-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhough_transform.py
46 lines (32 loc) · 1.13 KB
/
hough_transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import cv2
import Image
import numpy as np
import data_processing as dp
def fit_circle_houghtransform(vec_x, vec_y):
"""
use hough transform to fit circle:
http://www.janeriksolem.net/2012/08/reading-gauges-detecting-lines-and.html
"""
#TODO convert vec_x, vec_y to matrix
# plug in matrix, extract circles
import ipdb
ipdb.set_trace()
prefix="/home/cwidmer/Documents/phd/projects/cell_fitting/data/data/20091026_SK570_578_4.5um_1_R3D_CAL_01_D3D_CPY_Cut9"
fn = prefix + "/" + "20091026_SK570_578_4.5um_1_R3D_CAL_01_D3D_CPY_Cut9_w617_z08.tif"
im = np.array(dp.image2array(Image.open(fn)), dtype=np.uint8)
im = np.array(dp.image2array(Image.open(fn)), dtype=np.uint8)
m,n = im.shape
circles = cv2.HoughCircles(im, cv2.cv.CV_HOUGH_GRADIENT, 2, 10, np.array([]), 20, 60, m/10)[0]
c = circles[0]
draw_im = cv2.cvtColor(im, cv2.COLOR_GRAY2BGR)
cv2.circle(draw_im, (c[0],c[1]), c[2], (0,255,0), 2)
cv2.imshow("circles",im)
cv2.waitKey()
cv2.imwrite("res.jpg",draw_im)
def main():
"""
main
"""
fit_circle_houghtransform()
if __name__ == "__main__":
main()