-
Notifications
You must be signed in to change notification settings - Fork 0
/
vonLaszewski-cloudmask.bib
440 lines (408 loc) · 16.2 KB
/
vonLaszewski-cloudmask.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
@misc{unkown,
title = {???},
howpublished = {???},
year = 2023,
month = jun,
note = {unkown},
}
@misc{www-fair,
title = {{FAIR Principles}},
howpublished = {Web Page},
year = 2022,
month = jan,
note = {[Online; accessed 23. Jun. 2023]},
url = {https://www.go-fair.org/fair-principles}
}
@misc{www-sentinal-3,
title = {{Sentinel-3}},
howpublished = {Web Page},
year = 2023,
month = jun,
note = {[Online; accessed 22. Jun. 2023]},
url =
{https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-3}
}
@misc{las23-insights-mlcommons-education,
title = {Insights in High-Performance Big Data Systems Gained
from Educational MLCommons Earthquake Benchmarks
Efforts},
author = { von Laszewski, Gregor and J.P. Fleischer and Robert
Knuuti and Fox, Geoffrey. C. and Jake Kolessar and
Thomas Butler and Judy Fox },
howpublished = {Technical report, under review},
month = may,
year = 2023
}
@misc{www-rivanna,
title = {{Rivanna at University of Virginia}},
year = 2023,
month = jun,
note = {[Online; accessed 21. Jun. 2023]},
url =
{https://www.rc.virginia.edu/userinfo/rivanna/overview}
}
@misc{www-mlcommons,
title = {{MLCommons}},
howpublished = {Web Page},
year = 2023,
month = jun,
note = {[Online; accessed 21. Jun. 2023]},
url = {https://mlcommons.org/en}
}
@misc{www-greene-hw,
title = {{NYU High Performance Computing - Hardware specs}},
year = 2023,
month = jun,
howpublished = {Web Page},
note = {[Online; accessed 21. Jun. 2023]},
url =
{https://sites.google.com/nyu.edu/nyu-hpc/hpc-systems/greene/hardware-specs?authuser=0}
}
@misc{www-cudnn-seed,
title = {{Reproducibility -- PyTorch 2.0 documentation}},
year = 2023,
month = jun,
howpublished = {Web Page},
note = {[Online; accessed 20. Jun. 2023]},
url =
{https://pytorch.org/docs/stable/notes/randomness.html#cuda-convolution-benchmarking}
}
@article{arxiv-mlperf,
author = {Mattson, Peter and Cheng, Christine and Coleman,
Cody and Diamos, Greg and Micikevicius, Paulius and
Patterson, David and Tang, Hanlin and Wei, Gu-Yeon
and Bailis, Peter and Bittorf, Victor and Brooks,
David and Chen, Dehao and Dutta, Debojyoti and
Gupta, Udit and Hazelwood, Kim and Hock, Andrew and
Huang, Xinyuan and Ike, Atsushi and Jia, Bill and
Kang, Daniel and Kanter, David and Kumar, Naveen and
Liao, Jeffery and Ma, Guokai and Narayanan, Deepak
and Oguntebi, Tayo and Pekhimenko, Gennady and
Pentecost, Lillian and Reddi, Vijay Janapa and
Robie, Taylor and John, Tom {\relax St}. and Tabaru,
Tsuguchika and Wu, Carole-Jean and Xu, Lingjie and
Yamazaki, Masafumi and Young, Cliff and Zaharia,
Matei},
title = {{MLPerf Training Benchmark}},
journal = {arXiv},
year = 2019,
month = oct,
eprint = {1910.01500},
doi = {10.48550/arXiv.1910.01500}
}
@article{Farrell2021MLPerfHA,
title = {MLPerf{\texttrademark} HPC: A Holistic Benchmark
Suite for Scientific Machine Learning on HPC
Systems},
author = {Steven Andrew Farrell and Murali Krishna Emani and
Jacob Balma and Lukas Drescher and Aleksandr Drozd
and Andreas Fink and Geoffrey Fox and David Kanter
and Thorsten Kurth and Peter Mattson and Dawei Mu
and Amit Ruhela and Kento Sato and Koichi Shirahata
and Tsuguchika Tabaru and Aristeidis Tsaris and Jan
Balewski and Benjamin Cumming and Takumi Danjo and
Jens Domke and Takaaki Fukai and Naoto Fukumoto and
Tatsuya Fukushi and Balazs Gerofi and Takumi Honda
and Toshiyuki Imamura and Akihiko Kasagi and Kentaro
Kawakami and Shuhei Kudo and Akiyoshi Kuroda and
Maxime Martinasso and Satoshi Matsuoka and Henrique
Mendonc and Kazuki Minami and Prabhat Ram and
Takashi Sawada and Mallikarjun (Arjun) Shankar and
Tom St. John and Akihiro Tabuchi and Venkatram
Vishwanath and Mohamed Wahib and Masafumi Yamazaki
and Junqi Yin},
journal = {2021 IEEE/ACM Workshop on Machine Learning in High
Performance Computing Environments (MLHPC)},
year = 2021,
pages = {33-45}
}
@article{Yan2018CloudAC,
title = {Cloud and Cloud Shadow Detection Using Multilevel
Feature Fused Segmentation Network},
author = {Zhiyuan Yan and Menglong Yan and Hao Sun and Kun Fu
and Jun Hong and Jun Sun and Yi Zhang and Xian Sun},
journal = {IEEE Geoscience and Remote Sensing Letters},
year = 2018,
volume = 15,
pages = {1600-1604}
}
@inproceedings{Thiyagalingam2022AIBF,
title = {AI Benchmarking for Science: Efforts from the
MLCommons Science Working Group},
author = {Jeyan Thiyagalingam and G. Laszewski and Junqi Yin
and Murali Krishna Emani and Juri Papay and Gregg
Barrett and Piotr Luszczek and Aristeidis Tsaris and
Christine R. Kirkpatrick and Feiyi Wang and Tom
Gibbs and Venkatram Vishwanath and Mallikarjun
(Arjun) Shankar and Geoffrey C. Fox and Anthony
J. G. Hey},
booktitle = {ISC Workshops},
year = 2022
}
@article{Saunders1986AnAS,
title = {An automated scheme for the removal of cloud
contamination from AVHRR radiances over western
Europe},
author = {Roger W. Saunders},
journal = {International Journal of Remote Sensing},
year = 1986,
volume = 7,
pages = {867-886}
}
@article{Saunders1988AnIM,
title = {An improved method for detecting clear sky and
cloudy radiances from AVHRR data},
author = {Roger W. Saunders and Karl Theodor Kriebel},
journal = {International Journal of Remote Sensing},
year = 1988,
volume = 9,
pages = {123-150}
}
@article{Ronneberger2015UNetCN,
title = {U-Net: Convolutional Networks for Biomedical Image
Segmentation},
author = {Olaf Ronneberger and Philipp Fischer and Thomas
Brox},
journal = {ArXiv},
year = 2015,
volume = {abs/1505.04597}
}
@misc{www-mlcommons-science,
author = {Fox, G. and Hey, T. and Thiyagalingam, J},
title = {Science data working group of MLCommons
research. Web Page.},
url = {https://mlcommons.org/en/groups/research-science/},
month = apr,
howpublished = {Web Page},
year = 2023,
urldate = {04/20/2023}
}
@misc{www-lsf,
author = {{IBM}},
title = {Introduction to IBM Spectrum LSF},
howpublished = {Web Page},
url =
{https://www.ibm.com/docs/en/spectrum-lsf/10.1.0?topic=overview-lsf-introduction},
month = apr,
year = 2023
}
@misc{www-slurm,
journal = {Web page},
key = {SLURM},
month = apr,
howpublished = {Web page},
url = {https://slurm.schedmd.com},
title = {Homepage},
year = 2003,
month = apr
}
@misc{github-laszewsk-mlcommons,
author = {von Laszewski, Gregor and {et.al.}},
title = {laszewsk/mlcommons:
https://laszewsk.github.io/mlcommons/},
url = {https://github.com/laszewsk/mlcommons},
month = apr,
howpublished = {Web Page},
year = 2023,
urldate = {04/20/2023}
}
@misc{www-greene,
author = {{New York University}},
title = {NYU Greene Supercomputer},
url =
{https://www.nyu.edu/life/information-technology/research-computing-services/high-performance-computing/high-performance-computing-nyu-it/hpc-supercomputer-clusters/greene.html},
month = apr,
year = 2023,
urldate = {04/20/2023},
howpublished = {Web Page},
}
@misc{top500-greene,
author = {{Top500}},
title = {Greene - ThinkSystem SR650, Xeon Gold 6240 18C
2.6GHz, Infiniband HDR},
howpublished = {Web Page},
url = {https://www.top500.org/system/179851/},
month = apr,
year = 2023
}
@InCollection{las22-cloudmesh-cc-reu,
author = {von Laszewski, Gregor and Fleischer, J.P.},
title = {{Hybrid Multi-Cloud Analytics Services Framework}},
booktitle = {Computing for Global Challenges Symposium},
publisher = {Online},
year = 2022,
type = {Poster},
edition = {Oct. 2022},
month = jul,
address = {University of Virginia, Charlottesville, VA},
note = {corrected and updated Oct. 2022},
url =
{https://raw.githubusercontent.com/cloudmesh/cloudmesh-cc/main/documents/analytics-service.pdf}
}
@misc{github-cloudmesh-cc,
author = {Gregor von Laszewski and J.P. Fleischer},
title = {{Hybrid Multi-Cloud Analytics Services Framework}},
howpublished = {GitHub},
year = 2022,
month = oct,
note = {[Online; accessed 14. Oct. 2022]},
url = {https://github.com/cloudmesh/cloudmesh-cc}
}
@misc{github-mlcommons-logging,
author = {MLCommons},
title = {GitHub MLCommons Logging},
year = 2022,
url = {https://github.com/mlcommons/logging},
}
@misc{github-cloudmesh-sbatch,
author = {Gregor von Laszewski},
title = {{Hyperparameter Search Batch Job Generator}},
howpublished = {GitHub},
year = 2022,
month = oct,
note = {[Online; accessed 14. Oct. 2022]},
url = {https://github.com/cloudmesh/cloudmesh-sbatch}
}
@article{las-2021-covid,
author = {Geoffrey C. Fox and Gregor von Laszewski and Fugang
Wang and Saumyadipta Pyne},
title = {AICov: An Integrative Deep Learning Framework for
COVID-19 Forecasting with Population Covariates},
journal = {Journal of Data Science},
volume = 19,
number = 2,
year = 2021,
pages = {293--313},
doi = {10.6339/21-JDS1007},
issn = {1680-743X},
publisher = {School of Statistics, Renmin University of China}
}
@misc{google-meeting-notes,
author = {Varshitha Chennamsetti and Alex Tang and Rouchen Gu
and von Laszewski, Gregor},
title = {{NYU-MLCommons Meeting Notes}},
howpublished = {Google Drive},
year = 2022,
month = oct,
note = {[Online; accessed 25. Mar. 2023]},
url =
{https://docs.google.com/document/d/1LUuVSeLYv-717TJxtyikihLmuyf6at50FNBn57Doo_4/edit#heading=h.7p7jjuq4vbsm}
}
@inbook{mlcommons-benchmark-2023,
author = {Thiyagalingam, Jeyan and von Laszewski, Gregor and
Yin, Junqi and Emani, Murali and Papay, Juri and
Barrett, Gregg and Luszczek, Piotr and Tsaris,
Aristeidis and Kirkpatrick, Christine and Wang,
Feiyi and Gibbs, Tom and Vishwanath, Venkatram and
Shankar, Mallikarjun and Fox, Geoffrey and Hey,
Tony},
year = 2023,
month = 01,
pages = {47-64},
title = {AI Benchmarking for Science: Efforts from the
MLCommons Science Working Group},
isbn = {978-3-031-23219-0},
doi = {10.1007/978-3-031-23220-6_4}
}
@article{Merchant2005ProbabilisticPB,
title = {Probabilistic physically based cloud screening of
satellite infrared imagery for operational sea
surface temperature retrieval},
author = {Christopher J. Merchant and Andrew R. Harris and
Eileen Maturi and S. Maccallum},
journal = {Quarterly Journal of the Royal Meteorological
Society},
year = 2005,
volume = 131
}
@article{WIELAND2019111203,
title = {Multi-sensor cloud and cloud shadow segmentation
with a convolutional neural network},
journal = {Remote Sensing of Environment},
volume = 230,
pages = 111203,
year = 2019,
issn = {0034-4257},
doi = {https://doi.org/10.1016/j.rse.2019.05.022},
url =
{https://www.sciencedirect.com/science/article/pii/S0034425719302159},
author = {Marc Wieland and Yu Li and Sandro Martinis},
keywords = {Cloud, Cloud shadow, Convolutional neural network,
Landsat, Sentinel-2},
abstract = {Cloud and cloud shadow segmentation is a crucial
pre-processing step for any application that uses
multi-spectral satellite images. In particular,
disaster related applications (e.g., flood
monitoring or rapid damage mapping), which are
highly time- and data-critical, require methods that
produce accurate cloud and cloud shadow masks in
short time while being able to adapt to large
variations in the target domain (induced by
atmospheric conditions, different sensors, scene
properties, etc.). In this study, we propose a
data-driven approach to semantic segmentation of
cloud and cloud shadow in single date images based
on a modified U-Net convolutional neural network
that aims to fulfil these requirements. We train the
network on a global database of Landsat OLI images
for the segmentation of five classes (“shadow”,
“cloud”, “water”, “land” and “snow/ice”). We compare
the results to state-of-the-art methods, proof the
model's generalization ability across multiple
satellite sensors (Landsat TM, Landsat ETM+, Landsat
OLI and Sentinel-2) and show the influence of
different training strategies and spectral band
combinations on the performance of the
segmentation. Our method consistently outperforms
Fmask and a traditional Random Forest classifier on
a globally distributed multi-sensor test dataset in
terms of accuracy, Cohen's Kappa coefficient, Dice
coefficient and inference speed. The results
indicate that a reduced feature space composed
solely of red, green, blue and near-infrared bands
already produces good results for all tested
sensors. If available, adding shortwave-infrared
bands can increase the accuracy. Contrast and
brightness augmentations of the training data
further improve the segmentation performance. The
best performing U-Net model achieves an accuracy of
0.89, Kappa of 0.82 and Dice coefficient of 0.85,
while running the inference over 896 test image
tiles with 44.8 s/megapixel (2.8 s/megapixel on
GPU). The Random Forest classifier reaches an
accuracy of 0.79, Kappa of 0.65 and Dice coefficient
of 0.74 with 3.9 s/megapixel inference time (on CPU)
on the same training and testing data. The
rule-based Fmask method takes significantly longer
(277.8 s/megapixel) and produces results with an
accuracy of 0.75, Kappa of 0.60 and Dice coefficient
of 0.72.}
}
@InProceedings{RFB15a,
author = "O. Ronneberger and P.Fischer and T. Brox",
title = "U-Net: Convolutional Networks for Biomedical Image
Segmentation",
booktitle = "Medical Image Computing and Computer-Assisted
Intervention (MICCAI)",
series = "LNCS",
volume = 9351,
pages = "234--241",
year = 2015,
publisher = "Springer",
note = "(available on arXiv:1505.04597 [cs.CV])",
url =
"http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a"
}
@ARTICLE{8401847,
author = {Yan, Zhiyuan and Yan, Menglong and Sun, Hao and Fu,
Kun and Hong, Jun and Sun, Jun and Zhang, Yi and
Sun, Xian},
journal = {IEEE Geoscience and Remote Sensing Letters},
title = {Cloud and cloud shadow detection using multilevel
feature fused segmentation network},
year = 2018,
volume = 15,
number = 10,
pages = {1600-1604},
doi = {10.1109/LGRS.2018.2846802}
}