-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdb_13.R
141 lines (101 loc) · 3.45 KB
/
db_13.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# attach relevant packages
library(tidyverse)
### Downsizing on the database #################################################
# Connection -------------------------------------------------------------------
con <- DBI::dbConnect(duckdb::duckdb())
dm::copy_dm_to(con, dm::dm_pixarfilms(), set_key_constraints = FALSE, temporary = FALSE)
# Lazy tables ------------------------------------------------------------------
pixar_films <- tbl(con, "pixar_films")
pixar_films
# Aggregation ------------------------------------------------------------------
pixar_films |>
summarize(.by = film_rating, n = n())
# Shortcut
pixar_films |>
count(film_rating)
# Computations happens on the database!
pixar_films |>
count(film_rating) |>
show_query()
# Bring the data into the R session
df_pixar_films_by_rating <-
pixar_films |>
count(film_rating) |>
collect()
df_pixar_films_by_rating
# Immutable data: original data unchanged
pixar_films |>
collect()
# Second lazy table --------------------------------------------------------------
academy <- tbl(con, "academy")
academy
academy |>
count(status)
# Left join ------
academy |>
left_join(pixar_films)
academy |>
left_join(pixar_films, join_by(film))
academy |>
left_join(pixar_films, join_by(film)) |>
show_query()
# Join with prior computation ------
academy_won <-
academy |>
filter(status == "Won") |>
count(film, name = "n_won")
academy_won
pixar_films |>
left_join(academy_won, join_by(film))
academy_won |>
right_join(pixar_films, join_by(film)) |>
arrange(release_date)
academy_won |>
right_join(pixar_films, join_by(film)) |>
mutate(n_won = coalesce(n_won, 0L)) |>
arrange(release_date)
pixar_films |>
left_join(academy_won, join_by(film)) |>
mutate(n_won = coalesce(n_won, 0L)) |>
arrange(release_date) |>
show_query()
# Caveat: tables must be on the same source ------------------------------------
try(
academy |>
left_join(pixarfilms::pixar_films, join_by(film))
)
academy |>
left_join(pixarfilms::pixar_films, join_by(film), copy = TRUE)
academy |>
left_join(pixarfilms::pixar_films, join_by(film), copy = TRUE) |>
show_query()
try(
pixarfilms::academy |>
left_join(pixar_films, join_by(film))
)
pixarfilms::academy |>
left_join(pixar_films, join_by(film), copy = TRUE)
pixar_films_db <-
copy_to(con, pixarfilms::pixar_films)
academy |>
left_join(pixar_films_db, join_by(film))
# Downsizing on the database: Exercises ----------------------------------------
# `count()`, `summarize()`, `group_by()`, `ungroup()` --------------------------
pixar_films
# 1. How many films are stored in the table?
# 2. How many films released after 2005 are stored in the table?
# 3. What is the total run time of all films?
# - Hint: Use `summarize(sum(...))`, watch out for the warning
# 4. What is the total run time of all films, per rating?
# - Hint: Use `group_by()` or `.by`
# `left_join()` --------------------------------------------------------------------
pixar_films |>
left_join(academy, join_by(film))
# 1. How many rows does the join between `academy` and `pixar_films` contain?
# Try to find out without loading all the data into memory. Explain.
# 2. Which films are not yet listed in the `academy` table? What does the
# resulting SQL query look like?
# - Hint: Use `anti_join()`
# 3. Plot a bar chart with the number of awards won and nominated per year.
# Compute as much as possible on the database.
# - Hint: "Long form" or "wide form"?