codeFreeVar]
    +recs:190 [in hydras.Ackermann.checkPrf]
    +recs:191 [in hydras.Ackermann.codeSubTerm]
    +recs:191 [in hydras.Ackermann.codeSubFormula]
    +recs:191 [in hydras.Ackermann.wellFormed]
    +recs:192 [in hydras.Ackermann.codeFreeVar]
    +recs:193 [in hydras.Ackermann.codeSubTerm]
    +recs:193 [in hydras.Ackermann.codeSubFormula]
    +recs:193 [in hydras.Ackermann.wellFormed]
    +recs:194 [in hydras.Ackermann.codeFreeVar]
    +recs:195 [in hydras.Ackermann.codeSubTerm]
    +recs:196 [in hydras.Ackermann.codeFreeVar]
    +recs:196 [in hydras.Ackermann.checkPrf]
    +recs:198 [in hydras.Ackermann.codeFreeVar]
    +recs:198 [in hydras.Ackermann.checkPrf]
    +recs:200 [in hydras.Ackermann.checkPrf]
    +recs:202 [in hydras.Ackermann.checkPrf]
    +recs:203 [in hydras.Ackermann.wellFormed]
    +recs:204 [in hydras.Ackermann.codeFreeVar]
    +recs:204 [in hydras.Ackermann.checkPrf]
    +recs:205 [in hydras.Ackermann.codeSubTerm]
    +recs:205 [in hydras.Ackermann.wellFormed]
    +recs:206 [in hydras.Ackermann.codeFreeVar]
    +recs:206 [in hydras.Ackermann.checkPrf]
    +recs:207 [in hydras.Ackermann.codeSubTerm]
    +recs:207 [in hydras.Ackermann.codeSubFormula]
    +recs:207 [in hydras.Ackermann.wellFormed]
    +recs:208 [in hydras.Ackermann.codeFreeVar]
    +recs:208 [in hydras.Ackermann.checkPrf]
    +recs:209 [in hydras.Ackermann.codeSubTerm]
    +recs:209 [in hydras.Ackermann.wellFormed]
    +recs:21 [in hydras.Ackermann.codeFreeVar]
    +recs:210 [in hydras.Ackermann.codeFreeVar]
    +recs:210 [in hydras.Ackermann.checkPrf]
    +recs:211 [in hydras.Ackermann.codeSubTerm]
    +recs:211 [in hydras.Ackermann.wellFormed]
    +recs:213 [in hydras.Ackermann.wellFormed]
    +recs:214 [in hydras.Ackermann.codeFreeVar]
    +recs:215 [in hydras.Ackermann.codeSubFormula]
    +recs:215 [in hydras.Ackermann.wellFormed]
    +recs:216 [in hydras.Ackermann.codeFreeVar]
    +recs:216 [in hydras.Ackermann.checkPrf]
    +recs:217 [in hydras.Ackermann.wellFormed]
    +recs:218 [in hydras.Ackermann.codeFreeVar]
    +recs:218 [in hydras.Ackermann.checkPrf]
    +recs:219 [in hydras.Ackermann.wellFormed]
    +recs:220 [in hydras.Ackermann.codeFreeVar]
    +recs:220 [in hydras.Ackermann.checkPrf]
    +recs:221 [in hydras.Ackermann.wellFormed]
    +recs:222 [in hydras.Ackermann.checkPrf]
    +recs:223 [in hydras.Ackermann.wellFormed]
    +recs:225 [in hydras.Ackermann.wellFormed]
    +recs:227 [in hydras.Ackermann.codeSubFormula]
    +recs:227 [in hydras.Ackermann.wellFormed]
    +recs:229 [in hydras.Ackermann.codeSubFormula]
    +recs:229 [in hydras.Ackermann.wellFormed]
    +recs:23 [in hydras.Ackermann.codeSubTerm]
    +recs:23 [in hydras.Ackermann.codePA]
    +recs:230 [in hydras.Ackermann.codeFreeVar]
    +recs:231 [in hydras.Ackermann.codeSubFormula]
    +recs:231 [in hydras.Ackermann.wellFormed]
    +recs:232 [in hydras.Ackermann.codeFreeVar]
    +recs:232 [in hydras.Ackermann.checkPrf]
    +recs:233 [in hydras.Ackermann.codeSubFormula]
    +recs:233 [in hydras.Ackermann.wellFormed]
    +recs:234 [in hydras.Ackermann.codeFreeVar]
    +recs:235 [in hydras.Ackermann.codeSubFormula]
    +recs:236 [in hydras.Ackermann.codeFreeVar]
    +recs:236 [in hydras.Ackermann.wellFormed]
    +recs:238 [in hydras.Ackermann.codeSubFormula]
    +recs:239 [in hydras.Ackermann.wellFormed]
    +recs:24 [in hydras.Ackermann.wellFormed]
    +recs:240 [in hydras.Ackermann.codeSubFormula]
    +recs:241 [in hydras.Ackermann.wellFormed]
    +recs:242 [in hydras.Ackermann.codeSubFormula]
    +recs:243 [in hydras.Ackermann.wellFormed]
    +recs:244 [in hydras.Ackermann.codeFreeVar]
    +recs:244 [in hydras.Ackermann.codeSubFormula]
    +recs:245 [in hydras.Ackermann.wellFormed]
    +recs:246 [in hydras.Ackermann.codeFreeVar]
    +recs:246 [in hydras.Ackermann.codeSubFormula]
    +recs:247 [in hydras.Ackermann.wellFormed]
    +recs:248 [in hydras.Ackermann.codeFreeVar]
    +recs:25 [in hydras.Ackermann.codeFreeVar]
    +recs:250 [in hydras.Ackermann.codeFreeVar]
    +recs:252 [in hydras.Ackermann.codeFreeVar]
    +recs:254 [in hydras.Ackermann.codeFreeVar]
    +recs:255 [in hydras.Ackermann.wellFormed]
    +recs:256 [in hydras.Ackermann.codeFreeVar]
    +recs:257 [in hydras.Ackermann.wellFormed]
    +recs:258 [in hydras.Ackermann.codeFreeVar]
    +recs:259 [in hydras.Ackermann.wellFormed]
    +recs:26 [in hydras.Ackermann.checkPrf]
    +recs:26 [in hydras.Ackermann.wellFormed]
    +recs:26 [in hydras.Ackermann.codePA]
    +recs:261 [in hydras.Ackermann.wellFormed]
    +recs:263 [in hydras.Ackermann.wellFormed]
    +recs:264 [in hydras.Ackermann.checkPrf]
    +recs:265 [in hydras.Ackermann.wellFormed]
    +recs:267 [in hydras.Ackermann.codeSubFormula]
    +recs:267 [in hydras.Ackermann.cPair]
    +recs:267 [in hydras.Ackermann.wellFormed]
    +recs:268 [in hydras.Ackermann.codeFreeVar]
    +recs:269 [in hydras.Ackermann.codeSubFormula]
    +recs:269 [in hydras.Ackermann.cPair]
    +recs:269 [in hydras.Ackermann.wellFormed]
    +recs:27 [in hydras.Ackermann.codeFreeVar]
    +recs:270 [in hydras.Ackermann.codeFreeVar]
    +recs:271 [in hydras.Ackermann.codeSubFormula]
    +recs:271 [in hydras.Ackermann.cPair]
    +recs:271 [in hydras.Ackermann.wellFormed]
    +recs:272 [in hydras.Ackermann.codeFreeVar]
    +recs:273 [in hydras.Ackermann.codeSubFormula]
    +recs:273 [in hydras.Ackermann.cPair]
    +recs:273 [in hydras.Ackermann.wellFormed]
    +recs:274 [in hydras.Ackermann.codeFreeVar]
    +recs:275 [in hydras.Ackermann.codeSubFormula]
    +recs:275 [in hydras.Ackermann.cPair]
    +recs:275 [in hydras.Ackermann.wellFormed]
    +recs:277 [in hydras.Ackermann.codeSubFormula]
    +recs:277 [in hydras.Ackermann.wellFormed]
    +recs:279 [in hydras.Ackermann.wellFormed]
    +recs:281 [in hydras.Ackermann.wellFormed]
    +recs:283 [in hydras.Ackermann.cPair]
    +recs:283 [in hydras.Ackermann.wellFormed]
    +recs:285 [in hydras.Ackermann.cPair]
    +recs:285 [in hydras.Ackermann.wellFormed]
    +recs:287 [in hydras.Ackermann.cPair]
    +recs:287 [in hydras.Ackermann.wellFormed]
    +recs:289 [in hydras.Ackermann.cPair]
    +recs:289 [in hydras.Ackermann.wellFormed]
    +recs:29 [in hydras.Ackermann.codeFreeVar]
    +recs:29 [in hydras.Ackermann.codePA]
    +recs:291 [in hydras.Ackermann.cPair]
    +recs:291 [in hydras.Ackermann.wellFormed]
    +recs:293 [in hydras.Ackermann.codeSubFormula]
    +recs:293 [in hydras.Ackermann.cPair]
    +recs:293 [in hydras.Ackermann.wellFormed]
    +recs:294 [in hydras.Ackermann.codeFreeVar]
    +recs:295 [in hydras.Ackermann.codeSubFormula]
    +recs:295 [in hydras.Ackermann.cPair]
    +recs:295 [in hydras.Ackermann.wellFormed]
    +recs:296 [in hydras.Ackermann.codeList]
    +recs:297 [in hydras.Ackermann.codeFreeVar]
    +recs:297 [in hydras.Ackermann.codeSubFormula]
    +recs:297 [in hydras.Ackermann.cPair]
    +recs:297 [in hydras.Ackermann.wellFormed]
    +recs:299 [in hydras.Ackermann.codeFreeVar]
    +recs:299 [in hydras.Ackermann.codeSubFormula]
    +recs:299 [in hydras.Ackermann.cPair]
    +recs:299 [in hydras.Ackermann.wellFormed]
    +recs:299 [in hydras.Ackermann.codeList]
    +recs:301 [in hydras.Ackermann.codeFreeVar]
    +recs:301 [in hydras.Ackermann.codeSubFormula]
    +recs:301 [in hydras.Ackermann.cPair]
    +recs:301 [in hydras.Ackermann.wellFormed]
    +recs:301 [in hydras.Ackermann.codeList]
    +recs:303 [in hydras.Ackermann.codeFreeVar]
    +recs:303 [in hydras.Ackermann.codeSubFormula]
    +recs:303 [in hydras.Ackermann.cPair]
    +recs:303 [in hydras.Ackermann.codeList]
    +recs:305 [in hydras.Ackermann.codeFreeVar]
    +recs:305 [in hydras.Ackermann.cPair]
    +recs:305 [in hydras.Ackermann.codeList]
    +recs:307 [in hydras.Ackermann.codeFreeVar]
    +recs:307 [in hydras.Ackermann.cPair]
    +recs:307 [in hydras.Ackermann.codeList]
    +recs:309 [in hydras.Ackermann.codeFreeVar]
    +recs:309 [in hydras.Ackermann.cPair]
    +recs:309 [in hydras.Ackermann.codeList]
    +recs:31 [in hydras.Ackermann.codeFreeVar]
    +recs:311 [in hydras.Ackermann.codeFreeVar]
    +recs:311 [in hydras.Ackermann.cPair]
    +recs:311 [in hydras.Ackermann.codeList]
    +recs:313 [in hydras.Ackermann.codeFreeVar]
    +recs:313 [in hydras.Ackermann.cPair]
    +recs:313 [in hydras.Ackermann.codeList]
    +recs:315 [in hydras.Ackermann.codeFreeVar]
    +recs:315 [in hydras.Ackermann.cPair]
    +recs:315 [in hydras.Ackermann.codeList]
    +recs:317 [in hydras.Ackermann.codeFreeVar]
    +recs:317 [in hydras.Ackermann.checkPrf]
    +recs:317 [in hydras.Ackermann.cPair]
    +recs:317 [in hydras.Ackermann.codeList]
    +recs:319 [in hydras.Ackermann.codeFreeVar]
    +recs:319 [in hydras.Ackermann.cPair]
    +recs:32 [in hydras.Ackermann.codePA]
    +recs:321 [in hydras.Ackermann.cPair]
    +recs:321 [in hydras.Ackermann.codeList]
    +recs:323 [in hydras.Ackermann.cPair]
    +recs:323 [in hydras.Ackermann.codeList]
    +recs:325 [in hydras.Ackermann.cPair]
    +recs:325 [in hydras.Ackermann.wellFormed]
    +recs:325 [in hydras.Ackermann.codeList]
    +recs:327 [in hydras.Ackermann.wellFormed]
    +recs:327 [in hydras.Ackermann.codeList]
    +recs:329 [in hydras.Ackermann.wellFormed]
    +recs:329 [in hydras.Ackermann.codeList]
    +recs:33 [in hydras.Ackermann.codeFreeVar]
    +recs:331 [in hydras.Ackermann.wellFormed]
    +recs:331 [in hydras.Ackermann.codeList]
    +recs:333 [in hydras.Ackermann.codeList]
    +recs:335 [in hydras.Ackermann.cPair]
    +recs:335 [in hydras.Ackermann.codeList]
    +recs:337 [in hydras.Ackermann.cPair]
    +recs:337 [in hydras.Ackermann.codeList]
    +recs:339 [in hydras.Ackermann.codeSubFormula]
    +recs:339 [in hydras.Ackermann.codeList]
    +recs:34 [in hydras.Ackermann.wellFormed]
    +recs:341 [in hydras.Ackermann.codeSubFormula]
    +recs:343 [in hydras.Ackermann.codeSubFormula]
    +recs:343 [in hydras.Ackermann.codeList]
    +recs:345 [in hydras.Ackermann.codeSubFormula]
    +recs:345 [in hydras.Ackermann.codeList]
    +recs:347 [in hydras.Ackermann.codeList]
    +recs:349 [in hydras.Ackermann.codeList]
    +recs:35 [in hydras.Ackermann.codeFreeVar]
    +recs:35 [in hydras.Ackermann.codePA]
    +recs:351 [in hydras.Ackermann.codeList]
    +recs:353 [in hydras.Ackermann.checkPrf]
    +recs:353 [in hydras.Ackermann.codeList]
    +recs:36 [in hydras.Ackermann.wellFormed]
    +recs:37 [in hydras.Ackermann.codeFreeVar]
    +recs:38 [in hydras.Ackermann.codePA]
    +recs:39 [in hydras.Ackermann.codeFreeVar]
    +recs:406 [in hydras.Ackermann.checkPrf]
    +recs:409 [in hydras.Ackermann.codeSubFormula]
    +recs:41 [in hydras.Ackermann.codeFreeVar]
    +recs:41 [in hydras.Ackermann.codeSubTerm]
    +recs:41 [in hydras.Ackermann.codePA]
    +recs:411 [in hydras.Ackermann.codeSubFormula]
    +recs:413 [in hydras.Ackermann.codeSubFormula]
    +recs:415 [in hydras.Ackermann.codeSubFormula]
    +recs:417 [in hydras.Ackermann.codeSubFormula]
    +recs:419 [in hydras.Ackermann.codeSubFormula]
    +recs:421 [in hydras.Ackermann.codeSubFormula]
    +recs:423 [in hydras.Ackermann.codeSubFormula]
    +recs:43 [in hydras.Ackermann.codeFreeVar]
    +recs:43 [in hydras.Ackermann.codePA]
    +recs:433 [in hydras.Ackermann.codeSubFormula]
    +recs:435 [in hydras.Ackermann.codeSubFormula]
    +recs:437 [in hydras.Ackermann.codeSubFormula]
    +recs:439 [in hydras.Ackermann.codeSubFormula]
    +recs:44 [in hydras.Ackermann.checkPrf]
    +recs:449 [in hydras.Ackermann.codeSubFormula]
    +recs:45 [in hydras.Ackermann.codeFreeVar]
    +recs:45 [in hydras.Ackermann.codeSubTerm]
    +recs:45 [in hydras.Ackermann.codePA]
    +recs:451 [in hydras.Ackermann.codeSubFormula]
    +recs:452 [in hydras.Ackermann.checkPrf]
    +recs:453 [in hydras.Ackermann.codeSubFormula]
    +recs:455 [in hydras.Ackermann.codeSubFormula]
    +recs:46 [in hydras.Ackermann.checkPrf]
    +recs:47 [in hydras.Ackermann.codeFreeVar]
    +recs:47 [in hydras.Ackermann.codePA]
    +recs:48 [in hydras.Ackermann.checkPrf]
    +recs:49 [in hydras.Ackermann.codeFreeVar]
    +recs:49 [in hydras.Ackermann.codePA]
    +recs:491 [in hydras.Ackermann.codeSubFormula]
    +recs:493 [in hydras.Ackermann.codeSubFormula]
    +recs:495 [in hydras.Ackermann.codeSubFormula]
    +recs:497 [in hydras.Ackermann.codeSubFormula]
    +recs:50 [in hydras.Ackermann.checkPrf]
    +recs:505 [in hydras.Ackermann.codeSubFormula]
    +recs:507 [in hydras.Ackermann.codeSubFormula]
    +recs:509 [in hydras.Ackermann.codeSubFormula]
    +recs:51 [in hydras.Ackermann.codeFreeVar]
    +recs:51 [in hydras.Ackermann.codePA]
    +recs:511 [in hydras.Ackermann.codeSubFormula]
    +recs:517 [in hydras.Ackermann.checkPrf]
    +recs:52 [in hydras.Ackermann.checkPrf]
    +recs:520 [in hydras.Ackermann.checkPrf]
    +recs:53 [in hydras.Ackermann.codeFreeVar]
    +recs:53 [in hydras.Ackermann.codeSubTerm]
    +recs:53 [in hydras.Ackermann.codePA]
    +recs:534 [in hydras.Ackermann.checkPrf]
    +recs:536 [in hydras.Ackermann.checkPrf]
    +recs:539 [in hydras.Ackermann.codeSubFormula]
    +recs:54 [in hydras.Ackermann.checkPrf]
    +recs:541 [in hydras.Ackermann.codeSubFormula]
    +recs:543 [in hydras.Ackermann.codeSubFormula]
    +recs:545 [in hydras.Ackermann.codeSubFormula]
    +recs:55 [in hydras.Ackermann.codeFreeVar]
    +recs:55 [in hydras.Ackermann.codePA]
    +recs:553 [in hydras.Ackermann.codeSubFormula]
    +recs:555 [in hydras.Ackermann.codeSubFormula]
    +recs:557 [in hydras.Ackermann.codeSubFormula]
    +recs:559 [in hydras.Ackermann.codeSubFormula]
    +recs:56 [in hydras.Ackermann.checkPrf]
    +recs:56 [in hydras.Ackermann.wellFormed]
    +recs:57 [in hydras.Ackermann.codeFreeVar]
    +recs:57 [in hydras.Ackermann.codeSubTerm]
    +recs:57 [in hydras.Ackermann.codePA]
    +recs:58 [in hydras.Ackermann.checkPrf]
    +recs:58 [in hydras.Ackermann.codeSubFormula]
    +recs:58 [in hydras.Ackermann.wellFormed]
    +recs:59 [in hydras.Ackermann.codeFreeVar]
    +recs:59 [in hydras.Ackermann.codePA]
    +recs:6 [in hydras.Ackermann.codeFreeVar]
    +recs:6 [in hydras.Ackermann.codeSubTerm]
    +recs:6 [in hydras.Ackermann.codePA]
    +recs:60 [in hydras.Ackermann.checkPrf]
    +recs:61 [in hydras.Ackermann.codeSubTerm]
    +recs:619 [in hydras.Ackermann.codeSubFormula]
    +recs:62 [in hydras.Ackermann.checkPrf]
    +recs:621 [in hydras.Ackermann.codeSubFormula]
    +recs:623 [in hydras.Ackermann.codeSubFormula]
    +recs:625 [in hydras.Ackermann.codeSubFormula]
    +recs:627 [in hydras.Ackermann.codeSubFormula]
    +recs:629 [in hydras.Ackermann.codeSubFormula]
    +recs:631 [in hydras.Ackermann.codeSubFormula]
    +recs:633 [in hydras.Ackermann.codeSubFormula]
    +recs:64 [in hydras.Ackermann.checkPrf]
    +recs:643 [in hydras.Ackermann.codeSubFormula]
    +recs:645 [in hydras.Ackermann.codeSubFormula]
    +recs:647 [in hydras.Ackermann.codeSubFormula]
    +recs:649 [in hydras.Ackermann.codeSubFormula]
    +recs:65 [in hydras.Ackermann.codeSubTerm]
    +recs:65 [in hydras.Ackermann.wellFormed]
    +recs:651 [in hydras.Ackermann.checkPrf]
    +recs:67 [in hydras.Ackermann.wellFormed]
    +recs:69 [in hydras.Ackermann.codeSubTerm]
    +recs:69 [in hydras.Ackermann.wellFormed]
    +recs:693 [in hydras.Ackermann.codeSubFormula]
    +recs:696 [in hydras.Ackermann.codeSubFormula]
    +recs:699 [in hydras.Ackermann.codeSubFormula]
    +recs:702 [in hydras.Ackermann.codeSubFormula]
    +recs:705 [in hydras.Ackermann.codeSubFormula]
    +recs:708 [in hydras.Ackermann.codeSubFormula]
    +recs:71 [in hydras.Ackermann.codeFreeVar]
    +recs:71 [in hydras.Ackermann.wellFormed]
    +recs:71 [in hydras.Ackermann.codePA]
    +recs:711 [in hydras.Ackermann.codeSubFormula]
    +recs:714 [in hydras.Ackermann.codeSubFormula]
    +recs:717 [in hydras.Ackermann.codeSubFormula]
    +recs:720 [in hydras.Ackermann.codeSubFormula]
    +recs:723 [in hydras.Ackermann.codeSubFormula]
    +recs:726 [in hydras.Ackermann.codeSubFormula]
    +recs:728 [in hydras.Ackermann.codeSubFormula]
    +recs:73 [in hydras.Ackermann.codeFreeVar]
    +recs:73 [in hydras.Ackermann.codeSubTerm]
    +recs:73 [in hydras.Ackermann.wellFormed]
    +recs:730 [in hydras.Ackermann.checkPrf]
    +recs:730 [in hydras.Ackermann.codeSubFormula]
    +recs:732 [in hydras.Ackermann.codeSubFormula]
    +recs:734 [in hydras.Ackermann.codeSubFormula]
    +recs:736 [in hydras.Ackermann.codeSubFormula]
    +recs:738 [in hydras.Ackermann.codeSubFormula]
    +recs:74 [in hydras.Ackermann.checkPrf]
    +recs:74 [in hydras.Ackermann.codePA]
    +recs:740 [in hydras.Ackermann.codeSubFormula]
    +recs:742 [in hydras.Ackermann.codeSubFormula]
    +recs:744 [in hydras.Ackermann.codeSubFormula]
    +recs:746 [in hydras.Ackermann.codeSubFormula]
    +recs:748 [in hydras.Ackermann.codeSubFormula]
    +recs:75 [in hydras.Ackermann.codeFreeVar]
    +recs:75 [in hydras.Ackermann.wellFormed]
    +recs:76 [in hydras.Ackermann.checkPrf]
    +recs:76 [in hydras.Ackermann.codePA]
    +recs:762 [in hydras.Ackermann.codeSubFormula]
    +recs:764 [in hydras.Ackermann.codeSubFormula]
    +recs:766 [in hydras.Ackermann.codeSubFormula]
    +recs:768 [in hydras.Ackermann.codeSubFormula]
    +recs:77 [in hydras.Ackermann.codeFreeVar]
    +recs:77 [in hydras.Ackermann.codeSubTerm]
    +recs:77 [in hydras.Ackermann.wellFormed]
    +recs:770 [in hydras.Ackermann.codeSubFormula]
    +recs:772 [in hydras.Ackermann.codeSubFormula]
    +recs:774 [in hydras.Ackermann.codeSubFormula]
    +recs:776 [in hydras.Ackermann.codeSubFormula]
    +recs:778 [in hydras.Ackermann.codeSubFormula]
    +recs:78 [in hydras.Ackermann.checkPrf]
    +recs:78 [in hydras.Ackermann.codePA]
    +recs:780 [in hydras.Ackermann.codeSubFormula]
    +recs:783 [in hydras.Ackermann.codeSubFormula]
    +recs:786 [in hydras.Ackermann.codeSubFormula]
    +recs:788 [in hydras.Ackermann.codeSubFormula]
    +recs:79 [in hydras.Ackermann.codeFreeVar]
    +recs:79 [in hydras.Ackermann.wellFormed]
    +recs:790 [in hydras.Ackermann.codeSubFormula]
    +recs:791 [in hydras.Ackermann.checkPrf]
    +recs:792 [in hydras.Ackermann.codeSubFormula]
    +recs:794 [in hydras.Ackermann.codeSubFormula]
    +recs:796 [in hydras.Ackermann.codeSubFormula]
    +recs:798 [in hydras.Ackermann.checkPrf]
    +recs:798 [in hydras.Ackermann.codeSubFormula]
    +recs:80 [in hydras.Ackermann.checkPrf]
    +recs:80 [in hydras.Ackermann.codePA]
    +recs:804 [in hydras.Ackermann.checkPrf]
    +recs:808 [in hydras.Ackermann.codeSubFormula]
    +recs:81 [in hydras.Ackermann.codeFreeVar]
    +recs:81 [in hydras.Ackermann.codeSubTerm]
    +recs:81 [in hydras.Ackermann.wellFormed]
    +recs:810 [in hydras.Ackermann.codeSubFormula]
    +recs:812 [in hydras.Ackermann.codeSubFormula]
    +recs:814 [in hydras.Ackermann.checkPrf]
    +recs:814 [in hydras.Ackermann.codeSubFormula]
    +recs:816 [in hydras.Ackermann.checkPrf]
    +recs:82 [in hydras.Ackermann.codePA]
    +recs:83 [in hydras.Ackermann.codeFreeVar]
    +recs:83 [in hydras.Ackermann.wellFormed]
    +recs:831 [in hydras.Ackermann.codeSubFormula]
    +recs:834 [in hydras.Ackermann.codeSubFormula]
    +recs:839 [in hydras.Ackermann.checkPrf]
    +recs:84 [in hydras.Ackermann.codePA]
    +recs:842 [in hydras.Ackermann.checkPrf]
    +recs:85 [in hydras.Ackermann.codeFreeVar]
    +recs:85 [in hydras.Ackermann.codeSubTerm]
    +recs:85 [in hydras.Ackermann.wellFormed]
    +recs:86 [in hydras.Ackermann.codePA]
    +recs:862 [in hydras.Ackermann.codeSubFormula]
    +recs:865 [in hydras.Ackermann.codeSubFormula]
    +recs:868 [in hydras.Ackermann.checkPrf]
    +recs:87 [in hydras.Ackermann.codeFreeVar]
    +recs:87 [in hydras.Ackermann.wellFormed]
    +recs:870 [in hydras.Ackermann.checkPrf]
    +recs:88 [in hydras.Ackermann.codePA]
    +recs:886 [in hydras.Ackermann.codeSubFormula]
    +recs:889 [in hydras.Ackermann.codeSubFormula]
    +recs:89 [in hydras.Ackermann.codeFreeVar]
    +recs:89 [in hydras.Ackermann.codeSubTerm]
    +recs:89 [in hydras.Ackermann.wellFormed]
    +recs:90 [in hydras.Ackermann.codePA]
    +recs:902 [in hydras.Ackermann.codeSubFormula]
    +recs:905 [in hydras.Ackermann.codeSubFormula]
    +recs:91 [in hydras.Ackermann.codeFreeVar]
    +recs:91 [in hydras.Ackermann.wellFormed]
    +recs:92 [in hydras.Ackermann.codePA]
    +recs:929 [in hydras.Ackermann.codeSubFormula]
    +recs:93 [in hydras.Ackermann.codeFreeVar]
    +recs:93 [in hydras.Ackermann.codeSubTerm]
    +recs:932 [in hydras.Ackermann.codeSubFormula]
    +recs:94 [in hydras.Ackermann.codePA]
    +recs:941 [in hydras.Ackermann.codeSubFormula]
    +recs:944 [in hydras.Ackermann.codeSubFormula]
    +recs:947 [in hydras.Ackermann.codeSubFormula]
    +recs:95 [in hydras.Ackermann.codeFreeVar]
    +recs:95 [in hydras.Ackermann.codeSubTerm]
    +recs:950 [in hydras.Ackermann.codeSubFormula]
    +recs:953 [in hydras.Ackermann.codeSubFormula]
    +recs:956 [in hydras.Ackermann.codeSubFormula]
    +recs:959 [in hydras.Ackermann.codeSubFormula]
    +recs:96 [in hydras.Ackermann.codePA]
    +recs:962 [in hydras.Ackermann.codeSubFormula]
    +recs:965 [in hydras.Ackermann.codeSubFormula]
    +recs:968 [in hydras.Ackermann.codeSubFormula]
    +recs:97 [in hydras.Ackermann.codeFreeVar]
    +recs:97 [in hydras.Ackermann.codeSubTerm]
    +recs:971 [in hydras.Ackermann.codeSubFormula]
    +recs:974 [in hydras.Ackermann.codeSubFormula]
    +recs:977 [in hydras.Ackermann.codeSubFormula]
    +recs:98 [in hydras.Ackermann.checkPrf]
    +recs:98 [in hydras.Ackermann.codePA]
    +recs:982 [in hydras.Ackermann.codeSubFormula]
    +recs:985 [in hydras.Ackermann.codeSubFormula]
    +recs:988 [in hydras.Ackermann.codeSubFormula]
    +recs:99 [in hydras.Ackermann.codeFreeVar]
    +recs:99 [in hydras.Ackermann.codeSubTerm]
    +recs:991 [in hydras.Ackermann.codeSubFormula]
    +recs:994 [in hydras.Ackermann.codeSubFormula]
    +recs:997 [in hydras.Ackermann.codeSubFormula]
    +rec:10 [in hydras.Ackermann.codeNatToTerm]
    +rec:100 [in Goedel.rosserPA]
    +rec:102 [in Goedel.rosserPA]
    +rec:104 [in Goedel.rosserPA]
    +rec:106 [in Goedel.rosserPA]
    +rec:108 [in Goedel.rosserPA]
    +rec:11 [in hydras.Ackermann.codeNatToTerm]
    +rec:12 [in hydras.Ackermann.codeNatToTerm]
    +rec:1268 [in hydras.Ackermann.codeSubFormula]
    +rec:1269 [in hydras.Ackermann.codeSubFormula]
    +rec:1270 [in hydras.Ackermann.codeSubFormula]
    +rec:1271 [in hydras.Ackermann.codeSubFormula]
    +rec:1272 [in hydras.Ackermann.codeSubFormula]
    +rec:1273 [in hydras.Ackermann.codeSubFormula]
    +rec:1274 [in hydras.Ackermann.codeSubFormula]
    +rec:1275 [in hydras.Ackermann.codeSubFormula]
    +rec:1276 [in hydras.Ackermann.codeSubFormula]
    +rec:1277 [in hydras.Ackermann.codeSubFormula]
    +rec:1278 [in hydras.Ackermann.codeSubFormula]
    +rec:1279 [in hydras.Ackermann.codeSubFormula]
    +rec:1280 [in hydras.Ackermann.codeSubFormula]
    +rec:13 [in hydras.Ackermann.codeNatToTerm]
    +rec:1311 [in hydras.Ackermann.codeSubFormula]
    +rec:1312 [in hydras.Ackermann.codeSubFormula]
    +rec:1317 [in hydras.Ackermann.codeSubFormula]
    +rec:1322 [in hydras.Ackermann.codeSubFormula]
    +rec:1325 [in hydras.Ackermann.codeSubFormula]
    +rec:1328 [in hydras.Ackermann.codeSubFormula]
    +rec:1331 [in hydras.Ackermann.codeSubFormula]
    +rec:1334 [in hydras.Ackermann.codeSubFormula]
    +rec:1337 [in hydras.Ackermann.codeSubFormula]
    +rec:1340 [in hydras.Ackermann.codeSubFormula]
    +rec:1341 [in hydras.Ackermann.codeSubFormula]
    +rec:1342 [in hydras.Ackermann.codeSubFormula]
    +rec:1343 [in hydras.Ackermann.codeSubFormula]
    +rec:1344 [in hydras.Ackermann.codeSubFormula]
    +rec:1345 [in hydras.Ackermann.codeSubFormula]
    +rec:1346 [in hydras.Ackermann.codeSubFormula]
    +rec:1347 [in hydras.Ackermann.codeSubFormula]
    +rec:137 [in Goedel.PRrepresentable]
    +rec:14 [in hydras.Prelude.Iterates]
    +rec:14 [in hydras.Ackermann.codeNatToTerm]
    +rec:148 [in Goedel.PRrepresentable]
    +rec:15 [in hydras.Ackermann.codeNatToTerm]
    +rec:159 [in Goedel.PRrepresentable]
    +rec:160 [in hydras.Ackermann.fol]
    +rec:166 [in hydras.Ackermann.fol]
    +rec:242 [in Goedel.PRrepresentable]
    +rec:248 [in Goedel.PRrepresentable]
    +rec:29 [in hydras.Ackermann.Languages]
    +rec:30 [in Goedel.rosser]
    +rec:32 [in Goedel.rosser]
    +rec:34 [in hydras.Ackermann.Languages]
    +rec:36 [in Goedel.codeSysPrf]
    +rec:38 [in Goedel.codeSysPrf]
    +rec:39 [in Goedel.rosser]
    +rec:44 [in Goedel.rosser]
    +rec:46 [in Goedel.codeSysPrf]
    +rec:463 [in Goedel.PRrepresentable]
    +rec:471 [in Goedel.PRrepresentable]
    +rec:48 [in Goedel.codeSysPrf]
    +rec:49 [in Goedel.rosser]
    +rec:54 [in Goedel.rosser]
    +rec:540 [in hydras.Ackermann.checkPrf]
    +rec:543 [in hydras.Ackermann.checkPrf]
    +rec:547 [in hydras.Ackermann.checkPrf]
    +rec:550 [in hydras.Ackermann.checkPrf]
    +rec:552 [in hydras.Ackermann.checkPrf]
    +rec:554 [in hydras.Ackermann.checkPrf]
    +rec:556 [in hydras.Ackermann.checkPrf]
    +rec:558 [in hydras.Ackermann.checkPrf]
    +rec:56 [in Goedel.rosser]
    +rec:560 [in hydras.Ackermann.checkPrf]
    +rec:577 [in hydras.Ackermann.primRec]
    +rec:578 [in hydras.Ackermann.primRec]
    +rec:579 [in hydras.Ackermann.primRec]
    +rec:58 [in Goedel.rosser]
    +rec:580 [in hydras.Ackermann.primRec]
    +rec:591 [in hydras.Ackermann.checkPrf]
    +rec:593 [in hydras.Ackermann.checkPrf]
    +rec:595 [in hydras.Ackermann.checkPrf]
    +rec:597 [in hydras.Ackermann.checkPrf]
    +rec:599 [in hydras.Ackermann.checkPrf]
    +rec:6 [in hydras.Ackermann.codeNatToTerm]
    +rec:60 [in Goedel.rosserPA]
    +rec:601 [in hydras.Ackermann.checkPrf]
    +rec:603 [in hydras.Ackermann.checkPrf]
    +rec:605 [in hydras.Ackermann.checkPrf]
    +rec:607 [in hydras.Ackermann.checkPrf]
    +rec:62 [in Goedel.rosserPA]
    +rec:62 [in Goedel.rosser]
    +rec:620 [in hydras.Ackermann.checkPrf]
    +rec:622 [in hydras.Ackermann.checkPrf]
    +rec:624 [in hydras.Ackermann.checkPrf]
    +rec:626 [in hydras.Ackermann.checkPrf]
    +rec:628 [in hydras.Ackermann.checkPrf]
    +rec:630 [in hydras.Ackermann.checkPrf]
    +rec:632 [in hydras.Ackermann.checkPrf]
    +rec:634 [in hydras.Ackermann.checkPrf]
    +rec:636 [in hydras.Ackermann.checkPrf]
    +rec:64 [in Goedel.rosser]
    +rec:69 [in Goedel.rosserPA]
    +rec:7 [in hydras.Ackermann.codeNatToTerm]
    +rec:74 [in Goedel.rosserPA]
    +rec:79 [in Goedel.rosserPA]
    +rec:795 [in hydras.Ackermann.checkPrf]
    +rec:8 [in hydras.Ackermann.codeNatToTerm]
    +rec:801 [in hydras.Ackermann.checkPrf]
    +rec:808 [in hydras.Ackermann.checkPrf]
    +rec:81 [in hydras.Ackermann.codeSubFormula]
    +rec:812 [in hydras.Ackermann.checkPrf]
    +rec:813 [in hydras.Ackermann.primRec]
    +rec:84 [in Goedel.rosserPA]
    +rec:86 [in Goedel.rosserPA]
    +rec:88 [in Goedel.rosserPA]
    +rec:9 [in hydras.Ackermann.codeNatToTerm]
    +rec:95 [in Goedel.rosserPA]
    +replace_at_pos_list:338 [in hydras.rpo.term]
    +replace_at_pos_list:160 [in hydras.rpo.term]
    +rep:66 [in Goedel.rosser]
    +rest:3 [in hydras.Epsilon0.Large_Sets_Examples]
    +rest:63 [in hydras.Ackermann.codeSubFormula]
    +rt:9 [in hydras.Prelude.DecPreOrder]
    +r':32 [in hydras.Prelude.More_Arith]
    +r':38 [in hydras.Prelude.More_Arith]
    +R':547 [in hydras.Ackermann.primRec]
    +R':561 [in hydras.Ackermann.primRec]
    +r':61 [in hydras.Prelude.More_Arith]
    +r':90 [in hydras.Hydra.Hydra_Definitions]
    +R1:2 [in additions.Wf_transparent]
    +r1:41 [in hydras.Gamma0.Gamma0]
    +r1:49 [in hydras.Gamma0.Gamma0]
    +r1:57 [in hydras.Gamma0.Gamma0]
    +r1:65 [in hydras.Gamma0.Gamma0]
    +R2:3 [in additions.Wf_transparent]
    +r2:42 [in hydras.Gamma0.Gamma0]
    +r2:50 [in hydras.Gamma0.Gamma0]
    +r2:58 [in hydras.Gamma0.Gamma0]
    +r2:66 [in hydras.Gamma0.Gamma0]
    +R:1 [in hydras.rpo.dickson]
    +r:10 [in hydras.Ackermann.PA]
    +R:10 [in hydras.Schutte.PartialFun]
    +R:10 [in hydras.rpo.dickson]
    +r:11 [in additions.Strategies]
    +R:11 [in hydras.Prelude.DecPreOrder]
    +R:11 [in hydras.rpo.closure]
    +R:110 [in hydras.Prelude.MoreLists]
    +r:114 [in hydras.Ackermann.codeSubFormula]
    +R:121 [in hydras.Prelude.MoreLists]
    +R:127 [in hydras.Ackermann.primRec]
    +R:128 [in hydras.Prelude.MoreLists]
    +r:131 [in hydras.Ackermann.folProp]
    +R:133 [in hydras.Prelude.MoreLists]
    +r:137 [in hydras.Gamma0.T2]
    +R:138 [in hydras.Prelude.MoreLists]
    +r:14 [in hydras.Ackermann.model]
    +r:14 [in hydras.Ackermann.checkPrf]
    +R:14 [in hydras.Prelude.STDPP_compat]
    +r:14 [in Goedel.codeSysPrf]
    +R:143 [in hydras.Prelude.MoreLists]
    +r:148 [in hydras.Ackermann.folProp]
    +r:15 [in hydras.Ackermann.fol]
    +R:16 [in hydras.Schutte.PartialFun]
    +R:16 [in hydras.rpo.closure]
    +R:16 [in hydras.Ackermann.Languages]
    +R:166 [in hydras.Prelude.MoreLists]
    +r:17 [in hydras.Ackermann.checkPrf]
    +r:17 [in Goedel.codeSysPrf]
    +R:17 [in hydras.rpo.dickson]
    +r:177 [in hydras.Ackermann.folProp]
    +r:182 [in hydras.Ackermann.wellFormed]
    +R:184 [in additions.Addition_Chains]
    +r:185 [in hydras.Ackermann.wellFormed]
    +R:19 [in hydras.rpo.closure]
    +r:193 [in hydras.Ackermann.folProp]
    +R:2 [in hydras.Prelude.DecPreOrder]
    +R:2 [in hydras.Prelude.STDPP_compat]
    +R:2 [in hydras.rpo.closure]
    +R:20 [in hydras.Ackermann.extEqualNat]
    +R:20 [in hydras.Ackermann.Languages]
    +R:20 [in hydras.solutions_exercises.T1_ltNotWf]
    +r:204 [in hydras.Ackermann.fol]
    +r:209 [in hydras.Ackermann.folProp]
    +R:21 [in hydras.rpo.dickson]
    +R:21 [in hydras.rpo.closure]
    +R:22 [in hydras.Ackermann.extEqualNat]
    +R:22 [in hydras.Ackermann.checkPrf]
    +r:22 [in hydras.Ackermann.Languages]
    +r:225 [in hydras.Ackermann.folProp]
    +r:227 [in hydras.Ackermann.fol]
    +r:23 [in hydras.Ackermann.Languages]
    +r:245 [in hydras.Ackermann.fol]
    +R:25 [in hydras.rpo.dickson]
    +r:25 [in hydras.Ackermann.Languages]
    +r:256 [in hydras.Ackermann.folProp]
    +r:27 [in additions.Fib2]
    +r:272 [in hydras.Ackermann.folProp]
    +r:278 [in hydras.Ackermann.fol]
    +r:284 [in hydras.Ackermann.subAll]
    +r:289 [in hydras.Ackermann.subAll]
    +R:29 [in hydras.rpo.dickson]
    +r:292 [in additions.Euclidean_Chains]
    +r:295 [in hydras.Ackermann.fol]
    +r:297 [in additions.Euclidean_Chains]
    +R:3 [in hydras.Prelude.Restriction]
    +r:3 [in gaia_hydras.onType]
    +R:3 [in hydras.Schutte.Countable]
    +r:305 [in hydras.Ackermann.folProp]
    +r:31 [in hydras.Prelude.More_Arith]
    +r:31 [in hydras.Ackermann.model]
    +R:31 [in hydras.Prelude.DecPreOrder]
    +r:319 [in hydras.Ackermann.subAll]
    +r:321 [in hydras.Ackermann.subAll]
    +r:321 [in hydras.Ackermann.folProp]
    +r:328 [in hydras.Ackermann.fol]
    +r:33 [in hydras.Schutte.GRelations]
    +R:33 [in hydras.rpo.dickson]
    +r:337 [in hydras.Ackermann.folProp]
    +r:34 [in hydras.Schutte.GRelations]
    +r:341 [in hydras.Ackermann.fol]
    +r:35 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +r:353 [in hydras.Ackermann.folProp]
    +r:362 [in additions.Euclidean_Chains]
    +r:368 [in additions.Euclidean_Chains]
    +r:369 [in hydras.Ackermann.folProp]
    +r:37 [in hydras.Prelude.More_Arith]
    +r:37 [in hydras.Ackermann.model]
    +R:37 [in hydras.rpo.dickson]
    +r:374 [in additions.Euclidean_Chains]
    +r:374 [in hydras.Ackermann.fol]
    +r:38 [in hydras.Ackermann.model]
    +r:38 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +R:38 [in hydras.rpo.dickson]
    +r:381 [in additions.Euclidean_Chains]
    +r:385 [in hydras.Ackermann.folProp]
    +r:385 [in hydras.Ackermann.fol]
    +r:388 [in additions.Euclidean_Chains]
    +r:39 [in hydras.Prelude.Restriction]
    +r:394 [in additions.Euclidean_Chains]
    +R:4 [in hydras.Schutte.Countable]
    +r:401 [in additions.Euclidean_Chains]
    +R:402 [in hydras.Epsilon0.T1]
    +R:41 [in hydras.rpo.dickson]
    +r:418 [in hydras.Ackermann.fol]
    +R:42 [in hydras.Ackermann.folProof]
    +R:42 [in hydras.rpo.dickson]
    +r:438 [in hydras.Ackermann.fol]
    +r:45 [in additions.More_on_positive]
    +R:48 [in hydras.rpo.dickson]
    +r:49 [in additions.More_on_positive]
    +R:5 [in hydras.Schutte.Countable]
    +R:51 [in hydras.Ackermann.Languages]
    +R:52 [in hydras.Ackermann.Languages]
    +r:54 [in hydras.Ackermann.Languages]
    +R:54 [in hydras.Ackermann.expressible]
    +R:543 [in hydras.Ackermann.primRec]
    +R:546 [in hydras.Ackermann.primRec]
    +R:55 [in hydras.rpo.dickson]
    +r:55 [in hydras.Ackermann.Languages]
    +R:557 [in hydras.Ackermann.primRec]
    +r:56 [in additions.More_on_positive]
    +r:56 [in hydras.Ackermann.Languages]
    +R:560 [in hydras.Ackermann.primRec]
    +R:563 [in hydras.Ackermann.primRec]
    +R:565 [in hydras.Ackermann.primRec]
    +r:57 [in hydras.Ackermann.Languages]
    +R:57 [in hydras.Ackermann.expressible]
    +r:58 [in hydras.Ackermann.Languages]
    +r:59 [in additions.More_on_positive]
    +r:59 [in hydras.Ackermann.Languages]
    +r:6 [in hydras.solutions_exercises.isqrt]
    +r:60 [in hydras.Prelude.More_Arith]
    +r:60 [in hydras.Ackermann.Languages]
    +r:61 [in hydras.Ackermann.Languages]
    +R:61 [in hydras.Ackermann.expressible]
    +R:62 [in hydras.rpo.dickson]
    +R:63 [in hydras.rpo.dickson]
    +r:63 [in hydras.Ackermann.Languages]
    +r:64 [in hydras.Ackermann.model]
    +R:65 [in hydras.Ackermann.expressible]
    +r:652 [in hydras.Ackermann.checkPrf]
    +r:66 [in hydras.Ackermann.folLogic3]
    +r:67 [in additions.fib]
    +r:68 [in additions.fib]
    +R:7 [in hydras.Ackermann.folProof]
    +r:7 [in hydras.Ackermann.PAconsistent]
    +R:7 [in hydras.Schutte.PartialFun]
    +R:70 [in hydras.Ackermann.expressible]
    +R:8 [in hydras.Prelude.DecPreOrder]
    +R:8 [in hydras.Ackermann.code]
    +r:8 [in hydras.solutions_exercises.isqrt]
    +r:85 [in hydras.Ackermann.model]
    +r:88 [in hydras.Ackermann.codeSubFormula]
    +r:89 [in hydras.Hydra.Hydra_Definitions]
    +

    S

    +SA:17 [in hydras.Prelude.Simple_LexProd]
    +SA:19 [in hydras.Prelude.Simple_LexProd]
    +SB:18 [in hydras.Prelude.Simple_LexProd]
    +SB:20 [in hydras.Prelude.Simple_LexProd]
    +seq:22 [in hydras.solutions_exercises.T1_ltNotWf]
    +SigA:279 [in Goedel.PRrepresentable]
    +SigA:282 [in Goedel.PRrepresentable]
    +SigA:297 [in Goedel.PRrepresentable]
    +SigB:280 [in Goedel.PRrepresentable]
    +SigB:283 [in Goedel.PRrepresentable]
    +SigB:298 [in Goedel.PRrepresentable]
    +sigma1:113 [in hydras.rpo.term]
    +sigma1:122 [in hydras.rpo.term]
    +sigma1:291 [in hydras.rpo.term]
    +sigma1:300 [in hydras.rpo.term]
    +sigma1:302 [in hydras.rpo.term]
    +sigma2:114 [in hydras.rpo.term]
    +sigma2:123 [in hydras.rpo.term]
    +sigma2:292 [in hydras.rpo.term]
    +sigma2:301 [in hydras.rpo.term]
    +sigma2:303 [in hydras.rpo.term]
    +sigma:102 [in hydras.rpo.term]
    +sigma:111 [in hydras.rpo.term]
    +sigma:119 [in hydras.rpo.term]
    +sigma:126 [in hydras.rpo.term]
    +sigma:128 [in hydras.rpo.term]
    +sigma:184 [in hydras.rpo.term]
    +sigma:280 [in hydras.rpo.term]
    +sigma:289 [in hydras.rpo.term]
    +sigma:297 [in hydras.rpo.term]
    +sigma:307 [in hydras.rpo.term]
    +sigma:309 [in hydras.rpo.term]
    +sigma:315 [in hydras.rpo.rpo]
    +sigma:363 [in hydras.rpo.term]
    +sigma:86 [in hydras.rpo.rpo]
    +size_acc:203 [in hydras.rpo.term]
    +size_acc:20 [in hydras.rpo.term]
    +size_acc:54 [in hydras.rpo.more_list]
    +size1:57 [in hydras.rpo.more_list]
    +size2:58 [in hydras.rpo.more_list]
    +size:37 [in hydras.rpo.more_list]
    +size:42 [in hydras.rpo.more_list]
    +size:47 [in hydras.rpo.more_list]
    +size:51 [in hydras.rpo.more_list]
    +size:69 [in hydras.rpo.list_permut]
    +size:73 [in hydras.rpo.more_list]
    +size:74 [in hydras.rpo.list_permut]
    +sn_tt:288 [in hydras.rpo.rpo]
    +sn_tt:285 [in hydras.rpo.rpo]
    +sn_tt:282 [in hydras.rpo.rpo]
    +squares:6 [in additions.AM]
    +ss:113 [in hydras.Ackermann.fol]
    +ss:120 [in hydras.Ackermann.fol]
    +ss:125 [in hydras.Ackermann.fol]
    +ss:130 [in hydras.Ackermann.fol]
    +ss:28 [in hydras.Ackermann.folLogic3]
    +ss:30 [in hydras.Ackermann.folLogic3]
    +ss:31 [in hydras.Ackermann.code]
    +ss:34 [in hydras.Ackermann.code]
    +ss:37 [in hydras.Ackermann.code]
    +ss:37 [in hydras.Ackermann.folLogic3]
    +ss:4 [in hydras.Ackermann.folProp]
    +ss:44 [in hydras.Ackermann.folLogic3]
    +ss:51 [in hydras.Ackermann.folProp]
    +ss:51 [in hydras.Ackermann.folLogic3]
    +ss:59 [in hydras.Ackermann.folLogic3]
    +ss:66 [in hydras.Ackermann.fol]
    +ss:68 [in hydras.Ackermann.folLogic3]
    +ss:73 [in hydras.Ackermann.fol]
    +ss:78 [in hydras.Ackermann.fol]
    +ss:78 [in hydras.Ackermann.folLogic3]
    +ss:83 [in hydras.Ackermann.fol]
    +ss:94 [in hydras.Ackermann.fol]
    +ss:97 [in hydras.Ackermann.fol]
    +sto:12 [in hydras.Prelude.MoreOrders]
    +sto:17 [in hydras.Prelude.MoreOrders]
    +sto:24 [in hydras.Prelude.MoreOrders]
    +sto:30 [in hydras.Prelude.MoreOrders]
    +sto:34 [in hydras.Prelude.MoreOrders]
    +sto:37 [in hydras.Prelude.MoreOrders]
    +sto:40 [in hydras.Prelude.MoreOrders]
    +sto:48 [in hydras.Prelude.MoreOrders]
    +sto:5 [in hydras.Prelude.MoreOrders]
    +sto:8 [in hydras.Prelude.MoreOrders]
    +St:110 [in hydras.Hydra.Hydra_Lemmas]
    +Su:208 [in hydras.OrdinalNotations.ON_Generic]
    +s':117 [in additions.AM]
    +s':13 [in hydras.Hydra.Hydra_Lemmas]
    +s':144 [in hydras.rpo.rpo]
    +s':148 [in hydras.rpo.rpo]
    +s':16 [in hydras.Hydra.Hydra_Lemmas]
    +s':19 [in hydras.Hydra.Hydra_Termination]
    +s':199 [in hydras.Epsilon0.Paths]
    +s':202 [in hydras.Epsilon0.Paths]
    +s':21 [in hydras.Hydra.Hydra_Termination]
    +s':21 [in hydras.Hydra.Hydra_Lemmas]
    +s':28 [in hydras.Hydra.Hydra_Termination]
    +s':289 [in hydras.rpo.rpo]
    +s':290 [in hydras.rpo.rpo]
    +s':291 [in hydras.rpo.rpo]
    +s':292 [in hydras.rpo.rpo]
    +s':299 [in hydras.rpo.rpo]
    +s':300 [in hydras.rpo.rpo]
    +s':31 [in hydras.Hydra.Hydra_Termination]
    +s':37 [in hydras.Hydra.Hydra_Termination]
    +s':40 [in hydras.Hydra.Hydra_Termination]
    +s':43 [in hydras.Hydra.O2H]
    +s':49 [in hydras.rpo.rpo]
    +s':51 [in additions.AM]
    +s':53 [in hydras.Hydra.Hydra_Lemmas]
    +s':53 [in hydras.rpo.rpo]
    +s':58 [in hydras.Hydra.Hydra_Lemmas]
    +s':62 [in hydras.Hydra.Hydra_Definitions]
    +s':63 [in hydras.Hydra.Hydra_Lemmas]
    +s':66 [in hydras.Hydra.Hydra_Definitions]
    +s':69 [in additions.AM]
    +s':75 [in hydras.Hydra.Hydra_Definitions]
    +s':8 [in hydras.Hydra.Hydra_Lemmas]
    +s':82 [in hydras.Hydra.Hydra_Definitions]
    +s':84 [in hydras.Hydra.Hydra_Definitions]
    +s0:1241 [in hydras.Ackermann.codeSubFormula]
    +s0:1244 [in hydras.Ackermann.codeSubFormula]
    +s0:1298 [in hydras.Ackermann.codeSubFormula]
    +s0:1301 [in hydras.Ackermann.codeSubFormula]
    +s0:1372 [in hydras.Ackermann.codeSubFormula]
    +s0:1375 [in hydras.Ackermann.codeSubFormula]
    +s0:21 [in hydras.Ackermann.codeSubTerm]
    +s0:25 [in hydras.Ackermann.codeSubTerm]
    +s0:43 [in hydras.Ackermann.codeSubTerm]
    +s0:47 [in hydras.Ackermann.codeSubTerm]
    +s0:863 [in hydras.Ackermann.codeSubFormula]
    +s0:866 [in hydras.Ackermann.codeSubFormula]
    +s0:887 [in hydras.Ackermann.codeSubFormula]
    +s0:890 [in hydras.Ackermann.codeSubFormula]
    +s0:903 [in hydras.Ackermann.codeSubFormula]
    +s0:906 [in hydras.Ackermann.codeSubFormula]
    +s0:930 [in hydras.Ackermann.codeSubFormula]
    +s0:933 [in hydras.Ackermann.codeSubFormula]
    +s1':201 [in hydras.rpo.list_set]
    +s1':207 [in hydras.rpo.list_set]
    +s1':217 [in hydras.rpo.list_set]
    +s1:104 [in hydras.rpo.list_set]
    +s1:11 [in hydras.rpo.list_set]
    +s1:110 [in hydras.rpo.list_set]
    +s1:112 [in hydras.Ackermann.subProp]
    +s1:1210 [in hydras.Ackermann.codeSubFormula]
    +s1:1213 [in hydras.Ackermann.codeSubFormula]
    +s1:1217 [in hydras.Ackermann.codeSubFormula]
    +s1:124 [in hydras.rpo.list_set]
    +s1:13 [in hydras.Ackermann.folLogic2]
    +s1:130 [in hydras.rpo.list_set]
    +s1:131 [in hydras.Ackermann.subProp]
    +s1:137 [in hydras.rpo.list_set]
    +s1:146 [in hydras.Ackermann.subProp]
    +s1:150 [in hydras.Ackermann.subProp]
    +s1:152 [in hydras.rpo.list_set]
    +s1:154 [in hydras.Ackermann.subProp]
    +s1:155 [in hydras.rpo.list_set]
    +s1:158 [in hydras.rpo.list_set]
    +s1:160 [in hydras.rpo.list_set]
    +s1:162 [in hydras.rpo.list_set]
    +s1:164 [in hydras.rpo.list_set]
    +s1:166 [in hydras.rpo.list_set]
    +s1:168 [in hydras.rpo.list_set]
    +s1:169 [in hydras.Ackermann.subProp]
    +s1:171 [in hydras.rpo.list_set]
    +s1:174 [in hydras.rpo.list_set]
    +s1:176 [in hydras.rpo.list_set]
    +s1:184 [in hydras.rpo.list_set]
    +s1:186 [in hydras.rpo.list_set]
    +s1:191 [in hydras.rpo.list_set]
    +s1:197 [in hydras.rpo.list_set]
    +s1:2 [in hydras.Hydra.Hydra_Lemmas]
    +s1:200 [in hydras.rpo.list_set]
    +s1:203 [in hydras.rpo.list_set]
    +s1:206 [in hydras.rpo.list_set]
    +s1:210 [in hydras.rpo.list_set]
    +s1:213 [in hydras.rpo.list_set]
    +s1:216 [in hydras.rpo.list_set]
    +s1:22 [in hydras.Hydra.Hydra_Lemmas]
    +s1:220 [in hydras.rpo.list_set]
    +s1:224 [in hydras.rpo.list_set]
    +s1:226 [in hydras.rpo.list_set]
    +s1:228 [in hydras.rpo.list_set]
    +s1:23 [in hydras.Ackermann.folLogic2]
    +s1:230 [in hydras.rpo.list_set]
    +s1:234 [in hydras.Epsilon0.Paths]
    +s1:239 [in hydras.Epsilon0.Paths]
    +s1:246 [in hydras.rpo.list_set]
    +s1:248 [in hydras.rpo.list_set]
    +s1:25 [in hydras.Hydra.Hydra_Lemmas]
    +s1:250 [in hydras.rpo.list_set]
    +s1:255 [in hydras.rpo.list_set]
    +s1:28 [in hydras.Ackermann.folLogic2]
    +s1:29 [in hydras.Hydra.O2H]
    +s1:29 [in hydras.Hydra.Hydra_Lemmas]
    +s1:33 [in hydras.Hydra.O2H]
    +s1:33 [in hydras.Hydra.Hydra_Lemmas]
    +s1:43 [in hydras.Hydra.Hydra_Definitions]
    +s1:47 [in hydras.Hydra.Hydra_Lemmas]
    +s1:8 [in hydras.rpo.list_set]
    +s1:820 [in hydras.Ackermann.codeSubFormula]
    +s1:823 [in hydras.Ackermann.codeSubFormula]
    +s1:827 [in hydras.Ackermann.codeSubFormula]
    +s1:843 [in hydras.Ackermann.codeSubFormula]
    +s1:846 [in hydras.Ackermann.codeSubFormula]
    +s1:93 [in hydras.rpo.list_set]
    +s1:98 [in hydras.rpo.list_set]
    +s2':205 [in hydras.rpo.list_set]
    +s2':209 [in hydras.rpo.list_set]
    +s2':219 [in hydras.rpo.list_set]
    +s2:105 [in hydras.rpo.list_set]
    +s2:111 [in hydras.rpo.list_set]
    +s2:113 [in hydras.Ackermann.subProp]
    +s2:12 [in hydras.rpo.list_set]
    +s2:1211 [in hydras.Ackermann.codeSubFormula]
    +s2:1214 [in hydras.Ackermann.codeSubFormula]
    +s2:1218 [in hydras.Ackermann.codeSubFormula]
    +s2:1238 [in hydras.Ackermann.codeSubFormula]
    +s2:125 [in hydras.rpo.list_set]
    +s2:131 [in hydras.rpo.list_set]
    +s2:132 [in hydras.Ackermann.subProp]
    +s2:138 [in hydras.rpo.list_set]
    +s2:14 [in hydras.Ackermann.folLogic2]
    +s2:147 [in hydras.Ackermann.subProp]
    +s2:151 [in hydras.Ackermann.subProp]
    +s2:153 [in hydras.rpo.list_set]
    +s2:155 [in hydras.Ackermann.subProp]
    +s2:156 [in hydras.rpo.list_set]
    +s2:159 [in hydras.rpo.list_set]
    +s2:161 [in hydras.rpo.list_set]
    +s2:163 [in hydras.rpo.list_set]
    +s2:165 [in hydras.rpo.list_set]
    +s2:167 [in hydras.rpo.list_set]
    +s2:169 [in hydras.rpo.list_set]
    +s2:170 [in hydras.Ackermann.subProp]
    +s2:172 [in hydras.rpo.list_set]
    +s2:175 [in hydras.rpo.list_set]
    +s2:177 [in hydras.rpo.list_set]
    +s2:185 [in hydras.rpo.list_set]
    +s2:187 [in hydras.rpo.list_set]
    +s2:192 [in hydras.rpo.list_set]
    +s2:198 [in hydras.rpo.list_set]
    +s2:202 [in hydras.rpo.list_set]
    +s2:204 [in hydras.rpo.list_set]
    +s2:208 [in hydras.rpo.list_set]
    +s2:211 [in hydras.rpo.list_set]
    +s2:214 [in hydras.rpo.list_set]
    +s2:218 [in hydras.rpo.list_set]
    +s2:221 [in hydras.rpo.list_set]
    +s2:225 [in hydras.rpo.list_set]
    +s2:227 [in hydras.rpo.list_set]
    +s2:229 [in hydras.rpo.list_set]
    +s2:23 [in hydras.Hydra.Hydra_Lemmas]
    +s2:231 [in hydras.rpo.list_set]
    +s2:235 [in hydras.Epsilon0.Paths]
    +s2:24 [in hydras.Ackermann.folLogic2]
    +s2:240 [in hydras.Epsilon0.Paths]
    +s2:247 [in hydras.rpo.list_set]
    +s2:249 [in hydras.rpo.list_set]
    +s2:251 [in hydras.rpo.list_set]
    +s2:256 [in hydras.rpo.list_set]
    +s2:26 [in hydras.Hydra.Hydra_Lemmas]
    +s2:29 [in hydras.Ackermann.folLogic2]
    +s2:3 [in hydras.Hydra.Hydra_Lemmas]
    +s2:30 [in hydras.Hydra.O2H]
    +s2:30 [in hydras.Hydra.Hydra_Lemmas]
    +s2:34 [in hydras.Hydra.O2H]
    +s2:34 [in hydras.Hydra.Hydra_Lemmas]
    +s2:44 [in hydras.Hydra.Hydra_Definitions]
    +s2:48 [in hydras.Hydra.Hydra_Lemmas]
    +s2:821 [in hydras.Ackermann.codeSubFormula]
    +s2:824 [in hydras.Ackermann.codeSubFormula]
    +s2:828 [in hydras.Ackermann.codeSubFormula]
    +s2:844 [in hydras.Ackermann.codeSubFormula]
    +s2:847 [in hydras.Ackermann.codeSubFormula]
    +s2:9 [in hydras.rpo.list_set]
    +s2:900 [in hydras.Ackermann.codeSubFormula]
    +s2:917 [in hydras.Ackermann.codeSubFormula]
    +s2:922 [in hydras.Ackermann.codeSubFormula]
    +s2:927 [in hydras.Ackermann.codeSubFormula]
    +s2:94 [in hydras.rpo.list_set]
    +s2:99 [in hydras.rpo.list_set]
    +s3:178 [in hydras.rpo.list_set]
    +s3:188 [in hydras.rpo.list_set]
    +s3:24 [in hydras.Hydra.Hydra_Lemmas]
    +s3:27 [in hydras.Hydra.Hydra_Lemmas]
    +s3:31 [in hydras.Hydra.Hydra_Lemmas]
    +s3:4 [in hydras.Hydra.Hydra_Lemmas]
    +s:10 [in hydras.Ackermann.codeSubTerm]
    +S:10 [in hydras.MoreAck.FolExamples]
    +s:1005 [in hydras.Ackermann.codeSubFormula]
    +s:1008 [in hydras.Ackermann.codeSubFormula]
    +s:101 [in hydras.Epsilon0.Paths]
    +s:101 [in hydras.Ackermann.folReplace]
    +s:101 [in hydras.rpo.rpo]
    +s:1011 [in hydras.Ackermann.codeSubFormula]
    +s:1014 [in hydras.Ackermann.codeSubFormula]
    +s:1017 [in hydras.Ackermann.codeSubFormula]
    +s:102 [in hydras.Hydra.O2H]
    +s:1020 [in hydras.Ackermann.codeSubFormula]
    +s:1028 [in hydras.Ackermann.codeSubFormula]
    +s:103 [in hydras.Ackermann.LNN2LNT]
    +s:103 [in hydras.rpo.rpo]
    +s:1030 [in hydras.Ackermann.codeSubFormula]
    +s:1032 [in hydras.Ackermann.codeSubFormula]
    +s:1034 [in hydras.Ackermann.codeSubFormula]
    +s:1036 [in hydras.Ackermann.codeSubFormula]
    +s:1038 [in hydras.Ackermann.codeSubFormula]
    +s:104 [in hydras.Ackermann.subProp]
    +s:104 [in hydras.Epsilon0.Paths]
    +s:1040 [in hydras.Ackermann.codeSubFormula]
    +s:1042 [in hydras.Ackermann.codeSubFormula]
    +s:1044 [in hydras.Ackermann.codeSubFormula]
    +s:1046 [in hydras.Ackermann.codeSubFormula]
    +s:1049 [in hydras.Ackermann.codeSubFormula]
    +s:105 [in hydras.Hydra.O2H]
    +s:105 [in hydras.Ackermann.model]
    +s:1052 [in hydras.Ackermann.codeSubFormula]
    +s:1055 [in hydras.Ackermann.codeSubFormula]
    +s:1058 [in hydras.Ackermann.codeSubFormula]
    +s:106 [in hydras.Ackermann.folReplace]
    +s:1061 [in hydras.Ackermann.codeSubFormula]
    +s:1064 [in hydras.Ackermann.codeSubFormula]
    +s:1067 [in hydras.Ackermann.codeSubFormula]
    +s:107 [in hydras.Epsilon0.Paths]
    +s:1070 [in hydras.Ackermann.codeSubFormula]
    +s:108 [in hydras.Hydra.O2H]
    +s:109 [in hydras.Ackermann.model]
    +s:11 [in hydras.Hydra.Hydra_Lemmas]
    +s:110 [in hydras.Epsilon0.Paths]
    +s:111 [in hydras.Ackermann.subAll]
    +s:112 [in hydras.Epsilon0.Paths]
    +s:113 [in hydras.Ackermann.model]
    +s:115 [in additions.AM]
    +s:116 [in hydras.Ackermann.LNN2LNT]
    +s:117 [in hydras.Ackermann.subAll]
    +s:117 [in hydras.Ackermann.model]
    +s:1170 [in hydras.Ackermann.codeSubFormula]
    +s:1172 [in hydras.Ackermann.codeSubFormula]
    +s:1174 [in hydras.Ackermann.codeSubFormula]
    +s:1176 [in hydras.Ackermann.codeSubFormula]
    +s:1178 [in hydras.Ackermann.codeSubFormula]
    +s:118 [in hydras.Ackermann.codeSubFormula]
    +s:1180 [in hydras.Ackermann.codeSubFormula]
    +s:1182 [in hydras.Ackermann.codeSubFormula]
    +s:1184 [in hydras.Ackermann.codeSubFormula]
    +s:1186 [in hydras.Ackermann.codeSubFormula]
    +s:1188 [in hydras.Ackermann.codeSubFormula]
    +s:119 [in hydras.Epsilon0.Paths]
    +s:1190 [in hydras.Ackermann.codeSubFormula]
    +s:1192 [in hydras.Ackermann.codeSubFormula]
    +s:1194 [in hydras.Ackermann.codeSubFormula]
    +s:1196 [in hydras.Ackermann.codeSubFormula]
    +s:12 [in hydras.Hydra.Hydra_Termination]
    +s:12 [in hydras.Hydra.Hydra_Lemmas]
    +s:120 [in hydras.rpo.rpo]
    +s:1200 [in hydras.Ackermann.codeSubFormula]
    +s:1202 [in hydras.Ackermann.codeSubFormula]
    +s:1204 [in hydras.Ackermann.codeSubFormula]
    +s:1206 [in hydras.Ackermann.codeSubFormula]
    +s:121 [in hydras.Ackermann.subProp]
    +s:121 [in hydras.Ackermann.codeSubFormula]
    +s:1222 [in hydras.Ackermann.codeSubFormula]
    +s:1225 [in hydras.Ackermann.codeSubFormula]
    +s:124 [in hydras.Ackermann.codeSubTerm]
    +s:124 [in hydras.Ackermann.codeSubFormula]
    +s:124 [in hydras.Epsilon0.Paths]
    +s:1251 [in hydras.Ackermann.codeSubFormula]
    +s:1259 [in hydras.Ackermann.codeSubFormula]
    +s:126 [in hydras.Ackermann.subProp]
    +s:126 [in hydras.Epsilon0.Large_Sets]
    +s:126 [in hydras.Epsilon0.Paths]
    +s:126 [in hydras.rpo.rpo]
    +s:1267 [in hydras.Ackermann.codeSubFormula]
    +s:127 [in hydras.Ackermann.codeSubTerm]
    +s:128 [in hydras.Epsilon0.Large_Sets]
    +s:1287 [in hydras.Ackermann.codeSubFormula]
    +s:129 [in hydras.Ackermann.model]
    +s:1292 [in hydras.Ackermann.codeSubFormula]
    +s:1295 [in hydras.Ackermann.codeSubFormula]
    +s:13 [in hydras.Ackermann.codeSubTerm]
    +s:13 [in hydras.Hydra.Hydra_Termination]
    +s:130 [in additions.AM]
    +s:130 [in hydras.Ackermann.codeSubTerm]
    +s:130 [in hydras.Epsilon0.Large_Sets]
    +s:132 [in hydras.Epsilon0.Large_Sets]
    +s:133 [in hydras.Ackermann.codeSubTerm]
    +s:133 [in hydras.Ackermann.model]
    +s:133 [in hydras.Ackermann.codeSubFormula]
    +s:134 [in hydras.Epsilon0.Large_Sets]
    +s:134 [in hydras.Epsilon0.Paths]
    +s:135 [in hydras.Ackermann.folProp]
    +s:136 [in hydras.Ackermann.codeSubTerm]
    +s:136 [in hydras.Ackermann.subProp]
    +s:136 [in hydras.Epsilon0.Large_Sets]
    +s:1368 [in hydras.Ackermann.codeSubFormula]
    +s:137 [in hydras.Ackermann.model]
    +s:1378 [in hydras.Ackermann.codeSubFormula]
    +s:138 [in hydras.Epsilon0.Large_Sets]
    +s:1381 [in hydras.Ackermann.codeSubFormula]
    +s:139 [in hydras.Ackermann.codeSubTerm]
    +s:139 [in hydras.rpo.rpo]
    +s:1391 [in hydras.Ackermann.codeSubFormula]
    +s:1395 [in hydras.Ackermann.codeSubFormula]
    +s:1398 [in hydras.Ackermann.codeSubFormula]
    +s:14 [in hydras.Ackermann.subProp]
    +s:14 [in hydras.Hydra.Hydra_Termination]
    +s:140 [in hydras.Ackermann.subProp]
    +s:140 [in hydras.Epsilon0.Large_Sets]
    +s:140 [in hydras.Epsilon0.Paths]
    +S:140 [in hydras.Schutte.Ordering_Functions]
    +s:1401 [in hydras.Ackermann.codeSubFormula]
    +s:1406 [in hydras.Ackermann.codeSubFormula]
    +s:141 [in hydras.Ackermann.model]
    +s:1412 [in hydras.Ackermann.codeSubFormula]
    +s:1419 [in hydras.Ackermann.codeSubFormula]
    +s:142 [in hydras.Ackermann.codeSubTerm]
    +s:142 [in hydras.Epsilon0.Large_Sets]
    +s:1424 [in hydras.Ackermann.codeSubFormula]
    +s:1429 [in hydras.Ackermann.codeSubFormula]
    +s:143 [in hydras.Ackermann.folProp]
    +s:143 [in hydras.Ackermann.subProp]
    +s:1432 [in hydras.Ackermann.codeSubFormula]
    +s:1435 [in hydras.Ackermann.codeSubFormula]
    +s:1438 [in hydras.Ackermann.codeSubFormula]
    +S:144 [in hydras.Schutte.Ordering_Functions]
    +s:1441 [in hydras.Ackermann.codeSubFormula]
    +s:1444 [in hydras.Ackermann.codeSubFormula]
    +s:1447 [in hydras.Ackermann.codeSubFormula]
    +s:145 [in hydras.Ackermann.codeSubTerm]
    +s:145 [in hydras.Ackermann.model]
    +S:145 [in hydras.Schutte.Ordering_Functions]
    +s:1450 [in hydras.Ackermann.codeSubFormula]
    +s:1453 [in hydras.Ackermann.codeSubFormula]
    +s:1456 [in hydras.Ackermann.codeSubFormula]
    +s:1459 [in hydras.Ackermann.codeSubFormula]
    +s:146 [in hydras.Epsilon0.Paths]
    +s:1462 [in hydras.Ackermann.codeSubFormula]
    +s:1465 [in hydras.Ackermann.codeSubFormula]
    +s:1468 [in hydras.Ackermann.codeSubFormula]
    +s:147 [in hydras.Ackermann.folProp]
    +s:1471 [in hydras.Ackermann.codeSubFormula]
    +s:1474 [in hydras.Ackermann.codeSubFormula]
    +s:1477 [in hydras.Ackermann.codeSubFormula]
    +s:1480 [in hydras.Ackermann.codeSubFormula]
    +s:1483 [in hydras.Ackermann.codeSubFormula]
    +s:1486 [in hydras.Ackermann.codeSubFormula]
    +s:1489 [in hydras.Ackermann.codeSubFormula]
    +s:149 [in hydras.Ackermann.model]
    +s:1492 [in hydras.Ackermann.codeSubFormula]
    +s:1495 [in hydras.Ackermann.codeSubFormula]
    +s:1498 [in hydras.Ackermann.codeSubFormula]
    +s:15 [in additions.AM]
    +s:15 [in gaia_hydras.GPaths]
    +s:15 [in hydras.Hydra.Hydra_Lemmas]
    +s:1501 [in hydras.Ackermann.codeSubFormula]
    +s:1504 [in hydras.Ackermann.codeSubFormula]
    +s:1507 [in hydras.Ackermann.codeSubFormula]
    +s:151 [in hydras.Ackermann.folProp]
    +s:151 [in gaia_hydras.T1Bridge]
    +s:1510 [in hydras.Ackermann.codeSubFormula]
    +s:1512 [in hydras.Ackermann.codeSubFormula]
    +s:1514 [in hydras.Ackermann.codeSubFormula]
    +s:1517 [in hydras.Ackermann.codeSubFormula]
    +s:152 [in hydras.Epsilon0.Large_Sets]
    +s:1520 [in hydras.Ackermann.codeSubFormula]
    +s:1523 [in hydras.Ackermann.codeSubFormula]
    +s:1526 [in hydras.Ackermann.codeSubFormula]
    +s:1529 [in hydras.Ackermann.codeSubFormula]
    +s:153 [in gaia_hydras.T1Bridge]
    +s:153 [in hydras.rpo.rpo]
    +s:1532 [in hydras.Ackermann.codeSubFormula]
    +s:1535 [in hydras.Ackermann.codeSubFormula]
    +s:1538 [in hydras.Ackermann.codeSubFormula]
    +s:1541 [in hydras.Ackermann.codeSubFormula]
    +s:1544 [in hydras.Ackermann.codeSubFormula]
    +s:1547 [in hydras.Ackermann.codeSubFormula]
    +s:155 [in hydras.Ackermann.folProp]
    +s:155 [in gaia_hydras.T1Bridge]
    +s:155 [in hydras.rpo.rpo]
    +s:1550 [in hydras.Ackermann.codeSubFormula]
    +s:1553 [in hydras.Ackermann.codeSubFormula]
    +s:1556 [in hydras.Ackermann.codeSubFormula]
    +s:1559 [in hydras.Ackermann.codeSubFormula]
    +s:156 [in additions.AM]
    +s:1562 [in hydras.Ackermann.codeSubFormula]
    +s:1565 [in hydras.Ackermann.codeSubFormula]
    +s:1568 [in hydras.Ackermann.codeSubFormula]
    +s:157 [in hydras.Ackermann.model]
    +s:158 [in hydras.Epsilon0.Large_Sets]
    +s:158 [in hydras.Epsilon0.Paths]
    +s:159 [in hydras.Ackermann.subProp]
    +s:159 [in hydras.rpo.rpo]
    +s:16 [in hydras.Hydra.Hydra_Definitions]
    +s:160 [in additions.AM]
    +s:160 [in gaia_hydras.T1Bridge]
    +s:160 [in hydras.Epsilon0.Paths]
    +s:162 [in hydras.Epsilon0.Paths]
    +s:163 [in additions.AM]
    +s:164 [in additions.AM]
    +s:164 [in hydras.Prelude.MoreLists]
    +s:164 [in hydras.Ackermann.subProp]
    +s:165 [in hydras.Epsilon0.Paths]
    +s:166 [in additions.AM]
    +S:167 [in hydras.Prelude.MoreLists]
    +s:168 [in additions.AM]
    +s:169 [in additions.AM]
    +s:17 [in hydras.Ackermann.codeSubTerm]
    +s:17 [in hydras.Hydra.Hydra_Termination]
    +s:17 [in hydras.Epsilon0.Paths]
    +s:170 [in hydras.Epsilon0.Paths]
    +s:172 [in hydras.rpo.rpo]
    +s:173 [in hydras.rpo.list_set]
    +s:175 [in hydras.Epsilon0.Paths]
    +s:177 [in hydras.Epsilon0.Large_Sets]
    +s:178 [in hydras.Epsilon0.Paths]
    +s:18 [in hydras.Prelude.MoreOrders]
    +s:18 [in hydras.Hydra.Hydra_Termination]
    +s:180 [in hydras.Epsilon0.Large_Sets]
    +s:180 [in hydras.Schutte.Schutte_basics]
    +s:180 [in hydras.Epsilon0.Paths]
    +s:181 [in hydras.rpo.list_set]
    +s:181 [in hydras.rpo.rpo]
    +s:182 [in hydras.Epsilon0.Large_Sets]
    +s:182 [in hydras.rpo.list_set]
    +s:182 [in hydras.Epsilon0.Paths]
    +s:183 [in hydras.Schutte.Schutte_basics]
    +s:183 [in hydras.rpo.list_set]
    +s:183 [in hydras.Epsilon0.Paths]
    +s:184 [in hydras.Epsilon0.Large_Sets]
    +s:184 [in hydras.Epsilon0.Paths]
    +s:185 [in hydras.Epsilon0.Large_Sets]
    +s:185 [in hydras.Schutte.Schutte_basics]
    +s:186 [in hydras.Schutte.Schutte_basics]
    +s:187 [in hydras.Epsilon0.Large_Sets]
    +s:188 [in hydras.Prelude.MoreLists]
    +s:188 [in hydras.Schutte.Schutte_basics]
    +s:188 [in hydras.Epsilon0.Paths]
    +s:19 [in hydras.Ackermann.LNN2LNT]
    +s:19 [in gaia_hydras.GPaths]
    +s:19 [in hydras.Ackermann.subProp]
    +s:190 [in hydras.Epsilon0.Large_Sets]
    +s:190 [in hydras.Epsilon0.Paths]
    +s:192 [in hydras.Prelude.MoreLists]
    +s:192 [in hydras.Epsilon0.Large_Sets]
    +s:192 [in hydras.Schutte.Schutte_basics]
    +s:192 [in hydras.Epsilon0.Paths]
    +s:194 [in hydras.Epsilon0.Large_Sets]
    +s:194 [in hydras.rpo.rpo]
    +s:195 [in hydras.Epsilon0.Paths]
    +s:196 [in hydras.Epsilon0.Large_Sets]
    +s:198 [in hydras.Epsilon0.Large_Sets]
    +s:198 [in hydras.Schutte.Schutte_basics]
    +s:198 [in hydras.Epsilon0.Paths]
    +s:2 [in hydras.Ackermann.folProp]
    +s:2 [in hydras.Epsilon0.Large_Sets]
    +s:2 [in hydras.Hydra.Hydra_Termination]
    +s:2 [in gaia_hydras.GHydra]
    +s:2 [in gaia_hydras.GLarge_Sets]
    +s:20 [in hydras.Prelude.MoreLists]
    +s:20 [in hydras.Hydra.Hydra_Termination]
    +s:20 [in hydras.Hydra.Hydra_Lemmas]
    +s:20 [in hydras.Epsilon0.Paths]
    +s:200 [in hydras.Epsilon0.Large_Sets]
    +s:201 [in hydras.Epsilon0.Paths]
    +s:204 [in hydras.Epsilon0.Large_Sets]
    +s:205 [in hydras.Epsilon0.Large_Sets]
    +s:205 [in hydras.Epsilon0.Paths]
    +s:207 [in hydras.Epsilon0.Large_Sets]
    +s:208 [in hydras.Epsilon0.Paths]
    +S:21 [in hydras.Ackermann.Languages]
    +s:210 [in hydras.Prelude.MoreLists]
    +s:210 [in hydras.rpo.rpo]
    +s:211 [in hydras.Epsilon0.Large_Sets]
    +s:211 [in hydras.rpo.rpo]
    +s:212 [in hydras.rpo.list_set]
    +s:212 [in hydras.Epsilon0.Paths]
    +s:213 [in hydras.Epsilon0.Large_Sets]
    +s:215 [in hydras.Epsilon0.Large_Sets]
    +s:215 [in hydras.rpo.list_set]
    +s:215 [in hydras.Epsilon0.Paths]
    +s:215 [in hydras.rpo.rpo]
    +s:216 [in hydras.Prelude.MoreLists]
    +s:219 [in hydras.Epsilon0.Paths]
    +s:219 [in hydras.rpo.rpo]
    +s:22 [in additions.AM]
    +s:22 [in hydras.Epsilon0.Epsilon0rpo]
    +s:22 [in hydras.Epsilon0.Large_Sets]
    +s:22 [in hydras.Hydra.Hydra_Definitions]
    +s:222 [in hydras.rpo.list_set]
    +s:222 [in hydras.Epsilon0.Paths]
    +s:223 [in hydras.rpo.list_set]
    +s:225 [in hydras.rpo.rpo]
    +s:227 [in hydras.Epsilon0.Paths]
    +s:228 [in additions.AM]
    +s:23 [in hydras.Prelude.MoreLists]
    +S:23 [in hydras.Ackermann.checkPrf]
    +s:23 [in hydras.Ackermann.subProp]
    +s:23 [in hydras.rpo.list_set]
    +s:23 [in hydras.Epsilon0.Paths]
    +s:230 [in hydras.Epsilon0.Paths]
    +s:234 [in hydras.Ackermann.folProp]
    +s:236 [in hydras.Epsilon0.Paths]
    +s:241 [in hydras.Epsilon0.Paths]
    +s:244 [in hydras.Epsilon0.Paths]
    +s:246 [in hydras.Epsilon0.Paths]
    +s:25 [in hydras.Prelude.MoreOrders]
    +s:25 [in hydras.rpo.list_set]
    +s:253 [in hydras.Epsilon0.Paths]
    +s:256 [in hydras.Epsilon0.Paths]
    +s:260 [in hydras.Epsilon0.Paths]
    +s:262 [in hydras.rpo.rpo]
    +s:263 [in hydras.Epsilon0.Paths]
    +s:263 [in hydras.Gamma0.Gamma0]
    +s:263 [in hydras.rpo.rpo]
    +s:264 [in hydras.rpo.rpo]
    +s:265 [in hydras.rpo.rpo]
    +s:27 [in hydras.Ackermann.LNN2LNT]
    +s:27 [in hydras.Ackermann.subProp]
    +s:27 [in hydras.Hydra.Hydra_Termination]
    +s:277 [in Goedel.PRrepresentable]
    +s:28 [in hydras.Prelude.MoreLists]
    +s:28 [in hydras.Ackermann.code]
    +s:282 [in hydras.Ackermann.folProp]
    +s:283 [in hydras.Ackermann.subAll]
    +s:288 [in hydras.Ackermann.subAll]
    +s:29 [in hydras.rpo.list_set]
    +s:3 [in hydras.solutions_exercises.Limit_Infinity]
    +s:30 [in hydras.Epsilon0.Large_Sets]
    +s:30 [in hydras.Hydra.Hydra_Termination]
    +s:30 [in hydras.rpo.rpo]
    +s:31 [in gaia_hydras.GPaths]
    +s:31 [in hydras.Prelude.MoreOrders]
    +s:31 [in hydras.Schutte.Schutte_basics]
    +s:31 [in hydras.rpo.list_set]
    +s:314 [in hydras.rpo.rpo]
    +s:318 [in hydras.rpo.rpo]
    +s:32 [in hydras.Ackermann.subProp]
    +s:32 [in hydras.Epsilon0.Large_Sets]
    +s:32 [in hydras.Hydra.Hydra_Termination]
    +s:32 [in hydras.Epsilon0.Paths]
    +s:33 [in gaia_hydras.GPaths]
    +s:336 [in additions.Euclidean_Chains]
    +s:338 [in additions.Euclidean_Chains]
    +s:34 [in hydras.Ackermann.folLogic2]
    +s:34 [in hydras.rpo.list_set]
    +s:341 [in additions.Euclidean_Chains]
    +s:343 [in additions.Euclidean_Chains]
    +s:347 [in additions.Euclidean_Chains]
    +s:35 [in hydras.OrdinalNotations.ON_Omega2]
    +s:35 [in gaia_hydras.GPaths]
    +s:35 [in hydras.Epsilon0.Large_Sets]
    +s:35 [in hydras.Epsilon0.Paths]
    +s:351 [in additions.Euclidean_Chains]
    +s:355 [in additions.Euclidean_Chains]
    +s:357 [in additions.Euclidean_Chains]
    +s:359 [in hydras.Ackermann.subAll]
    +s:36 [in hydras.Hydra.Hydra_Termination]
    +s:363 [in additions.Euclidean_Chains]
    +s:369 [in additions.Euclidean_Chains]
    +s:37 [in hydras.Prelude.MoreLists]
    +s:37 [in hydras.Ackermann.subProp]
    +s:37 [in hydras.rpo.list_set]
    +s:372 [in hydras.Ackermann.subAll]
    +s:376 [in additions.Euclidean_Chains]
    +s:38 [in hydras.Ackermann.folLogic2]
    +s:38 [in gaia_hydras.GPaths]
    +s:38 [in hydras.Prelude.MoreOrders]
    +s:38 [in hydras.Hydra.Hydra_Definitions]
    +s:383 [in additions.Euclidean_Chains]
    +s:386 [in hydras.Epsilon0.Paths]
    +s:389 [in additions.Euclidean_Chains]
    +s:39 [in hydras.Hydra.O2H]
    +s:39 [in hydras.Prelude.MoreLists]
    +s:39 [in hydras.Ackermann.codeSubTerm]
    +s:39 [in hydras.Hydra.Hydra_Termination]
    +s:39 [in hydras.Epsilon0.Paths]
    +s:395 [in hydras.Ackermann.folProp]
    +s:396 [in additions.Euclidean_Chains]
    +s:399 [in hydras.Ackermann.folProp]
    +s:4 [in hydras.Ackermann.subProp]
    +s:4 [in hydras.Epsilon0.Large_Sets]
    +s:4 [in gaia_hydras.GLarge_Sets]
    +s:403 [in hydras.Ackermann.folProp]
    +s:403 [in additions.Euclidean_Chains]
    +s:406 [in additions.Euclidean_Chains]
    +s:407 [in additions.Euclidean_Chains]
    +s:408 [in hydras.Ackermann.folProp]
    +s:409 [in additions.Euclidean_Chains]
    +s:41 [in hydras.Hydra.O2H]
    +s:41 [in hydras.Prelude.MoreLists]
    +s:41 [in hydras.Epsilon0.Paths]
    +s:411 [in additions.Euclidean_Chains]
    +s:412 [in additions.Euclidean_Chains]
    +s:413 [in hydras.Ackermann.folProp]
    +s:416 [in hydras.Ackermann.folProp]
    +s:42 [in hydras.Hydra.O2H]
    +s:42 [in hydras.Ackermann.subProp]
    +s:423 [in Goedel.PRrepresentable]
    +s:427 [in Goedel.PRrepresentable]
    +s:43 [in hydras.Prelude.MoreLists]
    +s:430 [in Goedel.PRrepresentable]
    +s:431 [in hydras.Ackermann.folProp]
    +s:433 [in Goedel.PRrepresentable]
    +s:436 [in Goedel.PRrepresentable]
    +s:436 [in hydras.Ackermann.folProp]
    +s:439 [in Goedel.PRrepresentable]
    +s:44 [in hydras.rpo.rpo]
    +s:45 [in hydras.Prelude.MoreLists]
    +s:45 [in hydras.Epsilon0.Paths]
    +s:46 [in Goedel.PRrepresentable]
    +s:46 [in hydras.Hydra.O2H]
    +s:46 [in hydras.Ackermann.subProp]
    +s:47 [in hydras.Ackermann.folProp]
    +s:47 [in hydras.Hydra.Hydra_Definitions]
    +s:471 [in additions.Euclidean_Chains]
    +s:49 [in Goedel.PRrepresentable]
    +s:50 [in additions.AM]
    +s:50 [in hydras.Ackermann.subProp]
    +s:50 [in hydras.Hydra.Hydra_Definitions]
    +s:51 [in Goedel.codeSysPrf]
    +s:52 [in hydras.Hydra.Hydra_Lemmas]
    +s:53 [in hydras.rpo.list_set]
    +S:53 [in hydras.Ackermann.Languages]
    +S:544 [in hydras.Ackermann.primRec]
    +s:55 [in hydras.Ackermann.codeSubTerm]
    +s:55 [in hydras.Ackermann.subProp]
    +s:55 [in Goedel.codeSysPrf]
    +S:558 [in hydras.Ackermann.primRec]
    +s:56 [in gaia_hydras.GPaths]
    +s:57 [in hydras.Hydra.Hydra_Lemmas]
    +s:58 [in hydras.rpo.rpo]
    +s:59 [in hydras.Ackermann.codeSubTerm]
    +s:59 [in hydras.Hydra.Hydra_Definitions]
    +s:6 [in hydras.Hydra.BigBattle]
    +S:6 [in hydras.MoreAck.FolExamples]
    +s:60 [in gaia_hydras.GPaths]
    +s:60 [in hydras.Ackermann.folProp]
    +s:60 [in hydras.Ackermann.subProp]
    +s:60 [in hydras.Ackermann.codeSubFormula]
    +s:60 [in hydras.rpo.list_set]
    +s:60 [in hydras.rpo.rpo]
    +s:61 [in hydras.Hydra.Hydra_Definitions]
    +s:62 [in hydras.Hydra.Hydra_Lemmas]
    +s:63 [in hydras.Ackermann.codeSubTerm]
    +s:63 [in hydras.Ackermann.folProp]
    +s:64 [in hydras.rpo.rpo]
    +s:65 [in hydras.Prelude.MoreLists]
    +s:65 [in hydras.Ackermann.subProp]
    +s:65 [in hydras.Hydra.Hydra_Definitions]
    +s:67 [in additions.AM]
    +s:67 [in hydras.Ackermann.codeSubTerm]
    +s:67 [in hydras.Ackermann.folProp]
    +s:67 [in Goedel.codeSysPrf]
    +s:68 [in hydras.rpo.list_set]
    +s:685 [in hydras.Epsilon0.T1]
    +s:69 [in hydras.Ackermann.subProp]
    +s:690 [in hydras.Epsilon0.T1]
    +s:694 [in hydras.Epsilon0.T1]
    +s:694 [in hydras.Ackermann.codeSubFormula]
    +s:697 [in hydras.Epsilon0.T1]
    +s:697 [in hydras.Ackermann.codeSubFormula]
    +s:7 [in hydras.Ackermann.Deduction]
    +s:7 [in hydras.Hydra.Hydra_Lemmas]
    +s:7 [in hydras.rpo.list_set]
    +s:70 [in hydras.Hydra.Hydra_Definitions]
    +s:700 [in hydras.Ackermann.codeSubFormula]
    +s:701 [in hydras.Epsilon0.T1]
    +s:703 [in hydras.Ackermann.codeSubFormula]
    +s:706 [in hydras.Ackermann.codeSubFormula]
    +s:709 [in hydras.Ackermann.codeSubFormula]
    +s:71 [in hydras.Ackermann.codeSubTerm]
    +s:71 [in hydras.Ackermann.LNN2LNT]
    +s:71 [in Goedel.codeSysPrf]
    +s:712 [in hydras.Ackermann.codeSubFormula]
    +s:715 [in hydras.Ackermann.codeSubFormula]
    +s:718 [in hydras.Ackermann.codeSubFormula]
    +s:72 [in hydras.Ackermann.codeSubFormula]
    +s:72 [in Goedel.rosser]
    +s:721 [in hydras.Ackermann.codeSubFormula]
    +s:724 [in hydras.Ackermann.codeSubFormula]
    +s:73 [in hydras.Ackermann.model]
    +s:73 [in hydras.Ackermann.subProp]
    +s:74 [in hydras.Hydra.Hydra_Definitions]
    +s:75 [in Goedel.PRrepresentable]
    +s:75 [in hydras.Ackermann.codeSubTerm]
    +s:75 [in hydras.rpo.rpo]
    +s:755 [in hydras.Ackermann.codeSubFormula]
    +s:756 [in hydras.Ackermann.codeSubFormula]
    +s:757 [in hydras.Ackermann.codeSubFormula]
    +s:758 [in hydras.Ackermann.codeSubFormula]
    +s:759 [in hydras.Ackermann.codeSubFormula]
    +s:760 [in hydras.Ackermann.codeSubFormula]
    +s:77 [in hydras.Ackermann.codeSubFormula]
    +s:78 [in additions.AM]
    +s:78 [in hydras.Prelude.MoreLists]
    +s:78 [in hydras.Ackermann.subProp]
    +s:79 [in hydras.Ackermann.codeSubTerm]
    +s:79 [in hydras.rpo.rpo]
    +s:8 [in hydras.Prelude.MoreLists]
    +s:8 [in hydras.Ackermann.codeSubTerm]
    +s:8 [in hydras.Hydra.Hydra_Termination]
    +s:8 [in hydras.rpo.rpo]
    +s:81 [in hydras.Hydra.Hydra_Definitions]
    +s:816 [in hydras.Ackermann.codeSubFormula]
    +s:818 [in hydras.Ackermann.codeSubFormula]
    +s:83 [in hydras.Ackermann.codeSubTerm]
    +s:83 [in hydras.Ackermann.subProp]
    +s:83 [in hydras.Hydra.Hydra_Definitions]
    +s:832 [in hydras.Ackermann.codeSubFormula]
    +s:835 [in hydras.Ackermann.codeSubFormula]
    +s:84 [in hydras.Ackermann.model]
    +s:85 [in hydras.rpo.rpo]
    +s:860 [in hydras.Ackermann.codeSubFormula]
    +s:87 [in hydras.Ackermann.codeSubTerm]
    +s:87 [in hydras.Ackermann.codeSubFormula]
    +s:87 [in hydras.Hydra.Hydra_Definitions]
    +s:876 [in hydras.Ackermann.codeSubFormula]
    +s:88 [in additions.AM]
    +s:88 [in hydras.Ackermann.subProp]
    +s:880 [in hydras.Ackermann.codeSubFormula]
    +s:884 [in hydras.Ackermann.codeSubFormula]
    +s:89 [in additions.AM]
    +s:89 [in hydras.Ackermann.model]
    +s:9 [in hydras.Ackermann.subProp]
    +S:9 [in hydras.Ackermann.code]
    +s:9 [in hydras.Hydra.Hydra_Definitions]
    +s:90 [in hydras.rpo.rpo]
    +s:91 [in hydras.Ackermann.codeSubTerm]
    +s:92 [in hydras.Ackermann.subProp]
    +s:92 [in hydras.Ackermann.codeSubFormula]
    +s:93 [in hydras.Epsilon0.Paths]
    +s:93 [in hydras.rpo.rpo]
    +s:942 [in hydras.Ackermann.codeSubFormula]
    +s:945 [in hydras.Ackermann.codeSubFormula]
    +s:948 [in hydras.Ackermann.codeSubFormula]
    +s:95 [in hydras.Epsilon0.Paths]
    +s:95 [in hydras.rpo.rpo]
    +s:951 [in hydras.Ackermann.codeSubFormula]
    +s:954 [in hydras.Ackermann.codeSubFormula]
    +s:957 [in hydras.Ackermann.codeSubFormula]
    +s:96 [in hydras.Ackermann.subProp]
    +s:96 [in hydras.Ackermann.folReplace]
    +s:960 [in hydras.Ackermann.codeSubFormula]
    +s:963 [in hydras.Ackermann.codeSubFormula]
    +s:966 [in hydras.Ackermann.codeSubFormula]
    +s:969 [in hydras.Ackermann.codeSubFormula]
    +s:97 [in hydras.rpo.rpo]
    +s:972 [in hydras.Ackermann.codeSubFormula]
    +s:975 [in hydras.Ackermann.codeSubFormula]
    +s:978 [in hydras.Ackermann.codeSubFormula]
    +s:98 [in Goedel.PRrepresentable]
    +s:98 [in hydras.Epsilon0.Paths]
    +s:983 [in hydras.Ackermann.codeSubFormula]
    +s:986 [in hydras.Ackermann.codeSubFormula]
    +s:989 [in hydras.Ackermann.codeSubFormula]
    +s:99 [in hydras.Ackermann.subAll]
    +s:99 [in hydras.rpo.rpo]
    +s:992 [in hydras.Ackermann.codeSubFormula]
    +s:995 [in hydras.Ackermann.codeSubFormula]
    +s:998 [in hydras.Ackermann.codeSubFormula]
    +

    T

    +ta1:310 [in hydras.Gamma0.Gamma0]
    +ta1:314 [in hydras.Gamma0.Gamma0]
    +ta1:320 [in hydras.Gamma0.Gamma0]
    +ta1:328 [in hydras.Gamma0.Gamma0]
    +ta1:334 [in hydras.Gamma0.Gamma0]
    +ta1:337 [in hydras.Gamma0.Gamma0]
    +ta1:342 [in hydras.Gamma0.Gamma0]
    +ta1:349 [in hydras.Gamma0.Gamma0]
    +ta1:354 [in hydras.Gamma0.Gamma0]
    +ta1:358 [in hydras.Gamma0.Gamma0]
    +ta1:364 [in hydras.Gamma0.Gamma0]
    +ta1:372 [in hydras.Gamma0.Gamma0]
    +ta1:378 [in hydras.Gamma0.Gamma0]
    +ta1:381 [in hydras.Gamma0.Gamma0]
    +ta1:386 [in hydras.Gamma0.Gamma0]
    +ta1:393 [in hydras.Gamma0.Gamma0]
    +ta1:398 [in hydras.Gamma0.Gamma0]
    +ta1:404 [in hydras.Gamma0.Gamma0]
    +ta1:408 [in hydras.Gamma0.Gamma0]
    +ta2:311 [in hydras.Gamma0.Gamma0]
    +ta2:315 [in hydras.Gamma0.Gamma0]
    +ta2:321 [in hydras.Gamma0.Gamma0]
    +ta2:329 [in hydras.Gamma0.Gamma0]
    +ta2:355 [in hydras.Gamma0.Gamma0]
    +ta2:359 [in hydras.Gamma0.Gamma0]
    +ta2:365 [in hydras.Gamma0.Gamma0]
    +ta2:373 [in hydras.Gamma0.Gamma0]
    +ta2:379 [in hydras.Gamma0.Gamma0]
    +ta2:382 [in hydras.Gamma0.Gamma0]
    +ta2:387 [in hydras.Gamma0.Gamma0]
    +ta2:394 [in hydras.Gamma0.Gamma0]
    +TA:35 [in hydras.Prelude.DecPreOrder_Instances]
    +tb1:312 [in hydras.Gamma0.Gamma0]
    +tb1:316 [in hydras.Gamma0.Gamma0]
    +tb1:322 [in hydras.Gamma0.Gamma0]
    +tb1:330 [in hydras.Gamma0.Gamma0]
    +tb1:335 [in hydras.Gamma0.Gamma0]
    +tb1:338 [in hydras.Gamma0.Gamma0]
    +tb1:343 [in hydras.Gamma0.Gamma0]
    +tb1:350 [in hydras.Gamma0.Gamma0]
    +tb1:356 [in hydras.Gamma0.Gamma0]
    +tb1:360 [in hydras.Gamma0.Gamma0]
    +tb1:366 [in hydras.Gamma0.Gamma0]
    +tb1:374 [in hydras.Gamma0.Gamma0]
    +tb1:380 [in hydras.Gamma0.Gamma0]
    +tb1:383 [in hydras.Gamma0.Gamma0]
    +tb1:388 [in hydras.Gamma0.Gamma0]
    +tb1:395 [in hydras.Gamma0.Gamma0]
    +tb1:399 [in hydras.Gamma0.Gamma0]
    +tb1:405 [in hydras.Gamma0.Gamma0]
    +tb1:409 [in hydras.Gamma0.Gamma0]
    +tb2:313 [in hydras.Gamma0.Gamma0]
    +tb2:317 [in hydras.Gamma0.Gamma0]
    +tb2:323 [in hydras.Gamma0.Gamma0]
    +tb2:331 [in hydras.Gamma0.Gamma0]
    +tb2:336 [in hydras.Gamma0.Gamma0]
    +tb2:339 [in hydras.Gamma0.Gamma0]
    +tb2:344 [in hydras.Gamma0.Gamma0]
    +tb2:351 [in hydras.Gamma0.Gamma0]
    +tb2:357 [in hydras.Gamma0.Gamma0]
    +tb2:361 [in hydras.Gamma0.Gamma0]
    +tb2:367 [in hydras.Gamma0.Gamma0]
    +tb2:375 [in hydras.Gamma0.Gamma0]
    +TB:12 [in hydras.Prelude.DecPreOrder_Instances]
    +TB:36 [in hydras.Prelude.DecPreOrder_Instances]
    +tc1:319 [in hydras.Gamma0.Gamma0]
    +tc1:326 [in hydras.Gamma0.Gamma0]
    +tc1:341 [in hydras.Gamma0.Gamma0]
    +tc1:347 [in hydras.Gamma0.Gamma0]
    +tc1:363 [in hydras.Gamma0.Gamma0]
    +tc1:370 [in hydras.Gamma0.Gamma0]
    +tc1:385 [in hydras.Gamma0.Gamma0]
    +tc1:391 [in hydras.Gamma0.Gamma0]
    +tc1:402 [in hydras.Gamma0.Gamma0]
    +tc1:411 [in hydras.Gamma0.Gamma0]
    +tc2:327 [in hydras.Gamma0.Gamma0]
    +tc2:333 [in hydras.Gamma0.Gamma0]
    +tc2:348 [in hydras.Gamma0.Gamma0]
    +tc2:353 [in hydras.Gamma0.Gamma0]
    +tc2:371 [in hydras.Gamma0.Gamma0]
    +tc2:377 [in hydras.Gamma0.Gamma0]
    +tc2:392 [in hydras.Gamma0.Gamma0]
    +tc2:397 [in hydras.Gamma0.Gamma0]
    +tc2:403 [in hydras.Gamma0.Gamma0]
    +tc2:407 [in hydras.Gamma0.Gamma0]
    +tc2:412 [in hydras.Gamma0.Gamma0]
    +tj:174 [in hydras.rpo.rpo]
    +tj:177 [in hydras.rpo.rpo]
    +tj:180 [in hydras.rpo.rpo]
    +to:14 [in gaia_hydras.GPaths]
    +to:36 [in gaia_hydras.GPaths]
    +to:42 [in gaia_hydras.GPaths]
    +to:45 [in gaia_hydras.GPaths]
    +trace:125 [in hydras.Ackermann.codeSubFormula]
    +trace:127 [in hydras.Ackermann.codeSubFormula]
    +trace:140 [in hydras.Ackermann.codeSubFormula]
    +trace:142 [in hydras.Ackermann.codeSubFormula]
    +trace:152 [in hydras.Ackermann.codeSubFormula]
    +trace:153 [in hydras.Ackermann.codeSubFormula]
    +trace:154 [in hydras.Ackermann.codeSubFormula]
    +trace:155 [in hydras.Ackermann.codeSubFormula]
    +trace:156 [in hydras.Ackermann.codeSubFormula]
    +trace:157 [in hydras.Ackermann.codeSubFormula]
    +trace:158 [in hydras.Ackermann.codeSubFormula]
    +trace:159 [in hydras.Ackermann.codeSubFormula]
    +trace:160 [in hydras.Ackermann.codeSubFormula]
    +trace:161 [in hydras.Ackermann.codeSubFormula]
    +trace:162 [in hydras.Ackermann.codeSubFormula]
    +trace:164 [in hydras.Ackermann.codeSubFormula]
    +trace:166 [in hydras.Ackermann.codeSubFormula]
    +trace:168 [in hydras.Ackermann.codeSubFormula]
    +trace:170 [in hydras.Ackermann.codeSubFormula]
    +trace:172 [in hydras.Ackermann.codeSubFormula]
    +trace:174 [in hydras.Ackermann.codeSubFormula]
    +trace:176 [in hydras.Ackermann.codeSubFormula]
    +trace:178 [in hydras.Ackermann.codeSubFormula]
    +trace:179 [in hydras.Ackermann.codeSubFormula]
    +trace:180 [in hydras.Ackermann.codeSubFormula]
    +trace:182 [in hydras.Ackermann.codeSubFormula]
    +trace:184 [in hydras.Ackermann.codeSubFormula]
    +trace:186 [in hydras.Ackermann.codeSubFormula]
    +trace:188 [in hydras.Ackermann.codeSubFormula]
    +trace:189 [in hydras.Ackermann.codeSubFormula]
    +trace:190 [in hydras.Ackermann.codeSubFormula]
    +trace:192 [in hydras.Ackermann.codeSubFormula]
    +trace:194 [in hydras.Ackermann.codeSubFormula]
    +trace:195 [in hydras.Ackermann.codeSubFormula]
    +trace:196 [in hydras.Ackermann.codeSubFormula]
    +trace:197 [in hydras.Ackermann.codeSubFormula]
    +trace:198 [in hydras.Ackermann.codeSubFormula]
    +trace:199 [in hydras.Ackermann.codeSubFormula]
    +trace:206 [in hydras.Ackermann.codeSubFormula]
    +trace:214 [in hydras.Ackermann.codeSubFormula]
    +trace:216 [in hydras.Ackermann.codeSubFormula]
    +trace:217 [in hydras.Ackermann.codeSubFormula]
    +trace:218 [in hydras.Ackermann.codeSubFormula]
    +trace:219 [in hydras.Ackermann.codeSubFormula]
    +trace:220 [in hydras.Ackermann.codeSubFormula]
    +trace:221 [in hydras.Ackermann.codeSubFormula]
    +trace:222 [in hydras.Ackermann.codeSubFormula]
    +trace:223 [in hydras.Ackermann.codeSubFormula]
    +trace:224 [in hydras.Ackermann.codeSubFormula]
    +trace:225 [in hydras.Ackermann.codeSubFormula]
    +trace:226 [in hydras.Ackermann.codeSubFormula]
    +trace:228 [in hydras.Ackermann.codeSubFormula]
    +trace:230 [in hydras.Ackermann.codeSubFormula]
    +trace:232 [in hydras.Ackermann.codeSubFormula]
    +trace:234 [in hydras.Ackermann.codeSubFormula]
    +trace:236 [in hydras.Ackermann.codeSubFormula]
    +trace:237 [in hydras.Ackermann.codeSubFormula]
    +trace:239 [in hydras.Ackermann.codeSubFormula]
    +trace:241 [in hydras.Ackermann.codeSubFormula]
    +trace:243 [in hydras.Ackermann.codeSubFormula]
    +trace:245 [in hydras.Ackermann.codeSubFormula]
    +trace:247 [in hydras.Ackermann.codeSubFormula]
    +trace:248 [in hydras.Ackermann.codeSubFormula]
    +trace:249 [in hydras.Ackermann.codeSubFormula]
    +trace:250 [in hydras.Ackermann.codeSubFormula]
    +trace:251 [in hydras.Ackermann.codeSubFormula]
    +trace:252 [in hydras.Ackermann.codeSubFormula]
    +trace:253 [in hydras.Ackermann.codeSubFormula]
    +trace:254 [in hydras.Ackermann.codeSubFormula]
    +trace:255 [in hydras.Ackermann.codeSubFormula]
    +trace:256 [in hydras.Ackermann.codeSubFormula]
    +trace:257 [in hydras.Ackermann.codeSubFormula]
    +trace:258 [in hydras.Ackermann.codeSubFormula]
    +trace:259 [in hydras.Ackermann.codeSubFormula]
    +trace:260 [in hydras.Ackermann.codeSubFormula]
    +trace:261 [in hydras.Ackermann.codeSubFormula]
    +trace:262 [in hydras.Ackermann.codeSubFormula]
    +trace:263 [in hydras.Ackermann.codeSubFormula]
    +trace:264 [in hydras.Ackermann.codeSubFormula]
    +trace:265 [in hydras.Ackermann.codeSubFormula]
    +trace:266 [in hydras.Ackermann.codeSubFormula]
    +trace:268 [in hydras.Ackermann.codeSubFormula]
    +trace:270 [in hydras.Ackermann.codeSubFormula]
    +trace:272 [in hydras.Ackermann.codeSubFormula]
    +trace:274 [in hydras.Ackermann.codeSubFormula]
    +trace:276 [in hydras.Ackermann.codeSubFormula]
    +trace:278 [in hydras.Ackermann.codeSubFormula]
    +trace:279 [in hydras.Ackermann.codeSubFormula]
    +trace:280 [in hydras.Ackermann.codeSubFormula]
    +trace:281 [in hydras.Ackermann.codeSubFormula]
    +trace:282 [in hydras.Ackermann.codeSubFormula]
    +trace:283 [in hydras.Ackermann.codeSubFormula]
    +trace:284 [in hydras.Ackermann.codeSubFormula]
    +trace:285 [in hydras.Ackermann.codeSubFormula]
    +trace:286 [in hydras.Ackermann.codeSubFormula]
    +trace:287 [in hydras.Ackermann.codeSubFormula]
    +trace:288 [in hydras.Ackermann.codeSubFormula]
    +trace:289 [in hydras.Ackermann.codeSubFormula]
    +trace:290 [in hydras.Ackermann.codeSubFormula]
    +trace:291 [in hydras.Ackermann.codeSubFormula]
    +trace:292 [in hydras.Ackermann.codeSubFormula]
    +trace:294 [in hydras.Ackermann.codeSubFormula]
    +trace:296 [in hydras.Ackermann.codeSubFormula]
    +trace:298 [in hydras.Ackermann.codeSubFormula]
    +trace:300 [in hydras.Ackermann.codeSubFormula]
    +trace:302 [in hydras.Ackermann.codeSubFormula]
    +trace:304 [in hydras.Ackermann.codeSubFormula]
    +trace:305 [in hydras.Ackermann.codeSubFormula]
    +trace:306 [in hydras.Ackermann.codeSubFormula]
    +trace:307 [in hydras.Ackermann.codeSubFormula]
    +trace:308 [in hydras.Ackermann.codeSubFormula]
    +trace:309 [in hydras.Ackermann.codeSubFormula]
    +trace:310 [in hydras.Ackermann.codeSubFormula]
    +trace:311 [in hydras.Ackermann.codeSubFormula]
    +trace:312 [in hydras.Ackermann.codeSubFormula]
    +trace:313 [in hydras.Ackermann.codeSubFormula]
    +trace:314 [in hydras.Ackermann.codeSubFormula]
    +trace:315 [in hydras.Ackermann.codeSubFormula]
    +trace:316 [in hydras.Ackermann.codeSubFormula]
    +trace:317 [in hydras.Ackermann.codeSubFormula]
    +trace:318 [in hydras.Ackermann.codeSubFormula]
    +trace:319 [in hydras.Ackermann.codeSubFormula]
    +trace:320 [in hydras.Ackermann.codeSubFormula]
    +trace:321 [in hydras.Ackermann.codeSubFormula]
    +trace:322 [in hydras.Ackermann.codeSubFormula]
    +trace:323 [in hydras.Ackermann.codeSubFormula]
    +trace:324 [in hydras.Ackermann.codeSubFormula]
    +trace:325 [in hydras.Ackermann.codeSubFormula]
    +trace:326 [in hydras.Ackermann.codeSubFormula]
    +trace:327 [in hydras.Ackermann.codeSubFormula]
    +trace:328 [in hydras.Ackermann.codeSubFormula]
    +trace:329 [in hydras.Ackermann.codeSubFormula]
    +trace:330 [in hydras.Ackermann.codeSubFormula]
    +trace:331 [in hydras.Ackermann.codeSubFormula]
    +trace:332 [in hydras.Ackermann.codeSubFormula]
    +trace:333 [in hydras.Ackermann.codeSubFormula]
    +trace:334 [in hydras.Ackermann.codeSubFormula]
    +trace:335 [in hydras.Ackermann.codeSubFormula]
    +trace:336 [in hydras.Ackermann.codeSubFormula]
    +trace:337 [in hydras.Ackermann.codeSubFormula]
    +trace:338 [in hydras.Ackermann.codeSubFormula]
    +trace:340 [in hydras.Ackermann.codeSubFormula]
    +trace:342 [in hydras.Ackermann.codeSubFormula]
    +trace:344 [in hydras.Ackermann.codeSubFormula]
    +trace:346 [in hydras.Ackermann.codeSubFormula]
    +trace:347 [in hydras.Ackermann.codeSubFormula]
    +trace:348 [in hydras.Ackermann.codeSubFormula]
    +trace:349 [in hydras.Ackermann.codeSubFormula]
    +trace:350 [in hydras.Ackermann.codeSubFormula]
    +trace:351 [in hydras.Ackermann.codeSubFormula]
    +trace:352 [in hydras.Ackermann.codeSubFormula]
    +trace:353 [in hydras.Ackermann.codeSubFormula]
    +trace:354 [in hydras.Ackermann.codeSubFormula]
    +trace:355 [in hydras.Ackermann.codeSubFormula]
    +trace:356 [in hydras.Ackermann.codeSubFormula]
    +trace:357 [in hydras.Ackermann.codeSubFormula]
    +trace:358 [in hydras.Ackermann.codeSubFormula]
    +trace:359 [in hydras.Ackermann.codeSubFormula]
    +trace:360 [in hydras.Ackermann.codeSubFormula]
    +trace:361 [in hydras.Ackermann.codeSubFormula]
    +trace:362 [in hydras.Ackermann.codeSubFormula]
    +trace:363 [in hydras.Ackermann.codeSubFormula]
    +trace:364 [in hydras.Ackermann.codeSubFormula]
    +trace:365 [in hydras.Ackermann.codeSubFormula]
    +trace:366 [in hydras.Ackermann.codeSubFormula]
    +trace:367 [in hydras.Ackermann.codeSubFormula]
    +trace:368 [in hydras.Ackermann.codeSubFormula]
    +trace:369 [in hydras.Ackermann.codeSubFormula]
    +trace:370 [in hydras.Ackermann.codeSubFormula]
    +trace:371 [in hydras.Ackermann.codeSubFormula]
    +trace:372 [in hydras.Ackermann.codeSubFormula]
    +trace:373 [in hydras.Ackermann.codeSubFormula]
    +trace:374 [in hydras.Ackermann.codeSubFormula]
    +trace:375 [in hydras.Ackermann.codeSubFormula]
    +trace:376 [in hydras.Ackermann.codeSubFormula]
    +trace:377 [in hydras.Ackermann.codeSubFormula]
    +trace:378 [in hydras.Ackermann.codeSubFormula]
    +trace:379 [in hydras.Ackermann.codeSubFormula]
    +trace:380 [in hydras.Ackermann.codeSubFormula]
    +trace:381 [in hydras.Ackermann.codeSubFormula]
    +trace:382 [in hydras.Ackermann.codeSubFormula]
    +trace:383 [in hydras.Ackermann.codeSubFormula]
    +trace:384 [in hydras.Ackermann.codeSubFormula]
    +trace:385 [in hydras.Ackermann.codeSubFormula]
    +trace:386 [in hydras.Ackermann.codeSubFormula]
    +trace:387 [in hydras.Ackermann.codeSubFormula]
    +trace:388 [in hydras.Ackermann.codeSubFormula]
    +trace:389 [in hydras.Ackermann.codeSubFormula]
    +trace:390 [in hydras.Ackermann.codeSubFormula]
    +trace:391 [in hydras.Ackermann.codeSubFormula]
    +trace:392 [in hydras.Ackermann.codeSubFormula]
    +trace:393 [in hydras.Ackermann.codeSubFormula]
    +trace:394 [in hydras.Ackermann.codeSubFormula]
    +trace:395 [in hydras.Ackermann.codeSubFormula]
    +trace:396 [in hydras.Ackermann.codeSubFormula]
    +trace:397 [in hydras.Ackermann.codeSubFormula]
    +trace:398 [in hydras.Ackermann.codeSubFormula]
    +trace:399 [in hydras.Ackermann.codeSubFormula]
    +trace:400 [in hydras.Ackermann.codeSubFormula]
    +trace:401 [in hydras.Ackermann.codeSubFormula]
    +trace:402 [in hydras.Ackermann.codeSubFormula]
    +trace:403 [in hydras.Ackermann.codeSubFormula]
    +trace:404 [in hydras.Ackermann.codeSubFormula]
    +trace:405 [in hydras.Ackermann.codeSubFormula]
    +trace:406 [in hydras.Ackermann.codeSubFormula]
    +trace:407 [in hydras.Ackermann.codeSubFormula]
    +trace:408 [in hydras.Ackermann.codeSubFormula]
    +trace:410 [in hydras.Ackermann.codeSubFormula]
    +trace:412 [in hydras.Ackermann.codeSubFormula]
    +trace:414 [in hydras.Ackermann.codeSubFormula]
    +trace:416 [in hydras.Ackermann.codeSubFormula]
    +trace:418 [in hydras.Ackermann.codeSubFormula]
    +trace:420 [in hydras.Ackermann.codeSubFormula]
    +trace:422 [in hydras.Ackermann.codeSubFormula]
    +trace:424 [in hydras.Ackermann.codeSubFormula]
    +trace:425 [in hydras.Ackermann.codeSubFormula]
    +trace:426 [in hydras.Ackermann.codeSubFormula]
    +trace:427 [in hydras.Ackermann.codeSubFormula]
    +trace:428 [in hydras.Ackermann.codeSubFormula]
    +trace:429 [in hydras.Ackermann.codeSubFormula]
    +trace:430 [in hydras.Ackermann.codeSubFormula]
    +trace:431 [in hydras.Ackermann.codeSubFormula]
    +trace:432 [in hydras.Ackermann.codeSubFormula]
    +trace:434 [in hydras.Ackermann.codeSubFormula]
    +trace:436 [in hydras.Ackermann.codeSubFormula]
    +trace:438 [in hydras.Ackermann.codeSubFormula]
    +trace:440 [in hydras.Ackermann.codeSubFormula]
    +trace:441 [in hydras.Ackermann.codeSubFormula]
    +trace:442 [in hydras.Ackermann.codeSubFormula]
    +trace:443 [in hydras.Ackermann.codeSubFormula]
    +trace:444 [in hydras.Ackermann.codeSubFormula]
    +trace:445 [in hydras.Ackermann.codeSubFormula]
    +trace:446 [in hydras.Ackermann.codeSubFormula]
    +trace:447 [in hydras.Ackermann.codeSubFormula]
    +trace:448 [in hydras.Ackermann.codeSubFormula]
    +trace:450 [in hydras.Ackermann.codeSubFormula]
    +trace:452 [in hydras.Ackermann.codeSubFormula]
    +trace:454 [in hydras.Ackermann.codeSubFormula]
    +trace:456 [in hydras.Ackermann.codeSubFormula]
    +trace:457 [in hydras.Ackermann.codeSubFormula]
    +trace:458 [in hydras.Ackermann.codeSubFormula]
    +trace:459 [in hydras.Ackermann.codeSubFormula]
    +trace:460 [in hydras.Ackermann.codeSubFormula]
    +trace:461 [in hydras.Ackermann.codeSubFormula]
    +trace:462 [in hydras.Ackermann.codeSubFormula]
    +trace:463 [in hydras.Ackermann.codeSubFormula]
    +trace:464 [in hydras.Ackermann.codeSubFormula]
    +trace:465 [in hydras.Ackermann.codeSubFormula]
    +trace:466 [in hydras.Ackermann.codeSubFormula]
    +trace:467 [in hydras.Ackermann.codeSubFormula]
    +trace:468 [in hydras.Ackermann.codeSubFormula]
    +trace:469 [in hydras.Ackermann.codeSubFormula]
    +trace:470 [in hydras.Ackermann.codeSubFormula]
    +trace:471 [in hydras.Ackermann.codeSubFormula]
    +trace:472 [in hydras.Ackermann.codeSubFormula]
    +trace:473 [in hydras.Ackermann.codeSubFormula]
    +trace:474 [in hydras.Ackermann.codeSubFormula]
    +trace:475 [in hydras.Ackermann.codeSubFormula]
    +trace:476 [in hydras.Ackermann.codeSubFormula]
    +trace:477 [in hydras.Ackermann.codeSubFormula]
    +trace:478 [in hydras.Ackermann.codeSubFormula]
    +trace:479 [in hydras.Ackermann.codeSubFormula]
    +trace:480 [in hydras.Ackermann.codeSubFormula]
    +trace:481 [in hydras.Ackermann.codeSubFormula]
    +trace:482 [in hydras.Ackermann.codeSubFormula]
    +trace:483 [in hydras.Ackermann.codeSubFormula]
    +trace:484 [in hydras.Ackermann.codeSubFormula]
    +trace:485 [in hydras.Ackermann.codeSubFormula]
    +trace:486 [in hydras.Ackermann.codeSubFormula]
    +trace:487 [in hydras.Ackermann.codeSubFormula]
    +trace:488 [in hydras.Ackermann.codeSubFormula]
    +trace:489 [in hydras.Ackermann.codeSubFormula]
    +trace:490 [in hydras.Ackermann.codeSubFormula]
    +trace:492 [in hydras.Ackermann.codeSubFormula]
    +trace:494 [in hydras.Ackermann.codeSubFormula]
    +trace:496 [in hydras.Ackermann.codeSubFormula]
    +trace:498 [in hydras.Ackermann.codeSubFormula]
    +trace:499 [in hydras.Ackermann.codeSubFormula]
    +trace:500 [in hydras.Ackermann.codeSubFormula]
    +trace:501 [in hydras.Ackermann.codeSubFormula]
    +trace:502 [in hydras.Ackermann.codeSubFormula]
    +trace:503 [in hydras.Ackermann.codeSubFormula]
    +trace:504 [in hydras.Ackermann.codeSubFormula]
    +trace:506 [in hydras.Ackermann.codeSubFormula]
    +trace:508 [in hydras.Ackermann.codeSubFormula]
    +trace:510 [in hydras.Ackermann.codeSubFormula]
    +trace:512 [in hydras.Ackermann.codeSubFormula]
    +trace:513 [in hydras.Ackermann.codeSubFormula]
    +trace:514 [in hydras.Ackermann.codeSubFormula]
    +trace:515 [in hydras.Ackermann.codeSubFormula]
    +trace:516 [in hydras.Ackermann.codeSubFormula]
    +trace:517 [in hydras.Ackermann.codeSubFormula]
    +trace:518 [in hydras.Ackermann.codeSubFormula]
    +trace:519 [in hydras.Ackermann.codeSubFormula]
    +trace:520 [in hydras.Ackermann.codeSubFormula]
    +trace:521 [in hydras.Ackermann.codeSubFormula]
    +trace:522 [in hydras.Ackermann.codeSubFormula]
    +trace:523 [in hydras.Ackermann.codeSubFormula]
    +trace:524 [in hydras.Ackermann.codeSubFormula]
    +trace:525 [in hydras.Ackermann.codeSubFormula]
    +trace:526 [in hydras.Ackermann.codeSubFormula]
    +trace:527 [in hydras.Ackermann.codeSubFormula]
    +trace:528 [in hydras.Ackermann.codeSubFormula]
    +trace:529 [in hydras.Ackermann.codeSubFormula]
    +trace:530 [in hydras.Ackermann.codeSubFormula]
    +trace:531 [in hydras.Ackermann.codeSubFormula]
    +trace:532 [in hydras.Ackermann.codeSubFormula]
    +trace:533 [in hydras.Ackermann.codeSubFormula]
    +trace:534 [in hydras.Ackermann.codeSubFormula]
    +trace:535 [in hydras.Ackermann.codeSubFormula]
    +trace:536 [in hydras.Ackermann.codeSubFormula]
    +trace:537 [in hydras.Ackermann.codeSubFormula]
    +trace:538 [in hydras.Ackermann.codeSubFormula]
    +trace:540 [in hydras.Ackermann.codeSubFormula]
    +trace:542 [in hydras.Ackermann.codeSubFormula]
    +trace:544 [in hydras.Ackermann.codeSubFormula]
    +trace:546 [in hydras.Ackermann.codeSubFormula]
    +trace:547 [in hydras.Ackermann.codeSubFormula]
    +trace:548 [in hydras.Ackermann.codeSubFormula]
    +trace:549 [in hydras.Ackermann.codeSubFormula]
    +trace:550 [in hydras.Ackermann.codeSubFormula]
    +trace:551 [in hydras.Ackermann.codeSubFormula]
    +trace:552 [in hydras.Ackermann.codeSubFormula]
    +trace:554 [in hydras.Ackermann.codeSubFormula]
    +trace:556 [in hydras.Ackermann.codeSubFormula]
    +trace:558 [in hydras.Ackermann.codeSubFormula]
    +trace:560 [in hydras.Ackermann.codeSubFormula]
    +trace:561 [in hydras.Ackermann.codeSubFormula]
    +trace:562 [in hydras.Ackermann.codeSubFormula]
    +trace:563 [in hydras.Ackermann.codeSubFormula]
    +trace:564 [in hydras.Ackermann.codeSubFormula]
    +trace:565 [in hydras.Ackermann.codeSubFormula]
    +trace:566 [in hydras.Ackermann.codeSubFormula]
    +trace:567 [in hydras.Ackermann.codeSubFormula]
    +trace:568 [in hydras.Ackermann.codeSubFormula]
    +trace:569 [in hydras.Ackermann.codeSubFormula]
    +trace:57 [in hydras.Ackermann.codeSubFormula]
    +trace:570 [in hydras.Ackermann.codeSubFormula]
    +trace:571 [in hydras.Ackermann.codeSubFormula]
    +trace:572 [in hydras.Ackermann.codeSubFormula]
    +trace:573 [in hydras.Ackermann.codeSubFormula]
    +trace:574 [in hydras.Ackermann.codeSubFormula]
    +trace:575 [in hydras.Ackermann.codeSubFormula]
    +trace:576 [in hydras.Ackermann.codeSubFormula]
    +trace:577 [in hydras.Ackermann.codeSubFormula]
    +trace:578 [in hydras.Ackermann.codeSubFormula]
    +trace:579 [in hydras.Ackermann.codeSubFormula]
    +trace:580 [in hydras.Ackermann.codeSubFormula]
    +trace:581 [in hydras.Ackermann.codeSubFormula]
    +trace:582 [in hydras.Ackermann.codeSubFormula]
    +trace:583 [in hydras.Ackermann.codeSubFormula]
    +trace:584 [in hydras.Ackermann.codeSubFormula]
    +trace:585 [in hydras.Ackermann.codeSubFormula]
    +trace:586 [in hydras.Ackermann.codeSubFormula]
    +trace:587 [in hydras.Ackermann.codeSubFormula]
    +trace:588 [in hydras.Ackermann.codeSubFormula]
    +trace:589 [in hydras.Ackermann.codeSubFormula]
    +trace:590 [in hydras.Ackermann.codeSubFormula]
    +trace:591 [in hydras.Ackermann.codeSubFormula]
    +trace:592 [in hydras.Ackermann.codeSubFormula]
    +trace:593 [in hydras.Ackermann.codeSubFormula]
    +trace:594 [in hydras.Ackermann.codeSubFormula]
    +trace:595 [in hydras.Ackermann.codeSubFormula]
    +trace:596 [in hydras.Ackermann.codeSubFormula]
    +trace:597 [in hydras.Ackermann.codeSubFormula]
    +trace:598 [in hydras.Ackermann.codeSubFormula]
    +trace:599 [in hydras.Ackermann.codeSubFormula]
    +trace:600 [in hydras.Ackermann.codeSubFormula]
    +trace:601 [in hydras.Ackermann.codeSubFormula]
    +trace:602 [in hydras.Ackermann.codeSubFormula]
    +trace:603 [in hydras.Ackermann.codeSubFormula]
    +trace:604 [in hydras.Ackermann.codeSubFormula]
    +trace:605 [in hydras.Ackermann.codeSubFormula]
    +trace:606 [in hydras.Ackermann.codeSubFormula]
    +trace:607 [in hydras.Ackermann.codeSubFormula]
    +trace:608 [in hydras.Ackermann.codeSubFormula]
    +trace:609 [in hydras.Ackermann.codeSubFormula]
    +trace:610 [in hydras.Ackermann.codeSubFormula]
    +trace:611 [in hydras.Ackermann.codeSubFormula]
    +trace:612 [in hydras.Ackermann.codeSubFormula]
    +trace:613 [in hydras.Ackermann.codeSubFormula]
    +trace:614 [in hydras.Ackermann.codeSubFormula]
    +trace:615 [in hydras.Ackermann.codeSubFormula]
    +trace:616 [in hydras.Ackermann.codeSubFormula]
    +trace:617 [in hydras.Ackermann.codeSubFormula]
    +trace:618 [in hydras.Ackermann.codeSubFormula]
    +trace:620 [in hydras.Ackermann.codeSubFormula]
    +trace:622 [in hydras.Ackermann.codeSubFormula]
    +trace:624 [in hydras.Ackermann.codeSubFormula]
    +trace:626 [in hydras.Ackermann.codeSubFormula]
    +trace:628 [in hydras.Ackermann.codeSubFormula]
    +trace:630 [in hydras.Ackermann.codeSubFormula]
    +trace:632 [in hydras.Ackermann.codeSubFormula]
    +trace:634 [in hydras.Ackermann.codeSubFormula]
    +trace:635 [in hydras.Ackermann.codeSubFormula]
    +trace:636 [in hydras.Ackermann.codeSubFormula]
    +trace:637 [in hydras.Ackermann.codeSubFormula]
    +trace:638 [in hydras.Ackermann.codeSubFormula]
    +trace:639 [in hydras.Ackermann.codeSubFormula]
    +trace:640 [in hydras.Ackermann.codeSubFormula]
    +trace:641 [in hydras.Ackermann.codeSubFormula]
    +trace:642 [in hydras.Ackermann.codeSubFormula]
    +trace:644 [in hydras.Ackermann.codeSubFormula]
    +trace:646 [in hydras.Ackermann.codeSubFormula]
    +trace:648 [in hydras.Ackermann.codeSubFormula]
    +trace:650 [in hydras.Ackermann.codeSubFormula]
    +trace:651 [in hydras.Ackermann.codeSubFormula]
    +trace:652 [in hydras.Ackermann.codeSubFormula]
    +trace:653 [in hydras.Ackermann.codeSubFormula]
    +trace:654 [in hydras.Ackermann.codeSubFormula]
    +trace:655 [in hydras.Ackermann.codeSubFormula]
    +trace:656 [in hydras.Ackermann.codeSubFormula]
    +trace:657 [in hydras.Ackermann.codeSubFormula]
    +trace:658 [in hydras.Ackermann.codeSubFormula]
    +trace:659 [in hydras.Ackermann.codeSubFormula]
    +trace:660 [in hydras.Ackermann.codeSubFormula]
    +trace:661 [in hydras.Ackermann.codeSubFormula]
    +trace:662 [in hydras.Ackermann.codeSubFormula]
    +trace:663 [in hydras.Ackermann.codeSubFormula]
    +trace:664 [in hydras.Ackermann.codeSubFormula]
    +trace:665 [in hydras.Ackermann.codeSubFormula]
    +trace:666 [in hydras.Ackermann.codeSubFormula]
    +trace:667 [in hydras.Ackermann.codeSubFormula]
    +trace:668 [in hydras.Ackermann.codeSubFormula]
    +trace:669 [in hydras.Ackermann.codeSubFormula]
    +trace:670 [in hydras.Ackermann.codeSubFormula]
    +trace:671 [in hydras.Ackermann.codeSubFormula]
    +trace:672 [in hydras.Ackermann.codeSubFormula]
    +trace:673 [in hydras.Ackermann.codeSubFormula]
    +trace:674 [in hydras.Ackermann.codeSubFormula]
    +trace:675 [in hydras.Ackermann.codeSubFormula]
    +trace:676 [in hydras.Ackermann.codeSubFormula]
    +trace:677 [in hydras.Ackermann.codeSubFormula]
    +trace:678 [in hydras.Ackermann.codeSubFormula]
    +trace:679 [in hydras.Ackermann.codeSubFormula]
    +trace:680 [in hydras.Ackermann.codeSubFormula]
    +trace:681 [in hydras.Ackermann.codeSubFormula]
    +trace:682 [in hydras.Ackermann.codeSubFormula]
    +trace:683 [in hydras.Ackermann.codeSubFormula]
    +trace:684 [in hydras.Ackermann.codeSubFormula]
    +trace:685 [in hydras.Ackermann.codeSubFormula]
    +trace:686 [in hydras.Ackermann.codeSubFormula]
    +trace:687 [in hydras.Ackermann.codeSubFormula]
    +trace:688 [in hydras.Ackermann.codeSubFormula]
    +trace:689 [in hydras.Ackermann.codeSubFormula]
    +trace:690 [in hydras.Ackermann.codeSubFormula]
    +trace:691 [in hydras.Ackermann.codeSubFormula]
    +triple:184 [in hydras.rpo.rpo]
    +triple:186 [in hydras.rpo.rpo]
    +Tr:100 [in hydras.Hydra.Hydra_Lemmas]
    +ts:10 [in hydras.Ackermann.folProp]
    +ts:100 [in hydras.Ackermann.subProp]
    +ts:102 [in hydras.Ackermann.subAll]
    +ts:105 [in hydras.Ackermann.subAll]
    +ts:105 [in hydras.Ackermann.LNN2LNT]
    +ts:106 [in hydras.Ackermann.subProp]
    +ts:107 [in hydras.Ackermann.LNN2LNT]
    +ts:108 [in hydras.Ackermann.subAll]
    +ts:108 [in hydras.Ackermann.subProp]
    +ts:11 [in hydras.Ackermann.codeFreeVar]
    +ts:11 [in hydras.Ackermann.PA]
    +ts:110 [in hydras.Ackermann.LNN2LNT]
    +ts:112 [in hydras.Ackermann.LNN2LNT]
    +ts:112 [in hydras.Ackermann.fol]
    +ts:115 [in hydras.Ackermann.subProp]
    +ts:117 [in hydras.Ackermann.subProp]
    +ts:119 [in hydras.Ackermann.subProp]
    +ts:119 [in hydras.Ackermann.fol]
    +ts:12 [in hydras.Ackermann.LNN2LNT]
    +ts:12 [in hydras.Ackermann.subProp]
    +ts:123 [in hydras.Ackermann.subProp]
    +ts:124 [in hydras.Ackermann.fol]
    +ts:1253 [in hydras.Ackermann.codeSubFormula]
    +ts:1255 [in hydras.Ackermann.codeSubFormula]
    +ts:1261 [in hydras.Ackermann.codeSubFormula]
    +ts:1263 [in hydras.Ackermann.codeSubFormula]
    +ts:1265 [in hydras.Ackermann.codeSubFormula]
    +ts:128 [in hydras.Ackermann.subProp]
    +ts:129 [in hydras.Ackermann.fol]
    +ts:13 [in hydras.Ackermann.codeFreeVar]
    +ts:14 [in hydras.Ackermann.LNN2LNT]
    +ts:149 [in hydras.Ackermann.folProp]
    +ts:15 [in hydras.Ackermann.wellFormed]
    +ts:16 [in hydras.Ackermann.folLogic2]
    +ts:16 [in hydras.Ackermann.LNN2LNT]
    +ts:161 [in hydras.Ackermann.model]
    +ts:17 [in hydras.Ackermann.subProp]
    +ts:17 [in hydras.Ackermann.wellFormed]
    +ts:18 [in hydras.Ackermann.subAll]
    +ts:18 [in hydras.Ackermann.folLogic2]
    +ts:180 [in hydras.Ackermann.subAll]
    +ts:183 [in hydras.Ackermann.subAll]
    +ts:186 [in hydras.Ackermann.subAll]
    +ts:20 [in hydras.Ackermann.folLogic2]
    +ts:21 [in hydras.Ackermann.LNN2LNT]
    +ts:212 [in hydras.Ackermann.subAll]
    +ts:217 [in hydras.Ackermann.subAll]
    +ts:22 [in hydras.Ackermann.model]
    +ts:22 [in hydras.Ackermann.code]
    +ts:222 [in hydras.Ackermann.subAll]
    +ts:23 [in hydras.Ackermann.subAll]
    +ts:23 [in hydras.Ackermann.codeFreeVar]
    +ts:23 [in hydras.Ackermann.LNN2LNT]
    +ts:25 [in hydras.Ackermann.LNN2LNT]
    +ts:27 [in hydras.Ackermann.codeSubTerm]
    +ts:27 [in hydras.Ackermann.folLogic3]
    +ts:28 [in hydras.Ackermann.subAll]
    +ts:28 [in hydras.Ackermann.wellFormed]
    +ts:29 [in hydras.Ackermann.codeSubTerm]
    +ts:29 [in hydras.Ackermann.folLogic3]
    +ts:3 [in hydras.Ackermann.LNN2LNT]
    +ts:30 [in hydras.Ackermann.LNN2LNT]
    +ts:30 [in hydras.Ackermann.subProp]
    +ts:30 [in hydras.Ackermann.code]
    +ts:30 [in hydras.Ackermann.wellFormed]
    +ts:32 [in hydras.Ackermann.wellFormed]
    +ts:33 [in hydras.Ackermann.model]
    +ts:33 [in hydras.Ackermann.code]
    +ts:35 [in hydras.Ackermann.subProp]
    +ts:36 [in hydras.Ackermann.code]
    +ts:36 [in hydras.Ackermann.folLogic3]
    +ts:37 [in hydras.Ackermann.codeSubTerm]
    +ts:39 [in hydras.Ackermann.LNN2LNT]
    +ts:4 [in hydras.Ackermann.subAll]
    +ts:40 [in hydras.Ackermann.subProp]
    +ts:41 [in hydras.Ackermann.LNN2LNT]
    +ts:42 [in hydras.Ackermann.LNN2LNT]
    +ts:420 [in hydras.Ackermann.folProp]
    +ts:422 [in hydras.Ackermann.folProp]
    +ts:424 [in hydras.Ackermann.folProp]
    +ts:43 [in hydras.Ackermann.folLogic3]
    +ts:44 [in hydras.Ackermann.wellFormed]
    +ts:49 [in hydras.Ackermann.wellFormed]
    +ts:50 [in hydras.Ackermann.folLogic3]
    +ts:53 [in hydras.Ackermann.LNN2LNT]
    +ts:53 [in hydras.Ackermann.model]
    +ts:53 [in hydras.Ackermann.subProp]
    +ts:54 [in hydras.Ackermann.wellFormed]
    +ts:57 [in hydras.Ackermann.model]
    +ts:58 [in hydras.Ackermann.subProp]
    +ts:58 [in hydras.Ackermann.folLogic3]
    +ts:63 [in hydras.Ackermann.subAll]
    +ts:63 [in hydras.Ackermann.model]
    +ts:63 [in hydras.Ackermann.subProp]
    +ts:63 [in hydras.Ackermann.wellFormed]
    +ts:65 [in hydras.Ackermann.folProp]
    +ts:65 [in hydras.Ackermann.fol]
    +ts:66 [in hydras.Ackermann.subAll]
    +ts:67 [in hydras.Ackermann.folLogic3]
    +ts:69 [in hydras.Ackermann.subAll]
    +ts:7 [in hydras.Ackermann.subProp]
    +ts:72 [in hydras.Ackermann.fol]
    +ts:75 [in hydras.Ackermann.model]
    +ts:76 [in hydras.Ackermann.subProp]
    +ts:77 [in hydras.Ackermann.fol]
    +ts:77 [in hydras.Ackermann.folLogic3]
    +ts:78 [in hydras.Ackermann.subAll]
    +ts:78 [in hydras.Ackermann.model]
    +ts:80 [in hydras.Ackermann.subAll]
    +ts:81 [in hydras.Ackermann.subProp]
    +ts:82 [in hydras.Ackermann.subAll]
    +ts:82 [in hydras.Ackermann.model]
    +ts:82 [in hydras.Ackermann.fol]
    +ts:86 [in hydras.Ackermann.subProp]
    +ts:874 [in hydras.Ackermann.codeSubFormula]
    +ts:878 [in hydras.Ackermann.codeSubFormula]
    +ts:882 [in hydras.Ackermann.codeSubFormula]
    +ts:91 [in hydras.Ackermann.folLogic3]
    +ts:914 [in hydras.Ackermann.codeSubFormula]
    +ts:919 [in hydras.Ackermann.codeSubFormula]
    +ts:924 [in hydras.Ackermann.codeSubFormula]
    +ts:93 [in hydras.Ackermann.fol]
    +ts:93 [in hydras.Ackermann.folLogic3]
    +ts:96 [in hydras.Ackermann.fol]
    +ts:97 [in hydras.Ackermann.folLogic3]
    +ts:98 [in hydras.Ackermann.subProp]
    +type:64 [in hydras.Ackermann.codeSubFormula]
    +type:792 [in hydras.Ackermann.checkPrf]
    +type:840 [in hydras.Ackermann.checkPrf]
    +type:843 [in hydras.Ackermann.checkPrf]
    +t'':115 [in hydras.Gamma0.Gamma0]
    +t':114 [in hydras.Gamma0.Gamma0]
    +t':16 [in additions.Trace_exercise]
    +t':165 [in additions.Addition_Chains]
    +t':178 [in additions.Addition_Chains]
    +t':322 [in hydras.rpo.rpo]
    +t':323 [in hydras.rpo.rpo]
    +t':70 [in hydras.Gamma0.T2]
    +t':86 [in additions.Addition_Chains]
    +t':89 [in hydras.Gamma0.Gamma0]
    +t':91 [in hydras.Gamma0.Gamma0]
    +t':93 [in hydras.Gamma0.Gamma0]
    +t0:171 [in hydras.Ackermann.folProp]
    +t0:18 [in hydras.Ackermann.codeFreeVar]
    +t0:18 [in hydras.Ackermann.codeSubTerm]
    +t0:187 [in hydras.Ackermann.folProp]
    +t0:20 [in hydras.Ackermann.codeFreeVar]
    +t0:202 [in hydras.Ackermann.fol]
    +t0:203 [in hydras.Ackermann.folProp]
    +t0:219 [in hydras.Ackermann.folProp]
    +t0:22 [in hydras.Ackermann.codeSubTerm]
    +t0:225 [in hydras.Ackermann.fol]
    +t0:24 [in hydras.Ackermann.codeFreeVar]
    +t0:243 [in hydras.Ackermann.fol]
    +t0:250 [in hydras.Ackermann.folProp]
    +t0:26 [in hydras.Ackermann.codeFreeVar]
    +t0:266 [in hydras.Ackermann.folProp]
    +t0:293 [in hydras.Ackermann.fol]
    +t0:299 [in hydras.Ackermann.folProp]
    +t0:315 [in hydras.Ackermann.folProp]
    +t0:331 [in hydras.Ackermann.folProp]
    +t0:339 [in hydras.Ackermann.fol]
    +t0:347 [in hydras.Ackermann.folProp]
    +t0:363 [in hydras.Ackermann.folProp]
    +t0:379 [in hydras.Ackermann.folProp]
    +t0:383 [in hydras.Ackermann.fol]
    +t0:40 [in hydras.Ackermann.codeSubTerm]
    +t0:437 [in hydras.Ackermann.fol]
    +t0:44 [in hydras.Ackermann.codeSubTerm]
    +t0:84 [in hydras.Ackermann.codeSubFormula]
    +t0:861 [in hydras.Ackermann.codeSubFormula]
    +t0:864 [in hydras.Ackermann.codeSubFormula]
    +t0:885 [in hydras.Ackermann.codeSubFormula]
    +t0:888 [in hydras.Ackermann.codeSubFormula]
    +t0:9 [in hydras.Ackermann.PA]
    +t0:901 [in hydras.Ackermann.codeSubFormula]
    +t0:904 [in hydras.Ackermann.codeSubFormula]
    +t0:928 [in hydras.Ackermann.codeSubFormula]
    +t0:931 [in hydras.Ackermann.codeSubFormula]
    +t1:106 [in hydras.rpo.rpo]
    +t1:113 [in hydras.rpo.rpo]
    +t1:118 [in hydras.Gamma0.Gamma0]
    +t1:121 [in hydras.Gamma0.Gamma0]
    +t1:14 [in hydras.rpo.term]
    +t1:14 [in hydras.Ackermann.codeFreeVar]
    +t1:14 [in hydras.rpo.list_set]
    +t1:144 [in hydras.Ackermann.folProp]
    +t1:16 [in hydras.Ackermann.codeFreeVar]
    +t1:197 [in hydras.rpo.term]
    +t1:206 [in hydras.Gamma0.Gamma0]
    +t1:208 [in hydras.rpo.term]
    +t1:230 [in hydras.rpo.term]
    +t1:236 [in hydras.Gamma0.Gamma0]
    +t1:238 [in hydras.rpo.term]
    +t1:240 [in hydras.rpo.term]
    +t1:244 [in hydras.rpo.term]
    +t1:252 [in hydras.rpo.term]
    +t1:256 [in hydras.rpo.term]
    +t1:27 [in hydras.rpo.term]
    +t1:275 [in hydras.Gamma0.Gamma0]
    +t1:31 [in hydras.Epsilon0.Epsilon0rpo]
    +t1:36 [in Goedel.PRrepresentable]
    +t1:40 [in Goedel.PRrepresentable]
    +t1:445 [in hydras.Epsilon0.Paths]
    +t1:49 [in Goedel.codeSysPrf]
    +t1:53 [in hydras.rpo.term]
    +t1:53 [in Goedel.codeSysPrf]
    +t1:6 [in hydras.rpo.list_permut]
    +t1:61 [in hydras.rpo.term]
    +t1:63 [in hydras.rpo.term]
    +t1:65 [in Goedel.codeSysPrf]
    +t1:68 [in hydras.rpo.term]
    +t1:684 [in hydras.Gamma0.Gamma0]
    +t1:69 [in Goedel.codeSysPrf]
    +t1:76 [in hydras.rpo.term]
    +t1:81 [in hydras.rpo.term]
    +t1:94 [in hydras.Gamma0.Gamma0]
    +t2:108 [in hydras.rpo.rpo]
    +t2:115 [in hydras.rpo.rpo]
    +t2:119 [in hydras.Gamma0.Gamma0]
    +t2:122 [in hydras.Gamma0.Gamma0]
    +t2:145 [in hydras.Ackermann.folProp]
    +t2:15 [in hydras.rpo.term]
    +t2:15 [in hydras.rpo.list_set]
    +t2:198 [in hydras.rpo.term]
    +t2:207 [in hydras.Gamma0.Gamma0]
    +t2:209 [in hydras.rpo.term]
    +t2:229 [in hydras.rpo.term]
    +t2:237 [in hydras.Gamma0.Gamma0]
    +t2:239 [in hydras.rpo.term]
    +t2:241 [in hydras.rpo.term]
    +t2:243 [in hydras.rpo.term]
    +t2:253 [in hydras.rpo.term]
    +t2:257 [in hydras.rpo.term]
    +t2:261 [in hydras.rpo.term]
    +t2:263 [in hydras.rpo.term]
    +t2:276 [in hydras.Gamma0.Gamma0]
    +t2:28 [in hydras.rpo.term]
    +t2:32 [in hydras.Epsilon0.Epsilon0rpo]
    +t2:37 [in Goedel.PRrepresentable]
    +t2:41 [in Goedel.PRrepresentable]
    +t2:446 [in hydras.Epsilon0.Paths]
    +t2:50 [in Goedel.codeSysPrf]
    +t2:52 [in hydras.rpo.term]
    +t2:54 [in Goedel.codeSysPrf]
    +t2:62 [in hydras.rpo.term]
    +t2:64 [in hydras.rpo.term]
    +t2:66 [in Goedel.codeSysPrf]
    +t2:67 [in hydras.rpo.term]
    +t2:685 [in hydras.Gamma0.Gamma0]
    +t2:7 [in hydras.rpo.list_permut]
    +t2:70 [in Goedel.codeSysPrf]
    +t2:77 [in hydras.rpo.term]
    +t2:82 [in hydras.rpo.term]
    +t2:95 [in hydras.Gamma0.Gamma0]
    +t3:120 [in hydras.Gamma0.Gamma0]
    +t3:123 [in hydras.Gamma0.Gamma0]
    +t:1 [in hydras.Schutte.Correctness_E0]
    +t:1 [in hydras.Ackermann.LNN2LNT]
    +t:1 [in hydras.Ackermann.PAtheory]
    +T:1 [in gaia_hydras.GPrelude]
    +T:1 [in hydras.Ackermann.wConsistent]
    +t:10 [in hydras.MoreAck.BadSubst]
    +t:10 [in hydras.Ackermann.folLogic2]
    +t:10 [in hydras.Ackermann.LNN2LNT]
    +T:10 [in hydras.Ackermann.folLogic]
    +t:100 [in hydras.Ackermann.codeFreeVar]
    +t:100 [in hydras.Ackermann.codeSubTerm]
    +T:100 [in hydras.Ackermann.LNT]
    +t:100 [in hydras.Ackermann.wellFormed]
    +t:100 [in additions.Addition_Chains]
    +t:101 [in hydras.Ackermann.LNN2LNT]
    +T:101 [in hydras.Ackermann.LNN]
    +t:101 [in hydras.Ackermann.subProp]
    +t:101 [in hydras.Ackermann.wellFormed]
    +t:102 [in hydras.Ackermann.codeFreeVar]
    +t:102 [in hydras.Ackermann.codeSubTerm]
    +t:102 [in hydras.Ackermann.wellFormed]
    +T:102 [in hydras.Ackermann.folLogic]
    +t:102 [in hydras.rpo.rpo]
    +t:103 [in hydras.rpo.term]
    +t:103 [in hydras.Ackermann.codeFreeVar]
    +T:103 [in hydras.Ackermann.LNN]
    +T:103 [in hydras.Ackermann.LNT]
    +t:104 [in hydras.Ackermann.codeFreeVar]
    +t:104 [in hydras.Ackermann.codeSubTerm]
    +t:104 [in hydras.Ackermann.wellFormed]
    +T:104 [in hydras.Ackermann.folLogic3]
    +T:104 [in hydras.Ackermann.folReplace]
    +t:105 [in hydras.Ackermann.codeFreeVar]
    +T:105 [in hydras.Ackermann.folLogic]
    +t:106 [in hydras.rpo.term]
    +t:106 [in hydras.Ackermann.codeFreeVar]
    +t:106 [in hydras.Ackermann.codeSubTerm]
    +T:106 [in hydras.Ackermann.LNN]
    +T:106 [in hydras.Ackermann.LNT]
    +t:106 [in hydras.Ackermann.wellFormed]
    +t:106 [in additions.Addition_Chains]
    +t:107 [in hydras.Ackermann.codeFreeVar]
    +T:107 [in hydras.Ackermann.folLogic]
    +t:108 [in hydras.Ackermann.codeFreeVar]
    +t:108 [in hydras.Ackermann.codeSubTerm]
    +t:108 [in hydras.Ackermann.LNN2LNT]
    +t:108 [in hydras.Ackermann.wellFormed]
    +t:108 [in hydras.Hydra.Hydra_Definitions]
    +t:109 [in hydras.Ackermann.codeFreeVar]
    +T:109 [in hydras.Ackermann.LNN]
    +T:109 [in hydras.Ackermann.LNT]
    +t:109 [in hydras.Ackermann.subProp]
    +T:11 [in hydras.Ackermann.folReplace]
    +t:110 [in hydras.Ackermann.codeFreeVar]
    +t:110 [in hydras.Ackermann.codeSubTerm]
    +t:110 [in hydras.Ackermann.wellFormed]
    +T:111 [in hydras.Ackermann.folLogic]
    +t:111 [in hydras.Hydra.Hydra_Definitions]
    +t:112 [in hydras.Ackermann.codeFreeVar]
    +t:112 [in hydras.Ackermann.codeSubTerm]
    +T:112 [in hydras.Ackermann.LNN]
    +T:112 [in hydras.Ackermann.LNT]
    +t:112 [in hydras.Ackermann.wellFormed]
    +T:112 [in hydras.Ackermann.folReplace]
    +T:113 [in hydras.Ackermann.subAll]
    +t:113 [in hydras.Gamma0.Gamma0]
    +t:114 [in hydras.Gamma0.T2]
    +t:114 [in hydras.Ackermann.codeFreeVar]
    +t:114 [in hydras.Ackermann.codeSubTerm]
    +t:114 [in hydras.Ackermann.wellFormed]
    +T:114 [in hydras.Ackermann.folLogic]
    +t:114 [in additions.Addition_Chains]
    +t:115 [in hydras.rpo.term]
    +T:115 [in hydras.Ackermann.LNN]
    +T:115 [in hydras.Ackermann.LNT]
    +t:115 [in hydras.Ackermann.wellFormed]
    +t:116 [in hydras.Ackermann.codeFreeVar]
    +t:116 [in hydras.Ackermann.codeSubTerm]
    +t:116 [in hydras.Ackermann.wellFormed]
    +t:116 [in hydras.Epsilon0.Paths]
    +t:117 [in hydras.rpo.term]
    +t:117 [in hydras.Gamma0.T2]
    +t:117 [in hydras.Ackermann.codeSubTerm]
    +T:117 [in hydras.Ackermann.LNT]
    +t:117 [in hydras.Ackermann.wellFormed]
    +T:117 [in hydras.Ackermann.folLogic]
    +t:117 [in hydras.rpo.rpo]
    +t:118 [in hydras.Gamma0.T2]
    +t:118 [in hydras.Ackermann.codeFreeVar]
    +t:118 [in hydras.Ackermann.codeSubTerm]
    +T:118 [in hydras.Ackermann.LNN]
    +t:118 [in hydras.Ackermann.wellFormed]
    +t:119 [in hydras.Ackermann.codeSubTerm]
    +t:119 [in hydras.Ackermann.wellFormed]
    +T:119 [in hydras.Ackermann.folLogic]
    +t:12 [in hydras.Ackermann.codeSubTerm]
    +T:12 [in hydras.Ackermann.LNT]
    +t:12 [in hydras.Ackermann.wellFormed]
    +t:12 [in additions.Addition_Chains]
    +t:12 [in hydras.MoreAck.FolExamples]
    +t:120 [in hydras.Ackermann.codeFreeVar]
    +t:120 [in hydras.Ackermann.codeSubTerm]
    +T:120 [in hydras.Ackermann.LNN]
    +t:120 [in hydras.Ackermann.wellFormed]
    +t:120 [in additions.Addition_Chains]
    +t:121 [in hydras.Ackermann.codeSubTerm]
    +T:121 [in hydras.Ackermann.LNT]
    +t:121 [in hydras.Epsilon0.Paths]
    +t:122 [in hydras.Ackermann.codeFreeVar]
    +t:122 [in hydras.Ackermann.codeSubTerm]
    +t:122 [in hydras.Ackermann.wellFormed]
    +T:122 [in hydras.Ackermann.folLogic]
    +t:123 [in hydras.Ackermann.codeFreeVar]
    +t:124 [in hydras.rpo.term]
    +t:124 [in hydras.Ackermann.codeFreeVar]
    +T:124 [in hydras.Ackermann.LNN]
    +T:124 [in hydras.Ackermann.LNT]
    +t:124 [in hydras.Ackermann.wellFormed]
    +t:125 [in hydras.Ackermann.codeFreeVar]
    +t:125 [in hydras.Ackermann.codeSubTerm]
    +t:1257 [in hydras.Ackermann.codeSubFormula]
    +t:126 [in hydras.Ackermann.codeFreeVar]
    +t:126 [in hydras.Ackermann.wellFormed]
    +T:126 [in hydras.Ackermann.folLogic]
    +t:127 [in hydras.Ackermann.codeFreeVar]
    +T:127 [in hydras.Ackermann.LNN]
    +T:127 [in hydras.Ackermann.LNT]
    +t:127 [in additions.Addition_Chains]
    +t:127 [in hydras.rpo.rpo]
    +t:128 [in hydras.Ackermann.codeFreeVar]
    +t:128 [in hydras.Ackermann.codeSubTerm]
    +t:128 [in hydras.Ackermann.wellFormed]
    +t:129 [in hydras.rpo.term]
    +t:129 [in hydras.Ackermann.codeFreeVar]
    +T:129 [in hydras.Ackermann.LNT]
    +t:129 [in hydras.Epsilon0.Paths]
    +t:13 [in hydras.Ackermann.subAll]
    +T:13 [in hydras.Ackermann.folLogic]
    +T:13 [in hydras.Ackermann.folLogic3]
    +T:130 [in hydras.Ackermann.LNN]
    +t:130 [in hydras.Ackermann.wellFormed]
    +t:131 [in hydras.rpo.term]
    +t:131 [in hydras.Ackermann.codeSubTerm]
    +T:132 [in hydras.Ackermann.LNN]
    +T:132 [in hydras.Ackermann.LNT]
    +t:132 [in hydras.Ackermann.wellFormed]
    +t:134 [in hydras.Ackermann.codeSubTerm]
    +t:134 [in hydras.Ackermann.wellFormed]
    +t:134 [in additions.Addition_Chains]
    +T:135 [in hydras.Ackermann.LNN]
    +t:135 [in hydras.Epsilon0.Paths]
    +t:136 [in hydras.rpo.term]
    +T:136 [in hydras.Ackermann.LNT]
    +t:136 [in hydras.Ackermann.wellFormed]
    +t:137 [in hydras.Ackermann.codeSubTerm]
    +T:138 [in hydras.Ackermann.LNT]
    +T:138 [in hydras.Ackermann.subProp]
    +t:138 [in hydras.Ackermann.wellFormed]
    +t:138 [in hydras.rpo.rpo]
    +T:139 [in hydras.Ackermann.LNN]
    +T:14 [in hydras.Ackermann.LNT]
    +T:14 [in hydras.Ackermann.folProp]
    +t:14 [in hydras.Ackermann.wellFormed]
    +T:14 [in hydras.Ackermann.wConsistent]
    +t:140 [in hydras.Ackermann.codeSubTerm]
    +t:140 [in hydras.Ackermann.wellFormed]
    +t:141 [in hydras.rpo.term]
    +T:141 [in hydras.Ackermann.LNN]
    +T:141 [in hydras.Ackermann.LNT]
    +t:141 [in hydras.Epsilon0.Paths]
    +t:142 [in hydras.Ackermann.wellFormed]
    +t:143 [in hydras.Ackermann.codeSubTerm]
    +T:144 [in hydras.Ackermann.LNN]
    +t:144 [in hydras.Ackermann.wellFormed]
    +t:145 [in hydras.rpo.term]
    +T:145 [in hydras.Ackermann.LNT]
    +t:146 [in hydras.Ackermann.codeSubTerm]
    +t:146 [in hydras.Ackermann.wellFormed]
    +t:147 [in additions.Euclidean_Chains]
    +t:147 [in hydras.Epsilon0.Paths]
    +t:148 [in hydras.Ackermann.codeSubTerm]
    +T:148 [in hydras.Ackermann.LNN]
    +t:148 [in hydras.Ackermann.wellFormed]
    +t:149 [in hydras.rpo.term]
    +t:15 [in hydras.Ackermann.codeSubTerm]
    +T:15 [in hydras.Ackermann.LNN]
    +t:15 [in additions.Trace_exercise]
    +t:15 [in hydras.rpo.list_permut]
    +t:150 [in hydras.Ackermann.codeSubTerm]
    +T:150 [in hydras.Ackermann.LNT]
    +t:150 [in hydras.Ackermann.wellFormed]
    +t:151 [in hydras.Hydra.Hydra_Lemmas]
    +t:152 [in hydras.Ackermann.codeSubTerm]
    +t:152 [in hydras.Ackermann.wellFormed]
    +t:152 [in hydras.rpo.rpo]
    +T:153 [in hydras.Ackermann.LNN]
    +t:153 [in hydras.Ackermann.wellFormed]
    +t:154 [in hydras.Ackermann.codeSubTerm]
    +t:154 [in hydras.Ackermann.wellFormed]
    +t:154 [in hydras.Hydra.Hydra_Lemmas]
    +t:154 [in hydras.rpo.rpo]
    +T:155 [in hydras.Ackermann.LNT]
    +t:155 [in hydras.Ackermann.wellFormed]
    +t:156 [in hydras.Ackermann.codeSubTerm]
    +t:156 [in hydras.Ackermann.wellFormed]
    +t:156 [in hydras.rpo.rpo]
    +T:157 [in hydras.Ackermann.subProp]
    +t:157 [in hydras.Ackermann.wellFormed]
    +t:158 [in hydras.Ackermann.codeSubTerm]
    +T:158 [in hydras.Ackermann.LNN]
    +t:158 [in hydras.Ackermann.wellFormed]
    +t:159 [in hydras.Epsilon0.Large_Sets]
    +t:159 [in hydras.Ackermann.wellFormed]
    +T:16 [in hydras.Ackermann.folLogic]
    +t:16 [in hydras.rpo.list_permut]
    +T:16 [in hydras.Ackermann.folReplace]
    +t:160 [in hydras.Ackermann.codeSubTerm]
    +t:160 [in hydras.Ackermann.wellFormed]
    +T:161 [in hydras.Ackermann.LNN]
    +T:161 [in hydras.Ackermann.subProp]
    +t:162 [in hydras.Ackermann.codeSubTerm]
    +t:162 [in hydras.Ackermann.wellFormed]
    +t:164 [in hydras.Ackermann.codeSubTerm]
    +t:164 [in hydras.Ackermann.wellFormed]
    +t:164 [in additions.Addition_Chains]
    +t:166 [in hydras.Ackermann.codeSubTerm]
    +T:166 [in hydras.Ackermann.subProp]
    +t:166 [in hydras.Ackermann.wellFormed]
    +t:168 [in hydras.Ackermann.codeSubTerm]
    +t:168 [in hydras.Ackermann.wellFormed]
    +t:17 [in hydras.rpo.term]
    +t:17 [in hydras.Ackermann.LNN2LNT]
    +T:17 [in hydras.Ackermann.LNN]
    +T:17 [in hydras.Ackermann.LNT]
    +t:170 [in hydras.Ackermann.codeSubTerm]
    +t:170 [in hydras.Ackermann.folProp]
    +t:170 [in hydras.Ackermann.wellFormed]
    +t:171 [in additions.Addition_Chains]
    +t:172 [in hydras.Ackermann.codeSubTerm]
    +t:172 [in hydras.Ackermann.wellFormed]
    +t:173 [in hydras.Ackermann.wellFormed]
    +t:173 [in hydras.rpo.rpo]
    +t:174 [in hydras.rpo.term]
    +t:174 [in hydras.Ackermann.codeSubTerm]
    +t:174 [in hydras.Ackermann.wellFormed]
    +t:175 [in hydras.Ackermann.wellFormed]
    +t:176 [in hydras.Ackermann.codeSubTerm]
    +t:176 [in hydras.Ackermann.wellFormed]
    +t:177 [in hydras.Ackermann.subAll]
    +t:177 [in hydras.Ackermann.wellFormed]
    +t:177 [in additions.Addition_Chains]
    +t:178 [in hydras.rpo.term]
    +t:178 [in hydras.Ackermann.folProp]
    +t:178 [in additions.Euclidean_Chains]
    +t:178 [in hydras.Ackermann.wellFormed]
    +t:179 [in hydras.Ackermann.codeSubTerm]
    +t:179 [in hydras.Ackermann.wellFormed]
    +t:18 [in hydras.Ackermann.model]
    +t:18 [in hydras.rpo.list_permut]
    +t:182 [in hydras.rpo.term]
    +t:182 [in hydras.Ackermann.codeSubTerm]
    +t:182 [in hydras.rpo.rpo]
    +t:184 [in hydras.Ackermann.codeSubTerm]
    +t:186 [in hydras.Ackermann.codeSubTerm]
    +t:186 [in hydras.Ackermann.folProp]
    +T:188 [in hydras.Ackermann.subAll]
    +t:188 [in hydras.Ackermann.codeSubTerm]
    +T:19 [in hydras.Ackermann.folLogic]
    +T:19 [in hydras.Ackermann.folReplace]
    +t:190 [in hydras.Ackermann.codeSubTerm]
    +t:192 [in hydras.Ackermann.codeSubTerm]
    +t:194 [in hydras.Ackermann.codeSubTerm]
    +t:194 [in hydras.Ackermann.folProp]
    +t:195 [in hydras.rpo.rpo]
    +t:196 [in hydras.Ackermann.codeSubTerm]
    +t:197 [in hydras.Ackermann.codeSubTerm]
    +t:198 [in hydras.Ackermann.codeSubTerm]
    +t:199 [in hydras.Ackermann.codeSubTerm]
    +t:2 [in hydras.Ackermann.subAll]
    +T:2 [in hydras.Ackermann.folLogic2]
    +t:2 [in hydras.Ackermann.subProp]
    +T:2 [in hydras.Ackermann.folLogic]
    +T:2 [in hydras.Ackermann.folLogic3]
    +T:20 [in hydras.Ackermann.LNN]
    +T:20 [in hydras.Ackermann.LNT]
    +t:20 [in hydras.Ackermann.code]
    +t:200 [in hydras.rpo.term]
    +t:200 [in hydras.Ackermann.codeSubTerm]
    +t:201 [in hydras.Ackermann.codeSubTerm]
    +t:201 [in hydras.Ackermann.fol]
    +t:201 [in hydras.rpo.rpo]
    +t:202 [in hydras.Ackermann.codeSubTerm]
    +t:202 [in hydras.Ackermann.folProp]
    +t:203 [in hydras.Ackermann.codeSubTerm]
    +t:203 [in hydras.rpo.rpo]
    +t:204 [in hydras.Ackermann.codeSubTerm]
    +t:204 [in hydras.rpo.rpo]
    +t:205 [in hydras.rpo.term]
    +t:205 [in hydras.Ackermann.fol]
    +t:206 [in hydras.Ackermann.codeSubTerm]
    +t:207 [in hydras.rpo.term]
    +t:207 [in hydras.Ackermann.subAll]
    +t:208 [in hydras.Ackermann.codeSubTerm]
    +T:21 [in hydras.Ackermann.folLogic]
    +t:210 [in hydras.Ackermann.codeSubTerm]
    +t:210 [in hydras.Ackermann.folProp]
    +t:212 [in hydras.rpo.rpo]
    +t:213 [in hydras.rpo.term]
    +t:214 [in hydras.rpo.term]
    +t:216 [in hydras.rpo.rpo]
    +t:218 [in hydras.rpo.term]
    +t:218 [in hydras.Ackermann.folProp]
    +t:219 [in hydras.rpo.term]
    +t:22 [in hydras.rpo.term]
    +t:22 [in hydras.Ackermann.wellFormed]
    +T:22 [in hydras.Ackermann.folReplace]
    +t:220 [in hydras.rpo.rpo]
    +t:224 [in hydras.rpo.term]
    +t:224 [in hydras.Ackermann.fol]
    +t:225 [in hydras.rpo.term]
    +T:226 [in hydras.Ackermann.subAll]
    +t:226 [in hydras.Ackermann.folProp]
    +t:226 [in hydras.rpo.rpo]
    +t:228 [in hydras.Ackermann.fol]
    +T:23 [in hydras.Ackermann.LNN]
    +T:23 [in hydras.Ackermann.LNT]
    +t:23 [in hydras.Ackermann.wellFormed]
    +T:23 [in hydras.Ackermann.folLogic]
    +T:23 [in hydras.Ackermann.folLogic3]
    +t:235 [in hydras.Gamma0.Gamma0]
    +t:242 [in hydras.Ackermann.fol]
    +t:246 [in hydras.Ackermann.fol]
    +t:249 [in hydras.Ackermann.folProp]
    +t:25 [in hydras.rpo.term]
    +t:25 [in hydras.Ackermann.subProp]
    +t:25 [in hydras.Ackermann.wellFormed]
    +T:25 [in hydras.Ackermann.folReplace]
    +T:256 [in hydras.Ackermann.subAll]
    +t:257 [in hydras.Ackermann.folProp]
    +T:26 [in hydras.Ackermann.LNN]
    +T:26 [in hydras.Ackermann.LNT]
    +T:26 [in hydras.Ackermann.folLogic]
    +t:260 [in hydras.rpo.term]
    +t:262 [in hydras.rpo.term]
    +t:264 [in hydras.rpo.term]
    +t:265 [in hydras.Ackermann.folProp]
    +t:268 [in hydras.Gamma0.Gamma0]
    +t:27 [in hydras.Ackermann.code]
    +t:271 [in hydras.rpo.term]
    +t:273 [in hydras.Ackermann.folProp]
    +t:274 [in hydras.rpo.term]
    +t:274 [in hydras.Gamma0.Gamma0]
    +t:28 [in hydras.Ackermann.codeFreeVar]
    +t:28 [in hydras.Ackermann.LNN2LNT]
    +T:28 [in gaia_hydras.onType]
    +t:281 [in hydras.rpo.term]
    +t:284 [in hydras.rpo.term]
    +T:29 [in hydras.Ackermann.LNN]
    +T:29 [in hydras.Ackermann.LNT]
    +T:29 [in hydras.Ackermann.folLogic]
    +T:29 [in hydras.Ackermann.folReplace]
    +t:292 [in hydras.Ackermann.fol]
    +t:293 [in hydras.rpo.term]
    +t:293 [in hydras.rpo.rpo]
    +t:295 [in hydras.rpo.term]
    +t:295 [in hydras.rpo.rpo]
    +t:296 [in hydras.Ackermann.fol]
    +t:297 [in hydras.rpo.rpo]
    +T:298 [in hydras.Ackermann.subAll]
    +t:298 [in hydras.Ackermann.folProp]
    +t:30 [in hydras.Ackermann.codeFreeVar]
    +t:30 [in hydras.Epsilon0.Epsilon0rpo]
    +T:30 [in hydras.Ackermann.folLogic2]
    +t:301 [in hydras.rpo.rpo]
    +t:302 [in hydras.rpo.rpo]
    +t:303 [in hydras.rpo.rpo]
    +t:304 [in hydras.rpo.term]
    +t:304 [in hydras.rpo.rpo]
    +t:305 [in hydras.rpo.rpo]
    +t:306 [in hydras.Ackermann.folProp]
    +t:306 [in hydras.rpo.rpo]
    +t:309 [in hydras.rpo.rpo]
    +T:31 [in hydras.Ackermann.LNT]
    +t:310 [in hydras.rpo.term]
    +t:311 [in hydras.rpo.term]
    +t:311 [in hydras.rpo.rpo]
    +t:313 [in hydras.rpo.rpo]
    +t:314 [in hydras.Ackermann.folProp]
    +t:316 [in hydras.rpo.term]
    +T:317 [in hydras.Ackermann.subAll]
    +t:319 [in hydras.rpo.rpo]
    +t:32 [in hydras.Ackermann.codeFreeVar]
    +T:32 [in hydras.Ackermann.LNN]
    +T:32 [in hydras.Ackermann.folLogic]
    +t:321 [in hydras.rpo.term]
    +t:322 [in hydras.Ackermann.folProp]
    +t:324 [in hydras.rpo.term]
    +t:327 [in hydras.rpo.term]
    +t:33 [in hydras.rpo.term]
    +T:33 [in hydras.Ackermann.LNT]
    +t:33 [in hydras.Ackermann.wellFormed]
    +T:33 [in hydras.Ackermann.folReplace]
    +t:330 [in hydras.Ackermann.folProp]
    +t:338 [in hydras.Ackermann.folProp]
    +t:338 [in hydras.Ackermann.fol]
    +T:339 [in hydras.Ackermann.subAll]
    +t:34 [in hydras.rpo.term]
    +t:34 [in hydras.Ackermann.codeFreeVar]
    +T:34 [in hydras.Ackermann.LNN]
    +t:342 [in hydras.Ackermann.fol]
    +T:344 [in hydras.Ackermann.subAll]
    +t:346 [in hydras.Ackermann.folProp]
    +T:349 [in hydras.Ackermann.subAll]
    +T:35 [in hydras.Ackermann.LNT]
    +t:35 [in hydras.Ackermann.wellFormed]
    +T:35 [in hydras.Ackermann.folLogic]
    +t:353 [in hydras.rpo.term]
    +t:354 [in hydras.Ackermann.folProp]
    +t:356 [in hydras.rpo.term]
    +T:356 [in hydras.Ackermann.subAll]
    +t:356 [in hydras.Ackermann.checkPrf]
    +t:36 [in hydras.Ackermann.folProof]
    +t:36 [in hydras.Ackermann.codeFreeVar]
    +T:36 [in hydras.Ackermann.LNN]
    +t:361 [in hydras.rpo.term]
    +t:362 [in hydras.Ackermann.folProp]
    +T:369 [in hydras.Ackermann.subAll]
    +t:37 [in hydras.Ackermann.LNN2LNT]
    +T:37 [in hydras.Ackermann.folLogic]
    +t:37 [in hydras.MoreAck.FolExamples]
    +t:370 [in hydras.Ackermann.folProp]
    +t:378 [in hydras.Ackermann.folProp]
    +t:38 [in hydras.Ackermann.codeFreeVar]
    +T:38 [in hydras.Ackermann.LNN]
    +T:38 [in hydras.Ackermann.LNT]
    +T:38 [in hydras.Ackermann.folReplace]
    +t:382 [in hydras.Ackermann.fol]
    +t:386 [in hydras.Ackermann.folProp]
    +t:386 [in hydras.Ackermann.fol]
    +t:39 [in hydras.rpo.term]
    +t:4 [in gaia_hydras.T1Choice]
    +t:4 [in hydras.MoreAck.BadSubst]
    +T:4 [in hydras.Ackermann.folLogic]
    +T:4 [in hydras.Ackermann.folLogic3]
    +T:4 [in hydras.MoreAck.FolExamples]
    +t:40 [in hydras.rpo.term]
    +t:40 [in hydras.Ackermann.codeFreeVar]
    +T:41 [in hydras.Ackermann.LNN]
    +T:41 [in hydras.Ackermann.LNT]
    +T:41 [in hydras.Ackermann.folLogic]
    +t:417 [in hydras.Ackermann.folProp]
    +t:42 [in hydras.Ackermann.codeFreeVar]
    +t:42 [in hydras.Prelude.MoreLists]
    +t:42 [in hydras.Ackermann.wellFormed]
    +T:43 [in hydras.Ackermann.folReplace]
    +t:43 [in hydras.rpo.rpo]
    +t:436 [in hydras.Ackermann.fol]
    +t:439 [in hydras.Ackermann.fol]
    +T:44 [in hydras.Ackermann.folProof]
    +t:44 [in hydras.Ackermann.codeFreeVar]
    +T:44 [in hydras.Ackermann.LNN]
    +T:44 [in hydras.Ackermann.LNT]
    +T:44 [in hydras.Ackermann.folProp]
    +t:441 [in hydras.Ackermann.folProp]
    +T:45 [in hydras.Ackermann.folLogic]
    +t:46 [in hydras.rpo.term]
    +t:46 [in hydras.Ackermann.codeFreeVar]
    +t:47 [in hydras.rpo.term]
    +T:47 [in hydras.Ackermann.LNN]
    +T:47 [in hydras.Ackermann.LNT]
    +t:47 [in hydras.Ackermann.wellFormed]
    +t:474 [in hydras.Epsilon0.Paths]
    +t:48 [in hydras.Ackermann.codeFreeVar]
    +t:48 [in hydras.Ackermann.subProp]
    +t:48 [in hydras.Ackermann.fol]
    +T:48 [in hydras.Ackermann.folLogic]
    +T:48 [in hydras.Ackermann.folReplace]
    +T:48 [in hydras.MoreAck.FolExamples]
    +T:49 [in hydras.Ackermann.folProof]
    +t:49 [in hydras.Ackermann.folProp]
    +t:5 [in hydras.Ackermann.codeFreeVar]
    +t:5 [in hydras.Ackermann.codeSubTerm]
    +t:50 [in hydras.Ackermann.codeFreeVar]
    +T:50 [in hydras.Ackermann.LNN]
    +t:50 [in hydras.Ackermann.model]
    +T:51 [in hydras.Ackermann.folProof]
    +T:51 [in hydras.Ackermann.LNT]
    +t:51 [in hydras.Ackermann.fol]
    +T:51 [in hydras.Ackermann.folLogic]
    +t:52 [in hydras.Ackermann.codeFreeVar]
    +t:52 [in hydras.Ackermann.codeSubTerm]
    +t:52 [in hydras.Ackermann.wellFormed]
    +T:53 [in hydras.Ackermann.folProof]
    +t:53 [in hydras.Ackermann.folProp]
    +T:53 [in hydras.Ackermann.folReplace]
    +t:534 [in hydras.Epsilon0.Paths]
    +t:54 [in hydras.Ackermann.codeFreeVar]
    +T:54 [in hydras.Ackermann.LNN]
    +T:54 [in hydras.Ackermann.folLogic]
    +t:543 [in hydras.Epsilon0.Paths]
    +T:55 [in hydras.Ackermann.LNT]
    +t:55 [in hydras.Ackermann.wellFormed]
    +t:55 [in hydras.Ackermann.fol]
    +t:56 [in hydras.Ackermann.codeFreeVar]
    +t:56 [in hydras.Ackermann.codeSubTerm]
    +T:56 [in hydras.Ackermann.folLogic3]
    +t:57 [in hydras.Ackermann.wellFormed]
    +T:57 [in hydras.Ackermann.folLogic]
    +t:57 [in hydras.rpo.rpo]
    +t:58 [in hydras.Ackermann.subAll]
    +t:58 [in hydras.Ackermann.codeFreeVar]
    +T:58 [in hydras.Ackermann.LNN]
    +T:58 [in hydras.Ackermann.LNT]
    +T:58 [in hydras.Ackermann.folReplace]
    +t:59 [in hydras.rpo.rpo]
    +T:6 [in hydras.Ackermann.folLogic2]
    +T:6 [in hydras.Ackermann.wConsistent]
    +T:6 [in hydras.Ackermann.folReplace]
    +t:60 [in hydras.Ackermann.codeFreeVar]
    +t:60 [in hydras.Ackermann.codeSubTerm]
    +t:60 [in hydras.Ackermann.wellFormed]
    +T:60 [in hydras.Ackermann.folLogic]
    +t:61 [in hydras.Ackermann.codeFreeVar]
    +T:61 [in hydras.Ackermann.LNN]
    +T:61 [in hydras.Ackermann.LNT]
    +t:61 [in hydras.rpo.rpo]
    +t:62 [in hydras.Ackermann.codeFreeVar]
    +t:63 [in hydras.Ackermann.codeFreeVar]
    +T:63 [in hydras.Ackermann.folLogic]
    +T:63 [in hydras.Ackermann.folReplace]
    +t:64 [in hydras.Ackermann.codeFreeVar]
    +t:64 [in hydras.Ackermann.codeSubTerm]
    +T:64 [in hydras.Ackermann.LNN]
    +T:64 [in hydras.Ackermann.LNT]
    +t:64 [in hydras.Ackermann.wellFormed]
    +t:65 [in hydras.Ackermann.codeFreeVar]
    +T:65 [in hydras.Ackermann.folLogic3]
    +T:65 [in Goedel.rosser]
    +t:66 [in hydras.Ackermann.codeFreeVar]
    +t:66 [in hydras.Ackermann.wellFormed]
    +T:66 [in hydras.Ackermann.folLogic]
    +t:67 [in hydras.Ackermann.codeFreeVar]
    +T:67 [in hydras.Ackermann.LNN]
    +T:67 [in hydras.Ackermann.LNT]
    +T:67 [in hydras.Ackermann.folReplace]
    +t:68 [in hydras.Ackermann.codeFreeVar]
    +t:68 [in hydras.Ackermann.codeSubTerm]
    +T:68 [in hydras.Ackermann.LNN2LNT]
    +t:68 [in hydras.Ackermann.wellFormed]
    +t:69 [in hydras.Gamma0.T2]
    +t:69 [in hydras.Ackermann.codeFreeVar]
    +t:69 [in hydras.Ackermann.folLogic]
    +t:692 [in hydras.Ackermann.codeSubFormula]
    +t:695 [in hydras.Ackermann.codeSubFormula]
    +t:698 [in hydras.Ackermann.codeSubFormula]
    +t:7 [in hydras.Ackermann.codeFreeVar]
    +T:7 [in hydras.Ackermann.folLogic]
    +T:7 [in hydras.MoreAck.FolExamples]
    +t:70 [in hydras.Schutte.Correctness_E0]
    +t:70 [in hydras.Ackermann.codeFreeVar]
    +T:70 [in hydras.Ackermann.LNN]
    +T:70 [in hydras.Ackermann.LNT]
    +t:70 [in hydras.Ackermann.wellFormed]
    +T:70 [in hydras.Ackermann.folLogic]
    +t:701 [in hydras.Ackermann.codeSubFormula]
    +t:704 [in hydras.Ackermann.codeSubFormula]
    +t:707 [in hydras.Ackermann.codeSubFormula]
    +t:71 [in hydras.Ackermann.model]
    +t:71 [in hydras.Ackermann.subProp]
    +T:71 [in hydras.Ackermann.folReplace]
    +t:710 [in hydras.Ackermann.codeSubFormula]
    +t:713 [in hydras.Ackermann.codeSubFormula]
    +t:716 [in hydras.Ackermann.codeSubFormula]
    +t:719 [in hydras.Ackermann.codeSubFormula]
    +t:72 [in hydras.Ackermann.codeFreeVar]
    +t:72 [in hydras.Ackermann.codeSubTerm]
    +t:72 [in hydras.Ackermann.wellFormed]
    +t:722 [in hydras.Ackermann.codeSubFormula]
    +t:725 [in hydras.Ackermann.codeSubFormula]
    +t:727 [in hydras.Ackermann.codeSubFormula]
    +t:729 [in hydras.Ackermann.codeSubFormula]
    +t:73 [in hydras.Schutte.Correctness_E0]
    +t:73 [in hydras.Ackermann.subAll]
    +T:73 [in hydras.Ackermann.LNN]
    +T:73 [in hydras.Ackermann.LNT]
    +T:73 [in hydras.Ackermann.folLogic]
    +t:731 [in hydras.Ackermann.codeSubFormula]
    +t:733 [in hydras.Ackermann.codeSubFormula]
    +t:735 [in hydras.Ackermann.codeSubFormula]
    +t:737 [in hydras.Ackermann.codeSubFormula]
    +t:739 [in hydras.Ackermann.codeSubFormula]
    +t:74 [in hydras.Ackermann.codeFreeVar]
    +t:74 [in hydras.Ackermann.wellFormed]
    +T:74 [in Goedel.rosser]
    +t:741 [in hydras.Ackermann.codeSubFormula]
    +t:743 [in hydras.Ackermann.codeSubFormula]
    +t:745 [in hydras.Ackermann.codeSubFormula]
    +t:747 [in hydras.Ackermann.codeSubFormula]
    +t:749 [in hydras.Ackermann.codeSubFormula]
    +T:75 [in hydras.Ackermann.folLogic3]
    +t:750 [in hydras.Ackermann.codeSubFormula]
    +t:751 [in hydras.Ackermann.codeSubFormula]
    +t:752 [in hydras.Ackermann.codeSubFormula]
    +t:753 [in hydras.Ackermann.codeSubFormula]
    +t:754 [in hydras.Ackermann.codeSubFormula]
    +t:755 [in hydras.Epsilon0.T1]
    +t:76 [in hydras.Schutte.Correctness_E0]
    +t:76 [in hydras.Ackermann.codeFreeVar]
    +t:76 [in hydras.Ackermann.codeSubTerm]
    +T:76 [in hydras.Ackermann.LNN]
    +T:76 [in hydras.Ackermann.LNT]
    +t:76 [in hydras.Ackermann.wellFormed]
    +t:76 [in hydras.Ackermann.folLogic]
    +T:76 [in hydras.Ackermann.folReplace]
    +t:76 [in hydras.rpo.rpo]
    +t:761 [in hydras.Ackermann.codeSubFormula]
    +t:763 [in hydras.Ackermann.codeSubFormula]
    +t:765 [in hydras.Ackermann.codeSubFormula]
    +t:767 [in hydras.Ackermann.codeSubFormula]
    +t:769 [in hydras.Ackermann.codeSubFormula]
    +T:77 [in hydras.Ackermann.folLogic]
    +t:771 [in hydras.Ackermann.codeSubFormula]
    +t:773 [in hydras.Ackermann.codeSubFormula]
    +t:775 [in hydras.Ackermann.codeSubFormula]
    +t:777 [in hydras.Ackermann.codeSubFormula]
    +t:779 [in hydras.Ackermann.codeSubFormula]
    +t:78 [in hydras.Ackermann.codeFreeVar]
    +t:78 [in hydras.Ackermann.wellFormed]
    +t:782 [in hydras.Ackermann.codeSubFormula]
    +t:785 [in hydras.Ackermann.codeSubFormula]
    +t:787 [in hydras.Ackermann.codeSubFormula]
    +t:789 [in hydras.Ackermann.codeSubFormula]
    +T:79 [in hydras.Ackermann.LNN]
    +t:79 [in hydras.Ackermann.LNT]
    +t:791 [in hydras.Ackermann.codeSubFormula]
    +t:793 [in hydras.Ackermann.codeSubFormula]
    +t:795 [in hydras.Ackermann.codeSubFormula]
    +t:797 [in hydras.Ackermann.codeSubFormula]
    +t:799 [in hydras.Ackermann.codeSubFormula]
    +t:8 [in hydras.Ackermann.codeFreeVar]
    +t:8 [in hydras.MoreAck.AckNotPR]
    +t:8 [in hydras.Ackermann.PA]
    +T:8 [in hydras.Ackermann.Deduction]
    +t:80 [in hydras.Ackermann.codeFreeVar]
    +t:80 [in hydras.Ackermann.codeSubTerm]
    +T:80 [in hydras.Ackermann.LNT]
    +t:80 [in hydras.Ackermann.wellFormed]
    +t:80 [in hydras.rpo.rpo]
    +t:800 [in hydras.Ackermann.codeSubFormula]
    +t:801 [in hydras.Ackermann.codeSubFormula]
    +t:802 [in hydras.Ackermann.codeSubFormula]
    +t:803 [in hydras.Ackermann.codeSubFormula]
    +t:804 [in hydras.Ackermann.codeSubFormula]
    +t:805 [in hydras.Ackermann.codeSubFormula]
    +t:806 [in hydras.Ackermann.codeSubFormula]
    +t:807 [in hydras.Ackermann.codeSubFormula]
    +t:809 [in hydras.Ackermann.codeSubFormula]
    +T:81 [in hydras.Ackermann.folLogic]
    +T:81 [in hydras.Ackermann.folReplace]
    +t:811 [in hydras.Ackermann.codeSubFormula]
    +t:811 [in gaia_hydras.nfwfgaia]
    +t:813 [in hydras.Ackermann.codeSubFormula]
    +t:815 [in hydras.Ackermann.codeSubFormula]
    +t:817 [in hydras.Ackermann.codeSubFormula]
    +t:82 [in hydras.Ackermann.codeFreeVar]
    +t:82 [in hydras.Ackermann.LNN]
    +t:82 [in hydras.Ackermann.wellFormed]
    +t:83 [in hydras.rpo.more_list]
    +T:83 [in hydras.Ackermann.LNN]
    +T:83 [in hydras.Ackermann.LNT]
    +t:83 [in hydras.Ackermann.codeSubFormula]
    +t:830 [in hydras.Ackermann.codeSubFormula]
    +t:833 [in hydras.Ackermann.codeSubFormula]
    +t:84 [in hydras.rpo.term]
    +t:84 [in hydras.Ackermann.codeFreeVar]
    +t:84 [in hydras.Ackermann.codeSubTerm]
    +t:84 [in hydras.Ackermann.wellFormed]
    +T:84 [in hydras.Ackermann.folLogic]
    +t:84 [in hydras.rpo.rpo]
    +t:85 [in additions.Addition_Chains]
    +t:858 [in hydras.Ackermann.codeSubFormula]
    +t:86 [in hydras.Ackermann.codeFreeVar]
    +T:86 [in hydras.Ackermann.LNN]
    +t:86 [in hydras.Ackermann.LNT]
    +t:86 [in hydras.Ackermann.wellFormed]
    +T:86 [in hydras.Ackermann.folReplace]
    +T:87 [in hydras.Ackermann.LNT]
    +t:87 [in hydras.Ackermann.folLogic3]
    +t:88 [in hydras.Ackermann.codeFreeVar]
    +t:88 [in hydras.Ackermann.codeSubTerm]
    +t:88 [in hydras.Ackermann.wellFormed]
    +T:88 [in hydras.Ackermann.folLogic]
    +t:88 [in hydras.Gamma0.Gamma0]
    +t:89 [in hydras.Ackermann.LNN]
    +t:89 [in hydras.Ackermann.codeSubFormula]
    +T:89 [in hydras.Ackermann.folLogic3]
    +t:89 [in additions.Addition_Chains]
    +t:897 [in hydras.Ackermann.codeSubFormula]
    +t:9 [in hydras.Ackermann.codeFreeVar]
    +t:9 [in hydras.Ackermann.codeSubTerm]
    +T:9 [in hydras.Ackermann.wConsistent]
    +t:9 [in hydras.rpo.rpo]
    +t:90 [in hydras.Ackermann.codeFreeVar]
    +T:90 [in hydras.Ackermann.LNN]
    +t:90 [in hydras.Ackermann.wellFormed]
    +T:90 [in hydras.Ackermann.folLogic]
    +t:90 [in hydras.Gamma0.Gamma0]
    +t:91 [in hydras.rpo.term]
    +t:91 [in hydras.Hydra.O2H]
    +T:91 [in hydras.Ackermann.LNT]
    +t:91 [in hydras.rpo.rpo]
    +t:92 [in hydras.Ackermann.codeFreeVar]
    +t:92 [in hydras.Ackermann.codeSubTerm]
    +t:92 [in hydras.rpo.more_list]
    +t:92 [in hydras.Ackermann.wellFormed]
    +t:92 [in hydras.Gamma0.Gamma0]
    +t:93 [in hydras.Ackermann.wellFormed]
    +T:93 [in hydras.Ackermann.folLogic]
    +T:93 [in hydras.Ackermann.folReplace]
    +t:94 [in hydras.Ackermann.codeFreeVar]
    +t:94 [in hydras.Ackermann.codeSubTerm]
    +T:94 [in hydras.Ackermann.LNN]
    +T:94 [in hydras.Ackermann.LNT]
    +t:94 [in hydras.Ackermann.subProp]
    +t:94 [in hydras.Ackermann.wellFormed]
    +t:94 [in additions.Addition_Chains]
    +T:94 [in hydras.Ackermann.folReplace]
    +t:94 [in hydras.MoreAck.PrimRecExamples]
    +t:94 [in hydras.rpo.rpo]
    +t:95 [in hydras.rpo.term]
    +t:95 [in hydras.Ackermann.wellFormed]
    +t:96 [in hydras.Ackermann.subAll]
    +t:96 [in hydras.Ackermann.codeFreeVar]
    +t:96 [in hydras.Ackermann.codeSubTerm]
    +t:96 [in hydras.Ackermann.wellFormed]
    +T:96 [in hydras.Ackermann.folLogic]
    +T:97 [in hydras.Ackermann.LNN]
    +t:97 [in hydras.Ackermann.wellFormed]
    +t:98 [in hydras.Ackermann.codeFreeVar]
    +t:98 [in hydras.Ackermann.codeSubTerm]
    +T:98 [in hydras.Ackermann.LNT]
    +t:98 [in hydras.Ackermann.wellFormed]
    +t:98 [in hydras.rpo.rpo]
    +t:99 [in hydras.Ackermann.wellFormed]
    +T:99 [in hydras.Ackermann.folLogic]
    +T:99 [in hydras.Ackermann.folLogic3]
    +T:99 [in hydras.Ackermann.folReplace]
    +t:99 [in hydras.MoreAck.PrimRecExamples]
    +

    U

    +ui:187 [in hydras.rpo.term]
    +ui:325 [in hydras.rpo.rpo]
    +ui:328 [in hydras.rpo.rpo]
    +ui:369 [in hydras.rpo.term]
    +u':693 [in gaia_hydras.nfwfgaia]
    +u1:107 [in hydras.rpo.rpo]
    +u1:114 [in hydras.rpo.rpo]
    +u1:121 [in hydras.rpo.rpo]
    +u1:89 [in hydras.rpo.list_permut]
    +u1:97 [in hydras.rpo.list_permut]
    +u2:109 [in hydras.rpo.rpo]
    +u2:116 [in hydras.rpo.rpo]
    +u2:122 [in hydras.rpo.rpo]
    +u2:90 [in hydras.rpo.list_permut]
    +u2:98 [in hydras.rpo.list_permut]
    +u3:91 [in hydras.rpo.list_permut]
    +u3:99 [in hydras.rpo.list_permut]
    +u4:100 [in hydras.rpo.list_permut]
    +u4:92 [in hydras.rpo.list_permut]
    +u:1202 [in gaia_hydras.nfwfgaia]
    +u:1213 [in gaia_hydras.nfwfgaia]
    +u:123 [in hydras.rpo.rpo]
    +u:1238 [in gaia_hydras.nfwfgaia]
    +u:1242 [in gaia_hydras.nfwfgaia]
    +u:1245 [in gaia_hydras.nfwfgaia]
    +u:1265 [in gaia_hydras.nfwfgaia]
    +u:1281 [in gaia_hydras.nfwfgaia]
    +u:130 [in hydras.Epsilon0.Paths]
    +U:136 [in hydras.Ackermann.LNN2LNT]
    +u:136 [in hydras.Epsilon0.Paths]
    +u:137 [in hydras.Epsilon0.Paths]
    +u:143 [in hydras.Schutte.Schutte_basics]
    +u:143 [in hydras.Epsilon0.Paths]
    +u:147 [in hydras.rpo.term]
    +U:15 [in hydras.Ackermann.LNT]
    +u:150 [in hydras.rpo.term]
    +u:150 [in hydras.Epsilon0.Paths]
    +u:1512 [in gaia_hydras.nfwfgaia]
    +u:1515 [in gaia_hydras.nfwfgaia]
    +u:1518 [in gaia_hydras.nfwfgaia]
    +u:155 [in hydras.Epsilon0.Paths]
    +u:161 [in hydras.Schutte.Ordering_Functions]
    +u:162 [in hydras.rpo.term]
    +u:170 [in hydras.rpo.term]
    +u:175 [in hydras.rpo.term]
    +u:1788 [in gaia_hydras.nfwfgaia]
    +U:18 [in hydras.Ackermann.LNN]
    +u:180 [in hydras.rpo.term]
    +u:183 [in hydras.rpo.rpo]
    +u:189 [in hydras.rpo.term]
    +u:196 [in hydras.rpo.rpo]
    +u:2041 [in gaia_hydras.nfwfgaia]
    +u:2052 [in gaia_hydras.nfwfgaia]
    +u:2080 [in gaia_hydras.nfwfgaia]
    +u:2085 [in gaia_hydras.nfwfgaia]
    +U:24 [in hydras.Prelude.DecPreOrder_Instances]
    +U:25 [in hydras.Prelude.DecPreOrder_Instances]
    +u:273 [in hydras.rpo.term]
    +u:276 [in hydras.rpo.term]
    +u:326 [in hydras.rpo.term]
    +u:328 [in hydras.rpo.term]
    +U:34 [in hydras.Schutte.Countable]
    +u:340 [in hydras.rpo.term]
    +u:348 [in hydras.rpo.term]
    +u:354 [in hydras.rpo.term]
    +u:358 [in hydras.rpo.term]
    +u:371 [in hydras.rpo.term]
    +u:390 [in gaia_hydras.nfwfgaia]
    +u:413 [in gaia_hydras.nfwfgaia]
    +U:48 [in hydras.Schutte.Schutte_basics]
    +U:5 [in hydras.Ackermann.folLogic]
    +U:62 [in hydras.Schutte.AP]
    +U:67 [in hydras.Schutte.PartialFun]
    +u:679 [in gaia_hydras.nfwfgaia]
    +u:686 [in gaia_hydras.nfwfgaia]
    +u:688 [in gaia_hydras.nfwfgaia]
    +U:69 [in hydras.Schutte.PartialFun]
    +u:691 [in gaia_hydras.nfwfgaia]
    +u:701 [in gaia_hydras.nfwfgaia]
    +u:711 [in gaia_hydras.nfwfgaia]
    +u:719 [in gaia_hydras.nfwfgaia]
    +u:745 [in gaia_hydras.nfwfgaia]
    +u:77 [in hydras.rpo.rpo]
    +u:799 [in gaia_hydras.nfwfgaia]
    +U:80 [in hydras.Schutte.PartialFun]
    +u:81 [in hydras.rpo.rpo]
    +u:810 [in gaia_hydras.nfwfgaia]
    +u:814 [in gaia_hydras.nfwfgaia]
    +U:86 [in hydras.Schutte.PartialFun]
    +u:93 [in hydras.rpo.term]
    +u:97 [in hydras.rpo.term]
    +u:996 [in gaia_hydras.nfwfgaia]
    +

    V

    +value:103 [in hydras.Ackermann.model]
    +value:107 [in hydras.Ackermann.model]
    +value:111 [in hydras.Ackermann.model]
    +value:115 [in hydras.Ackermann.model]
    +value:127 [in hydras.Ackermann.model]
    +value:131 [in hydras.Ackermann.model]
    +value:135 [in hydras.Ackermann.model]
    +value:139 [in hydras.Ackermann.model]
    +value:142 [in hydras.Ackermann.model]
    +value:146 [in hydras.Ackermann.model]
    +value:159 [in hydras.Ackermann.model]
    +value:165 [in hydras.Ackermann.model]
    +value:17 [in hydras.Ackermann.model]
    +value:21 [in hydras.Ackermann.model]
    +value:222 [in hydras.Ackermann.model]
    +value:32 [in hydras.Ackermann.model]
    +value:39 [in hydras.Ackermann.model]
    +value:43 [in hydras.Ackermann.model]
    +value:70 [in hydras.Ackermann.model]
    +value:80 [in hydras.Ackermann.model]
    +value:86 [in hydras.Ackermann.model]
    +Var:11 [in hydras.Prelude.WfVariant]
    +Var:159 [in hydras.Hydra.Hydra_Definitions]
    +Var:27 [in gaia_hydras.GHydra]
    +Var:3 [in hydras.Hydra.Epsilon0_Needed_Std]
    +Var:31 [in gaia_hydras.GHydra]
    +Var:34 [in gaia_hydras.GHydra]
    +Var:4 [in hydras.Hydra.Epsilon0_Needed_Free]
    +Var:5 [in hydras.Hydra.Epsilon0_Needed_Generic]
    +vs:103 [in Goedel.PRrepresentable]
    +vs:108 [in Goedel.PRrepresentable]
    +vs:114 [in Goedel.PRrepresentable]
    +v':694 [in gaia_hydras.nfwfgaia]
    +v0:107 [in hydras.Ackermann.codeSubFormula]
    +v0:1286 [in hydras.Ackermann.codeSubFormula]
    +v0:1290 [in hydras.Ackermann.codeSubFormula]
    +v0:20 [in hydras.Ackermann.codeSubTerm]
    +v0:24 [in hydras.Ackermann.codeSubTerm]
    +v0:42 [in hydras.Ackermann.codeSubTerm]
    +v0:46 [in hydras.Ackermann.codeSubTerm]
    +v1:102 [in hydras.Ackermann.subProp]
    +v1:11 [in hydras.Epsilon0.Epsilon0rpo]
    +v1:11 [in hydras.Ackermann.folLogic2]
    +v1:110 [in hydras.Ackermann.subProp]
    +v1:121 [in hydras.Ackermann.subAll]
    +v1:122 [in hydras.Ackermann.subAll]
    +v1:124 [in hydras.Ackermann.subProp]
    +v1:129 [in hydras.Ackermann.subAll]
    +v1:129 [in hydras.Ackermann.subProp]
    +v1:130 [in hydras.Ackermann.subAll]
    +v1:131 [in hydras.Ackermann.subAll]
    +v1:132 [in hydras.Ackermann.subAll]
    +v1:133 [in hydras.Ackermann.subAll]
    +v1:134 [in hydras.Ackermann.subAll]
    +v1:135 [in hydras.Ackermann.subAll]
    +v1:136 [in hydras.Ackermann.subAll]
    +v1:137 [in hydras.Ackermann.subAll]
    +v1:138 [in hydras.Ackermann.subAll]
    +v1:139 [in hydras.Ackermann.subAll]
    +v1:140 [in hydras.Ackermann.subAll]
    +v1:141 [in hydras.Ackermann.subAll]
    +v1:141 [in hydras.Ackermann.subProp]
    +v1:142 [in hydras.Ackermann.subAll]
    +v1:143 [in hydras.Ackermann.subAll]
    +v1:144 [in hydras.Ackermann.subAll]
    +v1:144 [in hydras.Ackermann.subProp]
    +v1:145 [in hydras.Ackermann.subAll]
    +v1:146 [in hydras.Ackermann.subAll]
    +v1:147 [in hydras.Ackermann.subAll]
    +v1:148 [in hydras.Ackermann.subAll]
    +v1:148 [in hydras.Ackermann.subProp]
    +v1:149 [in hydras.Ackermann.subAll]
    +v1:150 [in hydras.Ackermann.subAll]
    +v1:151 [in hydras.Ackermann.subAll]
    +v1:152 [in hydras.Ackermann.subAll]
    +v1:152 [in hydras.Ackermann.subProp]
    +v1:153 [in hydras.Ackermann.subAll]
    +v1:154 [in hydras.Ackermann.subAll]
    +v1:155 [in hydras.Ackermann.subAll]
    +v1:157 [in hydras.Ackermann.subAll]
    +v1:159 [in hydras.Ackermann.subAll]
    +v1:161 [in hydras.Ackermann.subAll]
    +v1:162 [in hydras.Ackermann.subProp]
    +v1:163 [in hydras.Ackermann.subAll]
    +v1:164 [in hydras.Ackermann.subAll]
    +v1:165 [in hydras.Ackermann.subAll]
    +v1:166 [in hydras.Ackermann.subAll]
    +v1:167 [in hydras.Ackermann.subProp]
    +v1:169 [in hydras.Ackermann.subAll]
    +v1:171 [in hydras.Ackermann.subAll]
    +v1:173 [in hydras.Ackermann.subAll]
    +v1:175 [in hydras.Ackermann.subAll]
    +v1:20 [in hydras.Prelude.MoreVectors]
    +v1:21 [in hydras.Ackermann.folLogic2]
    +v1:228 [in hydras.rpo.term]
    +v1:242 [in hydras.rpo.term]
    +v1:25 [in hydras.Prelude.MoreVectors]
    +v1:252 [in hydras.Gamma0.Gamma0]
    +v1:26 [in hydras.Ackermann.folLogic2]
    +v1:31 [in hydras.Prelude.MoreVectors]
    +v1:38 [in hydras.Prelude.MoreVectors]
    +v1:48 [in hydras.Ackermann.model]
    +v1:51 [in hydras.rpo.term]
    +v1:60 [in hydras.Ackermann.model]
    +v1:66 [in hydras.rpo.term]
    +v1:66 [in hydras.Ackermann.model]
    +v1:9 [in hydras.rpo.term]
    +v2:10 [in hydras.rpo.term]
    +v2:103 [in hydras.Ackermann.subProp]
    +v2:111 [in hydras.Ackermann.subProp]
    +v2:12 [in hydras.Epsilon0.Epsilon0rpo]
    +v2:12 [in hydras.Ackermann.folLogic2]
    +v2:125 [in hydras.Ackermann.subProp]
    +v2:130 [in hydras.Ackermann.subProp]
    +v2:142 [in hydras.Ackermann.subProp]
    +v2:145 [in hydras.Ackermann.subProp]
    +v2:149 [in hydras.Ackermann.subProp]
    +v2:153 [in hydras.Ackermann.subProp]
    +v2:163 [in hydras.Ackermann.subProp]
    +v2:168 [in hydras.Ackermann.subProp]
    +v2:21 [in hydras.Prelude.MoreVectors]
    +v2:22 [in hydras.Ackermann.folLogic2]
    +v2:231 [in hydras.rpo.term]
    +v2:245 [in hydras.rpo.term]
    +v2:253 [in hydras.Gamma0.Gamma0]
    +v2:26 [in hydras.Prelude.MoreVectors]
    +v2:27 [in hydras.Ackermann.folLogic2]
    +v2:32 [in hydras.Prelude.MoreVectors]
    +v2:39 [in hydras.Prelude.MoreVectors]
    +v2:49 [in hydras.Ackermann.model]
    +v2:54 [in hydras.rpo.term]
    +v2:61 [in hydras.Ackermann.model]
    +v2:67 [in hydras.Ackermann.model]
    +v2:69 [in hydras.rpo.term]
    +v3:33 [in hydras.Prelude.MoreVectors]
    +v3:40 [in hydras.Prelude.MoreVectors]
    +v:1 [in hydras.Ackermann.NN]
    +v:10 [in hydras.Prelude.MoreVectors]
    +v:100 [in hydras.Ackermann.LNN]
    +v:100 [in hydras.Ackermann.folReplace]
    +v:100 [in hydras.Prelude.MoreVectors]
    +v:101 [in hydras.Ackermann.folLogic]
    +v:101 [in hydras.Ackermann.folLogic3]
    +v:102 [in hydras.Ackermann.LNN2LNT]
    +V:103 [in hydras.Hydra.Hydra_Lemmas]
    +v:104 [in hydras.Ackermann.model]
    +v:104 [in hydras.Ackermann.folLogic]
    +v:104 [in hydras.Prelude.MoreVectors]
    +v:105 [in hydras.Ackermann.folReplace]
    +v:107 [in hydras.Prelude.MoreVectors]
    +v:108 [in hydras.Ackermann.model]
    +v:11 [in hydras.Ackermann.codeSubTerm]
    +v:11 [in Goedel.fixPoint]
    +v:11 [in hydras.Ackermann.wConsistent]
    +v:110 [in hydras.Ackermann.subAll]
    +v:111 [in hydras.Ackermann.LNT]
    +v:111 [in Goedel.rosserPA]
    +v:112 [in hydras.Ackermann.model]
    +v:113 [in Goedel.rosserPA]
    +V:113 [in hydras.Hydra.Hydra_Lemmas]
    +v:113 [in hydras.Ackermann.folReplace]
    +v:114 [in hydras.Ackermann.LNN]
    +v:114 [in hydras.Ackermann.LNT]
    +v:115 [in hydras.Ackermann.LNN2LNT]
    +v:116 [in hydras.rpo.term]
    +v:116 [in hydras.Ackermann.subAll]
    +v:116 [in hydras.Ackermann.model]
    +v:117 [in hydras.Ackermann.LNN]
    +v:117 [in hydras.Ackermann.codeSubFormula]
    +v:118 [in hydras.rpo.term]
    +v:12 [in Goedel.rosserPA]
    +v:120 [in hydras.Ackermann.subProp]
    +v:120 [in hydras.Ackermann.codeSubFormula]
    +v:1203 [in gaia_hydras.nfwfgaia]
    +v:122 [in additions.fib]
    +v:123 [in hydras.Ackermann.codeSubTerm]
    +v:123 [in hydras.Ackermann.LNN2LNT]
    +v:123 [in hydras.Ackermann.folProp]
    +v:123 [in hydras.Ackermann.codeSubFormula]
    +v:1236 [in hydras.Ackermann.codeSubFormula]
    +v:1239 [in gaia_hydras.nfwfgaia]
    +v:1243 [in gaia_hydras.nfwfgaia]
    +v:1246 [in gaia_hydras.nfwfgaia]
    +v:1258 [in hydras.Ackermann.codeSubFormula]
    +v:126 [in hydras.Gamma0.T2]
    +v:126 [in hydras.Ackermann.codeSubTerm]
    +v:1266 [in hydras.Ackermann.codeSubFormula]
    +v:1266 [in gaia_hydras.nfwfgaia]
    +v:127 [in hydras.rpo.term]
    +v:128 [in hydras.Ackermann.model]
    +v:1282 [in gaia_hydras.nfwfgaia]
    +v:129 [in hydras.Ackermann.codeSubTerm]
    +v:1291 [in hydras.Ackermann.codeSubFormula]
    +v:1294 [in hydras.Ackermann.codeSubFormula]
    +v:13 [in hydras.MoreAck.AckNotPR]
    +v:13 [in hydras.Ackermann.subProp]
    +v:13 [in hydras.Prelude.MoreVectors]
    +v:130 [in hydras.Gamma0.T2]
    +v:131 [in hydras.Ackermann.LNN2LNT]
    +v:132 [in hydras.Ackermann.codeSubTerm]
    +v:132 [in hydras.Ackermann.model]
    +v:132 [in hydras.Ackermann.codeSubFormula]
    +v:134 [in hydras.Gamma0.T2]
    +v:134 [in hydras.Ackermann.folProp]
    +v:135 [in hydras.Ackermann.codeSubTerm]
    +v:135 [in hydras.Ackermann.subProp]
    +v:136 [in Goedel.PRrepresentable]
    +v:136 [in hydras.Ackermann.model]
    +v:1367 [in hydras.Ackermann.codeSubFormula]
    +V:137 [in hydras.Ackermann.LNN2LNT]
    +v:1377 [in hydras.Ackermann.codeSubFormula]
    +v:138 [in Goedel.PRrepresentable]
    +v:138 [in hydras.Ackermann.codeSubTerm]
    +v:1380 [in hydras.Ackermann.codeSubFormula]
    +v:1389 [in hydras.Ackermann.codeSubFormula]
    +v:139 [in hydras.Ackermann.subProp]
    +v:1393 [in hydras.Ackermann.codeSubFormula]
    +v:1397 [in hydras.Ackermann.codeSubFormula]
    +v:14 [in hydras.Ackermann.codeSubTerm]
    +v:14 [in Goedel.fixPoint]
    +v:140 [in hydras.Ackermann.model]
    +v:1400 [in hydras.Ackermann.codeSubFormula]
    +v:1405 [in hydras.Ackermann.codeSubFormula]
    +v:141 [in hydras.Ackermann.codeSubTerm]
    +v:1411 [in hydras.Ackermann.codeSubFormula]
    +v:1418 [in hydras.Ackermann.codeSubFormula]
    +v:142 [in hydras.Ackermann.folProp]
    +v:1423 [in hydras.Ackermann.codeSubFormula]
    +v:1428 [in hydras.Ackermann.codeSubFormula]
    +v:143 [in hydras.Ackermann.LNN2LNT]
    +v:1431 [in hydras.Ackermann.codeSubFormula]
    +v:1434 [in hydras.Ackermann.codeSubFormula]
    +v:1437 [in hydras.Ackermann.codeSubFormula]
    +v:144 [in hydras.Ackermann.codeSubTerm]
    +v:144 [in hydras.Ackermann.model]
    +v:1440 [in hydras.Ackermann.codeSubFormula]
    +v:1443 [in hydras.Ackermann.codeSubFormula]
    +v:1446 [in hydras.Ackermann.codeSubFormula]
    +v:1449 [in hydras.Ackermann.codeSubFormula]
    +v:1452 [in hydras.Ackermann.codeSubFormula]
    +v:1455 [in hydras.Ackermann.codeSubFormula]
    +v:1458 [in hydras.Ackermann.codeSubFormula]
    +v:146 [in hydras.Ackermann.folProp]
    +v:1461 [in hydras.Ackermann.codeSubFormula]
    +v:1464 [in hydras.Ackermann.codeSubFormula]
    +v:1467 [in hydras.Ackermann.codeSubFormula]
    +v:147 [in Goedel.PRrepresentable]
    +v:147 [in hydras.Ackermann.codeSubTerm]
    +v:147 [in hydras.Ackermann.LNN2LNT]
    +v:1470 [in hydras.Ackermann.codeSubFormula]
    +v:1473 [in hydras.Ackermann.codeSubFormula]
    +v:1476 [in hydras.Ackermann.codeSubFormula]
    +v:1479 [in hydras.Ackermann.codeSubFormula]
    +v:148 [in hydras.Ackermann.model]
    +v:148 [in hydras.Ackermann.fol]
    +v:1482 [in hydras.Ackermann.codeSubFormula]
    +v:1485 [in hydras.Ackermann.codeSubFormula]
    +v:1488 [in hydras.Ackermann.codeSubFormula]
    +v:149 [in Goedel.PRrepresentable]
    +v:149 [in hydras.Ackermann.codeSubTerm]
    +v:1491 [in hydras.Ackermann.codeSubFormula]
    +v:1494 [in hydras.Ackermann.codeSubFormula]
    +v:1497 [in hydras.Ackermann.codeSubFormula]
    +v:15 [in hydras.Ackermann.folProp]
    +v:15 [in hydras.Prelude.MoreVectors]
    +v:150 [in hydras.Ackermann.folProp]
    +v:1500 [in hydras.Ackermann.codeSubFormula]
    +v:1503 [in hydras.Ackermann.codeSubFormula]
    +v:1506 [in hydras.Ackermann.codeSubFormula]
    +v:1509 [in hydras.Ackermann.codeSubFormula]
    +v:151 [in hydras.Ackermann.codeSubTerm]
    +v:1511 [in gaia_hydras.nfwfgaia]
    +v:1514 [in gaia_hydras.nfwfgaia]
    +v:1516 [in hydras.Ackermann.codeSubFormula]
    +v:1517 [in gaia_hydras.nfwfgaia]
    +v:1519 [in hydras.Ackermann.codeSubFormula]
    +v:1522 [in hydras.Ackermann.codeSubFormula]
    +v:1525 [in hydras.Ackermann.codeSubFormula]
    +v:1528 [in hydras.Ackermann.codeSubFormula]
    +v:153 [in hydras.Ackermann.codeSubTerm]
    +v:1531 [in hydras.Ackermann.codeSubFormula]
    +v:1534 [in hydras.Ackermann.codeSubFormula]
    +v:1537 [in hydras.Ackermann.codeSubFormula]
    +v:154 [in hydras.Ackermann.folProp]
    +v:1540 [in hydras.Ackermann.codeSubFormula]
    +v:1543 [in hydras.Ackermann.codeSubFormula]
    +v:1546 [in hydras.Ackermann.codeSubFormula]
    +v:1549 [in hydras.Ackermann.codeSubFormula]
    +v:155 [in hydras.Ackermann.codeSubTerm]
    +v:1552 [in hydras.Ackermann.codeSubFormula]
    +v:1555 [in hydras.Ackermann.codeSubFormula]
    +v:1558 [in hydras.Ackermann.codeSubFormula]
    +v:156 [in hydras.Ackermann.model]
    +v:1561 [in hydras.Ackermann.codeSubFormula]
    +v:1564 [in hydras.Ackermann.codeSubFormula]
    +v:1567 [in hydras.Ackermann.codeSubFormula]
    +v:157 [in hydras.Ackermann.codeSubTerm]
    +v:158 [in Goedel.PRrepresentable]
    +v:158 [in hydras.Ackermann.subProp]
    +v:16 [in hydras.Ackermann.codeSubTerm]
    +v:160 [in Goedel.PRrepresentable]
    +v:162 [in hydras.Ackermann.LNT]
    +v:17 [in Goedel.fixPoint]
    +v:17 [in Goedel.goedel2]
    +v:170 [in hydras.Ackermann.LNN]
    +v:1789 [in gaia_hydras.nfwfgaia]
    +v:18 [in hydras.Ackermann.LNN2LNT]
    +v:18 [in hydras.Ackermann.folProp]
    +v:18 [in hydras.Ackermann.subProp]
    +v:192 [in hydras.rpo.rpo]
    +v:193 [in hydras.rpo.rpo]
    +v:197 [in hydras.Ackermann.subAll]
    +v:199 [in hydras.Ackermann.subAll]
    +v:2 [in Goedel.fixPoint]
    +v:2 [in hydras.Ackermann.PA]
    +v:20 [in Goedel.fixPoint]
    +v:20 [in hydras.Ackermann.PA]
    +v:2042 [in gaia_hydras.nfwfgaia]
    +v:2086 [in gaia_hydras.nfwfgaia]
    +v:21 [in Goedel.goedel2]
    +v:212 [in hydras.Ackermann.fol]
    +v:215 [in hydras.rpo.term]
    +v:22 [in hydras.MoreAck.AckNotPR]
    +v:22 [in hydras.Ackermann.subProp]
    +v:220 [in hydras.rpo.term]
    +v:23 [in Goedel.fixPoint]
    +v:23 [in hydras.Ackermann.PA]
    +v:233 [in hydras.Ackermann.subAll]
    +v:233 [in hydras.Ackermann.folProp]
    +v:234 [in hydras.Ackermann.subAll]
    +v:235 [in hydras.Ackermann.subAll]
    +v:235 [in hydras.Ackermann.fol]
    +v:236 [in hydras.Ackermann.subAll]
    +v:237 [in hydras.Ackermann.subAll]
    +v:238 [in Goedel.PRrepresentable]
    +v:238 [in hydras.Ackermann.subAll]
    +v:239 [in hydras.Ackermann.subAll]
    +v:24 [in hydras.Ackermann.PA]
    +v:24 [in Goedel.codeSysPrf]
    +v:240 [in hydras.Ackermann.subAll]
    +v:241 [in Goedel.PRrepresentable]
    +v:242 [in hydras.Ackermann.subAll]
    +v:244 [in Goedel.PRrepresentable]
    +v:244 [in hydras.Ackermann.subAll]
    +v:247 [in Goedel.PRrepresentable]
    +v:247 [in hydras.Ackermann.subAll]
    +v:248 [in hydras.Ackermann.subAll]
    +v:25 [in hydras.Ackermann.folProp]
    +v:258 [in hydras.Ackermann.subAll]
    +v:26 [in hydras.Ackermann.folProof]
    +v:26 [in hydras.Ackermann.LNN2LNT]
    +v:26 [in hydras.Ackermann.subProp]
    +v:263 [in Goedel.PRrepresentable]
    +v:267 [in Goedel.PRrepresentable]
    +v:267 [in hydras.Ackermann.fol]
    +v:27 [in Goedel.fixPoint]
    +v:271 [in hydras.Ackermann.fol]
    +v:274 [in Goedel.PRrepresentable]
    +v:28 [in hydras.Ackermann.folProp]
    +v:28 [in hydras.MoreAck.AckNotPR]
    +v:28 [in hydras.Ackermann.folReplace]
    +v:28 [in Goedel.rosser]
    +v:281 [in hydras.Ackermann.folProp]
    +v:287 [in Goedel.PRrepresentable]
    +v:288 [in Goedel.PRrepresentable]
    +v:289 [in Goedel.PRrepresentable]
    +v:29 [in Goedel.PRrepresentable]
    +v:293 [in Goedel.PRrepresentable]
    +v:294 [in hydras.rpo.term]
    +v:294 [in Goedel.PRrepresentable]
    +v:295 [in Goedel.PRrepresentable]
    +v:296 [in hydras.rpo.term]
    +v:299 [in hydras.rpo.term]
    +v:299 [in hydras.Ackermann.subAll]
    +v:3 [in hydras.MoreAck.BadSubst]
    +v:3 [in hydras.Ackermann.subProp]
    +v:3 [in hydras.Ackermann.wConsistent]
    +v:3 [in hydras.Ackermann.expressible]
    +v:308 [in hydras.rpo.term]
    +v:309 [in Goedel.PRrepresentable]
    +v:31 [in hydras.Ackermann.folProp]
    +v:31 [in hydras.MoreAck.AckNotPR]
    +v:31 [in hydras.Ackermann.subProp]
    +v:312 [in Goedel.PRrepresentable]
    +v:314 [in Goedel.PRrepresentable]
    +v:315 [in Goedel.PRrepresentable]
    +v:317 [in Goedel.PRrepresentable]
    +v:317 [in hydras.Ackermann.fol]
    +v:32 [in hydras.Ackermann.folReplace]
    +v:320 [in Goedel.PRrepresentable]
    +v:320 [in hydras.Ackermann.subAll]
    +v:321 [in Goedel.PRrepresentable]
    +v:321 [in hydras.Ackermann.fol]
    +v:322 [in Goedel.PRrepresentable]
    +v:322 [in hydras.Ackermann.subAll]
    +v:323 [in Goedel.PRrepresentable]
    +v:324 [in Goedel.PRrepresentable]
    +v:33 [in Goedel.PRrepresentable]
    +v:33 [in hydras.Ackermann.folLogic2]
    +v:343 [in hydras.Ackermann.subAll]
    +v:348 [in hydras.Ackermann.subAll]
    +v:35 [in hydras.Ackermann.folProof]
    +v:35 [in hydras.MoreAck.AckNotPR]
    +V:35 [in hydras.Schutte.Countable]
    +v:353 [in hydras.Ackermann.subAll]
    +v:355 [in hydras.Ackermann.checkPrf]
    +v:358 [in hydras.Ackermann.subAll]
    +v:36 [in hydras.rpo.term]
    +v:36 [in hydras.Ackermann.subProp]
    +v:363 [in hydras.Ackermann.fol]
    +v:367 [in hydras.Ackermann.fol]
    +v:37 [in hydras.Ackermann.folLogic2]
    +v:37 [in hydras.Ackermann.folProp]
    +v:371 [in hydras.Ackermann.subAll]
    +v:38 [in hydras.Ackermann.folProof]
    +v:38 [in Goedel.PRrepresentable]
    +v:38 [in hydras.Ackermann.codeSubTerm]
    +v:39 [in Goedel.codeSysPrf]
    +v:391 [in gaia_hydras.nfwfgaia]
    +v:394 [in hydras.Ackermann.folProp]
    +v:398 [in hydras.Ackermann.folProp]
    +v:4 [in hydras.Prelude.MoreVectors]
    +v:40 [in hydras.Ackermann.folProp]
    +v:40 [in Goedel.rosserPA]
    +v:40 [in Goedel.codeSysPrf]
    +v:402 [in hydras.Ackermann.folProp]
    +v:407 [in hydras.Ackermann.folProp]
    +v:407 [in hydras.Ackermann.fol]
    +v:408 [in hydras.Ackermann.checkPrf]
    +v:41 [in hydras.Ackermann.folProof]
    +v:41 [in hydras.Ackermann.model]
    +v:41 [in hydras.MoreAck.AckNotPR]
    +v:41 [in hydras.Ackermann.subProp]
    +v:41 [in additions.fib]
    +v:41 [in Goedel.codeSysPrf]
    +v:411 [in hydras.Ackermann.fol]
    +v:412 [in hydras.Ackermann.folProp]
    +v:415 [in hydras.Ackermann.folProp]
    +v:418 [in hydras.Ackermann.folProp]
    +v:42 [in hydras.rpo.term]
    +v:42 [in Goedel.PRrepresentable]
    +v:42 [in hydras.Ackermann.subAll]
    +v:42 [in Goedel.codeSysPrf]
    +v:42 [in hydras.Ackermann.expressible]
    +v:420 [in hydras.Ackermann.fol]
    +v:422 [in Goedel.PRrepresentable]
    +v:425 [in hydras.Ackermann.folProp]
    +v:426 [in Goedel.PRrepresentable]
    +v:427 [in hydras.Ackermann.folProp]
    +v:43 [in hydras.Ackermann.folProp]
    +v:43 [in Goedel.rosserPA]
    +v:43 [in Goedel.codeSysPrf]
    +v:430 [in hydras.Ackermann.folProp]
    +v:435 [in hydras.Ackermann.folProp]
    +v:439 [in hydras.Ackermann.folProp]
    +v:44 [in Goedel.codeSysPrf]
    +v:44 [in hydras.Prelude.MoreVectors]
    +v:440 [in Goedel.PRrepresentable]
    +v:441 [in Goedel.PRrepresentable]
    +v:442 [in Goedel.PRrepresentable]
    +v:443 [in Goedel.PRrepresentable]
    +v:443 [in hydras.Ackermann.folProp]
    +v:443 [in hydras.Ackermann.fol]
    +v:45 [in hydras.MoreAck.AckNotPR]
    +v:45 [in hydras.Ackermann.subProp]
    +v:45 [in Goedel.rosserPA]
    +v:45 [in hydras.Ackermann.folLogic3]
    +v:455 [in hydras.Ackermann.checkPrf]
    +v:46 [in hydras.Ackermann.folLogic3]
    +v:462 [in Goedel.PRrepresentable]
    +v:464 [in Goedel.PRrepresentable]
    +v:470 [in Goedel.PRrepresentable]
    +v:472 [in Goedel.PRrepresentable]
    +v:48 [in Goedel.rosserPA]
    +v:49 [in hydras.Ackermann.subAll]
    +v:49 [in hydras.MoreAck.AckNotPR]
    +v:49 [in hydras.Ackermann.subProp]
    +v:5 [in Goedel.fixPoint]
    +v:5 [in Goedel.goedel1]
    +v:5 [in Goedel.rosser]
    +v:5 [in Goedel.goedel2]
    +v:5 [in hydras.Prelude.MoreVectors]
    +v:52 [in hydras.Ackermann.folLogic3]
    +v:52 [in Goedel.codeSysPrf]
    +v:52 [in hydras.Prelude.MoreVectors]
    +v:53 [in hydras.Ackermann.PA]
    +v:53 [in hydras.Ackermann.folLogic3]
    +v:54 [in hydras.Ackermann.subAll]
    +v:54 [in hydras.Ackermann.codeSubTerm]
    +v:54 [in hydras.Ackermann.subProp]
    +v:55 [in hydras.Ackermann.subAll]
    +v:56 [in hydras.Ackermann.subAll]
    +v:56 [in Goedel.codeSysPrf]
    +v:57 [in Goedel.PRrepresentable]
    +v:57 [in hydras.Ackermann.subAll]
    +v:58 [in hydras.Ackermann.codeSubTerm]
    +v:58 [in Goedel.rosserPA]
    +v:59 [in hydras.Ackermann.folProp]
    +v:59 [in hydras.Ackermann.subProp]
    +v:59 [in hydras.Ackermann.codeSubFormula]
    +v:59 [in hydras.Prelude.MoreVectors]
    +v:6 [in Goedel.rosserPA]
    +v:60 [in hydras.Ackermann.subAll]
    +v:60 [in hydras.Ackermann.LNN2LNT]
    +v:61 [in Goedel.PRrepresentable]
    +v:61 [in hydras.Ackermann.folProp]
    +v:61 [in Goedel.codeSysPrf]
    +v:62 [in hydras.Ackermann.codeSubTerm]
    +v:62 [in Goedel.codeSysPrf]
    +v:623 [in hydras.Ackermann.primRec]
    +v:627 [in hydras.Ackermann.primRec]
    +v:63 [in hydras.Ackermann.LNN2LNT]
    +v:63 [in Goedel.codeSysPrf]
    +v:63 [in hydras.Ackermann.expressible]
    +v:64 [in hydras.Ackermann.subProp]
    +v:64 [in Goedel.codeSysPrf]
    +v:644 [in hydras.Ackermann.primRec]
    +v:649 [in hydras.Ackermann.primRec]
    +v:65 [in hydras.Ackermann.LNN2LNT]
    +v:65 [in hydras.Ackermann.folLogic]
    +v:66 [in hydras.Ackermann.codeSubTerm]
    +v:66 [in hydras.Ackermann.folProp]
    +v:66 [in hydras.Ackermann.folReplace]
    +v:67 [in hydras.Ackermann.LNN2LNT]
    +v:67 [in Goedel.rosser]
    +v:68 [in hydras.Ackermann.subProp]
    +v:68 [in hydras.Ackermann.folLogic]
    +v:68 [in Goedel.codeSysPrf]
    +v:68 [in hydras.Prelude.MoreVectors]
    +v:680 [in gaia_hydras.nfwfgaia]
    +v:687 [in gaia_hydras.nfwfgaia]
    +v:689 [in gaia_hydras.nfwfgaia]
    +v:69 [in hydras.MoreAck.AckNotPR]
    +v:692 [in gaia_hydras.nfwfgaia]
    +v:7 [in hydras.Ackermann.codeSubTerm]
    +v:7 [in hydras.Ackermann.PA]
    +v:70 [in hydras.Ackermann.codeSubTerm]
    +v:70 [in hydras.Ackermann.LNN2LNT]
    +V:70 [in hydras.Schutte.PartialFun]
    +v:70 [in hydras.Ackermann.folReplace]
    +v:70 [in hydras.Prelude.MoreVectors]
    +v:703 [in gaia_hydras.nfwfgaia]
    +v:71 [in hydras.Ackermann.subAll]
    +v:71 [in hydras.MoreAck.AckNotPR]
    +v:71 [in hydras.Ackermann.codeSubFormula]
    +v:713 [in gaia_hydras.nfwfgaia]
    +v:72 [in hydras.Ackermann.model]
    +v:72 [in hydras.Ackermann.subProp]
    +v:72 [in hydras.Ackermann.folLogic]
    +v:72 [in Goedel.codeSysPrf]
    +v:73 [in Goedel.codeSysPrf]
    +v:74 [in Goedel.PRrepresentable]
    +v:74 [in hydras.Ackermann.codeSubTerm]
    +v:74 [in Goedel.codeSysPrf]
    +v:746 [in gaia_hydras.nfwfgaia]
    +v:75 [in hydras.Ackermann.subAll]
    +v:75 [in hydras.Ackermann.LNT]
    +v:75 [in hydras.Ackermann.folLogic]
    +v:76 [in Goedel.PRrepresentable]
    +v:76 [in hydras.Ackermann.codeSubFormula]
    +v:76 [in hydras.Prelude.MoreVectors]
    +v:77 [in hydras.Ackermann.subProp]
    +v:78 [in hydras.Ackermann.codeSubTerm]
    +v:78 [in hydras.Ackermann.LNN]
    +v:78 [in hydras.Ackermann.LNT]
    +v:79 [in Goedel.codeSysPrf]
    +v:8 [in Goedel.fixPoint]
    +v:8 [in hydras.Ackermann.subProp]
    +v:8 [in hydras.Prelude.MoreVectors]
    +v:80 [in hydras.Ackermann.folLogic]
    +v:80 [in Goedel.codeSysPrf]
    +v:800 [in gaia_hydras.nfwfgaia]
    +v:803 [in gaia_hydras.nfwfgaia]
    +v:805 [in gaia_hydras.nfwfgaia]
    +v:81 [in hydras.Ackermann.LNN]
    +V:81 [in hydras.Schutte.PartialFun]
    +v:82 [in hydras.Ackermann.codeSubTerm]
    +v:82 [in hydras.Ackermann.LNT]
    +v:82 [in hydras.Ackermann.subProp]
    +v:82 [in Goedel.codeSysPrf]
    +v:82 [in hydras.Prelude.MoreVectors]
    +v:83 [in hydras.Ackermann.model]
    +v:83 [in hydras.Ackermann.folLogic]
    +v:84 [in Goedel.PRrepresentable]
    +v:84 [in hydras.Ackermann.subAll]
    +v:85 [in hydras.Ackermann.LNN]
    +v:85 [in hydras.Ackermann.LNT]
    +v:859 [in hydras.Ackermann.codeSubFormula]
    +v:86 [in hydras.Ackermann.codeSubTerm]
    +v:86 [in hydras.Ackermann.codeSubFormula]
    +v:87 [in hydras.Ackermann.subProp]
    +V:87 [in hydras.Schutte.PartialFun]
    +v:87 [in hydras.Ackermann.folLogic]
    +v:87 [in hydras.Prelude.MoreVectors]
    +v:875 [in hydras.Ackermann.codeSubFormula]
    +v:879 [in hydras.Ackermann.codeSubFormula]
    +v:88 [in Goedel.PRrepresentable]
    +v:88 [in hydras.Ackermann.subAll]
    +v:88 [in hydras.Ackermann.LNN]
    +v:88 [in hydras.Ackermann.model]
    +v:88 [in hydras.Ackermann.folLogic3]
    +v:883 [in hydras.Ackermann.codeSubFormula]
    +v:898 [in hydras.Ackermann.codeSubFormula]
    +v:9 [in hydras.MoreAck.BadSubst]
    +v:90 [in hydras.Ackermann.subAll]
    +v:90 [in hydras.Ackermann.codeSubTerm]
    +v:90 [in hydras.Ackermann.LNT]
    +v:91 [in hydras.Ackermann.subAll]
    +v:91 [in hydras.Ackermann.subProp]
    +v:91 [in hydras.Ackermann.codeSubFormula]
    +v:91 [in hydras.Prelude.MoreVectors]
    +v:915 [in hydras.Ackermann.codeSubFormula]
    +v:920 [in hydras.Ackermann.codeSubFormula]
    +v:925 [in hydras.Ackermann.codeSubFormula]
    +v:93 [in hydras.Ackermann.LNN]
    +v:93 [in hydras.Ackermann.LNT]
    +v:94 [in hydras.Ackermann.subAll]
    +v:94 [in hydras.Prelude.MoreVectors]
    +v:95 [in hydras.Ackermann.subProp]
    +v:95 [in hydras.Ackermann.folReplace]
    +v:96 [in hydras.Ackermann.LNN]
    +v:97 [in Goedel.PRrepresentable]
    +v:97 [in hydras.Ackermann.LNT]
    +v:98 [in hydras.Ackermann.subAll]
    +v:98 [in hydras.Ackermann.folLogic3]
    +v:99 [in Goedel.PRrepresentable]
    +v:997 [in gaia_hydras.nfwfgaia]
    +

    W

    +well_formed_list:270 [in hydras.rpo.term]
    +well_formed_list:90 [in hydras.rpo.term]
    +Wf:101 [in hydras.Hydra.Hydra_Lemmas]
    +Wf:111 [in hydras.Hydra.Hydra_Lemmas]
    +Wf:146 [in hydras.Hydra.Hydra_Definitions]
    +Wf:156 [in hydras.Hydra.Hydra_Definitions]
    +Wo:19 [in hydras.Schutte.Well_Orders]
    +WO:54 [in hydras.Schutte.Well_Orders]
    +WO:59 [in hydras.Schutte.Well_Orders]
    +w:101 [in Goedel.PRrepresentable]
    +w:122 [in Goedel.PRrepresentable]
    +w:1237 [in hydras.Ackermann.codeSubFormula]
    +w:129 [in Goedel.PRrepresentable]
    +w:1388 [in hydras.Ackermann.codeSubFormula]
    +w:1392 [in hydras.Ackermann.codeSubFormula]
    +w:14 [in hydras.Prelude.MoreOrders]
    +w:140 [in Goedel.PRrepresentable]
    +w:151 [in Goedel.PRrepresentable]
    +w:1513 [in gaia_hydras.nfwfgaia]
    +w:1516 [in gaia_hydras.nfwfgaia]
    +w:1519 [in gaia_hydras.nfwfgaia]
    +w:300 [in hydras.Ackermann.subAll]
    +w:399 [in hydras.Ackermann.primRec]
    +w:407 [in hydras.Ackermann.primRec]
    +w:60 [in hydras.Prelude.MoreVectors]
    +w:705 [in gaia_hydras.nfwfgaia]
    +w:715 [in gaia_hydras.nfwfgaia]
    +w:815 [in gaia_hydras.nfwfgaia]
    +w:822 [in gaia_hydras.nfwfgaia]
    +w:899 [in hydras.Ackermann.codeSubFormula]
    +w:916 [in hydras.Ackermann.codeSubFormula]
    +w:921 [in hydras.Ackermann.codeSubFormula]
    +w:926 [in hydras.Ackermann.codeSubFormula]
    +w:998 [in gaia_hydras.nfwfgaia]
    +

    X

    +xb:227 [in additions.Euclidean_Chains]
    +xb:238 [in additions.Euclidean_Chains]
    +xb:254 [in additions.Euclidean_Chains]
    +xb:258 [in additions.Euclidean_Chains]
    +xb:262 [in additions.Euclidean_Chains]
    +xb:266 [in additions.Euclidean_Chains]
    +xb:304 [in additions.Euclidean_Chains]
    +xb:306 [in additions.Euclidean_Chains]
    +xb:308 [in additions.Euclidean_Chains]
    +xb:310 [in additions.Euclidean_Chains]
    +xi:13 [in hydras.Schutte.Critical]
    +xi:56 [in hydras.Schutte.Critical]
    +xi:63 [in hydras.Schutte.Critical]
    +xi:64 [in hydras.Schutte.Critical]
    +xi:73 [in hydras.Schutte.Critical]
    +xi:79 [in hydras.Schutte.Critical]
    +xr:228 [in additions.Euclidean_Chains]
    +xr:255 [in additions.Euclidean_Chains]
    +xr:259 [in additions.Euclidean_Chains]
    +xr:263 [in additions.Euclidean_Chains]
    +xr:267 [in additions.Euclidean_Chains]
    +x':1395 [in gaia_hydras.nfwfgaia]
    +x':526 [in gaia_hydras.nfwfgaia]
    +x':529 [in gaia_hydras.nfwfgaia]
    +x0:123 [in hydras.Ackermann.model]
    +x0:125 [in hydras.Ackermann.model]
    +x0:200 [in hydras.Ackermann.folProp]
    +x0:216 [in hydras.Ackermann.folProp]
    +x0:226 [in Goedel.PRrepresentable]
    +x0:228 [in Goedel.PRrepresentable]
    +x0:233 [in Goedel.PRrepresentable]
    +x0:235 [in Goedel.PRrepresentable]
    +x0:296 [in hydras.Ackermann.folProp]
    +x0:312 [in hydras.Ackermann.folProp]
    +x0:329 [in hydras.Ackermann.subAll]
    +x0:331 [in hydras.Ackermann.subAll]
    +x0:332 [in hydras.Ackermann.subAll]
    +x0:334 [in hydras.Ackermann.subAll]
    +x0:335 [in hydras.Ackermann.subAll]
    +x0:336 [in hydras.Ackermann.subAll]
    +x0:337 [in hydras.Ackermann.subAll]
    +x0:338 [in hydras.Ackermann.subAll]
    +x0:360 [in hydras.Ackermann.folProp]
    +x0:376 [in hydras.Ackermann.folProp]
    +x0:90 [in hydras.Ackermann.model]
    +x0:91 [in hydras.Ackermann.model]
    +x0:92 [in hydras.Ackermann.model]
    +x0:93 [in hydras.Ackermann.model]
    +x0:95 [in hydras.Ackermann.model]
    +x0:97 [in hydras.Ackermann.model]
    +x10:30 [in additions.Addition_Chains]
    +x16:104 [in additions.Pow]
    +x16:95 [in additions.Pow_variant]
    +x1:328 [in hydras.Ackermann.folProp]
    +x1:344 [in hydras.Ackermann.folProp]
    +x20:31 [in additions.Addition_Chains]
    +x2:101 [in additions.Pow]
    +x2:153 [in additions.Euclidean_Chains]
    +x2:158 [in additions.Euclidean_Chains]
    +x2:16 [in additions.Addition_Chains]
    +x2:20 [in additions.Addition_Chains]
    +x2:249 [in additions.Addition_Chains]
    +x2:253 [in additions.Addition_Chains]
    +x2:26 [in additions.Addition_Chains]
    +x2:260 [in additions.Addition_Chains]
    +x2:262 [in additions.Addition_Chains]
    +x2:92 [in additions.Pow_variant]
    +x3:154 [in additions.Euclidean_Chains]
    +x3:159 [in additions.Euclidean_Chains]
    +x3:17 [in additions.Addition_Chains]
    +x3:21 [in additions.Addition_Chains]
    +x3:27 [in additions.Addition_Chains]
    +x40:32 [in additions.Addition_Chains]
    +x4:10 [in hydras.Ackermann.PAconsistent]
    +x4:102 [in additions.Pow]
    +x4:9 [in hydras.Ackermann.PAconsistent]
    +x4:93 [in additions.Pow_variant]
    +x6:160 [in additions.Euclidean_Chains]
    +x6:22 [in additions.Addition_Chains]
    +x6:28 [in additions.Addition_Chains]
    +x7:161 [in additions.Euclidean_Chains]
    +x7:23 [in additions.Addition_Chains]
    +x7:29 [in additions.Addition_Chains]
    +x80:33 [in additions.Addition_Chains]
    +x87:34 [in additions.Addition_Chains]
    +x8:103 [in additions.Pow]
    +x8:94 [in additions.Pow_variant]
    +x:1 [in hydras.Ackermann.LNN]
    +x:1 [in hydras.Ackermann.LNT]
    +x:1 [in additions.Naive]
    +x:10 [in hydras.solutions_exercises.MinPR2]
    +x:10 [in hydras.Prelude.Iterates]
    +X:10 [in hydras.Prelude.Restriction]
    +x:10 [in hydras.Ackermann.LNN]
    +X:10 [in hydras.Schutte.Lub]
    +x:10 [in hydras.Ackermann.subProp]
    +x:10 [in hydras.Prelude.MoreOrders]
    +x:10 [in additions.Monoid_def]
    +x:10 [in additions.Euclidean_Chains]
    +X:10 [in hydras.Schutte.Schutte_basics]
    +x:10 [in hydras.Ackermann.NN]
    +x:10 [in hydras.solutions_exercises.T1_ltNotWf]
    +x:10 [in hydras.Schutte.Countable]
    +x:100 [in hydras.Ackermann.model]
    +x:100 [in additions.Pow]
    +x:100 [in hydras.Schutte.Ordering_Functions]
    +x:101 [in hydras.Ackermann.model]
    +x:101 [in gaia_hydras.T1Bridge]
    +x:101 [in hydras.Ackermann.cPair]
    +x:1016 [in gaia_hydras.nfwfgaia]
    +x:102 [in hydras.Schutte.Ordering_Functions]
    +x:102 [in hydras.MoreAck.PrimRecExamples]
    +x:102 [in hydras.Prelude.MoreVectors]
    +x:103 [in hydras.Ackermann.fol]
    +x:1038 [in gaia_hydras.nfwfgaia]
    +x:1039 [in gaia_hydras.nfwfgaia]
    +x:104 [in hydras.Schutte.Ordering_Functions]
    +x:1041 [in gaia_hydras.nfwfgaia]
    +x:1043 [in gaia_hydras.nfwfgaia]
    +x:1046 [in gaia_hydras.nfwfgaia]
    +x:105 [in hydras.Prelude.Iterates]
    +x:105 [in hydras.OrdinalNotations.ON_Generic]
    +x:1053 [in gaia_hydras.nfwfgaia]
    +x:1054 [in gaia_hydras.nfwfgaia]
    +x:1055 [in gaia_hydras.nfwfgaia]
    +x:1056 [in gaia_hydras.nfwfgaia]
    +x:1057 [in gaia_hydras.nfwfgaia]
    +x:1058 [in gaia_hydras.nfwfgaia]
    +x:106 [in additions.Euclidean_Chains]
    +x:1061 [in gaia_hydras.nfwfgaia]
    +x:1064 [in gaia_hydras.nfwfgaia]
    +x:1067 [in gaia_hydras.nfwfgaia]
    +x:1068 [in gaia_hydras.nfwfgaia]
    +x:1069 [in gaia_hydras.nfwfgaia]
    +x:107 [in hydras.Prelude.Iterates]
    +x:107 [in additions.Pow]
    +x:107 [in hydras.Ackermann.fol]
    +x:1070 [in gaia_hydras.nfwfgaia]
    +x:1071 [in gaia_hydras.nfwfgaia]
    +x:1072 [in gaia_hydras.nfwfgaia]
    +x:1074 [in gaia_hydras.nfwfgaia]
    +x:1075 [in gaia_hydras.nfwfgaia]
    +x:1084 [in gaia_hydras.nfwfgaia]
    +x:1085 [in gaia_hydras.nfwfgaia]
    +x:1086 [in gaia_hydras.nfwfgaia]
    +x:1087 [in gaia_hydras.nfwfgaia]
    +x:1089 [in gaia_hydras.nfwfgaia]
    +x:109 [in hydras.Prelude.Iterates]
    +x:1091 [in gaia_hydras.nfwfgaia]
    +x:1093 [in gaia_hydras.nfwfgaia]
    +x:1095 [in gaia_hydras.nfwfgaia]
    +x:11 [in hydras.Prelude.Restriction]
    +x:11 [in hydras.Ackermann.LNT]
    +x:11 [in hydras.Prelude.Sort_spec]
    +x:11 [in hydras.Ackermann.PAtheory]
    +x:11 [in additions.Wf_transparent]
    +x:11 [in hydras.Ackermann.cPair]
    +x:11 [in additions.Naive]
    +x:11 [in hydras.Prelude.LibHyps_Experiments]
    +x:11 [in hydras.Ackermann.folLogic3]
    +x:11 [in Goedel.rosser]
    +x:11 [in hydras.Ackermann.Languages]
    +x:1105 [in gaia_hydras.nfwfgaia]
    +x:1108 [in gaia_hydras.nfwfgaia]
    +x:1113 [in gaia_hydras.nfwfgaia]
    +x:1114 [in gaia_hydras.nfwfgaia]
    +x:1119 [in gaia_hydras.nfwfgaia]
    +x:112 [in hydras.rpo.term]
    +x:112 [in hydras.Prelude.Iterates]
    +x:1124 [in gaia_hydras.nfwfgaia]
    +x:1125 [in gaia_hydras.nfwfgaia]
    +x:1128 [in gaia_hydras.nfwfgaia]
    +x:1138 [in gaia_hydras.nfwfgaia]
    +x:1139 [in gaia_hydras.nfwfgaia]
    +x:114 [in additions.AM]
    +x:114 [in hydras.Prelude.Iterates]
    +x:1143 [in gaia_hydras.nfwfgaia]
    +x:115 [in hydras.Prelude.MoreLists]
    +x:115 [in hydras.Ackermann.fol]
    +x:115 [in gaia_hydras.nfwfgaia]
    +x:117 [in hydras.Prelude.Iterates]
    +x:117 [in additions.Euclidean_Chains]
    +x:118 [in hydras.Ackermann.model]
    +x:118 [in hydras.OrdinalNotations.ON_Generic]
    +x:118 [in gaia_hydras.nfwfgaia]
    +x:119 [in hydras.Ackermann.model]
    +x:119 [in gaia_hydras.nfwfgaia]
    +x:1197 [in gaia_hydras.nfwfgaia]
    +x:12 [in additions.Compatibility]
    +x:12 [in hydras.Ackermann.LNN]
    +x:12 [in hydras.Schutte.MoreEpsilonIota]
    +x:12 [in additions.Wf_transparent]
    +x:12 [in hydras.Prelude.MoreDecidable]
    +x:12 [in hydras.Ackermann.folLogic3]
    +x:12 [in hydras.Ackermann.wConsistent]
    +x:12 [in Goedel.rosser]
    +x:12 [in hydras.Schutte.Countable]
    +x:120 [in hydras.Ackermann.model]
    +x:1201 [in gaia_hydras.nfwfgaia]
    +x:1206 [in gaia_hydras.nfwfgaia]
    +x:121 [in hydras.Ackermann.model]
    +x:1217 [in gaia_hydras.nfwfgaia]
    +x:1218 [in gaia_hydras.nfwfgaia]
    +x:122 [in hydras.Ackermann.model]
    +x:122 [in hydras.Ackermann.fol]
    +x:122 [in gaia_hydras.nfwfgaia]
    +x:1220 [in gaia_hydras.nfwfgaia]
    +x:1222 [in gaia_hydras.nfwfgaia]
    +x:1224 [in gaia_hydras.nfwfgaia]
    +x:1229 [in gaia_hydras.nfwfgaia]
    +x:124 [in hydras.Prelude.MoreLists]
    +x:124 [in hydras.Ackermann.model]
    +x:1250 [in gaia_hydras.nfwfgaia]
    +x:1259 [in gaia_hydras.nfwfgaia]
    +x:126 [in Goedel.PRrepresentable]
    +x:126 [in hydras.Prelude.Merge_Sort]
    +x:1262 [in gaia_hydras.nfwfgaia]
    +x:1267 [in gaia_hydras.nfwfgaia]
    +x:1268 [in gaia_hydras.nfwfgaia]
    +x:127 [in hydras.Ackermann.fol]
    +x:128 [in hydras.Prelude.Merge_Sort]
    +x:129 [in additions.AM]
    +X:129 [in hydras.Ackermann.cPair]
    +x:13 [in hydras.Prelude.DecPreOrder_Instances]
    +x:13 [in hydras.Prelude.Iterates]
    +x:13 [in additions.FirstSteps]
    +x:13 [in hydras.Ackermann.LNN]
    +x:13 [in hydras.Ackermann.PAtheory]
    +x:13 [in hydras.Prelude.MoreOrders]
    +x:13 [in hydras.Ackermann.cPair]
    +x:13 [in additions.Euclidean_Chains]
    +x:13 [in additions.Naive]
    +X:130 [in hydras.Schutte.Schutte_basics]
    +x:1311 [in gaia_hydras.nfwfgaia]
    +x:132 [in hydras.Ackermann.primRec]
    +x:132 [in hydras.Ackermann.fol]
    +x:1325 [in gaia_hydras.nfwfgaia]
    +x:134 [in hydras.Prelude.Merge_Sort]
    +x:1342 [in gaia_hydras.nfwfgaia]
    +x:135 [in gaia_hydras.T1Bridge]
    +x:135 [in hydras.Ackermann.fol]
    +x:136 [in hydras.Prelude.Merge_Sort]
    +x:136 [in hydras.Ackermann.fol]
    +x:137 [in hydras.Ackermann.codeFreeVar]
    +x:137 [in gaia_hydras.T1Bridge]
    +X:137 [in hydras.Schutte.Schutte_basics]
    +x:138 [in hydras.Ackermann.codeFreeVar]
    +x:138 [in gaia_hydras.nfwfgaia]
    +x:139 [in hydras.Ackermann.codeFreeVar]
    +x:139 [in gaia_hydras.T1Bridge]
    +x:1394 [in gaia_hydras.nfwfgaia]
    +x:1397 [in gaia_hydras.nfwfgaia]
    +x:14 [in gaia_hydras.T1Choice]
    +x:14 [in additions.AM]
    +x:14 [in additions.Compatibility]
    +x:14 [in Goedel.rosserPA]
    +x:14 [in additions.Monoid_def]
    +x:14 [in gaia_hydras.ON_gfinite]
    +x:14 [in hydras.Ackermann.Deduction]
    +X:14 [in hydras.Schutte.Schutte_basics]
    +x:14 [in gaia_hydras.onType]
    +x:14 [in hydras.Ackermann.NN]
    +x:14 [in hydras.Schutte.Countable]
    +x:140 [in hydras.Ackermann.codeFreeVar]
    +x:140 [in hydras.Prelude.Merge_Sort]
    +x:140 [in hydras.Schutte.Schutte_basics]
    +x:140 [in gaia_hydras.nfwfgaia]
    +x:1405 [in gaia_hydras.nfwfgaia]
    +x:1409 [in hydras.Ackermann.codeSubFormula]
    +x:1409 [in gaia_hydras.nfwfgaia]
    +x:141 [in hydras.Ackermann.codeFreeVar]
    +X:141 [in hydras.Schutte.Schutte_basics]
    +x:141 [in gaia_hydras.nfwfgaia]
    +x:1411 [in gaia_hydras.nfwfgaia]
    +x:1414 [in hydras.Ackermann.codeSubFormula]
    +x:1414 [in gaia_hydras.nfwfgaia]
    +x:1416 [in hydras.Ackermann.codeSubFormula]
    +x:142 [in hydras.Ackermann.codeFreeVar]
    +x:142 [in gaia_hydras.nfwfgaia]
    +x:1421 [in hydras.Ackermann.codeSubFormula]
    +x:1426 [in hydras.Ackermann.codeSubFormula]
    +x:143 [in hydras.Ackermann.codeFreeVar]
    +x:1438 [in gaia_hydras.nfwfgaia]
    +x:1439 [in gaia_hydras.nfwfgaia]
    +x:144 [in hydras.Ackermann.codeFreeVar]
    +x:144 [in hydras.Prelude.Merge_Sort]
    +x:144 [in additions.Euclidean_Chains]
    +X:144 [in hydras.Schutte.Schutte_basics]
    +x:144 [in hydras.OrdinalNotations.ON_Generic]
    +x:1440 [in gaia_hydras.nfwfgaia]
    +x:145 [in hydras.Ackermann.codeFreeVar]
    +x:1451 [in gaia_hydras.nfwfgaia]
    +x:1452 [in gaia_hydras.nfwfgaia]
    +x:1453 [in gaia_hydras.nfwfgaia]
    +x:1454 [in gaia_hydras.nfwfgaia]
    +x:1455 [in gaia_hydras.nfwfgaia]
    +x:146 [in hydras.Ackermann.codeFreeVar]
    +x:146 [in gaia_hydras.T1Bridge]
    +X:146 [in hydras.Schutte.Schutte_basics]
    +x:1467 [in gaia_hydras.nfwfgaia]
    +x:147 [in hydras.Prelude.MoreLists]
    +x:148 [in hydras.Prelude.Merge_Sort]
    +x:148 [in gaia_hydras.T1Bridge]
    +x:148 [in hydras.Ackermann.cPair]
    +X:148 [in hydras.Schutte.Schutte_basics]
    +x:148 [in gaia_hydras.nfwfgaia]
    +x:1486 [in gaia_hydras.nfwfgaia]
    +x:149 [in hydras.Epsilon0.Paths]
    +x:15 [in hydras.Prelude.Iterates]
    +x:15 [in additions.Compatibility]
    +x:15 [in additions.Pow_variant]
    +x:15 [in additions.Pow]
    +x:15 [in hydras.Ackermann.PAtheory]
    +x:15 [in hydras.MoreAck.AckNotPR]
    +x:15 [in hydras.Ackermann.subProp]
    +x:15 [in Goedel.rosserPA]
    +x:15 [in hydras.Ackermann.cPair]
    +x:15 [in gaia_hydras.ON_gfinite]
    +X:15 [in hydras.Schutte.Well_Orders]
    +x:15 [in additions.Addition_Chains]
    +x:15 [in Goedel.rosser]
    +x:150 [in gaia_hydras.nfwfgaia]
    +x:151 [in gaia_hydras.nfwfgaia]
    +x:152 [in hydras.Prelude.Merge_Sort]
    +x:152 [in hydras.Ackermann.cPair]
    +x:152 [in additions.Euclidean_Chains]
    +x:152 [in hydras.Schutte.Schutte_basics]
    +x:152 [in hydras.Epsilon0.Paths]
    +x:153 [in hydras.Schutte.Schutte_basics]
    +x:1539 [in gaia_hydras.nfwfgaia]
    +x:154 [in hydras.Prelude.Merge_Sort]
    +x:154 [in hydras.Schutte.Schutte_basics]
    +x:154 [in hydras.Epsilon0.Paths]
    +X:155 [in hydras.Prelude.MoreLists]
    +X:155 [in hydras.Schutte.Schutte_basics]
    +x:156 [in hydras.Ackermann.folProp]
    +x:1567 [in gaia_hydras.nfwfgaia]
    +x:157 [in additions.Euclidean_Chains]
    +x:157 [in hydras.Schutte.Schutte_basics]
    +x:157 [in hydras.OrdinalNotations.ON_Generic]
    +x:1570 [in hydras.Ackermann.codeSubFormula]
    +x:1571 [in gaia_hydras.nfwfgaia]
    +x:1572 [in hydras.Ackermann.codeSubFormula]
    +x:1574 [in hydras.Ackermann.codeSubFormula]
    +x:1576 [in hydras.Ackermann.codeSubFormula]
    +x:1578 [in hydras.Ackermann.codeSubFormula]
    +X:158 [in hydras.Prelude.MoreLists]
    +x:158 [in hydras.Ackermann.folProp]
    +x:1580 [in hydras.Ackermann.codeSubFormula]
    +x:1582 [in hydras.Ackermann.codeSubFormula]
    +x:1584 [in hydras.Ackermann.codeSubFormula]
    +x:1586 [in hydras.Ackermann.codeSubFormula]
    +x:1588 [in hydras.Ackermann.codeSubFormula]
    +x:159 [in hydras.Prelude.Merge_Sort]
    +X:159 [in hydras.Schutte.Schutte_basics]
    +x:1590 [in hydras.Ackermann.codeSubFormula]
    +x:1592 [in hydras.Ackermann.codeSubFormula]
    +x:1594 [in gaia_hydras.nfwfgaia]
    +x:1597 [in gaia_hydras.nfwfgaia]
    +x:16 [in gaia_hydras.T1Choice]
    +x:16 [in hydras.Prelude.Iterates]
    +x:16 [in hydras.Ackermann.PAtheory]
    +x:16 [in hydras.Schutte.Critical]
    +x:16 [in gaia_hydras.T1Bridge]
    +x:16 [in additions.Monoid_def]
    +x:16 [in hydras.Prelude.STDPP_compat]
    +x:16 [in Goedel.goedel1]
    +x:16 [in hydras.Ackermann.NN]
    +x:16 [in hydras.Schutte.Countable]
    +x:160 [in hydras.Ackermann.folProp]
    +x:1600 [in gaia_hydras.nfwfgaia]
    +x:161 [in Goedel.PRrepresentable]
    +X:161 [in hydras.Prelude.MoreLists]
    +X:161 [in hydras.Schutte.Schutte_basics]
    +x:162 [in hydras.Ackermann.folProp]
    +x:162 [in hydras.Ackermann.cPair]
    +x:162 [in gaia_hydras.nfwfgaia]
    +x:163 [in Goedel.PRrepresentable]
    +x:163 [in hydras.Prelude.Merge_Sort]
    +x:163 [in hydras.Ackermann.cPair]
    +x:163 [in hydras.Schutte.Schutte_basics]
    +x:163 [in gaia_hydras.nfwfgaia]
    +x:163 [in hydras.Ackermann.codePA]
    +x:164 [in Goedel.PRrepresentable]
    +x:164 [in hydras.Ackermann.folProp]
    +x:164 [in hydras.Schutte.Schutte_basics]
    +x:164 [in gaia_hydras.nfwfgaia]
    +x:164 [in hydras.Ackermann.codePA]
    +x:165 [in hydras.Schutte.Schutte_basics]
    +x:165 [in gaia_hydras.nfwfgaia]
    +x:1655 [in gaia_hydras.nfwfgaia]
    +x:1656 [in gaia_hydras.nfwfgaia]
    +x:1658 [in gaia_hydras.nfwfgaia]
    +x:166 [in Goedel.PRrepresentable]
    +x:166 [in hydras.Ackermann.folProp]
    +x:166 [in gaia_hydras.nfwfgaia]
    +x:1663 [in gaia_hydras.nfwfgaia]
    +x:1666 [in gaia_hydras.nfwfgaia]
    +x:1668 [in gaia_hydras.nfwfgaia]
    +x:167 [in Goedel.PRrepresentable]
    +x:167 [in hydras.Prelude.Merge_Sort]
    +x:167 [in gaia_hydras.nfwfgaia]
    +x:1679 [in gaia_hydras.nfwfgaia]
    +x:168 [in Goedel.PRrepresentable]
    +x:168 [in hydras.Prelude.MoreLists]
    +x:168 [in hydras.Ackermann.folProp]
    +X:168 [in hydras.Schutte.Schutte_basics]
    +x:1681 [in gaia_hydras.nfwfgaia]
    +x:1682 [in gaia_hydras.nfwfgaia]
    +x:1683 [in gaia_hydras.nfwfgaia]
    +x:1684 [in gaia_hydras.nfwfgaia]
    +x:1697 [in gaia_hydras.nfwfgaia]
    +x:1698 [in gaia_hydras.nfwfgaia]
    +x:17 [in additions.FirstSteps]
    +x:17 [in hydras.Ackermann.PA]
    +x:17 [in hydras.Ackermann.cPair]
    +x:17 [in gaia_hydras.ON_gfinite]
    +x:17 [in hydras.Ackermann.Deduction]
    +x:17 [in hydras.Ackermann.NNtheory]
    +x:17 [in hydras.OrdinalNotations.ON_Generic]
    +x:17 [in gaia_hydras.onType]
    +x:17 [in hydras.Ackermann.folLogic3]
    +x:17 [in Goedel.goedel1]
    +x:170 [in hydras.Schutte.Schutte_basics]
    +x:1701 [in gaia_hydras.nfwfgaia]
    +x:1704 [in gaia_hydras.nfwfgaia]
    +x:1707 [in gaia_hydras.nfwfgaia]
    +x:1708 [in gaia_hydras.nfwfgaia]
    +x:1709 [in gaia_hydras.nfwfgaia]
    +x:171 [in Goedel.PRrepresentable]
    +x:171 [in hydras.Ackermann.codeFreeVar]
    +x:171 [in hydras.Schutte.Schutte_basics]
    +x:1710 [in gaia_hydras.nfwfgaia]
    +x:1711 [in gaia_hydras.nfwfgaia]
    +x:1712 [in gaia_hydras.nfwfgaia]
    +x:1715 [in gaia_hydras.nfwfgaia]
    +x:1716 [in gaia_hydras.nfwfgaia]
    +x:172 [in hydras.Ackermann.codeFreeVar]
    +x:172 [in hydras.Schutte.Schutte_basics]
    +x:1723 [in gaia_hydras.nfwfgaia]
    +x:1724 [in gaia_hydras.nfwfgaia]
    +x:1725 [in gaia_hydras.nfwfgaia]
    +x:1726 [in gaia_hydras.nfwfgaia]
    +x:1728 [in gaia_hydras.nfwfgaia]
    +x:173 [in Goedel.PRrepresentable]
    +x:1730 [in gaia_hydras.nfwfgaia]
    +x:1732 [in gaia_hydras.nfwfgaia]
    +x:1734 [in gaia_hydras.nfwfgaia]
    +x:1744 [in gaia_hydras.nfwfgaia]
    +x:1748 [in gaia_hydras.nfwfgaia]
    +x:175 [in Goedel.PRrepresentable]
    +x:175 [in additions.Euclidean_Chains]
    +x:1755 [in gaia_hydras.nfwfgaia]
    +x:1756 [in gaia_hydras.nfwfgaia]
    +x:1761 [in gaia_hydras.nfwfgaia]
    +x:1766 [in gaia_hydras.nfwfgaia]
    +x:1767 [in gaia_hydras.nfwfgaia]
    +x:177 [in Goedel.PRrepresentable]
    +x:177 [in hydras.Prelude.Iterates]
    +x:177 [in hydras.Ackermann.fol]
    +x:1770 [in gaia_hydras.nfwfgaia]
    +x:178 [in hydras.Ackermann.subAll]
    +x:1780 [in gaia_hydras.nfwfgaia]
    +x:1781 [in gaia_hydras.nfwfgaia]
    +x:1787 [in gaia_hydras.nfwfgaia]
    +x:179 [in Goedel.PRrepresentable]
    +x:179 [in hydras.Ackermann.fol]
    +x:1790 [in gaia_hydras.nfwfgaia]
    +x:18 [in gaia_hydras.T1Choice]
    +x:18 [in hydras.solutions_exercises.MinPR2]
    +x:18 [in additions.Euclidean_Chains]
    +x:18 [in hydras.Ackermann.Deduction]
    +x:18 [in hydras.Schutte.PartialFun]
    +x:18 [in hydras.Prelude.MoreDecidable]
    +x:18 [in hydras.Ackermann.NN]
    +x:18 [in hydras.Schutte.Countable]
    +X:18 [in hydras.Prelude.MoreVectors]
    +x:180 [in hydras.Prelude.Iterates]
    +x:180 [in hydras.Ackermann.fol]
    +x:181 [in Goedel.PRrepresentable]
    +x:181 [in hydras.Ackermann.subAll]
    +x:181 [in hydras.Prelude.Iterates]
    +x:181 [in hydras.Ackermann.fol]
    +X:182 [in hydras.Prelude.MoreLists]
    +x:183 [in Goedel.PRrepresentable]
    +x:183 [in hydras.Prelude.Iterates]
    +x:183 [in hydras.OrdinalNotations.ON_Generic]
    +x:184 [in hydras.Ackermann.subAll]
    +x:184 [in hydras.Ackermann.folProp]
    +x:1846 [in gaia_hydras.nfwfgaia]
    +x:185 [in Goedel.PRrepresentable]
    +x:185 [in hydras.Ackermann.codeFreeVar]
    +x:186 [in hydras.Ackermann.codeFreeVar]
    +X:186 [in hydras.Prelude.MoreLists]
    +x:187 [in Goedel.PRrepresentable]
    +x:187 [in hydras.Ackermann.subAll]
    +x:1873 [in gaia_hydras.nfwfgaia]
    +x:188 [in hydras.Ackermann.model]
    +x:1882 [in gaia_hydras.nfwfgaia]
    +x:189 [in Goedel.PRrepresentable]
    +x:189 [in hydras.Prelude.Iterates]
    +x:189 [in hydras.Prelude.MoreLists]
    +x:1890 [in gaia_hydras.nfwfgaia]
    +x:1891 [in gaia_hydras.nfwfgaia]
    +x:1892 [in gaia_hydras.nfwfgaia]
    +x:1896 [in gaia_hydras.nfwfgaia]
    +x:1899 [in gaia_hydras.nfwfgaia]
    +x:19 [in additions.Compatibility]
    +x:19 [in hydras.Prelude.Restriction]
    +x:19 [in hydras.Schutte.GRelations]
    +x:19 [in hydras.solutions_exercises.MorePRExamples]
    +x:19 [in hydras.Prelude.MoreOrders]
    +x:19 [in hydras.Ackermann.Deduction]
    +x:19 [in hydras.Ackermann.folLogic3]
    +x:19 [in additions.Addition_Chains]
    +x:19 [in hydras.Ackermann.NN]
    +x:190 [in hydras.Ackermann.subAll]
    +x:190 [in hydras.Prelude.MoreLists]
    +x:190 [in hydras.Ackermann.model]
    +x:1904 [in gaia_hydras.nfwfgaia]
    +x:1908 [in gaia_hydras.nfwfgaia]
    +x:191 [in Goedel.PRrepresentable]
    +x:191 [in hydras.Ackermann.subAll]
    +x:1913 [in gaia_hydras.nfwfgaia]
    +x:1917 [in gaia_hydras.nfwfgaia]
    +x:192 [in hydras.Ackermann.subAll]
    +x:1922 [in gaia_hydras.nfwfgaia]
    +x:1928 [in gaia_hydras.nfwfgaia]
    +x:193 [in hydras.rpo.term]
    +x:193 [in Goedel.PRrepresentable]
    +x:193 [in hydras.Ackermann.subAll]
    +x:193 [in hydras.Prelude.MoreLists]
    +x:1934 [in gaia_hydras.nfwfgaia]
    +x:1938 [in gaia_hydras.nfwfgaia]
    +x:194 [in hydras.Ackermann.subAll]
    +x:194 [in additions.Addition_Chains]
    +x:1943 [in gaia_hydras.nfwfgaia]
    +x:1948 [in gaia_hydras.nfwfgaia]
    +x:195 [in Goedel.PRrepresentable]
    +x:195 [in hydras.Ackermann.subAll]
    +x:1954 [in gaia_hydras.nfwfgaia]
    +x:196 [in hydras.Ackermann.subAll]
    +x:196 [in hydras.Prelude.Iterates]
    +x:196 [in hydras.OrdinalNotations.ON_Generic]
    +x:1960 [in gaia_hydras.nfwfgaia]
    +x:197 [in Goedel.PRrepresentable]
    +x:197 [in additions.Addition_Chains]
    +x:1972 [in gaia_hydras.nfwfgaia]
    +x:1978 [in gaia_hydras.nfwfgaia]
    +x:198 [in hydras.Ackermann.subAll]
    +x:1983 [in gaia_hydras.nfwfgaia]
    +x:1988 [in gaia_hydras.nfwfgaia]
    +x:199 [in Goedel.PRrepresentable]
    +x:199 [in hydras.Ackermann.codeFreeVar]
    +x:1994 [in gaia_hydras.nfwfgaia]
    +x:1999 [in gaia_hydras.nfwfgaia]
    +x:2 [in hydras.MoreAck.AckNotPR]
    +x:2 [in Goedel.rosserPA]
    +X:2 [in hydras.Ackermann.Deduction]
    +x:2 [in hydras.Prelude.MoreDecidable]
    +x:20 [in hydras.Prelude.DecPreOrder_Instances]
    +x:20 [in hydras.Prelude.Iterates]
    +x:20 [in hydras.Ackermann.subProp]
    +x:20 [in gaia_hydras.T1Bridge]
    +x:20 [in hydras.Ackermann.Deduction]
    +X:20 [in hydras.Schutte.Schutte_basics]
    +x:200 [in hydras.Ackermann.subAll]
    +x:200 [in hydras.Ackermann.codeFreeVar]
    +x:200 [in gaia_hydras.nfwfgaia]
    +x:201 [in Goedel.PRrepresentable]
    +x:201 [in hydras.Ackermann.subAll]
    +x:201 [in additions.Euclidean_Chains]
    +x:2010 [in gaia_hydras.nfwfgaia]
    +x:2016 [in gaia_hydras.nfwfgaia]
    +x:2017 [in gaia_hydras.nfwfgaia]
    +x:2018 [in gaia_hydras.nfwfgaia]
    +x:202 [in hydras.Ackermann.subAll]
    +x:202 [in hydras.Prelude.Iterates]
    +x:2020 [in gaia_hydras.nfwfgaia]
    +x:203 [in Goedel.PRrepresentable]
    +x:203 [in hydras.Ackermann.subAll]
    +x:203 [in hydras.Prelude.Iterates]
    +x:2033 [in gaia_hydras.nfwfgaia]
    +x:2034 [in gaia_hydras.nfwfgaia]
    +x:2035 [in gaia_hydras.nfwfgaia]
    +x:204 [in hydras.Ackermann.subAll]
    +x:204 [in hydras.Prelude.MoreLists]
    +x:2040 [in gaia_hydras.nfwfgaia]
    +x:2045 [in gaia_hydras.nfwfgaia]
    +x:205 [in Goedel.PRrepresentable]
    +x:205 [in hydras.Ackermann.subAll]
    +x:2057 [in gaia_hydras.nfwfgaia]
    +x:2058 [in gaia_hydras.nfwfgaia]
    +x:206 [in hydras.Ackermann.subAll]
    +x:206 [in hydras.Prelude.Iterates]
    +x:2068 [in gaia_hydras.nfwfgaia]
    +x:207 [in Goedel.PRrepresentable]
    +x:2076 [in gaia_hydras.nfwfgaia]
    +x:208 [in hydras.Prelude.Iterates]
    +x:208 [in hydras.Prelude.MoreLists]
    +x:2081 [in gaia_hydras.nfwfgaia]
    +x:2089 [in gaia_hydras.nfwfgaia]
    +x:209 [in Goedel.PRrepresentable]
    +x:2095 [in gaia_hydras.nfwfgaia]
    +x:2096 [in gaia_hydras.nfwfgaia]
    +x:2098 [in gaia_hydras.nfwfgaia]
    +x:21 [in additions.AM]
    +x:21 [in additions.Pow_variant]
    +x:21 [in additions.Pow]
    +x:21 [in hydras.Ackermann.Deduction]
    +x:21 [in hydras.Schutte.Schutte_basics]
    +x:21 [in hydras.OrdinalNotations.ON_Generic]
    +x:21 [in hydras.Ackermann.folLogic3]
    +x:21 [in hydras.MoreAck.FolExamples]
    +x:2100 [in gaia_hydras.nfwfgaia]
    +x:2103 [in gaia_hydras.nfwfgaia]
    +x:2104 [in gaia_hydras.nfwfgaia]
    +x:2106 [in gaia_hydras.nfwfgaia]
    +x:211 [in Goedel.PRrepresentable]
    +x:213 [in Goedel.PRrepresentable]
    +x:214 [in hydras.Prelude.MoreLists]
    +x:214 [in hydras.Ackermann.model]
    +x:214 [in additions.Euclidean_Chains]
    +x:215 [in Goedel.PRrepresentable]
    +x:216 [in hydras.Ackermann.model]
    +x:216 [in additions.Euclidean_Chains]
    +X:216 [in hydras.Schutte.Schutte_basics]
    +x:217 [in Goedel.PRrepresentable]
    +x:217 [in hydras.Ackermann.cPair]
    +x:218 [in hydras.Prelude.Merge_Sort]
    +x:218 [in hydras.Schutte.Schutte_basics]
    +x:219 [in Goedel.PRrepresentable]
    +x:219 [in hydras.Ackermann.cPair]
    +x:22 [in hydras.Prelude.DecPreOrder_Instances]
    +x:22 [in hydras.Prelude.Iterates]
    +x:22 [in hydras.Prelude.MoreLists]
    +x:22 [in additions.Compatibility]
    +x:22 [in hydras.Prelude.Restriction]
    +x:22 [in Goedel.rosserPA]
    +x:22 [in hydras.Ackermann.fol]
    +x:22 [in hydras.Schutte.Well_Orders]
    +x:22 [in hydras.Ackermann.folLogic3]
    +x:22 [in hydras.Schutte.Ordering_Functions]
    +x:22 [in Goedel.rosser]
    +x:22 [in hydras.Schutte.Countable]
    +x:220 [in hydras.Prelude.Merge_Sort]
    +x:220 [in hydras.Schutte.Schutte_basics]
    +x:221 [in Goedel.PRrepresentable]
    +x:221 [in hydras.Prelude.Iterates]
    +x:222 [in hydras.Prelude.Merge_Sort]
    +x:222 [in hydras.Schutte.Schutte_basics]
    +x:223 [in hydras.Ackermann.cPair]
    +x:223 [in hydras.Schutte.Schutte_basics]
    +x:224 [in hydras.Prelude.Iterates]
    +x:224 [in hydras.Prelude.Merge_Sort]
    +x:225 [in Goedel.PRrepresentable]
    +x:225 [in hydras.Prelude.Iterates]
    +x:225 [in hydras.Schutte.Schutte_basics]
    +x:226 [in hydras.Prelude.Merge_Sort]
    +x:227 [in hydras.Ackermann.cPair]
    +X:227 [in hydras.Schutte.Schutte_basics]
    +x:228 [in hydras.Prelude.Iterates]
    +x:228 [in hydras.Prelude.Merge_Sort]
    +X:228 [in hydras.Schutte.Schutte_basics]
    +x:229 [in hydras.Ackermann.codePA]
    +x:23 [in hydras.Ackermann.folProp]
    +x:23 [in gaia_hydras.T1Bridge]
    +x:23 [in Goedel.rosserPA]
    +x:23 [in additions.Euclidean_Chains]
    +x:23 [in hydras.OrdinalNotations.ON_Generic]
    +x:23 [in hydras.Ackermann.NN]
    +x:23 [in hydras.MoreAck.FolExamples]
    +x:230 [in hydras.Prelude.Merge_Sort]
    +x:230 [in hydras.Ackermann.codePA]
    +x:231 [in hydras.Ackermann.cPair]
    +x:232 [in Goedel.PRrepresentable]
    +x:232 [in hydras.Prelude.Merge_Sort]
    +x:234 [in hydras.Prelude.Merge_Sort]
    +x:235 [in additions.AM]
    +x:235 [in hydras.Ackermann.folProp]
    +x:236 [in hydras.Prelude.Merge_Sort]
    +x:237 [in hydras.Ackermann.folProp]
    +x:238 [in hydras.Prelude.Merge_Sort]
    +x:239 [in hydras.Ackermann.folProp]
    +x:24 [in additions.Compatibility]
    +x:24 [in hydras.Prelude.Sort_spec]
    +x:24 [in hydras.Ackermann.subProp]
    +x:24 [in hydras.Schutte.Countable]
    +x:241 [in hydras.Ackermann.folProp]
    +x:242 [in additions.AM]
    +x:243 [in hydras.Ackermann.folProp]
    +x:245 [in hydras.Ackermann.subAll]
    +x:245 [in hydras.Ackermann.folProp]
    +x:245 [in additions.Addition_Chains]
    +x:246 [in hydras.Ackermann.subAll]
    +x:247 [in hydras.Ackermann.folProp]
    +x:248 [in hydras.Ackermann.cPair]
    +x:248 [in additions.Addition_Chains]
    +x:249 [in Goedel.PRrepresentable]
    +x:25 [in hydras.Prelude.Restriction]
    +x:25 [in Goedel.fixPoint]
    +x:25 [in hydras.Ackermann.cPair]
    +x:25 [in hydras.Schutte.Well_Orders]
    +x:25 [in additions.Addition_Chains]
    +x:25 [in hydras.Ackermann.NN]
    +x:25 [in hydras.MoreAck.FolExamples]
    +x:250 [in hydras.Ackermann.cPair]
    +x:250 [in gaia_hydras.nfwfgaia]
    +x:251 [in Goedel.PRrepresentable]
    +x:251 [in additions.Addition_Chains]
    +x:253 [in Goedel.PRrepresentable]
    +x:254 [in hydras.Ackermann.cPair]
    +x:255 [in Goedel.PRrepresentable]
    +x:256 [in hydras.Ackermann.cPair]
    +x:257 [in Goedel.PRrepresentable]
    +x:258 [in hydras.Ackermann.cPair]
    +x:258 [in additions.Addition_Chains]
    +x:259 [in Goedel.PRrepresentable]
    +x:259 [in hydras.Ackermann.subAll]
    +x:259 [in additions.Addition_Chains]
    +x:26 [in hydras.Ackermann.folProp]
    +x:26 [in hydras.MoreAck.AckNotPR]
    +x:26 [in hydras.Schutte.Critical]
    +x:26 [in hydras.Epsilon0.F_omega]
    +x:26 [in hydras.Prelude.MoreOrders]
    +x:26 [in Goedel.rosserPA]
    +x:26 [in hydras.OrdinalNotations.ON_Finite]
    +x:26 [in Goedel.rosser]
    +x:260 [in hydras.Ackermann.subAll]
    +x:261 [in hydras.Ackermann.subAll]
    +x:261 [in hydras.Ackermann.cPair]
    +x:261 [in additions.Addition_Chains]
    +x:262 [in hydras.Ackermann.subAll]
    +x:263 [in hydras.Ackermann.subAll]
    +x:263 [in hydras.Ackermann.folProp]
    +x:264 [in Goedel.PRrepresentable]
    +x:266 [in hydras.Ackermann.subAll]
    +x:267 [in hydras.Ackermann.subAll]
    +x:268 [in Goedel.PRrepresentable]
    +x:268 [in hydras.Ackermann.subAll]
    +x:269 [in hydras.Ackermann.subAll]
    +x:27 [in hydras.Prelude.MoreLists]
    +x:27 [in hydras.Prelude.Sort_spec]
    +x:27 [in additions.More_on_positive]
    +x:27 [in gaia_hydras.T1Bridge]
    +x:27 [in hydras.Ackermann.cPair]
    +x:27 [in hydras.Ackermann.fol]
    +x:27 [in hydras.Ackermann.NN]
    +x:270 [in hydras.Ackermann.subAll]
    +X:270 [in additions.Euclidean_Chains]
    +x:270 [in gaia_hydras.nfwfgaia]
    +x:271 [in hydras.Ackermann.subAll]
    +x:271 [in gaia_hydras.nfwfgaia]
    +x:272 [in hydras.Ackermann.subAll]
    +x:272 [in additions.Addition_Chains]
    +x:273 [in hydras.Ackermann.subAll]
    +x:274 [in hydras.Ackermann.subAll]
    +x:274 [in additions.Addition_Chains]
    +x:275 [in Goedel.PRrepresentable]
    +x:275 [in hydras.Ackermann.subAll]
    +x:276 [in hydras.Ackermann.subAll]
    +X:276 [in additions.Euclidean_Chains]
    +x:276 [in gaia_hydras.nfwfgaia]
    +x:277 [in hydras.Ackermann.subAll]
    +x:278 [in hydras.Ackermann.subAll]
    +x:279 [in hydras.Ackermann.subAll]
    +x:28 [in additions.Pow_variant]
    +x:28 [in additions.Pow]
    +x:28 [in hydras.Ackermann.subProp]
    +x:28 [in hydras.Ackermann.PA]
    +x:28 [in additions.Monoid_def]
    +X:28 [in hydras.Schutte.Schutte_basics]
    +x:28 [in hydras.OrdinalNotations.ON_Generic]
    +x:28 [in hydras.Schutte.Well_Orders]
    +x:28 [in hydras.Ackermann.NN]
    +x:280 [in hydras.Ackermann.subAll]
    +x:280 [in hydras.Ackermann.folProp]
    +x:281 [in hydras.Ackermann.subAll]
    +x:281 [in gaia_hydras.nfwfgaia]
    +x:284 [in hydras.Ackermann.folProp]
    +x:285 [in gaia_hydras.nfwfgaia]
    +x:286 [in hydras.Ackermann.folProp]
    +x:287 [in gaia_hydras.nfwfgaia]
    +x:288 [in hydras.Ackermann.folProp]
    +x:288 [in hydras.Ackermann.fol]
    +x:289 [in hydras.Ackermann.fol]
    +x:29 [in Goedel.fixPoint]
    +x:29 [in hydras.Ackermann.folProp]
    +x:29 [in additions.More_on_positive]
    +x:29 [in hydras.MoreAck.AckNotPR]
    +x:29 [in hydras.Epsilon0.Large_Sets]
    +x:29 [in hydras.Schutte.Critical]
    +x:29 [in hydras.Epsilon0.F_omega]
    +x:29 [in hydras.Ackermann.cPair]
    +x:29 [in hydras.Ackermann.fol]
    +X:29 [in hydras.Prelude.MoreVectors]
    +x:290 [in hydras.rpo.term]
    +x:290 [in hydras.Ackermann.folProp]
    +x:292 [in hydras.Ackermann.subAll]
    +x:292 [in hydras.Ackermann.folProp]
    +x:293 [in hydras.Ackermann.subAll]
    +x:293 [in additions.Addition_Chains]
    +x:294 [in hydras.Ackermann.folProp]
    +x:297 [in gaia_hydras.nfwfgaia]
    +x:3 [in Goedel.PRrepresentable]
    +x:3 [in hydras.Ackermann.PAconsistent]
    +x:3 [in hydras.Ackermann.LNN]
    +x:3 [in hydras.Ackermann.LNT]
    +x:3 [in hydras.MoreAck.Iterate_compat]
    +x:30 [in Goedel.PRrepresentable]
    +x:30 [in hydras.Prelude.Restriction]
    +x:30 [in hydras.Ackermann.folProp]
    +x:30 [in gaia_hydras.T1Bridge]
    +x:30 [in hydras.Ackermann.PA]
    +x:30 [in additions.Monoid_instances]
    +X:30 [in hydras.Schutte.Schutte_basics]
    +x:300 [in gaia_hydras.nfwfgaia]
    +x:301 [in Goedel.PRrepresentable]
    +x:301 [in hydras.Ackermann.subAll]
    +x:302 [in hydras.Ackermann.subAll]
    +x:302 [in gaia_hydras.nfwfgaia]
    +x:303 [in hydras.Ackermann.subAll]
    +x:304 [in hydras.Ackermann.subAll]
    +x:305 [in hydras.Ackermann.subAll]
    +x:306 [in hydras.Ackermann.subAll]
    +x:307 [in hydras.Ackermann.subAll]
    +x:308 [in hydras.Ackermann.subAll]
    +x:309 [in hydras.Ackermann.subAll]
    +x:31 [in hydras.Schutte.Critical]
    +x:31 [in hydras.solutions_exercises.MultisetWf]
    +x:31 [in hydras.Epsilon0.F_omega]
    +x:31 [in hydras.Ackermann.cPair]
    +x:31 [in hydras.Schutte.Well_Orders]
    +x:310 [in hydras.Ackermann.subAll]
    +x:311 [in hydras.Ackermann.subAll]
    +x:311 [in gaia_hydras.nfwfgaia]
    +x:312 [in hydras.Ackermann.subAll]
    +x:313 [in hydras.Ackermann.subAll]
    +x:314 [in gaia_hydras.nfwfgaia]
    +x:315 [in gaia_hydras.nfwfgaia]
    +x:316 [in gaia_hydras.nfwfgaia]
    +x:317 [in gaia_hydras.nfwfgaia]
    +x:318 [in hydras.Ackermann.subAll]
    +x:318 [in gaia_hydras.nfwfgaia]
    +x:319 [in gaia_hydras.nfwfgaia]
    +x:32 [in hydras.Ackermann.folLogic2]
    +x:32 [in hydras.Ackermann.PA]
    +x:32 [in hydras.Prelude.MoreOrders]
    +x:32 [in additions.Monoid_def]
    +x:32 [in additions.Monoid_instances]
    +x:32 [in additions.fib]
    +x:32 [in hydras.Ackermann.NN]
    +x:320 [in gaia_hydras.nfwfgaia]
    +x:322 [in gaia_hydras.nfwfgaia]
    +x:323 [in hydras.Ackermann.subAll]
    +x:324 [in hydras.Ackermann.subAll]
    +x:324 [in gaia_hydras.nfwfgaia]
    +x:325 [in hydras.Ackermann.subAll]
    +x:326 [in hydras.Ackermann.subAll]
    +x:327 [in hydras.Ackermann.subAll]
    +x:328 [in hydras.Ackermann.subAll]
    +x:329 [in gaia_hydras.nfwfgaia]
    +x:33 [in hydras.Ackermann.subProp]
    +x:33 [in hydras.Epsilon0.F_omega]
    +x:33 [in hydras.Ackermann.PA]
    +x:33 [in Goedel.rosserPA]
    +x:33 [in hydras.Ackermann.fol]
    +x:33 [in additions.fib]
    +X:33 [in hydras.Schutte.Well_Orders]
    +x:33 [in Goedel.rosser]
    +x:330 [in hydras.Ackermann.subAll]
    +x:330 [in gaia_hydras.nfwfgaia]
    +x:332 [in gaia_hydras.nfwfgaia]
    +x:333 [in hydras.Ackermann.subAll]
    +x:333 [in hydras.Ackermann.fol]
    +x:334 [in hydras.Ackermann.fol]
    +x:335 [in hydras.Ackermann.fol]
    +x:339 [in gaia_hydras.nfwfgaia]
    +x:34 [in Goedel.PRrepresentable]
    +x:34 [in additions.Pow_variant]
    +x:34 [in additions.Pow]
    +x:34 [in hydras.Epsilon0.Large_Sets]
    +x:34 [in hydras.Schutte.Critical]
    +x:34 [in additions.Monoid_def]
    +x:34 [in additions.Monoid_instances]
    +x:34 [in hydras.Ackermann.NN]
    +x:34 [in Goedel.rosser]
    +x:34 [in gaia_hydras.nfwfgaia]
    +x:341 [in gaia_hydras.nfwfgaia]
    +x:342 [in gaia_hydras.nfwfgaia]
    +x:343 [in gaia_hydras.nfwfgaia]
    +x:345 [in gaia_hydras.nfwfgaia]
    +x:346 [in hydras.Ackermann.primRec]
    +x:347 [in gaia_hydras.nfwfgaia]
    +x:349 [in gaia_hydras.nfwfgaia]
    +x:35 [in hydras.Prelude.Sort_spec]
    +x:35 [in hydras.Epsilon0.F_omega]
    +x:35 [in hydras.Prelude.MoreOrders]
    +x:350 [in hydras.Ackermann.primRec]
    +x:351 [in gaia_hydras.nfwfgaia]
    +x:354 [in hydras.Ackermann.subAll]
    +x:355 [in hydras.Ackermann.subAll]
    +x:355 [in hydras.Ackermann.primRec]
    +x:358 [in hydras.Ackermann.primRec]
    +x:36 [in hydras.Ackermann.folLogic2]
    +x:36 [in hydras.Schutte.Critical]
    +x:36 [in hydras.Ackermann.fol]
    +X:36 [in hydras.Schutte.Well_Orders]
    +x:36 [in hydras.Ackermann.NN]
    +x:360 [in hydras.Ackermann.subAll]
    +x:361 [in hydras.Ackermann.subAll]
    +x:362 [in hydras.Ackermann.subAll]
    +x:363 [in hydras.Ackermann.subAll]
    +x:363 [in hydras.Ackermann.primRec]
    +x:365 [in hydras.Ackermann.subAll]
    +x:365 [in gaia_hydras.nfwfgaia]
    +x:366 [in hydras.Ackermann.subAll]
    +x:368 [in hydras.Ackermann.subAll]
    +x:369 [in hydras.Ackermann.primRec]
    +x:37 [in hydras.Prelude.Restriction]
    +x:37 [in additions.FirstSteps]
    +x:37 [in hydras.Ackermann.PA]
    +x:37 [in additions.Monoid_instances]
    +X:37 [in hydras.Schutte.Schutte_basics]
    +x:37 [in additions.fib]
    +x:37 [in hydras.Ackermann.NN]
    +x:370 [in gaia_hydras.nfwfgaia]
    +x:374 [in hydras.Ackermann.subAll]
    +x:375 [in hydras.Ackermann.subAll]
    +x:376 [in Goedel.PRrepresentable]
    +x:376 [in hydras.Ackermann.primRec]
    +x:377 [in hydras.Ackermann.subAll]
    +x:378 [in Goedel.PRrepresentable]
    +x:378 [in hydras.Ackermann.subAll]
    +x:378 [in hydras.Ackermann.fol]
    +x:378 [in gaia_hydras.nfwfgaia]
    +x:379 [in hydras.Ackermann.fol]
    +x:379 [in gaia_hydras.nfwfgaia]
    +x:38 [in hydras.Prelude.MoreLists]
    +x:38 [in hydras.Ackermann.subProp]
    +x:38 [in Goedel.rosserPA]
    +x:38 [in additions.Monoid_instances]
    +x:38 [in gaia_hydras.nfwfgaia]
    +x:380 [in Goedel.PRrepresentable]
    +x:380 [in hydras.Ackermann.subAll]
    +x:380 [in hydras.Ackermann.primRec]
    +x:382 [in Goedel.PRrepresentable]
    +x:382 [in gaia_hydras.nfwfgaia]
    +x:383 [in gaia_hydras.nfwfgaia]
    +x:386 [in hydras.Ackermann.primRec]
    +x:389 [in gaia_hydras.nfwfgaia]
    +x:39 [in hydras.Ackermann.PA]
    +x:39 [in hydras.Prelude.MoreOrders]
    +x:39 [in hydras.Ackermann.fol]
    +x:39 [in gaia_hydras.nfwfgaia]
    +x:392 [in gaia_hydras.nfwfgaia]
    +x:393 [in hydras.Ackermann.primRec]
    +x:399 [in gaia_hydras.nfwfgaia]
    +x:4 [in hydras.Prelude.Iterates]
    +x:4 [in hydras.Ackermann.NN2PA]
    +x:4 [in additions.FirstSteps]
    +X:4 [in hydras.Schutte.Lub]
    +x:4 [in hydras.Ackermann.Deduction]
    +x:4 [in gaia_hydras.onType]
    +x:4 [in hydras.Ackermann.wConsistent]
    +x:4 [in hydras.MoreAck.PrimRecExamples]
    +x:40 [in additions.AM]
    +x:40 [in hydras.Prelude.MoreLists]
    +x:40 [in additions.Compatibility]
    +x:40 [in hydras.Schutte.Critical]
    +x:40 [in gaia_hydras.T1Bridge]
    +x:40 [in hydras.Ackermann.primRec]
    +x:40 [in hydras.OrdinalNotations.ON_Generic]
    +X:40 [in hydras.Schutte.Well_Orders]
    +x:40 [in hydras.Ackermann.NN]
    +x:400 [in hydras.Ackermann.primRec]
    +x:401 [in hydras.Ackermann.folProp]
    +x:408 [in hydras.Ackermann.primRec]
    +x:41 [in additions.Compatibility]
    +x:41 [in hydras.Ackermann.PA]
    +x:41 [in hydras.Prelude.MoreOrders]
    +x:41 [in Goedel.rosserPA]
    +x:41 [in hydras.Ackermann.primRec]
    +x:41 [in hydras.Schutte.Ordering_Functions]
    +x:411 [in hydras.Epsilon0.T1]
    +x:412 [in hydras.Ackermann.primRec]
    +x:42 [in hydras.Prelude.Iterates]
    +x:42 [in hydras.Ackermann.model]
    +x:42 [in hydras.Ackermann.PA]
    +x:42 [in hydras.Ackermann.NN]
    +x:42 [in hydras.Schutte.Ordering_Functions]
    +X:42 [in hydras.MoreAck.FolExamples]
    +x:423 [in hydras.Ackermann.fol]
    +x:425 [in hydras.Ackermann.primRec]
    +x:426 [in hydras.Ackermann.fol]
    +x:429 [in hydras.Ackermann.folProp]
    +x:43 [in additions.FirstSteps]
    +x:43 [in hydras.Ackermann.subProp]
    +x:43 [in hydras.OrdinalNotations.ON_Generic]
    +X:43 [in hydras.Schutte.Well_Orders]
    +x:431 [in hydras.Ackermann.primRec]
    +x:434 [in hydras.Ackermann.folProp]
    +x:434 [in gaia_hydras.nfwfgaia]
    +x:435 [in gaia_hydras.nfwfgaia]
    +x:438 [in hydras.Gamma0.Gamma0]
    +x:439 [in hydras.Ackermann.primRec]
    +x:44 [in additions.Compatibility]
    +x:44 [in hydras.Prelude.Restriction]
    +x:44 [in additions.Pow_variant]
    +x:44 [in additions.Pow]
    +x:44 [in hydras.Prelude.Sort_spec]
    +x:44 [in hydras.Schutte.Well_Orders]
    +x:44 [in hydras.Ackermann.NN]
    +x:440 [in hydras.Ackermann.folProp]
    +x:440 [in hydras.Gamma0.Gamma0]
    +x:443 [in hydras.Gamma0.Gamma0]
    +x:447 [in hydras.Ackermann.primRec]
    +x:448 [in hydras.Gamma0.Gamma0]
    +x:45 [in hydras.Ackermann.NN]
    +x:452 [in hydras.Ackermann.primRec]
    +x:46 [in hydras.Prelude.MoreLists]
    +x:46 [in hydras.Ackermann.folProp]
    +x:46 [in hydras.Ackermann.PA]
    +x:46 [in hydras.OrdinalNotations.ON_Generic]
    +x:46 [in hydras.MoreAck.FolExamples]
    +x:460 [in hydras.Ackermann.primRec]
    +x:465 [in hydras.Ackermann.primRec]
    +x:469 [in hydras.Ackermann.primRec]
    +x:47 [in hydras.Ackermann.model]
    +x:47 [in hydras.Ackermann.subProp]
    +x:47 [in hydras.Schutte.Critical]
    +x:47 [in gaia_hydras.T1Bridge]
    +X:47 [in hydras.Schutte.Well_Orders]
    +x:473 [in hydras.Ackermann.primRec]
    +x:473 [in additions.Euclidean_Chains]
    +x:475 [in additions.Euclidean_Chains]
    +x:477 [in additions.Euclidean_Chains]
    +x:479 [in additions.Euclidean_Chains]
    +x:48 [in additions.AM]
    +x:48 [in hydras.Ackermann.folProp]
    +x:48 [in hydras.Ackermann.PA]
    +x:480 [in additions.Euclidean_Chains]
    +x:481 [in hydras.Ackermann.primRec]
    +x:486 [in hydras.Ackermann.primRec]
    +X:49 [in hydras.Schutte.Schutte_basics]
    +x:49 [in hydras.MoreAck.PrimRecExamples]
    +x:491 [in hydras.Ackermann.primRec]
    +x:496 [in hydras.Ackermann.primRec]
    +x:5 [in hydras.solutions_exercises.MinPR2]
    +x:5 [in hydras.Ackermann.PAconsistent]
    +x:5 [in additions.Compatibility]
    +x:5 [in hydras.Ackermann.LNN]
    +x:5 [in hydras.Ackermann.LNT]
    +x:5 [in hydras.MoreAck.AckNotPR]
    +x:5 [in hydras.Ackermann.subProp]
    +x:5 [in additions.Euclidean_Chains]
    +x:5 [in additions.Naive]
    +X:5 [in hydras.Ackermann.Deduction]
    +x:5 [in hydras.Prelude.STDPP_compat]
    +X:5 [in hydras.Schutte.Well_Orders]
    +x:5 [in additions.Addition_Chains]
    +x:5 [in hydras.Ackermann.NN]
    +x:5 [in hydras.rpo.closure]
    +x:5 [in hydras.Ackermann.Languages]
    +x:50 [in hydras.Ackermann.PA]
    +X:50 [in hydras.Schutte.Schutte_basics]
    +x:500 [in hydras.Ackermann.primRec]
    +x:500 [in gaia_hydras.nfwfgaia]
    +x:503 [in gaia_hydras.nfwfgaia]
    +x:506 [in gaia_hydras.nfwfgaia]
    +x:507 [in gaia_hydras.nfwfgaia]
    +x:509 [in gaia_hydras.nfwfgaia]
    +x:51 [in hydras.Ackermann.model]
    +x:51 [in hydras.Ackermann.subProp]
    +x:51 [in hydras.Ackermann.PA]
    +x:515 [in gaia_hydras.nfwfgaia]
    +x:52 [in hydras.Ackermann.folProp]
    +x:520 [in gaia_hydras.nfwfgaia]
    +x:525 [in gaia_hydras.nfwfgaia]
    +x:528 [in gaia_hydras.nfwfgaia]
    +x:53 [in additions.Pow_variant]
    +x:53 [in additions.Pow]
    +x:532 [in gaia_hydras.nfwfgaia]
    +x:535 [in gaia_hydras.nfwfgaia]
    +x:536 [in gaia_hydras.nfwfgaia]
    +x:537 [in gaia_hydras.nfwfgaia]
    +x:538 [in gaia_hydras.nfwfgaia]
    +x:539 [in gaia_hydras.nfwfgaia]
    +x:54 [in hydras.Ackermann.fol]
    +x:54 [in hydras.MoreAck.PrimRecExamples]
    +x:540 [in gaia_hydras.nfwfgaia]
    +x:541 [in gaia_hydras.nfwfgaia]
    +x:547 [in gaia_hydras.nfwfgaia]
    +x:55 [in hydras.Ackermann.model]
    +X:55 [in hydras.Schutte.Well_Orders]
    +x:551 [in gaia_hydras.nfwfgaia]
    +x:554 [in gaia_hydras.nfwfgaia]
    +x:56 [in hydras.Ackermann.subProp]
    +x:56 [in Goedel.rosserPA]
    +x:566 [in hydras.Ackermann.primRec]
    +x:567 [in hydras.Ackermann.primRec]
    +x:568 [in hydras.Ackermann.primRec]
    +x:569 [in hydras.Ackermann.primRec]
    +x:57 [in hydras.MoreAck.AckNotPR]
    +x:57 [in hydras.Ackermann.fol]
    +x:57 [in hydras.MoreAck.PrimRecExamples]
    +x:570 [in hydras.Ackermann.primRec]
    +x:570 [in gaia_hydras.nfwfgaia]
    +x:571 [in hydras.Ackermann.primRec]
    +x:572 [in hydras.Ackermann.primRec]
    +x:573 [in hydras.Ackermann.primRec]
    +x:573 [in gaia_hydras.nfwfgaia]
    +x:577 [in gaia_hydras.nfwfgaia]
    +x:581 [in hydras.Ackermann.primRec]
    +x:582 [in hydras.Ackermann.primRec]
    +x:583 [in gaia_hydras.nfwfgaia]
    +x:584 [in gaia_hydras.nfwfgaia]
    +x:586 [in gaia_hydras.nfwfgaia]
    +x:588 [in gaia_hydras.nfwfgaia]
    +x:59 [in hydras.Ackermann.model]
    +x:59 [in hydras.Ackermann.fol]
    +x:59 [in hydras.OrdinalNotations.ON_Generic]
    +x:59 [in Goedel.rosser]
    +x:591 [in gaia_hydras.nfwfgaia]
    +x:592 [in gaia_hydras.nfwfgaia]
    +x:594 [in gaia_hydras.nfwfgaia]
    +x:6 [in Goedel.PRrepresentable]
    +x:6 [in hydras.Prelude.DecPreOrder_Instances]
    +x:6 [in hydras.Prelude.More_Arith]
    +x:6 [in hydras.Ackermann.LNN]
    +x:6 [in additions.Pow_variant]
    +x:6 [in hydras.Schutte.Lub]
    +x:6 [in additions.Pow]
    +x:6 [in hydras.Schutte.Critical]
    +x:6 [in hydras.Prelude.MoreOrders]
    +x:60 [in hydras.Ackermann.fol]
    +X:60 [in hydras.Schutte.Well_Orders]
    +x:60 [in Goedel.rosser]
    +x:605 [in gaia_hydras.nfwfgaia]
    +x:606 [in gaia_hydras.nfwfgaia]
    +x:607 [in gaia_hydras.nfwfgaia]
    +x:608 [in hydras.Gamma0.Gamma0]
    +x:61 [in additions.Pow_variant]
    +x:61 [in additions.Pow]
    +x:61 [in hydras.Ackermann.subProp]
    +x:61 [in hydras.Schutte.PartialFun]
    +x:61 [in hydras.MoreAck.PrimRecExamples]
    +x:611 [in hydras.Gamma0.Gamma0]
    +x:612 [in gaia_hydras.nfwfgaia]
    +x:616 [in gaia_hydras.nfwfgaia]
    +x:617 [in gaia_hydras.nfwfgaia]
    +x:618 [in gaia_hydras.nfwfgaia]
    +x:619 [in gaia_hydras.nfwfgaia]
    +x:62 [in hydras.Ackermann.folProp]
    +x:621 [in gaia_hydras.nfwfgaia]
    +x:623 [in gaia_hydras.nfwfgaia]
    +x:63 [in hydras.Prelude.Fuel]
    +x:63 [in Goedel.rosserPA]
    +x:63 [in hydras.Schutte.PartialFun]
    +x:636 [in gaia_hydras.nfwfgaia]
    +x:64 [in additions.Pow_variant]
    +x:64 [in additions.Pow]
    +x:64 [in Goedel.rosserPA]
    +x:64 [in gaia_hydras.nfwfgaia]
    +x:644 [in gaia_hydras.nfwfgaia]
    +x:647 [in gaia_hydras.nfwfgaia]
    +x:65 [in hydras.Epsilon0.Epsilon0rpo]
    +x:65 [in hydras.Ackermann.model]
    +x:652 [in hydras.Ackermann.primRec]
    +x:653 [in gaia_hydras.nfwfgaia]
    +x:655 [in gaia_hydras.nfwfgaia]
    +x:657 [in gaia_hydras.nfwfgaia]
    +x:658 [in hydras.Ackermann.primRec]
    +x:66 [in additions.AM]
    +x:66 [in hydras.Ackermann.subProp]
    +x:66 [in hydras.Ackermann.primRec]
    +x:66 [in gaia_hydras.nfwfgaia]
    +x:665 [in hydras.Ackermann.primRec]
    +x:666 [in hydras.Ackermann.primRec]
    +x:67 [in hydras.Epsilon0.Epsilon0rpo]
    +x:67 [in additions.Pow_variant]
    +x:67 [in additions.Pow]
    +x:67 [in hydras.Schutte.Critical]
    +x:67 [in additions.Monoid_def]
    +x:670 [in hydras.Ackermann.primRec]
    +x:672 [in hydras.Ackermann.primRec]
    +x:673 [in gaia_hydras.nfwfgaia]
    +x:674 [in gaia_hydras.nfwfgaia]
    +x:677 [in gaia_hydras.nfwfgaia]
    +x:678 [in gaia_hydras.nfwfgaia]
    +x:68 [in hydras.Prelude.MoreLists]
    +x:68 [in hydras.Schutte.Critical]
    +x:68 [in hydras.Ackermann.fol]
    +x:68 [in Goedel.rosser]
    +x:681 [in gaia_hydras.nfwfgaia]
    +x:684 [in gaia_hydras.nfwfgaia]
    +x:685 [in gaia_hydras.nfwfgaia]
    +x:69 [in hydras.Prelude.MoreLists]
    +x:69 [in additions.Pow_variant]
    +x:69 [in hydras.Ackermann.model]
    +x:69 [in additions.Pow]
    +x:69 [in hydras.Schutte.Critical]
    +x:690 [in gaia_hydras.nfwfgaia]
    +x:699 [in gaia_hydras.nfwfgaia]
    +x:7 [in hydras.rpo.more_list]
    +x:7 [in hydras.Ackermann.LNT]
    +x:7 [in hydras.Ackermann.cPair]
    +x:7 [in additions.Naive]
    +x:7 [in hydras.Prelude.MoreDecidable]
    +x:7 [in hydras.Schutte.Well_Orders]
    +x:7 [in hydras.Ackermann.folLogic3]
    +x:7 [in hydras.Ackermann.wConsistent]
    +x:7 [in hydras.Ackermann.NN]
    +x:7 [in hydras.rpo.closure]
    +x:7 [in hydras.Ackermann.Languages]
    +x:7 [in hydras.Schutte.Countable]
    +x:70 [in hydras.Prelude.MoreLists]
    +x:70 [in hydras.Ackermann.subProp]
    +x:70 [in hydras.Schutte.Critical]
    +x:705 [in hydras.Ackermann.primRec]
    +x:706 [in hydras.Gamma0.Gamma0]
    +x:708 [in hydras.Gamma0.Gamma0]
    +x:709 [in gaia_hydras.nfwfgaia]
    +x:71 [in hydras.Prelude.Iterates]
    +x:71 [in hydras.Epsilon0.Epsilon0rpo]
    +x:710 [in hydras.Ackermann.primRec]
    +x:72 [in additions.Pow_variant]
    +x:72 [in additions.Pow]
    +x:72 [in hydras.MoreAck.PrimRecExamples]
    +x:728 [in hydras.Epsilon0.T1]
    +x:73 [in additions.Pow_variant]
    +x:73 [in hydras.Ackermann.folLogic3]
    +x:73 [in Goedel.rosser]
    +x:735 [in gaia_hydras.nfwfgaia]
    +x:74 [in hydras.OrdinalNotations.ON_Omega2]
    +x:74 [in hydras.Ackermann.subProp]
    +x:74 [in hydras.Hydra.BigBattle]
    +x:74 [in hydras.Ackermann.folLogic3]
    +x:75 [in hydras.Prelude.Iterates]
    +x:75 [in hydras.Epsilon0.Epsilon0rpo]
    +x:75 [in additions.Pow]
    +x:75 [in hydras.Epsilon0.Hessenberg]
    +x:75 [in additions.Monoid_def]
    +x:75 [in hydras.Ackermann.fol]
    +x:75 [in hydras.Schutte.PartialFun]
    +x:76 [in additions.Pow]
    +x:76 [in additions.Addition_Chains]
    +x:762 [in gaia_hydras.nfwfgaia]
    +x:763 [in gaia_hydras.nfwfgaia]
    +x:766 [in gaia_hydras.nfwfgaia]
    +x:768 [in gaia_hydras.nfwfgaia]
    +x:77 [in additions.AM]
    +x:77 [in additions.Pow_variant]
    +x:77 [in hydras.MoreAck.AckNotPR]
    +x:77 [in hydras.Schutte.PartialFun]
    +x:77 [in hydras.MoreAck.PrimRecExamples]
    +x:770 [in gaia_hydras.nfwfgaia]
    +x:771 [in gaia_hydras.nfwfgaia]
    +x:773 [in gaia_hydras.nfwfgaia]
    +x:774 [in gaia_hydras.nfwfgaia]
    +x:778 [in gaia_hydras.nfwfgaia]
    +x:782 [in gaia_hydras.nfwfgaia]
    +x:79 [in hydras.Prelude.Iterates]
    +x:79 [in additions.Pow_variant]
    +x:79 [in hydras.Ackermann.subProp]
    +x:794 [in gaia_hydras.nfwfgaia]
    +x:797 [in gaia_hydras.nfwfgaia]
    +x:8 [in hydras.Prelude.WfVariant]
    +x:8 [in additions.FirstSteps]
    +x:8 [in hydras.Ackermann.LNN]
    +x:8 [in additions.Wf_transparent]
    +x:8 [in hydras.Ackermann.wConsistent]
    +x:80 [in additions.Pow_variant]
    +x:80 [in additions.Pow]
    +x:80 [in hydras.Ackermann.fol]
    +x:80 [in hydras.MoreAck.PrimRecExamples]
    +x:81 [in hydras.MoreAck.AckNotPR]
    +x:813 [in gaia_hydras.nfwfgaia]
    +x:814 [in hydras.Ackermann.primRec]
    +x:815 [in hydras.Ackermann.primRec]
    +x:816 [in gaia_hydras.nfwfgaia]
    +x:819 [in gaia_hydras.nfwfgaia]
    +x:82 [in additions.Pow_variant]
    +x:82 [in additions.Pow]
    +x:823 [in gaia_hydras.nfwfgaia]
    +x:826 [in gaia_hydras.nfwfgaia]
    +x:829 [in gaia_hydras.nfwfgaia]
    +x:83 [in hydras.Prelude.Iterates]
    +x:83 [in hydras.Ackermann.folLogic3]
    +x:83 [in hydras.Prelude.MoreVectors]
    +x:831 [in gaia_hydras.nfwfgaia]
    +x:837 [in gaia_hydras.nfwfgaia]
    +x:84 [in additions.Pow_variant]
    +x:84 [in additions.Pow]
    +x:84 [in hydras.Ackermann.subProp]
    +x:84 [in hydras.Ackermann.folLogic3]
    +x:85 [in hydras.Ackermann.fol]
    +x:857 [in gaia_hydras.nfwfgaia]
    +x:86 [in hydras.Prelude.Iterates]
    +x:86 [in additions.Pow_variant]
    +x:86 [in additions.Pow]
    +x:86 [in hydras.MoreAck.AckNotPR]
    +x:86 [in hydras.MoreAck.PrimRecExamples]
    +x:87 [in additions.AM]
    +x:87 [in hydras.Ackermann.fol]
    +x:87 [in additions.fib]
    +x:875 [in gaia_hydras.nfwfgaia]
    +x:88 [in additions.Pow]
    +x:88 [in hydras.Epsilon0.Large_Sets]
    +x:883 [in gaia_hydras.nfwfgaia]
    +x:887 [in gaia_hydras.nfwfgaia]
    +x:889 [in gaia_hydras.nfwfgaia]
    +x:89 [in additions.Pow_variant]
    +x:89 [in additions.Pow]
    +x:89 [in hydras.Ackermann.subProp]
    +x:89 [in Goedel.rosserPA]
    +x:89 [in hydras.Ackermann.fol]
    +x:89 [in additions.fib]
    +x:892 [in gaia_hydras.nfwfgaia]
    +x:9 [in Goedel.PRrepresentable]
    +x:9 [in hydras.Ackermann.LNT]
    +x:9 [in hydras.Ackermann.cPair]
    +x:9 [in gaia_hydras.onType]
    +x:9 [in hydras.Schutte.Well_Orders]
    +x:9 [in hydras.Ackermann.folLogic3]
    +x:9 [in additions.Addition_Chains]
    +x:9 [in hydras.Ackermann.NN]
    +x:90 [in additions.Pow_variant]
    +x:90 [in Goedel.rosserPA]
    +x:90 [in gaia_hydras.nfwfgaia]
    +x:91 [in additions.Pow_variant]
    +x:918 [in gaia_hydras.nfwfgaia]
    +x:919 [in gaia_hydras.nfwfgaia]
    +x:92 [in additions.Pow]
    +x:920 [in gaia_hydras.nfwfgaia]
    +x:921 [in gaia_hydras.nfwfgaia]
    +x:922 [in gaia_hydras.nfwfgaia]
    +x:93 [in hydras.Ackermann.subProp]
    +x:93 [in hydras.MoreAck.PrimRecExamples]
    +x:933 [in gaia_hydras.nfwfgaia]
    +x:934 [in gaia_hydras.nfwfgaia]
    +x:935 [in gaia_hydras.nfwfgaia]
    +x:94 [in hydras.Ackermann.model]
    +x:94 [in additions.Euclidean_Chains]
    +x:94 [in gaia_hydras.nfwfgaia]
    +x:95 [in additions.Pow]
    +x:95 [in additions.fib]
    +x:95 [in gaia_hydras.nfwfgaia]
    +x:96 [in hydras.Ackermann.model]
    +x:96 [in hydras.MoreAck.PrimRecExamples]
    +x:97 [in additions.Addition_Chains]
    +x:97 [in hydras.Prelude.MoreVectors]
    +x:98 [in additions.Pow_variant]
    +x:98 [in hydras.Ackermann.model]
    +x:98 [in additions.Pow]
    +x:98 [in hydras.MoreAck.AckNotPR]
    +X:98 [in hydras.Schutte.Schutte_basics]
    +x:98 [in hydras.Schutte.Ordering_Functions]
    +x:982 [in gaia_hydras.nfwfgaia]
    +x:99 [in hydras.Ackermann.model]
    +x:99 [in additions.Pow]
    +x:99 [in hydras.MoreAck.AckNotPR]
    +x:99 [in hydras.Ackermann.cPair]
    +x:992 [in gaia_hydras.nfwfgaia]
    +

    Y

    +y0:272 [in additions.Euclidean_Chains]
    +y0:274 [in additions.Euclidean_Chains]
    +y0:278 [in additions.Euclidean_Chains]
    +y0:280 [in additions.Euclidean_Chains]
    +y:10 [in Goedel.PRrepresentable]
    +y:10 [in hydras.Ackermann.LNT]
    +y:10 [in additions.Wf_transparent]
    +y:10 [in hydras.Ackermann.cPair]
    +y:10 [in hydras.Schutte.Well_Orders]
    +y:10 [in additions.Addition_Chains]
    +y:100 [in hydras.Ackermann.folProp]
    +y:100 [in hydras.MoreAck.AckNotPR]
    +y:101 [in hydras.Schutte.Ordering_Functions]
    +y:101 [in hydras.Prelude.MoreVectors]
    +y:102 [in hydras.Ackermann.folProp]
    +y:103 [in hydras.Schutte.Ordering_Functions]
    +y:103 [in hydras.MoreAck.PrimRecExamples]
    +y:104 [in hydras.Ackermann.folProp]
    +y:104 [in hydras.MoreAck.AckNotPR]
    +y:104 [in hydras.Ackermann.fol]
    +y:1040 [in gaia_hydras.nfwfgaia]
    +y:105 [in hydras.Schutte.Ordering_Functions]
    +y:105 [in hydras.Prelude.MoreVectors]
    +y:106 [in hydras.MoreAck.AckNotPR]
    +y:107 [in additions.Euclidean_Chains]
    +y:1076 [in gaia_hydras.nfwfgaia]
    +y:108 [in additions.Pow]
    +y:108 [in hydras.Ackermann.fol]
    +y:1088 [in gaia_hydras.nfwfgaia]
    +y:1090 [in gaia_hydras.nfwfgaia]
    +y:1092 [in gaia_hydras.nfwfgaia]
    +y:1094 [in gaia_hydras.nfwfgaia]
    +y:1096 [in gaia_hydras.nfwfgaia]
    +y:11 [in hydras.Ackermann.LNN]
    +y:11 [in additions.Monoid_def]
    +y:11 [in gaia_hydras.onType]
    +y:1115 [in gaia_hydras.nfwfgaia]
    +y:112 [in hydras.Ackermann.folProp]
    +y:1120 [in gaia_hydras.nfwfgaia]
    +y:115 [in hydras.Prelude.Iterates]
    +y:115 [in hydras.Ackermann.folProp]
    +y:116 [in additions.AM]
    +y:116 [in hydras.Prelude.MoreLists]
    +y:116 [in gaia_hydras.nfwfgaia]
    +y:117 [in hydras.Ackermann.folProp]
    +y:118 [in hydras.Prelude.Iterates]
    +y:118 [in additions.Euclidean_Chains]
    +y:119 [in hydras.OrdinalNotations.ON_Generic]
    +y:12 [in hydras.Prelude.Restriction]
    +y:12 [in hydras.Schutte.Lub]
    +y:12 [in hydras.Prelude.Sort_spec]
    +y:12 [in hydras.Ackermann.cPair]
    +y:12 [in additions.Naive]
    +y:12 [in hydras.Schutte.Schutte_basics]
    +y:12 [in hydras.Prelude.LibHyps_Experiments]
    +y:120 [in hydras.Ackermann.folProp]
    +y:1216 [in gaia_hydras.nfwfgaia]
    +y:122 [in hydras.Ackermann.folProp]
    +y:123 [in gaia_hydras.nfwfgaia]
    +y:1230 [in gaia_hydras.nfwfgaia]
    +y:124 [in additions.Euclidean_Chains]
    +y:125 [in hydras.Prelude.MoreLists]
    +y:125 [in additions.Euclidean_Chains]
    +y:1251 [in gaia_hydras.nfwfgaia]
    +y:126 [in hydras.Ackermann.folProp]
    +y:126 [in additions.Euclidean_Chains]
    +y:127 [in hydras.Prelude.Merge_Sort]
    +y:127 [in additions.Euclidean_Chains]
    +y:128 [in additions.Euclidean_Chains]
    +y:129 [in hydras.Prelude.Merge_Sort]
    +y:13 [in Goedel.PRrepresentable]
    +y:13 [in additions.Compatibility]
    +y:13 [in hydras.solutions_exercises.MorePRExamples]
    +y:131 [in hydras.Schutte.Schutte_basics]
    +y:132 [in hydras.Schutte.Schutte_basics]
    +y:1326 [in gaia_hydras.nfwfgaia]
    +y:134 [in hydras.Schutte.Schutte_basics]
    +y:135 [in hydras.Prelude.Merge_Sort]
    +y:136 [in hydras.Ackermann.folProp]
    +y:136 [in gaia_hydras.T1Bridge]
    +y:136 [in hydras.Schutte.Schutte_basics]
    +y:137 [in hydras.Prelude.Merge_Sort]
    +y:138 [in hydras.Ackermann.folProp]
    +y:138 [in gaia_hydras.T1Bridge]
    +y:1398 [in gaia_hydras.nfwfgaia]
    +y:14 [in hydras.Prelude.DecPreOrder_Instances]
    +y:14 [in hydras.Ackermann.LNN]
    +y:14 [in hydras.Ackermann.cPair]
    +y:14 [in additions.Euclidean_Chains]
    +y:140 [in hydras.Ackermann.folProp]
    +y:1406 [in gaia_hydras.nfwfgaia]
    +y:141 [in hydras.Prelude.Merge_Sort]
    +y:1410 [in gaia_hydras.nfwfgaia]
    +y:1412 [in gaia_hydras.nfwfgaia]
    +y:1415 [in gaia_hydras.nfwfgaia]
    +y:143 [in gaia_hydras.nfwfgaia]
    +y:145 [in hydras.Prelude.Merge_Sort]
    +y:145 [in additions.Euclidean_Chains]
    +y:1456 [in gaia_hydras.nfwfgaia]
    +y:147 [in gaia_hydras.T1Bridge]
    +y:148 [in hydras.Prelude.MoreLists]
    +y:1487 [in gaia_hydras.nfwfgaia]
    +y:149 [in hydras.Prelude.Merge_Sort]
    +y:149 [in gaia_hydras.T1Bridge]
    +y:149 [in gaia_hydras.nfwfgaia]
    +y:15 [in gaia_hydras.T1Choice]
    +y:15 [in hydras.Prelude.MoreOrders]
    +y:150 [in hydras.Schutte.Schutte_basics]
    +y:153 [in hydras.Prelude.Merge_Sort]
    +y:155 [in hydras.Prelude.Merge_Sort]
    +Y:156 [in hydras.Schutte.Schutte_basics]
    +y:157 [in hydras.Ackermann.folProp]
    +y:158 [in hydras.Schutte.Schutte_basics]
    +y:158 [in hydras.OrdinalNotations.ON_Generic]
    +y:159 [in hydras.Ackermann.folProp]
    +y:16 [in hydras.Ackermann.cPair]
    +y:16 [in gaia_hydras.ON_gfinite]
    +y:16 [in hydras.Schutte.Schutte_basics]
    +y:160 [in hydras.Prelude.Merge_Sort]
    +Y:160 [in hydras.Schutte.Schutte_basics]
    +y:161 [in hydras.Ackermann.folProp]
    +y:162 [in hydras.Schutte.Schutte_basics]
    +y:163 [in hydras.Ackermann.folProp]
    +y:164 [in hydras.Prelude.Merge_Sort]
    +y:165 [in hydras.Ackermann.folProp]
    +y:1657 [in gaia_hydras.nfwfgaia]
    +y:1659 [in gaia_hydras.nfwfgaia]
    +y:167 [in hydras.Ackermann.folProp]
    +y:168 [in hydras.Prelude.Merge_Sort]
    +y:169 [in hydras.Prelude.MoreLists]
    +y:169 [in hydras.Ackermann.folProp]
    +y:169 [in hydras.Schutte.Schutte_basics]
    +y:17 [in Goedel.PRrepresentable]
    +y:17 [in gaia_hydras.T1Choice]
    +y:17 [in hydras.Schutte.Critical]
    +y:17 [in gaia_hydras.T1Bridge]
    +y:17 [in hydras.Prelude.STDPP_compat]
    +y:1717 [in gaia_hydras.nfwfgaia]
    +y:1727 [in gaia_hydras.nfwfgaia]
    +y:1729 [in gaia_hydras.nfwfgaia]
    +y:1731 [in gaia_hydras.nfwfgaia]
    +y:1733 [in gaia_hydras.nfwfgaia]
    +y:1735 [in gaia_hydras.nfwfgaia]
    +y:175 [in hydras.Ackermann.folProp]
    +y:1757 [in gaia_hydras.nfwfgaia]
    +y:176 [in hydras.Ackermann.folProp]
    +y:176 [in additions.Euclidean_Chains]
    +y:1762 [in gaia_hydras.nfwfgaia]
    +y:18 [in hydras.Ackermann.PA]
    +y:18 [in hydras.Ackermann.cPair]
    +y:18 [in gaia_hydras.ON_gfinite]
    +y:18 [in hydras.OrdinalNotations.ON_Generic]
    +y:18 [in gaia_hydras.onType]
    +y:182 [in hydras.Ackermann.folProp]
    +y:183 [in hydras.Ackermann.folProp]
    +y:185 [in hydras.Ackermann.folProp]
    +y:1850 [in gaia_hydras.nfwfgaia]
    +y:189 [in hydras.Ackermann.model]
    +y:189 [in hydras.Schutte.Schutte_basics]
    +y:19 [in gaia_hydras.T1Choice]
    +y:19 [in hydras.solutions_exercises.MinPR2]
    +y:190 [in hydras.Prelude.Iterates]
    +y:1900 [in gaia_hydras.nfwfgaia]
    +y:1905 [in gaia_hydras.nfwfgaia]
    +y:1909 [in gaia_hydras.nfwfgaia]
    +y:191 [in hydras.Prelude.MoreLists]
    +y:191 [in hydras.Ackermann.model]
    +y:191 [in hydras.Ackermann.folProp]
    +y:1914 [in gaia_hydras.nfwfgaia]
    +y:1918 [in gaia_hydras.nfwfgaia]
    +y:192 [in hydras.Ackermann.folProp]
    +y:1923 [in gaia_hydras.nfwfgaia]
    +y:1929 [in gaia_hydras.nfwfgaia]
    +y:1935 [in gaia_hydras.nfwfgaia]
    +y:1939 [in gaia_hydras.nfwfgaia]
    +y:194 [in hydras.rpo.term]
    +y:194 [in hydras.Prelude.MoreLists]
    +y:1944 [in gaia_hydras.nfwfgaia]
    +y:1949 [in gaia_hydras.nfwfgaia]
    +y:195 [in hydras.Schutte.Schutte_basics]
    +y:1955 [in gaia_hydras.nfwfgaia]
    +y:196 [in hydras.Schutte.Schutte_basics]
    +y:1961 [in gaia_hydras.nfwfgaia]
    +y:1967 [in gaia_hydras.nfwfgaia]
    +y:197 [in hydras.Prelude.Iterates]
    +y:197 [in hydras.OrdinalNotations.ON_Generic]
    +y:1979 [in gaia_hydras.nfwfgaia]
    +y:198 [in hydras.Ackermann.folProp]
    +y:198 [in additions.Addition_Chains]
    +y:1984 [in gaia_hydras.nfwfgaia]
    +y:1989 [in gaia_hydras.nfwfgaia]
    +y:199 [in hydras.Ackermann.folProp]
    +y:1995 [in gaia_hydras.nfwfgaia]
    +y:2 [in hydras.Ackermann.LNN]
    +y:2 [in hydras.Ackermann.LNT]
    +y:20 [in hydras.Prelude.Restriction]
    +y:20 [in hydras.Schutte.Critical]
    +y:20 [in hydras.solutions_exercises.MorePRExamples]
    +y:2000 [in gaia_hydras.nfwfgaia]
    +y:201 [in hydras.Ackermann.folProp]
    +y:201 [in gaia_hydras.nfwfgaia]
    +y:202 [in additions.Euclidean_Chains]
    +y:205 [in hydras.Prelude.MoreLists]
    +y:2056 [in gaia_hydras.nfwfgaia]
    +y:207 [in hydras.Ackermann.folProp]
    +y:208 [in hydras.Ackermann.folProp]
    +y:209 [in hydras.Prelude.Iterates]
    +y:209 [in hydras.Prelude.MoreLists]
    +y:2091 [in gaia_hydras.nfwfgaia]
    +y:2093 [in gaia_hydras.nfwfgaia]
    +y:2097 [in gaia_hydras.nfwfgaia]
    +y:21 [in Goedel.PRrepresentable]
    +y:21 [in hydras.Prelude.DecPreOrder_Instances]
    +y:21 [in hydras.Ackermann.PA]
    +y:21 [in hydras.Prelude.MoreOrders]
    +y:210 [in additions.Euclidean_Chains]
    +y:214 [in hydras.Ackermann.folProp]
    +y:215 [in hydras.Ackermann.model]
    +y:215 [in hydras.Ackermann.folProp]
    +y:215 [in additions.Euclidean_Chains]
    +y:217 [in hydras.Ackermann.model]
    +y:217 [in hydras.Ackermann.folProp]
    +y:217 [in additions.Euclidean_Chains]
    +y:218 [in hydras.Ackermann.cPair]
    +y:219 [in hydras.Prelude.Merge_Sort]
    +y:22 [in hydras.Schutte.GRelations]
    +y:22 [in hydras.Schutte.Schutte_basics]
    +y:22 [in hydras.OrdinalNotations.ON_Generic]
    +y:220 [in hydras.Ackermann.cPair]
    +y:221 [in hydras.Prelude.Merge_Sort]
    +y:223 [in hydras.Ackermann.folProp]
    +y:223 [in hydras.Prelude.Merge_Sort]
    +y:224 [in hydras.Ackermann.folProp]
    +y:224 [in hydras.Ackermann.cPair]
    +y:224 [in hydras.Schutte.Schutte_basics]
    +y:225 [in hydras.Prelude.Merge_Sort]
    +y:226 [in hydras.Schutte.Schutte_basics]
    +y:227 [in hydras.Prelude.Merge_Sort]
    +y:228 [in hydras.Ackermann.cPair]
    +y:229 [in hydras.Prelude.Iterates]
    +y:229 [in hydras.Prelude.Merge_Sort]
    +y:229 [in additions.Euclidean_Chains]
    +y:23 [in hydras.Prelude.DecPreOrder_Instances]
    +y:23 [in hydras.Prelude.Restriction]
    +y:23 [in hydras.Schutte.Critical]
    +y:230 [in hydras.Ackermann.folProp]
    +y:231 [in hydras.Ackermann.folProp]
    +y:231 [in hydras.Prelude.Merge_Sort]
    +y:232 [in hydras.Ackermann.cPair]
    +y:233 [in hydras.Prelude.Merge_Sort]
    +y:235 [in hydras.Prelude.Merge_Sort]
    +y:236 [in hydras.Ackermann.folProp]
    +y:237 [in hydras.Prelude.Merge_Sort]
    +y:238 [in hydras.Ackermann.folProp]
    +y:239 [in hydras.Prelude.Merge_Sort]
    +y:239 [in additions.Euclidean_Chains]
    +y:24 [in hydras.Prelude.Iterates]
    +y:24 [in gaia_hydras.T1Bridge]
    +y:24 [in additions.Euclidean_Chains]
    +y:24 [in hydras.OrdinalNotations.ON_Generic]
    +y:240 [in hydras.Ackermann.folProp]
    +y:242 [in hydras.Ackermann.folProp]
    +y:244 [in hydras.Ackermann.folProp]
    +y:244 [in additions.Euclidean_Chains]
    +y:246 [in hydras.Ackermann.folProp]
    +y:246 [in additions.Addition_Chains]
    +y:248 [in hydras.Ackermann.folProp]
    +y:249 [in hydras.Ackermann.cPair]
    +y:25 [in Goedel.PRrepresentable]
    +y:251 [in hydras.Ackermann.cPair]
    +y:254 [in hydras.Ackermann.folProp]
    +y:255 [in hydras.Ackermann.folProp]
    +y:255 [in hydras.Ackermann.cPair]
    +y:256 [in additions.Euclidean_Chains]
    +y:257 [in hydras.Ackermann.cPair]
    +y:259 [in hydras.Ackermann.cPair]
    +y:26 [in hydras.Prelude.Restriction]
    +y:26 [in hydras.Schutte.GRelations]
    +y:26 [in hydras.Ackermann.cPair]
    +y:26 [in hydras.Schutte.Well_Orders]
    +y:260 [in additions.Euclidean_Chains]
    +y:261 [in hydras.Ackermann.folProp]
    +y:262 [in hydras.Ackermann.folProp]
    +y:262 [in hydras.Ackermann.cPair]
    +y:264 [in hydras.Ackermann.folProp]
    +y:264 [in additions.Euclidean_Chains]
    +y:268 [in additions.Euclidean_Chains]
    +y:27 [in hydras.Epsilon0.F_omega]
    +y:27 [in hydras.OrdinalNotations.ON_Finite]
    +y:270 [in hydras.Ackermann.folProp]
    +y:271 [in hydras.Ackermann.folProp]
    +Y:271 [in additions.Euclidean_Chains]
    +y:272 [in gaia_hydras.nfwfgaia]
    +y:277 [in hydras.Ackermann.folProp]
    +Y:277 [in additions.Euclidean_Chains]
    +y:277 [in gaia_hydras.nfwfgaia]
    +y:278 [in hydras.Ackermann.folProp]
    +y:28 [in hydras.Prelude.Sort_spec]
    +y:28 [in additions.More_on_positive]
    +y:28 [in hydras.Prelude.MoreOrders]
    +y:28 [in hydras.Ackermann.cPair]
    +y:28 [in hydras.Ackermann.fol]
    +y:282 [in additions.Euclidean_Chains]
    +y:282 [in gaia_hydras.nfwfgaia]
    +y:284 [in additions.Euclidean_Chains]
    +y:285 [in hydras.Ackermann.folProp]
    +y:286 [in additions.Euclidean_Chains]
    +y:286 [in gaia_hydras.nfwfgaia]
    +y:287 [in hydras.Ackermann.folProp]
    +y:288 [in additions.Euclidean_Chains]
    +y:288 [in gaia_hydras.nfwfgaia]
    +y:289 [in hydras.Ackermann.folProp]
    +y:29 [in additions.Monoid_def]
    +y:29 [in hydras.Schutte.Well_Orders]
    +y:291 [in hydras.Ackermann.folProp]
    +y:293 [in hydras.Ackermann.folProp]
    +y:294 [in additions.Addition_Chains]
    +y:295 [in hydras.Ackermann.folProp]
    +y:297 [in hydras.Ackermann.folProp]
    +y:3 [in hydras.MoreAck.AckNotPR]
    +y:30 [in additions.More_on_positive]
    +y:30 [in hydras.Schutte.GRelations]
    +y:30 [in hydras.Epsilon0.F_omega]
    +y:30 [in hydras.Ackermann.cPair]
    +y:30 [in hydras.Ackermann.fol]
    +y:303 [in hydras.Ackermann.folProp]
    +y:304 [in hydras.Ackermann.folProp]
    +y:305 [in additions.Euclidean_Chains]
    +y:307 [in additions.Euclidean_Chains]
    +y:309 [in additions.Euclidean_Chains]
    +y:31 [in gaia_hydras.T1Bridge]
    +y:31 [in additions.Monoid_instances]
    +y:310 [in hydras.Ackermann.folProp]
    +y:311 [in hydras.Ackermann.folProp]
    +y:311 [in additions.Euclidean_Chains]
    +y:312 [in additions.Euclidean_Chains]
    +y:313 [in hydras.Ackermann.folProp]
    +y:313 [in additions.Euclidean_Chains]
    +y:314 [in additions.Euclidean_Chains]
    +y:315 [in additions.Euclidean_Chains]
    +y:319 [in hydras.Ackermann.folProp]
    +y:32 [in hydras.Epsilon0.F_omega]
    +y:32 [in hydras.Ackermann.cPair]
    +y:32 [in hydras.Schutte.Well_Orders]
    +y:320 [in hydras.Ackermann.folProp]
    +y:324 [in additions.Euclidean_Chains]
    +y:325 [in additions.Euclidean_Chains]
    +y:326 [in hydras.Ackermann.folProp]
    +y:326 [in additions.Euclidean_Chains]
    +y:327 [in hydras.Ackermann.folProp]
    +y:327 [in additions.Euclidean_Chains]
    +y:329 [in hydras.Ackermann.folProp]
    +y:33 [in hydras.Prelude.MoreOrders]
    +y:33 [in additions.Monoid_instances]
    +y:331 [in gaia_hydras.nfwfgaia]
    +y:333 [in gaia_hydras.nfwfgaia]
    +y:335 [in hydras.Ackermann.folProp]
    +y:336 [in hydras.Ackermann.folProp]
    +y:34 [in hydras.Prelude.Restriction]
    +y:34 [in hydras.Epsilon0.F_omega]
    +y:34 [in gaia_hydras.T1Bridge]
    +y:34 [in additions.fib]
    +y:340 [in gaia_hydras.nfwfgaia]
    +y:342 [in hydras.Ackermann.folProp]
    +y:343 [in hydras.Ackermann.folProp]
    +y:344 [in gaia_hydras.nfwfgaia]
    +y:345 [in hydras.Ackermann.folProp]
    +y:346 [in gaia_hydras.nfwfgaia]
    +y:348 [in gaia_hydras.nfwfgaia]
    +y:35 [in additions.Monoid_instances]
    +y:350 [in gaia_hydras.nfwfgaia]
    +y:351 [in hydras.Ackermann.folProp]
    +y:352 [in hydras.Ackermann.folProp]
    +y:352 [in gaia_hydras.nfwfgaia]
    +y:358 [in hydras.Ackermann.folProp]
    +y:359 [in hydras.Ackermann.folProp]
    +y:359 [in hydras.Ackermann.primRec]
    +y:36 [in hydras.Prelude.Sort_spec]
    +y:36 [in hydras.Epsilon0.F_omega]
    +y:36 [in gaia_hydras.nfwfgaia]
    +y:361 [in hydras.Ackermann.folProp]
    +y:364 [in hydras.Ackermann.primRec]
    +y:366 [in gaia_hydras.nfwfgaia]
    +y:367 [in hydras.Ackermann.folProp]
    +y:368 [in hydras.Ackermann.folProp]
    +y:37 [in gaia_hydras.T1Bridge]
    +y:37 [in gaia_hydras.nfwfgaia]
    +y:370 [in hydras.Ackermann.primRec]
    +y:371 [in gaia_hydras.nfwfgaia]
    +y:374 [in hydras.Ackermann.folProp]
    +y:375 [in hydras.Ackermann.folProp]
    +y:377 [in Goedel.PRrepresentable]
    +y:377 [in hydras.Ackermann.folProp]
    +y:377 [in hydras.Ackermann.primRec]
    +y:379 [in Goedel.PRrepresentable]
    +Y:38 [in hydras.Schutte.Schutte_basics]
    +y:38 [in additions.fib]
    +y:381 [in Goedel.PRrepresentable]
    +y:381 [in hydras.Ackermann.primRec]
    +y:383 [in Goedel.PRrepresentable]
    +y:383 [in hydras.Ackermann.folProp]
    +y:384 [in hydras.Ackermann.folProp]
    +y:387 [in hydras.Ackermann.primRec]
    +y:390 [in hydras.Ackermann.folProp]
    +y:391 [in hydras.Ackermann.folProp]
    +y:394 [in hydras.Ackermann.primRec]
    +y:4 [in Goedel.PRrepresentable]
    +y:4 [in hydras.Ackermann.PAconsistent]
    +y:4 [in hydras.Ackermann.LNN]
    +y:4 [in hydras.Ackermann.LNT]
    +y:40 [in hydras.Prelude.Restriction]
    +y:40 [in gaia_hydras.nfwfgaia]
    +y:401 [in hydras.Ackermann.primRec]
    +y:409 [in hydras.Ackermann.primRec]
    +y:41 [in hydras.OrdinalNotations.ON_Generic]
    +y:412 [in hydras.Epsilon0.T1]
    +y:413 [in hydras.Ackermann.primRec]
    +y:42 [in additions.Compatibility]
    +y:426 [in hydras.Ackermann.primRec]
    +y:432 [in hydras.Ackermann.primRec]
    +y:439 [in hydras.Gamma0.Gamma0]
    +y:440 [in hydras.Ackermann.primRec]
    +y:441 [in hydras.Gamma0.Gamma0]
    +y:444 [in hydras.Gamma0.Gamma0]
    +y:448 [in hydras.Ackermann.primRec]
    +y:449 [in hydras.Gamma0.Gamma0]
    +y:45 [in hydras.Prelude.Sort_spec]
    +y:45 [in hydras.OrdinalNotations.ON_Generic]
    +y:453 [in hydras.Ackermann.primRec]
    +y:461 [in hydras.Ackermann.primRec]
    +y:466 [in hydras.Ackermann.primRec]
    +y:470 [in hydras.Ackermann.primRec]
    +y:474 [in hydras.Ackermann.primRec]
    +y:48 [in gaia_hydras.T1Bridge]
    +Y:48 [in hydras.Schutte.Well_Orders]
    +y:482 [in hydras.Ackermann.primRec]
    +y:487 [in hydras.Ackermann.primRec]
    +y:49 [in additions.AM]
    +y:492 [in hydras.Ackermann.primRec]
    +y:497 [in hydras.Ackermann.primRec]
    +y:5 [in gaia_hydras.onType]
    +y:5 [in hydras.MoreAck.PrimRecExamples]
    +y:501 [in hydras.Ackermann.primRec]
    +y:510 [in gaia_hydras.nfwfgaia]
    +y:517 [in gaia_hydras.nfwfgaia]
    +y:522 [in gaia_hydras.nfwfgaia]
    +y:552 [in gaia_hydras.nfwfgaia]
    +y:555 [in gaia_hydras.nfwfgaia]
    +y:579 [in gaia_hydras.nfwfgaia]
    +y:58 [in hydras.MoreAck.PrimRecExamples]
    +y:581 [in gaia_hydras.nfwfgaia]
    +y:585 [in gaia_hydras.nfwfgaia]
    +y:59 [in hydras.Ackermann.cPair]
    +y:6 [in hydras.solutions_exercises.MinPR2]
    +y:6 [in hydras.Ackermann.PAconsistent]
    +y:6 [in additions.Compatibility]
    +y:6 [in hydras.MoreAck.AckNotPR]
    +y:6 [in additions.Euclidean_Chains]
    +y:6 [in hydras.Prelude.STDPP_compat]
    +y:6 [in additions.Addition_Chains]
    +y:6 [in hydras.rpo.closure]
    +y:60 [in hydras.MoreAck.AckNotPR]
    +y:60 [in hydras.Schutte.PartialFun]
    +y:60 [in hydras.OrdinalNotations.ON_Generic]
    +y:609 [in hydras.Gamma0.Gamma0]
    +y:61 [in hydras.Ackermann.fol]
    +y:610 [in hydras.Gamma0.Gamma0]
    +y:613 [in gaia_hydras.nfwfgaia]
    +y:62 [in hydras.Schutte.Critical]
    +y:62 [in hydras.MoreAck.PrimRecExamples]
    +y:622 [in gaia_hydras.nfwfgaia]
    +y:624 [in gaia_hydras.nfwfgaia]
    +y:63 [in hydras.MoreAck.AckNotPR]
    +y:637 [in gaia_hydras.nfwfgaia]
    +y:645 [in gaia_hydras.nfwfgaia]
    +y:648 [in gaia_hydras.nfwfgaia]
    +y:65 [in hydras.Ackermann.cPair]
    +y:65 [in gaia_hydras.nfwfgaia]
    +y:659 [in hydras.Ackermann.primRec]
    +y:66 [in hydras.Epsilon0.Epsilon0rpo]
    +y:669 [in gaia_hydras.nfwfgaia]
    +y:67 [in hydras.Ackermann.cPair]
    +y:673 [in hydras.Ackermann.primRec]
    +y:68 [in additions.AM]
    +y:68 [in hydras.Epsilon0.Epsilon0rpo]
    +y:68 [in additions.Monoid_def]
    +y:682 [in gaia_hydras.nfwfgaia]
    +y:69 [in hydras.Ackermann.cPair]
    +y:7 [in Goedel.PRrepresentable]
    +y:7 [in hydras.Prelude.DecPreOrder_Instances]
    +y:7 [in hydras.Prelude.More_Arith]
    +y:7 [in hydras.Ackermann.LNN]
    +y:7 [in hydras.Prelude.MoreOrders]
    +y:700 [in gaia_hydras.nfwfgaia]
    +y:707 [in hydras.Gamma0.Gamma0]
    +y:709 [in hydras.Gamma0.Gamma0]
    +y:71 [in hydras.Ackermann.cPair]
    +y:710 [in gaia_hydras.nfwfgaia]
    +y:72 [in hydras.Epsilon0.Epsilon0rpo]
    +y:729 [in hydras.Epsilon0.T1]
    +y:73 [in hydras.Ackermann.cPair]
    +y:75 [in hydras.Ackermann.folProp]
    +y:75 [in hydras.Ackermann.cPair]
    +y:76 [in hydras.Epsilon0.Epsilon0rpo]
    +y:76 [in additions.Monoid_def]
    +y:76 [in hydras.Schutte.PartialFun]
    +y:77 [in hydras.Ackermann.cPair]
    +y:772 [in gaia_hydras.nfwfgaia]
    +y:775 [in gaia_hydras.nfwfgaia]
    +y:78 [in hydras.Ackermann.folProp]
    +y:79 [in hydras.Ackermann.cPair]
    +y:79 [in hydras.Schutte.PartialFun]
    +y:8 [in hydras.Ackermann.LNT]
    +y:8 [in hydras.solutions_exercises.MorePRExamples]
    +y:8 [in hydras.Ackermann.cPair]
    +y:8 [in hydras.rpo.closure]
    +y:81 [in hydras.Ackermann.folProp]
    +y:81 [in hydras.MoreAck.PrimRecExamples]
    +y:817 [in gaia_hydras.nfwfgaia]
    +y:82 [in hydras.MoreAck.AckNotPR]
    +y:820 [in gaia_hydras.nfwfgaia]
    +y:824 [in gaia_hydras.nfwfgaia]
    +y:827 [in gaia_hydras.nfwfgaia]
    +y:832 [in gaia_hydras.nfwfgaia]
    +y:838 [in gaia_hydras.nfwfgaia]
    +y:84 [in hydras.Ackermann.folProp]
    +y:84 [in additions.Euclidean_Chains]
    +y:84 [in gaia_hydras.nfwfgaia]
    +y:85 [in additions.Euclidean_Chains]
    +y:86 [in hydras.Ackermann.cPair]
    +y:87 [in hydras.Ackermann.folProp]
    +y:87 [in hydras.MoreAck.AckNotPR]
    +y:87 [in hydras.MoreAck.PrimRecExamples]
    +y:876 [in gaia_hydras.nfwfgaia]
    +y:88 [in hydras.Ackermann.cPair]
    +y:884 [in gaia_hydras.nfwfgaia]
    +y:888 [in gaia_hydras.nfwfgaia]
    +y:890 [in gaia_hydras.nfwfgaia]
    +y:893 [in gaia_hydras.nfwfgaia]
    +y:9 [in hydras.Prelude.WfVariant]
    +y:9 [in hydras.Ackermann.LNN]
    +y:9 [in additions.Wf_transparent]
    +y:9 [in hydras.Prelude.MoreOrders]
    +y:90 [in hydras.Ackermann.cPair]
    +y:91 [in hydras.Ackermann.folProp]
    +y:92 [in hydras.Ackermann.cPair]
    +y:92 [in gaia_hydras.nfwfgaia]
    +y:93 [in gaia_hydras.nfwfgaia]
    +y:94 [in hydras.Ackermann.cPair]
    +y:94 [in hydras.Schutte.Ordering_Functions]
    +y:95 [in additions.Euclidean_Chains]
    +y:95 [in hydras.Schutte.Ordering_Functions]
    +y:96 [in hydras.Ackermann.cPair]
    +y:96 [in hydras.Schutte.Ordering_Functions]
    +y:96 [in gaia_hydras.nfwfgaia]
    +y:97 [in hydras.Ackermann.folProp]
    +y:97 [in hydras.Ackermann.cPair]
    +y:97 [in hydras.Schutte.Ordering_Functions]
    +y:97 [in hydras.MoreAck.PrimRecExamples]
    +y:98 [in hydras.Ackermann.cPair]
    +y:98 [in additions.Addition_Chains]
    +y:98 [in hydras.Prelude.MoreVectors]
    +y:983 [in gaia_hydras.nfwfgaia]
    +y:99 [in additions.Pow_variant]
    +y:99 [in hydras.Schutte.Ordering_Functions]
    +

    Z

    +z':2092 [in gaia_hydras.nfwfgaia]
    +z':2102 [in gaia_hydras.nfwfgaia]
    +z':580 [in gaia_hydras.nfwfgaia]
    +z':590 [in gaia_hydras.nfwfgaia]
    +z0:273 [in additions.Euclidean_Chains]
    +z0:275 [in additions.Euclidean_Chains]
    +z0:279 [in additions.Euclidean_Chains]
    +z0:281 [in additions.Euclidean_Chains]
    +z1:103 [in hydras.Ackermann.codeSubFormula]
    +z1:105 [in hydras.Ackermann.folProp]
    +z1:110 [in hydras.Ackermann.codeSubFormula]
    +z1:127 [in hydras.Ackermann.folProp]
    +z1:169 [in hydras.Ackermann.fol]
    +z1:253 [in hydras.Ackermann.fol]
    +z1:263 [in hydras.Ackermann.fol]
    +z1:274 [in hydras.Ackermann.fol]
    +z1:282 [in hydras.Ackermann.fol]
    +z1:303 [in hydras.Ackermann.fol]
    +z1:313 [in hydras.Ackermann.fol]
    +z1:324 [in hydras.Ackermann.fol]
    +z1:349 [in hydras.Ackermann.fol]
    +z1:359 [in hydras.Ackermann.fol]
    +z1:370 [in hydras.Ackermann.fol]
    +z1:393 [in hydras.Ackermann.fol]
    +z1:403 [in hydras.Ackermann.fol]
    +z1:414 [in hydras.Ackermann.fol]
    +z1:88 [in hydras.Ackermann.folProp]
    +z1:95 [in hydras.Ackermann.codeSubFormula]
    +z2:104 [in hydras.Ackermann.codeSubFormula]
    +z2:106 [in hydras.Ackermann.folProp]
    +z2:111 [in hydras.Ackermann.codeSubFormula]
    +z2:128 [in hydras.Ackermann.folProp]
    +z2:170 [in hydras.Ackermann.fol]
    +z2:254 [in hydras.Ackermann.fol]
    +z2:264 [in hydras.Ackermann.fol]
    +z2:275 [in hydras.Ackermann.fol]
    +z2:283 [in hydras.Ackermann.fol]
    +z2:304 [in hydras.Ackermann.fol]
    +z2:314 [in hydras.Ackermann.fol]
    +z2:325 [in hydras.Ackermann.fol]
    +z2:350 [in hydras.Ackermann.fol]
    +z2:360 [in hydras.Ackermann.fol]
    +z2:371 [in hydras.Ackermann.fol]
    +z2:394 [in hydras.Ackermann.fol]
    +z2:404 [in hydras.Ackermann.fol]
    +z2:415 [in hydras.Ackermann.fol]
    +z2:89 [in hydras.Ackermann.folProp]
    +z2:96 [in hydras.Ackermann.codeSubFormula]
    +z3:256 [in hydras.Ackermann.fol]
    +z3:306 [in hydras.Ackermann.fol]
    +z3:352 [in hydras.Ackermann.fol]
    +z3:396 [in hydras.Ackermann.fol]
    +z3:92 [in hydras.Ackermann.folProp]
    +z3:98 [in hydras.Ackermann.codeSubFormula]
    +z4:257 [in hydras.Ackermann.fol]
    +z4:307 [in hydras.Ackermann.fol]
    +z4:353 [in hydras.Ackermann.fol]
    +z4:397 [in hydras.Ackermann.fol]
    +z4:93 [in hydras.Ackermann.folProp]
    +z4:99 [in hydras.Ackermann.codeSubFormula]
    +z:1 [in hydras.OrdinalNotations.Example_3PlusOmega]
    +z:100 [in hydras.Epsilon0.Large_Sets]
    +z:101 [in hydras.Epsilon0.Large_Sets]
    +z:102 [in hydras.Epsilon0.Large_Sets]
    +z:103 [in hydras.Prelude.Iterates]
    +z:106 [in hydras.Schutte.Schutte_basics]
    +z:11 [in Goedel.PRrepresentable]
    +z:11 [in hydras.Prelude.MoreOrders]
    +z:11 [in additions.Addition_Chains]
    +z:12 [in additions.Monoid_def]
    +z:13 [in hydras.Ackermann.Deduction]
    +z:133 [in hydras.Schutte.Schutte_basics]
    +z:134 [in hydras.Prelude.Iterates]
    +z:135 [in hydras.Prelude.Iterates]
    +z:135 [in hydras.Schutte.Schutte_basics]
    +z:136 [in hydras.Prelude.Iterates]
    +z:137 [in hydras.Prelude.Iterates]
    +z:138 [in hydras.Prelude.Iterates]
    +z:139 [in hydras.Prelude.Iterates]
    +z:140 [in hydras.Prelude.Iterates]
    +z:144 [in hydras.Prelude.Iterates]
    +z:145 [in hydras.Prelude.Iterates]
    +z:146 [in hydras.Prelude.Iterates]
    +z:146 [in additions.Euclidean_Chains]
    +z:147 [in hydras.Prelude.Iterates]
    +z:148 [in hydras.Prelude.Iterates]
    +z:149 [in hydras.Prelude.Iterates]
    +z:15 [in Goedel.PRrepresentable]
    +z:150 [in hydras.Prelude.Iterates]
    +z:16 [in hydras.Prelude.MoreOrders]
    +z:16 [in hydras.Ackermann.Deduction]
    +z:170 [in hydras.Ackermann.cPair]
    +z:171 [in hydras.Ackermann.cPair]
    +z:177 [in additions.Euclidean_Chains]
    +z:182 [in hydras.Ackermann.cPair]
    +z:183 [in hydras.Ackermann.cPair]
    +z:184 [in hydras.Ackermann.cPair]
    +z:185 [in hydras.Ackermann.cPair]
    +z:186 [in hydras.Ackermann.cPair]
    +z:187 [in hydras.Ackermann.cPair]
    +z:19 [in Goedel.PRrepresentable]
    +z:19 [in gaia_hydras.onType]
    +z:1924 [in gaia_hydras.nfwfgaia]
    +z:1930 [in gaia_hydras.nfwfgaia]
    +z:1940 [in gaia_hydras.nfwfgaia]
    +z:1945 [in gaia_hydras.nfwfgaia]
    +z:1962 [in gaia_hydras.nfwfgaia]
    +z:1973 [in gaia_hydras.nfwfgaia]
    +z:1990 [in gaia_hydras.nfwfgaia]
    +z:2 [in Goedel.PRrepresentable]
    +z:2001 [in gaia_hydras.nfwfgaia]
    +z:2087 [in gaia_hydras.nfwfgaia]
    +z:2090 [in gaia_hydras.nfwfgaia]
    +z:2101 [in gaia_hydras.nfwfgaia]
    +z:23 [in Goedel.PRrepresentable]
    +z:230 [in additions.Euclidean_Chains]
    +z:231 [in hydras.Schutte.Schutte_basics]
    +z:257 [in additions.Euclidean_Chains]
    +z:26 [in gaia_hydras.onType]
    +z:261 [in additions.Euclidean_Chains]
    +z:265 [in additions.Euclidean_Chains]
    +z:269 [in additions.Euclidean_Chains]
    +z:27 [in Goedel.PRrepresentable]
    +z:27 [in hydras.Schutte.Well_Orders]
    +z:276 [in Goedel.PRrepresentable]
    +z:283 [in additions.Euclidean_Chains]
    +z:285 [in additions.Euclidean_Chains]
    +z:287 [in additions.Euclidean_Chains]
    +z:289 [in additions.Euclidean_Chains]
    +z:30 [in additions.Monoid_def]
    +z:30 [in hydras.Schutte.Well_Orders]
    +z:341 [in Goedel.PRrepresentable]
    +z:343 [in Goedel.PRrepresentable]
    +z:346 [in Goedel.PRrepresentable]
    +z:347 [in Goedel.PRrepresentable]
    +z:348 [in Goedel.PRrepresentable]
    +z:349 [in Goedel.PRrepresentable]
    +z:35 [in gaia_hydras.nfwfgaia]
    +z:36 [in hydras.Prelude.MoreOrders]
    +z:36 [in additions.Monoid_instances]
    +z:366 [in Goedel.PRrepresentable]
    +z:367 [in Goedel.PRrepresentable]
    +z:368 [in Goedel.PRrepresentable]
    +z:369 [in Goedel.PRrepresentable]
    +z:372 [in Goedel.PRrepresentable]
    +z:373 [in Goedel.PRrepresentable]
    +z:374 [in Goedel.PRrepresentable]
    +z:375 [in Goedel.PRrepresentable]
    +z:38 [in gaia_hydras.T1Bridge]
    +z:382 [in hydras.Ackermann.primRec]
    +z:388 [in hydras.Ackermann.primRec]
    +z:395 [in hydras.Ackermann.primRec]
    +z:402 [in hydras.Ackermann.primRec]
    +z:402 [in gaia_hydras.nfwfgaia]
    +z:403 [in gaia_hydras.nfwfgaia]
    +z:404 [in gaia_hydras.nfwfgaia]
    +z:405 [in gaia_hydras.nfwfgaia]
    +z:406 [in gaia_hydras.nfwfgaia]
    +z:410 [in hydras.Ackermann.primRec]
    +z:417 [in gaia_hydras.nfwfgaia]
    +z:418 [in gaia_hydras.nfwfgaia]
    +z:419 [in gaia_hydras.nfwfgaia]
    +z:420 [in gaia_hydras.nfwfgaia]
    +z:421 [in gaia_hydras.nfwfgaia]
    +Z:43 [in hydras.Ackermann.code]
    +z:43 [in hydras.Ackermann.fol]
    +z:454 [in gaia_hydras.nfwfgaia]
    +z:455 [in gaia_hydras.nfwfgaia]
    +z:456 [in gaia_hydras.nfwfgaia]
    +z:46 [in hydras.Ackermann.fol]
    +z:49 [in hydras.Ackermann.fol]
    +z:5 [in Goedel.PRrepresentable]
    +z:511 [in gaia_hydras.nfwfgaia]
    +z:512 [in gaia_hydras.nfwfgaia]
    +z:513 [in gaia_hydras.nfwfgaia]
    +z:52 [in hydras.Ackermann.fol]
    +z:57 [in hydras.Schutte.Schutte_basics]
    +z:578 [in gaia_hydras.nfwfgaia]
    +z:58 [in hydras.Schutte.Schutte_basics]
    +z:589 [in gaia_hydras.nfwfgaia]
    +z:62 [in gaia_hydras.nfwfgaia]
    +z:625 [in gaia_hydras.nfwfgaia]
    +z:63 [in hydras.MoreAck.PrimRecExamples]
    +z:631 [in gaia_hydras.nfwfgaia]
    +z:632 [in gaia_hydras.nfwfgaia]
    +z:633 [in gaia_hydras.nfwfgaia]
    +z:634 [in gaia_hydras.nfwfgaia]
    +z:635 [in gaia_hydras.nfwfgaia]
    +z:638 [in gaia_hydras.nfwfgaia]
    +z:639 [in gaia_hydras.nfwfgaia]
    +z:640 [in gaia_hydras.nfwfgaia]
    +z:641 [in gaia_hydras.nfwfgaia]
    +z:642 [in gaia_hydras.nfwfgaia]
    +z:643 [in gaia_hydras.nfwfgaia]
    +z:646 [in gaia_hydras.nfwfgaia]
    +z:649 [in gaia_hydras.nfwfgaia]
    +z:7 [in hydras.MoreAck.AckNotPR]
    +z:7 [in additions.Euclidean_Chains]
    +z:7 [in hydras.Prelude.STDPP_compat]
    +z:730 [in hydras.Epsilon0.T1]
    +z:741 [in gaia_hydras.nfwfgaia]
    +z:742 [in gaia_hydras.nfwfgaia]
    +z:743 [in gaia_hydras.nfwfgaia]
    +z:744 [in gaia_hydras.nfwfgaia]
    +z:796 [in gaia_hydras.nfwfgaia]
    +z:798 [in gaia_hydras.nfwfgaia]
    +z:8 [in Goedel.PRrepresentable]
    +z:8 [in additions.Addition_Chains]
    +z:801 [in gaia_hydras.nfwfgaia]
    +z:804 [in gaia_hydras.nfwfgaia]
    +z:808 [in gaia_hydras.nfwfgaia]
    +z:812 [in gaia_hydras.nfwfgaia]
    +z:818 [in gaia_hydras.nfwfgaia]
    +z:821 [in gaia_hydras.nfwfgaia]
    +z:825 [in gaia_hydras.nfwfgaia]
    +z:828 [in gaia_hydras.nfwfgaia]
    +z:833 [in gaia_hydras.nfwfgaia]
    +z:86 [in hydras.Ackermann.fol]
    +z:88 [in hydras.Ackermann.fol]
    +z:9 [in hydras.rpo.closure]
    +z:91 [in hydras.Prelude.Iterates]
    +z:91 [in gaia_hydras.nfwfgaia]
    +z:94 [in hydras.Epsilon0.Large_Sets]
    +z:96 [in hydras.Schutte.Schutte_basics]
    +z:97 [in hydras.Prelude.Iterates]
    +z:97 [in hydras.Epsilon0.Large_Sets]
    +z:97 [in hydras.Schutte.Schutte_basics]
    +z:98 [in hydras.Epsilon0.Large_Sets]
    +z:98 [in hydras.Ackermann.fol]
    +z:98 [in hydras.MoreAck.PrimRecExamples]
    +z:99 [in hydras.Epsilon0.Large_Sets]
    +z:99 [in hydras.Ackermann.fol]
    +z:99 [in additions.Addition_Chains]
    +


    +

    Module Index

    +

    A

    +Ackermann [in gaia_hydras.nfwfgaia]
    +Alt [in hydras.Epsilon0.Epsilon0rpo]
    +Alt [in hydras.MoreAck.Ack]
    +Alt [in additions.Demo]
    +Alt [in hydras.MoreAck.PrimRecExamples]
    +Alt [in hydras.Hydra.Hydra_Definitions]
    +Alt.Eps0_rpo [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_alg [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_prec [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_sig [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Vars [in hydras.Epsilon0.Epsilon0rpo]
    +Alt2 [in hydras.MoreAck.Ack]
    +Alt3 [in hydras.MoreAck.Ack]
    +

    B

    +Bad [in additions.FirstSteps]
    +Bad [in hydras.Hydra.Hydra_Examples]
    +Bad [in additions.Euclidean_Chains]
    +Bad [in additions.Monoid_instances]
    +BadSubst [in hydras.MoreAck.BadSubst]
    +BadSubstF2 [in hydras.MoreAck.BadSubst]
    +Bad2 [in additions.Euclidean_Chains]
    +Bad3 [in additions.Euclidean_Chains]
    +Bad4 [in additions.Euclidean_Chains]
    +

    C

    +CantorOrdinal [in gaia_hydras.nfwfgaia]
    +Compat815 [in hydras.Prelude.Compat815]
    +

    D

    +Demo [in additions.Monoid_def]
    +Direct_proof [in hydras.Epsilon0.T1]
    +

    E

    +Examples [in hydras.Hydra.Hydra_Examples]
    +Examples [in hydras.Ackermann.primRec]
    +Examples [in additions.Euclidean_Chains]
    +

    F

    +FixpointDef [in gaia_hydras.GHessenberg]
    +FolNotations [in hydras.Ackermann.fol]
    +

    G

    +Gamma0 [in gaia_hydras.nfwfgaia]
    +Gamma0_rpo [in hydras.Gamma0.Gamma0]
    +Gamma0_alg [in hydras.Gamma0.Gamma0]
    +Gamma0_prec [in hydras.Gamma0.Gamma0]
    +Gamma0_sig [in hydras.Gamma0.Gamma0]
    +G0 [in hydras.Gamma0.Gamma0]
    +

    I

    +iota_demo.Bad [in hydras.Schutte.Schutte_basics]
    +iota_demo [in hydras.Schutte.Schutte_basics]
    +

    L

    +LispAbbreviations [in hydras.Ackermann.cPair]
    +LNT [in hydras.Ackermann.LNT]
    +LO [in hydras.OrdinalNotations.OmegaOmega]
    +

    M

    +Make [in hydras.rpo.term]
    +Make [in hydras.rpo.list_set]
    +Make [in hydras.rpo.dickson]
    +Make [in hydras.rpo.list_permut]
    +Make [in hydras.rpo.rpo]
    +Make.DecVar [in hydras.rpo.term]
    +Make.DS [in hydras.rpo.list_set]
    +Make.DS [in hydras.rpo.dickson]
    +Make.DS [in hydras.rpo.list_permut]
    +Make.F [in hydras.rpo.term]
    +Make.LP [in hydras.rpo.list_set]
    +Make.LP [in hydras.rpo.dickson]
    +Make.LP [in hydras.rpo.rpo]
    +Make.P [in hydras.rpo.rpo]
    +Make.T [in hydras.rpo.rpo]
    +Make.Term_eq_dec [in hydras.rpo.term]
    +Make.VSet [in hydras.rpo.term]
    +Make.X [in hydras.rpo.term]
    +MoreExamples [in hydras.MoreAck.PrimRecExamples]
    +M2 [in additions.FirstSteps]
    +M2 [in additions.Naive]
    +

    N

    +NNnotations [in hydras.Ackermann.LNN]
    +N_mod [in additions.Naive]
    +

    O

    +ONDef [in gaia_hydras.onType]
    +ONDef.Exports [in gaia_hydras.onType]
    +OO [in hydras.OrdinalNotations.OmegaOmega]
    +OpaqueWf [in hydras.Prelude.Fuel]
    +

    P

    +Permut [in hydras.rpo.list_permut]
    +Permut.DS [in hydras.rpo.list_permut]
    +Precedence [in hydras.rpo.rpo]
    +PRNotations [in hydras.Ackermann.primRec]
    +

    R

    +RPO [in hydras.rpo.rpo]
    +RPO.LP [in hydras.rpo.rpo]
    +RPO.P [in hydras.rpo.rpo]
    +RPO.T [in hydras.rpo.rpo]
    +

    S

    +S [in hydras.rpo.decidable_set]
    +S [in hydras.rpo.list_set]
    +Semibundled [in hydras.Prelude.DecPreOrder]
    +Signature [in hydras.rpo.term]
    +S.DS [in hydras.rpo.list_set]
    +

    T

    +Term [in hydras.rpo.term]
    +Term.F [in hydras.rpo.term]
    +Term.Term_eq_dec [in hydras.rpo.term]
    +Term.X [in hydras.rpo.term]
    +Toy [in hydras.MoreAck.FolExamples]
    +

    U

    +Usual [in Goedel.PRrepresentable]
    +

    V

    +Variables [in hydras.rpo.term]
    +Vars [in hydras.Gamma0.Gamma0]
    +

    W

    +Wfsum [in gaia_hydras.nfwfgaia]
    +Wf_ex3 [in gaia_hydras.nfwfgaia]
    +Wf_ex [in gaia_hydras.nfwfgaia]
    +

    Z

    +Z [in additions.Naive]
    +


    +

    Variable Index

    +

    A

    +Abstract_Properties.alpha [in hydras.Epsilon0.Hprime]
    +AB_given.rel_to_fun.Rf [in hydras.Schutte.PartialFun]
    +AB_given.f_given.Rf [in hydras.Schutte.PartialFun]
    +AB_given.f_given.f [in hydras.Schutte.PartialFun]
    +AB_given.DB [in hydras.Schutte.PartialFun]
    +AB_given.DA [in hydras.Schutte.PartialFun]
    +AB_given.Hb [in hydras.Schutte.PartialFun]
    +AB_given.Ha [in hydras.Schutte.PartialFun]
    +AB_given.B [in hydras.Schutte.PartialFun]
    +AB_given.A [in hydras.Schutte.PartialFun]
    +Ack_Properties.Induc_step.Hm [in hydras.MoreAck.Ack]
    +Ack_Properties.Induc_step.m [in hydras.MoreAck.Ack]
    +Ack_Properties.P [in hydras.MoreAck.Ack]
    +Alt.well_founded.R [in hydras.Epsilon0.Epsilon0rpo]
    +AP_closed.denM [in hydras.Schutte.AP]
    +AP_closed.inhM [in hydras.Schutte.AP]
    +AP_closed.OM [in hydras.Schutte.AP]
    +AP_closed.M [in hydras.Schutte.AP]
    +AP_Unbounded.ksi_fixed.n [in hydras.Schutte.AP]
    +AP_Unbounded.ksi_fixed.lt_ksi [in hydras.Schutte.AP]
    +AP_Unbounded.ksi_fixed.ksi [in hydras.Schutte.AP]
    +AP_Unbounded.beta [in hydras.Schutte.AP]
    +AP_Unbounded.seq [in hydras.Schutte.AP]
    +AP_Unbounded.alpha [in hydras.Schutte.AP]
    +A_def.m [in hydras.OrdinalNotations.ON_Omega2]
    +A_given.LtA [in hydras.solutions_exercises.MultisetWf]
    +A_given.A [in hydras.solutions_exercises.MultisetWf]
    +

    B

    +BadExample.F [in hydras.MoreAck.BadSubst]
    +BadExample.F1 [in hydras.MoreAck.BadSubst]
    +Bad.CounterExample.mul [in additions.FirstSteps]
    +Bad.CounterExample.one [in additions.FirstSteps]
    +battle_length_notPR.m [in hydras.Hydra.Hydra_Theorems]
    +battle_length_notPR.h [in hydras.Hydra.Hydra_Theorems]
    +battle_length_notPR.alpha [in hydras.Hydra.Hydra_Theorems]
    +Battle_length.l [in hydras.Hydra.Battle_length]
    +Battle_length.Hk [in hydras.Hydra.Battle_length]
    +Battle_length.k [in hydras.Hydra.Battle_length]
    +Battle_length.Halpha [in hydras.Hydra.Battle_length]
    +Battle_length.alpha [in hydras.Hydra.Battle_length]
    +binary_power_proof.E_eq [in additions.Addition_Chains]
    +binary_power_proof.E_one [in additions.Addition_Chains]
    +binary_power_proof.E_op [in additions.Addition_Chains]
    +binary_power_proof.A [in additions.Addition_Chains]
    +Bounded.m_decrease [in hydras.Hydra.Epsilon0_Needed_Generic]
    +building_ordering_function_by_induction.B [in hydras.Schutte.Ordering_Functions]
    +building_ordering_function_1.g_1 [in hydras.Schutte.Ordering_Functions]
    +building_ordering_function_1.beta_fixed.beta_B [in hydras.Schutte.Ordering_Functions]
    +building_ordering_function_1.beta_fixed.beta [in hydras.Schutte.Ordering_Functions]
    +building_ordering_function_1.H_B [in hydras.Schutte.Ordering_Functions]
    +building_ordering_function_1.B [in hydras.Schutte.Ordering_Functions]
    +

    C

    +Check_Proof.Prf [in hydras.Ackermann.checkPrf]
    +Check_Proof.wellFormedFormula [in hydras.Ackermann.checkPrf]
    +Check_Proof.wellFormedTerm [in hydras.Ackermann.checkPrf]
    +Check_Proof.Formula [in hydras.Ackermann.checkPrf]
    +Check_Proof.Terms [in hydras.Ackermann.checkPrf]
    +Check_Proof.Term [in hydras.Ackermann.checkPrf]
    +Check_Proof.codeRInj [in hydras.Ackermann.checkPrf]
    +Check_Proof.codeFInj [in hydras.Ackermann.checkPrf]
    +Check_Proof.codeArityRIsCorrect2 [in hydras.Ackermann.checkPrf]
    +Check_Proof.codeArityRIsCorrect1 [in hydras.Ackermann.checkPrf]
    +Check_Proof.codeArityFIsCorrect2 [in hydras.Ackermann.checkPrf]
    +Check_Proof.codeArityFIsCorrect1 [in hydras.Ackermann.checkPrf]
    +Check_Proof.codeArityR [in hydras.Ackermann.checkPrf]
    +Check_Proof.codeArityF [in hydras.Ackermann.checkPrf]
    +Check_Proof.L [in hydras.Ackermann.checkPrf]
    +close.codeFormula [in hydras.Ackermann.codePA]
    +close.Formula [in hydras.Ackermann.codePA]
    +close.L [in hydras.Ackermann.codePA]
    +Code_Free_Vars.Terms [in hydras.Ackermann.codeFreeVar]
    +Code_Free_Vars.Term [in hydras.Ackermann.codeFreeVar]
    +Code_Free_Vars.System [in hydras.Ackermann.codeFreeVar]
    +Code_Free_Vars.Formulas [in hydras.Ackermann.codeFreeVar]
    +Code_Free_Vars.Formula [in hydras.Ackermann.codeFreeVar]
    +Code_Free_Vars.L [in hydras.Ackermann.codeFreeVar]
    +Code_Substitute_Term.Terms [in hydras.Ackermann.codeSubTerm]
    +Code_Substitute_Term.Term [in hydras.Ackermann.codeSubTerm]
    +Code_Substitute_Term.System [in hydras.Ackermann.codeSubTerm]
    +Code_Substitute_Term.Formulas [in hydras.Ackermann.codeSubTerm]
    +Code_Substitute_Term.Formula [in hydras.Ackermann.codeSubTerm]
    +Code_Substitute_Term.L [in hydras.Ackermann.codeSubTerm]
    +Code_Substitute_Formula.codeTerm [in hydras.Ackermann.codeSubFormula]
    +Code_Substitute_Formula.codeFormula [in hydras.Ackermann.codeSubFormula]
    +Code_Substitute_Formula.L [in hydras.Ackermann.codeSubFormula]
    +Code_Term_Formula_Proof.SysPrf [in hydras.Ackermann.code]
    +Code_Term_Formula_Proof.Prf [in hydras.Ackermann.code]
    +Code_Term_Formula_Proof.Terms [in hydras.Ackermann.code]
    +Code_Term_Formula_Proof.Term [in hydras.Ackermann.code]
    +Code_Term_Formula_Proof.System [in hydras.Ackermann.code]
    +Code_Term_Formula_Proof.Formulas [in hydras.Ackermann.code]
    +Code_Term_Formula_Proof.Formula [in hydras.Ackermann.code]
    +Code_Term_Formula_Proof.LcodeDef.cR [in hydras.Ackermann.code]
    +Code_Term_Formula_Proof.LcodeDef.cF [in hydras.Ackermann.code]
    +Code_Term_Formula_Proof.L [in hydras.Ackermann.code]
    +code_nat_list.drop [in hydras.Ackermann.cPair]
    +code_SysPrf.LNN.expressU2 [in Goedel.codeSysPrf]
    +code_SysPrf.LNN.expressU1 [in Goedel.codeSysPrf]
    +code_SysPrf.LNN.freeVarfU [in Goedel.codeSysPrf]
    +code_SysPrf.LNN.v0 [in Goedel.codeSysPrf]
    +code_SysPrf.LNN.fU [in Goedel.codeSysPrf]
    +code_SysPrf.LNN.U [in Goedel.codeSysPrf]
    +code_SysPrf.LNN.TextendsNN [in Goedel.codeSysPrf]
    +code_SysPrf.LNN.T [in Goedel.codeSysPrf]
    +code_SysPrf.codeArityRIsCorrect2 [in Goedel.codeSysPrf]
    +code_SysPrf.codeArityRIsCorrect1 [in Goedel.codeSysPrf]
    +code_SysPrf.codeArityFIsCorrect2 [in Goedel.codeSysPrf]
    +code_SysPrf.codeArityFIsCorrect1 [in Goedel.codeSysPrf]
    +code_SysPrf.codeArityR [in Goedel.codeSysPrf]
    +code_SysPrf.codeArityF [in Goedel.codeSysPrf]
    +code_SysPrf.L [in Goedel.codeSysPrf]
    +Code_PA.codeFormulaInj [in hydras.Ackermann.codePA]
    +Code_PA.codeFormula [in hydras.Ackermann.codePA]
    +Code_PA.codeTerm [in hydras.Ackermann.codePA]
    +compose2Examples.f [in hydras.MoreAck.PrimRecExamples]
    +compose2Examples.f' [in hydras.MoreAck.PrimRecExamples]
    +compose2Examples.g [in hydras.MoreAck.PrimRecExamples]
    +compose2Examples.g' [in hydras.MoreAck.PrimRecExamples]
    +compose2Examples.h [in hydras.MoreAck.PrimRecExamples]
    +CompositionProofs.App.cn [in additions.AM]
    +CompositionProofs.App.cp [in additions.AM]
    +CompositionProofs.App.Hn [in additions.AM]
    +CompositionProofs.App.Hp [in additions.AM]
    +CompositionProofs.App.n [in additions.AM]
    +CompositionProofs.App.p [in additions.AM]
    +CompositionProofs.FFK.cp [in additions.AM]
    +CompositionProofs.FFK.cq [in additions.AM]
    +CompositionProofs.FFK.Hp [in additions.AM]
    +CompositionProofs.FFK.Hq [in additions.AM]
    +CompositionProofs.FFK.p [in additions.AM]
    +CompositionProofs.FFK.q [in additions.AM]
    +CompositionProofs.FK.cn [in additions.AM]
    +CompositionProofs.FK.Hn [in additions.AM]
    +CompositionProofs.FK.n [in additions.AM]
    +CompositionProofs.KFK.Hpr [in additions.AM]
    +CompositionProofs.KFK.Hq [in additions.AM]
    +CompositionProofs.KFK.kpr [in additions.AM]
    +CompositionProofs.KFK.mq [in additions.AM]
    +CompositionProofs.KFK.p [in additions.AM]
    +CompositionProofs.KFK.q [in additions.AM]
    +CompositionProofs.KFK.r [in additions.AM]
    +Composition.f [in hydras.MoreAck.PrimRecExamples]
    +Composition.g [in hydras.MoreAck.PrimRecExamples]
    +Composition.h [in hydras.MoreAck.PrimRecExamples]
    +Composition.k [in hydras.MoreAck.PrimRecExamples]
    +Composition.t [in hydras.MoreAck.PrimRecExamples]
    +Composition.u [in hydras.MoreAck.PrimRecExamples]
    +Composition.v [in hydras.MoreAck.PrimRecExamples]
    +Composition.x [in hydras.MoreAck.PrimRecExamples]
    +Composition.y [in hydras.MoreAck.PrimRecExamples]
    +Composition.z [in hydras.MoreAck.PrimRecExamples]
    +Constant_to_standard_Proof.delta [in hydras.Epsilon0.Paths]
    +Constant_to_standard_Proof.m [in hydras.Epsilon0.Paths]
    +Constant_to_standard_Proof.gamma [in hydras.Epsilon0.Paths]
    +Constant_to_standard_Proof.l [in hydras.Epsilon0.Paths]
    +Constant_to_standard_Proof.l_def [in hydras.Epsilon0.Paths]
    +Constant_to_standard_Proof.P [in hydras.Epsilon0.Paths]
    +Constant_to_standard_Proof.t [in hydras.Epsilon0.Paths]
    +Constant_to_standard_Proof.Hpa [in hydras.Epsilon0.Paths]
    +Constant_to_standard_Proof.Hpos [in hydras.Epsilon0.Paths]
    +Constant_to_standard_Proof.Halpha [in hydras.Epsilon0.Paths]
    +Constant_to_standard_Proof.n [in hydras.Epsilon0.Paths]
    +Constant_to_standard_Proof.beta [in hydras.Epsilon0.Paths]
    +Constant_to_standard_Proof.alpha [in hydras.Epsilon0.Paths]
    +Correctness.L [in hydras.Ackermann.fol]
    +Correctness.P [in hydras.Ackermann.fol]
    +Correctness.Q [in hydras.Ackermann.fol]
    +Correctness.R [in hydras.Ackermann.fol]
    +Countable.Countable_bijection.g_bij [in hydras.Schutte.Countable]
    +Countable.Countable_bijection.g [in hydras.Schutte.Countable]
    +Countable.Countable_bijection.B [in hydras.Schutte.Countable]
    +Countable.Countable_bijection.A [in hydras.Schutte.Countable]
    +Countable.Countable_bijection.V [in hydras.Schutte.Countable]
    +Countable.Definitions.A [in hydras.Schutte.Countable]
    +Countable.Definitions.U [in hydras.Schutte.Countable]
    +Countable.U [in hydras.Schutte.Countable]
    +Counter_Example.is_in_seq [in hydras.solutions_exercises.MultisetWf]
    +Counter_Example.Hwf [in hydras.solutions_exercises.MultisetWf]
    +Counter_Example.R [in hydras.solutions_exercises.MultisetWf]
    +CPair_projections.searchXY [in hydras.Ackermann.cPair]
    +Cter_example.l [in hydras.solutions_exercises.schutte_cnf_counter_example]
    +Cter_example.alpha [in hydras.solutions_exercises.schutte_cnf_counter_example]
    +Cter_example.cnf_lt_epsilon0_iff [in hydras.solutions_exercises.schutte_cnf_counter_example]
    +

    D

    +Deduction_Theorem.list_incl [in hydras.Ackermann.Deduction]
    +Deduction_Theorem.SysPrf [in hydras.Ackermann.Deduction]
    +Deduction_Theorem.Prf [in hydras.Ackermann.Deduction]
    +Deduction_Theorem.Terms [in hydras.Ackermann.Deduction]
    +Deduction_Theorem.Term [in hydras.Ackermann.Deduction]
    +Deduction_Theorem.System [in hydras.Ackermann.Deduction]
    +Deduction_Theorem.Formulas [in hydras.Ackermann.Deduction]
    +Deduction_Theorem.Formula [in hydras.Ackermann.Deduction]
    +Deduction_Theorem.L [in hydras.Ackermann.Deduction]
    +Definitions.A [in additions.FirstSteps]
    +Definitions.A [in hydras.Prelude.Simple_LexProd]
    +Definitions.B [in hydras.Prelude.Simple_LexProd]
    +Definitions.ltA [in hydras.Prelude.Simple_LexProd]
    +Definitions.ltB [in hydras.Prelude.Simple_LexProd]
    +Definitions.mult [in additions.FirstSteps]
    +Definitions.one [in additions.FirstSteps]
    +Definitions.pair2sig [in hydras.Prelude.Simple_LexProd]
    +Definitions.wfA [in hydras.Prelude.Simple_LexProd]
    +Definitions.wfB [in hydras.Prelude.Simple_LexProd]
    +Defs.A [in hydras.Prelude.MoreOrders]
    +Defs.lt [in hydras.Prelude.MoreOrders]
    +depth_rec_demo.a [in hydras.MoreAck.FolExamples]
    +depth_rec_demo.P [in hydras.MoreAck.FolExamples]
    +depth_rec_demo.L [in hydras.MoreAck.FolExamples]
    +Direct_proof.well_foundedness_proof.Acc_strong [in hydras.Epsilon0.T1]
    +dom_AckNotPR.Hf [in hydras.MoreAck.AckNotPR]
    +dom_AckNotPR.f [in hydras.MoreAck.AckNotPR]
    +DS_iota.Proof_case_6.Hn [in hydras.Hydra.O2H]
    +DS_iota.Proof_case_6.n [in hydras.Hydra.O2H]
    +DS_iota.Proof_case_6.gamma_pos [in hydras.Hydra.O2H]
    +DS_iota.Proof_case_6.Hgamma [in hydras.Hydra.O2H]
    +DS_iota.Proof_case_6.Hbeta [in hydras.Hydra.O2H]
    +DS_iota.Proof_case_6.gamma [in hydras.Hydra.O2H]
    +DS_iota.Proof_case_6.beta [in hydras.Hydra.O2H]
    +DS_iota.Proof_case_5.Hn [in hydras.Hydra.O2H]
    +DS_iota.Proof_case_5.n [in hydras.Hydra.O2H]
    +DS_iota.Proof_case_5.Hgamma [in hydras.Hydra.O2H]
    +DS_iota.Proof_case_5.gamma [in hydras.Hydra.O2H]
    +DS_iota.Proof_case_4.Hn [in hydras.Hydra.O2H]
    +DS_iota.Proof_case_4.n [in hydras.Hydra.O2H]
    +DS_iota.Proof_case_4.Hlim [in hydras.Hydra.O2H]
    +DS_iota.Proof_case_4.Hlambda [in hydras.Hydra.O2H]
    +DS_iota.Proof_case_4.lambda [in hydras.Hydra.O2H]
    +DS_iota.Hrec [in hydras.Hydra.O2H]
    +DS_iota.nonzero [in hydras.Hydra.O2H]
    +DS_iota.Halpha [in hydras.Hydra.O2H]
    +DS_iota.i [in hydras.Hydra.O2H]
    +DS_iota.alpha [in hydras.Hydra.O2H]
    +

    E

    +Equality_Logic_Rules.termsMap [in hydras.Ackermann.folLogic3]
    +Equality_Logic_Rules.SysPrf [in hydras.Ackermann.folLogic3]
    +Equality_Logic_Rules.Prf [in hydras.Ackermann.folLogic3]
    +Equality_Logic_Rules.L [in hydras.Ackermann.folLogic3]
    +Equations_for_addition.case3.Hac [in hydras.Schutte.Correctness_E0]
    +Equations_for_addition.case2.Hac [in hydras.Schutte.Correctness_E0]
    +Equations_for_addition.case1.Hac [in hydras.Schutte.Correctness_E0]
    +Equations_for_addition.beta [in hydras.Schutte.Correctness_E0]
    +Equations_for_addition.alpha [in hydras.Schutte.Correctness_E0]
    +Equations_for_addition.Hnfc [in hydras.Schutte.Correctness_E0]
    +Equations_for_addition.Hnfa [in hydras.Schutte.Correctness_E0]
    +Equations_for_addition.p [in hydras.Schutte.Correctness_E0]
    +Equations_for_addition.n [in hydras.Schutte.Correctness_E0]
    +Equations_for_addition.d [in hydras.Schutte.Correctness_E0]
    +Equations_for_addition.c [in hydras.Schutte.Correctness_E0]
    +Equations_for_addition.b [in hydras.Schutte.Correctness_E0]
    +Equations_for_addition.a [in hydras.Schutte.Correctness_E0]
    +Equivalence.A [in additions.Compatibility]
    +Equivalence.is_power_of [in additions.Compatibility]
    +Equivalence.one [in additions.Compatibility]
    +Equivalence.op [in additions.Compatibility]
    +Equivalence.pos_iter_M [in additions.Compatibility]
    +essai.n [in hydras.Epsilon0.T1]
    +Examples.f [in hydras.Ackermann.LNT]
    +Examples.f1 [in hydras.MoreAck.LNN_Examples]
    +Examples.f2 [in hydras.MoreAck.LNN_Examples]
    +Examples.f2' [in hydras.MoreAck.LNN_Examples]
    +Examples.f3 [in hydras.MoreAck.LNN_Examples]
    +Examples.f4 [in hydras.MoreAck.LNN_Examples]
    +Examples.t1 [in hydras.MoreAck.LNN_Examples]
    +Exs.f [in hydras.MoreAck.PrimRecExamples]
    +Exs.fdiv2 [in hydras.MoreAck.PrimRecExamples]
    +Exs.ffib [in hydras.MoreAck.PrimRecExamples]
    +

    F

    +First_Order_Logic.Formula_Decidability.consTermsHelp [in hydras.Ackermann.fol]
    +First_Order_Logic.Formula_Decidability.nilTermsHelp [in hydras.Ackermann.fol]
    +First_Order_Logic.Formula_Decidability.language_eqdec [in hydras.Ackermann.fol]
    +First_Order_Logic.L [in hydras.Ackermann.fol]
    +Fix.A [in hydras.Prelude.Restriction]
    +Fix.E [in hydras.Prelude.Restriction]
    +Fix.F [in hydras.Prelude.Restriction]
    +Fix.Hwf [in hydras.Prelude.Restriction]
    +Fix.P [in hydras.Prelude.Restriction]
    +Fix.R [in hydras.Prelude.Restriction]
    +Fix.Rwf [in hydras.Prelude.Restriction]
    +Fol_Properties.lt_depth [in hydras.Ackermann.folProp]
    +Fol_Properties.L [in hydras.Ackermann.folProp]
    +F_monotony_l.case_lt.Hd [in hydras.Epsilon0.F_alpha]
    +F_monotony_l.case_lt.Hlt [in hydras.Epsilon0.F_alpha]
    +F_monotony_l.case_lt.n [in hydras.Epsilon0.F_alpha]
    +F_monotony_l.case_eq.Heq [in hydras.Epsilon0.F_alpha]
    +F_monotony_l.H'_beta_alpha [in hydras.Epsilon0.F_alpha]
    +F_monotony_l.beta [in hydras.Epsilon0.F_alpha]
    +F_monotony_l.alpha [in hydras.Epsilon0.F_alpha]
    +F_alpha_notPR.H [in hydras.Epsilon0.F_omega]
    +F_alpha_notPR.case_lt.Halpha [in hydras.Epsilon0.F_omega]
    +F_alpha_notPR.alpha [in hydras.Epsilon0.F_omega]
    +

    G

    +Gamma.All_OK.c [in additions.AM]
    +Gamma.All_OK.n [in additions.AM]
    +Gamma.gamma [in additions.AM]
    +Gamma.gamma [in additions.Euclidean_Chains]
    +General_Relations.elagage.to_nat_elagage.R [in hydras.Schutte.GRelations]
    +General_Relations.surjection2injection.R_surj [in hydras.Schutte.GRelations]
    +General_Relations.surjection2injection.R [in hydras.Schutte.GRelations]
    +General_Relations.injection2surjection.R_inj [in hydras.Schutte.GRelations]
    +General_Relations.injection2surjection.R [in hydras.Schutte.GRelations]
    +General_Relations.DB [in hydras.Schutte.GRelations]
    +General_Relations.DA [in hydras.Schutte.GRelations]
    +General_Relations.B [in hydras.Schutte.GRelations]
    +General_Relations.A [in hydras.Schutte.GRelations]
    +General_Relations.Definitions.R [in hydras.Schutte.GRelations]
    +General_Relations.Definitions.DB [in hydras.Schutte.GRelations]
    +General_Relations.Definitions.DA [in hydras.Schutte.GRelations]
    +General_Relations.Definitions.B [in hydras.Schutte.GRelations]
    +General_Relations.Definitions.A [in hydras.Schutte.GRelations]
    +Generic.A [in hydras.Prelude.Merge_Sort]
    +Generic.Merging.Correctness.merge_sort.split_permutation [in hydras.Prelude.Merge_Sort]
    +Generic.Merging.Correctness.merge_sort.split_decr [in hydras.Prelude.Merge_Sort]
    +Generic.Merging.Correctness.merge_sort.split [in hydras.Prelude.Merge_Sort]
    +Generic.Merging.le [in hydras.Prelude.Merge_Sort]
    +Goedel's_1st_Incompleteness.expressT2 [in Goedel.goedel1]
    +Goedel's_1st_Incompleteness.expressT1 [in Goedel.goedel1]
    +Goedel's_1st_Incompleteness.freeVarRepT [in Goedel.goedel1]
    +Goedel's_1st_Incompleteness.v0 [in Goedel.goedel1]
    +Goedel's_1st_Incompleteness.repT [in Goedel.goedel1]
    +Goedel's_1st_Incompleteness.extendsNN [in Goedel.goedel1]
    +Goedel's_1st_Incompleteness.T [in Goedel.goedel1]
    +Goedel's_2nd_Incompleteness.HBL3 [in Goedel.goedel2]
    +Goedel's_2nd_Incompleteness.HBL2 [in Goedel.goedel2]
    +Goedel's_2nd_Incompleteness.expressT2 [in Goedel.goedel2]
    +Goedel's_2nd_Incompleteness.expressT1 [in Goedel.goedel2]
    +Goedel's_2nd_Incompleteness.freeVarRepT [in Goedel.goedel2]
    +Goedel's_2nd_Incompleteness.v0 [in Goedel.goedel2]
    +Goedel's_2nd_Incompleteness.repT [in Goedel.goedel2]
    +Goedel's_2nd_Incompleteness.extendsPA [in Goedel.goedel2]
    +Goedel's_2nd_Incompleteness.T [in Goedel.goedel2]
    +

    H

    +Hypos.Hn [in hydras.Prelude.First_toggle]
    +Hypos.Hnp [in hydras.Prelude.First_toggle]
    +Hypos.Hp [in hydras.Prelude.First_toggle]
    +Hypos.R [in hydras.Prelude.First_toggle]
    +Hypos.search_toggle [in hydras.Prelude.First_toggle]
    +Hypos.spec [in hydras.Prelude.First_toggle]
    +H'_F.IHalpha [in hydras.Epsilon0.F_alpha]
    +H'_F.alpha [in hydras.Epsilon0.F_alpha]
    +H'_F.P [in hydras.Epsilon0.F_alpha]
    +H'_omega_cube_3.N [in hydras.Epsilon0.Hprime]
    +H'_omega_cube_3.f [in hydras.Epsilon0.Hprime]
    +H'_cons.i [in hydras.Epsilon0.Hprime]
    +H'_cons.alpha [in hydras.Epsilon0.Hprime]
    +

    I

    +ImpossibilityProof.m [in gaia_hydras.GHydra]
    +ImpossibilityProof.mh [in gaia_hydras.GHydra]
    +ImpossibilityProof.mu [in gaia_hydras.GHydra]
    +ImpossibilityProof.nfMu [in gaia_hydras.GHydra]
    +Impossibility_Proof.small_h [in hydras.Hydra.Epsilon0_Needed_Free]
    +Impossibility_Proof.big_h [in hydras.Hydra.Epsilon0_Needed_Free]
    +Impossibility_Proof.small_h [in hydras.Hydra.Epsilon0_Needed_Std]
    +Impossibility_Proof.big_h [in hydras.Hydra.Epsilon0_Needed_Std]
    +Impossibility_Proof.small_h [in hydras.Hydra.Omega2_Small]
    +Impossibility_Proof.iota [in hydras.Hydra.Omega2_Small]
    +Impossibility_Proof.big_h [in hydras.Hydra.Omega2_Small]
    +Impossibility_Proof.m [in hydras.Hydra.Omega2_Small]
    +Impossibility_Proof.small_h [in hydras.Hydra.Omega_Small]
    +Impossibility_Proof.big_h [in hydras.Hydra.Omega_Small]
    +Impossibility_Proof.iota [in hydras.Hydra.Omega_Small]
    +Impossibility_Proof.m [in hydras.Hydra.Omega_Small]
    +Impossibility1.m [in hydras.solutions_exercises.MultisetWf]
    +Impossibility1.mDecr [in hydras.solutions_exercises.MultisetWf]
    +Impossibility1.x [in hydras.solutions_exercises.MultisetWf]
    +Impossibility1.y [in hydras.solutions_exercises.MultisetWf]
    +Inclusion_ij.b [in hydras.OrdinalNotations.ON_Finite]
    +Inclusion_ij.Hij [in hydras.OrdinalNotations.ON_Finite]
    +Inclusion_ij.j [in hydras.OrdinalNotations.ON_Finite]
    +Inclusion_ij.i [in hydras.OrdinalNotations.ON_Finite]
    +inductive_step.Hn [in hydras.Epsilon0.F_omega]
    +inductive_step.n [in hydras.Epsilon0.F_omega]
    +Inverse_Image_transp.Rof [in additions.Wf_transparent]
    +Inverse_Image_transp.f [in additions.Wf_transparent]
    +Inverse_Image_transp.R [in additions.Wf_transparent]
    +Inverse_Image_transp.B [in additions.Wf_transparent]
    +Inverse_Image_transp.A [in additions.Wf_transparent]
    +inversion_of_bijection.f_b [in hydras.Schutte.PartialFun]
    +inversion_of_bijection.inv_spec [in hydras.Schutte.PartialFun]
    +inversion_of_bijection.f [in hydras.Schutte.PartialFun]
    +inversion_of_bijection.DB [in hydras.Schutte.PartialFun]
    +inversion_of_bijection.DA [in hydras.Schutte.PartialFun]
    +inversion_of_bijection.inhA [in hydras.Schutte.PartialFun]
    +inversion_of_bijection.B [in hydras.Schutte.PartialFun]
    +inversion_of_bijection.A [in hydras.Schutte.PartialFun]
    +

    K

    +KFK_proof.Hq_prop [in additions.Euclidean_Chains]
    +KFK_proof.Hbr_prop [in additions.Euclidean_Chains]
    +KFK_proof.Hq [in additions.Euclidean_Chains]
    +KFK_proof.Hbr [in additions.Euclidean_Chains]
    +KFK_proof.fq [in additions.Euclidean_Chains]
    +KFK_proof.kbr [in additions.Euclidean_Chains]
    +KFK_proof.r [in additions.Euclidean_Chains]
    +KFK_proof.q [in additions.Euclidean_Chains]
    +KFK_proof.b [in additions.Euclidean_Chains]
    +KP.h' [in hydras.Hydra.KP_example]
    +

    L

    +Lemma_4_4_Proof.H0 [in hydras.Epsilon0.Large_Sets]
    +Lemma_4_4_Proof.H [in hydras.Epsilon0.Large_Sets]
    +Lemma_4_4_Proof.Hs [in hydras.Epsilon0.Large_Sets]
    +Lemma_4_4_Proof.s [in hydras.Epsilon0.Large_Sets]
    +Lemma_4_4_Proof.n [in hydras.Epsilon0.Large_Sets]
    +Lemma_4_4_Proof.Hbeta [in hydras.Epsilon0.Large_Sets]
    +Lemma_4_4_Proof.Halpha [in hydras.Epsilon0.Large_Sets]
    +Lemma_4_4_Proof.beta [in hydras.Epsilon0.Large_Sets]
    +Lemma_4_4_Proof.alpha [in hydras.Epsilon0.Large_Sets]
    +Lemma_4_3_Proof.H4 [in hydras.Epsilon0.Paths]
    +Lemma_4_3_Proof.H1 [in hydras.Epsilon0.Paths]
    +Lemma_4_3_Proof.H0 [in hydras.Epsilon0.Paths]
    +Lemma_4_3_Proof.n2 [in hydras.Epsilon0.Paths]
    +Lemma_4_3_Proof.n1 [in hydras.Epsilon0.Paths]
    +Lemma_4_3_Proof.n0 [in hydras.Epsilon0.Paths]
    +Lemma_4_3_Proof.nf2 [in hydras.Epsilon0.Paths]
    +Lemma_4_3_Proof.nf1 [in hydras.Epsilon0.Paths]
    +Lemma_4_3_Proof.H00 [in hydras.Epsilon0.Paths]
    +Lemma_4_3_Proof.beta [in hydras.Epsilon0.Paths]
    +Lemma_4_3_Proof.alpha [in hydras.Epsilon0.Paths]
    +LExamples.ex1 [in hydras.Ackermann.fol]
    +LExamples.ex2 [in hydras.Ackermann.fol]
    +LExamples.ex3 [in hydras.Ackermann.fol]
    +LExamples.L [in hydras.Ackermann.fol]
    +LExamples.P [in hydras.Ackermann.fol]
    +LExamples.Q [in hydras.Ackermann.fol]
    +lexprod.A [in hydras.Prelude.DecPreOrder_Instances]
    +lexprod.B [in hydras.Prelude.DecPreOrder_Instances]
    +lexprod.leA [in hydras.Prelude.DecPreOrder_Instances]
    +lexprod.leB [in hydras.Prelude.DecPreOrder_Instances]
    +lim.f [in hydras.Epsilon0.Large_Sets]
    +lim.H [in hydras.Epsilon0.Large_Sets]
    +lim.Hlim [in hydras.Epsilon0.Large_Sets]
    +lim.Hnf [in hydras.Epsilon0.Large_Sets]
    +lim.lambda [in hydras.Epsilon0.Large_Sets]
    +List_Remove.Aeq_dec [in hydras.Ackermann.ListExt]
    +List_Remove.A [in hydras.Ackermann.ListExt]
    +LNN_FixPoint.codeFormula [in Goedel.fixPoint]
    +LNT_FixPoint.codeFormula [in Goedel.fixPoint]
    +Logic_Rules.SysPrf [in hydras.Ackermann.folLogic]
    +Logic_Rules.Prf [in hydras.Ackermann.folLogic]
    +Logic_Rules.Terms [in hydras.Ackermann.folLogic]
    +Logic_Rules.Term [in hydras.Ackermann.folLogic]
    +Logic_Rules.System [in hydras.Ackermann.folLogic]
    +Logic_Rules.Formulas [in hydras.Ackermann.folLogic]
    +Logic_Rules.Formula [in hydras.Ackermann.folLogic]
    +Logic_Rules.L [in hydras.Ackermann.folLogic]
    +lt_incl_rpo.H [in hydras.Gamma0.Gamma0]
    +lt_incl_rpo.nf2 [in hydras.Gamma0.Gamma0]
    +lt_incl_rpo.nf1 [in hydras.Gamma0.Gamma0]
    +lt_incl_rpo.Hrec [in hydras.Gamma0.Gamma0]
    +lt_incl_rpo.Hsize [in hydras.Gamma0.Gamma0]
    +lt_incl_rpo.n2 [in hydras.Gamma0.Gamma0]
    +lt_incl_rpo.n1 [in hydras.Gamma0.Gamma0]
    +lt_incl_rpo.c2 [in hydras.Gamma0.Gamma0]
    +lt_incl_rpo.b2 [in hydras.Gamma0.Gamma0]
    +lt_incl_rpo.a2 [in hydras.Gamma0.Gamma0]
    +lt_incl_rpo.c1 [in hydras.Gamma0.Gamma0]
    +lt_incl_rpo.b1 [in hydras.Gamma0.Gamma0]
    +lt_incl_rpo.a1 [in hydras.Gamma0.Gamma0]
    +lt_incl_rpo.s [in hydras.Gamma0.Gamma0]
    +L_correct_proof.P [in hydras.Epsilon0.L_alpha]
    +

    M

    +Make.DoubleRecursion.Pl2 [in hydras.rpo.term]
    +Make.DoubleRecursion.P2 [in hydras.rpo.term]
    +Make.Recursion.P [in hydras.rpo.term]
    +Make.Recursion.Pl [in hydras.rpo.term]
    +Model_Theory.Consistent_Theory.T [in hydras.Ackermann.model]
    +Model_Theory.M [in hydras.Ackermann.model]
    +Model_Theory.L [in hydras.Ackermann.model]
    +MoreOrderType.disp [in gaia_hydras.onType]
    +MoreOrderType.Succ_no_limit.Hlim [in gaia_hydras.onType]
    +MoreOrderType.Succ_no_limit.Hsucc [in gaia_hydras.onType]
    +MoreOrderType.Succ_no_limit.s [in gaia_hydras.onType]
    +MoreOrderType.Succ_no_limit.y [in gaia_hydras.onType]
    +MoreOrderType.Succ_no_limit.x [in gaia_hydras.onType]
    +MoreOrderType.T [in gaia_hydras.onType]
    +More_Logic_Rules.SysPrf [in hydras.Ackermann.folLogic2]
    +More_Logic_Rules.Prf [in hydras.Ackermann.folLogic2]
    +More_Logic_Rules.Terms [in hydras.Ackermann.folLogic2]
    +More_Logic_Rules.Term [in hydras.Ackermann.folLogic2]
    +More_Logic_Rules.System [in hydras.Ackermann.folLogic2]
    +More_Logic_Rules.Formulas [in hydras.Ackermann.folLogic2]
    +More_Logic_Rules.Formula [in hydras.Ackermann.folLogic2]
    +More_Logic_Rules.L [in hydras.Ackermann.folLogic2]
    +M_given.E_eq [in additions.Pow_variant]
    +M_given.E_one [in additions.Pow_variant]
    +M_given.E_op [in additions.Pow_variant]
    +M_given.A [in additions.Pow_variant]
    +M_given.E_one [in additions.Pow]
    +M_given.A [in additions.Pow]
    +M2_def.rt [in additions.Monoid_instances]
    +M2_def.mult [in additions.Monoid_instances]
    +M2_def.plus [in additions.Monoid_instances]
    +M2_def.one [in additions.Monoid_instances]
    +M2_def.zero [in additions.Monoid_instances]
    +M2_def.A [in additions.Monoid_instances]
    +M2.Definitions.A [in additions.Naive]
    +M2.Definitions.mult [in additions.Naive]
    +M2.Definitions.one [in additions.Naive]
    +M2.Definitions.plus [in additions.Naive]
    +M2.Definitions.rt [in additions.Naive]
    +M2.Definitions.zero [in additions.Naive]
    +M2.M2_Definitions.rt [in additions.FirstSteps]
    +M2.M2_Definitions.mult [in additions.FirstSteps]
    +M2.M2_Definitions.plus [in additions.FirstSteps]
    +M2.M2_Definitions.one [in additions.FirstSteps]
    +M2.M2_Definitions.zero [in additions.FirstSteps]
    +M2.M2_Definitions.A [in additions.FirstSteps]
    +

    N

    +Nmodulo.m [in additions.Monoid_instances]
    +Nmodulo.m_gt_1 [in additions.Monoid_instances]
    +non_optimality_proof.binary_opt [in additions.Addition_Chains]
    +N_mod.m_fixed.m [in additions.Naive]
    +

    O

    +ONDef.Exports.Lemmas.disp [in gaia_hydras.onType]
    +ONDef.Exports.Lemmas.U [in gaia_hydras.onType]
    +ONDef.Packing.cT [in gaia_hydras.onType]
    +ONDef.Packing.disp [in gaia_hydras.onType]
    +onFiniteDef.i [in gaia_hydras.onType]
    +On_alpha.S2.H [in hydras.solutions_exercises.Limit_Infinity]
    +On_alpha.S1.Hbeta [in hydras.solutions_exercises.Limit_Infinity]
    +On_alpha.S1.beta [in hydras.solutions_exercises.Limit_Infinity]
    +On_alpha.S1.H [in hydras.solutions_exercises.Limit_Infinity]
    +On_alpha.HnonZero [in hydras.solutions_exercises.Limit_Infinity]
    +On_alpha.Halpha [in hydras.solutions_exercises.Limit_Infinity]
    +On_alpha.alpha [in hydras.solutions_exercises.Limit_Infinity]
    +On_Iota.unique_P [in hydras.Schutte.MoreEpsilonIota]
    +On_Iota.inhA [in hydras.Schutte.MoreEpsilonIota]
    +On_Iota.P [in hydras.Schutte.MoreEpsilonIota]
    +On_Iota.A [in hydras.Schutte.MoreEpsilonIota]
    +ordering_function_unicity.O2 [in hydras.Schutte.Ordering_Functions]
    +ordering_function_unicity.O1 [in hydras.Schutte.Ordering_Functions]
    +ordering_function_unicity.f2 [in hydras.Schutte.Ordering_Functions]
    +ordering_function_unicity.f1 [in hydras.Schutte.Ordering_Functions]
    +ordering_function_unicity.A2 [in hydras.Schutte.Ordering_Functions]
    +ordering_function_unicity.A1 [in hydras.Schutte.Ordering_Functions]
    +ordering_function_unicity.B [in hydras.Schutte.Ordering_Functions]
    +ordering_function_unicity_1.O2 [in hydras.Schutte.Ordering_Functions]
    +ordering_function_unicity_1.O1 [in hydras.Schutte.Ordering_Functions]
    +ordering_function_unicity_1.f2 [in hydras.Schutte.Ordering_Functions]
    +ordering_function_unicity_1.f1 [in hydras.Schutte.Ordering_Functions]
    +ordering_function_unicity_1.A2 [in hydras.Schutte.Ordering_Functions]
    +ordering_function_unicity_1.A1 [in hydras.Schutte.Ordering_Functions]
    +ordering_function_unicity_1.B [in hydras.Schutte.Ordering_Functions]
    +

    P

    +phi_to_psi.alpha [in hydras.Gamma0.Gamma0]
    +phi0_mult.f_ok [in hydras.Epsilon0.Large_Sets]
    +phi0_mult.f_Sle [in hydras.Epsilon0.Large_Sets]
    +phi0_mult.f_mono [in hydras.Epsilon0.Large_Sets]
    +phi0_mult.Halpha [in hydras.Epsilon0.Large_Sets]
    +phi0_mult.f [in hydras.Epsilon0.Large_Sets]
    +phi0_mult.alpha [in hydras.Epsilon0.Large_Sets]
    +Primitive_recursion.f [in hydras.MoreAck.PrimRecExamples]
    +Primitive_recursion.h [in hydras.MoreAck.PrimRecExamples]
    +Primitive_recursion.g [in hydras.MoreAck.PrimRecExamples]
    +Primitive_recursion.z [in hydras.MoreAck.PrimRecExamples]
    +Primitive_recursion.y [in hydras.MoreAck.PrimRecExamples]
    +Primitive_recursion.x [in hydras.MoreAck.PrimRecExamples]
    +ProofH.Formula [in hydras.Ackermann.folProof]
    +ProofH.Formulas [in hydras.Ackermann.folProof]
    +ProofH.L [in hydras.Ackermann.folProof]
    +ProofH.System [in hydras.Ackermann.folProof]
    +ProofH.Term [in hydras.Ackermann.folProof]
    +ProofH.Terms [in hydras.Ackermann.folProof]
    +ProofOfLexwf.A [in hydras.solutions_exercises.MultisetWf]
    +ProofOfLexwf.Accs [in hydras.solutions_exercises.MultisetWf]
    +ProofOfLexwf.HwfA [in hydras.solutions_exercises.MultisetWf]
    +ProofOfLexwf.ltA [in hydras.solutions_exercises.MultisetWf]
    +Proofs_of_unicity.Proofs.S2.Hgammaalpha [in hydras.solutions_exercises.predSuccUnicity]
    +Proofs_of_unicity.Proofs.S2.gamma [in hydras.solutions_exercises.predSuccUnicity]
    +Proofs_of_unicity.Proofs.S1.Halphagamma [in hydras.solutions_exercises.predSuccUnicity]
    +Proofs_of_unicity.Proofs.S1.gamma [in hydras.solutions_exercises.predSuccUnicity]
    +Proofs_of_unicity.Proofs.Halphabeta [in hydras.solutions_exercises.predSuccUnicity]
    +Proofs_of_unicity.Proofs.beta [in hydras.solutions_exercises.predSuccUnicity]
    +Proofs_of_unicity.Proofs.alpha [in hydras.solutions_exercises.predSuccUnicity]
    +Proofs_of_lt_succ_le.Proofs.S1.HGammaBeta [in hydras.solutions_exercises.lt_succ_le]
    +Proofs_of_lt_succ_le.Proofs.S1.gamma [in hydras.solutions_exercises.lt_succ_le]
    +Proofs_of_lt_succ_le.Proofs.Halphabeta [in hydras.solutions_exercises.lt_succ_le]
    +Proofs_of_lt_succ_le.Proofs.beta [in hydras.solutions_exercises.lt_succ_le]
    +Proofs_of_lt_succ_le.Proofs.alpha [in hydras.solutions_exercises.lt_succ_le]
    +Proof_of_dist.P [in hydras.Epsilon0.T1]
    +Proof_of_mult_nf.Induction.IHbeta [in hydras.Epsilon0.T1]
    +Proof_of_mult_nf.Induction.Hbeta [in hydras.Epsilon0.T1]
    +Proof_of_mult_nf.Induction.beta [in hydras.Epsilon0.T1]
    +Proof_of_mult_nf.P [in hydras.Epsilon0.T1]
    +Proof_of_mult_nf.Halpha [in hydras.Epsilon0.T1]
    +Proof_of_mult_nf.alpha [in hydras.Epsilon0.T1]
    +Proof_of_MinIsPR.minPR [in hydras.solutions_exercises.MinPR2]
    +Proof_of_oplus_lt1.H0 [in hydras.Epsilon0.Hessenberg]
    +Proof_of_oplus_lt1.n [in hydras.Epsilon0.Hessenberg]
    +Proof_of_oplus_lt1.a2 [in hydras.Epsilon0.Hessenberg]
    +Proof_of_oplus_lt1.a1 [in hydras.Epsilon0.Hessenberg]
    +Proof_of_Ackn_PR.S_step.n [in hydras.MoreAck.AckNotPR]
    +Proof_of_4_5_2.HlargeA [in hydras.Epsilon0.Large_Sets]
    +Proof_of_4_5_2.HAB1 [in hydras.Epsilon0.Large_Sets]
    +Proof_of_4_5_2.HB [in hydras.Epsilon0.Large_Sets]
    +Proof_of_4_5_2.HA [in hydras.Epsilon0.Large_Sets]
    +Proof_of_4_5_2.Halpha [in hydras.Epsilon0.Large_Sets]
    +Proof_of_4_5_2.alpha [in hydras.Epsilon0.Large_Sets]
    +Proof_of_4_5_2.B2 [in hydras.Epsilon0.Large_Sets]
    +Proof_of_4_5_2.B1 [in hydras.Epsilon0.Large_Sets]
    +Proof_of_4_5_2.A [in hydras.Epsilon0.Large_Sets]
    +Proof_of_Lemma5.Alpha_positive.closedness.IM [in hydras.Schutte.Critical]
    +Proof_of_Lemma5.Alpha_positive.closedness.CM [in hydras.Schutte.Critical]
    +Proof_of_Lemma5.Alpha_positive.closedness.HM [in hydras.Schutte.Critical]
    +Proof_of_Lemma5.Alpha_positive.closedness.M [in hydras.Schutte.Critical]
    +Proof_of_Lemma5.Alpha_positive.Proof_unbounded.gamma [in hydras.Schutte.Critical]
    +Proof_of_Lemma5.Alpha_positive.Proof_unbounded.beta [in hydras.Schutte.Critical]
    +Proof_of_Lemma5.Alpha_positive.IHalpha [in hydras.Schutte.Critical]
    +Proof_of_Lemma5.Alpha_positive.alpha_pos [in hydras.Schutte.Critical]
    +Proof_of_Lemma5.Alpha_positive.alpha [in hydras.Schutte.Critical]
    +Proof_of_Lemma5.P [in hydras.Schutte.Critical]
    +Proof_of_FibIsPR.fib_iter_cPair [in hydras.solutions_exercises.FibonacciPR]
    +Proof_of_FibIsPR.fib_step_cPair [in hydras.solutions_exercises.FibonacciPR]
    +Proof_of_FibIsPR.fib_iter [in hydras.solutions_exercises.FibonacciPR]
    +Proof_of_FibIsPR.fib_step [in hydras.solutions_exercises.FibonacciPR]
    +Proof_of_MinIsPR.min_alt [in hydras.solutions_exercises.MinPR]
    +Proof_of_H'_mono_l.Limit_case.Hbeta [in hydras.Epsilon0.Hprime]
    +Proof_of_H'_mono_l.Succ_case.Hgamma [in hydras.Epsilon0.Hprime]
    +Proof_of_H'_mono_l.Succ_case.gamma [in hydras.Epsilon0.Hprime]
    +Proof_of_H'_mono_l.H_alpha_beta [in hydras.Epsilon0.Hprime]
    +Proof_of_H'_mono_l.beta [in hydras.Epsilon0.Hprime]
    +Proof_of_H'_mono_l.alpha [in hydras.Epsilon0.Hprime]
    +Proof_of_Abstract_Properties.The_induction.alpha_limit.Hlim [in hydras.Epsilon0.Hprime]
    +Proof_of_Abstract_Properties.The_induction.alpha_Succ.alpha_def [in hydras.Epsilon0.Hprime]
    +Proof_of_Abstract_Properties.The_induction.alpha_Succ.beta [in hydras.Epsilon0.Hprime]
    +Proof_of_Abstract_Properties.The_induction.Halpha [in hydras.Epsilon0.Hprime]
    +Proof_of_Abstract_Properties.The_induction.alpha [in hydras.Epsilon0.Hprime]
    +proof_of_associativity.g_alpha_beta [in hydras.Schutte.Addition]
    +proof_of_associativity.f_alpha_beta [in hydras.Schutte.Addition]
    +proof_of_associativity.beta [in hydras.Schutte.Addition]
    +proof_of_associativity.alpha [in hydras.Schutte.Addition]
    +Proof_of_lt_not_wf.seq_intro.is_in_seq [in hydras.solutions_exercises.T1_ltNotWf]
    +Proof_of_lt_not_wf.seq_intro.Rwf [in hydras.solutions_exercises.T1_ltNotWf]
    +Proof_of_lt_not_wf.seq_intro.R [in hydras.solutions_exercises.T1_ltNotWf]
    +Proof_of_lt_not_wf.seq_intro.seq [in hydras.solutions_exercises.T1_ltNotWf]
    +Proof_of_lt_not_wf.seq_intro.A [in hydras.solutions_exercises.T1_ltNotWf]
    +Proof_of_lt_not_wf.lt_wf [in hydras.solutions_exercises.T1_ltNotWf]
    +Properties.The_induction.alpha_limit.Hlim [in hydras.Epsilon0.F_alpha]
    +Properties.The_induction.alpha_Succ.alpha_def [in hydras.Epsilon0.F_alpha]
    +Properties.The_induction.alpha_Succ.beta [in hydras.Epsilon0.F_alpha]
    +Properties.The_induction.Halpha [in hydras.Epsilon0.F_alpha]
    +Properties.The_induction.alpha [in hydras.Epsilon0.F_alpha]
    +

    R

    +Refinement_proof.E_eq [in additions.Addition_Chains]
    +Refinement_proof.E_one [in additions.Addition_Chains]
    +Refinement_proof.E_op [in additions.Addition_Chains]
    +Refinement_proof.A [in additions.Addition_Chains]
    +Replacement.Formula [in hydras.Ackermann.folReplace]
    +Replacement.Formulas [in hydras.Ackermann.folReplace]
    +Replacement.L [in hydras.Ackermann.folReplace]
    +Replacement.SysPrf [in hydras.Ackermann.folReplace]
    +Replacement.System [in hydras.Ackermann.folReplace]
    +Replacement.Term [in hydras.Ackermann.folReplace]
    +Replacement.Terms [in hydras.Ackermann.folReplace]
    +RepresentableExpressible.closedT1 [in hydras.Ackermann.expressible]
    +RepresentableExpressible.nn1 [in hydras.Ackermann.expressible]
    +RepresentableExpressible.T [in hydras.Ackermann.expressible]
    +restricted_recursion.R [in hydras.Prelude.Restriction]
    +restricted_recursion.E [in hydras.Prelude.Restriction]
    +restricted_recursion.A [in hydras.Prelude.Restriction]
    +restricted_recursion.R [in gaia_hydras.nfwfgaia]
    +restricted_recursion.P [in gaia_hydras.nfwfgaia]
    +restricted_recursion.A [in gaia_hydras.nfwfgaia]
    +Rosser's_Incompleteness.expressT2 [in Goedel.rosserPA]
    +Rosser's_Incompleteness.expressT1 [in Goedel.rosserPA]
    +Rosser's_Incompleteness.freeVarRepT [in Goedel.rosserPA]
    +Rosser's_Incompleteness.v0 [in Goedel.rosserPA]
    +Rosser's_Incompleteness.repT [in Goedel.rosserPA]
    +Rosser's_Incompleteness.extendsPA [in Goedel.rosserPA]
    +Rosser's_Incompleteness.T [in Goedel.rosserPA]
    +Rosser's_Incompleteness.expressT2 [in Goedel.rosser]
    +Rosser's_Incompleteness.expressT1 [in Goedel.rosser]
    +Rosser's_Incompleteness.freeVarRepT [in Goedel.rosser]
    +Rosser's_Incompleteness.v0 [in Goedel.rosser]
    +Rosser's_Incompleteness.repT [in Goedel.rosser]
    +Rosser's_Incompleteness.extendsNN [in Goedel.rosser]
    +Rosser's_Incompleteness.T [in Goedel.rosser]
    +R_given.R [in hydras.Prelude.Sort_spec]
    +R_given.A [in hydras.Prelude.Sort_spec]
    +

    S

    +Semantics.A [in additions.AM]
    +Semantics.mul [in additions.AM]
    +Semantics.one [in additions.AM]
    +Sequences.A [in gaia_hydras.nfwfgaia]
    +Sequences.R [in gaia_hydras.nfwfgaia]
    +Sequences.W [in gaia_hydras.nfwfgaia]
    +sqrtIsPR.P [in hydras.solutions_exercises.isqrt]
    +sqrtIsPR.Proof_isqrt.n [in hydras.solutions_exercises.isqrt]
    +step.F [in hydras.Epsilon0.F_omega]
    +step.Hn [in hydras.Epsilon0.F_omega]
    +step.n [in hydras.Epsilon0.F_omega]
    +SubAllVars.L [in hydras.Ackermann.subAll]
    +Substitution_Properties.SysPrf [in hydras.Ackermann.subProp]
    +Substitution_Properties.Terms [in hydras.Ackermann.subProp]
    +Substitution_Properties.Term [in hydras.Ackermann.subProp]
    +Substitution_Properties.System [in hydras.Ackermann.subProp]
    +Substitution_Properties.Formulas [in hydras.Ackermann.subProp]
    +Substitution_Properties.Formula [in hydras.Ackermann.subProp]
    +Substitution_Properties.L [in hydras.Ackermann.subProp]
    +succ.beta [in hydras.Epsilon0.Large_Sets]
    +succ.f [in hydras.Epsilon0.Large_Sets]
    +succ.f_ok [in hydras.Epsilon0.Large_Sets]
    +succ.f_Sle [in hydras.Epsilon0.Large_Sets]
    +succ.f_mono [in hydras.Epsilon0.Large_Sets]
    +succ.Hbeta [in hydras.Epsilon0.Large_Sets]
    +S1.H [in hydras.solutions_exercises.is_F_monotonous]
    +S1.instance_H [in hydras.solutions_exercises.is_F_monotonous]
    +S1.Limit.Hlambda [in hydras.solutions_exercises.F_3]
    +S1.Limit.IHlambda [in hydras.solutions_exercises.F_3]
    +S1.Limit.lambda [in hydras.solutions_exercises.F_3]
    +S1.Limit.S3.Hn [in hydras.solutions_exercises.F_3]
    +S1.Limit.S3.n [in hydras.solutions_exercises.F_3]
    +S1.P [in hydras.solutions_exercises.F_3]
    +S1.Successor.alpha [in hydras.solutions_exercises.F_3]
    +S1.Successor.H_alpha [in hydras.solutions_exercises.F_3]
    +S1.Successor.S2.Hn [in hydras.solutions_exercises.F_3]
    +S1.Successor.S2.n [in hydras.solutions_exercises.F_3]
    +S2.a [in additions.Addition_Chains]
    +S2.A [in additions.Addition_Chains]
    +S2.b [in additions.Addition_Chains]
    +S2.B [in additions.Addition_Chains]
    +S2.R_true [in additions.Addition_Chains]
    +S256.mod256 [in additions.Monoid_instances]
    +

    T

    +Term.DoubleRecursion.Pl2 [in hydras.rpo.term]
    +Term.DoubleRecursion.P2 [in hydras.rpo.term]
    +Term.Recursion.P [in hydras.rpo.term]
    +Term.Recursion.Pl [in hydras.rpo.term]
    +the_context.Lt [in hydras.Schutte.Well_Orders]
    +the_context.M [in hydras.Schutte.Well_Orders]
    +Th13_5.verso.U_fixed.alpha_ [in hydras.Schutte.Ordering_Functions]
    +Th13_5.verso.U_fixed.U_inc_A [in hydras.Schutte.Ordering_Functions]
    +Th13_5.verso.U_fixed.U_den [in hydras.Schutte.Ordering_Functions]
    +Th13_5.verso.U_fixed.U_non_empty [in hydras.Schutte.Ordering_Functions]
    +Th13_5.verso.U_fixed.U [in hydras.Schutte.Ordering_Functions]
    +Th13_5.verso.B_closed [in hydras.Schutte.Ordering_Functions]
    +Th13_5.recto.M_fixed.U [in hydras.Schutte.Ordering_Functions]
    +Th13_5.recto.M_fixed.den [in hydras.Schutte.Ordering_Functions]
    +Th13_5.recto.M_fixed.ne [in hydras.Schutte.Ordering_Functions]
    +Th13_5.recto.M_fixed.inc [in hydras.Schutte.Ordering_Functions]
    +Th13_5.recto.M_fixed.M [in hydras.Schutte.Ordering_Functions]
    +Th13_5.recto.f_cont [in hydras.Schutte.Ordering_Functions]
    +Th13_5.f_ord [in hydras.Schutte.Ordering_Functions]
    +Th13_5.f [in hydras.Schutte.Ordering_Functions]
    +Th13_5.B [in hydras.Schutte.Ordering_Functions]
    +Th13_5.A [in hydras.Schutte.Ordering_Functions]
    +Toy.Drinkers_theorem.f [in hydras.MoreAck.FolExamples]
    +Toy.OnSubstF.F [in hydras.MoreAck.FolExamples]
    +Translate_Proof.AxiomsOK [in hydras.Ackermann.LNN2LNT]
    +Translate_Proof.V [in hydras.Ackermann.LNN2LNT]
    +Translate_Proof.U [in hydras.Ackermann.LNN2LNT]
    +trans_proof.induc [in hydras.Gamma0.Gamma0]
    +trans_proof.H23 [in hydras.Gamma0.Gamma0]
    +trans_proof.H12 [in hydras.Gamma0.Gamma0]
    +trans_proof.n3 [in hydras.Gamma0.Gamma0]
    +trans_proof.n2 [in hydras.Gamma0.Gamma0]
    +trans_proof.n1 [in hydras.Gamma0.Gamma0]
    +trans_proof.c3 [in hydras.Gamma0.Gamma0]
    +trans_proof.b3 [in hydras.Gamma0.Gamma0]
    +trans_proof.a3 [in hydras.Gamma0.Gamma0]
    +trans_proof.c2 [in hydras.Gamma0.Gamma0]
    +trans_proof.b2 [in hydras.Gamma0.Gamma0]
    +trans_proof.a2 [in hydras.Gamma0.Gamma0]
    +trans_proof.c1 [in hydras.Gamma0.Gamma0]
    +trans_proof.b1 [in hydras.Gamma0.Gamma0]
    +trans_proof.a1 [in hydras.Gamma0.Gamma0]
    +

    V

    +Variants.E [in hydras.Prelude.WfVariant]
    +Variants.lt [in hydras.Prelude.WfVariant]
    +Variants.m [in hydras.Prelude.WfVariant]
    +Variants.T [in hydras.Prelude.WfVariant]
    +Variants.tr [in hydras.Prelude.WfVariant]
    +

    W

    +Well_Formed_Term.Well_Formed_Formula.Formula [in hydras.Ackermann.wellFormed]
    +Well_Formed_Term.Well_Formed_Formula.codeArityRIsCorrect2 [in hydras.Ackermann.wellFormed]
    +Well_Formed_Term.Well_Formed_Formula.codeArityRIsCorrect1 [in hydras.Ackermann.wellFormed]
    +Well_Formed_Term.Well_Formed_Formula.codeArityR [in hydras.Ackermann.wellFormed]
    +Well_Formed_Term.Terms [in hydras.Ackermann.wellFormed]
    +Well_Formed_Term.Term [in hydras.Ackermann.wellFormed]
    +Well_Formed_Term.codeArityFIsCorrect2 [in hydras.Ackermann.wellFormed]
    +Well_Formed_Term.codeArityFIsCorrect1 [in hydras.Ackermann.wellFormed]
    +Well_Formed_Term.codeArityF [in hydras.Ackermann.wellFormed]
    +Well_Formed_Term.L [in hydras.Ackermann.wellFormed]
    +well_founded.R [in hydras.Gamma0.Gamma0]
    +with_matrices.R [in additions.fib]
    +


    +

    Library Index

    +

    A

    +Ack
    +AckNotPR
    +Addition
    +Addition_Chains
    +AM
    +AP
    +

    B

    +BadSubst
    +Battle_length
    +BigBattle
    +BinaryStrat
    +

    C

    +Canon
    +checkPrf
    +closure
    +CNF
    +code
    +codeFreeVar
    +codeList
    +codeNatToTerm
    +codePA
    +codeSubFormula
    +codeSubTerm
    +codeSysPrf
    +Comparable
    +Compatibility
    +Compat815
    +Correctness_E0
    +Countable
    +cPair
    +Critical
    +

    D

    +decidable_set
    +DecPreOrder
    +DecPreOrder_Instances
    +Deduction
    +Demo
    +Demo_power
    +Dichotomy
    +dickson
    +

    E

    +Epsilon0
    +Epsilon0rpo
    +Epsilon0_Needed_Std
    +Epsilon0_Needed_Free
    +Epsilon0_Needed_Generic
    +Euclidean_Chains
    +Example_3PlusOmega
    +expressible
    +expressibleExamples
    +Exp2
    +extEqualNat
    +E0
    +

    F

    +fib
    +FibonacciPR
    +Fib2
    +FirstSteps
    +First_toggle
    +fixPoint
    +fol
    +FolExamples
    +folLogic
    +folLogic2
    +folLogic3
    +folProof
    +folProp
    +folReplace
    +Fuel
    +F_3
    +F_alpha
    +F_omega
    +

    G

    +GaiaToHydra
    +Gamma0
    +GCanon
    +ge_omega_iff
    +GF_alpha
    +GHessenberg
    +GHprime
    +GHydra
    +GLarge_Sets
    +GL_alpha
    +goedel1
    +goedel2
    +GPaths
    +GPrelude
    +GRelations
    +

    H

    +Hessenberg
    +Hprime
    +HydraGaia_Examples
    +Hydra_Termination
    +Hydra_Extraction
    +Hydra_Lemmas
    +Hydra_Definitions
    +Hydra_Examples
    +Hydra_Theorems
    +

    I

    +isqrt
    +is_F_monotonous
    +Iterates
    +Iterate_compat
    +

    K

    +KP_example
    +

    L

    +Languages
    +Large_Sets
    +Large_Sets_Examples
    +LibHyps_Experiments
    +Limit_Infinity
    +ListExt
    +list_permut
    +list_set
    +LNN
    +LNN_Examples
    +LNN2LNT
    +LNT
    +lt_succ_le
    +Lub
    +L_alpha
    +

    M

    +Merge_Sort
    +MinPR
    +MinPR2
    +misc
    +model
    +Monoid_instances
    +Monoid_def
    +MoreDecidable
    +MoreEpsilonIota
    +MoreLibHyps
    +MoreLists
    +MoreOrders
    +MorePRExamples
    +MoreVectors
    +More_Arith
    +more_list
    +More_on_positive
    +MultisetWf
    +

    N

    +Naive
    +NewNotations
    +nfwfgaia
    +NN
    +NNtheory
    +NN2PA
    +

    O

    +OmegaOmega
    +Omega_Small
    +Omega2_Small
    +OnCodeList
    +onType
    +ON_Generic
    +ON_mult
    +ON_Finite
    +ON_Omega_plus_omega
    +ON_Omega
    +ON_Omega2
    +ON_plus
    +ON_gfinite
    +ON_O
    +Ordering_Functions
    +OrdNotations
    +O2H
    +

    P

    +PA
    +PAconsistent
    +PartialFun
    +PAtheory
    +Paths
    +Pow
    +Pow_variant
    +predSuccUnicity
    +primRec
    +PrimRecExamples
    +prLogic
    +PRrepresentable
    +

    R

    +Restriction
    +rosser
    +rosserPA
    +rpo
    +

    S

    +Schutte
    +Schutte_basics
    +schutte_cnf_counter_example
    +Simple_LexProd
    +Sort_spec
    +ssrnat_extracts
    +STDPP_compat
    +Strategies
    +subAll
    +subProp
    +

    T

    +term
    +Trace_exercise
    +T1
    +T1Bridge
    +T1Choice
    +T1_ltNotWf
    +T2
    +T2Bridge
    +

    W

    +wConsistent
    +wellFormed
    +Well_Orders
    +WfVariant
    +Wf_transparent
    +


    +

    Lemma Index

    +

    A

    +absurd1 [in hydras.Ackermann.LNN]
    +absurd1 [in hydras.Ackermann.LNT]
    +absurd1 [in hydras.Ackermann.folLogic]
    +Accs_all [in hydras.solutions_exercises.MultisetWf]
    +acc_from_to_round_plus [in hydras.Hydra.O2H]
    +Acc_nil [in hydras.solutions_exercises.MultisetWf]
    +Acc_inverse_image [in additions.Wf_transparent]
    +Acc_lemma [in additions.Wf_transparent]
    +acc_from_LT [in hydras.Epsilon0.Paths]
    +acc_from_trans [in hydras.Epsilon0.Paths]
    +acc_trans [in hydras.rpo.closure]
    +acc_rec [in gaia_hydras.nfwfgaia]
    +acc_imp [in hydras.solutions_exercises.T1_ltNotWf]
    +Ackermann.addC_CE [in gaia_hydras.nfwfgaia]
    +Ackermann.add_normal [in gaia_hydras.nfwfgaia]
    +Ackermann.add_le4 [in gaia_hydras.nfwfgaia]
    +Ackermann.add_le3 [in gaia_hydras.nfwfgaia]
    +Ackermann.add_inj [in gaia_hydras.nfwfgaia]
    +Ackermann.add_le2 [in gaia_hydras.nfwfgaia]
    +Ackermann.add_le1 [in gaia_hydras.nfwfgaia]
    +Ackermann.add_to_cons [in gaia_hydras.nfwfgaia]
    +Ackermann.add_fin_omega [in gaia_hydras.nfwfgaia]
    +Ackermann.add_int [in gaia_hydras.nfwfgaia]
    +Ackermann.add1Nfin [in gaia_hydras.nfwfgaia]
    +Ackermann.all_zeroE [in gaia_hydras.nfwfgaia]
    +Ackermann.ap_pr2CE [in gaia_hydras.nfwfgaia]
    +Ackermann.ap_pr4 [in gaia_hydras.nfwfgaia]
    +Ackermann.ap_pr3 [in gaia_hydras.nfwfgaia]
    +Ackermann.ap_pr2 [in gaia_hydras.nfwfgaia]
    +Ackermann.ap_pr1 [in gaia_hydras.nfwfgaia]
    +Ackermann.ap_limit [in gaia_hydras.nfwfgaia]
    +Ackermann.ap_pr0 [in gaia_hydras.nfwfgaia]
    +Ackermann.conc1 [in gaia_hydras.nfwfgaia]
    +Ackermann.fincP [in gaia_hydras.nfwfgaia]
    +Ackermann.finite_ltP [in gaia_hydras.nfwfgaia]
    +Ackermann.fooCE [in gaia_hydras.nfwfgaia]
    +Ackermann.le_succ_succE [in gaia_hydras.nfwfgaia]
    +Ackermann.le_succ_succ [in gaia_hydras.nfwfgaia]
    +Ackermann.limit_pr [in gaia_hydras.nfwfgaia]
    +Ackermann.limit_pr1 [in gaia_hydras.nfwfgaia]
    +Ackermann.limit1 [in gaia_hydras.nfwfgaia]
    +Ackermann.limit10 [in gaia_hydras.nfwfgaia]
    +Ackermann.limit11 [in gaia_hydras.nfwfgaia]
    +Ackermann.limit12a [in gaia_hydras.nfwfgaia]
    +Ackermann.limit12b1 [in gaia_hydras.nfwfgaia]
    +Ackermann.limit12b2 [in gaia_hydras.nfwfgaia]
    +Ackermann.limit12b3 [in gaia_hydras.nfwfgaia]
    +Ackermann.limit12b4 [in gaia_hydras.nfwfgaia]
    +Ackermann.limit12b5 [in gaia_hydras.nfwfgaia]
    +Ackermann.limit2 [in gaia_hydras.nfwfgaia]
    +Ackermann.limit3 [in gaia_hydras.nfwfgaia]
    +Ackermann.limit4 [in gaia_hydras.nfwfgaia]
    +Ackermann.limit5 [in gaia_hydras.nfwfgaia]
    +Ackermann.limit6 [in gaia_hydras.nfwfgaia]
    +Ackermann.limit7 [in gaia_hydras.nfwfgaia]
    +Ackermann.limit8 [in gaia_hydras.nfwfgaia]
    +Ackermann.limit9 [in gaia_hydras.nfwfgaia]
    +Ackermann.lt_succ_le_4 [in gaia_hydras.nfwfgaia]
    +Ackermann.lt_succ_le_3 [in gaia_hydras.nfwfgaia]
    +Ackermann.lt_succ_le_2 [in gaia_hydras.nfwfgaia]
    +Ackermann.lt_succ_le_1 [in gaia_hydras.nfwfgaia]
    +Ackermann.lt_succ_succE [in gaia_hydras.nfwfgaia]
    +Ackermann.lt_succ_succ [in gaia_hydras.nfwfgaia]
    +Ackermann.lt_omega2 [in gaia_hydras.nfwfgaia]
    +Ackermann.lt_omega1 [in gaia_hydras.nfwfgaia]
    +Ackermann.lt_epsilon0 [in gaia_hydras.nfwfgaia]
    +Ackermann.lt_not_wf [in gaia_hydras.nfwfgaia]
    +Ackermann.minus_le [in gaia_hydras.nfwfgaia]
    +Ackermann.minus_lt [in gaia_hydras.nfwfgaia]
    +Ackermann.nf_add [in gaia_hydras.nfwfgaia]
    +Ackermann.nf_sub [in gaia_hydras.nfwfgaia]
    +Ackermann.nf_pred [in gaia_hydras.nfwfgaia]
    +Ackermann.nf_succ [in gaia_hydras.nfwfgaia]
    +Ackermann.nf_finite [in gaia_hydras.nfwfgaia]
    +Ackermann.nf_omega [in gaia_hydras.nfwfgaia]
    +Ackermann.nf_split [in gaia_hydras.nfwfgaia]
    +Ackermann.nf_Wf [in gaia_hydras.nfwfgaia]
    +Ackermann.nf_consE [in gaia_hydras.nfwfgaia]
    +Ackermann.nf_cons_cons [in gaia_hydras.nfwfgaia]
    +Ackermann.nf_int [in gaia_hydras.nfwfgaia]
    +Ackermann.nf_psi [in gaia_hydras.nfwfgaia]
    +Ackermann.nf_0 [in gaia_hydras.nfwfgaia]
    +Ackermann.normal_compose [in gaia_hydras.nfwfgaia]
    +Ackermann.normal_limit [in gaia_hydras.nfwfgaia]
    +Ackermann.normal_id [in gaia_hydras.nfwfgaia]
    +Ackermann.omega_minus_one [in gaia_hydras.nfwfgaia]
    +Ackermann.omega_least_inf2 [in gaia_hydras.nfwfgaia]
    +Ackermann.omega_least_inf1 [in gaia_hydras.nfwfgaia]
    +Ackermann.phiE [in gaia_hydras.nfwfgaia]
    +Ackermann.phiE_3 [in gaia_hydras.nfwfgaia]
    +Ackermann.phiE_2 [in gaia_hydras.nfwfgaia]
    +Ackermann.phiE_1 [in gaia_hydras.nfwfgaia]
    +Ackermann.phiL [in gaia_hydras.nfwfgaia]
    +Ackermann.phi3v [in gaia_hydras.nfwfgaia]
    +Ackermann.pred_succ [in gaia_hydras.nfwfgaia]
    +Ackermann.pred_lt [in gaia_hydras.nfwfgaia]
    +Ackermann.pred_le [in gaia_hydras.nfwfgaia]
    +Ackermann.psi_succ_pr1 [in gaia_hydras.nfwfgaia]
    +Ackermann.psi_lt2 [in gaia_hydras.nfwfgaia]
    +Ackermann.psi_lt1 [in gaia_hydras.nfwfgaia]
    +Ackermann.size_prop [in gaia_hydras.nfwfgaia]
    +Ackermann.size_prop1 [in gaia_hydras.nfwfgaia]
    +Ackermann.size_psi [in gaia_hydras.nfwfgaia]
    +Ackermann.size_d [in gaia_hydras.nfwfgaia]
    +Ackermann.size_c [in gaia_hydras.nfwfgaia]
    +Ackermann.size_b [in gaia_hydras.nfwfgaia]
    +Ackermann.size_a [in gaia_hydras.nfwfgaia]
    +Ackermann.split_add [in gaia_hydras.nfwfgaia]
    +Ackermann.split_le [in gaia_hydras.nfwfgaia]
    +Ackermann.split_pred [in gaia_hydras.nfwfgaia]
    +Ackermann.split_succ [in gaia_hydras.nfwfgaia]
    +Ackermann.split_is_succ [in gaia_hydras.nfwfgaia]
    +Ackermann.split_limit [in gaia_hydras.nfwfgaia]
    +Ackermann.split_finite [in gaia_hydras.nfwfgaia]
    +Ackermann.sub_pr1rCE [in gaia_hydras.nfwfgaia]
    +Ackermann.sub_pr1r [in gaia_hydras.nfwfgaia]
    +Ackermann.sub_nz [in gaia_hydras.nfwfgaia]
    +Ackermann.sub_pr1 [in gaia_hydras.nfwfgaia]
    +Ackermann.sub_pr [in gaia_hydras.nfwfgaia]
    +Ackermann.sub_le1 [in gaia_hydras.nfwfgaia]
    +Ackermann.sub_1bCE [in gaia_hydras.nfwfgaia]
    +Ackermann.sub_1aCE [in gaia_hydras.nfwfgaia]
    +Ackermann.sub_int [in gaia_hydras.nfwfgaia]
    +Ackermann.sub1a [in gaia_hydras.nfwfgaia]
    +Ackermann.sub1b [in gaia_hydras.nfwfgaia]
    +Ackermann.sub1Nfin [in gaia_hydras.nfwfgaia]
    +Ackermann.succ_psiCE [in gaia_hydras.nfwfgaia]
    +Ackermann.succ_prCE [in gaia_hydras.nfwfgaia]
    +Ackermann.succ_psi2 [in gaia_hydras.nfwfgaia]
    +Ackermann.succ_psi1 [in gaia_hydras.nfwfgaia]
    +Ackermann.succ_is_add_one [in gaia_hydras.nfwfgaia]
    +Ackermann.succ_psi_lt2 [in gaia_hydras.nfwfgaia]
    +Ackermann.succ_psi_lt [in gaia_hydras.nfwfgaia]
    +Ackermann.succ_psi [in gaia_hydras.nfwfgaia]
    +Ackermann.succ_nz [in gaia_hydras.nfwfgaia]
    +Ackermann.succ_inj [in gaia_hydras.nfwfgaia]
    +Ackermann.succ_p1 [in gaia_hydras.nfwfgaia]
    +Ackermann.succ_pred [in gaia_hydras.nfwfgaia]
    +Ackermann.succ_lt [in gaia_hydras.nfwfgaia]
    +Ackermann.sup_Oalpha_succ [in gaia_hydras.nfwfgaia]
    +Ackermann.sup_Oalpha_limit [in gaia_hydras.nfwfgaia]
    +Ackermann.sup_Oalpha_zero [in gaia_hydras.nfwfgaia]
    +Ackermann.sup_unique [in gaia_hydras.nfwfgaia]
    +Ackermann.TT1T3_inj [in gaia_hydras.nfwfgaia]
    +Ackermann.T1succ_nat [in gaia_hydras.nfwfgaia]
    +Ackermann.T1T3_surj [in gaia_hydras.nfwfgaia]
    +Ackermann.T1T3_inc [in gaia_hydras.nfwfgaia]
    +Ackermann.T1T3_lt_epsilon0 [in gaia_hydras.nfwfgaia]
    +Ackermann.T3addA [in gaia_hydras.nfwfgaia]
    +Ackermann.T3addn0 [in gaia_hydras.nfwfgaia]
    +Ackermann.T3addS [in gaia_hydras.nfwfgaia]
    +Ackermann.T3add_eq0 [in gaia_hydras.nfwfgaia]
    +Ackermann.T3add0n [in gaia_hydras.nfwfgaia]
    +Ackermann.T3eqE [in gaia_hydras.nfwfgaia]
    +Ackermann.T3eqP [in gaia_hydras.nfwfgaia]
    +Ackermann.T3eq_add2l [in gaia_hydras.nfwfgaia]
    +Ackermann.T3eq_le [in gaia_hydras.nfwfgaia]
    +Ackermann.T3finite_succ [in gaia_hydras.nfwfgaia]
    +Ackermann.T3finite1 [in gaia_hydras.nfwfgaia]
    +Ackermann.T3finite2 [in gaia_hydras.nfwfgaia]
    +Ackermann.T3ge1 [in gaia_hydras.nfwfgaia]
    +Ackermann.T3gt1 [in gaia_hydras.nfwfgaia]
    +Ackermann.T3lcp0_pr [in gaia_hydras.nfwfgaia]
    +Ackermann.T3leNgt [in gaia_hydras.nfwfgaia]
    +Ackermann.T3lenn [in gaia_hydras.nfwfgaia]
    +Ackermann.T3len0 [in gaia_hydras.nfwfgaia]
    +Ackermann.T3leP [in gaia_hydras.nfwfgaia]
    +Ackermann.T3le_add2r [in gaia_hydras.nfwfgaia]
    +Ackermann.T3le_add2l [in gaia_hydras.nfwfgaia]
    +Ackermann.T3le_psi [in gaia_hydras.nfwfgaia]
    +Ackermann.T3le_total [in gaia_hydras.nfwfgaia]
    +Ackermann.T3le_anti [in gaia_hydras.nfwfgaia]
    +Ackermann.T3le_trans [in gaia_hydras.nfwfgaia]
    +Ackermann.T3le_lt_trans [in gaia_hydras.nfwfgaia]
    +Ackermann.T3le_consE [in gaia_hydras.nfwfgaia]
    +Ackermann.T3le_eqVlt [in gaia_hydras.nfwfgaia]
    +Ackermann.T3le0n [in gaia_hydras.nfwfgaia]
    +Ackermann.T3ltE [in gaia_hydras.nfwfgaia]
    +Ackermann.T3ltgtP [in gaia_hydras.nfwfgaia]
    +Ackermann.T3ltNge [in gaia_hydras.nfwfgaia]
    +Ackermann.T3ltnn [in gaia_hydras.nfwfgaia]
    +Ackermann.T3ltn0 [in gaia_hydras.nfwfgaia]
    +Ackermann.T3ltP [in gaia_hydras.nfwfgaia]
    +Ackermann.T3ltW [in gaia_hydras.nfwfgaia]
    +Ackermann.T3lt_add2r [in gaia_hydras.nfwfgaia]
    +Ackermann.T3lt_add2l [in gaia_hydras.nfwfgaia]
    +Ackermann.T3lt_psi_a [in gaia_hydras.nfwfgaia]
    +Ackermann.T3lt_psi_c [in gaia_hydras.nfwfgaia]
    +Ackermann.T3lt_psi_b [in gaia_hydras.nfwfgaia]
    +Ackermann.T3lt_psi_bc [in gaia_hydras.nfwfgaia]
    +Ackermann.T3lt_le_trans [in gaia_hydras.nfwfgaia]
    +Ackermann.T3lt_trans [in gaia_hydras.nfwfgaia]
    +Ackermann.T3lt_psi' [in gaia_hydras.nfwfgaia]
    +Ackermann.T3lt_trichotomy [in gaia_hydras.nfwfgaia]
    +Ackermann.T3lt_anti [in gaia_hydras.nfwfgaia]
    +Ackermann.T3lt_neAle [in gaia_hydras.nfwfgaia]
    +Ackermann.T3lt_ne' [in gaia_hydras.nfwfgaia]
    +Ackermann.T3lt_ne [in gaia_hydras.nfwfgaia]
    +Ackermann.T3lt_consE [in gaia_hydras.nfwfgaia]
    +Ackermann.T3lt_psi [in gaia_hydras.nfwfgaia]
    +Ackermann.T3lt0n [in gaia_hydras.nfwfgaia]
    +Ackermann.T3lt1 [in gaia_hydras.nfwfgaia]
    +Ackermann.T3nf_finite [in gaia_hydras.nfwfgaia]
    +Ackermann.T3subnn [in gaia_hydras.nfwfgaia]
    +Ackermann.T3subn0 [in gaia_hydras.nfwfgaia]
    +Ackermann.T3sub0n [in gaia_hydras.nfwfgaia]
    +AckSn_as_PRiterate [in hydras.MoreAck.AckNotPR]
    +AckSn_as_iterate [in hydras.MoreAck.AckNotPR]
    +Ack_not_PR [in hydras.MoreAck.AckNotPR]
    +Ack_iterate_rw [in hydras.Epsilon0.F_omega]
    +Ack_strict_mono_l [in hydras.MoreAck.Ack]
    +Ack_Sn_plus [in hydras.MoreAck.Ack]
    +Ack_mono_r [in hydras.MoreAck.Ack]
    +Ack_mono_l [in hydras.MoreAck.Ack]
    +Ack_strict_mono [in hydras.MoreAck.Ack]
    +Ack_properties [in hydras.MoreAck.Ack]
    +Ack_m_mono_weak [in hydras.MoreAck.Ack]
    +Ack_4_n [in hydras.MoreAck.Ack]
    +Ack_3_n [in hydras.MoreAck.Ack]
    +Ack_2_n [in hydras.MoreAck.Ack]
    +Ack_1_n [in hydras.MoreAck.Ack]
    +Ack_S_S [in hydras.MoreAck.Ack]
    +Ack_S_0 [in hydras.MoreAck.Ack]
    +Ack_0 [in hydras.MoreAck.Ack]
    +addPairwiseEquals [in hydras.Ackermann.folLogic3]
    +add_r_0 [in hydras.Hydra.Hydra_Lemmas]
    +Alive_standard [in hydras.Hydra.Hydra_Theorems]
    +Alive_free [in hydras.Hydra.Hydra_Theorems]
    +all_cases [in hydras.Hydra.O2H]
    +all_ord_acc [in hydras.Schutte.Schutte_basics]
    +Almost_done [in hydras.Hydra.BigBattle]
    +alpha_pos [in hydras.Hydra.O2H]
    +alpha_lt_beta [in hydras.Schutte.AP]
    +alpha_plus_zero [in hydras.Epsilon0.E0]
    +alpha_sup [in hydras.Schutte.Ordering_Functions]
    +alpha_A [in hydras.Schutte.Ordering_Functions]
    +alpha_plus_sup [in hydras.Schutte.Addition]
    +alpha_plus_zero [in hydras.Schutte.Addition]
    +alt_double_ok [in additions.Demo]
    +Alt.add'_ok [in hydras.MoreAck.PrimRecExamples]
    +Alt.compose_01 [in hydras.MoreAck.PrimRecExamples]
    +Alt.Eps0_prec.prec_transitive [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_prec.prec_antisym [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_prec.prec_dec [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_sig.eq_symbol_dec [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.lt_inc_rpo_0 [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.lt_subterm2 [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.lt_subterm1 [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.nat_2_term_mono [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.nat_lt_cons [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.nf_Acc [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.nf_Wf [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.rpo_trans [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.R_inc_rpo [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.R1 [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.R2 [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.R3 [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.R4 [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.T1_size3 [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.T1_size2 [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.T1_size1 [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Vars.eq_variable_dec [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.well_founded_rpo [in hydras.Epsilon0.Epsilon0rpo]
    +AM_power_Ok [in additions.AM]
    +andE1 [in hydras.Ackermann.LNN]
    +andE1 [in hydras.Ackermann.LNT]
    +andE1 [in hydras.Ackermann.folLogic]
    +andE2 [in hydras.Ackermann.LNN]
    +andE2 [in hydras.Ackermann.LNT]
    +andE2 [in hydras.Ackermann.folLogic]
    +andI [in hydras.Ackermann.LNN]
    +andI [in hydras.Ackermann.LNT]
    +andI [in hydras.Ackermann.folLogic]
    +andRelPR [in hydras.Ackermann.primRec]
    +andSym [in hydras.Ackermann.LNN]
    +andSym [in hydras.Ackermann.LNT]
    +andSym [in hydras.Ackermann.folLogic]
    +approx_ok [in hydras.Epsilon0.Canon]
    +ap_plusR [in hydras.Epsilon0.T1]
    +ap_plus [in hydras.Epsilon0.T1]
    +ap_cases [in hydras.OrdinalNotations.ON_Omega2]
    +AP_plus_AP [in hydras.Schutte.AP]
    +AP_to_phi0 [in hydras.Schutte.AP]
    +AP_phi0 [in hydras.Schutte.AP]
    +AP_o_segment [in hydras.Schutte.AP]
    +AP_closed [in hydras.Schutte.AP]
    +AP_sup [in hydras.Schutte.AP]
    +AP_unbounded [in hydras.Schutte.AP]
    +AP_unbounded_0 [in hydras.Schutte.AP]
    +AP_mult_fin_r_closed [in hydras.Schutte.AP]
    +AP_mult_Sn_closed [in hydras.Schutte.AP]
    +AP_plus_closed [in hydras.Schutte.AP]
    +AP_finite_eq_one [in hydras.Schutte.AP]
    +AP_omega [in hydras.Schutte.AP]
    +AP_one [in hydras.Schutte.AP]
    +ap_ref [in gaia_hydras.T1Bridge]
    +Axm [in hydras.Ackermann.LNN]
    +Axm [in hydras.Ackermann.LNT]
    +Axm [in hydras.Ackermann.folLogic]
    +axp_scheme_length1 [in additions.Addition_Chains]
    +axp_correct [in additions.Addition_Chains]
    +A_full [in hydras.Schutte.Critical]
    +A_Cr [in hydras.Schutte.Critical]
    +A_closed [in hydras.Schutte.Ordering_Functions]
    +A_denum [in hydras.Schutte.Ordering_Functions]
    +A1_A2 [in hydras.Schutte.Ordering_Functions]
    +A2_A1 [in hydras.Schutte.Ordering_Functions]
    +

    B

    +Bad.correct_exp_too_strong [in additions.FirstSteps]
    +Bad.F3_correct [in additions.Euclidean_Chains]
    +Bad.height_lt_size [in hydras.Hydra.Hydra_Examples]
    +Bad.mul_not_associative [in additions.FirstSteps]
    +Bad.one_not_neutral [in additions.FirstSteps]
    +Bad2.Fcompose_correct [in additions.Euclidean_Chains]
    +Bad4.F23_ok [in additions.Euclidean_Chains]
    +battle_length_std_Hardy [in hydras.Hydra.Hydra_Theorems]
    +battle_length_std [in hydras.Hydra.Battle_length]
    +battle_example [in hydras.Hydra.KP_example]
    +Bbeta_denum [in hydras.Schutte.Ordering_Functions]
    +betaEquiv [in Goedel.PRrepresentable]
    +betaRepresentable [in Goedel.PRrepresentable]
    +betaThm2 [in Goedel.PRrepresentable]
    +betaThm3 [in Goedel.PRrepresentable]
    +betaThm4 [in Goedel.PRrepresentable]
    +betaThm5 [in Goedel.PRrepresentable]
    +beta_def [in Goedel.PRrepresentable]
    +Bigstep [in hydras.Hydra.BigBattle]
    +big_to_small [in hydras.Hydra.Epsilon0_Needed_Free]
    +big_to_small [in hydras.Hydra.Omega2_Small]
    +big_to_small [in hydras.Hydra.Omega_Small]
    +binary_power_mult_ok [in additions.Pow_variant]
    +binary_power_mult_ok [in additions.Pow]
    +binary_chain_length [in additions.Addition_Chains]
    +binary_generator_not_optimal [in additions.Addition_Chains]
    +binary_generator_correct [in additions.Addition_Chains]
    +binary_correct [in additions.Addition_Chains]
    +bin_pow_scheme_length1 [in additions.Addition_Chains]
    +bitsP [in additions.fib]
    +bits_cat [in additions.fib]
    +bool_eq_iff [in hydras.Epsilon0.T1]
    +bool_decide_eq_false [in hydras.Prelude.STDPP_compat]
    +bool_decide_eq_true [in hydras.Prelude.STDPP_compat]
    +boundComputationMonotone [in hydras.Ackermann.codeSubFormula]
    +boundedCheck [in hydras.Prelude.MoreDecidable]
    +boundedLT [in hydras.Ackermann.NNtheory]
    +boundedSearch1 [in hydras.Ackermann.primRec]
    +boundedSearch2 [in hydras.Ackermann.primRec]
    +boundedSearch3 [in hydras.solutions_exercises.isqrt]
    +boundedSearch4 [in hydras.solutions_exercises.isqrt]
    +boundMakeTrace [in hydras.Ackermann.codeSubFormula]
    +boundSubFormulaHelp [in hydras.Ackermann.codeSubFormula]
    +boundSubFormulaHelp1 [in hydras.Ackermann.codeSubFormula]
    +boundSubFormulaHelp2 [in hydras.Ackermann.codeSubFormula]
    +boundSubTerm [in hydras.Ackermann.codeSubFormula]
    +boundSubTerms [in hydras.Ackermann.codeSubFormula]
    +but_last_iota_from' [in hydras.Prelude.MoreLists]
    +but_last_app [in hydras.Prelude.MoreLists]
    +but_last_shift' [in hydras.Prelude.MoreLists]
    +but_last_interval [in hydras.Prelude.MoreLists]
    +but_last_iota_from [in hydras.Prelude.MoreLists]
    +

    C

    +call_lt_wf [in hydras.Epsilon0.F_alpha]
    +CanonSSn [in hydras.Epsilon0.Canon]
    +canonS_rel_rounds [in hydras.Hydra.O2H]
    +canonS_iota [in hydras.Hydra.O2H]
    +canonS_iota_i [in hydras.Hydra.O2H]
    +canonS_iota_final [in hydras.Hydra.O2H]
    +canonS_iota_6 [in hydras.Hydra.O2H]
    +canonS_iota_5 [in hydras.Hydra.O2H]
    +canonS_iota_4 [in hydras.Hydra.O2H]
    +canonS_ocons_succE [in gaia_hydras.GCanon]
    +canonS_zero_inv [in gaia_hydras.GCanon]
    +canonS_phi0_succE [in gaia_hydras.GCanon]
    +canonS_cons_not_zero [in gaia_hydras.GCanon]
    +canonS_lt [in gaia_hydras.GCanon]
    +canonS_LE [in gaia_hydras.GCanon]
    +CanonS_phi0_Succ [in hydras.Epsilon0.Canon]
    +CanonS_lt [in hydras.Epsilon0.Canon]
    +CanonS_phi0_lim [in hydras.Epsilon0.Canon]
    +canonS_LE [in hydras.Epsilon0.Canon]
    +canonS_limit_mono [in hydras.Epsilon0.Canon]
    +canonS_limit_lub [in hydras.Epsilon0.Canon]
    +canonS_limit_strong [in hydras.Epsilon0.Canon]
    +canonS_cons_not_zero [in hydras.Epsilon0.Canon]
    +canonS_LT [in hydras.Epsilon0.Canon]
    +canonS_zero_inv [in hydras.Epsilon0.Canon]
    +canonS_cons_succ_eqn2 [in hydras.Epsilon0.Canon]
    +canonS_phi0_succ_eqn [in hydras.Epsilon0.Canon]
    +canonS_succ [in hydras.Epsilon0.Canon]
    +canonS_lim2 [in hydras.Epsilon0.Canon]
    +canonS_lim1 [in hydras.Epsilon0.Canon]
    +CanonS_Phi0_Succ_eqn [in hydras.Epsilon0.Paths]
    +CanonS_plus_1 [in hydras.Epsilon0.Paths]
    +canon_limit_of [in gaia_hydras.GCanon]
    +canon_limit_mono [in gaia_hydras.GCanon]
    +canon_limit_strong [in gaia_hydras.GCanon]
    +canon_lim3 [in gaia_hydras.GCanon]
    +canon_lim2 [in gaia_hydras.GCanon]
    +canon_tail [in gaia_hydras.GCanon]
    +canon_lim1 [in gaia_hydras.GCanon]
    +canon_SSn_zero [in gaia_hydras.GCanon]
    +canon_lt [in gaia_hydras.GCanon]
    +canon_succ [in gaia_hydras.GCanon]
    +canon_not_null [in hydras.Epsilon0.Large_Sets]
    +Canon_of_limit_not_null [in hydras.Epsilon0.Canon]
    +Canon_lt [in hydras.Epsilon0.Canon]
    +Canon_Omega [in hydras.Epsilon0.Canon]
    +Canon_Succ [in hydras.Epsilon0.Canon]
    +canon_limit_mono [in hydras.Epsilon0.Canon]
    +canon_limit_strong [in hydras.Epsilon0.Canon]
    +canon_lt [in hydras.Epsilon0.Canon]
    +canon_LT [in hydras.Epsilon0.Canon]
    +canon_SSn_zero [in hydras.Epsilon0.Canon]
    +canon_succ [in hydras.Epsilon0.Canon]
    +canon_lim3 [in hydras.Epsilon0.Canon]
    +canon_lim2 [in hydras.Epsilon0.Canon]
    +canon_lim1 [in hydras.Epsilon0.Canon]
    +canon_tail [in hydras.Epsilon0.Canon]
    +canon_zero [in hydras.Epsilon0.Canon]
    +Canon_plus_first_step_lim [in hydras.Epsilon0.Paths]
    +Canon_plus_first_step [in hydras.Epsilon0.Paths]
    +Canon_mono1 [in hydras.Epsilon0.Paths]
    +Canon_plus_inv [in hydras.Epsilon0.Paths]
    +canon0_lt [in gaia_hydras.GCanon]
    +canon0_phi0_succE [in gaia_hydras.GCanon]
    +canon0_LT [in hydras.Epsilon0.Canon]
    +canon0_cons_succ_eqn2 [in hydras.Epsilon0.Canon]
    +canon0_phi0_succ_eqn [in hydras.Epsilon0.Canon]
    +canon0_succ [in hydras.Epsilon0.Canon]
    +canon0_lim2 [in hydras.Epsilon0.Canon]
    +CantorOrdinal.addC_CE [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.add_simpl3 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.add_normal [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.add_le4 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.add_le3 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.add_inj [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.add_le2 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.add_le1 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.add_simpl2 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.add_simpl1 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.add_to_cons [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.add_fin_omega [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.add_int [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.add1Nfin [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.ap_pr4 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.ap_pr3 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.ap_pr2CE [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.ap_pr2 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.ap_pr1 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.ap_pr0 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.cantorCE2 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.cantorCE3 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.cantor_CE1 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.cantor_unique [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.cantor_exists [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.div_by_omega_pr [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.expF_eq1 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.expF_eq0 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.expF_1n [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.expF_mul [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.expF_add [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.expO_add [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.expO_eq1 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.expO_eq0 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.expO_1n [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.expO_n0 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.expO_mul1 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.expx_nat [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.expx_pnat [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.expx0 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.expx1 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.expx1CE [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.exp_prod [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.exp_sum [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.exp_FO3 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.exp_FO2 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.exp_FO1 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.exp_FO [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.exp_consCE1 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.exp_int [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.exp_eq1 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.exp_eq0 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.exp0nz [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.exp00 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.exp1x [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.exp2omega [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.ex_middle_pick [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.fincP [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.fooCE [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.head_lt_cons [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.le_succ_succE [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.le_succ_succ [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.limit_prop [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.limit_lub [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.limit_unique [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.limit_CE3 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.limit_CE2 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.limit_CE1 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.limit_unique2 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.limit_unique1 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.limit_pr [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.limit_pr1 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.limit1 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.limit2 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.limit3 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.lt_succ_le_4 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.lt_succ_le_3 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.lt_succ_le_2 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.lt_succ_le_1 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.lt_succ_succE [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.lt_succ2CE [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.lt_succ_succ [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.lt_not_wf [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.minus_le [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.minus_lt [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.min_exists [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.mulA [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.mulnf0 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.mul_omega_pr3 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.mul_omega2_pr1 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.mul_omega_pr1 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.mul_sum_omega [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.mul_omega_limit [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.mul_int_limit [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.mul_fin_omega [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.mul_succ [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.mul_distr [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.mul_phi0 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.mul_int [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.mul_na [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_exp [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_expF [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_expO [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_rev_prod [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_rev_sum [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_rev_unique [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_rev [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_revCE [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_div_by_omega [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_mul [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_toNF [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_omega_plus_n [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_sub [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_add [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_pred [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_succ [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_log [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_phi0 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_finite [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_omega [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_split [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_Wf' [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.nf_Wf [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.normal_compose [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.normal_limit [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.normal_id [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.omega_tower_unbounded [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.omega_tower_nf [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.omega_minus_one [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.phi0_log [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.phi0_lt1 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.phi0_le [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.phi0_lt [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.plus_int_Ox [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.pow_mon3 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.pow_mon2 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.pow_mon1 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.pow_omega [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.pred_succ_CE [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.pred_succ [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.pred_lt [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.pred_le [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.split_add [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.split_limit1 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.split_le [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.split_pred [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.split_succ [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.split_finite [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.split_is_succ [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.split_limit [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.sub_pr1rCE [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.sub_nzCE [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.sub_nz [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.sub_pr1r [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.sub_pr1CE [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.sub_pr1 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.sub_pr [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.sub_le1 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.sub_int [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.sub_1bCE [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.sub_1aCE [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.sub1a [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.sub1b [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.sub1Nfin [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.succ_is_add_one [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.succ_injCE [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.succ_inj [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.succ_p1 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.succ_predCE [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.succ_pred [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.succ_lt [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.sup_Oalpha_limit [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.sup_Oalpha_succ [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.sup_Oalpha_zero [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.sup_unique [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.tail_lt_cons [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.toNF_pred [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.toNF_succ [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.toNF_ex2 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.toNF_ex1 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.toNF_mon [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.toNF_nf [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.toNF_nz [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1addA [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1addn0 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1addS [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1add_eq0 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1add0n [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1ap_phi0 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1eqE [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1eqP [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1eq_mul2l [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1eq_add2l [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1eq_le [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1finite_succ [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1finite1 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1finite2 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1finite2CE [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1F_inj [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1ge1 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1leNgt [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1lenn [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1len0 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1leP [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1le_pmull [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1le_mul [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1le_mulCE [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1le_pmulrl [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1le_pmulrCE [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1le_pmulr [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1le_mul2r [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1le_mul2l [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1le_add2r [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1le_add2l [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1le_cons_le [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1le_trans [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1le_lt_trans [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1le_total [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1le_consE [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1le_eqVlt [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1le0n [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1log_exp2 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1log_exp1 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1log_exp0 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1log_prod [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1log_phi0 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1ltgtP [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1ltNge [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1ltnn [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1ltn0 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1ltP [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1ltW [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1lt_mul2r [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1lt_mul2l [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1lt_add2r [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1lt_add2l [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1lt_cons_le [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1lt_le_trans [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1lt_trans [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1lt_anti [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1lt_trichotomy [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1lt_neAle [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1lt_ne' [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1lt_ne [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1lt0n [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1lt1 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1muln0 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1muln1 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1muln1_CE [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1mul_omega [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1mul_eq1 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1mul_eq0 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1mul0n [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1mul1n [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1mul1nCE [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1nat_inc [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1nfCE [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1nf_rect [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1nf_finite [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1nf_finite1 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1nf_consb [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1nf_consa [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1nf_cons_cons [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1nf_cons0 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1phi0_zero' [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1phi0_zero [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1subnn [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1subn0 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1sub0 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1succ_nat [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1transfinite_induction_Q [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1transfinite_induction [in gaia_hydras.nfwfgaia]
    +Cantor_normal_form [in hydras.Epsilon0.T1]
    +cases_for_mult [in hydras.Epsilon0.T1]
    +case_Eq [in hydras.Schutte.Correctness_E0]
    +case_gt [in hydras.Schutte.Correctness_E0]
    +case_lt [in hydras.Schutte.Correctness_E0]
    +chain_gen_OK [in additions.AM]
    +chain_gen_OK [in additions.Euclidean_Chains]
    +checkPrfCorrect1 [in hydras.Ackermann.checkPrf]
    +checkPrfCorrect2 [in hydras.Ackermann.checkPrf]
    +checkPrfEQnIsPR [in hydras.Ackermann.checkPrf]
    +checkTraceCorrect [in hydras.Ackermann.codeSubFormula]
    +classification [in hydras.Schutte.Schutte_basics]
    +closedNatToTerm [in hydras.Ackermann.LNN]
    +closedNatToTerm [in hydras.Ackermann.LNT]
    +closedNN [in hydras.Ackermann.NN]
    +closedNN1 [in hydras.Ackermann.NN]
    +closedPA [in hydras.Ackermann.PA]
    +closedPA1 [in hydras.Ackermann.PA]
    +closedT [in hydras.Ackermann.expressible]
    +Closed_Cr [in hydras.Schutte.Critical]
    +cnf_of_epsilon0 [in hydras.Schutte.CNF]
    +cnf_lt_epsilon0 [in hydras.Schutte.CNF]
    +cnf_exists_unique [in hydras.Schutte.CNF]
    +cnf_unicity [in hydras.Schutte.CNF]
    +cnf_exists [in hydras.Schutte.CNF]
    +cnf_plus [in hydras.Schutte.CNF]
    +cnf_plus2 [in hydras.Schutte.CNF]
    +cnf_plus1 [in hydras.Schutte.CNF]
    +cnf_eq [in hydras.Schutte.CNF]
    +cnf_head_eq [in hydras.Schutte.CNF]
    +cnf_of_ap [in hydras.Schutte.CNF]
    +cnf_Cons [in hydras.Epsilon0.E0]
    +cnf_Omega_term [in hydras.Epsilon0.E0]
    +cnf_Succ [in hydras.Epsilon0.E0]
    +cnf_phi0 [in hydras.Epsilon0.E0]
    +cnf_rw [in hydras.Epsilon0.E0]
    +codeAndCorrect [in hydras.Ackermann.code]
    +codeAppCorrect [in hydras.Ackermann.codeList]
    +codeArityLNNFIsCorrect1 [in hydras.Ackermann.Languages]
    +codeArityLNNFIsCorrect2 [in hydras.Ackermann.Languages]
    +codeArityLNNRIsCorrect1 [in hydras.Ackermann.Languages]
    +codeArityLNNRIsCorrect2 [in hydras.Ackermann.Languages]
    +codeArityLNTFIsCorrect1 [in hydras.Ackermann.Languages]
    +codeArityLNTFIsCorrect2 [in hydras.Ackermann.Languages]
    +codeArityLNTRIsCorrect1 [in hydras.Ackermann.Languages]
    +codeArityLNTRIsCorrect2 [in hydras.Ackermann.Languages]
    +codeCloseCorrect [in hydras.Ackermann.codePA]
    +codeCloseListCorrect [in hydras.Ackermann.codePA]
    +codeForallCorrect [in hydras.Ackermann.code]
    +codeForallIsPR [in hydras.Ackermann.prLogic]
    +codeFormulaInj [in hydras.Ackermann.code]
    +codeFreeVarFormulaCorrect [in hydras.Ackermann.codeFreeVar]
    +codeFreeVarListFormulaCorrect [in hydras.Ackermann.codeFreeVar]
    +codeFreeVarTermCorrect [in hydras.Ackermann.codeFreeVar]
    +codeFreeVarTermIsPR [in hydras.Ackermann.codeFreeVar]
    +codeFreeVarTermsCorrect [in hydras.Ackermann.codeFreeVar]
    +codeIffCorrect [in hydras.Ackermann.code]
    +codeImpCorrect [in hydras.Ackermann.code]
    +codeInCorrect [in hydras.Ackermann.codeList]
    +codeInductionSchemaCorrect1 [in hydras.Ackermann.codePA]
    +codeInductionSchemaCorrect2 [in hydras.Ackermann.codePA]
    +codeInductionSchemaCorrect3 [in hydras.Ackermann.codePA]
    +codeLengthCorrect [in hydras.Ackermann.codeList]
    +codeListInj [in hydras.Ackermann.cPair]
    +codeListRemoveCorrect [in hydras.Ackermann.codeList]
    +codeLNNRelationInj [in hydras.Ackermann.Languages]
    +codeLNTFunctionInj [in hydras.Ackermann.Languages]
    +codeLNTRelationInj [in hydras.Ackermann.Languages]
    +codeNatToTermCorrectLNN [in hydras.Ackermann.codeNatToTerm]
    +codeNatToTermCorrectLNT [in hydras.Ackermann.codeNatToTerm]
    +codeNewVarCorrect [in hydras.Ackermann.codeSubFormula]
    +codeNoDupCorrect [in hydras.Ackermann.codeList]
    +codeNotCorrect [in hydras.Ackermann.code]
    +codeNthCorrect [in hydras.Ackermann.cPair]
    +codeNVarsCorrect [in hydras.Ackermann.checkPrf]
    +codeOpenCorrect [in hydras.Ackermann.codePA]
    +codeOrCorrect [in hydras.Ackermann.code]
    +codePAcorrect1 [in hydras.Ackermann.codePA]
    +codePAcorrect2 [in hydras.Ackermann.codePA]
    +codePAcorrect3 [in hydras.Ackermann.codePA]
    +codePrfInjAxm [in hydras.Ackermann.code]
    +codeSubFormulaCorrect [in hydras.Ackermann.codeSubFormula]
    +codeSubTermCorrect [in hydras.Ackermann.codeSubTerm]
    +codeSubTermsCorrect [in hydras.Ackermann.codeSubTerm]
    +codeSubTermsIsPR [in hydras.Ackermann.codeSubTerm]
    +codeSysPfCorrect [in Goedel.codeSysPrf]
    +codeSysPrfCorrect1 [in Goedel.codeSysPrf]
    +codeSysPrfCorrect2 [in Goedel.codeSysPrf]
    +codeSysPrfCorrect3 [in Goedel.codeSysPrf]
    +codeSysPrfNCorrect1 [in Goedel.codeSysPrf]
    +codeSysPrfNCorrect2 [in Goedel.codeSysPrf]
    +codeSysPrfNCorrect3 [in Goedel.codeSysPrf]
    +codeTermFreeVar [in hydras.Ackermann.codeSubFormula]
    +codeTermInj [in hydras.Ackermann.code]
    +codeTermsInj [in hydras.Ackermann.code]
    +coeff_lt [in hydras.Epsilon0.T1]
    +coeff_lt [in hydras.Schutte.Correctness_E0]
    +compare_reflectR [in hydras.Epsilon0.T1]
    +compare_of_phi0 [in hydras.Epsilon0.T1]
    +compare_fin_rw [in hydras.Epsilon0.T1]
    +compare_lt_iff [in hydras.Epsilon0.T1]
    +compare_lt_impl [in hydras.Epsilon0.T1]
    +compare_eq_iff [in hydras.Epsilon0.T1]
    +compare_refl [in hydras.Epsilon0.T1]
    +compare_correct [in hydras.Epsilon0.T1]
    +compare_reflect [in hydras.Epsilon0.T1]
    +compare_rev [in hydras.Epsilon0.T1]
    +compare_cons [in hydras.Epsilon0.T1]
    +compare_correct [in hydras.OrdinalNotations.ON_Omega2]
    +compare_reflect [in hydras.OrdinalNotations.ON_Omega2]
    +compare_reflect [in hydras.Prelude.Comparable]
    +compare_trans [in hydras.Prelude.Comparable]
    +compare_ge_iff [in hydras.Prelude.Comparable]
    +compare_le_iff [in hydras.Prelude.Comparable]
    +compare_le_iff_refl [in hydras.Prelude.Comparable]
    +compare_gt_not_lt [in hydras.Prelude.Comparable]
    +compare_lt_not_gt [in hydras.Prelude.Comparable]
    +compare_gt_trans [in hydras.Prelude.Comparable]
    +compare_gt_irrefl [in hydras.Prelude.Comparable]
    +compare_gt_iff [in hydras.Prelude.Comparable]
    +compare_eq_trans [in hydras.Prelude.Comparable]
    +compare_refl [in hydras.Prelude.Comparable]
    +compare_eq_iff [in hydras.Prelude.Comparable]
    +compare_lt_irrefl [in hydras.Prelude.Comparable]
    +compare_lt_trans [in hydras.Prelude.Comparable]
    +compare_lt_iff [in hydras.Prelude.Comparable]
    +compare_reflect [in hydras.OrdinalNotations.ON_O]
    +compare_correct [in hydras.OrdinalNotations.ON_O]
    +compare_h2g [in gaia_hydras.T1Bridge]
    +compare_g2h [in gaia_hydras.T1Bridge]
    +compare_ref [in gaia_hydras.T1Bridge]
    +compare_correct [in hydras.OrdinalNotations.ON_mult]
    +compare_reflect [in hydras.OrdinalNotations.ON_mult]
    +compare_correct [in hydras.OrdinalNotations.ON_plus]
    +compare_reflect [in hydras.OrdinalNotations.ON_plus]
    +compare_reflect [in hydras.OrdinalNotations.ON_Finite]
    +compare_correct [in hydras.OrdinalNotations.ON_Finite]
    +compare_correct [in hydras.Epsilon0.E0]
    +compare_rw_gt [in hydras.Gamma0.Gamma0]
    +compare_rw_eq [in hydras.Gamma0.Gamma0]
    +compare_rw_lt [in hydras.Gamma0.Gamma0]
    +compare_Gt [in hydras.Gamma0.Gamma0]
    +compare_Eq [in hydras.Gamma0.Gamma0]
    +compare_Lt [in hydras.Gamma0.Gamma0]
    +compare_correct [in hydras.Gamma0.Gamma0]
    +compare_reflect [in hydras.Gamma0.Gamma0]
    +Compat815.le_not_lt [in hydras.Prelude.Compat815]
    +Compat815.le_plus_r [in hydras.Prelude.Compat815]
    +Compat815.le_lt_n_Sm [in hydras.Prelude.Compat815]
    +Compat815.le_lt_or_eq [in hydras.Prelude.Compat815]
    +Compat815.le_n_0_eq [in hydras.Prelude.Compat815]
    +Compat815.lt_not_le [in hydras.Prelude.Compat815]
    +Compat815.lt_n_S [in hydras.Prelude.Compat815]
    +Compat815.lt_S_n [in hydras.Prelude.Compat815]
    +Compat815.lt_n_Sm_le [in hydras.Prelude.Compat815]
    +Compat815.mult_O_le [in hydras.Prelude.Compat815]
    +Compat815.n_SSn [in hydras.Prelude.Compat815]
    +Compat815.n_SSSn [in hydras.Prelude.Compat815]
    +Compat815.plus_Snm_nSm [in hydras.Prelude.Compat815]
    +composeSigmaRepresentable [in Goedel.PRrepresentable]
    +compose2_3 [in hydras.MoreAck.PrimRecExamples]
    +compose2_2 [in hydras.MoreAck.PrimRecExamples]
    +compose2_1 [in hydras.MoreAck.PrimRecExamples]
    +compose2_0 [in hydras.MoreAck.PrimRecExamples]
    +computation_eval_rw [in additions.Addition_Chains]
    +computeEvalStrongRecHelp [in hydras.Ackermann.cPair]
    +constant_to_standard_path [in gaia_hydras.GPaths]
    +constant_to_standard_path [in hydras.Epsilon0.Paths]
    +constant_to_standard [in hydras.Epsilon0.Paths]
    +constant_to_standard_0 [in hydras.Epsilon0.Paths]
    +consTerms [in hydras.Ackermann.fol]
    +const_pathS_LT' [in hydras.Epsilon0.Paths]
    +const_pathS_eps_zero [in hydras.Epsilon0.Paths]
    +const_pathS_first_step [in hydras.Epsilon0.Paths]
    +const_pathS_eps_LE_2 [in hydras.Epsilon0.Paths]
    +const_pathS_eps_trans [in hydras.Epsilon0.Paths]
    +const_pathS_trans [in hydras.Epsilon0.Paths]
    +const_pathS_inv_strong [in hydras.Epsilon0.Paths]
    +const_pathS_inv [in hydras.Epsilon0.Paths]
    +const_pathS_LE [in hydras.Epsilon0.Paths]
    +const_path_LT [in hydras.Epsilon0.Paths]
    +const_pathS_LT [in hydras.Epsilon0.Paths]
    +const_pathS_zero [in hydras.Epsilon0.Paths]
    +const_pathS_nf [in hydras.Epsilon0.Paths]
    +const_pathS_repeatR [in hydras.Epsilon0.Paths]
    +const_pathS_repeat [in hydras.Epsilon0.Paths]
    +const_pathSE [in hydras.Epsilon0.Paths]
    +cons_def [in hydras.Epsilon0.T1]
    +cons_nf [in hydras.Epsilon0.T1]
    +cons_standard_path [in hydras.Epsilon0.Paths]
    +cons_standard_pathS [in hydras.Epsilon0.Paths]
    +cons_lt_epsilon0 [in hydras.Gamma0.Gamma0]
    +cons_rw [in hydras.Gamma0.Gamma0]
    +contrad [in hydras.solutions_exercises.MultisetWf]
    +contrad [in hydras.solutions_exercises.T1_ltNotWf]
    +contradiction [in hydras.Ackermann.LNN]
    +contradiction [in hydras.Ackermann.LNT]
    +contradiction [in hydras.Ackermann.folLogic]
    +Contradiction [in hydras.Hydra.Omega_Small]
    +correct_app [in additions.AM]
    +Cor12 [in gaia_hydras.GPaths]
    +Cor12 [in hydras.Epsilon0.Paths]
    +Cor12_E0 [in hydras.Epsilon0.Paths]
    +Cor12_3 [in hydras.Epsilon0.Paths]
    +Cor12_2 [in hydras.Epsilon0.Paths]
    +Cor12_1 [in hydras.Epsilon0.Paths]
    +countable_members [in hydras.Schutte.Schutte_basics]
    +countable_not_Unbounded [in hydras.Schutte.Schutte_basics]
    +countable_segment_proper [in hydras.Schutte.Ordering_Functions]
    +countable_image [in hydras.Schutte.Countable]
    +countable_bij_funR [in hydras.Schutte.Countable]
    +countable_bij_fun [in hydras.Schutte.Countable]
    +countable_surj [in hydras.Schutte.Countable]
    +counter_ex [in hydras.solutions_exercises.schutte_cnf_counter_example]
    +cPairInjHelp [in hydras.Ackermann.cPair]
    +cPairInj1 [in hydras.Ackermann.cPair]
    +cPairInj2 [in hydras.Ackermann.cPair]
    +cPairLemma1 [in hydras.Ackermann.cPair]
    +cPairLe1 [in hydras.Ackermann.cPair]
    +cPairLe1A [in hydras.Ackermann.cPair]
    +cPairLe2 [in hydras.Ackermann.cPair]
    +cPairLe2A [in hydras.Ackermann.cPair]
    +cPairLe3 [in hydras.Ackermann.cPair]
    +cPairLt1 [in hydras.Ackermann.cPair]
    +cPairLt2 [in hydras.Ackermann.cPair]
    +cPairProjections [in hydras.Ackermann.cPair]
    +cPairProjectionsHelp [in hydras.Ackermann.cPair]
    +cPairProjections1 [in hydras.Ackermann.cPair]
    +cPairProjections2 [in hydras.Ackermann.cPair]
    +cp1 [in hydras.Ackermann.LNN]
    +cp1 [in hydras.Ackermann.LNT]
    +cp1 [in hydras.Ackermann.folLogic]
    +cp2 [in hydras.Ackermann.LNN]
    +cp2 [in hydras.Ackermann.LNT]
    +cp2 [in hydras.Ackermann.folLogic]
    +Cr_1_iff [in hydras.Schutte.Critical]
    +Cr_incl [in hydras.Schutte.Critical]
    +Cr_lt [in hydras.Schutte.Critical]
    +Cr_pos_iff [in hydras.Schutte.Critical]
    +Cr_pos_inv [in hydras.Schutte.Critical]
    +Cr_zero_AP [in hydras.Schutte.Critical]
    +Cr_zero_inv [in hydras.Schutte.Critical]
    +Cr_pos [in hydras.Schutte.Critical]
    +Cr_zero [in hydras.Schutte.Critical]
    +Cr_inv [in hydras.Schutte.Critical]
    +Cr_equation [in hydras.Schutte.Critical]
    +Cr_extensional [in hydras.Schutte.Critical]
    +cst_correct [in hydras.MoreAck.PrimRecExamples]
    +cst0_correct [in hydras.MoreAck.PrimRecExamples]
    +cTripleProj [in hydras.Ackermann.cPair]
    +cTripleProj1 [in hydras.Ackermann.cPair]
    +cTripleProj2 [in hydras.Ackermann.cPair]
    +cTripleProj3 [in hydras.Ackermann.cPair]
    +C87_ok' [in additions.Addition_Chains]
    +

    D

    +decideAxioms [in Goedel.rosserPA]
    +decideAxioms [in Goedel.rosser]
    +decide_hltE [in gaia_hydras.T1Bridge]
    +decomp [in hydras.Prelude.MoreVectors]
    +decompose [in hydras.OrdinalNotations.ON_Omega2]
    +decompos2 [in hydras.Prelude.MoreVectors]
    +decomp1 [in hydras.Prelude.MoreVectors]
    +decomp2 [in hydras.Prelude.MoreVectors]
    +decr_seq [in hydras.solutions_exercises.MultisetWf]
    +DeductionTheorem [in hydras.Ackermann.Deduction]
    +den_U [in hydras.Schutte.Ordering_Functions]
    +depthForall [in hydras.Ackermann.fol]
    +depthImp1 [in hydras.Ackermann.fol]
    +depthImp2 [in hydras.Ackermann.fol]
    +depthNot [in hydras.Ackermann.fol]
    +dicho_gt [in additions.Dichotomy]
    +dicho_lt [in additions.Dichotomy]
    +dicho_aux_gt [in additions.Dichotomy]
    +dicho_aux_lt [in additions.Dichotomy]
    +dicho_aux_le_xIXI [in additions.Dichotomy]
    +dicho_aux_le_xIXO [in additions.Dichotomy]
    +dicho_aux_le_xOXI [in additions.Dichotomy]
    +dicho_aux_le_xOXO [in additions.Dichotomy]
    +dicho_aux_xIxI [in additions.Dichotomy]
    +dicho_aux_xIxO [in additions.Dichotomy]
    +dicho_aux_xOxI [in additions.Dichotomy]
    +dicho_aux_xOxO [in additions.Dichotomy]
    +diffP [in gaia_hydras.GPrelude]
    +Direct_proof.nf_Acc [in hydras.Epsilon0.T1]
    +Direct_proof.Acc_implies_Acc_strong [in hydras.Epsilon0.T1]
    +Direct_proof.Acc_strong_stronger [in hydras.Epsilon0.T1]
    +Direct_proof.acc_impl [in hydras.Epsilon0.T1]
    +Direct_proof.wf_LT [in hydras.Epsilon0.T1]
    +Direct_proof.Acc_zero [in hydras.Epsilon0.T1]
    +div_eucl_unique [in hydras.Prelude.More_Arith]
    +div_not_qlt [in hydras.Prelude.More_Arith]
    +div_gamma_pos [in additions.Strategies]
    +div2_even_plus [in hydras.Prelude.More_Arith]
    +div2_incr [in hydras.Prelude.More_Arith]
    +div2_of_Even [in hydras.Prelude.More_Arith]
    +div2_double_is_id [in hydras.Prelude.More_Arith]
    +dominates_iterate [in hydras.Prelude.Iterates]
    +dominates_from_le [in hydras.Prelude.Iterates]
    +dominates_trans_strong [in hydras.Prelude.Iterates]
    +dominates_trans [in hydras.Prelude.Iterates]
    +dominates_from_trans [in hydras.Prelude.Iterates]
    +dom_AckNotPR [in hydras.MoreAck.AckNotPR]
    +Done [in hydras.Hydra.BigBattle]
    +doubleIsPR [in hydras.solutions_exercises.MorePRExamples]
    +doubleS_law [in hydras.Hydra.BigBattle]
    +double_is_even [in hydras.Prelude.More_Arith]
    +double_inj [in hydras.Prelude.More_Arith]
    +double_plus [in hydras.Prelude.More_Arith]
    +double_S [in hydras.Prelude.More_Arith]
    +DS_iota_3 [in hydras.Hydra.O2H]
    +DS_iota_2 [in hydras.Hydra.O2H]
    +DS_iota_1 [in hydras.Hydra.O2H]
    +

    E

    +embedding [in hydras.Schutte.Correctness_E0]
    +empty_interval [in hydras.Prelude.MoreLists]
    +empty_ordering [in hydras.Schutte.Ordering_Functions]
    +epsilon_equiv [in hydras.Schutte.MoreEpsilonIota]
    +epsilon_ind [in hydras.Schutte.MoreEpsilonIota]
    +epsilon_fxp [in hydras.Gamma0.Gamma0]
    +epsilon0_Cr1 [in hydras.Schutte.Critical]
    +epsilon0_lfp [in hydras.Schutte.AP]
    +epsilon0_AP [in hydras.Schutte.AP]
    +epsilon0_fxp [in hydras.Schutte.AP]
    +epsilon0_as_lub [in hydras.Gamma0.Gamma0]
    +epsilon0_fxp [in hydras.Gamma0.Gamma0]
    +eqDepth [in hydras.Ackermann.fol]
    +eqLT [in hydras.Ackermann.LNN]
    +eqn_simpl2 [in gaia_hydras.nfwfgaia]
    +eqn_simpl1 [in gaia_hydras.nfwfgaia]
    +eqPlus [in hydras.Ackermann.LNN]
    +eqPlus [in hydras.Ackermann.LNT]
    +eqRefl [in hydras.Ackermann.LNN]
    +eqRefl [in hydras.Ackermann.LNT]
    +eqRefl [in hydras.Ackermann.folLogic3]
    +eqSucc [in hydras.Ackermann.LNN]
    +eqSucc [in hydras.Ackermann.LNT]
    +eqSym [in hydras.Ackermann.LNN]
    +eqSym [in hydras.Ackermann.LNT]
    +eqSym [in hydras.Ackermann.folLogic3]
    +eqTimes [in hydras.Ackermann.LNN]
    +eqTimes [in hydras.Ackermann.LNT]
    +eqTrans [in hydras.Ackermann.LNN]
    +eqTrans [in hydras.Ackermann.LNT]
    +eqTrans [in hydras.Ackermann.folLogic3]
    +equalFunction [in hydras.Ackermann.folLogic3]
    +equalRelation [in hydras.Ackermann.folLogic3]
    +equiv_not_lt [in hydras.Prelude.DecPreOrder]
    +eq_succ_lt [in hydras.Epsilon0.T1]
    +eq_succ_LT [in hydras.Epsilon0.T1]
    +eq_dec [in hydras.OrdinalNotations.ON_Omega2]
    +eq_dec [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +eq_le [in hydras.Schutte.Schutte_basics]
    +Euc1 [in hydras.Prelude.More_Arith]
    +evalListComp [in hydras.MoreAck.AckNotPR]
    +evalListCompose2 [in hydras.MoreAck.AckNotPR]
    +evalListPrimrec_S [in hydras.MoreAck.AckNotPR]
    +evalListPrimrec_0 [in hydras.MoreAck.AckNotPR]
    +evalList_Const [in hydras.MoreAck.AckNotPR]
    +evalPrimRecParam [in hydras.Ackermann.primRec]
    +evalProjFuncInd [in hydras.Ackermann.primRec]
    +evalStrongRecHelpParam [in hydras.Ackermann.cPair]
    +evalStrongRecHelp1 [in hydras.Ackermann.cPair]
    +evalStrongRecHelp2 [in hydras.Ackermann.cPair]
    +even_prod [in hydras.Prelude.More_Arith]
    +every_battle_terminates [in hydras.Hydra.Hydra_Termination]
    +every_battle_terminates [in gaia_hydras.GHydra]
    +exact_log2_spec [in additions.More_on_positive]
    +exact_log2xOx0 [in additions.More_on_positive]
    +Examples.big_correct''' [in additions.Euclidean_Chains]
    +Examples.big_correct' [in additions.Euclidean_Chains]
    +Examples.big_correct [in additions.Euclidean_Chains]
    +Examples.RM [in additions.Euclidean_Chains]
    +exec_equiv [in additions.AM]
    +exec_app [in additions.AM]
    +existE [in hydras.Ackermann.LNN]
    +existE [in hydras.Ackermann.LNT]
    +existE [in hydras.Ackermann.folLogic]
    +existI [in hydras.Ackermann.LNN]
    +existI [in hydras.Ackermann.LNT]
    +existI [in hydras.Ackermann.folLogic]
    +existSimp [in hydras.Ackermann.LNN]
    +existSimp [in hydras.Ackermann.LNT]
    +existSimp [in hydras.Ackermann.folLogic]
    +existSys [in hydras.Ackermann.LNN]
    +existSys [in hydras.Ackermann.LNT]
    +existSys [in hydras.Ackermann.folLogic]
    +exists_map12_without_repetition [in hydras.rpo.more_list]
    +exists_map_without_repetition [in hydras.rpo.more_list]
    +ExNotIncl [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +exponents_lt_eval [in hydras.Schutte.CNF]
    +exponent_pos_of_nat [in additions.Addition_Chains]
    +exponent_pos2nat [in additions.Addition_Chains]
    +exponent_nat_neq_0 [in additions.Addition_Chains]
    +expressibleAlternate [in hydras.Ackermann.expressible]
    +expressT'1 [in Goedel.rosserPA]
    +expressT'2 [in Goedel.rosserPA]
    +exp_F_eq [in hydras.Epsilon0.T1]
    +exp_fin_omega [in hydras.Epsilon0.T1]
    +exp_alt_ok [in hydras.solutions_exercises.MorePRExamples]
    +exp2S [in hydras.Prelude.Exp2]
    +exp2_as_iterate [in hydras.Prelude.Iterates]
    +exp2_mono_weak [in hydras.Prelude.Iterates]
    +exp2_mono [in hydras.Prelude.Iterates]
    +exp2_ge_S [in hydras.Prelude.Iterates]
    +exp2_k_mult_pos [in hydras.Epsilon0.Large_Sets]
    +exp2_mono1 [in hydras.Hydra.BigBattle]
    +exp2_Plus [in additions.Addition_Chains]
    +exp2_gt_id [in hydras.Prelude.Exp2]
    +exp2_not_zero [in hydras.Prelude.Exp2]
    +exp2_positive [in hydras.Prelude.Exp2]
    +extendsNN [in Goedel.rosserPA]
    +extEqualCompose [in hydras.Ackermann.primRec]
    +extEqualCompose2 [in hydras.Ackermann.primRec]
    +extEqualOneParamList [in hydras.Ackermann.primRec]
    +extEqualPrimRec [in hydras.Ackermann.primRec]
    +extEqualRefl [in hydras.Ackermann.extEqualNat]
    +extEqualSym [in hydras.Ackermann.extEqualNat]
    +extEqualTrans [in hydras.Ackermann.extEqualNat]
    +extEqualVectorRefl [in hydras.Ackermann.primRec]
    +E0compare_correct [in gaia_hydras.T1Bridge]
    +E0fin_cnf [in gaia_hydras.T1Bridge]
    +E0g2h_omegaE [in gaia_hydras.T1Bridge]
    +E0g2h_plusE [in gaia_hydras.T1Bridge]
    +E0g2h_mulE [in gaia_hydras.T1Bridge]
    +E0g2h_phi0 [in gaia_hydras.T1Bridge]
    +E0g2h_Fin [in gaia_hydras.T1Bridge]
    +E0is_succE [in gaia_hydras.T1Bridge]
    +E0is_succ_succ [in gaia_hydras.T1Bridge]
    +E0lt_wf [in hydras.Epsilon0.E0]
    +E0_plus_correct [in hydras.Schutte.Correctness_E0]
    +E0_canon_lt [in gaia_hydras.GCanon]
    +E0_pred_succK [in gaia_hydras.T1Bridge]
    +E0_diffE [in gaia_hydras.T1Bridge]
    +E0_eqE [in gaia_hydras.T1Bridge]
    +E0_g2h_h2gK [in gaia_hydras.T1Bridge]
    +E0_h2g_g2hK [in gaia_hydras.T1Bridge]
    +E0_h2g_nf [in gaia_hydras.T1Bridge]
    +E0_lt_ge [in hydras.Epsilon0.E0]
    +E0_lt_eq_lt [in hydras.Epsilon0.E0]
    +E0_not_Lt_zero [in hydras.Epsilon0.E0]
    +E0_Lt_Succ_inv [in hydras.Epsilon0.E0]
    +E0_Lt_irrefl [in hydras.Epsilon0.E0]
    +E0_pred_Lt [in hydras.Epsilon0.E0]
    +E0_pred_of_Succ [in hydras.Epsilon0.E0]
    +E0_eq_dec [in hydras.Epsilon0.E0]
    +E0_eq_iff [in hydras.Epsilon0.E0]
    +E0_eq_intro [in hydras.Epsilon0.E0]
    +

    F

    +F [in gaia_hydras.onType]
    +fact_alt_ok [in hydras.solutions_exercises.MorePRExamples]
    +fact_correct [in hydras.MoreAck.PrimRecExamples]
    +Fake_thm [in hydras.solutions_exercises.is_F_monotonous]
    +fastexp3P [in additions.fib]
    +fbij [in hydras.Schutte.Ordering_Functions]
    +Fcompose_correct [in additions.Euclidean_Chains]
    +Fcompose_correct_nat [in additions.Euclidean_Chains]
    +Fexp2_correct [in additions.Euclidean_Chains]
    +Fexp2_nat_correct [in additions.Euclidean_Chains]
    +FF [in hydras.Epsilon0.F_omega]
    +FFK_correct [in additions.AM]
    +FFK_correct [in additions.Euclidean_Chains]
    +FFK_correct_nat [in additions.Euclidean_Chains]
    +fibmP [in additions.fib]
    +fibtP [in additions.fib]
    +fibt_aux [in additions.fib]
    +fibZ2P [in additions.fib]
    +fibZ3P [in additions.fib]
    +fib_mul2_OK [in additions.Fib2]
    +fib_mul2_OK_0 [in additions.Fib2]
    +fib_SSn [in additions.Fib2]
    +fib_ind [in additions.Fib2]
    +fib_alt_Ok [in hydras.solutions_exercises.FibonacciPR]
    +fib_OK0 [in hydras.solutions_exercises.FibonacciPR]
    +find_not_mem [in hydras.rpo.more_list]
    +finite_ltR [in hydras.Epsilon0.T1]
    +finite_lt [in hydras.Epsilon0.T1]
    +Finite_ref [in gaia_hydras.T1Bridge]
    +finite_not_limit [in hydras.Schutte.Schutte_basics]
    +finite_lt_omega [in hydras.Schutte.Schutte_basics]
    +finite_inj [in hydras.Schutte.Schutte_basics]
    +finite_mono [in hydras.Schutte.Schutte_basics]
    +finite_lt_inv [in hydras.Schutte.Schutte_basics]
    +finite_is_finite [in hydras.Gamma0.Gamma0]
    +finite_plus_infinite [in hydras.Schutte.Addition]
    +finord_lt_wf [in gaia_hydras.ON_gfinite]
    +finord_compare_correct [in gaia_hydras.ON_gfinite]
    +FinS_Succ_eq [in hydras.Epsilon0.E0]
    +FinS_eq [in hydras.Epsilon0.E0]
    +fin_lt_omega [in hydras.Gamma0.Gamma0]
    +FirstIncompletenessA [in Goedel.goedel1]
    +FirstIncompletenessA [in Goedel.goedel2]
    +FirstIncompletenessB [in Goedel.goedel1]
    +FixPointLNN [in Goedel.fixPoint]
    +FixPointLNT [in Goedel.fixPoint]
    +FixR_F_eq [in hydras.Prelude.Restriction]
    +FK_correct [in additions.AM]
    +FK_correct [in additions.Euclidean_Chains]
    +flatten [in hydras.Epsilon0.Paths]
    +flatten_valid_2 [in additions.Addition_Chains]
    +flatten_valid [in additions.Addition_Chains]
    +flatten_aux_valid [in additions.Addition_Chains]
    +forallE [in hydras.Ackermann.LNN]
    +forallE [in hydras.Ackermann.LNT]
    +forallE [in hydras.Ackermann.folLogic]
    +forallI [in hydras.Ackermann.LNN]
    +forallI [in hydras.Ackermann.LNT]
    +forallI [in hydras.Ackermann.folLogic]
    +forallSimp [in hydras.Ackermann.LNN]
    +forallSimp [in hydras.Ackermann.LNT]
    +forallSimp [in hydras.Ackermann.folLogic]
    +forall_weak [in hydras.Prelude.Sort_spec]
    +Forall_forall [in hydras.Prelude.MoreVectors]
    +Forall_and [in hydras.Prelude.MoreVectors]
    +Forall_inv [in hydras.Prelude.MoreVectors]
    +Forall2R_iff [in hydras.Prelude.MoreLists]
    +Forall2R_cons [in hydras.Prelude.MoreLists]
    +Forall2_indR [in hydras.Prelude.MoreLists]
    +Forall2_RR [in hydras.Prelude.MoreLists]
    +Forall2_R [in hydras.Prelude.MoreLists]
    +Forall2_inv [in hydras.Prelude.MoreVectors]
    +Formula_depth_ind2 [in hydras.Ackermann.fol]
    +Formula_depth_rec2_forall [in hydras.Ackermann.fol]
    +Formula_depth_rec2_not [in hydras.Ackermann.fol]
    +Formula_depth_rec2_imp [in hydras.Ackermann.fol]
    +Formula_depth_rec2rec_nice [in hydras.Ackermann.fol]
    +Formula_depth_rec_indep [in hydras.Ackermann.fol]
    +formula_eqdec [in hydras.Ackermann.fol]
    +freeVarAddExists1 [in Goedel.PRrepresentable]
    +freeVarAddExists2 [in Goedel.PRrepresentable]
    +freeVarAddForalls1 [in Goedel.PRrepresentable]
    +freeVarAddForalls2 [in Goedel.PRrepresentable]
    +freeVarClosed [in hydras.Ackermann.folProp]
    +freeVarClosedList1 [in hydras.Ackermann.folProp]
    +freeVarClosedList2 [in hydras.Ackermann.folProp]
    +freeVarCodeSysPf [in Goedel.codeSysPrf]
    +freeVarCodeSysPrf [in Goedel.codeSysPrf]
    +freeVarCodeSysPrfN [in Goedel.codeSysPrf]
    +freeVarG [in Goedel.goedel1]
    +freeVarInterpFormula [in hydras.Ackermann.model]
    +freeVarInterpRel [in hydras.Ackermann.model]
    +freeVarInterpTerm [in hydras.Ackermann.model]
    +freeVarListFormulaApp [in hydras.Ackermann.folProp]
    +freeVarLT [in hydras.Ackermann.LNN]
    +freeVarMap_ext [in hydras.Ackermann.subAll]
    +freeVarMap1 [in hydras.Ackermann.subAll]
    +freeVarNNHelp [in hydras.Ackermann.model]
    +freeVarPlus [in hydras.Ackermann.LNN]
    +freeVarPlus [in hydras.Ackermann.LNT]
    +freeVarPrimRecPiFormulaHelp1 [in Goedel.PRrepresentable]
    +freeVarPrimRecSigmaFormulaHelp1 [in Goedel.PRrepresentable]
    +freeVarRepT' [in Goedel.rosserPA]
    +freeVarSubAllFormula1 [in hydras.Ackermann.subAll]
    +freeVarSubAllFormula2 [in hydras.Ackermann.subAll]
    +freeVarSubAllTerms1 [in hydras.Ackermann.subAll]
    +freeVarSubAllTerms2 [in hydras.Ackermann.subAll]
    +freeVarSubAllTerm1 [in hydras.Ackermann.subAll]
    +freeVarSubAllTerm2 [in hydras.Ackermann.subAll]
    +freeVarSubFormula1 [in hydras.Ackermann.subProp]
    +freeVarSubFormula2 [in hydras.Ackermann.subProp]
    +freeVarSubFormula3 [in hydras.Ackermann.subProp]
    +freeVarSubFormula4 [in hydras.Ackermann.subProp]
    +freeVarSubTerms1 [in hydras.Ackermann.subProp]
    +freeVarSubTerms2 [in hydras.Ackermann.subProp]
    +freeVarSubTerms3 [in hydras.Ackermann.subProp]
    +freeVarSubTerms4 [in hydras.Ackermann.subProp]
    +freeVarSubTerm1 [in hydras.Ackermann.subProp]
    +freeVarSubTerm2 [in hydras.Ackermann.subProp]
    +freeVarSubTerm3 [in hydras.Ackermann.subProp]
    +freeVarSubTerm4 [in hydras.Ackermann.subProp]
    +freeVarSucc [in hydras.Ackermann.LNN]
    +freeVarSucc [in hydras.Ackermann.LNT]
    +freeVarTApply [in hydras.Ackermann.folProp]
    +freeVarTimes [in hydras.Ackermann.LNN]
    +freeVarTimes [in hydras.Ackermann.LNT]
    +freeVarZero [in hydras.Ackermann.LNN]
    +freeVarZero [in hydras.Ackermann.LNT]
    +fstar_S [in hydras.Epsilon0.F_alpha]
    +Fstar_S [in hydras.Epsilon0.F_alpha]
    +FS_rw [in hydras.Epsilon0.T1]
    +fun_le_trans [in hydras.Prelude.Iterates]
    +fun_bijection_is_ZL_bijection [in hydras.Schutte.PartialFun]
    +fun_bijection_codomain [in hydras.Schutte.PartialFun]
    +F_alpha_not_PR [in gaia_hydras.GF_alpha]
    +F_alpha_not_PR_E0 [in gaia_hydras.GF_alpha]
    +F_restricted_mono_l [in gaia_hydras.GF_alpha]
    +F_limE [in gaia_hydras.GF_alpha]
    +F_succE [in gaia_hydras.GF_alpha]
    +F_alpha_0_eq [in gaia_hydras.GF_alpha]
    +F_mono_l [in gaia_hydras.GF_alpha]
    +F_zeroE [in gaia_hydras.GF_alpha]
    +F_alpha_positive [in gaia_hydras.GF_alpha]
    +F_alpha_Succ_le [in gaia_hydras.GF_alpha]
    +F_alpha_dom [in gaia_hydras.GF_alpha]
    +F_alpha_mono [in gaia_hydras.GF_alpha]
    +F_alpha_gt [in gaia_hydras.GF_alpha]
    +f_succ_eqn [in hydras.Epsilon0.F_alpha]
    +f_lim_eqn [in hydras.Epsilon0.F_alpha]
    +f_zero_eqn [in hydras.Epsilon0.F_alpha]
    +f_star_iterate [in hydras.Epsilon0.F_alpha]
    +f_star_Succ [in hydras.Epsilon0.F_alpha]
    +f_eq2 [in hydras.Epsilon0.F_alpha]
    +f_star_zero_eqn [in hydras.Epsilon0.F_alpha]
    +F_mono_l [in hydras.Epsilon0.F_alpha]
    +F_mono_l_0 [in hydras.Epsilon0.F_alpha]
    +F_restricted_mono_l [in hydras.Epsilon0.F_alpha]
    +F_alpha_dom [in hydras.Epsilon0.F_alpha]
    +F_alpha_Succ_le [in hydras.Epsilon0.F_alpha]
    +F_alpha_positive [in hydras.Epsilon0.F_alpha]
    +F_alpha_gt [in hydras.Epsilon0.F_alpha]
    +F_alpha_mono [in hydras.Epsilon0.F_alpha]
    +F_One_Zero_ge [in hydras.Epsilon0.F_alpha]
    +F_One_Zero_dom [in hydras.Epsilon0.F_alpha]
    +F_alpha_0_eq [in hydras.Epsilon0.F_alpha]
    +F_succ_eqn [in hydras.Epsilon0.F_alpha]
    +F_lim_eqn [in hydras.Epsilon0.F_alpha]
    +F_zero_eqn [in hydras.Epsilon0.F_alpha]
    +F_star_iterate [in hydras.Epsilon0.F_alpha]
    +F_star_Succ [in hydras.Epsilon0.F_alpha]
    +F_eq2 [in hydras.Epsilon0.F_alpha]
    +F_star_zero_eqn [in hydras.Epsilon0.F_alpha]
    +f_ok_inv [in hydras.Epsilon0.Large_Sets]
    +F_alpha_notPR_inv [in hydras.Epsilon0.F_omega]
    +F_alpha_PR_inv [in hydras.Epsilon0.F_omega]
    +F_alpha_not_PR [in hydras.Epsilon0.F_omega]
    +F_omega_not_PR [in hydras.Epsilon0.F_omega]
    +F_vs_Ack [in hydras.Epsilon0.F_omega]
    +F_iterate_rw [in hydras.Epsilon0.F_omega]
    +F_alpha_Sn [in hydras.solutions_exercises.F_3]
    +F_3_eqn [in hydras.solutions_exercises.F_3]
    +f_minoration [in hydras.Epsilon0.Hprime]
    +f_sup_commutes [in hydras.Schutte.Ordering_Functions]
    +F_not_lim [in hydras.Gamma0.Gamma0]
    +F0 [in hydras.Epsilon0.Hprime]
    +F1 [in hydras.solutions_exercises.MultisetWf]
    +F1 [in hydras.Epsilon0.Hprime]
    +F1 [in hydras.Hydra.KP_example]
    +F1_correct [in additions.AM]
    +F1_correct [in additions.Euclidean_Chains]
    +F1_neutral_r [in additions.Euclidean_Chains]
    +F1_neutral_l [in additions.Euclidean_Chains]
    +F1_simpl [in hydras.Epsilon0.Hprime]
    +F2 [in hydras.Epsilon0.F_alpha]
    +F2 [in hydras.solutions_exercises.MultisetWf]
    +F2 [in hydras.Epsilon0.Hprime]
    +F2 [in hydras.Hydra.KP_example]
    +F2C_correct [in additions.Euclidean_Chains]
    +F2q_correct [in additions.AM]
    +F2q_correct_1 [in additions.AM]
    +F2q_correct_0 [in additions.AM]
    +F2_correct [in additions.Euclidean_Chains]
    +F3 [in hydras.Epsilon0.Hprime]
    +F3_correct [in additions.AM]
    +F3_correct [in additions.Euclidean_Chains]
    +F5 [in hydras.Epsilon0.F_alpha]
    +F6 [in hydras.Epsilon0.F_alpha]
    +F7 [in hydras.Epsilon0.F_alpha]
    +F8 [in hydras.Epsilon0.F_alpha]
    +F9 [in hydras.Epsilon0.F_alpha]
    +F9_correct [in additions.Euclidean_Chains]
    +

    G

    +gamma_positive [in hydras.Epsilon0.Paths]
    +Gamma0_prec.prec_transitive [in hydras.Gamma0.Gamma0]
    +Gamma0_prec.prec_antisym [in hydras.Gamma0.Gamma0]
    +Gamma0_prec.prec_dec [in hydras.Gamma0.Gamma0]
    +Gamma0_sig.eq_symbol_dec [in hydras.Gamma0.Gamma0]
    +Gamma0.add_le4 [in gaia_hydras.nfwfgaia]
    +Gamma0.add_le3 [in gaia_hydras.nfwfgaia]
    +Gamma0.add_inj [in gaia_hydras.nfwfgaia]
    +Gamma0.add_le2 [in gaia_hydras.nfwfgaia]
    +Gamma0.add_le1 [in gaia_hydras.nfwfgaia]
    +Gamma0.add_to_cons [in gaia_hydras.nfwfgaia]
    +Gamma0.add_fin_omega [in gaia_hydras.nfwfgaia]
    +Gamma0.add_int [in gaia_hydras.nfwfgaia]
    +Gamma0.add1Nfin [in gaia_hydras.nfwfgaia]
    +Gamma0.ap_pr4 [in gaia_hydras.nfwfgaia]
    +Gamma0.ap_pr3 [in gaia_hydras.nfwfgaia]
    +Gamma0.ap_pr2 [in gaia_hydras.nfwfgaia]
    +Gamma0.ap_pr1 [in gaia_hydras.nfwfgaia]
    +Gamma0.ap_limit [in gaia_hydras.nfwfgaia]
    +Gamma0.ap_pr0 [in gaia_hydras.nfwfgaia]
    +Gamma0.le_succ_succE [in gaia_hydras.nfwfgaia]
    +Gamma0.le_succ_succ [in gaia_hydras.nfwfgaia]
    +Gamma0.limit_pr [in gaia_hydras.nfwfgaia]
    +Gamma0.limit_pr1 [in gaia_hydras.nfwfgaia]
    +Gamma0.lt_succ_le_4 [in gaia_hydras.nfwfgaia]
    +Gamma0.lt_succ_le_3 [in gaia_hydras.nfwfgaia]
    +Gamma0.lt_succ_le_2 [in gaia_hydras.nfwfgaia]
    +Gamma0.lt_succ_le_1 [in gaia_hydras.nfwfgaia]
    +Gamma0.lt_succ_succE [in gaia_hydras.nfwfgaia]
    +Gamma0.lt_succ_succ [in gaia_hydras.nfwfgaia]
    +Gamma0.lt_tail [in gaia_hydras.nfwfgaia]
    +Gamma0.minus_le [in gaia_hydras.nfwfgaia]
    +Gamma0.minus_lt [in gaia_hydras.nfwfgaia]
    +Gamma0.nf_phi [in gaia_hydras.nfwfgaia]
    +Gamma0.nf_add [in gaia_hydras.nfwfgaia]
    +Gamma0.nf_sub [in gaia_hydras.nfwfgaia]
    +Gamma0.nf_pred [in gaia_hydras.nfwfgaia]
    +Gamma0.nf_succ [in gaia_hydras.nfwfgaia]
    +Gamma0.nf_split [in gaia_hydras.nfwfgaia]
    +Gamma0.nf_finite [in gaia_hydras.nfwfgaia]
    +Gamma0.nf_one [in gaia_hydras.nfwfgaia]
    +Gamma0.nf_omega [in gaia_hydras.nfwfgaia]
    +Gamma0.nf_psi [in gaia_hydras.nfwfgaia]
    +Gamma0.no_critical [in gaia_hydras.nfwfgaia]
    +Gamma0.omega_minus_one [in gaia_hydras.nfwfgaia]
    +Gamma0.omega_least_inf2 [in gaia_hydras.nfwfgaia]
    +Gamma0.omega_least_inf1 [in gaia_hydras.nfwfgaia]
    +Gamma0.omega_lt_epsilon0 [in gaia_hydras.nfwfgaia]
    +Gamma0.phi_inv3 [in gaia_hydras.nfwfgaia]
    +Gamma0.phi_inv2 [in gaia_hydras.nfwfgaia]
    +Gamma0.phi_inv0 [in gaia_hydras.nfwfgaia]
    +Gamma0.phi_ltE [in gaia_hydras.nfwfgaia]
    +Gamma0.phi_eqE [in gaia_hydras.nfwfgaia]
    +Gamma0.phi_inj1 [in gaia_hydras.nfwfgaia]
    +Gamma0.phi_inj [in gaia_hydras.nfwfgaia]
    +Gamma0.phi_mono_c [in gaia_hydras.nfwfgaia]
    +Gamma0.phi_mono_b [in gaia_hydras.nfwfgaia]
    +Gamma0.phi_mono_a [in gaia_hydras.nfwfgaia]
    +Gamma0.phi_inv1 [in gaia_hydras.nfwfgaia]
    +Gamma0.phi_ab_le2 [in gaia_hydras.nfwfgaia]
    +Gamma0.phi_ab_le1 [in gaia_hydras.nfwfgaia]
    +Gamma0.phi_spec4c [in gaia_hydras.nfwfgaia]
    +Gamma0.phi_spec4b [in gaia_hydras.nfwfgaia]
    +Gamma0.phi_spec4a [in gaia_hydras.nfwfgaia]
    +Gamma0.phi_spec3 [in gaia_hydras.nfwfgaia]
    +Gamma0.phi_spec2 [in gaia_hydras.nfwfgaia]
    +Gamma0.phi_spec1 [in gaia_hydras.nfwfgaia]
    +Gamma0.phi_principalR [in gaia_hydras.nfwfgaia]
    +Gamma0.phi_cases [in gaia_hydras.nfwfgaia]
    +Gamma0.phi_succ [in gaia_hydras.nfwfgaia]
    +Gamma0.phi_fix2 [in gaia_hydras.nfwfgaia]
    +Gamma0.phi_fix1 [in gaia_hydras.nfwfgaia]
    +Gamma0.phi_le3 [in gaia_hydras.nfwfgaia]
    +Gamma0.phi_le2 [in gaia_hydras.nfwfgaia]
    +Gamma0.phi_le1 [in gaia_hydras.nfwfgaia]
    +Gamma0.phi_ap [in gaia_hydras.nfwfgaia]
    +Gamma0.pred_succ [in gaia_hydras.nfwfgaia]
    +Gamma0.pred_lt [in gaia_hydras.nfwfgaia]
    +Gamma0.pred_le [in gaia_hydras.nfwfgaia]
    +Gamma0.psi_phi1 [in gaia_hydras.nfwfgaia]
    +Gamma0.psi_lt2 [in gaia_hydras.nfwfgaia]
    +Gamma0.psi_lt1 [in gaia_hydras.nfwfgaia]
    +Gamma0.size_prop [in gaia_hydras.nfwfgaia]
    +Gamma0.size_prop1 [in gaia_hydras.nfwfgaia]
    +Gamma0.split_add [in gaia_hydras.nfwfgaia]
    +Gamma0.split_le [in gaia_hydras.nfwfgaia]
    +Gamma0.split_pred [in gaia_hydras.nfwfgaia]
    +Gamma0.split_succ [in gaia_hydras.nfwfgaia]
    +Gamma0.split_is_succ [in gaia_hydras.nfwfgaia]
    +Gamma0.split_limit [in gaia_hydras.nfwfgaia]
    +Gamma0.split_finite [in gaia_hydras.nfwfgaia]
    +Gamma0.sub_pr1r [in gaia_hydras.nfwfgaia]
    +Gamma0.sub_nz [in gaia_hydras.nfwfgaia]
    +Gamma0.sub_pr1 [in gaia_hydras.nfwfgaia]
    +Gamma0.sub_pr [in gaia_hydras.nfwfgaia]
    +Gamma0.sub_le1 [in gaia_hydras.nfwfgaia]
    +Gamma0.sub_int [in gaia_hydras.nfwfgaia]
    +Gamma0.sub1a [in gaia_hydras.nfwfgaia]
    +Gamma0.sub1b [in gaia_hydras.nfwfgaia]
    +Gamma0.sub1Nfin [in gaia_hydras.nfwfgaia]
    +Gamma0.succ_is_add_one [in gaia_hydras.nfwfgaia]
    +Gamma0.succ_psi_lt2 [in gaia_hydras.nfwfgaia]
    +Gamma0.succ_psi_lt [in gaia_hydras.nfwfgaia]
    +Gamma0.succ_psi [in gaia_hydras.nfwfgaia]
    +Gamma0.succ_nz [in gaia_hydras.nfwfgaia]
    +Gamma0.succ_inj [in gaia_hydras.nfwfgaia]
    +Gamma0.succ_p1 [in gaia_hydras.nfwfgaia]
    +Gamma0.succ_pred [in gaia_hydras.nfwfgaia]
    +Gamma0.succ_lt [in gaia_hydras.nfwfgaia]
    +Gamma0.T1succ_nat [in gaia_hydras.nfwfgaia]
    +Gamma0.T1T2range1 [in gaia_hydras.nfwfgaia]
    +Gamma0.T1T2range2 [in gaia_hydras.nfwfgaia]
    +Gamma0.T1T2_inc [in gaia_hydras.nfwfgaia]
    +Gamma0.T1T2_inj [in gaia_hydras.nfwfgaia]
    +Gamma0.T2addA [in gaia_hydras.nfwfgaia]
    +Gamma0.T2addn0 [in gaia_hydras.nfwfgaia]
    +Gamma0.T2add_eq0 [in gaia_hydras.nfwfgaia]
    +Gamma0.T2add0n [in gaia_hydras.nfwfgaia]
    +Gamma0.T2eqE [in gaia_hydras.nfwfgaia]
    +Gamma0.T2eqP [in gaia_hydras.nfwfgaia]
    +Gamma0.T2eq_add2l [in gaia_hydras.nfwfgaia]
    +Gamma0.T2eq_le [in gaia_hydras.nfwfgaia]
    +Gamma0.T2finite_succ [in gaia_hydras.nfwfgaia]
    +Gamma0.T2finite2 [in gaia_hydras.nfwfgaia]
    +Gamma0.T2ge1 [in gaia_hydras.nfwfgaia]
    +Gamma0.T2gt1 [in gaia_hydras.nfwfgaia]
    +Gamma0.T2leNgt [in gaia_hydras.nfwfgaia]
    +Gamma0.T2lenn [in gaia_hydras.nfwfgaia]
    +Gamma0.T2len0 [in gaia_hydras.nfwfgaia]
    +Gamma0.T2leP [in gaia_hydras.nfwfgaia]
    +Gamma0.T2le_add2r [in gaia_hydras.nfwfgaia]
    +Gamma0.T2le_add2l [in gaia_hydras.nfwfgaia]
    +Gamma0.T2le_psi_b [in gaia_hydras.nfwfgaia]
    +Gamma0.T2le_psi1 [in gaia_hydras.nfwfgaia]
    +Gamma0.T2le_trans [in gaia_hydras.nfwfgaia]
    +Gamma0.T2le_lt_trans [in gaia_hydras.nfwfgaia]
    +Gamma0.T2le_total [in gaia_hydras.nfwfgaia]
    +Gamma0.T2le_eqVlt [in gaia_hydras.nfwfgaia]
    +Gamma0.T2le_consE [in gaia_hydras.nfwfgaia]
    +Gamma0.T2le0n [in gaia_hydras.nfwfgaia]
    +Gamma0.T2ltE [in gaia_hydras.nfwfgaia]
    +Gamma0.T2ltgtP [in gaia_hydras.nfwfgaia]
    +Gamma0.T2ltNge [in gaia_hydras.nfwfgaia]
    +Gamma0.T2ltnn [in gaia_hydras.nfwfgaia]
    +Gamma0.T2ltn0 [in gaia_hydras.nfwfgaia]
    +Gamma0.T2ltP [in gaia_hydras.nfwfgaia]
    +Gamma0.T2ltW [in gaia_hydras.nfwfgaia]
    +Gamma0.T2lt_add2r [in gaia_hydras.nfwfgaia]
    +Gamma0.T2lt_add2l [in gaia_hydras.nfwfgaia]
    +Gamma0.T2lt_psi_a [in gaia_hydras.nfwfgaia]
    +Gamma0.T2lt_psi_b [in gaia_hydras.nfwfgaia]
    +Gamma0.T2lt_le_trans [in gaia_hydras.nfwfgaia]
    +Gamma0.T2lt_trans [in gaia_hydras.nfwfgaia]
    +Gamma0.T2lt_psi_aux [in gaia_hydras.nfwfgaia]
    +Gamma0.T2lt_trichotomy [in gaia_hydras.nfwfgaia]
    +Gamma0.T2lt_anti [in gaia_hydras.nfwfgaia]
    +Gamma0.T2lt_neAle [in gaia_hydras.nfwfgaia]
    +Gamma0.T2lt_ne' [in gaia_hydras.nfwfgaia]
    +Gamma0.T2lt_ne [in gaia_hydras.nfwfgaia]
    +Gamma0.T2lt_consE [in gaia_hydras.nfwfgaia]
    +Gamma0.T2lt_psi [in gaia_hydras.nfwfgaia]
    +Gamma0.T2lt0n [in gaia_hydras.nfwfgaia]
    +Gamma0.T2lt1 [in gaia_hydras.nfwfgaia]
    +Gamma0.T2nat_inc [in gaia_hydras.nfwfgaia]
    +Gamma0.T2nf_finite [in gaia_hydras.nfwfgaia]
    +Gamma0.T2nf_consE [in gaia_hydras.nfwfgaia]
    +Gamma0.T2nf_cons_cons [in gaia_hydras.nfwfgaia]
    +Gamma0.T2subnn [in gaia_hydras.nfwfgaia]
    +Gamma0.T2subn0 [in gaia_hydras.nfwfgaia]
    +Gamma0.T2sub0n [in gaia_hydras.nfwfgaia]
    +gcanon_limit_v2 [in gaia_hydras.GCanon]
    +gcanon_zero [in gaia_hydras.GCanon]
    +get_predecessor [in hydras.Prelude.More_Arith]
    +ge_omega_iff [in hydras.solutions_exercises.ge_omega_iff]
    +ge_zero [in hydras.Schutte.Addition]
    +ge_o_segment [in hydras.Schutte.Addition]
    +gE0le_iff [in gaia_hydras.T1Bridge]
    +gE0lt_wf [in gaia_hydras.T1Bridge]
    +gE0lt_iff [in gaia_hydras.T1Bridge]
    +gE0_eq_intro [in gaia_hydras.T1Bridge]
    +GnawS_omega [in hydras.Epsilon0.Large_Sets]
    +GnawS_Gnaw [in hydras.Epsilon0.Large_Sets]
    +gnawS_path_toS [in hydras.Epsilon0.Paths]
    +gnawS_cut2 [in hydras.Epsilon0.Paths]
    +gnawS_cut1 [in hydras.Epsilon0.Paths]
    +gnawS_SSn [in hydras.Epsilon0.Paths]
    +gnawS_tail [in hydras.Epsilon0.Paths]
    +gnawS_succ_eqn2 [in hydras.Epsilon0.Paths]
    +gnawS_succ_eqn1 [in hydras.Epsilon0.Paths]
    +gnawS_lim2 [in hydras.Epsilon0.Paths]
    +gnawS_lim1 [in hydras.Epsilon0.Paths]
    +gnaws_rw [in hydras.Epsilon0.Paths]
    +gnawS_app [in hydras.Epsilon0.Paths]
    +gnawS_to_path_toS [in hydras.Epsilon0.Paths]
    +gnawS_nf [in hydras.Epsilon0.Paths]
    +gnawS_zero [in hydras.Epsilon0.Paths]
    +gnawS_gnaw [in hydras.Epsilon0.Paths]
    +gnaw_omega_1 [in hydras.Epsilon0.Large_Sets]
    +gnaw_omega_n_SSn [in hydras.Epsilon0.Large_Sets]
    +Gnaw_omega [in hydras.Epsilon0.Large_Sets]
    +Gnaw_GnawS [in hydras.Epsilon0.Large_Sets]
    +gnaw_last_step [in hydras.Epsilon0.Large_Sets]
    +gnaw_n_R [in hydras.Epsilon0.Large_Sets]
    +gnaw_finite [in hydras.Epsilon0.Large_Sets]
    +gnaw_finite_1 [in hydras.Epsilon0.Large_Sets]
    +gnaw_finite_1_iota [in hydras.Epsilon0.Large_Sets]
    +gnaw_path_to [in hydras.Epsilon0.Paths]
    +gnaw_app [in hydras.Epsilon0.Paths]
    +gnaw_to_path_to [in hydras.Epsilon0.Paths]
    +gnaw_rw [in hydras.Epsilon0.Paths]
    +gnaw_succ [in hydras.Epsilon0.Paths]
    +gnaw_zero [in hydras.Epsilon0.Paths]
    +gnaw_nf [in hydras.Epsilon0.Paths]
    +gnaw_gnawS [in hydras.Epsilon0.Paths]
    +Goedel'sIncompleteness1st [in Goedel.goedel1]
    +GS [in Goedel.goedel2]
    +g_1_of [in hydras.Schutte.Ordering_Functions]
    +g_1_bij [in hydras.Schutte.Ordering_Functions]
    +g_bij [in hydras.Schutte.Ordering_Functions]
    +g_mono [in hydras.Schutte.Ordering_Functions]
    +g_lemma [in hydras.Schutte.Ordering_Functions]
    +g_def [in hydras.Schutte.Ordering_Functions]
    +g_unic [in hydras.Schutte.Ordering_Functions]
    +g_def1 [in hydras.Schutte.Ordering_Functions]
    +G0.compare_correct [in hydras.Gamma0.Gamma0]
    +G0.lt_wf [in hydras.Gamma0.Gamma0]
    +G0.lt_LT_incl [in hydras.Gamma0.Gamma0]
    +G0.Lt_wf [in hydras.Gamma0.Gamma0]
    +G0.nfb_proof_unicity [in hydras.Gamma0.Gamma0]
    +G0.nfb_equiv [in hydras.Gamma0.Gamma0]
    +G0.nfb_a [in hydras.Gamma0.Gamma0]
    +G0.zero_nfb [in hydras.Gamma0.Gamma0]
    +g2h_canon [in gaia_hydras.GCanon]
    +g2h_E0zero [in gaia_hydras.T1Bridge]
    +g2h_E0_succ [in gaia_hydras.T1Bridge]
    +g2h_succ [in gaia_hydras.T1Bridge]
    +g2h_plusE [in gaia_hydras.T1Bridge]
    +g2h_multE [in gaia_hydras.T1Bridge]
    +g2h_zero [in gaia_hydras.T1Bridge]
    +g2h_cons [in gaia_hydras.T1Bridge]
    +g2h_phi0 [in gaia_hydras.T1Bridge]
    +g2h_diffE [in gaia_hydras.T1Bridge]
    +g2h_eqE [in gaia_hydras.T1Bridge]
    +g2h_h2gK [in gaia_hydras.T1Bridge]
    +g2h_eqE [in gaia_hydras.T2Bridge]
    +g2h_h2gK [in gaia_hydras.T2Bridge]
    +

    H

    +HBL1 [in Goedel.goedel2]
    +hcons_mult_S2 [in hydras.Hydra.Hydra_Lemmas]
    +hcons_mult_S1 [in hydras.Hydra.Hydra_Lemmas]
    +hcons_mult_S0 [in hydras.Hydra.Hydra_Lemmas]
    +hcons_mult_comm [in hydras.Hydra.Hydra_Lemmas]
    +hcons_mult_app [in hydras.Hydra.Hydra_Lemmas]
    +headbits [in additions.fib]
    +head_LT_cons [in hydras.Epsilon0.T1]
    +head_lt_cons [in hydras.Epsilon0.T1]
    +head_lt [in hydras.Epsilon0.T1]
    +head_lt [in hydras.Schutte.Correctness_E0]
    +head_no_round [in hydras.Hydra.Hydra_Lemmas]
    +head_no_round_n [in hydras.Hydra.Hydra_Lemmas]
    +height_lt_size [in hydras.Hydra.Hydra_Examples]
    +height_bad [in hydras.Hydra.Omega_Small]
    +HFLim [in hydras.Epsilon0.F_alpha]
    +HFsucc [in hydras.Epsilon0.F_alpha]
    +HF0 [in hydras.Epsilon0.F_alpha]
    +hlt_iff [in gaia_hydras.T1Bridge]
    +Hmu [in hydras.Hydra.Epsilon0_Needed_Std]
    +hmultA [in gaia_hydras.GaiaToHydra]
    +hmult_dist [in gaia_hydras.GaiaToHydra]
    +hnf_g2h [in gaia_hydras.T1Bridge]
    +hs_eq_dec [in hydras.Hydra.Hydra_Definitions]
    +hs2lK [in hydras.Hydra.Hydra_Definitions]
    +Hvariant_Termination [in hydras.Hydra.Hydra_Lemmas]
    +hyper_exp2_S [in hydras.Prelude.Iterates]
    +hy_app_l_nil [in hydras.Hydra.O2H]
    +hy_app_assoc [in hydras.Hydra.Hydra_Lemmas]
    +h_eq_dec [in hydras.Hydra.Hydra_Definitions]
    +H'_F [in gaia_hydras.GF_alpha]
    +H'_omega_cube_min [in gaia_hydras.GHprime]
    +H'_alpha_gt [in gaia_hydras.GHprime]
    +H'_alpha_mono [in gaia_hydras.GHprime]
    +H'_dom [in gaia_hydras.GHprime]
    +H'_omega_double [in gaia_hydras.GHprime]
    +H'_omega [in gaia_hydras.GHprime]
    +H'_eq3 [in gaia_hydras.GHprime]
    +H'_eq2 [in gaia_hydras.GHprime]
    +H'_eq1 [in gaia_hydras.GHprime]
    +H'_F [in hydras.Epsilon0.F_alpha]
    +H'_L_ [in hydras.Epsilon0.L_alpha]
    +H'_dom [in hydras.Epsilon0.Hprime]
    +H'_mono_l [in hydras.Epsilon0.Hprime]
    +H'_mono_l_1 [in hydras.Epsilon0.Hprime]
    +H'_mono_l_0 [in hydras.Epsilon0.Hprime]
    +H'_alpha_mono_weak [in hydras.Epsilon0.Hprime]
    +H'_alpha_ge_id [in hydras.Epsilon0.Hprime]
    +H'_restricted_mono_l [in hydras.Epsilon0.Hprime]
    +H'_alpha_dom [in hydras.Epsilon0.Hprime]
    +H'_alpha_Succ_le [in hydras.Epsilon0.Hprime]
    +H'_alpha_gt [in hydras.Epsilon0.Hprime]
    +H'_alpha_mono [in hydras.Epsilon0.Hprime]
    +H'_non_mono1 [in hydras.Epsilon0.Hprime]
    +H'_omega_cube_min [in hydras.Epsilon0.Hprime]
    +H'_omega_sqr_min [in hydras.Epsilon0.Hprime]
    +H'_Phi0_omega_exact_formula [in hydras.Epsilon0.Hprime]
    +H'_Phi0_omega [in hydras.Epsilon0.Hprime]
    +H'_omega_cube [in hydras.Epsilon0.Hprime]
    +H'_Phi0_Si [in hydras.Epsilon0.Hprime]
    +H'_Phi0_succ [in hydras.Epsilon0.Hprime]
    +H'_Phi0_succ_0 [in hydras.Epsilon0.Hprime]
    +H'_Phi0_succ_1 [in hydras.Epsilon0.Hprime]
    +H'_Omega_term [in hydras.Epsilon0.Hprime]
    +H'_Fin_iterate [in hydras.Epsilon0.Hprime]
    +H'_Omega_term_0 [in hydras.Epsilon0.Hprime]
    +H'_Omega_term_1 [in hydras.Epsilon0.Hprime]
    +H'_cons [in hydras.Epsilon0.Hprime]
    +H'_omega_sqr [in hydras.Epsilon0.Hprime]
    +H'_omega_i [in hydras.Epsilon0.Hprime]
    +H'_omega_4 [in hydras.Epsilon0.Hprime]
    +H'_omega_3 [in hydras.Epsilon0.Hprime]
    +H'_omega_double [in hydras.Epsilon0.Hprime]
    +H'_Plus_Fin [in hydras.Epsilon0.Hprime]
    +H'_omega [in hydras.Epsilon0.Hprime]
    +H'_Fin [in hydras.Epsilon0.Hprime]
    +H'_eq2 [in hydras.Epsilon0.Hprime]
    +H'_eq3 [in hydras.Epsilon0.Hprime]
    +H'_eq2_0 [in hydras.Epsilon0.Hprime]
    +H'_eq1 [in hydras.Epsilon0.Hprime]
    +H'_L_ [in gaia_hydras.GL_alpha]
    +h0_h1 [in hydras.Hydra.KP_example]
    +h1_h2 [in hydras.Hydra.KP_example]
    +h2g_zero [in gaia_hydras.T1Bridge]
    +h2g_cons [in gaia_hydras.T1Bridge]
    +h2g_diffE [in gaia_hydras.T1Bridge]
    +h2g_eqE [in gaia_hydras.T1Bridge]
    +h2g_g2hK [in gaia_hydras.T1Bridge]
    +h2g_eqE [in gaia_hydras.T2Bridge]
    +h2g_g2hK [in gaia_hydras.T2Bridge]
    +h2_h3 [in hydras.Hydra.KP_example]
    +

    I

    +id_le_f_alpha [in hydras.Epsilon0.F_alpha]
    +iffExist [in hydras.Ackermann.folReplace]
    +iffE1 [in hydras.Ackermann.LNN]
    +iffE1 [in hydras.Ackermann.LNT]
    +iffE1 [in hydras.Ackermann.folLogic]
    +iffE2 [in hydras.Ackermann.LNN]
    +iffE2 [in hydras.Ackermann.LNT]
    +iffE2 [in hydras.Ackermann.folLogic]
    +iffI [in hydras.Ackermann.LNN]
    +iffI [in hydras.Ackermann.LNT]
    +iffI [in hydras.Ackermann.folLogic]
    +iffRefl [in hydras.Ackermann.LNN]
    +iffRefl [in hydras.Ackermann.LNT]
    +iffRefl [in hydras.Ackermann.folLogic]
    +iffSym [in hydras.Ackermann.LNN]
    +iffSym [in hydras.Ackermann.LNT]
    +iffSym [in hydras.Ackermann.folLogic]
    +iffTrans [in hydras.Ackermann.LNN]
    +iffTrans [in hydras.Ackermann.LNT]
    +iffTrans [in hydras.Ackermann.folLogic]
    +if_simpl [in gaia_hydras.nfwfgaia]
    +image_as_Im [in hydras.Schutte.PartialFun]
    +image_B_g_seg [in hydras.Schutte.Ordering_Functions]
    +impE [in hydras.Ackermann.LNN]
    +impE [in hydras.Ackermann.LNT]
    +impE [in hydras.Ackermann.folLogic]
    +impForall [in hydras.Ackermann.folReplace]
    +impI [in hydras.Ackermann.LNN]
    +impI [in hydras.Ackermann.LNT]
    +impI [in hydras.Ackermann.folLogic]
    +Impossibility_free [in hydras.Hydra.Epsilon0_Needed_Free]
    +Impossibility_std [in hydras.Hydra.Epsilon0_Needed_Std]
    +Impossibility_std [in gaia_hydras.GHydra]
    +Impossibility_free [in gaia_hydras.GHydra]
    +Impossible [in hydras.Hydra.Omega2_Small]
    +impossible_nat [in hydras.solutions_exercises.MultisetWf]
    +impRefl [in hydras.Ackermann.LNN]
    +impRefl [in hydras.Ackermann.LNT]
    +impRefl [in hydras.Ackermann.folLogic]
    +impTrans [in hydras.Ackermann.LNN]
    +impTrans [in hydras.Ackermann.LNT]
    +impTrans [in hydras.Ackermann.folLogic]
    +im_U_f [in hydras.Schutte.Ordering_Functions]
    +incl_decomp [in hydras.Prelude.MoreLists]
    +incl_inv [in hydras.Prelude.MoreLists]
    +Incompleteness [in Goedel.rosser]
    +Inc_U_A [in hydras.Schutte.Ordering_Functions]
    +induct [in hydras.Ackermann.PA]
    +induct_step [in hydras.Schutte.Critical]
    +Inh_ord [in hydras.Schutte.Schutte_basics]
    +inh_U [in hydras.Schutte.Ordering_Functions]
    +inject_lt_epsilon0_ex_unique [in hydras.Schutte.Correctness_E0]
    +inject_lt_epsilon0_ex [in hydras.Schutte.Correctness_E0]
    +inject_lt_epsilon0_ex_cnf [in hydras.Schutte.Correctness_E0]
    +inject_mult_fin_r [in hydras.Schutte.Correctness_E0]
    +inject_plus [in hydras.Schutte.Correctness_E0]
    +inject_rw [in hydras.Schutte.Correctness_E0]
    +inject_lt_epsilon0 [in hydras.Schutte.Correctness_E0]
    +inject_monoR [in hydras.Schutte.Correctness_E0]
    +inject_injective [in hydras.Schutte.Correctness_E0]
    +inject_mono [in hydras.Schutte.Correctness_E0]
    +inject_mono_0 [in hydras.Schutte.Correctness_E0]
    +inject_of_phi0 [in hydras.Schutte.Correctness_E0]
    +inject_of_omega [in hydras.Schutte.Correctness_E0]
    +inject_of_finite [in hydras.Schutte.Correctness_E0]
    +inject_of_zero [in hydras.Schutte.Correctness_E0]
    +inject_of_finite_pos [in hydras.Schutte.Correctness_E0]
    +interval_lt_not_In [in hydras.Prelude.MoreLists]
    +interval_sorted_ge [in hydras.Prelude.MoreLists]
    +interval_unroll [in hydras.Prelude.MoreLists]
    +interval_app [in hydras.Prelude.MoreLists]
    +interval_singleton [in hydras.Prelude.MoreLists]
    +interval_not_empty_iff [in hydras.Prelude.MoreLists]
    +interval_not_empty [in hydras.Prelude.MoreLists]
    +interval_length [in hydras.Prelude.MoreLists]
    +interval_def [in gaia_hydras.GPaths]
    +inv_Pi [in hydras.solutions_exercises.FibonacciPR]
    +inv_fun_bij [in hydras.Schutte.PartialFun]
    +inv_composeR [in hydras.Schutte.PartialFun]
    +inv_compose [in hydras.Schutte.PartialFun]
    +inv_trans [in hydras.rpo.closure]
    +In_betaFormula_subst_2_1 [in Goedel.PRrepresentable]
    +In_betaFormula_subst_2 [in Goedel.PRrepresentable]
    +In_betaFormula [in Goedel.PRrepresentable]
    +In_betaFormula_subst_1 [in Goedel.PRrepresentable]
    +In_betaFormula_subst_1_2 [in Goedel.PRrepresentable]
    +In_betaFormula_subst_1_2_0 [in Goedel.PRrepresentable]
    +In_sorted_ge_inv [in hydras.Prelude.MoreLists]
    +in_remove [in hydras.rpo.more_list]
    +in_map_in [in hydras.rpo.more_list]
    +in_in_map [in hydras.rpo.more_list]
    +In_freeVarListFormulaE [in hydras.Ackermann.folProp]
    +In_freeVarListFormula [in hydras.Ackermann.folProp]
    +in_remove_neq [in hydras.Ackermann.ListExt]
    +In_add2 [in hydras.MoreAck.FolExamples]
    +In_add1 [in hydras.MoreAck.FolExamples]
    +In_cases [in hydras.Prelude.MoreVectors]
    +iotas_succ [in hydras.Hydra.O2H]
    +iota_phi0 [in hydras.Hydra.O2H]
    +iota_of_succ [in hydras.Hydra.O2H]
    +iota_tail [in hydras.Hydra.O2H]
    +iota_rw4 [in hydras.Hydra.O2H]
    +iota_rw3 [in hydras.Hydra.O2H]
    +iota_rw2 [in hydras.Hydra.O2H]
    +iota_rw1 [in hydras.Hydra.O2H]
    +iota_succ_round [in hydras.Hydra.O2H]
    +iota_succ_round_n [in hydras.Hydra.O2H]
    +iota_succ_R1 [in hydras.Hydra.O2H]
    +iota_iotas [in hydras.Hydra.O2H]
    +iota_from_lt_not_In [in hydras.Prelude.MoreLists]
    +iota_from_sorted_ge [in hydras.Prelude.MoreLists]
    +iota_from_unroll [in hydras.Prelude.MoreLists]
    +iota_from_plus [in hydras.Prelude.MoreLists]
    +iota_from_app [in hydras.Prelude.MoreLists]
    +iota_adapt [in gaia_hydras.GPaths]
    +iota_ind [in hydras.Schutte.MoreEpsilonIota]
    +iota_eq [in hydras.Schutte.MoreEpsilonIota]
    +iota_spec_1 [in hydras.Schutte.MoreEpsilonIota]
    +iota_fun_ind [in hydras.Schutte.PartialFun]
    +iota_fun_e [in hydras.Schutte.PartialFun]
    +iota_demo.Bad.le_bottom_zero [in hydras.Schutte.Schutte_basics]
    +iota_demo.Bad.bottom_eq [in hydras.Schutte.Schutte_basics]
    +iota_demo.Bad.le_zero_bottom [in hydras.Schutte.Schutte_basics]
    +iota_demo.zero_le [in hydras.Schutte.Schutte_basics]
    +iota_demo.R [in hydras.Schutte.Schutte_basics]
    +iota_mono [in hydras.OrdinalNotations.ON_Finite]
    +iota_compare_commute [in hydras.OrdinalNotations.ON_Finite]
    +is_limit_phi0 [in hydras.Schutte.AP]
    +is_in_seq_not_Acc [in hydras.solutions_exercises.MultisetWf]
    +is_limit_sup_members [in hydras.Schutte.Schutte_basics]
    +is_limit_omega [in hydras.Schutte.Schutte_basics]
    +is_limit_ab [in hydras.Gamma0.Gamma0]
    +is_limit_intro [in hydras.Gamma0.Gamma0]
    +is_limit_cons_inv [in hydras.Gamma0.Gamma0]
    +is_limit_not_succ [in hydras.Gamma0.Gamma0]
    +is_finite_finite [in hydras.Gamma0.Gamma0]
    +iterate_ge_diag' [in hydras.Prelude.Iterates]
    +iterate_gt_diag' [in hydras.Prelude.Iterates]
    +iterate_ge_from [in hydras.Prelude.Iterates]
    +iterate_ext2 [in hydras.Prelude.Iterates]
    +iterate_dom_prop [in hydras.Prelude.Iterates]
    +iterate_mono_1 [in hydras.Prelude.Iterates]
    +iterate_ge'' [in hydras.Prelude.Iterates]
    +iterate_ge' [in hydras.Prelude.Iterates]
    +iterate_Sge [in hydras.Prelude.Iterates]
    +iterate_ge [in hydras.Prelude.Iterates]
    +iterate_mono [in hydras.Prelude.Iterates]
    +iterate_mono2 [in hydras.Prelude.Iterates]
    +iterate_le_np_le [in hydras.Prelude.Iterates]
    +iterate_le_n_Sn [in hydras.Prelude.Iterates]
    +iterate_lt_from [in hydras.Prelude.Iterates]
    +iterate_lt [in hydras.Prelude.Iterates]
    +iterate_le [in hydras.Prelude.Iterates]
    +iterate_ext [in hydras.Prelude.Iterates]
    +iterate_rw [in hydras.Prelude.Iterates]
    +iterate_S_eqn2 [in hydras.Prelude.Iterates]
    +iterate_S_eqn [in hydras.Prelude.Iterates]
    +iterate_compat3 [in hydras.Prelude.Iterates]
    +iterate_compat2 [in hydras.Prelude.Iterates]
    +iterate_compat [in hydras.Prelude.Iterates]
    +iterate_comm [in hydras.Prelude.Iterates]
    +iterate_nat_rec [in hydras.MoreAck.AckNotPR]
    +iterate_extEqual [in hydras.MoreAck.Iterate_compat]
    +iterate_compat [in hydras.MoreAck.Iterate_compat]
    +iterate2_mono2 [in hydras.Prelude.Iterates]
    +iterate2_mono3 [in hydras.Prelude.Iterates]
    +iterate2_mono_weak [in hydras.Prelude.Iterates]
    +iterate2_mono [in hydras.Prelude.Iterates]
    +iter_combine [in additions.fib]
    +iter_comm [in additions.fib]
    +iter_mul [in additions.fib]
    +I_i_wf [in gaia_hydras.onType]
    +

    K

    +Kchain_correct_conv [in additions.Euclidean_Chains]
    +KFF_correct [in additions.AM]
    +KFF_correct [in additions.Euclidean_Chains]
    +KFF_correct_nat [in additions.Euclidean_Chains]
    +KFK_correct [in additions.AM]
    +KFK_correct [in additions.Euclidean_Chains]
    +KFK_proper [in additions.Euclidean_Chains]
    +KFK_correct_nat [in additions.Euclidean_Chains]
    +KP_5_iii [in hydras.Epsilon0.Paths]
    +KP_arrowS_zero [in hydras.Epsilon0.Paths]
    +ksi_plus_beta_eq [in hydras.Schutte.AP]
    +ksi_plus_beta [in hydras.Schutte.AP]
    +ksi_plus_seq_n' [in hydras.Schutte.AP]
    +ksi_plus_seq_n [in hydras.Schutte.AP]
    +KS_thm_2_4 [in gaia_hydras.GPaths]
    +KS_thm_2_4_E0 [in hydras.Epsilon0.Paths]
    +KS_thm_2_4 [in hydras.Epsilon0.Paths]
    +KS_thm_2_4_lemma5 [in hydras.Epsilon0.Paths]
    +KS_thm_2_4_lemma4 [in hydras.Epsilon0.Paths]
    +KS_thm_2_4_lemma3 [in hydras.Epsilon0.Paths]
    +KS_thm_2_4_lemma3_0 [in hydras.Epsilon0.Paths]
    +KS_thm_2_4_lemma2 [in hydras.Epsilon0.Paths]
    +KS_thm_2_4_lemma1' [in hydras.Epsilon0.Paths]
    +KS_thm_2_4_lemma1 [in hydras.Epsilon0.Paths]
    +K2F_correct [in additions.Euclidean_Chains]
    +K2F_correct_nat [in additions.Euclidean_Chains]
    +k3_1_proper [in additions.Euclidean_Chains]
    +k3_1_correct [in additions.Euclidean_Chains]
    +k7_3_correct [in additions.Euclidean_Chains]
    +

    L

    +L [in hydras.Epsilon0.F_omega]
    +L [in hydras.solutions_exercises.F_3]
    +L [in additions.Addition_Chains]
    +largeb_n_R [in hydras.Epsilon0.Large_Sets]
    +largeb_n [in hydras.Epsilon0.Large_Sets]
    +largeb_finite [in hydras.Epsilon0.Large_Sets]
    +Largeb_Sb [in hydras.Epsilon0.Large_Sets]
    +largeb_Sb [in hydras.Epsilon0.Large_Sets]
    +LargeSb_b [in hydras.Epsilon0.Large_Sets]
    +largeSb_b [in hydras.Epsilon0.Large_Sets]
    +largeS_iff [in hydras.Epsilon0.Large_Sets]
    +large_omega_iff [in hydras.Epsilon0.Large_Sets]
    +large_omega_2 [in hydras.Epsilon0.Large_Sets]
    +large_omega_1 [in hydras.Epsilon0.Large_Sets]
    +large_n_iff [in hydras.Epsilon0.Large_Sets]
    +large_iff [in hydras.Epsilon0.Large_Sets]
    +Least_zero [in hydras.OrdinalNotations.ON_Omega2]
    +least_AP [in hydras.Schutte.AP]
    +Least_is_0 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +Least_not_Limit [in hydras.Prelude.MoreOrders]
    +Least_not_Succ [in hydras.Prelude.MoreOrders]
    +least_member_of_eq [in hydras.Schutte.Well_Orders]
    +least_member_ex_unique [in hydras.Schutte.Well_Orders]
    +least_member_unicity [in hydras.Schutte.Well_Orders]
    +least_member_glb [in hydras.Schutte.Well_Orders]
    +least_member_lower_bound [in hydras.Schutte.Well_Orders]
    +Lemma_4_5_2 [in hydras.Epsilon0.Large_Sets]
    +Lemma_4_5_1 [in hydras.Epsilon0.Large_Sets]
    +Lemma_4_4_2 [in hydras.Epsilon0.Large_Sets]
    +Lemma_4_4_0 [in hydras.Epsilon0.Paths]
    +Lemma_4_4_1 [in hydras.Epsilon0.Paths]
    +Lemma_4_3 [in hydras.Epsilon0.Paths]
    +Lemma_4_3_0 [in hydras.Epsilon0.Paths]
    +Lemma2_6_1 [in gaia_hydras.GPaths]
    +Lemma2_6_1_E0 [in hydras.Epsilon0.Paths]
    +Lemma2_6_1 [in hydras.Epsilon0.Paths]
    +Lemma4_4 [in hydras.Epsilon0.Large_Sets]
    +Lemma5 [in hydras.Schutte.Critical]
    +Lemma5_7 [in hydras.Schutte.Critical]
    +Lemma5_2 [in hydras.Schutte.Critical]
    +Lemma5_1 [in hydras.Schutte.Critical]
    +Lemma5_04 [in hydras.Schutte.Critical]
    +Lemma5_03 [in hydras.Schutte.Critical]
    +Lemma5_02 [in hydras.Schutte.Critical]
    +Lemma5_01 [in hydras.Schutte.Critical]
    +Lemma5_0 [in hydras.Schutte.Critical]
    +lengthTerms [in hydras.Ackermann.wellFormed]
    +length_abnc [in hydras.Gamma0.T2]
    +length_ab [in hydras.Gamma0.T2]
    +length_psi [in hydras.Gamma0.T2]
    +length_n [in hydras.Gamma0.T2]
    +length_c [in hydras.Gamma0.T2]
    +length_b [in hydras.Gamma0.T2]
    +length_a [in hydras.Gamma0.T2]
    +length_map [in hydras.rpo.more_list]
    +lexwf [in hydras.solutions_exercises.MultisetWf]
    +lexwf [in hydras.solutions_exercises.MultisetWf]
    +lex_strict_intro_left [in hydras.Prelude.DecPreOrder_Instances]
    +lex_strict_intro_right [in hydras.Prelude.DecPreOrder_Instances]
    +lex_inv_right [in hydras.Prelude.DecPreOrder_Instances]
    +lex_inv_left [in hydras.Prelude.DecPreOrder_Instances]
    +lex_of_equiv [in hydras.Prelude.DecPreOrder_Instances]
    +lex_nat_wf [in hydras.MoreAck.Ack]
    +lex_trans [in hydras.rpo.rpo]
    +LE_LT_eq_dec [in hydras.Epsilon0.T1]
    +LE_r [in hydras.Epsilon0.T1]
    +le_lt_LT [in hydras.Epsilon0.T1]
    +LE_phi0 [in hydras.Epsilon0.T1]
    +LE_LT_trans [in hydras.Epsilon0.T1]
    +LE_antisym [in hydras.Epsilon0.T1]
    +LE_trans [in hydras.Epsilon0.T1]
    +LE_refl [in hydras.Epsilon0.T1]
    +LE_zero [in hydras.Epsilon0.T1]
    +LE_le [in hydras.Epsilon0.T1]
    +LE_nf_r [in hydras.Epsilon0.T1]
    +LE_nf_l [in hydras.Epsilon0.T1]
    +le_phi0 [in hydras.Epsilon0.T1]
    +le_tail [in hydras.Epsilon0.T1]
    +le_zero_inv [in hydras.Epsilon0.T1]
    +le_inv [in hydras.Epsilon0.T1]
    +le_eq_lt_dec [in hydras.Epsilon0.T1]
    +le_0 [in hydras.OrdinalNotations.ON_Omega2]
    +le_intror [in hydras.OrdinalNotations.ON_Omega2]
    +le_min_bd [in hydras.Prelude.Comparable]
    +le_min_a [in hydras.Prelude.Comparable]
    +le_max_b [in hydras.Prelude.Comparable]
    +le_max_a [in hydras.Prelude.Comparable]
    +le_not_gt [in hydras.Prelude.Comparable]
    +le_lt_trans [in hydras.Prelude.Comparable]
    +le_trans [in hydras.Prelude.Comparable]
    +le_refl [in hydras.Prelude.Comparable]
    +le_lt_equiv_dec [in hydras.Prelude.DecPreOrder]
    +le_lt_weak [in hydras.Prelude.DecPreOrder]
    +le_lt_trans [in hydras.Prelude.DecPreOrder]
    +le_not_gt [in hydras.Prelude.DecPreOrder]
    +le_phi0 [in hydras.Schutte.AP]
    +le_lt_trans [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +le_0 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +le_intror [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +le_introl [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +le_S_Ack [in hydras.MoreAck.Ack]
    +LE_ref [in gaia_hydras.T1Bridge]
    +le_ref [in gaia_hydras.T1Bridge]
    +le_lt_eq [in hydras.Prelude.MoreOrders]
    +le_alpha_zero [in hydras.Schutte.Schutte_basics]
    +le_sup_members [in hydras.Schutte.Schutte_basics]
    +le_disj [in hydras.Schutte.Schutte_basics]
    +le_not_gt [in hydras.Schutte.Schutte_basics]
    +le_eq_or_lt [in hydras.Schutte.Schutte_basics]
    +le_antisym [in hydras.Schutte.Schutte_basics]
    +le_trans [in hydras.Schutte.Schutte_basics]
    +le_lt_trans [in hydras.Schutte.Schutte_basics]
    +le_refl [in hydras.Schutte.Schutte_basics]
    +Le_refl [in hydras.Epsilon0.E0]
    +Le_trans [in hydras.Epsilon0.E0]
    +le_lt_eq_dec [in hydras.Epsilon0.E0]
    +Le_iff [in hydras.Epsilon0.E0]
    +Le_Lt_trans [in hydras.Schutte.Well_Orders]
    +Le_antisym [in hydras.Schutte.Well_Orders]
    +Le_refl [in hydras.Schutte.Well_Orders]
    +le_plus_l [in hydras.Gamma0.Gamma0]
    +le_plus_r [in hydras.Gamma0.Gamma0]
    +le_b_phi_ab [in hydras.Gamma0.Gamma0]
    +le_one_cons [in hydras.Gamma0.Gamma0]
    +le_cons_tail [in hydras.Gamma0.Gamma0]
    +le_trans [in hydras.Gamma0.Gamma0]
    +le_lt_trans [in hydras.Gamma0.Gamma0]
    +le_inv_nc [in hydras.Gamma0.Gamma0]
    +le_psi_term_le [in hydras.Gamma0.Gamma0]
    +le_zero_alpha [in hydras.Gamma0.Gamma0]
    +le_a_mult_Sn_a [in hydras.Schutte.Addition]
    +le_plus_r [in hydras.Schutte.Addition]
    +le_plus_l [in hydras.Schutte.Addition]
    +LF1 [in gaia_hydras.GF_alpha]
    +LF1 [in hydras.Epsilon0.F_alpha]
    +LF2 [in gaia_hydras.GF_alpha]
    +LF2 [in hydras.Epsilon0.F_alpha]
    +LF2_0 [in hydras.Epsilon0.F_alpha]
    +LF2' [in gaia_hydras.GF_alpha]
    +LF2' [in hydras.Epsilon0.F_alpha]
    +LF3 [in hydras.solutions_exercises.F_3]
    +LF3_2 [in gaia_hydras.GF_alpha]
    +LF3_2 [in hydras.Epsilon0.F_alpha]
    +liftCloseFrom [in hydras.Ackermann.subAll]
    +limitb_limit [in hydras.OrdinalNotations.ON_Omega2]
    +LimitNotSucc [in hydras.Prelude.Comparable]
    +limit_is_lub [in hydras.OrdinalNotations.ON_Omega2]
    +limit_is_lub_0 [in hydras.OrdinalNotations.ON_Omega2]
    +limit_no_R1 [in hydras.Hydra.O2H]
    +limit_no_head [in hydras.Hydra.O2H]
    +Limit_Infinity [in hydras.solutions_exercises.Limit_Infinity]
    +limit_canonS_not_zero [in gaia_hydras.GCanon]
    +limit_iff [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +limit_is_omega [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +Limit_gt_Zero [in hydras.Epsilon0.E0]
    +Limit_not_Zero [in hydras.Epsilon0.E0]
    +limit_rounds [in hydras.Hydra.Omega2_Small]
    +limit_rounds_0 [in hydras.Hydra.Omega2_Small]
    +limit_plus_fin_ok [in hydras.Gamma0.Gamma0]
    +limit_plus_fin_inv0 [in hydras.Gamma0.Gamma0]
    +limit_plus_fin_lim [in hydras.Gamma0.Gamma0]
    +limit_plus_fin_plus [in hydras.Gamma0.Gamma0]
    +list_size_size_eq [in hydras.rpo.more_list]
    +list_size_fold [in hydras.rpo.more_list]
    +list_size_app [in hydras.rpo.more_list]
    +list_size_tl_compat [in hydras.rpo.more_list]
    +list_app_length [in hydras.rpo.more_list]
    +LL [in hydras.Epsilon0.F_alpha]
    +LNN_eqdec [in hydras.Ackermann.LNN]
    +LNN2LNT_subFormula [in hydras.Ackermann.LNN2LNT]
    +LNN2LNT_freeVarF2 [in hydras.Ackermann.LNN2LNT]
    +LNN2LNT_freeVarF1 [in hydras.Ackermann.LNN2LNT]
    +LNN2LNT_freeVarF [in hydras.Ackermann.LNN2LNT]
    +LNN2LNT_exist [in hydras.Ackermann.LNN2LNT]
    +LNN2LNT_iff [in hydras.Ackermann.LNN2LNT]
    +LNN2LNT_and [in hydras.Ackermann.LNN2LNT]
    +LNN2LNT_or [in hydras.Ackermann.LNN2LNT]
    +LNN2LNT_subTerms [in hydras.Ackermann.LNN2LNT]
    +LNN2LNT_subTerm [in hydras.Ackermann.LNN2LNT]
    +LNN2LNT_freeVarTs [in hydras.Ackermann.LNN2LNT]
    +LNN2LNT_freeVarT [in hydras.Ackermann.LNN2LNT]
    +LNN2LNT_natToTerm [in hydras.Ackermann.LNN2LNT]
    +LNotPR [in hydras.Hydra.Hydra_Theorems]
    +LNT_eqdec [in hydras.Ackermann.LNT]
    +LNT2LNN_subFormula [in hydras.Ackermann.LNN2LNT]
    +LNT2LNN_freeVarF [in hydras.Ackermann.LNN2LNT]
    +LNT2LNN_freeVarT [in hydras.Ackermann.LNN2LNT]
    +LNT2LNN_subTerm [in hydras.Ackermann.LNN2LNT]
    +LNT2LNN_natToTerm [in hydras.Ackermann.LNN2LNT]
    +LNT2LNT_formula [in hydras.Ackermann.LNN2LNT]
    +LNT2LNT_term [in hydras.Ackermann.LNN2LNT]
    +LocallySorted_inv_In [in hydras.Prelude.Sort_spec]
    +LocallySorted_trans [in hydras.Prelude.Sort_spec]
    +LocallySorted_cons' [in hydras.Prelude.Sort_spec]
    +LocallySorted_cons [in hydras.Prelude.Sort_spec]
    +LO.compare_correct [in hydras.OrdinalNotations.OmegaOmega]
    +LO.compare_reflect [in hydras.OrdinalNotations.OmegaOmega]
    +LO.compare_rev [in hydras.OrdinalNotations.OmegaOmega]
    +LO.compare_ref [in hydras.OrdinalNotations.OmegaOmega]
    +LO.cons_nf [in hydras.OrdinalNotations.OmegaOmega]
    +LO.eq_ref [in hydras.OrdinalNotations.OmegaOmega]
    +LO.fin_nf [in hydras.OrdinalNotations.OmegaOmega]
    +LO.limitb_ref [in hydras.OrdinalNotations.OmegaOmega]
    +LO.lt_trans [in hydras.OrdinalNotations.OmegaOmega]
    +LO.lt_irrefl [in hydras.OrdinalNotations.OmegaOmega]
    +LO.lt_ref [in hydras.OrdinalNotations.OmegaOmega]
    +LO.mult_plus_distr_l [in hydras.OrdinalNotations.OmegaOmega]
    +LO.mult_nf [in hydras.OrdinalNotations.OmegaOmega]
    +LO.mult_ref [in hydras.OrdinalNotations.OmegaOmega]
    +LO.nf_ref [in hydras.OrdinalNotations.OmegaOmega]
    +LO.nf_inv3 [in hydras.OrdinalNotations.OmegaOmega]
    +LO.nf_inv2 [in hydras.OrdinalNotations.OmegaOmega]
    +LO.phi0_nf [in hydras.OrdinalNotations.OmegaOmega]
    +LO.phi0_ref [in hydras.OrdinalNotations.OmegaOmega]
    +LO.plus_nf [in hydras.OrdinalNotations.OmegaOmega]
    +LO.plus_ref [in hydras.OrdinalNotations.OmegaOmega]
    +LO.single_nf [in hydras.OrdinalNotations.OmegaOmega]
    +LO.succb_ref [in hydras.OrdinalNotations.OmegaOmega]
    +LO.succ_nf [in hydras.OrdinalNotations.OmegaOmega]
    +LO.succ_ref [in hydras.OrdinalNotations.OmegaOmega]
    +LO.zero_nf [in hydras.OrdinalNotations.OmegaOmega]
    +LS [in hydras.solutions_exercises.FibonacciPR]
    +LS [in hydras.Hydra.BigBattle]
    +ltBoolFalse [in hydras.Ackermann.primRec]
    +ltBoolTrue [in hydras.Ackermann.primRec]
    +Ltb_ij [in hydras.OrdinalNotations.ON_Finite]
    +ltn_add_ll [in gaia_hydras.nfwfgaia]
    +ltn_add_el [in gaia_hydras.nfwfgaia]
    +ltn_add_le [in gaia_hydras.nfwfgaia]
    +ltn_simpl2 [in gaia_hydras.nfwfgaia]
    +ltn_simpl1 [in gaia_hydras.nfwfgaia]
    +lt_succ_le_2' [in hydras.Epsilon0.T1]
    +LT_succ_LT_eq_dec [in hydras.Epsilon0.T1]
    +lt_one [in hydras.Epsilon0.T1]
    +lt_cons_phi0_inv [in hydras.Epsilon0.T1]
    +LT_eq_LT_dec [in hydras.Epsilon0.T1]
    +LT_succ [in hydras.Epsilon0.T1]
    +LT_add [in hydras.Epsilon0.T1]
    +lt_plus_r [in hydras.Epsilon0.T1]
    +lt_plus_l [in hydras.Epsilon0.T1]
    +LT_of_finite [in hydras.Epsilon0.T1]
    +lt_omega_inv [in hydras.Epsilon0.T1]
    +LT_one [in hydras.Epsilon0.T1]
    +LT_succ_LE_2 [in hydras.Epsilon0.T1]
    +LT_succ_LE [in hydras.Epsilon0.T1]
    +lt_succ_le [in hydras.Epsilon0.T1]
    +lt_succ_le_2 [in hydras.Epsilon0.T1]
    +LT_succ_LE_R [in hydras.Epsilon0.T1]
    +lt_succ_le_R [in hydras.Epsilon0.T1]
    +LT_cons_0 [in hydras.Epsilon0.T1]
    +LT_inv_strong [in hydras.Epsilon0.T1]
    +LT_inv [in hydras.Epsilon0.T1]
    +LT_LE_trans [in hydras.Epsilon0.T1]
    +LT_irrefl [in hydras.Epsilon0.T1]
    +LT_trans [in hydras.Epsilon0.T1]
    +LT_lt [in hydras.Epsilon0.T1]
    +LT_nf_r [in hydras.Epsilon0.T1]
    +LT_nf_l [in hydras.Epsilon0.T1]
    +lt_a_phi0_b_iff [in hydras.Epsilon0.T1]
    +lt_a_phi0_b_def [in hydras.Epsilon0.T1]
    +lt_a_phi0_b_phi0R [in hydras.Epsilon0.T1]
    +lt_a_phi0_b_phi0 [in hydras.Epsilon0.T1]
    +lt_a_phi0_b_intro [in hydras.Epsilon0.T1]
    +lt_a_phi0_b_inv1 [in hydras.Epsilon0.T1]
    +lt_a_phi0_b_inv [in hydras.Epsilon0.T1]
    +lt_a_phi0_a [in hydras.Epsilon0.T1]
    +lt_succ [in hydras.Epsilon0.T1]
    +lt_inv_head [in hydras.Epsilon0.T1]
    +lt_trans [in hydras.Epsilon0.T1]
    +lt_fin_iff [in hydras.Epsilon0.T1]
    +lt_inv_tail [in hydras.Epsilon0.T1]
    +lt_inv_coeff_dec [in hydras.Epsilon0.T1]
    +lt_inv_coeff [in hydras.Epsilon0.T1]
    +lt_inv [in hydras.Epsilon0.T1]
    +lt_irrefl [in hydras.Epsilon0.T1]
    +lt_inv_strong [in hydras.Epsilon0.T1]
    +lt_omega [in hydras.OrdinalNotations.ON_Omega2]
    +lt_eq_lt_dec [in hydras.OrdinalNotations.ON_Omega2]
    +lt_succ [in hydras.OrdinalNotations.ON_Omega2]
    +lt_succ_le [in hydras.OrdinalNotations.ON_Omega2]
    +lt_lt_Sn [in hydras.Prelude.More_Arith]
    +LT_to_round_plus [in hydras.Hydra.O2H]
    +Lt_n_F_Zero_n [in hydras.Epsilon0.F_alpha]
    +lt_eq_lt [in hydras.Prelude.Comparable]
    +lt_incl_le [in hydras.Prelude.Comparable]
    +lt_le_trans [in hydras.Prelude.Comparable]
    +lt_not_ge [in hydras.Prelude.Comparable]
    +lt_not_gt [in hydras.Prelude.Comparable]
    +lt_wf [in hydras.OrdinalNotations.ON_O]
    +LT_to_standard_path [in gaia_hydras.GPaths]
    +LT_path_to [in gaia_hydras.GPaths]
    +lt_a_phi0_b_oplus [in hydras.Epsilon0.Hessenberg]
    +lt_le_trans [in hydras.Prelude.DecPreOrder]
    +lt_not_equiv [in hydras.Prelude.DecPreOrder]
    +lt_not_ge [in hydras.Prelude.DecPreOrder]
    +lt_irreflexive [in hydras.Prelude.DecPreOrder]
    +lt_S_2i [in additions.More_on_positive]
    +lt_phi0 [in hydras.Schutte.AP]
    +lt_beta_exists [in hydras.Schutte.AP]
    +lt_omega [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +lt_succ [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +lt_succ_le [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +lt_le_trans [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +LT_inv [in hydras.solutions_exercises.MultisetWf]
    +lt_wf_double_ind [in hydras.MoreAck.Ack]
    +lt_wf_ind [in hydras.MoreAck.Ack]
    +LT_ref [in gaia_hydras.T1Bridge]
    +lt_ref [in gaia_hydras.T1Bridge]
    +lt_eq_lt_dec [in hydras.OrdinalNotations.ON_mult]
    +lt_wf [in hydras.OrdinalNotations.ON_mult]
    +LT_to_standard_battle [in hydras.Hydra.Epsilon0_Needed_Std]
    +lt_eq_lt_dec [in hydras.OrdinalNotations.ON_plus]
    +lt_wf [in hydras.OrdinalNotations.ON_plus]
    +lt_omega_finite [in hydras.Schutte.Schutte_basics]
    +lt_omega_limit_lt_exists_lt [in hydras.Schutte.Schutte_basics]
    +lt_omega_limit [in hydras.Schutte.Schutte_basics]
    +lt_sup_exists_lt [in hydras.Schutte.Schutte_basics]
    +lt_sup_exists_leq [in hydras.Schutte.Schutte_basics]
    +lt_succ_lt [in hydras.Schutte.Schutte_basics]
    +lt_succ_le_2 [in hydras.Schutte.Schutte_basics]
    +lt_succ_le [in hydras.Schutte.Schutte_basics]
    +lt_succ [in hydras.Schutte.Schutte_basics]
    +lt_or_ge [in hydras.Schutte.Schutte_basics]
    +lt_irrefl [in hydras.Schutte.Schutte_basics]
    +lt_le_trans [in hydras.Schutte.Schutte_basics]
    +lt_trans [in hydras.Schutte.Schutte_basics]
    +lt_le [in hydras.Schutte.Schutte_basics]
    +lt_wf [in hydras.OrdinalNotations.ON_Finite]
    +lt_omega_inv [in hydras.Epsilon0.E0]
    +Lt_Le_incl [in hydras.Epsilon0.E0]
    +Lt_trans [in hydras.Epsilon0.E0]
    +lt_Succ_le_2 [in hydras.Epsilon0.E0]
    +lt_Succ_inv [in hydras.Epsilon0.E0]
    +Lt_Succ [in hydras.Epsilon0.E0]
    +Lt_Succ_Le [in hydras.Epsilon0.E0]
    +Lt_not_Gt [in hydras.Schutte.Well_Orders]
    +Lt_Le_trans [in hydras.Schutte.Well_Orders]
    +Lt_connect [in hydras.Schutte.Well_Orders]
    +LT_to_standard_path [in hydras.Epsilon0.Paths]
    +LT_acc_from [in hydras.Epsilon0.Paths]
    +LT_path_to [in hydras.Epsilon0.Paths]
    +LT_path_toS [in hydras.Epsilon0.Paths]
    +lt_not_gt [in hydras.Gamma0.Gamma0]
    +lt_epsilon0_succ [in hydras.Gamma0.Gamma0]
    +lt_epsilon0_trans [in hydras.Gamma0.Gamma0]
    +lt_epsilon0_okR [in hydras.Gamma0.Gamma0]
    +lt_epsilon0_ok [in hydras.Gamma0.Gamma0]
    +lt_a_phi_ab [in hydras.Gamma0.Gamma0]
    +lt_inc_rpo_0 [in hydras.Gamma0.Gamma0]
    +lt_rpo_cons_cons [in hydras.Gamma0.Gamma0]
    +lt_subterm1 [in hydras.Gamma0.Gamma0]
    +lt_succ_le [in hydras.Gamma0.Gamma0]
    +lt_succ [in hydras.Gamma0.Gamma0]
    +lt_compatR [in hydras.Gamma0.Gamma0]
    +lt_compat [in hydras.Gamma0.Gamma0]
    +lt_omega_is_fin [in hydras.Gamma0.Gamma0]
    +lt_omega_inv [in hydras.Gamma0.Gamma0]
    +lt_cons_omega_inv [in hydras.Gamma0.Gamma0]
    +lt_one_inv [in hydras.Gamma0.Gamma0]
    +lt_tail [in hydras.Gamma0.Gamma0]
    +lt_tail0 [in hydras.Gamma0.Gamma0]
    +lt_alpha_cons [in hydras.Gamma0.Gamma0]
    +lt_alpha_psi [in hydras.Gamma0.Gamma0]
    +lt_beta_cons [in hydras.Gamma0.Gamma0]
    +lt_beta_psi [in hydras.Gamma0.Gamma0]
    +lt_le_trans [in hydras.Gamma0.Gamma0]
    +lt_trans [in hydras.Gamma0.Gamma0]
    +lt_trans0 [in hydras.Gamma0.Gamma0]
    +lt_than_psi [in hydras.Gamma0.Gamma0]
    +lt_irr [in hydras.Gamma0.Gamma0]
    +lt_wf [in gaia_hydras.nfwfgaia]
    +lt_not_wf [in hydras.solutions_exercises.T1_ltNotWf]
    +LT1 [in hydras.Epsilon0.T1]
    +LT2 [in hydras.Epsilon0.T1]
    +LT3 [in hydras.Epsilon0.T1]
    +LT4 [in hydras.Epsilon0.T1]
    +lub_mono [in hydras.Gamma0.Gamma0]
    +lub_unicity [in hydras.Gamma0.Gamma0]
    +Lvar [in hydras.Hydra.Epsilon0_Needed_Std]
    +L_omega_cube_3_eq [in hydras.Epsilon0.Large_Sets]
    +L_omega_cube_eqn [in hydras.Epsilon0.Large_Sets]
    +L_omega_cube_ok [in hydras.Epsilon0.Large_Sets]
    +L_omega_square_times_ok [in hydras.Epsilon0.Large_Sets]
    +L_phi0_mult_Sle [in hydras.Epsilon0.Large_Sets]
    +L_phi0_mult_smono [in hydras.Epsilon0.Large_Sets]
    +L_phi0_mult_ok [in hydras.Epsilon0.Large_Sets]
    +L_omega_square_ok [in hydras.Epsilon0.Large_Sets]
    +L_omega_square_smono [in hydras.Epsilon0.Large_Sets]
    +L_omega_square_Sle [in hydras.Epsilon0.Large_Sets]
    +L_omega_square_eqn [in hydras.Epsilon0.Large_Sets]
    +L_omega_square_eqn1 [in hydras.Epsilon0.Large_Sets]
    +L_omega_mult_eqn [in hydras.Epsilon0.Large_Sets]
    +L_omega_mult_ok [in hydras.Epsilon0.Large_Sets]
    +L_omega_mult_Sle [in hydras.Epsilon0.Large_Sets]
    +L_omega_ok [in hydras.Epsilon0.Large_Sets]
    +L_omega_smono [in hydras.Epsilon0.Large_Sets]
    +L_omega_Sle [in hydras.Epsilon0.Large_Sets]
    +L_fin_ok [in hydras.Epsilon0.Large_Sets]
    +L_S_succ_rw [in hydras.Epsilon0.Large_Sets]
    +L_fin_smono [in hydras.Epsilon0.Large_Sets]
    +L_finS_S_le [in hydras.Epsilon0.Large_Sets]
    +L_lim_ok [in hydras.Epsilon0.Large_Sets]
    +L_succ_ok [in hydras.Epsilon0.Large_Sets]
    +L_succ_Sle [in hydras.Epsilon0.Large_Sets]
    +L_succ_mono [in hydras.Epsilon0.Large_Sets]
    +L_spec_unicity [in hydras.Epsilon0.Large_Sets]
    +L_pos_inv [in hydras.Epsilon0.Large_Sets]
    +L_zero_inv [in hydras.Epsilon0.Large_Sets]
    +L_spec_compat [in hydras.Epsilon0.Large_Sets]
    +L_spec_inv2 [in hydras.Epsilon0.Large_Sets]
    +L_correct [in hydras.Epsilon0.L_alpha]
    +L_ok [in hydras.Epsilon0.L_alpha]
    +L_ok_lim [in hydras.Epsilon0.L_alpha]
    +L_ok_succ [in hydras.Epsilon0.L_alpha]
    +L_ok0 [in hydras.Epsilon0.L_alpha]
    +L_succ_ok [in hydras.Epsilon0.L_alpha]
    +L_ge_S [in hydras.Epsilon0.L_alpha]
    +L_ge_id [in hydras.Epsilon0.L_alpha]
    +L_omega [in hydras.Epsilon0.L_alpha]
    +L_finite [in hydras.Epsilon0.L_alpha]
    +L_lim_eqn [in hydras.Epsilon0.L_alpha]
    +L_succ_eqn [in hydras.Epsilon0.L_alpha]
    +L_eq2 [in hydras.Epsilon0.L_alpha]
    +L_zero_eqn [in hydras.Epsilon0.L_alpha]
    +l_std_ok [in hydras.Hydra.Battle_length]
    +L_0_3 [in hydras.Hydra.BigBattle]
    +L_2_3 [in hydras.Hydra.BigBattle]
    +L_0_2 [in hydras.Hydra.BigBattle]
    +l_std_ok [in gaia_hydras.GHydra]
    +l_stdE [in gaia_hydras.GHydra]
    +L_fin_ok [in gaia_hydras.GLarge_Sets]
    +L_correct [in gaia_hydras.GL_alpha]
    +L_pos_inv [in gaia_hydras.GL_alpha]
    +L_spec1 [in gaia_hydras.GL_alpha]
    +L_spec0 [in gaia_hydras.GL_alpha]
    +L_ge_S [in gaia_hydras.GL_alpha]
    +L_ge_id [in gaia_hydras.GL_alpha]
    +L_omega [in gaia_hydras.GL_alpha]
    +L_finite [in gaia_hydras.GL_alpha]
    +L_limE [in gaia_hydras.GL_alpha]
    +L_succE [in gaia_hydras.GL_alpha]
    +L_eq2 [in gaia_hydras.GL_alpha]
    +L_zeroE [in gaia_hydras.GL_alpha]
    +L0 [in hydras.Epsilon0.T1]
    +L0 [in additions.AM]
    +L0 [in hydras.solutions_exercises.FibonacciPR]
    +L0_95 [in hydras.Hydra.BigBattle]
    +L00 [in hydras.Epsilon0.F_omega]
    +L02 [in hydras.Epsilon0.F_omega]
    +L03 [in hydras.Epsilon0.T1]
    +L04 [in hydras.solutions_exercises.F_3]
    +L04' [in hydras.solutions_exercises.F_3]
    +L05 [in hydras.Epsilon0.T1]
    +L06 [in hydras.Hydra.Battle_length]
    +L1 [in hydras.Epsilon0.T1]
    +L1 [in hydras.solutions_exercises.predSuccUnicity]
    +L1 [in hydras.MoreAck.expressibleExamples]
    +L1 [in hydras.solutions_exercises.Limit_Infinity]
    +L1 [in hydras.solutions_exercises.FibonacciPR]
    +L1 [in hydras.solutions_exercises.lt_succ_le]
    +L1' [in gaia_hydras.T1Bridge]
    +L10 [in hydras.Epsilon0.T1]
    +L10 [in hydras.Hydra.BigBattle]
    +L11 [in hydras.Epsilon0.T1]
    +L12 [in hydras.Epsilon0.T1]
    +L13 [in hydras.Epsilon0.T1]
    +L14 [in hydras.Epsilon0.T1]
    +L2 [in hydras.Epsilon0.T1]
    +L2 [in hydras.solutions_exercises.predSuccUnicity]
    +L2 [in hydras.MoreAck.expressibleExamples]
    +L2 [in hydras.solutions_exercises.Limit_Infinity]
    +L2 [in hydras.Epsilon0.F_omega]
    +L2 [in hydras.solutions_exercises.FibonacciPR]
    +L2 [in hydras.solutions_exercises.F_3]
    +L2 [in additions.Addition_Chains]
    +l2hsK [in hydras.Hydra.Hydra_Definitions]
    +L2_95_S [in hydras.Hydra.BigBattle]
    +L2_95 [in hydras.Hydra.BigBattle]
    +L2_6_2 [in hydras.Epsilon0.Paths]
    +L22 [in hydras.Hydra.BigBattle]
    +L3 [in hydras.Epsilon0.T1]
    +L3 [in hydras.MoreAck.expressibleExamples]
    +L3 [in hydras.solutions_exercises.Limit_Infinity]
    +L3 [in hydras.solutions_exercises.F_3]
    +L3a [in hydras.Schutte.Ordering_Functions]
    +L3_u [in hydras.Schutte.Ordering_Functions]
    +L4 [in hydras.Epsilon0.T1]
    +L4 [in hydras.MoreAck.expressibleExamples]
    +L4 [in hydras.solutions_exercises.Limit_Infinity]
    +L4 [in hydras.Hydra.BigBattle]
    +L4 [in hydras.solutions_exercises.F_3]
    +L46 [in hydras.Hydra.BigBattle]
    +L5 [in hydras.Epsilon0.T1]
    +L5 [in hydras.MoreAck.expressibleExamples]
    +L5 [in hydras.MoreAck.Ack]
    +L6 [in hydras.Epsilon0.T1]
    +L6 [in hydras.MoreAck.expressibleExamples]
    +L7 [in hydras.Epsilon0.T1]
    +L8 [in hydras.Epsilon0.T1]
    +L87'' [in additions.Addition_Chains]
    +L9 [in hydras.Epsilon0.T1]
    +L94 [in hydras.Hydra.BigBattle]
    +L95 [in hydras.Hydra.BigBattle]
    +

    M

    +majorAnyPR [in hydras.MoreAck.AckNotPR]
    +majorProjection [in hydras.MoreAck.AckNotPR]
    +majorPR1 [in hydras.MoreAck.AckNotPR]
    +majorPR2 [in hydras.MoreAck.AckNotPR]
    +majorPR2_strict [in hydras.MoreAck.AckNotPR]
    +majorSucc [in hydras.MoreAck.AckNotPR]
    +majorZero [in hydras.MoreAck.AckNotPR]
    +makeTraceCorrect [in hydras.Ackermann.codeSubFormula]
    +makeTraceForallNice [in hydras.Ackermann.codeSubFormula]
    +makeTraceImpNice [in hydras.Ackermann.codeSubFormula]
    +makeTraceNotNice [in hydras.Ackermann.codeSubFormula]
    +makeTrace1 [in hydras.Ackermann.codeSubFormula]
    +makeTrace2 [in hydras.Ackermann.codeSubFormula]
    +make_chain_correct [in additions.Euclidean_Chains]
    +Make.acc_build [in hydras.rpo.rpo]
    +Make.acc_lex_drop_proof [in hydras.rpo.rpo]
    +Make.ac_syntactic [in hydras.rpo.list_permut]
    +Make.ac_syntactic_aux [in hydras.rpo.list_permut]
    +Make.add_comm [in hydras.rpo.list_set]
    +Make.add_12 [in hydras.rpo.list_set]
    +Make.add_2 [in hydras.rpo.list_set]
    +Make.add_1 [in hydras.rpo.list_set]
    +Make.add_prf [in hydras.rpo.list_set]
    +Make.cardinal_eq_set [in hydras.rpo.list_set]
    +Make.cardinal_union [in hydras.rpo.list_set]
    +Make.cardinal_union_inter_12 [in hydras.rpo.list_set]
    +Make.cardinal_union_2 [in hydras.rpo.list_set]
    +Make.cardinal_union_1 [in hydras.rpo.list_set]
    +Make.cardinal_subset [in hydras.rpo.list_set]
    +Make.cons_permut_in [in hydras.rpo.list_permut]
    +Make.context_multiset_extension_step_app2 [in hydras.rpo.dickson]
    +Make.context_trans_clos_multiset_extension_step_app1 [in hydras.rpo.dickson]
    +Make.context_multiset_extension_step_app1 [in hydras.rpo.dickson]
    +Make.context_list_permut_app2 [in hydras.rpo.list_permut]
    +Make.context_list_permut_app1 [in hydras.rpo.list_permut]
    +Make.context_list_permut_cons [in hydras.rpo.list_permut]
    +Make.DecVar.eq_A_dec [in hydras.rpo.term]
    +Make.dickson [in hydras.rpo.dickson]
    +Make.dickson_aux3 [in hydras.rpo.dickson]
    +Make.dickson_aux2 [in hydras.rpo.dickson]
    +Make.dickson_aux1 [in hydras.rpo.dickson]
    +Make.empty_subst_is_id_list [in hydras.rpo.term]
    +Make.empty_subst_is_id [in hydras.rpo.term]
    +Make.eq_term_dec [in hydras.rpo.term]
    +Make.eq_set_list_permut_support [in hydras.rpo.list_set]
    +Make.eq_set_trans [in hydras.rpo.list_set]
    +Make.eq_set_sym [in hydras.rpo.list_set]
    +Make.eq_set_refl [in hydras.rpo.list_set]
    +Make.eq_set_dec [in hydras.rpo.list_set]
    +Make.filter_union [in hydras.rpo.list_set]
    +Make.filter_2 [in hydras.rpo.list_set]
    +Make.filter_2_list [in hydras.rpo.list_set]
    +Make.filter_1 [in hydras.rpo.list_set]
    +Make.filter_1_list [in hydras.rpo.list_set]
    +Make.included_remove_red [in hydras.rpo.list_set]
    +Make.included_filter_aux [in hydras.rpo.list_set]
    +Make.inter_12 [in hydras.rpo.list_set]
    +Make.inter_12_aux [in hydras.rpo.list_set]
    +Make.inter_2 [in hydras.rpo.list_set]
    +Make.inter_2_aux [in hydras.rpo.list_set]
    +Make.inter_1 [in hydras.rpo.list_set]
    +Make.inter_1_aux [in hydras.rpo.list_set]
    +Make.in_permut_in [in hydras.rpo.list_permut]
    +Make.in_mult_S [in hydras.rpo.list_permut]
    +Make.in_sn_sn [in hydras.rpo.rpo]
    +Make.is_a_pos_exists_subtem [in hydras.rpo.term]
    +Make.lex1 [in hydras.rpo.rpo]
    +Make.lex1_bis [in hydras.rpo.rpo]
    +Make.lex2 [in hydras.rpo.rpo]
    +Make.lex3 [in hydras.rpo.rpo]
    +Make.list_permut_acc [in hydras.rpo.dickson]
    +Make.list_permut_multiset_extension_step_2 [in hydras.rpo.dickson]
    +Make.list_permut_multiset_extension_step_1 [in hydras.rpo.dickson]
    +Make.list_permut_dec [in hydras.rpo.list_permut]
    +Make.list_permut_length_2 [in hydras.rpo.list_permut]
    +Make.list_permut_length_1 [in hydras.rpo.list_permut]
    +Make.list_permut_map [in hydras.rpo.list_permut]
    +Make.list_permut_size [in hydras.rpo.list_permut]
    +Make.list_permut_length [in hydras.rpo.list_permut]
    +Make.list_permut_remove_hd [in hydras.rpo.list_permut]
    +Make.list_permut_app_app [in hydras.rpo.list_permut]
    +Make.list_permut_add_cons_inside [in hydras.rpo.list_permut]
    +Make.list_permut_add_inside [in hydras.rpo.list_permut]
    +Make.list_permut_nil [in hydras.rpo.list_permut]
    +Make.list_permut_trans [in hydras.rpo.list_permut]
    +Make.list_permut_sym [in hydras.rpo.list_permut]
    +Make.list_permut_refl [in hydras.rpo.list_permut]
    +Make.list_permut_map_acc [in hydras.rpo.rpo]
    +Make.mem_dec [in hydras.rpo.list_set]
    +Make.multiplicity_app [in hydras.rpo.list_permut]
    +Make.multiset_closure [in hydras.rpo.dickson]
    +Make.out_mult_O [in hydras.rpo.list_permut]
    +Make.o_size3_trans [in hydras.rpo.rpo]
    +Make.projection_list_of_SN_terms [in hydras.rpo.rpo]
    +Make.remove_red_included [in hydras.rpo.list_set]
    +Make.remove_context_list_permut_app2 [in hydras.rpo.list_permut]
    +Make.remove_context_list_permut_cons [in hydras.rpo.list_permut]
    +Make.replace_at_pos_list_replace_at_pos_in_subterm [in hydras.rpo.term]
    +Make.replace_at_pos_is_replace_at_pos2 [in hydras.rpo.term]
    +Make.replace_at_pos_is_replace_at_pos1 [in hydras.rpo.term]
    +Make.replace_at_pos_unfold [in hydras.rpo.term]
    +Make.rpo_add_context [in hydras.rpo.rpo]
    +Make.rpo_subst [in hydras.rpo.rpo]
    +Make.rpo_mul_trans_clos [in hydras.rpo.rpo]
    +Make.rpo_lex_rest_same_length [in hydras.rpo.rpo]
    +Make.rpo_trans [in hydras.rpo.rpo]
    +Make.rpo_closure [in hydras.rpo.rpo]
    +Make.rpo_subterm [in hydras.rpo.rpo]
    +Make.rpo_lex_same_length [in hydras.rpo.rpo]
    +Make.size_subterm_at_pos [in hydras.rpo.term]
    +Make.size_direct_subterm [in hydras.rpo.term]
    +Make.size_ge_one [in hydras.rpo.term]
    +Make.size_unfold [in hydras.rpo.term]
    +Make.subset_cardinal_not_eq_not_eq_set [in hydras.rpo.list_set]
    +Make.subset_subset_union [in hydras.rpo.list_set]
    +Make.subset_compat [in hydras.rpo.list_set]
    +Make.subset_compat_2 [in hydras.rpo.list_set]
    +Make.subset_compat_1 [in hydras.rpo.list_set]
    +Make.subset_filter [in hydras.rpo.list_set]
    +Make.subset_inter_2 [in hydras.rpo.list_set]
    +Make.subset_inter_1 [in hydras.rpo.list_set]
    +Make.subset_union_2 [in hydras.rpo.list_set]
    +Make.subset_union_1 [in hydras.rpo.list_set]
    +Make.subset_dec [in hydras.rpo.list_set]
    +Make.subst_comp_is_subst_comp [in hydras.rpo.term]
    +Make.subst_comp_is_subst_comp_aux2 [in hydras.rpo.term]
    +Make.subst_comp_is_subst_comp_aux1 [in hydras.rpo.term]
    +Make.subterm_at_pos_apply_subst_apply_subst_subterm_at_pos [in hydras.rpo.term]
    +Make.two_cases [in hydras.rpo.dickson]
    +Make.two_cases_rpo [in hydras.rpo.rpo]
    +Make.union_compat_eq_set [in hydras.rpo.list_set]
    +Make.union_compat_subset_2 [in hydras.rpo.list_set]
    +Make.union_compat_subset_1 [in hydras.rpo.list_set]
    +Make.union_assoc [in hydras.rpo.list_set]
    +Make.union_comm [in hydras.rpo.list_set]
    +Make.union_empty_2 [in hydras.rpo.list_set]
    +Make.union_empty_1 [in hydras.rpo.list_set]
    +Make.union_12 [in hydras.rpo.list_set]
    +Make.union_12_aux [in hydras.rpo.list_set]
    +Make.union_2 [in hydras.rpo.list_set]
    +Make.union_2_aux [in hydras.rpo.list_set]
    +Make.union_1 [in hydras.rpo.list_set]
    +Make.union_1_aux [in hydras.rpo.list_set]
    +Make.well_formed_apply_subst [in hydras.rpo.term]
    +Make.well_formed_fold [in hydras.rpo.term]
    +Make.well_formed_unfold [in hydras.rpo.term]
    +Make.wf_rpo [in hydras.rpo.rpo]
    +Make.wf_rpo_term [in hydras.rpo.rpo]
    +Make.wf_on_mul_rest [in hydras.rpo.rpo]
    +Make.wf_on_lex_rest [in hydras.rpo.rpo]
    +Make.wf_on_rest [in hydras.rpo.rpo]
    +Make.wf_size3 [in hydras.rpo.rpo]
    +Make.wf_size2 [in hydras.rpo.rpo]
    +Make.wf_size [in hydras.rpo.rpo]
    +Make.without_red_permut [in hydras.rpo.list_set]
    +Make.without_red_remove_not_common [in hydras.rpo.list_set]
    +Make.without_red_remove_not_common_aux [in hydras.rpo.list_set]
    +Make.without_red_add_without_red [in hydras.rpo.list_set]
    +Make.without_red_singleton [in hydras.rpo.list_set]
    +Make.without_red_nil [in hydras.rpo.list_set]
    +Make.without_red_add [in hydras.rpo.list_set]
    +Make.without_red_remove [in hydras.rpo.list_set]
    +Make.without_red_remove_red [in hydras.rpo.list_set]
    +Make.without_red_filter_aux [in hydras.rpo.list_set]
    +mapListLemma [in hydras.Ackermann.codeSubFormula]
    +map_app [in hydras.rpo.more_list]
    +map_map [in hydras.rpo.more_list]
    +maxApp [in hydras.Ackermann.codeSubFormula]
    +maxLemma [in hydras.Ackermann.codeSubFormula]
    +maxLemma2 [in hydras.Ackermann.codeSubFormula]
    +maxLemma3 [in hydras.Ackermann.codeSubFormula]
    +maxSubTerm [in hydras.Ackermann.codeSubFormula]
    +maxSubTerms [in hydras.Ackermann.codeSubFormula]
    +maxVarFreeVar [in hydras.Ackermann.codeSubFormula]
    +max_nf [in hydras.Epsilon0.T1]
    +max_le_regL [in hydras.Prelude.More_Arith]
    +max_le_regR [in hydras.Prelude.More_Arith]
    +max_le_plus [in hydras.Prelude.More_Arith]
    +max_refl [in hydras.Prelude.Comparable]
    +max_ge_b [in hydras.Prelude.Comparable]
    +max_ge_a [in hydras.Prelude.Comparable]
    +max_comm [in hydras.Prelude.Comparable]
    +max_dec [in hydras.Prelude.Comparable]
    +max_v_tl [in hydras.Prelude.MoreVectors]
    +max_v_ge [in hydras.Prelude.MoreVectors]
    +max_v_lub [in hydras.Prelude.MoreVectors]
    +max_v_2 [in hydras.Prelude.MoreVectors]
    +membersOk [in hydras.solutions_exercises.OnCodeList]
    +membersOk' [in hydras.solutions_exercises.OnCodeList]
    +members_omega [in hydras.Schutte.Schutte_basics]
    +members_eq [in hydras.Schutte.Schutte_basics]
    +members_proper [in hydras.Schutte.Ordering_Functions]
    +mem_head_mult_inv [in hydras.Hydra.O2H]
    +merge_sort_correct [in hydras.Prelude.Merge_Sort]
    +merge_permutation [in hydras.Prelude.Merge_Sort]
    +merge_LocallySorted [in hydras.Prelude.Merge_Sort]
    +merge_Forall [in hydras.Prelude.Merge_Sort]
    +merge_equation [in hydras.Prelude.Merge_Sort]
    +merge_rect [in hydras.Prelude.Merge_Sort]
    +minimize1 [in Goedel.PRrepresentable]
    +minoration [in hydras.Hydra.BigBattle]
    +minoration_3 [in hydras.Hydra.BigBattle]
    +minoration_2 [in hydras.Hydra.BigBattle]
    +minoration_1 [in hydras.Hydra.BigBattle]
    +minoration_0 [in hydras.Hydra.BigBattle]
    +minPR_correct [in hydras.solutions_exercises.MinPR2]
    +minus_le [in hydras.Epsilon0.T1]
    +minus_a_a [in hydras.Epsilon0.T1]
    +minus_lt [in hydras.Epsilon0.T1]
    +minus_semi_assoc [in hydras.Prelude.More_Arith]
    +minus_exists [in hydras.Schutte.Addition]
    +min_refl [in hydras.Prelude.Comparable]
    +min_le_b [in hydras.Prelude.Comparable]
    +min_le_ad [in hydras.Prelude.Comparable]
    +min_dec [in hydras.Prelude.Comparable]
    +min_comm [in hydras.Prelude.Comparable]
    +min_max_iff [in hydras.Prelude.Comparable]
    +min_alt_correct [in hydras.solutions_exercises.MinPR]
    +mlargeS_iff [in hydras.Epsilon0.Large_Sets]
    +mlarge_omega [in hydras.Epsilon0.Large_Sets]
    +mlarge_FS [in hydras.Epsilon0.Large_Sets]
    +mlarge_iff [in hydras.Epsilon0.Large_Sets]
    +mlarge_unshift [in hydras.Epsilon0.Large_Sets]
    +mlarge_unicity [in hydras.Epsilon0.Large_Sets]
    +mlarge_unicity [in gaia_hydras.GLarge_Sets]
    +ml_1 [in hydras.Gamma0.Gamma0]
    +ml_psi [in hydras.Gamma0.Gamma0]
    +ModelConsistent [in hydras.Ackermann.model]
    +mono_weak [in hydras.Prelude.Iterates]
    +mono_injective [in hydras.Prelude.Iterates]
    +mono_le [in hydras.Prelude.Iterates]
    +mono_F_Zero [in hydras.Epsilon0.F_alpha]
    +mono_seq_weak2 [in hydras.Schutte.AP]
    +mono_seq2 [in hydras.Schutte.AP]
    +mono_seq [in hydras.Schutte.AP]
    +MPSys [in hydras.MoreAck.FolExamples]
    +ms_eqn3 [in hydras.Hydra.Hydra_Termination]
    +ms_nf [in hydras.Hydra.Hydra_Termination]
    +ms_eqn2 [in hydras.Hydra.Hydra_Termination]
    +multE4 [in gaia_hydras.T1Bridge]
    +multE5 [in gaia_hydras.T1Bridge]
    +multLemma1 [in hydras.Ackermann.wellFormed]
    +multLemma2 [in hydras.Ackermann.wellFormed]
    +mult_plus_distr_l [in hydras.Epsilon0.T1]
    +mult_mono [in hydras.Epsilon0.T1]
    +mult_nf [in hydras.Epsilon0.T1]
    +mult_Sn_add [in hydras.Epsilon0.T1]
    +mult_0_a [in hydras.Epsilon0.T1]
    +mult_nf_fin [in hydras.Epsilon0.T1]
    +mult_a_1 [in hydras.Epsilon0.T1]
    +mult_1_a [in hydras.Epsilon0.T1]
    +mult_a_0 [in hydras.Epsilon0.T1]
    +mult_compat [in hydras.Epsilon0.T1]
    +mult_fin_omega [in hydras.Epsilon0.T1]
    +mult_Sn_dist [in hydras.Schutte.Correctness_E0]
    +mult_lt_lt [in hydras.Prelude.More_Arith]
    +mult_ref [in gaia_hydras.T1Bridge]
    +mult_ref0 [in gaia_hydras.T1Bridge]
    +mult_mod_associative [in additions.Monoid_instances]
    +mult_plus_distr_l [in hydras.Epsilon0.E0]
    +mult_fin_rw [in hydras.Epsilon0.E0]
    +mult_Sn_mono3 [in hydras.Schutte.Addition]
    +mult_Sn_mono2 [in hydras.Schutte.Addition]
    +mult_fin_r_mono [in hydras.Schutte.Addition]
    +mult_fin_r_one [in hydras.Schutte.Addition]
    +mult_correct [in hydras.MoreAck.PrimRecExamples]
    +mult_eqn1 [in hydras.MoreAck.PrimRecExamples]
    +mu_beta_h [in hydras.Hydra.Epsilon0_Needed_Generic]
    +mu_positive [in hydras.Hydra.Epsilon0_Needed_Generic]
    +mVariant [in gaia_hydras.GHydra]
    +my_pow_m2lmul [in additions.fib]
    +my_pow_m3lmul [in additions.fib]
    +my_powP [in additions.fib]
    +m_lt [in hydras.Hydra.Epsilon0_Needed_Free]
    +m_variant_LT [in hydras.Hydra.Epsilon0_Needed_Free]
    +m_ge [in hydras.Hydra.Epsilon0_Needed_Free]
    +m_dominates_Ack [in hydras.Hydra.Hydra_Theorems]
    +m_dominates_Ack_from_3 [in hydras.Hydra.Hydra_Theorems]
    +m_ge_Ack [in hydras.Hydra.Hydra_Theorems]
    +m_ge_F_omega [in hydras.Hydra.Hydra_Theorems]
    +m_eqn [in hydras.Hydra.Hydra_Theorems]
    +m_ms [in hydras.Hydra.Hydra_Termination]
    +m_nf [in hydras.Hydra.Hydra_Termination]
    +m_lt [in hydras.Hydra.Epsilon0_Needed_Std]
    +m_decrease [in hydras.Hydra.Epsilon0_Needed_Std]
    +m_ge [in hydras.Hydra.Epsilon0_Needed_Std]
    +m_neq_0 [in additions.Monoid_instances]
    +m_nf [in gaia_hydras.GHydra]
    +m_ref [in gaia_hydras.GHydra]
    +m_strict_mono [in hydras.Hydra.Hydra_Lemmas]
    +m_ge_generic [in hydras.Hydra.Epsilon0_Needed_Generic]
    +m_ge_0 [in hydras.Hydra.Epsilon0_Needed_Generic]
    +m_ge [in hydras.Hydra.Omega2_Small]
    +m_lt [in hydras.Hydra.Omega2_Small]
    +m_big_h_not_null [in hydras.Hydra.Omega2_Small]
    +m_def [in hydras.Epsilon0.Paths]
    +m_ge [in hydras.Hydra.Omega_Small]
    +m_lt [in hydras.Hydra.Omega_Small]
    +m2lfibP [in additions.fib]
    +m2lmulP [in additions.fib]
    +M2_eq_intros [in additions.Monoid_instances]
    +M2.Id2_neutral [in additions.Naive]
    +M2.M2_mult_assoc [in additions.Naive]
    +M2.power_of_plus [in additions.Naive]
    +m3lfibP [in additions.fib]
    +m3lmulP [in additions.fib]
    +

    N

    +nAnd [in hydras.Ackermann.LNN]
    +nAnd [in hydras.Ackermann.LNT]
    +nAnd [in hydras.Ackermann.folLogic]
    +natLE [in hydras.Ackermann.NNtheory]
    +natLT [in hydras.Ackermann.NNtheory]
    +natNE [in hydras.Ackermann.NNtheory]
    +natPlus [in hydras.Ackermann.NNtheory]
    +natTimes [in hydras.Ackermann.NNtheory]
    +nat_double_or_s_double [in hydras.Prelude.More_Arith]
    +nat_power_ok [in additions.Compatibility]
    +nat_eqb_false [in hydras.Ackermann.primRec]
    +nat_2_term_mono [in hydras.Gamma0.Gamma0]
    +nat_lt_psi [in hydras.Gamma0.Gamma0]
    +nat_lt_cons [in hydras.Gamma0.Gamma0]
    +nb_occ_app [in hydras.rpo.more_list]
    +nested_Ack_bound [in hydras.MoreAck.Ack]
    +neutral_r [in additions.Fib2]
    +neutral_l [in additions.Fib2]
    +newVar1 [in hydras.Ackermann.folProp]
    +newVar2 [in hydras.Ackermann.folProp]
    +nExist [in hydras.Ackermann.LNN]
    +nExist [in hydras.Ackermann.LNT]
    +nExist [in hydras.Ackermann.folLogic]
    +next_fib [in additions.Fib2]
    +nForall [in hydras.Ackermann.LNN]
    +nForall [in hydras.Ackermann.LNT]
    +nForall [in hydras.Ackermann.folLogic]
    +nf_LT_right [in hydras.Epsilon0.T1]
    +nf_exp_F [in hydras.Epsilon0.T1]
    +nf_LT_iff [in hydras.Epsilon0.T1]
    +nf_omega_omega [in hydras.Epsilon0.T1]
    +nf_phi0 [in hydras.Epsilon0.T1]
    +nf_omega [in hydras.Epsilon0.T1]
    +nf_Wf [in hydras.Epsilon0.T1]
    +nf_tail_lt [in hydras.Epsilon0.T1]
    +nf_cons_LT [in hydras.Epsilon0.T1]
    +nf_omega_tower [in hydras.Epsilon0.T1]
    +nf_coeff_irrelevance [in hydras.Epsilon0.T1]
    +nf_intro' [in hydras.Epsilon0.T1]
    +nf_intro [in hydras.Epsilon0.T1]
    +nf_tail_lt_nf [in hydras.Epsilon0.T1]
    +nf_of_finite [in hydras.Epsilon0.T1]
    +nf_fin [in hydras.Epsilon0.T1]
    +nf_FS [in hydras.Epsilon0.T1]
    +nf_b_cons_eq [in hydras.Epsilon0.T1]
    +nf_cons_iff [in hydras.Epsilon0.T1]
    +nf_cons_inv [in hydras.Epsilon0.T1]
    +nf_inv3 [in hydras.Epsilon0.T1]
    +nf_inv2 [in hydras.Epsilon0.T1]
    +nf_inv1 [in hydras.Epsilon0.T1]
    +nf_epsilon [in hydras.Gamma0.T2]
    +nf_epsilon0 [in hydras.Gamma0.T2]
    +nf_omega [in hydras.Gamma0.T2]
    +nf_fin [in hydras.Gamma0.T2]
    +nf_bounded [in hydras.Schutte.CNF]
    +NF_Acc [in hydras.solutions_exercises.MultisetWf]
    +NF_inv2 [in hydras.solutions_exercises.MultisetWf]
    +NF_inv1 [in hydras.solutions_exercises.MultisetWf]
    +nf_ref [in gaia_hydras.T1Bridge]
    +nf_canon [in hydras.Epsilon0.Canon]
    +nf_proof_unicity [in hydras.Epsilon0.E0]
    +nf_m [in hydras.Hydra.Epsilon0_Needed_Generic]
    +nf_intro [in hydras.Gamma0.Gamma0]
    +nf_coeff_irrelevance [in hydras.Gamma0.Gamma0]
    +nf_Wf [in hydras.Gamma0.Gamma0]
    +nf_c2 [in hydras.Gamma0.Gamma0]
    +nf_c1 [in hydras.Gamma0.Gamma0]
    +nf_b2 [in hydras.Gamma0.Gamma0]
    +nf_b1 [in hydras.Gamma0.Gamma0]
    +nf_a2 [in hydras.Gamma0.Gamma0]
    +nf_a1 [in hydras.Gamma0.Gamma0]
    +nf_subterm [in hydras.Gamma0.Gamma0]
    +nf_fin_inv [in hydras.Gamma0.Gamma0]
    +nf_inv_tail [in hydras.Gamma0.Gamma0]
    +nf_c [in hydras.Gamma0.Gamma0]
    +nf_b [in hydras.Gamma0.Gamma0]
    +nf_a [in hydras.Gamma0.Gamma0]
    +nilTerms [in hydras.Ackermann.fol]
    +nImp [in hydras.Ackermann.LNN]
    +nImp [in hydras.Ackermann.LNT]
    +nImp [in hydras.Ackermann.folLogic]
    +nnE [in hydras.Ackermann.LNN]
    +nnE [in hydras.Ackermann.LNT]
    +nnE [in hydras.Ackermann.folLogic]
    +nnI [in hydras.Ackermann.LNN]
    +nnI [in hydras.Ackermann.LNT]
    +nnI [in hydras.Ackermann.folLogic]
    +nnPlusNotNeeded [in hydras.Ackermann.NNtheory]
    +nn1 [in hydras.Ackermann.NN]
    +nn2 [in hydras.Ackermann.NN]
    +NN2PA [in hydras.Ackermann.NN2PA]
    +nn3 [in hydras.Ackermann.NN]
    +nn4 [in hydras.Ackermann.NN]
    +nn5 [in hydras.Ackermann.NN]
    +nn6 [in hydras.Ackermann.NN]
    +nn7 [in hydras.Ackermann.NN]
    +NN72PA [in hydras.Ackermann.PAtheory]
    +nn8 [in hydras.Ackermann.NN]
    +NN82PA [in hydras.Ackermann.PAtheory]
    +nn9 [in hydras.Ackermann.NN]
    +NN92PA [in hydras.Ackermann.PAtheory]
    +noMiddle [in hydras.Ackermann.LNN]
    +noMiddle [in hydras.Ackermann.LNT]
    +noMiddle [in hydras.Ackermann.folLogic]
    +none_nb_occ_O [in hydras.rpo.more_list]
    +Non_denum [in hydras.Schutte.Schutte_basics]
    +nOr [in hydras.Ackermann.LNN]
    +nOr [in hydras.Ackermann.LNT]
    +nOr [in hydras.Ackermann.folLogic]
    +normal_phi0 [in hydras.Schutte.AP]
    +normal_plus_alpha [in hydras.Schutte.Addition]
    +notBoundedForall [in Goedel.PRrepresentable]
    +notCon2wNotCon [in hydras.Ackermann.wConsistent]
    +notInFreeVarSys [in hydras.Ackermann.folProp]
    +notRelPR [in hydras.Ackermann.primRec]
    +not_LT_zero [in hydras.Epsilon0.T1]
    +not_zero_lt [in hydras.Epsilon0.T1]
    +not_zero_gt_0 [in hydras.Epsilon0.T1]
    +not_lt_zero [in hydras.Epsilon0.T1]
    +not_double_is_s_double [in hydras.Prelude.More_Arith]
    +not_le_gt [in hydras.Prelude.DecPreOrder]
    +not_le_ge [in hydras.Prelude.DecPreOrder]
    +not_AP_inv2 [in hydras.Schutte.CNF]
    +not_AP_inv_0 [in hydras.Schutte.CNF]
    +not_acc [in hydras.solutions_exercises.MultisetWf]
    +not_countable_unbounded [in hydras.Schutte.Schutte_basics]
    +Not_Unbounded_countable [in hydras.Schutte.Schutte_basics]
    +Not_Unbounded_bounded [in hydras.Schutte.Schutte_basics]
    +not_is_succ_limit [in hydras.Schutte.Schutte_basics]
    +not_is_limit_succ [in hydras.Schutte.Schutte_basics]
    +not_is_limit_zero [in hydras.Schutte.Schutte_basics]
    +not_is_succ_zero [in hydras.Schutte.Schutte_basics]
    +not_lt_zero [in hydras.Schutte.Schutte_basics]
    +not_gt_le [in hydras.Schutte.Schutte_basics]
    +not_lt_zero [in hydras.Gamma0.Gamma0]
    +not_decreasing [in gaia_hydras.nfwfgaia]
    +not_decreasing [in hydras.solutions_exercises.T1_ltNotWf]
    +not_decreasing_aux [in hydras.solutions_exercises.T1_ltNotWf]
    +not_acc [in hydras.solutions_exercises.T1_ltNotWf]
    +Npos_power_compat [in additions.Compatibility]
    +Npos_gt_0 [in additions.More_on_positive]
    +Npos_diff_zero [in additions.More_on_positive]
    +nth_error_ok_in [in hydras.rpo.more_list]
    +nth_error_map [in hydras.rpo.more_list]
    +N_size_gt [in additions.Compatibility]
    +N_pow_compat [in additions.Compatibility]
    +N_pow_power [in additions.Compatibility]
    +N_bpow_commute [in additions.Pow_variant]
    +N_bpow_ok_R [in additions.Pow_variant]
    +N_bpow_ok [in additions.Pow_variant]
    +N_bpow_commute [in additions.Pow]
    +N_bpow_ok_R [in additions.Pow]
    +N_bpow_ok [in additions.Pow]
    +N_le_mul_pos [in additions.More_on_positive]
    +N_pos_div_eucl_q0 [in additions.More_on_positive]
    +N_pos_div_eucl_rest [in additions.More_on_positive]
    +N_pos_div_eucl_divides [in additions.More_on_positive]
    +N_pos_N2pos [in additions.More_on_positive]
    +N_le_1_pos [in additions.More_on_positive]
    +N_0_le_n [in additions.More_on_positive]
    +N_simpl [in hydras.Epsilon0.Hprime]
    +N2pos_lt_switch2 [in additions.More_on_positive]
    +N2pos_lt_switch [in additions.More_on_positive]
    +N2pos_pos [in additions.More_on_positive]
    +

    O

    +of_image [in hydras.Schutte.Ordering_Functions]
    +of_beta' [in hydras.Schutte.Ordering_Functions]
    +of_u [in hydras.Schutte.Addition]
    +of_g [in hydras.Schutte.Addition]
    +OK87 [in additions.Euclidean_Chains]
    +omeganf [in gaia_hydras.T1Bridge]
    +omega_limit [in hydras.Epsilon0.T1]
    +omega_term_def [in hydras.Epsilon0.T1]
    +omega_term_plus_rw [in hydras.Epsilon0.T1]
    +omega_ap [in hydras.OrdinalNotations.ON_Omega2]
    +Omega_limit_limitb [in hydras.OrdinalNotations.ON_Omega2]
    +omega_is_limit [in hydras.OrdinalNotations.ON_Omega2]
    +omega_mult_mlarge_0 [in hydras.Epsilon0.Large_Sets]
    +omega_tower_mono [in hydras.Schutte.AP]
    +omega_eqn [in hydras.Schutte.AP]
    +omega_second_AP [in hydras.Schutte.AP]
    +Omega_as_lub [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +omega_not_succ [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +omega_is_limit [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +omega_ref [in gaia_hydras.T1Bridge]
    +Omega_limit_Limit [in hydras.Prelude.MoreOrders]
    +Omega_limit_not_Succ [in hydras.Prelude.MoreOrders]
    +omega_limit_least_gt [in hydras.Schutte.Schutte_basics]
    +omega_limit_least [in hydras.Schutte.Schutte_basics]
    +Omega_term_plus [in hydras.Epsilon0.E0]
    +omega_lt_wf [in gaia_hydras.onType]
    +omega_lt_epsilon [in hydras.Gamma0.Gamma0]
    +omega_lt_epsilon0 [in hydras.Gamma0.Gamma0]
    +ONDef.Exports.trichoP [in gaia_hydras.onType]
    +ONDef.Exports.wf [in gaia_hydras.onType]
    +one_ref [in gaia_hydras.T1Bridge]
    +one_mod_neutral_r [in additions.Monoid_instances]
    +one_mod_neutral_l [in additions.Monoid_instances]
    +one_plus_infinite [in hydras.Schutte.Addition]
    +one_plus_omega [in hydras.Schutte.Addition]
    +OO.lt_wf [in hydras.OrdinalNotations.OmegaOmega]
    +OO.lt_embed [in hydras.OrdinalNotations.OmegaOmega]
    +OO.nf_proof_unicity [in hydras.OrdinalNotations.OmegaOmega]
    +OO.OO_eq_intro [in hydras.OrdinalNotations.OmegaOmega]
    +OpaqueWf.lt_wf [in hydras.Prelude.Fuel]
    +openClosed [in hydras.Ackermann.folLogic]
    +oplusA [in gaia_hydras.GHessenberg]
    +oplusa0 [in gaia_hydras.GHessenberg]
    +oplusC [in gaia_hydras.GHessenberg]
    +oplusE [in gaia_hydras.GHessenberg]
    +oplus_lt_phi0 [in hydras.Epsilon0.Hessenberg]
    +oplus_of_phi0 [in hydras.Epsilon0.Hessenberg]
    +oplus_of_phi0_0 [in hydras.Epsilon0.Hessenberg]
    +oplus_strict_mono_bi [in hydras.Epsilon0.Hessenberg]
    +oplus_strict_mono_LT_r [in hydras.Epsilon0.Hessenberg]
    +oplus_strict_mono_LT_l [in hydras.Epsilon0.Hessenberg]
    +oplus_strict_mono_l [in hydras.Epsilon0.Hessenberg]
    +oplus_strict_mono_r [in hydras.Epsilon0.Hessenberg]
    +oplus_strict_mono_0 [in hydras.Epsilon0.Hessenberg]
    +oplus_le2 [in hydras.Epsilon0.Hessenberg]
    +oplus_le1 [in hydras.Epsilon0.Hessenberg]
    +oplus_lt2 [in hydras.Epsilon0.Hessenberg]
    +oplus_lt1 [in hydras.Epsilon0.Hessenberg]
    +oplus_lt_0 [in hydras.Epsilon0.Hessenberg]
    +oplus_assoc [in hydras.Epsilon0.Hessenberg]
    +oplus_assoc_0 [in hydras.Epsilon0.Hessenberg]
    +oplus_lt_rw2 [in hydras.Epsilon0.Hessenberg]
    +oplus_comm [in hydras.Epsilon0.Hessenberg]
    +oplus_comm_0 [in hydras.Epsilon0.Hessenberg]
    +oplus_nf [in hydras.Epsilon0.Hessenberg]
    +oplus_nf_0 [in hydras.Epsilon0.Hessenberg]
    +oplus_bounded_phi0 [in hydras.Epsilon0.Hessenberg]
    +oplus_cons_cons [in hydras.Epsilon0.Hessenberg]
    +oplus_eqn [in hydras.Epsilon0.Hessenberg]
    +oplus_compare_Gt [in hydras.Epsilon0.Hessenberg]
    +oplus_gt_rw [in hydras.Epsilon0.Hessenberg]
    +oplus_eq_rw [in hydras.Epsilon0.Hessenberg]
    +oplus_lt_rw [in hydras.Epsilon0.Hessenberg]
    +oplus_compare_Lt [in hydras.Epsilon0.Hessenberg]
    +oplus_0_l [in hydras.Epsilon0.Hessenberg]
    +oplus_0_r [in hydras.Epsilon0.Hessenberg]
    +oPlus_rw [in hydras.Epsilon0.E0]
    +oplus_lt_phi0 [in gaia_hydras.GHessenberg]
    +oplus_strict_mono_r [in gaia_hydras.GHessenberg]
    +oplus_strict_mono_l [in gaia_hydras.GHessenberg]
    +oplus_lt2 [in gaia_hydras.GHessenberg]
    +oplus_lt1 [in gaia_hydras.GHessenberg]
    +oplus_nf [in gaia_hydras.GHessenberg]
    +oplus0b [in gaia_hydras.GHessenberg]
    +optimal_upper_bound [in additions.Addition_Chains]
    +ordering_function_least_least [in hydras.Schutte.Ordering_Functions]
    +ordering_unbounded_unbounded [in hydras.Schutte.Ordering_Functions]
    +ordering_function_ex [in hydras.Schutte.Ordering_Functions]
    +ordering_segment_ex_unique [in hydras.Schutte.Ordering_Functions]
    +ordering_segments_of_B [in hydras.Schutte.Ordering_Functions]
    +ordering_function_seg_unicity [in hydras.Schutte.Ordering_Functions]
    +ordering_function_unicity [in hydras.Schutte.Ordering_Functions]
    +ordering_le [in hydras.Schutte.Ordering_Functions]
    +ordering_function_seg [in hydras.Schutte.Ordering_Functions]
    +ordering_function_mono_weakR [in hydras.Schutte.Ordering_Functions]
    +Ordering_bijection [in hydras.Schutte.Ordering_Functions]
    +ordering_function_monoR [in hydras.Schutte.Ordering_Functions]
    +ordering_function_mono_weak [in hydras.Schutte.Ordering_Functions]
    +ordering_function_mono [in hydras.Schutte.Ordering_Functions]
    +ordering_function_In [in hydras.Schutte.Ordering_Functions]
    +ordinal_ok [in hydras.Schutte.Schutte_basics]
    +ordinal_segment [in hydras.Schutte.Ordering_Functions]
    +ord_eq [in hydras.Schutte.Ordering_Functions]
    +ord_ok [in hydras.Schutte.Ordering_Functions]
    +orE [in hydras.Ackermann.LNN]
    +orE [in hydras.Ackermann.LNT]
    +orE [in hydras.Ackermann.folLogic]
    +orI1 [in hydras.Ackermann.LNN]
    +orI1 [in hydras.Ackermann.LNT]
    +orI1 [in hydras.Ackermann.folLogic]
    +orI2 [in hydras.Ackermann.LNN]
    +orI2 [in hydras.Ackermann.LNT]
    +orI2 [in hydras.Ackermann.folLogic]
    +orRelPR [in hydras.Ackermann.primRec]
    +orSym [in hydras.Ackermann.LNN]
    +orSym [in hydras.Ackermann.LNT]
    +orSym [in hydras.Ackermann.folLogic]
    +orSys [in hydras.Ackermann.LNN]
    +orSys [in hydras.Ackermann.LNT]
    +orSys [in hydras.Ackermann.folLogic]
    +o_finite_mult_mono [in hydras.Epsilon0.Hessenberg]
    +o_finite_mult_lt_phi0_1 [in hydras.Epsilon0.Hessenberg]
    +o_finite_mult_rw [in hydras.Epsilon0.Hessenberg]
    +o_finite_mult_nf [in hydras.Epsilon0.Hessenberg]
    +o_finite_mult_S_rw [in hydras.Hydra.Hydra_Termination]
    +o2iota [in hydras.Hydra.Epsilon0_Needed_Std]
    +o2iota_1 [in hydras.Hydra.Epsilon0_Needed_Std]
    +o2iota_0 [in hydras.Hydra.Epsilon0_Needed_Std]
    +

    P

    +PAboundedLT [in hydras.Ackermann.NN2PA]
    +PAconsistent [in hydras.Ackermann.PAconsistent]
    +PAdec [in hydras.Ackermann.PA]
    +PAIncomplete [in Goedel.rosserPA]
    +paPlusSym [in hydras.Ackermann.PAtheory]
    +param_correctness_for_free [in additions.Addition_Chains]
    +param_correctness [in additions.Addition_Chains]
    +param_correctness_nat [in additions.Addition_Chains]
    +param_correctness_aux [in additions.Addition_Chains]
    +path_to_round_plus [in hydras.Hydra.O2H]
    +path_toS_round_plus [in hydras.Hydra.O2H]
    +path_toS_trace [in hydras.Hydra.O2H]
    +path_to_LT [in gaia_hydras.GPaths]
    +path_to_iff1 [in gaia_hydras.GPaths]
    +path_to_inv1 [in gaia_hydras.GPaths]
    +path_to_omega_mult [in hydras.Epsilon0.Large_Sets]
    +path_to_standard_equiv [in hydras.Epsilon0.Paths]
    +path_toS_standardS_equiv [in hydras.Epsilon0.Paths]
    +path_to_S_standard_pathS [in hydras.Epsilon0.Paths]
    +path_to_S_iota_from [in hydras.Epsilon0.Paths]
    +path_to_LT [in hydras.Epsilon0.Paths]
    +path_toS_LT [in hydras.Epsilon0.Paths]
    +path_to_gnaw [in hydras.Epsilon0.Paths]
    +path_to_mult [in hydras.Epsilon0.Paths]
    +path_toS_mult [in hydras.Epsilon0.Paths]
    +path_to_tail [in hydras.Epsilon0.Paths]
    +path_toS_tail [in hydras.Epsilon0.Paths]
    +path_to_not_In_zero [in hydras.Epsilon0.Paths]
    +path_to_zero [in hydras.Epsilon0.Paths]
    +path_toS_zero [in hydras.Epsilon0.Paths]
    +path_toS_zero_inv [in hydras.Epsilon0.Paths]
    +path_toS_zero_one [in hydras.Epsilon0.Paths]
    +path_toS_zero_but_last [in hydras.Epsilon0.Paths]
    +path_to_appR [in hydras.Epsilon0.Paths]
    +path_toS_appR [in hydras.Epsilon0.Paths]
    +path_to_decompose [in hydras.Epsilon0.Paths]
    +path_toS_decompose [in hydras.Epsilon0.Paths]
    +path_to_app [in hydras.Epsilon0.Paths]
    +path_toS_app [in hydras.Epsilon0.Paths]
    +path_toS_gnawS [in hydras.Epsilon0.Paths]
    +path_acc_from [in hydras.Epsilon0.Paths]
    +path_toS_nf [in hydras.Epsilon0.Paths]
    +path_to_path_toS_iff [in hydras.Epsilon0.Paths]
    +path_to_path_toS [in hydras.Epsilon0.Paths]
    +path_toS_path_to [in hydras.Epsilon0.Paths]
    +path_to_interval_inv_le [in hydras.Epsilon0.Paths]
    +path_to_not_nil [in hydras.Epsilon0.Paths]
    +paZeroOrSucc [in hydras.Ackermann.PAtheory]
    +PA_Succ [in hydras.Epsilon0.Hprime]
    +PA_Zero [in hydras.Epsilon0.Hprime]
    +pa1 [in hydras.Ackermann.PA]
    +pa2 [in hydras.Ackermann.PA]
    +pa3 [in hydras.Ackermann.PA]
    +pa4 [in hydras.Ackermann.PA]
    +pa5 [in hydras.Ackermann.PA]
    +pa6 [in hydras.Ackermann.PA]
    +PC_Zero [in hydras.Epsilon0.Hprime]
    +PD_Zero [in hydras.Epsilon0.Hprime]
    +PF87 [in additions.Euclidean_Chains]
    +phi_mono_RR [in hydras.Gamma0.Gamma0]
    +phi_psi [in hydras.Gamma0.Gamma0]
    +phi_to_psi_6 [in hydras.Gamma0.Gamma0]
    +phi_to_psi_5 [in hydras.Gamma0.Gamma0]
    +phi_to_psi_4 [in hydras.Gamma0.Gamma0]
    +phi_to_psi_3 [in hydras.Gamma0.Gamma0]
    +phi_to_psi_2 [in hydras.Gamma0.Gamma0]
    +phi_to_psi_1 [in hydras.Gamma0.Gamma0]
    +phi_inj_r [in hydras.Gamma0.Gamma0]
    +phi_mono_weak_r [in hydras.Gamma0.Gamma0]
    +phi_mono_r [in hydras.Gamma0.Gamma0]
    +phi_of_psi_plus_fin [in hydras.Gamma0.Gamma0]
    +phi_alpha_zero_gt_alpha [in hydras.Gamma0.Gamma0]
    +phi_principalR [in hydras.Gamma0.Gamma0]
    +phi_spec1 [in hydras.Gamma0.Gamma0]
    +phi_le_ge [in hydras.Gamma0.Gamma0]
    +phi_le [in hydras.Gamma0.Gamma0]
    +phi_fix [in hydras.Gamma0.Gamma0]
    +phi_of_any_cons [in hydras.Gamma0.Gamma0]
    +phi_nf [in hydras.Gamma0.Gamma0]
    +phi_cases [in hydras.Gamma0.Gamma0]
    +phi_cases' [in hydras.Gamma0.Gamma0]
    +phi_cases_aux [in hydras.Gamma0.Gamma0]
    +phi_of_psi_succ [in hydras.Gamma0.Gamma0]
    +phi_alpha_zero [in hydras.Gamma0.Gamma0]
    +phi_principal [in hydras.Gamma0.Gamma0]
    +phi_to_psi [in hydras.Gamma0.Gamma0]
    +phi_of_psi [in hydras.Gamma0.Gamma0]
    +phi0_eq [in hydras.Epsilon0.T1]
    +phi0_eq_bad [in hydras.Epsilon0.T1]
    +phi0_plus_mult [in hydras.Epsilon0.T1]
    +phi0_mono [in hydras.Epsilon0.T1]
    +phi0_mono_strict_LT [in hydras.Epsilon0.T1]
    +phi0_mono_strict [in hydras.Epsilon0.T1]
    +phi0_ltR [in hydras.Epsilon0.T1]
    +phi0_lt [in hydras.Epsilon0.T1]
    +phi0_mult_plus_lt_phi0R [in hydras.Schutte.Correctness_E0]
    +phi0_mult_plus_lt_phi0 [in hydras.Schutte.Correctness_E0]
    +phi0_mult_lt_phi0 [in hydras.Schutte.Correctness_E0]
    +phi0_well_named [in hydras.Schutte.Critical]
    +phi0_lt_epsilon0_R [in hydras.Schutte.AP]
    +phi0_lt_epsilon0 [in hydras.Schutte.AP]
    +phi0_of_limit [in hydras.Schutte.AP]
    +phi0_sup [in hydras.Schutte.AP]
    +phi0_alpha_phi0_beta [in hydras.Schutte.AP]
    +phi0_positive [in hydras.Schutte.AP]
    +phi0_inj [in hydras.Schutte.AP]
    +phi0_mono_R_weak [in hydras.Schutte.AP]
    +phi0_mono_R [in hydras.Schutte.AP]
    +phi0_mono_weak [in hydras.Schutte.AP]
    +phi0_mono [in hydras.Schutte.AP]
    +phi0_zero [in hydras.Schutte.AP]
    +phi0_elim [in hydras.Schutte.AP]
    +phi0_ordering [in hydras.Schutte.AP]
    +phi0_ref [in gaia_hydras.T1Bridge]
    +phi0_mono [in hydras.Epsilon0.E0]
    +Phi0_def [in hydras.Epsilon0.Hprime]
    +plus_cons_cons_eqn [in hydras.Epsilon0.T1]
    +plus_smono_LT_r [in hydras.Epsilon0.T1]
    +plus_compat [in hydras.Epsilon0.T1]
    +plus_left_absorb [in hydras.Epsilon0.T1]
    +plus_is_zero [in hydras.Epsilon0.T1]
    +plus_nf [in hydras.Epsilon0.T1]
    +plus_nf0 [in hydras.Epsilon0.T1]
    +plus_cons_cons_rw3 [in hydras.Epsilon0.T1]
    +plus_cons_cons_rw2 [in hydras.Epsilon0.T1]
    +plus_cons_cons_rw1 [in hydras.Epsilon0.T1]
    +plus_zero_r [in hydras.Epsilon0.T1]
    +plus_zero [in hydras.Epsilon0.T1]
    +plus_alpha_mult_phi0 [in hydras.Schutte.Correctness_E0]
    +plus_compat [in hydras.OrdinalNotations.ON_Omega2]
    +plus_2 [in hydras.Prelude.More_Arith]
    +plus_lt_phi0 [in hydras.Schutte.AP]
    +plus_ref [in gaia_hydras.T1Bridge]
    +Plus_rw [in hydras.Epsilon0.E0]
    +plus_mono_l_weak [in hydras.Gamma0.Gamma0]
    +plus_mono_r [in hydras.Gamma0.Gamma0]
    +plus_nf [in hydras.Gamma0.Gamma0]
    +plus_alpha_0 [in hydras.Gamma0.Gamma0]
    +plus_mono_bi [in hydras.Schutte.Addition]
    +plus_mono_weak_l [in hydras.Schutte.Addition]
    +plus_assoc' [in hydras.Schutte.Addition]
    +plus_assoc3 [in hydras.Schutte.Addition]
    +plus_assoc2 [in hydras.Schutte.Addition]
    +plus_assoc1 [in hydras.Schutte.Addition]
    +plus_FF [in hydras.Schutte.Addition]
    +plus_limit [in hydras.Schutte.Addition]
    +plus_reg_r [in hydras.Schutte.Addition]
    +plus_mono_r_weak [in hydras.Schutte.Addition]
    +plus_of_succ [in hydras.Schutte.Addition]
    +plus_mono_r [in hydras.Schutte.Addition]
    +plus_elim [in hydras.Schutte.Addition]
    +plus_ordering [in hydras.Schutte.Addition]
    +plus_correct [in hydras.MoreAck.PrimRecExamples]
    +positive_4step_ind [in additions.More_on_positive]
    +Pos_to_nat_diff_0 [in additions.AM]
    +Pos_pow_compat [in additions.Compatibility]
    +Pos_pow_power [in additions.Compatibility]
    +Pos_iter_ok [in additions.Compatibility]
    +Pos_iter_op_ok [in additions.Compatibility]
    +Pos_iter_op_ok_0 [in additions.Compatibility]
    +Pos_bpow_ok_R [in additions.Pow_variant]
    +Pos_bpow_ok [in additions.Pow_variant]
    +Pos_bpow_of_bpow [in additions.Pow]
    +Pos_bpow_of_plus [in additions.Pow]
    +Pos_bpow_ok_R [in additions.Pow]
    +Pos_bpow_ok [in additions.Pow]
    +pos_div_eucl_quotient_lt [in additions.More_on_positive]
    +pos_div_eucl_quotient_pos [in additions.More_on_positive]
    +pos_gt_3 [in additions.More_on_positive]
    +pos_lt_wf [in additions.More_on_positive]
    +pos_lt_mul [in additions.More_on_positive]
    +pos_le_mul [in additions.More_on_positive]
    +Pos_to_nat_neq_0 [in additions.More_on_positive]
    +Pos2Nat_morph [in additions.Compatibility]
    +Pos2Nat_le_n_pn [in additions.More_on_positive]
    +Pos2Nat_le_1_p [in additions.More_on_positive]
    +pos2N_inj_add [in additions.More_on_positive]
    +pos2N_inj_lt [in additions.More_on_positive]
    +power_of_1 [in hydras.Prelude.More_Arith]
    +power_of_mult [in additions.Pow_variant]
    +power_of_square [in additions.Pow_variant]
    +power_of_power [in additions.Pow_variant]
    +power_commute_with_x [in additions.Pow_variant]
    +power_commute [in additions.Pow_variant]
    +power_of_plus [in additions.Pow_variant]
    +power_eq3 [in additions.Pow_variant]
    +power_eq2 [in additions.Pow_variant]
    +power_eq1 [in additions.Pow_variant]
    +power_of_mult [in additions.Pow]
    +power_of_square [in additions.Pow]
    +power_of_power_comm [in additions.Pow]
    +power_of_power [in additions.Pow]
    +power_commute_with_x [in additions.Pow]
    +power_commute [in additions.Pow]
    +power_of_plus [in additions.Pow]
    +power_eq3 [in additions.Pow]
    +power_eq2 [in additions.Pow]
    +power_eq1 [in additions.Pow]
    +power_R_is_a_refinement [in additions.Addition_Chains]
    +power_R_1 [in additions.Addition_Chains]
    +power_R_Mult [in additions.Addition_Chains]
    +pow3Min [in hydras.Ackermann.codeSubFormula]
    +pow3Monotone [in hydras.Ackermann.codeSubFormula]
    +PO1 [in additions.Euclidean_Chains]
    +PO2 [in additions.Euclidean_Chains]
    +PO3 [in additions.Euclidean_Chains]
    +PO4 [in additions.Euclidean_Chains]
    +PO6 [in additions.Euclidean_Chains]
    +PO8 [in additions.Euclidean_Chains]
    +PO9 [in additions.Euclidean_Chains]
    +Predecessor_unicity [in hydras.solutions_exercises.predSuccUnicity]
    +pred_nf [in hydras.Epsilon0.T1]
    +pred_LT [in hydras.Epsilon0.T1]
    +pred_of_limitR [in hydras.Epsilon0.T1]
    +pred_of_limit [in hydras.Epsilon0.T1]
    +pred_of_succ [in hydras.Epsilon0.T1]
    +pred_of_power [in hydras.Prelude.More_Arith]
    +pred_of_succ [in hydras.Gamma0.Gamma0]
    +pred_of_limit [in hydras.Gamma0.Gamma0]
    +pred_of_cons' [in hydras.Gamma0.Gamma0]
    +pred_of_cons [in hydras.Gamma0.Gamma0]
    +preserveValue [in hydras.Ackermann.model]
    +primRecRepresentable [in Goedel.PRrepresentable]
    +primRecRepresentable1 [in Goedel.PRrepresentable]
    +primRecSigmaRepresentable [in Goedel.PRrepresentable]
    +PrimRec_2_S [in hydras.MoreAck.PrimRecExamples]
    +PrimRec_2_0 [in hydras.MoreAck.PrimRecExamples]
    +PrimRec_1_S [in hydras.MoreAck.PrimRecExamples]
    +PrimRec_1_0 [in hydras.MoreAck.PrimRecExamples]
    +PrimRec_0_S [in hydras.MoreAck.PrimRecExamples]
    +PrimRec_0_0 [in hydras.MoreAck.PrimRecExamples]
    +Progressive_Acc [in hydras.Schutte.Schutte_basics]
    +projectionListApplyParam [in hydras.Ackermann.primRec]
    +projectionListId [in hydras.Ackermann.primRec]
    +projectionListInd [in hydras.Ackermann.primRec]
    +projRepresentable [in Goedel.PRrepresentable]
    +proj_le_max [in hydras.MoreAck.AckNotPR]
    +Proper_A [in hydras.Schutte.Ordering_Functions]
    +proper_of_proper [in hydras.Schutte.Ordering_Functions]
    +proper_members [in hydras.Schutte.Ordering_Functions]
    +Proposition_2_3a [in hydras.Epsilon0.Paths]
    +prop_map12_without_repetition [in hydras.rpo.more_list]
    +prop_map_without_repetition [in hydras.rpo.more_list]
    +psi_eq [in hydras.Gamma0.T2]
    +psi_principal [in hydras.Gamma0.Gamma0]
    +psi_lt_epsilon0 [in hydras.Gamma0.Gamma0]
    +psi_lt_head [in hydras.Gamma0.Gamma0]
    +psi_le_cons [in hydras.Gamma0.Gamma0]
    +PZero [in hydras.Epsilon0.F_alpha]
    +PZero [in hydras.Epsilon0.Hprime]
    +P_3 [in hydras.solutions_exercises.F_3]
    +P_alpha [in hydras.Epsilon0.Hprime]
    +P_alpha_0 [in hydras.Epsilon0.Hprime]
    +P_well_founded_induction_type [in gaia_hydras.nfwfgaia]
    +P0 [in hydras.MoreAck.Ack]
    +

    Q

    +QA0 [in hydras.Epsilon0.F_alpha]
    +QD0 [in hydras.Epsilon0.F_alpha]
    +

    R

    +RAlim [in hydras.Epsilon0.F_alpha]
    +RAlim [in hydras.Epsilon0.Hprime]
    +RB [in hydras.Epsilon0.F_alpha]
    +RB [in hydras.Epsilon0.Hprime]
    +RBlim [in hydras.Epsilon0.F_alpha]
    +RBlim [in hydras.Epsilon0.Hprime]
    +RC [in hydras.Epsilon0.F_alpha]
    +RC [in hydras.Epsilon0.Hprime]
    +RClim [in hydras.Epsilon0.F_alpha]
    +RClim [in hydras.Epsilon0.Hprime]
    +RD [in hydras.Epsilon0.F_alpha]
    +RD [in hydras.Epsilon0.Hprime]
    +RDlim [in hydras.Epsilon0.F_alpha]
    +RDlim [in hydras.Epsilon0.Hprime]
    +RE [in hydras.Epsilon0.F_alpha]
    +RE [in hydras.Epsilon0.Hprime]
    +reachable_S [in hydras.Hydra.BigBattle]
    +rebindExist [in hydras.Ackermann.folLogic2]
    +rebindForall [in hydras.Ackermann.folLogic2]
    +reduceAddExists [in Goedel.PRrepresentable]
    +reduceAddExistsOneWay [in Goedel.PRrepresentable]
    +reduceAddForalls [in Goedel.PRrepresentable]
    +reduceAnd [in hydras.Ackermann.folReplace]
    +reduceCloseList [in hydras.Ackermann.folReplace]
    +reduceExist [in hydras.Ackermann.folReplace]
    +reduceForall [in hydras.Ackermann.folReplace]
    +reduceIff [in hydras.Ackermann.folReplace]
    +reduceIfThenElse [in hydras.Ackermann.folReplace]
    +reduceImp [in hydras.Ackermann.folReplace]
    +reduceNot [in hydras.Ackermann.folReplace]
    +reduceOr [in hydras.Ackermann.folReplace]
    +reduceSub [in hydras.Ackermann.folReplace]
    +reduceSubAll [in hydras.Ackermann.subAll]
    +reduce_lt_plus [in hydras.Epsilon0.T1]
    +reduce_assoc_list [in hydras.rpo.more_list]
    +reduce1stCompose [in hydras.Ackermann.primRec]
    +reduce2ndCompose [in hydras.Ackermann.primRec]
    +refines1_R [in gaia_hydras.T1Bridge]
    +refines2_R [in gaia_hydras.T1Bridge]
    +RElim [in hydras.Epsilon0.F_alpha]
    +RElim [in hydras.Epsilon0.Hprime]
    +remove_first_sumand [in hydras.Epsilon0.T1]
    +remove_heads_r_free [in hydras.Hydra.Hydra_Lemmas]
    +remove_heads_r [in hydras.Hydra.Hydra_Lemmas]
    +Rem0 [in hydras.Epsilon0.Paths]
    +Rem01 [in hydras.Epsilon0.Paths]
    +Rem02 [in hydras.Epsilon0.Paths]
    +Rem03 [in hydras.Epsilon0.Paths]
    +Rem04 [in hydras.Epsilon0.Paths]
    +Rem05 [in hydras.Epsilon0.Paths]
    +Rem06 [in hydras.Epsilon0.Paths]
    +Rem08 [in hydras.Epsilon0.Paths]
    +Rem09 [in hydras.Epsilon0.Paths]
    +rem1 [in hydras.Hydra.O2H]
    +Rem1 [in hydras.MoreAck.Ack]
    +Rem1 [in hydras.Epsilon0.Paths]
    +Rem10 [in hydras.Epsilon0.Paths]
    +Rem11 [in hydras.Epsilon0.Paths]
    +rem2 [in hydras.Hydra.O2H]
    +Rem2 [in hydras.MoreAck.Ack]
    +Rem2 [in hydras.Epsilon0.Paths]
    +rem3 [in hydras.Hydra.O2H]
    +Rem3 [in hydras.MoreAck.Ack]
    +Rem3 [in hydras.Hydra.Epsilon0_Needed_Std]
    +Rem4 [in hydras.Hydra.Epsilon0_Needed_Std]
    +rem6 [in hydras.Hydra.O2H]
    +rem61 [in hydras.Hydra.O2H]
    +rem62 [in hydras.Hydra.O2H]
    +replaceCompose2 [in hydras.Ackermann.primRec]
    +ReplaceFormulaTermMonotone [in hydras.Ackermann.codeSubFormula]
    +ReplaceFormulaTermSub [in hydras.Ackermann.codeSubFormula]
    +ReplaceTermsTermMonotone [in hydras.Ackermann.codeSubFormula]
    +ReplaceTermsTermSub [in hydras.Ackermann.codeSubFormula]
    +ReplaceTermTermMonotone [in hydras.Ackermann.codeSubFormula]
    +ReplaceTermTermsTermMonotone [in hydras.Ackermann.codeSubFormula]
    +ReplaceTermTermSub [in hydras.Ackermann.codeSubFormula]
    +RepresentableAlternate [in hydras.Ackermann.expressible]
    +RepresentableHalfHelp [in hydras.Ackermann.expressible]
    +RepresentableHalf1Alternate [in hydras.Ackermann.expressible]
    +RepresentableHalf2Alternate [in hydras.Ackermann.expressible]
    +Representable_ext [in hydras.Ackermann.expressible]
    +Representable2Expressible [in hydras.Ackermann.expressible]
    +restrict [in hydras.Schutte.Ordering_Functions]
    +restriction_fwd [in hydras.Prelude.Restriction]
    +Rosser'sIncompleteness [in Goedel.rosserPA]
    +Rosser'sIncompleteness [in Goedel.rosser]
    +rounds_free_equiv2 [in hydras.Hydra.Hydra_Lemmas]
    +rounds_free_equiv1 [in hydras.Hydra.Hydra_Lemmas]
    +rounds_trans [in hydras.Hydra.Hydra_Lemmas]
    +round_decr [in hydras.Hydra.Hydra_Termination]
    +round_n_inv [in hydras.Hydra.Hydra_Lemmas]
    +round_n_remove_h [in hydras.Hydra.Hydra_Lemmas]
    +round_plus_trans [in hydras.Hydra.Hydra_Lemmas]
    +round_S [in hydras.Hydra.Omega_Small]
    +round_star_intro [in hydras.Hydra.Hydra_Definitions]
    +RP [in hydras.Epsilon0.F_alpha]
    +RP [in hydras.Epsilon0.Hprime]
    +rpo_7_1 [in hydras.Gamma0.Gamma0]
    +rpo_6_4 [in hydras.Gamma0.Gamma0]
    +rpo_6_1 [in hydras.Gamma0.Gamma0]
    +rpo_5_4 [in hydras.Gamma0.Gamma0]
    +rpo_5_1 [in hydras.Gamma0.Gamma0]
    +rpo_5_3 [in hydras.Gamma0.Gamma0]
    +rpo_5_2 [in hydras.Gamma0.Gamma0]
    +rpo_4_4 [in hydras.Gamma0.Gamma0]
    +rpo_4_1 [in hydras.Gamma0.Gamma0]
    +rpo_4_3 [in hydras.Gamma0.Gamma0]
    +rpo_4_2 [in hydras.Gamma0.Gamma0]
    +rpo_3_4 [in hydras.Gamma0.Gamma0]
    +rpo_3_1 [in hydras.Gamma0.Gamma0]
    +rpo_3_3 [in hydras.Gamma0.Gamma0]
    +rpo_3_2 [in hydras.Gamma0.Gamma0]
    +rpo_2_4 [in hydras.Gamma0.Gamma0]
    +rpo_2_1 [in hydras.Gamma0.Gamma0]
    +rpo_2_3 [in hydras.Gamma0.Gamma0]
    +rpo_2_2 [in hydras.Gamma0.Gamma0]
    +rpo_trans [in hydras.Gamma0.Gamma0]
    +Rwf [in hydras.Prelude.First_toggle]
    +R_nat_elaguee_domain [in hydras.Schutte.GRelations]
    +R_nat_elaguee_fun [in hydras.Schutte.GRelations]
    +R_inv_inj [in hydras.Schutte.GRelations]
    +R_inv_surj [in hydras.Schutte.GRelations]
    +R_pred_Sn [in hydras.Gamma0.Gamma0]
    +R_inc_rpo [in hydras.Gamma0.Gamma0]
    +R0 [in hydras.MoreAck.Ack]
    +R0 [in hydras.Hydra.Battle_length]
    +R0 [in gaia_hydras.onType]
    +R0 [in hydras.Epsilon0.Hprime]
    +R00 [in hydras.Epsilon0.F_omega]
    +R00 [in hydras.solutions_exercises.isqrt]
    +R01 [in hydras.solutions_exercises.isqrt]
    +R02 [in hydras.solutions_exercises.isqrt]
    +R1 [in hydras.solutions_exercises.is_F_monotonous]
    +R1 [in hydras.Epsilon0.F_alpha]
    +R1 [in hydras.MoreAck.AckNotPR]
    +R1 [in hydras.Epsilon0.Large_Sets]
    +R1 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +R1 [in hydras.MoreAck.Ack]
    +R1 [in hydras.solutions_exercises.schutte_cnf_counter_example]
    +R1 [in gaia_hydras.onType]
    +R1 [in hydras.solutions_exercises.F_3]
    +R1 [in hydras.Epsilon0.Hprime]
    +R1 [in hydras.Gamma0.Gamma0]
    +R1 [in hydras.MoreAck.FolExamples]
    +R1_mem_head [in hydras.Hydra.O2H]
    +R1_R2 [in hydras.Hydra.O2H]
    +R1_hcons_mult [in hydras.Hydra.O2H]
    +R1_hcons [in hydras.Hydra.O2H]
    +R1_decr [in hydras.Hydra.Hydra_Termination]
    +R1_decr_0 [in hydras.Hydra.Hydra_Termination]
    +R1_remove_r_i [in hydras.Hydra.Hydra_Lemmas]
    +R1_app [in hydras.Hydra.Hydra_Lemmas]
    +R1_iff [in hydras.Hydra.Hydra_Lemmas]
    +R1_aux [in hydras.Schutte.Ordering_Functions]
    +R12 [in hydras.Epsilon0.Paths]
    +R13 [in hydras.Epsilon0.Paths]
    +R14 [in hydras.Epsilon0.Paths]
    +R15 [in hydras.Epsilon0.Paths]
    +R16 [in hydras.Epsilon0.Paths]
    +R17 [in hydras.Epsilon0.Paths]
    +R18 [in hydras.Epsilon0.Paths]
    +R19 [in hydras.Epsilon0.Paths]
    +R2 [in hydras.solutions_exercises.is_F_monotonous]
    +R2 [in hydras.Epsilon0.Large_Sets]
    +R2 [in hydras.MoreAck.Ack]
    +R2 [in hydras.solutions_exercises.schutte_cnf_counter_example]
    +R2 [in hydras.Hydra.Battle_length]
    +R2 [in hydras.Epsilon0.Hprime]
    +R2 [in hydras.Schutte.Ordering_Functions]
    +R2 [in hydras.Gamma0.Gamma0]
    +R2_decr [in hydras.Hydra.Hydra_Termination]
    +R2_decr_0 [in hydras.Hydra.Hydra_Termination]
    +R2_app [in hydras.Hydra.Hydra_Lemmas]
    +R2_iff [in hydras.Hydra.Hydra_Lemmas]
    +R20 [in hydras.Epsilon0.Paths]
    +R21 [in hydras.Epsilon0.Paths]
    +R22 [in hydras.Epsilon0.Paths]
    +R23 [in hydras.Epsilon0.Paths]
    +R24 [in hydras.Epsilon0.Paths]
    +R25 [in hydras.Epsilon0.Paths]
    +R26 [in hydras.Epsilon0.Paths]
    +R27 [in hydras.Epsilon0.Paths]
    +R28 [in hydras.Epsilon0.Paths]
    +R29 [in hydras.Epsilon0.Paths]
    +R3 [in hydras.solutions_exercises.is_F_monotonous]
    +R3 [in hydras.MoreAck.Ack]
    +R3 [in hydras.solutions_exercises.schutte_cnf_counter_example]
    +R3 [in hydras.Hydra.Battle_length]
    +R3 [in hydras.solutions_exercises.F_3]
    +R3 [in hydras.Epsilon0.Hprime]
    +R3 [in hydras.Schutte.Ordering_Functions]
    +R3 [in hydras.Gamma0.Gamma0]
    +R3' [in hydras.solutions_exercises.F_3]
    +R30 [in hydras.Epsilon0.Paths]
    +R31 [in hydras.Epsilon0.Paths]
    +R31_0 [in hydras.Epsilon0.Paths]
    +R4 [in hydras.solutions_exercises.is_F_monotonous]
    +R4 [in hydras.Hydra.Battle_length]
    +R4 [in hydras.solutions_exercises.F_3]
    +R4 [in hydras.Epsilon0.Hprime]
    +R4 [in hydras.Schutte.Ordering_Functions]
    +R4 [in hydras.Gamma0.Gamma0]
    +R4_3_4 [in hydras.Epsilon0.Paths]
    +R4_3_3 [in hydras.Epsilon0.Paths]
    +R4_3_2 [in hydras.Epsilon0.Paths]
    +R4_3_1 [in hydras.Epsilon0.Paths]
    +R4' [in hydras.Schutte.Ordering_Functions]
    +R4'' [in hydras.Schutte.Ordering_Functions]
    +R42 [in hydras.Schutte.Ordering_Functions]
    +R5 [in hydras.Epsilon0.F_omega]
    +R5 [in hydras.MoreAck.Ack]
    +R5 [in hydras.Hydra.Battle_length]
    +R5 [in hydras.solutions_exercises.F_3]
    +R5 [in hydras.Epsilon0.Hprime]
    +R5 [in hydras.Schutte.Ordering_Functions]
    +R5 [in hydras.Gamma0.Gamma0]
    +R6 [in hydras.solutions_exercises.is_F_monotonous]
    +R6 [in hydras.Hydra.Battle_length]
    +R6 [in hydras.Schutte.Ordering_Functions]
    +R7 [in hydras.Schutte.Ordering_Functions]
    +

    S

    +SA1 [in hydras.Schutte.Ordering_Functions]
    +SA2 [in hydras.Schutte.Ordering_Functions]
    +searchProof [in Goedel.rosserPA]
    +searchProof [in Goedel.rosser]
    +SecondIncompletness [in Goedel.goedel2]
    +segment_lt_closed [in hydras.Schutte.Ordering_Functions]
    +segment_the_ordering_segment [in hydras.Schutte.Ordering_Functions]
    +segment_unbounded [in hydras.Schutte.Ordering_Functions]
    +segment_lt [in hydras.Schutte.Ordering_Functions]
    +self_lt_free [in hydras.Hydra.Epsilon0_Needed_Free]
    +self_lt_standard [in hydras.Hydra.Epsilon0_Needed_Std]
    +seq_mono_inj [in hydras.Schutte.Schutte_basics]
    +seq_mono_intro [in hydras.Schutte.Schutte_basics]
    +seq_range_countable [in hydras.Schutte.Countable]
    +shift_unshift [in hydras.Prelude.MoreLists]
    +shift_no_zero [in hydras.Prelude.MoreLists]
    +shift_interval [in hydras.Prelude.MoreLists]
    +shift_iota_from [in hydras.Prelude.MoreLists]
    +sig_eq_intro [in hydras.OrdinalNotations.ON_Finite]
    +simple_last_app1 [in hydras.Prelude.MoreLists]
    +simple_last_app [in hydras.Prelude.MoreLists]
    +simple_last_correct [in hydras.Prelude.MoreLists]
    +single_nf [in hydras.Epsilon0.T1]
    +smallestExists [in hydras.Prelude.MoreDecidable]
    +small_lemma [in hydras.Epsilon0.Paths]
    +SmNotPR [in hydras.Hydra.Hydra_Theorems]
    +smono_Sle [in hydras.Prelude.Iterates]
    +some_nb_occ_Sn [in hydras.rpo.more_list]
    +sorted_ge_suffix [in hydras.Prelude.MoreLists]
    +sorted_max_2 [in hydras.Prelude.MoreLists]
    +sorted_cut [in hydras.Prelude.MoreLists]
    +sorted_max_1 [in hydras.Prelude.MoreLists]
    +sorted_not_in_tail [in hydras.Prelude.MoreLists]
    +sorted_In [in hydras.Prelude.MoreLists]
    +sorted_ge_prefix [in hydras.Prelude.MoreLists]
    +sorted_ge_iff [in hydras.Prelude.MoreLists]
    +sorted_ge_iff0 [in hydras.Prelude.MoreLists]
    +Sorted_mono [in hydras.Prelude.MoreLists]
    +sorted_head [in hydras.Prelude.MoreLists]
    +sorted_tail' [in hydras.Prelude.MoreLists]
    +sorted_tail [in hydras.Prelude.MoreLists]
    +sorted_le [in hydras.Prelude.MoreLists]
    +sorted_inv_gt [in hydras.Prelude.MoreLists]
    +sorted_ge_not_In [in hydras.Prelude.MoreLists]
    +sorted_ge_trans [in hydras.Prelude.MoreLists]
    +sorted_ge_Forall [in hydras.Prelude.MoreLists]
    +sorted_lt [in hydras.Schutte.CNF]
    +sorted_lt_lt_2 [in hydras.Schutte.CNF]
    +sorted_lt_lt [in hydras.Schutte.CNF]
    +sorted_tail [in hydras.Schutte.CNF]
    +split_list_app_cons [in hydras.rpo.more_list]
    +split_permutation [in hydras.Prelude.Merge_Sort]
    +split_decr [in hydras.Prelude.Merge_Sort]
    +split'_permutation [in hydras.Prelude.Merge_Sort]
    +split'_aux_eq [in hydras.Prelude.Merge_Sort]
    +split'_decr [in hydras.Prelude.Merge_Sort]
    +split'_aux_length_fst [in hydras.Prelude.Merge_Sort]
    +split'_aux_length_preserve [in hydras.Prelude.Merge_Sort]
    +sp_mergesort_OK [in hydras.Prelude.Merge_Sort]
    +sqrt_correct [in hydras.solutions_exercises.isqrt]
    +sqr_eqn [in additions.Pow_variant]
    +sqr_eqn [in additions.Pow]
    +stable_mergesort_OK [in hydras.Prelude.Merge_Sort]
    +standard_gnaw_iota_from [in gaia_hydras.GPaths]
    +standard_battle_head [in hydras.Hydra.Hydra_Lemmas]
    +standard_incl_free [in hydras.Hydra.Hydra_Lemmas]
    +standard_gnaw_2_zero [in hydras.Epsilon0.Paths]
    +standard_path_to_zero [in hydras.Epsilon0.Paths]
    +standard_gnaw_to_zero [in hydras.Epsilon0.Paths]
    +standard_pathS_app [in hydras.Epsilon0.Paths]
    +standard_path_equiv_2 [in hydras.Epsilon0.Paths]
    +standard_path_equiv_1 [in hydras.Epsilon0.Paths]
    +standard_gnaw_nf [in hydras.Epsilon0.Paths]
    +standard_gnaw_to_path [in hydras.Epsilon0.Paths]
    +standard_gnaw_S_zero [in hydras.Epsilon0.Paths]
    +standard_path_compose [in hydras.Epsilon0.Paths]
    +standard_path_lt2 [in hydras.Epsilon0.Paths]
    +standard_path_zero [in hydras.Epsilon0.Paths]
    +standard_path_to_nf [in hydras.Epsilon0.Paths]
    +standard_path_LE [in hydras.Epsilon0.Paths]
    +standard_gnaw_plus [in hydras.Epsilon0.Paths]
    +standard_gnaw_iota_from [in hydras.Epsilon0.Paths]
    +standard_gnaw_zero [in hydras.Epsilon0.Paths]
    +standard_path_path_to [in hydras.Epsilon0.Paths]
    +standard_pathS_path_toS [in hydras.Epsilon0.Paths]
    +standard_path_origin [in hydras.Epsilon0.Paths]
    +standard_path_toS_zero [in hydras.Epsilon0.Paths]
    +standard_path_to_le_inv [in hydras.Epsilon0.Paths]
    +standard_path_toS_le_inv [in hydras.Epsilon0.Paths]
    +standard_path_unshift [in hydras.Epsilon0.Paths]
    +standard_path_unshift_0 [in hydras.Epsilon0.Paths]
    +standard_path_shift [in hydras.Epsilon0.Paths]
    +steps_rounds [in hydras.Hydra.BigBattle]
    +step_rounds [in hydras.Hydra.BigBattle]
    +step_to_battle [in hydras.Hydra.Omega2_Small]
    +strict_lub_T1limit [in hydras.Epsilon0.T1]
    +strict_lub_unique [in hydras.Epsilon0.T1]
    +strict_mono_iterate_S [in hydras.Prelude.Iterates]
    +strict_lub_ref [in gaia_hydras.T1Bridge]
    +subAddExistsNice [in Goedel.PRrepresentable]
    +subAddForallsNice [in Goedel.PRrepresentable]
    +subAllCloseFrom [in hydras.Ackermann.subAll]
    +subAllCloseFrom1 [in hydras.Ackermann.subAll]
    +subAllFormulaId [in hydras.Ackermann.subAll]
    +subAllFormula_ext [in hydras.Ackermann.subAll]
    +subAllnVars1 [in hydras.Ackermann.folLogic3]
    +subAllnVars2 [in hydras.Ackermann.folLogic3]
    +subAllSubAllFormula [in hydras.Ackermann.subAll]
    +subAllSubAllTerm [in hydras.Ackermann.subAll]
    +subAllSubAllTerms [in hydras.Ackermann.subAll]
    +subAllSubFormula [in hydras.Ackermann.subAll]
    +subAllTermId [in hydras.Ackermann.subAll]
    +subAllTermsId [in hydras.Ackermann.subAll]
    +subAllTerms_ext [in hydras.Ackermann.subAll]
    +subAllTerm_ext [in hydras.Ackermann.subAll]
    +subFormulaAnd [in hydras.Ackermann.folProp]
    +subFormulaDepth [in hydras.Ackermann.folProp]
    +subFormulaEqual [in hydras.Ackermann.folProp]
    +subFormulaExch [in hydras.Ackermann.subProp]
    +subFormulaExist [in hydras.Ackermann.folProp]
    +subFormulaExist2 [in hydras.Ackermann.folProp]
    +subFormulaForall [in hydras.Ackermann.folProp]
    +subFormulaForall2 [in hydras.Ackermann.folProp]
    +subFormulaId [in hydras.Ackermann.folProp]
    +subFormulaIff [in hydras.Ackermann.folProp]
    +subFormulaIfThenElse [in hydras.Ackermann.folProp]
    +subFormulaImp [in hydras.Ackermann.folProp]
    +subFormulaMinimize [in Goedel.PRrepresentable]
    +subFormulaNil [in hydras.Ackermann.subProp]
    +subFormulaNot [in hydras.Ackermann.folProp]
    +subFormulaNTE [in hydras.Ackermann.subProp]
    +subFormulaNTEHelp [in hydras.Ackermann.subProp]
    +subFormulaOr [in hydras.Ackermann.folProp]
    +subFormulaRelation [in hydras.Ackermann.folProp]
    +subFormulaTrans [in hydras.Ackermann.subProp]
    +subInterpFormula [in hydras.Ackermann.model]
    +subInterpFormula1 [in hydras.Ackermann.model]
    +subInterpFormula2 [in hydras.Ackermann.model]
    +subInterpRel [in hydras.Ackermann.model]
    +subInterpTerm [in hydras.Ackermann.model]
    +subNNHelp [in hydras.Ackermann.model]
    +SubON_least [in hydras.OrdinalNotations.ON_Generic]
    +SubON_limit [in hydras.OrdinalNotations.ON_Generic]
    +SubON_successor [in hydras.OrdinalNotations.ON_Generic]
    +SubON_inj [in hydras.OrdinalNotations.ON_Generic]
    +SubON_mono [in hydras.OrdinalNotations.ON_Generic]
    +substExHC [in hydras.Ackermann.folProp]
    +substituteFormulaForallNice [in hydras.Ackermann.folProp]
    +substituteFormulaImpNice [in hydras.Ackermann.folProp]
    +substituteFormulaNotNice [in hydras.Ackermann.folProp]
    +subSubAllFormula [in hydras.Ackermann.subAll]
    +subSubAllTerm [in hydras.Ackermann.subAll]
    +subSubAllTerms [in hydras.Ackermann.subAll]
    +subSubFormula [in hydras.Ackermann.folLogic2]
    +subSubTerm [in hydras.Ackermann.folLogic2]
    +subSubTerms [in hydras.Ackermann.folLogic2]
    +subTermApply [in hydras.Ackermann.folProp]
    +subTermExch [in hydras.Ackermann.subProp]
    +subTermId [in hydras.Ackermann.folProp]
    +subTermNil [in hydras.Ackermann.subProp]
    +subTermsExch [in hydras.Ackermann.subProp]
    +subTermsId [in hydras.Ackermann.folProp]
    +subTermsNil [in hydras.Ackermann.subProp]
    +subTermsTrans [in hydras.Ackermann.subProp]
    +subTermTrans [in hydras.Ackermann.subProp]
    +subTermVar1 [in hydras.Ackermann.folProp]
    +subTermVar2 [in hydras.Ackermann.folProp]
    +subterm_lt [in hydras.Gamma0.Gamma0]
    +subToSubAll [in hydras.Ackermann.subAll]
    +subWithEquals [in hydras.Ackermann.folLogic3]
    +subWithEqualsTerm [in hydras.Ackermann.folLogic3]
    +subWithEqualsTerms [in hydras.Ackermann.folLogic3]
    +succb_correct [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +Succb_Succ [in hydras.Epsilon0.E0]
    +succb_not_lim [in hydras.Gamma0.Gamma0]
    +Successor_succ [in hydras.OrdinalNotations.ON_Omega2]
    +Successor_not [in hydras.OrdinalNotations.ON_Omega2]
    +Successor_inv [in hydras.OrdinalNotations.ON_Omega2]
    +Successor_unicity [in hydras.solutions_exercises.predSuccUnicity]
    +Successor_succ [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +Successor_inv4 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +Successor_inv3 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +Successor_inv2 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +Successor_inv1 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +succRepresentable [in Goedel.PRrepresentable]
    +succ_rw1 [in hydras.Epsilon0.T1]
    +succ_cons' [in hydras.Epsilon0.T1]
    +succ_cons [in hydras.Epsilon0.T1]
    +succ_lt_limit [in hydras.Epsilon0.T1]
    +succ_not_limit [in hydras.Epsilon0.T1]
    +succ_compat [in hydras.Epsilon0.T1]
    +succ_compatS [in hydras.Epsilon0.T1]
    +succ_injective [in hydras.Epsilon0.T1]
    +succ_monomorphism [in hydras.Epsilon0.T1]
    +succ_strict_monoR [in hydras.Epsilon0.T1]
    +succ_mono [in hydras.Epsilon0.T1]
    +succ_strict_mono_LT [in hydras.Epsilon0.T1]
    +succ_strict_mono [in hydras.Epsilon0.T1]
    +succ_of_plus_finite [in hydras.Epsilon0.T1]
    +succ_is_plus_one [in hydras.Epsilon0.T1]
    +succ_nf [in hydras.Epsilon0.T1]
    +succ_lt_a_phi0_b [in hydras.Epsilon0.T1]
    +succ_is_succ [in hydras.Epsilon0.T1]
    +succ_not_zero [in hydras.Epsilon0.T1]
    +succ_is_plus_1 [in hydras.OrdinalNotations.ON_Omega2]
    +succ_ok [in hydras.OrdinalNotations.ON_Omega2]
    +succ_correct [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +succ_ref [in gaia_hydras.T1Bridge]
    +succ_zero_diff [in hydras.Schutte.Schutte_basics]
    +succ_injection [in hydras.Schutte.Schutte_basics]
    +succ_monoR [in hydras.Schutte.Schutte_basics]
    +succ_mono [in hydras.Schutte.Schutte_basics]
    +succ_ok [in hydras.Schutte.Schutte_basics]
    +succ_correct [in hydras.Epsilon0.E0]
    +Succ_of_cons [in hydras.Epsilon0.E0]
    +Succ_rw [in hydras.Epsilon0.E0]
    +Succ_lt_T1limit [in hydras.Epsilon0.E0]
    +Succ_not_T1limit [in hydras.Epsilon0.E0]
    +Succ_not_Zero [in hydras.Epsilon0.E0]
    +Succ_Succb [in hydras.Epsilon0.E0]
    +Succ_inj [in hydras.Epsilon0.E0]
    +succ_rounds [in hydras.Hydra.Omega2_Small]
    +succ_limit_dec [in hydras.Gamma0.Gamma0]
    +succ_nf [in hydras.Gamma0.Gamma0]
    +succ_as_plus [in hydras.Gamma0.Gamma0]
    +succ_of_cons [in hydras.Gamma0.Gamma0]
    +succ_lt_le [in hydras.Gamma0.Gamma0]
    +succ_is_plus_1 [in hydras.Schutte.Addition]
    +sumToN1 [in hydras.Ackermann.cPair]
    +sumToN2 [in hydras.Ackermann.cPair]
    +SuperbigStep [in hydras.Hydra.BigBattle]
    +supM_gt0 [in hydras.Schutte.AP]
    +sup_members_disj [in hydras.Schutte.Schutte_basics]
    +sup_members_not_succ [in hydras.Schutte.Schutte_basics]
    +sup_members_succ [in hydras.Schutte.Schutte_basics]
    +sup_eq_intro [in hydras.Schutte.Schutte_basics]
    +sup_mono [in hydras.Schutte.Schutte_basics]
    +sup_of_leq [in hydras.Schutte.Schutte_basics]
    +sup_least_upper_bound [in hydras.Schutte.Schutte_basics]
    +sup_upper_bound [in hydras.Schutte.Schutte_basics]
    +sup_ok1 [in hydras.Schutte.Schutte_basics]
    +sup_spec_unicity [in hydras.Schutte.Schutte_basics]
    +sup_unicity [in hydras.Schutte.Schutte_basics]
    +sup_exists [in hydras.Schutte.Schutte_basics]
    +sup_M_in_B [in hydras.Schutte.Ordering_Functions]
    +switch5IsPR [in hydras.Ackermann.codeSubFormula]
    +sysExtend [in hydras.Ackermann.LNN]
    +sysExtend [in hydras.Ackermann.LNT]
    +sysExtend [in hydras.Ackermann.folLogic]
    +SysPrf_rephrase [in hydras.Ackermann.Deduction]
    +sysWeaken [in hydras.Ackermann.LNN]
    +sysWeaken [in hydras.Ackermann.LNT]
    +sysWeaken [in hydras.Ackermann.folLogic]
    +S_pred_rw [in hydras.Prelude.Iterates]
    +s_decr [in hydras.solutions_exercises.T1_ltNotWf]
    +S0_mem_head [in hydras.Hydra.O2H]
    +S0_decr [in hydras.Hydra.Hydra_Termination]
    +S0_decr_0 [in hydras.Hydra.Hydra_Termination]
    +S0_remove_r_i [in hydras.Hydra.Hydra_Lemmas]
    +S0_remove_r [in hydras.Hydra.Hydra_Lemmas]
    +S0_app [in hydras.Hydra.Hydra_Lemmas]
    +S1_decr [in hydras.Hydra.Hydra_Termination]
    +S1_decr_0 [in hydras.Hydra.Hydra_Termination]
    +S1_app [in hydras.Hydra.Hydra_Lemmas]
    +S2_app [in hydras.Hydra.Hydra_Lemmas]
    +S2_iff [in hydras.Hydra.Hydra_Lemmas]
    +

    T

    +tail_LT_cons [in hydras.Epsilon0.T1]
    +tail_lt_cons [in hydras.Epsilon0.T1]
    +tail_lt [in hydras.Epsilon0.T1]
    +Termination_strong [in hydras.Hydra.Hydra_Lemmas]
    +terms_eqdec [in hydras.Ackermann.fol]
    +term_eqdec [in hydras.Ackermann.fol]
    +Theorem_4_5 [in hydras.Epsilon0.Large_Sets]
    +Theorem_4_5 [in gaia_hydras.GLarge_Sets]
    +the_least_ok [in hydras.Schutte.Schutte_basics]
    +the_least_unicity [in hydras.Schutte.Well_Orders]
    +TH_packed [in hydras.Epsilon0.F_alpha]
    +th_In [in hydras.Schutte.Ordering_Functions]
    +TH_13_6R [in hydras.Schutte.Ordering_Functions]
    +TH_13_6 [in hydras.Schutte.Ordering_Functions]
    +Th_13_5_2 [in hydras.Schutte.Ordering_Functions]
    +Th_13_5_1 [in hydras.Schutte.Ordering_Functions]
    +th_14_6 [in hydras.Gamma0.Gamma0]
    +th_14_5 [in hydras.Gamma0.Gamma0]
    +Th13_8_1 [in hydras.Schutte.Critical]
    +Th13_8 [in hydras.Schutte.Critical]
    +tower2_alt_ok [in hydras.solutions_exercises.MorePRExamples]
    +Toy.ded1 [in hydras.MoreAck.FolExamples]
    +Toy.ded2 [in hydras.MoreAck.FolExamples]
    +Toy.ded3 [in hydras.MoreAck.FolExamples]
    +Toy.drinkers_thm [in hydras.MoreAck.FolExamples]
    +Toy.D0 [in hydras.MoreAck.FolExamples]
    +Toy.D01 [in hydras.MoreAck.FolExamples]
    +Toy.eq_refl [in hydras.MoreAck.FolExamples]
    +Toy.MP' [in hydras.MoreAck.FolExamples]
    +Toy.peirce [in hydras.MoreAck.FolExamples]
    +Toy.PrfEx2 [in hydras.MoreAck.FolExamples]
    +Tprf2T'prf [in Goedel.rosserPA]
    +trace_to_std [in hydras.Hydra.O2H]
    +trace_to_std_0 [in hydras.Hydra.O2H]
    +trace_to_round_plus [in hydras.Hydra.O2H]
    +transfinite_induction [in hydras.Schutte.Schutte_basics]
    +transitionP [in gaia_hydras.GPaths]
    +translateLT1 [in hydras.Ackermann.LNN2LNT]
    +translatePrf [in hydras.Ackermann.LNN2LNT]
    +translateProof [in hydras.Ackermann.LNN2LNT]
    +trans_aux [in hydras.Gamma0.Gamma0]
    +trans_clos_is_trans [in hydras.rpo.closure]
    +TreeT1K [in gaia_hydras.T1Choice]
    +trichotomy [in hydras.Schutte.Schutte_basics]
    +tricho_aux [in hydras.Gamma0.Gamma0]
    +tricho_lt_7 [in hydras.Gamma0.Gamma0]
    +tricho_lt_5 [in hydras.Gamma0.Gamma0]
    +tricho_lt_4' [in hydras.Gamma0.Gamma0]
    +tricho_lt_4 [in hydras.Gamma0.Gamma0]
    +tricho_lt_3 [in hydras.Gamma0.Gamma0]
    +tricho_lt_2' [in hydras.Gamma0.Gamma0]
    +tricho_lt_2 [in hydras.Gamma0.Gamma0]
    +t_0_nil [in hydras.Prelude.MoreVectors]
    +T'prf2Tprf [in Goedel.rosserPA]
    +t0_empty [in hydras.OrdinalNotations.ON_Finite]
    +T1addA [in hydras.Epsilon0.T1]
    +T1add_not_monotonous_l [in hydras.Epsilon0.T1]
    +T1compare_correct [in gaia_hydras.T1Bridge]
    +T1eqE [in gaia_hydras.T1Bridge]
    +T1eq_h2g [in gaia_hydras.T1Bridge]
    +T1eq_refl [in gaia_hydras.T1Bridge]
    +T1is_succ_iff [in hydras.Epsilon0.T1]
    +T1is_succ_def [in hydras.Epsilon0.T1]
    +T1is_succ_ref [in gaia_hydras.T1Bridge]
    +T1le_asym [in gaia_hydras.T1Choice]
    +T1le_iff [in gaia_hydras.T1Bridge]
    +T1limit_succ_tail [in hydras.Epsilon0.T1]
    +T1limit_not_zero [in hydras.Epsilon0.T1]
    +T1limit_succ [in hydras.Epsilon0.T1]
    +T1limit_cases [in hydras.Epsilon0.T1]
    +T1limit_ref [in gaia_hydras.T1Bridge]
    +T1limit_canonS_not_zero [in hydras.Epsilon0.Canon]
    +T1limit_plus [in hydras.Epsilon0.E0]
    +T1limit_phi0 [in hydras.Epsilon0.E0]
    +T1limit_Omega_term [in hydras.Epsilon0.E0]
    +T1ltE [in gaia_hydras.T1Choice]
    +T1lt_iff [in gaia_hydras.T1Bridge]
    +T1maxE [in gaia_hydras.T1Choice]
    +T1minE [in gaia_hydras.T1Choice]
    +T1mulE4 [in gaia_hydras.T1Bridge]
    +T1mulE5 [in gaia_hydras.T1Bridge]
    +T1mul_not_monotonous [in hydras.Epsilon0.T1]
    +T1mul_cons_cons_E [in gaia_hydras.T1Bridge]
    +T1mul_a0E [in gaia_hydras.T1Bridge]
    +T1nf_canon [in gaia_hydras.GCanon]
    +T1_wf [in hydras.Epsilon0.T1]
    +T1_to_T2_monoR [in hydras.Gamma0.Gamma0]
    +T1_to_T2_mono [in hydras.Gamma0.Gamma0]
    +T1_to_T2_lt [in hydras.Gamma0.Gamma0]
    +T1_to_T2_inj [in hydras.Gamma0.Gamma0]
    +T12Tree_inj [in gaia_hydras.T1Choice]
    +T2_size_psi [in hydras.Gamma0.Gamma0]
    +T2_size4 [in hydras.Gamma0.Gamma0]
    +T2_size3 [in hydras.Gamma0.Gamma0]
    +T2_size2 [in hydras.Gamma0.Gamma0]
    +T2_size1 [in hydras.Gamma0.Gamma0]
    +

    U

    +unbounded [in hydras.Schutte.Schutte_basics]
    +Unbounded_Cr [in hydras.Schutte.Critical]
    +Unbounded_not_countable [in hydras.Schutte.Schutte_basics]
    +Unbounded_ge [in hydras.Schutte.Addition]
    +unique_decomposition [in hydras.Epsilon0.T1]
    +unique_decomposition [in hydras.OrdinalNotations.ON_Omega2]
    +unshift_pred [in hydras.Prelude.MoreLists]
    +unshift_shift [in hydras.Prelude.MoreLists]
    +unshift_interval_pred [in hydras.Prelude.MoreLists]
    +unshift_interval [in hydras.Prelude.MoreLists]
    +unshift_iota_from [in hydras.Prelude.MoreLists]
    +unshift_not_nil [in hydras.Prelude.MoreLists]
    +unshift_app [in hydras.Prelude.MoreLists]
    +unshift_but_last [in hydras.Prelude.MoreLists]
    +

    V

    +Variant_termination [in hydras.Prelude.WfVariant]
    +Variant_lt_standard [in hydras.Hydra.Hydra_Theorems]
    +Variant_LT_standard [in hydras.Hydra.Hydra_Theorems]
    +Variant_lt_free [in hydras.Hydra.Hydra_Theorems]
    +Variant_LT_free_0 [in hydras.Hydra.Hydra_Theorems]
    +variant_mono_free [in hydras.Hydra.Hydra_Lemmas]
    +Vars.eq_variable_dec [in hydras.Gamma0.Gamma0]
    +Vid_eq [in hydras.Prelude.MoreVectors]
    +

    W

    +wCon2Con [in hydras.Ackermann.wConsistent]
    +wellFormedFormulaCorrect1 [in hydras.Ackermann.wellFormed]
    +wellFormedFormulaCorrect2 [in hydras.Ackermann.wellFormed]
    +wellFormedTermCorrect1 [in hydras.Ackermann.wellFormed]
    +wellFormedTermCorrect2 [in hydras.Ackermann.wellFormed]
    +wellFormedTermsCorrect1 [in hydras.Ackermann.wellFormed]
    +wellFormedTermsCorrect2 [in hydras.Ackermann.wellFormed]
    +wellFormedTermTermsCorrect2 [in hydras.Ackermann.wellFormed]
    +well_founded_length [in hydras.rpo.more_list]
    +well_founded_rpo [in hydras.Gamma0.Gamma0]
    +Wfsum.f_correct [in gaia_hydras.nfwfgaia]
    +Wfsum.f_eqn [in gaia_hydras.nfwfgaia]
    +Wfsum.f_spec_simp [in gaia_hydras.nfwfgaia]
    +Wfsum.lt_dec [in gaia_hydras.nfwfgaia]
    +Wfsum.psum_exten [in gaia_hydras.nfwfgaia]
    +wf_inverse_image_transparent [in additions.Wf_transparent]
    +wf_incl_transparent [in additions.Wf_transparent]
    +wf_measure [in hydras.OrdinalNotations.ON_Generic]
    +wf_ltn [in gaia_hydras.onType]
    +wf_trans [in hydras.rpo.closure]
    +Wf_ex3.f_correct [in gaia_hydras.nfwfgaia]
    +Wf_ex3.f_eqn [in gaia_hydras.nfwfgaia]
    +Wf_ex3.odd_dec [in gaia_hydras.nfwfgaia]
    +Wf_ex3.f0c [in gaia_hydras.nfwfgaia]
    +Wf_ex3.f0b [in gaia_hydras.nfwfgaia]
    +Wf_ex3.f0a [in gaia_hydras.nfwfgaia]
    +Wf_ex3.f_spec_simp2 [in gaia_hydras.nfwfgaia]
    +Wf_ex3.f_spec_simp1 [in gaia_hydras.nfwfgaia]
    +Wf_ex3.f_spec_simp [in gaia_hydras.nfwfgaia]
    +Wf_ex3.lte_wf [in gaia_hydras.nfwfgaia]
    +Wf_ex.f_correct [in gaia_hydras.nfwfgaia]
    +Wf_ex.f_eqn [in gaia_hydras.nfwfgaia]
    +Wf_ex.f0 [in gaia_hydras.nfwfgaia]
    +Wf_ex.f_spec_simp [in gaia_hydras.nfwfgaia]
    +wf_lexico [in hydras.Prelude.Simple_LexProd]
    +wf_lex [in hydras.rpo.rpo]
    +

    X

    +xPairDef [in hydras.Ackermann.cPair]
    +

    Z

    +zeroRepresentable [in Goedel.PRrepresentable]
    +zero_le [in hydras.Epsilon0.T1]
    +zero_nf [in hydras.Epsilon0.T1]
    +zero_lt [in hydras.Epsilon0.T1]
    +zero_lt [in hydras.Schutte.Correctness_E0]
    +zero_le [in hydras.OrdinalNotations.ON_Omega2]
    +zero_lt_beta [in hydras.Schutte.AP]
    +zero_ref [in gaia_hydras.T1Bridge]
    +zero_lt_omega [in hydras.Schutte.Schutte_basics]
    +zero_lt_succ [in hydras.Schutte.Schutte_basics]
    +zero_or_positive [in hydras.Schutte.Schutte_basics]
    +zero_or_greater [in hydras.Schutte.Schutte_basics]
    +zero_le [in hydras.Schutte.Schutte_basics]
    +zero_not_lim [in hydras.Gamma0.Gamma0]
    +zero_lt_succ [in hydras.Gamma0.Gamma0]
    +zero_plus_alpha [in hydras.Schutte.Addition]
    +ZLS_dec [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +ZtoRD [in additions.fib]
    +ZtoRM [in additions.fib]
    +Z_pow_compat [in additions.Compatibility]
    +Z_pow_compat_pos [in additions.Compatibility]
    +Z.power_of_plus [in additions.Naive]
    +Z.power_S [in additions.Naive]
    +


    +

    Constructor Index

    +

    A

    +Ackermann.CompareT3Eq [in gaia_hydras.nfwfgaia]
    +Ackermann.CompareT3Gt [in gaia_hydras.nfwfgaia]
    +Ackermann.CompareT3Lt [in gaia_hydras.nfwfgaia]
    +Ackermann.cons [in gaia_hydras.nfwfgaia]
    +Ackermann.T3GeqNotGtn [in gaia_hydras.nfwfgaia]
    +Ackermann.T3GeqNotLtn [in gaia_hydras.nfwfgaia]
    +Ackermann.T3GtnNotLeq [in gaia_hydras.nfwfgaia]
    +Ackermann.T3LtnNotGeq [in gaia_hydras.nfwfgaia]
    +Ackermann.zero [in gaia_hydras.nfwfgaia]
    +Add [in additions.Trace_exercise]
    +Alt.Eps0_prec.Mul [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_prec.Lex [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_sig.Free [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_sig.C [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_sig.AC [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_sig.ord_cons [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_sig.ord_zero [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_sig.nat_S [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_sig.nat_0 [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.hnode [in hydras.Hydra.Hydra_Definitions]
    +apply [in hydras.Ackermann.fol]
    +ap_intro [in hydras.Epsilon0.T1]
    +ap_intro [in hydras.Gamma0.T2]
    +assoc [in hydras.Prelude.STDPP_compat]
    +atomic [in hydras.Ackermann.fol]
    +AXM [in hydras.Ackermann.folProof]
    +A_node [in additions.Addition_Chains]
    +

    B

    +Bad3.Fchain_proper_bad_prf [in additions.Euclidean_Chains]
    +Build_OF [in hydras.Schutte.Ordering_Functions]
    +

    C

    +CantorOrdinal.CompareT1Eq [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.CompareT1Gt [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.CompareT1Lt [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.cons [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1GeqNotGtn [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1GeqNotLtn [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1GtnNotLeq [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1LtnNotGeq [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.zero [in gaia_hydras.nfwfgaia]
    +compare [in hydras.Prelude.Comparable]
    +composeFunc [in hydras.Ackermann.primRec]
    +cons [in hydras.Epsilon0.T1]
    +cons_succ [in hydras.Gamma0.T2]
    +CP [in hydras.Ackermann.folProof]
    +

    D

    +decide [in hydras.Prelude.STDPP_compat]
    +decide_rel [in hydras.Prelude.STDPP_compat]
    +

    E

    +equal [in hydras.Ackermann.fol]
    +equiv [in additions.Monoid_def]
    +EQ1 [in hydras.Ackermann.folProof]
    +EQ2 [in hydras.Ackermann.folProof]
    +EQ3 [in hydras.Ackermann.folProof]
    +EQ4 [in hydras.Ackermann.folProof]
    +EQ5 [in hydras.Ackermann.folProof]
    +

    F

    +FA1 [in hydras.Ackermann.folProof]
    +FA2 [in hydras.Ackermann.folProof]
    +FA3 [in hydras.Ackermann.folProof]
    +Fchain_proper_prf [in additions.Euclidean_Chains]
    +finite_succ [in hydras.Gamma0.T2]
    +Fkont_proper_prf [in additions.Euclidean_Chains]
    +FO [in hydras.Prelude.Fuel]
    +forallH [in hydras.Ackermann.fol]
    +Forall2R_last [in hydras.Prelude.MoreLists]
    +Forall2R_nil [in hydras.Prelude.MoreLists]
    +FS [in hydras.Prelude.Fuel]
    +fun_bij_i [in hydras.Schutte.PartialFun]
    +fun_inj_i [in hydras.Schutte.PartialFun]
    +

    G

    +Gamma0_prec.Mul [in hydras.Gamma0.Gamma0]
    +Gamma0_prec.Lex [in hydras.Gamma0.Gamma0]
    +Gamma0_sig.Free [in hydras.Gamma0.Gamma0]
    +Gamma0_sig.C [in hydras.Gamma0.Gamma0]
    +Gamma0_sig.AC [in hydras.Gamma0.Gamma0]
    +Gamma0_sig.ord_cons [in hydras.Gamma0.Gamma0]
    +Gamma0_sig.ord_psi [in hydras.Gamma0.Gamma0]
    +Gamma0_sig.ord_zero [in hydras.Gamma0.Gamma0]
    +Gamma0_sig.nat_S [in hydras.Gamma0.Gamma0]
    +Gamma0_sig.nat_0 [in hydras.Gamma0.Gamma0]
    +Gamma0.CompareT2Eq [in gaia_hydras.nfwfgaia]
    +Gamma0.CompareT2Gt [in gaia_hydras.nfwfgaia]
    +Gamma0.CompareT2Lt [in gaia_hydras.nfwfgaia]
    +Gamma0.cons [in gaia_hydras.nfwfgaia]
    +Gamma0.T2GeqNotGtn [in gaia_hydras.nfwfgaia]
    +Gamma0.T2GeqNotLtn [in gaia_hydras.nfwfgaia]
    +Gamma0.T2GtnNotLeq [in gaia_hydras.nfwfgaia]
    +Gamma0.T2LtnNotGeq [in gaia_hydras.nfwfgaia]
    +Gamma0.zero [in gaia_hydras.nfwfgaia]
    +gcons [in hydras.Gamma0.T2]
    +gcons_lt_e0 [in hydras.Gamma0.T2]
    +gcons_nf [in hydras.Gamma0.T2]
    +GEN [in hydras.Ackermann.folProof]
    +gen_K [in additions.Euclidean_Chains]
    +gen_F [in additions.Euclidean_Chains]
    +G0.mkg0 [in hydras.Gamma0.Gamma0]
    +

    H

    +hcons [in hydras.Hydra.Hydra_Definitions]
    +hh_2 [in hydras.Hydra.O2H]
    +hh_1 [in hydras.Hydra.O2H]
    +hnil [in hydras.Hydra.Hydra_Definitions]
    +

    I

    +impH [in hydras.Ackermann.fol]
    +IMP1 [in hydras.Ackermann.folProof]
    +IMP2 [in hydras.Ackermann.folProof]
    +InHWit [in hydras.Schutte.MoreEpsilonIota]
    +Init [in additions.Trace_exercise]
    +is_limit_cons [in hydras.Gamma0.T2]
    +is_limit_0 [in hydras.Gamma0.T2]
    +is_pr_rel [in hydras.Ackermann.primRec]
    +is_pr [in hydras.Ackermann.primRec]
    +

    K

    +Kchain_proper_prf [in additions.Euclidean_Chains]
    +

    L

    +language [in hydras.Ackermann.fol]
    +lex_2 [in hydras.Prelude.Simple_LexProd]
    +lex_1 [in hydras.Prelude.Simple_LexProd]
    +lex1 [in hydras.Prelude.DecPreOrder_Instances]
    +lex1 [in hydras.solutions_exercises.MultisetWf]
    +lex2 [in hydras.Prelude.DecPreOrder_Instances]
    +lex2 [in hydras.solutions_exercises.MultisetWf]
    +lex3 [in hydras.solutions_exercises.MultisetWf]
    +lex4 [in hydras.solutions_exercises.MultisetWf]
    +limit_step [in hydras.Hydra.Omega2_Small]
    +limit_plus_F_cons [in hydras.Gamma0.Gamma0]
    +limit_plus_F_0 [in hydras.Gamma0.Gamma0]
    +LO.ap_intro [in hydras.OrdinalNotations.OmegaOmega]
    +LT_right [in hydras.Epsilon0.T1]
    +LT_middle [in hydras.Epsilon0.T1]
    +LT_left [in hydras.Epsilon0.T1]
    +lt_a_phi0_b_c [in hydras.Epsilon0.T1]
    +lt_a_phi0_b_z [in hydras.Epsilon0.T1]
    +lt_right [in hydras.Epsilon0.T1]
    +lt_middle [in hydras.Epsilon0.T1]
    +lt_left [in hydras.Epsilon0.T1]
    +lt_7 [in hydras.Gamma0.T2]
    +lt_6 [in hydras.Gamma0.T2]
    +lt_5 [in hydras.Gamma0.T2]
    +lt_4 [in hydras.Gamma0.T2]
    +lt_3 [in hydras.Gamma0.T2]
    +lt_2 [in hydras.Gamma0.T2]
    +lt_1 [in hydras.Gamma0.T2]
    +LT_ [in hydras.Ackermann.Languages]
    +L_spec1 [in hydras.Epsilon0.Large_Sets]
    +L_spec0 [in hydras.Epsilon0.Large_Sets]
    +

    M

    +Make.Eq [in hydras.rpo.rpo]
    +Make.List_mul_rest_step [in hydras.rpo.rpo]
    +Make.List_mul_rest [in hydras.rpo.rpo]
    +Make.List_eq_rest [in hydras.rpo.rpo]
    +Make.List_gt_rest [in hydras.rpo.rpo]
    +Make.List_mul [in hydras.rpo.rpo]
    +Make.List_eq [in hydras.rpo.rpo]
    +Make.List_gt [in hydras.rpo.rpo]
    +Make.Lt [in hydras.rpo.rpo]
    +Make.mk_set [in hydras.rpo.list_set]
    +Make.mk_sn [in hydras.rpo.rpo]
    +Make.rmv_case [in hydras.rpo.dickson]
    +Make.Subterm [in hydras.rpo.rpo]
    +Make.Term [in hydras.rpo.term]
    +Make.Top_eq_mul [in hydras.rpo.rpo]
    +Make.Top_eq_lex [in hydras.rpo.rpo]
    +Make.Top_gt [in hydras.rpo.rpo]
    +Make.Var [in hydras.rpo.term]
    +marked0 [in hydras.Prelude.Sort_spec]
    +marked1 [in hydras.Prelude.Sort_spec]
    +mkE0 [in gaia_hydras.T1Bridge]
    +mkord [in hydras.Epsilon0.E0]
    +mkP [in hydras.Epsilon0.F_alpha]
    +mkP [in hydras.Epsilon0.Hprime]
    +mkQ [in hydras.Epsilon0.F_alpha]
    +mks [in hydras.Hydra.BigBattle]
    +model [in hydras.Ackermann.model]
    +MP [in hydras.Ackermann.folProof]
    +MUL [in additions.AM]
    +Mult [in additions.Addition_Chains]
    +mult_op [in additions.Monoid_def]
    +Mul_node [in additions.Addition_Chains]
    +M2.mat [in additions.FirstSteps]
    +M2.mat [in additions.Naive]
    +

    N

    +node [in hydras.Hydra.Hydra_Definitions]
    +notH [in hydras.Ackermann.fol]
    +

    O

    +Ok [in hydras.Epsilon0.Large_Sets_Examples]
    +ONDef.Mixin [in gaia_hydras.onType]
    +ONDef.Pack [in gaia_hydras.onType]
    +One_node [in additions.Addition_Chains]
    +OO.mkord [in hydras.OrdinalNotations.OmegaOmega]
    +

    P

    +path_toS_cons [in hydras.Epsilon0.Paths]
    +path_toS_1 [in hydras.Epsilon0.Paths]
    +path_to_cons [in hydras.Epsilon0.Paths]
    +path_to_1 [in hydras.Epsilon0.Paths]
    +Plus_ [in hydras.Ackermann.Languages]
    +PP_omega [in hydras.Epsilon0.T1]
    +PP_exp [in hydras.Epsilon0.T1]
    +PP_mult [in hydras.Epsilon0.T1]
    +PP_add [in hydras.Epsilon0.T1]
    +PP_fin [in hydras.Epsilon0.T1]
    +PRcons [in hydras.Ackermann.primRec]
    +Precedence.Lex [in hydras.rpo.rpo]
    +Precedence.Mul [in hydras.rpo.rpo]
    +primRecFunc [in hydras.Ackermann.primRec]
    +PRnil [in hydras.Ackermann.primRec]
    +projFunc [in hydras.Ackermann.primRec]
    +PUSH [in additions.AM]
    +

    R

    +rel_surj_i [in hydras.Schutte.GRelations]
    +rel_inj_i [in hydras.Schutte.GRelations]
    +rel_bij_i [in hydras.Schutte.PartialFun]
    +rel_inj_i [in hydras.Schutte.PartialFun]
    +Remaining [in hydras.Epsilon0.Large_Sets_Examples]
    +result_equiv_success [in additions.AM]
    +result_equiv_fail [in additions.AM]
    +Return [in additions.Addition_Chains]
    +rounds_n [in hydras.Hydra.Hydra_Definitions]
    +rounds_1 [in hydras.Hydra.Hydra_Definitions]
    +RPO.Eq [in hydras.rpo.rpo]
    +RPO.List_mul [in hydras.rpo.rpo]
    +RPO.List_eq [in hydras.rpo.rpo]
    +RPO.List_gt [in hydras.rpo.rpo]
    +RPO.Lt [in hydras.rpo.rpo]
    +RPO.Subterm [in hydras.rpo.rpo]
    +RPO.Top_eq_mul [in hydras.rpo.rpo]
    +RPO.Top_eq_lex [in hydras.rpo.rpo]
    +RPO.Top_gt [in hydras.rpo.rpo]
    +R1_intro [in hydras.Hydra.Hydra_Definitions]
    +R2_intro_2 [in hydras.Hydra.Hydra_Definitions]
    +R2_intro [in hydras.Hydra.Hydra_Definitions]
    +

    S

    +Signature.AC [in hydras.rpo.term]
    +Signature.C [in hydras.rpo.term]
    +Signature.Free [in hydras.rpo.term]
    +single_nf [in hydras.Gamma0.T2]
    +sorted_ge_cons [in hydras.Prelude.MoreLists]
    +sorted_ge_one [in hydras.Prelude.MoreLists]
    +sorted_ge_nil [in hydras.Prelude.MoreLists]
    +SQR [in additions.AM]
    +stack_equivn [in additions.AM]
    +stack_equiv0 [in additions.AM]
    +stdS_S [in hydras.Epsilon0.Paths]
    +stdS_1 [in hydras.Epsilon0.Paths]
    +std_S [in hydras.Epsilon0.Paths]
    +std_1 [in hydras.Epsilon0.Paths]
    +steps_S [in hydras.Hydra.BigBattle]
    +steps1 [in hydras.Hydra.BigBattle]
    +step1 [in hydras.Hydra.BigBattle]
    +step2 [in hydras.Hydra.BigBattle]
    +step3 [in hydras.Hydra.BigBattle]
    +subterm_trans [in hydras.Gamma0.Gamma0]
    +subterm_c [in hydras.Gamma0.Gamma0]
    +subterm_b [in hydras.Gamma0.Gamma0]
    +subterm_a [in hydras.Gamma0.Gamma0]
    +succFunc [in hydras.Ackermann.primRec]
    +succ_finite [in hydras.Gamma0.T2]
    +succ_step [in hydras.Hydra.Omega2_Small]
    +Succ_ [in hydras.Ackermann.Languages]
    +SWAP [in additions.AM]
    +S.mk_set [in hydras.rpo.list_set]
    +S0_rest [in hydras.Hydra.Hydra_Definitions]
    +S0_first [in hydras.Hydra.Hydra_Definitions]
    +S1_next [in hydras.Hydra.Hydra_Definitions]
    +S1_first [in hydras.Hydra.Hydra_Definitions]
    +S2_next [in hydras.Hydra.Hydra_Definitions]
    +S2_first [in hydras.Hydra.Hydra_Definitions]
    +

    T

    +Tcons [in hydras.Ackermann.fol]
    +Term.Term [in hydras.rpo.term]
    +Term.Var [in hydras.rpo.term]
    +Times_ [in hydras.Ackermann.Languages]
    +Tnil [in hydras.Ackermann.fol]
    +Too_far [in hydras.Epsilon0.Large_Sets_Examples]
    +totalness [in hydras.Prelude.DecPreOrder]
    +Toy.a_ [in hydras.MoreAck.FolExamples]
    +Toy.A_ [in hydras.MoreAck.FolExamples]
    +Toy.b_ [in hydras.MoreAck.FolExamples]
    +Toy.B_ [in hydras.MoreAck.FolExamples]
    +Toy.C_ [in hydras.MoreAck.FolExamples]
    +Toy.f_ [in hydras.MoreAck.FolExamples]
    +Toy.g_ [in hydras.MoreAck.FolExamples]
    +Toy.h_ [in hydras.MoreAck.FolExamples]
    +Toy.P_ [in hydras.MoreAck.FolExamples]
    +Toy.Q_ [in hydras.MoreAck.FolExamples]
    +Toy.R_ [in hydras.MoreAck.FolExamples]
    +trace_toS [in hydras.Hydra.Hydra_Definitions]
    +trace_to1 [in hydras.Hydra.Hydra_Definitions]
    +t_trans [in hydras.rpo.closure]
    +t_step [in hydras.rpo.closure]
    +

    V

    +var [in hydras.Ackermann.fol]
    +

    Z

    +zero [in hydras.Epsilon0.T1]
    +zero [in hydras.Gamma0.T2]
    +zeroFunc [in hydras.Ackermann.primRec]
    +zero_lt_e0 [in hydras.Gamma0.T2]
    +zero_nf [in hydras.Gamma0.T2]
    +zero_finite [in hydras.Gamma0.T2]
    +Zero_ [in hydras.Ackermann.Languages]
    +


    +

    Axiom Index

    +

    A

    +AX1 [in hydras.Schutte.Schutte_basics]
    +AX2 [in hydras.Schutte.Schutte_basics]
    +AX3 [in hydras.Schutte.Schutte_basics]
    +

    F

    +f [in hydras.Prelude.LibHyps_Experiments]
    +

    G

    +g [in hydras.Prelude.LibHyps_Experiments]
    +

    H

    +h [in hydras.Prelude.LibHyps_Experiments]
    +

    I

    +inh_Ord [in hydras.Schutte.Schutte_basics]
    +

    L

    +lt [in hydras.Schutte.Schutte_basics]
    +

    O

    +Ord [in hydras.Schutte.Schutte_basics]
    +

    P

    +P [in hydras.Prelude.LibHyps_Experiments]
    +Precedence.A [in hydras.rpo.rpo]
    +Precedence.prec [in hydras.rpo.rpo]
    +Precedence.prec_transitive [in hydras.rpo.rpo]
    +Precedence.prec_antisym [in hydras.rpo.rpo]
    +Precedence.prec_dec [in hydras.rpo.rpo]
    +Precedence.status [in hydras.rpo.rpo]
    +

    R

    +RPO.rpo_add_context [in hydras.rpo.rpo]
    +RPO.rpo_subst [in hydras.rpo.rpo]
    +RPO.rpo_trans [in hydras.rpo.rpo]
    +RPO.rpo_closure [in hydras.rpo.rpo]
    +RPO.wf_rpo [in hydras.rpo.rpo]
    +

    S

    +Signature.arity [in hydras.rpo.term]
    +Signature.eq_symbol_dec [in hydras.rpo.term]
    +Signature.symb [in hydras.rpo.term]
    +S.A [in hydras.rpo.decidable_set]
    +S.cardinal_subset [in hydras.rpo.list_set]
    +S.eq_A_dec [in hydras.rpo.decidable_set]
    +

    T

    +Term.empty_subst_is_id_list [in hydras.rpo.term]
    +Term.empty_subst_is_id [in hydras.rpo.term]
    +Term.eq_term_dec [in hydras.rpo.term]
    +Term.is_a_pos_exists_subtem [in hydras.rpo.term]
    +Term.replace_at_pos_list_replace_at_pos_in_subterm [in hydras.rpo.term]
    +Term.replace_at_pos_is_replace_at_pos2 [in hydras.rpo.term]
    +Term.replace_at_pos_is_replace_at_pos1 [in hydras.rpo.term]
    +Term.replace_at_pos_unfold [in hydras.rpo.term]
    +Term.size_subterm_at_pos [in hydras.rpo.term]
    +Term.size_direct_subterm [in hydras.rpo.term]
    +Term.size_ge_one [in hydras.rpo.term]
    +Term.size_unfold [in hydras.rpo.term]
    +Term.subst_comp_is_subst_comp [in hydras.rpo.term]
    +Term.subst_comp_is_subst_comp_aux1 [in hydras.rpo.term]
    +Term.subterm_at_pos_apply_subst_apply_subst_subterm_at_pos [in hydras.rpo.term]
    +Term.term_rec8 [in hydras.rpo.term]
    +Term.term_rec7 [in hydras.rpo.term]
    +Term.term_rec4 [in hydras.rpo.term]
    +Term.term_rec3 [in hydras.rpo.term]
    +Term.term_rec2 [in hydras.rpo.term]
    +Term.well_formed_apply_subst [in hydras.rpo.term]
    +Term.well_formed_fold [in hydras.rpo.term]
    +Term.well_formed_unfold [in hydras.rpo.term]
    +

    V

    +Variables.eq_variable_dec [in hydras.rpo.term]
    +Variables.var [in hydras.rpo.term]
    +


    +

    Inductive Index

    +

    A

    +Ackermann.compare_T3 [in gaia_hydras.nfwfgaia]
    +Ackermann.T3 [in gaia_hydras.nfwfgaia]
    +Ackermann.T3leq_xor_gtn [in gaia_hydras.nfwfgaia]
    +Ackermann.T3ltn_xor_geq [in gaia_hydras.nfwfgaia]
    +Alt.Eps0_prec.status_type [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_sig.arity_type [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_sig.symb0 [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Hydra [in hydras.Hydra.Hydra_Definitions]
    +Alt.Vars.empty_set [in hydras.Epsilon0.Epsilon0rpo]
    +answer [in hydras.Epsilon0.Large_Sets_Examples]
    +ap [in hydras.Epsilon0.T1]
    +ap [in hydras.Gamma0.T2]
    +Assoc [in hydras.Prelude.STDPP_compat]
    +

    B

    +Bad3.Fchain_proper [in additions.Euclidean_Chains]
    +

    C

    +CantorOrdinal.compare_T1 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1leq_xor_gtn [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1ltn_xor_geq [in gaia_hydras.nfwfgaia]
    +Compare [in hydras.Prelude.Comparable]
    +computation [in additions.Addition_Chains]
    +

    D

    +Decision [in hydras.Prelude.STDPP_compat]
    +

    E

    +Equiv [in additions.Monoid_def]
    +

    F

    +Fchain_proper [in additions.Euclidean_Chains]
    +Fkont_proper [in additions.Euclidean_Chains]
    +Forall2R [in hydras.Prelude.MoreLists]
    +Formula [in hydras.Ackermann.fol]
    +fuel [in hydras.Prelude.Fuel]
    +fun_bijection [in hydras.Schutte.PartialFun]
    +fun_injection [in hydras.Schutte.PartialFun]
    +

    G

    +Gamma0_prec.status_type [in hydras.Gamma0.Gamma0]
    +Gamma0_sig.arity_type [in hydras.Gamma0.Gamma0]
    +Gamma0_sig.symb0 [in hydras.Gamma0.Gamma0]
    +Gamma0.compare_T2 [in gaia_hydras.nfwfgaia]
    +Gamma0.T2 [in gaia_hydras.nfwfgaia]
    +Gamma0.T2leq_xor_gtn [in gaia_hydras.nfwfgaia]
    +Gamma0.T2ltn_xor_geq [in gaia_hydras.nfwfgaia]
    +

    H

    +Hydra [in hydras.Hydra.Hydra_Definitions]
    +Hydrae [in hydras.Hydra.Hydra_Definitions]
    +

    I

    +info [in additions.Trace_exercise]
    +InH [in hydras.Schutte.MoreEpsilonIota]
    +instr [in additions.AM]
    +isPR [in hydras.Ackermann.primRec]
    +isPRrel [in hydras.Ackermann.primRec]
    +is_limit [in hydras.Gamma0.T2]
    +is_successor [in hydras.Gamma0.T2]
    +is_finite [in hydras.Gamma0.T2]
    +

    K

    +Kchain_proper [in additions.Euclidean_Chains]
    +

    L

    +lexico [in hydras.Prelude.Simple_LexProd]
    +lexpower [in hydras.solutions_exercises.MultisetWf]
    +lex_prod [in hydras.Prelude.DecPreOrder_Instances]
    +limit_plus_fin [in hydras.Gamma0.Gamma0]
    +LNNRelation [in hydras.Ackermann.Languages]
    +LNTFunction [in hydras.Ackermann.Languages]
    +LNTRelation [in hydras.Ackermann.Languages]
    +LO.ap [in hydras.OrdinalNotations.OmegaOmega]
    +lt [in hydras.Gamma0.T2]
    +LT_cases [in hydras.Epsilon0.T1]
    +lt_a_phi0_b [in hydras.Epsilon0.T1]
    +lt_cases [in hydras.Epsilon0.T1]
    +lt_epsilon0 [in hydras.Gamma0.T2]
    +L_spec [in hydras.Epsilon0.Large_Sets]
    +

    M

    +Make.multiset_extension_step [in hydras.rpo.dickson]
    +Make.rpo [in hydras.rpo.rpo]
    +Make.rpo_mul_rest_step [in hydras.rpo.rpo]
    +Make.rpo_mul_rest [in hydras.rpo.rpo]
    +Make.rpo_lex_rest [in hydras.rpo.rpo]
    +Make.rpo_mul [in hydras.rpo.rpo]
    +Make.rpo_lex [in hydras.rpo.rpo]
    +Make.rpo_eq [in hydras.rpo.rpo]
    +Make.term [in hydras.rpo.term]
    +marked [in hydras.Prelude.Sort_spec]
    +mem_head [in hydras.Hydra.O2H]
    +Monoid_Exp [in additions.Addition_Chains]
    +Mult_op [in additions.Monoid_def]
    +

    N

    +nf [in hydras.Gamma0.T2]
    +

    O

    +one_step [in hydras.Hydra.BigBattle]
    +

    P

    +path_toS [in hydras.Epsilon0.Paths]
    +path_to [in hydras.Epsilon0.Paths]
    +ppT1 [in hydras.Epsilon0.T1]
    +Precedence.status_type [in hydras.rpo.rpo]
    +Prf [in hydras.Ackermann.folProof]
    +PrimRec [in hydras.Ackermann.primRec]
    +PrimRecs [in hydras.Ackermann.primRec]
    +

    R

    +RelDecision [in hydras.Prelude.STDPP_compat]
    +rel_surjection [in hydras.Schutte.GRelations]
    +rel_injection [in hydras.Schutte.GRelations]
    +rel_bijection [in hydras.Schutte.PartialFun]
    +rel_injection [in hydras.Schutte.PartialFun]
    +result_equiv [in additions.AM]
    +rounds [in hydras.Hydra.Hydra_Definitions]
    +RPO.rpo [in hydras.rpo.rpo]
    +RPO.rpo_mul [in hydras.rpo.rpo]
    +RPO.rpo_lex [in hydras.rpo.rpo]
    +RPO.rpo_eq [in hydras.rpo.rpo]
    +R1 [in hydras.Hydra.Hydra_Definitions]
    +R2 [in hydras.Hydra.Hydra_Definitions]
    +

    S

    +signature [in additions.Euclidean_Chains]
    +Signature.arity_type [in hydras.rpo.term]
    +sorted_ge [in hydras.Prelude.MoreLists]
    +stack_equiv [in additions.AM]
    +standard_path_to [in hydras.Epsilon0.Paths]
    +standard_path_toS [in hydras.Epsilon0.Paths]
    +step [in hydras.Hydra.Omega2_Small]
    +steps [in hydras.Hydra.BigBattle]
    +subterm [in hydras.Gamma0.Gamma0]
    +S0 [in hydras.Hydra.Hydra_Definitions]
    +S1 [in hydras.Hydra.Hydra_Definitions]
    +S2 [in hydras.Hydra.Hydra_Definitions]
    +

    T

    +Term [in hydras.Ackermann.fol]
    +Terms [in hydras.Ackermann.fol]
    +Term.term [in hydras.rpo.term]
    +Total [in hydras.Prelude.DecPreOrder]
    +Toy.Fun [in hydras.MoreAck.FolExamples]
    +Toy.Rel [in hydras.MoreAck.FolExamples]
    +trace_to [in hydras.Hydra.Hydra_Definitions]
    +trans_clos [in hydras.rpo.closure]
    +T1 [in hydras.Epsilon0.T1]
    +T2 [in hydras.Gamma0.T2]
    +

    V

    +Vars.empty_set [in hydras.Gamma0.Gamma0]
    +


    +

    Projection Index

    +

    A

    +arityF [in hydras.Ackermann.fol]
    +arityR [in hydras.Ackermann.fol]
    +assoc [in hydras.Prelude.STDPP_compat]
    +

    B

    +Bad3.Fchain_proper_bad_prf [in additions.Euclidean_Chains]
    +battle_ok [in hydras.Hydra.Hydra_Definitions]
    +battle_rel [in hydras.Hydra.Hydra_Definitions]
    +

    C

    +cnf [in gaia_hydras.T1Bridge]
    +cnf [in hydras.Epsilon0.E0]
    +cnf_ok [in hydras.Epsilon0.E0]
    +codeFInj [in hydras.Ackermann.code]
    +codeRInj [in hydras.Ackermann.code]
    +comparable_comp_spec [in hydras.Prelude.Comparable]
    +comparable_sto [in hydras.Prelude.Comparable]
    +compare [in hydras.Prelude.Comparable]
    +c00 [in additions.Monoid_instances]
    +c01 [in additions.Monoid_instances]
    +c10 [in additions.Monoid_instances]
    +c11 [in additions.Monoid_instances]
    +

    D

    +decide [in hydras.Prelude.STDPP_compat]
    +decide_rel [in hydras.Prelude.STDPP_compat]
    +decr [in hydras.Prelude.WfVariant]
    +

    E

    +Eone_right [in additions.Monoid_def]
    +Eone_left [in additions.Monoid_def]
    +Eop_comm [in additions.Monoid_def]
    +Eop_assoc [in additions.Monoid_def]
    +Eop_proper [in additions.Monoid_def]
    +equiv [in additions.Monoid_def]
    +Eq_equiv [in additions.Monoid_def]
    +

    F

    +Fchain_proper_prf [in additions.Euclidean_Chains]
    +Fkont_proper_prf [in additions.Euclidean_Chains]
    +func [in hydras.Ackermann.model]
    +Functions [in hydras.Ackermann.fol]
    +

    G

    +gamma_gt [in additions.Strategies]
    +gamma_lt [in additions.Strategies]
    +G0.vnf [in hydras.Gamma0.Gamma0]
    +G0.vnf_ok [in hydras.Gamma0.Gamma0]
    +

    I

    +InHWit [in hydras.Schutte.MoreEpsilonIota]
    +iso_inv2 [in hydras.OrdinalNotations.ON_Generic]
    +iso_inv1 [in hydras.OrdinalNotations.ON_Generic]
    +iso_compare [in hydras.OrdinalNotations.ON_Generic]
    +is_pr_rel [in hydras.Ackermann.primRec]
    +is_pr [in hydras.Ackermann.primRec]
    +

    K

    +Kchain_proper_prf [in additions.Euclidean_Chains]
    +

    L

    +Lt_irreflexive [in hydras.Schutte.Well_Orders]
    +Lt_trans [in hydras.Schutte.Well_Orders]
    +

    M

    +Make.is_a_set [in hydras.rpo.list_set]
    +Make.sn [in hydras.rpo.rpo]
    +Make.support [in hydras.rpo.list_set]
    +Make.tt [in hydras.rpo.rpo]
    +mult_op [in additions.Monoid_def]
    +m_bounded [in hydras.Hydra.Hydra_Definitions]
    +M2.c00 [in additions.FirstSteps]
    +M2.c00 [in additions.Naive]
    +M2.c01 [in additions.FirstSteps]
    +M2.c01 [in additions.Naive]
    +M2.c10 [in additions.FirstSteps]
    +M2.c10 [in additions.Naive]
    +M2.c11 [in additions.FirstSteps]
    +M2.c11 [in additions.Naive]
    +

    N

    +nh [in hydras.Hydra.BigBattle]
    +n1 [in hydras.Hydra.BigBattle]
    +n2 [in hydras.Hydra.BigBattle]
    +

    O

    +OF_mono [in hydras.Schutte.Ordering_Functions]
    +OF_onto [in hydras.Schutte.Ordering_Functions]
    +OF_total [in hydras.Schutte.Ordering_Functions]
    +OF_segment [in hydras.Schutte.Ordering_Functions]
    +ONDef.type [in gaia_hydras.onType]
    +one_right [in additions.Monoid_def]
    +one_left [in additions.Monoid_def]
    +On_compare_spec [in hydras.OrdinalNotations.ON_Generic]
    +ON_correct_onto [in hydras.OrdinalNotations.ON_Generic]
    +ON_correct_inj [in hydras.OrdinalNotations.ON_Generic]
    +ON_wf [in hydras.OrdinalNotations.ON_Generic]
    +ON_comp [in hydras.OrdinalNotations.ON_Generic]
    +OO.data [in hydras.OrdinalNotations.OmegaOmega]
    +OO.data_ok [in hydras.OrdinalNotations.OmegaOmega]
    +op_comm [in additions.Monoid_def]
    +op_assoc [in additions.Monoid_def]
    +

    P

    +PA [in hydras.Epsilon0.F_alpha]
    +PA [in hydras.Epsilon0.Hprime]
    +PB [in hydras.Epsilon0.F_alpha]
    +PB [in hydras.Epsilon0.Hprime]
    +PC [in hydras.Epsilon0.F_alpha]
    +PC [in hydras.Epsilon0.Hprime]
    +PD [in hydras.Epsilon0.F_alpha]
    +PD [in hydras.Epsilon0.Hprime]
    +PE [in hydras.Epsilon0.F_alpha]
    +PE [in hydras.Epsilon0.Hprime]
    +

    Q

    +QA [in hydras.Epsilon0.F_alpha]
    +QD [in hydras.Epsilon0.F_alpha]
    +QE [in hydras.Epsilon0.F_alpha]
    +

    R

    +rel [in hydras.Ackermann.model]
    +Relations [in hydras.Ackermann.fol]
    +round [in hydras.Hydra.BigBattle]
    +

    S

    +Semibundled.dec_dec [in hydras.Prelude.DecPreOrder]
    +Semibundled.total_dec_total [in hydras.Prelude.DecPreOrder]
    +Semibundled.total_dec_pre_order [in hydras.Prelude.DecPreOrder]
    +Semibundled.total_dec [in hydras.Prelude.DecPreOrder]
    +SubON_onto [in hydras.OrdinalNotations.ON_Generic]
    +SubON_incl [in hydras.OrdinalNotations.ON_Generic]
    +SubON_compare [in hydras.OrdinalNotations.ON_Generic]
    +S.is_a_set [in hydras.rpo.list_set]
    +S.support [in hydras.rpo.list_set]
    +

    T

    +totalness [in hydras.Prelude.DecPreOrder]
    +total_pre_order_total [in hydras.Prelude.DecPreOrder]
    +total_pre_order_pre [in hydras.Prelude.DecPreOrder]
    +

    U

    +U [in hydras.Ackermann.model]
    +

    V

    +variant_decr [in hydras.Hydra.Hydra_Definitions]
    +

    W

    +well_order [in hydras.Schutte.Well_Orders]
    +wf [in hydras.Prelude.WfVariant]
    +


    +

    Section Index

    +

    A

    +Abstract_Properties [in hydras.Epsilon0.Hprime]
    +AB_given.rel_to_fun [in hydras.Schutte.PartialFun]
    +AB_given.f_given [in hydras.Schutte.PartialFun]
    +AB_given [in hydras.Schutte.PartialFun]
    +Ack_Properties.Induc_step [in hydras.MoreAck.Ack]
    +Ack_Properties [in hydras.MoreAck.Ack]
    +Adaptation [in additions.Compatibility]
    +Alt.well_founded [in hydras.Epsilon0.Epsilon0rpo]
    +AP_closed [in hydras.Schutte.AP]
    +AP_Unbounded.ksi_fixed [in hydras.Schutte.AP]
    +AP_Unbounded [in hydras.Schutte.AP]
    +Arith_lemmas [in hydras.Prelude.More_Arith]
    +A_def [in hydras.OrdinalNotations.ON_Omega2]
    +A_given [in hydras.solutions_exercises.MultisetWf]
    +

    B

    +BadExample [in hydras.MoreAck.BadSubst]
    +Bad.CounterExample [in additions.FirstSteps]
    +bare_syntax [in hydras.MoreAck.LNN_Examples]
    +battle_length_notPR [in hydras.Hydra.Hydra_Theorems]
    +Battle_length [in hydras.Hydra.Battle_length]
    +binary_power_proof [in additions.Addition_Chains]
    +Bounded [in hydras.Hydra.Epsilon0_Needed_Generic]
    +building_ordering_function_by_induction [in hydras.Schutte.Ordering_Functions]
    +building_ordering_function_1.beta_fixed [in hydras.Schutte.Ordering_Functions]
    +building_ordering_function_1 [in hydras.Schutte.Ordering_Functions]
    +

    C

    +Canon_examples [in hydras.Epsilon0.Canon]
    +CantorOrdinal.AddLocalNotation [in gaia_hydras.nfwfgaia]
    +Check_Proof [in hydras.Ackermann.checkPrf]
    +close [in hydras.Ackermann.codePA]
    +Code_Free_Vars [in hydras.Ackermann.codeFreeVar]
    +Code_Substitute_Term [in hydras.Ackermann.codeSubTerm]
    +Code_Substitute_Formula [in hydras.Ackermann.codeSubFormula]
    +Code_Term_Formula_Proof.codeTermFormDef [in hydras.Ackermann.code]
    +Code_Term_Formula_Proof.LcodeDef [in hydras.Ackermann.code]
    +Code_Term_Formula_Proof [in hydras.Ackermann.code]
    +code_nat_list [in hydras.Ackermann.cPair]
    +code_SysPrf.LNN [in Goedel.codeSysPrf]
    +code_SysPrf [in Goedel.codeSysPrf]
    +Code_PA [in hydras.Ackermann.codePA]
    +Comparable [in hydras.Prelude.Comparable]
    +compose2Examples [in hydras.MoreAck.PrimRecExamples]
    +Composition [in hydras.MoreAck.PrimRecExamples]
    +CompositionProofs [in additions.AM]
    +CompositionProofs.App [in additions.AM]
    +CompositionProofs.FFK [in additions.AM]
    +CompositionProofs.FK [in additions.AM]
    +CompositionProofs.KFK [in additions.AM]
    +Constant_to_standard_Proof [in hydras.Epsilon0.Paths]
    +Correctness [in hydras.Ackermann.fol]
    +Countable [in hydras.Schutte.Countable]
    +Countable.Countable_bijection [in hydras.Schutte.Countable]
    +Countable.Countable_seq_range [in hydras.Schutte.Countable]
    +Countable.Definitions [in hydras.Schutte.Countable]
    +Counter_Example [in hydras.solutions_exercises.MultisetWf]
    +CPair_Order [in hydras.Ackermann.cPair]
    +CPair_projections [in hydras.Ackermann.cPair]
    +CPair_Injectivity [in hydras.Ackermann.cPair]
    +Cter_example [in hydras.solutions_exercises.schutte_cnf_counter_example]
    +

    D

    +Deduction_Theorem [in hydras.Ackermann.Deduction]
    +Definitions [in additions.FirstSteps]
    +Definitions [in hydras.OrdinalNotations.ON_Generic]
    +Definitions [in hydras.Prelude.Simple_LexProd]
    +Defs [in hydras.Prelude.MoreOrders]
    +Defs [in hydras.OrdinalNotations.ON_mult]
    +Defs [in hydras.OrdinalNotations.ON_plus]
    +depth_rec_demo [in hydras.MoreAck.FolExamples]
    +Direct_proof.well_foundedness_proof.First_attempt [in hydras.Epsilon0.T1]
    +Direct_proof.well_foundedness_proof [in hydras.Epsilon0.T1]
    +dom_AckNotPR [in hydras.MoreAck.AckNotPR]
    +DS_iota.Proof_case_6 [in hydras.Hydra.O2H]
    +DS_iota.Proof_case_5 [in hydras.Hydra.O2H]
    +DS_iota.Proof_case_4 [in hydras.Hydra.O2H]
    +DS_iota [in hydras.Hydra.O2H]
    +

    E

    +Equality_Logic_Rules [in hydras.Ackermann.folLogic3]
    +Equations_for_addition.case3 [in hydras.Schutte.Correctness_E0]
    +Equations_for_addition.case2 [in hydras.Schutte.Correctness_E0]
    +Equations_for_addition.case1 [in hydras.Schutte.Correctness_E0]
    +Equations_for_addition [in hydras.Schutte.Correctness_E0]
    +Equivalence [in additions.Compatibility]
    +essai [in hydras.Epsilon0.T1]
    +evalList [in hydras.MoreAck.AckNotPR]
    +Examples [in hydras.Ackermann.LNT]
    +Examples [in hydras.MoreAck.LNN_Examples]
    +Exs [in hydras.MoreAck.PrimRecExamples]
    +

    F

    +First_Order_Logic.Formula_Depth_Induction [in hydras.Ackermann.fol]
    +First_Order_Logic.Formula_Decidability [in hydras.Ackermann.fol]
    +First_Order_Logic [in hydras.Ackermann.fol]
    +Fix [in hydras.Prelude.Restriction]
    +Fol_Properties.Substitution.Substitution_Properties [in hydras.Ackermann.folProp]
    +Fol_Properties.Substitution.Extensions [in hydras.Ackermann.folProp]
    +Fol_Properties.Substitution [in hydras.Ackermann.folProp]
    +Fol_Properties.Free_Variables [in hydras.Ackermann.folProp]
    +Fol_Properties [in hydras.Ackermann.folProp]
    +Forall2_right_induction [in hydras.Prelude.MoreLists]
    +Free_Variables [in hydras.Ackermann.LNN]
    +Free_Variables [in hydras.Ackermann.LNT]
    +F_monotony_l.case_lt [in hydras.Epsilon0.F_alpha]
    +F_monotony_l.case_eq [in hydras.Epsilon0.F_alpha]
    +F_monotony_l [in hydras.Epsilon0.F_alpha]
    +F_alpha_notPR.case_lt [in hydras.Epsilon0.F_omega]
    +F_alpha_notPR [in hydras.Epsilon0.F_omega]
    +F_omega_notPR [in hydras.Epsilon0.F_omega]
    +

    G

    +Gamma [in additions.AM]
    +Gamma [in additions.Euclidean_Chains]
    +Gamma.All_OK [in additions.AM]
    +General_Relations.elagage.to_nat_elagage [in hydras.Schutte.GRelations]
    +General_Relations.elagage [in hydras.Schutte.GRelations]
    +General_Relations.surjection2injection [in hydras.Schutte.GRelations]
    +General_Relations.injection2surjection [in hydras.Schutte.GRelations]
    +General_Relations.Definitions [in hydras.Schutte.GRelations]
    +General_Relations [in hydras.Schutte.GRelations]
    +Generic [in hydras.Prelude.Merge_Sort]
    +Generic.Merging [in hydras.Prelude.Merge_Sort]
    +Generic.Merging.Correctness [in hydras.Prelude.Merge_Sort]
    +Generic.Merging.Correctness.merge_sort [in hydras.Prelude.Merge_Sort]
    +Generic.Splitting [in hydras.Prelude.Merge_Sort]
    +Goedel's_1st_Incompleteness [in Goedel.goedel1]
    +Goedel's_2nd_Incompleteness.Goedel1PA [in Goedel.goedel2]
    +Goedel's_2nd_Incompleteness [in Goedel.goedel2]
    +

    H

    +Hypos [in hydras.Prelude.First_toggle]
    +H'_F [in hydras.Epsilon0.F_alpha]
    +H'_omega_cube_3 [in hydras.Epsilon0.Hprime]
    +H'_cons [in hydras.Epsilon0.Hprime]
    +

    I

    +Ignore_Params [in hydras.Ackermann.primRec]
    +ImpossibilityProof [in gaia_hydras.GHydra]
    +Impossibility_Proof [in hydras.Hydra.Epsilon0_Needed_Free]
    +Impossibility_Proof [in hydras.MoreAck.AckNotPR]
    +Impossibility_Proof [in hydras.Hydra.Epsilon0_Needed_Std]
    +Impossibility_Proof [in hydras.Hydra.Omega2_Small]
    +Impossibility_Proof [in hydras.Hydra.Omega_Small]
    +Impossibility1 [in hydras.solutions_exercises.MultisetWf]
    +Inclusion_ij [in hydras.OrdinalNotations.ON_Finite]
    +inductive_step [in hydras.Epsilon0.F_omega]
    +Inverse_Image_transp [in additions.Wf_transparent]
    +inversion_of_bijection [in hydras.Schutte.PartialFun]
    +

    K

    +KFK_proof [in additions.Euclidean_Chains]
    +KP [in hydras.Hydra.KP_example]
    +

    L

    +lemmas_on_length [in hydras.Gamma0.Gamma0]
    +Lemma_4_4_Proof [in hydras.Epsilon0.Large_Sets]
    +Lemma_4_3_Proof [in hydras.Epsilon0.Paths]
    +LExamples [in hydras.Ackermann.fol]
    +lexprod [in hydras.Prelude.DecPreOrder_Instances]
    +lim [in hydras.Epsilon0.Large_Sets]
    +List_Remove [in hydras.Ackermann.ListExt]
    +LNN_FixPoint [in Goedel.fixPoint]
    +LNT_FixPoint [in Goedel.fixPoint]
    +Logic [in hydras.Ackermann.LNN]
    +Logic [in hydras.Ackermann.LNT]
    +Logic_Rules.Other_Rules [in hydras.Ackermann.folLogic]
    +Logic_Rules.Not_Rules [in hydras.Ackermann.folLogic]
    +Logic_Rules [in hydras.Ackermann.folLogic]
    +lt_incl_rpo [in hydras.Gamma0.Gamma0]
    +L_correct_proof [in hydras.Epsilon0.L_alpha]
    +

    M

    +Make.DoubleRecursion [in hydras.rpo.term]
    +Make.Recursion [in hydras.rpo.term]
    +Model_Theory.Consistent_Theory [in hydras.Ackermann.model]
    +Model_Theory [in hydras.Ackermann.model]
    +MoreOrderType [in gaia_hydras.onType]
    +MoreOrderType.Succ_no_limit [in gaia_hydras.onType]
    +More_Logic_Rules [in hydras.Ackermann.folLogic2]
    +M_given.Power_of_op [in additions.Pow_variant]
    +M_given.About_power [in additions.Pow_variant]
    +M_given [in additions.Pow_variant]
    +M_given.Power_of_op [in additions.Pow]
    +M_given [in additions.Pow]
    +M2_def [in additions.Monoid_instances]
    +M2.Definitions [in additions.Naive]
    +M2.M2_Definitions [in additions.FirstSteps]
    +

    N

    +Nmodulo [in additions.Monoid_instances]
    +NN [in hydras.Ackermann.NN]
    +non_optimality_proof [in additions.Addition_Chains]
    +NotIncl [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +N_mod.m_fixed [in additions.Naive]
    +

    O

    +OA_given [in hydras.OrdinalNotations.ON_O]
    +ONDef.Exports.Lemmas [in gaia_hydras.onType]
    +ONDef.Packing [in gaia_hydras.onType]
    +ONEpsilon0Def [in gaia_hydras.onType]
    +onFiniteDef [in gaia_hydras.onType]
    +onOmegaDef [in gaia_hydras.onType]
    +on_length [in hydras.Gamma0.T2]
    +On_alpha.S2 [in hydras.solutions_exercises.Limit_Infinity]
    +On_alpha.S1 [in hydras.solutions_exercises.Limit_Infinity]
    +On_alpha [in hydras.solutions_exercises.Limit_Infinity]
    +On_Iota [in hydras.Schutte.MoreEpsilonIota]
    +ordering_function_unicity [in hydras.Schutte.Ordering_Functions]
    +ordering_function_unicity_1 [in hydras.Schutte.Ordering_Functions]
    +

    P

    +PA [in hydras.Ackermann.PA]
    +phi_to_psi [in hydras.Gamma0.Gamma0]
    +phi0_mult [in hydras.Epsilon0.Large_Sets]
    +Primitive_Recursive_Representable [in Goedel.PRrepresentable]
    +Primitive_recursion [in hydras.MoreAck.PrimRecExamples]
    +ProofH [in hydras.Ackermann.folProof]
    +ProofH.Example [in hydras.Ackermann.folProof]
    +ProofOfLexwf [in hydras.solutions_exercises.MultisetWf]
    +Proofs_of_unicity.Proofs.S2 [in hydras.solutions_exercises.predSuccUnicity]
    +Proofs_of_unicity.Proofs.S1 [in hydras.solutions_exercises.predSuccUnicity]
    +Proofs_of_unicity.Proofs [in hydras.solutions_exercises.predSuccUnicity]
    +Proofs_of_unicity [in hydras.solutions_exercises.predSuccUnicity]
    +Proofs_of_lt_succ_le.Proofs.S1 [in hydras.solutions_exercises.lt_succ_le]
    +Proofs_of_lt_succ_le.Proofs [in hydras.solutions_exercises.lt_succ_le]
    +Proofs_of_lt_succ_le [in hydras.solutions_exercises.lt_succ_le]
    +Proof_of_dist [in hydras.Epsilon0.T1]
    +Proof_of_mult_nf.Induction [in hydras.Epsilon0.T1]
    +Proof_of_mult_nf [in hydras.Epsilon0.T1]
    +Proof_of_MinIsPR [in hydras.solutions_exercises.MinPR2]
    +Proof_of_oplus_lt1 [in hydras.Epsilon0.Hessenberg]
    +Proof_of_oplus_assoc [in hydras.Epsilon0.Hessenberg]
    +Proof_of_oplus_comm [in hydras.Epsilon0.Hessenberg]
    +Proof_of_plus_nf [in hydras.Epsilon0.Hessenberg]
    +Proof_of_Ackn_PR.S_step [in hydras.MoreAck.AckNotPR]
    +Proof_of_Ackn_PR [in hydras.MoreAck.AckNotPR]
    +Proof_of_4_5_2 [in hydras.Epsilon0.Large_Sets]
    +Proof_of_Lemma5.Alpha_positive.closedness [in hydras.Schutte.Critical]
    +Proof_of_Lemma5.Alpha_positive.Proof_unbounded [in hydras.Schutte.Critical]
    +Proof_of_Lemma5.Alpha_positive [in hydras.Schutte.Critical]
    +Proof_of_Lemma5 [in hydras.Schutte.Critical]
    +Proof_of_nested_Ack_bound [in hydras.MoreAck.Ack]
    +Proof_of_mult_ref [in gaia_hydras.T1Bridge]
    +Proof_of_FibIsPR [in hydras.solutions_exercises.FibonacciPR]
    +Proof_of_MinIsPR [in hydras.solutions_exercises.MinPR]
    +Proof_of_H'_mono_l.Limit_case [in hydras.Epsilon0.Hprime]
    +Proof_of_H'_mono_l.Succ_case [in hydras.Epsilon0.Hprime]
    +Proof_of_H'_mono_l [in hydras.Epsilon0.Hprime]
    +Proof_of_Abstract_Properties.The_induction.alpha_limit [in hydras.Epsilon0.Hprime]
    +Proof_of_Abstract_Properties.The_induction.alpha_Succ [in hydras.Epsilon0.Hprime]
    +Proof_of_Abstract_Properties.The_induction [in hydras.Epsilon0.Hprime]
    +Proof_of_Abstract_Properties [in hydras.Epsilon0.Hprime]
    +proof_of_associativity [in hydras.Schutte.Addition]
    +Proof_of_lt_not_wf.seq_intro [in hydras.solutions_exercises.T1_ltNotWf]
    +Proof_of_lt_not_wf [in hydras.solutions_exercises.T1_ltNotWf]
    +Properties [in hydras.Epsilon0.F_alpha]
    +Properties_of_f_alpha.The_induction [in hydras.Epsilon0.F_alpha]
    +Properties_of_f_alpha [in hydras.Epsilon0.F_alpha]
    +Properties.The_induction.alpha_limit [in hydras.Epsilon0.F_alpha]
    +Properties.The_induction.alpha_Succ [in hydras.Epsilon0.F_alpha]
    +Properties.The_induction [in hydras.Epsilon0.F_alpha]
    +

    R

    +Refinement_proof [in additions.Addition_Chains]
    +Replacement [in hydras.Ackermann.folReplace]
    +RepresentableExpressible [in hydras.Ackermann.expressible]
    +restricted_recursion [in hydras.Prelude.Restriction]
    +restricted_recursion [in gaia_hydras.nfwfgaia]
    +Rosser's_Incompleteness [in Goedel.rosserPA]
    +Rosser's_Incompleteness [in Goedel.rosser]
    +R_given [in hydras.Prelude.Sort_spec]
    +

    S

    +Semantics [in additions.AM]
    +Sequences [in gaia_hydras.nfwfgaia]
    +sqrtIsPR [in hydras.solutions_exercises.isqrt]
    +sqrtIsPR.Proof_isqrt [in hydras.solutions_exercises.isqrt]
    +step [in hydras.Epsilon0.F_omega]
    +Strong_Recursion [in hydras.Ackermann.cPair]
    +SubAllVars [in hydras.Ackermann.subAll]
    +SubAllVars.subAllCloseFrom [in hydras.Ackermann.subAll]
    +SubON_properties [in hydras.OrdinalNotations.ON_Generic]
    +Substitution_Properties [in hydras.Ackermann.subProp]
    +succ [in hydras.Epsilon0.Large_Sets]
    +S1 [in hydras.solutions_exercises.is_F_monotonous]
    +S1 [in hydras.solutions_exercises.F_3]
    +S1 [in additions.Addition_Chains]
    +S1.Limit [in hydras.solutions_exercises.F_3]
    +S1.Limit.S3 [in hydras.solutions_exercises.F_3]
    +S1.Successor [in hydras.solutions_exercises.F_3]
    +S1.Successor.S2 [in hydras.solutions_exercises.F_3]
    +S2 [in additions.Addition_Chains]
    +S256 [in additions.Monoid_instances]
    +

    T

    +Term.DoubleRecursion [in hydras.rpo.term]
    +Term.Recursion [in hydras.rpo.term]
    +the_context.About_WO [in hydras.Schutte.Well_Orders]
    +the_context [in hydras.Schutte.Well_Orders]
    +Th13_5.verso.U_fixed [in hydras.Schutte.Ordering_Functions]
    +Th13_5.verso [in hydras.Schutte.Ordering_Functions]
    +Th13_5.recto.M_fixed [in hydras.Schutte.Ordering_Functions]
    +Th13_5.recto [in hydras.Schutte.Ordering_Functions]
    +Th13_5 [in hydras.Schutte.Ordering_Functions]
    +Toy.Drinkers_theorem [in hydras.MoreAck.FolExamples]
    +Toy.OnSubstF [in hydras.MoreAck.FolExamples]
    +Toy.PeirceProof [in hydras.MoreAck.FolExamples]
    +Toy.PrimedSymbols [in hydras.MoreAck.FolExamples]
    +Toy.ProofOfEx3 [in hydras.MoreAck.FolExamples]
    +Translate_Proof [in hydras.Ackermann.LNN2LNT]
    +trans_proof [in hydras.Gamma0.Gamma0]
    +

    V

    +Variants [in hydras.Prelude.WfVariant]
    +

    W

    +Well_Formed_Term.Well_Formed_Formula [in hydras.Ackermann.wellFormed]
    +Well_Formed_Term [in hydras.Ackermann.wellFormed]
    +well_founded [in hydras.Gamma0.Gamma0]
    +with_matrices [in additions.fib]
    +


    +

    Instance Index

    +

    A

    +Ackn_IsPR [in hydras.MoreAck.AckNotPR]
    +Alt.addIsPR [in hydras.MoreAck.PrimRecExamples]
    +Alt.addIsPR' [in hydras.MoreAck.PrimRecExamples]
    +Alt.const0_NIsPR [in hydras.MoreAck.PrimRecExamples]
    +Alt.pi2_5IsPR [in hydras.MoreAck.PrimRecExamples]
    +Alt.predIsPR [in hydras.MoreAck.PrimRecExamples]
    +Alt.succIsPR [in hydras.MoreAck.PrimRecExamples]
    +Alt.zeroIsPR [in hydras.MoreAck.PrimRecExamples]
    +

    B

    +Bad3.Fcompose_proper [in additions.Euclidean_Chains]
    +Binary_strat [in additions.BinaryStrat]
    +boddIsPR [in hydras.Ackermann.primRec]
    +bool_and_binop [in additions.Monoid_def]
    +boundComputationIsPR [in hydras.Ackermann.codeSubFormula]
    +boundSearchIsPR [in hydras.Ackermann.primRec]
    +bVar [in gaia_hydras.GHydra]
    +

    C

    +callIsPR [in hydras.Ackermann.cPair]
    +checkPrfAXMIsPR [in hydras.Ackermann.checkPrf]
    +checkPrfCPIsPR [in hydras.Ackermann.checkPrf]
    +checkPrfEQ1IsPR [in hydras.Ackermann.checkPrf]
    +checkPrfEQ2IsPR [in hydras.Ackermann.checkPrf]
    +checkPrfEQ3IsPR [in hydras.Ackermann.checkPrf]
    +checkPrfEQ4IsPR [in hydras.Ackermann.checkPrf]
    +checkPrfEQ5IsPR [in hydras.Ackermann.checkPrf]
    +checkPrfFA1IsPR [in hydras.Ackermann.checkPrf]
    +checkPrfFA2IsPR [in hydras.Ackermann.checkPrf]
    +checkPrfFA3IsPR [in hydras.Ackermann.checkPrf]
    +checkPrfGENIsPR [in hydras.Ackermann.checkPrf]
    +checkPrfHelpIsPR [in hydras.Ackermann.checkPrf]
    +checkPrfIMP1IsPR [in hydras.Ackermann.checkPrf]
    +checkPrfIMP2IsPR [in hydras.Ackermann.checkPrf]
    +checkPrfIsPR [in hydras.Ackermann.checkPrf]
    +checkPrfMPIsPR [in hydras.Ackermann.checkPrf]
    +checkTraceIsPR [in hydras.Ackermann.codeSubFormula]
    +codeAndIsPR [in hydras.Ackermann.checkPrf]
    +codeAppIsPR [in hydras.Ackermann.codeList]
    +codeArityLNNRIsPR [in hydras.Ackermann.Languages]
    +codeArityLNTFIsPR [in hydras.Ackermann.Languages]
    +codeArityLNTRIsPR [in hydras.Ackermann.Languages]
    +codeAxmEqHelpIsPR [in hydras.Ackermann.checkPrf]
    +codeCloseIsPR [in hydras.Ackermann.codePA]
    +codeCloseListIsPR [in hydras.Ackermann.codePA]
    +codeFreeVarFormulaIsPR [in hydras.Ackermann.codeFreeVar]
    +codeFreeVarListFormulaIsPR [in hydras.Ackermann.codeFreeVar]
    +codeFreeVarTermsIsPR [in hydras.Ackermann.codeFreeVar]
    +codeFreeVarTermTermsIsPR [in hydras.Ackermann.codeFreeVar]
    +codeIffIsPR [in hydras.Ackermann.checkPrf]
    +codeImpIsPR [in hydras.Ackermann.prLogic]
    +codeInductionSchemaIsPR [in hydras.Ackermann.codePA]
    +codeInIsPR [in hydras.Ackermann.codeList]
    +codeLengthIsPR [in hydras.Ackermann.codeList]
    +codeListRemoveIsPR [in hydras.Ackermann.codeList]
    +codeNatToTermIsPR [in hydras.Ackermann.codeNatToTerm]
    +codeNewVarIsPR [in hydras.Ackermann.codeSubFormula]
    +codeNoDupIsPR [in hydras.Ackermann.codeList]
    +codeNotIsPR [in hydras.Ackermann.prLogic]
    +codeNthIsPR [in hydras.Ackermann.cPair]
    +codeNVars1IsPR [in hydras.Ackermann.checkPrf]
    +codeNVars2IsPR [in hydras.Ackermann.checkPrf]
    +codeOpenIsPR [in hydras.Ackermann.codePA]
    +codeOrIsPR [in hydras.Ackermann.checkPrf]
    +codePAIsPR [in hydras.Ackermann.codePA]
    +codeSubFormulaIsPR [in hydras.Ackermann.codeSubFormula]
    +codeSubTermIsPR [in hydras.Ackermann.codeSubTerm]
    +codeSubTermTermsIsPR [in hydras.Ackermann.codeSubTerm]
    +comp [in hydras.OrdinalNotations.ON_Finite]
    +compare_T1 [in hydras.Epsilon0.T1]
    +compare_omega2 [in hydras.OrdinalNotations.ON_Omega2]
    +compare_O [in hydras.OrdinalNotations.ON_O]
    +compare_nat_nat [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +compare_mult [in hydras.OrdinalNotations.ON_mult]
    +compare_plus [in hydras.OrdinalNotations.ON_plus]
    +compare_fin [in hydras.OrdinalNotations.ON_Finite]
    +compare_E0 [in hydras.Epsilon0.E0]
    +compare_nat [in hydras.OrdinalNotations.ON_Omega]
    +compare_T2 [in hydras.Gamma0.Gamma0]
    +comparison_eq_dec [in hydras.Prelude.DecPreOrder]
    +compose1_NIsPR [in hydras.Ackermann.primRec]
    +compose1_3IsPR [in hydras.Ackermann.primRec]
    +compose1_2IsPR [in hydras.Ackermann.primRec]
    +compose1_1IsPR [in hydras.Ackermann.primRec]
    +compose2IsPR [in hydras.Ackermann.primRec]
    +compose2_4IsPR [in hydras.Ackermann.primRec]
    +compose2_3IsPR [in hydras.Ackermann.primRec]
    +compose2_2IsPR [in hydras.Ackermann.primRec]
    +compose2_1IsPR [in hydras.Ackermann.primRec]
    +compose3_3IsPR [in hydras.Ackermann.primRec]
    +compose3_2IsPR [in hydras.Ackermann.primRec]
    +compose3_1IsPR [in hydras.Ackermann.primRec]
    +compose4_3IsPR [in hydras.Ackermann.primRec]
    +compose4_2IsPR [in hydras.Ackermann.primRec]
    +comp_equiv_equivalence [in additions.Euclidean_Chains]
    +Comp_equiv [in additions.Euclidean_Chains]
    +Cons [in hydras.Epsilon0.E0]
    +const0_NIsPR [in hydras.Ackermann.primRec]
    +const1_NIsPR [in hydras.Ackermann.primRec]
    +cPairIsPR [in hydras.Ackermann.cPair]
    +cPairPi1IsPR [in hydras.Ackermann.cPair]
    +cPairPi2IsPR [in hydras.Ackermann.cPair]
    +cTripleIsPR [in hydras.Ackermann.cPair]
    +cTriplePi1IsPR [in hydras.Ackermann.cPair]
    +cTriplePi2IsPR [in hydras.Ackermann.cPair]
    +cTriplePi3IsPR [in hydras.Ackermann.cPair]
    +

    D

    +Demo.nat_mult_op [in additions.Monoid_def]
    +Dicho_strat [in additions.Dichotomy]
    +div2IsPR [in hydras.Ackermann.cPair]
    +doubleIsPR [in hydras.MoreAck.PrimRecExamples]
    +

    E

    +Eop_proper [in additions.Pow_variant]
    +Eop_proper [in additions.Pow]
    +Epsilon0 [in gaia_hydras.T1Bridge]
    +Epsilon0 [in hydras.Epsilon0.E0]
    +epsilon0_dec [in hydras.Epsilon0.T1]
    +epsilon0_pre_order [in hydras.Epsilon0.T1]
    +Epsilon0_correct [in hydras.Schutte.Correctness_E0]
    +eqIsPR [in hydras.Ackermann.primRec]
    +equiv_equiv [in hydras.Prelude.Sort_spec]
    +equiv_equiv [in hydras.Prelude.DecPreOrder]
    +Equiv_Trans [in additions.Monoid_def]
    +Equiv_Sym [in additions.Monoid_def]
    +Equiv_Refl [in additions.Monoid_def]
    +Equiv_Equiv [in additions.Monoid_def]
    +eq_equiv [in additions.Monoid_def]
    +evalStrongRecIsPR [in hydras.Ackermann.cPair]
    +exec_Proper [in additions.AM]
    +expIsPR [in hydras.solutions_exercises.MorePRExamples]
    +exp_alt_PR [in hydras.solutions_exercises.MorePRExamples]
    +E0add [in hydras.Epsilon0.E0]
    +E0compare [in gaia_hydras.T1Bridge]
    +E0fin [in hydras.Epsilon0.E0]
    +E0finS [in hydras.Epsilon0.E0]
    +E0mul [in hydras.Epsilon0.E0]
    +E0one [in hydras.Epsilon0.E0]
    +E0zero [in hydras.Epsilon0.E0]
    +E0_comp [in gaia_hydras.T1Bridge]
    +E0_sto [in gaia_hydras.T1Bridge]
    +E0_comp [in hydras.Epsilon0.E0]
    +E0_sto [in hydras.Epsilon0.E0]
    +E0_phi0 [in hydras.Epsilon0.E0]
    +E0_succ [in hydras.Epsilon0.E0]
    +E0_omega [in hydras.Epsilon0.E0]
    +

    F

    +factIsPR [in hydras.solutions_exercises.MorePRExamples]
    +fact_altIsPR [in hydras.solutions_exercises.MorePRExamples]
    +Fcompose_proper [in additions.Euclidean_Chains]
    +Fexp2_proper [in additions.Euclidean_Chains]
    +Fexp2_nat_proper [in additions.Euclidean_Chains]
    +FFK_proper [in additions.Euclidean_Chains]
    +fibIsPR [in hydras.solutions_exercises.FibonacciPR]
    +fibPRIsPR [in hydras.solutions_exercises.FibonacciPR]
    +fib_altIsPR [in hydras.solutions_exercises.FibonacciPR]
    +filter001IsPR [in hydras.Ackermann.primRec]
    +filter0011IsPR [in hydras.Ackermann.primRec]
    +filter01IsPR [in hydras.Ackermann.primRec]
    +filter010IsPR [in hydras.Ackermann.primRec]
    +filter011IsPR [in hydras.Ackermann.primRec]
    +filter10IsPR [in hydras.Ackermann.primRec]
    +filter100IsPR [in hydras.Ackermann.primRec]
    +filter1000IsPR [in hydras.Ackermann.primRec]
    +filter101IsPR [in hydras.Ackermann.primRec]
    +filter1011IsPR [in hydras.Ackermann.primRec]
    +filter110IsPR [in hydras.Ackermann.primRec]
    +filter1100IsPR [in hydras.Ackermann.primRec]
    +FinOrd [in hydras.OrdinalNotations.ON_Finite]
    +finord_ON [in gaia_hydras.ON_gfinite]
    +finord_comp [in gaia_hydras.ON_gfinite]
    +finord_sto [in gaia_hydras.ON_gfinite]
    +finord_compare [in gaia_hydras.ON_gfinite]
    +FinOrd_Omega [in hydras.OrdinalNotations.ON_Omega]
    +FK_proper [in additions.Euclidean_Chains]
    +free [in hydras.Hydra.Hydra_Definitions]
    +F_n_PR [in hydras.Epsilon0.F_omega]
    +F_0_isPR [in hydras.Epsilon0.F_omega]
    +F_incl_ij [in hydras.OrdinalNotations.ON_Finite]
    +F1_proper [in additions.Euclidean_Chains]
    +F2_proper [in additions.Euclidean_Chains]
    +F3_proper [in additions.Euclidean_Chains]
    +

    G

    +gtIsPR [in hydras.Ackermann.primRec]
    +G0.compare_G0 [in hydras.Gamma0.Gamma0]
    +G0.Finite [in hydras.Gamma0.Gamma0]
    +G0.Gamma0 [in hydras.Gamma0.Gamma0]
    +G0.Gamma0_comp [in hydras.Gamma0.Gamma0]
    +G0.lt_sto [in hydras.Gamma0.Gamma0]
    +G0.Omega [in hydras.Gamma0.Gamma0]
    +G0.Phi [in hydras.Gamma0.Gamma0]
    +G0.Plus [in hydras.Gamma0.Gamma0]
    +G0.zero [in hydras.Gamma0.Gamma0]
    +

    H

    +height_var [in hydras.Hydra.Omega_Small]
    +hVar [in gaia_hydras.GHydra]
    +HVariant [in hydras.Hydra.Hydra_Termination]
    +HVariant_0 [in hydras.Hydra.Hydra_Termination]
    +

    I

    +idIsPR [in hydras.Ackermann.primRec]
    +If2IsPR [in hydras.solutions_exercises.MinPR2]
    +ignoreParamsIsPR [in hydras.Ackermann.primRec]
    +Incl [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +indIsPR [in hydras.Ackermann.primRec]
    +ind1ParamIsPR [in hydras.Ackermann.primRec]
    +ind2ParamIsPR [in hydras.Ackermann.primRec]
    +inhNat [in hydras.Schutte.MoreEpsilonIota]
    +Inh_Ord_Ord [in hydras.Schutte.Schutte_basics]
    +Inh_OSets [in hydras.Schutte.Schutte_basics]
    +InH_Ord [in hydras.Schutte.Schutte_basics]
    +Int63mult [in additions.Monoid_instances]
    +int63_mult_op [in additions.Monoid_instances]
    +Inverse_fun [in hydras.Prelude.DecPreOrder_Instances]
    +isPRextEqual [in hydras.Ackermann.primRec]
    +isPRTrans [in hydras.Ackermann.primRec]
    +iSPR_Ack_Sn [in hydras.MoreAck.AckNotPR]
    +issqrtIsPR [in hydras.solutions_exercises.isqrt]
    +iterateIsPR [in hydras.Ackermann.primRec]
    +

    K

    +KFF_proper [in additions.Euclidean_Chains]
    +K2F_proper [in additions.Euclidean_Chains]
    +k7_3_proper [in additions.Euclidean_Chains]
    +

    L

    +LcodeLNN [in hydras.Ackermann.codeNatToTerm]
    +LcodeLNT [in hydras.Ackermann.codeNatToTerm]
    +leIsPR [in hydras.Ackermann.primRec]
    +leq_trans [in hydras.Prelude.MoreOrders]
    +lex_prod_dec [in hydras.Prelude.DecPreOrder_Instances]
    +Lex_nat_wf [in hydras.MoreAck.Ack]
    +Le_trans [in hydras.Schutte.Well_Orders]
    +List_length [in hydras.Prelude.DecPreOrder_Instances]
    +LO.compare_oo [in hydras.OrdinalNotations.OmegaOmega]
    +LO.lo_comparable [in hydras.OrdinalNotations.OmegaOmega]
    +LO.lo_strorder [in hydras.OrdinalNotations.OmegaOmega]
    +LO.plus_assoc [in hydras.OrdinalNotations.OmegaOmega]
    +ltIsPR [in hydras.Ackermann.primRec]
    +LT_St [in hydras.Epsilon0.T1]
    +lt_dec [in hydras.Epsilon0.T1]
    +lt_transitive [in hydras.Prelude.DecPreOrder]
    +lt_strorder [in hydras.OrdinalNotations.ON_mult]
    +lt_strorder [in hydras.OrdinalNotations.ON_plus]
    +L_3_plus_omega [in hydras.OrdinalNotations.Example_3PlusOmega]
    +

    M

    +maxIsPR [in hydras.Ackermann.primRec]
    +max_assoc [in hydras.Prelude.Comparable]
    +minIsPR [in hydras.solutions_exercises.MinPR2]
    +minIsPR [in hydras.solutions_exercises.MinPR]
    +minPR_PR [in hydras.solutions_exercises.MinPR2]
    +minPR_PR [in hydras.solutions_exercises.MinPR]
    +minusIndIsPR [in hydras.Ackermann.primRec]
    +minusIsPR [in hydras.Ackermann.primRec]
    +min_assoc [in hydras.Prelude.Comparable]
    +mIsPR [in hydras.Hydra.Hydra_Theorems]
    +mod_Equiv [in additions.Monoid_instances]
    +mod_op [in additions.Monoid_instances]
    +mod_equiv [in additions.Monoid_instances]
    +Monoid_EMonoid [in additions.Monoid_def]
    +multIndIsPR [in hydras.Ackermann.primRec]
    +multIsPR [in hydras.Ackermann.primRec]
    +mult_comp [in hydras.OrdinalNotations.ON_mult]
    +mult_mod_proper [in additions.Monoid_instances]
    +Mult_i [in hydras.Epsilon0.E0]
    +Mul2 [in additions.Fib2]
    +M2_Monoid [in additions.Monoid_instances]
    +M2_op [in additions.Monoid_instances]
    +

    N

    +Natmult [in additions.Monoid_instances]
    +Natplus [in additions.Monoid_instances]
    +Nat_le_TO [in hydras.Prelude.DecPreOrder_Instances]
    +Nat_le_dec [in hydras.Prelude.DecPreOrder_Instances]
    +nat_plus_op [in additions.Monoid_instances]
    +nat_mult_op [in additions.Monoid_instances]
    +neqIsPR [in hydras.Ackermann.primRec]
    +Nmod_Monoid [in additions.Monoid_instances]
    +NMult [in additions.Monoid_instances]
    +notZeroIsPR [in hydras.Ackermann.primRec]
    +NPlus [in additions.Monoid_instances]
    +N_plus_op [in additions.Monoid_instances]
    +N_mult_op [in additions.Monoid_instances]
    +

    O

    +Olt [in hydras.Epsilon0.F_alpha]
    +Olt [in hydras.Epsilon0.L_alpha]
    +Olt [in hydras.Epsilon0.Hprime]
    +Omega [in hydras.OrdinalNotations.ON_Omega]
    +Omega_plus_Omega [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +Omega_2 [in hydras.Epsilon0.E0]
    +Omega_term [in hydras.Epsilon0.E0]
    +omega_ok [in hydras.OrdinalNotations.ON_Omega]
    +Omega_comp [in hydras.OrdinalNotations.ON_Omega]
    +Omega2 [in hydras.OrdinalNotations.ON_Omega2]
    +ON_O [in hydras.OrdinalNotations.ON_O]
    +ON_O_comp [in hydras.OrdinalNotations.ON_O]
    +ON_mult [in hydras.OrdinalNotations.ON_mult]
    +ON_plus [in hydras.OrdinalNotations.ON_plus]
    +OO.compare_OO [in hydras.OrdinalNotations.OmegaOmega]
    +OO.embed [in hydras.OrdinalNotations.OmegaOmega]
    +OO.Fin [in hydras.OrdinalNotations.OmegaOmega]
    +OO.mult [in hydras.OrdinalNotations.OmegaOmega]
    +OO.ON_OO [in hydras.OrdinalNotations.OmegaOmega]
    +OO.OO_comp [in hydras.OrdinalNotations.OmegaOmega]
    +OO.oo_str [in hydras.OrdinalNotations.OmegaOmega]
    +OO.phi0 [in hydras.OrdinalNotations.OmegaOmega]
    +OO.plus [in hydras.OrdinalNotations.OmegaOmega]
    +OO.Succ [in hydras.OrdinalNotations.OmegaOmega]
    +OO.Zero [in hydras.OrdinalNotations.OmegaOmega]
    +OO._Omega [in hydras.OrdinalNotations.OmegaOmega]
    +Oplus [in hydras.Epsilon0.E0]
    +Oplus_assoc [in hydras.Epsilon0.E0]
    +

    P

    +pi1_4IsPR [in hydras.Ackermann.primRec]
    +pi1_3IsPR [in hydras.Ackermann.primRec]
    +pi1_2IsPR [in hydras.Ackermann.primRec]
    +pi2_4IsPR [in hydras.Ackermann.primRec]
    +pi2_3IsPR [in hydras.Ackermann.primRec]
    +pi2_2IsPR [in hydras.Ackermann.primRec]
    +pi3_4IsPR [in hydras.Ackermann.primRec]
    +pi3_3IsPR [in hydras.Ackermann.primRec]
    +pi4_4IsPR [in hydras.Ackermann.primRec]
    +plusIndIsPR [in hydras.Ackermann.primRec]
    +plusIsPR [in hydras.Ackermann.primRec]
    +plus_assoc [in hydras.OrdinalNotations.ON_Omega2]
    +plus_comp [in hydras.OrdinalNotations.ON_plus]
    +plus_assoc [in hydras.Epsilon0.E0]
    +plus_assoc [in hydras.Schutte.Addition]
    +PMult [in additions.Monoid_instances]
    +Pos_bpow_proper [in additions.Pow]
    +power_proper [in additions.Pow_variant]
    +power_proper [in additions.Pow]
    +pow3IsPR [in hydras.Ackermann.codeSubFormula]
    +PO_lex_prod [in hydras.Prelude.DecPreOrder_Instances]
    +predIsPR [in hydras.Ackermann.primRec]
    +PrO_Included [in hydras.Prelude.DecPreOrder_Instances]
    +P_mult_op [in additions.Monoid_instances]
    +P_dec [in hydras.Epsilon0.Paths]
    +

    R

    +RelDecision_Inverse_fun [in hydras.Prelude.DecPreOrder_Instances]
    +ReplaceFormulaTermIsPR [in hydras.Ackermann.codeSubFormula]
    +ReplaceTermsTermIsPR [in hydras.Ackermann.codeSubFormula]
    +ReplaceTermTermIsPR [in hydras.Ackermann.codeSubFormula]
    +ReplaceTermTermsTermIsPR [in hydras.Ackermann.codeSubFormula]
    +result_equiv_equiv [in additions.AM]
    +Return_proper [in additions.Euclidean_Chains]
    +R01 [in hydras.Epsilon0.F_omega]
    +R02 [in hydras.Epsilon0.F_omega]
    +R03 [in hydras.Epsilon0.F_omega]
    +R2 [in hydras.MoreAck.AckNotPR]
    +

    S

    +searchXYIsPR [in hydras.Ackermann.cPair]
    +Stack_equiv_equiv [in additions.AM]
    +Stack_equiv_refl [in additions.AM]
    +standard [in hydras.Hydra.Hydra_Definitions]
    +sto [in hydras.OrdinalNotations.ON_O]
    +sto [in hydras.OrdinalNotations.ON_Finite]
    +Strict_lex [in hydras.Prelude.Simple_LexProd]
    +string_op [in additions.Monoid_def]
    +subStarIsPR [in Goedel.fixPoint]
    +succIsPR [in hydras.Ackermann.primRec]
    +sumToNIsPR [in hydras.Ackermann.cPair]
    +swapIsPR [in hydras.Ackermann.primRec]
    +switchIsPR [in hydras.Ackermann.primRec]
    +

    T

    +Total_Inverse_fun [in hydras.Prelude.DecPreOrder_Instances]
    +Total_Reflexive [in hydras.Prelude.DecPreOrder]
    +tower2IsPR [in hydras.solutions_exercises.MorePRExamples]
    +tower2_alt_PR [in hydras.solutions_exercises.MorePRExamples]
    +To_lex_prod [in hydras.Prelude.DecPreOrder_Instances]
    +Trans_lex [in hydras.Prelude.Simple_LexProd]
    +Two [in hydras.Epsilon0.E0]
    +Two_strat [in additions.BinaryStrat]
    +T1addAssoc [in hydras.Epsilon0.T1]
    +T1compare [in gaia_hydras.T1Bridge]
    +t1_strorder [in hydras.Epsilon0.T1]
    +

    V

    +var [in hydras.Hydra.Hydra_Termination]
    +

    W

    +wellFormedFormulaIsPR [in hydras.Ackermann.wellFormed]
    +wellFormedTermIsPR [in hydras.Ackermann.wellFormed]
    +wellFormedTermsIsPR [in hydras.Ackermann.wellFormed]
    +wellFormedTermTermsIsPR [in hydras.Ackermann.wellFormed]
    +WF [in hydras.OrdinalNotations.ON_Omega2]
    +WF [in hydras.Epsilon0.F_alpha]
    +WO_ord [in hydras.Schutte.Schutte_basics]
    +WO_nat [in hydras.Schutte.Well_Orders]
    +

    Z

    +ZMult [in additions.Monoid_instances]
    +ZMult_Abelian [in additions.Monoid_instances]
    +Z_le_TO [in hydras.Prelude.DecPreOrder_Instances]
    +Z_le_dec [in hydras.Prelude.DecPreOrder_Instances]
    +Z_mult_op [in additions.Monoid_instances]
    +


    +

    Abbreviation Index

    +

    A

    +Ackermann.Tf [in gaia_hydras.nfwfgaia]
    +

    B

    +battle [in hydras.Hydra.Hydra_Definitions]
    +

    C

    +canonS [in gaia_hydras.GCanon]
    +canonSSn [in hydras.Epsilon0.Canon]
    +CantorOrdinal.LT [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.Tf [in gaia_hydras.nfwfgaia]
    +

    E

    +epsilon0 [in hydras.Gamma0.T2]
    +EqDecision [in hydras.Prelude.STDPP_compat]
    +exH' [in hydras.Ackermann.LNT]
    +E0succb [in hydras.Epsilon0.E0]
    +

    F

    +F [in hydras.Schutte.Schutte_basics]
    +fin [in hydras.Epsilon0.T1]
    +Fin [in hydras.Epsilon0.E0]
    +FolNotations.exH' [in hydras.Ackermann.fol]
    +Formula [in hydras.Ackermann.subAll]
    +Formula [in hydras.Ackermann.folProp]
    +Formula [in hydras.Ackermann.codeSubFormula]
    +Formula [in hydras.Ackermann.folLogic3]
    +Formulas [in hydras.Ackermann.subAll]
    +Formulas [in hydras.Ackermann.folProp]
    +Formulas [in hydras.Ackermann.codeSubFormula]
    +Formulas [in hydras.Ackermann.folLogic3]
    +freeVarFormula [in hydras.Ackermann.folProp]
    +freeVarTerm [in hydras.Ackermann.folProp]
    +freeVarTerms [in hydras.Ackermann.folProp]
    +FS [in hydras.Epsilon0.T1]
    +FS [in hydras.Gamma0.T2]
    +F_alpha_ge_S [in hydras.Epsilon0.F_alpha]
    +

    G

    +G0.omega [in hydras.Gamma0.Gamma0]
    +G0.phi [in hydras.Gamma0.Gamma0]
    +G0.phi0 [in hydras.Gamma0.Gamma0]
    +

    H

    +hbounded_transitionS [in gaia_hydras.GPaths]
    +hcanon [in gaia_hydras.GCanon]
    +hCanon_plus [in gaia_hydras.GPaths]
    +hcnf [in gaia_hydras.T1Bridge]
    +hcons [in gaia_hydras.T2Bridge]
    +hconst_path [in gaia_hydras.GPaths]
    +hconst_pathS [in gaia_hydras.GPaths]
    +head [in hydras.Hydra.Hydra_Definitions]
    +hE0 [in gaia_hydras.T1Bridge]
    +hE0fin [in gaia_hydras.T1Bridge]
    +hE0is_succ [in gaia_hydras.T1Bridge]
    +hE0le [in gaia_hydras.T1Bridge]
    +hE0limit [in gaia_hydras.T1Bridge]
    +hE0lt [in gaia_hydras.T1Bridge]
    +hE0omega [in gaia_hydras.T1Bridge]
    +hE0phi0 [in gaia_hydras.T1Bridge]
    +hE0zero [in gaia_hydras.T1Bridge]
    +hF_ [in gaia_hydras.GF_alpha]
    +hgnaw [in gaia_hydras.GPaths]
    +hgnawS [in gaia_hydras.GPaths]
    +hlarge [in gaia_hydras.GLarge_Sets]
    +hlargeS [in gaia_hydras.GLarge_Sets]
    +hL_spec [in gaia_hydras.GLarge_Sets]
    +hmlarge [in gaia_hydras.GLarge_Sets]
    +hmlargeS [in gaia_hydras.GLarge_Sets]
    +hoplus [in gaia_hydras.GHessenberg]
    +hpath [in gaia_hydras.GPaths]
    +hpathS [in gaia_hydras.GPaths]
    +hpath_to [in gaia_hydras.GPaths]
    +hstandard_gnaw [in gaia_hydras.GPaths]
    +htransition [in gaia_hydras.GPaths]
    +hT1 [in gaia_hydras.T1Bridge]
    +hT2 [in gaia_hydras.T2Bridge]
    +hyd [in hydras.Hydra.BigBattle]
    +hyd1 [in hydras.Hydra.Hydra_Definitions]
    +hyd2 [in hydras.Hydra.Hydra_Definitions]
    +hyd3 [in hydras.Hydra.Hydra_Definitions]
    +hyd4 [in hydras.Hydra.KP_example]
    +hzero [in gaia_hydras.T2Bridge]
    +h1 [in hydras.Hydra.BigBattle]
    +h2 [in hydras.Hydra.BigBattle]
    +h3 [in hydras.Hydra.BigBattle]
    +

    I

    +In_list_remove2 [in hydras.Ackermann.ListExt]
    +

    L

    +le [in hydras.Epsilon0.T1]
    +le [in hydras.Prelude.Comparable]
    +LE [in gaia_hydras.T1Bridge]
    +limitb [in hydras.Epsilon0.T1]
    +Limitb [in hydras.Epsilon0.E0]
    +LispAbbreviations.caar [in hydras.Ackermann.cPair]
    +LispAbbreviations.caddr [in hydras.Ackermann.cPair]
    +LispAbbreviations.cadr [in hydras.Ackermann.cPair]
    +LispAbbreviations.car [in hydras.Ackermann.cPair]
    +LispAbbreviations.cddddr [in hydras.Ackermann.cPair]
    +LispAbbreviations.cdddr [in hydras.Ackermann.cPair]
    +LispAbbreviations.cddr [in hydras.Ackermann.cPair]
    +LispAbbreviations.cdr [in hydras.Ackermann.cPair]
    +LO.cons [in hydras.OrdinalNotations.OmegaOmega]
    +LO.FS [in hydras.OrdinalNotations.OmegaOmega]
    +LO.omega [in hydras.OrdinalNotations.OmegaOmega]
    +LO.phi0 [in hydras.OrdinalNotations.OmegaOmega]
    +LT [in hydras.solutions_exercises.MultisetWf]
    +LT [in gaia_hydras.T1Bridge]
    +lt_irrefl [in hydras.Prelude.Comparable]
    +lt_trans [in hydras.Prelude.Comparable]
    +

    M

    +mult [in hydras.Epsilon0.T1]
    +Mult [in hydras.Epsilon0.E0]
    +

    N

    +NF [in hydras.solutions_exercises.MultisetWf]
    +NNnotations.S_ [in hydras.Ackermann.LNN]
    +n2t [in hydras.Ackermann.LNN]
    +

    O

    +omega [in hydras.Epsilon0.T1]
    +omega [in hydras.OrdinalNotations.ON_Omega2]
    +omega [in hydras.Gamma0.T2]
    +omega [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +omega [in hydras.Schutte.Schutte_basics]
    +ONDef.Exports.ON [in gaia_hydras.onType]
    +ONDef.Exports.on [in gaia_hydras.onType]
    +ONDef.Exports.ONMixin [in gaia_hydras.onType]
    +one [in hydras.Epsilon0.T1]
    +one [in hydras.Gamma0.T2]
    +OO.omega [in hydras.OrdinalNotations.OmegaOmega]
    +ordinal [in hydras.Schutte.Schutte_basics]
    +

    P

    +path [in gaia_hydras.GPaths]
    +phi0 [in hydras.Epsilon0.T1]
    +phi0 [in hydras.Schutte.AP]
    +plus [in hydras.Epsilon0.T1]
    +Plus [in hydras.Epsilon0.E0]
    +power [in hydras.Prelude.More_Arith]
    +PReval [in hydras.Ackermann.primRec]
    +PRevalN [in hydras.Ackermann.primRec]
    +PRNotations.pi1_3 [in hydras.Ackermann.primRec]
    +PRNotations.pi1_2 [in hydras.Ackermann.primRec]
    +PRNotations.pi1_1 [in hydras.Ackermann.primRec]
    +PRNotations.pi2_3 [in hydras.Ackermann.primRec]
    +PRNotations.pi2_2 [in hydras.Ackermann.primRec]
    +PRNotations.pi3_3 [in hydras.Ackermann.primRec]
    +PRNotations.PRcomp [in hydras.Ackermann.primRec]
    +PRNotations.PRrec [in hydras.Ackermann.primRec]
    +

    R

    +reflection [in Goedel.goedel1]
    +rem [in Goedel.PRrepresentable]
    +

    S

    +substF2 [in hydras.Ackermann.folProp]
    +substF3 [in hydras.Ackermann.folProp]
    +substF4 [in hydras.Ackermann.folProp]
    +substF5 [in hydras.Ackermann.folProp]
    +substF6 [in hydras.Ackermann.folProp]
    +substF7 [in hydras.Ackermann.folProp]
    +substF8 [in hydras.Ackermann.folProp]
    +substF9 [in hydras.Ackermann.folProp]
    +substituteFormula [in hydras.Ackermann.folProp]
    +substituteTerm [in hydras.Ackermann.folProp]
    +substituteTerms [in hydras.Ackermann.folProp]
    +Succ [in hydras.Epsilon0.E0]
    +succb [in hydras.Epsilon0.T1]
    +SysPrf [in hydras.Ackermann.subAll]
    +System [in hydras.Ackermann.subAll]
    +System [in hydras.Ackermann.folProp]
    +System [in hydras.Ackermann.codeSubFormula]
    +System [in hydras.Ackermann.folLogic3]
    +S_ [in hydras.Ackermann.LNT]
    +

    T

    +Term [in hydras.Ackermann.subAll]
    +Term [in hydras.Ackermann.folProp]
    +Term [in hydras.Ackermann.codeSubFormula]
    +Term [in hydras.Ackermann.folLogic3]
    +Terms [in hydras.Ackermann.subAll]
    +Terms [in hydras.Ackermann.folProp]
    +Terms [in hydras.Ackermann.codeSubFormula]
    +Terms [in hydras.Ackermann.folLogic3]
    +Toy.A [in hydras.MoreAck.FolExamples]
    +Toy.a [in hydras.MoreAck.FolExamples]
    +Toy.B [in hydras.MoreAck.FolExamples]
    +Toy.b [in hydras.MoreAck.FolExamples]
    +Toy.C [in hydras.MoreAck.FolExamples]
    +Toy.f [in hydras.MoreAck.FolExamples]
    +Toy.g [in hydras.MoreAck.FolExamples]
    +Toy.h [in hydras.MoreAck.FolExamples]
    +Toy.P [in hydras.MoreAck.FolExamples]
    +Toy.Q [in hydras.MoreAck.FolExamples]
    +Toy.R [in hydras.MoreAck.FolExamples]
    +T1 [in gaia_hydras.T1Bridge]
    +T1omega [in hydras.Epsilon0.T1]
    +T2 [in gaia_hydras.T2Bridge]
    +

    U

    +undecidable [in hydras.Ackermann.folProof]
    +Usual.β [in Goedel.PRrepresentable]
    +

    V

    +vfourth [in hydras.Prelude.MoreVectors]
    +vfst [in hydras.Prelude.MoreVectors]
    +vsnd [in hydras.Prelude.MoreVectors]
    +vthird [in hydras.Prelude.MoreVectors]
    +

    Z

    +Zero [in hydras.Epsilon0.E0]
    +

    _

    +_Omega [in hydras.Epsilon0.E0]
    +

    other

    +β [in Goedel.PRrepresentable]
    +βR [in Goedel.PRrepresentable]
    +ω [in hydras.Epsilon0.T1]
    +


    +

    Definition Index

    +

    A

    +A [in hydras.OrdinalNotations.ON_Omega2]
    +acc_from [in gaia_hydras.GPaths]
    +acc_from [in hydras.Epsilon0.Paths]
    +Ack [in hydras.MoreAck.Ack]
    +Ack [in hydras.MoreAck.Ack]
    +Ackermann.all_zero [in gaia_hydras.nfwfgaia]
    +Ackermann.epsilon0 [in gaia_hydras.nfwfgaia]
    +Ackermann.limit_of [in gaia_hydras.nfwfgaia]
    +Ackermann.limit12_hyp [in gaia_hydras.nfwfgaia]
    +Ackermann.lt_psi [in gaia_hydras.nfwfgaia]
    +Ackermann.lt_rec [in gaia_hydras.nfwfgaia]
    +Ackermann.lt_psi_rec [in gaia_hydras.nfwfgaia]
    +Ackermann.normal [in gaia_hydras.nfwfgaia]
    +Ackermann.omega [in gaia_hydras.nfwfgaia]
    +Ackermann.one [in gaia_hydras.nfwfgaia]
    +Ackermann.phi [in gaia_hydras.nfwfgaia]
    +Ackermann.phia [in gaia_hydras.nfwfgaia]
    +Ackermann.phi_rec [in gaia_hydras.nfwfgaia]
    +Ackermann.phi_rec_psi [in gaia_hydras.nfwfgaia]
    +Ackermann.phi0 [in gaia_hydras.nfwfgaia]
    +Ackermann.phi1 [in gaia_hydras.nfwfgaia]
    +Ackermann.phi10 [in gaia_hydras.nfwfgaia]
    +Ackermann.phi11 [in gaia_hydras.nfwfgaia]
    +Ackermann.phi12a [in gaia_hydras.nfwfgaia]
    +Ackermann.phi12b2 [in gaia_hydras.nfwfgaia]
    +Ackermann.phi12b3 [in gaia_hydras.nfwfgaia]
    +Ackermann.phi12b4 [in gaia_hydras.nfwfgaia]
    +Ackermann.phi12b5 [in gaia_hydras.nfwfgaia]
    +Ackermann.phi3 [in gaia_hydras.nfwfgaia]
    +Ackermann.phi4 [in gaia_hydras.nfwfgaia]
    +Ackermann.phi5 [in gaia_hydras.nfwfgaia]
    +Ackermann.phi6 [in gaia_hydras.nfwfgaia]
    +Ackermann.phi7 [in gaia_hydras.nfwfgaia]
    +Ackermann.phi8 [in gaia_hydras.nfwfgaia]
    +Ackermann.phi9 [in gaia_hydras.nfwfgaia]
    +Ackermann.psi_succ [in gaia_hydras.nfwfgaia]
    +Ackermann.size [in gaia_hydras.nfwfgaia]
    +Ackermann.sup_of [in gaia_hydras.nfwfgaia]
    +Ackermann.T1_T3 [in gaia_hydras.nfwfgaia]
    +Ackermann.T3add [in gaia_hydras.nfwfgaia]
    +Ackermann.T3ap [in gaia_hydras.nfwfgaia]
    +Ackermann.T3bad [in gaia_hydras.nfwfgaia]
    +Ackermann.T3eq [in gaia_hydras.nfwfgaia]
    +Ackermann.T3finite [in gaia_hydras.nfwfgaia]
    +Ackermann.T3is_succ [in gaia_hydras.nfwfgaia]
    +Ackermann.T3le [in gaia_hydras.nfwfgaia]
    +Ackermann.T3limit [in gaia_hydras.nfwfgaia]
    +Ackermann.T3lt [in gaia_hydras.nfwfgaia]
    +Ackermann.T3lta [in gaia_hydras.nfwfgaia]
    +Ackermann.T3nat [in gaia_hydras.nfwfgaia]
    +Ackermann.T3nf [in gaia_hydras.nfwfgaia]
    +Ackermann.T3pred [in gaia_hydras.nfwfgaia]
    +Ackermann.T3split [in gaia_hydras.nfwfgaia]
    +Ackermann.T3sub [in gaia_hydras.nfwfgaia]
    +Ackermann.T3succ [in gaia_hydras.nfwfgaia]
    +Ackermann.T3_eqType [in gaia_hydras.nfwfgaia]
    +Ackermann.T3_eqMixin [in gaia_hydras.nfwfgaia]
    +addExists [in Goedel.PRrepresentable]
    +addForalls [in Goedel.PRrepresentable]
    +add_r [in hydras.Hydra.Hydra_Definitions]
    +add_head_r_plus [in hydras.Hydra.Hydra_Definitions]
    +add_head_r [in hydras.Hydra.Hydra_Definitions]
    +Alive [in hydras.Hydra.Hydra_Definitions]
    +alpha_0_eq [in hydras.Epsilon0.T1]
    +alpha_0 [in hydras.Epsilon0.T1]
    +alpha1 [in hydras.OrdinalNotations.ON_Finite]
    +Alt.Ack [in hydras.MoreAck.Ack]
    +Alt.add' [in hydras.MoreAck.PrimRecExamples]
    +Alt.double [in additions.Demo]
    +Alt.Eps0_prec.status [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_prec.prec [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_prec.A [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_sig.arity [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Eps0_sig.symb [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.nat_2_term [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.transfinite_recursor [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.transfinite_recursor_lt [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.T1_size [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.T1_2_term [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.Vars.var [in hydras.Epsilon0.Epsilon0rpo]
    +Alt.xpred [in hydras.MoreAck.PrimRecExamples]
    +Alt2.Ack [in hydras.MoreAck.Ack]
    +Alt2.test1 [in hydras.MoreAck.Ack]
    +Alt2.test2 [in hydras.MoreAck.Ack]
    +Alt3.ack [in hydras.MoreAck.Ack]
    +AM_power [in additions.AM]
    +andH [in hydras.Ackermann.fol]
    +andRel [in hydras.Ackermann.primRec]
    +any_chain_parametric [in additions.Addition_Chains]
    +ap [in hydras.OrdinalNotations.ON_Omega2]
    +AP [in hydras.Schutte.AP]
    +approx [in hydras.Epsilon0.Canon]
    +AxmEq4 [in hydras.Ackermann.folProof]
    +AxmEq5 [in hydras.Ackermann.folProof]
    +axp_scheme [in additions.Addition_Chains]
    +A_ [in hydras.Schutte.Critical]
    +

    B

    +bad [in hydras.OrdinalNotations.ON_Finite]
    +BadSubstF2.substF [in hydras.MoreAck.BadSubst]
    +BadSubst.substF [in hydras.MoreAck.BadSubst]
    +bad_term [in hydras.Epsilon0.T1]
    +Bad.correct_expt_function [in additions.FirstSteps]
    +Bad.fact [in additions.Monoid_instances]
    +Bad.Fchain_correct [in additions.Euclidean_Chains]
    +Bad.int63_from_nat [in additions.Monoid_instances]
    +Bad4.Fplus [in additions.Euclidean_Chains]
    +Bad4.F23 [in additions.Euclidean_Chains]
    +battle_length [in hydras.Hydra.Hydra_Definitions]
    +beta [in Goedel.PRrepresentable]
    +betaFormula [in Goedel.PRrepresentable]
    +beta_h [in hydras.Hydra.Epsilon0_Needed_Generic]
    +beta1 [in hydras.OrdinalNotations.ON_Finite]
    +bigarg [in additions.fib]
    +bigO [in hydras.OrdinalNotations.ON_Generic]
    +big_h [in hydras.Hydra.Epsilon0_Needed_Generic]
    +big0 [in hydras.Schutte.Schutte_basics]
    +binary_power_mult [in additions.FirstSteps]
    +binary_power_mult [in additions.Pow_variant]
    +binary_power_mult [in additions.Pow]
    +binary_power_mult [in additions.fib]
    +binary_chain [in additions.Addition_Chains]
    +bin_pow_scheme [in additions.Addition_Chains]
    +bits [in additions.fib]
    +bodd [in hydras.Ackermann.primRec]
    +bool_decide [in hydras.Prelude.STDPP_compat]
    +boundComputation [in hydras.Ackermann.codeSubFormula]
    +boundedSearch [in hydras.Ackermann.primRec]
    +boundedSearchHelp [in hydras.Ackermann.primRec]
    +bounded_by [in hydras.Prelude.MoreLists]
    +bounded_transitionS [in gaia_hydras.GPaths]
    +bounded_transitionS [in hydras.Epsilon0.Paths]
    +box [in Goedel.goedel2]
    +but_last [in hydras.Prelude.MoreLists]
    +B_termination [in hydras.Hydra.Hydra_Definitions]
    +

    C

    +call_lt [in hydras.Epsilon0.F_alpha]
    +canon [in hydras.OrdinalNotations.ON_Omega2]
    +canon [in gaia_hydras.GCanon]
    +Canon [in hydras.Epsilon0.Canon]
    +canon [in hydras.Epsilon0.Canon]
    +Canon_plus [in gaia_hydras.GF_alpha]
    +Canon_plus [in gaia_hydras.GPaths]
    +Canon_plus [in hydras.Epsilon0.Paths]
    +CantorOrdinal.exp_O [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.exp_F [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.ex_middle [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.limit_fct [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.limit_of [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.limit_v2 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.limit_v1 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.normal [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.omega_plus_n [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.omega_tower [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.one [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.phi0 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.phi1 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.phi2 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.phi3 [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.sup [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.toNF [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1add [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1ap [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1bad [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1div_by_omega [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1eq [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1exp [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1finite [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1is_succ [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1le [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1limit [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1log [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1lt [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1mul [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1nat [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1nf [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1omega [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1pred [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1split [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1sub [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1succ [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1_eqType [in gaia_hydras.nfwfgaia]
    +CantorOrdinal.T1_eqMixin [in gaia_hydras.nfwfgaia]
    +chain [in additions.Addition_Chains]
    +chain_apply [in additions.AM]
    +chain_trace [in additions.Trace_exercise]
    +chain_type [in additions.Euclidean_Chains]
    +chain_generator [in additions.Addition_Chains]
    +chain_correct [in additions.Addition_Chains]
    +chain_correct_nat [in additions.Addition_Chains]
    +chain_apply [in additions.Addition_Chains]
    +chain_execute [in additions.Addition_Chains]
    +chain_length [in additions.Addition_Chains]
    +charFunction [in hydras.Ackermann.extEqualNat]
    +checkPrf [in hydras.Ackermann.checkPrf]
    +checkPrfAXM [in hydras.Ackermann.checkPrf]
    +checkPrfCP [in hydras.Ackermann.checkPrf]
    +checkPrfEQ1 [in hydras.Ackermann.checkPrf]
    +checkPrfEQ2 [in hydras.Ackermann.checkPrf]
    +checkPrfEQ3 [in hydras.Ackermann.checkPrf]
    +checkPrfEQ4 [in hydras.Ackermann.checkPrf]
    +checkPrfEQ5 [in hydras.Ackermann.checkPrf]
    +checkPrfFA1 [in hydras.Ackermann.checkPrf]
    +checkPrfFA2 [in hydras.Ackermann.checkPrf]
    +checkPrfFA3 [in hydras.Ackermann.checkPrf]
    +checkPrfGEN [in hydras.Ackermann.checkPrf]
    +checkPrfHelp [in hydras.Ackermann.checkPrf]
    +checkPrfIMP1 [in hydras.Ackermann.checkPrf]
    +checkPrfIMP2 [in hydras.Ackermann.checkPrf]
    +checkPrfMP [in hydras.Ackermann.checkPrf]
    +checkSubFormulaTrace [in hydras.Ackermann.codeSubFormula]
    +classic_battle [in hydras.Hydra.Hydra_Lemmas]
    +clog2 [in additions.Addition_Chains]
    +close [in hydras.Ackermann.folProp]
    +closed [in hydras.Ackermann.folProp]
    +Closed [in hydras.Schutte.Schutte_basics]
    +ClosedSystem [in hydras.Ackermann.folProp]
    +closeFrom [in hydras.Ackermann.subAll]
    +closeList [in hydras.Ackermann.folProp]
    +cnf_t [in hydras.Schutte.CNF]
    +code [in additions.AM]
    +codeAnd [in hydras.Ackermann.code]
    +codeApp [in hydras.Ackermann.codeList]
    +codeArityLNNR [in hydras.Ackermann.Languages]
    +codeArityLNTF [in hydras.Ackermann.Languages]
    +codeArityLNTR [in hydras.Ackermann.Languages]
    +codeAxmEqHelp [in hydras.Ackermann.checkPrf]
    +codeClose [in hydras.Ackermann.codePA]
    +codeCloseList [in hydras.Ackermann.codePA]
    +codeF [in hydras.Ackermann.code]
    +codeFNN [in Goedel.goedel1]
    +codeForall [in hydras.Ackermann.code]
    +codeFormula [in hydras.Ackermann.code]
    +codeFormula [in Goedel.rosserPA]
    +codeFormula [in Goedel.rosser]
    +codeFreeVarFormula [in hydras.Ackermann.codeFreeVar]
    +codeFreeVarListFormula [in hydras.Ackermann.codeFreeVar]
    +codeFreeVarTerm [in hydras.Ackermann.codeFreeVar]
    +codeFreeVarTerms [in hydras.Ackermann.codeFreeVar]
    +codeFreeVarTermTerms [in hydras.Ackermann.codeFreeVar]
    +codeIff [in hydras.Ackermann.code]
    +codeImp [in hydras.Ackermann.code]
    +codeIn [in hydras.Ackermann.codeList]
    +codeInductionSchema [in hydras.Ackermann.codePA]
    +codeLength [in hydras.Ackermann.codeList]
    +codeList [in hydras.Ackermann.cPair]
    +codeListRemove [in hydras.Ackermann.codeList]
    +codeLNNRelation [in hydras.Ackermann.Languages]
    +codeLNTFunction [in hydras.Ackermann.Languages]
    +codeLNTRelation [in hydras.Ackermann.Languages]
    +codeNatToTerm [in hydras.Ackermann.codeNatToTerm]
    +codeNewVar [in hydras.Ackermann.codeSubFormula]
    +codeNoDup [in hydras.Ackermann.codeList]
    +codeNot [in hydras.Ackermann.code]
    +codeNth [in hydras.Ackermann.cPair]
    +codeNVars1 [in hydras.Ackermann.checkPrf]
    +codeNVars2 [in hydras.Ackermann.checkPrf]
    +codeOpen [in hydras.Ackermann.codePA]
    +codeOr [in hydras.Ackermann.code]
    +codePA [in hydras.Ackermann.codePA]
    +codePrf [in hydras.Ackermann.code]
    +codePrf [in Goedel.rosserPA]
    +codePrf [in Goedel.rosser]
    +codeR [in hydras.Ackermann.code]
    +codeSubFormula [in hydras.Ackermann.codeSubFormula]
    +codeSubTerm [in hydras.Ackermann.codeSubTerm]
    +codeSubTerms [in hydras.Ackermann.codeSubTerm]
    +codeSubTermTerms [in hydras.Ackermann.codeSubTerm]
    +codeSysPf [in Goedel.codeSysPrf]
    +codeSysPf [in Goedel.goedel1]
    +codeSysPf [in Goedel.goedel2]
    +codeSysPfCorrect [in Goedel.goedel1]
    +codeSysPfCorrect [in Goedel.goedel2]
    +codeSysPrf [in Goedel.rosserPA]
    +codeSysPrf [in Goedel.codeSysPrf]
    +codeSysPrf [in Goedel.goedel1]
    +codeSysPrf [in Goedel.rosser]
    +codeSysPrfCorrect1 [in Goedel.rosserPA]
    +codeSysPrfCorrect1 [in Goedel.rosser]
    +codeSysPrfCorrect2 [in Goedel.rosserPA]
    +codeSysPrfCorrect2 [in Goedel.goedel1]
    +codeSysPrfCorrect2 [in Goedel.rosser]
    +codeSysPrfCorrect3 [in Goedel.rosserPA]
    +codeSysPrfCorrect3 [in Goedel.goedel1]
    +codeSysPrfCorrect3 [in Goedel.rosser]
    +codeSysPrfNCorrect1 [in Goedel.rosserPA]
    +codeSysPrfNCorrect1 [in Goedel.rosser]
    +codeSysPrfNCorrect2 [in Goedel.rosserPA]
    +codeSysPrfNCorrect2 [in Goedel.rosser]
    +codeSysPrfNCorrect3 [in Goedel.rosserPA]
    +codeSysPrfNCorrect3 [in Goedel.rosser]
    +codeSysPrfNot [in Goedel.rosserPA]
    +codeSysPrfNot [in Goedel.codeSysPrf]
    +codeSysPrfNot [in Goedel.rosser]
    +codeTerm [in hydras.Ackermann.code]
    +codeTerms [in hydras.Ackermann.code]
    +Compat815.ind_0_1_SS [in hydras.Prelude.Compat815]
    +composeSigmaFormula [in Goedel.PRrepresentable]
    +compose2 [in hydras.Ackermann.primRec]
    +computation_equiv [in additions.Euclidean_Chains]
    +computation_eval [in additions.Addition_Chains]
    +computation_execute [in additions.Addition_Chains]
    +computation_length [in additions.Addition_Chains]
    +comp128 [in additions.Addition_Chains]
    +Con [in Goedel.goedel2]
    +config [in additions.AM]
    +config_equiv [in additions.AM]
    +Consistent [in hydras.Ackermann.folProof]
    +const_path [in gaia_hydras.GPaths]
    +const_pathS_eps [in hydras.Epsilon0.Paths]
    +const_path [in hydras.Epsilon0.Paths]
    +const_pathS [in hydras.Epsilon0.Paths]
    +continuous [in hydras.Schutte.Schutte_basics]
    +correctness_statement [in additions.AM]
    +correctness_statement [in additions.Euclidean_Chains]
    +correct_generator [in additions.Addition_Chains]
    +cPair [in hydras.Ackermann.cPair]
    +cPairPi1 [in hydras.Ackermann.cPair]
    +cPairPi2 [in hydras.Ackermann.cPair]
    +cpower [in additions.Addition_Chains]
    +cpower_pos [in additions.Addition_Chains]
    +Cr [in hydras.Schutte.Critical]
    +Cr_fun [in hydras.Schutte.Critical]
    +cTriple [in hydras.Ackermann.cPair]
    +cTriplePi1 [in hydras.Ackermann.cPair]
    +cTriplePi2 [in hydras.Ackermann.cPair]
    +cTriplePi3 [in hydras.Ackermann.cPair]
    +C1 [in additions.Addition_Chains]
    +c153 [in additions.Fib2]
    +C3 [in additions.Addition_Chains]
    +C31_7 [in additions.AM]
    +C7 [in additions.Addition_Chains]
    +C7_ok' [in additions.Addition_Chains]
    +C7_ok [in additions.Addition_Chains]
    +C87 [in additions.Addition_Chains]
    +C87_ok [in additions.Addition_Chains]
    +C87' [in additions.Euclidean_Chains]
    +

    D

    +DecidableSet [in Goedel.rosser]
    +depth [in hydras.Ackermann.fol]
    +dicho [in additions.Dichotomy]
    +dominates [in hydras.Prelude.Iterates]
    +dominates [in gaia_hydras.T1Bridge]
    +dominates_strong [in hydras.Prelude.Iterates]
    +dominates_from [in hydras.Prelude.Iterates]
    +dominates_strong [in gaia_hydras.T1Bridge]
    +dominates_from [in gaia_hydras.T1Bridge]
    +double [in hydras.solutions_exercises.MorePRExamples]
    +double [in hydras.MoreAck.PrimRecExamples]
    +doubleS [in hydras.Hydra.BigBattle]
    +

    E

    +Elements [in hydras.Epsilon0.T1]
    +epsilon [in hydras.Gamma0.T2]
    +epsilon_0 [in hydras.Epsilon0.T1]
    +epsilon0 [in hydras.Schutte.AP]
    +equiv [in hydras.Prelude.Sort_spec]
    +eval [in hydras.Schutte.CNF]
    +evalComposeFunc [in hydras.Ackermann.primRec]
    +evalConstFunc [in hydras.Ackermann.primRec]
    +evalList [in hydras.Ackermann.primRec]
    +evalOneParamList [in hydras.Ackermann.primRec]
    +evalPrimRec [in hydras.Ackermann.primRec]
    +evalPrimRecFunc [in hydras.Ackermann.primRec]
    +evalPrimRecs [in hydras.Ackermann.primRec]
    +evalProjFunc [in hydras.Ackermann.primRec]
    +evalStrongRec [in hydras.Ackermann.cPair]
    +evalStrongRecHelp [in hydras.Ackermann.cPair]
    +eval_pp [in hydras.Epsilon0.T1]
    +Ex [in hydras.Epsilon0.Large_Sets]
    +exact_log2 [in additions.More_on_positive]
    +Examples.big_chain [in additions.Euclidean_Chains]
    +Examples.binary_int31_power [in additions.Euclidean_Chains]
    +Examples.C87' [in additions.Euclidean_Chains]
    +Examples.exact_sqrt [in hydras.Ackermann.primRec]
    +Examples.exp56789 [in additions.Euclidean_Chains]
    +Examples.Exx [in hydras.Hydra.Hydra_Examples]
    +Examples.ex_2 [in hydras.Hydra.Hydra_Examples]
    +Examples.ex1 [in hydras.Hydra.Hydra_Examples]
    +Examples.ex4 [in hydras.Hydra.Hydra_Examples]
    +Examples.Ex5 [in hydras.Hydra.Hydra_Examples]
    +Examples.fast_int63_power [in additions.Euclidean_Chains]
    +Examples.height_not_strictly_decreasing [in hydras.Hydra.Hydra_Examples]
    +Examples.hsize_bigger [in hydras.Hydra.Hydra_Examples]
    +Examples.Hy [in hydras.Hydra.Hydra_Examples]
    +Examples.Hy_Hy''' [in hydras.Hydra.Hydra_Examples]
    +Examples.Hy_3 [in hydras.Hydra.Hydra_Examples]
    +Examples.Hy_2 [in hydras.Hydra.Hydra_Examples]
    +Examples.Hy_1 [in hydras.Hydra.Hydra_Examples]
    +Examples.Hy' [in hydras.Hydra.Hydra_Examples]
    +Examples.Hy'H'' [in hydras.Hydra.Hydra_Examples]
    +Examples.Hy'' [in hydras.Hydra.Hydra_Examples]
    +Examples.Hy''_Hy''' [in hydras.Hydra.Hydra_Examples]
    +Examples.Hy''' [in hydras.Hydra.Hydra_Examples]
    +Examples.M [in additions.Euclidean_Chains]
    +Examples.R2_example [in hydras.Hydra.Hydra_Examples]
    +Examples.slow_int31_power [in additions.Euclidean_Chains]
    +Examples.sqrtHelp [in hydras.Ackermann.primRec]
    +Examples.Unnamed_thm [in additions.Euclidean_Chains]
    +exec [in additions.AM]
    +existH [in hydras.Ackermann.fol]
    +exp [in hydras.Epsilon0.T1]
    +exp [in hydras.solutions_exercises.MorePRExamples]
    +exponents [in additions.Trace_exercise]
    +exponents_le [in hydras.Schutte.CNF]
    +exponents_lt [in hydras.Schutte.CNF]
    +Expressible [in hydras.Ackermann.expressible]
    +ExpressibleHelp [in hydras.Ackermann.expressible]
    +expressT'1 [in Goedel.goedel2]
    +expressT'2 [in Goedel.goedel2]
    +exp_F [in hydras.Epsilon0.T1]
    +exp_alt [in hydras.solutions_exercises.MorePRExamples]
    +exp2 [in additions.Addition_Chains]
    +exp2 [in hydras.Prelude.Exp2]
    +extendsNN [in Goedel.goedel2]
    +extEqual [in hydras.Ackermann.extEqualNat]
    +extEqualVector [in hydras.Ackermann.primRec]
    +extEqualVectorGeneral [in hydras.Ackermann.primRec]
    +extEqual_ex1 [in hydras.MoreAck.PrimRecExamples]
    +ex_pos [in gaia_hydras.T1Choice]
    +ex_path4 [in gaia_hydras.GPaths]
    +ex_path3 [in gaia_hydras.GPaths]
    +ex_path2 [in gaia_hydras.GPaths]
    +ex_path1 [in gaia_hydras.GPaths]
    +ex_pathS2 [in hydras.Epsilon0.Large_Sets_Examples]
    +ex_pathS1 [in hydras.Epsilon0.Large_Sets_Examples]
    +ex_bool [in additions.Monoid_def]
    +ex_string [in additions.Monoid_def]
    +ex_path4 [in hydras.Epsilon0.Paths]
    +ex_path3 [in hydras.Epsilon0.Paths]
    +ex_path2 [in hydras.Epsilon0.Paths]
    +ex_path1 [in hydras.Epsilon0.Paths]
    +ex0 [in gaia_hydras.GCanon]
    +Ex1 [in hydras.Epsilon0.T1]
    +Ex1 [in hydras.OrdinalNotations.ON_Omega2]
    +ex1 [in hydras.OrdinalNotations.ON_Omega2]
    +Ex1 [in hydras.Gamma0.T2]
    +ex1 [in gaia_hydras.GCanon]
    +Ex1 [in hydras.Schutte.MoreEpsilonIota]
    +ex1 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +Ex1 [in hydras.solutions_exercises.MultisetWf]
    +Ex1 [in hydras.Epsilon0.Large_Sets_Examples]
    +Ex1 [in hydras.OrdinalNotations.ON_Finite]
    +Ex1 [in gaia_hydras.GaiaToHydra]
    +Ex1 [in hydras.MoreAck.PrimRecExamples]
    +Ex1 [in hydras.Prelude.Simple_LexProd]
    +Ex10 [in hydras.Gamma0.Gamma0]
    +Ex2 [in hydras.Epsilon0.T1]
    +Ex2 [in hydras.Gamma0.T2]
    +Ex2 [in hydras.MoreAck.AckNotPR]
    +ex2 [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +Ex2 [in hydras.solutions_exercises.MultisetWf]
    +Ex2 [in hydras.Epsilon0.Large_Sets_Examples]
    +Ex2 [in hydras.MoreAck.PrimRecExamples]
    +Ex2 [in hydras.Prelude.Simple_LexProd]
    +Ex3 [in hydras.Epsilon0.T1]
    +Ex3 [in hydras.Gamma0.T2]
    +ex3 [in hydras.Epsilon0.Large_Sets]
    +Ex3 [in hydras.solutions_exercises.MultisetWf]
    +Ex3 [in hydras.MoreAck.PrimRecExamples]
    +Ex4 [in hydras.Epsilon0.T1]
    +Ex4 [in hydras.Gamma0.T2]
    +Ex4 [in hydras.MoreAck.AckNotPR]
    +Ex4 [in hydras.MoreAck.PrimRecExamples]
    +Ex42 [in hydras.Schutte.Schutte]
    +Ex42 [in hydras.OrdinalNotations.OmegaOmega]
    +Ex42 [in hydras.Epsilon0.E0]
    +Ex5 [in hydras.Epsilon0.T1]
    +Ex5 [in hydras.Gamma0.T2]
    +Ex6 [in hydras.Gamma0.T2]
    +Ex6 [in hydras.Gamma0.Gamma0]
    +Ex7 [in hydras.Gamma0.T2]
    +Ex7 [in hydras.Gamma0.Gamma0]
    +Ex8 [in hydras.Gamma0.T2]
    +Ex8 [in hydras.Gamma0.Gamma0]
    +Ex9 [in hydras.Gamma0.Gamma0]
    +E0Canon [in gaia_hydras.GCanon]
    +E0eqb [in gaia_hydras.T1Bridge]
    +E0fin [in gaia_hydras.T1Bridge]
    +E0is_succ [in gaia_hydras.T1Bridge]
    +E0is_succ [in hydras.Epsilon0.E0]
    +E0le [in gaia_hydras.T1Bridge]
    +E0le [in hydras.Epsilon0.E0]
    +E0limit [in gaia_hydras.T1Bridge]
    +E0limit [in hydras.Epsilon0.E0]
    +E0lt [in gaia_hydras.T1Bridge]
    +E0lt [in hydras.Epsilon0.E0]
    +E0mul [in gaia_hydras.T1Bridge]
    +E0plus [in gaia_hydras.T1Bridge]
    +e0Sub [in gaia_hydras.T1Bridge]
    +E0zero [in gaia_hydras.T1Bridge]
    +E0_g2h [in gaia_hydras.T1Bridge]
    +E0_h2g [in gaia_hydras.T1Bridge]
    +E0_phi0 [in gaia_hydras.T1Bridge]
    +E0_omega [in gaia_hydras.T1Bridge]
    +E0_pred [in gaia_hydras.T1Bridge]
    +E0_succ [in gaia_hydras.T1Bridge]
    +E0_eqtype [in gaia_hydras.T1Bridge]
    +E0_eq_mixin [in gaia_hydras.T1Bridge]
    +E0_pred [in hydras.Epsilon0.E0]
    +E1 [in hydras.Epsilon0.T1]
    +e1 [in hydras.OrdinalNotations.ON_Omega2]
    +E2 [in hydras.Epsilon0.T1]
    +e2 [in hydras.OrdinalNotations.ON_Omega2]
    +

    F

    +f [in hydras.OrdinalNotations.Example_3PlusOmega]
    +F [in Goedel.goedel2]
    +fact [in hydras.solutions_exercises.MorePRExamples]
    +fact_alt [in hydras.solutions_exercises.MorePRExamples]
    +Fapply [in additions.Euclidean_Chains]
    +fastexp [in additions.fib]
    +fastexp2 [in additions.fib]
    +fastexp3 [in additions.fib]
    +fastexp4 [in additions.fib]
    +Fchain [in additions.Euclidean_Chains]
    +Fchain_correct [in additions.AM]
    +Fchain_correct [in additions.Euclidean_Chains]
    +Fchain_correct_nat [in additions.Euclidean_Chains]
    +Fcompose [in additions.Euclidean_Chains]
    +Fexp2 [in additions.Euclidean_Chains]
    +Fexp2_of_nat [in additions.Euclidean_Chains]
    +FFK [in additions.AM]
    +FFK [in additions.Euclidean_Chains]
    +fib [in additions.Fib2]
    +fib [in hydras.solutions_exercises.FibonacciPR]
    +fib [in additions.fib]
    +fibm [in additions.fib]
    +fibonacci [in additions.FirstSteps]
    +fibonacci [in additions.Naive]
    +fibPR [in hydras.solutions_exercises.FibonacciPR]
    +fibt [in additions.fib]
    +fib_with_chain [in additions.Fib2]
    +fib_eucl [in additions.Fib2]
    +fib_pos [in additions.Fib2]
    +fib_mul2 [in additions.Fib2]
    +fib_alt [in hydras.solutions_exercises.FibonacciPR]
    +fin [in hydras.OrdinalNotations.ON_Omega2]
    +fin [in hydras.Gamma0.T2]
    +fin [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +find [in hydras.rpo.more_list]
    +finite [in hydras.Schutte.Schutte_basics]
    +finord_lt [in gaia_hydras.ON_gfinite]
    +first_toggle [in hydras.Prelude.First_toggle]
    +FixpointDef.oplus [in gaia_hydras.GHessenberg]
    +FixR [in hydras.Prelude.Restriction]
    +FixR_F [in hydras.Prelude.Restriction]
    +FK [in additions.AM]
    +FK [in additions.Euclidean_Chains]
    +Fkont [in additions.Euclidean_Chains]
    +Fkont_equiv [in additions.Euclidean_Chains]
    +flatten [in additions.Addition_Chains]
    +flatten_aux [in additions.Addition_Chains]
    +fold_left2 [in hydras.rpo.more_list]
    +foo [in hydras.Prelude.Fuel]
    +Formula [in hydras.Ackermann.LNN]
    +Formula [in hydras.Ackermann.LNT]
    +Formulas [in hydras.Ackermann.LNN]
    +Formulas [in hydras.Ackermann.LNT]
    +Formulas [in hydras.Ackermann.fol]
    +FormulasToFormula [in Goedel.PRrepresentable]
    +FormulasToFuncs [in Goedel.PRrepresentable]
    +Formula_depth_ind [in hydras.Ackermann.fol]
    +Formula_depth_rec2 [in hydras.Ackermann.fol]
    +Formula_depth_rec2rec [in hydras.Ackermann.fol]
    +Formula_depth_rec [in hydras.Ackermann.fol]
    +Formula_depth_rec_rec [in hydras.Ackermann.fol]
    +freeVarCodeSysPrfN [in Goedel.rosserPA]
    +freeVarCodeSysPrfN [in Goedel.rosser]
    +freeVarF [in hydras.Ackermann.folProp]
    +freeVarListFormula [in hydras.Ackermann.folProp]
    +freeVarMap [in hydras.Ackermann.subAll]
    +freeVarRepT' [in Goedel.goedel2]
    +freeVarT [in hydras.Ackermann.folProp]
    +freeVarTs [in hydras.Ackermann.folProp]
    +fun_le [in hydras.Prelude.Iterates]
    +fun_le [in gaia_hydras.T1Bridge]
    +fun_restr [in hydras.Schutte.PartialFun]
    +fun_inj [in hydras.Schutte.PartialFun]
    +fun_onto [in hydras.Schutte.PartialFun]
    +fun_codomain [in hydras.Schutte.PartialFun]
    +fun_equiv [in hydras.Schutte.Ordering_Functions]
    +fun2PR [in hydras.Ackermann.primRec]
    +fusion [in additions.Trace_exercise]
    +F_ [in gaia_hydras.GF_alpha]
    +f_ [in hydras.Epsilon0.F_alpha]
    +f_star [in hydras.Epsilon0.F_alpha]
    +F_ [in hydras.Epsilon0.F_alpha]
    +F_star [in hydras.Epsilon0.F_alpha]
    +f0 [in hydras.MoreAck.LNN_Examples]
    +F1 [in additions.AM]
    +F1 [in additions.Euclidean_Chains]
    +f1 [in hydras.MoreAck.FolExamples]
    +F144 [in additions.Euclidean_Chains]
    +F197887 [in additions.AM]
    +F2 [in additions.Euclidean_Chains]
    +f2 [in hydras.MoreAck.FolExamples]
    +F2C [in additions.Euclidean_Chains]
    +F2q [in additions.AM]
    +F2q_of_nat [in additions.AM]
    +F3 [in additions.AM]
    +F3 [in additions.Euclidean_Chains]
    +f3 [in hydras.MoreAck.FolExamples]
    +F87 [in additions.Euclidean_Chains]
    +F9 [in additions.Euclidean_Chains]
    +

    G

    +g [in hydras.OrdinalNotations.Example_3PlusOmega]
    +G [in Goedel.goedel1]
    +g [in hydras.Schutte.Ordering_Functions]
    +G [in Goedel.goedel2]
    +gamma_ [in hydras.Schutte.Critical]
    +Gamma0 [in hydras.Schutte.Critical]
    +Gamma0_prec.status [in hydras.Gamma0.Gamma0]
    +Gamma0_prec.prec [in hydras.Gamma0.Gamma0]
    +Gamma0_prec.A [in hydras.Gamma0.Gamma0]
    +Gamma0_sig.arity [in hydras.Gamma0.Gamma0]
    +Gamma0_sig.symb [in hydras.Gamma0.Gamma0]
    +Gamma0.epsilon0 [in gaia_hydras.nfwfgaia]
    +Gamma0.lt_psi [in gaia_hydras.nfwfgaia]
    +Gamma0.lt_rec [in gaia_hydras.nfwfgaia]
    +Gamma0.omega [in gaia_hydras.nfwfgaia]
    +Gamma0.one [in gaia_hydras.nfwfgaia]
    +Gamma0.phi [in gaia_hydras.nfwfgaia]
    +Gamma0.psi [in gaia_hydras.nfwfgaia]
    +Gamma0.psi_phi [in gaia_hydras.nfwfgaia]
    +Gamma0.psi_phi_aux [in gaia_hydras.nfwfgaia]
    +Gamma0.size [in gaia_hydras.nfwfgaia]
    +Gamma0.T1T2 [in gaia_hydras.nfwfgaia]
    +Gamma0.T2add [in gaia_hydras.nfwfgaia]
    +Gamma0.T2ap [in gaia_hydras.nfwfgaia]
    +Gamma0.T2eq [in gaia_hydras.nfwfgaia]
    +Gamma0.T2finite [in gaia_hydras.nfwfgaia]
    +Gamma0.T2finite1 [in gaia_hydras.nfwfgaia]
    +Gamma0.T2is_succ [in gaia_hydras.nfwfgaia]
    +Gamma0.T2le [in gaia_hydras.nfwfgaia]
    +Gamma0.T2limit [in gaia_hydras.nfwfgaia]
    +Gamma0.T2lt [in gaia_hydras.nfwfgaia]
    +Gamma0.T2lta [in gaia_hydras.nfwfgaia]
    +Gamma0.T2nat [in gaia_hydras.nfwfgaia]
    +Gamma0.T2nf [in gaia_hydras.nfwfgaia]
    +Gamma0.T2pred [in gaia_hydras.nfwfgaia]
    +Gamma0.T2split [in gaia_hydras.nfwfgaia]
    +Gamma0.T2sub [in gaia_hydras.nfwfgaia]
    +Gamma0.T2succ [in gaia_hydras.nfwfgaia]
    +Gamma0.T2_pr2 [in gaia_hydras.nfwfgaia]
    +Gamma0.T2_pr1 [in gaia_hydras.nfwfgaia]
    +Gamma0.T2_eqType [in gaia_hydras.nfwfgaia]
    +Gamma0.T2_eqMixin [in gaia_hydras.nfwfgaia]
    +gamma1 [in hydras.OrdinalNotations.ON_Finite]
    +ge [in hydras.Schutte.Schutte_basics]
    +get_decomposition [in hydras.Epsilon0.T1]
    +gnaw [in gaia_hydras.GPaths]
    +Gnaw [in hydras.Epsilon0.Large_Sets]
    +gnaw [in hydras.Epsilon0.Paths]
    +gnawS [in gaia_hydras.GPaths]
    +GnawS [in hydras.Epsilon0.Large_Sets]
    +gnawS [in hydras.Epsilon0.Paths]
    +GRelation [in hydras.Schutte.GRelations]
    +gstrict_lub [in gaia_hydras.T1Bridge]
    +gtail [in hydras.Gamma0.T2]
    +G0.Ex42 [in hydras.Gamma0.Gamma0]
    +G0.le [in hydras.Gamma0.Gamma0]
    +G0.lt [in hydras.Gamma0.Gamma0]
    +G0.LT [in hydras.Gamma0.Gamma0]
    +g2h [in gaia_hydras.T1Bridge]
    +g2h [in gaia_hydras.T2Bridge]
    +g2h_seq [in gaia_hydras.T1Bridge]
    +

    H

    +half [in additions.BinaryStrat]
    +hcons_mult [in hydras.Hydra.Hydra_Definitions]
    +height [in hydras.Hydra.Hydra_Definitions]
    +hinit [in hydras.Hydra.BigBattle]
    +hsize [in hydras.Hydra.Hydra_Definitions]
    +hs2l [in hydras.Hydra.Hydra_Definitions]
    +Hydrae_rect2 [in hydras.Hydra.Hydra_Definitions]
    +Hydra_rect2 [in hydras.Hydra.Hydra_Definitions]
    +hyd_mult [in hydras.Hydra.Hydra_Definitions]
    +hyper_exp2 [in hydras.Prelude.Iterates]
    +hy_app [in hydras.Hydra.Hydra_Definitions]
    +h_forall [in hydras.Hydra.Hydra_Definitions]
    +H'_ [in gaia_hydras.GHprime]
    +H'_succ_fun [in hydras.Epsilon0.Hprime]
    +H'_ [in hydras.Epsilon0.Hprime]
    +h0 [in hydras.Hydra.KP_example]
    +h1 [in hydras.Hydra.KP_example]
    +h2 [in hydras.Hydra.KP_example]
    +h2g [in gaia_hydras.T1Bridge]
    +h2g [in gaia_hydras.T2Bridge]
    +h2g_seq [in gaia_hydras.T1Bridge]
    +h3 [in hydras.Hydra.KP_example]
    +

    I

    +Id2 [in additions.Monoid_instances]
    +iffH [in hydras.Ackermann.fol]
    +ifThenElseH [in hydras.Ackermann.fol]
    +ignoreParams [in hydras.Ackermann.primRec]
    +image [in hydras.Schutte.PartialFun]
    +Included_s [in hydras.Prelude.DecPreOrder_Instances]
    +Inconsistent [in hydras.Ackermann.folProof]
    +independent [in hydras.Ackermann.folProof]
    +InductionSchema [in hydras.Ackermann.PA]
    +Infinite [in hydras.solutions_exercises.Limit_Infinity]
    +inject [in hydras.Schutte.Correctness_E0]
    +interpFormula [in hydras.Ackermann.model]
    +interpRels [in hydras.Ackermann.model]
    +interpTerm [in hydras.Ackermann.model]
    +interpTerms [in hydras.Ackermann.model]
    +interpTermsVector [in hydras.Ackermann.model]
    +interval [in hydras.Prelude.MoreLists]
    +inv [in hydras.solutions_exercises.FibonacciPR]
    +inv_fun [in hydras.Schutte.PartialFun]
    +In_freeVarSys [in hydras.Ackermann.folProp]
    +iota [in hydras.Hydra.O2H]
    +iota [in hydras.solutions_exercises.MultisetWf]
    +iotas [in hydras.Hydra.O2H]
    +iota_from [in hydras.Prelude.MoreLists]
    +iota_fun [in hydras.Schutte.PartialFun]
    +iota_demo.Bad.bottom [in hydras.Schutte.Schutte_basics]
    +iota_demo.zero [in hydras.Schutte.Schutte_basics]
    +iota_demo.zero [in hydras.Schutte.Schutte_basics]
    +iota_ij [in hydras.OrdinalNotations.ON_Finite]
    +Iso_same_op [in hydras.OrdinalNotations.ON_Generic]
    +Iso_same_fun [in hydras.OrdinalNotations.ON_Generic]
    +Iso_same_cst [in hydras.OrdinalNotations.ON_Generic]
    +isqrt [in hydras.solutions_exercises.isqrt]
    +isqrt_spec [in hydras.solutions_exercises.isqrt]
    +is_lub [in hydras.Schutte.Lub]
    +is_cnf_of [in hydras.Schutte.CNF]
    +is_limit [in hydras.Schutte.Schutte_basics]
    +is_succ [in hydras.Schutte.Schutte_basics]
    +is_finite [in hydras.Schutte.Schutte_basics]
    +is_successor_of [in gaia_hydras.onType]
    +iterate [in hydras.Prelude.Iterates]
    +iterate [in hydras.Ackermann.primRec]
    +i1 [in hydras.OrdinalNotations.ON_Finite]
    +i2 [in hydras.OrdinalNotations.ON_Finite]
    +

    K

    +Kchain [in additions.Euclidean_Chains]
    +Kchain_correct [in additions.AM]
    +Kchain_correct [in additions.Euclidean_Chains]
    +Kchain_correct_nat [in additions.Euclidean_Chains]
    +KFF [in additions.AM]
    +KFF [in additions.Euclidean_Chains]
    +KFK [in additions.AM]
    +KFK [in additions.Euclidean_Chains]
    +Kkont [in additions.Euclidean_Chains]
    +Kkont_equiv [in additions.Euclidean_Chains]
    +Kkont_proper [in additions.Euclidean_Chains]
    +kont_type [in additions.Euclidean_Chains]
    +KP_arrowS [in hydras.Epsilon0.Paths]
    +k17_7 [in additions.Euclidean_Chains]
    +K2F [in additions.Euclidean_Chains]
    +k3_1 [in additions.Euclidean_Chains]
    +k7_3 [in additions.Euclidean_Chains]
    +K99_24 [in additions.AM]
    +

    L

    +language_decidable [in hydras.Ackermann.fol]
    +Large [in hydras.Epsilon0.Large_Sets]
    +large [in hydras.Epsilon0.Large_Sets]
    +large [in gaia_hydras.GLarge_Sets]
    +Largeb [in hydras.Epsilon0.Large_Sets]
    +largeb [in hydras.Epsilon0.Large_Sets]
    +LargeS [in hydras.Epsilon0.Large_Sets]
    +largeS [in hydras.Epsilon0.Large_Sets]
    +largeS [in gaia_hydras.GLarge_Sets]
    +LargeSb [in hydras.Epsilon0.Large_Sets]
    +largeSb [in hydras.Epsilon0.Large_Sets]
    +large_set_check [in hydras.Epsilon0.Large_Sets_Examples]
    +LE [in hydras.Epsilon0.T1]
    +le [in hydras.Gamma0.T2]
    +le [in hydras.OrdinalNotations.ON_O]
    +le [in hydras.OrdinalNotations.ON_mult]
    +le [in hydras.OrdinalNotations.ON_plus]
    +le [in hydras.Schutte.Schutte_basics]
    +Le [in hydras.Schutte.Well_Orders]
    +Least [in hydras.Prelude.MoreOrders]
    +least_fixpoint [in hydras.Schutte.Well_Orders]
    +least_member [in hydras.Schutte.Well_Orders]
    +leBool [in hydras.Ackermann.primRec]
    +leq [in hydras.Prelude.MoreOrders]
    +lex [in hydras.rpo.rpo]
    +lexlt [in hydras.solutions_exercises.MultisetWf]
    +lexnf [in hydras.solutions_exercises.MultisetWf]
    +lex_nat [in hydras.MoreAck.Ack]
    +lheight [in hydras.Hydra.Hydra_Definitions]
    +lhsize [in hydras.Hydra.Hydra_Definitions]
    +Limit [in hydras.Prelude.MoreOrders]
    +limitb [in hydras.OrdinalNotations.ON_Omega2]
    +limitb [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +limit_of [in gaia_hydras.onType]
    +limit_v2 [in gaia_hydras.onType]
    +listValues [in hydras.Ackermann.cPair]
    +list_rec3 [in hydras.rpo.more_list]
    +list_rec2 [in hydras.rpo.more_list]
    +list_size [in hydras.rpo.more_list]
    +LNN [in hydras.Ackermann.Languages]
    +LNNArityF [in hydras.Ackermann.Languages]
    +LNNArityR [in hydras.Ackermann.Languages]
    +LNN2LNT_formula [in hydras.Ackermann.LNN2LNT]
    +LNN2LNT_terms [in hydras.Ackermann.LNN2LNT]
    +LNN2LNT_term [in hydras.Ackermann.LNN2LNT]
    +LNT [in hydras.Ackermann.Languages]
    +LNTFunctionArity [in hydras.Ackermann.Languages]
    +LNTRelationR [in hydras.Ackermann.Languages]
    +LNT.Plus [in hydras.Ackermann.LNT]
    +LNT.Succ [in hydras.Ackermann.LNT]
    +LNT.Times [in hydras.Ackermann.LNT]
    +LNT.Zero [in hydras.Ackermann.LNT]
    +LNT2LNN_formula [in hydras.Ackermann.LNN2LNT]
    +LNT2LNN_terms [in hydras.Ackermann.LNN2LNT]
    +LNT2LNN_term [in hydras.Ackermann.LNN2LNT]
    +LO.fin [in hydras.OrdinalNotations.OmegaOmega]
    +LO.limitb [in hydras.OrdinalNotations.OmegaOmega]
    +LO.lt [in hydras.OrdinalNotations.OmegaOmega]
    +LO.mult [in hydras.OrdinalNotations.OmegaOmega]
    +LO.nf [in hydras.OrdinalNotations.OmegaOmega]
    +LO.nf_b [in hydras.OrdinalNotations.OmegaOmega]
    +LO.plus [in hydras.OrdinalNotations.OmegaOmega]
    +LO.refine [in hydras.OrdinalNotations.OmegaOmega]
    +LO.succ [in hydras.OrdinalNotations.OmegaOmega]
    +LO.succb [in hydras.OrdinalNotations.OmegaOmega]
    +LO.t [in hydras.OrdinalNotations.OmegaOmega]
    +LO.zero [in hydras.OrdinalNotations.OmegaOmega]
    +LT [in hydras.Epsilon0.T1]
    +lt [in hydras.Epsilon0.T1]
    +lt [in hydras.OrdinalNotations.ON_O]
    +lt [in hydras.Prelude.DecPreOrder]
    +lt [in hydras.OrdinalNotations.ON_mult]
    +lt [in hydras.OrdinalNotations.ON_plus]
    +lt [in hydras.OrdinalNotations.ON_Finite]
    +ltBool [in hydras.Ackermann.primRec]
    +LTFormula [in hydras.Ackermann.LNN2LNT]
    +lt_le_dec [in hydras.Epsilon0.T1]
    +lt_eq_lt_dec [in hydras.Epsilon0.T1]
    +lt_eq_lt_dec [in hydras.Prelude.Comparable]
    +lt_depth [in hydras.Ackermann.fol]
    +lt_ge_dec [in hydras.Gamma0.Gamma0]
    +lt_eq_lt_dec [in hydras.Gamma0.Gamma0]
    +lub [in hydras.Gamma0.Gamma0]
    +L_3_plus_omega [in hydras.OrdinalNotations.ON_Omega2]
    +L_omega_cube [in hydras.Epsilon0.Large_Sets]
    +L_omega_square_times [in hydras.Epsilon0.Large_Sets]
    +L_phi0_mult [in hydras.Epsilon0.Large_Sets]
    +L_omega_square [in hydras.Epsilon0.Large_Sets]
    +L_omega_mult [in hydras.Epsilon0.Large_Sets]
    +L_omega [in hydras.Epsilon0.Large_Sets]
    +L_fin [in hydras.Epsilon0.Large_Sets]
    +L_lim [in hydras.Epsilon0.Large_Sets]
    +L_succ [in hydras.Epsilon0.Large_Sets]
    +L_test [in hydras.Epsilon0.Large_Sets]
    +L_ [in hydras.Epsilon0.L_alpha]
    +l_std [in hydras.Hydra.Battle_length]
    +l_std [in gaia_hydras.GHydra]
    +L_spec [in gaia_hydras.GLarge_Sets]
    +L_3_plus_omega [in hydras.Epsilon0.E0]
    +L_spec [in gaia_hydras.GL_alpha]
    +L_ [in gaia_hydras.GL_alpha]
    +L_3_plus_omega [in hydras.Schutte.Addition]
    +l2hs [in hydras.Hydra.Hydra_Definitions]
    +

    M

    +m [in hydras.Hydra.Hydra_Termination]
    +M [in hydras.Hydra.BigBattle]
    +m [in gaia_hydras.GHydra]
    +majorized [in hydras.MoreAck.AckNotPR]
    +majorizedPR [in hydras.MoreAck.AckNotPR]
    +majorizedS [in hydras.MoreAck.AckNotPR]
    +majorizedSPR [in hydras.MoreAck.AckNotPR]
    +makeTrace [in hydras.Ackermann.codeSubFormula]
    +makeTraceForall [in hydras.Ackermann.codeSubFormula]
    +makeTraceImp [in hydras.Ackermann.codeSubFormula]
    +makeTraceNot [in hydras.Ackermann.codeSubFormula]
    +make_chain [in additions.AM]
    +make_chain [in additions.Euclidean_Chains]
    +Make.add [in hydras.rpo.list_set]
    +Make.add_without_red [in hydras.rpo.list_set]
    +Make.apply_subst [in hydras.rpo.term]
    +Make.build_list_of_SN_terms [in hydras.rpo.rpo]
    +Make.cardinal [in hydras.rpo.list_set]
    +Make.DecVar.A [in hydras.rpo.term]
    +Make.direct_subterm [in hydras.rpo.term]
    +Make.elt [in hydras.rpo.list_set]
    +Make.elt [in hydras.rpo.list_permut]
    +Make.empty [in hydras.rpo.list_set]
    +Make.eq_set [in hydras.rpo.list_set]
    +Make.eq_elt_dec [in hydras.rpo.list_set]
    +Make.eq_elt_dec [in hydras.rpo.list_permut]
    +Make.filter [in hydras.rpo.list_set]
    +Make.filter_aux [in hydras.rpo.list_set]
    +Make.inter [in hydras.rpo.list_set]
    +Make.is_a_pos [in hydras.rpo.term]
    +Make.list_permut [in hydras.rpo.list_permut]
    +Make.list_to_multiset [in hydras.rpo.list_permut]
    +Make.make_set [in hydras.rpo.list_set]
    +Make.map_subst [in hydras.rpo.term]
    +Make.mem [in hydras.rpo.list_set]
    +Make.o_size3 [in hydras.rpo.rpo]
    +Make.o_size2 [in hydras.rpo.rpo]
    +Make.o_size [in hydras.rpo.rpo]
    +Make.remove_not_common [in hydras.rpo.list_set]
    +Make.remove_red [in hydras.rpo.list_set]
    +Make.replace_at_pos_list [in hydras.rpo.term]
    +Make.replace_at_pos [in hydras.rpo.term]
    +Make.rpo_term [in hydras.rpo.rpo]
    +Make.rpo_rest [in hydras.rpo.rpo]
    +Make.singleton [in hydras.rpo.list_set]
    +Make.size [in hydras.rpo.term]
    +Make.size2 [in hydras.rpo.rpo]
    +Make.size3 [in hydras.rpo.rpo]
    +Make.subset [in hydras.rpo.list_set]
    +Make.substitution [in hydras.rpo.term]
    +Make.subst_comp [in hydras.rpo.term]
    +Make.subterm_at_pos [in hydras.rpo.term]
    +Make.symbol [in hydras.rpo.term]
    +Make.Term_eq_dec.eq_A_dec [in hydras.rpo.term]
    +Make.Term_eq_dec.A [in hydras.rpo.term]
    +Make.term_rec8 [in hydras.rpo.term]
    +Make.term_rec7 [in hydras.rpo.term]
    +Make.term_rec4 [in hydras.rpo.term]
    +Make.term_rec3 [in hydras.rpo.term]
    +Make.term_rec2 [in hydras.rpo.term]
    +Make.union [in hydras.rpo.list_set]
    +Make.variable [in hydras.rpo.term]
    +Make.well_formed_subst [in hydras.rpo.term]
    +Make.well_formed_list [in hydras.rpo.term]
    +Make.well_formed [in hydras.rpo.term]
    +Make.without_red [in hydras.rpo.list_set]
    +map_without_repetition [in hydras.rpo.more_list]
    +map12_without_repetition [in hydras.rpo.more_list]
    +mark [in hydras.Prelude.Sort_spec]
    +match2 [in hydras.Prelude.MoreVectors]
    +max [in hydras.Prelude.Comparable]
    +maximal_critical [in hydras.Schutte.Critical]
    +max_v [in hydras.Prelude.MoreVectors]
    +measure_lt [in hydras.OrdinalNotations.ON_Generic]
    +mem [in hydras.Ackermann.fol]
    +members [in hydras.solutions_exercises.OnCodeList]
    +members [in hydras.Schutte.Schutte_basics]
    +merge [in hydras.Prelude.Merge_Sort]
    +merge_rec [in hydras.Prelude.Merge_Sort]
    +merge_ind [in hydras.Prelude.Merge_Sort]
    +min [in hydras.Prelude.Comparable]
    +minimize [in Goedel.PRrepresentable]
    +minus [in hydras.Epsilon0.T1]
    +mlarge [in hydras.Epsilon0.Large_Sets]
    +mlarge [in gaia_hydras.GLarge_Sets]
    +mlargeS [in hydras.Epsilon0.Large_Sets]
    +mlargeS [in gaia_hydras.GLarge_Sets]
    +mod_eq [in additions.Monoid_instances]
    +MoreExamples.cst [in hydras.MoreAck.PrimRecExamples]
    +MoreExamples.cst0 [in hydras.MoreAck.PrimRecExamples]
    +MoreExamples.fact [in hydras.MoreAck.PrimRecExamples]
    +MoreExamples.mult [in hydras.MoreAck.PrimRecExamples]
    +MoreExamples.plus [in hydras.MoreAck.PrimRecExamples]
    +moser_lepper [in hydras.Gamma0.Gamma0]
    +ms [in hydras.Hydra.Hydra_Termination]
    +ms [in gaia_hydras.GHydra]
    +mults_squares [in additions.AM]
    +mult_fin_l [in hydras.OrdinalNotations.ON_Omega2]
    +mult_fin_r [in hydras.OrdinalNotations.ON_Omega2]
    +mult_mod [in additions.Monoid_instances]
    +mult_fin_r [in hydras.Schutte.Addition]
    +mult_Sn [in hydras.Schutte.Addition]
    +mul2 [in additions.Fib2]
    +my_pow [in additions.fib]
    +m2lfib [in additions.fib]
    +m2lmul [in additions.fib]
    +m2lmx [in additions.fib]
    +m2lpow [in additions.fib]
    +M2N [in additions.Monoid_instances]
    +M2_mult [in additions.Monoid_instances]
    +M2.Id2 [in additions.FirstSteps]
    +M2.Id2 [in additions.Naive]
    +M2.M2_mult [in additions.FirstSteps]
    +M2.M2_mult [in additions.Naive]
    +M2.power [in additions.Naive]
    +m3lfib [in additions.fib]
    +m3lid [in additions.fib]
    +m3lmul [in additions.fib]
    +m3lmx [in additions.fib]
    +m3lpow [in additions.fib]
    +m4lfib [in additions.fib]
    +m4lmul [in additions.fib]
    +m4lmx [in additions.fib]
    +m4lval [in additions.fib]
    +M7_3 [in additions.AM]
    +

    N

    +N [in hydras.Hydra.BigBattle]
    +naryFunc [in hydras.Ackermann.extEqualNat]
    +naryFunc [in hydras.Ackermann.model]
    +naryIf [in hydras.solutions_exercises.MinPR2]
    +naryRel [in hydras.Ackermann.extEqualNat]
    +naryRel [in hydras.Ackermann.model]
    +natModel [in hydras.Ackermann.PAconsistent]
    +natToTerm [in hydras.Ackermann.LNN]
    +natToTerm [in hydras.Ackermann.LNT]
    +natToTermLNN [in hydras.Ackermann.codeNatToTerm]
    +natToTermLNT [in hydras.Ackermann.codeNatToTerm]
    +nat_2_term [in hydras.Gamma0.Gamma0]
    +nbterms [in hydras.Gamma0.T2]
    +nb_occ [in hydras.rpo.more_list]
    +newVar [in hydras.Ackermann.folProp]
    +next [in hydras.Hydra.BigBattle]
    +next_step [in hydras.Hydra.Hydra_Lemmas]
    +next_round [in hydras.Hydra.Hydra_Lemmas]
    +next_round_dec [in hydras.Hydra.Hydra_Lemmas]
    +nf [in hydras.Epsilon0.T1]
    +nfb [in hydras.Gamma0.Gamma0]
    +nf_Acc [in hydras.Epsilon0.T1]
    +nf_rect [in hydras.Epsilon0.T1]
    +nf_b [in hydras.Epsilon0.T1]
    +NN [in hydras.Ackermann.NN]
    +nnHelp [in hydras.Ackermann.model]
    +NNnotations.LT [in hydras.Ackermann.LNN]
    +NNnotations.Plus [in hydras.Ackermann.LNN]
    +NNnotations.Succ [in hydras.Ackermann.LNN]
    +NNnotations.Times [in hydras.Ackermann.LNN]
    +NNnotations.Zero [in hydras.Ackermann.LNN]
    +nnTranslate [in hydras.Ackermann.model]
    +NN1 [in hydras.Ackermann.NN]
    +NN2 [in hydras.Ackermann.NN]
    +NN3 [in hydras.Ackermann.NN]
    +NN4 [in hydras.Ackermann.NN]
    +NN5 [in hydras.Ackermann.NN]
    +NN6 [in hydras.Ackermann.NN]
    +NN7 [in hydras.Ackermann.NN]
    +NN8 [in hydras.Ackermann.NN]
    +NN9 [in hydras.Ackermann.NN]
    +non_commutativity_of_plus [in hydras.OrdinalNotations.ON_Omega2]
    +normal [in hydras.Schutte.Ordering_Functions]
    +notRel [in hydras.Ackermann.primRec]
    +notZero [in hydras.Ackermann.primRec]
    +nVars [in hydras.Ackermann.folProof]
    +N_pow [in additions.Compatibility]
    +N_bpow [in additions.FirstSteps]
    +N_bpow [in additions.Pow_variant]
    +N_bpow [in additions.Pow]
    +N_mod.power [in additions.Naive]
    +N_mod.mult_mod [in additions.Naive]
    +N2pos [in additions.More_on_positive]
    +

    O

    +OK [in additions.AM]
    +OK [in additions.Euclidean_Chains]
    +omega_omega [in hydras.Epsilon0.T1]
    +omega_tower [in hydras.Epsilon0.T1]
    +omega_term [in hydras.Epsilon0.T1]
    +omega_ex2 [in hydras.Epsilon0.Large_Sets]
    +omega_ex1 [in hydras.Epsilon0.Large_Sets]
    +omega_square_thrice_eqn [in hydras.Epsilon0.Large_Sets]
    +omega_tower [in hydras.Schutte.AP]
    +omega_omega_1_3 [in hydras.Epsilon0.Large_Sets_Examples]
    +omega_omega_1_4 [in hydras.Epsilon0.Large_Sets_Examples]
    +Omega_limit_type [in hydras.Prelude.MoreOrders]
    +Omega_limit [in hydras.Prelude.MoreOrders]
    +omega_limit [in hydras.Schutte.Schutte_basics]
    +om12 [in gaia_hydras.onType]
    +om67 [in gaia_hydras.onType]
    +ONDef.Exports.tricho [in gaia_hydras.onType]
    +ONDef.on_struct [in gaia_hydras.onType]
    +onFiniteMixin [in gaia_hydras.onType]
    +onFiniteType [in gaia_hydras.onType]
    +onOmegaMixin [in gaia_hydras.onType]
    +onOmegaType [in gaia_hydras.onType]
    +ON_op_ok [in hydras.OrdinalNotations.ON_Generic]
    +ON_fun_ok [in hydras.OrdinalNotations.ON_Generic]
    +ON_cst_ok [in hydras.OrdinalNotations.ON_Generic]
    +ON_le [in hydras.OrdinalNotations.ON_Generic]
    +ON_lt [in hydras.OrdinalNotations.ON_Generic]
    +ON_compare [in hydras.OrdinalNotations.ON_Generic]
    +ON_t [in hydras.OrdinalNotations.ON_Generic]
    +OO.le [in hydras.OrdinalNotations.OmegaOmega]
    +OO.lt [in hydras.OrdinalNotations.OmegaOmega]
    +open [in hydras.Ackermann.PA]
    +oplus [in hydras.Epsilon0.Hessenberg]
    +oplus [in gaia_hydras.GHessenberg]
    +optimal [in additions.Addition_Chains]
    +optimal_generator [in additions.Addition_Chains]
    +ord [in hydras.Schutte.Ordering_Functions]
    +ordering_segment [in hydras.Schutte.Ordering_Functions]
    +orH [in hydras.Ackermann.fol]
    +orRel [in hydras.Ackermann.primRec]
    +o_length [in hydras.rpo.more_list]
    +o_finite_mult [in hydras.Epsilon0.Hessenberg]
    +o_36_of_42 [in gaia_hydras.ON_gfinite]
    +o_33_of_42 [in gaia_hydras.ON_gfinite]
    +o_finite_mult [in gaia_hydras.GHessenberg]
    +O3O [in hydras.OrdinalNotations.Example_3PlusOmega]
    +

    P

    +PA [in hydras.Prelude.DecPreOrder_Instances]
    +PA [in hydras.Ackermann.PA]
    +PairwiseEqual [in hydras.Ackermann.folLogic3]
    +parametric [in additions.Addition_Chains]
    +path [in hydras.Epsilon0.Paths]
    +pathS [in gaia_hydras.GPaths]
    +pathS [in hydras.Epsilon0.Paths]
    +path_tob [in gaia_hydras.GPaths]
    +path_to [in gaia_hydras.GPaths]
    +PA1 [in hydras.Ackermann.PA]
    +PA2 [in hydras.Ackermann.PA]
    +PA3 [in hydras.Ackermann.PA]
    +PA4 [in hydras.Ackermann.PA]
    +PA5 [in hydras.Ackermann.PA]
    +PA6 [in hydras.Ackermann.PA]
    +PA7 [in hydras.Ackermann.PA]
    +PB [in hydras.Prelude.DecPreOrder_Instances]
    +Permut.elt [in hydras.rpo.list_permut]
    +Permut.eq_elt_dec [in hydras.rpo.list_permut]
    +Permut.list_permut [in hydras.rpo.list_permut]
    +Permut.list_to_multiset [in hydras.rpo.list_permut]
    +phi [in hydras.Schutte.Critical]
    +phi [in hydras.Gamma0.Gamma0]
    +plus [in hydras.OrdinalNotations.ON_Omega2]
    +plus [in hydras.Gamma0.Gamma0]
    +plus [in hydras.Schutte.Addition]
    +Pos_pow [in additions.Compatibility]
    +Pos_bpow [in additions.FirstSteps]
    +Pos_bpow [in additions.Pow_variant]
    +Pos_bpow [in additions.Pow]
    +pos_eq_dec [in additions.More_on_positive]
    +power [in additions.FirstSteps]
    +power [in additions.Pow_variant]
    +power [in additions.Pow]
    +power_t [in additions.FirstSteps]
    +power_R [in additions.Addition_Chains]
    +pow_17 [in additions.Pow_variant]
    +pow_17 [in additions.Pow]
    +pow3 [in hydras.Ackermann.codeSubFormula]
    +pp [in hydras.Epsilon0.T1]
    +ppE0 [in gaia_hydras.T1Bridge]
    +pp_size [in hydras.Epsilon0.T1]
    +pp0 [in hydras.Epsilon0.T1]
    +PRcompose1 [in hydras.MoreAck.PrimRecExamples]
    +pred [in hydras.Epsilon0.T1]
    +pred [in hydras.Gamma0.T2]
    +preorder_equiv [in hydras.Prelude.DecPreOrder]
    +primRecFormula [in Goedel.PRrepresentable]
    +primRecPiFormulaHelp [in Goedel.PRrepresentable]
    +primRecsFormula [in Goedel.PRrepresentable]
    +primRecSigmaFormula [in Goedel.PRrepresentable]
    +primRecSigmaFormulaHelp [in Goedel.PRrepresentable]
    +PrimRecs_PrimRec_ind [in hydras.Ackermann.primRec]
    +PrimRecs_PrimRec_rec [in hydras.Ackermann.primRec]
    +PrimRec_PrimRecs_ind [in hydras.Ackermann.primRec]
    +PrimRec_PrimRecs_rec [in hydras.Ackermann.primRec]
    +progressive [in hydras.Schutte.Schutte_basics]
    +projectionList [in hydras.Ackermann.primRec]
    +projectionListPR [in hydras.Ackermann.primRec]
    +projFormula [in Goedel.PRrepresentable]
    +proper_statement [in additions.Euclidean_Chains]
    +proper_segment_of [in hydras.Schutte.Ordering_Functions]
    +proper_segment [in hydras.Schutte.Ordering_Functions]
    +psi [in hydras.Gamma0.T2]
    +psi_term [in hydras.Gamma0.T2]
    +ptwise_le [in hydras.Prelude.MoreLists]
    +P87 [in additions.Addition_Chains]
    +

    R

    +reachable [in hydras.Hydra.BigBattle]
    +reassoc [in hydras.Epsilon0.T1]
    +refinesPred [in gaia_hydras.T1Bridge]
    +refinesRel [in gaia_hydras.T1Bridge]
    +refines0 [in gaia_hydras.T1Bridge]
    +refines1 [in gaia_hydras.T1Bridge]
    +refines2 [in gaia_hydras.T1Bridge]
    +rel_inv [in hydras.Schutte.PartialFun]
    +rel_inj [in hydras.Schutte.PartialFun]
    +rel_onto [in hydras.Schutte.PartialFun]
    +rel_functional [in hydras.Schutte.PartialFun]
    +rel_codomain [in hydras.Schutte.PartialFun]
    +rel_domain [in hydras.Schutte.PartialFun]
    +rel_enumerates [in hydras.Schutte.Countable]
    +rel_numbers [in hydras.Schutte.Countable]
    +remove [in hydras.rpo.more_list]
    +remove_list [in hydras.rpo.more_list]
    +rep [in hydras.OrdinalNotations.ON_Generic]
    +ReplaceFormulaTerm [in hydras.Ackermann.codeSubFormula]
    +ReplaceTermsTerm [in hydras.Ackermann.codeSubFormula]
    +ReplaceTermTerm [in hydras.Ackermann.codeSubFormula]
    +ReplaceTermTermsTerm [in hydras.Ackermann.codeSubFormula]
    +Representable [in Goedel.PRrepresentable]
    +Representable [in hydras.Ackermann.expressible]
    +RepresentableAlternate [in Goedel.PRrepresentable]
    +RepresentableHalf1 [in hydras.Ackermann.expressible]
    +RepresentableHalf2 [in hydras.Ackermann.expressible]
    +RepresentableHelp [in Goedel.PRrepresentable]
    +RepresentableHelp [in hydras.Ackermann.expressible]
    +RepresentablesHelp [in Goedel.PRrepresentable]
    +Representable_ext [in Goedel.PRrepresentable]
    +RepresentsInSelf [in Goedel.rosser]
    +restrict [in hydras.Prelude.Restriction]
    +restrict [in gaia_hydras.onType]
    +restrict [in gaia_hydras.nfwfgaia]
    +restrict_build [in hydras.Prelude.Restriction]
    +round [in hydras.Hydra.Hydra_Definitions]
    +round_t [in hydras.Hydra.Hydra_Definitions]
    +round_spec [in hydras.Hydra.Hydra_Definitions]
    +round_star [in hydras.Hydra.Hydra_Definitions]
    +round_plus [in hydras.Hydra.Hydra_Definitions]
    +round_n [in hydras.Hydra.Hydra_Definitions]
    +R_nat_elaguee [in hydras.Schutte.GRelations]
    +R_inv [in hydras.Schutte.GRelations]
    +R1 [in hydras.Schutte.Ordering_Functions]
    +r2i [in hydras.Schutte.PartialFun]
    +R2_ind2 [in hydras.Hydra.Hydra_Lemmas]
    +

    S

    +s [in hydras.solutions_exercises.Limit_Infinity]
    +s [in hydras.solutions_exercises.T1_ltNotWf]
    +segment [in hydras.Schutte.Ordering_Functions]
    +Sentence [in hydras.Ackermann.LNN]
    +Sentence [in hydras.Ackermann.LNT]
    +Sentence [in hydras.Ackermann.folProp]
    +seq [in hydras.solutions_exercises.MultisetWf]
    +seq_mono [in hydras.Schutte.Schutte_basics]
    +seq_range [in hydras.Schutte.Countable]
    +set_eq [in hydras.Schutte.Schutte_basics]
    +shift [in hydras.Prelude.MoreLists]
    +signature_measure [in additions.Euclidean_Chains]
    +signature_exponent [in additions.Euclidean_Chains]
    +simple_last [in hydras.Prelude.MoreLists]
    +slowexp [in additions.fib]
    +small_h [in hydras.Hydra.Epsilon0_Needed_Generic]
    +some [in hydras.Schutte.MoreEpsilonIota]
    +some_pos' [in gaia_hydras.T1Choice]
    +some_pos [in gaia_hydras.T1Choice]
    +some_pos [in hydras.Schutte.MoreEpsilonIota]
    +sort [in hydras.Prelude.Sort_spec]
    +sorted [in hydras.Schutte.CNF]
    +sort_spec [in hydras.Prelude.Sort_spec]
    +sort_correct [in hydras.Prelude.Sort_spec]
    +sort_rel [in hydras.Prelude.Sort_spec]
    +sort_fun_t [in hydras.Prelude.Sort_spec]
    +split_list [in hydras.rpo.more_list]
    +sp_merge_sort [in hydras.Prelude.Merge_Sort]
    +stable [in hydras.Prelude.Sort_spec]
    +stable_test [in hydras.Prelude.Sort_spec]
    +stable_merge_sort [in hydras.Prelude.Merge_Sort]
    +stack [in additions.AM]
    +standard_gnaw [in gaia_hydras.GPaths]
    +standard_path [in gaia_hydras.GPaths]
    +standard_path [in hydras.Epsilon0.Paths]
    +standard_pathS [in hydras.Epsilon0.Paths]
    +standard_gnaw [in hydras.Epsilon0.Paths]
    +strict_lub_maj [in hydras.Epsilon0.T1]
    +strict_lub_lub [in hydras.Epsilon0.T1]
    +strict_lub [in hydras.Epsilon0.T1]
    +strict_mono [in hydras.Prelude.Iterates]
    +strict_mono [in gaia_hydras.T1Bridge]
    +strongly_critical [in hydras.Schutte.Critical]
    +subAllFormula [in hydras.Ackermann.subAll]
    +subAllTerm [in hydras.Ackermann.subAll]
    +subAllTerms [in hydras.Ackermann.subAll]
    +SubON_same_op [in hydras.OrdinalNotations.ON_Generic]
    +SubON_same_fun [in hydras.OrdinalNotations.ON_Generic]
    +SubON_same_cst [in hydras.OrdinalNotations.ON_Generic]
    +subStar [in Goedel.fixPoint]
    +substF [in hydras.Ackermann.folProp]
    +substituteFormulaForall [in hydras.Ackermann.folProp]
    +substituteFormulaHelp [in hydras.Ackermann.folProp]
    +substituteFormulaImp [in hydras.Ackermann.folProp]
    +substituteFormulaNot [in hydras.Ackermann.folProp]
    +substT [in hydras.Ackermann.folProp]
    +substTs [in hydras.Ackermann.folProp]
    +succ [in hydras.Epsilon0.T1]
    +succ [in hydras.OrdinalNotations.ON_Omega2]
    +succ [in hydras.Gamma0.T2]
    +succ [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +succ [in hydras.Schutte.Schutte_basics]
    +succb [in hydras.OrdinalNotations.ON_Omega2]
    +succb [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +Successor [in hydras.Prelude.MoreOrders]
    +succFormula [in Goedel.PRrepresentable]
    +succ_spec [in hydras.Schutte.Schutte_basics]
    +sumToN [in hydras.Ackermann.cPair]
    +sup [in hydras.Schutte.Schutte_basics]
    +sup_spec [in hydras.Schutte.Schutte_basics]
    +switchPR [in hydras.Ackermann.primRec]
    +SysPrf [in hydras.Ackermann.folProof]
    +SysPrf [in hydras.Ackermann.LNN]
    +SysPrf [in hydras.Ackermann.LNT]
    +System [in hydras.Ackermann.LNN]
    +System [in hydras.Ackermann.LNT]
    +System [in hydras.Ackermann.fol]
    +S.cardinal [in hydras.rpo.list_set]
    +S.elt [in hydras.rpo.list_set]
    +S.eq_elt_dec [in hydras.rpo.list_set]
    +S.subset [in hydras.rpo.list_set]
    +S.without_red [in hydras.rpo.list_set]
    +S2_ind2 [in hydras.Hydra.Hydra_Lemmas]
    +

    T

    +t [in hydras.OrdinalNotations.ON_Omega2]
    +t [in hydras.OrdinalNotations.ON_O]
    +t [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +t [in hydras.solutions_exercises.MultisetWf]
    +t [in hydras.OrdinalNotations.ON_mult]
    +t [in hydras.OrdinalNotations.ON_plus]
    +t [in hydras.OrdinalNotations.ON_Finite]
    +ten [in hydras.Epsilon0.T1]
    +Term [in hydras.Ackermann.LNN]
    +Term [in hydras.Ackermann.LNT]
    +terminates [in hydras.Prelude.WfVariant]
    +Termination [in hydras.Hydra.Hydra_Definitions]
    +Terms [in hydras.Ackermann.LNN]
    +Terms [in hydras.Ackermann.LNT]
    +Terms_Term_rec_full [in hydras.Ackermann.fol]
    +Terms_Term_rec [in hydras.Ackermann.fol]
    +Terms_Term_ind [in hydras.Ackermann.fol]
    +Term_Terms_rec_full [in hydras.Ackermann.fol]
    +Term_Terms_rec [in hydras.Ackermann.fol]
    +Term_Terms_ind [in hydras.Ackermann.fol]
    +Term.apply_subst [in hydras.rpo.term]
    +Term.direct_subterm [in hydras.rpo.term]
    +Term.is_a_pos [in hydras.rpo.term]
    +Term.map_subst [in hydras.rpo.term]
    +Term.replace_at_pos_list [in hydras.rpo.term]
    +Term.replace_at_pos [in hydras.rpo.term]
    +Term.size [in hydras.rpo.term]
    +Term.substitution [in hydras.rpo.term]
    +Term.subst_comp [in hydras.rpo.term]
    +Term.subterm_at_pos [in hydras.rpo.term]
    +Term.symbol [in hydras.rpo.term]
    +Term.variable [in hydras.rpo.term]
    +Term.well_formed_subst [in hydras.rpo.term]
    +Term.well_formed_list [in hydras.rpo.term]
    +Term.well_formed [in hydras.rpo.term]
    +test [in hydras.Hydra.BigBattle]
    +the [in hydras.Schutte.MoreEpsilonIota]
    +the_least [in hydras.Schutte.Well_Orders]
    +the_exponent [in additions.Addition_Chains]
    +the_exponent_nat [in additions.Addition_Chains]
    +the_ordering_segment [in hydras.Schutte.Ordering_Functions]
    +tower2 [in hydras.solutions_exercises.MorePRExamples]
    +tower2_alt [in hydras.solutions_exercises.MorePRExamples]
    +Toy.Adds [in hydras.MoreAck.FolExamples]
    +Toy.arityF [in hydras.MoreAck.FolExamples]
    +Toy.arityR [in hydras.MoreAck.FolExamples]
    +Toy.F1 [in hydras.MoreAck.FolExamples]
    +Toy.F2 [in hydras.MoreAck.FolExamples]
    +Toy.F3 [in hydras.MoreAck.FolExamples]
    +Toy.F4 [in hydras.MoreAck.FolExamples]
    +Toy.F5 [in hydras.MoreAck.FolExamples]
    +Toy.F6 [in hydras.MoreAck.FolExamples]
    +Toy.L [in hydras.MoreAck.FolExamples]
    +Toy.Ldec [in hydras.MoreAck.FolExamples]
    +Toy.Peirce [in hydras.MoreAck.FolExamples]
    +Toy.PrfContrex7 [in hydras.MoreAck.FolExamples]
    +Toy.PrfContrex9 [in hydras.MoreAck.FolExamples]
    +Toy.PrfEx1 [in hydras.MoreAck.FolExamples]
    +Toy.PrfEx10 [in hydras.MoreAck.FolExamples]
    +Toy.PrfEx11 [in hydras.MoreAck.FolExamples]
    +Toy.PrfEx2' [in hydras.MoreAck.FolExamples]
    +Toy.PrfEx3 [in hydras.MoreAck.FolExamples]
    +Toy.PrfEx4 [in hydras.MoreAck.FolExamples]
    +Toy.PrfEx5 [in hydras.MoreAck.FolExamples]
    +Toy.PrfEx6 [in hydras.MoreAck.FolExamples]
    +Toy.PrfEx8 [in hydras.MoreAck.FolExamples]
    +Toy.PrfEx9 [in hydras.MoreAck.FolExamples]
    +Toy.SysPrfEx2 [in hydras.MoreAck.FolExamples]
    +Toy.t0 [in hydras.MoreAck.FolExamples]
    +Toy.t1 [in hydras.MoreAck.FolExamples]
    +Toy.t2 [in hydras.MoreAck.FolExamples]
    +Toy.t3 [in hydras.MoreAck.FolExamples]
    +Toy.t4 [in hydras.MoreAck.FolExamples]
    +Toy.Unnamed_thm8 [in hydras.MoreAck.FolExamples]
    +Toy.Unnamed_thm7 [in hydras.MoreAck.FolExamples]
    +Toy.Unnamed_thm6 [in hydras.MoreAck.FolExamples]
    +Toy.Unnamed_thm5 [in hydras.MoreAck.FolExamples]
    +Toy.Unnamed_thm4 [in hydras.MoreAck.FolExamples]
    +Toy.Unnamed_thm3 [in hydras.MoreAck.FolExamples]
    +Toy.Unnamed_thm2 [in hydras.MoreAck.FolExamples]
    +Toy.Unnamed_thm1 [in hydras.MoreAck.FolExamples]
    +Toy.Unnamed_thm0 [in hydras.MoreAck.FolExamples]
    +Toy.Unnamed_thm [in hydras.MoreAck.FolExamples]
    +Tprf2T'prf [in Goedel.goedel2]
    +trace [in hydras.Hydra.Hydra_Definitions]
    +trace_mult [in additions.Trace_exercise]
    +trace_compare [in additions.Trace_exercise]
    +transfinite_recursor [in hydras.Epsilon0.T1]
    +transfinite_recursor_lt [in hydras.Epsilon0.T1]
    +transfinite_induction_Q [in hydras.Gamma0.Gamma0]
    +transfinite_induction [in hydras.Gamma0.Gamma0]
    +transition [in gaia_hydras.GPaths]
    +transition [in hydras.Epsilon0.Paths]
    +transitionb [in gaia_hydras.GPaths]
    +transition_S [in hydras.Epsilon0.Paths]
    +translateLT [in hydras.Ackermann.LNN2LNT]
    +Tree2T1 [in gaia_hydras.T1Choice]
    +two [in additions.BinaryStrat]
    +T' [in Goedel.rosserPA]
    +T' [in Goedel.goedel2]
    +T1add [in hydras.Epsilon0.T1]
    +T1Choice [in gaia_hydras.T1Choice]
    +T1F_ [in gaia_hydras.GF_alpha]
    +T1is_succ [in hydras.Epsilon0.T1]
    +T1leOrderMixin [in gaia_hydras.T1Choice]
    +T1limit [in hydras.Epsilon0.T1]
    +T1max [in gaia_hydras.T1Choice]
    +T1min [in gaia_hydras.T1Choice]
    +T1mixin [in gaia_hydras.T1Choice]
    +T1mul [in hydras.Epsilon0.T1]
    +T1nat [in hydras.Epsilon0.T1]
    +T1orderType [in gaia_hydras.T1Choice]
    +T1pp [in gaia_hydras.T1Bridge]
    +T1toH [in gaia_hydras.GHydra]
    +T1_eq_dec [in hydras.Epsilon0.T1]
    +T1_le_Mixin [in gaia_hydras.T1Choice]
    +T1_to_T2 [in hydras.Gamma0.T2]
    +t1_0 [in hydras.MoreAck.LNN_Examples]
    +T1_to_T2_R [in hydras.Gamma0.Gamma0]
    +t1_0 [in hydras.MoreAck.FolExamples]
    +T12Tree [in gaia_hydras.T1Choice]
    +t2_length_aux [in hydras.Gamma0.T2]
    +t2_length [in hydras.Gamma0.T2]
    +T2_size [in hydras.Gamma0.Gamma0]
    +T2_2_term [in hydras.Gamma0.Gamma0]
    +

    U

    +Unbounded [in hydras.Schutte.Schutte_basics]
    +Unnamed_thm9 [in gaia_hydras.T1Choice]
    +Unnamed_thm8 [in gaia_hydras.T1Choice]
    +Unnamed_thm7 [in gaia_hydras.T1Choice]
    +Unnamed_thm6 [in gaia_hydras.T1Choice]
    +Unnamed_thm5 [in gaia_hydras.T1Choice]
    +Unnamed_thm5 [in gaia_hydras.T1Choice]
    +Unnamed_thm4 [in gaia_hydras.T1Choice]
    +Unnamed_thm3 [in gaia_hydras.T1Choice]
    +Unnamed_thm2 [in gaia_hydras.T1Choice]
    +Unnamed_thm1 [in gaia_hydras.T1Choice]
    +Unnamed_thm0 [in gaia_hydras.T1Choice]
    +Unnamed_thm [in gaia_hydras.T1Choice]
    +Unnamed_thm [in hydras.Prelude.More_Arith]
    +Unnamed_thm [in hydras.MoreAck.expressibleExamples]
    +Unnamed_thm0 [in hydras.MoreAck.LNN_Examples]
    +Unnamed_thm [in hydras.MoreAck.LNN_Examples]
    +Unnamed_thm [in additions.Monoid_def]
    +Unnamed_thm0 [in hydras.Ackermann.fol]
    +Unnamed_thm [in hydras.Ackermann.fol]
    +Unnamed_thm [in hydras.Epsilon0.Canon]
    +Unnamed_thm [in hydras.OrdinalNotations.ON_Finite]
    +Unnamed_thm1 [in hydras.Prelude.LibHyps_Experiments]
    +Unnamed_thm0 [in hydras.Prelude.LibHyps_Experiments]
    +Unnamed_thm [in hydras.Prelude.LibHyps_Experiments]
    +Unnamed_thm1 [in hydras.solutions_exercises.F_3]
    +Unnamed_thm0 [in hydras.solutions_exercises.F_3]
    +Unnamed_thm [in hydras.solutions_exercises.F_3]
    +Unnamed_thm [in additions.Addition_Chains]
    +Unnamed_thm [in hydras.Epsilon0.Hprime]
    +Unnamed_thm [in hydras.MoreAck.FolExamples]
    +Unnamed_thm [in hydras.MoreAck.FolExamples]
    +Unnamed_thm2 [in hydras.MoreAck.PrimRecExamples]
    +Unnamed_thm1 [in hydras.MoreAck.PrimRecExamples]
    +Unnamed_thm0 [in hydras.MoreAck.PrimRecExamples]
    +Unnamed_thm [in hydras.MoreAck.PrimRecExamples]
    +unshift [in hydras.Prelude.MoreLists]
    +updateValue [in hydras.Ackermann.model]
    +upper_bound [in hydras.Schutte.Lub]
    +Usual.beta [in Goedel.PRrepresentable]
    +

    V

    +varFormula [in hydras.Ackermann.codeSubFormula]
    +Vars.var [in hydras.Gamma0.Gamma0]
    +vector_nth [in hydras.Prelude.MoreVectors]
    +vector_triple_rect [in hydras.Prelude.MoreVectors]
    +vector_double_rect [in hydras.Prelude.MoreVectors]
    +vect_from_fun [in hydras.Prelude.MoreVectors]
    +Vec2_proj [in hydras.Prelude.MoreVectors]
    +Vid [in hydras.Prelude.MoreVectors]
    +

    W

    +wConsistent [in hydras.Ackermann.wConsistent]
    +wellFormedFormula [in hydras.Ackermann.wellFormed]
    +wellFormedTerm [in hydras.Ackermann.wellFormed]
    +wellFormedTerms [in hydras.Ackermann.wellFormed]
    +wellFormedTermTerms [in hydras.Ackermann.wellFormed]
    +well_founded_restriction_rect [in hydras.Prelude.Restriction]
    +well_founded_restriction [in hydras.Prelude.Restriction]
    +well_founded_P [in gaia_hydras.nfwfgaia]
    +Wfsum.extension [in gaia_hydras.nfwfgaia]
    +Wfsum.f [in gaia_hydras.nfwfgaia]
    +Wfsum.f_spec [in gaia_hydras.nfwfgaia]
    +Wfsum.f1 [in gaia_hydras.nfwfgaia]
    +Wfsum.f2 [in gaia_hydras.nfwfgaia]
    +Wfsum.psum [in gaia_hydras.nfwfgaia]
    +Wf_ex3.f [in gaia_hydras.nfwfgaia]
    +Wf_ex3.f2 [in gaia_hydras.nfwfgaia]
    +Wf_ex3.f1 [in gaia_hydras.nfwfgaia]
    +Wf_ex3.f_spec [in gaia_hydras.nfwfgaia]
    +Wf_ex3.lte [in gaia_hydras.nfwfgaia]
    +Wf_ex.f [in gaia_hydras.nfwfgaia]
    +Wf_ex.f2 [in gaia_hydras.nfwfgaia]
    +Wf_ex.f1 [in gaia_hydras.nfwfgaia]
    +Wf_ex.f_spec [in gaia_hydras.nfwfgaia]
    +wInconsistent [in hydras.Ackermann.wConsistent]
    +

    X

    +xPair [in hydras.Ackermann.cPair]
    +

    Z

    +zero [in hydras.OrdinalNotations.ON_Omega2]
    +zero [in hydras.Schutte.Schutte_basics]
    +zeroFormula [in Goedel.PRrepresentable]
    +ZeroLimitSucc_dec [in hydras.OrdinalNotations.ON_Generic]
    +zero_limit_succ_dec [in hydras.Epsilon0.T1]
    +zero_limit_succ_dec [in hydras.OrdinalNotations.ON_Omega2]
    +Zero_limit_succ_dec [in hydras.OrdinalNotations.ON_Omega2]
    +Zero_limit_succ_dec [in hydras.OrdinalNotations.ON_Omega_plus_omega]
    +Zero_limit_succ_dec [in hydras.OrdinalNotations.ON_Finite]
    +Zero_limit_succ_dec [in hydras.Epsilon0.E0]
    +Zero_Limit_Succ_dec [in hydras.Epsilon0.E0]
    +Zero_limit_succ_dec [in hydras.OrdinalNotations.ON_Omega]
    +Zfibt [in additions.fib]
    +ZtoR [in additions.fib]
    +Z_pow [in additions.Compatibility]
    +Z.power [in additions.Naive]
    +

    _

    +_phi0 [in hydras.Schutte.AP]
    +_omega [in hydras.Schutte.Schutte_basics]
    +_f [in hydras.Schutte.Ordering_Functions]
    +_A [in hydras.Schutte.Ordering_Functions]
    +

    other

    +α [in gaia_hydras.HydraGaia_Examples]
    +β [in gaia_hydras.HydraGaia_Examples]
    +


    +

    Record Index

    +

    A

    +Abelian_Monoid [in additions.Monoid_def]
    +Abelian_EMonoid [in additions.Monoid_def]
    +Assoc [in hydras.Prelude.STDPP_compat]
    +

    B

    +Bad3.Fchain_proper [in additions.Euclidean_Chains]
    +Battle [in hydras.Hydra.Hydra_Definitions]
    +BoundedVariant [in hydras.Hydra.Hydra_Definitions]
    +

    C

    +Comparable [in hydras.Prelude.Comparable]
    +Compare [in hydras.Prelude.Comparable]
    +

    D

    +Decision [in hydras.Prelude.STDPP_compat]
    +

    E

    +EMonoid [in additions.Monoid_def]
    +Equiv [in additions.Monoid_def]
    +E0 [in gaia_hydras.T1Bridge]
    +E0 [in hydras.Epsilon0.E0]
    +

    F

    +Fchain_proper [in additions.Euclidean_Chains]
    +Fkont_proper [in additions.Euclidean_Chains]
    +

    G

    +G0.G0 [in hydras.Gamma0.Gamma0]
    +

    H

    +Hvariant [in hydras.Hydra.Hydra_Definitions]
    +

    I

    +InH [in hydras.Schutte.MoreEpsilonIota]
    +isPR [in hydras.Ackermann.primRec]
    +isPRrel [in hydras.Ackermann.primRec]
    +

    K

    +Kchain_proper [in additions.Euclidean_Chains]
    +

    L

    +Language [in hydras.Ackermann.fol]
    +Lcode [in hydras.Ackermann.code]
    +

    M

    +Make.SN_term [in hydras.rpo.rpo]
    +Make.t [in hydras.rpo.list_set]
    +Model [in hydras.Ackermann.model]
    +Monoid [in additions.Monoid_def]
    +Mult_op [in additions.Monoid_def]
    +M2 [in additions.Monoid_instances]
    +M2.t [in additions.FirstSteps]
    +M2.t [in additions.Naive]
    +

    O

    +ON [in hydras.OrdinalNotations.ON_Generic]
    +ONDef.mixin_of [in gaia_hydras.onType]
    +ONDef.pack_type [in gaia_hydras.onType]
    +ON_correct [in hydras.OrdinalNotations.ON_Generic]
    +ON_Iso [in hydras.OrdinalNotations.ON_Generic]
    +OO.OO [in hydras.OrdinalNotations.OmegaOmega]
    +ordering_function [in hydras.Schutte.Ordering_Functions]
    +

    P

    +P [in hydras.Epsilon0.F_alpha]
    +P [in hydras.Epsilon0.Hprime]
    +

    Q

    +Q [in hydras.Epsilon0.F_alpha]
    +

    R

    +RelDecision [in hydras.Prelude.STDPP_compat]
    +

    S

    +Semibundled.TotalDec [in hydras.Prelude.DecPreOrder]
    +Semibundled.TotalDecPreOrder [in hydras.Prelude.DecPreOrder]
    +state [in hydras.Hydra.BigBattle]
    +Strategy [in additions.Strategies]
    +SubON [in hydras.OrdinalNotations.ON_Generic]
    +S.t [in hydras.rpo.list_set]
    +

    T

    +Total [in hydras.Prelude.DecPreOrder]
    +TotalPreOrder [in hydras.Prelude.DecPreOrder]
    +

    W

    +WfVariant [in hydras.Prelude.WfVariant]
    +WO [in hydras.Schutte.Well_Orders]
    +


    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Global IndexABCDEFGHIJKLMNOPQRSTUVWXYZ_other(28510 entries)
    Notation IndexABCDEFGHIJKLMNOPQRSTUVWXYZ_other(182 entries)
    Binder IndexABCDEFGHIJKLMNOPQRSTUVWXYZ_other(20431 entries)
    Module IndexABCDEFGHIJKLMNOPQRSTUVWXYZ_other(94 entries)
    Variable IndexABCDEFGHIJKLMNOPQRSTUVWXYZ_other(764 entries)
    Library IndexABCDEFGHIJKLMNOPQRSTUVWXYZ_other(191 entries)
    Lemma IndexABCDEFGHIJKLMNOPQRSTUVWXYZ_other(3916 entries)
    Constructor IndexABCDEFGHIJKLMNOPQRSTUVWXYZ_other(281 entries)
    Axiom IndexABCDEFGHIJKLMNOPQRSTUVWXYZ_other(52 entries)
    Inductive IndexABCDEFGHIJKLMNOPQRSTUVWXYZ_other(119 entries)
    Projection IndexABCDEFGHIJKLMNOPQRSTUVWXYZ_other(110 entries)
    Section IndexABCDEFGHIJKLMNOPQRSTUVWXYZ_other(284 entries)
    Instance IndexABCDEFGHIJKLMNOPQRSTUVWXYZ_other(366 entries)
    Abbreviation IndexABCDEFGHIJKLMNOPQRSTUVWXYZ_other(182 entries)
    Definition IndexABCDEFGHIJKLMNOPQRSTUVWXYZ_other(1486 entries)
    Record IndexABCDEFGHIJKLMNOPQRSTUVWXYZ_other(52 entries)
    +
    This page has been generated by coqdoc +
    + +
    + + + \ No newline at end of file diff --git a/theories/html/toc.html b/theories/html/toc.html new file mode 100644 index 00000000..292db1fa --- /dev/null +++ b/theories/html/toc.html @@ -0,0 +1,2100 @@ + + + + + +Table of contents + + + + +
    + + + +
    + +
    +

    Library hydras.OrdinalNotations.ON_Omega

    +

    Library hydras.OrdinalNotations.ON_Generic

    + +

    Library hydras.OrdinalNotations.ON_Finite

    +

    Library hydras.OrdinalNotations.ON_mult

    + +

    Library hydras.OrdinalNotations.ON_Omega_plus_omega

    +

    Library hydras.OrdinalNotations.ON_plus

    +

    Library hydras.OrdinalNotations.ON_O

    +

    Library hydras.OrdinalNotations.ON_Omega2

    + +

    Library hydras.OrdinalNotations.Example_3PlusOmega

    +

    Library hydras.OrdinalNotations.OmegaOmega

    + +

    Library hydras.Prelude.ssrnat_extracts

    + +

    Library hydras.Prelude.MoreDecidable

    +

    Library hydras.Prelude.STDPP_compat

    +

    Library hydras.Prelude.Comparable

    +

    Library hydras.Prelude.First_toggle

    +

    Library hydras.Prelude.Simple_LexProd

    +

    Library hydras.Prelude.DecPreOrder

    +

    Library hydras.Prelude.Exp2

    +

    Library hydras.Prelude.Sort_spec

    +

    Library hydras.Prelude.Merge_Sort

    +

    Library hydras.Prelude.WfVariant

    +

    Library hydras.Prelude.More_Arith

    +

    Library hydras.Prelude.DecPreOrder_Instances

    +

    Library hydras.Prelude.Fuel

    +

    Library hydras.Prelude.Iterates

    + +

    Library hydras.Prelude.OrdNotations

    +

    Library hydras.Prelude.MoreLists

    + +

    Library hydras.Prelude.Restriction

    +

    Library hydras.Prelude.MoreOrders

    +

    Library hydras.Prelude.MoreVectors

    + +

    Library hydras.Prelude.Compat815

    +

    Library hydras.Prelude.MoreLibHyps

    +

    Library hydras.Prelude.LibHyps_Experiments

    +

    Library hydras.Epsilon0.Hessenberg

    + +

    Library hydras.Epsilon0.Large_Sets

    + +

    Library hydras.Epsilon0.Epsilon0rpo

    + +

    Library hydras.Epsilon0.Hprime

    + +

    Library hydras.Epsilon0.E0

    + +

    Library hydras.Epsilon0.T1

    + +

    Library hydras.Epsilon0.Paths

    + +

    Library hydras.Epsilon0.Canon

    + +

    Library hydras.Epsilon0.Large_Sets_Examples

    +

    Library hydras.Epsilon0.L_alpha

    + +

    Library hydras.Epsilon0.Epsilon0

    +

    Library hydras.Epsilon0.F_alpha

    + +

    Library hydras.Epsilon0.F_omega

    + +

    Library hydras.Gamma0.T2

    + +

    Library hydras.Gamma0.Gamma0

    + +

    Library hydras.rpo.decidable_set

    +

    Library hydras.rpo.dickson

    + +

    Library hydras.rpo.list_set

    + +

    Library hydras.rpo.list_permut

    + +

    Library hydras.rpo.more_list

    + +

    Library hydras.rpo.closure

    +

    Library hydras.rpo.rpo

    + +

    Library hydras.rpo.term

    + +

    Library hydras.Schutte.MoreEpsilonIota

    +

    Library hydras.Schutte.CNF

    + +

    Library hydras.Schutte.AP

    + +

    Library hydras.Schutte.Schutte_basics

    + +

    Library hydras.Schutte.Ordering_Functions

    + +

    Library hydras.Schutte.Countable

    +

    Library hydras.Schutte.Critical

    +

    Library hydras.Schutte.Schutte

    + +

    Library hydras.Schutte.Well_Orders

    +

    Library hydras.Schutte.Addition

    + +

    Library hydras.Schutte.Correctness_E0

    +

    Library hydras.Schutte.PartialFun

    + +

    Library hydras.Schutte.Lub

    +

    Library hydras.Schutte.GRelations

    +

    Library hydras.Hydra.Battle_length

    +

    Library hydras.Hydra.Omega_Small

    +

    Library hydras.Hydra.BigBattle

    + +

    Library hydras.Hydra.Epsilon0_Needed_Generic

    +

    Library hydras.Hydra.Hydra_Extraction

    +

    Library hydras.Hydra.KP_example

    +

    Library hydras.Hydra.Hydra_Termination

    + +

    Library hydras.Hydra.Hydra_Theorems

    + +

    Library hydras.Hydra.Omega2_Small

    + +

    Library hydras.Hydra.Hydra_Definitions

    + +

    Library hydras.Hydra.Epsilon0_Needed_Free

    + +

    Library hydras.Hydra.Hydra_Examples

    +

    Library hydras.Hydra.Hydra_Lemmas

    + +

    Library hydras.Hydra.O2H

    +

    Library hydras.Hydra.Epsilon0_Needed_Std

    + +

    Library hydras.Ackermann.codeNatToTerm

    +

    Library hydras.Ackermann.code

    + +

    Library hydras.Ackermann.extEqualNat

    +

    Library hydras.Ackermann.folLogic

    +

    Library hydras.Ackermann.fol

    + +

    Library hydras.Ackermann.LNN

    + +

    Library hydras.Ackermann.NN2PA

    +

    Library hydras.Ackermann.PAtheory

    +

    Library hydras.Ackermann.prLogic

    +

    Library hydras.Ackermann.wellFormed

    +

    Library hydras.Ackermann.checkPrf

    +

    Library hydras.Ackermann.codePA

    +

    Library hydras.Ackermann.cPair

    + +

    Library hydras.Ackermann.folProof

    +

    Library hydras.Ackermann.Languages

    + +

    Library hydras.Ackermann.LNT

    + +

    Library hydras.Ackermann.NNtheory

    +

    Library hydras.Ackermann.PA

    +

    Library hydras.Ackermann.subAll

    +

    Library hydras.Ackermann.codeFreeVar

    +

    Library hydras.Ackermann.codeSubFormula

    +

    Library hydras.Ackermann.Deduction

    +

    Library hydras.Ackermann.folLogic2

    +

    Library hydras.Ackermann.folProp

    +

    Library hydras.Ackermann.ListExt

    +

    Library hydras.Ackermann.misc

    +

    Library hydras.Ackermann.NN

    + +

    Library hydras.Ackermann.subProp

    +

    Library hydras.Ackermann.codeList

    +

    Library hydras.Ackermann.codeSubTerm

    +

    Library hydras.Ackermann.expressible

    +

    Library hydras.Ackermann.folLogic3

    +

    Library hydras.Ackermann.folReplace

    +

    Library hydras.Ackermann.LNN2LNT

    + +

    Library hydras.Ackermann.model

    +

    Library hydras.Ackermann.PAconsistent

    +

    Library hydras.Ackermann.primRec

    + +

    Library hydras.Ackermann.wConsistent

    +

    Library hydras.Ackermann.NewNotations

    +

    Library hydras.MoreAck.Ack

    + +

    Library hydras.MoreAck.AckNotPR

    + +

    Library hydras.MoreAck.FolExamples

    + +

    Library hydras.MoreAck.Iterate_compat

    +

    Library hydras.MoreAck.PrimRecExamples

    + +

    Library hydras.MoreAck.LNN_Examples

    +

    Library hydras.MoreAck.BadSubst

    + +

    Library hydras.MoreAck.expressibleExamples

    +

    Library hydras.solutions_exercises.MinPR

    +

    Library hydras.solutions_exercises.MinPR2

    +

    Library hydras.solutions_exercises.FibonacciPR

    +

    Library hydras.solutions_exercises.MorePRExamples

    + +

    Library hydras.solutions_exercises.isqrt

    +

    Library hydras.solutions_exercises.T1_ltNotWf

    +

    Library hydras.solutions_exercises.predSuccUnicity

    +

    Library hydras.solutions_exercises.lt_succ_le

    +

    Library hydras.solutions_exercises.Limit_Infinity

    +

    Library hydras.solutions_exercises.ge_omega_iff

    +

    Library hydras.solutions_exercises.schutte_cnf_counter_example

    +

    Library hydras.solutions_exercises.F_3

    + +

    Library hydras.solutions_exercises.is_F_monotonous

    +

    Library hydras.solutions_exercises.MultisetWf

    +

    Library hydras.solutions_exercises.OnCodeList

    +

    Library additions.AM

    + +

    Library additions.Addition_Chains

    + +

    Library additions.BinaryStrat

    +

    Library additions.Compatibility

    + +

    Library additions.Demo

    +

    Library additions.Demo_power

    +

    Library additions.Dichotomy

    +

    Library additions.Euclidean_Chains

    + +

    Library additions.fib

    +

    Library additions.Fib2

    +

    Library additions.FirstSteps

    + +

    Library additions.Monoid_def

    + +

    Library additions.Monoid_instances

    + +

    Library additions.More_on_positive

    + +

    Library additions.Naive

    + +

    Library additions.Pow

    + +

    Library additions.Pow_variant

    + +

    Library additions.Strategies

    +

    Library additions.Trace_exercise

    +

    Library additions.Wf_transparent

    +

    Library gaia_hydras.T1Bridge

    + +

    Library gaia_hydras.GaiaToHydra

    +

    Library gaia_hydras.nfwfgaia

    + +

    Library gaia_hydras.GCanon

    + +

    Library gaia_hydras.GF_alpha

    + +

    Library gaia_hydras.GL_alpha

    +

    Library gaia_hydras.GHprime

    + +

    Library gaia_hydras.ON_gfinite

    +

    Library gaia_hydras.GPaths

    + +

    Library gaia_hydras.GLarge_Sets

    +

    Library gaia_hydras.GHessenberg

    +

    Library gaia_hydras.HydraGaia_Examples

    +

    Library gaia_hydras.GHydra

    +

    Library gaia_hydras.T2Bridge

    + +

    Library gaia_hydras.GPrelude

    +

    Library gaia_hydras.T1Choice

    +

    Library gaia_hydras.onType

    + +

    Library Goedel.rosser

    +

    Library Goedel.goedel1

    +

    Library Goedel.PRrepresentable

    +

    Library Goedel.fixPoint

    +

    Library Goedel.codeSysPrf

    +

    Library Goedel.rosserPA

    +

    Library Goedel.goedel2

    +
    +
    This page has been generated by coqdoc +
    + +
    + + + \ No newline at end of file