-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfit_sphere.py
280 lines (192 loc) · 7.75 KB
/
fit_sphere.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
#!/usr/bin/env python2.5
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# Written (W) 2011 Christian Widmer
# Copyright (C) 2011 Max-Planck-Society
"""
@author: Christian Widmer
@summary: Module that focuses on the simpler special case of fitting a stack of circles
"""
from collections import namedtuple
import scipy.optimize
import numpy
import util
import sympy
from util import Ellipse
loss = None
def fitting_obj_stack(param, dx, dy, dz, di):
"""
computes residuals based on distance from ellipsoid
can be used with different loss-functions on residual
"""
# centers
cx = param[0]
cy = param[1]
#num_layers = len(set(z))
#assert len(param) == num_layers+2
radii = param[2:]
obj = 0
gradient_c = [0.0, 0.0]
gradient_r = [0.0]*(len(radii))
#loss = Loss("eucledian_squared")
#loss = Loss("algebraic_squared")
#loss = Loss("algebraic_squared")
for idx in range(len(dx)):
x = dx[idx]
y = dy[idx]
z = dz[idx]
r = radii[z]
obj += loss.get_obj(x, y, cx, cy, r)
gradient_c[0] += loss.get_grad("cx", x, y, cx, cy, r)
gradient_c[1] += loss.get_grad("cy", x, y, cx, cy, r)
gradient_r[z] += loss.get_grad("r", x, y, cx, cy, r)
# smoothness regularizer
for idx in xrange(len(radii)-1):
obj += (radii[idx] - radii[idx+1])**2
# compute gradient
if idx == 0:
gradient_r[idx] += 2*radii[0] - 2*radii[1]
else:
gradient_r[idx] += 4*radii[idx] - 2*radii[idx-1] - 2*radii[idx+1]
# last entry of gradient
gradient_r[-1] += 2*radii[-1] - 2*radii[-2]
# L1-regularize large radii
for idx, r in enumerate(radii):
obj += r
gradient_r[idx] += 1
# build final gradient
gradient = gradient_c + gradient_r
return obj, gradient
def check_gradient():
"""
sanity check for gradient that compares the analytical gradient
to one computed numerically by finite differences
"""
n = 10
num_z = 2
x = []
y = []
z = []
i = []
for idx in range(num_z):
dat = util.ellipse(1, 1, 1, 2, 0, n=n)
x += list(dat[0])
y += list(dat[1])
z += [idx]*(n+1)
i += [1.0]*(n+1)
assert len(x) == len(y) == len(z) == len(i)
x0 = [3.0]*((max(z)+1) + 2)
print "len(x0) = %i" % len(x0)
# wrap function
def func(param, x, y, z, i):
return fitting_obj_stack(param, x, y, z, i)[0]
def func_prime(param, x, y, z, i):
return fitting_obj_stack(param, x, y, z, i)[1]
print scipy.optimize.check_grad(func, func_prime, x0, x, y, z, i)
def fit_sphere_stack(dx, dy, dz, di):
"""
fit ellipoid beased on data
"""
#TODO think about what to do if there is not data on every layer
#solution: regularize radii to zero, center to previous
#global x,y,z,i
x = numpy.array(dx)
y = numpy.array(dy)
z = numpy.array(dz)
i = numpy.array(di)
num_layers = max(z)+1
print "number of active layers", num_layers
print "num data points: %i" % (len(x))
initial_radius = 5.0
x0 = numpy.ones(num_layers+2)*initial_radius
x0[0] = numpy.average(x)
x0[1] = numpy.average(y)
#x_opt = scipy.optimize.fmin(fitting_obj, x0)
epsilon = 0.5
# contrain all variables to be positive
bounds = [(0,None) for idx in range(num_layers+2)]
assert len(bounds) == len(x0)
#x_opt, nfeval, rc = scipy.optimize.fmin_l_bfgs_b(fitting_obj, x0, bounds=bounds, approx_grad=True, iprint=5)
#x_opt = scipy.optimize.fmin(fitting_obj_sphere_sample, x0, xtol=epsilon, ftol=epsilon, disp=True, full_output=True)[0]
#x_opt = scipy.optimize.fmin(fitting_obj_stack, x0, xtol=epsilon, ftol=epsilon, disp=True, full_output=True)[0]
#x_opt, nfeval, rc = scipy.optimize.fmin_tnc(fit_sphere_c.fitting_obj_stack_cython, x0, bounds=bounds, approx_grad=True, messages=5, args=(x,y,z,i), epsilon=epsilon)
#x_opt, nfeval, rc = scipy.optimize.fmin_tnc(fitting_obj_stack, x0, bounds=bounds, approx_grad=True, messages=5, args=(x,y,z,i), epsilon=epsilon)
x_opt, nfeval, rc = scipy.optimize.fmin_tnc(fitting_obj_stack, x0, bounds=bounds, approx_grad=False, messages=5, args=(x,y,z,i), epsilon=epsilon)
#x_opt, nfeval, rc = scipy.optimize.fmin_l_bfgs_b(fitting_obj, x0, bounds=bounds, approx_grad=True, iprint=5)
#x_opt = scipy.optimize.fmin(fitting_obj_sample, x0, xtol=epsilon, ftol=epsilon, disp=True, full_output=True)[0]
ellipse_stack = []
cx, cy = x_opt[0], x_opt[1]
for z, radius in enumerate(x_opt[2:]):
ellipse_stack.append(Ellipse(cx, cy, z, radius, radius, 0))
return ellipse_stack
class Loss(object):
"""
derive gradient for various loss functions using sympy
"""
def __init__(self, loss_type):
"""
set up symbolic derivations
"""
from sympy.utilities.autowrap import autowrap
self.x = x = sympy.Symbol("x")
self.y = y = sympy.Symbol("y")
self.cx = cx = sympy.Symbol("cx")
self.cy = cy = sympy.Symbol("cy")
self.r = r = sympy.Symbol("r")
if loss_type == "eucledian_squared":
self.fun = (sympy.sqrt((x-cx)**2 + (y-cy)**2) - r)**2
if loss_type == "eucledian_abs":
self.fun = sympy.sqrt((sympy.sqrt((x-cx)**2 + (y-cy)**2) - r)**2 + 0.001)
if loss_type == "algebraic_squared":
self.fun = ((x-cx)**2 + (y-cy)**2 - r)**2
#TODO replace x**2 with x*x
self.fun = self.fun.expand(deep=True)
sympy.pprint(self.fun)
self.d_cx = self.fun.diff(cx).expand(deep=True)
self.d_cy = self.fun.diff(cy).expand(deep=True)
self.d_r = self.fun.diff(r).expand(deep=True)
# generate native code
native_lang = "C"
# generate native code
if native_lang == "fortran":
self.c_fun = autowrap(self.fun, language="F95", backend="f2py")
self.c_d_cx = autowrap(self.d_cx)
self.c_d_cy = autowrap(self.d_cy)
self.c_d_r = autowrap(self.d_r)
else:
self.c_fun = autowrap(self.fun, language="C", backend="Cython", tempdir=".")
self.c_d_cx = autowrap(self.d_cx, language="C", backend="Cython", tempdir=".")
self.c_d_cy = autowrap(self.d_cy, language="C", backend="Cython", tempdir=".")
self.c_d_r = autowrap(self.d_r, language="C", backend="Cython", tempdir=".")
self.grads = {"cx": self.d_cx, "cy": self.d_cy, "r": self.d_r}
self.c_grads = {"cx": self.c_d_cx, "cy": self.c_d_cy, "r": self.c_d_r}
def get_obj(self, x, y, cx, cy, r):
"""
eval objective at point
"""
#obj = float(self.fun.evalf(subs = {self.x: x, self.y: y, self.cx: cx, self.cy: cy, self.r: r}))
c_obj = float(self.c_fun(cx, cy, r, x, y))
#print obj, c_obj
#assert numpy.abs(obj - c_obj < 0.000001)
#TODO figure out why the gradient is screwed up when using c_obj instead!
return c_obj
def get_grad(self, var_name, x, y, cx, cy, r):
"""
eval gradient for variable at point
"""
#grad = float(self.grads[var_name].evalf(subs = {self.x: x, self.y: y, self.cx: cx, self.cy: cy, self.r: r}))
grad = float(self.c_grads[var_name](cx, cy, r, x, y))
return grad
def generate_c_code(self):
"""
generate C-code to use with cython
"""
sympy.printing.ccode(self.fun)
#loss = Loss("algebraic_squared")
#loss = Loss("eucledian_abs")
loss = Loss("eucledian_squared")
if __name__ == "__main__":
check_gradient()