-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_bo_classification.py
176 lines (143 loc) · 4.79 KB
/
run_bo_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import os
import time
import click
import numpy as np
import pandas as pd
from ConfigSpace import Configuration
from sklearn.model_selection import KFold
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.utils.parallel import Parallel, delayed
from smac import HyperparameterOptimizationFacade, Scenario
from tqdm.auto import tqdm
from tabular.classifiers import decision_trees, knn, mlp, svm, xgb
from utils import (
fix_probabilities,
load_data,
score,
split_indices,
dataset_option,
repeats_option,
results_dir_option,
size_option,
models_dir_option,
)
@click.command()
@dataset_option
@repeats_option
@results_dir_option
@models_dir_option
@size_option
@click.option("--model-type", default="xgb")
@click.option("--n-trials", "-n", default=100)
@click.option("--n-jobs", default=-1)
@click.option("--n-workers", default=1)
def main(
dataset,
repeats,
results_dir,
models_dir,
test_sizes,
model_type,
n_trials,
n_jobs,
n_workers,
):
dataset_name = dataset.split("/")[-1]
if not os.path.exists(dataset):
raise ValueError(f"Dataset {dataset} does not exist")
results_path = results_dir.format(dataset_name=dataset_name)
os.makedirs(results_path, exist_ok=True)
bo_name = "bo" if n_trials == 100 else f"bo_{n_trials}"
model_path = os.path.join(
models_dir.format(dataset_name=dataset_name), bo_name, model_type
)
os.makedirs(model_path, exist_ok=True)
results = []
model_types = {
"decision_trees": decision_trees.DecisionTree,
"knn": knn.KNN,
"xgb": xgb.XGB,
"svm": svm.SVM,
"mlp": mlp.FastAI,
}
model = model_types[model_type]
train_data, test_data, meta = load_data(dataset)
x_columns = train_data.columns.drop(meta["label"])
y_column = meta["label"]
bar = tqdm(
total=len(test_sizes) * repeats,
desc=f"Training BO {model_type} ({dataset_name})",
)
for info, train_i, test_i in split_indices(dataset, repeats, test_sizes):
n = info["trainset_fraction"]
i = info["i"]
train_x = train_data.loc[train_i, x_columns]
train_y = train_data.loc[train_i, y_column]
test_x = test_data.loc[test_i, x_columns]
test_y = test_data.loc[test_i, y_column]
t0 = time.perf_counter()
encoder = LabelEncoder()
scaler = StandardScaler()
train_y[:] = encoder.fit_transform(train_y)
train_x[:] = scaler.fit_transform(train_x)
def train(
config: Configuration,
seed: int = 0,
) -> float:
cv = KFold(n_splits=5, shuffle=True, random_state=seed)
parallel = Parallel(n_jobs=n_jobs, pre_dispatch="2*n_jobs", timeout=60)
scores = parallel(
delayed(model.fit_score)(config, train_x, train_y, train, test, seed)
for train, test in cv.split(train_x, train_y)
)
return 1 - np.mean(scores)
configspace = model.parameters(
num_classes=meta["num_classes"], n_samples=train_x.shape[0]
)
run_name = f"run_{int(n*100):d}_{i}"
scenario = Scenario(
configspace,
name=run_name,
deterministic=True,
n_trials=n_trials,
output_directory=model_path,
n_workers=n_workers,
seed=12345,
)
# Use SMAC to find the best configuration/hyperparameters
smac = HyperparameterOptimizationFacade(
scenario,
train,
overwrite=True,
logging_level=50,
)
incumbent = smac.optimize()
classifier = model.fit(incumbent, train_x, train_y, seed=12345)
train_time = time.perf_counter() - t0
# Evaluate the best configuration on the test set
t0 = time.perf_counter()
test_x[:] = scaler.transform(test_x)
pred = classifier.predict(test_x)
pred = encoder.inverse_transform(pred.astype(int))
test_time = time.perf_counter() - t0
proba = classifier.predict_proba(test_x)
proba = fix_probabilities(np.unique(test_y), np.unique(train_y), proba)
if proba.shape[1] == 2:
proba = proba[:, 1]
scores = score(test_y, pred, proba)
scores.update(
{
**info,
"model": f"{bo_name}_{model_type}",
"dataset": dataset_name,
"train_time": train_time,
"test_time": test_time,
}
)
results.append(scores)
model.save(classifier, os.path.join(model_path, run_name))
bar.update(1)
results = pd.DataFrame(results)
results.to_parquet(os.path.join(results_path, f"{bo_name}_{model_type}.parquet"))
if __name__ == "__main__":
main()