-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreproc_2D.py
211 lines (145 loc) · 5.91 KB
/
preproc_2D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#!/usr/bin/env python2.5
#
# Written (W) 2012 Christian Widmer
# Copyright (C) 2012 Max-Planck-Society
"""
@author: Christian Widmer
@summary: Preprocess larger volumes containing several cells, segment nuclei
"""
import vigra.filters
import numpy
import pylab
from matplotlib.patches import Polygon
def load_data2D():
#readImage(filename, dtype = 'FLOAT', index = 0, order='') -> Image
#TODO read tiff files
#tif_dir = "data/data/20091026_SK570_578_4.5um_1_R3D_CAL_01_D3D_CPY_Cut9/"
#tif_file = "20091026_SK570_578_4.5um_1_R3D_CAL_01_D3D_CPY_Cut9_w617_z02.tif"a
tif_dir = "data/whole_volume/20091026_SK570_590_4.5um_13_R3D_CAL_01_D3D/"
tif_file = "20091026_SK570_590_4.5um_13_R3D_CAL_01_D3D_w617_z20.tif"
data = vigra.impex.readImage(tif_dir + tif_file)
print type(data)
return data
def plot_image_show(data, title=""):
pylab.figure()
plot_image(data, title)
pylab.title(title)
pylab.show()
def plot_image(data, title="", alpha=1.0):
"""
plot 2d image (work around numpy-vigra compatability problem)
"""
tmp_array = numpy.zeros(data.shape)
for i in xrange(data.shape[0]):
for j in xrange(data.shape[1]):
tmp_array[i,j] = data[i,j]
pylab.imshow(tmp_array, interpolation="nearest", alpha=alpha)
def extract():
"""
This function localizes blob-like object using multi-scale hessian
aggregation. The algorithm has been described in
[*} Xinghua Lou, X. Lou, U. Koethe, J. Wittbrodt, and F. A. Hamprecht.
Learning to Segment Dense Cell Nuclei with Shape Prior. In The 25th
IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2012), 2012.
Adapted to python by Christian Widmer
"""
#data = data_processing.get_data_example()
data = load_data2D()
#data = vigra.ScalarVolume((width, height, depth))
#TODO: get 3D data into right format
#scales = numpy.linspace(3, 15, 4)
scales = numpy.array([5.0])
closing = True
opening = False
window = 3
thresholds = -0.05*numpy.array([1, 2, 3])
conn = 0
margin = 0
verbose = True
ratios = numpy.array([1, 1, 0.25])
sigmas = numpy.array([1, 2, 4, 8])
#seeds = arg(varargin, mstring('init'), true(size(data)))
seeds = numpy.ones(data.shape)
plot_image_show(data, title="raw image")
for scale in scales:
# sigma
if verbose:
print 'analyzing at sigma = %s' % (scale)
# smooth image at this scale
tmp = vigra.filters.gaussianSmoothing(data, scale)
plot_image_show(tmp, title="smoothed Gaussian")
# compute eigenvalues
#eigenValues = vigra.filters.eigenValueOfHessianMatrix(tmp, sigma, 0.9 * numpy.array([1, 1, 1]), mask, seeds)
#hessian = vigra.filters.hessianOfGaussianEigenvalues(tmp, tmp_sigma)#, sigma_d=0.0, step_size=1.0, window_size=0.0, roi=None)
hessian = vigra.filters.hessianOfGaussian2D(tmp, 0.4) #, tmp_sigma)#, sigma_d=0.0, step_size=1.0, window_size=0.0, roi=None)
plot_image_show(hessian, title="hessian")
ev = vigra.filters.tensorEigenvalues(hessian)
plot_image_show(ev[:,:,0], title="eigenvalue 0")
plot_image_show(ev[:,:,1], title="eigenvalue 1")
# combine eigenvalue indicators: xor
if data.ndim == 3:
seeds = numpy.logical_and(seeds, ev[:,:,0] < thresholds[0])
seeds = numpy.logical_and(seeds, ev[:,:,1] < thresholds[1])
seeds = numpy.logical_and(seeds, ev[:,:,2] < thresholds[2])
elif data.ndim == 2:
seeds = numpy.logical_and(seeds, ev[:,:,0] < thresholds[0])
seeds = numpy.logical_and(seeds, ev[:,:,1] < thresholds[1])
plot_image_show(seeds, title="seeds")
#seed_img = vigra.ScalarImage(seeds)
#seed_img = numpy.array(seeds, dtype=numpy.float32)
seed_img = numpy.array(seeds, dtype=numpy.uint8)
#vigra.ScalarVolume((30,30,30))
closed = vigra.filters.discClosing(seed_img, 2)
plot_image_show(closed, title="closed seed")
dilated = vigra.filters.discDilation(closed, 2)
plot_image_show(dilated, title="dilated seed")
# heart piece
detect_boxes(data, dilated)
pylab.figure()
plot_image(data, title="seg vs real", alpha=0.5)
plot_image(dilated, title="seg vs real", alpha=0.5)
pylab.show()
#igra.filters.discClosing()
#http//hci.iwr.uni-heidelberg.de/vigra/doc/vigranumpy/index.html?highlight=dilate
#dilation operator afterwards
#vigra.analysis.labelVolume()
#vigra.analysis.labelImage()
def detect_boxes(raw_data, image):
"""
routine to automatically detect boxes in segmented image
"""
labels = vigra.analysis.labelImage(image)
plot_image_show(labels, title="labels")
a = numpy.array(labels)
unique = range(2, numpy.max(a))
pylab.figure()
#plot_image(labels == idx, title="labels")
plot_image(raw_data, title="labels")
for idx in unique:
py, px = numpy.where(a == idx)
x_left = min(px)
x_right = max(px)
y_top = max(py)
y_bot = min(py)
print "idx", idx
print "x_l, x_r", x_left, x_right
print "y_t, y_b", y_top, y_bot
print ""
#pointListX = [10, 20, 20, 10]
#pointListY = [10, 10, 20, 20]
pointListX = [x_left,x_right,x_right,x_left]
pointListY = [y_bot,y_bot,y_top,y_top]
#xyList = zip(pointListX, pointListY)
#p = Polygon( xyList, alpha=0.2 )
#pylab.gca().add_artist(p)
pylab.fill(pointListX, pointListY, 'r', alpha=0.4, edgecolor='r')
#
#pylab.axvline(x=x_left, ymin=y_top, ymax=y_bot)
#pylab.axvline(x=x_right, ymin=y_top, ymax=y_bot)
#pylab.axhline(y=y_top, xmin=x_left, xmax=x_right)
#pylab.axhline(y=y_bot, xmin=x_left, xmax=x_right)
pylab.show()
if __name__ == "__main__":
extract()
if __name__ == "pyreport.main":
extract()