-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathinterpol.R
executable file
·327 lines (315 loc) · 12.6 KB
/
interpol.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
nscore <- function(x) {
nscore <- qqnorm(x, plot.it = FALSE)$x # normal score
trn.table <- data.frame(x=sort(x),nscore=sort(nscore))
return (list(nscore=nscore, trn.table=trn.table))
}
backtr <- function(scores, nscore, tails='none', draw=FALSE) {
if(tails=='none') { # No extrapolation
min.x <- min(nscore$trn.table$x)
max.x <- max(nscore$trn.table$x)
}
min.sc <- min(scores)
max.sc <- max(scores)
x <- c(min.x, nscore$trn.table$x, max.x)
nsc <- c(min.sc, nscore$trn.table$nscore, max.sc)
back.xf <- approxfun(nsc,x) # Develop the back transform function
val <- back.xf(scores)
return(val)
}
mean_double_Station = function (gauge = NULL, sat = NULL, longlat = TRUE){
#----------------------------------------------------------------------
projection(sat) <- projection(gauge)
point <- data.frame(rasterToPoints(sat))
colnames(point) <- c("x","y","sat")
coordinates(point) <- ~ x + y
projection(point) <- projection(sat)
distances <- function(x,ptsat = point) which.min(spDists(ptsat,gauge[x,],longlat = T))
#----------------------------------------------------------------------
loc <- do.call("c",lapply(1:length(gauge), distances))
duplicates <- loc[which(duplicated(loc))]
gauge2 <- cbind(coordinates(gauge),gauge@data)
colnames(gauge2) <- c("x","y",colnames(gauge2)[3:length(gauge2)])
gauge2p <- gauge2 %>% tbl_df
list <- lapply(1:length(duplicates), function(i){
dupliStation <- which(loc==duplicates[i])
gaugeD <- gauge2p[dupliStation,]
PromStation <- colMeans(gaugeD,na.rm=T)
list(Prom=PromStation,position=dupliStation)
})
stat<-do.call("rbind",lapply(1:length(duplicates),function(x) list[[x]]$position))
stat2<-do.call("rbind",lapply(1:length(duplicates),function(x) list[[x]]$Prom))
gauge2p[stat[,1],]<-stat2
newG<-gauge2p[-stat[,2],]
coordinates(newG)<-~x+y
projection(newG) <- projection(sat)
return(newG)
}
var_fit <- function (gauge, cov, formula, ...){
ext <- raster::extract(cov, gauge, cellnumber = F, sp = T)
ext2<-data.frame(coordinates(ext),ext@data) %>% na.omit
coordinates(ext2)<-~x+y
projection(ext2)<-projection(gauge)
list(ftvariogram = FitVariogram(formula, ext2, ...), ext = ext2)
}
RIDW <- function (gauge, cov, formula, idpR = seq(0.8, 3.5, 0.1), ...) {
sav_name <- names(gauge)
ext <- raster::extract(cov, gauge, cellnumber = F, sp = T)
gauge <- gauge[which(!is.na(ext$sat)),]
station <- gauge
linear <- na.omit(ext@data) %>% tbl_df %>% mutate_all(as.character) %>%
mutate_all(as.numeric)
#llm <- lm(formula, linear)
#if(anyNA(coefficients(llm))){
station$residuals <- linear[[1]]-linear[[2]]
#} else {station$residuals <- llm$residuals}
point <- rasterToPoints(cov) %>% data.frame
coordinates(point) <- ~x + y
projection(point) <- projection(cov)
idpRange <- idpR
mse <- rep(NA, length(idpRange))
for (i in 1:length(idpRange)) {
mse[i] <- mean(krige.cv(residuals ~ 1, station, nfold = 10,
set = list(idp = idpRange[i]), verbose = F, ...)$residual^2)
}
poss <- which(mse %in% min(mse))
bestparam <- idpRange[poss]
# residual.best <- krige.cv(residuals ~ 1, station, nfold = nrow(station),
# set = list(idp = idpRange[poss]), verbose = F, ...)$residual
idwError <- idw(residuals ~ 1, station, point, idp = bestparam)
idwError <- idwError["var1.pred"]
gridded(idwError) <- TRUE
mapa <- raster(idwError)
Ridw <- mapa+cov
Ridw
}
KED <- function (gauge, cov, formula, model, crossval = F,nfold, ...)
{
projection(cov)<-projection(gauge)
if (missing(formula)) {
formula <- sprintf("%s~%s",names(gauge),names(cov)) %>% as.formula
}
if (missing(model)) {
vm.fit <- var_fit(gauge, cov, formula)
ext <- vm.fit$ext
model <- vm.fit$ftvariogram
}
point <- rasterToPoints(cov) %>% data.frame
coordinates(point) <- ~x + y
projection(point) <- projection(gauge)
Zs <- krige(formula, locations = ext, newdata = point, model = model$var_model)
map <- as(Zs[1], "SpatialPixelsDataFrame")
gridded(map) <- TRUE
mapa <- raster(map)
mapa<-expm1(mapa)
mapa[mapa<0]=0
PISCO_valu <- raster::extract(mapa,gauge)
nwdf<-data.frame(obs=expm1(gauge$gauge),sim=PISCO_valu)
coeficients<-lm(obs~sim,nwdf)$coefficients
PISCO_climatology <- mapa*coeficients[2]+coeficients[1]
PISCO_climatology2<-resampleR(PISCO_climatology,base,r="near")
PISCO_climatology2
if (crossval == T) {
if (missing(nfold)) {
Zs.cv <- krige.cv(formula, ext, model$var_model, nfold = nrow(ext))
}
else Zs.cv <- krige.cv(formula, ext, model$var_model, nfold = nfold)
Zs.cvresidual <- Zs.cv["residual"]
list(Interpol = mapa, params = list(residual = Zs.cvresidual,
rmse = sqrt(mean(Zs.cvresidual$residual^2)), var = vm.fit))
}
else mapa
}
ROK <- function (gauge, cov, formula, model, crossval = F,nfold, ...) {
projection(cov) <- projection(gauge)
sav_name <- names(gauge)
names(gauge) <- "gauge"
sat_cor <- raster::extract(cov,gauge) #extraido del sat
dTF <- data.frame(obs=gauge$gauge,sat=sat_cor) #creo el df
#llm<-lm(obs~sat,dTF) # construyo el modelo lineal global
gauge$diff <- round(dTF$obs-dTF$sat,1)
fv <- FitVariogram(diff~1,gauge,fix.values = c(0,NA,NA)) #cov_lm <- cov*llm$coefficients[2]+llm$coefficients[1] #corrigo el sat
cov_lm <- cov
kd <- krige(diff~1,gauge,rasterToPoints(cov_lm,sp=T),model=fv$var_model)
rF<-kd[1]
gridded(rF)=T
rFF <- raster(rF) + cov_lm
rFF <- expm1(rFF)
rFF[rFF<0]=0
# PISCO_valu <- raster::extract(rFF,gauge)
# nwdf<-data.frame(obs=expm1(gauge$gauge),sim=PISCO_valu)
# coeficients<-lm(obs~sim,nwdf)$coefficients
# PISCO_climatology <- rFF*coeficients[2]+coeficients[1]
# names(PISCO_climatology) <- sav_name
# PISCO_climatology2<-resampleR(,base,r="near")
# PISCO_climatology2
rFF
}
FitVariogram <- function (formula, input_data, model = c("Sph", "Exp", "Gau",
"Ste"), kappa = c(0.05, seq(0.2, 2, 0.1), 5, 10), fix.values = c(NA,
NA, NA), verbose = FALSE, GLS.model = NA, start_vals = c(NA,
NA, NA), miscFitOptions = list(), boundaries, ...)
{
if ("alpha" %in% names(list(...)))
warning("Anisotropic variogram model fitting not supported, see the documentation of autofitVariogram for more details.")
miscFitOptionsDefaults = list(merge.small.bins = TRUE, min.np.bin = 5)
miscFitOptions = modifyList(miscFitOptionsDefaults, miscFitOptions)
longlat = !is.projected(input_data)
if (is.na(longlat))
longlat = FALSE
diagonal = spDists(t(bbox(input_data)), longlat = longlat)[1,
2]
if (!missing(boundaries))
boundaries = boundaries
else {
boundaries = c(2, 4, 6, 9, 12, 15, 25, 35, 50, 65, 80,
100) * diagonal * 0.35/100
}
if (!is(GLS.model, "variogramModel")) {
experimental_variogram = variogram(formula, input_data,
boundaries = boundaries, ...)
}
else {
if (verbose)
cat("Calculating GLS sample variogram\n")
g = gstat(NULL, "bla", formula, input_data, model = GLS.model,
set = list(gls = 1))
experimental_variogram = variogram(g, boundaries = boundaries,
...)
}
if (miscFitOptions[["merge.small.bins"]]) {
if (verbose)
cat("Checking if any bins have less than 5 points, merging bins when necessary...\n\n")
while (TRUE) {
if (length(experimental_variogram$np[experimental_variogram$np <
miscFitOptions[["min.np.bin"]]]) == 0 | length(boundaries) ==
1)
break
boundaries = boundaries[2:length(boundaries)]
if (!is(GLS.model, "variogramModel")) {
experimental_variogram = variogram(formula,
input_data, boundaries = boundaries, ...)
}
else {
experimental_variogram = variogram(g, boundaries = boundaries,
...)
}
}
}
if (is.na(start_vals[1])) {
initial_nugget = min(experimental_variogram$gamma)
}
else {
initial_nugget = start_vals[1]
}
if (is.na(start_vals[2])) {
initial_range = 0.1 * diagonal
}
else {
initial_range = start_vals[2]
}
if (is.na(start_vals[3])) {
initial_sill = mean(c(max(experimental_variogram$gamma),
median(experimental_variogram$gamma)))
}
else {
initial_sill = start_vals[3]
}
if (!is.na(fix.values[1])) {
fit_nugget = FALSE
initial_nugget = fix.values[1]
}
else fit_nugget = TRUE
if (!is.na(fix.values[2])) {
fit_range = FALSE
initial_range = fix.values[2]
}
else fit_range = TRUE
if (!is.na(fix.values[3])) {
fit_sill = FALSE
initial_sill = fix.values[3]
}
else fit_sill = TRUE
getModel = function(psill, model, range, kappa, nugget,
fit_range, fit_sill, fit_nugget, verbose) {
if (verbose)
debug.level = 1
else debug.level = 0
if (model == "Pow") {
warning("Using the power model is at your own risk, read the docs of autofitVariogram for more details.")
if (is.na(start_vals[1]))
nugget = 0
if (is.na(start_vals[2]))
range = 1
if (is.na(start_vals[3]))
sill = 1
}
obj = try(fit.variogram(experimental_variogram, model = vgm(psill = psill,
model = model, range = range, nugget = nugget, kappa = kappa),
fit.ranges = c(fit_range), fit.sills = c(fit_nugget,
fit_sill), debug.level = 0), TRUE)
if ("try-error" %in% class(obj)) {
warning("An error has occured during variogram fitting. Used:\n",
"\tnugget:\t", nugget, "\n\tmodel:\t", model,
"\n\tpsill:\t", psill, "\n\trange:\t", range,
"\n\tkappa:\t", ifelse(kappa == 0, NA, kappa),
"\n as initial guess. This particular variogram fit is not taken into account. \nGstat error:\n",
obj)
return(NULL)
}
else return(obj)
}
test_models = model
SSerr_list = c()
vgm_list = list()
counter = 1
for (m in test_models) {
if (m != "Mat" && m != "Ste") {
model_fit = getModel(initial_sill - initial_nugget,
m, initial_range, kappa = 0, initial_nugget,
fit_range, fit_sill, fit_nugget, verbose = verbose)
if (!is.null(model_fit)) {
vgm_list[[counter]] = model_fit
SSerr_list = c(SSerr_list, attr(model_fit, "SSErr"))
}
counter = counter + 1
}
else {
for (k in kappa) {
model_fit = getModel(initial_sill - initial_nugget,
m, initial_range, k, initial_nugget, fit_range,
fit_sill, fit_nugget, verbose = verbose)
if (!is.null(model_fit)) {
vgm_list[[counter]] = model_fit
SSerr_list = c(SSerr_list, attr(model_fit,
"SSErr"))
}
counter = counter + 1
}
}
}
strange_entries = sapply(vgm_list, function(v) any(c(v$psill,
v$range) < 0) | is.null(v))
if (any(strange_entries)) {
if (verbose) {
print(vgm_list[strange_entries])
cat("^^^ ABOVE MODELS WERE REMOVED ^^^\n\n")
}
warning("Some models where removed for being either NULL or having a negative sill/range/nugget, \n\tset verbose == TRUE for more information")
SSerr_list = SSerr_list[!strange_entries]
vgm_list = vgm_list[!strange_entries]
}
if (verbose) {
cat("Selected:\n")
print(vgm_list[[which.min(SSerr_list)]])
cat("\nTested models, best first:\n")
tested = data.frame(`Tested models` = sapply(vgm_list,
function(x) as.character(x[2, 1])), kappa = sapply(vgm_list,
function(x) as.character(x[2, 4])), SSerror = SSerr_list)
tested = tested[order(tested$SSerror), ]
print(tested)
}
result = list(exp_var = experimental_variogram, var_model = vgm_list[[which.min(SSerr_list)]],
sserr = min(SSerr_list))
class(result) = c("autofitVariogram", "list")
return(result)
}