-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot_capacity_and_accuracy.py
269 lines (216 loc) · 8.67 KB
/
plot_capacity_and_accuracy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# Capacity and Accuracy figure for the paper
# Show neural and ideal approach
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
def main():
ideal_fnames = [
# 'query_suite_results/query_suite_500_samples_512D.npz',
'output/non_neural_capacity/query_experiment_limit5_500_samples_128D.npz',
'output/non_neural_capacity/query_experiment_limit5_500_samples_256D.npz',
'output/non_neural_capacity/query_experiment_limit5_500_samples_512D.npz',
]
neural_fnames = [
# 'output/neural_capacity/neural_loc_query_experiment_npd50_512D_2000samples.csv',
'output/neural_capacity/query_experiment_npd50_128D_200samples.csv',
'output/neural_capacity/query_experiment_npd50_256D_200samples.csv',
'output/neural_capacity/query_experiment_npd50_512D_200samples.csv',
# 'output/neural_capacity/query_experiment_npd15_512D_100samples.csv',
]
df_ideal = pd.DataFrame()
df_neural = pd.DataFrame()
for fname in ideal_fnames:
df_ideal = df_ideal.append(load_non_neural(fname), ignore_index=True)
for fname in neural_fnames:
df_neural = df_neural.append(load_neural(fname), ignore_index=True)
# Add a new column with the implementation
df_ideal['Implementation'] = 'Non Neural'
df_neural['Implementation'] = 'Neural'
df_neural_location = df_neural[df_neural['Query Type'] == 'Location']
df_neural_item = df_neural[df_neural['Query Type'] == 'Item']
# rename columns to be consistent with the other dataframe
df_neural_location = df_neural_location.rename(
index=str, columns={
"Similarity": "Location Query Similarity",
"Accuracy": "Location Query Correct",
}
)
df_neural_item = df_neural_item.rename(
index=str, columns={
"Similarity": "Item Query Similarity",
"Accuracy": "Item Query Within Threshold",
}
)
df_location = df_ideal.append(df_neural_location, ignore_index=True)
df_item = df_ideal.append(df_neural_item, ignore_index=True)
title_font_size = 16
label_font_size = 14
fig, ax = plt.subplots(2, 2, sharey='row', sharex='col', tight_layout=True, figsize=(8, 6))
# only use one limit for the plots
# df_ideal = df_ideal[df_ideal['Limit'] == 5]
# Location query capacity
ax[0, 0].set(xscale="log")
sns.lineplot(
data=df_location,
x="Items",
y="Location Query Similarity",
style="Dimensionality",
hue="Implementation",
ax=ax[0, 0],
)
ax[0, 0].set_title('Location Query Capacity', fontsize=title_font_size)
ax[0, 0].set_ylabel("Similarity", fontsize=label_font_size)
ax[0, 0].plot(
[df_location["Items"].min(), df_location["Items"].max()],
[0.133, 0.133],
linewidth=1, color='black', linestyle='--'
)
# Location query accuracy
ax[1, 0].set(xscale="log")
sns.lineplot(
data=df_location,
x="Items",
y="Location Query Correct",
style="Dimensionality",
hue="Implementation",
ax=ax[1, 0],
)
ax[1, 0].set_title("Location Query Accuracy", fontsize=title_font_size)
ax[1, 0].set_xlabel("Number of Stored Items", fontsize=label_font_size)
ax[1, 0].set_ylabel("Accuracy", fontsize=label_font_size)
# Item query capacity
ax[0, 1].set(xscale="log")
sns.lineplot(
data=df_item,
x="Items",
y="Item Query Similarity",
style="Dimensionality",
hue="Implementation",
ax=ax[0, 1],
)
ax[0, 1].set_title('Item Query Capacity', fontsize=title_font_size)
ax[0, 1].plot(
[df_location["Items"].min(), df_location["Items"].max()],
[0.154, 0.154],
linewidth=1, color='black', linestyle='--'
)
# ax[0, 1].legend(['Non-Neural', 'Neural'])
# Item query accuracy
ax[1, 1].set(xscale="log")
sns.lineplot(
data=df_item,
x="Items",
y="Item Query Within Threshold",
style="Dimensionality",
hue="Implementation",
ax=ax[1, 1],
)
ax[1, 1].set_title("Item Query Accuracy", fontsize=title_font_size)
ax[1, 1].set_xlabel("Number of Stored Items", fontsize=label_font_size)
# Remove all legends except the top right
ax[0, 0].get_legend().remove()
ax[1, 0].get_legend().remove()
ax[1, 1].get_legend().remove()
fig.savefig('output/cap_acc.pdf', dpi=600, bbox_inches='tight')
plt.show()
def load_neural(fname_neural):
df_neural = pd.read_csv(fname_neural)
return df_neural
########################
# Load non-neural data #
########################
def load_non_neural(fname_ideal):
data = np.load(fname_ideal)
# Some processing is needed to get the data into the correct format for the plots
items_used = data['items_used']
loc_sp_used = data['loc_sp_used']
coord_used = data['coord_used']
lq_similarity = data['lq_similarity']
iq_similarity = data['iq_similarity']
dim = data['dim']
vocab_vectors = data['vocab_vectors']
item_amounts = data['item_amounts']
limits = data['limits']
extract_locs = data['extract_locs']
extract_items = data['extract_items']
n_samples = lq_similarity.shape[2]
res = 128
# location query, nearest neighbors accuracy, all of the vocab
lq_nn_accuracy = np.zeros((len(limits), len(item_amounts), n_samples))
# location query, nearest neighbors accuracy, only items used in the memory
lq_mem_accuracy = np.zeros((len(limits), len(item_amounts), n_samples))
# item query, nearest neighbors accuracy
iq_nn_accuracy = np.zeros((len(limits), len(item_amounts), n_samples))
# item query, within threshold accuracy
iq_thresh_accuracy = np.zeros((len(limits), len(item_amounts), n_samples))
threshold = 0.5
for li, limit in enumerate(limits):
for ni, n_items in enumerate(item_amounts):
# Similarity to all items in the vocab
sim_items = np.dot(extract_items[li, ni, :, :], vocab_vectors.T)
# Similarity to all items that were present in the memory
sim_items_used = np.dot(extract_items[li, ni, :, :], items_used[li, ni, :, :].T)
# Similarity to all locations that were present in the memory
sim_locs = np.dot(extract_locs[li, ni, :, :], loc_sp_used[li, ni, :, :].T)
closest_indx_items_used = np.argmax(sim_items_used, axis=1)
closest_indx_items = np.argmax(sim_items, axis=1)
closest_indx_locs = np.argmax(sim_locs, axis=1)
for s in range(n_samples):
if np.allclose(vocab_vectors[closest_indx_items[s]], items_used[li, ni, s, :]):
lq_nn_accuracy[li, ni, s] = 1
else:
lq_nn_accuracy[li, ni, s] = 0
if np.allclose(items_used[li, ni, closest_indx_items_used[s], :], items_used[li, ni, s, :]):
lq_mem_accuracy[li, ni, s] = 1
else:
lq_mem_accuracy[li, ni, s] = 0
if np.allclose(loc_sp_used[li, ni, closest_indx_locs[s], :], loc_sp_used[li, ni, s, :]):
iq_nn_accuracy[li, ni, s] = 1
else:
iq_nn_accuracy[li, ni, s] = 0
coord_recall = coord_used[li, ni, closest_indx_locs[s], :]
correct_coord = coord_used[li, ni, s, :]
if np.linalg.norm(coord_recall - correct_coord) < threshold:
iq_thresh_accuracy[li, ni, s] = 1
else:
iq_thresh_accuracy[li, ni, s] = 0
# build a pandas dataframe efficiently
shape = lq_similarity.shape
limit_column = np.zeros(shape)
items_column = np.zeros(shape)
dimensionality_column = np.ones(shape).astype(np.int32) * dim
for li, limit in enumerate(limits):
limit_column[li, :, :] = limit
for ii, n_items in enumerate(item_amounts):
items_column[:, ii, :] = n_items
ds = np.vstack(
[lq_similarity.flatten(),
iq_similarity.flatten(),
lq_nn_accuracy.flatten(),
lq_mem_accuracy.flatten(),
iq_nn_accuracy.flatten(),
iq_thresh_accuracy.flatten(),
limit_column.flatten(),
items_column.flatten(),
dimensionality_column.flatten(),
]
)
column_names = [
'Location Query Similarity',
'Item Query Similarity',
'Location Query Correct',
'Location Query Correct Within Memory',
'Item Query Correct',
'Item Query Within Threshold',
'Limit',
'Items',
'Dimensionality',
]
df = pd.DataFrame(
data=ds.T,
columns=column_names,
)
return df
if __name__ == '__main__':
main()