-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcap_acc_neural.py
240 lines (187 loc) · 8.8 KB
/
cap_acc_neural.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import nengo
import nengo.spa as spa
import numpy as np
import pandas as pd
from utils import make_good_unitary, MemoryDataset, get_heatmap_vectors, loc_match, item_match
import os
import argparse
parser = argparse.ArgumentParser('Capacity and Accuracy experiment using neurons')
parser.add_argument('--n-samples', type=int, default=100,
help='Number of samples to test with')
parser.add_argument('--dim', type=int, default=512, help='Dimensionality of the semantic pointers')
parser.add_argument('--neurons-per-dim', type=int, default=15)
parser.add_argument('--limit', type=int, default=5, help='The absolute min and max of the space')
# NOTE: this is set low so it returns the best match unless the result is really bad
parser.add_argument('--similarity-threshold', type=float, default=0.01)
parser.add_argument('--large-item-range', action='store_true', help='if set use a lot more item amounts')
parser.add_argument('--query-type', type=str, default='Both', choices=['Location', 'Item', 'Both'])
parser.add_argument('--seed', type=int, default=13)
args = parser.parse_args()
if args.large_item_range:
item_amounts = [2**n for n in range(12)]
else:
item_amounts = [1, 2, 4, 8, 16, 32]
df = pd.DataFrame()
D = args.dim
seed = args.seed
n_cconv_neurons = args.neurons_per_dim * 2
limit = args.limit
dt = 0.001
time_per_sample = 100
if not os.path.exists('output/neural_capacity'):
os.makedirs('output/neural_capacity')
fname = 'output/neural_capacity/query_experiment_npd{0}_{1}D_{2}samples'.format(
args.neurons_per_dim, D, args.n_samples
)
# Sample period in seconds
sample_period = time_per_sample * dt
rstate = np.random.RandomState(seed=args.seed)
x_axis_sp = make_good_unitary(args.dim, rng=rstate)
y_axis_sp = make_good_unitary(args.dim, rng=rstate)
xs = np.linspace(-args.limit, args.limit, 128)
ys = np.linspace(-args.limit, args.limit, 128)
heatmap_vectors = get_heatmap_vectors(xs=xs, ys=ys, x_axis_sp=x_axis_sp, y_axis_sp=y_axis_sp)
vocab = spa.Vocabulary(args.dim)
if args.large_item_range:
n_vocab_vectors = item_amounts[-1]
else:
# vocab size of twice the maximum number of items used
n_vocab_vectors = item_amounts[-1] * 2
vocab_vectors = np.zeros((n_vocab_vectors, args.dim))
print("Generating {0} vocab items".format(n_vocab_vectors))
for i in range(n_vocab_vectors):
p = vocab.create_pointer()
vocab_vectors[i, :] = p.v
print("Vocab generation complete")
# A copy that will get shuffled around in MemoryDataset
vocab_vectors_copy = vocab_vectors.copy()
class Experiment(object):
def __init__(self, dim, n_items, limit, x_axis_sp, y_axis_sp, dt=0.001, time_per_sample=100):
self.dt = dt
self.time_per_sample = time_per_sample
self.dataset = MemoryDataset(
dim=dim,
n_items=n_items,
allow_duplicate_items=False,
limits=(-limit, limit, -limit, limit),
normalize_memory=True,
x_axis_sp=x_axis_sp,
y_axis_sp=y_axis_sp,
)
self.data_gen = self.dataset.sample_generator(return_coord_sp=True, item_set=vocab_vectors_copy)
self.mem, self.item, self.coord_sp, self.coord = self.data_gen.__next__()
self.step = 0
def __call__(self, t):
# Convert from seconds to number of timesteps, and then scale by time per sample
i = int((t / self.dt) / self.time_per_sample)
# Change the sample to evaluate if required
if i > self.step:
self.step += 1
self.mem, self.item, self.coord_sp, self.coord = self.data_gen.__next__()
return np.concatenate([self.mem, self.item, self.coord_sp, self.coord])
for n_items in item_amounts:
print("Running experiment for {} items in memory".format(n_items))
exp = Experiment(
dim=D,
n_items=n_items,
limit=limit,
x_axis_sp=x_axis_sp,
y_axis_sp=y_axis_sp,
dt=dt,
time_per_sample=time_per_sample, # Timesteps per sample
)
model = nengo.Network('Nengo Capacity Experiment')
with model:
exp_node = nengo.Node(exp, size_in=0, size_out=3 * D + 2)
memory = nengo.Ensemble(n_neurons=D*args.neurons_per_dim, dimensions=D)
true_coord_sp = nengo.Ensemble(n_neurons=D*args.neurons_per_dim, dimensions=D, neuron_type=nengo.Direct())
item_output = nengo.Ensemble(n_neurons=D*args.neurons_per_dim, dimensions=D, neuron_type=nengo.Direct())
coord_sp_output = nengo.Ensemble(n_neurons=D * args.neurons_per_dim, dimensions=D, neuron_type=nengo.Direct())
true_item = nengo.Ensemble(n_neurons=1, dimensions=D, neuron_type=nengo.Direct())
true_coord = nengo.Ensemble(n_neurons=1, dimensions=2, neuron_type=nengo.Direct())
# Item Query
cconv_item_query = nengo.networks.CircularConvolution(n_cconv_neurons, dimensions=D, invert_b=True)
nengo.Connection(memory, cconv_item_query.input_a)
nengo.Connection(true_item, cconv_item_query.input_b)
nengo.Connection(cconv_item_query.output, coord_sp_output)
# Location Query
cconv_loc_query = nengo.networks.CircularConvolution(n_cconv_neurons, dimensions=D, invert_b=True)
nengo.Connection(memory, cconv_loc_query.input_a)
nengo.Connection(true_coord_sp, cconv_loc_query.input_b)
nengo.Connection(cconv_loc_query.output, item_output)
# Connect up the inputs
nengo.Connection(exp_node[0:D], memory, synapse=None)
nengo.Connection(exp_node[D * 2:D * 3], true_coord_sp)
nengo.Connection(exp_node[D:2 * D], true_item)
nengo.Connection(exp_node[D * 3:], true_coord)
# Sample with the probes at the middle and end points of each transition.
# Only the middle value will be saved, to reduce memory requirements
p_pred_item = nengo.Probe(item_output, synapse=None, sample_every=sample_period / 2.)
p_truth_item = nengo.Probe(true_item, synapse=None, sample_every=sample_period / 2.)
p_pred_coord_sp = nengo.Probe(coord_sp_output, synapse=None, sample_every=sample_period / 2.)
p_truth_coord = nengo.Probe(true_coord, synapse=None, sample_every=sample_period / 2.)
p_truth_coord_sp = nengo.Probe(true_coord_sp, synapse=None, sample_every=sample_period / 2.)
sim = nengo.Simulator(model, dt=dt)
run_time = args.n_samples * time_per_sample * dt
print("Running for {0} simulated seconds".format(run_time))
sim.run(run_time)
print("Simulation Complete.")
pred_item = sim.data[p_pred_item]
truth_item = sim.data[p_truth_item]
pred_coord_sp = sim.data[p_pred_coord_sp]
truth_coord = sim.data[p_truth_coord]
truth_coord_sp = sim.data[p_truth_coord_sp]
# Only keep the center timesteps from the period
trimmed_pred_item = pred_item[1::2]
trimmed_truth_item = truth_item[1::2]
trimmed_pred_coord_sp = pred_coord_sp[1::2]
trimmed_truth_coord = truth_coord[1::2]
trimmed_truth_coord_sp = truth_coord_sp[1::2]
# Add datapoints to the pandas dataframe
for i in range(trimmed_pred_item.shape[0]):
if args.query_type == 'Location' or args.query_type == 'Both':
acc = item_match(
sp=trimmed_pred_item[i, :],
vocab_vectors=vocab_vectors,
item=trimmed_truth_item[i, :],
sim_threshold=args.similarity_threshold,
)
df = df.append(
{
"Similarity": np.dot(trimmed_pred_item[i, :], trimmed_truth_item[i, :]),
"Accuracy": acc,
"Items": n_items,
"Dimensionality": D,
"Correct Item": True,
"Query Type": 'Location',
"Limit": limit,
"Circular Convolution Neurons": n_cconv_neurons,
"Time Per Sample": time_per_sample,
},
ignore_index=True
)
if args.query_type == 'Item' or args.query_type == 'Both':
acc = loc_match(
sp=trimmed_pred_coord_sp[i, :],
heatmap_vectors=heatmap_vectors,
coord=trimmed_truth_coord[i, :],
xs=xs,
ys=ys,
distance_threshold=0.5,
sim_threshold=args.similarity_threshold,
)
df = df.append(
{
"Similarity": np.dot(trimmed_pred_coord_sp[i, :], trimmed_truth_coord_sp[i, :]),
"Accuracy": acc,
"Items": n_items,
"Dimensionality": D,
"Correct Item": True,
"Query Type": 'Item',
"Limit": limit,
"Circular Convolution Neurons": n_cconv_neurons,
"Time Per Sample": time_per_sample,
},
ignore_index=True
)
df.to_csv(fname + '.csv')