-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatabasePartition.m
32 lines (29 loc) · 972 Bytes
/
databasePartition.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
function [ FOLDS ] = databasePartition(database,k)
%Creates random partition of data into K folds.
%Each fold contains same proportion of each database
%Each fold contains same proportion of each class (gender)
classes = unique(database.gender);
NClass = size(unique(database.gender),1);
corpus_names = unique(database.corpus_id);
NCopr = size(unique(database.corpus_id),1);
FOLDS = [];
for i = 1:NCopr
rows1 = zeros(size(database,1),1);
rows2 = zeros(size(database,1),1);
for n = 1:size(database,1)
rows1(n) = strcmp(database.corpus_id{n}, corpus_names{i});
end
for ii = 1:NClass
for n = 1:size(database,1)
rows2(n) = strcmp(database.gender{n}, classes{ii});
end
rows = rows1 & rows2;
strcmp(database.corpus_id{n}, corpus_names{i});
currentDatabase = database(logical(rows),:);
if ~isempty(currentDatabase)
cv_idx = crossvalind('Kfold', size(currentDatabase,1), k);
FOLDS = [FOLDS; cv_idx];
end
end
end
end